licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 499 | using StanSample, DataFrames, InferenceObjects, Test
stan = "
parameters {
matrix[2, 3] x;
}
model {
for (i in 1:2)
x[i,:] ~ std_normal();
}
";
sm = SampleModel("foo", stan);
rc = stan_sample(sm);
df = read_samples(sm, :dataframe)
df |> display
println()
df2 = read_samples(sm, :nesteddataframe)
df2 |> display
println()
idata = inferencedata(sm)
display(idata)
display(idata.posterior.x[15, 2, :, :])
display(df2.x[1015])
@test idata.posterior.x[15, 2, :, :] == df2.x[1015]
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 807 | using StanSample, DataFrames, JSON, InferenceObjects, Test
stan = "
parameters {
real r;
matrix[2, 3] x;
array[2, 2, 3] real<lower=0> z;
}
model {
r ~ std_normal();
for (i in 1:2) {
x[i,:] ~ std_normal();
for (j in 1:2)
z[i, j, :] ~ std_normal();
}
}
";
tmpdir = joinpath(@__DIR__, "tmp")
sm = SampleModel("tuple_model", stan, tmpdir)
rc = stan_sample(sm)
df2 = read_samples(sm, :nesteddataframe)
display(df2)
chns, col_names = read_samples(sm, :array; return_parameters=true)
display(col_names)
println()
display(size(chns))
println()
#ex = StanSample.extract(chns, col_names)
idata = inferencedata(sm)
display(idata)
println()
display(idata.posterior)
println()
@test reshape(Array(idata.posterior.z[1,1,1:2,1:2,3]), 4) == chns[1, 16:19, 1]
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 796 | ######### StanSample example ###########
using StanSample, Test
bernoulli_model = "
data {
int<lower=1> N;
array[N] int<lower=0,upper=1> y;
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
bernoulli_data = [
Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1]),
Dict("N" => 10, "y" => [0, 1, 0, 0, 1, 0, 0, 0, 0, 1]),
Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 1, 0]),
Dict("N" => 10, "y" => [0, 0, 0, 1, 0, 0, 1, 0, 0, 1]),
]
sm = SampleModel("bernoulli", bernoulli_model)
rc = stan_sample(sm; data=bernoulli_data, delta=0.85, num_threads=1)
if success(rc)
# Fetch the same output in the `sdf` ChainDataFrame
sdf = read_summary(sm)
@test sdf[sdf.parameters .== :theta, :mean][1] β 0.33 rtol=0.05
end | StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 726 | ######### CmdStan sample example ###########
using StanSample
bernoulli_model = "
data {
int<lower=1> N;
array[N] int<lower=0,upper=1> y;
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
bernoulli_data = [
Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1]),
Dict("N" => 10, "y" => [0, 1, 0, 0, 1, 0, 0, 0, 0, 1]),
Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 1, 0])
]
stanmodel = SampleModel("bernoulli", bernoulli_model)
rc = stan_sample(stanmodel, data=bernoulli_data)
# Fetch the same output in the `sdf` ChainDataFrame
if success(rc)
sdf = read_summary(stanmodel)
@test sdf[sdf.parameters .== :theta, :mean][1] β 0.33 rtol=0.05
end
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 1669 | ######### StanSample example ###########
using StanSample, Test
bernoulli_model = "
data {
int<lower=1> N;
array[N] int<lower=0,upper=1> y;
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
bernoulli_data = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
sm = SampleModel("bernoulli", bernoulli_model)
rc = stan_sample(sm, data=bernoulli_data, num_chains=4, delta=0.85)
# Fetch the cmdstan summary in sdf`
if success(rc)
sdf = read_summary(sm)
@test sdf[sdf.parameters .== :theta, :mean][1] β 0.33 rtol=0.05
# Included return formats
samples = read_samples(sm) # Return KeyesArray object
a3d = read_samples(sm, :array) # Return an a3d object
df = read_samples(sm, :dataframe) # Return a DataFrame object
# If (and only if) MCMCChains is loaded:
# chns = read_samples(sm, :mcmcchains)
# See examples in directory `examples_mcmcchains`
df
end
isdir(tmpdir) && rm(tmpdir, recursive=true)
sm = SampleModel("bernoulli", bernoulli_model, tmpdir)
rc = stan_sample(sm, data=bernoulli_data,
num_threads=4, num_cpp_chains=1, num_chains=4, delta=0.85)
# Fetch the cmdstan summary in sdf`
if success(rc)
sdf = read_summary(sm)
@test sdf[sdf.parameters .== :theta, :mean][1] β 0.33 rtol=0.05
# Included return formats
samples = read_samples(sm) # Return Tables object
a3d = read_samples(sm, :array) # Return an a3d object
df = read_samples(sm, :dataframe) # Return a DataFrame object
# If (and only if) MCMCChains is loaded:
# chns = read_samples(sm, :mcmcchains)
# See examples in directory `examples_mcmcchains`
df
end
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 1285 | using StanSample, Test
ProjDir = @__DIR__
cd(ProjDir) # do
bernoulli_model = "
data {
int<lower=1> N;
array[N] int<lower=0,upper=1> y;
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
sm = SampleModel("bernoulli", bernoulli_model)
observeddata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
rc = stan_sample(
sm;
data=observeddata,
num_samples=13,
num_warmups=17,
save_warmup=true,
num_chains=1,
sig_figs=2,
stepsize=0.7,
)
@test success(rc)
samples = read_samples(sm, :array)
shape = size(samples)
# number of samples, number of chains, number of parameters
@test shape == (30, 1, 1)
# read the log file
f = open(sm.log_file[1], "r")
# remove leading whitespace and chop off the "(default)" suffix
config = [chopsuffix(lstrip(x), r"\s+\(default\)$"i) for x in eachline(f) if length(x) > 0]
close(f)
# check that the config is as expected
required_entries = [
"method = sample",
"num_samples = 13",
"num_warmup = 17",
"save_warmup = true",
"num_chains = 1",
"sig_figs = 2",
"stepsize = 0.7",
]
for entry in required_entries
@test entry in config
end
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 864 | using StanSample, Test
#set_cmdstan_home!(homedir() * "/Projects/StanSupport/cmdstan_stanc3")
ProjDir = @__DIR__
cd(ProjDir) # do
bernoulli_model = "
functions{
#include model_specific_funcs.stan
#include shared_funcs.stan // a comment
//#include shared_funcs.stan // a comment
}
data {
int<lower=1> N;
array[N] int<lower=0,upper=1> y;
}
parameters {
real<lower=0,upper=1> theta;
}
model {
model_specific_function();
theta ~ beta(my_function(),1);
y ~ bernoulli(theta);
}
";
sm = SampleModel("bernoulli", bernoulli_model)
observeddata = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
rc = stan_sample(sm; data=observeddata)
if success(rc)
samples = read_samples(sm, :array)
@test sum(samples)/length(samples) β 0.33 rtol=0.05
end
#end | StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 581 | ######### StanSample Bernoulli example ###########
using AxisKeys, StanSample
bernoulli_model = "
data {
int N;
array[N] int y;
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
data = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
sm = SampleModel("bernoulli", bernoulli_model);
rc = stan_sample(sm; data);
if success(rc)
(samples, cnames) = read_samples(sm, :array; return_parameters=true)
ka = read_samples(sm, :keyedarray)
ka |> display
println()
sdf = read_summary(sm)
sdf |> display
end
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 544 | ######### StanSample Bernoulli example ###########
using StanSample
bernoulli_model = "
data {
int<lower=1> N;
array[N] int y;
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
data = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
sm = SampleModel("bernoulli", bernoulli_model);
rc = stan_sample(sm; data, thin=4, delta=0.85);
if success(rc)
(samples, cnames) = read_samples(sm, :array; return_parameters=true)
ka = read_samples(sm)
ka |> display
println()
end
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 619 | ######### StanSample Bernoulli example ###########
using StanSample
bernoulli_model = "
data {
int<lower=1> N;
array[N] int y;
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
bernoulli_data = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
sm = SampleModel("bernoulli", bernoulli_model;
method = StanSample.Sample(
save_warmup=false, # Default
thin=1,
adapt = StanSample.Adapt(delta = 0.85))
);
rc = stan_sample(sm; data=bernoulli_data);
if success(rc)
(samples, cnames) = read_samples(sm, :array)
end
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 630 | ######### StanSample Bernoulli example ###########
using StanSample
bernoulli_model = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
bernoulli_data = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
sm = SampleModel("bernoulli", bernoulli_model;
method = StanSample.Sample(
save_warmup=false, # Default
thin=1,
adapt = StanSample.Adapt(delta = 0.85))
);
rc = stan_sample(sm; data=bernoulli_data);
if success(rc)
(samples, cnames) = read_samples(sm, :array)
end
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 492 | ######### StanSample Bernoulli example ###########
using AxisKeys, StanSample
bernoulli_model = "
data {
int<lower=1> N;
array[N] int y;
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
bernoulli_data = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
sm = SampleModel("bernoulli", bernoulli_model);
rc = stan_sample(sm; data=bernoulli_data, num_chains=6);
if success(rc)
chns = read_samples(sm)
end
chns |> display
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 801 | using StanSample
stan_data_2 = Dict("N" => 3, "nu" => 13, "L_Psi" => [1.0 0.0 0.0; 2.0 3.0 0.0; 4.0 5.0 6.0]);
stan_data = (N = 3, nu = 13, L_Psi = [1.0 0.0 0.0; 2.0 3.0 0.0; 4.0 5.0 6.0]);
model_code = "
data {
int<lower=1> N;
real<lower=N-1> nu;
cholesky_factor_cov[N] L_Psi;
}
parameters {
cholesky_factor_cov[N] L_X;
}
model {
L_X ~ inv_wishart_cholesky(nu, L_Psi);
}
";
sm = SampleModel("test", model_code);
stan_sample(sm; data=stan_data_2);
ndf = read_samples(sm, :nesteddataframe)
println(ndf.L_X[1])
println("\n")
stan_sample(sm; data=stan_data_2);
ndf = read_samples(sm, :nesteddataframe)
println(ndf.L_X[1])
println("\n")
for i in 1:5
stan_sample(sm; data=stan_data);
ndf = read_samples(sm, :nesteddataframe)
println(ndf.L_X[1])
println("\n")
end
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 1061 | cd(@__DIR__)
using StanSample, Random, MCMCChains, Serialization
tempdir = pwd() * "/tmp"
# Generate Data
seed = 350
Random.seed!(seed)
n_obs = 50
y = randn(n_obs)
stan_data = Dict(
"y" => y,
"n_obs" => n_obs)
# Stan Language Model
stan_01 = "
data{
// total observations
int n_obs;
// observations
vector[n_obs] y;
}
parameters {
real mu;
real<lower=0> sigma;
}
model {
mu ~ normal(0, 1);
sigma ~ gamma(1, 1);
y ~ normal(mu, sigma);
}"
# Create SampleModel
sm_01 = SampleModel("temp", stan_01)
# Run the sampler
rc_01 = stan_sample(
sm_01;
data = stan_data,
seed,
num_chains = 4,
num_samples = 1000,
num_warmups = 1000,
save_warmup = false
)
# Serialize after calling stan_sample!
serialize(joinpath(sm_01.tmpdir, "sm_01"), sm_01)
if success(rc_01)
chn_01 = read_samples(sm_01, :mcmcchains)
chn_01 |> display
end
sm_02 = deserialize(joinpath(sm_01.tmpdir, "sm_01"))
if success(rc_01)
chn_02 = read_samples(sm_02, :mcmcchains)
chn_02 |> display
end
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 576 | using StanSample
using MCMCChains
using Random
seed = 350
Random.seed!(seed)
n_obs = 50
y = randn(n_obs)
stan_data_2 = Dict("y" => y, "n_obs" => n_obs);
stan_data= (y=y, n_obs=n_obs);
model = "
data{
// total observations
int n_obs;
// observations
vector[n_obs] y;
}
parameters {
real mu;
real<lower=0> sigma;
}
model {
mu ~ normal(0, 1);
sigma ~ gamma(1, 1);
y ~ normal(mu, sigma);
}";
tmpdir = pwd()*"/tmp"
sm = SampleModel("temp", model, tmpdir)
rc = stan_sample(sm; data=stan_data_2)
read_samples(sm, :mcmcchains) |> display
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 616 | using StanSample
using MCMCChains
using Random
seed = 350
Random.seed!(seed)
n_obs = 50
y = randn(n_obs)
stan_data_2 = Dict("y" => y, "n_obs" => n_obs);
stan_data= (y=y, n_obs=n_obs);
model = "
data{
// total observations
int n_obs;
// observations
vector[n_obs] y;
}
parameters {
real mu;
real<lower=0> sigma;
}
model {
mu ~ normal(0, 1);
sigma ~ gamma(1, 1);
y ~ normal(mu, sigma);
}";
tmpdir = pwd()*"/tmp"
sm = SampleModel("temp", model, tmpdir)
read_samples(sm, :mcmcchains) |> display
rc = stan_sample(sm; data=stan_data)
read_samples(sm, :mcmcchains) |> display
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 703 | using StanSample, JSON, DataFrames
stan = "
data {
int<lower=0> N;
array[N] complex x;
array[N] complex y;
}
parameters {
complex alpha;
complex beta;
vector[2] sigma;
}
model {
to_real(eps_n) ~ normal(0, sigma[1]);
to_imag(eps_n) ~ normal(0, sigma[2]);
sigma ~ //...hyperprior...
for (n in 1:N) {
complex eps_n = y[n] - (alpha + beta * x[n]); // error
eps_n ~ // ...error distribution...
}
}
";
w_max = 5 # Max extent of the independent values
w = LinRange(-w_max, w_max, 11)
tmp = Complex[]
for i in w
for j in w
append!(tmp, Complex(i, j))
end
end
w = tmp
df = DataFrame(w = filter(x -> sqrt(real(x)^2 + imag(x)^2) <= w_max, w))
n = length(w)
display(df)
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 2625 | using CSV, DataFrames
using DimensionalData
using StanSample
using Statistics, Test
df = CSV.read(joinpath(@__DIR__, "..", "..", "data", "chimpanzees.csv"), DataFrame);
# Define the Stan language model
stan10_4 = "
data{
int N;
int N_actors;
int pulled_left[N];
int prosoc_left[N];
int condition[N];
int actor[N];
}
parameters{
vector[N_actors] a;
real bp;
real bpC;
}
model{
vector[N] p;
bpC ~ normal( 0 , 10 );
bp ~ normal( 0 , 10 );
a ~ normal( 0 , 10 );
for ( i in 1:504 ) {
p[i] = a[actor[i]] + (bp + bpC * condition[i]) * prosoc_left[i];
p[i] = inv_logit(p[i]);
}
pulled_left ~ binomial( 1 , p );
}
";
data10_4 = (N = size(df, 1), N_actors = length(unique(df.actor)),
actor = df.actor, pulled_left = df.pulled_left,
prosoc_left = df.prosoc_left, condition = df.condition);
# Sample using cmdstan
m10_4s = SampleModel("m10.4s", stan10_4)
rc10_4s = stan_sample(m10_4s; data=data10_4);
# Result rethinking
rethinking = "
mean sd 5.5% 94.5% n_eff Rhat
bp 0.84 0.26 0.43 1.26 2271 1
bpC -0.13 0.29 -0.59 0.34 2949 1
a[1] -0.74 0.27 -1.16 -0.31 3310 1
a[2] 10.88 5.20 4.57 20.73 1634 1
a[3] -1.05 0.28 -1.52 -0.59 4206 1
a[4] -1.05 0.28 -1.50 -0.60 4133 1
a[5] -0.75 0.27 -1.18 -0.32 4049 1
a[6] 0.22 0.27 -0.22 0.65 3877 1
a[7] 1.81 0.39 1.22 2.48 3807 1
";
# Update sections
@testset ":dimarrays tests" begin
if success(rc10_4s)
da = read_samples(m10_4s, :dimarrays)
da1 = da[param=At(Symbol("a.1"))]
# Other manipulations
@test Tables.istable(da) == true
# All of parameters
dar = reshape(Array(da), 4000, 9);
@test size(dar) == (4000, 9)
# Check :param axis names
@test dims(da, :param).val == vcat([Symbol("a.$i") for i in 1:7], :bp, :bpC)
# Test combining vector param 'a'
ma = matrix(da, "a");
rma = reshape(ma, 4000, size(ma, 3))
@test mean(rma, dims=1) β [-0.7 10.9 -1 -1 -0.7 0.2 1.8] atol=0.7
end
end
@testset ":dimarray tests" begin
if success(rc10_4s)
da = read_samples(m10_4s, :dimarray)
da |> display
da1 = da[param=At(Symbol("a.1"))]
# Other manipulations
@test Tables.istable(da) == true
# Check :param axis names
@test dims(da, :param).val == vcat([Symbol("a.$i") for i in 1:7], :bp, :bpC)
# Test combining vector param 'a'
ma = matrix(da, "a");
@test mean(ma, dims=1) β [-0.7 10.9 -1 -1 -0.7 0.2 1.8] atol=0.7
end
end | StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 568 | using DataFrames
using StanSample, Test
ProjDir = @__DIR__
cd(ProjDir)
gq = "
data {
int<lower=0> N;
array[N] int<lower=0> y;
}
parameters {
real<lower=0.00001> Theta;
}
model {
Theta ~ gamma(4, 1000);
for (n in 1:N)
y[n] ~ exponential(Theta);
}
generated quantities{
real y_pred;
y_pred = exponential_rng(Theta);
}
";
data = Dict(
"N" => 3,
"y" => [100, 950, 450]
);
sm = SampleModel("Generate_quantities", gq);
rc = stan_sample(sm; data)
if success(rc)
df = stan_generate_quantities(sm, 1, "1")
df
end
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 1681 | using CSV, DataFrames, NamedTupleTools
using InferenceObjects
using StanSample
stan_schools = """
data {
int<lower=0> J;
vector[J] y;
vector[J] sigma;
}
parameters {
real mu;
real<lower=0> tau;
vector[J] theta_tilde;
}
transformed parameters {
vector[J] theta;
for (j in 1:J)
theta[j] = mu + tau * theta_tilde[j];
}
model {
mu ~ normal(0, 5);
tau ~ cauchy(0, 5);
theta_tilde ~ normal(0, 1);
y ~ normal(theta, sigma);
}
generated quantities {
vector[J] log_lik;
vector[J] y_hat;
for (j in 1:J) {
log_lik[j] = normal_lpdf(y[j] | theta[j], sigma[j]);
y_hat[j] = normal_rng(theta[j], sigma[j]);
}
}
""";
data = Dict(
"J" => 8,
"y" => [28.0, 8.0, -3.0, 7.0, -1.0, 1.0, 18.0, 12.0],
"sigma" => [15.0, 10.0, 16.0, 11.0, 9.0, 11.0, 10.0, 18.0]
)
m_schools = SampleModel("eight_schools", stan_schools)
rc = stan_sample(m_schools; data, save_warmup=true)
if success(rc)
idata = StanSample.inferencedata(
m_schools;
posterior_predictive_var=:y_hat,
log_likelihood_var=[:log_lik],
dims=(; (k => [:school] for k in [:theta, :theta_tilde, :y_hat, :log_like])...),
)
nt = namedtuple(data)
idata = merge(idata, from_namedtuple(; observed_data = nt))
else
@warn "Sampling failed."
