licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | docs | 5965 | # UniqueKronecker.jl
<div align="center">
<picture>
<img alt="logo" src="docs/src/assets/logo.png" width="250" height="250">
</picture>
</div>
<div align="center">
[](https://sites.google.com/view/elizabeth-qian/research/ace-group)
[](https://github.com/smallpondtom/UniqueKronecker.jl/actions/workflows/CI.yml)
[](https://codecov.io/gh/smallpondtom/UniqueKronecker.jl)
[](https://smallpondtom.github.io/UniqueKronecker.jl/stable)
[](https://smallpondtom.github.io/UniqueKronecker.jl/dev)
[](LICENSE)
</div>
## Overview
**UniqueKronecker.jl** is a Julia package for computing non-redundant (unique) Kronecker products of vectors, generalizing to _n_ dimensions and _k_-repeated products. It provides utility functions to work with the associated coefficient matrices, enabling conversions between unique Kronecker products and their standard (possibly redundant) Kronecker counterparts.
### What is the Unique Kronecker Product?
The standard Kronecker product of a vector $x \in \mathbb{R}^n$ with itself, $\text{kron}(x, x) = x \otimes x$, produces all possible pairwise products of its elements, resulting in redundant terms when $x_i x_j = x_j x_i$.
The **unique Kronecker product**, denoted here as $x^{\langle k \rangle} = x \oslash x$, eliminates these redundancies by considering only unique combinations of indices. For example:
For $\mathbf{x} \in \mathbb{R}^2$:
- **Standard Kronecker product**:
$$
\mathbf{x} \otimes \mathbf{x} = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2 x_1 \\ x_2^2 \end{bmatrix}
$$
- **Unique Kronecker product**:
$$
\mathbf{x} \oslash \mathbf{x} = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}
$$
Here, $x_1 x_2$ and $x_2 x_1$ are considered the same and included only once.
### Coefficient Matrices
The package provides functions to compute the associated coefficient matrices:
- **Polynomial Matrix $\mathbf{A}_{2u} \in \mathbb{R}^{n \times \frac{n(n+1)}{2}}$**: Represents the mapping of the unique Kronecker product back to the original vector $x\in\mathbb{R}^2$.
- **Kronecker Coefficient Matrix $\mathbf{A}_2 \in \mathbb{R}^{n \times n^2}$**: Relates the unique Kronecker product to the standard Kronecker product, including coefficients for redundant terms.
These matrices are useful for applications in polynomial regression, symmetric tensor computations, and vectorization of symmetric matrices.
## Features
- Compute the unique Kronecker product for vectors of any dimension $n$ and any repeated (Kronecker) order $k$.
- Generate the associated polynomial and Kronecker coefficient matrices $\mathbf{A}_{2u}$ and $\mathbf{A}_2$.
- Convert between unique and standard Kronecker products.
- Utility functions for polynomial modeling and symmetric tensor operations.
## Installation
You can install it using the command
```julia
using Pkg
Pkg.add("UniqueKronecker")
using UniqueKronecker
```
or install it directly from GitHub:
```julia
using Pkg
Pkg.add(url="https://github.com/YourUsername/UniqueKronecker.jl")
```
Replace `YourUsername` with the actual GitHub username or organization where the package is hosted.
## Usage
### Importing the Package
```julia
using UniqueKronecker
```
### Computing the Unique Kronecker Product
Compute the $k$-th order unique Kronecker product of vector `x`:
```julia
x = [2.0, 3.0, 4.0] # Example vector in ℝ³
x_unique_kron = x ⊘ x
println(x_unique_kron)
# Output: [4.0, 6.0, 8.0, 9.0, 12.0, 16.0]
# Corresponding to [x₁², x₁x₂, x₁x₃, x₂², x₂x₃, x₃²]
```
### Computing Coefficient Matrices
#### Polynomial Matrix $H$
Compute the polynomial coefficient matrix $H$:
```julia
n = 3
H = zeros(n,n^2)
for i in 1:n
x = rand(n)
H[i,:] = kron(x,x)
end
println(H)
# Output: A matrix of size (3, 9) for this example
```
#### Unique/Nonredundant Polynomial Coefficient Matrix $F$
Convert the polynomial matrix $H$ into the unique polynomial coefficient matrix $F$:
```julia
F = eliminate(H, 2)
println(F)
# Output: A matrix of size (3, 6) for this example
```
This can be converted back
```julia
H = duplicate(F, 2)
println(H)
# Output: the H matrix
```
To make the coefficients symmetric for redundant terms use `duplicate_symmetric`
```julia
Hs = duplicate_symmetric(F, 2)
println(Hs)
# Output: the H matrix with symmetric coefficients
```
### Relationship Between Matrices
The following relationship holds:
$$
F \cdot (x \oslash x) = H \cdot (x \otimes x)
$$
This allows mapping between the unique Kronecker product space and the standard Kronecker product space.
### Generalizing to Higher-Order Products
Compute higher-order unique Kronecker products by specifying a higher value of $k$:
```julia
k = 3 # Third-order product
x_unique_kron_k3 = unique_kronecker(x, k) # or ⊘(x,k)
println(x_unique_kron_k3)
# Output: Corresponding unique products of order 3
```
## Applications
- **Polynomial Regression**: Efficient computation of polynomial features without redundant terms.
- **Symmetric Tensor Computations**: Simplifies operations involving symmetric tensors.
- **Statistical Modeling**: Construction of design matrices with interaction terms.
- **Machine Learning**: Feature engineering for higher-order interactions.
## Contributing
Contributions are welcome! If you find a bug or have a feature request, please open an issue. If you'd like to contribute code, feel free to submit a pull request.
## License
This project is licensed under the [MIT License](https://github.com/smallpondtom/UniqueKronecker.jl/blob/main/LICENSE). | UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | docs | 234 | ```@meta
CurrentModule = UniqueKronecker
```
```@contents
Pages = ["api.md"]
```
# API
All APIs of UniqueKronecker listed in a unstructured manner.
```@autodocs
Modules = [UniqueKronecker]
Order = [:module, :function, :macro]
```
| UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | docs | 5046 | # UniqueKronecker.jl
**UniqueKronecker.jl** is a Julia package for computing non-redundant (unique) Kronecker products of vectors, generalizing to _n_ dimensions and _k_-repeated products. It provides utility functions to work with the associated coefficient matrices, enabling conversions between unique Kronecker products and their standard (possibly redundant) Kronecker counterparts.
### What is the Unique Kronecker Product?
The standard Kronecker product of a vector ``x \in \mathbb{R}^n`` with itself, ``\text{kron}(x, x) = x \otimes x``, produces all possible pairwise products of its elements, resulting in redundant terms when ``x_i x_j = x_j x_i``.
The **unique Kronecker product**, denoted here as ``x^{\langle k \rangle} = x \oslash x``, eliminates these redundancies by considering only unique combinations of indices. For example:
For ``\mathbf{x} \in \mathbb{R}^2``:
- **Standard Kronecker product**:
```math
\mathbf{x} \otimes \mathbf{x} = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2 x_1 \\ x_2^2 \end{bmatrix}
```
- **Unique Kronecker product**:
```math
\mathbf{x} \oslash \mathbf{x} = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}
```
Here, ``x_1 x_2`` and ``x_2 x_1`` are considered the same and included only once.
### Coefficient Matrices
The package provides functions to compute the associated coefficient matrices:
- **Polynomial Matrix ``\mathbf{A}_{2u} \in \mathbb{R}^{n \times \frac{n(n+1)}{2}}``**: Represents the mapping of the unique Kronecker product back to the original vector ``x\in\mathbb{R}^2``.
- **Kronecker Coefficient Matrix ``\mathbf{A}_2 \in \mathbb{R}^{n \times n^2}``**: Relates the unique Kronecker product to the standard Kronecker product, including coefficients for redundant terms.
These matrices are useful for applications in polynomial regression, symmetric tensor computations, and vectorization of symmetric matrices.
## Features
- Compute the unique Kronecker product for vectors of any dimension ``n`` and any repeated (Kronecker) order ``k``.
- Generate the associated polynomial and Kronecker coefficient matrices ``\mathbf{A}_{2u}`` and ``\mathbf{A}_2``.
- Convert between unique and standard Kronecker products.
- Utility functions for polynomial modeling and symmetric tensor operations.
## Installation
You can install it using the command
```julia
using Pkg
Pkg.add("UniqueKronecker")
using UniqueKronecker
```
or install it directly from GitHub:
```julia
using Pkg
Pkg.add(url="https://github.com/YourUsername/UniqueKronecker.jl")
```
Replace `YourUsername` with the actual GitHub username or organization where the package is hosted.
## Usage
### Importing the Package
```julia
using UniqueKronecker
```
### Computing the Unique Kronecker Product
Compute the ``k``-th order unique Kronecker product of vector `x`:
```julia
x = [2.0, 3.0, 4.0] # Example vector in ℝ³
x_unique_kron = x ⊘ x
println(x_unique_kron)
# Output: [4.0, 6.0, 8.0, 9.0, 12.0, 16.0]
# Corresponding to [x₁², x₁x₂, x₁x₃, x₂², x₂x₃, x₃²]
```
### Computing Coefficient Matrices
#### Polynomial Matrix ``H``
Compute the polynomial coefficient matrix ``H``:
```julia
n = 3
H = zeros(n,n^2)
for i in 1:n
x = rand(n)
H[i,:] = kron(x,x)
end
println(H)
# Output: A matrix of size (3, 9) for this example
```
#### Unique/Nonredundant Polynomial Coefficient Matrix ``F``
Convert the polynomial matrix ``H`` into the unique polynomial coefficient matrix ``F``:
```julia
F = eliminate(H, 2)
println(F)
# Output: A matrix of size (3, 6) for this example
```
This can be converted back
```julia
H = duplicate(F, 2)
println(H)
# Output: the H matrix
```
To make the coefficients symmetric for redundant terms use `duplicate_symmetric`
```julia
Hs = duplicate_symmetric(F, 2)
println(Hs)
# Output: the H matrix with symmetric coefficients
```
### Relationship Between Matrices
The following relationship holds:
```math
F \cdot (x \oslash x) = H \cdot (x \otimes x)
```
This allows mapping between the unique Kronecker product space and the standard Kronecker product space.
### Generalizing to Higher-Order Products
Compute higher-order unique Kronecker products by specifying a higher value of ``k``:
```julia
k = 3 # Third-order product
x_unique_kron_k3 = unique_kronecker(x, k) # or ⊘(x,k)
println(x_unique_kron_k3)
# Output: Corresponding unique products of order 3
```
## Applications
- **Polynomial Regression**: Efficient computation of polynomial features without redundant terms.
- **Symmetric Tensor Computations**: Simplifies operations involving symmetric tensors.
- **Statistical Modeling**: Construction of design matrices with interaction terms.
- **Machine Learning**: Feature engineering for higher-order interactions.
## Contributing
Contributions are welcome! If you find a bug or have a feature request, please open an issue. If you'd like to contribute code, feel free to submit a pull request.
## License
This project is licensed under the [MIT License](https://github.com/smallpondtom/UniqueKronecker.jl/blob/main/LICENSE). | UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | docs | 93 | # Paper
Below you have a list of publications referenced in this work.
```@bibliography
``` | UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | docs | 5891 | # Circulant Kronecker Product
The **Circulant Kronecker Product** is a generalized operation that extends the standard Kronecker product by summing over all cyclic permutations of the given vectors or matrices. This operation can be applied to any number of vectors or matrices.
## Mathematical Definition
Given a sequence of vectors or matrices $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$, the circulant Kronecker product is defined as:
```math
\mathbf{x}_1 \circledast \mathbf{x}_2 \circledast \dots \circledast \mathbf{x}_n = \sum_{k=0}^{n-1} \mathbf{x}_{1+k} \otimes \mathbf{x}_{2+k} \otimes \dots \otimes \mathbf{x}_{n+k}
```
where the indices are taken modulo $n$, i.e., $\mathbf{x}_{i+n} = \mathbf{x}_i$.
## Implementation
### Function `circulant_kronecker`
```@repl
using UniqueKronecker
x = [1, 2];
y = [3, 4];
z = [5, 6];
circulant_kronecker(x, y, z)
```
```@docs
circulant_kronecker
```
### Operator `⊛`
#### Example 1: Two Vectors
```@repl
using UniqueKronecker
x = [1, 2]
y = [3, 4]
x ⊛ y
```
Explanation:
- The circulant Kronecker product for two vectors is:
```math
\mathbf{x} \circledast \mathbf{y} = \mathbf{x} \otimes \mathbf{y} + \mathbf{y} \otimes \mathbf{x}
```
- Computation:
```julia
x ⊗ y = [1*3, 1*4, 2*3, 2*4] = [3, 4, 6, 8]
y ⊗ x = [3*1, 3*2, 4*1, 4*2] = [3, 6, 4, 8]
Sum: [3+3, 4+6, 6+4, 8+8] = [6, 10, 10, 16]
```
Note: The output `[6, 10, 10, 16]` is the sum of the Kronecker products in this case.
#### Example 2: Three Vectors
```@repl
using UniqueKronecker
x = [1, 2]
y = [3, 4]
z = [5, 6]
⊛(x, y, z)
```
Explanation:
- The circulant Kronecker product for three vectors is:
```math
\mathbf{x} \circledast \mathbf{y} \circledast \mathbf{z} = \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} + \mathbf{y} \otimes \mathbf{z} \otimes \mathbf{x} + \mathbf{z} \otimes \mathbf{x} \otimes \mathbf{y}
```
- Computation involves computing each Kronecker product and summing the results.
#### Example 3: Matrices
```@repl
using UniqueKronecker
A = [1 2; 3 4];
B = [5 6; 7 8];
C = [9 10; 11 12];
result = ⊛(A, B, C)
```
## Generalization
With this implementation, you can now use the ⊛ operator or `circulant_kronecker` function with any number of vectors or matrices. The operation will automatically handle the necessary cyclic permutations and compute the sum of their Kronecker products.
## Columnwise Operation on Snapshot Matrices
Using the function `circulant_kron_snapshot_matrix`, the circulant Kronecker product operation can be applied to construct a snapshot matrix with each column containing the circulant Kronecker product result computed from each column of the input matrices.
### Example
```@repl
using UniqueKronecker
X1 = [1 2; 3 4]
X2 = [5 6; 7 8]
X3 = [9 10; 11 12]
X = circulant_kron_snapshot_matrix(X1, X2, X3)
```
```@docs
circulant_kron_snapshot_matrix
```
## Derivative of Kronecker products
This circulant Kronecker product is useful because it is a well-known result that the derivative of Kronecker products hold the circulant Kronecker structure. For example, if $\mathbf{x}\in\mathbb{R}^2$ then
```math
\frac{\partial}{\partial \mathbf{x}}(\mathbf{x} \otimes \mathbf{x}) = \mathbf{I}_2 \otimes \mathbf{x} + \mathbf{x} \otimes \mathbf{I}_2
```
and
```math
\frac{\partial}{\partial \mathbf{x}}(\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}) = \mathbf{I}_2 \otimes \mathbf{x} \otimes \mathbf{x} + \mathbf{x} \otimes \mathbf{I}_2 \otimes \mathbf{x} + \mathbf{x} \otimes \mathbf{x} \otimes \mathbf{I}_2
```
which can be reformulated using the circulant Kronecker product as, e.g.,
```math
\frac{\partial}{\partial \mathbf{x}}(\mathbf{x} \otimes \mathbf{x}) = \mathbf{I}_2 \circledast \mathbf{x}
```
## Symmetry and Conversion using Elimination and Duplication Matrices
The circulant Kronecker product inherently captures the symmetric structure present in Kronecker products involving permutations of vectors or matrices. This symmetry can be leveraged to simplify computations, reduce redundancy, and improve efficiency in mathematical operations, particularly when dealing with higher-order tensors or polynomial systems.
### Role of Elimination and Duplication Matrices
When working with circulant Kronecker products, especially in the context of symmetric tensors or polynomial dynamical systems, you may need to convert between the full Kronecker product and its unique representation.
#### From Full Kronecker Product to Unique Representation
1. **Compute the Full Circulant Kronecker Product**: Use the `circulant_kronecker` function to compute the sum over all cyclic permutations.
2. **Apply the Elimination Matrix**: Multiply the result by the elimination matrix $\mathbf{L}_{n,k}$ to extract the unique elements.
```math
\text{Unique Elements} = \mathbf{L}_{n,k} \left( \mathbf{x}_1 \circledast \mathbf{x}_2 \circledast \dots \circledast \mathbf{x}_n \right)
```
#### From Unique Representation to Full Kronecker Product
1. **Start with Unique Elements**: Obtain the vector containing the unique monomials.
2. **Apply the Duplication Matrix**: Multiply the unique elements by the duplication matrix $\mathbf{D}_{n,k}$ to reconstruct the full symmetric tensor.
```math
\text{Full Kronecker Product} = \mathbf{D}_{n,k} \times \text{Unique Elements}
```
##### Example
Consider vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$:
1. **Compute the Circulant Kronecker Product**:
```math
\mathbf{x} \circledast \mathbf{y} = \mathbf{x} \otimes \mathbf{y} + \mathbf{y} \otimes \mathbf{x}
```
2. **Apply the Elimination Matrix**:
- Use the elimination matrix $\mathbf{L}_{2,2}$ to extract unique terms:
```math
\text{Unique Elements} = \mathbf{L}_{2,2} (\mathbf{x} \circledast \mathbf{y})
```
3. **Result**:
- The unique elements correspond to the monomials $x_1 y_1$, $x_1 y_2 + x_2 y_1$, and $x_2 y_2$.
| UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | docs | 3455 | # Commutation Matrix
The commutation matrix $\mathbf{K}$ is a special permutation matrix that rearranges the vectorization of matrices and interchanges the Kronecker products of vectors and matrices. It plays a crucial role in simplifying expressions involving vectorization and Kronecker products in linear algebra, control theory, and other mathematical fields.
## Definition
The **Commutation Matrix** $\mathbf{K}_{m,n} \in \mathbb{R}^{mn \times mn}$ is defined as:
```math
\mathbf{K}_{m,n} = \sum_{i=1}^m \sum_{j=1}^n \mathbf{E}_{ij} \otimes \mathbf{E}_{ji}
```
where $\mathbf{E}_{ij}$ is the elementary matrix of size $m \times n$ with a one in the $(i, j)$-th position and zeros elsewhere.
**Properties of the Commutation Matrix:**
1. **Vectorization Transposition:**
For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$:
```math
\mathbf{K}_{m,n} \operatorname{vec}(\mathbf{A}) = \operatorname{vec}(\mathbf{A}^\top)
```
This property states that the commutation matrix transforms the vectorization of a matrix into the vectorization of its transpose.
2. **Kronecker Product Permutation:**
For matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{p \times q}$:
```math
\mathbf{K}_{p m, n q} (\mathbf{A} \otimes \mathbf{B}) \mathbf{K}_{n, q} = \mathbf{B} \otimes \mathbf{A}
```
This property allows interchanging matrices within a Kronecker product.
3. **Vector Kronecker Product Permutation:**
For vectors $\mathbf{v} \in \mathbb{R}^m$ and $\mathbf{w} \in \mathbb{R}^n$:
```math
\mathbf{K}_{n,m} (\mathbf{v} \otimes \mathbf{w}) = \mathbf{w} \otimes \mathbf{v}
```
This property enables swapping vectors within a Kronecker product.
**Additional Properties:**
- **Symmetry:** $\mathbf{K}_{n,m} = \mathbf{K}_{m,n}^\top$.
- **Involution:** $\mathbf{K}_{m,n} \mathbf{K}_{n,m} = \mathbf{I}_{mn}$, where $\mathbf{I}_{mn}$ is the identity matrix of size $mn \times mn$.
- **Eigenvalues:** The eigenvalues of $\mathbf{K}_{m,n}$ are either $+1$ or $-1$.
## Use Cases
The commutation matrix is particularly useful in the following contexts:
1. **Rearranging Kronecker Products:**
The commutation matrix allows us to move matrices or vectors within Kronecker products. For example:
```math
\mathbf{K}_{n,n^2} (\mathbf{A} \mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}) = \mathbf{x} \otimes \mathbf{A} \mathbf{x} \otimes \mathbf{x}
```
```math
\mathbf{K}_{n^2,n} (\mathbf{A} \mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}) = \mathbf{x} \otimes \mathbf{x} \otimes \mathbf{A} \mathbf{x}
```
Here, $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$.
2. **Simplifying Vectorized Equations:**
In mathematical modeling, especially in statistics and econometrics, the commutation matrix simplifies expressions involving vectorized matrices.
3. **Matrix Derivatives:**
It is used in deriving matrix derivatives where the order of differentiation and vectorization matters.
4. **Permutation of Tensor Products:**
In higher-order tensor computations, the commutation matrix helps in permuting indices.
5. **Construct second-order symmetrizer matrix**
For the second-order Kronecker product, the symmetrizer matrix is defined by
```math
\mathbf{S}_2 = \frac{1}{2}(\mathbf{I}_{n^2} + \mathbf{K}_{n,n})
```
See more details on the [symmetrizer matrix](symmetrizer.md).
```@docs
commat
```
| UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | docs | 5242 | # Duplication Matrix
In the second-order Kronecker product sense, the duplication matrix $\mathbf{D}$ is a matrix that transforms a vector containing only the unique elements of a symmetric matrix (vectorized in half-vectorization form) into the full vectorization of the symmetric matrix, effectively duplicating the symmetric elements to their appropriate positions. It plays a crucial role in manipulating Kronecker products and converting between non-redundant and redundant polynomial operators in polynomial dynamical systems.
## Definition
The duplication matrix $\mathbf{D}_n$ is a unique matrix of size $\left(n^2 \times \tfrac{n(n+1)}{2}\right)$ defined such that for any symmetric matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$:
```math
\mathrm{vec}(\mathbf{S}) = \mathbf{D}_n \mathrm{vech}(\mathbf{S})
```
where: (1) $\mathrm{vec}(\mathbf{S})$ stacks all columns of $\mathbf{S}$ into a single vector of length $n^2$; (2) $\mathrm{vech}(\mathbf{S})$ stacks only the elements on and below (or above) the main diagonal into a vector of length $\tfrac{n(n+1)}{2}$.
The duplication matrix effectively "duplicates" the unique elements in $\mathrm{vech}(\mathbf{S})$ to fill the positions in $\mathrm{vec}(\mathbf{S})$ that correspond to symmetric entries.
**Properties of the Duplication Matrix:**
- **Construction:** Each column of $\mathbf{D}_n$ contains ones at positions corresponding to the symmetric elements in $\operatorname{vec}(\mathbf{S})$ and zeros elsewhere.
- **Relation to Elimination Matrix:** The duplication matrix is related to the elimination matrix $\mathbf{L}_n$ via:
```math
\mathbf{L}_n\mathbf{D}_n = \mathbf{I}_n
```
for more definitions see [MagnusEML1980](@citet).
!!! note
Similar to the elimination matrix, this matrix is not formally/mathematically generalized for higher-order Kronecker products in the literature.
## Converting Between Kronecker Products
In polynomial dynamical systems, Kronecker powers of vectors often involve redundancy due to symmetric terms. The duplication matrix facilitates the conversion from the unique Kronecker product vector to the standard Kronecker product vector.
**Unique Kronecker Power:**
Given a vector $\mathbf{x} \in \mathbb{R}^n$, the unique Kronecker power is:
```math
\mathbf{x}^{\langle k \rangle} \in \mathbb{R}^{\tbinom{n + k - 1}{k}}
```
which contains only the unique monomials of degree $k$.
**Standard Kronecker Power:**
The standard Kronecker power is:
```math
\mathbf{x}^{[k]} = \underbrace{\mathbf{x} \otimes \mathbf{x} \otimes \cdots \otimes \mathbf{x}}_{k \text{ times}} \in \mathbb{R}^{n^k}
```
which includes all possible combinations, including redundant terms.
**Conversion Using the Duplication Matrix:**
The duplication matrix $\mathbf{D}_{n,k}$ of order $k$ is used to expand the unique Kronecker power to the standard Kronecker power:
```math
\mathbf{x}^{[k]} = \mathbf{D}_{n,k} \mathbf{x}^{\langle k \rangle}
```
Here, $\mathbf{D}_{n,k}$ is a matrix of size $\left(n^k \times \tbinom{n + k - 1}{k}\right)$.
**Example:**
For $n = 2$ and $k = 2$, let $\mathbf{x} = [x_1, x_2]^\top$. Then:
- **Unique Kronecker Power:**
```math
\mathbf{x}^{\langle 2 \rangle} = [x_1^2, x_1 x_2, x_2^2]^\top
```
- **Standard Kronecker Power:**
```math
\mathbf{x}^{[2]} = [x_1^2, x_1 x_2, x_2 x_1, x_2^2]^\top
```
The duplication matrix $\mathbf{D}_{2,2}$ duplicates the mixed term $x_1 x_2$ to account for both $x_1 x_2$ and $x_2 x_1$ in the standard Kronecker power:
```math
\mathbf{x}^{[2]} = \mathbf{D}_{2,2} \mathbf{x}^{\langle 2 \rangle}
```
**Note on Julia Implementation:**
The Julia function `dupmat(n::Int, p::Int)` generates the duplication matrix of order `p` for vectors of length `n`. This function can be used to create the duplication matrix needed for converting unique Kronecker products to standard ones.
```@docs
dupmat
```
**Benefits:**
- **Expands Unique Terms:** Allows reconstruction of the full Kronecker power from the unique monomials.
- **Simplifies Computations:** Facilitates operations that require the full Kronecker power.
## Converting Between Operators
The duplication matrix is also instrumental in converting between non-redundant (unique) and redundant polynomial operators in dynamical systems.
**Unique Operators:**
In the polynomial dynamical system:
```math
\dot{\mathbf{x}}(t) = \mathbf{A} \mathbf{x}(t) + \mathbf{A}_{2u} \mathbf{x}^{\langle 2 \rangle}(t) + \mathbf{A}_{3u} \mathbf{x}^{\langle 3 \rangle}(t) + \cdots
```
the matrices $\mathbf{A}_{ku} \in \mathbb{R}^{n \times \tbinom{n + k - 1}{k}}$ operate on the unique Kronecker powers.
**Redundant Operators:**
Alternatively, using the standard Kronecker powers:
```math
\dot{\mathbf{x}}(t) = \mathbf{A} \mathbf{x}(t) + \mathbf{A}_2 \mathbf{x}^{[2]}(t) + \mathbf{A}_3 \mathbf{x}^{[3]}(t) + \cdots
```
with $\mathbf{A}_k \in \mathbb{R}^{n \times n^k}$.
**Conversion Using the Duplication Matrix:**
The unique operator $\mathbf{A}_{ku}$ and the redundant operator $\mathbf{A}_k$ are related through the duplication matrix:
```math
\mathbf{A}_{ku} = \mathbf{A}_{k} \mathbf{D}_{n,k}
```
which eliminates the redundant terms.
```@docs
eliminate
``` | UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | docs | 6667 | # Polynomial Dynamical System
The main use case of the unique Kronecker product is in a polynomial structured dynamical systems defined by
```math
\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{A}_2\mathbf{x}^{[2]}(t) + \mathbf{A}_3\mathbf{x}^{[3]}(t) + \cdots
```
where $\mathbf{x}$ is the system variable and $\mathbf{A}_2\in\mathbb{R}^{n\times n^2}$, $\mathbf{A}_3\in\mathbb{R}^{n^3}$ are the system matrices/operators. This can be represented using the unique Kronecker product as
```math
\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{A}_{2u}\mathbf{x}^{\langle 2 \rangle}(t) + \mathbf{A}_{3u}\mathbf{x}^{\langle 3 \rangle}(t) + \cdots
```
where $\mathbf{A}_{2u}\in\mathbb{R}^{n(n+1)/2}$ and $\mathbf{A}_{3u}\in\mathbb{R}^{n(n+1)(n+2)/6}$. This package is also dedicated to converting between the unique operators $\mathbf{A}_{2u},~\mathbf{A}_{3u}$ and non-unique operators $\mathbf{A}_2,~\mathbf{A}_3$.
# Creating the Polynomial Operators
This packages offers a built-in function that allows the construction of redundant and non-redundant polynomial operators generalized for the dimension of the system variable and order of the Kronecker product. This function is called `makePolyOp` which easily creates the matrices by accepting the indices and values as arguments.
```@docs
makePolyOp
```
# Example
Here we show some famous systems which possess the polynomial structure:
## Van der Pol Oscillator
The Van der Pol oscillator is a nonlinear system that exhibits self-sustained oscillations with non-constant amplitude and frequency. It is governed by the second-order differential equation:
```math
\ddot{x} - \mu (1 - x^2) \dot{x} + x = 0
```
where $x$ is the state variable and $\mu$ is a scalar parameter representing the nonlinearity and damping of the system.
To express this as a first-order system suitable for the polynomial dynamical system framework, we define the state vector $\mathbf{x} = [x_1, x_2]^T$, where $x_1 = x$ and $x_2 = \dot{x}$. The system then becomes:
```math
\begin{aligned}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= \mu (1 - x_1^2) x_2 - x_1
\end{aligned}
```
This can be rewritten in matrix form as:
```math
\dot{\mathbf{x}} = \mathbf{A} \mathbf{x} + \mathbf{A}_{3u} \mathbf{x}^{\langle 3 \rangle}
```
Here, the matrices are defined as:
- Linear term:
```math
\mathbf{A} = \begin{bmatrix}
0 & 1 \\
-1 & \mu
\end{bmatrix}
```
- Cubic term:
```math
\mathbf{A}_{3u} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & -\mu & 0 & 0
\end{bmatrix}
```
The cubic term arises from the $- \mu x_1^2 x_2$ component, which can be represented using the unique Kronecker product:
```math
\mathbf{x}^{\langle 3 \rangle} = [x_1^3,~x_1^2 x_2, ~x_1 x_2^2, ~x_2^3]^\top
```
Thus, the Van der Pol oscillator fits into the polynomial dynamical system framework by capturing its nonlinear dynamics through the unique Kronecker product, facilitating analysis and simulation.
!!! tip
`UniqueKronecker.jl` provides a convenient function to construct the polynomial operators called `makePolyOp`. For example, you can construct the (redundant) cubic operator using the following command:
```@repl
using UniqueKronecker: makePolyOp
μ = 1.0
A3 = makePolyOp(2, [(1,1,2,2)], [μ])
```
## Lorenz System
The Lorenz system is a set of three coupled, nonlinear differential equations originally developed to model atmospheric convection. It is famous for its chaotic solutions for certain parameter values. The system is given by:
```math
\begin{aligned}
\dot{x}_1 &= \sigma (x_2 - x_1) \\
\dot{x}_2 &= x_1 (\rho - x_3) - x_2 \\
\dot{x}_3 &= x_1 x_2 - \beta x_3
\end{aligned}
```
where $x_1$, $x_2$, and $x_3$ are the state variables, and $\sigma$, $\rho$, and $\beta$ are parameters.
To express the Lorenz system within the polynomial dynamical system framework, we identify the nonlinear terms and represent them using the unique Kronecker product:
- Quadratic terms: $x_1 x_2$, $x_1 x_3$
We define the state vector $\mathbf{x} = [x_1, x_2, x_3]^\top$ and compute the unique Kronecker powers:
```math
\mathbf{x}^{\langle 2 \rangle} = [x_1^2, ~x_1 x_2, ~x_1 x_3, ~x_2^2, ~x_2 x_3, ~x_3^2]^\top
```
The system can then be represented as:
```math
\dot{\mathbf{x}} = \mathbf{A} \mathbf{x} + \mathbf{A}_{2u} \mathbf{x}^{\langle 2 \rangle}
```
Where:
- Linear term:
```math
\mathbf{A} = \begin{bmatrix}
-\sigma & \sigma & 0 \\
\rho & -1 & 0 \\
0 & 0 & -\beta
\end{bmatrix}
```
- Quadratic term:
```math
\mathbf{A}_{2u} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{bmatrix}
```
In this form, the Lorenz system's nonlinear dynamics are captured using the unique Kronecker product, making it amenable to analysis using polynomial system techniques.
!!! tip
The quadratic operator can be constructed using the `makePolyOp` function as follows:
```@repl
using UniqueKronecker: makePolyOp
A2 = makePolyOp(3, [(1,3,2), (1,2,3)], [-1, 1])
```
## Viscous Burgers' Equation
The viscous Burgers' equation is a fundamental partial differential equation from fluid mechanics and nonlinear acoustics. It models various physical processes like gas dynamics and traffic flow. The equation is:
```math
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}
```
where $u(x, t)$ is the velocity field, and $\nu$ is the viscosity coefficient.
To convert this PDE into a finite-dimensional polynomial dynamical system, we discretize the spatial domain using methods like finite differences. Let $\mathbf{u}$ be the vector of discretized values of $u(x, t)$. Assuming periodic boundary condition, the discretized equation becomes:
```math
\dot{\mathbf{u}} = \mathbf{A} \mathbf{u} + \mathbf{A}_2 (\mathbf{u} \otimes \mathbf{u})
```
Here:
- the discretized Laplacian operator (diffusion term) is repsented by $\mathbf{A}$.
- and the discretized convection operator is $\mathbf{A}_2$ .
By rearranging, we can express the nonlinear term using the unique Kronecker product:
```math
\dot{\mathbf{u}} = \mathbf{A} \mathbf{u} + \mathbf{A}_{2u} \mathbf{u}^{\langle 2 \rangle}
```
where:
```math
\mathbf{u}^{\langle 2 \rangle} = [u_1^2, ~u_1 u_2, ~\dots, ~u_n^2]^\top
```
This formulation allows us to apply polynomial system analysis tools to the viscous Burgers' equation, enabling efficient simulation and control design for systems modeled by this equation.
| UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | docs | 5780 | # Elimination Matrix
Elimination matrix $\mathbf{L}$, first mentioned by Tracy and Singh (1972) and later by Vetter (1975), was studied in depth by Magnus and Neudecker in [MagnusEML1980](@citet). This matrix holds properties that are crucial to converting the standard Kronecker product vector to the unique Kronecker product vector as well as converting the non-redundant polynomial operators to the redundant operators.
## Definition
The elimination matrix $\mathbf{L}_n$ is a unique matrix of size $\left(\tfrac{n(n+1)}{2} \times n^2\right)$ that extracts the unique elements from the vectorization of a symmetric matrix. For any symmetric matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$, the vectorization $\mathrm{vec}(\mathbf{S})$ contains redundant elements due to symmetry. The elimination matrix $\mathbf{L}_n$ is defined such that:
```math
\mathrm{vech}(\mathbf{S}) = \mathbf{L}_n \mathrm{vec}(\mathbf{S})
```
where:
- operator $\mathrm{vec}(\mathbf{S})$ stacks all columns of $\mathbf{S}$ into a single vector of length $n^2$.
- and $\mathrm{vech}(\mathbf{S})$ stacks only the elements on and below (or above) the main diagonal into a vector of length $\tfrac{n(n+1)}{2}$.
The elimination matrix effectively "eliminates" the redundant elements in $\mathrm{vec}(\mathbf{S})$, preserving only the unique components.
**Properties of the Elimination Matrix:**
- **Idempotency:** $\mathbf{L}_n \mathbf{L}_n^\top$ is an idempotent matrix, meaning $(\mathbf{L}_n \mathbf{L}_n^\top)^2 = \mathbf{L}_n \mathbf{L}_n^\top$.
- **Construction:** Each row of $\mathbf{L}_n$ contains a single one and zeros elsewhere, mapping elements from $\mathrm{vec}(\mathbf{S})$ to $\mathrm{vech}(\mathbf{S})$.
!!! note
Unfortunately, the definition of the elimination matrix is not formally/mathematically defined for Kronecker products beyond the order of 2. However, implementation-wise, this package has generalized the matrix.
## Converting Between Kronecker Products
In polynomial dynamical systems, we often deal with Kronecker powers of vectors, which can be redundant due to symmetric terms. The elimination matrix facilitates the conversion between the standard Kronecker product vector and the unique Kronecker product vector.
**Standard Kronecker Power:**
Given a vector $\mathbf{x} \in \mathbb{R}^n$, the $k$-th order Kronecker power is:
```math
\mathbf{x}^{[k]} = \underbrace{\mathbf{x} \otimes \mathbf{x} \otimes \cdots \otimes \mathbf{x}}_{k \text{ times}} \in \mathbb{R}^{n^k}
```
**Unique Kronecker Power:**
The unique Kronecker power, denoted by $\mathbf{x}^{\langle k \rangle}$, contains only the unique monomials of degree $k$ formed from the elements of $\mathbf{x}$. It has a length of $\tbinom{n + k - 1}{k}$.
**Conversion Using the Elimination Matrix:**
The relationship between the standard and unique Kronecker powers is given by:
```math
\mathbf{x}^{\langle k \rangle} = \mathbf{L}_{n,k} \mathbf{x}^{[k]}
```
where $\mathbf{L}_{n,k}$ is the elimination matrix corresponding to the $k$-th Kronecker power, of size $\left(\tbinom{n + k - 1}{k} \times n^k\right)$.
**Example:**
For $n = 2$ and $k = 2$, let $\mathbf{x} = [x_1, x_2]^\top$. Then:
- **Standard Kronecker Power:**
```math
\mathbf{x}^{[2]} = [x_1^2, x_1 x_2, x_2 x_1, x_2^2]^\top
```
- **Unique Kronecker Power:**
```math
\mathbf{x}^{\langle 2 \rangle} = [x_1^2, x_1 x_2, x_2^2]^\top
```
The elimination matrix $\mathbf{L}_{2,2}$ maps $\mathbf{x}^{[2]}$ to $\mathbf{x}^{\langle 2 \rangle}$ by combining redundant terms (since $x_1 x_2$ and $x_2 x_1$ are the same):
```math
\mathbf{x}^{\langle 2 \rangle} = \mathbf{L}_{2,2} \mathbf{x}^{[2]}
```
```@docs
elimat
```
**Benefits:**
- **Efficiency:** Reduces computational complexity by working with smaller vectors.
- **Simplicity:** Simplifies expressions and computations involving symmetric terms.
- **Clarity:** Makes the structure of polynomial terms more transparent.
## Converting Between Operators
The elimination matrix also plays a crucial role in converting between redundant and non-redundant polynomial operators in dynamical systems.
