licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.3.6
727f129ba765e0fc550f4e776c7c8145a7efcba0
docs
3680
# BaytesSMC <!--- ![logo](docs/src/assets/logo.svg) [![CI](xxx)](xxx) [![arXiv article](xxx)](xxx) --> [![Documentation, Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://paschermayr.github.io/BaytesSMC.jl/) [![Build Status](https://github.com/paschermayr/BaytesSMC.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/paschermayr/BaytesSMC.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/paschermayr/BaytesSMC.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/paschermayr/BaytesSMC.jl) [![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet)](https://github.com/SciML/ColPrac) BaytesSMC.jl is a library to perform SMC proposal steps on `ModelWrapper` structs, see [ModelWrappers.jl](https://github.com/paschermayr/ModelWrappers.jl). Kernels that are defined in [BaytesMCMC.jl](https://github.com/paschermayr/BaytesMCMC.jl) and [BaytesFilters.jl](https://github.com/paschermayr/BaytesFilters.jl) can be used inside this library. BaytesSMC.jl supports sequential parameter estimation frameworks such as IBIS and SMC2. This can be achieved via data tempering, which is explained in more detail in the upcoming Baytes.jl library. Moreover, a SMC variant for batch data is provided as well, where tempering of the objective function is used until the temperature reaches 1.0. <!--- [BaytesMCMC.jl](xxx) [BaytesFilters.jl](xxx) [BaytesPMCMC.jl](xxx) [BaytesSMC.jl](xxx) [Baytes.jl](xxx) --> ## First steps All standard Baytes.jl functions call can be used in BaytesSMC.jl. To start with, we have to define parameter and an objective function first. Let us use the model initially defined in the [ModelWrappers.jl](https://github.com/paschermayr/ModelWrappers.jl) introduction: ```julia using ModelWrappers, BaytesSMC using Distributions, Random, UnPack _rng = Random.GLOBAL_RNG #Create Model and data myparameter = (μ = Param(Normal(), 0.0, ), σ = Param(Gamma(), 1.0, )) mymodel = ModelWrapper(myparameter) data = randn(1000) #Create objective for both μ and σ and define a target function for it myobjective = Objective(mymodel, data, (:μ, :σ)) function (objective::Objective{<:ModelWrapper{BaseModel}})(θ::NamedTuple) @unpack data = objective lprior = Distributions.logpdf(Distributions.Normal(),θ.μ) + Distributions.logpdf(Distributions.Exponential(), θ.σ) llik = sum(Distributions.logpdf( Distributions.Normal(θ.μ, θ.σ), data[iter] ) for iter in eachindex(data)) return lprior + llik end ``` A particle in the SMC framework corresponds to a full model. We will assign assign a NUTS sampler for each particle, and propose new parameter via SMC in the standard Bayes.jl framework: ```julia using BaytesMCMC smc = SMC(_rng, MCMC(NUTS,(:μ, :σ,)), myobjective) propose!(_rng, smc, mymodel, data) ``` ## Customization Construction is highly flexible, and can be tweaked via keyword assignments in the following helper structs: ```julia kerneldefault = SMCDefault(Ntuning = 50, jittermin = 1, jittermax = 10) samplingdefault = SampleDefault(chains = 10) SMC(_rng, MCMC(NUTS,(:μ, :σ,)), myobjective, kerneldefault, samplingdefault) ``` `kerneldefault` consists of tuning parameter that are specific for SMC, `samplingdefault` consists of tuning parameter that are observed over the whole sampling process. The latter is explained in more detail in Baytes.jl. ## Going Forward This package is still highly experimental - suggestions and comments are always welcome! <!--- # Citing Baytes.jl If you use Baytes.jl for your own research, please consider citing the following publication: ... -->
BaytesSMC
https://github.com/paschermayr/BaytesSMC.jl.git
[ "MIT" ]
0.3.6
727f129ba765e0fc550f4e776c7c8145a7efcba0
docs
184
```@meta CurrentModule = BaytesSMC ``` # BaytesSMC Documentation for [BaytesSMC](https://github.com/paschermayr/BaytesSMC.jl). ```@index ``` ```@autodocs Modules = [BaytesSMC] ```
BaytesSMC
https://github.com/paschermayr/BaytesSMC.jl.git
[ "MIT" ]
0.3.6
727f129ba765e0fc550f4e776c7c8145a7efcba0
docs
32
# Introduction Yet to be done.
BaytesSMC
https://github.com/paschermayr/BaytesSMC.jl.git
[ "MIT" ]
0.1.5
21860fcff00b8daf031f9b3250ed0a106b6df0c9
code
360
using MDBM using Documenter makedocs(; modules=[MDBM], authors="Daniel Bachrathy", repo="https://github.com/bachrathyd/MDBM.jl/blob/{commit}{path}#L{line}", sitename="MDBM.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", assets=String[], ), pages=[ "Home" => "index.md", ], )
MDBM
https://github.com/bachrathyd/MDBM.jl.git
[ "MIT" ]
0.1.5
21860fcff00b8daf031f9b3250ed0a106b6df0c9
code
424
using MDBM using LinearAlgebra, Arpack function fooeig(x) mymx=Matrix{Float64}(I,5,5); mymx[2,1]=x; mymx[1,2]=x+5; abs(eigs(mymx, nev = 2)[1][1])-3 end eig_problem=MDBM_Problem(fooeig,[Axis(-10:10)]) println(" X solution // Function val") for k=1:12 solve!(eig_problem,1) Xsol=getinterpolatedsolution(eig_problem) print(Xsol[1]) print(" // ") println(maximum(abs.(fooeig.(Xsol[1])))) end
MDBM
https://github.com/bachrathyd/MDBM.jl.git
[ "MIT" ]
0.1.5
21860fcff00b8daf031f9b3250ed0a106b6df0c9
code
349
using MDBM using PyPlot pygui(true) #Solution of an uncertain implicit equation function foo(x,y) x^2.0+y^2.0-2.0^2.0+randn() end for k = 1:5 mymdbm=MDBM_Problem(foo,[-3.0:3.0,-3.0:3.0]) solve!(mymdbm,5) x_sol,y_sol=getinterpolatedsolution(mymdbm) fig = figure(1)#;clf() scatter(x_sol,y_sol,s=4); fig = figure(2)#;clf() hist(x_sol,100) end
MDBM
https://github.com/bachrathyd/MDBM.jl.git
[ "MIT" ]
0.1.5
21860fcff00b8daf031f9b3250ed0a106b6df0c9
code
1414
using MDBM using PyPlot pygui(true) ### Axis with vector valued nodes # Task: find the solution along the eges of a triangle # the function which defines the region on the plane of the triangle fig = figure(1);clf() Circ_mdbm=MDBM_Problem((x,y,r)->x*x+y*y-r*r,[-2.0:2.0,-2.0:2.0,0.75:0.2:1.25]) solve!(Circ_mdbm,3); x_sol,y_sol=getinterpolatedsolution(Circ_mdbm) scatter(x_sol,y_sol,s=2); # Computing along the edge of a triangle: # The ticks of the ax1 is the nodes of the triangle ax1=Axis([[-1.0,1.0],[-1.0,-1.0],[1.5,-0.5],[-1.0,1.0]],"v") ax2=Axis(0.75:0.2:1.25,"r") #plotting the tirangle for k in 1:length(ax1.ticks)-1 plot([ax1.ticks[k][1],ax1.ticks[k+1][1]],[ax1.ticks[k][2],ax1.ticks[k+1][2]]) end function foo_Vect_Float(v,r) norm(v)-r end Vect_mdbm=MDBM_Problem(foo_Vect_Float,[ax1,ax2]) # the tree nodes of the triangle is not a proper initial mesh, so ax1 it is refined 3 times refine!(Vect_mdbm,directions=[1,1,1]) scatter([P[1] for P in Vect_mdbm.axes[1]],[P[2] for P in Vect_mdbm.axes[1]],s=20) solve!(Vect_mdbm,4) #solution points V_sol,r_sol=getinterpolatedsolution(Vect_mdbm) #Note V_sol is a Vector of Vectors scatter([P[1] for P in V_sol],[P[2] for P in V_sol],s=6); #Plotting the result in 3D along the first and second element of the vector (from ax1) + the redial coordinate (from ax2) fig = figure(2);clf() scatter3D([P[1] for P in V_sol],[P[2] for P in V_sol],r_sol,s=6);
MDBM
https://github.com/bachrathyd/MDBM.jl.git
[ "MIT" ]
0.1.5
21860fcff00b8daf031f9b3250ed0a106b6df0c9
code
1438
# __precompile__() """ Multi-Dimensional Bisection Method (MDBM) is an efficient and robust root-finding algorithm, which can be used to determine whole high-dimensional sub-manifolds (points, curves, surfaces…) of the roots of implicit non-linear equation systems, even in cases, where the number of unknowns surpasses the number of equations. # Examples ```julia include("MDBM.jl") using Reexport @reexport using .MDBM using PyPlot; pygui(true); function foo(x,y) x^2.0+y^2.0-2.0^2.0 end function c(x,y) #only the c>0 domain is analysed x-y end ax1=Axis([-5,-2.5,0,2.5,5],"x") # initial grid in x direction ax2=Axis(-5:2:5.0,"y") # initial grid in y direction mymdbm=MDBM_Problem(foo,[ax1,ax2],constraint=c) iteration=5 #number of refinements (resolution doubling) solve!(mymdbm,iteration) #points where the function foo was evaluated x_eval,y_eval=getevaluatedpoints(mymdbm) #interpolated points of the solution (approximately where foo(x,y) == 0 and c(x,y)>0) x_sol,y_sol=getinterpolatedsolution(mymdbm) fig = figure(1);clf() scatter(x_eval,y_eval,s=5) scatter(x_sol,y_sol,s=5) ``` """ module MDBM using StaticArrays using LinearAlgebra export MDBM_Problem, Axis, solve!, interpolate!, refine!, checkneighbour!, axesextend!, getinterpolatedsolution, getevaluatedpoints, getevaluatedfunctionvalues, getevaluatedconstraintvalues, connect, triangulation include("MDBM_types.jl") include("MDBM_functions.jl") end
MDBM
https://github.com/bachrathyd/MDBM.jl.git
[ "MIT" ]
0.1.5
21860fcff00b8daf031f9b3250ed0a106b6df0c9
code
22103
function axdoubling!(ax::Axis) #WRONG: sort!(append!(ax.ticks, ax.ticks[1:end - 1] + diff(ax.ticks) / 2); alg = QuickSort) #the axis could be in a non-sorted form doubleindex=(2:2*length(ax.ticks)).÷2 doubleindex[2:2:end] .+=length(ax.ticks) append!(ax.ticks, ax.ticks[1:end - 1] + diff(ax.ticks) / 2) ax.ticks[1:end].=ax.ticks[doubleindex]; end """ axesextend!(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}, axisnumber::Integer; prepend::AbstractArray=[], append::AbstractArray=[]) Extend parameter space of the selected Axis by prepend and append the grid. Note, that the resolution and the monotonically is not checked. # Examples extending the second parameter of the mdbm problem: ```jldoctest julia> axesextend!(mymdbm,2,prepend=-6.2:0.05:-2.2,append=2.2:0.2:3); ``` """ function axesextend!(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}, axisnumber::Integer; prepend::AbstractArray = [], append::AbstractArray = []) where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT} preplength = length(prepend); if preplength > 0 prepend!(mdbm.axes[axisnumber].ticks, prepend) for nc in mdbm.ncubes nc.corner[axisnumber] += preplength; end end if length(append) > 0 append!(mdbm.axes[axisnumber].ticks, append) end end # function corner(nc::NCube{IT,FT,N}, T01)::Vector{MVector} where IT where FT where N function corner(nc::NCube{IT,FT,N}, T01) where IT where FT where N [nc.corner .+ nc.size .* T for T in T01] end # function corner(ncubes::Vector{NCube{IT,FT,N}}, T01)::Vector{Vector{MVector}} where IT where FT where N function corner(ncubes::Vector{NCube{IT,FT,N}}, T01) where IT where FT where N [corner(nc, T01) for nc in ncubes] # [nc.corner .+ nc.size .* T for nc in ncubes for T in T01] end # function corner(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT})::Vector{Vector{SVector}} where fcT where N where Nf where Nc function corner(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}) where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT} [corner(nc, mdbm.T01) for nc in mdbm.ncubes] end function getcornerval(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}) where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT}#get it for all #getcornerval.(mdbm.ncubes,Ref(mdbm)) map(x->((mdbm.fc) ∘ (mdbm.axes))(x...), Base.Iterators.flatten(corner(mdbm))) end function getcornerval(ncubes::NCube{IT,FT,N}, mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}) where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT} #PostionsVectors=(mdbm.axes.(corner(nc,mdbm.T01))) # (mdbm.fc).( (mdbm.axes).(corner(nc,mdbm.T01)) ) map(x->((mdbm.fc) ∘ (mdbm.axes))(x...), corner(ncubes, mdbm.T01)) end function T01maker(valk::Val{kdim}) where {kdim} SVector{2^kdim}([ SVector{kdim}([isodd(x ÷ (2^y)) for y in 0:(kdim - 1)]) for x in 0:(2^kdim - 1)]) end function T11pinvmaker(valk::Val{kdim}) where {kdim} T11pinv = ([isodd(x ÷ (2^y)) for y in 0:kdim , x in 0:(2^kdim - 1)] * 2.0 .- 1.0) / (2^kdim) SMatrix{kdim + 1,2^kdim}(T11pinv) end function issingchange(FunTupleVector::AbstractVector, Nf::Integer, Nc::Integer)::Bool all([ [ any((c)->!isless(c[1][fi], zero(c[1][fi])), FunTupleVector) for fi in 1:Nf#length(FunTupleVector[1][1]) ]#any positive (or zeros) value (!isless) [ any((c)->!isless(zero(c[1][fi]), c[1][fi]), FunTupleVector) for fi in 1:Nf#length(FunTupleVector[1][1]) ]#anany negative (or zero) value [ any((c)->!isless(c[2][fi], zero(c[2][fi])), FunTupleVector) for fi in 1:Nc#length(FunTupleVector[1][2]) ]#any positive (or zeros) value (!isless) ])#check for all condition end function _interpolate!(ncubes::Vector{NCube{IT,FT,N}}, mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}, ::Type{Val{0}}) where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT} isbracketing = map(nc->issingchange(getcornerval(nc, mdbm), Nf, Nc), ncubes) #TODO: parallelize deleteat!(ncubes,.!isbracketing)#removeing the non-bracketing ncubes for nc in ncubes nc.posinterp[:] .= zero(FT) end return nothing end function _interpolate!(ncubes::Vector{NCube{IT,FT,N}}, mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}, ::Type{Val{1}}) where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT} for nc in ncubes FunTupleVector = getcornerval(nc, mdbm) if Nc==0 || all( any((c)->!isless(c[2][fi], zero(c[2][fi])), FunTupleVector) for fi in 1:length(FunTupleVector[1][2]) )# check the constraint: do wh have to compute at all?!? As = zero(MVector{Nf + Nc,FT}) ns = zero(MMatrix{N,Nf + Nc,FT}) #for f--------------------- for kf = 1:Nf#length(FunTupleVector[1][1]) solloc = mdbm.T11pinv * [FunTupleVector[kcubecorner][1][kf] for kcubecorner = 1:length(FunTupleVector)] As[kf] = solloc[end]; ns[:,kf] .= solloc[1:end - 1]; end #for c---if needed: that is, it is close to the boundary-------- activeCostraint = 0; for kf = 1:Nc#length(FunTupleVector[1][2]) #TODO: mivan a többszörös C teljesülése esetén!?!??!# ISSUE if any((c)->!isless(zero(c[2][kf]), c[2][kf]), FunTupleVector) && length(As) < N # use a constraint till it reduces the dimension to zero (point) and no further solloc = mdbm.T11pinv * [FunTupleVector[kcubecorner][2][kf] for kcubecorner = 1:length(FunTupleVector)] activeCostraint += 1; As[Nf + activeCostraint] = solloc[end]; ns[:,Nf + activeCostraint] .= solloc[1:end - 1]; end end if (Nf + activeCostraint) == 0 nc.posinterp[:] .= zero(FT) else # first two leads to error in the fucntion of constant due to the behaviour of pinv (eg. [1 0;0 1;0 0]/[1 0; 0 0; 0 0]) # nc.posinterp[:] .= transpose(view(ns, :, 1:(Nf + activeCostraint))) \ view(As, 1:(Nf + activeCostraint));#TEST # nc.posinterp[:] .= transpose(ns[:, 1:(Nf + activeCostraint)]) \ As[1:(Nf + activeCostraint)];#TEST # nc.posinterp[:] .= ns[:, 1:(Nf + activeCostraint)] * ((transpose(ns[:, 1:(Nf + activeCostraint)]) * ns[:, 1:(Nf + activeCostraint)]) \ view(As, 1:(Nf + activeCostraint))); a = ns[:, 1:(Nf + activeCostraint)] d = view(As, 1:(Nf + activeCostraint)) A = transpose(a) * a if rank(A) == minimum(size(A)) nc.posinterp[:] .= a * (A \ d) else nc.posinterp[:] .= 1000.0 end end #for c--------------------- else nc.posinterp[:] .= 1000.0;#put it outside the cube! end end #TODO: what if it falls outside of the n-cube, it should be removed ->what shall I do with the bracketing cubes? # Let the user define it # filter!((nc)->sum((abs.(nc.posinterp)).^10.0)<(1.5 ^10.0),mdbm.ncubes)#1e6~=(2.0 ^20.0) normp = 5.0 ncubetolerance = 0.7 filter!((nc)->norm(nc.posinterp, normp) < 1.0 + ncubetolerance, mdbm.ncubes) #filter!((nc)->!any(isnan.(nc.posinterp)),mdbm.ncubes) return nothing end function _interpolate!(ncubes::Vector{NCube{IT,FT,N}}, mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}, ::Type{Val{Ninterp}}) where {fcT, IT, FT, N, Ninterp, Nf, Nc, t01T, t11T, aT} error("order $(Ninterp) interpolation is not supperted (yet)") end """ interpolate!(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}; interpolationorder::Int=1) Interpolate the solution within the n-cube with order `interpolationorder`. - `interpolationorder=0` provide the midpoint of the n-cube - `interpolationorder=1` preform a linear fit and provide closest solution point to the mindpoint of the n-cube """ function interpolate!(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}; interpolationorder::Int = 1) where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT} _interpolate!(mdbm.ncubes, mdbm, Val{interpolationorder}) end """ refine!(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}; directions::Vector{T}=collect(Int64,1:N)) where N where Nf where Nc where T<:Integer Double the resolution of the axes along the provided `directions` then halving the `ncubes` accordingly. # Examples ```jldoctest julia> refine!(mymdbm) julia> refine!(mymdbm,[1,1,2]) ``` """ function refine!(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}; directions::Vector{T} = collect(Int64, 1:N)) where {T<:Integer, fcT, IT, FT, N, Ninterp, Nf, Nc, t01T, t11T, aT} doubling!(mdbm, directions) refinencubes!(mdbm.ncubes, directions) return nothing end """ doubling!(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}, directions::Vector{T}) where T<:Integer where N where Nf where Nc Double the resolution of the axes along the provided `directions`, then set the new size of the n-cubes. # Examples ```jldoctest julia> doubling!(mymdbm) julia> doubling!(mymdbm,[1,2]) ``` """ function doubling!(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}, directions::Vector{T}) where T <: Integer where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT} axdoubling!.(mdbm.axes[directions]) for nc in mdbm.ncubes for dir in directions nc.corner[dir] = (nc.corner[dir] - 1) * 2 + 1 nc.size[dir] *= 2 end end end """ refinencubes!(ncubes::Vector{NCube{IT,FT,N}}, directions::Vector{T}) Halving the `ncubes` along the provided `directions`. # Examples ```jldoctest julia> refinencubes!(mymdbm.ncubes) julia> refinencubes!(mymdbm.ncubes,mymdbm,[1,2]) ``` """ function refinencubes!(ncubes::Vector{NCube{IT,FT,N}}, directions::Vector{T}) where IT where FT where N where T <: Integer where t01T #{IT,FT,N} where IT where FT where N for dir in directions for nc in ncubes nc.size[dir] /= 2 end NumofNCubes = length(ncubes) append!(ncubes, deepcopy(ncubes)) for nc in ncubes[1:NumofNCubes] nc.corner[dir] = nc.corner[dir] + nc.size[dir] end end sort!(ncubes; alg = QuickSort) return nothing end """ getinterpolatedsolution(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}) Provide the interpolated coordinates of the all the detected solution (approximately where foo(x,y) == 0 and c(x,y)>0). """ function getinterpolatedsolution(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}) where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT} [ [ (typeof(mdbm.axes[i].ticks).parameters[1])((mdbm.axes[i].ticks[nc.corner[i]] * (1.0 - (nc.posinterp[i] + 1.0) / 2.0) + mdbm.axes[i].ticks[nc.corner[i] + 1] * ((nc.posinterp[i] + 1.0) / 2.0))) for nc in mdbm.ncubes]#::Vector{typeof(mdbm.axes[i].ticks).parameters[1]} for i in 1:length(mdbm.axes)] end """ getinterpolatedsolution(ncubes::Vector{NCube{IT,FT,N}},mdbm::MDBM_Problem{N,Nf,Nc}) Provide the interpolated coordinates of the detected solution for the selected n-cubes (approximately where foo(x,y) == 0 and c(x,y)>0). """ function getinterpolatedsolution(ncubes::Vector{NCube{IT,FT,N}}, mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}) where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT} [ [ (typeof(mdbm.axes[i].ticks).parameters[1])( (mdbm.axes[i].ticks[nc.corner[i]]*(1.0-(nc.posinterp[i]+1.0)/2.0)+ mdbm.axes[i].ticks[nc.corner[i]+1]*((nc.posinterp[i]+1.0)/2.0)) ) for nc in ncubes]#::Vector{typeof(mdbm.axes[i].ticks).parameters[1]} for i in 1:length(mdbm.axes)] end """ getinterpolatedsolution(nc::NCube{IT,FT,N}, mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}) Provide the interpolated coordinates of the solution inside the provided n-cube `nc` (approximately where foo(x,y) == 0 and c(x,y)>0). """ function getinterpolatedsolution(nc::NCube{IT,FT,N}, mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}) where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT} [ (typeof(mdbm.axes[i].ticks).parameters[1])((mdbm.axes[i].ticks[nc.corner[i]] * (1.0 - (nc.posinterp[i] + 1.0) / 2.0) + mdbm.axes[i].ticks[nc.corner[i] + 1] * ((nc.posinterp[i] + 1.0) / 2.0)))#::Vector{typeof(mdbm.axes[i].ticks).parameters[1]} for i in 1:length(mdbm.axes)] end """ getevaluatedpoints(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}) Provide all the coordinates where the function is evaluated. """ function getevaluatedpoints(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT})where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT} [[x.callargs[i] for x in mdbm.fc.fvalarg] for i in 1:N] end """ getevaluatedpoints(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}) Provide the functionvalues for all the coordinates where the function is evaluated. (see: `getevaluatedpoints`) """ function getevaluatedfunctionvalues(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT})where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT} [x.funval for x in mdbm.fc.fvalarg] end """ getevaluatedconstraintvalues(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}) Provide the constraints values for all the coordinates where the function is evaluated. (see: `getevaluatedpoints`) """ function getevaluatedconstraintvalues(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}) where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT} [x.cval for x in mdbm.fc.fvalarg] end # function generateneighbours(ncubes::Vector{NCube},mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}) where N where Nf where Nc function generateneighbours(ncubes::Vector{NCube{IT,FT,N}}, mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}) where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT} #TODO: Let the user select the method #-------all faceing/cornering neightbours---------------- # #neighbourind=1:2^length(mdbm.axes) #cornering neightbours also - unnecessary # neighbourind=2 .^(0:(length(mdbm.axes)-1)) .+ 1 #neighbour only on the side # T101=[-mdbm.T01[neighbourind]...,mdbm.T01[neighbourind]...] # # nc_neighbour = Array{typeof(mdbm.ncubes[1])}(undef,0) # NumofNCubes=length(ncubes) # for iT in 1:length(T101) # append!(nc_neighbour,deepcopy(ncubes)) # for nci in ((1+NumofNCubes*(iT-1)):(NumofNCubes+NumofNCubes*(iT-1))) # nc_neighbour[nci].corner[:]=nc_neighbour[nci].corner+T101[iT].*nc_neighbour[nci].size # end # end #-------all faceing/cornering neightbours---------------- #-------direcational neightbours---------------- nc_neighbour = Array{typeof(mdbm.ncubes[1])}(undef, 0) Nface = 2^N indpos = [[mdbm.T01[i][dir] for i in 1:Nface] for dir in 1:N] indneg = [[!mdbm.T01[i][dir] for i in 1:Nface] for dir in 1:N] for nc in ncubes fcvals = getcornerval(nc, mdbm) for dir in 1:N # indpos=[mdbm.T01[i][dir] for i in 1:Nface] # indneg=[!mdbm.T01[i][dir] for i in 1:Nface] if issingchange(fcvals[indpos[dir]], Nf, Nc) push!(nc_neighbour, deepcopy(nc)) nc_neighbour[end].corner[dir] += nc_neighbour[end].size[dir] end if issingchange(fcvals[indneg[dir]], Nf, Nc) push!(nc_neighbour, deepcopy(nc)) nc_neighbour[end].corner[dir] -= nc_neighbour[end].size[dir] end end end #-------direcational neightbours---------------- filter!(nc->!(any(nc.corner .< 1) || any((nc.corner + nc.size) .> [length.(mdbm.axes)...])), nc_neighbour)#remove the overhanging ncubes sort!(nc_neighbour; alg = QuickSort) unique!(nc_neighbour) return nc_neighbour end """ checkneighbour!(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}; interpolationorder::Int=0, maxiteration::Int=0) Check the face-neighbouring n-cubes to discover the lost (missing) part of the solutions. It is possible, that the sub-manifold (e.g.: curve) of the solution is not completely detected (it is interrupted). This way the missing part can be explored similarly to a continuation method (with minimal function evaluation). It works only if the dimension of the solution object is larger the zero (the maifold is not a set of poins). # Arguments - `interpolationorder::Int=0`: interpolation order method of the neighbours checked - `maxiteration::Int=0~: the max number of steps in the 'continuation-like' exploring. If zero, then infinity steps are allowed """ function checkneighbour!(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}; interpolationorder::Int = 0, maxiteration::Int = 0) where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT}#only for unite size cubes if isempty(mdbm.ncubes) println("There is no bracketing n-cubes to check!") else ncubes2check = mdbm.ncubes numberofiteration = 0; while !isempty(ncubes2check) && (maxiteration == 0 ? true : numberofiteration < maxiteration) numberofiteration += 1 ncubes2check = generateneighbours(ncubes2check, mdbm) deleteat!(ncubes2check, is_sorted_in_sorted(ncubes2check, mdbm.ncubes))#delete the ones which is already presented _interpolate!(ncubes2check, mdbm, Val{interpolationorder})#remove the non-bracketing, only proper new bracketing cubes remained append!(mdbm.ncubes, deepcopy(ncubes2check)) sort!(mdbm.ncubes; alg = QuickSort) end end end """ connect(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}) Provide the edge connection (as a list of point-paris) of the solution point-cloud based on the face-neighbouring n-cubes. """ function connect(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}) where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT} #---------- line connection (no corener neighbour is needed) -------------- DT1 = Array{Tuple{Int64,Int64}}(undef, 0) for inc in 1:length(mdbm.ncubes) ncneigh = generateneighbours([mdbm.ncubes[inc]], mdbm) indinresults = index_sorted_in_sorted(ncneigh, mdbm.ncubes)#delete the ones which is already presented append!(DT1, [(inc, x) for x in indinresults if x != 0]) end filter!(d->(d[2] > d[1]), DT1)#TODO: eleve csak ez egyik irányban levő szomszédokat kellene keresni!!! sort!(DT1; alg = QuickSort) unique!(DT1) return DT1 end """ triangulation(DT1::Array{Tuple{Int64,Int64}})::Array{Tuple{Int64,Int64,Int64}} Provide the triangulation (as a list of point-triplets) of the solution point-cloud based on the face-neighbouring n-cubes. DT1 is the result of the edge connection performed by `connect`. """ function triangulation(DT1::Array{Tuple{Int64,Int64}})::Array{Tuple{Int64,Int64,Int64}} #DT=sort!()[DT1;[(d[2],d[1]) for d in DT1]]); DT = sort!([DT1;[d[[2,1]] for d in DT1]])#both direction of line connection is necessay! #L=[filter(d->d[1]==i,DT) for i in 1:length(mdbm.ncubes)] L = [ [dd[2] for dd in filter(d->d[1] == i, DT)] for i in 1:maximum(DT1)[2]] DT4 = Array{Tuple{Int64,Int64,Int64,Int64}}(undef, 0)#quadratic patch for i in 1:size(L, 1) for j in L[i]#filter((L{i}>i) for i in ) if i > j#i must be the larges value to remove the repetition of the some surface segment for k in L[j]#(L{j}>i) it seems to be slower if i > k# there is no backstep, and i must be the largest (Equivalent: %((k~=i) && (i>k))%back step is not allowed for m in L[k] if ((m != j) && (j > m)) #&& (i>m) #back step is not allowed, and i must be the largest if any(i .== L[m]) push!(DT4, (i, j, k, m)) end end end end end end end end return [[dt[[1,2,3]] for dt in DT4];[dt[[3,1,4]] for dt in DT4]]#DT2 triangular patch from the quadratic patch end """ solve!(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}, iteration::Int; interpolationorder::Int=1) Refine the `MDBM_Problem` `iteration` times, then perform a neighbour check. `interpolationorder` defines the interpolation method within the n-cubes. # Examples ```julia julia> solve!(mymdbm,4) ``` """ function solve!(mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}, iteration::Int; interpolationorder::Int = 1) where {fcT ,N ,Nf ,Nc ,t01T ,t11T ,IT ,FT,aT} interpolate!(mdbm, interpolationorder = interpolationorder) for k = 1:iteration refine!(mdbm) interpolate!(mdbm, interpolationorder = interpolationorder) end checkneighbour!(mdbm) interpolate!(mdbm, interpolationorder = interpolationorder) return mdbm end function index_sorted_in_sorted(a::AbstractVector, b::AbstractVector)::Array{Int64,1} # index of a[i] in b (0 if not present) # a and b must be sorted containingindex = zeros(Int64, length(a)) startindex = 1; for ind2check in 1:length(a) detectedrange = searchsorted(b[startindex:end], a[ind2check]) startindex = max(detectedrange.stop, detectedrange.start) + startindex - 1 containingindex[ind2check] = isempty(detectedrange) ? 0 : startindex if startindex > length(b) break end end return containingindex end function is_sorted_in_sorted(a::AbstractVector, b::AbstractVector)::Array{Bool,1} # is a[i] in b # a and b must be sorted iscontained = falses(length(a)) startindex = 1; for ind2check in 1:length(a) detectedrange = searchsorted(b[startindex:end], a[ind2check]) etectedrange = searchsorted(view(b,startindex:length(b)), a[ind2check]) # still: it is the critical line!!! iscontained[ind2check] = !isempty(detectedrange) startindex = max(detectedrange.stop, detectedrange.start) + startindex - 1 if startindex > length(b) break end end return iscontained end
MDBM
https://github.com/bachrathyd/MDBM.jl.git
[ "MIT" ]
0.1.5
21860fcff00b8daf031f9b3250ed0a106b6df0c9
code
7570
struct MDBMcontainer{RTf,RTc,AT} funval::RTf cval::RTc callargs::AT end #TODO memoization for multiple functions Vector{Function} struct MemF{fT,cT,RTf,RTc,AT} <:Function f::fT c::cT fvalarg::Vector{MDBMcontainer{RTf,RTc,AT}}#funval,callargs memoryacc::Vector{Int64} #number of function value call for already evaluated parameters MemF(f::fT,c::cT,cont::Vector{MDBMcontainer{RTf,RTc,AT}}) where {fT,cT,RTf,RTc,AT}=new{fT,cT,RTf,RTc,AT}(f,c,cont,[Int64(0)]) end (memfun::MemF{fT,cT,RTf,RTc,AT})(::Type{RTf},::Type{RTc},args...,) where {fT,cT,RTf,RTc,AT} =( memfun.f(args...,)::RTf, memfun.c(args...,)::RTc) function (memfun::MemF{fT,cT,RTf,RTc,AT})(args...,) where {fT,cT,RTf,RTc,AT} location=searchsortedfirst(memfun.fvalarg,args,lt=(x,y)->isless(x.callargs,y)); if length(memfun.fvalarg)<location x=memfun(RTf,RTc,args...,); push!(memfun.fvalarg,MDBMcontainer{RTf,RTc,AT}(x...,args)) return x elseif memfun.fvalarg[location].callargs!=args x=memfun(RTf,RTc,args...,); insert!(memfun.fvalarg, location, MDBMcontainer{RTf,RTc,AT}(x...,args)) return x else memfun.memoryacc[1]+=1; return (memfun.fvalarg[location].funval,memfun.fvalarg[location].cval); end end function (memfun::MemF{fT,cT,RTf,RTc,AT})(args::Tuple) where {fT,cT,RTf,RTc,AT} memfun(args...,) end """ Axis{T} Represent the parameter space in a discretized grid (vector) in `ticks`. """ struct Axis{T} <: AbstractVector{T} ticks::Vector{T} name function Axis(T::Type,a::AbstractVector,name=:unknown) new{T}(T.(a), name) end end Base.getindex(ax::Axis{T}, ind) where T = ax.ticks[ind]::T Base.setindex!(ax::Axis, X, inds...) = setindex!(ax.ticks, X, inds...) Base.size(ax::Axis) = size(ax.ticks) function Axis(a::AbstractVector{T}, name=:unknown) where T<:Real Axis(Float64, a, name) end function Axis(a::AbstractVector{T}, name=:unknown) where T Axis(T, a, name) end function Axis(a, name=:unknown) where T Axis([a...], name) end function Axis(a::Axis) a end struct Axes{N,aT} axs::aT end function Axes(axs...) axstosave=Axis.(axs) Axes{length(axstosave),typeof(axstosave)}(Axis.(axstosave)) end (axs::Axes)(ind...) = getindex.(axs.axs,ind) # (axs::Axes)(ind::AbstractVector{<:Integer}) = axs(ind...) Base.getindex(axs::Axes,inds...) = axs.axs[inds...] Base.getindex(axs::Axes,inds::Vector{Integer}) = axs.axs[inds] Base.iterate(axs::Axes) = iterate(axs.axs) Base.iterate(axs::Axes,i) = iterate(axs.axs,i) Base.size(::Axes{N,aT}) where {N,aT} = (N,) Base.size(::Axes{N,aT},::Integer) where {N,aT} = N Base.length(::Axes{N,aT}) where {N,aT} = N struct NCube{IT,FT,N} corner::MVector{N,IT} #"bottom-left" #Integer index of the axis size::MVector{N,IT}#Integer index of the axis posinterp::MVector{N,FT}#relative coordinate within the cube "(-1:1)" range bracketingncube::Bool # gradient ::MVector{MVector{T}} # curvnorm::Vector{T} end Base.isless(a::NCube{IT,FT,N},b::NCube{IT,FT,N}) where IT where FT where N = Base.isless([a.corner,a.size],[b.corner,b.size]) Base.isequal(a::NCube{IT,FT,N},b::NCube{IT,FT,N}) where IT where FT where N = all([a.corner==b.corner,a.size==b.size]) import Base.== ==(a::NCube{IT,FT,N},b::NCube{IT,FT,N}) where IT where FT where N = all([a.corner==b.corner,a.size==b.size]) """ struct MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT} Store the main data for the Multi-Dimensional Bisection Method. # Examples ```julia include("MDBM.jl") using Reexport @reexport using .MDBM function foo(x,y) x^2.0+y^2.0-2.0^2.0 end function c(x,y) #only the c>0 domain is analysed x-y end ax1=Axis([-5,-2.5,0,2.5,5],"x") # initial grid in x direction ax2=Axis(-5:2:5.0,"y") # initial grid in y direction mymdbm=MDBM_Problem(foo,[ax1,ax2],constraint=c) ``` """ struct MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT} "(memoized) function and constraint in a Tuple" fc::fcT "The vector of discretized parameters space" axes::Axes{N,aT} "the bracketing n-cubes (which contains a solution)" ncubes::Vector{NCube{IT,FT,N}} T01::t01T# T11pinv::t11T end function MDBM_Problem(fc::fcT,axes,ncubes::Vector{NCube{IT,FT,N}},Nf,Nc) where fcT<:Function where IT<:Integer where FT<:AbstractFloat where N T01=T01maker(Val(N)) T11pinv=T11pinvmaker(Val(N)) MDBM_Problem{fcT,N,Nf,Nc,typeof(T01),typeof(T11pinv),IT,FT,typeof((axes...,))}(fc,Axes(axes...), [NCube{IT,FT,N}(SVector{N,IT}([x...]),SVector{N,IT}(ones(IT,length(x))),SVector{N,FT}(zeros(IT,length(x))),true) for x in Iterators.product((x->1:(length(x.ticks)-1)).(axes)...,)][:] ,T01,T11pinv) end function MDBM_Problem(f::Function, axes0::AbstractVector{<:Axis};constraint::Function=(x...,)->nothing, memoization::Bool=true, #Nf=length(f(getindex.(axes0,1)...)), Nf=f(getindex.(axes0,1)...) === nothing ? 0 : length(f(getindex.(axes0,1)...)), Nc=constraint(getindex.(axes0,1)...) === nothing ? 0 : length(constraint(getindex.(axes0,1)...)))#Float16(1.), nothing axes=deepcopy.(axes0); argtypesofmyfunc=map(x->typeof(x).parameters[1], axes);#Argument Type AT=Tuple{argtypesofmyfunc...}; type_f=Base.return_types(f,AT) if length(type_f)==0 error("input of the function is not compatible with the provided axes") else RTf=type_f[1];#Return Type of f end type_con=Base.return_types(constraint, AT) if length(type_con)==0 error("input of the constraint function is not compatible with the provided axes") else RTc=type_con[1];#Return Type of the constraint function end if memoization fun=MemF(f, constraint,Array{MDBMcontainer{RTf,RTc,AT}}(undef, 0)); else fun=(x)->(f(x...), constraint(x...)); end Ndim=length(axes) MDBM_Problem(fun, axes, Vector{NCube{Int64,Float64,Ndim}}(undef, 0), Nf, Nc) end function MDBM_Problem(f::Function, a::AbstractVector{<:AbstractVector};constraint::Function=(x...,)->nothing, memoization::Bool=true, #Nf=length(f(getindex.(axes0,1)...)), Nf=f(getindex.(a,1)...) === nothing ? 0 : length(f(getindex.(a,1)...)), Nc=constraint(getindex.(a,1)...) === nothing ? 0 : length(constraint(getindex.(a,1)...))) axes=[Axis(ax) for ax in a] MDBM_Problem(f, axes, constraint = constraint, memoization=memoization, Nf=Nf, Nc=Nc)#,Vector{NCube{Int64,Float64,Val(Ndim)}}(undef, 0)) end function Base.show(io::IO, mdbm::MDBM_Problem{fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT}) where {fcT,N,Nf,Nc,t01T,t11T,IT,FT,aT} println(io,"Multi-Dimensional Bisection Method Problem") println(io," parameter dimension: ", N)#typeof(mdbm).parameters[2])#N println(io," co-dimension: ", Nf)#typeof(mdbm).parameters[3])#Nf println(io," number of constraints: ", Nc)#typeof(mdbm).parameters[4])#Nc println(io,"Axes:") for k in 1:length(mdbm.axes) println(io," axis #",k,": elements: ",length(mdbm.axes[k]),"; elementtype: ", typeof(mdbm.axes[k][1]),"; first: ", mdbm.axes[k][1],"; last: ",mdbm.axes[k][end]) end println(io,"number of bracketing n-cubes: ", length(mdbm.ncubes)) println() if (typeof(mdbm.fc) <: MemF) println(io,"number of function evaluation: ", length(mdbm.fc.fvalarg)) println(io,"number of memoized function call: ", mdbm.fc.memoryacc[1]) #println(io,"Ration of function evaluation compared to 'brute-force method': ", length(mdbm.fc.fvalarg)/prod(length.(mdbm.axes))) else println(io,"non-memoized version") end end
MDBM
https://github.com/bachrathyd/MDBM.jl.git
[ "MIT" ]
0.1.5
21860fcff00b8daf031f9b3250ed0a106b6df0c9
code
792
using MDBM using Test function tests() @testset "Testing the Multi-Dimensional Bisection Method (MDBM) object" begin @test begin foo(x,y)=x^2.0+y^2.0-4.0^2.0 c(x,y)=x-y ax1=Axis([-5,-2.5,0,2.5,5],"x") ax2=Axis(-5:2:5.0,"b") mymdbm=MDBM_Problem(foo,[ax1,ax2],constraint=c) true end @test begin mymdbm=MDBM_Problem((x,y)->x^2.0+y^2.0-4.0^2.0,[-5:5,-5:5]) true end end @testset "Testing the MDBM solve!" begin @test begin mymdbm=MDBM_Problem((x,y)->x^2.0+y^2.0-4.0^2.0,[-5:5,-5:5]) iteration=2 #number of refinements (resolution doubling) solve!(mymdbm,iteration) true end end end
MDBM
https://github.com/bachrathyd/MDBM.jl.git
[ "MIT" ]
0.1.5
21860fcff00b8daf031f9b3250ed0a106b6df0c9
docs
6826
# MDBM.jl [![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](http://numfocus.org) Multi-Dimensional Bisection Method (MDBM) is an efficient and robust root-finding algorithm, which can be used to determine whole high-dimensional submanifolds (points, curves, surfaces…) of the roots of implicit non-linear equation systems, especially in cases, where the number of unknowns surpasses the number of equations. <a href="https://www.codecogs.com/eqnedit.php?latex=f_i(x_j)=0&space;\quad&space;i=1...k&space;\quad&space;j=1...l,&space;\quad&space;k&space;\leq&space;l" target="_blank"><img src="https://latex.codecogs.com/gif.latex?f_i(x_j)=0&space;\quad&space;i=1...k&space;\quad&space;j=1...l,&space;\quad&space;k&space;\leq&space;l" title="f_i(x_j)=0 \quad i=1...k \quad j=1...l, \quad k \leq l" /></a> This type of problems can be found in many different field of science, just to mention a few: - differential geometry (isolines, isosurfaces in higher dimensions) - analysis of linkages (mechanical: workspace of robots) - stability computation, stabilyzability diagrams This method is an alternative to the contour plot or to isosurfaces in higher dimension, however, it has as the advantage of being able to handle multiple functions at once. <br> In addition, it uses far less function evaluation than the brute-force approach, making it much faster and more memory efficient, especially for complex tasks. ## Introduction The bisection method - or the so-called interval halving method - is one of the simplest root-finding algorithms which is used to find zeros of continuous non-linear functions. This method is very robust and it always tends to the solution if the signs of the function values are different at the borders of the chosen initial interval. Geometrically, root-finding algorithms of __f__(__x__)=0 find one intersection point of the graph of the function with the axis of the independent variable. In many applications, this 1-dimensional intersection problem must be extended to higher dimensions, e.g.: intersections of surfaces in a 3D space (volume), which can be described as a system on non-linear implicit equations. In higher dimensions, the existence of multiple solutions becomes very important, since the intersection of two surfaces can create multiple intersection curves. MDBM algorithm can handle: * multiple solutions * arbitrary number of variable (typically: 3-6) * arbitrary number of implicit equations * multiple constraints in the parameter space * degenerated functions while providing the gradients of the equations for the roots by means of first order interpolation (and convergence rate). ## Citing The software in this ecosystem was developed as part of academic research. If you use the MDBM.jl package as part of your research, teaching, or other work, I would be grateful if you could cite my corresponding publication: <https://pp.bme.hu/me/article/view/1236/640> ## Web: <https://www.mm.bme.hu/~bachrathy/research_EN.html> # Quick start Preparation ```julia using MDBM using PyPlot; pygui(true); ``` ## Example 1 Computation of a circle section defined by the implicit equation `foo(x,y) == 0` and by the constraint `c(x,y) > 0` ```julia function foo(x,y) x^2.0+y^2.0-2.0^2.0 end function c(x,y) #only the c>0 domain is analysed x-y end ax1=Axis([-5,-2.5,0,2.5,5],"x") # initial grid in x direction ax2=Axis(-5:2:5.0,"y") # initial grid in y direction mymdbm=MDBM_Problem(foo,[ax1,ax2],constraint=c) iteration=5 #number of refinements (resolution doubling) solve!(mymdbm,iteration) #points where the function foo was evaluated x_eval,y_eval=getevaluatedpoints(mymdbm) #interpolated points of the solution (approximately where foo(x,y) == 0 and c(x,y)>0) x_sol,y_sol=getinterpolatedsolution(mymdbm) fig = figure(1);clf() scatter(x_eval,y_eval,s=5) scatter(x_sol,y_sol,s=5) ``` <img src="assets/circe_2D_points.png" alt="solution "/> Perform the line connection ```julia myDT1=connect(mymdbm); for i in 1:length(myDT1) dt=myDT1[i] P1=getinterpolatedsolution(mymdbm.ncubes[dt[1]],mymdbm) P2=getinterpolatedsolution(mymdbm.ncubes[dt[2]],mymdbm) plot([P1[1],P2[1]],[P1[2],P2[2]], color="k") end ``` <img src="assets/circe_2D_line.png" alt="solution "/> ## Example 2 Intersection of two sphere in 3D ```julia using LinearAlgebra axes=[-2:2,-2:2,-2:2] fig = figure(3);clf() #Sphere1 fS1(x...) = norm(x,2.0)-1 Sphere1mdbm=MDBM_Problem(fS1,axes) solve!(Sphere1mdbm,4) a_sol,b_sol,c_sol=getinterpolatedsolution(Sphere1mdbm) plot3D(a_sol,b_sol,c_sol,linestyle="", marker=".", markersize=1); #Sphere2 fS2(x...) = norm(x .- 0.5, 2.0) -1.0 Sphere2mdbm=MDBM_Problem(fS2,axes) solve!(Sphere2mdbm,4) a_sol,b_sol,c_sol=getinterpolatedsolution(Sphere2mdbm) plot3D(a_sol,b_sol,c_sol,linestyle="", marker=".", markersize=1); #Intersection fS12(x...) = (fS1(x...), fS2(x...)) Intersectmdbm=MDBM_Problem(fS12,axes) solve!(Intersectmdbm,6) a_sol,b_sol,c_sol=getinterpolatedsolution(Intersectmdbm) plot3D(a_sol,b_sol,c_sol,color="k",linestyle="", marker=".", markersize=2); ``` <img src="assets/sphere_intersection.png" alt="solution "/> ## Example 3 Mandelbrot set (example for a non-smooth problem) ```julia function mandelbrot(x,y) c=x+y*im z=Complex(zero(c)) k=0 maxiteration=1000 while (k<maxiteration && abs(z)<4) z=z^2+c k=k+1 end return abs(z)-2 end Mandelbrotmdbm=MDBM_Problem(mandelbrot,[-5:2,-2:2]) solve!(Mandelbrotmdbm,9) a_sol,b_sol=getinterpolatedsolution(Mandelbrotmdbm) fig = figure(3);clf() plot(a_sol,b_sol,linestyle="", marker=".", markersize=1) ``` <img src="assets/Mandelbrot.png" alt="solution "/> ## History I am an assistant professor at the Budapest University of Technology and Economics, at the Faculty of Mechanical Engineering, the Department of Applied Mechanics. During my studies and research, I have to determine stability charts of models described by delayed differential equations, which are typically formed as a "3 parameter / 2 implicit equation" problem. I have faced the difficulty that there is no applicable solution in any available software (e.g.: Mathematica, Matlab,...) which could easily be used in engineering problems. Due to this reason, I have started to develop the Multi-Dimensional Bisection Method since 2006 in Matlab, and I have been improving it since, by adding new features from time to time. I hope that others also find this package a useful tool in their work. Best regards, Dr. Daniel Bachrathy # ![NumFOCUS logo](assets/numfocus-logo.png) MDBM is a fiscally sponsored project of [NumFOCUS](https://numfocus.org), a nonprofit dedicated to supporting the open source scientific computing community.
