licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
19306
""" Update order for a block-coordinate method. A `BlockCoordinateUpdateOrder` must implement ``` select_update_indices(::BlockCoordinateUpdateOrder, s::CallbackState, dual_gaps) ``` """ abstract type BlockCoordinateUpdateOrder end """ select_update_indices(::BlockCoordinateUpdateOrder, s::CallbackState, dual_gaps) Returns a list of lists of the block indices. Each sublist represents one round of updates in an iteration. The indices in a list show which blocks should be updated parallely in one round. For example, a full update is given by `[1:l]` and a blockwise update by `[[i] for i=1:l]`, where `l` is the number of blocks. """ function select_update_indices end """ The full update initiates a parallel update of all blocks in one single round. """ struct FullUpdate <: BlockCoordinateUpdateOrder end """ The cyclic update initiates a sequence of update rounds. In each round only one block is updated. The order of the blocks is determined by the given order of the LMOs. """ struct CyclicUpdate <: BlockCoordinateUpdateOrder limit::Int end CyclicUpdate() = CyclicUpdate(-1) """ The stochastic update initiates a sequence of update rounds. In each round only one block is updated. The order of the blocks is a random. """ struct StochasticUpdate <: BlockCoordinateUpdateOrder limit::Int end StochasticUpdate() = StochasticUpdate(-1) mutable struct DualGapOrder <: BlockCoordinateUpdateOrder limit::Int end DualGapOrder() = DualGapOrder(-1) mutable struct DualProgressOrder <: BlockCoordinateUpdateOrder limit::Int previous_dual_gaps::Vector{Float64} dual_progress::Vector{Float64} end DualProgressOrder() = DualProgressOrder(-1, [], []) DualProgressOrder(i::Int64) = DualProgressOrder(i, [], []) function select_update_indices(::FullUpdate, s::CallbackState, _) return [1:length(s.lmo.lmos)] end function select_update_indices(u::CyclicUpdate, s::CallbackState, _) l = length(s.lmo.lmos) @assert u.limit <= l @assert u.limit > 0 || u.limit == -1 if u.limit in [-1, l] return [[i] for i in 1:l] end start = (s.t*u.limit % l) + 1 if start + u.limit - 1 ≤ l return [[i] for i in start:start + u.limit - 1] else a = [[i] for i in start:l] append!(a, [[i] for i in 1:u.limit-length(a)]) return a end end function select_update_indices(u::StochasticUpdate, s::CallbackState, _) l = length(s.lmo.lmos) @assert u.limit <= l @assert u.limit > 0 || u.limit == -1 if u.limit == -1 return [[rand(1:l)] for i in 1:l] end return [[rand(1:l)] for i in 1:u.limit] end function select_update_indices(u::DualProgressOrder, s::CallbackState, dual_gaps) l = length(s.lmo.lmos) @assert u.limit <= l @assert u.limit > 0 || u.limit == -1 # In the first iteration update every block so we get finite dual progress if s.t < 2 u.previous_dual_gaps = copy(dual_gaps) return [[i] for i=1:l] end if s.t == 1 u.dual_progress = dual_gaps - u.previous_dual_gaps else diff = dual_gaps - u.previous_dual_gaps u.dual_progress = [d == 0 ? u.dual_progress[i] : d for (i, d) in enumerate(diff)] end u.previous_dual_gaps = copy(dual_gaps) n = u.limit == -1 ? l : u.limit return [[findfirst(cumsum(u.dual_progress/sum(u.dual_progress)) .> rand())] for _=1:n] end function select_update_indices(u::DualGapOrder, s::CallbackState, dual_gaps) l = length(s.lmo.lmos) @assert u.limit <= l @assert u.limit > 0 || u.limit == -1 # In the first iteration update every block so we get finite dual gaps if s.t < 1 return [[i] for i=1:l] end n = u.limit == -1 ? l : u.limit return [[findfirst(cumsum(dual_gaps/sum(dual_gaps)) .> rand())] for _=1:n] end """ Update step for block-coordinate Frank-Wolfe. These are implementations of different FW-algorithms to be used in a blockwise manner. Each update step must implement ``` update_iterate( step::UpdateStep, x, lmo, f, gradient, grad!, dual_gap, t, line_search, linesearch_workspace, memory_mode, epsilon, ) ``` """ abstract type UpdateStep end """ update_iterate( step::UpdateStep, x, lmo, f, gradient, grad!, dual_gap, t, line_search, linesearch_workspace, memory_mode, epsilon, ) Executes one iteration of the defined [`FrankWolfe.UpdateStep`](@ref) and updates the iterate `x` implicitly. The function returns a tuple `(dual_gap, v, d, gamma, step_type)`: - `dual_gap` is the updated FrankWolfe gap - `v` is the used vertex - `d` is the update direction - `gamma` is the applied step-size - `step_type` is the applied step-type """ function update_iterate end """ Implementation of the vanilla Frank-Wolfe algorithm as an update step for block-coordinate Frank-Wolfe. """ struct FrankWolfeStep <: UpdateStep end """ Implementation of the blended pairwise conditional gradient (BPCG) method as an update step for block-coordinate Frank-Wolfe. """ mutable struct BPCGStep <: UpdateStep lazy::Bool active_set::Union{FrankWolfe.AbstractActiveSet,Nothing} renorm_interval::Int lazy_tolerance::Float64 phi::Float64 end function Base.copy(::FrankWolfeStep) return FrankWolfeStep() end function Base.copy(obj::BPCGStep) if obj.active_set === nothing return BPCGStep(false, nothing, obj.renorm_interval, obj.lazy_tolerance, Inf) else return BPCGStep(obj.lazy, copy(obj.active_set), obj.renorm_interval, obj.lazy_tolerance, obj.phi) end end BPCGStep() = BPCGStep(false, nothing, 1000, 2.0, Inf) function update_iterate( ::FrankWolfeStep, x, lmo, f, gradient, grad!, dual_gap, t, line_search, linesearch_workspace, memory_mode, epsilon, ) d = similar(x) v = compute_extreme_point(lmo, gradient) dual_gap = fast_dot(x, gradient) - fast_dot(v, gradient) d = muladd_memory_mode(memory_mode, d, x, v) gamma = perform_line_search( line_search, t, f, grad!, gradient, x, d, 1.0, linesearch_workspace, memory_mode, ) x = muladd_memory_mode(memory_mode, x, gamma, d) step_type = ST_REGULAR return (dual_gap, v, d, gamma, step_type) end function update_iterate( s::BPCGStep, x, lmo, f, gradient, grad!, dual_gap, t, line_search, linesearch_workspace, memory_mode, epsilon, ) d = zero(x) step_type = ST_REGULAR _, v_local, v_local_loc, _, a_lambda, a, a_loc, _, _ = active_set_argminmax(s.active_set, gradient) dot_forward_vertex = fast_dot(gradient, v_local) dot_away_vertex = fast_dot(gradient, a) local_gap = dot_away_vertex - dot_forward_vertex if !s.lazy v = compute_extreme_point(lmo, gradient) dual_gap = fast_dot(gradient, x) - fast_dot(gradient, v) s.phi = dual_gap end # minor modification from original paper for improved sparsity # (proof follows with minor modification when estimating the step) if local_gap > s.phi / s.lazy_tolerance d = muladd_memory_mode(memory_mode, d, a, v_local) vertex_taken = v_local gamma_max = a_lambda gamma = perform_line_search( line_search, t, f, grad!, gradient, x, d, gamma_max, linesearch_workspace, memory_mode, ) gamma = min(gamma_max, gamma) step_type = gamma ≈ gamma_max ? ST_DROP : ST_PAIRWISE # reached maximum of lambda -> dropping away vertex if gamma ≈ gamma_max s.active_set.weights[v_local_loc] += gamma deleteat!(s.active_set, a_loc) else # transfer weight from away to local FW s.active_set.weights[a_loc] -= gamma s.active_set.weights[v_local_loc] += gamma @assert active_set_validate(s.active_set) end active_set_update_iterate_pairwise!(s.active_set.x, gamma, v_local, a) else # add to active set if s.lazy v = compute_extreme_point(lmo, gradient) step_type = ST_REGULAR end vertex_taken = v dual_gap = fast_dot(gradient, x) - fast_dot(gradient, v) # if we are about to exit, compute dual_gap with the cleaned-up x if dual_gap ≤ epsilon active_set_renormalize!(s.active_set) active_set_cleanup!(s.active_set) compute_active_set_iterate!(s.active_set) x = get_active_set_iterate(s.active_set) grad!(gradient, x) dual_gap = fast_dot(gradient, x) - fast_dot(gradient, v) end if !s.lazy || dual_gap ≥ s.phi / s.lazy_tolerance d = muladd_memory_mode(memory_mode, d, x, v) gamma = perform_line_search( line_search, t, f, grad!, gradient, x, d, one(eltype(x)), linesearch_workspace, memory_mode, ) # dropping active set and restarting from singleton if gamma ≈ 1.0 active_set_initialize!(s.active_set, v) else renorm = mod(t, s.renorm_interval) == 0 active_set_update!(s.active_set, gamma, v, renorm, nothing) end else # dual step if step_type != ST_LAZYSTORAGE s.phi = dual_gap @debug begin @assert step_type == ST_REGULAR v2 = compute_extreme_point(lmo, gradient) g = dot(gradient, x - v2) if abs(g - dual_gap) > 100 * sqrt(eps()) error("dual gap estimation error $g $dual_gap") end end else @info "useless step" end step_type = ST_DUALSTEP gamma = 0.0 end end if mod(t, s.renorm_interval) == 0 active_set_renormalize!(s.active_set) end x = muladd_memory_mode(memory_mode, x, gamma, d) return (dual_gap, vertex_taken, d, gamma, step_type) end """ block_coordinate_frank_wolfe(f, grad!, lmo::ProductLMO{N}, x0; ...) where {N} Block-coordinate version of the Frank-Wolfe algorithm. Minimizes objective `f` over the product of feasible domains specified by the `lmo`. The optional argument the `update_order` is of type [`FrankWolfe.BlockCoordinateUpdateOrder`](@ref) and controls the order in which the blocks are updated. The argument `update_step` is a single instance or tuple of [`FrankWolfe.UpdateStep`](@ref) and defines which FW-algorithms to use to update the iterates in the different blocks. The method returns a tuple `(x, v, primal, dual_gap, traj_data)` with: - `x` cartesian product of final iterates - `v` cartesian product of last vertices of the LMOs - `primal` primal value `f(x)` - `dual_gap` final Frank-Wolfe gap - `traj_data` vector of trajectory information. See [S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher 2013](https://arxiv.org/abs/1207.4747) and [A. Beck, E. Pauwels and S. Sabach 2015](https://arxiv.org/abs/1502.03716) for more details about Block-Coordinate Frank-Wolfe. """ function block_coordinate_frank_wolfe( f, grad!, lmo::ProductLMO{N}, x0::BlockVector; update_order::BlockCoordinateUpdateOrder=CyclicUpdate(), line_search::LS=Adaptive(), update_step::US=FrankWolfeStep(), momentum=nothing, epsilon=1e-7, max_iteration=10000, print_iter=1000, trajectory=false, verbose=false, memory_mode=InplaceEmphasis(), gradient=nothing, callback=nothing, traj_data=[], timeout=Inf, linesearch_workspace=nothing, ) where { N, US<:Union{UpdateStep,NTuple{N,UpdateStep}}, LS<:Union{LineSearchMethod,NTuple{N,LineSearchMethod}}, } # header and format string for output of the algorithm headers = ["Type", "Iteration", "Primal", "Dual", "Dual Gap", "Time", "It/sec"] format_string = "%6s %13s %14e %14e %14e %14e %14e\n" function format_state(state, args...) rep = ( steptype_string[Symbol(state.step_type)], string(state.t), Float64(state.primal), Float64(state.primal - state.dual_gap), Float64(state.dual_gap), state.time, state.t / state.time, ) return rep end #ndim = ndims(x0) t = 0 dual_gap = Inf dual_gaps = fill(Inf, N) primal = Inf x = copy(x0) step_type = ST_REGULAR if trajectory callback = make_trajectory_callback(callback, traj_data) end if verbose callback = make_print_callback(callback, print_iter, headers, format_string, format_state) end if update_step isa UpdateStep update_step = [copy(update_step) for _ in 1:N] end for (i, s) in enumerate(update_step) if s isa BPCGStep && s.active_set === nothing s.active_set = ActiveSet([(1.0, copy(x0.blocks[i]))]) end end if line_search isa LineSearchMethod line_search = [line_search for _ in 1:N] end gamma = nothing v = similar(x) time_start = time_ns() if (momentum !== nothing && line_search isa Union{Shortstep,Adaptive,Backtracking}) @warn("Momentum-averaged gradients should usually be used with agnostic stepsize rules.",) end # instanciating container for gradient if gradient === nothing gradient = similar(x) end if verbose println("\nBlock coordinate Frank-Wolfe (BCFW).") num_type = eltype(x0[1]) line_search_type = [typeof(a) for a in line_search] println( "MEMORY_MODE: $memory_mode STEPSIZE: $line_search_type EPSILON: $epsilon MAXITERATION: $max_iteration TYPE: $num_type", ) grad_type = typeof(gradient) update_step_type = [typeof(s) for s in update_step] println( "MOMENTUM: $momentum GRADIENTTYPE: $grad_type UPDATE_ORDER: $update_order UPDATE_STEP: $update_step_type", ) if memory_mode isa InplaceEmphasis @info("In memory_mode memory iterates are written back into x0!") end end first_iter = true if linesearch_workspace === nothing linesearch_workspace = [ build_linesearch_workspace(line_search[i], x.blocks[i], gradient.blocks[i]) for i in 1:N ] # TODO: might not be really needed - hence hack end # container for direction d = similar(x) gtemp = if momentum === nothing d else similar(x) end # container for state state = CallbackState( t, primal, primal - dual_gap, dual_gap, 0.0, x, v, d, gamma, f, grad!, lmo, gradient, step_type, ) while t <= max_iteration && dual_gap >= max(epsilon, eps(float(typeof(dual_gap)))) ##################### # managing time and Ctrl-C ##################### time_at_loop = time_ns() if t == 0 time_start = time_at_loop end # time is measured at beginning of loop for consistency throughout all algorithms tot_time = (time_at_loop - time_start) / 1e9 if timeout < Inf if tot_time ≥ timeout if verbose @info "Time limit reached" end break end end ##################### for update_indices in select_update_indices(update_order, state, dual_gaps) # Update gradients if momentum === nothing || first_iter grad!(gradient, x) if momentum !== nothing gtemp .= gradient end else grad!(gtemp, x) @memory_mode(memory_mode, gradient = (momentum * gradient) + (1 - momentum) * gtemp) end first_iter = false xold = copy(x) Threads.@threads for i in update_indices function extend(y) bv = copy(xold) bv.blocks[i] = y return bv end function temp_grad!(storage, y, i) z = extend(y) big_storage = similar(z) grad!(big_storage, z) @. storage = big_storage.blocks[i] end dual_gaps[i], v.blocks[i], d.blocks[i], gamma, step_type = update_iterate( update_step[i], x.blocks[i], lmo.lmos[i], y -> f(extend(y)), gradient.blocks[i], (storage, y) -> temp_grad!(storage, y, i), dual_gaps[i], t, line_search[i], linesearch_workspace[i], memory_mode, epsilon, ) end dual_gap = sum(dual_gaps) end # go easy on the memory - only compute if really needed if ( (mod(t, print_iter) == 0 && verbose) || callback !== nothing || line_search isa Shortstep ) primal = f(x) end t = t + 1 if callback !== nothing || update_order isa CyclicUpdate state = CallbackState( t, primal, primal - dual_gap, dual_gap, tot_time, x, v, d, gamma, f, grad!, lmo, gradient, step_type, ) if callback !== nothing # @show state if callback(state, dual_gaps) === false break end end end end # recompute everything once for final verfication / do not record to trajectory though for now! # this is important as some variants do not recompute f(x) and the dual_gap regularly but only when reporting # hence the final computation. step_type = ST_LAST grad!(gradient, x) v = compute_extreme_point(lmo, gradient) primal = f(x) dual_gap = fast_dot(x, gradient) - fast_dot(v, gradient) tot_time = (time_ns() - time_start) / 1.0e9 if callback !== nothing state = CallbackState( t, primal, primal - dual_gap, dual_gap, tot_time, x, v, d, gamma, f, grad!, lmo, gradient, step_type, ) callback(state, dual_gaps) end return x, v, primal, dual_gap, traj_data end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
9717
""" BlockVector{T, MT <: AbstractArray{T}, ST <: Tuple} <: AbstractVector{T} Represents a vector consisting of blocks. `T` is the element type of the vector, `MT` is the type of the underlying data array, and `ST` is the type of the tuple representing the sizes of each block. Each block can be accessed with the `blocks` field, and the sizes of the blocks are stored in the `block_sizes` field. """ mutable struct BlockVector{T, MT <: AbstractArray{T}, ST <: Tuple} <: AbstractVector{T} blocks::Vector{MT} block_sizes::Vector{ST} tot_size::Int end function BlockVector(arrays::AbstractVector{MT}) where {T, MT <: AbstractArray{T}} block_sizes = size.(arrays) tot_size = sum(prod, block_sizes) return BlockVector(arrays, block_sizes, tot_size) end Base.size(arr::BlockVector) = (arr.tot_size, ) # returns the corresponding (block_index, index_in_block) for a given flattened index (for the whole block variable) function _matching_index_index(arr::BlockVector, idx::Integer) if idx < 1 || idx > length(arr) throw(BoundsError(arr, idx)) end first_idx = 1 for block_idx in eachindex(arr.block_sizes) next_first = first_idx + prod(arr.block_sizes[block_idx]) if next_first <= idx # continue to next block first_idx = next_first else # index is here index_in_block = idx - first_idx + 1 return (block_idx, index_in_block) end end error("unreachable $idx") end function Base.getindex(arr::BlockVector, idx::Integer) (midx, idx_inner) = _matching_index_index(arr, idx) return arr.blocks[midx][idx_inner] end function Base.setindex!(arr::BlockVector, v, idx::Integer) (midx, idx_inner) = _matching_index_index(arr, idx) arr.blocks[midx][idx_inner] = v return arr.blocks[midx][idx_inner] end function Base.copyto!(dest::BlockVector, src::BlockVector) dest.tot_size = src.tot_size for midx in eachindex(dest.blocks) dest.blocks[midx] = copy(src.blocks[midx]) end dest.block_sizes = copy(src.block_sizes) return dest end function Base.similar(src::BlockVector{T1, MT}, ::Type{T}) where {T1, MT, T} blocks = [similar(src.blocks[i], T) for i in eachindex(src.blocks)] return BlockVector( blocks, src.block_sizes, src.tot_size, ) end Base.similar(src::BlockVector{T, MT}) where {T, MT} = similar(src, T) function Base.collect(::Type{T}, src::BlockVector{T1, MT}) where {T1, MT, T} blocks = [collect(T, src.blocks[i]) for i in eachindex(src.blocks)] return BlockVector( blocks, src.block_sizes, src.tot_size, ) end Base.collect(src::BlockVector{T, MT}) where {T, MT} = collect(T, src) function Base.zero(src::BlockVector) blocks = [zero(b) for b in src.blocks] return BlockVector( blocks, src.block_sizes, src.tot_size, ) end function Base.convert(::Type{BlockVector{T, MT}}, bmv::BlockVector) where {T, MT} cblocks = convert.(MT, bmv.blocks) return BlockVector( cblocks, copy(bmv.block_sizes), bmv.tot_size, ) end function Base.:+(v1::BlockVector, v2::BlockVector) if size(v1) != size(v2) || length(v1.block_sizes) != length(v2.block_sizes) throw(DimensionMismatch("$(length(v1)) != $(length(v2))")) end for i in eachindex(v1.block_sizes) if v1.block_sizes[i] != v2.block_sizes[i] throw(DimensionMismatch("$i-th block: $(v1.block_sizes[i]) != $(v2.block_sizes[i])")) end end return BlockVector( v1.blocks .+ v2.blocks, copy(v1.block_sizes), v1.tot_size, ) end Base.:-(v::BlockVector) = BlockVector( [-b for b in v.blocks], v.block_sizes, v.tot_size, ) function Base.:-(v1::BlockVector, v2::BlockVector) return v1 + (-v2) end function Base.:*(s::Number, v::BlockVector) return BlockVector( s .* v.blocks, copy(v.block_sizes), v.tot_size, ) end Base.:*(v::BlockVector, s::Number) = s * v function Base.:/(v::BlockVector, s::Number) return BlockVector( v.blocks ./ s, copy(v.block_sizes), v.tot_size, ) end function LinearAlgebra.dot(v1::BlockVector{T1}, v2::BlockVector{T2}) where {T1, T2} if size(v1) != size(v2) || length(v1.block_sizes) != length(v2.block_sizes) throw(DimensionMismatch("$(length(v1)) != $(length(v2))")) end T = promote_type(T1, T2) d = zero(T) @inbounds for i in eachindex(v1.block_sizes) if v1.block_sizes[i] != v2.block_sizes[i] throw(DimensionMismatch("$i-th block: $(v1.block_sizes[i]) != $(v2.block_sizes[i])")) end d += dot(v1.blocks[i], v2.blocks[i]) end return d end LinearAlgebra.norm(v::BlockVector) = sqrt(dot(v, v)) function Base.isequal(v1::BlockVector, v2::BlockVector) if v1 === v2 return true end if v1.tot_size != v2.tot_size || v1.block_sizes != v2.block_sizes return false end for bidx in eachindex(v1.blocks) if !isequal(v1.blocks[bidx], v2.blocks[bidx]) return false end end return true end """ ProductLMO(lmos) Linear minimization oracle over the Cartesian product of multiple LMOs. """ struct ProductLMO{N, LT <: Union{NTuple{N, FrankWolfe.LinearMinimizationOracle}, AbstractVector{<: FrankWolfe.LinearMinimizationOracle}}} <: FrankWolfe.LinearMinimizationOracle lmos::LT end function ProductLMO(lmos::Vector{LMO}) where {LMO <: FrankWolfe.LinearMinimizationOracle} return ProductLMO{1, Vector{LMO}}(lmos) end function ProductLMO(lmos::NT) where {N, LMO <: FrankWolfe.LinearMinimizationOracle, NT <: NTuple{N, LMO}} return ProductLMO{N, NT}(lmos) end function ProductLMO{N}(lmos::TL) where {N,TL<:NTuple{N,LinearMinimizationOracle}} return ProductLMO{N,TL}(lmos) end function ProductLMO(lmos::Vararg{LinearMinimizationOracle,N}) where {N} return ProductLMO{N}(lmos) end function FrankWolfe.compute_extreme_point(lmo::ProductLMO, direction::BlockVector; v=nothing, kwargs...) @assert length(direction.blocks) == length(lmo.lmos) blocks = [FrankWolfe.compute_extreme_point(lmo.lmos[idx], direction.blocks[idx]; kwargs...) for idx in eachindex(lmo.lmos)] v = BlockVector(blocks, direction.block_sizes, direction.tot_size) return v end """ compute_extreme_point(lmo::ProductLMO, direction::Tuple; kwargs...) Extreme point computation on Cartesian product, with a direction `(d1, d2, ...)` given as a tuple of directions. All keyword arguments are passed to all LMOs. """ function compute_extreme_point(lmo::ProductLMO, direction::Tuple; kwargs...) return compute_extreme_point.(lmo.lmos, direction; kwargs...) end """ compute_extreme_point(lmo::ProductLMO, direction::AbstractArray; direction_indices, storage=similar(direction)) Extreme point computation, with a direction array and `direction_indices` provided such that: `direction[direction_indices[i]]` is passed to the i-th LMO. If no `direction_indices` are provided, the direction array is sliced along the last dimension and such that: `direction[:, ... ,:, i]` is passed to the i-th LMO. The result is stored in the optional `storage` container. All keyword arguments are passed to all LMOs. """ function compute_extreme_point( lmo::ProductLMO{N}, direction::AbstractArray; storage=similar(direction), direction_indices=nothing, kwargs..., ) where {N} if direction_indices !== nothing for idx in 1:N storage[direction_indices[idx]] .= compute_extreme_point(lmo.lmos[idx], direction[direction_indices[idx]]; kwargs...) end else ndim = ndims(direction) direction_array = [direction[[idx < ndim ? Colon() : i for idx in 1:ndim]...] for i in 1:N] storage = cat(compute_extreme_point.(lmo.lmos, direction_array)..., dims=ndim) end return storage end """ MathOptInterface LMO but returns a vertex respecting the block structure """ function FrankWolfe.compute_extreme_point(lmo::FrankWolfe.MathOptLMO, direction::BlockVector) xs = MOI.get(lmo.o, MOI.ListOfVariableIndices()) terms = [MOI.ScalarAffineTerm(direction[idx], xs[idx]) for idx in eachindex(xs)] vec_v = FrankWolfe.compute_extreme_point(lmo::FrankWolfe.MathOptLMO, terms) v = similar(direction) copyto!(v, vec_v) return v end function FrankWolfe.muladd_memory_mode(mem::FrankWolfe.InplaceEmphasis, storage::BlockVector, x::BlockVector, gamma::Real, d::BlockVector) @inbounds for i in eachindex(x.blocks) FrankWolfe.muladd_memory_mode(mem, storage.blocks[i], x.blocks[i], gamma, d.blocks[i]) end return storage end function FrankWolfe.muladd_memory_mode(mem::FrankWolfe.InplaceEmphasis, x::BlockVector, gamma::Real, d::BlockVector) @inbounds for i in eachindex(x.blocks) FrankWolfe.muladd_memory_mode(mem, x.blocks[i], gamma, d.blocks[i]) end return x end function FrankWolfe.muladd_memory_mode(mem::FrankWolfe.InplaceEmphasis, d::BlockVector, x::BlockVector, v::BlockVector) @inbounds for i in eachindex(d.blocks) FrankWolfe.muladd_memory_mode(mem, d.blocks[i], x.blocks[i], v.blocks[i]) end return d end function FrankWolfe.compute_active_set_iterate!(active_set::FrankWolfe.ActiveSet{<:BlockVector}) @inbounds for i in eachindex(active_set.x.blocks) @. active_set.x.blocks[i] .= 0 end for (λi, ai) in active_set for i in eachindex(active_set.x.blocks) FrankWolfe.muladd_memory_mode(FrankWolfe.InplaceEmphasis(), active_set.x.blocks[i], -λi, ai.blocks[i]) end end return active_set.x end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
5689
""" compute_line_length(format_string) Calculates the line length for the table format of a print callback. """ function compute_line_length(format_string) temp = strip(format_string, ['\n']) temp = replace(temp, "%" => "") temp = replace(temp, "e" => "") temp = replace(temp, "i" => "") temp = replace(temp, "s" => "") temp = split(temp, " ") len = sum(parse(Int, i) for i in temp) return len + 2 + length(temp) - 1 end """ print_callback(state,storage) Handles formating of the callback state into a table format with consistent length independent of state values. """ function print_callback(data, format_string; print_header=false, print_footer=false) print_formatted(fmt, args...) = @eval @printf($fmt, $(args...)) if print_header || print_footer lenHeaderFooter = compute_line_length(format_string) end if print_footer line = "-"^lenHeaderFooter @printf("%s\e[s\n", line) # \e[s stores the cursor position at the end of the line elseif print_header line = "-"^lenHeaderFooter @printf("\n%s\n", line) s_format_string = replace(format_string, "e" => "s") s_format_string = replace(s_format_string, "i" => "s") print_formatted(s_format_string, data...) @printf("%s\e[s\n", line) # \e[s stores the cursor position at the end of the line else print_formatted(format_string, data...) end end """ make_print_callback(callback, print_iter, headers, format_string, format_state) Default verbose callback for fw_algorithms, that wraps around previous callback. Prints the state to the console after print_iter iterations. If the callback to be wrapped is of type nothing, always return true to enforce boolean output for non-nothing callbacks. """ function make_print_callback(callback, print_iter, headers, format_string, format_state) return function callback_with_prints(state, args...) if (state.step_type == ST_POSTPROCESS || state.step_type == ST_LAST) if state.t == 0 && state.step_type == ST_LAST print_callback(headers, format_string, print_header=true) end rep = format_state(state, args...) print_callback(rep, format_string) print_callback(nothing, format_string, print_footer=true) flush(stdout) elseif state.t == 1 || mod(state.t, print_iter) == 0 || state.step_type == ST_DUALSTEP || state.step_type == ST_LAST if state.t == 1 state = @set state.step_type = ST_INITIAL print_callback(headers, format_string, print_header=true) end rep = format_state(state, args...) extended_format_string = format_string[1:end-1] * "\e[s" * format_string[end] # Add escape code for storing cursor position before newline print_callback(rep, extended_format_string) flush(stdout) end if callback === nothing return true end return callback(state, args...) end end function make_print_callback_extension(callback, print_iter, headers, format_string, format_state) return function callback_with_prints(state, args...) if (state.step_type == ST_POSTPROCESS || state.step_type == ST_LAST) if state.t == 0 && state.step_type == ST_LAST print_callback(headers, format_string, print_header=true) end rep = format_state(state, args...) print("\e[u\e[1A\e[2D") # Move to end of "last"-row print_callback(rep, format_string) print("\e[u\e[2D") # Move to end of horizontal line print_callback(nothing, format_string, print_footer=true) flush(stdout) elseif state.t == 1 || mod(state.t, print_iter) == 0 || state.step_type == ST_DUALSTEP || state.step_type == ST_LAST if state.t == 1 print("\e[u\e[3A") # Move to end of upper horizontal line line = "-"^compute_line_length(format_string) @printf("%s\n", line) print("\e[u\e[2A") # Move to end of the header row s_format_string = replace(format_string, "e" => "s") s_format_string = replace(s_format_string, "i" => "s") @eval @printf($s_format_string, $(headers...)) print("\e[u\e[1A") # Move to end of lower horizontal line @printf("%s\n\n", line) end rep = format_state(state, args...) print("\e[u") # Move to end of table row print_callback(rep, format_string) flush(stdout) end if callback === nothing return true end return callback(state, args...) end end """ make_trajectory_callback(callback, traj_data) Default trajectory logging callback for fw_algorithms, that wraps around previous callback. Adds the state to the storage variable. The state data is only the 5 first fields, usually: `(t, primal, dual, dual_gap, time)` If the callback to be wrapped is of type nothing, always return true to enforce boolean output for non-nothing callbacks. """ function make_trajectory_callback(callback, traj_data::Vector) return function callback_with_trajectory(state, args...) if state.step_type !== ST_LAST || state.step_type !== ST_POSTPROCESS push!(traj_data, callback_state(state)) end if callback === nothing return true end return callback(state, args...) end end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
1270
""" Emphasis given to the algorithm for memory-saving or not. The default memory-saving mode may be slower than OutplaceEmphasis mode for small dimensions. """ abstract type MemoryEmphasis end struct InplaceEmphasis <: MemoryEmphasis end struct OutplaceEmphasis <: MemoryEmphasis end @enum StepType begin ST_INITIAL = 1 ST_REGULAR = 2 ST_LAZY = 3 ST_LAZYSTORAGE = 4 ST_DUALSTEP = 5 ST_AWAY = 6 ST_PAIRWISE = 7 ST_DROP = 8 ST_SIMPLEXDESCENT = 101 ST_LAST = 1000 ST_POSTPROCESS = 1001 end const steptype_string = ( ST_INITIAL="I", ST_REGULAR="FW", ST_LAZY="L", ST_LAZYSTORAGE="LL", ST_DUALSTEP="LD", ST_AWAY="A", ST_PAIRWISE="P", ST_DROP="D", ST_SIMPLEXDESCENT="SD", ST_LAST="Last", ST_POSTPROCESS="PP", ) """ Main structure created before and passed to the callback in first position. """ struct CallbackState{TP,TDV,TDG,XT,VT,DT,TG,FT,GFT,LMO,GT} t::Int primal::TP dual::TDV dual_gap::TDG time::Float64 x::XT v::VT d::DT gamma::TG f::FT grad!::GFT lmo::LMO gradient::GT step_type::StepType end function callback_state(state::CallbackState) return (state.t, state.primal, state.dual, state.dual_gap, state.time) end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
4162
""" ObjectiveFunction Represents an objective function optimized by algorithms. Subtypes of `ObjectiveFunction` must implement at least * `compute_value(::ObjectiveFunction, x)` for primal value evaluation * `compute_gradient(::ObjectiveFunction, x)` for gradient evaluation. and optionally `compute_value_gradient(::ObjectiveFunction, x)` returning the (primal, gradient) pair. `compute_gradient` may always use the same storage and return a reference to it. """ abstract type ObjectiveFunction end """ compute_value(f::ObjectiveFunction, x; [kwargs...]) Computes the objective `f` at `x`. """ function compute_value end """ compute_gradient(f::ObjectiveFunction, x; [kwargs...]) Computes the gradient of `f` at `x`. May return a reference to an internal storage. """ function compute_gradient end """ compute_value_gradient(f::ObjectiveFunction, x; [kwargs...]) Computes in one call the pair `(value, gradient)` evaluated at `x`. By default, calls `compute_value` and `compute_gradient` with keywords `kwargs` passed down to both. """ compute_value_gradient(f::ObjectiveFunction, x; kwargs...) = (compute_value(f, x; kwargs...), compute_gradient(f, x; kwargs...)) """ SimpleFunctionObjective{F,G,S} An objective function built from separate primal objective `f(x)` and in-place gradient function `grad!(storage, x)`. It keeps an internal storage of type `s` used to evaluate the gradient in-place. """ struct SimpleFunctionObjective{F,G,S} <: ObjectiveFunction f::F grad!::G storage::S end compute_value(f::SimpleFunctionObjective, x) = f.f(x) function compute_gradient(f::SimpleFunctionObjective, x) f.grad!(f.storage, x) return f.storage end """ StochasticObjective{F, G, XT, S}(f::F, grad!::G, xs::XT, storage::S) Represents a composite function evaluated with stochastic gradient. `f(θ, x)` evaluates the loss for a single data point `x` and parameter `θ`. `grad!(storage, θ, x)` adds to storage the partial gradient with respect to data point `x` at parameter `θ`. `xs` must be an indexable iterable (`Vector{Vector{Float64}}` for instance). Functions using a `StochasticObjective` have optional keyword arguments `rng`, `batch_size` and `full_evaluation` controlling whether the function should be evaluated over all data points. Note: `grad!` must **not** reset the storage to 0 before adding to it. """ struct StochasticObjective{F,G,XT,S} <: ObjectiveFunction f::F grad!::G xs::XT storage::S end function compute_value( f::StochasticObjective, θ; batch_size::Integer=length(f.xs), rng=Random.GLOBAL_RNG, full_evaluation=false, ) (batch_size, rand_indices) = if full_evaluation (length(f.xs), eachindex(f.xs)) else (batch_size, rand(rng, eachindex(f.xs), batch_size)) end return sum(f.f(θ, f.xs[idx]) for idx in rand_indices) / batch_size end function compute_gradient( f::StochasticObjective, θ; batch_size::Integer=length(f.xs) ÷ 10 + 1, rng=Random.GLOBAL_RNG, full_evaluation=false, ) (batch_size, rand_indices) = _random_indices(f, batch_size, full_evaluation; rng=rng) f.storage .= 0 for idx in rand_indices f.grad!(f.storage, θ, f.xs[idx]) end f.storage ./= batch_size return f.storage end function compute_value_gradient( f::StochasticObjective, θ; batch_size::Integer=length(f.xs) ÷ 10 + 1, rng=Random.GLOBAL_RNG, full_evaluation=false, ) (batch_size, rand_indices) = _random_indices(f, batch_size, full_evaluation; rng=rng) # map operation, for each index, computes value and gradient f_val = zero(eltype(θ)) f.storage .= 0 for idx in rand_indices @inbounds x = f.xs[idx] f_val += f.f(θ, x) f.grad!(f.storage, θ, x) end f.storage ./= batch_size f_val /= batch_size return (f_val, f.storage) end function _random_indices( f::StochasticObjective, batch_size::Integer, full_evaluation::Bool; rng=Random.GLOBAL_RNG, ) if full_evaluation return (length(f.xs), eachindex(f.xs)) end return (batch_size, rand(rng, eachindex(f.xs), batch_size)) end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
21336
""" frank_wolfe(f, grad!, lmo, x0; ...) Simplest form of the Frank-Wolfe algorithm. Returns a tuple `(x, v, primal, dual_gap, traj_data)` with: - `x` final iterate - `v` last vertex from the LMO - `primal` primal value `f(x)` - `dual_gap` final Frank-Wolfe gap - `traj_data` vector of trajectory information. """ function frank_wolfe( f, grad!, lmo, x0; line_search::LineSearchMethod=Adaptive(), momentum=nothing, epsilon=1e-7, max_iteration=10000, print_iter=1000, trajectory=false, verbose=false, memory_mode::MemoryEmphasis=InplaceEmphasis(), gradient=nothing, callback=nothing, traj_data=[], timeout=Inf, linesearch_workspace=nothing, dual_gap_compute_frequency=1, ) # header and format string for output of the algorithm headers = ["Type", "Iteration", "Primal", "Dual", "Dual Gap", "Time", "It/sec"] format_string = "%6s %13s %14e %14e %14e %14e %14e\n" function format_state(state) rep = ( steptype_string[Symbol(state.step_type)], string(state.t), Float64(state.primal), Float64(state.primal - state.dual_gap), Float64(state.dual_gap), state.time, state.t / state.time, ) return rep end t = 0 dual_gap = Inf primal = Inf v = [] x = x0 step_type = ST_REGULAR if trajectory callback = make_trajectory_callback(callback, traj_data) end if verbose callback = make_print_callback(callback, print_iter, headers, format_string, format_state) end time_start = time_ns() if (momentum !== nothing && line_search isa Union{Shortstep,Adaptive,Backtracking}) @warn("Momentum-averaged gradients should usually be used with agnostic stepsize rules.",) end if verbose println("\nVanilla Frank-Wolfe Algorithm.") NumType = eltype(x0) println( "MEMORY_MODE: $memory_mode STEPSIZE: $line_search EPSILON: $epsilon MAXITERATION: $max_iteration TYPE: $NumType", ) grad_type = typeof(gradient) println("MOMENTUM: $momentum GRADIENTTYPE: $grad_type") println("LMO: $(typeof(lmo))") if memory_mode isa InplaceEmphasis @info("In memory_mode memory iterates are written back into x0!") end end if memory_mode isa InplaceEmphasis && !isa(x, Union{Array,SparseArrays.AbstractSparseArray}) # if integer, convert element type to most appropriate float if eltype(x) <: Integer x = copyto!(similar(x, float(eltype(x))), x) else x = copyto!(similar(x), x) end end # instanciating container for gradient if gradient === nothing gradient = collect(x) end first_iter = true if linesearch_workspace === nothing linesearch_workspace = build_linesearch_workspace(line_search, x, gradient) end # container for direction d = similar(x) gtemp = momentum === nothing ? d : similar(x) while t <= max_iteration && dual_gap >= max(epsilon, eps(float(typeof(dual_gap)))) ##################### # managing time and Ctrl-C ##################### time_at_loop = time_ns() if t == 0 time_start = time_at_loop end # time is measured at beginning of loop for consistency throughout all algorithms tot_time = (time_at_loop - time_start) / 1e9 if timeout < Inf if tot_time ≥ timeout if verbose @info "Time limit reached" end break end end ##################### if momentum === nothing || first_iter grad!(gradient, x) if momentum !== nothing gtemp .= gradient end else grad!(gtemp, x) @memory_mode(memory_mode, gradient = (momentum * gradient) + (1 - momentum) * gtemp) end v = if first_iter compute_extreme_point(lmo, gradient) else compute_extreme_point(lmo, gradient, v=v) end first_iter = false # go easy on runtime - only compute primal and dual if needed compute_iter = ( (mod(t, print_iter) == 0 && verbose) || callback !== nothing || line_search isa Shortstep ) if compute_iter primal = f(x) end if t % dual_gap_compute_frequency == 0 || compute_iter dual_gap = fast_dot(x, gradient) - fast_dot(v, gradient) end d = muladd_memory_mode(memory_mode, d, x, v) gamma = perform_line_search( line_search, t, f, grad!, gradient, x, d, 1.0, linesearch_workspace, memory_mode, ) t = t + 1 if callback !== nothing state = CallbackState( t, primal, primal - dual_gap, dual_gap, tot_time, x, v, d, gamma, f, grad!, lmo, gradient, step_type, ) if callback(state) === false break end end x = muladd_memory_mode(memory_mode, x, gamma, d) end # recompute everything once for final verfication / do not record to trajectory though for now! # this is important as some variants do not recompute f(x) and the dual_gap regularly but only when reporting # hence the final computation. step_type = ST_LAST grad!(gradient, x) v = compute_extreme_point(lmo, gradient, v=v) primal = f(x) dual_gap = fast_dot(x, gradient) - fast_dot(v, gradient) tot_time = (time_ns() - time_start) / 1.0e9 gamma = perform_line_search( line_search, t, f, grad!, gradient, x, d, 1.0, linesearch_workspace, memory_mode, ) if callback !== nothing state = CallbackState( t, primal, primal - dual_gap, dual_gap, tot_time, x, v, d, gamma, f, grad!, lmo, gradient, step_type, ) callback(state) end return (x=x, v=v, primal=primal, dual_gap=dual_gap, traj_data=traj_data) end """ lazified_conditional_gradient(f, grad!, lmo_base, x0; ...) Similar to [`FrankWolfe.frank_wolfe`](@ref) but lazyfying the LMO: each call is stored in a cache, which is looked up first for a good-enough direction. The cache used is a [`FrankWolfe.MultiCacheLMO`](@ref) or a [`FrankWolfe.VectorCacheLMO`](@ref) depending on whether the provided `cache_size` option is finite. """ function lazified_conditional_gradient( f, grad!, lmo_base, x0; line_search::LineSearchMethod=Adaptive(), lazy_tolerance=2.0, cache_size=Inf, greedy_lazy=false, epsilon=1e-7, max_iteration=10000, print_iter=1000, trajectory=false, verbose=false, memory_mode::MemoryEmphasis=InplaceEmphasis(), gradient=nothing, callback=nothing, traj_data=[], VType=typeof(x0), timeout=Inf, linesearch_workspace=nothing, ) # format string for output of the algorithm format_string = "%6s %13s %14e %14e %14e %14e %14e %14i\n" headers = ["Type", "Iteration", "Primal", "Dual", "Dual Gap", "Time", "It/sec", "Cache Size"] function format_state(state, args...) rep = ( steptype_string[Symbol(state.step_type)], string(state.t), Float64(state.primal), Float64(state.primal - state.dual_gap), Float64(state.dual_gap), state.time, state.t / state.time, length(state.lmo), ) return rep end lmo = VectorCacheLMO{typeof(lmo_base),VType}(lmo_base) if isfinite(cache_size) Base.sizehint!(lmo.vertices, cache_size) end t = 0 dual_gap = Inf primal = Inf v = [] x = x0 phi = Inf step_type = ST_REGULAR if trajectory callback = make_trajectory_callback(callback, traj_data) end if verbose callback = make_print_callback(callback, print_iter, headers, format_string, format_state) end time_start = time_ns() if line_search isa Agnostic || line_search isa Nonconvex @warn("Lazification is not known to converge with open-loop step size strategies.") end if gradient === nothing gradient = collect(x) end if verbose println("\nLazified Conditional Gradient (Frank-Wolfe + Lazification).") NumType = eltype(x0) println( "MEMORY_MODE: $memory_mode STEPSIZE: $line_search EPSILON: $epsilon MAXITERATION: $max_iteration lazy_tolerance: $lazy_tolerance TYPE: $NumType", ) grad_type = typeof(gradient) println("GRADIENTTYPE: $grad_type CACHESIZE $cache_size GREEDYCACHE: $greedy_lazy") println("LMO: $(typeof(lmo))") if memory_mode isa InplaceEmphasis @info("In memory_mode memory iterates are written back into x0!") end end if memory_mode isa InplaceEmphasis && !isa(x, Union{Array,SparseArrays.AbstractSparseArray}) if eltype(x) <: Integer x = copyto!(similar(x, float(eltype(x))), x) else x = copyto!(similar(x), x) end end # container for direction d = similar(x) if linesearch_workspace === nothing linesearch_workspace = build_linesearch_workspace(line_search, x, gradient) end while t <= max_iteration && dual_gap >= max(epsilon, eps(float(eltype(x)))) ##################### # managing time and Ctrl-C ##################### time_at_loop = time_ns() if t == 0 time_start = time_at_loop end # time is measured at beginning of loop for consistency throughout all algorithms tot_time = (time_at_loop - time_start) / 1e9 if timeout < Inf if tot_time ≥ timeout if verbose @info "Time limit reached" end break end end ##################### grad!(gradient, x) threshold = fast_dot(x, gradient) - phi / lazy_tolerance # go easy on the memory - only compute if really needed if ((mod(t, print_iter) == 0 && verbose) || callback !== nothing) primal = f(x) end v = compute_extreme_point(lmo, gradient, threshold=threshold, greedy=greedy_lazy) step_type = ST_LAZY if fast_dot(v, gradient) > threshold step_type = ST_DUALSTEP dual_gap = fast_dot(x, gradient) - fast_dot(v, gradient) phi = min(dual_gap, phi / 2) end d = muladd_memory_mode(memory_mode, d, x, v) gamma = perform_line_search( line_search, t, f, grad!, gradient, x, d, 1.0, linesearch_workspace, memory_mode, ) t += 1 if callback !== nothing state = CallbackState( t, primal, primal - dual_gap, dual_gap, tot_time, x, v, d, gamma, f, grad!, lmo, gradient, step_type, ) if callback(state) === false break end end x = muladd_memory_mode(memory_mode, x, gamma, d) end # recompute everything once for final verfication / do not record to trajectory though for now! # this is important as some variants do not recompute f(x) and the dual_gap regularly but only when reporting # hence the final computation. step_type = ST_LAST grad!(gradient, x) v = compute_extreme_point(lmo, gradient) primal = f(x) dual_gap = fast_dot(x, gradient) - fast_dot(v, gradient) tot_time = (time_ns() - time_start) / 1.0e9 gamma = perform_line_search( line_search, t, f, grad!, gradient, x, d, 1.0, linesearch_workspace, memory_mode, ) if callback !== nothing state = CallbackState( t, primal, primal - dual_gap, dual_gap, tot_time, x, v, d, gamma, f, grad!, lmo, gradient, step_type, ) callback(state) end return (x=x, v=v, primal=primal, dual_gap=dual_gap, traj_data=traj_data) end """ stochastic_frank_wolfe(f::StochasticObjective, lmo, x0; ...) Stochastic version of Frank-Wolfe, evaluates the objective and gradient stochastically, implemented through the [`FrankWolfe.StochasticObjective`](@ref) interface. Keyword arguments include `batch_size` to pass a fixed `batch_size` or a `batch_iterator` implementing `batch_size = FrankWolfe.batchsize_iterate(batch_iterator)` for algorithms like Variance-reduced and projection-free stochastic optimization, E Hazan, H Luo, 2016. Similarly, a constant `momentum` can be passed or replaced by a `momentum_iterator` implementing `momentum = FrankWolfe.momentum_iterate(momentum_iterator)`. """ function stochastic_frank_wolfe( f::StochasticObjective, lmo, x0; line_search::LineSearchMethod=Nonconvex(), momentum_iterator=nothing, momentum=nothing, epsilon=1e-7, max_iteration=10000, print_iter=1000, trajectory=false, verbose=false, memory_mode::MemoryEmphasis=InplaceEmphasis(), rng=Random.GLOBAL_RNG, batch_size=length(f.xs) ÷ 10 + 1, batch_iterator=nothing, full_evaluation=false, callback=nothing, traj_data=[], timeout=Inf, linesearch_workspace=nothing, ) # format string for output of the algorithm format_string = "%6s %13s %14e %14e %14e %14e %14e %6i\n" headers = ("Type", "Iteration", "Primal", "Dual", "Dual Gap", "Time", "It/sec", "Batch") function format_state(state, batch_size) rep = ( steptype_string[Symbol(state.step_type)], string(state.t), Float64(state.primal), Float64(state.primal - state.dual_gap), Float64(state.dual_gap), state.time, state.t / state.time, batch_size, ) return rep end t = 0 dual_gap = Inf primal = Inf v = [] x = x0 d = similar(x) step_type = ST_REGULAR if trajectory callback = make_trajectory_callback(callback, traj_data) end if verbose callback = make_print_callback(callback, print_iter, headers, format_string, format_state) end time_start = time_ns() if line_search == Shortstep && L == Inf println("FATAL: Lipschitz constant not set. Prepare to blow up spectacularly.") end if line_search == FixedStep && gamma0 == 0 println("FATAL: gamma0 not set. We are not going to move a single bit.") end if momentum_iterator === nothing && momentum !== nothing momentum_iterator = ConstantMomentumIterator(momentum) end if batch_iterator === nothing batch_iterator = ConstantBatchIterator(batch_size) end if verbose println("\nStochastic Frank-Wolfe Algorithm.") NumType = eltype(x0) println( "MEMORY_MODE: $memory_mode STEPSIZE: $line_search EPSILON: $epsilon max_iteration: $max_iteration TYPE: $NumType", ) println( "GRADIENTTYPE: $(typeof(f.storage)) MOMENTUM: $(momentum_iterator !== nothing) batch policy: $(typeof(batch_iterator)) ", ) println("LMO: $(typeof(lmo))") if memory_mode isa InplaceEmphasis @info("In memory_mode memory iterates are written back into x0!") end end if memory_mode isa InplaceEmphasis && !isa(x, Union{Array,SparseArrays.AbstractSparseArray}) if eltype(x) <: Integer x = copyto!(similar(x, float(eltype(x))), x) else x = copyto!(similar(x), x) end end first_iter = true gradient = 0 if linesearch_workspace === nothing linesearch_workspace = build_linesearch_workspace(line_search, x, gradient) end while t <= max_iteration && dual_gap >= max(epsilon, eps(float(typeof(dual_gap)))) ##################### # managing time and Ctrl-C ##################### time_at_loop = time_ns() if t == 0 time_start = time_at_loop end # time is measured at beginning of loop for consistency throughout all algorithms tot_time = (time_at_loop - time_start) / 1e9 if timeout < Inf if tot_time ≥ timeout if verbose @info "Time limit reached" end break end end ##################### batch_size = batchsize_iterate(batch_iterator) if momentum_iterator === nothing gradient = compute_gradient( f, x, rng=rng, batch_size=batch_size, full_evaluation=full_evaluation, ) elseif first_iter gradient = copy( compute_gradient( f, x, rng=rng, batch_size=batch_size, full_evaluation=full_evaluation, ), ) else momentum = momentum_iterate(momentum_iterator) compute_gradient(f, x, rng=rng, batch_size=batch_size, full_evaluation=full_evaluation) # gradient = momentum * gradient + (1 - momentum) * f.storage LinearAlgebra.mul!(gradient, LinearAlgebra.I, f.storage, 1 - momentum, momentum) end first_iter = false v = compute_extreme_point(lmo, gradient) # go easy on the memory - only compute if really needed if (mod(t, print_iter) == 0 && verbose) || callback !== nothing || !(line_search isa Agnostic || line_search isa Nonconvex || line_search isa FixedStep) primal = compute_value(f, x, full_evaluation=true) dual_gap = fast_dot(x, gradient) - fast_dot(v, gradient) end d = muladd_memory_mode(memory_mode, d, x, v) # note: only linesearch methods that do not require full evaluations are supported # so nothing is passed as function gamma = perform_line_search( line_search, t, nothing, nothing, gradient, x, d, 1.0, linesearch_workspace, memory_mode, ) t += 1 if callback !== nothing state = CallbackState( t, primal, primal - dual_gap, dual_gap, tot_time, x, v, d, gamma, f, nothing, lmo, gradient, step_type, ) if callback(state, batch_size) === false break end end x = muladd_memory_mode(memory_mode, x, gamma, d) end # recompute everything once for final verfication / no additional callback call # this is important as some variants do not recompute f(x) and the dual_gap regularly but only when reporting # hence the final computation. # last computation done with full evaluation for exact gradient (primal, gradient) = compute_value_gradient(f, x, full_evaluation=true) v = compute_extreme_point(lmo, gradient) # @show (gradient, primal) dual_gap = fast_dot(x, gradient) - fast_dot(v, gradient) step_type = ST_LAST d = muladd_memory_mode(memory_mode, d, x, v) gamma = perform_line_search( line_search, t, nothing, nothing, gradient, x, d, 1.0, linesearch_workspace, memory_mode, ) tot_time = (time_ns() - time_start) / 1e9 if callback !== nothing state = CallbackState( t, primal, primal - dual_gap, dual_gap, (time_ns() - time_start) / 1e9, x, v, d, gamma, f, nothing, lmo, gradient, step_type, ) callback(state, batch_size) end return (x=x, v=v, primal=primal, dual_gap=dual_gap, traj_data=traj_data) end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
26772
""" Line search method to apply once the direction is computed. A `LineSearchMethod` must implement ``` perform_line_search(ls::LineSearchMethod, t, f, grad!, gradient, x, d, gamma_max, workspace) ``` with `d = x - v`. It may also implement `build_linesearch_workspace(x, gradient)` which creates a workspace structure that is passed as last argument to `perform_line_search`. """ abstract type LineSearchMethod end # default printing for LineSearchMethod is just showing the type Base.print(io::IO, ls::LineSearchMethod) = print(io, split(string(typeof(ls)), ".")[end]) """ perform_line_search(ls::LineSearchMethod, t, f, grad!, gradient, x, d, gamma_max, workspace) Returns the step size `gamma` for step size strategy `ls`. """ function perform_line_search end build_linesearch_workspace(::LineSearchMethod, x, gradient) = nothing """ Computes step size: `l/(l + t)` at iteration `t`, given `l > 0`. Using `l > 2` leads to faster convergence rates than l = 2 over strongly and some uniformly convex set. > Accelerated Affine-Invariant Convergence Rates of the Frank-Wolfe Algorithm with Open-Loop Step-Sizes, Wirth, Peña, Pokutta (2023), https://arxiv.org/abs/2310.04096 See also the paper that introduced the study of open-loop step-sizes with l > 2: > Acceleration of Frank-Wolfe Algorithms with Open-Loop Step-Sizes, Wirth, Kerdreux, Pokutta, (2023), https://arxiv.org/abs/2205.12838 Fixing l = -1, results in the step size gamma_t = (2 + log(t+1)) / (t + 2 + log(t+1)) # S. Pokutta "The Frank-Wolfe algorith: a short introduction" (2023), https://arxiv.org/abs/2311.05313 """ struct Agnostic{T<:Real} <: LineSearchMethod l::Int end Agnostic() = Agnostic{Float64}(2) Agnostic(l::Int) = Agnostic{Float64}(l) Agnostic{T}() where {T} = Agnostic{T}(2) perform_line_search( ls::Agnostic{<:Rational}, t, f, g!, gradient, x, d, gamma_max, workspace, memory_mode::MemoryEmphasis, ) = ls.l // (t + ls.l) function perform_line_search( ls::Agnostic{T}, t, f, g!, gradient, x, d, gamma_max, workspace, memory_mode::MemoryEmphasis, ) where {T} return if ls.l == -1 T((2 + log(t + 1)) / (t + 2 + log(t + 1))) else T(ls.l / (t + ls.l)) end end Base.print(io::IO, ls::Agnostic) = print(io, "Agnostic($(ls.l))") """ Computes step size: `g(t)/(t + g(t))` at iteration `t`, given `g: R_{>= 0} -> R_{>= 0}`. Defaults to the best open-loop step-size gamma_t = (2 + log(t+1)) / (t + 2 + log(t+1)) > S. Pokutta "The Frank-Wolfe algorith: a short introduction" (2023), https://arxiv.org/abs/2311.05313 This step-size is as fast as the step-size gamma_t = 2 / (t + 2) up to polylogarithmic factors. Further, over strongly convex and some uniformly convex sets, it is faster than any traditional step-size gamma_t = l / (t + l) for any l in N. """ struct GeneralizedAgnostic{T<:Real,F<:Function} <: LineSearchMethod g::F end function GeneralizedAgnostic() g(x) = 2 + log(x + 1) return GeneralizedAgnostic{Float64,typeof(g)}(g) end GeneralizedAgnostic(g) = GeneralizedAgnostic{Float64,typeof(g)}(g) function perform_line_search( ls::GeneralizedAgnostic{T,F}, t, f, g!, gradient, x, d, gamma_max, workspace, memory_mode::MemoryEmphasis, ) where {T,F} gamma = T(ls.g(t) / (t + ls.g(t))) return gamma end Base.print(io::IO, ls::GeneralizedAgnostic) = print(io, "GeneralizedAgnostic($(ls.g))") """ Computes step size: `1/sqrt(t + 1)`. """ struct Nonconvex{T} <: LineSearchMethod end Nonconvex() = Nonconvex{Float64}() perform_line_search( ::Nonconvex{T}, t, f, g!, gradient, x, d, gamma_max, workspace, memory_mode, ) where {T} = T(1 / sqrt(t + 1)) Base.print(io::IO, ::Nonconvex) = print(io, "Nonconvex") """ Computes the 'Short step' step size: `dual_gap / (L * norm(x - v)^2)`, where `L` is the Lipschitz constant of the gradient, `x` is the current iterate, and `v` is the current Frank-Wolfe vertex. """ struct Shortstep{T} <: LineSearchMethod L::T function Shortstep(L::T) where {T} if !isfinite(L) @warn("Shortstep with non-finite Lipschitz constant will not move") end return new{T}(L) end end function perform_line_search( line_search::Shortstep, t, f, grad!, gradient, x, d, gamma_max, workspace, memory_mode, ) dd = fast_dot(d, d) if dd <= eps(float(dd)) return dd end return min(max(fast_dot(gradient, d) * inv(line_search.L * dd), 0), gamma_max) end Base.print(io::IO, ::Shortstep) = print(io, "Shortstep") """ Fixed step size strategy. The step size can still be truncated by the `gamma_max` argument. """ struct FixedStep{T} <: LineSearchMethod gamma0::T end function perform_line_search( line_search::FixedStep, t, f, grad!, gradient, x, d, gamma_max, workspace, memory_mode, ) return min(line_search.gamma0, gamma_max) end Base.print(io::IO, ::FixedStep) = print(io, "FixedStep") """ Goldenratio Simple golden-ratio based line search [Golden Section Search](https://en.wikipedia.org/wiki/Golden-section_search), based on [Combettes, Pokutta (2020)](http://proceedings.mlr.press/v119/combettes20a/combettes20a.pdf) code and adapted. """ struct Goldenratio{T} <: LineSearchMethod tol::T end Goldenratio() = Goldenratio(1e-7) struct GoldenratioWorkspace{XT,GT} y::XT left::XT right::XT new_vec::XT probe::XT gradient::GT end function build_linesearch_workspace(::Goldenratio, x::XT, gradient::GT) where {XT,GT} return GoldenratioWorkspace{XT,GT}( similar(x), similar(x), similar(x), similar(x), similar(x), similar(gradient), ) end function perform_line_search( line_search::Goldenratio, _, f, grad!, gradient, x, d, gamma_max, workspace::GoldenratioWorkspace, memory_mode, ) # restrict segment of search to [x, y] @. workspace.y = x - gamma_max * d @. workspace.left = x @. workspace.right = workspace.y dgx = fast_dot(d, gradient) grad!(workspace.gradient, workspace.y) dgy = fast_dot(d, workspace.gradient) # if the minimum is at an endpoint if dgx * dgy >= 0 if f(workspace.y) <= f(x) return gamma_max else return zero(eltype(d)) end end # apply golden-section method to segment gold = (1 + sqrt(5)) / 2 improv = Inf while improv > line_search.tol f_old_left = f(workspace.left) f_old_right = f(workspace.right) @. workspace.new_vec = workspace.left + (workspace.right - workspace.left) / (1 + gold) @. workspace.probe = workspace.new_vec + (workspace.right - workspace.new_vec) / 2 if f(workspace.probe) <= f(workspace.new_vec) workspace.left .= workspace.new_vec # right unchanged else workspace.right .= workspace.probe # left unchanged end improv = norm(f(workspace.right) - f_old_right) + norm(f(workspace.left) - f_old_left) end # compute step size gamma gamma = zero(eltype(d)) for i in eachindex(d) if d[i] != 0 x_min = (workspace.left[i] + workspace.right[i]) / 2 gamma = (x[i] - x_min) / d[i] break end end return gamma end Base.print(io::IO, ::Goldenratio) = print(io, "Goldenratio") """ Backtracking(limit_num_steps, tol, tau) Backtracking line search strategy, see [Pedregosa, Negiar, Askari, Jaggi (2018)](https://arxiv.org/pdf/1806.05123). """ struct Backtracking{T} <: LineSearchMethod limit_num_steps::Int tol::T tau::T end build_linesearch_workspace(::Backtracking, x, gradient) = similar(x) function Backtracking(; limit_num_steps=20, tol=1e-10, tau=0.5) return Backtracking(limit_num_steps, tol, tau) end function perform_line_search( line_search::Backtracking, _, f, grad!, gradient, x, d, gamma_max, storage, memory_mode, ) gamma = gamma_max * one(line_search.tau) i = 0 dot_gdir = fast_dot(gradient, d) if dot_gdir ≤ 0 @warn "Non-improving" return zero(gamma) end old_val = f(x) storage = muladd_memory_mode(memory_mode, storage, x, gamma, d) new_val = f(storage) while new_val - old_val > -line_search.tol * gamma * dot_gdir if i > line_search.limit_num_steps if old_val - new_val >= 0 return gamma else return zero(gamma) end end gamma *= line_search.tau storage = muladd_memory_mode(memory_mode, storage, x, gamma, d) new_val = f(storage) i += 1 end return gamma end Base.print(io::IO, ::Backtracking) = print(io, "Backtracking") """ Secant(limit_num_steps, tol, domain_oracle) Secant line search strategy, which iteratively refines the step size using the secant method. This method is geared towards problems with self-concordant functions (but might require extra structure) and potentially faster than the backtracking line search. The order of convergence is superlinear with exponent 1.618 (Golden Ratio) but not quite quadratic. Convergence is not guaranteed in general. # Arguments - `limit_num_steps::Int`: Maximum number of iterations for the secant method. (default 40) - `tol::Float64`: Tolerance for convergence. (default 1e-8) - `domain_oracle::Function`, returns true if the argument x is in the domain of the objective function f. # References - [Secant Method](https://en.wikipedia.org/wiki/Secant_method) """ struct Secant{F,LSM<:LineSearchMethod} <: LineSearchMethod inner_ls::LSM limit_num_steps::Int tol::Float64 domain_oracle::F end function Secant(limit_num_steps, tol) return Secant(Backtracking(), limit_num_steps, tol, x -> true) end function Secant(;inner_ls=Backtracking(), limit_num_steps=40, tol=1e-8, domain_oracle=(x -> true)) return Secant(inner_ls, limit_num_steps, tol, domain_oracle) end mutable struct SecantWorkspace{XT,GT, IWS} inner_ws::IWS x::XT gradient::GT last_gamma::Float64 end function build_linesearch_workspace(ls::Secant, x, gradient) inner_ws = build_linesearch_workspace(ls.inner_ls, x, gradient) return SecantWorkspace(inner_ws, similar(x), similar(gradient), 1.0) # Initialize last_gamma to 1.0 end function perform_line_search( line_search::Secant, _, f, grad!, gradient, x, d, gamma_max, workspace::SecantWorkspace, memory_mode, ) dot_gdir = dot(gradient, d) gamma = min(workspace.last_gamma, gamma_max) # Start from last gamma, but don't exceed gamma_max storage, grad_storage = workspace.x, workspace.gradient storage = muladd_memory_mode(memory_mode, storage, x, gamma, d) while !line_search.domain_oracle(storage) gamma_max /= 2 gamma = min(gamma, gamma_max) storage = muladd_memory_mode(memory_mode, storage, x, gamma, d) end new_val = f(storage) best_gamma = gamma best_val = new_val i = 1 gamma_prev = zero(best_gamma) while abs(dot_gdir) > line_search.tol if i > line_search.limit_num_steps workspace.last_gamma = best_gamma # Update last_gamma before returning return best_gamma end grad!(grad_storage, storage) dot_gdir_new = fast_dot(grad_storage, d) if dot_gdir_new ≈ dot_gdir workspace.last_gamma = best_gamma # Update last_gamma before returning return best_gamma end gamma_new = gamma - dot_gdir_new * (gamma - gamma_prev) / (dot_gdir_new - dot_gdir) gamma_prev = gamma gamma = clamp(gamma_new, 0, gamma_max) # Ensure gamma stays in [0, gamma_max] storage = muladd_memory_mode(memory_mode, storage, x, gamma, d) new_val = f(storage) if new_val < best_val best_val = new_val best_gamma = gamma end dot_gdir = dot_gdir_new i += 1 end if abs(dot_gdir) > line_search.tol gamma = perform_line_search( line_search.inner_ls, 0, f, grad!, gradient, x, d, gamma_max, workspace.inner_ws, memory_mode, ) storage = muladd_memory_mode(memory_mode, storage, x, gamma, d) new_val = f(storage) @assert new_val <= best_val best_gamma = gamma end workspace.last_gamma = best_gamma # Update last_gamma before returning return best_gamma end Base.print(io::IO, ::Secant) = print(io, "Secant") """ Slight modification of the Adaptive Step Size strategy from [Pedregosa, Negiar, Askari, Jaggi (2018)](https://arxiv.org/abs/1806.05123) ```math f(x_t + \\gamma_t (x_t - v_t)) - f(x_t) \\leq - \\alpha \\gamma_t \\langle \\nabla f(x_t), x_t - v_t \\rangle + \\alpha^2 \\frac{\\gamma_t^2 \\|x_t - v_t\\|^2}{2} M ~. ``` The parameter `alpha ∈ (0,1]` relaxes the original smoothness condition to mitigate issues with nummerical errors. Its default value is `0.5`. The `Adaptive` struct keeps track of the Lipschitz constant estimate `L_est`. The keyword argument `relaxed_smoothness` allows testing with an alternative smoothness condition, ```math \\langle \\nabla f(x_t + \\gamma_t (x_t - v_t) ) - \\nabla f(x_t), x_t - v_t \\rangle \\leq \\gamma_t M \\|x_t - v_t\\|^2 ~. ``` This condition yields potentially smaller and more stable estimations of the Lipschitz constant while being more computationally expensive due to the additional gradient computation. It is also the fallback when the Lipschitz constant estimation fails due to numerical errors. `perform_line_search` also has a `should_upgrade` keyword argument on whether there should be a temporary upgrade to `BigFloat` for extended precision. """ mutable struct AdaptiveZerothOrder{T,TT} <: LineSearchMethod eta::T tau::TT L_est::T max_estimate::T alpha::T verbose::Bool relaxed_smoothness::Bool end AdaptiveZerothOrder(eta::T, tau::TT) where {T,TT} = AdaptiveZerothOrder{T,TT}(eta, tau, T(Inf), T(1e10), T(0.5), true, false) AdaptiveZerothOrder(; eta=0.9, tau=2, L_est=Inf, max_estimate=1e10, alpha=0.5, verbose=true, relaxed_smoothness=false, ) = AdaptiveZerothOrder(eta, tau, L_est, max_estimate, alpha, verbose, relaxed_smoothness) struct AdaptiveZerothOrderWorkspace{XT,BT} x::XT xbig::BT end build_linesearch_workspace(::AdaptiveZerothOrder, x, gradient) = AdaptiveZerothOrderWorkspace(similar(x), big.(x)) function perform_line_search( line_search::AdaptiveZerothOrder, t, f, grad!, gradient, x, d, gamma_max, storage::AdaptiveZerothOrderWorkspace, memory_mode::MemoryEmphasis; should_upgrade::Val=Val{false}(), ) if norm(d) ≤ length(d) * eps(float(eltype(d))) if should_upgrade isa Val{true} return big(zero(promote_type(eltype(d), eltype(gradient)))) else return zero(promote_type(eltype(d), eltype(gradient))) end end x_storage = storage.x if !isfinite(line_search.L_est) epsilon_step = min(1e-3, gamma_max) gradient_stepsize_estimation = similar(gradient) x_storage = muladd_memory_mode(memory_mode, x_storage, x, epsilon_step, d) grad!(gradient_stepsize_estimation, x_storage) line_search.L_est = norm(gradient - gradient_stepsize_estimation) / (epsilon_step * norm(d)) end M = line_search.eta * line_search.L_est (dot_dir, ndir2, x_storage) = _upgrade_accuracy_adaptive(gradient, d, storage, should_upgrade) γ = min(max(dot_dir / (M * ndir2), 0), gamma_max) x_storage = muladd_memory_mode(memory_mode, x_storage, x, γ, d) niter = 0 α = line_search.alpha clipping = false gradient_storage = similar(gradient) while f(x_storage) - f(x) > -γ * α * dot_dir + α^2 * γ^2 * ndir2 * M / 2 + eps(float(γ)) && γ ≥ 100 * eps(float(γ)) # Additional smoothness condition if line_search.relaxed_smoothness grad!(gradient_storage, x_storage) if fast_dot(gradient, d) - fast_dot(gradient_storage, d) <= γ * M * ndir2 + eps(float(γ)) break end end M *= line_search.tau γ = min(max(dot_dir / (M * ndir2), 0), gamma_max) x_storage = muladd_memory_mode(memory_mode, x_storage, x, γ, d) niter += 1 if M > line_search.max_estimate # if this occurs, we hit numerical troubles # if we were not using the relaxed smoothness, we try it first as a stable fallback # note that the smoothness estimate is not updated at this iteration. if !line_search.relaxed_smoothness linesearch_fallback = deepcopy(line_search) linesearch_fallback.relaxed_smoothness = true return perform_line_search( linesearch_fallback, t, f, grad!, gradient, x, d, gamma_max, storage, memory_mode; should_upgrade=should_upgrade, ) end # if we are already in relaxed smoothness, produce a warning: # one might see negative progess, cycling, or stalling. # Potentially upgrade accuracy or use an alternative line search strategy if line_search.verbose @warn "Smoothness estimate run away -> hard clipping. Convergence might be not guaranteed." end clipping = true break end end if !clipping line_search.L_est = M end γ = min(max(dot_dir / (line_search.L_est * ndir2), 0), gamma_max) return γ end Base.print(io::IO, ::AdaptiveZerothOrder) = print(io, "AdaptiveZerothOrder") function _upgrade_accuracy_adaptive(gradient, direction, storage, ::Val{true}) direction_big = big.(direction) dot_dir = fast_dot(big.(gradient), direction_big) ndir2 = norm(direction_big)^2 return (dot_dir, ndir2, storage.xbig) end function _upgrade_accuracy_adaptive(gradient, direction, storage, ::Val{false}) dot_dir = fast_dot(gradient, direction) ndir2 = norm(direction)^2 return (dot_dir, ndir2, storage.x) end """ Modified adaptive line search test from: > S. Pokutta "The Frank-Wolfe algorith: a short introduction" (2023), preprint, https://arxiv.org/abs/2311.05313 It replaces the original test implemented in the AdaptiveZerothOrder line search based on: > Pedregosa, F., Negiar, G., Askari, A., and Jaggi, M. (2020). "Linearly convergent Frank–Wolfe with backtracking line-search", Proceedings of AISTATS. """ mutable struct Adaptive{T,TT} <: LineSearchMethod eta::T tau::TT L_est::T max_estimate::T verbose::Bool relaxed_smoothness::Bool end Adaptive(eta::T, tau::TT) where {T,TT} = Adaptive{T,TT}(eta, tau, T(Inf), T(1e10), T(0.5), true, false) Adaptive(; eta=0.9, tau=2, L_est=Inf, max_estimate=1e10, verbose=true, relaxed_smoothness=false) = Adaptive(eta, tau, L_est, max_estimate, verbose, relaxed_smoothness) struct AdaptiveWorkspace{XT,BT} x::XT xbig::BT gradient_storage::XT end build_linesearch_workspace(::Adaptive, x, gradient) = AdaptiveWorkspace(similar(x), big.(x), similar(x)) function perform_line_search( line_search::Adaptive, t, f, grad!, gradient, x, d, gamma_max, storage::AdaptiveWorkspace, memory_mode::MemoryEmphasis; should_upgrade::Val=Val{false}(), ) if norm(d) ≤ length(d) * eps(float(real(eltype(d)))) if should_upgrade isa Val{true} return big(zero(promote_type(eltype(d), eltype(gradient)))) else return zero(promote_type(eltype(d), eltype(gradient))) end end x_storage = storage.x if !isfinite(line_search.L_est) epsilon_step = min(1e-3, gamma_max) gradient_stepsize_estimation = storage.gradient_storage x_storage = muladd_memory_mode(memory_mode, x_storage, x, epsilon_step, d) grad!(gradient_stepsize_estimation, x_storage) line_search.L_est = norm(gradient - gradient_stepsize_estimation) / (epsilon_step * norm(d)) end M = line_search.eta * line_search.L_est (dot_dir, ndir2, x_storage) = _upgrade_accuracy_adaptive(gradient, d, storage, should_upgrade) γ = min(max(dot_dir / (M * ndir2), 0), gamma_max) x_storage = muladd_memory_mode(memory_mode, x_storage, x, γ, d) niter = 0 clipping = false gradient_storage = storage.gradient_storage grad!(gradient_storage, x_storage) while 0 > fast_dot(gradient_storage, d) && γ ≥ 100 * eps(float(γ)) M *= line_search.tau γ = min(max(dot_dir / (M * ndir2), 0), gamma_max) x_storage = muladd_memory_mode(memory_mode, x_storage, x, γ, d) grad!(gradient_storage, x_storage) niter += 1 if M > line_search.max_estimate # if this occurs, we hit numerical troubles # if we were not using the relaxed smoothness, we try it first as a stable fallback # note that the smoothness estimate is not updated at this iteration. if !line_search.relaxed_smoothness linesearch_fallback = deepcopy(line_search) linesearch_fallback.relaxed_smoothness = true return perform_line_search( linesearch_fallback, t, f, grad!, gradient, x, d, gamma_max, storage, memory_mode; should_upgrade=should_upgrade, ) end # if we are already in relaxed smoothness, produce a warning: # one might see negative progess, cycling, or stalling. # Potentially upgrade accuracy or use an alternative line search strategy if line_search.verbose @warn "Smoothness estimate run away -> hard clipping. Convergence might be not guaranteed." end clipping = true break end end if !clipping line_search.L_est = M end γ = min(max(dot_dir / (line_search.L_est * ndir2), 0), gamma_max) return γ end """ MonotonicStepSize{F} Represents a monotonic open-loop step size. Contains a halving factor `N` increased at each iteration until there is primal progress `gamma = 2 / (t + 2) * 2^(-N)`. """ mutable struct MonotonicStepSize{F} <: LineSearchMethod domain_oracle::F factor::Int end MonotonicStepSize(f::F) where {F<:Function} = MonotonicStepSize{F}(f, 0) MonotonicStepSize() = MonotonicStepSize(x -> true, 0) @deprecate MonotonousStepSize(args...) MonotonicStepSize(args...) false Base.print(io::IO, ::MonotonicStepSize) = print(io, "MonotonicStepSize") function perform_line_search( line_search::MonotonicStepSize, t, f, g!, gradient, x, d, gamma_max, storage, memory_mode, ) gamma = 2.0^(1 - line_search.factor) / (2 + t) storage = muladd_memory_mode(memory_mode, storage, x, gamma, d) f0 = f(x) while !line_search.domain_oracle(storage) || f(storage) > f0 line_search.factor += 1 gamma = 2.0^(1 - line_search.factor) / (2 + t) storage = muladd_memory_mode(memory_mode, storage, x, gamma, d) end return gamma end """ MonotonicNonConvexStepSize{F} Represents a monotonic open-loop non-convex step size. Contains a halving factor `N` increased at each iteration until there is primal progress `gamma = 1 / sqrt(t + 1) * 2^(-N)`. """ mutable struct MonotonicNonConvexStepSize{F} <: LineSearchMethod domain_oracle::F factor::Int end MonotonicNonConvexStepSize(f::F) where {F<:Function} = MonotonicNonConvexStepSize{F}(f, 0) MonotonicNonConvexStepSize() = MonotonicNonConvexStepSize(x -> true, 0) @deprecate MonotonousNonConvexStepSize(args...) MonotonicNonConvexStepSize(args...) false Base.print(io::IO, ::MonotonicNonConvexStepSize) = print(io, "MonotonicNonConvexStepSize") function build_linesearch_workspace( ::Union{MonotonicStepSize,MonotonicNonConvexStepSize}, x, gradient, ) return similar(x) end function perform_line_search( line_search::MonotonicNonConvexStepSize, t, f, g!, gradient, x, d, gamma_max, storage, memory_mode, ) gamma = 2.0^(-line_search.factor) / sqrt(1 + t) storage = muladd_memory_mode(memory_mode, storage, x, gamma, d) f0 = f(x) while !line_search.domain_oracle(storage) || f(storage) > f0 line_search.factor += 1 gamma = 2.0^(-line_search.factor) / sqrt(1 + t) storage = muladd_memory_mode(memory_mode, storage, x, gamma, d) end return gamma end struct MonotonicGenericStepsize{LS<:LineSearchMethod,F<:Function} <: LineSearchMethod linesearch::LS domain_oracle::F end MonotonicGenericStepsize(linesearch::LS) where {LS<:LineSearchMethod} = MonotonicGenericStepsize(linesearch, x -> true) Base.print(io::IO, ::MonotonicGenericStepsize) = print(io, "MonotonicGenericStepsize") struct MonotonicWorkspace{XT,WS} x::XT inner_workspace::WS end function build_linesearch_workspace(ls::MonotonicGenericStepsize, x, gradient) return MonotonicWorkspace(similar(x), build_linesearch_workspace(ls.linesearch, x, gradient)) end function perform_line_search( line_search::MonotonicGenericStepsize, t, f, g!, gradient, x, d, gamma_max, storage::MonotonicWorkspace, memory_mode, ) f0 = f(x) gamma = perform_line_search( line_search.linesearch, t, f, g!, gradient, x, d, gamma_max, storage.inner_workspace, memory_mode, ) gamma = min(gamma, gamma_max) T = typeof(gamma) xst = storage.x xst = muladd_memory_mode(memory_mode, xst, x, gamma, d) factor = 0 while !line_search.domain_oracle(xst) || f(xst) > f0 factor += 1 gamma *= T(2)^(-factor) xst = muladd_memory_mode(memory_mode, xst, x, gamma, d) if T(2)^(-factor) ≤ 10 * eps(gamma) @error("numerical limit for gamma $gamma, invalid direction?") break end end return gamma end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
4736
""" MathOptLMO{OT <: MOI.Optimizer} <: LinearMinimizationOracle Linear minimization oracle with feasible space defined through a MathOptInterface.Optimizer. The oracle call sets the direction and reruns the optimizer. The `direction` vector has to be set in the same order of variables as the `MOI.ListOfVariableIndices()` getter. The Boolean `use_modify` determines if the objective in`compute_extreme_point` is updated with `MOI.modify(o, ::MOI.ObjectiveFunction, ::MOI.ScalarCoefficientChange)` or with `MOI.set(o, ::MOI.ObjectiveFunction, f)`. `use_modify = true` decreases the runtime and memory allocation for models created as an optimizer object and defined directly with MathOptInterface. `use_modify = false` should be used for CachingOptimizers. """ struct MathOptLMO{OT<:MOI.AbstractOptimizer} <: LinearMinimizationOracle o::OT use_modify::Bool function MathOptLMO(o, use_modify=true) MOI.set(o, MOI.ObjectiveSense(), MOI.MIN_SENSE) return new{typeof(o)}(o, use_modify) end end function compute_extreme_point( lmo::MathOptLMO{OT}, direction::AbstractVector{T}; kwargs..., ) where {OT,T<:Real} variables = MOI.get(lmo.o, MOI.ListOfVariableIndices()) if lmo.use_modify for i in eachindex(variables) MOI.modify( lmo.o, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{T}}(), MOI.ScalarCoefficientChange(variables[i], direction[i]), ) end else terms = [MOI.ScalarAffineTerm(d, v) for (d, v) in zip(direction, variables)] obj = MOI.ScalarAffineFunction(terms, zero(T)) MOI.set(lmo.o, MOI.ObjectiveFunction{typeof(obj)}(), obj) end return _optimize_and_return(lmo, variables) end function compute_extreme_point( lmo::MathOptLMO{OT}, direction::AbstractMatrix{T}; kwargs..., ) where {OT,T<:Real} n = size(direction, 1) v = compute_extreme_point(lmo, vec(direction)) return reshape(v, n, n) end function Base.copy(lmo::MathOptLMO{OT}; ensure_identity=true) where {OT} opt = OT() # creates the empty optimizer index_map = MOI.copy_to(opt, lmo.o) if ensure_identity for (src_idx, des_idx) in index_map.var_map if src_idx != des_idx error("Mapping of variables is not identity") end end end return MathOptLMO(opt) end function Base.copy( lmo::MathOptLMO{OT}; ensure_identity=true, ) where {OTI,OT<:MOIU.CachingOptimizer{OTI}} opt = MOIU.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), OTI(), ) index_map = MOI.copy_to(opt, lmo.o) if ensure_identity for (src_idx, des_idx) in index_map.var_map if src_idx != des_idx error("Mapping of variables is not identity") end end end return MathOptLMO(opt) end function compute_extreme_point( lmo::MathOptLMO{OT}, direction::AbstractVector{MOI.ScalarAffineTerm{T}}; kwargs..., ) where {OT,T} if lmo.use_modify for d in direction MOI.modify( lmo.o, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{T}}(), MOI.ScalarCoefficientChange(d.variable, d.coefficient), ) end variables = MOI.get(lmo.o, MOI.ListOfVariableIndices()) variables_to_zero = setdiff(variables, [dir.variable for dir in direction]) terms = [ MOI.ScalarAffineTerm(d, v) for (d, v) in zip(zeros(length(variables_to_zero)), variables_to_zero) ] for t in terms MOI.modify( lmo.o, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{T}}(), MOI.ScalarCoefficientChange(t.variable, t.coefficient), ) end else variables = [d.variable for d in direction] obj = MOI.ScalarAffineFunction(direction, zero(T)) MOI.set(lmo.o, MOI.ObjectiveFunction{typeof(obj)}(), obj) end return _optimize_and_return(lmo, variables) end function _optimize_and_return(lmo, variables) MOI.optimize!(lmo.o) term_st = MOI.get(lmo.o, MOI.TerminationStatus()) if term_st ∉ (MOI.OPTIMAL, MOI.ALMOST_OPTIMAL, MOI.SLOW_PROGRESS) @error "Unexpected termination: $term_st" return MOI.get.(lmo.o, MOI.VariablePrimal(), variables) end return MOI.get.(lmo.o, MOI.VariablePrimal(), variables) end """ convert_mathopt(lmo::LMO, optimizer::OT; kwargs...) -> MathOptLMO{OT} Converts the given LMO to its equivalent MathOptInterface representation using `optimizer`. Must be implemented by LMOs. """ function convert_mathopt end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
11918
import Arpack """ LpNormLMO{T, p}(right_hand_side) LMO with feasible set being an L-p norm ball: ``` C = {x ∈ R^n, norm(x, p) ≤ right_hand_side} ``` """ struct LpNormLMO{T,p} <: LinearMinimizationOracle right_hand_side::T end LpNormLMO{p}(right_hand_side::T) where {T,p} = LpNormLMO{T,p}(right_hand_side) function compute_extreme_point( lmo::LpNormLMO{T,2}, direction; v=similar(direction), kwargs..., ) where {T} dir_norm = norm(direction, 2) n = length(direction) # if direction numerically 0 if dir_norm <= 10eps(float(eltype(direction))) @. v = lmo.right_hand_side / sqrt(n) else @. v = -lmo.right_hand_side * direction / dir_norm end return v end function compute_extreme_point( lmo::LpNormLMO{T,Inf}, direction; v=similar(direction), kwargs..., ) where {T} for idx in eachindex(direction) v[idx] = -lmo.right_hand_side * (1 - 2signbit(direction[idx])) end return v end function compute_extreme_point(lmo::LpNormLMO{T,1}, direction; v=nothing, kwargs...) where {T} idx = 0 v = -one(eltype(direction)) for i in eachindex(direction) if abs(direction[i]) > v v = abs(direction[i]) idx = i end end sign_coeff = sign(direction[idx]) if sign_coeff == 0.0 sign_coeff -= 1 end return ScaledHotVector(-lmo.right_hand_side * sign_coeff, idx, length(direction)) end function compute_extreme_point( lmo::LpNormLMO{T,p}, direction; v=similar(direction), kwargs..., ) where {T,p} # covers the case where the Inf or 1 is of another type if p == Inf v = compute_extreme_point(LpNormLMO{T,Inf}(lmo.right_hand_side), direction, v=v) return v elseif p == 1 v = compute_extreme_point(LpNormLMO{T,1}(lmo.right_hand_side), direction) return v end q = p / (p - 1) pow_ratio = q / p q_norm = norm(direction, q)^(pow_ratio) # handle zero_direction first # assuming the direction is a vector of 1 if q_norm < eps(float(T)) one_vec = trues(length(direction)) @. v = -lmo.right_hand_side * one_vec^(pow_ratio) / oftype(q_norm, 1) return v end @. v = -lmo.right_hand_side * sign(direction) * abs(direction)^(pow_ratio) / q_norm return v end """ KNormBallLMO{T}(K::Int, right_hand_side::T) LMO with feasible set being the K-norm ball in the sense of [2010.07243](https://arxiv.org/abs/2010.07243), i.e., the convex hull over the union of an L_1-ball with radius τ and an L_∞-ball with radius τ/K: ``` C_{K,τ} = conv { B_1(τ) ∪ B_∞(τ / K) } ``` with `τ` the `right_hand_side` parameter. The K-norm is defined as the sum of the largest `K` absolute entries in a vector. """ struct KNormBallLMO{T} <: LinearMinimizationOracle K::Int right_hand_side::T end function compute_extreme_point( lmo::KNormBallLMO{T}, direction; v=similar(direction), kwargs..., ) where {T} K = max(min(lmo.K, length(direction)), 1) oinf = zero(eltype(direction)) idx_l1 = 0 val_l1 = -one(eltype(direction)) @inbounds for (i, dir_val) in enumerate(direction) temp = -lmo.right_hand_side / K * sign(dir_val) v[i] = temp oinf += dir_val * temp abs_v = abs(dir_val) if abs_v > val_l1 idx_l1 = i val_l1 = abs_v end end v1 = ScaledHotVector(-lmo.right_hand_side * sign(direction[idx_l1]), idx_l1, length(direction)) o1 = dot(v1, direction) if o1 < oinf @. v = v1 end return v end """ NuclearNormLMO{T}(radius) LMO over matrices that have a nuclear norm less than `radius`. The LMO returns the best rank-one approximation matrix with singular value `radius`, computed with Arpack. """ struct NuclearNormLMO{T} <: LinearMinimizationOracle radius::T end NuclearNormLMO{T}() where {T} = NuclearNormLMO{T}(one(T)) NuclearNormLMO() = NuclearNormLMO(1.0) function compute_extreme_point( lmo::NuclearNormLMO{TL}, direction::AbstractMatrix{TD}; tol=1e-8, kwargs..., ) where {TL,TD} T = promote_type(TD, TL) Z = Arpack.svds(direction, nsv=1, tol=tol)[1] u = -lmo.radius * view(Z.U, :) return RankOneMatrix(u::Vector{T}, Z.V[:]::Vector{T}) end function convert_mathopt( lmo::NuclearNormLMO, optimizer::OT; row_dimension::Integer, col_dimension::Integer, use_modify=true::Bool, kwargs..., ) where {OT} MOI.empty!(optimizer) x = MOI.add_variables(optimizer, row_dimension * col_dimension) (t, _) = MOI.add_constrained_variable(optimizer, MOI.LessThan(lmo.radius)) MOI.add_constraint(optimizer, [t; x], MOI.NormNuclearCone(row_dimension, col_dimension)) return MathOptLMO(optimizer, use_modify) end """ SpectraplexLMO{T,M}(radius::T,gradient_container::M,ensure_symmetry::Bool=true) Feasible set ``` {X ∈ 𝕊_n^+, trace(X) == radius} ``` `gradient_container` is used to store the symmetrized negative direction. `ensure_symmetry` indicates whether the linear function is made symmetric before computing the eigenvector. """ struct SpectraplexLMO{T,M} <: LinearMinimizationOracle radius::T gradient_container::M ensure_symmetry::Bool maxiters::Int end function SpectraplexLMO( radius::T, side_dimension::Int, ensure_symmetry::Bool=true, maxiters::Int=500, ) where {T} return SpectraplexLMO( radius, Matrix{T}(undef, side_dimension, side_dimension), ensure_symmetry, maxiters, ) end function SpectraplexLMO( radius::Integer, side_dimension::Int, ensure_symmetry::Bool=true, maxiters::Int=500, ) return SpectraplexLMO(float(radius), side_dimension, ensure_symmetry, maxiters) end function compute_extreme_point( lmo::SpectraplexLMO{T}, direction::M; v=nothing, kwargs..., ) where {T,M<:AbstractMatrix} lmo.gradient_container .= direction if !(M <: Union{LinearAlgebra.Symmetric,LinearAlgebra.Diagonal,LinearAlgebra.UniformScaling}) && lmo.ensure_symmetry # make gradient symmetric @. lmo.gradient_container += direction' end lmo.gradient_container .*= -1 _, evec = Arpack.eigs(lmo.gradient_container; nev=1, which=:LR, maxiter=lmo.maxiters) # type annotation because of Arpack instability unit_vec::Vector{T} = vec(evec) # scaling by sqrt(radius) so that x x^T has spectral norm radius while using a single vector unit_vec .*= sqrt(lmo.radius) return FrankWolfe.RankOneMatrix(unit_vec, unit_vec) end """ UnitSpectrahedronLMO{T,M}(radius::T, gradient_container::M) Feasible set of PSD matrices with bounded trace: ``` {X ∈ 𝕊_n^+, trace(X) ≤ radius} ``` `gradient_container` is used to store the symmetrized negative direction. `ensure_symmetry` indicates whether the linear function is made symmetric before computing the eigenvector. """ struct UnitSpectrahedronLMO{T,M} <: LinearMinimizationOracle radius::T gradient_container::M ensure_symmetry::Bool end function UnitSpectrahedronLMO(radius::T, side_dimension::Int, ensure_symmetry::Bool=true) where {T} return UnitSpectrahedronLMO( radius, Matrix{T}(undef, side_dimension, side_dimension), ensure_symmetry, ) end UnitSpectrahedronLMO(radius::Integer, side_dimension::Int) = UnitSpectrahedronLMO(float(radius), side_dimension) function compute_extreme_point( lmo::UnitSpectrahedronLMO{T}, direction::M; v=nothing, maxiters=500, kwargs..., ) where {T,M<:AbstractMatrix} lmo.gradient_container .= direction if !(M <: Union{LinearAlgebra.Symmetric,LinearAlgebra.Diagonal,LinearAlgebra.UniformScaling}) && lmo.ensure_symmetry # make gradient symmetric @. lmo.gradient_container += direction' end lmo.gradient_container .*= -1 e_val::Vector{T}, evec::Matrix{T} = Arpack.eigs(lmo.gradient_container; nev=1, which=:LR, maxiter=maxiters) # type annotation because of Arpack instability unit_vec::Vector{T} = vec(evec) if e_val[1] < 0 # return a zero rank-one matrix unit_vec .*= 0 else # scaling by sqrt(radius) so that x x^T has spectral norm radius while using a single vector unit_vec .*= sqrt(lmo.radius) end return FrankWolfe.RankOneMatrix(unit_vec, unit_vec) end function convert_mathopt( lmo::Union{SpectraplexLMO{T},UnitSpectrahedronLMO{T}}, optimizer::OT; side_dimension::Integer, use_modify::Bool=true, kwargs..., ) where {T,OT} MOI.empty!(optimizer) X = MOI.add_variables(optimizer, side_dimension * side_dimension) MOI.add_constraint(optimizer, X, MOI.PositiveSemidefiniteConeSquare(side_dimension)) sum_diag_terms = MOI.ScalarAffineFunction{T}([], zero(T)) # collect diagonal terms of the matrix for i in 1:side_dimension push!(sum_diag_terms.terms, MOI.ScalarAffineTerm(one(T), X[i+side_dimension*(i-1)])) end constraint_set = if lmo isa SpectraplexLMO MOI.EqualTo(lmo.radius) else MOI.LessThan(lmo.radius) end MOI.add_constraint(optimizer, sum_diag_terms, constraint_set) return MathOptLMO(optimizer, use_modify) end """ EllipsoidLMO(A, c, r) Linear minimization over an ellipsoid centered at `c` of radius `r`: ``` x: (x - c)^T A (x - c) ≤ r ``` The LMO stores the factorization `F` of A that is used to solve linear systems `A⁻¹ x`. The result of the linear system solve is stored in `buffer`. The ellipsoid is assumed to be full-dimensional -> A is positive definite. """ struct EllipsoidLMO{AT,FT,CT,T,BT} <: LinearMinimizationOracle A::AT F::FT center::CT radius::T buffer::BT end function EllipsoidLMO(A, center, radius) F = cholesky(A) buffer = radius * similar(center) return EllipsoidLMO(A, F, center, radius, buffer) end EllipsoidLMO(A) = EllipsoidLMO(A, zeros(size(A, 1)), true) function compute_extreme_point(lmo::EllipsoidLMO, direction; v=nothing, kwargs...) if v === nothing # used for type promotion v = lmo.center + false * lmo.radius * direction else copyto!(v, lmo.center) end # buffer = A⁻¹ direction ldiv!(lmo.buffer, lmo.F, direction) scaling = sqrt(lmo.radius) / sqrt(dot(direction, lmo.buffer)) # v = v - I * buffer * scaling mul!(v, I, lmo.buffer, -scaling, true) return v end """ OrderWeightNormLMO(weights,radius) LMO with feasible set being the atomic ordered weighted l1 norm: https://arxiv.org/pdf/1409.4271 ``` C = {x ∈ R^n, Ω_w(x) ≤ R} ``` The weights are assumed to be positive. """ struct OrderWeightNormLMO{R,B,D} <: LinearMinimizationOracle radius::R mat_B::B direction_abs::D end function OrderWeightNormLMO(weights, radius) N = length(weights) s = zero(eltype(weights)) B = zeros(float(typeof(s)),N) w_sort = sort(weights,rev=true) for i in 1:N s += w_sort[i] B[i] = 1/s end w_sort = similar(weights) return OrderWeightNormLMO(radius,B,w_sort) end function compute_extreme_point( lmo::OrderWeightNormLMO, direction::M; v=nothing, kwargs..., ) where {M} for i in eachindex(direction) lmo.direction_abs[i] = abs(direction[i]) end perm_grad = sortperm(lmo.direction_abs, rev=true) scal_max = 0 ind_max = 1 N = length(lmo.mat_B) for i in 1:N scal = zero(eltype(lmo.direction_abs[1])) for k in 1:i scal += lmo.mat_B[i] * lmo.direction_abs[perm_grad][k] end if scal > scal_max scal_max = scal ind_max = i end end v = lmo.radius .* (2 * signbit.(direction) .- 1) unsort_perm = sortperm(perm_grad) for i in 1:N if unsort_perm[i] <= ind_max v[i] *= lmo.mat_B[ind_max] else v[i] = 0 end end return v end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
14565
""" pairwise_frank_wolfe(f, grad!, lmo, x0; ...) Frank-Wolfe with pairwise steps. The algorithm maintains the current iterate as a convex combination of vertices in the [`FrankWolfe.ActiveSet`](@ref) data structure. See [M. Besançon, A. Carderera and S. Pokutta 2021](https://arxiv.org/abs/2104.06675) for illustrations of away steps. Unlike away-step, it transfers weight from an away vertex to another vertex. """ function pairwise_frank_wolfe( f, grad!, lmo, x0; line_search::LineSearchMethod=Adaptive(), lazy_tolerance=2.0, epsilon=1e-7, lazy=false, momentum=nothing, max_iteration=10000, print_iter=1000, trajectory=false, verbose=false, memory_mode::MemoryEmphasis=InplaceEmphasis(), gradient=nothing, renorm_interval=1000, callback=nothing, traj_data=[], timeout=Inf, weight_purge_threshold=weight_purge_threshold_default(eltype(x0)), extra_vertex_storage=nothing, add_dropped_vertices=false, use_extra_vertex_storage=false, linesearch_workspace=nothing, recompute_last_vertex=true, ) # add the first vertex to active set from initialization active_set = ActiveSet([(1.0, x0)]) # Call the method using an ActiveSet as input return pairwise_frank_wolfe( f, grad!, lmo, active_set, line_search=line_search, lazy_tolerance=lazy_tolerance, epsilon=epsilon, lazy=lazy, momentum=momentum, max_iteration=max_iteration, print_iter=print_iter, trajectory=trajectory, verbose=verbose, memory_mode=memory_mode, gradient=gradient, renorm_interval=renorm_interval, callback=callback, traj_data=traj_data, timeout=timeout, weight_purge_threshold=weight_purge_threshold, extra_vertex_storage=extra_vertex_storage, add_dropped_vertices=add_dropped_vertices, use_extra_vertex_storage=use_extra_vertex_storage, linesearch_workspace=linesearch_workspace, recompute_last_vertex=recompute_last_vertex, ) end # pairwise FrankWolfe with the active set given as parameter # note: in this case I don't need x0 as it is given by the active set and might otherwise lead to confusion function pairwise_frank_wolfe( f, grad!, lmo, active_set::AbstractActiveSet{AT,R}; line_search::LineSearchMethod=Adaptive(), lazy_tolerance=2.0, epsilon=1e-7, lazy=false, momentum=nothing, max_iteration=10000, print_iter=1000, trajectory=false, verbose=false, memory_mode::MemoryEmphasis=InplaceEmphasis(), gradient=nothing, renorm_interval=1000, callback=nothing, traj_data=[], timeout=Inf, weight_purge_threshold=weight_purge_threshold_default(R), extra_vertex_storage=nothing, add_dropped_vertices=false, use_extra_vertex_storage=false, linesearch_workspace=nothing, recompute_last_vertex=true, ) where {AT,R} # format string for output of the algorithm format_string = "%6s %13s %14e %14e %14e %14e %14e %14i\n" headers = ("Type", "Iteration", "Primal", "Dual", "Dual Gap", "Time", "It/sec", "#ActiveSet") function format_state(state, active_set) rep = ( steptype_string[Symbol(state.step_type)], string(state.t), Float64(state.primal), Float64(state.primal - state.dual_gap), Float64(state.dual_gap), state.time, state.t / state.time, length(active_set), ) return rep end if isempty(active_set) throw(ArgumentError("Empty active set")) end t = 0 dual_gap = Inf primal = Inf x = get_active_set_iterate(active_set) step_type = ST_REGULAR if trajectory callback = make_trajectory_callback(callback, traj_data) end if verbose callback = make_print_callback(callback, print_iter, headers, format_string, format_state) end time_start = time_ns() d = similar(x) if gradient === nothing gradient = collect(x) end gtemp = if momentum !== nothing similar(gradient) else nothing end if verbose println("\nPairwise Frank-Wolfe Algorithm.") NumType = eltype(x) println( "MEMORY_MODE: $memory_mode STEPSIZE: $line_search EPSILON: $epsilon MAXITERATION: $max_iteration TYPE: $NumType", ) grad_type = typeof(gradient) println( "GRADIENTTYPE: $grad_type LAZY: $lazy lazy_tolerance: $lazy_tolerance MOMENTUM: $momentum", ) println("LMO: $(typeof(lmo))") if (use_extra_vertex_storage || add_dropped_vertices) && extra_vertex_storage === nothing @warn( "use_extra_vertex_storage and add_dropped_vertices options are only usable with a extra_vertex_storage storage" ) end end x = get_active_set_iterate(active_set) primal = f(x) v = active_set.atoms[1] phi_value = convert(eltype(x), Inf) gamma = one(phi_value) if linesearch_workspace === nothing linesearch_workspace = build_linesearch_workspace(line_search, x, gradient) end if extra_vertex_storage === nothing use_extra_vertex_storage = add_dropped_vertices = false end while t <= max_iteration && phi_value >= max(eps(float(typeof(phi_value))), epsilon) ##################### # managing time and Ctrl-C ##################### time_at_loop = time_ns() if t == 0 time_start = time_at_loop end # time is measured at beginning of loop for consistency throughout all algorithms tot_time = (time_at_loop - time_start) / 1e9 if timeout < Inf if tot_time ≥ timeout if verbose @info "Time limit reached" end break end end ##################### t += 1 # compute current iterate from active set x = get_active_set_iterate(active_set) if isnothing(momentum) grad!(gradient, x) else grad!(gtemp, x) @memory_mode(memory_mode, gradient = (momentum * gradient) + (1 - momentum) * gtemp) end if lazy d, fw_vertex, fw_index, away_vertex, away_index, gamma_max, phi_value, step_type = lazy_pfw_step( x, gradient, lmo, active_set, phi_value, epsilon, d; use_extra_vertex_storage=use_extra_vertex_storage, extra_vertex_storage=extra_vertex_storage, lazy_tolerance=lazy_tolerance, memory_mode=memory_mode, ) else d, fw_vertex, fw_index, away_vertex, away_index, gamma_max, phi_value, step_type = pfw_step(x, gradient, lmo, active_set, epsilon, d, memory_mode=memory_mode) end if fw_index === nothing fw_index = find_atom(active_set, fw_vertex) end if gamma ≈ gamma_max && fw_index === -1 step_type = ST_DUALSTEP end gamma = 0.0 if step_type != ST_DUALSTEP gamma = perform_line_search( line_search, t, f, grad!, gradient, x, d, gamma_max, linesearch_workspace, memory_mode, ) gamma = min(gamma_max, gamma) # cleanup and renormalize every x iterations. Only for the fw steps. renorm = mod(t, renorm_interval) == 0 # away update active_set_update!( active_set, -gamma, away_vertex, true, away_index, add_dropped_vertices=use_extra_vertex_storage, vertex_storage=extra_vertex_storage, ) if add_dropped_vertices && gamma == gamma_max for vtx in active_set.atoms if vtx != v push!(extra_vertex_storage, vtx) end end end # fw update active_set_update!(active_set, gamma, fw_vertex, renorm, fw_index) end if callback !== nothing state = CallbackState( t, primal, primal - dual_gap, dual_gap, tot_time, x, fw_vertex, d, gamma, f, grad!, lmo, gradient, step_type, ) if callback(state, active_set) === false break end end if mod(t, renorm_interval) == 0 active_set_renormalize!(active_set) x = compute_active_set_iterate!(active_set) end if ( (mod(t, print_iter) == 0 && verbose) || callback !== nothing || !(line_search isa Agnostic || line_search isa Nonconvex || line_search isa FixedStep) ) primal = f(x) dual_gap = phi_value end end # recompute everything once more for final verfication / do not record to trajectory though for now! # this is important as some variants do not recompute f(x) and the dual_gap regularly but only when reporting # hence the final computation. # do also cleanup of active_set due to many operations on the same set x = get_active_set_iterate(active_set) grad!(gradient, x) v = compute_extreme_point(lmo, gradient) primal = f(x) dual_gap = fast_dot(x, gradient) - fast_dot(v, gradient) dual_gap = min(phi_value, dual_gap) step_type = ST_LAST tot_time = (time_ns() - time_start) / 1e9 if callback !== nothing state = CallbackState( t, primal, primal - dual_gap, dual_gap, tot_time, x, v, nothing, gamma, f, grad!, lmo, gradient, step_type, ) callback(state, active_set) end active_set_renormalize!(active_set) active_set_cleanup!( active_set; weight_purge_threshold=weight_purge_threshold, add_dropped_vertices=use_extra_vertex_storage, vertex_storage=extra_vertex_storage, ) x = get_active_set_iterate(active_set) grad!(gradient, x) if recompute_last_vertex v = compute_extreme_point(lmo, gradient) primal = f(x) dual_gap = fast_dot(x, gradient) - fast_dot(v, gradient) end step_type = ST_POSTPROCESS tot_time = (time_ns() - time_start) / 1e9 if callback !== nothing state = CallbackState( t, primal, primal - dual_gap, dual_gap, tot_time, x, v, nothing, gamma, f, grad!, lmo, gradient, step_type, ) callback(state, active_set) end return (x=x, v=v, primal=primal, dual_gap=dual_gap, traj_data=traj_data, active_set=active_set) end function lazy_pfw_step( x, gradient, lmo, active_set, phi, epsilon, d; use_extra_vertex_storage=false, extra_vertex_storage=nothing, lazy_tolerance=2.0, memory_mode::MemoryEmphasis=InplaceEmphasis(), ) _, v_local, v_local_loc, _, a_lambda, a_local, a_local_loc, _, _ = active_set_argminmax(active_set, gradient) # We will always have an away vertex determining the steplength. gamma_max = a_lambda away_index = a_local_loc fw_index = nothing grad_dot_x = fast_dot(x, gradient) grad_dot_a_local = fast_dot(a_local, gradient) # Do lazy pairwise step grad_dot_lazy_fw_vertex = fast_dot(v_local, gradient) if grad_dot_a_local - grad_dot_lazy_fw_vertex >= phi / lazy_tolerance && grad_dot_a_local - grad_dot_lazy_fw_vertex >= epsilon step_type = ST_LAZY v = v_local d = muladd_memory_mode(memory_mode, d, a_local, v) fw_index = v_local_loc else # optionally: try vertex storage if use_extra_vertex_storage lazy_threshold = fast_dot(gradient, a_local) - phi / lazy_tolerance (found_better_vertex, new_forward_vertex) = storage_find_argmin_vertex(extra_vertex_storage, gradient, lazy_threshold) if found_better_vertex @debug("Found acceptable lazy vertex in storage") v = new_forward_vertex step_type = ST_LAZYSTORAGE else v = compute_extreme_point(lmo, gradient) step_type = ST_PAIRWISE end else v = compute_extreme_point(lmo, gradient) step_type = ST_PAIRWISE end # Real dual gap promises enough progress. grad_dot_fw_vertex = fast_dot(v, gradient) dual_gap = grad_dot_x - grad_dot_fw_vertex if dual_gap >= phi / lazy_tolerance d = muladd_memory_mode(memory_mode, d, a_local, v) #Lower our expectation for progress. else step_type = ST_DUALSTEP phi = min(dual_gap, phi / 2.0) end end return d, v, fw_index, a_local, away_index, gamma_max, phi, step_type end function pfw_step( x, gradient, lmo, active_set, epsilon, d; memory_mode::MemoryEmphasis=InplaceEmphasis(), ) step_type = ST_PAIRWISE _, _, _, _, a_lambda, a_local, a_local_loc = active_set_argminmax(active_set, gradient) away_vertex = a_local away_index = a_local_loc # We will always have a away vertex determining the steplength. gamma_max = a_lambda v = compute_extreme_point(lmo, gradient) fw_vertex = v fw_index = nothing grad_dot_x = fast_dot(x, gradient) dual_gap = grad_dot_x - fast_dot(v, gradient) d = muladd_memory_mode(memory_mode, d, a_local, v) return d, fw_vertex, fw_index, away_vertex, away_index, gamma_max, dual_gap, step_type end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