**Redundant Operators:**
In the polynomial system:
```math
\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{A}_2 \mathbf{x}^{[2]}(t) + \mathbf{A}_3 \mathbf{x}^{[3]}(t) + \cdots
```
the matrices $\mathbf{A}_k \in \mathbb{R}^{n \times n^k}$ operate on the full Kronecker powers, which include redundant terms.
**Unique Operators:**
To eliminate redundancy, we define unique operators $\mathbf{A}_{ku} \in \mathbb{R}^{n \times \tbinom{n + k - 1}{k}}$ such that:
```math
\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{A}_{2u} \mathbf{x}^{\langle 2 \rangle}(t) + \mathbf{A}_{3u} \mathbf{x}^{\langle 3 \rangle}(t) + \cdots
```
**Conversion Using the Elimination Matrix:**
The redundant operator $\mathbf{A}_k$ and the unique operator $\mathbf{A}_{ku}$ are related through the elimination matrix:
```math
\mathbf{A}_{k} = \mathbf{A}_{ku} \mathbf{L}_{n,k}
```
which actually works to duplicate the entries of the non-redundant operator. Thus, though seemingly counter-intuitive, the elimination matrix duplicates the entries and constructs to convert the $\mathbf{A}_2$ matrix to the $\mathbf{A}_{2u}$ matrix.
**Example:**
Consider a system with $n = 2$:
- **Redundant operator:** $\mathbf{A}_2 \in \mathbb{R}^{2 \times 4}$
- **Unique operator:** $\mathbf{A}_{2u} \in \mathbb{R}^{2 \times 3}$
The elimination matrix $\mathbf{L}_{2,2}$ maps $\mathbf{x}^{[2]}$ to $\mathbf{x}^{\langle 2 \rangle}$:
```math
\mathbf{x}^{\langle 2 \rangle} = \mathbf{L}_{2,2} \mathbf{x}^{[2]}
```
The operators are related by:
```math
\mathbf{A}_{2u} = \mathbf{A}_2 \mathbf{L}_{2,2}^\top
```
```@docs
duplicate
``` | UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | docs | 2830 | # Symmetrizer Matrix
The symmetrizer matrix $\mathbf{S}$ is a matrix that symmetrizes tensors or higher-order Kronecker products. It ensures that the resulting product is symmetric with respect to its indices. In the context of polynomial dynamical systems and Kronecker products, the symmetrizer matrix is crucial for handling symmetric terms efficiently and accurately.
## Definition
The **Symmetrizer Matrix** $\mathbf{S}_{n,p} \in \mathbb{R}^{n^p \times n^p}$ of order $p$ for a vector of length $n$ is defined such that it symmetrizes a tensor obtained from the $p$-th Kronecker power of a vector $\mathbf{x} \in \mathbb{R}^n$.
Given the $p$-th Kronecker power:
```math
\mathbf{x}^{[p]} = \underbrace{\mathbf{x} \otimes \mathbf{x} \otimes \cdots \otimes \mathbf{x}}_{p \text{ times}} \in \mathbb{R}^{n^p}
```
The symmetrizer matrix $\mathbf{S}_{n,p}$ symmetrizes $\mathbf{x}^{[p]}$ to produce a vector where all permutations of indices are averaged. The symmetrized vector is:
```math
\mathbf{x}^{\{p\}} = \mathbf{S}_{n,p} \mathbf{x}^{[p]}
```
**Properties of the Symmetrizer Matrix:**
- **Idempotent:** $\mathbf{S}_{n,p}^2 = \mathbf{S}_{n,p}$.
- **Symmetric:** $\mathbf{S}_{n,p}^\top = \mathbf{S}_{n,p}$.
- **Projection Matrix:** It projects any tensor onto the space of symmetric tensors.
For the quadratic case ($p = 2$), the symmetrizer matrix can be explicitly defined using the commutation matrix $\mathbf{K}_{n,n}$:
```math
\mathbf{S}_{n,2} = \frac{1}{2} \left( \mathbf{I}_{n^2} + \mathbf{K}_{n,n} \right)
```
where $\mathbf{I}_{n^2}$ is the identity matrix of size $n^2 \times n^2$.
```@docs
symmtzrmat
```
## Use Cases
The symmetrizer matrix is particularly useful in the following contexts:
1. **Symmetrizing Kronecker Products:**
When dealing with polynomial terms in dynamical systems, it's often necessary to ensure that the terms are symmetric. The symmetrizer matrix averages all permutations of indices in the Kronecker product to produce a symmetric tensor.
**Example:**
For $\mathbf{x} \in \mathbb{R}^n$ and $p = 2$:
```math
\mathbf{x}^{\{2\}} = \mathbf{S}_{n,2} (\mathbf{x} \otimes \mathbf{x})
```
This results in a vector containing terms like $x_i x_j$ averaged over all permutations.
2. **Ensuring Symmetric Operators:**
In polynomial dynamical systems, operators (matrices) that act on Kronecker powers of state vectors should often be symmetric to preserve certain properties like stability. The symmetrizer matrix can be used to enforce symmetry in these operators.
3. **Duplicating Symmetric Coefficients:**
When converting between unique and redundant representations of polynomial operators, the symmetrizer matrix ensures that coefficients are duplicated symmetrically, maintaining the symmetry of the operator.
```docs
duplicate_symmetric
``` | UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | docs | 3629 | # Unique Kronecker Product
## Introduction
The unique Kronecker product is a math operation which is similar to the Kronecker product but eliminates all the redundant terms appearing due to terms invariant under index permutations. This is easiest to understand through an example.
```@raw html
<img src="../../images/unique_kronecker_example.png" alt="unique kronecker example" style="float: left; margin-right: 10px;" />
```
The example above shows the unique Kronecker product for a vector of $\mathbf{x}\in\mathbb{R}^3$. For a standard Kronecker product the resulting vector becomes a 9-dimensional vector, and we have a 6-dimensional vector when using the unique Kronecker product. Which shows how the unique Kronecker product eliminates 3 of the redundant terms.
## Definitions
We define the basic syntax for the general Kronecker product and unique Kronecker product of order $k$ as follows:
```math
\begin{align}
\mathbf{x}^{[k]} &= \underbrace{\mathbf{x} \otimes \cdots \otimes \mathbf{x}}_{k-\text{times}} \in \mathbb{R}^{n^k}, \\
\mathbf{x}^{\langle k \rangle} &= \underbrace{\mathbf{x} \oslash \cdots \oslash \mathbf{x}}_{k-\text{times}} \in \mathbb{R}^{\binom{n+k-1}{k}}
\end{align}
```math
where $\mathbf{x}\in\mathbb{R}^n$. From this definition, we observe that the dimensions of the Kronecker product grows in the order of $n^k$ but the unique Kronecker grows in the order of $\binom{n+k-1}{k}$. The reduction in computational cost from this order difference becomes significantly obvious in higher-dimensions.
For a second-order Kronecker product, the package supports the following syntax
```@repl
using UniqueKronecker
n = 3
x = rand(n)
x2u = x ⊘ x # or unique_kronecker(x,x)
```
for higher-order Kronecker products, you can do
```@repl
using UniqueKronecker
n = 3
k = 5
x = rand(n)
xku = ⊘(x, k)
```
Another concept we need to define is the vectorization and half-vectorization operators $\mathrm{vec}(\cdot)$ and $\mathrm{vech}(\cdot)$, respectively. The vectorization operator flattens a matrix $\mathbf{A}\in\mathbb{R}^{m\times n}$ in the column direction creating a vector of size $mn$. On the other hand, the half-vectorization operator vectorizes the matrix but only half of it or discarding the supradiagonal entries. These operations are strongly related to the second-order Kronecker and unique Kronecker products, and those relationships are described in the picture below.
```@raw html
<img src="../../images/vectorize_and_kronecker.png" alt="unique kronecker example" style="float: left; margin-right: 10px;" />
```
The vectorization operator is already defined in the `LinearAlgebra` package as the function `vec`, but we define the functions `vech` for the half-vectorization operator and `invec` function for the inverse-vectorization operator that reverses the vectorization.
We are aware that similar concepts exists in the tensor algebra literature, and the vectorization and half-vectorization operations can be generalized to higher-order Kronecker products. However, for ease of exposition, we only illustrate the second-order Kronecker product case.
## Columnwise Operation on Snapshot Matrices
We also employ the functions
- `kron_snapshot_matrix`
- `unique_kron_snapshot_matrix`
which allows you to apply the Kronecker product and unique Kronecker product on each column of a matrix. For example
```@repl
using UniqueKronecker
X = [1 2; 3 4]
X2 = kron_snapshot_matrix(X, 2)
```
```@repl
using UniqueKronecker
X = [1 2; 3 4]
X2u = unique_kron_snapshot_matrix(X, 2)
```
```@docs
unique_kronecker
⊘
kron_snapshot_matrix
unique_kron_snapshot_matrix
```
| UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.1.0 | 6e0e59cf030ff08603780c7595a52748e1e68014 | docs | 3098 | # Unique Kronecker Powers
One unique feature of this package is the generalization of the unique Kronecker product for any *n*-dimensional vector with any Kronecker product of order *k*. This allows significant computational efficiency in higher-order polynomial systems.
## Definition
The **unique Kronecker power** of order $k$ of a vector $\mathbf{x} \in \mathbb{R}^n$, denoted by $\mathbf{x}^{\langle k \rangle}$, is a vector containing all the unique monomials of degree $k$ formed by the elements of $\mathbf{x}$. Unlike the standard Kronecker power $\mathbf{x}^{[k]}$, which includes all possible combinations (including duplicates due to commutativity), the unique Kronecker power includes each distinct monomial only once.
Formally, the unique Kronecker power is defined as:
```math
\mathbf{x}^{\langle k \rangle} = \mathrm{vec}_{\text{unique}} \left( \mathbf{x}^{[k]} \right) \in \mathbb{R}^{\tbinom{n + k - 1}{k}}
```
where:
- the term $\mathbf{x}^{[k]} = \underbrace{\mathbf{x} \otimes \mathbf{x} \otimes \cdots \otimes \mathbf{x}}_{k \text{ times}}$ is the $k$-th Kronecker power of $\mathbf{x}$.
- and $\mathrm{vec}_{\text{unique}}$ extracts only the unique monomials, considering that the variables commute (e.g., $x_i x_j = x_j x_i$).
The length of $\mathbf{x}^{\langle k \rangle}$ is given by the multiset coefficient (number of combinations with repetition):
```math
\mathrm{length}(\mathbf{x}^{\langle k \rangle}) = \tbinom{n + k - 1}{k}
```
## Properties
- **Efficiency:** By considering only unique monomials, the unique Kronecker power significantly reduces the dimensionality compared to the standard Kronecker power, which has length $n^k$.
- **Symmetry:** The unique Kronecker power leverages the commutative property of multiplication, avoiding redundant terms.
- **Polynomial Representation:** Each element corresponds to a unique monomial of degree $k$ in the variables $x_1, x_2, \dots, x_n$.
## Computation
To compute the unique Kronecker power of a vector $\mathbf{x}$, generate all combinations of indices with replacement and compute the products corresponding to those combinations.
**Example for $n = 2$ and $k = 2$:**
Let $\mathbf{x} = [x_1, x_2]^\top$. The unique Kronecker power is:
```math
\mathbf{x}^{\langle 2 \rangle} = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}
```
**Example for $n = 3$ and $k = 2$:**
```math
\mathbf{x}^{\langle 2 \rangle} = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_1 x_3 \\ x_2^2 \\ x_2 x_3 \\ x_3^2 \end{bmatrix}
```
## Conversion Between Standard and Unique Kronecker Powers
The package provides tools to convert between the standard Kronecker power $\mathbf{x}^{[k]}$ and the unique Kronecker power $\mathbf{x}^{\langle k \rangle}$ using the elimination matrix $\mathbf{L}_{n,k}$ and the duplication matrix $\mathbf{D}_{n,k}$.
**From Standard to Unique:**
```math
\mathbf{x}^{\langle k \rangle} = \mathbf{L}_{n,k} \mathbf{x}^{[k]}
```
**From Unique to Standard:**
```math
\mathbf{x}^{[k]} = \mathbf{D}_{n,k} \mathbf{x}^{\langle k \rangle}
```
```@docs
UniqueKronecker.UniqueCombinationIterator
``` | UniqueKronecker | https://github.com/smallpondtom/UniqueKronecker.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 20740 | # Currently unmaintained
function plotLsrScanFeats(br::Array{Float64,2})
Cart = zeros(size(br))
Cart[:,1] = br[:,2].*cos(br[:,1])
Cart[:,2] = br[:,2].*sin(br[:,1])
plot(x=Cart[:,1],y=Cart[:,2],Geom.point,
Guide.xticks(ticks=collect(-60:10:60)),
Guide.yticks(ticks=collect(0:10:80)))
end
function plotFeatTrackers(trkrs::Dict{Int64,Feature}, bfts::Array{Float64,2})
musX = Float64[]
varX = Float64[]
musY = Float64[]
varY = Float64[]
allPtsX = Float64[]
allPtsY = Float64[]
for ftr in trkrs
pts = getPoints(ftr[2].bel)
allPtsX = [allPtsX; vec(pts[1,:])]
allPtsY = [allPtsY; vec(pts[2,:])]
push!(musX, Statistics.mean(vec(pts[1,:])))
push!(varX, Statistics.std(vec(pts[1,:])))
push!(musY, Statistics.mean(vec(pts[2,:])))
push!(varY, Statistics.std(vec(pts[2,:])))
end
X = Float64[]
Y = Float64[]
if size(bfts,2) > 0
if bfts[1,1] != 0.0 && bfts[2,1] != 0.0 && bfts[3,1] != 0.0
for i in 1:size(bfts,2)
u, R = p2c(vec(bfts[:,i]))
push!(X, u[1])
push!(Y, u[2])
end
end
end
# Guide.yticks(ticks=collect(-60:10:60)),
# Guide.xticks(ticks=collect(0:10:80))
p = plot(layer(x=musX, y=musY, Geom.point, Theme(default_color=colorant"red")),
layer(x=allPtsX, y=allPtsY, Geom.histogram2d),
Guide.yticks(ticks=collect(-70:10:70)),
Guide.xticks(ticks=collect(-40:10:80)))
for i in 1:length(X)
push!(p.layers, Gadfly.layer(x=[0.0;X[i]], y=[0.0;Y[i]], Geom.line, Gadfly.Theme(default_color=colorant"magenta"))[1])
end
p
end
function saveImgSeq(d::Dict{Int64,Array{Float64,2}}; from::Int=1,to::Int=10,step::Int=1)
for i in from:step:to
p = plotLsrScanFeats([d[i][2,:];d[i][1,:]]') #lsrBR(d[i]));
Gadfly.draw(PNG(string("imgs/img",i,".png"),25cm,25cm),p)
end
nothing
end
"""
$SIGNATURES
Plot trajectory of Array{,2} with rows as consecutive entries and columns as x,y,theta.
"""
function plotTrajectoryArrayPose2(arr::AbstractMatrix__{<:Real};
spscale::Real=0.5,
triadStride::Int=50)
#
@assert size(arr,2)==3
trajPlt = Gadfly.plot(x=arr[:,1], y=arr[:,2], Geom.path, Coord.cartesian(fixed=true, aspect_ratio=1))
if triadStride != -1
Xpp = arr[1:triadStride:end,1]
Ypp = arr[1:triadStride:end,2]
Thpp = arr[1:triadStride:end,3]
addXYLineLayers!(trajPlt, Xpp, Ypp, Thpp, l=spscale)
end
return trajPlt
end
# Victoria Park Plotting functions
function progressExamplePlot(dOdo, lsrFeats; toT=Inf)
len = length(dOdo)
pose = SE2(zeros(3))
lastpose = zeros(3)
idx = 1
T = dOdo[idx][4]
lstlaseridx = 1
WFTSX = Array{Float64,1}()
WFTSY = Array{Float64,1}()
WLBLS = String[]
lastX = Array{Float64,1}()
lastY = Array{Float64,1}()
while T < toT && idx <= len
lastX = Array{Float64,1}()
lastY = Array{Float64,1}()
pose = pose*SE2(dOdo[idx][1:3]) # todo -- replace with inferred latest pose
#@show idx, T, vec(pose[1:2,3])
lastpose = vec(se2vee(pose))
# lstlaseridx, Ta = getFeatsAtT(lsrFeats, T, prev=lstlaseridx)
# bfts = lsrFeats[lstlaseridx].feats
fe = lsrFeats[idx]
if length(lsrFeats[idx]) > 0
bfts = zeros(3,length(fe))
lbls = String[]
k = collect(keys(fe))
for i in 1:length(fe)
bfts[1:length(fe[k[i]]),i] = fe[k[i]]
push!(lbls, "l$(k[i])")
end
if bfts[1,1] != 0.0 && bfts[2,1] != 0.0 && bfts[3,1] != 0.0
wfts = rotateFeatsToWorld(bfts, pose)
for i in 1:size(wfts,2)
push!(WFTSX, wfts[1,i])
push!(WFTSY, wfts[2,i])
push!(WLBLS, lbls[i])
push!(lastX, wfts[1,i])
push!(lastY, wfts[2,i])
end
end
end
idx += 1
if idx <= len
T = dOdo[idx][4]
end
end
p = plotPoseDict(dOdo,to=idx-1)
if length(WFTSX) > 0
l = Gadfly.layer(x=WFTSX, y=WFTSY, label=WLBLS, Geom.label, Geom.point, Gadfly.Theme(default_color=colorant"red"))
push!(p.layers, l[1])
l2 = Gadfly.layer(x=WFTSX, y=WFTSY, Geom.point, Gadfly.Theme(default_color=colorant"red"))
push!(p.layers, l2[1])
for i in 1:length(lastX)
push!(p.layers, Gadfly.layer(x=[lastpose[1];lastX[i]], y=[lastpose[2];lastY[i]], Geom.line, Gadfly.Theme(default_color=colorant"magenta"))[1])
end
end
p
end
function plotTrckStep(DBG, i, fid, m)
@show keys(DBG[i])
pf = DBG[i][fid]
arr = Array{BallTreeDensity,1}()
for j in 1:3
push!(arr, marginal(pf[j],[m]))
end
plotKDE(arr, c=["red";"green";"black"])
end
function plotPose3Pairs(fgl::AbstractDFG, sym::Symbol; fill::Bool=true)
p1= plotKDE(fgl, sym, dims=[1;2], fill=fill)
p2 = plotKDE(fgl, sym, dims=[6;3], fill=fill)
p3 = plotKDE(fgl, sym, dims=[4;5], fill=fill)
Gadfly.draw(PDF("/tmp/RoMEvstackPose3.pdf",15cm, 20cm), vstack(p1,p2,p3) )
@async run(`evince /tmp/RoMEvstackPose3.pdf`)
nothing
end
"""
$SIGNATURES
Convenience function to plot one Point2 or Pose2 location along with reference data if desired.
"""
function plotVariable2D(dfg::AbstractDFG,
varsym::Symbol;
refs::Vector=[],
levels::Int=10 )
#
# make sure variable is in the right family
var = getVariable(dfg, varsym)
@assert isa(getSofttype(var), Union{Pose2, Point2})
pl = plotKDE(dfg, varsym, levels=levels)
if 0 < length(refs)
XX, YY = zeros(0), zeros(0)
for dict in refs
push!(XX,dict[varsym][1])
push!(YY,dict[varsym][2])
end
p2 = Gadfly.plot(x=XX,
y=YY,
Geom.point,
Guide.Theme(default_color=colorant"red", point_size=5pt))
union!(p2.layers, pl.layers)
pl = p2
end
return pl
end
# pl = plotKDE(dfg, varsym, levels=levels)
# pl = Gadfly.plot(x=[landmarks_design[:l1][1]; landmarks_real[:l1][1]],
# y=[landmarks_design[:l1][2]; landmarks_real[:l1][2]],
# Geom.point,
# Guide.Theme(default_color=colorant"red", point_size=5pt))
# p2 = plotKDE(fg, :l1, levels=20)
# union!(pl.layers, p2.layers)
function plotTrailingPoses(pt::Pose2,
pp::Vector{BallTreeDensity},
title="";
levels=2,
c=nothing,
axis=nothing,
scale::Real=0.2,
circlen::Int=5)
ran = axis === nothing ? getKDERange(pp) : axis
cc=["red"; ["pink" for i in 1:100]]
p1 = plotKDE(pp, dims=[1;2], levels=levels, c=cc, title=title, axis=ran )
GG = BallTreeDensity[]
for ppc in pp
gg = marginal(ppc,[3])
# gg = (x)->pc(reshape([x], :,1))[1]
push!(GG, gg)
end
p2 = AMP.plotKDECircular(GG[(end-circlen):end], scale=scale, c=cc)
p2,p1
end
function plotTrailingPoses(fg::AbstractDFG,
pp::Vector{Symbol},
title="";
solveKey::Symbol=:default,
levels=2,
c=nothing,
axis=nothing,
scale::Real=0.2,
circlen::Int=5)
#
plotTrailingPoses(Pose2(), map(x->getBelief(fg,x, solveKey),pp), scale=scale, title=title, circlen=circlen)
end
# gg = (x)->plotTrailingPoses(fg, [Symbol("x$i") for i in (x+60):-5:x],circlen=3)
#
# for i in 5:5:290
# g1,g2 = gg(i)
#
# g1 |> SVG("/tmp/trailingimgs/g1_$(i).svg")
# g1 |> SVG("/tmp/trailingimgs/g1_$(i+1).svg")
# g1 |> SVG("/tmp/trailingimgs/g1_$(i+2).svg")
# g1 |> SVG("/tmp/trailingimgs/g1_$(i+3).svg")
# g1 |> SVG("/tmp/trailingimgs/g1_$(i+4).svg")
#
# g2 |> SVG("/tmp/trailingimgs/g2_$(i).svg")
# g2 |> SVG("/tmp/trailingimgs/g2_$(i+1).svg")
# g2 |> SVG("/tmp/trailingimgs/g2_$(i+2).svg")
# g2 |> SVG("/tmp/trailingimgs/g2_$(i+3).svg")
# g2 |> SVG("/tmp/trailingimgs/g2_$(i+4).svg")
# end
function investigateMultidimKDE(p::BallTreeDensity, p0::BallTreeDensity)
co = ["black"; "blue"]
h = Union{}
x = plotKDE([marginal(p,[1]); marginal(p0,[1])], c=co )
y = plotKDE([marginal(p,[2]); marginal(p0,[2])], c=co )
if p.bt.dims >= 3
th = plotKDE([marginal(p,[3]); marginal(p0,[3])], c=co )
h = hstack(x,y,th)
else
h = hstack(x,y)
end
return h
end
function investigateMultidimKDE(p::Array{BallTreeDensity,1})
co = ["black"; "blue"; "green"; "red"; "magenta"; "cyan"; "cyan1"; "cyan2";
"magenta"; "cyan"; "cyan1"; "cyan2"; "magenta"; "cyan"; "cyan1"; "cyan2"; "magenta";
"cyan"; "cyan1"; "cyan2"; "magenta"; "cyan"; "cyan1"; "cyan2"]
# compute all the marginals
Pm = Array{Array{BallTreeDensity,1},1}()
push!(Pm,stackMarginals(p,1)) #[marginal(p[1],[1]); marginal(p[2],[1])]
push!(Pm,stackMarginals(p,2)) #[marginal(p[1],[2]); marginal(p[2],[2])]
h = Union{}
x = plotKDE(Pm[1], c=co )
y = plotKDE(Pm[2], c=co )
if p[1].bt.dims >= 3
#Pm3 = [marginal(p[1],[3]); marginal(p[2],[3])]
push!(Pm,stackMarginals(p,3)) # [marginal(p[1],[3]); marginal(p[2],[3])]
th = plotKDE(Pm[3], c=co )
h = hstack(x,y,th)
else
h = hstack(x,y)
end
return h
end
function investigateMultidimKDE(p::BallTreeDensity)
x = plotKDE(marginal(p,[1]) )
y = plotKDE(marginal(p,[2]) )
if p.bt.dims >= 3
th = plotKDE(marginal(p,[3]) )
return hstack(x,y,th)
end
return hstack(x,y)
end
function plotLbl(fgl::G, lbl::Symbol) where G <: AbstractDFG
plotKDE(getBelief(getVariable(fgl,lbl)))
end
drawLbl(fgl::G, lbl::T) where {G <: AbstractDFG, T <: AbstractString} = drawLbl(fgl, Symbol(lbl))
function plotFrontalDens( fg::AbstractDFG,
bt::AbstractBayesTree;
N=300,
gt=Union{} )
#
len = length(bt.cliques)
vv = Array{Gadfly.Compose.Context,1}(len)
i = 0
for cliq in bt.cliques
#@show cliq[2].attributes["label"]
lenfr = length(cliq[2].attributes["data"].frontalIDs)
p = Array{BallTreeDensity,1}(lenfr)
j=0
#pvals = Array{Array{Float64,2},1}(lenfr)
gtvals = Dict{Int,Array{Float64,2}}()
lbls = String[]
for frid in cliq[2].attributes["data"].frontalIDs
j+=1
p[j] = getBelief(getVariable(fg, frid)) # getBelief(fg.v[frid])
# p[j] = kde!(fg.v[frid].attributes["val"])
#pvals[j] = fg.v[frid].attributes["val"]
if gt!=Union{}
gtvals[j] = gt[getVariable(fg,frid).label] # fg.v[frid].
#push!(gtvals, gt[fg.v[frid].attributes["label"]][1])
#push!(gtvals, gt[fg.v[frid].attributes["label"]][2])
end
push!(lbls, getVariable(fg,frid).label) # fg.v[frid].
end
#r = Array{RemoteRef,1}(lenfr)
#[r[j] = @spawn kde!(pvals[j]) for j in 1:lenfr]
#[p[j] = fetch(r[j]) for j in 1:lenfr]
i+=1
if length(gtvals) > 0
#gtvals = reshape(gtvals,2,round(Int,length(gtvals)/2))'
vv[i] = drawHorDens(p, N, gt=gtvals, lbls=lbls)
else
vv[i] = drawHorDens(p, N,lbls=lbls)
end
end
#r = Array{RemoteRef,1}(lenfr)
#[r[j] = @spawn kde!(pvals[j]) for j in 1:lenfr]
#[p[j] = fetch(r[j]) for j in 1:lenfr]
i+=1
if length(gtvals) > 0
#gtvals = reshape(gtvals,2,round(Int,length(gtvals)/2))'
vv[i] = drawHorDens(p, N, gt=gtvals, lbls=lbls)
else
vv[i] = drawHorDens(p, N,lbls=lbls)
end
#
return vv
end
function saveplot(pl;name="pl",frt=:png,w=25cm,h=25cm,nw=false,fill=true)
if frt==:png
Gadfly.draw(PNG(string(name,".png"),w,h),pl)
# if fill run(`composite $(name).png plB.png $(name).png`) end
if !nw run(`eog $(name).png`) end
end
if frt==:pdf
Gadfly.draw(PDF(string(name,".pdf"),w,h),pl)
if !nw run(`evince $(name).pdf`) end
end
nothing
end
function animateVertexBelief(FGL::Array{<:AbstractDFG,1}, lbl; nw=false)
len = length(FGL)
[saveplot(plotLocalProduct(FG[i],lbl),h=15cm,w=30cm,name="gifs/pl$(i)",nw=true) for i=1:len];
run(`convert -delay 100 gifs/pl'*'.png result.gif`)
if !nw run(`eog result.gif`) end
nothing
end
function fixRotWrapErr!(RT::Array{Float64,1})
for i in 1:length(RT)
if RT[i] > pi
RT[i] = abs(RT[i]-2.0*pi)
end
end
nothing
end
function asyncUniComp(fgl::G, isamdict::Dict{Int,Array{Float64,1}}) where G <: AbstractDFG
r,rt,lb = computeGraphResiduals(fgl,isamdict);
fixRotWrapErr!(rt)
return [sqrt(mean(r.^2));maximum(abs(r));sqrt(mean(rt.^2));maximum(rt)]
end
function unimodalCompare(FGL::Array{<:AbstractDFG,1},isamdict::Dict{Int,Array{Float64,1}})
len = length(FGL)
RMS = Float64[]
MAX = Float64[]
RMSth = Float64[]
MAXth = Float64[]
rr = Future[] #RemoteRef[]
for fgl in FGL
push!(rr, remotecall(uppA(),asyncUniComp, fgl, isamdict))
end
for r in rr
err = fetch(r)
push!(RMS, err[1])
push!(MAX, err[2])
push!(RMSth, err[3])
push!(MAXth, err[4])
end
x=0:(len-1)
df1 = DataFrame(x=x, y=RMS, label="rms")
df2 = DataFrame(x=x, y=MAX, label="max")
df3 = DataFrame(x=x, y=RMSth*180.0/pi, label="rmsth")
df4 = DataFrame(x=x, y=MAXth*180.0/pi, label="maxth")
df = vcat(df1, df2)
dfth = vcat(df3,df4)
return df,dfth
end
function asyncAnalyzeSolution(fgl::G, sym::Symbol) where G <: AbstractDFG
lbl = string(sym)
pp, arr, partials = IncrementalInference.localProduct(fgl, lbl)
lpm = getKDEMax(pp)
em = getKDEMax(getBelief(getVariable(fgl,lbl)))
err1 = norm(lpm[1:2]-em[1:2])
err2 = 0.0
if lbl[1]=='x'
err2 = abs(lpm[3]-em[3])
end
return [err1;err2]
end
function analyzeSolution(FGL::Array{<: AbstractDFG,1},fggt=Union{})
len = length(FGL)
RMS = Float64[]
MAX = Float64[]
RMSth = Float64[]
MAXth = Float64[]
for fgl in FGL
xLB, lLB = ls(fgl)
ERR = Float64[]
ERRth = Float64[]
ALB = [xLB;lLB]
rr = Future[] #RemoteRef[]
for lbl in ALB
push!(rr, remotecall(uppA(),asyncAnalyzeSolution, fgl, lbl))
# err
# push!(ERR, err[1])
# if lbl[1]=='x'
# push!(ERRth, err[2])
# end
end
idx = 1
for r in rr
err = fetch(r)
push!(ERR, err[1])
if ALB[idx][1]=='x'
push!(ERRth, err[2])
end
idx += 1
end
push!(RMS, sqrt(mean(ERR.^2)))
push!(MAX, maximum(abs(ERR)))
push!(RMSth, sqrt(mean(ERRth.^2)))
push!(MAXth, maximum(ERRth))
end
x=0:(len-1)
df1 = DataFrame(x=x, y=RMS, label="rms")
df2 = DataFrame(x=x, y=MAX, label="max")
df3 = DataFrame(x=x, y=RMSth*180.0/pi, label="rmsth")
df4 = DataFrame(x=x, y=MAXth*180.0/pi, label="maxth")
df = vcat(df1, df2)
dfth = vcat(df3,df4)
return df,dfth
end
# discrete_color_manual(colors...; levels=nothing,order=nothing) is deprecated, use color_discrete_manual(colors...; levels=levels,order=order) instead.
function plotAnalysis(df,dfth)
return vstack(
Gadfly.plot(df, x="x", y="y", color="label", Geom.line,
Scale.discrete_color_manual("red","black")),
Gadfly.plot(dfth, x="x", y="y", color="label", Geom.line,
Scale.discrete_color_manual("red","black"))
)
end
function getAllFGsKDEs(fgD::Array{<: AbstractDFG,1}, vertsym::Symbol)
ret = Array{BallTreeDensity,1}()
for i in 1:length(fgD)
push!(ret, getBelief(getVariable(fgD[i],vertsym)) )
end
return ret
end
function plotAllPose2DBeliefs(plots::Array{Gadfly.Compose.Context,1}, fgD::Array{<: AbstractDFG,1})
ids = sort(collect(keys(fgD[1].v)))
co = ["black"; "blue"; "green"; "red"; "magenta"; "cyan"; "cyan1"; "cyan2"]
println(co[1:length(fgD)])
for i in ids
getVariable(fgD[1],i).label
kdes = getAllFGsKDEs(fgD, i)
push!(plots, plotKDE( kdes )) # [kde!(getVal(V)); kde!(getVal(V0))]
end
vstackedPlots(plots)
end
# legacy function -- use the array version instead
function plotAllPose2DBeliefs(plots::Array{Gadfly.Compose.Context,1}, fgD::G, fgD0=Union{}) where G <: AbstractDFG
println("WARNING: drawAllPose2DBeliefs -- legacy function -- use the array version instead.")
if fgD0 != Union{}
drawAllPose2DBeliefs(plots, [fgD;fgD0])
else
drawAllPose2DBeliefs(plots, [fgD])
end
end
function plotComicStripLM(fgD::Array{<: AbstractDFG,1})
comicA = Array{Gadfly.Plot,1}()
for fgd in fgD
cv = drawPosesLandms(fgd)
# cv = drawPoses(fgd)
push!(comicA,cv)
end
hstack(comicA)
end
function plotComicStrip(fgD::Array{<: AbstractDFG,1})
comicA = Array{Gadfly.Plot,1}()
for fgd in fgD
cv = drawPoses(fgd)
push!(comicA,cv)
end
hstack(comicA)
end
function compositeComic(fnc::Function, fgGT, fgA::Array{<: AbstractDFG,1})
v = Union{}
@show length(fgA)
if length(fgA) == 2
Gadfly.set_default_plot_size(25cm, 10cm)
v = fnc([fgA[1:2];fgGT])
elseif length(fgA) == 3
Gadfly.set_default_plot_size(25cm, 20cm)
v = vstack(fnc(fgA[1:2])
,fnc([fgA[3];fgGT]) )
elseif length(fgA) == 4
Gadfly.set_default_plot_size(25cm, 20cm)
v = vstack(fnc(fgA[1:3])
,fnc([fgA[4];fgGT]) )
elseif length(fgA) == 7
Gadfly.set_default_plot_size(25cm, 25cm)
v = vstack(fnc(fgA[1:3])
,fnc(fgA[4:6])
,fnc([fgA[7];fgGT]) )
elseif length(fgA) == 10
Gadfly.set_default_plot_size(25cm, 25cm)
v = vstack(fnc(fgA[1:3])
,fnc(fgA[4:6])
,fnc(fgA[7:9])
,fnc([fgA[10];fgGT]) )
elseif length(fgA) == 13
Gadfly.set_default_plot_size(25cm, 30cm)
v = vstack(fnc(fgA[1:3])
,fnc(fgA[4:6])
,fnc(fgA[7:9])
,fnc(fgA[10:12])
,fnc([fgA[13];fgGT]) )
end
v
end
function compositeComic(fnc::Function, fgA::Array{<: AbstractDFG,1})
v = Union{}
@show length(fgA)
if length(fgA) == 2
Gadfly.set_default_plot_size(25cm, 10cm)
v = fnc(fgA[1:2])
elseif length(fgA) == 3
Gadfly.set_default_plot_size(25cm, 20cm)
v = fnc(fgA[1:3])
elseif length(fgA) == 4
Gadfly.set_default_plot_size(25cm, 25cm)
v = vstack(fnc(fgA[1:2])
,fnc(fgA[3:4]))
elseif length(fgA) == 6
Gadfly.set_default_plot_size(25cm, 25cm)
v = vstack(fnc(fgA[1:3])
,fnc(fgA[4:6]) )
elseif length(fgA) == 9
Gadfly.set_default_plot_size(25cm, 25cm)
v = vstack(fnc(fgA[1:3])
,fnc(fgA[4:6])
,fnc(fgA[7:9]) )
elseif length(fgA) == 12
Gadfly.set_default_plot_size(25cm, 30cm)
v = vstack(fnc(fgA[1:3])
,fnc(fgA[4:6])
,fnc(fgA[7:9])
,fnc(fgA[10:12]) )
end
v
end
#
#
#
# function spyCliqMat(cliq::Graphs.ExVertex; showmsg=true)
# mat = deepcopy(getCliqMat(cliq, showmsg=showmsg))
# # TODO -- add improved visualization here, iter vs skip
# mat = map(Float64, mat)*2.0.-1.0
# numlcl = size(IIF.getCliqAssocMat(cliq),1)
# mat[(numlcl+1):end,:] *= 0.9
# mat[(numlcl+1):end,:] .-= 0.1
# numfrtl1 = floor(Int,length(getData(cliq).frontalIDs) + 1)
# mat[:,numfrtl1:end] *= 0.9
# mat[:,numfrtl1:end] .-= 0.1
# @show getData(cliq).itervarIDs
# @show getData(cliq).directvarIDs
# @show getData(cliq).msgskipIDs
# @show getData(cliq).directFrtlMsgIDs
# @show getData(cliq).directPriorMsgIDs
# sp = Gadfly.spy(mat)
# push!(sp.guides, Gadfly.Guide.title("$(cliq.attributes["label"]) || $(cliq.attributes["data"].frontalIDs) :$(cliq.attributes["data"].conditIDs)"))
# push!(sp.guides, Gadfly.Guide.xlabel("fmcmcs $(cliq.attributes["data"].itervarIDs)"))
# push!(sp.guides, Gadfly.Guide.ylabel("lcl=$(numlcl) || msg=$(size(getCliqMsgMat(cliq),1))" ))
# return sp
# end
# function spyCliqMat(bt::BayesTree, lbl::Symbol; showmsg=true)
# spyCliqMat(whichCliq(bt,lbl), showmsg=showmsg)
# end
function plotPose2Vels(fgl::G, sym::Symbol; coord=nothing) where G <: AbstractDFG
X = getBelief(getVariable(fgl, sym))
px = plotKDE(X, dims=[4], title="Velx")
coord != nothing ? (px.coord = coord) : nothing
py = plotKDE(X, dims=[5], title="Vely")
coord != nothing ? (py.coord = coord) : nothing
hstack(px, py)
end
"""
$(SIGNATURES)
Analysis function to compare KDE plots between the factor graph centric product of a variable with
current value stored in the factor graph object.
"""
function plotProductVsKDE(fgl::G,
sym::Symbol;
levels::Int=3,
c::Vector{String}=["red";"black"] ) where G <: AbstractDFG
#
plotKDE([IIF.localProduct(fgl, sym)[1], getBelief(getVariable(fgl, sym))], levels=3, c=c)
end
# | RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 2379 |
## =======================================================================================
## Remove before v0.11
## =======================================================================================
# see JuliaRobotics/Caesar.jl#811
@deprecate plotKDE(w...;kw...) plotBelief(w...;kw...)