MDBM
https://github.com/bachrathyd/MDBM.jl.git
[ "MIT" ]
0.1.5
21860fcff00b8daf031f9b3250ed0a106b6df0c9
docs
92
```@meta CurrentModule = MDBM ``` # MDBM ```@index ``` ```@autodocs Modules = [MDBM] ```
MDBM
https://github.com/bachrathyd/MDBM.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
code
485
# # Stress test to check for memory leaks (#24) # using Mongoc client = Mongoc.Client() # default locahost:27017 db = client["testDB"] collection=db["testCollection"] document = Mongoc.BSON() document["name"] = "Felipe" document["age"] = 35 document["preferences"] = [ "Music", "Computer", "Photography" ] # generate some entries for i in 1:100000 push!(collection, document) end # read bson documents from collection for i in 1:10000 for entry in collection end end
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
code
605
using Documenter, Mongoc makedocs( sitename = "Mongoc.jl", modules = [ Mongoc ], pages = [ "Home" => "index.md", "Tutorial" => "tutorial.md", "CRUD Operations" => "crud.md", "Authentication" => "authentication.md", "Transactions" => "transaction.md", "Connection Pool" => "connection_pool.md", "GridFS" => "gridfs.md", "Logging" => "logging.md", "API Reference" => "api.md", ] ) deploydocs( repo = "github.com/felipenoris/Mongoc.jl.git", target = "build", )
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
code
727
module Mongoc using MongoC_jll import Base.UUID using Dates, DecFP, Serialization # # utility functions for date conversion # # offsets an additional year from UNIXEPOCH in milliseconds. const ISODATE_OFFSET = Dates.UNIXEPOCH + 24 * 60 * 60 * 1000 * 365 isodate2datetime(millis::Int64) = Dates.epochms2datetime(millis + ISODATE_OFFSET) datetime2isodate(dt::DateTime) = Dates.datetime2epochms(dt) - ISODATE_OFFSET include("bson.jl") include("types.jl") include("c_api.jl") include("client.jl") include("clientpool.jl") include("database.jl") include("collection.jl") include("session.jl") include("streams.jl") include("gridfs.jl") function __init__() mongoc_init() atexit(mongoc_cleanup) end end # module Mongoc
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
code
29518
# # Types # # BSONType mirrors C enum bson_type_t. primitive type BSONType 8 end # 1 byte Base.convert(::Type{T}, t::BSONType) where {T<:Number} = reinterpret(UInt8, t) Base.convert(::Type{BSONType}, n::T) where {T<:Number} = reinterpret(BSONType, n) BSONType(u::UInt8) = convert(BSONType, u) # # Constants for BSONType # const BSON_TYPE_EOD = BSONType(0x00) const BSON_TYPE_DOUBLE = BSONType(0x01) const BSON_TYPE_UTF8 = BSONType(0x02) const BSON_TYPE_DOCUMENT = BSONType(0x03) const BSON_TYPE_ARRAY = BSONType(0x04) const BSON_TYPE_BINARY = BSONType(0x05) const BSON_TYPE_UNDEFINED = BSONType(0x06) const BSON_TYPE_OID = BSONType(0x07) const BSON_TYPE_BOOL = BSONType(0x08) const BSON_TYPE_DATE_TIME = BSONType(0x09) const BSON_TYPE_NULL = BSONType(0x0A) const BSON_TYPE_REGEX = BSONType(0x0B) const BSON_TYPE_DBPOINTER = BSONType(0x0C) const BSON_TYPE_CODE = BSONType(0x0D) const BSON_TYPE_SYMBOL = BSONType(0x0E) const BSON_TYPE_CODEWSCOPE = BSONType(0x0F) const BSON_TYPE_INT32 = BSONType(0x10) const BSON_TYPE_TIMESTAMP = BSONType(0x11) const BSON_TYPE_INT64 = BSONType(0x12) const BSON_TYPE_DECIMAL128 = BSONType(0x13) const BSON_TYPE_MAXKEY = BSONType(0x7F) const BSON_TYPE_MINKEY = BSONType(0xFF) # BSONSubType mirrors C enum bson_subtype_t. primitive type BSONSubType 8 end Base.convert(::Type{T}, t::BSONSubType) where {T<:Number} = reinterpret(UInt8, t) Base.convert(::Type{BSONSubType}, n::T) where {T<:Number} = reinterpret(BSONSubType, n) BSONSubType(u::UInt8) = convert(BSONSubType, u) # # Constants for BSONSubType # const BSON_SUBTYPE_BINARY = BSONSubType(0x00) const BSON_SUBTYPE_FUNCTION = BSONSubType(0x01) const BSON_SUBTYPE_BINARY_DEPRECATED = BSONSubType(0x02) const BSON_SUBTYPE_UUID_DEPRECATED = BSONSubType(0x03) const BSON_SUBTYPE_UUID = BSONSubType(0x04) const BSON_SUBTYPE_MD5 = BSONSubType(0x05) const BSON_SUBTYPE_USER = BSONSubType(0x80) #= BSONIter mirrors C struct bson_iter_t and can be allocated in the stack. According to [libbson documentation](http://mongoc.org/libbson/current/bson_iter_t.html), it is meant to be used on the stack and can be discarded at any time as it contains no external allocation. The contents of the structure should be considered private and may change between releases, however the structure size will not change. Inspecting its size in C, we get: ```c sizeof(bson_iter_t) == 80 ``` =# primitive type BSONIter 80 * 8 end # 80 bytes """ A `BSONObjectId` represents a unique identifier for a BSON document. # Example The following generates a new `BSONObjectId`. ```julia julia> Mongoc.BSONObjectId() ``` # C API `BSONObjectId` instances addresses are passed to libbson/libmongoc API using `Ref(oid)`, and are owned by the Julia process. Mirrors C struct `bson_oid_t`: ```c typedef struct { uint8_t bytes[12]; } bson_oid_t; ``` """ struct BSONObjectId bytes::NTuple{12, UInt8} end function BSONObjectId() oid_ref = Ref{BSONObjectId}() bson_oid_init(oid_ref, C_NULL) return oid_ref[] end function BSONObjectId(oid_string::String) if !bson_oid_is_valid(oid_string) error("'$oid_string' is not a valid ObjectId.") end oid_ref = Ref{BSONObjectId}() bson_oid_init_from_string(oid_ref, oid_string) return oid_ref[] end function BSONObjectId(oid::BSONObjectId) return BSONObjectId(oid.bytes) end Base.copy(oid::BSONObjectId) = BSONObjectId(oid) """ `BSONError` is the default `Exception` for BSON/MongoDB function call errors. # C API Mirrors C struct `bson_error_t`. `BSONError` instances addresses are passed to libbson/libmongoc API using `Ref(error)`, and are owned by the Julia process. ```c typedef struct { uint32_t domain; uint32_t code; char message[504]; } bson_error_t; ``` """ struct BSONError <: Exception domain::UInt32 code::UInt32 message::NTuple{504, UInt8} end """ `BSONCode` is a BSON element with JavaScript source code. # Example ```julia julia> bson = Mongoc.BSON("source" => Mongoc.BSONCode("function() = 1")) BSON("{ "source" : { "\$code" : "function() = 1" } }") ``` """ struct BSONCode code::String end """ `BSONTimestamp` is a special internal type used by MongoDB replication and sharding. """ struct BSONTimestamp timestamp::UInt32 increment::UInt32 end """ A `BSON` represents a document in *Binary JSON* format, defined at http://bsonspec.org/. In Julia, you can manipulate a `BSON` instance just like a `Dict`. # Example ```julia bson = Mongoc.BSON() bson["name"] = "my name" bson["num"] = 10.0 ``` # C API `BSON` is a wrapper for C struct `bson_t`. """ mutable struct BSON <: AbstractDict{String, Any} handle::Ptr{Cvoid} function BSON(handle::Ptr{Cvoid}; enable_finalizer::Bool=true) new_bson = new(handle) if enable_finalizer finalizer(destroy!, new_bson) end return new_bson end end function destroy!(bson::BSON) if bson.handle != C_NULL bson_destroy(bson.handle) bson.handle = C_NULL end nothing end """ Wrapper for bson_value_t. See [`Mongoc.get_as_bson_value`](@ref). """ mutable struct BSONValue handle::Ptr{Cvoid} end function Base.deepcopy_internal(x::BSON, stackdict::IdDict) if haskey(stackdict, x) return stackdict[x] end y = BSON(bson_copy(x.handle)) stackdict[x] = y return y end abstract type AbstractBSONReader end mutable struct BSONReader <: AbstractBSONReader handle::Ptr{Cvoid} data::Vector{UInt8} function BSONReader(handle::Ptr{Cvoid}, data::Vector{UInt8}) new_reader = new(handle, data) finalizer(destroy!, new_reader) return new_reader end end BSONReader(handle::Ptr{Cvoid}) = BSONReader(handle, Vector{UInt8}()) function destroy!(reader::BSONReader) if reader.handle != C_NULL bson_reader_destroy(reader.handle) reader.handle = C_NULL end nothing end const DEFAULT_BSON_WRITER_BUFFER_CAPACITY = 2^10 # buffer_handle must be a valid pointer to a Buffer object. # A reference to this buffer must be kept from outside this function # to avoid GC on it. function unsafe_buffer_realloc(buffer_ptr::Ptr{UInt8}, num_bytes::Csize_t, writer_objref::Ptr{Cvoid}) local writer::BSONWriter = unsafe_pointer_to_objref(writer_objref) @assert buffer_ptr == pointer(writer.buffer) "Is this the same BSONWriter?" current_len = length(writer.buffer) inc = num_bytes - current_len if inc > 0 append!(writer.buffer, [ UInt8(0) for i in 1:inc ]) end @assert length(writer.buffer) == num_bytes writer.buffer_length_ref[] = num_bytes return pointer(writer.buffer) end mutable struct BSONWriter handle::Ptr{Cvoid} buffer::Vector{UInt8} buffer_handle_ref::Ref{Ptr{UInt8}} buffer_length_ref::Ref{Csize_t} function BSONWriter(initial_buffer_capacity::Integer=DEFAULT_BSON_WRITER_BUFFER_CAPACITY, buffer_offset::Integer=0) buffer = zeros(UInt8, initial_buffer_capacity) new_writer = new(C_NULL, buffer, Ref(pointer(buffer)), Ref(Csize_t(initial_buffer_capacity))) finalizer(destroy!, new_writer) realloc_func = @cfunction(unsafe_buffer_realloc, Ptr{UInt8}, (Ptr{UInt8}, Csize_t, Ptr{Cvoid})) handle = bson_writer_new(new_writer.buffer_handle_ref, new_writer.buffer_length_ref, Csize_t(buffer_offset), realloc_func, pointer_from_objref(new_writer)) if handle == C_NULL error("Failed to create a BSONWriter.") end new_writer.handle = handle return new_writer end end function destroy!(writer::BSONWriter) if writer.handle != C_NULL bson_writer_destroy(writer.handle) writer.handle = C_NULL end nothing end # # API # Base.String(oid::BSONObjectId) = bson_oid_to_string(oid) Base.convert(::Type{BSONObjectId}, oid_string::String) = BSONObjectId(oid_string) Base.String(code::BSONCode) = code.code Base.convert(::Type{BSONCode}, code_string::String) = BSONCode(code_string) Base.show(io::IO, oid::BSONObjectId) = print(io, "BSONObjectId(\"", String(oid), "\")") Base.show(io::IO, bson::BSON) = print(io, "BSON(\"", as_json(bson), "\")") Base.show(io::IO, code::BSONCode) = print(io::IO, "BSONCode(\"$(code.code)\")") function Base.show(io::IO, err::BSONError) print(io, "BSONError: domain=$(Int(err.domain)), code=$(Int(err.code)), message=") for c in err.message c_char = Char(c) if c_char == '\0' break else print(io, c_char) end end end Base.showerror(io::IO, err::BSONError) = show(io, err) function get_time(oid::BSONObjectId) return Dates.unix2datetime(bson_oid_get_time_t(oid)) end function BSON() handle = bson_new() if handle == C_NULL error("Failed to create a new BSON document.") end return BSON(handle) end function BSON(json_string::String) handle = bson_new_from_json(json_string) if handle == C_NULL error("Failed parsing JSON to BSON. $json_string.") end return BSON(handle) end function BSON(vector::Vector) result = BSON() for (i, v) in enumerate(vector) result[string(i-1)] = v end return result end function BSON(args::Pair...) result = BSON() for (k, v) in args result[k] = v end return result end BSON(dict::AbstractDict) = BSON(dict...) """ as_json(bson::BSON; canonical::Bool=false) :: String Converts a `bson` object to a JSON string. # Example ```julia julia> document = Mongoc.BSON("{ \"hey\" : 1 }") BSON("{ "hey" : 1 }") julia> Mongoc.as_json(document) "{ \"hey\" : 1 }" julia> Mongoc.as_json(document, canonical=true) "{ \"hey\" : { \"\$numberInt\" : \"1\" } }" ``` # C API * [`bson_as_canonical_extended_json`](http://mongoc.org/libbson/current/bson_as_canonical_extended_json.html) * [`bson_as_relaxed_extended_json`](http://mongoc.org/libbson/current/bson_as_relaxed_extended_json.html) """ function as_json(bson::BSON; canonical::Bool=false) :: String local bson_cstring::Cstring if canonical bson_cstring = bson_as_canonical_extended_json(bson.handle) else bson_cstring = bson_as_relaxed_extended_json(bson.handle) end if bson_cstring == C_NULL error("Couldn't convert bson to json.") end result = unsafe_string(bson_cstring) bson_free(convert(Ptr{Cvoid}, bson_cstring)) return result end Base.length(document::BSON) = bson_count_keys(document.handle) # # Read values from BSON # has_field(bson::BSON, key::AbstractString) = bson_has_field(bson.handle, key) Base.haskey(bson::BSON, key::AbstractString) = has_field(bson, key) function bson_iter_init(document::BSON) iter_ref = Ref{BSONIter}() ok = bson_iter_init(iter_ref, document.handle) if !ok error("Couldn't create iterator for BSON document.") end return iter_ref end abstract type BSONIteratorMode end struct IterateKeys <: BSONIteratorMode end # get the current value from iter_ref according to the mode _get(iter_ref::Ref{BSONIter}, ::Type{IterateKeys}) = unsafe_string(bson_iter_key(iter_ref)) struct IterateValues <: BSONIteratorMode end _get(iter_ref::Ref{BSONIter}, ::Type{IterateValues}) = get_value(iter_ref) struct IterateKeyValuePairs <: BSONIteratorMode end _get(iter_ref::Ref{BSONIter}, ::Type{IterateKeyValuePairs}) = _get(iter_ref, IterateKeys) => _get(iter_ref, IterateValues) struct BSONIterator{M<:BSONIteratorMode} bson_iter_ref::Ref{BSONIter} document::BSON BSONIterator(document::BSON, ::Type{M}) where {M<:BSONIteratorMode} = new{M}(bson_iter_init(document), document) end Base.IteratorSize(::Type{BSONIterator{M}}) where M = Base.HasLength() Base.length(iter::BSONIterator) = length(iter.document) Base.IteratorEltype(::Type{BSONIterator{M}}) where M = Base.EltypeUnknown() Base.IteratorEltype(::Type{BSONIterator{IterateKeys}}) = Base.HasEltype() Base.eltype(::Type{BSONIterator{IterateKeys}}) = String Base.iterate(itr::BSONIterator{M}, state::Nothing = nothing) where M = bson_iter_next(itr.bson_iter_ref) ? (_get(itr.bson_iter_ref, M), state) : nothing function Base.iterate(doc::BSON, itr::BSONIterator = BSONIterator(doc, IterateKeyValuePairs)) next = iterate(itr) return isnothing(next) ? nothing : (first(next), itr) end Base.keys(doc::BSON) = BSONIterator(doc, IterateKeys) Base.values(doc::BSON) = BSONIterator(doc, IterateValues) """ as_dict(document::BSON) :: Dict{String} Converts a BSON document to a Julia `Dict`. """ as_dict(document::BSON) = convert(Dict, document) function as_dict(iter_ref::Ref{BSONIter}) result = Dict{String, Any}() while bson_iter_next(iter_ref) result[unsafe_string(bson_iter_key(iter_ref))] = get_value(iter_ref) end return result end """ get_array(doc::BSON, key::AbstractString, ::Type{T}) Get an array from the document with a specified type `T`. This allows obtaining a type-stable return value. Note that if an array element cannot be converted to the specified type, an error will be thrown. """ function get_array(document::BSON, key::AbstractString, ::Type{T}) where T iter_ref = Ref{BSONIter}() ok = bson_iter_init_find(iter_ref, document.handle, key) if !ok error("Key $key not found.") end bson_type = bson_iter_type(iter_ref) if bson_type != BSON_TYPE_ARRAY error("Not a BSON array!") end return get_array(iter_ref, T) end function get_array(iter_ref::Ref{BSONIter}, ::Type{T}) where T bson_type = bson_iter_type(iter_ref) @assert bson_type == BSON_TYPE_ARRAY child_iter_ref = Ref{BSONIter}() ok = bson_iter_recurse(iter_ref, child_iter_ref) if !ok error("Couldn't iterate array inside BSON.") end result_array = Vector{T}() while bson_iter_next(child_iter_ref) push!(result_array, get_value(child_iter_ref)) end return result_array end function get_value(iter_ref::Ref{BSONIter}) bson_type = bson_iter_type(iter_ref) if bson_type == BSON_TYPE_UTF8 return unsafe_string(bson_iter_utf8(iter_ref)) elseif bson_type == BSON_TYPE_INT64 return bson_iter_int64(iter_ref) elseif bson_type == BSON_TYPE_INT32 return bson_iter_int32(iter_ref) elseif bson_type == BSON_TYPE_DOUBLE return bson_iter_double(iter_ref) elseif bson_type == BSON_TYPE_DECIMAL128 return bson_iter_decimal128(iter_ref) elseif bson_type == BSON_TYPE_OID # converts Ptr{BSONObjectId} to BSONObjectId return unsafe_load(bson_iter_oid(iter_ref)) elseif bson_type == BSON_TYPE_BOOL return bson_iter_bool(iter_ref) elseif bson_type == BSON_TYPE_DATE_TIME millis = Int64(bson_iter_date_time(iter_ref)) return isodate2datetime(millis) elseif bson_type == BSON_TYPE_TIMESTAMP return bson_iter_timestamp(iter_ref) elseif bson_type == BSON_TYPE_ARRAY return get_array(iter_ref, Any) elseif bson_type == BSON_TYPE_DOCUMENT child_iter_ref = Ref{BSONIter}() ok = bson_iter_recurse(iter_ref, child_iter_ref) if !ok error("Couldn't iterate document inside BSON.") end return as_dict(child_iter_ref) elseif bson_type == BSON_TYPE_BINARY subtype_ref = Ref{BSONSubType}() length_ref = Ref{UInt32}() buffer_ref = Ref{Ptr{UInt8}}() bson_iter_binary(iter_ref, subtype_ref, length_ref, buffer_ref) result_data = Vector{UInt8}(undef, length_ref[]) unsafe_copyto!(pointer(result_data), buffer_ref[], length_ref[]) is_uuid = subtype_ref[] == BSON_SUBTYPE_UUID || subtype_ref[] == BSON_SUBTYPE_UUID_DEPRECATED if is_uuid && length(result_data) == 16 return UUID(reinterpret(UInt128, result_data)[1]) end return result_data elseif bson_type == BSON_TYPE_CODE return BSONCode(unsafe_string(bson_iter_code(iter_ref))) elseif bson_type == BSON_TYPE_NULL return nothing else error("BSON Type not supported: $bson_type.") end end function Base.getindex(document::BSON, key::AbstractString) iter_ref = Ref{BSONIter}() bson_iter_init_find(iter_ref, document.handle, key) || throw(KeyError(key)) return get_value(iter_ref) end function Base.get(document::BSON, key::AbstractString, default::Any) iter_ref = Ref{BSONIter}() return bson_iter_init_find(iter_ref, document.handle, key) ? get_value(iter_ref) : default end """ get_as_bson_value(doc, key) :: BSONValue Returns a value stored in a bson document `doc` as a `BSONValue`. See also [Mongoc.BSONValue](@ref). """ function get_as_bson_value(document::BSON, key::AbstractString) :: BSONValue iter_ref = Ref{BSONIter}() bson_iter_init_find(iter_ref, document.handle, key) || throw(KeyError(key)) return get_as_bson_value(iter_ref) end function get_as_bson_value(iter_ref::Ref{BSONIter}) # this BSONValue may be valid only during # the lifetime of the BSON document return BSONValue(bson_iter_value(iter_ref)) end # # Write values to BSON # function Base.setindex!(document::BSON, value::BSONObjectId, key::AbstractString) ok = bson_append_oid(document.handle, key, -1, value) if !ok error("Couldn't append oid to BSON document.") end nothing end function Base.setindex!(document::BSON, value::Int64, key::AbstractString) ok = bson_append_int64(document.handle, key, -1, value) if !ok error("Couldn't append Int64 to BSON document.") end nothing end function Base.setindex!(document::BSON, value::Int32, key::AbstractString) ok = bson_append_int32(document.handle, key, -1, value) if !ok error("Couldn't append Int32 to BSON document.") end nothing end function Base.setindex!(document::BSON, value::AbstractString, key::AbstractString) ok = bson_append_utf8(document.handle, key, -1, value, -1) if !ok error("Couldn't append String to BSON document.") end nothing end function Base.setindex!(document::BSON, value::Bool, key::AbstractString) ok = bson_append_bool(document.handle, key, -1, value) if !ok error("Couldn't append Bool to BSON document.") end nothing end function Base.setindex!(document::BSON, value::Float64, key::AbstractString) ok = bson_append_double(document.handle, key, -1, value) if !ok error("Couldn't append Float64 to BSON document.") end nothing end function Base.setindex!(document::BSON, value::Dec128, key::AbstractString) ok = bson_append_decimal128(document.handle, key, -1, value) if !ok error("Couldn't append Dec128 to BSON document.") end nothing end function Base.setindex!(document::BSON, value::DateTime, key::AbstractString) ok = bson_append_date_time(document.handle, key, -1, datetime2isodate(value)) if !ok error("Couldn't append DateTime to BSON document.") end nothing end function Base.setindex!(document::BSON, value::BSON, key::AbstractString) ok = bson_append_document(document.handle, key, -1, value.handle) if !ok error("Couldn't append Sub-Document BSON to BSON document.") end nothing end Base.setindex!(document::BSON, value::Dict, key::AbstractString) = setindex!(document, BSON(value), key) function Base.setindex!(document::BSON, value::Vector{T}, key::AbstractString) where T sub_document = BSON(value) ok = bson_append_array(document.handle, key, -1, sub_document.handle) if !ok error("Couldn't append array to BSON document.") end nothing end function Base.setindex!(document::BSON, value::BSONCode, key::AbstractString) ok = bson_append_code(document.handle, key, -1, value.code) if !ok error("Couldn't append String to BSON document.") end nothing end function Base.setindex!(document::BSON, value::Date, key::AbstractString) error("BSON format does not support `Date` type. Use `DateTime` instead.") end function Base.setindex!(document::BSON, value::Vector{UInt8}, key::AbstractString) ok = bson_append_binary(document.handle, key, -1, BSON_SUBTYPE_BINARY, value, UInt32(length(value))) if !ok error("Couldn't append array to BSON document.") end nothing end function Base.setindex!(document::BSON, value::UUID, key::AbstractString) value = [reinterpret(UInt8, [value.value])...] ok = bson_append_binary(document.handle, key, -1, BSON_SUBTYPE_UUID, value, UInt32(length(value))) if !ok error("Couldn't append uuid to BSON document.") end nothing end function Base.setindex!(document::BSON, ::Nothing, key::AbstractString) ok = bson_append_null(document.handle, key, -1) if !ok error("Couldn't append missing value to BSON document.") end nothing end # # Write/Read BSON to/from IO # function _get_number_of_bytes_written_to_buffer(buffer::Vector{UInt8}) :: Int64 isempty(buffer) && return 0 # the first 4 bytes in data is a size int32 doc_size = reinterpret(Int32, buffer[1:4])[1] local total_size::Int64 = 0 while doc_size != 0 total_size += doc_size if length(buffer) < total_size + 4 break end doc_size = reinterpret(Int32, buffer[total_size+1:total_size+4])[1] end return total_size end function _get_number_of_bytes_written_to_buffer(writer::BSONWriter) _get_number_of_bytes_written_to_buffer(writer.buffer) end function bson_writer(f::Function, io::IO; initial_buffer_capacity::Integer=DEFAULT_BSON_WRITER_BUFFER_CAPACITY) writer = BSONWriter(initial_buffer_capacity) try f(writer) @assert bson_writer_get_length(writer.handle) == _get_number_of_bytes_written_to_buffer(writer) for byte_index in 1:bson_writer_get_length(writer.handle) write(io, writer.buffer[byte_index]) end flush(io) finally destroy!(writer) end nothing end function write_bson(f::Function, writer::BSONWriter) bson_handle_ref = Ref{Ptr{Cvoid}}(C_NULL) ok = bson_writer_begin(writer.handle, bson_handle_ref) if !ok error("Failed to write bson document to IO: there was not enough space in buffer. Increase the buffer initial capacity.") end bson = BSON(bson_handle_ref[], enable_finalizer=false) f(bson) bson_writer_end(writer.handle) end """ write_bson(io::IO, bson::BSON; initial_buffer_capacity::Integer=DEFAULT_BSON_WRITER_BUFFER_CAPACITY) Writes a single BSON document to `io` in binary format. """ function write_bson(io::IO, bson::BSON; initial_buffer_capacity::Integer=DEFAULT_BSON_WRITER_BUFFER_CAPACITY) bson_writer(io, initial_buffer_capacity=initial_buffer_capacity) do writer write_bson(writer) do dest bson_copy_to_noinit(bson.handle, dest.handle) end end nothing end struct BufferedBSON bson_data::Vector{UInt8} end function BufferedBSON(bson::BSON) io = IOBuffer() write_bson(io, bson) return BufferedBSON(take!(io)) end BSON(buff::BufferedBSON) :: BSON = read_bson(buff.bson_data)[1] function Serialization.serialize(s::AbstractSerializer, bson::BSON) Serialization.serialize_type(s, BSON) Serialization.serialize(s.io, BufferedBSON(bson)) end function Serialization.deserialize(s::AbstractSerializer, ::Type{BSON}) BSON(Serialization.deserialize(s.io)) end Base.write(io::IO, bson::BSON) = serialize(io, bson) Base.read(io::IO, ::Type{BSON}) = deserialize(io)::BSON """ write_bson(io::IO, bson_list::Vector{BSON}; initial_buffer_capacity::Integer=DEFAULT_BSON_WRITER_BUFFER_CAPACITY) Writes a vector of BSON documents to `io` in binary format. # Example ```julia list = Vector{Mongoc.BSON}() let src = Mongoc.BSON() src["id"] = 1 src["name"] = "1st" push!(list, src) end let src = Mongoc.BSON() src["id"] = 2 src["name"] = "2nd" push!(list, src) end open("documents.bson", "w") do io Mongoc.write_bson(io, list) end ``` """ function write_bson(io::IO, bson_list::Vector{BSON}; initial_buffer_capacity::Integer=DEFAULT_BSON_WRITER_BUFFER_CAPACITY) bson_writer(io, initial_buffer_capacity=initial_buffer_capacity) do writer for src_bson in bson_list write_bson(writer) do dest bson_copy_to_noinit(src_bson.handle, dest.handle) end end end nothing end """ read_bson(io::IO) :: Vector{BSON} Reads all BSON documents from `io`. This method will continue to read from `io` until it reaches eof. """ read_bson(io::IO) :: Vector{BSON} = read_bson(read(io)) """ read_bson(data::Vector{UInt8}) :: Vector{BSON} Parses a vector of bytes to a vector of BSON documents. Useful when reading BSON as binary from a stream. """ function read_bson(data::Vector{UInt8}) :: Vector{BSON} reader = BSONReader(data) try return read_bson(reader) finally destroy!(reader) end end function BSONReader(data::Vector{UInt8}) if isempty(data) error("input data is empty") end data_shrinked = data[1:_get_number_of_bytes_written_to_buffer(data)] reader_handle = bson_reader_new_from_data(pointer(data_shrinked), length(data_shrinked)) if reader_handle == C_NULL error("Failed to create a BSONReader.") end return BSONReader(reader_handle, data_shrinked) end """ read_bson(filepath::AbstractString) :: Vector{BSON} Reads all BSON documents from a file located at `filepath`. This will open a `Mongoc.BSONReader` pointing to the file and will parse file contents to BSON documents. """ function read_bson(filepath::AbstractString) :: Vector{BSON} reader = BSONReader(filepath) try return read_bson(reader) finally destroy!(reader) end end function BSONReader(filepath::AbstractString) @assert isfile(filepath) "$filepath not found." err_ref = Ref{BSONError}() reader_handle = bson_reader_new_from_file(filepath, err_ref) if reader_handle == C_NULL throw(err_ref[]) end return BSONReader(reader_handle) end """ read_next_bson(reader::BSONReader) :: Union{Nothing, BSON} Reads the next BSON document available in the stream pointed by `reader`. Returns `nothing` if reached the end of the stream. """ function read_next_bson(reader::BSONReader) :: Union{Nothing, BSON} reached_eof_ref = Ref(false) bson_handle = bson_reader_read(reader.handle, reached_eof_ref) if bson_handle == C_NULL if !reached_eof_ref[] @warn("Finished reading BSON from stream, but didn't reach stream's eof.") end return nothing end bson_copy_handle = bson_copy(bson_handle) # creates a copy with its own lifetime return BSON(bson_copy_handle) end mutable struct BSONJSONReader <: AbstractBSONReader handle::Ptr{Cvoid} function BSONJSONReader(handle::Ptr{Cvoid}) new_reader = new(handle) finalizer(destroy!, new_reader) return new_reader end end function destroy!(reader::BSONJSONReader) if reader.handle != C_NULL bson_json_reader_destroy(reader.handle) reader.handle = C_NULL end nothing end function BSONJSONReader(filepath::AbstractString) @assert isfile(filepath) "$filepath not found." err_ref = Ref{BSONError}() reader_handle = bson_json_reader_new_from_file(filepath, err_ref) if reader_handle == C_NULL throw(err_ref[]) end return BSONJSONReader(reader_handle) end function read_next_bson(reader::BSONJSONReader, buffer::BSON=BSON()) :: Union{Nothing, BSON} err_ref = Ref{BSONError}() ok = bson_json_reader_read(reader.handle, buffer.handle, err_ref) if ok == 1 # successful and data was read bson_copy_handle = bson_copy(buffer.handle) return BSON(bson_copy_handle) elseif ok == 0 # successful and no data was read return nothing elseif ok == -1 # there was an error throw(err_ref[]) else # unexpected error("Unexpected result from bson_json_reader_read: $ok.") end end function Base.iterate(reader::AbstractBSONReader, state=nothing) next_bson = read_next_bson(reader) if next_bson == nothing return nothing else return (next_bson, nothing) end end Base.collect(reader::AbstractBSONReader) = read_bson(reader) """ read_bson(reader::BSONReader) :: Vector{BSON} Reads all BSON documents from a `reader`. """ function read_bson(reader::AbstractBSONReader) :: Vector{BSON} result = Vector{BSON}() for bson in reader push!(result, bson) end return result end """ read_bson_from_json(filepath::AbstractString) :: Vector{BSON} Reads a JSON file into a list of BSON documents. The file should contain a sequence of valid JSON documents. # Example of a valid JSON file ```json { "num" : 1, "str" : "two" } { "num" : 2, "str" : "three" } ``` """ function read_bson_from_json(filepath::AbstractString) :: Vector{BSON} reader = BSONJSONReader(filepath) try return read_bson(reader) finally destroy!(reader) end end
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
code
39995
# # libbson # function bson_oid_init(oid_ref::Ref{BSONObjectId}, context::Ptr{Cvoid}) ccall((:bson_oid_init, libbson), Cvoid, (Ref{BSONObjectId}, Ptr{Cvoid}), oid_ref, context) end function bson_oid_init_from_string(oid_ref::Ref{BSONObjectId}, oid_string::AbstractString) ccall((:bson_oid_init_from_string, libbson), Cvoid, (Ref{BSONObjectId}, Cstring), oid_ref, oid_string) end function bson_oid_to_string(oid::BSONObjectId) :: String buffer_len = 25 buffer = zeros(UInt8, buffer_len) ccall((:bson_oid_to_string, libbson), Cvoid, (Ref{BSONObjectId}, Ref{UInt8}), Ref(oid), Ref(buffer, 1)) @assert buffer[end] == 0 return String(buffer[1:end-1]) end function bson_oid_compare(oid1::BSONObjectId, oid2::BSONObjectId) ccall((:bson_oid_compare, libbson), Cint, (Ref{BSONObjectId}, Ref{BSONObjectId}), Ref(oid1), Ref(oid2)) end function bson_oid_get_time_t(oid::BSONObjectId) ccall((:bson_oid_get_time_t, libbson), Clong, (Ref{BSONObjectId},), Ref(oid)) end function bson_oid_is_valid(str::String) str_length = Csize_t(length(str)) ccall((:bson_oid_is_valid, libbson), Bool, (Cstring, Csize_t), str, str_length) end function bson_append_oid(bson_document::Ptr{Cvoid}, key::AbstractString, key_length::Int, value::BSONObjectId) ccall((:bson_append_oid, libbson), Bool, (Ptr{Cvoid}, Cstring, Cint, Ref{BSONObjectId}), bson_document, key, key_length, value) end function bson_append_int32(bson_document::Ptr{Cvoid}, key::AbstractString, key_length::Int, value::Int32) ccall((:bson_append_int32, libbson), Bool, (Ptr{Cvoid}, Cstring, Cint, Cint), bson_document, key, key_length, value) end function bson_append_int64(bson_document::Ptr{Cvoid}, key::AbstractString, key_length::Int, value::Int64) ccall((:bson_append_int64, libbson), Bool, (Ptr{Cvoid}, Cstring, Cint, Clonglong), bson_document, key, key_length, value) end function bson_append_utf8(bson_document::Ptr{Cvoid}, key::AbstractString, key_length::Int, value::AbstractString, len::Int) ccall((:bson_append_utf8, libbson), Bool, (Ptr{Cvoid}, Cstring, Cint, Cstring, Cint), bson_document, key, key_length, value, len) end function bson_append_bool(bson_document::Ptr{Cvoid}, key::AbstractString, key_length::Int, value::Bool) ccall((:bson_append_bool, libbson), Bool, (Ptr{Cvoid}, Cstring, Cint, Bool), bson_document, key, key_length, value) end function bson_append_double(bson_document::Ptr{Cvoid}, key::AbstractString, key_length::Int, value::Float64) ccall((:bson_append_double, libbson), Bool, (Ptr{Cvoid}, Cstring, Cint, Cdouble), bson_document, key, key_length, value) end function bson_append_decimal128(bson_document::Ptr{Cvoid}, key::AbstractString, key_length::Int, value::Dec128) ccall((:bson_append_decimal128, libbson), Bool, (Ptr{Cvoid}, Cstring, Cint, Ref{Dec128}), bson_document, key, key_length, Ref(value)) end function bson_append_date_time(bson_document::Ptr{Cvoid}, key::AbstractString, key_length::Int, value::Int64) ccall((:bson_append_date_time, libbson), Bool, (Ptr{Cvoid}, Cstring, Cint, Clonglong), bson_document, key, key_length, value) end function bson_append_document(bson_document::Ptr{Cvoid}, key::AbstractString, key_length::Int, value::Ptr{Cvoid}) ccall((:bson_append_document, libbson), Bool, (Ptr{Cvoid}, Cstring, Cint, Ptr{Cvoid}), bson_document, key, key_length, value) end function bson_append_array(bson_document::Ptr{Cvoid}, key::AbstractString, key_length::Int, value::Ptr{Cvoid}) ccall((:bson_append_array, libbson), Bool, (Ptr{Cvoid}, Cstring, Cint, Ptr{Cvoid}), bson_document, key, key_length, value) end function bson_append_binary(bson_document::Ptr{Cvoid}, key::AbstractString, key_length::Int, subtype::BSONSubType, value::Vector{UInt8}, val_length::UInt32) ccall((:bson_append_binary, libbson), Bool, (Ptr{Cvoid}, Cstring, Cint, BSONSubType, Ptr{Cvoid}, Culong), bson_document, key, key_length, subtype, value, val_length) end function bson_append_code(bson_document::Ptr{Cvoid}, key::AbstractString, key_length::Int, value::String) ccall((:bson_append_code, libbson), Bool, (Ptr{Cvoid}, Cstring, Cint, Cstring), bson_document, key, key_length, value) end function bson_append_null(bson_document::Ptr{Cvoid}, key::AbstractString, key_length::Int) ccall((:bson_append_null, libbson), Bool, (Ptr{Cvoid}, Cstring, Cint), bson_document, key, key_length) end function bson_new() ccall((:bson_new, libbson), Ptr{Cvoid}, ()) end function bson_new_from_json(data::String, len::Int=-1) ccall((:bson_new_from_json, libbson), Ptr{Cvoid}, (Ptr{UInt8}, Cssize_t, Ptr{Cvoid}), data, len, C_NULL) end function bson_destroy(bson_document::Ptr{Cvoid}) ccall((:bson_destroy, libbson), Cvoid, (Ptr{Cvoid},), bson_document) end function bson_as_canonical_extended_json(bson_document::Ptr{Cvoid}) ccall((:bson_as_canonical_extended_json, libbson), Cstring, (Ptr{Cvoid}, Ptr{Cvoid}), bson_document, C_NULL) end function bson_as_relaxed_extended_json(bson_document::Ptr{Cvoid}) ccall((:bson_as_relaxed_extended_json, libbson), Cstring, (Ptr{Cvoid}, Ptr{Cvoid}), bson_document, C_NULL) end function bson_copy(bson_document::Ptr{Cvoid}) ccall((:bson_copy, libbson), Ptr{Cvoid}, (Ptr{Cvoid},), bson_document) end function bson_has_field(bson_document::Ptr{Cvoid}, key::AbstractString) ccall((:bson_has_field, libbson), Bool, (Ptr{Cvoid}, Cstring), bson_document, key) end function bson_count_keys(bson_document::Ptr{Cvoid}) ccall((:bson_count_keys, libbson), UInt32, (Ptr{Cvoid},), bson_document) end function bson_iter_init(iter_ref::Ref{BSONIter}, bson_document::Ptr{Cvoid}) ccall((:bson_iter_init, libbson), Bool, (Ref{BSONIter}, Ptr{Cvoid}), iter_ref, bson_document) end function bson_iter_next(iter_ref::Ref{BSONIter}) ccall((:bson_iter_next, libbson), Bool, (Ref{BSONIter},), iter_ref) end function bson_iter_find(iter_ref::Ref{BSONIter}, key::AbstractString) ccall((:bson_iter_find, libbson), Bool, (Ref{BSONIter}, Cstring), iter_ref, key) end function bson_iter_init_find(iter_ref::Ref{BSONIter}, bson_document::Ptr{Cvoid}, key::AbstractString) ccall((:bson_iter_init_find, libbson), Bool, (Ref{BSONIter}, Ptr{Cvoid}, Cstring), iter_ref, bson_document, key) end function bson_iter_type(iter_ref::Ref{BSONIter}) ccall((:bson_iter_type, libbson), BSONType, (Ref{BSONIter},), iter_ref) end function bson_iter_key(iter_ref::Ref{BSONIter}) ccall((:bson_iter_key, libbson), Cstring, (Ref{BSONIter},), iter_ref) end function bson_iter_int32(iter_ref::Ref{BSONIter}) ccall((:bson_iter_int32, libbson), Int32, (Ref{BSONIter},), iter_ref) end function bson_iter_int64(iter_ref::Ref{BSONIter}) ccall((:bson_iter_int64, libbson), Int64, (Ref{BSONIter},), iter_ref) end function bson_iter_utf8(iter_ref::Ref{BSONIter}) ccall((:bson_iter_utf8, libbson), Cstring, (Ref{BSONIter}, Ptr{Cvoid}), iter_ref, C_NULL) end function bson_iter_bool(iter_ref::Ref{BSONIter}) ccall((:bson_iter_bool, libbson), Bool, (Ref{BSONIter},), iter_ref) end function bson_iter_double(iter_ref::Ref{BSONIter}) ccall((:bson_iter_double, libbson), Float64, (Ref{BSONIter},), iter_ref) end function bson_iter_decimal128(iter_ref::Ref{BSONIter}) x = Ref{Dec128}() success = ccall((:bson_iter_decimal128, libbson), Bool, (Ref{BSONIter}, Ref{Dec128}), iter_ref, x) success || error("Unexpected data type when iterating decimal128") x[] end function bson_iter_oid(iter_ref::Ref{BSONIter}) ccall((:bson_iter_oid, libbson), Ptr{BSONObjectId}, (Ref{BSONIter},), iter_ref) end function bson_iter_date_time(iter_ref::Ref{BSONIter}) ccall((:bson_iter_date_time, libbson), Clonglong, (Ref{BSONIter},), iter_ref) end function bson_iter_timestamp(iter_ref::Ref{BSONIter}) :: BSONTimestamp timestamp = Ref{UInt32}() increment = Ref{UInt32}() ccall( (:bson_iter_timestamp, libbson), Cvoid, (Ref{BSONIter}, Ref{UInt32}, Ref{UInt32}), iter_ref, timestamp, increment ) return BSONTimestamp(timestamp[], increment[]) end function bson_iter_recurse(iter_ref::Ref{BSONIter}, child_iter_ref::Ref{BSONIter}) ccall((:bson_iter_recurse, libbson), Bool, (Ref{BSONIter}, Ref{BSONIter}), iter_ref, child_iter_ref) end function bson_iter_code(iter_ref::Ref{BSONIter}) ccall((:bson_iter_code, libbson), Cstring, (Ref{BSONIter}, Ptr{UInt32}), iter_ref, C_NULL) end function bson_iter_binary(iter_ref::Ref{BSONIter}, length_ref::Ref{UInt32}, buffer_ref::Ref{Ptr{UInt8}}) bsonsubtype_ref = Ref(BSON_SUBTYPE_BINARY) bson_iter_binary(iter_ref, bsonsubtype_ref, length_ref, buffer_ref) end function bson_iter_binary(iter_ref::Ref{BSONIter}, bsonsubtype_ref::Ref{BSONSubType}, length_ref::Ref{UInt32}, buffer_ref::Ref{Ptr{UInt8}}) ccall((:bson_iter_binary, libbson), Cvoid, (Ref{BSONIter}, Ref{BSONSubType}, Ref{UInt32}, Ref{Ptr{UInt8}}), iter_ref, bsonsubtype_ref, length_ref, buffer_ref) end function bson_iter_value(iter_ref::Ref{BSONIter}) ccall((:bson_iter_value, libbson), Ptr{Cvoid}, (Ref{BSONIter},), iter_ref) end function bson_free(mem::Ptr{Cvoid}) ccall((:bson_free, libbson), Cvoid, (Ptr{Cvoid},), mem) end function bson_reader_destroy(bson_reader_handle::Ptr{Cvoid}) ccall((:bson_reader_destroy, libbson), Cvoid, (Ptr{Cvoid},), bson_reader_handle) end function bson_reader_new_from_file(filepath::AbstractString, bson_error_ref::Ref{BSONError}) ccall((:bson_reader_new_from_file, libbson), Ptr{Cvoid}, (Cstring, Ref{BSONError}), filepath, bson_error_ref) end function bson_reader_new_from_data(data::Ptr{UInt8}, data_length::Integer) ccall((:bson_reader_new_from_data, libbson), Ptr{Cvoid}, (Ptr{UInt8}, Csize_t), data, data_length) end function bson_reader_read(bson_reader_handle::Ptr{Cvoid}, reached_eof_ref::Ref{Bool}) ccall((:bson_reader_read, libbson), Ptr{Cvoid}, (Ptr{Cvoid}, Ref{Bool}), bson_reader_handle, reached_eof_ref) end function bson_writer_destroy(bson_writer_handle::Ptr{Cvoid}) ccall((:bson_writer_destroy, libbson), Cvoid, (Ptr{Cvoid},), bson_writer_handle) end function bson_writer_begin(bson_writer_handle::Ptr{Cvoid}, bson_document_handle_ref::Ref{Ptr{Cvoid}}) ccall((:bson_writer_begin, libbson), Bool, (Ptr{Cvoid}, Ref{Ptr{Cvoid}}), bson_writer_handle, bson_document_handle_ref) end function bson_writer_end(bson_writer_handle::Ptr{Cvoid}) ccall((:bson_writer_end, libbson), Cvoid, (Ptr{Cvoid},), bson_writer_handle) end function bson_writer_new(buffer_handle_ref::Ref{Ptr{UInt8}}, buffer_length_ref::Ref{Csize_t}, offset::Csize_t, realloc_func::Ptr{Cvoid}, realloc_func_ctx::Ptr{Cvoid}) ccall((:bson_writer_new, libbson), Ptr{Cvoid}, (Ref{Ptr{UInt8}}, Ref{Csize_t}, Csize_t, Ptr{Cvoid}, Ptr{Cvoid}), buffer_handle_ref, buffer_length_ref, offset, realloc_func, realloc_func_ctx) end function bson_writer_get_length(bson_writer_handle::Ptr{Cvoid}) ccall((:bson_writer_get_length, libbson), Csize_t, (Ptr{Cvoid},), bson_writer_handle) end function bson_copy_to(src_bson_handle::Ptr{Cvoid}, dst_bson_handle::Ptr{Cvoid}) ccall((:bson_copy_to, libbson), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), src_bson_handle, dst_bson_handle) end function bson_copy_to_noinit(src_bson_handle::Ptr{Cvoid}, dst_bson_handle::Ptr{Cvoid}) # This hack will create a key that is not present in src_bson # since bson_copy_to_excluding_noinit requires at least one `exclude` arg. # This is needed because there's no `bson_copy_to_noinit` in libbson. function exclude_key(bson_handle::Ptr{Cvoid}) new_exclude_key() = "___" * string(Int(rand(UInt16))) exclude = new_exclude_key() bson = BSON(bson_handle, enable_finalizer=false) # disable finalizer while haskey(bson, exclude) exclude = new_exclude_key() end return exclude end exclude = exclude_key(src_bson_handle) bson_copy_to_excluding_noinit(src_bson_handle, dst_bson_handle, exclude) end function bson_copy_to_excluding_noinit(src_bson_handle::Ptr{Cvoid}, dst_bson_handle::Ptr{Cvoid}, exclude::AbstractString) @ccall libbson.bson_copy_to_excluding_noinit(src_bson_handle::Ptr{Cvoid}, dst_bson_handle::Ptr{Cvoid}, exclude::Cstring; C_NULL::Cstring)::Cvoid end function bson_json_reader_new_from_file(filepath::AbstractString, bson_error_ref::Ref{BSONError}) ccall((:bson_json_reader_new_from_file, libbson), Ptr{Cvoid}, (Cstring, Ref{BSONError}), filepath, bson_error_ref ) end function bson_json_reader_destroy(reader_handle::Ptr{Cvoid}) ccall((:bson_json_reader_destroy, libbson), Cvoid, (Ptr{Cvoid},), reader_handle) end function bson_json_reader_read(reader_handle::Ptr{Cvoid}, bson_handle::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:bson_json_reader_read, libbson), Cint, (Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), reader_handle, bson_handle, bson_error_ref) end # # libmongoc # function mongoc_init() ccall((:mongoc_init, libmongoc), Cvoid, ()) end function mongoc_cleanup() ccall((:mongoc_cleanup, libmongoc), Cvoid, ()) end function mongoc_uri_new_with_error(uri_string::String, bson_error_ref::Ref{BSONError}) ccall((:mongoc_uri_new_with_error, libmongoc), Ptr{Cvoid}, (Cstring, Ref{BSONError}), uri_string, bson_error_ref) end function mongoc_uri_destroy(uri_handle::Ptr{Cvoid}) ccall((:mongoc_uri_destroy, libmongoc), Cvoid, (Ptr{Cvoid},), uri_handle) end function mongoc_client_new_from_uri(uri_handle::Ptr{Cvoid}) ccall((:mongoc_client_new_from_uri, libmongoc), Ptr{Cvoid}, (Ptr{Cvoid},), uri_handle) end function mongoc_client_destroy(client_handle::Ptr{Cvoid}) ccall((:mongoc_client_destroy, libmongoc), Cvoid, (Ptr{Cvoid},), client_handle) end function mongoc_client_set_appname(client_handle::Ptr{Cvoid}, appname::String) ccall((:mongoc_client_set_appname, libmongoc), Bool, (Ptr{Cvoid}, Cstring), client_handle, appname) end function mongoc_client_get_database(client_handle::Ptr{Cvoid}, db_name::String) ccall((:mongoc_client_get_database, libmongoc), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring), client_handle, db_name) end function mongoc_client_find_databases_with_opts(client_handle::Ptr{Cvoid}, bson_opts::Ptr{Cvoid}) ccall((:mongoc_client_find_databases_with_opts, libmongoc), Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}), client_handle, bson_opts) end function mongoc_client_start_session(client_handle::Ptr{Cvoid}, session_options_handle::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_client_start_session, libmongoc), Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), client_handle, session_options_handle, bson_error_ref) end function mongoc_client_session_destroy(session_handle::Ptr{Cvoid}) ccall((:mongoc_client_session_destroy, libmongoc), Cvoid, (Ptr{Cvoid},), session_handle) end function mongoc_client_session_append(session_handle::Ptr{Cvoid}, bson_opts::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_client_session_append, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), session_handle, bson_opts, bson_error_ref) end function mongoc_client_session_start_transaction(session_handle::Ptr{Cvoid}, transaction_options_handle::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_client_session_start_transaction, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), session_handle, transaction_options_handle, bson_error_ref) end function mongoc_client_session_abort_transaction(session_handle::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_client_session_abort_transaction, libmongoc), Bool, (Ptr{Cvoid}, Ref{BSONError}), session_handle, bson_error_ref) end function mongoc_client_session_commit_transaction(session_handle::Ptr{Cvoid}, bson_reply::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_client_session_commit_transaction, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), session_handle, bson_reply, bson_error_ref) end function mongoc_client_session_in_transaction(session_handle::Ptr{Cvoid}) ccall((:mongoc_client_session_in_transaction, libmongoc), Bool, (Ptr{Cvoid},), session_handle) end function mongoc_client_pool_new(uri_handle::Ptr{Cvoid}) ccall((:mongoc_client_pool_new, libmongoc), Ptr{Cvoid}, (Ptr{Cvoid},), uri_handle) end function mongoc_client_pool_destroy(client_pool_handle::Ptr{Cvoid}) ccall((:mongoc_client_pool_destroy, libmongoc), Cvoid, (Ptr{Cvoid},), client_pool_handle) end function mongoc_client_pool_pop(client_pool_handle::Ptr{Cvoid}) ccall((:mongoc_client_pool_pop, libmongoc), Ptr{Cvoid}, (Ptr{Cvoid},), client_pool_handle) end function mongoc_client_pool_try_pop(client_pool_handle::Ptr{Cvoid}) ccall((:mongoc_client_pool_try_pop, libmongoc), Ptr{Cvoid}, (Ptr{Cvoid},), client_pool_handle) end function mongoc_client_pool_push(client_pool_handle::Ptr{Cvoid}, client_handle::Ptr{Cvoid}) ccall((:mongoc_client_pool_push, libmongoc), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), client_pool_handle, client_handle) end function mongoc_client_pool_max_size(client_pool_handle::Ptr{Cvoid}, max_pool_size::UInt32) ccall((:mongoc_client_pool_max_size, libmongoc), Cvoid, (Ptr{Cvoid}, UInt32), client_pool_handle, max_pool_size) end function mongoc_session_opts_new() ccall((:mongoc_session_opts_new, libmongoc), Ptr{Cvoid}, ()) end function mongoc_session_opts_destroy(session_options_handle::Ptr{Cvoid}) ccall((:mongoc_session_opts_destroy, libmongoc), Cvoid, (Ptr{Cvoid},), session_options_handle) end function mongoc_session_opts_get_causal_consistency(session_options_handle::Ptr{Cvoid}) ccall((:mongoc_session_opts_get_causal_consistency, libmongoc), Bool, (Ptr{Cvoid},), session_options_handle) end function mongoc_session_opts_set_causal_consistency(session_options_handle::Ptr{Cvoid}, casual_consistency::Bool) ccall((:mongoc_session_opts_set_causal_consistency, libmongoc), Cvoid, (Ptr{Cvoid}, Bool), session_options_handle, casual_consistency) end function mongoc_database_destroy(database_handle::Ptr{Cvoid}) ccall((:mongoc_database_destroy, libmongoc), Cvoid, (Ptr{Cvoid},), database_handle) end function mongoc_database_get_collection(database_handle::Ptr{Cvoid}, collection_name::String) ccall((:mongoc_database_get_collection, libmongoc), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring), database_handle, collection_name) end function mongoc_database_find_collections_with_opts(database_handle::Ptr{Cvoid}, bson_opts::Ptr{Cvoid}) ccall((:mongoc_database_find_collections_with_opts, libmongoc), Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}), database_handle, bson_opts) end function mongoc_database_command_simple(database_handle::Ptr{Cvoid}, bson_command::Ptr{Cvoid}, read_prefs::Ptr{Cvoid}, bson_reply::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_database_command_simple, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), database_handle, bson_command, read_prefs, bson_reply, bson_error_ref) end function mongoc_database_write_command_with_opts(database_handle::Ptr{Cvoid}, bson_command::Ptr{Cvoid}, bson_opts_handle::Ptr{Cvoid}, bson_reply_ref::Ref{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_database_write_command_with_opts, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{Cvoid}, Ref{BSONError}), database_handle, bson_command, bson_opts_handle, bson_reply_ref, bson_error_ref) end function mongoc_database_read_command_with_opts(database_handle::Ptr{Cvoid}, bson_command::Ptr{Cvoid}, read_prefs_handle::Ptr{Cvoid}, bson_opts_handle::Ptr{Cvoid}, bson_reply_ref::Ref{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_database_read_command_with_opts, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{Cvoid}, Ref{BSONError}), database_handle, bson_command, read_prefs_handle, bson_opts_handle, bson_reply_ref, bson_error_ref) end function mongoc_database_add_user(database_handle::Ptr{Cvoid}, username::String, password::String, bson_roles::Ptr{Cvoid}, bson_custom_data::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_database_add_user, libmongoc), Bool, (Ptr{Cvoid}, Cstring, Cstring, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), database_handle, username, password, bson_roles, bson_custom_data, bson_error_ref) end function mongoc_database_remove_user(database_handle::Ptr{Cvoid}, username::String, bson_error_ref::Ref{BSONError}) ccall((:mongoc_database_remove_user, libmongoc), Bool, (Ptr{Cvoid}, Cstring, Ref{BSONError}), database_handle, username, bson_error_ref) end function mongoc_database_drop_with_opts(database_handle::Ptr{Cvoid}, opts_handle::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_database_drop_with_opts, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), database_handle, opts_handle, bson_error_ref ) end function mongoc_collection_command_simple(collection_handle::Ptr{Cvoid}, bson_command::Ptr{Cvoid}, read_prefs::Ptr{Cvoid}, bson_reply::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_collection_command_simple, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), collection_handle, bson_command, read_prefs, bson_reply, bson_error_ref) end function mongoc_collection_read_command_with_opts(collection_handle::Ptr{Cvoid}, bson_command::Ptr{Cvoid}, read_prefs::Ptr{Cvoid}, bson_opts_handle::Ptr{Cvoid}, bson_reply::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_collection_command_simple, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), collection_handle, bson_command, read_prefs, bson_opts_handle, bson_reply, bson_error_ref) end function mongoc_collection_destroy(collection_handle::Ptr{Cvoid}) ccall((:mongoc_collection_destroy, libmongoc), Cvoid, (Ptr{Cvoid},), collection_handle) end function mongoc_collection_insert_one(collection_handle::Ptr{Cvoid}, bson_document::Ptr{Cvoid}, bson_options::Ptr{Cvoid}, bson_reply::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_collection_insert_one, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), collection_handle, bson_document, bson_options, bson_reply, bson_error_ref) end function mongoc_collection_find_with_opts(collection_handle::Ptr{Cvoid}, bson_filter::Ptr{Cvoid}, bson_opts::Ptr{Cvoid}, read_prefs::Ptr{Cvoid}) ccall((:mongoc_collection_find_with_opts, libmongoc), Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), collection_handle, bson_filter, bson_opts, read_prefs) end function mongoc_collection_count_documents(collection_handle::Ptr{Cvoid}, bson_filter::Ptr{Cvoid}, bson_opts::Ptr{Cvoid}, read_prefs::Ptr{Cvoid}, bson_reply::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_collection_count_documents, libmongoc), Int64, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), collection_handle, bson_filter, bson_opts, read_prefs, bson_reply, bson_error_ref) end function mongoc_collection_create_bulk_operation_with_opts(collection_handle::Ptr{Cvoid}, bson_opts::Ptr{Cvoid}) ccall((:mongoc_collection_create_bulk_operation_with_opts, libmongoc), Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}), collection_handle, bson_opts) end function mongoc_collection_delete_one(collection_handle::Ptr{Cvoid}, bson_selector::Ptr{Cvoid}, bson_opts::Ptr{Cvoid}, bson_reply::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_collection_delete_one, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), collection_handle, bson_selector, bson_opts, bson_reply, bson_error_ref) end function mongoc_collection_delete_many(collection_handle::Ptr{Cvoid}, bson_selector::Ptr{Cvoid}, bson_opts::Ptr{Cvoid}, bson_reply::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_collection_delete_many, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), collection_handle, bson_selector, bson_opts, bson_reply, bson_error_ref) end function mongoc_collection_update_one(collection_handle::Ptr{Cvoid}, bson_selector::Ptr{Cvoid}, bson_update::Ptr{Cvoid}, bson_opts::Ptr{Cvoid}, bson_reply::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_collection_update_one, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), collection_handle, bson_selector, bson_update, bson_opts, bson_reply, bson_error_ref) end function mongoc_collection_update_many(collection_handle::Ptr{Cvoid}, bson_selector::Ptr{Cvoid}, bson_update::Ptr{Cvoid}, bson_opts::Ptr{Cvoid}, bson_reply::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_collection_update_many, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), collection_handle, bson_selector, bson_update, bson_opts, bson_reply, bson_error_ref) end function mongoc_collection_replace_one(collection_handle::Ptr{Cvoid}, bson_selector::Ptr{Cvoid}, bson_replacement::Ptr{Cvoid}, bson_opts::Ptr{Cvoid}, bson_reply::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_collection_replace_one, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), collection_handle, bson_selector, bson_replacement, bson_opts, bson_reply, bson_error_ref) end function mongoc_collection_aggregate(collection_handle::Ptr{Cvoid}, flags::QueryFlags, bson_pipeline::Ptr{Cvoid}, bson_opts::Ptr{Cvoid}, read_prefs::Ptr{Cvoid}) ccall((:mongoc_collection_aggregate, libmongoc), Ptr{Cvoid}, (Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), collection_handle, flags, bson_pipeline, bson_opts, read_prefs) end function mongoc_cursor_destroy(cursor_handle::Ptr{Cvoid}) ccall((:mongoc_cursor_destroy, libmongoc), Cvoid, (Ptr{Cvoid},), cursor_handle) end function mongoc_cursor_next(cursor_handle::Ptr{Cvoid}, bson_document_ref::Ref{Ptr{Cvoid}}) ccall((:mongoc_cursor_next, libmongoc), Bool, (Ptr{Cvoid}, Ref{Ptr{Cvoid}}), cursor_handle, bson_document_ref) end function mongoc_cursor_set_limit(cursor_handle::Ptr{Cvoid}, limit::Int) ccall((:mongoc_cursor_set_limit, libmongoc), Bool, (Ptr{Cvoid}, Int64), cursor_handle, limit) end function mongoc_cursor_get_batch_size(cursor_handle::Ptr{Cvoid}) ccall((:mongoc_cursor_get_batch_size, libmongoc), UInt32, (Ptr{Cvoid},), cursor_handle) end function mongoc_cursor_set_batch_size(cursor_handle::Ptr{Cvoid}, batch_size::Integer) ccall( (:mongoc_cursor_set_batch_size, libmongoc), Cvoid, (Ptr{Cvoid}, UInt32,), cursor_handle, UInt32(batch_size) ) end function mongoc_cursor_error(cursor_handle::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_cursor_error, libmongoc), Bool, (Ptr{Cvoid}, Ref{BSONError}), cursor_handle, bson_error_ref) end function mongoc_bulk_operation_destroy(bulk_operation_handle::Ptr{Cvoid}) ccall((:mongoc_bulk_operation_destroy, libmongoc), Cvoid, (Ptr{Cvoid},), bulk_operation_handle) end function mongoc_bulk_operation_insert_with_opts(bulk_operation_handle::Ptr{Cvoid}, bson_document::Ptr{Cvoid}, bson_options::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_bulk_operation_insert_with_opts, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), bulk_operation_handle, bson_document, bson_options, bson_error_ref) end function mongoc_bulk_operation_replace_one_with_opts(bulk_operation_handle::Ptr{Cvoid}, bson_selector::Ptr{Cvoid}, bson_replacement::Ptr{Cvoid}, bson_options::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_bulk_operation_replace_one_with_opts, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), bulk_operation_handle, bson_selector, bson_replacement, bson_options, bson_error_ref) end function mongoc_bulk_operation_update_one_with_opts( bulk_operation_handle::Ptr{Cvoid}, bson_selector::Ptr{Cvoid}, bson_document::Ptr{Cvoid}, bson_options::Ptr{Cvoid}, bson_error_ref::Ref{BSONError} ) ccall( (:mongoc_bulk_operation_update_one_with_opts, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), bulk_operation_handle, bson_selector, bson_document, bson_options, bson_error_ref ) end function mongoc_bulk_operation_execute(bulk_operation_handle::Ptr{Cvoid}, bson_reply::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_bulk_operation_execute, libmongoc), UInt32, (Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), bulk_operation_handle, bson_reply, bson_error_ref) end function mongoc_collection_drop_with_opts(collection_handle::Ptr{Cvoid}, bson_opts_handle::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_collection_drop_with_opts, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), collection_handle, bson_opts_handle, bson_error_ref) end function mongoc_find_and_modify_opts_new() ccall((:mongoc_find_and_modify_opts_new, libmongoc), Ptr{Cvoid}, ()) end function mongoc_find_and_modify_opts_destroy(handle::Ptr{Cvoid}) ccall((:mongoc_find_and_modify_opts_destroy, libmongoc), Cvoid, (Ptr{Cvoid},), handle) end function mongoc_find_and_modify_opts_set_update(opts_handle::Ptr{Cvoid}, bson_handle::Ptr{Cvoid}) ccall((:mongoc_find_and_modify_opts_set_update, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}), opts_handle, bson_handle) end function mongoc_find_and_modify_opts_set_sort(opts_handle::Ptr{Cvoid}, bson_handle::Ptr{Cvoid}) ccall((:mongoc_find_and_modify_opts_set_sort, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}), opts_handle, bson_handle) end function mongoc_find_and_modify_opts_set_fields(opts_handle::Ptr{Cvoid}, bson_handle::Ptr{Cvoid}) ccall((:mongoc_find_and_modify_opts_set_fields, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}), opts_handle, bson_handle) end function mongoc_find_and_modify_opts_set_flags(opts_handle::Ptr{Cvoid}, flags::FindAndModifyFlags) ccall((:mongoc_find_and_modify_opts_set_flags, libmongoc), Bool, (Ptr{Cvoid}, FindAndModifyFlags), opts_handle, flags) end function mongoc_find_and_modify_opts_set_bypass_document_validation( opts_handle::Ptr{Cvoid}, bypass::Bool) ccall((:mongoc_find_and_modify_opts_set_bypass_document_validation, libmongoc), Bool, (Ptr{Cvoid}, Bool), opts_handle, bypass) end function mongoc_collection_find_and_modify_with_opts(collection_handle::Ptr{Cvoid}, query_bson_handle::Ptr{Cvoid}, opts_handle::Ptr{Cvoid}, result_bson_handle::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_collection_find_and_modify_with_opts, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), collection_handle, query_bson_handle, opts_handle, result_bson_handle, bson_error_ref) end function mongoc_gridfs_bucket_new(database_handle::Ptr{Cvoid}, bson_opts_handle::Ptr{Cvoid}, read_prefs::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_gridfs_bucket_new, libmongoc), Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), database_handle, bson_opts_handle, read_prefs, bson_error_ref) end function mongoc_gridfs_bucket_destroy(bucket_handle::Ptr{Cvoid}) ccall((:mongoc_gridfs_bucket_destroy, libmongoc), Cvoid, (Ptr{Cvoid},), bucket_handle) end function mongoc_stream_destroy(stream_handle::Ptr{Cvoid}) ccall((:mongoc_stream_destroy, libmongoc), Cvoid, (Ptr{Cvoid},), stream_handle) end function mongoc_stream_flush(stream_handle::Ptr{Cvoid}) ccall((:mongoc_stream_flush, libmongoc), Cint, (Ptr{Cvoid},), stream_handle) end function mongoc_stream_close(stream_handle::Ptr{Cvoid}) ccall((:mongoc_stream_close, libmongoc), Cint, (Ptr{Cvoid},), stream_handle) end function mongoc_stream_file_new_for_path(path::AbstractString, flags::Integer, mode::Integer) ccall((:mongoc_stream_file_new_for_path, libmongoc), Ptr{Cvoid}, (Cstring, Cint, Cint), path, flags, mode) end function mongoc_stream_read( stream_handle::Ptr{Cvoid}, buffer_handle::Ptr{UInt8}, count::Integer, min_bytes::Integer, timeout_msec::Integer) ccall((:mongoc_stream_read, libmongoc), Csize_t, (Ptr{Cvoid}, Ptr{UInt8}, Csize_t, Csize_t, Cint), stream_handle, buffer_handle, count, min_bytes, timeout_msec) end function mongoc_stream_write( stream_handle::Ptr{Cvoid}, buffer_handle::Ptr{UInt8}, count::Integer, timeout_msec::Integer) ccall((:mongoc_stream_write, libmongoc), Csize_t, (Ptr{Cvoid}, Ptr{UInt8}, Csize_t, Cint), stream_handle, buffer_handle, count, timeout_msec) end function mongoc_gridfs_bucket_upload_from_stream_with_id( bucket_handle::Ptr{Cvoid}, bson_value_file_id_handle::Ptr{Cvoid}, filename::AbstractString, source_stream_handle::Ptr{Cvoid}, bson_opts_handle::Ptr{Cvoid}, bson_error_ref::Ref{BSONError} ) ccall((:mongoc_gridfs_bucket_upload_from_stream_with_id, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Cstring, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), bucket_handle, bson_value_file_id_handle, filename, source_stream_handle, bson_opts_handle, bson_error_ref) end function mongoc_gridfs_bucket_download_to_stream( bucket_handle::Ptr{Cvoid}, bson_value_file_id_handle::Ptr{Cvoid}, destination_stream_handle::Ptr{Cvoid}, bson_error_ref::Ref{BSONError} ) ccall((:mongoc_gridfs_bucket_download_to_stream, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), bucket_handle, bson_value_file_id_handle, destination_stream_handle, bson_error_ref) end function mongoc_gridfs_bucket_open_download_stream( bucket_handle::Ptr{Cvoid}, bson_value_file_id_handle::Ptr{Cvoid}, bson_error_ref::Ref{BSONError} ) ccall((:mongoc_gridfs_bucket_open_download_stream, libmongoc), Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), bucket_handle, bson_value_file_id_handle, bson_error_ref) end function mongoc_gridfs_bucket_open_upload_stream_with_id( bucket_handle::Ptr{Cvoid}, bson_value_file_id_handle::Ptr{Cvoid}, filename::AbstractString, bson_opts_handle::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_gridfs_bucket_open_upload_stream_with_id, libmongoc), Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}, Cstring, Ptr{Cvoid}, Ref{BSONError}), bucket_handle, bson_value_file_id_handle, filename, bson_opts_handle, bson_error_ref) end function mongoc_gridfs_bucket_abort_upload(stream_handle::Ptr{Cvoid}) ccall((:mongoc_gridfs_bucket_abort_upload, libmongoc), Bool, (Ptr{Cvoid},), stream_handle) end function mongoc_gridfs_bucket_find( bucket_handle::Ptr{Cvoid}, bson_filter_handle::Ptr{Cvoid}, bson_opts_handle::Ptr{Cvoid}) ccall((:mongoc_gridfs_bucket_find, libmongoc), Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), bucket_handle, bson_filter_handle, bson_opts_handle) end function mongoc_gridfs_bucket_delete_by_id( bucket_handle::Ptr{Cvoid}, bson_value_handle::Ptr{Cvoid}, bson_error_ref::Ref{BSONError}) ccall((:mongoc_gridfs_bucket_delete_by_id, libmongoc), Bool, (Ptr{Cvoid}, Ptr{Cvoid}, Ref{BSONError}), bucket_handle, bson_value_handle, bson_error_ref) end function mongoc_gridfs_bucket_stream_error( stream_handle::Ptr{Cvoid}, bson_error_ref::Ref{BSONError} ) ccall((:mongoc_gridfs_bucket_stream_error, libmongoc), Bool, (Ptr{Cvoid}, Ref{BSONError}), stream_handle, bson_error_ref) end function mongoc_set_log_handler( cfunction::Ptr{Cvoid}, userdata::Ptr{Cvoid} = C_NULL ) ccall( (:mongoc_log_set_handler, libmongoc), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), cfunction, userdata) end
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
code
3746
Base.show(io::IO, uri::URI) = print(io, "URI(\"", uri.uri, "\")") Base.show(io::IO, client::Client) = print(io, "Client(URI(\"", client.uri, "\"))") Base.getindex(client::Client, database::String) = Database(client, database) """ Client(host, port) Client(uri) Client() Client(pool; [try_pop=false]) Creates a `Client`, which represents a connection to a MongoDB database. See also [`Mongoc.ClientPool`](@ref). # Examples: These lines are equivalent. ```julia c = Mongoc.Client() c = Mongoc.Client("localhost", 27017) c = Mongoc.Client("mongodb://localhost:27017") ``` """ Client(host::String, port::Int) = Client(URI("mongodb://$host:$port")) Client(uri::String) = Client(URI(uri)) Client() = Client("localhost", 27017) """ set_appname!(client::Client, appname::String) Sets the application name for this client. This string, along with other internal driver details, is sent to the server as part of the initial connection handshake. # C API * [`mongoc_client_set_appname`](http://mongoc.org/libmongoc/current/mongoc_client_set_appname.html). """ function set_appname!(client::Client, appname::String) ok = mongoc_client_set_appname(client.handle, appname) if !ok error("Couldn't set appname=$appname for client $client.") end nothing end """ ping(client::Client) :: BSON Pings the server, testing wether it is reachable. One thing to keep in mind is that operations on MongoDB are *lazy*, which means that a client reaches a server only when it needs to transfer documents. # Example ```julia julia> client = Mongoc.Client() # nothing happens here between client and server Client(URI("mongodb://localhost:27017")) julia> Mongoc.ping(client) # connection to server happens here BSON("{ "ok" : 1.0 }") ``` """ function ping(client::Client) :: BSON return command_simple(client["admin"], BSON("""{ "ping" : 1 }""")) end """ get_server_mongodb_version(client::Client) :: VersionNumber Queries the version for the MongoDB server instance. """ function get_server_mongodb_version(client::Client) :: VersionNumber bson_server_status = command_simple(client["admin"], BSON("""{ "serverStatus" : 1 }""")) return VersionNumber(bson_server_status["version"]) end """ find_databases(client::Client; options::Union{Nothing, BSON}=nothing) :: Cursor Queries for databases. """ function find_databases(client::Client; options::Union{Nothing, BSON}=nothing) :: Cursor options_handle = options == nothing ? C_NULL : options.handle cursor_handle = mongoc_client_find_databases_with_opts(client.handle, options_handle) if cursor_handle == C_NULL error("Couldn't execute query.") end return Cursor(client, cursor_handle) end """ get_database_names(client::Client; options::Union{Nothing, BSON}=nothing) :: Vector{String} Helper method to get a list of names for all databases. See also [`Mongoc.find_databases`](@ref). """ function get_database_names(client::Client; options::Union{Nothing, BSON}=nothing) :: Vector{String} result = Vector{String}() for bson_database in find_databases(client, options=options) push!(result, bson_database["name"]) end return result end """ has_database(client::Client, database_name::String; options::Union{Nothing, BSON}=nothing) :: Bool Helper method to check if there is a database named `database_name`. See also [`Mongoc.find_databases`](@ref). """ function has_database(client::Client, database_name::String; options::Union{Nothing, BSON}=nothing) :: Bool for bson_database in find_databases(client, options=options) if bson_database["name"] == database_name return true end end return false end
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
code
1242
""" ClientPool(uri; [max_size]) Creates a pool of connections to a MongoDB instance. # Example ```julia const REPLICA_SET_URL = "mongodb://127.0.0.1:27021,127.0.0.1:27022,127.0.0.1:27023/?replicaSet=rs0" pool = Mongoc.ClientPool(REPLICA_SET_URL, max_size=2) # create Clients from a pool client1 = Mongoc.Client(pool) client2 = Mongoc.Client(pool) ``` When you reach the maximum number of clients, the next call to `Mongoc.Client(pool)` will block until a `Client` is released. Use `try_pop=true` option to throw an error instead of blocking the current thread: ```julia # will throw `AssertionError` client3 = Mongoc.Client(pool, try_pop=true) ``` """ function ClientPool(uri::String; max_size::Union{Nothing, Integer}=nothing) return ClientPool(URI(uri), max_size=max_size) end """ set_max_size(pool, max_size) Set the maximum number of clients on the client pool. # Example ```julia const REPLICA_SET_URL = "mongodb://127.0.0.1:27021,127.0.0.1:27022,127.0.0.1:27023/?replicaSet=rs0" pool = Mongoc.ClientPool(REPLICA_SET_URL) Mongoc.set_max_size(pool, 4) ``` """ function set_max_size(client_pool::ClientPool, max_size::Integer) mongoc_client_pool_max_size(client_pool.handle, UInt32(max_size)) nothing end
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
code
23143