end
if :observed_data in propertynames(idata)
idata.observed_data
end
#DataFrame(idata.observed_data)
keys(idata.posterior)
post_schools = read_samples(m_schools, :dataframe)
posterior_schools = DataFrame(idata.posterior)
idata |> display
sample_stats_schools = DataFrame(idata.sample_stats)
sample_stats_schools[1:10, :] |> display
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 499 | using StanSample, DataFrames, InferenceObjects, Test
stan = "
parameters {
matrix[2, 3] x;
}
model {
for (i in 1:2)
x[i,:] ~ std_normal();
}
";
sm = SampleModel("foo", stan);
rc = stan_sample(sm);
df = read_samples(sm, :dataframe)
df |> display
println()
df2 = read_samples(sm, :nesteddataframe)
df2 |> display
println()
idata = inferencedata(sm)
display(idata)
display(idata.posterior.x[15, 2, :, :])
display(df2.x[1015])
@test idata.posterior.x[15, 2, :, :] == df2.x[1015]
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 672 | ######### StanSample Bernoulli example ###########
using AxisKeys
using StanSample
bernoulli_model = "
data {
int<lower=1> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
bernoulli_data = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
# Keep tmpdir across multiple runs to prevent re-compilation
tmpdir = joinpath(@__DIR__, "tmp")
sm = SampleModel("bernoulli_ka", bernoulli_model, tmpdir)
rc = stan_sample(sm; data=bernoulli_data,
num_threads=6, num_cpp_chains=6, num_chains=1, delta=0.85);
if success(rc)
ka = read_samples(sm, :keyedarray)
ka |> display
end
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 2500 | using AxisKeys
using DataFrames, CSV
using StanSample
using Statistics, Test
df = CSV.read(joinpath(@__DIR__, "..", "..", "data", "chimpanzees.csv"), DataFrame);
# Define the Stan language model
stan10_4 = "
data{
int N;
int N_actors;
int pulled_left[N];
int prosoc_left[N];
int condition[N];
int actor[N];
}
parameters{
vector[N_actors] a;
real bp;
real bpC;
}
model{
vector[N] p;
bpC ~ normal( 0 , 10 );
bp ~ normal( 0 , 10 );
a ~ normal( 0 , 10 );
for ( i in 1:504 ) {
p[i] = a[actor[i]] + (bp + bpC * condition[i]) * prosoc_left[i];
p[i] = inv_logit(p[i]);
}
pulled_left ~ binomial( 1 , p );
}
";
data = (N = size(df, 1), N_actors = length(unique(df.actor)),
actor = df.actor, pulled_left = df.pulled_left,
prosoc_left = df.prosoc_left, condition = df.condition);
# Sample using cmdstan
m10_4s = SampleModel("m10.4s", stan10_4)
rc10_4s = stan_sample(m10_4s; data);
# Result rethinking
rethinking = "
mean sd 5.5% 94.5% n_eff Rhat
bp 0.84 0.26 0.43 1.26 2271 1
bpC -0.13 0.29 -0.59 0.34 2949 1
a[1] -0.74 0.27 -1.16 -0.31 3310 1
a[2] 10.88 5.20 4.57 20.73 1634 1
a[3] -1.05 0.28 -1.52 -0.59 4206 1
a[4] -1.05 0.28 -1.50 -0.60 4133 1
a[5] -0.75 0.27 -1.18 -0.32 4049 1
a[6] 0.22 0.27 -0.22 0.65 3877 1
a[7] 1.81 0.39 1.22 2.48 3807 1
";
# Update sections
@testset "KeyedArray manipulations" begin
if success(rc10_4s)
ka = read_samples(m10_4s, :keyedarray)
kb = ka(Symbol("a.1"))
# Other manipulations
@test Tables.istable(ka) == true
# All draws of :a_1
@test size(vcat(kb...)) == (4000,)
# All of parameters @testset "Basic HelpModel" begin
kar = reshape(ka.data, 4000, 9);
@test size(kar) == (4000, 9)
# Axes ranges
@test axes(ka) == (Base.OneTo(1000), Base.OneTo(4), Base.OneTo(9))
# Axes keys
@test axiskeys(ka) == (
1:1000, 1:4,
[Symbol("a.1"), Symbol("a.2"), Symbol("a.3"), Symbol("a.4"),
Symbol("a.5"), Symbol("a.6"), Symbol("a.7"), :bp, :bpC]
)
# A single axis
@test axiskeys(ka, :param) == vcat([Symbol("a.$i") for i in 1:7], :bp, :bpC)
# Test combining vector param 'a'
ma = matrix(ka, "a");
rma = reshape(ma.data, 4000, size(ma, 3))
@test mean(rma, dims=1) β [-0.7 10.9 -1 -1 -0.7 0.2 1.8] atol=0.7
end
end | StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 617 | ######### StanSample Bernoulli example ###########
using AxisKeys
using StanSample
bernoulli_model = "
data {
int<lower=1> N;
array[N] int<lower=0,upper=1> y;
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
bernoulli_data = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
sm = SampleModel("bernoulli", bernoulli_model);
rc = stan_sample(sm; data=bernoulli_data, save_metric=true, save_cmdstan_config=true,
num_threads=6, num_cpp_chains=1, num_chains=6, seed=123);
if success(rc)
chns = read_samples(sm, :keyedarray)
chns |> display
end
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 576 | ######### StanSample Bernoulli example ###########
using AxisKeys
using StanSample
bernoulli_model = "
data {
int<lower=1> N;
array[N] int<lower=0,upper=1> y;
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
bernoulli_data = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
sm = SampleModel("bernoulli", bernoulli_model)
rc = stan_sample(sm; data=bernoulli_data,
num_threads=6, num_cpp_chains=1, seed=123,
num_chains=6, delta=0.85)
if success(rc)
chns = read_samples(sm)
chns |> display
end
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 561 | ######### StanSample Bernoulli example ###########
using AxisKeys
using StanSample
bernoulli_model = "
data {
int<lower=1> N;
array[N] int<lower=0,upper=1> y;
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
bernoulli_data = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
sm = SampleModel("bernoulli", bernoulli_model);
rc = stan_sample(sm; data=bernoulli_data,
num_threads=6, num_cpp_chains=1, num_chains=6, seed=123);
if success(rc)
chns = read_samples(sm)
chns = display
end
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 637 | using StanSample
mwe_model = "
parameters {
real y;
}
model {
y ~ normal(0.0, 1.0);
}
"
sm = SampleModel("mwe_model", mwe_model)
rc_1 = stan_sample(sm; num_chains=5, use_cpp_chains=true, show_logging=true)
if success(rc_1)
post = read_samples(sm, :dataframes)
end
display(available_chains(sm))
rc_2 = stan_sample(sm; num_chains=4, use_cpp_chains=true)
if success(rc_2)
post = read_samples(sm, :dataframes)
end
display(available_chains(sm))
rc_3 = stan_sample(sm; num_chains=4, use_cpp_chains=false, show_logging=true)
if success(rc_3)
post = read_samples(sm, :dataframes)
end
display(available_chains(sm))
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 863 | ######### Stan program example ###########
using MCMCChains
using StanSample
#using StatsPlots
bernoullimodel = "
data {
int<lower=1> N;
array[N] int y;
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
observed_data = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
# Default for tmpdir is to create a new tmpdir location
# To prevent recompilation of a Stan progam, choose a fixed location,
tmpdir=mktempdir()
sm = SampleModel("bernoulli", bernoullimodel, tmpdir);
rc = stan_sample(sm, data=observed_data);
if success(rc)
chns = read_samples(sm, :mcmcchains)
# Describe the results
chns |> display
# Optionally, read samples as a a DataFrame
df=read_samples(sm, :dataframe)
first(df, 5)
df = read_summary(sm)
df[df.parameters .== :theta, [:mean, :ess]]
end
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 1565 | using StanSample, Test
pure = "
parameters {
real r;
real mu;
real nu;
matrix[2, 3] x;
tuple(real, real) bar;
tuple(real, tuple(real, real)) bar2;
tuple(real, tuple(real, tuple(real, real))) bar3;
}
model {
r ~ std_normal();
for (i in 1:2) {
x[i,:] ~ std_normal();
}
bar.1 ~ std_normal();
bar.2 ~ std_normal();
bar2.1 ~ std_normal();
bar2.2.1 ~ std_normal();
bar2.2.2 ~ std_normal();
bar3.1 ~ std_normal();
bar3.2.1 ~ std_normal();
bar3.2.2.1 ~ std_normal();
bar3.2.2.2 ~ std_normal();
mu ~ normal(0, 1);
nu ~ normal(mu, 1);
}
generated quantities {
complex z;
complex_vector[2] zv;
z = nu + nu * 2.0i;
zv = to_complex([3 * nu, 5 * nu]', [nu * 4, nu * 6]');
}
";
sm = SampleModel("pure_01", pure)
rc = stan_sample(sm)
df = read_samples(sm, :dataframe)
ndf = read_samples(sm, :nesteddataframe)
nnt = convert(NamedTuple, ndf)
lr = 1:size(df, 1)
@testset "Test arrays" begin
for i in rand(lr, 5)
@test ndf[i, :x] == reshape(Array(df[i, 4:9]), (2, 3))
@test nnt.x[i] == reshape(Array(df[i, 4:9]), (2, 3))
end
end
@testset "Complex values" begin
for i in rand(lr, 5)
@test ndf[i, :zv] == Array(df[i, ["zv.1", "zv.2"]])
@test nnt.zv[i] == Array(df[i, ["zv.1", "zv.2"]])
end
end
@testset "Tuples" begin
for i in rand(lr, 5)
@test ndf[i, :bar3] == (df[i, 15], (df[i, 16], (df[i, 17], df[i, 18])))
@test nnt.bar3[i] == (df[i, 15], (df[i, 16], (df[i, 17], df[i, 18])))
end
end
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 3623 | using StanSample, Test
stan = "
generated quantities {
real base = normal_rng(0, 1);
int base_i = to_int(normal_rng(10, 10));
tuple(real, real) pair = (base, base * 2);
tuple(real, tuple(int, complex)) nested = (base * 3, (base_i, base * 4.0i));
array[2] tuple(real, real) arr_pair = {pair, (base * 5, base * 6)};
array[3] tuple(tuple(real, tuple(int, complex)), real) arr_very_nested
= {(nested, base*7), ((base*8, (base_i*2, base*9.0i)), base * 10), (nested, base*11)};
array[3,2] tuple(real, real) arr_2d_pair = {{(base * 12, base * 13), (base * 14, base * 15)},
{(base * 16, base * 17), (base * 18, base * 19)},
{(base * 20, base * 21), (base * 22, base * 23)}};
real basep1 = base + 1, basep2 = base + 2;
real basep3 = base + 3, basep4 = base + 4, basep5 = base + 5;
array[2,3] tuple(array[2] tuple(real, vector[2]), matrix[4,5]) ultimate =
{
{(
{(base, [base *2, base *3]'), (base *4, [base*5, base*6]')},
to_matrix(linspaced_vector(20, 7, 11), 4, 5) * base
),
(
{(basep1, [basep1 *2, basep1 *3]'), (basep1 *4, [basep1*5, basep1*6]')},
to_matrix(linspaced_vector(20, 7, 11), 4, 5) * basep1
),
(
{(basep2, [basep2 *2, basep2 *3]'), (basep2 *4, [basep2*5, basep2*6]')},
to_matrix(linspaced_vector(20, 7, 11), 4, 5) * basep2
)
},
{(
{(basep3, [basep3 *2, basep3 *3]'), (basep3 *4, [basep3*5, basep3*6]')},
to_matrix(linspaced_vector(20, 7, 11), 4, 5) * basep3
),
(
{(basep4, [basep4 *2, basep4 *3]'), (basep4 *4, [basep4*5, basep4*6]')},
to_matrix(linspaced_vector(20, 7, 11), 4, 5) * basep4
),
(
{(basep5, [basep5 *2, basep5 *3]'), (basep5 *4, [basep5*5, basep5*6]')},
to_matrix(linspaced_vector(20, 7, 11), 4, 5) * basep5
)
}};
}
";
sm = SampleModel("brian_data", stan)
rc = stan_sample(sm)
df = read_samples(sm, :dataframe)
ndf = read_samples(sm, :nesteddataframe)
nnt = convert(NamedTuple, ndf)
lr = 1:size(df, 1)
pair_df = StanSample.select_nested_column(df, :pair)
nested_df = StanSample.select_nested_column(df, :nested)
arr_pair_df = StanSample.select_nested_column(df, :arr_pair)
avn_df = StanSample.select_nested_column(df, :arr_very_nested)
a2d_df = StanSample.select_nested_column(df, :arr_2d_pair)
u_df = StanSample.select_nested_column(df, :ultimate)
@testset "Pair" begin
for i in rand(lr, 10)
@test ndf.pair[i] == (pair_df[i, 1], pair_df[i, 2])
end
end
@testset "Nested" begin
for i in rand(lr, 15)
@test ndf.nested[i][1] == nested_df[i, 1]
@test ndf.nested[i][2] == (nested_df[i, 2], nested_df[i, 3])
end
end
@testset "Arr_pair" begin
for i in rand(lr, 15)
@test ndf.arr_pair[i] == [(arr_pair_df[i, 1], arr_pair_df[i, 2]),
(arr_pair_df[i, 3], arr_pair_df[i, 4])]
end
end
@testset "Arr_very_nested" begin
for i in rand(lr, 15)
@test ndf.arr_very_nested[i][3][1][1] == avn_df[i, 1]
@test ndf.arr_very_nested[i][3][1][2] == (avn_df[i, 2], avn_df[i, 3])
@test ndf.arr_very_nested[i][3][2] == avn_df[i, 12]
end
end
@testset "Arr_2d_pair" begin
for i in rand(lr, 15)
@test ndf.arr_2d_pair[i][3, 2] == (a2d_df[i, 11], a2d_df[i, 12])
end
end
@testset "Ultimate" begin
for i in rand(lr, 15)
@test ndf.ultimate[i][2, 3][1][4] == Array(u_df[i, 135:136])
@test ndf.ultimate[i][2, 3][2] == reshape(Array(u_df[i, (end-19):end]), 4, 5)
end
end
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 584 | ######### StanSample Bernoulli example ###########
using StanSample, DataFrames, Test
ProjDir = @__DIR__
bernoulli_model = "
data {
int<lower=1> N;
array[N] int y;
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
data = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])
isdir(tmpdir) && rm(tmpdir; recursive=true)
sm = SampleModel("bernoulli", bernoulli_model);
rc1 = stan_sample(sm; data, sig_figs=18);
if success(rc1)
st = read_samples(sm)
#display(DataFrame(st))
end
@test size(DataFrame(st), 1) == 4000
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 608 | using StanSample, DataFrames, JSON, InferenceObjects, NamedTupleTools
stan = "
parameters {
real r;
matrix[2, 2] x;
tuple(real, real) bar;
}
model {
r ~ std_normal();
for (i in 1:2) {
x[i,:] ~ std_normal();
}
bar.1 ~ std_normal();
bar.2 ~ std_normal();
}
";
tmpdir = joinpath(@__DIR__, "tmp")
sm = SampleModel("tuple_model", stan, tmpdir)
rc = stan_sample(sm)
chns, names = read_samples(sm, :array; return_parameters=true)
display(names)
println()
display(size(chns))
println()
ex = StanSample.extract(chns, names; permute_dims=true)
println(ex[:bar][1:10])
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 682 | using StanSample, DataFrames, JSON, InferenceObjects
stan = "
parameters {
real r;
matrix[2, 2] x;
tuple(real, real) bar;
}
model {
r ~ std_normal();
for (i in 1:2) {
x[i,:] ~ std_normal();
}
bar.1 ~ std_normal();
bar.2 ~ std_normal();
}
";
tmpdir = joinpath(@__DIR__, "tmp")
sm = SampleModel("tuple_model", stan, tmpdir)
rc = stan_sample(sm)
idata = inferencedata(sm)
display(idata)
println()
display(idata.posterior)
println()
display(idata.posterior.x)
df2 = read_samples(sm, :nesteddataframe)
display(df2)
chns, names = read_samples(sm, :array; return_parameters=true)
display(names)
println()
display(size(chns))
println()
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | code | 1468 | using StanSample, DataFrames, JSON, InferenceObjects, Test
stan = "
parameters {
real r;
matrix[2, 3] x;
tuple(real, real) bar;
tuple(real, tuple(real, real)) bar2;
tuple(real, tuple(real, tuple(real, real))) bar3;
}
model {
r ~ std_normal();
for (i in 1:2) {
x[i,:] ~ std_normal();
}
bar.1 ~ std_normal();
bar.2 ~ std_normal();
bar2.1 ~ std_normal();
bar2.2.1 ~ std_normal();
bar2.2.2 ~ std_normal();
bar3.1 ~ std_normal();
bar3.2.1 ~ std_normal();
bar3.2.2.1 ~ std_normal();
bar3.2.2.2 ~ std_normal();
}
";
tmpdir = joinpath(@__DIR__, "tmp")
sm = SampleModel("tuple_model_2", stan, tmpdir)
rc = stan_sample(sm)
chns, col_names = read_samples(sm, :array; return_parameters=true)
display(col_names)
println()
display(size(chns))
println()
ex = StanSample.extract(chns, col_names; permute_dims=true)
println(size(ex[:bar]))
println()
println(ex[:bar][1:5])
println()
println(ex[:bar3][1:5])
println()
println(size(ex[:x]))
println()
display(ex[:x][1, 1, :, :])
println()
df = read_samples(sm, :dataframe)
df |> display
idata = inferencedata(sm)
display(idata)
println()
display(idata.posterior)
println()
display(idata.posterior.x)
df2 = read_samples(sm, :nesteddataframe)
#display(df2)
chns, col_names = read_samples(sm, :array; return_parameters=true)
display(col_names)
println()
display(size(chns))
println()
@test idata.posterior.bar3[1, 1, 1, :] == chns[1, 13:16, 1]
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | docs | 2404 | # Installing cmdstan.
## Clone the cmdstan.git repo. Big! Takes a while, by far the longest step.
```
git clone https://github.com/stan-dev/cmdstan.git --recursive cmdstan
# or e.g.
# git clone -b v2.29.1 https://github.com/stan-dev/cmdstan.git --recursive cmdstan
```
If you plan to use BridgeStan, I suggest to also clone BridgeStan at this time:
```
git clone --recurse-submodules https://github.com/roualdes/bridgestan.git
```
Both cmdstan and bridgestan a fairly big!
If bridgestan is installed in the same directory as cmdstan, StanSample will automatically set up some support.
## Customize cmdstan.
```
cd cmdstan
# Create ./make/local from ./make/local.example or copy from a previous install
# ls -lia ./make/local
#ls: ./make/local: No such file or directory
# If you want to customize the ./make/local.example file
# ls -lia ./make/local.example
# cp -R ./make/local.example ./make/local
# ls -lia ./make/local
# Now un-comment the CXX=clang++ and STAN_THREADS=true lines in ./make/local.
# Or do:
touch ./make/local
echo "CXX=clang++\nSTAN_THREADS=true" > ./make/local
```
## Build cmdstan.
```
# If a previous install has been compiled in this directory:
# make clean-all # or
# make -B -j9 build
make -j9 build
```
## Test cmdstan was built correctly.
```
make examples/bernoulli/bernoulli
./examples/bernoulli/bernoulli num_threads=6 sample num_chains=4 data file=examples/bernoulli/bernoulli.data.json
bin/stansummary output_*.csv
```
## For Stan.jl etc. to find cmdstan, export CMDSTAN
```
export CMDSTAN=`pwd` # Use value of `pwd` here
```
## Below an example of the `make/local` file mentioned above with the CXX and STAN_THREADS lines enabled.
```
# To use this template, make a copy from make/local.example to make/local
# and uncomment options as needed.
# Be sure to run `make clean-all` before compiling a model to make sure
# everything gets rebuilt.
# Change the C++ compiler if needed
CXX=clang++ # Only needed on macOS if clang++ is preferred.
# Enable threading
STAN_THREADS=true
# Enable the MPI backend (requires also setting (replace gcc with clang on Mac)
# STAN_MPI=true
# CXX=mpicxx
# TBB_CXX_TYPE=gcc
```
If you have enabled BridgeStan you can test this with:
```
cd bridgestan
# Also install above `make/local` in the bridgestan directory
cp ../cmdstand/make.local .
make test_models/multi/multi_model.so
``` | StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 7.10.1 | fa6d92aa63d72f35adfbe99d79f60dd3f9604f0e | docs | 14307 | # StanSample v7.10
| **Project Status** | **Build Status** |
|:---------------------------:|:-----------------:|
|![][project-status-img] | ![][CI-build] |
[docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg
[docs-dev-url]: https://stanjulia.github.io/StanSample.jl/latest
[docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg
[docs-stable-url]: https://stanjulia.github.io/StanSample.jl/stable
[CI-build]: https://github.com/stanjulia/StanSample.jl/workflows/CI/badge.svg?branch=master
[issues-url]: https://github.com/stanjulia/StanSample.jl/issues
[project-status-img]: https://img.shields.io/badge/lifecycle-active-green.svg
## Note
After many years I have decided to step away from my work with Stan and Julia. My plan is to be around until the end of 2024 for support if someone decides to step in and take over further development and maintenance work.
At the end of 2024 I'll archive the different packages and projects included in the Github organisations StanJulia, StatisticalRethingJulia and RegressionAndOtherStoriesJulia if no one is interested (and time-wise able!) to take on this work.
I have thoroughly enjoyed working on both Julia and Stan and see both projects mature during the last 15 or so years. And I will always be grateful for the many folks who have helped me on numerous occasions. Both the Julia and the Stan community are awesome to work with! Thanks a lot!
## Purpose
StanSample.jl wraps `cmdstan`'s `sample` method to generate draws from a Stan Language Program. It is the primary workhorse in the StanJulia ecosystem.
StanSample.jl v7.8.0 supports the new save_metric and save_cmdstan_config command keywords.
StanSample.jl v7.6 supports recent enhancements to the Stan Language visible in the output files (.csv files). It supports array, tuples and complex values in `output_format=:nesteddataframe`.
StanSample.jl v7 supports InferenceObjects.jl as a package extension. Use `inferencedata(model)` to create an InferenceData object. See also note 1 below. An example Pluto notebook can be found [here](https://github.com/StanJulia/StanExampleNotebooks.jl/blob/main/notebooks/DimensionalData/dimensionaldata.jl)
## Notes
1. Use of both InferenceObjects.jl and the `read_samples()` output_format options :dimarray and :dimarrays (based on DimensionalData.jl) creates a conflict. Hence these output_format options are no longer included. See the example Pluto notebook `test_dimarray.jl`in [StanExampleNotebooks.jl](https://github.com/StanJulia/StanExampleNotebooks.jl) for an example how to still use that option. At some point in time InferenceObjects.jl might provide an alternative way to create a stacked DataFrame and/or DimensionalData object.
2. I've removed BridgeStan.jl from StanSample.jl. Two example Pluto notebooks, `test_bridgestan.jl` and
`bridgestan_stansample_example.jl` in [StanExampleNotebooks.jl](https://github.com/StanJulia/StanExampleNotebooks.jl/tree/main/notebooks/BridgeStan) demonstrate how BridgeStan can be used.
## Prerequisites
You need a working installation of [Stan's cmdstan](https://mc-stan.org/users/interfaces/cmdstan.html), the path of which you should specify in either `CMDSTAN` or `JULIA_CMDSTAN_HOME`, e.g. in your `~/.julia/config/startup.jl` include a line like:
```Julia
# CmdStan setup
ENV["CMDSTAN"] =
expanduser("~/.../cmdstan/") # replace with your path
```
Or you can define and export CMDSTAN in your .profile, .bashrc, .zshrc, etc.
For more details see [this file](https://github.com/StanJulia/StanSample.jl/blob/master/INSTALLING_CMDSTAN.md).
See the `example/bernoulli.jl` for a basic example. Many more examples and test scripts are available in this package and also in Stan.jl.
## Multi-threading and multi-chaining behavior.
From StanSample.jl v6 onwards 2 mechanisms for in paralel drawing samples for chains are supported, i.e. on C++ level (using threads) and on Julia level (by spawning a Julia process for each chain).
The `use_cpp_chains` keyword argument in the call to `stan_sample()` determines if chains are executed on C++ level or on Julia level. By default, `use_cpp_chains = false`.
From cmdstan-2.28.0 onwards it is possible to use C++ threads to run multiple chains by setting `use_cpp_chains=true` in the call to `stan_sample()`:
```
rc = stan_sample(_your_model_; use_cpp_chains=true, [ data | init | ...])
```
To enable multithreading in `cmdstan` specify this before the build process of `cmdstan`, i.e. before running `make -j9 build`. I typically create a `path_to_my_cmdstan_directory/make/local` file containing `STAN_THREADS=true`. You can see an example in `.github/CI.yml` script.
By default in either case `num_chains=4`. See `??stan_sample` for all keyword arguments. Internally, `num_chains` will be copied to either `num_cpp_chains` or `num_julia_chains`.
Currently I do not suggest to use both C++ and Julia level chains. Based on the value of `use_cpp_chains` (true or false) the `stan_sample()` method will set either `num_cpp_chains=num_chains; num_julia_chains=1` or `num_julia_chains=num_chains;num_cpp_chain=1`.
This default behavior can be disabled by setting the postional `check_num_chains` argument in the call to `stan_sample()` to `false`.
Threads on C++ level can be used in multiple ways, e.g. to run separate chains and to speed up certain operations. By default StanSample.jl's SampleModel sets the C++ num_threads to 4.
See the (updated for cmdstan-2.29.0) RedCardsStudy example [graphs](https://github.com/StanJulia/Stan.jl/tree/master/Examples/RedCardsStudy/graphs) in Stan.jl and [here](https://discourse.mc-stan.org/t/stan-num-threads-and-num-threads/25780/5?u=rob_j_goedman) for more details, in particular with respect to just enabling threads and including TBB or not on Intel, and also some indications of the performance on an Apple's M1/ARM processor running native (not using Rosetta and without Intel's TBB).
In some cases I have seen performance advantages using both Julia threads and C++ threads but too many combined threads certainly doesn't help. Note that if you only want 1000 draws (using 1000 warmup samples for tuning), multiple chains (C++ or Julia) do not help.
## Installation
This package is registered. It can be installed with:
```Julia
pkg> add StanSample.jl
```
## Usage
Use this package like this:
```Julia
using StanSample
```
See the docstrings (in particular `??StanSample`) for more help.
## Versions
### Version 7.9-7.10
1. Fix by zeyus for cmdstan options
### Versions 7.5-7.8
1. Switching to cmdstan v2.35.0
2. Support for new command keywords settings `save_metric1` and `save_cmdstan_config`
3. Support for Stan .csv file extensions in output format :nesteddataframe.
### Version 7.1-4.0
1. Switch to cmdstan.2.32.0 for testing
2. Removed BridgeStan extension
### Version 7.0.1
1. Updated column types for sample_stats (NamedTuples and DataFrames)
### Version 7.0.0
1. InferenceObjects.jl support.
2. Conditional support for BridgeStan.
3. Reduced support for :dimarray and :dimarrays option in `read_samples()`.
### Version 6.13.8
1. Support for InferenceObjects v0.3.
2. Many `tmp` directories created during testing have been removed from the repo.
3. Support for BridgeStan v1.0 has been dropped.
### Version 6.13.7
1. Moved InferenceObjects behind Requires
2. Method `inferencedata()` is using `inferencedata3()` currently
### Version 6.13.6
1. Added inferencedata3()
2. Added option to enable logging in the terminal (thanks to @FelixNoessler)
### Version 6.13.0 - 6.13.5
1. Many more (minor and a bit more) updates to `inferencedata()`
2. Updates to BridgeStan (more to be expected soon)
3. Fix for chain numbering when using CPP threads (thanks to @apinter)
4. Switched to use cmdstan-2.32.0 for testing
5. Updates to Examples_Notebooks (in particular now using both `inferencedata()` and `inferencedata2()`)
6. Dropped support for read_samples(m, :dimarray) as this conflicted with InferenceData
### Version 6.12.0
1. Added experimental version of inferencedata(). See example in ./test/test_inferencedata.jl
2. Added InferenceObjects.jl as a dependency
3. Dropped MonteCarloMeasurements.jl as a dependency (still supported using Requires)
4. Dropped MCMCChains.jl as a dependency (still supported using Requires)
5. Dropped AxisKeys.jl as a dependency
### Version 6.11.5
1. Add sig_figs field to SampleModel (thanks to Andrew Radcliffe).
This change enables the user to control the number of significant digits which are preserved in the output. sig_figs=6 is the default cmdstan option, which is what StanSample has been defaulting to.
Typically, a user should prefer to generate outputs with sig_figs=18 so that the f64's are uniquely identified. It might be wise to make such a recommendation in the documentation, but I suppose that casual users would complain about the correspondingly increased .csv sizes (and subsequent read times).
### Version 6.11.4
1. Dropped conversion to Symbols in `read_csv_files()` if internals are requested (`include_internals=true`)
2. Added InferenceObjects as a dependency.
This is part of the work with Set Haxen to enable working with InferenceData objects in a future release (probably v6.12).
### Version 6.11.1
1. Fix bridge_path in SampleModel.
### Version 6.11.0
1. Support for BridgeStan as a dependency of StanSample.jl (Thanks to Seth Axen)
### Version 6.10.0
1. Support for the updated version of BridgeStan.
### Version 6.9.3
1. A much better test has been added for multidimensional input arrays thanks to Andy Pohl (`test/test_JSON`).
### Version 6.9.2
1. More general handling of Array input data to cmdstan if the Array has more than 2 dimensions.
### Version 6.9.2
1. Experimental support for [BridgeStan](https://gitlab.com/roualdes/bridgestan).
### Version 6.9.0-1
1. For chains read in as either a :dataframe or a :nesteddataframe the function matrix(...) has been replaced by array(...). Depending on the the eltype of the requested column, array will return a Vector, a Matrix or an Array with 3 dimensions.
2. The function describe() has been added which returns a df with results based on Stan's stansummary executable.
3. A new method has been added to DataFrames.getindex to extract cells in stansummary DataFrame, e.g. ss1_1[:a, :ess].
### Version 6.8.0 (nesteddataframe is experimental!)
1. Added :nesteddataframe option to read_samples(). Maybe useful if cmdstan returns vectors or matrices.
2. Extended the matrix() function to matrix(df, Symbol).
### Version 6.7.0
1. Drops support for creating R files.
2. Requires StanBase 4.7.0
### Version 6.4.0
1. Introduced `available_chains("your model")`
2. Updated Redcardsstudy results for cmdstan-2.29.0
### Version 6.3.0-1
1. Switch to cmdstan-2.29.0 testing.
### Version 6.2.1
1. Better handling of .csv chain retrieval in read_csv_files.
### Version 6.2.0
1. Revert back to by default use Julia level chains.
### Version 6.1.1-2
1. Documentation improvements.
### version 6.1.0
1. Modified (simplified?) use of `num_chains` to define either number of chains on C++ or Julia level based on `use_cpp_chains` keyword argument to `stan_sample()`.
### Version 6.0.0
1. Switch to C++ threads by default.
2. Use JSON3.jl for data.json and init.json as replacement for data.r and init.r files.
3. The function `read_generated_quantities()` has been dropped.
4. The function `stan_generate_quantites()` now returns a DataFrame.
### Version 5.4 - 5.6
1. Full usage of num_threads and num_cpp_threads
### Version 5.3.1 & 5.3.2
1. Drop the use of the STAN_NUM_THREADS environment variable in favor of the keyword num_threads in stan_sample(). Default value is 4.
### Version 5.3
1. Enable local multithreading. Local as cmdstan needs to be built with STAN_THREADS=true (see make/local examples).
### Version 5.2
1. Switch use CMDSTAN environment variable
### version 5.1
1. Testing with conda based install (Windows, but also other platforms)
### Versions 5.0
1. Docs updates.
2. Fix for DimensionalData v0.19.1 (@dim no longer exported)
3. Added DataFrame parameter blocking option.
### Version 5.0.0
1. Keyword based SampleModel and stan_sample().
2. Dropped dependency on StanBase.
3. Needs cmdstan 2.28.1 (for num_threads).
4. `tmpdir` now positional argument in SampleZModel.
5. Refactor src dir (add `common` subdir).
6. stan_sample() is now an alias for stan_run().
### Version 4.3.0
1. Added keywords seed and n_chains to stan_sample().
2. SampleModel no longer uses shared fields (prep work for v5).
### version 4.2.0
1. Minor updates
2. Added test for MCMCChains
### Version 4.1.0
1. The addition of :dimarray and :dimarrays output_format (see ?read_samples).
2. No longer re-exporting many previously exported packages.
3. The use of Requires.jl to enable most output_format options.
4. All example scripts have been moved to Stan.jl (because of item 3).
### Version 4.0.0 (**BREAKING RELEASE!**)
1. Make KeyedArray chains the read_samples() default output.
2. Drop the output_format kwarg, e.g.: `read_samples(model, :dataframe)`.
3. Default output format is KeyedArray chains, i.e.: `chns = read_samples(model)`.
### Version 3.1.0
1. Introduction of Tables.jl interface as an output_format option (`:table`).
2. Overloading Tables.matrix to group a variable in Stan's output file as a matrix.
3. Re-used code in read_csv_files() for generated_quantities.
4. The read_samples() method now consistently applies keyword arguments start and chains.
5. The table for each chain output_format is :tables.
6.