## =======================================================================================
## Remove before v0.10
## =======================================================================================
# function getColorsByLength(len::Int=7)
# len > 99 ? error("Don't have enough colors, 100 is the max.") : nothing
# COLORS = String["red";"green";"blue";"magenta";"yellow";"deepskyblue"]
# if len > 6
# scale = len -7 + 2 # + 2 is artificial and avoids gray100==white
# scale = 100/scale
# for i in 7:len
# push!(COLORS, "gray$(floor(Int,(i-7)*scale))")
# end
# end
# return COLORS[1:len]
# end
export togglePrtStbLines
export stbPrtLineLayers!
# export drawHorDens # from KDEPlotting
# export plotMCMC, plotPose2DMC!, mcmcPose2D!
# for some reason we still need msgPlots of right size in the global for these functions to work.
# precall drawTreeUpwardMsgs or drawFrontalDens to make this work properly TODO
function vstackedDensities(msgPlots)
#msgPlots = f(fg, bt) # drawTreeUpwardMsgs
evalstr = ""
for i in 1:length(msgPlots)
evalstr = string(evalstr, ",msgPlots[$(i)]")
end
eval(parse(string("vstack(",evalstr[2:end],")")))
end
global DISABLESTBPRTLINES = false
function togglePrtStbLines()
global DISABLESTBPRTLINES
DISABLESTBPRTLINES = !DISABLESTBPRTLINES
end
## TODO -- you were here with port starboard lines
function stbPrtLineLayers!(pl, Xpp, Ypp, Thpp; l::Real=5.0)
if DISABLESTBPRTLINES
return nothing
end
lnstpr = [0.0;l;0.0]
lnstpg = [0.0;-l;0.0]
Rd =SE2(lnstpr)
Gr = SE2(lnstpg)
for i in 1:length(Xpp)
lnstt = [Xpp[i];Ypp[i];Thpp[i]]
Ps = SE2(lnstt)
lnr = se2vee(Ps*Rd)
lng = se2vee(Ps*Gr)
xsr = [Xpp[i];lnr[1]]
ysr = [Ypp[i];lnr[2]]
xsg = [Xpp[i];lng[1]]
ysg = [Ypp[i];lng[2]]
push!(pl.layers, layer(x=xsr, y=ysr, Geom.path(), Gadfly.Theme(default_color=colorant"red", line_width=1.5pt))[1] )
push!(pl.layers, layer(x=xsg, y=ysg, Geom.path(), Gadfly.Theme(default_color=colorant"green", line_width=1.5pt))[1] )
end
nothing
end
# | RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 2059 |
## =====================================================================================
# Primary supported functionality
## =====================================================================================
export plotBelief
export plotPose
export plotVariable2D
export plotSLAM2D, plotSLAM2D_KeyAndRef, plotSLAM2DLandmarks, plotSLAM2DPoses
export getColorsByLength
# FIXME what to do about this?
export plot
# needs better testing (might be broken following upgrade to Manifolds.jl)
export plotPose2Vels
export plotFactor
export plotFactorValues, plotFactorMeasurements, plotVariableGivenFactor
export plotPairVariables, plotPairPose2, plotPose3Pairs
export localProduct, plotLocalProductCylinder, plotLocalProduct
export saveplot
export plotMarginalContour, accumulateMarginalContours
# plot tree functionality (needs testing, possible broken with recent upgrades)
export plotUpMsgsAtCliq
export plotTreeProductUp, plotTreeProductDown, plotCliqUpMsgs, plotCliqDownMsgs
## =====================================================================================
## Known FIXME issues
## =====================================================================================
# export reportFactor
# export plotPriorsAtCliq
## =====================================================================================
## CURRENTLY UNMAINTAINED, utility functions that must be refactored, consolidated, standardized, or deprecated
## =====================================================================================
export investigateMultidimKDE,
plotKDEofnc,
plotKDEresiduals,
investigateMultidimKDE,
plotLbl,
animateVertexBelief,
# Associated with RoME
plotTrajectoryArrayPose2,
saveImgSeq,
plotProductVsKDE
## =====================================================================================
## Old Victoria Park dataset features that were good but unmaintained
## =====================================================================================
export plotLsrScanFeats, progressExamplePlot, plotTrckStep
# | RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 430 | # features specifically related to Flux.jl
@info "RoMEPlotting is adding Flux related functionality."
@eval PlotTypesPose2 = Union{Type{Pose2Pose2}, Type{Pose2Point2BearingRange}, Type{Pose2Point2Range}, Type{Pose2Point2Bearing}, Type{MixtureFluxPose2Pose2}}
@eval ExtendedPose2Pose2Types = Union{Pose2Pose2, MixtureFluxPose2Pose2}
# rerun since a few functions need to be reloaded with Flux
include("PlotFactorsReload.jl")
#
| RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 6318 |
"""
$(SIGNATURES)
Plot absolute values of variables and measurement surrounding fsym factor.
"""
function plotKDEofnc(fgl::AbstractDFG,
fsym::Symbol;
solveKey::Symbol=:default,
marg=nothing,
N::Int=100 )
#
fnc = nothing
if haskey(fgl.fIDs, fsym)
fnc = getfnctype( fgl, fgl.fIDs[fsym] )
else
error("fIDs doesn't have $(fsym)")
end
p = kde!( getSample(fnc, N)[1] )
# mmarg = length(marg) > 0 ? marg : collect(1:Ndim(p))
plotKDE(fgl, lsf(fgl, fsym), solveKey=solveKey, addt=[p], marg=marg)
end
"""
$(SIGNATURES)
Try plot relative values of variables and measurement surrounding fsym factor.
"""
function plotKDEresiduals(fgl::AbstractDFG,
fsym::Symbol;
N::Int=100,
levels::Int=3,
dims=nothing,
fill=false )
#
# COLORS = ["black";"red";"green";"blue";"cyan";"deepskyblue"]
fnc = getfnctype( fgl, fgl.fIDs[fsym] )
# @show sxi = lsf(fgl, fsym)[1]
# @show sxj = lsf(fgl, fsym)[2]
fct = getFactor(fgl, fsym)
@show sxi = getData(fct).fncargvID[1]
@show sxj = getData(fct).fncargvID[2]
xi = getVal(fgl, sxi)
xj = getVal(fgl, sxj)
measM = getSample(fnc, N)
meas = length(measM) == 1 ? (0*measM[1], ) : (0*measM[1], measM[2])
@show size(meas[1])
d = size(measM[1],1)
RES = zeros(d,N)
for i in 1:N
res = zeros(d)
fnc(res, i, meas, xi, xj)
RES[:,i] = res
if length(measM) > 1
if measM[2][i] == 0
RES[:,i] = 0.5*randn(d)
end
end
end
pR = kde!(RES)
pM = kde!(measM[1])
fncvar = getfnctype(fct)
COLORS = getColorsByLength()
plotKDE([pR;pM], c=COLORS[1:2], dims=dims,levels=3, legend=["residual";"model"], fill=fill, title=string(fsym, ", ", fncvar))
end
# """
# $(SIGNATURES)
# Plot the product of priors and incoming upward messages for variable in clique.
# plotPriorsAtCliq(tree, :x2, :x1[, marg=[1;2]])
# """
# function plotPriorsAtCliq(tree::BayesTree,
# lb::Symbol,
# cllb::Symbol;
# dims::Vector{Int}=Int[],
# levels::Int=1,
# fill::Bool=false )
# #
# # COLORS = ["black";"red";"green";"blue";"cyan";"deepskyblue"]
# cliq = whichCliq(tree, cllb)
# cliqprs = cliq.attributes["debug"].priorprods[1]
# vidx = 1
# for lbel in cliqprs.lbls
# if lbel == lb
# break;
# else
# vidx += 1
# end
# end
# dims = length(dims)>0 ? dims : collect(1:size(cliqprs.prods[vidx].prev,1))
# arr = BallTreeDensity[]
# push!(arr, marginal(kde!(cliqprs.prods[vidx].prev), dims) )
# push!(arr, marginal(kde!(cliqprs.prods[vidx].product), dims) )
# len = length(cliqprs.prods[vidx].potentials)
# lg = String["p";"n"]
# i=0
# for pot in cliqprs.prods[vidx].potentials
# push!(arr, marginal(pot, dims) )
# i+=1
# push!(lg, cliqprs.prods[vidx].potentialfac[i])
# end
# COLORS = getColorsByLength(len+2)
# # cc = COLORS[1:(len+2)]
# plotKDE(arr, c=COLORS, legend=lg, levels=levels, fill=fill );
# end
# function plotMCMC(treel::BayesTree,
# lbll::Symbol;
# delay::Int=200,
# show::Bool=true,
# w=20cm, h=15cm,
# levels::Int=1,
# dims=nothing )
# #
# cliq = whichCliq(treel, string(lbll))
# cliqdbg = cliq.attributes["debug"]
# vidx = 1
# for lb in cliqdbg.mcmc[1].lbls
# if lb == lbll
# break;
# else
# vidx += 1
# end
# end
# tmpfilepath = joinpath(dirname(@__FILE__),"tmpimgs")
# ARR = BallTreeDensity[]
# COLORS = getColorsByLength()
# # COLORS = ["black";"red";"green";"blue";"cyan";"deepskyblue";"magenta"]
# for i in 1:length(cliqdbg.mcmc)
# ppr = kde!(cliqdbg.mcmc[i].prods[vidx].prev)
# ppp = kde!(cliqdbg.mcmc[i].prods[vidx].product)
# ARR = [ARR;ppr;ppr;cliqdbg.mcmc[i].prods[vidx].potentials]
# end
# rangeV = getKDERange(ARR)
# ppp = nothing
# for i in 1:length(cliqdbg.mcmc)
# ppr = kde!(cliqdbg.mcmc[i].prods[vidx].prev)
# ppp = kde!(cliqdbg.mcmc[i].prods[vidx].product)
# arr = [ppr;ppp;cliqdbg.mcmc[i].prods[vidx].potentials]
# len = length(cliqdbg.mcmc[i].prods[vidx].potentials)
# lg = String["p";"n";cliqdbg.mcmc[i].prods[vidx].potentialfac] #map(string, 1:len)]
# COLORS_l = getColorsByLength(len+2)
# cc = plotKDE(arr, c=COLORS_l, legend=lg, levels=levels, fill=true, axis=rangeV, dims=dims );
# Gadfly.draw(PNG(joinpath(tmpfilepath,"$(string(lbll))mcmc$(i).png"),w,h),cc)
# end
# # draw initial and final result
# pp0 = kde!(cliqdbg.mcmc[1].prods[vidx].prev)
# i = 0
# cc = plotKDE([pp0], c=[COLORS[1]], legend=["0"], levels=levels, fill=true, axis=rangeV, dims=dims );
# Gadfly.draw(PNG(joinpath(tmpfilepath,"$(string(lbll))mcmc$(i).png"),w,h),cc)
# i = length(cliqdbg.mcmc)+1
# cc = plotKDE([pp0;ppp], c=COLORS[1:2], legend=["0";"n"], levels=levels, fill=true, axis=rangeV, dims=dims );
# Gadfly.draw(PNG(joinpath(tmpfilepath,"$(string(lbll))mcmc$(i).png"),w,h),cc)
# # generate output
# @warn "Maintenance required, run manually: \"convert -delay $(delay) $(tmpfilepath)/$(string(lbll))mcmc*.png $(tmpfilepath)/$(string(lbll))mcmc.gif\""
# # run(`convert -delay $(delay) $(tmpfilepath)/$(string(lbll))mcmc*.png $(tmpfilepath)/$(string(lbll))mcmc.gif`)
# # !show ? nothing : (@async run(`eog $(tmpfilepath)/$(string(lbll))mcmc.gif`) )
# # return "$(tmpfilepath)/$(string(lbll))mcmc.gif"
# end
# function plotMCMCDebug(cliq; offs=2.0)
# println("$(cliq.attributes["label"])")
# cliqDbg = cliq.attributes["data"].debug
# MCd = 100.0/length(cliqDbg.mcmc)
# MCo=0.0
# minmax=[99999,-99999,-10,-99999.0]
# for mc in cliqDbg.mcmc
# drawOneMC!(mc, minmax, MCo, offs=offs)
# MCo+=MCd
# end
# n = 3
# y = linspace(minmax[1], minmax[2], n)
# x = linspace(minmax[3],minmax[4],n)
# xgrid = repmat(x',n,1)
# ygrid = repmat(y,1,n)
# z = zeros(n,n)
# for i in 1:length(cliqDbg.mcmc[1].prods)
# surf(xgrid,ygrid,z-(i-1)*offs,alpha=0.04, linewidth=0.0)
# end
# end
| RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 10673 |
# import RoMEPlotting: plotFactor, reportFactors, plotFactorMeasurements, getTimeEasy
"""
$SIGNATURES
Plot Pose2Pose2 measurement and predicted values in factor centric manner -- i.e. used with inverse solve.
"""
function plotFactorValues(asMeasured::AbstractMatrix{<:Real},
asPredicted::AbstractMatrix{<:Real},
fct::Type{T}=Pose2Pose2;
title="inv. solve",
fctsym="",
hdl=[],
dist::Vector{Float64}=zeros(1) ) where {T <: AbstractFactor}
#
PPg = manikde!(Point2, asMeasured[1:2,:])
PP = manikde!(Point2, asPredicted[1:2,:])
# dist[1] = minimum(abs.([kld(PPg, PP)[1]; kld(PP, PPg)[1]]))
mmd!(dist, asPredicted, asMeasured, SE2_Manifold)
pt = plotKDE([PPg;PP], c=["blue";"red"], legend=["meas";"pred";], levels=3, title="$title $fctsym,\nmmd(..)=$(round(dist[1],digits=6))")
pc = plotKDECircular([manikde!(Sphere1, asMeasured[3:3,:]);manikde!(Sphere1, asPredicted[3:3,:]);], c=["blue";"red";], legend=["meas";"pred";], title="$title $fctsym,\n$(T)")
push!(hdl, pt)
push!(hdl, pc)
hstack(pt, pc)
end
"""
$SIGNATURES
Calculate the "inverse" SLAM solution to compare measured and predicted noise model samples.
"""
function plotFactorMeasurements(dfg::AbstractDFG,
fctsym::Symbol,
fct::AbstractFactor;
hdl=[],
dist::Vector{Float64}=zeros(1) )
#
@error "plotFactorMeasurements not implemented yet for $(typeof(fct))."
end
function plotFactorMeasurements(dfg::AbstractDFG,
fctsym::Symbol,
fct::Pose2Point2BearingRange;
hdl=[],
dist::Vector{Float64}=[0.0;] )
#
asMeas, asPred = solveFactorMeasurements(dfg, fctsym)
pc = plotKDECircular([manikde!(Sphere1, asPred[1:1,:]);manikde!(Sphere1, asMeas[1:1,:])], c=["blue";"red";], legend=["meas";"pred";], title="inv. solve, $fctsym,\nPose2Point2BearingRange")
pcl = plotKDE([manikde!(ContinuousScalar, asPred[1:1,:]);manikde!(ContinuousScalar, asMeas[1:1,:])], c=["blue";"red";], legend=["meas";"pred";], title="unwrapped rotation, should be [-pi,pi)")
pl = plotKDE([ manikde!(ContinuousScalar, asPred[2:2,:]);manikde!(ContinuousScalar, asMeas[2:2,:])], c=["blue";"red";], legend=["meas";"pred";])
push!(hdl, pc)
push!(hdl, pcl)
push!(hdl, pl)
hstack(vstack(pc,pcl), pl)
end
function plotFactorMeasurements(dfg::AbstractDFG,
fctsym::Symbol;
hdl=[],
dist::Vector{Float64}=[0.0;] )
#
fct = getFactorType(dfg, fctsym)
plotFactorMeasurements(dfg, fctsym, fct, hdl=hdl, dist=dist)
end
"""
$SIGNATURES
Return plot of each specific factor.
"""
function plotFactor(dfg::AbstractDFG,
fctsym::Symbol,
fct::Pose2Point2Range;
hdl=[],
dist::Vector{Float64}=Float64[0.0;] )
# variables
vars = ls(dfg, fctsym)
# the pose
pose = intersect(vars, ls(dfg, Pose2))[1]
poin = intersect(vars, ls(dfg, Point2))[1]
# calculate predicted range (inverse solve)
ptss = map(x->getPoints(getBelief(dfg, x)), vars)
dpts = (ptss[1][1:2,:] - ptss[2][1:2,:]).^2
pred = sqrt.(sum(dpts, dims=1))
plpr = Gadfly.plot(x=pred, Geom.histogram(density=true), Theme(default_color=colorant"deepskyblue"), Guide.title("predicted"))
# measured
# meas = getSamples(fct, length(pred))
smps = rand(fct.Z, length(pred))
plme = Gadfly.plot(x=smps, Geom.histogram(density=true), Theme(default_color=colorant"magenta"), Guide.title("measured"))
# measure kl divergence
PP = manikde!(ContinuousScalar, smps)
PPg = manikde!(ContinuousScalar, pred)
dist[1] = minimum(abs.([kld(PPg, PP)[1]; kld(PP, PPg)[1]]))
modl = Gadfly.plot(
Gadfly.layer(x=smps, Geom.histogram(density=true), Theme(default_color=colorant"magenta")),
Gadfly.layer(x=pred, Geom.histogram(density=true), Theme(default_color=colorant"deepskyblue")),
Guide.manual_color_key("Legend", ["samples";"predicted"], ["magenta";"deepskyblue"]),
Guide.title("Pose2Point2Range $fctsym\nmin(|kld...|)=$(round(dist[1],digits=3))"),
Guide.xlabel("range")
)
plxy = plotKDE(map(x->getBelief(dfg, x), vars), dims=[1;2], legend=string.(vars), title="Pose2Point2Range: XY plane")
# plx = plotKDE([getBelief(dfg, vars[1]);], dims=[1;2], legend=[string(vars[1]);], title="Pose2Point2Range: XY plane")
# ply = plotKDE([getBelief(dfg, vars[2]);], dims=[1;2], legend=[string(vars[2]);], title="Pose2Point2Range: XY plane")
# mock projection
tfg = initfg()
addVariable!(tfg, pose, Pose2)
addVariable!(tfg, poin, Point2)
addFactor!(tfg, [pose;poin], fct, autoinit=false)
manualinit!(tfg, pose, getBelief(dfg,pose))
manualinit!(tfg, poin, getBelief(dfg,poin))
apts=Array{Float64,2}(undef, 2, 0)
loop =true
while loop
try
apts = approxConv(tfg, ls(tfg,pose)[1], poin)
loop = false
catch
@warn "plotFactor Pose2Point2BearingRange non-linear solve fail on approxConv, retrying"
end
end
plhist2 = Gadfly.plot(x=apts[1,:], y=apts[2,:], Geom.histogram2d)
spc = mean(smps)
plt = drawPosesLandms(tfg, point_size=5pt, spscale=0.2*spc)
union!(plhist2.layers, plt.layers)
pla = plotKDE(manikde!(Point2, apts),levels=3,c=["gray50"])
# plot pose by itself
# poseplot = plotPose(dfg, pose)
posepl1 = plotKDE(dfg, pose, dims=[1;2], c=["green"])
posepl2 = plotKDECircular(marginal(getBelief(dfg, pose), [3]))
landmpl = plotKDE(dfg, poin, c=["red"])
# plot handles
push!(hdl, landmpl)
push!(hdl, posepl1)
push!(hdl, posepl2)
push!(hdl, modl)
push!(hdl, plme)
push!(hdl, plpr)
push!(hdl, plhist2)
# put plot together
botr = vstack(modl, plme, plpr) # 4,5,6
# bot = hstack(plhist2, botr) # 7,(4,5,6)
farl = vstack(landmpl, posepl1, posepl2) # 1,2,3
hstack(farl, botr, plhist2) # (1,2,3),(4,5,6),7
end
function plotFactor(dfg::AbstractDFG,
fctsym::Symbol,
fct::Pose2Point2Bearing;
hdl=[],
dist::Vector{Float64}=Float64[0.0;] )
#
# variables
vars = ls(dfg, fctsym)
# the pose
pose = intersect(vars, ls(dfg, Pose2))[1]
poin = intersect(vars, ls(dfg, Point2))[1]
# basic max estimates
xp = getKDEMax(getBelief(dfg,pose))
lp = getKDEMax(getBelief(dfg,poin))
# convolve the yaw angle with bearing rotation model
pX = marginal(getBelief(dfg, pose), [3])
pts = approxConvCircular(pX, fct.bearing) # TODO fix by using approxConvBelief instead
# draw plots
measest = manikde!(Sphere1, pts)
# inverse solve for predicted bearing
dx = getPoints(getBelief(dfg, poin))[1,:] - getPoints(getBelief(dfg, pose))[1,:]
dy = getPoints(getBelief(dfg, poin))[2,:] - getPoints(getBelief(dfg, pose))[2,:]
pred = reshape(atan.(dy,dx), 1,:)
ppX = manikde!(Sphere1, pred)
scal = 0.2*norm(xp[1:2]-lp)
plcl = plotKDECircular( [measest; ppX], logpdf=true, legend=["Meas. Est.";"Predicted"], radix=scal, scale=0.2*scal, rVo=[xp[1:2];0.0] )
# plot pose and point by itself
posepl1 = plotKDE(dfg, pose, dims=[1;2], c=["green"])
posepl2 = plotKDECircular(marginal(getBelief(dfg, pose), [3]))
landmpl = plotKDE(dfg, poin, c=["red"])
tfg = initfg()
addVariable!(tfg, pose, Pose2)
addVariable!(tfg, poin, Point2)
addFactor!(tfg, [pose;poin], fct, autoinit=false)
manualinit!(tfg, pose, getBelief(dfg,pose))
manualinit!(tfg, poin, getBelief(dfg,poin))
plt = drawPosesLandms(tfg, point_size=5pt)
union!(plt.layers, plcl.layers)
plt.coord = Coord.cartesian(aspect_ratio=1.0)
# draw line from pose to point
push!(plt.layers, Gadfly.layer(x=[xp[1];lp[1]], y=[xp[2];lp[2]], Geom.line)[1])
# plot handles
push!(hdl, landmpl)
push!(hdl, posepl1)
push!(hdl, posepl2)
push!(hdl, plcl)
push!(hdl, plt)
hstack(vstack(landmpl,posepl1, posepl2), vstack(plcl, plt))
end
function plotFactor(dfg::AbstractDFG,
fctsym::Symbol,
fct::Pose2Point2BearingRange;
hdl=[],
dist::Vector{Float64}=Float64[0.0;] )
#
hdlb = []
# variables
vars = ls(dfg, fctsym)
# the pose
pose = intersect(vars, ls(dfg, Pose2))[1]
poin = intersect(vars, ls(dfg, Point2))[1]
# plot current pose & point
# pl_poin = plotKDE(dfg, poin, levels=5, c=["red";])
# pl_pose = plotPose(dfg, pose, c=["black"])
# project landmark
# do range model separately too
pr = Pose2Point2Range(fct.range)
plotFactor(dfg, fctsym, pr, hdl=hdl)
br = Pose2Point2Bearing(fct.bearing)
plotFactor(dfg, fctsym, br, hdl=hdlb)
newguid = Gadfly.GuideElement[]
for guid in hdl[4].guides
if typeof(guid) == Gadfly.Guide.Title
push!(newguid, Gadfly.Guide.Title("Pose2Point2BearingRange $fctsym"))
else
push!(newguid, guid)
end
end
hdl[4].guides = newguid
union!(hdl, hdlb)
# plot a prediction of landmark
predpoints = approxConv(dfg, fctsym, poin)
PP = manikde!(Point2, predpoints)
PPg= getBelief(dfg, poin)
dist[1] = minimum(abs.([kld(PPg, PP)[1]; kld(PP, PPg)[1]]))
predLandm = plotKDE([PPg; PP], levels=2, c=["red"; "deepskyblue"], legend=["landmark";"predicted"], title="min(|kld...|)=$(round(dist[1],digits=3))")
push!(hdl, predLandm)
# AMP.mmd!(dist, PPg, predpoints)
# measurement solution
plotFactorMeasurements(dfg, fctsym, hdl=hdl)
return hstack(vstack(hdl[1],hdl[2],hdl[3]),vstack(hdl[4],hdl[5],hdl[6]),vstack(predLandm, hdlb[5],hdl[7]), vstack(hdl[14],hdl[15],hdl[16]))
end
function plotFactor(dfg::AbstractDFG,
fctsym::Symbol;
hdl=[],
dist::Vector{Float64}=Float64[0.0;] )
#
plotFactor(dfg, fctsym, getFactorType(dfg, fctsym), hdl=hdl, dist=dist)
end
## Reports
getTimeEasy() = split(split("$(now())", 'T')[end],'.')[1]
# import RoMEPlotting: getTimeEasy, reportFactors
# import ApproxManifoldProducts: mmd!
## Also in IIF >v0.7.9
import IncrementalInference: isMultihypo
isMultihypo(fct) = isa(solverData(fct).fnc.hypotheses, Distribution)
"""
$SIGNATURES
Methods to generate plots of all requested factor user supplied vs. current predicted measurement -- i.e. inverse solve.
"""
reportFactors() = @info "Empty function to support both automated documentation and conditional features (@require)."
#
| RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 2068 | # functions that might need to be loaded multiple times (dont add docs here)
function plotFactorMeasurements(dfg::AbstractDFG,
fctsym::Symbol,
fct::ExtendedPose2Pose2Types;
hdl=[],
dist::Vector{Float64}=[0.0;] )
#
asMeas, asPred = solveFactorMeasurements(dfg, fctsym)
plotFactorValues(asMeas, asPred, Pose2Pose2, fctsym=fctsym,hdl=hdl,dist=dist)
end
function plotFactor(dfg::AbstractDFG,
fctsym::Symbol,
fct::ExtendedPose2Pose2Types;
hdl=[],
dist::Vector{Float64}=Float64[0.0;] )
# variables
fct = getFactor(dfg, fctsym)
vars = fct._variableOrderSymbols
pv1 = plotPose(dfg, vars[1], hdl=hdl)
pv2 = plotPose(dfg, vars[2], hdl=hdl)
pv12 = plotFactorMeasurements(dfg, fctsym, hdl=hdl, dist=dist)
vstack(pv1, pv2, pv12)
end
function reportFactors(dfg::AbstractDFG,
T::PlotTypesPose2,
fcts::Vector{Symbol}=ls(dfg, T);
prefix::AbstractString="",
filepath=joinpath(getSolverParams(dfg).logpath, "$prefix"*getTimeEasy()*"_$T.pdf"),
show::Bool=true,
pdfWidth=20cm,
pdfHeight=30cm)
#
ss = split(filepath, '/')
path = joinpath("/", joinpath(ss[1:(end-1)]...), "tmp")
mkpath(path)
alldists= Vector{Float64}()
files = String[]
ndist = Float64[0.0;]
for fc in fcts
if isMultihypo(getFactor(dfg, fc))
# skip this factor
continue
end
file = joinpath(path,"$fc.pdf")
ndist[1] = 0.0
plotFactor(dfg, fc, dist=ndist) |> PDF(file, pdfWidth, pdfHeight)
push!(files, file)
push!(alldists, ndist[1])
end
fileord = sortperm(alldists, rev=true)
files = files[fileord]
push!(files, filepath)
2 < length(files) ? run(`pdfunite $files`) : nothing
!show ? nothing : (@async run(`evince $filepath`))
return filepath
end
#
| RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 2005 |
export layerLine, plotHex!, plotHex, plotHex_6, plotBeehive_6
# draw a line on plot
function layerLine(start::Vector{Float64}, stop::Vector{Float64}, color=colorant"green")
layer(x=[start[1];stop[1]], y=[start[2];stop[2]], Geom.path, Theme(default_color=color))[1]
end
# draw a default hex shape on plot
function plotHex!(offsetxy::Vector{Float64}=zeros(2);
len::Float64=10.0,
PLT = [])
#
push!(PLT, layerLine([offsetxy[1]+0.0;offsetxy[2]+0.0], [offsetxy[1]+len;offsetxy[2]+0.0]))
push!(PLT, layerLine([offsetxy[1]+len;offsetxy[2]+0.0], [offsetxy[1]+len*3/2;offsetxy[2]+len*sqrt(3)/2]))
push!(PLT, layerLine([offsetxy[1]+len+5.0;offsetxy[2]+len*sqrt(3)/2], [offsetxy[1]+len;offsetxy[2]+len*sqrt(3)]))
push!(PLT, layerLine([offsetxy[1]+0;offsetxy[2]+len*sqrt(3)], [offsetxy[1]+10;offsetxy[2]+len*sqrt(3)]))
push!(PLT, layerLine([offsetxy[1]+0;offsetxy[2]+len*sqrt(3)], [offsetxy[1]-len/2; offsetxy[2]+len*sqrt(3)/2]))
push!(PLT, layerLine([offsetxy[1]-len/2; offsetxy[2]+len*sqrt(3)/2], [offsetxy[1]+0.0; offsetxy[2]+0]))
PLT
end
# draw a default hex shape on plot
function plotHex(offsetxy::Vector{Float64}=zeros(2);
len::Float64=10.0)
#
Gadfly.plot(plotHex!(offsetxy, len=len)...)
end
# draw a default ring of 6 hexes on plot
function plotHex_6(;PLT=[], len::Float64=10.0)
plotHex!(zeros(2),PLT=PLT)
plotHex!([3/2*len;-sqrt(3)/2*len],PLT=PLT)
plotHex!([3/2*len;-sqrt(3)*3/2*len],PLT=PLT)
plotHex!([0.0;-sqrt(3)*2*len],PLT=PLT)
plotHex!([-3/2*len;-sqrt(3)*3/2*len],PLT=PLT)
plotHex!([-3/2*len;-sqrt(3)/2*len],PLT=PLT)
Gadfly.plot(PLT...)
end
"""
$SIGNATURES
Plot first ring (ground truth) of beehive example.
"""
function plotBeehive_6(fgl::G; from::Int=0, to::Int=(2^(Sys.WORD_SIZE-1)-1), meanmax::Symbol=:max) where G <: AbstractDFG
pl = plotHex_6()
pl2 = drawPosesLandms(fgl, from=from, to=to, meanmax=meanmax)
union!(pl2.layers, pl.layers)
return pl2
end
| RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 1868 | # new file for plotVariable related functionality
export plotSLAM2DSolveKeys
# function plotSolveKey(dfg::AbstractDFG,
# refSym::Symbol,
# refKey::Symbol,
# tstSym::Symbol,
# tstKey::Symbol;
# bw::AbstractVector{<:Real}=[0.001;],
# plotVarHack::Function=plotPose )
# #
# pts, fctT = deconvSolveKey(dfg, refSym, refKey, tstSym, tstKey)
# Xref = manikde!(fctT, pts[2])
# Xtst = manikde!(fctT, pts[1])
# mmdDist = mmd(Xref, Xtst, fctT, bw=bw)
# # FIXME not all variables are Poses, so this is really hacky
# plotVarHack(getManifold(fctT)(), [Xref, Xtst], "$fctT\n$(refSym)_$(refKey) <-> $(tstSym)_$tstKey\nmmd=$(round(mmdDist,digits=6))", c=["red","blue"], legend=["Identity";"Delta"])
# end
"""
$SIGNATURES
Analyzing repeat solves is easier if you can animate repeat solves.
Notes
- Repeat solves can be stored using `solveTree!(fg, storeOld=true)`.
- Experimental, see DFG #641
Example
```julia
using Images, Caesar, RoMEPlotting
fg = generateGraph_Hexagonal()
for i in 1:10
solveTree!(fg, storeOld=true)
end
# generate all the plots in RAM
plts = plotSLAM2DSolveKeys(fg)
# export all images to a video
imgs = convert.(Matrix{RGB},plts)
Caesar.writevideo("/tmp/test.avi", imgs)
@async run(`totem /tmp/test.avi`)
```
Related
writevideo, plotSolveKey, listSolveKeys
"""
function plotSLAM2DSolveKeys( dfg::AbstractDFG,
pattern::Regex=r"default_\d+";
xmin=nothing, xmax=nothing, ymin=nothing, ymax=nothing,
contour=false )
#
kys = listSolveKeys(dfg, filterSolveKeys=pattern) |> collect |> sortDFG
kys .|> x -> plotSLAM2D(dfg, solveKey=x, contour=contour, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax)
end
# | RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 2298 | module RoMEPlotting
using Cairo, Fontconfig
using Reexport
@reexport using Gadfly
@reexport using Colors
using Statistics, LinearAlgebra
using StatsBase
using Compose
using Dates
using DistributedFactorGraphs
using KernelDensityEstimate, KernelDensityEstimatePlotting
using IncrementalInference, RoME
using DocStringExtensions
using ApproxManifoldProducts
using TensorCast
using Requires
using PrecompileTools
# import ApproxManifoldProducts: mmd! # future dependency
import Gadfly: plot
import KernelDensityEstimatePlotting: plot, drawHorDens, plotKDE
import KernelDensityEstimatePlotting: getColorsByLength
import KernelDensityEstimatePlotting: plotKDE
# assuming this is a good size for everybody
@info "For larger plots when using a browswer, run Gadfly.set_default_plot_size(30cm,20cm)"
# Gadfly.set_default_plot_size(30cm,20cm)
include("ExportAPI.jl")
# EXPERIMENTAL
const AbstractMatrix__{T} = Union{<:AbstractArray{T,2}, <:Adjoint{T,<:AbstractArray{T,2}}}
# will be overwritten if flux is present (dont make const)
PlotTypesPose2 = Union{Type{<:Pose2Pose2}, Type{<:Pose2Point2BearingRange}, Type{<:Pose2Point2Range}, Type{<:Pose2Point2Bearing}}
ExtendedPose2Pose2Types = Pose2Pose2
include("services/PlotBelief.jl")
include("SolverVisualization.jl")
include("services/PlotEllipseUtils.jl")
include("RobotViz.jl")
include("services/PlotPose.jl")
include("services/PlotTree.jl")
include("CurrentlyUnmaintained.jl")
include("PlotHexUtils.jl")
include("PlotFactors.jl")
include("PlotVariables.jl")
include("PlotFactorsReload.jl")
include("Deprecated.jl")
include("NeedsFixing.jl")
function __init__()
@require Flux="587475ba-b771-5e3f-ad9e-33799f191a9c" include("FluxSpecificFeatures.jl")
@require ImageMagick="6218d12a-5da1-5696-b52f-db25d2ecc6d1" include("imagemagick.jl")
@require Caesar="62eebf14-49bc-5f46-9df9-f7b7ef379406" include("services/ScatterAlignPlotting.jl")
end
@compile_workload begin
# In here put "toy workloads" that exercise the code you want to precompile
fg = generateGraph_Hexagonal()
initAll!(fg)
plotSLAM2D(fg)
plotSLAM2D(fg; drawEllipse=true, drawContour=true)
plotSLAM2D(fg; drawEllipse=true, drawContour=false)
plotSLAM2D(fg; drawEllipse=true, drawContour=false, drawPoints=false)
plotBelief(fg, ls(fg); dims=[1;2])
end
end
| RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 18444 | # new exports from this file, WIP
export calcDyadScaleAdaptive
export covEllipseParameterized, plotCovEllipseLayer
export plotSLAM2D_KeyAndRef
## Src
# draw the reference frame as a red-green dyad
function addXYLineLayers!(pl, Xpp, Ypp, Thpp; l::Real=1.0, manualColor::Union{Nothing, AbstractString}=nothing )
lnstpr = [l;0.0;0.0]
lnstpg = [0.0;l;0.0]
Rd =SE2(lnstpr)
Gr = SE2(lnstpg)
for i in 1:length(Xpp)
lnstt = [Xpp[i];Ypp[i];Thpp[i]]
Ps = SE2(lnstt)
lnr = se2vee(Ps*Rd)
lng = se2vee(Ps*Gr)
xsr = [Xpp[i];lnr[1]]
ysr = [Ypp[i];lnr[2]]
xsg = [Xpp[i];lng[1]]
ysg = [Ypp[i];lng[2]]
push!(pl.layers, layer(x=xsr, y=ysr, Geom.path(), Gadfly.Theme(default_color=parse(Colorant, manualColor === nothing ? "red" : manualColor), line_width=1.5pt))[1] )
push!(pl.layers, layer(x=xsg, y=ysg, Geom.path(), Gadfly.Theme(default_color=parse(Colorant, manualColor === nothing ? "green" : manualColor), line_width=1.5pt))[1] )
end
nothing
end
"""
$SIGNATURES
Adaptively size the `dyadScale` value for plotSLAM2DPose.
"""
function calcDyadScaleAdaptive( Xpp::AbstractVector{<:Real},
Ypp::AbstractVector{<:Real};
scaling::Real=0.25)
dists = diff(Xpp).^2 + diff(Ypp).^2 |> vec .|> sqrt
scaling*Statistics.mean(dists)
end
"""
$(SIGNATURES)
2D plot of all poses, assuming poses are labeled from ``::Symbol` type `:x0, :x1, ..., :xn`. Use `to` and `from` to limit the range of numbers `n` to be drawn. The underlying histogram can be enabled or disabled, and the size of maximum-point belief estimate cursors can be controlled with `spscale`.