Base.show(io::IO, coll::Collection) = print(io, "Collection($(coll.database), \"", coll.name, "\")") # docstring for this function is at database.jl function command_simple(collection::Collection, command::BSON) :: BSON reply = BSON() err_ref = Ref{BSONError}() ok = mongoc_collection_command_simple(collection.handle, command.handle, C_NULL, reply.handle, err_ref) if !ok throw(err_ref[]) end return reply end function read_command(collection::Collection, command::BSON; options::Union{Nothing, BSON}=nothing) :: BSON reply = BSON() err_ref = Ref{BSONError}() options_handle = options == nothing ? C_NULL : options.handle ok = mongoc_collection_read_command_with_opts(collection.handle, command.handle, C_NULL, options_handle, reply.handle, err_ref) if !ok throw(err_ref[]) end return reply end # Aux function to add _id field to document if it does not exist. # If `_id_` is not present, creates a copy of `document`. # This function returns `document, inserted_oid`. function _new_id(document::BSON) if haskey(document, "_id") return document, nothing else inserted_oid = BSONObjectId() # copies it so this function doesn't have side effects document = deepcopy(document) document["_id"] = inserted_oid return document, inserted_oid end end function insert_one(collection::Collection, document::BSON; options::Union{Nothing, BSON}=nothing) :: InsertOneResult document, inserted_oid = _new_id(document) reply = BSON() err_ref = Ref{BSONError}() options_handle = options == nothing ? C_NULL : options.handle ok = mongoc_collection_insert_one(collection.handle, document.handle, options_handle, reply.handle, err_ref) if !ok throw(err_ref[]) end return InsertOneResult(reply, inserted_oid) end function delete_one(collection::Collection, selector::BSON; options::Union{Nothing, BSON}=nothing) reply = BSON() err_ref = Ref{BSONError}() options_handle = options == nothing ? C_NULL : options.handle ok = mongoc_collection_delete_one(collection.handle, selector.handle, options_handle, reply.handle, err_ref) if !ok throw(err_ref[]) end return reply end function delete_many(collection::Collection, selector::BSON; options::Union{Nothing, BSON}=nothing) reply = BSON() err_ref = Ref{BSONError}() options_handle = options == nothing ? C_NULL : options.handle ok = mongoc_collection_delete_many(collection.handle, selector.handle, options_handle, reply.handle, err_ref) if !ok throw(err_ref[]) end return reply end function update_one(collection::Collection, selector::BSON, update::BSON; options::Union{Nothing, BSON}=nothing) reply = BSON() err_ref = Ref{BSONError}() options_handle = options == nothing ? C_NULL : options.handle ok = mongoc_collection_update_one(collection.handle, selector.handle, update.handle, options_handle, reply.handle, err_ref) if !ok throw(err_ref[]) end return reply end function update_many(collection::Collection, selector::BSON, update::BSON; options::Union{Nothing, BSON}=nothing) reply = BSON() err_ref = Ref{BSONError}() options_handle = options == nothing ? C_NULL : options.handle ok = mongoc_collection_update_many(collection.handle, selector.handle, update.handle, options_handle, reply.handle, err_ref) if !ok throw(err_ref[]) end return reply end """ replace_one( collection::Collection, selector::BSON, replacement::BSON; options::Union{Nothing, BSON}=nothing ) Replace the result of querying by `selector` with `replacement`. """ function replace_one( collection::Collection, selector::BSON, replacement::BSON; options::Union{Nothing, BSON}=nothing ) reply = BSON() err_ref = Ref{BSONError}() options_handle = options == nothing ? C_NULL : options.handle ok = mongoc_collection_replace_one(collection.handle, selector.handle, replacement.handle, options_handle, reply.handle, err_ref) if !ok throw(err_ref[]) end return reply end function BulkOperationResult(reply::BSON, server_id::UInt32) BulkOperationResult(reply, server_id, Vector{Union{Nothing, BSONObjectId}}()) end function execute!(bulk_operation::BulkOperation) :: BulkOperationResult if bulk_operation.executed error("Bulk operation was already executed.") end try reply = BSON() err_ref = Ref{BSONError}() bulk_operation_result = mongoc_bulk_operation_execute(bulk_operation.handle, reply.handle, err_ref) if bulk_operation_result == 0 throw(err_ref[]) end return BulkOperationResult(reply, bulk_operation_result) finally destroy!(bulk_operation) end end function bulk_insert!(bulk_operation::BulkOperation, document::BSON; options::Union{Nothing, BSON}=nothing) err_ref = Ref{BSONError}() options_handle = options == nothing ? C_NULL : options.handle ok = mongoc_bulk_operation_insert_with_opts(bulk_operation.handle, document.handle, options_handle, err_ref) if !ok throw(err_ref[]) end nothing end function bulk_replace_one!(bulk_operation::BulkOperation, selector::BSON, replacement::BSON; options::Union{Nothing, BSON}=nothing) err_ref = Ref{BSONError}() options_handle = options === nothing ? C_NULL : options.handle ok = mongoc_bulk_operation_replace_one_with_opts( bulk_operation.handle, selector.handle, replacement.handle, options_handle, err_ref ) if !ok throw(err_ref[]) end nothing end function bulk_update_one!( bulk_operation::BulkOperation, selector::BSON, document::BSON; options::Union{Nothing, BSON} = nothing ) err_ref = Ref{BSONError}() options_handle = options === nothing ? C_NULL : options.handle ok = mongoc_bulk_operation_update_one_with_opts( bulk_operation.handle, selector.handle, document.handle, options_handle, err_ref ) if !ok throw(err_ref[]) end nothing end function insert_many(collection::Collection, documents::Vector{BSON}; bulk_options::Union{Nothing, BSON}=nothing, insert_options::Union{Nothing, BSON}=nothing) inserted_oids = Vector{Union{Nothing, BSONObjectId}}() bulk_operation = BulkOperation(collection, options=bulk_options) for doc in documents doc, inserted_oid = _new_id(doc) bulk_insert!(bulk_operation, doc, options=insert_options) push!(inserted_oids, inserted_oid) end result = execute!(bulk_operation) append!(result.inserted_oids, inserted_oids) return result end """ find(collection::Collection, bson_filter::BSON=BSON(); options::Union{Nothing, BSON}=nothing) :: Cursor Executes a query on `collection` and returns an iterable `Cursor`. # Example ```julia function find_contract_codes(collection, criteria::Dict=Dict()) :: Vector{String} result = Vector{String}() let bson_filter = Mongoc.BSON(criteria) bson_options = Mongoc.BSON(\"\"\"{ "projection" : { "_id" : true }, "sort" : { "_id" : 1 } }\"\"\") for bson_document in Mongoc.find(collection, bson_filter, options=bson_options) push!(result, bson_document["_id"]) end end return result end ``` Check the [libmongoc documentation](http://mongoc.org/libmongoc/current/mongoc_collection_find_with_opts.html) for more information. """ function find(collection::Collection, bson_filter::BSON=BSON(); options::Union{Nothing, BSON}=nothing) :: Cursor options_handle = options == nothing ? C_NULL : options.handle cursor_handle = mongoc_collection_find_with_opts(collection.handle, bson_filter.handle, options_handle, C_NULL) if cursor_handle == C_NULL error("Couldn't execute query.") end return Cursor(collection, cursor_handle) end """ count_documents(collection::Collection, bson_filter::BSON=BSON(); options::Union{Nothing, BSON}=nothing) :: Int Returns the number of documents on a `collection`, with an optional filter given by `bson_filter`. `length(collection)` and `Mongoc.count_documents(collection)` produces the same output. # Example ```julia result = length(collection, Mongoc.BSON("_id" => oid)) ``` """ function count_documents(collection::Collection, bson_filter::BSON=BSON(); options::Union{Nothing, BSON}=nothing) :: Int err_ref = Ref{BSONError}() options_handle = options == nothing ? C_NULL : options.handle len = mongoc_collection_count_documents(collection.handle, bson_filter.handle, options_handle, C_NULL, C_NULL, err_ref) if len == -1 throw(err_ref[]) end return Int(len) end function set_limit!(cursor::Cursor, limit::Int) ok = mongoc_cursor_set_limit(cursor.handle, limit) if !ok error("Couldn't set cursor limit to $limit.") end nothing end """ find_one(collection::Collection, bson_filter::BSON=BSON(); options::Union{Nothing, BSON}=nothing) :: Union{Nothing, BSON} Execute a query to a collection and returns the first element of the result set. Returns `nothing` if the result set is empty. """ function find_one(collection::Collection, bson_filter::BSON=BSON(); options::Union{Nothing, BSON}=nothing) :: Union{Nothing, BSON} cursor = find(collection, bson_filter, options=options) set_limit!(cursor, 1) next = _iterate(cursor) if next == nothing return nothing else bson_document, _state = next return bson_document end end """ aggregate(collection::Collection, bson_pipeline::BSON; flags::QueryFlags=QUERY_FLAG_NONE, options::Union{Nothing, BSON}=nothing) :: Cursor Use `Mongoc.aggregate` to execute an aggregation command. # Example The following reproduces the example from the [MongoDB Tutorial](https://docs.mongodb.com/manual/aggregation/). ```julia docs = [ Mongoc.BSON(\"\"\"{ "cust_id" : "A123", "amount" : 500, "status" : "A" }\"\"\"), Mongoc.BSON(\"\"\"{ "cust_id" : "A123", "amount" : 250, "status" : "A" }\"\"\"), Mongoc.BSON(\"\"\"{ "cust_id" : "B212", "amount" : 200, "status" : "A" }\"\"\"), Mongoc.BSON(\"\"\"{ "cust_id" : "A123", "amount" : 300, "status" : "D" }\"\"\") ] collection = client["my-database"]["aggregation-collection"] append!(collection, docs) # Sets the pipeline command bson_pipeline = Mongoc.BSON(\"\"\" [ { "\$match" : { "status" : "A" } }, { "\$group" : { "_id" : "\$cust_id", "total" : { "\$sum" : "\$amount" } } } ] \"\"\") for doc in Mongoc.aggregate(collection, bson_pipeline) println(doc) end ``` The result of the script above is: ```julia BSON("{ "_id" : "B212", "total" : 200 }") BSON("{ "_id" : "A123", "total" : 750 }") ``` """ function aggregate(collection::Collection, bson_pipeline::BSON; flags::QueryFlags=QUERY_FLAG_NONE, options::Union{Nothing, BSON}=nothing) :: Cursor options_handle = options == nothing ? C_NULL : options.handle cursor_handle = mongoc_collection_aggregate(collection.handle, flags, bson_pipeline.handle, options_handle, C_NULL) if cursor_handle == C_NULL error("Couldn't execute aggregate command.") end return Cursor(collection, cursor_handle) end """ drop(database::Database, opts::Union{Nothing, BSON}=nothing) drop(collection::Collection, opts::Union{Nothing, BSON}=nothing) Drops `database` or `collection`. For information about `opts` argument, check the libmongoc documentation for [database drop](http://mongoc.org/libmongoc/current/mongoc_database_drop_with_opts.html) or [collection drop](http://mongoc.org/libmongoc/current/mongoc_collection_drop_with_opts.html). """ function drop(collection::Collection, opts::Union{Nothing, BSON}=nothing) opts_handle = opts == nothing ? C_NULL : opts.handle err_ref = Ref{BSONError}() ok = mongoc_collection_drop_with_opts(collection.handle, opts_handle, err_ref) if !ok throw(err_ref[]) end nothing end # findAndModify function Base.setproperty!(builder::FindAndModifyOptsBuilder, opt::Symbol, val::BSON) if opt == :update set_opt_update!(builder, val) elseif opt == :sort set_opt_sort!(builder, val) elseif opt == :fields set_opt_fields!(builder, val) else error("Unknown option for FindAndModifyOptsBuilder: $opt") end end function Base.setproperty!(builder::FindAndModifyOptsBuilder, opt::Symbol, val::FindAndModifyFlags) @assert opt == :flags "Can't set $val to field $opt." set_opt_flags!(builder, val) end function set_opt_update!(builder::FindAndModifyOptsBuilder, val::BSON) ok = mongoc_find_and_modify_opts_set_update(builder.handle, val.handle) if !ok error("Couldn't set option update $val for FindAndModifyOptsBuilder.") end nothing end function set_opt_sort!(builder::FindAndModifyOptsBuilder, val::BSON) ok = mongoc_find_and_modify_opts_set_sort(builder.handle, val.handle) if !ok error("Couldn't set option sort $val for FindAndModifyOptsBuilder.") end nothing end function set_opt_fields!(builder::FindAndModifyOptsBuilder, val::BSON) ok = mongoc_find_and_modify_opts_set_fields(builder.handle, val.handle) if !ok error("Couldn't set option fields $val for FindAndModifyOptsBuilder.") end nothing end function set_opt_flags!(builder::FindAndModifyOptsBuilder, val::FindAndModifyFlags) ok = mongoc_find_and_modify_opts_set_flags(builder.handle, val) if !ok error("Couldn't set option flags $val for FindAndModifyOptsBuilder.") end nothing end function Base.setproperty!(builder::FindAndModifyOptsBuilder, opt::Symbol, val::Bool) @assert opt == :bypass_document_validation "Can't set $val to field $opt." set_opt_bypass_document_validation!(builder, val) end function set_opt_bypass_document_validation!(builder::FindAndModifyOptsBuilder, bypass::Bool) ok = mongoc_find_and_modify_opts_set_bypass_document_validation(builder.handle, bypass) if !ok error("Couldn't set option `bypass document validation` for FindAndModifyOptsBuilder.") end nothing end """ find_and_modify(collection::Collection, query::BSON; update::Union{Nothing, BSON}=nothing, sort::Union{Nothing, BSON}=nothing, fields::Union{Nothing, BSON}=nothing, flags::Union{Nothing, FindAndModifyFlags}=nothing, bypass_document_validation::Bool=false, ) :: BSON Find documents and updates them in one go. See [`Mongoc.FindAndModifyFlags`](@ref) for a list of accepted values for `flags` argument. # C API * [mongoc_collection_find_and_modify](http://mongoc.org/libmongoc/current/mongoc_collection_find_and_modify.html). """ function find_and_modify(collection::Collection, query::BSON; update::Union{Nothing, BSON}=nothing, sort::Union{Nothing, BSON}=nothing, fields::Union{Nothing, BSON}=nothing, flags::Union{Nothing, FindAndModifyFlags}=nothing, bypass_document_validation::Bool=false, ) :: BSON opts = FindAndModifyOptsBuilder( update=update, sort=sort, fields=fields, flags=flags, bypass_document_validation=bypass_document_validation, ) reply = BSON() err_ref = Ref{BSONError}() ok = mongoc_collection_find_and_modify_with_opts( collection.handle, query.handle, opts.handle, reply.handle, err_ref) if !ok throw(err_ref[]) end return reply end const FIND_ONE_AND_DELETE_FIELDS = Dict( "collation" => "collation", "maxTimeMS" => "maxTimeMS", "projection" => "fields", "sort" => "sort", "writeConcern" => "writeConcern", ) """ find_one_and_delete(collection::Collection, bson_filter::BSON; options::Union{Nothing, BSON}=nothing ) :: Union{Nothing, BSON} Delete a document and return it. See [db.collection.findOneAndDelete](https://docs.mongodb.com/manual/reference/method/db.collection.findOneAndDelete/) for a list of accepted options. """ function find_one_and_delete(collection::Collection, bson_filter::BSON; options::Union{Nothing, BSON}=nothing) :: Union{Nothing, BSON} command_bson = BSON( "findAndModify" => collection.name, "query" => bson_filter, "remove" => true, ) options_bson = BSON() if !isnothing(options) for (opt_key, comm_key) in FIND_ONE_AND_DELETE_FIELDS if haskey(options, opt_key) command_bson[comm_key] = options[opt_key] end end if haskey(options, "sessionId") options_bson["sessionId"] = options["sessionId"] end end reply = write_command( collection.database, command_bson, options=options_bson, ) return reply["value"] end const FIND_ONE_AND_MODIFY_FIELDS = Dict( "arrayFilters" => "arrayFilters", "bypassDocumentValidation" .=> "bypassDocumentValidation", "collation" => "collation", "maxTimeMS" => "maxTimeMS", "projection" => "fields", "returnNewDocument" => "new", "sort" => "sort", "upsert" => "upsert", "writeConcern" => "writeConcern", ) function _find_one_and_modify(collection::Collection, bson_filter::BSON, bson_modify::BSON; options::Union{Nothing, BSON}=nothing) :: Union{Nothing, BSON} command_bson = BSON( "findAndModify" => collection.name, "query" => bson_filter, "update" => bson_modify, ) options_bson = BSON() if !isnothing(options) for (opt_key, comm_key) in FIND_ONE_AND_MODIFY_FIELDS if haskey(options, opt_key) command_bson[comm_key] = options[opt_key] end end if haskey(options, "sessionId") options_bson["sessionId"] = options["sessionId"] end end reply = write_command( collection.database, command_bson, options=options_bson, ) return reply["value"] end """ find_one_and_replace(collection::Collection, bson_filter::BSON, bson_replacement::BSON; options::Union{Nothing, BSON}=nothing ) :: Union{Nothing, BSON} Replace a document and return the original. See [db.collection.findOneAndReplace](https://docs.mongodb.com/manual/reference/method/db.collection.findOneAndReplace/) for a list of accepted options. """ function find_one_and_replace(collection::Collection, bson_filter::BSON, bson_replacement::BSON; options::Union{Nothing, BSON}=nothing) :: Union{Nothing, BSON} # Ensure the document has no operators for key in keys(bson_replacement) if startswith(key, '$') throw(ArgumentError("replacement must not contain update operators")) end end return _find_one_and_modify(collection, bson_filter, bson_replacement, options=options) end """ find_one_and_update(collection::Collection, bson_filter::BSON, bson_update::BSON; options::Union{Nothing, BSON}=nothing ) :: Union{Nothing, BSON} Update a document and return the original. See [db.collection.findOneAndUpdate](https://docs.mongodb.com/manual/reference/method/db.collection.findOneAndUpdate/) for a list of accepted options. """ function find_one_and_update(collection::Collection, bson_filter::BSON, bson_update::BSON; options::Union{Nothing, BSON}=nothing) :: Union{Nothing, BSON} # Ensure the document only contains operators for key in keys(bson_update) if !startswith(key, '$') throw(ArgumentError("update must only contain update operators")) end end return _find_one_and_modify(collection, bson_filter, bson_update, options=options) end # # High-level API # function _iterate(cursor::Cursor, state::Nothing=nothing) bson_handle_ref = Ref{Ptr{Cvoid}}() has_next = mongoc_cursor_next(cursor.handle, bson_handle_ref) if has_next # The bson document is valid only until the next call to mongoc_cursor_next. # So we should return a deepcopy. return deepcopy(BSON(bson_handle_ref[], enable_finalizer=false)), nothing else err_ref = Ref{BSONError}() if mongoc_cursor_error(cursor.handle, err_ref) throw(err_ref[]) end return nothing end end # Cursor implementation of the iteration interface Base.iterate(cursor::Cursor, state::Nothing=nothing) = _iterate(cursor, state) Base.IteratorSize(::Type{Cursor{T}}) where T = Base.SizeUnknown() Base.IteratorEltype(::Type{Cursor{T}}) where T = Base.HasEltype() Base.eltype(::Type{Cursor{T}}) where T = BSON # Collection implementation of the iteration interface Base.IteratorSize(::Type{<:AbstractCollection}) = Base.HasLength() Base.IteratorEltype(::Type{<:AbstractCollection}) = Base.HasEltype() Base.eltype(::Type{<:AbstractCollection}) = BSON function Base.iterate(coll::Collection) cursor = find(coll) return iterate(coll, cursor) end function Base.iterate(coll::Collection, state::Cursor) next = _iterate(state) if next === nothing return nothing else doc, _ = next return doc, state end end function Base.push!(collection::AbstractCollection, document::BSON; options::Union{Nothing, BSON}=nothing) insert_one(collection, document; options=options) end function Base.append!(collection::AbstractCollection, documents::Vector{BSON}; bulk_options::Union{Nothing, BSON}=nothing, insert_options::Union{Nothing, BSON}=nothing) insert_many(collection, documents; bulk_options=bulk_options, insert_options=insert_options) end function Base.length(collection::AbstractCollection, bson_filter::BSON=BSON(); options::Union{Nothing, BSON}=nothing) count_documents(collection, bson_filter; options=options) end function Base.isempty(collection::AbstractCollection, bson_filter::BSON=BSON(); options::Union{Nothing, BSON}=nothing) count_documents(collection, bson_filter; options=options) == 0 end Base.empty!(collection::C) where {C<:AbstractCollection} = delete_many(collection, BSON()) function Base.collect(cursor::Cursor) :: Vector{BSON} result = Vector{BSON}() for doc in cursor push!(result, doc) end return result end function Base.collect(collection::AbstractCollection, bson_filter::BSON=BSON()) return collect(find(collection, bson_filter)) end
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
code
5293
Base.show(io::IO, db::Database) = print(io, "Database($(db.client), \"", db.name, "\")") Base.getindex(database::Database, collection_name::String) = Collection(database, collection_name) """ command_simple(database::Database, command::BSON) :: BSON command_simple(collection::Collection, command::BSON) :: BSON Executes a `command` given by a JSON string or a BSON instance. It returns the first document from the result cursor. # Example ```julia julia> client = Mongoc.Client() # connects to localhost at port 27017 Client(URI("mongodb://localhost:27017")) julia> bson_result = Mongoc.command_simple(client[\"admin\"], "{ \"ping\" : 1 }") BSON("{ "ok" : 1.0 }") ``` # C API * [`mongoc_database_command_simple`](http://mongoc.org/libmongoc/current/mongoc_database_command_simple.html) """ function command_simple(database::Database, command::BSON) :: BSON reply = BSON() err_ref = Ref{BSONError}() ok = mongoc_database_command_simple(database.handle, command.handle, C_NULL, reply.handle, err_ref) if !ok throw(err_ref[]) end return reply end """ write_command(database::Database, command::BSON; options::Union{Nothing, BSON}=nothing) :: BSON Issue a command with write semantics. See http://mongoc.org/libmongoc/current/mongoc_database_read_write_command_with_opts.html. """ function write_command(database::Database, command::BSON; options::Union{Nothing, BSON}=nothing) :: BSON options_handle = options == nothing ? C_NULL : options.handle reply = BSON() err_ref = Ref{BSONError}() ok = mongoc_database_write_command_with_opts(database.handle, command.handle, options_handle, reply.handle, err_ref) if !ok throw(err_ref[]) end return reply end """ read_command(database::Database, command::BSON; options::Union{Nothing, BSON}=nothing) :: BSON Issue a command with read semantics. See http://mongoc.org/libmongoc/current/mongoc_database_read_command_with_opts.html. """ function read_command(database::Database, command::BSON; options::Union{Nothing, BSON}=nothing) :: BSON options_handle = options == nothing ? C_NULL : options.handle reply = BSON() err_ref = Ref{BSONError}() ok = mongoc_database_read_command_with_opts(database.handle, command.handle, C_NULL, options_handle, reply.handle, err_ref) if !ok throw(err_ref[]) end return reply end """ add_user(database::Database, username::String, password::String, roles::Union{Nothing, BSON}, custom_data::Union{Nothing, BSON}=nothing) This function shall create a new user with access to database. **Warning:** Do not call this function without TLS. """ function add_user(database::Database, username::String, password::String, roles::Union{Nothing, BSON}, custom_data::Union{Nothing, BSON}=nothing) err_ref = Ref{BSONError}() roles_handle = roles == nothing ? C_NULL : roles.handle custom_data_handle = custom_data == nothing ? C_NULL : custom_data.handle ok = mongoc_database_add_user(database.handle, username, password, roles_handle, custom_data_handle, err_ref) if !ok throw(err_ref[]) end nothing end """ remove_user(database::Database, username::String) Removes a user from database. """ function remove_user(database::Database, username::String) err_ref = Ref{BSONError}() ok = mongoc_database_remove_user(database.handle, username, err_ref) if !ok throw(err_ref[]) end nothing end """ has_user(database::Database, user_name::String) :: Bool Checks if `database` has a user named `user_name`. """ function has_user(database::Database, user_name::String) :: Bool cmd_result = command_simple(database, BSON("""{ "usersInfo": "$user_name" }""")) return !isempty(cmd_result["users"]) end """ find_collections(database::Database; options::Union{Nothing, BSON}=nothing) :: Cursor Queries for collections in a `database`. """ function find_collections(database::Database; options::Union{Nothing, BSON}=nothing) :: Cursor options_handle = options == nothing ? C_NULL : options.handle cursor_handle = mongoc_database_find_collections_with_opts(database.handle, options_handle) if cursor_handle == C_NULL error("Couldn't execute query.") end return Cursor(database, cursor_handle) end """ get_collection_names(database::Database; options::Union{Nothing, BSON}=nothing) :: Vector{String} Helper method to get collection names. See also [`Mongoc.find_collections`](@ref). """ function get_collection_names(database::Database; options::Union{Nothing, BSON}=nothing) :: Vector{String} result = Vector{String}() for bson_collection in find_collections(database, options=options) push!(result, bson_collection["name"]) end return result end # docstring for drop is at collection.jl function drop(database::Database; options::Union{Nothing, BSON}=nothing) err_ref = Ref{BSONError}() opts_handle = options == nothing ? C_NULL : options.handle ok = mongoc_database_drop_with_opts(database.handle, opts_handle, err_ref) if !ok throw(err_ref[]) end nothing end
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
code
11597
""" upload(bucket::Bucket, filename::AbstractString, source::AbstractMongoStream; options::Union{Nothing, BSON}=nothing, file_id=BSONObjectId()) Uploads data from `source` to a GridFS file `filename`. `bson_file_id` is a BSON document with a `_id` field. If `_id` field is not present, a `BSONObjectId` will be generated. """ function upload(bucket::Bucket, filename::AbstractString, source::AbstractMongoStream; file_id=BSONObjectId(), chunk_size::Union{Nothing, Integer}=nothing, metadata::Union{Nothing, BSON}=nothing) # Julia does not support C unions. # libmongoc represents bson_value_t as a C union. # To make things work, here we construct a BSON document # and set the id. Later, we retrieve a bson_value_t # using get_as_bson_value, which uses bson_iter_value. # new_bson_with_id returns a tuple with the BSON doc # along with the id to ensure that the lifetime of the BSON # doc exceeds the lifetime of the bson_value_t # that we'll pass to mongoc_gridfs_bucket_upload_from_stream_with_id. function new_bson_with_id(id) doc = BSON("_id" => id) return doc, get_as_bson_value(doc, "_id") end doc, file_id_as_bson_value = new_bson_with_id(file_id) function new_bson_upload_opts(chunk_size::Union{Nothing, Integer}, metadata::Union{Nothing, BSON}) :: Union{Nothing, BSON} if chunk_size == nothing && metadata == nothing return nothing else result = BSON() if chunk_size != nothing result["chunkSizeBytes"] = Int32(chunk_size) end if metadata != nothing result["metadata"] = metadata end return result end end options = new_bson_upload_opts(chunk_size, metadata) options_handle = options == nothing ? C_NULL : options.handle err_ref = Ref{BSONError}() ok = mongoc_gridfs_bucket_upload_from_stream_with_id( bucket.handle, file_id_as_bson_value.handle, filename, source.handle, options_handle, err_ref ) if !ok throw(err_ref[]) end nothing end """ upload(bucket::Bucket, remote_filename::AbstractString, local_source_filepath::AbstractString; options::Union{Nothing, BSON}=nothing, file_id=BSONObjectId()) High-level interface to upload a local file to a GridFS bucket. """ function upload(bucket::Bucket, remote_filename::AbstractString, local_source_filepath::AbstractString; file_id=BSONObjectId(), chunk_size::Union{Nothing, Integer}=nothing, metadata::Union{Nothing, BSON}=nothing) @assert isfile(local_source_filepath) "Couldn't find $local_source_filepath." source_stream = MongoStreamFile(local_source_filepath) try upload(bucket, remote_filename, source_stream, file_id=file_id, chunk_size=chunk_size, metadata=metadata) finally close(source_stream) end end """ download(bucket::Bucket, file_id, target::AbstractMongoStream) Download a GridFS file identified by `file_id` to `target` stream. `file_id` may be either a `BSONValue` or a `BSON` document with an `_id` field. """ function download(bucket::Bucket, file_id::BSONValue, target::AbstractMongoStream) err_ref = Ref{BSONError}() ok = mongoc_gridfs_bucket_download_to_stream( bucket.handle, file_id.handle, target.handle, err_ref ) if !ok throw(err_ref[]) end nothing end function download(bucket::Bucket, file_info::BSON, target::AbstractMongoStream) @assert haskey(file_info, "_id") download(bucket, get_as_bson_value(file_info, "_id"), target) end function find_file_info(bucket::Bucket, filename::AbstractString) :: BSON bson_filter = BSON() bson_filter["filename"] = String(filename) local found::Bool=false local result::BSON for doc in find(bucket, bson_filter) @assert !found "More than 1 file was found with name $filename." found = true result = doc end @assert found "Coudln't find file with name $filename." return result end function download(bucket::Bucket, remote_file_id_or_info::Union{BSONValue, BSON}, local_filepath::AbstractString; flags::Integer=(Base.Filesystem.JL_O_CREAT | Base.Filesystem.JL_O_RDWR), mode::Integer=0o600) download_file_stream = Mongoc.MongoStreamFile(local_filepath, flags=(Base.Filesystem.JL_O_CREAT | Base.Filesystem.JL_O_RDWR), mode=0o600) try Mongoc.download(bucket, remote_file_id_or_info, download_file_stream) finally Mongoc.close(download_file_stream) end end """ download(bucket::Bucket, remote_file, local_filepath::AbstractString; flags::Integer=(Base.Filesystem.JL_O_CREAT | Base.Filesystem.JL_O_RDWR), mode::Integer=0o600 Downloads a GridFS file `remote_file` to `local_filepath`. `remote_file` can be either a unique filename, or a `file_id::BSONValue`, or `file_info::BSON`. """ function download(bucket::Bucket, remote_filename::AbstractString, local_filepath::AbstractString; flags::Integer=(Base.Filesystem.JL_O_CREAT | Base.Filesystem.JL_O_RDWR), mode::Integer=0o600) file_info = find_file_info(bucket, remote_filename) download(bucket, file_info, local_filepath, flags=flags, mode=mode) end """ find(bucket::Bucket, bson_filter::BSON=BSON(); options::BSON=BSON()) :: Cursor Looks for files in GridFS bucket. """ function find(bucket::Bucket, bson_filter::BSON=BSON(); options::BSON=BSON()) :: Cursor cursor_handle = mongoc_gridfs_bucket_find(bucket.handle, bson_filter.handle, options.handle) if cursor_handle == C_NULL error("Couldn't execute query.") end return Cursor(bucket, cursor_handle) end """ delete(bucket::Bucket, file_id) delete(bucket::Bucket, file_metadata::BSON) Deletes a file from a GridFS Bucket. """ function delete(bucket::Bucket, file_id::BSONValue) err_ref = Ref{BSONError}() ok = mongoc_gridfs_bucket_delete_by_id(bucket.handle, file_id.handle, err_ref) if !ok throw(err_ref[]) end nothing end function delete(bucket::Bucket, file_metadata::BSON) oid_as_bson_value = get_as_bson_value(file_metadata, "_id") delete(bucket, oid_as_bson_value) end function delete(bucket::Bucket, file_id) file_metadata = BSON("_id" => file_id) delete(bucket, file_metadata) end function Base.empty!(bucket::Bucket) for doc in find(bucket) delete(bucket, doc) end end function Base.isempty(bucket::Bucket) for _ in find(bucket) return false end return true end function open_download_stream(bucket::Bucket, file_id::BSONValue; timeout_msec::Integer=DEFAULT_TIMEOUT_MSEC, chunk_size::Integer=DEFAULT_CHUNK_SIZE) :: MongoIOStream err_ref = Ref{BSONError}() stream_handle = mongoc_gridfs_bucket_open_download_stream(bucket.handle, file_id.handle, err_ref) if stream_handle == C_NULL throw(err_ref[]) end return MongoIOStream(bucket, stream_handle; timeout_msec=timeout_msec, chunk_size=chunk_size) end function open_download_stream(bucket::Bucket, filename::AbstractString) :: MongoIOStream local result::MongoIOStream file_info = find_file_info(bucket, filename) return open_download_stream(bucket, file_info) end function open_download_stream(bucket::Bucket, file_info::BSON; timeout_msec::Integer=DEFAULT_TIMEOUT_MSEC, chunk_size::Integer=DEFAULT_CHUNK_SIZE) :: MongoIOStream @assert haskey(file_info, "_id") return open_download_stream(bucket, get_as_bson_value(file_info, "_id"), timeout_msec=timeout_msec, chunk_size=chunk_size) end """ open_download_stream(f, bucket, filename) open_download_stream(bucket, filename) :: MongoIOStream Opens a stream for reading a remote file identified by `filename`. # Example Open a stream, do some work, then close it. ```julia io = Mongoc.open_download_stream(bucket, file) try tmp_str = read(io, String) finally close(io) end ``` Use *do-syntax* to ensure that the `io` stream will be closed in case something goes wrong. ```julia Mongoc.open_download_stream(bucket, remote_filename) do io tmp_str = read(io, String) end ``` """ function open_download_stream(f::Function, bucket::Bucket, file::Union{BSONValue, AbstractString}) stream = open_download_stream(bucket, file) try f(stream) finally close(stream) end end function open_upload_stream(bucket::Bucket, file_id::BSONValue, filename::AbstractString; options::Union{Nothing, BSON}=nothing, timeout_msec::Integer=DEFAULT_TIMEOUT_MSEC, chunk_size::Integer=DEFAULT_CHUNK_SIZE) :: MongoIOStream err_ref = Ref{BSONError}() options_handle = options == nothing ? C_NULL : options.handle stream_handle = mongoc_gridfs_bucket_open_upload_stream_with_id( bucket.handle, file_id.handle, filename, options_handle, err_ref) if stream_handle == C_NULL throw(err_ref[]) end return MongoIOStream( bucket, stream_handle, timeout_msec=timeout_msec, chunk_size=chunk_size ) end function open_upload_stream(bucket::Bucket, file_info::BSON; options::Union{Nothing, BSON}=nothing, timeout_msec::Integer=DEFAULT_TIMEOUT_MSEC, chunk_size::Integer=DEFAULT_CHUNK_SIZE) :: MongoIOStream @assert haskey(file_info, "filename") "`file_info` must have a `filename` field." # generates a new _id if not present in `file_info` if !haskey(file_info, "_id") file_info["_id"] = BSONObjectId() end return open_upload_stream( bucket, get_as_bson_value(file_info, "_id"), file_info["filename"], options=options, timeout_msec=timeout_msec, chunk_size=chunk_size ) end """ open_upload_stream(bucket, file_id, filename; [options], [timeout_msec], [chunk_size]) :: MongoIOStream open_upload_stream(bucket, filename; [options], [timeout_msec], [chunk_size]) :: MongoIOStream open_upload_stream(bucket, file_info; [options], [timeout_msec], [chunk_size]) :: MongoIOStream Opens a stream to upload a file to a GridFS Bucket. `file_info` is a BSON document with the following fields: * `_id` as an optional identifier. * `filename` as the name of the file in the remote bucket. If `_id` is not provided, a `BSONObjectId` will be generated. # Example ```julia data = rand(UInt8, 3_000_000) remote_filename = "uploaded.data" io = Mongoc.open_upload_stream(bucket, remote_filename) write(io, data) close(io) ``` """ function open_upload_stream(bucket::Bucket, file_id, filename::AbstractString; options::Union{Nothing, BSON}=nothing, timeout_msec::Integer=DEFAULT_TIMEOUT_MSEC, chunk_size::Integer=DEFAULT_CHUNK_SIZE) :: MongoIOStream file_info = BSON("_id" => file_id, "filename" => filename) return open_upload_stream(bucket, file_info, options=options, timeout_msec=timeout_msec, chunk_size=chunk_size) end function open_upload_stream(bucket::Bucket, filename::AbstractString; options::Union{Nothing, BSON}=nothing, timeout_msec::Integer=DEFAULT_TIMEOUT_MSEC, chunk_size::Integer=DEFAULT_CHUNK_SIZE) :: MongoIOStream file_info = BSON("filename" => filename) return open_upload_stream(bucket, file_info, options=options, timeout_msec=timeout_msec, chunk_size=chunk_size) end
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
code
8302
# Append session to options. # Given that options may be nothing, always use the return value as the new value for options. function _join(options::Union{Nothing, BSON}, session::Session) :: BSON result = options == nothing ? Mongoc.BSON() : options err_ref = Ref{BSONError}() ok = mongoc_client_session_append(session.handle, result.handle, err_ref) if !ok throw(err_ref[]) end return result end function set_casual_consistency!(session_options::SessionOptions, casual_consistency::Bool) mongoc_session_opts_set_causal_consistency(session_options.handle, casual_consistency) nothing end function get_casual_consistency(session_options::SessionOptions) :: Bool mongoc_session_opts_get_causal_consistency(session_options.handle) end get_session(database_session::DatabaseSession) = database_session.session get_session(collection_session::CollectionSession) = get_session(collection_session.database_session) function DatabaseSession(session::Session, db_name::String) DatabaseSession(Database(session.client, db_name), session) end function CollectionSession(database_session::DatabaseSession, collection_name::String) CollectionSession(database_session, Collection(database_session.database, collection_name)) end Base.getindex(session::Session, db_name::String) = DatabaseSession(session, db_name) function Base.getindex(database_session::DatabaseSession, collection_name::String) CollectionSession(database_session, collection_name) end # # Overload # function find_collections(database::DatabaseSession; options::Union{Nothing, BSON}=nothing) options_with_session = _join(options, get_session(database)) find_collections(database.database; options=options_with_session) end function get_collection_names(database::DatabaseSession; options::Union{Nothing, BSON}=nothing) options_with_session = _join(options, get_session(database)) get_collection_names(database.database, options=options_with_session) end function insert_one(collection::CollectionSession, document::BSON; options::Union{Nothing, BSON}=nothing) options_with_session = _join(options, get_session(collection)) insert_one(collection.collection, document, options=options_with_session) end function delete_one(collection::CollectionSession, selector::BSON; options::Union{Nothing, BSON}=nothing) options_with_session = _join(options, get_session(collection)) delete_one(collection.collection, selector, options=options_with_session) end function delete_many(collection::CollectionSession, selector::BSON; options::Union{Nothing, BSON}=nothing) options_with_session = _join(options, get_session(collection)) delete_many(collection.collection, selector, options=options_with_session) end function update_one(collection::CollectionSession, selector::BSON, update::BSON; options::Union{Nothing, BSON}=nothing) options_with_session = _join(options, get_session(collection)) update_one(collection.collection, selector, update, options=options_with_session) end function update_many(collection::CollectionSession, selector::BSON, update::BSON; options::Union{Nothing, BSON}=nothing) options_with_session = _join(options, get_session(collection)) update_many(collection.collection, selector, update, options=options_with_session) end function insert_many(collection::CollectionSession, documents::Vector{BSON}; bulk_options::Union{Nothing, BSON}=nothing, insert_options::Union{Nothing, BSON}=nothing) bulk_options_with_session = _join(bulk_options, get_session(collection)) insert_many(collection.collection, documents, bulk_options=bulk_options_with_session, insert_options=insert_options) end function find(collection::CollectionSession, bson_filter::BSON=BSON(); options::Union{Nothing, BSON}=nothing) :: Cursor options_with_session = _join(options, get_session(collection)) find(collection.collection, bson_filter, options=options_with_session) end function count_documents(collection::CollectionSession, bson_filter::BSON=BSON(); options::Union{Nothing, BSON}=nothing) options_with_session = _join(options, get_session(collection)) count_documents(collection.collection, bson_filter, options=options_with_session) end function find_one(collection::CollectionSession, bson_filter::BSON=BSON(); options::Union{Nothing, BSON}=nothing) :: Union{Nothing, BSON} options_with_session = _join(options, get_session(collection)) find_one(collection.collection, bson_filter, options=options_with_session) end function aggregate(collection::CollectionSession, bson_pipeline::BSON; flags::QueryFlags=QUERY_FLAG_NONE, options::Union{Nothing, BSON}=nothing) :: Cursor options_with_session = _join(options, get_session(collection)) aggregate(collection.collection, bson_pipeline, flags=flags, options=options_with_session) end function find_one_and_delete(collection::CollectionSession, bson_filter::BSON; options::Union{Nothing, BSON}=nothing) :: Union{Nothing, BSON} options_with_session = _join(options, get_session(collection)) find_one_and_delete(collection.collection, bson_filter, options=options_with_session) end function find_one_and_replace(collection::CollectionSession, bson_filter::BSON, bson_replacement::BSON; options::Union{Nothing, BSON}=nothing) :: Union{Nothing, BSON} options_with_session = _join(options, get_session(collection)) find_one_and_replace(collection.collection, bson_filter, bson_replacement, options=options_with_session) end function find_one_and_update(collection::CollectionSession, bson_filter::BSON, bson_update::BSON; options::Union{Nothing, BSON}=nothing) :: Union{Nothing, BSON} options_with_session = _join(options, get_session(collection)) find_one_and_update(collection.collection, bson_filter, bson_update, options=options_with_session) end function drop(collection::CollectionSession, opts::Union{Nothing, BSON}=nothing) drop(collection.collection, opts) end # # Transaction # function start_transaction!(session::Session) err_ref = Ref{BSONError}() ok = mongoc_client_session_start_transaction(session.handle, C_NULL, err_ref) if !ok throw(err_ref[]) end nothing end function abort_transaction!(session::Session) err_ref = Ref{BSONError}() ok = mongoc_client_session_abort_transaction(session.handle, err_ref) if !ok throw(err_ref[]) end nothing end function commit_transaction!(session::Session) :: BSON reply = BSON() err_ref = Ref{BSONError}() ok = mongoc_client_session_commit_transaction(session.handle, reply.handle, err_ref) if !ok throw(err_ref[]) end return reply end in_transaction(session::Session) :: Bool = mongoc_client_session_in_transaction(session.handle) # # High-level API # """ transaction(f::Function, client::Client; session_options::SessionOptions=SessionOptions()) Use *do-syntax* to execute a transaction. Transaction will be commited automatically. If an error occurs, the transaction is aborted. The `session` parameter should be treated the same way as a `Client`: from a `session` you get a `database`, and a `collection` that are bound to the session. ```julia Mongoc.transaction(client) do session database = session["my_database"] collection = database["my_collection"] new_item = Mongoc.BSON() new_item["inserted"] = true push!(collection, new_item) end ``` """ function transaction(f::Function, client::Client; session_options::SessionOptions=SessionOptions()) local result::Union{Nothing, BSON} = nothing local aborted::Bool = false session = Session(client, options=session_options) start_transaction!(session) try f(session) catch abort_transaction!(session) aborted = true rethrow() finally if !aborted result = commit_transaction!(session) end Mongoc.destroy!(session) end return result end
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
code
4595
""" MongoStreamFile(filepath; [flags=JL_O_RDONLY], [mode=0], [timeout_msec=DEFAULT_TIMEOUT_MSEC], [chunk_size=DEFAULT_CHUNK_SIZE]) Creates a stream from file located at `filepath`. `flags` is the input to pass to `open`. Must be one of the constants defined at `Base.Filesystem`: `Base.Filesystem.JL_O_RDONLY`, `Base.Filesystem.JL_O_CREAT`, etc. `mode` is an optional mode to pass to `open`. """ function MongoStreamFile(filepath::AbstractString; flags::Integer=Base.Filesystem.JL_O_RDONLY, mode::Integer=0, timeout_msec::Integer=DEFAULT_TIMEOUT_MSEC, chunk_size::Integer=DEFAULT_CHUNK_SIZE) handle = mongoc_stream_file_new_for_path(filepath, flags, mode) if handle == C_NULL error("Couldn't create stream for $filepath.") end return MongoStreamFile(nothing, handle, timeout_msec=timeout_msec, chunk_size=chunk_size) end function check_stream_error(stream::MongoIOStream) err_ref = Ref{BSONError}() if mongoc_gridfs_bucket_stream_error(stream.handle, err_ref) throw(err_ref[]) end nothing end function check_stream_error(stream::AbstractMongoStream) nothing end """ abort_upload(io::MongoIOStream) Aborts the upload of a GridFS upload stream. """ function abort_upload(io::MongoIOStream) ok = mongoc_gridfs_bucket_abort_upload(io.handle) if !ok check_stream_error(io) error("Error aborting upload.") end nothing end function Base.flush(stream::AbstractMongoStream) ok = mongoc_stream_flush(stream.handle) if ok == -1 check_stream_error(stream) error("Error flushing stream.") end @assert ok == 0 "Unexpected result from mongoc_stream_flush: $(Int(ok))" nothing end function Base.close(stream::AbstractMongoStream) if stream.isopen ok = mongoc_stream_close(stream.handle) if ok == -1 check_stream_error(stream) error("Error closing stream.") end @assert ok == 0 "Unexpected result from mongoc_stream_close: $(Int(ok))" stream.isopen = false end nothing end Base.isopen(stream::AbstractMongoStream) = stream.isopen function Base.readbytes!(s::AbstractMongoStream, buffer::AbstractArray{UInt8}, nb=length(b)) chunk = Vector{UInt8}(undef, s.chunk_size) total_nr = 0 while true next_nb = min(s.chunk_size, nb - total_nr) nr = fillbuffer!(s, chunk, next_nb) if nr == 0 # reached end of stream break end transfer_to_buffer!( buffer, total_nr, chunk, nr ) total_nr += nr # should never happen @assert total_nr <= nb if total_nr == nb # read the number of bytes requested break end end return total_nr end # returns the number of available bytes in the buffer function nb_free(buffer, buffer_pos::Integer) @assert length(buffer) >= buffer_pos return length(buffer) - buffer_pos end # returns the number of bytes that will be copied to the buffer function nb_to_fill(buffer, buffer_pos::Integer, nr::Integer) fr = nb_free(buffer, buffer_pos) return min(nr, fr) end # returns the number of bytes that will be appended to the buffer function nb_to_append(buffer, buffer_pos::Integer, nr::Integer) result = nr - nb_to_fill(buffer, buffer_pos, nr) @assert result >= 0 return result end # transfers nr bytes from data to target.buffer # writes data after target.pos, increasing buffer size if needed function transfer_to_buffer!(buffer::T, buffer_pos::Integer, data::T, nr::Integer) where {T} # sanity checks @assert nr > 0 @assert length(data) >= nr @assert buffer_pos <= length(buffer) resize!(buffer, length(buffer) + nb_to_append(buffer, buffer_pos, nr)) for i in 1:nr buffer[buffer_pos + i] = data[i] end end # reads at most nb byter to buffer without resizing it # returns the number of bytes read function fillbuffer!(s::AbstractMongoStream, buffer::AbstractArray{UInt8}, nb::Integer) @assert nb <= length(buffer) nr = mongoc_stream_read(s.handle, pointer(buffer), nb, 0, s.timeout_msec) if nr == -1 check_stream_error(stream) error("Error closing stream.") end return nr end function Base.unsafe_write(io::AbstractMongoStream, p::Ptr{UInt8}, n::UInt) written = mongoc_stream_write(io.handle, p, n, io.timeout_msec) if written == -1 check_stream_error(io) error("Error writing to stream.") end @assert written >= 0 return Int(written) end
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
code
15825
""" `QueryFlags` correspond to the MongoDB wire protocol. They may be bitwise or’d together. They may modify how a query is performed in the MongoDB server. These flags are passed as optional argument for the aggregation function `Mongoc.aggregate`. This data type mirrors C struct `mongoc_query_flags_t`. See [libmongoc docs](http://mongoc.org/libmongoc/current/mongoc_query_flags_t.html) for more information. # Constants `Mongoc.QUERY_FLAG_NONE`: Specify no query flags. `Mongoc.QUERY_FLAG_TAILABLE_CURSOR`: Cursor will not be closed when the last data is retrieved. You can resume this cursor later. `Mongoc.QUERY_FLAG_SLAVE_OK`: Allow query of replica set secondaries. `Mongoc.QUERY_FLAG_OPLOG_REPLAY`: Used internally by MongoDB. `Mongoc.QUERY_FLAG_NO_CURSOR_TIMEOUT`: The server normally times out an idle cursor after an inactivity period (10 minutes). This prevents that. `Mongoc.QUERY_FLAG_AWAIT_DATA`: Use with `Mongoc.MONGOC_QUERY_TAILABLE_CURSOR`. Block rather than returning no data. After a period, time out. `Mongoc.QUERY_FLAG_EXHAUST`: Stream the data down full blast in multiple "reply" packets. Faster when you are pulling down a lot of data and you know you want to retrieve it all. `Mongoc.QUERY_FLAG_PARTIAL`: Get partial results from mongos if some shards are down (instead of throwing an error). """ primitive type QueryFlags sizeof(Cint) * 8 end """ Adds one or more flags to the `FindAndModifyOptsBuilder`. These flags can be *ORed* together, as in `flags = Mongoc.FIND_AND_MODIFY_FLAG_UPSERT | Mongoc.FIND_AND_MODIFY_FLAG_RETURN_NEW`. * `FIND_AND_MODIFY_FLAG_NONE`: Default. Doesn’t add anything to the builder. * `FIND_AND_MODIFY_FLAG_REMOVE`: Will instruct find_and_modify to remove the matching document. * `FIND_AND_MODIFY_FLAG_UPSERT`: Update the matching document or, if no document matches, insert the document. * `FIND_AND_MODIFY_FLAG_RETURN_NEW`: Return the resulting document. """ primitive type FindAndModifyFlags sizeof(Cint) * 8 end const QueryOrFindAndModifyFlags = Union{QueryFlags, FindAndModifyFlags} Base.convert(::Type{T}, t::QueryOrFindAndModifyFlags) where {T<:Number} = reinterpret(Cint, t) Base.convert(::Type{Q}, n::T) where {Q<:QueryOrFindAndModifyFlags, T<:Number} = reinterpret(Q, n) Cint(flags::QueryOrFindAndModifyFlags) = convert(Cint, flags) Base.:(|)(flag1::T, flag2::T) where {T<:QueryOrFindAndModifyFlags} = T( Cint(flag1) | Cint(flag2) ) Base.:(&)(flag1::T, flag2::T) where {T<:QueryOrFindAndModifyFlags} = T( Cint(flag1) & Cint(flag2) ) QueryFlags(u::Cint) = convert(QueryFlags, u) QueryFlags(i::Number) = QueryFlags(Cint(i)) Base.show(io::IO, flags::QueryFlags) = print(io, "QueryFlags($(Cint(flags)))") FindAndModifyFlags(u::Cint) = convert(FindAndModifyFlags, u) FindAndModifyFlags(i::Number) = FindAndModifyFlags(Cint(i)) Base.show(io::IO, flags::FindAndModifyFlags) = print(io, "FindAndModifyFlags($(Cint(flags)))") const QUERY_FLAG_NONE = QueryFlags(0) const QUERY_FLAG_TAILABLE_CURSOR = QueryFlags(1 << 1) const QUERY_FLAG_SLAVE_OK = QueryFlags(1 << 2) const QUERY_FLAG_OPLOG_REPLAY = QueryFlags(1 << 3) const QUERY_FLAG_NO_CURSOR_TIMEOUT = QueryFlags(1 << 4) const QUERY_FLAG_AWAIT_DATA = QueryFlags(1 << 5) const QUERY_FLAG_EXHAUST = QueryFlags(1 << 6) const QUERY_FLAG_PARTIAL = QueryFlags(1 << 7) const FIND_AND_MODIFY_FLAG_NONE = FindAndModifyFlags(0) const FIND_AND_MODIFY_FLAG_REMOVE = FindAndModifyFlags(1 << 0) const FIND_AND_MODIFY_FLAG_UPSERT = FindAndModifyFlags(1 << 1) const FIND_AND_MODIFY_FLAG_RETURN_NEW = FindAndModifyFlags(1 << 2) # `URI` is a wrapper for C struct `mongoc_uri_t`." mutable struct URI uri::String handle::Ptr{Cvoid} function URI(uri_string::String) err_ref = Ref{BSONError}() handle = mongoc_uri_new_with_error(uri_string, err_ref) if handle == C_NULL throw(err_ref[]) end new_uri = new(uri_string, handle) finalizer(destroy!, new_uri) return new_uri end end mutable struct ClientPool uri::String handle::Ptr{Cvoid} function ClientPool(uri::URI; max_size::Union{Nothing, Integer}=nothing) client_pool_handle = mongoc_client_pool_new(uri.handle) @assert client_pool_handle != C_NULL "Failed to create client pool from URI $(uri.uri)." client_pool = new(uri.uri, client_pool_handle) finalizer(destroy!, client_pool) if max_size != nothing set_max_size(client_pool, max_size) end return client_pool end end # `Client` is a wrapper for C struct `mongoc_client_t`. mutable struct Client{T<:Union{Nothing, ClientPool}} uri::String handle::Ptr{Cvoid} pool::T end function Client(uri::URI) client_handle = mongoc_client_new_from_uri(uri.handle) @assert client_handle != C_NULL "Failed to create client handle from URI $(uri.uri)." client = Client(uri.uri, client_handle, nothing) finalizer(destroy!, client) return client end function Client(pool::ClientPool; try_pop::Bool=false, pop_timeout_secs::Real=10.0) local client_handle::Ptr{Cvoid} if try_pop client_handle = mongoc_client_pool_try_pop(pool.handle) else # NOTE: The blocking mongoc_client_pop() can deadlock the process # during GC, see https://github.com/felipenoris/Mongoc.jl/issues/84. # Would prefer to use @threadcall to avoid this issue, but # that appears to generate exceptions # (see https://github.com/felipenoris/Mongoc.jl/issues/84#issuecomment-926433352). # Periodically polling as a temporary workaround. waiting_time = 0.0 sleep_period = 0.01 while true client_handle = mongoc_client_pool_try_pop(pool.handle) client_handle != C_NULL && break sleep(sleep_period) waiting_time += sleep_period if waiting_time > pop_timeout_secs error("Failed to create client handle from Pool.") end end end @assert client_handle != C_NULL "Failed to create client handle from Pool." client = Client(pool.uri, client_handle, pool) finalizer(destroy!, client) return client end abstract type AbstractDatabase end abstract type AbstractCollection end # `Database` is a wrapper for C struct `mongoc_database_t`. mutable struct Database <: AbstractDatabase client::Client name::String handle::Ptr{Cvoid} function Database(client::Client, db_name::String) db = new(client, db_name, mongoc_client_get_database(client.handle, db_name)) finalizer(destroy!, db) return db end end mutable struct Bucket database::Database handle::Ptr{Cvoid} function Bucket(database::Database; options::Union{Nothing, BSON}=nothing) options_handle = options == nothing ? C_NULL : options.handle err_ref = Ref{BSONError}() gridfs_handle = mongoc_gridfs_bucket_new(database.handle, options_handle, C_NULL, err_ref) if gridfs_handle == C_NULL throw(err_ref[]) end gridfs = new(database, gridfs_handle) finalizer(destroy!, gridfs) return gridfs end end # `Collection` is a wrapper for C struct `mongoc_collection_t`. mutable struct Collection <: AbstractCollection database::Database name::String handle::Ptr{Cvoid} function Collection(database::Database, collection_name::String) collection_handle = mongoc_database_get_collection(database.handle, collection_name) @assert collection_handle != C_NULL "Failed to create a collection handle to $collection_name on db $(database.name)." collection = new(database, collection_name, collection_handle) finalizer(destroy!, collection) return collection end end const CursorSource = Union{Client, AbstractDatabase, AbstractCollection, Bucket} # `Cursor` is a wrapper for C struct `mongoc_cursor_t`. mutable struct Cursor{T<:CursorSource} source::T handle::Ptr{Cvoid} function Cursor(source::T, handle::Ptr{Cvoid}) where {T<:CursorSource} cursor = new{T}(source, handle) finalizer(destroy!, cursor) return cursor end end function batch_size(cursor::Cursor) cursor.handle != C_NULL || error("Cursor destroyed") GC.@preserve cursor mongoc_cursor_get_batch_size(cursor.handle) end function batch_size!(cursor::Cursor, batch_size::Integer) cursor.handle != C_NULL || error("Cursor destroyed") GC.@preserve cursor mongoc_cursor_set_batch_size(cursor.handle, batch_size) end mutable struct BulkOperation collection::Collection handle::Ptr{Cvoid} executed::Bool function BulkOperation(collection::Collection; options::Union{Nothing, BSON}=nothing) options_handle = options == nothing ? C_NULL : options.handle handle = mongoc_collection_create_bulk_operation_with_opts(collection.handle, options_handle) @assert handle != C_NULL "Failed to create a bulk operation handle." bulk_operation = new(collection, handle, false) finalizer(destroy!, bulk_operation) return bulk_operation end end struct InsertOneResult{T} reply::BSON inserted_oid::T end struct BulkOperationResult{T} reply::BSON server_id::UInt32 inserted_oids::Vector{T} end # # Basic functions for types # function destroy!(uri::URI) if uri.handle != C_NULL mongoc_uri_destroy(uri.handle) uri.handle = C_NULL end nothing end function destroy!(client::Client{Nothing}) if client.handle != C_NULL mongoc_client_destroy(client.handle) client.handle = C_NULL end nothing end function destroy!(client::Client{ClientPool}) if client.handle != C_NULL mongoc_client_pool_push(client.pool.handle, client.handle) client.handle = C_NULL end nothing end function destroy!(client_pool::ClientPool) if client_pool.handle != C_NULL mongoc_client_pool_destroy(client_pool.handle) client_pool.handle = C_NULL end nothing end function destroy!(database::Database) if database.handle != C_NULL mongoc_database_destroy(database.handle) database.handle = C_NULL end nothing end function destroy!(gridfs::Bucket) if gridfs.handle != C_NULL mongoc_gridfs_bucket_destroy(gridfs.handle) gridfs.handle = C_NULL end end function destroy!(collection::Collection) if collection.handle != C_NULL mongoc_collection_destroy(collection.handle) collection.handle = C_NULL end nothing end function destroy!(cursor::Cursor) if cursor.handle != C_NULL mongoc_cursor_destroy(cursor.handle) cursor.handle = C_NULL end nothing end function destroy!(bulk_operation::BulkOperation) if bulk_operation.handle != C_NULL mongoc_bulk_operation_destroy(bulk_operation.handle) bulk_operation.handle = C_NULL bulk_operation.executed = true end nothing end # # Session Types # mutable struct SessionOptions handle::Ptr{Cvoid} function SessionOptions(; casual_consistency::Bool=true) session_options_handle = mongoc_session_opts_new() @assert session_options_handle != C_NULL "Failed to create session options handle." session_options = new(session_options_handle) finalizer(destroy!, session_options) set_casual_consistency!(session_options, casual_consistency) return session_options end end mutable struct Session client::Client options::SessionOptions handle::Ptr{Cvoid} function Session(client::Client; options::SessionOptions=SessionOptions()) err_ref = Ref{BSONError}() session_handle = mongoc_client_start_session(client.handle, options.handle, err_ref) if session_handle == C_NULL throw(err_ref[]) end session = new(client, options, session_handle) finalizer(destroy!, session) return session end end struct DatabaseSession <: AbstractDatabase database::Database session::Session end struct CollectionSession <: AbstractCollection database_session::DatabaseSession collection::Collection end #= struct BulkOperationSession collection_session::CollectionSession bulk_operation::BulkOperation function BulkOperationSession(collection_session::CollectionSession, options::Union{Nothing, BSON}) options_with_session = _join(options, get_session(collection_session)) bulk_operation = BulkOperation(collection_session.collection, options=options_with_session) return BulkOperationSession(collection_session, bulk_operation) end end =# function destroy!(session_options::SessionOptions) if session_options.handle != C_NULL mongoc_session_opts_destroy(session_options.handle) session_options.handle = C_NULL end nothing end function destroy!(session::Session) if session.handle != C_NULL mongoc_client_session_destroy(session.handle) session.handle = C_NULL end nothing end mutable struct FindAndModifyOptsBuilder handle::Ptr{Cvoid} function FindAndModifyOptsBuilder(; update::Union{Nothing, BSON}=nothing, sort::Union{Nothing, BSON}=nothing, fields::Union{Nothing, BSON}=nothing, flags::Union{Nothing, FindAndModifyFlags}=nothing, bypass_document_validation::Bool=false, ) opts = new(mongoc_find_and_modify_opts_new()) finalizer(destroy!, opts) if update != nothing opts.update = update end if sort != nothing opts.sort = sort end if fields != nothing opts.fields = fields end if flags != nothing opts.flags = flags end opts.bypass_document_validation = bypass_document_validation return opts end end function destroy!(opts::FindAndModifyOptsBuilder) if opts.handle != C_NULL mongoc_find_and_modify_opts_destroy(opts.handle) opts.handle = C_NULL end nothing end # # Streams # """ # Interface ## Mutable fields * `handle::Ptr{Cvoid}` * `isopen::Bool` * `timeout_msec::Int` * `chunk_size::UInt` """ abstract type AbstractMongoStream <: IO end function destroy!(stream::AbstractMongoStream) if stream.handle != C_NULL mongoc_stream_destroy(stream.handle) stream.handle = C_NULL end end # 30sec const DEFAULT_TIMEOUT_MSEC = 30000 # 56kb of chunk size when reading from streams const DEFAULT_CHUNK_SIZE = 56 * 1024 mutable struct MongoStreamFile{T} <: AbstractMongoStream owner::T handle::Ptr{Cvoid} isopen::Bool timeout_msec::Int chunk_size::UInt function MongoStreamFile(owner::T, handle::Ptr{Cvoid}; timeout_msec::Integer=DEFAULT_TIMEOUT_MSEC, chunk_size::Integer=DEFAULT_CHUNK_SIZE ) where {T} @assert handle != C_NULL stream = new{T}(owner, handle, true, Int(timeout_msec), UInt(chunk_size)) finalizer(destroy!, stream) return stream end end mutable struct MongoIOStream{T} <: AbstractMongoStream owner::T handle::Ptr{Cvoid} isopen::Bool timeout_msec::Int chunk_size::UInt function MongoIOStream(owner::T, handle::Ptr{Cvoid}; timeout_msec::Integer=DEFAULT_TIMEOUT_MSEC, chunk_size::Integer=DEFAULT_CHUNK_SIZE ) where {T} @assert handle != C_NULL stream = new{T}(owner, handle, true, Int(timeout_msec), UInt(chunk_size)) finalizer(destroy!, stream) return stream end end
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
code
19213
import Mongoc import Base.UUID using Test using Dates using DecFP using Distributed @testset "BSON" begin @testset "as_json" begin @test_throws ErrorException Mongoc.BSON(""" { ajskdla sdjsafd } """) bson = Mongoc.BSON("""{"hey" : 1}""") @test bson["hey"] == 1 @test Mongoc.as_json(bson) == """{ "hey" : 1 }""" @test Mongoc.as_json(bson, canonical=true) == """{ "hey" : { "\$numberInt" : "1" } }""" end @testset "oid conversion" begin str = "5b9fb22b3192e3fa155693a1" local oid::Mongoc.BSONObjectId = str @test String(oid) == str end @testset "oid compare" begin x = Mongoc.BSONObjectId() y = Mongoc.BSONObjectId() @test x != y @test x == x @test y == y @test hash(x) == hash(x) @test hash(y) == hash(y) @test hash(x) != hash(y) @test Mongoc.bson_oid_compare(x, y) < 0 @test Mongoc.bson_oid_compare(y, x) > 0 @test Mongoc.bson_oid_compare(x, x) == 0 @test Mongoc.bson_oid_compare(y, y) == 0 end @testset "oid copy" begin x = Mongoc.BSONObjectId() y = copy(x) @test x == y @test hash(x) == hash(y) @test Mongoc.bson_oid_compare(x, y) == 0 end @testset "oid string" begin x = Mongoc.BSONObjectId() y = Mongoc.BSONObjectId(String(x)) @test x == y @test_throws ErrorException Mongoc.BSONObjectId("invalid_objectid") end @testset "oid time" begin Mongoc.get_time( Mongoc.BSONObjectId("5b9eaa2711c3dd0d6a46a5c4") ) == DateTime(2018, 9, 16, 19, 8, 23) # 2018-09-16T19:08:23 end @testset "BSONObjectId segfault issue (#2)" begin io = IOBuffer() v = Vector{Mongoc.BSONObjectId}() for i in 1:5 push!(v, Mongoc.BSONObjectId()) end show(io, v) end @testset "oid sort" begin v = Vector{Mongoc.BSONObjectId}() for i in 1:10_000 push!(v, Mongoc.BSONObjectId()) end @test length(v) == length(unique(v)) v_sorted = sort(v, lt = (a,b) -> Mongoc.bson_oid_compare(a,b) < 0) @test v_sorted == v end @testset "AbstractString support" begin keys_with_prefix = ["aKey1", "aKey2", "aKey3"] substring_keys = [ SubString(k, 2, length(k)) for k in keys_with_prefix ] vals = [ 1, "hey", nothing ] bson = Mongoc.BSON() for (i, k) in enumerate(substring_keys) bson[k] = vals[i] end for k in substring_keys @test haskey(bson, k) end for i in 1:3 @test haskey(bson, "Key$i") end bson["ah"] = substring_keys[1] @test isa(bson["ah"], String) @test bson["ah"] == "Key1" end @testset "UUID support" begin uuid = UUID("a1f18b06-2210-499b-8313-28e69090511f") bson = Mongoc.BSON("uuid" => uuid) @test isa(bson["uuid"], UUID) @test bson["uuid"] == uuid end @testset "BSON key/values itr support" begin bson = Mongoc.BSON() bson["hey"] = 10 bson["you"] = "aaa" bson["out"] = nothing @test ["hey" => 10, "you" => "aaa", "out" => nothing] == [k => v for (k, v) in bson] @test ["hey" => 10, "you" => "aaa", "out" => nothing] == collect(pairs(bson)) @test ["hey", "you", "out"] == collect(keys(bson)) @test [10, "aaa", nothing] == collect(values(bson)) end @testset "BSON Iterator" begin doc = Mongoc.BSON("""{ "a" : 1, "b" : 2.2, "str" : "my string", "bool_t" : true, "bool_f" : false, "array" : [1, 2, false, "inner_string"], "float_array" : [0.1, 0.2, 0.3, 0.4], "document" : { "a" : 1, "b" : "b_string"}, "null" : null }""") new_id = Mongoc.BSONObjectId() doc["_id"] = new_id @test haskey(doc, "a") @test haskey(doc, "b") @test !haskey(doc, "c") @test haskey(doc, "str") @test haskey(doc, "_id") @test haskey(doc, "array") @test haskey(doc, "float_array") @test haskey(doc, "document") @test haskey(doc, "null") @test doc["a"] == 1 @test doc["b"] == 2.2 @test doc["str"] == "my string" @test doc["bool_t"] @test !doc["bool_f"] @test doc["_id"] == new_id @test doc["array"] == [1, 2, false, "inner_string"] @test doc["document"] == Dict("a"=>1, "b"=>"b_string") @test doc["null"] == nothing @test_throws KeyError doc["invalid key"] @test isequal(get(doc, "invalid key", missing), missing) @test get(doc, "_id", missing) == new_id doc_dict = Mongoc.as_dict(doc) @test keytype(doc_dict) === String @test doc_dict["a"] == 1 @test doc_dict["b"] == 2.2 @test doc_dict["str"] == "my string" @test doc_dict["bool_t"] @test !doc_dict["bool_f"] @test doc_dict["_id"] == new_id @test doc_dict["array"] == [1, 2, false, "inner_string"] @test doc_dict["document"] == Dict("a"=>1, "b"=>"b_string") @test doc_dict["null"] == nothing @testset "convert(Dict, BSON)" begin doc_dict2 = @inferred(convert(Dict, doc)) @test doc_dict2 == doc_dict doc_dict3 = @inferred(convert(Dict{String, Any}, doc)) @test doc_dict3 == doc_dict end # Type-stable API @test @inferred(Mongoc.get_array(doc, "float_array", Float64)) == [0.1, 0.2, 0.3, 0.4] @test @inferred(Mongoc.get_array(doc, "float_array", Float32)) == Float32[0.1, 0.2, 0.3, 0.4] @test_throws MethodError Mongoc.get_array(doc, "float_array", String) @test_throws ErrorException Mongoc.get_array(doc, "document", Any) end @testset "BSON write" begin bson = Mongoc.BSON() new_oid = Mongoc.BSONObjectId() bson["_id"] = new_oid bson["int32"] = Int32(10) bson["int64"] = Int64(20) bson["string"] = "hey you" bson["bool_true"] = true bson["bool_false"] = false bson["double"] = 2.3 bson["decimal128"] = d128"1.2" bson["datetime"] = DateTime(2018, 2, 1, 10, 20, 35, 10) bson["vector"] = collect(1:10) bson["source"] = Mongoc.BSONCode("function() = 1") bson["null"] = nothing @test_throws ErrorException bson["key"] = Date(2018, 9, 18) str = "the real string" sub = SubString(str, 4, 7) bson["substring"] = sub let sub_bson = Mongoc.BSON() sub_bson["hey"] = "you" sub_bson["num"] = 10 bson["sub_document"] = sub_bson end @test bson["_id"] == new_oid @test bson["int32"] == Int32(10) @test bson["int64"] == Int64(20) @test bson["string"] == "hey you" @test bson["bool_true"] @test !bson["bool_false"] @test bson["double"] == 2.3 @test bson["decimal128"] == d128"1.2" @test bson["datetime"] == DateTime(2018, 2, 1, 10, 20, 35, 10) @test bson["sub_document"]["hey"] == "you" @test bson["sub_document"]["num"] == 10 @test bson["vector"] == collect(1:10) @test bson["source"] == Mongoc.BSONCode("function() = 1") @test bson["null"] == nothing @test bson["substring"] == sub let sub_bson = bson["sub_document"] @test sub_bson["hey"] == "you" @test sub_bson["num"] == 10 end end @testset "BSON to Dict conversion" begin dict = Dict("a" => 1, "b" => false, "c" => "string", "d" => nothing) doc = Mongoc.BSON(dict) @test doc["a"] == 1 @test doc["b"] == false @test doc["c"] == "string" @test doc["d"] == nothing @test dict == Mongoc.as_dict(doc) @test dict == Dict(doc) @test dict == Dict{String, Any}(doc) @test dict == convert(Dict, doc) @test dict == convert(Dict{String, Any}, doc) end @testset "BSON Dict API" begin doc = Mongoc.BSON("a" => 1, "b" => false, "c" => "string", "d" => nothing) @test doc["a"] == 1 @test doc["b"] == false @test doc["c"] == "string" @test doc["d"] == nothing for (key, value) in doc if key == "a" @test value == 1 elseif key == "b" @test value == false elseif key == "c" @test value == "string" elseif key == "d" @test value == nothing else # test fails @test false end end end @testset "BSON copy" begin @testset "exclude one key" begin src = Mongoc.BSON("hey" => "you", "out" => 1) dst = Mongoc.BSON() Mongoc.bson_copy_to_excluding_noinit(src.handle, dst.handle, "out") @test !haskey(dst, "out") @test dst["hey"] == "you" end @testset "no exclude keys" begin src = Mongoc.BSON("hey" => "you", "out" => 1) dst = Mongoc.BSON() Mongoc.bson_copy_to_noinit(src.handle, dst.handle) @test Mongoc.as_dict(src) == Mongoc.as_dict(dst) end end @testset "BSON Write to IO" begin @testset "write_bson closure" begin io = IOBuffer() Mongoc.bson_writer(io, initial_buffer_capacity=1) do writer Mongoc.write_bson(writer) do bson bson["id"] = 10 bson["str"] = "aa" end end @test io.data == [0x1d,0x00,0x00,0x00,0x12,0x69,0x64,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x02,0x73,0x74,0x72,0x00,0x03,0x00,0x00,0x00,0x61,0x61,0x00,0x00,0x00,0x00,0x00] end @testset "BSON copy single doc" begin src = Mongoc.BSON("id" => 10, "str" => "aa") io = IOBuffer() Mongoc.write_bson(io, src) @test io.data == [0x1d,0x00,0x00,0x00,0x12,0x69,0x64,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x02,0x73,0x74,0x72,0x00,0x03,0x00,0x00,0x00,0x61,0x61,0x00,0x00,0x00,0x00,0x00] end @testset "BSON copy doc list" begin list = Vector{Mongoc.BSON}() let src = Mongoc.BSON("id" => 1, "name" => "1st") push!(list, src) end let src = Mongoc.BSON("id" => 2, "name" => "2nd") push!(list, src) end io = IOBuffer() Mongoc.write_bson(io, list) seekstart(io) vec_bson = Mongoc.read_bson(io) @test length(vec_bson) == 2 let fst_bson = vec_bson[1] @test fst_bson["id"] == 1 @test fst_bson["name"] == "1st" end let sec_bson = vec_bson[2] @test sec_bson["id"] == 2 @test sec_bson["name"] == "2nd" end seekstart(io) reader = Mongoc.BSONReader(read(io)) vec_bson_from_reader = collect(reader) let fst_bson = vec_bson_from_reader[1] @test fst_bson["id"] == 1 @test fst_bson["name"] == "1st" end let sec_bson = vec_bson_from_reader[2] @test sec_bson["id"] == 2 @test sec_bson["name"] == "2nd" end end @testset "read BSON from data" begin vec_bson = Mongoc.read_bson([0x1d,0x00,0x00,0x00,0x12,0x69,0x64,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x02,0x73,0x74,0x72,0x00,0x03,0x00,0x00,0x00,0x61,0x61,0x00,0x00,0x00,0x00,0x00]) @test length(vec_bson) == 1 bson = vec_bson[1] @test bson["id"] == 10 @test bson["str"] == "aa" end @testset "read/write BSON to/from File" begin filepath = joinpath(@__DIR__, "data.bson") isfile(filepath) && rm(filepath) list = Vector{Mongoc.BSON}() let src = Mongoc.BSON("id" => 1, "name" => "1st") push!(list, src) end let src = Mongoc.BSON("id" => 2, "name" => "2nd") push!(list, src) end try open(filepath, "w") do io Mongoc.write_bson(io, list) end @test isfile(filepath) reader = Mongoc.BSONReader(filepath) for (i, bson) in enumerate(reader) if i == 1 @test bson["id"] == 1 @test bson["name"] == "1st" elseif i == 2 @test bson["id"] == 2 @test bson["name"] == "2nd" else error("Got document $i.") end end Mongoc.destroy!(reader) finally if isfile(filepath) try rm(filepath) catch err @warn("Failed to remove test file $filepath: $(err.msg)") stacktrace(catch_backtrace()) end end end end end @testset "BSONJSONReader" begin @testset "Iterate Reader" begin fp = joinpath(@__DIR__, "docs.json") @assert isfile(fp) reader = Mongoc.BSONJSONReader(fp) for (i, bson) in enumerate(reader) if i == 1 @test bson["num"] == 1 @test bson["str"] == "two" elseif i == 2 @test bson["num"] == 2 @test bson["str"] == "three" else error("Got bson $i.") end end Mongoc.destroy!(reader) end @testset "read_bson_from_json" begin fp = joinpath(@__DIR__, "docs.json") @assert isfile(fp) for (i, bson) in enumerate(Mongoc.read_bson_from_json(fp)) if i == 1 @test bson["num"] == 1 @test bson["str"] == "two" elseif i == 2 @test bson["num"] == 2 @test bson["str"] == "three" else error("Got bson $i.") end end end end @testset "BSONError" begin err = Mongoc.BSONError(0x00000005, 0x00000101, (0x54, 0x6f, 0x74, 0x61, 0x6c, 0x20, 0x73, 0x69, 0x7a, 0x65, 0x20, 0x6f, 0x66, 0x20, 0x61, 0x6c, 0x6c, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x61, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x6f, 0x70, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x20, 0x6d, 0x75, 0x73, 0x74, 0x20, 0x62, 0x65, 0x20, 0x6c, 0x65, 0x73, 0x73, 0x20, 0x74, 0x68, 0x61, 0x6e, 0x20, 0x31, 0x36, 0x37, 0x39, 0x33, 0x36, 0x30, 0x30, 0x2e, 0x20, 0x41, 0x63, 0x74, 0x75, 0x61, 0x6c, 0x20, 0x73, 0x69, 0x7a, 0x65, 0x20, 0x69, 0x73, 0x20, 0x31, 0x36, 0x37, 0x39, 0x34, 0x31, 0x37, 0x34, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)) str = sprint(show, err) @test str == "BSONError: domain=5, code=257, message=Total size of all transaction operations must be less than 16793600. Actual size is 16794174" @test sprint(showerror, err) == str end @testset "serialize" begin @testset "BufferedBSON" begin bson = Mongoc.BSON("a" => 1) x = Mongoc.BufferedBSON(bson) bson_copy = Mongoc.BSON(x) @test bson_copy["a"] == 1 end addprocs(1) @everywhere using Mongoc @testset "serialize BufferedBSON" begin f = @spawn Mongoc.BufferedBSON(Mongoc.BSON("a" => 1)) bson = Mongoc.BSON(fetch(f)) @test bson["a"] == 1 end @testset "read/write single BSON" begin doc = Mongoc.BSON("a" => 1) io = IOBuffer() write(io, doc) seekstart(io) doc2 = read(io, Mongoc.BSON) @test doc2["a"] == 1 end @testset "Serialize BSON" begin f = @spawn Mongoc.BSON("a" => 1) bson = fetch(f) @test bson["a"] == 1 end end end