### Version 3.0.1
1. Thanks to the help of John Wright (@jwright11) all StanJulia packages have been tested on Windows. Most functionality work, with one exception. Stansummary.exe fails on Windows if warmup samples have been saved.
### Version 3.0.0
1. By default read_samples(model) will return a NamedTuple with all chains appended.
2. `output_format=:namedtuples` will provide a NamedTuple with separate chains.
### Version 2.2.5
1. Thanks to @yiyuezhuo, a function `extract` has been added to simplify grouping variables into a NamedTuple.
2. read_sample() output_format argument has been extended with an option to request conversion to a NamedTuple.
### Version 2.2.4
1. Dropped the use of pmap in StanBase
| StanSample | https://github.com/StanJulia/StanSample.jl.git |
|
[
"MIT"
] | 0.2.2 | dbcb0d532975547a973fc334c76338e397850709 | code | 643 | using VoronoiGraph
using Documenter
DocMeta.setdocmeta!(VoronoiGraph, :DocTestSetup, :(using VoronoiGraph); recursive=true)
makedocs(;
modules=[VoronoiGraph],
authors="Sikorski <[email protected]> and contributors",
repo="https://github.com/axsk/VoronoiGraph.jl/blob/{commit}{path}#{line}",
sitename="VoronoiGraph.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://axsk.github.io/VoronoiGraph.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/axsk/VoronoiGraph.jl",
devbranch="main",
)
| VoronoiGraph | https://github.com/axsk/VoronoiGraph.jl.git |
|
[
"MIT"
] | 0.2.2 | dbcb0d532975547a973fc334c76338e397850709 | code | 1069 | using BenchmarkTools
using VoronoiGraph
using Random
function bsuite(
dims = 2:5,
ns = [100, 1000])
suite = BenchmarkGroup()
for d in dims
suite[d] = BenchmarkGroup()
for n in ns
Random.seed!(1)
x = rand(d,n)
suite[d][n] = @benchmarkable voronoi($x) seconds=1
end
end
return suite
end
const parameterfile = "../cache/params.json"
function autotune!(suite, load=true)
if load && isfile(parameterfile)
try
println("Loading benchmark parameters")
loadparams!(suite, BenchmarkTools.load(parameterfile)[1], :evals, :samples);
return
catch
end
end
println("Tuning benchmark parameters")
tune!(suite)
BenchmarkTools.save("params.json", params(suite))
end
function autorun()
s = bsuite()
autotune!(s)
println("Running benchmark")
results = run(s, verbose = true)
println("Saving benchmark results")
BenchmarkTools.save("output.json", median(results))
return s, results
end
| VoronoiGraph | https://github.com/axsk/VoronoiGraph.jl.git |
|
[
"MIT"
] | 0.2.2 | dbcb0d532975547a973fc334c76338e397850709 | code | 425 | module VoronoiGraph
using LinearAlgebra
using NearestNeighbors
using Polyhedra
using ProgressMeter
using SparseArrays
using StaticArrays
using RecipesBase
include("voronoi.jl")
include("raycast.jl")
include("volume.jl")
include("plot.jl")
include("montecarlo.jl")
export voronoi, voronoi_random
export volumes
export mc_volumes, mc_integrate
for i in 1:10
precompile(voronoi, (Vector{SVector{i, Float64}},))
end
end
| VoronoiGraph | https://github.com/axsk/VoronoiGraph.jl.git |
|
[
"MIT"
] | 0.2.2 | dbcb0d532975547a973fc334c76338e397850709 | code | 4643 | using SpecialFunctions
"""
mc_volume(i, xs, nmc, searcher)
Estimate the area and volume of the `i`-th Voronoi cell from the Voronoi Diagram generated by `xs`
by a Monte Carlo estimate from random rays
"""
function mc_volume(i, xs, nmc=1000, searcher = Raycast(xs))
y, Ξ΄y, V, A = mc_integrate(x->1, i, xs, nmc, 0, searcher)
A, V
end
"""
mc_volumes(xs::Points, nmc=1000)
Estimate the areas and volumes of the Voronoi Cells generated by `xs` using `nmc` Monte Carlo samples.
# Returns
- `SparseMatrix`: the areas of the common boundaries of two cells
- `Vector`: the volumes of each cell
"""
function mc_volumes(xs::Points, nmc=1000, symmetrized=true)
V = zeros(length(xs))
A = spzeros(length(xs), length(xs))
searcher = Raycast(xs)
for i in 1:length(xs)
a, v = mc_volume(i, xs, nmc, searcher)
V[i] = v
A[:, i] = a
end
#A = (A + A') / 2
if symmetrized
A = (A + A') / 2
end
A, V
end
"""
mc_volumes(sig::Vertices, xs::Points, nmc=1000)
In the case when the simplicial complex is already known this information can be used
to speed up the Monte-Carlo sampling by restricting the search space
"""
function mc_volumes(Ο::Vertices, xs::Points, nmc=1000)
V = zeros(length(xs))
A = spzeros(length(xs), length(xs))
searcher = Raycast(xs)
neigh = neighbors(Ο)
for i in 1:length(xs)
ix = [i; neigh[i]]
a, v = mc_volume(1, xs[ix], nmc, RaycastBruteforce())
V[i] = v
A[ix, i] = a
end
#A = (A + A') / 2
A, V
end
# TODO: this belongs in its own file, something like topology.jl or so
"""
neighbors(sig::Vertices) --> Dict{Int, Vector{Int}}
Compute the neighbors of all generators.
"""
neighbors(Ο::Vertices) = neighbors(keys(Ο))
function neighbors(Ο)
d = Dict{Int, Vector{Int}}()
for s in Ο
for i in s
v = get!(d, i, Vector{Int}())
append!(v, s)
end
end
for i in keys(d)
unique!(d[i])
filter!(x->x != i, d[i])
end
return d
end
"""
mc_integrate(f::Function, i::Int, xs::Points, nmc=1000, nmc2=1000, searcher=Raycast(xs))
Integrate function `f` over cell `i` and its boundary using `nmc` rays per cell and `nmc2` points per ray for the volume integral.
# Returns:
- `Vf::Real`: the volume integral of `f`
- `Af::SparseVector`: Af[j] is the surface integral of `f` over the intersection between cells i and j.
- `V::Real`: the volume of cell `i`
- `A::SparseVector`: A[j] is the surface area of the intersection between cells i and j.
"""
function mc_integrate(f::Function, i::Int, xs::Vector, nmc=1000, nmc2=1000, searcher = Raycast(xs))
x = xs[i]
d = length(x)
# volume/area computations are basically for free, leaving them commented for now
V = 0.
A = spzeros(length(xs))
y = 0.
Ξ΄y = spzeros(length(xs))
for _ in 1:nmc
u = normalize(randn(d))
(j, t) = raycast([i], x, u, xs, searcher)
V += t^d
if t < Inf
for _ in 1:nmc2
r = t * rand()
xβ² = x + u * r
y += f(xβ²) * r^(d-1) * t
end
j = j[1] == i ? j[2] : j[1] # choose the other generator (the one we didnt start with)
normal = normalize(xs[j] - xs[i])
dA = t ^ (d-1) / abs(dot(normal, u))
A[j] += dA
Ξ΄y[j] += dA * f(x + t*u)
end
end
c_vol = pi^(d/2) / gamma(d/2 + 1)
c_area = d * c_vol
V *= c_vol / nmc
A *= c_area / nmc
y *= c_area / nmc / nmc2
Ξ΄y *= c_area / nmc
y, Ξ΄y, V, A
end
function mc_integrate(f, Ο::Vertices, xs::Points, nmc, nmc2)
return mc_integrate_i((x,i)->f(x), Ο, xs, nmc, nmc2)
end
# MC integration using f(x, i) function which is also passed the index of the cell
function mc_integrate_i(f, Ο::Vertices, xs::Points, nmc, nmc2)
n = length(xs)
ys = zeros(n)
βys = zeros(n)
neigh = neighbors(Ο)
for i in 1:n
ix = [i; neigh[i]]
y, βy, V, A = mc_integrate(x->f(x, i), 1, xs[ix], nmc, nmc2, RaycastBruteforce())
ys[i] = y
βys[i] = sum(βy)
end
return ys, βys
end
function mc_integrate(f, xs::Vector, nmc, nmc2=1, symmetrized=true)
V = zeros(length(xs))
Y = zeros(length(xs))
A = spzeros(length(xs), length(xs))
dY = spzeros(length(xs), length(xs))
for i in 1:length(xs)
y, dy, v, a = mc_integrate(f, i, xs, nmc, nmc2)
Y[i] = y
dY[i,:] = dy
V[i] = v
A[i,:] = a
end
if symmetrized
A = (A + A') / 2
dY = (A + A') / 2
end
Y, dY, V, A
end
| VoronoiGraph | https://github.com/axsk/VoronoiGraph.jl.git |
|
[
"MIT"
] | 0.2.2 | dbcb0d532975547a973fc334c76338e397850709 | code | 1061 | @userplot VoronoiPlot
@recipe function f(p::VoronoiPlot; fill_z=nothing)
v, P = p.args
fs = faces(v, P)
xs = reduce(hcat, P)
lims = extrema(xs, dims=2)
label --> ""
xlims --> lims[1] .* 1.1
ylims --> lims[2] .* 1.1
for (i, f) in enumerate(fs)
@series begin
if !isnothing(fill_z)
fill_z := fill_z[i]
end
if !hasallrays(f)
f
else
[]
end
end
end
@series begin
seriestype := :scatter
xs[1,:], xs[2,:]
end
end
function faces(vertices, P::AbstractVector)
dim = length(P[1])
conns = Dict{Int, Set{Int}}()
for (sig, _) in vertices
for x in sig
v = get!(conns, x, Set{Int}())
union!(v, sig)
end
end
faces = [face(i, conns[i], P) for i in 1:length(P)]
#conns
end
function face(i, js, P)
halfspaces = []
A = P[i]
for j in js
i == j && continue
B = P[j]
u = B-A
b = dot(u, (A+B)/2)
hf = HalfSpace(u, b)
push!(halfspaces, hf)
end
halfspaces = [h for h in halfspaces]
return polyhedron(hrep(halfspaces))
end
| VoronoiGraph | https://github.com/axsk/VoronoiGraph.jl.git |
|
[
"MIT"
] | 0.2.2 | dbcb0d532975547a973fc334c76338e397850709 | code | 5756 |
## Implementations of different raycasting search algorithms
# default raycast
Raycast(xs) = RaycastIncircleSkip(KDTree(xs))
struct RaycastBruteforce end
""" shooting a ray in the given direction, find the next connecting point.
This is the bruteforce variant, using a linear search to find the closest point """
function raycast(sig::Sigma, r, u, xs, searcher::RaycastBruteforce)
(tau, ts) = [0; sig], Inf
x0 = xs[sig[1]]
c = maximum(dot(xs[g], u) for g in sig)
skip(i) = (dot(xs[i], u) <= c) || i β sig
for i in 1:length(xs)
skip(i) && continue
x = xs[i]
t = (sum(abs2, r .- x) - sum(abs2, r .- x0)) / (2 * u' * (x-x0))
if 0 < t < ts
(tau, ts) = vcat(sig, [i]), t
end
end
return sort(tau), ts
end
struct RaycastBisection{T}
tree::T
tmax
eps::Float64
end
""" shooting a ray in the given direction, find the next connecting point.
This variant (by Poliaski, Pokorny) uses a binary search """
function raycast(sig::Sigma, r::Point, u::Point, xs::Points, searcher::RaycastBisection)
tau, tl, tr = [], 0, searcher.tmax
x0 = xs[sig[1]]
while tr-tl > searcher.eps
tm = (tl+tr)/2
i, _ = nn(searcher.tree, r+tm*u)
x = xs[i]
if i in sig
tl = tm
else
tr = (sum(abs2, r .- x) - sum(abs2, r .- x0)) / (2 * u' * (x-x0))
tau = vcat(sig, [i])
# early stopping
idxs, _ = knn(searcher.tree, r+tr*u, length(sig)+1, true)
length(intersect(idxs, [sig; i])) == length(sig)+1 && break
end
end
if tau == []
tau = [0; sig]
tr = Inf
end
return sort(tau), tr
end
struct RaycastIncircle{T}
tree::T
tmax::Float64
end
""" Shooting a ray in the given direction, find the next connecting point.
This variant uses an iterative NN search """
function raycast(sig::Sigma, r::Point, u::Point, xs::Points, searcher::RaycastIncircle)
i = 0
t = 1
x0 = xs[sig[1]]
local d, n
# find a t large enough to include a non-boundary (sig) point
while t < searcher.tmax
n, d = nn(searcher.tree, r+t*u)
if d==Inf
warn("d==Inf in raycast expansion, this should never happen")
return [0; sig], Inf
end
if n in sig
t = t * 2
else
i = n
break
end
end
if i == 0
return [0; sig], Inf
end
# sucessively reduce incircles unless nothing new is found
while true
x = xs[i]
t = (sum(abs2, r - x) - sum(abs2, r - x0)) / (2 * u' * (x-x0))
j, _ = nn(searcher.tree, r+t*u)
if j in [sig; i]
break
else
i = j
end
end
tau = sort([i; sig])
return tau, t
end
struct RaycastIncircleSkip{T}
tree::T
end
"""
raycast(sig::Sigma, r::Point, u::Point, xs::Points, seacher::RaycastIncircleSkip)
Return `(tau, t)` where `tau = [sig..., i]` are the new generators
and `t` the distance to walk from `r` to find the new representative.
`::RaycastIncircleSkip` uses the nearest-neighbours skip predicate
to find the initial candidate on the right half plane.
Resumes with successive incircle searches until convergence
(just as in ``::RaycastIncircle`).
Q: Why is this routine split in these two parts
instead of only iterating on the right half plane?
A: The first might find no generator in case of a ray. This is handled explicitly here.
"""
function raycast(sig::Sigma, r::Point, u::Point, xs::Points, searcher::RaycastIncircleSkip)
x0 = xs[sig[1]]
# only consider points on the right side of the hyperplane
c = maximum(dot(xs[g], u) for g in sig)
skip(i) = (dot(xs[i], u) <= c) || i β sig
# shift candidate onto the plane spanned by the generators
candidate = r + u * (u' * (x0-r))
# compute heuristic t assuming the resulting delauney simplex was regular
# this reduces number of extra searches by about 10%
if length(sig) > 1
n = length(sig)
radius = norm(candidate-x0)
#radius = sum(norm(candidate-xs[s]) for s in sig) / n # better but slower
t = radius / sqrt((n+1)*(n-1))
candidate += t * u
end
is, _ = knn(searcher.tree, candidate, 1, false, skip)
(length(is) == 0) && return [0; sig], Inf # no point was found
i = is[1]
# sucessively reduce incircles unless nothing new is found
while true
x = xs[i]
t = (sum(abs2, r - x) - sum(abs2, r - x0)) / (2 * u' * (x-x0))
candidate = r + t*u
j, d = nn(searcher.tree, candidate)
(j in sig || j == i) && break # converged to the smallest circle
dold = sqrt(sum(abs2, x0-candidate))
isapprox(d, dold) && @warn "degenerate vertex at $sig + [$i] ($d $dold)"
i = j
end
tau = sort([i; sig])
return tau, t
end
struct RaycastCompare
tree::KDTree
tmax
eps
timings
end
RaycastCompare(xs) = RaycastCompare(KDTree(xs), 1_000., 1e-8, zeros(4))
function raycast(sig::Sigma, r::Point, u::Point, xs::Points, searcher::RaycastCompare)
s1 = RaycastBruteforce()
s2 = RaycastBisection(searcher.tree, searcher.tmax, searcher.eps)
s3 = RaycastIncircle(searcher.tree, searcher.tmax)
s4 = RaycastIncircleSkip(searcher.tree)
t1 = @elapsed r1 = raycast(sig, r, u, xs, s1)
t2 = @elapsed r2 = raycast(sig, r, u, xs, s2)
t3 = @elapsed r3 = raycast(sig, r, u, xs, s3)
t4 = @elapsed r4 = raycast(sig, r, u, xs, s4)
searcher.timings .+= [t1, t2, t3, t4]
if !(r1[1]==r2[1]==r3[1]==r4[1]) && r3[2] < searcher.tmax
@warn "raycast algorithms return different results" r1 r2 r3 r4 tuple(r...)
end
return r4
end
| VoronoiGraph | https://github.com/axsk/VoronoiGraph.jl.git |
|
[
"MIT"
] | 0.2.2 | dbcb0d532975547a973fc334c76338e397850709 | code | 3677 |
""" given two generators `g1`, `g2`, `vertices` of their common boundary
(in generator representation) and the list of all generators, compute the boundary volume.
It works by constructing a polytope from halfspaces between the generators of the boundary
vertices. We use an affine transformation to get rid of the dimension in direction g1->g2
"""
function boundary_area(g1::Int, g2::Int, vertices::AbstractVector{<:Sigma}, generators)
length(generators[1]) == 1 && return 1
A = generators[g1]
B = generators[g2]
transform = transformation(A, B)
A = transform(A)
gen_inds = unique!(sort!(reduce(vcat,vertices)))
halfspaces = []
for gen_ind in gen_inds
gen_ind in (g1,g2) && continue
B = transform(generators[gen_ind])
u = normalize(B-A)
b = dot(u, (A+B)/2)
hf = HalfSpace(u[2:end], b)
push!(halfspaces, hf)
end
halfspaces = [h for h in halfspaces]
# Performance with different libraries on random 6x100 data:
# nolib: 30 mins
# CDDLib: 40 mins
# QHull: 5h (with warnings about not affine polyhedron using a solver)
poly = polyhedron(hrep(halfspaces))
local vol
try
vol = hasrays(poly) ? Inf : volume(poly)
catch e
if isa(e, AssertionError)
@warn e
vol = NaN
else
rethrow(e)
end
end
return vol
end
""" affine transformation rotatinig and translating such that the boundary is aligned with
the first dimension. A->B will be mapped to const*[1,0,0,...] and (A+B)/2 to [0,0,...] """
function transformation(A, B)
R = diagm(ones(length(A)))
R[:,1] = B-A
R = collect(inv(qr(R).Q)) # Shortcut for Gram-Schmidt orthogonalization.
t = R*(A+B)/2
transform(x) = R*x - t
return transform
end
function transformation(A::SVector{N, T}, B::SVector{N, T}) where {N, T}
R = MMatrix{N,N,T}(I)
R[:,1] = B-A
R = inv(qr(R).Q)
t = R * (A+B)/2
transform(x) = R*x - t
end
""" build the connectivity matrix for the SQRA from adjacency and boundary information """
function volumes(vertices, P::AbstractVector)
dim = length(P[1])
conns = adjacency(vertices)
I = Int[]
J = Int[]
As = Float64[]
Vs = zeros(length(P))
#=@showprogress 1 "Voronoi volumes "=# for ((g1,g2), sigs) in conns
a = boundary_area(g1, g2, sigs, P)
h = norm(P[g1] - P[g2]) / 2
v = a * h / dim # Volume computation
push!(I, g1)
push!(J, g2)
push!(As, a)
Vs[g1] += v
Vs[g2] += v
end
A = sparse(I, J, As, length(P), length(P))
A = A + A'
return A, Vs
end
""" given vertices in generator-coordinates,
collect the verts belonging to generator pairs, i.e. boundary vertices """
function adjacency(v::Vertices)
conns = Dict{Tuple{Int,Int}, Vector{Vector{Int}}}()
for (sig, r) in v
for a in sig
for b in sig
a >= b && continue
v = get!(conns, (a,b), [])
push!(v, sig)
end
end
end
return conns
end
""" similar to `boundary_area`, however uses a vector representation and is slower """
function boundary_area_vrep(g1::Int, g2::Int, inds::AbstractVector{<:Sigma}, vertices::Vertices, generators)
A = generators[g1]
B = generators[g2]
dim = length(A)
vertex_coords = map(i->vertices[i], inds)
push!(vertex_coords, A) # Append one Voronoi center for full-dimensional volume.
poly = polyhedron(vrep(vertex_coords), QHull.Library())
vol = hasrays(poly) ? Inf : volume(poly)
h = norm(B - A) / 2
A = dim * vol / h
return A, h, vol
end
| VoronoiGraph | https://github.com/axsk/VoronoiGraph.jl.git |
|
[
"MIT"
] | 0.2.2 | dbcb0d532975547a973fc334c76338e397850709 | code | 7806 | const Point{T} = AbstractVector{T} where T<:Real
const Points = AbstractVector{<:Point}
const Sigma = AbstractVector{<:Integer} # Encoded the vertex by the ids of its generators.
const Vertex = Tuple{<:Sigma, <: Point}
const Vertices = Dict{<:Sigma, <:Point}
dim(xs::Points) = length(xs[1])
voronoi(x; kwargs...) = voronoi(vecvec(x); kwargs...)
""" construct the voronoi diagram from `x` through breadth-first search """
function voronoi(xs::Points, searcher = Raycast(xs))
sig, r = descent(xs, searcher)
verts, rays = explore(sig, r, xs, searcher)
return verts::Vertices, xs, rays
end
voronoi_random(x, args...; kwargs...) = voronoi_random(vecvec(x), args...; kwargs...)
""" construct a (partial) voronoi diagram from `x` through a random walk """
function voronoi_random(xs::Points, iter=1000; maxstuck=typemax(Int))
searcher = Raycast(xs)
sig, r = descent(xs, searcher)
verts = walk(sig, r, iter, xs, searcher, maxstuck)
return verts::Vertices, xs
end
vecvec(x::Matrix) = map(SVector{size(x,1)}, eachcol(x))
vecvec(x::Vector{<:SVector}) = x
""" starting at given points, run the ray shooting descent to find vertices """
function descent(xs::Points, searcher, start = 1) :: Vertex
sig = [start]
r = xs[start]
d = length(r)
for k in d:-1:1 # find an additional generator for each dimension
u = randray(xs[sig])
(tau, t) = raycast(sig, r, u, xs, searcher)
if t == Inf
u = -u
(tau, t) = raycast(sig, r, u, xs, searcher)
end
if t == Inf
error("Could not find a vertex in both directions of current point." *
"Consider increasing search range (tmax)")
end
sig = tau
r = r + t*u
end
sig = SVector{dim(xs)+1}(sig)
return (sig, r)
end
""" starting at vertices, walk nsteps along the voronoi graph to find new vertices """
function walk(sig::Sigma, r::Point, nsteps::Int, xs::Points, searcher, maxstuck::Int) :: Vertices
verts = Dict(sig => r)
nonew = 0
prog = Progress(maxstuck, 1, "Voronoi walk")
progmax = 0
for s in 1:nsteps
nonew += 1
progmax = max(progmax, nonew)
ProgressMeter.update!(prog, progmax)
randdir = rand(1:length(sig))
sig, r = walkray(sig, r, xs, searcher, randdir)
r == Inf && continue # we encountered an infinite ray
get!(verts, sig) do
nonew = 0
return r
end
nonew > maxstuck && break
end
return verts
end
""" find the vertex connected to `v` by moving away from its `i`-th generator """
function walkray(sig::Sigma, r::Point, xs::Points, searcher, i)
sig_del = deleteat(sig, i)
u = u_default(sig, xs, i)
sigβ², t = raycast(sig_del, r, u, xs, searcher)
if t < Inf
rβ² = r + t*u
return sigβ², rβ²
else
return sig, r # if the vertex has an unbounded ray, return the same vertex
end
end
function u_compare(sig, xs, i)
u1 = u_randray(sig, xs, i)
u2 = u_qr(sig, xs, i)
#u3 = u_qr_short(deleteat(sig, i), xs, sig[i])
u3=u2
if !(isapprox(u1, u2) && isapprox(u1, u2))
@warn "Not approx" u1 u2 u3
end
return u1
end
function u_randray(sig, xs, i)
sig_del = deleteat(sig, i)
u = randray_modified(xs[sig_del])
if (u' * (xs[sig[i]] - xs[sig_del[1]])) > 0
u = -u
end
return u
end
# replace gram-schmidt of randray by qr
function u_qr(sig, xs, i)
n = length(sig)
d = length(xs[1])
X = MMatrix{d, n-1, eltype(xs[1])}(undef)
for j in 1:i-1
X[:, j] = xs[sig[j]]
end
for j in i:n-1
X[:, j] = xs[sig[j+1]]
end
origin = X[:, end]
X[:, end] = xs[sig[i]]
X .-= origin
X = SMatrix(X)
Q, R = qr(X)
u = -Q[:,end] * sign(R[end,end])
return u
end
# same as u_qr, shorter and slower
function u_qr_short(sig_del, xs, opposing)
sig = vcat(sig_del[2:end], [opposing])
origin = xs[sig_del[1]]
X = mapreduce(i->xs[i] - origin,hcat, sig)
X = Array(X)
#@show t
q = qr(X)
u = q.Q[:,end]
u *= -sign(q.R[end,end])
return u
end
""" BFS of vertices starting from `S0` """
function explore(sig, r, xs::Points, searcher) # :: Vertices
verts = Dict(sig=>r)
queue = [sig=>r]
edgecount = Dict{SVector{dim(xs), Int64}, Int}()
sizehint!(edgecount, round(Int, expected_edges(xs)))
sizehint!(verts, round(Int, expected_vertices(xs)))
rays = Pair{Vector{Int64}, Int}[]
cache = true # Caches if both points along an edge are known. Trades memory for runtime.