Future:
- Relax to user defined pose labeling scheme, for example `:p1, :p2, ...`
"""
function plotSLAM2DPoses( fg::AbstractDFG;
solveKey::Symbol=:default,
regexPoses=r"x\d",
from::Int=0,
to::Int=(2^(Sys.WORD_SIZE-1)-1),
variableList::AbstractVector{Symbol}=listVariablesLabelsWithinRange(fg, regexPoses, from=from, to=to),
meanmax=:null,
ppe=:suggested,
recalcPPEs::Bool=false,
lbls=true,
scale::Real=1,
x_off::Real=0,
y_off::Real=0,
drawhist=false,
spscale::Union{Nothing, <:Real}=nothing,
dyadScale::Union{Nothing, <:Real}=nothing,
drawTriads::Bool=true,
drawContour::Bool=true, levels::Int=1,
contour::Union{Nothing, Bool}=nothing,
line_width=1pt,
drawPoints::Bool=true,
pointsColor::AbstractString="gray30",
drawEllipse::Bool=false,
ellipseColor::AbstractString="gray30",
manualColor=nothing )
#
# deprecations
if meanmax != :null
@warn "plotSLAM2DPoses meanmax keyword is deprecated, use ppe=:suggested instead."
ppe = meanmax
end
!(spscale isa Nothing) ? (dyadScale=spscale; @warn("keyword spscale is deprecated, use dyadScale instead")) : nothing
!(contour isa Nothing) ? (drawContour=contour; @warn("keyword contour is being deprecated, use drawContour instead")) : nothing
## Use PPE.suggested
Ppes = if recalcPPEs
map(x->calcVariablePPE(fg, x, solveKey=solveKey), variableList)
else
getPPE.(fg, variableList, solveKey)
end
mask = Ppes .!== nothing
variableList = variableList[mask]
suggPpes = (x->getfield(x,ppe)).(Ppes[mask])
Xpp::Vector{Float64} = Float64.( (x->x[1]).(suggPpes) )
Ypp::Vector{Float64} = Float64.( (x->x[2]).(suggPpes) )
Thpp::Vector{Float64} = Float64.( (x->x[3]).(suggPpes) )
LBLS = string.(variableList)
Xpp .+= x_off
Ypp .+= y_off
Xpp .*= scale
Ypp .*= scale
# adaptively scale dyad size
dyadScale = dyadScale isa Nothing ? calcDyadScaleAdaptive(Xpp, Ypp) : dyadScale
# lbls = lblsFromTo(1,length(Xpp))
psplt = Union{}
thm = manualColor === nothing ? Theme(line_width=1pt) : Theme(line_width=line_width, default_color=parse(Colorant, manualColor))
if lbls
psplt = Gadfly.plot(
Gadfly.layer(x=Xpp,y=Ypp,label=LBLS,Geom.path(), thm, Geom.label),
Coord.cartesian(fixed=true)
)
else
psplt = Gadfly.plot(
Gadfly.layer(x=Xpp,y=Ypp,Geom.path(), thm),Coord.cartesian(fixed=true),
Coord.cartesian(fixed=true)
)
end
# return psplt
drawTriads && addXYLineLayers!(psplt, Xpp, Ypp, Thpp, l=dyadScale, manualColor=manualColor)
if drawhist
Xp,Yp = get2DPoseSamples(fg, from=from, to=to)
push!(psplt.layers, Gadfly.layer(x=Xp, y=Yp, Geom.histogram2d)[1] )#(xbincount=100, ybincount=100))
end
# add contours to pose estimates
# varsyms = Symbol.(LBLS)
if drawContour
for vsym in variableList
pln = plotKDE(fg, vsym, solveKey=solveKey, dims=[1;2], levels=levels, c=[(manualColor === nothing ? "gray90" : manualColor);])
union!(psplt.layers, pln.layers)
end
end
# drawEllipse
for vsym in variableList
pln = plotCovEllipseLayer(fg, vsym, solveKey=solveKey, drawEllipse=drawEllipse,drawPoints=drawPoints,ellipseColor=ellipseColor,pointsColor=pointsColor)
union!(psplt.layers, pln)
end
return psplt
end
"""
$(SIGNATURES)
2D plot of landmarks, assuming `:l1, :l2, ... :ln`. Use `from` and `to` to control the range of landmarks `n` to include.
"""
function plotSLAM2DLandmarks( fg::AbstractDFG;
solveKey::Symbol=:default,
regexLandmark::Regex=r"l",
from::Int=0, to::Int=(2^(Sys.WORD_SIZE-1)-1),
minnei::Int=0,
variableList::AbstractVector{Symbol}=listVariablesLabelsWithinRange(fg, regexLandmark, from=from, to=to),
meanmax=:null,
ppe::Symbol=:suggested,
recalcPPEs::Bool=false,
lbls=true,showmm=false,
scale::Real=1,
x_off::Real=0,
y_off::Real=0,
drawhist=false,
drawContour::Bool=true, levels::Int=1,
contour::Union{Nothing, Bool}=nothing,
manualColor=nothing,
c= manualColor===nothing ? "red" : manualColor,
MM::Dict{Int,T}=Dict{Int,Int}(),
point_size=1pt,
drawPoints::Bool=true,
pointsColor::AbstractString="gray30",
drawEllipse::Bool=false,
ellipseColor::AbstractString="gray30",
resampleGaussianFit::Int=0 ) where T
#
if meanmax != :null
@error "plotSLAM2DPoses meanmax keyword is deprecated, use ppe instead."
ppe = meanmax
end
# remove before v0.10
!(contour isa Nothing) ? (drawContour=contour; @warn("keyword contour is being deprecated, use drawContour instead")) : nothing
## Use PPE.suggested
Ppes = if recalcPPEs
map(x->calcVariablePPE(fg, x, solveKey=solveKey), variableList)
else
getPPE.(fg, variableList, solveKey)
end
mask = Ppes .!== nothing
variableList = variableList[mask]
suggPpes = (x->getfield(x,ppe)).(Ppes[mask])
Xpp = (x->x[1]).(suggPpes)
Ypp = (x->x[2]).(suggPpes)
lbltags = string.(variableList)
Xpp .+= x_off
Ypp .+= y_off
Xpp .*= scale
Ypp .*= scale
# Xp,Yp = get2DLandmSamples(fg, from=from, to=to)
# Xpp = Float64[]; Ypp=Float64[]; Thpp=Float64[]; lblstags=String[];
# # TODO transition to new PPE.suggested
# if meanmax==:mean
# Xpp,Ypp, t, lbltags = get2DLandmMeans(fg, from=from, to=to, regexLandmark=regexLandmark)
# elseif meanmax==:max
# Xpp,Ypp, t, lbltags = get2DLandmMax(fg, from=from, to=to,showmm=showmm,MM=MM, regexLandmark=regexLandmark)
# end
psplt = if lbls
Gadfly.plot(
Gadfly.layer(x=Xpp,y=Ypp, label=lbltags, Geom.point, Theme(line_width=1pt, default_color=parse(Colorant,c), point_size=point_size), Geom.label),
Coord.cartesian(fixed=true)
# ,Gadfly.layer(x=Xp, y=Yp, Geom.histogram2d)#(xbincount=100, ybincount=100)
)
else
Gadfly.plot(
Gadfly.layer(x=Xpp,y=Ypp, Geom.point, Theme(line_width=1pt, default_color=parse(Colorant,c), point_size=point_size)),
Coord.cartesian(fixed=true)
)
end
if drawhist
push!(psplt.layers, Gadfly.layer(x=Xpp, y=Ypp, Geom.histogram2d)[1]) #(xbincount=100, ybincount=100)
end
if drawContour
# make pretty near Gaussian contours?
if resampleGaussianFit != 0
#
end
varsyms = Symbol.(lbltags)
for vsym in varsyms
pln = plotKDE(fg, vsym, solveKey=solveKey, dims=[1;2], levels=levels, c=[(manualColor===nothing ? "gray90" : manualColor);])
union!(psplt.layers, pln.layers)
end
end
# if drawEllipse
for vsym in variableList
pln = plotCovEllipseLayer(fg, vsym, solveKey=solveKey, drawEllipse=drawEllipse,drawPoints=drawPoints,ellipseColor=ellipseColor,pointsColor=pointsColor)
union!(psplt.layers, pln)
end
psplt
end
"""
$(SIGNATURES)
2D plot of both poses and landmarks contained in factor graph. Assuming poses and landmarks
are labeled `:x1, :x2, ...` and `:l0, :l1, ...`, respectively. The range of numbers to
include can be controlled with `from` and `to` along with other keyword functionality for
manipulating the plot.
Notes
- Assumes `:l1`, `:l2`, ... for landmarks --
- Can increase default Gadfly plot size (for JSSVG in browser): `Gadfly.set_default_plot_size(35cm,20cm)`.
- Enable or disable features such as the covariance ellipse with keyword `drawEllipse=true`.
DevNotes
- TODO update to use e.g. `tags=[:LANDMARK]`,
- TODO fix `drawHist`,
- TODO deprecate, `showmm`, `spscale`.
Examples:
```julia
fg = generateGraph_Hexagonal()
plotSLAM2D(fg)
plotSLAM2D(fg, drawPoints=false)
plotSLAM2D(fg, contour=false, drawEllipse=true)
plotSLAM2D(fg, contour=false, title="SLAM result 1")
# or load a factor graph
fg_ = loadDFG("somewhere.tar.gz")
plotSLAM2D(fg_)
```
Related
[`plotSLAM2DPoses`](@ref), [`plotSLAM2DLandmarks`](@ref), [`plotPose`](@ref), [`plotBelief`](@ref)
"""
function plotSLAM2D(fgl::AbstractDFG;
solveKey::Symbol=:default,
from::Int=0, to::Int=(2^(Sys.WORD_SIZE-1)-1),
minnei::Int=0,
meanmax=:null,
posesPPE=:suggested,
landmsPPE=:suggested,
recalcPPEs::Bool=false,
lbls=true,
scale::Real=1,
x_off::Real=0,
y_off::Real=0,
drawTriads::Bool=true,
dyadScale::Union{Nothing, <:Real}=nothing,
levels::Int=1,
drawhist=false, MM::Dict{Int,T}=Dict{Int,Int}(),
xmin=nothing, xmax=nothing, ymin=nothing, ymax=nothing,
showmm=true,
window::Union{Nothing, Tuple{Symbol, Real}}=nothing,
point_size=4pt,
line_width=1pt,
regexLandmark=r"l\d+",
regexPoses=r"x\d+",
variableList::AbstractVector{Symbol}=union(listVariablesLabelsWithinRange(fgl, regexPoses, from=from, to=to), listVariablesLabelsWithinRange(fgl, regexLandmark, from=from, to=to)),
manualColor = nothing,
drawPoints::Bool = solveKey != :parametric,
pointsColor::AbstractString="gray30",
drawContour::Bool = solveKey != :parametric,
drawEllipse::Bool=false,
ellipseColor::AbstractString="gray30",
title::AbstractString="",
aspect_ratio::Real=1 ) where T
#
#
xmin !== nothing && xmax !== nothing && xmin == xmax ? error("xmin must be less than xmax") : nothing
ymin !== nothing && ymax !== nothing && ymin == ymax ? error("ymin must be less than ymax") : nothing
p = plotSLAM2DPoses(fgl;
solveKey,
from,
to,
regexPoses,
variableList=intersect(variableList, listVariablesLabelsWithinRange(fgl, regexPoses; from, to)),
ppe=posesPPE,
lbls,
scale,
x_off,
y_off,
drawhist,
dyadScale,
drawContour,
drawTriads,
manualColor,
line_width,
drawPoints,
ellipseColor,
pointsColor,
drawEllipse,
recalcPPEs )
#
ll = listVariables(fgl, regexLandmark)
if length(ll) > 0
pl = plotSLAM2DLandmarks( fgl;
solveKey,
from,
to,
regexLandmark,
variableList=intersect(variableList, listVariablesLabelsWithinRange(fgl, regexLandmark; from, to)),
ppe=landmsPPE,
minnei,
lbls,
scale,
x_off,
y_off,
drawhist,
MM,
showmm,
point_size,
drawContour,
manualColor,
drawPoints,
ellipseColor,
pointsColor,
drawEllipse,
recalcPPEs )
#
for l in pl.layers
push!(p.layers, l)
end
end
if window !== nothing
focusX = getPPE(fgl, window[1], solveKey).max # getKDEMax( getBelief(getVariable(fgl,window[1]),solveKey) )
pwind = window[2]
p.coord = Coord.cartesian(xmin=focusX[1]-pwind,xmax=focusX[1]+pwind,ymin=focusX[2]-pwind,ymax=focusX[2]+pwind)
end
co = Coord.Cartesian(;xmin,xmax,ymin,ymax,aspect_ratio)
p.coord = co
if title != ""
push!(p.guides, Guide.title(title))
end
return p
end
function plotSLAM2DSubmaps( fgl::AbstractDFG, fromto::Array{Int,2};
m1hist=false, m2hist=false, m3hist=false,
showmm=false, MM::Dict{Int,T} = Dict{Int,Any}(),
xmin=nothing, xmax=nothing, ymin=nothing, ymax=nothing ) where T
#
p = plotSLAM2DLandmarks(fgl, from=fromto[1,1], to=fromto[1,2], drawhist=m1hist, showmm=showmm, MM=MM)
if size(fromto,1) >1
p2 = plotSLAM2DLandmarks(fgl, from=fromto[2,1], to=fromto[2,2], drawhist=m2hist,c="blue", showmm=showmm, MM=MM)
for l in p2.layers
push!(p.layers, l)
end
end
if size(fromto,1) >2
p3 = plotSLAM2DLandmarks(fgl, from=fromto[3,1], to=fromto[3,2], drawhist=m3hist,c="magenta", showmm=showmm, MM=MM)
for l in p3.layers
push!(p.layers, l)
end
end
co = Coord.Cartesian(xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax)
p.coord = co
return p
end
function plotSLAM2DSubmaps( fgl::G, fromto::Array{Int,1}; spread::Int=25,
m1hist=false, m2hist=false, m3hist=false,
showmm=false, MM::Dict{Int,T}=Dict{Int,Any}(),
xmin=nothing, xmax=nothing, ymin=nothing, ymax=nothing ) where {G <: AbstractDFG, T}
#
ft = zeros(Int,length(fromto),2)
for i in 1:length(fromto)
ft[i,1] = fromto[i]-spread; ft[i,2] = fromto[i]+spread;
end
plotSLAM2DSubmaps(fgl, ft, m1hist=m1hist, m2hist=m2hist, m3hist=m3hist, showmm=showmm, MM=MM, xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax)
end
function plotSLAM2D_KeyAndRef(fg, solveKey=:default; refkey=:simulated, recalcPPEs=true)
#
pl_ = plotSLAM2D(fg, solveKey=refkey, drawContour=false, drawPoints=false, drawEllipse=false, manualColor="black", drawTriads=false);
pl1 = plotSLAM2D(fg, solveKey=solveKey, recalcPPEs=recalcPPEs, drawContour=false, drawPoints=false, drawEllipse=false);
union!(pl1.layers, pl_.layers);
pl1
end
# import RoMEPlotting: drawMarginalContour
function plotMarginalContour( fgl::AbstractDFG, lbl::String;
solveKey::Symbol=:default,
xmin=-150,xmax=150,ymin=-150,ymax=150,
n::Int=200 )
#
p = getBelief(getVariable(fgl,Symbol(lbl)), solveKey) # p = getBelief(getVert(fgl,lbl))
Gadfly.plot(z=(x,y)->evaluateDualTree(p,vectoarr2([x,y]))[1],
x=collect(range(xmin,stop=xmax,length=n)),
y=collect(range(ymin,stop=ymax,length=n)),
Geom.contour,
Coord.Cartesian(xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax),
Guide.title(lbl)
)
end
# ┌ Warning: `Scale.color_none` to be deprecated. Instead use e.g. `plot(..., Geom.contour, color=[colorant"black"])`
# └ @ Gadfly.Scale ~/.julia/packages/Gadfly/B5yQc/src/scale.jl:446
function accumulateMarginalContours(fgl, order;
solveKey::Symbol=:default,
xmin=-150,xmax=150,ymin=-150,ymax=150,n=200 )
#
pl = plotMarginalContour(fgl, order[1],solveKey=solveKey, xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax,n=n)
pl2 = nothing
PL = []
for or in order[1:end]
pl2 = plotMarginalContour(fgl, or, solveKey=solveKey, xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax,n=n)
push!(PL, pl2)
push!(pl.layers, pl2.layers[1])
end
return pl, PL
end
#
| RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 8418 |
"""
$(SIGNATURES)
Plot the proposal belief from neighboring factors to `lbl` in the factor graph (ignoring Bayes tree representation),
and show with new product approximation for reference.
DevNotes
- TODO, standardize around ::MIME="image/svg", see JuliaRobotics/DistributedFactorGraphs.jl#640
"""
function plotLocalProduct(fgl::AbstractDFG,
lbl::Symbol;
solveKey::Symbol=:default,
N::Int=100,
dims::Vector{Int}=Int[],
levels::Int=1,
show::Bool=false,
dirpath="/tmp/",
mimetype::AbstractString="svg",
sidelength=20cm,
title::String="Local product ($solveKey), ",
xmin=nothing, xmax=nothing, ymin=nothing, ymax=nothing )
#
@warn "not showing partial constraints, but included in the product"
arr = Array{BallTreeDensity,1}()
lbls = String[]
push!(arr, getBelief(getVariable(fgl, lbl), solveKey))
push!(lbls, "curr")
pl = nothing
pp, parr, lb, sinfd = IIF.localProduct(fgl, lbl, N=N, solveKey=solveKey)
partials = []
# another sanity check
xmin !== nothing && xmax !== nothing && xmin == xmax ? error("xmin must be less than xmax") : nothing
ymin !== nothing && ymax !== nothing && ymin == ymax ? error("ymin must be less than ymax") : nothing
# helper functions
function plotDirectProducts()
if pp != parr[1]
push!(arr,pp)
push!(lbls, "prod")
for a in parr
push!(arr, a)
end
@show lb, lbls
lbls = union(lbls, string.(lb))
end
dims = length(dims) > 0 ? dims : collect(1:Ndim(pp))
colors = getColorsByLength(length(arr))
plotKDE(arr, dims=dims, levels=levels, c=colors, title=string(title,lbl), legend=string.(lbls)) #
end
function plotPartialProducts()
# stack 1d plots to accomodate all the partials
PL = []
lbls = String["prod";"curr";string.(lb)]
pdims = sort(collect(keys(partials)))
for dimn in pdims
vals = partials[dimn]
proddim = marginal(pp, [dimn])
colors = getColorsByLength(length(vals)+2)
newbel_ = getBelief(getVariable(fgl, lbl),solveKey)
newbel = newbel_ isa ManifoldKernelDensity ? newbel_.belief : newbel_
pl = plotKDE( [proddim;newbel;vals], dims=[1;], levels=levels, c=colors, title=string("Local product, dim=$(dimn), ",lbl))
push!(PL, pl)
end
Gadfly.vstack(PL...)
end
@show length(parr), length(partials)
if length(parr) > 0 && length(partials) == 0
pl = plotDirectProducts()
elseif length(parr) == 0 && length(partials) > 0
pl = plotPartialProducts()
else
return error("plotLocalProduct not built for lengths parr, partials = $(length(parr)), $(length(partials)) yet.")
end
# # set coordinates accordingly
# co = Coord.Cartesian(xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax)
# pl.coord = co
# now let's export:
backend = getfield(Gadfly, Symbol(uppercase(mimetype)))
Gadfly.draw(backend(dirpath*"test_$(lbl).$(mimetype)",sidelength,0.75*sidelength), pl)
driver = mimetype in ["pdf"] ? "evince" : "eog"
show ? (@async run(`$driver $(dirpath)test_$(lbl).$(mimetype)`)) : nothing
return pl
end
"""
$(SIGNATURES)
Plot---for the cylindrical manifold only---the proposal belief from neighboring factors to `lbl` in the factor graph (ignoring Bayes tree representation),
and show with new product approximation for reference. The linear and circular belief products are returned as a tuple.
"""
function plotLocalProductCylinder(fgl::G,
lbl::Symbol;
N::Int=100,
levels::Int=1,
show=false,
dirpath="/tmp/",
mimetype::AbstractString="svg",
sidelength=30cm,
scale::Float64=0.2 ) where G <: AbstractDFG
#
@warn "not showing partial constraints, but included in the product"
arr = Array{BallTreeDensity,1}()
carr = Array{BallTreeDensity,1}()
lbls = String[]
push!(arr, getBelief(getVariable(fgl, lbl)))
push!(lbls, "curr")
pl = nothing
plc = nothing
pp, parr, partials, lb = IncrementalInference.localProduct(fgl, lbl, N=N)
if length(parr) > 0 && length(partials) == 0
if pp != parr[1]
push!(arr, marginal(pp,[1]))
push!(lbls, "prod")
push!(carr, marginal(pp, [2]))
for a in parr
push!(arr, marginal(a,[1]))
push!(carr, marginal(a,[2]))
end
lbls = union(lbls, lb)
end
colors = getColorsByLength(length(arr))
pll = plotKDE(arr, dims=[1;], levels=levels, c=colors, legend=lbls, title=string("Local product, ",lbl))
plc = AMP.plotKDECircular(carr, c=colors, scale=scale)
# (pll, plc)
elseif length(parr) == 0 && length(partials) > 0
# stack 1d plots to accomodate all the partials
PL = []
PLC = []
lbls = ["prod";"curr";lb]
pdims = sort(collect(keys(partials)))
for dimn in pdims
vals = partials[dimn]
proddim = marginal(pp, [dimn])
colors = getColorsByLength(length(vals)+2)
if dimn == 1
pll = plotKDE([proddim;getBelief(getVariable(fgl, lbl));vals], dims=[1;], levels=levels, c=colors, title=string("Local product, dim=$(dimn), ",lbl))
push!(PL, pl)
else
plc = AMP.plotKDECircular([proddim; marginal(getBelief(getVariable(fgl, lbl)),[2]);vals], c=colors, scale=scale)
push!(PLC, plc)
end
end
pl = Gadfly.vstack(PL..., PLC...)
else
return error("plotLocalProduct not built for lengths parr, partials = $(length(parr)), $(length(partials)) yet.")
end
# now let's export:
# backend = getfield(Gadfly, Symbol(uppercase(mimetype)))
# Gadfly.draw(backend(dirpath*"test_$(lbl).$(mimetype)",sidelength,sidelength), pl)
# driver = mimetype in ["pdf"] ? "evince" : "eog"
# show ? (@async run(`$driver $(dirpath)test_$(lbl).$(mimetype)`)) : nothing
return pll, plc
end
"""
$SIGNATURES
Plot the proposal belief from neighboring factors to `lbl` in the factor graph (ignoring Bayes tree representation),
and show with new product approximation for reference. String version is obsolete and will be deprecated.
"""
plotLocalProduct(fgl::AbstractDFG, lbl::AbstractString; N::Int=100, dims::Vector{Int}=Int[] ) = plotLocalProduct(fgl, Symbol(lbl), N=N, dims=dims)
"""
$SIGNATURES
Development function to plot the same variable from both factor graphs together.
"""
function plotPairVariables(dfg1::G1,
dfg2::G2,
sym::Symbol;
dims=nothing,
levels::Int=3,
title::String="") where {G1 <: AbstractDFG, G2 <: AbstractDFG}
#
X1 = getBelief(dfg1, sym)
X2 = getBelief(dfg2, sym)
plotKDE([X1;X2], c=["black";"red"], legend=["dfg1";"dfg2"], dims=dims, levels=levels, title=title*" $sym")
end
function plotPairPose2(dfg1::G1,
dfg2::G2,
sym::Symbol;
dims=nothing,
levels::Int=3,
title::String="") where {G1 <: AbstractDFG, G2 <: AbstractDFG}
#
X1 = getBelief(dfg1, sym)
X2 = getBelief(dfg2, sym)
plotPose(Pose2(), [X1;X2], title*" $sym", c=["black";"red"], levels=levels)
# , legend=["dfg1";"dfg2"]
end
"""
$SIGNATURES
Plot new proposal (convolution) for factor x of variable y given all other -- i.e. y|X
Notes
- plot new result on `towards` as first color.
- Plot other variables in factor on 2nd to m colors.
"""
function plotVariableGivenFactor(dfg::G,
fct::Symbol,
towards::Symbol;
levels::Int=2,
dims=nothing ) where G <: AbstractDFG
#
pts = approxConv(dfg,fct,towards)
mani = getManifold(dfg, towards)
res = manikde!(mani, pts)
lie = ls(dfg, fct)
setdiff!(lie, [towards])
otr = map(x->getBelief(dfg,x),lie)
lbls = string.([towards;lie])
pl = plotKDE([res;otr],dims=dims,levels=levels,legend=lbls)
return pl
end
# | RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 602 |
@info "RoMEPlotting.jl is loading tools based on ImageMagick.jl"
using .ImageMagick
export makeImage
"""
$SIGNATURES
Use PNG from Cairo and Fontconfig to convert a Gadfly plot into a Julia Images style matrix.
Example
```julia
pl = Gadlfy.plot(y=randn(10), Geom.line)
makeImage(pl)
```
See also: [`toFormat`](@ref)
"""
function makeImage(pl::Gadfly.Plot)
buf = IOBuffer()
pl |> PNG(buf)
plbytes = take!(buf)
ImageMagick.readblob(plbytes)
end
# deprecate before RoME v0.18.0
import Base: convert
@deprecate convert(::Type{<:AbstractArray{<:Color, 2}}, pl::Gadfly.Plot) makeImage(pl)
# | RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 2616 |
plotBelief(mkd::ManifoldKernelDensity,w...;kw...) = plotKDE(mkd.belief, w...;kw...)
plotBelief(arr::AbstractVector{<:ManifoldKernelDensity},w...;kw...) = plotKDE((x->x.belief).(arr), w...;kw...)
"""
$(SIGNATURES)
A peneric KDE plotting function that allows marginals of higher dimensional beliefs and various keyword options.
Example for `Position2`:
-----------------------
```julia
p = manikde!(Position2, [randn(2) for _ in 1:100])
q = manikde!(Position2, [randn(2).+[5;0] for _ in 1:100])
plotBelief(p)
plotBelief(p, dims=[1;2], levels=3)
plotBelief(p, dims=[1])
plotBelief([p;q])
plotBelief([p;q], dims=[1;2], levels=3)
plotBelief([p;q], dims=[1])
```
Example for `Pose2`:
--------------------
```julia
# TODO
```
"""
function plotBelief(fgl::AbstractDFG,
sym::Symbol;
solveKey::Symbol=:default,
dims=nothing,
title="",
levels::Int=5,
fill::Bool=false,
layers::Bool=false,
c=nothing,
overlay=nothing )
#
p = getBelief(getVariable(fgl,sym), solveKey)
# mmarg = length(marg) > 0 ? marg : collect(1:Ndim(p))
# mp = marginal(p,mmarg)
bel = p isa BallTreeDensity ? p : p.belief
plotKDE(bel, levels=levels, dims=dims, title=string(sym, " ", title), fill=fill, layers=layers, c=c, overlay=overlay )
end
function plotBelief(fgl::AbstractDFG,
syms::AbstractVector{Symbol};
solveKey::Symbol=:default,
addt::Union{<:AbstractVector{<:BallTreeDensity},AbstractVector{<:ManifoldKernelDensity}}=BallTreeDensity[],
dims=nothing,
title=nothing,
levels=3,
layers::Bool=false,
c=getColorsByLength(length(syms)),
overlay=nothing )
#
# TODO -- consider automated rotisary of color
# colors = ["black";"red";"green";"blue";"cyan";"deepskyblue"; "yellow"]
# COLORS = repmat(colors, 10)
# COLORS = getColorsByLength(length(syms))
MP = BallTreeDensity[]
LEG = String[]
# mmarg = Int[]
for sym in syms
p = getBelief(getVariable(fgl,sym), solveKey)
# mmarg = length(marg) > 0 ? marg : collect(1:Ndim(p))
# mp = marginal(p,mmarg)
if p isa BallTreeDensity
push!(MP, p)
else
push!(MP, p.belief)
end
push!(LEG, string(sym))
end
for p in addt
# mp = marginal(p,mmarg)
push!(MP, p)
push!(LEG, "add")
end
plotKDE(MP; c, levels, dims, legend=LEG, title, layers, overlay)
end
# | RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 3097 |
"""
$SIGNATURES
Calculate the ellipse from covariance matrix and return as lambda function.
Notes
- https://cookierobotics.com/007/
Related
plotCovEllipseLayer
"""
function covEllipseParameterized(distr::MvNormal; meanOffset::Bool=true)
# println(round.(cov(distr), digits=3) )
a = cov(distr)[1,1]
b = cov(distr)[1,2] + cov(distr)[2,1]
b *= 0.5
c = cov(distr)[2,2]
λ1 = 0.5*(a+c) + sqrt(0.25*(a-c)^2 + b^2)
λ2 = 0.5*(a+c) - sqrt(0.25*(a-c)^2 + b^2)
θ = if b ≈ 0 && a >= c
0
elseif b ≈ 0 && a < c
pi/2
else
atan(λ1-a, b)
end
sλ1 = sqrt(λ1)
sλ2 = sqrt(λ2)
sθ = sin(θ)
cθ = cos(θ)
ox = meanOffset ? distr.μ[1] : 0
oy = meanOffset ? distr.μ[2] : 0
(t) -> [sλ1*cθ*cos(t)-sλ2*sθ*sin(t)+ox; sλ1*sθ*cos(t)+sλ2*cθ*sin(t)+oy]
end
covEllipseParameterized(pts::Array{Float64,2}; meanOffset::Bool=true) = covEllipseParameterized( fit(MvNormal, pts), meanOffset=meanOffset )
covEllipseParameterized(X::Union{<:BallTreeDensity,<:ManifoldKernelDensity}; meanOffset::Bool=true) = covEllipseParameterized( getPoints(X), meanOffset=meanOffset )
covEllipseParameterized(dfg::AbstractDFG, sym::Symbol; meanOffset::Bool=true, solveKey::Symbol=:default) = covEllipseParameterized( getBelief(dfg, sym, solveKey), meanOffset=meanOffset, solveKey=solveKey )
"""
$SIGNATURES
Plotting tool to draw Gadfly layers of ellipses of 2D covariance fitted to the belief of factor graph variable nonparametric points.
Related
covEllipseParameterized, plotSLAM2DPosesLandms
"""
function plotCovEllipseLayer( dfg::AbstractDFG,
vsym::Symbol;
solveKey::Symbol=:default,
drawPoints::Bool=true,
ellipseColor::AbstractString="gray30",
pointsColor::AbstractString="gray30",
drawEllipse::Bool=true )
#
PL = []
if !(drawEllipse || drawPoints)
return PL
end
# points to work from
bel = getBelief(dfg, vsym, solveKey)
pp__ = getPoints(bel)
pp_ = if bel.manifold isa SpecialEuclidean
# assume Pose2
(x->submanifold_component(x,1)).(pp__)
else
# assume Point2
pp__
end
@cast pp[i,j] := pp_[j][i]
if drawEllipse
# get ellipse function
eX = covEllipseParameterized(pp[1:2,:], meanOffset=false)
vEl = eX.(0:0.02:2pi)
el = [(x->x[1]).(vEl) (x->x[2]).(vEl)]
# add suggested PPE mean offset
el[:,1] .+= getVariablePPE(dfg, vsym, solveKey).suggested[1]
el[:,2] .+= getVariablePPE(dfg, vsym, solveKey).suggested[2]
# add the ellipse layers
plelX2 = Gadfly.layer(x=el[:,1], y=el[:,2], Geom.path, Theme(default_color=parse(Colorant, ellipseColor)))
push!(PL, plelX2[1])
end
# add the points layer if needed
if drawPoints
plelX1 = Gadfly.layer(x=pp[1,:],
y=pp[2,:],
Geom.point,
Theme(default_color=parse(Colorant, pointsColor),
point_size=1pt))
#
push!(PL, plelX1[1])
end
return PL
end
| RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 4490 | # plotPose functions
"""
$SIGNATURES
Plot pose belief as contour information on visually sensible manifolds.
Example:
```julia
fg = generateGraph_ZeroPose()
initAll!(fg);
plotPose(fg, :x0)
```
Related
[`plotSLAM2D`](@ref), [`plotSLAM2DPoses`](@ref), [`plotBelief`](@ref), `plotKDECircular`
"""
function plotPose(::IIF.InstanceType{Pose2},
pp::AbstractVector{<:BallTreeDensity},
title="plotPose2";
levels=3,
c=nothing,
legend=nothing,
axis=nothing,
scale::Real=0.2,
overlay=nothing,
hdl=[] )
#
# ops = buildHybridManifoldCallbacks(pt.manifolds)
# @show ran = getKDERange(p, addop=ops[1], diffop=ops[2])
ran = axis === nothing ? getKDERange(pp) : axis
p1 = plotKDE(pp, dims=[1;2], levels=levels, c=c, axis=ran )
# p2 = plotKDE(bels, dims=[3], c=c)
cc = c === nothing ? getColorsByLength(length(pp)) : c
GG = BallTreeDensity[]
for ppc in pp
gg = marginal(ppc,[3])
# gg = (x)->pc(reshape([x], :,1))[1]
push!(GG, gg)
end
# p2 = AMP.plotCircBeliefs(GG, c=cc)
p2 = AMP.plotKDECircular(GG, scale=scale, c=cc, legend=legend, title=title)
# deal with overlay
push!(hdl, p1)
push!(hdl, p2)
Gadfly.hstack(p1,p2)
end
plotPose(pt::IIF.InstanceType{Pose2}, bds::AbstractVector{<:ManifoldKernelDensity}, w...;kw...) = plotPose(pt, (s->s.belief).(bds), w...; kw...)
function plotPose(pt::IIF.InstanceType{Pose2},
pp::Union{<:BallTreeDensity,<:ManifoldKernelDensity},
title="plotPose2";
kw... )
#
plotPose(pt, [pp;],title; kw... )
end
function plotPose(::DynPose2,
bels::Union{<:AbstractVector{<:BallTreeDensity},<:AbstractVector{<:ManifoldKernelDensity}},
title;
levels::Int=5,
c=nothing,
axis=nothing,
hdl=[],
scale::Real=0.2 )
#
p1 = plotKDE(bels, dims=[1;2], levels=levels, c=c, title=title)
p2 = plotKDE(bels, dims=[3], c=c)
p3 = plotKDE(bels, dims=[4;5], levels=levels, c=c)
push!(hdl, p1)
push!(hdl, p2)
push!(hdl, p3)
Gadfly.vstack(p1,p2,p3)
end
# import RoMEPlotting: plotPose
function plotPose(::Pose3,
bels::Union{<:AbstractVector{<:BallTreeDensity},<:AbstractVector{<:ManifoldKernelDensity}},
title;
levels::Int=5,
c=nothing,
axis=nothing,
hdl=[],
scale::Real=0.2 )
#
@show title
p1 = plotKDE(bels, dims=[1;2], levels=levels, c=c, title=title)
p2 = plotKDE(bels, dims=[3], c=c)
p3 = plotKDE(bels, dims=[4;5], levels=levels, c=c)
p4 = plotKDE(bels, dims=[6], c=c)
push!(hdl, p1)
push!(hdl, p2)
push!(hdl, p3)
push!(hdl, p4)
Gadfly.vstack(p1,p2,p3,p4)
end
"""
$(SIGNATURES)
Example: pl = plotPose(fg, [:x1; :x2; :x3])
"""
function plotPose(fgl::AbstractDFG,
syms::Vector{Symbol};
solveKey::Symbol=:default,
levels::Int=5,
c=nothing,
axis=nothing,
scale::Real=0.2,
show::Bool=false,
filepath::AbstractString="/tmp/tempposeplot.svg",
app::AbstractString="eog",
hdl=[] )
#
typ = getSolverData(getVariable(fgl, syms[1]), solveKey).variableType
pt = string(string.(syms)...)
getvertsgg = (sym) -> getBelief(getVariable(fgl, sym), solveKey)
pl = plotPose(typ, getvertsgg.(syms), pt, levels=levels, c=c, axis=axis, scale=scale, hdl=hdl )
if length(filepath) > 0
ext = split(filepath, '.')[end]
cmd = getfield(Gadfly,Symbol(uppercase(ext)))
h = 1*7Gadfly.cm
if typ == DynPose2
h *= 1.5
end
Gadfly.draw(cmd(filepath,15Gadfly.cm,h),pl)
@async !show ? nothing : run(`$app $filepath`)
end
return pl
end
function plotPose(fgl::AbstractDFG,
sym::Symbol;
levels::Int=5,
c=nothing,
axis=nothing,
scale::Real=0.2,
show::Bool=false,
filepath::AbstractString="/tmp/tempposeplot.svg",
app::AbstractString="eog",
hdl=[] )
#
plotPose(fgl, [sym;], levels=levels, axis=axis, show=show, filepath=filepath, app=app, hdl=hdl )
end
| RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 4934 |
"""
$(SIGNATURES)
Draw the upward belief from clique `cllb::Symbol` message on variable `lb::Symbol`.
Example:
```julia
plotUpMsgsAtCliq(tree, :x2, :x1)
```
Related
plotKDE, getUpMsgs
"""
function plotUpMsgsAtCliq(treel::AbstractBayesTree,
cllb::Symbol,
lb::Symbol;
show::Bool=true,
w=20cm, h=15cm,
levels::Int=1,
dims::Union{Vector{Int}, Nothing}=nothing )
#
cliq = getClique(treel, cllb)
cliqoutmsg = getUpMsgs(cliq)
bel = convert(BallTreeDensity, cliqoutmsg.belief[lb])
plotKDE(bel, dims=dims)
end
function plotTreeUpwardMsgs(fgl::G,
bt::AbstractBayesTree;
N=300 ) where G <: AbstractDFG
#
len = length(bt.cliques)-1
vv = Array{Gadfly.Compose.Context,1}(undef, len)
#r = Array{RemoteRef,1}(len)
i = 0
for cliq in bt.cliques
if cliq[1] == 1 println("No upward msgs from root."); continue; end
@show cliq[2].attributes["label"]
i+=1
vv[i] = drawHorDens(fgl, cliq[2].attributes["debug"].outmsg.p, N)
end
vv
end
"""
$SIGNATURES
Project (convolve) to and take product of variable in Bayes/Junction tree.
Notes
- assume cliq and var sym the same, unless both specified.
- `cliqsym` defines a frontal variable of a clique.