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
code
39394
# # Tests depend on a running server at localhost:27017, # and will create a database named "mongoc". # # Start a fresh MongoDB instance with: # # ``` # $ mkdir db # $ mongod --dbpath ./db # ``` # import Mongoc using Test using Dates const DB_NAME = "mongoc" @testset "MongoDB" begin client = Mongoc.Client() @testset "Destroy" begin cli = Mongoc.Client() db = cli["database"] coll = db["collection"] Mongoc.destroy!(coll) Mongoc.destroy!(db) Mongoc.destroy!(cli) end @testset "Types" begin bson = Mongoc.BSON() @test_throws Mongoc.BSONError Mongoc.Client("////invalid-url") try Mongoc.Client("////invalid-url") catch err @test isa(err, Mongoc.BSONError) io = IOBuffer() showerror(io, err) end @test client.uri == "mongodb://localhost:27017" Mongoc.set_appname!(client, "Runtests") db = client[DB_NAME] coll = db["new_collection"] io = IOBuffer() show(io, bson) show(io, client) show(io, db) show(io, coll) show(io, Mongoc.BSONCode("function() = 1")) show(io, Mongoc.QUERY_FLAG_TAILABLE_CURSOR) end @testset "Connection" begin @testset "ping" begin bson_ping_result = Mongoc.ping(client) @test haskey(bson_ping_result, "ok") @test Mongoc.as_json(Mongoc.ping(client)) == """{ "ok" : 1.0 }""" end @testset "Server Status" begin bson_server_status = Mongoc.command_simple(client["admin"], Mongoc.BSON("""{ "serverStatus" : 1 }""")) println("Server Mongo Version: ", bson_server_status["version"]) end @testset "error print" begin error_happened = false try Mongoc.command_simple(client["hey"], Mongoc.BSON("""{ "you" : 1 }""")) catch e println(IOBuffer(), e) error_happened = true end @test error_happened end @testset "new_collection" begin coll = client[DB_NAME]["new_collection"] @testset "Insert One with generated OID" begin io = IOBuffer() result = push!(coll, Mongoc.BSON("""{ "hello" : "world" }""")) @test isa(result, Mongoc.InsertOneResult) show(io, result) @test result.inserted_oid != nothing first_inserted_oid = result.inserted_oid @test Mongoc.as_json(result.reply) == """{ "insertedCount" : 1 }""" result = push!(coll, Mongoc.BSON("""{ "hey" : "you" }""")) show(io, result) @test result.inserted_oid != nothing @test result.inserted_oid != first_inserted_oid @test Mongoc.as_json(result.reply) == """{ "insertedCount" : 1 }""" end @testset "Insert One with custom OID" begin io = IOBuffer() bson = Mongoc.BSON("_id" => 123, "out" => "there") result = push!(coll, bson) show(io, result) @test result.inserted_oid == nothing @test Mongoc.as_json(result.reply) == """{ "insertedCount" : 1 }""" end bson = Mongoc.BSON() bson["hey"] = "you" bson["zero_date"] = DateTime(0) bson["date_2018"] = DateTime(2018) result = push!(coll, bson) @test Mongoc.as_json(result.reply) == """{ "insertedCount" : 1 }""" i = 0 for bson in coll @test haskey(bson, "hello") || haskey(bson, "hey") || haskey(bson, "out") @test haskey(bson, "_id") i += 1 end @test i == length(coll) i = 0 for bson in Mongoc.find(coll, Mongoc.BSON("""{ "hello" : "world" }""")) i += 1 end @test i == 1 @testset "cursor in comprehension" begin bsons = [bson for bson in Mongoc.find(coll, Mongoc.BSON("""{ "hello" : "world" }"""))] @test length(bsons) == 1 @test eltype(bsons) == Mongoc.BSON end @testset "collection in comprehension" begin bsons = [bson for bson in coll] @test length(bsons) == 4 @test eltype(bsons) == Mongoc.BSON end @testset "collection command_simple" begin result = Mongoc.command_simple(coll, Mongoc.BSON("""{ "collStats" : "new_collection" }""")) @test result["ok"] == 1 end empty!(coll) end @testset "find_databases" begin found = false for obj in Mongoc.find_databases(client) if obj["name"] == DB_NAME found = true end end @test found @test DB_NAME ∈ Mongoc.get_database_names(client) end @testset "catch cursor error" begin # issue #15 invalid_client = Mongoc.Client("mongodb://invalid_url") collection = invalid_client["db_name"]["collection_name"] @test_throws Mongoc.BSONError Mongoc.find_one(collection, Mongoc.BSON(""" { "a" : 1 } """)) end @testset "cursor batch size" begin collection = client[DB_NAME]["batch_size_test"] cursor = Mongoc.find(collection) @test Mongoc.batch_size(cursor) == 0 Mongoc.batch_size!(cursor, 10) @test Mongoc.batch_size(cursor) == 10 end @static if !Sys.iswindows() # skipping binary tests for windows @testset "Binary data" begin coll = client[DB_NAME]["new_collection"] bsonDoc = Mongoc.BSON() testdata = rand(UInt8, 100) bsonDoc["someId"] = "1234" bsonDoc["bindata"] = testdata result = push!(coll, bsonDoc) @test Mongoc.as_json(result.reply) == """{ "insertedCount" : 1 }""" # read data out and confirm selector = Mongoc.BSON("""{ "someId": "1234" }""") results = Mongoc.find_one(coll, selector) @test results["bindata"] == testdata end end @testset "find_collections" begin for obj in Mongoc.find_collections(client["local"]) @test obj["name"] == "startup_log" end @test Mongoc.get_collection_names(client["local"]) == [ "startup_log" ] end @testset "BulkOperation" begin coll = client[DB_NAME]["new_collection"] bulk_operation = Mongoc.BulkOperation(coll) Mongoc.destroy!(bulk_operation) bulk_2 = Mongoc.BulkOperation(coll) # will be freed by GC end @testset "Cleanup" begin coll = client[DB_NAME]["new_collection"] Mongoc.drop(coll) end @testset "insert_many" begin collection = client[DB_NAME]["insert_many"] vector = Vector{Mongoc.BSON}() push!(vector, Mongoc.BSON("""{ "hey" : "you" }""")) push!(vector, Mongoc.BSON("""{ "out" : "there" }""")) push!(vector, Mongoc.BSON("""{ "count" : 3 }""")) result = append!(collection, vector) @test isa(result, Mongoc.BulkOperationResult) @test result.reply["nInserted"] == 3 for oid in result.inserted_oids @test oid != nothing end io = IOBuffer() show(io, result) @test length(collection) == 3 @test length(collect(collection)) == 3 Mongoc.drop(collection) end @testset "bulk_replace_one" begin collection = client[DB_NAME]["replace_many"] push!(collection, Mongoc.BSON("""{ "x": 1, "y": 100 }""")) push!(collection, Mongoc.BSON("""{ "x": 2, "y": 200 }""")) push!(collection, Mongoc.BSON("""{ "x": 3, "y": 300 }""")) bulk = Mongoc.BulkOperation(collection) Mongoc.bulk_replace_one!( bulk, Mongoc.BSON("""{ "x": 1 }"""), Mongoc.BSON("""{ "x": 1, "y": -100 }"""), ) Mongoc.bulk_replace_one!( bulk, Mongoc.BSON("""{ "x": 2 }"""), Mongoc.BSON("""{ "x": 2, "y": -200 }"""), ) Mongoc.bulk_replace_one!( bulk, Mongoc.BSON("""{ "x": 4 }"""), Mongoc.BSON("""{ "x": 4, "y": 400 }"""); options = Mongoc.BSON("""{ "upsert": true }""") ) result = Mongoc.execute!(bulk) @test result.reply["nInserted"] == 0 @test result.reply["nMatched"] == 2 @test result.reply["nModified"] == 2 @test result.reply["nUpserted"] == 1 @test length(collection) == 4 @test length(collect(collection)) == 4 Mongoc.drop(collection) end @testset "bulk_update_one" begin collection = client[DB_NAME]["bulk_update_one"] push!(collection, Mongoc.BSON("""{ "x": 1, "y": 100 }""")) push!(collection, Mongoc.BSON("""{ "x": 2, "y": 200 }""")) bulk = Mongoc.BulkOperation(collection) Mongoc.bulk_update_one!( bulk, Mongoc.BSON("""{ "x": 1 }"""), Mongoc.BSON("""{ "\$set": { "y": 150 } }"""), ) Mongoc.bulk_update_one!( bulk, Mongoc.BSON("""{ "x": 2 }"""), Mongoc.BSON("""{ "\$inc": { "y": 13 } }"""), ) result = Mongoc.execute!(bulk) @test result.reply["nInserted"] == 0 @test result.reply["nMatched"] == 2 @test result.reply["nModified"] == 2 @test result.reply["nUpserted"] == 0 @test length(collection) == 2 @test length(collect(collection)) == 2 x1 = Mongoc.find_one(collection, Mongoc.BSON("x" => 1)) @test x1["x"] == 1 @test x1["y"] == 150 x2 = Mongoc.find_one(collection, Mongoc.BSON("x" => 2)) @test x2["x"] == 2 @test x2["y"] == 213 Mongoc.drop(collection) end @testset "delete_one" begin collection = client[DB_NAME]["delete_one"] doc = Mongoc.BSON("""{ "to" : "delete", "hey" : "you" }""") doc2 = Mongoc.BSON("""{ "to" : "keep", "out" : "there" }""") insert_result = push!(collection, doc) oid = insert_result.inserted_oid push!(collection, doc2) selector = Mongoc.BSON() selector["_id"] = oid @test length(collection, selector) == 1 result = Mongoc.delete_one(collection, selector) @test result["deletedCount"] == 1 @test length(collection, selector) == 0 Mongoc.drop(collection) end @testset "delete_many" begin collection = client[DB_NAME]["delete_many"] result = append!(collection, [ Mongoc.BSON("""{ "first" : 1, "delete" : true }"""), Mongoc.BSON("""{ "second" : 2, "delete" : true }"""), Mongoc.BSON("""{ "third" : 3, "delete" : false }""") ]) @test length(collection) == 3 result = Mongoc.delete_many(collection, Mongoc.BSON("""{ "delete" : true }""")) @test result["deletedCount"] == 2 @test length(collection) == 1 result = Mongoc.delete_many(collection, Mongoc.BSON()) @test result["deletedCount"] == 1 @test isempty(collection) Mongoc.drop(collection) end @testset "update_one, update_many" begin collection = client[DB_NAME]["update_one"] append!(collection, [ Mongoc.BSON("""{ "first" : 1, "delete" : true }"""), Mongoc.BSON("""{ "second" : 2, "delete" : true }"""), Mongoc.BSON("""{ "third" : 3, "delete" : false }""") ]) @test length(collection) == 3 selector = Mongoc.BSON("""{ "delete" : false }""") update = Mongoc.BSON("""{ "\$set" : { "delete" : true, "new_field" : 1 } }""") result = Mongoc.update_one(collection, selector, update) @test result["modifiedCount"] == 1 @test result["matchedCount"] == 1 @test result["upsertedCount"] == 0 updated_bson = Mongoc.find_one(collection, Mongoc.BSON("""{ "third" : 3 }""")) @test updated_bson != nothing @test updated_bson["delete"] == true @test updated_bson["new_field"] == 1 selector = Mongoc.BSON("""{ "delete" : true }""") update = Mongoc.BSON("""{ "\$set" : { "delete" : false } }""") result = Mongoc.update_many(collection, selector, update) @test result["modifiedCount"] == 3 @test result["matchedCount"] == 3 @test result["upsertedCount"] == 0 for doc in Mongoc.find(collection) @test doc["delete"] == false end @test Mongoc.find_one(collection, Mongoc.BSON("""{ "delete" : true }""")) == nothing Mongoc.drop(collection) end @testset "replace_one" begin collection = client[DB_NAME]["replace_one"] append!(collection, [ Mongoc.BSON("""{ "first" : 1, "delete" : true }"""), Mongoc.BSON("""{ "second" : 2, "delete" : true }"""), Mongoc.BSON("""{ "third" : 3, "delete" : false }""") ]) @test length(collection) == 3 selector = Mongoc.BSON("""{ "delete" : false }""") replacement = Mongoc.BSON("""{ "third" : 3, "new_field" : 1 }""") result = Mongoc.replace_one(collection, selector, replacement) @test result["modifiedCount"] == 1 @test result["matchedCount"] == 1 @test result["upsertedCount"] == 0 replaced_bson = Mongoc.find_one(collection, Mongoc.BSON("""{ "third" : 3 }""")) @test replaced_bson !== nothing @test !haskey(replaced_bson, "delete") @test replaced_bson["new_field"] == 1 Mongoc.drop(collection) end @testset "aggregation, map_reduce" begin @testset "QueryFlags" begin qf_composite = Mongoc.QUERY_FLAG_PARTIAL | Mongoc.QUERY_FLAG_NO_CURSOR_TIMEOUT @test qf_composite & Mongoc.QUERY_FLAG_PARTIAL == Mongoc.QUERY_FLAG_PARTIAL @test qf_composite & Mongoc.QUERY_FLAG_NO_CURSOR_TIMEOUT == Mongoc.QUERY_FLAG_NO_CURSOR_TIMEOUT end # reproducing the examples at https://docs.mongodb.com/manual/aggregation/ docs = [ Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 500, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 250, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "B212", "amount" : 200, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 300, "status" : "D" }""") ] database = client[DB_NAME] collection = database["aggregation_example"] append!(collection, docs) @test length(collection) == 4 # Aggregation let bson_pipeline = Mongoc.BSON(""" [ { "\$match" : { "status" : "A" } }, { "\$group" : { "_id" : "\$cust_id", "total" : { "\$sum" : "\$amount" } } } ]""") # Response should be # BSON("{ "_id" : "B212", "total" : 200 }") # BSON("{ "_id" : "A123", "total" : 750 }") for doc in Mongoc.aggregate(collection, bson_pipeline) if doc["_id"] == "A123" @test doc["total"] == 750 elseif doc["_id"] == "B212" @test doc["total"] == 200 else # shouldn't get in here @test false end end end # map_reduce let input_collection_name = "aggregation_example" mapper = Mongoc.BSONCode(""" function() { emit( this.cust_id, this.amount ); } """) reducer = Mongoc.BSONCode(""" function(key, values) { return Array.sum( values ) } """) output_collection_name = "order_totals" query = Mongoc.BSON("""{ "status" : "A" }""") map_reduce_command = Mongoc.BSON() map_reduce_command["mapReduce"] = input_collection_name map_reduce_command["map"] = mapper map_reduce_command["reduce"] = reducer map_reduce_command["out"] = output_collection_name map_reduce_command["query"] = query result = Mongoc.read_command(database, map_reduce_command) @test result["result"] == "order_totals" @test result["ok"] == 1.0 for doc in Mongoc.find(database["order_totals"]) if doc["_id"] == "A123" @test doc["value"] == 750 elseif doc["_id"] == "B212" @test doc["value"] == 200 else # shouldn't get in here @test false end end # Response should be # BSON("{ "_id" : "A123", "value" : 750.0 }") # BSON("{ "_id" : "B212", "value" : 200.0 }") end Mongoc.drop(collection) end end @testset "find and modify" begin @testset "create/destroy opts" begin opts = Mongoc.FindAndModifyOptsBuilder() Mongoc.destroy!(opts) end @testset "set opts" begin opts = Mongoc.FindAndModifyOptsBuilder() opts.update = Mongoc.BSON("""{ "\$set" : { "position" : "striker" }}""") opts.sort = Mongoc.BSON("""{ "age" : -1 }""") opts.fields = Mongoc.BSON("""{ "goals" : 1 }""") opts.flags = Mongoc.FIND_AND_MODIFY_FLAG_UPSERT | Mongoc.FIND_AND_MODIFY_FLAG_RETURN_NEW end @testset "main function" begin collection = client[DB_NAME]["find_and_modify"] docs = [ Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 500, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 250, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "B212", "amount" : 200, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 300, "status" : "D" }""") ] append!(collection, docs) @testset "update simple" begin query = Mongoc.BSON("amount" => 500) reply = Mongoc.find_and_modify( collection, query, update = Mongoc.BSON("""{ "\$set" : { "status" : "N" } }"""), flags = Mongoc.FIND_AND_MODIFY_FLAG_RETURN_NEW # will return the new version of the document ) let modified_doc = reply["value"] @test modified_doc["status"] == "N" end let modified_doc = Mongoc.find_one(collection, Mongoc.BSON("amount" => 500)) @test modified_doc["status"] == "N" end end @testset "upsert and return new" begin query = Mongoc.BSON("""{ "cust_id" : "C555", "amount" : 10, "status" : "X" }""") reply = Mongoc.find_and_modify( collection, query, update = Mongoc.BSON("""{ "\$set" : { "status" : "S" } }"""), flags = Mongoc.FIND_AND_MODIFY_FLAG_UPSERT | Mongoc.FIND_AND_MODIFY_FLAG_RETURN_NEW ) let new_document = reply["value"] @test new_document["cust_id"] == "C555" @test new_document["amount"] == 10 @test new_document["status"] == "S" end end @testset "update sorted with selected fields" begin query = Mongoc.BSON("""{ "amount" : { "\$lt" : 300 } }""") update = Mongoc.BSON("""{ "\$set" : { "status" : "Z" } }""") fields = Mongoc.BSON("""{ "amount" : 1, "status" : 1 }""") sort = Mongoc.BSON("""{ "amount" : 1 }""") reply = Mongoc.find_and_modify( collection, query, update=update, sort=sort, fields=fields, flags=Mongoc.FIND_AND_MODIFY_FLAG_RETURN_NEW) let new_document = reply["value"] @test new_document["amount"] == 10 @test new_document["status"] == "Z" @test !haskey(new_document, "cust_id") end end Mongoc.drop(collection) end end @testset "find one and delete" begin collection = client[DB_NAME]["find_one_and_delete"] docs = [ Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 500, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 250, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "B212", "amount" : 200, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 300, "status" : "D" }""") ] append!(collection, docs) @testset "delete by filter" begin query = Mongoc.BSON("""{ "cust_id" : "B212" }""") doc = Mongoc.find_one_and_delete(collection, query) @test !isnothing(doc) @test doc["cust_id"] == "B212" @test doc["amount"] == 200 end @testset "nothing result when not found" begin query = Mongoc.BSON("""{ "cust_id" : "B212" }""") doc = Mongoc.find_one_and_delete(collection, query) @test isnothing(doc) end @testset "delete with sort" begin query = Mongoc.BSON("""{ "cust_id" : "A123" }""") options = Mongoc.BSON("""{ "sort" : {"amount" : 1 } }""") doc = Mongoc.find_one_and_delete(collection, query, options=options) @test !isnothing(doc) @test doc["cust_id"] == "A123" @test doc["amount"] == 250 end @testset "delete with projection" begin query = Mongoc.BSON("""{ "cust_id" : "A123" }""") options = Mongoc.BSON("""{ "projection": { "amount" : 0 } }""") doc = Mongoc.find_one_and_delete(collection, query, options=options) @test !isnothing(doc) @test doc["cust_id"] == "A123" @test !haskey(doc, "amount") end Mongoc.drop(collection) end @testset "find one and replace" begin collection = client[DB_NAME]["find_one_and_replace"] docs = [ Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 500, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 250, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "B212", "amount" : 200, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 300, "status" : "D" }""") ] append!(collection, docs) @testset "replace by filter" begin query = Mongoc.BSON("""{ "cust_id" : "B212" }""") replacement = Mongoc.BSON("""{ "cust_id" : "B212", "amount" : 200, "status" : "B" }""") doc = Mongoc.find_one_and_replace(collection, query, replacement) @test doc["cust_id"] == "B212" @test doc["amount"] == 200 # Returns original document @test doc["status"] == "A" end @testset "replace with sort" begin query = Mongoc.BSON("""{ "cust_id" : "A123" }""") replacement = Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 275, "status" : "B" }""") options = Mongoc.BSON("""{ "sort" : {"amount": 1 } }""") doc = Mongoc.find_one_and_replace(collection, query, replacement, options=options) @test doc["cust_id"] == "A123" @test doc["amount"] == 250 # Returns original document @test doc["status"] == "A" end @testset "return new document" begin query = Mongoc.BSON("""{ "cust_id" : "B212" }""") replacement = Mongoc.BSON("""{ "cust_id" : "B212", "amount" : 200, "status" : "C" }""") options = Mongoc.BSON("""{ "returnNewDocument" : true }""") doc = Mongoc.find_one_and_replace(collection, query, replacement, options=options) @test doc["cust_id"] == "B212" @test doc["amount"] == 200 # Returns new document @test doc["status"] == "C" end @testset "returns nothing if it does not exist" begin query = Mongoc.BSON("""{ "cust_id" : "C313" }""") replacement = Mongoc.BSON("""{ "cust_id" : "C313", "amount" : 400, "status" : "A" }""") doc = Mongoc.find_one_and_replace(collection, query, replacement) @test isnothing(doc) end @testset "returns nothing if it does not exist and returning new document" begin query = Mongoc.BSON("""{ "cust_id" : "C313" }""") replacement = Mongoc.BSON("""{ "cust_id" : "C313", "amount" : 400, "status" : "A" }""") options = Mongoc.BSON("""{ "returnNewDocument" : true }""") doc = Mongoc.find_one_and_replace(collection, query, replacement, options=options) @test isnothing(doc) end @testset "upsert" begin query = Mongoc.BSON("""{ "cust_id" : "C313" }""") replacement = Mongoc.BSON("""{ "cust_id" : "C313", "amount" : 400, "status" : "A" }""") options = Mongoc.BSON("""{ "upsert" : true }""") doc = Mongoc.find_one_and_replace(collection, query, replacement, options=options) @test isnothing(doc) replacement = Mongoc.BSON("""{ "cust_id" : "C313", "amount" : 400, "status" : "B" }""") doc = Mongoc.find_one_and_replace(collection, query, replacement, options=options) @test !isnothing(doc) end @testset "throws if operator in replacement" begin query = Mongoc.BSON("""{"cust_id" : "B212"}""") replacement = Mongoc.BSON("""{ "\$set" : {"cust_id" : "B212", "amount" : 200, "status" : "C" } }""") @test_throws ArgumentError Mongoc.find_one_and_replace(collection, query, replacement) end Mongoc.drop(collection) end @testset "find one and update" begin collection = client[DB_NAME]["find_one_and_update"] docs = [ Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 500, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 250, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "B212", "amount" : 200, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 300, "status" : "D" }""") ] append!(collection, docs) @testset "update by filter" begin query = Mongoc.BSON("""{ "cust_id" : "B212" }""") update = Mongoc.BSON("""{"\$set" : { "status" : "B" } }""") doc = Mongoc.find_one_and_update(collection, query, update) @test doc["cust_id"] == "B212" @test doc["amount"] == 200 # Returns original document @test doc["status"] == "A" end @testset "update with sort" begin query = Mongoc.BSON("""{ "cust_id" : "A123" }""") update = Mongoc.BSON("""{ "\$set" : { "status" : "B", "amount" : 275 } }""") options = Mongoc.BSON("""{ "sort": {"amount": 1 } }""") doc = Mongoc.find_one_and_update(collection, query, update, options=options) @test doc["cust_id"] == "A123" @test doc["amount"] == 250 # Returns original document @test doc["status"] == "A" end @testset "return new document" begin query = Mongoc.BSON("""{ "cust_id" : "B212" }""") update = Mongoc.BSON("""{ "\$set" : { "status" : "C" } }""") options = Mongoc.BSON("""{ "returnNewDocument" : true}""") doc = Mongoc.find_one_and_update(collection, query, update, options=options) @test doc["cust_id"] == "B212" @test doc["amount"] == 200 # Returns new document @test doc["status"] == "C" end @testset "returns nothing if it does not exist" begin query = Mongoc.BSON("""{ "cust_id" : "C313" }""") update = Mongoc.BSON("""{ "\$set" : { "cust_id" : "C313", "amount" : 400, "status" : "A" } }""") doc = Mongoc.find_one_and_update(collection, query, update) @test isnothing(doc) end @testset "returns nothing if it does not exist and returning new document" begin query = Mongoc.BSON("""{ "cust_id" : "C313" }""") update = Mongoc.BSON("""{ "\$set" : { "cust_id" : "C313", "amount" : 400, "status" : "A" } }""") options = Mongoc.BSON("""{ "returnNewDocument" : true }""") doc = Mongoc.find_one_and_update(collection, query, update, options=options) @test isnothing(doc) end @testset "upsert" begin query = Mongoc.BSON("""{ "cust_id" : "C313" }""") update = Mongoc.BSON("""{ "\$setOnInsert" : { "cust_id" : "C313", "amount" : 400 }, "\$set" : { "status" : "A" } }""") options = Mongoc.BSON("""{ "upsert" : true }""") doc = Mongoc.find_one_and_update(collection, query, update, options=options) @test isnothing(doc) update = Mongoc.BSON("""{ "\$setOnInsert" : { "cust_id" : "C313", "amount" : 400 }, "\$set" : { "status" : "B" } }""") doc = Mongoc.find_one_and_update(collection, query, update, options=options) @test !isnothing(doc) end @testset "throws if no operator in update" begin query = Mongoc.BSON("""{ "cust_id" : "B212" }""") update = Mongoc.BSON("""{ "cust_id" : "B212", "amount" : 200, "status" : "C" }""") @test_throws ArgumentError Mongoc.find_one_and_update(collection, query, update) end Mongoc.drop(collection) end @testset "command" begin database = client[DB_NAME] collection_name = "index_collection" collection = database[collection_name] let items = [ Mongoc.BSON("_id" => 1, "group" => "g1"), Mongoc.BSON("_id" => 2, "group" => "g1"), Mongoc.BSON("_id" => 3, "group" => "g2") ] append!(collection, items) @test length(collection) == 3 end @testset "database write_command" begin create_indexes_cmd = Mongoc.BSON( "createIndexes" => collection_name, "indexes" => [ Mongoc.BSON("key" => Mongoc.BSON("group" => 1), "name" => "group_index") ] ) reply = Mongoc.write_command(database, create_indexes_cmd) @test reply["ok"] == 1 end @testset "database read_command" begin reply = Mongoc.read_command(client["admin"], Mongoc.BSON("""{ "serverStatus" : 1 }""")) @test reply["ok"] == 1 end Mongoc.drop(collection) end @testset "Users" begin # creates admin user - https://docs.mongodb.com/manual/tutorial/enable-authentication/ @test Mongoc.has_database(client, DB_NAME) # at this point, DB_NAME should exist database = client[DB_NAME] user_name = "myUser" pass = "abc123" roles = Mongoc.BSON() if Mongoc.has_user(database, user_name) Mongoc.remove_user(database, user_name) end Mongoc.add_user(database, user_name, pass, roles) Mongoc.remove_user(database, user_name) @test !Mongoc.has_user(database, user_name) end @testset "Session Options" begin opt = Mongoc.SessionOptions() @test Mongoc.get_casual_consistency(opt) Mongoc.set_casual_consistency!(opt, false) @test !Mongoc.get_casual_consistency(opt) end server_version = Mongoc.get_server_mongodb_version(client) if server_version < v"3.6" @warn("MongoDB server version $server_version does not support Sessions. Skipping tests.") else @testset "Session" begin session = Mongoc.Session(client) db = session[DB_NAME] collection = db["session_collection"] push!(collection, Mongoc.BSON("""{ "try-insert" : 1 }""")) Mongoc.drop(collection) end end @testset "Drop Database" begin Mongoc.drop(client[DB_NAME]) end @testset "GridFS" begin @testset "Create/Destroy" begin db = client[DB_NAME] bucket = Mongoc.Bucket(db) Mongoc.destroy!(bucket) end @testset "Stream from filepath" begin fp = joinpath(@__DIR__, "replica_set_initiate.js") @assert isfile(fp) io = Mongoc.MongoStreamFile(fp) @test isopen(io) Mongoc.close(io) @test !isopen(io) Mongoc.destroy!(io) end @testset "Upload/Download/Find/Delete file" begin db = client[DB_NAME] bucket = Mongoc.Bucket(db) local_fp = joinpath(@__DIR__, "replica_set_initiate.js") @assert isfile(local_fp) original_str = read(local_fp, String) remote_filename = "remote_replica_set_initiate.js" @testset "Upload" begin Mongoc.upload(bucket, remote_filename, local_fp) end @test !isempty(bucket) download_filepath = joinpath(@__DIR__, "tmp_replica_set_initiate.js") @testset "Download to file" begin try Mongoc.download(bucket, remote_filename, download_filepath) let tmp_str = read(download_filepath, String) @test original_str == tmp_str end finally isfile(download_filepath) && rm(download_filepath) end end @testset "transfer_to_buffer!" begin @testset "empty buffer" begin buff = UInt8[] pos = 0 data = UInt8[1,2,0,0] nr = 2 @test Mongoc.nb_free(buff, pos) == 0 @test Mongoc.nb_to_fill(buff, pos, nr) == 0 @test Mongoc.nb_to_append(buff, pos, nr) == 2 Mongoc.transfer_to_buffer!(buff, pos, data, nr) @test buff == UInt8[1,2] end @testset "increase buffer" begin buff = UInt8[1,2,0,0] pos = 2 data = UInt8[3,4,5,6] nr = 3 @test Mongoc.nb_free(buff, pos) == 2 @test Mongoc.nb_to_fill(buff, pos, nr) == 2 @test Mongoc.nb_to_append(buff, pos, nr) == 1 Mongoc.transfer_to_buffer!(buff, pos, data, nr) @test buff == UInt8[1,2,3,4,5] end @testset "big buffer" begin buff = UInt8[1,0,0,0] pos = 1 data = UInt8[2,3,4,5] nr = 1 Mongoc.transfer_to_buffer!(buff, pos, data, nr) @test buff == UInt8[1,2,0,0] end end @testset "Download to stream" begin Mongoc.open_download_stream(bucket, remote_filename) do io @test isopen(io) tmp_str = read(io, String) @test original_str == tmp_str end end @testset "Find and Delete" begin cursor = Mongoc.find(bucket) found = false for doc in cursor @test !found found = true @test doc["filename"] == remote_filename Mongoc.delete(bucket, doc) end @test isempty(bucket) end @testset "Upload and Delete with id" begin Mongoc.upload(bucket, remote_filename, local_fp, file_id="my_id") found = false for doc in Mongoc.find(bucket, Mongoc.BSON("_id" => "my_id")) found = true end @test found @test !isempty(bucket) empty!(bucket) @test isempty(bucket) end @testset "open upload stream - text" begin remote_filename = "uploaded_file.txt" io = Mongoc.open_upload_stream(bucket, remote_filename) msg = "hey you out there" write(io, msg) close(io) Mongoc.open_download_stream(bucket, remote_filename) do io @test isopen(io) tmp_str = read(io, String) @test msg == tmp_str end empty!(bucket) end @testset "open upload stream - bytes" begin data = rand(UInt8, 3_000_000) remote_filename = "uploaded.data" io = Mongoc.open_upload_stream(bucket, remote_filename) write(io, data) close(io) Mongoc.open_download_stream(bucket, remote_filename) do io @test isopen(io) downloaded_data = read(io) @test downloaded_data == data end empty!(bucket) end @testset "upload abort" begin remote_filename = "uploaded_file.txt" io = Mongoc.open_upload_stream(bucket, remote_filename) msg = "hey you out there" write(io, msg) Mongoc.abort_upload(io) close(io) @test isempty(bucket) end end end end
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
code
8359
#= https://docs.mongodb.com/manual/tutorial/deploy-replica-set/ ```shell mkdir tmp cd tmp mkdir db1 mkdir db2 mkdir db3 mongod --dbpath ./db1 --port 27021 --replSet "rst" --bind_ip 127.0.0.1 & mongod --dbpath ./db2 --port 27022 --replSet "rst" --bind_ip 127.0.0.1 & mongod --dbpath ./db3 --port 27023 --replSet "rst" --bind_ip 127.0.0.1 & mongo --port 27021 replica_set_initiate.js ``` =# let fp_replicaset_script = joinpath(@__DIR__, "replica_set_initiate.js") @assert isfile(fp_replicaset_script) run(`mongo --port 27021 $fp_replicaset_script`) sleep(20) end import Mongoc using Test using Dates const DB_REPLICA_NAME = "mongoc_replica" const REPLICA_SET_URL = "mongodb://127.0.0.1:27021,127.0.0.1:27022,127.0.0.1:27023/?replicaSet=rst" @testset "Connect to ReplicaSet" begin client = Mongoc.Client(REPLICA_SET_URL) database = client[DB_REPLICA_NAME] collection = database["my_collection"] @test isempty(collection) push!(collection, Mongoc.BSON("""{ "hey" : 1 }""")) @test length(collection) == 1 doc = collect(collection)[1] @test doc["hey"] == 1 empty!(collection) end @testset "Transaction API" begin client = Mongoc.Client(REPLICA_SET_URL) database = client[DB_REPLICA_NAME] collection = database["transaction"] @test isempty(collection) push!(collection, Mongoc.BSON("""{ "outside_transaction" : 1 }""")) @test length(collection) == 1 session = Mongoc.Session(client) Mongoc.start_transaction!(session) @test Mongoc.in_transaction(session) collection_session = session[DB_REPLICA_NAME]["transaction"] push!(collection_session, Mongoc.BSON("""{ "inside_transaction" : 1 }""")) @test length(collection_session) == 2 @test length(collection) == 1 Mongoc.abort_transaction!(session) @test !Mongoc.in_transaction(session) @test length(collection_session) == 1 Mongoc.start_transaction!(session) @test Mongoc.in_transaction(session) push!(collection_session, Mongoc.BSON("""{ "inside_transaction" : 2 }""")) @test length(collection_session) == 2 @test length(collection) == 1 Mongoc.commit_transaction!(session) @test length(collection_session) == 2 @test length(collection) == 2 empty!(collection) end @testset "Transaction High-Level API" begin client = Mongoc.Client(REPLICA_SET_URL) collection_unbounded = client[DB_REPLICA_NAME]["transaction"] @assert isempty(collection_unbounded) # test precondition Mongoc.transaction(client) do session # session = Mongoc.Session(client); Mongoc.start_transaction!(session) @test Mongoc.in_transaction(session) database = session[DB_REPLICA_NAME] collection = database["transaction"] @test isempty(collection) let # insert_many items = Vector{Mongoc.BSON}() push!(items, Mongoc.BSON("""{ "item" : 1 }""")) push!(items, Mongoc.BSON("""{ "item" : 2 }""")) push!(items, Mongoc.BSON("""{ "item" : 3 }""")) append!(collection, items) @test length(collection) == 3 @test isempty(collection_unbounded) empty!(collection) end @test isempty(collection) @test Mongoc.in_transaction(session) let # insert_one new_item = Mongoc.BSON() new_item["inserted"] = true push!(collection, new_item) @test isempty(collection_unbounded) @test !isempty(collection) end @test Mongoc.in_transaction(session) let # delete_one item_to_delete = Mongoc.BSON() item_to_delete["inserted"] = true item_to_delete["to_delete"] = true push!(collection, item_to_delete) @test length(collection) == 2 @test isempty(collection_unbounded) Mongoc.delete_one(collection, Mongoc.BSON("""{ "to_delete" : true }""")) @test length(collection) == 1 @test isempty(collection_unbounded) end @test Mongoc.in_transaction(session) let # delete_many item_to_delete = Mongoc.BSON() item_to_delete["inserted"] = true item_to_delete["to_delete"] = true push!(collection, item_to_delete) @test length(collection) == 2 @test isempty(collection_unbounded) Mongoc.delete_many(collection, Mongoc.BSON("""{ "to_delete" : true }""")) @test length(collection) == 1 @test isempty(collection_unbounded) end @test Mongoc.in_transaction(session) let # update_one selector = Mongoc.BSON() update = Mongoc.BSON("""{ "\$set" : { "update_one" : true } }""") Mongoc.update_one(collection, selector, update) end @test Mongoc.in_transaction(session) let # update_many selector = Mongoc.BSON() update = Mongoc.BSON("""{ "\$set" : { "update_many" : true } }""") Mongoc.update_many(collection, selector, update) end @test Mongoc.in_transaction(session) let # check updates doc = Mongoc.find_one(collection, Mongoc.BSON()) @test doc["update_one"] @test doc["update_many"] @test isempty(collection_unbounded) end @test Mongoc.in_transaction(session) let # find_one_and_delete item_to_delete = Mongoc.BSON() item_to_delete["inserted"] = true item_to_delete["to_delete"] = true push!(collection, item_to_delete) @test length(collection) == 2 @test isempty(collection_unbounded) doc = Mongoc.find_one_and_delete(collection, Mongoc.BSON("""{ "to_delete" : true }""")) @test !isnothing(doc) @test length(collection) == 1 @test isempty(collection_unbounded) end @test Mongoc.in_transaction(session) let # find_one_and_replace selector = Mongoc.BSON() replacement = Mongoc.BSON("""{ "find_one_and_replace": true }""") doc = Mongoc.find_one_and_replace(collection, selector, replacement) @test !isnothing(doc) end @test Mongoc.in_transaction(session) let # find_one_and_update selector = Mongoc.BSON() update = Mongoc.BSON("""{ "\$set": { "find_one_and_update": true } }""") doc = Mongoc.find_one_and_update(collection, selector, update) @test !isnothing(doc) end @test Mongoc.in_transaction(session) let # check updates doc = Mongoc.find_one(collection, Mongoc.BSON()) @test doc["find_one_and_replace"] @test doc["find_one_and_update"] @test isempty(collection_unbounded) end @test Mongoc.in_transaction(session) end @test !isempty(collection_unbounded) empty!(collection_unbounded) try Mongoc.transaction(client) do session database = session[DB_REPLICA_NAME] collection = database["transaction"] new_item = Mongoc.BSON() new_item["inserted"] = true push!(collection, new_item) @test isempty(collection_unbounded) @test !isempty(collection) error("abort transaction") end catch e println("got an error: $e") end @test isempty(collection_unbounded) end @testset "ClientPool" begin @testset "Create/Destroy" begin pool = Mongoc.ClientPool(REPLICA_SET_URL) Mongoc.destroy!(pool) end @testset "Client from ClientPool" begin pool = Mongoc.ClientPool(REPLICA_SET_URL, max_size=4) client1 = Mongoc.Client(pool) client2 = Mongoc.Client(pool) client3 = Mongoc.Client(pool) client = Mongoc.Client(pool) database = client[DB_REPLICA_NAME] collection = database["my_collection"] @test isempty(collection) push!(collection, Mongoc.BSON("""{ "hey" : 1 }""")) @test length(collection) == 1 doc = collect(collection)[1] @test doc["hey"] == 1 empty!(collection) @test_throws AssertionError Mongoc.Client(pool, try_pop=true) end end
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
code
143
include("bson_tests.jl") include("mongodb_tests.jl") #= if !Sys.iswindows() include("replica_set_tests.jl") end =# Mongoc.mongoc_cleanup()
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
docs
2334
# Mongoc.jl [![License][license-img]](LICENSE) [![CI][ci-img]][ci-url] [![appveyor][appveyor-img]][appveyor-url] [![codecov][codecov-img]][codecov-url] [![dev][docs-dev-img]][docs-dev-url] [![stable][docs-stable-img]][docs-stable-url] [license-img]: http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat-square [ci-img]: https://github.com/felipenoris/Mongoc.jl/workflows/CI/badge.svg [ci-url]: https://github.com/felipenoris/Mongoc.jl/actions?query=workflow%3ACI [appveyor-img]: https://img.shields.io/appveyor/ci/felipenoris/mongoc-jl/master.svg?logo=appveyor&label=Windows&style=flat-square [appveyor-url]: https://ci.appveyor.com/project/felipenoris/mongoc-jl/branch/master [codecov-img]: https://img.shields.io/codecov/c/github/felipenoris/Mongoc.jl/master.svg?label=codecov&style=flat-square [codecov-url]: http://codecov.io/github/felipenoris/Mongoc.jl?branch=master [docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg?style=flat-square [docs-dev-url]: https://felipenoris.github.io/Mongoc.jl/dev [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg?style=flat-square [docs-stable-url]: https://felipenoris.github.io/Mongoc.jl/stable **Mongoc.jl** is a [MongoDB](https://www.mongodb.com/) driver for the Julia Language. It is implemented as a thin wrapper around [libmongoc](http://mongoc.org/), the official client library for C applications. Given that [BSON](http://bsonspec.org/) is the document format for MongoDB, this package also implements a wrapper around [libbson](http://mongoc.org/libbson/current/index.html), which provides a way to create and manipulate BSON documents. ## Requirements * MongoDB 3.0 or newer. * Julia v1.6 or newer. * Linux, macOS, or Windows. ## Installation From a Julia session, run: ```julia julia> using Pkg julia> Pkg.add("Mongoc") ``` ## Documentation The documentation for this package is hosted at https://felipenoris.github.io/Mongoc.jl/stable. ## License The source code for the package `Mongoc.jl` is licensed under the [MIT License](https://github.com/felipenoris/Mongoc.jl/blob/master/LICENSE). This repository distributes binary assets built from [mongo-c-driver](https://github.com/mongodb/mongo-c-driver) source code, which is licensed under [Apache-2.0](https://github.com/mongodb/mongo-c-driver/blob/master/COPYING).
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
docs
1229
# API Reference ## BSON ```@docs Mongoc.BSON Mongoc.BSONObjectId Mongoc.BSONCode Mongoc.as_json Mongoc.as_dict Mongoc.get_array Mongoc.read_bson Mongoc.write_bson Mongoc.read_next_bson Mongoc.BSONError Mongoc.BSONValue Mongoc.get_as_bson_value Mongoc.read_bson_from_json ``` ## Client ```@docs Mongoc.Client Mongoc.set_appname! Mongoc.ping Mongoc.get_server_mongodb_version Mongoc.find_databases Mongoc.get_database_names Mongoc.has_database ``` ## ClientPool ```@docs Mongoc.ClientPool Mongoc.set_max_size ``` ## Database ```@docs Mongoc.command_simple Mongoc.add_user Mongoc.remove_user Mongoc.has_user Mongoc.find_collections Mongoc.get_collection_names Mongoc.read_command Mongoc.write_command ``` ## Collection ```@docs Mongoc.find Mongoc.find_one Mongoc.count_documents Mongoc.drop Mongoc.find_and_modify Mongoc.FindAndModifyFlags Mongoc.find_one_and_delete Mongoc.find_one_and_replace Mongoc.find_one_and_update Mongoc.replace_one ``` ## Aggregation ```@docs Mongoc.aggregate Mongoc.QueryFlags ``` ## Session ```@docs Mongoc.transaction ``` ## GridFS ```@docs Mongoc.MongoStreamFile Mongoc.upload Mongoc.download Mongoc.delete Mongoc.open_download_stream Mongoc.open_upload_stream Mongoc.abort_upload ```
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
docs
2013
# Authentication Refer to the [Security section of the MongoDB Manual](https://docs.mongodb.com/manual/security/) for an overview on how authentication works in MongoDB. ## Basic Authentication (SCRAM) In this authentication mechanism, user and passwords are passed in the URI string for the `Mongoc.Client`. ### Enable Auth To use basic authentication mechanism, first enable authentication in the database, as described in the [MongoDB manual](http://mongoc.org/libmongoc/current/authentication.html). #### 1. Start MongoDB without access control ```shell $ mongod --dbpath ./db ``` #### 2. Connect to the database and create an admin user. From a Julia session, you can use `Mongoc.add_user` to add users to a MongoDB database. ```julia import Mongoc roles = Mongoc.BSON("""[ { "role" : "userAdminAnyDatabase", "db" : "admin" }, "readWriteAnyDatabase" ]""") client = Mongoc.Client() Mongoc.add_user(client["admin"], "myUserAdmin", "abc123", roles) Mongoc.destroy!(client) # or exit julia session ``` #### 3. Re-start the MongoDB instance with access control Kill the previous process running `mongod` and then start server with auth option. ```shell $ mongod --auth --dbpath ./db ``` ### Connect and authenticate Pass the user and password in the URI, as described in [http://mongoc.org/libmongoc/current/authentication.html](http://mongoc.org/libmongoc/current/authentication.html). ```julia client = Mongoc.Client("mongodb://myUserAdmin:abc123@localhost/?authSource=admin") ``` From MongoDB 4.0, there's a new authentication mechanism SCRAM-SHA-256, which replaces the previous SCRAM-SHA-1 mechanism. The correct authentication mechanism is negotiated between the driver and the server. Alternatively, SCRAM-SHA-256 can be explicitly specified: ```julia client = Mongoc.Client("mongodb://myUserAdmin:abc123@localhost/?authMechanism=SCRAM-SHA-256&authSource=admin") ``` Refer to the [MongoDB manual](https://docs.mongodb.com/manual/security/) for adding new users and roles per database.
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
docs
849
# Connection Pool A `ClientPool` is a *thread-safe* pool of connections to a MongoDB instance. From a `ClientPool` you can create regular `Client` connections to MongoDB. ```julia const REPLICA_SET_URL = "mongodb://127.0.0.1:27021,127.0.0.1:27022,127.0.0.1:27023/?replicaSet=rs0" # creates a ClientPool with a maximum of 4 connections. pool = Mongoc.ClientPool(REPLICA_SET_URL, max_size=4) # create Clients from a pool client1 = Mongoc.Client(pool) client2 = Mongoc.Client(pool) client3 = Mongoc.Client(pool) client4 = Mongoc.Client(pool) ``` When you reach the maximum number of clients, the next call to `Mongoc.Client(pool)` will block until a `Client` is released. Use `try_pop=true` option to throw an error instead of blocking the current thread: ```julia # will throw `AssertionError` client5 = Mongoc.Client(pool, try_pop=true) ```
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
docs
2226
# CRUD Operations ## Insert ### API ```julia Mongoc.insert_one(collection::Collection, document::BSON; options::Union{Nothing, BSON}=nothing) Mongoc.insert_many(collection::Collection, documents::Vector{BSON}; bulk_options::Union{Nothing, BSON}=nothing, insert_options::Union{Nothing, BSON}=nothing) ``` `Mongoc.insert_one` is equivalent to `Base.push!` for a collection. The same applies to `Mongoc.insert_many` in relation to `Base.append!`. ### Examples ```julia push!(collection, Mongoc.BSON("""{ "hello" : "world" }""")) append!(collection, [ Mongoc.BSON("""{ "first" : 1, "delete" : true }"""), Mongoc.BSON("""{ "second" : 2, "delete" : true }"""), Mongoc.BSON("""{ "third" : 3, "delete" : false }""") ]) ``` ## Select ### API ```julia find_one(collection::Collection, bson_filter::BSON=BSON(); options::Union{Nothing, BSON}=nothing) :: Union{Nothing, BSON} find(collection::Collection, bson_filter::BSON=BSON(); options::Union{Nothing, BSON}=nothing) :: Cursor ``` ### Examples ```julia bson = Mongoc.find_one(collection, Mongoc.BSON("""{ "third" : 3 }""")) for doc in Mongoc.find(collection) println(doc) end ``` ## Update ### API ```julia Mongoc.update_one(collection::Collection, selector::BSON, update::BSON; options::Union{Nothing, BSON}=nothing) Mongoc.update_many(collection::Collection, selector::BSON, update::BSON; options::Union{Nothing, BSON}=nothing) ``` ### Examples ```julia selector = Mongoc.BSON("""{ "delete" : false }""") update = Mongoc.BSON("""{ "\$set" : { "delete" : true, "new_field" : 1 } }""") Mongoc.update_one(collection, selector, update) selector = Mongoc.BSON("""{ "delete" : true }""") update = Mongoc.BSON("""{ "\$set" : { "delete" : false } }""") Mongoc.update_many(collection, selector, update) ``` ## Delete ### API ```julia Mongoc.delete_one(collection::Collection, selector::BSON; options::Union{Nothing, BSON}=nothing) Mongoc.delete_many(collection::Collection, selector::BSON; options::Union{Nothing, BSON}=nothing) ``` ### Examples ```julia selector = Mongoc.BSON("_id" => oid) Mongoc.delete_one(collection, selector) # deletes all elements in a collection Mongoc.delete_many(collection, Mongoc.BSON()) # equivalent to `empty!(collection)` ```
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
docs
1799
# GridFS GridFS is a MongoDB feature to store large files. A BSON document can be use to store arbitrary data, but the size limit is 16MB. With GridFS, you can store files that exceed this limit. Refer to [GridFS docs website](https://docs.mongodb.com/manual/core/gridfs/) for more information. ## Buckets Files in GridFS are organized inside Buckets. First, create a Bucket associated with a database. Then, add files to that bucket. ```julia db = client[DB_NAME] bucket = Mongoc.Bucket(db) ``` ## Upload and Download a file The following example shows how to upload and download a file to/from a `Bucket` represented by the variable `bucket`. ```julia local_fp = "/path/to/a/local/file.txt" @assert isfile(local_fp) remote_filename = "remote_file.txt" # will upload `local_fp` to `bucket`. # On the remote bucket, the file will be named `remote_file.txt`. Mongoc.upload(bucket, remote_filename, local_fp) # downloads `remote_file.txt` to `download_filepath`. download_filepath = "/path/to/a/local/download_file.txt" Mongoc.download(bucket, remote_filename, download_filepath) ``` ## Upload and Download using streams Use [`Mongoc.open_upload_stream`](@ref) and [`Mongoc.open_download_stream`](@ref) to execute stream based upload and download operations. ```julia remote_filename = "uploaded_file.txt" io = Mongoc.open_upload_stream(bucket, remote_filename) msg = "hey you out there" write(io, msg) close(io) Mongoc.open_download_stream(bucket, remote_filename) do io tmp_str = read(io, String) println( msg == tmp_str ) end ``` ## Find and Delete files in Bucket Use `Mongoc.find` on a bucket to search for files, and `Mongoc.delete` to delete. ```julia for doc in Mongoc.find(bucket) println("Deleting $(doc["filename"])") Mongoc.delete(bucket, doc) end ```
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
docs
1748
# Mongoc.jl ## Introduction **Mongoc.jl** is a [MongoDB](https://www.mongodb.com/) driver for the Julia Language. It is implemented as a thin wrapper around [libmongoc](http://mongoc.org/), the official client library for C applications. Given that [BSON](http://bsonspec.org/) is the document format for MongoDB, this package also implements a wrapper around [libbson](http://mongoc.org/libbson/current/index.html), which provides a way to create and manipulate BSON documents. ## Requirements * MongoDB 3.0 or newer. * Julia versions v1.6 or newer. * Linux, macOS, or Windows. ## Installation From a Julia session, run: ```julia julia> using Pkg julia> Pkg.add("Mongoc") ``` ## Source Code The source code for this package is hosted at [https://github.com/felipenoris/Mongoc.jl](https://github.com/felipenoris/Mongoc.jl). ## License The source code for the package **Mongoc.jl** is licensed under the [MIT License](https://github.com/felipenoris/Mongoc.jl/blob/master/LICENSE). This repository distributes binary assets built from [mongo-c-driver](https://github.com/mongodb/mongo-c-driver) source code, which is licensed under [Apache-2.0](https://github.com/mongodb/mongo-c-driver/blob/master/COPYING). ## Getting Help If you're having any trouble, have any questions about this package or want to ask for a new feature, just open a new [issue](https://github.com/felipenoris/Mongoc.jl/issues). ## Contributing Contributions are always welcome! To contribute, fork the project on [GitHub](https://github.com/felipenoris/Mongoc.jl) and send a Pull Request. ## References * [libbson documentation](http://mongoc.org/libbson/current/index.html) * [libmongoc documentation](http://mongoc.org/libmongoc/current/index.html)
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
docs
2282
# Logging The following example uses `Mongoc.mongoc_set_log_handler` to set a customized log handler. In this example, the setup is done by calling `init_log_handler_if_safe()`. ```julia using Logging const MONGOC_LOG_LEVEL_ERROR = 0 const MONGOC_LOG_LEVEL_CRITICAL = 1 const MONGOC_LOG_LEVEL_WARNING = 2 const MONGOC_LOG_LEVEL_MESSAGE = 3 const MONGOC_LOG_LEVEL_INFO = 4 const MONGOC_LOG_LEVEL_DEBUG = 5 const MONGOC_LOG_LEVEL_TRACE = 6 if VERSION >= v"v1.7" @inline _isjuliathread() = @ccall(jl_get_pgcstack()::Ptr{Cvoid}) != C_NULL else @inline _isjuliathread() = false end @noinline function _log_handler_do(level::Cint, domain::Ptr{UInt8}, message::Ptr{UInt8}) jlevel = if level == MONGOC_LOG_LEVEL_ERROR Logging.Error elseif level == MONGOC_LOG_LEVEL_CRITICAL Logging.Error elseif level == MONGOC_LOG_LEVEL_WARNING Logging.Warn elseif level == MONGOC_LOG_LEVEL_MESSAGE Logging.Info elseif level == MONGOC_LOG_LEVEL_INFO Logging.Info elseif level == MONGOC_LOG_LEVEL_DEBUG Logging.Debug elseif level == MONGOC_LOG_LEVEL_TRACE Logging.Debug else error("Unexpected mongoc log level $level") end domain = unsafe_string(domain) message = unsafe_string(message) @logmsg jlevel "$domain $message" nothing end function _log_handler(level::Cint, domain::Ptr{UInt8}, message::Ptr{UInt8}, fallback::Ptr{Cvoid}) # If called on a non-julia thread, e.g., from server monitor, fall back to default log handler. # TODO: change this when Julia safely supports foreign thread calls. if _isjuliathread() _log_handler_do(level, domain, message) else ccall( fallback, Cvoid, (Cint, Ptr{UInt8}, Ptr{UInt8}, Ptr{Cvoid}), level, domain, message, C_NULL ) end end function init_log_handler() _isjuliathread() || error("Intercepting mongo logging unsupported on $(VERSION)") Mongoc.mongoc_set_log_handler( @cfunction(_log_handler, Cvoid, (Cint, Ptr{UInt8}, Ptr{UInt8}, Ptr{Cvoid})), cglobal((:mongoc_log_default_handler, Mongoc.libmongoc)) ) end function init_log_handler_if_safe() if _isjuliathread() init_log_handler() end end ```
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
docs
2590
# Transactions Support for transactions is available from MongoDB v4.0. ## Setting up a Replica Set As described in the [MongoDB Manual](https://docs.mongodb.com/manual/core/transactions/), "*multi-document transactions are available for replica sets only. Transactions for sharded clusters are scheduled for MongoDB 4.2*". Follow [these steps](https://docs.mongodb.com/manual/tutorial/deploy-replica-set/) to start a replica set. The following script will create a replica set with 3 nodes: ```shell mkdir db1 mkdir db2 mkdir db3 mongod --dbpath ./db1 --port 27021 --replSet "rs0" --bind_ip 127.0.0.1 mongod --dbpath ./db2 --port 27022 --replSet "rs0" --bind_ip 127.0.0.1 mongod --dbpath ./db3 --port 27023 --replSet "rs0" --bind_ip 127.0.0.1 mongo --port 27021 replica_set_initiate.js ``` The contents of `replica_set_initiate.js` are: ```javascript rs.initiate( { _id : "rs0", members: [ { _id: 0, host: "127.0.0.1:27021" }, { _id: 1, host: "127.0.0.1:27022" }, { _id: 2, host: "127.0.0.1:27023" } ] }) ``` ## Executing Transactions In MongoDB, **transactions** are bound to **Sessions**. In **Mongoc.jl**, use the function `Mongoc.transaction` with *do-syntax* to execute a transaction, and use the argument `session` to get database and collection references bound to the session that will execute the transaction. Just use the `session` object the same way you would use a `Client`. !!! note Database and Collection references that are not created from a `session` object are not bound to the transaction. ## Example ```julia import Mongoc # connect to a Replica Set client = Mongoc.Client("mongodb://127.0.0.1:27021,127.0.0.1:27022,127.0.0.1:27023/?replicaSet=rs0") # this collection reference is not bounded to the transaction collection_unbounded = client["my_database"]["my_collection"] # insert a dummy document, just to make sure the collection exists push!(collection_unbounded, Mongoc.BSON("""{ "test" : 1 }""")) empty!(collection_unbounded) Mongoc.transaction(client) do session database = session["my_database"] collection = database["my_collection"] new_item = Mongoc.BSON() new_item["inserted"] = true push!(collection, new_item) println("collection_bounded is empty? ", isempty(collection_unbounded)) println("collection is empty? ", isempty(collection)) end println(collect(collection_unbounded)) ``` The script output is: ``` collection_bounded is empty? true collection is empty? false Mongoc.BSON[BSON("{ "_id" : { "$oid" : "5ba4251f3192e3298b62c5a3" }, "inserted" : true }")] ```
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.9.1
1f0d7579d1bacc1446751990d7e0c4c0bf0f3277
docs
16438
# Tutorial This tutorial illustrates common use cases for accessing a MongoDB database with **Mongoc.jl** package. ## Setup First, make sure you have **Mongoc.jl** package installed. ```julia julia> using Pkg julia> Pkg.add("Mongoc") ``` The following tutorial assumes that a MongoDB instance is running on the default host and port: `localhost:27017`. To start a new server instance on the default location use the following command on your shell. ```shell $ mkdir db $ mongod --dbpath ./db ``` ## Connecting to MongoDB Connect to a MongoDB instance using a `Mongoc.Client`. Use the [MongoDB URI format](https://docs.mongodb.com/manual/reference/connection-string/) to set the server location. ```julia julia> import Mongoc julia> client = Mongoc.Client("mongodb://localhost:27017") Client(URI("mongodb://localhost:27017")) ``` As a shorthand, you can also use: ```julia julia> client = Mongoc.Client("localhost", 27017) ``` To connect to the server at the default location `localhost:27017` you can use the `Mongoc.Client` constructor with no arguments. ```julia julia> client = Mongoc.Client() ``` One thing to keep in mind about MongoDB is that operations are usually lazy. So you don't actually connect to the database until you need to issue a command or query. If you need to check the connection status before sending commands, use Mongoc.ping(client) to ping the server. ```julia julia> Mongoc.ping(client) BSON("{ "ok" : 1.0 }") ``` ## Getting a Database A MongoDB instance consists on a set of independent databases. You get a Database reference using the following command. ```julia julia> database = client["my-database"] Database(Client(URI("mongodb://localhost:27017")), "my-database") ``` If `"my-database"` does not exist on your MongoDB instance, it will be created in the first time you insert a document in it. ## Getting a Collection A Collection is a set of documents in a MongoDB database. You get a collection reference using the following command. ```julia julia> collection = database["my-collection"] Collection(Database(Client(URI("mongodb://localhost:27017")), "my-database"), "my-collection") ``` If it does not exist inside your database, the Collection is created in the first time you insert a document in it. ## BSON Documents [BSON](http://bsonspec.org/) is the document format for MongoDB. To create a BSON document instance in **Mongoc.jl** just use Dictionary syntax, using `String`s as keys. ```julia julia> document = Mongoc.BSON() julia> document["name"] = "Felipe" julia> document["age"] = 35 julia> document["preferences"] = [ "Music", "Computer", "Photography" ] julia> document["null_value"] = nothing # maps to BSON null value julia> using Dates; document["details"] = Dict("birth date" => DateTime(1983, 4, 16), "location" => "Rio de Janeiro") julia> using UUIDs; document["id"] = uuid4() ``` As another example: ```julia julia> document = Mongoc.BSON("a" => 1, "b" => "field_b", "c" => [1, 2, 3]) BSON("{ "a" : 1, "b" : "field_b", "c" : [ 1, 2, 3 ] }") ``` You can also create a BSON document from a JSON string. ```julia julia> document = Mongoc.BSON("""{ "hey" : "you" }""") ``` And also from a Dictionary. ```julia julia> dict = Dict("hey" => "you") Dict{String,String} with 1 entry: "hey" => "you" julia> document = Mongoc.BSON(dict) BSON("{ "hey" : "you" }") ``` Reading data from a BSON is like reading from a `Dict`. ```julia julia> document = Mongoc.BSON("a" => 1, "b" => "field_b", "c" => [1, 2, 3]) BSON("{ "a" : 1, "b" : "field_b", "c" : [ 1, 2, 3 ] }") julia> document["a"] 1 julia> document["b"] "field_b" ``` Like a `Dict`, you can iterate thru BSON's `(key, value)` pairs, like so: ```julia julia> for (k, v) in document println("[$k] = $v") end [a] = 1 [b] = field_b [c] = Any[1, 2, 3] ``` To convert a BSON to a JSON string, use: ```julia julia> Mongoc.as_json(document) "{ \"name\" : \"Felipe\", \"age\" : 35, \"preferences\" : [ \"Music\", \"Computer\", \"Photography\" ], \"null_value\" : null, \"details\" : { \"location\" : \"Rio de Janeiro\", \"birth date\" : { \"\$date\" : \"1983-04-16T00:00:00Z\" } } }" ``` To convert a BSON document to a Dictionary, use `Mongoc.as_dict`. ```julia julia> Mongoc.as_dict(document) Dict{Any,Any} with 1 entry: "hey" => "you" ``` ## Read/Write BSON documents from/to IO Stream You can read and write BSON documents in binary format to IO streams. ### High-level API BSON documents can be serialized using Julia's `Serialization` stdlib. This means that BSON documents can also be shared among Julia workers using Julia's `Distributed` stdlib. ```julia using Test, Mongoc @testset "read/write single BSON" begin doc = Mongoc.BSON("a" => 1) io = IOBuffer() write(io, doc) seekstart(io) doc2 = read(io, Mongoc.BSON) @test doc2["a"] == 1 end addprocs(1) @everywhere using Mongoc @testset "Serialize BSON" begin f = @spawn Mongoc.BSON("a" => 1) bson = fetch(f) @test bson["a"] == 1 end ``` ### Low-level API The following example shows how to: 1. Create a vector of BSON documents. 2. Save the vector to a file. 3. Read back the vector of BSON documents from a file. ```julia using Test, Mongoc filepath = "data.bson" list = Vector{Mongoc.BSON}() let src = Mongoc.BSON() src["id"] = 1 src["name"] = "1st" push!(list, src) end let src = Mongoc.BSON() src["id"] = 2 src["name"] = "2nd" push!(list, src) end open(filepath, "w") do io Mongoc.write_bson(io, list) end list_from_file = Mongoc.read_bson(filepath) @test length(list_from_file) == 2 let fst_bson = list_from_file[1] @test fst_bson["id"] == 1 @test fst_bson["name"] == "1st" end let sec_bson = list_from_file[2] @test sec_bson["id"] == 2 @test sec_bson["name"] == "2nd" end ``` ## Read BSON Documents from a JSON File Given a JSON file `docs.json` with the following content: ```json { "num" : 1, "str" : "two" } { "num" : 2, "str" : "three" } ``` This file can be read using a `Mongoc.BSONJSONReader`. A high-level function `Mongoc.read_bson_from_json` is also available. Notice how strange the json format is: it is a sequence of JSON documents without separator. Adding a separator (`, `) between JSON documents will duplicate the BSON fields. Also, if you enclose the whole file with a vector of JSONs, a single BSON will be returned with a vector of elements. ### Examples ```julia vec_of_bsons = Mongoc.read_bson_from_json("docs.json") ``` ```julia reader = Mongoc.BSONJSONReader("docs.json") for bson in reader println(bson) end ``` ## Inserting Documents To insert a single document into a collection, just `Base.push!` a BSON document to it. The result of this operation wraps the server reply and the inserted oid. ```julia julia> document = Mongoc.BSON("""{ "hey" : "you" }""") BSON("{ "hey" : "you" }") julia> result = push!(collection, document) Mongoc.InsertOneResult{Mongoc.BSONObjectId}(BSON("{ "insertedCount" : 1 }"), BSONObjectId("5c9fdb5d11c3dd04a83ba6c2")) julia> result.inserted_oid BSONObjectId("5c9fdb5d11c3dd04a83ba6c2") ``` Use `Base.append!` to insert a vector of documents to a collection. The result of this operation also wraps the server reply and the inserted oids. ```julia julia> doc1 = Mongoc.BSON("""{ "hey" : "you", "out" : "there" }""") BSON("{ "hey" : "you", "out" : "there" }") julia> doc2 = Mongoc.BSON("""{ "hey" : "others", "in the" : "cold" }""") BSON("{ "hey" : "others", "in the" : "cold" }") julia> vector = [ doc1, doc2 ] 2-element Array{Mongoc.BSON,1}: BSON("{ "hey" : "you", "out" : "there" }") BSON("{ "hey" : "others", "in the" : "cold" }") julia> append!(collection, vector) Mongoc.BulkOperationResult{Union{Nothing, BSONObjectId}}(BSON("{ "nInserted" : 2, "nMatched" : 0, "nModified" : 0, "nRemoved" : 0, "nUpserted" : 0, "writeErrors" : [ ] }"), 0x00000001, Union{Nothing, BSONObjectId}[BSONObjectId("5c9fdbab11c3dd04a83ba6c3"), BSONObjectId("5c9fdbab11c3dd04a83ba6c4")]) ``` ## Querying Documents To query a single document, use `Mongoc.find_one`. Pass a BSON argument as a query filter. ```julia julia> document = Mongoc.find_one(collection, Mongoc.BSON("""{ "hey" : "you" }""")) BSON("{ "_id" : { "$oid" : "5b9ef9cc11c3dd1da14675c3" }, "hey" : "you" }") ``` To iterate all documents from a collection, just use a for loop on a `collection`. ```julia julia> for document in collection println(document) end BSON("{ "_id" : { "$oid" : "5b9f02fb11c3dd1f4f3e26e5" }, "hey" : "you", "out" : "there" }") BSON("{ "_id" : { "$oid" : "5b9f02fb11c3dd1f4f3e26e6" }, "hey" : "others", "in the" : "cold" }") ``` To query multiple documents, use `Mongoc.find`. Pass a BSON query argument as a query filter. It returns a iterator of BSON documents that can be read using a `for` loop. ```julia julia> for document in Mongoc.find(collection, Mongoc.BSON("""{ "in the" : "cold" }""")) println(document) end BSON("{ "_id" : { "$oid" : "5b9f02fb11c3dd1f4f3e26e6" }, "hey" : "others", "in the" : "cold" }") ``` Use `Base.collect` to convert the result of `Mongoc.find` into a vector of BSON documents. Also, applying `Base.collect` to a Collection gathers all documents in the collection. ```julia julia> collect(collection) 2-element Array{Mongoc.BSON,1}: BSON("{ "_id" : { "$oid" : "5b9f02fb11c3dd1f4f3e26e5" }, "hey" : "you", "out" : "there" }") BSON("{ "_id" : { "$oid" : "5b9f02fb11c3dd1f4f3e26e6" }, "hey" : "others", "in the" : "cold" }") ``` ## Project fields to Return from Query To select which fields you want a query to return, use a `projection` command in the `options` argument of `Mongoc.find` or `Mongoc.find_one`. As an example: ```julia function find_contract_codes(collection, criteria::Dict=Dict()) :: Vector{String} result = Vector{String}() let bson_filter = Mongoc.BSON(criteria) bson_options = Mongoc.BSON("""{ "projection" : { "_id" : true }, "sort" : { "_id" : 1 } }""") for bson_document in Mongoc.find(collection, bson_filter, options=bson_options) push!(result, bson_document["_id"]) end end return result end ``` Check the [libmongoc documentation for options field](http://mongoc.org/libmongoc/current/mongoc_collection_find_with_opts.html) for details. ## Counting Documents Use `Base.length` function to count the number of documents in a collection. Pass a BSON argument as a query filter. ```julia julia> length(collection) 2 julia> length(collection, Mongoc.BSON("""{ "in the" : "cold" }""")) 1 ``` ## Aggregation and Map-Reduce Use `Mongoc.aggregate` to execute an aggregation command. The following reproduces the example from the [MongoDB Tutorial](https://docs.mongodb.com/manual/aggregation/). ```julia docs = [ Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 500, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 250, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "B212", "amount" : 200, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 300, "status" : "D" }""") ] collection = client["my-database"]["aggregation-collection"] append!(collection, docs) # Sets the pipeline command bson_pipeline = Mongoc.BSON(""" [ { "\$match" : { "status" : "A" } }, { "\$group" : { "_id" : "\$cust_id", "total" : { "\$sum" : "\$amount" } } } ] """) for doc in Mongoc.aggregate(collection, bson_pipeline) println(doc) end ``` The result of the script above is: ```julia BSON("{ "_id" : "B212", "total" : 200 }") BSON("{ "_id" : "A123", "total" : 750 }") ``` A **Map-Reduce** operation can be executed with `Mongoc.command_simple` or `Mongoc.read_command`. ```julia input_collection_name = "aggregation-collection" output_collection_name = "order_totals" query = Mongoc.BSON("""{ "status" : "A" }""") # use `Mongoc.BSONCode` to represent JavaScript elements in BSON mapper = Mongoc.BSONCode(""" function() { emit( this.cust_id, this.amount ); } """) reducer = Mongoc.BSONCode(""" function(key, values) { return Array.sum( values ) } """) map_reduce_command = Mongoc.BSON() map_reduce_command["mapReduce"] = input_collection_name map_reduce_command["map"] = mapper map_reduce_command["reduce"] = reducer map_reduce_command["out"] = output_collection_name map_reduce_command["query"] = query result = Mongoc.read_command(database, map_reduce_command) println(result) for doc in Mongoc.find(database["order_totals"]) println(doc) end ``` The result of the script above is: ```julia BSON("{ "result" : "order_totals", "timeMillis" : 135, "counts" : { "input" : 3, "emit" : 3, "reduce" : 1, "output" : 2 }, "ok" : 1.0 }") BSON("{ "_id" : "A123", "value" : 750.0 }") BSON("{ "_id" : "B212", "value" : 200.0 }") ``` ## "distinct" command This example demonstrates the `distinct` command, based on [libmongoc docs](http://mongoc.org/libmongoc/current/distinct-mapreduce.html). ```julia import Mongoc client = Mongoc.Client() docs = [ Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 500, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 250, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "B212", "amount" : 200, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 300, "status" : "D" }""") ] collection = client["my-database"]["my-collection"] append!(collection, docs) distinct_cmd = Mongoc.BSON() distinct_cmd["distinct"] = "my-collection" distinct_cmd["key"] = "status" result = Mongoc.command_simple(client["my-database"], distinct_cmd) ``` Which yields: ```julia BSON("{ "values" : [ "A", "D" ], "ok" : 1.0 }") ``` ## Find and Modify Use `Mongoc.find_and_modify` to query and update documents in a single pass. ```julia # # populate a new collection # collection = client["database_name"]["find_and_modify"] docs = [ Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 500, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 250, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "B212", "amount" : 200, "status" : "A" }"""), Mongoc.BSON("""{ "cust_id" : "A123", "amount" : 300, "status" : "D" }""") ] append!(collection, docs) # # updates the item with amount 5000 with status "N" # query = Mongoc.BSON("amount" => 500) reply = Mongoc.find_and_modify( collection, query, update = Mongoc.BSON("""{ "\$set" : { "status" : "N" } }"""), flags = Mongoc.FIND_AND_MODIFY_FLAG_RETURN_NEW # will return the new version of the document ) modified_doc = reply["value"] @test modified_doc["status"] == "N" # # UPSERT example: if the queried item is not found, it is created # query = Mongoc.BSON("""{ "cust_id" : "C555", "amount" : 10, "status" : "X" }""") reply = Mongoc.find_and_modify( collection, query, update = Mongoc.BSON("""{ "\$set" : { "status" : "S" } }"""), flags = Mongoc.FIND_AND_MODIFY_FLAG_UPSERT | Mongoc.FIND_AND_MODIFY_FLAG_RETURN_NEW ) new_document = reply["value"] @test new_document["cust_id"] == "C555" @test new_document["amount"] == 10 @test new_document["status"] == "S" # # Update sorted with selected fields # query = Mongoc.BSON("""{ "amount" : { "\$lt" : 300 } }""") update = Mongoc.BSON("""{ "\$set" : { "status" : "Z" } }""") fields = Mongoc.BSON("""{ "amount" : 1, "status" : 1 }""") sort = Mongoc.BSON("""{ "amount" : 1 }""") reply = Mongoc.find_and_modify( collection, query, update=update, sort=sort, fields=fields, flags=Mongoc.FIND_AND_MODIFY_FLAG_RETURN_NEW) new_document = reply["value"] @test new_document["amount"] == 10 @test new_document["status"] == "Z" @test !haskey(new_document, "cust_id") ``` ## Create Index Use `Mongoc.write_command` to issue a `createIndexes` command to the database. ```julia database = client[DB_NAME] collection_name = "index_collection" collection = database[collection_name] let items = [ Mongoc.BSON("_id" => 1, "group" => "g1"), Mongoc.BSON("_id" => 2, "group" => "g1"), Mongoc.BSON("_id" => 3, "group" => "g2") ] append!(collection, items) end create_indexes_cmd = Mongoc.BSON( "createIndexes" => collection_name, "indexes" => [ Mongoc.BSON("key" => Mongoc.BSON("group" => 1), "name" => "group_index") ] ) reply = Mongoc.write_command(database, create_indexes_cmd) @assert reply["ok"] == 1 ``` See also: http://mongoc.org/libmongoc/current/create-indexes.html.