7452
""" KSparseLMO{T}(K::Int, right_hand_side::T) LMO for the K-sparse polytope: ``` C = B_1(τK) ∩ B_∞(τ) ``` with `τ` the `right_hand_side` parameter. The LMO results in a vector with the K largest absolute values of direction, taking values `-τ sign(x_i)`. """ struct KSparseLMO{T} <: LinearMinimizationOracle K::Int right_hand_side::T end function compute_extreme_point(lmo::KSparseLMO{T}, direction; v=nothing, kwargs...) where {T} K = min(lmo.K, length(direction)) K_indices = sortperm(direction[1:K], by=abs, rev=true) K_values = direction[K_indices] for idx in K+1:length(direction) new_val = direction[idx] # new greater value: shift everything right if abs(new_val) > abs(K_values[1]) K_values[2:end] .= K_values[1:end-1] K_indices[2:end] .= K_indices[1:end-1] K_indices[1] = idx K_values[1] = new_val # new value in the interior elseif abs(new_val) > abs(K_values[K]) # NOTE: not out of bound since unreachable with K=1 j = K - 1 while abs(new_val) > abs(K_values[j]) j -= 1 end K_values[j+1:end] .= K_values[j:end-1] K_indices[j+1:end] .= K_indices[j:end-1] K_values[j+1] = new_val K_indices[j+1] = idx end end v = spzeros(T, length(direction)) for (idx, val) in zip(K_indices, K_values) # signbit to avoid zeros, ensuring we have a true extreme point # equivalent to sign(val) but without any zero s = 1 - 2 * signbit(val) v[idx] = -lmo.right_hand_side * s end return v end function convert_mathopt( lmo::KSparseLMO{T}, optimizer::OT; dimension::Integer, use_modify::Bool=true, kwargs..., ) where {T,OT} τ = lmo.right_hand_side n = dimension K = min(lmo.K, n) MOI.empty!(optimizer) x = MOI.add_variables(optimizer, n) tinf = MOI.add_variable(optimizer) MOI.add_constraint(optimizer, MOI.VectorOfVariables([tinf; x]), MOI.NormInfinityCone(n + 1)) MOI.add_constraint(optimizer, tinf, MOI.LessThan(τ)) t1 = MOI.add_variable(optimizer) MOI.add_constraint(optimizer, MOI.VectorOfVariables([t1; x]), MOI.NormOneCone(n + 1)) MOI.add_constraint(optimizer, t1, MOI.LessThan(τ * K)) return MathOptLMO(optimizer, use_modify) end """ BirkhoffPolytopeLMO The Birkhoff polytope encodes doubly stochastic matrices. Its extreme vertices are all permutation matrices of side-dimension `dimension`. """ struct BirkhoffPolytopeLMO <: LinearMinimizationOracle end function compute_extreme_point( ::BirkhoffPolytopeLMO, direction::AbstractMatrix{T}; v=nothing, kwargs..., ) where {T} n = size(direction, 1) n == size(direction, 2) || DimensionMismatch("direction should be square and matching BirkhoffPolytopeLMO dimension") m = spzeros(Bool, n, n) res_mat = Hungarian.munkres(direction) (rows, cols, vals) = SparseArrays.findnz(res_mat) @inbounds for i in eachindex(cols) m[rows[i], cols[i]] = vals[i] == 2 end m = convert(SparseArrays.SparseMatrixCSC{Float64,Int64}, m) return m end function compute_extreme_point( lmo::BirkhoffPolytopeLMO, direction::AbstractVector{T}; v=nothing, kwargs..., ) where {T} nsq = length(direction) n = isqrt(nsq) return compute_extreme_point(lmo, reshape(direction, n, n); kwargs...)[:] end function convert_mathopt( ::BirkhoffPolytopeLMO, optimizer::OT; dimension::Integer, use_modify::Bool=true, kwargs..., ) where {OT} n = dimension MOI.empty!(optimizer) (x, _) = MOI.add_constrained_variables(optimizer, fill(MOI.Interval(0.0, 1.0), n * n)) xmat = reshape(x, n, n) for idx in 1:n # column constraint MOI.add_constraint( optimizer, MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(ones(n), xmat[:, idx]), 0.0), MOI.EqualTo(1.0), ) # row constraint MOI.add_constraint( optimizer, MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(ones(n), xmat[idx, :]), 0.0), MOI.EqualTo(1.0), ) end return MathOptLMO(optimizer, use_modify) end """ ScaledBoundLInfNormBall(lower_bounds, upper_bounds) Polytope similar to a L-inf-ball with shifted bounds or general box constraints. Lower- and upper-bounds are passed on as abstract vectors, possibly of different types. For the standard L-inf ball, all lower- and upper-bounds would be -1 and 1. """ struct ScaledBoundLInfNormBall{T,N,VT1<:AbstractArray{T,N},VT2<:AbstractArray{T,N}} <: LinearMinimizationOracle lower_bounds::VT1 upper_bounds::VT2 end function compute_extreme_point( lmo::ScaledBoundLInfNormBall, direction; v=similar(lmo.lower_bounds), kwargs..., ) copyto!(v, lmo.lower_bounds) for i in eachindex(direction) if direction[i] * lmo.upper_bounds[i] < direction[i] * lmo.lower_bounds[i] v[i] = lmo.upper_bounds[i] end end return v end """ ScaledBoundL1NormBall(lower_bounds, upper_bounds) Polytope similar to a L1-ball with shifted bounds. It is the convex hull of two scaled and shifted unit vectors for each axis (shifted to the center of the polytope, i.e., the elementwise midpoint of the bounds). Lower and upper bounds are passed on as abstract vectors, possibly of different types. For the standard L1-ball, all lower and upper bounds would be -1 and 1. """ struct ScaledBoundL1NormBall{T,N,VT1<:AbstractArray{T,N},VT2<:AbstractArray{T,N}} <: LinearMinimizationOracle lower_bounds::VT1 upper_bounds::VT2 end function compute_extreme_point( lmo::ScaledBoundL1NormBall, direction; v=similar(lmo.lower_bounds), kwargs..., ) @inbounds for i in eachindex(lmo.lower_bounds) v[i] = (lmo.lower_bounds[i] + lmo.upper_bounds[i]) / 2 end idx = 0 lower = false val = zero(eltype(direction)) if length(direction) != length(lmo.upper_bounds) throw(DimensionMismatch()) end @inbounds for i in eachindex(direction) scale_factor = lmo.upper_bounds[i] - lmo.lower_bounds[i] scaled_dir = direction[i] * scale_factor if scaled_dir > val val = scaled_dir idx = i lower = true elseif -scaled_dir > val val = -scaled_dir idx = i lower = false end end # compute midpoint for all coordinates, replace with extreme coordinate on one # TODO use smarter array type if bounds are FillArrays # handle zero direction idx = max(idx, 1) v[idx] = ifelse(lower, lmo.lower_bounds[idx], lmo.upper_bounds[idx]) return v end """ ConvexHullOracle{AT,VT} Convex hull of a finite number of vertices of type `AT`, stored in a vector of type `VT`. """ struct ConvexHullOracle{AT, VT <: AbstractVector{AT}} <: LinearMinimizationOracle vertices::VT end function compute_extreme_point(lmo::ConvexHullOracle{AT}, direction; v=nothing, kwargs...) where {AT} T = promote_type(eltype(direction), eltype(AT)) best_val = T(Inf) best_vertex = first(lmo.vertices) for vertex in lmo.vertices val = dot(vertex, direction) if val < best_val best_val = val best_vertex = vertex end end return best_vertex end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
38990
Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ (:max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :trajectory), Tuple{Int64,Shortstep{Float64},Float64,InplaceEmphasis,Bool,Bool}, }, typeof(frank_wolfe), Function, Function, KSparseLMO{Float64}, SparseVector{Float64,Int64}, }, ) # time: 0.31842098 Base.precompile(Tuple{Type{Shortstep},Float64}) # time: 0.010073511 Base.precompile( Tuple{ Core.kwftype(typeof(print_callback)), NamedTuple{(:print_header,),Tuple{Bool}}, typeof(print_callback), Vector{String}, String, }, ) # time: 0.001591955 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ (:max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :trajectory), Tuple{Int64,Adaptive{Float64,Int64},Float64,InplaceEmphasis,Bool,Bool}, }, typeof(frank_wolfe), Function, Function, KSparseLMO{Float64}, SparseVector{Float64,Int64}, }, ) # time: 0.061905436 Base.precompile(Tuple{Type{Adaptive}}) # time: 0.003947135 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ (:max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :trajectory), Tuple{Int64,Agnostic{Float64},Float64,InplaceEmphasis,Bool,Bool}, }, typeof(frank_wolfe), Function, Function, KSparseLMO{Float64}, SparseVector{Float64,Int64}, }, ) # time: 0.06750039 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ (:max_iteration, :line_search, :print_iter, :verbose, :memory_mode), Tuple{Int64,Agnostic{Float64},Float64,Bool,OutplaceEmphasis}, }, typeof(frank_wolfe), Function, Function, ProbabilitySimplexOracle{Rational{BigInt}}, ScaledHotVector{Rational{BigInt}}, }, ) # time: 0.2661169 Base.precompile( Tuple{typeof(print_callback),Tuple{String,String,Float64,Any,Float64,Float64,Float64},String}, ) # time: 0.004444123 Base.precompile( Tuple{typeof(dot),ScaledHotVector{Rational{BigInt}},ScaledHotVector{Rational{BigInt}}}, ) # time: 0.001534546 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ (:max_iteration, :line_search, :print_iter, :memory_mode, :verbose), Tuple{Float64,Agnostic{Float64},Float64,InplaceEmphasis,Bool}, }, typeof(frank_wolfe), Function, Function, ProbabilitySimplexOracle{Rational{BigInt}}, ScaledHotVector{Rational{BigInt}}, }, ) # time: 0.43984142 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ ( :max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :epsilon, :trajectory, ), Tuple{Int64,Adaptive{Float64,Int64},Float64,InplaceEmphasis,Bool,Float64,Bool}, }, typeof(frank_wolfe), Function, Function, KSparseLMO{Float64}, SparseVector{Float64,Int64}, }, ) # time: 0.26637408 Base.precompile( Tuple{Core.kwftype(typeof(Type)),NamedTuple{(:L_est,),Tuple{Float64}},Type{Adaptive}}, ) # time: 0.00490745 Base.precompile( Tuple{ Core.kwftype(typeof(print_callback)), NamedTuple{(:print_header,),Tuple{Bool}}, typeof(print_callback), NTuple{9,String}, String, }, ) # time: 0.005392282 Base.precompile( Tuple{ Core.kwftype(typeof(lp_separation_oracle)), NamedTuple{(:inplace_loop, :force_fw_step),Tuple{Bool,Bool}}, typeof(lp_separation_oracle), BirkhoffPolytopeLMO, ActiveSet{ SparseArrays.SparseMatrixCSC{Float64,Int64}, Float64, SparseArrays.SparseMatrixCSC{Float64,Int64}, }, SparseArrays.SparseMatrixCSC{Float64,Int64}, Float64, Float64, }, ) # time: 0.001709011 Base.precompile( Tuple{ Core.kwftype(typeof(blended_conditional_gradient)), NamedTuple{ ( :epsilon, :max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :trajectory, :lazy_tolerance, :weight_purge_threshold, ), Tuple{ Float64, Int64, Adaptive{Float64,Int64}, Float64, InplaceEmphasis, Bool, Bool, Float64, Float64, }, }, typeof(blended_conditional_gradient), Function, Function, ProbabilitySimplexOracle{Float64}, ScaledHotVector{Float64}, }, ) # time: 0.5107306 Base.precompile( Tuple{ Core.kwftype(typeof(blended_conditional_gradient)), NamedTuple{ ( :epsilon, :max_iteration, :line_search, :print_iter, :hessian, :memory_mode, :accelerated, :verbose, :trajectory, :lazy_tolerance, :weight_purge_threshold, ), Tuple{ Float64, Int64, Adaptive{Float64,Int64}, Float64, Matrix{Float64}, InplaceEmphasis, Bool, Bool, Bool, Float64, Float64, }, }, typeof(blended_conditional_gradient), Function, Function, KSparseLMO{Float64}, SparseVector{Float64,Int64}, }, ) # time: 0.44398972 Base.precompile( Tuple{ Core.kwftype(typeof(blended_conditional_gradient)), NamedTuple{ ( :epsilon, :max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :trajectory, :lazy_tolerance, :weight_purge_threshold, ), Tuple{ Float64, Int64, Adaptive{Float64,Int64}, Float64, InplaceEmphasis, Bool, Bool, Float64, Float64, }, }, typeof(blended_conditional_gradient), Function, Function, KSparseLMO{Float64}, SparseVector{Float64,Int64}, }, ) # time: 0.38173005 Base.precompile( Tuple{ Core.kwftype(typeof(blended_pairwise_conditional_gradient)), NamedTuple{ ( :epsilon, :max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :trajectory, ), Tuple{Float64,Int64,Adaptive{Float64,Int64},Float64,InplaceEmphasis,Bool,Bool}, }, typeof(blended_pairwise_conditional_gradient), Function, Function, KSparseLMO{Float64}, SparseVector{Float64,Int64}, }, ) # time: 0.18068784 Base.precompile( Tuple{ Core.kwftype(typeof(print_callback)), NamedTuple{(:print_header,),Tuple{Bool}}, typeof(print_callback), NTuple{8,String}, String, }, ) # time: 0.005311987 Base.precompile( Tuple{ typeof(active_set_update!), ActiveSet{SparseVector{Float64,Int64},Float64,SparseVector{Float64,Int64}}, Float64, SparseVector{Float64,Int64}, Bool, Nothing, }, ) # time: 0.3297556 Base.precompile( Tuple{ typeof(perform_line_search), Adaptive{Float64,Int64}, Int64, Function, Function, SparseVector{Float64,Int64}, SparseVector{Float64,Int64}, Vector{Float64}, Float64, SparseVector{Float64,Int64}, }, ) # time: 0.0803171 Base.precompile(Tuple{Type{ActiveSet},Vector{Tuple{Float64,SparseVector{Float64,Int64}}}}) # time: 0.06371654 Base.precompile( Tuple{ Core.kwftype(typeof(lazy_afw_step)), NamedTuple{(:lazy_tolerance,),Tuple{Float64}}, typeof(lazy_afw_step), SparseVector{Float64,Int64}, SparseVector{Float64,Int64}, KSparseLMO{Float64}, ActiveSet{SparseVector{Float64,Int64},Float64,SparseVector{Float64,Int64}}, Float64, SparseVector{Float64,Int64}, }, ) # time: 0.032522447 Base.precompile( Tuple{ typeof(perform_line_search), Adaptive{Float64,Int64}, Int64, Function, Function, SparseVector{Float64,Int64}, SparseVector{Float64,Int64}, SparseVector{Float64,Int64}, Float64, SparseVector{Float64,Int64}, }, ) # time: 0.007260863 Base.precompile( Tuple{ typeof(active_set_update!), ActiveSet{SparseVector{Float64,Int64},Float64,SparseVector{Float64,Int64}}, Float64, SparseVector{Float64,Int64}, Bool, Int64, }, ) # time: 0.007143604 Base.precompile( Tuple{typeof(print_callback),Tuple{String,String,Any,Any,Float64,Float64,Float64,Int64},String}, ) # time: 0.003918484 Base.precompile( Tuple{ typeof(afw_step), SparseVector{Float64,Int64}, SparseVector{Float64,Int64}, KSparseLMO{Float64}, ActiveSet{SparseVector{Float64,Int64},Float64,SparseVector{Float64,Int64}}, SparseVector{Float64,Int64}, }, ) # time: 0.002095744 Base.precompile( Tuple{ typeof(active_set_update_iterate_pairwise!), SparseVector{Float64,Int64}, Float64, SparseVector{Float64,Int64}, SparseVector{Float64,Int64}, }, ) # time: 0.22706518 Base.precompile( Tuple{ typeof(active_set_initialize!), ActiveSet{SparseVector{Float64,Int64},Float64,SparseVector{Float64,Int64}}, SparseVector{Float64,Int64}, }, ) # time: 0.07041422 Base.precompile( Tuple{ typeof(deleteat!), ActiveSet{SparseVector{Float64,Int64},Float64,SparseVector{Float64,Int64}}, Int64, }, ) # time: 0.001469705 Base.precompile( Tuple{ Core.kwftype(typeof(away_frank_wolfe)), NamedTuple{ ( :max_iteration, :line_search, :print_iter, :epsilon, :memory_mode, :verbose, :trajectory, :lazy, ), Tuple{Int64,Adaptive{Float64,Int64},Float64,Float64,InplaceEmphasis,Bool,Bool,Bool}, }, typeof(away_frank_wolfe), Function, Function, KSparseLMO{Float64}, SparseVector{Float64,Int64}, }, ) # time: 1.2606552 Base.precompile( Tuple{ Core.kwftype(typeof(away_frank_wolfe)), NamedTuple{ ( :max_iteration, :line_search, :print_iter, :epsilon, :memory_mode, :verbose, :away_steps, :trajectory, ), Tuple{Int64,Adaptive{Float64,Int64},Float64,Float64,InplaceEmphasis,Bool,Bool,Bool}, }, typeof(away_frank_wolfe), Function, Function, KSparseLMO{Float64}, SparseVector{Float64,Int64}, }, ) # time: 0.025728334 Base.precompile( Tuple{ Core.kwftype(typeof(away_frank_wolfe)), NamedTuple{ ( :max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :epsilon, :trajectory, :away_steps, ), Tuple{Int64,Adaptive{Float64,Int64},Float64,InplaceEmphasis,Bool,Float64,Bool,Bool}, }, typeof(away_frank_wolfe), Function, Function, KSparseLMO{Float64}, SparseVector{Float64,Int64}, }, ) # time: 0.042767525 Base.precompile( Tuple{ Core.kwftype(typeof(lazified_conditional_gradient)), NamedTuple{ (:max_iteration, :line_search, :print_iter, :memory_mode, :verbose), Tuple{Int64,Adaptive{Float64,Int64},Float64,InplaceEmphasis,Bool}, }, typeof(lazified_conditional_gradient), Function, Function, KSparseLMO{Float64}, SparseVector{Float64,Int64}, }, ) # time: 0.71887785 Base.precompile( Tuple{Type{MultiCacheLMO{_A,KSparseLMO{Float64},_B}} where {_A,_B},KSparseLMO{Float64}}, ) # time: 0.007678914 Base.precompile( Tuple{typeof(print_callback),Tuple{String,String,Float64,Any,Any,Float64,Float64,Any},String}, ) # time: 0.007181576 Base.precompile(Tuple{Type{VectorCacheLMO{KSparseLMO{Float64},_A}} where _A,KSparseLMO{Float64}}) # time: 0.005332965 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ ( :max_iteration, :line_search, :print_iter, :epsilon, :memory_mode, :trajectory, :verbose, ), Tuple{Int64,Adaptive{Float64,Int64},Float64,Float64,InplaceEmphasis,Bool,Bool}, }, typeof(frank_wolfe), Function, Function, BirkhoffPolytopeLMO, SparseArrays.SparseMatrixCSC{Float64,Int64}, }, ) # time: 0.77472156 Base.precompile( Tuple{ Core.kwftype(typeof(lazified_conditional_gradient)), NamedTuple{ ( :max_iteration, :epsilon, :line_search, :print_iter, :memory_mode, :trajectory, :verbose, ), Tuple{Int64,Float64,Adaptive{Float64,Int64},Float64,InplaceEmphasis,Bool,Bool}, }, typeof(lazified_conditional_gradient), Function, Function, BirkhoffPolytopeLMO, SparseArrays.SparseMatrixCSC{Float64,Int64}, }, ) # time: 0.326898 Base.precompile( Tuple{typeof(print_callback),Tuple{String,String,Any,Any,Any,Float64,Float64,Any},String}, ) # time: 0.010050932 Base.precompile( Tuple{Type{MultiCacheLMO{_A,BirkhoffPolytopeLMO,_B}} where {_A,_B},BirkhoffPolytopeLMO}, ) # time: 0.007305136 Base.precompile(Tuple{Type{VectorCacheLMO{BirkhoffPolytopeLMO,_A}} where _A,BirkhoffPolytopeLMO}) # time: 0.005527968 Base.precompile( Tuple{ Core.kwftype(typeof(lazified_conditional_gradient)), NamedTuple{ ( :max_iteration, :line_search, :print_iter, :epsilon, :memory_mode, :trajectory, :cache_size, :verbose, ), Tuple{Int64,Adaptive{Float64,Int64},Float64,Float64,InplaceEmphasis,Bool,Int64,Bool}, }, typeof(lazified_conditional_gradient), Function, Function, BirkhoffPolytopeLMO, SparseArrays.SparseMatrixCSC{Float64,Int64}, }, ) # time: 0.15854251 Base.precompile( Tuple{ Core.kwftype(typeof(compute_extreme_point)), NamedTuple{(:threshold, :greedy),Tuple{Float64,Bool}}, typeof(compute_extreme_point), MultiCacheLMO{_A,BirkhoffPolytopeLMO} where _A, SparseArrays.SparseMatrixCSC{Float64,Int64}, }, ) # time: 0.031452376 Base.precompile(Tuple{typeof(length),MultiCacheLMO{_A,BirkhoffPolytopeLMO} where _A}) # time: 0.01073467 Base.precompile( Tuple{ Core.kwftype(typeof(compute_extreme_point)), NamedTuple{(:threshold, :greedy),_A} where _A<:Tuple{Any,Bool}, typeof(compute_extreme_point), MultiCacheLMO{_A,BirkhoffPolytopeLMO} where _A, SparseArrays.SparseMatrixCSC{Float64,Int64}, }, ) # time: 0.010322329 Base.precompile( Tuple{ Core.kwftype(typeof(compute_extreme_point)), NamedTuple{(:threshold, :greedy),Tuple{Float64,Bool}}, typeof(compute_extreme_point), MultiCacheLMO{500,BirkhoffPolytopeLMO,SparseArrays.SparseMatrixCSC{Float64,Int64}}, SparseArrays.SparseMatrixCSC{Float64,Int64}, }, ) # time: 0.003286707 Base.precompile( Tuple{ Core.kwftype(typeof(away_frank_wolfe)), NamedTuple{ ( :max_iteration, :line_search, :print_iter, :epsilon, :memory_mode, :lazy, :trajectory, :verbose, ), Tuple{Int64,Adaptive{Float64,Int64},Float64,Float64,InplaceEmphasis,Bool,Bool,Bool}, }, typeof(away_frank_wolfe), Function, Function, BirkhoffPolytopeLMO, SparseArrays.SparseMatrixCSC{Float64,Int64}, }, ) # time: 1.1986277 Base.precompile( Tuple{ Core.kwftype(typeof(blended_conditional_gradient)), NamedTuple{ ( :max_iteration, :line_search, :print_iter, :epsilon, :memory_mode, :trajectory, :verbose, ), Tuple{Int64,Adaptive{Float64,Int64},Float64,Float64,InplaceEmphasis,Bool,Bool}, }, typeof(blended_conditional_gradient), Function, Function, BirkhoffPolytopeLMO, SparseArrays.SparseMatrixCSC{Float64,Int64}, }, ) # time: 1.7452017 Base.precompile( Tuple{ Core.kwftype(typeof(print_callback)), NamedTuple{(:print_footer,),Tuple{Bool}}, typeof(print_callback), Nothing, String, }, ) # time: 0.007996668 Base.precompile( Tuple{ typeof(perform_line_search), Nonconvex{Float64}, Int64, Nothing, Nothing, Vector{Float64}, Vector{Float64}, Vector{Float64}, Float64, Nothing, }, ) # time: 0.002293631 Base.precompile(Tuple{typeof(fast_dot),Vector{Float64},Int64}) # time: 0.004132393 Base.precompile(Tuple{typeof(compute_extreme_point),LpNormLMO{Float64,2},Int64}) # time: 0.001986683 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ (:verbose, :line_search, :max_iteration, :print_iter, :trajectory), Tuple{Bool,Adaptive{Float64,Int64},Int64,Float64,Bool}, }, typeof(frank_wolfe), Function, Function, LpNormLMO{Float64,2}, Vector{Float64}, }, ) # time: 0.23070359 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ ( :max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :epsilon, :trajectory, ), Tuple{Int64,Agnostic{Float64},Float64,InplaceEmphasis,Bool,Float64,Bool}, }, typeof(frank_wolfe), Function, Function, ProbabilitySimplexOracle{Float64}, ScaledHotVector{Float64}, }, ) # time: 0.7329921 Base.precompile( Tuple{ Core.kwftype(typeof(away_frank_wolfe)), NamedTuple{ ( :max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :epsilon, :trajectory, ), Tuple{Int64,Adaptive{Float64,Int64},Float64,InplaceEmphasis,Bool,Float64,Bool}, }, typeof(away_frank_wolfe), Function, Function, ProbabilitySimplexOracle{Float64}, ScaledHotVector{Float64}, }, ) # time: 0.746063 Base.precompile( Tuple{ Core.kwftype(typeof(blended_conditional_gradient)), NamedTuple{ ( :max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :epsilon, :trajectory, ), Tuple{Int64,Adaptive{Float64,Int64},Float64,InplaceEmphasis,Bool,Float64,Bool}, }, typeof(blended_conditional_gradient), Function, Function, ProbabilitySimplexOracle{Float64}, ScaledHotVector{Float64}, }, ) # time: 1.6212598 Base.precompile( Tuple{ Core.kwftype(typeof(lp_separation_oracle)), NamedTuple{(:inplace_loop, :force_fw_step),Tuple{Bool,Bool}}, typeof(lp_separation_oracle), ProbabilitySimplexOracle{Float64}, ActiveSet{ScaledHotVector{Float64},Float64,Vector{Float64}}, SparseVector{Float64,Int64}, Float64, Float64, }, ) # time: 0.001872497 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ (:max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :trajectory), Tuple{Int64,Shortstep{Float64},Float64,InplaceEmphasis,Bool,Bool}, }, typeof(frank_wolfe), Function, Function, ProbabilitySimplexOracle{Float64}, Vector{Float64}, }, ) # time: 0.19531982 Base.precompile( Tuple{ typeof(perform_line_search), Shortstep{Float64}, Int64, Function, Function, Vector{Float64}, Vector{Float64}, Vector{Float64}, Float64, Nothing, }, ) # time: 0.001291007 Base.precompile( Tuple{typeof(print_callback),Tuple{String,String,Float64,Any,Any,Float64,Float64},String}, ) # time: 0.00497477 Base.precompile( Tuple{typeof(print_callback),Tuple{String,String,Any,Any,Any,Float64,Float64},String}, ) # time: 0.003270714 Base.precompile(Tuple{typeof(fast_dot),AbstractVector,Vector{Float64}}) # time: 0.002228764 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ (:max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :trajectory), Tuple{Int64,Shortstep{Float64},Float64,OutplaceEmphasis,Bool,Bool}, }, typeof(frank_wolfe), Function, Function, ProbabilitySimplexOracle{Float64}, ScaledHotVector{Float64}, }, ) # time: 0.14588983 Base.precompile(Tuple{typeof(-),ScaledHotVector{Float64},ScaledHotVector}) # time: 0.04572138 Base.precompile( Tuple{ typeof(perform_line_search), Shortstep{Float64}, Int64, Function, Function, SparseVector{Float64,Int64}, ScaledHotVector{Float64}, Any, Float64, Nothing, }, ) # time: 0.036659826 Base.precompile( Tuple{ typeof(perform_line_search), Shortstep{Float64}, Int64, Function, Function, SparseVector{Float64,Int64}, Any, Any, Float64, Nothing, }, ) # time: 0.005265721 Base.precompile(Tuple{typeof(fast_dot),Any,SparseVector{Float64,Int64}}) # time: 0.001681489 Base.precompile( Tuple{ typeof(perform_line_search), Shortstep{Float64}, Int64, Function, Function, SparseVector{Float64,Int64}, ScaledHotVector{Float64}, Vector{Float64}, Float64, Nothing, }, ) # time: 0.001473502 Base.precompile( Tuple{ typeof(perform_line_search), Shortstep{Float64}, Int64, Function, Function, SparseVector{Float64,Int64}, Vector{Float64}, Vector{Float64}, Float64, Nothing, }, ) # time: 0.001434466 Base.precompile(Tuple{typeof(fast_dot),AbstractVector,SparseVector{Float64,Int64}}) # time: 0.001320551 Base.precompile( Tuple{ typeof(perform_line_search), Adaptive{Float64,Int64}, Int64, Function, Function, SparseArrays.SparseMatrixCSC{Float64,Int64}, Matrix{Float64}, Matrix{Float64}, Float64, Matrix{Float64}, }, ) # time: 0.024287857 Base.precompile( Tuple{typeof(print_callback),Tuple{String,String,Any,Any,Float64,Float64,Float64},String}, ) # time: 0.001288076 Base.precompile( Tuple{ Core.kwftype(typeof(compute_extreme_point)), NamedTuple{(:threshold, :greedy),Tuple{Float64,Bool}}, typeof(compute_extreme_point), MultiCacheLMO{ _A, NuclearNormLMO{Float64}, RankOneMatrix{Float64,Vector{Float64},Vector{Float64}}, } where _A, SparseArrays.SparseMatrixCSC{Float64,Int64}, }, ) # time: 0.029216602 Base.precompile( Tuple{ Core.kwftype(typeof(compute_extreme_point)), NamedTuple{(:threshold, :greedy),_A} where _A<:Tuple{Any,Bool}, typeof(compute_extreme_point), VectorCacheLMO{ NuclearNormLMO{Float64}, RankOneMatrix{Float64,Vector{Float64},Vector{Float64}}, }, SparseArrays.SparseMatrixCSC{Float64,Int64}, }, ) # time: 0.010391894 Base.precompile( Tuple{ Core.kwftype(typeof(compute_extreme_point)), NamedTuple{(:threshold, :greedy),_A} where _A<:Tuple{Any,Bool}, typeof(compute_extreme_point), MultiCacheLMO{ _A, NuclearNormLMO{Float64}, RankOneMatrix{Float64,Vector{Float64},Vector{Float64}}, } where _A, SparseArrays.SparseMatrixCSC{Float64,Int64}, }, ) # time: 0.005250637 Base.precompile( Tuple{ typeof(length), MultiCacheLMO{ _A, NuclearNormLMO{Float64}, RankOneMatrix{Float64,Vector{Float64},Vector{Float64}}, } where _A, }, ) # time: 0.004705316 Base.precompile( Tuple{typeof(print_callback),Tuple{String,String,Any,Any,Any,Float64,Float64,Int64},String}, ) # time: 0.00435821 Base.precompile( Tuple{Type{MultiCacheLMO{_A,NuclearNormLMO{Float64},_B}} where {_A,_B},NuclearNormLMO{Float64}}, ) # time: 0.00359918 Base.precompile( Tuple{ Type{ MultiCacheLMO{ _A, NuclearNormLMO{Float64}, RankOneMatrix{Float64,Vector{Float64},Vector{Float64}}, }, } where _A, NuclearNormLMO{Float64}, }, ) # time: 0.003546448 Base.precompile( Tuple{Type{VectorCacheLMO{NuclearNormLMO{Float64},_A}} where _A,NuclearNormLMO{Float64}}, ) # time: 0.003143188 Base.precompile( Tuple{ Core.kwftype(typeof(compute_extreme_point)), NamedTuple{(:threshold, :greedy),Tuple{Float64,Bool}}, typeof(compute_extreme_point), VectorCacheLMO{ NuclearNormLMO{Float64}, RankOneMatrix{Float64,Vector{Float64},Vector{Float64}}, }, SparseArrays.SparseMatrixCSC{Float64,Int64}, }, ) # time: 0.002158991 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ (:max_iteration, :line_search, :print_iter, :verbose), Tuple{Float64,Nonconvex{Float64},Float64,Bool}, }, typeof(frank_wolfe), Function, Function, ProbabilitySimplexOracle{Float64}, Vector{Float64}, }, ) # time: 0.2234393 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ ( :epsilon, :max_iteration, :print_iter, :trajectory, :verbose, :line_search, :memory_mode, :gradient, ), Tuple{ Float64, Int64, Float64, Bool, Bool, Adaptive{Float64,Int64}, InplaceEmphasis, SparseArrays.SparseMatrixCSC{Float64,Int64}, }, }, typeof(frank_wolfe), Function, Function, NuclearNormLMO{Float64}, RankOneMatrix{Float64,Vector{Float64},Vector{Float64}}, }, ) # time: 0.6235743 Base.precompile( Tuple{ Core.kwftype(typeof(lazified_conditional_gradient)), NamedTuple{ ( :epsilon, :max_iteration, :print_iter, :trajectory, :verbose, :line_search, :memory_mode, :gradient, ), Tuple{ Float64, Int64, Float64, Bool, Bool, Adaptive{Float64,Int64}, InplaceEmphasis, SparseArrays.SparseMatrixCSC{Float64,Int64}, }, }, typeof(lazified_conditional_gradient), Function, Function, NuclearNormLMO{Float64}, RankOneMatrix{Float64,Vector{Float64},Vector{Float64}}, }, ) # time: 0.36729497 Base.precompile( Tuple{ Core.kwftype(typeof(away_frank_wolfe)), NamedTuple{ ( :epsilon, :max_iteration, :print_iter, :trajectory, :verbose, :lazy, :line_search, :memory_mode, ), Tuple{Float64,Int64,Float64,Bool,Bool,Bool,Adaptive{Float64,Int64},InplaceEmphasis}, }, typeof(away_frank_wolfe), Function, Function, NuclearNormLMO{Float64}, RankOneMatrix{Float64,Vector{Float64},Vector{Float64}}, }, ) # time: 0.828201 Base.precompile( Tuple{ Core.kwftype(typeof(blended_conditional_gradient)), NamedTuple{ ( :epsilon, :max_iteration, :print_iter, :trajectory, :verbose, :line_search, :memory_mode, ), Tuple{Float64,Int64,Float64,Bool,Bool,Adaptive{Float64,Int64},InplaceEmphasis}, }, typeof(blended_conditional_gradient), Function, Function, NuclearNormLMO{Float64}, RankOneMatrix{Float64,Vector{Float64},Vector{Float64}}, }, ) # time: 1.6012237 Base.precompile( Tuple{ Core.kwftype(typeof(lp_separation_oracle)), NamedTuple{(:inplace_loop, :force_fw_step),Tuple{Bool,Bool}}, typeof(lp_separation_oracle), NuclearNormLMO{Float64}, ActiveSet{RankOneMatrix{Float64,Vector{Float64},Vector{Float64}},Float64,Matrix{Float64}}, Matrix{Float64}, Float64, Float64, }, ) # time: 0.001352328 Base.precompile( Tuple{ Core.kwftype(typeof(blended_pairwise_conditional_gradient)), NamedTuple{ ( :epsilon, :max_iteration, :print_iter, :trajectory, :verbose, :line_search, :memory_mode, ), Tuple{Float64,Int64,Float64,Bool,Bool,Adaptive{Float64,Int64},InplaceEmphasis}, }, typeof(blended_pairwise_conditional_gradient), Function, Function, NuclearNormLMO{Float64}, RankOneMatrix{Float64,Vector{Float64},Vector{Float64}}, }, ) # time: 0.34339795 Base.precompile( Tuple{ typeof(active_set_update!), ActiveSet{ScaledHotVector{Float64},Float64,Vector{Float64}}, Float64, ScaledHotVector{Float64}, Bool, Nothing, }, ) # time: 0.114226826 Base.precompile(Tuple{Type{ActiveSet},Vector{Tuple{Float64,ScaledHotVector{Float64}}}}) # time: 0.047632866 Base.precompile( Tuple{ typeof(perform_line_search), Adaptive{Float64,Int64}, Int64, Function, Function, Vector{Float64}, Vector{Float64}, Vector{Float64}, Float64, Vector{Float64}, }, ) # time: 0.02716949 Base.precompile( Tuple{ Core.kwftype(typeof(lazy_afw_step)), NamedTuple{(:lazy_tolerance,),Tuple{Float64}}, typeof(lazy_afw_step), Vector{Float64}, Vector{Float64}, LpNormLMO{Float64,1}, ActiveSet{ScaledHotVector{Float64},Float64,Vector{Float64}}, Float64, Vector{Float64}, }, ) # time: 0.009450513 Base.precompile( Tuple{ typeof(active_set_update!), ActiveSet{ScaledHotVector{Float64},Float64,Vector{Float64}}, Float64, ScaledHotVector{Float64}, Bool, Int64, }, ) # time: 0.003349358 Base.precompile( Tuple{ typeof(afw_step), Vector{Float64}, Vector{Float64}, LpNormLMO{Float64,1}, ActiveSet{ScaledHotVector{Float64},Float64,Vector{Float64}}, Vector{Float64}, }, ) # time: 0.001109981 Base.precompile( Tuple{ Core.kwftype(typeof(lp_separation_oracle)), NamedTuple{(:inplace_loop, :force_fw_step),Tuple{Bool,Bool}}, typeof(lp_separation_oracle), LpNormLMO{Float64,1}, ActiveSet{ScaledHotVector{Float64},Float64,Vector{Float64}}, SparseVector{Float64,Int64}, Float64, Float64, }, ) # time: 0.13437502 Base.precompile( Tuple{ Core.kwftype(typeof(perform_line_search)), NamedTuple{(:should_upgrade,),Tuple{Val{true}}}, typeof(perform_line_search), Adaptive{Float64,Int64}, Int64, Function, Function, SparseVector{Float64,Int64}, Vector{Float64}, Vector{Float64}, Float64, Vector{Float64}, }, ) # time: 0.10003789 Base.precompile( Tuple{ typeof(active_set_initialize!), ActiveSet{ScaledHotVector{Float64},Float64,Vector{Float64}}, ScaledHotVector{Float64}, }, ) # time: 0.02555044 Base.precompile( Tuple{ typeof(perform_line_search), Adaptive{Float64,Int64}, Int64, Function, Function, SparseVector{Float64,Int64}, Vector{Float64}, Vector{Float64}, Float64, Vector{Float64}, }, ) # time: 0.009839748 Base.precompile(Tuple{typeof(fast_dot),Vector{BigFloat},Vector{BigFloat}}) # time: 0.003462153 Base.precompile( Tuple{typeof(compute_extreme_point),LpNormLMO{Float64,1},SparseVector{Float64,Int64}}, ) # time: 0.00309479 Base.precompile( Tuple{ Core.kwftype(typeof(active_set_cleanup!)), NamedTuple{(:weight_purge_threshold,),Tuple{Float64}}, typeof(active_set_cleanup!), ActiveSet{ScaledHotVector{Float64},Float64,Vector{Float64}}, }, ) # time: 0.001547255 Base.precompile( Tuple{ typeof(print_callback), Tuple{String,String,Any,Any,Float64,Float64,Float64,Int64,Int64}, String, }, ) # time: 0.001473014 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ (:max_iteration, :line_search, :print_iter, :verbose, :memory_mode), Tuple{Int64,Shortstep{Rational{Int64}},Float64,Bool,OutplaceEmphasis}, }, typeof(frank_wolfe), Function, Function, ProbabilitySimplexOracle{Rational{BigInt}}, ScaledHotVector{Rational{BigInt}}, }, ) # time: 0.141858 Base.precompile(Tuple{Type{Shortstep},Rational{Int64}}) # time: 0.00955542 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ (:max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :trajectory), Tuple{Int64,Shortstep{Float64},Int64,InplaceEmphasis,Bool,Bool}, }, typeof(frank_wolfe), Function, Function, ScaledBoundL1NormBall{Float64,1,Vector{Float64},Vector{Float64}}, Vector{Float64}, }, ) # time: 0.19644113 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ (:max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :trajectory), Tuple{Int64,Shortstep{Float64},Int64,InplaceEmphasis,Bool,Bool}, }, typeof(frank_wolfe), Function, Function, ScaledBoundLInfNormBall{Float64,1,Vector{Float64},Vector{Float64}}, Vector{Float64}, }, ) # time: 0.046453062 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ (:max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :trajectory), Tuple{Int64,Shortstep{Float64},Float64,InplaceEmphasis,Bool,Bool}, }, typeof(frank_wolfe), Function, Function, LpNormLMO{Float64,1}, SparseVector{Float64,Int64}, }, ) # time: 0.5265395 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ ( :max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :trajectory, :momentum, ), Tuple{Int64,Shortstep{Float64},Float64,OutplaceEmphasis,Bool,Bool,Float64}, }, typeof(frank_wolfe), Function, Function, LpNormLMO{Float64,1}, SparseVector{Float64,Int64}, }, ) # time: 0.10808421 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ (:max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :trajectory), Tuple{Int64,Adaptive{Float64,Int64},Float64,InplaceEmphasis,Bool,Bool}, }, typeof(frank_wolfe), Function, Function, LpNormLMO{Float64,1}, SparseVector{Float64,Int64}, }, ) # time: 0.053366497 Base.precompile( Tuple{ Core.kwftype(typeof(frank_wolfe)), NamedTuple{ (:max_iteration, :line_search, :print_iter, :memory_mode, :verbose, :trajectory), Tuple{Int64,Agnostic{Float64},Float64,InplaceEmphasis,Bool,Bool}, }, typeof(frank_wolfe), Function, Function, LpNormLMO{Float64,1}, SparseVector{Float64,Int64}, }, ) # time: 0.06719333
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
6506
""" UnitSimplexOracle(right_side) Represents the scaled unit simplex: ``` C = {x ∈ R^n_+, ∑x ≤ right_side} ``` """ struct UnitSimplexOracle{T} <: LinearMinimizationOracle right_side::T end UnitSimplexOracle{T}() where {T} = UnitSimplexOracle{T}(one(T)) UnitSimplexOracle(rhs::Integer) = UnitSimplexOracle{Rational{BigInt}}(rhs) """ LMO for scaled unit simplex: `∑ x_i = τ` Returns either vector of zeros or vector with one active value equal to RHS if there exists an improving direction. """ function compute_extreme_point(lmo::UnitSimplexOracle{T}, direction; v=nothing, kwargs...) where {T} idx = argmin_(direction) if direction[idx] < 0 return ScaledHotVector(lmo.right_side, idx, length(direction)) end return ScaledHotVector(zero(T), idx, length(direction)) end function convert_mathopt( lmo::UnitSimplexOracle{T}, optimizer::OT; dimension::Integer, use_modify::Bool=true, kwargs..., ) where {T,OT} MOI.empty!(optimizer) τ = lmo.right_side n = dimension (x, _) = MOI.add_constrained_variables(optimizer, [MOI.Interval(0.0, 1.0) for _ in 1:n]) MOI.add_constraint( optimizer, MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(ones(n), x), 0.0), MOI.LessThan(τ), ) return MathOptLMO(optimizer, use_modify) end """ Dual costs for a given primal solution to form a primal dual pair for scaled unit simplex. Returns two vectors. The first one is the dual costs associated with the constraints and the second is the reduced costs for the variables. """ function compute_dual_solution(::UnitSimplexOracle{T}, direction, primalSolution) where {T} idx = argmax(primalSolution) critical = min(direction[idx], 0) lambda = [critical] mu = direction .- lambda return lambda, mu end """ ProbabilitySimplexOracle(right_side) Represents the scaled probability simplex: ``` C = {x ∈ R^n_+, ∑x = right_side} ``` """ struct ProbabilitySimplexOracle{T} <: LinearMinimizationOracle right_side::T end ProbabilitySimplexOracle{T}() where {T} = ProbabilitySimplexOracle{T}(one(T)) ProbabilitySimplexOracle(rhs::Integer) = ProbabilitySimplexOracle{Float64}(rhs) """ LMO for scaled probability simplex. Returns a vector with one active value equal to RHS in the most improving (or least degrading) direction. """ function compute_extreme_point( lmo::ProbabilitySimplexOracle{T}, direction; v=nothing, kwargs..., ) where {T} idx = argmin_(direction) if idx === nothing @show direction end return ScaledHotVector(lmo.right_side, idx, length(direction)) end function convert_mathopt( lmo::ProbabilitySimplexOracle{T}, optimizer::OT; dimension::Integer, use_modify=true::Bool, kwargs..., ) where {T,OT} MOI.empty!(optimizer) τ = lmo.right_side n = dimension (x, _) = MOI.add_constrained_variables(optimizer, [MOI.Interval(0.0, 1.0) for _ in 1:n]) MOI.add_constraint( optimizer, MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(ones(n), x), 0.0), MOI.EqualTo(τ), ) return MathOptLMO(optimizer, use_modify) end """ Dual costs for a given primal solution to form a primal dual pair for scaled probability simplex. Returns two vectors. The first one is the dual costs associated with the constraints and the second is the reduced costs for the variables. """ function compute_dual_solution( ::ProbabilitySimplexOracle{T}, direction, primal_solution; kwargs..., ) where {T} idx = argmax(primal_solution) lambda = [direction[idx]] mu = direction .- lambda return lambda, mu end """ UnitHyperSimplexOracle(radius) Represents the scaled unit hypersimplex of radius τ, the convex hull of vectors `v` such that: - v_i ∈ {0, τ} - ||v||_0 ≤ k Equivalently, this is the intersection of the K-sparse polytope and the nonnegative orthant. """ struct UnitHyperSimplexOracle{T} <: LinearMinimizationOracle K::Int radius::T end UnitHyperSimplexOracle{T}(K::Integer) where {T} = UnitHyperSimplexOracle{T}(K, one(T)) UnitHyperSimplexOracle(K::Integer, radius::Integer) = UnitHyperSimplexOracle{Rational{BigInt}}(radius) function compute_extreme_point( lmo::UnitHyperSimplexOracle{TL}, direction; v=nothing, kwargs..., ) where {TL} T = promote_type(TL, eltype(direction)) n = length(direction) K = min(lmo.K, n, sum(<(0), direction)) K_indices = sortperm(direction)[1:K] v = spzeros(T, n) for idx in 1:K v[K_indices[idx]] = lmo.radius end return v end function convert_mathopt( lmo::UnitHyperSimplexOracle{T}, optimizer::OT; dimension::Integer, use_modify::Bool=true, kwargs..., ) where {T,OT} MOI.empty!(optimizer) τ = lmo.radius n = dimension (x, _) = MOI.add_constrained_variables(optimizer, [MOI.Interval(0.0, τ) for _ in 1:n]) MOI.add_constraint( optimizer, MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(ones(n), x), 0.0), MOI.LessThan(lmo.K * τ), ) return MathOptLMO(optimizer, use_modify) end """ HyperSimplexOracle(radius) Represents the scaled hypersimplex of radius τ, the convex hull of vectors `v` such that: - v_i ∈ {0, τ} - ||v||_0 = k Equivalently, this is the convex hull of the vertices of the K-sparse polytope lying in the nonnegative orthant. """ struct HyperSimplexOracle{T} <: LinearMinimizationOracle K::Int radius::T end HyperSimplexOracle{T}(K::Integer) where {T} = HyperSimplexOracle{T}(K, one(T)) HyperSimplexOracle(K::Integer, radius::Integer) = HyperSimplexOracle{Rational{BigInt}}(K, radius) function compute_extreme_point( lmo::HyperSimplexOracle{TL}, direction; v=nothing, kwargs..., ) where {TL} T = promote_type(TL, eltype(direction)) n = length(direction) K = min(lmo.K, n) K_indices = sortperm(direction)[1:K] v = spzeros(T, n) for idx in 1:K v[K_indices[idx]] = lmo.radius end return v end function convert_mathopt( lmo::HyperSimplexOracle{T}, optimizer::OT; dimension::Integer, use_modify::Bool=true, kwargs..., ) where {T,OT} MOI.empty!(optimizer) τ = lmo.radius n = dimension (x, _) = MOI.add_constrained_variables(optimizer, [MOI.Interval(0.0, τ) for _ in 1:n]) MOI.add_constraint( optimizer, MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(ones(n), x), 0.0), MOI.EqualTo(lmo.K * τ), ) return MathOptLMO(optimizer, use_modify) end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
1297
""" A function acting like the normal `grad!` but tracking the number of calls. """ mutable struct TrackingGradient{G} <: Function grad!::G counter::Int end TrackingGradient(grad!) = TrackingGradient(grad!, 0) function (tg::TrackingGradient)(storage, x) tg.counter += 1 return tg.grad!(storage, x) end """ A function acting like the normal objective `f` but tracking the number of calls. """ mutable struct TrackingObjective{F} <: Function f::F counter::Int end TrackingObjective(f) = TrackingObjective(f, 0) function (tf::TrackingObjective)(x) tf.counter += 1 return tf.f(x) end function wrap_objective(to::TrackingObjective) function f(x) to.counter += 1 return to.f(x) end function grad!(storage, x) to.counter += 1 return to.g(storage, x) end return (f, grad!) end """ TrackingLMO{LMO}(lmo) An LMO wrapping another one and tracking the number of calls. """ mutable struct TrackingLMO{LMO} <: LinearMinimizationOracle lmo::LMO counter::Int end function compute_extreme_point(lmo::TrackingLMO, x; kwargs...) lmo.counter += 1 return compute_extreme_point(lmo.lmo, x) end is_tracking_lmo(lmo) = false is_tracking_lmo(lmo::TrackingLMO) = true TrackingLMO(lmo) = TrackingLMO(lmo, 0)
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
10424
""" ScaledHotVector{T} Represents a vector of at most one value different from 0. """ struct ScaledHotVector{T} <: AbstractVector{T} active_val::T val_idx::Int len::Int end Base.size(v::ScaledHotVector) = (v.len,) @inline function Base.getindex(v::ScaledHotVector{T}, idx::Integer) where {T} @boundscheck if !(1 ≤ idx ≤ length(v)) throw(BoundsError(v, idx)) end if v.val_idx != idx return zero(T) end return v.active_val end Base.sum(v::ScaledHotVector) = v.active_val function LinearAlgebra.dot(v1::ScaledHotVector{<:Number}, v2::AbstractVector{<:Number}) return conj(v1.active_val) * v2[v1.val_idx] end function LinearAlgebra.dot(v1::ScaledHotVector{<:Number}, v2::SparseArrays.SparseVector{<:Number}) return conj(v1.active_val) * v2[v1.val_idx] end LinearAlgebra.dot(v1::AbstractVector{<:Number}, v2::ScaledHotVector{<:Number}) = conj(dot(v2, v1)) LinearAlgebra.dot(v1::SparseArrays.SparseVector{<:Number}, v2::ScaledHotVector{<:Number}) = conj(dot(v2, v1)) function LinearAlgebra.dot(v1::ScaledHotVector{<:Number}, v2::ScaledHotVector{<:Number}) if length(v1) != length(v2) throw(DimensionMismatch("v1 and v2 do not have matching sizes")) end return conj(v1.active_val) * v2.active_val * (v1.val_idx == v2.val_idx) end LinearAlgebra.norm(v::ScaledHotVector) = abs(v.active_val) function Base.:*(v::ScaledHotVector, x::Number) return ScaledHotVector(v.active_val * x, v.val_idx, v.len) end Base.:*(x::Number, v::ScaledHotVector) = v * x function Base.:+(x::ScaledHotVector, y::AbstractVector) if length(x) != length(y) throw(DimensionMismatch()) end yc = Base.copymutable(y) @inbounds yc[x.val_idx] += x.active_val return yc end Base.:+(y::AbstractVector, x::ScaledHotVector) = x + y function Base.:+(x::ScaledHotVector{T1}, y::ScaledHotVector{T2}) where {T1,T2} n = length(x) T = promote_type(T1, T2) if n != length(y) throw(DimensionMismatch()) end res = spzeros(T, n) @inbounds res[x.val_idx] = x.active_val @inbounds res[y.val_idx] += y.active_val return res end Base.:-(x::ScaledHotVector{T}) where {T} = ScaledHotVector{T}(-x.active_val, x.val_idx, x.len) Base.:-(x::AbstractVector, y::ScaledHotVector) = +(x, -y) Base.:-(x::ScaledHotVector, y::AbstractVector) = +(x, -y) Base.:-(x::ScaledHotVector, y::ScaledHotVector) = +(x, -y) Base.similar(v::ScaledHotVector{T}) where {T} = spzeros(T, length(v)) function Base.convert(::Type{Vector{T}}, v::ScaledHotVector) where {T} vc = zeros(T, v.len) vc[v.val_idx] = v.active_val return vc end function Base.isequal(a::ScaledHotVector, b::ScaledHotVector) return a.len == b.len && a.val_idx == b.val_idx && isequal(a.active_val, b.active_val) end function Base.copyto!(dst::SparseArrays.SparseVector, src::ScaledHotVector) for idx in eachindex(src) dst[idx] = 0 end SparseArrays.dropzeros!(dst) dst[src.val_idx] = src.active_val return dst end function active_set_update_scale!(x::IT, lambda, atom::ScaledHotVector) where {IT} x .*= (1 - lambda) x[atom.val_idx] += lambda * atom.active_val return x end """ RankOneMatrix{T, UT, VT} Represents a rank-one matrix `R = u * vt'`. Composes like a charm. """ struct RankOneMatrix{T,UT<:AbstractVector,VT<:AbstractVector} <: AbstractMatrix{T} u::UT v::VT end function RankOneMatrix(u::UT, v::VT) where {UT,VT} T = promote_type(eltype(u), eltype(v)) return RankOneMatrix{T,UT,VT}(u, v) end # not checking indices Base.@propagate_inbounds function Base.getindex(R::RankOneMatrix, i, j) @boundscheck (checkbounds(R.u, i); checkbounds(R.v, j)) @inbounds R.u[i] * R.v[j] end Base.size(R::RankOneMatrix) = (length(R.u), length(R.v)) function Base.:*(R::RankOneMatrix, v::AbstractVector) temp = fast_dot(R.v, v) return R.u * temp end function Base.:*(R::RankOneMatrix, M::AbstractMatrix) temp = R.v' * M return RankOneMatrix(R.u, temp') end function Base.:*(R1::RankOneMatrix, R2::RankOneMatrix) # middle product temp = fast_dot(R1.v, R2.u) return RankOneMatrix(R1.u * temp, R2.v) end Base.Matrix(R::RankOneMatrix) = R.u * R.v' Base.collect(R::RankOneMatrix) = Matrix(R) Base.copymutable(R::RankOneMatrix) = Matrix(R) Base.copy(R::RankOneMatrix) = RankOneMatrix(copy(R.u), copy(R.v)) function Base.convert(::Type{<:RankOneMatrix{T,Vector{T},Vector{T}}}, R::RankOneMatrix) where {T} return RankOneMatrix(convert(Vector{T}, R.u), convert(Vector{T}, R.v)) end function LinearAlgebra.dot( R::RankOneMatrix{T1}, S::SparseArrays.AbstractSparseMatrixCSC{T2}, ) where {T1<:Real,T2<:Real} (m, n) = size(R) T = promote_type(T1, T2) if (m, n) != size(S) throw(DimensionMismatch("Size mismatch")) end s = zero(T) if m * n == 0 return s end rows = SparseArrays.rowvals(S) vals = SparseArrays.nonzeros(S) @inbounds for j in 1:n for ridx in SparseArrays.nzrange(S, j) i = rows[ridx] v = vals[ridx] s += v * R.u[i] * R.v[j] end end return s end LinearAlgebra.dot(R::RankOneMatrix, M::Matrix) = dot(R.u, M, R.v) LinearAlgebra.dot(M::Matrix, R::RankOneMatrix) = conj(dot(R, M)) Base.@propagate_inbounds function Base.:-(a::RankOneMatrix, b::RankOneMatrix) @boundscheck size(a) == size(b) || throw(DimensionMismatch()) r = similar(a) @inbounds for j in 1:size(a, 2) for i in 1:size(a, 1) r[i, j] = a.u[i] * a.v[j] - b.u[i] * b.v[j] end end return r end Base.:-(x::RankOneMatrix) = RankOneMatrix(-x.u, x.v) Base.:*(x::Number, m::RankOneMatrix) = RankOneMatrix(x * m.u, m.v) Base.:*(m::RankOneMatrix, x::Number) = RankOneMatrix(x * m.u, m.v) Base.@propagate_inbounds function Base.:+(a::RankOneMatrix, b::RankOneMatrix) @boundscheck size(a) == size(b) || throw(DimensionMismatch()) r = similar(a) @inbounds for j in 1:size(a, 2) for i in 1:size(a, 1) r[i, j] = a.u[i] * a.v[j] + b.u[i] * b.v[j] end end return r end LinearAlgebra.norm(R::RankOneMatrix) = norm(R.u) * norm(R.v) Base.@propagate_inbounds function Base.isequal(a::RankOneMatrix, b::RankOneMatrix) if size(a) != size(b) return false end if isequal(a.u, b.u) && isequal(a.v, b.v) return true end # needs to check actual values @inbounds for j in 1:size(a, 2) for i in 1:size(a, 1) if !isequal(a.u[i] * a.v[j], b.u[i] * b.v[j]) return false end end end return true end Base.@propagate_inbounds function muladd_memory_mode(::InplaceEmphasis, d::Matrix, x::Union{RankOneMatrix, Matrix}, v::RankOneMatrix) @boundscheck size(d) == size(x) || throw(DimensionMismatch()) @boundscheck size(d) == size(v) || throw(DimensionMismatch()) m, n = size(d) @inbounds for j in 1:n for i in 1:m d[i,j] = x[i,j] - v[i,j] end end return d end Base.@propagate_inbounds function muladd_memory_mode(::InplaceEmphasis, x::Matrix, gamma::Real, d::RankOneMatrix) @boundscheck size(d) == size(x) || throw(DimensionMismatch()) m, n = size(x) @inbounds for j in 1:n for i in 1:m x[i,j] -= gamma * d[i,j] end end return x end """ SymmetricArray{T, DT} """ struct SymmetricArray{HasMultiplicities,T,DT,V<:AbstractVector{T}} <: AbstractVector{T} data::DT # full array to be symmetrised, will generally fall out of sync wrt vec vec::V # vector representing the array mul::Vector{T} # only used for scalar products end function SymmetricArray(data::DT, vec::V) where {DT,V<:AbstractVector{T}} where {T} return SymmetricArray{false,T,DT,V}(data, vec, T[]) end function SymmetricArray(data::DT, vec::V, mul::Vector) where {DT,V<:AbstractVector{T}} where {T} return SymmetricArray{true,T,DT,V}(data, vec, convert(Vector{T}, mul)) end Base.@propagate_inbounds function Base.getindex(A::SymmetricArray, i) @boundscheck checkbounds(A.vec, i) return @inbounds getindex(A.vec, i) end Base.@propagate_inbounds function Base.setindex!(A::SymmetricArray, x, i) @boundscheck checkbounds(A.vec, i) return @inbounds setindex!(A.vec, x, i) end Base.size(A::SymmetricArray) = size(A.vec) Base.eltype(A::SymmetricArray) = eltype(A.vec) Base.similar(A::SymmetricArray{true}) = SymmetricArray(similar(A.data), similar(A.vec), A.mul) Base.similar(A::SymmetricArray{false}) = SymmetricArray(similar(A.data), similar(A.vec)) Base.similar(A::SymmetricArray{true}, ::Type{T}) where {T} = SymmetricArray(similar(A.data, T), similar(A.vec, T), convert(Vector{T}, A.mul)) Base.similar(A::SymmetricArray{false}, ::Type{T}) where {T} = SymmetricArray(similar(A.data, T), similar(A.vec, T)) Base.collect(A::SymmetricArray{true}) = SymmetricArray(collect(A.data), collect(A.vec), A.mul) Base.collect(A::SymmetricArray{false}) = SymmetricArray(collect(A.data), collect(A.vec)) Base.copyto!(dest::SymmetricArray, src::SymmetricArray) = copyto!(dest.vec, src.vec) Base.:*(scalar::Real, A::SymmetricArray{true}) = SymmetricArray(A.data, scalar * A.vec, A.mul) Base.:*(scalar::Real, A::SymmetricArray{false}) = SymmetricArray(A.data, scalar * A.vec) Base.:*(A::SymmetricArray, scalar::Real) = scalar * A Base.:/(A::SymmetricArray, scalar::Real) = inv(scalar) * A Base.:+(A1::SymmetricArray{true,T}, A2::SymmetricArray{true,T}) where {T} = SymmetricArray(A1.data, A1.vec + A2.vec, A1.mul) Base.:+(A1::SymmetricArray{false,T}, A2::SymmetricArray{false,T}) where {T} = SymmetricArray(A1.data, A1.vec + A2.vec) Base.:-(A1::SymmetricArray{true,T}, A2::SymmetricArray{true,T}) where {T} = SymmetricArray(A1.data, A1.vec - A2.vec, A1.mul) Base.:-(A1::SymmetricArray{false,T}, A2::SymmetricArray{false,T}) where {T} = SymmetricArray(A1.data, A1.vec - A2.vec) Base.:-(A::SymmetricArray{true,T}) where {T} = SymmetricArray(A.data, -A.vec, A.mul) Base.:-(A::SymmetricArray{false,T}) where {T} = SymmetricArray(A.data, -A.vec) LinearAlgebra.dot(A1::SymmetricArray{true}, A2::SymmetricArray{true}) = dot(A1.vec, Diagonal(A1.mul), A2.vec) LinearAlgebra.dot(A1::SymmetricArray{false}, A2::SymmetricArray{false}) = dot(A1.vec, A2.vec) LinearAlgebra.norm(A::SymmetricArray) = sqrt(dot(A, A)) Base.@propagate_inbounds Base.isequal(A1::SymmetricArray, A2::SymmetricArray) = isequal(A1.vec, A2.vec)
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
10830
############################## ### memory_mode macro ############################## macro memory_mode(memory_mode, ex) return esc(quote if $memory_mode isa InplaceEmphasis @. $ex else $ex end end) end """ muladd_memory_mode(memory_mode::MemoryEmphasis, d, x, v) Performs `d = x - v` in-place or not depending on MemoryEmphasis """ function muladd_memory_mode(memory_mode::MemoryEmphasis, d, x, v) @memory_mode(memory_mode, d = x - v) end """ (memory_mode::MemoryEmphasis, x, gamma::Real, d) Performs `x = x - gamma * d` in-place or not depending on MemoryEmphasis """ function muladd_memory_mode(memory_mode::MemoryEmphasis, x, gamma::Real, d) @memory_mode(memory_mode, x = x - gamma * d) end """ (memory_mode::MemoryEmphasis, storage, x, gamma::Real, d) Performs `storage = x - gamma * d` in-place or not depending on MemoryEmphasis """ function muladd_memory_mode(memory_mode::MemoryEmphasis, storage, x, gamma::Real, d) @memory_mode(memory_mode, storage = x - gamma * d) end ############################################################## # simple benchmark of elementary costs of oracles and # critical components ############################################################## function benchmark_oracles(f, grad!, x_gen, lmo; k=100, nocache=true) x = x_gen() sv = sizeof(x) / 1024^2 println("\nSize of single atom ($(eltype(x))): $sv MB\n") to = TimerOutput() @showprogress 1 "Testing f... " for i in 1:k x = x_gen() @timeit to "f" temp = f(x) end @showprogress 1 "Testing grad... " for i in 1:k x = x_gen() temp = similar(x) @timeit to "grad" grad!(temp, x) end @showprogress 1 "Testing lmo... " for i in 1:k x = x_gen() @timeit to "lmo" temp = compute_extreme_point(lmo, x) end @showprogress 1 "Testing dual gap... " for i in 1:k x = x_gen() gradient = collect(x) grad!(gradient, x) v = compute_extreme_point(lmo, gradient) @timeit to "dual gap" begin dual_gap = fast_dot(x, gradient) - fast_dot(v, gradient) end end @showprogress 1 "Testing update... (Emphasis: OutplaceEmphasis) " for i in 1:k x = x_gen() gradient = collect(x) grad!(gradient, x) v = compute_extreme_point(lmo, gradient) gamma = 1 / 2 @timeit to "update (OutplaceEmphasis)" @memory_mode( OutplaceEmphasis(), x = (1 - gamma) * x + gamma * v ) end @showprogress 1 "Testing update... (Emphasis: InplaceEmphasis) " for i in 1:k x = x_gen() gradient = collect(x) grad!(gradient, x) v = compute_extreme_point(lmo, gradient) gamma = 1 / 2 # TODO: to be updated to broadcast version once data structure ScaledHotVector allows for it @timeit to "update (InplaceEmphasis)" @memory_mode( InplaceEmphasis(), x = (1 - gamma) * x + gamma * v ) end if !nocache @showprogress 1 "Testing caching 100 points... " for i in 1:k @timeit to "caching 100 points" begin cache = [gen_x() for _ in 1:100] x = gen_x() gradient = collect(x) grad!(gradient, x) v = compute_extreme_point(lmo, gradient) gamma = 1 / 2 test = (x -> fast_dot(x, gradient)).(cache) v = cache[argmin(test)] val = v in cache end end end print_timer(to) return nothing end """ _unsafe_equal(a, b) Like `isequal` on arrays but without the checks. Assumes a and b have the same axes. """ function _unsafe_equal(a::Array, b::Array) if a === b return true end @inbounds for idx in eachindex(a) if a[idx] != b[idx] return false end end return true end _unsafe_equal(a, b) = isequal(a, b) function _unsafe_equal(a::SparseArrays.AbstractSparseArray, b::SparseArrays.AbstractSparseArray) return a == b end fast_dot(A, B) = dot(A, B) fast_dot(B::SparseArrays.SparseMatrixCSC, A::Matrix) = conj(fast_dot(A, B)) function fast_dot(A::Matrix{T1}, B::SparseArrays.SparseMatrixCSC{T2}) where {T1,T2} T = promote_type(T1, T2) (m, n) = size(A) if (m, n) != size(B) throw(DimensionMismatch("Size mismatch")) end s = zero(T) if m * n == 0 return s end rows = SparseArrays.rowvals(B) vals = SparseArrays.nonzeros(B) @inbounds for j in 1:n for ridx in SparseArrays.nzrange(B, j) i = rows[ridx] v = vals[ridx] s += v * conj(A[i, j]) end end return s end """ trajectory_callback(storage) Callback pushing the state at each iteration to the passed storage. The state data is only the 5 first fields, usually: `(t,primal,dual,dual_gap,time)` """ function trajectory_callback(storage) return function push_trajectory!(data, args...) return push!(storage, callback_state(data)) end end """ momentum_iterate(iter::MomentumIterator) -> ρ Method to implement for a type `MomentumIterator`. Returns the next momentum value `ρ` and updates the iterator internal state. """ function momentum_iterate end """ ExpMomentumIterator{T} Iterator for the momentum used in the variant of Stochastic Frank-Wolfe. Momentum coefficients are the values of the iterator: `ρ_t = 1 - num / (offset + t)^exp` The state corresponds to the iteration count. Source: Stochastic Conditional Gradient Methods: From Convex Minimization to Submodular Maximization Aryan Mokhtari, Hamed Hassani, Amin Karbasi, JMLR 2020. """ mutable struct ExpMomentumIterator{T} exp::T num::T offset::T iter::Int end ExpMomentumIterator() = ExpMomentumIterator(2 / 3, 4.0, 8.0, 0) function momentum_iterate(em::ExpMomentumIterator) em.iter += 1 return 1 - em.num / (em.offset + em.iter)^(em.exp) end """ ConstantMomentumIterator{T} Iterator for momentum with a fixed damping value, always return the value and a dummy state. """ struct ConstantMomentumIterator{T} v::T end momentum_iterate(em::ConstantMomentumIterator) = em.v # batch sizes """ batchsize_iterate(iter::BatchSizeIterator) -> b Method to implement for a batch size iterator of type `BatchSizeIterator`. Calling `batchsize_iterate` returns the next batch size and typically update the internal state of `iter`. """ function batchsize_iterate end """ ConstantBatchIterator(batch_size) Batch iterator always returning a constant batch size. """ struct ConstantBatchIterator batch_size::Int end batchsize_iterate(cbi::ConstantBatchIterator) = cbi.batch_size """ IncrementBatchIterator(starting_batch_size, max_batch_size, [increment = 1]) Batch size starting at starting_batch_size and incrementing by `increment` at every iteration. """ mutable struct IncrementBatchIterator starting_batch_size::Int max_batch_size::Int increment::Int iter::Int maxreached::Bool end function IncrementBatchIterator(starting_batch_size::Int, max_batch_size::Int, increment::Int) return IncrementBatchIterator(starting_batch_size, max_batch_size, increment, 0, false) end function IncrementBatchIterator(starting_batch_size::Int, max_batch_size::Int) return IncrementBatchIterator(starting_batch_size, max_batch_size, 1, 0, false) end function batchsize_iterate(ibi::IncrementBatchIterator) if ibi.maxreached return ibi.max_batch_size end new_size = ibi.starting_batch_size + ibi.iter * ibi.increment ibi.iter += 1 if new_size > ibi.max_batch_size ibi.maxreached = true return ibi.max_batch_size end return new_size end """ Vertex storage to store dropped vertices or find a suitable direction in lazy settings. The algorithm will look for at most `return_kth` suitable atoms before returning the best. See [Extra-lazification with a vertex storage](@ref) for usage. A vertex storage can be any type that implements two operations: 1. `Base.push!(storage, atom)` to add an atom to the storage. Note that it is the storage type responsibility to ensure uniqueness of the atoms present. 2. `storage_find_argmin_vertex(storage, direction, lazy_threshold) -> (found, vertex)` returning whether a vertex with sufficient progress was found and the vertex. It is up to the storage to remove vertices (or not) when they have been picked up. """ struct DeletedVertexStorage{AT} storage::Vector{AT} return_kth::Int end DeletedVertexStorage(storage::Vector) = DeletedVertexStorage(storage, 1) DeletedVertexStorage{AT}() where {AT} = DeletedVertexStorage(AT[]) function Base.push!(vertex_storage::DeletedVertexStorage{AT}, atom::AT) where {AT} # do not push duplicates if !any(v -> _unsafe_equal(atom, v), vertex_storage.storage) push!(vertex_storage.storage, atom) end return vertex_storage end Base.length(storage::DeletedVertexStorage) = length(storage.storage) """ Give the vertex `v` in the storage that minimizes `s = direction ⋅ v` and whether `s` achieves `s ≤ lazy_threshold`. """ function storage_find_argmin_vertex(vertex_storage::DeletedVertexStorage, direction, lazy_threshold) if isempty(vertex_storage.storage) return (false, nothing) end best_idx = 1 best_val = lazy_threshold found_good = false counter = 0 for (idx, atom) in enumerate(vertex_storage.storage) s = dot(direction, atom) if s < best_val counter += 1 best_val = s found_good = true best_idx = idx if counter ≥ vertex_storage.return_kth return (found_good, vertex_storage.storage[best_idx]) end end end return (found_good, vertex_storage.storage[best_idx]) end # temporary fix because argmin is broken on julia 1.8 argmin_(v) = argmin(v) function argmin_(v::SparseArrays.SparseVector{T}) where {T} if isempty(v.nzind) return 1 end idx = -1 val = T(Inf) for s_idx in eachindex(v.nzind) if v.nzval[s_idx] < val val = v.nzval[s_idx] idx = s_idx end end # if min value is already negative or the indices were all checked if val < 0 || length(v.nzind) == length(v) return v.nzind[idx] end # otherwise, find the first zero for idx in eachindex(v) if idx ∉ v.nzind return idx end end error("unreachable") end function weight_purge_threshold_default(::Type{T}) where {T<:AbstractFloat} return sqrt(eps(T) * Base.rtoldefault(T)) # around 1e-12 for Float64 end weight_purge_threshold_default(::Type{T}) where {T<:Number} = Base.rtoldefault(T)
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
8741
using Test using FrankWolfe import FrankWolfe: ActiveSet using LinearAlgebra: norm @testset "Active sets" begin @testset "Constructors and eltypes" begin active_set = ActiveSet([(0.1, [1, 2, 3]), (0.9, [2, 3, 4]), (0.0, [5, 6, 7])]) @test active_set.weights == [0.1, 0.9, 0.0] @test active_set.atoms == [[1, 2, 3], [2, 3, 4], [5, 6, 7]] @test eltype(active_set) === Tuple{Float64,Vector{Int}} @test FrankWolfe.active_set_validate(active_set) # providing the weight type converts the provided weights active_set2 = ActiveSet{Vector{Int},Float64}([ (0.1f0, [1, 2, 3]), (0.9f0, [2, 3, 4]), (0.0f0, [5, 6, 7]), ]) @test eltype(active_set) === eltype(active_set2) @test first(active_set) isa eltype(active_set) @test first(active_set2) isa eltype(active_set) end @testset "Presence and cleanup" begin active_set = ActiveSet([(0.1, [1, 2, 3]), (0.9, [2, 3, 4]), (0.0, [5, 6, 7])]) @test FrankWolfe.find_atom(active_set, [5, 6, 7]) > 0 FrankWolfe.active_set_cleanup!(active_set) @test FrankWolfe.find_atom(active_set, [5, 6, 7]) == -1 end @testset "Renormalization and validation" begin active_set = ActiveSet([(0.1, [1, 2, 3]), (0.8, [2, 3, 4]), (0.0, [5, 6, 7])]) @test !FrankWolfe.active_set_validate(active_set) FrankWolfe.active_set_renormalize!(active_set) @test FrankWolfe.active_set_validate(active_set) end @testset "addition of elements and manipulation" begin active_set = ActiveSet([(0.5, [1, 2, 3]), (0.5, [2, 3, 4])]) FrankWolfe.active_set_update!(active_set, 1 / 2, [5, 6, 7]) @test collect(active_set) == [(0.25, [1, 2, 3]), (0.25, [2, 3, 4]), (0.5, [5, 6, 7])] # element addition @test FrankWolfe.active_set_validate(active_set) # update existing element FrankWolfe.active_set_update!(active_set, 1.0 / 2, [5, 6, 7]) @test collect(active_set) == [(0.125, [1, 2, 3]), (0.125, [2, 3, 4]), (0.75, [5, 6, 7])] @test FrankWolfe.active_set_validate(active_set) end @testset "active set isempty" begin active_set = ActiveSet([(1.0, [1, 2, 3])]) @test !isempty(active_set) empty!(active_set) @test isempty(active_set) end @testset "Away step operations" begin active_set = ActiveSet([(0.125, [1, 2, 3]), (0.125, [2, 3, 4]), (0.75, [5, 6, 7])]) lambda = FrankWolfe.weight_from_atom(active_set, [5, 6, 7]) @test lambda == 0.75 lambda_max = lambda / (1 - lambda) FrankWolfe.active_set_update!(active_set, -lambda_max, [5, 6, 7]) @test collect(active_set) == [(0.5, [1, 2, 3]), (0.5, [2, 3, 4])] ## intermediate away step lambda = FrankWolfe.weight_from_atom(active_set, [2, 3, 4]) @test lambda == 0.5 lambda_max = lambda / (1 - lambda) FrankWolfe.active_set_update!(active_set, -lambda_max / 2, [2, 3, 4]) @test collect(active_set) == [(0.75, [1, 2, 3]), (0.25, [2, 3, 4])] x = FrankWolfe.get_active_set_iterate(active_set) @test x == [1.25, 2.25, 3.25] λ, a, i = FrankWolfe.active_set_argmin(active_set, [1.0, 1.0, 1.0]) @test a == [1, 2, 3] && λ == 0.75 && i == 1 λ, a, i = FrankWolfe.active_set_argmin(active_set, [-1.0, -1.0, -1.0]) @test a == [2, 3, 4] && λ == 0.25 && i == 2 end @testset "Copying active sets" begin active_set = ActiveSet([(0.125, [1, 2, 3]), (0.125, [2, 3, 4]), (0.75, [5, 6, 7])]) as_copy = copy(active_set) # copy is of same type @test as_copy isa ActiveSet{Vector{Int},Float64,Vector{Float64}} # copy fields are also copied, same value different location in memory @test as_copy.weights !== active_set.weights @test as_copy.weights == active_set.weights @test as_copy.x !== active_set.x @test as_copy.x == active_set.x @test as_copy.atoms !== active_set.atoms @test as_copy.atoms == active_set.atoms # Individual atoms are not copied @test as_copy.atoms[1] === active_set.atoms[1] end end @testset "Simplex gradient descent" begin # Gradient descent over a 2-D unit simplex # each atom is a vertex, direction points to [1,1] # note: integers for atom element types # |\ - - + # | \ | # | \ # | \ | # | \ # | \ | # |______\| active_set = ActiveSet([(0.5, [0, 0]), (0.5, [0, 1]), (0.0, [1, 0])]) x = FrankWolfe.get_active_set_iterate(active_set) @test x ≈ [0, 0.5] f(x) = (x[1] - 1)^2 + (x[2] - 1)^2 gradient = similar(x) function grad!(storage, x) return storage .= [2 * (x[1] - 1), 2 * (x[2] - 1)] end FrankWolfe.simplex_gradient_descent_over_convex_hull( f, grad!, gradient, active_set, 1e-3, 1, 0.0, 0, max_iteration=1000, callback=nothing, ) FrankWolfe.active_set_cleanup!(active_set) @test length(active_set) == 2 @test [1, 0] ∈ active_set.atoms @test [0, 1] ∈ active_set.atoms active_set2 = ActiveSet([(0.5, [0, 0]), (0.0, [0, 1]), (0.5, [1, 0])]) x2 = FrankWolfe.get_active_set_iterate(active_set2) @test x2 ≈ [0.5, 0] FrankWolfe.simplex_gradient_descent_over_convex_hull( f, grad!, gradient, active_set2, 1e-3, 1, 0.0, 0, max_iteration=1000, callback=nothing, ) @test length(active_set) == 2 @test [1, 0] ∈ active_set.atoms @test [0, 1] ∈ active_set.atoms @test FrankWolfe.get_active_set_iterate(active_set2) ≈ [0.5, 0.5] # updating again (at optimum) triggers the active set emptying for as in (active_set, active_set2) x = FrankWolfe.get_active_set_iterate(as) number_of_steps = FrankWolfe.simplex_gradient_descent_over_convex_hull( f, grad!, gradient, as, 1.0e-3, 1, 0.0, 0, max_iteration=1000, callback=nothing, ) @test number_of_steps == 0 end end @testset "LP separation oracle" begin # Gradient descent over a L-inf ball of radius one # current active set contains 3 vertices # direction points to [1,1] # |\ - - + # | \ | # | \ # | \ | # | \ # | \ | # |______\| active_set = ActiveSet([(0.6, [-1, -1]), (0.2, [0, 1]), (0.2, [1, 0])]) f(x) = (x[1] - 1)^2 + (x[2] - 1)^2 ∇f(x) = [2 * (x[1] - 1), 2 * (x[2] - 1)] lmo = FrankWolfe.LpNormLMO{Inf}(1) x = FrankWolfe.get_active_set_iterate(active_set) @test x ≈ [-0.4, -0.4] gradient_dir = ∇f(x) (y, _) = FrankWolfe.lp_separation_oracle(lmo, active_set, gradient_dir, 0.5, 1) @test y ∈ active_set.atoms (y2, _) = FrankWolfe.lp_separation_oracle(lmo, active_set, gradient_dir, 3 + dot(x, gradient_dir), 1) # found new vertex not in active set @test y2 ∉ active_set.atoms # Criterion too high, no satisfactory point (y3, _) = FrankWolfe.lp_separation_oracle( lmo, active_set, gradient_dir, norm(gradient_dir)^2 + dot(x, gradient_dir), 1, ) end @testset "Argminmax" begin active_set = FrankWolfe.ActiveSet([(0.6, [-1, -1]), (0.2, [0, 1]), (0.2, [1, 0])]) (λ_min, a_min, i_min, val, λ_max, a_max, i_max, valM, progress) = FrankWolfe.active_set_argminmax(active_set, [1, 1.5]) @test i_min == 1 @test i_max == 2 @test_throws ErrorException FrankWolfe.active_set_argminmax(active_set, [NaN, NaN]) end @testset "LPseparationWithScaledHotVector" begin v1 = FrankWolfe.ScaledHotVector(1, 1, 2) v2 = FrankWolfe.ScaledHotVector(1, 2, 2) v3 = FrankWolfe.ScaledHotVector(0, 2, 2) active_set = FrankWolfe.ActiveSet([(0.6, v1), (0.2, v2), (0.2, v3)]) lmo = FrankWolfe.LpNormLMO{Float64,1}(1.0) direction = ones(2) min_gap = 0.5 Ktolerance = 1.0 FrankWolfe.lp_separation_oracle( lmo, active_set, direction, min_gap, Ktolerance; inplace_loop=true, ) end @testset "ActiveSet for BigFloat" begin n = Int(1e2) lmo = FrankWolfe.LpNormLMO{BigFloat,1}(rand()) x0 = Vector(FrankWolfe.compute_extreme_point(lmo, zeros(n))) # add the first vertex to active set from initialization active_set = FrankWolfe.ActiveSet([(1.0, x0)]) # ensure that ActiveSet is created correctly, tests a fix for a bug when x0 is a BigFloat @test length(FrankWolfe.ActiveSet([(1.0, x0)])) == 1 end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
7336
using FrankWolfe using LinearAlgebra using Test using SparseArrays function test_callback(state, active_set, args...) grad0 = similar(state.x) state.grad!(grad0, state.x) @test grad0 ≈ state.gradient end @testset "Testing active set Frank-Wolfe variants, BPFW, AFW, and PFW, including their lazy versions" begin f(x) = norm(x)^2 function grad!(storage, x) @. storage = 2x return nothing end lmo_prob = FrankWolfe.ProbabilitySimplexOracle(4) x0 = FrankWolfe.compute_extreme_point(lmo_prob, zeros(10)) res_bpcg = FrankWolfe.blended_pairwise_conditional_gradient( f, grad!, lmo_prob, x0, max_iteration=6000, line_search=FrankWolfe.AdaptiveZerothOrder(), verbose=false, epsilon=3e-7, ) res_bpcg_lazy = FrankWolfe.blended_pairwise_conditional_gradient( f, grad!, lmo_prob, x0, max_iteration=6000, line_search=FrankWolfe.AdaptiveZerothOrder(), verbose=false, epsilon=3e-7, lazy=true, ) res_afw = FrankWolfe.away_frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=6000, line_search=FrankWolfe.AdaptiveZerothOrder(), print_iter=100, verbose=false, epsilon=3e-7, ) res_afw_lazy = FrankWolfe.away_frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=6000, line_search=FrankWolfe.AdaptiveZerothOrder(), print_iter=100, verbose=false, epsilon=3e-7, lazy=true, ) res_pfw = FrankWolfe.pairwise_frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=6000, line_search=FrankWolfe.AdaptiveZerothOrder(), print_iter=100, verbose=false, epsilon=3e-7, ) res_pfw_lazy = FrankWolfe.pairwise_frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=6000, line_search=FrankWolfe.AdaptiveZerothOrder(), print_iter=100, verbose=false, lazy=true, epsilon=3e-7, ) @test res_afw[3] ≈ res_bpcg[3] @test res_afw[3] ≈ res_pfw[3] @test res_afw[3] ≈ res_afw_lazy[3] @test res_pfw[3] ≈ res_pfw_lazy[3] @test res_bpcg[3] ≈ res_bpcg_lazy[3] @test norm(res_afw[1] - res_bpcg[1]) ≈ 0 atol = 1e-6 @test norm(res_afw[1] - res_pfw[1]) ≈ 0 atol = 1e-6 @test norm(res_afw[1] - res_afw_lazy[1]) ≈ 0 atol = 1e-6 @test norm(res_pfw[1] - res_pfw_lazy[1]) ≈ 0 atol = 1e-6 @test norm(res_bpcg[1] - res_bpcg_lazy[1]) ≈ 0 atol = 1e-6 res_bpcg2 = FrankWolfe.blended_pairwise_conditional_gradient( f, grad!, lmo_prob, x0, max_iteration=6000, line_search=FrankWolfe.AdaptiveZerothOrder(), verbose=false, lazy=true, epsilon=3e-7, ) @test res_bpcg2[3] ≈ res_bpcg[3] atol = 1e-5 active_set_afw = res_afw[end] storage = copy(active_set_afw.x) grad!(storage, active_set_afw.x) epsilon = 1e-6 d = active_set_afw.x * 0 @inferred FrankWolfe.afw_step(active_set_afw.x, storage, lmo_prob, active_set_afw, epsilon, d) @inferred FrankWolfe.lazy_afw_step( active_set_afw.x, storage, lmo_prob, active_set_afw, epsilon, epsilon, d, ) res_bpcg = FrankWolfe.blended_pairwise_conditional_gradient( f, grad!, lmo_prob, x0, max_iteration=6000, line_search=FrankWolfe.AdaptiveZerothOrder(), verbose=false, epsilon=3e-7, callback=test_callback, ) end @testset "recompute or not last vertex" begin n = 10 f(x) = norm(x)^2 function grad!(storage, x) @. storage = 2x return nothing end lmo_prob = FrankWolfe.ProbabilitySimplexOracle(4) lmo = FrankWolfe.TrackingLMO(lmo_prob) x0 = FrankWolfe.compute_extreme_point(lmo_prob, ones(10)) FrankWolfe.blended_pairwise_conditional_gradient( f, grad!, lmo, x0, max_iteration=6000, line_search=FrankWolfe.AdaptiveZerothOrder(), epsilon=3e-7, verbose=false, ) @test lmo.counter <= 51 prev_counter = lmo.counter lmo.counter = 0 FrankWolfe.blended_pairwise_conditional_gradient( f, grad!, lmo, x0, max_iteration=6000, line_search=FrankWolfe.AdaptiveZerothOrder(), epsilon=3e-7, verbose=false, recompute_last_vertex=false, ) @test lmo.counter == prev_counter - 1 end @testset "Quadratic active set" begin n = 2 # number of dimensions p = 10 # number of points function simple_reg_loss(θ, data_point) (xi, yi) = data_point (a, b) = (θ[1:end-1], θ[end]) pred = a ⋅ xi + b return (pred - yi)^2 / 2 end function ∇simple_reg_loss(storage, θ, data_point) (xi, yi) = data_point (a, b) = (θ[1:end-1], θ[end]) pred = a ⋅ xi + b @. storage[1:end-1] += xi * (pred - yi) storage[end] += pred - yi return storage end xs = [[9.42970533446119, 1.3392275765318449], [15.250689085124804, 1.2390123120559722], [-12.057722842599361, 3.1181717536024807], [-2.3464126496126, -10.873522937105326], [4.623106804313759, -0.8059308663320504], [-8.124306879044243, -20.610343848003204], [3.1305636922867732, -4.794303128671186], [-9.443890241279835, 18.243232066781086], [-10.582972181702795, 2.9216495153528084], [12.469122418416605, -4.2927539788825735]] params_perfect = [1:n; 4] data_noisy = [([9.42970533446119, 1.3392275765318449], 16.579645754247938), ([15.250689085124804, 1.2390123120559722], 21.79567508806334), ([-12.057722842599361, 3.1181717536024807], -1.0588448811381594), ([-2.3464126496126, -10.873522937105326], -20.03150790822045), ([4.623106804313759, -0.8059308663320504], 6.408358929519689), ([-8.124306879044243, -20.610343848003204], -45.189085987370525), ([3.1305636922867732, -4.794303128671186], -2.5753631975362286), ([-9.443890241279835, 18.243232066781086], 30.498897745427072), ([-10.582972181702795, 2.9216495153528084], -0.5085178107814902), ([12.469122418416605, -4.2927539788825735], 7.843317917334855)] f(x) = sum(simple_reg_loss(x, data_point) for data_point in data_noisy) function gradf(storage, x) storage .= 0 for dp in data_noisy ∇simple_reg_loss(storage, x, dp) end end lmo = FrankWolfe.LpNormLMO{Float64, 2}(1.05 * norm(params_perfect)) x0 = FrankWolfe.compute_extreme_point(lmo, zeros(Float64, n+1)) active_set = FrankWolfe.ActiveSetQuadratic([(1.0, x0)], gradf) res = FrankWolfe.blended_pairwise_conditional_gradient( f, gradf, lmo, active_set; verbose=false, lazy=true, line_search=FrankWolfe.Adaptive(L_est=10.0, relaxed_smoothness=true), trajectory=true, ) @test abs(res[3] - 0.70939) ≤ 0.001 @test res[4] ≤ 1e-2 end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
8275
import FrankWolfe using LinearAlgebra using Test using Random Random.seed!(100) f(x) = dot(x, x) function grad!(storage, x) @. storage = 2 * x end n = 10 lmo_nb = FrankWolfe.ScaledBoundL1NormBall(-ones(n), ones(n)) lmo_prob = FrankWolfe.ProbabilitySimplexOracle(1.0) lmo1 = FrankWolfe.ScaledBoundLInfNormBall(-ones(n), zeros(n)) lmo2 = FrankWolfe.ScaledBoundLInfNormBall(zeros(n), ones(n)) lmo3 = FrankWolfe.ScaledBoundLInfNormBall(ones(n), 2 * ones(n)) @testset "Testing alternating linear minimization with block coordinate FW for different LMO-pairs " begin x, _ = FrankWolfe.alternating_linear_minimization( FrankWolfe.block_coordinate_frank_wolfe, f, grad!, (lmo_nb, lmo_prob), ones(n), lambda=1.0, line_search=FrankWolfe.Adaptive(relaxed_smoothness=true), ) @test abs(x.blocks[1][1] - 0.5 / n) < 1e-6 @test abs(x.blocks[2][1] - 1 / n) < 1e-6 x, _, _, _, _ = FrankWolfe.alternating_linear_minimization( FrankWolfe.block_coordinate_frank_wolfe, f, grad!, (lmo_nb, lmo_prob), ones(n), lambda=1/3, line_search=FrankWolfe.Adaptive(relaxed_smoothness=true), ) @test abs(x.blocks[1][1] - 0.75 / n) < 1e-6 @test abs(x.blocks[2][1] - 1 / n) < 1e-6 x, _, _, _, _ = FrankWolfe.alternating_linear_minimization( FrankWolfe.block_coordinate_frank_wolfe, f, grad!, (lmo_nb, lmo_prob), ones(n), lambda=1/9, line_search=FrankWolfe.Adaptive(relaxed_smoothness=true), ) @test abs(x.blocks[1][1] - 0.9 / n) < 1e-6 @test abs(x.blocks[2][1] - 1 / n) < 1e-6 x, _, _, _, _ = FrankWolfe.alternating_linear_minimization( FrankWolfe.block_coordinate_frank_wolfe, f, grad!, (lmo_nb, lmo_prob), ones(n), lambda=3.0, line_search=FrankWolfe.Adaptive(relaxed_smoothness=true), ) @test abs(x.blocks[1][1] - 0.25 / n) < 1e-6 @test abs(x.blocks[2][1] - 1 / n) < 1e-6 x, _, _, _, _ = FrankWolfe.alternating_linear_minimization( FrankWolfe.block_coordinate_frank_wolfe, f, grad!, (lmo1, lmo2), ones(n), ) @test abs(x.blocks[1][1]) < 1e-6 @test abs(x.blocks[2][1]) < 1e-6 x, _, _, _, _ = FrankWolfe.alternating_linear_minimization( FrankWolfe.block_coordinate_frank_wolfe, f, grad!, (lmo1, lmo2), (-ones(n), ones(n)), ) @test abs(x.blocks[1][1]) < 1e-6 @test abs(x.blocks[2][1]) < 1e-6 # test the edge case with a zero vector as direction for the step size computation x, v, primal, dual_gap, traj_data = FrankWolfe.alternating_linear_minimization( FrankWolfe.block_coordinate_frank_wolfe, x -> 0, (storage, x) -> storage .= zero(x), (lmo1, lmo3), ones(n), verbose=true, line_search=FrankWolfe.Shortstep(2), ) @test norm(x.blocks[1] - zeros(n)) < 1e-6 @test norm(x.blocks[2] - ones(n)) < 1e-6 x, _, _, _, _, traj_data = FrankWolfe.alternating_linear_minimization( FrankWolfe.block_coordinate_frank_wolfe, f, grad!, (lmo1, lmo_prob), ones(n), trajectory=true, verbose=true, ) @test abs(x.blocks[1][1]) < 1e-6 @test abs(x.blocks[2][1] - 1 / n) < 1e-6 @test traj_data != [] @test length(traj_data[1]) == 6 @test length(traj_data) >= 2 @test length(traj_data) <= 10001 x, _, _, _, _, _ = FrankWolfe.alternating_linear_minimization( FrankWolfe.block_coordinate_frank_wolfe, f, grad!, (lmo2, lmo_prob), ones(n), line_search=FrankWolfe.Agnostic(), momentum=0.9, ) @test abs(x.blocks[1][1] - 0.5 / n) < 1e-3 @test abs(x.blocks[2][1] - 1 / n) < 1e-3 end @testset "Testing different update orders for block coordinate FW in within alternating linear minimization" begin orders = [ FrankWolfe.FullUpdate(), [FrankWolfe.CyclicUpdate(i) for i in [-1, 1, 2]]..., [FrankWolfe.StochasticUpdate(i) for i in [-1, 1, 2]]..., [FrankWolfe.DualGapOrder(i) for i in [-1, 1, 2]]..., [FrankWolfe.DualProgressOrder(i) for i in [-1, 1, 2]]..., ] for order in orders x, _, _, _, _, _ = FrankWolfe.alternating_linear_minimization( FrankWolfe.block_coordinate_frank_wolfe, f, grad!, (lmo2, lmo_prob), ones(n), line_search=FrankWolfe.Adaptive(relaxed_smoothness=true), update_order=order, ) @test abs(x.blocks[1][1] - 0.5 / n) < 1e-5 @test abs(x.blocks[2][1] - 1 / n) < 1e-5 end end @testset "Testing alternating linear minimization with different FW methods" begin methods = [ FrankWolfe.frank_wolfe, FrankWolfe.away_frank_wolfe, FrankWolfe.lazified_conditional_gradient, ] for fw_method in methods x, _, _, _, _ = FrankWolfe.alternating_linear_minimization( fw_method, f, grad!, (lmo2, lmo_prob), ones(n), ) @test abs(x.blocks[1][1] - 0.5 / n) < 1e-6 @test abs(x.blocks[2][1] - 1 / n) < 1e-6 end end @testset "Testing block-coordinate FW with different update steps and linesearch strategies" begin x, _, _, _, _ = FrankWolfe.alternating_linear_minimization( FrankWolfe.block_coordinate_frank_wolfe, f, grad!, (lmo1, lmo2), ones(n), line_search=(FrankWolfe.Shortstep(2.0), FrankWolfe.Adaptive()), ) @test abs(x.blocks[1][1]) < 1e-6 @test abs(x.blocks[2][1]) < 1e-6 x, _, _, _, _ = FrankWolfe.alternating_linear_minimization( FrankWolfe.block_coordinate_frank_wolfe, f, grad!, (lmo1, lmo2), ones(n), update_step=FrankWolfe.BPCGStep(), ) @test abs(x.blocks[1][1]) < 1e-6 @test abs(x.blocks[2][1]) < 1e-6 x, _, _, _, _ = FrankWolfe.alternating_linear_minimization( FrankWolfe.block_coordinate_frank_wolfe, f, grad!, (lmo1, lmo2), ones(n), update_step=FrankWolfe.BPCGStep(true, nothing, 1000, false, Inf), ) @test abs(x.blocks[1][1]) < 1e-6 @test abs(x.blocks[2][1]) < 1e-6 x, _, _, _, _ = FrankWolfe.alternating_linear_minimization( FrankWolfe.block_coordinate_frank_wolfe, f, grad!, (lmo1, lmo2), ones(n), update_step=(FrankWolfe.BPCGStep(), FrankWolfe.FrankWolfeStep()), ) @test abs(x.blocks[1][1]) < 1e-6 @test abs(x.blocks[2][1]) < 1e-6 x, _, _, _, _ = FrankWolfe.alternating_linear_minimization( FrankWolfe.block_coordinate_frank_wolfe, f, grad!, (lmo_nb, lmo_prob), ones(n), lambda=3.0, line_search=(FrankWolfe.Shortstep(8.0), FrankWolfe.Adaptive()), # L-smooth in coordinates for L = 2+2*λ update_step=(FrankWolfe.BPCGStep(), FrankWolfe.FrankWolfeStep()), ) @test abs(x.blocks[1][1] - 0.25 / n) < 1e-6 @test abs(x.blocks[2][1] - 1 / n) < 1e-6 end @testset "Testing alternating projections for different LMO-pairs " begin x, _, _, _, _ = FrankWolfe.alternating_projections((lmo1, lmo_prob), rand(n), verbose=true) @test abs(x[1][1]) < 1e-6 @test abs(x[2][1] - 1 / n) < 1e-6 x, _, _, _, _ = FrankWolfe.alternating_projections((lmo3, lmo_prob), rand(n)) @test abs(x[1][1] - 1) < 1e-6 @test abs(x[2][1] - 1 / n) < 1e-6 x, _, _, infeas, _ = FrankWolfe.alternating_projections((lmo1, lmo2), rand(n)) @test abs(x[1][1]) < 1e-6 @test abs(x[2][1]) < 1e-6 @test infeas < 1e-6 x, _, _, infeas, _ = FrankWolfe.alternating_projections((lmo2, lmo3), rand(n)) @test abs(x[1][1] - 1) < 1e-4 @test abs(x[2][1] - 1) < 1e-4 @test infeas < 1e-6 x, _, _, infeas, traj_data = FrankWolfe.alternating_projections((lmo1, lmo3), rand(n), trajectory=true) @test abs(x[1][1]) < 1e-6 @test abs(x[2][1] - 1) < 1e-6 @test traj_data != [] @test length(traj_data[1]) == 5 @test length(traj_data) >= 2 @test length(traj_data) <= 10001 end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
1334
import FrankWolfe using LinearAlgebra using Random using Test using SparseArrays n = Int(1e4) k = 3000 s = 41 Random.seed!(s) xpi = rand(n); total = sum(xpi); const xp = xpi # ./ total; f(x) = norm(x .- xp)^2 function grad!(storage, x) @. storage = 2 * (x .- xp) end lmo = FrankWolfe.KSparseLMO(100, 1.0) x0 = FrankWolfe.compute_extreme_point(lmo, spzeros(size(xp)...)) gradient = similar(xp) x, v, primal, dual_gap, _, _ = FrankWolfe.blended_conditional_gradient( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.AdaptiveZerothOrder(L_est=2.0), print_iter=100, memory_mode=FrankWolfe.InplaceEmphasis(), verbose=true, trajectory=false, lazy_tolerance=1.0, weight_purge_threshold=1e-9, epsilon=1e-8, gradient=gradient, ) @test dual_gap ≤ 5e-4 @test f(x0) - f(x) ≥ 180 x0 = FrankWolfe.compute_extreme_point(lmo, spzeros(size(xp)...)) x, v, primal_cut, dual_gap, _, _ = FrankWolfe.blended_conditional_gradient( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.AdaptiveZerothOrder(L_est=2.0), print_iter=k / 10, memory_mode=FrankWolfe.InplaceEmphasis(), verbose=true, trajectory=false, lazy_tolerance=1.0, weight_purge_threshold=1e-10, epsilon=1e-9, timeout=3.0, ) @test primal ≤ primal_cut
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
648
import FrankWolfe import LinearAlgebra n = Int(1e6); xpi = rand(n); total = sum(xpi); const xp = xpi ./ total; const f(x) = norm(x - xp)^2 function grad!(storage, x) @. storage = 2 * (x - xp) end function cf(x, xp) return @. norm(x - xp)^2 end function cgrad(storage, x, xp) @. storage = 2 * (x - xp) end lmo_prob = FrankWolfe.ProbabilitySimplexOracle(1); x0 = FrankWolfe.compute_extreme_point(lmo_prob, zeros(n)); FrankWolfe.benchmarkOracles(f, grad!, lmo_prob, n; k=100, T=Float64) FrankWolfe.benchmarkOracles( x -> cf(x, xp), (storage, x) -> cgrad(storage, x, xp), lmo_prob, n; k=100, T=Float64, )
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
1217
# benchmark for tuple VS vector cache using BenchmarkTools using FrankWolfe for n in (10, 100, 1000) @info "n = $n" direction = zeros(n) rhs = 10 * rand() lmo_unit = FrankWolfe.UnitSimplexOracle(rhs) lmo_veccached = FrankWolfe.VectorCacheLMO(lmo_unit) res_vec = @benchmark begin for idx in 1:$n $direction .= 0 $direction[idx] = -1 res_point_cached_vec = FrankWolfe.compute_extreme_point($lmo_veccached, $direction, threshold=0) _ = length($lmo_veccached) end empty!($lmo_veccached) end res_multi = map(1:10) do N lmo_multicached = FrankWolfe.MultiCacheLMO{N}(lmo_unit) @benchmark begin for idx in 1:$n $direction .= 0 $direction[idx] = -1 res_point_cached_vec = FrankWolfe.compute_extreme_point($lmo_multicached, $direction, threshold=0) _ = length($lmo_multicached) end empty!($lmo_multicached) end end @info "Vec benchmark" display(res_vec) for N in 1:10 @info "Tuple benchmark $N" display(res_multi[N]) end end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
2572
using LinearAlgebra using Random using SparseArrays using Test using Test using FrankWolfe using DoubleFloats n = 200 k = 200 s = 42 Random.seed!(s) const matrix = rand(n, n) const hessian = transpose(matrix) * matrix const linear = rand(n) f(x) = dot(linear, x) + 0.5 * transpose(x) * hessian * x function grad!(storage, x) return storage .= linear + hessian * x end const L = eigmax(hessian) # This test covers the generic types with accelerated BCG # only few iterations are run because linear algebra with BigFloat is intensive @testset "Type $T" for T in (Float64, Double64, BigFloat) @testset "LMO $(typeof(lmo)) Probability simplex" for lmo in ( FrankWolfe.ProbabilitySimplexOracle{T}(1.0), FrankWolfe.KSparseLMO{T}(100, 100.0), ) x0 = FrankWolfe.compute_extreme_point(lmo, spzeros(T, n)) target_tolerance = 1e-5 x, v, primal_accel, dual_gap_accel, _, _ = FrankWolfe.blended_conditional_gradient( f, grad!, lmo, copy(x0), epsilon=target_tolerance, max_iteration=k, line_search=FrankWolfe.AdaptiveZerothOrder(L_est=L), print_iter=k / 10, hessian=hessian, memory_mode=FrankWolfe.InplaceEmphasis(), accelerated=true, verbose=false, trajectory=false, lazy_tolerance=1.0, weight_purge_threshold=1e-10, ) x, v, primal_hessian, dual_gap_hessian, _, _ = FrankWolfe.blended_conditional_gradient( f, grad!, lmo, copy(x0), epsilon=target_tolerance, max_iteration=k, line_search=FrankWolfe.AdaptiveZerothOrder(L_est=L), print_iter=k / 10, hessian=hessian, memory_mode=FrankWolfe.InplaceEmphasis(), accelerated=false, verbose=false, trajectory=false, lazy_tolerance=1.0, weight_purge_threshold=1e-10, ) x, v, primal_bcg, dual_gap_bcg, _, _ = FrankWolfe.blended_conditional_gradient( f, grad!, lmo, copy(x0), epsilon=target_tolerance, max_iteration=k, line_search=FrankWolfe.AdaptiveZerothOrder(L_est=L), print_iter=k / 10, memory_mode=FrankWolfe.InplaceEmphasis(), verbose=false, trajectory=false, lazy_tolerance=1.0, weight_purge_threshold=1e-10, ) end end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
4036
using Test using Random using LinearAlgebra using FrankWolfe using SparseArrays @testset "Block array behaviour" begin arr = FrankWolfe.BlockVector([ [ 1 3 4 6.0 ], [ 1 3 1 4 1 2 1 3 5.0 ], ],) @test length(arr) == 4 + 9 @test arr[end] == 5.0 @test arr[1] == 1.0 @test arr[5] == 1.0 @test arr[4] == 6.0 v1 = Vector(arr) arr2 = FrankWolfe.BlockVector([zeros(2, 2), ones(3, 3)],) copyto!(arr2, arr) v2 = Vector(arr2) @test v1 == v2 v1[1] *= 2 @test v1 != v2 @test size(similar(arr)) == size(arr) @test typeof(similar(arr)) == typeof(arr) @test norm(arr) == norm(collect(arr)) @test dot(arr, arr) == dot(collect(arr), collect(arr)) arr3 = FrankWolfe.BlockVector([3 * ones(2, 2), ones(3, 3)],) @test dot(arr3, arr) ≈ dot(arr, arr3) @test dot(arr3, arr) ≈ dot(collect(arr3), collect(arr)) arr4 = 2 * arr3 @test arr4.blocks[1] == 6 * ones(2, 2) arr5 = FrankWolfe.BlockVector([6 * ones(2, 2), 2 * ones(3, 3)],) arr6 = arr3/2 arr7 = arr3 * 2 @test arr6.blocks[1] == 1.5 * ones(2, 2) @test isequal(arr4, arr7) @test isequal(arr4, arr4) @test isequal(arr4, arr5) @test !isequal(arr3, arr4) @test !isequal(arr2, FrankWolfe.BlockVector([zeros(2, 2)])) arr8 = FrankWolfe.BlockVector([ones(2, 2), ones(2, 2)]) @test_throws DimensionMismatch dot(arr3, arr8) end @testset "FrankWolfe array methods" begin @testset "Block arrays" begin mem = FrankWolfe.InplaceEmphasis() arr0 = FrankWolfe.BlockVector([ [ 1 3 4 6.0 ], [ 1 3 1 4 1 2 1 3 5.0 ], ],) arr1 = rand() * arr0 d = similar(arr1) FrankWolfe.muladd_memory_mode(mem, d, arr1, arr0) dref = arr1 - arr0 @test d == dref gamma = rand() arr2 = zero(arr0) FrankWolfe.muladd_memory_mode(mem, arr2, gamma, arr0) @test arr2 == -gamma * arr0 arr3 = similar(arr0) FrankWolfe.muladd_memory_mode(mem, arr3, zero(arr0), gamma, arr0) @test arr3 == -gamma * arr0 active_set = FrankWolfe.ActiveSet( [0.25, 0.75], [ FrankWolfe.BlockVector([ones(100, 1), ones(30, 30)]), FrankWolfe.BlockVector([3 * ones(100, 1), zeros(30, 30)]), ], FrankWolfe.BlockVector([ones(100, 1), ones(30, 30)]), ) FrankWolfe.compute_active_set_iterate!(active_set) x = active_set.x x_copy = 0 * x for (λi, ai) in active_set @. x_copy += λi * ai end @test norm(x_copy - x) ≤ 1e-12 end @testset "Sparse vectors as atoms" begin v1 = spzeros(3) v2 = spzeros(3) .+ 1 v3 = spzeros(3) v3[1] = 1 active_set = FrankWolfe.ActiveSet( 1/3 * ones(3), [v1, v2, v3], spzeros(3), ) FrankWolfe.compute_active_set_iterate!(active_set) active_set_dense = FrankWolfe.ActiveSet( 1/3 * ones(3), collect.([v1, v2, v3]), zeros(3), ) FrankWolfe.compute_active_set_iterate!(active_set_dense) @test active_set.x ≈ active_set_dense.x end @testset "Sparse matrices as atoms" begin v1 = sparse(1.0I, 3, 3) v2 = sparse(2.0I, 3, 3) v2[1,2] = 2 v3 = spzeros(3, 3) active_set = FrankWolfe.ActiveSet( 1/3 * ones(3), [v1, v2, v3], spzeros(3,3), ) FrankWolfe.compute_active_set_iterate!(active_set) active_set_dense = FrankWolfe.ActiveSet( 1/3 * ones(3), collect.([v1, v2, v3]), zeros(3,3), ) FrankWolfe.compute_active_set_iterate!(active_set_dense) @test active_set.x ≈ active_set_dense.x end end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
3984
# # Extra-lazification using FrankWolfe using Test using LinearAlgebra const n = 100 const center0 = 5.0 .+ 3 * rand(n) f(x) = 0.5 * norm(x .- center0)^2 function grad!(storage, x) return storage .= x .- center0 end @testset "Blended Pairwise Conditional Gradient" begin lmo = FrankWolfe.UnitSimplexOracle(4.3) tlmo = FrankWolfe.TrackingLMO(lmo) x0 = FrankWolfe.compute_extreme_point(lmo, randn(n)) # Adding a vertex storage vertex_storage = FrankWolfe.DeletedVertexStorage(typeof(x0)[], 5) tlmo.counter = 0 results = FrankWolfe.blended_pairwise_conditional_gradient( f, grad!, tlmo, x0, max_iteration=4000, lazy=true, epsilon=1e-5, add_dropped_vertices=true, extra_vertex_storage=vertex_storage, ) active_set = results[end] lmo_calls0 = tlmo.counter for iter in 1:10 center = 5.0 .+ 3 * rand(n) f_i(x) = 0.5 * norm(x .- center)^2 function grad_i!(storage, x) return storage .= x .- center end tlmo.counter = 0 FrankWolfe.blended_pairwise_conditional_gradient( f_i, grad_i!, tlmo, active_set, max_iteration=4000, lazy=true, epsilon=1e-5, add_dropped_vertices=true, use_extra_vertex_storage=true, extra_vertex_storage=vertex_storage, ) @test tlmo.counter < lmo_calls0 end end @testset "Away-Frank-Wolfe" begin lmo = FrankWolfe.UnitSimplexOracle(4.3) tlmo = FrankWolfe.TrackingLMO(lmo) x0 = FrankWolfe.compute_extreme_point(lmo, randn(n)) # Adding a vertex storage vertex_storage = FrankWolfe.DeletedVertexStorage(typeof(x0)[], 5) tlmo.counter = 0 results = FrankWolfe.away_frank_wolfe( f, grad!, tlmo, x0, max_iteration=4000, lazy=true, epsilon=1e-5, add_dropped_vertices=true, extra_vertex_storage=vertex_storage, ) active_set = results[end] lmo_calls0 = tlmo.counter for iter in 1:10 center = 5.0 .+ 3 * rand(n) f_i(x) = 0.5 * norm(x .- center)^2 function grad_i!(storage, x) return storage .= x .- center end tlmo.counter = 0 FrankWolfe.away_frank_wolfe( f_i, grad_i!, tlmo, active_set, max_iteration=4000, lazy=true, epsilon=1e-5, add_dropped_vertices=true, use_extra_vertex_storage=true, extra_vertex_storage=vertex_storage, ) @test tlmo.counter < lmo_calls0 end end @testset "Blended Pairwise Conditional Gradient" begin lmo = FrankWolfe.UnitSimplexOracle(4.3) tlmo = FrankWolfe.TrackingLMO(lmo) x0 = FrankWolfe.compute_extreme_point(lmo, randn(n)) # Adding a vertex storage vertex_storage = FrankWolfe.DeletedVertexStorage(typeof(x0)[], 5) tlmo.counter = 0 results = FrankWolfe.blended_conditional_gradient( f, grad!, tlmo, x0, max_iteration=4000, lazy=true, epsilon=1e-5, add_dropped_vertices=true, extra_vertex_storage=vertex_storage, ) active_set = results[end] lmo_calls0 = tlmo.counter for iter in 1:10 center = 5.0 .+ 3 * rand(n) f_i(x) = 0.5 * norm(x .- center)^2 function grad_i!(storage, x) return storage .= x .- center end tlmo.counter = 0 FrankWolfe.blended_conditional_gradient( f_i, grad_i!, tlmo, active_set, max_iteration=4000, lazy=true, epsilon=1e-5, add_dropped_vertices=true, use_extra_vertex_storage=true, extra_vertex_storage=vertex_storage, ) @test tlmo.counter < lmo_calls0 end end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
5808