"""
function plotTreeProductUp(fgl::G,
treel::AbstractBayesTree,
cliqsym::Symbol,
varsym::Symbol=cliqsym;
levels::Int=1,
dims::Vector{Int}=Int[] ) where G <: AbstractDFG
#
# build a subgraph copy of clique
cliq = getClique(treel, cliqsym)
syms = getCliqAllVarIds(cliq)
subfg = buildSubgraph(fgl, syms)
# add upward messages to subgraph
msgs = fetchMsgsUpChildren(treel,cliq, TreeBelief)
# @show typeof(msgs)
addMsgFactors!.(subfg, msgs, IIF.UpwardPass)
# predictBelief
cllbl = cliq.attributes["label"]
return plotLocalProduct(subfg, varsym, title="Tree Up $(cllbl) | ", levels=levels, dims=dims)
end
function plotTreeProductDown( fgl::AbstractDFG,
treel::AbstractBayesTree,
cliqsym::Symbol,
varsym::Symbol=cliqsym;
levels::Int=1 )
#
# build a subgraph copy of clique
cliq = whichCliq(treel, cliqsym)
syms = getCliqAllVarIds(cliq)
subfg = buildSubgraphFromLabels!(fgl,syms)
# add upward messages to subgraph
msgs = getCliqParentMsgDown(treel,cliq)
addMsgFactors!(subfg, msgs)
# predictBelief
cllbl = cliq.attributes["label"]
return plotLocalProduct(subfg, varsym, title="Tree Dwn $(cllbl) | ", levels=levels)
end
"""
$SIGNATURES
Overlay plot all upward messages from cliques.
"""
function plotCliqUpMsgs(fg::G,
tree::AbstractBayesTree,
sym::Symbol;
show::Bool=true,
dims::Vector{Int}=Int[],
levels::Int=1,
c=nothing,
title="up msgs on $(sym)" ) where G <: AbstractDFG
#
# get all msgs
allmsgs = getTreeCliqUpMsgsAll(tree)
# stack messages by variable
sckmsgs = stackCliqUpMsgsByVariable(tree, allmsgs)
if !haskey(sckmsgs, sym)
@warn "plotCliqUpMsgs -- tree does not have up messages for $sym."
return nothing
end
# prepend current estimate too
Xs = getBelief(fg, sym)
# vectorize beliefs
beliefs = BallTreeDensity[Xs;]
lbls = String["curr,-1";]
for msg in sckmsgs[sym]
push!(beliefs, msg.belief)
push!(lbls, "$(msg.cliqId),$(msg.depth)")
end
# ignoring legend and color information
cc = c === nothing ? getColorsByLength(length(beliefs)) : c
# plot and return
plotKDE(beliefs, levels=levels, c=cc, title=title, legend=lbls)
end
"""
$SIGNATURES
Plot the downward messages currently stored in a clique.
"""
function plotCliqDownMsgs(tree::AbstractBayesTree,
frnt::Symbol;
show::Bool=true,
levels::Int=2,
dims=nothing,
existing=nothing )
#
cliq = getClique(tree,frnt)
msgs = IIF.getMessageBuffer(cliq).downRx.belief
PL = []
for (key, beldim) in msgs
npl = plotKDE(manikde!(beldim.varType, beldim.val), levels=levels, title="dwn msg $key", dims=dims)
existing === nothing ? nothing : union!(npl.layers, existing.layers)
push!(PL, npl)
end
existing === nothing ? nothing : push!(PL, existing)
pl = vstack(PL...)
folderpath = "/tmp/caesar/random/"
filepath = folderpath*"downmsgs_cliq$(cliq.index).pdf"
Base.mkpath(folderpath)
pl |> PDF(filepath, 20cm, length(PL)*12cm)
@async run(`evince $filepath`)
pl
end
# | RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 1381 |
@info "RoMEPlotting.jl is including ScatterAlign tools associated with Caesar.jl."
using .Gadfly
export plotScatterAlign
"""
$SIGNATURES
Plot name tuple output from [`overlayScatter`](@ref)
See also: [`overlayScatterMutate`](@ref)
"""
function plotScatterAlign(snt::NamedTuple; title::String="")
N = size(snt.pP1,2)
pP1 = Gadfly.layer(x=snt.pP1[1,:],y=snt.pP1[2,:],color=[1;zeros(N-1)])
qP2 = Gadfly.layer(x=snt.qP2[1,:],y=snt.qP2[2,:],color=[0;ones(N-2);2])
pP2_u = Gadfly.layer(x=snt.pP2_u[1,:],y=snt.pP2_u[2,:],color=[0;2*ones(N-1)])
pP2_b = Gadfly.layer(x=snt.pP2_b[1,:],y=snt.pP2_b[2,:],color=[0;2*ones(N-1)])
uo = haskey(snt, :user_offset) ? "$(round.(snt.user_offset, digits=3))" : ""
ar = Gadfly.Coord.cartesian(; aspect_ratio=1)
H1 = Gadfly.plot(pP1, qP2, ar, Guide.title("body frame data."*title))
H2 = Gadfly.plot(pP1, pP2_u, ar, Guide.title("User transform: $(round.(snt.user_coords,digits=3))\nu_score=$(snt.u_score)"))
H3 = Gadfly.plot(pP1, pP2_b, ar, Guide.title("Best fit: $(snt.best_coords)\nb_score=$(snt.b_score)"))
hstack(H1,H2, H3)
end
plotScatterAlign( sap::ScatterAlignPose2;
sample_count::Integer = sap.align.sample_count,
bw::Real = sap.align.bw,
kw... ) = plotScatterAlign(overlayScatterMutate(sap; sample_count, bw); kw...)
#
# | RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 913 | using Test
using KernelDensityEstimatePlotting
using IncrementalInference
using RoME
using RoMEPlotting
##
include("testPose2Point2Plotting.jl")
include("testPlotKDE.jl")
include("testPlotSLAMandPose.jl")
# @warn "plotMCMC needs ImageMagick on osx, not running test yet."
# plotMCMC(tree, :x1, show=false)
# println("Success")
# test ellipse function
# Z = MvNormal([0.0;0],[9.0 5; 5 4])
# eX = covEllipseParameterized(Z)
## legacy
# println("[TEST] with local Graphs.jl dictionary and arrays only (multicore)...")
# include(joinpath(dirname(@__FILE__),"..","..","IncrementalInference","test","fourdoortest.jl"))
# println("Success")
#
# println("[TEST] plot functions...")
# using Gadfly
# # draw all beliefs
# DOYTICKS = false
# xx,ll = ls(fg)
# msgPlots = drawHorBeliefsList(fg, xx, gt=gt,nhor=2);
# pl = vstack(msgPlots...);
# # Gadfly.draw(PDF("/tmp/test.pdf",15cm,30cm),pl)
# println("Success")
| RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 391 | # test multi kde plot, issue 65
using RoME, RoMEPlotting
using Test
# Gadfly.set_default_plot_size(35cm, 25cm)
@testset "test plotKDE array (issue 65)" begin
fg = initfg()
addVariable!(fg, :x0, ContinuousScalar)
addVariable!(fg, :x1, ContinuousScalar)
addFactor!(fg, [:x0], Prior(Normal()))
addFactor!(fg, [:x0;:x1], LinearRelative(Normal()))
initAll!(fg)
plotKDE(fg, ls(fg))
end
| RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 3496 | # test plotSLAM2D and plotPose features
using RoME, RoMEPlotting
using Test
##
@testset "test plotSLAM2D features" begin
##
fg = generateGraph_Hexagonal()
plotSLAM2D(fg, drawhist=false, drawPoints=false, drawContour=false, drawEllipse=false)
plotSLAM2D(fg, drawhist=false, drawPoints=false, drawContour=false, drawEllipse=true)
plotSLAM2D(fg, drawhist=false, drawPoints=false, drawContour=true, drawEllipse=false)
plotSLAM2D(fg, drawhist=false, drawPoints=false, drawContour=true, drawEllipse=true)
plotSLAM2D(fg, drawhist=false, drawPoints=true, drawContour=false, drawEllipse=false)
plotSLAM2D(fg, drawhist=false, drawPoints=true, drawContour=false, drawEllipse=true)
plotSLAM2D(fg, drawhist=false, drawPoints=true, drawContour=true, drawEllipse=false)
plotSLAM2D(fg, drawhist=false, drawPoints=true, drawContour=true, drawEllipse=true)
plotSLAM2D(fg, drawhist=true, drawPoints=false, drawContour=false, drawEllipse=false)
plotSLAM2D(fg, drawhist=true, drawPoints=false, drawContour=false, drawEllipse=true)
plotSLAM2D(fg, drawhist=true, drawPoints=false, drawContour=true, drawEllipse=false)
plotSLAM2D(fg, drawhist=true, drawPoints=false, drawContour=true, drawEllipse=true)
plotSLAM2D(fg, drawhist=true, drawPoints=true, drawContour=false, drawEllipse=false)
plotSLAM2D(fg, drawhist=true, drawPoints=true, drawContour=false, drawEllipse=true)
plotSLAM2D(fg, drawhist=true, drawPoints=true, drawContour=true, drawEllipse=false)
plotSLAM2D(fg, drawhist=true, drawPoints=true, drawContour=true, drawEllipse=true)
plotSLAM2D(fg; variableList=[:x1;:x5;:l1])
# plot runs but doesnt draw the levels at time of wrting the test. Good to test the API regardless.
plotSLAM2D(fg, drawhist=false, drawPoints=true, drawContour=true, drawEllipse=false, levels=5)
## test with save and load of factor graph
saveDFG("/tmp/rp_test", fg)
fg_ = loadDFG("/tmp/rp_test.tar.gz")
plotSLAM2D(fg, drawhist=false, drawPoints=true, drawContour=true, drawEllipse=false, levels=5)
# plotSLAM2D(fg_, drawhist=true, drawPoints=true, drawContour=true, drawEllipse=true)
# gets deleted lower down
# Base.rm("/tmp/rp_test.tar.gz")
##
end
@testset "test CJL Docs example with plotSLAM2DPoses" begin
##
fg = generateGraph_Hexagonal()
# Draw the (x,y) marginal estimated belief contour for :x0, :x2, and Lx4
pl = plotKDE(fg, [:x0; :x2; :x4], c=["red";"green";"blue"], levels=2, dims=[1;2])
# add a few fun layers
pl3 = plotSLAM2DPoses(fg, regexPoses=r"x\d", from=3, to=3, drawContour=false, drawEllipse=true)
pl5 = plotSLAM2DPoses(fg, regexPoses=r"x\d", from=5, to=5, drawContour=false, drawEllipse=true, drawPoints=false)
pl_ = plotSLAM2DPoses(fg, drawContour=false, drawPoints=false, dyadScale=0.001, to=5)
union!(pl.layers, pl3.layers)
union!(pl.layers, pl5.layers)
union!(pl.layers, pl_.layers)
# change the plotting coordinates
pl.coord = Coord.Cartesian(xmin=-10,xmax=20, ymin=-1, ymax=25)
# save the plot to SVG and giving dedicated (although optional) sizing
pl |> SVG("/tmp/test.svg", 25cm, 15cm)
Base.rm("/tmp/test.svg")
##
end
##
@testset "test plotPose features" begin
##
fg = generateGraph_Hexagonal()
X1 = getBelief(fg, :x1)
plotPose(Pose2, X1)
plotPose(fg, :x1)
plotPose(fg, :x1, levels=1, scale=0.3)
plotPose(fg, [:x1;:x2], levels=2, c=["green"; "magenta"])
@warn "fix plotPose legend keyword"
# plotPose(fg, [:x1;:x2], levels=2, c=["green"; "magenta"], legend=["hello"; "world"])
##
fg_ = loadDFG("/tmp/rp_test.tar.gz")
Base.rm("/tmp/rp_test.tar.gz")
plotPose(fg, :x1)
##
end | RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | code | 2123 | # test Pose2DPoint2D constraint evaluation function
using LinearAlgebra, Statistics
using RoME
# using KernelDensityEstimate
using RoMEPlotting, Gadfly
using Test
# to export PDF
using Gadfly
using Cairo
##
@testset "Prepare a 2D factor graph with poses and points..." begin
##
N = 100
fg = initfg()
initCov = Matrix(Diagonal([0.03;0.03;0.001]))
odoCov = Matrix(Diagonal([3.0;3.0;0.01]))
# Some starting position
addVariable!(fg, :x0, Pose2, N=N)
initPosePrior = PriorPose2(MvNormal(zeros(3), initCov))
addFactor!(fg,[:x0], initPosePrior)
# and a second pose
addVariable!(fg, :x1, Pose2, N=N)
ppc = Pose2Pose2(MvNormal([50.0;0.0;pi/2], odoCov))
addFactor!(fg, [:x0; :x1], ppc)
# test evaluation of pose pose constraint
pts = approxConv(fg, :x0x1f1, :x1)
# perform inference
tree = solveTree!(fg)
# check that yaw is working
addVariable!(fg, :x2, Pose2, N=N)
ppc = Pose2Pose2(MvNormal([50.0;0.0;0.0], odoCov))
addFactor!(fg, [:x1;:x2], ppc)
# new landmark
l1 = addVariable!(fg, :l1, Point2, N=N)
# and pose to landmark constraint
rhoZ1 = norm([10.0;0.0])
ppr = Pose2Point2BearingRange{Uniform, Normal}(Uniform(-pi,pi),Normal(rhoZ1,1.0))
addFactor!(fg, [:x0;:l1], ppr)
# add a prior to landmark
pp2 = PriorPoint2(MvNormal([10.0;0.0], Matrix(Diagonal([1.0;1.0]))))
f5 = addFactor!(fg,[:l1], pp2)
# do inference
tree = solveTree!(fg)
println("test Pose2D plotting")
plotSLAM2DPoses(fg);
plotSLAM2DLandmarks(fg);
plotSLAM2D(fg);
p1 = getBelief(fg, :l1)
# pts = getVal(fg, :l1)
# p1= kde!(pts)
p1c = getBelief(fg, :x0)
plotBelief( p1 , dimLbls=["x";"y";"z"]) # |> PDF("/tmp/test.pdf")
plotBelief( [p1c;p1] , dimLbls=["x";"y";"z"],c=["red";"black"],levels=3, dims=[1;2])
# plotBelief( [marginal(p1c,[1;2]);marginal(p1,[1;2])] , dimLbls=["x";"y";"z"],c=["red";"black"],levels=3, dims=[1;2])
p1c = deepcopy(p1)
plotBelief( marginal(getBelief(getVariable(fg, :x2)),[1;2]) , dimLbls=["x";"y";"z"])
axis = [[1.5;3.5]';[-1.25;1.25]';[-1.0;1.0]']
# @warn "Reinsert draw test.pdf"
plotBelief( p1, dimLbls=["x";"y";"z"], axis=axis) |> PDF("/tmp/test.pdf",30cm,20cm)
#
Base.rm("/tmp/test.pdf")
##
end
#
| RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | docs | 283 |
## Changes in v0.9
- Standardize to `plotBelief` instead of previous `plotKDE`, see JuliaRobotics/Caesar.jl#811
- Major refactor of code placement in src files -- ongoing work through multiple versions.
(2022Q1): Starting to individually list larger change in the NEWS.md file. | RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.10.4 | 63b213d3870dd87ac49244815fc6d2fc97ec8d67 | docs | 1545 | # RoMEPlotting.jl
Release v0.10 | Dev | Test Coverage | Caesar Docs
--------------|-----|---------------|--------------
[![build-0-10]][CI-url] | [![build-dev]][CI-url] | [![codecov-img]][codecov-url] | [![docs][docs-shield]][caesar-docs]
2D plotting functionality for the RoME.jl package (presently only using Gadfly). This package is part of the [Caesar.jl](http://www.github.com/JuliaRobotics/Caesar.jl) suite of tools. This package contains all the plotting functions relating to the [IncrementalInference.jl](http://www.github.com/JuliaRobotics/IncrementalInference.jl) and [RoME.jl](http://www.github.com/JuliaRobotics/RoME.jl) packages.
# Installation
This is a registered package:
```
julia> ] # switch to package manager
pkg> add RoMEPlotting
```
# Usage Example
Documentation for this package will be covered in the plotting section of [Caesar.jl Docs](https://juliarobotics.org/Caesar.jl/latest/)
[CI-url]: https://github.com/JuliaRobotics/RoMEPlotting.jl/actions/workflows/ci.yml
[build-0-10]: https://github.com/JuliaRobotics/RoMEPlotting.jl/actions/workflows/ci.yml/badge.svg?branch=release%2Fv0.10
[build-dev]: https://github.com/JuliaRobotics/RoMEPlotting.jl/actions/workflows/ci.yml/badge.svg?branch=master
[codecov-url]: https://codecov.io/github/JuliaRobotics/RoMEPlotting.jl?branch=master
[codecov-img]: https://codecov.io/github/JuliaRobotics/RoMEPlotting.jl/coverage.svg?branch=master
[docs-shield]: https://img.shields.io/badge/docs-latest-blue.svg
[caesar-docs]: https://juliarobotics.org/Caesar.jl/latest/
| RoMEPlotting | https://github.com/JuliaRobotics/RoMEPlotting.jl.git |
|
[
"MIT"
] | 0.15.1 | 1370f8202dac30758f3c345f9909b97f53d87d3f | code | 3066 | module Lazy
############
# Utilities
############
include("macros.jl")
include("dynamic.jl")
include("tail.jl")
export @listable
import Base: *, ==, +, -
macro listable(f)
if typeof(f) == Expr && f.head == :tuple
return Expr(:block, [:(@listable $f) for f in f.args]...)
end
f = esc(f)
:($f(l1::List, ls::List...) = map($f, l1, ls...))
end
########
# Types
########
import Base: isempty, first
export List, list, @lazy, prepend, tail
abstract type List end
mutable struct EmptyList <: List
end
mutable struct LinkedList <: List
head
tail::List
end
mutable struct LazyList <: List
list::List
realised::Bool
f::Function
LazyList(f) = new(EmptyList(), false, f)
end
# Empty List
first(::EmptyList) = nothing
tail(l::EmptyList) = l
isempty(::EmptyList) = true
# Lists
prepend(x, l::List) = LinkedList(x, l)
(::Colon)(x, xs::List) = prepend(x, xs)
(::Colon)(x::List, xs::List) = prepend(x, xs) # special case: prepend list
(::Colon)(x::T, y, xs::T) where T<:List = prepend(x, prepend(y, xs))
(::Colon)(x, y, xs::List) = x:prepend(y,xs)
list() = EmptyList()
list(x, xs...) = x:list(xs...)
first(l::LinkedList) = l.head
tail(l::LinkedList) = l.tail
isempty(::LinkedList) = false
# Lazy Lists
function realise!(xs::LazyList)
xs.realised && return xs.list
xs.realised = true
xs.list = xs.f()
return xs.list
end
function realise(xs::LazyList)
realise!(xs)
# Unroll in a loop to avoid overflow
while isa(xs.list, LazyList)
xs.list = realise!(xs.list)
end
return xs.list
end
macro lazy(code)
:(LazyList(() -> seq($(esc(code)))))
end
for f in [:first :isempty]
@eval $f(l::LazyList) = $f(realise(l))
end
tail(l::LazyList) = @lazy tail(realise(l))
########
# Usage
########
include("liblazy.jl")
include("collections.jl")
# -----
# Eager
# -----
import Base.foreach
export dorun, doall, foreach
@rec dorun(xs::List) = isempty(xs) ? nothing : dorun(tail(xs))
doall(xs::List) = (dorun(xs); xs)
foreach(f, ls::List...) = map(f, ls...) |> dorun
# -------
# Interop
# -------
import Base: getindex, setindex!
getindex(l::List, i::Int) = i <= 1 ? first(l) : tail(l)[i-1]
getindex(l::List, r::UnitRange) = take(length(r), drop(r.start - 1, l))
setindex!(xs::LinkedList, v, i::Integer) = i <= 1 ? xs.first = v : (tail(xs)[i-1] = v)
setindex!(xs::LazyList, v, i::Integer) = i <= 1 ? realise(xs)[1] = v : (tail(xs)[i-1] = v)
# Iteration over a list holds on to the head
function Base.iterate(L::List, xs::List=L)
isempty(xs) && return nothing
first(xs), tail(xs)
end
###########
# Printing
###########
function Base.show(io::IO, xs::List)
print(io, "List: (")
for (i, x) in enumerate(interpose(xs, " "))
print(io, x)
if i > 21
print(io, "…")
break
end
end
print(io, ")")
end
# Some example lists
@listable +, -, Base.exp, Base.log, Base.sin, Base.cos, Base.tan
const fibs = @lazy 0:big(1):(fibs + tail(fibs))
isprime(n) =
@>> primes begin
takewhile(x -> x<=sqrt(n))
map(x -> n % x == 0)
any; !
end
const primes = filter(isprime, range(2))
end
| Lazy | https://github.com/MikeInnes/Lazy.jl.git |
|
[
"MIT"
] | 0.15.1 | 1370f8202dac30758f3c345f9909b97f53d87d3f | code | 990 | # TODO: Implement liblazy functions over standard arrays / other collections
function Base.split(xs::Vector{T}, x; keep = true) where T
result = Vector{T}[]
push!(result, T[])
for i = 1:length(xs)
if xs[i] == x
(keep || !(isempty(result[end]) || i == length(xs))) &&
push!(result, T[])
else
push!(result[end], xs[i])
end
end
isempty(result[end]) && pop!(result)
return result
end
export frequencies
function frequencies(xs)
freqs = Dict{eltype(xs),Int}()
for x in xs
freqs[x] = get(freqs, x, 0) + 1
end
return freqs
end
export init
init(xs) = xs[1:end-1]
# function Base.getindex{K, V}(d::Dict{K, V}, ks::Vector{K})
# vs = similar(ks, V, 0)
# for k in ks
# push!(vs, d[k])
# end
# return vs
# end
for f in (:takewhile, :splitby, :takeuntil)
@eval $(f)(f::Function, xs) = $(f)(f, seq(xs))
end
function groupby(f, xs)
result = d()
for x in xs
push!(get!(()->[], result, f(x)), x)
end
return result
end
| Lazy | https://github.com/MikeInnes/Lazy.jl.git |
|
[
"MIT"
] | 0.15.1 | 1370f8202dac30758f3c345f9909b97f53d87d3f | code | 2415 | # Dynamic binding is invaluable for creating certain kinds of
# complex control flow in an intuitive way. Declare and access
# a dynamic var:
# @dynamic a = 1
# a[] #> 1
# Binding `a` alters its value for everywhere further down in
# the stack.
# showa() = @show a[]
# @dynamic let a = 2
# showa()
# end
# #> a[] => 2
# Including for sub tasks which may continue to run:
# function showa()
# @schedule for i = 1:10
# @show a[]
# sleep(1)
# end
# end
# @dynamic let a = 3
# showa()
# end
# This will print `a[] => 3` repeatedly, while evluating `a[]`
# will return `1`.
# You can also use the syntax
# a[] = 5
# which will modify either the most recent binding value or the
# root of the var, as applicable.
# See also Clojure's dynamic vars for the inspiration:
# http://clojure.org/vars
import Base: getindex, setindex!
export @dynamic
mutable struct Binding{T}
root::T
end
root(b::Binding) = b.root
function dynamic_eq(def)
name, val = def.args
if isexpr(name, :(::))
name, T = name.args
:(const $(esc(name)) = Binding{$(esc(T))}($(esc(val))))
else
:(const $(esc(name)) = Binding($(esc(val))))
end
end
function dynamic_let(ex)
bindings = [:(bind($(esc(b.args[1])), $(esc(b.args[2])), t)) for b in ex.args[2:end]]
quote
t = @task $(esc(ex.args[1]))
$(bindings...)
schedule(t)
wait(t)
end
end
macro dynamic(def)
isexpr(def, :(=)) ? dynamic_eq(def) :
isexpr(def, :let) ? dynamic_let(def) :
error("Unsupported @dynamic expression")
end
Base.parent(t::Task) = t.parent
storage(t::Task) =
t.storage == nothing ? (t.storage = ObjectIdDict()) :
t.storage
isroot(task::Task) =
task.parent == task
bindings(task::Task) =
get!(storage(task), :bindings, @d())
bind(b::Binding{T}, v::T, t::Task) where {T} =
bindings(t)[b] = v
function bind(f::Function, b::Binding{T}, v::T) where T
t = Task(f)
bind(b, v, t)
schedule(t)
return wait(t)
end
binding(b::Binding{T}, t::Task = current_task()) where {T} =
haskey(bindings(t), b) ? bindings(t)[b]::T :
isroot(t) ? root(b) : binding(b, parent(t))
set!(b::Binding{T}, v::T, t::Task = current_task()) where {T} =
haskey(bindings(t), b) ? (bindings(t)[b] = v) :
isroot(t) ? (b.root = v) : set!(b, v, parent(t))
getindex(b::Binding) = binding(b)
setindex!(b::Binding{T}, v::T) where {T} = set!(b, v)
| Lazy | https://github.com/MikeInnes/Lazy.jl.git |
|
[
"MIT"
] | 0.15.1 | 1370f8202dac30758f3c345f9909b97f53d87d3f | code | 6323 | # ------------
# Construction
# ------------
export seq, constantly, repeatedly, iterated, concat
seq(xs::List) = xs
seq(xs::Array) = isempty(xs) ? list() : xs[1]:seq(xs[2:end])
seq(xs::Tuple) = seq(collect(xs))
function seq(itr)
xs = iterate(itr)
xs == nothing && return EmptyList()
x, state = xs
prepend(x, seq(itr, state))
end
# there should maybe be a @lazy here, but tests pass
function seq(itr, state)
xs = iterate(itr, state)
xs == nothing && return EmptyList()
x, state = xs
prepend(x, seq(itr, state))
end
constantly(x) = @lazy x:constantly(x)
constantly(n, x) = @>> constantly(x) take(n)
cycle(xs) = @lazy xs * cycle(xs)
repeatedly(f) = @lazy f():repeatedly(f)
repeatedly(n, f) = @>> repeatedly(f) take(n)
iterated(f, v) = @lazy v:iterated(f, f(v))
range(x, y, step=1) =
@lazy x <= y ? (x:range(x+step, y, step)) : []
range(x=1) = # Optimisation for y=Inf
@lazy x:range(x+1)
concat(xs::List, ys::List) =
@lazy isempty(xs) ? ys : (first(xs):concat(tail(xs), ys))
*(xs::List, ys::List) = concat(xs, ys)
*(xs::BitArray, ys::List) = concat(seq(xs), ys)
*(xs::AbstractArray, ys::List) = concat(seq(xs), ys)
*(xs::List, ys::AbstractArray) = concat(xs, seq(ys))
# ------------
# Manipulation
# ------------
import Base: length, map, reduce, filter, reverse
import Base.Iterators: drop, take
export riffle, interpose, take, drop, takelast, droplast, takenth, takewhile, takeuntil, dropwhile,
lazymap, reductions, remove, dorun, foreach, distinct,
groupby, partition, partitionby, splitat, splitby, flatten
riffle(ls...) = riffle(map(seq, ls)...)
riffle(ls::List...) =
@lazy any(isempty, ls) ? [] :
seq(map(first, ls)) * riffle(map(tail, ls)...)
interpose(xs, args...) = interpose(seq(xs), args...)
interpose(xs::List, y, n = 1) =
@lazy isempty(xs) ? [] :
take(n, xs) * (isempty(drop(n, xs)) ? [] :
prepend(y, interpose(drop(n, xs), y, n)))
function length(l::List)
ret = 0
# unroll in while loop in order to avoid stackoverflow
while !isempty(l)
l = tail(l)
ret += 1
end
return ret
end
Base.lastindex(l::List) = error("Cant use `end` with List.")
take(n::Integer, l::List) =
@lazy n <= 0 || isempty(l) ? [] : prepend(first(l), take(n-1, tail(l)))
drop(n::Integer, l::List) =
@lazy n <= 0 ? l : drop(n-1, tail(l))
takelast(n::Integer, l::List) =
@lazy isempty(drop(n, l)) ? l : takelast(n, tail(l))
Base.last(l::List) = @>> l takelast(1) first
droplast(n::Integer, l::List) =
map((x,_)->x, l, drop(n,l))
takenth(n::Integer, l::List) =
@lazy isempty(l) ? [] : first(drop(n-1,l)):takenth(n, drop(n, l))
for f in [:take :drop :takelast :droplast :takenth]
# This avoid the ambiguity with the base versions
@eval $f(l::List, n::Int) = $f(n, l)
@eval $f(l::List, n::Integer) = $f(n, l)
end
"""
takeuntil(pred, list)
Take the elements in `list` until the `pred` function return true.
Notice that the one which makes `pred` true is also taken.
All elements will be taken if no one satisfy the `pred` function.
"""
takeuntil(pred::Function, l::List) =
@lazy isempty(l) ? [] :
pred(first(l)) ? [first(l)] : first(l):takeuntil(pred, tail(l))
takewhile(pred::Function, l::List) =
@lazy isempty(l) || !pred(first(l)) ? [] : first(l):takewhile(pred, tail(l))
dropwhile(pred::Function, l::List) =
@lazy isempty(l) || !pred(first(l)) ? l : dropwhile(pred, tail(l))
mapply(f::Union{Function, DataType}, ls...) =
@lazy any(isempty, ls) ? [] : prepend(f(map(first, ls)...), mapply(f, map(tail, ls)...))
# Resolves amibguity error
map(f::Function, ls::List...) = mapply(f, ls...)
map(f::DataType, ls::List...) = mapply(f, ls...)
lazymap(f::Union{Function, DataType}, ls...) = map(f, map(seq, ls)...)
@rec reduce(f::Function, v, xs::List) =
isempty(xs) ? v : reduce(f, f(v, first(xs)), tail(xs))
reduce(f::Function, xs::List) =
isempty(xs) ? f() : reduce(f, first(xs), tail(xs))
reductions(f::Function, v, xs::List) =
@lazy if isempty(xs)
[]
else
acc = f(v, first(xs))
acc:reductions(f, acc, tail(xs))
end
reductions(f::Function, xs::List) =
@lazy isempty(xs) ? [] : reductions(f, first(xs), tail(xs))
filter(f::Function, xs::List) =
@lazy isempty(xs) ? [] :
f(first(xs)) ? (first(xs):filter(f, tail(xs))) :
filter(f, tail(xs))
remove(f::Function, xs::List) = filter(x->!f(x), xs)
reverse(xs::List) = reduce((xs, x)->x:xs, list(), xs)
distinct(xs::List) = distinct(xs, Set())
distinct(xs::List, seen::Set) =
@lazy isempty(xs) ? [] :
first(xs) in seen ?
distinct(tail(xs), seen) :
first(xs):distinct(tail(xs), push!(seen, first(xs)))
function groupby(f, xs::List)
groups = Dict()
for x in xs
k = f(x)
groups[k] = x:get(groups, k, list())
end
return groups
end
partition(n, xs::List; step = n, pad = nothing) =
@lazy isempty(xs) ? [] :
@with (l = take(n, xs), len = length(l)),
len < n ?
(pad == nothing ? [] : list(l * take(n-len, pad))) :
(l:partition(n, drop(step, xs); step = step, pad = pad))
partitionby(f, xs::List) =
@lazy isempty(xs) ? [] :
@with (x = first(xs), v = f(x), run = takewhile(x->f(x)==v, tail(xs))),
prepend(x,run):partitionby(f, @lazy drop(length(run)+1, xs))
splitat(n, xs::List) = (take(n, xs), drop(n, xs))
splitby(p::Function, xs::List) = takewhile(p, xs), dropwhile(p, xs)
walk(inner, outer, xs::List) = @>> xs map(inner) outer
walk(inner, outer, x) = outer(x)
prewalk(f, xs) = walk(x -> prewalk(f, x), identity, f(xs))
postwalk(f, xs) = walk(x -> postwalk(f, x), f, xs)
flatten(x) = list(x)
flatten(xs::List) = reduce((xs, x) -> xs*flatten(x), list(), xs)
# ----------
# Predicates
# ----------
import Base: any, all
==(xs::List, ys::List) =
isempty(xs) == isempty(ys) &&
(isempty(xs) || first(xs) == first(ys) && tail(xs) == tail(ys))
if isdefined(Base, :Predicate)
any(f::Base.Predicate, xs::List) = @>> xs map(f) any
all(f::Base.Predicate, xs::List) = @>> xs map(f) all
else
any(f, xs::List) = @>> xs map(f) any
all(f, xs::List) = @>> xs map(f) all
end
@rec any(xs::List) = isempty(xs) ? false : first(xs) || any(tail(xs))
any(::typeof(identity), xs::List) = any(xs)
@rec all(xs::List) = isempty(xs) ? true : first(xs) && all(tail(xs))
all(::typeof(identity), xs::List) = all(xs)
| Lazy | https://github.com/MikeInnes/Lazy.jl.git |
|
[
"MIT"
] | 0.15.1 | 1370f8202dac30758f3c345f9909b97f53d87d3f | code | 7836 | using MacroTools
# Threading macros
import Base: replace
export @>, @>>, @as, @switch, @or, @dotimes, @oncethen, @defonce, @with, @errs,
@forward, @iter
"""
A switch statement of sorts:
@switch x begin
1; "x equals one!"
2; "x equals two!"
"x equals something else!"
end
However, it's a bit more general than a regular switch in that
you can test more than just equality:
@switch isa(x, _) begin
Integer; "x is an integer!"
FloatingPoint; "x is a float!"
"x is something else!"
end
@switch _ begin
a > b; "more than!"
a < b; "less than!"
a == b; "equal!" # Note that this level of enthusiasm is not mandatory.
end
Where `_` is replaced by the value for testing in each case. The final
expression, if there is one, is used as the default value; if there is
no default and nothing matches an error will be thrown.
"""
macro switch(args...)
test, exprs = splitswitch(args...)
length(exprs) == 0 && return nothing
length(exprs) == 1 && return esc(exprs[1])
test_expr(test, val) =
test == :_ ? val :
isa(test, Expr) ? :(let _ = $val; $test; end) :
:($test==$val)
thread(val, yes, no) = :($(test_expr(test, val)) ? $yes : $no)
thread(val, yes) = thread(val, yes, :(error($"No match for $test in @switch")))
thread(val, yes, rest...) = thread(val, yes, thread(rest...))
esc(thread(exprs...))
end
function splitswitch(test, exprs)
@assert isexpr(exprs, :block) "@switch requires a begin block"
test, rmlines(exprs).args
end
function splitswitch(ex)
test = ex.args[1]
exprs = c()
for ex in ex.args[2:end]
isexpr(ex, :->) ?
push!(exprs, map(unblock, ex.args)...) :
push!(exprs, ex)
end
test, exprs
end
"""
The threading macro is like a more flexible version of the [`|>`](@ref) operator.
@> x f = f(x)
@> x g f == f(g(x))
@> x a b c d e == e(d(c(b(a(x)))))
Unlike [`|>`](@ref), functions can have arguments - the value
preceding a function will be treated as its first argument
@> x g(y, z) f == f(g(x, y, z))
@> x g f(y, z) == f(g(x), y, z)
See also [`@>>`](@ref), [`@as`](@ref).
"""
macro >(exs...)
thread(x) = isexpr(x, :block) ? thread(rmlines(x).args...) : x
@static if VERSION < v"0.7"
thread(x, ex) =
isexpr(ex, :call, :macrocall) ? Expr(ex.head, ex.args[1], x, ex.args[2:end]...) :
@capture(ex, f_.(xs__)) ? :($f.($x, $(xs...))) :
isexpr(ex, :block) ? thread(x, rmlines(ex).args...) :
Expr(:call, ex, x)
else
thread(x, ex) =
isexpr(ex, :macrocall) ? Expr(ex.head, ex.args[1], ex.args[2], x, ex.args[3:end]...) :
isexpr(ex, :call,) ? Expr(ex.head, ex.args[1], x, ex.args[2:end]...) :
@capture(ex, f_.(xs__)) ? :($f.($x, $(xs...))) :
isexpr(ex, :block) ? thread(x, rmlines(ex).args...) :
Expr(:call, ex, x)
end
thread(x, exs...) = reduce(thread, exs, init=x)
esc(thread(exs...))
end
"""
Same as [`@>`](@ref), but threads the last argument.
@>> x g(y, z) f == f(g(y, z, x))
@>> x g f(y, z) == f(y, z, g(x))
See also: [`@>>`](@ref)
"""
macro >>(exs...)
thread(x) = isexpr(x, :block) ? thread(rmlines(x).args...) : x
thread(x, ex) =
isexpr(ex, Symbol, :->) ? Expr(:call, ex, x) :
isexpr(ex, :call, :macrocall) ? Expr(ex.head, ex.args..., x) :
@capture(ex, f_.(xs__)) ? :($f.($(xs...), $x)) :
isexpr(ex, :block) ? thread(x, rmlines(ex).args...) :
error("Unsupported expression $ex in @>>")
thread(x, exs...) = reduce(thread, exs; init=x)
esc(thread(exs...))
end
"""
@as as, exs...
`@as` lets you name the threaded argmument
@as _ x f(_, y) g(z, _) == g(z, f(x, y))
All threading macros work over begin blocks
```julia
6 === @as x 2 begin
x^2
x+2
end
```
"""
macro as(as, exs...)
thread(x) = isexpr(x, :block) ? thread(rmlines(x).args...) : x
thread(x, ex) =
isexpr(ex, Symbol, :->) ? Expr(:call, ex, x) :
isexpr(ex, :block) ? thread(x, rmlines(ex).args...) :
:(let $as = $x
$ex
end)
thread(x, exs...) = reduce((x, ex) -> thread(x, ex), exs, init=x)
esc(thread(exs...))
end
@static if VERSION < v"0.7"
"""
Same as `@as` but uses `_` as the argmument name.
"""
macro _(args...)
:(@as $(esc(:_)) $(map(esc, args)...))
end
end
macro or(exs...)
thread(x) = isexpr(x, :block) ? thread(rmlines(x).args...) : esc(x)
thread(x, xs...) =
:(let x = $(esc(x))
!(x == nothing || x == false) ? x : $(thread(xs...))
end)
thread(exs...)
end
"""
@dottimes(n, body)
Repeat `body` `n` times.
"""
macro dotimes(n, body)
quote
for i = 1:$(esc(n))
$(esc(body))
end
end
end
"""
A `do`-`while` loop – executes the `while` loop once regardless of the
condition, then tests the condition before subsequent iterations.
"""
macro oncethen(expr::Expr)
@assert expr.head == :while
esc(quote
$(expr.args[2]) # body of loop
$expr # loop
end)
end
"""
Stop Julia from complaining about redifined struct/consts –
@defonce struct MyType
...
end
or
@defonce const pi = 3.14
"""
macro defonce(def)
name = namify(isexpr(def, :struct) ? def.args[2] : def)
if !isdefined(__module__, name)
return :($(esc(def)))
end
end
"""
End-less `let` block, e.g.