hit = 0
miss = 0
new = 0
unbounded = 0
while length(queue) > 0
yield()
(sig,r) = pop!(queue)
for i in 1:length(sig)
if cache && get(edgecount, deleteat(sig, i), 0) == 2
hit += 1
continue
end
sigβ², rβ² = walkray(sig, r, xs, searcher, i)
if sigβ² == sig
push!(rays, sig => i)
unbounded += 1
continue
end
if !haskey(verts, sigβ²)
push!(queue, sigβ² => rβ²)
push!(verts, sigβ² => rβ²)
if cache
for j in 1:length(sigβ²)
edge = deleteat(sigβ², j)
edgecount[edge] = get(edgecount, edge, 0) + 1
end
end
new += 1
else
miss += 1
end
end
end
#@show hit, miss, new, unbounded
return verts, rays
end
u_default = u_qr
deleteat(sig::Vector, i) = deleteat!(copy(sig), i)
deleteat(x,y) = StaticArrays.deleteat(x,y)
""" generate a random ray orthogonal to the subspace spanned by the given points """
function randray(xs::Points)
k = length(xs)
d = length(xs[1])
v = similar(xs, k-1)
# Gram Schmidt
for i in 1:k-1
v[i] = xs[i] .- xs[k]
for j in 1:(i-1)
v[i] = v[i] .- dot(v[i], v[j]) .* v[j]
end
v[i] = normalize(v[i])
end
u = randn(d)
for i in 1:k-1
u = u - dot(u, v[i]) * v[i]
end
u = normalize(u)
return u
end
""" generate a random ray orthogonal to the subspace spanned by the given points """
function randray_modified(xs::Points)
k = length(xs)
v = collect(xs)
for i in 1:k
v[i] -= v[k] # subtract origin
end
v[k] = randn(dim(xs))
# modified Gram-Schmidt (for better stability)
for i in 1:k
v[i] = normalize(v[i])
for j in i+1:k
v[j] -= dot(v[i], v[j]) * v[i]
end
end
u = v[k]
return u
end
"""
vertexheuristic(d, n)
expected number of vertices for `n` points in `d` dimensions
c.f. [Dwyer, The expected number of k-faces of a Voronoi Diagram (1993)] """
function expected_vertices(d, n)
# from the previous work, only good for d>5
# 2^((d+1)/2) * exp(1/4) * pi^((d-1)/2) * d^((d-2)/2) / (d+1) * n
# lower and upperbound coincide for k==d
lowerbound(d, d) * n
end
function expected_edges(d, n)
expected_vertices(d, n) * (d+1) / 2
end
expected_edges(xs::Points) = expected_edges(dim(xs), length(xs))
expected_vertices(xs::Points) = expected_vertices(dim(xs), length(xs))
# Theorem 1
# For fixed k and d as n grow without bound, EF(k,d) Μ C(k,d)n with C(k,d) β₯ lowerbound(k,d)
function lowerbound(k, d)
2 * pi^(k/2) * d^(k-1) / (k*(k+1)) * beta(d*k/2, (d-k+1)/2) ^ (-1) * (gamma(d/2) / gamma((d+1)/2))^k
end
# Theorem 1
# For fixed k and d as n grow without bound, EF(k,d) Μ C(k,d)n with C(k,d) β€ upperbound(k,d)
function upperbound(k, d)
2 * d^(d-2) * pi^((d-1)/2) * gamma((d^2+1)/2) * gamma(d/2)^d /
((d+1) * (d+2) * gamma(d^2/2) * gamma((d+1)/2)^d) * binomial(d+2, k+1)
end
| VoronoiGraph | https://github.com/axsk/VoronoiGraph.jl.git |
|
[
"MIT"
] | 0.2.2 | dbcb0d532975547a973fc334c76338e397850709 | code | 1596 |
function test_volume(npoints = 100, dim = 3)
x = rand(dim, npoints)
@time v, p = voronoi_random(x, 10000)
@time a = adjacency(v)
@time av = [boundary_area_verts(a, v, p) for a in a]
@time ae = [boundary_area_edges(a, p) for a in a]
delta = filter(isfinite, ae - av)
quota = sum(delta .< 1e-6) / length(delta)
@assert quota > 2/3
@assert length(delta) / length(av) > 2/3
end
function test_random(d=6, n=200)
x = rand(d, n)
@time v,p = voronoi_random(rand(d,n), 10_000_000; maxstuck=100_000);
@show length(v)
a = adjacency(v)
println("avg. no. of neighbors: ", length(a)/n)
println("avg. no. of vertices per face: ", mean(length.(values(a))))
@time c = connectivity_matrix(v, p)
v,p,c
end
function test_grid(n=5, iter=10000)
plot(legend=false);
x = hcat(hexgrid(n)...)
x .+= randn(2,n*n) .* 0.01
@time v, P = voronoi_random(x, iter)
v = Dict(filter(collect(v)) do (k,v)
norm(v) < 10
end)
#c = extractconn(v)
@time A, Vs = connectivity_matrix(v, P)
AA = map(x->x>.0, A)
plot_connectivity!(AA .* 2, P)
scatter!(eachrow(hcat(values(v)...))...)
xlims!(1,6); ylims!(0,5)
end
#=
function benchmark(n=100, d=6, iter=100, particles=10)
x = rand(d, n)
@benchmark voronoi($x, $iter, $particles)
end
=#
function hexgrid(n)
P = []
for i in 1:n
for j in 1:n
x = i + j/2
y = j * sqrt(3) / 2
push!(P, [x,y])
end
end
P
end
function tests()
test_volume()
test_random()
test_grid()
end
| VoronoiGraph | https://github.com/axsk/VoronoiGraph.jl.git |
|
[
"MIT"
] | 0.2.2 | dbcb0d532975547a973fc334c76338e397850709 | code | 3143 | using Test
using VoronoiGraph
using BenchmarkTools
using LinearAlgebra
using Random
using RecipesBase
using Statistics
using VoronoiCells
using VoronoiCells.GeometryBasics
# nice to have if tests dont pass
seed = rand(UInt)
@show seed
Random.seed!(seed)
# necessary condition for the voronoi diagram to be correct
function test_equidistance(verts, xs)
allsame(x) = all(y -> y β first(x), x)
for (sig, v) in verts
dists = [norm(xs[s] - v) for s in sig]
relerr = maximum(abs, 1 .- dists ./ dists[1])
if relerr > 1e-5
@show dists
return false
end
end
return true
end
bigdata = [rand(2, 10000), rand(4,1000), rand(6,200), rand(8,100)]
smalldata = [rand(2, 1000), rand(3, 1000), rand(4,100)]
@testset "VoronoiGraph.jl" begin
@testset "Equidistance" begin
for data in bigdata
@time verts, xs = voronoi(data)
@test test_equidistance(verts, xs)
vrand, xs = voronoi_random(data, 1000)
@test test_equidistance(vrand, xs)
@test issubset(keys(vrand), keys(verts))
end
end
@testset "Raycast" begin
for data in smalldata
data = VoronoiGraph.vecvec(data)
search = VoronoiGraph.RaycastCompare(data)
@test_nowarn voronoi(data, search)
end
end
@testset "Area computation" begin
data = rand(2,1000)
rect = Rectangle(Point2(-1000., -1000.), Point2(1000., 1000))
tess = voronoicells(data[1,:], data[2,:], rect)
area = voronoiarea(tess) |> sort
v, P = VoronoiGraph.voronoi(data)
_, A = VoronoiGraph.volumes(v, P)
A = sort(A)
# the larger areas lie at the boundary and are computed differently
small = A .< 1
#println("comparing areas on $(sum(small)) out of $(length(small)) cells")
@test β(A[small], area[small], rtol=1e-8)
end
@testset "Monte Carlo Volumes" begin
x = rand(2,20)
v, xs = voronoi(x)
A, V = volumes(v, xs) # exact reference volumes
Am, Vm = mc_volumes(xs, 10_000)
err = std(filter(isfinite, (Am-A)./A))
@test err < 0.2
Am, Vm = mc_volumes(v, xs, 10_000)
err = std(filter(isfinite, (Am-A)./A))
@test err < 0.2
end
@testset "Plot recipe" begin
verts, xs = voronoi(rand(2,20))
p = VoronoiGraph.VoronoiPlot((verts, xs))
# this is broken without `using Plots`, but works with iter
# however we dont want to require Plots for testing, so accepting this as broken
@test_broken RecipesBase.apply_recipe(Dict{Symbol, Any}(), p)
end
end
function benchmark(n=1000)
data = rand(2,n)
rect = Rectangle(Point2(-1000., -1000.), Point2(1000., 1000))
tess = voronoicells(data[1,:], data[2,:], rect)
@show @benchmark VoronoiCells.voronoicells($data[1,:], $data[2,:], $rect)
@show @benchmark VoronoiCells.voronoiarea($tess)
v, P = VoronoiGraph.voronoi(data)
@show @benchmark VoronoiGraph.voronoi($data)
@show @benchmark VoronoiGraph.volumes($v, $P)
return nothing
end
| VoronoiGraph | https://github.com/axsk/VoronoiGraph.jl.git |
|
[
"MIT"
] | 0.2.2 | dbcb0d532975547a973fc334c76338e397850709 | docs | 2967 | # VoronoiGraph
[](https://zenodo.org/badge/latestdoi/417525067)
[](https://axsk.github.io/VoronoiGraph.jl/dev)
[](https://github.com/axsk/VoronoiGraph.jl/actions)
[](https://codecov.io/gh/axsk/VoronoiGraph.jl)
This Package implements a variation of the Voronoi Graph Traversal algorithm by Polianskii and Pokorny [\[1\]](https://dl.acm.org/doi/10.1145/3394486.3403266).
It constructs a [Voronoi Diagram](https://en.wikipedia.org/wiki/Voronoi_diagram) from a set of points by performing a random walk on the graph of the vertices of the diagram.
Unlike many other Voronoi implementations this algorithm is not limited to 2 or 3 dimensions and promises good performance even in higher dimensions.
## Usage
We can compute the Voronoi diagram with a simple call of `voronoi`
```julia
julia> data = rand(4, 100) # 100 points in 4D space
julia> v, P = voronoi(data)
```
which returns the vertices `v::Dict`. `keys(v)` returns the simplicial complex of the diagram,
wheras `v[xs]` returns the coordinates of the vertex inbetween the generators `data[xs]`.
Additionally `P` contains the data in a vector-of-vectors format, used for further computations.
It also exports the random walk variant (returning only a subset of vertices):
```julia
julia> v, P = voronoi_random(data, 1000) # perform 1000 iterations of the random walk
```
## Area / Volume computation
```julia
julia> A,V = volumes(v, P)
```
computes the (deterministic) areas of the boundaries of neighbouring cells (as sparse array `A`)
as well as the volume of the cells themselves (vector `V`) by falling back onto the Polyhedra.jl volume computation.
## Monte Carlo
Combining the raycasting approach with Monte Carlo estimates we can approximate the areas and volumes effectively:
```julia
julia> A, V = mc_volumes(P, 1000) # cast 1000 Monte Carlo rays per cell
```
If the simplicial complex of vertices is already known we can speed up the process:
```julia
julia> A, V = mc_volumes(v, P, 1000) # use the neighbourhood infromation contained in v
```
We furthermore can integrate any function `f` over a cell `i` and its boundaries:
```julia
julia> y, Ξ΄y, V, A = mc_integrate(x->x^2, 1, P, 100, 10) # integrate cell 1 with 100 boundary and 100*10 volume samples
```
Here `y` and the vector `Ξ΄y` contain the integrals over the cell and its boundaries. V and A get computed as a byproduct.
## References
[\[1\]](https://dl.acm.org/doi/10.1145/3394486.3403266) V. Polianskii, F. T. Pokorny - Voronoi Graph Traversal in High Dimensions with Applications to Topological Data Analysis and Piecewise Linear Interpolation (2020, Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining)
| VoronoiGraph | https://github.com/axsk/VoronoiGraph.jl.git |
|
[
"MIT"
] | 0.2.2 | dbcb0d532975547a973fc334c76338e397850709 | docs | 192 | ```@meta
CurrentModule = VoronoiGraph
```
# VoronoiGraph
Documentation for [VoronoiGraph](https://github.com/axsk/VoronoiGraph.jl).
```@index
```
```@autodocs
Modules = [VoronoiGraph]
```
| VoronoiGraph | https://github.com/axsk/VoronoiGraph.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 473 | using SDLCanvas
window = create_window("SDLCanvas", 800, 600)
function main()
clock = Clock(60)
RUNNING = true
while RUNNING
while events_exist()
event = pop_event()
if event.type == QUIT || is_key_pressed(event, K_ESCAPE)
RUNNING = false
break
end
end
splash(window, BLACK)
update_display(window)
tick(clock)
end
quit(window)
end
main()
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 1017 | using SDLCanvas
function draw_ring(window::Window; n_circles=100, ring_radius = 200, circle_radius=10)
cx = window.w / 2
cy = window.h / 2
for n in 1:n_circles
theta = n/n_circles*2pi
x, y = round(Int, ring_radius*cos(theta) + cx), round(Int, ring_radius*sin(theta) + cy)
colour = random_colour(150)
draw_filled_circle(window, x, y, circle_radius, colour)
end
end
window = create_window("SDLCanvas", 800, 600)
function main()
r = 200
speed = 3
direction = -1
clock = Clock(60)
RUNNING = true
while RUNNING
while events_exist()
event = pop_event()
if event.type == QUIT
RUNNING = false
break
end
end
direction = r < 50 || r > 200 ? -direction : direction
r += direction * speed
splash(window, WHITE)
draw_ring(window, ring_radius=r)
update_display(window)
tick(clock)
end
quit(window)
end
main()
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 2849 | using SDLCanvas
window = create_window("SDLCanvas", 800, 600)
shape_func = draw_circle
shapes = []
function change_shape(func::Function)
global shape_func = func
end
function main()
gui_manager = GUI_Manager(window)
circle_button = Button("", 20, 20; w = 50, h = 50, on_clicked = (_) -> change_shape(draw_circle), colour=LIGHTBLUE)
filled_circle_button = Button("", 90, 20; w = 50, h = 50, on_clicked = (_) -> change_shape(draw_filled_circle), colour=LIGHTBLUE)
square_button = Button("", 160, 20; w = 50, h = 50, on_clicked = (_) -> change_shape(draw_rect), colour=LIGHTBLUE)
filled_square_button = Button("", 230, 20; w = 50, h = 50, on_clicked = (_) -> change_shape(draw_filled_rect), colour=LIGHTBLUE)
undo_button = Button("UNDO", 800-70, 20; on_clicked = (_) -> if !isempty(shapes) pop!(shapes) end, colour=LIGHTRED)
add_element(gui_manager, circle_button)
add_element(gui_manager, filled_circle_button)
add_element(gui_manager, square_button)
add_element(gui_manager, filled_square_button)
add_element(gui_manager, undo_button)
clock = Clock(60)
RUNNING = true
while RUNNING
splash(window, WHITE)
while events_exist()
event = pop_event()
if event.type == QUIT
RUNNING = false
break
end
event_occurred = process_events(gui_manager, event)
if mouse_clicked(event) && !event_occurred
mx, my = get_mouse_pos()
if shape_func == draw_circle
push!(shapes, ("circle", mx, my))
end
if shape_func == draw_filled_circle
push!(shapes, ("filled_circle", mx, my))
end
if shape_func == draw_rect
push!(shapes, ("rect", mx, my))
end
if shape_func == draw_filled_rect
push!(shapes, ("filled_rect", mx, my))
end
end
end
for (shape, x, y) in shapes
if shape == "circle"
draw_circle(window, x, y, 20, BLACK)
end
if shape == "filled_circle"
draw_filled_circle(window, x, y, 20, BLACK)
end
if shape == "rect"
draw_rect(window, x, y, 40, 40, BLACK)
end
if shape == "filled_rect"
draw_filled_rect(window, x, y, 40, 40, BLACK)
end
end
draw(gui_manager)
draw_circle(window, 45, 45, 20, BLACK)
draw_filled_circle(window, 115, 45, 20, BLACK)
draw_rect(window, 170, 30, 30, 30, BLACK)
draw_filled_rect(window, 240, 30, 30, 30, BLACK)
update_display(window)
tick(clock)
end
quit(window)
end
main()
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 961 | using SDLCanvas
window = create_window("SDLCanvas", 800, 600)
function main()
font = Font(joinpath(dirname(@__DIR__), "assets", "swansea.ttf"), 24)
display_text = "This is some slow printing text... Pretty cool!"
time_to_display = 5.0
frame_count = 0
clock = Clock(60)
RUNNING = true
while RUNNING
while events_exist()
event = pop_event()
if event.type == QUIT || is_key_pressed(event, K_ESCAPE)
RUNNING = false
break
end
end
frame_count += 1
percent_to_show = clamp(frame_count / (time_to_display * 60), 0, 1)
end_index = round(Int, percent_to_show * length(display_text))
splash(window, WHITE)
surface = render_font(font, display_text[1:end_index], BLACK)
blit(window, surface, 400, 300; centered=true)
update_display(window)
tick(clock)
end
quit(window)
end
main()
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 919 | using SDLCanvas
STARS = [(rand(0:800), rand(0:600)) for _ in 1:300];
window = create_window("SDLCanvas", 800, 600)
function draw_starfield()
for (i, (x, y)) in enumerate(STARS)
if i % 4 == 0
speed = 1
elseif i % 3 == 0
speed = 2
elseif i % 2 == 0
speed = 3
elseif i % 1 == 0
speed = 4
end
new_x = x + speed > 800 ? 0 : x + speed
STARS[i] = (new_x, y)
draw_pixel(window, new_x, y, WHITE)
end
end
function main()
clock = Clock(60)
RUNNING = true
while RUNNING
while events_exist()
event = pop_event()
if event.type == QUIT
RUNNING = false
break
end
end
splash(window, BLACK)
draw_starfield()
update_display(window)
tick(clock)
end
quit(window)
end
main()
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 807 | using SDLCanvas
window = create_window("SDLCanvas", 800, 600)
function main()
da = 0
db = 0
clock = Clock(60)
RUNNING = true
while RUNNING
while events_exist()
event = pop_event()
if event.type == QUIT
RUNNING = false
break
end
end
da += 0.1
if da > 2pi
da = 0
db = 0
end
if db < 2pi
db += 0.1
end
splash(window, WHITE)
draw_filled_circle(window, 400, 300, 50, DARKGREY)
draw_filled_circle(window, 400, 300, 45, WHITE)
draw_filled_arc(window, 400, 300, 45, da, da+db, lighter(YELLOW, 100))
update_display(window)
tick(clock)
end
quit(window)
end
main()
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 870 | using SDLCanvas
window = create_window("SDLCanvas", 800, 600)
function handle_events(x, y, speed)
if is_key_held(K_W)
y -= speed
end
if is_key_held(K_A)
x -= speed
end
if is_key_held(K_S)
y += speed
end
if is_key_held(K_D)
x += speed
end
return x, y
end
function main()
x, y = 400, 300
speed = 3
clock = Clock(60)
RUNNING = true
while RUNNING
while events_exist()
event = pop_event()
if event.type == QUIT || is_key_pressed(event, K_ESCAPE)
RUNNING = false
break
end
end
x, y = handle_events(x, y, speed)
splash(window, BLACK)
draw_filled_rect(window, x, y, 30, 30, LIGHTGREY)
update_display(window)
tick(clock)
end
quit(window)
end
main()
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 734 | using SDLCanvas
window = create_window("SDLCanvas", 800, 600)
function main()
a = 0
b = 0
clock = Clock(60)
RUNNING = true
while RUNNING
while events_exist()
event = pop_event()
if event.type == QUIT
RUNNING = false
break
end
end
a += 0.05
if a > 2pi
a = 0
end
b += 0.02
if b > 2pi
b = 0
end
splash(window, WHITE)
draw_ellipse(window, 400, 300, 60, 100, RED; rotation=a)
draw_filled_ellipse(window, 600, 300, 60, 100, GREEN; rotation=b)
update_display(window)
tick(clock)
end
quit(window)
end
main()
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 734 | using SDLCanvas
window = create_window("SDLCanvas", 800, 600)
function main()
font = Font(joinpath(dirname(@__DIR__), "assets", "sunnyspells.ttf"), 20)
surface = render_font(font, "This is some text", BLACK)
clock = Clock(60)
RUNNING = true
while RUNNING
while events_exist()
event = pop_event()
if event.type == QUIT
RUNNING = false
break
end
end
splash(window, WHITE)
draw_circle(window, 400, 300, 100, BLACK)
blit(window, surface, 400, 300; centered=true) # Draw the surface relative to its center
update_display(window)
tick(clock)
end
quit(window)
end
main()
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 560 | using SDLCanvas
window = create_window("SDLCanvas", 800, 600)
function main()
image = load_image(joinpath(dirname(@__DIR__), "assets", "ship.png"))
clock = Clock(60)
RUNNING = true
while RUNNING
while events_exist()
event = pop_event()
if event.type == QUIT
RUNNING = false
break
end
end
splash(window, WHITE)
blit(window, image, 400, 300)
update_display(window)
tick(clock)
end
quit(window)
end
main()
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 963 | using SDLCanvas
window = create_window("SDLCanvas", 800, 600)
circles1 = []
circles2 = []
function main()
gui_manager = GUI_Manager(window; show_fps = true)
clock = Clock(60)
RUNNING = true
while RUNNING
while events_exist()
event = pop_event()
if event.type == QUIT
RUNNING = false
break
end
if mouse_clicked(event)
push!(circles1, get_mouse_pos())
end
if is_mouse_held(MOUSE_RIGHT)
push!(circles2, get_mouse_pos())
end
end
splash(window, WHITE)
for (x, y) in circles1
draw_filled_circle(window, x, y, 20, RED)
end
for (x, y) in circles2
draw_filled_circle(window, x, y, 20, GREEN)
end
draw(gui_manager)
update_display(window)
tick(clock)
end
quit(window)
end
main()
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 1266 | using SDLCanvas
window = create_window("SDLCanvas", 800, 600)
bg_colour = WHITE
function change_bg_colour(button::Button)
global bg_colour
if bg_colour == button.hover_colour
bg_colour = WHITE
else
bg_colour = button.hover_colour
end
end
function main()
gui_manager = GUI_Manager(window; show_fps=true)
red_button = Button("Press Me", 100, 200; font_size = 30, on_clicked = change_bg_colour, colour=LIGHTRED)
green_button = Button("No Press Me!", 300, 200; font_size = 30, on_clicked = change_bg_colour, colour=LIGHTGREEN)
blue_button = Button("I Want To Be Pressed!", 500, 200; font_size = 30, on_clicked = change_bg_colour, colour=LIGHTBLUE)
add_element(gui_manager, red_button)
add_element(gui_manager, green_button)
add_element(gui_manager, blue_button)
clock = Clock(60)
RUNNING = true
while RUNNING
while events_exist()
event = pop_event()
if event.type == QUIT
RUNNING = false
break
end
process_events(gui_manager, event)
end
splash(window, bg_colour)
draw(gui_manager)
update_display(window)
tick(clock)
end
quit(window)
end
main()
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 1405 | using Pkg; Pkg.activate(".")