using Test using FrankWolfe using Random using LinearAlgebra import FrankWolfe: compute_gradient, compute_value, compute_value_gradient Random.seed!(123) @testset "Simple and stochastic function gradient interface" begin for n in (1, 5, 20) A = rand(Float16, n, n) A .+= A' b = rand(Float16, n) c = rand(Float16) @testset "Simple function" begin simple_quad(x) = A * x ⋅ x / 2 + b ⋅ x + c function ∇simple_quad(storage, x) return storage .= A * x + b end f_simple = FrankWolfe.SimpleFunctionObjective( simple_quad, ∇simple_quad, Vector{Float32}(undef, n), # storage ) for _ in 1:5 x = randn(Float32, n) @test FrankWolfe.compute_gradient(f_simple, x) == ∇simple_quad(similar(x), x) @test FrankWolfe.compute_value(f_simple, x) == simple_quad(x) @test FrankWolfe.compute_value_gradient(f_simple, x) == (simple_quad(x), ∇simple_quad(similar(x), x)) @test FrankWolfe.compute_gradient(f_simple, convert(Vector{Float32}, x)) isa Vector{Float32} @test FrankWolfe.compute_value(f_simple, convert(Vector{Float32}, x)) isa Float32 end end @testset "Stochastic function linear regression" begin function simple_reg_loss(θ, data_point) (xi, yi) = data_point (a, b) = (θ[1:end-1], θ[end]) pred = a ⋅ xi + b return (pred - yi)^2 / 2 end function ∇simple_reg_loss(storage, θ, data_point) (xi, yi) = data_point (a, b) = (θ[1:end-1], θ[end]) storage[1:end-1] .+= xi * (a ⋅ xi + b - yi) storage[end] += a ⋅ xi + b - yi return storage end xs = [10 * randn(5) for i in 1:10000] params = rand(6) .- 1 # start params in (-1,0) bias = 4π params_perfect = [1:5; bias] @testset "Perfectly representable data" begin # Y perfectly representable by X data_perfect = [(x, x ⋅ (1:5) + bias) for x in xs] storage = similar(params_perfect) f_stoch = FrankWolfe.StochasticObjective( simple_reg_loss, ∇simple_reg_loss, data_perfect, storage, ) @test FrankWolfe._random_indices(f_stoch, 33, false)[1] == 33 @test FrankWolfe._random_indices(f_stoch, 33, true)[1] == length(xs) @test compute_value(f_stoch, params) > compute_value(f_stoch, params_perfect) @test compute_value(f_stoch, params_perfect) ≈ 0 atol = 1e-10 @test compute_gradient(f_stoch, params_perfect) ≈ zeros(6) atol = 1e-9 @test !isapprox(compute_gradient(f_stoch, params), zeros(6)) (f_estimate, g_estimate) = compute_value_gradient( f_stoch, params_perfect, batch_size=length(data_perfect), rng=Random.seed!(33), ) @test f_estimate ≈ 0 atol = 1e-10 @test g_estimate ≈ zeros(6) atol = 6e-10 (f_estimate, g_estimate) = compute_value_gradient( f_stoch, params, batch_size=length(data_perfect), rng=Random.seed!(33), ) @test f_estimate ≈ compute_value( f_stoch, params, batch_size=length(data_perfect), rng=Random.seed!(33), ) @test g_estimate ≈ compute_gradient( f_stoch, params, batch_size=length(data_perfect), rng=Random.seed!(33), ) end @testset "Noisy data" begin data_noisy = [(x, x ⋅ (1:5) + bias + 0.5 * randn()) for x in xs] storage = similar(params_perfect) f_stoch_noisy = FrankWolfe.StochasticObjective( simple_reg_loss, ∇simple_reg_loss, data_noisy, storage, ) @test compute_value(f_stoch_noisy, params) > compute_value(f_stoch_noisy, params_perfect) # perfect parameters shouldn't have too high of a residual gradient @test norm(compute_gradient(f_stoch_noisy, params_perfect)) <= length(data_noisy) * 0.05 @test norm(compute_gradient(f_stoch_noisy, params_perfect)) < norm(compute_gradient(f_stoch_noisy, params)) @test !isapprox(compute_gradient(f_stoch_noisy, params), zeros(6)) (f_estimate, g_estimate) = compute_value_gradient( f_stoch_noisy, params, batch_size=length(data_noisy), rng=Random.seed!(33), ) @test f_estimate ≈ compute_value( f_stoch_noisy, params, batch_size=length(data_noisy), rng=Random.seed!(33), ) @test g_estimate ≈ compute_gradient( f_stoch_noisy, params, batch_size=length(data_noisy), rng=Random.seed!(33), ) end end end end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
2758
using FrankWolfe using LinearAlgebra using Test # necessary for away step function Base.convert(::Type{GenericArray{Float64,1}}, v::FrankWolfe.ScaledHotVector{Float64}) return GenericArray(collect(v)) end @testset "GenericArray is maintained" begin n = Int(1e3) k = n f_generic(x::GenericArray) = dot(x, x) function grad_generic!(storage, x) @. storage = 2 * x end lmo = FrankWolfe.ProbabilitySimplexOracle(1) x0 = GenericArray(collect(FrankWolfe.compute_extreme_point(lmo, zeros(n)))) x, v, primal, dual_gap0, trajectory = FrankWolfe.frank_wolfe( f_generic, grad_generic!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Agnostic(), print_iter=k / 10, verbose=true, memory_mode=FrankWolfe.InplaceEmphasis(), ) @test f_generic(x) < f_generic(x0) @test x isa GenericArray x, v, primal, dual_gap0, trajectory = FrankWolfe.lazified_conditional_gradient( f_generic, grad_generic!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Agnostic(), print_iter=k / 10, verbose=true, memory_mode=FrankWolfe.InplaceEmphasis(), VType=FrankWolfe.ScaledHotVector{Float64}, ) @test f_generic(x) < f_generic(x0) @test x isa GenericArray @test_broken x, v, primal, dual_gap0, trajectory = FrankWolfe.away_frank_wolfe( f_generic, grad_generic!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Agnostic(), print_iter=k / 10, verbose=true, memory_mode=FrankWolfe.InplaceEmphasis(), ) end @testset "fast_equal special types" begin @testset "ScaledHotVector" begin a = FrankWolfe.ScaledHotVector(3.5, 3, 10) b = FrankWolfe.ScaledHotVector(3.5, 3, 11) @test !isequal(a, b) c = FrankWolfe.ScaledHotVector(3.5, 4, 10) @test !isequal(a, c) d = FrankWolfe.ScaledHotVector(3, 3, 10) @test !isequal(a, d) e = FrankWolfe.ScaledHotVector(3.0, 3, 10) @test isequal(d, e) f = FrankWolfe.ScaledHotVector(big(3.0), 3, 10) @test isequal(e, f) v = SparseArrays.spzeros(10) v[1:5] .= 3 v2 = copy(v) copyto!(v, e) @test norm(v) ≈ 3 @test norm(v[1:2]) ≈ 0 copyto!(v2, collect(e)) @test v == v2 end @testset "RankOneMatrix" begin a = FrankWolfe.RankOneMatrix(ones(3), ones(4)) b = FrankWolfe.RankOneMatrix(ones(3), 2 * ones(4)) @test !isequal(a, b) @test isequal(2a, b) @test !isequal(2a, b') @test !isequal(2a, FrankWolfe.RankOneMatrix(2 * ones(4), ones(3))) end end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
36028
using Test using FrankWolfe using LinearAlgebra import SparseArrays using Random import FrankWolfe: compute_extreme_point, LpNormLMO, KSparseLMO import MathOptInterface as MOI # solvers import GLPK import Clp import Hypatia using JuMP @testset "Simplex LMOs" begin n = 6 direction = zeros(6) rhs = 10 * rand() lmo_prob = FrankWolfe.ProbabilitySimplexOracle(rhs) lmo_unit = FrankWolfe.UnitSimplexOracle(rhs) @testset "Choosing improving direction" for idx in 1:n direction .= 0 direction[idx] = -1 res_point_prob = FrankWolfe.compute_extreme_point(lmo_prob, direction) res_point_unit = FrankWolfe.compute_extreme_point(lmo_unit, direction) for j in eachindex(res_point_prob) if j == idx @test res_point_prob[j] == res_point_unit[j] == rhs else @test res_point_prob[j] == res_point_unit[j] == 0 end end # computing dual solutions and testing complementarity dual, redC = FrankWolfe.compute_dual_solution(lmo_prob, direction, res_point_prob) @test sum((redC .* res_point_prob)) + (dual[1] * (rhs - sum(res_point_prob))) == 0 dual, redC = FrankWolfe.compute_dual_solution(lmo_unit, direction, res_point_unit) @test sum((redC .* res_point_unit)) + (dual[1] * (rhs - sum(res_point_unit))) == 0 end @testset "Choosing least-degrading direction" for idx in 1:n # all directions worsening, must pick idx direction .= 2 direction[idx] = 1 res_point_prob = FrankWolfe.compute_extreme_point(lmo_prob, direction) res_point_unit = FrankWolfe.compute_extreme_point(lmo_unit, direction) for j in eachindex(res_point_unit) @test res_point_unit[j] == 0 if j == idx @test res_point_prob[j] == rhs else @test res_point_prob[j] == 0 end end # computing dual solutions and testing complementarity dual, redC = FrankWolfe.compute_dual_solution(lmo_prob, direction, res_point_prob) @test sum((redC .* res_point_prob)) + (dual[1] * (rhs - sum(res_point_prob))) == 0 dual, redC = FrankWolfe.compute_dual_solution(lmo_unit, direction, res_point_unit) @test sum((redC .* res_point_unit)) + (dual[1] * (rhs - sum(res_point_unit))) == 0 end end @testset "Hypersimplex" begin @testset "Hypersimplex $n $K" for n in (2, 5, 10), K in (1, min(n, 4)) direction = randn(n) hypersimplex = FrankWolfe.HyperSimplexOracle(K, 3.0) unit_hypersimplex = FrankWolfe.UnitHyperSimplexOracle(K, 3.0) v = FrankWolfe.compute_extreme_point(hypersimplex, direction) @test SparseArrays.nnz(v) == K v_unit = FrankWolfe.compute_extreme_point(unit_hypersimplex, direction) @test SparseArrays.nnz(v_unit) == min(K, count(<=(0), direction)) optimizer = GLPK.Optimizer() moi_hypersimpler = FrankWolfe.convert_mathopt(hypersimplex, optimizer; dimension=n) v_moi = FrankWolfe.compute_extreme_point(moi_hypersimpler, direction) @test norm(v_moi - v) ≤ 1e-4 moi_unit_hypersimpler = FrankWolfe.convert_mathopt(unit_hypersimplex, optimizer; dimension=n) v_moi_unit = FrankWolfe.compute_extreme_point(moi_unit_hypersimpler, direction) @test norm(v_moi_unit - v_unit) ≤ 1e-4 end end @testset "Lp-norm epigraph LMO" begin for n in (1, 2, 5, 10) τ = 5 + 3 * rand() # tests that the "special" p behaves like the "any" p, i.e. 2.0 and 2 @testset "$p-norm" for p in (1, 1.0, 1.5, 2, 2.0, Inf, Inf32) lmo = LpNormLMO{Float64,p}(τ) for _ in 1:100 c = 5 * randn(n) v = FrankWolfe.compute_extreme_point(lmo, c) @test norm(v, p) ≈ τ end c = zeros(n) v = FrankWolfe.compute_extreme_point(lmo, c) @test !any(isnan, v) end @testset "K-Norm ball $K" for K in 1:n lmo_ball = FrankWolfe.KNormBallLMO(K, τ) for _ in 1:20 c = 5 * randn(n) v = FrankWolfe.compute_extreme_point(lmo_ball, c) v1 = FrankWolfe.compute_extreme_point(FrankWolfe.LpNormLMO{1}(τ), c) v_inf = FrankWolfe.compute_extreme_point(FrankWolfe.LpNormLMO{Inf}(τ / K), c) # K-norm is convex hull of union of the two norm epigraphs # => cannot do better than the best of them @test dot(v, c) ≈ min(dot(v1, c), dot(v_inf, c)) # test according to original norm definition # norm constraint must be tight K_sum = 0.0 for vi in sort!(abs.(v), rev=true)[1:K] K_sum += vi end @test K_sum ≈ τ end end end # testing issue on zero direction for n in (1, 5) lmo = FrankWolfe.LpNormLMO{Float64,2}(1.0) x0 = FrankWolfe.compute_extreme_point(lmo, zeros(n)) @test all(!isnan, x0) end end @testset "K-sparse polytope LMO" begin @testset "$n-dimension" for n in (1, 2, 10) τ = 5 + 3 * rand() for K in 1:n lmo = KSparseLMO(K, τ) x = 10 * randn(n) # dense vector v = compute_extreme_point(lmo, x) # K-sparsity @test count(!iszero, v) == K @test sum(abs.(v)) ≈ K * τ xsort = sort!(10 * rand(n)) v = compute_extreme_point(lmo, xsort) @test all(iszero, v[1:n-K]) @test all(abs(vi) ≈ abs(τ * sign(vi)) for vi in v[K:end]) reverse!(xsort) v = compute_extreme_point(lmo, xsort) @test all(iszero, v[K+1:end]) @test all(abs(vi) ≈ abs(τ * sign(vi)) for vi in v[1:K]) end end # type stability of K-sparse polytope LMO lmo = KSparseLMO(3, 2.0) x = 10 * randn(10) # dense vector @inferred compute_extreme_point(lmo, x) v = FrankWolfe.compute_extreme_point(lmo, zeros(3)) SparseArrays.dropzeros!(v) @test norm(v) > 0 end @testset "Caching on simplex LMOs" begin n = 6 direction = zeros(6) rhs = 10 * rand() lmo_unit = FrankWolfe.UnitSimplexOracle(rhs) lmo_never_cached = FrankWolfe.SingleLastCachedLMO(lmo_unit) lmo_cached = FrankWolfe.SingleLastCachedLMO(lmo_unit) lmo_multicached = FrankWolfe.MultiCacheLMO{3}(lmo_unit) lmo_veccached = FrankWolfe.VectorCacheLMO(lmo_unit) @testset "Forcing no cache remains nothing" for idx in 1:n direction .= 0 direction[idx] = -1 res_point_unit = FrankWolfe.compute_extreme_point(lmo_unit, direction) res_point_cached = FrankWolfe.compute_extreme_point(lmo_cached, direction, threshold=0) res_point_cached_multi = FrankWolfe.compute_extreme_point(lmo_multicached, direction, threshold=-1000) res_point_cached_vec = FrankWolfe.compute_extreme_point(lmo_veccached, direction, threshold=-1000) res_point_never_cached = FrankWolfe.compute_extreme_point(lmo_cached, direction, store_cache=false) @test res_point_never_cached == res_point_unit @test lmo_never_cached.last_vertex === nothing @test length(lmo_never_cached) == 0 empty!(lmo_never_cached) @test lmo_cached.last_vertex !== nothing @test length(lmo_cached) == 1 @test count(!isnothing, lmo_multicached.vertices) == min(3, idx) == length(lmo_multicached) @test length(lmo_veccached.vertices) == idx == length(lmo_veccached) # we set the cache at least at the first iteration if idx == 1 @test lmo_cached.last_vertex == res_point_unit end # whatever the iteration, last vertex is always the one returned @test lmo_cached.last_vertex == res_point_cached end empty!(lmo_multicached) @test length(lmo_multicached) == 0 empty!(lmo_veccached) @test length(lmo_veccached) == 0 end function _is_doubly_stochastic(m) for col in eachcol(m) @test sum(col) == 1 end for row in eachrow(m) @test sum(row) == 1 end end @testset "Birkhoff polytope" begin Random.seed!(42) lmo = FrankWolfe.BirkhoffPolytopeLMO() for n in (1, 2, 10) cost = rand(n, n) res = FrankWolfe.compute_extreme_point(lmo, cost) _is_doubly_stochastic(res) res2 = FrankWolfe.compute_extreme_point(lmo, vec(cost)) @test vec(res) ≈ res2 end cost_mat = [ 2 3 3 3 2 3 3 3 2 ] res = FrankWolfe.compute_extreme_point(lmo, cost_mat) @test res == I @test sum(cost_mat .* res) == 6 cost_mat = [ 3 2 3 2 3 3 3 3 2 ] res = FrankWolfe.compute_extreme_point(lmo, cost_mat) @test sum(cost_mat .* res) == 6 @test res == Bool[ 0 1 0 1 0 0 0 0 1 ] cost_mat = [ 3 2 3 3 3 2 2 3 3 ] res = FrankWolfe.compute_extreme_point(lmo, cost_mat) @test dot(cost_mat, res) == 6 @test res == Bool[ 0 1 0 0 0 1 1 0 0 ] end @testset "Matrix completion and nuclear norm" begin nfeat = 50 nobs = 100 r = 5 Xreal = Matrix{Float64}(undef, nobs, nfeat) X_gen_cols = randn(nfeat, r) X_gen_rows = randn(r, nobs) svals = 100 * rand(r) for i in 1:nobs for j in 1:nfeat Xreal[i, j] = sum(X_gen_cols[j, k] * X_gen_rows[k, i] * svals[k] for k in 1:r) end end @test rank(Xreal) == r missing_entries = unique!([(rand(1:nobs), rand(1:nfeat)) for _ in 1:1000]) f(X) = 0.5 * sum((X[i, j] - Xreal[i, j])^2 for i in 1:nobs, j in 1:nfeat if (i, j) ∉ missing_entries) function grad!(storage, X) storage .= 0 for i in 1:nobs for j in 1:nfeat if (i, j) ∉ missing_entries storage[i, j] = X[i, j] - Xreal[i, j] end end end return nothing end # TODO value of radius? lmo = FrankWolfe.NuclearNormLMO(sum(svdvals(Xreal))) x0 = @inferred FrankWolfe.compute_extreme_point(lmo, zero(Xreal)) gradient = similar(x0) grad!(gradient, x0) v0 = FrankWolfe.compute_extreme_point(lmo, gradient) @test dot(v0 - x0, gradient) < 0 xfin, vmin, _ = FrankWolfe.frank_wolfe( f, grad!, lmo, x0; epsilon=1e-6, max_iteration=400, print_iter=100, trajectory=false, verbose=false, line_search=FrankWolfe.Backtracking(), memory_mode=FrankWolfe.InplaceEmphasis(), ) @test 1 - (f(x0) - f(xfin)) / f(x0) < 1e-3 svals_fin = svdvals(xfin) @test sum(svals_fin[r+1:end]) / sum(svals_fin) ≤ 2e-2 xfin, vmin, _ = FrankWolfe.lazified_conditional_gradient( f, grad!, lmo, x0; epsilon=1e-6, max_iteration=400, print_iter=100, trajectory=false, verbose=false, line_search=FrankWolfe.Backtracking(), memory_mode=FrankWolfe.InplaceEmphasis(), ) end @testset "Spectral norms" begin Random.seed!(42) o = Hypatia.Optimizer() MOI.set(o, MOI.Silent(), true) optimizer = MOI.Bridges.full_bridge_optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), o, ), Float64, ) radius = 5.0 @testset "Spectraplex $n" for n in (2, 10) lmo = FrankWolfe.SpectraplexLMO(radius, n) direction = Matrix{Float64}(undef, n, n) lmo_moi = FrankWolfe.convert_mathopt(lmo, optimizer; side_dimension=n, use_modify=false) for _ in 1:10 Random.randn!(direction) v = @inferred FrankWolfe.compute_extreme_point(lmo, direction) vsym = @inferred FrankWolfe.compute_extreme_point(lmo, direction + direction') vsym2 = @inferred FrankWolfe.compute_extreme_point(lmo, Symmetric(direction + direction')) @test v ≈ vsym atol = 1e-6 @test v ≈ vsym2 atol = 1e-6 @testset "Vertex properties" begin eigen_v = eigen(Matrix(v)) @test eigmax(Matrix(v)) ≈ radius @test norm(eigen_v.values[1:end-1]) ≈ 0 atol = 1e-7 # u can be sqrt(r) * vec or -sqrt(r) * vec case_pos = ≈(norm(eigen_v.vectors[:, n] * sqrt(eigen_v.values[n]) - v.u), 0, atol=1e-9) case_neg = ≈(norm(eigen_v.vectors[:, n] * sqrt(eigen_v.values[n]) + v.u), 0, atol=1e-9) @test case_pos || case_neg end @testset "Comparison with SDP solution" begin v_moi = FrankWolfe.compute_extreme_point(lmo_moi, direction) @test norm(v - v_moi) <= 1e-6 end end end @testset "Unit spectrahedron $n" for n in (2, 10) lmo = FrankWolfe.UnitSpectrahedronLMO(radius, n) direction = Matrix{Float64}(undef, n, n) lmo_moi = FrankWolfe.convert_mathopt(lmo, optimizer; side_dimension=n, use_modify=false) direction_sym = similar(direction) for _ in 1:10 Random.randn!(direction) @. direction_sym = direction + direction' v = @inferred FrankWolfe.compute_extreme_point(lmo, direction) vsym = @inferred FrankWolfe.compute_extreme_point(lmo, direction_sym) @test v ≈ vsym atol = 1e-6 @testset "Vertex properties" begin emin = eigmin(direction_sym) if emin ≥ 0 @test norm(Matrix(v)) ≈ 0 else eigen_v = eigen(Matrix(v)) @test eigmax(Matrix(v)) ≈ radius @test norm(eigen_v.values[1:end-1]) ≈ 0 atol = 1e-7 # u can be sqrt(r) * vec or -sqrt(r) * vec case_pos = ≈(norm(eigen_v.vectors[:, n] * sqrt(eigen_v.values[n]) - v.u), 0, atol=1e-9) case_neg = ≈(norm(eigen_v.vectors[:, n] * sqrt(eigen_v.values[n]) + v.u), 0, atol=1e-9) @test case_pos || case_neg # make direction PSD direction_sym += 1.1 * abs(emin) * I @assert isposdef(direction_sym) v2 = FrankWolfe.compute_extreme_point(lmo, direction_sym) @test norm(Matrix(v2)) ≈ 0 end end @testset "Comparison with SDP solution" begin v_moi = FrankWolfe.compute_extreme_point(lmo_moi, direction) @test norm(v - v_moi) <= 1e-6 # forcing PSD direction to test 0 matrix case @. direction_sym = direction + direction' direction_sym += 1.1 * abs(eigmin(direction_sym)) * I @assert isposdef(direction_sym) v_moi2 = FrankWolfe.compute_extreme_point(lmo_moi, direction_sym) v_lmo2 = FrankWolfe.compute_extreme_point(lmo_moi, direction_sym) @test norm(v_moi2 - v_lmo2) <= 1e-6 @test norm(v_moi2) <= 1e-6 end end end end @testset "MOI oracle consistency" begin Random.seed!(42) o = GLPK.Optimizer() MOI.set(o, MOI.Silent(), true) @testset "MOI oracle consistent with unit simplex" for n in (1, 2, 10) MOI.empty!(o) x = MOI.add_variables(o, n) for xi in x MOI.add_constraint(o, xi, MOI.Interval(0.0, 1.0)) end MOI.add_constraint( o, MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(1.0, x), 0.0), MOI.LessThan(1.0), ) lmo = FrankWolfe.MathOptLMO(o) lmo_ref = FrankWolfe.UnitSimplexOracle(1.0) lmo_moi_ref = FrankWolfe.convert_mathopt(lmo_ref, GLPK.Optimizer(), dimension=n) direction = Vector{Float64}(undef, n) for _ in 1:5 Random.randn!(direction) vref = compute_extreme_point(lmo_ref, direction) v = compute_extreme_point(lmo, direction) v_moi = compute_extreme_point(lmo_moi_ref, direction) @test vref ≈ v @test vref ≈ v_moi end end @testset "MOI consistent probability simplex" for n in (1, 2, 10) MOI.empty!(o) x = MOI.add_variables(o, n) for xi in x MOI.add_constraint(o, xi, MOI.Interval(0.0, 1.0)) end MOI.add_constraint( o, MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(1.0, x), 0.0), MOI.EqualTo(1.0), ) lmo = FrankWolfe.MathOptLMO(o) lmo_ref = FrankWolfe.ProbabilitySimplexOracle(1.0) lmo_moi_ref = FrankWolfe.convert_mathopt(lmo_ref, GLPK.Optimizer(), dimension=n) direction = Vector{Float64}(undef, n) for _ in 1:5 Random.randn!(direction) vref = compute_extreme_point(lmo_ref, direction) v = compute_extreme_point(lmo, direction) v_moi = compute_extreme_point(lmo_moi_ref, direction) @test vref ≈ v @test vref ≈ v_moi end end @testset "Direction with coefficients" begin n = 5 MOI.empty!(o) x = MOI.add_variables(o, n) for xi in x MOI.add_constraint(o, xi, MOI.Interval(0.0, 1.0)) end MOI.add_constraint( o, MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(1.0, x), 0.0), MOI.EqualTo(1.0), ) lmo = FrankWolfe.MathOptLMO(o, false) direction = [MOI.ScalarAffineTerm(-2.0i, x[i]) for i in 2:3] v = compute_extreme_point(lmo, direction) @test v ≈ [0, 1] end @testset "Non-settable optimizer with cache" begin n = 5 o = MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), Clp.Optimizer(), ) MOI.set(o, MOI.Silent(), true) x = MOI.add_variables(o, 5) for xi in x MOI.add_constraint(o, xi, MOI.Interval(0.0, 1.0)) end MOI.add_constraint( o, MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(1.0, x), 0.0), MOI.EqualTo(1.0), ) lmo = FrankWolfe.MathOptLMO(o, false) lmo_ref = FrankWolfe.ProbabilitySimplexOracle(1.0) direction = Vector{Float64}(undef, n) for _ in 1:5 Random.randn!(direction) vref = compute_extreme_point(lmo_ref, direction) v = compute_extreme_point(lmo, direction) @test vref ≈ v end end @testset "Nuclear norm" for n in (5, 10) o = Hypatia.Optimizer() MOI.set(o, MOI.Silent(), true) inner_optimizer = MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), o, ) optimizer = MOI.Bridges.full_bridge_optimizer(inner_optimizer, Float64) MOI.set(optimizer, MOI.Silent(), true) nrows = 3n ncols = n direction = Matrix{Float64}(undef, nrows, ncols) τ = 10.0 lmo = FrankWolfe.NuclearNormLMO(τ) lmo_moi = FrankWolfe.convert_mathopt( lmo, optimizer, row_dimension=nrows, col_dimension=ncols, use_modify=false, ) nsuccess = 0 for _ in 1:10 randn!(direction) v_r = FrankWolfe.compute_extreme_point(lmo, direction) flattened = collect(vec(direction)) push!(flattened, 0) v_moi = FrankWolfe.compute_extreme_point(lmo_moi, flattened) if v_moi === nothing # ignore non-terminating MOI solver results continue end nsuccess += 1 v_moi_mat = reshape(v_moi[1:end-1], nrows, ncols) @test v_r ≈ v_moi_mat rtol = 1e-2 end @test nsuccess > 1 end end @testset "MOI oracle on Birkhoff polytope" begin o = GLPK.Optimizer() o_ref = GLPK.Optimizer() for n in (1, 2, 10) MOI.empty!(o) (x, _) = MOI.add_constrained_variables(o, fill(MOI.Interval(0.0, 1.0), n * n)) xmat = reshape(x, n, n) for idx in 1:n # column constraint MOI.add_constraint( o, MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(ones(n), xmat[:, idx]), 0.0), MOI.EqualTo(1.0), ) # row constraint MOI.add_constraint( o, MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(ones(n), xmat[idx, :]), 0.0), MOI.EqualTo(1.0), ) end direction_vec = Vector{Float64}(undef, n * n) lmo_bkf = FrankWolfe.BirkhoffPolytopeLMO() lmo_moi = FrankWolfe.MathOptLMO(o) lmo_moi_ref = FrankWolfe.convert_mathopt(lmo_bkf, o_ref, dimension=n) for _ in 1:10 randn!(direction_vec) direction_mat = reshape(direction_vec, n, n) v_moi = FrankWolfe.compute_extreme_point(lmo_moi, direction_vec) v_moi_mat = reshape(v_moi, n, n) v_bfk = FrankWolfe.compute_extreme_point(lmo_bkf, direction_mat) @test all(isapprox.(v_moi_mat, v_bfk, atol=1e-4)) v_moi_mat2 = FrankWolfe.compute_extreme_point(lmo_moi, direction_mat) @test all(isapprox.(v_moi_mat2, v_moi_mat)) end end end @testset "MOI oracle and KSparseLMO" begin o_base = GLPK.Optimizer() cached = MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), o_base, ) o = MOI.Bridges.full_bridge_optimizer(cached, Float64) o_ref = MOI.Bridges.full_bridge_optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), GLPK.Optimizer(), ), Float64, ) for n in (1, 2, 5, 10) for K in 1:3:n τ = 10 * rand() MOI.empty!(o) x = MOI.add_variables(o, n) tinf = MOI.add_variable(o) MOI.add_constraint(o, MOI.VectorOfVariables([tinf; x]), MOI.NormInfinityCone(n + 1)) MOI.add_constraint(o, tinf, MOI.LessThan(τ)) t1 = MOI.add_variable(o) MOI.add_constraint(o, MOI.VectorOfVariables([t1; x]), MOI.NormOneCone(n + 1)) MOI.add_constraint(o, t1, MOI.LessThan(τ * K)) direction = Vector{Float64}(undef, n) lmo_moi = FrankWolfe.MathOptLMO(o, false) lmo_ksp = FrankWolfe.KSparseLMO(K, τ) lmo_moi_convert = FrankWolfe.convert_mathopt(lmo_ksp, o_ref, dimension=n, use_modify=false) for _ in 1:20 randn!(direction) v_moi = FrankWolfe.compute_extreme_point(lmo_moi, MOI.ScalarAffineTerm.(direction, x)) v_ksp = FrankWolfe.compute_extreme_point(lmo_ksp, direction) v_moi_conv = FrankWolfe.compute_extreme_point( lmo_moi_convert, MOI.ScalarAffineTerm.(direction, x), ) for idx in eachindex(v_moi) @test isapprox(v_moi[idx], v_ksp[idx], atol=1e-4) @test isapprox(v_moi_conv[idx], v_ksp[idx], atol=1e-4) end end # verifying absence of a bug if n == 5 direction .= ( -0.07020498519126772, 0.4298929981513661, -0.8678437699266819, -0.08899938054920563, 1.160622285477465, ) v_moi = FrankWolfe.compute_extreme_point(lmo_moi, MOI.ScalarAffineTerm.(direction, x)) v_ksp = FrankWolfe.compute_extreme_point(lmo_ksp, direction) for idx in eachindex(v_moi) @test isapprox(v_moi[idx], v_ksp[idx], atol=1e-4) end end end end end @testset "Product LMO" begin lmo = FrankWolfe.ProductLMO(FrankWolfe.LpNormLMO{Inf}(3.0), FrankWolfe.LpNormLMO{1}(2.0)) dinf = randn(10) d1 = randn(5) vtup = FrankWolfe.compute_extreme_point(lmo, (dinf, d1)) @test length(vtup) == 2 (vinf, v1) = vtup @test sum(abs, vinf) ≈ 10 * 3.0 @test sum(!iszero, v1) == 1 vvec = FrankWolfe.compute_extreme_point(lmo, [dinf; d1], direction_indices=(1:10, 11:15)) @test vvec ≈ [vinf; v1] # Test different constructor for ProductLMO and and direction as BlockVector lmo2 = FrankWolfe.ProductLMO([FrankWolfe.LpNormLMO{Inf}(3.0), FrankWolfe.LpNormLMO{1}(2.0)]) v_block = FrankWolfe.compute_extreme_point(lmo2, FrankWolfe.BlockVector([dinf, d1])) @test FrankWolfe.BlockVector([vinf, v1]) == v_block end @testset "Scaled L-1 norm polytopes" begin lmo = FrankWolfe.ScaledBoundL1NormBall(-ones(10), ones(10)) # equivalent to LMO lmo_ref = FrankWolfe.LpNormLMO{1}(1) # all coordinates shifted up lmo_shifted = FrankWolfe.ScaledBoundL1NormBall(zeros(10), 2 * ones(10)) lmo_scaled = FrankWolfe.ScaledBoundL1NormBall(-2 * ones(10), 2 * ones(10)) for _ in 1:100 d = randn(10) v = FrankWolfe.compute_extreme_point(lmo, d) vref = FrankWolfe.compute_extreme_point(lmo_ref, d) @test v ≈ vref vshift = FrankWolfe.compute_extreme_point(lmo_shifted, d) @test v .+ 1 ≈ vshift v2 = FrankWolfe.compute_extreme_point(lmo_scaled, d) @test v2 ≈ 2v end d = zeros(10) v = FrankWolfe.compute_extreme_point(lmo, d) vref = FrankWolfe.compute_extreme_point(lmo_ref, d) @test v ≈ vref @test norm(v) == 1 # non-uniform scaling # validates bugfix lmo_nonunif = FrankWolfe.ScaledBoundL1NormBall([-1.0, -1.0], [3.0, 1.0]) direction = [-0.8272727272727383, -0.977272727272718] v = FrankWolfe.compute_extreme_point(lmo_nonunif, direction) @test v ≈ [3, 0] v = FrankWolfe.compute_extreme_point(lmo_nonunif, -direction) @test v ≈ [-1, 0] end @testset "Scaled L-inf norm polytopes" begin # tests ScaledBoundLInfNormBall for the standard hypercube, a shifted one, and a scaled one lmo = FrankWolfe.ScaledBoundLInfNormBall(-ones(10), ones(10)) lmo_ref = FrankWolfe.LpNormLMO{Inf}(1) lmo_shifted = FrankWolfe.ScaledBoundLInfNormBall(zeros(10), 2 * ones(10)) lmo_scaled = FrankWolfe.ScaledBoundLInfNormBall(-2 * ones(10), 2 * ones(10)) bounds = collect(1.0:10) # tests another ScaledBoundLInfNormBall with unequal bounds against a MOI optimizer lmo_scaled_unequally = FrankWolfe.ScaledBoundLInfNormBall(-bounds, bounds) o = GLPK.Optimizer() MOI.set(o, MOI.Silent(), true) x = MOI.add_variables(o, 10) MOI.add_constraint.(o, x, MOI.GreaterThan.(-bounds)) MOI.add_constraint.(o, x, MOI.LessThan.(bounds)) scaled_unequally_opt = FrankWolfe.MathOptLMO(o) for _ in 1:100 d = randn(10) v = FrankWolfe.compute_extreme_point(lmo, d) vref = FrankWolfe.compute_extreme_point(lmo_ref, d) @test v ≈ vref vshift = FrankWolfe.compute_extreme_point(lmo_shifted, d) @test v .+ 1 ≈ vshift v2 = FrankWolfe.compute_extreme_point(lmo_scaled, d) @test v2 ≈ 2v v3 = FrankWolfe.compute_extreme_point(lmo_scaled_unequally, d) v3_test = compute_extreme_point(scaled_unequally_opt, d) @test v3 ≈ v3_test end d = zeros(10) v = FrankWolfe.compute_extreme_point(lmo, d) vref = FrankWolfe.compute_extreme_point(lmo_ref, d) @test v ≈ vref @test norm(v, Inf) == 1 # test with non-flat array lmo = FrankWolfe.ScaledBoundLInfNormBall(-ones(3, 3), ones(3, 3)) lmo_flat = FrankWolfe.ScaledBoundLInfNormBall(-ones(9), ones(9)) for _ in 1:10 d = randn(3, 3) v = FrankWolfe.compute_extreme_point(lmo, d) vflat = FrankWolfe.compute_extreme_point(lmo_flat, vec(d)) @test vec(v) == vflat @test size(d) == size(v) end end @testset "Copy MathOpt LMO" begin o_clp = MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), Clp.Optimizer(), ) for o in (GLPK.Optimizer(), o_clp) MOI.set(o, MOI.Silent(), true) n = 100 x = MOI.add_variables(o, n) f = sum(1.0 * xi for xi in x) MOI.add_constraint(o, f, MOI.LessThan(1.0)) MOI.add_constraint(o, f, MOI.GreaterThan(1.0)) lmo = FrankWolfe.MathOptLMO(o) lmo2 = copy(lmo) for d in (ones(n), -ones(n)) v = FrankWolfe.compute_extreme_point(lmo, d) v2 = FrankWolfe.compute_extreme_point(lmo2, d) @test v ≈ v2 end end end @testset "MathOpt LMO with BlockVector" begin o = GLPK.Optimizer() MOI.set(o, MOI.Silent(), true) x = MOI.add_variables(o, 10) y = MOI.add_variables(o, 10) MOI.add_constraint.(o, x, MOI.GreaterThan.(-ones(10))) MOI.add_constraint.(o, x, MOI.LessThan.(ones(10))) MOI.add_constraint.(o, y, MOI.GreaterThan.(-2 * ones(10))) MOI.add_constraint.(o, y, MOI.LessThan.(2 * ones(10))) lmo = FrankWolfe.MathOptLMO(o) direction = FrankWolfe.BlockVector([ones(10), -ones(10)]) v = FrankWolfe.compute_extreme_point(lmo, direction) v_ref = FrankWolfe.BlockVector([-ones(10), 2 * ones(10)]) @test v == v_ref end @testset "Inplace LMO correctness" begin V = [-6.0, -6.15703, -5.55986] M = [3.0 2.8464949 2.4178848; 2.8464949 3.0 2.84649498; 2.4178848 2.84649498 3.0] fun0(p) = dot(V, p) + dot(p, M, p) function fun0_grad!(g, p) g .= V return mul!(g, M, p, 2, 1) end lmo_dense = FrankWolfe.ScaledBoundL1NormBall(-ones(3), ones(3)) lmo_standard = FrankWolfe.LpNormLMO{1}(1.0) x_dense, _, _, _, _ = FrankWolfe.frank_wolfe(fun0, fun0_grad!, lmo_dense, [1.0, 0.0, 0.0]) x_standard, _, _, _, _ = FrankWolfe.frank_wolfe(fun0, fun0_grad!, lmo_standard, [1.0, 0.0, 0.0]) @test x_dense == x_standard lmo_dense = FrankWolfe.ScaledBoundLInfNormBall(-ones(3), ones(3)) lmo_standard = FrankWolfe.LpNormLMO{Inf}(1.0) x_dense, _, _, _, _ = FrankWolfe.frank_wolfe(fun0, fun0_grad!, lmo_dense, [1.0, 0.0, 0.0]) x_standard, _, _, _, _ = FrankWolfe.frank_wolfe(fun0, fun0_grad!, lmo_standard, [1.0, 0.0, 0.0]) @test x_dense == x_standard end @testset "Ellipsoid LMO $n" for n in (2, 5, 10) A = zeros(n, n) A[1, 1] = 3 @test_throws PosDefException FrankWolfe.EllipsoidLMO(A) for i in 1:n A[i, i] = 3 end radius = 4 * rand() center = randn(n) lmo = FrankWolfe.EllipsoidLMO(A, center, radius) d = randn(n) v = FrankWolfe.compute_extreme_point(lmo, d) @test dot(v - center, A, v - center) ≈ radius atol = 1e-10 A = randn(n, n) A += A' while !isposdef(A) A += I end lmo = FrankWolfe.EllipsoidLMO(A, center, radius) d = randn(n) v = FrankWolfe.compute_extreme_point(lmo, d) @test dot(v - center, A, v - center) ≈ radius atol = 1e-10 m = Model(Hypatia.Optimizer) @variable(m, x[1:n]) @constraint(m, dot(x - center, A, x - center) ≤ radius) @objective(m, Min, dot(x, d)) JuMP.set_silent(m) optimize!(m) xv = JuMP.value.(x) @test dot(xv, d) ≈ dot(v, d) atol = 1e-5 * n end @testset "Convex hull" begin lmo = FrankWolfe.ConvexHullOracle([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) for _ in 1:100 d = randn(3) v = FrankWolfe.compute_extreme_point(lmo, d) v_simplex = FrankWolfe.compute_extreme_point(FrankWolfe.ProbabilitySimplexOracle(1), d) @test v == v_simplex end d = zeros(3) v = FrankWolfe.compute_extreme_point(lmo, d) @test v == lmo.vertices[1] end @testset "Symmetric LMO" begin # See examples/reynolds.jl struct BellCorrelationsLMO{T} <: FrankWolfe.LinearMinimizationOracle m::Int # number of inputs tmp::Vector{T} # used to compute scalar products end function FrankWolfe.compute_extreme_point( lmo::BellCorrelationsLMO{T}, A::Array{T,3}; kwargs..., ) where {T<:Number} ax = [ones(T, lmo.m) for n in 1:3] sc1 = zero(T) sc2 = one(T) axm = [zeros(Int, lmo.m) for n in 1:3] scm = typemax(T) L = 2^lmo.m intax = zeros(Int, lmo.m) for λa3 in 0:(L÷2)-1 digits!(intax, λa3, base=2) ax[3][1:lmo.m] .= 2intax .- 1 for λa2 in 0:L-1 digits!(intax, λa2, base=2) ax[2][1:lmo.m] .= 2intax .- 1 for x1 in 1:lmo.m lmo.tmp[x1] = 0 for x2 in 1:lmo.m, x3 in 1:lmo.m lmo.tmp[x1] += A[x1, x2, x3] * ax[2][x2] * ax[3][x3] end ax[1][x1] = lmo.tmp[x1] > zero(T) ? -one(T) : one(T) end sc = dot(ax[1], lmo.tmp) if sc < scm scm = sc for n in 1:3 axm[n] .= ax[n] end end end end return [ axm[1][x1] * axm[2][x2] * axm[3][x3] for x1 in 1:lmo.m, x2 in 1:lmo.m, x3 in 1:lmo.m ] end p = [0.5cos((i + j + k) * pi / 4) for i in 1:4, j in 1:4, k in 1:4] normp2 = dot(p, p) / 2 f = let p = p, normp2 = normp2 x -> normp2 + dot(x, x) / 2 - dot(p, x) end grad! = let p = p (storage, xit) -> begin for x in eachindex(xit) storage[x] = xit[x] - p[x] end end end function reynolds_permutedims(atom::Array{Int,3}, lmo::BellCorrelationsLMO{Float64}) res = zeros(size(atom)) for per in [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]] res .+= permutedims(atom, per) end res ./= 6 return res end reynolds_adjoint(gradient, lmo) = gradient lmo = BellCorrelationsLMO{Float64}(size(p, 1), zeros(size(p, 1))) sym = FrankWolfe.SymmetricLMO(lmo, reynolds_permutedims, reynolds_adjoint) x0 = FrankWolfe.compute_extreme_point(sym, -p) active_set = FrankWolfe.ActiveSet([(1.0, x0)]) res = FrankWolfe.blended_pairwise_conditional_gradient( f, grad!, sym, active_set; lazy=true, line_search=FrankWolfe.Shortstep(1.0), ) @test norm(res[1] - p) < 1e-6 @test length(res[6]) < 25 end @testset "Ordered Weighted Norm LMO" begin Random.seed!(4321) N = Int(1e3) for _ in 1:10 radius = abs(randn())+1 direction = randn(N) #norm l1 weights = ones(N) lmo = FrankWolfe.OrderWeightNormLMO(weights,radius) lmo_l1 = FrankWolfe.LpNormLMO{1}(radius) v1 = FrankWolfe.compute_extreme_point(lmo,direction) v2 = FrankWolfe.compute_extreme_point(lmo_l1,direction) @test v1 == v2 #norm L_∞ weights = zeros(N) weights[1] = 1 lmo = FrankWolfe.OrderWeightNormLMO(weights,radius) lmo_l_inf = FrankWolfe.LpNormLMO{Inf}(radius) v1 = FrankWolfe.compute_extreme_point(lmo,direction) v2 = FrankWolfe.compute_extreme_point(lmo_l_inf,direction) @test v1 == v2 #symmetry direction_opp = -1*direction weights = rand(N) lmo_opp = FrankWolfe.OrderWeightNormLMO(weights,radius) v = FrankWolfe.compute_extreme_point(lmo_opp,direction) v_opp = FrankWolfe.compute_extreme_point(lmo_opp,direction_opp) @test v == -1*v_opp end end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
918
import FrankWolfe import LinearAlgebra import Random using Test n = Int(1e3) k = 10000 s = rand(1:100) @info "Seed: $s" Random.seed!(s) xpi = rand(n); total = sum(xpi); const xp = xpi ./ total; f(x) = LinearAlgebra.norm(x - xp)^2 function grad!(storage, x) @. storage = 2 * (x - xp) return nothing end lmo = FrankWolfe.UnitSimplexOracle(1.0) x0 = FrankWolfe.compute_extreme_point(lmo, rand(n)) xblas, _ = FrankWolfe.frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Shortstep(2.0), memory_mode=FrankWolfe.OutplaceEmphasis(), verbose=false, trajectory=false, momentum=0.9, ) xmem, _ = FrankWolfe.frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Shortstep(2.0), memory_mode=FrankWolfe.InplaceEmphasis(), verbose=true, trajectory=true, momentum=0.9, ) @test f(xblas) ≈ f(xmem)
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
2007
import FrankWolfe using LinearAlgebra using Test @testset "Testing adaptive LS when already optimal and gradient is 0" begin f(x) = norm(x)^2 function grad!(storage, x) return storage .= 2x end lmo = FrankWolfe.UnitSimplexOracle(1.0) x00 = FrankWolfe.compute_extreme_point(lmo, ones(5)) x0 = copy(x00) @test abs( FrankWolfe.away_frank_wolfe( f, grad!, lmo, x0, max_iteration=1000, line_search=FrankWolfe.Agnostic(), verbose=true, )[3], ) < 1.0e-10 x0 = copy(x00) @test abs( FrankWolfe.away_frank_wolfe( f, grad!, lmo, x0, max_iteration=1000, line_search=FrankWolfe.AdaptiveZerothOrder(), verbose=true, )[3], ) < 1.0e-10 @test abs( FrankWolfe.away_frank_wolfe( f, grad!, lmo, x0, max_iteration=1000, line_search=FrankWolfe.Adaptive(), verbose=true, )[3], ) < 1.0e-10 x0 = copy(x00) @test abs( FrankWolfe.away_frank_wolfe( f, grad!, lmo, x0, max_iteration=1000, lazy=true, line_search=FrankWolfe.AdaptiveZerothOrder(), verbose=true, )[3], ) < 1.0e-10 @test abs( FrankWolfe.away_frank_wolfe( f, grad!, lmo, x0, max_iteration=1000, lazy=true, line_search=FrankWolfe.Adaptive(), verbose=true, )[3], ) < 1.0e-10 x0 = copy(x00) @test abs( FrankWolfe.blended_conditional_gradient( f, grad!, lmo, x0, max_iteration=1000, line_search=FrankWolfe.Adaptive(), verbose=true, )[3], ) < 1.0e-10 end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
1239
using FrankWolfe using LinearAlgebra using Test n = Int(1e3) k = n f(x) = dot(x, x) function grad!(storage, x) @. storage = 2 * x end # pick feasible region lmo = FrankWolfe.ProbabilitySimplexOracle{Rational{BigInt}}(1); # radius needs to be integer or rational # compute some initial vertex x0 = FrankWolfe.compute_extreme_point(lmo, zeros(n)); x, v, primal, dual_gap0, trajectory = FrankWolfe.frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Agnostic(), print_iter=k / 10, verbose=false, memory_mode=FrankWolfe.OutplaceEmphasis(), ) xmem, vmem, primal, dual_gap, trajectory = FrankWolfe.frank_wolfe( f, grad!, lmo, copy(x0), max_iteration=k, line_search=FrankWolfe.Agnostic(), print_iter=k / 10, verbose=true, memory_mode=FrankWolfe.InplaceEmphasis(), ) xstep, _ = FrankWolfe.frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Shortstep(2 // 1), print_iter=k / 10, verbose=true, ) @test eltype(xmem) == eltype(xstep) == Rational{BigInt} if !(eltype(xmem) <: Rational) @test eltype(xmem) == eltype(x) end @test xmem == x @test abs(f(xstep) - f(x)) <= 1e-3 @test vmem == v
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
20804
using FrankWolfe using Test using LinearAlgebra using DoubleFloats include("lmo.jl") include("function_gradient.jl") include("active_set.jl") include("utils.jl") include("active_set_variants.jl") include("alternating_methods_tests.jl") @testset "Testing vanilla Frank-Wolfe with various step size and momentum strategies" begin f(x) = norm(x)^2 function grad!(storage, x) return storage .= 2x end lmo_prob = FrankWolfe.ProbabilitySimplexOracle(1) x0 = FrankWolfe.compute_extreme_point(lmo_prob, zeros(5)) @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=10000, line_search=FrankWolfe.GeneralizedAgnostic(), verbose=true, )[3] - 0.2, ) < 1.0e-5 g(x) = 2 + log(1 + log(x + 1)) @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=10000, line_search=FrankWolfe.GeneralizedAgnostic(g), verbose=true, )[3] - 0.2, ) < 1.0e-5 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Agnostic(), verbose=true, )[3] - 0.2, ) < 1.0e-5 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Agnostic(), verbose=false, gradient=collect(similar(x0)), )[3] - 0.2, ) < 1.0e-5 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Goldenratio(), verbose=true, )[3] - 0.2, ) < 1.0e-5 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Backtracking(), verbose=false, )[3] - 0.2, ) < 1.0e-5 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Nonconvex(), verbose=false, )[3] - 0.2, ) < 1.0e-2 @test FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Shortstep(2.0), verbose=false, )[3] ≈ 0.2 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Nonconvex(), verbose=false, )[3] - 0.2, ) < 1.0e-2 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Agnostic(), verbose=false, momentum=0.9, )[3] - 0.2, ) < 1.0e-3 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Agnostic(), verbose=false, momentum=0.5, )[3] - 0.2, ) < 1.0e-3 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Agnostic(), verbose=false, momentum=0.9, memory_mode=FrankWolfe.InplaceEmphasis(), )[3] - 0.2, ) < 1.0e-3 end @testset "Gradient with momentum correctly updated" begin # fixing https://github.com/ZIB-IOL/FrankWolfe.jl/issues/47 include("momentum_memory.jl") end @testset "Testing Lazified Conditional Gradients with various step size strategies" begin f(x) = norm(x)^2 function grad!(storage, x) @. storage = 2x return nothing end lmo_prob = FrankWolfe.ProbabilitySimplexOracle(1) x0 = FrankWolfe.compute_extreme_point(lmo_prob, zeros(5)) @test abs( FrankWolfe.lazified_conditional_gradient( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Goldenratio(), verbose=true, )[3] - 0.2, ) < 1.0e-5 @test abs( FrankWolfe.lazified_conditional_gradient( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Backtracking(), verbose=true, )[3] - 0.2, ) < 1.0e-5 @test abs( FrankWolfe.lazified_conditional_gradient( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Shortstep(2.0), verbose=true, )[3] - 0.2, ) < 1.0e-5 @test abs( FrankWolfe.lazified_conditional_gradient( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.AdaptiveZerothOrder(), verbose=true, )[3] - 0.2, ) < 1.0e-5 end @testset "Testing Lazified Conditional Gradients with cache strategies" begin n = Int(1e5) L = 2 k = 1000 bound = 16 * L * 2 / (k + 2) f(x) = norm(x)^2 function grad!(storage, x) @. storage = 2 * x return nothing end lmo_prob = FrankWolfe.ProbabilitySimplexOracle(1) x0 = FrankWolfe.compute_extreme_point(lmo_prob, zeros(n)) x, v, primal, dual_gap, trajectory = FrankWolfe.lazified_conditional_gradient( f, grad!, lmo_prob, x0, max_iteration=k, line_search=FrankWolfe.Shortstep(2.0), verbose=true, ) @test primal - 1 / n <= bound x, v, primal, dual_gap, trajectory = FrankWolfe.lazified_conditional_gradient( f, grad!, lmo_prob, x0, max_iteration=k, line_search=FrankWolfe.Shortstep(2.0), cache_size=100, verbose=false, ) @test primal - 1 / n <= bound x, v, primal, dual_gap, trajectory = FrankWolfe.lazified_conditional_gradient( f, grad!, lmo_prob, x0, max_iteration=k, line_search=FrankWolfe.Shortstep(2.0), cache_size=100, greedy_lazy=true, verbose=false, ) @test primal - 1 / n <= bound end @testset "Testing memory_mode blas vs memory" begin n = Int(1e5) k = 100 xpi = rand(n) total = sum(xpi) xp = xpi ./ total f(x) = norm(x - xp)^2 function grad!(storage, x) @. storage = 2 * (x - xp) return nothing end @testset "Using sparse structure" begin lmo_prob = FrankWolfe.ProbabilitySimplexOracle(1.0) x0 = FrankWolfe.compute_extreme_point(lmo_prob, spzeros(n)) x, v, primal, dual_gap, trajectory = FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=k, line_search=FrankWolfe.Backtracking(), print_iter=k / 10, verbose=false, memory_mode=FrankWolfe.OutplaceEmphasis(), ) @test primal < f(x0) x, v, primal, dual_gap, trajectory = FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=k, line_search=FrankWolfe.Backtracking(), print_iter=k / 10, verbose=false, memory_mode=FrankWolfe.InplaceEmphasis(), ) @test primal < f(x0) x, v, primal, dual_gap, trajectory = FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=k, line_search=FrankWolfe.MonotonicStepSize(), print_iter=k / 10, verbose=false, memory_mode=FrankWolfe.InplaceEmphasis(), ) @test primal < f(x0) x, v, primal, dual_gap, trajectory = FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=k, line_search=FrankWolfe.MonotonicNonConvexStepSize(), print_iter=k / 10, verbose=false, memory_mode=FrankWolfe.InplaceEmphasis(), ) @test primal < f(x0) end end @testset "Testing rational variant" begin rhs = 1 n = 40 k = 1000 xpi = rand(big(1):big(100), n) total = sum(xpi) xp = xpi .// total f(x) = norm(x - xp)^2 function grad!(storage, x) @. storage = 2 * (x - xp) end lmo = FrankWolfe.ProbabilitySimplexOracle{Rational{BigInt}}(rhs) direction = rand(n) x0 = FrankWolfe.compute_extreme_point(lmo, direction) @test eltype(x0) == Rational{BigInt} x, v, primal, dual_gap, trajectory = FrankWolfe.frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Agnostic(), print_iter=k / 10, memory_mode=FrankWolfe.OutplaceEmphasis(), verbose=false, ) @test eltype(x0) == Rational{BigInt} x, v, primal, dual_gap, trajectory = FrankWolfe.frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Agnostic(), print_iter=k / 10, memory_mode=FrankWolfe.InplaceEmphasis(), verbose=true, ) @test eltype(x0) == eltype(x) == Rational{BigInt} @test f(x) <= 1e-4 # very slow computation, explodes quickly x0 = collect(FrankWolfe.compute_extreme_point(lmo, direction)) x, v, primal, dual_gap, trajectory = FrankWolfe.frank_wolfe( f, grad!, lmo, x0, max_iteration=15, line_search=FrankWolfe.Shortstep(2 // 1), print_iter=k / 100, memory_mode=FrankWolfe.InplaceEmphasis(), verbose=true, ) x0 = FrankWolfe.compute_extreme_point(lmo, direction) x, v, primal, dual_gap, trajectory = FrankWolfe.frank_wolfe( f, grad!, lmo, x0, max_iteration=15, line_search=FrankWolfe.Shortstep(2 // 1), print_iter=k / 10, memory_mode=FrankWolfe.InplaceEmphasis(), verbose=true, ) @test eltype(x) == Rational{BigInt} end @testset "Multi-precision tests" begin rhs = 1 n = 100 k = 1000 xp = zeros(n) L = 2 bound = 2 * L * 2 / (k + 2) f(x) = norm(x - xp)^2 function grad!(storage, x) @. storage = 2 * (x - xp) end test_types = (Float16, Float32, Float64, Double64, BigFloat, Rational{BigInt}) @testset "Multi-precision test for $T" for T in test_types lmo = FrankWolfe.ProbabilitySimplexOracle{T}(rhs) direction = rand(n) x0 = FrankWolfe.compute_extreme_point(lmo, direction) x, v, primal, dual_gap, trajectory = FrankWolfe.frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Agnostic(), print_iter=k / 10, memory_mode=FrankWolfe.OutplaceEmphasis(), verbose=false, ) @test eltype(x0) == T @test primal - 1 / n <= bound x, v, primal, dual_gap, trajectory = FrankWolfe.frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Agnostic(), print_iter=k / 10, memory_mode=FrankWolfe.InplaceEmphasis(), verbose=false, ) @test eltype(x0) == T @test primal - 1 // n <= bound x, v, primal, dual_gap, trajectory = FrankWolfe.away_frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.AdaptiveZerothOrder(), print_iter=k / 10, memory_mode=FrankWolfe.InplaceEmphasis(), verbose=true, ) @test eltype(x0) == T @test primal - 1 // n <= bound x, v, primal, dual_gap, trajectory, _ = FrankWolfe.blended_conditional_gradient( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.AdaptiveZerothOrder(), print_iter=k / 10, memory_mode=FrankWolfe.InplaceEmphasis(), verbose=true, ) @test eltype(x0) == T @test primal - 1 // n <= bound end end @testset "Stochastic FW linear regression" begin function simple_reg_loss(θ, data_point) (xi, yi) = data_point (a, b) = (θ[1:end-1], θ[end]) pred = a ⋅ xi + b return (pred - yi)^2 / 2 end function ∇simple_reg_loss(storage, θ, data_point) (xi, yi) = data_point (a, b) = (θ[1:end-1], θ[end]) pred = a ⋅ xi + b storage[1:end-1] .+= xi * (pred - yi) storage[end] += pred - yi return storage end xs = [10 * randn(5) for i in 1:20000] params = rand(6) .- 1 # start params in (-1,0) bias = 2π params_perfect = [1:5; bias] params = rand(6) .- 1 # start params in (-1,0) data_perfect = [(x, x ⋅ (1:5) + bias) for x in xs] f_stoch = FrankWolfe.StochasticObjective( simple_reg_loss, ∇simple_reg_loss, data_perfect, similar(params), ) lmo = FrankWolfe.LpNormLMO{2}(1.1 * norm(params_perfect)) θ, _, _, _, _ = FrankWolfe.stochastic_frank_wolfe( f_stoch, lmo, copy(params), momentum=0.95, verbose=false, line_search=FrankWolfe.Nonconvex(), max_iteration=100_000, batch_size=length(f_stoch.xs) ÷ 100, trajectory=false, ) @test norm(θ - params_perfect) ≤ 0.05 * length(θ) # SFW with incrementing batch size batch_iterator = FrankWolfe.IncrementBatchIterator(length(f_stoch.xs) ÷ 1000, length(f_stoch.xs) ÷ 10, 2) θ, _, _, _, _ = FrankWolfe.stochastic_frank_wolfe( f_stoch, lmo, copy(params), momentum=0.95, verbose=false, line_search=FrankWolfe.Nonconvex(), max_iteration=5000, batch_iterator=batch_iterator, trajectory=false, ) @test batch_iterator.maxreached # SFW damped momentum momentum_iterator = FrankWolfe.ExpMomentumIterator() θ, _, _, _, _ = FrankWolfe.stochastic_frank_wolfe( f_stoch, lmo, copy(params), verbose=false, line_search=FrankWolfe.Nonconvex(), max_iteration=5000, batch_size=1, trajectory=false, momentum_iterator=momentum_iterator, ) θ, _, _, _, _ = FrankWolfe.stochastic_frank_wolfe( f_stoch, lmo, copy(params), line_search=FrankWolfe.Nonconvex(), max_iteration=5000, batch_size=1, verbose=false, trajectory=false, momentum_iterator=nothing, ) end @testset "Away-step FW" begin n = 50 lmo_prob = FrankWolfe.ProbabilitySimplexOracle(1.0) x0 = FrankWolfe.compute_extreme_point(lmo_prob, rand(n)) f(x) = norm(x)^2 function grad!(storage, x) @. storage = 2x end k = 1000 active_set = ActiveSet([(1.0, x0)]) # compute reference from vanilla FW xref, _ = FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=k, line_search=FrankWolfe.Backtracking(), verbose=false, memory_mode=FrankWolfe.OutplaceEmphasis(), ) x, v, primal, dual_gap, trajectory = FrankWolfe.away_frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=k, line_search=FrankWolfe.Backtracking(), print_iter=k / 10, verbose=true, memory_mode=FrankWolfe.OutplaceEmphasis(), ) @test x !== nothing @test xref ≈ x atol = (1e-3 / length(x)) xs, v, primal, dual_gap, trajectory = FrankWolfe.away_frank_wolfe( f, grad!, lmo_prob, active_set, max_iteration=k, line_search=FrankWolfe.Backtracking(), print_iter=k / 10, verbose=true, memory_mode=FrankWolfe.OutplaceEmphasis(), ) @test xs !== nothing @test xref ≈ xs atol = (1e-3 / length(x)) x, v, primal, dual_gap, trajectory = FrankWolfe.away_frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=k, away_steps=false, line_search=FrankWolfe.Backtracking(), print_iter=k / 10, verbose=true, memory_mode=FrankWolfe.OutplaceEmphasis(), ) @test x !== nothing @test xref ≈ x atol = (1e-3 / length(x)) xs, v, primal, dual_gap, trajectory = FrankWolfe.away_frank_wolfe( f, grad!, lmo_prob, active_set, max_iteration=k, line_search=FrankWolfe.Backtracking(), print_iter=k / 10, verbose=true, memory_mode=FrankWolfe.OutplaceEmphasis(), ) @test xs !== nothing @test xref ≈ xs atol = (1e-3 / length(x)) x, v, primal, dual_gap, trajectory = FrankWolfe.away_frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=k, line_search=FrankWolfe.Backtracking(), print_iter=k / 10, verbose=true, memory_mode=FrankWolfe.InplaceEmphasis(), ) @test x !== nothing @test xref ≈ x atol = (1e-3 / length(x)) x, v, primal, dual_gap, trajectory = FrankWolfe.away_frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=k, away_steps=false, line_search=FrankWolfe.Backtracking(), print_iter=k / 10, verbose=true, memory_mode=FrankWolfe.InplaceEmphasis(), ) @test x !== nothing @test xref ≈ x atol = (1e-3 / length(x)) xs, v, primal, dual_gap, trajectory = FrankWolfe.away_frank_wolfe( f, grad!, lmo_prob, active_set, max_iteration=k, line_search=FrankWolfe.Backtracking(), print_iter=k / 10, verbose=true, memory_mode=FrankWolfe.InplaceEmphasis(), ) @test xs !== nothing @test xref ≈ xs atol = (1e-3 / length(x)) empty!(active_set) @test_throws ArgumentError("Empty active set") FrankWolfe.away_frank_wolfe( f, grad!, lmo_prob, active_set, max_iteration=k, line_search=FrankWolfe.Backtracking(), print_iter=k / 10, verbose=true, memory_mode=FrankWolfe.OutplaceEmphasis(), ) end @testset "Blended conditional gradient" begin n = 50 lmo_prob = FrankWolfe.ProbabilitySimplexOracle(1.0) x0 = FrankWolfe.compute_extreme_point(lmo_prob, randn(n)) f(x) = norm(x)^2 function grad!(storage, x) @. storage = 2x end k = 1000 # compute reference from vanilla FW xref, _ = FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=k, line_search=FrankWolfe.Backtracking(), verbose=true, memory_mode=FrankWolfe.OutplaceEmphasis(), ) x, v, primal, dual_gap, trajectory, _ = FrankWolfe.blended_conditional_gradient( f, grad!, lmo_prob, x0; line_search=FrankWolfe.Backtracking(), epsilon=1e-9, max_iteration=k, print_iter=1, trajectory=false, verbose=false, ) @test x !== nothing @test f(x) ≈ f(xref) end include("oddities.jl") include("tracking.jl") # in separate module for name space issues module BCGDirectionError using Test @testset "BCG direction accuracy" begin include("bcg_direction_error.jl") end end module RationalTest using Test @testset "Rational test and shortstep" begin include("rational_test.jl") end end module BCGAccel using Test @testset "BCG acceleration with different types" begin include("blended_accelerated.jl") end end module VertexStorageTest using Test @testset "Vertex storage" begin include("extra_storage.jl") end end include("generic-arrays.jl") include("blocks.jl") @testset "End-to-end trajectory tests" begin trajectory_testfiles = readdir(joinpath(@__DIR__, "trajectory_tests"), join=true) for file in trajectory_testfiles @eval Module() begin Base.include(@__MODULE__, $file) end end end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
4582
using FrankWolfe using LinearAlgebra using SparseArrays @testset "Timing out" begin f(x) = norm(x)^2 function grad!(storage, x) return storage .= 2x end lmo_prob = FrankWolfe.ProbabilitySimplexOracle(1) x0 = FrankWolfe.compute_extreme_point(lmo_prob, spzeros(5)) @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Agnostic(), verbose=true, )[3] - 0.2, ) < 1.0e-5 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Agnostic(), verbose=false, gradient=collect(similar(x0)), )[3] - 0.2, ) < 1.0e-5 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Goldenratio(), verbose=true, )[3] - 0.2, ) < 1.0e-5 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Backtracking(), verbose=false, )[3] - 0.2, ) < 1.0e-5 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Nonconvex(), verbose=false, )[3] - 0.2, ) < 1.0e-2 @test FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Shortstep(2.0), verbose=false, )[3] ≈ 0.2 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Nonconvex(), verbose=false, )[3] - 0.2, ) < 1.0e-2 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Agnostic(), verbose=false, momentum=0.9, )[3] - 0.2, ) < 1.0e-3 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Agnostic(), verbose=false, momentum=0.5, )[3] - 0.2, ) < 1.0e-3 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Agnostic(), verbose=false, momentum=0.9, memory_mode=FrankWolfe.InplaceEmphasis(), )[3] - 0.2, ) < 1.0e-3 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.AdaptiveZerothOrder(L_est=100.0), verbose=false, momentum=0.9, )[3] - 0.2, ) < 1.0e-3 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Adaptive(L_est=100.0), verbose=false, momentum=0.9, )[3] - 0.2, ) < 1.0e-3 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Adaptive(L_est=100.0), verbose=false, momentum=0.5, )[3] - 0.2, ) < 1.0e-3 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.AdaptiveZerothOrder(L_est=100.0), verbose=false, momentum=0.5, )[3] - 0.2, ) < 1.0e-3 @test abs( FrankWolfe.frank_wolfe( f, grad!, lmo_prob, x0, max_iteration=1000, line_search=FrankWolfe.Adaptive(L_est=100.0), verbose=false, momentum=0.9, memory_mode=FrankWolfe.InplaceEmphasis(), )[3] - 0.2, ) < 1.0e-3 end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
2854
using Test using LinearAlgebra using SparseArrays using FrankWolfe @testset "Tracking Testset" begin f(x) = norm(x)^2 function grad!(storage, x) return storage .= 2x end x = zeros(6) gradient = similar(x) rhs = 10 * rand() lmo = FrankWolfe.ProbabilitySimplexOracle(rhs) direction = zeros(6) direction[1] = -1 @testset "TrackingGradient" begin tgrad! = FrankWolfe.TrackingGradient(grad!) @test tgrad!.counter == 0 @test tgrad!.grad! === grad! tgrad!(gradient, direction) @test tgrad!.counter == 1 end @testset "TrackingObjective" begin tf = FrankWolfe.TrackingObjective(f, 0) @test tf.counter == 0 tf(x) @test tf.counter == 1 end @testset "TrackingLMO" begin tlmo_prob = FrankWolfe.TrackingLMO(lmo, 0) @test tlmo_prob.counter == 0 @test tlmo_prob.lmo === lmo compute_extreme_point(tlmo_prob, direction) @test tlmo_prob.counter == 1 end end @testset "Testing vanilla Frank-Wolfe with various step size and momentum strategies" begin f(x) = norm(x)^2 function grad!(storage, x) @. storage = 2x end lmo = FrankWolfe.ProbabilitySimplexOracle(1) tf = FrankWolfe.TrackingObjective(f, 0) tgrad! = FrankWolfe.TrackingGradient(grad!, 0) tlmo = FrankWolfe.TrackingLMO(lmo) storage = [] x0 = FrankWolfe.compute_extreme_point(tlmo, spzeros(1000)) FrankWolfe.frank_wolfe( tf, tgrad!, tlmo, x0, line_search=FrankWolfe.Agnostic(), max_iteration=50, trajectory=true, callback=nothing, traj_data=storage, verbose=true, ) @test length(storage[1]) == 5 niters = length(storage) @test tf.counter == niters @test tgrad!.counter == niters @test tlmo.counter == niters + 1 # x0 computation and initialization end @testset "Testing lazified Frank-Wolfe with various step size and momentum strategies" begin f(x) = norm(x)^2 function grad!(storage, x) @. storage = 2x end lmo = FrankWolfe.ProbabilitySimplexOracle(1) tf = FrankWolfe.TrackingObjective(f, 0) tgrad! = FrankWolfe.TrackingGradient(grad!, 0) tlmo = FrankWolfe.TrackingLMO(lmo) storage = [] x0 = FrankWolfe.compute_extreme_point(tlmo, spzeros(1000)) results = FrankWolfe.lazified_conditional_gradient( tf, tgrad!, tlmo, x0, line_search=FrankWolfe.Agnostic(), max_iteration=50, trajectory=true, callback=nothing, traj_data=storage, verbose=false, ) @test length(storage[1]) == 5 niters = length(storage) @test tf.counter == niters @test tgrad!.counter == niters # lazification @test tlmo.counter < niters end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
5815
import FrankWolfe using LinearAlgebra using Test using SparseArrays @testset "Simple benchmark_oracles function" begin n = Int(1e3) xpi = rand(n) total = sum(xpi) xp = xpi ./ total f(x) = norm(x - xp)^2 function grad!(storage, x) @. storage = 2 * (x - xp) end lmo_prob = FrankWolfe.ProbabilitySimplexOracle(1) x0 = FrankWolfe.compute_extreme_point(lmo_prob, zeros(n)) FrankWolfe.benchmark_oracles(f, grad!, () -> rand(n), lmo_prob; k=100) end @testset "RankOneMatrix" begin for n in (1, 2, 5) for _ in 1:5 v = rand(n) u = randn(2n) M = u * v' R = FrankWolfe.RankOneMatrix(u, v) for i in 1:2n for j in 1:n @test M[i, j] ≈ R[i, j] end end @testset "Right- left-mul" for _ in 1:5 x = rand(n) r1 = R * x r2 = M * x @test r1 ≈ r2 end @testset "Identity test" begin x = 1.0 r1 = R r2 = R * x @test r1 ≈ r2 end @testset "Add and sub" begin @test M + R ≈ R + R @test M - R ≈ R - R MR = -R @test MR isa FrankWolfe.RankOneMatrix @test -MR == R @test 3R isa FrankWolfe.RankOneMatrix end @testset "Dot, norm, mul" begin @test dot(R, M) ≈ dot(collect(R), M) @test dot(M, R) ≈ dot(M, collect(R)) @test dot(R, sparse(M)) ≈ dot(collect(R), M) @test norm(R) ≈ norm(collect(R)) @test R * M' ≈ R * transpose(M) ≈ M * M' end end end end @testset "RankOne muladd_memory_mode $n" for n in (1, 2, 5) for _ in 1:5 n = 5 v = rand(n) u = randn(2n) M = u * v' R = FrankWolfe.RankOneMatrix(u, v) X = similar(M) X .= 0 FrankWolfe.muladd_memory_mode(FrankWolfe.InplaceEmphasis(), X, 0.7, R) X2 = similar(M) X2 .= 0 FrankWolfe.muladd_memory_mode(FrankWolfe.InplaceEmphasis(), X2, 0.7, M) @test norm(M - R) ≤ 1e-14 @test norm(X - X2) ≤ 1e-14 end end @testset "Line Search methods" begin a = [-1.0, -1.0, -1.0] b = [1.0, 1.0, 1.0] function grad!(storage, x) return storage .= 2x end f(x) = norm(x)^2 gradient = similar(a) grad!(gradient, a) function reset_state() gradient .= 0 grad!(gradient, a) end ls = FrankWolfe.Backtracking() reset_state() gamma_bt = @inferred FrankWolfe.perform_line_search( ls, 1, f, grad!, gradient, a, a - b, 1.0, FrankWolfe.build_linesearch_workspace(ls, a, gradient), FrankWolfe.InplaceEmphasis(), ) @test gamma_bt ≈ 0.5 ls_secant = FrankWolfe.Secant() reset_state() gamma_secant = @inferred FrankWolfe.perform_line_search( ls_secant, 1, f, grad!, gradient, a, a - b, 1.0, FrankWolfe.build_linesearch_workspace(ls_secant, a, gradient), FrankWolfe.InplaceEmphasis(), ) @test gamma_secant ≈ 0.5 ls_gr = FrankWolfe.Goldenratio() reset_state() gamma_gr = @inferred FrankWolfe.perform_line_search( ls_gr, 1, f, grad!, gradient, a, a - b, 1.0, FrankWolfe.build_linesearch_workspace(ls_gr, a, gradient), FrankWolfe.InplaceEmphasis(), ) @test gamma_gr ≈ 0.5 atol = 1e-4 reset_state() @inferred FrankWolfe.perform_line_search( FrankWolfe.Agnostic(), 1, f, grad!, gradient, a, a - b, 1.0, nothing, FrankWolfe.InplaceEmphasis(), ) reset_state() @inferred FrankWolfe.perform_line_search( FrankWolfe.Nonconvex(), 1, f, grad!, gradient, a, a - b, 1.0, nothing, FrankWolfe.InplaceEmphasis(), ) reset_state() @inferred FrankWolfe.perform_line_search( FrankWolfe.Nonconvex(), 1, f, grad!, gradient, a, a - b, 1.0, nothing, FrankWolfe.InplaceEmphasis(), ) ls = @inferred FrankWolfe.AdaptiveZerothOrder() reset_state() @inferred FrankWolfe.perform_line_search( ls, 1, f, grad!, gradient, a, a - b, 1.0, FrankWolfe.build_linesearch_workspace(ls, a, gradient), FrankWolfe.InplaceEmphasis(), ) ls = @inferred FrankWolfe.Adaptive() reset_state() @inferred FrankWolfe.perform_line_search( ls, 1, f, grad!, gradient, a, a - b, 1.0, FrankWolfe.build_linesearch_workspace(ls, a, gradient), FrankWolfe.InplaceEmphasis(), ) end @testset "Momentum tests" begin it = FrankWolfe.ExpMomentumIterator() it.num = 0 # no momentum -> 1 @test FrankWolfe.momentum_iterate(it) == 1 end @testset "Fast dot complex & norm" begin s = sparse(I, 3, 3) m = randn(Complex{Float64}, 3, 3) @test dot(s, m) ≈ FrankWolfe.fast_dot(s, m) @test dot(m, s) ≈ FrankWolfe.fast_dot(m, s) a = FrankWolfe.ScaledHotVector(3.5 + 2im, 2, 4) b = rand(ComplexF64, 4) @test dot(a, b) ≈ dot(collect(a), b) @test dot(b, a) ≈ dot(b, collect(a)) c = sparse(b) @test dot(a, c) ≈ dot(collect(a), c) @test dot(c, a) ≈ dot(c, collect(a)) @test norm(a) ≈ norm(collect(a)) end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
35649
using FrankWolfe using Test using LinearAlgebra @testset "Approximate Caratheodory" begin n = Int(1e2) k = n f(x) = dot(x, x) function grad!(storage, x) @. storage = 2 * x end lmo = FrankWolfe.ProbabilitySimplexOracle{Rational{BigInt}}(1) x0 = FrankWolfe.compute_extreme_point(lmo, zeros(n)) res1 = FrankWolfe.frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Agnostic(), print_iter=k / 10, verbose=false, memory_mode=FrankWolfe.OutplaceEmphasis(), trajectory=true, ) x_true = [ 0.0003882741215298000420906058020008131649408310609791293789170887356180438746488335, 0.01980198019801980174204644541789292442808870460109720167417109952972281608614392, 0.0005824111822947000954662239221379876968608268608067998030881882653408599607928077, 0.0007765482430596001991334434942656928089513067592163031453228607158571840579260239, 0.0009706853038245001142071576214289134799237722821789055237774017039680826787031422, 0.001164822364589400111184336970405283587112639773765304875456557608308253871966003, 0.001358959425354300205152461976791955089903124178924704383577732186271746843393673, 0.001553096486119200123613161507864747469883195782712153608246462591276847641400415, 0.001747233546884100357294434425521019957092786851921236172277015496813510946277349, 0.001941370607649000355084148151697916605542320405471402241189730786877249702816797, 0.002135507668413900189066931434248524727347073349191061808421826725016298033411679, 0.002329644729178800488410312568010179561296432106402094015372436636547190870300332, 0.002523781789943700225565434613449155479169439923525110640264880421825234405418941, 0.002717918850708600350269848067771177013721412922862882874142871429918104894240619, 0.00291205591147350041570201695367579159623787972254067984203230754762306055249153, 0.003106192972238400394560786197225285036706905836085303605037534758293128693317118, 0.003300330033003300258916355706332062721509041503956562888727843249850295719733871, 0.003494467093768200251325330593196232310842990450393933524221947330680444464801797, 0.003688604154533100697556137630165387507087463584696562039873803199973987540303863, 0.003882741215298000280510808464921223759615693413602755056045890689674985547160767, 0.00407687827606290064532026901580120486067843846746828308661372200214047850445762, 0.004271015336827800427670876015566418686819475875595140831696815232904816981848156, 0.004465152397592700300644336281093783497378622647194256618042782330258695147220924, 0.004659289458357600677783291847942320143740766052565949841229649920963748897450388, 0.004853426519122500896862928565677777041960696594773910546541017125149389768231225, 0.005047563579887400349929630024666106085486734275760558106092747026142268542084198, 0.005241700640652300341005936027750888413411734405841787912836956874284273716155194, 0.00543583770141720057436003632732971030264900193553537983270382110156803150697447, 0.005629974762182100589292066545240496295677412189293474973894895544004801637854435, 0.005824111822947000517638310026842471159962562890845771609185545744710134470069804, 0.006018248883711900701932882326610513372895371860262337947266895500772264370506452, 0.006212385944476800908128635903858300909265914693511109145245709075835008967892594, 0.00640652300524170066422578228968641770665207338003948639873636061394374866678618, 0.006600660066006600557359378411173783772985854572743890592194880849228212329337688, 0.006794797126771500386545512812456811572419257253162939345016658340655232305565304, 0.006988934187536401195686594588074609470046050625234469822884195336852657125810076, 0.007183071248301300409266749345183476159104719175745343710122816828861705300913898, 0.007377208309066200560061965330916936616011159980384306485951899215672861836708123, 0.007571345369831101279899089099088304922555625123844674161593767025998054468133567, 0.007765482430596001164881812390191680924328763077692843290633454302067358885193008, 0.007959619491360900453909058475207330562637289289433195582248086795503407199549887, 0.008153756552125800798928511006417766098936651650480496399871402018830343330168034, 0.008347893612890701176534868560091450195396973866365810906807885915571452626113312, 0.008542030673655601307967178640919486153647539009220933851635363471482090487691809, 0.00873616773442050075078826721717919899202251630021742963554249833846591305019406, 0.008930304795185400788816446073157731797754066857474622838211076501534872729621664, 0.009124441855950300499031628042345539294270742940546650118460350669628920497759703, 0.009318578916715200251694679550134014468299418906561575450695397869751669122905964, 0.009512715977480101222301324703840348642382550557410309832498657210498216952646775, 0.009706853038245000904973779903363673581004979002947935413756836518327343874430699, 0.0099009900990099016320770682571002291766549020792077889481789544538601141709446, 0.01009512715977480070330824787906891629563373076946674992991200547443165470943348, 0.01028926422053970051637508985296103104660194327194007132380297848464365888908827, 0.01048340128130460057964603797243673491034795241123139853761533363574100564529313, 0.01067753834206950049433723497680551125679768720723401690218629975107771825032686, 0.01087167540283440048137975861551520190308648645415513892201368413746230465165757, 0.01106581246359930094519821056024475725539512769931169270997742942154266365415643, 0.0112599495243642010776072982374634441426459478403852462389394401015731387373364, 0.01145408658512910097148740796889579104395205691141874912211224599265740517284452, 0.01164822364589400177634721185875880307334706151764883596750916727135335832714923, 0.01184236070665890085000844219501227066229223105968599835591091296187120571031923, 0.01203649776742380050795620263230436802814918235516324391622967535376103153864806, 0.01223063482818870119508566421211684305164362598722788261331502425648517932718499, 0.01242477188895360192566433248854698343239195924888124543133065605136144662402779, 0.01261890894971850161645291494117749275706921765669271800234889834719208741784181, 0.01281304601048340103366692941290102843591929193787306581993324382956797460467683, 0.01300718307124830111155011896558288170400676047079890947090334808860479446565325, 0.0132013201320132014764352267990904589902516307904252174466644298270810754193482, 0.01339545719277810090490999756557855998351794416471997932888884896144015361937024, 0.01358959425354300165770749624107258273621732815857823972553851445204449384523709, 0.01378373131430790058353427727134755693341739798151426914212557635497450527288925, 0.01397786837507280056989595539462618913710466709102404872348580950795279206680487, 0.01417200543583770217307274924529067217964816864079098545083758936335685302700349, 0.01436614249660260235270996444740609603744037097610924457965873509741432887767511, 0.01456027955736750061985247998325491756704232592649562644968080288920001566116641, 0.01475441661813240244569157876376825183183079469330507518766274847124142133175206, 0.01494855367889730096019031098249851356565128185557548309989320843792554392292997, 0.01514269073966220125547184677174924561603050296439632178532462686450923065046429, 0.01533682780042710238420887516800915735472049531756248279604816939853819969912974, 0.01553096486119200066827888284966917628380692198382831995136190350118819394452864, 0.0157251019219569021087643008579889656067583836404881456889707058514564626115519, 0.01591923898272180243140911317995190618158270529328470342331381641626380482146769, 0.01611337604348670070620444686537384592071367002483289832602471899478622134821486, 0.01630751310425160138819624759733579805501498450009937461693400873057554799529194, 0.01650165016501650139926986008137823799559838250160816524032817173921091857383403, 0.01669578722578140141028007979048119408425319324677463861957170414247959742750423, 0.01688992428654630214076512442467616982886122586518095906913109519577109285864251, 0.01708406134731120120611506433379078225892196616485648363362907091079387525566909, 0.01727819840807610237377742877896019445606740817927518800647707479448108625659192, 0.01747233546884100312822173580837901199072761007053886286328615959502762658879238, 0.01766647252960590128265011872399721132014544232993445792944682128778320059295789, 0.0178606095903708032490284312604307728446385580457409920995885098087747905279215, 0.01805474665113570139561221383225131733707823572401386027164683146405154870468538, 0.01824888371190060143342528481993271072179130589404018055997421790869707617200101, 0.01844302077266550081901437253928410048000392634317940606703856904328115317566703, 0.01863715783343040149908517569608539728431614317130150542900034863564971816073049, 0.01883129489419530034004655890248654653852444965838982238279157704916206502274489, 0.01902543195496020351226333102072831389732383717536576363318028356443370391048994, 0.01921956901572510232266421678436112468933955605034956800251944650364831594880664, 0.01941370607649000218250087532506190641350721586961201686937898271255334512602753, ] primal_true = 0.01314422099649411305714214236596045839642713180124049726321024688069930261252318 @test norm(res1[1] - x_true) ≈ 0 atol = 1e-6 @test res1[3] ≈ primal_true @test res1[5][end][1] == 101 res2 = FrankWolfe.frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Shortstep(2 // 1), print_iter=k / 10, verbose=false, memory_mode=FrankWolfe.OutplaceEmphasis(), trajectory=true, ) x_true = fill(0.01, n) primal_true = 0.01 @test norm(res2[1] - x_true) ≈ 0 atol = 1e-6 @test res2[3] ≈ primal_true @test res2[5][end][1] == 100 res3 = FrankWolfe.away_frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Agnostic(), print_iter=k / 10, verbose=false, memory_mode=FrankWolfe.OutplaceEmphasis(), trajectory=true, ) x_true = [ 0.01941747572815534389500426171171199030140996910631656646728515625, 0.0197982105463544663941262424788902762884390540421009063720703125, 0.000571102227298686689581364017698206225759349763393402099609375, 0.000761469636398249606103194597750416505732573568820953369140625, 0.0009518370454978121973643734321512965834699571132659912109375, 0.00114220445459737337916272803539641245151869952678680419921875, 0.00133257186369693564516325512414596232702024281024932861328125, 0.00152293927279649921220638919550083301146514713764190673828125, 0.00171330668189606061084517829584683568100444972515106201171875, 0.001903674090995624394728746864302593166939914226531982421875, 0.00209404150009518362496319099363972782157361507415771484375, 0.0022844089091947467583254560707928249030373990535736083984375, 0.0024747763182943077232833761769370539695955812931060791015625, 0.0026651437273938712903265102482919246540404856204986572265625, 0.00285551113649343442368877532544502173550426959991455078125, 0.003045878545592995388646695431589250802062451839447021484375, 0.003236245954692557220966353526137027074582874774932861328125, 0.00342661336379211818592427363228125614114105701446533203125, 0.0036169807728916821866482766978379004285670816898345947265625, 0.0038073481819912470547340177517980919219553470611572265625, 0.003997715591090806284968461881135226576589047908782958984375, 0.0041880830001903672499263819872794556431472301483154296875, 0.004378450409289933419054730023844967945478856563568115234375, 0.004568817818389493516650912141585649806074798107147216796875, 0.004759185227489053614247094259326331666670739650726318359375, 0.004949552636588615446566752353874107939191162586212158203125, 0.00513992004568817988097162441363252582959830760955810546875, 0.005330287454787742580653020496583849308080971240997314453125, 0.005520654863887302678249202614324531168676912784576416015625, 0.0057110222729868688473775506508900434710085391998291015625, 0.005901389682086429812335470757034272537566721439361572265625, 0.00609175709118599077729339086317850160412490367889404296875, 0.006282124500285551742251310969322730670683085918426513671875, 0.006472491909385111839847493087063412531279027462005615234375, 0.006662859318484675406890627158418283215723931789398193359375, 0.0068532267275842363718485472645625122822821140289306640625, 0.007043594136683799071529943347513835760764777660369873046875, 0.007233961545783364373296553395675800857134163379669189453125, 0.007424328954882922736169259536609388305805623531341552734375, 0.007614696363982494109468035503596183843910694122314453125, 0.00780506377308205247234074164452977129258215427398681640625, 0.0079954311821816108352134477854633587412536144256591796875, 0.00818579859128116919808615392639694618992507457733154296875, 0.0083761660003807310304058120209447224624454975128173828125, 0.00856653340948029286272547011549249873496592044830322265625, 0.00875690081857986336866250809407574706710875034332275390625, 0.0089472682276794286704291181422377121634781360626220703125, 0.00913763563677898182913139635275001637637615203857421875, 0.00932800304587855060034495835452617029659450054168701171875, 0.00951837045497810375904723656503847450949251651763916015625, 0.009708737864077665591366894659586250782012939453125, 0.00989910527317723089313350470774821587838232517242431640625, 0.01008947268227679446017663877910308656282722949981689453125, 0.0102798400913763528230493449200366740114986896514892578125, 0.0104702075004759198595394309450057335197925567626953125, 0.01066057490957548169185908903955350979231297969818115234375, 0.01085094231867504525890222311090838047675788402557373046875, 0.01104130972777460535649840522864906233735382556915283203125, 0.01123167713687416545409458734638974419794976711273193359375, 0.01142204454597373075586119739455170929431915283203125, 0.01161241195507328911873390353548529674299061298370361328125, 0.01180277936417285962467094151406854507513344287872314453125, 0.0119931467732724179875436476550021325238049030303955078125, 0.01218351418237198328931025770316409762017428874969482421875, 0.0123738815914715451216299157977118738926947116851806640625, 0.01256424900057110695394957389225965016521513462066650390625, 0.01275461640967066011265185210277195437811315059661865234375, 0.0129449838187702288838654141045481082983314990997314453125, 0.01313535122786978724673812024548169574700295925140380859375, 0.01332571863696935081378125431683656643144786357879638671875, 0.01351608604606891438082438838819143711589276790618896484375, 0.0137064534551684762131440464827392133884131908416748046875, 0.0138968208642680328412932766468657064251601696014404296875, 0.01408718827336760161250683864864186034537851810455322265625, 0.0142775556824671530364856408823470701463520526885986328125, 0.01446792309156672180769920288412322406657040119171142578125, 0.01465829050066628537474233695547809475101530551910400390625, 0.0148486579097658437376150430964116821996867656707763671875, 0.01503902531886540903938165314457364729605615139007568359375, 0.01522939272796497954531869112315689562819898128509521484375, 0.015419760137064530969297493356862105429172515869140625, 0.01561012754616410147523453133544535376131534576416015625, 0.0158004949552636615728307134531860356219112873077392578125, 0.0159908623643632182009799436173125286586582660675048828125, 0.0161812297734627817680230776886673993431031703948974609375, 0.0163715971825623453350662117600222700275480747222900390625, 0.016561964591661905432662393877762951888144016265869140625, 0.016752332000761462060811624041889444924890995025634765625, 0.016942699409861032566748662020472693257033824920654296875, 0.0171330668189605926643448441382133751176297664642333984375, 0.0173234342280601527619410262559540569782257080078125, 0.01751380163715972326787806423453730531036853790283203125, 0.01770416904625927989602729439866379834711551666259765625, 0.017894536455358843463070428470018669031560420989990234375, 0.0180849038644584035606666105877593508921563625335693359375, 0.0182752712735579671277097446591142215766012668609619140625, 0.018465638682657527225305926776854903437197208404541015625, 0.018656006091757097731242964755438151769340038299560546875, 0.018846373500856654359392194919564644806087017059326171875, 0.01903674090995621792643532899091951549053192138671875, ] primal_true = 0.01303054586957625556729890004358024648004703487744009407127266414409524716045483 @test norm(res3[1] - x_true) ≈ 0 atol = 1e-6 @test res3[3] ≈ primal_true @test res3[5][end][1] == 101 res4 = FrankWolfe.blended_conditional_gradient( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.AdaptiveZerothOrder(), print_iter=k / 10, verbose=false, memory_mode=FrankWolfe.OutplaceEmphasis(), trajectory=true, ) res4_adaptive = FrankWolfe.blended_conditional_gradient( f, grad!, lmo, x0, max_iteration=2k, line_search=FrankWolfe.Adaptive(), print_iter=k / 10, verbose=false, memory_mode=FrankWolfe.OutplaceEmphasis(), trajectory=true, ) x_true = [ 0.0110488779224248954979881176541312015615403652191162109375, 0.01116382439959395615758364073144548456184566020965576171875, 0.01132266603788188719104113033608882687985897064208984375, 0.01096697959160035373837871475188876502215862274169921875, 0.01099748235218585799832791138896936899982392787933349609375, 0.01090658273640816855465374146660906262695789337158203125, 0.01100728641192584740526871911470152554102241992950439453125, 0.01113317498199122533575344817791119567118585109710693359375, 0.01129240465802835817477056679081215406768023967742919921875, 0.01066971268420941788834799268670394667424261569976806640625, 0.01073806129575670918752106075544361374340951442718505859375, 0.01081623406552431089500121430546641931869089603424072265625, 0.01090669919495564944844634425180629477836191654205322265625, 0.011012761038243910893807964157531387172639369964599609375, 0.011138933094013821201162528495842707343399524688720703125, 0.01129152502908182219287791525630382238887250423431396484375, 0.0106825195127519152749062669727209140546619892120361328125, 0.01075709593593467301719801554327204939909279346466064453125, 0.010841556533814002138971233080155798234045505523681640625, 0.0109381334615336230087212499029192258603870868682861328125, 0.0110670496344356487916638087654064293019473552703857421875, 0.0113528003501498948868420058033734676428139209747314453125, 0.010755333351140705655524243411491625010967254638671875, 0.01048383730090962639991403193562291562557220458984375, 0.01067948351180760153955606739373251912184059619903564453125, 0.01090231617566354838100295410185935907065868377685546875, 0.011158644863763077237361898141898564063012599945068359375, 0.01145699293377413878480819420246916706673800945281982421875, 0.0101981244628182483868972241225492325611412525177001953125, 0.01036021643924461659025393345245902310125529766082763671875, 0.01054198990165635708982083684759345487691462039947509765625, 0.01074709040997723179244882629745916347019374370574951171875, 0.010980253194607388078640752837600302882492542266845703125, 0.01124773117307073695692043457938780193217098712921142578125, 0.01155792943935683714240525432614958845078945159912109375, 0.0102594043125243845893113103784344275481998920440673828125, 0.01043029476421276045827735146076520322822034358978271484375, 0.0106219729796506283381329893700240063481032848358154296875, 0.0108381932769191467735847567155360593460500240325927734375, 0.01108380957646447860509564264930304489098489284515380859375, 0.01136520571619974682986420333463684073649346828460693359375, 0.01015188403354872447026391313329440890811383724212646484375, 0.01031140103979160359271016744742155424319207668304443359375, 0.01048962535578343464870432200086725060828030109405517578125, 0.01068961614661836749540224644761110539548099040985107421875, 0.0109152507282073325811655450934267719276249408721923828125, 0.01117152676702971858535562432734877802431583404541015625, 0.01146500004615019947806775491017106105573475360870361328125, 0.0102103010985286381251402332281941198743879795074462890625, 0.0103773954918663681434853884866242879070341587066650390625, 0.0105642139757310508929588621640505152754485607147216796875, 0.010773965466789041378614655286583001725375652313232421875, 0.01101070848304721259969252145083373761735856533050537109375, 0.01127966475382357995627113922409989754669368267059326171875, 0.01010692369146876622154618274862514226697385311126708984375, 0.0102628472748964548466599211451466544531285762786865234375, 0.0104367298381483307456729647810789174400269985198974609375, 0.0106312766291480863267704393138046725653111934661865234375, 0.01084984936168993142902028381513446220196783542633056640625, 0.01109669576874410847067142782407245249487459659576416015625, 0.0113772771187743877707720940861690905876457691192626953125, 0.01016309273690228949516001222264094394631683826446533203125, 0.01032593705535572552178802396838364074937999248504638671875, 0.01050767080610974339716090497631739708594977855682373046875, 0.010711151044073143057122621257803984917700290679931640625, 0.010939927274482348640294304686904069967567920684814453125, 0.011198484026182613237931917637979495339095592498779296875, 0.01006344361601584948273657715844819904305040836334228515625, 0.0102154242798425699823017254175283596850931644439697265625, 0.0103847197150773624951813900452179950661957263946533203125, 0.0105737916639839467369821335296364850364625453948974609375, 0.01078565122675433952947887661366621614433825016021728515625, 0.01102404130098686395322626907500307424925267696380615234375, 0.01129369392894255010040271969273817376233637332916259765625, 0.01011769773639966361888919976763645536266267299652099609375, 0.0102761657076108035846484511921516968868672847747802734375, 0.0104528084497103428140984959782144869677722454071044921875, 0.0106502317386623530925948699632499483413994312286376953125, 0.0108716260264075381680726195554598234593868255615234375, 0.01112096145948445434503693007854963070712983608245849609375, 0.0120102566865593306244530680260140798054635524749755859375, 0.00932655184389477413808844374898399109952151775360107421875, 0.00826079786559208613383464836488201399333775043487548828125, 0.00916835118748905719687769533265964128077030181884765625, 0.0101832309647222028770041646339450380764901638031005859375, 0.01132195055394567655138171602402508142404258251190185546875, 0.012605048988675919552360227271492476575076580047607421875, 0.00972619723519543323553282476723325089551508426666259765625, 0.0086199687394420236585812489238378475420176982879638671875, 0.0095702153731971155437019405098908464424312114715576171875, 0.0106337321108964551197306747098991763778030872344970703125, 0.01182819416640477905300343763883574865758419036865234375, 0.01317564671500810573323558827496526646427810192108154296875, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] primal_true = 0.01079492075856676147135835760962987221028689269130597783892595739691365095379305 @test norm(res4[1] - x_true) ≈ 0 atol = 1e-6 @test res4[3] ≈ primal_true @test res4[5][end][1] == 101 @test res4_adaptive[3] ≈ 0.01 atol=1e-8 @test res4_adaptive[5][end][1] == 138 end @testset "Approximate Caratheodory with random initialization" begin rhs = 1 k = 1e5 x_true = [ 61512951376323730454002197150348389314089326897787615721998692413353959632437 // 3705346855594118253554271520278013051304639509300498049262642688253220148477952, 7278301191941549131183323094243942700957644187929251522094354780914218275643 // 7410693711188236507108543040556026102609279018600996098525285376506440296955904, 8366562124555104321121369841697389597845181508166497753247502851926662059563 // 231584178474632390847141970017375815706539969331281128078915168015826259279872, 85023391065000333202828293111143357401972379805025875286177370028514589002563 // 1852673427797059126777135760139006525652319754650249024631321344126610074238976, 65161147193679930666908924856262469104197138809185702944157386640936864997051 // 3705346855594118253554271520278013051304639509300498049262642688253220148477952, 79601478169795915975697070307050727165420854919928218988885008389058048219799 // 1852673427797059126777135760139006525652319754650249024631321344126610074238976, 67837373726039687662074349377195592477915195880054271380448921303995127196787 // 1852673427797059126777135760139006525652319754650249024631321344126610074238976, 55169871312251590938351075012017608231499182261935245722772561815939463686945 // 1852673427797059126777135760139006525652319754650249024631321344126610074238976, 86815771044534708965244863268893818174646630872044525249352735709981389751563 // 29642774844752946028434172162224104410437116074403984394101141506025761187823616, 72336771117105959301574221890003216380657564844338588751171518976178113048017 // 29642774844752946028434172162224104410437116074403984394101141506025761187823616, 19890931658710480666057076719356895452123545713808612893617662915732470931561 // 3705346855594118253554271520278013051304639509300498049262642688253220148477952, 79585978057301384008717145909924897970180606286778393928727017924984613374659 // 3705346855594118253554271520278013051304639509300498049262642688253220148477952, 113965904146211811471977184949419222372334011462703157205004739574650127142033 // 3705346855594118253554271520278013051304639509300498049262642688253220148477952, 5428354262203226529922598481638522646897396408804020092482524536075502397089 // 926336713898529563388567880069503262826159877325124512315660672063305037119488, 34827625827775960484301801523292094477572109942336300722774749588002270047107 // 926336713898529563388567880069503262826159877325124512315660672063305037119488, 8144733136987354412249131885422478920455820770248694226860937021089948464221 // 926336713898529563388567880069503262826159877325124512315660672063305037119488, 83223495385376576134214902972508569795914027222867150904993148656647549582643 // 3705346855594118253554271520278013051304639509300498049262642688253220148477952, 54297750348315411085069411691276033515094776339188270147174153874826550949759 // 1852673427797059126777135760139006525652319754650249024631321344126610074238976, 37999445234583642959973667475688948272912144623017138000156880088920795412827 // 926336713898529563388567880069503262826159877325124512315660672063305037119488, 79609315854867434707411488589752461150308986825456950218827676254431104225223 // 14821387422376473014217086081112052205218558037201992197050570753012880593911808, 36228520792880844351408349957314092789406418697994688604833502039464381047593 // 3705346855594118253554271520278013051304639509300498049262642688253220148477952, 87747074626700853575232381986258310602806824140384221969315398151119893566027 // 1852673427797059126777135760139006525652319754650249024631321344126610074238976, 14247237619794261330995555194505323439550547179850901735114007176618394961353 // 463168356949264781694283940034751631413079938662562256157830336031652518559744, 14248684606965137684515955910711963166771474351946426521187714925472414576673 // 463168356949264781694283940034751631413079938662562256157830336031652518559744, 84150822879115430935288141198806087582607671818743223481767144916744174202711 // 1852673427797059126777135760139006525652319754650249024631321344126610074238976, 80512422222849887485621734147521502765322572979265885473937061004907501946415 // 1852673427797059126777135760139006525652319754650249024631321344126610074238976, 13575133430342896240925710532529889229904841799812827659124544788029451500505 // 926336713898529563388567880069503262826159877325124512315660672063305037119488, 85930842192362005344537760883863364225750024310074067572323399741581216569741 // 1852673427797059126777135760139006525652319754650249024631321344126610074238976, 65021782163379251030074430456678178405938486301538530120830779975596245752847 // 14821387422376473014217086081112052205218558037201992197050570753012880593911808, 40701251232106608633770622134695258535560875020915747471858891813546395472325 // 1852673427797059126777135760139006525652319754650249024631321344126610074238976, 39798030372341094444100232335522337649867082740716224935897408719862574204305 // 1852673427797059126777135760139006525652319754650249024631321344126610074238976, 84121644147995396625591066877556253744715337783486488304563392406881190793051 // 1852673427797059126777135760139006525652319754650249024631321344126610074238976, 33922055663316267391672695885159354882451875454551025177383028349114163057371 // 926336713898529563388567880069503262826159877325124512315660672063305037119488, 15831205501799787359855727259669406012682835451292628159505016130571475753067 // 463168356949264781694283940034751631413079938662562256157830336031652518559744, 97667231102575253732993923620041238774510608407541976676513500282167400753847 // 7410693711188236507108543040556026102609279018600996098525285376506440296955904, 61506200807405941080369582838580555432120089840841225703478555148085366801593 // 1852673427797059126777135760139006525652319754650249024631321344126610074238976, 69663077113345636859399373513055005486354570697173148668421658523479885425043 // 1852673427797059126777135760139006525652319754650249024631321344126610074238976, 101464980607353895107673290372367186084458336535036844511537017865818241482095 // 29642774844752946028434172162224104410437116074403984394101141506025761187823616, 30762334036323628501430433726571171454828575613210821709890893791022869772097 // 3705346855594118253554271520278013051304639509300498049262642688253220148477952, 29403498868980333524589803906472036743111538604830514310901745746061273020257 // 926336713898529563388567880069503262826159877325124512315660672063305037119488, ] primal_true = 9.827847816235913956551323164596263945321701473649212104977642156975401442102586e-10 xp = [ 17 // 1024, 1 // 1024, 37 // 1024, 47 // 1024, 9 // 512, 11 // 256, 75 // 2048, 61 // 2048, 3 // 1024, 5 // 2048, 11 // 2048, 11 // 512, 63 // 2048, 3 // 512, 77 // 2048, 9 // 1024, 23 // 1024, 15 // 512, 21 // 512, 11 // 2048, 5 // 512, 97 // 2048, 63 // 2048, 63 // 2048, 93 // 2048, 89 // 2048, 15 // 1024, 95 // 2048, 9 // 2048, 45 // 2048, 11 // 512, 93 // 2048, 75 // 2048, 35 // 1024, 27 // 2048, 17 // 512, 77 // 2048, 7 // 2048, 17 // 2048, 65 // 2048, ] direction = [ 0.00928107242432663, 0.3194042202333671, 0.7613490224961625, 0.9331502775657023, 0.5058966756232495, 0.7718148164937879, 0.3923111977240855, 0.12491790837874406, 0.8485975494086246, 0.453457809041527, 0.43297176382458114, 0.6629759429794072, 0.8986003842140354, 0.6074039179253773, 0.9114822007027404, 0.04278632498941526, 0.352674631558033, 0.7886492242572878, 0.7952842710030733, 0.7874206770511923, 0.7726147629233262, 0.6012149427173692, 0.13299869717521284, 0.49058432205062985, 0.57373575784723, 0.9237295811565405, 0.13315214983763268, 0.3558682954823691, 0.8655648010180531, 0.2246697359783949, 0.5047341378190603, 0.34094108472913265, 0.11227329675627062, 0.27474436461569807, 0.1803131027661613, 0.5219938641083894, 0.6233658038612543, 0.2217260674856315, 0.5254499622424393, 0.14597502257203032, ] f(x) = norm(x - xp)^2 function grad!(storage, x) @. storage = 2 * (x - xp) end lmo = FrankWolfe.ProbabilitySimplexOracle{Rational{BigInt}}(rhs) x0 = FrankWolfe.compute_extreme_point(lmo, direction) res5 = FrankWolfe.frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Agnostic(), print_iter=k / 10, memory_mode=FrankWolfe.InplaceEmphasis(), verbose=false, trajectory=true, ) @test norm(res5[1] - x_true) ≈ 0 atol = 1e-6 @test res5[3] ≈ primal_true @test res5[5][end][1] == 100001 end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
16188