@with (x = 1, y = 2),
x+y
"""
macro with(ex)
@capture(ex, ((bindings__,), body_)) || error("Invalid expression @with $ex")
ex = :(let $(bindings...)
$body
end)
return esc(ex)
end
# Other syntax
export c, s, d, @d
c(xs...) = Any[xs...]
s(xs...) = Set{Any}(xs)
d(xs...) = Dict{Any, Any}(xs...)
"""
Creates an **un**typed dictionary, e.g.
```julia
julia> @d(:a=>1, :b=>2)
Dict{Any,Any} with 2 entries:
:a => 1
:b => 2
```
"""
macro d(xs...)
:(Dict{Any, Any}($(map(esc, xs)...)))
end
macro errs(ex)
:(try $(esc(ex))
catch e
showerror(stderr, e, catch_backtrace())
println(stderr)
end)
end
"""
@forward T.x functions...
Define methods for `functions` on type `T`, which call the relevant function
on the field `x`.
# Example
```julia
struct Wrapper
x
end
@forward Wrapper.x Base.sqrt # now sqrt(Wrapper(4.0)) == 2.0
@forward Wrapper.x Base.length, Base.getindex, Base.iterate # several forwarded functions are put in a tuple
@forward Wrapper.x (Base.length, Base.getindex, Base.iterate) # equivalent to above
```
"""
macro forward(ex, fs)
@capture(ex, T_.field_) || error("Syntax: @forward T.x f, g, h")
T = esc(T)
fs = isexpr(fs, :tuple) ? map(esc, fs.args) : [esc(fs)]
:($([:($f(x::$T, args...; kwargs...) = (Base.@_inline_meta; $f(x.$field, args...; kwargs...)))
for f in fs]...);
nothing)
end
# Forwarding iteration
struct SubIter{I,S}
iter::I
state::S
end
# Julia#16096
macro iter(ex)
@capture(ex, x_::T_ -> it_) || error("Use @iter x::T -> y ...")
@capture(it, $x.f_) &&
return :(@forward $(esc(T)).$f Base.iterate, Base.iterate)
quote
@inline function Base.iterate($x::$T)
it = $it
Lazy.SubIter(it, Base.iterate(it))
end
@inline function Base.iterate(::$T, sub::Lazy.SubIter)
next, state = Base.iterate(sub.iter, sub.state)
next == nothing && return nothing
next, Lazy.SubIter(sub.iter, state)
end
end |> esc
end
# Init macro
export @init
function initm(ex)
quote
if !isdefined(@__MODULE__, :__inits__)
const $(esc(:__inits__)) = Function[]
end
if !isdefined(@__MODULE__, :__init__)
function $(esc(:__init__))()
for f in $(esc(:__inits__))
f()
end
end
end
push!($(esc(:__inits__)), () -> $(esc(ex)))
nothing
end
end
macro init(args...)
initm(args...)
end
| Lazy | https://github.com/MikeInnes/Lazy.jl.git |
|
[
"MIT"
] | 0.15.1 | 1370f8202dac30758f3c345f9909b97f53d87d3f | code | 3470 | using MacroTools
# Tail call operations
function lastcalls(f, ex)
isexpr(ex, :block) && return :(begin $(lastcalls(f, ex.args)...) end)
@match ex begin
let __ end => :(let $(lastcalls(f, ex.args)...) end)
(c_ ? y_ : n_) => :($c ? $(lastcalls(f, y)) : $(lastcalls(f, n)))
(a_ && b_) => :($a && $(lastcalls(f, b)))
(a_ || b_) => :($a || $(lastcalls(f, b)))
_ => f(ex)
end
end
lastcalls(f, ex::Array) =
isempty(ex) ? ex :
[ex[1:end-1]..., lastcalls(f, ex[end])]
function retcalls(f, ex)
MacroTools.postwalk(ex) do ex
@capture(ex, return x_) ? :(return $(lastcalls(f, x))) : ex
end
end
tailcalls(f, ex) = @>> ex lastcalls(f) retcalls(f)
# Tail recursion
export @rec, @bounce
"Generate an expression like `(a, b) = (c, d)`."
tupleassign(xs, ys) = Expr(:(=), Expr(:tuple, xs...), Expr(:tuple, ys...))
tco(ex, f, dummy, start) =
@capture(ex, $f(args__)) ?
:($(tupleassign(dummy, args)); @goto $start) :
ex
"""
Enables efficient recursive functions, e.g.
@rec reduce(f::Function, v, xs::List) =
isempty(xs) ? v : reduce(f, f(v, first(xs)), tail(xs))
Without `@rec` this function would overflow the stack for
lists of 80,000 or more elements.
Caveats:
- No support for trampolining, i.e. only calls to the
given function are optimised away.
- Ignores multiple dispatch – it is assumed that the function's
name always refers to the given definition.
- Don't rebind the function's name in a let (see above).
- Don't use this with varargs functions.
Use the more flexible, but slower, [`@bounce`](@ref) to avoid these issues.
"""
macro rec(def)
def = shortdef(macroexpand(@__MODULE__, def))
@capture(def, f_(args__) = body_) || error("@rec: $def is not a function definition.")
f = namify(f)
dummy = @>> args map(namify) map(string) map(gensym)
# Set up of variables
@gensym start
body = quote
$(tupleassign(dummy, args))
@label $start
$(tupleassign(args, dummy))
$body
end
def.args[2] = tailcalls(ex -> tco(ex, f, dummy, start), body)
return esc(def)
end
# Trampolining
trampname(f) = Symbol(string("#__", f, "_tramp__"))
mutable struct Bounce
f::Function
end
function trampoline(f, args...)
val = f(args...)
while isa(val, Bounce)
val = val.f()
end
return val
end
function bounce(ex)
@capture(ex, f_(args__)) || return ex
f_tramp = trampname(f)
:(Lazy.Bounce(() -> $f_tramp($(args...))))
end
function trampdef(f)
f_tramp = trampname(f)
@isdefined(f_tramp) && return
:($f_tramp(args...) = $f(args...))
end
"""
Tail recursion that doesn't blow the stack.
@bounce even(n) = n == 0 ? true : odd(n-1)
@bounce odd(n) = n == 0 ? false : even(n-1)
even(1_000_000) # Blows up without `@bounce`.
#> true
For simple cases you probably want the much faster [`@rec`](@ref).
"""
macro bounce(def)
def = macroexpand(@__MODULE__, def)
@assert isdef(def)
@assert isexpr(def.args[1].args[1], Symbol) # TODO: handle f{T}() = ...
f = namify(def)
f_tramp = trampname(f)
args = def.args[1].args[2:end]
def.args[1].args[1] = f_tramp
calls = Symbol[]
def.args[2] = tailcalls(ex -> (isexpr(ex, :call) && push!(calls, ex.args[1]);
bounce(ex)),
def.args[2])
quote
$([trampdef(call) for call in calls]...)
$def
$f($(args...)) = Lazy.trampoline($f_tramp, $(args...))
end |> esc
end
| Lazy | https://github.com/MikeInnes/Lazy.jl.git |
|
[
"MIT"
] | 0.15.1 | 1370f8202dac30758f3c345f9909b97f53d87d3f | code | 4058 | using Lazy
import Lazy: cycle, range, drop, take
using Test
# dummy function to test threading macros on
function add_things(n1, n2, n3)
100n1 + 10n2 + n3
end
# dummy macro to test threading macros on
macro m_add_things(n1, n2, n3)
quote
100 * $(esc(n1)) + 10 * $(esc(n2)) + $(esc(n3))
end
end
# define structs for @forward macro testing below (PR #112)
struct Foo112 end
struct Bar112 f::Foo112 end
@testset "Lazy" begin
if VERSION >= v"1.0.0"
@test isempty(detect_ambiguities(Base, Core, Lazy))
end
@testset "Lists" begin
@test list(1, 2, 3)[2] == 2
@test prepend(1, list(2,3,4)) == 1:list(2, 3, 4)
@test seq([1, 2, 3]) == list(1, 2, 3)
@test seq(1:3) == list(1, 2, 3)
@test constantly(1)[50] == 1
testfn() = 1
@test repeatedly(testfn)[50] == 1
@test cycle([1, 2, 3])[50] == 2
@test iterated(x->x^2, 2)[3] == 16
@test range(1, 5)[3] == 3
@test range(1, 5)[10] == nothing
@test range(1, 5)[-1] == 1
@test list(1, 2, 3) * list(4, 5, 6) == list(1, 2, 3, 4, 5, 6)
@test first(list(1, 2, 3)) == 1
@test tail(list(1, 2, 3)) == list(2, 3)
@test flatten(list(1,2,list(3,4))) == list(1, 2, 3, 4)
@test list(1,2,list(3,4))[3] == list(3, 4)
@test list(list(1), list(2))[1] == list(1)
@test reductions(+, 0, list(1, 2, 3)) == list(1, 3, 6)
@test [i for i in @lazy[1,2,3]] == [1,2,3]
l = list(1, 2, 3)
@test l:7:l == list(list(1, 2, 3), 7, 1, 2, 3) # ambiguity test
end
@testset "Fibs" begin
fibs = @lazy 0:1:(fibs + drop(1, fibs));
@test fibs[20] == 4181
@test take(5, fibs) == list(0, 1, 1, 2, 3)
end
@testset "Primes" begin
isprime(n) =
@>> primes begin
take_while(x -> x<=sqrt(n))
map(x -> n % x == 0)
any; !
end
primes = filter(isprime, range(2));
end
@testset "Even squares" begin
esquares = @>> range() map(x->x^2) filter(iseven);
@test take(5, esquares) == list(4, 16, 36, 64, 100)
end
@testset "Threading macros" begin
temp = @> [2 3] sum
@test temp == 5
# Reverse from after index 2
temp = @>> 2 reverse([1, 2, 3, 4, 5])
@test temp == [1, 5, 4, 3, 2]
temp = @as x 2 begin
x^2
x + 2
end
@test temp == 6
# test that threading macros work with functions
temp = @> 1 add_things(2,3)
@test temp == 123
temp = @>> 3 add_things(1,2)
@test temp == 123
temp = @as x 2 add_things(1,x,3)
@test temp == 123
# test that threading macros work with macros
temp = @> 1 @m_add_things(2,3)
@test temp == 123
temp = @>> 3 @m_add_things(1,2)
@test temp == 123
temp = @as x 2 @m_add_things(1,x,3)
@test temp == 123
end
@testset "Forward macro" begin
play(x::Foo112; y) = y # uses keyword arg
play(x::Foo112, z) = z # uses regular arg
play(x::Foo112, z1, z2; y) = y + z1 + z2 # uses both
@forward Bar112.f play # forward `play` function to field `f`
let f = Foo112(), b = Bar112(f)
@test play(f, y = 1) === play(b, y = 1)
@test play(f, 2) === play(b, 2)
@test play(f, 2, 3, y = 1) === play(b, 2, 3, y = 1)
end
end
@testset "getindex" begin
l = Lazy.range(1,10)
@test l[1] == 1
@test collect(l[1:5]) == collect(1:5)
end
@testset "Listables" begin
@test_throws MethodError sin()
end
@static VERSION ≥ v"1.2" && @testset "avoid stackoverflow" begin
@test (length(takewhile(<(10), Lazy.range(1))); true)
@test (length(takewhile(<(100000), Lazy.range(1))); true)
end
@testset "any/all" begin
let xs = list(true, false, false)
@test any(identity, xs) == true
@test any(xs) == true
@test all(identity, xs) == false
@test all(xs) == false
end
let yy = list(1, 0, 1)
@test any(Bool, yy) == true
@test all(Bool, yy) == false
end
# Base method--ensures no ambiguity with methods here
@test all([true true; true true], dims=1) == [true true]
end
end
| Lazy | https://github.com/MikeInnes/Lazy.jl.git |
|
[
"MIT"
] | 0.15.1 | 1370f8202dac30758f3c345f9909b97f53d87d3f | docs | 5148 | # Lazy.jl
[](https://gitter.im/one-more-minute/Lazy.jl)
```julia
Pkg.add("Lazy")
```
Lazy.jl provides Julia with the cornerstones of functional programming - lazily-evaluated lists and a large library of functions for working with them. It's also a repository for some neat macros, which might be useful to you even if you don't want lazy lists (see below).
Firstly, the canonical examples, in Julia:
```julia
using Lazy
# Note : prepends. Don't forget the semicolon!
# -- When running interactively, the semi-colon prevents the environment
# from trying to display an infinite list.
# Fibonacci sequence defined in terms of itself:
fibs = @lazy 0:1:(fibs + drop(1, fibs));
take(20, fibs)
#> (0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181)
# isprime defined in terms of the prime numbers:
isprime(n) =
@>> primes begin
takewhile(x -> x<=sqrt(n))
map(x -> n % x == 0)
any; !
end
# the prime numbers defined in terms of isprime:
primes = filter(isprime, Lazy.range(2));
take(20, primes)
#> (2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71)
```
If you've done any functional programming, you already know how to use Lazy.jl; just head down to the reference below to see what functions are available.
### Intro to Laziness
For the unfamiliar, laziness just means that the elements of the list aren't actually calculated until you use them. This allows you to perform all sorts of magic, like working with infinite lists or lists of items from the future.
```julia
# Even square numbers:
> esquares = @>> Lazy.range() map(x->x^2) filter(iseven);
# first 5
> take(5, esquares)
List:
4
16
36
64
100
# 99th
> esquares[99]
39204
```
But lazy lists aren't just for mathematical tricks; you can use them very practically for things like file IO. For example, you might represent the lines of a terabyte-large file with a lazy list; you can process the lines as any other list, letting the IO happen in the background.
```julia
# TODO: lineseq example
@>> "file.txt" lineseq foreach(println) # Will work no matter many lines file.txt has
```
The other thing that separates lists from arrays is the huge amount of functionality that comes with most functional programming libraries, including Lazy.jl - if you know your way around them, most data manipulation becomes a simple case of chaining a few functions together. Even if you do ultimately need arrays for speed, you could do worse than to prototype with lists.
### Macros
The threading macros will pipe values through functions, a bit like the `|>` operator but far more flexible. They can make code a *lot* cleaner by putting function calls in the order they are applied. The best way to understand them is by example:
```julia
# Just like x |> f etc.
@> x f == f(x)
@> x g f == f(g(x))
@> x a b c d e == e(d(c(b(a(x)))))
# Unlike |>, functions can have arguments - the value
# preceding a function will be treated as its first argument
@> x g(y, z) f == f(g(x, y, z))
@> x g f(y, z) == f(g(x), y, z)
# @>> does the exact same thing, but with value treated as the *last* argument.
@>> x g(y, z) f == f(g(y, z, x))
@>> x g f(y, z) == f(y, z, g(x))
# @as lets you name the threaded argument
@as _ x f(_, y) g(z, _) == g(z, f(x, y))
# All threading macros work over begin blocks
@as x 2 begin
x^2
x+2
end == 6
```
### Function Reference
```julia
List # The abstract type that represents lazy lists
list(1,2,3) == (1 2 3)
prepend(1, list(2,3,4)) == 1:list(2,3,4) == (1 2 3 4)
# Most list handling functions have similar names
# to those in Clojure.
# Create a seq from any iterator or array
seq([1,2,3]) == seq(1:3) == (1 2 3)
# Infinite list of an element
constantly(x) == (x x x ...)
constantly(1) == (1 1 1 ...)
# Infinite list of function calls
repeatedly(f) == (f() f() f() ...)
repeatedly(rand) == (0.634 0.478 0.776 ...)
# Infinitely repeat list
cycle(a) == (a... a... a... ...)
cycle([1,2,3]) == (1 2 3 1 2 3 1 2 3 1 ...)
# Repeatedly nest function calls
iterated(f, x) == (x f(x) f(f(x)) ...)
iterated(x->x^2, 2) == (2 4 16 256 65536 ...)
range(2) == (2 3 4 5 ...)
range(1, 5) == (1 2 3 4 5)
range(1, 5, 2) == (1 3 5)
list(1,2,3) * list(4,5,6) == (1 2 3 4 5 6)
first(list(1,2,3)) == 1
tail(list(1,2,3)) == (2 3)
flatten(list(1,2,list(3,4))) == (1 2 3 4)
takeuntil(x -> x > 1, 0:1) == (0 1)
takeuntil(x -> x > 1, 0:5) == (0 1 2)
takeuntil(x -> x > 1, 2:5) == (2)
takeuntil(x -> x > 1, []) == ()
riffle
interpose
take
drop
takelast
droplast
takenth
takewhile
dropwhile
# These work as for arrays, but are
# lazy where appropriate.
map, reduce, filter, reverse
lazymap
reductions
remove
dorun
foreach
distinct
groupby
partition
partitionby
splitat
splitby
# @lazy is the secret sauce that makes infinite definitions
# work; usually you can just wrap your list definition in it:
@lazy [1,2,3] == (1 2 3)
# Define a lazy recursive function
constantly(x) = @lazy x:constantly(x)
# Make a function map itself over lists
@listable exp
exp(range()) == (2.71 7.38 20.08 54.59 148.41 ...)
# Threading macros, see above
@>, @>>
```
| Lazy | https://github.com/MikeInnes/Lazy.jl.git |
|
[
"MIT"
] | 0.1.1 | e5a84c06644be8675ef8b8bb664d4c62399f2c30 | code | 2563 | cd(pwd())
Pkg.activate("./EventStudyInteracts")
using EventStudyInteracts
using DataFrames, Random, Plots, FixedEffectModels
using CSV
units = 100000
start = 1
finish = 20
nlvls = 5
time = finish - start + 1
obsv = units * time
K=100
id1 = rand(1:(obsv/K), obsv)
id2 = rand(1:K, obsv)
df = DataFrame(id = repeat(1:units, inner=time), t = repeat(start:finish, outer=units), id1 = id1, id2 = id2)
Random.seed!(20211222)
df.Y .= 0 # outcome variable
df.D .= 0 # intervention variable
df.cohort .= repeat([rand(0:nlvls) for i in 1:units], inner=time) # treatment cohort
effect = [rand(2:10) for i in unique(df.cohort)]
first_treat = [rand(start:(finish + 20)) for i in unique(df.cohort)]
df.effect = similar(df.cohort)
df.first_treat = similar(df.cohort, Union{Int64, Missing})
for i in 0:nlvls
df.effect[df.cohort .== i] .= effect[i+1]
df.first_treat[df.cohort .== i] .= first_treat[i+1]
end
df.first_treat[df.first_treat .> finish] .= missing
df.D = ifelse.(coalesce.(df.t .>= df.first_treat, false), 1, 0)
df.rel_time .= df.t .- df.first_treat
df.Y = df.t .+ ifelse.(df.D .== 1, df.effect .* df.rel_time, 0) .+ randn(nrow(df))
plot(df.t, df.Y, label=false)
df.never_treat = ismissing.(df.first_treat)
# We will consider the dynamic effect of union status on income. We first generate these relative time indicators, and leave out the distant leads due to few observations. Implicitly this assumes that effects outside the lead windows are zero.
relmin = abs(minimum(skipmissing(df.rel_time)))
relmax = abs(maximum(skipmissing(df.rel_time)))
for k in relmin:-1:2
df[!, Symbol("g_$k")] = Int.(coalesce.(df.rel_time .== -k, false))
end
for k in 0:relmax
df[!, Symbol("g$k")] = Int.(coalesce.(df.rel_time .== k, false))
end
absorb = [:id,:t]
formula1 = term(:Y) ~ sum(fe.(term.(absorb)))
rel_varlist1 = Symbol[]
for i in relmin:-1:2
push!(rel_varlist1, Symbol("g_"*string(i)))
end
for i in 0:relmax
push!(rel_varlist1, Symbol("g"*string(i)))
end
control_cohort1 = :never_treat
cohort1 = :first_treat
CSV.write("./EventStudyInteracts/benchmark/bench.csv", df)
m1 = eventreg(df, formula1, rel_varlist1, control_cohort1, cohort1)
@time m1 = eventreg(df, formula1, rel_varlist1, control_cohort1, cohort1)
# 76.965495 seconds (395.81 k allocations: 218.291 GiB, 23.78% gc time)
absorb = [:id,:id1,:id2,:t]
formula2 = term(:Y) ~ sum(fe.(term.(absorb)))
@time m2 = eventreg(df, formula2, rel_varlist1, control_cohort1, cohort1)
# 88.459680 seconds (3.09 M allocations: 218.534 GiB, 21.19% gc time, 0.86% compilation time)
| EventStudyInteracts | https://github.com/xiaobaaaa/EventStudyInteracts.jl.git |
|
[
"MIT"
] | 0.1.1 | e5a84c06644be8675ef8b8bb664d4c62399f2c30 | code | 7278 |
##############################################################################
##
## Type EventStudyInteract
##
##############################################################################
struct EventStudyInteract <: RegressionModel
coef::Vector{Float64} # Vector of coefficients
vcov::Matrix{Float64} # Covariance matrix
vcov_type::CovarianceEstimator
nclusters::Union{NamedTuple, Nothing}
esample::BitVector # Is the row of the original dataframe part of the estimation sample?
residuals::Union{AbstractVector, Nothing}
fe::DataFrame
fekeys::Vector{Symbol}
coefnames::Vector # Name of coefficients
responsename::Union{String, Symbol} # Name of dependent variable
formula::FormulaTerm # Original formula
formula_schema::FormulaTerm # Schema for predict
contrasts::Dict
nobs::Int64 # Number of observations
dof::Int64 # Number parameters estimated - has_intercept
dof_residual::Int64 # dof used for t-test and F-stat. nobs - degrees of freedoms with simple std
rss::Float64 # Sum of squared residuals
tss::Float64 # Total sum of squares
r2::Float64 # R squared
adjr2::Float64 # R squared adjusted
F::Float64 # F statistics
p::Float64 # p value for the F statistics
# for FE
iterations::Union{Int, Nothing} # Number of iterations
converged::Union{Bool, Nothing} # Has the demeaning algorithm converged?
r2_within::Union{Float64, Nothing} # within r2 (with fixed effect
feresult::FixedEffectModel
end
StatsAPI.coef(m::EventStudyInteract) = m.coef
StatsAPI.coefnames(m::EventStudyInteract) = m.coefnames
StatsAPI.responsename(m::EventStudyInteract) = m.responsename
StatsAPI.vcov(m::EventStudyInteract) = m.vcov
StatsAPI.nobs(m::EventStudyInteract) = m.nobs
StatsAPI.dof(m::EventStudyInteract) = m.dof
StatsAPI.dof_residual(m::EventStudyInteract) = m.dof_residual
StatsAPI.r2(m::EventStudyInteract) = m.r2
StatsAPI.adjr2(m::EventStudyInteract) = m.adjr2
StatsAPI.islinear(m::EventStudyInteract) = true
StatsAPI.deviance(m::EventStudyInteract) = m.tss
StatsAPI.rss(m::EventStudyInteract) = m.rss
StatsAPI.mss(m::EventStudyInteract) = deviance(m) - rss(m)
StatsAPI.residuals(m::EventStudyInteract) = m.residuals2
function StatsAPI.confint(m::EventStudyInteract; level::Real = 0.95)
scale = tdistinvcdf(StatsAPI.dof_residual(m), 1 - (1 - level) / 2)
se = stderror(m)
hcat(m.coef - scale * se, m.coef + scale * se)
end
function StatsAPI.coeftable(m::EventStudyInteract; level = 0.95)
cc = coef(m)
se = stderror(m)
coefnms = coefnames(m)
conf_int = confint(m; level = level)
# put (intercept) last
if !isempty(coefnms) && ((coefnms[1] == Symbol("(Intercept)")) || (coefnms[1] == "(Intercept)"))
newindex = vcat(2:length(cc), 1)
cc = cc[newindex]
se = se[newindex]
conf_int = conf_int[newindex, :]
coefnms = coefnms[newindex]
end
tt = cc ./ se
CoefTable(
hcat(cc, se, tt, fdistccdf.(Ref(1), Ref(StatsAPI.dof_residual(m)), abs2.(tt)), conf_int[:, 1:2]),
["Estimate","Std.Error","t value", "Pr(>|t|)", "Lower 95%", "Upper 95%" ],
["$(coefnms[i])" for i = 1:length(cc)], 4)
end
##############################################################################
##
## Display Result
##
##############################################################################
function title(m::EventStudyInteract)
return "EventStudyInteract IW estimator"
end
format_scientific(x) = @sprintf("%.3f", x)
function top(m::EventStudyInteract)
out = [
"Number of obs" sprint(show, nobs(m), context = :compact => true);
"Degrees of freedom" sprint(show, dof(m), context = :compact => true);
"R2" format_scientific(r2(m));
"R2 Adjusted" format_scientific(adjr2(m));
"F-Stat" sprint(show, m.F, context = :compact => true);
"p-value" format_scientific(m.p);
]
out = vcat(out,
["R2 within" format_scientific(m.r2_within);
"Iterations" sprint(show, m.iterations, context = :compact => true);
])
return out
end
function Base.show(io::IO, m::EventStudyInteract)
ctitle = title(m)
ctop = top(m)
cc = coef(m)
se = stderror(m)
yname = responsename(m)
coefnms = coefnames(m)
conf_int = confint(m)
# put (intercept) last
if !isempty(coefnms) && ((coefnms[1] == Symbol("(Intercept)")) || (coefnms[1] == "(Intercept)"))
newindex = vcat(2:length(cc), 1)
cc = cc[newindex]
se = se[newindex]
conf_int = conf_int[newindex, :]
coefnms = coefnms[newindex]
end
tt = cc ./ se
mat = hcat(cc, se, tt, fdistccdf.(Ref(1), Ref(StatsAPI.dof_residual(m)), abs2.(tt)), conf_int[:, 1:2])
nr, nc = size(mat)
colnms = ["Estimate","Std.Error","t value", "Pr(>|t|)", "Lower 95%", "Upper 95%"]
rownms = ["$(coefnms[i])" for i = 1:length(cc)]
pvc = 4
# print
if length(rownms) == 0
rownms = AbstractString[lpad("[$i]",floor(Integer, log10(nr))+3) for i in 1:nr]
end
if length(rownms) > 0
rnwidth = max(4, maximum(length(nm) for nm in rownms) + 2, length(yname) + 2)
else
# if only intercept, rownms is empty collection, so previous would return error
rnwidth = 4
end
rownms = [rpad(nm,rnwidth-1) * "|" for nm in rownms]
widths = [length(cn)::Int for cn in colnms]
str = [sprint(show, mat[i,j]; context=:compact => true) for i in 1:nr, j in 1:nc]
if pvc != 0 # format the p-values column
for i in 1:nr
str[i, pvc] = format_scientific(mat[i, pvc])
end
end
for j in 1:nc
for i in 1:nr
lij = length(str[i, j])
if lij > widths[j]
widths[j] = lij
end
end
end
widths .+= 1
totalwidth = sum(widths) + rnwidth
if length(ctitle) > 0
halfwidth = div(totalwidth - length(ctitle), 2)
println(io, " " ^ halfwidth * string(ctitle) * " " ^ halfwidth)
end
if length(ctop) > 0
for i in 1:size(ctop, 1)
ctop[i, 1] = ctop[i, 1] * ":"
end
println(io, "=" ^totalwidth)
halfwidth = div(totalwidth, 2) - 1
interwidth = 2 + mod(totalwidth, 2)
for i in 1:(div(size(ctop, 1) - 1, 2)+1)
print(io, ctop[2*i-1, 1])
print(io, lpad(ctop[2*i-1, 2], halfwidth - length(ctop[2*i-1, 1])))
print(io, " " ^interwidth)
if size(ctop, 1) >= 2*i
print(io, ctop[2*i, 1])
print(io, lpad(ctop[2*i, 2], halfwidth - length(ctop[2*i, 1])))
end
println(io)
end
end
println(io,"=" ^totalwidth)
println(io, rpad(string(yname), rnwidth-1) * "|" *
join([lpad(string(colnms[i]), widths[i]) for i = 1:nc], ""))
println(io,"-" ^totalwidth)
for i in 1:nr
print(io, rownms[i])
for j in 1:nc
print(io, lpad(str[i,j],widths[j]))
end
println(io)
end
println(io,"=" ^totalwidth)
end
| EventStudyInteracts | https://github.com/xiaobaaaa/EventStudyInteracts.jl.git |
|
[
"MIT"
] | 0.1.1 | e5a84c06644be8675ef8b8bb664d4c62399f2c30 | code | 709 |
module EventStudyInteracts
# slows down tss
#if isdefined(Base, :Experimental) && isdefined(Base.Experimental, Symbol("@optlevel"))
# @eval Base.Experimental.@optlevel 1
#end
using DataFrames
using FixedEffectModels
using LinearAlgebra
using Printf
using Reexport
using Statistics
using StatsAPI
using StatsBase
using StatsFuns
@reexport using StatsModels
using Tables
using Vcov
include("EventStudyInteract.jl")
include("eventfit.jl")
include("ee.jl")
include("avar.jl")
# Export from StatsBase
export coef, coefnames, coeftable, responsename, vcov, stderror, nobs, dof_residual, r2, adjr2, islinear, deviance, rss, mss, confint, predict, residuals, fit
export eventreg,
EventStudyInteract,
Vcov
end
| EventStudyInteracts | https://github.com/xiaobaaaa/EventStudyInteracts.jl.git |
|
[
"MIT"
] | 0.1.1 | e5a84c06644be8675ef8b8bb664d4c62399f2c30 | code | 457 |
function avar(e::Matrix, Z::Matrix, robust::Bool=true)
N = size(e, 1)
L = size(Z, 2)
p = size(e, 2)
S = zeros(L*p, L*p)
for j in 1:p
for k in 1:p
if robust
S[(j-1)*L+1:j*L,(k-1)*L+1:k*L] = (Z' * Diagonal(e[:,j] .* e[:,k]) * Z) / N
else
S[(j-1)*L+1:j*L,(k-1)*L+1:k*L] = (Z' * Z) * cov(e[:,j], e[:,k]) / N
end
end
end
return S
end | EventStudyInteracts | https://github.com/xiaobaaaa/EventStudyInteracts.jl.git |
|
[
"MIT"
] | 0.1.1 | e5a84c06644be8675ef8b8bb664d4c62399f2c30 | code | 83 | function ee(i::Int, n::Int)
v = zeros(1, n)
v[i] = 1
return v
end
| EventStudyInteracts | https://github.com/xiaobaaaa/EventStudyInteracts.jl.git |
|
[
"MIT"
] | 0.1.1 | e5a84c06644be8675ef8b8bb664d4c62399f2c30 | code | 7914 | function eventreg(@nospecialize(df),
@nospecialize(formula::FormulaTerm),
@nospecialize(rel_varlist::Vector{Symbol}),
@nospecialize(control_cohort::Symbol),
@nospecialize(cohort::Symbol),
@nospecialize(vcov::CovarianceEstimator = Vcov.simple());
@nospecialize(contrasts::Dict = Dict{Symbol, Any}()),
@nospecialize(weights::Union{Symbol, Nothing} = nothing),
@nospecialize(save::Union{Bool, Symbol} = :none),
@nospecialize(method::Symbol = :cpu),
@nospecialize(nthreads::Integer = method == :cpu ? Threads.nthreads() : 256),
@nospecialize(double_precision::Bool = true),
@nospecialize(tol::Real = 1e-6),
@nospecialize(maxiter::Integer = 10000),
@nospecialize(drop_singletons::Bool = true),
@nospecialize(progress_bar::Bool = true),
@nospecialize(dof_add::Integer = 0),
@nospecialize(subset::Union{Nothing, AbstractVector} = nothing))
StatsAPI.fit(EventStudyInteract, formula, df, rel_varlist, control_cohort, cohort, vcov; contrasts = contrasts, weights = weights, save = save, method = method, nthreads = nthreads, double_precision = double_precision, tol = tol, maxiter = maxiter, drop_singletons = drop_singletons, progress_bar = progress_bar, dof_add = dof_add, subset = subset)
end
function StatsAPI.fit(::Type{EventStudyInteract},
@nospecialize(formula::FormulaTerm),
@nospecialize(df),
@nospecialize(rel_varlist::Vector{Symbol}),
@nospecialize(control_cohort::Symbol),
@nospecialize(cohort::Symbol),
@nospecialize(vcov::CovarianceEstimator = Vcov.simple());
@nospecialize(contrasts::Dict = Dict{Symbol, Any}()),
@nospecialize(weights::Union{Symbol, Nothing} = nothing),
@nospecialize(save::Union{Bool, Symbol} = :none),
@nospecialize(method::Symbol = :cpu),
@nospecialize(nthreads::Integer = method == :cpu ? Threads.nthreads() : 256),
@nospecialize(double_precision::Bool = true),
@nospecialize(tol::Real = 1e-6),
@nospecialize(maxiter::Integer = 10000),
@nospecialize(drop_singletons::Bool = true),
@nospecialize(progress_bar::Bool = true),
@nospecialize(dof_add::Integer = 0),
@nospecialize(subset::Union{Nothing, AbstractVector} = nothing))
df = DataFrame(df; copycols = false)
# Prepare the varlists
nvarlist = Symbol[]
dvarlist = Symbol[]
for l in rel_varlist
push!(dvarlist,l)
n_l = Symbol("n",l)
df[!,n_l] = df[!,l]
df[!,n_l][df[!,control_cohort].==1] .= 0
push!(nvarlist,n_l)
end
cohort_list = unique(df[!,cohort][df[!,control_cohort].==0])
cohort_list = sort(cohort_list)
cohort_list = Int.(cohort_list)
nrel_times = length(nvarlist)
ncohort = length(cohort_list)
# Prepare interaction terms for the interacted regression
cohort_rel_varlist = Symbol[]
for l in nvarlist
for yy in cohort_list
n_l_yy = Symbol("n"*string(l)*"_"*string(yy))
df[!, :D] .= ifelse.(coalesce.(df[!, cohort] .== yy, false), 1, 0)
df[!, n_l_yy] = df[!, :D] .* df[!, l]
push!(cohort_rel_varlist, n_l_yy)
end
end
# bcohort_rel_varlist = Symbol[]
# for l in rel_varlist
# for yy in cohort_list
# push!(bcohort_rel_varlist, Symbol(string(l)*"_x_"*string(yy)))
# end
# end
# Estimate the interacted regression
formula1 = formula.lhs ~ sum(term.(cohort_rel_varlist)) + formula.rhs
result = reg(df,
formula1,
vcov,
contrasts = contrasts,
weights = weights,
save = save,
method = method,
nthreads = nthreads,
double_precision = double_precision,
tol = tol,
maxiter = maxiter,
drop_singletons = drop_singletons,
progress_bar = progress_bar,
dof_add = dof_add,
subset = subset)
#Caculate the weights.
df = df[result.esample .== 1, :]
ff_w = zeros(0,length(nvarlist))
nresidlist = Symbol[]
for yy in cohort_list
cohort_ind = Symbol("cohort_ind")
resid_yy = Symbol("resid", yy)
df[!, cohort_ind] .= ifelse.(coalesce.(df[!,cohort] .== yy,false) , 1 , 0)
formula2 = term(cohort_ind) ~ sum(term.(nvarlist)) + term(0)
reg1 = reg(df[df[!,control_cohort] .== 0,:], formula2)
bb = reg1.coef
ff_w = vcat(ff_w,bb')
df[!,resid_yy] = residuals(reg1,df)
push!(nresidlist,resid_yy)
end
X = hcat([df[df[!, control_cohort] .== 0, i] for i in nvarlist]...)
XX = X' * X
Sxx = XX*(1/size(X)[1])
Sxxi = FixedEffectModels.invsym!(Sxx)
e = hcat([df[df[!, control_cohort] .== 0, i] for i in nresidlist]...)
S_robust = avar(e, X, true) # using the robust estimator
KSxxi = kron(Matrix{Float64}(I, ncohort, ncohort), Sxxi)
Sigma_ff = KSxxi * S_robust * KSxxi/ size(X)[1]
b = result.coef
V = diag(result.vcov)
replace!(V, NaN => 0)
# Convert the delta estimate vector to a matrix where each column is a relative time
end_ = 0
evt_bb = zeros(ncohort,0)
evt_VV = zeros(ncohort,0)
for i in 1:nrel_times
start = end_ + 1
end_ = start + ncohort - 1
b_i = b[start:end_]
evt_bb = hcat(evt_bb, b_i)
V_i = V[start:end_]
evt_VV = hcat(evt_VV, V_i)
end
# Take weighted average for IW estimators
w = ff_w
delta = evt_bb
b_iw = sum(w .* delta, dims=1)
nc, nr = size(w)
# Ptwise variance from cohort share estimation and interacted regression
VV = result.vcov # VCV from the interacted regression
replace!(VV, NaN => 0)
VV = VV[1:nr*nc, 1:nr*nc] # in case reports _cons
wlong = w'.*repeat(ee(1, nr)', 1, nc)
for i in 2:nrel_times # loop from 2 to nrel_times
wlong = [wlong (w' .* repeat(ee(i, nr)', 1, nc))] # concatenate
end
V_iw = wlong * VV * wlong'
Vshare = Sigma_ff
Sigma_l = zeros(0, 0)
share_idx = 0:nr:(nc-1)*nr
for i in 1:nrel_times
for j in 1:i
Vshare_evt = Vshare[share_idx .+ i, share_idx .+ j]
V_iw[i,j] += delta[:,i]' * Vshare_evt * delta[:,j]
end
end
coef_iw = vec(b_iw')
vcov_iw = Symmetric(V_iw)
vcov_iw_diag = diag(vcov_iw)
##############################################################################
##
## Test Statistics
##
##############################################################################
# Compute standard error
# Compute Fstat
F = result.F
p = result.p
dof = result.dof
dof_residual = result.dof_residual
# Compute rss, tss, r2, r2 adjusted
rss = result.rss
r2 = result.r2
r2_within = result.r2_within
tss_total = rss /(1-r2)
mss = tss_total - rss
adjr2 = result.adjr2
# Others
nclusters = result.nclusters
esample = result.esample
fekeys = result.fekeys
coef_names = [string(x) for x in dvarlist]
# coef_names = coefnames
response_name = responsename(result)
# response_name, coef_names = coefnames(formula_schema)
formula_origin = formula1
formula_schema = result.formula_schema
contrasts = result.contrasts
nobs = result.nobs
residuals2 = nothing
if (save == :residuals) | (save == :all)
residuals2 = result.residuals2
end
iterations = result.iterations
fe2 = result.fe
converged = result.converged
feresult = result
return EventStudyInteract(coef_iw, vcov_iw, vcov, nclusters, esample, residuals2, fe2, fekeys, coef_names, response_name, formula_origin, formula_schema, contrasts, nobs, dof , dof_residual, rss, tss_total, r2, adjr2, F, p, iterations, converged, r2_within, feresult)
end
| EventStudyInteracts | https://github.com/xiaobaaaa/EventStudyInteracts.jl.git |
|
[
"MIT"
] | 0.1.1 | e5a84c06644be8675ef8b8bb664d4c62399f2c30 | docs | 23858 | # EventStudyInteracts.jl
This package is a Julia replication of the Stata package [`eventstudyinteract` ](https://github.com/lsun20/EventStudyInteract)provided by [Sun and Abraham (2021)](https://www.sciencedirect.com/science/article/abs/pii/S030440762030378X).