using SDLCanvas
using SimpleDirectMediaLayer
using SimpleDirectMediaLayer.LibSDL2
window = create_window("SDLCanvas", 800, 600)
function main()
SDL_StartTextInput()
text = ""
font = Font("/Users/cam/Documents/GitBucket/Development/SDLCanvas-Github/SDLCanvas/assets/swansea.ttf", 24)
surface = render_font(font, "Stuff", BLACK)
clock = Clock(60)
RUNNING = true
while RUNNING
while events_exist()
event = pop_event()
if event.type == QUIT || is_key_pressed(event, K_ESCAPE)
RUNNING = false
break
end
if is_key_pressed(event, K_BACKSPACE)
if length(text) != 0
text = text[1:end-1]
surface = render_font(font, text, BLACK)
end
end
if event.type == SDL_TEXTINPUT
text *= string(Char(event.text.text[1]))
surface = render_font(font, text, BLACK)
end
if event.type == SDL_TEXTEDITING
composition = event.edit.text
cursor = event.edit.start
selection_len = event.edit.length
end
end
splash(window, WHITE)
blit(window, surface, 200, 200)
update_display(window)
tick(clock)
end
quit(window)
end
main()
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 2117 | module SDLCanvas
include("common.jl")
export ColourRGBA
include("colour.jl")
export NAMED_COLOURS
export BLACK
export WHITE
export RED
export LIGHTRED
export GREEN
export LIGHTGREEN
export BLUE
export LIGHTBLUE
export GREY
export LIGHTGREY
export DARKGREY
export YELLOW
export random_colour
export random_named_colour
export lighter
export darker
include("colours.jl")
export SCREEN_CENTER_X
export SCREEN_CENTER_Y
export Window
export create_window
export quit
export splash
export update_display
include("display.jl")
export Surface
export get_size
export get_center
export blit
include("surface.jl")
export draw_pixel
export draw_line
export draw_arc
export draw_filled_arc
export draw_circle
export draw_filled_circle
export draw_ellipse
export draw_filled_ellipse
export draw_rect
export draw_filled_rect
include("draw.jl")
export Clock
export tick
include("clock.jl")
export Font
export render_font
include("font.jl")
export Image
export load_image
export blit
include("images.jl")
export events_exist
export pop_event
export get_mouse_pos
export mouse_clicked
export is_mouse_held
export is_key_pressed
export is_key_held
export QUIT
export MOUSE_LEFT
export MOUSE_RIGHT
export K_ESCAPE
export K_SPACE
export K_ENTER
export K_RETURN
export K_BACKSPACE
export K_A
export K_B
export K_C
export K_D
export K_E
export K_F
export K_G
export K_H
export K_I
export K_J
export K_K
export K_L
export K_N
export K_O
export K_P
export K_Q
export K_R
export K_S
export K_T
export K_U
export K_V
export K_W
export K_X
export K_Y
export K_Z
include("events.jl")
using .Colour
using .Colours
using .Display
using .Surfaces
using .Draw
using .Time
using .Events
using .Fonts
using .Images
###########################################################
export GLOBALS
export GUI_Manager
export AbstractGUIElement
export process_events
export add_element
export draw
include("GUI/gui_manager.jl")
export MouseRegion
export RectRegion
export CircleRegion
export is_contained
include("GUI/utils/utils.jl")
export Button
export signals
export draw
include("GUI/button.jl")
using .GUI
using .Utils
using .Buttons
end
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 187 | module Time
include("common.jl")
export Clock
export tick
struct Clock
fps::Int
Clock(fps) = new(fps)
end
function tick(clock::Clock)
SDL_Delay(1000 Γ· clock.fps)
end
end
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 216 | module Colour
include("common.jl")
export ColourRGBA
struct ColourRGBA
r::Int
g::Int
b::Int
a::Int
ColourRGBA(r, g, b) = new(r, g, b, 255)
ColourRGBA(r, g, b, a) = new(r, g, b, a)
end
end
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 1503 | module Colours
using ..Colour
export NAMED_COLOURS
export BLACK
export WHITE
export RED
export LIGHTRED
export GREEN
export LIGHTGREEN
export BLUE
export LIGHTBLUE
export GREY
export LIGHTGREY
export DARKGREY
export YELLOW
export random_colour
export random_named_colour
export lighter
export darker
BLACK = ColourRGBA(0, 0, 0)
WHITE = ColourRGBA(255, 255, 255)
RED = ColourRGBA(255, 0, 0)
LIGHTRED = ColourRGBA(252, 106, 106, 255)
GREEN = ColourRGBA(0, 255, 0)
LIGHTGREEN = ColourRGBA(106, 252, 113, 255)
BLUE = ColourRGBA(0, 0, 255)
LIGHTBLUE = ColourRGBA(106, 186, 252, 255)
GREY = ColourRGBA(150, 150, 150)
LIGHTGREY = ColourRGBA(200, 200, 200)
DARKGREY = ColourRGBA(100, 100, 100)
YELLOW = ColourRGBA(242, 189, 41)
NAMED_COLOURS = [
BLACK,
WHITE,
RED,
LIGHTRED,
GREEN,
LIGHTGREEN,
BLUE,
LIGHTBLUE,
GREY,
LIGHTGREY,
DARKGREY,
YELLOW,
]
function random_colour(a::Int=255)::ColourRGBA
return ColourRGBA(rand(0:255), rand(0:255), rand(0:255), a)
end
function random_named_colour()::ColourRGBA
return rand(NAMED_COLOURS)
end
function lighter(colour::ColourRGBA, a::Int)::ColourRGBA
r = colour.r + a <= 255 ? colour.r + a : 255
g = colour.g + a <= 255 ? colour.g + a : 255
b = colour.b + a <= 255 ? colour.b + a : 255
if r < 0 r = 0 end
if g < 0 g = 0 end
if b < 0 b = 0 end
return ColourRGBA(r, g, b, colour.a)
end
function darker(colour::ColourRGBA, a::Int)::ColourRGBA
return lighter(colour, -a)
end
end
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 66 | using SimpleDirectMediaLayer
using SimpleDirectMediaLayer.LibSDL2
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 1570 | module Display
include("common.jl")
using ..Colour
export SCREEN_CENTER_X
export SCREEN_CENTER_Y
export Window
export create_window
export quit
export splash
export update_display
SDL_GL_SetAttribute(SDL_GL_MULTISAMPLEBUFFERS, 16)
SDL_GL_SetAttribute(SDL_GL_MULTISAMPLESAMPLES, 16)
@assert SDL_Init(SDL_INIT_EVERYTHING) == 0 "Error initialising SDL: $(unsafe_string(SDL_GetError()))"
const SCREEN_CENTER_X = SDL_WINDOWPOS_CENTERED
const SCREEN_CENTER_Y = SDL_WINDOWPOS_CENTERED
struct Window
sdl_window::Ptr{SDL_Window}
renderer::Ptr{SDL_Renderer}
title::String
w::Int
h::Int
x::Int
y::Int
flags::Dict{Any, Any}
end
function create_window(title::String, w::Int, h::Int, x::Int=SCREEN_CENTER_X, y::Int=SCREEN_CENTER_Y; flags...)::Window
window = SDL_CreateWindow(title, x, y, w, h, SDL_WINDOW_SHOWN)
SDL_SetWindowResizable(window, SDL_TRUE)
renderer = SDL_CreateRenderer(window, -1, SDL_RENDERER_ACCELERATED | SDL_RENDERER_PRESENTVSYNC)
return Window(window, renderer, title, w, h, x, y, flags)
end
function quit(window::Window)
SDL_DestroyRenderer(window.renderer)
SDL_DestroyWindow(window.sdl_window)
SDL_Quit()
exit()
end
function splash(window::Window, r::Int, g::Int, b::Int, a::Int=255)
SDL_SetRenderDrawColor(window.renderer, r, g, b, a);
SDL_RenderClear(window.renderer);
end
function splash(window::Window, colour::ColourRGBA)
splash(window, colour.r, colour.g, colour.b, colour.a)
end
function update_display(window::Window)
SDL_RenderPresent(window.renderer)
end
end
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 8622 | module Draw
include("common.jl")
# Colour and Display modules are already brought into scope in SDLCanvas.jl.
# Re-including them with include() is unnecessary. Just use the .. using syntax.
using ..Colour
using ..Display
export draw_pixel
export draw_line
export draw_arc
export draw_filled_arc
export draw_circle
export draw_filled_circle
export draw_ellipse
export draw_filled_ellipse
export draw_rect
export draw_filled_rect
function draw_pixel(window::Window, x::Int, y::Int, colour::Tuple{Int,Int,Int,Int})
SDL_SetRenderDrawColor(window.renderer, colour...)
SDL_SetRenderDrawBlendMode(window.renderer, SDL_BLENDMODE_BLEND)
SDL_RenderDrawPoint(window.renderer, x, y)
end
function draw_pixel(window::Window, x::Int, y::Int, colour::Tuple{Int,Int,Int})
draw_pixel(window, x, y, (colour..., 255))
end
function draw_pixel(window::Window, x::Int, y::Int, colour::ColourRGBA)
draw_pixel(window, x, y, (colour.r, colour.g, colour.b, colour.a))
end
function draw_line(window::Window, x1::Int, y1::Int, x2::Int, y2::Int, colour::Tuple{Int, Int, Int, Int}; thickness::Int=1)
angle = SDL_atan2(y2-y1, x2-x1)
dx = floor(Int, sin(angle) * thickness / 2.0)
dy = floor(Int, -cos(angle) * thickness / 2.0)
SDL_SetRenderDrawColor(window.renderer, colour...)
SDL_SetRenderDrawBlendMode(window.renderer, SDL_BLENDMODE_BLEND)
for i in 0:thickness-1
SDL_RenderDrawLine(window.renderer, x1 + i*dx, y1 + i*dy, x2 + i*dx, y2 + i*dy)
end
end
function draw_line(window::Window, x1::Int, y1::Int, x2::Int, y2::Int, colour::Tuple{Int, Int, Int}; kwargs...)
draw_line(window, x1, y1, x2, y2, (colour..., 255); kwargs...)
end
function draw_line(window::Window, x1::Int, y1::Int, x2::Int, y2::Int, colour::ColourRGBA; kwargs...)
draw_line(window, x1, y1, x2, y2, (colour.r, colour.g, colour.b, colour.a); kwargs...)
end
function draw_arc(window::Window, x::Int, y::Int, r::Int, start_angle::Real, end_angle::Real, colour::Tuple{Int, Int, Int, Int})
SDL_SetRenderDrawColor(window.renderer, colour...)
SDL_SetRenderDrawBlendMode(window.renderer, SDL_BLENDMODE_BLEND)
for theta in start_angle:0.01:end_angle
px, py = r*cos(theta) + x, -r*sin(theta) + y
SDL_RenderDrawPoint(window.renderer, round(Int, px), round(Int, py))
end
end
function draw_arc(window::Window, x::Int, y::Int, r::Int, start_angle::Real, end_angle::Real, colour::Tuple{Int, Int, Int})
draw_arc(window, x, y, r, start_angle, end_angle, (colour..., 255))
end
function draw_arc(window::Window, x::Int, y::Int, r::Int, start_angle::Real, end_angle::Real, colour::ColourRGBA)
draw_arc(window, x, y, r, start_angle, end_angle, (colour.r, colour.g, colour.b, colour.a))
end
function draw_filled_arc(window::Window, x::Int, y::Int, r::Int, start_angle::Real, end_angle::Real, colour::Tuple{Int, Int, Int, Int})
SDL_SetRenderDrawColor(window.renderer, colour...)
SDL_SetRenderDrawBlendMode(window.renderer, SDL_BLENDMODE_BLEND)
for dx in -r:r
for dy in -r:r
if dx^2 + dy^2 <= r^2
angle_to_x_axis = atan(-dy, dx)
angle_to_x_axis = angle_to_x_axis < 0 ? angle_to_x_axis + 2pi : angle_to_x_axis
if start_angle <= angle_to_x_axis <= end_angle
SDL_RenderDrawPoint(window.renderer, x+dx, y+dy)
end
end
end
end
end
function draw_filled_arc(window::Window, x::Int, y::Int, r::Int, start_angle::Real, end_angle::Real, colour::Tuple{Int, Int, Int})
draw_filled_arc(window, x, y, r, start_angle, end_angle, (colour..., 255))
end
function draw_filled_arc(window::Window, x::Int, y::Int, r::Int, start_angle::Real, end_angle::Real, colour::ColourRGBA)
draw_filled_arc(window, x, y, r, start_angle, end_angle, (colour.r, colour.g, colour.b, colour.a))
end
function draw_circle(window::Window, x::Int, y::Int, r::Int, colour::Tuple{Int, Int, Int, Int})
SDL_SetRenderDrawColor(window.renderer, colour...)
SDL_SetRenderDrawBlendMode(window.renderer, SDL_BLENDMODE_BLEND)
draw_arc(window, x, y, r, 0, 2pi, colour)
end
function draw_circle(window::Window, x::Int, y::Int, r::Int, colour::Tuple{Int, Int, Int})
draw_circle(window, x, y, r, (colour..., 255))
end
function draw_circle(window::Window, x::Int, y::Int, r::Int, colour::ColourRGBA)
draw_circle(window, x, y, r, (colour.r, colour.g, colour.b, colour.a))
end
function draw_filled_circle(window::Window, x::Int, y::Int, r::Int, colour::Tuple{Int, Int, Int, Int})
SDL_SetRenderDrawColor(window.renderer, colour...)
SDL_SetRenderDrawBlendMode(window.renderer, SDL_BLENDMODE_BLEND)
for dy in -r:r
for dx in -r:r
if (dx^2 + dy^2 <= r^2)
SDL_RenderDrawPoint(window.renderer, x+dx, y+dy)
end
end
end
end
function draw_filled_circle(window::Window, x::Int, y::Int, r::Int, colour::Tuple{Int, Int, Int})
draw_filled_circle(window, x, y, r, (colour..., 255))
end
function draw_filled_circle(window::Window, x::Int, y::Int, r::Int, colour::ColourRGBA)
draw_filled_circle(window, x, y, r, (colour.r, colour.g, colour.b, colour.a))
end
function draw_ellipse(window::Window, x::Int, y::Int, major::Int, minor::Int, colour::Tuple{Int, Int, Int, Int}; rotation::Real=0)
SDL_SetRenderDrawColor(window.renderer, colour...)
SDL_SetRenderDrawBlendMode(window.renderer, SDL_BLENDMODE_BLEND)
for theta in 0:0.01:2pi
px = major*cos(theta)*cos(rotation) - minor*sin(theta)*sin(rotation) + x
py = major*cos(theta)*sin(rotation) + minor*sin(theta)*cos(rotation) + y
SDL_RenderDrawPoint(window.renderer, round(Int, px), round(Int, py))
end
end
function draw_ellipse(window::Window, x::Int, y::Int, major::Int, minor::Int, colour::Tuple{Int, Int, Int}; kwargs...)
draw_ellipse(window, x, y, major, minor, (colour..., 255); kwargs...)
end
function draw_ellipse(window::Window, x::Int, y::Int, major::Int, minor::Int, colour::ColourRGBA; kwargs...)
draw_ellipse(window, x, y, major, minor, (colour.r, colour.g, colour.b, colour.a); kwargs...)
end
function draw_filled_ellipse(window::Window, x::Int, y::Int, major::Int, minor::Int, colour::Tuple{Int, Int, Int, Int}; rotation::Real=0)
SDL_SetRenderDrawColor(window.renderer, colour...)
SDL_SetRenderDrawBlendMode(window.renderer, SDL_BLENDMODE_BLEND)
r = max(major, minor)
for dx in -r:r
for dy in -r:r
ddx = dx*cos(rotation) + dy*sin(rotation)
ddy = dy*cos(rotation) - dx*sin(rotation)
if (ddx/major)^2 + (ddy/minor)^2 <= 1
SDL_RenderDrawPoint(window.renderer, round(Int, x + dx), round(Int, y + dy))
end
end
end
end
function draw_filled_ellipse(window::Window, x::Int, y::Int, major::Int, minor::Int, colour::Tuple{Int, Int, Int}; kwargs...)
draw_filled_ellipse(window, x, y, major, minor, (colour..., 255); kwargs...)
end
function draw_filled_ellipse(window::Window, x::Int, y::Int, major::Int, minor::Int, colour::ColourRGBA; kwargs...)
draw_filled_ellipse(window, x, y, major, minor, (colour.r, colour.g, colour.b, colour.a); kwargs...)
end
function draw_rect(window::Window, x::Int, y::Int, w::Int, h::Int, colour::Tuple{Int, Int, Int, Int})
SDL_SetRenderDrawColor(window.renderer, colour...)
SDL_SetRenderDrawBlendMode(window.renderer, SDL_BLENDMODE_BLEND)
draw_line(window, x, y, x+w, y, colour)
draw_line(window, x+w, y, x+w, y+h, colour)
draw_line(window, x, y+h, x+w, y+h, colour)
draw_line(window, x, y, x, y+h, colour)
end
function draw_rect(window::Window, x::Int, y::Int, w::Int, h::Int, colour::Tuple{Int, Int, Int})
draw_rect(window, x, y, w, h, (colour..., 255))
end
function draw_rect(window::Window, x::Int, y::Int, w::Int, h::Int, colour::ColourRGBA)
draw_rect(window, x, y, w, h, (colour.r, colour.g, colour.b, colour.a))
end
function draw_filled_rect(window::Window, x::Int, y::Int, w::Int, h::Int, colour::Tuple{Int, Int, Int, Int})
SDL_SetRenderDrawColor(window.renderer, colour...)
SDL_SetRenderDrawBlendMode(window.renderer, SDL_BLENDMODE_BLEND)
for px in x:x+w
for py in y:y+h
SDL_RenderDrawPoint(window.renderer, px, py)
end
end
end
function draw_filled_rect(window::Window, x::Int, y::Int, w::Int, h::Int, colour::Tuple{Int, Int, Int})
draw_filled_rect(window, x, y, w, h, (colour..., 255))
end
function draw_filled_rect(window::Window, x::Int, y::Int, w::Int, h::Int, colour::ColourRGBA)
draw_filled_rect(window, x, y, w, h, (colour.r, colour.g, colour.b, colour.a))
end
end
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 2522 | module Events
include("common.jl")
export events_exist
export pop_event
export get_mouse_pos
export mouse_clicked
export is_mouse_held
export is_key_pressed
export is_key_held
export QUIT
export MOUSE_LEFT
export MOUSE_RIGHT
export K_ESCAPE
export K_SPACE
export K_ENTER
export K_RETURN
export K_BACKSPACE
export K_A
export K_B
export K_C
export K_D
export K_E
export K_F
export K_G
export K_H
export K_I
export K_J
export K_K
export K_L
export K_N
export K_O
export K_P
export K_Q
export K_R
export K_S
export K_T
export K_U
export K_V
export K_W
export K_X
export K_Y
export K_Z
const QUIT = SDL_QUIT
EVENTS_REF = Ref{SDL_Event}()
MOUSE_LEFT = SDL_BUTTON_LEFT
MOUSE_RIGHT = SDL_BUTTON_RIGHT
K_SPACE = SDL_SCANCODE_SPACE
K_ENTER = SDL_SCANCODE_RETURN
K_RETURN = SDL_SCANCODE_RETURN
K_BACKSPACE = SDL_SCANCODE_BACKSPACE
K_ESCAPE = SDL_SCANCODE_ESCAPE
K_A = SDL_SCANCODE_A
K_B = SDL_SCANCODE_B
K_C = SDL_SCANCODE_C
K_D = SDL_SCANCODE_D
K_E = SDL_SCANCODE_E
K_F = SDL_SCANCODE_F
K_G = SDL_SCANCODE_G
K_H = SDL_SCANCODE_H
K_I = SDL_SCANCODE_I
K_J = SDL_SCANCODE_J
K_K = SDL_SCANCODE_K
K_L = SDL_SCANCODE_L
K_M = SDL_SCANCODE_M
K_N = SDL_SCANCODE_N
K_O = SDL_SCANCODE_O
K_P = SDL_SCANCODE_P
K_Q = SDL_SCANCODE_Q
K_R = SDL_SCANCODE_R
K_S = SDL_SCANCODE_S
K_T = SDL_SCANCODE_T
K_U = SDL_SCANCODE_U
K_V = SDL_SCANCODE_V
K_W = SDL_SCANCODE_W
K_X = SDL_SCANCODE_X
K_Y = SDL_SCANCODE_Y
K_Z = SDL_SCANCODE_Z
function get_mouse_pos()::Tuple{Int, Int}
x, y = Ref{Int32}(), Ref{Int32}()
SDL_GetMouseState(x, y)
return Int(x[]), Int(y[])
end
function mouse_clicked(event::SDL_Event, mouse_button::Int=MOUSE_LEFT)::Bool
if event.type == SDL_MOUSEBUTTONDOWN
return event.button.button == mouse_button
end
return false
end
function is_mouse_held(mouse_button::Int=MOUSE_LEFT)::Bool
mouse_button_states = SDL_GetMouseState(C_NULL, C_NULL) & SDL_BUTTON(mouse_button)
return Bool(parse(Int, reverse(bitstring(mouse_button_states))[mouse_button]))
end
function is_key_pressed(event::SDL_Event, key::SDL_Scancode)::Bool
if event.type == SDL_KEYDOWN
return event.key.keysym.scancode == key
end
return false
end
function is_key_held(key::SDL_Scancode)::Bool
keystate = SDL_GetKeyboardState(C_NULL)
return unsafe_load(keystate, Int(key)+1)
end
function update_key_states()
SDL_PumpEvents()
end
function events_exist()::Bool
update_key_states()
return Bool(SDL_PollEvent(EVENTS_REF))
end
function pop_event()::SDL_Event
return EVENTS_REF[]
end
end
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 873 | module Fonts
include("common.jl")
export Font
export render_font
using ..Colour
using ..Display
using ..Surfaces
struct Font
font::Ptr{TTF_Font}
size::Int
Font(fontname, size) = new(get_font(fontname, size), size)
end
function get_font(path::String, size::Int)::Ptr{TTF_Font}
@assert TTF_Init() == 0 "Error initialising font backend"
font::Ptr{TTF_Font} = TTF_OpenFont(path, size)
if font == C_NULL
throw(error("font was null and couldn't be found at: $(path)"))
end
return font
end
function render_font(font::Font, text::String, colour::ColourRGBA; antialiased=true)::Surface
colour = SDL_Color(colour.r, colour.g, colour.b, colour.a)
if antialiased
return Surface(TTF_RenderText_Blended(font.font, text, colour))
else
return Surface(TTF_RenderText_Solid(font.font, text, colour))
end
end
end
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 664 | module Images
include("common.jl")
export Image
export load_image
export blit
using ..Display
using ..Surfaces
# This is necessary when two different modules export the same function name
import ..Surfaces: blit
struct Image
surface::Surface
Image(path::String) = load_image(path)
Image(surface::Surface) = new(surface)
end
function load_image(path::String)::Image
surface = IMG_Load(path)
if surface == C_NULL
throw(error("Image could not be loaded"))
end
return Image(Surface(surface))
end
function blit(window::Window, image::Image, x::Int, y::Int; kwargs...)
blit(window, image.surface, x, y; kwargs...)
end
end
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 1024 | module Surfaces
include("common.jl")
export Surface
export get_size
export get_center
export blit
using ..Display
struct Surface
surface::Ptr{SDL_Surface}
Surface(surface) = new(surface)
end
function get_size(window::Window, surface::Surface)
texture = SDL_CreateTextureFromSurface(window.renderer, surface.surface)
w, h = Ref{Int32}(), Ref{Int32}()
SDL_QueryTexture(texture, C_NULL, C_NULL, w, h)
return w[], h[]
end
function get_center(window::Window, surface::Surface)
w, h = get_size(window, surface)
return w Γ· 2, h Γ· 2
end
function blit(window::Window, surface::Surface, x::Int, y::Int; centered=false)
texture = SDL_CreateTextureFromSurface(window.renderer, surface.surface)
w, h = Ref{Int32}(), Ref{Int32}()
SDL_QueryTexture(texture, C_NULL, C_NULL, w, h)
w, h = w[], h[]
if centered
rect = SDL_Rect(x - wΓ·2, y - hΓ·2, w, h)
else
rect = SDL_Rect(x, y, w, h)
end
SDL_RenderCopy(window.renderer, texture, C_NULL, Ref(rect))
end
end | SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 3523 | module Buttons
include("../common.jl")
export Button
export signals
export draw
using ..Colour
using ..Colours
using ..Display
using ..Fonts
using ..Draw
using ..Surfaces
using ..Events
using ..GUI
using ..Utils
import ..GUI: draw
mutable struct Button <: AbstractGUIElement
label::String
x::Int
y::Int
w::Int
h::Int
on_clicked::Function
colour::ColourRGBA
hover_colour::ColourRGBA
pressed_colour::ColourRGBA
border::Int
border_colour::ColourRGBA
visible::Bool
active::Bool
font_size::Int
font::Font
padding::Int
pressed::Bool
hovered::Bool
_mouse_region::RectRegion
_signals::Dict{String, Function}
_draw::Function
end
function pressed(button::Button, event::SDL_Event)::Bool
mx, my = get_mouse_pos()
if is_contained(button._mouse_region)
button.hovered = true
else
button.hovered = false
end
if is_mouse_held()
if is_contained(button._mouse_region) && is_contained(button._mouse_region; pos=GLOBALS[].mouse_last_clicked_position)
button.pressed = true
end
else
if is_contained(button._mouse_region) && button.pressed && is_contained(button._mouse_region; pos=GLOBALS[].mouse_last_clicked_position)
button.on_clicked(button)
end
button.pressed = false
end
return button.pressed
end
signals = Dict(
"pressed" => pressed,
)
function Button(label::String, x::Int, y::Int;
w::Int = 0,
h::Int = 0,
on_clicked::Function = (button::Button) -> (),
colour::ColourRGBA = WHITE,
hover_colour::ColourRGBA = LIGHTGREY,
pressed_colour::ColourRGBA = DARKGREY,
border::Int = 1,
border_colour::ColourRGBA = BLACK,
visible::Bool = true,
active::Bool = true,
font_size::Int = 20,
font::Font = Font(joinpath(dirname(dirname(@__DIR__)), "assets", "sunnyspells.ttf"), font_size),
padding::Int=10,
pressed::Bool=false,
hovered::Bool=false)
return Button(label, x, y, w, h, on_clicked, colour, lighter(colour, 30), darker(colour, 30), border, border_colour, visible, active, font_size, font, padding, pressed, hovered, RectRegion(x, y, w, h), signals, draw)
end
function draw(window::Window, button::Button)
text_surface = render_font(button.font, button.label, BLACK)
if button.w == 0 || button.h == 0
button.w, button.h = get_size(window, text_surface) .+ (button.padding*2, button.padding*2)
button._mouse_region.x = button.x - button.padding
button._mouse_region.y = button.y - button.padding
button._mouse_region.w = button.w
button._mouse_region.h = button.h
end
if button.label == ""
button.padding = 0
end
if button.pressed
draw_filled_rect(window, button.x-button.padding, button.y-button.padding, button.w, button.h, button.pressed_colour)
elseif button.hovered
draw_filled_rect(window, button.x-button.padding, button.y-button.padding, button.w, button.h, button.hover_colour)
else
draw_filled_rect(window, button.x-button.padding, button.y-button.padding, button.w, button.h, button.colour)
end
draw_rect(window, button.x-button.padding, button.y-button.padding, button.w, button.h, button.border_colour)
blit(window, text_surface, button.x, button.y)
end
end
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 1800 | module GUI
include("../common.jl")
export GLOBALS
export GUI_Manager
export AbstractGUIElement
export process_events
export add_element
export draw
using ..Display
using ..Events
using ..Fonts
using ..Colours
using ..Surfaces
abstract type AbstractGUIElement end
mutable struct Globals
last_frame_time::Float64
time_since_last_frame::Float64
mouse_last_clicked_position::Tuple{Int, Int}
Globals() = new(time(), 0.0, (0, 0))
end
global const GLOBALS = Ref{Globals}(Globals())
struct GUI_Manager
window::Window
elements::Vector{AbstractGUIElement}
show_fps::Bool
GUI_Manager(window; show_fps=false) = new(window, Vector{AbstractGUIElement}(), show_fps)
end
function process_events(manager::GUI_Manager, event::SDL_Event)::Bool
if mouse_clicked(event)
GLOBALS[].mouse_last_clicked_position = get_mouse_pos()
end
signal_fired = false
for element in manager.elements
sigs = element._signals
for (sig_name, sig) in pairs(sigs)
if sig(element, event)
signal_fired = true
end
end
end
return signal_fired
end
function add_element(manager::GUI_Manager, element::AbstractGUIElement)
push!(manager.elements, element)
end
function draw(manager::GUI_Manager)
GLOBALS[].time_since_last_frame = time() - GLOBALS[].last_frame_time
GLOBALS[].last_frame_time = time()
fps = round(Int, 1/GLOBALS[].time_since_last_frame)
for element in manager.elements
element._draw(manager.window, element)
end
if manager.show_fps
font = Font(joinpath(dirname(dirname(@__DIR__)), "assets", "swansea.ttf"), 20)
surface = render_font(font, "FPS = $fps", BLACK)
blit(manager.window, surface, manager.window.w - 100, 20)
end
end
end
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 722 | module TextInputs
include("../common.jl")
export TextInput
export draw
using ..Colour
using ..Colours
using ..Display
using ..Fonts
using ..Draw
using ..Surfaces
using ..Events
using ..GUI
import ..GUI: draw
struct TextInput <: AbstractGUIElement
text::String
x::Int
y::Int
w::Int
h::Int
_signals::Dict{String, Function}
_draw::Function
end
signals = Dict(
"confirmed" => confirmed,
)
function TextInput(text::String, x::Int, y::Int;
w::Int,
h::Int)
return TextInput(text, x, y, w, h, signals, draw)
end
function confirmed(textInput::TextInput, event::SDL_Event)::Bool
end
function draw(window::Window, textInput::TextInput)
end
end | SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 884 | module Utils
export MouseRegion
export RectRegion
export CircleRegion
export is_contained
using ..Events
abstract type MouseRegion end
mutable struct RectRegion <: MouseRegion
x::Int
y::Int
w::Int
h::Int
RectRegion(x, y, w, h) = new(x, y, w, h)
end
mutable struct CircleRegion <: MouseRegion
x::Int
y::Int
r::Int
CircleRegion(x, y, r) = new(x, y, r)
end
function is_contained(region::RectRegion; pos=(-1, -1))
mx, my = pos
if mx == -1 || my == -1
mx, my = get_mouse_pos()
end
x, y, w, h = region.x, region.y, region.w, region.h
return (x <= mx <= x + w) && (y <= my <= y + h)
end
function is_contained(region::CircleRegion; pos=(-1, -1))
mx, my = pos
if mx == -1 || my == -1
mx, my = get_mouse_pos()
end
x, y, r = region.x, region.y, region.r
return (mx-x)^2 + (my-y)^2 <= r^2
end
end | SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | code | 80 | using SDLCanvas
using Test
@testset "SDLCanvas.jl" begin
@assert 1 < 2
end
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | 5c0857f7a0b5f313b86e521613858a70c948cd95 | docs | 3228 | [](https://github.com/cam/SDLCanvas.jl/actions/workflows/CI.yml?query=branch%3Amain)
# Welcome to SDLCanvas.jl!
Please see the [wiki](https://github.com/Noremac11800/SDLCanvas.jl/wiki) for a more detailed explanation of what SDLCanvas has to offer, and some very basic documentation for its API.