Mongoc
https://github.com/felipenoris/Mongoc.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
code
622
using Pkg Pkg.add("Documenter") using Documenter, QuantizedArrays # Make src directory available push!(LOAD_PATH,"../src/") # Make documentation makedocs( modules = [QuantizedArrays], format = Documenter.HTML(), sitename = " ", authors = "Corneliu Cofaru, 0x0α Research", clean = true, debug = true, pages = [ "Introduction" => "index.md", "Usage examples" => "examples.md", "API Reference" => "api.md", ] ) # Deploy documentation deploydocs( repo = "github.com/zgornel/QuantizedArrays.jl.git", target = "build", deps = nothing, make = nothing )
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
code
2612
################################################################################### # 'dko' ,, :NM. # # 'Ol..'lO' d, od .M. # # ,W' ,W, .. .. Xl ... .. .M. # # K0 K0 ,OX 'kW ox,,dk cNklckX. cNOcc ;OX lxcclWK '0c,l0. .Kx:cdM. # # Wk ON cX :W . Xc Kk Xo Xc cX .. OO .W: lN Xx ,M. # # X0 KK cX :W cOollNl Kl 0o Xc cX .Kx ;MdcccoO..Mc .M. # # :W. .M; cN cW 'M, Kl Kl 0o Xc cX .Nl 'M, ' Wo 'M. # # ;0:. .:0; .Wl.;OW. Xx. ;Wd. .Xd. .Kx. 0d d,.dN. ,Wd...x' l0. .do :N;..xM:.# # ':oNc .:c..,, ;c:.',' ,,,. ,,,' .:c, ',,, .,,,,,, .:c:. .:c, ,,.# # .kK, # # # # .... ..... ... ... # # ,::::::; ,MMMM, XMMMx :::::::. ;MMo kMM. '::;::, # # XMMMMMMX ,MMMM, XMMMx .MMMMMMMd ;MMo kMM. 0MMWMM0 # # XMMMMMMX kOOo'''' cOOO,'''. .MMMMMMMd '':OOO;'' 0MMWMM0 # # XMMMMMMX WMMx xMMM .MMMMMMMd :MMM' 0MMX # # XMMMMMMX WMMx xMMM .MMMMMMMd :MMM' 0MMX # # OWWWMMMMMMX WMMx xMMM 'WWNMMMMMMMd :MMM' xWWWMMX # # 0MMWMMMMMMX WMMx xMMM 'MMWMMMMMMMd :MMM' kMMWMMX # # 0MMWMMMMMMX WMMx xMMM 'MMWMMMMMMMd :MMM' kMMWMMX # # # ################################################################################### # QuantizedArrays.jl - Array quantization and compression, written at 0x0α Research # by Corneliu Cofaru, 2019 __precompile__(true) """ QuantizedArrays.jl - array quantization and compression. """ module QuantizedArrays using LinearAlgebra, InteractiveUtils, StatsBase, Distances, Clustering export QuantizedArray, QuantizedVector, QuantizedMatrix, ArrayQuantizer, CodeBook, quantize, build_quantizer, build_codebooks include("defaults.jl") include("utils.jl") include("codebook.jl") include("codebook_algorithms.jl") include("quantizer.jl") include("interface.jl") end # module
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
code
4835
""" CodeBook{U<:Unsigned,T} The codebook structure. It holds the codes corresponding to the vector prototypes and the mapping bethween the codes and prototypes. # Fields * `codes::Vector{U}` the codes * `vectors::Matrix{T}` the prototypes * `codemap::Dict{U,Int}` mapping from code to column in `vectors` """ struct CodeBook{U<:Unsigned,T} codes::Vector{U} vectors::Matrix{T} codemap::Dict{U,Int} end # Constructors CodeBook(codes::Vector{U}, vectors::Matrix{T}) where {U,T} = begin length(codes) != size(vectors, 2) && throw(DimensionMismatch("Dimension of codes and vectors are inconsistent")) codemap = Dict{U, Int}(c => i for (i,c) in enumerate(codes)) return CodeBook(codes, vectors, codemap) end CodeBook{U}(vectors::Matrix{T}) where {U,T} = begin k = size(vectors,2) nb = TYPE_TO_BITS[U] nbk = TYPE_TO_BITS[quantized_eltype(k)] nbk > nb && throw(ErrorException("$k vectors cannot be coded in $nb bits.")) codes = Vector{U}(0:k-1) codemap = Dict{U, Int}(c => i for (i,c) in enumerate(codes)) return CodeBook(codes, vectors, codemap) end CodeBook{U,T}(vectors::Matrix{T2}) where {U,T<:Integer,T2} = CodeBook{U}(round.(T, vectors)) CodeBook{U,T}(vectors::Matrix{T2}) where {U,T<:AbstractFloat,T2} = CodeBook{U}(convert.(T, vectors)) CodeBook(vectors::Matrix{T}) where {T} = CodeBook{quantized_eltype(size(vectors, 2)), T}(vectors) # Show method Base.show(io::IO, cb::CodeBook{U,T}) where {U,T} = begin len_vecs, num_codes = size(cb.vectors) print(io, "CodeBook{$U,$T} $(num_codes) codes, $(len_vecs)-element vectors") end # Basic indexing: for a key, get the vector Base.getindex(cb::CodeBook{U,T}, key::U) where {U,T} = cb.vectors[:, cb.codemap[key]] """ encode(codebook, aa [;distance=DEFAULT_DISTANCE]) Encodes the input array aa using `distance` to calculate the closest vector prototype from the `codebook`. """ function encode(cb::CodeBook{U,T}, aa::AbstractMatrix{T}; distance::Distances.PreMetric=DEFAULT_DISTANCE ) where {U,T} dists = Distances.pairwise(distance, cb.vectors, aa, dims=2) # distances between codebook vectors and data best_idx = getindex(findmin(dists, dims=1), 2) # get positions vector of all minima best_idx_cols = vec(getindex.(best_idx, 1)) # get row values from positions return cb.codes[best_idx_cols] # get codes corresponding to minima end """ decode(codebook, codes) Returns a partial array reconstruction for using the `codes` and `codebook`. """ function decode(cb::CodeBook{U,T}, codes::Vector{U}) where {U,T} m, n = size(cb.vectors, 1), length(codes) aa = Matrix{T}(undef, m, n) @inbounds @simd for i in 1:n aa[:,i] = cb[codes[i]] end return aa end """ build_codebooks(X, k, m, U [;method=DEFAULT_METHOD, distance=DEFAULT_DISTANCE, kwargs]) Generates `m` codebooks of `k` prototypes each for the input matrix `X` using the algorithm specified my `method` and distance `distance`. Specific codebook aglorithm keyword arguments can be specified as well. # Arguments * `X::AbstractMatrix{T}` input matrix of type `T` * `k::Int` number of prototypes/codebook * `m::Int` number of codebooks * `U::Type{<:Unsigned}` type for codebook codes # Keyword arguments * `method::Symbol` the algorithm to be employed for codebook generation; possible values are `:sample` (default), `:pq` for classical k-means clustering codebooks and `:opq` for 'cartesian' k-means clustering codebooks * `distance::PreMetric` the distance to be used in the codebook generation methods and data encoding * `kwargs...` other codebook generation algorithm specific keyword arguments such as `maxiter::Int`. """ function build_codebooks(X::AbstractMatrix{T}, k::Int, m::Int, ::Type{U}; method::Symbol=DEFAULT_METHOD, distance::Distances.PreMetric=DEFAULT_DISTANCE, kwargs...) where {U,T} nrows, ncols = size(X) k = min(k, ncols) # number of codes for a quantizer m = ifelse(method == :rvq, m, min(m, nrows)) # number of quantizers R = diagm(0=>ones(T, nrows)) if method == :sample vectors = sampling_codebooks(X, k, m) # does not use distances elseif method == :pq vectors = pq_codebooks(X, k, m, distance=distance; kwargs...) elseif method == :opq vectors, R = opq_codebooks(X, k, m, distance=distance; kwargs...) elseif method == :rvq vectors = rvq_codebooks(X, k, m, distance=distance; kwargs...) else @error "Unknown codebook generation method '$(method)'" end return map(CodeBook{U,T}, vectors), R end
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
code
4541
""" sampling_codebooks(X, k, m) Build `m` codebooks for input matrix `X` by sampling `k` prototype vectors. """ function sampling_codebooks(X::AbstractMatrix{T}, k::Int, m::Int) where {T} nrows, ncols = size(X) cbooks = Vector{Matrix{T}}(undef, m) @inbounds for i in 1:m rr = rowrange(nrows, m, i) vectors = Matrix{T}(X[rr, sample(1:ncols, k, replace=false)]) cbooks[i] = vectors end return cbooks end """ pq_codebooks(X, k, m [;distance=DEFAULT_DISTANCE, maxiter=DEFAULT_PQ_MAXITER]) Build `m` codebooks for input matrix `X` using `k` sub-space centers obtained using k-means clustering, the distance `distance` and `maxiter` iterations. # References: * [Jègou et al. 2011](https://lear.inrialpes.fr/pubs/2011/JDS11/jegou_searching_with_quantization.pdf) """ function pq_codebooks(X::AbstractMatrix{T}, k::Int, m::Int; distance::Distances.PreMetric=DEFAULT_DISTANCE, maxiter::Int=DEFAULT_PQ_MAXITER) where {T} nrows = size(X, 1) cbooks = Vector{Matrix{T}}(undef, m) @inbounds for i in 1:m rr = rowrange(nrows, m, i) model = kmeans(X[rr, :], k, maxiter=maxiter, distance=distance, init=:kmpp, display=:none) cbooks[i] = model.centers end return cbooks end """ opq_codebooks(X, k, m [;distance=DEFAULT_DISTANCE, maxiter=DEFAULT_PQ_MAXITER]) Build `m` codebooks for input matrix `X` using `k` sub-space centers obtained using 'cartesian' k-means clustering, the distance `distance` and `maxiter` iterations. # References: * [Ge et al. 2014](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/opq_tr.pdf) """ function opq_codebooks(X::AbstractMatrix{T}, k::Int, m::Int; distance::Distances.PreMetric=DEFAULT_DISTANCE, maxiter::Int=DEFAULT_OPQ_MAXITER) where {T} # Initialize R, rotated data nrows, ncols = size(X) X̂ = zeros(T, size(X)) R = diagm(0 => ones(T, nrows)) Xr = R * X # Initialize codebooks, codes cweights = zeros(Int, k) costs = zeros(ncols) counts = zeros(Int, k) unused = Int[] to_update_z = zeros(Bool, k) codes = fill(zeros(Int, ncols), m) cbooks = sampling_codebooks(X, k, m) @inbounds for i in 1:m rr = rowrange(nrows, m, i) dists = Distances.pairwise(distance, cbooks[i], Xr[rr, :], dims=2) Clustering.update_assignments!(dists, true, codes[i], costs, counts, to_update_z, unused) X̂[rr,:] .= cbooks[i][:, codes[i]] end # Run optimization to_update = fill(ones(Bool, k), m) for it = 1:maxiter # Update R using orthogonal Procustes closed form solution # and update rotated data matrix X̂ U, _, V = svd(X * X̂', full=false) R = V * U' Xr = R * X @inbounds for i in 1:m rr = rowrange(nrows, m, i) # Update subspace cluster centers Clustering.update_centers!(Xr[rr, :], nothing, codes[i], to_update[i], cbooks[i], cweights) # Update subspace data assignments dists = Distances.pairwise(distance, cbooks[i], Xr[rr, :], dims=2) Clustering.update_assignments!(dists, false, codes[i], costs, counts, to_update[i], unused) X̂[rr, :] .= cbooks[i][:, codes[i]] end @debug "OPQ: Iteration $it, error = $(sum((R'*X̂ .- X).^2)./ncols)" end return cbooks, R end """ rvq_codebooks(X, k, m [;distance=DEFAULT_DISTANCE, maxiter=DEFAULT_RVQ_MAXITER]) Build `m` codebooks for input matrix `X` using `k` layers of residual vector cluster centers, obtained using k-means clustering, the distance `distance` and `maxiter` iterations. # References: * [Chen et al. 2010](https://www.mdpi.com/1424-8220/10/12/11259/htm) """ function rvq_codebooks(X::AbstractMatrix{T}, k::Int, m::Int; distance::Distances.PreMetric=DEFAULT_DISTANCE, maxiter::Int=DEFAULT_RVQ_MAXITER) where {T} nrows = size(X, 1) cbooks = Vector{Matrix{T}}(undef, m) Xr = copy(X) @inbounds for i in 1:m model = kmeans(Xr, k, maxiter=maxiter, distance=distance, init=:kmpp, display=:none) cbooks[i] = model.centers codes = model.assignments Xr .-= cbooks[i][:, codes] end return cbooks end
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
code
441
# Default parameter values const DEFAULT_K = 256 const DEFAULT_M = 1 const DEFAULT_METHOD = :sample const DEFAULT_DISTANCE = Distances.SqEuclidean() const MAX_BITS = 128 const BITS_TO_TYPE = Dict(round(Int, log2(typemax(typ))) => typ for typ in subtypes(Unsigned)) const TYPE_TO_BITS = Dict(t=>b for (b,t) in BITS_TO_TYPE) const DEFAULT_PQ_MAXITER = 25 const DEFAULT_OPQ_MAXITER = 25 const DEFAULT_RVQ_MAXITER = 25
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
code
5187
""" QuantizedArray{Q<:AbstractQuantization,U<:Unsigned,D<:PreMetric,T,N} <: AbstractArray{T,N} A quantized array. It represents a 'quantized' representation of an original array, equivalent to a lossy compressed version. # Fields * `quantizer::ArrayQuantizer{Q,U,D,T,N}` the quantized of the array * `data::Matrix{U}` the actual compressed representation of the quantized array """ struct QuantizedArray{Q,U<:Unsigned,D<:Distances.PreMetric,T,N} <: AbstractArray{T,N} quantizer::ArrayQuantizer{Q,U,D,T,N} data::Matrix{U} end # Aliases const QuantizedVector{Q,U,D,T} = QuantizedArray{Q,U,D,T,1} const QuantizedMatrix{Q,U,D,T} = QuantizedArray{Q,U,D,T,2} const OrthogonalQuantizedArray{U,D,T,N} = QuantizedArray{OrthogonalQuantization,U,D,T,N} const OrthogonalQuantizedMatrix{U,D,T,N} = QuantizedArray{OrthogonalQuantization,U,D,T,2} const AdditiveQuantizedArray{U,D,T,N} = QuantizedArray{AdditiveQuantization,U,D,T,N} const AdditiveQuantizedMatrix{U,D,T,N} = QuantizedArray{AdditiveQuantization,U,D,T,2} # Main outer constructor function QuantizedArray(aa::AbstractArray{T,N}; k::Int=DEFAULT_K, m::Int=DEFAULT_M, method::Symbol=DEFAULT_METHOD, distance::Distances.PreMetric=DEFAULT_DISTANCE, kwargs...) where {T,N} @assert N <=2 "Array quantization is supported only for Vectors and Matrices" @assert k >= 1 "`k` has to be larger or equal to 1" @assert m >= 1 "`m` has to be larger or equal to 1" method != :rvq && @assert rem(nvars(aa), m) == 0 "`m` has to divide exactly $(nvars(aa))" method != :sample && @assert T<:AbstractFloat "Input array has to have AbstractFloat elements" aq = build_quantizer(aa, k=k, m=m, method=method, distance=distance; kwargs...) data = quantize_data(aq, aa) return QuantizedArray(aq, data) end """ quantize(aq, aa) Quantize an array `aa` using an array quantizer `aq`. """ function quantize(aq::ArrayQuantizer{Q,U,D,T,N}, aa::AbstractArray{T,N}) where {Q,U,D,T,N} new_aq = ArrayQuantizer(aq.quantization, size(aa), codebooks(aq), aq.k, aq.distance, aq.rot) data = quantize_data(new_aq, aa) return QuantizedArray(new_aq, data) end """ quantize(aa; [;kwargs]) Quantize an array `aa`. # Arguments * `aa::AbstractArray` input array to be quantized # Keyword arguments * `k::Int` the number of vector prototypes in each codebook * `m::Int` the number of codebooks * `method::Symbol` the algorithm to be employed for codebook generation; possible values are `:sample` (default), `:pq` for classical k-means clustering codebooks and `:opq` for 'cartesian' k-means clustering codebooks * `distance::PreMetric` the distance to be used in the codebook generation methods and data encoding Other codebook generation algorithm specific keyword arguments such as `maxiter::Int` can be specified as well. """ quantize(aa::AbstractArray{T,N}; kwargs...) where {T,N} = QuantizedArray(aa; kwargs...) # eltype, size, length Base.eltype(qa::QuantizedArray{Q,U,D,T,N}) where {Q,U,D,T,N} = T Base.size(qa::QuantizedArray) = qa.quantizer.dims Base.IndexStyle(::Type{<:QuantizedArray}) = IndexLinear() """ quantizer(qa) Access the quantizer field of a quantized array `qa`. """ quantizer(qa::QuantizedArray) = qa.quantizer """ nvars(aa) Returns the number of variables of an array `aa`. For vectors, the value is always `1`, for matrices it is the number of rows in the matrix. """ nvars(av::AbstractVector) = 1 nvars(am::AbstractMatrix) = size(am, 1) # Indexing interface: getindex, setindex! @inline function Base.getindex(qa::OrthogonalQuantizedArray, i::Int) cbooks = codebooks(quantizer(qa)) m = length(cbooks) col, row, cidx = _indices(nvars(qa), m, i) qkey = getindex(qa.data, cidx, col) return cbooks[cidx][qkey][row] end @inline function Base.getindex(qa::OrthogonalQuantizedMatrix, i::Int, j::Int) cbooks = codebooks(quantizer(qa)) m = length(cbooks) _, row, cidx = _indices(nvars(qa), m, i) qkey = getindex(qa.data, cidx, j) return cbooks[cidx][qkey][row] end @inline function Base.getindex(qa::AdditiveQuantizedArray, i::Int) cbooks = codebooks(quantizer(qa)) m = length(cbooks) col, row = divrem(i[1]-1, nvars(qa)) .+ 1 return sum(cbooks[cidx][getindex(qa.data, cidx, col)][row] for cidx in 1:m) end @inline function Base.getindex(qa::AdditiveQuantizedMatrix, i::Int, j::Int) cbooks = codebooks(quantizer(qa)) m = length(cbooks) return sum(cbooks[cidx][getindex(qa.data, cidx, j)][i] for cidx in 1:m) end function _indices(n::Int, m::Int, I::Vararg{Int,N}) where {N} step = Int(n/m) col, r = divrem(I[1]-1, n) .+ 1 # column, row in uncompressed data cidx, row = divrem(r-1, step) .+ 1 # codebook index, codebook vector row return col, row, cidx end # setindex! not supported Base.setindex!(qa::QuantizedArray, i::Int) = throw(ErrorException("setindex! not supported on QuantizedArrays")) Base.setindex!(qa::QuantizedArray, I::Vararg{Int, N}) where {N}= throw(ErrorException("setindex! not supported on QuantizedArrays"))
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
code
5001
""" Abstract quantization type. Its subtypes are two singletons corresponding to additive/residual and orthogonal quantization. """ abstract type AbstractQuantization end struct OrthogonalQuantization <: AbstractQuantization end struct AdditiveQuantization <: AbstractQuantization end """ ArrayQuantizer{Q,U,D,T,N} The array quantizer object. It transforms an array with elements of type `T` into a 'quantized' version with elemetns of type `U`. # Fields * `quantization::Q` type of quantization employed i.e. additive, orthogonal * `dims::NTuple{N,Int}` the original array dimensionality * `codebooks::Vector{CodeBook{U,T}}` the codebooks * `k::Int` the number of vector prototypes in each codebooks * `distance::D` the distance employed * `rot::Matrix{T}` rotation matrix """ struct ArrayQuantizer{Q,U,D,T,N} quantization::Q # type of quantization dims::NTuple{N, Int} # original array size codebooks::Vector{CodeBook{U,T}} # codebooks k::Int # number of codes/quantizer distance::D rot::Matrix{T} end # Aliases const OrthogonalQuantizer{U,D,T,N} = ArrayQuantizer{OrthogonalQuantization,U,D,T,N} const AdditiveQuantizer{U,D,T,N} = ArrayQuantizer{AdditiveQuantization,U,D,T,N} # show methods Base.show(io::IO, aq::ArrayQuantizer{Q,U,D,T,N}) where {Q,U,D,T,N} = begin m = length(codebooks(aq)) quantstr = ifelse(Q <: OrthogonalQuantization, "OrthogonalQuantizer", "AdditiveQuantizer") qstr = ifelse(m==1, "quantizer", "quantizers") cstr = ifelse(aq.k==1, "code", "codes") print(io, "$quantstr{$U,$D,$T,$N}, $m $qstr, $(aq.k) $cstr") end # Constructors ArrayQuantizer(aa::AbstractMatrix{T}; k::Int=DEFAULT_K, m::Int=DEFAULT_M, method::Symbol=DEFAULT_METHOD, distance::Distances.PreMetric=DEFAULT_DISTANCE, kwargs...) where {T} = begin U = quantized_eltype(k) quant = quantization_type(method) cbooks, rot = build_codebooks(aa, k, m, U, method=method, distance=distance; kwargs...) return ArrayQuantizer(quant, size(aa), cbooks, k, distance, rot) end ArrayQuantizer(aa::AbstractVector{T}; k::Int=DEFAULT_K, m::Int=DEFAULT_M, method::Symbol=DEFAULT_METHOD, distance::Distances.PreMetric=DEFAULT_DISTANCE, kwargs...) where {T} = begin aq = ArrayQuantizer(aa', k=k, m=m, method=method, distance=distance; kwargs...) return ArrayQuantizer(aq.quantization, size(aa), codebooks(aq), k, distance, aq.rot) end """ build_quantizer(aa [;kwargs]) Builds an array quantizer using the input array `aa`. # Keyword arguments * `k::Int` the number of vector prototypes in each codebook * `m::Int` the number of codebooks * `method::Symbol` the algorithm to be employed for codebook generation; possible values are `:sample` (default), `:pq` for classical k-means clustering codebooks and `:opq` for 'cartesian' k-means clustering codebooks * `distance::PreMetric` the distance to be used in the codebook generation methods and data encoding Other codebook generation algorithm specific keyword arguments such as `maxiter::Int` can be specified as well. """ build_quantizer(aa::AbstractArray; kwargs...) = ArrayQuantizer(aa; kwargs...) """ codebooks(aq) Access the codebooks field of the array quantizer `aq`. """ codebooks(aq::ArrayQuantizer) = aq.codebooks """ quantize_data(aq, aa) Returns a quantized version of the array `aa` using the array quantizer `aq`. """ function quantize_data(aq::OrthogonalQuantizer{U,D,T,2}, aa::AbstractMatrix{T}) where {U,D,T} nrows, ncols = size(aa) @assert nrows == aq.dims[1] "Quantized matrix needs to have $nrows rows" cbooks = codebooks(aq) m = length(cbooks) qa = Matrix{U}(undef, m, ncols) _aa = aq.rot * aa @inbounds @simd for i in 1:m rr = rowrange(nrows, m, i) qa[i,:] = encode(cbooks[i], _aa[rr,:], distance=aq.distance) end return qa end function quantize_data(aq::AdditiveQuantizer{U,D,T,2}, aa::AbstractMatrix{T}) where {U,D,T} nrows, ncols = size(aa) @assert nrows == aq.dims[1] "Quantized matrix needs to have $nrows rows" cbooks = codebooks(aq) m = length(cbooks) qa = Matrix{U}(undef, m, ncols) aac = copy(aa) @inbounds @simd for i in 1:m qa[i,:] = encode(cbooks[i], aac, distance=aq.distance) aac .-= decode(cbooks[i], qa[i,:]) end return qa end function quantize_data(aq::ArrayQuantizer{Q,U,D,T,1}, aa::AbstractVector{T}) where {Q,U,D,T} nrows = aq.dims[1] @assert nrows == length(aa) "Quantized vector needs to have $nrows elements" aat = aa' # use transpose as a single row matrix and quantize that aqt = ArrayQuantizer(aq.quantization, size(aat), codebooks(aq), aq.k, aq.distance, aq.rot) qat = quantize_data(aqt, aat) return qat end
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
code
1023
""" rowrange(n, m, i) Utility function that returns a range based on an iteration index `i`, the number of elements `n` and number of ranges `m`. """ @inline rowrange(n::Int, m::Int, i::Int) = begin rs = floor(Int, n/m) # row step rr = rs*(i-1)+1 : rs*i # row range return rr end """ quantized_eltype(k) Determinies the minimum `Unsigned` type that can hold the value `k`. """ quantized_eltype(k) = begin b = clamp(log2(k), 1, MAX_BITS) minbits = 1024 local mintype for (nbits, utype) in BITS_TO_TYPE if b <= nbits && nbits < minbits minbits = nbits mintype = utype end end if minbits > MAX_BITS @error "Number is too large to fit in $MAX_BITS bits." end return mintype end """ quantization_type(method) Returns a quantization type based on the quantization method to be employed. """ quantization_type(method::Symbol) = begin ifelse(method == :rvq, AdditiveQuantization(), OrthogonalQuantization()) end
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
code
1745
@testset "Codebook generation" begin # Generate some random data n = 100 dim = 2 U = UInt8 Xfloat = rand(dim, n) codes = U.(collect(1:n)) # Test constructors cb = CodeBook(codes, Xfloat) @test cb isa CodeBook{U, eltype(Xfloat)} @test size(cb.vectors) == size(Xfloat) @test length(cb.codes) == length(codes) for (code, idx) in cb.codemap # tests codemap creation, getindex @test cb[code] == Xfloat[:, cb.codemap[code]] == Xfloat[:, idx] end @test_throws DimensionMismatch CodeBook(codes, rand(2,n-3)) @test_throws ErrorException CodeBook{UInt8}(rand(2,257)) for T in [UInt8, UInt16, UInt32, UInt64, Int8, Int16, Int32, Int64, Float16, Float32, Float64] for U in [UInt8, UInt16] # not really necessary for UInt32, UInt64 X = rand(T, dim, Int.(typemax(U))) @test CodeBook(X) isa CodeBook{U,T} if T<:Unsigned && QuantizedArrays.TYPE_TO_BITS[T] <= QuantizedArrays.TYPE_TO_BITS[U] @test CodeBook{U,U}(X) isa CodeBook{U,U} elseif T<:Unsigned && QuantizedArrays.TYPE_TO_BITS[T] >= QuantizedArrays.TYPE_TO_BITS[U] @test_throws InexactError CodeBook{U,U}(X) elseif T<:AbstractFloat @test CodeBook{U, Float64}(X) isa CodeBook{U, Float64} end end end @test QuantizedArrays.encode(cb, Xfloat) == cb.codes #TODO(Corneliu): Functional testing of codebook # generation algorithms i.e. `build_codebooks` T = Float32 U = UInt16 m = 2 dim = 4 npoints = 10 for method in [:pq, :opq, :rvq] cbs, rot = QuantizedArrays.build_codebooks(rand(T, dim, npoints), 2, m, U, method=method) @test cbs isa Vector{CodeBook{U,T}} @test length(cbs) == m @test rot isa Matrix{T} @test size(rot) == (dim, dim) end end
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
code
3943
@testset "Array interface" begin # Test aliases @test QuantizedArray(rand(10), k=2, method=:sample) isa QuantizedVector @test QuantizedArray(rand(2, 10), k=2, method=:sample) isa QuantizedMatrix # Test outer constructor checks @test_throws AssertionError QuantizedArray(rand(2, 2, 2), k=2, m=1, method=:sample) @test_throws AssertionError QuantizedArray(rand(2, 10), k=-1, m=1, method=:sample) @test_throws AssertionError QuantizedArray(rand(2, 10), k=2, m=-1, method=:sample) @test_throws AssertionError QuantizedArray(rand(3, 10), k=2, m=2, method=:sample) for method in [:pq, :opq, :rvq] @test_throws AssertionError QuantizedArray(rand([1,2,3], 3, 10), k=2, m=2, method=method) end # Test quantize function T = Float32 X = rand(T, 3, 10) qa = QuantizedArray(X, k=2, m=3, method=:sample) @test QuantizedArrays.quantizer(qa) === qa.quantizer @test quantize(QuantizedArrays.quantizer(qa), X) == qa # Test other interface parts @test size(qa) == qa.quantizer.dims @test eltype(qa) == T @test QuantizedArrays.nvars(rand(10)) == 1 @test QuantizedArrays.nvars(rand(2, 10)) == 2 # Test setindex! @test_throws CanonicalIndexError qa[1] = one(T) @test_throws CanonicalIndexError qa[1,1] = one(T) # Test orthogonal reconstruction: getindex # vector truevector = [0, 1, 0, 2, 0] codes = [0x00, 0x01, 0x02] vectors = [0 1 2] data = [0x00 0x01 0x00 0x02 0x00] cb = CodeBook(codes, vectors) q = QuantizedArrays.OrthogonalQuantization() rot = diagm(0=>ones(eltype(truevector), length(truevector))) aq = ArrayQuantizer(q, size(truevector), [cb], length(codes), Distances.SqEuclidean(), rot) qa = QuantizedArray(aq, data) @test qa[:] == truevector @test all(qa .== truevector) # matrix truematrix = [0 1 0 2 0 3; 0 1 0 2 0 3] codes = [0x00, 0x01, 0x02, 0x03] vectors = [0 1 2 3; 0 1 2 3] data = [0x00 0x01 0x00 0x02 0x00 0x03] cb = CodeBook(codes, vectors) q = QuantizedArrays.OrthogonalQuantization() rot = diagm(0=>ones(eltype(truematrix), size(truematrix, 1))) aq = ArrayQuantizer(q, size(truematrix), [cb], length(codes), Distances.SqEuclidean(), rot) qa = QuantizedArray(aq, data) @test qa[:] == truematrix[:] @test qa[:,:] == truematrix @test all(qa .== truematrix) # Test aditive reconstruction: getindex # vector truevector = [0, 1, 0, 2, 0] .+ [-1, -1, 1, 1, 2] codes = [0x00, 0x01, 0x02] vectors1 = [0 1 2] vectors2 = [-1 1 2] data = [0x00 0x01 0x00 0x02 0x00; 0x00 0x00 0x01 0x01 0x02] cbs = [CodeBook(codes, vectors1), CodeBook(codes, vectors2)] q = QuantizedArrays.AdditiveQuantization() rot = diagm(0=>ones(eltype(truevector), length(truevector))) aq = ArrayQuantizer(q, size(truevector), cbs, length(codes), Distances.SqEuclidean(), rot) qa = QuantizedArray(aq, data) @test qa[:] == truevector @test all(qa .== truevector) # matrix truematrix = [0 1 0 2 0 3; 0 1 0 2 0 3] .+ [ 2 3 1 4 4 1; -2 -3 -1 -4 -4 -1] codes = [0x00, 0x01, 0x02, 0x03] vectors1 = [0 1 2 3; 0 1 2 3] vectors2 = [1 2 3 4 -1 -2 -3 -4] data = [0x00 0x01 0x00 0x02 0x00 0x03; 0x01 0x02 0x00 0x03 0x03 0x00] cbs = [CodeBook(codes, vectors1), CodeBook(codes, vectors2)] q = QuantizedArrays.AdditiveQuantization() rot = diagm(0=>ones(eltype(truematrix), size(truematrix, 1))) aq = ArrayQuantizer(q, size(truematrix), cbs, length(codes), Distances.SqEuclidean(), rot) qa = QuantizedArray(aq, data) @test qa[:] == truematrix[:] @test qa[:,:] == truematrix @test all(qa .== truematrix) # Setindex tests @test_throws ErrorException qa[1] = 1 @test_throws ErrorException qa[1, 1] = 1 end
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
code
1653
@testset "Array quantizer" begin m = 2 k = 2 Q = QuantizedArrays.OrthogonalQuantization for T in [UInt8, UInt16, UInt32, UInt64, Int8, Int16, Int32, Int64, Float16, Float32, Float64] for mᵢ in 1:2 X = rand(T[0,1,2,3], m, 10) # values in 0-3 to keep distances small aqm = build_quantizer(X, k=k, m=mᵢ, method=:sample) @test aqm isa ArrayQuantizer{Q, UInt8, Distances.SqEuclidean, T, 2} @test length(aqm.codebooks) == mᵢ qm = QuantizedArrays.quantize_data(aqm, X) @test qm isa Matrix{UInt8} @test size(qm) == (mᵢ, size(X,2)) Xᵥ= rand(T[0,1,2,3,4], 10) aqv = build_quantizer(Xᵥ, k=k, m=mᵢ, method=:sample) @test aqv isa ArrayQuantizer{Q, UInt8, Distances.SqEuclidean, T, 1} @test length(aqv.codebooks) == 1 qv = QuantizedArrays.quantize_data(aqv, Xᵥ) @test qv isa Matrix{UInt8} @test length(qv) == length(Xᵥ) end end T = Float32 Twrong = Float16 X = rand(T, m, 100) m = 2 k = 2 aq = build_quantizer(X, k=k, m=m, method=:sample) @test QuantizedArrays.codebooks(aq) == aq.codebooks @test_throws AssertionError QuantizedArrays.quantize_data(aq, rand(T, m+1, 100)) @test_throws MethodError QuantizedArrays.quantize_data(aq, rand(Twrong, m, 100)) # The ArrayQuantizer works with any `m`: X2 = rand(T, m+1, 100) aq2 = ArrayQuantizer(X2, k=k, m=m, method=:sample) @test aq2 isa ArrayQuantizer{Q, UInt8, Distances.SqEuclidean, T, 2} @test length(aq2.codebooks) == m aq3 = ArrayQuantizer(X, k=k, m=m+100, method=:sample) @test aq3 isa ArrayQuantizer{Q, UInt8, Distances.SqEuclidean, T, 2} @test length(aq3.codebooks) == m end
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
code
217
module TestQuantizedArrays using Test using InteractiveUtils using LinearAlgebra using Distances using QuantizedArrays include("codebook.jl") include("quantizer.jl") include("interface.jl") include("utils.jl") end
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
code
702
@testset "Utils" begin # rowrange n = 23 v = rand(n) for m in 1:9 step = floor(Int, n/m) for i in 1:m @test QuantizedArrays.rowrange(n, m, i) == step*(i-1)+1 : step*i end end # quantized_eltype for T in subtypes(Unsigned) k = rand(typemin(T):typemax(T)) @test QuantizedArrays.quantized_eltype(k+1) == T end # Quantization type for qt in [:sample, :pq, :opq, :rvq] qt == :rvq && @test QuantizedArrays.quantization_type(qt) isa QuantizedArrays.AdditiveQuantization qt != :rvq && @test QuantizedArrays.quantization_type(qt) isa QuantizedArrays.OrthogonalQuantization end end
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
docs
258
## QuantizedArrays Release Notes v0.1.7 ----- - Bugfixes, dependency updates v0.1.3 ------ - Fixes for OPQ v0.1.2 ------ - Bugfixes, test coverage improvements v0.1.1 ------ - Added RVQ (residual vector quantization) v0.1.0 ------ - Initial version
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
docs
2884
![Alt text](https://github.com/zgornel/QuantizedArrays.jl/blob/master/docs/src/assets/logo.png) Array quantization and compression. [![License](http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat)](LICENSE.md) [![Build Status](https://travis-ci.org/zgornel/QuantizedArrays.jl.svg?branch=master)](https://travis-ci.org/zgornel/QuantizedArrays.jl) [![Coverage Status](https://coveralls.io/repos/github/zgornel/QuantizedArrays.jl/badge.svg?branch=master)](https://coveralls.io/github/zgornel/QuantizedArrays.jl?branch=master) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://zgornel.github.io/QuantizedArrays.jl/stable) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://zgornel.github.io/QuantizedArrays.jl/dev) ## Installation ```julia Pkg.add("QuantizedArrays") ``` ## Examples - Vector quantization ```julia using QuantizedArrays v = collect(1:10); # Use 3 quantization levels (always 1 codebook) qv = QuantizedArray(v, k=3) # 10-element QuantizedArray{QuantizedArrays.OrthogonalQuantization,UInt8,Distances.SqEuclidean,Int64,1}: # 5 # 5 # 5 # 5 # 5 # 6 # 6 # 6 # 10 # 10 ``` - matrix quantization ```julia using QuantizedArrays m = reshape(collect(1:60), (6,10)) # 6×10 array{int64,2}: # 1 7 13 19 25 31 37 43 49 55 # 2 8 14 20 26 32 38 44 50 56 # 3 9 15 21 27 33 39 45 51 57 # 4 10 16 22 28 34 40 46 52 58 # 5 11 17 23 29 35 41 47 53 59 # 6 12 18 24 30 36 42 48 54 60 # use 5 quantization levels (vectors) / codebook and 2 codebooks qm = QuantizedArray(m, k = 5, m = 2) # 6×10 QuantizedArray{QuantizedArrays.OrthogonalQuantization,UInt8,Distances.SqEuclidean,Int64,2}: # 7 7 13 13 31 31 43 43 43 55 # 8 8 14 14 32 32 44 44 44 56 # 9 9 15 15 33 33 45 45 45 57 # 10 10 10 28 28 34 40 46 46 46 # 11 11 11 29 29 35 41 47 47 47 # 12 12 12 30 30 36 42 48 48 48 ``` ## Features To keep track with the latest features, please consult [NEWS.md](https://github.com/zgornel/QuantizedArrays.jl/blob/master/NEWS.md) and the [documentation](https://zgornel.github.io/QuantizedArrays.jl/dev). ## License The code has an MIT license and therefore it is free. ## Reporting Bugs This is work in progress and bugs may still be present...¯\\_(ツ)_/¯ Do not worry, just [open an issue](https://github.com/zgornel/QuantizedArrays.jl/issues/new) to report a bug or request a feature. ## References - [Rayuela.jl](https://github.com/una-dinosauria/Rayuela.jl) provides an extensive list of quantization methods implementations as well as good references pertinent to the state-of-the-art. - [Quantization in signal processing (Wikipedia)](https://en.wikipedia.org/wiki/Quantization_(signal_processing)) - [Vector quantization (Wikipedia)](https://en.wikipedia.org/wiki/Vector_quantization)
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
docs
60
```@index ``` ```@autodocs Modules = [QuantizedArrays] ```
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
docs
1589
# Usage examples Arrays can be quantized through either the `quantize` function or using the `QuantizedArray` constructor directly. If the quantization is done through sampling, the quantized arrays may differ with each run as the vector prototypes are randomly sampled. ```@repl index using QuantizedArrays v = collect(1:10) qv = quantize(v, k=2) # quantize by sampling 2 prototypes i.e. values qv = QuantizedArray(v, k=2) m = reshape(collect(1:60), (6,10)) qm = quantize(m, k=5, m=2) # 5 prototypes, 2 codebooks qm = QuantizedArray(m, k=5, m=2) ``` The compressed representation of the input arrays is stored in the `data` field and the quantizer in the `quantizer` field ```@repl index qm.data qm.quantizer ``` A new array can be quantized using the quantizers ```@repl index quantize(qv.quantizer, rand(1:10, 5)) quantize(qm.quantizer, rand(1:60, 6, 2)) ``` The `:pq` (k-means), `:opq` ('cartesian' k-means) and `:rvq` ('residual') quantization methods work for arrays with `AbstractFloat` elements only and return the same result each run. ```@repl index quantize(Float32.(v), k=2, method=:pq) quantize(Float32.(m), k=5, m=2, method=:pq) ``` Indexing can be performed as in regular arrays ```@repl index qm[1,1] qm[2,:] qm[1:1,:] ``` however changing values is not supported ```@repl index qm[1,1] = 0 ``` The element type of the compressed array representation is dynamically calculated to reflect the number of vector prototypes employed ```@repl index m = rand(1, 10_000); quantize(m, k=256) # 8 bits are used (UInt8) quantize(m, k=257) # 16 bits are used (UInt16) ```
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "MIT" ]
0.1.7
e772e844d101617b218983bff89fa21c280cd643
docs
1255
```@meta CurrentModule=QuantizedArrays ``` # Introduction `QuantizedArrays` is a package for array quantization and compression. The basic principle is that arrays can be represented through the concatenation of shorter vectors obtained by either sampling or clustering of subspaces in the original data. This effectively compresses the original array with a loss in quality. ## Implemented features - basic `AbstractArray` interface for vectors, matrices - quantization types implemented: - random sampling - k-mean clustering ([PQ](https://lear.inrialpes.fr/pubs/2011/JDS11/jegou_searching_with_quantization.pdf)) - 'cartesian' k-means clustering ([OPQ](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/opq_tr.pdf)) - residual quantization ([RVQ](https://www.mdpi.com/1424-8220/10/12/11259/htm)) ## Installation Installation can be performed from either inside or outside Julia. ### Git cloning ``` $ git clone https://github.com/zgornel/QuantizedArrays.jl ``` ### Julia REPL The package can be installed from inside Julia with: ``` using Pkg Pkg.add("QuantizedArrays") ``` or ``` Pkg.add(PackageSpec(url="https://github.com/zgornel/QuantizedArrays.jl", rev="master")) ``` for the latest `master` branch.