The estimation process is identical to that of eventstudyinteract, and this package used [`FixedEffectModels.jl`](https://github.com/FixedEffects/FixedEffectModels.jl) to implement the Stata command [`reghdfe`](https://github.com/sergiocorreia/reghdfe) functionality.
As introduced in the Stata package [`eventstudyinteract`](https://github.com/lsun20/EventStudyInteract) provided by [Sun and Abraham (2021)](https://www.sciencedirect.com/science/article/abs/pii/S030440762030378X), the function of this package is:
> [`eventstudyinteract`](https://github.com/lsun20/EventStudyInteract) implements the interaction weighted (IW) estimator and constructs pointwise confidence interval for the estimation of dynamic treatment effects. To estimate the dynamic effects of an absorbing treatment, researchers often use two-way fixed effects (TWFE) regressions that include leads and lags of the treatment (event study specification). Units are categorized into different cohorts based on their initial treatment timing. Sun and Abraham (2020) proposes this estimator as an alternative to the TWFE regression in the presence of treatment effects heterogeneous across cohorts. Under treatment effects heterogeneity, the TWFE regression can result in estimates with uninterpretable weights, which can be assessed by the Stata module eventstudyweights. The IW estimator is implemented in three steps. First, estimate the interacted regression with reghdfe, where the interactions are between relative time indicators and cohort indicators. Second, estimate the cohort shares underlying each relative time. Third, take the weighted average of estimates from the first step, with weights set to the estimated cohort shares.
## Introduction
- Julia is faster than Stata, and [`FixedEffectModels.jl`](https://github.com/FixedEffects/FixedEffectModels.jl) is much faster than reghdfe.
- I am a beginner in programming and the code is a complete translation of the Stata package [`eventstudyinteract`](https://github.com/lsun20/EventStudyInteract). I used newbing to help me with programming, and it is very helpful for beginners.
- I used [`FixedEffectModels.jl`](https://github.com/FixedEffects/FixedEffectModels.jl) directly for estimation and I am grateful to the author of this package. Other parts of this package, such as reporting of estimation results, also refer to [`FixedEffectModels.jl`](https://github.com/FixedEffects/FixedEffectModels.jl).
- The Stata package [`eventstudyinteract`](https://github.com/lsun20/EventStudyInteract) is very flexible, and one important feature is that it can compare event study estimates for subsamples, i.e. perform heterogeneous estimation. I did not find this feature in the existing Julia package [DiffinDiffs.jl](https://github.com/JuliaDiffinDiffs/DiffinDiffs.jl) or the R packages [`fixest`](https://lrberge.github.io/fixest/). I think the design of the Stata package [`eventstudyinteract`](https://github.com/lsun20/EventStudyInteract) is more user-friendly.
- This package fully supports the features of [`FixedEffectModels.jl`](https://github.com/FixedEffects/FixedEffectModels.jl), such as using GPU for estimation. The syntax of this package is similar to that of [`FixedEffectModels.jl`](https://github.com/FixedEffects/FixedEffectModels.jl).
## Installation
The package is registered in the [`General`](https://github.com/JuliaRegistries/General) registry and so can be installed at the REPL with `] add EventStudyInteracts`.
## Syntax
```julia
result = reg(df,
formula,
rel_varlist::Vector{Symbol},
control_cohort::Symbol,
cohort::Symbol,
vcov,
contrasts = contrasts,
weights = weights,
save = save,
method = method,
nthreads = nthreads,
double_precision = double_precision,
tol = tol,
maxiter = maxiter,
drop_singletons = drop_singletons,
progress_bar = progress_bar,
dof_add = dof_add,
subset = subset)
```
The syntax is similar to [`FixedEffectModels.jl`](https://github.com/FixedEffects/FixedEffectModels.jl) (You must use a version higher than v1.9.1),but users need to specify separately `rel_varlist::Vector{Symbol}`, `control_cohort::Symbol`, and `cohort::Symbol`. The `rel_varlist` is the list of relative time indicators as you would have included in the canonical two-way fixed effects regression. The `rel_varlist` must be defined as a `Vector{Symbol}`.
```
rel_varlist = Symbol[:g_4, :g_3, :g_2, :g0, :g1, :g2, :3]
```
See illustration for an example of generating these relative time indicators. The relative time indicators should take the value of zero for never treated units. Users should shape their dataset to a long format where each observation is at the unit-time level. See illustration for an example of specifying the syntax. The syntax is similar to [`FixedEffectModels.jl`](https://github.com/FixedEffects/FixedEffectModels.jl) in specifying fixed effects and the type of standard error reported.
Furthermore, it also requires the user to specify the cohort categories as well as which cohort is the control cohort. Note that [Sun and Abraham (2021)](https://www.sciencedirect.com/science/article/abs/pii/S030440762030378X) only establishes the validity of the IW estimators for balanced panel data without covariates. eventstudyinteract does not impose a balanced panel by dropping units with observations that are missing in any iod. Instead, it evaluates the IW estimators for unbalanced panel data by estimating the interacted regression using all observations.
The `control_cohort` must be defined as a `Symbol`, which is a binary variable that corresponds to the control cohort, which can be never-treated units or last-treated units. If using **last-treated** unit as control cohort, **exclude the time periods when the last cohort receives treatment**.
The `cohort` must be defined as a `Symbol`, which is a categorical variable that corresponds to the initial treatment timing of each unit. If there are units that receive multiple treatments, [Sun and Abraham (2021)](https://www.sciencedirect.com/science/article/abs/pii/S030440762030378X) defines the initial treatment timing to be based on the first treatment. This categorical variable should be set to be **missing** for **never treated** units.
## Examples
- You can download the `nlswork.dta` data from the repository, which is the example data used by [`eventstudyinteract`](https://github.com/lsun20/EventStudyInteract), and the method of generating variables is the same as that of [`eventstudyinteract`](https://github.com/lsun20/EventStudyInteract).
```julia
using DataFrames
using FixedEffectModels
using EventStudyInteract
using ReadStatTables
using RegressionTables
using CUDA
using Plots
# Load the 1968 extract of the National Longitudinal Survey of Young Women and Mature Women.
df =DataFrame(readstat(EventStudyInteracts\dataset\nlswork.dta"))
# Code the cohort categorical variable based on when the individual first joined the union, which will be inputted in cohort(varname).
df.union_year = ifelse.(coalesce.(df.union, false) .== 1, df.year, missing)
# This is really frustrating. In Stata, the simple code bysort idcode: egen first_union = min(union_year) can achieve this. Why is Julia so complicated?
function min_skipmissing(x)
v = collect(skipmissing(x))
return isempty(v) ? missing : minimum(v)
end
transform!(groupby(df, :idcode), :union_year => min_skipmissing => :first_union)
select!(df, Not(:union_year))
# Code the relative time categorical variable.
df.ry = df.year - df.first_union
# For the first example, we take the control cohort to be individuals that never unionized.
df.never_union = ismissing.(df.first_union)
# Check if there is a sufficient number of treated units for each relative time. With very few units it might be better to bin the relative times and assume constant treatment effects within the bin.
function tab1(df::DataFrame, catevar::Symbol)
gdf = groupby(df, catevar)
result = combine(gdf, nrow => :freq)
result.percent = result.freq / nrow(df) * 100
sort!(result, catevar)
result.cum = cumsum(result.percent)
return result
end
tab1(df,:ry)
# We will consider the dynamic effect of union status on income. We first generate these relative time indicators, and leave out the distant leads due to few observations. Implicitly this assumes that effects outside the lead windows are zero.
relmin = abs(minimum(skipmissing(df.ry)))
relmax = abs(maximum(skipmissing(df.ry)))
for k in relmin:-1:2
df[!, Symbol("g_$k")] = Int.(coalesce.(df.ry .== -k, false))
end
for k in 0:relmax
df[!, Symbol("g$k")] = Int.(coalesce.(df.ry .== k, false))
end
absorb = [:idcode,:year]
formula1 = term(:ln_wage) ~ term(:south) + sum(fe.(term.(absorb)))
# To test whether the package can run successfully when there are collinear variables.
df.g_19 .= 0
# The rel_varlist must be defined as a Vector{Symbol}. In the example below, when defining an empty Vector, you cannot use rel_varlist1 = [].
rel_varlist1 = Symbol[:g_4, :g_5]
for i in relmin:-1:2
push!(rel_varlist1, Symbol("g_"*string(i)))
end
for i in 0:relmax
push!(rel_varlist1, Symbol("g"*string(i)))
end
control_cohort1 = :never_union
cohort1 = :first_union
vcov1 = Vcov.cluster(:idcode)
m1 = eventreg(df, formula1, rel_varlist1, control_cohort1, cohort1, vcov1)
# EventStudyInteract IW estimator
# ========================================================================
# Number of obs: 27979 Degrees of freedom: 166
# R2: 0.666 R2 Adjusted: 0.664
# F-Stat: 2.81691 p-value: 0.000
# R2 within: 0.030 Iterations: 11
# ========================================================================
# ln_wage | Estimate Std.Error t value Pr(>|t|) Lower 95% Upper 95%
# ------------------------------------------------------------------------
# g_19 | 0.0 0.0 NaN NaN 0.0 0.0
# g_18 | -0.0609283 0.0513893 -1.18562 0.236 -0.161679 0.0398221
# g_17 | -0.0489819 0.0432146 -1.13346 0.257 -0.133706 0.0357418
# g_16 | -0.0680484 0.0495311 -1.37385 0.170 -0.165156 0.0290589
# g_15 | -0.135218 0.0448805 -3.01284 0.003 -0.223208 -0.0472281
# g_14 | -0.103295 0.0443376 -2.32975 0.020 -0.190221 -0.01637
# g_13 | -0.0684827 0.0416284 -1.6451 0.100 -0.150097 0.0131311
# g_12 | -0.132015 0.0385567 -3.42392 0.001 -0.207606 -0.0564232
# g_11 | -0.15239 0.0376567 -4.04683 0.000 -0.226217 -0.078563
# g_10 | -0.11842 0.0291013 -4.06925 0.000 -0.175474 -0.0613663
# g_9 | -0.172996 0.0330077 -5.24109 0.000 -0.237709 -0.108284
# g_8 | -0.116192 0.030757 -3.77773 0.000 -0.176492 -0.0558915
# g_7 | -0.140938 0.0287493 -4.90233 0.000 -0.197302 -0.0845745
# g_6 | -0.133223 0.0369878 -3.60181 0.000 -0.205739 -0.0607073
# g_5 | -0.131416 0.0238826 -5.50261 0.000 -0.178239 -0.0845938
# g_4 | -0.150598 0.0330246 -4.56016 0.000 -0.215344 -0.0858518
# g_3 | -0.0559142 0.0202356 -2.76316 0.006 -0.0955869 -0.0162416
# g_2 | -0.0565837 0.0191366 -2.95683 0.003 -0.0941016 -0.0190657
# g0 | 0.0515795 0.0146284 3.52598 0.000 0.0229 0.0802591
# g1 | 0.0961542 0.0194692 4.93879 0.000 0.0579842 0.134324
# g2 | 0.0677024 0.0182556 3.70858 0.000 0.0319116 0.103493
# g3 | 0.0663372 0.018431 3.59923 0.000 0.0302027 0.102472
# g4 | 0.132223 0.0276378 4.78414 0.000 0.0780381 0.186408
# g5 | 0.0565864 0.0182183 3.10603 0.002 0.0208689 0.0923039
# g6 | 0.117224 0.0215077 5.4503 0.000 0.0750571 0.15939
# g7 | 0.072123 0.0221207 3.26042 0.001 0.0287545 0.115491
# g8 | 0.0666257 0.0193959 3.43504 0.001 0.0285993 0.104652
# g9 | 0.0929835 0.0349948 2.65707 0.008 0.024375 0.161592
# g10 | 0.0675955 0.0237323 2.84825 0.004 0.0210676 0.114124
# g11 | 0.106953 0.0212674 5.02896 0.000 0.0652575 0.148649
# g12 | 0.0647985 0.0365021 1.7752 0.076 -0.00676515 0.136362
# g13 | 0.134787 0.0412699 3.26599 0.001 0.0538762 0.215698
# g14 | 0.155875 0.0501801 3.10631 0.002 0.0574951 0.254255
# g15 | 0.0665542 0.0426601 1.56011 0.119 -0.0170823 0.150191
# g16 | 0.181412 0.0511286 3.54815 0.000 0.0811727 0.281651
# g17 | 0.0233864 0.0438817 0.532943 0.594 -0.0626452 0.109418
# g18 | -0.0477967 0.0750543 -0.636828 0.524 -0.194943 0.0993498
# ========================================================================
```
- **Event study plots**. We may define a ``coefplot`` function for an event study plot.
```julia
function mycoefplot(m)
n = coefnames(m)
vals = coef(m)
errors = stderror(m)
Plots.scatter(
n,
vals,
legend = false,
yerror = 1.96 .* errors,
#title = "Coefficient plot",
xtickfont = font(10, "Times"),
ytickfont = font(10, "Times"),
titlefont = font(14, "Times"),
# markersize = 2
)
Plots.vline!([3.5,],linestyle = :dash,linecolor=:red)
Plots.hline!([0,],linestyle = :dash,linecolor=:black,linewidth=:2)
end
plot1 = mycoefplot(m1)1 = mycoefplot(m1)
```
- **Binning**. Pre-treatment effects seem relatively constant, which might suggest binning the many leads. TODO: current implementation of bins does not follow Sun and Abraham (2020) exactly due to coding challenge. But it is valid if effects in the bin are constant for each cohort.
```julia
df.g_l4 = Int.(coalesce.(df.ry .<= -4, false))
rel_varlist2 = Symbol[:g_l4]
for i in 3:-1:2
push!(rel_varlist2, Symbol("g_"*string(i)))
end
for i in 0:18
push!(rel_varlist2, Symbol("g"*string(i)))
end
m2 = eventreg(df, formula1, rel_varlist2, control_cohort1, cohort1, vcov1)
```
- **Using the last treated as the control cohort**. Alternatively, we can take the control cohort to be individuals that were unionized last.
```julia
df.last_union = Int.(coalesce.(df.first_union .== 88, false))
control_cohort2 = :last_union
# If using the last-treated cohort as the control, be sure to restrict the analysis sample to exclude the never-treated (if any) and to be before the treated periods for the last-treated cohort.
m3 = eventreg(df[(.!ismissing.(df.first_union)) .& (df.year .< 88), :], formula1, rel_varlist2, control_cohort1, cohort1, vcov1)
```
- **Aggregating event study estimates**. In Stata one can use `lincom` looks for coefficients and variance covariance matrix stored in e(b) and e(V). There is no package like ``lincom`` in Julia. I am still working on this.
- **Compare event study estimates for subsamples**. Suppose we want to compare the average effect over the first five years of joining the union between college graduates and non-college graduates. We can first estimate their separate effects by interacting the relative time indicators with icator of college graduates:
```julia
for k in 18:-1:2
df[!, Symbol("g_", k, "_collgrad0")] = ifelse.(coalesce.(df.ry .== -k, false) .& coalesce.(df.collgrad .== 0, false), 1, 0)
end
for k in 0:18
df[!, Symbol("g", k, "_collgrad0")] = ifelse.(coalesce.(df.ry .== k, false) .& coalesce.(df.collgrad .== 0, false), 1, 0)
end
df.g_l4_collgrad0 = ifelse.(coalesce.(df.ry .<= -4, false) .& coalesce.(df.collgrad .== 0, false), 1, 0)
for k in 18:-1:2
df[!, Symbol("g_", k, "_collgrad1")] = ifelse.(coalesce.(df.ry .== -k, false) .& coalesce.(df.collgrad .== 1, false), 1, 0)
end
for k in 0:18
df[!, Symbol("g", k, "_collgrad1")] = ifelse.(coalesce.(df.ry .== k, false) .& coalesce.(df.collgrad .== 1, false), 1, 0)
end
df.g_l4_collgrad1 = ifelse.(coalesce.(df.ry .<= -4, false) .& coalesce.(df.collgrad .== 1, false), 1, 0)
rel_varlist3 = Symbol[:g_l4_collgrad0]
for i in 3:-1:2
push!(rel_varlist3, Symbol("g_"*string(i)*"_collgrad0"))
end
for i in 0:18
push!(rel_varlist3, Symbol("g"*string(i)*"_collgrad0"))
end
push!(rel_varlist3, :g_l4_collgrad1)
for i in 3:-1:2
push!(rel_varlist3, Symbol("g_"*string(i)*"_collgrad1"))
end
for i in 0:18
push!(rel_varlist3, Symbol("g"*string(i)*"_collgrad1"))
end
m4 = eventreg(df, formula1, rel_varlist3, control_cohort1, cohort1, vcov1)
```
## Output
`eventreg` returns a light object like ``FixedEffectModels.reg``. It is composed of the vector of coefficients & the covariance matrix (use coef, coefnames, vcov on the output of reg) a boolean vector reporting rows used in the estimation a set of scalars (number of observations, the degree of freedoms, r2, etc).
We can use RegressionTables.jl to get the Regression Tables.
```julia
regtable(m1, m2, m3,m4; renderSettings = asciiOutput(), estim_decoration=make_estim_decorator([0.01, 0.05, 0.1]))
regtable(m1, m2, m3,m4; renderSettings = htmlOutput("base_reg.html"), estim_decoration=make_estim_decorator([0.01, 0.05, 0.1]))
```
## Use other features of FixedEffectModels.jl
We can also use other features of FixedEffectModels.jl, such as using GPU for estimation.
```julia
eventreg(df, formula1, rel_varlist1, control_cohort1, cohort1, vcov1, method = :gpu, double_precision = false)
```
## Another example
Refer to [Difference-in-Difference (DiD) | DiD](https://asjadnaqvi.github.io/DiD/).
```julia
# Generate sample data
using Random
units = 30
start = 1
finish = 60
nlvls = 5
time = finish - start + 1
obsv = units * time
df = DataFrame(id = repeat(1:units, inner=time), t = repeat(start:finish, outer=units))
Random.seed!(20211222)
df.Y .= 0 # outcome variable
df.D .= 0 # intervention variable
df.cohort .= repeat([rand(0:nlvls) for i in 1:units], inner=time) # treatment cohort
effect = [rand(2:10) for i in unique(df.cohort)]
first_treat = [rand(start:(finish + 20)) for i in unique(df.cohort)]
df.effect = similar(df.cohort)
df.first_treat = similar(df.cohort, Union{Int64, Missing})
for i in 0:nlvls
df.effect[df.cohort .== i] .= effect[i+1]
df.first_treat[df.cohort .== i] .= first_treat[i+1]
end
df.first_treat[df.first_treat .> finish] .= missing
df.D = ifelse.(coalesce.(df.t .>= df.first_treat, false), 1, 0)
df.rel_time .= df.t .- df.first_treat
df.Y = df.id .+ df.t .+ ifelse.(df.D .== 1, df.effect .* df.rel_time, 0) .+ randn(nrow(df))
plot(df.t, df.Y, label=false)
tab1(df,:cohort)
df.never_treat = ismissing.(df.first_treat)
tab1(df,:rel_time)
# We will consider the dynamic effect of union status on income. We first generate these relative time indicators, and leave out the distant leads due to few observations. Implicitly this assumes that effects outside the lead windows are zero.
relmin = abs(minimum(skipmissing(df.rel_time)))
relmax = abs(maximum(skipmissing(df.rel_time)))
for k in relmin:-1:2
df[!, Symbol("g_$k")] = Int.(coalesce.(df.rel_time .== -k, false))
end
for k in 0:relmax
df[!, Symbol("g$k")] = Int.(coalesce.(df.rel_time .== k, false))
end
absorb = [:id,:t]
formula1 = term(:Y) ~ sum(fe.(term.(absorb)))
rel_varlist1 = Symbol[]
for i in relmin:-1:2
push!(rel_varlist1, Symbol("g_"*string(i)))
end
for i in 0:relmax
push!(rel_varlist1, Symbol("g"*string(i)))
end
control_cohort1 = :never_treat
cohort1 = :first_treat
m5 = eventreg(df, formula1, rel_varlist1, control_cohort1, cohort1)
plot2 = mycoefplot(m5)
```
## Performance
EventStudyInteracts.jl is **3.69** times faster than Stata when controlling only for id and year fixed effects with a sample size of 2 million observations. EventStudyInteracts.jl is **4.75** times faster than Stata when controlling for an additional two fixed effects. As the sample size increases and more fixed effects are controlled for, performance improvement should be even greater. Furthermore, EventStudyInteracts.jl can also utilize CUDA. Many thanks to FixedEffectModels.jl for its outstanding performance!
- Julia Codes
```julia
using CSV, DataFrames, Random, Plots, FixedEffectModels, EventStudyInteracts
units = 100000
start = 1
finish = 20
nlvls = 5
time = finish - start + 1
obsv = units * time
K=100
id1 = rand(1:(obsv/K), obsv)
id2 = rand(1:K, obsv)
df = DataFrame(id = repeat(1:units, inner=time), t = repeat(start:finish, outer=units), id1 = id1, id2 = id2)
Random.seed!(20211222)
df.Y .= 0 # outcome variable
df.D .= 0 # intervention variable
df.cohort .= repeat([rand(0:nlvls) for i in 1:units], inner=time) # treatment cohort
effect = [rand(2:10) for i in unique(df.cohort)]
first_treat = [rand(start:(finish + 20)) for i in unique(df.cohort)]
df.effect = similar(df.cohort)
df.first_treat = similar(df.cohort, Union{Int64, Missing})
for i in 0:nlvls
df.effect[df.cohort .== i] .= effect[i+1]
df.first_treat[df.cohort .== i] .= first_treat[i+1]
end
df.first_treat[df.first_treat .> finish] .= missing
df.D = ifelse.(coalesce.(df.t .>= df.first_treat, false), 1, 0)
df.rel_time .= df.t .- df.first_treat
df.Y = df.t .+ ifelse.(df.D .== 1, df.effect .* df.rel_time, 0) .+ randn(nrow(df))
plot(df.t, df.Y, label=false)
df.never_treat = ismissing.(df.first_treat)
# We will consider the dynamic effect of union status on income. We first generate these relative time indicators, and leave out the distant leads due to few observations. Implicitly this assumes that effects outside the lead windows are zero.
relmin = abs(minimum(skipmissing(df.rel_time)))
relmax = abs(maximum(skipmissing(df.rel_time)))
for k in relmin:-1:2
df[!, Symbol("g_$k")] = Int.(coalesce.(df.rel_time .== -k, false))
end
for k in 0:relmax
df[!, Symbol("g$k")] = Int.(coalesce.(df.rel_time .== k, false))
end
absorb = [:id,:t]
formula1 = term(:Y) ~ sum(fe.(term.(absorb)))
rel_varlist1 = Symbol[]
for i in relmin:-1:2
push!(rel_varlist1, Symbol("g_"*string(i)))
end
for i in 0:relmax
push!(rel_varlist1, Symbol("g"*string(i)))
end
control_cohort1 = :never_treat
cohort1 = :first_treat
CSV.write("bench.csv", df)
m1 = eventreg(df, formula1, rel_varlist1, control_cohort1, cohort1)
@time m1 = eventreg(df, formula1, rel_varlist1, control_cohort1, cohort1)
# 76.965495 seconds (395.81 k allocations: 218.291 GiB, 23.78% gc time)
absorb = [:id,:id1,:id2,:t]
formula2 = term(:Y) ~ sum(fe.(term.(absorb)))
@time m2 = eventreg(df, formula2, rel_varlist1, control_cohort1, cohort1)
# 88.459680 seconds (3.09 M allocations: 218.534 GiB, 21.19% gc time, 0.86% compilation time)
```
- Stata Codes
```stata
import delimited "~\EventStudyInteracts\benchmark\bench.csv", clear
timer clear
set rmsg on
gen never_treat1 = never_treat=="true"
eventstudyinteract y g_* g0-g16, cohort(first_treat) control_cohort(never_treat1) absorb(i.id i.t)
r; t=284.17
eventstudyinteract y g_* g0-g16, cohort(first_treat) control_cohort(never_treat1) absorb(i.id i.id1 i.id2 i.t)
r; t=420.61
```
## References
[GitHub - FixedEffects/FixedEffectModels.jl: Fast Estimation of Linear Models with IV and High Dimensional Categorical Variables](https://github.com/FixedEffects/FixedEffectModels.jl)
[lsun20/EventStudyInteract (github.com)](https://github.com/lsun20/EventStudyInteract)
[Difference-in-Difference (DiD) | DiD](https://asjadnaqvi.github.io/DiD/)
| EventStudyInteracts | https://github.com/xiaobaaaa/EventStudyInteracts.jl.git |
|
[
"MIT"
] | 0.5.4 | cd8f9da92f751a1fc421120c66971d008d695cdb | code | 585 | using Scanf
using Documenter
DocMeta.setdocmeta!(Scanf, :DocTestSetup, :(using Scanf); recursive=true)
makedocs(;
modules=[Scanf],
authors="KlausC <[email protected]> and contributors",
repo="https://github.com/KlausC/Scanf.jl/blob/{commit}{path}#{line}",
sitename="Scanf.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://KlausC.github.io/Scanf.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/KlausC/Scanf.jl",
)
| Scanf | https://github.com/KlausC/Scanf.jl.git |
|
[
"MIT"
] | 0.5.4 | cd8f9da92f751a1fc421120c66971d008d695cdb | code | 24378 | module Scanf
using BufferedStreams
export @scanf, @sscanf, scanf
const EOF = -1
const ARGNUM_TYPE = UInt16
const WIDTH_TYPE = UInt32
# whitespace characters in format strings
const WHITESPACE = b" \n\t\r\f\v"
# format escape character
const ESC = UInt8('%')
# format specifier to skip whitespace
const SKIP = UInt8('_')
# format indicator no-assign
const NOASSIGN = UInt8('*')
# format specifiers for character sets
const CSOPEN = UInt8('[')
const CSCLOSE = UInt8(']')
const CSNEG = UInt8('^')
const CSMINUS = UInt8('-')
# format specifier categories
const Ints = Union{Val{'d'},Val{'i'},Val{'u'},Val{'x'},Val{'X'},Val{'o'}}
const Floats = Val{'f'}
const Chars = Val{'c'}
const Strings = Val{'s'}
const Pointer = Val{'p'}
const HexBases = Union{Val{'x'},Val{'X'},Val{'a'},Val{'A'}}
const DecBases = Union{Val{'d'},Val{'u'}}
const OctBases = Val{'o'}
const IntBases = Val{'i'}
const PositionCounter = Val{'n'}
const Whitespace = Val{Char(SKIP)}
const CharSets = Union{Val{Char(CSOPEN)},Val{Char(CSNEG)}}
const EscapeChar = Val{Char(ESC)}
const DECIMAL = b"0123456789"
const OCTAL = b"01234567"
const HEXADECIMAL = b"0123456789ABCDEFabcdef"
abstract type AbstractSpec{T} end
"""
Spec{T}
Typed representation of a format specifier.
`T` is a `Val{'X'}`, where `X` is a valid format specifier character.
Special case `X == '_'` represents whitespace (not assigning)
See also `CharsetSpec` and `LiteralSpec`.
"""
struct Spec{T<:Val} <: AbstractSpec{T} # T => %type => Val{'type'}
assign::ARGNUM_TYPE
width::WIDTH_TYPE
end
"""
CharsetSpec{T,S}
Format specifier representing a character set (inclusive or exclusive)
"""
struct CharsetSpec{T<:Val,S} <: AbstractSpec{T}
assign::ARGNUM_TYPE
width::WIDTH_TYPE
set::S
end
"""
LiteralSpec{S<:AbstractString}
Non-assigning Format specifier representing a literal matching string.
"""
struct LiteralSpec{S} <: AbstractSpec{0}
string::S
end
# replace double %% by single %
function LiteralSpec(str::T) where {T<:AbstractString}
if contains(str, "%%")
str = replace(str, "%%" => "%")
S = typeof(str)
else
S = T
end
LiteralSpec{S}(str)
end
"""
Scanf.Format(format_str)
Create a C scanf-compatible format object that can be used for parse formatted texts.
The input `format_str` can include any valid format specifier character and modifiers.
A `Format` object can be passed to `scanf(str::String, f::Format, args...)` to parse a
formatted string, or `scanf(io::IO, f::Format, args...)` to parse the
formatted string directly from `io`.
For convenience, the `Scanf.format"..."` string macro form can be used for building
a `Scanf.Format` object at macro-expansion-time.
The `@scanf` macro converts a literal string into a `Scanf.Format` implicitly.
"""
struct Format{S,T}
str::S # original full format string as CodeUnits
formats::T # Tuple of Specs (including whitespace specs and literal specs)
end
"""
Scanf.scanf(b::String, f::Scanf.Format, args...)
Scanf.scanf([io::IO,] f::Scanf.Format, args...)
Apply a Scanf format object `f` to provided String
(1st method), or scan directly from an `io` object (2nd method). See [`@scanf`](@ref)
for more details on C `scanf` support.
`io` defaults to `stdin`.
The args determine the type and default value for the output data.
Return the number of assigned arguments, followed by the assigned output data.
"""
function scanf end
scanf(io::IO, f::Format, args...) = scanner(io, f, args...)
scanf(io::Base.TTY, f::Format, args...) = scanf(BufferedInputStream(io), f, args...)
scanf(f::Format, args...) = scanf(stdin, f, args...)
scanf(str::AbstractString, f::Format, args...) = scanf(IOBuffer(str), f, args...)
"""
@scanf([io:Union{IO,String}, ], "%Fmt", args::...)
Scan input stream or string of using C `scanf` style format specification string and assign values
to arguments.
The format string (not a variable) is analyzed at macro expansion time.
Equivalent to `scanf(io, Scanf.format"%Fmt", args...)`.
# Examples
```jldoctest
r, a... = @scanf("%f%f%f%f", zeros(4)...)
julia> r, a, b = @scanf "23.4 text" "%f %2s" Float64 String
(2, 23.4, "te")
```
"""
macro scanf(arg, args...)
n = length(args)
if arg isa String && !(n > 0 && args[1] isa String)
fmt = arg
io = :stdin
elseif n >= 1 && args[1] isa String
fmt = args[1]
io = arg
args = Base.tail(args)
else
throwa("invalid macro arguments: @scanf $arg $(join(args, ' '))")
end
f = Format(unescape_string(fmt))
return esc(:($Scanf.scanf($io, $f, $(args...))))
end
"""
Scanf.format"..."
Convenience string macro to call `Scanf.Format("...")
"""
macro format_str(str)
str = unescape_string(str)
esc(:(Scanf.Format($str)))
end
# Implementation details
# construct Format object by parsing the format string
function Format(f::AbstractString)
isempty(f) && throwa("empty format string")
bytes = codeunits(f)
len = length(bytes)
fmts = AbstractSpec[]
pos, b = pushliteral!(fmts, f, bytes, 1)
ac = 0 # count number of assigning specifiers
while pos <= len || b == SKIP
assign = true
width = 0
charset = nothing
if b == ESC
b = bytes[pos]
pos += 1
# positioned at start of first format str %
# parse flags
if b == NOASSIGN
assign = false
pos > len && throwa("incomplete format string: '$f'")
b = bytes[pos]
pos += 1
end
# parse width
while 0x00 <= b - UInt8('0') < 0x0a
width = 10 * width + (b - UInt8('0'))
b = bytes[pos]
pos += 1
pos > len && break
end
if !(0 <= width <= typemax(WIDTH_TYPE))
throwi("\"$f\", width not in 1..$(typemax(Int32))")
end
# type modifier characters (ignored)
if b == UInt8('h') || b == UInt8('l')
prev = b
pos > len && throwa("incomplete format string: \"$f\"")
b = bytes[pos]
pos += 1
if b == prev # cases "ll" and "hh"
pos > len && throwa("incomplete format string: \"$f\"")
b = bytes[pos]
pos += 1
end
elseif b in b"Ljqtz" # more type modifiers (ignored)
b = bytes[pos]
pos += 1
end
# parse conversion specifier
if b in b"diouxXcspn" # uper case variants are invalid
type = Val{lowercase(Char(b))}
elseif b in b"eEfFgGaA"
type = Val{Char('f')}
elseif b == CSOPEN
txt = "["
start = pos
xpos = findnext(isequal(CSCLOSE), bytes, start)
if start <= len && bytes[start] == CSNEG
b = CSNEG
txt = "[^"
start += 1
end
if xpos === nothing
throwi("\"$f\", after '$txt' a Char(CSCLOSE) is missing")
end
if bytes[start] == CSCLOSE # first character after "[" or "[^"
xpos = findnext(isequal(CSCLOSE), bytes, start + 1)
end
if (xpos === nothing || start >= xpos)
throwi("\"$f\", after '$txt]' a Char(CSCLOSE) is missing")
end
charset = view(bytes, start:(xpos-1))
pos = xpos + 1
type = Val{Char(b)}
else
throwi("\"$f\", invalid conversion specifier: '$(Char(b))'")
end
else # format contains a WS character
type = Whitespace
assign = false
end
ac += assign
ass = ifelse(assign, ac, 0)
if ass > typemax(ARGNUM_TYPE)
throwi("\"$f\", too many assignable conversion specifiers")
end
push!(fmts, make_spec(type, ass, width, charset))
pos, b = pushliteral!(fmts, f, bytes, pos)
end
return Format(bytes, Tuple(fmts))
end
# consume characters in format string up to next % or whitespace and insert LiteralSpec
@inline function pushliteral!(fmts, f, bytes, pos)
len = length(bytes)
start = pos
b = 0x00
j = -1
while pos <= len
b = bytes[pos]
pos += 1
if b == ESC
pos > len && throwa("incomplete format string: \"$f\"")
if bytes[pos] == ESC # "%%" will be removed in LiteralSpec
pos += 1
else
j = pos - 2
break
end
elseif b in WHITESPACE
j = pos - 2
while pos <= len && bytes[pos] in WHITESPACE
pos += 1
end
b = SKIP
break
end
end
j = j < 0 ? pos - 1 : j
start <= j && push!(fmts, LiteralSpec(SubString(f, start:j)))
return pos, b
end
Format(f::Format) = f
# extract text items from input stream
# match literal strings
@inline function fmt(io, pos, spec::LiteralSpec)
str = spec.string
len = sizeof(str)
ix = 1
while ix <= len && !eof(io)
c = str[ix]
peek(io, Char) != c && break
skip(io, ncodeunits(c))
ix = nextind(str, ix)
end
l = ix - 1
IOBuffer(), l == len, pos + l
end
# skip whitespace spec
@inline function fmt(io, pos, ::Spec{Whitespace})
pos = skip_ws(io, pos)
IOBuffer(), true, pos
end
# string spec
@inline function fmt(io, pos, spec::Spec{T}) where {T<:Strings}
pos = skip_ws(io, pos)
width = spec.width
l = 0
out = IOBuffer()
while (width == 0 || l < width) && !eof(io)
c = peek(io, Char)
(isspace(c) || !isvalid(Char, c)) && break
write(out, c)
n = ncodeunits(c)
skip(io, n)
l += 1
end
out, l > 0, pos + l
end
# charset and chars specs
@inline function fmt(io, pos, spec::S) where {S<:Union{CharsetSpec,Spec{<:Chars}}}
width = spec.width
width = ifelse(width == 0, S <: Spec{<:Chars} ? 1 : typemax(Int), width)
l = 0
out = IOBuffer()
while l < width && !eof(io)
c = peek(io, Char)
n = ncodeunits(c)
check_set(c, spec) || break
skip(io, n)
write(out, c)
l += 1
pos += 1
end
out, l > 0, pos
end
# integer specs
@inline function fmt(io, pos, spec::Spec{T}) where {T<:Ints}
pos = skip_ws(io, pos)
out = IOBuffer()
eof(io) && return out, false, pos
width = spec.width
width = ifelse(width == 0, typemax(Int), width)
l = 0
sig = false
b = peek(io)
negate = false
if b in b"+-"
l = writeskip(io, out, b, l)
negate = b == UInt('-')
sig = true
end
digits = DECIMAL
base, digits = basespec(T)
ndig = 0
if base === nothing || base == 16
b = peek(io)
if b == UInt('0')
ndig += 1
l = writeskip(io, out, b, l)
if !eof(io) && (b = peek(io)) in b"xX"
digits = HEXADECIMAL
l = writeskip(io, out, b, l)
ndig = 0
elseif base === nothing
digits = OCTAL
end
end
end
while l < width && !eof(io)
b = peek(io)
if b in digits
ndig += 1
l = writeskip(io, out, b, l)
else
break
end
end
succ = ndig > 0
out, succ, pos + l
end
# pointer spec
@inline function fmt(io, pos, spec::Spec{T}) where {T<:Pointer}
pos = skip_ws(io, pos)
out = IOBuffer()
eof(io) && return out, false, pos
width = spec.width
width = ifelse(width == 0, typemax(Int), width)
digits = HEXADECIMAL
l = 0
while l < width && !eof(io)
b = peek(io)
if l == 0 && b == UInt8('0')
l = writeskip(io, out, b, l)
if !eof(io) && (b = peek(io)) in b"xX"
l = writeskip(io, out, b, l)
end
elseif b in digits
l = writeskip(io, out, b, l)
else
break
end
end
out, l > 2, pos + l
end
# floating point spec
@inline function fmt(io, pos, spec::Spec{T}) where {T<:Floats}
pos = skip_ws(io, pos)
width = spec.width
width = ifelse(width == 0, typemax(Int), width)
digits = DECIMAL
expch = b"eEfF"
x_sign = 0x001
x_sep = 0x002
x_exp = 0x004
x_base = 0x008
x_inexp = 0x010
x_nexp = 0x020
x_mdigits = 0x040
x_edigits = 0x080
x_infnan = 0x100
l = 0
out = IOBuffer()
status = x_sign | x_sep | x_base | x_edigits | x_infnan
while l < width && !eof(io)
b = peek(io)
if status & x_base != 0 && b == UInt8('0')
l = writeskip(io, out, b, l)
if !eof(io) && (b = peek(io)) in b"xX"
digits = HEXADECIMAL
expch = b"pP"
l = writeskip(io, out, b, l)
else
status |= x_mdigits
end
status = (status | x_exp | x_edigits) & ~(x_base | x_sign | x_infnan)
continue
elseif b in digits
status = (status | x_exp) & ~(x_base | x_sign | x_infnan)
status |= (status & x_inexp != 0) ? x_edigits : x_mdigits
elseif b == UInt8('-') && (status & x_sign) != 0
status |= ifelse(status & x_base == 0, x_nexp, 0)
status = status & ~x_sign
elseif b == UInt8('+') && (status & x_sign) != 0
status = status & ~x_sign
elseif b == UInt8('.') && (status & x_sep) != 0
status = status & ~(x_base | x_sign | x_sep | x_infnan)
elseif b in expch && (status & x_exp) != 0
status = (status & ~(x_base | x_exp | x_edigits | x_sep)) | x_sign | x_inexp
digits = DECIMAL
elseif b in b"iI" && (status & x_infnan) != 0
n = expect(io, out, b"INFINITY", 3)
l = (n == 3 || n == 8) ? l + n : 0
status |= x_mdigits | x_edigits
break
elseif b in b"nN" && (status & x_infnan) != 0
n = expect(io, out, b"NAN", 3)
l = n == 3 ? l + n : 0
status |= x_mdigits | x_edigits
break
else
break
end
l = writeskip(io, out, b, l)
end
succ = l > 0 && (status & x_mdigits != 0) && (status & x_edigits != 0)
out, succ, pos + l
end
# helpers for matching nan and inf
@inline function expect(io::IO, out::IO, bytes::AbstractVector{UInt8}, n)
mark(io)
m = length(bytes)
rbytes = read(io, n)
if !isequiv(rbytes, bytes, n)
reset(io)
return 0
end
write(out, rbytes)
if n < m
mark(io)
xbytes = read(io, m - n)
append!(rbytes, xbytes)
if isequiv(rbytes, bytes, m)
unmark(io)
return m
else
reset(io)
return n
end
end
return n
end
@inline function isequiv(rbytes, bytes, n)
length(rbytes) >= n || return false
for i = 1:n
if !(rbytes[i] == bytes[i] || rbytes[i] == bytes[i] + (UInt8('a') - UInt8('A')))
return false
end
end
return true
end
# position counter spec
@inline function fmt(_, pos, ::Spec{PositionCounter})
IOBuffer(string(pos - 1)), true, pos
end
# convert to output type specializations
function toout(::Type{<:Val}, out, arg::AbstractString)
r = String(take!(out))
oftype(arg, r)
end
function toout(::Type{<:Val}, out, arg::AbstractChar)
r = String(take!(out))
length(r) >= 1 ? oftype(arg, r[1]) : arg
end
function toout(::Type{<:Val}, out, arg::AbstractVector{<:AbstractChar})
r = String(take!(out))
resize!(arg, length(r))
arg .= collect(r)
arg
end
const IntsAndPointers = Union{Ints,Val{'p'},Val{'n'}}
function toout(::Type{T}, out, arg::R) where {T<:IntsAndPointers,R<:Union{Real,Ptr}}
S = inttype(typeof(arg))
r = String(take!(out))
x = xparse(S, r; base = basespec(T)[1])
x !== nothing ? convert(R, x) : nothing
end
function toout(::Type{T}, out, arg::R) where {T<:Floats,R<:Real}
r = String(take!(out))
A = floattype(typeof(arg))
s = xparse(A, r)
s !== nothing ? convert(R, s) : nothing
end
function toout(::Type{<:Strings}, out, arg::R) where R<:Real
r = String(take!(out))
xparse(R, r; base = R <: Integer ? 10 : nothing)
end
# fmt helpers
# try parse float - assume input string is syntaxtically correct
@inline function xparse(::Type{A}, r::AbstractString; base = nothing) where A<:AbstractFloat
if 'f' in r || 'F' in r
r = replace(r, r"[fF]" => 'e')
end
s = tryparse(A, r)
if s === nothing
expos = findfirst(x -> x in "eEfF", r)
negx = expos !== nothing && expos < length(r) && r[nextind(r, expos)] == '-'
s = ifelse(negx, zero(A), typemax(A))
r[1] == '-' && (s = -s)
end
s
end
# try parse integers - assume input string is syntaxtically correct
@inline function xparse(::Type{S}, r::AbstractString; base = nothing) where {S<:Integer}
sig = r[1] in "+-"
negate = r[1] == '-'
n = length(r)
if n >= 1 && r[1+sig] == '0'
base = n >= 2 + sig && r[2+sig] in "xX" ? nothing : base === nothing ? 8 : base
end
if sig && S <: Unsigned
r = SubString(r, 2:n)
end
x = tryparse(S, r; base = base)
if x !== nothing && negate && S <: Unsigned
x = -x
end
x
end
# skip WS characters in io stream
@inline function skip_ws(io, pos)
while !eof(io)
b = peek(io)
n = _ncodeunits(b)
if n == 1
if b in WHITESPACE
skip(io, 1)
pos += 1
else
break
end
else
c = peek(io, Char)
if isspace(c)
skip(io, n)
pos += 1
else
break
end
end
end
pos
end
# consume 1 byte
@inline function writeskip(io, out, b, l)
write(out, b)
skip(io, 1)
l + 1
end
itemtype(::AbstractSpec{T}) where {T<:Union{Strings,CharSets}} = Val{'s'}
itemtype(::AbstractSpec{T}) where {T} = T
# call the format specifiers aligned with the IO stream
@inline function scanner(io::IO, f::Format, args...)