SDLCanvas is completely inspired by the [pygame](https://www.pygame.org/docs/) C/Python library which is designed for creating 2D (and sometimes 3D) games using SDL2. Despite the confusing name, SDLCanvas is not designed for creating video games, although there's nothing stopping you from trying! I originally designed the library as a higher level interface into the [SDL2](https://github.com/JuliaMultimedia/SimpleDirectMediaLayer.jl) bindings for Julia to create basic graphics, image rendering, and font rendering.
The library is extremely bare-bones and lacks MOST of the features a developer would expect from a modern graphics library (anti-aliasing being one of the sore spots). It doesn't have collision detection, clipping, lighting, occlusion, cameras, or any of the bells and whistles of a game engine (because it isn't one)!
What it can do is draw shape primitives like lines, circles, and rectangles, render text and images, and comes with a GUI manager which currently only has a simple button implemented.
The "examples/" directory in the root of the repo has a series of strangely organised examples of how to use most of the features that already exist in the library.
## Installation
Using Julia's package manager, SDLCanvas and its dependencies can be installed via:
```
using Pkg; Pkg.add("SDLCanvas")
```
, or alternatively in the Julia REPL:
```
julia> ]
pkg> add SDLCanvas
```
## Getting Started
The "examples/" directory in the repo contains a `SDLCanvas_template.jl` which is a bare-bones program designed to display an empty black window. However for convenience, the template code is below:
```Julia
using SDLCanvas
window = create_window("SDLCanvas", 800, 600)
function main()
clock = Clock(60)
RUNNING = true
while RUNNING
while events_exist()
event = pop_event()
if event.type == QUIT || is_key_pressed(event, K_ESCAPE)
RUNNING = false
break
end
end
splash(window, BLACK)
update_display(window)
tick(clock)
end
quit(window)
end
main()
```
## Examples
### examples/example1.jl
Drawing animated circles
### examples/example2.jl
Animated scrolling starfield
### examples/example3.jl
Spinning loading circle
### examples/example4.jl
WASD-player-controlled square
### examples/example5.jl
Animated, rotating ellipses
### examples/example6.jl
Displaying text centered relative to the surface's center
### examples/example7.jl
Displaying a PNG
### examples/example8.jl
Drawing circles according to mouse position and button clicked.
Left click = Draw single filled red circle
Hold right click = Draw filled green circle every frame
### examples/example9.jl
GUI manager and button demo
### examples/example10.jl
Very simple shape-painting app demo
| SDLCanvas | https://github.com/Noremac11800/SDLCanvas.jl.git |
|
[
"MIT"
] | 0.1.1 | b7424b1abc9ca95b5ac266676c81ec316f44cc18 | code | 194 | using Documenter
using RenoiseOSC
makedocs(sitename="RenoiseOSC.jl", modules=[RenoiseOSC], pages=["index.md", "api.md", "config.md"])
deploydocs(repo="github.com/stellartux/RenoiseOSC.jl.git")
| RenoiseOSC | https://github.com/stellartux/RenoiseOSC.jl.git |
|
[
"MIT"
] | 0.1.1 | b7424b1abc9ca95b5ac266676c81ec316f44cc18 | code | 17981 | """
RenoiseOSC.jl is a collection of wrappers around the [Renoise OSC API functions](https://tutorials.renoise.com/wiki/Open_Sound_Control)
"""
module RenoiseOSC
export luaeval,
tempo,
editmode,
octave,
patternfollow,
editstep,
setmacroparam,
monophonic,
monophonicglide,
phraseplayback,
phraseprogram,
quantizationmode,
scalekey,
scalemode,
transpose,
volume,
volumedb,
linesperbeat,
metronome,
metronomeprecount,
quantization,
quantizationstep,
scheduleadd,
scheduleset,
slotmute,
slotunmute,
trigger,
ticksperline,
bypass,
setparam,
mute,
unmute,
solo,
outputdelay,
postfxpanning,
postfxvolume,
postfxvolumedb,
prefxpanning,
prefxvolume,
prefxvolumedb,
prefxwidth,
loopblock,
loopblockmovebackwards,
loopblockmoveforwards,
looppattern,
start,
stop,
resume,
midievent,
noteon,
noteoff,
sethost!,
setport!
using OpenSoundControl
using Sockets
const settings = Dict{String,Union{Sockets.InetAddr,UDPSocket}}("server" => Sockets.InetAddr(ip"127.0.0.1", 8000))
"""
sethost!(host::Union{AbstractString,Sockets.IPAddr})
Set the host of the Renoise OSC server. Default value is `ip"127.0.0.1"`.
!!! compat "Julia 1.3"
Setting the host by passing an AbstractString requires at least Julia 1.3.
# Example
```jldoctest; setup=:(using Sockets: @ip_str; using RenoiseOSC: sethost!)
julia> sethost!(ip"127.0.0.1")
Sockets.InetAddr{Sockets.IPv4}(ip"127.0.0.1", 8000)
```
"""
sethost!(host::Union{AbstractString,IPAddr}) = settings["server"] = Sockets.InetAddr(host, settings["server"].port)
"""
setport!(port::Integer)
Set the port of the Renoise OSC server. Default value is `8000`.
"""
setport!(port::Integer) = settings["server"] = Sockets.InetAddr(settings["server"].host, port)
"""
setaddress!(host::Union{AbstractString,Sockets.IPAddr}, port::Integer)
Set the host and the port of the OSC Server.
"""
setaddress!(host::Union{AbstractString,IPAddr}, port::Integer) = settings["server"] = Sockets.InetAddr(host, port)
function postmessage(path::AbstractString, argtypes::AbstractString="", args...)
send(
get!(UDPSocket, settings, "socket"),
settings["server"].host,
settings["server"].port,
OpenSoundControl.message("/renoise/" * path, argtypes, args...).data
)
end
"""
luaeval(expr::AbstractString)
Evaluate a Lua expression inside Renoise's scripting environment.
# Example
```julia
luaeval("renoise.song().transport.bpm = 132")
```
"""
luaeval(expr::AbstractString) = postmessage("evaluate", "s", expr)
"""
tempo(bpm::Integer)
Set the song's current bpm `[32:999]`
"""
function tempo(bpm::Integer)
if 32 <= bpm <= 999
postmessage("song/bpm", "i", Int32(bpm))
else
@warn "Can't set bpm to $(bpm), bpm must be in 32:999"
end
end
"""
editmode(on::Bool)
Set the song's global edit mode on or off
"""
editmode(on::Bool) = postmessage("song/edit/mode", on ? "T" : "F")
"""
octave(oct::Integer)
Sets the song's current octave [0:8]
"""
function octave(oct::Integer)
if oct in 0:8
postmessage("song/edit/octave", "i", Int32(oct))
else
@warn "Can't set octave to $(oct), octave must be in 0:8"
end
end
"""
patternfollow(on::Bool)
Enable or disable global pattern follow mode
"""
patternfollow(on::Bool) = postmessage("song/edit/pattern_follow", on ? "T" : "F")
"""
editstep(step::Integer)
Set the song's current edit step `[0:8]`
"""
function editstep(step::Integer)
if step in 0:8
postmessage("song/edit/step", "i", Int32(step))
else
@warn "Can't set edit step to $(step), edit step must be in 0:8"
end
end
"""
setmacroparam(param::Integer, value::Real; instrument::Integer = -1)
Set `instrument`'s macro parameter value `[0.0:1.0]`.
Default to the currently selected instrument.
"""
function setmacroparam(param::Integer, value::Real; instrument::Integer=-1)
postmessage("song/instrument/$(instrument)/$(param)", "d", Float64(value))
end
"""
monophonic(mono::Bool; instrument::Integer=-1)
Enable or disable `instrument`'s mono mode.
Default to the currently selected instrument.
"""
monophonic(mono::Bool; instrument::Integer=-1) = postmessage("song/instrument/$(instrument)/monophonic", mono ? "T" : "F")
"""
monophonicglide(glide::Integer; instrument::Integer=-1)
Set `instrument`'s glide amount `[0:255]`.
Default to the currently selected instrument.
"""
function monophonicglide(glide::Integer; instrument::Integer=-1)
if glide in 0:255
postmessage("song/instrument/$(instrument)/monophonic_glide", "i", Int32(glide))
else
@warn "Can't set monophonic glide to $(glide), glide must be in 0:255"
end
end
"""
phraseplayback(mode::AbstractString; instrument::Integer=-1)
Set `instrument`'s phraseplayback mode `["Off", "Program", "Keymap"]`
Default to the currently selected instrument.
"""
function phraseplayback(mode::AbstractString; instrument::Integer=-1)
if mode in Set(["Off", "Program", "Keymap"])
postmessage("song/instrument/$(instrument)/phrase_playback", "s", mode)
else
@warn "Can't set phrase playback mode to \"$(mode)\", mode must be one of `[\"Off\", \"Program\", \"Keymap\"]`"
end
end
"""
phraseprogram(program::Integer; instrument::Integer=-1)
Set `instrument`'s phrase program number [0:127]
Default to the currently selected instrument.
"""
function phraseprogram(program::Integer; instrument::Integer=-1)
if program in 0:127
postmessage("song/instrument/$(instrument)/phrase_playback", "i", Int32(program))
else
@warn "Can't set phrase program to $(program), program must be in 0:127"
end
end
"""
quantizationmode(mode::AbstractString; instrument::Integer=-1)
Set `instrument`'s quantization method, one of `"None"`, `"Line"`, `"Beat"`, `"Bar"`.
Default to the currently selected instrument.
"""
function quantizationmode(mode::AbstractString; instrument::Integer=-1)
if mode in Set(["None", "Line", "Beat", "Bar"])
postmessage("song/instrument/$(instrument)/quantize", "s", mode)
else
@warn "Can't set quantization mode to \"$(mode)\", mode must be one of `[\"None\", \"Line\", \"Beat\", \"Bar\"]`"
end
end
"""
scalekey(key::AbstractString; instrument::Integer=-1)
Set `instrument`'s note scaling key.
Default to the currently selected instrument.
"""
function scalekey(key::AbstractString; instrument::Integer=-1)
if key in Set(["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"])
postmessage("song/instrument/$(instrument)/scale_key", "s", key)
else
@warn "Can't set scale key to \"$(key)\", key must be one of [\"C\", \"C#\", \"D\", \"D#\", \"E\", \"F\", \"F#\", \"G\", \"G#\", \"A\", \"A#\", \"B\"]"
end
end
"""
scalemode(mode::AbstractString; instrument::Integer=-1)
Set `instrument`'s note scaling mode.
Default to the currently selected instrument.
"""
function scalemode(mode::AbstractString; instrument::Integer=-1)
postmessage("song/instrument/$(instrument)/scale_mode", "s", mode)
end
"""
transpose(pitch::Integer; instrument::Integer=-1)
Set `instrument`'s global pitch transpose `[-120:120]``.
Default to the currently selected instrument.
"""
function transpose(pitch::Integer; instrument::Integer=-1)
if pitch in -120:120
postmessage("song/instrument/$(instrument)/transpose", "i", pitch)
else
@warn "Can't transpose by $(pitch), `pitch` must be in `-120:120`"
end
end
"""
volume(level::Real; instrument::Integer=-1)
Set `instrument`'s global volume to `level` `[0.0:db2lin(6)]β[0.0:2.0]`.
Default to the currently selected instrument.
"""
function volume(level::Real; instrument::Integer=-1)
postmessage("song/instrument/$(instrument)/volume", "d", clamp(Float64(level), 0.0, 1.9952623149688795))
end
"""
volumedb(level::Real; instrument::Integer=-1)
Set `instrument`'s global volume to `level` in decibels `[0.0:6.0]`.
Default to the currently selected instrument.
"""
function volumedb(level::Real; instrument::Integer=-1)
postmessage("song/instrument/$(instrument)/volume_db", "d", clamp(Float64(level), 0.0, 6.0))
end
"""
linesperbeat(lpb::Integer)
Set the song's current lines per beat [1:255]
"""
function linesperbeat(lpb::Integer)
if lpb in 1:255
postmessage("song/lpb", "i", Int32(lpb))
else
@warn "Can't set lines per beat to $(lpb), `lpb` must be in `1:255`"
end
end
"""
metronome(on::Bool)
Enable or disable the global metronome
"""
metronome(on::Bool) = postmessage("song/record/metronome", on ? "T" : "F")
"""
metronomeprecount(on::Bool)
Enable or disable the global metronome precount
"""
metronomeprecount(on::Bool) = postmessage("song/record/metronome_precount", on ? "T" : "F")
"""
quantization(on::Bool)
Enable or disable the global record quantization
"""
quantization(on::Bool) = postmessage("song/record/quantization", on ? "T" : "F")
"""
quantizationstep(step::Integer)
Set the global record quantization step [1:32]
"""
function quantizationstep(step::Integer)
if step in 1:32
postmessage("song/record/quantization_step", b ? "T" : "F")
else
@warn "Can't set quantization step to $(step), `step` must be in `1:32`"
end
end
"""
scheduleadd(sequence::Integer)
Add a scheduled sequence playback pos
"""
scheduleadd(sequence::Integer) = postmessage("song/sequence/schedule_add", "i", Int32(sequence))
"""
scheduleset(sequence::Integer)
Replace the current sequence playback pos
"""
scheduleset(sequence::Integer) = postmessage("song/sequence/schedule_set", "i", Int32(sequence))
"""
slotmute(track::Integer, sequence::Integer)
slotmute(mute::Bool, track::Integer, sequence::Integer)
Mute the given track, sequence slot in the matrix.
"""
slotmute(track::Integer, sequence::Integer) = postmessage("song/sequence/slot_mute", "ii", Int32(track), Int32(sequence))
slotmute(mute::Bool, track::Integer, sequence::Integer) = postmessage("song/sequence/slot_$(mute ? "" : "un")mute", "ii", Int32(track), Int32(sequence))
"""
slotunmute(track::Integer, sequence::Integer)
Mute the given track, sequence slot in the matrix.
"""
slotunmute(track::Integer, sequence::Integer) = postmessage("song/sequence/slot_unmute", "ii", Int32(track), Int32(sequence))
"""
trigger(sequence::Integer)
Set playback pos to the specified sequence pos
"""
trigger(sequence::Integer) = postmessage("song/sequence/trigger", "i", Int32(sequence))
"""
ticksperline(tpl::Integer)
Set the song's current ticks per line [1:16]
"""
function ticksperline(tpl::Integer)
if tpl in 1:16
postmessage("song/tpl", "i", Int32(tpl))
else
@warn "Can't set ticks per line to $(tpl), ticks per line must be in `1:16`"
end
end
"""
bypass(bypassed::Bool; track::Integer=-1, device::Integer=-1)
Set the bypass status of a device, set `true` to bypass the device.
When unspecified, `track` and `device` default to the currently selected track and device.
"""
function bypass(bypassed::Bool; track::Integer=-1, device::Integer=-1)
postmessage("song/track/$(track)/device/$(device)/bypass", bypassed ? "T" : "F")
end
"""
setparam(key::Union{AbstractString,Integer}, value::Real; track::Integer=-1, device::Integer=-1)
Set the parameter of any device by its name or index. `value` is clamped between `0.0` and `1.0`.
When unspecified, track and device default to the currently selected track and device.
"""
function setparam(key::Integer, value::Real; track::Integer=-1, device::Integer=-1)
postmessage("song/track/$(track)/device/$(device)/set_parameter_by_index", "id", Int32(key), Float64(clamp(value, 0.0, 1.0)))
end
function setparam(key::AbstractString, value::Real; track::Integer=-1, device::Integer=-1)
postmessage("song/track/$(track)/device/$(device)/set_parameter_by_name", "sd", key, Float64(clamp(value, 0.0, 1.0)))
end
"""
mute(muted::Bool = true; track::Integer = -1)
Mute or unmute the given track. Default to the currently selected track.
"""
mute(muted::Bool=true; track::Integer=-1) = postmessage("song/track/$(track)/$(muted ? "" : "un")mute")
"""
unmute(; track::Integer=-1)
mute(false; track::Integer=-1)
Unmute the given track. Default to the currently selected track.
"""
unmute(; track::Integer=-1) = postmessage("song/track/$(track)/unmute")
"""
solo(; track::Integer)
Toggle solo for the given track. Default to the currently selected track.
"""
solo(; track::Integer=-1) = postmessage("song/track/$(track)/solo")
"""
outputdelay(Ξ΄t::Real; track::Integer)
Set the given track's output delay in milliseconds [-100:100]. Default to the currently selected track.
"""
function outputdelay(Ξ΄t::Real; track::Integer=-1)
if -100.0 <= Ξ΄t <= 100.0
postmessage("song/track/$(track)/output_delay", "d", Float64(Ξ΄t))
else
@warn "Can't set output delay to `$(Ξ΄t)`. The output delay time must be between `-100.0` and `100.0`"
end
end
"""
postfxpanning(pan::Integer; track::Integer=-1)
Set `track`'s post-FX panning, `[-50:50]` left to right.
Default to the currently selected track.
"""
function postfxpanning(pan::Integer; track::Integer=-1)
if -50 <= pan <= 50
postmessage("song/track/$(track)/postfx_panning", "i", Int32(pan))
else
@warn "Can't set post-FX panning to $(pan), `pan` must be in `-50:50`"
end
end
"""
postfxvolume(level::Real; track::Integer=-1)
Set `track`s post-FX volume, `[0.0:db2lin(6.0)]`, -Inf:+6dB.
Default to the currently selected track.
"""
function postfxvolume(level::Real; track::Integer=-1)
postmessage("song/track/$(track)/postfx_volume", "d", clamp(Float64(level), 0.0, 1.9952623149688795))
end
"""
postfxvolumedb(level::Real; track::Integer=-1)
Set `track`s post-FX volume in decibels, `[-200.0:3.0]`.
Default to the currently selected track.
"""
function postfxvolumedb(level::Real; track::Integer=-1)
postmessage("song/track/$(track)/postfx_volume_db", "d", clamp(Float64(level), -200.0, 3.0))
end
"""
prefxpanning(pan::Integer; track::Integer=-1)
Set `track`'s pre-FX panning, `[-50:50]` left to right.
Default to the currently selected track.
"""
function prefxpanning(pan::Integer; track::Integer=-1)
if -50 <= pan <= 50
postmessage("song/track/$(track)/prefx_panning", "i", Int32(pan))
else
@warn "Can't set pre-FX panning to $(pan), `pan` must be in `-50:50`"
end
end
"""
prefxvolume(level::Real; track::Integer=-1)
Set `track`s pre-FX volume, `[0.0:db2lin(6.0)]`, -Inf:+6dB.
Default to the currently selected track.
"""
function prefxvolume(level::Real; track::Integer=-1)
postmessage("song/track/$(track)/prefx_volume", "d", clamp(Float64(level), 0.0, 1.9952623149688795))
end
"""
prefxvolumedb(level::Real; track::Integer=-1)
Set `track`s pre-FX volume in decibels, `[-200.0:3.0]`.
Default to the currently selected track.
"""
prefxvolumedb(level::Real; track::Integer=-1) = postmessage("song/track/$(track)/prefx_volume_db", "d", clamp(Float64(level), -200.0, 3.0))
"""
prefxwidth(width::Real; track::Integer=-1)
Set `track`'s pre-FX width `[0.0:1.0]`.
Default to the currently selected track.
"""
prefxwidth(width::Real; track::Integer=-1) = postmessage("song/track/$(track)/prefx_width", "d", clamp(Float64(width), 0.0, 1.0))
"""
loopblock(loop::Bool)
Enable or disable pattern block loop.
"""
loopblock(loop::Bool) = postmessage("/transport/loop/block", loop ? "T" : "F")
"""
loopblockmovebackwards()
Move the block loop one segment backwards
"""
loopblockmovebackwards() = postmessage("transport/loop/block_move_backwards")
"""
loopblockmoveforwards()
Move the block loop one segment forwards
"""
loopblockmoveforwards() = postmessage("transport/loop/block_move_forwards")
"""
looppattern(loop::Bool)
Enable or disable looping the current pattern.
"""
looppattern(loop::Bool) = postmessage("transport/loop/pattern", loop ? "T" : "F")
"""
start()
Start playback or restart playing the current pattern
"""
start() = postmessage("transport/start")
"""
stop()
Stop playback
"""
stop() = postmessage("transport/stop")
"""
panic()
Stop playback and reset all playing instruments and DSPs
"""
panic() = postmessage("transport/panic")
"""
resume()
Continue playback
"""
resume() = postmessage("transport/continue")
"""
midievent(portid::UInt8, status::UInt8, data1::UInt8, data2::UInt8)
midievent(event::Union{UInt32,UInt64,Array{<:Integer},NTuple{4,<:Integer}})
Fire a raw MIDI event.
"""
midievent(portid::UInt8, status::UInt8, data1::UInt8, data2::UInt8) = postmessage("trigger/midi", "m", [portid, status, data1, data2])
function midievent(event::Union{Array{<:Integer},NTuple{4,<:Integer}})
if all(<=(255), event)
postmessage("trigger/midi", "m", UInt8.(event))
else
@warn "Can't send MIDI event"
end
end
midievent(portid::Integer, status::Integer, data1::Integer, data2::Integer) = midievent([portid, status, data1, data2])
midievent(event::UInt64) = postmessage("trigger/midi", "h", event)
midievent(event::UInt32) = postmessage("trigger/midi", "i", event)
"""
noteon(pitch::Integer, velocity::Integer; instrument::Integer=-1, track::Integer=-1)
Turn on the note with the velocity.
Default to the currently selected instrument and track.
"""
function noteon(pitch::Integer, velocity::Integer; instrument::Integer=-1, track::Integer=-1)
postmessage("trigger/note_on", "iiii", Int32.((instrument, track, pitch, velocity))...)
end
"""
noteoff(pitch::Integer, velocity::Integer; instrument::Integer=-1, track::Integer=-1)
Turn off the note
"""
function noteoff(pitch::Integer; instrument::Integer=-1, track::Integer=-1)
postmessage("trigger/note_off", "iii", Int32.((instrument, track, pitch))...)
end
end # module
| RenoiseOSC | https://github.com/stellartux/RenoiseOSC.jl.git |
|
[
"MIT"
] | 0.1.1 | b7424b1abc9ca95b5ac266676c81ec316f44cc18 | docs | 543 | # RenoiseOSC.jl
[](https://stellartux.github.io/RenoiseOSC.jl/dev/)
[](https://github.com/stellartux/RenoiseOSC.jl/blob/master/LICENSE)
RenoiseOSC.jl wraps the [Renoise OpenSoundControl API](https://tutorials.renoise.com/wiki/Open_Sound_Control). See [the docs](https://stellartux.github.io/RenoiseOSC.jl/dev/) for more details.
## Quickstart
```julia
using Pkg
Pkg.add(RenoiseOSC)
using RenoiseOSC
```
| RenoiseOSC | https://github.com/stellartux/RenoiseOSC.jl.git |
|
[
"MIT"
] | 0.1.1 | b7424b1abc9ca95b5ac266676c81ec316f44cc18 | docs | 805 | # Renoise OSC API
This file documents the API exposed in Renoise `^3.0.1`.
```@meta
CurrentModule = RenoiseOSC
```
## v3.0
```@docs
luaeval
tempo
editmode
octave
patternfollow
editstep
linesperbeat
metronome
metronomeprecount
quantization
quantizationstep
scheduleadd
scheduleset
slotmute
slotunmute
trigger
bypass
setparam
outputdelay
postfxpanning
postfxvolume
postfxvolumedb
prefxpanning
prefxvolume
prefxvolumedb
prefxwidth
solo
mute
unmute
panic
resume
start
stop
midievent
noteon
noteoff
```
## v3.3
Below are the functions added between Renoise `3.0.1` and `3.3.0`.
```@docs
setmacroparam
monophonic
monophonicglide
phraseplayback
phraseprogram
quantizationmode
scalekey
scalemode
transpose
volume
volumedb
ticksperline
loopblock
loopblockmovebackwards
loopblockmoveforwards
looppattern
```
| RenoiseOSC | https://github.com/stellartux/RenoiseOSC.jl.git |
|
[
"MIT"
] | 0.1.1 | b7424b1abc9ca95b5ac266676c81ec316f44cc18 | docs | 322 | # Configuration
```@meta
CurrentModule = RenoiseOSC
```
RenoiseOSC defaults to sending events to `localhost` at port `8000`, the default port which
Renoise hosts its OSC server on. To use a different address, use the functions below.
Only communication over UDP is supported.
```@docs
setaddress!
sethost!
setport!