QuantizedArrays
https://github.com/zgornel/QuantizedArrays.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
747
using Pkg Pkg.status() using Documenter using ProgressiveHedging makedocs(modules=[ProgressiveHedging], format=Documenter.HTML(prettyurls=haskey(ENV,"GITHUB_ACTIONS")), sitename="ProgressiveHedging.jl", authors="Jonathan Maack", pages=["Overview" => "index.md", "Examples" => map(s -> "examples/$(s)", sort(readdir(joinpath(@__DIR__, "src", "examples"))) ), "Reference" => map(s -> "api/$(s)", sort(readdir(joinpath(@__DIR__, "src", "api"))) ), ] ) deploydocs(repo = "github.com/NREL/ProgressiveHedging.jl.git")
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
1313
using Pkg Pkg.activate(@__DIR__) using ProgressiveHedging import JuMP import Ipopt function two_stage_model(scenario_id::ScenarioID) model = JuMP.Model(()->Ipopt.Optimizer()) JuMP.set_optimizer_attribute(model, "print_level", 0) JuMP.set_optimizer_attribute(model, "tol", 1e-12) JuMP.set_optimizer_attribute(model, "acceptable_tol", 1e-12) scen = value(scenario_id) ref = JuMP.@variable(model, x >= 0.0) stage1 = [ref] ref = JuMP.@variable(model, y >= 0.0) stage2 = [ref] b_s = scen == 0 ? 11.0 : 4.0 c_s = scen == 0 ? 0.5 : 10.0 JuMP.@constraint(model, x + y == b_s) JuMP.@objective(model, Min, 1.0*x + c_s*y) return JuMPSubproblem(model, scenario_id, Dict(stid(1) => stage1, stid(2) => stage2) ) end scen_tree = two_stage_tree(2) (niter, abs_res, rel_res, obj, soln_df, phd) = solve(scen_tree, two_stage_model, ScalarPenaltyParameter(1.0) ) @show niter @show abs_res @show rel_res @show obj @show soln_df dual_df = retrieve_w(phd) @show dual_df raw_values_df = retrieve_no_hats(phd) @show raw_values_df
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
2156
using Pkg Pkg.activate(@__DIR__) using ProgressiveHedging import JuMP import Ipopt function two_stage_model(scenario_id::ScenarioID) model = JuMP.Model(()->Ipopt.Optimizer()) JuMP.set_optimizer_attribute(model, "print_level", 0) JuMP.set_optimizer_attribute(model, "tol", 1e-12) JuMP.set_optimizer_attribute(model, "acceptable_tol", 1e-12) scen = value(scenario_id) ref = JuMP.@variable(model, x >= 0.0) stage1 = [ref] ref = JuMP.@variable(model, y >= 0.0) stage2 = [ref] b_s = scen == 0 ? 11.0 : 4.0 c_s = scen == 0 ? 0.5 : 10.0 JuMP.@constraint(model, x + y == b_s) JuMP.@objective(model, Min, 1.0*x + c_s*y) return JuMPSubproblem(model, scenario_id, Dict(stid(1) => stage1, stid(2) => stage2) ) end scen_tree = two_stage_tree(2) function my_callback(ext::Dict{Symbol,Any}, phd::PHData, winf::ProgressiveHedging.WorkerInf, niter::Int) # The `ext` dictionary can be used to store things between PH iterations if niter == 2 ext[:message] = "This is from iteration 2!" elseif niter == 5 println("Iteration 5 found the message: " * ext[:message]) elseif niter == 10 println("This is iteration 10!") # We can access the current consensus variable values for (xhid, xhat) in pairs(consensus_variables(phd)) println("The value of $(name(phd,xhid)) is $(value(xhat)).") end end # Returning false from the callback will terminate PH. # Here we stop after 20 iterations. return niter < 20 end my_cb = Callback(my_callback) (niter, abs_res, rel_res, obj, soln_df, phd) = solve(scen_tree, two_stage_model, ScalarPenaltyParameter(1.0), callbacks=[my_cb] ) @show niter @show abs_res @show rel_res @show obj @show soln_df
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
1388
using Distributed addprocs(2) # add 2 workers @everywhere using Pkg @everywhere Pkg.activate(joinpath(@__DIR__, "..", "examples")) @everywhere using ProgressiveHedging @everywhere import JuMP @everywhere import Ipopt @everywhere function two_stage_model(scenario_id::ScenarioID) model = JuMP.Model(()->Ipopt.Optimizer()) JuMP.set_optimizer_attribute(model, "print_level", 0) JuMP.set_optimizer_attribute(model, "tol", 1e-12) JuMP.set_optimizer_attribute(model, "acceptable_tol", 1e-12) scen = value(scenario_id) ref = JuMP.@variable(model, x >= 0.0) stage1 = [ref] ref = JuMP.@variable(model, y >= 0.0) stage2 = [ref] b_s = scen == 0 ? 11.0 : 4.0 c_s = scen == 0 ? 0.5 : 10.0 JuMP.@constraint(model, x + y == b_s) JuMP.@objective(model, Min, 1.0*x + c_s*y) return JuMPSubproblem(model, scenario_id, Dict(stid(1) => stage1, stid(2) => stage2) ) end scen_tree = two_stage_tree(2) (niter, abs_res, rel_res, obj, soln_df, phd) = solve(scen_tree, two_stage_model, ScalarPenaltyParameter(1.0) ) @show niter @show abs_res @show rel_res @show obj @show soln_df
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
3092
using Pkg Pkg.activate(@__DIR__) using ProgressiveHedging import JuMP import Ipopt function create_model(scenario_id::ScenarioID) model = JuMP.Model(()->Ipopt.Optimizer()) JuMP.set_optimizer_attribute(model, "print_level", 0) JuMP.set_optimizer_attribute(model, "tol", 1e-12) c = [1.0, 10.0, 0.01] d = 7.0 a = 16.0 α = 1.0 β = 1.0 γ = 1.0 δ = 1.0 ϵ = 1.0 s1 = 8.0 s2 = 4.0 s11 = 9.0 s12 = 16.0 s21 = 5.0 s22 = 18.0 stage1 = JuMP.@variable(model, x[1:3] >= 0.0) JuMP.@constraint(model, x[3] <= 1.0) obj = zero(JuMP.GenericQuadExpr{Float64,JuMP.VariableRef}) JuMP.add_to_expression!(obj, sum(c.*x)) # Second stage stage2 = Vector{JuMP.VariableRef}() if scenario_id < scid(2) vref = JuMP.@variable(model, y >= 0.0) JuMP.@constraint(model, α*sum(x) + β*y >= s1) JuMP.add_to_expression!(obj, d*y) else vref = JuMP.@variable(model, y >= 0.0) JuMP.@constraint(model, α*sum(x) + β*y >= s2) JuMP.add_to_expression!(obj, d*y) end push!(stage2, vref) # Third stage stage3 = Vector{JuMP.VariableRef}() if scenario_id == scid(0) vref = JuMP.@variable(model, z[1:2]) JuMP.@constraint(model, ϵ*sum(x) + γ*y + δ*sum(z) == s11) JuMP.add_to_expression!(obj, a*sum(z[i]^2 for i in 1:2)) elseif scenario_id == scid(1) vref = JuMP.@variable(model, z[1:2]) JuMP.@constraint(model, ϵ*sum(x) + γ*y + δ*sum(z) == s12) JuMP.add_to_expression!(obj, a*sum(z[i]^2 for i in 1:2)) elseif scenario_id == scid(2) vref = JuMP.@variable(model, z[1:2]) JuMP.@constraint(model, ϵ*sum(x) + γ*y + δ*sum(z) == s21) JuMP.add_to_expression!(obj, a*sum(z[i]^2 for i in 1:2)) else vref = JuMP.@variable(model, z[1:2]) JuMP.@constraint(model, ϵ*sum(x) + γ*y + δ*sum(z) == s22) JuMP.add_to_expression!(obj, a*sum(z[i]^2 for i in 1:2)) end append!(stage3, vref) JuMP.@objective(model, Min, obj) vdict = Dict{StageID, Vector{JuMP.VariableRef}}([stid(1) => stage1, stid(2) => stage2, stid(3) => stage3, ]) return JuMPSubproblem(model, scenario_id, vdict) end scen_tree = ScenarioTree() branch_node_1 = add_node(scen_tree, root(scen_tree)) branch_node_2 = add_node(scen_tree, root(scen_tree)) add_leaf(scen_tree, branch_node_1, 0.375) add_leaf(scen_tree, branch_node_1, 0.125) add_leaf(scen_tree, branch_node_2, 0.375) add_leaf(scen_tree, branch_node_2, 0.125) (niter, abs_res, rel_res, obj, soln_df, phd) = solve(scen_tree, create_model, ScalarPenaltyParameter(25.0); atol=1e-8, rtol=1e-12, max_iter=500) @show niter @show abs_res @show rel_res @show obj @show soln_df
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
12636
module ProgressiveHedging import DataFrames import JuMP import MathOptInterface const MOI = MathOptInterface using Distributed using Printf using TimerOutputs #### Exports #### # High-level Functions export solve, solve_extensive # Callbacks export Callback export cb, mean_deviation, variable_fixing export apply_to_subproblem export SubproblemCallback, spcb # Exceptions export UnimplementedError # ID types and functions export Index, NodeID, ScenarioID, StageID, VariableID, XhatID export index, scenario, stage, value export scid, stid, index export convert_to_variable_ids, convert_to_xhat_id, stage_id # Penalty Parameter Interface export AbstractPenaltyParameter export get_penalty_value export is_initial_value_dependent, is_subproblem_dependent, is_variable_dependent export penalty_map export process_penalty_initial_value export process_penalty_subproblem # Penalty Parameter (Concrete) export ProportionalPenaltyParameter, ScalarPenaltyParameter, SEPPenaltyParameter # PHData interaction function export PHData export consensus_variables, probability, scenario_tree, scenarios export get_callback, get_callback_ext # Result retrieval functions export lower_bounds export print_timing export residuals export retrieve_aug_obj_value, retrieve_obj_value export retrieve_soln, retrieve_no_hats, retrieve_w export retrieve_xhat_history, retrieve_no_hat_history, retrieve_w_history # Scenario tree types and functions export ScenarioNode, ScenarioTree export add_node, add_leaf, root, two_stage_tree # Subproblem Interface export AbstractSubproblem, VariableInfo export add_ph_objective_terms, objective_value, report_values, report_variable_info export solve_subproblem, update_ph_terms export warm_start export ef_copy_model export ef_node_dict_constructor export report_penalty_info export add_lagrange_terms, update_lagrange_terms # Subproblems Types (Concrete) export JuMPSubproblem # (Consensus) Variable interaction functions export HatVariable export is_leaf, name, value, branch_value, leaf_value, w_value, xhat_value export is_integer, scenario_bundle, value, variables #### Includes #### include("id_types.jl") include("penalty_parameter_types.jl") include("scenario_tree.jl") include("subproblem.jl") include("jumpsubproblem.jl") include("subproblem_callback.jl") include("message.jl") include("worker.jl") include("worker_management.jl") include("structs.jl") include("penalty_parameter_functions.jl") include("utils.jl") include("algorithm.jl") include("setup.jl") include("callbacks.jl") #### Functions #### """ solve(tree::ScenarioTree, subproblem_constructor::Function, r<:Real, other_args...; max_iter::Int=1000, atol::Float64=1e-6, rtol::Float64=1e-6, gap_tol::Float64=-1.0, lower_bound::Int=0, report::Int=0, save_iterates::Int=0, save_residuals::Bool=false, timing::Bool=true, warm_start::Bool=false, callbacks::Vector{Callback}=Vector{Callback}(), worker_assignments::Dict{Int,Set{ScenarioID}}=Dict{Int,Set{ScenarioID}}(), args::Tuple=(), kwargs...) Solve the stochastic programming problem described by `tree` and the models created by `subproblem_constructor` using Progressive Hedging. **Arguments** * `tree::ScenararioTree` : Scenario tree describing the structure of the problem to be solved. * `subproblem_constructor::Function` : User created function to construct a subproblem. Should accept a `ScenarioID` (a unique identifier for each scenario subproblem) as an argument and returns a subtype of `AbstractSubproblem`. * `r<:AbstractPenaltyParameter` : PH penalty parameter * `other_args` : Other arguments that should be passed to `subproblem_constructor`. See also keyword arguments `args` and `kwargs`. **Keyword Arguments** * `max_iter::Int` : Maximum number of iterations to perform before returning. Defaults to 1000. * `atol::Float64` : Absolute error tolerance. Defaults to 1e-6. * `rtol::Float64` : Relative error tolerance. Defaults to 1e-6. * `gap_tol::Float64` : Relative gap tolerance. Terminate when the relative gap between the lower bound and objective are smaller than `gap_tol`. Any value < 0.0 disables this termination condition. Defaults to -1.0. See also the `lower_bound` keyword argument. * `lower_bound::Int` : Compute and save a lower-bound using (Gade, et. al. 2016) every `lower_bound` iterations. Any value <= 0 disables lower-bound computation. Defaults to 0. * `report::Int` : Print progress to screen every `report` iterations. Any value <= 0 disables printing. Defaults to 0. * `save_iterates::Int` : Save PH iterates every `save_iterates` steps. Any value <= 0 disables saving iterates. Defaults to 0. * `save_residuals::Int` : Save PH residuals every `save_residuals` steps. Any value <= 0 disables saving residuals. Defaults to 0. * `timing::Bool` : Print timing info after solving if true. Defaults to true. * `warm_start::Bool` : Flag indicating that solver should be "warm started" by using the previous solution as the starting point (not compatible with all solvers) * `callbacks::Vector{Callback}` : Collection of `Callback` structs to call after each PH iteration. Callbacks will be executed in the order they appear. See `Callback` struct for more info. Defaults to empty vector. * `subproblem_callbacks::Vector{SubproblemCallback}` : Collection of `SubproblemCallback` structs to call before solving each subproblem. Each callback is called on each subproblem but does not affect other subproblems. See `SubproblemCallback` struct for more info. Defaults to empty vector. * `worker_assignments::Dict{Int,Set{ScenarioID}}` : Dictionary specifying which scenario subproblems a worker will create and solve. The key values are worker ids as given by Distributed (see `Distributed.workers()`). The user is responsible for ensuring the specified workers exist and that every scenario is assigned to a worker. If no dictionary is given, scenarios are assigned to workers in round robin fashion. Defaults to empty dictionary. * `args::Tuple` : Tuple of arguments to pass to `model_cosntructor`. Defaults to (). See also `other_args` and `kwargs`. * `kwargs` : Any keyword arguments not specified here that need to be passed to `subproblem_constructor`. See also `other_args` and `args`. """ function solve(tree::ScenarioTree, subproblem_constructor::Function, r::R, other_args...; max_iter::Int=1000, atol::Float64=1e-6, rtol::Float64=1e-6, gap_tol::Float64=-1.0, lower_bound::Int=0, report::Int=0, save_iterates::Int=0, save_residuals::Int=0, timing::Bool=false, warm_start::Bool=false, callbacks::Vector{Callback}=Vector{Callback}(), subproblem_callbacks::Vector{SubproblemCallback}=Vector{SubproblemCallback}(), worker_assignments::Dict{Int,Set{ScenarioID}}=Dict{Int,Set{ScenarioID}}(), args::Tuple=(), kwargs... ) where {R <: AbstractPenaltyParameter} timo = TimerOutputs.TimerOutput() if length(scenarios(tree)) == 1 @warn("Given scenario tree indicates a deterministic problem (only one scenario).") elseif length(scenarios(tree)) <= 0 error("Given scenario tree has no scenarios specified. Make sure 'add_leaf' is being called on leaves of the scenario tree.") end psum = sum(values(tree.prob_map)) if !isapprox(psum, 1.0, atol=1e-8) error("Total probability of scenarios in given scenario tree is $psum.") end # Initialization if report > 0 println("Initializing...") end (phd, winf) = @timeit(timo, "Intialization", initialize(tree, subproblem_constructor, r, worker_assignments, warm_start, timo, report, lower_bound, subproblem_callbacks, (other_args...,args...); kwargs...) ) for cb in callbacks add_callback(phd, cb) end # Solution if report > 0 println("Solving...") end (niter, abs_res, rel_res) = @timeit(timo, "Solution", hedge(phd, winf, max_iter, atol, rtol, gap_tol, report, save_iterates, save_residuals, lower_bound) ) # Post Processing if report > 0 println("Done.") end soln_df = retrieve_soln(phd) obj = retrieve_obj_value(phd) if timing print_timing(phd) end return (niter, abs_res, rel_res, obj, soln_df, phd) end """ solve_extensive(tree::ScenarioTree, subproblem_constructor::Function, optimizer::Function, other_args...; opt_args::NamedTuple=NamedTuple(), subproblem_type::Type{S}=JuMPSubproblem, args::Tuple=(), kwargs...) Solve given problem using Progressive Hedging. **Arguments** * `tree::ScenararioTree` : Scenario tree describing the structure of the problem to be solved. * `subproblem_constructor::Function` : User created function to construct a subproblem. Should accept a `ScenarioID` (a unique identifier for each scenario subproblem) as an argument and returns a subtype of `AbstractSubproblem` specified by `subproblem_type`. * `optimizer::Function` : Function which works with `JuMP.set_optimizer` * `other_args` : Other arguments that should be passed to `subproblem_constructor`. See also keyword arguments `args` and `kwargs` **Keyword Arguments** * `subproblem_type<:JuMP.AbstractModel` : Type of model to create or created by `subproblem_constructor` to represent the subproblems. Defaults to JuMPSubproblem * `opt_args::NamedTuple` : arguments passed to function given by `optimizer` * `args::Tuple` : Tuple of arguments to pass to `model_cosntructor`. Defaults to (). See also `other_args` and `kwargs`. * `kwargs` : Any keyword arguments not specified here that need to be passed to `subproblem_constructor`. See also `other_args` and `args`. """ function solve_extensive(tree::ScenarioTree, subproblem_constructor::Function, optimizer::Function, other_args...; opt_args::NamedTuple=NamedTuple(), subproblem_type::Type{S}=JuMPSubproblem, args::Tuple=(), kwargs... ) where {S <: AbstractSubproblem} if length(scenarios(tree)) == 1 @warn("Given scenario tree indicates a deterministic problem (only one scenario).") elseif length(scenarios(tree)) <= 0 error("Given scenario tree has no scenarios specified. Make sure 'add_leaf' is being called on leaves of the scenario tree.") end psum = sum(values(tree.prob_map)) if !isapprox(psum, 1.0, atol=1e-8) error("Total probability of scenarios in given scenario tree is $psum.") end model = build_extensive_form(tree, subproblem_constructor, Tuple([other_args...,args...]), subproblem_type; kwargs...) JuMP.set_optimizer(model, optimizer) for (key, value) in pairs(opt_args) JuMP.set_optimizer_attribute(model, string(key), value) end JuMP.optimize!(model) return model end end # module #### TODOs #### # 1. Add flag to solve call to turn off parallelism # 2. Add handling of nonlinear objective functions # 3. Add tests for nonlinear constraints (these should work currently but testing is needed)
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
14055
function _copy_values(target::Dict{VariableID,Float64}, source::Dict{VariableID,Float64} )::Nothing for (vid, value) in pairs(source) target[vid] = value end return end function _execute_callbacks(phd::PHData, winf::WorkerInf, niter::Int)::Bool running = true for cb in phd.callbacks running &= cb.h(cb.ext, phd, winf, niter) end return running end function _process_reports(phd::PHData, winf::WorkerInf, report_type::Type{R} )::Nothing where R <: Report waiting_on = copy(scenarios(phd)) while !isempty(waiting_on) msg = _retrieve_message_type(winf, report_type) _verify_report(msg) _update_values(phd, msg) delete!(waiting_on, msg.scen) end return end function _report(niter::Int, nsqrt::Float64, residual::Float64, xmax::Float64, xhat_sq::Float64, x_sq::Float64 )::Nothing @printf("Iter: %4d AbsR: %12.6e RelR: %12.6e Xhat: %12.6e X: %12.6e\n", niter, residual, residual / xmax, sqrt(xhat_sq)/nsqrt, sqrt(x_sq)/nsqrt ) flush(stdout) return end function _report_lower_bound(niter::Int, bound::Float64, gap::Float64)::Nothing @printf("Iter: %4d Bound: %12.4e Abs Gap: %12.4e Rel Gap: %8.4g\n", niter, bound, gap, abs(gap/bound) ) flush(stdout) return end function _save_iterate(phd::PHData, iter::Int, )::Nothing xhd = Dict{XhatID,Float64}() xd = Dict{VariableID,Float64}() wd = Dict{VariableID,Float64}() for (xhid, xhat) in pairs(phd.xhat) xhd[xhid] = value(xhat) for vid in variables(xhat) xd[vid] = branch_value(phd, vid) wd[vid] = w_value(phd, vid) end end _save_iterate(phd.history, iter, PHIterate(xhd, xd, wd) ) return end function _save_residual(phd::PHData, iter::Int, xhat_sq::Float64, x_sq::Float64, absr::Float64, relr::Float64, )::Nothing _save_residual(phd.history, iter, PHResidual(absr, relr, xhat_sq, x_sq)) return end function _send_solve_commands(phd::PHData, winf::WorkerInf, niter::Int )::Nothing @sync for (scen, sinfo) in pairs(phd.scenario_map) (w_dict, xhat_dict) = create_ph_dicts(sinfo) @async _send_message(winf, sinfo.pid, Solve(scen, w_dict, xhat_dict, niter ) ) end return end function _send_lb_solve_commands(phd::PHData, winf::WorkerInf, )::Nothing @sync for (scen, sinfo) in pairs(phd.scenario_map) (w_dict, xhat_dict) = create_ph_dicts(sinfo) @async _send_message(winf, sinfo.pid, SolveLowerBound(scen, w_dict)) end return end function _update_si_xhat(phd::PHData)::Nothing for (xhid, xhat) in pairs(phd.xhat) for vid in variables(xhat) sinfo = phd.scenario_map[scenario(vid)] sinfo.xhat_vars[vid] = value(xhat) end end return end function _update_values(phd::PHData, msg::ReportBranch )::Nothing sinfo = phd.scenario_map[msg.scen] pd = sinfo.problem_data pd.obj = msg.obj pd.sts = msg.sts pd.time = msg.time _copy_values(sinfo.branch_vars, msg.vals) return end function _update_values(phd::PHData, msg::ReportLeaf )::Nothing _copy_values(phd.scenario_map[msg.scen].leaf_vars, msg.vals) return end function _update_values(phd::PHData, msg::ReportLowerBound )::Nothing pd = phd.scenario_map[msg.scen].problem_data pd.lb_obj = msg.obj pd.lb_sts = msg.sts pd.lb_time = msg.time return end function _verify_report(msg::ReportBranch)::Nothing if (msg.sts != MOI.OPTIMAL && msg.sts != MOI.LOCALLY_SOLVED && msg.sts != MOI.ALMOST_LOCALLY_SOLVED) # TODO: Create user adjustable/definable behavior for when this happens @error("Scenario $(msg.scen) subproblem returned $(msg.sts).") end return end function _verify_report(msg::ReportLeaf)::Nothing # Intentional no-op return end function _verify_report(msg::ReportLowerBound)::Nothing if (msg.sts != MOI.OPTIMAL && msg.sts != MOI.LOCALLY_SOLVED && msg.sts != MOI.ALMOST_LOCALLY_SOLVED) # TODO: Create user adjustable/definable behavior for when this happens @error("Scenario $(msg.scen) lower-bound subproblem returned $(msg.sts).") end return end function compute_and_save_xhat(phd::PHData)::Float64 xhat_res = 0.0 for (xhid, xhat_var) in pairs(phd.xhat) xhat = 0.0 norm = 0.0 for vid in variables(xhat_var) s = scenario(vid) p = phd.scenario_map[s].prob x = branch_value(phd, vid) xhat += p * x norm += p end xhat_new = xhat / norm xhat_old = value(xhat_var) xhat_var.value = xhat_new xhat_res += (xhat_new - xhat_old)^2 end return xhat_res end function compute_and_save_w(phd::PHData)::Float64 kxsq = 0.0 for (xhid, xhat_var) in pairs(phd.xhat) xhat = value(xhat_var) exp = 0.0 norm = 0.0 for vid in variables(xhat_var) s = scenario(vid) p = phd.scenario_map[s].prob kx = branch_value(phd, vid) - xhat r = get_penalty_value(phd.r, xhid) phd.scenario_map[s].w_vars[vid] += r * kx kxsq += p * kx^2 exp += p * w_value(phd, vid) norm += p end if abs(exp) > 1e-6 vname = name(phd, xhid) @warn("Conditional expectation of " * "W[$(vname)] occurring in stage " * stage_id(phd, xhid) * " for scenarios " * stringify(scenario_bundle(phd, xhid)) * " is non-zero: " * string(exp/norm)) end end return kxsq end function compute_gap(phd::PHData)::NTuple{2,Float64} gap = 0.0 lb = 0.0 for s in scenarios(phd) sinfo = phd.scenario_map[s] pd = sinfo.problem_data p = sinfo.prob gap += p * abs(pd.obj - pd.lb_obj) lb += p * pd.lb_obj end return (lb, gap) end function finish(phd::PHData, winf::WorkerInf, )::Nothing # Send shutdown command to workers _shutdown(winf) # Wait for and process replies _process_reports(phd, winf, ReportLeaf) # Create hat variables for all leaf variables so # that `retrieve_soln` picks up the values for (scid, sinfo) in pairs(phd.scenario_map) for (vid, vinfo) in pairs(sinfo.leaf_vars) xhid = convert_to_xhat_id(phd, vid) @assert(!haskey(phd.xhat, xhid)) # TODO: Correctly assign whether leaf variables are integers. For now, # just say they aren't because it doesn't really matter. phd.xhat[xhid] = HatVariable(value(phd, vid), vid, false) end end # Wait for workers to exit cleanly _wait_for_shutdown(winf) return end function update_gap(phd::PHData, winf::WorkerInf, niter::Int)::NTuple{2,Float64} @timeit(phd.time_info, "Issuing lower bound solve commands", _send_lb_solve_commands(phd, winf) ) @timeit(phd.time_info, "Collecting lower bound results", _process_reports(phd, winf, ReportLowerBound) ) (lb, gap) = @timeit(phd.time_info, "Computing gap", compute_gap(phd) ) _save_lower_bound(phd.history, niter, PHLowerBound(lb, gap, abs(gap/lb)) ) return (lb, gap) end function update_ph_variables(phd::PHData)::NTuple{2,Float64} xhat_sq = compute_and_save_xhat(phd) x_sq = compute_and_save_w(phd) return (xhat_sq, x_sq) end function solve_subproblems(phd::PHData, winf::WorkerInf, niter::Int, )::Nothing # Copy hat values to scenario base structure for easy dispersal @timeit(phd.time_info, "Other", _update_si_xhat(phd)) # Send solve command to workers @timeit(phd.time_info, "Issuing solve commands", _send_solve_commands(phd, winf, niter)) # Wait for and process replies @timeit(phd.time_info, "Collecting results", _process_reports(phd, winf, ReportBranch)) return end function hedge(ph_data::PHData, worker_inf::WorkerInf, max_iter::Int, atol::Float64, rtol::Float64, gap_tol::Float64, report::Int, save_iter::Int, save_res::Int, lower_bound::Int, )::Tuple{Int,Float64,Float64} niter = 0 report_flag = (report > 0) save_iter_flag = (save_iter > 0) save_res_flag = (save_res > 0) lb_flag = (lower_bound > 0) cr = ph_data.history.residuals[-1] delete!(ph_data.history.residuals, -1) xhat_res_sq = cr.xhat_sq x_res_sq = cr.x_sq nsqrt = max(sqrt(length(ph_data.xhat)), 1.0) xmax = (length(ph_data.xhat) > 0 ? max(maximum(abs.(value.(values(ph_data.xhat)))), 1e-12) : 1.0) residual = sqrt(xhat_res_sq + x_res_sq) / nsqrt user_continue = @timeit(ph_data.time_info, "User Callbacks", _execute_callbacks(ph_data, worker_inf, niter) ) if report_flag _report(niter, nsqrt, residual, xmax, xhat_res_sq, x_res_sq) end if lb_flag (lb, gap) = @timeit(ph_data.time_info, "Update Gap", update_gap(ph_data, worker_inf, niter) ) if report_flag _report_lower_bound(niter, lb, gap) end end if save_iter_flag _save_iterate(ph_data, 0) end if save_res_flag _save_residual(ph_data, 0, xhat_res_sq, x_res_sq, residual, residual/xmax) end running = (user_continue && niter < max_iter && residual > atol && residual > rtol * xmax && (lb_flag ? gap > lb * gap_tol : true) ) while running niter += 1 # Solve subproblems @timeit(ph_data.time_info, "Solve subproblems", solve_subproblems(ph_data, worker_inf, niter) ) # Update xhat and w (xhat_res_sq, x_res_sq) = @timeit(ph_data.time_info, "Update PH Vars", update_ph_variables(ph_data) ) # Update stopping criteria -- xhat_res_sq measures the movement of # xhat values from k^th iteration to the (k+1)^th iteration while # x_res_sq measures the disagreement between the x variables and # its corresponding xhat variable (so lack of consensus amongst the # subproblems or violation of the nonanticipativity constraint) residual = sqrt(xhat_res_sq + x_res_sq) / nsqrt xmax = max(maximum(abs.(value.(values(ph_data.xhat)))), 1e-12) user_continue = @timeit(ph_data.time_info, "User Callbacks", _execute_callbacks(ph_data, worker_inf, niter) ) running = (user_continue && niter < max_iter && residual > atol && residual > rtol * xmax && (lb_flag ? gap > lb * gap_tol : true) ) if report_flag && (niter % report == 0 || !running) _report(niter, nsqrt, residual, xmax, xhat_res_sq, x_res_sq) end if lb_flag && (niter % lower_bound == 0 || !running) (lb, gap) = @timeit(ph_data.time_info, "Update Gap", update_gap(ph_data, worker_inf, niter) ) if report_flag _report_lower_bound(niter, lb, gap) end end if save_iter_flag && niter % save_iter == 0 _save_iterate(ph_data, niter) end if save_res_flag && niter % save_res == 0 _save_residual(ph_data, niter, xhat_res_sq, x_res_sq, residual, residual/xmax ) end end @timeit(ph_data.time_info, "Finishing", finish(ph_data, worker_inf) ) if niter >= max_iter && residual > atol && residual > rtol * xmax @warn("Performed $niter iterations without convergence. " * "Consider increasing max_iter from $max_iter.") end return (niter, residual, residual/xmax) end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
3716
#### Canned Callbacks #### """ variable_fixing(; lag=2, eq_tol=1e-8)::Callback Implementation of the variable fixing convergence acceleration heuristic in section 2.2 of (Watson & Woodruff 2010). """ function variable_fixing(; lag=2, eq_tol=1e-8)::Callback ext = Dict{Symbol,Any}() ext[:lag] = lag ext[:eq_tol] = eq_tol return Callback("variable_fixing", _variable_fixing, _variable_fixing_init, ext) end function _variable_fixing_init(external::Dict{Symbol,Any}, phd::PHData) # Between iterations external[:value_count] = Dict{XhatID,Int}( xhid => 0 for xhid in keys(consensus_variables(phd)) ) external[:value] = Dict{XhatID,Float64}( xhid => value(xhat) for (xhid,xhat) in pairs(consensus_variables(phd)) ) external[:fixed] = Set{XhatID}() return end function _variable_fixing(external::Dict{Symbol,Any}, phd::PHData, winf::WorkerInf, niter::Int)::Bool lag = external[:lag] nscen = length(scenarios(phd)) limit = lag * nscen if niter >= limit values = external[:value] counts = external[:value_count] fixed = external[:fixed] tol = external[:eq_tol] to_fix = Dict{ScenarioID,Dict{VariableID,Float64}}() for (xhid, xhat) in pairs(consensus_variables(phd)) if xhid in fixed continue end is_equal = true for vid in variables(xhat) is_equal &= isapprox(value(xhat), branch_value(phd, vid), atol=tol) end if is_equal counts[xhid] = nrepeats = counts[xhid] + 1 if nrepeats >= limit for vid in variables(xhat) scen = scenario(vid) if !haskey(to_fix, scen) to_fix[scen] = Dict{VariableID,Float64}() end to_fix[scen][vid] = value(xhat) end push!(fixed, xhid) end else values[xhid] = value(xhat) counts[xhid] = 1 end end for (scen, value_dict) in pairs(to_fix) apply_to_subproblem(fix_variables, phd, winf, scen, (value_dict,)) end end return true end """ mean_deviation(;tol::Float64=1e-8, save_deviations::Bool=false )::Callback Implementation of a termination criterion given in section 2.3 of (Watson & Woodruff 2010). There it is called 'td'. """ function mean_deviation(;tol::Float64=1e-8, save_deviations::Bool=false )::Callback ext = Dict{Symbol,Any}(:tol => tol, :save => save_deviations) if save_deviations ext[:deviations] = Dict{Int,Float64}() end return Callback("mean_deviation", _mean_deviation, ext ) end function _mean_deviation(external::Dict{Symbol,Any}, phd::PHData, winf::WorkerInf, niter::Int)::Bool nscen = length(scenarios(phd)) td = 0.0 for (xhid, xhat) in consensus_variables(phd) deviation = 0.0 for vid in variables(xhat) deviation += abs(branch_value(phd, vid) - value(xhat)) end td += deviation / (value(xhat)) end td /= nscen if external[:save] external[:deviations][niter] = td end return external[:tol] < td end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
3344
const NODE_ID = Int const SCENARIO_ID = Int const STAGE_ID = Int const INDEX = Int """ Unique identifier for a `ScenarioNode` in a `ScenarioTree`. """ struct NodeID value::NODE_ID end """ value(nid::NodeID) Return the raw (non-type safe) value of a [`NodeID`](@ref) """ value(nid::NodeID)::NODE_ID = nid.value Base.isless(a::NodeID, b::NodeID) = value(a) < value(b) """ Unique, type-safe identifier for a scenario. """ struct ScenarioID value::SCENARIO_ID end """ value(scid::ScenarioID) Return the raw (non-type safe) value of a [`ScenarioID`](@ref) """ value(scid::ScenarioID)::SCENARIO_ID = scid.value Base.isless(a::ScenarioID, b::ScenarioID) = value(a) < value(b) """ Unique, type-safe identifier for a stage. """ struct StageID value::STAGE_ID end """ value(stid::StageID) Return the raw (non-type safe) value of a [`StageID`](@ref) """ value(stid::StageID)::STAGE_ID = stid.value _increment(sid::StageID)::StageID = StageID(value(sid) + one(STAGE_ID)) Base.isless(a::StageID, b::StageID) = value(a) < value(b) """ Unique, type-safe identifier for variables associated with the same scenario tree node. """ struct Index value::INDEX end """ value(idx::Index) Return the raw (non-type safe) value of an [`Index`](@ref) """ value(idx::Index)::INDEX = idx.value _increment(index::Index)::Index = Index(value(index) + one(INDEX)) Base.isless(a::Index, b::Index) = value(a) < value(b) """ Unique, type-safe identifier for any variable in a (multi-stage) stochastic programming problem. Composed of a `ScenarioID`, a `StageID` and an `Index`. """ struct VariableID scenario::ScenarioID # scenario to which this variable belongs stage::StageID # stage to which this variable belongs index::Index # coordinate in vector end """ scenario(vid::VariableID)::ScenarioID Returns the [`ScenarioID`](@ref) of the specified [`VariableID`](@ref). """ function scenario(vid::VariableID)::ScenarioID return vid.scenario end """ stage(vid::VariableID)::StageID Returns the [`StageID`](@ref) of the specified [`VariableID`](@ref). """ function stage(vid::VariableID)::StageID return vid.stage end """ index(vid::VariableID)::Index Returns the [`Index`](@ref) of the specified [`VariableID`](@ref). """ function index(vid::VariableID)::Index return vid.index end function Base.isless(a::VariableID, b::VariableID) return (a.stage < b.stage || (a.stage == b.stage && (a.scenario < b.scenario || (a.scenario == b.scenario && a.index < b.index)))) end """ scid(n::$(SCENARIO_ID))::ScenarioID Create `ScenarioID` from `n`. """ function scid(n::SCENARIO_ID)::ScenarioID return ScenarioID(SCENARIO_ID(n)) end """ stid(n::$(STAGE_ID))::StageID Create `StageID` from `n`. """ function stid(n::STAGE_ID)::StageID return StageID(STAGE_ID(n)) end """ index(n::$(INDEX))::Index Create `Index` from `n`. """ function index(n::INDEX)::Index return Index(INDEX(n)) end """ Unique identifier for consensus variables. The scenario variables being driven to consensus with this variable is given by `convert_to_variable_ids`. """ struct XhatID node::NodeID index::Index end function Base.isless(a::XhatID, b::XhatID) return (a.node < b.node || (a.node == b.node && a.index < b.index)) end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
14242
#### JuMPSubproblem Implementation #### """ Implementation of the [`AbstractSubproblem`](@ref) interface using JuMP. """ struct JuMPSubproblem <: AbstractSubproblem model::JuMP.Model scenario::ScenarioID stage_map::Dict{StageID, Vector{JuMP.VariableRef}} vars::Dict{VariableID, JuMP.VariableRef} w_vars::Dict{VariableID, JuMP.VariableRef} xhat_vars::Dict{VariableID, JuMP.VariableRef} end function JuMPSubproblem(m::JuMP.Model, scid::ScenarioID, stage_map::Dict{StageID, Vector{JuMP.VariableRef}} )::JuMPSubproblem return JuMPSubproblem(m, scid, stage_map, Dict{VariableID, JuMP.VariableRef}(), Dict{VariableID, JuMP.VariableRef}(), Dict{VariableID, JuMP.VariableRef}() ) end ## JuMPSubproblem Internal Structs ## struct JSVariable ref::JuMP.VariableRef name::String node_id::NodeID end ## JuMPSubproblem Penalty Parameter Functions ## function get_penalty_value(r::Float64, vid::VariableID, )::Float64 return r end function get_penalty_value(r::Dict{VariableID,Float64}, vid::VariableID )::Float64 return r[vid] end ## AbstractSubproblem Interface Functions ## function add_lagrange_terms(js::JuMPSubproblem, vids::Vector{VariableID} )::Nothing obj = JuMP.objective_function(js.model, JuMP.GenericQuadExpr{Float64, JuMP.VariableRef} ) jvi = JuMP.VariableInfo(false, NaN, # lower_bound false, NaN, # upper_bound true, 0.0, # fixed false, NaN, # start value false, false) # binary, integer for vid in vids var = js.vars[vid] w_ref = JuMP.add_variable(js.model, JuMP.build_variable(error, jvi)) JuMP.add_to_expression!(obj, w_ref, var) js.w_vars[vid] = w_ref end JuMP.set_objective_function(js.model, obj) return end function add_ph_objective_terms(js::JuMPSubproblem, vids::Vector{VariableID}, r::Union{Float64,Dict{VariableID,Float64}}, )::Nothing add_lagrange_terms(js, vids) add_proximal_terms(js, vids, r) return end function objective_value(js::JuMPSubproblem)::Float64 return JuMP.objective_value(js.model) end function report_penalty_info(js::JuMPSubproblem, vids::Vector{VariableID}, ::Type{ProportionalPenaltyParameter}, )::Dict{VariableID,Float64} return objective_coefficients(js, vids) end function report_penalty_info(js::JuMPSubproblem, vids::Vector{VariableID}, ::Type{SEPPenaltyParameter}, )::Dict{VariableID,Float64} return objective_coefficients(js, vids) end function report_values(js::JuMPSubproblem, vars::Vector{VariableID} )::Dict{VariableID,Float64} val_dict = Dict{VariableID, Float64}() for vid in vars val_dict[vid] = JuMP.value(js.vars[vid]) end return val_dict end function report_variable_info(js::JuMPSubproblem, st::ScenarioTree )::Dict{VariableID, VariableInfo} var_info = Dict{VariableID, VariableInfo}() for node in scenario_nodes(st, js.scenario) stid = stage(node) for (k, var) in enumerate(js.stage_map[stid]) vid = VariableID(js.scenario, stid, Index(k)) js.vars[vid] = var var_info[vid] = VariableInfo(JuMP.name(var), JuMP.is_integer(var) || JuMP.is_binary(var), ) end end return var_info end function solve_subproblem(js::JuMPSubproblem)::MOI.TerminationStatusCode JuMP.optimize!(js.model) return JuMP.termination_status(js.model) end function update_lagrange_terms(js::JuMPSubproblem, w_vals::Dict{VariableID,Float64} )::Nothing for (wid, wval) in pairs(w_vals) JuMP.fix(js.w_vars[wid], wval, force=true) end return end function update_ph_terms(js::JuMPSubproblem, w_vals::Dict{VariableID,Float64}, xhat_vals::Dict{VariableID,Float64} )::Nothing update_lagrange_terms(js, w_vals) update_proximal_terms(js, xhat_vals) return end function warm_start(js::JuMPSubproblem)::Nothing for var in JuMP.all_variables(js.model) if !JuMP.is_fixed(var) JuMP.set_start_value(var, JuMP.value(var)) end end return end function ef_copy_model(efm::JuMP.Model, js::JuMPSubproblem, scid::ScenarioID, tree::ScenarioTree, node_var_map::Dict{NodeID, Set{JSVariable}} )::Dict{NodeID, Set{JSVariable}} (snode_var_map, s_var_map) = _ef_copy_variables(efm, js, scid, tree, node_var_map) processed = Set(keys(node_var_map)) _ef_copy_constraints(efm, js, s_var_map, processed) _ef_copy_objective(efm, js, s_var_map, tree.prob_map[scid]) return snode_var_map end function ef_node_dict_constructor(::Type{JuMPSubproblem}) return Dict{NodeID, Set{JSVariable}}() end ## JuMPSubproblem Specific Functions ## function add_proximal_terms(js::JuMPSubproblem, vids::Vector{VariableID}, r::Union{Float64,Dict{VariableID,Float64}} )::Nothing obj = JuMP.objective_function(js.model, JuMP.GenericQuadExpr{Float64, JuMP.VariableRef} ) jvi = JuMP.VariableInfo(false, NaN, # lower_bound false, NaN, # upper_bound true, 0.0, # fixed false, NaN, # start value false, false) # binary, integer for vid in vids var = js.vars[vid] xhat_ref = JuMP.add_variable(js.model, JuMP.build_variable(error, jvi)) rho = get_penalty_value(r, vid) JuMP.add_to_expression!(obj, 0.5 * rho * (var - xhat_ref)^2) js.xhat_vars[vid] = xhat_ref end JuMP.set_objective_function(js.model, obj) return end function fix_variables(js::JuMPSubproblem, vids::Dict{VariableID,Float64} )::Nothing for (vid, val) in pairs(vids) JuMP.fix(js.vars[vid], val, force=true) end return end function objective_coefficients(js::JuMPSubproblem, vids::Vector{VariableID}, )::Dict{VariableID,Float64} pen_dict = Dict{VariableID,Float64}() obj = JuMP.objective_function(js.model) for vid in vids pen_dict[vid] = JuMP.coefficient(obj, js.vars[vid]) end return pen_dict end function update_proximal_terms(js::JuMPSubproblem, xhat_vals::Dict{VariableID,Float64} )::Nothing for (xhid, xhval) in pairs(xhat_vals) JuMP.fix(js.xhat_vars[xhid], xhval, force=true) end return end ## JuMPSubproblem Internal Functions ## function _build_var_info(vref::JuMP.VariableRef) hlb = JuMP.has_lower_bound(vref) hub = JuMP.has_upper_bound(vref) hf = JuMP.is_fixed(vref) ib = JuMP.is_binary(vref) ii = JuMP.is_integer(vref) return JuMP.VariableInfo(hlb, hlb ? JuMP.lower_bound(vref) : 0, hub, hub ? JuMP.upper_bound(vref) : 0, hf, hf ? JuMP.fix_value(vref) : 0, false, # Some solvers don't accept starting values 0, ib, ii) end function _ef_add_variables(model::JuMP.Model, js::JuMPSubproblem, s::ScenarioID, node::ScenarioNode, ) smod = js.model var_map = Dict{JuMP.VariableRef, JSVariable}() new_vars = Set{JSVariable}() for vref in js.stage_map[node.stage] info = _build_var_info(vref) var = JuMP.name(vref) vname = var * "_{" * stringify(value.(scenario_bundle(node))) * "}" new_vref = JuMP.add_variable(model, JuMP.build_variable(error, info), vname) jsv = JSVariable(new_vref, vname, node.id) var_map[vref] = jsv push!(new_vars, jsv) end return (var_map, new_vars) end function _ef_map_variables(js::JuMPSubproblem, node::ScenarioNode, new_vars::Set{JSVariable}, ) var_map = Dict{JuMP.VariableRef, JSVariable}() for vref in js.stage_map[stage(node)] var = JuMP.name(vref) for jsv in new_vars @assert jsv.node_id == node.id if occursin(var, jsv.name) var_map[vref] = jsv end end end return var_map end function _ef_copy_variables(model::JuMP.Model, js::JuMPSubproblem, s::ScenarioID, tree::ScenarioTree, node_var_map::Dict{NodeID, Set{JSVariable}}, ) # Below for mapping variables in the subproblem model `smod` into variables for # the extensive form model `model` s_var_map = Dict{JuMP.VariableRef, JSVariable}() # For saving updates to node_var_map and passing back up snode_var_map = Dict{NodeID, Set{JSVariable}}() smod = js.model for node in scenario_nodes(tree, s) # For the given model `smod`, either create extensive variables corresponding # to this node or map them onto existing extensive variables. if !haskey(node_var_map, id(node)) (var_map, new_vars) = _ef_add_variables(model, js, s, node) snode_var_map[node.id] = new_vars else var_map = _ef_map_variables(js, node, node_var_map[node.id]) end @assert(isempty(intersect(keys(s_var_map), keys(var_map)))) merge!(s_var_map, var_map) end return (snode_var_map, s_var_map) end function _ef_convert_and_add_expr(add_to::JuMP.QuadExpr, convert::JuMP.AffExpr, s_var_map::Dict{JuMP.VariableRef,JSVariable}, scalar::Real, )::Set{NodeID} nodes = Set{NodeID}() JuMP.add_to_expression!(add_to, scalar * JuMP.constant(convert)) for (coef, var) in JuMP.linear_terms(convert) vi = s_var_map[var] nvar = vi.ref JuMP.add_to_expression!(add_to, scalar*coef, nvar) push!(nodes, vi.node_id) end return nodes end function _ef_convert_and_add_expr(add_to::JuMP.QuadExpr, convert::JuMP.QuadExpr, s_var_map::Dict{JuMP.VariableRef,JSVariable}, scalar::Real, )::Set{NodeID} nodes = _ef_convert_and_add_expr(add_to, convert.aff, s_var_map, scalar) for (coef, var1, var2) in JuMP.quad_terms(convert) vi1 = s_var_map[var1] vi2 = s_var_map[var2] nvar1 = vi1.ref nvar2 = vi2.ref JuMP.add_to_expression!(add_to, scalar*coef, nvar1, nvar2) push!(nodes, vi1.node_id) push!(nodes, vi2.node_id) end return nodes end function _ef_copy_constraints(model::JuMP.Model, js::JuMPSubproblem, s_var_map::Dict{JuMP.VariableRef,JSVariable}, processed::Set{NodeID}, )::Nothing smod = js.model constraint_list = JuMP.list_of_constraint_types(smod) for (func,set) in constraint_list if func == JuMP.VariableRef # These constraints are handled by the variable bounds # which are copied during copy variable creation so # we skip them continue end for cref in JuMP.all_constraints(smod, func, set) cobj = JuMP.constraint_object(cref) expr = zero(JuMP.QuadExpr) nodes = _ef_convert_and_add_expr(expr, JuMP.jump_function(cobj), s_var_map, 1) # If all variables in the expression are from processed nodes, # then this constraint has already been added to the model # and can be skipped. if !issubset(nodes, processed) JuMP.drop_zeros!(expr) JuMP.@constraint(model, expr in JuMP.moi_set(cobj)) end end end return end function _ef_copy_objective(model::JuMP.Model, js::JuMPSubproblem, s_var_map::Dict{JuMP.VariableRef,JSVariable}, prob::Real )::Nothing add_obj = JuMP.objective_function(js.model) obj = JuMP.objective_function(model) _ef_convert_and_add_expr(obj, add_obj, s_var_map, prob) JuMP.drop_zeros!(obj) JuMP.set_objective_function(model, obj) return end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
1800
abstract type Message end abstract type Report <: Message end struct Abort <: Message end struct DumpState <: Message end struct Initialize{R <: AbstractPenaltyParameter} <: Message create_subproblem::Function create_subproblem_args::Tuple create_subproblem_kwargs::NamedTuple r::Type{R} scenarios::Set{ScenarioID} scenario_tree::ScenarioTree warm_start::Bool subproblem_callbacks::Vector{SubproblemCallback} end struct InitializeLowerBound <: Message create_subproblem::Function create_subproblem_args::Tuple create_subproblem_kwargs::NamedTuple scenarios::Set{ScenarioID} scenario_tree::ScenarioTree warm_start::Bool end struct PenaltyInfo <: Message scen::ScenarioID penalty::Union{Float64,Dict{VariableID,Float64}} end struct Ping <: Message end struct ReportBranch <: Report scen::ScenarioID sts::MOI.TerminationStatusCode obj::Float64 time::Float64 vals::Dict{VariableID,Float64} end struct ReportLeaf <: Report scen::ScenarioID vals::Dict{VariableID,Float64} end struct ReportLowerBound <: Report scen::ScenarioID sts::MOI.TerminationStatusCode obj::Float64 time::Float64 end struct ShutDown <: Message end struct Solve <: Message scen::ScenarioID w_vals::Dict{VariableID,Float64} xhat_vals::Dict{VariableID,Float64} niter::Int end struct SolveLowerBound <: Message scen::ScenarioID w_vals::Dict{VariableID,Float64} end struct SubproblemAction <: Message scen::ScenarioID action::Function args::Tuple kwargs::NamedTuple end struct VariableMap <: Message scen::ScenarioID var_info::Dict{VariableID,VariableInfo} # VariableInfo definition in subproblem.jl end struct WorkerState{T} <: Message id::Int state::T end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
8636
# Functions separated from type definitions for compiler reasons #### Abstract Interface Functions #### """ Returns the constant penalty parameter value. Only required if `is_variable_dependent` returns false. """ function get_penalty_value(r::AbstractPenaltyParameter)::Float64 throw(UnimplementedError("get_penalty_value is unimplemented for penalty parameter of type $(typeof(r)).")) end """ Returns the penalty value for the consensus variable associated with `xhid`. """ function get_penalty_value(r::AbstractPenaltyParameter, xhid::XhatID )::Float64 throw(UnimplementedError("get_penalty_value is unimplemented for penalty parameter of type $(typeof(r)).")) end """ Returns true if the penalty parameter value is dependent on the initial solutions of the subproblems. """ function is_initial_value_dependent(p::Type{P})::Bool where P <: AbstractPenaltyParameter throw(UnimplementedError("is_initial_value_dependent is unimplemented for penalty parameter of type $(p).")) end """ Returns true if the penalty parameter value is dependent on any data or values in the subproblems (e.g., the coefficients in the objective function). """ function is_subproblem_dependent(p::Type{P})::Bool where P <: AbstractPenaltyParameter throw(UnimplementedError("is_subproblem_dependent is unimplemented for penalty parameter of type $(p).")) end """ Returns true if the penalty parameter value may differ for different consensus variables. """ function is_variable_dependent(p::Type{P})::Bool where P <: AbstractPenaltyParameter throw(UnimplementedError("is_variable_dependent is unimplemented for penalty parameter of type $(p).")) end """ Returns a mapping of consensus variable ids to penalty parameter values. Only required if `is_variable_dependent` returns false. """ function penalty_map(r::AbstractPenaltyParameter)::Dict{XhatID,Float64} throw(UnimplementedError("penalty_map is unimplemented for penalty parameter of type $(typeof(r)).")) end """ Performs any computations for the penalty parameter based on the initial solutions of the subproblems. **Arguments** *`r::AbstractPenaltyParameter` : penalty parameter struct (replace with appropriate type) *`phd::PHData` : PH data structure used for obtaining any required variable values. See help on `PHData` for details on available functions. """ function process_penalty_initial_value(r::AbstractPenaltyParameter, phd::PHData, )::Nothing throw(UnimplementedError("process_penalty_initial_value is unimplemented for penalty parameter of type $(typeof(r)).")) end """ Performs any computations for the penalty parameter based data or values from the subproblems. This function is called *before* the initial solution of subproblems. Any accessing of variable values in this function may result in undefined behavior. **Arguments** * `r::AbstractPenaltyParameter` : penalty parameter struct (replace with appropriate type) * `phd::PHData` : PH data structure used for obtaining any values or information not provided by `scid` and `subproblem_dict` * `scid::ScenarioID` : scenario id from which `subproblem_dict` comes * `subproblem_dict::Dict{VariableID,Float64}` : Mapping specifying a value needed from a subproblem used in the computation of the penalty parameter. """ function process_penalty_subproblem(r::AbstractPenaltyParameter, phd::PHData, scid::ScenarioID, subproblem_dict::Dict{VariableID,Float64} )::Nothing throw(UnimplementedError("process_penalty_subproblem is unimplemented for penalty parameter of type $(typeof(r)).")) end #### Concrete Implementations #### ## Proportional Penalty Parameter ## function ProportionalPenaltyParameter(constant::Real) return ProportionalPenaltyParameter(constant, Dict{XhatID,Float64}()) end function get_penalty_value(r::ProportionalPenaltyParameter, xhid::XhatID, )::Float64 return r.penalties[xhid] end function penalty_map(r::ProportionalPenaltyParameter)::Dict{XhatID,Float64} return r.penalties end function process_penalty_subproblem(r::ProportionalPenaltyParameter, phd::PHData, scid::ScenarioID, penalties::Dict{VariableID,Float64} )::Nothing for (vid, penalty) in pairs(penalties) xhid = convert_to_xhat_id(phd, vid) r_value = penalty == 0.0 ? r.constant : abs(penalty) * r.constant if haskey(r.penalties, xhid) if !isapprox(r.penalties[xhid], r_value) error("Penalty parameter must match across scenarios. Got $(r.penalties[xhid]) instead of $(penalty) for variable $(name(phd, xhid)). This error likely means the coefficients in the objective function do not match in the scenario subproblems.") end else r.penalties[xhid] = r_value end end return end function is_initial_value_dependent(::Type{ProportionalPenaltyParameter})::Bool return false end function is_subproblem_dependent(::Type{ProportionalPenaltyParameter})::Bool return true end function is_variable_dependent(::Type{ProportionalPenaltyParameter})::Bool return true end ## Scalar Penalty Parameter ## function get_penalty_value(r::ScalarPenaltyParameter)::Float64 return r.value end function get_penalty_value(r::ScalarPenaltyParameter, xhid::XhatID, )::Float64 return get_penalty_value(r) end function is_initial_value_dependent(::Type{ScalarPenaltyParameter})::Bool return false end function is_subproblem_dependent(::Type{ScalarPenaltyParameter})::Bool return false end function is_variable_dependent(::Type{ScalarPenaltyParameter})::Bool return false end ## SEP Penalty Parameter ## function SEPPenaltyParameter(default::Float64=1.0) return SEPPenaltyParameter(default, Dict{XhatID,Float64}()) end function get_penalty_value(r::SEPPenaltyParameter, xhid::XhatID, )::Float64 return r.penalties[xhid] end function penalty_map(r::SEPPenaltyParameter)::Dict{XhatID,Float64} return r.penalties end function is_initial_value_dependent(::Type{SEPPenaltyParameter})::Bool return true end function process_penalty_initial_value(r::SEPPenaltyParameter, phd::PHData, )::Nothing for (xhid, xhat) in pairs(consensus_variables(phd)) if is_integer(xhat) xmin = typemax(Int) xmax = typemin(Int) for vid in variables(xhat) xs = branch_value(phd, vid) if xs < xmin xmin = xs end if xs > xmax xmax = xs end end denom = xmax - xmin + 1 else denom = 0.0 for vid in variables(xhat) p = probability(phd, scenario(vid)) xs = branch_value(phd, vid) denom += p * abs(xs - value(xhat)) end denom = max(denom, 1.0) end obj_coeff = r.penalties[xhid] r.penalties[xhid] = obj_coeff == 0.0 ? r.default : abs(obj_coeff)/denom end return end function is_subproblem_dependent(::Type{SEPPenaltyParameter})::Bool return true end function process_penalty_subproblem(r::SEPPenaltyParameter, phd::PHData, scid::ScenarioID, penalties::Dict{VariableID,Float64} )::Nothing for (vid, penalty) in pairs(penalties) xhid = convert_to_xhat_id(phd, vid) if haskey(r.penalties, xhid) if !isapprox(r.penalties[xhid], penalty) error("Penalty parameter must match across scenarios. Got $(r.penalties[xhid]) instead of $(penalty) for variable $(name(phd, xhid)). This error likely means the coefficients in the objective function do not match in the scenario subproblems.") end else r.penalties[xhid] = penalty end end return end function is_variable_dependent(::Type{SEPPenaltyParameter})::Bool return true end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
2903
#### Abstract Types #### """ Abstract type for ProgressiveHedging penalty parameter. Concrete subtypes determine how this penalty is used within the PH algorithm. All concrete subtypes must implement the following methods: * `get_penalty_value(r::<ConcreteSubtype>, xhid::XhatID)::Float64` * `is_initial_value_dependent(::Type{<ConcreteSubtype>})::Bool` * `is_subproblem_dependent(::Type{<ConcreteSubtype>})::Bool` * `is_variable_dependent(::Type{<ConcreateSubtype>})::Bool` If `is_initial_value_dependent` returns `true`, then the concrete subtype must implement * `process_penalty_initial_value(r::<ConcreteSubtype>, ph_data::PHData)::Nothing` If `is_subproblem_dependent` returns `true`, then the concrete subtype must implement * `process_penalty_subproblem(r::<ConcreteSubtype>, ph_data::PHData, scenario::ScenarioID, penalties::Dict{VariableID,Float64})::Nothing` Additionally, the concrete **subproblem type** must implement the function * `report_penalty_info(as::AbstractSubproblem, pp<:AbstractPenaltyParameter)::Dict{VariableID,Float64}` If `is_variable_dependent` returns `true`, then the concrete subtype must implement * `penalty_map(r::<ConcreteSubtype>)::Dict{XhatID,Float64}` If `is_variable_dependent` returns `false`, then the concrete subtype must implement * `get_penalty_value(r::<ConcreteSubtype>)::Float64` For more details, see the help on the individual functions. """ abstract type AbstractPenaltyParameter end #### Concrete Types (Alphabetical Order) #### """ Variable dependent penalty parameter given by `k * c_i` where `c_i` is the linear coefficient of variable `i` in the objective function. If `c_i == 0` (that is, the variable has no linear coefficient in the objective function), then the penalty value is taken to be `k`. !!! warning The coefficients in the objective function **must** match across scenarios. An error will result if they do not. Requires subproblem type to have implemented [`report_penalty_info`](@ref) for this type. This implementation should return the linear coefficient in the objective function for each variable. """ struct ProportionalPenaltyParameter <: AbstractPenaltyParameter constant::Float64 penalties::Dict{XhatID,Float64} end """ Constant scalar penalty parameter. """ struct ScalarPenaltyParameter <: AbstractPenaltyParameter value::Float64 end """ Penalty parameter set with Watson-Woodruff SEP method. See (Watson and Woodruff 2011) for more details. !!! warning The coefficients in the objective function **must** match across scenarios. An error will result if they do not. Requires subproblem type to have implemented [`report_penalty_info`](@ref) for this type. This implementation should return the linear coefficient in the objective function for each variable. """ struct SEPPenaltyParameter <: AbstractPenaltyParameter default::Float64 penalties::Dict{XhatID,Float64} end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
6440
mutable struct Generator next_node_id::NODE_ID next_scenario_id::SCENARIO_ID end function Generator()::Generator return Generator(0,0) end function _generate_node_id(gen::Generator)::NodeID id = NodeID(gen.next_node_id) gen.next_node_id += 1 return id end function _generate_scenario_id(gen::Generator)::ScenarioID id = ScenarioID(gen.next_scenario_id) gen.next_scenario_id += 1 return id end """ Struct representing a node in a scenario tree. """ struct ScenarioNode id::NodeID # id of this node stage::StageID # stage of this node scenario_bundle::Set{ScenarioID} # scenarios that are indistiguishable parent::Union{Nothing,ScenarioNode} children::Set{ScenarioNode} end function stringify(node::ScenarioNode) node_str = "$(value(node.id)):{" for s in sort!(collect(node.scenario_bundle)) node_str *= "$(value(s))," end rstrip(node_str, ',') node_str *= "}" return node_str end Base.show(io::IO, sn::ScenarioNode) = print(io, "ScenarioNode($(sn.id), $(sn.stage), $(sn.scenario_bundle))") function _add_child(parent::ScenarioNode, child::ScenarioNode, )::Nothing push!(parent.children, child) return end function _create_node(gen::Generator, parent::Union{Nothing,ScenarioNode} )::ScenarioNode nid = _generate_node_id(gen) stage = (parent==nothing ? StageID(1) : _increment(parent.stage)) sn = ScenarioNode(nid, stage, Set{ScenarioID}(), parent, Set{ScenarioNode}()) if parent != nothing _add_child(parent, sn) end return sn end function id(node::ScenarioNode)::NodeID return node.id end function stage(node::ScenarioNode)::StageID return node.stage end """ Struct representing the scenario structure of a stochastic program. Can be built up by the user using the functions `add_node` and `add_leaf`. **Constructor** ScenarioTree() Default constructor generates the root node of the tree. Can get the root node with `root`. """ struct ScenarioTree root::ScenarioNode tree_map::Dict{NodeID, ScenarioNode} # map from NodeID to tree node prob_map::Dict{ScenarioID, Float64} id_gen::Generator end function ScenarioTree(root_node::ScenarioNode, gen::Generator, )::ScenarioTree tree_map = Dict{NodeID, ScenarioNode}() prob_map = Dict{ScenarioID, Float64}() st = ScenarioTree(root_node, tree_map, prob_map, gen) _add_node(st, root_node) return st end function ScenarioTree()::ScenarioTree gen = Generator() rn = _create_node(gen, nothing) st = ScenarioTree(rn, gen) return st end """ root(tree::ScenarioTree) Return the root node of the given ScenarioTree """ function root(tree::ScenarioTree)::ScenarioNode return tree.root end function last_stage(tree::ScenarioTree)::StageID return maximum(getfield.(values(tree.tree_map), :stage)) end function is_leaf(tree::ScenarioTree, vid::VariableID)::Bool return is_leaf(node(tree, vid.scenario, vid.stage)) end function is_leaf(node::ScenarioNode)::Bool return length(node.children) == 0 || (length(node.children) == 1 && is_leaf(first(node.children))) end function is_leaf(tree::ScenarioTree, nid::NodeID)::Bool return is_leaf(tree.tree_map[nid]) end function is_leaf(tree::ScenarioTree, node::ScenarioNode)::Bool return is_leaf(tree.tree_map[node.id]) end function _add_node(tree::ScenarioTree, node::ScenarioNode)::Nothing tree.tree_map[node.id] = node return end """ add_node(tree::ScenarioTree, parent::ScenarioNode) Add a node to the ScenarioTree `tree` with parent node `parent`. Return the added node. If the node to add is a leaf, use `add_leaf` instead. """ function add_node(tree::ScenarioTree, parent::ScenarioNode, )::ScenarioNode new_node = _create_node(tree.id_gen, parent) _add_node(tree, new_node) return new_node end function _add_scenario_to_bundle(tree::ScenarioTree, nid::NodeID, scid::ScenarioID, )::Nothing push!(tree.tree_map[nid].scenario_bundle, scid) return end """ add_leaf(tree::ScenarioTree, parent::ScenarioNode, probability<:Real) Add a leaf to the ScenarioTree `tree` with parent node `parent`. The probability of this scenario occuring is given by `probability`. Returns the ScenarioID representing the scenario. """ function add_leaf(tree::ScenarioTree, parent::ScenarioNode, probability::R, )::ScenarioID where R <: Real if probability < 0.0 || probability > 1.0 error("Invalid probability value: $probability") end leaf = add_node(tree, parent) scid = _assign_scenario_id(tree) tree.prob_map[scid] = probability node = leaf while node != nothing id = node.id _add_scenario_to_bundle(tree, id, scid) node = node.parent end return scid end _assign_scenario_id(tree::ScenarioTree)::ScenarioID = _generate_scenario_id(tree.id_gen) function node(tree::ScenarioTree, nid::NodeID )::ScenarioNode return tree.tree_map[nid] end function node(tree::ScenarioTree, scid::ScenarioID, stid::StageID )::Union{Nothing,ScenarioNode} ret_node = nothing for node in values(tree.tree_map) if stage(node) == stid && scid in scenario_bundle(node) ret_node = node break end end return ret_node end function scenario_bundle(node::ScenarioNode)::Set{ScenarioID} return node.scenario_bundle end function scenario_bundle(tree::ScenarioTree, nid::NodeID)::Set{ScenarioID} return scenario_bundle(tree.tree_map[nid]) end scenarios(tree::ScenarioTree)::Set{ScenarioID} = tree.root.scenario_bundle function scenario_nodes(tree::ScenarioTree) return collect(values(tree_map)) end function scenario_nodes(tree::ScenarioTree, scid::ScenarioID) nodes = Vector{ScenarioNode}() for node in values(tree.tree_map) if scid in scenario_bundle(node) push!(nodes, node) end end return nodes end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
9576
function assign_scenarios_to_procs(scen_tree::ScenarioTree )::Dict{Int,Set{ScenarioID}} sp_map = Dict{Int, Set{ScenarioID}}() nprocs = nworkers() wrks = workers() sp_map = Dict(w => Set{ScenarioID}() for w in wrks) for (k,s) in enumerate(scenarios(scen_tree)) w = wrks[(k-1) % nprocs + 1] push!(sp_map[w], s) end return sp_map end function _initialize_subproblems(sp_map::Dict{Int,Set{ScenarioID}}, wi::WorkerInf, scen_tree::ScenarioTree, constructor::Function, constructor_args::Tuple, r::AbstractPenaltyParameter, warm_start::Bool, subproblem_callbacks::Vector{SubproblemCallback}; kwargs... ) # Send initialization commands @sync for (wid, scenarios) in pairs(sp_map) @async _send_message(wi, wid, Initialize(constructor, constructor_args, (;kwargs...), typeof(r), scenarios, scen_tree, warm_start, subproblem_callbacks) ) end # Wait for and process initialization replies var_maps = Dict{ScenarioID,Dict{VariableID,VariableInfo}}() remaining_maps = copy(scenarios(scen_tree)) while !isempty(remaining_maps) msg = _retrieve_message_type(wi, VariableMap) var_maps[msg.scen] = msg.var_info delete!(remaining_maps, msg.scen) end return var_maps end function _initialize_lb_subproblems(sp_map::Dict{Int,Set{ScenarioID}}, wi::WorkerInf, scen_tree::ScenarioTree, constructor::Function, constructor_args::Tuple, warm_start::Bool; kwargs... )::Nothing @sync for (wid, scenarios) in pairs(sp_map) @async _send_message(wi, wid, InitializeLowerBound(constructor, constructor_args, (;kwargs...), scenarios, scen_tree, warm_start) ) end return end function _set_initial_values(phd::PHData, wi::WorkerInf, )::Float64 # Wait for and process mapping replies remaining_init = copy(scenarios(phd.scenario_tree)) while !isempty(remaining_init) msg = _retrieve_message_type(wi, ReportBranch) _verify_report(msg) _update_values(phd, msg) delete!(remaining_init, msg.scen) end # Start computation of initial PH values -- W values are computed at # the end of `_set_penalty_parameter`. xhat_res_sq = compute_and_save_xhat(phd) return xhat_res_sq end function _set_penalty_parameter(phd::PHData, wi::WorkerInf, )::Float64 if is_subproblem_dependent(typeof(phd.r)) # Wait for and process penalty parameter messages remaining_maps = copy(scenarios(phd.scenario_tree)) while !isempty(remaining_maps) msg = _retrieve_message_type(wi, PenaltyInfo) process_penalty_subproblem(phd.r, phd, msg.scen, msg.penalty) delete!(remaining_maps, msg.scen) end end if is_initial_value_dependent(typeof(phd.r)) # Compute penalty parameter values process_penalty_initial_value(phd.r, phd) end if is_variable_dependent(typeof(phd.r)) # Convert dictionary to subproblem format pen_map = Dict{ScenarioID,Dict{VariableID,Float64}}( s => Dict{VariableID,Float64}() for s in scenarios(phd) ) for (xhid,penalty) in pairs(penalty_map(phd.r)) for vid in convert_to_variable_ids(phd, xhid) pen_map[scenario(vid)][vid] = penalty end end else pen_map = Dict{ScenarioID,Float64}( s => get_penalty_value(phd.r) for s in scenarios(phd) ) end # Send penalty parameter values to workers @sync for (scid, sinfo) in pairs(phd.scenario_map) @async begin wid = sinfo.pid penalty = pen_map[scid] _send_message(wi, wid, PenaltyInfo(scid, penalty)) end end # Complete computation of initial PH values -- Xhat values are computed at # the end of `_set_initial_values`. x_res_sq = compute_and_save_w(phd) return x_res_sq end function initialize(scen_tree::ScenarioTree, model_constructor::Function, r::AbstractPenaltyParameter, user_sp_map::Dict{Int,Set{ScenarioID}}, warm_start::Bool, timo::TimerOutputs.TimerOutput, report::Int, lower_bound::Int, subproblem_callbacks::Vector{SubproblemCallback}, constructor_args::Tuple,; kwargs... )::Tuple{PHData,WorkerInf} # Assign scenarios to processes scen_proc_map = isempty(user_sp_map) ? assign_scenarios_to_procs(scen_tree) : user_sp_map scen_per_worker = maximum(length.(collect(values(scen_proc_map)))) n_scenarios = length(scenarios(scen_tree)) # Start worker loops if report > 0 println("...launching workers...") end worker_inf = @timeit(timo, "Launch Workers", _launch_workers(2*scen_per_worker, n_scenarios) ) # Initialize subproblems if report > 0 println("...initializing subproblems...") flush(stdout) end var_map = @timeit(timo, "Initialize Subproblems", _initialize_subproblems(scen_proc_map, worker_inf, scen_tree, model_constructor, constructor_args, r, warm_start, subproblem_callbacks; kwargs...) ) if lower_bound > 0 if report > 0 println("...initializing lower-bound subproblems...") flush(stdout) end @timeit(timo, "Initialze Lower Bound Subproblems", _initialize_lb_subproblems(scen_proc_map, worker_inf, scen_tree, model_constructor, constructor_args, warm_start; kwargs...) ) end # Construct master ph object phd = @timeit(timo, "Other", PHData(r, scen_tree, scen_proc_map, var_map, timo) ) # Initial values xhat_res_sq = @timeit(timo, "Initial Values", _set_initial_values(phd, worker_inf) ) # Check for penalty parameter update x_res_sq = @timeit(timo, "Penalty Parameter", _set_penalty_parameter(phd, worker_inf) ) # Save residual _save_residual(phd, -1, xhat_res_sq, x_res_sq, 0.0, 0.0) return (phd, worker_inf) end function build_extensive_form(tree::ScenarioTree, model_constructor::Function, constructor_args::Tuple, sub_type::Type{S}; kwargs... )::JuMP.Model where {S <: AbstractSubproblem} model = JuMP.Model() JuMP.set_objective_sense(model, MOI.MIN_SENSE) JuMP.set_objective_function(model, zero(JuMP.QuadExpr)) # Below for mapping subproblem variables onto existing extensive form variables node_var_map = ef_node_dict_constructor(sub_type) for s in scenarios(tree) smod = model_constructor(s, constructor_args...; kwargs...) snode_var_map = ef_copy_model(model, smod, s, tree, node_var_map) @assert(isempty(intersect(keys(node_var_map), keys(snode_var_map)))) merge!(node_var_map, snode_var_map) end return model end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