using FrankWolfe using Test using LinearAlgebra const xp = [ 0.2221194121408555, 0.37070712502470504, 0.024120713402762894, 0.23878317833696794, 0.9774658250856014, 0.9328848703961752, 0.19666437903254597, 0.3108438697934143, 0.8611370560284857, 0.5638902027565588, 0.6717542256037482, 0.37500671876420233, 0.43229958494828336, 0.4455524748732561, 0.23223904983081323, 0.8786466197670292, 0.5909835272840192, 0.972946051414218, 0.8295833654216703, 0.12165838006949647, 0.5573162248498043, 0.7783217768142197, 0.9405585096577254, 0.4096010036741623, 0.4146694259495587, 0.12202417615334182, 0.12416203446866858, 0.3135396651797776, 0.8463925650597949, 0.5435139172669606, 0.05977604793386093, 0.9179329261313978, 0.9584333638309193, 0.288632342896219, 0.8445244137513961, 0.7174538816882624, 0.20921745715914342, 0.8558382048640315, 0.32234336062015523, 0.32349875021987073, 0.38283519134249555, 0.33281059318207173, 0.9068883983548414, 0.08810942376469555, 0.4540478820261079, 0.8286156745759701, 0.3251714302397716, 0.6926837792258961, 0.16918531873053577, 0.3045901922130101, 0.6854793931009404, 0.06651125212604247, 0.11380352462639065, 0.08508026574096728, 0.9547766463258776, 0.1861768772348652, 0.5484894320605861, 0.24822097257281062, 0.3889425215408887, 0.49747336643471984, 0.026478564673962035, 0.2754275925598161, 0.5969678463343207, 0.8896103799119639, 0.1108714508332197, 0.9283688295031338, 0.9713472351114413, 0.891466118006637, 0.96634040453533, 0.00355941854573949, 0.7867279585604435, 0.9510563391713888, 0.0692488661882199, 0.49865755273497236, 0.11863122104246815, 0.1710296777218261, 0.6363240295890795, 0.13113427653058585, 0.09117615810736701, 0.43340842523155443, 0.685958886328903, 0.12577668795016073, 0.26730497196368863, 0.9249813878356242, 0.20938064379327703, 0.84121853886278, 0.19283763945286048, 0.8795998946120226, 0.9245987481505632, 0.41859788484460025, 0.6468433655631147, 0.2614312743910776, 0.9109750609820051, 0.38773597147345606, 0.17899781432954076, 0.3444279212619652, 0.3161112859016656, 0.9212820835055795, 0.7501699548719438, 0.6951058583384379, ] @testset "Away-Step CG" begin # n = Int(1e1) n = Int(1e2) k = Int(1e4) f(x) = norm(x - xp)^2 function grad!(storage, x) @. storage = 2 * (x - xp) end lmo = FrankWolfe.KSparseLMO(40, 1.0) x0 = FrankWolfe.compute_extreme_point(lmo, zeros(n)) x_true = [ 0.12350331520527039, 0.2720911600489062, 0.0, 0.140167169125791, 0.8788497081329242, 0.8342685990885751, 0.09804837088605657, 0.212227647433356, 0.7625208605543947, 0.46527409557434884, 0.5731382333696704, 0.2763905827604689, 0.3336837864396474, 0.3469363114955107, 0.1336290781022528, 0.780030185474837, 0.49236737077583526, 0.8743244783341335, 0.730967269701777, 0.02304965724670187, 0.45870005788163015, 0.6797054213208934, 0.8419422209838555, 0.3109848428453597, 0.3160534364494893, 0.023408368324288265, 0.02554590234308165, 0.214923591871615, 0.7477761809848499, 0.44489775388921676, 0.0, 0.8193163927062596, 0.859817175743167, 0.19001619361014938, 0.7459080255491606, 0.6188376723372043, 0.11060131843677788, 0.7572219825793343, 0.22372714201350155, 0.2248826346064741, 0.2842189977123998, 0.234194441570774, 0.8082719384545783, 0.0, 0.35543171903388127, 0.7299992900251845, 0.22655532373895734, 0.5940675939547932, 0.07056937013046714, 0.20597419863272642, 0.586863240643373, 0.0, 0.015194189630647736, 0.0, 0.8561604566330895, 0.08756099706437867, 0.44987303972084425, 0.1496049653804154, 0.2903263916627384, 0.39885743548767694, 0.0, 0.17681118234902266, 0.49835126912686845, 0.7909941352550856, 0.012262316522948954, 0.829752604845485, 0.8727309453679273, 0.7928498840116429, 0.8677240510599421, 0.0, 0.6881116971780795, 0.8524400345642169, 0.0, 0.4000416430046448, 0.02001508476237797, 0.07241364329590354, 0.5377080641185094, 0.03252490896928947, 0.0, 0.334792268924615, 0.5873428846300117, 0.02716712761647248, 0.16868859862650792, 0.8263648962248804, 0.11076441441975882, 0.7426025346638739, 0.09422137265867661, 0.7809836031959027, 0.8259825071643098, 0.31998162124628227, 0.5482270985450096, 0.16281512986932242, 0.8123588544851766, 0.28911985191570744, 0.08038187268675007, 0.24581172390971173, 0.2174952886170703, 0.8226657834983702, 0.6515537033215051, 0.5964896156444087, ] primal_true = 0.9223845604218518 niters = 1909 res1 = FrankWolfe.away_frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.AdaptiveZerothOrder(L_est=100.0), print_iter=k / 10, epsilon=1e-5, memory_mode=FrankWolfe.InplaceEmphasis(), verbose=false, away_steps=true, trajectory=true, ) res1_adaptive = FrankWolfe.away_frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Adaptive(L_est=100.0), print_iter=k / 10, epsilon=1e-5, memory_mode=FrankWolfe.InplaceEmphasis(), verbose=false, away_steps=true, trajectory=true, ) @test norm(res1[1] - x_true) ≈ 0 atol = 1e-5 @test res1[3] ≈ primal_true @test res1[5][end][1] <= niters @test res1_adaptive[3] ≈ primal_true x_true2 = [ 0.12350325628679909, 0.27209922793666613, 0.0, 0.1401669208593975, 0.8788494948178499, 0.8342685623927103, 0.09804796463636488, 0.2122275998207822, 0.7625208834020012, 0.4652738908441709, 0.5731379884683532, 0.27639045997386924, 0.3336832995487319, 0.3469361951837413, 0.1336229980083404, 0.780030397630848, 0.49236727599406177, 0.874329744225315, 0.7309671468077595, 0.023042160241989237, 0.45869985746647546, 0.679705467413878, 0.8419422095529443, 0.31098474678315424, 0.3160531049488661, 0.023415892579793818, 0.025545746462217238, 0.21492339006780664, 0.7477763707338895, 0.4448976738194912, 0.0, 0.8193165394183596, 0.859817070627424, 0.19001602422893987, 0.7459081193869738, 0.6188376817399694, 0.1106012104488174, 0.7572218842338574, 0.22372704506073327, 0.2248824342409964, 0.28421873176658263, 0.2341947720818703, 0.8082721381894483, 0.0, 0.3554316828149227, 0.7299995942545656, 0.22655537502111792, 0.5940675416770479, 0.07056917339550282, 0.205973823076617, 0.5868631102448789, 0.0, 0.015195600977709636, 0.0, 0.8561603595443996, 0.08756893289369261, 0.44987314906166886, 0.14960475522281372, 0.2903262193913907, 0.39885700591829637, 0.0, 0.1768112686682394, 0.4983518341496353, 0.7909940162586777, 0.012255265619101422, 0.8297525700627989, 0.8727310624708051, 0.7928498862034395, 0.8677241994701683, 0.0, 0.6881116863638452, 0.8524400418873481, 0.0, 0.40004132924861774, 0.020014967561619194, 0.07241355411852693, 0.5377079346778642, 0.03251798352195498, 0.0, 0.3347921887674731, 0.5873426243318487, 0.027168981303859988, 0.16868876068051325, 0.8263651638803798, 0.11076450575931521, 0.7426024306918094, 0.09422153728454051, 0.7809837470618066, 0.8259826763067796, 0.31998160902571865, 0.5482271318602744, 0.16281519396942526, 0.8123588180758603, 0.28911953790429545, 0.0803816656438147, 0.24581174746305717, 0.21749506130863475, 0.8226657631621945, 0.6515536470906864, 0.596489706318256, ] primal_true2 = 0.9223845604496933 niters2 = 3408 res2 = FrankWolfe.away_frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.AdaptiveZerothOrder(L_est=100.0, eta=0.95, verbose=false), print_iter=k / 10, epsilon=1e-5, momentum=0.9, memory_mode=FrankWolfe.OutplaceEmphasis(), verbose=false, away_steps=true, trajectory=true, ) @test res2[3] ≈ primal_true2 atol = 1e-6 x_true3 = [ 0.12350364160905855, 0.2720912507358009, 0.0, 0.14016737894919556, 0.8788498863896176, 0.83426901624493, 0.09804858376590986, 0.21222819898266776, 0.7625211675983882, 0.46527425004082035, 0.573138394455831, 0.27639086842991223, 0.3336836492542, 0.3469367015262871, 0.1336233437062462, 0.7800306483527641, 0.4923676450024285, 0.8743301048502704, 0.7309673888704789, 0.02304260429126816, 0.45870028337813995, 0.6797058236678196, 0.8419424107695108, 0.31098512227015357, 0.3160535988475176, 0.023408358109346508, 0.025546351416447947, 0.214923870144732, 0.7477764202045378, 0.4448980496190519, 0.0, 0.8193168093268758, 0.8598171865270792, 0.19001650514605778, 0.7459084135022188, 0.6188379006111643, 0.11060177634453179, 0.7572222388624699, 0.22372744881962495, 0.22488297766113136, 0.2842196974407023, 0.23419493747178544, 0.8082723871719079, 0.0, 0.3554320385006412, 0.7299997464397213, 0.22655567318872008, 0.5940678549930419, 0.07056943610960685, 0.2059743993650674, 0.5868635475401429, 0.0, 0.0151919890089084, 0.0, 0.8561606585006025, 0.08756108714417242, 0.44987351232451545, 0.1496053567903214, 0.2903267440991662, 0.398857499658823, 0.0, 0.1768118504458742, 0.49835202963825764, 0.790994367452785, 0.012256124565600572, 0.8297528912334032, 0.8727309391686804, 0.7928501038401042, 0.8677244512292245, 0.0, 0.6881120640228882, 0.8524402440686749, 0.0, 0.4000417000030933, 0.0200154362247207, 0.07241395223591116, 0.5377083244045926, 0.03251891157220403, 0.0, 0.3347925120063812, 0.5873426183530177, 0.0271611272960249, 0.1686892300620705, 0.8263653847605529, 0.11076483683657806, 0.7426026880906017, 0.09422332107845836, 0.7809839803090287, 0.825982839429656, 0.3199821281896926, 0.5482274470499936, 0.16281572051063387, 0.8123591550715057, 0.28912016031441284, 0.08038280259301499, 0.24581214317616248, 0.217495515572685, 0.8226662321278636, 0.6515539414710015, 0.5964899915623191, ] primal_true3 = 0.9223845601906837 niters3 = 337 res3 = FrankWolfe.blended_conditional_gradient( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.AdaptiveZerothOrder(L_est=100.0), print_iter=k / 10, epsilon=1e-5, memory_mode=FrankWolfe.InplaceEmphasis(), verbose=false, away_steps=true, trajectory=true, ) @test norm(res3[1] - x_true3) <= 5e-5 @test res3[3] ≈ primal_true3 @test res3[5][end][1] <= 451 x_true4 = [ 0.12350364160905855, 0.2720912507358009, 0.0, 0.14016737894919556, 0.8788498863896176, 0.83426901624493, 0.09804858376590986, 0.21222819898266776, 0.7625211675983882, 0.46527425004082035, 0.573138394455831, 0.27639086842991223, 0.3336836492542, 0.3469367015262871, 0.1336233437062462, 0.7800306483527641, 0.4923676450024285, 0.8743301048502704, 0.7309673888704789, 0.02304260429126816, 0.45870028337813995, 0.6797058236678196, 0.8419424107695108, 0.31098512227015357, 0.3160535988475176, 0.023408358109346508, 0.025546351416447947, 0.214923870144732, 0.7477764202045378, 0.4448980496190519, 0.0, 0.8193168093268758, 0.8598171865270792, 0.19001650514605778, 0.7459084135022188, 0.6188379006111643, 0.11060177634453179, 0.7572222388624699, 0.22372744881962495, 0.22488297766113136, 0.2842196974407023, 0.23419493747178544, 0.8082723871719079, 0.0, 0.3554320385006412, 0.7299997464397213, 0.22655567318872008, 0.5940678549930419, 0.07056943610960685, 0.2059743993650674, 0.5868635475401429, 0.0, 0.0151919890089084, 0.0, 0.8561606585006025, 0.08756108714417242, 0.44987351232451545, 0.1496053567903214, 0.2903267440991662, 0.398857499658823, 0.0, 0.1768118504458742, 0.49835202963825764, 0.790994367452785, 0.012256124565600572, 0.8297528912334032, 0.8727309391686804, 0.7928501038401042, 0.8677244512292245, 0.0, 0.6881120640228882, 0.8524402440686749, 0.0, 0.4000417000030933, 0.0200154362247207, 0.07241395223591116, 0.5377083244045926, 0.03251891157220403, 0.0, 0.3347925120063812, 0.5873426183530177, 0.0271611272960249, 0.1686892300620705, 0.8263653847605529, 0.11076483683657806, 0.7426026880906017, 0.09422332107845836, 0.7809839803090287, 0.825982839429656, 0.3199821281896926, 0.5482274470499936, 0.16281572051063387, 0.8123591550715057, 0.28912016031441284, 0.08038280259301499, 0.24581214317616248, 0.217495515572685, 0.8226662321278636, 0.6515539414710015, 0.5964899915623191, ] primal_true4 = 0.9223845601906837 niters4 = 337 res4 = FrankWolfe.blended_conditional_gradient( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.AdaptiveZerothOrder(L_est=100.0), print_iter=k / 10, epsilon=1e-5, momentum=0.9, memory_mode=FrankWolfe.OutplaceEmphasis(), verbose=false, away_steps=true, trajectory=true, ) @test norm(res4[1] - x_true4) <= 5e-5 @test res4[3] ≈ primal_true4 @test res4[5][end][1] <= 451 end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
153525
using FrankWolfe using LinearAlgebra using Random using Test n = Int(1e3) k = 1000 s = 67 Random.seed!(s) const xp = [ 0.0014225829730746685, 0.00027273617345220023, 0.0004982501651537384, 0.00016781398571202372, 0.0007277581309468943, 0.0002292449202586443, 0.000586282153185683, 0.0001643306060072405, 0.0013573219013060527, 0.0017062956439693735, 0.0018805197883047205, 0.00036600380804269097, 0.0014251818134256385, 0.0016059380694325566, 0.0007985016721114605, 0.0007445625606451596, 0.0016881023473138599, 1.2635475952604431e-5, 0.0005625740951153886, 0.0004956060562970549, 0.0008664562903436179, 0.0004691476042227225, 0.0007407378074266904, 5.8218822022077696e-5, 0.0016668039943773883, 0.001230111678583221, 0.0014207383443248756, 0.00019629812732103628, 0.00023149798720790618, 0.0005457730481090465, 0.0004647273343765338, 0.0016567737337628164, 0.0006045563167841241, 6.79433941935833e-5, 0.0014508076394611818, 0.0009517077724100463, 0.0019777517342556054, 0.0015469323005765387, 0.0018741722738131758, 0.001543216015845832, 0.0014368860199185534, 8.123743519456117e-5, 0.0017304519788969876, 0.0009952125105021016, 0.001435347078363032, 0.0017044076620036219, 0.001370899801864165, 0.0017276689884084628, 0.0017207388360604057, 0.0005881117499865442, 0.0015843186972879391, 0.0002248903229268006, 0.0010789359594175554, 0.0013330122614207032, 0.0004199228230914178, 0.0001663156687595009, 0.0016064302448467124, 0.0006240639188353371, 0.0014750986252874063, 0.0008635840035783843, 0.0005818680243533776, 0.001122065868172068, 0.0015992917244000212, 0.0010582389504527334, 0.0019218317984081924, 0.0004358829777676219, 0.0015350408595329386, 0.0019150762478400594, 0.0011025998295428525, 1.552818560481631e-5, 0.0014681788128353534, 0.00010509940072605435, 0.0013962483523074832, 0.0005197183340729313, 0.0001985541908166003, 0.0018652939837433737, 0.0009494974103657329, 6.553696203023463e-5, 2.1731312863730182e-5, 0.0005872042575536399, 0.0017695830803026993, 0.001543177645476947, 0.0019442830961184038, 0.0002195404124343261, 0.0006762506740697591, 7.178001367589448e-6, 0.0001720387806437584, 0.0018371860762179462, 0.0006645798689715189, 1.5606577851214757e-5, 0.00043116222443045845, 0.001582408136187116, 0.00019166722790704569, 0.0009058144517547876, 9.535138143364876e-5, 0.0002448162608221115, 0.0008105073291824005, 0.00015599543481626288, 0.0014887306605149715, 0.00014239732148511232, 0.0015252030585656015, 0.00048282906401242106, 0.001640868543364915, 0.0009144831653524673, 0.00025350058852607735, 0.001759175429970381, 0.0003180421616147551, 0.00012625190354449787, 0.0012697356819963406, 0.0013558842617387545, 0.001213785617968065, 0.0015971668861470961, 0.0011491769537972049, 0.001752941760416418, 0.00021317496889315207, 0.0002616486794134621, 0.0011650225275642565, 0.0006522880062417026, 0.001979643109370393, 0.0020054541832613495, 0.0003148423515202374, 0.0007566885853996769, 0.0004918472421501449, 0.00031656967827039747, 0.0001918152234768508, 0.0018281654222492318, 0.0011533894999170135, 0.0005738681491066433, 0.0016659749624834204, 0.0013950726445840942, 0.0008431838004008162, 0.0017493945386526715, 0.0010129266531879585, 6.439075581973415e-5, 0.000668572835057624, 0.00044097868297955303, 0.0016334368839821985, 0.00030493326913045237, 0.0005789650694724851, 0.0017477952842328568, 0.00031196535075644156, 0.0019880985071043748, 0.0017476244132139682, 0.0016824754451223664, 0.0012848772893631225, 0.0009006681703641811, 0.0012325359195736816, 0.00196585423034127, 0.0012941244767165057, 0.0019402010039768934, 0.0016387730965204952, 0.00014496440086838826, 0.0013288836222637177, 0.0002792432544553741, 0.00037630513544492373, 0.00010736630005572997, 8.25956341021556e-5, 0.000799257704695363, 0.00032088771390445753, 3.9857898811463734e-5, 0.0015451889767061544, 0.001193403384458047, 0.0004210297422544032, 0.0006864541974307154, 0.0002433322075956111, 0.00031918970798436384, 0.0005711111051890588, 0.0016054760747165858, 0.0018515936022881752, 0.000490184453972966, 0.0004600333891919782, 1.2671542513416094e-5, 0.00037579867373211626, 0.000629804522218123, 0.00011705488279009928, 0.00041294868227935335, 0.00024277385968770864, 0.0013710095981204651, 0.0013364057795948441, 0.001261630491778122, 0.0019927696517590128, 0.0005029442221333206, 0.0012150950276685485, 0.0006972288288707543, 0.0002651860052693955, 0.0007848344961727201, 0.0012398392549124518, 0.001816756340931745, 0.0018212477275619064, 0.001410350863550584, 0.0013910443194918112, 0.0012804278072098797, 0.00033675242457422225, 0.0016400211737636066, 3.683761696182542e-5, 0.0011426299633260965, 0.0014251565811630661, 0.0011625295007978245, 0.00016334692345112194, 0.0015753511038089905, 9.498766765719075e-5, 0.0003688648658667572, 0.0004428771810992299, 0.0004335421163525156, 0.00014669168347603348, 0.000960727656501515, 0.0017388352025956846, 0.0012199470010173447, 0.00047386021397838866, 0.00016289575380331686, 0.0008063383317527575, 0.0017790777172098354, 0.0006471525490103279, 0.00027338176849918465, 0.0016323523128177432, 0.0014388213557773152, 0.0015858013996187335, 2.5328684352336216e-5, 0.00013426485852941858, 0.0013789009950120892, 0.0016098933709620643, 0.0015334608699318485, 0.0001504873614723311, 0.0003137788469648133, 0.0013781531350813402, 0.00043375213097234633, 0.0009784180782994377, 6.389319176519076e-5, 0.0017343206167148779, 0.0006450202539701317, 0.0008304456683779456, 0.0015885185376653043, 0.0009978498817924482, 0.0017497325552822012, 0.0003193194820436, 0.0019816755896353505, 0.0008959836044206313, 0.0014934780674162446, 0.00010829940298036558, 0.0017701658144083552, 0.0007247032532871117, 0.001002068880650653, 0.0005018434395144133, 9.577497058882493e-6, 0.0014349312885360813, 0.0003996918246625879, 0.00020479530791282435, 0.0015498412290078337, 0.0008047122969117834, 0.001437993761595762, 0.0008314269473453154, 0.0018494703491537538, 5.538929067719523e-5, 0.000573001134440481, 0.0004286477637823486, 0.0009391080324561438, 0.0019890285018640264, 0.0017895996397510933, 0.0005983484560665042, 0.0011878533084640373, 0.00020393940255329272, 0.0012864452667014036, 0.00056282486086491, 0.001386281514517723, 0.0018025535733172135, 0.0003738041486706437, 0.000449009638032906, 0.000779117017002669, 0.00045773656732915044, 0.0012377335924829548, 0.0010404995332000339, 0.001364187638683425, 0.0019502557025712444, 0.0019199985857245821, 0.0017927791837919922, 0.000571685295613876, 0.00016766206957098014, 0.0008070420790599257, 0.00032201232575932933, 0.0011636743053765463, 0.0016257189566375385, 0.0005844488043855814, 7.617781434075272e-5, 0.0007973292442984844, 0.00183020003447009, 0.001913506929951082, 0.0008501916628805596, 0.0018565277146927934, 0.0012163484149613775, 0.0016013806467931433, 0.0013594317738963907, 0.00046933399836569307, 0.0015519769602222277, 0.0005190206730682707, 0.0017951492920578209, 0.0003528092133331824, 0.0015695041100253799, 0.0014172341002727077, 0.0006113649234644023, 8.246148060835662e-5, 0.0015216245717466549, 0.00014082732247942627, 0.0004888271400282999, 0.0003620412019191197, 0.00023552809052613247, 0.0010522476332758247, 0.0011330280716784751, 0.0011919004394500186, 0.0001999239184882932, 0.0012578579682001442, 6.81560097974536e-5, 5.620784619652595e-5, 0.0015560949134335593, 0.0006731689968200158, 0.0008932039797485442, 0.000872702343437884, 0.0016405810215582685, 0.00035429434975047, 0.0003187697915258196, 0.0015016443445056923, 6.64042829665131e-5, 0.0008912890953257125, 0.0019966693130079533, 0.00045847806261945515, 0.001919652492603607, 0.00025326054797598956, 0.0013547056756098796, 0.0014396998863221834, 0.001486047707058099, 0.00044725593678386947, 0.001314413433300196, 0.0003646375717519197, 0.0003645431490166326, 0.0007737989810852643, 3.7403736134581684e-5, 0.00036235643630038025, 0.0010392698105147625, 0.00044576427620295826, 0.001658335974052411, 0.0018412151588818907, 0.0016897878513190163, 0.001138478375397692, 0.0008425102380056849, 0.0004845750437687568, 0.0013109477143974518, 0.0006680411125982277, 0.00026480645283318585, 0.0005793940986069932, 0.002007718594989109, 0.00025654655139448353, 0.00048808242636074703, 0.00193870459617474, 0.0012624318319217885, 0.00012610086423128045, 0.0004822664243645331, 0.0006995910783991009, 0.0018343834533313178, 0.00035618970224208835, 0.0015795229721178893, 0.00188936640712125, 0.0019625338448100373, 0.00042054385669217505, 0.0010034908904701797, 0.0016390143925221687, 0.001837700390234282, 0.0012565153576574043, 0.00022105274287425566, 0.0012662897590817335, 0.0009447584260034436, 0.0015937105558610845, 0.000995052949640822, 0.001933792333852781, 0.0012952633194697476, 0.0019186107813653208, 0.0005639190586868324, 0.0008654626847821067, 0.0001473047606306817, 0.0006739036440435369, 0.0011341036866187538, 0.0003067213579947775, 0.0015342332763611482, 0.0019925656641059746, 0.0009773026202449242, 0.001549236154749225, 0.001847918975796324, 0.0014108561209018181, 0.0016459813879631316, 0.0008047156537357154, 0.0017241046391939091, 0.00045557876981122745, 0.0013508718480724747, 0.0015656119635699386, 0.0007124724096625895, 0.0004041937937868055, 0.0009747104174367392, 0.0009805195733719023, 0.0015187054531335855, 0.0005213653296996159, 0.00027910099742593385, 0.00034137762315484193, 0.0009675376320895608, 0.0014787231435549062, 0.0016581717177690176, 3.710136260687701e-5, 0.0015476082870335757, 0.0001464069426865392, 8.080987325999988e-5, 0.0015552962238936023, 0.0018178149777897596, 0.001327106716333705, 0.0005714134281097281, 0.0005346464119960912, 0.0018858202831895242, 0.0013436309434906762, 0.0008328413960901492, 0.0009882817570009282, 0.0010543682618844167, 0.0011976491796568604, 0.0012467679722571376, 0.0010398607128184795, 0.001361608822661806, 0.0013867854704599026, 0.0010421561195515735, 0.0003830833383726635, 0.0012626049152821735, 0.0016019626189675779, 0.0019195943870069867, 0.001179710441692755, 0.0017246953969155686, 0.001059355549820652, 8.871825201101645e-5, 0.0017516580061682713, 0.001028716271075169, 0.0005981716482185058, 0.0010555882488528455, 0.0002633587507720345, 0.0011528277493200968, 0.0010726325205459252, 0.0005611877948603352, 0.00140845854300012, 0.0010461453626100178, 0.0019993923525821137, 0.001397195603117328, 0.0013930685078893433, 0.0019019705238663828, 0.00046372564216749985, 0.0019783187056816743, 2.5392703094837675e-5, 0.0019063486066126778, 2.3252116283804123e-5, 0.0009103915283001037, 0.0012206501588948252, 0.0017075537678668412, 0.0004972857490398049, 0.000526706559493638, 0.001009423841767406, 0.0018142128081296233, 0.001115595515528934, 0.0010736326239073827, 0.001527035886119384, 0.0014332001238930188, 0.0019578191863363348, 0.0006303434582234104, 0.00033172768771474564, 0.001797553659067984, 0.0007884331410750877, 0.0019432162528753788, 0.0006182625655236285, 0.00013000224000990954, 0.001242434370402485, 0.0019522719977704884, 0.0013528893312904893, 0.0009195345843056242, 0.0012686033338687242, 0.001231448771365785, 0.0020121041512915785, 0.00015331242640691763, 0.0009504315115270128, 0.0016553550309291304, 0.0004987751828173625, 1.8061519251257906e-5, 0.0006186728449469149, 0.0005920521893881824, 0.001908220870448575, 0.0002205036623445366, 0.0018846492370764411, 0.0016494410451628717, 0.0015854863842742677, 0.00024155985856704875, 0.00013159895671226933, 0.0005767677259911404, 0.0004553228545598211, 0.0007748676020906012, 0.0013286214455836079, 0.001091278879553795, 0.0002858707916060778, 0.0015346429912678266, 0.001841942711447502, 0.0012287136844843117, 0.0017539494532146488, 0.0007762032512225517, 0.0018104781769599939, 0.000975640977123887, 0.00010748120413993646, 0.000849691832052351, 0.00014029856335695293, 0.0011047690754086258, 0.0015142689124562267, 0.00030226865531931776, 0.0011549217637641255, 6.691355679364822e-5, 0.0008031842791010631, 0.0014565305921752628, 0.0008335947465890271, 0.00020759794336028733, 0.001458188635333983, 0.0005148620989943951, 0.0005635426425700353, 0.00042604790335893413, 0.0013069072680508493, 0.00035994797345680665, 0.001356042565331949, 0.0014572228754304445, 0.00032897063904729424, 0.0009189062781903981, 0.0019203413143139268, 0.001286431247398028, 0.0012462345067831822, 0.0018189975286370629, 0.001985475189142025, 7.712852992397094e-5, 0.001526665411699278, 0.001059854604294616, 0.0015489054821369603, 0.000918017971282879, 0.00037606271088591457, 0.001719783473476843, 0.0006928424587896554, 0.0010718750030958464, 0.0007047606940762046, 0.0002853923986268533, 0.0005109056253858266, 0.0020141294696619156, 0.0015512092488933434, 0.0011191843459915781, 0.001231168426393991, 0.001740236132536594, 0.0008078549240013852, 0.0008781330722390806, 0.001800076170448688, 0.0007401333104629241, 0.0015147410396491917, 0.001285580617951326, 0.0015782105962813086, 0.0013863636861261646, 0.0014540986179455684, 0.0012609685897404031, 0.0003174541527607249, 0.00046581161135928427, 0.001131094146732926, 0.0014473128882542638, 0.0005915013930146079, 0.0006948530868565294, 0.0002852502552601266, 0.0007283789563952781, 2.655043569839603e-5, 0.0006445866385715326, 0.0003285745001755108, 0.0001255192471324481, 0.0011179188090113304, 0.0009587672649033661, 0.0016780325639011303, 4.575158458010835e-5, 0.0014225283747152954, 0.00039625237834410077, 0.0006524293521695967, 0.0008939871382032231, 0.0007728206274946616, 0.0012276422872195894, 0.0003379720555377532, 0.0010361792114243, 0.000992123354623973, 0.0016742618749752145, 0.001141895140069696, 0.0011254883718693133, 0.0011796080992514286, 0.001687513988079289, 0.0008345610876173094, 0.0014612737137882274, 0.0006579103193452829, 0.0017453970148688287, 0.0008591074494377854, 0.001699583736033031, 0.0010509353330690689, 0.0003355206879655129, 0.0017483971228195708, 0.0006776495275691602, 0.0016892321334132094, 0.0015432150515412323, 0.001978625944342522, 0.0007472892897239079, 0.0016030467005865696, 0.0007048388586598108, 0.0017167153458345647, 0.0003797434941319426, 0.0007207856531035437, 0.0017245936757519014, 0.000872230007084668, 0.0005945354017790036, 0.001928672314445635, 0.0012940446479220156, 0.0005992857387460298, 0.00025901812348612846, 0.0014556092901899212, 0.001119789808402566, 0.0006903324505245297, 0.0009907848948431377, 0.0008028236812708298, 0.0002804432825771429, 0.0018508864193117912, 0.0009063591051592336, 0.0007300042312496485, 0.0013136149497010557, 0.0013435237754819338, 0.0002869366570851323, 0.0014957120264071004, 0.00113224169021684, 0.0007084865892753494, 0.0010027418411637191, 0.0013999186550814606, 0.002018370494453206, 0.00035787464434598114, 0.0015732415271333274, 0.0013346760850029228, 5.396256554262455e-5, 0.0019500249869953174, 0.0003183614245684218, 0.0018499414684380881, 0.00022451032507613667, 0.0006256693596330921, 0.001892534391138038, 0.0008323693672608353, 0.0018494619350907283, 0.0005528073762110686, 0.0013287922964342344, 0.0008518480747300117, 0.0015655089940693795, 0.0014250890095806486, 0.0017836921659680886, 7.399501652438056e-5, 0.0012244377536486464, 0.001928668797875879, 0.000368231100283004, 0.0010479702852958044, 0.0007664304036454839, 0.001277055835293943, 0.0014612319867427642, 0.001721978176243194, 0.0013531995455601954, 0.000390416081387736, 0.0011340566351650265, 0.00026464997452869135, 0.0001582626699650248, 0.0009384294915254233, 0.0011552652956635142, 0.0006697931115025893, 0.0016512784115313536, 0.0016720761294911188, 0.00013004175793061926, 0.000604732874723968, 0.001946368063850652, 0.0014097141398374694, 0.0005939033734966149, 0.0003463284530779445, 0.0019092870029996125, 0.0014981523044342224, 0.0013033405661748217, 0.0013615477093145017, 0.0006815375463533257, 0.0017006268278526202, 0.0010138000051263505, 0.0013065164623536842, 0.0013703925262707967, 0.0012401228391997524, 0.0018888139358684802, 0.0005517860761207222, 0.0007704313408891517, 0.0015646785272202589, 0.0017288904895688996, 0.0009074479771028894, 0.00032489270218414863, 0.00019230637647188353, 0.001973470578763725, 0.001010799972431649, 0.0007379351281253648, 0.0003613157489228872, 0.0011335961311765255, 0.001614070790713692, 0.0007282297710248562, 0.0017996318677530117, 0.0015951867070882707, 0.001715427695039696, 0.0017561474105838451, 0.0017910129122431753, 0.0007325282043603991, 0.001551107393933763, 0.00045841701692327243, 2.5432708172976657e-5, 0.0013207136799443765, 0.0016596925425870937, 0.0009271256453301118, 0.0010807490771064922, 0.0019088534451276032, 0.0019282809276060522, 0.0014683232457560235, 0.0017977305269067246, 0.00013036911061194633, 0.0011219297862102749, 0.0017913484246202317, 0.0015638342087054946, 0.0003956537566486, 0.0009333039080981982, 0.0005055040877443921, 0.001450178900724977, 0.0014549290318311401, 0.0010803486360573752, 0.001131300941630895, 0.0006647576382844433, 0.0017128619319465629, 0.0009361701316409294, 0.0013879660212940937, 0.0005926049524011536, 0.000628458307112509, 0.0014149537178390788, 0.0007730954536801809, 0.0002755105487138394, 0.001061549045341235, 0.0005827754141220098, 0.0003866537860650106, 0.001333912285497736, 0.0011601265781305728, 0.0010522942749647034, 0.0016876664626944689, 5.855498155123065e-5, 0.0014131853547619515, 0.0002457439825020026, 0.0016884114401086337, 0.0009296867082127962, 0.001045151491409887, 0.0009819450134137563, 0.0005856080329713324, 0.0004090782892621781, 0.0016377108410346331, 0.001123698337585406, 0.001220982598857711, 0.0019562165605960915, 0.0018292076668669308, 0.0010294598634595488, 0.0013478339105567724, 0.0017603706991018721, 0.0014371728102072962, 0.0012235015928238255, 0.0007213793198109632, 0.0020148414318788923, 9.810411476098035e-5, 0.0018584553374505022, 0.0007844749573715261, 0.0005994353591995659, 0.0010270968892109186, 0.0009371180219366003, 0.0007996457466250777, 0.0019957537203612046, 0.0018763523198881617, 0.0011040638229239165, 0.0009800891664213855, 0.0007691398549665108, 0.0006858343026304385, 0.0007589891322079315, 0.0009280235119971932, 0.0004285293666738591, 0.0014982170522007518, 0.0007432184718891272, 0.0001851659446321819, 0.0002326778296392575, 0.0011666249787194542, 2.2665926138682885e-5, 0.0019071669784413395, 0.00037418643557223706, 0.0002015091579607481, 0.0011304088641328532, 0.00046052641581946214, 0.0012023781005911101, 0.001681033734290235, 0.001328953625901482, 0.00038571690456725956, 0.0011586788304359969, 0.0019890162693459636, 0.001929094576633232, 0.00040016043956587566, 0.0019096902755350211, 0.0007593408436130094, 0.0014703115807820604, 0.001515240424575666, 0.0004992136534917434, 0.0007682493960219643, 0.00021590614816095814, 0.0005469991138807453, 0.00011693160303371259, 0.00019989032800547357, 0.0005446715593595313, 8.934944637443384e-5, 0.0013333510572576721, 0.0005332103411317778, 0.0008368455512728243, 0.000962194187018558, 0.00026451279436036216, 0.0010716772783333892, 0.001878756357890447, 0.0002928341676673364, 0.000814312173401349, 0.0005982950648058293, 0.0014569414244273145, 0.0010959326329531, 0.0007470813365541071, 0.0007827603056285682, 0.0004991047238701802, 0.0013750008301846584, 3.925615317768748e-5, 0.0019024015811104642, 0.0008353160412387871, 0.0006211049579554875, 0.0012379690299341077, 0.001278307658978047, 0.0015145648367387628, 0.0007959692144559928, 0.0007757628179737477, 0.0016694548150350346, 0.00024788452482422344, 0.0018742188199002477, 0.00014317920897765214, 0.0011185483576795741, 0.001709040501803795, 0.0014204240339547012, 0.0009239312620334554, 0.0014475749271278295, 0.0004330816024704612, 0.0007101789642348186, 0.0013792399717161953, 0.00159407146741197, 0.0006648787423760073, 0.0013288432169835278, 0.00031868692691503766, 0.001422653739648178, 0.0019663008282803664, 0.0007250562672805323, 0.0011894551256465369, 0.0011957698204556125, 0.00044245981387134724, 0.0004945024320793509, 0.0017749446039923675, 0.0012083916275163107, 0.00016764046975264828, 0.0005541379211860165, 1.6463204721307958e-5, 0.0016218015835627211, 0.00031177606699018645, 0.0016146404188655975, 0.0009111375782937904, 3.7604554709354944e-6, 0.00015122991437470473, 0.00043441581531724076, 0.0013974610007264057, 0.0018782025058311808, 9.200578691560263e-6, 0.00011266403727269566, 0.0010396732327238446, 0.0009695938910306256, 0.001338315016532539, 0.0002651101500308568, 0.0011537172263599185, 0.0004679810165320436, 0.0007590249506698967, 0.00159604086805764, 0.00021563499933159122, 0.0004603270397485177, 0.001450495693971434, 0.0017487778289521565, 0.0007876988515836151, 0.0019703176780635997, 0.0018971099754136829, 0.0010113348282952154, 0.0001325609843352507, 0.00029984165357390134, 0.00046104154967000925, 0.0014195171608235079, 0.0018029601400828192, 0.0014733644094703483, 0.001519911269089821, 0.000980829426427464, 0.0003693747816075631, 0.0017294142969565404, 0.000348511109502126, 0.0007082503261385923, 0.0003210365325876314, 0.0012646978965944829, 0.0015347028868335742, 0.0010527982657362277, 2.4795948316527575e-5, 0.0009964336959383726, 0.001685841930250312, 0.0009232755278053173, 0.00041431007666195004, 0.0003701132190313045, 0.0011708980317930743, 0.0004987849525083744, 0.0019365038792075592, 0.0008768666439910665, 0.0007215015250508931, 0.001976084911273778, 0.001104528821429371, 1.4340706320463055e-6, 0.0018381030133881513, 0.0004620641277131269, 0.0012761423672548507, 0.001768116111430507, 0.0010893948179095134, 0.000403120667887494, 0.001730182006695354, 0.0004408412815176264, 0.001672112282952945, 0.001636662471949778, 0.0008324088327207932, 0.0013578952418601348, 0.001903636420578739, 0.0017521586788196376, 0.0005736374491482669, 8.286423766507618e-5, 0.0003912122726180794, 0.0014120086358199821, 0.0014314196458646475, 0.00041469286099672843, 0.0010408926750579426, 9.641386432206783e-5, 0.0019114325250229693, 0.0007714150806026338, 0.0005426877224868825, 0.0018266841640463495, 0.0012482059603143342, 0.0014184433487956678, 0.0013506498430931827, 0.0001518179300747105, 0.0018834088259760391, 0.0005105652389871029, 0.00019460640327764186, 0.0010486062238223093, 0.00032766695735130473, 0.0009851875900107766, 0.0007642923802915474, 0.0008856009052559529, 0.00048486733493274597, 0.00048539928090889344, 0.0011129448263626327, 0.0002546283096939784, 0.0002496131464590531, 0.0016961716253364298, 0.001368704227191942, 0.0005443572020511274, 0.0017257559870764464, 0.0012703934432636054, 2.3778866312800337e-5, 0.0019605453253382014, 0.00030704150185665294, 0.0004600453064153849, 0.0008809731527354484, 0.0006942007573040998, 0.0014157256651722728, 0.001199700419600618, 0.0018668234202866192, 0.0004090409300695781, 0.0014243666634633208, 0.0013505142009286768, 0.0008180617479802867, 0.0005150098530964131, 0.001078786284436023, 0.00032989795772690836, 0.0006389489213384656, 0.00017834541945003157, 0.0013029725022187244, 0.0015276601328353138, 0.0014204690865051905, 0.000722166240553017, 0.001438185149311649, 6.60796211955629e-5, 0.0012900885532524267, 0.0013859504363514486, 0.0008854596703943416, 0.0007426617078624007, 0.0007564014678163869, 0.0010870259212903868, 0.0007593487651548561, ] f(x) = norm(x - xp)^2 function grad!(storage, x) @. storage = 2 * (x - xp) end const lmo = FrankWolfe.KSparseLMO(100, 1.0) const x00 = FrankWolfe.compute_extreme_point(lmo, rand(n)) function build_callback(trajectory_arr) return function callback(state, active_set, args...) return push!(trajectory_arr, (FrankWolfe.callback_state(state)..., length(active_set))) end end @testset "Lazy Away Step CG" begin x0 = deepcopy(x00) res1 = FrankWolfe.frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Shortstep(2.0), print_iter=k / 10, memory_mode=FrankWolfe.InplaceEmphasis(), verbose=false, trajectory=true, ) x_true1 = [ 0.001422583298436932, 0.00027273619213263807, 0.0004982505954516348, 0.00016781414194964753, 0.0007277579866777386, 0.00022924464056524115, 0.0005862819582276917, 0.00016433101785554369, 0.0013573218913879833, 0.0017062956531315118, 0.001880519386637409, 0.0003660037194265856, 0.001425181673020117, 0.0016059379769033152, 0.0007985016372647361, 0.0007445621908502428, 0.001688102174812349, 1.2635658299699916e-5, 0.0005625744973508139, 0.0004956060654237624, 0.0008664564471334144, 0.0004691476292198133, 0.0007407375932988738, 5.8219185751327486e-5, 0.0016668042520459239, 0.0012301120930461491, 0.0014207383332020325, 0.00019629817246414512, 0.00023149816615342805, 0.0005457729620649364, 0.00046472742910844605, 0.0016567740433120327, 0.0006045563049609739, 6.794338511093809e-5, 0.0014508076551340596, 0.0009517078868957123, 0.001977751457938242, 0.001546932200578655, 0.001874171900483568, 0.0015432158965580597, 0.001436885697973832, 8.123783195490047e-5, 0.0017304521475545753, 0.0009952123505532783, 0.001435346934369604, 0.001704407444452622, 0.0013708999994775754, 0.0017276689804006057, 0.0017207386293186337, 0.0005881119999966264, 0.0015843187626965185, 0.0002248900005468801, 0.0010789356512070402, 0.0013330125500510962, 0.00041992272669491267, 0.0001663155483209697, 0.0016064306007644942, 0.0006240640136417282, 0.0014750988923257387, 0.0008635840117228274, 0.0005818681034150127, 0.0011220659002221156, 0.001599291798036956, 0.001058238610046571, 0.0019218317576815624, 0.0004358829009323019, 0.0015350408836077494, 0.0019150763101474454, 0.0011026000041810858, 1.552821592390492e-5, 0.0014681790112043998, 0.000105099754976968, 0.001396248297986154, 0.0005197180122391385, 0.00019855379679623088, 0.0018652938805804734, 0.0009494975453571945, 6.553689588068293e-5, 2.173143679411229e-5, 0.0005872042310431497, 0.0017695832489658418, 0.00154317807420678, 0.0019442827037914254, 0.00021954052231948132, 0.0006762506460557135, 7.177979881036352e-6, 0.00017203856745373142, 0.0018371863241565844, 0.0006645802958977139, 1.560677312329672e-5, 0.0004311625427945239, 0.0015824080871079422, 0.0001916669325429381, 0.0009058143759747405, 9.535097336617209e-5, 0.00024481621985804607, 0.000810507339679925, 0.00015599582913259713, 0.001488730799761298, 0.00014239762387376954, 0.0015252026281489237, 0.0004828291124104572, 0.0016408685398329635, 0.0009144831923073489, 0.00025350100539647574, 0.0017591750329373364, 0.00031804252116191976, 0.0001262518093072395, 0.0012697357480810024, 0.001355883995726469, 0.0012137853725334648, 0.0015971670984205736, 0.0011491769963244054, 0.0017529415239556129, 0.0002131749135309461, 0.0002616486356144201, 0.001165022239140106, 0.0006522877365379728, 0.0019796430094749413, 0.0020054541595486267, 0.00031484234970781643, 0.0007566885370529475, 0.0004918472250813644, 0.00031656924290316833, 0.00019181482957171842, 0.0018281654495742937, 0.0011533893762334627, 0.000573868200442384, 0.0016659749560906868, 0.0013950729978351782, 0.000843183598262116, 0.0017493949644233264, 0.0010129267221811677, 6.439072500158456e-5, 0.0006685729945893569, 0.0004409789633562954, 0.0016334372077967502, 0.00030493354848487505, 0.0005789651959674655, 0.001747795285331049, 0.0003119653631793791, 0.001988098499744349, 0.0017476246594401673, 0.0016824754829753777, 0.0012848774510369068, 0.0009006683166698149, 0.0012325362256900504, 0.0019658544017702724, 0.0012941247574037855, 0.0019402010097263932, 0.0016387731283857294, 0.00014496480962367716, 0.001328883874751634, 0.0002792433022146127, 0.000376305368510139, 0.00010736626596517225, 8.259540018750177e-5, 0.0007992580246088681, 0.00032088777076662604, 3.985824803874624e-5, 0.0015451888196207516, 0.0011934036486552322, 0.0004210294516110514, 0.0006864543056921651, 0.00024333232282691163, 0.00031918990489049977, 0.000571110872716258, 0.0016054757738309207, 0.0018515935484422147, 0.0004901845807064295, 0.0004600335492554734, 1.2671378872671308e-5, 0.00037579870365639595, 0.0006298044929322319, 0.00011705465500488188, 0.00041294862899641334, 0.00024277390326480274, 0.0013710095892248576, 0.0013364057089451681, 0.0012616305209054977, 0.0019927698189057138, 0.0005029439582579911, 0.0012150947403005532, 0.0006972289637076968, 0.0002651860467732891, 0.0007848344764096253, 0.0012398392784771727, 0.001816756321462804, 0.0018212477466463433, 0.0014103512442337211, 0.0013910445834584976, 0.0012804276600197912, 0.0003367524254090376, 0.0016400211791981984, 3.6837641321005985e-5, 0.0011426299675142643, 0.001425156442004878, 0.001162529898799113, 0.00016334719263855923, 0.001575351135717264, 9.498761433684464e-5, 0.0003688646463673834, 0.00044287706497212934, 0.00043354217234459306, 0.00014669201483358195, 0.0009607279550424813, 0.001738835202931529, 0.0012199472384665801, 0.0004738602119541344, 0.00016289575921213655, 0.0008063382828032295, 0.001779077817158389, 0.0006471524372962566, 0.00027338187178560476, 0.0016323524600192045, 0.0014388215491637115, 0.001585801555985741, 2.5328526273778736e-5, 0.00013426449231340048, 0.0013789007716318844, 0.001609893469899675, 0.001533460641716875, 0.00015048739843229606, 0.00031377927215406196, 0.0013781532696152759, 0.0004337521854309176, 0.0009784178854301217, 6.389351495085058e-5, 0.0017343209699450133, 0.0006450202831107695, 0.0008304460533936122, 0.0015885184514635472, 0.0009978495355821711, 0.001749732382140415, 0.00031931940459775237, 0.0019816758314184645, 0.0008959832558809814, 0.0014934781964352022, 0.00010829948881218047, 0.0017701657059495635, 0.0007247033662284584, 0.001002068922849399, 0.0005018430944771262, 9.577764122143186e-6, 0.0014349311477589442, 0.00039969217871372177, 0.00020479528257467513, 0.00154984153453624, 0.0008047121059421737, 0.0014379935402231774, 0.0008314268695423717, 0.0018494702922728483, 5.5388868225643025e-5, 0.0005730011827168046, 0.00042864798350337004, 0.0009391079951738075, 0.001989028601238455, 0.0017895995351085332, 0.0005983481903174807, 0.0011878533857429224, 0.00020393934668435366, 0.0012864455166272802, 0.000562824793115754, 0.00138628158203756, 0.0018025534381784039, 0.00037380376188099587, 0.0004490093664112049, 0.000779116652782068, 0.00045773632695422057, 0.0012377337551298432, 0.001040499116876897, 0.0013641875035476179, 0.0019502556804008185, 0.0019199984329793473, 0.0017927793224415225, 0.000571685594815955, 0.00016766218491233738, 0.0008070420519448847, 0.0003220123349427838, 0.0011636744528969504, 0.001625718930061574, 0.0005844485829110754, 7.617805188105912e-5, 0.000797328841321287, 0.0018301997112668115, 0.0019135070457975015, 0.0008501915403179514, 0.0018565277516904611, 0.0012163484792412978, 0.001601380621208906, 0.0013594316090462181, 0.0004693338120918366, 0.0015519771990332647, 0.0005190205188878503, 0.0017951490266581132, 0.0003528093772249075, 0.001569504178738941, 0.001417234179221147, 0.0006113648819008943, 8.246104172956826e-5, 0.001521624922819974, 0.00014082752519119996, 0.0004888272304369288, 0.00036204116897148786, 0.00023552824586397633, 0.0010522476744806337, 0.0011330280675029847, 0.0011919006528931175, 0.0001999242665420746, 0.0012578578233769396, 6.815607671143248e-5, 5.620789726257587e-5, 0.0015560946958158304, 0.0006731689453142587, 0.0008932040197831552, 0.0008727023987390509, 0.0016405809678080824, 0.0003542943838104295, 0.00031876973809498227, 0.0015016443288919225, 6.64046721549373e-5, 0.000891289133798293, 0.001996669097434254, 0.00045847773958111103, 0.0019196527545255711, 0.00025326041151168725, 0.001354705629039968, 0.0014396999106363157, 0.0014860476583688012, 0.00044725616132155804, 0.0013144134092116545, 0.0003646379208481011, 0.0003645428211151425, 0.0007737989180765329, 3.740377795979647e-5, 0.00036235651224719126, 0.001039270081657853, 0.0004457645535051069, 0.0016583359570858725, 0.0018412152984692268, 0.001689787850913742, 0.0011384781128179933, 0.000842510281623745, 0.0004845750119682093, 0.0013109474933286733, 0.0006680410797171914, 0.0002648064957388955, 0.000579393903889324, 0.002007718548275753, 0.00025654639135301306, 0.0004880825102864211, 0.0019387048403958598, 0.0012624320628974207, 0.0001261007024837611, 0.00048226663811817816, 0.0006995913037606427, 0.001834383678229052, 0.0003561901300635259, 0.001579522917207466, 0.0018893666138931182, 0.0019625338055259205, 0.0004205441519813119, 0.0010034907050917796, 0.001639013993702655, 0.0018377004426333992, 0.0012565153476833694, 0.00022105302076073674, 0.0012662897328368343, 0.0009447584987617238, 0.0015937106377387747, 0.0009950529145076024, 0.0019337925463650666, 0.0012952637437018942, 0.001918610724193101, 0.0005639191091289963, 0.000865462741448591, 0.00014730437487612893, 0.000673903662647801, 0.0011341037287862694, 0.00030672135517598734, 0.0015342334902029772, 0.0019925652582115402, 0.000977302511105224, 0.0015492357835884926, 0.0018479187274705892, 0.0014108559492532996, 0.00164598134237, 0.0008047157678973852, 0.0017241047346962769, 0.00045557900048990777, 0.0013508716333908563, 0.0015656116682494523, 0.0007124721131508691, 0.000404193753710275, 0.0009747107070896817, 0.0009805196981766274, 0.0015187055944472837, 0.0005213656648771209, 0.0002791011237045265, 0.00034137742563721267, 0.0009675373320712843, 0.001478723372342432, 0.0016581719306024859, 3.710150004609358e-5, 0.001547608075976774, 0.00014640722437357095, 8.081030061841183e-5, 0.001555296229468474, 0.0018178149132461816, 0.0013271067862801749, 0.0005714133492219603, 0.0005346464517370385, 0.001885819936009064, 0.0013436307421278498, 0.0008328413061147517, 0.0009882818079607779, 0.0010543683117150138, 0.0011976491789970044, 0.0012467677311572322, 0.001039860632401848, 0.0013616088894481248, 0.0013867853993846878, 0.0010421560502447908, 0.0003830833198844097, 0.0012626049292066494, 0.0016019628206965608, 0.001919594023709137, 0.00117971050606888, 0.001724695636556548, 0.0010593556914296504, 8.871818927372937e-5, 0.0017516577453378305, 0.00102871653773293, 0.0005981717891280463, 0.0010555885245747175, 0.0002633587454674742, 0.0011528274283465706, 0.0010726325379164603, 0.0005611878824471102, 0.0014084581247227272, 0.0010461456493267138, 0.0019993921709536592, 0.0013971954119033484, 0.0013930684343242225, 0.001901970715949614, 0.000463725536257292, 0.00197831859171314, 2.5392714729764217e-5, 0.0019063488799318247, 2.3252078142854604e-5, 0.0009103916653270865, 0.001220650001823333, 0.0017075537014015047, 0.0004972853662566432, 0.0005267064927532542, 0.0010094241154711202, 0.0018142128899403733, 0.001115595446510315, 0.0010736329264253934, 0.0015270361456379417, 0.0014331997833764653, 0.001957819283746969, 0.0006303437567574473, 0.0003317276109203346, 0.0017975535908435064, 0.0007884329950958072, 0.0019432158157201762, 0.0006182627207636845, 0.0001300020242654055, 0.0012424343176546447, 0.001952271661234906, 0.0013528893741912098, 0.0009195349234926948, 0.0012686033203867684, 0.0012314490102978747, 0.002012104008332672, 0.00015331254720017817, 0.0009504312986883304, 0.0016553550424929814, 0.0004987754604531402, 1.8061486463855277e-5, 0.0006186729317476349, 0.0005920520896513595, 0.001908220880704972, 0.0002205032608706313, 0.0018846493276807917, 0.001649440915965421, 0.0015854866403236768, 0.00024155971592595816, 0.00013159894751684848, 0.0005767675778804164, 0.00045532304650933674, 0.000774867640861596, 0.0013286214401055142, 0.0010912789168198258, 0.0002858706440047982, 0.0015346431775552238, 0.0018419428211717877, 0.0012287136832596515, 0.001753949628630284, 0.0007762031382974182, 0.0018104781303813647, 0.0009756409493174418, 0.00010748106828959538, 0.0008496920310213392, 0.00014029860655662596, 0.0011047691241680084, 0.0015142689620110598, 0.00030226840836937105, 0.0011549217765643638, 6.691357444105232e-5, 0.0008031845510523045, 0.0014565307456891187, 0.0008335950334179378, 0.0002075976678965532, 0.001458188830492884, 0.0005148620190456636, 0.0005635429355703793, 0.0004260481579223233, 0.0013069070422511945, 0.0003599480035956056, 0.0013560425483786864, 0.0014572227938180558, 0.00032897057311142457, 0.0009189062551815262, 0.0019203412579034116, 0.0012864312191510016, 0.001246234357933473, 0.0018189977650187245, 0.001985475557849982, 7.712863003485625e-5, 0.001526665077040111, 0.0010598546672319238, 0.001548905811976593, 0.0009180178833333117, 0.0003760625016432371, 0.0017197834010995985, 0.0006928424407913459, 0.0010718750766168, 0.0007047609799274532, 0.0002853923978799791, 0.0005109054766633496, 0.002014129621533365, 0.001551209172388499, 0.0011191843449866474, 0.0012311684688555574, 0.001740236488281249, 0.0008078549881630432, 0.0008781331945545614, 0.0018000763577365384, 0.0007401337144514051, 0.0015147412295822803, 0.0012855806273901079, 0.0015782106466732365, 0.0013863637301773665, 0.0014540983513454877, 0.001260968528739991, 0.0003174544000699268, 0.0004658118481329658, 0.001131094203957778, 0.0014473127347056608, 0.0005915013798896377, 0.000694852692937216, 0.000285250530188164, 0.0007283791750059971, 2.655024688757442e-5, 0.0006445868347754402, 0.0003285744621252636, 0.00012551935528379508, 0.001117918678620318, 0.0009587671951387034, 0.0016780322824373414, 4.5751284991488846e-5, 0.0014225284272224648, 0.0003962523035992107, 0.0006524294026542709, 0.0008939870223426083, 0.0007728205279356846, 0.00122764257055061, 0.00033797197091777235, 0.0010361793960494705, 0.000992123714045731, 0.0016742616055592967, 0.0011418951907944564, 0.0011254883431375522, 0.001179608446550195, 0.0016875140131860581, 0.0008345614171749304, 0.0014612740385894377, 0.0006579101484055432, 0.0017453972197901554, 0.0008591072418907181, 0.0016995835150818166, 0.001050935437111457, 0.0003355205387860035, 0.0017483973302545085, 0.0006776494744414888, 0.001689232187550956, 0.0015432149580402548, 0.001978626101081817, 0.0007472894803923799, 0.0016030470673767873, 0.00070483871723674, 0.001716715350844819, 0.00037974340498987, 0.0007207856565364333, 0.0017245937614663992, 0.0008722295870600599, 0.000594535533205484, 0.0019286721973490804, 0.0012940450032369688, 0.0005992861184322387, 0.0002590184149128445, 0.0014556092736391882, 0.0011197899557537489, 0.0006903327551185822, 0.000990785296250843, 0.0008028233211045262, 0.000280443361344798, 0.0018508864718488457, 0.0009063589461567853, 0.0007300038314775519, 0.0013136146915517111, 0.001343523906957859, 0.00028693694715622856, 0.0014957120285918621, 0.0011322415118701944, 0.0007084862398687383, 0.001002741865109609, 0.001399918477182617, 0.002018370749854445, 0.0003578748158769567, 0.0015732415199227409, 0.0013346764240358593, 5.396261680760094e-5, 0.0019500250115741466, 0.00031836158169964236, 0.0018499414313903496, 0.00022451042768580615, 0.0006256693229971255, 0.0018925340189315668, 0.0008323695670568445, 0.0018494623234886884, 0.000552807486126806, 0.00132879241113889, 0.0008518481683624414, 0.0015655089795607799, 0.0014250894045590534, 0.001783692163353371, 7.399526833212774e-5, 0.0012244377578062855, 0.0019286690927553492, 0.0003682311081514411, 0.0010479700004166874, 0.0007664301070006473, 0.001277056081265333, 0.0014612319623016736, 0.0017219784239935218, 0.0013531995015198584, 0.0003904162539486604, 0.0011340563641726957, 0.00026465002221450943, 0.00015826303765471887, 0.0009384298771469406, 0.001155265294850032, 0.0006697931790130622, 0.0016512783748064345, 0.0016720763771262655, 0.00013004180745809362, 0.0006047328775929771, 0.001946368248105952, 0.001409714027540915, 0.0005939037542364399, 0.00034632862655473786, 0.0019092871315185584, 0.0014981525501766727, 0.0013033403381136708, 0.001361547810787959, 0.0006815375632990205, 0.0017006269702060084, 0.0010137999488354166, 0.0013065166713973357, 0.001370392566781917, 0.0012401227597347564, 0.0018888135957447066, 0.0005517863244821161, 0.0007704312937686098, 0.0015646785537852116, 0.001728890413619102, 0.0009074483845392689, 0.0003248930724330634, 0.00019230634219962728, 0.001973470635931501, 0.0010107996961906767, 0.000737934876827271, 0.0003613158094939992, 0.0011335960157876964, 0.001614070982763523, 0.0007282299027401834, 0.0017996319289349326, 0.0015951870246683874, 0.001715427718319075, 0.0017561477043858693, 0.0017910129040202998, 0.0007325280311288266, 0.0015511074667366404, 0.00045841661894668515, 2.5432505098777385e-5, 0.0013207136439377964, 0.00165969252229519, 0.0009271255364041134, 0.001080749239490286, 0.0019088534223778012, 0.0019282807110163178, 0.0014683232841605199, 0.0017977302969440744, 0.00013036903487359953, 0.0011219300676445856, 0.0017913484027570735, 0.0015638344872666934, 0.000395653806172464, 0.0009333043484360031, 0.0005055041606260419, 0.0014501790020865848, 0.001454928723558188, 0.0010803487925333684, 0.0011313013071538806, 0.0006647575058682692, 0.0017128620916011348, 0.0009361699798974006, 0.0013879663300257192, 0.0005926046565979877, 0.0006284582625589525, 0.001414953335848003, 0.000773095405142131, 0.00027551050818841303, 0.00106154914511734, 0.0005827753690396551, 0.0003866537660643205, 0.0013339118700010787, 0.001160126162635099, 0.0010522941738203208, 0.0016876660366618266, 5.855468014117563e-5, 0.0014131852713235129, 0.0002457437241907388, 0.0016884114139716906, 0.0009296868405973708, 0.0010451514216289063, 0.000981945129055207, 0.0005856081651124788, 0.0004090782311935998, 0.0016377105084429769, 0.0011236984027533457, 0.0012209825890820637, 0.0019562165129882974, 0.0018292073963402774, 0.001029459874106476, 0.001347834038210862, 0.0017603707975983656, 0.001437173127494183, 0.0012235012021432306, 0.0007213793235132028, 0.002014841251582976, 9.810387630298418e-5, 0.001858455742116247, 0.0007844749265170895, 0.0005994352749042694, 0.001027096545701293, 0.0009371179676303667, 0.0007996457899177598, 0.0019957539342193137, 0.0018763523693588217, 0.0011040637090242286, 0.000980089266561489, 0.0007691398527437723, 0.000685834663004848, 0.0007589893202310672, 0.0009280233205602851, 0.0004285296897158306, 0.001498217293152234, 0.000743218267528272, 0.00018516599060035868, 0.00023267751173075603, 0.0011666251061595002, 2.2665942565722386e-5, 0.0019071669934721633, 0.00037418629819165646, 0.00020150920366569788, 0.0011304088946170877, 0.00046052643817477245, 0.001202378125875249, 0.0016810337702529462, 0.0013289535823317012, 0.0003857169246900532, 0.0011586788569675946, 0.0019890163147620542, 0.001929094358315458, 0.0004001605567236408, 0.0019096902335865962, 0.000759341089977938, 0.001470311213897094, 0.0015152401796678834, 0.000499213662615058, 0.0007682495834347361, 0.00021590616907036684, 0.0005469989003399555, 0.00011693155464717196, 0.00019989046845705593, 0.0005446716630181928, 8.934933545423188e-5, 0.0013333512547114654, 0.0005332103662880643, 0.0008368459446764117, 0.0009621939090595851, 0.00026451237982613474, 0.0010716772595672581, 0.001878756582531658, 0.0002928340776875815, 0.000814312164517899, 0.0005982949852184072, 0.0014569410650794058, 0.0010959324823471893, 0.0007470813026640377, 0.0007827602984632407, 0.000499104637470343, 0.0013750007734560216, 3.925658194016414e-5, 0.001902401641790156, 0.0008353160853543923, 0.0006211047686528423, 0.0012379692373795782, 0.0012783079427912693, 0.0015145651096785894, 0.000795969262926615, 0.0007757629202647777, 0.0016694550404165794, 0.00024788446630303636, 0.0018742188008230725, 0.00014317882105535634, 0.0011185485432344175, 0.0017090405331053832, 0.0014204243522563144, 0.0009239315930590699, 0.0014475749274134935, 0.0004330811907587753, 0.0007101792254382494, 0.0013792401750647469, 0.0015940712766281027, 0.0006648787106813445, 0.0013288432113601435, 0.00031868689876046486, 0.0014226539814749624, 0.001966301103790762, 0.0007250559350463143, 0.001189455535276804, 0.0011957698284713238, 0.0004424594282405574, 0.000494502776362727, 0.0017749441837692822, 0.0012083916149457324, 0.0001676405150022681, 0.0005541379232360824, 1.64631957729582e-5, 0.0016218019980621136, 0.0003117763598950634, 0.0016146404702683916, 0.0009111376160185599, 3.7604978187244607e-6, 0.00015123004997405135, 0.0004344160169747531, 0.0013974610342235919, 0.0018782026167251163, 9.200358407586306e-6, 0.00011266371416083018, 0.001039673121867329, 0.0009695938154884677, 0.0013383150248064551, 0.0002651104755399292, 0.001153716997685415, 0.0004679809363111976, 0.0007590249565310004, 0.0015960405624639406, 0.00021563511250378167, 0.00046032693787769233, 0.0014504953430403418, 0.0017487777730677593, 0.0007876985550734688, 0.0019703179726274726, 0.0018971098268463888, 0.0010113349846182177, 0.00013256101536835625, 0.00029984202998392315, 0.00046104197604629986, 0.0014195171292221045, 0.0018029600737668981, 0.0014733640608195738, 0.0015199112129300797, 0.000980829833385202, 0.00036937510502010196, 0.0017294145690009294, 0.0003485112560155944, 0.0007082503342362335, 0.00032103664506282, 0.0012646977038660726, 0.001534702869862633, 0.0010527981724539357, 2.4795944514472953e-5, 0.0009964333759062936, 0.0016858422851070258, 0.0009232754569551512, 0.0004143097744450794, 0.0003701131293865166, 0.0011708980989401905, 0.000498785220028118, 0.0019365038759930058, 0.0008768664267706072, 0.0007215014261358946, 0.0019760846701154943, 0.0011045292030687664, 1.4337787408594012e-6, 0.0018381030735973658, 0.0004620639036261162, 0.001276142315366479, 0.001768116115405069, 0.0010893945701892333, 0.0004031206828913365, 0.001730181645064054, 0.00044084102326667383, 0.0016721122484691742, 0.001636662873672582, 0.0008324088788894996, 0.0013578952649775545, 0.0019036361472903668, 0.0017521584003386847, 0.0005736375724364423, 8.286399712245452e-5, 0.00039121249730725597, 0.0014120088370654586, 0.0014314200393833944, 0.0004146924507170186, 0.001040892661350361, 9.641352925229688e-5, 0.0019114324373618369, 0.0007714149171142609, 0.0005426876668595871, 0.00182668454739801, 0.0012482060712479105, 0.0014184431524961807, 0.0013506502217772258, 0.00015181753642590896, 0.0018834092517213726, 0.000510565189696364, 0.00019460615673719785, 0.0010486062760165307, 0.0003276673150114249, 0.0009851875659484762, 0.0007642926503108052, 0.0008856011541384882, 0.0004848669047557673, 0.00048539944314076255, 0.0011129450071102375, 0.00025462855911150906, 0.00024961318562032714, 0.0016961719047011942, 0.001368703869857434, 0.0005443570462233956, 0.0017257559503324833, 0.0012703934495955549, 2.3778649539447173e-5, 0.00196054552152457, 0.0003070412501279034, 0.00046004527882805224, 0.0008809731394040901, 0.0006942004235863704, 0.0014157258544305782, 0.0011997006709666986, 0.001866823581255689, 0.00040904051247965154, 0.0014243670320588178, 0.0013505144880792636, 0.0008180618947076032, 0.0005150098890171806, 0.0010787858685634962, 0.0003298982873940715, 0.0006389488872324987, 0.00017834543220831387, 0.0013029728502635873, 0.001527659701103652, 0.0014204690294174393, 0.0007221664755227925, 0.0014381850486792985, 6.607970848145124e-5, 0.0012900882674253993, 0.0013859500485891095, 0.0008854600150037082, 0.0007426618635993496, 0.0007564017018040365, 0.0010870258486126172, 0.0007593483607523456, ] primal_true1 = 4.3758944410464604e-17 @test norm(res1[1] - x_true1) ≈ 0 atol = 1e-6 @test res1[3] ≈ primal_true1 atol = 1e-7 @test res1[5][end][1] <= 54 trajectory_adaptive = [] callback = build_callback(trajectory_adaptive) x0 = deepcopy(x00) res2 = FrankWolfe.away_frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.AdaptiveZerothOrder(), print_iter=k / 10, memory_mode=FrankWolfe.InplaceEmphasis(), verbose=false, trajectory=true, callback=callback, ) x_true2 = [ 0.001422583298436932, 0.00027273619213263807, 0.0004982505954516348, 0.00016781414194964753, 0.0007277579866777386, 0.00022924464056524115, 0.0005862819582276917, 0.00016433101785554369, 0.0013573218913879833, 0.0017062956531315118, 0.001880519386637409, 0.0003660037194265856, 0.001425181673020117, 0.0016059379769033152, 0.0007985016372647361, 0.0007445621908502428, 0.001688102174812349, 1.2635658299699916e-5, 0.0005625744973508139, 0.0004956060654237624, 0.0008664564471334144, 0.0004691476292198133, 0.0007407375932988738, 5.8219185751327486e-5, 0.0016668042520459239, 0.0012301120930461491, 0.0014207383332020325, 0.00019629817246414512, 0.00023149816615342805, 0.0005457729620649364, 0.00046472742910844605, 0.0016567740433120327, 0.0006045563049609739, 6.794338511093809e-5, 0.0014508076551340596, 0.0009517078868957123, 0.001977751457938242, 0.001546932200578655, 0.001874171900483568, 0.0015432158965580597, 0.001436885697973832, 8.123783195490047e-5, 0.0017304521475545753, 0.0009952123505532783, 0.001435346934369604, 0.001704407444452622, 0.0013708999994775754, 0.0017276689804006057, 0.0017207386293186337, 0.0005881119999966264, 0.0015843187626965185, 0.0002248900005468801, 0.0010789356512070402, 0.0013330125500510962, 0.00041992272669491267, 0.0001663155483209697, 0.0016064306007644942, 0.0006240640136417282, 0.0014750988923257387, 0.0008635840117228274, 0.0005818681034150127, 0.0011220659002221156, 0.001599291798036956, 0.001058238610046571, 0.0019218317576815624, 0.0004358829009323019, 0.0015350408836077494, 0.0019150763101474454, 0.0011026000041810858, 1.552821592390492e-5, 0.0014681790112043998, 0.000105099754976968, 0.001396248297986154, 0.0005197180122391385, 0.00019855379679623088, 0.0018652938805804734, 0.0009494975453571945, 6.553689588068293e-5, 2.173143679411229e-5, 0.0005872042310431497, 0.0017695832489658418, 0.00154317807420678, 0.0019442827037914254, 0.00021954052231948132, 0.0006762506460557135, 7.177979881036352e-6, 0.00017203856745373142, 0.0018371863241565844, 0.0006645802958977139, 1.560677312329672e-5, 0.0004311625427945239, 0.0015824080871079422, 0.0001916669325429381, 0.0009058143759747405, 9.535097336617209e-5, 0.00024481621985804607, 0.000810507339679925, 0.00015599582913259713, 0.001488730799761298, 0.00014239762387376954, 0.0015252026281489237, 0.0004828291124104572, 0.0016408685398329635, 0.0009144831923073489, 0.00025350100539647574, 0.0017591750329373364, 0.00031804252116191976, 0.0001262518093072395, 0.0012697357480810024, 0.001355883995726469, 0.0012137853725334648, 0.0015971670984205736, 0.0011491769963244054, 0.0017529415239556129, 0.0002131749135309461, 0.0002616486356144201, 0.001165022239140106, 0.0006522877365379728, 0.0019796430094749413, 0.0020054541595486267, 0.00031484234970781643, 0.0007566885370529475, 0.0004918472250813644, 0.00031656924290316833, 0.00019181482957171842, 0.0018281654495742937, 0.0011533893762334627, 0.000573868200442384, 0.0016659749560906868, 0.0013950729978351782, 0.000843183598262116, 0.0017493949644233264, 0.0010129267221811677, 6.439072500158456e-5, 0.0006685729945893569, 0.0004409789633562954, 0.0016334372077967502, 0.00030493354848487505, 0.0005789651959674655, 0.001747795285331049, 0.0003119653631793791, 0.001988098499744349, 0.0017476246594401673, 0.0016824754829753777, 0.0012848774510369068, 0.0009006683166698149, 0.0012325362256900504, 0.0019658544017702724, 0.0012941247574037855, 0.0019402010097263932, 0.0016387731283857294, 0.00014496480962367716, 0.001328883874751634, 0.0002792433022146127, 0.000376305368510139, 0.00010736626596517225, 8.259540018750177e-5, 0.0007992580246088681, 0.00032088777076662604, 3.985824803874624e-5, 0.0015451888196207516, 0.0011934036486552322, 0.0004210294516110514, 0.0006864543056921651, 0.00024333232282691163, 0.00031918990489049977, 0.000571110872716258, 0.0016054757738309207, 0.0018515935484422147, 0.0004901845807064295, 0.0004600335492554734, 1.2671378872671308e-5, 0.00037579870365639595, 0.0006298044929322319, 0.00011705465500488188, 0.00041294862899641334, 0.00024277390326480274, 0.0013710095892248576, 0.0013364057089451681, 0.0012616305209054977, 0.0019927698189057138, 0.0005029439582579911, 0.0012150947403005532, 0.0006972289637076968, 0.0002651860467732891, 0.0007848344764096253, 0.0012398392784771727, 0.001816756321462804, 0.0018212477466463433, 0.0014103512442337211, 0.0013910445834584976, 0.0012804276600197912, 0.0003367524254090376, 0.0016400211791981984, 3.6837641321005985e-5, 0.0011426299675142643, 0.001425156442004878, 0.001162529898799113, 0.00016334719263855923, 0.001575351135717264, 9.498761433684464e-5, 0.0003688646463673834, 0.00044287706497212934, 0.00043354217234459306, 0.00014669201483358195, 0.0009607279550424813, 0.001738835202931529, 0.0012199472384665801, 0.0004738602119541344, 0.00016289575921213655, 0.0008063382828032295, 0.001779077817158389, 0.0006471524372962566, 0.00027338187178560476, 0.0016323524600192045, 0.0014388215491637115, 0.001585801555985741, 2.5328526273778736e-5, 0.00013426449231340048, 0.0013789007716318844, 0.001609893469899675, 0.001533460641716875, 0.00015048739843229606, 0.00031377927215406196, 0.0013781532696152759, 0.0004337521854309176, 0.0009784178854301217, 6.389351495085058e-5, 0.0017343209699450133, 0.0006450202831107695, 0.0008304460533936122, 0.0015885184514635472, 0.0009978495355821711, 0.001749732382140415, 0.00031931940459775237, 0.0019816758314184645, 0.0008959832558809814, 0.0014934781964352022, 0.00010829948881218047, 0.0017701657059495635, 0.0007247033662284584, 0.001002068922849399, 0.0005018430944771262, 9.577764122143186e-6, 0.0014349311477589442, 0.00039969217871372177, 0.00020479528257467513, 0.00154984153453624, 0.0008047121059421737, 0.0014379935402231774, 0.0008314268695423717, 0.0018494702922728483, 5.5388868225643025e-5, 0.0005730011827168046, 0.00042864798350337004, 0.0009391079951738075, 0.001989028601238455, 0.0017895995351085332, 0.0005983481903174807, 0.0011878533857429224, 0.00020393934668435366, 0.0012864455166272802, 0.000562824793115754, 0.00138628158203756, 0.0018025534381784039, 0.00037380376188099587, 0.0004490093664112049, 0.000779116652782068, 0.00045773632695422057, 0.0012377337551298432, 0.001040499116876897, 0.0013641875035476179, 0.0019502556804008185, 0.0019199984329793473, 0.0017927793224415225, 0.000571685594815955, 0.00016766218491233738, 0.0008070420519448847, 0.0003220123349427838, 0.0011636744528969504, 0.001625718930061574, 0.0005844485829110754, 7.617805188105912e-5, 0.000797328841321287, 0.0018301997112668115, 0.0019135070457975015, 0.0008501915403179514, 0.0018565277516904611, 0.0012163484792412978, 0.001601380621208906, 0.0013594316090462181, 0.0004693338120918366, 0.0015519771990332647, 0.0005190205188878503, 0.0017951490266581132, 0.0003528093772249075, 0.001569504178738941, 0.001417234179221147, 0.0006113648819008943, 8.246104172956826e-5, 0.001521624922819974, 0.00014082752519119996, 0.0004888272304369288, 0.00036204116897148786, 0.00023552824586397633, 0.0010522476744806337, 0.0011330280675029847, 0.0011919006528931175, 0.0001999242665420746, 0.0012578578233769396, 6.815607671143248e-5, 5.620789726257587e-5, 0.0015560946958158304, 0.0006731689453142587, 0.0008932040197831552, 0.0008727023987390509, 0.0016405809678080824, 0.0003542943838104295, 0.00031876973809498227, 0.0015016443288919225, 6.64046721549373e-5, 0.000891289133798293, 0.001996669097434254, 0.00045847773958111103, 0.0019196527545255711, 0.00025326041151168725, 0.001354705629039968, 0.0014396999106363157, 0.0014860476583688012, 0.00044725616132155804, 0.0013144134092116545, 0.0003646379208481011, 0.0003645428211151425, 0.0007737989180765329, 3.740377795979647e-5, 0.00036235651224719126, 0.001039270081657853, 0.0004457645535051069, 0.0016583359570858725, 0.0018412152984692268, 0.001689787850913742, 0.0011384781128179933, 0.000842510281623745, 0.0004845750119682093, 0.0013109474933286733, 0.0006680410797171914, 0.0002648064957388955, 0.000579393903889324, 0.002007718548275753, 0.00025654639135301306, 0.0004880825102864211, 0.0019387048403958598, 0.0012624320628974207, 0.0001261007024837611, 0.00048226663811817816, 0.0006995913037606427, 0.001834383678229052, 0.0003561901300635259, 0.001579522917207466, 0.0018893666138931182, 0.0019625338055259205, 0.0004205441519813119, 0.0010034907050917796, 0.001639013993702655, 0.0018377004426333992, 0.0012565153476833694, 0.00022105302076073674, 0.0012662897328368343, 0.0009447584987617238, 0.0015937106377387747, 0.0009950529145076024, 0.0019337925463650666, 0.0012952637437018942, 0.001918610724193101, 0.0005639191091289963, 0.000865462741448591, 0.00014730437487612893, 0.000673903662647801, 0.0011341037287862694, 0.00030672135517598734, 0.0015342334902029772, 0.0019925652582115402, 0.000977302511105224, 0.0015492357835884926, 0.0018479187274705892, 0.0014108559492532996, 0.00164598134237, 0.0008047157678973852, 0.0017241047346962769, 0.00045557900048990777, 0.0013508716333908563, 0.0015656116682494523, 0.0007124721131508691, 0.000404193753710275, 0.0009747107070896817, 0.0009805196981766274, 0.0015187055944472837, 0.0005213656648771209, 0.0002791011237045265, 0.00034137742563721267, 0.0009675373320712843, 0.001478723372342432, 0.0016581719306024859, 3.710150004609358e-5, 0.001547608075976774, 0.00014640722437357095, 8.081030061841183e-5, 0.001555296229468474, 0.0018178149132461816, 0.0013271067862801749, 0.0005714133492219603, 0.0005346464517370385, 0.001885819936009064, 0.0013436307421278498, 0.0008328413061147517, 0.0009882818079607779, 0.0010543683117150138, 0.0011976491789970044, 0.0012467677311572322, 0.001039860632401848, 0.0013616088894481248, 0.0013867853993846878, 0.0010421560502447908, 0.0003830833198844097, 0.0012626049292066494, 0.0016019628206965608, 0.001919594023709137, 0.00117971050606888, 0.001724695636556548, 0.0010593556914296504, 8.871818927372937e-5, 0.0017516577453378305, 0.00102871653773293, 0.0005981717891280463, 0.0010555885245747175, 0.0002633587454674742, 0.0011528274283465706, 0.0010726325379164603, 0.0005611878824471102, 0.0014084581247227272, 0.0010461456493267138, 0.0019993921709536592, 0.0013971954119033484, 0.0013930684343242225, 0.001901970715949614, 0.000463725536257292, 0.00197831859171314, 2.5392714729764217e-5, 0.0019063488799318247, 2.3252078142854604e-5, 0.0009103916653270865, 0.001220650001823333, 0.0017075537014015047, 0.0004972853662566432, 0.0005267064927532542, 0.0010094241154711202, 0.0018142128899403733, 0.001115595446510315, 0.0010736329264253934, 0.0015270361456379417, 0.0014331997833764653, 0.001957819283746969, 0.0006303437567574473, 0.0003317276109203346, 0.0017975535908435064, 0.0007884329950958072, 0.0019432158157201762, 0.0006182627207636845, 0.0001300020242654055, 0.0012424343176546447, 0.001952271661234906, 0.0013528893741912098, 0.0009195349234926948, 0.0012686033203867684, 0.0012314490102978747, 0.002012104008332672, 0.00015331254720017817, 0.0009504312986883304, 0.0016553550424929814, 0.0004987754604531402, 1.8061486463855277e-5, 0.0006186729317476349, 0.0005920520896513595, 0.001908220880704972, 0.0002205032608706313, 0.0018846493276807917, 0.001649440915965421, 0.0015854866403236768, 0.00024155971592595816, 0.00013159894751684848, 0.0005767675778804164, 0.00045532304650933674, 0.000774867640861596, 0.0013286214401055142, 0.0010912789168198258, 0.0002858706440047982, 0.0015346431775552238, 0.0018419428211717877, 0.0012287136832596515, 0.001753949628630284, 0.0007762031382974182, 0.0018104781303813647, 0.0009756409493174418, 0.00010748106828959538, 0.0008496920310213392, 0.00014029860655662596, 0.0011047691241680084, 0.0015142689620110598, 0.00030226840836937105, 0.0011549217765643638, 6.691357444105232e-5, 0.0008031845510523045, 0.0014565307456891187, 0.0008335950334179378, 0.0002075976678965532, 0.001458188830492884, 0.0005148620190456636, 0.0005635429355703793, 0.0004260481579223233, 0.0013069070422511945, 0.0003599480035956056, 0.0013560425483786864, 0.0014572227938180558, 0.00032897057311142457, 0.0009189062551815262, 0.0019203412579034116, 0.0012864312191510016, 0.001246234357933473, 0.0018189977650187245, 0.001985475557849982, 7.712863003485625e-5, 0.001526665077040111, 0.0010598546672319238, 0.001548905811976593, 0.0009180178833333117, 0.0003760625016432371, 0.0017197834010995985, 0.0006928424407913459, 0.0010718750766168, 0.0007047609799274532, 0.0002853923978799791, 0.0005109054766633496, 0.002014129621533365, 0.001551209172388499, 0.0011191843449866474, 0.0012311684688555574, 0.001740236488281249, 0.0008078549881630432, 0.0008781331945545614, 0.0018000763577365384, 0.0007401337144514051, 0.0015147412295822803, 0.0012855806273901079, 0.0015782106466732365, 0.0013863637301773665, 0.0014540983513454877, 0.001260968528739991, 0.0003174544000699268, 0.0004658118481329658, 0.001131094203957778, 0.0014473127347056608, 0.0005915013798896377, 0.000694852692937216, 0.000285250530188164, 0.0007283791750059971, 2.655024688757442e-5, 0.0006445868347754402, 0.0003285744621252636, 0.00012551935528379508, 0.001117918678620318, 0.0009587671951387034, 0.0016780322824373414, 4.5751284991488846e-5, 0.0014225284272224648, 0.0003962523035992107, 0.0006524294026542709, 0.0008939870223426083, 0.0007728205279356846, 0.00122764257055061, 0.00033797197091777235, 0.0010361793960494705, 0.000992123714045731, 0.0016742616055592967, 0.0011418951907944564, 0.0011254883431375522, 0.001179608446550195, 0.0016875140131860581, 0.0008345614171749304, 0.0014612740385894377, 0.0006579101484055432, 0.0017453972197901554, 0.0008591072418907181, 0.0016995835150818166, 0.001050935437111457, 0.0003355205387860035, 0.0017483973302545085, 0.0006776494744414888, 0.001689232187550956, 0.0015432149580402548, 0.001978626101081817, 0.0007472894803923799, 0.0016030470673767873, 0.00070483871723674, 0.001716715350844819, 0.00037974340498987, 0.0007207856565364333, 0.0017245937614663992, 0.0008722295870600599, 0.000594535533205484, 0.0019286721973490804, 0.0012940450032369688, 0.0005992861184322387, 0.0002590184149128445, 0.0014556092736391882, 0.0011197899557537489, 0.0006903327551185822, 0.000990785296250843, 0.0008028233211045262, 0.000280443361344798, 0.0018508864718488457, 0.0009063589461567853, 0.0007300038314775519, 0.0013136146915517111, 0.001343523906957859, 0.00028693694715622856, 0.0014957120285918621, 0.0011322415118701944, 0.0007084862398687383, 0.001002741865109609, 0.001399918477182617, 0.002018370749854445, 0.0003578748158769567, 0.0015732415199227409, 0.0013346764240358593, 5.396261680760094e-5, 0.0019500250115741466, 0.00031836158169964236, 0.0018499414313903496, 0.00022451042768580615, 0.0006256693229971255, 0.0018925340189315668, 0.0008323695670568445, 0.0018494623234886884, 0.000552807486126806, 0.00132879241113889, 0.0008518481683624414, 0.0015655089795607799, 0.0014250894045590534, 0.001783692163353371, 7.399526833212774e-5, 0.0012244377578062855, 0.0019286690927553492, 0.0003682311081514411, 0.0010479700004166874, 0.0007664301070006473, 0.001277056081265333, 0.0014612319623016736, 0.0017219784239935218, 0.0013531995015198584, 0.0003904162539486604, 0.0011340563641726957, 0.00026465002221450943, 0.00015826303765471887, 0.0009384298771469406, 0.001155265294850032, 0.0006697931790130622, 0.0016512783748064345, 0.0016720763771262655, 0.00013004180745809362, 0.0006047328775929771, 0.001946368248105952, 0.001409714027540915, 0.0005939037542364399, 0.00034632862655473786, 0.0019092871315185584, 0.0014981525501766727, 0.0013033403381136708, 0.001361547810787959, 0.0006815375632990205, 0.0017006269702060084, 0.0010137999488354166, 0.0013065166713973357, 0.001370392566781917, 0.0012401227597347564, 0.0018888135957447066, 0.0005517863244821161, 0.0007704312937686098, 0.0015646785537852116, 0.001728890413619102, 0.0009074483845392689, 0.0003248930724330634, 0.00019230634219962728, 0.001973470635931501, 0.0010107996961906767, 0.000737934876827271, 0.0003613158094939992, 0.0011335960157876964, 0.001614070982763523, 0.0007282299027401834, 0.0017996319289349326, 0.0015951870246683874, 0.001715427718319075, 0.0017561477043858693, 0.0017910129040202998, 0.0007325280311288266, 0.0015511074667366404, 0.00045841661894668515, 2.5432505098777385e-5, 0.0013207136439377964, 0.00165969252229519, 0.0009271255364041134, 0.001080749239490286, 0.0019088534223778012, 0.0019282807110163178, 0.0014683232841605199, 0.0017977302969440744, 0.00013036903487359953, 0.0011219300676445856, 0.0017913484027570735, 0.0015638344872666934, 0.000395653806172464, 0.0009333043484360031, 0.0005055041606260419, 0.0014501790020865848, 0.001454928723558188, 0.0010803487925333684, 0.0011313013071538806, 0.0006647575058682692, 0.0017128620916011348, 0.0009361699798974006, 0.0013879663300257192, 0.0005926046565979877, 0.0006284582625589525, 0.001414953335848003, 0.000773095405142131, 0.00027551050818841303, 0.00106154914511734, 0.0005827753690396551, 0.0003866537660643205, 0.0013339118700010787, 0.001160126162635099, 0.0010522941738203208, 0.0016876660366618266, 5.855468014117563e-5, 0.0014131852713235129, 0.0002457437241907388, 0.0016884114139716906, 0.0009296868405973708, 0.0010451514216289063, 0.000981945129055207, 0.0005856081651124788, 0.0004090782311935998, 0.0016377105084429769, 0.0011236984027533457, 0.0012209825890820637, 0.0019562165129882974, 0.0018292073963402774, 0.001029459874106476, 0.001347834038210862, 0.0017603707975983656, 0.001437173127494183, 0.0012235012021432306, 0.0007213793235132028, 0.002014841251582976, 9.810387630298418e-5, 0.001858455742116247, 0.0007844749265170895, 0.0005994352749042694, 0.001027096545701293, 0.0009371179676303667, 0.0007996457899177598, 0.0019957539342193137, 0.0018763523693588217, 0.0011040637090242286, 0.000980089266561489, 0.0007691398527437723, 0.000685834663004848, 0.0007589893202310672, 0.0009280233205602851, 0.0004285296897158306, 0.001498217293152234, 0.000743218267528272, 0.00018516599060035868, 0.00023267751173075603, 0.0011666251061595002, 2.2665942565722386e-5, 0.0019071669934721633, 0.00037418629819165646, 0.00020150920366569788, 0.0011304088946170877, 0.00046052643817477245, 0.001202378125875249, 0.0016810337702529462, 0.0013289535823317012, 0.0003857169246900532, 0.0011586788569675946, 0.0019890163147620542, 0.001929094358315458, 0.0004001605567236408, 0.0019096902335865962, 0.000759341089977938, 0.001470311213897094, 0.0015152401796678834, 0.000499213662615058, 0.0007682495834347361, 0.00021590616907036684, 0.0005469989003399555, 0.00011693155464717196, 0.00019989046845705593, 0.0005446716630181928, 8.934933545423188e-5, 0.0013333512547114654, 0.0005332103662880643, 0.0008368459446764117, 0.0009621939090595851, 0.00026451237982613474, 0.0010716772595672581, 0.001878756582531658, 0.0002928340776875815, 0.000814312164517899, 0.0005982949852184072, 0.0014569410650794058, 0.0010959324823471893, 0.0007470813026640377, 0.0007827602984632407, 0.000499104637470343, 0.0013750007734560216, 3.925658194016414e-5, 0.001902401641790156, 0.0008353160853543923, 0.0006211047686528423, 0.0012379692373795782, 0.0012783079427912693, 0.0015145651096785894, 0.000795969262926615, 0.0007757629202647777, 0.0016694550404165794, 0.00024788446630303636, 0.0018742188008230725, 0.00014317882105535634, 0.0011185485432344175, 0.0017090405331053832, 0.0014204243522563144, 0.0009239315930590699, 0.0014475749274134935, 0.0004330811907587753, 0.0007101792254382494, 0.0013792401750647469, 0.0015940712766281027, 0.0006648787106813445, 0.0013288432113601435, 0.00031868689876046486, 0.0014226539814749624, 0.001966301103790762, 0.0007250559350463143, 0.001189455535276804, 0.0011957698284713238, 0.0004424594282405574, 0.000494502776362727, 0.0017749441837692822, 0.0012083916149457324, 0.0001676405150022681, 0.0005541379232360824, 1.64631957729582e-5, 0.0016218019980621136, 0.0003117763598950634, 0.0016146404702683916, 0.0009111376160185599, 3.7604978187244607e-6, 0.00015123004997405135, 0.0004344160169747531, 0.0013974610342235919, 0.0018782026167251163, 9.200358407586306e-6, 0.00011266371416083018, 0.001039673121867329, 0.0009695938154884677, 0.0013383150248064551, 0.0002651104755399292, 0.001153716997685415, 0.0004679809363111976, 0.0007590249565310004, 0.0015960405624639406, 0.00021563511250378167, 0.00046032693787769233, 0.0014504953430403418, 0.0017487777730677593, 0.0007876985550734688, 0.0019703179726274726, 0.0018971098268463888, 0.0010113349846182177, 0.00013256101536835625, 0.00029984202998392315, 0.00046104197604629986, 0.0014195171292221045, 0.0018029600737668981, 0.0014733640608195738, 0.0015199112129300797, 0.000980829833385202, 0.00036937510502010196, 0.0017294145690009294, 0.0003485112560155944, 0.0007082503342362335, 0.00032103664506282, 0.0012646977038660726, 0.001534702869862633, 0.0010527981724539357, 2.4795944514472953e-5, 0.0009964333759062936, 0.0016858422851070258, 0.0009232754569551512, 0.0004143097744450794, 0.0003701131293865166, 0.0011708980989401905, 0.000498785220028118, 0.0019365038759930058, 0.0008768664267706072, 0.0007215014261358946, 0.0019760846701154943, 0.0011045292030687664, 1.4337787408594012e-6, 0.0018381030735973658, 0.0004620639036261162, 0.001276142315366479, 0.001768116115405069, 0.0010893945701892333, 0.0004031206828913365, 0.001730181645064054, 0.00044084102326667383, 0.0016721122484691742, 0.001636662873672582, 0.0008324088788894996, 0.0013578952649775545, 0.0019036361472903668, 0.0017521584003386847, 0.0005736375724364423, 8.286399712245452e-5, 0.00039121249730725597, 0.0014120088370654586, 0.0014314200393833944, 0.0004146924507170186, 0.001040892661350361, 9.641352925229688e-5, 0.0019114324373618369, 0.0007714149171142609, 0.0005426876668595871, 0.00182668454739801, 0.0012482060712479105, 0.0014184431524961807, 0.0013506502217772258, 0.00015181753642590896, 0.0018834092517213726, 0.000510565189696364, 0.00019460615673719785, 0.0010486062760165307, 0.0003276673150114249, 0.0009851875659484762, 0.0007642926503108052, 0.0008856011541384882, 0.0004848669047557673, 0.00048539944314076255, 0.0011129450071102375, 0.00025462855911150906, 0.00024961318562032714, 0.0016961719047011942, 0.001368703869857434, 0.0005443570462233956, 0.0017257559503324833, 0.0012703934495955549, 2.3778649539447173e-5, 0.00196054552152457, 0.0003070412501279034, 0.00046004527882805224, 0.0008809731394040901, 0.0006942004235863704, 0.0014157258544305782, 0.0011997006709666986, 0.001866823581255689, 0.00040904051247965154, 0.0014243670320588178, 0.0013505144880792636, 0.0008180618947076032, 0.0005150098890171806, 0.0010787858685634962, 0.0003298982873940715, 0.0006389488872324987, 0.00017834543220831387, 0.0013029728502635873, 0.001527659701103652, 0.0014204690294174393, 0.0007221664755227925, 0.0014381850486792985, 6.607970848145124e-5, 0.0012900882674253993, 0.0013859500485891095, 0.0008854600150037082, 0.0007426618635993496, 0.0007564017018040365, 0.0010870258486126172, 0.0007593483607523456, ] primal_true2 = 7.203447848470618e-17 @test norm(res2[1] - x_true2) ≈ 0 atol = 1e-6 @test res2[3] ≈ primal_true2 atol = 1e-7 @test res2[5][end][1] <= 1001 trajectory_adaptiveLoc15 = [] callback = build_callback(trajectory_adaptiveLoc15) x0 = deepcopy(x00) res3 = FrankWolfe.away_frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.AdaptiveZerothOrder(), print_iter=k / 10, memory_mode=FrankWolfe.InplaceEmphasis(), verbose=false, lazy=true, lazy_tolerance=1.5, trajectory=true, callback=callback, ) x_true3 = [ 0.0014225829730460406, 0.0002727361735116165, 0.0004982501651903341, 0.00016781398601594972, 0.0007277581309256461, 0.0002292449206084246, 0.0005862821533397214, 0.00016433060575714962, 0.0013573219010460233, 0.0017062956435587595, 0.0018805197883647654, 0.0003660038076244705, 0.001425181813671474, 0.0016059380704091962, 0.000798501671039316, 0.0007445625596063425, 0.0016881023461908604, 1.2635475909140066e-5, 0.000562574094355615, 0.0004956060564769523, 0.0008664562894326867, 0.00046914760462751375, 0.0007407378079141604, 5.8218822194937334e-5, 0.0016668039941558747, 0.0012301116787980235, 0.0014207383442840023, 0.0001962981270141889, 0.0002314979873064894, 0.0005457730474431673, 0.0004647273336386779, 0.0016567737335910703, 0.0006045563164859911, 6.794339459572641e-5, 0.0014508076389582202, 0.0009517077726464148, 0.001977751733888766, 0.0015469323005633249, 0.0018741722739530557, 0.0015432160147052986, 0.0014368860198032839, 8.123743467215695e-5, 0.0017304519789725767, 0.0009952125105147666, 0.0014353470783572723, 0.0017044076626425355, 0.0013708998019686532, 0.001727668987939484, 0.0017207388368696834, 0.0005881117499539749, 0.0015843186971210555, 0.0002248903229213117, 0.0010789359592982117, 0.0013330122603689787, 0.00041992282337013117, 0.0001663156687643658, 0.0016064302450049927, 0.0006240639188199575, 0.0014750986250990803, 0.0008635840037072724, 0.0005818680233667699, 0.0011220658679165101, 0.0015992917245841217, 0.0010582389510119567, 0.0019218317980402783, 0.00043588297771513727, 0.0015350408604649984, 0.0019150762482866995, 0.0011025998296227077, 1.5528186482981463e-5, 0.0014681788131228096, 0.00010509939968210721, 0.001396248352413093, 0.0005197183340575723, 0.0001985541909458362, 0.001865293983191023, 0.0009494974108929405, 6.553696174444253e-5, 2.1731312965250076e-5, 0.0005872042577192267, 0.0017695830803962388, 0.001543177645415488, 0.0019442830961391268, 0.00021954041176523088, 0.0006762506740378053, 7.1780013746314316e-6, 0.00017203878072929, 0.0018371860763694986, 0.000664579868221674, 1.5606578005622747e-5, 0.00043116222425725964, 0.0015824081352081344, 0.00019166722732790183, 0.0009058144516906132, 9.535138147622678e-5, 0.0002448162609127538, 0.0008105073282727994, 0.00015599543489588864, 0.0014887306604467485, 0.0001423973215195137, 0.0015252030585587266, 0.0004828290638859407, 0.0016408685431010374, 0.0009144831655538666, 0.0002535005883881061, 0.0017591754309978487, 0.0003180421614544413, 0.00012625190334340924, 0.0012697356818344762, 0.0013558842626487677, 0.0012137856177825283, 0.0015971668858305386, 0.0011491769535195147, 0.0017529417603683673, 0.00021317496893476115, 0.00026164867916450086, 0.0011650225279267396, 0.0006522880060712687, 0.001979643108288294, 0.0020054541838487724, 0.00031484235252384173, 0.0007566885856223963, 0.000491847242180652, 0.0003165696791963495, 0.0001918152241857664, 0.0018281654231546184, 0.0011533894998752316, 0.0005738681479825615, 0.00166597496324203, 0.0013950726440668645, 0.0008431838003353523, 0.0017493945387852296, 0.0010129266537133048, 6.439075659908888e-5, 0.0006685728351128336, 0.0004409786823886957, 0.001633436883782188, 0.0003049332690152809, 0.0005789650695132066, 0.0017477952840985135, 0.0003119653497504122, 0.0019880985065267335, 0.001747624412370978, 0.0016824754459002305, 0.0012848772892363502, 0.0009006681701473457, 0.0012325359189026264, 0.001965854230544348, 0.0012941244759660196, 0.001940201002868717, 0.0016387730962449257, 0.00014496440056020144, 0.0013288836229320964, 0.0002792432543722183, 0.00037630513475765773, 0.00010736630029467021, 8.259563397365461e-5, 0.0007992577045906409, 0.0003208877140578041, 3.985789866354383e-5, 0.0015451889774413883, 0.001193403384289817, 0.0004210297433688409, 0.0006864541973724735, 0.0002433322067467775, 0.0003191897080440743, 0.0005711111046978741, 0.0016054760747429904, 0.001851593601771869, 0.0004901844541270471, 0.00046003338932956966, 1.2671541375500064e-5, 0.0003757986739219367, 0.0006298045227971904, 0.00011705488289968619, 0.00041294868243742716, 0.00024277385948936065, 0.0013710095987801729, 0.0013364057797802661, 0.0012616304916264615, 0.001992769650982513, 0.0005029442221274618, 0.0012150950277796423, 0.000697228829351848, 0.000265186005269483, 0.0007848344962405061, 0.0012398392540877092, 0.001816756341346897, 0.001821247727818187, 0.0014103508635352224, 0.0013910443196070996, 0.0012804278070470897, 0.0003367524246530507, 0.0016400211738672578, 3.683761709612566e-5, 0.0011426299632942727, 0.0014251565816392716, 0.0011625295009150462, 0.00016334692237419138, 0.001575351103682853, 9.498766743597785e-5, 0.0003688648658734696, 0.00044287718173993576, 0.00043354211646342715, 0.00014669168247831538, 0.0009607276565943663, 0.0017388352028757021, 0.001219947001099208, 0.00047386021368008306, 0.00016289575362384272, 0.0008063383314695654, 0.0017790777161857103, 0.0006471525482133755, 0.00027338176828548233, 0.0016323523128125138, 0.001438821355085743, 0.0015858013991118924, 2.532868456060823e-5, 0.00013426485844894877, 0.0013789009952368057, 0.0016098933708412109, 0.0015334608696284792, 0.00015048736145953574, 0.0003137788471296785, 0.0013781531346678001, 0.0004337521318274236, 0.0009784180783885164, 6.389319185063426e-5, 0.0017343206169757258, 0.0006450202541802735, 0.0008304456678156312, 0.0015885185377060931, 0.0009978498818170789, 0.0017497325562603164, 0.0003193194826570022, 0.001981675589943018, 0.0008959836035160942, 0.0014934780676036034, 0.00010829940205261081, 0.001770165813771591, 0.0007247032533086565, 0.0010020688806680203, 0.0005018434398245297, 9.577497102008272e-6, 0.0014349312885973493, 0.0003996918237694241, 0.00020479530808956395, 0.001549841229698745, 0.0008047122963317646, 0.0014379937614384909, 0.0008314269469336961, 0.0018494703492149176, 5.538929078331372e-5, 0.0005730011336742409, 0.00042864776396104725, 0.0009391080320926034, 0.001989028502595364, 0.001789599639168707, 0.0005983484570292027, 0.001187853307400933, 0.00020393940281975738, 0.0012864452668815312, 0.0005628248610658845, 0.0013862815143628501, 0.0018025535732459136, 0.0003738041484940745, 0.000449009637955848, 0.0007791170165506314, 0.00045773656765150895, 0.001237733592657059, 0.0010404995336866696, 0.0013641876383263256, 0.0019502557033566966, 0.0019199985858994887, 0.0017927791836778184, 0.0005716852949329822, 0.00016766206959056856, 0.0008070420795654343, 0.00032201232548988927, 0.0011636743048166857, 0.0016257189561989871, 0.0005844488038264827, 7.617781346898724e-5, 0.0007973292440250798, 0.0018302000344227046, 0.001913506930051725, 0.0008501916623441335, 0.0018565277139347247, 0.0012163484141768392, 0.0016013806476768535, 0.0013594317737759152, 0.00046933399849166977, 0.0015519769607849722, 0.0005190206721993658, 0.001795149291947321, 0.0003528092132199632, 0.0015695041108411544, 0.0014172340999628003, 0.0006113649237333382, 8.246148079108989e-5, 0.001521624571751393, 0.00014082732357038652, 0.0004888271395880285, 0.00036204120207168747, 0.00023552808959648029, 0.0010522476331018416, 0.0011330280716005383, 0.0011919004397130182, 0.00019992391874983702, 0.001257857968409302, 6.815601011812947e-5, 5.620784574857185e-5, 0.0015560949140045698, 0.0006731689968779049, 0.0008932039805345564, 0.0008727023439034104, 0.0016405810213521131, 0.0003542943495582939, 0.00031876979125314904, 0.0015016443445999366, 6.640428294540815e-5, 0.0008912890950772499, 0.001996669313938609, 0.00045847806279802894, 0.001919652492893255, 0.0002532605478803054, 0.0013547056765608355, 0.0014396998863641648, 0.0014860477070635682, 0.00044725593676477385, 0.00131441343337048, 0.0003646375719716522, 0.00036454314973411296, 0.0007737989811079925, 3.740373591055079e-5, 0.0003623564364001635, 0.0010392698106895765, 0.0004457642760831042, 0.0016583359751702455, 0.001841215159264119, 0.0016897878512288195, 0.0011384783742525435, 0.0008425102377901483, 0.00048457504404272606, 0.0013109477147870655, 0.0006680411123107607, 0.0002648064520538787, 0.0005793940997347103, 0.0020077185951712937, 0.00025654655178576017, 0.0004880824264181901, 0.0019387045960776717, 0.0012624318319706634, 0.0001261008632509476, 0.0004822664235812697, 0.0006995910773698801, 0.0018343834531075358, 0.0003561897023081971, 0.0015795229724546358, 0.0018893664062599083, 0.0019625338445946852, 0.0004205438565826633, 0.0010034908901702907, 0.0016390143920189462, 0.001837700389575972, 0.001256515357333801, 0.00022105274195036918, 0.0012662897591367696, 0.000944758427087643, 0.001593710556526598, 0.0009950529496323393, 0.0019337923328209277, 0.0012952633206058212, 0.0019186107808949106, 0.0005639190579831728, 0.0008654626847098967, 0.00014730476081159998, 0.0006739036447458508, 0.001134103686620537, 0.0003067213577651392, 0.0015342332768154378, 0.0019925656642191016, 0.0009773026204108063, 0.0015492361548762104, 0.001847918975804444, 0.0014108561208180093, 0.001645981387876666, 0.0008047156526954987, 0.0017241046382864376, 0.0004555787704975113, 0.0013508718476620818, 0.0015656119637856999, 0.0007124724097072913, 0.00040419379444344973, 0.0009747104174308419, 0.0009805195734891752, 0.0015187054530035708, 0.0005213653302950916, 0.0002791009971222689, 0.00034137762357468545, 0.0009675376320049635, 0.0014787231446392816, 0.0016581717178318703, 3.710136351973019e-5, 0.0015476082870810627, 0.00014640694252069213, 8.080987370149107e-5, 0.0015552962229914268, 0.0018178149768679414, 0.0013271067161333505, 0.0005714134289259438, 0.0005346464121440747, 0.0018858202836389499, 0.0013436309443604709, 0.0008328413967651013, 0.000988281757421916, 0.0010543682615420627, 0.0011976491806031274, 0.001246767972204216, 0.001039860712349674, 0.0013616088220375845, 0.0013867854700375557, 0.0010421561188120284, 0.0003830833384758642, 0.001262604915142975, 0.001601962618039536, 0.001919594387480944, 0.0011797104425778709, 0.001724695397971011, 0.0010593555503999067, 8.871825270960429e-5, 0.0017516580071519554, 0.001028716271420104, 0.0005981716483281348, 0.0010555882490727209, 0.0002633587507869325, 0.0011528277490044805, 0.0010726325205101372, 0.0005611877947099686, 0.0014084585430185373, 0.0010461453629526903, 0.001999392352643132, 0.001397195602944308, 0.0013930685083218361, 0.0019019705245408292, 0.00046372564226406437, 0.001978318705716091, 2.5392701993188165e-5, 0.0019063486066088705, 2.3252116272025228e-5, 0.0009103915283039962, 0.0012206501588780231, 0.0017075537681009428, 0.0004972857495669815, 0.0005267065603385678, 0.0010094238417385434, 0.0018142128080662014, 0.0011155955158307395, 0.0010736326229710729, 0.0015270358863057412, 0.0014332001239127186, 0.001957819187083567, 0.0006303434584651864, 0.0003317276877216092, 0.0017975536586028152, 0.0007884331400489046, 0.0019432162533525625, 0.0006182625666595225, 0.00013000223994737425, 0.0012424343696091176, 0.001952271996773228, 0.0013528893305614369, 0.0009195345848022567, 0.0012686033338657728, 0.0012314487713181177, 0.002012104151045027, 0.0001533124265297493, 0.0009504315120062167, 0.0016553550310117158, 0.0004987751818643117, 1.806151918140486e-5, 0.0006186728445021576, 0.000592052189307217, 0.0019082208700683426, 0.00022050366222209355, 0.0018846492367249961, 0.0016494410453672986, 0.0015854863831491438, 0.00024155985894675652, 0.00013159895627175205, 0.0005767677264166407, 0.00045532285471352443, 0.000774867602513501, 0.0013286214449100104, 0.0010912788795405344, 0.0002858707909539598, 0.0015346429914603352, 0.0018419427112867147, 0.001228713684453091, 0.0017539494529952152, 0.0007762032520236194, 0.0018104781770448128, 0.0009756409770065, 0.00010748120405826295, 0.0008496918312617622, 0.00014029856333002392, 0.0011047690750757737, 0.001514268911552873, 0.00030226865455149814, 0.0011549217642299035, 6.691355788381487e-5, 0.0008031842798304786, 0.0014565305921916166, 0.0008335947467451423, 0.00020759794339954304, 0.0014581886342254049, 0.0005148620991201897, 0.0005635426424462665, 0.0004260479042600673, 0.001306907268220247, 0.0003599479734395143, 0.0013560425653915832, 0.001457222874868419, 0.00032897063996877577, 0.0009189062780080308, 0.0019203413142922382, 0.0012864312473556115, 0.0012462345074251964, 0.0018189975287601363, 0.0019854751881943373, 7.71285300140424e-5, 0.001526665411612948, 0.001059854603694981, 0.0015489054821608938, 0.0009180179720595878, 0.000376062711954727, 0.0017197834742872051, 0.0006928424579371541, 0.001071875002172082, 0.0007047606933892668, 0.0002853923996399942, 0.0005109056257599122, 0.002014129469745734, 0.0015512092488812648, 0.001119184345674655, 0.0012311684275182987, 0.0017402361322587856, 0.0008078549239400554, 0.0008781330733087867, 0.001800076170984548, 0.0007401333103765735, 0.0015147410388536946, 0.0012855806179004822, 0.0015782105958118112, 0.0013863636864374798, 0.0014540986189522176, 0.0012609685907181648, 0.00031745415263617665, 0.00046581161140549205, 0.0011310941474195764, 0.0014473128884779514, 0.0005915013928915794, 0.0006948530869125625, 0.00028525025535421495, 0.0007283789565812113, 2.6550435654007106e-5, 0.0006445866397123424, 0.0003285745006792089, 0.0001255192480614488, 0.0011179188092534699, 0.0009587672659742316, 0.001678032564368427, 4.5751585156982476e-5, 0.0014225283746896757, 0.00039625237867299843, 0.0006524293523410218, 