```
| RenoiseOSC | https://github.com/stellartux/RenoiseOSC.jl.git |
|
[
"MIT"
] | 0.1.1 | b7424b1abc9ca95b5ac266676c81ec316f44cc18 | docs | 626 | # RenoiseOSC.jl
```@meta
CurrentModule = RenoiseOSC
```
```@docs
RenoiseOSC
```
## Install
Run the following commands in Julia to install RenoiseOSC.
```julia
using Pkg
Pkg.add(RenoiseOSC)
```
## Use
Open Renoise. The OSC server must be enabled for RenoiseOSC.jl to be able to communicate with it.
To enable the OSC server, select the Edit menu, then open the Preferences menu. Open the OSC tab and check
the Enable Server checkbox. You should see `*** Server is up and running` in the Incoming Messages panel.
```julia
using RenoiseOSC
start()
```
If everything is working correctly, Renoise should now be playing.
| RenoiseOSC | https://github.com/stellartux/RenoiseOSC.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | code | 1511 | using Documenter
using UniqueKronecker
using DocumenterCitations
ENV["JULIA_DEBUG"] = "Documenter"
PAGES = [
"Home" => "index.md",
"Unique Kronecker Products" => [
"Basics" => "uniquekronecker/basics.md",
"Higher Order" => "uniquekronecker/higherorder.md",
],
"Circulant Kronecker Products" => "circulantkronecker/basics.md",
"Matrix Conversions" => [
"Polynomial Dynamical System" => "matrices/dynamicalsystem.md",
"Elimination Matrix" => "matrices/elimination.md",
"Duplication Matrix" => "matrices/duplication.md",
"Commutation Matrix" => "matrices/commutation.md",
"Symmetrizer Matrix" => "matrices/symmetrizer.md"
],
"API Reference" => "api.md",
"Paper Reference" => "paper.md",
]
bib = CitationBibliography(joinpath(@__DIR__, "src", "refs.bib"))
makedocs(
sitename = "UniqueKronecker.jl",
clean = true, doctest = false, linkcheck = false,
format = Documenter.HTML(
prettyurls = get(ENV, "CI", nothing) == "true",
edit_link = "https://github.com/smallpondtom/UniqueKronecker.jl",
assets=String[
"assets/citations.css",
"assets/favicon.ico",
],
# analytics = "G-B2FEJZ9J99",
),
modules = [
UniqueKronecker,
],
pages = PAGES,
plugins=[bib],
)
deploydocs(
repo = "github.com/smallpondtom/UniqueKronecker.jl.git",
branch = "gh-pages",
devbranch = "main",
# Add other deployment options as needed
) | UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | code | 359 | module UniqueKronecker
using LinearAlgebra
using SparseArrays
using Kronecker: β
using StatsBase: countmap
using Combinatorics: permutations, factorial, binomial, with_replacement_combinations
include("unique_kronecker.jl")
include("circulant_kronecker.jl")
include("polytools.jl")
include("vectorize.jl")
include("legacy.jl")
end # module UniqueKronecker
| UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | code | 3217 | export circulant_kronecker, β, circulant_kron_snapshot_matrix
"""
circulant_kronecker(args::AbstractArray...)
Circulant Kronecker product operation for multiple Kronecker products.
## Arguments
- `args::AbstractArray...`: Vectors or matrices to perform the circulant Kronecker product.
## Returns
- `result`: The circulant Kronecker product.
"""
function circulant_kronecker(args::AbstractArray...)
n = length(args)
if n == 2
return args[1] β args[2] + args[2] β args[1]
elseif n == 3
return args[1] β args[2] β args[3] + args[2] β args[3] β args[1] + args[3] β args[1] β args[2]
else
# Compute one Kronecker product to get the correct size and type
initial_kp = β(args...)
# Initialize result as a zero array of the same type and size as initial_kp
result = zero(initial_kp)
@inbounds for k in 0:(n - 1)
# Generate cyclic permutation of arguments
permuted_args = ntuple(i -> args[mod1(i + k, n)], n)
# Compute Kronecker product of permuted arguments
kp = β(permuted_args...)
result += kp
end
return result
end
end
# Helper function to flatten arguments
function flatten_args(args...)
result = []
for arg in args
if isa(arg, AbstractArray{<:Number})
push!(result, arg)
elseif isa(arg, Tuple) || isa(arg, Array)
append!(result, flatten_args(arg...))
else
error("Unsupported argument type: ", typeof(arg))
end
end
return result
end
"""
β(args::AbstractArray...)
Circulant Kronecker product operator for multiple arguments.
## Arguments
- `args::AbstractArray...`: Vectors or matrices to perform the circulant Kronecker product.
## Returns
- `result`: The circulant Kronecker product.
"""
function β(args...)
flat_args = flatten_args(args...)
return circulant_kronecker(flat_args...)
end
"""
circulant_kron_snapshot_matrix(Xmat::AbstractArray{T}...) where {T<:Number}
Compute the circulant Kronecker product of a set of matrices, where each matrix is a snapshot matrix.
## Arguments
- `Xmat::AbstractArray{T}...`: Snapshot matrices to compute the circulant Kronecker product.
## Returns
- `result`: The circulant Kronecker product of the snapshot matrices.
"""
function circulant_kron_snapshot_matrix(Xmat::AbstractArray{T}...) where {T<:Number}
# Ensure all matrices have the same number of columns
ncols = size(Xmat[1], 2)
for X in Xmat[2:end]
if size(X, 2) != ncols
throw(ArgumentError("All input matrices must have the same number of columns"))
end
end
# Inner function to compute circulant Kronecker product for a set of vectors
function circulant_kron_timestep(x...)
return circulant_kronecker(x...)
end
# Collect columns from each matrix
col_iterators = map(eachcol, Xmat)
# Zip the columns together to align them
zipped_columns = zip(col_iterators...)
# Apply circulant_kron_timestep to each set of columns
tmp = [circulant_kron_timestep(cols...) for cols in zipped_columns]
# Concatenate the results horizontally
return reduce(hcat, tmp)
end
| UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | code | 10833 | """
makeQuadOp(n::Int, inds::AbstractArray{Tuple{Int,Int,Int}}, vals::AbstractArray{Real},
which_quad_term::Union{String,Char}="H") β H or F or Q
Helper function to construct the quadratic operator from the indices and values. The indices must
be a 1-dimensional array of tuples of the form `(i,j,k)` where `i,j,k` are the indices of the
quadratic term. For example, for the quadratic term ``2.5x_1x_2`` for ``\\dot{x}_3`` would have an
index of `(1,2,3)` with a value of `2.5`. The `which_quad_term` argument specifies which quadratic
term to construct. Note that the values must be a 1-dimensional array of the same length as the indices.
## Arguments
- `n::Int`: dimension of the quadratic operator
- `inds::AbstractArray{Tuple{Int,Int,Int}}`: indices of the quadratic term
- `vals::AbstractArray{Real}`: values of the quadratic term
- `which_quad_term::Union{String,Char}="H"`: which quadratic term to construct
- `symmetric::Bool=true`: whether to construct the symmetric `H` or `Q` matrix
## Returns
- the quadratic operator
"""
function makeQuadOp(n::Int, inds::AbstractArray{Tuple{Int,Int,Int}}, vals::AbstractArray{<:Real};
which_quad_term::Union{String,Char}="H", symmetric::Bool=true)
@assert length(inds) == length(vals) "The length of indices and values must be the same."
Q = zeros(n, n, n)
for (ind,val) in zip(inds, vals)
if symmetric
i, j, k = ind
if i == j
Q[ind...] = val
else
Q[i,j,k] = val/2
Q[j,i,k] = val/2
end
else
Q[ind...] = val
end
end
if which_quad_term == "H" || which_quad_term == 'H'
return Q2H(Q)
elseif which_quad_term == "F" || which_quad_term == 'F'
return eliminate(Q2H(Q), 2)
elseif which_quad_term == "Q" || which_quad_term == 'Q'
return Q
else
error("The quad term must be either H, F, or Q.")
end
end
"""
makeCubicOp(n::Int, inds::AbstractArray{Tuple{Int,Int,Int,Int}}, vals::AbstractArray{Real},
which_cubic_term::Union{String,Char}="G") β G or E
Helper function to construct the cubic operator from the indices and values. The indices must
be a 1-dimensional array of tuples of the form `(i,j,k,l)` where `i,j,k,l` are the indices of the
cubic term. For example, for the cubic term ``2.5x_1x_2x_3`` for ``\\dot{x}_4`` would have an
index of `(1,2,3,4)` with a value of `2.5`. The `which_cubic_term` argument specifies which cubic
term to construct (the redundant or non-redundant operator). Note that the values must be a
1-dimensional array of the same length as the indices.
## Arguments
- `n::Int`: dimension of the cubic operator
- `inds::AbstractArray{Tuple{Int,Int,Int,Int}}`: indices of the cubic term
- `vals::AbstractArray{Real}`: values of the cubic term
- `which_cubic_term::Union{String,Char}="G"`: which cubic term to construct "G" or "E"
- `symmetric::Bool=true`: whether to construct the symmetric `G` matrix
## Returns
- the cubic operator
"""
function makeCubicOp(n::Int, inds::AbstractArray{Tuple{Int,Int,Int,Int}}, vals::AbstractArray{<:Real};
which_cubic_term::Union{String,Char}="G", symmetric::Bool=true)
@assert length(inds) == length(vals) "The length of indices and values must be the same."
S = zeros(n, n, n, n)
for (ind,val) in zip(inds, vals)
if symmetric
i, j, k, l = ind
if i == j == k
S[ind...] = val
elseif (i == j) && (j != k)
S[i,j,k,l] = val/3
S[i,k,j,l] = val/3
S[k,i,j,l] = val/3
elseif (i != j) && (j == k)
S[i,j,k,l] = val/3
S[j,i,k,l] = val/3
S[j,k,i,l] = val/3
elseif (i == k) && (j != k)
S[i,j,k,l] = val/3
S[j,i,k,l] = val/3
S[i,k,j,l] = val/3
else
S[i,j,k,l] = val/6
S[i,k,j,l] = val/6
S[j,i,k,l] = val/6
S[j,k,i,l] = val/6
S[k,i,j,l] = val/6
S[k,j,i,l] = val/6
end
else
S[ind...] = val
end
end
G = spzeros(n, n^3)
for i in 1:n
G[i, :] = vec(S[:, :, :, i])
end
if which_cubic_term == "G" || which_cubic_term == 'G'
return G
elseif which_cubic_term == "E" || which_cubic_term == 'E'
return eliminate(G, 3)
else
error("The cubic term must be either G or E.")
end
end
"""
extractF(F::Union{SparseMatrixCSC,VecOrMat}, r::Int) β F
Extracting the `F` matrix for POD basis of dimensions `(N, r)`
## Arguments
- `F`: F matrix
- `r`: reduced order
## Returns
- extracted `F` matrix
"""
function extractF(F, r)
N = size(F, 1)
if 0 < r < N
xsq_idx = [1 + (N + 1) * (n - 1) - n * (n - 1) / 2 for n in 1:N]
extract_idx = [collect(x:x+(r-i)) for (i, x) in enumerate(xsq_idx[1:r])]
idx = Int.(reduce(vcat, extract_idx))
return F[1:r, idx]
elseif r <= 0 || N < r
error("Incorrect dimensions for extraction")
else
return F
end
end
"""
insertF(Fi::Union{SparseMatrixCSC,VecOrMat}, N::Int) β F
Inserting values into the `F` matrix for higher dimensions
## Arguments
- `Fi`: F matrix to insert
- `N`: the larger order
## Returns
- inserted `F` matrix
"""
function insert2F(Fi, N)
F = spzeros(N, Int(N * (N + 1) / 2))
Ni = size(Fi, 1)
xsq_idx = [1 + (N + 1) * (n - 1) - n * (n - 1) / 2 for n in 1:N]
insert_idx = [collect(x:x+(Ni-i)) for (i, x) in enumerate(xsq_idx[1:Ni])]
idx = Int.(reduce(vcat, insert_idx))
F[1:Ni, idx] = Fi
return F
end
"""
insert2randF(Fi::Union{SparseMatrixCSC,VecOrMat}, N::Int) β F
Inserting values into the `F` matrix for higher dimensions
## Arguments
- `Fi`: F matrix to insert
- `N`: the larger order
## Returns
- inserted `F` matrix
"""
function insert2randF(Fi, N)
F = sprandn(N, Int(N * (N + 1) / 2), 0.8)
Ni = size(Fi, 1)
xsq_idx = [1 + (N + 1) * (n - 1) - n * (n - 1) / 2 for n in 1:N]
insert_idx = [collect(x:x+(Ni-i)) for (i, x) in enumerate(xsq_idx[1:Ni])]
idx = Int.(reduce(vcat, insert_idx))
F[1:Ni, idx] = Fi
return F
end
"""
extractH(H::Union{SparseMatrixCSC,VecOrMat}, r::Int) β H
Extracting the `H` matrix for POD basis of dimensions `(N, r)`
## Arguments
- `H`: H matrix
- `r`: reduced order
## Returns
- extracted `H` matrix
"""
function extractH(H, r)
N = size(H, 1)
if 0 < r < N
tmp = [(N*i-N+1):(N*i-N+r) for i in 1:r]
idx = Int.(reduce(vcat, tmp))
return H[1:r, idx]
elseif r <= 0 || N < r
error("Incorrect dimensions for extraction.")
else
return H
end
end
"""
insertH(Hi::Union{SparseMatrixCSC,VecOrMat}, N::Int) β H
Inserting values into the `H` matrix for higher dimensions
## Arguments
- `Hi`: H matrix to insert
- `N`: the larger order
## Returns
- inserted `H` matrix
"""
function insert2H(Hi, N)
H = spzeros(N, Int(N^2))
Ni = size(Hi, 1)
tmp = [(N*i-N+1):(N*i-N+Ni) for i in 1:Ni]
idx = Int.(reduce(vcat, tmp))
H[1:Ni, idx] = Hi
return H
end
"""
insert2bilin(X::Union{SparseMatrixCSC,VecOrMat}, N::Int, p::Int) β BL
Inserting the values into the bilinear matrix (`N`) for higher dimensions
## Arguments
- `X`: bilinear matrix to insert
- `N`: the larger order
## Returns
- Inserted bilinear matrix
"""
function insert2bilin(X, N, p)
Ni = size(X, 1)
BL = zeros(N, N*p)
for i in 1:p
idx = (i-1)*N+1
BL[1:Ni, idx:(idx+Ni-1)] = X[:, (i-1)*Ni+1:i*Ni]
end
return BL
end
"""
Q2H(Q::AbstractArray) β H
Convert the quadratic `Q` operator into the `H` operator. The `Q` matrix is
a 3-dim tensor with dimensions `(n x n x n)`. Thus,
```math
\\mathbf{Q} = \\begin{bmatrix}
\\mathbf{Q}_1 \\\\
\\mathbf{Q}_2 \\\\
\\vdots \\\\
\\mathbf{Q}_n
\\end{bmatrix}
\\quad \\text{where }~~ \\mathbf{Q}_i \\in \\mathbb{R}^{n \\times n}
```
## Arguments
- `Q::AbstractArray`: Quadratic matrix in the 3-dim tensor form with dimensions `(n x n x n)`
## Returns
- the `H` quadratic matrix
"""
function Q2H(Q::AbstractArray)
# The Q matrix should be a 3-dim tensor with dim n
n = size(Q, 1)
# Preallocate the sparse matrix of H
H = spzeros(n, n^2)
for i in 1:n
H[i, :] = vec(Q[:, :, i])
end
return H
end
"""
H2Q(H::AbstractArray) β Q
Convert the quadratic `H` operator into the `Q` operator
## Arguments
- `H::AbstractArray`: Quadratic matrix of dimensions `(n x n^2)`
## Returns
- the `Q` quadratic matrix of 3-dim tensor
"""
function H2Q(H::AbstractArray)
# The Q matrix should be a 3-dim tensor with dim n
n = size(H, 1)
# Preallocate the sparse matrix of H
Q = Array{Float64}(undef, n, n, n)
for i in 1:n
Q[:,:,i] = reshape(H[i, :], n, n)
end
return Q
end
"""
makeIdentityCubicOp(n::Int, which_cubic_term::Union{String,Char}="G") β G or E
Helper function to construct the identity cubic operator.
## Arguments
- `n::Int`: dimension of the cubic operator
- `which_cubic_term::Union{String,Char}="G"`: which cubic term to construct "G" or "E"
## Returns
- the identity cubic operator
"""
function makeIdentityCubicOp(n::Int; which_cubic_term::Union{String,Char}="G")
# Create the index and value tuples
inds = []
vals = []
for i in 1:n
# Cubic term
push!(inds, (i,i,i,i))
push!(vals, 1.0)
for j in 1:n
if i != j
# Quadratic term times linear term
push!(inds, (j,j,i,i))
push!(vals, 0.5)
end
end
end
S = zeros(n, n, n, n)
for (ind,val) in zip(inds, vals)
i, j, k, l = ind
if i == j == k
S[ind...] = val
elseif (i == j) && (j != k)
S[i,j,k,l] = val/3
S[i,k,j,l] = val/3
S[k,i,j,l] = val/3
elseif (i != j) && (j == k)
S[i,j,k,l] = val/3
S[j,i,k,l] = val/3
S[j,k,i,l] = val/3
elseif (i == k) && (j != k)
S[i,j,k,l] = val/3
S[j,i,k,l] = val/3
S[i,k,j,l] = val/3
else
S[i,j,k,l] = val/6
S[i,k,j,l] = val/6
S[j,i,k,l] = val/6
S[j,k,i,l] = val/6
S[k,i,j,l] = val/6
S[k,j,i,l] = val/6
end
end
G = zeros(n, n^3)
for i in 1:n
G[i, :] = vec(S[:, :, :, i])
end
if which_cubic_term == "G" || which_cubic_term == 'G'
return G
elseif which_cubic_term == "E" || which_cubic_term == 'E'
return eliminate(G,3)
else
error("The cubic term must be either G or E.")
end
end | UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | code | 14661 | export dupmat, symmtzrmat, elimat, commat, eliminate, duplicate, duplicate_symmetric
export makePolyOp
export kron_snapshot_matrix, unique_kron_snapshot_matrix
"""
dupmat(n::Int, p::Int) -> Dp::SparseMatrixCSC{Int}
Create a duplication matrix of order `p` for a vector of length `n` [MagnusEML1980](@citet).
## Arguments
- `n::Int`: The length of the vector.
- `p::Int`: The order of the duplication matrix, e.g., `p = 2` for x β x.
## Output
- `Dp::SparseMatrixCSC{Int}`: The duplication matrix of order `p`.
## Example
```julia-repl
julia> dupmat(2,2)
4Γ3 SparseMatrixCSC{Int64, Int64} with 4 stored entries:
1 β
β
β
1 β
β
1 β
β
β
1
```
"""
function dupmat(n::Int, p::Int)
if p == 2 # fast algorithm for quadratic case
m = n * (n + 1) / 2
nsq = n^2
r = 1
a = 1
v = zeros(nsq)
cn = cumsum(n:-1:2)
for i = 1:n
v[r:(r+i-2)] = (i - n) .+ cn[1:(i-1)]
r = r + i - 1
v[r:r+n-i] = a:a.+(n-i)
r = r + n - i + 1
a = a + n - i + 1
end
D = sparse(1:nsq, v, ones(length(v)), nsq, m)
return D
else # general algorithm for any order p
# Calculate the number of unique elements in a symmetric tensor of order p
num_unique_elements = binomial(n + p - 1, p)
# Create the duplication matrix with appropriate size
Dp = spzeros(Int, n^p, num_unique_elements)
function elements!(D, l, indices)
perms = unique([sum((indices[Ο[i]] - 1) * n^(p - i) for i in 1:p) + 1 for Ο in permutations(1:p)])
@inbounds for p in perms
D[p, l] = 1
end
end
elements!(D, l, indices...) = elements!(D, l, indices)
# function generate_nonredundant_combinations(n::Int, p::Int)
# if p == 1
# return [[i] for i in 1:n]
# else
# lower_combs = generate_nonredundant_combinations(n, p - 1)
# return [vcat(comb, [i]) for comb in lower_combs for i in comb[end]:n]
# end
# end
# Generate all combinations (i1, i2, ..., ip) with i1 β€ i2 β€ ... β€ ip
# combs = generate_nonredundant_combinations(n, p)
combs = with_replacement_combinations(1:n, p)
combs = reduce(hcat, combs)
combs = Vector{eltype(combs)}[eachrow(combs)...]
# # Fill in the duplication matrix using the computed combinations
elements!.(Ref(Dp), 1:num_unique_elements, combs...)
return Dp
end
end
"""
symmtzrmat(n::Int, p::Int) -> Sp::SparseMatrixCSC{Float64}
Create a symmetrizer matrix of order `p` for a vector of length `n` [MagnusEML1980](@citet).
## Arguments
- `n::Int`: The length of the vector.
- `p::Int`: The order of the symmetrizer matrix, e.g., `p = 2` for x β x.
## Output
- `Sp::SparseMatrixCSC{Float64}`: The symmetrizer matrix of order `p`.
## Example
```julia-repl
julia> symmtzrmat(2,2)
4Γ4 SparseMatrixCSC{Float64, Int64} with 6 stored entries:
1.0 β
β
β
β
0.5 0.5 β
β
0.5 0.5 β
β
β
β
1.0
```
"""
function symmtzrmat(n::Int, p::Int)
if p == 2 # fast algorithm for quadratic case
np = n^p
return 0.5 * (sparse(1.0I, np, np) + commat(n, n))
else
# Create the symmetrizer matrix with appropriate size
np = Int(n^p)
Sp = spzeros(Float64, np, np)
function elements!(N, l, indices)
perms = [sum((indices[Ο[i]] - 1) * n^(p - i) for i in 1:p) + 1 for Ο in permutations(1:p)]
# For cases where two or all indices are the same,
# we should not count permutations more than once.
unique_perms = countmap(perms)
# Assign the column to the matrix N
@inbounds for (perm, count) in unique_perms
N[perm, l] = count / factorial(p)
end
end
elements!(N, l, indices...) = elements!(N, l, indices)
function generate_redundant_combinations(n::Int, p::Int)
iterators = ntuple(_ -> 1:n, p)
return [collect(product) for product in Iterators.product(iterators...)]
end
# Generate all combinations (i1, i2, ..., ip) with i1 β€ i2 β€ ... β€ ip
combs = generate_redundant_combinations(n, p)
combs = reduce(hcat, combs)
combs = Vector{eltype(combs)}[eachrow(combs)...]
# Fill in the duplication matrix using the computed combinations
elements!.(Ref(Sp), 1:np, combs...)
return Sp
end
end
"""
elimat(n::Int, p::Int) -> Lp::SparseMatrixCSC{Int}
Create an elimination matrix of order `p` for a vector of length `n` [MagnusEML1980](@citet).
## Arguments
- `n::Int`: The length of the vector.
- `p::Int`: The order of the elimination matrix, e.g., `p = 2` for x β x.
## Output
- `Lp::SparseMatrixCSC{Int}`: The elimination matrix of order `p`.
## Example
```julia-repl
julia> elimat(2,2)
3Γ4 SparseMatrixCSC{Int64, Int64} with 3 stored entries:
1 β
β
β
β
1 β
β
β
β
β
1
```
"""
function elimat(n::Int, p::Int)
if p == 2 # fast algorithm for quadratic case
T = tril(ones(n, n)) # Lower triangle of 1's
f = findall(x -> x == 1, T[:]) # Get linear indexes of 1's
k = n * (n + 1) / 2 # Row size of L
n2 = n * n # Colunm size of L
x = f + n2 * (0:k-1) # Linear indexes of the 1's within L'
row = [mod(a, n2) != 0 ? mod(a, n2) : n2 for a in x]
col = [mod(a, n2) != 0 ? div(a, n2) + 1 : div(a, n2) for a in x]
L = sparse(row, col, ones(length(x)), n2, k)
L = L' # Now transpose to actual L
return L
else # general algorithm for any order p
# Calculate the number of rows in L
num_rows = binomial(n + p - 1, p)
# Initialize the output matrix L
Lp = spzeros(Int, num_rows, n^p)
# Generate all combinations with repetition of n elements from {1, 2, ..., n}
combs = with_replacement_combinations(1:n, p)
# Fill the matrix L
for (l, comb) in enumerate(combs)
v = [1] # Start with a scalar 1
@inbounds for d in 1:p
e = collect(1:n .== comb[d]) # Create the indicator vector
v = v β e # Build the Kronecker product
end
Lp[l, :] = v # Assign the row
end
return Lp
end
end
"""
commat(m::Int, n::Int) β K
Create commutation matrix `K` of dimension `m x n` [MagnusEML1980](@citet).
## Arguments
- `m::Int`: row dimension of the commutation matrix
- `n::Int`: column dimension of the commutation matrix
## Returns
- `K`: commutation matrix
## Example
```julia-repl
julia> commat(2,2)
4Γ4 SparseMatrixCSC{Float64, Int64} with 4 stored entries:
1.0 β
β
β
β
β
1.0 β
β
1.0 β
β
β
β
β
1.0
```
"""
function commat(m::Int, n::Int)
mn = Int(m * n)
A = reshape(1:mn, m, n)
v = vec(A')
K = sparse(1.0I, mn, mn)
K = K[v, :]
return K
end
"""
commat(m::Int) β K
Dispatch for the commutation matrix of dimensions (m, m)
## Arguments
- `m::Int`: row and column dimension of the commutation matrix
## Returns
- `K`: commutation matrix
"""
commat(m::Int) = commat(m, m) # dispatch
"""
eliminate(A::AbstractArray, p::Int)
Eliminate the redundant polynomial coefficients in the matrix `A` and return the matrix
with unique coefficients.
## Arguments
- `A::AbstractArray`: A matrix
- `p::Int`: The order of the polynomial, e.g., `p = 2` for x β x.