22447
#### Exceptions #### """ Exception indicating that the specified method is not implemented for an interface. """ struct UnimplementedError <: Exception msg::String end #### Internal Types and Methods #### struct Indexer next_index::Dict{NodeID, Index} indices::Dict{NodeID, Dict{String, Index}} end function Indexer()::Indexer idxr = Indexer(Dict{NodeID, Index}(), Dict{NodeID, Dict{String,Index}}()) return idxr end function _retrieve_and_advance_index(idxr::Indexer, nid::NodeID)::Index if !haskey(idxr.next_index, nid) idxr.next_index[nid] = Index(zero(INDEX)) end idx = idxr.next_index[nid] idxr.next_index[nid] = _increment(idx) return idx end function index(idxr::Indexer, nid::NodeID, name::String)::Index if !haskey(idxr.indices, nid) idxr.indices[nid] = Dict{String, Index}() end node_vars = idxr.indices[nid] if haskey(node_vars, name) idx = node_vars[name] else idx = _retrieve_and_advance_index(idxr, nid) node_vars[name] = idx end return idx end struct VariableData name::String xhat_id::XhatID end mutable struct ProblemData obj::Float64 sts::MOI.TerminationStatusCode time::Float64 lb_obj::Float64 lb_sts::MOI.TerminationStatusCode lb_time::Float64 end ProblemData() = ProblemData(0.0, MOI.OPTIMIZE_NOT_CALLED, 0.0, 0.0, MOI.OPTIMIZE_NOT_CALLED, 0.0) struct ScenarioInfo pid::Int prob::Float64 branch_vars::Dict{VariableID, Float64} leaf_vars::Dict{VariableID, Float64} w_vars::Dict{VariableID, Float64} xhat_vars::Dict{VariableID, Float64} problem_data::ProblemData end function ScenarioInfo(pid::Int, prob::Float64, branch_ids::Set{VariableID}, leaf_ids::Set{VariableID} )::ScenarioInfo branch_map = Dict{VariableID, Float64}() w_dict = Dict{VariableID, Float64}() x_dict = Dict{VariableID, Float64}() for vid in branch_ids branch_map[vid] = 0.0 w_dict[vid] = 0.0 x_dict[vid] = 0.0 end leaf_map = Dict{VariableID, Float64}(vid => 0.0 for vid in leaf_ids) return ScenarioInfo(pid, prob, branch_map, leaf_map, w_dict, x_dict, ProblemData()) end function create_ph_dicts(sinfo::ScenarioInfo) return (sinfo.w_vars, sinfo.xhat_vars) end function objective_value(sinfo::ScenarioInfo)::Float64 return sinfo.problem_data.obj end function retrieve_variable_value(sinfo::ScenarioInfo, vid::VariableID)::Float64 if haskey(sinfo.branch_vars, vid) vi = sinfo.branch_vars[vid] else vi = sinfo.leaf_vars[vid] end return vi end struct PHIterate xhat::Dict{XhatID,Float64} x::Dict{VariableID,Float64} w::Dict{VariableID,Float64} end struct PHLowerBound lower_bound::Float64 gap::Float64 rel_gap::Float64 end struct PHResidual abs_res::Float64 rel_res::Float64 xhat_sq::Float64 x_sq::Float64 end struct PHHistory iterates::Dict{Int, PHIterate} residuals::Dict{Int, PHResidual} lower_bounds::Dict{Int, PHLowerBound} end function PHHistory() return PHHistory(Dict{Int, PHIterate}(), Dict{Int, PHResidual}(), Dict{Int, PHLowerBound}(), ) end function _save_iterate(phh::PHHistory, iter::Int, phi::PHIterate )::Nothing phh.iterates[iter] = phi return end function _save_lower_bound(phh::PHHistory, iter::Int, phlb::PHLowerBound )::Nothing phh.lower_bounds[iter] = phlb return end function _save_residual(phh::PHHistory, iter::Int, res::PHResidual)::Nothing phh.residuals[iter] = res return end #### User Facing Types #### """ Struct for user callbacks. **Fields** * `name::String` : User's name for the callback. Defaults to `string(h)`. * `h::Function` : Callback function. See notes below for calling signature. * `initialize::Function` : Function to initialize `ext` *after* subproblem creation has occurred. * `ext::Dict{Symbol,Any}` : Dictionary to store data between callback calls or needed parameters. The callback function `h` must have the signature `h(ext::Dict{Symbol,Any}, phd::PHData, winf::WorkerInf, niter::Int)::Bool` where `ext` is the same dictionary given to the `Callback` constructor, `phd` is the standard PH data structure (see `PHData`), `winf` is used for communicating with subproblems (see `apply_to_subproblem`) and `niter` is the current iteration. The callback may return `false` to stop PH. The `initialize` function must have the signature `initialize(ext::Dict{Symbol,Any}, phd::PHData)` where `ext` is the same dictionary given to the `Callback` constructor and `phd` is the standard PH data structure (see `PHData`). """ struct Callback name::String h::Function initialize::Function ext::Dict{Symbol,Any} end function Base.show(io::IO, cb::Callback) print(io, cb.name) return end """ Type representing a consensus variable. The following functions are available to the user to interact with consensus variables * [`is_integer`](@ref) * [`value`](@ref) * [`variables`](@ref) """ mutable struct HatVariable value::Float64 # Current value of variable vars::Set{VariableID} # All nonhat variable ids that contribute to this variable is_integer::Bool # Flag indicating that this variable is an integer (includes binary) end HatVariable(is_int::Bool)::HatVariable = HatVariable(0.0, Set{VariableID}(),is_int) function HatVariable(val::Float64,vid::VariableID, is_int::Bool) return HatVariable(val, Set{VariableID}([vid]), is_int) end ## Primary PH Data Structure ## """ Data structure used to store information and results for a stochastic programming problem. See the following functions make use of this object: * [`apply_to_subproblem`](@ref) * [`branch_value`](@ref) * [`consensus_variables`](@ref) * [`convert_to_variable_ids`](@ref) * [`convert_to_xhat_id`](@ref) * [`get_callback`](@ref) * [`get_callback_ext`](@ref) * [`is_leaf`](@ref) * [`name`](@ref) * [`probability`](@ref) * [`scenario_bundle`](@ref) * [`scenarios`](@ref) * [`stage_id`](@ref) * [`value`](@ref) * [`w_value`](@ref) * [`xhat_value`](@ref) The following post solution functions are also available: * [`leaf_value`](@ref) * [`retrieve_soln`](@ref) * [`retrieve_aug_obj_value`](@ref) * [`retrieve_obj_value`](@ref) * [`retrieve_no_hats`](@ref) * [`retrieve_w`](@ref) If the corresponding save options are enabled, the saved terms may be accessed with one of the following: * [`lower_bounds`](@ref) * [`residuals`](@ref) * [`retrieve_xhat_history`](@ref) * [`retrieve_no_hat_history`](@ref) * [`retrieve_w_history`](@ref) """ struct PHData r::AbstractPenaltyParameter scenario_tree::ScenarioTree scenario_map::Dict{ScenarioID, ScenarioInfo} callbacks::Vector{Callback} xhat::Dict{XhatID, HatVariable} variable_data::Dict{VariableID, VariableData} history::PHHistory time_info::TimerOutputs.TimerOutput end function PHData(r::AbstractPenaltyParameter, tree::ScenarioTree, scen_proc_map::Dict{Int, Set{ScenarioID}}, var_map::Dict{ScenarioID, Dict{VariableID, VariableInfo}}, time_out::TimerOutputs.TimerOutput )::PHData var_data = Dict{VariableID,VariableData}() xhat_dict = Dict{XhatID, HatVariable}() idxr = Indexer() scenario_map = Dict{ScenarioID, ScenarioInfo}() for (pid, scenarios) in pairs(scen_proc_map) for scen in scenarios branch_ids = Set{VariableID}() leaf_ids = Set{VariableID}() for (vid, vinfo) in pairs(var_map[scen]) vnode = node(tree, vid.scenario, vid.stage) if isnothing(vnode) error("Unable to locate scenario tree node for variable '$(vinfo.name)' occuring in scenario $(vid.scenario) and stage $(vid.stage).") end idx = index(idxr, vnode.id, vinfo.name) xhid = XhatID(vnode.id, idx) vdata = VariableData(vinfo.name, xhid) var_data[vid] = vdata if is_leaf(vnode) push!(leaf_ids, vid) else push!(branch_ids, vid) if haskey(xhat_dict, xhid) if is_integer(xhat_dict[xhid]) != vinfo.is_integer error("Variable '$(vinfo.name)' must be integer or non-integer in all scenarios in which it is used.") end else xhat_dict[xhid] = HatVariable(vinfo.is_integer) end add_variable(xhat_dict[xhid], vid) end end scenario_map[scen] = ScenarioInfo(pid, tree.prob_map[scen], branch_ids, leaf_ids, ) end end return PHData(r, tree, scenario_map, Vector{Callback}(), xhat_dict, var_data, PHHistory(), time_out, ) end function Base.show(io::IO, phd::PHData) nscen = length(scenarios(phd)) print(io, "PH structure for a stochastic program with $(nscen) scenarios.") return end #### User Facing Functions #### ## Callback Functions ## """ Callback(f::Function) Creates a `Callback` structure for function `f`. """ function Callback(f::Function) return Callback(string(f), f, (::Dict{Symbol,Any},::PHData)->(), Dict{Symbol,Any}()) end """ Callback(f::Function, ext::Dict{Symbol,Any}) Creates a `Callback` structure for function `f` with the external data dictionary `ext`. """ function Callback(f::Function, ext::Dict{Symbol,Any}) return Callback(string(f), f, (::Dict{Symbol,Any},::PHData)->(), ext) end """ Callback(f::Function, initialize::Function) Creates a `Callback` structure for function `f` with initializer `initialize`. """ function Callback(f::Function, initialize::Function) return Callback(string(f), f, initialize, Dict{Symbol,Any}()) end """ Callback(name::String, f::Function, ext::Dict{Symbol,Any}) Creates a `Callback` structure for function `f` with the name `name` and the external data dictionary `ext`. """ function Callback(name::String, f::Function, ext::Dict{Symbol,Any}) return Callback(name, f, (::Dict{Symbol,Any},::PHData)->(), ext) end """ Callback(f::Function, initialize::Function, ext::Dict{Symbol,Any}) Creates a `Callback` structure for function `f` with the external data dictionary `ext` which will be initialized with `initialize`. """ function Callback(f::Function, initialize::Function, ext::Dict{Symbol,Any}) return Callback(string(f), f, initialize, ext) end """ cb(f::Function) cb(f::Function, ext::Dict{Symbol,Any}) cb(f::Function, initialize::Function) cb(f::Function, initialize::Function, ext::Dict{Symbol,Any}) cb(name::String, f::Function, ext::Dict{Symbol,Any}) Shorthand for [`Callback`](@ref) functions with the same signature. """ cb(f::Function) = Callback(f) cb(f::Function, ext::Dict{Symbol,Any}) = Callback(f, ext) cb(f::Function, initialize::Function) = Callback(f, initialize) cb(f::Function, initialize::Function, ext::Dict{Symbol,Any}) = Callback(f, initialize, ext) cb(name::String, f::Function, ext::Dict{Symbol,Any}) = Callback(name, f, ext) cb(name::String, f::Function, initialize::Function, ext::Dict{Symbol,Any}) = Callback(name, f, initialize, ext) ## Consensus Variable Functions ## function add_variable(a::HatVariable, vid::VariableID) push!(a.vars, vid) return end """ is_integer(a::HatVariable)::Bool Returns true if the consensus variable is an integer variable. The consensus variable is an integer if the contributing subproblem variables are all integer variables. """ function is_integer(a::HatVariable)::Bool return a.is_integer end """ set_value(a::HatVariable, v::Float64) Sets the current value of `a` to `v`. """ function set_value(a::HatVariable, v::Float64)::Nothing a.value = v return end """ value(a::HatVariable)::Float64 Returns the current value of `a`. """ function value(a::HatVariable)::Float64 return a.value end """ variables(a::HatVariable)::Set{VariableID} Returns the variable ids for all subproblem variables contributing to this variable. """ function variables(a::HatVariable)::Set{VariableID} return a.vars end ## PHData Interaction Functions ## # NOTE: Additional, more complicated functions are in utils.jl """ add_callback(phd::PHData, cb::Callback )::Nothing Adds the callback `cb` to the given PH problem. """ function add_callback(phd::PHData, cb::Callback )::Nothing push!(phd.callbacks, cb) cb.initialize(cb.ext, phd) return end """ apply_to_subproblem(to_apply::Function, phd::PHData, winf::WorkerInf, scid::ScenarioID, args::Tuple=(), kwargs::NamedTuple=NamedTuple(), ) Applies the function `to_apply` to the subproblem with scenario id `scid`. """ function apply_to_subproblem(to_apply::Function, phd::PHData, winf::WorkerInf, scid::ScenarioID, args::Tuple=(), kwargs::NamedTuple=NamedTuple(), ) _send_message(winf, phd.scenario_map[scid].pid, SubproblemAction(scid, to_apply, args, kwargs) ) return end """ branch_value(phd::PHData, vid::VariableID)::Float64 Returns the value of the variable associated with `vid`. Must be a branch variable. See also: [`leaf_value`](@ref), [`value`](@ref) """ function branch_value(phd::PHData, vid::VariableID)::Float64 return phd.scenario_map[scenario(vid)].branch_vars[vid] end """ branch_value(phd::PHData, scen::ScenarioID, stage::StageID, idx::Index)::Float64 Returns the value of the variable associated with with scenario `scen`, stage `stage` and index `idx`. Must be a branch variable. See also: [`leaf_value`](@ref), [`value`](@ref) """ function branch_value(phd::PHData, scen::ScenarioID, stage::StageID, idx::Index)::Float64 return branch_value(phd, VariableID(scen, stage, idx)) end """ consensus_variables(phd::PHData)::Dict{XhatID,HatVariable} Returns the collection of consensus variables for the problem. """ function consensus_variables(phd::PHData)::Dict{XhatID,HatVariable} return phd.xhat end """ convert_to_variable_ids(phd::PHData, xid::XhatID)::Set{VariableID} Convert the given consensus variable id to the contributing individual subproblem variable ids. **Arguments** * `phd::PHData` : PH data structure for the corresponding problem * `xid::XhatID` : consensus variable id to convert """ function convert_to_variable_ids(phd::PHData, xid::XhatID)::Set{VariableID} return variables(phd.xhat[xid]) end """ convert_to_xhat_id(phd::PHData, vid::VariableID)::XhatID Convert the given `VariableID` to the consensus variable id (`XhatID`). **Arguments** * `phd::PHData` : PH data structure for the corresponding problem * `vid::VariableID` : variable id to convert """ function convert_to_xhat_id(phd::PHData, vid::VariableID)::XhatID return phd.variable_data[vid].xhat_id end """ get_callback(phd::PHData, name::String)::Callback Retrieve the callback with name `name`. """ function get_callback(phd::PHData, name::String)::Callback return_cb = nothing for cb in phd.callbacks if cb.name == name return_cb = cb end end if isnothing(return_cb) error("Unable to find callback $name.") end return return_cb end """ get_callback_ext(phd::PHData, name::String)::Dict{Symbol,Any} Retrieve the external dictionary for callback `name`. """ function get_callback_ext(phd::PHData, name::String)::Dict{Symbol,Any} cb = get_callback(phd, name) return cb.ext end """ is_leaf(phd::PHData, xhid::XhatID)::Bool Returns true if the given consensus variable id belongs to a leaf vertex in the scenario tree. """ function is_leaf(phd::PHData, xhid::XhatID)::Bool return is_leaf(phd.scenario_tree, xhid.node) end """ leaf_value(phd::PHData, vid::VariableID)::Float64 leaf_value(phd::PHData, scen::ScenarioID, stage::StageID, idx::Index)::Float64 Returns the value of the variable associated with `vid` or with scenario `scen`, stage `stage` and index `idx`. Must be a leaf variable. **WARNING:** For computational efficiency, leaf values are collected only at the end of a PH run. Therefore, using this function in a callback will result in an error. See also: [`branch_value`](@ref), [`value`](@ref) """ function leaf_value(phd::PHData, vid::VariableID)::Float64 return phd.scenario_map[scenario(vid)].leaf_vars[vid] end function leaf_value(phd::PHData, scen::ScenarioID, stage::StageID, idx::Index)::Float64 return leaf_value(phd, VariableID(scen, stage, idx)) end """ name(phd::PHData, vid::VariableID)::String Returns the name of the consensus variable for the given `VariableID`. """ function name(phd::PHData, vid::VariableID)::String if !haskey(phd.variable_data, vid) error("No name available for variable id $vid") end return phd.variable_data[vid].name end """ name(phd::PHData, xid::XhatID)::String Returns the name of the consensus variable for the given [`XhatID`](@ref). The name is the same given to the individual scenario variables. """ function name(phd::PHData, xid::XhatID)::String return name(phd, first(convert_to_variable_ids(phd, xid))) end """ probability(phd::PHData, scenario::ScenarioID)::Float64 Returns the probability of the given scenario. """ function probability(phd::PHData, scenario::ScenarioID)::Float64 return phd.scenario_map[scenario].prob end """ scenario_bundle(phd::PHData, xid::XhatID)::Set{ScenarioID} Returns the scenarios contributing to the consensus variable associated with `xid`. """ function scenario_bundle(phd::PHData, xid::XhatID)::Set{ScenarioID} return scenario_bundle(phd.scenario_tree, xid.node) end """ scenario_tree(phd::PHData)::ScenarioTree Returns the scenario tree for created stochastic programming problem. """ function scenario_tree(phd::PHData)::ScenarioTree return phd.scenario_tree end """ scenarios(phd::PHData)::Set{ScenarioID} Returns the set of all scenarios for the stochastic problem. """ function scenarios(phd::PHData)::Set{ScenarioID} return scenarios(phd.scenario_tree) end """ stage_id(phd::PHData, xid::XhatID)::StageID Returns the [`StageID`](@ref) in which the given consensus variable is. """ function stage_id(phd::PHData, xid::XhatID)::StageID return phd.scenario_tree.tree_map[xid.node].stage end """ print_timing([io::IO], phd::PHData) Prints timining information from the Progressive Hedging solve. """ function print_timing(phd::PHData) println(phd.time_info) return end function print_timing(io::IO, phd::PHData) println(io, phd.time_info) return end """ value(phd::PHData, vid::VariableID) Returns the value of the variable associated with `vid`. See also: [`branch_value`](@ref), [`leaf_value`](@ref) """ function value(phd::PHData, vid::VariableID)::Float64 return retrieve_variable_value(phd.scenario_map[scenario(vid)], vid) end """ value(phd::PHData, scen::ScenarioID, stage::StageID, idx::Index)::Float64 Returns the value of the variable associated with scenario `scen`, stage `stage` and index `idx`. See also: [`branch_value`](@ref), [`leaf_value`](@ref) """ function value(phd::PHData, scen::ScenarioID, stage::StageID, idx::Index)::Float64 vid = VariableID(scen, stage, idx) return value(phd, vid) end """ w_value(phd::PHData, vid::VariableID) Returns the value of the variable associated with `vid`. Only available for branch variables. """ function w_value(phd::PHData, vid::VariableID)::Float64 return phd.scenario_map[scenario(vid)].w_vars[vid] end """ w_value(phd::PHData, scen::ScenarioID, stage::StageID, idx::Index)::Float64 Returns the value of the variable associated with scenario `scen`, stage `stage` and index `idx`. Only available for branch variables. """ function w_value(phd::PHData, scen::ScenarioID, stage::StageID, idx::Index)::Float64 return w_value(phd, VariableID(scen, stage, idx)) end """ xhat_value(phd::PHData, xhid::VariableID)::Float64 Returns the value of the consensus variable associated with `xhid`. Only available for leaf variables after calling `solve`. Available for branch variables at any time. """ function xhat_value(phd::PHData, xhat_id::XhatID)::Float64 return value(phd.xhat[xhat_id]) end """ xhat_value(phd::PHData, vid::VariableID)::Float64 Returns the value of the consensus variable associated with `vid`. Only available for leaf variables after calling `solve`. Available for branch variables at any time. """ function xhat_value(phd::PHData, vid::VariableID)::Float64 return xhat_value(phd, convert_to_xhat_id(phd, vid)) end """ xhat_value(phd::PHData, scen::ScenarioID, stage::StageID, idx::Index)::Float64 Returns the value of the consensus variable associated with scenario `scen`, stage `stage` and index `idx`. Only available for leaf variables after calling `solve`. Available for branch variables at any time. """ function xhat_value(phd::PHData, scen::ScenarioID, stage::StageID, idx::Index)::Float64 return xhat_value(phd, VariableID(scen, stage, idx)) end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
11677
#### PH Types Used in Interface #### """ Struct containing all information needed by PH about a variable (along with the variable id) to run the PH algorithm. **Fields** * `name::String` : User specified name of the variable * `is_integer::Bool` : True if the variable is an integer or binary """ struct VariableInfo name::String is_integer::Bool # true if variable is integer or binary end #### PH Subproblem Interface #### """ Abstract type for ProgressiveHedging subproblem types. A concrete subtype handles all details of creating, solving and updating subproblems for ProgressiveHedging (PH). In particular, it handles all interaction with any modeling language that the subproblem is written in. See `JuMPSubproblem` for an implementation that uses JuMP as the optimization modeling language. Variables and their values are identified and exchanged between PH and a Subproblem type using the `VariableID` type. A unique `VariableID` is associated with each variable in the subproblem by the Subproblem implementation by using the `ScenarioID` of the subproblem as well as the `StageID` to which this variable belongs. This combination uniquely identifies a node in the scenario tree to which the variable can be associated. Variables associated with the same node in a scenario tree and sharing the same name are assumed to be consensus variables whose optimal value is determined by PH. The final component of a `VariableID` is an `Index` which is just a counter assigned to a variable to differentiate it from other variables at the same node. See `VariableID` type for more details. Any concrete subtype **must** implement the following functions: * [`add_ph_objective_terms`](@ref) * [`objective_value`](@ref) * [`report_values`](@ref) * [`report_variable_info`](@ref) * [`solve_subproblem`](@ref) * [`update_ph_terms`](@ref) See help strings on each function for details on arguments, returned objects and expected performance of each function. See JuMPSubproblem for an example using JuMP. To use `warm_start=true` the concrete subtype must also implement * [`warm_start`](@ref) See help on `warm_start` for more information. See JuMPSubproblem for an example using JuMP. To use the extensive form functionality, the concrete subtype must implement * [`ef_copy_model`](@ref) * [`ef_node_dict_constructor`](@ref) See the help on the functions for more details. See JuMPSubproblem for an example using JuMP. Note that the extensive form model is always constructed as a `JuMP.Model` object. To use penalty parameter types other than `ScalarPenaltyParameter`, concrete subproblem types also need to implement * [`report_penalty_info`](@ref) See the help on individual penalty parameter types and `report_penalty_info` for more details. To use lower bound computation functionality, the concrete subtype must also implement * [`add_lagrange_terms`](@ref) * [`update_lagrange_terms`](@ref) See the help on these functions for more details. """ abstract type AbstractSubproblem end ## Required Interface Functions ## # The below functions must be implemented by any new subtype of AbstractSubproblem. # Note they all default to throwing an `UnimplementedError`. """ add_ph_objective_terms(as::AbstractSubproblem, vids::Vector{VariableID}, r::Union{Float64,Dict{VariableID,Float64}} )::Dict{VariableID,Float64} Create model variables for Lagrange multipliers and hat variables and add Lagrange and proximal terms to the objective function. Returns mapping of the variable to any information needed from the subproblem to compute the penalty parameter. Only used if `is_subproblem_dependent(typeof(r))` returns `true`. **Arguments** * `as::AbstractSubproblem` : subproblem object (replace with appropriate type) * `vids::Vector{VariableID}` : list of `VariableIDs` which need ph terms created * `r::AbstractPenaltyParameter` : penalty parameter on quadratic term """ function add_ph_objective_terms(as::AbstractSubproblem, vids::Vector{VariableID}, r::Union{Float64,Dict{VariableID,Float64}}, )::Nothing throw(UnimplementedError("add_ph_objective_terms is unimplemented")) end """ objective_value(as::AbstractSubproblem)::Float64 Return the objective value of the solved subproblem. **Arguments** * `as::AbstractSubproblem` : subproblem object (replace with appropriate type) """ function objective_value(as::AbstractSubproblem)::Float64 throw(UnimplementedError("objective_value is unimplemented")) end """ report_penalty_info(as::AbstractSubproblem, pp<:AbstractPenaltyParameter, )::Dict{VariableID,Float64} Returns mapping of variable to a value used to compute the penalty parameter. This function must be implemented for any concrete penalty parameter type for which `is_subproblem_dependent` returns true and any concrete subproblem type wishing to use that penalty parameter. The mapping must contain all subproblem values needed for processing by `process_penalty_subproblem`. The returned mapping is handed unaltered to `process_penalty_subproblem` as the `subproblem_dict` argument. **Arguments** *`as::AbstractSubproblem` : subproblem object (replace with appropriate type) *`pp<:AbstractPenaltyParameter` : penalty parameter type """ function report_penalty_info(as::AbstractSubproblem, pp::Type{P}, )::Dict{VariableID,Float64} where P <: AbstractPenaltyParameter throw(UnimplementedError("report_penalty_info is unimplmented for subproblem of type $(typeof(as)) and penalty parameter of type $(pp).")) end """ report_variable_info(as::AbstractSubproblem, st::ScenarioTree )::Dict{VariableID, VariableInfo} Assign `VariableID`s to all model variables and build a map from those ids to the required variable information (e.g., variable name). See `VariableInfo` help for details on required variable information. **Arguments** * `as::AbstractSubproblem` : subproblem object (replace with appropriate type) * `st::ScenarioTree` : scenario tree for the entire PH problem """ function report_variable_info(as::AbstractSubproblem, st::ScenarioTree )::Dict{VariableID, VariableInfo} throw(UnimplementedError("report_variable_info is unimplemented")) end """ report_values(as::AbstractSubproblem, vars::Vector{VariableID} )::Dict{VariableID, Float64} Return the variable values specified by `vars`. **Arguments** * `as::AbstractSubproblem` : subproblem object (replace with appropriate type) * `vars::Vector{VariableID}` : collection of `VariableID`s to gather values for """ function report_values(as::AbstractSubproblem, vars::Vector{VariableID} )::Dict{VariableID, Float64} throw(UnimplementedError("report_values is unimplemented")) end """ solve_subproblem(as::AbstractSubproblem)::MOI.TerminationStatusCode Solve the subproblem specified by `as` and return the status code. **Arguments** * `as::AbstractSubproblem` : subproblem object (replace with appropriate type) """ function solve_subproblem(as::AbstractSubproblem)::MOI.TerminationStatusCode throw(UnimplementedError("solve_subproblem is unimplemented")) end """ update_ph_terms(as::AbstractSubproblem, w_vals::Dict{VariableID,Float64}, xhat_vals::Dict{VariableID,Float64} )::Nothing Update the values of the PH variables in this subproblem with those given by `w_vals` and `xhat_vals`. **Arguments** * `as::AbstractSubproblem` : subproblem object (replace with appropriate type) * `w_vals::Dict{VariableID,Float64}` : Values to update Lagrangian variables with * `xhat_vals::Dict{VariableID,Float64}` : Values to update proximal variables with """ function update_ph_terms(as::AbstractSubproblem, w_vals::Dict{VariableID,Float64}, xhat_vals::Dict{VariableID,Float64} )::Nothing throw(UnimplementedError("update_ph_terms is unimplemented")) end """ warm_start(as::AbstractSubproblem)::Nothing Use the values of previous solves non-PH variables as starting points of the next solve. **Arguments** * `as::AbstractSubproblem` : subproblem object (replace with appropriate type) """ function warm_start(as::AbstractSubproblem)::Nothing throw(UnimplementedError("warm_start is unimplemented")) end ## Optional Interface Functions ## """ add_lagrange_terms(as::AbstractSubproblem, vids::Vector{VariableID} )::Nothing Create model variables for Lagrange multipliers and adds the corresponding terms to the objective function. **Arguments** * `as::AbstractSubproblem` : subproblem object (replace with appropriate type) * `vids::Vector{VariableID}` : list of `VariableIDs` which need Lagrange terms See also [`add_ph_objective_terms`](@ref). """ function add_lagrange_terms(as::AbstractSubproblem, vids::Vector{VariableID} )::Nothing throw(UnimplementedError("add_lagrange_terms is unimplemented")) end """ update_lagrange_terms(as::AbstractSubproblem, w_vals::Dict{VariableID,Float64} )::Nothing Update the values of the dual variables in this subproblem with those given by `w_vals`. **Arguments** * `as::AbstractSubproblem` : subproblem object (replace with appropriate type) * `w_vals::Dict{VariableID,Float64}` : values to update Lagrange dual variables with See also [`update_ph_terms`](@ref). """ function update_lagrange_terms(as::AbstractSubproblem, w_vals::Dict{VariableID,Float64} )::Nothing throw(UnimplementedError("update_lagrange_terms is unimplemented")) end # These functions are required only if an extensive form construction is desired """ ef_copy_model(destination::JuMP.Model, original::AbstractSubproblem, scid::ScenarioID, scen_tree::ScenarioTree, node_dict::Dict{NodeID, Any} ) Copy the subproblem described by `original` to the extensive form model `destination`. **Arguments** * `destination::JuMP.Model` : extensive form of the model that is being built * `original::AbstractSubproblem` : subproblem object (replace with appropriate type) * `scid::ScenarioID` : `ScenarioID` corresponding to this subproblem * `scen_tree::ScenarioTree` : scenario tree for the entire PH problem * `node_dict::Dict{NodeID, Any}` : dictionary for transferring nodal information from one submodel to another """ function ef_copy_model(destination::JuMP.Model, original::AbstractSubproblem, scid::ScenarioID, scen_tree::ScenarioTree, node_dict::Dict{NodeID, Any} ) throw(UnimplementedError("ef_copy_model is unimplemented")) end """ ef_node_dict_constructor(::Type{S}) where S <: AbstractSubproblem Construct dictionary that is used to carry information between subproblems for `ef_copy_model`. **Arguments** * `::Type{S}` : Subproblem type """ function ef_node_dict_constructor(::Type{S}) where S <: AbstractSubproblem throw(UnimplementedError("ef_node_dict_constructor is unimplemented")) end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
1764
""" Struct for user supbroblem callbacks. **Fields** * `name::String` : User's name for the callback. Defaults to `string(h)`. * `h::Function` : Callback function. See notes below for calling signature. * `ext::Dict{Symbol,Any}` : Dictionary to store data between callback calls or needed parameters. The callback function `h` must have the signature `h(ext::Dict{Symbol,Any}, sp::T, niter::Int, scenario_id::ScenarioID) where T <: AbstractSubproblem` where `ext` is the same dictionary given to the `Callback` constructor, `sp` is a concrete type of `AbstractSubproblem` (see `AbstractSubproblem`), `niter` is the current iteration and `scenario_id` is a scenario identifier (see `ScenarioID`). """ struct SubproblemCallback name::String h::Function ext::Dict{Symbol,Any} end function Base.show(io::IO, spcb::SubproblemCallback) print(io, spcb.name) return end """ SubproblemCallback(f::Function) Creates a `SubproblemCallback` structure for function `f`. """ function SubproblemCallback(f::Function) return SubproblemCallback(string(f), f, Dict{Symbol,Any}()) end """ SubproblemCallback(f::Function, ext::Dict{Symbol,Any}) Creates a `SubproblemCallback` structure for function `f` with the external data dictionary `ext`. """ function SubproblemCallback(f::Function, ext::Dict{Symbol,Any}) return SubproblemCallback(string(f), f, ext) end """ spcb(f::Function) spcb(f::Function, ext::Dict{Symbol,Any}) spcb(name::String, f::Function, ext::Dict{Symbol,Any}) Shorthand for `SubproblemCallback`. """ spcb(f::Function) = SubproblemCallback(f) spcb(f::Function, ext::Dict{Symbol,Any}) = SubproblemCallback(f, ext) spcb(name::String, f::Function, ext::Dict{Symbol,Any}) = SubproblemCallback(name, f, ext)
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
9724
## Helper Functions ## function stringify(set::Set{K})::String where K str = "" for s in sort!(collect(set)) str *= string(s) * "," end return rstrip(str, [',',' ']) end function stringify(array::Vector{K})::String where K str = "" for s in sort(array) str *= string(s) * "," end return rstrip(str, [',',' ']) end ## Generic Utility Functions ## function _two_stage_tree(n::Int, p::Vector{R})::ScenarioTree where R <: Real st = ScenarioTree() for s in 1:n add_leaf(st, root(st), p[s]) end return st end """ two_stage_tree(n::Int)::ScenarioTree two_stage_tree(p::Vector{R})::ScenarioTree where R <: Real Construct and return a two-stage scenario tree with `n` scenarios with equal probability or a two-stage scenario tree with `length(p)` scenarios where probability of scenario s is `p[s+1]`. """ function two_stage_tree(n::Int)::ScenarioTree return _two_stage_tree(n, [1.0/n for k in 1:n]) end function two_stage_tree(p::Vector{R})::ScenarioTree where R <: Real if !isapprox(sum(p), 1.0, atol=1e-8) @warn("Given probability vector has total probability $(sum(p)). Normalizing to 1.") p /= sum(p) end return _two_stage_tree(length(p), p) end function visualize_tree(phd::PHData) # TODO: Implement this... @warn("Not yet implemented") return end ## Complex PHData Interaction Functions ## # NOTE: These functions are almost all post-processing functions """ lower_bounds(phd::PHData)::DataFrames.DataFrame Return a `DataFrame` with the computed and saved lower bounds. See the `lower_bound` keyword argument on [`solve`](@ref). """ function lower_bounds(phd::PHData)::DataFrames.DataFrame lb_df = nothing lower_bounds = phd.history.lower_bounds for iter in sort!(collect(keys(lower_bounds))) lb = lower_bounds[iter] data = Dict{String,Any}("iteration" => iter, "bound" => lb.lower_bound, "absolute gap" => lb.gap, "relative gap" => lb.rel_gap, ) if isnothing(lb_df) lb_df = DataFrames.DataFrame(data) else push!(lb_df, data) end end if isnothing(lb_df) lb_df = DataFrames.DataFrame() end return lb_df end """ residuals(phd::PHData)::DataFrames.DataFrame Return a `DataFrame` with absolute and relative residuals along with the components. See the `save_residuals` keyword argument on [`solve`](@ref). """ function residuals(phd::PHData)::DataFrames.DataFrame res_df = nothing residuals = phd.history.residuals for iter in sort!(collect(keys(residuals))) res = residuals[iter] data = Dict{String,Any}("iteration" => iter, "absolute" => res.abs_res, "relative" => res.rel_res, "xhat_sq" => res.xhat_sq, "x_sq" => res.x_sq ) if isnothing(res_df) res_df = DataFrames.DataFrame(data) else push!(res_df, data) end end if isnothing(res_df) res_df = DataFrames.DataFrame() end return res_df end """ retrieve_soln(phd::PHData)::DataFrames.DataFrame Return a `DataFrame` with the solution values of all consensus and leaf variables. """ function retrieve_soln(phd::PHData)::DataFrames.DataFrame vars = Vector{String}() vals = Vector{Float64}() stages = Vector{STAGE_ID}() scens = Vector{String}() for xid in sort!(collect(keys(phd.xhat))) vid = first(convert_to_variable_ids(phd, xid)) push!(vars, name(phd, vid)) push!(vals, xhat_value(phd, xid)) push!(stages, value(stage_id(phd, xid))) push!(scens, stringify(value.(scenario_bundle(phd, xid)))) end soln_df = DataFrames.DataFrame(variable=vars, value=vals, stage=stages, scenarios=scens) return soln_df end """ retrieve_aug_obj_value(phd::PHData)::Float64 Return the current objective value including Lagrange and proximal PH terms of the stochastic program. """ function retrieve_aug_obj_value(phd::PHData)::Float64 obj_value = 0.0 for (scid, sinfo) in pairs(phd.scenario_map) obj_value += sinfo.prob * objective_value(sinfo) end return obj_value end """ retrieve_obj_value(phd::PHData)::Float64 Return the current objective value without Lagrange and proximal PH terms. """ function retrieve_obj_value(phd::PHData)::Float64 obj_value = 0.0 for (scid, sinfo) in pairs(phd.scenario_map) obj_s = objective_value(sinfo) # Remove PH terms for (vid, x_val) in pairs(sinfo.branch_vars) w_val = sinfo.w_vars[vid] xhat_val = xhat_value(phd, vid) r = get_penalty_value(phd.r, convert_to_xhat_id(phd, vid)) obj_s -= w_val * x_val + 0.5 * r * (x_val - xhat_val)^2 end obj_value += sinfo.prob * obj_s end return obj_value end """ retrieve_no_hats(phd::PHData)::DataFrames.DataFrame Return a `DataFrame` with the final nonconsensus variable values. """ function retrieve_no_hats(phd::PHData)::DataFrames.DataFrame vars = Vector{String}() vals = Vector{Float64}() stage = Vector{STAGE_ID}() scenario = Vector{SCENARIO_ID}() index = Vector{INDEX}() variable_map = Dict{VariableID, Float64}() for (scid,sinfo) in phd.scenario_map merge!(variable_map, sinfo.branch_vars, sinfo.leaf_vars) end for vid in sort!(collect(keys(variable_map))) push!(vars, name(phd, vid)) push!(vals, variable_map[vid]) push!(stage, value(vid.stage)) push!(scenario, value(vid.scenario)) push!(index, value(vid.index)) end soln_df = DataFrames.DataFrame(variable=vars, value=vals, stage=stage, scenario=scenario, index=index) return soln_df end """ retrieve_w(phd::PHData)::DataFrames.DataFrame Return a `DataFrame` with the final anticipativity constraint Lagrange multiplier values. """ function retrieve_w(phd::PHData)::DataFrames.DataFrame vars = Vector{String}() vals = Vector{Float64}() stage = Vector{STAGE_ID}() scenario = Vector{SCENARIO_ID}() index = Vector{INDEX}() variable_map = Dict{VariableID, Float64}() for (scid,sinfo) in phd.scenario_map merge!(variable_map, sinfo.w_vars) end for vid in sort!(collect(keys(variable_map))) push!(vars, "W_" * name(phd, vid)) push!(vals, variable_map[vid]) push!(stage, value(vid.stage)) push!(scenario, value(vid.scenario)) push!(index, value(vid.index)) end soln_df = DataFrames.DataFrame(variable=vars, value=vals, stage=stage, scenario=scenario, index=index) return soln_df end """ retrieve_xhat_history(phd::PHData)::DataFrames.DataFrame Return a `DataFrame` with the saved consensus variable values. See the `save_iterates` keyword argument on [`solve`](@ref). """ function retrieve_xhat_history(phd::PHData)::DataFrames.DataFrame xhat_df = nothing iterates = phd.history.iterates for iter in sort!(collect(keys(iterates))) data = Dict{String,Any}("iteration" => iter) for xhid in sort!(collect(keys(phd.xhat))) if !is_leaf(phd, xhid) vname = name(phd, xhid) * "_" * stringify(value.(scenario_bundle(phd, xhid))) data[vname] = iterates[iter].xhat[xhid] end end if isnothing(xhat_df) xhat_df = DataFrames.DataFrame(data) else push!(xhat_df, data) end end if isnothing(xhat_df) xhat_df = DataFrames.DataFrame() end return xhat_df end """ retrieve_no_hat_history(phd::PHData)::DataFrames.DataFrame Return a `DataFrame` with the saved nonconsensus variable values. See the `save_iterates` keyword argument on [`solve`](@ref). """ function retrieve_no_hat_history(phd::PHData)::DataFrames.DataFrame x_df = nothing iterates = phd.history.iterates for iter in sort!(collect(keys(iterates))) current_iterate = iterates[iter] data = Dict{String,Any}("iteration" => iter) for vid in sort!(collect(keys(current_iterate.x))) vname = name(phd, vid) * "_$(value(scenario(vid)))" data[vname] = current_iterate.x[vid] end if isnothing(x_df) x_df = DataFrames.DataFrame(data) else push!(x_df, data) end end if isnothing(x_df) x_df = DataFrames.DataFrame() end return x_df end """ retrieve_w_history(phd::PHData)::DataFrames.DataFrame Return a `DataFrame` with the saved PH Lagrange variable values. See the `save_iterates` keyword argument on [`solve`](@ref). """ function retrieve_w_history(phd::PHData)::DataFrames.DataFrame w_df = nothing iterates = phd.history.iterates for iter in sort!(collect(keys(iterates))) current_iterate = iterates[iter] data = Dict{String,Any}("iteration" => iter) for vid in sort!(collect(keys(current_iterate.w))) vname = "W_" * name(phd, vid) * "_$(value(scenario(vid)))" data[vname] = current_iterate.w[vid] end if isnothing(w_df) w_df = DataFrames.DataFrame(data) else push!(w_df, data) end end if isnothing(w_df) w_df = DataFrames.DataFrame() end return w_df end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
10633
#### Worker Structs #### struct SubproblemRecord problem::AbstractSubproblem branch_vars::Vector{VariableID} leaf_vars::Vector{VariableID} subproblem_callbacks::Vector{SubproblemCallback} end mutable struct WorkerRecord id::Int warm_start::Bool subproblems::Dict{ScenarioID,SubproblemRecord} lb_subproblems::Dict{ScenarioID,SubproblemRecord} end function WorkerRecord(id::Int) return WorkerRecord(id, false, Dict{ScenarioID,SubproblemRecord}(), Dict{ScenarioID,SubproblemRecord}(), ) end #### Worker Functions #### function worker_loop(id::Int, input::RemoteChannel, output::RemoteChannel, )::Int running = true my_record = WorkerRecord(id) try while running msg = take!(input) running = process_message(msg, my_record, output) end catch e while isready(input) take!(input) end rethrow() finally ; # intentional no-op end return 0 end function process_message(msg::Message, record::WorkerRecord, output::RemoteChannel )::Bool error("Worker unable to process message type: $(typeof(msg))") return false end function process_message(msg::Abort, record::WorkerRecord, output::RemoteChannel )::Bool return false end function process_message(msg::DumpState, record::WorkerRecord, output::RemoteChannel )::Bool put!(output, WorkerState(record.id, record)) return true end function process_message(msg::Initialize, record::WorkerRecord, output::RemoteChannel )::Bool record.warm_start = msg.warm_start # Master process needs the variable map messages to proceed. Initial solves are # not needed until much later in the process. So get all variable maps back first # then start working on the initial solves and the objective augmentation _build_subproblems(output, record, msg.scenarios, msg.scenario_tree, msg.create_subproblem, msg.create_subproblem_args, msg.create_subproblem_kwargs, msg.subproblem_callbacks ) _initial_solve(output, record) _penalty_parameter_preprocess(output, record, msg.r) return true end function process_message(msg::InitializeLowerBound, record::WorkerRecord, output::RemoteChannel, )::Bool for scen in msg.scenarios lb_sub = msg.create_subproblem(scen, msg.create_subproblem_args...; msg.create_subproblem_kwargs... ) var_map = report_variable_info(lb_sub, msg.scenario_tree) (branch_ids, leaf_ids) = _split_variables(msg.scenario_tree, collect(keys(var_map)) ) add_lagrange_terms(lb_sub, branch_ids) record.lb_subproblems[scen] = SubproblemRecord(lb_sub, branch_ids, leaf_ids, SubproblemCallback[] ) end return true end function process_message(msg::PenaltyInfo, record::WorkerRecord, output::RemoteChannel, )::Bool if !haskey(record.subproblems, msg.scen) error("Worker $(record.id) received penalty parameter values for scenario $(msg.scen). This worker was not assigned this scenario.") end sub = record.subproblems[msg.scen] add_ph_objective_terms(sub.problem, sub.branch_vars, msg.penalty) return true end function process_message(msg::Ping, record::WorkerRecord, output::RemoteChannel )::Bool put!(output, Ping()) return true end function process_message(msg::Solve, record::WorkerRecord, output::RemoteChannel )::Bool if !haskey(record.subproblems, msg.scen) error("Worker $(record.id) received solve command for scenario $(msg.scen). This worker was not assigned this scenario.") end sub = record.subproblems[msg.scen] update_ph_terms(sub.problem, msg.w_vals, msg.xhat_vals) _execute_subproblem_callbacks(sub, msg.niter, msg.scen) if record.warm_start warm_start(sub.problem) end start = time() sts = solve_subproblem(sub.problem) stop = time() var_vals = report_values(sub.problem, sub.branch_vars) put!(output, ReportBranch(msg.scen, sts, objective_value(sub.problem), stop - start, var_vals) ) return true end function process_message(msg::SolveLowerBound, record::WorkerRecord, output::RemoteChannel )::Bool if !haskey(record.lb_subproblems, msg.scen) error("Worker $(record.id) received lower-bound solve command for scenario $(msg.scen). This worker was not assigned this scenario.") end lb_sub = record.lb_subproblems[msg.scen] update_lagrange_terms(lb_sub.problem, msg.w_vals) if record.warm_start warm_start(lb_sub.problem) end start = time() sts = solve_subproblem(lb_sub.problem) stop = time() put!(output, ReportLowerBound(msg.scen, sts, objective_value(lb_sub.problem), stop - start) ) return true end function process_message(msg::ShutDown, record::WorkerRecord, output::RemoteChannel )::Bool for (s, sub) in pairs(record.subproblems) leaf_vals = report_values(sub.problem, sub.leaf_vars) put!(output, ReportLeaf(s, leaf_vals)) end return false end function process_message(msg::SubproblemAction, record::WorkerRecord, output::RemoteChannel )::Bool sub = record.subproblems[msg.scen].problem msg.action(sub, msg.args...; msg.kwargs...) return true end #### Internal Functions #### function _build_subproblems(output::RemoteChannel, record::WorkerRecord, scenarios::Set{ScenarioID}, scen_tree::ScenarioTree, create_subproblem::Function, create_subproblem_args::Tuple, create_subproblem_kwargs::NamedTuple, subproblem_callbacks::Vector{SubproblemCallback} )::Nothing for scen in scenarios # Create subproblem sub = create_subproblem(scen, create_subproblem_args...; create_subproblem_kwargs...) # Assign variable ids (scenario, stage, index) to variable names and send # that map to the master process -- master process expects names to match # for variables that have anticipativity constraints var_map = report_variable_info(sub, scen_tree) put!(output, VariableMap(scen, var_map)) # Break variables into branch and leaf (branch_ids, leaf_ids) = _split_variables(scen_tree, collect(keys(var_map))) # Save subproblem and relevant data record.subproblems[scen] = SubproblemRecord(sub, branch_ids, leaf_ids, subproblem_callbacks ) end return end function _execute_subproblem_callbacks(sub::SubproblemRecord, niter::Int, scen::ScenarioID )::Nothing for spcb in sub.subproblem_callbacks spcb.h(spcb.ext, sub.problem, niter, scen) end return end function _initial_solve(output::RemoteChannel, record::WorkerRecord )::Nothing for (scen, sub) in record.subproblems start = time() sts = solve_subproblem(sub.problem) stop = time() var_vals = report_values(sub.problem, sub.branch_vars) put!(output, ReportBranch(scen, sts, objective_value(sub.problem), stop - start, var_vals) ) end return end function _penalty_parameter_preprocess(output::RemoteChannel, record::WorkerRecord, r::Type{P}, ) where P <: AbstractPenaltyParameter if is_subproblem_dependent(r) for (scen, sub) in record.subproblems pen_map = report_penalty_info(sub.problem, sub.branch_vars, r) put!(output, PenaltyInfo(scen, pen_map)) end end return end function _split_variables(scen_tree::ScenarioTree, vars::Vector{VariableID}, )::NTuple{2,Vector{VariableID}} branch_vars = Vector{VariableID}() leaf_vars = Vector{VariableID}() for vid in vars if is_leaf(scen_tree, vid) push!(leaf_vars, vid) else push!(branch_vars, vid) end end return (branch_vars, leaf_vars) end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
4512
# Type containing information on workers. struct WorkerInf inputs::Dict{Int,RemoteChannel{Channel{Message}}} output::RemoteChannel{Channel{Message}} wait::Vector{Message} results::Dict{Int,Future} end function WorkerInf(inputs::Dict{Int,RemoteChannel{Channel{Message}}}, output::RemoteChannel{Channel{Message}}, results::Dict{Int,Future} ) where T return WorkerInf(inputs, output, Vector{Message}(), results) end function _abort(wi::WorkerInf)::Nothing for (wid, rc) in pairs(wi.inputs) put!(rc, Abort()) end while isready(wi.output) # Ensure that workers aren't blocked take!(wi.output) end return end function _check_wait(wi::WorkerInf, msg_type::Type{M} )::Union{Nothing,M} where M <: Message # println("Checking wait queue...") retval = nothing for (k,msg) in enumerate(wi.wait) if typeof(msg) <: msg_type retval = msg deleteat!(wi.wait, k) break end end return retval end function _is_running(wi::WorkerInf) return length(wi.results) > 0 end function _launch_workers(min_worker_size::Int, min_result_size::Int, )::WorkerInf worker_q_size = min_worker_size result_q_size = max(2*nworkers(), min_result_size) worker_results = RemoteChannel(()->Channel{Message}(result_q_size)) worker_qs = Dict{Int,RemoteChannel{Channel{Message}}}() futures = Dict{Int,Future}() @sync for wid in workers() @async begin worker_q = RemoteChannel(()->Channel{Message}(worker_q_size), wid) futures[wid] = remotecall(worker_loop, wid, wid, worker_q, worker_results) worker_qs[wid] = worker_q end end wi = WorkerInf(worker_qs, worker_results, futures) _monitor_workers(wi) return wi end function _monitor_workers(wi::WorkerInf)::Nothing # println("Checking worker status...") for (pid, f) in pairs(wi.results) if isready(f) # Whatever the return value, this worker is done and # we can stop checking on it delete!(wi.results, pid) delete!(wi.inputs, pid) try # Fetch on a remote process result will throw and error here # whereas fetch on a task requires that it is thrown. Hence # the try-catch AND the type check for an exception. e = fetch(f) if typeof(e) <: Int # Normal Exit -- do nothing elseif typeof(e) <: Exception throw(e) else error("Unexpected return code from worker: $e") end catch e _abort(wi) rethrow() finally ; end end end return end function _number_workers(wi::WorkerInf) return length(wi.results) end function _retrieve_message(wi::WorkerInf)::Message # println("Checking message queue...") while !isready(wi.output) && _is_running(wi) _monitor_workers(wi) yield() end msg = take!(wi.output) return msg end function _retrieve_message_type(wi::WorkerInf, msg_type::Type{M} )::M where M <: Message # Check if we have this type of message in the wait queue msg = _check_wait(wi, msg_type) while isnothing(msg) # Check get messages from the remote channel msg = _retrieve_message(wi) # If it's wrong put it on the wait queue for later and keep looking if !(typeof(msg) <: msg_type) push!(wi.wait, msg) msg = nothing end end return msg end function _send_message(wi::WorkerInf, wid::Int, msg::Message, ) # println("Sending message of type $(typeof(msg)) to worker $(wid)") put!(wi.inputs[wid], msg) return end function _shutdown(wi::WorkerInf) @sync for rchan in values(wi.inputs) @async put!(rchan, ShutDown()) end return end function _wait_for_shutdown(wi::WorkerInf)::Nothing while _is_running(wi) _monitor_workers(wi) yield() end return end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
7384
@everywhere function create_model(scenario_id::PH.ScenarioID; opt=()->Ipopt.Optimizer(), opt_args=(print_level=0,) ) model = JuMP.Model(opt) for (key,value) in pairs(opt_args) JuMP.set_optimizer_attribute(model, string(key), value) end scid = PH.value(scenario_id) c = [1.0, 10.0, 0.01] d = 7.0 a = 16.0 α = 1.0 β = 1.0 γ = 1.0 δ = 1.0 ϵ = 1.0 s1 = 8.0 s2 = 4.0 s11 = 9.0 s12 = 16.0 s21 = 5.0 s22 = 18.0 stage1 = JuMP.@variable(model, x[1:3] >= 0.0) JuMP.@constraint(model, x[3] <= 1.0) obj = zero(JuMP.GenericQuadExpr{Float64,JuMP.VariableRef}) JuMP.add_to_expression!(obj, sum(c.*x)) # Second stage stage2 = Vector{JuMP.VariableRef}() if scid < 2 vref = JuMP.@variable(model, y >= 0.0) JuMP.@constraint(model, α*sum(x) + β*y >= s1) JuMP.add_to_expression!(obj, d*y) else vref = JuMP.@variable(model, y >= 0.0) JuMP.@constraint(model, α*sum(x) + β*y >= s2) JuMP.add_to_expression!(obj, d*y) end push!(stage2, vref) # Third stage stage3 = Vector{JuMP.VariableRef}() if scid == 0 vref = JuMP.@variable(model, z[1:2]) JuMP.@constraint(model, ϵ*sum(x) + γ*y + δ*sum(z) == s11) JuMP.add_to_expression!(obj, a*sum(z[i]^2 for i in 1:2)) elseif scid == 1 vref = JuMP.@variable(model, z[1:2]) JuMP.@constraint(model, ϵ*sum(x) + γ*y + δ*sum(z) == s12) JuMP.add_to_expression!(obj, a*sum(z[i]^2 for i in 1:2)) elseif scid == 2 vref = JuMP.@variable(model, z[1:2]) JuMP.@constraint(model, ϵ*sum(x) + γ*y + δ*sum(z) == s21) JuMP.add_to_expression!(obj, a*sum(z[i]^2 for i in 1:2)) else vref = JuMP.@variable(model, z[1:2]) JuMP.@constraint(model, ϵ*sum(x) + γ*y + δ*sum(z) == s22) JuMP.add_to_expression!(obj, a*sum(z[i]^2 for i in 1:2)) end append!(stage3, vref) JuMP.@objective(model, Min, obj) vdict = Dict{PH.StageID, Vector{JuMP.VariableRef}}(PH.stid(1) => stage1, PH.stid(2) => stage2, PH.stid(3) => stage3, ) return JuMPSubproblem(model, scenario_id, vdict) end function build_scen_tree() probs = [0.5*0.75, 0.5*0.25, 0.5*0.75, 0.5*0.25] tree = PH.ScenarioTree() for k in 1:2 node2 = PH.add_node(tree, tree.root) for l in 1:2 PH.add_leaf(tree, node2, probs[(k-1)*2 + l]) end end return tree end function timeout_wait(t::Task, limit::Real=10, interval::Real=1) count = 0 success = false while true sleep(interval) count += 1 if istaskdone(t) success = true break elseif count >= limit break end end return success end function invert_map(my_map::Dict{A,B})::Dict{B,A} where {A,B} inv_map = Dict{B,A}() for (k,v) in pairs(my_map) inv_map[v] = k end @assert length(inv_map) == length(my_map) return inv_map end @everywhere function two_stage_model(scenario_id::PH.ScenarioID) model = JuMP.Model(()->Ipopt.Optimizer()) JuMP.set_optimizer_attribute(model, "print_level", 0) JuMP.set_optimizer_attribute(model, "tol", 1e-12) JuMP.set_optimizer_attribute(model, "acceptable_tol", 1e-12) scen = PH.value(scenario_id) ref = JuMP.@variable(model, 0.0 <= x <= 1000.0) stage1 = [ref] push!(stage1, JuMP.@variable(model, 0.0 <= u <= 1.0)) ref = JuMP.@variable(model, y >= 0.0) stage2 = [ref] val = scen == 0 ? 11.0 : 4.0 JuMP.@constraint(model, x + y + u == val) c_y = scen == 0 ? 1.5 : 2.0 JuMP.@objective(model, Min, 1.0*x + c_y * y) return PH.JuMPSubproblem(model, scenario_id, Dict(PH.stid(1) => stage1, PH.stid(2) => stage2) ) end if isdefined(Main, :Xpress) function two_stage_int(scenario_id::PH.ScenarioID) model = JuMP.Model(()->Xpress.Optimizer()) JuMP.set_optimizer_attribute(model, "OUTPUTLOG", 0) scen = PH.value(scenario_id) ref = JuMP.@variable(model, 4 <= k <= 10, Int) stage1 = [ref] ref = JuMP.@variable(model, y) stage2 = [ref] val = 2.0 * scen JuMP.@constraint(model, k + y == val) c_y = (scen % 2 == 0 ? 1.0 : 5.0) JuMP.@objective(model, Min, c_y * y^2 + 2.0*k) return PH.JuMPSubproblem(model, scenario_id, Dict(PH.stid(1) => stage1, PH.stid(2) => stage2) ) end end function build_var_map(n::Int, m1::Int, m2::Int) vmap = Dict{PH.ScenarioID, Dict{PH.VariableID, PH.VariableInfo}}() vval = Dict{PH.ScenarioID, Dict{PH.VariableID, Float64}}() for k in 1:n scid = PH.scid(k-1) vars = Dict{PH.VariableID, PH.VariableInfo}() vals = Dict{PH.VariableID, Float64}() # Stage 1 variables for j in 1:m1 vid = PH.VariableID(scid, PH.stid(1), PH.index(j + k - 1)) vars[vid] = PH.VariableInfo("a$j",false) # convert(Float64, j) vals[vid] = convert(Float64, j) end # Stage 2 variables for j in 1:m2 vid = PH.VariableID(scid, PH.stid(2), PH.index(j-1)) vars[vid] = PH.VariableInfo("b$j", false) # convert(Float64, k*j + n) vals[vid] = convert(Float64, k*j + n) end vmap[scid] = vars vval[scid] = vals end return (vmap, vval) end function fake_phdata(nv1::Int, nv2::Int; add_leaves=true) nscen = 2 st = two_stage_tree(nscen) (var_map, var_val) = build_var_map(nscen, nv1, nv2) phd = PH.PHData(PH.ScalarPenaltyParameter(1.0), st, Dict(1=>copy(PH.scenarios(st))), var_map, TimerOutputs.TimerOutput() ) for (scid, sinfo) in pairs(phd.scenario_map) for vid in keys(sinfo.branch_vars) xhid = PH.convert_to_xhat_id(phd, vid) sinfo.branch_vars[vid] = var_val[scid][vid] phd.xhat[xhid].value = var_val[scid][vid] end if add_leaves # Create entries for leaf variables. This is normally done at the end of the # solve call but since we aren't calling that here... for vid in keys(sinfo.leaf_vars) xhid = PH.convert_to_xhat_id(phd, vid) sinfo.leaf_vars[vid] = var_val[scid][vid] phd.xhat[xhid] = PH.HatVariable(var_val[scid][vid], vid, false) end end end return phd end function fake_worker_info(queue_size::Int=10) worker_results = RemoteChannel(()->Channel{PH.Message}(queue_size)) worker_queue = RemoteChannel(()->Channel{PH.Message}(queue_size)) return PH.WorkerInf(Dict(1=>worker_queue), worker_results, Dict(1=>Future()) ) end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
1313
using ProgressiveHedging const PH = ProgressiveHedging using Test using Distributed using Ipopt using JuMP using MathOptInterface const MOI = MathOptInterface using Suppressor using TimerOutputs macro optional_using(pkg) quote try using $pkg catch e if typeof(e) != ArgumentError rethrow(e) end end end end @optional_using(Xpress) include("common.jl") @testset "ProgressiveHedging" begin @testset "Scenario Tree" begin include("test_tree.jl") end @testset "Sanity Checks" begin include("test_sanity.jl") end @testset "Utils" begin include("test_utils.jl") end @testset "Subproblem" begin include("test_subproblem.jl") end @testset "Workers" begin include("test_worker.jl") end @testset "Penalty Parameters" begin include("test_penalty.jl") end @testset "Callbacks" begin include("test_callback.jl") end @testset "Setup" begin include("test_setup.jl") end @testset "Algorithm" begin include("test_algorithm.jl") end @testset "Distributed" begin include("test_distributed.jl") end @testset "Post Processing" begin include("test_post.jl") end end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
9860
r = PH.ScalarPenaltyParameter(25.0) atol = 1e-8 rtol = 1e-12 max_iter = 500 obj_val = 178.3537498401004 var_vals = Dict([ "x[1]_{0,1,2,3}" => 7.5625, "x[2]_{0,1,2,3}" => 0.0, "x[3]_{0,1,2,3}" => 1.0, "y_{0,1}" => 1.75, "y_{2,3}" => 0.0, "z[1]_{0}" => -0.65625, "z[2]_{0}" => -0.65625, "z[1]_{1}" => 2.84375, "z[2]_{1}" => 2.84375, "z[1]_{2}" => -1.78125, "z[2]_{2}" => -1.78125, "z[1]_{3}" => 4.71875, "z[2]_{3}" => 4.71875, ]) @testset "Solve Extensive" begin efm = PH.solve_extensive(build_scen_tree(), create_model, ()->Ipopt.Optimizer(); opt_args=(print_level=0,tol=1e-12) ) @test JuMP.num_variables(efm) == length(keys(var_vals)) cnum = 0 for (f,s) in JuMP.list_of_constraint_types(efm) cnum += JuMP.num_constraints(efm, f, s) end @test cnum == 12 @test JuMP.termination_status(efm) == MOI.LOCALLY_SOLVED @test isapprox(JuMP.objective_value(efm), obj_val) for var in JuMP.all_variables(efm) @test isapprox(JuMP.value(var), var_vals[JuMP.name(var)]) end struct FakeSubproblem <: AbstractSubproblem end fake_constructor(scen::Int) = FakeSubproblem() @test_throws(ProgressiveHedging.UnimplementedError, PH.solve_extensive(build_scen_tree(), fake_constructor, ()->Ipopt.Optimizer(), subproblem_type=FakeSubproblem) ) end @testset "Solve (Scalar)" begin (n, err, rerr, obj, soln, phd) = PH.solve(build_scen_tree(), create_model, r, opt=Ipopt.Optimizer, opt_args=(print_level=0,tol=1e-12), atol=atol, rtol=rtol, max_iter=max_iter, report=0, timing=false, warm_start=false) @test err < atol @test isapprox(obj, obj_val) @test n < max_iter for row in eachrow(soln) var = row[:variable] * "_{" * row[:scenarios] * "}" @test isapprox(row[:value], var_vals[var], atol=1e-7) end end @testset "Solve (Proportional)" begin prop_max_iter = 500 prop_atol = 1e-8 (n, err, rerr, obj, soln, phd) = PH.solve(PH.two_stage_tree(2), two_stage_model, PH.ProportionalPenaltyParameter(25.0), atol=prop_atol, rtol=1e-12, max_iter=prop_max_iter, report=0, timing=false, warm_start=false ) @test err < prop_atol @test isapprox(obj, 8.25, atol=1e-6) @test n < prop_max_iter for row in eachrow(soln) if row[:variable] == "x" @test isapprox(row[:value], 3.0) elseif row[:variable] == "u" @test isapprox(row[:value], 1.0) elseif row[:variable] == "y" if row[:scenarios] == "0" @test isapprox(row[:value], 7.0) else @test isapprox(row[:value], 0.0, atol=1e-8) end end end end @testset "Solve (SEP)" begin prop_max_iter = 500 prop_atol = 1e-8 (n, err, rerr, obj, soln, phd) = PH.solve(PH.two_stage_tree(2), two_stage_model, PH.SEPPenaltyParameter(), atol=prop_atol, rtol=1e-12, max_iter=prop_max_iter, report=0, timing=false, warm_start=false ) @test err < prop_atol @test isapprox(obj, 8.25, atol=1e-6) @test n < prop_max_iter for row in eachrow(soln) if row[:variable] == "x" @test isapprox(row[:value], 3.0) elseif row[:variable] == "u" @test isapprox(row[:value], 1.0) elseif row[:variable] == "y" if row[:scenarios] == "0" @test isapprox(row[:value], 7.0) else @test isapprox(row[:value], 0.0, atol=1e-8) end end end end @testset "Warm-start" begin (n, err, rerr, obj, soln, phd) = PH.solve(build_scen_tree(), create_model, r, opt=Ipopt.Optimizer, opt_args=(print_level=0,tol=1e-12), atol=atol, rtol=rtol, max_iter=max_iter, report=-5, timing=false, warm_start=true) @test err < atol @test isapprox(obj, obj_val) @test n < max_iter for row in eachrow(soln) var = row[:variable] * "_{" * row[:scenarios] * "}" @test isapprox(row[:value], var_vals[var], atol=1e-7) end end @testset "Max iteration termination" begin max_iter = 4 regex = r".*" @info "Ignore the following warning." (n, err, rerr, obj, soln, phd) = @test_warn(regex, PH.solve(build_scen_tree(), create_model, r, opt=Ipopt.Optimizer, opt_args=(print_level=0,tol=1e-12), atol=atol, rtol=rtol, max_iter=max_iter, report=0, timing=false) ) @test err > atol @test rerr > rtol @test n == max_iter end @testset "Relative tolerance termination" begin rtol = 1e-6 (n, err, rerr, obj, soln, phd) = PH.solve(build_scen_tree(), create_model, r, opt=Ipopt.Optimizer, opt_args=(print_level=0,tol=1e-12), atol=atol, rtol=rtol, max_iter=max_iter, report=0, timing=false, warm_start=true) # xmax = maximum(soln[soln[:,:stage] .!= 3,:value]) @test err > atol @test n < max_iter #@test err < rtol * xmax @test rerr < rtol end @testset "Lower Bound Algorithm" begin (n, err, rerr, obj, soln, phd) = PH.solve(PH.two_stage_tree(2), two_stage_model, PH.ScalarPenaltyParameter(2.0), atol=atol, rtol=rtol, max_iter=max_iter, report=0, lower_bound=5, timing=false, warm_start=false ) @test err < atol @test isapprox(obj, 8.25, atol=1e-6) @test n < max_iter lb_df = PH.lower_bounds(phd) for row in eachrow(lb_df) @test row[:bound] <= 8.25 end @test size(lb_df,1) == 12 @test isapprox(lb_df[size(lb_df,1), "absolute gap"], 0.0, atol=1e-7) @test isapprox(lb_df[size(lb_df,1), "relative gap"], 0.0, atol=(1e-7/8.25)) end @testset "Lower Bound Termination" begin gap_tol = 1e-3 (n, err, rerr, obj, soln, phd) = PH.solve(PH.two_stage_tree(2), two_stage_model, PH.ScalarPenaltyParameter(2.0), gap_tol=gap_tol, atol=atol, rtol=rtol, max_iter=max_iter, report=0, lower_bound=5, timing=false, warm_start=false ) lb_df = PH.lower_bounds(phd) @test err > atol @test rerr > rtol @test n < max_iter @test lb_df[size(lb_df,1), "relative gap"] < gap_tol end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
12818