0.0008939871377089451, 0.0007728206267285187, 0.0012276422864069948, 0.0003379720566790985, 0.0010361792111890774, 0.0009921233536838792, 0.0016742618740733758, 0.0011418951399399762, 0.0011254883718386805, 0.001179608099249651, 0.0016875139870566355, 0.0008345610878204003, 0.0014612737132504465, 0.0006579103197844391, 0.00174539701424441, 0.0008591074491749693, 0.001699583736852279, 0.0010509353322753058, 0.00033552068831001593, 0.0017483971225406543, 0.000677649528326339, 0.0016892321335958455, 0.0015432150515217809, 0.0019786259441726965, 0.0007472892889123138, 0.0016030467010230004, 0.0007048388586085087, 0.0017167153456132003, 0.00037974349498968985, 0.0007207856530787894, 0.0017245936758770652, 0.0008722300074721449, 0.0005945354024228717, 0.001928672314702892, 0.0012940446470528664, 0.0005992857383283286, 0.0002590181232359661, 0.0014556092896979096, 0.0011197898073995098, 0.000690332451644496, 0.0009907848943367865, 0.0008028236813853396, 0.0002804432815713677, 0.001850886418798066, 0.0009063591051971155, 0.000730004231130443, 0.0013136149501585417, 0.0013435237761695129, 0.0002869366572464932, 0.0014957120256823735, 0.001132241689199434, 0.0007084865891683017, 0.0010027418419484286, 0.0013999186552584293, 0.0020183704943568877, 0.00035787464434341716, 0.0015732415281073245, 0.001334676084998223, 5.396256556994437e-5, 0.0019500249869654667, 0.00031836142371524743, 0.001849941468449124, 0.00022451032493989574, 0.0006256693590356446, 0.0018925343900385182, 0.0008323693672295888, 0.001849461935129479, 0.0005528073761836094, 0.0013287922965703775, 0.0008518480749467748, 0.0015655089939836284, 0.0014250890093526383, 0.0017836921658786527, 7.399501644276165e-5, 0.0012244377532552857, 0.0019286687977442105, 0.0003682311005169258, 0.0010479702853031807, 0.0007664304037378822, 0.0012770558359352798, 0.001461231986924087, 0.0017219781762864439, 0.001353199546245605, 0.0003904160821721199, 0.0011340566355001404, 0.00026464997461494994, 0.00015826267022022667, 0.0009384294914228401, 0.0011552652957179308, 0.0006697931105832635, 0.0016512784105051392, 0.001672076129398905, 0.00013004175770290363, 0.000604732874935747, 0.0019463680636663209, 0.0014097141406545592, 0.0005939033730957691, 0.00034632845378032275, 0.0019092870029785833, 0.0014981523044618414, 0.001303340565368365, 0.0013615477094686937, 0.0006815375456323484, 0.0017006268282846067, 0.0010138000052868357, 0.00130651646265391, 0.0013703925270699682, 0.00124012283915108, 0.0018888139358888248, 0.0005517860770222685, 0.0007704313414618369, 0.0015646785276354123, 0.0017288904895376832, 0.0009074479774621745, 0.00032489270245585246, 0.00019230637725438802, 0.001973470578287785, 0.0010107999731054636, 0.000737935128083724, 0.0003613157491882445, 0.0011335961314710387, 0.0016140707903559942, 0.0007282297699769588, 0.0017996318670018695, 0.0015951867070396585, 0.001715427694905274, 0.0017561474113270384, 0.0017910129124369067, 0.0007325282046518082, 0.0015511073939265363, 0.00045841701709311487, 2.5432708485927426e-5, 0.0013207136799669608, 0.0016596925417597674, 0.0009271256460730964, 0.0010807490771596489, 0.0019088534451495197, 0.0019282809265553423, 0.0014683232458321338, 0.001797730526220544, 0.00013036911065799326, 0.001121929786633218, 0.0017913484241105688, 0.0015638342089843967, 0.000395653757627598, 0.0009333039082064583, 0.0005055040869582924, 0.001450178900467947, 0.001454929032637948, 0.0010803486361148096, 0.0011313009417276577, 0.0006647576383532729, 0.001712861931658794, 0.0009361701315437307, 0.0013879660215275454, 0.0005926049525266263, 0.0006284583072031477, 0.0014149537185999582, 0.0007730954541276618, 0.0002755105489254437, 0.0010615490449365549, 0.0005827754139062623, 0.0003866537866826537, 0.0013339122851391077, 0.0011601265781187985, 0.0010522942759215303, 0.001687666462543278, 5.855498258788399e-5, 0.001413185355396865, 0.00024574398288062225, 0.0016884114400477527, 0.000929686708099112, 0.0010451514907264272, 0.000981945013405011, 0.0005856080333355511, 0.00040907828919079653, 0.0016377108410448684, 0.0011236983380842128, 0.0012209825988025189, 0.0019562165606643992, 0.0018292076671629555, 0.001029459862561986, 0.0013478339106018902, 0.0017603706991385704, 0.001437172810963163, 0.0012235015931802947, 0.0007213793201822198, 0.002014841431782602, 9.810411543051678e-5, 0.0018584553385386459, 0.0007844749572706888, 0.0005994353594887506, 0.0010270968890780234, 0.000937118021955865, 0.0007996457465978006, 0.0019957537201492634, 0.0018763523203533799, 0.0011040638224177445, 0.0009800891664544537, 0.0007691398558456462, 0.0006858343018179541, 0.0007589891316904391, 0.0009280235123895792, 0.000428529367748073, 0.0014982170517540876, 0.0007432184713959207, 0.00018516594469772897, 0.00023267782868347577, 0.0011666249789230548, 2.2665924998125497e-5, 0.0019071669786732547, 0.00037418643622349736, 0.00020150915708639185, 0.0011304088640859146, 0.00046052641528392395, 0.0012023781012886745, 0.0016810337350683414, 0.0013289536261037078, 0.0003857169035978327, 0.001158678830300375, 0.0019890162704126594, 0.0019290945764850276, 0.0004001604395035497, 0.0019096902757736775, 0.0007593408429387869, 0.0014703115807810096, 0.0015152404236735996, 0.0004992136533963397, 0.0007682493960316498, 0.00021590614768385, 0.0005469991145650042, 0.00011693160317246425, 0.00019989032796155818, 0.0005446715604029582, 8.934944651099089e-5, 0.0013333510573597376, 0.0005332103407238076, 0.0008368455514357779, 0.0009621941862911005, 0.0002645127949997754, 0.0010716772786583532, 0.001878756357124902, 0.0002928341677560873, 0.0008143121727623034, 0.0005982950646874962, 0.0014569414245325964, 0.001095932633185667, 0.0007470813365407809, 0.0007827603047244712, 0.0004991047235357583, 0.0013750008299319146, 3.925615351574703e-5, 0.0019024015810387587, 0.0008353160402582735, 0.0006211049587265231, 0.0012379690307968024, 0.001278307658658544, 0.0015145648361351814, 0.0007959692144555214, 0.0007757628180782723, 0.0016694548141899684, 0.0002478845249789455, 0.0018742188203916506, 0.0001431792089604791, 0.0011185483574957882, 0.0017090405022962293, 0.0014204240341203645, 0.0009239312619721775, 0.0014475749273671083, 0.0004330816024698395, 0.0007101789644310696, 0.0013792399715583685, 0.0015940714678156411, 0.0006648787415037625, 0.0013288432166611295, 0.00031868692754756387, 0.0014226537393646373, 0.001966300828145862, 0.0007250562673816273, 0.0011894551267867131, 0.0011957698204312862, 0.0004424598139260511, 0.0004945024320623941, 0.0017749446042772128, 0.001208391626987191, 0.00016764046971078084, 0.0005541379204681514, 1.6463205322782954e-5, 0.001621801584320447, 0.000311776067159639, 0.0016146404179234151, 0.0009111375777024746, 3.760455581913668e-6, 0.00015122991436626249, 0.00043441581541682695, 0.0013974610002053037, 0.00187820250562127, 9.200579074916385e-6, 0.00011266403722508646, 0.0010396732333056967, 0.0009695938918524585, 0.0013383150166220972, 0.0002651101510102961, 0.0011537172264516576, 0.0004679810171893536, 0.000759024950887464, 0.0015960408677034021, 0.00021563499915297363, 0.00046032704016034967, 0.001450495692886544, 0.001748777829781285, 0.0007876988515534705, 0.001970317677974247, 0.0018971099754474523, 0.0010113348282702606, 0.00013256098433907053, 0.00029984165470211296, 0.0004610415496525072, 0.001419517160781018, 0.0018029601401574385, 0.0014733644096123774, 0.001519911268742315, 0.0009808294263699043, 0.00036937478069924544, 0.0017294142970461924, 0.0003485111085677326, 0.0007082503264791712, 0.00032103653206499533, 0.0012646978966006609, 0.0015347028876273947, 0.0010527982657331045, 2.4795948929252046e-5, 0.0009964336960875842, 0.001685841930526077, 0.0009232755278359127, 0.0004143100758282274, 0.00037011321905022505, 0.0011708980316420038, 0.0004987849524759044, 0.001936503879213869, 0.0008768666445541167, 0.0007215015258321235, 0.001976084910722642, 0.001104528821384065, 1.4340705899413656e-6, 0.0018381030136935027, 0.00046206412776766265, 0.0012761423675381122, 0.0017681161110252787, 0.001089394817773147, 0.00040312066794832797, 0.0017301820062408174, 0.00044084128166188574, 0.0016721122830982824, 0.001636662472850071, 0.0008324088328644644, 0.0013578952419124196, 0.0019036364198679154, 0.0017521586788246048, 0.0005736374496963604, 8.286423727325394e-5, 0.00039121227256263717, 0.0014120086359145714, 0.0014314196459529452, 0.0004146928614711022, 0.0010408926744469877, 9.641386340111979e-5, 0.001911432524422376, 0.0007714150810788611, 0.0005426877230335516, 0.0018266841634707875, 0.0012482059603147954, 0.0014184433494448267, 0.0013506498432520476, 0.00015181793006263387, 0.0018834088260167839, 0.0005105652389643137, 0.0001946064030945306, 0.0010486062249259423, 0.0003276669567590887, 0.0009851875895055037, 0.0007642923811760456, 0.0008856009052209912, 0.00048486733562035794, 0.0004853992817765065, 0.0011129448274077587, 0.00025462831083154373, 0.0002496131464998235, 0.0016961716252680023, 0.0013687042282413855, 0.0005443572022340504, 0.0017257559863903683, 0.0012703934437206287, 2.3778866261642623e-5, 0.001960545325161244, 0.0003070415009883762, 0.00046004530645866895, 0.0008809731519668607, 0.0006942007581020405, 0.0014157256643903876, 0.0011997004195277519, 0.0018668234204093702, 0.0004090409301539743, 0.0014243666624705006, 0.0013505142011395693, 0.0008180617478683388, 0.0005150098527750416, 0.0010787862842703457, 0.00032989795674491577, 0.0006389489204304177, 0.0001783454194102945, 0.0013029725022748885, 0.0015276601330230055, 0.0014204690859230752, 0.0007221662406929099, 0.0014381851490532411, 6.607962124277904e-5, 0.0012900885531799146, 0.0013859504352621073, 0.0008854596701842393, 0.0007426617078459545, 0.0007564014674420621, 0.0010870259212616771, 0.0007593487660018056, ] primal_true3 = 2.6251493517155233e-22 @test norm(res3[1] - x_true3) ≈ 0 atol = 1e-6 @test res3[3] ≈ primal_true3 atol = 1e-7 @test res3[5][end][1] <= 245 trajectory_adaptiveLoc2 = [] callback = build_callback(trajectory_adaptiveLoc2) x0 = deepcopy(x00) res4 = FrankWolfe.away_frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.AdaptiveZerothOrder(), print_iter=k / 10, memory_mode=FrankWolfe.InplaceEmphasis(), verbose=false, lazy=true, lazy_tolerance=2.0, trajectory=true, callback=callback, ) x_true4 = [ 0.0014225829743613801, 0.000272736173996018, 0.000498250165831316, 0.00016781398554943354, 0.00072775813146555, 0.0002292449202426735, 0.0005862821530843032, 0.0001643306055169377, 0.0013573219006879095, 0.0017062956436836038, 0.0018805197874835302, 0.0003660038077978794, 0.0014251818140146684, 0.001605938068923276, 0.0007985016725487092, 0.0007445625603927066, 0.0016881023466537102, 1.2635475724475553e-5, 0.000562574095568668, 0.0004956060570255119, 0.0008664562894744202, 0.00046914760457638114, 0.0007407378071786069, 5.821882193699442e-5, 0.001666803993656077, 0.00123011167859317, 0.0014207383445683846, 0.00019629812799978554, 0.00023149798777808285, 0.0005457730486299619, 0.0004647273337730131, 0.001656773734069498, 0.0006045563170401263, 6.794339462138083e-5, 0.0014508076394514607, 0.0009517077721306749, 0.0019777517344431823, 0.0015469323007022016, 0.0018741722747931267, 0.0015432160152742112, 0.0014368860197693472, 8.123743440886098e-5, 0.0017304519791178402, 0.0009952125111017378, 0.0014353470785758355, 0.0017044076619427073, 0.0013708998004870608, 0.0017276689882641063, 0.0017207388356776598, 0.0005881117488058579, 0.0015843186969192976, 0.0002248903237833871, 0.001078935958458411, 0.0013330122605765007, 0.0004199228220201521, 0.0001663156675470417, 0.001606430244990594, 0.0006240639181408853, 0.0014750986261760403, 0.000863584004860852, 0.000581868023711474, 0.0011220658675557128, 0.0015992917240908245, 0.0010582389507293578, 0.0019218317980981483, 0.0004358829764286742, 0.0015350408594638867, 0.0019150762489926843, 0.0011025998283368834, 1.5528185904185334e-5, 0.001468178813378891, 0.0001050994009242023, 0.0013962483519435885, 0.000519718334090666, 0.0001985541910458595, 0.0018652939839128675, 0.0009494974105756847, 6.553696257329348e-5, 2.1731313314788548e-5, 0.0005872042587158826, 0.0017695830812739257, 0.0015431776457107524, 0.0019442830967836484, 0.00021954041220413462, 0.0006762506743217778, 7.178001165806828e-6, 0.00017203878069421658, 0.001837186077251007, 0.0006645798689381575, 1.5606577383442706e-5, 0.00043116222473323074, 0.0015824081361996295, 0.00019166722717940552, 0.0009058144514101568, 9.5351382373054e-5, 0.0002448162607554125, 0.0008105073287103949, 0.00015599543397726637, 0.001488730661022864, 0.00014239732001793666, 0.0015252030575713226, 0.0004828290653092653, 0.0016408685435819591, 0.000914483165991301, 0.000253500588767749, 0.001759175430397863, 0.0003180421619069388, 0.00012625190418500334, 0.0012697356806205939, 0.001355884261372317, 0.0012137856168086833, 0.0015971668847455179, 0.0011491769542650036, 0.0017529417599897246, 0.00021317496838981563, 0.00026164867986317754, 0.0011650225280888176, 0.0006522880052438455, 0.0019796431101899324, 0.002005454182557133, 0.0003148423513809371, 0.000756688584809881, 0.0004918472412240939, 0.00031656967773826676, 0.00019181522488887756, 0.0018281654219729536, 0.0011533894996359952, 0.000573868149653978, 0.0016659749625753677, 0.0013950726448913096, 0.0008431837997220913, 0.0017493945390915748, 0.0010129266527799678, 6.439075553306764e-5, 0.000668572834884264, 0.00044097868323395364, 0.0016334368853140658, 0.0003049332694276901, 0.0005789650690452452, 0.0017477952841964165, 0.0003119653513163414, 0.001988098506502258, 0.0017476244131827694, 0.0016824754450684449, 0.0012848772880272503, 0.0009006681706024953, 0.0012325359193402204, 0.001965854231509105, 0.00129412447699196, 0.0019402010036756237, 0.0016387730959317205, 0.00014496440142884893, 0.0013288836221757529, 0.0002792432549349746, 0.00037630513480751396, 0.00010736630010853174, 8.259563445376793e-5, 0.0007992577038599008, 0.0003208877138878062, 3.985789854760635e-5, 0.0015451889763125838, 0.0011934033839913125, 0.0004210297437225692, 0.0006864541976811623, 0.00024333220735851208, 0.00031918970730587993, 0.0005711111056232229, 0.0016054760747839874, 0.0018515936008412352, 0.0004901844536450356, 0.00046003338830552987, 1.2671541438680889e-5, 0.0003757986730181749, 0.0006298045233660889, 0.00011705488219648358, 0.00041294868193184997, 0.0002427738585411833, 0.0013710095981569318, 0.0013364057793367, 0.001261630492528896, 0.0019927696513545303, 0.0005029442209008169, 0.0012150950270621063, 0.0006972288285883109, 0.0002651860064748677, 0.0007848344948549431, 0.001239839254131712, 0.0018167563395917708, 0.0018212477276998496, 0.0014103508636003183, 0.0013910443202007174, 0.00128042780724268, 0.00033675242398948713, 0.0016400211744223298, 3.68376181357699e-5, 0.0011426299625396086, 0.0014251565812141063, 0.00116252950199895, 0.00016334692359759657, 0.001575351103939826, 9.498766696429888e-5, 0.00036886486571151235, 0.0004428771805886527, 0.0004335421169776525, 0.0001466916832290079, 0.0009607276564445671, 0.0017388352034844424, 0.0012199470006213889, 0.0004738602138812364, 0.0001628957542877022, 0.0008063383317262218, 0.001779077717596706, 0.0006471525491245427, 0.0002733817685709841, 0.0016323523132421092, 0.0014388213552368886, 0.0015858014004030924, 2.532868352101213e-5, 0.0001342648575988372, 0.0013789009945380352, 0.0016098933709894753, 0.00153346087002594, 0.00015048736182124022, 0.0003137788469503525, 0.0013781531355136613, 0.00043375213068073433, 0.0009784180786536999, 6.389319114342543e-5, 0.001734320616100325, 0.0006450202541310004, 0.0008304456685944308, 0.0015885185382386185, 0.0009978498817717087, 0.0017497325540255162, 0.00031931948097993593, 0.001981675589418221, 0.0008959836037222737, 0.0014934780671322092, 0.00010829940312059653, 0.0017701658149106827, 0.000724703253177454, 0.0010020688796792087, 0.0005018434401916616, 9.577497676237218e-6, 0.0014349312893834124, 0.00039969182434888617, 0.000204795307190071, 0.0015498412287730905, 0.0008047122956043288, 0.0014379937613982336, 0.0008314269475613681, 0.0018494703492179815, 5.538929056013065e-5, 0.0005730011341899886, 0.00042864776483930625, 0.0009391080328750178, 0.001989028501903022, 0.001789599639603134, 0.0005983484552052464, 0.001187853308007518, 0.00020393940288195643, 0.001286445266535235, 0.0005628248608644395, 0.0013862815146080806, 0.001802553573050983, 0.0003738041489251905, 0.0004490096387660368, 0.0007791170172844092, 0.0004577365672700371, 0.0012377335937531404, 0.0010404995326007444, 0.0013641876384759386, 0.0019502557016056697, 0.0019199985862760976, 0.0017927791832200214, 0.0005716852958088965, 0.00016766206836545607, 0.00080704207898579, 0.00032201232616694615, 0.0011636743050449276, 0.001625718955748887, 0.0005844488048006496, 7.617781503977878e-5, 0.0007973292438651179, 0.001830200033627992, 0.001913506930569833, 0.0008501916623421857, 0.0018565277158399081, 0.0012163484152146655, 0.0016013806480427901, 0.0013594317746386396, 0.0004693339995964559, 0.0015519769602145494, 0.000519020673103851, 0.0017951492930113277, 0.00035280921350307876, 0.0015695041101933564, 0.001417234100888031, 0.0006113649242096904, 8.246148008844793e-5, 0.0015216245714154142, 0.00014082732244412644, 0.0004888271390014202, 0.00036204120077105355, 0.00023552809035447153, 0.0010522476337602056, 0.0011330280715826093, 0.0011919004392672884, 0.00019992391877173267, 0.0012578579678087017, 6.815600914688783e-5, 5.620784616662826e-5, 0.001556094912988073, 0.0006731689970422193, 0.0008932039793010616, 0.0008727023438011555, 0.001640581021940967, 0.00035429434956647874, 0.0003187697919504385, 0.0015016443445988949, 6.640428244876718e-5, 0.0008912890953780515, 0.001996669313259677, 0.0004584780633099148, 0.0019196524923161084, 0.00025326054782796344, 0.0013547056753897618, 0.001439699885299712, 0.0014860477067131178, 0.0004472559370658492, 0.001314413432884611, 0.0003646375725082844, 0.00036454314929335225, 0.0007737989815212527, 3.74037357863891e-5, 0.0003623564357779934, 0.0010392698090549352, 0.00044576427588351934, 0.0016583359741707087, 0.0018412151583045103, 0.001689787851964972, 0.0011384783745623445, 0.000842510236615873, 0.0004845750441787759, 0.0013109477153793294, 0.0006680411131631454, 0.000264806452184733, 0.000579394099443048, 0.002007718595486164, 0.0002565465516353984, 0.00048808242702767714, 0.001938704595457111, 0.0012624318318808733, 0.00012610086399958558, 0.00048226642548033865, 0.0006995910785431576, 0.0018343834529186399, 0.00035618970255054235, 0.0015795229724701301, 0.0018893664071608003, 0.0019625338448661703, 0.00042054385793522704, 0.0010034908898554024, 0.0016390143919013747, 0.0018377003907206705, 0.001256515358001122, 0.0002210527435909527, 0.0012662897594645703, 0.0009447584259677195, 0.0015937105560847977, 0.0009950529493674082, 0.0019337923335927003, 0.0012952633183137662, 0.0019186107814266845, 0.0005639190587637043, 0.0008654626837744172, 0.0001473047604049234, 0.0006739036440493413, 0.0011341036866350234, 0.0003067213579926474, 0.0015342332758675418, 0.0019925656639270166, 0.0009773026205330275, 0.0015492361541649604, 0.0018479189762490487, 0.0014108561214793748, 0.0016459813881221726, 0.000804715654508759, 0.0017241046393281746, 0.00045557876983841615, 0.0013508718486200959, 0.0015656119648591036, 0.0007124724091091019, 0.0004041937932403125, 0.0009747104180559817, 0.0009805195722783276, 0.0015187054519698344, 0.0005213653300607815, 0.00027910099605214913, 0.00034137762326234025, 0.0009675376323910399, 0.0014787231438540948, 0.0016581717181906638, 3.710136238145156e-5, 0.0015476082871798025, 0.000146406942866602, 8.0809872748954e-5, 0.0015552962239854951, 0.00181781497851156, 0.0013271067161916839, 0.0005714134280392898, 0.000534646412204368, 0.0018858202831664762, 0.0013436309435119697, 0.0008328413965610076, 0.0009882817570105822, 0.0010543682621333421, 0.001197649180216008, 0.0012467679710929417, 0.0010398607126054196, 0.0013616088220380674, 0.0013867854699567618, 0.0010421561202561874, 0.00038308333979167786, 0.001262604915061136, 0.001601962619465934, 0.0019195943864742638, 0.001179710441906709, 0.0017246953955855624, 0.001059355550057439, 8.871825207949434e-5, 0.0017516580064714626, 0.0010287162705973783, 0.0005981716484118286, 0.001055588248894337, 0.000263358750047743, 0.0011528277488584804, 0.0010726325205259978, 0.0005611877957161242, 0.0014084585433071005, 0.0010461453623148598, 0.0019993923530083444, 0.001397195602379254, 0.0013930685074526647, 0.0019019705235412613, 0.00046372564223904234, 0.00197831870542454, 2.5392703456896812e-5, 0.0019063486080497572, 2.3252115745991246e-5, 0.0009103915284317418, 0.001220650159167466, 0.0017075537667786275, 0.0004972857478740333, 0.0005267065592563007, 0.0010094238431439754, 0.0018142128078463408, 0.0011155955152607972, 0.001073632623842354, 0.0015270358854319798, 0.001433200123727438, 0.0019578191857436943, 0.0006303434571130885, 0.0003317276881724935, 0.0017975536586489083, 0.000788433141573668, 0.0019432162532642338, 0.0006182625659409961, 0.00013000223975298233, 0.0012424343703838236, 0.0019522719982407618, 0.0013528893298744456, 0.0009195345843482069, 0.001268603333017817, 0.0012314487714647087, 0.002012104151859878, 0.00015331242733147463, 0.0009504315110885182, 0.0016553550314976997, 0.000498775183258594, 1.806151804736757e-5, 0.0006186728437531724, 0.0005920521883281334, 0.0019082208703994276, 0.00022050366118348826, 0.0018846492357138625, 0.0016494410444926283, 0.0015854863831549068, 0.00024155985915107168, 0.00013159895734046677, 0.0005767677253476309, 0.0004553228541746362, 0.0007748676023254044, 0.0013286214453185545, 0.0010912788786810502, 0.000285870791159695, 0.0015346429908061495, 0.0018419427115880043, 0.001228713684724666, 0.0017539494526544865, 0.000776203251624186, 0.0018104781784081384, 0.0009756409762371242, 0.00010748120502558938, 0.0008496918323148599, 0.00014029856318985837, 0.0011047690748457741, 0.0015142689121638905, 0.00030226865576140927, 0.001154921763296334, 6.691355688057577e-5, 0.0008031842790644451, 0.0014565305925468587, 0.0008335947468451876, 0.00020759794420702811, 0.0014581886347829782, 0.0005148620992547831, 0.0005635426420552098, 0.00042604790412428204, 0.001306907267907408, 0.00035994797239940183, 0.001356042565923325, 0.001457222875934587, 0.00032897063833332456, 0.0009189062776433463, 0.0019203413137390357, 0.0012864312485684117, 0.0012462345070798917, 0.0018189975274214975, 0.0019854751877465167, 7.712853033290691e-5, 0.0015266654119894395, 0.0010598546040677453, 0.0015489054823257724, 0.000918017970940277, 0.00037606271113756716, 0.001719783473312611, 0.0006928424578080787, 0.0010718750026328765, 0.0007047606949027395, 0.0002853923973740528, 0.0005109056245024545, 0.002014129468490133, 0.0015512092475095912, 0.0011191843455769042, 0.0012311684261315263, 0.001740236132368535, 0.0008078549245037896, 0.0008781330731924002, 0.0018000761704981005, 0.0007401333101269685, 0.0015147410403680349, 0.0012855806173144608, 0.0015782105977119637, 0.0013863636866640883, 0.0014540986185465341, 0.0012609685897785154, 0.000317454152785981, 0.0004658116100686292, 0.001131094145268392, 0.001447312888603683, 0.0005915013932561248, 0.0006948530873601405, 0.0002852502549980423, 0.0007283789564658175, 2.655043554709008e-5, 0.0006445866375752935, 0.00032857450097425133, 0.00012551924765138132, 0.0011179188080312637, 0.0009587672647547522, 0.0016780325624859728, 4.575158319886076e-5, 0.0014225283756930088, 0.0003962523785313272, 0.0006524293522775, 0.0008939871378274416, 0.000772820627755313, 0.0012276422877772956, 0.00033797205427438384, 0.0010361792116512511, 0.000992123354987925, 0.0016742618749505556, 0.0011418951390279747, 0.0011254883724142566, 0.001179608099190592, 0.0016875139882042889, 0.000834561087054174, 0.0014612737141933515, 0.0006579103189494162, 0.001745397014474383, 0.0008591074503117063, 0.0016995837354385763, 0.0010509353343937987, 0.00033552068847955783, 0.001748397122559458, 0.0006776495272146955, 0.0016892321344516566, 0.0015432150515318566, 0.00197862594442962, 0.0007472892887145442, 0.0016030467017993176, 0.0007048388590286642, 0.0017167153468123182, 0.00037974349426059565, 0.000720785653888937, 0.001724593676736147, 0.0008722300070226204, 0.000594535402246172, 0.001928672314621123, 0.0012940446486137593, 0.0005992857394526842, 0.0002590181224669547, 0.0014556092896888058, 0.0011197898080715378, 0.0006903324514067347, 0.0009907848942334854, 0.0008028236812343426, 0.0002804432828722659, 0.0018508864188630284, 0.0009063591053537663, 0.0007300042308663796, 0.0013136149502167259, 0.0013435237753761924, 0.0002869366575419192, 0.0014957120265130669, 0.0011322416907284915, 0.0007084865894077216, 0.001002741841725643, 0.0013999186553729573, 0.0020183704943737856, 0.00035787464465853873, 0.0015732415280537372, 0.0013346760844266314, 5.396256627344144e-5, 0.0019500249861086894, 0.0003183614249889892, 0.0018499414683377834, 0.00022451032482761997, 0.0006256693603691175, 0.0018925343920570378, 0.0008323693668985606, 0.0018494619348564314, 0.0005528073759827736, 0.0013287922949995253, 0.0008518480751265364, 0.001565508994317163, 0.0014250890095858395, 0.0017836921660101545, 7.399501699934387e-5, 0.0012244377540895765, 0.0019286687990100345, 0.00036823110137633637, 0.0010479702850274039, 0.0007664304026677379, 0.0012770558362473813, 0.0014612319869219048, 0.0017219781766151523, 0.0013531995441721438, 0.00039041608200581683, 0.0011340566343704997, 0.0002646499735399049, 0.00015826266968005254, 0.0009384294918556608, 0.001155265294306961, 0.0006697931107998621, 0.0016512784120552306, 0.0016720761302965572, 0.00013004175935147198, 0.0006047328747478288, 0.0019463680649288732, 0.0014097141407316777, 0.0005939033732745605, 0.0003463284530704335, 0.0019092870027523307, 0.0014981523034308928, 0.001303340566277852, 0.0013615477099551787, 0.0006815375466615005, 0.0017006268278421154, 0.001013800004381689, 0.001306516461697429, 0.0013703925257482084, 0.0012401228396451724, 0.0018888139370437272, 0.0005517860754411934, 0.0007704313418466249, 0.0015646785277437143, 0.0017288904883525948, 0.0009074479778793613, 0.0003248927007886848, 0.00019230637606246583, 0.0019734705781951295, 0.0010107999724885228, 0.0007379351272214866, 0.0003613157492297475, 0.0011335961312022352, 0.00161407079196687, 0.0007282297708721836, 0.0017996318676904498, 0.0015951867078717228, 0.0017154276951455972, 0.0017561474102506314, 0.0017910129124869055, 0.0007325282052693366, 0.0015511073935576217, 0.0004584170175352366, 2.5432707102691337e-5, 0.0013207136804810208, 0.001659692541376127, 0.0009271256444950645, 0.0010807490773711078, 0.0019088534459592076, 0.001928280928390022, 0.00146832324707375, 0.0017977305279475101, 0.00013036911094390524, 0.0011219297873999317, 0.001791348424482151, 0.0015638342083806938, 0.0003956537561378301, 0.0009333039078388182, 0.0005055040863224017, 0.0014501788993518275, 0.0014549290313619527, 0.0010803486358663343, 0.0011313009413717542, 0.0006647576380586238, 0.001712861932184127, 0.0009361701313528355, 0.0013879660201112033, 0.0005926049515498218, 0.0006284583063885408, 0.0014149537183501236, 0.0007730954538772678, 0.0002755105486249854, 0.0010615490463193188, 0.0005827754142596496, 0.0003866537866436917, 0.0013339122848530205, 0.0011601265791961915, 0.0010522942748497058, 0.0016876664621923497, 5.8554981623653655e-5, 0.001413185354911879, 0.00024574398285129084, 0.0016884114399479378, 0.0009296867068058089, 0.0010451514906287826, 0.0009819450132960248, 0.0005856080316104397, 0.00040907828962369157, 0.0016377108423700588, 0.0011236983382310513, 0.0012209825979506415, 0.001956216559764966, 0.0018292076669189613, 0.0010294598635311374, 0.001347833909348008, 0.0017603706981459103, 0.0014371728104730604, 0.001223501592822976, 0.0007213793204057284, 0.002014841432042811, 9.81041150618283e-5, 0.0018584553365004368, 0.0007844749559485189, 0.0005994353590246947, 0.0010270968886547918, 0.0009371180223607318, 0.0007996457462792682, 0.0019957537193183343, 0.001876352320447595, 0.0011040638228819605, 0.0009800891659251286, 0.0007691398541560135, 0.0006858343027756589, 0.000758989130889994, 0.0009280235119726452, 0.0004285293666280806, 0.0014982170534200718, 0.0007432184706879318, 0.00018516594398765667, 0.0002326778288474738, 0.0011666249777615865, 2.26659258202934e-5, 0.0019071669785700226, 0.00037418643542377146, 0.00020150915704746677, 0.0011304088655371327, 0.0004605264146603664, 0.0012023780995992226, 0.0016810337338745685, 0.001328953626233166, 0.0003857169031810155, 0.0011586788313971358, 0.001989016268431761, 0.0019290945769247596, 0.00040016043817543565, 0.0019096902743947436, 0.0007593408441959973, 0.001470311581698988, 0.0015152404244659918, 0.0004992136529168048, 0.0007682493962336363, 0.00021590614946372889, 0.0005469991129184686, 0.00011693160363296751, 0.00019989032901005549, 0.0005446715587211916, 8.934944591621952e-5, 0.0013333510574198514, 0.0005332103410453205, 0.0008368455514708842, 0.0009621941863704083, 0.00026451279446145767, 0.0010716772775013865, 0.0018787563576277667, 0.000292834167411912, 0.00081431217336405, 0.0005982950657805128, 0.0014569414238517076, 0.001095932633737282, 0.0007470813373254887, 0.0007827603050527227, 0.000499104723543889, 0.001375000829757557, 3.925615365283902e-5, 0.001902401580303642, 0.0008353160403061752, 0.0006211049577703393, 0.0012379690306810497, 0.0012783076601676714, 0.0015145648373589464, 0.0007959692135331035, 0.0007757628181029654, 0.001669454815730218, 0.00024788452368348094, 0.0018742188204974542, 0.00014317920829194522, 0.0011185483570329271, 0.0017090405023217911, 0.0014204240344167032, 0.0009239312623995638, 0.0014475749285327315, 0.00043308160281984036, 0.0007101789654727326, 0.0013792399713411067, 0.0015940714678223916, 0.0006648787422288034, 0.0013288432157188466, 0.000318686927405049, 0.0014226537398333813, 0.001966300827507352, 0.0007250562667700273, 0.0011894551242318866, 0.0011957698198062543, 0.0004424598126379026, 0.0004945024323395611, 0.0017749446041587652, 0.0012083916282584265, 0.00016764046974862703, 0.0005541379197676405, 1.6463205860436565e-5, 0.0016218015833325832, 0.000311776067337024, 0.0016146404190939014, 0.0009111375785329119, 3.760456040528737e-6, 0.00015122991291213379, 0.0004344158146977866, 0.001397461000105207, 0.001878202506294056, 9.200578945632454e-6, 0.00011266403633295871, 0.0010396732331887102, 0.0009695938916887818, 0.0013383150172126084, 0.0002651101501146812, 0.0011537172252120032, 0.0004679810157643291, 0.0007590249507857386, 0.0015960408684172166, 0.00021563499907006762, 0.0004603270399262137, 0.0014504956933646955, 0.0017487778281325863, 0.0007876988522645781, 0.0019703176784247435, 0.0018971099757045934, 0.0010113348278924898, 0.0001325609851140469, 0.0002998416530093345, 0.00046104154914333354, 0.0014195171612397658, 0.0018029601405211942, 0.00147336440855345, 0.0015199112681347983, 0.0009808294258288083, 0.0003693747803138458, 0.0017294142969839674, 0.00034851110887885344, 0.0007082503256913047, 0.00032103653268398695, 0.0012646978979240435, 0.001534702887697676, 0.0010527982652945762, 2.479594962808107e-5, 0.000996433694697435, 0.0016858419316192516, 0.0009232755275145045, 0.00041431007719392886, 0.00037011321943109773, 0.001170898032566598, 0.0004987849524328245, 0.0019365038797533617, 0.000876866644305634, 0.0007215015256256535, 0.001976084911335036, 0.0011045288210154108, 1.4340706238113907e-6, 0.0018381030130720458, 0.00046206412762438045, 0.0012761423663147098, 0.0017681161116551872, 0.0010893948171453705, 0.00040312066751078577, 0.0017301820069000058, 0.000440841282547788, 0.0016721122836217779, 0.0016366624724453427, 0.0008324088329372005, 0.0013578952419382746, 0.0019036364197364414, 0.0017521586790464321, 0.0005736374504310119, 8.286423745170061e-5, 0.00039121227157652607, 0.0014120086345669268, 0.0014314196469674366, 0.00041469286021667906, 0.001040892674972926, 9.64138653647309e-5, 0.0019114325260008288, 0.0007714150817021108, 0.0005426877234005207, 0.0018266841653205561, 0.0012482059611694557, 0.0014184433495449482, 0.0013506498432095705, 0.00015181793090970937, 0.0018834088247311734, 0.0005105652394763917, 0.00019460640266754875, 0.0010486062246763805, 0.0003276669576784625, 0.0009851875895813653, 0.000764292380576851, 0.0008856009046689323, 0.00048486733534480037, 0.00048539928157188166, 0.0011129448265769799, 0.00025462831098997635, 0.0002496131465257627, 0.0016961716249092472, 0.0013687042277097934, 0.0005443572030120984, 0.0017257559877021306, 0.001270393444154944, 2.377886697243377e-5, 0.0019605453240807845, 0.00030704150256771745, 0.00046004530767524055, 0.0008809731525996349, 0.000694200757760702, 0.0014157256649321736, 0.0011997004201582107, 0.0018668234203242503, 0.00040904093033612997, 0.0014243666627202132, 0.001350514201412394, 0.0008180617481802913, 0.0005150098526307086, 0.001078786284967522, 0.0003298979577640719, 0.0006389489213686306, 0.00017834542012123194, 0.0013029725015504634, 0.0015276601334745221, 0.0014204690860052163, 0.0007221662409647902, 0.001438185150153501, 6.607961980571957e-5, 0.001290088552710114, 0.0013859504365260078, 0.0008854596699312695, 0.0007426617067464929, 0.0007564014682609096, 0.0010870259209510857, 0.0007593487645926848, ] primal_true4 = 4.517288607495588e-22 @test norm(res4[1] - x_true4) <= 1e-6 @test res4[3] ≈ primal_true4 atol = 1e-7 @test res4[5][end][1] <= 279 end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
41833
using FrankWolfe using LinearAlgebra using Test using ReverseDiff n = Int(1e3); k = 1e3 const xp = [ 0.0018327730915495884, 0.0015937445400959808, 0.0009003382186464693, 0.00127674793046702, 0.0006658776107376128, 0.0009205191029860242, 0.00027120179250720086, 0.0009568842164119253, 0.00017141310989939967, 0.001347806785639984, 0.0003756549468906054, 0.0007789830301650535, 0.001595951059883138, 0.0017491871177131065, 0.0009094333338028251, 0.00032279243212319814, 0.0013569096800504516, 0.001677147584151164, 0.0015391601930021873, 0.0012807239501508665, 0.0019255304798025477, 0.00023696519116144844, 0.0006740990642088303, 0.0008992907160919711, 0.00095870146293443, 0.0006020079336399129, 0.0010793591147014374, 0.001864192678347287, 0.0002308616941410699, 0.0008644771563767688, 0.00011160498970751212, 0.001457799362289775, 0.0013792778071976559, 0.0004811695430442883, 0.00034652238673556646, 0.00046014305343247284, 0.0015200893325180345, 0.0002301285029006331, 0.0008702304234927531, 0.0012559598183726735, 0.0011129546632819363, 0.0005924988153445136, 4.029384857735469e-6, 0.0004709756145071431, 0.001964605871887013, 0.0019007658592948712, 0.0003175280568686617, 0.00039519359524807865, 0.0018984336958403536, 0.00027524051594478207, 0.0011443101479584885, 0.0003446994490265905, 0.0008851891434967485, 0.0005551756905603518, 0.0018906802245579875, 0.00127509121720447, 0.00023109190134164496, 0.0011141821288208186, 0.0018872937629987984, 0.0009656897039301153, 0.0009532709255962198, 0.0018637789347380547, 0.001567190536468948, 0.001422748584770761, 0.0015038111175217637, 0.001470223281296216, 0.0006692664383454796, 0.0007199826094187467, 0.0019426711913402464, 0.0008483592078579399, 0.0008659318305379398, 0.000615960609169843, 0.0003876017221507564, 0.001979247539067491, 0.0001842352837771119, 0.0011614929182100495, 0.00043021373329181663, 0.00022434235551424179, 0.0013566339830943827, 0.00112751490494151, 0.0004441973280647759, 0.0004523257699007264, 0.001995937554057902, 0.0013376248691849492, 0.00015724480210718667, 0.0006843396921256714, 5.149177140935245e-5, 0.0019135234282829678, 0.001423223867003027, 0.0006690575109012296, 0.00043940829722780174, 0.0015482987671160563, 0.000991235623826253, 0.0010451879323598004, 0.0019721353656970766, 0.001590537575435224, 0.00036036301467069667, 0.0005176089802895095, 0.0010964623938275284, 0.0011604195508755576, 0.001963154346838054, 0.0008010390363287148, 0.0009462694088848839, 0.0004487482167006418, 0.001067704128654275, 0.0009187332598713647, 0.001224663566414967, 0.000581728212569191, 0.0011368643516045912, 0.00024573840310845727, 0.0016702918025943037, 5.641405301041516e-5, 0.0005167751816708099, 0.001279793338713246, 0.0007453637256759483, 0.0008758581662037049, 0.0006068813117986329, 0.0008160383784232987, 0.0011990616276158746, 0.000611394554624924, 0.0016351307828542825, 0.0006295201546188641, 0.0010249124806352876, 0.001528135509295967, 0.001134372045321598, 0.0014853708145065292, 0.0006835751262166197, 0.00017557291210234296, 0.0015858504246131675, 0.001072957085286627, 0.0007879608107194755, 0.0013573604649446678, 0.00024909955148385253, 8.599468740495325e-5, 0.001183363772711265, 0.00041115642853549656, 0.0016427071795206498, 0.0007850228455109578, 0.000882246807024765, 0.001657972127389477, 0.0002545493704343697, 0.0013542503275953003, 0.0002754785733604482, 0.0008402610320146713, 0.0013554538850161736, 0.00026437286516741316, 0.0012896209175443083, 0.00024335878706301038, 0.0006212177218613426, 0.0010692529838315853, 0.001859173765777184, 0.00045723538152473456, 0.0011965370852645295, 0.001989156509834248, 0.0016587458139964203, 0.0018819703658640914, 0.0009040276708432154, 0.00100556922903474, 0.0005708785341158682, 0.00011432643737059414, 0.0009428388537883419, 0.0009730278255207023, 0.00031013209589278326, 0.0018638085143026968, 0.0002542934827502082, 0.0008811444669717845, 0.001715865848796056, 0.000434684515180993, 0.0006618322680616472, 0.0009768754962879852, 0.0017403821107680089, 0.0017408714391316086, 0.00042231619868889785, 0.0011296323060238076, 0.0006896512905358444, 0.000892203979687179, 0.0004799202336923233, 4.120695301449753e-5, 0.00029747866685352645, 0.0013970894468810448, 0.0018488734714588605, 0.00026144166803006953, 0.00012472565360705865, 0.001336100105033711, 0.00027304137640162755, 0.0009954333529294166, 0.0007635781298635778, 0.0019404585702107204, 9.417181338508956e-5, 0.0013061086848206894, 0.0018599745118614143, 0.0014184356327043514, 0.0018847774134689165, 0.00198057265992906, 0.0013899996374345273, 0.001033418090673071, 0.001172126183766991, 0.0002491786408107791, 0.0005316957443559164, 0.0006581696066886157, 0.0003111388677669472, 0.0013364036523598078, 0.0010094442574075531, 0.0018497795791833848, 0.0007323593213486288, 0.0003055285971263878, 0.0013538279134556262, 9.486425007325548e-5, 0.0014637604377913654, 0.0001212269616937176, 0.001172059377299153, 0.001014748257755874, 0.0005763212815496139, 0.00010146351070545468, 0.0007448504926006604, 0.0008578913284180479, 0.0013317184488653815, 0.00011830847887435931, 0.001848310085883006, 0.0013499328132704855, 0.00019597389916035896, 0.0007566890546595535, 0.00193254794702912, 0.0003974847588399935, 0.0003780810792390995, 0.0014499682416200073, 0.0002497113831378613, 0.0009073444954380593, 0.0006941328804333382, 0.0012640877423129933, 0.000956649843209072, 0.0013484310578948753, 0.0004053245252322041, 0.0009670794712490947, 0.0012668876492248867, 0.001619080719097944, 0.0005214918544308543, 0.0011020109049342662, 0.0016483535866867157, 0.0018949856236975067, 0.0012733752297767944, 0.000655909883713231, 0.001872033168679548, 0.001386767453616496, 0.000324304586025684, 0.0010195007157271303, 0.0016783078026951603, 0.001575541373452696, 0.0007927853201302792, 0.0013969059422181385, 6.615768882254124e-5, 0.0014878756983712294, 0.0005875526142880978, 0.0005297963171169012, 0.0012498806378430454, 0.0005758184096768597, 0.0019419526045771737, 0.0009012191764821094, 6.75978463586831e-5, 0.0011630860329974583, 0.0007236986389638974, 0.001476215932609905, 0.0005086352610106773, 0.0016077714105984552, 0.0006951187838680796, 0.0013837315552207522, 0.000502193416509755, 0.0005580479763147728, 0.00048295234148723766, 0.0015666666260128485, 0.0006769227398960468, 0.001985142955532955, 0.00014267315129373005, 0.001902027829023448, 0.0012042027553697252, 0.00035670565654386823, 0.0006346847709761202, 0.00091952046224069, 0.0005176537762145475, 0.0016748877821021774, 0.0003978806450037573, 0.0006035334678798834, 0.0017219568486774594, 0.0009018821122855186, 0.001619653379346616, 0.001022433562073428, 0.001072698094039503, 0.0002038033359344979, 5.9798836285713143e-5, 0.00026374530352058515, 0.0018102475893269315, 0.00027553830387046344, 0.0009659885159881312, 0.0007561721143300964, 0.000788532484485178, 0.0010799488789369346, 0.0014724053628774657, 0.00031993817917332936, 0.0006177208319393205, 0.001817700677353197, 7.907170625981359e-5, 1.5573454383827163e-5, 0.00013866026421001314, 0.0017151636564962322, 0.0006552577530620876, 0.0019485177145897557, 0.001190339592661393, 0.0006808124346052569, 0.0005954759845031083, 0.0007985123103411901, 0.0004487716911070913, 0.0017200724960854817, 0.0017804603634335539, 0.0002765942521047776, 0.0016635828139130629, 0.0014743178504765277, 0.0015799378616438004, 0.0018315487485899213, 0.0002695490107889182, 0.0004531941431932836, 0.0013073678046168643, 0.0017611931961439794, 0.0009474400441979527, 0.0013257051128023254, 0.0010488265848314314, 0.0018716499251161885, 0.0015751416901875258, 0.001616065148123465, 0.0002485613086217679, 0.0013331056261160481, 0.0005963315192220173, 0.001379667879961323, 6.110827617394757e-5, 0.0015390710272743698, 0.0019288923575271632, 0.0010907948751852027, 0.00045825506794575533, 0.0005299259336476291, 0.0006541212128494624, 0.0007215258425467768, 0.001860011774737959, 0.0016031137007219795, 0.0006464400832404255, 0.001337677862036801, 0.0004881065606806423, 6.31421441759367e-5, 0.0016567198686779677, 0.0013610922427106382, 0.0005926783572242435, 0.001644571659827756, 0.0010494173981636069, 0.0014636575992381337, 0.0009066449485358799, 0.0015347892848303927, 0.00045542685141215187, 0.0003213560593230796, 0.001374283359636623, 0.0012785091435204832, 0.0003967449594011047, 0.0019454388715377015, 0.00023242901737008408, 0.0009423731928932567, 0.0010383219002757925, 0.001159227837391761, 0.00043874465016032144, 0.0004115595071388711, 0.00039375096066401427, 0.00032506183525874907, 0.0010207819688146569, 0.0015098348186148034, 0.001905914555518725, 0.0007735547422465331, 0.0007814356326174461, 0.0018113445797775924, 0.001041894131565221, 0.0008234594071261897, 0.0012830657307808776, 0.0007129334698624155, 0.00037139060224222585, 0.000803227267789403, 0.0014041081256167703, 1.5115266428794456e-5, 0.0009473538554703247, 0.0006720052663610818, 0.0009975645074246971, 0.001740678355869544, 0.0008318298921779738, 0.00019558339975096585, 0.0019556291686982116, 0.00057989682779768, 0.0001810619870975473, 0.001929890078977231, 0.001585444128828578, 0.0014466400010199392, 0.0002578676668168679, 0.00021370788420704937, 0.00025616866541825324, 0.001656862362405254, 0.0006624098851719846, 0.000488856922385659, 0.0007550544332957089, 0.0007819209255393643, 0.001188378606226741, 0.0009103461638397347, 0.00033993681025744707, 0.001775785231958221, 0.0015927372059838405, 0.0010072642203522364, 0.0015663218484591947, 0.0018377982520048507, 0.0010905951969243956, 0.00014769911241636265, 0.0009457940869536025, 0.000952939124557402, 0.00015558729138893403, 0.00035680989959007374, 0.001010041550483024, 0.0013790180501538133, 7.802661175271037e-5, 0.0014470730889533099, 0.0006764473444719864, 0.0013680396936119864, 0.0007693620294454979, 0.0019140342734339936, 0.00029998689797259805, 0.00019114086762915333, 0.001219494007900234, 0.0004976267897593667, 0.00170295549282911, 0.0019115982055067124, 0.0014759907540537077, 0.0009268002976558138, 0.0007942730585019111, 0.0007367326016035645, 0.0014649228101122934, 0.00015546969007001736, 0.0010327516215610697, 0.0007823597072905682, 0.00014691349516334442, 0.001245579612762418, 0.0012786862771840485, 0.00026684789160527747, 0.0010638069764506988, 0.0018297511062183812, 0.0017225147118992356, 0.0007248274739058347, 0.0011179385716630138, 0.0018209636507223034, 0.0015592566390118473, 0.0005909402616593415, 0.00022673588707267515, 0.00032818850151754763, 0.0006990863186125467, 0.001330417292136972, 0.0015288810903385307, 9.659083792112202e-5, 0.0002467595466102719, 0.0018691626524305267, 0.0003327680377894402, 0.0006728248645943384, 0.0006878252387040834, 0.0014801229392313985, 6.050024855478439e-5, 0.0004934161850992555, 0.00024186508107116626, 0.0013026045224702257, 0.001729280198300807, 0.0010612921637790688, 0.0018477841502465614, 0.00034739151174714646, 0.000514703481587503, 4.680165159905593e-5, 0.00026048516380227396, 0.0014591920580435773, 0.0009241194510978197, 0.0011134645001587605, 0.0019788248722242075, 0.0005708904371330058, 0.001183232824004749, 0.0008989131869314823, 0.000508697824295855, 0.0019707837972992165, 0.0019698774911707313, 0.0010600395092951556, 0.0010310344513264004, 0.001989637628077925, 0.0006447386615129625, 0.0012610054525879983, 0.0007609677170144002, 0.00017209698499650293, 0.0009924697621285857, 0.0003417824257821324, 0.0008380097781683315, 0.0007091561820366599, 0.00164100413367772, 0.0016507235595240861, 0.0007399674864961309, 0.0009511923987000143, 0.001576376484942097, 0.0019396844316881957, 0.0006232944417178602, 0.00036548031758296167, 0.00108412611917197, 0.0018005076506736246, 0.0008195832730431881, 0.0007834579740707772, 0.00115251872513119, 0.0018146600856659273, 0.0005610582076963469, 0.0003992005615304087, 0.0018395995819174328, 0.0013684936835912495, 0.0015639647900724033, 0.0008705811945658376, 0.00024415743695937905, 0.00034829983742813573, 0.0014980360651382647, 0.0019360937653995006, 0.00012202998944119299, 0.0006449676582695361, 0.0008098166298812683, 0.0005430125895007128, 0.0006024776260324192, 0.0014606536379434315, 0.0002734577802465653, 0.0015253026979302373, 0.0014506490933473236, 0.0009053434479656874, 0.00024572429640966825, 0.0017261423450467225, 0.0006634173125104148, 0.00020460005338718054, 0.0010525111257583064, 0.0011755345781089518, 0.0009628201144621855, 0.0018500696986080785, 0.0013465030432382894, 0.00044069758400812375, 2.8918450831516968e-5, 0.0005368905502858166, 0.0004212772954105924, 0.00015935697197428205, 0.0015575191232223477, 0.001969106260254529, 0.0014523394370467837, 0.0005143581758083439, 0.001672614261106492, 0.0003699072419913848, 0.0005614157712179695, 0.001443997282866257, 0.0010924593046373545, 0.0018438330886678704, 0.0009172935921157529, 0.0003334533180769076, 0.0006053163936255821, 0.0006975127051629411, 0.0006447215855192593, 0.0009038559384362273, 0.0002851791737987819, 0.0011100476801227251, 0.0013818662120346737, 0.0017274041637532517, 0.00034973363028089824, 0.00018254166991585696, 0.0012421183189664415, 0.0009404069996998386, 0.00040059486716694756, 0.0006761796808415352, 0.0007879149566179274, 0.0007036014935187577, 0.001662460181387039, 0.0013470682662865248, 0.0008292356276266305, 0.0009362777275760239, 0.0001705735597972123, 7.368511260263812e-5, 0.0008504500507358879, 0.001670104248747959, 0.0013701465452743377, 0.0011001260809050519, 0.000707958148483138, 0.0010920697390678362, 0.0017173305597642078, 0.0016707517326501149, 0.0011916614402770495, 0.00014950608258317054, 0.0009999296822657462, 0.0019265502401814149, 0.0018866771155574614, 0.0006901364742675106, 0.0008116640346814735, 0.0013824012324552197, 0.00011988968352039541, 6.724820191962071e-6, 0.000541109474743525, 0.0016004250972272815, 0.0013925414647899105, 5.0928854808417786e-5, 0.0014858906573357426, 0.0008402977780814168, 0.00030705891469881737, 0.0016622968358201938, 0.0018576382398660578, 0.0011286422361889267, 0.001680487391637096, 0.0018481482216813154, 0.0005887932985531036, 0.0006238451623384198, 0.0002941429468529822, 0.0018505281380446997, 0.0007705752172602122, 0.000521506971472071, 0.001439169135086595, 0.00022954255152772709, 0.00016345214486571723, 0.0005412805293540016, 0.0009543096200045798, 0.00030526309485633276, 0.0004423504153004842, 0.001331896818369305, 0.00045537794071123165, 0.0011494035415358244, 0.0018559525354102475, 0.0001617324331920188, 7.404623539455066e-5, 0.0007576313297505555, 0.0010321230933840729, 0.001125546423213475, 0.0018491309553563813, 0.0018047208197580816, 0.001596928518166632, 0.0009474773204987148, 0.0013455193636407782, 0.0004945025688660931, 0.0016401142815766915, 0.001461158510663254, 0.0010801425312820174, 0.00117543449937538, 0.0001409859989388047, 0.0014024237478710807, 0.0010732135150098888, 8.853927265193118e-5, 0.0002292957339488554, 0.00048564337909409705, 0.0016791010259568423, 0.0018404565027268429, 0.0012256716819134595, 0.0018977742433093328, 0.0012193539431702405, 0.0011129418826290895, 0.0004300373551459786, 0.0003096322110989376, 0.0002937406996688144, 0.0017445632310413364, 0.0014698238963586933, 0.0011637274665354054, 0.00029988012187886907, 0.0014078373638790641, 0.0010920443388229288, 0.0007616799501800092, 0.0014784583110823103, 0.0010369180317939433, 0.0005315182434241679, 0.0009443679112887697, 0.0015379516725051836, 0.0017899008573258213, 0.0001264327161521128, 0.000614104790564224, 0.0005140137534280678, 0.0019544467247925154, 0.0003481060897639085, 0.0011950184367434272, 0.0006704325730648348, 5.7789679651911883e-5, 0.0008260463562314218, 0.0004461525535082876, 0.0017253165770362438, 0.0004880111859461991, 0.0012328442207703526, 0.0012243847529723791, 0.0010727209085667655, 0.0015127088395774772, 0.001705599984036084, 0.001904262997230351, 0.00046307896123850336, 0.0006228713612049173, 0.0016114970380151144, 0.00028438852731265535, 0.00011085157564455476, 0.0006127371097982747, 0.000865327118624887, 0.00024375652128201108, 0.0003125392182457938, 0.0006581294516106818, 0.001101645022209513, 0.0010680663868787405, 0.00024341940847275002, 0.0007552071409940589, 0.0002834719113987055, 0.0015661662392179644, 0.0004631422222631197, 0.0009792865755230726, 0.0019579247610371137, 0.0016829964735991447, 0.0017244751150614112, 0.0017897389000213332, 0.0008556092437764926, 0.0007279064425182991, 0.00048655245053037734, 0.0012572693657413958, 0.0010797783765996727, 0.0008970205588488278, 0.0014175272869761339, 0.0013290864629511726, 0.0005245496865571544, 0.0009049967099332472, 0.00043558140742005385, 0.0011275812094613358, 0.00017273450978678079, 0.0012550804002917006, 0.0012781743532617365, 0.001573706848638644, 0.0013420731679475095, 0.0014892458739846888, 0.0008398246235935519, 0.00011504468581753147, 0.00039446185221038004, 0.0012376437036031238, 0.0018295550910136938, 0.0019546773576131814, 0.0015676052058229864, 0.001506851497019354, 0.001575197683338677, 0.0013763306886183757, 0.0017616294821065815, 0.0017435248930320643, 0.0018050603700472292, 0.0007503651034278091, 0.0009299828674809712, 0.0008756522416130647, 0.0006362927222849365, 0.00022210154903832706, 0.001844332500822328, 0.0013248403743752145, 0.0012559998892230895, 0.0018209525933688072, 0.0007335271183528885, 0.0014829191233771614, 0.0018678613135984172, 0.0011420653343152806, 0.0006605953396670363, 0.0008870568846896466, 0.0004900459822860427, 0.00025643224529566655, 0.001421495117363536, 0.001280223271089306, 0.00023855521270485226, 0.0012122575989886315, 0.0009627510945446007, 5.285953329532391e-5, 0.0009454499005818052, 0.0003700377574380651, 9.077339687952929e-7, 0.0014411222217378642, 0.0014173964830437181, 0.001226758073013107, 0.0015510199657714305, 0.001068549766336118, 0.001481795750543556, 0.000862743240234657, 0.0018364178627223657, 0.001297810444631, 0.0017288638263618468, 0.0014850128893871433, 0.0003876118061773179, 0.0006174093115518869, 0.0001558241106405434, 0.0017592029211481186, 0.0005700169392640262, 0.0007240705416604883, 0.0011116298082459834, 0.00013388249901906122, 0.0009231516835718252, 0.0007453818027215918, 0.001902893165074062, 0.0019350538421895446, 0.0007527871635143145, 0.0010257000169197053, 0.0009903603971969308, 4.4285426144378676e-5, 0.001564381934935309, 0.0015462480555508624, 0.00029899868944819523, 0.0015440779480220149, 0.0007418648975127938, 0.0019386004696501469, 0.0019131630292562234, 0.0015039026288142562, 0.00019896075715630912, 0.001293929283024881, 0.0010641333867957457, 0.0015197477936118194, 0.0012564938842911909, 0.0007840135152147756, 0.0015727679647529198, 0.0010820083599456722, 3.8300252164584965e-5, 0.001852308356736721, 0.0011578408985434623, 0.0018838742452490691, 0.0006827104598831953, 0.0004317043082294299, 0.001255847208881049, 0.001909609312654367, 0.00028111392236356047, 0.0012567089728115664, 0.00035089323655110733, 0.001591847528483122, 0.0010543319691625778, 0.0015210227188409, 0.0006187872451775554, 0.0006461464176754111, 0.0012521503243518503, 0.0010858832604493784, 0.0019696825709546763, 0.0004918204594470025, 0.0014651421292231155, 1.4381467369199035e-5, 0.0019798021556332902, 0.000621799009119485, 0.001234777757265796, 0.0013084057940826379, 0.0007577985064971946, 0.00048504609549452905, 0.0006107784742234016, 0.0005802471497523196, 0.00046874808725753584, 0.0006532405213221228, 6.264346279392007e-5, 0.0012680170832670627, 0.0009316962372604156, 0.0017697198580174584, 0.001508387782426762, 0.00041306458511965015, 0.00026087438719267617, 0.0011261602064797887, 0.0019850451621984005, 0.00023939598199659615, 0.0017541385937419633, 0.0013440822232875104, 0.0010770467943507596, 0.0018078683636017262, 0.0015231183627278455, 6.869221710248355e-5, 0.00035195006157333456, 0.0013762995791557688, 0.0008072149205532919, 0.0011353841005312634, 0.0014865730965501383, 0.0019307441257809916, 0.0011667277507501342, 0.0004294030938637975, 0.00111365615933646, 0.0014069834158223595, 4.8710162869939384e-5, 0.001436450945346649, 0.0017242135369256516, 0.00041730866559616447, 0.0009829065577903772, 0.001167055962634375, 0.001508796966308683, 0.0017893897976293015, 0.001287771363148189, 0.001997137544134502, 0.0002145244269098374, 0.001662766333988747, 0.00036868657263025025, 0.0007381648336162118, 0.0013742760119370514, 0.00011619435884379533, 0.0010922699701567502, 0.0014294553617263336, 0.0008149134535309198, 0.0011517173279784858, 0.0005618245613695095, 0.000921903951793312, 0.0009024406687822501, 0.0009017809865759639, 0.0008223481994507508, 0.0004962383638437895, 0.0017603447995208604, 0.000163248469761568, 0.0011429136963764706, 0.0018522434293814756, 0.0002356312964772626, 0.0010112992495719833, 0.0014210738528094217, 0.0010234170375453978, 0.0012090556341396276, 0.0015497166977694698, 0.00032572146086334153, 0.0011398813376043847, 0.0015589966071929637, 0.001902743947117522, 0.0003739076464881413, 0.0005822386500208485, 0.000860476817346138, 0.00041490200286679993, 0.0016411990778428178, 0.00032836239341761924, 0.0014958156778162395, 0.0012197218589056907, 0.0018146597016257785, 0.0014317525498898555, 0.0018016245765188758, 0.0006937041548007459, 0.00033402346803317474, 0.001406396085933951, 0.0008651945073745998, 0.0010878408091477782, 0.0011322785846400354, 0.0014529747440973576, 0.00041560645703940513, 0.001497228336849063, 0.0015424355185953238, 0.001869207847744262, 0.0012428300004407441, 0.0010937160906464953, 0.0012007892623604646, 0.0004721948120057884, 0.000414959864788396, 0.00062360561149615, 0.00041807456438264527, 0.0010052715695913102, 0.0013384843013248635, 0.0017928187389229999, 0.001913993790030471, 0.00023245030676397385, 0.0014580749126802976, 0.0004470042941235724, 0.0011436280459967535, 0.0011303445744775037, 0.0012753735267050843, 0.0016568858262784372, 0.0017566569095932968, 0.0005535250070063169, 0.0009223820466287302, 0.0008220756788574233, 0.0011116760097243385, 0.0014117799294308883, 0.00087495129826821, 0.0008111549551058168, 0.0004048409662543526, 0.000925904294106518, 0.001359317625777248, 0.0008899768972427336, 0.001818912222220616, 0.00105708599008006, 0.0009376529134939358, 0.001982571585694777, 0.0018797434748223426, 0.00046847491132920164, 0.00015401643870465188, 0.001882013352925305, 0.0014891448179153227, 0.0009715307625831949, 0.0014754496527844365, 0.0017764998980493963, 0.001798214544781652, 0.0017438490621810002, 0.00020540323451424944, 0.0009377724441468718, 0.0011041741045957185, 0.0009708990424034792, 0.00044236028038968064, 0.00037532641918069996, 0.0014276455734683763, 0.00018132726839262513, 0.0002564970819513468, 0.0006011127603836982, 0.0008406696828283911, 0.000263973972249628, 0.0005468165821273978, 0.00021476152125868216, 0.0003268425577002223, 0.0005780972992596821, 0.0018720112477446783, 0.0013828436790080526, 0.0018673680178595189, 0.0017363376985923286, 0.0014766123499324088, 0.0009136250184811881, 0.0014356085455390168, 0.0009559040137781322, 0.0007535310369443493, 0.0006742417823838604, 0.0016826807157711873, 0.0015410007790954772, 0.0009228700085840383, 0.000684659986697446, ] @testset "Nonconvex Lasso" begin f(x) = 2 * norm(x - xp)^3 - norm(x)^2 grad!(storage, x) = ReverseDiff.gradient!(storage, f, x) lmo = FrankWolfe.ProbabilitySimplexOracle(1.0) x0 = collect(FrankWolfe.compute_extreme_point(lmo, zeros(n))) res = FrankWolfe.frank_wolfe( f, grad!, lmo, x0, max_iteration=k, line_search=FrankWolfe.Nonconvex(), print_iter=k / 10, verbose=false, ) x_true = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0032135880125713457, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00018516859804417726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.006969188491359922, 0.0056815531539352315, 0.0, 0.0, 0.010176917272823348, 0.0, 0.0, 0.0, 0.0, 0.0, 0.02497013305042179, 0.0, 0.0, 0.0, 0.0016736801452988358, 0.0, 0.0, 0.0027281478733080303, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.024440222424345428, 0.0, 0.0, 0.0, 0.0, 0.0038530911472075794, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.014663370095865949, 0.0, 0.0, 0.0, 0.0, 0.007668232242457311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.009257913756320776, 0.0, 0.0, 0.0, 0.0, 0.0, 0.020372781914532914, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.028408622282667544, 0.0, 0.0020357868035761253, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0002052828127294368, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00434028659960034, 0.0, 0.0, 0.0, 0.0, 0.00831818605260279, 0.014107079016793556, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0035639712105067535, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0025091858915269175, 0.0, 0.0, 0.018437396385970566, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.002673292094469775, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00350462263228815, 0.0, 0.0022693707270134045, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.005005370084094529, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0005338245730249912, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.01737316561449022, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.009871321544713584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.006942084588314515, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.005593883716777582, 0.0, 0.0, 0.011803424931840265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0019500739528989222, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0011400559223338504, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0007228936963650297, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.004236419618989145, 0.0, 0.0, 0.0, 0.0, 0.015512718361240276, 0.018805457372579944, 0.0, 0.0, 0.02325487476395467, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0060555153949940176, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.023160291066307348, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00470954218788022, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03189188326685658, 0.006214742198205494, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0302683076052642, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.01666497968574187, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.015536991862228424, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.003990711114431177, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.007555239590432756, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.027091239380948737, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0010229362419501592, 0.0016230770642670785, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.010776728233836094, 0.014180606406681152, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0004846083939801903, 0.0, 0.0, 0.0, 0.0017525633832993605, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.030349931926964724, 0.0, 0.0, 0.0, 0.013579202318466358, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.008553560562398952, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.005225344578416675, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.33935548951829697, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0018635600585753555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.000653473729923748, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.004698420875116127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.01269961364132544, 0.009146813384144064, 0.0, 0.0, 0.0015114518587757443, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0202881787824224, 0.0, 0.00012235625801301618, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] primal_true = -0.039257619800701055 @test norm(res[1] - x_true) ≈ 0 atol = 1e-6 @test res[3] ≈ primal_true end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
code
1943
using FrankWolfe using Test using LinearAlgebra @testset "Open-loop FW on polytope" begin n = Int(1e2) k = Int(1e4) xp = ones(n) f(x) = norm(x - xp)^2 function grad!(storage, x) @. storage = 2 * (x - xp) end lmo = FrankWolfe.KSparseLMO(40, 1.0) x0 = FrankWolfe.compute_extreme_point(lmo, zeros(n)) res_2 = FrankWolfe.frank_wolfe( f, grad!, lmo, copy(x0), max_iteration=k, line_search=FrankWolfe.Agnostic(2), print_iter=k / 10, epsilon=1e-5, verbose=true, trajectory=true, ) res_10 = FrankWolfe.frank_wolfe( f, grad!, lmo, copy(x0), max_iteration=k, line_search=FrankWolfe.Agnostic(10), print_iter=k / 10, epsilon=1e-5, verbose=true, trajectory=true, ) @test res_2[4] ≤ 0.004799839951985518 @test res_10[4] ≤ 0.02399919272834694 # strongly convex set xp2 = 10 * ones(n) diag_term = 100 * rand(n) covariance_matrix = zeros(n,n) + LinearAlgebra.Diagonal(diag_term) lmo2 = FrankWolfe.EllipsoidLMO(covariance_matrix) f2(x) = norm(x - xp2)^2 function grad2!(storage, x) @. storage = 2 * (x - xp2) end x0 = FrankWolfe.compute_extreme_point(lmo2, randn(n)) res_2 = FrankWolfe.frank_wolfe( f2, grad2!, lmo2, copy(x0), max_iteration=k, line_search=FrankWolfe.Agnostic(2), print_iter=k / 10, epsilon=1e-5, verbose=true, trajectory=true, ) res_10 = FrankWolfe.frank_wolfe( f2, grad2!, lmo2, copy(x0), max_iteration=k, line_search=FrankWolfe.Agnostic(10), print_iter=k / 10, epsilon=1e-5, verbose=true, trajectory=true, ) @test length(res_10[end]) <= 8 @test length(res_2[end]) <= 73 end
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
docs
2011
# Noteworthy changes from v0.3 to v0.4 - Changed `tt` to `step_type` everywhere, including as a type in the `CallbackState` object. - `FrankWolfe.st` is now `FrankWolfe.steptype_string` - all step types were renamed to clearly appear as constants, with a naming convention `ST_NAME`. # Noteworthy changes from v0.1 to v0.2 - clean up `active_set.jl` by renaming `compute_active_set_iterate` to `get_active_set_iterate` and merging `find_minmax_direction` and `active_set_argminmax` [PR258](https://github.com/ZIB-IOL/FrankWolfe.jl/pull/258) - change keyword argument `K` to `lazy_tolerance` in all algorithms [PR255](https://github.com/ZIB-IOL/FrankWolfe.jl/pull/255) - remove L1ballDense [PR276](https://github.com/ZIB-IOL/FrankWolfe.jl/pull/276) - add `perform_line_search` function to all step size strategies and a workspace to line searches (to store intermediate arrays) [PR259](https://github.com/ZIB-IOL/FrankWolfe.jl/pull/259) - add type `MemoryEmphasis` and subtypes `InplaceEmphasis` and `OutplaceEmphasis` [PR277](https://github.com/ZIB-IOL/FrankWolfe.jl/pull/277)- use `GenericSchur` to have type stable eigenvalues and compute min and max eigenvalues - remove heavy dependencies, notably Plots.jl [PR245](https://github.com/ZIB-IOL/FrankWolfe.jl/pull/245). The plotting functions are now in `examples/plot_utils.jl` and must be included separately. - add step counter feature [PR301](https://github.com/ZIB-IOL/FrankWolfe.jl/pull/301) - call `@memory_mode` from within a function so new methods can easily be implemented [PR302](https://github.com/ZIB-IOL/FrankWolfe.jl/pull/302) - add struct `CallbackStructure` for state of callbacks. Callbacks can now return `false` to terminate the FW algorithm. - add unified callback for verbose printcallback, user given stop criteria and trajectory tracking with counters [PR313](https://github.com/ZIB-IOL/FrankWolfe.jl/pull/313) - start with `t=1` and pass `t` instead of `t-1` in callbacks [PR333](https://github.com/ZIB-IOL/FrankWolfe.jl/pull/333)
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
docs
4922
# Contributing to FrankWolfe First, thanks for taking the time to contribute. Contributions in any form, such as documentation, bug fix, examples or algorithms, are appreciated and welcome. We list below some guidelines to help you contribute to the package. ## Community Standards Interactions on this repository must follow the Julia [Community Standards](https://julialang.org/community/standards/) including Pull Requests and issues. ## Where can I get an overview? Check out the [paper](https://arxiv.org/abs/2104.06675) presenting the package for a high-level overview of the feature and algorithms and the [documentation](https://zib-iol.github.io/FrankWolfe.jl/dev/) for more details. ## I just have a question If your question is related to Julia, its syntax or tooling, the best places to get help will be tied to the Julia community, see [the Julia community page](https://julialang.org/community/) for a number of communication channels (Slack, Zulip, and Discourse being the most active). For now, the best way to ask a question is to file an issue or reach out to [Mathieu Besançon](https://github/matbesancon) or [Sebastian Pokutta](https://github.com/pokutta). You can also ask your question on [discourse.julialang.org](https://discourse.julialang.org) in the optimization topic or on the Julia Slack on `#mathematical-optimization`, see [the Julia community page](https://julialang.org/community/) to gain access. ## How can I file an issue? If you found a bug or want to propose a feature, we track our issues within the [GitHub repository](https://github.com/ZIB-IOL/FrankWolfe.jl/issues). Once opened, you can edit the issue or add new comments to continue the conversation. If you encounter a bug, send the stack trace (the lines appearing after the error occurred containing some source files) and ideally a Minimal Working Example (MWE), a small program that reproduces the bug. ## How can I contribute Contributing to the repository will likely be made in a Pull Request (PR). You will need to: 1. Fork the repository 2. Clone it on your machine to perform the changes 3. Create a branch for your modifications, based on the branch you want to merge on (typically master) 4. Push to this branch on your fork 5. The GitHub web interface will then automatically suggest opening a PR onto the original repository. See the GitHub [guide to creating PRs](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request) for more help on workflows using Git and GitHub. A PR should do a single thing to reduce the amount of code that must be reviewed. Do not run the formatter on the whole repository except if your PR is specifically about formatting. ### Improve the documentation The documentation can be improved by changing the files in `docs/src`, for example to add a section in the documentation, expand a paragraph or add a plot. The documentation attached to a given type of function can be modified in the source files directly, it appears above the function / type / thingy you try to document with three double quotation marks like this: ```julia """ This explains what the function `f` does, it supports markdown. """ function f(x) # ... end ``` ### Provide a new example or test If you fix a bug, one would typically expect to add a test that validates that the bug is gone. A test would be added in a file in the `test/` folder, for which the entry point is `runtests.jl`. The `examples/` folder features several examples covering different problem settings and algorithms. The examples are expected to run with the same environment and dependencies as the tests using [TestEnv](https://github.com/JuliaTesting/TestEnv.jl). If the example is lightweight enough, it can be added to the `docs/src/examples/` folder which generates pages for the documentation based on Literate.jl. ### Provide a new feature Contributions bringing new features are also welcome. If the feature is likely to impact performance, some benchmarks should be run with `BenchmarkTools` on several of the examples to assert the effect at different problem sizes. If the feature should only be active in some cases, a keyword should be added to the main algorithms to support it. Some typical features to implement are: 1. A new Linear Minimization Oracle (LMO) 2. A new step size 3. A new algorithm (less frequent) following the same API. ### Code style We try to follow the [Julia documentation guidelines](https://docs.julialang.org/en/v1/manual/documentation/). We run [`JuliaFormatter.jl`](https://github.com/domluna/JuliaFormatter.jl) on the repo in the way set in the `.JuliaFormatter.toml` file, which enforces a number of conventions. This contribution guide was inspired by [ColPrac](https://github.com/SciML/ColPrac) and the one in [Manopt.jl](https://github.com/JuliaManifolds/Manopt.jl).
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
docs
4222
# FrankWolfe.jl [![Build Status](https://github.com/ZIB-IOL/FrankWolfe.jl/workflows/CI/badge.svg)](https://github.com/ZIB-IOL/FrankWolfe.jl/actions) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://zib-iol.github.io/FrankWolfe.jl/dev/) [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://zib-iol.github.io/FrankWolfe.jl/stable/) [![Coverage](https://codecov.io/gh/ZIB-IOL/FrankWolfe.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/ZIB-IOL/FrankWolfe.jl) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.12720673.svg)](https://doi.org/10.5281/zenodo.12720673) This package is a toolbox for Frank-Wolfe and conditional gradients algorithms. ## Overview Frank-Wolfe algorithms were designed to solve optimization problems of the form $\min_{x ∈ C} f(x)$, where `f` is a differentiable convex function and `C` is a convex and compact set. They are especially useful when we know how to optimize a linear function over `C` in an efficient way. A paper presenting the package with mathematical explanations and numerous examples can be found here: > [FrankWolfe.jl: A high-performance and flexible toolbox for Frank-Wolfe algorithms and Conditional Gradients](https://arxiv.org/abs/2104.06675). ## Installation The most recent release is available via the julia package manager, e.g., with ```julia using Pkg Pkg.add("FrankWolfe") ``` or the master branch: ```julia Pkg.add(url="https://github.com/ZIB-IOL/FrankWolfe.jl", rev="master") ``` ## Getting started Let's say we want to minimize the Euclidian norm over the probability simplex `Δ`. Using `FrankWolfe.jl`, this is what the code looks like (in dimension 3): ```julia julia> using FrankWolfe julia> f(p) = sum(abs2, p) # objective function julia> grad!(storage, p) = storage .= 2p # in-place gradient computation # # function d ⟼ argmin ⟨p,d⟩ st. p ∈ Δ julia> lmo = FrankWolfe.ProbabilitySimplexOracle(1.) julia> p0 = [1., 0., 0.] julia> p_opt, _ = frank_wolfe(f, grad!, lmo, p0; verbose=true); Vanilla Frank-Wolfe Algorithm. MEMORY_MODE: FrankWolfe.InplaceEmphasis() STEPSIZE: Adaptive EPSILON: 1.0e-7 MAXITERATION: 10000 TYPE: Float64 MOMENTUM: nothing GRADIENTTYPE: Nothing [ Info: In memory_mode memory iterates are written back into x0! ------------------------------------------------------------------------------------------------- Type Iteration Primal Dual Dual Gap Time It/sec ------------------------------------------------------------------------------------------------- I 1 1.000000e+00 -1.000000e+00 2.000000e+00 0.000000e+00 Inf Last 24 3.333333e-01 3.333332e-01 9.488992e-08 1.533181e+00 1.565373e+01 ------------------------------------------------------------------------------------------------- julia> p_opt 3-element Vector{Float64}: 0.33333334349923327 0.33333332783841896 0.3333333286623478 ``` Note that active-set based methods like Away Frank-Wolfe and Blended Pairwise Conditional Gradient also include a post processing step. In post-processing all values are recomputed and in particular the dual gap is computed at the current FW vertex, which might be slightly larger than the best dual gap observed as the gap is not monotonic. This is expected behavior. ## Documentation and examples To explore the content of the package, go to the [documentation](https://zib-iol.github.io/FrankWolfe.jl/dev/). Beyond those presented in the documentation, many more use cases are implemented in the `examples` folder. To run them, you will need to activate the test environment, which can be done simply with [TestEnv.jl](https://github.com/JuliaTesting/TestEnv.jl) (we recommend you install it in your base Julia). ```julia julia> using TestEnv julia> TestEnv.activate() "/tmp/jl_Ux8wKE/Project.toml" # necessary for plotting julia> include("examples/plot_utils.jl") julia> include("examples/linear_regression.jl") ... ``` If you need the plotting utilities in your own code, make sure Plots.jl is included in your current project and run: ```julia using Plots using FrankWolfe include(joinpath(dirname(pathof(FrankWolfe)), "../examples/plot_utils.jl")) ```
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
docs
369
--- name: Bug report about: Help us track down bugs in FrankWolfe.jl --- Welcome to FrankWolfe.jl! Be sure to include as much relevant information as possible, including a minimal reproducible example. See https://help.github.com/articles/basic-writing-and-formatting-syntax/ for background on how to format text and code on GitHub issues. Thanks for contributing!
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
docs
633
--- name: Feature request about: Suggest an idea for FrankWolfe.jl --- You can use this Github issue to suggest a new feature or enhancement. **Is your feature request related to a problem? Please describe.** A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] **Describe the solution you'd like** A clear and concise description of what you want to happen. **Describe alternatives you've considered** A clear and concise description of any alternative solutions or features you've considered. **Additional context** Add any other context or screenshots about the feature request here.
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
docs
16839
# Advanced features ## Multi-precision All algorithms can run in various precisions modes: `Float16, Float32, Float64, BigFloat` and also for rationals based on various integer types `Int32, Int64, BigInt` (see e.g., the approximate Carathéodory example) ## Step size computation For all Frank-Wolfe algorithms, a step size must be determined to move from the current iterate to the next one. This step size can be determined by exact line search or any other rule represented by a subtype of [`FrankWolfe.LineSearchMethod`](@ref), which must implement [`FrankWolfe.perform_line_search`](@ref). Multiple line search and step size determination rules are already available. See [Pedregosa, Negiar, Askari, Jaggi (2020)](https://arxiv.org/abs/1806.05123) and [Pokutta (2023)](https://arxiv.org/abs/2311.05313) for the adaptive step size and [Carderera, Besançon, Pokutta (2021)](https://openreview.net/forum?id=rq_UD6IiBpX) for the monotonic step size. ## Callbacks All top-level algorithms can take an optional `callback` argument, which must be a function taking a [`FrankWolfe.CallbackState`](@ref) struct and additional arguments: ```julia callback(state::FrankWolfe.CallbackState, args...) ``` The callback can be used to log additional information or store some values of interest in an external array. If a callback is passed, the `trajectory` keyword is ignored since it is a special case of callback pushing the 5 first elements of the state to an array returned from the algorithm. ## Custom extreme point types For some feasible sets, the extreme points of the feasible set returned by the LMO possess a specific structure that can be represented in an efficient manner both for storage and for common operations like scaling and addition with an iterate. See for example [`FrankWolfe.ScaledHotVector`](@ref) and [`FrankWolfe.RankOneMatrix`](@ref). ## Active set The active set represents an iterate as a convex combination of atoms (also referred to as extreme points or vertices). It maintains a vector of atoms, the corresponding weights, and the current iterate. Note: the weights in the active set are currently defined as `Float64` in the algorithm. This means that even with vertices using a lower precision, the iterate `sum_i(lambda_i * v_i)` will be upcast to `Float64`. One reason for keeping this as-is for now is the higher precision required by the computation of iterates from their barycentric decomposition. ## Extra-lazification with a vertex storage One can pass the following keyword arguments to some active set-based Frank-Wolfe algorithms: ```julia add_dropped_vertices=true, use_extra_vertex_storage=true, extra_vertex_storage=vertex_storage, ``` `add_dropped_vertices` activates feeding discarded vertices to the storage while `use_extra_vertex_storage` determines whether vertices from the storage are used in the algorithm. See [Extra-lazification](@ref) for a complete example. ## Specialized active set for quadratic functions If the objective function is quadratic, a considerable speedup can be obtained by using the structure `ActiveSetQuadratic`. It relies on the storage of various scalar products to efficiently determine the best (and worst for `blended_pairwise_conditional_gradient`) atom in the active set without the need of computing many scalar products in each iteration. The user should provide the Hessian matrix `A` as well as the linear part `b` of the function, such that: ```math \nabla f(x)=Ax+b. ``` If the Hessian matrix `A` is simply a scaled identity (for a distance function for instance), `LinearAlgebra.I` or any `LinearAlgebra.UniformScaling` can be given. Note that these parameters can also be automatically detected, but the precision of this detection (which basically requires solving a linear system) soon becomes insufficient for practical purposes when the dimension increases. See the examples `quadratic.jl` and `quadratic_A.jl` for the exact syntax. ## Miscellaneous - Emphasis: All solvers support emphasis (parameter `Emphasis`) to either exploit vectorized linear algebra or be memory efficient, e.g., for large-scale instances - Various caching strategies for the lazy implementations. Unbounded cache sizes (can get slow), bounded cache sizes as well as early returns once any sufficient vertex is found in the cache. - Optionally all algorithms can be endowed with gradient momentum. This might help convergence especially in the stochastic context. Coming soon: when the LMO can compute dual prices, then the Frank-Wolfe algorithms will return dual prices for the (approximately) optimal solutions (see [Braun, Pokutta (2021)](https://arxiv.org/abs/2101.02087)). ## Rational arithmetic Example: `examples/approximateCaratheodory.jl` We can solve the approximate Carathéodory problem with rational arithmetic to obtain rational approximations; see [Combettes, Pokutta 2019](https://arxiv.org/abs/1911.04415) for some background about approximate Carathéodory and Conditioanl Gradients. We consider the simple instance of approximating the `0` over the probability simplex here: ```math \min_{x \in \Delta(n)} \|x\|^2 ``` with n = 100. ``` Vanilla Frank-Wolfe Algorithm. EMPHASIS: blas STEPSIZE: rationalshortstep EPSILON: 1.0e-7 max_iteration: 100 TYPE: Rational{BigInt} ─────────────────────────────────────────────────────────────────────────────────── Type Iteration Primal Dual Dual Gap Time ─────────────────────────────────────────────────────────────────────────────────── I 0 1.000000e+00 -1.000000e+00 2.000000e+00 1.540385e-01 FW 10 9.090909e-02 -9.090909e-02 1.818182e-01 2.821186e-01 FW 20 4.761905e-02 -4.761905e-02 9.523810e-02 3.027964e-01 FW 30 3.225806e-02 -3.225806e-02 6.451613e-02 3.100331e-01 FW 40 2.439024e-02 -2.439024e-02 4.878049e-02 3.171654e-01 FW 50 1.960784e-02 -1.960784e-02 3.921569e-02 3.244207e-01 FW 60 1.639344e-02 -1.639344e-02 3.278689e-02 3.326185e-01 FW 70 1.408451e-02 -1.408451e-02 2.816901e-02 3.418239e-01 FW 80 1.234568e-02 -1.234568e-02 2.469136e-02 3.518750e-01 FW 90 1.098901e-02 -1.098901e-02 2.197802e-02 3.620287e-01 Last 1.000000e-02 1.000000e-02 0.000000e+00 4.392171e-01 ─────────────────────────────────────────────────────────────────────────────────── 0.600608 seconds (3.83 M allocations: 111.274 MiB, 12.97% gc time) Output type of solution: Rational{BigInt} ``` The solution returned is rational as we can see and in fact the exactly optimal solution: ``` x = Rational{BigInt}[1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100, 1//100] ``` ## Large-scale problems Example: `examples/large_scale.jl` The package is built to scale well, for those conditional gradients variants that can scale well. For example, Away-Step Frank-Wolfe and Pairwise Conditional Gradients do in most cases _not scale well_ because they need to maintain active sets and maintaining them can be very expensive. Similarly, line search methods might become prohibitive at large sizes. However if we consider scale-friendly variants, e.g., the vanilla Frank-Wolfe algorithm with the agnostic step size rule or short step rule, then these algorithms can scale well to extreme sizes esentially only limited by the amount of memory available. However even for these methods that tend to scale well, allocation of memory itself can be very slow when you need to allocate gigabytes of memory for a single gradient computation. The package is build to support extreme sizes with a special memory efficient emphasis `emphasis=FrankWolfe.memory`, which minimizes expensive memory allocations and performs as many operations in-place as possible. Here is an example of a run with 1e9 variables. Each gradient is around 7.5 GB in size. Here is the output of the run broken down into pieces: ``` Size of single vector (Float64): 7629.39453125 MB Testing f... 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| Time: 0:00:23 Testing grad... 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████| Time: 0:00:23 Testing lmo... 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| Time: 0:00:29 Testing dual gap... 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████| Time: 0:00:46 Testing update... (Emphasis: blas) 100%|███████████████████████████████████████████████████████████████████████████████████████████████| Time: 0:01:35 Testing update... (Emphasis: memory) 100%|█████████████████████████████████████████████████████████████████████████████████████████████| Time: 0:00:58 ────────────────────────────────────────────────────────────────────────── Time Allocations ────────────────────── ─────────────────────── Tot / % measured: 278s / 31.4% 969GiB / 30.8% Section ncalls time %tot avg alloc %tot avg ────────────────────────────────────────────────────────────────────────── update (blas) 10 36.1s 41.3% 3.61s 149GiB 50.0% 14.9GiB lmo 10 18.4s 21.1% 1.84s 0.00B 0.00% 0.00B grad 10 12.8s 14.6% 1.28s 74.5GiB 25.0% 7.45GiB f 10 12.7s 14.5% 1.27s 74.5GiB 25.0% 7.45GiB update (memory) 10 5.00s 5.72% 500ms 0.00B 0.00% 0.00B dual gap 10 2.40s 2.75% 240ms 0.00B 0.00% 0.00B ────────────────────────────────────────────────────────────────────────── ``` The above is the optional benchmarking of the oracles that we provide to understand how fast crucial parts of the algorithms are, mostly notably oracle evaluations, the update of the iterate and the computation of the dual gap. As you can see if you compare `update (blas)` vs. `update (memory)`, the normal update when we use BLAS requires an additional 14.9GB of memory on top of the gradient etc whereas the `update (memory)` (the memory emphasis mode) does not consume any extra memory. This is also reflected in the computational times: the BLAS version requires 3.61 seconds on average to update the iterate, while the memory emphasis version requires only 500ms. In fact none of the crucial components in the algorithm consume any memory when run in memory efficient mode. Now let us look at the actual footprint of the whole algorithm: ``` Vanilla Frank-Wolfe Algorithm. EMPHASIS: memory STEPSIZE: agnostic EPSILON: 1.0e-7 MAXITERATION: 1000 TYPE: Float64 MOMENTUM: nothing GRADIENTTYPE: Nothing WARNING: In memory emphasis mode iterates are written back into x0! ───────────────────────────────────────────────────────────────────────────────────────────────── Type Iteration Primal Dual Dual Gap Time It/sec ───────────────────────────────────────────────────────────────────────────────────────────────── I 0 1.000000e+00 -1.000000e+00 2.000000e+00 8.783523e+00 0.000000e+00 FW 100 1.326732e-02 -1.326733e-02 2.653465e-02 4.635923e+02 2.157068e-01 FW 200 6.650080e-03 -6.650086e-03 1.330017e-02 9.181294e+02 2.178342e-01 FW 300 4.437059e-03 -4.437064e-03 8.874123e-03 1.372615e+03 2.185609e-01 FW 400 3.329174e-03 -3.329180e-03 6.658354e-03 1.827260e+03 2.189070e-01 FW 500 2.664003e-03 -2.664008e-03 5.328011e-03 2.281865e+03 2.191190e-01 FW 600 2.220371e-03 -2.220376e-03 4.440747e-03 2.736387e+03 2.192672e-01 FW 700 1.903401e-03 -1.903406e-03 3.806807e-03 3.190951e+03 2.193703e-01 FW 800 1.665624e-03 -1.665629e-03 3.331253e-03 3.645425e+03 2.194532e-01 FW 900 1.480657e-03 -1.480662e-03 2.961319e-03 4.099931e+03 2.195159e-01 FW 1000 1.332665e-03 -1.332670e-03 2.665335e-03 4.554703e+03 2.195533e-01 Last 1000 1.331334e-03 -1.331339e-03 2.662673e-03 4.559822e+03 2.195261e-01 ───────────────────────────────────────────────────────────────────────────────────────────────── 4560.661203 seconds (7.41 M allocations: 112.121 GiB, 0.01% gc time) ``` As you can see the algorithm ran for about 4600 secs (single-thread run) allocating 112.121 GiB of memory throughout. So how does this average out to the per-iteration cost in terms of memory: `112.121 / 7.45 / 1000 = 0.0151` so about 15.1MiB per iteration which is much less than the size of the gradient and in fact only stems from the reporting here. **NB.** This example highlights also one of the great features of first-order methods and conditional gradients in particular: we have dimension-independent convergence rates. In fact, we contract the primal gap as `2LD^2 / (t+2)` (for the simple agnostic rule) and, e.g., if the feasible region is the probability simplex with `D = sqrt(2)` and the function has bounded Lipschitzness, e.g., the function `|| x - xp ||^2` has `L = 2`, then the convergence rate is completely independent of the input size. The only thing that limits scaling is how much memory you have available and whether you can stomach the (linear) per-iteration cost. ## Iterate and atom expected interface Frank-Wolfe can work on iterate beyond plain vectors, for example with any array-like object. Broadly speaking, the iterate type is assumed to behave as the member of a Hilbert space and optionally be mutable. Assuming the iterate type is `IT`, some methods must be implemented, with their usual semantics: ```julia Base.similar(::IT) Base.similar(::IT, ::Type{T}) Base.collect(::IT) Base.size(::IT) Base.eltype(::IT) Base.copyto!(dest::IT, src::IT) Base.:+(x1::IT, x2::IT) Base.:*(scalar::Real, x::IT) Base.:-(x1::IT, x2::IT) LinearAlgebra.dot(x1::IT, x2::IT) LinearAlgebra.norm(::IT) ``` For methods using an [`FrankWolfe.ActiveSet`](@ref), the atoms or individual extreme points of the feasible region are not necessarily of the same type as the iterate. They are assumed to be immutable, must implement `LinearAlgebra.dot` with a gradient object. See for example [`FrankWolfe.RankOneMatrix`](@ref) or [`FrankWolfe.ScaledHotVector`](@ref). The iterate type `IT` must be a broadcastable mutable object or implement [`FrankWolfe.compute_active_set_iterate!`](@ref): ```julia FrankWolfe.compute_active_set_iterate!(active_set::FrankWolfe.ActiveSet{AT, R, IT}) where {AT, R} ``` which recomputes the iterate from the current convex decomposition and the following methods [`FrankWolfe.active_set_update_scale!`](@ref) and [`FrankWolfe.active_set_update_iterate_pairwise!`](@ref): ```julia FrankWolfe.active_set_update_scale!(x::IT, lambda, atom) FrankWolfe.active_set_update_iterate_pairwise!(x::IT, lambda, fw_atom, away_atom) ``` ## Symmetry reduction Example: `examples/reynolds.jl` Suppose that there is a group $G$ acting on the underlying vector space and such that for all $x\in\mathcal{C}$ and $g\in G$ ```math f(g\cdot x)=f(x)\quad\text{and}\quad g\cdot x\in\mathcal{C}. ``` Then, the computations can be performed in the subspace invariant under $G$. This subspace is the image of the Reynolds operator defined by ```math \mathcal{R}(x)=\frac{1}{|G|}\sum_{g\in G}g\cdot x. ``` In practice, the type `SymmetricLMO` allows the user to provide the Reynolds operator $\mathcal{R}$ as well as its adjoint $\mathcal{R}^\ast$. The gradient is symmetrised with $\mathcal{R}^\ast$, then passed to the non-symmetric LMO, and the resulting output is symmetrised with $\mathcal{R}$. In many cases, the gradient is already symmetric so that `reynolds_adjoint(gradient, lmo) = gradient` is a fast and valid choice.
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
docs
5024
# How does it work? `FrankWolfe.jl` contains generic routines to solve optimization problems of the form ```math \min_{x \in \mathcal{C}} f(x) ``` where $\mathcal{C}$ is a compact convex set and $f$ is a differentiable function. These routines work by solving a sequence of linear subproblems: ```math \min_{x \in \mathcal{C}} \langle d_k, x \rangle \quad \text{where} \quad d_k = \nabla f(x_k) ``` ## Linear Minimization Oracles The Linear Minimization Oracle (LMO) is a key component, which is called at each iteration of the FW algorithm. Given a direction $d$, it returns an optimal vertex of the feasible set: ```math v \in \arg \min_{x\in \mathcal{C}} \langle d,x \rangle. ``` ### Custom LMOs To be used by the algorithms provided here, an LMO must be a subtype of [`FrankWolfe.LinearMinimizationOracle`](@ref) and implement the following method: ```julia compute_extreme_point(lmo::LMO, direction; kwargs...) -> v ``` This method should minimize $v \mapsto \langle d, v \rangle$ over the set $\mathcal{C}$ defined by the LMO. Note that this means the set $\mathcal{C}$ doesn't have to be represented explicitly: all we need is to be able to minimize a linear function over it, even if the minimization procedure is a black box. ### Pre-defined LMOs If you don't want to define your LMO manually, several common implementations are available out-of-the-box: - Simplices: unit simplex, probability simplex - Balls in various norms - Polytopes: K-sparse, Birkhoff You can use an oracle defined via a Linear Programming solver (e.g. `SCIP` or `HiGHS`) with `MathOptInferface`: see [`FrankWolfe.MathOptLMO`](@ref). Finally, we provide wrappers to combine oracles easily, for example in a product. See [Combettes, Pokutta (2021)](https://arxiv.org/abs/2101.10040) for references on most LMOs implemented in the package and their comparison with projection operators. ## Optimization algorithms The package features several variants of Frank-Wolfe that share the same basic API. Most of the algorithms listed below also have a lazified version: see [Braun, Pokutta, Zink (2016)](https://arxiv.org/abs/1610.05120). ### Standard Frank-Wolfe (FW) It is implemented in the [`frank_wolfe`](@ref) function. See [Jaggi (2013)](http://proceedings.mlr.press/v28/jaggi13.html) for an overview. This algorithm works both for convex and non-convex functions (use step size rule `FrankWolfe.Nonconvex()` in the second case). ### Away-step Frank-Wolfe (AFW) It is implemented in the [`away_frank_wolfe`](@ref) function. See [Lacoste-Julien, Jaggi (2015)](https://arxiv.org/abs/1511.05932) for an overview. ### Stochastic Frank-Wolfe (SFW) It is implemented in the [`FrankWolfe.stochastic_frank_wolfe`](@ref) function. ### Blended Conditional Gradients (BCG) It is implemented in the [`blended_conditional_gradient`](@ref) function, with a built-in stability feature that temporarily increases accuracy. See [Braun, Pokutta, Tu, Wright (2018)](https://arxiv.org/abs/1805.07311). ### Pairwise Frank-Wolfe (PFW) It is implemented in the [`pairwise_frank_wolfe`](@ref) function. See [Lacoste-Julien, Jaggi (2015)](https://arxiv.org/abs/1511.05932) for an overview. ### Blended Pairwise Conditional Gradients (BPCG) It is implemented in the [`FrankWolfe.blended_pairwise_conditional_gradient`](@ref) function, with a minor [modification](https://hackmd.io/@spokutta/B14MTMsLF) to improve sparsity. See [Tsuji, Tanaka, Pokutta (2021)](https://arxiv.org/abs/2110.12650) ### Comparison The following table compares the characteristics of the algorithms presented in the package: | Algorithm | Progress/Iteration | Time/Iteration | Sparsity | Numerical Stability | Active Set | Lazifiable | | :-: | :-: | :-: | :-: | :-: | :-: | :-: | | **FW** | Low | Low | Low | High | No | Yes | | **AFW** | Medium | Medium-High | Medium | Medium-High | Yes | Yes | | **B(P)CG** | High | Medium-High | High | Medium | Yes | By design | | **SFW** | Low | Low | Low | High | No | No | While the standard Frank-Wolfe algorithm can only move _towards_ extreme points of the compact convex set $\mathcal{C}$, Away-step Frank-Wolfe can move _away_ from them. The following figure from our paper illustrates this behaviour: ![FW vs AFW](./fw_vs_afw.PNG). Both algorithms minimize a quadratic function (whose contour lines are depicted) over a simple polytope (the black square). When the minimizer lies on a face, the standard Frank-Wolfe algorithm zig-zags towards the solution, while its Away-step variant converges more quickly. ### Block-Coordinate Frank-Wolfe (BCFW) It is implemented in the [`FrankWolfe.block_coordinate_frank_wolfe`](@ref) function. See [Lacoste-Julien, Jaggi, Schmidt, Pletscher (2013)](https://arxiv.org/abs/1207.4747) and [Beck, Pauwels, Sabach (2015)](https://arxiv.org/abs/1502.03716) for more details about different variants of Block-Coordinate Frank-Wolfe. ### Alternating Linear Minimization (ALM) It is implemented in the [`FrankWolfe.alternating_linear_minimization`](@ref) function.