## Returns
- matrix with unique coefficients
## Example
```julia-repl
julia> n = 2; P = rand(n,n); P *= P'; p = vec(P)
4-element Vector{Float64}:
0.5085988756090203
0.7704767970682769
0.7704767970682769
1.310279680309927
julia> Q = rand(n,n); Q *= Q'; q = vec(Q)
4-element Vector{Float64}:
0.40940214810208353
0.2295272821417254
0.2295272821417254
0.25503767587483905
julia> A2 = [p'; q']
2Γ4 Matrix{Float64}:
0.257622 0.44721 0.0202203 0.247649
1.55077 0.871029 0.958499 0.650717
julia> eliminate(A2, 2)
2Γ3 Matrix{Float64}:
0.508599 1.54095 1.31028
0.409402 0.459055 0.255038
```
"""
function eliminate(A::AbstractArray, p::Int)
n = size(A, 1)
Dp = dupmat(n, p)
return A * Dp
end
"""
duplicate(A::AbstractArray)
Duplicate the redundant polynomial coefficients in the matrix `A` with a unique set of coefficients
and return the matrix with redundant coefficients.
## Arguments
- `A::AbstractArray`: A matrix
- `p::Int`: The order of the polynomial, e.g., `p = 2` for x β x.
## Returns
- matrix with redundant coefficients
## Example
```julia-repl
julia> n = 2; P = rand(n,n); P *= P'; p = vec(P)
4-element Vector{Float64}:
0.5085988756090203
0.7704767970682769
0.7704767970682769
1.310279680309927
julia> Q = rand(n,n); Q *= Q'; q = vec(Q)
4-element Vector{Float64}:
0.40940214810208353
0.2295272821417254
0.2295272821417254
0.25503767587483905
julia> A2 = [p'; q']
2Γ4 Matrix{Float64}:
0.257622 0.44721 0.0202203 0.247649
1.55077 0.871029 0.958499 0.650717
julia> D2 = dupmat(2,2)
4Γ3 SparseMatrixCSC{Int64, Int64} with 4 stored entries:
1 β
β
β
1 β
β
1 β
β
β
1
julia> A2 * D2
2Γ3 Matrix{Float64}:
0.508599 1.54095 1.31028
0.409402 0.459055 0.255038
julia> duplicate(A2 * D2, 2)
2Γ4 Matrix{Float64}:
0.508599 1.54095 0.0 1.31028
0.409402 0.459055 0.0 0.255038
````
"""
function duplicate(A::AbstractArray, p::Int)
n = size(A, 1)
Lp = elimat(n, p)
return A * Lp
end
"""
duplicate_symmetric(A::AbstractArray, p::Int)
Duplicate the redundant polynomial coefficients in the matrix `A` with a unique set of coefficients
and return the matrix with redundant coefficients which are duplicated symmetrically.
This guarantees that the operator is symmetric. The difference from `duplicate` is that
we use the elimination matrix `Lp` and the symmetric commutation matrix `Sp` to multiply the `A` matrix.
## Arguments
- `A::AbstractArray`: A matrix
- `p::Int`: The order of the polynomial, e.g., `p = 2` for x β x.
## Returns
- matrix with redundant coefficients duplicated symmetrically
## Example
```julia-repl
julia> n = 2; P = rand(n,n); P *= P'; p = vec(P)
4-element Vector{Float64}:
0.5085988756090203
0.7704767970682769
0.7704767970682769
1.310279680309927
julia> Q = rand(n,n); Q *= Q'; q = vec(Q)
4-element Vector{Float64}:
0.40940214810208353
0.2295272821417254
0.2295272821417254
0.25503767587483905
julia> A2 = [p'; q']
2Γ4 Matrix{Float64}:
0.257622 0.44721 0.0202203 0.247649
1.55077 0.871029 0.958499 0.650717
julia> D2 = dupmat(2,2)
4Γ3 SparseMatrixCSC{Int64, Int64} with 4 stored entries:
1 β
β
β
1 β
β
1 β
β
β
1
julia> A2 * D2
2Γ3 Matrix{Float64}:
0.508599 1.54095 1.31028
0.409402 0.459055 0.255038
julia> duplicate_symmetric(A2 * D2, 2)
2Γ4 Matrix{Float64}:
0.508599 0.770477 0.770477 1.31028
0.409402 0.229527 0.229527 0.255038
````
"""
function duplicate_symmetric(A::AbstractArray, p::Int)
n = size(A, 1)
Lp = elimat(n, p)
Sp = symmtzrmat(n, p)
return A * Lp * Sp
end
"""
makePolyOp(n::Int, inds::AbstractArray{<:NTuple{P,<:Int}}, vals::AbstractArray{<:Real};
nonredundant::Bool=true, symmetric::Bool=true) where P
Helper function to construct the polynomial operator from the indices and values. The indices must
be a 1-dimensional array of, e.g., tuples of the form `(i,j)` where `i,j` are the indices of the
polynomial term. For example, for the polynomial term ``2.5x_1x_2`` for ``\\dot{x}_3`` would have an
index of `(1,2,3)` with a value of `2.5`. The `nonredundant` argument specifies which polynomial
operator to construct (the redundant or non-redundant operator). Note that the values must be a
1-dimensional array of the same length as the indices. The `symmetric` argument specifies whether
to construct the operator with symmetric coefficients.
## Arguments
- `n::Int`: dimension of the polynomial operator
- `inds::AbstractArray{<:NTuple{P,<:Int}}`: indices of the polynomial term
- `vals::AbstractArray{<:Real}`: values of the polynomial term
- `nonredundant::Bool=true`: whether to construct the non-redundant operator
- `symmetric::Bool=true`: whether to construct the symmetric operator
## Returns
- the polynomial operator
"""
function makePolyOp(n::Int, inds::AbstractArray{<:NTuple{P,<:Int}}, vals::AbstractArray{<:Real};
nonredundant::Bool=true, symmetric::Bool=true) where P
p = P - 1
@assert length(inds) == length(vals) "The length of indices and values must be the same."
# Initialize a p-order tensor of size n^p
S = zeros(ntuple(_ -> n, p+1))
# Iterate over indices and assign values considering symmetry
for (ind, val) in zip(inds, vals)
if symmetric
element_idx = ind[1:end-1]
last_idx = ind[end]
perms = unique(permutations(element_idx))
contribution = val / length(perms)
for perm in perms
S[perm...,last_idx] = contribution
end
else
S[ind...] = val
end
end
# Flatten the p-order tensor into a matrix form with non-unique coefficients
A = spzeros(n, n^p)
for i in 1:n
A[i, :] = vec(S[ntuple(_ -> :, p)..., i])
end
if nonredundant
return eliminate(A, p)
else
return A
end
end
"""
kron_snapshot_matrix(Xmat::AbstractArray{T}, p::Int) where {T<:Number}
Take the `p`-order Kronecker product of each state of the snapshot matrix `Xmat`.
## Arguments
- `Xmat::AbstractArray{T}`: state snapshot matrix
- `p::Int`: order of the Kronecker product
## Returns
- kronecker product state snapshot matrix
"""
function kron_snapshot_matrix(Xmat::AbstractArray{T}, p::Int) where {T<:Number}
function kron_timestep(x)
return x[:,:] β p # x has to be AbstractMatrix (Kronecker.jl)
end
tmp = kron_timestep.(eachcol(Xmat))
return reduce(hcat, tmp)
end
"""
unique_kron_snapshot_matrix(Xmat::AbstractArray{T}, p::Int) where {T<:Number}
Take the `p`-order unique Kronecker product of each state of the snapshot matrix `Xmat`.
## Arguments
- `Xmat::AbstractArray{T}`: state snapshot matrix
- `p::Int`: order of the Kronecker product
## Returns
- unique kronecker product state snapshot matrix
"""
function unique_kron_snapshot_matrix(Xmat::AbstractArray{T}, p::Int) where {T<:Number}
function unique_kron_timestep(x)
return β(x, p)
end
tmp = unique_kron_timestep.(eachcol(Xmat))
return reduce(hcat, tmp)
end | UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | code | 7414 | export unique_kronecker, β
"""
CombinationIterator(n::Int, p::Int)
Iterator for generating all combinations with repetition of `n` elements from {1, 2, ..., n}.
## Fields
- `n::Int`: number of elements
- `p::Int`: number of elements in each combination
"""
struct UniqueCombinationIterator
n::Int
p::Int
end
"""
Base.iterate(it::UniqueCombinationIterator, comb::Vector{Int})
Iterate over all combinations with repetition of `n` elements from {1, 2, ..., n}.
"""
function Base.iterate(it::UniqueCombinationIterator, comb::Vector{Int})
p = it.p
n = it.n
# Find the rightmost element that can be incremented
i = p
while i > 0
if comb[i] < n
comb[i] += 1
# Fill subsequent positions with the incremented value to
# maintain non-decreasing order
for j in i+1:p
comb[j] = comb[i]
end
return comb, comb
end
i -= 1
end
# Termination: if we can't increment, we stop
return nothing
end
function Base.iterate(it::UniqueCombinationIterator)
# Start with the first combination [1, 1, ..., 1]
comb = ones(Int, it.p)
return comb, comb
end
Base.length(it::UniqueCombinationIterator) = binomial(it.n + it.p - 1, it.p)
Base.eltype(it::UniqueCombinationIterator) = Vector{Int}
Base.IteratorSize(::UniqueCombinationIterator) = Base.SizeUnknown()
"""
unique_kronecker(x::AbstractVector{T}, y::AbstractVector{T}) where T
Unique Kronecker product operation. For example, if
```math
x = y = \\begin{bmatrix}
1 \\\\
2
\\end{bmatrix}
```
then
```math
\\mathrm{unique_kronecker}(x, x) = \\begin{bmatrix}
1 \\\\
2 \\\\
4
\\end{bmatrix}
```
## Arguments
- `x::AbstractVector{T}`: vector to perform the unique Kronecker product
- `y::AbstractVector{T}`: vector to perform the unique Kronecker product
## Returns
- `result`: unique Kronecker product
## Note
This implementation is faster than `unique_kronecker_power` for `p = 2`.
"""
@inline function unique_kronecker(x::AbstractArray{T}, y::AbstractArray{T}) where {T}
n = length(x)
m = length(y)
result = Array{T}(undef, n*(n+1) Γ· 2)
k = 1
@inbounds for i in 1:n
for j in i:m
result[k] = x[i] * y[j]
k += 1
end
end
return result
end
"""
unique_kronecker(x::AbstractVector{T}, y::AbstractVector{T}, z::AbstractVector{T}) where T
Unique Kronecker product operation for triple Kronecker product.
## Arguments
- `x::AbstractVector{T}`: vector to perform the unique Kronecker product
- `y::AbstractVector{T}`: vector to perform the unique Kronecker product
- `z::AbstractVector{T}`: vector to perform the unique Kronecker product
## Returns
- `result`: unique Kronecker product
## Note
This implementation is faster than `unique_kronecker_power` for `p = 3`.
"""
@inline function unique_kronecker(x::AbstractArray{T}, y::AbstractArray{T}, z::AbstractArray{T}) where {T}
n = length(x)
result = Array{T}(undef, n*(n+1)*(n+2) Γ· 6)
l = 1
@inbounds for i in 1:n
for j in i:n
for k in j:n
result[l] = x[i] * y[j] * z[k]
l += 1
end
end
end
return result
end
"""
unique_kronecker(x::AbstractVector{T}, y::AbstractVector{T}, z::AbstractVector{T}, w::AbstractVector{T}) where T
Unique Kronecker product operation for quadruple Kronecker product.
## Arguments
- `x::AbstractVector{T}`: vector to perform the unique Kronecker product
- `y::AbstractVector{T}`: vector to perform the unique Kronecker product
- `z::AbstractVector{T}`: vector to perform the unique Kronecker product
- `w::AbstractVector{T}`: vector to perform the unique Kronecker product
## Returns
- `result`: unique Kronecker product
## Note
This implementation is faster than `unique_kronecker_power` for `p = 4`.
"""
@inline function unique_kronecker(x::AbstractArray{T}, y::AbstractArray{T}, z::AbstractArray{T}, w::AbstractArray{T}) where {T}
n = length(x)
result = Array{T}(undef, n*(n+1)*(n+2)*(n+3) Γ· 24)
d = 1
@inbounds for i in 1:n
for j in i:n
for k in j:n
for l in k:n
result[d] = x[i] * y[j] * z[k] * w[l]
d += 1
end
end
end
end
return result
end
# """
# unique_kronecker(x::AbstractVector{T}) where T
# Unique Kronecker product operation (dispatch)
# ## Arguments
# - `x::AbstractVector{T}`: vector to perform the unique Kronecker product
# ## Returns
# - `result`: unique Kronecker product
# """
# @inline function unique_kronecker(x::AbstractArray{T}) where {T}
# n = length(x)
# result = Array{T}(undef, n*(n+1) Γ· 2)
# k = 1
# @inbounds for i in 1:n
# for j in i:n
# result[k] = x[i] * x[j]
# k += 1
# end
# end
# return result
# end
"""
unique_kronecker_power(x::AbstractArray{T}, p::Int) where T
Unique Kronecker product operation generalized for power `p`.
## Arguments
- `x::Union{T,AbstractArray{T}}`: vector (or scalar) to perform the unique Kronecker product
- `p::Int`: power of the unique Kronecker product
## Returns
- `result`: unique Kronecker product
"""
@inline function unique_kronecker_power(x::Union{T,AbstractArray{T}}, p::Int) where {T<:Number}
n = length(x)
if n == 1 # If x is a scalar
return x^p
end
# Calculate the correct number of unique elements
num_unique_elements = binomial(n + p - 1, p)
result = Array{T}(undef, num_unique_elements)
idx = 1
@inbounds for comb in UniqueCombinationIterator(n, p)
product = one(T)
@simd for j in comb
product *= x[j]
end
result[idx] = product
idx += 1
end
if idx != num_unique_elements + 1
error("Mismatch in expected and actual number of elements filled")
end
return result
end
"""
β(x::AbstractVector{T}, y::AbstractVector{T}) where T
Unique Kronecker product operation
## Arguments
- `x::AbstractVector{T}`: vector to perform the unique Kronecker product
- `y::AbstractVector{T}`: vector to perform the unique Kronecker product
## Returns
- unique Kronecker product
"""
β(x::AbstractArray{T}, y::AbstractArray{T}) where {T} = unique_kronecker(x, y)
β(x::AbstractArray{T}, y::AbstractArray{T}, z::AbstractArray{T}) where {T} = unique_kronecker(x,y,z)
β(x::AbstractArray{T}, y::AbstractArray{T}, z::AbstractArray{T}, w::AbstractArray{T}) where {T} = unique_kronecker(x,y,z,w)
# Scalars
unique_kronecker(x::Number, y::Number) = x * y
unique_kronecker(x::Number, y::Number, z::Number) = x * y * z
unique_kronecker(x::Number, y::Number, z::Number, w::Number) = x * y * z * w
β(x::Number, y::Number, z::Number) = unique_kronecker(x, y, z)
β(x::Number, y::Number, z::Number, w::Number) = unique_kronecker(x, y, z, w)
"""
β(x::AbstractArray{T}...) where {T<:Number}
Generalized Kronecker product operator for multiple vectors.
## Arguments
- `x::AbstractArray{T}...`: one or more vectors to perform the unique Kronecker product
## Returns
- unique Kronecker product of all vectors
"""
β(x::AbstractArray{T}, p::Int) where {T<:Number} =
p == 1 ? x :
p == 2 ? unique_kronecker(x, x) :
p == 3 ? unique_kronecker(x, x, x) :
p == 4 ? unique_kronecker(x, x, x, x) :
unique_kronecker_power(x, p) | UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | code | 1029 | """
vech(A::AbstractMatrix{T}) β v
Half-vectorization operation. For example half-vectorzation of
```math
A = \\begin{bmatrix}
a_{11} & a_{12} \\\\
a_{21} & a_{22}
\\end{bmatrix}
```
becomes
```math
v = \\begin{bmatrix}
a_{11} \\\\
a_{21} \\\\
a_{22}
\\end{bmatrix}
```
## Arguments
- `A`: matrix to half-vectorize
## Returns
- `v`: half-vectorized form
"""
function vech(A::AbstractMatrix{T}) where {T}
m = LinearAlgebra.checksquare(A)
v = Vector{T}(undef, (m * (m + 1)) >> 1)
k = 0
for j = 1:m, i = j:m
@inbounds v[k+=1] = A[i, j]
end
return v
end
"""
invec(r::AbstractArray, m::Int, n::Int) β r
Inverse vectorization.
## Arguments
- `r::AbstractArray`: the input vector
- `m::Int`: the row dimension
- `n::Int`: the column dimension
## Returns
- the inverse vectorized matrix
"""
function invec(r::AbstractArray, m::Int, n::Int)::AbstractArray
tmp = sparse(reshape(1.0I(n), 1, :))
return kron(tmp, sparse(1.0I,m,m)) * kron(sparse(1.0I,n,n), r)
end
| UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | code | 1612 | @testset "circulant Kronecker" begin
# Example usage
# Two vectors
x = [1, 2]
y = [3, 4]
result_xy = x β y
result_xy2 = circulant_kronecker(x, y)
@test result_xy β [6, 10, 10, 16]
@test result_xy2 β [6, 10, 10, 16]
# Three vectors
z = [5, 6]
result_xyz = β(x, y, z)
result_xyz2 = circulant_kronecker(x, y, z)
@test result_xyz β [45, 68, 68, 100, 68, 100, 100, 144]
@test result_xyz2 β [45, 68, 68, 100, 68, 100, 100, 144]
# Matrices
A = [1 2; 3 4]
B = [5 6; 7 8]
C = [9 10; 11 12]
result_ABC = β(A, B, C)
result_ABC2 = circulant_kronecker(A, B, C)
@test result_ABC β [
135 194 194 268 194 268 268 360
253 312 342 416 342 416 452 544
253 342 312 416 342 452 416 544
431 520 520 624 562 672 672 800
253 342 342 452 312 416 416 544
431 520 562 672 520 624 672 800
431 562 520 672 520 672 624 800
693 824 824 976 824 976 976 1152
]
@test result_ABC2 β [
135 194 194 268 194 268 268 360
253 312 342 416 342 416 452 544
253 342 312 416 342 452 416 544
431 520 520 624 562 672 672 800
253 342 342 452 312 416 416 544
431 520 562 672 520 624 672 800
431 562 520 672 520 672 624 800
693 824 824 976 824 976 976 1152
]
x = [1,2]
y = [3,4]
z = [5,6]
w = [7,8]
result_xyzw = circulant_kronecker(x, y, z, w)
@test size(result_xyzw) == (16,1)
end | UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | code | 1517 | @testset "Quadratic matrix conversion" begin # Settings for the KS equation
N = 4
H = zeros(N, N^2)
for i in 1:N
x = rand(N)
H[i, :] = x β x
end
F = UniqueKronecker.eliminate(H, 2)
@test all(F .== UniqueKronecker.eliminate(UniqueKronecker.duplicate(F, 2), 2))
@test all(F .== UniqueKronecker.eliminate(UniqueKronecker.duplicate_symmetric(F, 2), 2))
H = UniqueKronecker.duplicate(F,2)
Q = UniqueKronecker.H2Q(H)
Hnew = Matrix(UniqueKronecker.Q2H(Q))
@test all(H .== Hnew)
end
@testset "3rd order matrix conversions" begin
for n in [2, 3, 4, 5, 6, 10]
x = 1:n # Julia creates Double by default
x3e = zeros(Int, div(n*(n+1)*(n+2), 6))
l = 1
for i = 1:n
for j = i:n
for k = j:n
x3e[l] = x[i] * x[j] * x[k]
l += 1
end
end
end
L = UniqueKronecker.elimat(n, 3)
x3 = (x β x β x)
x3e_2 = L * x3
@test all(x3e_2 .== x3e)
D = UniqueKronecker.dupmat(n, 3)
x3_2 = D * x3e
@test all(x3_2 .== x3)
G = zeros(n, n^3)
for i = 1:n
y = rand(n)
G[i, :] = y β y β y
end
E = UniqueKronecker.eliminate(G, 3)
@test E * x3e β G * x3
Gs = UniqueKronecker.duplicate_symmetric(E, 3)
@test Gs * x3 β G * x3
G2 = UniqueKronecker.duplicate(E, 3)
@test G2 * x3_2 β G * x3
end
end
| UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | code | 494 | @testset "Making polynomial operator" begin
idx = [(1, 1, 1), (1, 1, 2)]
val = [1.0, 2.0]
H = UniqueKronecker.makeQuadOp(3, idx, val, which_quad_term="H", symmetric=true)
F = UniqueKronecker.makeQuadOp(3, idx, val, which_quad_term="F", symmetric=false)
A2 = UniqueKronecker.makePolyOp(3, idx, val, nonredundant=false, symmetric=true)
A2u = UniqueKronecker.makePolyOp(3, idx, val, nonredundant=true, symmetric=false)
@test all(H .== A2)
@test all(F .== A2u)
end
| UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | code | 2392 | @testset "Run legacy code 1" begin
H = [
0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0
0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0
1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0
]
H2 = UniqueKronecker.insert2H(H, 4)
H2test = [
0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
]
@test all(H2 .== H2test)
@test all(H .== UniqueKronecker.extractH(H2, 3))
F = UniqueKronecker.eliminate(H, 2)
F2 = UniqueKronecker.insert2F(F, 4)
F2test = [
0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0
1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
]
@test all(F2 .== F2test)
@test all(F .== UniqueKronecker.extractF(F2, 3))
end
@testset "Run legacy code 2" begin
n, j, k = 4, 2, 3
X = rand(2,2)
BL = UniqueKronecker.insert2bilin(X, 3, 1)
idx = [(1, 1, 1), (1, 1, 2)]
val = [1.0, 2.0]
H = UniqueKronecker.makeQuadOp(3, idx, val, which_quad_term="H", symmetric=true)
F = UniqueKronecker.makeQuadOp(3, idx, val, which_quad_term="F", symmetric=false)
Q = UniqueKronecker.makeQuadOp(3, idx, val, which_quad_term="Q", symmetric=false)
@test all(H .== UniqueKronecker.duplicate_symmetric(F, 2))
@test all(H .== UniqueKronecker.Q2H(Q))
idx = [(2, 1, 1, 1), (1, 1, 3, 2), (1, 2, 3, 1), (1, 2, 1, 3)]
val = [1.0, 2.0, -1.0, 2.0]
G = UniqueKronecker.makeCubicOp(3, idx, val, which_cubic_term="G", symmetric=true)
E = UniqueKronecker.makeCubicOp(3, idx, val, which_cubic_term="E", symmetric=false)
@test all(G .== UniqueKronecker.duplicate_symmetric(E, 3))
G = UniqueKronecker.makeIdentityCubicOp(3, which_cubic_term="G")
E = UniqueKronecker.makeIdentityCubicOp(3, which_cubic_term="E")
@test size(G) == (3, 27)
@test size(E) == (3, 10)
G = UniqueKronecker.makeIdentityCubicOp(4, which_cubic_term="G")
E = UniqueKronecker.makeIdentityCubicOp(4, which_cubic_term="E")
@test size(G) == (4, 64)
@test size(E) == (4, 20)
end
| UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | code | 600 | using UniqueKronecker
using Test
using Kronecker
using Random
function testfile(file, testname=defaultname(file))
println("running test file $(file)")
@testset "$testname" begin; include(file); end
return
end
defaultname(file) = uppercasefirst(replace(splitext(basename(file))[1], '_' => ' '))
@testset "UniqueKronecker" begin
testfile("unique_kronecker.jl")
testfile("circulant_kronecker.jl")
testfile("special_matrices.jl")
testfile("create_poly.jl")
testfile("conversion.jl")
testfile("snapshot.jl")
testfile("vectorize.jl")
testfile("legacy.jl")
end | UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | code | 558 | @testset "Creating polynomial snapshot matrices" begin
n = 3
K = 10
X = rand(n, K)
X2 = kron_snapshot_matrix(X, 2)
X2u = unique_kron_snapshot_matrix(X, 2)
@test all(elimat(n,2) * X2 .== X2u)
end
@testset "Circulant Kronecker snapshot matrix" begin
X1 = [1 2; 3 4]
X2 = [5 6; 7 8]
X3 = [9 10; 11 12]
X = circulant_kron_snapshot_matrix(X1, X2, X3)
for i in 1:2
x1 = X1[:,i]
x2 = X2[:,i]
x3 = X3[:,i]
x = circulant_kronecker(x1, x2, x3)
@test X[:,i] == vec(x)
end
end
| UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | code | 609 | @testset "Duplication Matrix" begin
n = 2
D = UniqueKronecker.dupmat(n, 2)
@test all(D .== [1 0 0; 0 1 0; 0 1 0; 0 0 1])
end
@testset "Elimination Matrix" begin
n = 2
L = UniqueKronecker.elimat(n, 2)
@test all(L .== [1 0 0 0; 0 1 0 0; 0 0 0 1])
end
@testset "Symmetric Elimination Matrix" begin
n = 2
L = UniqueKronecker.elimat(n, 2) * UniqueKronecker.symmtzrmat(n, 2)
@test all(L .== [1 0 0 0; 0 0.5 0.5 0; 0 0 0 1])
end
@testset "Commutation matrix" begin
n = 2
K = UniqueKronecker.commat(n, 2)
@test all(K .== [1 0 0 0; 0 0 1 0; 0 1 0 0; 0 0 0 1])
end
| UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | code | 639 | @testset "Unique Kronecker" begin
n = 2
x = rand(n)
y = x β x
z = x β x
@test all(dupmat(n, 2) * z .== y)
w = β(x, 3)
y = x β x β x
@test all(dupmat(n, 3) * w β y)
x = rand(2)
y = unique_kronecker(x,x)
z = unique_kronecker(x,x,x)
w = unique_kronecker(x,x,x,x)
@test all(β(x, x) β y)
@test all(β(x, x, x) β z)
@test all(β(x, x, x, x) β w)
x = rand(3)
y = UniqueKronecker.unique_kronecker_power(x,2)
@test all(β(x, 2) β y)
it = UniqueKronecker.UniqueCombinationIterator(3, 2)
comb = [1, 1]
result, _ = iterate(it, comb)
@test result == [1, 2]
end
| UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | code | 239 | @testset "vech" begin
A = [1 2; 3 4]
a = [1; 3; 4]
@test all(a .== UniqueKronecker.vech(A))
end
@testset "inverse vectorization" begin
A = [1 2; 3 4]
a = vec(A)
@test all(A .== UniqueKronecker.invec(a, 2, 2))
end
| UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.