macro cb_gen(name, num) fn = Symbol(name * "_" * string(num)) quote function $(esc(fn))(ext::Dict{Symbol,Any}, phd::PH.PHData, winfo::PH.WorkerInf, niter::Int )::Bool return true end end end function fake_init(ext::Dict{Symbol,Any}, phd::PHData) ext[:fake] = rand() + 1.0 return end @testset "Callback Utilities" begin @cb_gen("cb", 1) @cb_gen("cb", 2) @cb_gen("cb", 3) @cb_gen("cb", 4) @cb_gen("cb", 5) @cb_gen("cb", 6) my_cbs = [cb(cb_1), cb(cb_2, Dict{Symbol,Any}(:b=>"TESTING!")), cb(cb_3, fake_init), cb(cb_4, fake_init, Dict{Symbol,Any}(:d => "Still a test")), cb("Fifth CB", cb_5, Dict{Symbol,Any}(:e => "More of a test")), cb("Sixth CB", cb_6, fake_init, Dict{Symbol,Any}(:f => "This is only a test")), ] phd = fake_phdata(3,4) for (k,cb) in enumerate(my_cbs) PH.add_callback(phd, cb) if k == 1 @test isempty(cb.ext) @test cb.h === cb_1 elseif k == 2 @test cb.ext[:b] == "TESTING!" @test cb.h === cb_2 elseif k == 3 @test cb.ext[:fake] > 1.0 @test cb.h === cb_3 elseif k == 4 @test cb.ext[:d] == "Still a test" @test cb.ext[:fake] > 1.0 @test cb.h === cb_4 elseif k == 5 @test cb.name == "Fifth CB" @test cb.ext[:e] == "More of a test" @test cb.h === cb_5 else @test cb.name == "Sixth CB" @test cb.ext[:f] == "This is only a test" @test cb.ext[:fake] > 1.0 @test cb.h === cb_6 end end for cb in my_cbs @test cb === get_callback(phd, cb.name) @test cb.ext === get_callback_ext(phd, cb.name) end @test_throws ErrorException get_callback(phd, "'Tis but a flesh wound") end @testset "Callback Termination" begin function my_term_cb(ext::Dict{Symbol,Any}, phd::PH.PHData, winf::PH.WorkerInf, niter::Int )::Bool return niter < 5 end the_cb = cb(my_term_cb) io = IOBuffer() Base.show(io, the_cb) @test String(take!(io)) == "my_term_cb" (n, err, rerr, obj, soln, phd) = PH.solve(PH.two_stage_tree(2), two_stage_model, PH.ScalarPenaltyParameter(2.0), atol=1e-8, rtol=1e-12, max_iter=500, timing=false, warm_start=false, callbacks=[the_cb] ) @test err > 1e-8 @test rerr > 1e-12 @test n == 5 end @testset "Callback Subproblem" begin struct TestSubproblem <: PH.AbstractSubproblem scenario::PH.ScenarioID names::Dict{PH.VariableID,PH.VariableInfo} values::Dict{PH.VariableID,Float64} end function create_test(scen::PH.ScenarioID)::TestSubproblem return TestSubproblem(scen, Dict{PH.VariableID,PH.VariableInfo}(), Dict{PH.VariableID,Float64}()) end function PH.add_ph_objective_terms(ts::TestSubproblem, vids::Vector{PH.VariableID}, r::Union{Float64, Dict{VariableID,Float64}}, )::Nothing return end function PH.objective_value(ts::TestSubproblem)::Float64 return 0.0 end function PH.report_values(ts::TestSubproblem, vars::Vector{PH.VariableID}, )::Dict{PH.VariableID,Float64} vals = Dict{PH.VariableID,Float64}() for vid in vars vals[vid] = ts.values[vid] end return vals end function PH.report_variable_info(ts::TestSubproblem, st::ScenarioTree )::Dict{VariableID,PH.VariableInfo} for node in PH.scenario_nodes(st, ts.scenario) stid = PH.stage(node) stage = PH.value(stid) vid = PH.VariableID(ts.scenario, stid, PH.Index(0)) ts.names[vid] = PH.VariableInfo(string('a' + stage - 1), false) ts.values[vid] = rand() end return ts.names end function PH.solve_subproblem(ts::TestSubproblem)::MOI.TerminationStatusCode return MOI.OPTIMAL end function PH.update_ph_terms(ts::TestSubproblem, w_vals::Dict{PH.VariableID,Float64}, xhat_vals::Dict{VariableID,Float64} )::Nothing return end function to_apply(ts::TestSubproblem, set_values::Dict{VariableID,Float64}) for (vid, value) in pairs(set_values) ts.values[vid] = value end return end function my_test_cb(ext::Dict{Symbol,Any}, phd::PH.PHData, winf::PH.WorkerInf, niter::Int )::Bool if niter == 1 vid0 = PH.VariableID(PH.ScenarioID(0), PH.StageID(1), PH.Index(0)) val1 = PH.branch_value(phd, PH.ScenarioID(1), PH.StageID(1), PH.Index(0)) values = Dict(vid0 => val1) ext[:value] = val1 ext[:iter] = niter PH.apply_to_subproblem(to_apply, phd, winf, PH.ScenarioID(0), (values,) ) end return true end (n, err, rerr, obj, soln, phd) = PH.solve(PH.two_stage_tree(2), create_test, PH.ScalarPenaltyParameter(2.0), atol=1e-8, rtol=1e-12, max_iter=500, timing=false, warm_start=false, callbacks=[PH.Callback(my_test_cb)] ) @test err == 0.0 @test rerr == 0.0 @test obj == 0.0 @test n == 3 cb_ext = phd.callbacks[1].ext value = cb_ext[:value] @test PH.branch_value(phd, PH.ScenarioID(0), PH.StageID(1), PH.Index(0)) == value @test PH.branch_value(phd, PH.ScenarioID(1), PH.StageID(1), PH.Index(0)) == value @test cb_ext[:iter] == 1 end @testset "Variable Fixing Callback" begin phd = fake_phdata(3, 4; add_leaves=false) winf = fake_worker_info() nscen = length(PH.scenarios(phd)) lag = 2 PH.add_callback(phd, PH.variable_fixing(lag=lag)) phd.scenario_map[PH.scid(0)].branch_vars[PH.VariableID(PH.scid(0), PH.stid(1), PH.index(1))] = -1.0 PH.compute_and_save_xhat(phd) for niter in 1:(2*lag*nscen) PH._execute_callbacks(phd, winf, niter) end cb_ext = phd.callbacks[1].ext for (xhid, xhat) in pairs(PH.consensus_variables(phd)) if PH.name(phd, xhid) == "a1" @test !(xhid in cb_ext[:fixed]) else @test xhid in cb_ext[:fixed] end end msg_count = 0 while isready(winf.inputs[1]) msg = take!(winf.inputs[1]) msg_count += 1 @test typeof(msg) == PH.SubproblemAction @test string(msg.action) == "fix_variables" s = msg.scen value_dict = msg.args[1] for (vid, value) in pairs(value_dict) xhid = PH.convert_to_xhat_id(phd, vid) xhat = phd.xhat[xhid] @test value == PH.value(xhat) @test xhid in cb_ext[:fixed] end end @test msg_count == nscen end @testset "Mean Deviation Callback" begin phd = fake_phdata(3, 4; add_leaves=false) winf = fake_worker_info() nscen = length(PH.scenarios(phd)) tol = 1e-8 PH.add_callback(phd, PH.mean_deviation(tol=tol, save_deviations=true)) PH.compute_and_save_xhat(phd) user_continue = PH._execute_callbacks(phd, winf, 1) @test user_continue == false md_ext = PH.get_callback_ext(phd, "mean_deviation") @test isapprox(md_ext[:deviations][1], 0.0, atol=1e-8) @test md_ext[:tol] == tol phd.scenario_map[PH.scid(0)].branch_vars[PH.VariableID(PH.scid(0), PH.stid(1), PH.index(1))] = 4.0 PH.compute_and_save_xhat(phd) user_continue = PH._execute_callbacks(phd, winf, 2) @test user_continue == true @test isapprox(md_ext[:deviations][2], 0.6) phd = fake_phdata(3, 4; add_leaves=false) phd.scenario_map[PH.scid(0)].branch_vars[PH.VariableID(PH.scid(0), PH.stid(1), PH.index(1))] = 4.0 PH.add_callback(phd, PH.mean_deviation(tol=1.0, save_deviations=false)) PH.compute_and_save_xhat(phd) user_continue = PH._execute_callbacks(phd, winf, 1) @test user_continue == false end macro spcb_gen(name, num) fn = Symbol(name * "_" * string(num)) quote function $(esc(fn))(ext::Dict{Symbol,Any}, sp::T, niter::Int, scid::PH.ScenarioID )::Bool where T <: AbstractSubproblem return end end end @testset "Subproblem Callback Utilities" begin @spcb_gen("spcb", 1) @spcb_gen("spcb", 2) @spcb_gen("spcb", 3) my_spcbs = [spcb(spcb_1), spcb(spcb_2, Dict{Symbol,Any}(:b=>"TESTING!")), spcb("Third CB", spcb_3, Dict{Symbol,Any}(:c => "This is a test.", :d => "This is only a test.") ), ] for (k,spcb) in enumerate(my_spcbs) io = IOBuffer() Base.show(io, spcb) @test String(take!(io)) == spcb.name if k == 1 @test isempty(spcb.ext) @test spcb.h === spcb_1 elseif k == 2 @test length(spcb.ext) == 1 @test spcb.ext[:b] == "TESTING!" @test spcb.h === spcb_2 else @test length(spcb.ext) == 2 @test spcb.ext[:c] == "This is a test." @test spcb.ext[:d] == "This is only a test." @test spcb.name == "Third CB" @test spcb.h === spcb_3 end end end @testset "Subproblem Callback" begin function my_subproblem_callback(ext::Dict{Symbol,Any}, sp::JuMPSubproblem, niter::Int, scenario_id::ScenarioID ) if niter == 1 && PH.value(scenario_id) == 0 ext[:check] += 1 sp.model.ext[:check] = 5 end if niter == 2 && PH.value(scenario_id) == 0 ext[:sp_check] = sp.model.ext[:check] end if niter == 3 for vref in values(sp.vars) if JuMP.name(vref) == "u" JuMP.@constraint(sp.model, vref == 1.0) elseif JuMP.name(vref) == "x" JuMP.@constraint(sp.model, vref == 3.0) end end end return end ext = Dict{Symbol,Any}(:check => 0) my_spcb = SubproblemCallback(my_subproblem_callback, ext) (n, err, rerr, obj, soln, phd) = PH.solve(PH.two_stage_tree(2), two_stage_model, PH.ScalarPenaltyParameter(1.0), atol=1e-8, rtol=1e-8, max_iter=10, report=0, timing=false, warm_start=false, subproblem_callbacks=[my_spcb] ) @test ext[:check] == 1 @test ext[:sp_check] == 5 @test n == 4 @test err < 1e-8 end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
5257
r = PH.ScalarPenaltyParameter(25.0) atol = 1e-8 rtol = 1e-12 max_iter = 500 obj_val = 178.3537498401004 var_vals = Dict([ "x[1]_{0,1,2,3}" => 7.5625, "x[2]_{0,1,2,3}" => 0.0, "x[3]_{0,1,2,3}" => 1.0, "y_{0,1}" => 1.75, "y_{2,3}" => 0.0, "z[1]_{0}" => -0.65625, "z[2]_{0}" => -0.65625, "z[1]_{1}" => 2.84375, "z[2]_{1}" => 2.84375, "z[1]_{2}" => -1.78125, "z[2]_{2}" => -1.78125, "z[1]_{3}" => 4.71875, "z[2]_{3}" => 4.71875, ]) # Setup distributed stuff nw = 2 diff = nw - nworkers() diff > 0 && Distributed.addprocs(nw) @assert Distributed.nworkers() == nw @everywhere using Pkg @everywhere Pkg.activate(@__DIR__) @everywhere using ProgressiveHedging @everywhere const PH = ProgressiveHedging @everywhere using Ipopt @everywhere using JuMP include("common.jl") @testset "Error Handling" begin ch_size = 10 worker_inf = PH._launch_workers(ch_size, ch_size) @everywhere struct MakeWorkerError <: PH.Message end PH._send_message(worker_inf, first(workers()), MakeWorkerError()) my_task = @async begin PH._wait_for_shutdown(worker_inf) end if timeout_wait(my_task) @test istaskfailed(my_task) @test typeof(my_task.exception) <: RemoteException else error("Timed out on test") end my_task = @async begin PH._wait_for_shutdown(worker_inf) return PH._is_running(worker_inf) end if timeout_wait(my_task) @test !fetch(my_task) else error("Timed out on test") end end @testset "Solve" begin # Solve the problem (n, err, rerr, obj, soln, phd) = PH.solve(build_scen_tree(), create_model, r, atol=atol, rtol=rtol, opt=Ipopt.Optimizer, opt_args=(print_level=0,tol=1e-12), max_iter=max_iter, report=0, timing=false, warm_start=true) @test err < atol @test isapprox(obj, obj_val) @test n < max_iter for row in eachrow(soln) var = row[:variable] * "_{" * row[:scenarios] * "}" @test isapprox(row[:value], var_vals[var], atol=1e-7) end end @testset "User Specified Workers" begin st = build_scen_tree() worker_assignments = Dict(k=>Set{PH.ScenarioID}() for k in 2:3) for s in PH.scenarios(st) if PH.value(s) < 3 push!(worker_assignments[2], s) else push!(worker_assignments[3], s) end end # Solve the problem (n, err, rerr, obj, soln, phd) = PH.solve(build_scen_tree(), create_model, r; atol=atol, rtol=rtol, opt=Ipopt.Optimizer, opt_args=(print_level=0,tol=1e-12), max_iter=max_iter, report=0, worker_assignments=worker_assignments, timing=false, warm_start=true) @test err < atol @test isapprox(obj, obj_val) @test n < max_iter for row in eachrow(soln) var = row[:variable] * "_{" * row[:scenarios] * "}" @test isapprox(row[:value], var_vals[var], atol=1e-7) end for s in PH.scenarios(phd) if PH.value(s) < 3 @test phd.scenario_map[s].pid == 2 else @test phd.scenario_map[s].pid == 3 end end end @testset "Lower Bound Algorithm" begin (n, err, rerr, obj, soln, phd) = PH.solve(PH.two_stage_tree(2), two_stage_model, PH.ScalarPenaltyParameter(2.0), atol=atol, rtol=rtol, max_iter=max_iter, report=0, lower_bound=5, timing=false, warm_start=false ) @test err < atol @test isapprox(obj, 8.25, atol=1e-6) @test n < max_iter lb_df = PH.lower_bounds(phd) for row in eachrow(lb_df) @test row[:bound] <= 8.25 end @test size(lb_df,1) == 12 @test isapprox(lb_df[size(lb_df,1), "absolute gap"], 0.0, atol=1e-7) @test isapprox(lb_df[size(lb_df,1), "relative gap"], 0.0, atol=(1e-7/8.25)) end # Tear down distrbuted stuff Distributed.rmprocs(Distributed.workers()) @assert Distributed.nprocs() == 1
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
6627
@testset "Penalty Parameter Interface" begin struct Fake <: PH.AbstractPenaltyParameter end fake = Fake() xhid = PH.XhatID(PH.NodeID(0), PH.Index(0)) phd = fake_phdata(3, 4; add_leaves=false) @test_throws PH.UnimplementedError PH.get_penalty_value(fake) @test_throws PH.UnimplementedError PH.get_penalty_value(fake, xhid) @test_throws PH.UnimplementedError PH.is_initial_value_dependent(Fake) @test_throws PH.UnimplementedError PH.is_subproblem_dependent(Fake) @test_throws PH.UnimplementedError PH.is_variable_dependent(Fake) @test_throws PH.UnimplementedError PH.penalty_map(fake) @test_throws PH.UnimplementedError PH.process_penalty_initial_value(fake, phd) @test_throws PH.UnimplementedError PH.process_penalty_subproblem(fake, phd, PH.scid(0), Dict{PH.VariableID, Float64}() ) end @testset "Scalar Penalty" begin @test PH.is_initial_value_dependent(PH.ScalarPenaltyParameter) == false @test PH.is_subproblem_dependent(PH.ScalarPenaltyParameter) == false @test PH.is_variable_dependent(PH.ScalarPenaltyParameter) == false rflt = 10.0*rand() r = PH.ScalarPenaltyParameter(rflt) @test PH.get_penalty_value(r) == rflt @test PH.get_penalty_value(r, PH.XhatID(PH.NodeID(0), PH.Index(0))) == rflt end @testset "Proportional Penalty" begin @test PH.is_initial_value_dependent(PH.ProportionalPenaltyParameter) == false @test PH.is_subproblem_dependent(PH.ProportionalPenaltyParameter) == true @test PH.is_variable_dependent(PH.ProportionalPenaltyParameter) == true N = 2 st = PH.two_stage_tree(N) var_map = Dict{PH.ScenarioID,Dict{PH.VariableID,PH.VariableInfo}}() coef_map = Dict{Int,Dict{PH.VariableID,Float64}}() for s in 0:(N-1) js = two_stage_model(PH.scid(s)) svm = PH.report_variable_info(js, st) var_map[PH.scid(s)] = svm (br_vars, lf_vars) = PH._split_variables(st, collect(keys(svm))) coef_map[s] = PH.report_penalty_info(js, br_vars, PH.ProportionalPenaltyParameter ) end c_rho = 10.0 * (rand() + 1e-12) # Avoid the possibility of c_rho == 0.0 phd = PH.PHData(PH.ProportionalPenaltyParameter(c_rho), st, Dict(1 => Set([PH.scid(0), PH.scid(1)])), var_map, TimerOutputs.TimerOutput() ) for s in 0:(N-1) PH.process_penalty_subproblem(phd.r, phd, PH.scid(s), coef_map[s]) end for (xhid, rho) in pairs(phd.r.penalties) @test st.tree_map[xhid.node].stage == PH.stid(1) @test isapprox(rho, c_rho) || isapprox(rho, phd.r.constant) end end @testset "SEP Penalty" begin @test PH.is_initial_value_dependent(PH.SEPPenaltyParameter) == true @test PH.is_subproblem_dependent(PH.SEPPenaltyParameter) == true @test PH.is_variable_dependent(PH.SEPPenaltyParameter) == true N = 2 st = PH.two_stage_tree(N) var_map = Dict{PH.ScenarioID,Dict{PH.VariableID,PH.VariableInfo}}() var_vals = Dict{Int,Dict{PH.VariableID,Float64}}() coef_map = Dict{Int,Dict{PH.VariableID,Float64}}() for s in 0:(N-1) js = two_stage_model(PH.scid(s)) svm = PH.report_variable_info(js, st) var_map[PH.scid(s)] = svm (br_vars, lf_vars) = PH._split_variables(st, collect(keys(svm))) PH.solve_subproblem(js) var_vals[s] = PH.report_values(js, collect(keys(svm))) coef_map[s] = PH.report_penalty_info(js, br_vars, PH.SEPPenaltyParameter ) end phd = PH.PHData(PH.SEPPenaltyParameter(), st, Dict(1 => Set([PH.scid(0), PH.scid(1)])), var_map, TimerOutputs.TimerOutput() ) for s in 0:(N-1) PH._copy_values(phd.scenario_map[PH.scid(s)].branch_vars, var_vals[s]) PH.process_penalty_subproblem(phd.r, phd, PH.scid(s), coef_map[s]) end PH.compute_and_save_xhat(phd) PH.process_penalty_initial_value(phd.r, phd) value = 0.5 * (10.0 + 3.0) value = 0.5 * (10.0 - value) + 0.5 * (value - 3.0) rho_val = 1.0 / value for (xhid, rho) in pairs(phd.r.penalties) @test st.tree_map[xhid.node].stage == PH.stid(1) @test isapprox(rho, rho_val) || isapprox(rho, phd.r.default) end if isdefined(Main, :Xpress) N = 8 st = PH.two_stage_tree(N) var_map = Dict{PH.ScenarioID,Dict{PH.VariableID,PH.VariableInfo}}() var_vals = Dict{Int,Dict{PH.VariableID,Float64}}() coef_map = Dict{Int,Dict{PH.VariableID,Float64}}() for s in 0:(N-1) js = two_stage_int(PH.scid(s)) svm = PH.report_variable_info(js, st) var_map[PH.scid(s)] = svm (br_vars, lf_vars) = PH._split_variables(st, collect(keys(svm))) PH.solve_subproblem(js) var_vals[s] = PH.report_values(js, collect(keys(svm))) coef_map[s] = PH.report_penalty_info(js, br_vars, PH.SEPPenaltyParameter ) end phd = PH.PHData(PH.SEPPenaltyParameter(), st, Dict(1 => Set([PH.scid(s) for s in 0:(N-1)])), var_map, TimerOutputs.TimerOutput() ) for s in 0:(N-1) PH._copy_values(phd.scenario_map[PH.scid(s)].branch_vars, var_vals[s]) PH.process_penalty_subproblem(phd.r, phd, PH.scid(s), coef_map[s]) end PH.compute_and_save_xhat(phd) PH.process_penalty_initial_value(phd.r, phd) value = (10 - 4 + 1) rho_val = 2.0 / value for (xhid, rho) in pairs(phd.r.penalties) @test st.tree_map[xhid.node].stage == PH.stid(1) @test isapprox(rho, rho_val) end else println("Skipping SEP integer setting tests.") end end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
7223
atol = 1e-8 rtol = 1e-16 max_iter = 500 r = PH.ScalarPenaltyParameter(25.0) @testset "Residuals" begin (n, err, rerr, obj, soln, phd) = PH.solve(build_scen_tree(), create_model, r, opt=Ipopt.Optimizer, opt_args=(print_level=0,tol=1e-12), atol=atol, rtol=rtol, max_iter=max_iter, report=0, save_residuals=1, timing=false, warm_start=false) res_df = residuals(phd) @test size(res_df,1) == n + 1 rid = n + 1 @test res_df[rid, :iteration] == n @test res_df[rid, :absolute] == err @test res_df[rid, :relative] == rerr end @testset "Iterates" begin (n, err, rerr, obj, soln, phd) = PH.solve(build_scen_tree(), create_model, r, opt=Ipopt.Optimizer, opt_args=(print_level=0,tol=1e-12), atol=atol, rtol=rtol, max_iter=max_iter, report=0, save_iterates=1, timing=false, warm_start=false) rid = n + 1 xhat_df = retrieve_xhat_history(phd) @test size(xhat_df,1) == n + 1 @test xhat_df[rid, :iteration] == n for (k,var) in enumerate(soln[:,:variable]) if soln[k,:stage] < 3 vname = var * "_" * soln[k,:scenarios] @test xhat_df[rid, vname] == soln[k, :value] end end x_hist_df = retrieve_no_hat_history(phd) x_df = retrieve_no_hats(phd) @test size(x_hist_df,1) == n + 1 @test x_hist_df[rid, :iteration] == n for (k,var) in enumerate(x_df[:,:variable]) if x_df[k,:stage] < 3 vname = var * "_" * string(x_df[k,:scenario]) @test x_hist_df[rid, vname] == x_df[k,:value] end end w_hist_df = retrieve_w_history(phd) w_df = retrieve_w(phd) @test size(w_hist_df,1) == n + 1 @test w_hist_df[rid, :iteration] == n for (k,var) in enumerate(w_df[:,:variable]) vname = var * "_" * string(w_df[k,:scenario]) @test w_hist_df[rid, vname] == w_df[k,:value] end end @testset "Reporting" begin global n, err, rerr, obj, soln, phd reports = @capture_out((n, err, rerr, obj, soln, phd) = PH.solve(build_scen_tree(), create_model, r, opt=Ipopt.Optimizer, opt_args=(print_level=0, tol=1e-12), atol=atol, rtol=rtol, max_iter=max_iter, report=1, lower_bound=1, save_residuals=1, timing=false, warm_start=false) ) report_rex = r"Iter:\s*(\d+)\s*AbsR:\s*(\d\.\d+e[+-]\d+)\s*RelR:\s*(\d\.\d+e[+-]\d+)\s*Xhat:\s*(\d\.\d+e[+-]\d+)\s*X:\s*(\d\.\d+e[+-]\d+)" bound_rex = r"Iter:\s*(\d+)\s*Bound:\s*(-?\d\.\d+e[+-]\d+)\s*Abs Gap:\s*(\d\.\d+e[+-]\d+)\s*Rel Gap:\s*((\d)+\.\d+(e[+-]\d+)?)" res_df = residuals(phd) lb_df = lower_bounds(phd) N = 5 # number of consensus variables nreps = 0 nbds = 0 for line in split(reports,"\n") if occursin(report_rex, line) nreps += 1 if nreps == Int(floor(n/2)) m = match(report_rex, line) iter = parse(Int, m.captures[1]) abs = parse(Float64, m.captures[2]) @test isapprox(res_df[iter + 1, :absolute], abs, rtol=1e-6) rel = parse(Float64, m.captures[3]) @test isapprox(res_df[iter + 1, :relative], rel, rtol=1e-6) xhat = parse(Float64, m.captures[4]) @test isapprox(res_df[iter + 1, :xhat_sq], xhat^2 * N, rtol=1e-6) x = parse(Float64, m.captures[5]) @test isapprox(res_df[iter + 1, :x_sq], x^2 * N, rtol=1e-6) end elseif occursin(bound_rex, line) nbds += 1 if nbds == Int(floor(n/2)) m = match(bound_rex, line) iter = parse(Int, m.captures[1]) bound = parse(Float64, m.captures[2]) @test isapprox(lb_df[iter + 1, "bound"], bound, rtol=1e-3) abs = parse(Float64, m.captures[3]) @test isapprox(lb_df[iter + 1, "absolute gap"], abs, rtol=1e-3) rel = parse(Float64, m.captures[4]) @test isapprox(lb_df[iter + 1, "relative gap"], rel, rtol=1e-3) end end end @test nreps == n + 1 @test nbds == n + 1 end @testset "Timing" begin global n, err, rerr, obj, soln, phd reports = @capture_out((n, err, rerr, obj, soln, phd) = PH.solve(build_scen_tree(), create_model, r, opt=Ipopt.Optimizer, opt_args=(print_level=0, tol=1e-12), atol=atol, rtol=rtol, max_iter=max_iter, report=1, save_residuals=1, timing=false, warm_start=false) ) @test length(reports) > 1 end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
1204
@testset "Invalid Scenario Tree Checks" begin st = PH.ScenarioTree() PH.add_node(st, root(st)) PH.add_node(st, root(st)) @test_throws(ErrorException, PH.solve_extensive(st, two_stage_model, ()->Ipopt.Optimizer()), ) @test_throws(ErrorException, PH.solve(st, two_stage_model, PH.ScalarPenaltyParameter(2.0)) ) end @testset "Probability Checks" begin st = PH.ScenarioTree() PH.add_leaf(st, root(st), 0.25) PH.add_leaf(st, root(st), 0.5) @test_throws(ErrorException, PH.solve_extensive(st, two_stage_model, ()->Ipopt.Optimizer()) ) @test_throws(ErrorException, PH.solve(st, two_stage_model, PH.ScalarPenaltyParameter(2.0)) ) st = PH.ScenarioTree() PH.add_leaf(st, root(st), 0.25) PH.add_leaf(st, root(st), 0.5) PH.add_leaf(st, root(st), 0.5) @test_throws(ErrorException, PH.solve_extensive(st, two_stage_model, ()->Ipopt.Optimizer()) ) @test_throws(ErrorException, PH.solve(st, two_stage_model, PH.ScalarPenaltyParameter(2.0)) ) end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
20618
@testset "Initialization" begin @testset "Split Variables" begin st = build_scen_tree() js = create_model(PH.scid(0)) vid_name_map = PH.report_variable_info(js, st) (branch_ids, leaf_ids) = PH._split_variables(st, collect(keys(vid_name_map))) for br_vid in branch_ids vname = vid_name_map[br_vid].name @test (vname == "y") || occursin("x", vname) if vname == "y" @test br_vid.stage == PH.stid(2) else @test br_vid.stage == PH.stid(1) end end for lf_vid in leaf_ids vname = vid_name_map[lf_vid].name @test occursin("z", vname) @test lf_vid.stage == PH.stid(3) end end @testset "Build Subproblems" begin st = build_scen_tree() wr = PH.WorkerRecord(myid()) rc = RemoteChannel(()->Channel(2*length(PH.scenarios(st))), myid()) PH._build_subproblems(rc, wr, PH.scenarios(st), st, create_model, (), NamedTuple(), SubproblemCallback[] ) for (scid, sub) in pairs(wr.subproblems) @test length(JuMP.all_variables(sub.problem.model)) == 6 ncons = 0 for (ftype,stype) in JuMP.list_of_constraint_types(sub.problem.model) ncons += JuMP.num_constraints(sub.problem.model, ftype, stype) end @test ncons == 7 end count = 0 my_var_map = Dict{PH.VariableID,PH.VariableInfo}() while isready(rc) count += 1 msg = take!(rc) @test typeof(msg) <: PH.VariableMap merge!(my_var_map, msg.var_info) for (vid,vinfo) in pairs(msg.var_info) @test vid.scenario == msg.scen end end @test length(my_var_map) == 24 end @testset "Initialize Subproblems (Scalar)" begin st = build_scen_tree() sp_map = Dict(1 => Set([PH.ScenarioID(0), PH.ScenarioID(1), PH.ScenarioID(2)]), 2 => Set([PH.ScenarioID(3)]) ) worker_input_queues = Dict(1 => RemoteChannel(()->Channel{PH.Message}(10), myid()), 2 => RemoteChannel(()->Channel{PH.Message}(10), myid()) ) worker_output_queue = RemoteChannel(()->Channel{PH.Message}(10), myid()) futures = Dict(1 => remotecall(PH.worker_loop, myid(), 1, worker_input_queues[1], worker_output_queue), 2 => remotecall(PH.worker_loop, myid(), 2, worker_input_queues[2], worker_output_queue), ) wi = PH.WorkerInf(worker_input_queues, worker_output_queue, futures) my_task = @async begin PH._initialize_subproblems(sp_map, wi, st, create_model, (), PH.ScalarPenaltyParameter(1.0), false, SubproblemCallback[]) end if timeout_wait(my_task, 90) && !istaskfailed(my_task) var_map = fetch(my_task) for scen in PH.scenarios(st) for (vid, vinfo) in var_map[scen] vname = vinfo.name @test vid.scenario == scen if vid.stage == PH.stid(1) @test occursin("x", vname) elseif vid.stage == PH.stid(2) @test vname == "y" elseif vid.stage == PH.stid(3) @test occursin("z", vname) else stage_int = PH.value(vid.stage) error("Stage $(stage_int)! There is no stage $(stage_int)!!") end end end elseif istaskfailed(my_task) throw(my_task.exception) else error("Test timed out") end phd = PH.PHData(PH.ScalarPenaltyParameter(1.0), st, sp_map, var_map, TimerOutputs.TimerOutput() ) for (xhid, xhat) in pairs(phd.xhat) vname = phd.variable_data[first(xhat.vars)].name for vid in xhat.vars @test xhid == phd.variable_data[vid].xhat_id @test vname == phd.variable_data[vid].name end end for (scen, sinfo) in phd.scenario_map for vid in keys(sinfo.branch_vars) if occursin("x", phd.variable_data[vid].name) @test vid.stage == PH.stid(1) else @test vid.stage == PH.stid(2) end end for vid in keys(sinfo.leaf_vars) @test vid.stage == PH.stid(3) end end my_task = @async begin count = 0 messages = Vector{PH.Message}() while count < length(PH.scenarios(st)) msg = PH._retrieve_message_type(wi, PH.ReportBranch) push!(messages, msg) count += 1 end return messages end if timeout_wait(my_task, 90) && !istaskfailed(my_task) msgs = fetch(my_task) @test length(msgs) == length(PH.scenarios(st)) msg_from_scen = Set{PH.ScenarioID}() for msg in msgs scen = msg.scen push!(msg_from_scen, scen) sinfo = phd.scenario_map[scen] @test keys(sinfo.branch_vars) == keys(msg.vals) @test (msg.sts == MOI.OPTIMAL || msg.sts == MOI.LOCALLY_SOLVED || msg.sts == MOI.ALMOST_LOCALLY_SOLVED ) put!(wi.output, msg) end @test msg_from_scen == PH.scenarios(st) elseif istaskfailed(my_task) throw(my_task.exception) else error("Test timed out") end my_task = @async PH._set_initial_values(phd, wi) if timeout_wait(my_task, 90) && !istaskfailed(my_task) @test fetch(my_task) >= 0.0 elseif istaskfailed(my_task) throw(my_task.exception) else error("Test timedout") end my_task = @async PH._set_penalty_parameter(phd, wi) if timeout_wait(my_task, 90) && !istaskfailed(my_task) @test fetch(my_task) >= 0.0 elseif istaskfailed(my_task) throw(my_task.exception) else error("Test timedout") end PH._shutdown(wi) PH._wait_for_shutdown(wi) end @testset "Initialize Subproblems (Proportional)" begin st = build_scen_tree() sp_map = Dict(1 => Set([PH.ScenarioID(0), PH.ScenarioID(1), PH.ScenarioID(2)]), 2 => Set([PH.ScenarioID(3)]) ) worker_input_queues = Dict(1 => RemoteChannel(()->Channel{PH.Message}(10), myid()), 2 => RemoteChannel(()->Channel{PH.Message}(10), myid()) ) worker_output_queue = RemoteChannel(()->Channel{PH.Message}(10), myid()) futures = Dict(1 => remotecall(PH.worker_loop, myid(), 1, worker_input_queues[1], worker_output_queue), 2 => remotecall(PH.worker_loop, myid(), 2, worker_input_queues[2], worker_output_queue), ) wi = PH.WorkerInf(worker_input_queues, worker_output_queue, futures) my_task = @async begin PH._initialize_subproblems(sp_map, wi, st, create_model, (), PH.ProportionalPenaltyParameter(1.0), false, SubproblemCallback[]) end if timeout_wait(my_task, 90) && !istaskfailed(my_task) var_map = fetch(my_task) for scen in PH.scenarios(st) for (vid, vinfo) in var_map[scen] vname = vinfo.name @test vid.scenario == scen if vid.stage == PH.stid(1) @test occursin("x", vname) elseif vid.stage == PH.stid(2) @test vname == "y" elseif vid.stage == PH.stid(3) @test occursin("z", vname) else stage_int = PH.value(vid.stage) error("Stage $(stage_int)! There is no stage $(stage_int)!!") end end end elseif istaskfailed(my_task) throw(my_task.exception) else error("Test timed out") end phd = PH.PHData(PH.ProportionalPenaltyParameter(1.0), st, sp_map, var_map, TimerOutputs.TimerOutput() ) for (xhid, xhat) in pairs(phd.xhat) vname = phd.variable_data[first(xhat.vars)].name for vid in xhat.vars @test xhid == phd.variable_data[vid].xhat_id @test vname == phd.variable_data[vid].name end end for (scen, sinfo) in phd.scenario_map for vid in keys(sinfo.branch_vars) if occursin("x", phd.variable_data[vid].name) @test vid.stage == PH.stid(1) else @test vid.stage == PH.stid(2) end end for vid in keys(sinfo.leaf_vars) @test vid.stage == PH.stid(3) end end my_task = @async begin messages = Vector{PH.Message}() count = 0 while count < 2*length(PH.scenarios(st)) msg = PH._retrieve_message_type(wi, Union{PH.ReportBranch,PH.PenaltyInfo}) push!(messages, msg) count += 1 end return messages end if timeout_wait(my_task, 90) && !istaskfailed(my_task) msgs = fetch(my_task) @test length(msgs) == 2 * length(PH.scenarios(st)) iv_msg_from_scen = Set{PH.ScenarioID}() pp_msg_from_scen = Set{PH.ScenarioID}() for msg in msgs scen = msg.scen sinfo = phd.scenario_map[scen] if typeof(msg) <: PH.ReportBranch push!(iv_msg_from_scen, scen) @test (msg.sts == MOI.OPTIMAL || msg.sts == MOI.LOCALLY_SOLVED || msg.sts == MOI.ALMOST_LOCALLY_SOLVED ) @test keys(sinfo.branch_vars) == keys(msg.vals) elseif typeof(msg) <: PH.PenaltyInfo push!(pp_msg_from_scen, scen) @test keys(sinfo.branch_vars) == keys(msg.penalty) else error("Unexpected message of type $(typeof(msg))") end put!(wi.output, msg) end @test iv_msg_from_scen == PH.scenarios(st) @test pp_msg_from_scen == PH.scenarios(st) elseif istaskfailed(my_task) throw(my_task.exception) else error("Test timed out") end my_task = @async PH._set_initial_values(phd, wi) if timeout_wait(my_task, 90) && !istaskfailed(my_task) @test fetch(my_task) >= 0.0 elseif istaskfailed(my_task) throw(my_task.exception) else error("Test timedout") end my_task = @async PH._set_penalty_parameter(phd, wi) if timeout_wait(my_task, 90) && !istaskfailed(my_task) @test fetch(my_task) >= 0.0 elseif istaskfailed(my_task) throw(my_task.exception) else error("Test timedout") end PH._shutdown(wi) PH._wait_for_shutdown(wi) end @testset "Initialize Subproblems (SEP)" begin st = build_scen_tree() sp_map = Dict(1 => Set([PH.ScenarioID(0), PH.ScenarioID(1), PH.ScenarioID(2)]), 2 => Set([PH.ScenarioID(3)]) ) worker_input_queues = Dict(1 => RemoteChannel(()->Channel{PH.Message}(10), myid()), 2 => RemoteChannel(()->Channel{PH.Message}(10), myid()) ) worker_output_queue = RemoteChannel(()->Channel{PH.Message}(10), myid()) futures = Dict(1 => remotecall(PH.worker_loop, myid(), 1, worker_input_queues[1], worker_output_queue), 2 => remotecall(PH.worker_loop, myid(), 2, worker_input_queues[2], worker_output_queue), ) wi = PH.WorkerInf(worker_input_queues, worker_output_queue, futures) my_task = @async begin PH._initialize_subproblems(sp_map, wi, st, create_model, (), PH.SEPPenaltyParameter(), false, SubproblemCallback[]) end if timeout_wait(my_task, 90) && !istaskfailed(my_task) var_map = fetch(my_task) for scen in PH.scenarios(st) for (vid, vinfo) in var_map[scen] vname = vinfo.name @test vid.scenario == scen if vid.stage == PH.stid(1) @test occursin("x", vname) elseif vid.stage == PH.stid(2) @test vname == "y" elseif vid.stage == PH.stid(3) @test occursin("z", vname) else stage_int = PH.value(vid.stage) error("Stage $(stage_int)! There is no stage $(stage_int)!!") end end end elseif istaskfailed(my_task) throw(my_task.exception) else error("Test timed out") end phd = PH.PHData(PH.SEPPenaltyParameter(), st, sp_map, var_map, TimerOutputs.TimerOutput() ) for (xhid, xhat) in pairs(phd.xhat) vname = phd.variable_data[first(xhat.vars)].name for vid in xhat.vars @test xhid == phd.variable_data[vid].xhat_id @test vname == phd.variable_data[vid].name end end for (scen, sinfo) in phd.scenario_map for vid in keys(sinfo.branch_vars) if occursin("x", phd.variable_data[vid].name) @test vid.stage == PH.stid(1) else @test vid.stage == PH.stid(2) end end for vid in keys(sinfo.leaf_vars) @test vid.stage == PH.stid(3) end end my_task = @async begin messages = Vector{PH.Message}() count = 0 while count < 2*length(PH.scenarios(st)) msg = PH._retrieve_message_type(wi, Union{PH.ReportBranch,PH.PenaltyInfo}) push!(messages, msg) count += 1 end return messages end if timeout_wait(my_task, 90) && !istaskfailed(my_task) msgs = fetch(my_task) @test length(msgs) == 2 * length(PH.scenarios(st)) iv_msg_from_scen = Set{PH.ScenarioID}() pp_msg_from_scen = Set{PH.ScenarioID}() for msg in msgs scen = msg.scen sinfo = phd.scenario_map[scen] if typeof(msg) <: PH.ReportBranch push!(iv_msg_from_scen, scen) @test (msg.sts == MOI.OPTIMAL || msg.sts == MOI.LOCALLY_SOLVED || msg.sts == MOI.ALMOST_LOCALLY_SOLVED ) @test keys(sinfo.branch_vars) == keys(msg.vals) elseif typeof(msg) <: PH.PenaltyInfo push!(pp_msg_from_scen, scen) @test keys(sinfo.branch_vars) == keys(msg.penalty) else error("Unexpected message of type $(typeof(msg))") end put!(wi.output, msg) end @test iv_msg_from_scen == PH.scenarios(st) @test pp_msg_from_scen == PH.scenarios(st) elseif istaskfailed(my_task) throw(my_task.exception) else error("Test timed out") end my_task = @async PH._set_initial_values(phd, wi) if timeout_wait(my_task, 90) && !istaskfailed(my_task) @test fetch(my_task) >= 0.0 elseif istaskfailed(my_task) throw(my_task.exception) else error("Test timedout") end my_task = @async PH._set_penalty_parameter(phd, wi) if timeout_wait(my_task, 90) && !istaskfailed(my_task) @test fetch(my_task) >= 0.0 elseif istaskfailed(my_task) throw(my_task.exception) else error("Test timedout") end PH._shutdown(wi) PH._wait_for_shutdown(wi) end @testset "Lower Bound Initialization" begin st = build_scen_tree() sp_map = PH.assign_scenarios_to_procs(st) worker_input_queues = Dict(1 => RemoteChannel(()->Channel{PH.Message}(10), myid())) worker_output_queue = RemoteChannel(()->Channel{PH.Message}(10), myid()) futures = Dict(1 => remotecall(PH.worker_loop, myid(), 1, worker_input_queues[1], worker_output_queue) ) wi = PH.WorkerInf(worker_input_queues, worker_output_queue, futures) PH._initialize_lb_subproblems(sp_map, wi, st, create_model, (), false) PH._send_message(wi, 1, PH.DumpState()) my_task = @async PH._retrieve_message(wi) if timeout_wait(my_task, 90) && !istaskfailed(my_task) msg = fetch(my_task) elseif istaskfailed(my_task) throw(my_task.exception) else error("Test timedout") end @test typeof(msg) <: PH.WorkerState{PH.WorkerRecord} @test length(msg.state.lb_subproblems) == length(scenarios(st)) for (scen,sub) in pairs(msg.state.lb_subproblems) @test scen in [PH.scid(0), PH.scid(1), PH.scid(2), PH.scid(3)] @test length(sub.branch_vars) == 4 @test length(sub.leaf_vars) == 2 end PH._shutdown(wi) PH._wait_for_shutdown(wi) end end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
10098
@testset "Unimplemented Error" begin # TODO: This is a pain to debug if it fails. Try to fix it. struct InterfaceFunction f::Function args::Tuple end function IF(f::Function, args...) return InterfaceFunction(f, args) end struct Unimplemented <: PH.AbstractSubproblem end to_test = [ IF(PH.add_ph_objective_terms, Vector{PH.VariableID}(), 2.25), IF(PH.objective_value), IF(PH.report_values, Vector{PH.VariableID}()), IF(PH.report_variable_info, build_scen_tree()), IF(PH.solve_subproblem), IF(PH.update_ph_terms, Dict{PH.VariableID,Float64}(), Dict{PH.VariableID,Float64}()), IF(PH.warm_start), IF(PH.report_penalty_info, PH.ProportionalPenaltyParameter), IF(PH.add_lagrange_terms, Vector{VariableID}()), IF(PH.update_lagrange_terms, Dict{VariableID,Float64}()), ] subprob = Unimplemented() for interface_function in to_test @test_throws PH.UnimplementedError begin interface_function.f(subprob, interface_function.args...) end end @test_throws PH.UnimplementedError begin PH.ef_copy_model(JuMP.Model(), subprob, PH.scid(0), build_scen_tree(), Dict{PH.NodeID,Any}() ) end @test_throws PH.UnimplementedError begin PH.ef_node_dict_constructor(typeof(subprob)) end end @testset "Scenario Subproblem Functions" begin st = build_scen_tree() js = create_model(PH.scid(0)) org_obj_func = JuMP.objective_function(js.model, JuMP.QuadExpr) vid_name_map = PH.report_variable_info(js, st) @test length(vid_name_map) == length(JuMP.all_variables(js.model)) for (vid, vinfo) in pairs(vid_name_map) if vid.stage == PH.stid(1) @test occursin("x", vinfo.name) elseif vid.stage == PH.stid(2) @test vinfo.name == "y" else @test occursin("z", vinfo.name) end end ref_map = invert_map(js.vars) observed_vids = Set{PH.VariableID}() for var in JuMP.all_variables(js.model) vid = ref_map[var] @test !(vid in observed_vids) push!(observed_vids, vid) end @test length(observed_vids) == length(JuMP.all_variables(js.model)) (br_vids, lf_vids) = PH._split_variables(st, collect(keys(vid_name_map))) sts = PH.solve_subproblem(js) @test sts == MOI.LOCALLY_SOLVED @test sts == JuMP.termination_status(js.model) @test PH.objective_value(js) == JuMP.objective_value(js.model) org_obj_val = PH.objective_value(js) vals = PH.report_values(js, collect(keys(vid_name_map))) @test length(vals) == length(JuMP.all_variables(js.model)) for var in JuMP.all_variables(js.model) @test JuMP.value(var) == vals[ref_map[var]] end r = PH.ScalarPenaltyParameter(10.0) rhalf = 0.5 * 10.0 PH.add_ph_objective_terms(js, br_vids, r.value) ph_obj_func = JuMP.objective_function(js.model, JuMP.QuadExpr) diff = ph_obj_func - org_obj_func JuMP.drop_zeros!(diff) @test length(JuMP.linear_terms(diff)) == 0 @test length(JuMP.quad_terms(diff)) == (4 * length(br_vids)) for qt in JuMP.quad_terms(diff) coef = qt[1] @test (isapprox(coef, rhalf) || isapprox(coef, -r.value) || isapprox(coef, 1.0)) end w_vals = Dict{PH.VariableID,Float64}() for (k,w) in enumerate(keys(js.w_vars)) w_vals[w] = k * rand() end xhat_vals = Dict{PH.VariableID,Float64}() for (k,xhat) in enumerate(keys(js.xhat_vars)) xhat_vals[xhat] = k * rand() end PH.update_ph_terms(js, w_vals, xhat_vals) PH.warm_start(js) sts = PH.solve_subproblem(js) @test sts == MOI.LOCALLY_SOLVED @test org_obj_val != PH.objective_value(js) for (wid, wref) in pairs(js.w_vars) @test JuMP.value(wref) == w_vals[wid] end for (xhid, xhref) in pairs(js.xhat_vars) @test JuMP.value(xhref) == xhat_vals[xhid] end end # @testset "Extensive Form" begin # #TODO: Make tests for this case # end @testset "Penalties" begin st = build_scen_tree() # Scalar Penalty js = create_model(PH.scid(0)) vid_name_map = PH.report_variable_info(js, st) (br_vids, lf_vids) = PH._split_variables(st, collect(keys(vid_name_map))) obj = JuMP.objective_function(js.model) PH.add_ph_objective_terms(js, br_vids, 10.0) ph_obj_func = JuMP.objective_function(js.model, JuMP.QuadExpr) diff = ph_obj_func - obj JuMP.drop_zeros!(diff) @test length(JuMP.linear_terms(diff)) == 0 @test length(JuMP.quad_terms(diff)) == (4 * length(br_vids)) for vid in br_vids x_ref = js.vars[vid] w_ref = js.w_vars[vid] xhat_ref = js.xhat_vars[vid] for (c, v1, v2) in JuMP.quad_terms(diff) if (x_ref == v1 && x_ref == v2) || (xhat_ref == v1 && xhat_ref == v2) @test isapprox(c, 5.0) elseif (x_ref == v1 && xhat_ref == v2) || (xhat_ref == v1 && x_ref == v2) @test isapprox(c, -10.0) elseif (x_ref == v1 && w_ref == v2) || (w_ref == v1 && x_ref == v2) @test isapprox(c, 1.0) end end end # Proportional Penalty js = create_model(PH.scid(0)) vid_name_map = PH.report_variable_info(js, st) (br_vids, lf_vids) = PH._split_variables(st, collect(keys(vid_name_map))) coef_dict = PH.report_penalty_info(js, br_vids, PH.ProportionalPenaltyParameter) obj = JuMP.objective_function(js.model) for (vid, coef) in pairs(coef_dict) ref = js.vars[vid] for lt in JuMP.linear_terms(obj) if lt[2] == ref @test lt[1] == coef break end end coef_dict[vid] = 10.0 * coef end PH.add_ph_objective_terms(js, br_vids, coef_dict) ph_obj_func = JuMP.objective_function(js.model, JuMP.QuadExpr) diff = ph_obj_func - obj JuMP.drop_zeros!(diff) @test length(JuMP.linear_terms(diff)) == 0 @test length(JuMP.quad_terms(diff)) == (4 * length(br_vids)) for vid in br_vids x_ref = js.vars[vid] w_ref = js.w_vars[vid] xhat_ref = js.xhat_vars[vid] for (c, v1, v2) in JuMP.quad_terms(diff) if (x_ref == v1 && x_ref == v2) || (xhat_ref == v1 && xhat_ref == v2) @test isapprox(c, 0.5 * coef_dict[vid]) elseif (x_ref == v1 && xhat_ref == v2) || (xhat_ref == v1 && x_ref == v2) @test isapprox(c, -1.0 * coef_dict[vid]) elseif (x_ref == v1 && w_ref == v2) || (w_ref == v1 && x_ref == v2) @test isapprox(c, 1.0) end end end # SEP Penalty js = create_model(PH.scid(0)) vid_name_map = PH.report_variable_info(js, st) (br_vids, lf_vids) = PH._split_variables(st, collect(keys(vid_name_map))) coef_dict = PH.report_penalty_info(js, br_vids, PH.SEPPenaltyParameter) obj = JuMP.objective_function(js.model) for (vid, coef) in pairs(coef_dict) ref = js.vars[vid] for lt in JuMP.linear_terms(obj) if lt[2] == ref @test lt[1] == coef break end end coef_dict[vid] = rand() * coef end PH.add_ph_objective_terms(js, br_vids, coef_dict) ph_obj_func = JuMP.objective_function(js.model, JuMP.QuadExpr) diff = ph_obj_func - obj JuMP.drop_zeros!(diff) @test length(JuMP.linear_terms(diff)) == 0 @test length(JuMP.quad_terms(diff)) == (4 * length(br_vids)) for vid in br_vids x_ref = js.vars[vid] w_ref = js.w_vars[vid] xhat_ref = js.xhat_vars[vid] for (c, v1, v2) in JuMP.quad_terms(diff) if (x_ref == v1 && x_ref == v2) || (xhat_ref == v1 && xhat_ref == v2) @test isapprox(c, 0.5 * coef_dict[vid]) elseif (x_ref == v1 && xhat_ref == v2) || (xhat_ref == v1 && x_ref == v2) @test isapprox(c, -1.0 * coef_dict[vid]) elseif (x_ref == v1 && w_ref == v2) || (w_ref == v1 && x_ref == v2) @test isapprox(c, 1.0) end end end end @testset "Fix Variables" begin js = create_model(PH.scid(0)) PH.report_variable_info(js, build_scen_tree()) is_fixed = Dict{PH.VariableID,Float64}() is_free = Vector{PH.VariableID}() for vid in keys(js.vars) if PH.value(PH.index(vid)) % 2 == 0 # r > 0.5 is_fixed[vid] = rand() else push!(is_free, vid) end end PH.fix_variables(js, is_fixed) sts = PH.solve_subproblem(js) @test sts == MOI.LOCALLY_SOLVED for (vid,var) in pairs(js.vars) if haskey(is_fixed, vid) @test JuMP.is_fixed(var) @test JuMP.value(var) == is_fixed[vid] elseif vid in is_free @test !JuMP.is_fixed(var) else error("Vid $vid is neither fixed nor free") end end end @testset "Lagrange Terms" begin st = build_scen_tree() js = create_model(PH.scid(0)) org_obj_func = JuMP.objective_function(js.model, JuMP.QuadExpr) vid_name_map = PH.report_variable_info(js, st) (br_vids, lf_vids) = PH._split_variables(st, collect(keys(vid_name_map))) PH.add_lagrange_terms(js, br_vids) ph_obj_func = JuMP.objective_function(js.model, JuMP.QuadExpr) diff = ph_obj_func - org_obj_func JuMP.drop_zeros!(diff) @test length(JuMP.linear_terms(diff)) == 0 @test length(JuMP.quad_terms(diff)) == length(br_vids) for qt in JuMP.quad_terms(diff) coef = qt[1] @test isapprox(coef, 1.0) end w_vals = Dict{PH.VariableID,Float64}() for (k,w) in enumerate(keys(js.w_vars)) w_vals[w] = k * rand() end PH.update_lagrange_terms(js, w_vals) sts = PH.solve_subproblem(js) @test sts == MOI.LOCALLY_SOLVED for (wid, wref) in pairs(js.w_vars) @test JuMP.value(wref) == w_vals[wid] end end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
2126
@testset "Scenario Tree Errors" begin st = PH.ScenarioTree() @test_throws(ErrorException, PH.add_leaf(st, PH.root(st), -1.0)) end @testset "Scenario Tree Functions" begin # First stage -- Creates root/first stage node automatically st = PH.ScenarioTree() # Second stage n1 = PH.add_node(st, PH.root(st)) n2 = PH.add_node(st, PH.root(st)) # Third stage sc0 = PH.add_leaf(st, n1, 0.25*0.75) sc1 = PH.add_leaf(st, n1, 0.75*0.75) sc2 = PH.add_leaf(st, n2, 0.25) @test length(n1.children) == 2 (n3, n4) = n1.children if n3.id > n4.id temp = n4 n4 = n3 n3 = temp end @test length(n2.children) == 1 n5 = first(n2.children) # only element in the set @test PH.last_stage(st) == PH.StageID(3) @test PH.is_leaf(st.root) == false @test PH.is_leaf(n1) == false @test PH.is_leaf(n2) == true # only having 1 child scenario means this is actually a leaf @test PH.is_leaf(n3) == true @test PH.is_leaf(n4) == true @test PH.is_leaf(n5) == true @test st.prob_map[sc0] == 0.25*0.75 @test st.prob_map[sc1] == 0.75*0.75 @test st.prob_map[sc2] == 0.25 nodes = [st.root, n1, n2, n3, n4, n5] for n in nodes @test st.tree_map[n.id] == n end @test PH.scenarios(st) == Set([sc0, sc1, sc2]) @test PH.scenario_bundle(st.root) == Set([sc0, sc1, sc2]) @test PH.scenario_bundle(n1) == Set([sc0, sc1]) @test PH.scenario_bundle(n2) == Set([sc2]) @test PH.scenario_bundle(n3) == Set([sc0]) @test PH.scenario_bundle(n4) == Set([sc1]) @test PH.scenario_bundle(n5) == Set([sc2]) end @testset "Scenario Tree Utilities" begin N = 10 p = rand(N) p /= sum(p) st = PH.two_stage_tree(p) @test PH.last_stage(st) == PH.stid(2) @test length(st.tree_map) == N + 1 for (scen, prob) in pairs(st.prob_map) @test prob == p[PH.value(scen) + 1] end st = PH.two_stage_tree(N) @test PH.last_stage(st) == PH.stid(2) @test length(st.tree_map) == N + 1 for (scen, prob) in pairs(st.prob_map) @test prob == 1.0 / 10.0 end end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
4739
@testset "Struct accessors" begin @test PH.value(PH.ScenarioID(1)) == 1 @test PH.value(PH.StageID(2)) == 2 @test PH.value(PH.Index(3)) == 3 @test PH.value(PH.NodeID(4)) == 4 end @testset "Convenience constructors" begin @test PH.scid(1) == PH.ScenarioID(1) @test PH.stid(1) == PH.StageID(1) @test PH.index(1) == PH.Index(1) end @testset "Struct less than operators" begin @test PH.NodeID(3) < PH.NodeID(7) @test PH.scid(0) < PH.scid(2) @test PH.stid(1) < PH.stid(4) @test PH._increment(PH.stid(1)) == PH.stid(2) @test PH.index(10) < PH.index(16) @test PH._increment(PH.index(15)) == PH.index(16) uvid1 = PH.VariableID(PH.scid(4), PH.stid(1), PH.index(347)) uvid2 = PH.VariableID(PH.scid(0), PH.stid(2), PH.index(2)) uvid3 = PH.VariableID(PH.scid(1), PH.stid(2), PH.index(2)) uvid4 = PH.VariableID(PH.scid(1), PH.stid(2), PH.index(3)) @test uvid1 < uvid2 @test uvid2 < uvid3 @test uvid3 < uvid4 xhid1 = PH.XhatID(PH.NodeID(0), PH.Index(4)) xhid2 = PH.XhatID(PH.NodeID(1), PH.Index(2)) xhid3 = PH.XhatID(PH.NodeID(1), PH.Index(3)) @test xhid1 < xhid2 @test xhid2 < xhid3 end @testset "Consensus variable functions" begin tv = PH.HatVariable(true) @test PH.is_integer(tv) vid = PH.VariableID(PH.scid(3), PH.stid(2), PH.index(392)) PH.add_variable(tv, vid) @test PH.variables(tv) == Set([vid]) rv = rand() PH.set_value(tv, rv) @test tv.value == rv @test PH.value(tv) == rv end @testset "Convenience functions" begin st = two_stage_tree(3) @test length(st.tree_map) == 4 @test length(st.prob_map) == 3 @test isapprox(sum(values(st.prob_map)), 1.0) p = [0.8, 0.2] st = two_stage_tree(p) @test st.prob_map[PH.scid(0)] == p[1] @test st.prob_map[PH.scid(1)] == p[2] end nv1 = 3 nv2 = 4 phd = fake_phdata(nv1, nv2) nscen = length(PH.scenarios(phd)) @testset "Accessor Utilities" begin scid = PH.scid(0) stid = PH.stid(1) index = PH.index(2) vid = PH.VariableID(scid, stid, index) @test PH.name(phd, vid) == "a2" val = convert(Float64, PH.value(index) - PH.value(scid)) @test PH.value(phd, vid) == val @test PH.value(phd, scid, stid, index) == val @test PH.branch_value(phd, vid) == val @test PH.branch_value(phd, scid, stid, index) == val scid = PH.scid(1) stid = PH.stid(2) index = PH.index(3) vid = PH.VariableID(scid, stid, index) @test PH.name(phd, vid) == "b4" val = convert(Float64, nscen + (PH.value(index) + 1)*(PH.value(scid) + 1)) @test PH.value(phd, vid) == val @test PH.value(phd, scid, stid, index) == val @test PH.leaf_value(phd, vid) == val @test PH.leaf_value(phd, scid, stid, index) == val @test_throws ErrorException PH.name(phd, PH.VariableID(PH.scid(8303), stid, index)) @test scenario_tree(phd) === phd.scenario_tree time_str_1 = @capture_out(print_timing(phd)) @test length(time_str_1) > 0 io = IOBuffer() print_timing(io, phd) time_str_2 = String(take!(io)) @test length(time_str_2) > 0 end @testset "Conversion utilities" begin # Branch variables for i in 1:nv1 vid1 = PH.VariableID(PH.scid(0), PH.stid(1), PH.index(i)) vid2 = PH.VariableID(PH.scid(1), PH.stid(1), PH.index(i+1)) xhid = PH.convert_to_xhat_id(phd, vid1) @test PH.convert_to_xhat_id(phd, vid2) == xhid @test PH.convert_to_variable_ids(phd, xhid) == Set{PH.VariableID}([vid1, vid2]) end # Leaf variables for j in 1:nv2 vid1 = PH.VariableID(PH.scid(0), PH.stid(2), PH.index(j-1)) vid2 = PH.VariableID(PH.scid(1), PH.stid(2), PH.index(j-1)) @test PH.convert_to_variable_ids(phd, PH.convert_to_xhat_id(phd, vid1)) == Set{PH.VariableID}([vid1]) @test PH.convert_to_variable_ids(phd, PH.convert_to_xhat_id(phd, vid2)) == Set{PH.VariableID}([vid2]) @test PH.convert_to_xhat_id(phd, vid1) != PH.convert_to_xhat_id(phd, vid2) end end @testset "PH variable accessors" begin scid = PH.scid(0) stid = PH.stid(1) index = PH.index(1) vid = PH.VariableID(scid, stid, index) rval = rand() phd.scenario_map[scid].w_vars[vid] = rval @test PH.w_value(phd, vid) == rval @test PH.w_value(phd, scid, stid, index) == rval rval = rand() xhid = PH.convert_to_xhat_id(phd, vid) phd.xhat[xhid].value = rval @test PH.xhat_value(phd, xhid) == rval @test PH.xhat_value(phd, vid) == rval @test PH.xhat_value(phd, scid, stid, index) == rval @test PH.is_leaf(phd, xhid) == false vid = PH.VariableID(PH.scid(0), PH.stid(2), PH.index(0)) xhid = PH.convert_to_xhat_id(phd, vid) @test PH.is_leaf(phd, xhid) == true end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
code
1029
ch_size = 10 @testset "Basics" begin worker_inf = PH._launch_workers(ch_size, ch_size) @test PH._number_workers(worker_inf) == 1 @test PH._is_running(worker_inf) my_task = @async begin PH._send_message(worker_inf, myid(), Ping()) PH._retrieve_message_type(worker_inf, Ping) end @test timeout_wait(my_task) my_task = @async begin PH._abort(worker_inf) PH._wait_for_shutdown(worker_inf) end @test timeout_wait(my_task) @test !PH._is_running(worker_inf) @test PH._number_workers(worker_inf) == 0 end @testset "Error Handling" begin worker_inf = PH._launch_workers(ch_size, ch_size) struct MakeWorkerError <: PH.Message end PH._send_message(worker_inf, myid(), MakeWorkerError()) my_task = @async begin PH._wait_for_shutdown(worker_inf) end if(timeout_wait(my_task)) @test istaskfailed(my_task) @test typeof(my_task.exception) <: RemoteException else error("Test timed out") end end
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
docs
1098
[![CI](https://github.com/NREL/ProgressiveHedging.jl/workflows/CI/badge.svg)](https://github.com/NREL/ProgressiveHedging.jl/workflows/master-tests.yml) [![codecov](https://codecov.io/gh/NREL/ProgressiveHedging.jl/branch/master/graph/badge.svg?token=U9LUA882IM)](https://codecov.io/gh/NREL/ProgressiveHedging.jl) [![Documentation](https://github.com/NREL/ProgressiveHedging.jl/workflows/Documentation/badge.svg?)](https://nrel.github.io/ProgressiveHedging.jl/dev) ProgressiveHedging.jl is a basic implementation of the [Progressive Hedging algorithm](https://pdfs.semanticscholar.org/4ab8/028748c89b226fd46cf9f45de88218779572.pdf) which is used to solve stochastic programs. ProgressiveHedging.jl makes use of the [JuMP](https://github.com/JuliaOpt/JuMP.jl) framework to build and solve the subproblems. It can be used with Julia's Distributed package to solve problems in parallel. Users pass a function that builds a JuMP model along with a scenario tree and a dictionary identifying the variables in each stage. Examples written in a Jupyter notebook may be found in the Examples directory.
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
docs
1609
# ProgressiveHedging.jl ```@meta CurrentModule = ProgressiveHedging ``` ## Overview ProgressiveHedging.jl is a [Julia](https://julialang.org/) implementation of the [Progressive Hedging](https://pubsonline.informs.org/doi/abs/10.1287/moor.16.1.119) algorithm of Rockafellar and Wets. It is capable of solving multi-stage stochastic programs: ``\min_X \sum_{s=1}^S p_s f_s(X)`` To solve this problem, ProgressiveHedging.jl makes use of [JuMP](https://github.com/JuliaOpt/JuMP.jl). Specifically, the user constructs a wrapped JuMP model for a single subproblem as well as a scenario tree which describes the structure of the stochastic program. For more details on the process see this [Basic Example](@ref). Through the use of Julia's [Distributed](https://docs.julialang.org/en/v1/stdlib/Distributed/) package, PH may be run in parallel either on a single multi-core platform or in a distributed fashion across multiple compute nodes. See the [Distributed Example](@ref) for more details. In addition to providing an easily accessible solver for stochastic programs, ProgressiveHedging.jl is designed to be extensible to enable research on the PH algorithm itself. Abstract interfaces exist for the penalty parameter and subproblem types so that the user may implement their own penalty parameter selection method or use an Julia enabled algebraic modeling language. ------------ ProgressiveHedging has been developed as part of the Scalable Integrated Infrastructure Planning (SIIP) initiative at the U.S. Department of Energy's National Renewable Energy Laboratory ([NREL](https://www.nrel.gov/))
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
docs
1007
# Low-Level Functions ```@index Pages = ["functions.md"] ``` ## Callback Creation and Retrieval ```@docs apply_to_subproblem cb get_callback get_callback_ext mean_deviation spcb variable_fixing ``` ## ID Type Interactions ```@docs convert_to_variable_ids convert_to_xhat_id index scenario scid stage stage_id stid value(::Index) value(::NodeID) value(::ScenarioID) value(::StageID) ``` ## Result Retrieval ```@docs lower_bounds print_timing residuals retrieve_soln retrieve_aug_obj_value retrieve_obj_value retrieve_no_hats retrieve_no_hat_history retrieve_w retrieve_w_history retrieve_xhat_history ``` ## Problem Accessors ```@docs probability scenario_tree scenarios ``` ## Scenario Tree ```@docs add_node add_leaf root two_stage_tree ``` ## Variable Interactions ```@docs branch_value consensus_variables is_integer is_leaf leaf_value name scenario_bundle value(::HatVariable) value(::PHData, ::VariableID) value(::PHData, ::ScenarioID, ::StageID, ::Index) variables w_value xhat_value ```
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
docs
100
# High-Level Functions ```@index Pages = ["high-level.md"] ``` ```@docs solve solve_extensive ```
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
docs
773
# Interfaces ```@index Pages = ["interfaces.md"] ``` ## Penalty Parameter ```@docs AbstractPenaltyParameter get_penalty_value is_initial_value_dependent is_subproblem_dependent is_variable_dependent penalty_map process_penalty_initial_value process_penalty_subproblem ``` ## Subproblem ### Types ```@docs AbstractSubproblem VariableInfo ``` ### Required Functions ```@docs add_ph_objective_terms objective_value report_values report_variable_info solve_subproblem update_ph_terms ``` ### Optional Functions ```@docs warm_start ``` ### Extensive Form Functions ```@docs ef_copy_model ef_node_dict_constructor ``` ### Penalty Parameter Functions ```@docs report_penalty_info ``` ### Lower Bound Functions ```@docs add_lagrange_terms update_lagrange_terms ```
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
docs
544
```@meta CurrentModule = ProgressiveHedging ``` # Types Exported types in ProgressiveHedging.jl. ```@index Pages = ["types.md"] ``` ## Callbacks ```@docs Callback SubproblemCallback ``` ## Exceptions ```@docs UnimplementedError ``` ## ID Types ```@docs Index NodeID ScenarioID StageID VariableID XhatID ``` ## Penalty Parameters ```@docs ProportionalPenaltyParameter ScalarPenaltyParameter SEPPenaltyParameter ``` ## Subproblems ```@docs JuMPSubproblem ``` ## User Facing ```@docs HatVariable PHData ScenarioNode ScenarioTree ```
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
docs
7349
# Basic Example ## Problem A basic example using ProgressiveHedging.jl to solve a stochastic program. This example is also available as the script basic_example.jl in the example directory. Here we will use ProgressiveHedging.jl to solve the simple problem ``\min_x x + \sum_{s=0}^1 p_s c_s y_s`` subject to ``x \ge 0`` ``y_s \ge 0, s \in {0,1}`` ``x + y = b_s`` where `` b_s = \begin{cases} 11, & s=0 \\ 4, & s=1 \end{cases}, `` `` c_s = \begin{cases} 0.5, & s=0 \\ 10, & s=1 \end{cases} `` and for now we will take equally probable scenarios, that is, ``p_0 = p_1 = 0.5``. ## Setup First we need to bring in the needed packages ```@example basic using ProgressiveHedging import JuMP import Ipopt ``` We will need JuMP to build the model for each subproblem and we will use Ipopt to solve each subproblem. !!! note There are some functions that both JuMP and ProgressiveHedging export. To avoid confusion (and warnings) it is best to import one or both of these packages. ## Subproblem Creation Function Next, we write a function that will generate the subproblems for each scenario. The following creates the subproblem for a simple two stage stochastic program. ```@example basic function two_stage_model(scenario_id::ScenarioID) model = JuMP.Model(()->Ipopt.Optimizer()) JuMP.set_optimizer_attribute(model, "print_level", 0) JuMP.set_optimizer_attribute(model, "tol", 1e-12) JuMP.set_optimizer_attribute(model, "acceptable_tol", 1e-12) scen = value(scenario_id) ref = JuMP.@variable(model, x >= 0.0) stage1 = [ref] ref = JuMP.@variable(model, y >= 0.0) stage2 = [ref] b_s = scen == 0 ? 11.0 : 4.0 c_s = scen == 0 ? 0.5 : 10.0 JuMP.@constraint(model, x + y == b_s) JuMP.@objective(model, Min, 1.0*x + c_s*y) return JuMPSubproblem(model, scenario_id, Dict(stid(1) => stage1, stid(2) => stage2) ) end nothing # hide ``` There are a few things to note here: * This function must take as an argument a [`ScenarioID`](@ref). * The mathematical model is built using JuMP. * The function returns a [`JuMPSubproblem`](@ref). This is an implementation of the [`AbstractSubproblem`](@ref) interface which uses JuMP as the algebraic modeling language. * In addition to the model, the subproblem also requires the [`ScenarioID`](@ref) and a dictionary identifying which variables belong in which stage. ## Scenario Tree Construction Second we need to construct a [`ScenarioTree`](@ref) that captures the structure of our stochastic program. We can do this using the [`ScenarioTree`](@ref) constructor and the function [`add_leaf`](@ref): ```@example basic scen_tree = ScenarioTree() scenario_id_0 = add_leaf(scen_tree, root(scen_tree), 0.5) scenario_id_1 = add_leaf(scen_tree, root(scen_tree), 0.5) nothing # hide ``` Here we created a scenario tree and added two leaf nodes each representing the two scenarios in our problem. We specified both occur with probability 0.5. The other thing to note is that [`add_leaf`](@ref) returns a [`ScenarioID`](@ref). This is a type-safe integer that PH uses to uniquely indentify the each scenario and subproblem. Note that the numbering starts at 0. ```@example basic @show scenario_id_0 @show scenario_id_1 nothing # hide ``` The subproblem created by the subproblem creation function should correspond to the path in the scenario tree that leads to this leaf. In our case, we have a two-stage tree and it does not matter which scenario is identified as scenario 0 and scenario 1. Since two-stage stochastic programs are extremely common, ProgressiveHedging.jl provides a convenience function to generate two-stage trees with arbitrarily many scenarios: [`two_stage_tree`](@ref). So we could have used ```@example using ProgressiveHedging # hide scen_tree = two_stage_tree(2) nothing # hide ``` ## Solution We are now ready to solve the problem. To do so we just use the [`solve`](@ref) function and provide it with our scenario tree, the subproblem creation function and a penalty parameter. ```@setup basic # Hack to avoid having the Ipopt inclusion message in the documentation... (niter, abs_res, rel_res, obj, soln_df, phd) = solve(scen_tree, two_stage_model, ScalarPenaltyParameter(1.0) ) ``` ```@example basic (niter, abs_res, rel_res, obj, soln_df, phd) = solve(scen_tree, two_stage_model, ScalarPenaltyParameter(1.0) ) @show niter @show abs_res @show rel_res @show obj @show soln_df nothing # hide ``` The solve function returns the number of iteration, the absolute and relative residual, the objective value, a `DataFrame` containing the solution and, lastly, a [`PHData`](@ref) instance. The [`PHData`](@ref) contains additional information like the dual (Lagrange multiplier) values for the nonanticipativity constraints ```@example basic dual_df = retrieve_w(phd) @show dual_df nothing # hide ``` as well as the raw values of the consensus contributing variables ```@example basic raw_values_df = retrieve_no_hats(phd) @show raw_values_df nothing # hide ``` ## Determining the Consensus Variables !!! note "Determining the Consensus Variables" You may notice that we never specifically indicated which variables needed nonanticipativity constraints. ProgressiveHedging determines this automatically for us using the scenario tree we constructed, the stage the variable is in and the name the variable is given. When using the [`JuMPSubproblem`](@ref), the name of the variable is determined by calling the function `JuMP.name` on each `JuMP.VariableRef` object. The stage is given by the dictionary given to the [`JuMPSubproblem`](@ref) constructor as seen in the subproblem creation function above. This is possible because the combination of a [`ScenarioID`](@ref) and a [`StageID`](@ref) uniquely determine a node on the scenario tree. Any variables with the same names that belong to this node are assumed to require nonanticipativity constraints and so are identified as consensus variables. ## Extensive Solve For smaller problems, it is also possible to solve the extensive form of the problem directly. ProgressiveHedging.jl is capable of building the extensive form from the previously defined function and scenario tree. ```@example basic ef_model = solve_extensive(scen_tree, two_stage_model, ()->Ipopt.Optimizer(), opt_args=(print_level=0, tol=1e-12, acceptable_tol=1e-12) ) nothing # hide ``` This function builds, optimizes and returns a JuMP model of the extensive form. As such, information is obtained from it as from any other JuMP model. ```@example basic @show JuMP.termination_status(ef_model) @show JuMP.objective_value(ef_model) for v in JuMP.all_variables(ef_model) println("$v = $(JuMP.value(v))") end nothing # hide ``` !!! note The subscripts in the variable names are the scenarios to which the variable belongs.
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git
[ "BSD-3-Clause" ]
0.5.1
e89f3d1830790439dcb1404bb99d017d8a986259
docs
3630
# Callback Example An example of creating and adding a callback to a ProgressiveHedging.jl run. This example is also available as the script callback_example.jl in the example directory. In this example, we will use the same setup as in the [Basic Example](@ref). ```@example callback using ProgressiveHedging import JuMP import Ipopt function two_stage_model(scenario_id::ScenarioID) model = JuMP.Model(()->Ipopt.Optimizer()) JuMP.set_optimizer_attribute(model, "print_level", 0) JuMP.set_optimizer_attribute(model, "tol", 1e-12) JuMP.set_optimizer_attribute(model, "acceptable_tol", 1e-12) scen = value(scenario_id) ref = JuMP.@variable(model, x >= 0.0) stage1 = [ref] ref = JuMP.@variable(model, y >= 0.0) stage2 = [ref] b_s = scen == 0 ? 11.0 : 4.0 c_s = scen == 0 ? 0.5 : 10.0 JuMP.@constraint(model, x + y == b_s) JuMP.@objective(model, Min, 1.0*x + c_s*y) return JuMPSubproblem(model, scenario_id, Dict(stid(1) => stage1, stid(2) => stage2) ) end scen_tree = two_stage_tree(2) nothing # hide ``` We now write a function to get called as PH executes and wrap it in the [`Callback`](@ref) type. ```@example callback function my_callback(ext::Dict{Symbol,Any}, phd::PHData, winf::ProgressiveHedging.WorkerInf, niter::Int) # The `ext` dictionary can be used to store things between PH iterations if niter == 2 ext[:message] = "This is from iteration 2!" elseif niter == 5 println("Iteration 5 found the message: " * ext[:message]) elseif niter == 10 println("This is iteration 10!") # We can access the current consensus variable values for (xhid, xhat) in pairs(consensus_variables(phd)) println("The value of $(name(phd,xhid)) is $(value(xhat)).") end end # Returning false from the callback will terminate PH. # Here we stop after 20 iterations. return niter < 20 end my_cb = Callback(my_callback) nothing # hide ``` Several things are worth noting here: * All callback functions must have the signature given here * The `ext` dictionary is unique to each callback and can be used to pass information from one iteration to the next * Returning false from the callback will terminate PH Now we call the [`solve`](@ref) function as before but giving it the callback object we created. ```@example callback (niter, abs_res, rel_res, obj, soln_df, phd) = solve(scen_tree, two_stage_model, ScalarPenaltyParameter(1.0), callbacks=[my_cb] ) @show niter @show abs_res @show rel_res @show obj @show soln_df nothing # hide ``` The callbacks can be used to implement solution heuristics and alternative termination criteria. There are two callbacks are included with ProgressiveHedging.jl that do this. [`variable_fixing`](@ref) is a heuristic that fixes variables whose values remain (approximately) the same over a set number of iterations. It is hoped that this speeds the convergence of PH. [`mean_deviation`](@ref) is an alternative termination criteria. It is a form of mean relative absolute deviation from the consensus variable value. These are both implmentations of ideas found in [(Watson & Woodruff 2010)](https://link.springer.com/article/10.1007/s10287-010-0125-4).
ProgressiveHedging
https://github.com/NREL/ProgressiveHedging.jl.git