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
docs
105
# API Reference The pages in this section reference the documentation for specific types and functions.
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
docs
1594
# Algorithms This section contains all main algorithms of the package. These are the ones typical users will call. The typical signature for these algorithms is: ```julia my_algorithm(f, grad!, lmo, x0) ``` ## Standard algorithms ```@autodocs Modules = [FrankWolfe] Pages = ["fw_algorithms.jl"] ``` ```@docs FrankWolfe.block_coordinate_frank_wolfe ``` ## Active-set based methods The following algorithms maintain the representation of the iterates as a convex combination of vertices. ### Away-step ```@autodocs Modules = [FrankWolfe] Pages = ["afw.jl"] ``` ### Pairwise Frank-Wolfe ```@autodocs Modules = [FrankWolfe] Pages = ["pairwise.jl"] ``` ### Blended Conditional Gradient ```@autodocs Modules = [FrankWolfe] Pages = ["blended_cg.jl"] ``` ### Blended Pairwise Conditional Gradient ```@autodocs Modules = [FrankWolfe] Pages = ["blended_pairwise.jl"] ``` ## Alternating Methods Problems over intersections of convex sets, i.e. ```math \min_{x \in \bigcap_{i=1}^n P_i} f(x), ``` pose a challenge as one has to combine the information of two or more LMOs. [`FrankWolfe.alternating_linear_minimization`](@ref) converts the problem into a series of subproblems over single sets. To find a point within the intersection, one minimizes both the distance to the iterates of the other subproblems and the original objective function. [`FrankWolfe.alternating_projections`](@ref) solves feasibility problems over intersections of feasible regions. ```@autodocs Modules = [FrankWolfe] Pages = ["alternating_methods.jl"] ``` ## Index ```@index Pages = ["2_algorithms.md"] ```
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
docs
1282
# Linear Minimization Oracles The Linear Minimization Oracle (LMO) is a key component called at each iteration of the FW algorithm. Given ``d\in \mathcal{X}``, it returns a vertex of the feasible set: ```math v\in \argmin_{x\in \mathcal{C}} \langle d,x \rangle. ``` See [Combettes, Pokutta 2021](https://arxiv.org/abs/2101.10040) for references on most LMOs implemented in the package and their comparison with projection operators. ## Interface and wrappers ```@docs FrankWolfe.LinearMinimizationOracle ``` All of them are subtypes of [`FrankWolfe.LinearMinimizationOracle`](@ref) and implement the following method: ```@docs compute_extreme_point ``` We also provide some meta-LMOs wrapping another one with extended behavior: ```@docs FrankWolfe.CachedLinearMinimizationOracle FrankWolfe.ProductLMO FrankWolfe.SingleLastCachedLMO FrankWolfe.MultiCacheLMO FrankWolfe.VectorCacheLMO ``` ## Norm balls ```@autodocs Modules = [FrankWolfe] Pages = ["norm_oracles.jl"] ``` ## Simplex ```@autodocs Modules = [FrankWolfe] Pages = ["simplex_oracles.jl"] ``` ## Polytope ```@autodocs Modules = [FrankWolfe] Pages = ["polytope_oracles.jl"] ``` ## MathOptInterface ```@autodocs Modules = [FrankWolfe] Pages = ["moi_oracle.jl"] ``` ## Index ```@index Pages = ["1_lmo.md"] ```
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
docs
2131
# Utilities and data structures ## Active set ```@autodocs Modules = [FrankWolfe] Pages = ["active_set.jl"] ``` ## Functions and gradients ```@autodocs Modules = [FrankWolfe] Pages = ["function_gradient.jl"] ``` ## Callbacks ```@docs FrankWolfe.CallbackState ``` ## Custom vertex storage ## Custom extreme point types For some feasible sets, the extreme points of the feasible set returned by the LMO possess a specific structure that can be represented in an efficient manner both for storage and for common operations like scaling and addition with an iterate. They are presented below: ```@docs FrankWolfe.ScaledHotVector FrankWolfe.RankOneMatrix ``` ```@autodocs Modules = [FrankWolfe] Pages = ["types.jl"] ``` ## Utils ```@autodocs Modules = [FrankWolfe] Pages = ["utils.jl"] ``` ## Oracle counting trackers The following structures are wrapping given oracles to behave similarly but additionally track the number of calls. ```@docs FrankWolfe.TrackingObjective FrankWolfe.TrackingGradient FrankWolfe.TrackingLMO ``` Also see the example [Tracking, counters and custom callbacks for Frank Wolfe](@ref). ## Update order for block-coordinate methods Block-coordinate methods can be run with different update orders. All update orders are subtypes of [`FrankWolfe.BlockCoordinateUpdateOrder`](@ref). They have to implement the method [`FrankWolfe.select_update_indices`](@ref) which selects which blocks to update in what order. ```@docs FrankWolfe.BlockCoordinateUpdateOrder FrankWolfe.select_update_indices FrankWolfe.FullUpdate FrankWolfe.CyclicUpdate FrankWolfe.StochasticUpdate ``` ## Update step for block-coordinate Frank-Wolfe Block-coordinate Frank-Wolfe (BCFW) can run different FW algorithms on different blocks. All update steps are subtypes of [`FrankWolfe.UpdateStep`](@ref) and implement [`FrankWolfe.update_iterate`](@ref) which defines one iteration of the corresponding method. ```@docs FrankWolfe.UpdateStep FrankWolfe.update_iterate FrankWolfe.FrankWolfeStep FrankWolfe.BPCGStep ``` ## Block vector ```@docs FrankWolfe.BlockVector ``` ## Index ```@index Pages = ["3_backend.md"] ```
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
0.4.1
6efeb9baf0fbec3f91d1cb985b8a7eb4151c446f
docs
1585
# Line search and step size settings The step size dictates how far one traverses along a local descent direction. More specifically, the step size $\gamma_t$ is used at each iteration to determine how much the next iterate moves towards the new vertex: ```math x_{t+1} = x_t - \gamma_t (x_t - v_t). ``` ``\gamma_t = 1`` implies that the next iterate is exactly the vertex, a zero $\gamma_t$ implies that the iterate is not moving. The following are step size selection rules for Frank Wolfe algorithms. Some methodologies (e.g. `FixedStep` and `Agnostic`) depend only on the iteration number and induce series $\gamma_t$ that are independent of the problem data, while others (e.g. `GoldenSearch` and `Adaptive`) change according to local information about the function; the adaptive methods often require extra function and/or gradient computations. The typical options for convex optimization are `Agnostic` or `Adaptive`. All step size computation strategies are subtypes of [`FrankWolfe.LineSearchMethod`](@ref). The key method they have to implement is [`FrankWolfe.perform_line_search`](@ref) which is called at every iteration to compute the step size gamma. ```@docs FrankWolfe.LineSearchMethod FrankWolfe.perform_line_search ``` ```@autodocs Modules = [FrankWolfe] Pages = ["linesearch.jl"] ``` See [Pedregosa, Negiar, Askari, Jaggi (2020)](https://arxiv.org/abs/1806.05123) for the adaptive step size, [Carderera, Besançon, Pokutta (2021)](https://openreview.net/forum?id=rq_UD6IiBpX) for the monotonic step size. ## Index ```@index Pages = ["4_linesearch.md"] ```
FrankWolfe
https://github.com/ZIB-IOL/FrankWolfe.jl.git
[ "MIT" ]
1.1.0
a54a7925b96f109de91094ef83e2ebd3f72a593a
code
12684
module WoodburyFactorizations using LinearAlgebra using LinearAlgebra: checksquare include("util.jl") # IDEA: can optimize threshold constant c which makes Woodbury Identity computationally advantageous over direct factorization using LazyInverses const AbstractMatOrFac{T} = Union{AbstractMatrix{T}, Factorization{T}} const DTYPE = Float64 # default data type export Woodbury, WoodburyFactorization # represents A + αUCV # things that prevent C from being a scalar: checkdims, factorize, ... # the α is beneficial to preserve p.s.d.-ness during inversion (see inverse) struct WoodburyFactorization{T, AT, UT, CT, VT, F, L, TT} <: Factorization{T} A::AT U::UT C::CT V::VT α::F # scalar, TODO: test if not ±1 logabsdet::L temporaries::TT end const Woodbury = WoodburyFactorization function Woodbury(A::AbstractMatOrFac, U::AbstractMatOrFac, C::AbstractMatOrFac, V::AbstractMatOrFac, α::Real = 1, logabsdet::Union{NTuple{2, Real}, Nothing} = nothing, temporaries = allocate_temporaries(U, V); check::Bool = true) (α == 1 || α == -1) || throw(DomainError("α ≠ ±1 not yet tested: α = $α")) check && checkdims(A, U, C, V) T = promote_type(typeof(α), eltype.((A, U, C, V))...) # check promote_type F = typeof(α) AT, UT, CT, VT, LT = typeof.((A, U, C, V, logabsdet)) TT = typeof(temporaries) Woodbury{T, AT, UT, CT, VT, F, LT, TT}(A, U, C, V, α, logabsdet, temporaries) end function Woodbury(A::AbstractMatOrFac, U::AbstractVector, C::Real, V::Adjoint{<:Any, <:AbstractVector}, α::Real = 1, logabsdet::Union{NTuple{2, Real}, Nothing} = nothing, temporaries = allocate_temporaries(U, V); check::Bool = true) (α == 1 || α == -1) || throw(DomainError("α ≠ ±1 not yet tested: α = $α")) check && checkdims(A, U, C, V) T = promote_type(typeof(α), eltype.((A, U, C, V))...) # check promote_type F = typeof(α) AT, UT, CT, VT, LT = typeof.((A, U, C, V, logabsdet)) TT = typeof(temporaries) Woodbury{T, AT, UT, CT, VT, F, LT, TT}(A, U, C, V, α, logabsdet, temporaries) end const RankOneCorrection = Woodbury{<:Any, <:Any, <:AbstractVector, <:Any, <:Adjoint{<:Any, <:AbstractVector}} # casts all inputs to an equivalent Matrix matrix(x::Real) = fill(x, (1, 1)) # could in principle extend Matrix matrix(x::AbstractVector) = reshape(x, (:, 1)) matrix(x::Adjoint{<:Any, <:AbstractVector}) = reshape(x, (1, :)) matrix(x::AbstractMatOrFac) = x function Woodbury(A, U, C, V, α::Real = 1, abslogdet = nothing) Woodbury(matrix.((A, U, C, V))..., α, abslogdet) end # low rank correction # NOTE: cannot rid of type restriction on A without introducing ambiguities function Woodbury(A::AbstractMatOrFac, U::AbstractVector, V::Adjoint = U', α::Real = 1, logabsdet = nothing) T = eltype(A) Woodbury(A, U, one(T), V, α, logabsdet) end function Woodbury(A::AbstractMatOrFac, U::AbstractMatrix, V::AbstractMatrix = U', α::Real = 1, logabsdet = nothing) T = eltype(A) Woodbury(A, U, (one(T)*I)(size(U, 2)), V, α, logabsdet) end # function Woodbury(A, L::LowRank, α::Real = 1, logabsdet = nothing) # Woodbury(A, L.U, 1.0I(size(L.U, 2)), L.V, α, logabsdet) # end function Woodbury(A, C::CholeskyPivoted, α::Real = 1, logabsdet = nothing) U = C.U[1:C.rank, invperm(C.p)] Woodbury(A, U', U, α, logabsdet) end LinearAlgebra.checksquare(::Number) = 1 # since size(::Number, ::Int) = 1 # checks if the dimensions of A, U, C, V are consistent to form a Woodbury factorization function checkdims(A, U, C, V) n, m = A isa Number ? (1, 1) : size(A) k, l = C isa Number ? (1, 1) : size(C) s = "is inconsistent with A ($(size(A))) and C ($(size(C)))" !(size(U, 1) == n && size(U, 2) == k) && throw(DimensionMismatch("Size of U ($(size(U))) "*s)) !(size(V, 1) == l && size(V, 2) == m) && throw(DimensionMismatch("Size of V ($(size(V))) "*s)) return true end # pseudo-constructor? # c is used to set threshold for conversion to Matrix function woodbury(A, U, C, V, α = 1, c::Real = 1) W = Woodbury(A, U, C, V, α) # only return Woodbury if it is efficient if size(W.C, 1) ≥ c * size(W.U, 1) || size(W.C, 2) ≥ c * size(W.V, 2) W = Matrix(W) end return W end ################################## Base ######################################## Base.size(W::Woodbury) = size(W.A) Base.size(W::Woodbury, d) = size(W.A, d) Base.eltype(W::Woodbury{T}) where {T} = T function Base.AbstractMatrix(W::Woodbury) Matrix(W.A) + W.α * *(W.U, W.C, W.V) end Base.Matrix(W::Woodbury) = AbstractMatrix(W) function Base.copy(W::Woodbury) U = copy(W.U) V = W.U ≡ W.V' ? U' : copy(W.V) t = tuple(copy.(W.temporaries)...) Woodbury(copy(W.A), U, copy(W.C), V, W.α, W.logabsdet, t) end function Base.deepcopy(W::Woodbury) U = deepcopy(W.U) V = W.U ≡ W.V' ? U' : deepcopy(W.V) t = tuple(deepcopy.(W.temporaries)...) Woodbury(deepcopy(W.A), U, deepcopy(W.C), V, W.α, W.logabsdet, t) end Base.inv(W::Woodbury) = inv(factorize(W)) function Base.isequal(W1::Woodbury, W2::Woodbury) W1.A == W2.A && W1.U == W2.U && W1.C == W2.C && W1.V == W2.V && W1.α == W2.α end # sufficient but not necessary condition, useful for quick check _ishermitian(A::Union{Real, AbstractMatOrFac}) = ishermitian(A) function _ishermitian(W::Woodbury) try (W.U ≡ W.V' || W.U == W.V') && _ishermitian(W.A) && _ishermitian(W.C) catch e return false end end # if efficiently-verifiable sufficient condition fails, check matrix LinearAlgebra.ishermitian(W::Woodbury) = _ishermitian(W) || ishermitian(Matrix(W)) LinearAlgebra.issymmetric(W::Woodbury) = eltype(W) <: Real && ishermitian(W) function LinearAlgebra.isposdef(W::Woodbury) W.logabsdet isa Nothing ? isposdef(factorize(W)) : (W.logabsdet[2] > 0) end function LinearAlgebra.adjoint(W::Woodbury) ishermitian(W) ? W : Woodbury(W.A', W.V', W.C', W.U', W.α, W.logabsdet) end function LinearAlgebra.transpose(W::Woodbury) issymmetric(W) ? W : Woodbury(transpose.((W.A, W.V, W.C, W.U))..., W.α, W.logabsdet) end # indexed by two integers returns scalar function Base.getindex(W::Woodbury, i, j) Ui = i isa Integer ? W.U[i, :]' : W.U[i, :] W.A[i, j] + W.α * *(Ui, W.C, W.V[:, j]) end # indexed by two vectors other, returns woodbury function Base.getindex(W::Woodbury, i::AbstractVector, j::AbstractVector) A = W.A[i, j] U = W.U[i, :] V = W.U ≡ W.V' && i == j ? U' : W.V[:, j] return Woodbury(A, U, W.C, V, W.α, nothing) end # WARNING: result of view references existing temporaries and is therefore not thread-safe function Base.view(W::Woodbury, i, j) A = view(W.A, i, j) U = view(W.U, i, :) V = W.U ≡ W.V' && i == j ? U' : view(W.V, :, j) return Woodbury(A, U, W.C, V, W.α, nothing, W.temporaries) end function LinearAlgebra.tr(W::Woodbury) n = checksquare(W) trace_UCV = zero(eltype(W)) for i in 1:n ui = @view W.U[i, :] vi = @view W.V[:, i] trace_UCV += dot(ui, W.C, vi) end return tr(W.A) + W.α * trace_UCV end ######################## Linear Algebra primitives ############################# # IDEA: have efficient methods of hermitian WoodburyFactorization Base.:*(a::Number, W::Woodbury) = Woodbury(a * W.A, W.U, a * W.C, W.V, W.α) # IDEA: could take over logabsdet efficiently Base.:*(W::Woodbury, a::Number) = a * W Base.:\(a::Number, W::Woodbury) = W / a # IDEA: could take over logabsdet efficiently Base.:/(W::Woodbury, a::Number) = Woodbury(W.A / a, W.U, W.C / a, W.V, W.α) Base.:*(W::Woodbury, x::AbstractVecOrMat) = mul!(zero(x), W, x) Base.:*(B::AbstractMatrix, W::Woodbury) = adjoint(W'*B') function LinearAlgebra.mul!(y::AbstractVector, W::Woodbury, x::AbstractVector, α::Real = 1, β::Real = 0) s, t = get_temporaries(W, x) mul!!(y, W, x, α, β, s, t) end function LinearAlgebra.mul!(y::AbstractMatrix, W::Woodbury, x::AbstractMatrix, α::Real = 1, β::Real = 0) s, t = get_temporaries(W, x) mul!!(y, W, x, α, β, s, t) # Pre-allocate! end # allocates s, t arrays for multiplication if not pre-allocated in W function allocate_temporaries(W::Woodbury, T::DataType = eltype(W)) allocate_temporaries(W.U, W.V, T) end function allocate_temporaries(W::Woodbury, n::Int, T::DataType = eltype(W)) allocate_temporaries(W.U, W.V, n, T) end function allocate_temporaries(U, V, T::DataType = promote_type(eltype(U), eltype(V))) allocate_temporaries(size(U, 2), size(V, 1), T) end function allocate_temporaries(U, V, n::Int, T::DataType = promote_type(eltype(U), eltype(V))) allocate_temporaries(size(U, 2), size(V, 1), n, T) end function allocate_temporaries(nu::Int, nv::Int, T::DataType = DTYPE) s = zeros(T, nv) t = zeros(T, nu) return s, t end function allocate_temporaries(nu::Int, nv::Int, n::Int, T::DataType = DTYPE) s = zeros(T, nv, n) t = zeros(T, nv, n) return s, t end function get_temporaries(W::Woodbury, x::AbstractVector) T = promote_type(eltype(x), eltype(W)) W.temporaries isa Tuple{<:AbstractVector{T}} ? W.temporaries : allocate_temporaries(W, eltype(x)) end function get_temporaries(W::Woodbury, X::AbstractMatrix) T = promote_type(eltype(X), eltype(W)) W.temporaries isa Tuple{<:AbstractMatrix{T}} ? W.temporaries : allocate_temporaries(W, size(X, 2), eltype(X)) end function mul!!(y::AbstractVecOrMat, W::Woodbury, x::AbstractVecOrMat, α::Real, β::Real, s, t) mul!(s, W.V, x) mul!(t, W.C, s) mul!(y, W.U, t, α * W.α, β) mul!(y, W.A, x, α, 1) # this allocates if D is diagonal due to broadcasting mechanism end # special case: rank one correction does not need additional temporaries for MVM function LinearAlgebra.mul!(y::AbstractVector, W::RankOneCorrection, x::AbstractVector, α::Real = 1, β::Real = 0) s = dot(W.V', x) t = W.C * s @. y = (α * W.α) * W.U * t + β * y mul!(y, W.A, x, α, 1) end # ternary dot function LinearAlgebra.dot(x::AbstractVecOrMat, W::Woodbury, y::AbstractVector) Ux = W.U'x # memory allocation can be avoided (with lazy arrays?) Vy = (x ≡ y && W.U ≡ W.V') ? Ux : W.V*y dot(x, W.A, y) + W.α * dot(Ux, W.C, Vy) end # ternary mul function Base.:*(x::AbstractMatrix, W::Woodbury, y::AbstractVecOrMat) xU = x*W.U Vy = (x ≡ y' && W.U ≡ W.V') ? xU' : W.V*y *(x, W.A, y) + W.α * *(xU, W.C, Vy) # can avoid two temporaries end Base.:(\)(W::Woodbury, B::AbstractVector) = factorize(W)\B Base.:(\)(W::Woodbury, B::AbstractMatrix) = factorize(W)\B Base.:(/)(B::AbstractMatrix, W::Woodbury) = B/factorize(W) function LinearAlgebra.diag(W::Woodbury) n = checksquare(W) d = zeros(eltype(W), n) for i in 1:n d[i] = W[i, i] end return d end ########################## Matrix inversion lemma ############################## # figure out constant c for which woodbury is most efficient # could implement this in WoodburyMatrices and PR function LinearAlgebra.factorize(W::Woodbury, c::Real = 1, compute_logdet::Val{T} = Val(true)) where T checksquare(W) if size(W.U, 1) < c*size(W.U, 2) return factorize(AbstractMatrix(W)) else # only use Woodbury identity when it is beneficial to do so A = factorize(W.A) A⁻¹ = inverse(A) A⁻¹U = A⁻¹ * W.U VA⁻¹ = (W.U ≡ W.V' && ishermitian(A⁻¹)) ? A⁻¹U' : W.V * A⁻¹ D = factorize_D(W, W.V*A⁻¹U) if T l, s = _logabsdet(A, W.C, D, W.α) W_logabsdet = (-l, s) # -l since the result is packaged in an inverse else W_logabsdet = nothing end α = -W.α # switch sign return inverse(Woodbury(A⁻¹, A⁻¹U, inverse(D), VA⁻¹, α, W_logabsdet)) end end ##################### conveniences for D = C⁻¹ ± V*A⁻¹*U ######################## compute_D(W::Woodbury) = compute_D!(W, *(W.V, inverse(W.A), W.U)) function compute_D!(W::Woodbury, VAU) invC = inv(W.C) # because we need the dense inverse matrix @. VAU = invC + W.α * VAU # could be made more efficient with 5 arg mul end compute_D!(W::Woodbury, VAU::Real) = inv(W.C) + W.α * VAU factorize_D(W::Woodbury) = factorize_D(W, *(W.V, inverse(W.A), W.U)) function factorize_D(W::Woodbury, VAU) D = compute_D!(W, VAU) if size(D) == (1, 1) return D elseif _ishermitian(W) try return cholesky(Hermitian(D)) catch end end return factorize(D) end ######################## Matrix determinant lemma ############################## # if W.A = W.C = I, this is Sylvesters determinant theorem # Determinant lemma for A + α*(UCV) function LinearAlgebra.det(W::Woodbury) l, s = logabsdet(W) exp(l) * s end function LinearAlgebra.logdet(W::Woodbury) l, s = logabsdet(W) return s > 0 ? l : throw(DomainError("determinant negative: $(exp(l) * s)")) end function LinearAlgebra.logabsdet(W::Woodbury) W.logabsdet == nothing ? logabsdet(factorize(W)) : W.logabsdet end function _logabsdet(A, C, D, α::Real) n, m = checksquare(A), checksquare(D) la, sa = logabsdet(A) lc, sc = logabsdet(C) ld, sd = logabsdet(D) sα = (α == -1) && isodd(m) ? -1 : 1 return +(la, lc, ld), *(sa, sc, sd, sα) end end # WoodburyFactorizations
WoodburyFactorizations
https://github.com/SebastianAment/WoodburyFactorizations.jl.git
[ "MIT" ]
1.1.0
a54a7925b96f109de91094ef83e2ebd3f72a593a
code
477
function Base.Matrix(F::BunchKaufman) U = F.U[:, F.ipiv] *(U, F.D, U') end Base.AbstractMatrix(F::BunchKaufman) = Matrix(F) function LinearAlgebra.rdiv!(X::AbstractMatrix, F::BunchKaufman) # ldiv!(F, X')' # doesn't work since X' does not count as strided vector (requirement for ldiv!) X .= adjoint(F \ X') end LinearAlgebra.logdet(B::Bidiagonal) = logabsdet(B)[1] function LinearAlgebra.logabsdet(B::Bidiagonal) d = @view B[diagind(B)] D = Diagonal(d) logabsdet(D) end
WoodburyFactorizations
https://github.com/SebastianAment/WoodburyFactorizations.jl.git
[ "MIT" ]
1.1.0
a54a7925b96f109de91094ef83e2ebd3f72a593a
code
1936
module WoodburyBenchmarks using LinearAlgebra using BenchmarkTools using WoodburyFactorizations using WoodburyFactorizations: Woodbury # TODO: benchmark factorize against factorize without logdet computation # TODO: figure out parameter c in WoodburyFactorizations, which # TODO: benchmark pre-allocated solve, mul! function judge_allocated_multiply(n = 64, m = 3) suite = BenchmarkGroup() U = randn(n, m) W = Woodbury(I(n), U, I(m), U') # factorization x = randn(n) F = factorize(W) # suite["solve"] = @benchmarkable $F \ $x suite["multiply"] = @benchmarkable $W * $x # suite["ternary dot"] = @benchmarkable dot($x, $W, $x) return suite end # controls when the Woodbury representation is more efficient than dense function woodbury(n = 64, m = 3) suite = BenchmarkGroup() U = randn(n, m) W = Woodbury(I(n), U, I(m), U') # factorization suite["factorize"] = @benchmarkable factorize($W) x = randn(n) F = factorize(W) suite["solve"] = @benchmarkable $F \ $x suite["multiply"] = @benchmarkable $W * $x suite["ternary dot"] = @benchmarkable dot($x, $W, $x) suite["logdet"] = @benchmarkable logdet($W) return suite end ######## to compare function dense(n = 64, m = 3) suite = BenchmarkGroup() U = randn(n, m) W = Woodbury(I(n), U, I(m), U') MW = Matrix(W) suite["factorize"] = @benchmarkable factorize($MW) MWF = factorize(MW) x = randn(n) suite["solve"] = @benchmarkable $MWF \ $x suite["multiply"] = @benchmarkable $MW * $x suite["ternary dot"] = @benchmarkable dot($x, $MW, $x) suite["logdet"] = @benchmarkable logdet($MW) return suite end # comparing Woodbury identity to dense matrix algebra function wood_vs_dense(n = 64, m = 3) wsuite = woodbury(n, m) wr = run(wsuite) dsuite = dense(n, m) dr = run(dsuite) judge(minimum(wr), minimum(dr)) end end # WoodburyBenchmarks
WoodburyFactorizations
https://github.com/SebastianAment/WoodburyFactorizations.jl.git
[ "MIT" ]
1.1.0
a54a7925b96f109de91094ef83e2ebd3f72a593a
code
5267
module TestWoodburyFactorizations using WoodburyFactorizations using LazyInverses using LinearAlgebra using Test function getW(n, m; diagonal = true, symmetric = false) A = diagonal ? Diagonal(exp.(.1randn(n))) + I(n) : randn(n, n) A = symmetric && !diagonal ? A'A : A U = randn(n, m) C = diagonal ? Diagonal(exp.(.1randn(m))) + I(m) : randn(m, m) C = symmetric && !diagonal ? C'C : C V = symmetric ? U' : randn(m, n) W = Woodbury(A, U, C, V) end Base.AbstractMatrix(F::BunchKaufman) = Symmetric(Matrix(F)) @testset "Woodbury" begin n = 5 m = 2 W = getW(n, m, symmetric = true) MW = Matrix(W) @test size(W) == (n, n) x = randn(size(W, 2)) # multiplication @test W*x ≈ MW*x @test x'W ≈ x'MW @test dot(x, W, x) ≈ dot(x, MW*x) X = randn(size(W, 2), 3) @test W*X ≈ MW*X @test X'*W ≈ X'*MW @test W == copy(W) # testing isequal and copy @test W == deepcopy(W) # testing isequal and deepcopy # in-place multiplication y = randn(size(W, 1)) # with vector α, β = randn(2) b = α*(W*x) + β*y mul!(y, W, x, α, β) @test y ≈ b Y = randn(size(W, 1), size(X, 2)) # with matrix α, β = randn(2) B = α*(W*X) + β*Y mul!(Y, W, X, α, β) @test Y ≈ B @test α*W isa Woodbury @test Matrix(α * W) ≈ α * Matrix(W) # with scalar @test Matrix(W * α) ≈ Matrix(W) * α # with scalar @test Matrix(W / α) ≈ Matrix(W) / α # with scalar @test Matrix(α \ W) ≈ α \ Matrix(W) # with scalar @test logdet(abs(α)*W) ≈ logdet(abs(α)*Matrix(W)) # checking that logdet works correctly @test eltype(W) == Float64 @test issymmetric(W) @test ishermitian(W) # @test ishermitian(MW) # @test ishermitian(Woodbury(W.A, W.U, W.C, copy(W.U)')) # testing edge case @test !issymmetric(getW(n, m)) @test !ishermitian(getW(n, m)) # test solves @test W\(W*x) ≈ x @test (x'*W)/W ≈ x' # factorization n = 1024 m = 3 W = getW(n, m, symmetric = true) MW = Matrix(W) F = factorize(W) @test F isa Inverse x = randn(n) @test W \ x ≈ F \ x @test MW \ x ≈ F \ x n = 4 m = 3 W = getW(n, m, symmetric = true) MW = Matrix(W) ## determinant @test det(W) ≈ det(MW) @test logdet(W) ≈ logdet(MW) @test logabsdet(W)[1] ≈ logabsdet(MW)[1] @test logabsdet(W)[2] ≈ logabsdet(MW)[2] @test det(inverse(W)) ≈ det(Inverse(W)) @test det(inverse(W)) ≈ det(inv(MW)) @test logdet(inverse(W)) ≈ logdet(Inverse(W)) @test logdet(inverse(W)) ≈ logdet(inv(MW)) @test all(logabsdet(inverse(W)) .≈ logabsdet(Inverse(W))) @test all(logabsdet(inverse(W)) .≈ logabsdet(inv(MW))) # indexing for i in 1:n, j in 1:n @test W[i, j] ≈ MW[i, j] end i = 1:2 j = 3:3 Wij = W[i, j] @test Wij isa Woodbury @test Wij[1, 1] == W[1, 3] Wij = @view W[i, j] @test Wij isa Woodbury @test Wij.U isa SubArray # trace @test tr(W) ≈ tr(MW) # factorize F = factorize(W) @test Matrix(inverse(F)) ≈ inv(MW) @test inv(W) ≈ inv(MW) @test logdet(F) ≈ logdet(MW) @test isposdef(F) # factorize and logdet after factorization F = factorize(W) @test logabsdet(F)[1] ≈ logabsdet(MW)[1] @test logabsdet(F)[2] ≈ logabsdet(MW)[2] @test logdet(F) ≈ logdet(MW) @test Matrix(inverse(F)) ≈ inv(MW) # test recursive stacking of woodbury objects b = randn(n, 1) W2 = Woodbury(W, b, ones(1, 1), b') F2 = factorize(W2) M2 = Matrix(W2) @test logdet(W2) ≈ logdet(M2) @test logdet(F2) ≈ logdet(M2) # test factorize_D behavior on non-hermitian 1x1 matrix using WoodburyFactorizations: factorize_D FD = factorize_D(W2, fill(-rand(), (1, 1))) @test FD isa Matrix @test size(FD) == (1, 1) # test rank 1 constructor x = randn(n) A = Diagonal(2 .+ exp.(randn(n))) u = randn(n) W = Woodbury(A, u) @test Matrix(W) ≈ A + u*u' b = W*x @test W \ b ≈ x v = randn(n) W = Woodbury(A, u, v') @test Matrix(W) ≈ A + u*v' b = W*x @test W \ b ≈ x # LowRank constructor U = randn(n, 1) W = Woodbury(I(n), U, U') # CholeskyPivoted constructor A = randn(1, n) A = A'A C = cholesky(A, RowMaximum(), check = false) W = Woodbury(A, C) @test W isa Woodbury @test Matrix(W) ≈ 2A # tests with α = - W = Woodbury(I(n), C, -1) # display(W) @test Matrix(W) ≈ I(n) - A @test inv(W) ≈ inv(I(n) - A) FW = factorize(W) @test FW isa Inverse @test Matrix(FW) ≈ I(n) - A @test Matrix(inverse(FW)) ≈ inv(I(n) - A) MW = I(n) - A # indexing for i in 1:n, j in 1:n @test W[i, j] ≈ MW[i, j] end @test tr(W) ≈ tr(MW) @test diag(W) ≈ diag(MW) # Woodbury structure with 1d outer dimension a, b, c, d = randn(4) W = Woodbury(a, b, c, d) MW = Matrix(W) @test size(MW) == (1, 1) @test MW[1, 1] ≈ a + *(b, c, d) a = randn() B = randn(1, n) C = randn(n, n) D = randn(n, 1) W = Woodbury(a, B, C, D) MW = Matrix(W) @test size(MW) == (1, 1) @test MW[1, 1] ≈ a + dot(B, C, D) @test inv(W) isa Real @test factorize(W) isa Real end end # TestWoodburyFactorizations
WoodburyFactorizations
https://github.com/SebastianAment/WoodburyFactorizations.jl.git
[ "MIT" ]
1.1.0
a54a7925b96f109de91094ef83e2ebd3f72a593a
code
39
include("./WoodburyFactorizations.jl")
WoodburyFactorizations
https://github.com/SebastianAment/WoodburyFactorizations.jl.git
[ "MIT" ]
1.1.0
a54a7925b96f109de91094ef83e2ebd3f72a593a
docs
405
# WoodburyFactorizations.jl [![CI](https://github.com/SebastianAment/WoodburyFactorizations.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/SebastianAment/WoodburyFactorizations.jl/actions/workflows/CI.yml) [![codecov](https://codecov.io/gh/SebastianAment/WoodburyFactorizations.jl/branch/main/graph/badge.svg?token=gKQ09zmRwH)](https://codecov.io/gh/SebastianAment/WoodburyFactorizations.jl)
WoodburyFactorizations
https://github.com/SebastianAment/WoodburyFactorizations.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
855
using Documenter, WiNDC, GamsStructure, PATHSolver const _PAGES = [ "Introduction" => ["index.md"], "Data" => ["data/core.md"], "Core Module" => ["core/overview.md","core/national_model.md","core/national_set_list.md","core/state_model.md","core/set_listing.md"] ] makedocs( sitename="WiNDC.jl", authors="WiNDC", #format = Documenter.HTML( # # See https://github.com/JuliaDocs/Documenter.jl/issues/868 # prettyurls = get(ENV, "CI", nothing) == "true", # analytics = "UA-44252521-1", # collapselevel = 1, # assets = ["assets/extra_styles.css"], # sidebar_sitename = false, #), #strict = true, pages = _PAGES ) deploydocs( repo = "https://github.com/uw-windc/WiNDC.jl", target = "build", branch = "gh-pages", versions = ["stable" => "v^", "v#.#" ], )
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
923
module WiNDC using JuMP using PATHSolver using Ipopt using GamsStructure using CSV using XLSX using DataFrames using HTTP using JSON export generate_report export national_model_mcp, national_model_mcp_year, state_disaggregation_model_mcp,state_disaggregation_model_mcp_year export load_national_data,load_state_data include("helper_functions.jl") include("data/notations.jl") include("data/core/bea_api/bea_api.jl") #Models include("core/nationalmodel.jl") include("core/state_disaggregation_model.jl") #Data include("data/core/core_data_defines.jl") include("data/core/bea_io/PartitionBEA.jl") include("data/core/bea_gsp/bea_gsp.jl") include("data/core/bea_pce/bea_pce.jl") include("data/core/census_sgf/census_sgf.jl") include("data/core/faf/faf.jl") include("data/core/usa_trade/usa_trade.jl") include("data/core/state_disaggregation.jl") include("data/core/core_data.jl") end # module WiNDC
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
646
extract_variable_ref(v::NonlinearExpr) = v.args[1] extract_variable_ref(v::AffExpr) = collect(keys(v.terms))[1] extract_variable_ref(v::QuadExpr) = extract_variable_ref(v.aff) function generate_report(m::JuMP.Model) out = [] #mapping = Dict() for ci in all_constraints(m; include_variable_in_set_constraints = false) c = constraint_object(ci) var = extract_variable_ref(c.func[2]) val = value(var) margin = value(c.func[1]) push!(out,(var,val,margin)) #mapping[extract_variable_ref(c.func[2])] = c.func[1] end df = DataFrame(out,[:var,:value,:margin]) return df end
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
8968
m = Model(PATHSolver.Optimizer) @variables(m,begin # $sectors: Y[G,R,S]>=0 # Production (includes I and G) C[R,S,H]>=0 # Consumption X[I,R,S]>=0 # Disposition Z[I,R,S]>=0 # Armington demand FT[F,R,S]>=0 # Specific factor transformation M[I,R]>=0 # Import YT[J]>=0 # Transport # $commodities: PY[G,R,S]>=0 # Output price PZ[I,R,S]>=0 # Armington composite price PD[I,R,S]>=0 # Local goods price P[I,R]>=0 # National goods price PC[R,S,H]>=0 # Consumption price PF[F,R,S]>=0 # Primary factors rent PS[F,G,R,S]>=0 # Sector-specific primary factors PM[I,R]>=0 # Import price PT[J]>=0 # Transportation services # $consumer: RH[R,S,H]>=0 # Representative household GOVT[R]>=0 # Public expenditure INV[R]>=0 # Investment end) theta_pl_y_va = GamsParameter(GU, (:r,:s), "Labor value share") theta_PFX_X = GamsParameter(GU, (:r,:g), "Export value share") theta_PN_X = GamsParameter(GU, (:r,:g), "National value share") theta_PD_X = GamsParameter(GU, (:r,:g), "Domestic value share") theta_PN_A_d = GamsParameter(GU, (:r,:g), "National value share in nest d") theta_PFX_A_dm = GamsParameter(GU, (:r,:g), "Imported value share in nest dm") thetac = GamsParameter(GU, (:r,:g,:h), "Consumption value share") betaks = GamsParameter(GU, (:r,:s), "Capital supply value share") theta_PC_RA = GamsParameter(GU, (:r,:h), "Value share of PC in RA") #= theta_pl_y_va[:r,:s]$ld0[:r,:s] = ld0[:r,:s]/(ld0[:r,:s]+kd0[:r,:s]*(1+tk0[:r])) theta_PFX_X[:r,:g]$x_[:r,:g] = (x0[:r,:g]-rx0[:r,:g])/(x0[:r,:g]-rx0[:r,:g] + xn0[:r,:g] + xd0[:r,:g]) theta_PN_X[:r,:g]$x_[:r,:g] = xn0[:r,:g]/(x0[:r,:g]-rx0[:r,:g] + xn0[:r,:g] + xd0[:r,:g]) theta_PD_X[:r,:g]$x_[:r,:g] = xd0[:r,:g]/(x0[:r,:g]-rx0[:r,:g] + xn0[:r,:g] + xd0[:r,:g]) theta_PN_A_d[:r,:g]$a_[:r,:g] = nd0[:r,:g]/(nd0[:r,:g]+dd0[:r,:g]) theta_PFX_A_dm[:r,:g]$a_[:r,:g] = m0[:r,:g]*(1+tm0[:r,:g])/(m0[:r,:g]*(1+tm0[:r,:g])+nd0[:r,:g]+dd0[:r,:g]) thetac[:r,:g,:h] = cd0_h[:r,:g,:h]/sum(cd0_h[:r,[g],:h] for g in G) betaks[:r,:s] = kd0[:r,:s] / sum(kd0[[r],[s]] for r in R,s in S) theta_PC_RA[:r,:h] = c0_h[:r,:h]/(c0_h[:r,:h]+lsr0[:r,:h]) =# @expressions(m,begin PI_Y_VA[r=R,s=S], (PL[r]^theta_pl_y_va[[r],[s]] * (RK[r,s]*(1+tk[[r],[s]])/(1+tk0[[r]]))^(1-theta_pl_y_va[[r],[s]])) O_Y_PY[r=R,g=G,s=S], ys0[[r],[s],[g]] I_PA_Y[r=R,g=G,s=S], id0[[r],[g],[s]] I_PL_Y[r=R,s=S], (ld0[[r],[s]] * PI_Y_VA[r,s] / PL[r]) I_RK_Y[r=R,s=S], (kd0[[r],[s]] * PI_Y_VA[r,s]*(1+tk0[[r]])/(RK[r,s]*(1+tk[[r],[s]]))) PI_X[r=R,g=G], ((theta_PFX_X[r,g]*PFX^(1+4) + theta_PN_X[r,g]*PN[g]^(1+4) + theta_PD_X[r,g]*PD[r,g]^(1+4))^(1/(1+4))) O_X_PFX[r=R,g=G], ((x0[[r],[g]]-rx0[[r],[g]])*(PFX/PI_X[r,g])^4) O_X_PN[g=G,r=R], (xn0[[r],[g]]*(PN[g]/PI_X[r,g])^4) O_X_PD[r=R,g=G], (xd0[[r],[g]]*(PD[r,g]/PI_X[r,g])^4) I_PY_X[r=R,g=G], s0[[r],[g]] PI_A_D[r=R,g=G], ((theta_PN_A_d[[r],[g]]*PN[g]^(1-2)+(1-theta_PN_A_d[[r],[g]])*PD[r,g]^(1-2))^(1/(1-2))) PI_A_DM[r=R,g=G], ((theta_PFX_A_dm[[r],[g]]*(PFX*(1+tm[[r],[g]])/(1+tm0[[r],[g]]))^(1-4)+(1-theta_PFX_A_dm[[r],[g]])*PI_A_D[r,g]^(1-4))^(1/(1-4))) O_A_PA[r=R,g=G], a0[[r],[g]] O_A_PFX[r=R,g=G], rx0[[r],[g]] I_PN_A[g=G,r=R], (nd0[[r],[g]]*(PI_A_DM[r,g]/PI_A_D[r,g])^4 * (PI_A_D[r,g]/PN[g])^2) I_PD_A[r=R,g=G], (dd0[[r],[g]]*(PI_A_DM[r,g]/PI_A_D[r,g])^4 * (PI_A_D[r,g]/PD[r,g])^2) I_PFX_A[r=R,g=G], (m0[[r],[g]]*(PI_A_DM[r,g]*(1+tm0[[r],[g]])/(PFX*(1+tm[[r],[g]])))^4) I_PM_A[r=R,m=M,g=G], md0[[r],[m],[g]] O_MS_PM[r=R,m=M], (sum(md0[[r],[m],[gm]] for gm = GM)) I_PN_MS[gm=GM,r=R,m=M], (nm0[[r],[gm],[m]]) I_PD_MS[r=R,gm=GM,m=M], (dm0[[r],[gm],[m]]) PI_C[r=R,h=H], (prod(PA[r,g]^thetac[[r],[g],[h]] for g = G)) O_C_PC[r=R,h=H], (c0_h[[r],[h]]) I_PA_C[r=R,g=G,h=H], (cd0_h[[r],[g],[h]]*PI_C[r,h]/PA[r,g]) #! N.B. Set g enters PI_C but is local to that macro O_LS_PL[q=Q,r=R,h=H], (le0[[r],[q],[h]]) I_PLS_LS[r=R,h=H], (ls0[[r],[h]]) PI_KS, (sum((r,s),betaks[[r],[s]]*RK[r,s]^(1+etak))^(1/(1+etak))) O_KS_RK[r=R,s=S], (kd0[[r],[s]]*(RK[r,s]/PI_KS)^etak) I_RKS_KS, (sum((r,s),kd0[[r],[s]])) PI_RA[r=R,h=H], ((theta_PC_RA[r,h]*PC[r,h]^(1-esubL[[r],[h]]) + (1-theta_PC_RA[r,h])*PLS[r,h]^(1-esubL[[r],[h]]))^(1/(1-esubL[[r],[h]]))) W_RA[r=R,h=H], (RA[r,h]/((c0_h[[r],[h]]+lsr0[[r],[h]])*PI_RA[r,h])) D_PC_RA[r=R,h=H], (c0_h[[r],[h]] * W_RA[r,h] * (PI_RA[r,h]/PC[r,h])^esubL[[r],[h]]) D_PLS_RA[r=R,h=H], (lsr0[[r],[h]] * W_RA[r,h] * (PI_RA[r,h]/PLS[r,h])^esubL[[r],[h]]) E_RA_PLS[r=R,h=H], (ls0[[r],[h]]+lsr0[[r],[h]]) E_RA_PK[r=R,h=H], (ke0[[r],[h]]) E_RA_PFX[r=R,h=H], (TRANS*sum(hhtrn0[[r],[h],[trn]] for trn = TRN)-SAVRATE*sav0[[r],[h]]) D_PK_NYSE, (NYSE/PK) E_NYSE_PY[r=R,g=G], (yh0[[r],[g]]) E_NYSE_RKS, (SSK*sum([r,s],kd0[[r],[s]])) D_PA_INVEST[r=R,g=G], (i0[[r],[g]] * INVEST/sum((r,g),PA[r,g]*i0[[r],[g]])) E_INVEST_PFX, (fsav0+SAVRATE*totsav0) D_PA_GOVT[r=R,g=G], (g0[[r],[g]]*GOVT/sum((r,g),PA[r,g]*g0[[r],[g]])) E_GOVT_PFX, (govdef0-TRANS*sum([r,h],trn0[[r],[h]])) end) @constraints(m, begin prf_Y[r=R,s=S;y_[[r],[s]]!=0], sum(PA[r,g]*I_PA_Y[r,g,s] for g in G) + I_PL_Y[r,s]*PL[r] + I_RK_Y[r,s]*RK[r,s]*(1+tk[[r],[s]]) - ( sum(PY[r,g]*O_Y_PY[r,g,s]*(1-ty[[r],[s]]) for g in G) ) prf_X[r=R,g=G;x_[[r],[g]]!=0], PY[r,g]*I_PY_X[r,g] - ( PFX*O_X_PFX[r,g] + PN[g]*O_X_PN[g,r] + PD[r,g]*O_X_PD[r,g] ) prf_a[r=R,g=G;a_[[r],[g]]!=0], sum(PM[r,m]*I_PM_A[r,m,g] for m in M) + PFX*(1+tm[[r],[g]])*I_PFX_A[r,g] + PD[r,g]*I_PD_A[r,g] + PN[g]*I_PN_A[g,r] - ( PFX*O_A_PFX[r,g] + PA[r,g]*O_A_PA[r,g]*(1-ta[[r],[g]]) ) prf_MS[r=R,m=M], sum(gm, PD[r,gm]*I_PD_MS[r,gm,m] + PN[gm]*I_PN_MS[gm,r,m]) - ( PM[r,m]*O_MS_PM[r,m] ) prf_c[r=R,h=H], sum( PA[r,g]*I_PA_C[r,g,h] for g in G) - ( PC[r,h]*O_C_PC[r,h] ) prf_LS[r=R,h=H], PLS[r,h]*I_PLS_LS[r,h] - ( sum( PL[q]*O_LS_PL[q,r,h]*(1-tl[[r],[h]]) for q in Q) ) prf_ks, RKS*I_RKS_KS - ( sum( RK[r,s]*O_KS_RK[r,s] for r in R, s in S) ) bal_ra[r=R,h=H], RA[r,h] - ( PLS[r,h] * E_RA_PLS[r,h] + PFX * E_RA_PFX[r,h] + PK * E_RA_PK[r,h] ) bal_NYSE, NYSE - ( sum(PY[r,g]*E_NYSE_PY[r,g] for r in R, g in G) + RKS*E_NYSE_RKS ) bal_INVEST, INVEST - ( PFX*fsav0 + SAVRATE*PFX*totsav0 ) bal_GOVT, GOVT - ( PFX*(govdef0 - TRANS*sum(trn0[[r],[h]]) for r in R, h in H) + sum( Y[r,s] * (sum(PY[r,g]*ys0[[r],[s],[g]]*ty[[r],[s]] for g in G for r in R, s in S if y_[[r],[s]]!=0) + I_RK_Y[r,s]*RK[r,s]*tk[[r],[s]])) + sum(a_[r,g], A[r,g] * (PA[r,g]*ta[[r],[g]]*a0[[r],[g]] + PFX*I_PFX_A[r,g]*tm[[r],[g]])) + sum([r,h,q], LS[r,h] * PL[q] * O_LS_PL[q,r,h] * tl[[r],[h]]) ) aux_ssk, sum(i0[[r],[g]]*PA[r,g] for r in R, g in G) - ( sum(i0[[r],[g]] for r in R, g in G)*RKS ) aux_savrate, INVEST - ( sum( PA[r,g]*i0[[r],[g]] for r in R, g in G)*SSK ) aux_trans, GOVT - ( sum(PA[r,g]*g0[[r],[g]] for r in R, g in G) ) mkt_PA[r=R,g=G;a0[[r],[g]]!=0], sum( A[r,g]*O_A_PA[r,g] for r in R, g in G if a_[[r],[g]]!=0) - ( sum( Y[r,s]*I_PA_Y[r,g,s] for r in R, s in S if y_[[r],[s]]!=0) + sum( C[r,h]*I_PA_C[r,g,h] for h in H) + D_PA_INVEST[r,g] + D_PA_GOVT[r,g] ) mkt_PY[r=R,g=G;s0[[r],[g]]!=0], sum( Y[r,s]*O_Y_PY[r,g,s] for r in R, s in S if y_[[r],[s]]!=0) + E_NYSE_PY[r,g] - ( sum( X[r,g]*I_PY_X[r,g] for r in R, g in G if x_[[r],[g]]!=0) ) mkt_PD[r=R,g=G], sum( X[r,g]*O_X_PD[r,g] for r in R, g in G if x_[[r],[g]]!=0) - ( sum( A[r,g]*I_PD_A[r,g] for r in R, g in G if a_[[r],[g]]!=0) + sum( MS[r,m]*I_PD_MS[r,gm,m] for m in M, gm in GM) ) mkt_RK[r=R,s=S;kd0[[r],[s]]!=0], KS*O_KS_RK[r,s] - ( Y[r,s]*I_RK_Y[r,s] ) mkt_RKS, E_NYSE_RKS - ( KS*I_RKS_KS ) mkt_PM[r=R,m=M], MS[r,m]*O_MS_PM[r,m] - ( sum(A[r,g]*I_PM_A[r,m,g] for r in R, g in G if a_[[r],[g]]!=0) ) mkt_PC[r=R,h=H], C[r,h]*O_C_PC[r,h] - ( D_PC_RA[r,h] ) mkt_PN[g=G], sum( X[r,g]*O_X_PN[g,r] for r in R, g in G if x_[[r],[g]]!=0) - ( sum( A[r,g]*I_PN_A[g,r] for r in R, g in G if a_[[r],[g]]!=0) + sum([r,m,gm], MS[r,m]*I_PN_MS[gm,r,m]) ) mkt_PLS[r=R,h=H], E_RA_pls[[r],[h]] - ( D_PLS_RA[r,h] + LS[r,h] * I_PLS_LS[r,h] ) mkt_PL[r=R], sum( LS[r,h]*O_LS_PL[q,r,h] for q in Q, r in R, h in H) - ( sum( Y[r,s]*I_PL_Y[r,s] for r in R, s in S if y_[[r],[s]]!=0) ) mkt_PK, sum( E_RA_PK[r,h] for r in R, h in H) - ( D_PK_NYSE ) mkt_PFX, sum( X[r,g]*O_X_PFX[r,g] for r in R, g in G if x_[[r],[g]]!=0) + sum( A[r,g]*O_A_PFX[r,g] for r in R, g in G if a_[[r],[g]]!=0) + sum(E_RA_PFX[r,h] for r in R, h in H) + E_INVEST_PFX + E_GOVT_PFX - ( sum( A[r,g]*I_PFX_A[r,g] for r in R, g in G if a_[[r],[g]]!=0) ) end)
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
6350
""" national_model_mcp(GU::GamsUniverse;solver = PATHSolver.Optimizer) Run all years of the the national model. Returns a dictionary containing each year. """ function national_model_mcp(GU::GamsUniverse;solver = PATHSolver.Optimizer) models = Dict() for year∈GU[:yr] m = national_model_mcp_year(GU,year; solver = solver) set_silent(m) optimize!(m) models[parse(Int,string(year))] = m end return models end """ national_model_mcp_year(GU::GamsUniverse,year::Symbol;solver = PATHSolver.Optimizer) Run the national model for a single year. """ function national_model_mcp_year(GU::GamsUniverse,year::Symbol;solver = PATHSolver.Optimizer) """ Self notes: 1. The four theta's get defined as new parameters """ ################# ### GU ########## ################# VA = GU[:va] J = GU[:j] I = GU[:i] M = GU[:m] Y_ = [j for j in GU[:j] if sum(GU[:ys0][[year],[j],[i]] for i∈I)!=0] A_ = [i for i in GU[:i] if GU[:a0][[year],[i]]!=0] PY_ = [i for i in GU[:i] if sum(GU[:ys0][[year],[j],[i]] for j∈J)!=0] XFD = [fd for fd in GU[:fd] if fd!=:pce] #################### ## GamsStructure.Parameters ###### #################### va0 = GU[:va0] m0 = GU[:m0] tm0 = GU[:tm0] y0 = GU[:y0] a0 = GU[:a0] ta0 = GU[:ta0] x0 = GU[:x0] fd0 = GU[:fd0] ms0 = GU[:ms0] bopdef = GU[:bopdef0][[year]] fs0 = GU[:fs0] ys0 = GU[:ys0] id0 = GU[:id0] md0 = GU[:md0] ty = GamsStructure.Parameter(GU,(:yr,:i)) tm = GamsStructure.Parameter(GU,(:yr,:i)) ta = GamsStructure.Parameter(GU,(:yr,:i)) ty[:yr,:i] = GU[:ty0][:yr,:i] tm[:yr,:i] = GU[:tm0][:yr,:i].*0 #for the counterfactual ta[:yr,:i] = GU[:ta0][:yr,:i].*0 #for the counterfactual thetava = GamsStructure.Parameter(GU,(:va,:j)) #GU[:thetava] thetam = GamsStructure.Parameter(GU,(:i,)) #GU[:thetam] thetax = GamsStructure.Parameter(GU,(:i,)) #GU[:thetax] thetac = GamsStructure.Parameter(GU,(:i,)) #GU[:thetac] for va∈VA, j∈J if va0[[year],[va],[j]]≠0 thetava[[va],[j]] = va0[[year],[va],[j]]/sum(va0[[year],[v],[j]] for v∈VA) end end for i∈I if m0[[year],[i]] != 0 thetam[[i]] = m0[[year],[i]].*(1 .+tm0[[year],[i]])./(m0[[year],[i]].*(1 .+tm0[[year],[i]] ).+ y0[[year],[i]]) end end for i∈I if x0[[year],[i]] != 0 thetax[[i]] = x0[[year],[i]]./(x0[[year],[i]].+a0[[year],[i]].*(1 .-ta0[[year],[i]])) end end thetac[:i] = fd0[[year],:i,[:pce]]./sum(fd0[[year],:i,[:pce]]) ####################### ## Model starts here ## ####################### m = JuMP.Model(solver) @variables(m,begin Y[J]>=0, (start = 1,) A[I]>=0, (start = 1,) MS[M]>=0, (start = 1,) PA[I]>=0, (start = 1,) PY[I]>=0, (start = 1,) PVA[VA]>=0, (start = 1,) PM[M]>=0, (start = 1,) PFX>=0, (start = 1,) RA>=0, (start = sum(fd0[[year],:i,[:pce]]),) end) #################### ## Macros in Gams ## #################### @expressions(m, begin CVA[j=J], prod(PVA[va]^thetava[[va],[j]] for va∈VA) PMD[i=I], (thetam[[i]]*(PFX*(1+tm[[year],[i]])/(1+tm0[[year],[i]]))^(1-2) + (1-thetam[[i]])*PY[i]^(1-2))^(1/(1-2)) PXD[i=I], (thetax[[i]]*PFX^(1+2) + (1-thetax[[i]])*(PA[i]*(1-ta[[year],[i]])/(1-ta0[[year],[i]]))^(1+2))^(1/(1+2)) MD[i=I], A[i]*m0[[year],[i]]*( (PMD[i]*(1+tm0[[year],[i]])) / (PFX*(1+tm[[year],[i]])))^2 YD[i=I], A[i]*y0[[year],[i]]*(PMD[i]/PY[i])^2 XS[i=I], A[i]*x0[[year],[i]]*(PFX/PXD[i])^2 DS[i = I], A[i]*a0[[year],[i]]*(PA[i]*(1-ta[[year],[i]])/(PXD[i]*(1-ta0[[year],[i]])))^2 end) ######################## ## End of GAMS Macros ## ######################## @constraints(m,begin prf_Y[j=Y_], #defined on y_(j) CVA[j]*sum(va0[[year],[va],[j]] for va∈VA) + sum(PA[i]*id0[[year],[i],[j]] for i∈I) - sum(PY[i]*ys0[[year],[j],[i]] for i∈I)*(1-ty[[year],[j]]) ⟂ Y[j] prf_A[i = A_], #defined on a_(i) sum(PM[m_]*md0[[year],[m_],[i]] for m_∈M) + PMD[i] * (y0[[year],[i]] +(1+tm0[[year],[i]])*m0[[year],[i]]) - PXD[i] * (x0[[year],[i]] + a0[[year],[i]]*(1-ta0[[year],[i]])) ⟂ A[i] prf_MS[m_ = M], sum(PY[i]*ms0[[year],[i],[m_]] for i∈I) - PM[m_]*sum(ms0[[year],[i],[m_]] for i∈I) ⟂ MS[m_] bal_RA, -RA + sum(PY[i]*fs0[[year],[i]] for i∈I) + PFX*bopdef - sum(PA[i]*fd0[[year],[i],[xfd]] for i∈I,xfd∈XFD) + sum(PVA[va]*va0[[year],[va],[j]] for va∈VA,j∈J) + sum(A[i]*(a0[[year],[i]]*PA[i]*ta[[year],[i]] + PFX*MD[i]*tm[[year],[i]]) for i∈I) + sum(Y[j]*sum(ys0[[year],[j],[i]]*PY[i] for i∈I)*ty[[year],[j]] for j∈J) ⟂ RA #thetac[:i] = fd0[[year],:i,[:pce]]./sum(fd0[[year],:i,[:pce]]) mkt_PA[i = A_], -DS[i] + thetac[[i]] * RA/PA[i] + sum(fd0[[year],[i],[xfd]] for xfd∈XFD) + sum(Y[j]*id0[[year],[i],[j]] for j∈Y_) ⟂ PA[i] mkt_PY[i=I], -sum(Y[j]*ys0[[year],[j],[i]] for j∈Y_) + sum(MS[m_]*ms0[[year],[i],[m_]] for m_∈M) + YD[i] ⟂ PY[i] mkt_PVA[va = VA], -sum(va0[[year],[va],[j]] for j∈J) + sum(Y[j]*va0[[year],[va],[j]]*CVA[j]/PVA[va] for j∈Y_) ⟂ PVA[va] mkt_PM[m_ = M], MS[m_]*sum(ms0[[year],[i],[m_]] for i∈I) - sum(A[i]*md0[[year],[m_],[i]] for i∈I if a0[[year],[i]]≠0) ⟂ PM[m_] mkt_PFX, sum(XS[i] for i∈A_) + bopdef - sum(MD[i] for i∈A_) ⟂ PFX end) ############################# ## Fix unmatched variables ## ############################# for i∈I if a0[[year],[i]] == 0 fix(A[i],0,force=true) fix(PA[i],0,force=true) end end return m end
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
13392
""" state_disaggregation_model_mcp(GU::GamsUniverse) Run all years of the the state-level model. Returns a dictionary containing each year. """ function state_disaggregation_model_mcp(GU::GamsUniverse) models = Dict() for year∈GU[:yr] m = state_disaggregation_model_mcp_year(GU,year) set_silent(m) optimize!(m) models[parse(Int,string(year))] = m end return models end """ state_disaggregation_model_mcp_year(GU::GamsUniverse,year::Symbol) Return the model for the state-level disaggreation for a single year. """ function state_disaggregation_model_mcp_year(GU::GamsUniverse,year::Symbol) model = JuMP.Model(PATHSolver.Optimizer) R = [r for r∈GU[:r]] S = [s for s∈GU[:s]] G = [g for g∈GU[:g]] M = [m for m∈GU[:m]] GM = [gm for gm∈GU[:gm]] ys0 = GamsStructure.Parameter(GU,(:r,:s,:g)) ys0[:r,:s,:g] = GU[:ys0_][[year],:r,:s,:g] id0 = GamsStructure.Parameter(GU,(:r,:g,:s)) id0[:r,:g,:s] = GU[:id0_][[year],:r,:g,:s] ld0 = GamsStructure.Parameter(GU,(:r,:s)) ld0[:r,:s] = GU[:ld0_][[year],:r,:s] kd0 = GamsStructure.Parameter(GU,(:r,:s)) kd0[:r,:s] = GU[:kd0_][[year],:r,:s] ty0 = GamsStructure.Parameter(GU,(:r,:s)) ty0[:r,:s] = GU[:ty0_][[year],:r,:s] ty = ty0 m0 = GamsStructure.Parameter(GU,(:r,:g)) m0[:r,:g] = GU[:m0_][[year],:r,:g] x0 = GamsStructure.Parameter(GU,(:r,:g)) x0[:r,:g] = GU[:x0_][[year],:r,:g] rx0 = GamsStructure.Parameter(GU,(:r,:g)) rx0[:r,:g] = GU[:rx0_][[year],:r,:g] md0 = GamsStructure.Parameter(GU,(:r,:m,:g)) md0[:r,:m,:g] = GU[:md0_][[year],:r,:m,:g] nm0 = GamsStructure.Parameter(GU,(:r,:g,:m)) nm0[:r,:g,:m] = GU[:nm0_][[year],:r,:g,:m] dm0 = GamsStructure.Parameter(GU,(:r,:g,:m)) dm0[:r,:g,:m] = GU[:dm0_][[year],:r,:g,:m] s0 = GamsStructure.Parameter(GU,(:r,:g)) s0[:r,:g] = GU[:s0_][[year],:r,:g] a0 = GamsStructure.Parameter(GU,(:r,:g)) a0[:r,:g] = GU[:a0_][[year],:r,:g] ta0 = GamsStructure.Parameter(GU,(:r,:g)) ta0[:r,:g] = GU[:ta0_][[year],:r,:g] ta = deepcopy(ta0) tm0 = GamsStructure.Parameter(GU,(:r,:g)) tm0[:r,:g] = GU[:tm0_][[year],:r,:g] tm = deepcopy(tm0) tm[:r,:g] = tm[:r,:g]*0 #Shock, set tariffs to zero cd0 = GamsStructure.Parameter(GU,(:r,:g)) cd0[:r,:g] = GU[:cd0_][[year],:r,:g] c0 = GamsStructure.Parameter(GU,(:r,)) c0[:r] = GU[:c0_][[year],:r] yh0 = GamsStructure.Parameter(GU,(:r,:g)) yh0[:r,:g] = GU[:yh0_][[year],:r,:g] bopdef0 = GamsStructure.Parameter(GU,(:r,)) bopdef0[:r] = GU[:bopdef0_][[year],:r] g0 = GamsStructure.Parameter(GU,(:r,:g)) g0[:r,:g] = GU[:g0_][[year],:r,:g] i0 = GamsStructure.Parameter(GU,(:r,:g)) i0[:r,:g] = GU[:i0_][[year],:r,:g] xn0 = GamsStructure.Parameter(GU,(:r,:g)) xn0[:r,:g] = GU[:xn0_][[year],:r,:g] xd0 = GamsStructure.Parameter(GU,(:r,:g)) xd0[:r,:g] = GU[:xd0_][[year],:r,:g] dd0 = GamsStructure.Parameter(GU,(:r,:g)) dd0[:r,:g] = GU[:dd0_][[year],:r,:g] nd0 = GamsStructure.Parameter(GU,(:r,:g)) nd0[:r,:g] = GU[:nd0_][[year],:r,:g] hhadj = GamsStructure.Parameter(GU,(:r,)) hhadj[:r] = GU[:hhadj0_][[year],:r] @variables(model,begin Y[R,S]>=0, (start = 1,) X[R,G]>=0, (start =1,) A[R,G]>=0, (start =1,) C[R]>=0, (start =1,) MS[R,M]>=0, (start =1,) PA[R,G]>=0, (start =1,) PY[R,G]>=0, (start =1,) PD[R,G]>=0, (start =1,) PN[G]>=0, (start =1,) PL[R]>=0, (start =1,) PK[R,S]>=0, (start =1,) PM[R,M]>=0, (start =1,) PC[R]>=0, (start =1,) PFX>=0, (start =1,) RA[r=R]>=0, (start = c0[[r]],) end) for r∈R,s∈S if kd0[[r],[s]] ≠ 0 set_lower_bound(PK[r,s],1e-5) end end for r∈R,g∈G if a0[[r],[g]] == 0 fix(PA[r,g],0,force=true) end if s0[[r],[g]] == 0 fix(PY[r,g],0,force=true) fix(X[r,g],0,force=true) end if xd0[[r],[g]] == 0 fix(PD[r,g],0,force=true) end #s and g are aliases if kd0[[r],[g]] == 0 fix(PK[r,g],0,force=true) end if sum(ys0[[r],[g],:g]) == 0 fix(Y[r,g],0,force=true) end if a0[[r],[g]] + rx0[[r],[g]] == 0 fix(A[r,g],0,force=true) end end lvs = GamsStructure.Parameter(GU,(:r,:s)) lvs[:r,:s] = ld0[:r,:s]./(ld0[:r,:s] + kd0[:r,:s]) @expressions(model,begin PI_Y[r=R,s=S], PL[r]^lvs[[r],[s]]*PK[r,s]^(1-lvs[[r],[s]]) O_Y_PY[r=R,g=G,s=S], ys0[[r],[s],[g]] I_PA_Y[r=R,g=G,s=S], id0[[r],[g],[s]] I_PL_Y[r=R,s=S], ld0[[r],[s]]*ifelse(ld0[[r],[s]]!=0, (PI_Y[r,s]/PL[r]),0) #if ld0[[r],[s]]!=0 I_PK_Y[r=R,s=S], kd0[[r],[s]]*ifelse(kd0[[r],[s]]!=0, (PI_Y[r,s]/PK[r,s]),0) #if kd0[[r],[s]]!=0 R_Y_RA[r=R,s=S], sum(PY[r,g]*ty[[r],[s]]*O_Y_PY[r,g,s] for g∈G) end) theta_X_PD = GamsStructure.Parameter(GU,(:r,:g)) theta_X_PD[:r,:g] = xd0[:r,:g]./s0[:r,:g] theta_X_PN = GamsStructure.Parameter(GU,(:r,:g)) theta_X_PN[:r,:g] = xn0[:r,:g]./s0[:r,:g] theta_X_PFX = GamsStructure.Parameter(GU,(:r,:g)) theta_X_PFX[:r,:g] = (x0[:r,:g] - rx0[:r,:g])./s0[:r,:g] @expressions(model,begin PI_X[r=R,g=G], (theta_X_PD[[r],[g]] * PD[r,g]^(1+4) + theta_X_PN[[r],[g]] * PN[g]^(1+4) + theta_X_PFX[[r],[g]] * PFX^(1+4) )^(1/(1+4)) O_X_PFX[r=R,g=G], (x0[[r],[g]]-rx0[[r],[g]])*ifelse(x0[[r],[g]] - rx0[[r],[g]] !=0, ((PFX/PI_X[r,g])^4),0) #$(x0(r,g)-rx0(r,g))) O_X_PN[g=G,r=R], xn0[[r],[g]]*ifelse(xn0[[r],[g]]!=0,((PN[g]/PI_X[r,g])^4),0) #$xn0(r,g)) end) @expression(model, O_X_PD[r=R,g=G], xd0[[r],[g]]*ifelse(xd0[[r],[g]]!=0, ifelse(!isapprox(theta_X_PD[[r],[g]],1,atol=1e-6), (PD[r,g]/PI_X[r,g])^4, 1) ,0) ) @expression(model, I_PY_X[r=R,g=G], s0[[r],[g]] ) theta_PN_A = GamsStructure.Parameter(GU,(:r,:g)) theta_PD_A = GamsStructure.Parameter(GU,(:r,:g)) theta_PFX_A = GamsStructure.Parameter(GU,(:r,:g)) theta_PFX_A[:r,:g] = ifelse.(m0[:r,:g].!=0, m0[:r,:g].*(1 .+ tm0[:r,:g])./(m0[:r,:g].*(1 .+ tm0[:r,:g])+nd0[:r,:g]+dd0[:r,:g]),0) theta_PN_A[:r,:g] = ifelse.(nd0[:r,:g] .!=0, nd0[:r,:g] ./(nd0[:r,:g]+dd0[:r,:g]), 0) theta_PD_A[:r,:g] = ifelse.(dd0[:r,:g] .!=0, dd0[:r,:g] ./(nd0[:r,:g]+dd0[:r,:g]), 0) @expressions(model,begin PI_PFX_A[r=R,g=G], PFX*(1+tm[[r],[g]])/(1+tm0[[r],[g]]) # Need to do an ifelse on this PI_A_D[r=R,g=G], ( ifelse(!isapprox(theta_PN_A[[r],[g]],0,atol=1e-10),theta_PN_A[[r],[g]]*(PN[g]^(1-4)),0) + ifelse(!isapprox(theta_PD_A[[r],[g]],0,atol=1e-10),theta_PD_A[[r],[g]]*(PD[r,g]^(1-4)),0) )^(1/(1-4)) PI_A_DM[r=R,g=G], ( ifelse(!isapprox(theta_PFX_A[[r],[g]],0,atol=1e-10),theta_PFX_A[[r],[g]]*(PI_PFX_A[r,g]^(1.0-2)),0) + ifelse(!isapprox(1-theta_PFX_A[[r],[g]],0,atol=1e-10), (1-theta_PFX_A[[r],[g]])*(PI_A_D[r,g]^(1.0-2)),0) )^(1.0/(1-2)) O_A_PA[r=R,g=G], a0[[r],[g]] O_A_PFX[r=R,g=G], rx0[[r],[g]] I_PN_A[g=G,r=R], nd0[[r],[g]]*ifelse(nd0[[r],[g]]!=0, (PI_A_DM[r,g]/PI_A_D[r,g])^2*(PI_A_D[r,g]/PN[g])^4.0 ,0 ) I_PD_A[r=R,g=G], dd0[[r],[g]]*ifelse(!isapprox(dd0[[r],[g]],0,atol=1e-8), (PI_A_DM[r,g]/PI_A_D[r,g])^2*(PI_A_D[r,g]/PD[r,g])^4.0 ,0 ) I_PFX_A[r=R,g=G], m0[[r],[g]]*ifelse(m0[[r],[g]]!=0, (PI_A_DM[r,g]/PI_PFX_A[r,g])^2 ,0 ) I_PM_A[r=R,m=M,g=G],md0[[r],[m],[g]] R_A_RA[r=R,g=G], ta[[r],[g]]*PA[r,g]*O_A_PA[r,g] + tm[[r],[g]]*PFX*I_PFX_A[r,g] O_MS_PM[r=R,m=M], sum(md0[[r],[m],[gm]] for gm∈GM ) #I_PN_MS[gm=GM,r=R,m=M], nm0[[r],[gm],[m]] I_PN_MS[gm=G,r=R,m=M], ifelse(gm∈GM, nm0[[r],[gm],[m]],0) #I_PD_MS[r=R,gm=GM,m=M], dm0[[r],[gm],[m]] I_PD_MS[r=R,gm=G,m=M], ifelse(gm∈GM, dm0[[r],[gm],[m]],0) end) theta_PA_C = GamsStructure.Parameter(GU,(:r,:g)) theta_PA_C[:r,:g] = cd0[:r,:g]./sum(cd0[:r,:g],dims=2) @expressions(model,begin PI_C[r=R], prod(PA[r,g]^theta_PA_C[[r],[g]] for g∈G if theta_PA_C[[r],[g]] != 0) O_C_PC[r=R], c0[[r]] I_PA_C[r=R,g=G], cd0[[r],[g]]*ifelse(cd0[[r],[g]]!=0, (PI_C[r]/PA[r,g]) ,0 ) E_RA_PY[r=R,g=G], yh0[[r],[g]] E_RA_PFX[r=R], bopdef0[[r]]+hhadj[[r]] E_RA_PA[r=R,g=G], -g0[[r],[g]]-i0[[r],[g]] E_RA_PL[r=R], sum(ld0[[r],[s]] for s∈S) E_RA_PK[r=R,s=S], kd0[[r],[s]] D_PC_RA[r=R], RA[r]/PC[r] end) ######################## ## Start of Equations ## ######################## @constraints(model,begin # Zero profit condition: value of inputs from national market (PN[g]), domestic market (PD[r,g]) # and imports (PFX) plus tax liability equals the value of supply to the PA[r,g] market and # re-exports to the PFX market: prf_Y[r=R,s=S], sum(PA[r,g]*I_PA_Y[r,g,s] for g∈G) + PL[r]*I_PL_Y[r,s] + PK[r,s]*I_PK_Y[r,s] + R_Y_RA[r,s] - sum(PY[r,g]*O_Y_PY[r,g,s] for g∈G) ⟂ Y[r,s] prf_X[r=R,g=G], PY[r,g]*I_PY_X[r,g] - (PFX*O_X_PFX[r,g] + PN[g]*O_X_PN[g,r] + PD[r,g]*O_X_PD[r,g]) ⟂ X[r,g] prf_A[r=R,g=G], PN[g]*I_PN_A[g,r] + PD[r,g]*I_PD_A[r,g] + PFX*I_PFX_A[r,g] + sum(PM[r,m]*I_PM_A[r,m,g] for m∈M) + R_A_RA[r,g] - (PA[r,g]*O_A_PA[r,g] + PFX * O_A_PFX[r,g]) ⟂ A[r,g] prf_MS[r=R,m=M], sum(PN[gm]*I_PN_MS[gm,r,m] + PD[r,gm]*I_PD_MS[r,gm,m] for gm∈GM) - PM[r,m]*O_MS_PM[r,m] ⟂ MS[r,m] prf_C[r=R], sum(PA[r,g]*I_PA_C[r,g] for g∈G) - PC[r]*O_C_PC[r] ⟂ C[r] # Market clearance conditions: production outputs plus consumer endowments equal production inputs # plus consumer demand. # Aggregate absorption associated with intermediate and consumer demand: mkt_PA[r=R,g=G], A[r,g]*O_A_PA[r,g] + E_RA_PA[r,g] -( sum(Y[r,s]*I_PA_Y[r,g,s] for s∈S) + I_PA_C[r,g]*C[r]) ⟂ PA[r,g] # Producer output supply and demand: mkt_PY[r=R,g=G], sum(Y[r,s]*O_Y_PY[r,g,s] for s∈S) + E_RA_PY[r,g] - X[r,g] * I_PY_X[r,g] ⟂ PY[r,g] # Regional market for goods: mkt_PD[r=R,g=G], X[r,g]*O_X_PD[r,g] - (A[r,g]*I_PD_A[r,g] + ifelse(g∈GM, sum(MS[r,m]*I_PD_MS[r,g,m] for m∈M),0)) ⟂ PD[r,g] #$gm[g]) # National market for goods: mkt_PN[g=G], sum(X[r,g] * O_X_PN[g,r] for r∈R) - ( sum(A[r,g] * I_PN_A[g,r] for r∈R) + ifelse(g∈GM, sum(MS[r,m]*I_PN_MS[g,r,m] for r∈R,m∈M),0)) ⟂ PN[g] #$gm[g] # Foreign exchange: mkt_PFX, sum(X[r,g]*O_X_PFX[r,g] for r∈R,g∈G if s0[[r],[g]]!=0) + sum(A[r,g]*O_A_PFX[r,g] for r∈R,g∈G) + sum(E_RA_PFX[r] for r∈R) - sum(A[r,g] * I_PFX_A[r,g] for r∈R,g∈G) ⟂ PFX # Labor market: mkt_PL[r=R], E_RA_PL[r] - sum(Y[r,s]*I_PL_Y[r,s] for s∈S) ⟂ PL[r] # Capital stocks: mkt_PK[r=R,s=S], E_RA_PK[r,s] - Y[r,s]*I_PK_Y[r,s] ⟂ PK[r,s] # Margin supply and demand: mkt_PM[r=R,m=M], MS[r,m]*O_MS_PM[r,m] - sum(A[r,g] * I_PM_A[r,m,g] for g∈G) ⟂ PM[r,m] # Consumer demand: mkt_PC[r=R], C[r]*O_C_PC[r] - D_PC_RA[r] ⟂ PC[r] # Income balance: bal_RA[r=R], RA[r] - ( # Endowment income from yh0[r,g]: sum(PY[r,g]*E_RA_PY[r,g] for g∈G) + # Wage income from ld0: PL[r]*E_RA_PL[r] + # Income associated with bopdef[r] and hhadj[r]: PFX*E_RA_PFX[r] + # Government and investment demand (g0[r,g] + i0[r,g]): sum(PA[r,g]*E_RA_PA[r,g] for g∈G) + # Capital earnings (kd0[r,s]): sum(PK[r,s]*E_RA_PK[r,s] for s∈S) + # Tax revenues are expressed as values per unit activity, so we # need multiply these by the activity level to compute total income: sum(R_Y_RA[r,s]*Y[r,s] for s∈S if sum(ys0[[r],[s],:g]) > 0) + sum(R_A_RA[r,g]*A[r,g] for g∈G if (a0[[r],[g]] + rx0[[r],[g]]) != 0) )⟂ RA[r] end) return model end
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
2224
""" fill_parameter!(GU::GamsUniverse,df_full::DataFrame,parm::Symbol,col_set_link,additional_filters) col_set_link is a dictionary with entries :set_name => :column_name additional_filters is a dictionary with entries :parameter_name => (:column_name, :values_to_keep) """ function fill_parameter!(GU::GamsUniverse,df_full::DataFrame,parm::Symbol,col_set_link,additional_filters) df = deepcopy(df_full) for s in domain(GU[parm]) col = col_set_link[s] filter!(col => x-> x in GU[s], df) end if parm in keys(additional_filters) col, good = additional_filters[parm] filter!(col => x-> x == good, df) end columns = [col_set_link[e] for e in domain(GU[parm])] for row in eachrow(df) d = [[row[e]] for e∈columns] GU[parm][d...] = row[:value] end end """ notation_link Input data is dirty. This struct matches the dirty input data to a replacement dataframe in a consistent manner. dirty_to_replace -> The dirty column in the input data data -> The replacement dataframe dirty_to_match -> The column in the replacement dataframe that matches the dirty_to_replace column in the input data. clean_column -> The column in the replacement dataframe with the correct output clean_name -> The final name that should appear in the output dataframe. """ struct notation_link dirty_to_replace::Symbol data::DataFrame dirty_to_match::Symbol clean_column::Symbol clean_name::Symbol end function apply_notation(df, notation) data = notation.data dirty = notation.dirty_to_replace dirty_match = notation.dirty_to_match clean = notation.clean_column clean_name = notation.clean_name if dirty_match != clean cols = [clean,dirty_match] else cols = [dirty_match] end df = innerjoin(data[!,cols],df,on = dirty_match => dirty, matchmissing=:notequal) if dirty_match != clean select!(df,Not(dirty_match)) end if clean_name != clean rename!(df, clean => clean_name) end return df end function apply_notations(df, notations) for notation in notations df = apply_notation(df,notation) end return df end
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
1321
include("./sets/sets.jl") """ load_national_data(data_dir) Load and balance the national BEA Input/Output summary tables. To Do: 1. Verify calibration 2. Add option to run MCP model to ensure calibration """ function load_national_data(data_dir) J = JSON.parsefile("$data_dir\\data_information.json") core_dir = joinpath(data_dir,"core") core_info = J["core"] GU = WiNDC.initialize_sets(); WiNDC.load_bea_io!(GU,core_dir,core_info["bea_io"]); return GU end """ load_state_data(data_dir) Disaggregate the national dataset to the state level. This will check that the resulting dataset is balanced. To Do: 1. Add option to run MCP model to ensure calibration """ function load_state_data(data_dir) J = JSON.parsefile("$data_dir\\data_information.json") core_dir = joinpath(data_dir,"core") core_info = J["core"] GU = WiNDC.initialize_sets(); WiNDC.load_bea_io!(GU,core_dir,core_info["bea_io"]); WiNDC.load_bea_gsp!(GU,core_dir,core_info["bea_gsp"]); WiNDC.load_bea_pce!(GU,core_dir,core_info["bea_pce"]); WiNDC.load_sgf_data!(GU,core_dir,core_info["census_sgf"]); WiNDC.load_faf_data!(GU,core_dir,core_info["faf"]) WiNDC.load_usa_trade!(GU,core_dir,core_info["usatrd"]) GU = state_dissagregation(GU) return GU end
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
113369
function bea_io_notations() bea_code = DataFrame([ ("111CA", "agr"), ("113FF", "fof"), ("211", "oil"), ("212", "min"), ("213", "smn"), ("22", "uti"), ("23", "con"), ("321", "wpd"), ("327", "nmp"), ("331", "pmt"), ("332", "fmt"), ("333", "mch"), ("334", "cep"), ("335", "eec"), ("3361MV", "mot"), ("3364OT", "ote"), ("337", "fpd"), ("339", "mmf"), ("311FT", "fbp"), ("313TT", "tex"), ("315AL", "alt"), ("322", "ppd"), ("323", "pri"), ("324", "pet"), ("325", "che"), ("326", "pla"), ("42", "wht"), ("441", "mvt"), ("445", "fbt"), ("452", "gmt"), ("4A0", "ott"), ("481", "air"), ("482", "trn"), ("483", "wtt"), ("484", "trk"), ("485", "grd"), ("486", "pip"), ("487OS", "otr"), ("493", "wrh"), ("511", "pub"), ("512", "mov"), ("513", "brd"), ("514", "dat"), ("521CI", "bnk"), ("523", "sec"), ("524", "ins"), ("525", "fin"), ("HS", "hou"), ("ORE", "ore"), ("532RL", "rnt"), ("5411", "leg"), ("5415", "com"), ("5412OP", "tsv"), ("55", "man"), ("561", "adm"), ("562", "wst"), ("61", "edu"), ("621", "amb"), ("622", "hos"), ("623", "nrs"), ("624", "soc"), ("711AS", "art"), ("713", "rec"), ("721", "amd"), ("722", "res"), ("81", "osv"), ("GFGD", "fdd"), ("GFGN", "fnd"), ("GFE", "fen"), ("GSLG", "slg"), ("GSLE", "sle"), ("Other", "oth"), ("Used", "use"), ("T005", "interm"), ("V001", "compen"), ("V003", "surplus"), ("T00OTOP", "othtax"), ("VABAS", "basicvalueadded"), ("T018", "industryoutput"), ("T00TOP", "taxes"), ("T00SUB", "subsidies"), ("VAPRO", "valueadded"), ("T001", "totint"), ("F010", "pce"), ("F02E", "equipment"), ("F02N", "intelprop"), ("F02R", "residential"), ("F02S", "structures"), ("F030", "changinv"), ("F040", "exports"), ("F06C", "defense"), ("F06E", "def_equipment"), ("F06N", "def_intelprop"), ("F06S", "def_structures"), ("F07C", "nondefense"), ("F07E", "fed_equipment"), ("F07N", "fed_intelprop"), ("F07S", "fed_structures"), ("F10C", "state_consume"), ("F10E", "state_equipment"), ("F10N", "state_intelprop"), ("F10S", "state_invest"), ("T019", "totaluse"), ("T017", "TotalBasic"), ("T007", "Output"), ("MCIF", "imports"), ("MADJ", "ciffob"), ("T013", "BasicSupply"), ("Trade", "Margins"), ("Trans", "TrnCost"), ("T014", "TrdTrn"), ("MDTY", "Duties"), ("TOP", "Tax"), ("SUB", "Subsidies"), ("T015", "TaxLesSubsidies"), ("T016", "Supply") ], [:naics_code,:i]) notations = [] push!(notations,notation_link(:RowCode,bea_code,:naics_code,:i,:commodity))#,:RowCode,:bea_code)) push!(notations,notation_link(:ColCode,bea_code,:naics_code,:i,:industry)) return notations end function regions() regions = DataFrame([ ("Alabama","01000000000000","AL","1"), ("Alaska","02000000000000","AK","2"), ("Arizona","03000000000000","AZ","4"), ("Arkansas","04000000000000","AR","5"), ("California","05000000000000","CA","6"), ("Colorado","06000000000000","CO","8"), ("Connecticut","07000000000000","CT","9"), ("Delaware","08000000000000","DE","10"), ("Florida","10000000000000","FL","12"), ("Georgia","11000000000000","GA","13"), ("Hawaii","12000000000000","HI","15"), ("Idaho","13000000000000","ID","16"), ("Illinois","14000000000000","IL","17"), ("Indiana","15000000000000","IN","18"), ("Iowa","16000000000000","IA","19"), ("Kansas","17000000000000","KS","20"), ("Kentucky","18000000000000","KY","21"), ("Louisiana","19000000000000","LA","22"), ("Maine","20000000000000","ME","23"), ("Maryland","21000000000000","MD","24"), ("Massachusetts","22000000000000","MA","25"), ("Michigan","23000000000000","MI","26"), ("Minnesota","24000000000000","MN","27"), ("Mississippi","25000000000000","MS","28"), ("Missouri","26000000000000","MO","29"), ("Montana","27000000000000","MT","30"), ("Nebraska","28000000000000","NE","31"), ("Nevada","29000000000000","NV","32"), ("New Hampshire","30000000000000","NH","33"), ("New Jersey","31000000000000","NJ","34"), ("New Mexico","32000000000000","NM","35"), ("New York","33000000000000","NY","36"), ("North Carolina","34000000000000","NC","37"), ("North Dakota","35000000000000","ND","38"), ("Ohio","36000000000000","OH","39"), ("Oklahoma","37000000000000","OK","40"), ("Oregon","38000000000000","OR","41"), ("Pennsylvania","39000000000000","PA","42"), ("Rhode Island","40000000000000","RI","44"), ("South Carolina","41000000000000","SC","45"), ("South Dakota","42000000000000","SD","46"), ("Tennessee","43000000000000","TN","47"), ("Texas","44000000000000","TX","48"), ("Utah","45000000000000","UT","49"), ("Vermont","46000000000000","VT","50"), ("Virginia","47000000000000","VA","51"), ("Washington","48000000000000","WA","53"), ("West Virginia","49000000000000","WV","54"), ("Wisconsin","50000000000000","WI","55"), ("Wyoming","51000000000000","WY","56"), ("District of Columbia","09000000000000","DC","11"), ("Dist of Columbia",missing,"DC",missing), ],[:region_fullname,:sgf_code,:region_abbv,:fips_state]); return regions end function bea_gsp_notations() notations = [] region = regions() push!(notations,notation_link(:state,region,:region_fullname,:region_abbv,:region_abbv)) bea_gsp_map = DataFrame([ ("Gross domestic product (GDP) by state","gdp"), ("Taxes on production and imports less subsidies","taxsbd"), ("Compensation of employees","cmp"), ("Subsidies","sbd"), ("Taxes on production and imports","tax"), ("Gross operating surplus","gos"), ("Quantity indexes for real GDP by state (2012=100.0)","qty"), ("Real GDP by state","rgdp")], [:bea_code,:gdpcat]) #bea_gsp_map = WiNDC_notation(bea_gsp_map,:gdpcat) push!(notations, notation_link(:ComponentName,bea_gsp_map,:bea_code,:gdpcat,:gdpcat)) bea_gsp_mapsec = DataFrame([ (4, "agr"), (5, "fof"), (7, "oil"), (8, "min"), (9, "smn"), (10, "uti"), (11, "con"), (14, "wpd"), (15, "nmp"), (16, "pmt"), (17, "fmt"), (18, "mch"), (19, "cep"), (20, "eec"), (21, "mot"), (22, "ote"), (23, "fpd"), (24, "mmf"), (26, "fbp"), (27, "tex"), (28, "alt"), (29, "ppd"), (30, "pri"), (31, "pet"), (32, "che"), (33, "pla"), (34, "wht"), (35, "mvt"), (35, "fbt"), (35, "gmt"), (35, "ott"), (37, "air"), (38, "trn"), (39, "wtt"), (40, "trk"), (41, "grd"), (42, "pip"), (43, "otr"), (44, "wrh"), (46, "pub"), (47, "mov"), (48, "brd"), (49, "dat"), (52, "bnk"), (53, "sec"), (54, "ins"), (55, "fin"), (57, "hou"), (57, "ore"), (58, "rnt"), (61, "leg"), (62, "com"), (63, "tsv"), (64, "man"), (66, "adm"), (67, "wst"), (69, "edu"), (71, "amb"), (72, "hos"), (72, "nrs"), (73, "soc"), (76, "art"), (77, "rec"), (79, "amd"), (80, "res"), (81, "osv"), (83, "fnd"), (83, "fen"), (84, "fdd"), (85, "slg"), (85, "sle") ], [:gsp_industry_id,:i] ) #bea_gsp_mapsec = WiNDC_notation(bea_gsp_mapsec,:i) push!(notations, notation_link(:IndustryID,bea_gsp_mapsec,:gsp_industry_id,:i,:i)) return notations end function bea_pce_notations() notations = [] region = regions() push!(notations, notation_link(:GeoName,region,:region_fullname,:region_abbv,:r)) pce_map = DataFrame([ ("Food and beverages purchased for off-premises consumption","foo","agr"), ("Recreational goods and vehicles","rec","fof"), ("Gasoline and other energy goods","enr","oil"), ("Gasoline and other energy goods","enr","min"), ("Other nondurable goods","ong","smn"), ("Housing and utilities","utl","uti"), ("Other durable goods","odg","con"), ("Food and beverages purchased for off-premises consumption","foo","fbp"), ("Clothing and footwear","clo","tex"), ("Clothing and footwear","clo","alt"), ("Furnishings and durable household equipment","hdr","wpd"), ("Other durable goods","odg","ppd"), ("Other durable goods","odg","pri"), ("Other durable goods","odg","pet"), ("Other durable goods","odg","che"), ("Other durable goods","odg","pla"), ("Other durable goods","odg","nmp"), ("Other durable goods","odg","pmt"), ("Other durable goods","odg","fmt"), ("Other durable goods","odg","mch"), ("Recreational goods and vehicles","rec","cep"), ("Recreational goods and vehicles","rec","eec"), ("Motor vehicles and parts","mvp","mot"), ("Motor vehicles and parts","mvp","ote"), ("Furnishings and durable household equipment","hdr","fpd"), ("Other durable goods","odg","mmf"), ("Other durable goods","odg","wht"), ("Motor vehicles and parts","mvp","mvt"), ("Food and beverages purchased for off-premises consumption","foo","fbt"), ("Other nondurable goods","ong","gmt"), ("Other nondurable goods","ong","ott"), ("Transportation services","trn","air"), ("Transportation services","trn","trn"), ("Transportation services","trn","wtt"), ("Transportation services","trn","trk"), ("Transportation services","trn","grd"), ("Transportation services","trn","pip"), ("Transportation services","trn","otr"), ("Other services","osr","wrh"), ("Other services","osr","pub"), ("Other services","osr","mov"), ("Other services","osr","brd"), ("Other services","osr","dat"), ("Financial services and insurance","fsr","bnk"), ("Financial services and insurance","fsr","sec"), ("Financial services and insurance","fsr","ins"), ("Financial services and insurance","fsr","fin"), ("Housing and utilities","utl","hou"), ("Housing and utilities","utl","ore"), ("Recreation services","rsr","rnt"), ("Other services","osr","leg"), ("Other services","osr","com"), ("Other services","osr","tsv"), ("Other services","osr","man"), ("Other services","osr","adm"), ("Housing and utilities","utl","wst"), ("Household consumption expenditures (for services)","hce","edu"), ("Health care","hea","amb"), ("Health care","hea","hos"), ("Health care","hea","nrs"), ("Health care","hea","soc"), ("Recreation services","rsr","art"), ("Recreation services","rsr","rec"), ("Recreation services","rsr","amd"), ("Food services and accommodations","htl","res"), ("Other services","osr","osv"), ("Gross output of nonprofit institutions","npi","fdd"), ("Gross output of nonprofit institutions","npi","fnd"), ("Gross output of nonprofit institutions","npi","fen"), ("Gross output of nonprofit institutions","npi","slg"), ("Gross output of nonprofit institutions","npi","sle"), ("Gross output of nonprofit institutions","npi","use"), ("Gross output of nonprofit institutions","npi","oth"), #("Personal consumption expenditures","pce",missing), #("Goods","gds",missing), #("Durable goods","dur",missing), #("Nondurable goods","ndr",missing), #("Services","ser",missing), #("Final consumption expenditures of nonprofit institutions serving households (NPISHs)","npish",missing), #("Less: Receipts from sales of goods and services by nonprofit institutions","nps",missing), ],[:pce_description,:pce,:i]) push!(notations,notation_link(:Description,pce_map,:pce_description,:i,:i)) return notations end function faf_notations() notations = [] region = regions() push!(notations, notation_link(:dms_origst,region,:fips_state,:region_abbv,:dms_orig)) push!(notations, notation_link(:dms_destst,region,:fips_state,:region_abbv,:dms_dest)) sctg2 = DataFrame([ (1, "agr"), (2, "agr"), (3, "agr"), (4, "agr"), (5, "agr"), (1, "fof"), (25, "fof"), (16, "oil"), (19, "oil"), (10, "min"), (11, "min"), (12, "min"), (13, "min"), (14, "min"), (15, "min"), (10, "smn"), (11, "smn"), (12, "smn"), (13, "smn"), (14, "smn"), (15, "smn"), (26, "wpd"), (31, "nmp"), (32, "pmt"), (33, "pmt"), (32, "fmt"), (33, "fmt"), (34, "mch"), (35, "cep"), (35, "eec"), (36, "mot"), (37, "ote"), (39, "fpd"), (40, "mmf"), (6, "fbp"), (7, "fbp"), (8, "fbp"), (9, "fbp"), (30, "tex"), (30, "alt"), (27, "ppd"), (28, "ppd"), (29, "pri"), (17, "pet"), (18, "pet"), (19, "pet"), (20, "che"), (21, "che"), (22, "che"), (23, "che"), (24, "pla"), (41, "oth"), (43, "oth"), (41, "use"), (43, "use") ], [:sctg2,:i]) push!(notations, notation_link(:sctg2,sctg2,:sctg2,:i,:i)) years = DataFrame([ ("1997", "1997"), ("1997", "1998"), ("1997", "1999"), ("2002", "2000"), ("2002", "2001"), ("2002", "2002"), ("2002", "2003"), ("2002", "2004"), ("2007", "2005"), ("2007", "2006"), ("2007", "2007"), ("2007", "2008"), ("2007", "2009"), ("2012", "2010"), ("2012", "2011"), ("2012", "2012"), ("2012", "2013"), ("2012", "2014"), ("2017", "2015"), ("2017", "2016"), ("2017", "2017"), ("2018", "2018"), ("2019", "2019"), ("2020", "2020"), ("2021", "2021"), ],[:faf_year,:year]) push!(notations, notation_link(:year,years,:faf_year,:year,:year)) return notations end function usatrd_notations() notations = [] region = regions() push!(notations,notation_link(:State,region,:region_fullname,:region_abbv,:region_abbv)) naics_map = DataFrame([ ("1111", :agr), ("1112", :agr), ("1113", :agr), ("1114", :agr), ("1119", :agr), ("1121", :agr), ("1122", :agr), ("1123", :agr), ("1124", :agr), ("1125", :agr), ("1129", :agr), ("1132", :fof), ("1133", :fof), ("1141", :fof), ("2111", :oil), ("2121", :min), ("2122", :min), ("2123", :min), ("3111", :fbp), ("3112", :fbp), ("3113", :fbp), ("3114", :fbp), ("3115", :fbp), ("3116", :fbp), ("3117", :fbp), ("3118", :fbp), ("3119", :fbp), ("3121", :fbp), ("3122", :fbp), ("3131", :tex), ("3132", :tex), ("3133", :tex), ("3141", :tex), ("3149", :tex), ("3151", :alt), ("3152", :alt), ("3159", :alt), ("3161", :alt), ("3162", :alt), ("3169", :alt), ("3211", :wpd), ("3212", :wpd), ("3219", :wpd), ("3221", :ppd), ("3222", :ppd), ("3231", :pri), ("3241", :pet), ("3251", :che), ("3252", :che), ("3253", :che), ("3254", :che), ("3255", :che), ("3256", :che), ("3259", :che), ("3261", :pla), ("3262", :pla), ("3271", :nmp), ("3272", :nmp), ("3273", :nmp), ("3274", :nmp), ("3279", :nmp), ("3311", :pmt), ("3312", :pmt), ("3313", :pmt), ("3314", :pmt), ("3315", :fmt), ("3321", :fmt), ("3322", :fmt), ("3323", :fmt), ("3324", :fmt), ("3325", :fmt), ("3326", :fmt), ("3327", :fmt), ("3329", :fmt), ("3331", :fmt), ("3332", :mch), ("3333", :mch), ("3334", :mch), ("3335", :mch), ("3336", :mch), ("3339", :mch), ("3341", :cep), ("3342", :cep), ("3343", :cep), ("3344", :cep), ("3345", :cep), ("3346", :cep), ("3351", :eec), ("3352", :eec), ("3353", :eec), ("3359", :eec), ("3361", :mot), ("3362", :mot), ("3363", :mot), ("3364", :ote), ("3365", :ote), ("3366", :ote), ("3369", :ote), ("3371", :fpd), ("3372", :fpd), ("3379", :fpd), ("3391", :mmf), ("3399", :mmf), ("5112", :pub), ("9100", :use), ("9200", :use), ("9300", :use), ("9800", :oth), ("9900", :oth), ], [:naics,:i]) push!(notations,notation_link(:naics,naics_map,:naics,:i,:i)) return notations end function usatrd_shares_notations() notations = [] region = regions() push!(notations,notation_link(:State,region,:region_fullname,:region_abbv,:region_abbv)) return notations end function sgf_notations() notations = [] region = regions() push!(notations,notation_link(:government_code,region,:sgf_code,:region_abbv,:region_abbv)) sgf_codes = DataFrame([ ("Education","educat","E12","edu"), ("Education","educat","E16","edu"), ("Education","educat","E18","edu"), ("Education","educat","E21","edu"), ("Education","educat","F12","edu"), ("Education","educat","F16","edu"), ("Education","educat","F18","edu"), ("Education","educat","F21","edu"), ("Education","educat","G12","edu"), ("Education","educat","G16","edu"), ("Education","educat","G18","edu"), ("Education","educat","G21","edu"), ("Education","educat","J19","edu"), ("Education","educat","M12","edu"), ("Education","educat","M18","edu"), ("Education","educat","M21","edu"), ("Education","educat","Q12","edu"), ("Education","educat","Q18","edu"), ("Public welfare","pubwel","E74","tex"), ("Public welfare","pubwel","E74","alt"), ("Public welfare","pubwel","E74","wpd"), ("Public welfare","pubwel","E74","ppd"), ("Public welfare","pubwel","E74","pri"), ("Public welfare","pubwel","E74","wst"), ("Public welfare","pubwel","E74","soc"), ("Public welfare","pubwel","E75","tex"), ("Public welfare","pubwel","E75","alt"), ("Public welfare","pubwel","E75","wpd"), ("Public welfare","pubwel","E75","ppd"), ("Public welfare","pubwel","E75","pri"), ("Public welfare","pubwel","E75","wst"), ("Public welfare","pubwel","E75","soc"), ("Public welfare","pubwel","E77","tex"), ("Public welfare","pubwel","E77","alt"), ("Public welfare","pubwel","E77","wpd"), ("Public welfare","pubwel","E77","ppd"), ("Public welfare","pubwel","E77","pri"), ("Public welfare","pubwel","E77","wst"), ("Public welfare","pubwel","E77","soc"), ("Public welfare","pubwel","E79","tex"), ("Public welfare","pubwel","E79","alt"), ("Public welfare","pubwel","E79","wpd"), ("Public welfare","pubwel","E79","ppd"), ("Public welfare","pubwel","E79","pri"), ("Public welfare","pubwel","E79","wst"), ("Public welfare","pubwel","E79","soc"), ("Public welfare","pubwel","F77","tex"), ("Public welfare","pubwel","F77","alt"), ("Public welfare","pubwel","F77","wpd"), ("Public welfare","pubwel","F77","ppd"), ("Public welfare","pubwel","F77","pri"), ("Public welfare","pubwel","F77","wst"), ("Public welfare","pubwel","F77","soc"), ("Public welfare","pubwel","F79","tex"), ("Public welfare","pubwel","F79","alt"), ("Public welfare","pubwel","F79","wpd"), ("Public welfare","pubwel","F79","ppd"), ("Public welfare","pubwel","F79","pri"), ("Public welfare","pubwel","F79","wst"), ("Public welfare","pubwel","F79","soc"), ("Public welfare","pubwel","G77","tex"), ("Public welfare","pubwel","G77","alt"), ("Public welfare","pubwel","G77","wpd"), ("Public welfare","pubwel","G77","ppd"), ("Public welfare","pubwel","G77","pri"), ("Public welfare","pubwel","G77","wst"), ("Public welfare","pubwel","G77","soc"), ("Public welfare","pubwel","G79","tex"), ("Public welfare","pubwel","G79","alt"), ("Public welfare","pubwel","G79","wpd"), ("Public welfare","pubwel","G79","ppd"), ("Public welfare","pubwel","G79","pri"), ("Public welfare","pubwel","G79","wst"), ("Public welfare","pubwel","G79","soc"), ("Public welfare","pubwel","J67","tex"), ("Public welfare","pubwel","J67","alt"), ("Public welfare","pubwel","J67","wpd"), ("Public welfare","pubwel","J67","ppd"), ("Public welfare","pubwel","J67","pri"), ("Public welfare","pubwel","J67","wst"), ("Public welfare","pubwel","J67","soc"), ("Public welfare","pubwel","J68","tex"), ("Public welfare","pubwel","J68","alt"), ("Public welfare","pubwel","J68","wpd"), ("Public welfare","pubwel","J68","ppd"), ("Public welfare","pubwel","J68","pri"), ("Public welfare","pubwel","J68","wst"), ("Public welfare","pubwel","J68","soc"), ("Public welfare","pubwel","M67","tex"), ("Public welfare","pubwel","M67","alt"), ("Public welfare","pubwel","M67","wpd"), ("Public welfare","pubwel","M67","ppd"), ("Public welfare","pubwel","M67","pri"), ("Public welfare","pubwel","M67","wst"), ("Public welfare","pubwel","M67","soc"), ("Public welfare","pubwel","M68","tex"), ("Public welfare","pubwel","M68","alt"), ("Public welfare","pubwel","M68","wpd"), ("Public welfare","pubwel","M68","ppd"), ("Public welfare","pubwel","M68","pri"), ("Public welfare","pubwel","M68","wst"), ("Public welfare","pubwel","M68","soc"), ("Public welfare","pubwel","M79","tex"), ("Public welfare","pubwel","M79","alt"), ("Public welfare","pubwel","M79","wpd"), ("Public welfare","pubwel","M79","ppd"), ("Public welfare","pubwel","M79","pri"), ("Public welfare","pubwel","M79","wst"), ("Public welfare","pubwel","M79","soc"), ("Public welfare","pubwel","S67","tex"), ("Public welfare","pubwel","S67","alt"), ("Public welfare","pubwel","S67","wpd"), ("Public welfare","pubwel","S67","ppd"), ("Public welfare","pubwel","S67","pri"), ("Public welfare","pubwel","S67","wst"), ("Public welfare","pubwel","S67","soc"), ("Hospitals","hosptl","E36","hos"), ("Hospitals","hosptl","F36","hos"), ("Hospitals","hosptl","G36","hos"), ("Hospitals","hosptl","M36","hos"), ("Health","health","E32","amb"), ("Health","health","E32","nrs"), ("Health","health","F32","amb"), ("Health","health","F32","nrs"), ("Health","health","G32","amb"), ("Health","health","G32","nrs"), ("Health","health","M32","amb"), ("Health","health","M32","nrs"), ("Highways","hghway","E44","con"), ("Highways","hghway","E44","air"), ("Highways","hghway","E44","trn"), ("Highways","hghway","E44","wtt"), ("Highways","hghway","E44","trk"), ("Highways","hghway","E44","grd"), ("Highways","hghway","E44","pip"), ("Highways","hghway","E44","otr"), ("Highways","hghway","M44","con"), ("Highways","hghway","M44","air"), ("Highways","hghway","M44","trn"), ("Highways","hghway","M44","wtt"), ("Highways","hghway","M44","trk"), ("Highways","hghway","M44","grd"), ("Highways","hghway","M44","pip"), ("Highways","hghway","M44","otr"), ("Highways","hghway","F44","con"), ("Highways","hghway","F44","air"), ("Highways","hghway","F44","trn"), ("Highways","hghway","F44","wtt"), ("Highways","hghway","F44","trk"), ("Highways","hghway","F44","grd"), ("Highways","hghway","F44","pip"), ("Highways","hghway","F44","otr"), ("Highways","hghway","G44","con"), ("Highways","hghway","G44","air"), ("Highways","hghway","G44","trn"), ("Highways","hghway","G44","wtt"), ("Highways","hghway","G44","trk"), ("Highways","hghway","G44","grd"), ("Highways","hghway","G44","pip"), ("Highways","hghway","G44","otr"), ("Highways","hghway","E45","con"), ("Highways","hghway","E45","air"), ("Highways","hghway","E45","trn"), ("Highways","hghway","E45","wtt"), ("Highways","hghway","E45","trk"), ("Highways","hghway","E45","grd"), ("Highways","hghway","E45","pip"), ("Highways","hghway","E45","otr"), ("Highways","hghway","F45","con"), ("Highways","hghway","F45","air"), ("Highways","hghway","F45","trn"), ("Highways","hghway","F45","wtt"), ("Highways","hghway","F45","trk"), ("Highways","hghway","F45","grd"), ("Highways","hghway","F45","pip"), ("Highways","hghway","F45","otr"), ("Highways","hghway","G45","con"), ("Highways","hghway","G45","air"), ("Highways","hghway","G45","trn"), ("Highways","hghway","G45","wtt"), ("Highways","hghway","G45","trk"), ("Highways","hghway","G45","grd"), ("Highways","hghway","G45","pip"), ("Highways","hghway","G45","otr"), ("Police protection","police","E62","fdd"), ("Police protection","police","E62","fnd"), ("Police protection","police","E62","fen"), ("Police protection","police","E62","slg"), ("Police protection","police","E62","sle"), ("Police protection","police","F62","fdd"), ("Police protection","police","F62","fnd"), ("Police protection","police","F62","fen"), ("Police protection","police","F62","slg"), ("Police protection","police","F62","sle"), ("Police protection","police","G62","fdd"), ("Police protection","police","G62","fnd"), ("Police protection","police","G62","fen"), ("Police protection","police","G62","slg"), ("Police protection","police","G62","sle"), ("Police protection","police","M62","fdd"), ("Police protection","police","M62","fnd"), ("Police protection","police","M62","fen"), ("Police protection","police","M62","slg"), ("Police protection","police","M62","sle"), ("Correction","correc","E04","fdd"), ("Correction","correc","E04","fnd"), ("Correction","correc","E04","fen"), ("Correction","correc","E04","slg"), ("Correction","correc","E04","sle"), ("Correction","correc","E05","fdd"), ("Correction","correc","E05","fnd"), ("Correction","correc","E05","fen"), ("Correction","correc","E05","slg"), ("Correction","correc","E05","sle"), ("Correction","correc","F04","fdd"), ("Correction","correc","F04","fnd"), ("Correction","correc","F04","fen"), ("Correction","correc","F04","slg"), ("Correction","correc","F04","sle"), ("Correction","correc","F05","fdd"), ("Correction","correc","F05","fnd"), ("Correction","correc","F05","fen"), ("Correction","correc","F05","slg"), ("Correction","correc","F05","sle"), ("Correction","correc","G04","fdd"), ("Correction","correc","G04","fnd"), ("Correction","correc","G04","fen"), ("Correction","correc","G04","slg"), ("Correction","correc","G04","sle"), ("Correction","correc","G05","fdd"), ("Correction","correc","G05","fnd"), ("Correction","correc","G05","fen"), ("Correction","correc","G05","slg"), ("Correction","correc","G05","sle"), ("Correction","correc","M04","fdd"), ("Correction","correc","M04","fnd"), ("Correction","correc","M04","fen"), ("Correction","correc","M04","slg"), ("Correction","correc","M04","sle"), ("Correction","correc","M05","fdd"), ("Correction","correc","M05","fnd"), ("Correction","correc","M05","fen"), ("Correction","correc","M05","slg"), ("Correction","correc","M05","sle"), ("Natural resources","natres","E54","agr"), ("Natural resources","natres","E54","oil"), ("Natural resources","natres","E54","min"), ("Natural resources","natres","E54","smn"), ("Natural resources","natres","E55","agr"), ("Natural resources","natres","E55","oil"), ("Natural resources","natres","E55","min"), ("Natural resources","natres","E55","smn"), ("Natural resources","natres","E56","agr"), ("Natural resources","natres","E56","oil"), ("Natural resources","natres","E56","min"), ("Natural resources","natres","E56","smn"), ("Natural resources","natres","E59","agr"), ("Natural resources","natres","E59","oil"), ("Natural resources","natres","E59","min"), ("Natural resources","natres","E59","smn"), ("Natural resources","natres","F54","agr"), ("Natural resources","natres","F54","oil"), ("Natural resources","natres","F54","min"), ("Natural resources","natres","F54","smn"), ("Natural resources","natres","F55","agr"), ("Natural resources","natres","F55","oil"), ("Natural resources","natres","F55","min"), ("Natural resources","natres","F55","smn"), ("Natural resources","natres","F56","agr"), ("Natural resources","natres","F56","oil"), ("Natural resources","natres","F56","min"), ("Natural resources","natres","F56","smn"), ("Natural resources","natres","F59","agr"), ("Natural resources","natres","F59","oil"), ("Natural resources","natres","F59","min"), ("Natural resources","natres","F59","smn"), ("Natural resources","natres","G54","agr"), ("Natural resources","natres","G54","oil"), ("Natural resources","natres","G54","min"), ("Natural resources","natres","G54","smn"), ("Natural resources","natres","G55","agr"), ("Natural resources","natres","G55","oil"), ("Natural resources","natres","G55","min"), ("Natural resources","natres","G55","smn"), ("Natural resources","natres","G56","agr"), ("Natural resources","natres","G56","oil"), ("Natural resources","natres","G56","min"), ("Natural resources","natres","G56","smn"), ("Natural resources","natres","G59","agr"), ("Natural resources","natres","G59","oil"), ("Natural resources","natres","G59","min"), ("Natural resources","natres","G59","smn"), ("Natural resources","natres","M54","agr"), ("Natural resources","natres","M54","oil"), ("Natural resources","natres","M54","min"), ("Natural resources","natres","M54","smn"), ("Natural resources","natres","M55","agr"), ("Natural resources","natres","M55","oil"), ("Natural resources","natres","M55","min"), ("Natural resources","natres","M55","smn"), ("Natural resources","natres","M56","agr"), ("Natural resources","natres","M56","oil"), ("Natural resources","natres","M56","min"), ("Natural resources","natres","M56","smn"), ("Natural resources","natres","M59","agr"), ("Natural resources","natres","M59","oil"), ("Natural resources","natres","M59","min"), ("Natural resources","natres","M59","smn"), ("Parks and recreation","parkrc","E61","fof"), ("Parks and recreation","parkrc","E61","art"), ("Parks and recreation","parkrc","E61","rec"), ("Parks and recreation","parkrc","E61","amd"), ("Parks and recreation","parkrc","F61","fof"), ("Parks and recreation","parkrc","F61","art"), ("Parks and recreation","parkrc","F61","rec"), ("Parks and recreation","parkrc","F61","amd"), ("Parks and recreation","parkrc","G61","fof"), ("Parks and recreation","parkrc","G61","art"), ("Parks and recreation","parkrc","G61","rec"), ("Parks and recreation","parkrc","G61","amd"), ("Parks and recreation","parkrc","M61","fof"), ("Parks and recreation","parkrc","M61","art"), ("Parks and recreation","parkrc","M61","rec"), ("Parks and recreation","parkrc","M61","amd"), ("Governmental administration","govadm","E23","wrh"), ("Governmental administration","govadm","E23","pub"), ("Governmental administration","govadm","E23","mov"), ("Governmental administration","govadm","E23","brd"), ("Governmental administration","govadm","E23","dat"), ("Governmental administration","govadm","E23","hou"), ("Governmental administration","govadm","E23","ore"), ("Governmental administration","govadm","E23","rnt"), ("Governmental administration","govadm","E23","leg"), ("Governmental administration","govadm","E23","com"), ("Governmental administration","govadm","E23","tsv"), ("Governmental administration","govadm","E23","man"), ("Governmental administration","govadm","E23","adm"), ("Governmental administration","govadm","E23","fdd"), ("Governmental administration","govadm","E23","fnd"), ("Governmental administration","govadm","E23","fen"), ("Governmental administration","govadm","E23","slg"), ("Governmental administration","govadm","E23","sle"), ("Governmental administration","govadm","E25","wrh"), ("Governmental administration","govadm","E25","pub"), ("Governmental administration","govadm","E25","mov"), ("Governmental administration","govadm","E25","brd"), ("Governmental administration","govadm","E25","dat"), ("Governmental administration","govadm","E25","hou"), ("Governmental administration","govadm","E25","ore"), ("Governmental administration","govadm","E25","rnt"), ("Governmental administration","govadm","E25","leg"), ("Governmental administration","govadm","E25","com"), ("Governmental administration","govadm","E25","tsv"), ("Governmental administration","govadm","E25","man"), ("Governmental administration","govadm","E25","adm"), ("Governmental administration","govadm","E25","fdd"), ("Governmental administration","govadm","E25","fnd"), ("Governmental administration","govadm","E25","fen"), ("Governmental administration","govadm","E25","slg"), ("Governmental administration","govadm","E25","sle"), ("Governmental administration","govadm","E26","wrh"), ("Governmental administration","govadm","E26","pub"), ("Governmental administration","govadm","E26","mov"), ("Governmental administration","govadm","E26","brd"), ("Governmental administration","govadm","E26","dat"), ("Governmental administration","govadm","E26","hou"), ("Governmental administration","govadm","E26","ore"), ("Governmental administration","govadm","E26","rnt"), ("Governmental administration","govadm","E26","leg"), ("Governmental administration","govadm","E26","com"), ("Governmental administration","govadm","E26","tsv"), ("Governmental administration","govadm","E26","man"), ("Governmental administration","govadm","E26","adm"), ("Governmental administration","govadm","E26","fdd"), ("Governmental administration","govadm","E26","fnd"), ("Governmental administration","govadm","E26","fen"), ("Governmental administration","govadm","E26","slg"), ("Governmental administration","govadm","E26","sle"), ("Governmental administration","govadm","E29","wrh"), ("Governmental administration","govadm","E29","pub"), ("Governmental administration","govadm","E29","mov"), ("Governmental administration","govadm","E29","brd"), ("Governmental administration","govadm","E29","dat"), ("Governmental administration","govadm","E29","hou"), ("Governmental administration","govadm","E29","ore"), ("Governmental administration","govadm","E29","rnt"), ("Governmental administration","govadm","E29","leg"), ("Governmental administration","govadm","E29","com"), ("Governmental administration","govadm","E29","tsv"), ("Governmental administration","govadm","E29","man"), ("Governmental administration","govadm","E29","adm"), ("Governmental administration","govadm","E29","fdd"), ("Governmental administration","govadm","E29","fnd"), ("Governmental administration","govadm","E29","fen"), ("Governmental administration","govadm","E29","slg"), ("Governmental administration","govadm","E29","sle"), ("Governmental administration","govadm","E31","wrh"), ("Governmental administration","govadm","E31","pub"), ("Governmental administration","govadm","E31","mov"), ("Governmental administration","govadm","E31","brd"), ("Governmental administration","govadm","E31","dat"), ("Governmental administration","govadm","E31","hou"), ("Governmental administration","govadm","E31","ore"), ("Governmental administration","govadm","E31","rnt"), ("Governmental administration","govadm","E31","leg"), ("Governmental administration","govadm","E31","com"), ("Governmental administration","govadm","E31","tsv"), ("Governmental administration","govadm","E31","man"), ("Governmental administration","govadm","E31","adm"), ("Governmental administration","govadm","E31","fdd"), ("Governmental administration","govadm","E31","fnd"), ("Governmental administration","govadm","E31","fen"), ("Governmental administration","govadm","E31","slg"), ("Governmental administration","govadm","E31","sle"), ("Governmental administration","govadm","F23","wrh"), ("Governmental administration","govadm","F23","pub"), ("Governmental administration","govadm","F23","mov"), ("Governmental administration","govadm","F23","brd"), ("Governmental administration","govadm","F23","dat"), ("Governmental administration","govadm","F23","hou"), ("Governmental administration","govadm","F23","ore"), ("Governmental administration","govadm","F23","rnt"), ("Governmental administration","govadm","F23","leg"), ("Governmental administration","govadm","F23","com"), ("Governmental administration","govadm","F23","tsv"), ("Governmental administration","govadm","F23","man"), ("Governmental administration","govadm","F23","adm"), ("Governmental administration","govadm","F23","fdd"), ("Governmental administration","govadm","F23","fnd"), ("Governmental administration","govadm","F23","fen"), ("Governmental administration","govadm","F23","slg"), ("Governmental administration","govadm","F23","sle"), ("Governmental administration","govadm","F25","wrh"), ("Governmental administration","govadm","F25","pub"), ("Governmental administration","govadm","F25","mov"), ("Governmental administration","govadm","F25","brd"), ("Governmental administration","govadm","F25","dat"), ("Governmental administration","govadm","F25","hou"), ("Governmental administration","govadm","F25","ore"), ("Governmental administration","govadm","F25","rnt"), ("Governmental administration","govadm","F25","leg"), ("Governmental administration","govadm","F25","com"), ("Governmental administration","govadm","F25","tsv"), ("Governmental administration","govadm","F25","man"), ("Governmental administration","govadm","F25","adm"), ("Governmental administration","govadm","F25","fdd"), ("Governmental administration","govadm","F25","fnd"), ("Governmental administration","govadm","F25","fen"), ("Governmental administration","govadm","F25","slg"), ("Governmental administration","govadm","F25","sle"), ("Governmental administration","govadm","F26","wrh"), ("Governmental administration","govadm","F26","pub"), ("Governmental administration","govadm","F26","mov"), ("Governmental administration","govadm","F26","brd"), ("Governmental administration","govadm","F26","dat"), ("Governmental administration","govadm","F26","hou"), ("Governmental administration","govadm","F26","ore"), ("Governmental administration","govadm","F26","rnt"), ("Governmental administration","govadm","F26","leg"), ("Governmental administration","govadm","F26","com"), ("Governmental administration","govadm","F26","tsv"), ("Governmental administration","govadm","F26","man"), ("Governmental administration","govadm","F26","adm"), ("Governmental administration","govadm","F26","fdd"), ("Governmental administration","govadm","F26","fnd"), ("Governmental administration","govadm","F26","fen"), ("Governmental administration","govadm","F26","slg"), ("Governmental administration","govadm","F26","sle"), ("Governmental administration","govadm","F29","wrh"), ("Governmental administration","govadm","F29","pub"), ("Governmental administration","govadm","F29","mov"), ("Governmental administration","govadm","F29","brd"), ("Governmental administration","govadm","F29","dat"), ("Governmental administration","govadm","F29","hou"), ("Governmental administration","govadm","F29","ore"), ("Governmental administration","govadm","F29","rnt"), ("Governmental administration","govadm","F29","leg"), ("Governmental administration","govadm","F29","com"), ("Governmental administration","govadm","F29","tsv"), ("Governmental administration","govadm","F29","man"), ("Governmental administration","govadm","F29","adm"), ("Governmental administration","govadm","F29","fdd"), ("Governmental administration","govadm","F29","fnd"), ("Governmental administration","govadm","F29","fen"), ("Governmental administration","govadm","F29","slg"), ("Governmental administration","govadm","F29","sle"), ("Governmental administration","govadm","F31","wrh"), ("Governmental administration","govadm","F31","pub"), ("Governmental administration","govadm","F31","mov"), ("Governmental administration","govadm","F31","brd"), ("Governmental administration","govadm","F31","dat"), ("Governmental administration","govadm","F31","hou"), ("Governmental administration","govadm","F31","ore"), ("Governmental administration","govadm","F31","rnt"), ("Governmental administration","govadm","F31","leg"), ("Governmental administration","govadm","F31","com"), ("Governmental administration","govadm","F31","tsv"), ("Governmental administration","govadm","F31","man"), ("Governmental administration","govadm","F31","adm"), ("Governmental administration","govadm","F31","fdd"), ("Governmental administration","govadm","F31","fnd"), ("Governmental administration","govadm","F31","fen"), ("Governmental administration","govadm","F31","slg"), ("Governmental administration","govadm","F31","sle"), ("Governmental administration","govadm","G23","wrh"), ("Governmental administration","govadm","G23","pub"), ("Governmental administration","govadm","G23","mov"), ("Governmental administration","govadm","G23","brd"), ("Governmental administration","govadm","G23","dat"), ("Governmental administration","govadm","G23","hou"), ("Governmental administration","govadm","G23","ore"), ("Governmental administration","govadm","G23","rnt"), ("Governmental administration","govadm","G23","leg"), ("Governmental administration","govadm","G23","com"), ("Governmental administration","govadm","G23","tsv"), ("Governmental administration","govadm","G23","man"), ("Governmental administration","govadm","G23","adm"), ("Governmental administration","govadm","G23","fdd"), ("Governmental administration","govadm","G23","fnd"), ("Governmental administration","govadm","G23","fen"), ("Governmental administration","govadm","G23","slg"), ("Governmental administration","govadm","G23","sle"), ("Governmental administration","govadm","G25","wrh"), ("Governmental administration","govadm","G25","pub"), ("Governmental administration","govadm","G25","mov"), ("Governmental administration","govadm","G25","brd"), ("Governmental administration","govadm","G25","dat"), ("Governmental administration","govadm","G25","hou"), ("Governmental administration","govadm","G25","ore"), ("Governmental administration","govadm","G25","rnt"), ("Governmental administration","govadm","G25","leg"), ("Governmental administration","govadm","G25","com"), ("Governmental administration","govadm","G25","tsv"), ("Governmental administration","govadm","G25","man"), ("Governmental administration","govadm","G25","adm"), ("Governmental administration","govadm","G25","fdd"), ("Governmental administration","govadm","G25","fnd"), ("Governmental administration","govadm","G25","fen"), ("Governmental administration","govadm","G25","slg"), ("Governmental administration","govadm","G25","sle"), ("Governmental administration","govadm","G26","wrh"), ("Governmental administration","govadm","G26","pub"), ("Governmental administration","govadm","G26","mov"), ("Governmental administration","govadm","G26","brd"), ("Governmental administration","govadm","G26","dat"), ("Governmental administration","govadm","G26","hou"), ("Governmental administration","govadm","G26","ore"), ("Governmental administration","govadm","G26","rnt"), ("Governmental administration","govadm","G26","leg"), ("Governmental administration","govadm","G26","com"), ("Governmental administration","govadm","G26","tsv"), ("Governmental administration","govadm","G26","man"), ("Governmental administration","govadm","G26","adm"), ("Governmental administration","govadm","G26","fdd"), ("Governmental administration","govadm","G26","fnd"), ("Governmental administration","govadm","G26","fen"), ("Governmental administration","govadm","G26","slg"), ("Governmental administration","govadm","G26","sle"), ("Governmental administration","govadm","G29","wrh"), ("Governmental administration","govadm","G29","pub"), ("Governmental administration","govadm","G29","mov"), ("Governmental administration","govadm","G29","brd"), ("Governmental administration","govadm","G29","dat"), ("Governmental administration","govadm","G29","hou"), ("Governmental administration","govadm","G29","ore"), ("Governmental administration","govadm","G29","rnt"), ("Governmental administration","govadm","G29","leg"), ("Governmental administration","govadm","G29","com"), ("Governmental administration","govadm","G29","tsv"), ("Governmental administration","govadm","G29","man"), ("Governmental administration","govadm","G29","adm"), ("Governmental administration","govadm","G29","fdd"), ("Governmental administration","govadm","G29","fnd"), ("Governmental administration","govadm","G29","fen"), ("Governmental administration","govadm","G29","slg"), ("Governmental administration","govadm","G29","sle"), ("Governmental administration","govadm","G31","wrh"), ("Governmental administration","govadm","G31","pub"), ("Governmental administration","govadm","G31","mov"), ("Governmental administration","govadm","G31","brd"), ("Governmental administration","govadm","G31","dat"), ("Governmental administration","govadm","G31","hou"), ("Governmental administration","govadm","G31","ore"), ("Governmental administration","govadm","G31","rnt"), ("Governmental administration","govadm","G31","leg"), ("Governmental administration","govadm","G31","com"), ("Governmental administration","govadm","G31","tsv"), ("Governmental administration","govadm","G31","man"), ("Governmental administration","govadm","G31","adm"), ("Governmental administration","govadm","G31","fdd"), ("Governmental administration","govadm","G31","fnd"), ("Governmental administration","govadm","G31","fen"), ("Governmental administration","govadm","G31","slg"), ("Governmental administration","govadm","G31","sle"), ("Governmental administration","govadm","M23","wrh"), ("Governmental administration","govadm","M23","pub"), ("Governmental administration","govadm","M23","mov"), ("Governmental administration","govadm","M23","brd"), ("Governmental administration","govadm","M23","dat"), ("Governmental administration","govadm","M23","hou"), ("Governmental administration","govadm","M23","ore"), ("Governmental administration","govadm","M23","rnt"), ("Governmental administration","govadm","M23","leg"), ("Governmental administration","govadm","M23","com"), ("Governmental administration","govadm","M23","tsv"), ("Governmental administration","govadm","M23","man"), ("Governmental administration","govadm","M23","adm"), ("Governmental administration","govadm","M23","fdd"), ("Governmental administration","govadm","M23","fnd"), ("Governmental administration","govadm","M23","fen"), ("Governmental administration","govadm","M23","slg"), ("Governmental administration","govadm","M23","sle"), ("Governmental administration","govadm","M25","wrh"), ("Governmental administration","govadm","M25","pub"), ("Governmental administration","govadm","M25","mov"), ("Governmental administration","govadm","M25","brd"), ("Governmental administration","govadm","M25","dat"), ("Governmental administration","govadm","M25","hou"), ("Governmental administration","govadm","M25","ore"), ("Governmental administration","govadm","M25","rnt"), ("Governmental administration","govadm","M25","leg"), ("Governmental administration","govadm","M25","com"), ("Governmental administration","govadm","M25","tsv"), ("Governmental administration","govadm","M25","man"), ("Governmental administration","govadm","M25","adm"), ("Governmental administration","govadm","M25","fdd"), ("Governmental administration","govadm","M25","fnd"), ("Governmental administration","govadm","M25","fen"), ("Governmental administration","govadm","M25","slg"), ("Governmental administration","govadm","M25","sle"), ("Governmental administration","govadm","M29","wrh"), ("Governmental administration","govadm","M29","pub"), ("Governmental administration","govadm","M29","mov"), ("Governmental administration","govadm","M29","brd"), ("Governmental administration","govadm","M29","dat"), ("Governmental administration","govadm","M29","hou"), ("Governmental administration","govadm","M29","ore"), ("Governmental administration","govadm","M29","rnt"), ("Governmental administration","govadm","M29","leg"), ("Governmental administration","govadm","M29","com"), ("Governmental administration","govadm","M29","tsv"), ("Governmental administration","govadm","M29","man"), ("Governmental administration","govadm","M29","adm"), ("Governmental administration","govadm","M29","fdd"), ("Governmental administration","govadm","M29","fnd"), ("Governmental administration","govadm","M29","fen"), ("Governmental administration","govadm","M29","slg"), ("Governmental administration","govadm","M29","sle"), ("Interest on general debt","intgen","I89","bnk"), ("Interest on general debt","intgen","I89","sec"), ("Interest on general debt","intgen","I89","ins"), ("Interest on general debt","intgen","I89","fin"), ("Other and unallocable","othuna","E01","pet"), ("Other and unallocable","othuna","E01","che"), ("Other and unallocable","othuna","E01","pla"), ("Other and unallocable","othuna","E01","nmp"), ("Other and unallocable","othuna","E01","pmt"), ("Other and unallocable","othuna","E01","fmt"), ("Other and unallocable","othuna","E01","mch"), ("Other and unallocable","othuna","E01","cep"), ("Other and unallocable","othuna","E01","eec"), ("Other and unallocable","othuna","E01","mot"), ("Other and unallocable","othuna","E01","ote"), ("Other and unallocable","othuna","E01","fpd"), ("Other and unallocable","othuna","E01","mmf"), ("Other and unallocable","othuna","E01","wht"), ("Other and unallocable","othuna","E01","mvt"), ("Other and unallocable","othuna","E01","gmt"), ("Other and unallocable","othuna","E01","ott"), ("Other and unallocable","othuna","E01","osv"), ("Other and unallocable","othuna","E01","use"), ("Other and unallocable","othuna","E01","oth"), ("Other and unallocable","othuna","E03","pet"), ("Other and unallocable","othuna","E03","che"), ("Other and unallocable","othuna","E03","pla"), ("Other and unallocable","othuna","E03","nmp"), ("Other and unallocable","othuna","E03","pmt"), ("Other and unallocable","othuna","E03","fmt"), ("Other and unallocable","othuna","E03","mch"), ("Other and unallocable","othuna","E03","cep"), ("Other and unallocable","othuna","E03","eec"), ("Other and unallocable","othuna","E03","mot"), ("Other and unallocable","othuna","E03","ote"), ("Other and unallocable","othuna","E03","fpd"), ("Other and unallocable","othuna","E03","mmf"), ("Other and unallocable","othuna","E03","wht"), ("Other and unallocable","othuna","E03","mvt"), ("Other and unallocable","othuna","E03","gmt"), ("Other and unallocable","othuna","E03","ott"), ("Other and unallocable","othuna","E03","osv"), ("Other and unallocable","othuna","E03","use"), ("Other and unallocable","othuna","E03","oth"), ("Other and unallocable","othuna","E22","pet"), ("Other and unallocable","othuna","E22","che"), ("Other and unallocable","othuna","E22","pla"), ("Other and unallocable","othuna","E22","nmp"), ("Other and unallocable","othuna","E22","pmt"), ("Other and unallocable","othuna","E22","fmt"), ("Other and unallocable","othuna","E22","mch"), ("Other and unallocable","othuna","E22","cep"), ("Other and unallocable","othuna","E22","eec"), ("Other and unallocable","othuna","E22","mot"), ("Other and unallocable","othuna","E22","ote"), ("Other and unallocable","othuna","E22","fpd"), ("Other and unallocable","othuna","E22","mmf"), ("Other and unallocable","othuna","E22","wht"), ("Other and unallocable","othuna","E22","mvt"), ("Other and unallocable","othuna","E22","gmt"), ("Other and unallocable","othuna","E22","ott"), ("Other and unallocable","othuna","E22","osv"), ("Other and unallocable","othuna","E22","use"), ("Other and unallocable","othuna","E22","oth"), ("Other and unallocable","othuna","E50","pet"), ("Other and unallocable","othuna","E50","che"), ("Other and unallocable","othuna","E50","pla"), ("Other and unallocable","othuna","E50","nmp"), ("Other and unallocable","othuna","E50","pmt"), ("Other and unallocable","othuna","E50","fmt"), ("Other and unallocable","othuna","E50","mch"), ("Other and unallocable","othuna","E50","cep"), ("Other and unallocable","othuna","E50","eec"), ("Other and unallocable","othuna","E50","mot"), ("Other and unallocable","othuna","E50","ote"), ("Other and unallocable","othuna","E50","fpd"), ("Other and unallocable","othuna","E50","mmf"), ("Other and unallocable","othuna","E50","wht"), ("Other and unallocable","othuna","E50","mvt"), ("Other and unallocable","othuna","E50","gmt"), ("Other and unallocable","othuna","E50","ott"), ("Other and unallocable","othuna","E50","osv"), ("Other and unallocable","othuna","E50","use"), ("Other and unallocable","othuna","E50","oth"), ("Other and unallocable","othuna","E52","pet"), ("Other and unallocable","othuna","E52","che"), ("Other and unallocable","othuna","E52","pla"), ("Other and unallocable","othuna","E52","nmp"), ("Other and unallocable","othuna","E52","pmt"), ("Other and unallocable","othuna","E52","fmt"), ("Other and unallocable","othuna","E52","mch"), ("Other and unallocable","othuna","E52","cep"), ("Other and unallocable","othuna","E52","eec"), ("Other and unallocable","othuna","E52","mot"), ("Other and unallocable","othuna","E52","ote"), ("Other and unallocable","othuna","E52","fpd"), ("Other and unallocable","othuna","E52","mmf"), ("Other and unallocable","othuna","E52","wht"), ("Other and unallocable","othuna","E52","mvt"), ("Other and unallocable","othuna","E52","gmt"), ("Other and unallocable","othuna","E52","ott"), ("Other and unallocable","othuna","E52","osv"), ("Other and unallocable","othuna","E52","use"), ("Other and unallocable","othuna","E52","oth"), ("Other and unallocable","othuna","E60","pet"), ("Other and unallocable","othuna","E60","che"), ("Other and unallocable","othuna","E60","pla"), ("Other and unallocable","othuna","E60","nmp"), ("Other and unallocable","othuna","E60","pmt"), ("Other and unallocable","othuna","E60","fmt"), ("Other and unallocable","othuna","E60","mch"), ("Other and unallocable","othuna","E60","cep"), ("Other and unallocable","othuna","E60","eec"), ("Other and unallocable","othuna","E60","mot"), ("Other and unallocable","othuna","E60","ote"), ("Other and unallocable","othuna","E60","fpd"), ("Other and unallocable","othuna","E60","mmf"), ("Other and unallocable","othuna","E60","wht"), ("Other and unallocable","othuna","E60","mvt"), ("Other and unallocable","othuna","E60","gmt"), ("Other and unallocable","othuna","E60","ott"), ("Other and unallocable","othuna","E60","osv"), ("Other and unallocable","othuna","E60","use"), ("Other and unallocable","othuna","E60","oth"), ("Other and unallocable","othuna","E66","pet"), ("Other and unallocable","othuna","E66","che"), ("Other and unallocable","othuna","E66","pla"), ("Other and unallocable","othuna","E66","nmp"), ("Other and unallocable","othuna","E66","pmt"), ("Other and unallocable","othuna","E66","fmt"), ("Other and unallocable","othuna","E66","mch"), ("Other and unallocable","othuna","E66","cep"), ("Other and unallocable","othuna","E66","eec"), ("Other and unallocable","othuna","E66","mot"), ("Other and unallocable","othuna","E66","ote"), ("Other and unallocable","othuna","E66","fpd"), ("Other and unallocable","othuna","E66","mmf"), ("Other and unallocable","othuna","E66","wht"), ("Other and unallocable","othuna","E66","mvt"), ("Other and unallocable","othuna","E66","gmt"), ("Other and unallocable","othuna","E66","ott"), ("Other and unallocable","othuna","E66","osv"), ("Other and unallocable","othuna","E66","use"), ("Other and unallocable","othuna","E66","oth"), ("Other and unallocable","othuna","E80","pet"), ("Other and unallocable","othuna","E80","che"), ("Other and unallocable","othuna","E80","pla"), ("Other and unallocable","othuna","E80","nmp"), ("Other and unallocable","othuna","E80","pmt"), ("Other and unallocable","othuna","E80","fmt"), ("Other and unallocable","othuna","E80","mch"), ("Other and unallocable","othuna","E80","cep"), ("Other and unallocable","othuna","E80","eec"), ("Other and unallocable","othuna","E80","mot"), ("Other and unallocable","othuna","E80","ote"), ("Other and unallocable","othuna","E80","fpd"), ("Other and unallocable","othuna","E80","mmf"), ("Other and unallocable","othuna","E80","wht"), ("Other and unallocable","othuna","E80","mvt"), ("Other and unallocable","othuna","E80","gmt"), ("Other and unallocable","othuna","E80","ott"), ("Other and unallocable","othuna","E80","osv"), ("Other and unallocable","othuna","E80","use"), ("Other and unallocable","othuna","E80","oth"), ("Other and unallocable","othuna","E81","pet"), ("Other and unallocable","othuna","E81","che"), ("Other and unallocable","othuna","E81","pla"), ("Other and unallocable","othuna","E81","nmp"), ("Other and unallocable","othuna","E81","pmt"), ("Other and unallocable","othuna","E81","fmt"), ("Other and unallocable","othuna","E81","mch"), ("Other and unallocable","othuna","E81","cep"), ("Other and unallocable","othuna","E81","eec"), ("Other and unallocable","othuna","E81","mot"), ("Other and unallocable","othuna","E81","ote"), ("Other and unallocable","othuna","E81","fpd"), ("Other and unallocable","othuna","E81","mmf"), ("Other and unallocable","othuna","E81","wht"), ("Other and unallocable","othuna","E81","mvt"), ("Other and unallocable","othuna","E81","gmt"), ("Other and unallocable","othuna","E81","ott"), ("Other and unallocable","othuna","E81","osv"), ("Other and unallocable","othuna","E81","use"), ("Other and unallocable","othuna","E81","oth"), ("Other and unallocable","othuna","E85","pet"), ("Other and unallocable","othuna","E85","che"), ("Other and unallocable","othuna","E85","pla"), ("Other and unallocable","othuna","E85","nmp"), ("Other and unallocable","othuna","E85","pmt"), ("Other and unallocable","othuna","E85","fmt"), ("Other and unallocable","othuna","E85","mch"), ("Other and unallocable","othuna","E85","cep"), ("Other and unallocable","othuna","E85","eec"), ("Other and unallocable","othuna","E85","mot"), ("Other and unallocable","othuna","E85","ote"), ("Other and unallocable","othuna","E85","fpd"), ("Other and unallocable","othuna","E85","mmf"), ("Other and unallocable","othuna","E85","wht"), ("Other and unallocable","othuna","E85","mvt"), ("Other and unallocable","othuna","E85","gmt"), ("Other and unallocable","othuna","E85","ott"), ("Other and unallocable","othuna","E85","osv"), ("Other and unallocable","othuna","E85","use"), ("Other and unallocable","othuna","E85","oth"), ("Other and unallocable","othuna","E87","pet"), ("Other and unallocable","othuna","E87","che"), ("Other and unallocable","othuna","E87","pla"), ("Other and unallocable","othuna","E87","nmp"), ("Other and unallocable","othuna","E87","pmt"), ("Other and unallocable","othuna","E87","fmt"), ("Other and unallocable","othuna","E87","mch"), ("Other and unallocable","othuna","E87","cep"), ("Other and unallocable","othuna","E87","eec"), ("Other and unallocable","othuna","E87","mot"), ("Other and unallocable","othuna","E87","ote"), ("Other and unallocable","othuna","E87","fpd"), ("Other and unallocable","othuna","E87","mmf"), ("Other and unallocable","othuna","E87","wht"), ("Other and unallocable","othuna","E87","mvt"), ("Other and unallocable","othuna","E87","gmt"), ("Other and unallocable","othuna","E87","ott"), ("Other and unallocable","othuna","E87","osv"), ("Other and unallocable","othuna","E87","use"), ("Other and unallocable","othuna","E87","oth"), ("Other and unallocable","othuna","E89","pet"), ("Other and unallocable","othuna","E89","che"), ("Other and unallocable","othuna","E89","pla"), ("Other and unallocable","othuna","E89","nmp"), ("Other and unallocable","othuna","E89","pmt"), ("Other and unallocable","othuna","E89","fmt"), ("Other and unallocable","othuna","E89","mch"), ("Other and unallocable","othuna","E89","cep"), ("Other and unallocable","othuna","E89","eec"), ("Other and unallocable","othuna","E89","mot"), ("Other and unallocable","othuna","E89","ote"), ("Other and unallocable","othuna","E89","fpd"), ("Other and unallocable","othuna","E89","mmf"), ("Other and unallocable","othuna","E89","wht"), ("Other and unallocable","othuna","E89","mvt"), ("Other and unallocable","othuna","E89","gmt"), ("Other and unallocable","othuna","E89","ott"), ("Other and unallocable","othuna","E89","osv"), ("Other and unallocable","othuna","E89","use"), ("Other and unallocable","othuna","E89","oth"), ("Other and unallocable","othuna","F01","pet"), ("Other and unallocable","othuna","F01","che"), ("Other and unallocable","othuna","F01","pla"), ("Other and unallocable","othuna","F01","nmp"), ("Other and unallocable","othuna","F01","pmt"), ("Other and unallocable","othuna","F01","fmt"), ("Other and unallocable","othuna","F01","mch"), ("Other and unallocable","othuna","F01","cep"), ("Other and unallocable","othuna","F01","eec"), ("Other and unallocable","othuna","F01","mot"), ("Other and unallocable","othuna","F01","ote"), ("Other and unallocable","othuna","F01","fpd"), ("Other and unallocable","othuna","F01","mmf"), ("Other and unallocable","othuna","F01","wht"), ("Other and unallocable","othuna","F01","mvt"), ("Other and unallocable","othuna","F01","gmt"), ("Other and unallocable","othuna","F01","ott"), ("Other and unallocable","othuna","F01","osv"), ("Other and unallocable","othuna","F01","use"), ("Other and unallocable","othuna","F01","oth"), ("Other and unallocable","othuna","F03","pet"), ("Other and unallocable","othuna","F03","che"), ("Other and unallocable","othuna","F03","pla"), ("Other and unallocable","othuna","F03","nmp"), ("Other and unallocable","othuna","F03","pmt"), ("Other and unallocable","othuna","F03","fmt"), ("Other and unallocable","othuna","F03","mch"), ("Other and unallocable","othuna","F03","cep"), ("Other and unallocable","othuna","F03","eec"), ("Other and unallocable","othuna","F03","mot"), ("Other and unallocable","othuna","F03","ote"), ("Other and unallocable","othuna","F03","fpd"), ("Other and unallocable","othuna","F03","mmf"), ("Other and unallocable","othuna","F03","wht"), ("Other and unallocable","othuna","F03","mvt"), ("Other and unallocable","othuna","F03","gmt"), ("Other and unallocable","othuna","F03","ott"), ("Other and unallocable","othuna","F03","osv"), ("Other and unallocable","othuna","F03","use"), ("Other and unallocable","othuna","F03","oth"), ("Other and unallocable","othuna","F22","pet"), ("Other and unallocable","othuna","F22","che"), ("Other and unallocable","othuna","F22","pla"), ("Other and unallocable","othuna","F22","nmp"), ("Other and unallocable","othuna","F22","pmt"), ("Other and unallocable","othuna","F22","fmt"), ("Other and unallocable","othuna","F22","mch"), ("Other and unallocable","othuna","F22","cep"), ("Other and unallocable","othuna","F22","eec"), ("Other and unallocable","othuna","F22","mot"), ("Other and unallocable","othuna","F22","ote"), ("Other and unallocable","othuna","F22","fpd"), ("Other and unallocable","othuna","F22","mmf"), ("Other and unallocable","othuna","F22","wht"), ("Other and unallocable","othuna","F22","mvt"), ("Other and unallocable","othuna","F22","gmt"), ("Other and unallocable","othuna","F22","ott"), ("Other and unallocable","othuna","F22","osv"), ("Other and unallocable","othuna","F22","use"), ("Other and unallocable","othuna","F22","oth"), ("Other and unallocable","othuna","F50","pet"), ("Other and unallocable","othuna","F50","che"), ("Other and unallocable","othuna","F50","pla"), ("Other and unallocable","othuna","F50","nmp"), ("Other and unallocable","othuna","F50","pmt"), ("Other and unallocable","othuna","F50","fmt"), ("Other and unallocable","othuna","F50","mch"), ("Other and unallocable","othuna","F50","cep"), ("Other and unallocable","othuna","F50","eec"), ("Other and unallocable","othuna","F50","mot"), ("Other and unallocable","othuna","F50","ote"), ("Other and unallocable","othuna","F50","fpd"), ("Other and unallocable","othuna","F50","mmf"), ("Other and unallocable","othuna","F50","wht"), ("Other and unallocable","othuna","F50","mvt"), ("Other and unallocable","othuna","F50","gmt"), ("Other and unallocable","othuna","F50","ott"), ("Other and unallocable","othuna","F50","osv"), ("Other and unallocable","othuna","F50","use"), ("Other and unallocable","othuna","F50","oth"), ("Other and unallocable","othuna","F52","pet"), ("Other and unallocable","othuna","F52","che"), ("Other and unallocable","othuna","F52","pla"), ("Other and unallocable","othuna","F52","nmp"), ("Other and unallocable","othuna","F52","pmt"), ("Other and unallocable","othuna","F52","fmt"), ("Other and unallocable","othuna","F52","mch"), ("Other and unallocable","othuna","F52","cep"), ("Other and unallocable","othuna","F52","eec"), ("Other and unallocable","othuna","F52","mot"), ("Other and unallocable","othuna","F52","ote"), ("Other and unallocable","othuna","F52","fpd"), ("Other and unallocable","othuna","F52","mmf"), ("Other and unallocable","othuna","F52","wht"), ("Other and unallocable","othuna","F52","mvt"), ("Other and unallocable","othuna","F52","gmt"), ("Other and unallocable","othuna","F52","ott"), ("Other and unallocable","othuna","F52","osv"), ("Other and unallocable","othuna","F52","use"), ("Other and unallocable","othuna","F52","oth"), ("Other and unallocable","othuna","F60","pet"), ("Other and unallocable","othuna","F60","che"), ("Other and unallocable","othuna","F60","pla"), ("Other and unallocable","othuna","F60","nmp"), ("Other and unallocable","othuna","F60","pmt"), ("Other and unallocable","othuna","F60","fmt"), ("Other and unallocable","othuna","F60","mch"), ("Other and unallocable","othuna","F60","cep"), ("Other and unallocable","othuna","F60","eec"), ("Other and unallocable","othuna","F60","mot"), ("Other and unallocable","othuna","F60","ote"), ("Other and unallocable","othuna","F60","fpd"), ("Other and unallocable","othuna","F60","mmf"), ("Other and unallocable","othuna","F60","wht"), ("Other and unallocable","othuna","F60","mvt"), ("Other and unallocable","othuna","F60","gmt"), ("Other and unallocable","othuna","F60","ott"), ("Other and unallocable","othuna","F60","osv"), ("Other and unallocable","othuna","F60","use"), ("Other and unallocable","othuna","F60","oth"), ("Other and unallocable","othuna","F66","pet"), ("Other and unallocable","othuna","F66","che"), ("Other and unallocable","othuna","F66","pla"), ("Other and unallocable","othuna","F66","nmp"), ("Other and unallocable","othuna","F66","pmt"), ("Other and unallocable","othuna","F66","fmt"), ("Other and unallocable","othuna","F66","mch"), ("Other and unallocable","othuna","F66","cep"), ("Other and unallocable","othuna","F66","eec"), ("Other and unallocable","othuna","F66","mot"), ("Other and unallocable","othuna","F66","ote"), ("Other and unallocable","othuna","F66","fpd"), ("Other and unallocable","othuna","F66","mmf"), ("Other and unallocable","othuna","F66","wht"), ("Other and unallocable","othuna","F66","mvt"), ("Other and unallocable","othuna","F66","gmt"), ("Other and unallocable","othuna","F66","ott"), ("Other and unallocable","othuna","F66","osv"), ("Other and unallocable","othuna","F66","use"), ("Other and unallocable","othuna","F66","oth"), ("Other and unallocable","othuna","F80","pet"), ("Other and unallocable","othuna","F80","che"), ("Other and unallocable","othuna","F80","pla"), ("Other and unallocable","othuna","F80","nmp"), ("Other and unallocable","othuna","F80","pmt"), ("Other and unallocable","othuna","F80","fmt"), ("Other and unallocable","othuna","F80","mch"), ("Other and unallocable","othuna","F80","cep"), ("Other and unallocable","othuna","F80","eec"), ("Other and unallocable","othuna","F80","mot"), ("Other and unallocable","othuna","F80","ote"), ("Other and unallocable","othuna","F80","fpd"), ("Other and unallocable","othuna","F80","mmf"), ("Other and unallocable","othuna","F80","wht"), ("Other and unallocable","othuna","F80","mvt"), ("Other and unallocable","othuna","F80","gmt"), ("Other and unallocable","othuna","F80","ott"), ("Other and unallocable","othuna","F80","osv"), ("Other and unallocable","othuna","F80","use"), ("Other and unallocable","othuna","F80","oth"), ("Other and unallocable","othuna","F81","pet"), ("Other and unallocable","othuna","F81","che"), ("Other and unallocable","othuna","F81","pla"), ("Other and unallocable","othuna","F81","nmp"), ("Other and unallocable","othuna","F81","pmt"), ("Other and unallocable","othuna","F81","fmt"), ("Other and unallocable","othuna","F81","mch"), ("Other and unallocable","othuna","F81","cep"), ("Other and unallocable","othuna","F81","eec"), ("Other and unallocable","othuna","F81","mot"), ("Other and unallocable","othuna","F81","ote"), ("Other and unallocable","othuna","F81","fpd"), ("Other and unallocable","othuna","F81","mmf"), ("Other and unallocable","othuna","F81","wht"), ("Other and unallocable","othuna","F81","mvt"), ("Other and unallocable","othuna","F81","gmt"), ("Other and unallocable","othuna","F81","ott"), ("Other and unallocable","othuna","F81","osv"), ("Other and unallocable","othuna","F81","use"), ("Other and unallocable","othuna","F81","oth"), ("Other and unallocable","othuna","F85","pet"), ("Other and unallocable","othuna","F85","che"), ("Other and unallocable","othuna","F85","pla"), ("Other and unallocable","othuna","F85","nmp"), ("Other and unallocable","othuna","F85","pmt"), ("Other and unallocable","othuna","F85","fmt"), ("Other and unallocable","othuna","F85","mch"), ("Other and unallocable","othuna","F85","cep"), ("Other and unallocable","othuna","F85","eec"), ("Other and unallocable","othuna","F85","mot"), ("Other and unallocable","othuna","F85","ote"), ("Other and unallocable","othuna","F85","fpd"), ("Other and unallocable","othuna","F85","mmf"), ("Other and unallocable","othuna","F85","wht"), ("Other and unallocable","othuna","F85","mvt"), ("Other and unallocable","othuna","F85","gmt"), ("Other and unallocable","othuna","F85","ott"), ("Other and unallocable","othuna","F85","osv"), ("Other and unallocable","othuna","F85","use"), ("Other and unallocable","othuna","F85","oth"), ("Other and unallocable","othuna","F87","pet"), ("Other and unallocable","othuna","F87","che"), ("Other and unallocable","othuna","F87","pla"), ("Other and unallocable","othuna","F87","nmp"), ("Other and unallocable","othuna","F87","pmt"), ("Other and unallocable","othuna","F87","fmt"), ("Other and unallocable","othuna","F87","mch"), ("Other and unallocable","othuna","F87","cep"), ("Other and unallocable","othuna","F87","eec"), ("Other and unallocable","othuna","F87","mot"), ("Other and unallocable","othuna","F87","ote"), ("Other and unallocable","othuna","F87","fpd"), ("Other and unallocable","othuna","F87","mmf"), ("Other and unallocable","othuna","F87","wht"), ("Other and unallocable","othuna","F87","mvt"), ("Other and unallocable","othuna","F87","gmt"), ("Other and unallocable","othuna","F87","ott"), ("Other and unallocable","othuna","F87","osv"), ("Other and unallocable","othuna","F87","use"), ("Other and unallocable","othuna","F87","oth"), ("Other and unallocable","othuna","F89","pet"), ("Other and unallocable","othuna","F89","che"), ("Other and unallocable","othuna","F89","pla"), ("Other and unallocable","othuna","F89","nmp"), ("Other and unallocable","othuna","F89","pmt"), ("Other and unallocable","othuna","F89","fmt"), ("Other and unallocable","othuna","F89","mch"), ("Other and unallocable","othuna","F89","cep"), ("Other and unallocable","othuna","F89","eec"), ("Other and unallocable","othuna","F89","mot"), ("Other and unallocable","othuna","F89","ote"), ("Other and unallocable","othuna","F89","fpd"), ("Other and unallocable","othuna","F89","mmf"), ("Other and unallocable","othuna","F89","wht"), ("Other and unallocable","othuna","F89","mvt"), ("Other and unallocable","othuna","F89","gmt"), ("Other and unallocable","othuna","F89","ott"), ("Other and unallocable","othuna","F89","osv"), ("Other and unallocable","othuna","F89","use"), ("Other and unallocable","othuna","F89","oth"), ("Other and unallocable","othuna","G01","pet"), ("Other and unallocable","othuna","G01","che"), ("Other and unallocable","othuna","G01","pla"), ("Other and unallocable","othuna","G01","nmp"), ("Other and unallocable","othuna","G01","pmt"), ("Other and unallocable","othuna","G01","fmt"), ("Other and unallocable","othuna","G01","mch"), ("Other and unallocable","othuna","G01","cep"), ("Other and unallocable","othuna","G01","eec"), ("Other and unallocable","othuna","G01","mot"), ("Other and unallocable","othuna","G01","ote"), ("Other and unallocable","othuna","G01","fpd"), ("Other and unallocable","othuna","G01","mmf"), ("Other and unallocable","othuna","G01","wht"), ("Other and unallocable","othuna","G01","mvt"), ("Other and unallocable","othuna","G01","gmt"), ("Other and unallocable","othuna","G01","ott"), ("Other and unallocable","othuna","G01","osv"), ("Other and unallocable","othuna","G01","use"), ("Other and unallocable","othuna","G01","oth"), ("Other and unallocable","othuna","G03","pet"), ("Other and unallocable","othuna","G03","che"), ("Other and unallocable","othuna","G03","pla"), ("Other and unallocable","othuna","G03","nmp"), ("Other and unallocable","othuna","G03","pmt"), ("Other and unallocable","othuna","G03","fmt"), ("Other and unallocable","othuna","G03","mch"), ("Other and unallocable","othuna","G03","cep"), ("Other and unallocable","othuna","G03","eec"), ("Other and unallocable","othuna","G03","mot"), ("Other and unallocable","othuna","G03","ote"), ("Other and unallocable","othuna","G03","fpd"), ("Other and unallocable","othuna","G03","mmf"), ("Other and unallocable","othuna","G03","wht"), ("Other and unallocable","othuna","G03","mvt"), ("Other and unallocable","othuna","G03","gmt"), ("Other and unallocable","othuna","G03","ott"), ("Other and unallocable","othuna","G03","osv"), ("Other and unallocable","othuna","G03","use"), ("Other and unallocable","othuna","G03","oth"), ("Other and unallocable","othuna","G22","pet"), ("Other and unallocable","othuna","G22","che"), ("Other and unallocable","othuna","G22","pla"), ("Other and unallocable","othuna","G22","nmp"), ("Other and unallocable","othuna","G22","pmt"), ("Other and unallocable","othuna","G22","fmt"), ("Other and unallocable","othuna","G22","mch"), ("Other and unallocable","othuna","G22","cep"), ("Other and unallocable","othuna","G22","eec"), ("Other and unallocable","othuna","G22","mot"), ("Other and unallocable","othuna","G22","ote"), ("Other and unallocable","othuna","G22","fpd"), ("Other and unallocable","othuna","G22","mmf"), ("Other and unallocable","othuna","G22","wht"), ("Other and unallocable","othuna","G22","mvt"), ("Other and unallocable","othuna","G22","gmt"), ("Other and unallocable","othuna","G22","ott"), ("Other and unallocable","othuna","G22","osv"), ("Other and unallocable","othuna","G22","use"), ("Other and unallocable","othuna","G22","oth"), ("Other and unallocable","othuna","G50","pet"), ("Other and unallocable","othuna","G50","che"), ("Other and unallocable","othuna","G50","pla"), ("Other and unallocable","othuna","G50","nmp"), ("Other and unallocable","othuna","G50","pmt"), ("Other and unallocable","othuna","G50","fmt"), ("Other and unallocable","othuna","G50","mch"), ("Other and unallocable","othuna","G50","cep"), ("Other and unallocable","othuna","G50","eec"), ("Other and unallocable","othuna","G50","mot"), ("Other and unallocable","othuna","G50","ote"), ("Other and unallocable","othuna","G50","fpd"), ("Other and unallocable","othuna","G50","mmf"), ("Other and unallocable","othuna","G50","wht"), ("Other and unallocable","othuna","G50","mvt"), ("Other and unallocable","othuna","G50","gmt"), ("Other and unallocable","othuna","G50","ott"), ("Other and unallocable","othuna","G50","osv"), ("Other and unallocable","othuna","G50","use"), ("Other and unallocable","othuna","G50","oth"), ("Other and unallocable","othuna","G52","pet"), ("Other and unallocable","othuna","G52","che"), ("Other and unallocable","othuna","G52","pla"), ("Other and unallocable","othuna","G52","nmp"), ("Other and unallocable","othuna","G52","pmt"), ("Other and unallocable","othuna","G52","fmt"), ("Other and unallocable","othuna","G52","mch"), ("Other and unallocable","othuna","G52","cep"), ("Other and unallocable","othuna","G52","eec"), ("Other and unallocable","othuna","G52","mot"), ("Other and unallocable","othuna","G52","ote"), ("Other and unallocable","othuna","G52","fpd"), ("Other and unallocable","othuna","G52","mmf"), ("Other and unallocable","othuna","G52","wht"), ("Other and unallocable","othuna","G52","mvt"), ("Other and unallocable","othuna","G52","gmt"), ("Other and unallocable","othuna","G52","ott"), ("Other and unallocable","othuna","G52","osv"), ("Other and unallocable","othuna","G52","use"), ("Other and unallocable","othuna","G52","oth"), ("Other and unallocable","othuna","G60","pet"), ("Other and unallocable","othuna","G60","che"), ("Other and unallocable","othuna","G60","pla"), ("Other and unallocable","othuna","G60","nmp"), ("Other and unallocable","othuna","G60","pmt"), ("Other and unallocable","othuna","G60","fmt"), ("Other and unallocable","othuna","G60","mch"), ("Other and unallocable","othuna","G60","cep"), ("Other and unallocable","othuna","G60","eec"), ("Other and unallocable","othuna","G60","mot"), ("Other and unallocable","othuna","G60","ote"), ("Other and unallocable","othuna","G60","fpd"), ("Other and unallocable","othuna","G60","mmf"), ("Other and unallocable","othuna","G60","wht"), ("Other and unallocable","othuna","G60","mvt"), ("Other and unallocable","othuna","G60","gmt"), ("Other and unallocable","othuna","G60","ott"), ("Other and unallocable","othuna","G60","osv"), ("Other and unallocable","othuna","G60","use"), ("Other and unallocable","othuna","G60","oth"), ("Other and unallocable","othuna","G66","pet"), ("Other and unallocable","othuna","G66","che"), ("Other and unallocable","othuna","G66","pla"), ("Other and unallocable","othuna","G66","nmp"), ("Other and unallocable","othuna","G66","pmt"), ("Other and unallocable","othuna","G66","fmt"), ("Other and unallocable","othuna","G66","mch"), ("Other and unallocable","othuna","G66","cep"), ("Other and unallocable","othuna","G66","eec"), ("Other and unallocable","othuna","G66","mot"), ("Other and unallocable","othuna","G66","ote"), ("Other and unallocable","othuna","G66","fpd"), ("Other and unallocable","othuna","G66","mmf"), ("Other and unallocable","othuna","G66","wht"), ("Other and unallocable","othuna","G66","mvt"), ("Other and unallocable","othuna","G66","gmt"), ("Other and unallocable","othuna","G66","ott"), ("Other and unallocable","othuna","G66","osv"), ("Other and unallocable","othuna","G66","use"), ("Other and unallocable","othuna","G66","oth"), ("Other and unallocable","othuna","G80","pet"), ("Other and unallocable","othuna","G80","che"), ("Other and unallocable","othuna","G80","pla"), ("Other and unallocable","othuna","G80","nmp"), ("Other and unallocable","othuna","G80","pmt"), ("Other and unallocable","othuna","G80","fmt"), ("Other and unallocable","othuna","G80","mch"), ("Other and unallocable","othuna","G80","cep"), ("Other and unallocable","othuna","G80","eec"), ("Other and unallocable","othuna","G80","mot"), ("Other and unallocable","othuna","G80","ote"), ("Other and unallocable","othuna","G80","fpd"), ("Other and unallocable","othuna","G80","mmf"), ("Other and unallocable","othuna","G80","wht"), ("Other and unallocable","othuna","G80","mvt"), ("Other and unallocable","othuna","G80","gmt"), ("Other and unallocable","othuna","G80","ott"), ("Other and unallocable","othuna","G80","osv"), ("Other and unallocable","othuna","G80","use"), ("Other and unallocable","othuna","G80","oth"), ("Other and unallocable","othuna","G81","pet"), ("Other and unallocable","othuna","G81","che"), ("Other and unallocable","othuna","G81","pla"), ("Other and unallocable","othuna","G81","nmp"), ("Other and unallocable","othuna","G81","pmt"), ("Other and unallocable","othuna","G81","fmt"), ("Other and unallocable","othuna","G81","mch"), ("Other and unallocable","othuna","G81","cep"), ("Other and unallocable","othuna","G81","eec"), ("Other and unallocable","othuna","G81","mot"), ("Other and unallocable","othuna","G81","ote"), ("Other and unallocable","othuna","G81","fpd"), ("Other and unallocable","othuna","G81","mmf"), ("Other and unallocable","othuna","G81","wht"), ("Other and unallocable","othuna","G81","mvt"), ("Other and unallocable","othuna","G81","gmt"), ("Other and unallocable","othuna","G81","ott"), ("Other and unallocable","othuna","G81","osv"), ("Other and unallocable","othuna","G81","use"), ("Other and unallocable","othuna","G81","oth"), ("Other and unallocable","othuna","G85","pet"), ("Other and unallocable","othuna","G85","che"), ("Other and unallocable","othuna","G85","pla"), ("Other and unallocable","othuna","G85","nmp"), ("Other and unallocable","othuna","G85","pmt"), ("Other and unallocable","othuna","G85","fmt"), ("Other and unallocable","othuna","G85","mch"), ("Other and unallocable","othuna","G85","cep"), ("Other and unallocable","othuna","G85","eec"), ("Other and unallocable","othuna","G85","mot"), ("Other and unallocable","othuna","G85","ote"), ("Other and unallocable","othuna","G85","fpd"), ("Other and unallocable","othuna","G85","mmf"), ("Other and unallocable","othuna","G85","wht"), ("Other and unallocable","othuna","G85","mvt"), ("Other and unallocable","othuna","G85","gmt"), ("Other and unallocable","othuna","G85","ott"), ("Other and unallocable","othuna","G85","osv"), ("Other and unallocable","othuna","G85","use"), ("Other and unallocable","othuna","G85","oth"), ("Other and unallocable","othuna","G87","pet"), ("Other and unallocable","othuna","G87","che"), ("Other and unallocable","othuna","G87","pla"), ("Other and unallocable","othuna","G87","nmp"), ("Other and unallocable","othuna","G87","pmt"), ("Other and unallocable","othuna","G87","fmt"), ("Other and unallocable","othuna","G87","mch"), ("Other and unallocable","othuna","G87","cep"), ("Other and unallocable","othuna","G87","eec"), ("Other and unallocable","othuna","G87","mot"), ("Other and unallocable","othuna","G87","ote"), ("Other and unallocable","othuna","G87","fpd"), ("Other and unallocable","othuna","G87","mmf"), ("Other and unallocable","othuna","G87","wht"), ("Other and unallocable","othuna","G87","mvt"), ("Other and unallocable","othuna","G87","gmt"), ("Other and unallocable","othuna","G87","ott"), ("Other and unallocable","othuna","G87","osv"), ("Other and unallocable","othuna","G87","use"), ("Other and unallocable","othuna","G87","oth"), ("Other and unallocable","othuna","G89","pet"), ("Other and unallocable","othuna","G89","che"), ("Other and unallocable","othuna","G89","pla"), ("Other and unallocable","othuna","G89","nmp"), ("Other and unallocable","othuna","G89","pmt"), ("Other and unallocable","othuna","G89","fmt"), ("Other and unallocable","othuna","G89","mch"), ("Other and unallocable","othuna","G89","cep"), ("Other and unallocable","othuna","G89","eec"), ("Other and unallocable","othuna","G89","mot"), ("Other and unallocable","othuna","G89","ote"), ("Other and unallocable","othuna","G89","fpd"), ("Other and unallocable","othuna","G89","mmf"), ("Other and unallocable","othuna","G89","wht"), ("Other and unallocable","othuna","G89","mvt"), ("Other and unallocable","othuna","G89","gmt"), ("Other and unallocable","othuna","G89","ott"), ("Other and unallocable","othuna","G89","osv"), ("Other and unallocable","othuna","G89","use"), ("Other and unallocable","othuna","G89","oth"), ("Other and unallocable","othuna","M01","pet"), ("Other and unallocable","othuna","M01","che"), ("Other and unallocable","othuna","M01","pla"), ("Other and unallocable","othuna","M01","nmp"), ("Other and unallocable","othuna","M01","pmt"), ("Other and unallocable","othuna","M01","fmt"), ("Other and unallocable","othuna","M01","mch"), ("Other and unallocable","othuna","M01","cep"), ("Other and unallocable","othuna","M01","eec"), ("Other and unallocable","othuna","M01","mot"), ("Other and unallocable","othuna","M01","ote"), ("Other and unallocable","othuna","M01","fpd"), ("Other and unallocable","othuna","M01","mmf"), ("Other and unallocable","othuna","M01","wht"), ("Other and unallocable","othuna","M01","mvt"), ("Other and unallocable","othuna","M01","gmt"), ("Other and unallocable","othuna","M01","ott"), ("Other and unallocable","othuna","M01","osv"), ("Other and unallocable","othuna","M01","use"), ("Other and unallocable","othuna","M01","oth"), ("Other and unallocable","othuna","M50","pet"), ("Other and unallocable","othuna","M50","che"), ("Other and unallocable","othuna","M50","pla"), ("Other and unallocable","othuna","M50","nmp"), ("Other and unallocable","othuna","M50","pmt"), ("Other and unallocable","othuna","M50","fmt"), ("Other and unallocable","othuna","M50","mch"), ("Other and unallocable","othuna","M50","cep"), ("Other and unallocable","othuna","M50","eec"), ("Other and unallocable","othuna","M50","mot"), ("Other and unallocable","othuna","M50","ote"), ("Other and unallocable","othuna","M50","fpd"), ("Other and unallocable","othuna","M50","mmf"), ("Other and unallocable","othuna","M50","wht"), ("Other and unallocable","othuna","M50","mvt"), ("Other and unallocable","othuna","M50","gmt"), ("Other and unallocable","othuna","M50","ott"), ("Other and unallocable","othuna","M50","osv"), ("Other and unallocable","othuna","M50","use"), ("Other and unallocable","othuna","M50","oth"), ("Other and unallocable","othuna","M52","pet"), ("Other and unallocable","othuna","M52","che"), ("Other and unallocable","othuna","M52","pla"), ("Other and unallocable","othuna","M52","nmp"), ("Other and unallocable","othuna","M52","pmt"), ("Other and unallocable","othuna","M52","fmt"), ("Other and unallocable","othuna","M52","mch"), ("Other and unallocable","othuna","M52","cep"), ("Other and unallocable","othuna","M52","eec"), ("Other and unallocable","othuna","M52","mot"), ("Other and unallocable","othuna","M52","ote"), ("Other and unallocable","othuna","M52","fpd"), ("Other and unallocable","othuna","M52","mmf"), ("Other and unallocable","othuna","M52","wht"), ("Other and unallocable","othuna","M52","mvt"), ("Other and unallocable","othuna","M52","gmt"), ("Other and unallocable","othuna","M52","ott"), ("Other and unallocable","othuna","M52","osv"), ("Other and unallocable","othuna","M52","use"), ("Other and unallocable","othuna","M52","oth"), ("Other and unallocable","othuna","M60","pet"), ("Other and unallocable","othuna","M60","che"), ("Other and unallocable","othuna","M60","pla"), ("Other and unallocable","othuna","M60","nmp"), ("Other and unallocable","othuna","M60","pmt"), ("Other and unallocable","othuna","M60","fmt"), ("Other and unallocable","othuna","M60","mch"), ("Other and unallocable","othuna","M60","cep"), ("Other and unallocable","othuna","M60","eec"), ("Other and unallocable","othuna","M60","mot"), ("Other and unallocable","othuna","M60","ote"), ("Other and unallocable","othuna","M60","fpd"), ("Other and unallocable","othuna","M60","mmf"), ("Other and unallocable","othuna","M60","wht"), ("Other and unallocable","othuna","M60","mvt"), ("Other and unallocable","othuna","M60","gmt"), ("Other and unallocable","othuna","M60","ott"), ("Other and unallocable","othuna","M60","osv"), ("Other and unallocable","othuna","M60","use"), ("Other and unallocable","othuna","M60","oth"), ("Other and unallocable","othuna","M66","pet"), ("Other and unallocable","othuna","M66","che"), ("Other and unallocable","othuna","M66","pla"), ("Other and unallocable","othuna","M66","nmp"), ("Other and unallocable","othuna","M66","pmt"), ("Other and unallocable","othuna","M66","fmt"), ("Other and unallocable","othuna","M66","mch"), ("Other and unallocable","othuna","M66","cep"), ("Other and unallocable","othuna","M66","eec"), ("Other and unallocable","othuna","M66","mot"), ("Other and unallocable","othuna","M66","ote"), ("Other and unallocable","othuna","M66","fpd"), ("Other and unallocable","othuna","M66","mmf"), ("Other and unallocable","othuna","M66","wht"), ("Other and unallocable","othuna","M66","mvt"), ("Other and unallocable","othuna","M66","gmt"), ("Other and unallocable","othuna","M66","ott"), ("Other and unallocable","othuna","M66","osv"), ("Other and unallocable","othuna","M66","use"), ("Other and unallocable","othuna","M66","oth"), ("Other and unallocable","othuna","M80","pet"), ("Other and unallocable","othuna","M80","che"), ("Other and unallocable","othuna","M80","pla"), ("Other and unallocable","othuna","M80","nmp"), ("Other and unallocable","othuna","M80","pmt"), ("Other and unallocable","othuna","M80","fmt"), ("Other and unallocable","othuna","M80","mch"), ("Other and unallocable","othuna","M80","cep"), ("Other and unallocable","othuna","M80","eec"), ("Other and unallocable","othuna","M80","mot"), ("Other and unallocable","othuna","M80","ote"), ("Other and unallocable","othuna","M80","fpd"), ("Other and unallocable","othuna","M80","mmf"), ("Other and unallocable","othuna","M80","wht"), ("Other and unallocable","othuna","M80","mvt"), ("Other and unallocable","othuna","M80","gmt"), ("Other and unallocable","othuna","M80","ott"), ("Other and unallocable","othuna","M80","osv"), ("Other and unallocable","othuna","M80","use"), ("Other and unallocable","othuna","M80","oth"), ("Other and unallocable","othuna","M81","pet"), ("Other and unallocable","othuna","M81","che"), ("Other and unallocable","othuna","M81","pla"), ("Other and unallocable","othuna","M81","nmp"), ("Other and unallocable","othuna","M81","pmt"), ("Other and unallocable","othuna","M81","fmt"), ("Other and unallocable","othuna","M81","mch"), ("Other and unallocable","othuna","M81","cep"), ("Other and unallocable","othuna","M81","eec"), ("Other and unallocable","othuna","M81","mot"), ("Other and unallocable","othuna","M81","ote"), ("Other and unallocable","othuna","M81","fpd"), ("Other and unallocable","othuna","M81","mmf"), ("Other and unallocable","othuna","M81","wht"), ("Other and unallocable","othuna","M81","mvt"), ("Other and unallocable","othuna","M81","gmt"), ("Other and unallocable","othuna","M81","ott"), ("Other and unallocable","othuna","M81","osv"), ("Other and unallocable","othuna","M81","use"), ("Other and unallocable","othuna","M81","oth"), ("Other and unallocable","othuna","M87","pet"), ("Other and unallocable","othuna","M87","che"), ("Other and unallocable","othuna","M87","pla"), ("Other and unallocable","othuna","M87","nmp"), ("Other and unallocable","othuna","M87","pmt"), ("Other and unallocable","othuna","M87","fmt"), ("Other and unallocable","othuna","M87","mch"), ("Other and unallocable","othuna","M87","cep"), ("Other and unallocable","othuna","M87","eec"), ("Other and unallocable","othuna","M87","mot"), ("Other and unallocable","othuna","M87","ote"), ("Other and unallocable","othuna","M87","fpd"), ("Other and unallocable","othuna","M87","mmf"), ("Other and unallocable","othuna","M87","wht"), ("Other and unallocable","othuna","M87","mvt"), ("Other and unallocable","othuna","M87","gmt"), ("Other and unallocable","othuna","M87","ott"), ("Other and unallocable","othuna","M87","osv"), ("Other and unallocable","othuna","M87","use"), ("Other and unallocable","othuna","M87","oth"), ("Other and unallocable","othuna","M89","pet"), ("Other and unallocable","othuna","M89","che"), ("Other and unallocable","othuna","M89","pla"), ("Other and unallocable","othuna","M89","nmp"), ("Other and unallocable","othuna","M89","pmt"), ("Other and unallocable","othuna","M89","fmt"), ("Other and unallocable","othuna","M89","mch"), ("Other and unallocable","othuna","M89","cep"), ("Other and unallocable","othuna","M89","eec"), ("Other and unallocable","othuna","M89","mot"), ("Other and unallocable","othuna","M89","ote"), ("Other and unallocable","othuna","M89","fpd"), ("Other and unallocable","othuna","M89","mmf"), ("Other and unallocable","othuna","M89","wht"), ("Other and unallocable","othuna","M89","mvt"), ("Other and unallocable","othuna","M89","gmt"), ("Other and unallocable","othuna","M89","ott"), ("Other and unallocable","othuna","M89","osv"), ("Other and unallocable","othuna","M89","use"), ("Other and unallocable","othuna","M89","oth"), ("Other and unallocable","othuna","S89","pet"), ("Other and unallocable","othuna","S89","che"), ("Other and unallocable","othuna","S89","pla"), ("Other and unallocable","othuna","S89","nmp"), ("Other and unallocable","othuna","S89","pmt"), ("Other and unallocable","othuna","S89","fmt"), ("Other and unallocable","othuna","S89","mch"), ("Other and unallocable","othuna","S89","cep"), ("Other and unallocable","othuna","S89","eec"), ("Other and unallocable","othuna","S89","mot"), ("Other and unallocable","othuna","S89","ote"), ("Other and unallocable","othuna","S89","fpd"), ("Other and unallocable","othuna","S89","mmf"), ("Other and unallocable","othuna","S89","wht"), ("Other and unallocable","othuna","S89","mvt"), ("Other and unallocable","othuna","S89","gmt"), ("Other and unallocable","othuna","S89","ott"), ("Other and unallocable","othuna","S89","osv"), ("Other and unallocable","othuna","S89","use"), ("Other and unallocable","othuna","S89","oth"), ("Utility expenditure","utlexp","E91","uti"), ("Utility expenditure","utlexp","E91","fdd"), ("Utility expenditure","utlexp","E91","fnd"), ("Utility expenditure","utlexp","E91","fen"), ("Utility expenditure","utlexp","E91","slg"), ("Utility expenditure","utlexp","E91","sle"), ("Utility expenditure","utlexp","E92","uti"), ("Utility expenditure","utlexp","E92","fdd"), ("Utility expenditure","utlexp","E92","fnd"), ("Utility expenditure","utlexp","E92","fen"), ("Utility expenditure","utlexp","E92","slg"), ("Utility expenditure","utlexp","E92","sle"), ("Utility expenditure","utlexp","E93","uti"), ("Utility expenditure","utlexp","E93","fdd"), ("Utility expenditure","utlexp","E93","fnd"), ("Utility expenditure","utlexp","E93","fen"), ("Utility expenditure","utlexp","E93","slg"), ("Utility expenditure","utlexp","E93","sle"), ("Utility expenditure","utlexp","E94","uti"), ("Utility expenditure","utlexp","E94","fdd"), ("Utility expenditure","utlexp","E94","fnd"), ("Utility expenditure","utlexp","E94","fen"), ("Utility expenditure","utlexp","E94","slg"), ("Utility expenditure","utlexp","E94","sle"), ("Utility expenditure","utlexp","F91","uti"), ("Utility expenditure","utlexp","F91","fdd"), ("Utility expenditure","utlexp","F91","fnd"), ("Utility expenditure","utlexp","F91","fen"), ("Utility expenditure","utlexp","F91","slg"), ("Utility expenditure","utlexp","F91","sle"), ("Utility expenditure","utlexp","F92","uti"), ("Utility expenditure","utlexp","F92","fdd"), ("Utility expenditure","utlexp","F92","fnd"), ("Utility expenditure","utlexp","F92","fen"), ("Utility expenditure","utlexp","F92","slg"), ("Utility expenditure","utlexp","F92","sle"), ("Utility expenditure","utlexp","F93","uti"), ("Utility expenditure","utlexp","F93","fdd"), ("Utility expenditure","utlexp","F93","fnd"), ("Utility expenditure","utlexp","F93","fen"), ("Utility expenditure","utlexp","F93","slg"), ("Utility expenditure","utlexp","F93","sle"), ("Utility expenditure","utlexp","F94","uti"), ("Utility expenditure","utlexp","F94","fdd"), ("Utility expenditure","utlexp","F94","fnd"), ("Utility expenditure","utlexp","F94","fen"), ("Utility expenditure","utlexp","F94","slg"), ("Utility expenditure","utlexp","F94","sle"), ("Utility expenditure","utlexp","G91","uti"), ("Utility expenditure","utlexp","G91","fdd"), ("Utility expenditure","utlexp","G91","fnd"), ("Utility expenditure","utlexp","G91","fen"), ("Utility expenditure","utlexp","G91","slg"), ("Utility expenditure","utlexp","G91","sle"), ("Utility expenditure","utlexp","G92","uti"), ("Utility expenditure","utlexp","G92","fdd"), ("Utility expenditure","utlexp","G92","fnd"), ("Utility expenditure","utlexp","G92","fen"), ("Utility expenditure","utlexp","G92","slg"), ("Utility expenditure","utlexp","G92","sle"), ("Utility expenditure","utlexp","G93","uti"), ("Utility expenditure","utlexp","G93","fdd"), ("Utility expenditure","utlexp","G93","fnd"), ("Utility expenditure","utlexp","G93","fen"), ("Utility expenditure","utlexp","G93","slg"), ("Utility expenditure","utlexp","G93","sle"), ("Utility expenditure","utlexp","G94","uti"), ("Utility expenditure","utlexp","G94","fdd"), ("Utility expenditure","utlexp","G94","fnd"), ("Utility expenditure","utlexp","G94","fen"), ("Utility expenditure","utlexp","G94","slg"), ("Utility expenditure","utlexp","G94","sle"), ("Utility expenditure","utlexp","I91","uti"), ("Utility expenditure","utlexp","I91","fdd"), ("Utility expenditure","utlexp","I91","fnd"), ("Utility expenditure","utlexp","I91","fen"), ("Utility expenditure","utlexp","I91","slg"), ("Utility expenditure","utlexp","I91","sle"), ("Utility expenditure","utlexp","I92","uti"), ("Utility expenditure","utlexp","I92","fdd"), ("Utility expenditure","utlexp","I92","fnd"), ("Utility expenditure","utlexp","I92","fen"), ("Utility expenditure","utlexp","I92","slg"), ("Utility expenditure","utlexp","I92","sle"), ("Utility expenditure","utlexp","I93","uti"), ("Utility expenditure","utlexp","I93","fdd"), ("Utility expenditure","utlexp","I93","fnd"), ("Utility expenditure","utlexp","I93","fen"), ("Utility expenditure","utlexp","I93","slg"), ("Utility expenditure","utlexp","I93","sle"), ("Utility expenditure","utlexp","I94","uti"), ("Utility expenditure","utlexp","I94","fdd"), ("Utility expenditure","utlexp","I94","fnd"), ("Utility expenditure","utlexp","I94","fen"), ("Utility expenditure","utlexp","I94","slg"), ("Utility expenditure","utlexp","I94","sle"), ("Utility expenditure","utlexp","M91","uti"), ("Utility expenditure","utlexp","M91","fdd"), ("Utility expenditure","utlexp","M91","fnd"), ("Utility expenditure","utlexp","M91","fen"), ("Utility expenditure","utlexp","M91","slg"), ("Utility expenditure","utlexp","M91","sle"), ("Utility expenditure","utlexp","M92","uti"), ("Utility expenditure","utlexp","M92","fdd"), ("Utility expenditure","utlexp","M92","fnd"), ("Utility expenditure","utlexp","M92","fen"), ("Utility expenditure","utlexp","M92","slg"), ("Utility expenditure","utlexp","M92","sle"), ("Utility expenditure","utlexp","M93","uti"), ("Utility expenditure","utlexp","M93","fdd"), ("Utility expenditure","utlexp","M93","fnd"), ("Utility expenditure","utlexp","M93","fen"), ("Utility expenditure","utlexp","M93","slg"), ("Utility expenditure","utlexp","M93","sle"), ("Utility expenditure","utlexp","M94","uti"), ("Utility expenditure","utlexp","M94","fdd"), ("Utility expenditure","utlexp","M94","fnd"), ("Utility expenditure","utlexp","M94","fen"), ("Utility expenditure","utlexp","M94","slg"), ("Utility expenditure","utlexp","M94","sle"), ("Liquor stores expenditure","liqexp","E90","fbp"), ("Liquor stores expenditure","liqexp","E90","fbt"), ("Liquor stores expenditure","liqexp","E90","res"), ("Liquor stores expenditure","liqexp","F90","fbp"), ("Liquor stores expenditure","liqexp","F90","fbt"), ("Liquor stores expenditure","liqexp","F90","res"), ("Liquor stores expenditure","liqexp","G90","fbp"), ("Liquor stores expenditure","liqexp","G90","fbt"), ("Liquor stores expenditure","liqexp","G90","res"), ],[:sgf_category,:sgf_cat,:item_code,:i]) push!(notations, notation_link(:item_code,sgf_codes,:item_code,:i,:i)) return notations end
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
15307
function state_dissagregation(GU::GamsUniverse) #Construct new universe G = GamsUniverse() sets_to_transfer = Dict( :yr => :yr, :m => :m, :i => :s, :r => :r ) #yr,r,s,m,gm, for (s,new_name) in sets_to_transfer elements = [e for e in GU[s].elements if e.active] add_set(G,new_name,GamsSet(elements,GU[s].description)) end alias(G,:s,:g) @parameters(G,begin #Production Data ys0_, (:yr, :r, :s, :g), (description = "Regional sectoral output",) ld0_, (:yr, :r, :s), (description = "Labor demand",) kd0_, (:yr, :r, :s), (description = "Capital demand",) id0_, (:yr, :r, :g, :s), (description = "Regional intermediate demand",) ty0_, (:yr, :r, :s), (description = "Production tax rate",) #Consumption Data yh0_, (:yr, :r, :s), (description = "Household production",) fe0_, (:yr, :r), (description = "Total factor supply",) cd0_, (:yr, :r, :s), (description = "Consumption demand",) c0_, (:yr, :r), (description = "Total final household consumption",) i0_, (:yr, :r, :s), (description = "Investment demand",) g0_, (:yr, :r, :s), (description = "Government demand",) bopdef0_, (:yr, :r), (description = "Balance of payments (closure parameter)",) hhadj0_, (:yr, :r), (description = "Household adjustment parameter",) #Trade Data s0_, (:yr, :r, :g), (description = "Total supply",) xd0_, (:yr, :r, :g), (description = "Regional supply to local market",) xn0_, (:yr, :r, :g), (description = "Regional supply to national market",) x0_, (:yr, :r, :g), (description = "Foreign Exports",) rx0_, (:yr, :r, :g), (description = "Re-exports",) a0_, (:yr, :r, :g), (description = "Domestic absorption",) nd0_, (:yr, :r, :g), (description = "Regional demand from national market",) dd0_, (:yr, :r, :g), (description = "Regional demand from local market",) m0_, (:yr, :r, :g), (description = "Foreign Imports",) ta0_, (:yr, :r, :g), (description = "Absorption taxes",) tm0_, (:yr, :r, :g), (description = "Import taxes",) #Margins md0_, (:yr, :r, :m, :g), (description = "Margin demand",) dm0_, (:yr, :r, :g, :m), (description = "Margin supply from the local market",) nm0_, (:yr, :r, :g, :m), (description = "Margin demand from the national market",) #GDP gdp0_, (:yr, :r), (description = "Aggregate GDP",) end); #Regionalize production data using iomacro shares and GSP data: va0_ = GamsStructure.Parameter(G,(:yr,:r,:s);description = "Value Added") for r∈G[:r],s∈G[:s],g∈G[:g] G[:ys0_][:yr,[r],[s],[g]] = GU[:region_shr][:yr,[r],[s]] .* GU[:ys0][:yr,[s],[g]] G[:id0_][:yr,[r],[g],[s]] = GU[:region_shr][:yr,[r],[s]] .* GU[:id0][:yr,[g],[s]] end for r∈G[:r] va0_[:yr,[r],:s] = GU[:region_shr][:yr,[r],:i] .* (GU[:va0][:yr,[:compen],:i] .+ GU[:va0][:yr,[:surplus],:i]) G[:ty0_][:yr,[r],:s] = GU[:ty0][:yr,:i]; G[:ld0_][:yr,[r],:s] = GU[:labor_shr][:yr,[r],:i] .* va0_[:yr,[r],:s] G[:kd0_][:yr,[r],:s] = va0_[:yr,[r],:s] - G[:ld0_][:yr,[r],:s]; end #sum(abs.(sum(G[:ys0_][:yr,:r,:s,[g]] for g∈G[:g]) .* (1 .- G[:ty0_][:yr,:r,:s]) .- (G[:ld0_][:yr,:r,:s] + G[:kd0_][:yr,:r,:s] + sum(G[:id0_][:yr,:r,[g],:s] for g∈G[:g])))) # Aggregate final demand categories: g_cat = [:defense,:def_structures,:def_equipment,:def_intelprop,:nondefense,:fed_structures,:fed_equipment,:fed_intelprop,:state_consume,:state_invest,:state_equipment,:state_intelprop] i_cat = [:structures,:equipment,:intelprop,:residential,:changinv] for r∈G[:r] G[:yh0_][:yr,[r],:s] = GU[:fs0][:yr,:i] .* GU[:region_shr][:yr,[r],:i] G[:fe0_][:yr,[r]] = sum(va0_[:yr,[r],[s]] for s∈G[:s]) #* Use PCE and government demand data rather than region_shr: G[:cd0_][:yr,[r],:g] = GU[:pce_shr][:yr,[r],:j] .* sum(GU[:fd0][:yr,:j,[:pce]],dims=3); G[:g0_][:yr,[r],:g] = GU[:sgf_shr][:yr,[r],:j] .* sum(GU[:fd0][:yr,:j,[fd]] for fd∈g_cat) G[:i0_][:yr,[r],:g] = GU[:region_shr][:yr,[r],:j] .* sum(GU[:fd0][:yr,:j,[fd]] for fd∈i_cat) G[:c0_][:yr,[r]] = sum(G[:cd0_][:yr,[r],[g]] for g∈G[:g]) end # Use export shares from USA Trade Online for included sectors. For those # not included, use gross state product shares: for yr∈G[:yr],g∈G[:g] if sum(GU[:usatrd_shr][[yr],:r,[g],[:exports]]) != 0 G[:x0_][[yr],:r,[g]] = GU[:usatrd_shr][[yr],:r,[g],[:exports]] .* GU[:x0][[yr],[g]] else G[:x0_][[yr],:r,[g]] = GU[:region_shr][[yr],:r,[g]] * GU[:x0][[yr],[g]] end end # No longer subtracting margin supply from gross output. This will be allocated # through the national and local markets. for r∈G[:r] G[:s0_][:yr,[r],:g] = sum(G[:ys0_][:yr,[r],[s],:g] for s∈G[:s]) + G[:yh0_][:yr,[r],:g] G[:a0_][:yr,[r],:g] = G[:cd0_][:yr,[r],:g] + G[:g0_][:yr,[r],:g] + G[:i0_][:yr,[r],:g] + sum(G[:id0_][:yr,[r],:g,[s]] for s∈G[:s]); G[:tm0_][:yr,[r],:g] = GU[:tm0][:yr,:i] G[:ta0_][:yr,[r],:g] = GU[:ta0][:yr,:i] end thetaa = GamsStructure.Parameter(G,(:yr,:r,:g);description = "Share of regional absorption") for yr∈G[:yr],g∈G[:g] if sum((1 .- G[:ta0_][[yr],[r],[g]]) .* G[:a0_][[yr],[r],[g]] for r∈G[:r]) !=0 thetaa[[yr],:r,[g]] = G[:a0_][[yr],:r,[g]] ./ sum(G[:a0_][[yr],[r],[g]] for r∈G[:r]) end end for r∈G[:r] G[:m0_][:yr,[r],:g] = thetaa[:yr,[r],:g] .* GU[:m0][:yr,:i] end for r∈G[:r],m∈G[:m] G[:md0_][:yr,[r],[m],:g] = thetaa[:yr,[r],:g] .* GU[:md0][:yr,[m],:i]; end # Note that s0_ - x0_ is negative for the other category. md0 is zero for that # category and: a + x = s + m. This means that some part of the other goods # imports are directly re-exported. Note, re-exports are defined as the maximum # between s0_-x0_ and the zero profit condition for the Armington # composite. This is due to balancing issues when defining domestic and national # demands. Particularly in the other goods sector which is a composite of the # "fudge" factor in the national IO accounts. #return G mask = Mask(G,(:yr,:r,:g)) mask[:yr,:r,:g] = (G[:s0_][:yr,:r,:g] .- G[:x0_][:yr,:r,:g] .< 0) G[:rx0_][mask] = G[:x0_][mask] .- G[:s0_][mask]; # Initial level of rx0_ makes the armington supply zero profit condition # negative meaning it is too small (imports + margins > supply + # re-exports). Adjust rx0_ upward for these enough to make these conditions # zeroed out. Then subsequently adjust parameters through the circular economy. diff = GamsStructure.Parameter(G,(:yr,:r,:g);description = "Negative numbers still exist due to sharing parameter") diff[:yr,:r,:g] = X = - min.(0,(1 .- G[:ta0_][:yr,:r,:g]).*G[:a0_][:yr,:r,:g] .+ G[:rx0_][:yr,:r,:g] .- ((1 .+G[:tm0_][:yr,:r,:g]).*G[:m0_][:yr,:r,:g] .+ sum(G[:md0_][:yr,:r,[m],:g] for m∈G[:m]))) G[:rx0_][:yr,:r,:g] = G[:rx0_][:yr,:r,:g] + diff[:yr,:r,:g] G[:x0_][:yr,:r,:g] = G[:x0_][:yr,:r,:g] + diff[:yr,:r,:g] G[:s0_][:yr,:r,:g] = G[:s0_][:yr,:r,:g] + diff[:yr,:r,:g] G[:yh0_][:yr,:r,:g] = G[:yh0_][:yr,:r,:g] + diff[:yr,:r,:g] G[:bopdef0_][:yr,:r] = sum(G[:m0_][:yr,:r,[g]] - G[:x0_][:yr,:r,[g]] for g∈G[:g]); s = [G[:g][e] for e∈G[:g] if (.!isapprox.(sum(GU[:ms0][[yr],[e],[m]] for yr∈G[:yr],m∈G[:m]),0,atol=1e-6)) .|| (.!isapprox.(sum(GU[:md0][[yr],[m],[e]] for yr∈GU[:yr],m∈GU[:m]),0,atol=1e-6))] add_set(G,:gm,GamsSet(s,"Commodities employed in margin supply")); dd0max = GamsStructure.Parameter(G,(:yr,:r,:g);description = "Maximum regional demand from local market") dd0max[:yr,:r,:g] = min.((1 .- G[:ta0_][:yr,:r,:g]).*G[:a0_][:yr,:r,:g] .+ G[:rx0_][:yr,:r,:g] .- ((1 .+ G[:tm0_][:yr,:r,:g]).*G[:m0_][:yr,:r,:g] + sum(G[:md0_][:yr,:r,[m],:g] for m∈G[:m])), G[:s0_][:yr,:r,:g] - (G[:x0_][:yr,:r,:g] - G[:rx0_][:yr,:r,:g])); rpc = GamsStructure.Parameter(G,(:yr,:r,:g);description = "Regional purchase coefficients") rpc[:yr,:r,:g] = GU[:rpc][:yr,:r,:i] G[:dd0_][:yr,:r,:g] = rpc[:yr,:r,:g] .* dd0max[:yr,:r,:g] G[:nd0_][:yr,:r,:g] = (1 .- G[:ta0_][:yr,:r,:g]).*G[:a0_][:yr,:r,:g] + G[:rx0_][:yr,:r,:g] - (G[:dd0_][:yr,:r,:g] + G[:m0_][:yr,:r,:g].*(1 .+ G[:tm0_][:yr,:r,:g]) + sum(G[:md0_][:yr,:r,[m],:g] for m∈G[:m])); # Assume margins come both from local and national production. Assign like # dd0. Use information on national margin supply to enforce other identities. totmargsupply = GamsStructure.Parameter(G,(:yr,:r,:m,:g);description = "Designate total supply of margins") margshr = GamsStructure.Parameter(G, (:yr,:r,:m);description = "Share of margin demand by region") shrtrd = GamsStructure.Parameter(G, (:yr,:r,:m,:g);description = "Share of margin total by margin type") #$sum((g,rr), md0_(yr,rr,m,g)) margshr[:yr,:r,:m] = permutedims(permutedims(sum(G[:md0_][:yr,:r,:m,[g]] for g∈G[:g]),(1,3,2)) ./ sum( G[:md0_][:yr,[r],:m,[g]] for r∈G[:r],g∈G[:g]),(1,3,2)) for m∈G[:m],g∈G[:g] totmargsupply[:yr,:r,[m],[g]] = margshr[:yr,:r,[m]] .* GU[:ms0][:yr,[g],[m]] end for yr∈G[:yr],r∈G[:r],gm∈G[:gm] t = sum(totmargsupply[[yr],[r],[m],[gm]] for m∈G[:m]) if t!=0 #shrtrd[:yr,:r,:m,:gm] = permutedims(permutedims(totmargsupply[:yr,:r,:m,:gm],(1,2,4,3)) ./ sum(totmargsupply[:yr,:r,[m],:gm] for m∈G[:m]),(1,2,4,3)); shrtrd[[yr],[r],:m,[gm]] = totmargsupply[[yr],[r],:m,[gm]] ./ sum(totmargsupply[[yr],[r],[m],[gm]] for m∈G[:m]); end end for m∈G[:m] G[:dm0_][:yr,:r,:gm,[m]] = min.( rpc[:yr,:r,:gm].*totmargsupply[:yr,:r,[m],:gm], shrtrd[:yr,:r,[m],:gm].*(G[:s0_][:yr,:r,:gm] - G[:x0_][:yr,:r,:gm] + G[:rx0_][:yr,:r,:gm] - G[:dd0_][:yr,:r,:gm])); end G[:nm0_][:yr,:r,:gm,:m] = permutedims(totmargsupply[:yr,:r,:m,:gm],(1,2,4,3)) - G[:dm0_][:yr,:r,:gm,:m]; G[:xd0_][:yr,:r,:g] = sum(G[:dm0_][:yr,:r,:g,[m]] for m∈G[:m]) + G[:dd0_][:yr,:r,:g] G[:xn0_][:yr,:r,:g] = G[:s0_][:yr,:r,:g] + G[:rx0_][:yr,:r,:g] - G[:xd0_][:yr,:r,:g] - G[:x0_][:yr,:r,:g] # Remove small numbers for (name,parm) in parameters(G) d = domain(parm) mask = Mask(G, d) mask[d...] = isapprox.(parm[d...],0,atol=1e-8) parm[mask] = 0 end #Set Household adjustments ibal_inc = GamsStructure.Parameter(G,(:yr,:r)) ibal_inc[:yr,:r] = sum(va0_[:yr,:r,[s]] for s∈G[:s]) + #E_RA_PL + E_RA_PK sum(G[:yh0_][:yr,:r,[s]] for s∈G[:s]) + #E_RA_PY G[:bopdef0_][:yr,:r] - # + hhadj[[r]] # E_RA_PFX sum(G[:g0_][:yr,:r,[s]] + G[:i0_][:yr,:r,[s]] for s∈G[:s]) #E_RA_PA ibal_taxrev = GamsStructure.Parameter(G,(:yr,:r)) ibal_taxrev[:yr,:r] = sum( G[:ta0_][:yr,:r,[s]] .* G[:a0_][:yr,:r,[s]] + G[:tm0_][:yr,:r,[s]].*G[:m0_][:yr,:r,[s]] + #R_A_RA G[:ty0_][:yr,:r,[s]] .* sum(G[:ys0_][:yr,:r,[s],[g]] for g∈G[:g]) #R_Y_RA for s∈G[:s]) ibal_balance = GamsStructure.Parameter(G,(:yr,:r)) ibal_balance[:yr,:r] = G[:c0_][:yr,:r] .- ibal_inc[:yr,:r] .- ibal_taxrev[:yr,:r] G[:hhadj0_][:yr,:r] = ibal_balance[:yr,:r] G[:gdp0_][:yr,:r] = G[:c0_][:yr,:r] + sum(G[:i0_][:yr,:r,:g] + G[:g0_][:yr,:r,:g],dims=3) - G[:hhadj0_][:yr,:r] - G[:bopdef0_][:yr,:r]; Y,A,X,M = _state_zero_profit(G) @assert isapprox(Y,0,atol=1e-4) "State Level Zero Profit fails. Check Y -> $Y." @assert isapprox(A,0,atol=1e-4) "State Level Zero Profit fails. Check A -> $A." @assert isapprox(X,0,atol=1e-4) "State Level Zero Profit fails. Check X -> $X." @assert isapprox(M,0,atol=1e-4) "State Level Zero Profit fails. Check M -> $M." I = _state_income_balance(G,va0_) @assert isapprox(I,0,atol=1e-4) "State Level Income Balance fails. Check I -> $I." PA,PN,PY,PFX = _state_market_clearance(G) @assert isapprox(PA,0,atol=1e-4) "State Level Market Clearance fails. Check PA -> $PA." @assert isapprox(PN,0,atol=1e-4) "State Level Market Clearance fails. Check PN -> $PN." @assert isapprox(PY,0,atol=1e-4) "State Level Market Clearance fails. Check PY -> $PY." @assert isapprox(PFX,0,atol=1e-4) "State Level Market Clearance fails. Check PFX -> $PFX." return G end function _state_zero_profit(G::GamsUniverse) Y = sum(abs.(1 .- G[:ty0_][:yr,:r,:s]) .* sum(G[:ys0_][:yr,:r,:s,[g]] for g∈G[:g]) - sum(G[:id0_][:yr,:r,[g],:s] for g∈G[:g]) - G[:ld0_][:yr,:r,:s] - G[:kd0_][:yr,:r,:s]) A = sum(abs.((1 .- G[:ta0_][:yr,:r,:g]).*G[:a0_][:yr,:r,:g] + G[:rx0_][:yr,:r,:g] - (G[:nd0_][:yr,:r,:g] + G[:dd0_][:yr,:r,:g] + (1 .+ G[:tm0_][:yr,:r,:g]).*G[:m0_][:yr,:r,:g] + sum(G[:md0_][:yr,:r,[m],:g] for m∈G[:m])))) X = sum(abs.(G[:s0_][:yr,:r,:g] - G[:xd0_][:yr,:r,:g] - G[:xn0_][:yr,:r,:g] - G[:x0_][:yr,:r,:g] + G[:rx0_][:yr,:r,:g])) M = sum(abs.(sum(G[:nm0_][:yr,:r,[s],:m] + G[:dm0_][:yr,:r,[s],:m] for s∈G[:s]) - sum(G[:md0_][:yr,:r,:m,[g]] for g∈G[:g]))) return (Y,A,X,M) end function _state_income_balance(G::GamsUniverse,va0_::GamsStructure.Parameter) ibal_inc = GamsStructure.Parameter(G,(:yr,:r)) ibal_inc[:yr,:r] = sum(va0_[:yr,:r,[s]] for s∈G[:s]) + #E_RA_PL + E_RA_PK sum(G[:yh0_][:yr,:r,[s]] for s∈G[:s]) + #E_RA_PY G[:bopdef0_][:yr,:r] - # + hhadj[[r]] # E_RA_PFX sum(G[:g0_][:yr,:r,[s]] + G[:i0_][:yr,:r,[s]] for s∈G[:s]) + #E_RA_PA G[:hhadj0_][:yr,:r] # Tax revenues are expressed as values per unit activity, so we # need multiply these by the activity level to compute total income: ibal_taxrev = GamsStructure.Parameter(G,(:yr,:r)) ibal_taxrev[:yr,:r] = sum( G[:ta0_][:yr,:r,[s]] .* G[:a0_][:yr,:r,[s]] + G[:tm0_][:yr,:r,[s]].*G[:m0_][:yr,:r,[s]] + #R_A_RA G[:ty0_][:yr,:r,[s]] .* sum(G[:ys0_][:yr,:r,[s],[g]] for g∈G[:g]) #R_Y_RA for s∈G[:s]) ibal_balance = GamsStructure.Parameter(G,(:yr,:r)) ibal_balance[:yr,:r] = G[:c0_][:yr,:r] - ibal_inc[:yr,:r] - ibal_taxrev[:yr,:r] return sum(abs.(ibal_balance[:yr,:r])) end function _state_market_clearance(G::GamsUniverse) PA = sum(abs.(G[:a0_][:yr,:r,:g] - (sum(G[:id0_][:yr,:r,:g,[s]] for s∈G[:s]) + G[:cd0_][:yr,:r,:g] + G[:g0_][:yr,:r,:g] + G[:i0_][:yr,:r,:g]))) PN = sum(abs.(sum(G[:xn0_][:yr,[r],:g] for r∈G[:r]) - sum(G[:nm0_][:yr,[r],:g,[m]] for r∈G[:r],m∈G[:m]) - sum(G[:nd0_][:yr,[r],:g] for r∈G[:r]))) PY = sum(abs.(sum(G[:ys0_][:yr,:r,[s],:g] for s∈G[:s]) + G[:yh0_][:yr,:r,:g] - G[:s0_][:yr,:r,:g])) PFX = sum(abs.(sum(sum(G[:x0_][:yr,[r],[s]] for s∈G[:s]) + G[:hhadj0_][:yr,[r]] + G[:bopdef0_][:yr,[r]] - sum(G[:m0_][:yr,[r],[s]] for s∈G[:s]) for r∈G[:r]))) return (PA,PN,PY,PFX) end
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
1813
""" get_bea_io_years(api_key::String) Return a string containing all available years of BEA Input/Output data. """ function get_bea_io_years(api_key::String) url = "https://apps.bea.gov/api/data/?&UserID=$(api_key)&method=GetParameterValues&DataSetName=InputOutput&ParameterName=Year&ResultFormat=json" response = HTTP.post(url)#, headers, JSON.json(req)) response_text = String(response.body) data = JSON.parse(response_text) years = [elm["Key"] for elm in data["BEAAPI"]["Results"]["ParamValue"]] years = join(years,",") end function parse_missing(val::Number) return val end function parse_missing(val::String) try return parse(Float64,val) catch return missing end end """ get_bea_io_table(api_key::String, code::Int) Return a dataframe containing the BEA table correspoding to the code. code - use table = 259, supply_table = 262 """ function get_bea_io_table(api_key::String, table::Symbol) table ∈ [:supply,:use] || error("table must be either :supply or :use. Given $table.") code = table == :use ? 259 : 262 years = get_bea_io_years(api_key) url = "https://apps.bea.gov/api/data/?&UserID=$(api_key)&method=GetData&DataSetName=InputOutput&Year=$years&tableID=$code&ResultFormat=json" response = HTTP.post(url) response_text = String(response.body) json_obj = JSON.parse(response_text) for elm in json_obj["BEAAPI"]["Results"][1]["Data"] if "DataValue" ∉ keys(elm) elm["DataValue"] = 0 end end df = DataFrame(json_obj["BEAAPI"]["Results"][1]["Data"]) df[!,:DataValue] = parse_missing.(df[!,:DataValue]) df[!,:DataValue] = df[!,:DataValue]./1_000 df[!,:value] = df[!,:DataValue] return df[!,[:Year,:RowCode,:ColCode,:value]] end
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
8790
#include("./data_defines.jl") function load_bea_gsp!(GU,data_dir,gsp_info) @parameters(GU,begin region_shr, (:yr,:r,:i), (description = "Regional share of value added",) labor_shr, (:yr,:r,:i), (description = "Estimated share of regional value added due to labor",) end) df = load_raw_bea_gsp(data_dir,1997:2021,gsp_info) df = clean_raw_bea_gsp(df) df = unstack(df,:gdpcat,:value); # Region Shares df[!,:gdp_calc] = df[!,:cmp] + df[!,:gos] + df[!,:taxsbd] df[!,:gdp_diff] = df[!,:gdp] - df[!,:gdp_calc]; X = df[!,[:region_abbv,:year,:i,:gdp]] Y = groupby(X,[:year,:i]) C = combine(Y,:gdp=>sum) Y = leftjoin(X,C,on = [:year,:i]) df[!,:region_shr] = Y[!,:gdp]./Y[!,:gdp_sum] for row in eachrow(df) d = [[row[e]] for e∈[:year,:region_abbv,:i]] GU[:region_shr][d...] = row[:region_shr] end klshare = create_klshare(GU,df) models = Dict() for yr∈GU[:yr],s∈GU[:i] function filter_cond(year,i) year==yr && i==s end klshare_l = GamsStructure.Parameter(GU,(:r,:yr)) klshare_k = GamsStructure.Parameter(GU,(:r,)) klshare_l_nat = GamsStructure.Parameter(GU,(:r,)) klshare_k_nat = GamsStructure.Parameter(GU,(:r,)) for y∈rolling_average_years(yr,8) X = filter([:year,:i]=> (year,i) -> year==y && i==s, klshare) for row∈eachrow(X) r = row[:region_abbv] klshare_l[[r],[y]] = row[:l] end end X = filter([:year,:i]=>filter_cond, klshare) for row∈eachrow(X) r = row[:region_abbv] klshare_k[[r]] = row[:k] klshare_l_nat[[r]] = row[:l_nat] klshare_k_nat[[r]] = row[:k_nat] end gspbal = GamsStructure.Parameter(GU,(:r,)) X = filter([:year,:i]=>filter_cond,df) for row∈eachrow(X) r = row[:region_abbv] gspbal[[r]] = row[:gdp] end ld0 = GU[:va0][[yr],[:compen],[s]] kd0 = GU[:va0][[yr],[:surplus],[s]] region_shr_ = GamsStructure.Parameter(GU,(:r,)) X = filter([:year,:i]=>filter_cond,df) for row∈eachrow(X) r = row[:region_abbv] region_shr_[[r]] = row[:region_shr] end m = gsp_share_calibrate(GU,yr,gspbal,region_shr_,klshare_l,ld0,kd0,klshare_k,klshare_l_nat,klshare_k_nat) set_silent(m) optimize!(m) models[yr,s] = m GU[:labor_shr][[yr],:r,[s]] = value.(m[:L_SHR]) end return (GU,models) end function load_bea_gsp_file(file_path::String,years::UnitRange,nrows::Int,ComponentName,rename_dict) df = DataFrame(CSV.File(file_path,silencewarnings=true,stringtype=String)[1:nrows]); df = stack(df,Symbol.(years),variable_name = :year) function parse_missing(val::Number) return val end function parse_missing(val::String) try return parse(Float64,val) catch return missing end end df[!,:value] = parse_missing.(df[!,:value]) df[!,:value] = coalesce.(df[!,:value],0) #replace!(df[!,:value], missing => 0) df[!,:GeoFIPS] = parse.(Int,df[!,:GeoFIPS]) df[!,:ComponentName] .= ComponentName df[!,:GeoName] = String.(strip.(replace.(df[!,:GeoName], "*"=>""))) rename!(df, :LineCode => :IndustryID) rename!(df,rename_dict) return df[!,["GeoFIPS","state","region","TableName","IndustryID","IndustryClassification","Description","ComponentName","units","year","value"]] end function load_raw_bea_gsp(data_dir,years,gsp_data) column_rename_dict = Dict( :GeoFIPS=> :GeoFIPS, :GeoName=> :state, :Region=> :region, :TableName=> :TableName, :IndustryId=> :IndustryId, :IndustryClassification=> :IndustryClassification, :Description=> :Description, :Unit=> :units, :year=> :year, :value=> :value, :ComponentName=> :ComponentName ) df = DataFrame() for (a,gsp_info) ∈ gsp_data df1 = load_bea_gsp_file(joinpath(data_dir,gsp_info["path"]), years, gsp_info["nrows"], gsp_info["ComponenentName"], column_rename_dict); df = vcat(df,df1) end return df end function clean_raw_bea_gsp(df) #notations = [] #push!(notations,notation_link(gsp_states,:state,:region_fullname)) ##push!(notations,notation_link(gsp_industry_id,:IndustryID,:gsp_industry_id)) #push!(notations,notation_link(bea_gsp_mapsec,:IndustryID,:gdp_industry_id)) #push!(notations,notation_link(bea_gsp_map,:ComponentName,:bea_code)) notations = bea_gsp_notations() df = apply_notations(df,notations) df = df[!,[:region_abbv,:year,:gdpcat,:i,:units,:value]] base_units = unique(df[!,:units]) df = unstack(df,:units,:value) df[!,"Thousands of dollars"] = df[!,"Thousands of dollars"]./1_000 df = dropmissing(stack(df,base_units,variable_name=:units,value_name=:value)) df[!,:units] = replace(df[!,:units], "Thousands of dollars" => "millions of us dollars (USD)", "Millions of current dollars" => "millions of us dollars (USD)" ) function _filter_out(units,regions) out = units == "millions of us dollars (USD)" && regions != "US" return out end filter!([:units,:region_abbv] => _filter_out,df) df[!,:year] = Symbol.(df[!,:year]) df[!,:region_abbv] = Symbol.(df[!,:region_abbv]) df[!,:i] = Symbol.(df[!,:i]) return select(df,Not(:units)) end function create_klshare(GU,df) klshare = df[!,[:year,:region_abbv,:i]] klshare[!,:l] = df[!,:cmp] ./ (df[!,:gdp_diff] .+ df[!,:gos] .+ df[!,:cmp]) #klshare[!,:l_nat] = kl = GamsStructure.Parameter(GU,(:yr,:i)) kl[:yr,:i] = GU[:va0][:yr,[:compen],:i] ./ (GU[:va0][:yr,[:compen],:i] .+ GU[:va0][:yr,[:surplus],:i]) kl = DataFrame(vec([(yr,i,kl[[yr],[i]]) for yr∈GU[:yr],i∈GU[:i]]),[:year,:i,:l_nat]); klshare = leftjoin(klshare,kl,on = [:year,:i]) klshare[!,:k] = 1 .- klshare[!,:l] klshare[!,:k_nat] = 1 .- klshare[!,:l_nat] Y = combine(groupby(df,[:year,:i]),:cmp=>sum,:gdp_diff=>sum,:gos=>sum) chk_national_shares = Y[!,[:year,:i]] chk_national_shares[!,:gsp] = Y[!,:cmp_sum] ./ (Y[!,:gdp_diff_sum] + Y[!,:gos_sum] + Y[!,:cmp_sum]) chk_national_shares = leftjoin(chk_national_shares,kl,on = [:year,:i]) chk_national_shares[!,:shr] = chk_national_shares[!,:l_nat]./chk_national_shares[!,:gsp] klshare = leftjoin(klshare,chk_national_shares[!,[:year,:i,:shr]],on = [:year,:i]) klshare[!,:l_diff] = klshare[!,:l].*klshare[!,:shr] klshare[!,:l] = klshare[!,:l].*klshare[!,:shr] klshare[!,:k] = 1 .- klshare[!,:l] prob_tot = klshare[!,:k] .<0 .|| klshare[!,:k] .>=1 .|| abs.(klshare[!,:k] - klshare[!,:k_nat]) .>.75 klshare[df[!,:region_shr] .!=0 .&& prob_tot,:l] .= klshare[df[!,:region_shr] .!=0 .&& prob_tot,:l_nat] klshare[df[!,:region_shr] .!=0, :k] = 1 .-klshare[df[!,:region_shr] .!=0, :l] for c ∈ eachcol(klshare) replace!(c, NaN => 0.0) end return klshare end function gsp_share_calibrate(GU,yr,gspbal,region_shr_,klshare_l,ld0,kd0,klshare_k,klshare_l_nat,klshare_k_nat) m = JuMP.Model(Ipopt.Optimizer) R = [r for r∈GU[:r]] YR = [yr for yr∈GU[:yr]] @variables(m, begin K_SHR[r=R]>=.25*klshare_k_nat[[r]], (start = klshare_k[[r]],) L_SHR[r=R]>=.25*klshare_l_nat[[r]], (start = klshare_l[[r],yr],) end) for r∈R if region_shr_[[r]] == 0 fix(K_SHR[r],0,force=true) fix(L_SHR[r],0,force=true) end end @constraints(m,begin shrdef[r=R; region_shr_[[r]]!=0], L_SHR[r] + K_SHR[r] == 1 lshrdef, sum(L_SHR[r]*region_shr_[[r]]*(ld0+kd0) for r∈R) == ld0 kshrdef, sum(K_SHR[r]*region_shr_[[r]]*(ld0+kd0) for r∈R) == kd0 end) @objective(m, Min, sum(abs(gspbal[[r]]) * (L_SHR[r]/klshare_l[[r],[yr]]-1)^2 for r∈R,yr∈YR if klshare_l[[r],[yr]]!=0 && region_shr_[[r]]!=0) ) return m end function rolling_average_years(yr,numyears;min=1997,max=2021) yr = parse(Int,string(yr)) return Symbol.([yr+y for y∈-Int(numyears/2):Int(numyears/2) if min<=yr+y<=max]) end
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
9585
#include("./bea_api/bea_api.jl") include("./calibrate.jl") #include("./data_defines.jl") function _bea_io_initialize_universe!(GU) @parameters(GU,begin #Use id0, (:yr,:i,:j), (description = "Intermediate Demand",) fd0, (:yr,:i,:fd), (description = "Final Demand",) x0, (:yr,:i), (description = "Exports",) va0, (:yr, :va,:j), (description = "Value Added",) ts0, (:yr,:ts,:j), (description = "Taxes and Subsidies",) othtax, (:yr,:j), (description = "Other taxes",) #Supply ys0, (:yr,:j,:i), (description = "Intermediate Supply",) m0, (:yr,:i), (description = "Imports",) mrg0, (:yr,:i), (description = "Trade Margins",) trn0, (:yr,:i), (description = "Transportation Costs",) cif0, (:yr,:i) duty0,(:yr,:i), (description = "Import Duties",) tax0, (:yr,:i), (description = "Taxes on Products",) sbd0, (:yr,:i), (description = "Subsidies",) end); return GU end """ load_bea_data_api(GU::GamsUniverse,api_key::String) Load the the BEA data using the BEA API. In order to use this you must have an api key from the BEA. [Register here](https://apps.bea.gov/api/signup/) to obtain an key. Currently (Septerber 28, 2023) this will only return years 2017-2022 due to the BEA restricting the API. """ function load_bea_data_api(GU::GamsUniverse,api_key::String) _bea_io_initialize_universe!(GU) load_supply_use_api!(GU,api_key) _bea_data_break!(GU) calibrate_national!(GU) return GU end """ load_bea_io!(GU::GamsUniverse, data_dir::String, info_dict ) Load the BEA data from a local XLSX file. This data is available [at the WiNDC webpage](https://windc.wisc.edu/downloads.html). The use table is windc_2021/BEA/IO/Use_SUT_Framework_1997-2021_SUM.xlsx and the supply table is windc_2021/BEA/IO/Supply_Tables_1997-2021_SUM.xlsx """ function load_bea_io!(GU::GamsUniverse, data_dir::String, info_dict ) _bea_io_initialize_universe!(GU) use_path = joinpath(data_dir,info_dict["use"]) use = _load_table_local(use_path) supply_path = joinpath(data_dir,info_dict["supply"]) supply = _load_table_local(supply_path) _bea_apply_notations!(GU,use,supply) _bea_data_break!(GU) calibrate_national!(GU) return GU end function load_supply_use_api!(GU,api_key::String) use = get_bea_io_table(api_key,:use) supply = get_bea_io_table(api_key,:supply); _bea_apply_notations!(GU,use,supply) return GU end function _bea_apply_notations!(GU,use,supply) notations = bea_io_notations() use = apply_notations(use,notations) supply = apply_notations(supply,notations) use[!,:industry] = Symbol.(use[!,:industry]) use[!,:commodity] = Symbol.(use[!,:commodity]) use[!,:Year] = Symbol.(use[!,:Year]); supply[!,:industry] = Symbol.(supply[!,:industry]) supply[!,:commodity] = Symbol.(supply[!,:commodity]) supply[!,:Year] = Symbol.(supply[!,:Year]); col_set_link = Dict(:yr => :Year, :j => :industry, :i => :commodity, :fd => :industry, :va => :commodity, :ts => :commodity ) additional_filters = Dict( :othtax => (:commodity,:othtax), :x0 => (:industry, :exports), :m0 => (:industry, :imports), :mrg0 => (:industry, :Margins), :trn0 => (:industry, :TrnCost), :cif0 => (:industry, :ciffob), :duty0 => (:industry, :Duties), :tax0 => (:industry, :Tax), :sbd0 => (:industry, :Subsidies) ) #Use for parm in [:id0,:fd0,:va0,:ts0,:othtax,:x0] fill_parameter!(GU, use, parm, col_set_link, additional_filters) end #Supply for parm in [:ys0,:m0,:mrg0,:trn0,:cif0,:duty0,:tax0,:sbd0] fill_parameter!(GU, supply, parm, col_set_link, additional_filters) end GU[:sbd0][:yr,:i] = - GU[:sbd0][:yr,:i] return GU end function _load_table_local(path::String) X = XLSX.readxlsx(path); df = DataFrame() for sheet in XLSX.sheetnames(X) Y = X[sheet][:] rows,cols = size(Y) Y[(Y .== "...") .& (.!ismissing.(Y))] .= missing col_names = ["RowCode","RowDescription"] append!(col_names,vec(Y[6,3:cols])) df1 = DataFrame(Y[8:rows,1:cols], col_names) df1 = stack(df1, Not([:RowCode,:RowDescription]),variable_name = :ColCode, value_name = :value) df1[!,:Year] .= sheet df1 = df1[.!ismissing.(df1[!,:value]),[:Year,:RowCode,:ColCode,:value]] df1[!,:value] = df1[!,:value]./1_000 df = vcat(df,df1) end return df end function _bea_data_break!(GU) # Define parameters GU[:ys0][:yr,:j,:i] = GU[:ys0][:yr,:j,:i] - min.(0,permutedims(GU[:id0][:yr,:i,:j],[1,3,2])) GU[:id0][:yr,:i,:j] = max.(0,GU[:id0][:yr,:i,:j]) GU[:ts0][:yr,[:subsidies],:j] = -GU[:ts0][:yr,[:subsidies],:j] # Adjust transport margins for transport sectors according to CIF/FOB # adjustments. Insurance imports are specified as net of adjustments. iₘ = [e for e ∈GU[:i] if e!=:ins] GU[:trn0][:yr,iₘ] = GU[:trn0][:yr,iₘ] .+ GU[:cif0][:yr,iₘ] GU[:m0][:yr,[:ins]] = GU[:m0][:yr,[:ins]] .+ GU[:cif0][:yr,[:ins]] # Second phase # More parameters @parameters(GU,begin s0, (:yr,:j), (description = "Aggregate Supply",) ms0, (:yr,:i,:m), (description = "Margin Supply",) md0, (:yr,:m,:i), (description = "Margin Demand",) fs0, (:yr,:i), (description = "Household Supply",) y0, (:yr,:i), (description = "Gross Output",) a0, (:yr,:i), (description = "Armington Supply",) tm0, (:yr,:i), (description = "Tax net subsidy rate on intermediate demand",) ta0, (:yr,:i), (description = "Import Tariff",) ty0, (:yr,:j), (description = "Output tax rate",) end); GU[:s0][:yr,:j] = sum(GU[:ys0][:yr,:j,:i],dims=2); GU[:ms0][:yr,:i,[:trd]] = -min.(0, GU[:mrg0][:yr,:i]) GU[:ms0][:yr,:i,[:trn]] = -min.(0, GU[:trn0][:yr,:i]) GU[:md0][:yr,[:trd],:i] = max.(0, GU[:mrg0][:yr,:i]) GU[:md0][:yr,[:trn],:i] = max.(0, GU[:trn0][:yr,:i]) GU[:fs0][:yr,:i] = -min.(0, GU[:fd0][:yr,:i,[:pce]]) GU[:y0][:yr,:i] = dropdims(sum(GU[:ys0][:yr,:j,:i],dims=2),dims=2) + GU[:fs0][:yr,:i] - dropdims(sum(GU[:ms0][:yr,:i,:m],dims=3),dims=3) GU[:a0][:yr,:i] = sum(GU[:id0][:yr,:i,:j],dims=3) + sum(GU[:fd0][:yr,:i,:fd],dims=3) IMRG = [:mvt,:fbt,:gmt] GU[:y0][:yr,IMRG] = 0*GU[:y0][:yr,IMRG] GU[:a0][:yr,IMRG] = 0*GU[:a0][:yr,IMRG] GU[:tax0][:yr,IMRG] = 0*GU[:tax0][:yr,IMRG] GU[:sbd0][:yr,IMRG] = 0*GU[:sbd0][:yr,IMRG] GU[:x0][:yr,IMRG] = 0*GU[:x0][:yr,IMRG] GU[:m0][:yr,IMRG] = 0*GU[:m0][:yr,IMRG] GU[:md0][:yr,:m,IMRG] = 0*GU[:md0][:yr,:m,IMRG] GU[:duty0][:yr,IMRG] = 0*GU[:duty0][:yr,IMRG] #mask = GU[:m0][:yr,:i] .>0 #mask = Mask(GU,(:yr,:i)) #mask[:yr,:i] = (GU[:m0][:yr,:i] .> 0) #GU[:tm0][mask] = GU[:duty0][mask]./GU[:m0][mask] #mask = GU[:a0][:yr,:i] .!= 0 #mask[:yr,:i] = (GU[:a0][:yr,:i] .!= 0) #GU[:ta0][mask] = (GU[:tax0][mask] - GU[:sbd0][mask]) ./ GU[:a0][mask] for yr∈GU[:yr],i∈GU[:i] if GU[:m0][yr,i] > 0 GU[:tm0][yr,i] = GU[:duty0][yr,i]/GU[:m0][yr,i] end if GU[:a0][yr,i] != 0 GU[:ta0][yr,i] = (GU[:tax0][yr,i] - GU[:sbd0][yr,i]) / GU[:a0][yr,i] end end ##################### ## Negative Values ## ##################### GU[:id0][:yr,:i,:j] = GU[:id0][:yr,:i,:j] .- permutedims(min.(0,GU[:ys0][:yr,:j,:i]),[1,3,2]) GU[:ys0][:yr,:j,:i] = max.(0,GU[:ys0][:yr,:j,:i]) GU[:a0][:yr,:i] = max.(0, GU[:a0][:yr,:i]) GU[:x0][:yr,:i] = max.(0, GU[:x0][:yr,:i]) GU[:y0][:yr,:i] = max.(0, GU[:y0][:yr,:i]) GU[:fd0][:yr,:i,[:pce]] = max.(0, GU[:fd0][:yr,:i,[:pce]]); #THis is stupid. #GU[:duty0][GU[:m0].==0] = (GU[:duty0][GU[:m0].==0] .=1); for yr∈GU[:yr],i∈GU[:i] if GU[:m0][yr,i] == 0 GU[:duty0][yr,i] = 1 end end m_shr = GamsStructure.Parameter(GU,(:i,)) va_shr = GamsStructure.Parameter(GU,(:j,:va)) deactivate(GU,:i,:use,:oth) deactivate(GU,:j,:use,:oth) m_shr[:i] = transpose(sum(GU[:m0][:yr,:i],dims = 1)) ./ sum(GU[:m0][:yr,:i]) va_shr[:j,:va] = permutedims(sum(GU[:va0][:yr,:va,:j],dims=1)./ sum(GU[:va0][:yr,:va,:j],dims=(1,2)),(3,2,1)) for yr∈GU[:yr],i∈GU[:i] GU[:m0][[yr],[i]] = GU[:m0][[yr],[i]]<0 ? m_shr[[i]]*sum(GU[:m0][[yr],:i]) : GU[:m0][[yr],[i]] end for year∈GU[:yr],va∈GU[:va], j∈GU[:j] GU[:va0][[year],[va],[j]] = GU[:va0][[year],[va],[j]]<0 ? va_shr[[j],[va]]*sum(GU[:va0][[year],:va,[j]]) : GU[:va0][[year],[va],[j]] end # Non-tracked marginal categories. IMRG = [:mvt,:fbt,:gmt] for yr∈GU[:yr],i∈IMRG GU[:y0][[yr],[i]] = 0 GU[:a0][[yr],[i]] = 0 GU[:tax0][[yr],[i]] = 0 GU[:sbd0][[yr],[i]] = 0 GU[:x0][[yr],[i]] = 0 GU[:m0][[yr],[i]] = 0 GU[:duty0][[yr],[i]] = 0 for m∈GU[:m] GU[:md0][[yr],[m],[i]] = 0 end end GU[:ty0][:yr,:j] = GU[:othtax][:yr,:j] ./ sum(GU[:ys0][:yr,:j,:i],dims=3) for yr∈GU[:yr],j∈GU[:j] GU[:va0][[yr],[:othtax],[j]] = 0 end return GU end
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
9696
""" calibrate_national!(GU::GamsUniverse) Calibrate the national BEA IO data. """ function calibrate_national!(GU::GamsUniverse) parms_to_update = [(:ys0,:ys0_), (:id0,:id0_), (:ms0,:ms0_), (:y0,:y0_), (:fd0,:fd0_), (:a0,:a0_), (:x0,:x0_), (:m0,:m0_), (:md0,:md0_), (:va0,:va0_), (:fs0,:fs0_) ] for year∈GU[:yr] m = calibrate_national_model(GU,year) set_silent(m) optimize!(m) for (old,new)∈parms_to_update sets = [[elm for elm in GU[s]] for s∈domain(GU[old])[2:end]] for element in Iterators.product(sets...) elm = [[year]] push!(elm,[[e] for e∈element]...) GU[old][elm...] = value(m[new][element...]) end end end # A couple of parameters get created/updated after calibration @parameters(GU,begin bopdef0, (:yr,) end) for yr∈GU[:yr] GU[:bopdef0][[yr]] = sum(GU[:m0][[yr],[i]]-GU[:x0][[yr],[i]] for i∈GU[:i] if GU[:a0][[yr],[i]]!=0;init=0) for j∈GU[:j] GU[:s0][[yr],[j]] = sum(GU[:ys0][[yr],[j],:i]) end end P = calibrate_zero_profit(GU) @assert sum(abs.(P[:yr,:j,:tmp])) ≈ 0 "Calibration has failed to satisfy the zero profit condition." P = calibrate_market_clearance(GU) @assert sum(abs.(P[:yr,:i,:tmp])) ≈ 0 "Calibration has failed to satisfy the market clearance condition." return GU end function calibrate_national_model(GU::GamsUniverse,year::Symbol) #year = Symbol(1997) #May go elsewhere deactivate(GU,:i,:use,:oth) deactivate(GU,:j,:use,:oth) I = [i for i in GU[:i]] J = [j for j in GU[:j]] M = [m_ for m_ in GU[:m]] FD = [fd for fd in GU[:fd]] VA = [va for va in GU[:va]] PCE_FD = [:pce] OTHFD = [fd for fd in GU[:fd] if fd != :pce] IMRG = [:mvt,:fbt,:gmt] ys0 = GU[:ys0] id0 = GU[:id0] fd0 = GU[:fd0] va0 = GU[:va0] fs0 = GU[:fs0] ms0 = GU[:ms0] y0 = GU[:y0] id0 = GU[:id0] a0 = GU[:a0] x0 = GU[:x0] m0 = GU[:m0] md0 = GU[:md0] ty0 = GU[:ty0] ta0 = GU[:ta0] tm0 = GU[:tm0] lob = 0.01 #Lower bound ratio upb = 10 #upper bound ratio newnzpenalty = 1e3 m = JuMP.Model(Ipopt.Optimizer) @variables(m,begin ys0_[j=J,i=I] >= max(0,lob*ys0[[year],[j],[i]]) #"Calibrated variable ys0." ms0_[i=I,m_=M] >= max(0,lob*ms0[[year],[i],[m_]]) #"Calibrated variable ms0." y0_[i=I] >= max(0,lob*y0[[year],[i]]) #"Calibrated variable y0." id0_[i=I,j=J] >= max(0,lob*id0[[year],[i],[j]]) #"Calibrated variable id0." fd0_[i=I,fd=FD] >= max(0,lob*fd0[[year],[i],[fd]]) #"Calibrated variable fd0." a0_[i=I] >= max(0,lob*a0[[year],[i]]) #"Calibrated variable a0." x0_[i=I] >= max(0,lob*x0[[year],[i]]) #"Calibrated variable x0." m0_[i=I] >= max(0,lob*m0[[year],[i]]) #"Calibrated variable m0." md0_[m_=M,i=I] >= max(0,lob*md0[[year],[m_],[i]]) #"Calibrated variable md0." va0_[va=VA,j=J] >= max(0,lob*va0[[year],[va],[j]]) #"Calibrated variable va0." fs0_[I] >= 0 #"Calibrated variable fs0." end) function _set_upb(var,parm,sets...) for idx ∈ Iterators.product(sets...) ind = [[e] for e in idx] if parm[[year],ind...] != 0 set_upper_bound(var[idx...],abs(upb*parm[[year],ind...])) end end end _set_upb(ys0_,ys0,J,I) _set_upb(ms0_,ms0,I,M) _set_upb(y0_,y0,I) _set_upb(id0_,id0,I,J) _set_upb(fd0_,fd0,I,FD) _set_upb(a0_,a0,I) _set_upb(x0_,x0,I) _set_upb(m0_,m0,I) _set_upb(md0_,md0,M,I) _set_upb(va0_,va0,VA,J) function _fix(var,parm,sets...) for idx ∈ Iterators.product(sets...) ind = [[e] for e in idx] if parm[[year],ind...] == 0 fix(var[idx...],0,force=true) end end end # Assume zero values remain zero values for multi-dimensional parameters: _fix(ys0_,ys0,J,I) _fix(id0_,id0,I,J) _fix(fd0_,fd0,I,FD) _fix(ms0_,ms0,I,M) _fix(va0_,va0,VA,J) # Fix certain parameters -- exogenous portions of final demand, value # added, imports, exports and household supply. for i∈I fix.(fs0_[i],fs0[year,i],force=true) fix.(m0_[i] ,m0[year,i] ,force=true) fix.(x0_[i] ,x0[year,i] ,force=true) end # Fix labor compensation to target NIPA table totals. fix.(va0_[:compen,J],va0[[year],[:compen],J],force=true) # No margin inputs to goods which only provide margins: fix.(md0_[M,IMRG] ,0,force=true) fix.(y0_[IMRG] ,0,force=true) fix.(m0_[IMRG] ,0,force=true) fix.(x0_[IMRG] ,0,force=true) fix.(a0_[IMRG] ,0,force=true) fix.(id0_[IMRG,J] ,0,force=true) fix.(fd0_[IMRG,FD],0,force=true) @expression(m,NEWNZ, sum(ys0_[j,i] for j∈J,i∈I if ys0[[year],[j],[i]]==0 ) + sum(fs0_[i] for i∈I if fs0[[year],[i]]==0 ) + sum(ms0_[i,m_] for i∈I,m_∈M if ms0[[year],[i],[m_]]==0 ) + sum(y0_[i] for i∈I if y0[[year],[i]]==0 ) + sum(id0_[i,j] for i∈I,j∈J if id0[[year],[i],[j]]==0 ) + sum(fd0_[i,fd] for i∈I,fd∈FD if fd0[[year],[i],[fd]]==0 ) + sum(va0_[va,j] for va∈VA,j∈J if va0[[year],[va],[j]]==0 ) + sum(a0_[i] for i∈I if a0[[year],[i]]==0 ) + sum(x0_[i] for i∈I if x0[[year],[i]]==0 ) + sum(m0_[i] for i∈I if m0[[year],[i]]==0 ) + sum(md0_[m_,i] for m_∈M,i∈I if md0[[year],[m_],[i]]==0 ) ) @objective(m,Min, sum(abs(ys0[[year],[j],[i]]) * (ys0_[j,i]/ys0[[year],[j],[i]]-1)^2 for i∈I,j∈J if ys0[[year],[j],[i]]!=0 ) + sum(abs(id0[[year],[i],[j]]) * (id0_[i,j]/id0[[year],[i],[j]]-1)^2 for i∈I,j∈J if id0[[year],[i],[j]]!=0 ) + sum(abs(fd0[[year],[i],[fd]]) * (fd0_[i,fd]/fd0[[year],[i],[fd]]-1)^2 for i∈I,fd∈PCE_FD if fd0[[year],[i],[fd]]!=0 ) + sum(abs(va0[[year],[va],[j]]) * (va0_[va,j]/va0[[year],[va],[j]]-1)^2 for va∈VA,j∈J if va0[[year],[va],[j]]!=0 ) + sum(abs(fd0[[year],[i],[fd]]) * (fd0_[i,fd]/fd0[[year],[i],[fd]]-1)^2 for i∈I,fd∈OTHFD if fd0[[year],[i],[fd]]!=0 ) + sum(abs(fs0[[year],[i]]) * (fs0_[i]/fs0[[year],[i]]-1)^2 for i∈I if fs0[[year],[i]]!=0 ) + sum(abs(ms0[[year],[i],[m_]]) * (ms0_[i,m_]/ms0[[year],[i],[m_]]-1)^2 for i∈I,m_∈M if ms0[[year],[i],[m_]]!=0 ) + sum(abs(y0[[year],[i]]) * (y0_[i]/y0[[year],[i]]-1)^2 for i∈I if y0[[year],[i]]!=0 ) + sum(abs(a0[[year],[i]]) * (a0_[i]/a0[[year],[i]]-1)^2 for i∈I if a0[[year],[i]]!=0 ) + sum(abs(x0[[year],[i]]) * (x0_[i]/x0[[year],[i]]-1)^2 for i∈I if x0[[year],[i]]!=0 ) + sum(abs(m0[[year],[i]]) * (m0_[i]/m0[[year],[i]]-1)^2 for i∈I if m0[[year],[i]]!=0 ) + sum(abs(md0[[year],[m_],[i]]) * (md0_[m_,i]/md0[[year],[m_],[i]]-1)^2 for m_∈M,i∈I if md0[[year],[m_],[i]]!=0 ) + newnzpenalty * NEWNZ ) @constraints(m,begin mkt_py[i=I], sum(ys0_[J,i]) + fs0_[i] == sum(ms0_[i,M]) + y0_[i] mkt_pa[i=I], a0_[i] == sum(id0_[i,J]) + sum(fd0_[i,FD]) mkt_pm[m_=M], sum(ms0_[I,m_]) == sum(md0_[m_,I]) prf_y[j=J], (1-ty0[[year],[j]])*sum(ys0_[j,I]) == sum(id0_[I,j]) + sum(va0_[VA,j]) prf_a[i=I], a0_[i]*(1-ta0[[year],[i]]) + x0_[i] == y0_[i] + m0_[i]*(1+tm0[[year],[i]]) + sum(md0_[M,i]) end) 1; return m end function calibrate_zero_profit(GU::GamsUniverse) G = deepcopy(GU) @set(G,tmp,"tmp",begin Y,"" A,"" end) @parameters(G,begin profit, (:yr,:j,:tmp), (description = "Zero profit condidtions",) end) YR = G[:yr] J = G[:j] I = G[:i] VA = G[:va] M = G[:m] parm = G[:profit] for yr∈YR,j∈J parm[[yr],[j],[:Y]] = G[:s0][[yr],[j]] !=0 ? round((1-G[:ty0][[yr],[j]]) * sum(G[:ys0][[yr],[j],I]) - sum(G[:id0][[yr],I,[j]]) - sum(G[:va0][[yr],VA,[j]]),digits = 6) : 0 parm[[yr],[j],[:A]] = round(G[:a0][[yr],[j]]*(1-G[:ta0][[yr],[j]]) + G[:x0][[yr],[j]] - G[:y0][[yr],[j]] - G[:m0][[yr],[j]]*(1+G[:tm0][[yr],[j]]) - sum(G[:md0][[yr],M,[j]]), digits = 6) end return parm end function calibrate_market_clearance(GU::GamsUniverse) G = deepcopy(GU) @set(G,tmp,"tmp",begin PA,"" PY,"" end) @parameters(G,begin market, (:yr,:i,:tmp), (description = "Market clearance condition",) end) YR = G[:yr] J = G[:j] I = G[:i] FD = G[:fd] M = G[:m] parm = G[:market] for yr∈YR,i∈I parm[[yr],[i],[:PA]] = round( G[:a0][[yr],[i]] - sum(G[:fd0][[yr],[i],FD];init=0)- sum(G[:id0][[yr],[i],[j]] for j∈J if G[:s0][[yr],[j]]!=0;init=0),digits = 6) parm[[yr],[i],[:PY]] = round( sum(G[:ys0][[yr],[j],[i]] for j∈J if G[:s0][[yr],[j]]!=0;init=0) + G[:fs0][[yr],[i]] - G[:y0][[yr],[i]] - sum(G[:ms0][[yr],[i],M];init=0),digits=6) end return parm end
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
1349
#include("./data_defines.jl") function load_bea_pce!(GU,data_dir,info_dict) info = info_dict["saexp1"] data_path = "$data_dir\\$(info["path"])" nrows = info["nrows"] notations = bea_pce_notations() df = DataFrame(CSV.File(data_path;limit = nrows,stringtype=String)) |> x -> select(x,Not([:Unit,:IndustryClassification,:GeoFIPS,:Region,:TableName,:LineCode])) |> x -> transform(x, :Description => (y -> string.(strip.(y))) => :Description ) |> x -> apply_notations(x,notations) |> x -> stack(x, Not([:r,:i]),variable_name = :year,value_name = :value) df = df |> x -> groupby(x,[:year,:i]) |> x -> combine(x, :value => sum) |> x -> leftjoin(df,x, on = [:year,:i]) |> x -> transform(x, [:value,:value_sum] => ((v,vs) -> v./vs) => :value, :i => (i -> Symbol.(i)) => :i, :r => (i -> Symbol.(i)) => :r, :year => (i -> Symbol.(i)) => :year ) @parameters(GU,begin pce_shr, (:yr,:r,:i), (description = "Regional shares of final consumption",) end) col_set_link = Dict(:yr => :year, :r => :r, :i => :i ) fill_parameter!(GU, df, :pce_shr, col_set_link, Dict()) return GU end
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
3444
#include("./data_defines.jl") function sgf_parse_line(s) out = ( government_code = string(s[1:14]), item_code = string(s[15:17]), amount = string(s[18:29]), survey_year = string(s[30:31]), year = string(s[32:33]), origin = string(s[34:35]) ) return out end function sgf_parse_line_1999(s) out = ( government_code = string(s[1:14]), origin = string(s[18:19]), item_code = string(s[22:24]), amount = string(s[25:35]), survey_year = "99", year = "99", ) return out end function sgf_load_clean_year(year,data_dir,path) data_path = joinpath(data_dir,path) s = open(data_path) do f s = read(f,String) end if year == "1999" f = sgf_parse_line_1999 else f = sgf_parse_line end notations = sgf_notations() #notations = [] #push!(notations,WiNDC.notation_link(sgf_state_codes,:government_code,:code)) #push!(notations,WiNDC.notation_link(sgf_states, :state, :region_fullname)) #push!(notations,WiNDC.notation_link(item_codes, :item_code,:item_code)); #push!(notations,WiNDC.notation_link(sgf_map, :item_name,:sgf_category)); #push!(notations,WiNDC.notation_link(sgf_gams_map, :i,:sgf_category)); L = f.([e for e in split(s,'\n') if e!=""]) df = DataFrame(L) |> x -> apply_notations(x,notations) |> x -> transform(x, :amount => (y -> parse.(Int,y)) => :amount ) |> x -> groupby(x,[:i,:region_abbv]) |> x -> combine(x, :amount => sum) |> x -> transform(x, :amount_sum => (y -> Symbol(year)) => :year, :amount_sum => (a -> a./1_000) => :value, :i => (i -> Symbol.(i)) => :i, :region_abbv => (r -> Symbol.(r)) => :region_abbv ) #df = apply_notations(df,notations) #df[!,:amount] = parse.(Int,df[!,:amount]) #df = combine(groupby(df,[:i,:region_abbv]),:amount => sum); #df[!,:year] .= year; #df[!,:value] = df[!,:amount_sum]./1_000 #df[!,:year] = Symbol.(df[!,:year]) #df[!,:i] = Symbol.(df[!,:i]) #df[!,:region_abbv] = Symbol.(df[!,:region_abbv]) return df end function load_sgf_data!(GU,data_dir,info_dict) @parameters(GU,begin sgf_shr, (:yr,:r,:i), (description = "Regional shares of final consumption",) end) df = DataFrame() for (year,path) in info_dict small_df = sgf_load_clean_year(year,data_dir,path) df = vcat(df,small_df) end #Add DC in regions df = df |> x -> select(x, [:i,:region_abbv,:year,:value]) |> x -> unstack(x, :region_abbv, :value) |> x -> transform(x, :MD => (y->y) => :DC) |> x -> stack(x, Not(:i,:year),variable_name = :region_abbv) |> x -> transform(x, :region_abbv => (y->Symbol.(y)) => :region_abbv)|> x -> dropmissing(x) #return df df = df |> x -> groupby(x, [:i,:year]) |> x -> combine(x, :value=> sum) |> x -> leftjoin(df, x, on = [:i,:year]) |> x -> transform(x, [:value,:value_sum] => ((v,vs) -> v./vs) => :value) #return df col_set_link = Dict(:yr => :year, :r => :region_abbv, :i => :i ) WiNDC.fill_parameter!(GU, df, :sgf_shr, col_set_link, Dict()) return GU end
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
3964
#include("./data_defines.jl") function load_raw_faf_data(file_path) df = DataFrame(CSV.File(file_path,stringtype=String)) cols_to_keep = ["dms_origst","dms_destst","dms_mode","sctg2"] push!(cols_to_keep,[ col for col in names(df) if occursin(r"^value_",col)]...) df = df |> x -> filter(:trade_type => y-> y==1, x) |> x -> select(x, cols_to_keep) |> x -> stack(x, Not(["dms_origst","dms_destst","dms_mode","sctg2"]), value_name = :value, variable_name = :year ) |> x -> transform(x, :dms_origst => (y -> string.(y)) => :dms_origst, :dms_destst => (y -> string.(y)) => :dms_destst, :year => (y -> replace.(y,"value_" => "")) => :year ) |> x -> groupby(x, [:dms_origst,:dms_destst,:sctg2,:year]) |> x -> combine(x, :value=>sum=>:value) return df end function load_faf_data!(GU,data_dir,info_dict) current_file_path = joinpath(data_dir,info_dict["current"]) history_file_path = joinpath(data_dir,info_dict["history"]) df_cur = load_raw_faf_data(current_file_path) df_hist = load_raw_faf_data(history_file_path) #notations = [] #push!(notations,WiNDC.notation_link(orig,:dms_origst,:state_fips)) #push!(notations,WiNDC.notation_link(dest,:dms_destst,:state_fips)) #push!(notations,WiNDC.notation_link(sctg2,:sctg2,:sctg2)) #push!(notations,WiNDC.notation_link(years,:year,:faf_year)) notations = faf_notations() df = vcat(df_cur,df_hist) |> x -> apply_notations(x,notations) |> x -> groupby(x,[:dms_dest,:dms_orig,:year,:i]) |> x -> combine(x, :value => sum => :value) single_region = df |> x-> filter([:dms_orig,:dms_dest] => (a,b) -> a==b, x) |> x-> select(x, [:dms_dest,:year,:i,:value]) |> x-> rename(x, :dms_dest => :r, :value=>:local_supply) multi_region = filter([:dms_orig,:dms_dest] => (a,b) -> a!=b, df) #exports single_region = multi_region |> x -> groupby(x, [:dms_orig,:year,:i]) |> x -> combine(x, :value => sum => :exports) |> x -> outerjoin(single_region, x, on = [:r=>:dms_orig,:year,:i]) #Imports single_region = multi_region |> x -> groupby(x, [:dms_dest,:year,:i]) |> x -> combine(x, :value => sum => :demand) |> x -> outerjoin(single_region, x, on = [:r=>:dms_dest,:year,:i]) single_region = coalesce.(single_region,0) function mean(x) sum(x)/length(x) end Y = single_region |> x -> groupby(x, [:r,:year]) |> x -> combine(x, :local_supply=> mean =>:local_supply, :exports => mean => :exports, :demand => mean => :demand ) # Make a dataframe with all the goods not present in the FAF data X = Symbol.(unique(single_region[!,:i])) |> x -> [i for i∈GU[:i] if i∉ x] |> x -> DataFrame([x],[:i]) #X = DataFrame([[i for i∈GU[:i] if i∉ Symbol.(unique(single_region[!,:i]))]],[:i]) single_region = vcat(single_region,crossjoin(X,Y)); single_region[!,:value] = single_region[!,:local_supply] ./ (single_region[!,:local_supply] .+ single_region[!,:demand]) single_region = single_region |> x -> select(x,[:r,:year,:i,:value]) |> x -> unstack(x,:i,:value) |> x -> transform(x, :uti => (y -> .9) => :uti ) |> x -> stack(x,Not(:r,:year),variable_name = :i,value_name = :value) @parameters(GU,begin rpc, (:yr,:r,:i), (description = "Regional purchase coefficient",) end) col_set_link = Dict(:yr => :year, :r => :r, :i => :i ) single_region[!,[:r,:i,:year]] = Symbol.(single_region[!,[:r,:i,:year]]) fill_parameter!(GU, single_region, :rpc, col_set_link, Dict()) return GU end
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
8592
function initialize_sets(years = 1997:2021) GU = GamsUniverse() initialize_sets!(GU,years) return GU end function initialize_sets!(GU, years = 1997:2021) margins!(GU) bea_value_added!(GU) bea_final_demand!(GU) bea_taxes_subsidies!(GU) bea_goods_sectors!(GU) alias(GU,:i,:j) WiNDC_regions!(GU) years!(GU, years) return GU end function margins!(GU) @set(GU,m,"Margins",begin trn, "Transport" trd, "Trade" end) GU end function bea_value_added!(GU) @set(GU, va, "BEA Value added categories",begin othtax, "Other taxes on production (T00OTOP)" surplus, "Gross operating surplus (V003)" compen, "Compensation of employees (V001)" end) GU end function bea_final_demand!(GU) @set(GU, fd, "BEA Final demand categories",begin fed_structures, "Federal nondefense: Gross investment in structures" def_equipment, "Federal national defense: Gross investment in equipment" changinv, "Change in private inventories" def_structures, "Federal national defense: Gross investment in structures" state_equipment, "State and local: Gross investment in equipment" def_intelprop, "Federal national defense: Gross investment in intellectual" nondefense, "Nondefense: Consumption expenditures" fed_equipment, "Federal nondefense: Gross investment in equipment" state_invest, "State and local: Gross investment in structures" structures, "Nonresidential private fixed investment in structures" defense, "National defense: Consumption expenditures" residential, "Residential private fixed investment" equipment, "Nonresidential private fixed investment in equipment" state_intelprop, "State and local: Gross investment in intellectual" intelprop, "Nonresidential private fixed investment in intellectual" pce, "Personal consumption expenditures" state_consume, "State and local government consumption expenditures" fed_intelprop, "Federal nondefense: Gross investment in intellectual prop" end) GU end function bea_taxes_subsidies!(GU) TS = GamsSet([ GamsElement(:taxes, "taxes"), GamsElement(:subsidies, "subsidies") ], "BEA Taxes and subsidies categories") add_set(GU,:ts, TS) GU end function years!(GU, years) year_set = GamsSet(GamsElement.(years),"Years in dataset") add_set(GU, :yr, year_set) end function bea_goods_sectors!(GU) add_set(GU, :i, GamsSet([ GamsElement(:ppd, "Paper products manufacturing (322)"), GamsElement(:res, "Food services and drinking places (722)"), GamsElement(:com, "Computer systems design and related services (5415)"), GamsElement(:amb, "Ambulatory health care services (621)"), GamsElement(:fbp, "Food and beverage and tobacco products manufacturing (311-312)"), GamsElement(:rec, "Amusements, gambling, and recreation industries (713)"), GamsElement(:con, "Construction (23)"), GamsElement(:agr, "Farms (111-112)"), GamsElement(:eec, "Electrical equipment, appliance, and components manufacturing (335)"), GamsElement(:use, "Scrap, used and secondhand goods"), GamsElement(:fnd, "Federal general government (nondefense) (GFGN)"), GamsElement(:pub, "Publishing industries, except Internet (includes software) (511)"), GamsElement(:hou, "Housing (HS)"), GamsElement(:fbt, "Food and beverage stores (445)"), GamsElement(:ins, "Insurance carriers and related activities (524)"), GamsElement(:tex, "Textile mills and textile product mills (313-314)"), GamsElement(:leg, "Legal services (5411)"), GamsElement(:fen, "Federal government enterprises (GFE)"), GamsElement(:uti, "Utilities (22)"), GamsElement(:nmp, "Nonmetallic mineral products manufacturing (327)"), GamsElement(:brd, "Broadcasting and telecommunications (515, 517)"), GamsElement(:bnk, "Federal Reserve banks, credit intermediation, and related services (521-522)"), GamsElement(:ore, "Other real estate (ORE)"), GamsElement(:edu, "Educational services (61)"), GamsElement(:ote, "Other transportation equipment manufacturing (3364-3366, 3369)"), GamsElement(:man, "Management of companies and enterprises (55)"), GamsElement(:mch, "Machinery manufacturing (333)"), GamsElement(:dat, "Data processing, internet publishing, and other information services (518, 519)"), GamsElement(:amd, "Accommodation (721)"), GamsElement(:oil, "Oil and gas extraction (211)"), GamsElement(:hos, "Hospitals (622)"), GamsElement(:rnt, "Rental and leasing services and lessors of intangible assets (532-533)"), GamsElement(:pla, "Plastics and rubber products manufacturing (326)"), GamsElement(:fof, "Forestry, fishing, and related activities (113-115)"), GamsElement(:fin, "Funds, trusts, and other financial vehicles (525)"), GamsElement(:tsv, "Miscellaneous professional, scientific, and technical services (5412-5414, 5416-5419)"), GamsElement(:nrs, "Nursing and residential care facilities (623)"), GamsElement(:sec, "Securities, commodity contracts, and investments (523)"), GamsElement(:art, "Performing arts, spectator sports, museums, and related activities (711-712)"), GamsElement(:mov, "Motion picture and sound recording industries (512)"), GamsElement(:fpd, "Furniture and related products manufacturing (337)"), GamsElement(:slg, "State and local general government (GSLG)"), GamsElement(:pri, "Printing and related support activities (323)"), GamsElement(:grd, "Transit and ground passenger transportation (485)"), GamsElement(:pip, "Pipeline transportation (486)"), GamsElement(:sle, "State and local government enterprises (GSLE)"), GamsElement(:osv, "Other services, except government (81)"), GamsElement(:trn, "Rail transportation (482)"), GamsElement(:smn, "Support activities for mining (213)"), GamsElement(:fmt, "Fabricated metal products (332)"), GamsElement(:pet, "Petroleum and coal products manufacturing (324)"), GamsElement(:mvt, "Motor vehicle and parts dealers (441)"), GamsElement(:cep, "Computer and electronic products manufacturing (334)"), GamsElement(:wst, "Waste management and remediation services (562)"), GamsElement(:mot, "Motor vehicles, bodies and trailers, and parts manufacturing (3361-3363)"), GamsElement(:adm, "Administrative and support services (561)"), GamsElement(:soc, "Social assistance (624)"), GamsElement(:alt, "Apparel and leather and allied products manufacturing (315-316)"), GamsElement(:pmt, "Primary metals manufacturing (331)"), GamsElement(:trk, "Truck transportation (484)"), GamsElement(:fdd, "Federal general government (defense) (GFGD)"), GamsElement(:gmt, "General merchandise stores (452)"), GamsElement(:wtt, "Water transportation (483)"), GamsElement(:wpd, "Wood products manufacturing (321)"), GamsElement(:wht, "Wholesale trade (42)"), GamsElement(:oth, "Noncomparable imports and rest-of-the-world adjustment"), GamsElement(:wrh, "Warehousing and storage (493)"), GamsElement(:ott, "Other retail (4A0)"), GamsElement(:che, "Chemical products manufacturing (325)"), GamsElement(:air, "Air transportation (481)"), GamsElement(:mmf, "Miscellaneous manufacturing (339)"), GamsElement(:otr, "Other transportation and support activities (487-488, 492)"), GamsElement(:min, "Mining, except oil and gas (212)"),], "BEA Goods and sectors categories" )) GU end function WiNDC_regions!(GU) @set(GU, r,"States in the WiNDC database",begin AL, "Alabama" AK, "Alaska" AZ, "Arizona" AR, "Arkansas" CA, "California" CO, "Colorado" CT, "Connecticut" DE, "Delaware" DC, "District of Columbia" FL, "Florida" GA, "Georgia" HI, "Hawaii" ID, "Idaho" IL, "Illinois" IN, "Indiana" IA, "Iowa" KS, "Kansas" KY, "Kentucky" LA, "Louisiana" ME, "Maine" MD, "Maryland" MA, "Massachusetts" MI, "Michigan" MN, "Minnesota" MS, "Mississippi" MO, "Missouri" MT, "Montana" NE, "Nebraska" NV, "Nevada" NH, "New Hampshire" NJ, "New Jersey" NM, "New Mexico" NY, "New York" NC, "North Carolina" ND, "North Dakota" OH, "Ohio" OK, "Oklahoma" OR, "Oregon" PA, "Pennsylvania" RI, "Rhode Island" SC, "South Carolina" SD, "South Dakota" TN, "Tennessee" TX, "Texas" UT, "Utah" VT, "Vermont" VA, "Virginia" WA, "Washington" WV, "West Virginia" WI, "Wisconsin" WY, "Wyoming" end) GU end
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
code
6027
#include("./data_defines.jl") function load_usa_trade!(GU,data_dir,info_dict) df = load_raw_usa_trade(data_dir,info_dict) usda = load_raw_usda_trade_shares(data_dir,info_dict) function mean(x) sum(x)/length(x) end # Fill out all missing years/values regions = DataFrame([unique(df[!,:r])],[:r]) i = DataFrame([unique(df[!,:i])],[:i]) flows = DataFrame([unique(df[!,:flow])],[:flow]) years = DataFrame([unique(df[!,:year])],[:year]) X = crossjoin(regions,i,years,flows) df = df |> x -> outerjoin(x,X, on = [:r,:i,:year,:flow]) |> x -> coalesce.(x,0) #|> #x -> filter(:i => i->i∉[:oth,:use],x) # Make year sums Y = df |> x -> groupby(x,[:i,:flow,:r]) |> x -> combine(x, :value => sum => :yr_sum) # Make year/region sums X = df |> x -> groupby(x, [:i,:flow]) |> x -> combine(x, :value => sum => :yr_r_sum) # Make value sums and add in year sums df = df |> x -> groupby(x, [:year,:flow,:i]) |> x -> combine(x, :value=> sum , ) |> x -> leftjoin(df,x, on = [:i,:flow,:year]) |> x -> leftjoin(x, X, on = [:i,:flow]) |> x -> leftjoin(x, Y, on = [:i,:flow,:r]) function f(value,value_sum,yr_sum,yr_r_sum) if value_sum !=0 return value/value_sum else return yr_sum/yr_r_sum end end usda = usda |> x -> select(x, [:r,:year,:flow,:share]) df = df |> x-> transform(x, [:value,:value_sum,:yr_sum,:yr_r_sum] => ((v,vs,ys,yrs) -> f.(v,vs,ys,yrs))=>:value ) |> x -> select(x, [:r,:i,:year,:flow,:value]) |> x -> unstack(x, :i,:value) |> x -> outerjoin(x,usda, on = [:r, :year,:flow]) |> x -> transform(x, [:flow,:agr,:share] => ((f,a,s) -> ifelse.(f.=="exports",s,a)) => :agr ) |> x -> select(x,Not(:share)) |> x ->stack(x, Not(:r,:year,:flow),variable_name=:i,value_name=:value) |> x -> transform(x, :flow => (y->Symbol.(y)) => :flow, :i => (y->Symbol.(y)) => :i ) |> x -> dropmissing(x) col_set_link = Dict( :yr => :year, :r => :r, :i => :i, :flow => :flow, ) @set(GU,flow,"Trade Flow",begin imports, "Imports" exports, "Exports" end) @parameters(GU,begin usatrd_shr, (:yr, :r,:i,:flow), (description = "Share of total trade by region",) end) fill_parameter!(GU, df, :usatrd_shr, col_set_link, Dict()) # Relate years of data to available trade shares ag_years = Symbol.(1997:2000) years = Symbol.(1997:2001) s = [e for e in GU[:i] if e!=:agr] for year in years GU[:usatrd_shr][[year],:r,s,[:exports]] = GU[:usatrd_shr][[Symbol(2002)],:r,s,[:exports]] GU[:usatrd_shr][[year],:r,:i,[:imports]] = GU[:usatrd_shr][[Symbol(2002)],:r,:i,[:imports]] end for year in ag_years GU[:usatrd_shr][[year],:r,[:agr],[:exports]] = GU[:usatrd_shr][[Symbol(2000)],:r,[:agr],[:exports]] end return GU end function load_raw_usa_trade(data_dir, info_dict) out = DataFrame() notations = usatrd_notations() #notations = [] #push!(notations, WiNDC.notation_link(usatrd_states,:State,:region_fullname)); #push!(notations, WiNDC.notation_link(naics_map,:naics,:naics)); for flow in ["exports","imports"] dict = info_dict[flow] file_path = dict["path"] col_rename = dict["col_rename"] df = DataFrame(CSV.File(joinpath(data_dir,file_path),header=4,select=1:5,stringtype=String,silencewarnings=true)) |> x -> rename(x, col_rename => "value") |> x -> filter(:Time => y-> !occursin("through",y), x) |> x -> filter(:Country => y-> y=="World Total", x) |> x -> transform(x, :value => (y -> parse.(Int,replace.(y,","=>""))/1_000_000) => :value, :Time => (y -> parse.(Int,y)) => :year, :Commodity => (y -> [String(e[1]) for e in split.(y)]) => :naics, :value => (y -> flow) => :flow ) |> x -> filter(:year => y->y<=2021, x) |> x -> apply_notations(x, notations) |> x -> groupby(x, [:i, :region_abbv,:year,:flow]) |> x -> combine(x, :value => sum => :value) |> x -> transform(x, :region_abbv => (y->Symbol.(y)) => :r, :year => (y-> Symbol.(y)) => :year, ) |> x -> select(x, [:r,:i,:year,:flow,:value]) out = vcat(out,df) end return out end function load_raw_usda_trade_shares(data_dir,info_dict) file_path = info_dict["detail"] #notations = [] #push!(notations, WiNDC.notation_link(usatrd_states,:State,:region_fullname)); notations = usatrd_shares_notations() X = XLSX.readdata(joinpath(data_dir,file_path),"Total exports","A3:W55") X[1,1] = "State" X = DataFrame(X[4:end,:], X[1,:]) |> x -> apply_notations(x,notations) |> x -> stack(x, Not(:region_abbv), variable_name = :year,value_name =:value) |> x -> transform(x, :year => (y -> parse.(Int,y)) => :year, #:value => (y -> parse.(Float64,y)) => :value ) X = X |> x -> groupby(x, [:year]) |> x -> combine(x, :value => sum => :value_sum) |> x -> leftjoin(X,x, on = :year) |> x -> transform(x, [:value,:value_sum] => ((v,r) -> v./r) => :share, :region_abbv => (a -> :agr) => :i, :region_abbv => (a -> "exports") => :flow, :region_abbv => (a -> Symbol.(a)) => :r, :year => (a -> Symbol.(a)) => :year, ) |> x -> select(x, [:r,:year,:i,:flow,:value,:value_sum,:share]) return X end
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
docs
111
# WiNDC.jl WiNDC Build Stream created in Julia [Documentation here](https://uw-windc.github.io/WiNDC.jl/dev/)
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
docs
1171
# Introduction Currently the entire Core module is implemented. This includes: * Building the WiNDC database from raw-data * The national model * The state-level disaggregation. # Example This data is hosted on the [WiNDC website](https://windc.wisc.edu/downloads/version_4_0/windc_2021_julia.zip). You must download and extract this data. The exact path will be used when loading the data. ## State Level Disaggregation Code to run the state-level disaggregation and model. Currently, this is set up to run the the counter-factual calculation where import tariffs are zero. We are currently implementing a method to modify inputs and run different shocks. ``` using WiNDC using JuMP using GamsStructure using DataFrames data_dir = "path/to/data" GU = WiNDC.load_state_data(data_dir) year = Symbol(2017) m = state_disaggregation_model_mcp_year(GU,year) # Fix an income level to normalize prices in the MCP model fix(m[:RA][:CA],GU[:c0_][[year],[:CA]],force=true) set_attribute(m, "cumulative_iteration_limit", 10_000) optimize!(m) ``` ## API Version The API version is under development. It is being worked on and will be available in early 2024.
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
docs
404
# National Disaggregation Model ```@docs national_model_mcp_year(GU::GamsUniverse,year::Symbol;solver = PATHSolver.Optimizer) national_model_mcp(GU::GamsUniverse;solver = PATHSolver.Optimizer) ``` To Do: 1. Create documentation explaining exactly what the model is doing 2. Currently this model is hard-coded to be the benchmark verification. Need to make modifications to also run a counterfactual.
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
docs
10514
# [National Dataset](@id core_national_dataset) ## Sets |Set Name | Description | |---|---| |[yr](@ref core_national_years) | Years in dataset| |[i,j](@ref core_national_sectors) | BEA Goods and sectors categories| |[va](@ref core_national_va)| BEA Value added categories| |[fd](@ref core_national_fd) | BEA Final demand categories| |[ts](@ref core_national_ts) | BEA Taxes and subsidies categories| |[m](@ref core_national_margins) | Margins| ## Parameters |Parameter Name| Domain | Description | |---|---|---| |id0 |yr, i, j | Intermediate Demand| |ys0 |yr, j, i | Intermediate Supply| |fd0 |yr, i, fd | Final Demand| |va0 |yr, va, j | Value Added| |md0 |yr, m, i | Margin Demand| |s0 |yr, j | Aggregate Supply| |m0 |yr, i | Imports| |trn0 |yr, i | Transportation Costs| |tm0 |yr, i | Tax net subsidy rate on intermediate demand| |ta0 |yr, i | Import Tariff| |othtax |yr, j | Other taxes| |y0 |yr, i | Gross Output| |mrg0 |yr, i | Trade Margins| |bopdef0 |yr | | |x0 |yr, i | Exports| |tax0 |yr, i | Taxes on Products| |ms0 |yr, i, m | Margin Supply| |duty0 |yr, i | Import Duties| |fs0 |yr, i | Household Supply| |ts0 |yr, ts, j | Taxes and Subsidies| |cif0 |yr, i | | |sbd0 |yr, i | Subsidies| |a0 |yr, i | Armington Supply| |ty0 |yr, j | Output tax rate| # Set Listing ## [Years in WiNDC Database](@id core_national_years) |yr| |yr| |---|---|---| |1997| |2010| |1998| |2011| |1999| |2011| |2000| |2012| |2001| |2013| |2002| |2014| |2003| |2015| |2004| |2016| |2005| |2017| |2006| |2018| |2007| |2019| |2008| |2020| |2009| |2021| ## [BEA Goods and sectors categories & Commodities employed in margin supply](@id core_national_sectors) | i, j | Description | |:------|:--------------------------------------------------------------------------------------| | agr | Farms (111-112) | | fof | Forestry, fishing, and related activities (113-115) | | oil | Oil and gas extraction (211) | | min | Mining, except oil and gas (212) | | smn | Support activities for mining (213) | | uti | Utilities (22) | | con | Construction (23) | | wpd | Wood products manufacturing (321) | | nmp | Nonmetallic mineral products manufacturing (327) | | pmt | Primary metals manufacturing (331) | | fmt | Fabricated metal products (332) | | mch | Machinery manufacturing (333) | | cep | Computer and electronic products manufacturing (334) | | eec | Electrical equipment, appliance, and components manufacturing (335) | | mot | Motor vehicles, bodies and trailers, and parts manufacturing (3361-3363) | | ote | Other transportation equipment manufacturing (3364-3366, 3369) | | fpd | Furniture and related products manufacturing (337) | | mmf | Miscellaneous manufacturing (339) | | fbp | Food and beverage and tobacco products manufacturing (311-312) | | tex | Textile mills and textile product mills (313-314) | | alt | Apparel and leather and allied products manufacturing (315-316) | | ppd | Paper products manufacturing (322) | | pri | Printing and related support activities (323) | | pet | Petroleum and coal products manufacturing (324) | | che | Chemical products manufacturing (325) | | pla | Plastics and rubber products manufacturing (326) | | wht | Wholesale trade (42) | | mvt | Motor vehicle and parts dealers (441) | | fbt | Food and beverage stores (445) | | gmt | General merchandise stores (452) | | ott | Other retail (4A0) | | air | Air transportation (481) | | trn | Rail transportation (482) | | wtt | Water transportation (483) | | trk | Truck transportation (484) | | grd | Transit and ground passenger transportation (485) | | pip | Pipeline transportation (486) | | otr | Other transportation and support activities (487-488, 492) | | wrh | Warehousing and storage (493) | | pub | Publishing industries, except Internet (includes software) (511) | | mov | Motion picture and sound recording industries (512) | | brd | Broadcasting and telecommunications (515, 517) | | dat | Data processing, internet publishing, and other information services (518, 519) | | bnk | Federal Reserve banks, credit intermediation, and related services (521-522) | | sec | Securities, commodity contracts, and investments (523) | | ins | Insurance carriers and related activities (524) | | fin | Funds, trusts, and other financial vehicles (525) | | hou | Housing (HS) | | ore | Other real estate (ORE) | | rnt | Rental and leasing services and lessors of intangible assets (532-533) | | leg | Legal services (5411) | | com | Computer systems design and related services (5415) | | tsv | Miscellaneous professional, scientific, and technical services (5412-5414, 5416-5419) | | man | Management of companies and enterprises (55) | | adm | Administrative and support services (561) | | wst | Waste management and remediation services (562) | | edu | Educational services (61) | | amb | Ambulatory health care services (621) | | hos | Hospitals (622) | | nrs | Nursing and residential care facilities (623) | | soc | Social assistance (624) | | art | Performing arts, spectator sports, museums, and related activities (711-712) | | rec | Amusements, gambling, and recreation industries (713) | | amd | Accommodation (721) | | res | Food services and drinking places (722) | | osv | Other services, except government (81) | | fdd | Federal general government (defense) (GFGD) | | fnd | Federal general government (nondefense) (GFGN) | | fen | Federal government enterprises (GFE) | | slg | State and local general government (GSLG) | | sle | State and local government enterprises (GSLE) | ## [BEA Value added categories](@id core_national_va) |va | Description| |---|---| |othtax | Other taxes on production (T00OTOP)| |surplus | Gross operating surplus (V003)| |compen | Compensation of employees (V001)| ## [BEA Final demand categories](@id core_national_fd) |fd | Description| |---|---| |fed_structures | Federal nondefense: Gross investment in structures| |def_equipment | Federal national defense: Gross investment in equipment| |changinv | Change in private inventories| |def_structures | Federal national defense: Gross investment in structures| |state_equipment | State and local: Gross investment in equipment| |def_intelprop | Federal national defense: Gross investment in intellectual| |nondefense | Nondefense: Consumption expenditures| |fed_equipment | Federal nondefense: Gross investment in equipment| |state_invest | State and local: Gross investment in structures| |structures | Nonresidential private fixed investment in structures| |defense | National defense: Consumption expenditures| |residential | Residential private fixed investment| |equipment | Nonresidential private fixed investment in equipment| |state_intelprop | State and local: Gross investment in intellectual| |intelprop | Nonresidential private fixed investment in intellectual| |pce | Personal consumption expenditures| |state_consume | State and local government consumption expenditures| |fed_intelprop | Federal nondefense: Gross investment in intellectual prop| ## [BEA Taxes and subsidies categories](@id core_national_ts) |ts | Description| |---|---| |taxes | taxes| |subsidies | subsidies| ## [Margins](@id core_national_margins) |m | Description| |---|---| |trn | Transport| |trd | Trade|
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
docs
500
# Core Module Overview We provide methods to build two datasets, the `national` dataset and `state level` dataset. The `national` dataset is based on the BEA summary IO tables. The `state level` dataset uses the remaining [data sources](@ref core_data_sources) to disaggregate the national dataset to a the state-level. ## National Dataset To Do: Discuss creation and assignment of the national dataset. ## State Level Dataset To Do: Discuss creation and assignment of the State level dataset.
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
docs
11032
# [State Level Disaggregation](@id core_state_disaggregation) ## Sets |Set Name|Description| |---|---| |[yr](@ref core_years)|Years in WiNDC Database| |[r](@ref core_regions)|Regions in WiNDC Database| |[s, g](@ref core_sectors) |BEA Goods and sectors categories| |[m](@ref core_margins)|Margins (trade or transport)| |[gm](@ref core_sectors)|Commodities employed in margin supply| ## Parameters |Parameter Name|Domain|Description| |---|---|---| |ys0_|yr, r, s, g|Regional sectoral output| |ld0_|yr, r, s|Labor demand| |kd0_|yr, r, s|Capital demand| |id0_|yr, r, g, s|Regional intermediate demand| |ty0_|yr, r, s|Production tax rate| |yh0_|yr, r, s|Household production| |fe0_|yr, r|Total factor supply| |cd0_|yr, r, s|Consumption demand| |c0_|yr, r|Total final household consumption| |i0_|yr, r, s|Investment demand| |g0_|yr, r, s|Government demand| |bopdef0_|yr, r|Balance of payments (closure parameter)| |hhadj0_|yr, r|Household adjustment parameter| |s0_|yr, r, g|Total supply| |xd0_|yr, r, g|Regional supply to local market| |xn0_|yr, r, g|Regional supply to national market| |x0_|yr, r, g|Foreign Exports| |rx0_|yr, r, g|Re-exports| |a0_|yr, r, g|Domestic absorption| |nd0_|yr, r, g|Regional demand from national marke| |dd0_|yr, r, g|Regional demand from local market| |m0_|yr, r, g|Foreign Imports| |ta0_|yr, r, g|Absorption taxes| |tm0_|yr, r, g|Import taxes| |md0_|yr, r, m, g|Margin demand| |nm0_|yr, r, g, m|Margin demand from the national market| |dm0_|yr, r, g, m|Margin supply from the local market| |gdp0_|yr, r|Aggregate GDP| # Set Listing ## [Years in WiNDC Database](@id core_years) |yr| |yr| |---|---|---| |1997| |2010| |1998| |2011| |1999| |2011| |2000| |2012| |2001| |2013| |2002| |2014| |2003| |2015| |2004| |2016| |2005| |2017| |2006| |2018| |2007| |2019| |2008| |2020| |2009| |2021| ## [Regions in WiNDC Database](@id core_regions) |r |Description | |r |Description| |---|--- |---|---|---| |AK |Alaska | |MT |Montana| |AL |Alabama | |NC |North Carolina| |AR |Arkansas | |ND |North Dakota| |AZ |Arizona | |NE |Nebraska| |CA |California | |NH |New Hampshire| |CO |Colorado | |NJ |New Jersey| |CT |Connecticut | |NM |New Mexico| |DC |District of Columbia| |NV |Nevada| |DE |Delaware | |NY |New York| |FL |Florida | |OH |Ohio| |GA |Georgia | |OK |Oklahoma| |HI |Hawaii | |OR |Oregon| |IA |Iowa | |PA |Pennsylvania| |ID |Idaho | |RI |Rhode Island| |IL |Illinois | |SC |South Carolina| |IN |Indiana | |SD |South Dakota| |KS |Kansas | |TN |Tennessee| |KY |Kentucky | |TX |Texas| |LA |Louisiana | |UT |Utah| |MA |Massachusetts | |VA |Virginia| |MD |Maryland | |VT |Vermont| |ME |Maine | |WA |Washington| |MI |Michigan | |WI |Wisconsin| |MN |Minnesota | |WV |West Virginia| |MO |Missouri | |WY |Wyoming| |MS |Mississippi | | || ## [BEA Goods and sectors categories & Commodities employed in margin supply](@id core_sectors) | s, g | gm | Description | |:------|:-----:|:--------------------------------------------------------------------------------------| | agr | agr | Farms (111-112) | | fof | fof | Forestry, fishing, and related activities (113-115) | | oil | oil | Oil and gas extraction (211) | | min | min | Mining, except oil and gas (212) | | smn | - | Support activities for mining (213) | | uti | - | Utilities (22) | | con | - | Construction (23) | | wpd | wpd | Wood products manufacturing (321) | | nmp | nmp | Nonmetallic mineral products manufacturing (327) | | pmt | pmt | Primary metals manufacturing (331) | | fmt | fmt | Fabricated metal products (332) | | mch | mch | Machinery manufacturing (333) | | cep | cep | Computer and electronic products manufacturing (334) | | eec | eec | Electrical equipment, appliance, and components manufacturing (335) | | mot | mot | Motor vehicles, bodies and trailers, and parts manufacturing (3361-3363) | | ote | ote | Other transportation equipment manufacturing (3364-3366, 3369) | | fpd | fpd | Furniture and related products manufacturing (337) | | mmf | mmf | Miscellaneous manufacturing (339) | | fbp | fbp | Food and beverage and tobacco products manufacturing (311-312) | | tex | tex | Textile mills and textile product mills (313-314) | | alt | alt | Apparel and leather and allied products manufacturing (315-316) | | ppd | ppd | Paper products manufacturing (322) | | pri | pri | Printing and related support activities (323) | | pet | pet | Petroleum and coal products manufacturing (324) | | che | che | Chemical products manufacturing (325) | | pla | pla | Plastics and rubber products manufacturing (326) | | wht | wht | Wholesale trade (42) | | mvt | mvt | Motor vehicle and parts dealers (441) | | fbt | fbt | Food and beverage stores (445) | | gmt | gmt | General merchandise stores (452) | | ott | ott | Other retail (4A0) | | air | air | Air transportation (481) | | trn | trn | Rail transportation (482) | | wtt | wtt | Water transportation (483) | | trk | trk | Truck transportation (484) | | grd | - | Transit and ground passenger transportation (485) | | pip | pip | Pipeline transportation (486) | | otr | otr | Other transportation and support activities (487-488, 492) | | wrh | - | Warehousing and storage (493) | | pub | pub | Publishing industries, except Internet (includes software) (511) | | mov | mov | Motion picture and sound recording industries (512) | | brd | - | Broadcasting and telecommunications (515, 517) | | dat | - | Data processing, internet publishing, and other information services (518, 519) | | bnk | - | Federal Reserve banks, credit intermediation, and related services (521-522) | | sec | - | Securities, commodity contracts, and investments (523) | | ins | - | Insurance carriers and related activities (524) | | fin | - | Funds, trusts, and other financial vehicles (525) | | hou | - | Housing (HS) | | ore | - | Other real estate (ORE) | | rnt | - | Rental and leasing services and lessors of intangible assets (532-533) | | leg | - | Legal services (5411) | | com | - | Computer systems design and related services (5415) | | tsv | - | Miscellaneous professional, scientific, and technical services (5412-5414, 5416-5419) | | man | - | Management of companies and enterprises (55) | | adm | - | Administrative and support services (561) | | wst | - | Waste management and remediation services (562) | | edu | - | Educational services (61) | | amb | - | Ambulatory health care services (621) | | hos | - | Hospitals (622) | | nrs | - | Nursing and residential care facilities (623) | | soc | - | Social assistance (624) | | art | - | Performing arts, spectator sports, museums, and related activities (711-712) | | rec | - | Amusements, gambling, and recreation industries (713) | | amd | - | Accommodation (721) | | res | - | Food services and drinking places (722) | | osv | - | Other services, except government (81) | | fdd | - | Federal general government (defense) (GFGD) | | fnd | - | Federal general government (nondefense) (GFGN) | | fen | - | Federal government enterprises (GFE) | | slg | - | State and local general government (GSLG) | | sle | - | State and local government enterprises (GSLE) | ## [Margins (trade or transport)](@id core_margins) | m | Description | |:------|:--------------| | trn | transport | | trd | trade |
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
docs
365
# State Disaggregation Model ```@docs state_disaggregation_model_mcp_year(GU::GamsUniverse,year::Symbol) state_disaggregation_model_mcp(GU::GamsUniverse) ``` To Do: 1. Create documentation explaining exactly what the model is doing 2. Currently this model is hard-coded to be the benchmark verification. Need to make modifications to also run a counterfactual.
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
docs
1837
# [Core Data Sources](@id core_data_sources) As of November 9, 2023, the BEA is restricting their data to be 2017 - Present. This is due to the release of the detailed 2017 IO table. They are using the detailed table to back-update the summary tables. ## Bureau of Economic Analysis - Summary Input/Output Tables [Link](https://www.bea.gov/industry/input-output-accounts-data) ## Bureau of Economic Analysis - Gross Domestic Product by State [Link](https://apps.bea.gov/regional/downloadzip.cfm) In the `Gross Domestic Product (GDP)`, select the `SAGDP: annual GDP by state` option. ## Bureau of Economic Analysis -- Personal Consumer Expenditures [Link](https://apps.bea.gov/regional/downloadzip.cfm) In the `Personal consumption expenditures (PCE) by state`, select the `SAPCE: personal consumption expenditures (PCE) by state` option. ## US Census Bureau - Annual Survey of State Government Finances [Link](https://www.census.gov/programs-surveys/state/data/datasets.All.List_75006027.html) Heavily encoded TXT files. ## Bureau of Transportation Statistics - Freight Analysis Framework [Link](https://www.bts.gov/faf) We use two data files, `FAF5.5.1_State.zip` and `FAF5.5.1_Reprocessed_1997-2012_State.zip` Currently, we are using version 5.5.1. ## US Census Bureau - USA Trade Online [Link](https://usatrade.census.gov/) This requires a log-in. For both `Imports` and `Exports` we want NAICS data. When selecting data, we want every state (this is different that All States), the most disaggregated commodities (third level), and for `Exports` we want `World Total` and `Imports` we want both `World Total` and `Canada` in the Countries column. There is one more file we use, [Commodity\_detail\_by\_state\_cy.xlsx](https://www.ers.usda.gov/webdocs/DataFiles/100812/) This is probably a fragile link.
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.1.1
b6abfe114a70cd41a38c07f032ba381aee6ff104
docs
624
# Data Module We have assembled all of this data for [download](https://windc.wisc.edu/downloads/version_4_0/windc_2021_julia.zip) to run locally. This information is provided if you are interested in updating data early, without using the API. When manually updating data, you may need to modify the file `data_information.json` with updated paths to the files. A JSON file is raw text and can be modified in any text editor. It should be straight forward to open the file and determine what needs updating. # API Access This is currently not available, but under active development. Expect updates in early 2024.
WiNDC
https://github.com/uw-windc/WiNDC.jl.git
[ "MIT" ]
0.2.21
ce253ad53efeed8201656971874d8cd9dad0227e
code
2209
module LightBSON using DataStructures using Dates using DecFP using FNVHash using Sockets using StructTypes using Transducers using UnsafeArrays using UUIDs using WeakRefStrings export BSONConversionError export AbstractBSONReader, BSONReader, BSONWriter, BSONWriteBuffer export BSONValidator, StrictBSONValidator, LightBSONValidator, UncheckedBSONValidator export BSONConversionRules, DefaultBSONConversions, NumericBSONConversions export BSONIndex, IndexedBSONReader export BSONObjectId, BSONObjectIdGenerator export BSONTimestamp export BSONCode, BSONCodeWithScope, BSONSymbol export BSONBinary, UnsafeBSONBinary export BSONRegex, UnsafeBSONString export BSONMinKey, BSONMaxKey export BSONUndefined export BSONUUIDOld export BSONDBPointer export BSON_TYPE_DOUBLE, BSON_TYPE_STRING, BSON_TYPE_DOCUMENT, BSON_TYPE_ARRAY, BSON_TYPE_BINARY, BSON_TYPE_UNDEFINED, BSON_TYPE_OBJECTID, BSON_TYPE_BOOL, BSON_TYPE_DATETIME, BSON_TYPE_NULL, BSON_TYPE_REGEX, BSON_TYPE_DB_POINTER, BSON_TYPE_CODE, BSON_TYPE_SYMBOL, BSON_TYPE_CODE_WITH_SCOPE, BSON_TYPE_INT32, BSON_TYPE_TIMESTAMP, BSON_TYPE_INT64, BSON_TYPE_DECIMAL128 export BSON_SUBTYPE_GENERIC_BINARY, BSON_SUBTYPE_FUNCTION, BSON_SUBTYPE_BINARY_OLD, BSON_SUBTYPE_UUID_OLD, BSON_SUBTYPE_UUID, BSON_SUBTYPE_MD5, BSON_SUBTYPE_ENCRYPTED export bson_simple export bson_read, bson_read_simple, bson_read_structtype, bson_read_unversioned, bson_read_versioned export bson_write, bson_write_simple, bson_write_structtype export bson_schema_version, bson_schema_version_field export bson_object_id_range bson_schema_version(::Type{T}) where T = nothing bson_schema_version_field(::Type{T}) where T = "_v" # bson_simple(::Type{T}) where T = StructTypes.StructType(T) == StructTypes.NoStructType() # bson_simple(::Type{<:NamedTuple}) = true bson_simple(::Type{T}) where T = true include("object_id.jl") include("types.jl") include("representations.jl") include("exceptions.jl") include("validator.jl") include("reader.jl") include("index.jl") include("indexed_reader.jl") include("writer.jl") include("write_buffer.jl") include("convenience.jl") include("fileio.jl") end
LightBSON
https://github.com/ancapdev/LightBSON.jl.git
[ "MIT" ]
0.2.21
ce253ad53efeed8201656971874d8cd9dad0227e
code
1813
""" bson_read([T=Any], src::Union{IO, DenseVector{UInt8}}) Read an object from the BSON document encoded in `src`. """ bson_read(::Type{T}, bytes::DenseVector{UInt8}; kwargs...) where T = BSONReader(bytes; kwargs...)[T] """ bson_read([T=Any], path::AbstractString) Read an object from the BSON document at `path`. """ bson_read(::Type{T}, path::AbstractString; kwargs...) where T = bson_read(T, read(path); kwargs...) function bson_read(::Type{T}, io::IO; kwargs...) where T buf = UInt8[] readbytes!(io, buf, typemax(Int)) bson_read(T, buf; kwargs...) end bson_read(bytes::DenseVector{UInt8}; kwargs...) = bson_read(Any, bytes; kwargs...) bson_read(path::AbstractString; kwargs...) = bson_read(Any, path; kwargs...) bson_read(io::IO; kwargs...) = bson_read(Any, io; kwargs...) """ bson_write(dst::Union{IO, DenseVector{UInt8}}, x) bson_write(dst::Union{IO, DenseVector{UInt8}}, xs::Pair...) Encode `x` or each element of `xs` as a BSON document in `dst` and return `dst`. """ function bson_write(buf::DenseVector{UInt8}, x; kwargs...) writer = BSONWriter(buf; kwargs...) writer[] = x close(writer) buf end function bson_write(buf::DenseVector{UInt8}, xs::Pair...; kwargs...) writer = BSONWriter(buf; kwargs...) for (k, v) in xs writer[k] = v end close(writer) buf end function bson_write(io::IO, x...; kwargs...) buf = UInt8[] bson_write(buf, x...; kwargs...) write(io, buf) io end """ bson_write(path::AbstractString, x) bson_write(path::AbstractString, xs::Pair...) Encode `x` or each element of `xs` as fields of a BSON document and write to `path`. """ function bson_write(path::AbstractString, x...; kwargs...) open(path, "w") do io bson_write(io, x...; kwargs...) end nothing end
LightBSON
https://github.com/ancapdev/LightBSON.jl.git
[ "MIT" ]
0.2.21
ce253ad53efeed8201656971874d8cd9dad0227e
code
295
struct BSONConversionError <: Exception src_type::UInt8 src_subtype::Union{Nothing, UInt8} dst_type::DataType end BSONConversionError(src_type::UInt8, dst_type::DataType) = BSONConversionError(src_type, nothing, dst_type) struct BSONValidationError <: Exception msg::String end
LightBSON
https://github.com/ancapdev/LightBSON.jl.git
[ "MIT" ]
0.2.21
ce253ad53efeed8201656971874d8cd9dad0227e
code
541
function fileio_save(f, x; kwargs...) get(kwargs, :plain, false) || error("Pass plain = true to select LigthBSON.jl over BSON.jl") bson_write(f.filename, x) nothing end function fileio_load(f) buf = read(f.filename) reader = BSONReader(buf) hastag = false hastype = false foreach(reader) do field hastag |= field.first == "tag" hastype |= field.first == "type" nothing end hastag && hastype && error("BSON.jl document detected, aborting LightBSON.jl load") reader[Any] end
LightBSON
https://github.com/ancapdev/LightBSON.jl.git
[ "MIT" ]
0.2.21
ce253ad53efeed8201656971874d8cd9dad0227e
code
2931
struct BSONIndexKey name_p::Ptr{UInt8} name_len::Int32 parent_offset::Int32 end @inline BSONIndexKey(name::AbstractString, parent_offset::Integer) = BSONIndexKey( pointer(name), sizeof(name) % Int32, parent_offset % Int32 ) @inline BSONIndexKey(name::Symbol, parent_offset::Integer) = BSONIndexKey( Base.unsafe_convert(Ptr{UInt8}, name), ccall(:strlen, Csize_t, (Cstring,), Base.unsafe_convert(Ptr{UInt8}, name)) % Int32, parent_offset % Int32 ) @inline function Base.isequal(x::BSONIndexKey, y::BSONIndexKey) x.name_len == y.name_len && x.parent_offset == y.parent_offset && ccall(:memcmp, Cint, (Ptr{UInt8}, Ptr{UInt8}, Csize_t), x.name_p, y.name_p, x.name_len % Csize_t) == 0 end struct BSONIndexValue offset::Int32 type::UInt8 end mutable struct BSONIndex entries::Vector{Tuple{BSONIndexKey, Int32, BSONIndexValue}} version::Int32 size_mask::Int32 include_arrays::Bool function BSONIndex(size::Integer; include_arrays::Bool = false) pow2size = nextpow(2, size) new( fill((BSONIndexKey(Ptr{UInt8}(0), 0, 0), 0, BSONIndexValue(0, 0)), pow2size), 0, pow2size - 1, include_arrays ) end end function build_index_(index::BSONIndex, reader::BSONReader, ::Val{include_arrays}) where include_arrays let parent_offset = reader.offset % Int32 f = @inline x -> begin name = x.first field_reader = x.second key = BSONIndexKey(name.ptr, name.len % Int32, parent_offset) value = BSONIndexValue(field_reader.offset % Int32, field_reader.type) index[key] = value if field_reader.type == BSON_TYPE_DOCUMENT || (include_arrays && field_reader.type == BSON_TYPE_ARRAY) build_index_(index, field_reader, Val{include_arrays}()) end nothing end foreach(f, Map(identity), reader) end nothing end @inline function index_(index::BSONIndex, key::BSONIndexKey) nh = fnv1a(UInt32, key.name_p, key.name_len) oh = reinterpret(UInt32, key.parent_offset) * 0x9e3779b1 h = nh ⊻ (oh + 0x9e3779b9 + (nh << 6) + (nh >> 2)) (h & index.size_mask) % Int + 1 end @inline function Base.setindex!(index::BSONIndex, reader::BSONReader) index.version += Int32(1) if index.include_arrays build_index_(index, reader, Val{true}()) else build_index_(index, reader, Val{false}()) end nothing end @inline function Base.setindex!(index::BSONIndex, value::BSONIndexValue, key::BSONIndexKey) @inbounds index.entries[index_(index, key)] = (key, index.version, value) nothing end @inline function Base.getindex(index::BSONIndex, key::BSONIndexKey) @inbounds e_key, e_version, e_value = index.entries[index_(index, key)] (e_version == index.version && isequal(e_key, key)) ? e_value : nothing end
LightBSON
https://github.com/ancapdev/LightBSON.jl.git
[ "MIT" ]
0.2.21
ce253ad53efeed8201656971874d8cd9dad0227e
code
1662
struct IndexedBSONReader{R <: BSONReader} <: AbstractBSONReader index::BSONIndex reader::R @inline function IndexedBSONReader(index::BSONIndex, reader::R) where R index[] = reader new{R}(index, reader) end @inline function IndexedBSONReader(index::BSONIndex, reader::R, ::Val{:internal}) where R new{R}(index, reader) end end @inline Base.sizeof(reader::IndexedBSONReader) = sizeof(reader.reader) @inline Base.foreach(f, reader::IndexedBSONReader) = foreach(f, reader.reader) @inline function Base.getproperty(reader::IndexedBSONReader, f::Symbol) f == :type && return reader.reader.type f == :conversions && return reader.reader.conversions getfield(reader, f) end @inline function Base.getindex(reader::IndexedBSONReader, name::Union{AbstractString, Symbol}) src = reader.reader.src GC.@preserve src name begin key = BSONIndexKey(name, reader.reader.offset) value = reader.index[key] field_reader = if value !== nothing BSONReader(src, Int(value.offset), value.type, reader.reader.validator, reader.reader.conversions) else reader.reader[name] end IndexedBSONReader(reader.index, field_reader, Val{:internal}()) end end function Base.getindex(reader::IndexedBSONReader, i::Integer) el = getindex(reader.reader, i) IndexedBSONReader(reader.index, el, Val{:internal}()) end @inline Transducers.__foldl__(rf, val, reader::IndexedBSONReader) = Transducers.__foldl__(rf, val, reader.reader) @inline read_field_(reader::IndexedBSONReader, ::Type{T}) where T <: ValueField = read_field_(reader.reader, T)
LightBSON
https://github.com/ancapdev/LightBSON.jl.git
[ "MIT" ]
0.2.21
ce253ad53efeed8201656971874d8cd9dad0227e
code
3260
struct BSONObjectId data::NTuple{12, UInt8} end Base.isless(x::BSONObjectId, y::BSONObjectId) = x.data < y.data function BSONObjectId(x::AbstractVector{UInt8}) length(x) == 12 || throw(ArgumentError("ObjectId bytes must be 12 long")) BSONObjectId(NTuple{12, UInt8}(x)) end function BSONObjectId(s::AbstractString) length(s) == 24 || throw(ArgumentError("ObjectId hex string must be 24 characters")) BSONObjectId(hex2bytes(s)) end function Base.show(io::IO, x::BSONObjectId) print(io, bytes2hex(collect(x.data))) nothing end time_part_(x::BSONObjectId) = (Int(x.data[1]) << 24) | (Int(x.data[2]) << 16) | (Int(x.data[3]) << 8) | Int(x.data[4]) Dates.DateTime(x::BSONObjectId) = DateTime(Dates.UTM(Dates.UNIXEPOCH + time_part_(x) * 1000)) Base.time(x::BSONObjectId) = Float64(time_part_(x)) mutable struct BSONObjectIdGenerator cache_pad1::NTuple{4, UInt128} seq::Threads.Atomic{UInt32} rnd::NTuple{5, UInt8} cache_pad2::NTuple{4, UInt128} function BSONObjectIdGenerator() seq = Threads.Atomic{UInt32}(rand(UInt32)) rnd = rand(UInt64) new( (UInt128(0), UInt128(0), UInt128(0), UInt128(0)), seq, ( (rnd >> 32) % UInt8, (rnd >> 24) % UInt8, (rnd >> 16) % UInt8, (rnd >> 8) % UInt8, rnd % UInt8, ), (UInt128(0), UInt128(0), UInt128(0), UInt128(0)), ) end end function Base.show(io::IO, x::BSONObjectIdGenerator) print(io, "BSONObjectIdGenerator($(x.seq), $(x.rnd))") end if Sys.islinux() struct LinuxTimespec seconds::Clong nanoseconds::Cuint end @inline function seconds_from_epoch_() ts = Ref{LinuxTimespec}() ccall(:clock_gettime, Cint, (Cint, Ref{LinuxTimespec}), 0, ts) x = ts[] x.seconds % UInt32 end else @inline function seconds_from_epoch_() tv = Libc.TimeVal() tv.sec % UInt32 end end @inline id_from_parts_(t, r, s) = BSONObjectId(( (t >> 24) % UInt8, (t >> 16) % UInt8, (t >> 8) % UInt8, t % UInt8, r[1], r[2], r[3], r[4], r[5], (s >> 16) % UInt8, (s >> 8) % UInt8, s % UInt8, )) @inline Base.getindex(x::BSONObjectIdGenerator) = id_from_parts_( seconds_from_epoch_(), x.rnd, Threads.atomic_add!(x.seq, UInt32(1)) ) struct BSONObjectIdIterator t::UInt32 r::NTuple{5, UInt8} first::UInt32 past_last::UInt32 end Base.eltype(::BSONObjectIdIterator) = BSONObjectId @inline Base.length(x::BSONObjectIdIterator) = (x.past_last - x.first) % Int @inline function Base.iterate(x::BSONObjectIdIterator, cur::UInt32 = x.first) if cur == x.past_last nothing else id_from_parts_(x.t, x.r, cur), cur + UInt32(1) end end @inline function Base.getindex(x::BSONObjectIdGenerator, range) n = length(range) % UInt32 first = Threads.atomic_add!(x.seq, n) BSONObjectIdIterator(seconds_from_epoch_(), x.rnd, first, first + n) end const default_object_id_generator = BSONObjectIdGenerator() @inline BSONObjectId() = default_object_id_generator[] @inline bson_object_id_range(n::Integer) = default_object_id_generator[1:n]
LightBSON
https://github.com/ancapdev/LightBSON.jl.git
[ "MIT" ]
0.2.21
ce253ad53efeed8201656971874d8cd9dad0227e
code
18971
abstract type AbstractBSONReader end struct BSONReader{S <: DenseVector{UInt8}, V <: BSONValidator, C <: BSONConversionRules} <: AbstractBSONReader src::S offset::Int type::UInt8 validator::V conversions::C end @inline function BSONReader( src::DenseVector{UInt8}; validator::BSONValidator = LightBSONValidator(), conversions::BSONConversionRules = DefaultBSONConversions(), ) validate_root(validator, src) BSONReader(src, 0, BSON_TYPE_DOCUMENT, validator, conversions) end # For back compat @inline BSONReader( src::DenseVector{UInt8}, validator::BSONValidator, conversions::BSONConversionRules ) = BSONReader(src; validator, conversions) # For back compat @inline BSONReader(src::DenseVector{UInt8}, validator::BSONValidator) = BSONReader( src; validator ) # For back compat @inline BSONReader(src::DenseVector{UInt8}, conversions::BSONConversionRules) = BSONReader( src; conversions ) @inline Base.pointer(reader::BSONReader) = pointer(reader.src) + reader.offset const TYPE_SIZE_TABLE = fill(-1, 256) TYPE_SIZE_TABLE[BSON_TYPE_DOUBLE] = 8 TYPE_SIZE_TABLE[BSON_TYPE_DATETIME] = 8 TYPE_SIZE_TABLE[BSON_TYPE_INT64] = 8 TYPE_SIZE_TABLE[BSON_TYPE_TIMESTAMP] = 8 TYPE_SIZE_TABLE[BSON_TYPE_INT32] = 4 TYPE_SIZE_TABLE[BSON_TYPE_BOOL] = 1 TYPE_SIZE_TABLE[BSON_TYPE_NULL] = 0 TYPE_SIZE_TABLE[BSON_TYPE_UNDEFINED] = 0 TYPE_SIZE_TABLE[BSON_TYPE_DECIMAL128] = 16 TYPE_SIZE_TABLE[BSON_TYPE_OBJECTID] = 12 TYPE_SIZE_TABLE[BSON_TYPE_MIN_KEY] = 0 TYPE_SIZE_TABLE[BSON_TYPE_MAX_KEY] = 0 function element_size_variable_(t::UInt8, p::Ptr{UInt8}) if t == BSON_TYPE_DOCUMENT || t == BSON_TYPE_ARRAY || t == BSON_TYPE_CODE_WITH_SCOPE Int(ltoh(unsafe_load(Ptr{Int32}(p)))) elseif t == BSON_TYPE_STRING || t == BSON_TYPE_CODE || t == BSON_TYPE_SYMBOL Int(ltoh(unsafe_load(Ptr{Int32}(p)))) + 4 elseif t == BSON_TYPE_BINARY Int(ltoh(unsafe_load(Ptr{Int32}(p)))) + 5 elseif t == BSON_TYPE_REGEX len1 = unsafe_trunc(Int, ccall(:strlen, Csize_t, (Cstring,), p)) + 1 len2 = unsafe_trunc(Int, ccall(:strlen, Csize_t, (Cstring,), p + len1)) + 1 len1 + len2 elseif t == BSON_TYPE_DB_POINTER Int(ltoh(unsafe_load(Ptr{Int32}(p)))) + 16 else error("Unsupported BSON type $t") end end @inline function element_size_(t::UInt8, p::Ptr{UInt8}) @inbounds s = TYPE_SIZE_TABLE[t] s >= 0 ? s : element_size_variable_(t, p) end Base.sizeof(reader::BSONReader) = GC.@preserve reader element_size_(reader.type, pointer(reader)) """ name_len_and_match_(field, target) Compare field name and target name, and calculate length of field name (including null terminator) Returns (length(field)), field == target) Performs byte wise comparison, optimized for short length field names """ @inline function name_len_and_match_(field::Ptr{UInt8}, target::Ptr{UInt8}) len = 1 cmp_acc = 0x0 while true c = unsafe_load(field, len) c2 = unsafe_load(target, len) cmp_acc |= xor(c, c2) c == 0x0 && return (len, cmp_acc == 0) len += 1 c2 == 0x0 && break end while true c = unsafe_load(field, len) c == 0x0 && break len += 1 end (len, false) end @inline function name_len_(field::Ptr{UInt8}) len = 1 while true unsafe_load(field, len) == 0x0 && break len += 1 end len end @inline function Transducers.__foldl__(rf, val, reader::BSONReader) reader.type == BSON_TYPE_DOCUMENT || reader.type == BSON_TYPE_ARRAY || throw( ArgumentError("Field access only available on documents and arrays") ) src = reader.src GC.@preserve src begin p = pointer(reader.src) offset = reader.offset doc_len = Int(ltoh(unsafe_load(Ptr{Int32}(p + offset)))) doc_end = offset + doc_len - 1 offset += 4 while offset < doc_end el_type = unsafe_load(p, offset + 1) name_p = p + offset + 1 name_len = name_len_(name_p) field_p = name_p + name_len value_len = element_size_(el_type, field_p) field_start = offset + 1 + name_len field_end = field_start + value_len validate_field(reader.validator, el_type, field_p, value_len, doc_end - field_start) field_reader = BSONReader(src, field_start, el_type, reader.validator, reader.conversions) val = Transducers.@next(rf, val, UnsafeBSONString(name_p, name_len - 1) => field_reader) offset = field_end end Transducers.complete(rf, val) end end @inline function Base.foreach(f, reader::BSONReader) foreach(f, Map(identity), reader) end @noinline Base.@constprop :none function find_field_(reader::BSONReader, target::String) reader.type == BSON_TYPE_DOCUMENT || reader.type == BSON_TYPE_ARRAY || throw( ArgumentError("Field access only available on documents and arrays") ) src = reader.src GC.@preserve src target begin target_p = Base.unsafe_convert(Ptr{UInt8}, target) p = pointer(reader.src) offset = reader.offset doc_len = Int(ltoh(unsafe_load(Ptr{Int32}(p + offset)))) doc_end = offset + doc_len - 1 offset += 4 while offset < doc_end el_type = unsafe_load(p, offset + 1) name_p = p + offset + 1 name_len, name_match = name_len_and_match_(name_p, target_p) field_p = name_p + name_len value_len = element_size_(el_type, field_p) field_start = offset + 1 + name_len field_end = field_start + value_len validate_field(reader.validator, el_type, field_p, value_len, doc_end - field_start) name_match && return BSONReader(reader.src, field_start, el_type, reader.validator, reader.conversions) offset = field_end end end BSONReader(reader.src, 0, BSON_TYPE_NULL, reader.validator, reader.conversions) end # @noinline Base.@constprop :none function Base.getindex(reader::BSONReader, target::Union{AbstractString, Symbol}) Base.getindex(reader::BSONReader, target::String) = find_field_(reader, target) function Base.getindex(reader::BSONReader, i::Integer) i < 1 && throw(BoundsError(reader, i)) el = foldl((_, x) -> reduced(x.second), Drop(i - 1), reader; init = nothing) el === nothing && throw(BoundsError(reader, i)) el end @inline load_bits_(::Type{T}, p::Ptr{UInt8}) where T = ltoh(unsafe_load(Ptr{T}(p))) @inline load_bits_(::Type{BSONTimestamp}, p::Ptr{UInt8}) = BSONTimestamp(load_bits_(UInt64, p)) @inline load_bits_(::Type{BSONObjectId}, p::Ptr{UInt8}) = unsafe_load(Ptr{BSONObjectId}(p)) @inline load_bits_(::Type{DateTime}, p::Ptr{UInt8}) = DateTime( Dates.UTM(Dates.UNIXEPOCH + load_bits_(Int64, p)) ) @inline function read_field_(reader::BSONReader, ::Type{T}) where T <: Union{ Int64, Int32, Float64, Dec128, DateTime, BSONTimestamp, BSONObjectId } reader.type == bson_type_(T) || throw(BSONConversionError(reader.type, T)) GC.@preserve reader load_bits_(T, pointer(reader)) end @inline function read_field_(reader::BSONReader, ::Type{Bool}) reader.type == BSON_TYPE_BOOL || throw(BSONConversionError(reader.type, Bool)) x = GC.@preserve reader unsafe_load(pointer(reader)) validate_bool(reader.validator, x) x != 0x0 end @inline function read_binary_(reader::BSONReader) GC.@preserve reader begin p = pointer(reader) len = load_bits_(Int32, p) subtype = unsafe_load(p + 4) validate_binary_subtype(reader.validator, p, len, subtype) UnsafeBSONBinary( UnsafeArray(p + 5, (Int(len),)), subtype ) end end @inline function read_field_(reader::BSONReader, ::Type{UnsafeBSONBinary}) reader.type == BSON_TYPE_BINARY || throw(BSONConversionError(reader.type, UnsafeBSONBinary)) read_binary_(reader) end function read_field_(reader::BSONReader, ::Type{BSONBinary}) reader.type == BSON_TYPE_BINARY || throw(BSONConversionError(reader.type, BSONBinary)) x = read_binary_(reader) GC.@preserve reader BSONBinary(copy(x.data), x.subtype) end @inline function read_field_(reader::BSONReader, ::Type{UUID}) reader.type == BSON_TYPE_BINARY || throw(BSONConversionError(reader.type, UUID)) GC.@preserve reader begin p = pointer(reader) subtype = unsafe_load(p + 4) subtype == BSON_SUBTYPE_UUID || subtype == BSON_SUBTYPE_UUID_OLD || throw( BSONConversionError(reader.type, subtype, UUID) ) len = load_bits_(Int32, p) len != 16 && error("Unexpected UUID length $len") return unsafe_load(Ptr{UUID}(p + 5)) end end @inline function read_field_(reader::BSONReader, ::Type{BSONUUIDOld}) reader.type == BSON_TYPE_BINARY || throw(BSONConversionError(reader.type, BSONUUIDOld)) GC.@preserve reader begin p = pointer(reader) subtype = unsafe_load(p + 4) subtype == BSON_SUBTYPE_UUID_OLD || throw(BSONConversionError(reader.type, subtype, BSONUUIDOld)) len = load_bits_(Int32, p) len != 16 && error("Unexpected UUID length $len") return BSONUUIDOld(unsafe_load(Ptr{UUID}(p + 5))) end end @inline function read_string_(reader::BSONReader) GC.@preserve reader begin p = pointer(reader) len = Int(load_bits_(Int32, p)) validate_string(reader.validator, p + 4, len - 1) UnsafeBSONString(p + 4, len - 1) end end @inline function read_field_(reader::BSONReader, ::Type{UnsafeBSONString}) reader.type == BSON_TYPE_STRING || reader.type == BSON_TYPE_CODE || reader.type == BSON_TYPE_SYMBOL || throw( BSONConversionError(reader.type, UnsafeBSONString) ) read_string_(reader) end function read_field_(reader::BSONReader, ::Type{String}) reader.type == BSON_TYPE_STRING || reader.type == BSON_TYPE_CODE || reader.type == BSON_TYPE_SYMBOL || throw( BSONConversionError(reader.type, String) ) GC.@preserve reader String(read_string_(reader)) end function read_field_(reader::BSONReader, ::Type{BSONCode}) reader.type == BSON_TYPE_CODE || throw(BSONConversionError(reader.type, BSONCode)) GC.@preserve reader begin p = pointer(reader) len = Int(load_bits_(Int32, p)) validate_string(reader.validator, p + 4, len - 1) BSONCode(unsafe_string(p + 4, len - 1)) end end function read_field_(reader::BSONReader, ::Type{BSONSymbol}) reader.type == BSON_TYPE_SYMBOL || throw(BSONConversionError(reader.type, BSONSymbol)) BSONSymbol(reader[String]) end function read_field_(reader::BSONReader, ::Type{BSONRegex}) reader.type == BSON_TYPE_REGEX || throw(BSONConversionError(reader.type, BSONRegex)) GC.@preserve reader begin p = pointer(reader) len1 = unsafe_trunc(Int, ccall(:strlen, Csize_t, (Cstring,), p)) BSONRegex( unsafe_string(p, len1), unsafe_string(p + len1 + 1) ) end end function read_field_(reader::BSONReader, ::Type{BSONDBPointer}) reader.type == BSON_TYPE_DB_POINTER || throw(BSONConversionError(reader.type, BSONDBPointer)) GC.@preserve reader begin p = pointer(reader) len = Int(load_bits_(Int32, p)) validate_string(reader.validator, p + 4, len - 1) collection = unsafe_string(p + 4, len - 1) ref = unsafe_load(Ptr{BSONObjectId}(p + 4 + len)) BSONDBPointer(collection, ref) end end @inline function read_field_(reader::BSONReader, ::Type{BSONMinKey}) reader.type == BSON_TYPE_MIN_KEY || throw(BSONConversionError(reader.type, BSONMinKey)) BSONMinKey() end @inline function read_field_(reader::BSONReader, ::Type{BSONMaxKey}) reader.type == BSON_TYPE_MAX_KEY || throw(BSONConversionError(reader.type, BSONMaxKey)) BSONMaxKey() end @inline function read_field_(reader::BSONReader, ::Type{BSONUndefined}) reader.type == BSON_TYPE_UNDEFINED || throw(BSONConversionError(reader.type, BSONUndefined)) BSONUndefined() end @inline function read_field_(reader::BSONReader, ::Type{Nothing}) reader.type == BSON_TYPE_NULL || throw(BSONConversionError(reader.type, Nothing)) nothing end function read_field_(reader::AbstractBSONReader, ::Type{Number}) t = reader.type if t == BSON_TYPE_DOUBLE reader[Float64] elseif t == BSON_TYPE_INT64 reader[Int64] elseif t == BSON_TYPE_INT32 reader[Int32] elseif t == BSON_TYPE_DECIMAL128 reader[Dec128] else throw(BSONConversionError(t, Number)) end end function read_field_(reader::AbstractBSONReader, ::Type{Integer}) t = reader.type if t == BSON_TYPE_INT64 reader[Int64] elseif t == BSON_TYPE_INT32 reader[Int32] else throw(BSONConversionError(t, Number)) end end function read_field_(reader::AbstractBSONReader, ::Type{AbstractFloat}) t = reader.type if t == BSON_TYPE_DOUBLE reader[Float64] elseif t == BSON_TYPE_DECIMAL128 reader[Dec128] else throw(BSONConversionError(t, Number)) end end @inline function read_field_(reader::AbstractBSONReader, ::Type{Union{Nothing, T}}) where T reader.type == BSON_TYPE_NULL ? nothing : reader[T] end function read_field_(reader::BSONReader, ::Type{BSONCodeWithScope}) reader.type == BSON_TYPE_CODE_WITH_SCOPE || throw(BSONConversionError(reader.type, BSONCodeWithScope)) src = reader.src GC.@preserve src begin offset = reader.offset p = pointer(reader.src) + offset code_len = Int(load_bits_(Int32, p + 4)) doc_offset = offset + code_len + 8 validate_field(reader.validator, BSON_TYPE_CODE, p + 8, code_len, Int(load_bits_(Int32, p)) - 11) validate_string(reader.validator, p + 8, code_len - 1) BSONCodeWithScope( unsafe_string(p + 8, code_len - 1), BSONReader(src, doc_offset, BSON_TYPE_DOCUMENT, reader.validator, reader.conversions)[Dict{String, Any}] ) end end function read_field_(reader::AbstractBSONReader, ::Type{T}) where {X, T <: AbstractDict{String, X}} foldxl(reader; init = T()) do state, x state[String(x.first)] = x.second[X] state end end function read_field_(reader::AbstractBSONReader, ::Type{T}) where {X, T <: AbstractDict{Symbol, X}} foldxl(reader; init = T()) do state, x state[Symbol(x.first)] = x.second[X] state end end function read_field_(reader::AbstractBSONReader, ::Type{Vector{T}}) where T dst = T[] copy!(dst, reader) end function read_field_(reader::T, ::Type{<:Union{T, AbstractBSONReader}}) where {T <: AbstractBSONReader} reader end function Base.copy!(dst::AbstractArray{T}, reader::AbstractBSONReader) where T copy!(Map(x -> x.second[T]), dst, reader) end function read_field_(reader::AbstractBSONReader, ::Type{Any}) if reader.type == BSON_TYPE_DOUBLE reader[Float64] elseif reader.type == BSON_TYPE_STRING reader[String] elseif reader.type == BSON_TYPE_DOCUMENT reader[LittleDict{String, Any}] elseif reader.type == BSON_TYPE_ARRAY reader[Vector{Any}] elseif reader.type == BSON_TYPE_BINARY x = reader[BSONBinary] data = x.data if x.subtype == BSON_SUBTYPE_UUID && length(data) == 16 GC.@preserve data unsafe_load(Ptr{UUID}(pointer(data))) elseif x.subtype == BSON_SUBTYPE_UUID_OLD && length(data) == 16 GC.@preserve data BSONUUIDOld(unsafe_load(Ptr{UUID}(pointer(data)))) else x end elseif reader.type == BSON_TYPE_OBJECTID reader[BSONObjectId] elseif reader.type == BSON_TYPE_BOOL reader[Bool] elseif reader.type == BSON_TYPE_DATETIME reader[DateTime] elseif reader.type == BSON_TYPE_NULL nothing elseif reader.type == BSON_TYPE_REGEX reader[BSONRegex] elseif reader.type == BSON_TYPE_CODE reader[BSONCode] elseif reader.type == BSON_TYPE_SYMBOL reader[BSONSymbol] elseif reader.type == BSON_TYPE_INT32 reader[Int32] elseif reader.type == BSON_TYPE_TIMESTAMP reader[BSONTimestamp] elseif reader.type == BSON_TYPE_INT64 reader[Int64] elseif reader.type == BSON_TYPE_DECIMAL128 reader[Dec128] elseif reader.type == BSON_TYPE_MIN_KEY reader[BSONMinKey] elseif reader.type == BSON_TYPE_MAX_KEY reader[BSONMaxKey] elseif reader.type == BSON_TYPE_UNDEFINED reader[BSONUndefined] elseif reader.type == BSON_TYPE_CODE_WITH_SCOPE reader[BSONCodeWithScope] elseif reader.type == BSON_TYPE_DB_POINTER reader[BSONDBPointer] else error("Unsupported BSON type $(reader.type)") end end @inline @generated function bson_read_simple(::Type{T}, reader::AbstractBSONReader) where T field_readers = map(zip(fieldnames(T), fieldtypes(T))) do (fn, ft) fns = string(fn) :(reader[$fns][$ft]) end :($T($(field_readers...))) end @inline function bson_read_structtype(::Type{T}, reader::AbstractBSONReader) where T StructTypes.construct((i, name, FT) -> reader[name][FT], T) end @inline function bson_read_unversioned(::Type{T}, reader::AbstractBSONReader) where T if bson_simple(T) bson_read_simple(T, reader) else bson_read_structtype(T, reader) end end @inline function bson_read_versioned(::Type{T}, v::V, reader::AbstractBSONReader) where {T, V} target = bson_schema_version(T) v != target && error("Mismatched schema version, read: $v, target: $target") bson_read_unversioned(T, reader) end @inline function bson_read(::Type{T}, reader::AbstractBSONReader) where T target_v = bson_schema_version(T) if target_v !== nothing v = reader[bson_schema_version_field(T)][typeof(target_v)] bson_read_versioned(T, v, reader) else bson_read_unversioned(T, reader) end end @inline function read_field_(reader::AbstractBSONReader, ::Type{T}) where T # If T is a struct or not concrete (abstract or union), assume it has an implementation to read as object if isstructtype(T) || !isconcretetype(T) bson_read(T, reader) else throw(ArgumentError("Unsupported type $T")) end end @inline function Base.getindex(reader::AbstractBSONReader, ::Type{T}) where T RT = bson_representation_type(reader.conversions, T) if RT != T bson_representation_convert(reader.conversions, T, read_field_(reader, RT)) else read_field_(reader, T) end end @inline @generated function Base.getindex(reader::AbstractBSONReader, ::Type{T}) where T <: NamedTuple field_readers = map(zip(fieldnames(T), fieldtypes(T))) do (fn, ft) fns = string(fn) :(reader[$fns][$ft]) end :($T(($(field_readers...),))) end
LightBSON
https://github.com/ancapdev/LightBSON.jl.git
[ "MIT" ]
0.2.21
ce253ad53efeed8201656971874d8cd9dad0227e
code
4525
abstract type BSONConversionRules end struct DefaultBSONConversions <: BSONConversionRules end @inline bson_representation_type(::DefaultBSONConversions, ::Type{T}) where T = bson_representation_type(T) @inline bson_representation_convert(::DefaultBSONConversions, ::Type{T}, x) where T = bson_representation_convert(T, x) @inline bson_representation_type(::Type{T}) where T = T @inline bson_representation_type(::Type{Symbol}) = String @inline bson_representation_type(::Type{<:Enum}) = String @inline bson_representation_type(::Type{<:Tuple}) = Vector{Any} @inline bson_representation_convert(::Type{Vector{Any}}, x::Tuple) = collect(x) @inline bson_representation_convert(::Type{T}, x::Vector{Any}) where T <: Tuple = T(x) @inline bson_representation_convert(::Type{T}, x) where T = StructTypes.construct(T, x) @inline bson_representation_convert(::Type{String}, x) = string(x) @inline bson_representation_type(::Type{Vector{UInt8}}) = BSONBinary @inline bson_representation_convert(::Type{Vector{UInt8}}, x::BSONBinary) = x.data @inline bson_representation_convert(::Type{BSONBinary}, x::Vector{UInt8}) = BSONBinary(x) # NOTE: no public API for this, hopefully this doesn't break too often function regex_opts_str_(x::Regex) o1 = Base.regex_opts_str(x.compile_options & ~Base.DEFAULT_COMPILER_OPTS) o2 = Base.regex_opts_str(x.match_options & ~Base.DEFAULT_MATCH_OPTS) o1 * o2 end # Alternative implementation should the former start breaking # function regex_opts_str_(r::Regex) # s = string(r) # s[findlast(x -> x == '"', s)+1:end] # end @inline bson_representation_type(::Type{Regex}) = BSONRegex @inline bson_representation_convert(::Type{Regex}, x::BSONRegex) = Regex(x.pattern, x.options) @inline bson_representation_convert(::Type{BSONRegex}, x::Regex) = BSONRegex( x.pattern, regex_opts_str_(x) ) @inline bson_representation_type(::Type{<:IPAddr}) = String @inline bson_representation_type(::Type{<:Sockets.InetAddr}) = String bson_representation_convert(::Type{String}, x::Sockets.InetAddr{IPv4}) = "$(x.host):$(x.port)" function bson_representation_convert(::Type{Sockets.InetAddr{IPv4}}, x::String) m = match(r"^(.*):(\d+)$", x) m === nothing && throw(ArgumentError("Invalid IPv4 inet address: $x")) Sockets.InetAddr(IPv4(m.captures[1]), parse(Int, m.captures[2])) end bson_representation_convert(::Type{String}, x::Sockets.InetAddr{IPv6}) = "[$(x.host)]:$(x.port)" function bson_representation_convert(::Type{Sockets.InetAddr{IPv6}}, x::String) m = match(r"^\[(.*)\]:(\d+)$", x) m === nothing && throw(ArgumentError("Invalid IPv6 inet address: $x")) Sockets.InetAddr(IPv6(m.captures[1]), parse(Int, m.captures[2])) end @inline bson_representation_type(::Type{Date}) = DateTime bson_representation_convert(::Type{Date}, x::DateTime) = Date(x) bson_representation_convert(::Type{DateTime}, x::Date) = DateTime(x) struct NumericBSONConversions <: BSONConversionRules end @inline function bson_representation_type(::NumericBSONConversions, ::Type{T}) where T bson_representation_type(DefaultBSONConversions(), T) end @inline function bson_representation_convert(::NumericBSONConversions, ::Type{T}, x) where T bson_representation_convert(DefaultBSONConversions(), T, x) end const SmallInt = Union{Int8, UInt8, Int16, UInt16} @inline bson_representation_type(::NumericBSONConversions, ::Type{<:SmallInt}) = Int32 @inline bson_representation_type(::NumericBSONConversions, ::Type{UInt32}) = Int32 @inline bson_representation_type(::NumericBSONConversions, ::Type{UInt64}) = Int64 @inline bson_representation_type(::NumericBSONConversions, ::Type{Float32}) = Float64 @inline bson_representation_convert(::NumericBSONConversions, ::Type{Float64}, x::Float32) = Float64(x) @inline bson_representation_convert(::NumericBSONConversions, ::Type{Float32}, x::Float64) = Float32(x) @inline bson_representation_convert(::NumericBSONConversions, ::Type{Int32}, x::SmallInt) = Int32(x) @inline bson_representation_convert(::NumericBSONConversions, ::Type{T}, x::Int32) where T <: SmallInt = T(x) @inline bson_representation_convert(::NumericBSONConversions, ::Type{Int32}, x::UInt32) = reinterpret(Int32, x) @inline bson_representation_convert(::NumericBSONConversions, ::Type{UInt32}, x::Int32) = reinterpret(UInt32, x) @inline bson_representation_convert(::NumericBSONConversions, ::Type{Int64}, x::UInt64) = reinterpret(Int64, x) @inline bson_representation_convert(::NumericBSONConversions, ::Type{UInt64}, x::Int64) = reinterpret(UInt64, x)
LightBSON
https://github.com/ancapdev/LightBSON.jl.git
[ "MIT" ]
0.2.21
ce253ad53efeed8201656971874d8cd9dad0227e
code
3268
const BSON_TYPE_DOUBLE = 0x01 const BSON_TYPE_STRING = 0x02 const BSON_TYPE_DOCUMENT = 0x03 const BSON_TYPE_ARRAY = 0x04 const BSON_TYPE_BINARY = 0x05 const BSON_TYPE_UNDEFINED = 0x06 const BSON_TYPE_OBJECTID = 0x07 const BSON_TYPE_BOOL = 0x08 const BSON_TYPE_DATETIME = 0x09 const BSON_TYPE_NULL = 0x0A const BSON_TYPE_REGEX = 0x0B const BSON_TYPE_DB_POINTER = 0x0C const BSON_TYPE_CODE = 0x0D const BSON_TYPE_SYMBOL = 0x0E const BSON_TYPE_CODE_WITH_SCOPE = 0x0F const BSON_TYPE_INT32 = 0x10 const BSON_TYPE_TIMESTAMP = 0x11 const BSON_TYPE_INT64 = 0x12 const BSON_TYPE_DECIMAL128 = 0x13 const BSON_TYPE_MIN_KEY = 0xFF const BSON_TYPE_MAX_KEY = 0x7F const BSON_SUBTYPE_GENERIC_BINARY = 0x00 const BSON_SUBTYPE_FUNCTION = 0x01 const BSON_SUBTYPE_BINARY_OLD = 0x02 const BSON_SUBTYPE_UUID_OLD = 0x03 const BSON_SUBTYPE_UUID = 0x04 const BSON_SUBTYPE_MD5 = 0x05 const BSON_SUBTYPE_ENCRYPTED = 0x06 const UnsafeBSONString = WeakRefString{UInt8} struct BSONTimestamp counter::UInt32 time::UInt32 end BSONTimestamp(x::UInt64) = BSONTimestamp(x % UInt32, (x >> 32) % UInt32) struct BSONCode code::String end struct BSONCodeWithScope code::String mappings::Dict{String, Any} end struct BSONBinary data::Vector{UInt8} subtype::UInt8 end BSONBinary(data::Vector{UInt8}) = BSONBinary(data, BSON_SUBTYPE_GENERIC_BINARY) struct UnsafeBSONBinary data::UnsafeArray{UInt8, 1} subtype::UInt8 end UnsafeBSONBinary(data::UnsafeArray{UInt8, 1}) = UnsafeBSONBinary(data, BSON_SUBTYPE_GENERIC_BINARY) struct BSONRegex pattern::String options::String end struct BSONSymbol value::String end struct BSONDBPointer collection::String ref::BSONObjectId end struct BSONUUIDOld value::UUID end struct BSONMinKey end struct BSONMaxKey end struct BSONUndefined end const ValueField = Union{ Float64, Int64, Int32, Bool, DateTime, Dec128, UUID, String, UnsafeBSONString, Nothing, BSONTimestamp, BSONObjectId, BSONBinary, UnsafeBSONBinary, BSONRegex, BSONCode, BSONSymbol, BSONMinKey, BSONMaxKey, BSONUndefined, BSONDBPointer, BSONUUIDOld } bson_type_(::Type{Float64}) = BSON_TYPE_DOUBLE bson_type_(::Type{Int64}) = BSON_TYPE_INT64 bson_type_(::Type{Int32}) = BSON_TYPE_INT32 bson_type_(::Type{Bool}) = BSON_TYPE_BOOL bson_type_(::Type{Dec128}) = BSON_TYPE_DECIMAL128 bson_type_(::Type{UUID}) = BSON_TYPE_BINARY bson_type_(::Type{BSONUUIDOld}) = BSON_TYPE_BINARY bson_type_(::Type{DateTime}) = BSON_TYPE_DATETIME bson_type_(::Type{Nothing}) = BSON_TYPE_NULL bson_type_(::Type{String}) = BSON_TYPE_STRING bson_type_(::Type{UnsafeBSONString}) = BSON_TYPE_STRING bson_type_(::Type{BSONTimestamp}) = BSON_TYPE_TIMESTAMP bson_type_(::Type{BSONBinary}) = BSON_TYPE_BINARY bson_type_(::Type{UnsafeBSONBinary}) = BSON_TYPE_BINARY bson_type_(::Type{BSONRegex}) = BSON_TYPE_REGEX bson_type_(::Type{BSONCode}) = BSON_TYPE_CODE bson_type_(::Type{BSONSymbol}) = BSON_TYPE_SYMBOL bson_type_(::Type{BSONObjectId}) = BSON_TYPE_OBJECTID bson_type_(::Type{BSONMinKey}) = BSON_TYPE_MIN_KEY bson_type_(::Type{BSONMaxKey}) = BSON_TYPE_MAX_KEY bson_type_(::Type{BSONUndefined}) = BSON_TYPE_UNDEFINED bson_type_(::Type{BSONDBPointer}) = BSON_TYPE_DB_POINTER
LightBSON
https://github.com/ancapdev/LightBSON.jl.git
[ "MIT" ]
0.2.21
ce253ad53efeed8201656971874d8cd9dad0227e
code
3185
abstract type BSONValidator end struct UncheckedBSONValidator <: BSONValidator end struct LightBSONValidator <: BSONValidator end struct StrictBSONValidator <: BSONValidator end @inline validate_field( ::BSONValidator, type::UInt8, p::Ptr{UInt8}, field_length::Integer, available_length::Integer ) = nothing @inline function validate_field( ::LightBSONValidator, type::UInt8, p::Ptr{UInt8}, field_length::Integer, available::Integer ) field_length > available && throw(BSONValidationError("Field length too long, $field_length > $available")) nothing end @inline function validate_field( ::StrictBSONValidator, type::UInt8, p::Ptr{UInt8}, field_length::Integer, available::Integer ) field_length > available && throw(BSONValidationError("Field length too long, $field_length > $available")) if type == BSON_TYPE_DOCUMENT || type == BSON_TYPE_ARRAY field_length < 5 && throw(BSONValidationError("Document or array under 5 bytes ($field_length)")) unsafe_load(p + field_length - 1) != 0 && throw(BSONValidationError("Document or array missing null terminator")) end nothing end @inline validate_root(::BSONValidator, src::DenseVector{UInt8}) = nothing @inline function validate_root(validator::LightBSONValidator, src::DenseVector{UInt8}) GC.@preserve src begin p = pointer(src) len = ltoh(unsafe_load(Ptr{Int32}(p))) validate_field(validator, BSON_TYPE_DOCUMENT, p, len, length(src)) end end @inline function validate_root(validator::StrictBSONValidator, src::DenseVector{UInt8}) GC.@preserve src begin p = pointer(src) len = ltoh(unsafe_load(Ptr{Int32}(p))) validate_field(validator, BSON_TYPE_DOCUMENT, p, len, length(src)) len < length(src) && throw(BSONValidationError("Garbage after end of document")) end end @inline validate_bool(::BSONValidator, x::UInt8) = nothing @inline function validate_bool(::StrictBSONValidator, x::UInt8) x == 0x0 || x == 0x1 || throw(BSONValidationError("Invalid bool value $x")) nothing end @inline validate_string(::BSONValidator, p::Ptr{UInt8}, len::Integer) = nothing @inline function validate_string(::StrictBSONValidator, p::Ptr{UInt8}, len::Integer) unsafe_load(p + len) != 0 && throw(BSONValidationError("Code string missing null terminator")) s = unsafe_string(p, len) isvalid(s) || throw(BSONValidationError("Invalid UTF-8 string")) nothing end @inline validate_binary_subtype(::BSONValidator, p::Ptr{UInt8}, len::Integer, subtype::UInt8) = nothing @inline function validate_binary_subtype(::StrictBSONValidator, p::Ptr{UInt8}, len::Integer, subtype::UInt8) if subtype == BSON_SUBTYPE_UUID || subtype == BSON_SUBTYPE_UUID_OLD || subtype == BSON_SUBTYPE_MD5 len != 16 && throw(BSONValidationError("Subtype $subtype must be 16 bytes long")) elseif subtype == BSON_SUBTYPE_BINARY_OLD nested_len = ltoh(unsafe_load(Ptr{Int32}(p + 5))) nested_len != len - 4 && throw( BSONValidationError("Binary (Old) subtype invalid length $nested_len, expected $(len - 4)") ) end nothing end
LightBSON
https://github.com/ancapdev/LightBSON.jl.git
[ "MIT" ]
0.2.21
ce253ad53efeed8201656971874d8cd9dad0227e
code
1254
mutable struct BSONWriteBuffer <: DenseVector{UInt8} data::Vector{UInt8} len::Int BSONWriteBuffer() = new(UInt8[], 0) end function Base.sizehint!(buffer::BSONWriteBuffer, capacity::Integer) resize!(buffer.data, max(capacity, buffer.len)) buffer end @inline function Base.empty!(buffer::BSONWriteBuffer) buffer.len = 0 buffer end @inline Base.length(buffer::BSONWriteBuffer) = buffer.len @inline Base.size(buffer::BSONWriteBuffer) = (buffer.len,) @inline Base.sizeof(buffer::BSONWriteBuffer) = buffer.len @inline Base.elsize(BSONWriteBuffer) = 1 @inline function Base.getindex(buffer::BSONWriteBuffer, i::Integer) @boundscheck (i > 0 && i <= buffer.len) || throw(BoundsError(buffer, i)) @inbounds buffer.data[i] end @inline function Base.resize!(buffer::BSONWriteBuffer, len::Int) if length(buffer.data) < len resize!(buffer.data, len * 2) end buffer.len = len buffer end @inline Base.pointer(buffer::BSONWriteBuffer) = pointer(buffer.data) @inline function Base.push!(buffer::BSONWriteBuffer, x::UInt8) if length(buffer.data) == buffer.len resize!(buffer.data, max(buffer.len * 2, 10)) end buffer.len += 1 @inbounds buffer.data[buffer.len] = x buffer end
LightBSON
https://github.com/ancapdev/LightBSON.jl.git
[ "MIT" ]
0.2.21
ce253ad53efeed8201656971874d8cd9dad0227e
code
9492
struct BSONWriter{D <: DenseVector{UInt8}, C <: BSONConversionRules} dst::D offset::Int conversions::C function BSONWriter( dst::D; conversions::C = DefaultBSONConversions() ) where {D <: DenseVector{UInt8}, C <: BSONConversionRules} offset = length(dst) resize!(dst, offset + 4) new{D, C}(dst, offset, conversions) end end # For back compat @inline BSONWriter(dst::DenseVector{UInt8}, conversions::BSONConversionRules) = BSONWriter( dst; conversions ) function Base.close(writer::BSONWriter) dst = writer.dst push!(dst, 0x0) p = pointer(dst) + writer.offset GC.@preserve dst unsafe_store!(Ptr{Int32}(p), length(dst) - writer.offset) nothing end @inline wire_size_(::Type{T}) where T = missing @inline wire_size_(::Type{T}) where T <: Union{ Int32, Int64, Float64, Dec128, DateTime, BSONTimestamp, BSONObjectId } = sizeof(T) @inline wire_size_(::Type{T}) where T <: Union{Nothing, BSONMinKey, BSONMaxKey} = 0 @inline wire_size_(::Type{Bool}) = 1 @inline wire_size_(::Type{UUID}) = 21 @inline wire_size_(x) = sizeof(x) @inline wire_size_(x::Nothing) = 0 @inline wire_size_(x::Union{String, UnsafeBSONString}) = sizeof(x) + 5 @inline wire_size_(x::BSONCode) = sizeof(x.code) + 5 @inline wire_size_(x::BSONSymbol) = sizeof(x.value) + 5 @inline wire_size_(x::UUID) = 21 @inline wire_size_(x::BSONUUIDOld) = 21 @inline wire_size_(x::Union{BSONBinary, UnsafeBSONBinary}) = 5 + length(x.data) @inline wire_size_(x::BSONRegex) = 2 + sizeof(x.pattern) + sizeof(x.options) @inline wire_size_(x::BSONMinKey) = 0 @inline wire_size_(x::BSONMaxKey) = 0 @inline wire_size_(x::BSONUndefined) = 0 @inline wire_size_(x::BSONDBPointer) = 17 + sizeof(x.collection) @inline wire_store_(p::Ptr{UInt8}, x::T) where T = unsafe_store!(Ptr{T}(p), htol(x)) @inline wire_store_(::Ptr{UInt8}, ::Nothing) = nothing @inline wire_store_(p::Ptr{UInt8}, x::Bool) = unsafe_store!(p, UInt8(x)) @inline wire_store_(p::Ptr{UInt8}, x::DateTime) = wire_store_(p, Dates.value(x) - Dates.UNIXEPOCH) @inline wire_store_(p::Ptr{UInt8}, x::BSONTimestamp) = wire_store_(p, (x.counter % Int64) | ((x.time % Int64) << 32)) @inline wire_store_(p::Ptr{UInt8}, x::BSONObjectId) = unsafe_store!(Ptr{BSONObjectId}(p), x) @inline wire_store_(::Ptr{UInt8}, ::BSONMinKey) = nothing @inline wire_store_(::Ptr{UInt8}, ::BSONMaxKey) = nothing @inline wire_store_(::Ptr{UInt8}, ::BSONUndefined) = nothing @inline function wire_store_(p::Ptr{UInt8}, x::Union{String, UnsafeBSONString}) unsafe_store!(Ptr{Int32}(p), (sizeof(x) + 1) % Int32) GC.@preserve x unsafe_copyto!(p + 4, pointer(x), sizeof(x)) unsafe_store!(p + 4 + sizeof(x), 0x0) end @inline wire_store_(p::Ptr{UInt8}, x::BSONCode) = wire_store_(p, x.code) @inline wire_store_(p::Ptr{UInt8}, x::BSONSymbol) = wire_store_(p, x.value) @inline function wire_store_(p::Ptr{UInt8}, x::UUID) unsafe_store!(Ptr{Int32}(p), Int32(16)) unsafe_store!(p + 4, BSON_SUBTYPE_UUID) unsafe_store!(Ptr{UUID}(p + 5), x) end @inline function wire_store_(p::Ptr{UInt8}, x::BSONUUIDOld) unsafe_store!(Ptr{Int32}(p), Int32(16)) unsafe_store!(p + 4, BSON_SUBTYPE_UUID_OLD) unsafe_store!(Ptr{UUID}(p + 5), x.value) end @inline function wire_store_(p::Ptr{UInt8}, x::Union{BSONBinary, UnsafeBSONBinary}) unsafe_store!(Ptr{Int32}(p), length(x.data) % Int32) unsafe_store!(p + 4, x.subtype) GC.@preserve x unsafe_copyto!(p + 5, pointer(x.data), length(x.data)) end @inline function wire_store_(p::Ptr{UInt8}, x::BSONRegex) GC.@preserve x unsafe_copyto!(p, pointer(x.pattern), sizeof(x.pattern)) unsafe_store!(p + sizeof(x.pattern), 0x0) GC.@preserve x unsafe_copyto!(p + sizeof(x.pattern) + 1, pointer(x.options), sizeof(x.options)) unsafe_store!(p + sizeof(x.pattern) + sizeof(x.options) + 1 , 0x0) end @inline function wire_store_(p::Ptr{UInt8}, x::BSONDBPointer) wire_store_(p, x.collection) unsafe_store!(Ptr{BSONObjectId}(p + 5 + sizeof(x.collection)), x.ref) end @inline len_(x::AbstractString) = sizeof(x) @inline len_(x::Symbol) = ccall(:strlen, Csize_t, (Cstring,), Base.unsafe_convert(Ptr{UInt8}, x)) % Int @inline function write_header_(dst::DenseVector{UInt8}, t::UInt8, name::Union{String, Symbol}, value_size::Integer) name_len = len_(name) offset = length(dst) resize!(dst, offset + name_len + value_size + 2) GC.@preserve name dst begin p = pointer(dst) + offset unsafe_store!(p, t) ccall( :memcpy, Cvoid, (Ptr{UInt8}, Ptr{UInt8}, Csize_t), p + 1, Base.unsafe_convert(Ptr{UInt8}, name), name_len % Csize_t ) unsafe_store!(p + name_len + 1, 0x0) end offset + name_len + 2 end function write_field_(writer::BSONWriter, value::T, name::Union{String, Symbol}) where T <: ValueField dst = writer.dst offset = write_header_(dst, bson_type_(T), name, wire_size_(value)) p = pointer(dst) + offset GC.@preserve dst wire_store_(p, value) nothing end function write_field_(writer::BSONWriter, value::BSONCodeWithScope, name::Union{String, Symbol}) dst = writer.dst offset = write_header_(dst, BSON_TYPE_CODE_WITH_SCOPE, name, wire_size_(value.code) + 4) GC.@preserve dst begin p = pointer(dst) + offset wire_store_(p + 4, value.code) mappings_writer = BSONWriter(dst, writer.conversions) mappings_writer[] = value.mappings close(mappings_writer) p = pointer(dst) + offset unsafe_store!(Ptr{Int32}(p), length(dst) - offset) end nothing end function write_field_(writer::BSONWriter, generator::Function, name::Union{String, Symbol}) dst = writer.dst write_header_(dst, BSON_TYPE_DOCUMENT, name, 0) element_writer = BSONWriter(dst, writer.conversions) generator(element_writer) close(element_writer) end const SMALL_INDEX_STRINGS = [string(i) for i in 0:99] function write_field_(writer::BSONWriter, values::Union{AbstractVector, Base.Generator}, name::Union{String, Symbol}) dst = writer.dst write_header_(dst, BSON_TYPE_ARRAY, name, 0) element_writer = BSONWriter(dst, writer.conversions) element_writer[] = values close(element_writer) end function Base.setindex!(writer::BSONWriter, values::Union{AbstractVector, Base.Generator}) for (i, x) in enumerate(values) is = i <= length(SMALL_INDEX_STRINGS) ? SMALL_INDEX_STRINGS[i] : string(i - 1) writer[is] = x end nothing end @inline function write_field_(writer::BSONWriter, value::T, name::Union{String, Symbol}) where T if isstructtype(T) write_field_(writer, field_writer -> field_writer[] = value, name) else throw(ArgumentError("Unsupported type $T")) end end @inline function Base.setindex!(writer::BSONWriter, value::T, name::Union{String, Symbol}) where T RT = bson_representation_type(writer.conversions, T) if RT != T write_field_(writer, bson_representation_convert(writer.conversions, RT, value), name) else write_field_(writer, value, name) end end function Base.setindex!(writer::BSONWriter, fields::AbstractDict{<:Union{String, Symbol}}) for (key, value) in fields writer[key] = value end nothing end @inline function Base.setindex!(writer::BSONWriter, field::Pair{String}) writer[field.first] = field.second nothing end function Base.setindex!(writer::BSONWriter, fields::Tuple{Vararg{Pair{String, T} where T}}) for (key, value) in fields writer[key] = value end nothing end @inline @generated function bson_write_simple(writer::BSONWriter, value::T) where T fieldcount(T) == 0 && return nothing totalsize = sum(wire_size_, fieldtypes(T)) + sum(sizeof, fieldnames(T)) + fieldcount(T) * 2 if ismissing(totalsize) e = Expr(:block) for fn in fieldnames(T) fns = string(fn) push!(e.args, :(writer[$fns] = value.$fn)) end e else e = Expr(:block) curoffset = 0 for (ft, fn) in zip(fieldtypes(T), fieldnames(T)) push!(e.args, :(unsafe_store!(p + $curoffset, $(bson_type_(ft))))) curoffset += 1 fns = string(fn) fnl = sizeof(fns) push!(e.args, :(ccall(:memcpy, Cvoid, (Ptr{UInt8}, Ptr{UInt8}, Csize_t), p + $curoffset, pointer($fns), $fnl))) curoffset += fnl push!(e.args, :(unsafe_store!(p + $curoffset, 0x0))) curoffset += 1 push!(e.args, :(wire_store_(p + $curoffset, value.$fn))) curoffset += wire_size_(ft) end quote dst = writer.dst offset = length(dst) resize!(dst, offset + $totalsize) GC.@preserve dst begin p = pointer(dst) + offset $e end end end end @inline function bson_write_structtype(writer::BSONWriter, value) StructTypes.foreachfield(value) do i, name, FT, value writer[name] = value end end @inline function bson_write(writer::BSONWriter, value::T) where T v = bson_schema_version(T) if v !== nothing writer[bson_schema_version_field(T)] = v end if bson_simple(T) bson_write_simple(writer, value) else bson_write_structtype(writer, value) end end @inline function Base.setindex!(writer::BSONWriter, value::T) where T bson_write(writer::BSONWriter, value) end
LightBSON
https://github.com/ancapdev/LightBSON.jl.git
[ "MIT" ]
0.2.21
ce253ad53efeed8201656971874d8cd9dad0227e
code
315
@testset "convenience" begin x = LittleDict{String, Any}("x" => 1, "y" => 2) buf = bson_write(UInt8[], x) @test bson_read(buf) == x io = IOBuffer() bson_write(io, x) seekstart(io) @test bson_read(io) == x path, io = mktemp() bson_write(path, x) @test bson_read(path) == x end
LightBSON
https://github.com/ancapdev/LightBSON.jl.git