n = length(args)
m = countspecs(f)
n == m || argmismatch(m, n)
res = Any[valuefor(x) for x in args]
eof(io) && return EOF, res...
pos = 1
# for each format, scan arg and next substring
# unroll up to 8 formats
formats = f.formats
N = length(formats)
j = 0
UNROLL_UPTO = 8
Base.@nexprs 8 i -> begin
if N >= i
fi = formats[i]
out, succ, pos = fmt(io, pos, fi)
succ || @goto BREAK
assign, argno = assignnr(fi)
if assign
r = toout(itemtype(fi), out, res[argno])
r === nothing && @goto BREAK
res[argno] = r
j += 1
end
end
end
if N > UNROLL_UPTO
for i = (UNROLL_UPTO+1):N
fi = formats[i]
out, succ, pos = fmt(io, pos, fi)
succ || break
assign, argno = assignnr(fi)
if assign
r = toout(itemtype(fi), out, res[argno])
r === nothing && break
res[argno] = r
j += 1
end
end
end
@label BREAK
return tuple(j, res...)
end
# utility functions
# default value for types
valuefor(v::AbstractVector{T}) where {T<:AbstractChar} = resize!(v, 0)
valuefor(::Type{Ptr}) = Ptr{Nothing}(0)
valuefor(::Type{T}) where {T<:Union{Real,Ptr,Char}} = T(0)
valuefor(::Type{T}) where {T<:AbstractString} = T("")
valuefor(a::T) where {T<:Union{Real,AbstractChar,AbstractString,Ptr}} = a
# accessor functions
assignnr(::LiteralSpec) = false, 0
assignnr(spec::AbstractSpec) = !iszero(spec.assign), Int(spec.assign)
assign(spec::AbstractSpec) = assignnr(spec)[1]
# showing formats
# recreate the format specifier string from a typed Spec
Base.string(f::Spec{Val{T}}) where {T} = string(string_header(f), T)
function Base.string(f::CharsetSpec{T}) where T<:CharSets
string(
string_header(f),
Char(CSOPEN),
T <: Val{Char(CSNEG)} ? Char(CSNEG) : "",
showset(f.set),
Char(CSCLOSE),
)
end
Base.string(f::LiteralSpec) = string('"', f.string, '"')
function string_header(f::AbstractSpec)
string(Char(ESC), !assign(f) ? "*" : "", f.width > 0 ? f.width : "")
end
Base.show(io::IO, f::AbstractSpec) = print(io, string(f))
Base.show(io::IO, f::Format) = print(io, string("Scanf.format\"", String(f.str), '"'))
# reconstruct internals of %[...]
showset(s::UnitRange) = "$(Char(first(s)))-$(Char(last(s)))"
function showset(t::Tuple{String,Vararg})
s = t[1]
m, s = special(Char(CSMINUS), s)
b, s = special(Char(CSCLOSE), s)
string(b, s, showset.(t[2:end])..., m)
end
showset(t::Tuple) = string(showset.(t)...)
showset(s::AbstractString) = isempty(s) ? "1-0" : s
function special(x::Char, s::AbstractString)
if occursin(x, s)
string(x), filter(!isequal(x), s)
else
"", s
end
end
# internal representation of % and whitespace format specifiers
function make_spec(T, assign, width, cs)
if cs === nothing || isempty(cs)
Spec{T}(assign, width)
else
charset = make_charset(cs)
CharsetSpec{T,typeof(charset)}(assign, width, charset)
end
end
# details of internal representation of %[...] format specifiers
make_charset(cs::AbstractVector{UInt8}) = make_charset(String(cs))
function make_charset(cs::String)
M = Char(CSMINUS)
ch = String[]
ra = Any[]
start = 1
stop = lastindex(cs)
mind = findall(isequal(M), cs)
a = start
for i in mind
if i > start && i < stop
j = prevind(cs, i)
k = nextind(cs, i)
cj, ck = cs[j], cs[k]
if cj < ck
push!(ra, UInt32(cj):UInt32(ck))
b = prevind(cs, j)
elseif cj == ck
b = j
else
b = prevind(cs, j)
end
push!(ch, SubString(cs, a:b))
a = nextind(cs, k)
end
end
push!(ch, SubString(cs, a:stop))
str = String(unique(collect(string(ch...))))
isempty(ra) ? str : isempty(str) ? (length(ra) == 1 ? ra[1] : (ra...,)) : (str, ra...)
end
# bases for integer specs
basespec(::Type{<:HexBases}) = 16, HEXADECIMAL
basespec(::Type{<:OctBases}) = 8, OCTAL
basespec(::Type{<:DecBases}) = 10, DECIMAL
basespec(::Type) = nothing, DECIMAL
# type conversion hints for integer specs
inttype(::Type{<:Float64}) = Int64
inttype(::Type{<:Float32}) = Int32
inttype(::Type{<:Float16}) = Int16
inttype(::Type{<:BigFloat}) = BigInt
inttype(::Type{<:Ptr}) = UInt
inttype(::Type{T}) where {T} = T
floattype(::Type{T}) where {T<:Integer} = float(T)
floattype(::Type{T}) where {T} = T
# check if character is in or not in charset
@inline check_set(c::Char, spec::Spec{<:Chars}) = true
@inline check_set(c::Char, spec::CharsetSpec{Val{Char(CSOPEN)}}) = check_in(c, spec.set)
@inline check_set(c::Char, spec::CharsetSpec{Val{Char(CSNEG)}}) = check_!in(c, spec.set)
@inline check_in(c, set::AbstractString) = occursin(c, set)
@inline check_!in(c, set::AbstractString) = !occursin(c, set)
@inline check_in(c, set::UnitRange) = in(UInt32(c), set)
@inline check_!in(c, set::UnitRange) = !in(UInt32(c), set)
@inline check_in(c, set::Tuple) = any(x -> check_in(c, x), set)
@inline check_!in(c, set::Tuple) = all(x -> check_!in(c, x), set)
# count number of assigning format specifiers in format
countspecs(f::Format) = count(assign, f.formats)
import Base: ==
function ==(f::T, g::T) where {T<:Format}
f.formats == g.formats
end
# length of utf8 encoding of character starting with this byte
@inline _ncodeunits(a::UInt8) = a < 0xc0 ? 1 : a < 0xe0 ? 2 : a < 0xf0 ? 3 : 4
# error
@noinline function argmismatch(a, b)
throwa("mismatch between # of format specifiers and provided args: $a != $b")
end
@noinline throwa(msg) = throw(ArgumentError(msg))
@noinline throwi(msg) = throwa("invalid format string: " * msg)
end # module
| Scanf | https://github.com/KlausC/Scanf.jl.git |
|
[
"MIT"
] | 0.5.4 | cd8f9da92f751a1fc421120c66971d008d695cdb | code | 12289 | using Test, Scanf
@testset "Scanf" begin
# pointer
@testset "%p" begin
r, p = @scanf("0x42 ", "%4p", Ptr{Nothing})
@test p == Ptr{Nothing}(UInt(0x42))
end
# whitespace is squeezed
@testset "whitespace" begin
f = Scanf.format" "
@test length(f.formats) == 1
end
# %% is maintained before WS
@testset "%% before WS" begin
f = Scanf.format"%% "
@test length(f.formats) == 2
@test f.formats[1] isa Scanf.LiteralSpec
@test f.formats[2] isa Scanf.Spec{Val{Char(Scanf.SKIP)}}
end
# floating point numbers
@testset "float to $T" for T in (Float64, Float32, Float16, BigFloat)
f1 = Scanf.Format("%g")
f2 = Scanf.Format("%4e")
@testset "$res" for (inp, res) in (
("-13", big"-13.0"),
("99.76 ", big"99.76"),
("42.11f3", big"42.11e3"),
("-12.7491234797912347971e-4", big"-12.7491234797912347971e-4"),
("0x1.4711p2", 0x1.4711p2)
)
@test scanf(inp, f1, T) == (1, T(res))
@test scanf(inp, f2, T) == (1, parse(T, inp[1:min(4, length(inp))]))
end
end
# floating point nan and infinity
@testset "float to $T" for T in (Float64, Float32, Float16, BigFloat)
f = Scanf.format"%f%n"
@testset "$inp" for (inp, res, rr, nn, nc) in (
("InfX", T(Inf), 2, 3, "X"),
("-InFX", T(-Inf), 2, 4, "X"),
("infiNITYX", T(Inf), 2, 8, "X"),
("NANX", T(NaN), 2, 3, "X"),
("-nanX", T(-NaN), 2, 4, "X"),
("infiX", T(Inf), 2, 3, "iX"),
("naX", T(0.0), 0, 0, "naX"),
)
io = IOBuffer(inp)
r, x, n = scanf(io, f, T(0.0), 0)
@test r == rr
@test n == nn
@test x === res || T <: BigFloat && (x == res || isnan(x) && isnan(res))
@test peek(io, String) == nc
end
end
@testset "marginal floats" begin end
@testset "incomplete floats $inp" for inp in ("Z", "0xZ", ".Z", "e", "+e", "-e", "1eZ", "0E-Z")
io = IOBuffer(inp)
@test (@scanf io "%f" 0.0) == (0, 0.0)
@test peek(io, Char) == inp[end]
end
# integers
@testset "integer %i to $T" for T in (UInt64, UInt32, UInt16)
f1 = Scanf.Format("%i")
@testset "$res" for res in ("17", "4711", "0x7ffe")
@test scanf(res, f1, T) == (1, parse(T, res))
end
end
sigreals = (Int64, Int32, Int16, BigInt, Float64, Float32, Float16, BigFloat)
@testset "integer %i to $T" for T in sigreals
f1 = Scanf.Format("%i")
@testset "$res" for res in ("+17", "-4711", "0x7ffe", "-0x7ffe")
@test scanf(res, f1, T) == (1, parse(T, res))
end
end
@testset "integer %i octal to $T " for T in sigreals
@testset "$res" for (inp, res) in (("077", 63), ("-077", -63))
@test scanf(inp, Scanf.format"%i", T) == (1, res)
end
end
@testset "incomplete integers $inp" for inp in ("Z", "0xZ",)
io = IOBuffer(inp)
@test (@scanf io "%i" 0) == (0, 0)
@test peek(io) == UInt8('Z')
end
@testset "incomplete pointers $inp $arg" for inp in ("Z", "0Z", "0XZ"), arg in (Ptr{String}, Ptr{String}(0))
io = IOBuffer(inp)
@test (@scanf io "%p" arg) == (0, Ptr{String}(0))
@test peek(io) == UInt8('Z')
end
@testset "integer %i octal input" for T in (Int64,)
@test scanf("0377", Scanf.Format("%i"), T) == (1, 255)
end
@testset "integer %i negated input" for T in (UInt64, UInt16)
@test scanf("-99", Scanf.Format("%i"), T) == (1, -T(99))
end
@testset "integer %o to $T" for T in (Int64, UInt64, Int32, UInt32, Int16, UInt16)
f1 = Scanf.Format("%o")
@testset "$res" for res in ("17", "4711", "0377")
@test scanf(res, f1, T) == (1, parse(T, res, base=8))
end
end
@testset "integer %x to $T" for T in (Int64, UInt64, Int32, UInt32, Int16, UInt16)
f1 = Scanf.Format("%x")
@testset "$res" for res in ("0x4711",)
@test scanf(res, f1, T) == (1, parse(T, res))
end
end
@testset "convert integer to other type" begin
f = Scanf.format"%i"
@test scanf(" 14", f, String) == (1, "14")
end
@testset "%i follow up" for (inp, rr, a, b) in [
("Z", 0, 0, ""),
("0", 1, 0, ""),
("0x", 0, 0, ""),
("0xZ", 0, 0, ""),
]
f = Scanf.format"%i%s"
r, x, y = scanf(inp, f, 42, String)
@test r == rr
@test r < 1 || a == x
end
# character sets
@testset "character set [" begin
f1 = Scanf.Format("%10[a-c ]")
f2 = Scanf.Format("%10[abc ]")
f3 = Scanf.Format("%10[abcx-y ]")
res = " abbcbbcbadabbdbbabbbann"
@test scanf(res, f1, String) == (1, res[1:10])
@test scanf(res, f2, "") == (1, res[1:10])
@test scanf(res, f3, "") == (1, res[1:10])
end
@testset "character set ^" begin
f1 = Scanf.Format("%10[^A-A]")
f2 = Scanf.Format("%10[^A-B]")
f3 = Scanf.Format("%10[^A-BX]")
res = " abbcb Abadabbdbbabbbann"
@test scanf(res, f1, "") == (1, res[1:7])
@test scanf(res, f2, String) == (1, res[1:7])
@test scanf(res, f3, "") == (1, res[1:7])
end
@testset "string to Char" begin
@test @scanf("äbc", "%s", Char[]) == (1, ['ä', 'b', 'c'])
@test @scanf("äbc", "%[a-zäöü]", Char) == (1, 'ä')
@test @scanf("Äbc", "%[a-zäöü]", Char[]) == (0, Char[])
@test @scanf("Äbc", "%[a-zäöü]", Char) == (0, '\0')
end
@testset "many arguments" begin
f = Scanf.Format("%d%d%d%d%d%d%d%d%d%d ")
@test scanf("1 2 3 4 5 6 7 8 9 10", f, fill(Int, 10)...)[1] == 10
end
@testset "single characters" begin
@test @scanf("a%bX", "a%%b%c", Char) == (1, 'X')
@test @scanf("a%bX", "a%%b%c", String) == (1, "X")
end
@testset "multiple characters" begin
v = Char[]
r, cc = @scanf("abXYZ", "ab%3c", v)
@test ['X', 'Y', 'Z'] == cc == v
r, cc = @scanf("abXYZ", "ab%3c", Char[])
@test ['X', 'Y', 'Z'] == cc
r, cc = @scanf("abXYZ", "ab%3c", Char)
@test 'X' == cc
r, cc = @scanf("abXYZ", "ab%3c", String)
@test "XYZ" == cc
end
# string
@testset "strings" begin
r, a, b = @scanf("Hällo\u1680heimør", "%s%s", String, String)
@test r == 2
@test "Hällo" == a
@test "heimør" == b
end
# position
@testset "%n" begin
@test @scanf("aäc 15 16 \n", "aäc %*hhd %*Ld%n", 0) == (1, 10)
@test @scanf("abc", "abd%n", Int) == (0, 0)
end
# basics
@testset "basics" begin
@test_throws ArgumentError try
@eval @scanf(1, 2, 3)
catch ex
rethrow(ex.error)
end
@test @scanf("%15", "%%%d", Int) == (1, 15)
@test_throws ArgumentError Scanf.Format("")
@test_throws ArgumentError Scanf.Format("%")
@test_throws ArgumentError Scanf.Format("%l")
@test_throws ArgumentError Scanf.Format("%hh")
@test_throws ArgumentError Scanf.Format("%hhU")
@test_throws ArgumentError Scanf.Format("%+")
@test_throws ArgumentError Scanf.Format("%.")
@test_throws ArgumentError Scanf.Format("%.0")
@test Scanf.Format("%%").formats[1].string == "%"
@test_throws ArgumentError Scanf.Format("%y%d")
@test_throws ArgumentError Scanf.Format("%\u00d0%d")
@test_throws ArgumentError Scanf.Format("%\u0f00%d")
@test_throws ArgumentError Scanf.Format("%\U0001ffff%d")
@test_throws ArgumentError Scanf.Format("%[")
@test_throws ArgumentError Scanf.Format("%[^")
@test_throws ArgumentError Scanf.Format("%[]")
@test_throws ArgumentError Scanf.Format("%[^]")
@test Scanf.Format("%[A-A]").formats[1].set == "A"
f = Scanf.Format("%d ")
@test Scanf.Format(f) === f
@test Scanf.format"%d " == f
@test_throws ArgumentError scanf("", f)
toobig_argnum = (Int64(typemax(Scanf.ARGNUM_TYPE)) + 1)
@test Scanf.Format("%d"^(toobig_argnum - 1)) isa Scanf.Format
@test_throws ArgumentError Scanf.Format("%d"^toobig_argnum)
toobig_width = (Int64(typemax(Scanf.WIDTH_TYPE)) + 1)
@test Scanf.Format("%$(toobig_width - 1)d") isa Scanf.Format
@test_throws ArgumentError Scanf.Format("%$(toobig_width)d")
end
@testset "default arguments" begin
def = (1, 2.0, "x", 'y')
r, i, f, s, c = @scanf("42X", "%i%f%s%c", def...)
@test r == 1
@test (i, f, s, c) == (42, def[2:end]...)
end
# failing literal match consumes all matching characters
@testset "literal string" begin
io = IOBuffer("AÖÜdef")
@test scanf(io, Scanf.format"AÖÜDEF")[1] == 0
@test read(io, String) == "def"
end
@testset "%n" begin
@test @scanf("1234", "%3d4%n", Int, 0) == (2, 123, 4)
@test @scanf("😉", "%s%n", String, 0) == (2, "😉", 1)
@test @scanf("1234 ", "%s%n", String, 0) == (2, "1234", 4)
end
@testset "show specifiers" begin
f = Scanf.format"%dABC%[a-cA-C]%[^]a-cx] %[]B-Aa-zC-]%[B-A]"
@test sprint(show, f.formats) ==
"(%d, \"ABC\", %[a-cA-C], %[^]xa-c], %*_, %[]Ca-z-], %[1-0])"
@test sprint(show, f) ==
"Scanf.format\"%dABC%[a-cA-C]%[^]a-cx] %[]B-Aa-zC-]%[B-A]\""
end
@testset "scanf from stdin" begin
f1 = () -> scanf(Scanf.format"abc%i", 0)
f2 = () -> @scanf "abc%i" 0
file = tempname(cleanup=true)
write(file, "abc42")
io = open(file)
@test redirect_stdin(f1, io) == (1, 42)
close(io)
io = open(file)
@test redirect_stdin(f2, io) == (1, 42)
close(io)
end
@testset "overflow $T" for T in (Float64, Float32, Float16, BigFloat)
@testset "$T $res" for (input, res) in [
("+1.55e9999999999999999999", Inf),
("-1.55e+9999999999999999999", -Inf),
("1.5e-9999999999999999999", 0.0),
("-1.5e-9999999999999999999", -0.0),
]
@test ((r, a) = @scanf(input, "%f", oneunit(T)); r == 1) && isequal(a, T(res))
end
end
@testset "overflow $T" for T in (Int128, Int64, Int32, Int16, Int8)
str = "270141183460469231731687303715884105727"
@testset "$T $input" for input in [str, "-" * str]
@test @scanf(input, "%d", T) == (0, 0)
end
end
@testset "overflow $T" for T in (UInt128, UInt64, UInt32, UInt16, UInt8)
str = "470141183460469231731687303715884105727"
@testset "$T $input" for input in [str, "-" * str]
@test @scanf(input, "%d", T) == (0, 0)
end
end
@testset "overflow Ptr" begin
T = Ptr{String}
input = "0x12341234abcdabcd0"
@test @scanf(input, "%p", T) == (0, T(0))
end
@testset "convert to different type" begin
inp = "-1.5e+3"
f = Scanf.format"%f"
@test scanf(inp, f, "") == (1, inp)
@test scanf(inp, f, Int) == (1, -1500)
end
@testset "convert string to $T" for T in (Int, Float32)
f = Scanf.format"%s"
@test scanf("-1.5f+3", f, Float64) == (1, -1500.0)
@test scanf("-1.5f+3", f, Int) == (0, 0)
@test scanf("-077", f, Int) == (1, -77) # like %d
@test scanf("-0x77", f, Int) == (1, -119) # like %x
end
@testset "issue #8" begin
f = Scanf.format"%2i%2i"
@test scanf("7", f, Int, -777) == (1, 7, -777)
f = Scanf.format"%2i%2p"
@test scanf("7", f, Int, Ptr) == (1, 7, Ptr{Nothing}(0))
end
@testset "issue #9" begin
f = Scanf.format"%c"
@test scanf("äbcd", f, '1') == (1, 'ä')
@test scanf("äbcd", f, "123") == (1, "ä")
@test scanf("äbcd", f, ['1']) == (1, ['ä'])
end
@testset "issue #11" begin
f = Scanf.format"%f%fi%n"
@test scanf("1.5-2.1i", f, 0.0, 0.0, 0) == (3, 1.5, -2.1, 8)
@test isequal(scanf("-NaN -Infi", f, 0.0, 0.0, 0), (3, NaN, -Inf, 10))
end
end # @testset "Scanf"
| Scanf | https://github.com/KlausC/Scanf.jl.git |
|
[
"MIT"
] | 0.5.4 | cd8f9da92f751a1fc421120c66971d008d695cdb | docs | 12617 | # Scanf
[](https://github.com/KlausC/Scanf.jl/actions)
[](https://codecov.io/gh/KlausC/Scanf.jl)
Scanf scans UTF8-encoded input streams or strings and creates output data according to a format string.
It mimics the behaviour of the C-function with the same name.
## Usage
```julia
julia> using Scanf
julia> r, a, b = @scanf(" 13 This is a prime number", "%d%[ a-zA-Z]", Int, String)
(2, 13, " This is a prime number")
# collect data in a happy tuple
julia> r, t... = @scanf "1 2 -inf 4 \u4119" "%d%u%e%x%s" 0 UInt 0.0 Int ""
(5, 1, 0x0000000000000002, -Inf, 4, "䄙")
# scan date-time string - note the S and ms parts use the default values
julia> f = Scanf.format"%d.%2d.%2d%*1[ T]%2d:%2d:%2d.%3d";
julia> r, y, m, d, H, M, S, ms = scanf("2021.07.04T15:53", f, Int, zeros(Int8, 5)..., Int16)
(5, 2021, 7, 4, 15, 53, 0, 0)
```
## Features
`Scanf` provides the macro `r, a,... = @scanf([io, ] "format_string", args...)`
and the function `r, a,... = scanf(io, f::Scanf.Format, args...)`.
The format string must be a string literal, which is evaluated once at macro expansion time.
Alternatively `f = Scanf.format"format_string"` or `f = Scanf.Format(::AbstractString)` create a format object, which can be
used in the function call.
The arguments are default values of types `Real`, `AbstractChar`, `AbstractString`, `Ptr`, `AbstractVector{Char}`.
They may also be concrete subtypes of `Real`, `AbstractChar`, `AbstractString`, `Ptr`.
Numeric format specifiers are compatible with numeric arguments and `String`. Conversion errors may happen (float => int).
If the numeric arg type is not wide enough for the value, boundary values with the correct sign are stored (e.g. `Inf`, `-0.0`).
Format specifiers `c`, `s`, `[` are all compatible with arguments `Char`, `Char[]`, and `String`.
In case of `Char` the first character of a string is taken.
All output data are returned as a tuple including the number of assigned values as the first element.
If a value cannot be parsed,
the default value is assigned. In the case of no value is in the corresponding element of `arg`, the default value is derived form `T`.
If the default argument is a `Vector` object, the output values are additionally stored in it.
The format strings follow the definition of C++-scanf [C++ reference](https://en.cppreference.com/w/c/io/fscanf)
with some adaptations:
+ All unicode characters are supported in format strings and input data.
+ in format strings, whitespace specifiers are only the ASCII space characters in `" \n\r\t\f\v"`.
+ in input data, all characters `x` with `isspace(x) == true` are skipped by any whitespace specifier in the format string.
+ The `%n$...` form of format specifications is not supported.
+ Optional type modifiers like `h`, `l`, `L` etc. are ignored; the target type is derived from the corresponding default argument, instead.
+ for type specifier `%c`, without `width` specified, the corresponding argument must have type `Char` or `String`.
+ for type specifier `%Nc`, with a width field `N`, the argument must have type `String` or `Vector{Char}`.
This vector is re-used and resized to the number of characters actually read.
+ the type specifier `%n`, returns an integer value, which is the character offset in the input data, consumed by this scanf so far.
+ the type specifier `%p` requires a `Ptr` default argument.
+ The return value of both calls is the amount of output arguments, followed by all output data, the trailing ones maybe default values.
In contrast to C and C++, also the arguments for `%n` are counted.
### Implementation
If the input stream is exhausted before a character is read, the EOF-indicator `-1` is returned in place of the number of assigned values.
For format specifiers "Whitespace", any number of characters (also zero) `x` with `isspace(x) == true` are consumed from the input stream.
For a format specifier literal character, the next character is read and compared with the literal character. If it is equal, it is consumed,
otherwise the process fails.
If format specifier "Character" `%c` is processed, at least one character is read and assigned to the output argument. If no character is available, the process fails.
If format specifier `%n` is processed, no data are consumed (and no EOF returned), but the current read position is returned.
## Description
As derived from [C++ reference](https://en.cppreference.com/w/c/io/fscanf)
The `scanf` function reads input from the stream pointed to by `io`, under control of the string `format` that specifies the admissible
input sequences and how they are to be interpreted, using subsequent arguments
to define the type of the converted input. The number of arguments must match the number of format specifiers required by the format.
The format is composed of zero or more directives: one or more (ASCII) white-space characters, an ordinary (UTF8) character (neither `'%'` nor a
(ASCII) white-space character), or a conversion specification. Each conversion specification is introduced by the character `'%'`. After the
`'%'`, the following appear in sequence:
+ An optional assignment-suppressing character `'*'`.
+ An optional decimal integer greater than zero that specifies the maximum field width (in characters).
+ An optional length modifier that is not used by this implementation.
+ A conversion specifier character that specifies the type of conversion to be applied.
The `scanf` function executes each directive of the format in turn. When all directives have been executed, or if a directive fails (as
detailed below), the function returns. Failures are described as input failures (due to the occurrence of an encoding error or the unavailability of input characters), or matching failures (due to inappropriate input).
A directive composed of white-space character(s) is executed by reading input up to the first non-white-space character (which
remains unread), or until no more characters can be read. The directive never fails.
A directive that is an ordinary character is executed by reading the next character of the stream. If that character differs from the directive, the directive fails and the differing and subsequent characters remain unread. Similarly, if end-of-file, an encoding error, or a read error prevents a character from being read, the directive fails.
A directive that is a conversion specification defines a set of matching input sequences, as described below for each specifier. A conversion
specification is executed in the following steps:
Input white-space characters (as specified by the `isspace` function) are skipped, unless the specification includes a `'['`, `'c'`,
or `'n'` specifier. These white-space characters are not counted against a specified field width.
An input item is read from the stream, unless the specification includes an `'n'` specifier. An input item is defined as the longest sequence
of input characters which does not exceed any specified field width and which is, or is a prefix of, a matching input sequence.
The first character, if any, after the input item remains unread. If the length of the input item is zero, the execution of the directive
fails; this condition is a matching failure unless end-of-file, an encoding error, or a read error prevented input from the stream, in which
case it is an input failure.
Except in the case of a `'%'` specifier, the input item (or, in the case of a `'%n'` directive, the count of input characters) is converted
to a type appropriate to the conversion specifier and corresponding argument. If the input item is not a matching sequence, the execution of the
directive fails: this condition is a matching failure. Unless assignment suppression was indicated by a `*`, the result of the conversion
is pushed to the ouput tuple.
If the result of the conversion cannot be represented in the output type, a conversion error is thrown.
Optional length modifiers `l`, `ll`, `h`, `hh`, `L`, `j`, `z`, `t` are accepted before all type specifier characters, but otherwise ignored.
The conversion specifiers and their meanings are:
+ `d` Matches an optionally signed decimal integer, whose format is the same as expected for the subject sequence of the `parse(T, _, base=10)`
function, where `T` is the integer type of the argument.
+ `i` Matches an optionally signed integer, whose format is the same as expected for the subject sequence of the `parse(T, _, base=nothing)`
function.
+ `o` Matches an optionally signed octal integer, whose format is the same as expected for the subject sequence of the `parse(T, _, base=8)`
function.
+ `u` Matches an optionally signed decimal integer, whose format is the same as expected for the subject sequence of the `parse(T, _, base=10)`
function.
+ `x` Matches an optionally signed hexadecimal integer, whose format is the same as expected for the subject sequence of thew `parse(T, _, base=16)` function.
+ `a`,`e`,`f`,`g` Matches an optionally signed floating-point number, `infinity`, or `NaN`, whose format is the same as expected for the
subject sequence of the `parse(T, _)` function, where `T` is a floating point type.
+ `c` Matches a sequence of characters of exactly the number specified by the field width (`1` if no field width is present in the directive).
The argument type must be `String`, `Char`, or `Vector{Char}`, If the field width is greater than `1` and a `Char` type is given, only the
first character is stored.
+ `s` Matches a (non-empty) sequence of non-white-space characters. The argument types are as for `c`.
+ `[` Matches a nonempty sequence of characters from a set of expected characters (the scanset). The argument types are as for `c`.
The conversion specifier includes all subsequent characters in the format string, up to and including the matching right bracket (`]`).
The characters between the brackets (the scanlist) compose the scanset, unless the character after the left bracket is a circumflex (`^`),
in which case the scanset contains all characters that do not appear in the scanlist between the circumflex and the right bracket.
If the conversion specifier begins with `[]` or `[^]`, the right bracket character is in the scanlist and the next following right bracket
character is the matching right bracket that ends the specification; otherwise the first following right bracket character is the one that ends the specification. If a `-` character is in the scanlist and is not the first, nor the second where the first character is a `^`,
nor the last character, it defines the range between the character left of `-` and the character right of `-`. The order defining
the range is the integer range of unicode codepoints of the characters. Empty ranges (like `b-a`) are ignored.
+ `p` Matches an set of sequences, which are the same as the set of sequences that may be produced by
the `%p` conversion of the `printf`-function. The corresponding argument must be of type `Ptr{T}` where T may be any type.
The input item is converted to a pointer value in an implementation-defined manner. If the input item is a value converted earlier during the same program execution, the pointer that results shall compare equal to that value; otherwise the behavior of the `%p` conversion is undefined.
+ `n` No input is consumed. The corresponding argument must be an integer type, into which is converted the number of characters read from the input
stream so far by this call to the `scanf` function. Execution of a `%n` directive does as well increment the assignment count returned at
the completion of execution of the `scanf` function. If the conversion specification includes an assignment-suppressing character no argument
is consumed. An optional width field is ignored.
+ `%` Matches a single `'%'` character; no conversion or assignment occurs. The complete conversion specification is `%%`.
(with other words, `%%` is treated like a single ordinary character `%`).
If a conversion specification is invalid, the behavior is undefined.
The conversion specifiers `A`,`E`,`F`,`G`, and `X` are also valid and behave the same as, respectively, `a`,`e`,`f`,`g`, and `x`.
Trailing white space (including new-line characters) is left unread unless matched by a directive. The success of literal matches and
suppressed assignments is not directly determinable other than via the `%n` directive.
| Scanf | https://github.com/KlausC/Scanf.jl.git |
|
[
"MIT"
] | 0.5.4 | cd8f9da92f751a1fc421120c66971d008d695cdb | docs | 159 | ```@meta
CurrentModule = Scanf
```
# Scanf
Documentation for [Scanf](https://github.com/KlausC/Scanf.jl).
```@index
```
```@autodocs
Modules = [Scanf]
```
| Scanf | https://github.com/KlausC/Scanf.jl.git |
|
[
"MIT"
] | 0.2.1 | 862a932ea451f5dd272d8ae796b726c7227e755b | code | 378 | using Clang
using Clang.Generators
using Telescope_jll
cd(@__DIR__)
include_dir = joinpath(Telescope_jll.artifact_dir, "include") |> normpath
telescope_h = joinpath(include_dir, "telescope.h")
options = load_options(joinpath(@__DIR__, "generator.toml"))
args = get_default_args()
push!(args, "-I$include_dir")
ctx = create_context([telescope_h], args, options)
build!(ctx) | Telescope | https://github.com/jhigginbotham64/Telescope.jl.git |
|
[
"MIT"
] | 0.2.1 | 862a932ea451f5dd272d8ae796b726c7227e755b | code | 3903 | module Telescope
using Telescope_jll
export Telescope_jll
using CEnum
struct TS_PositionInfo
x::Cfloat
y::Cfloat
z::Cfloat
end
struct TS_VelocityInfo
x::Cfloat
y::Cfloat
z::Cfloat
end
struct TS_CollisionEvent
id1::Cint
id2::Cint
colliding::Bool
end
function TS_BtAddRigidBox(id, hx, hy, hz, m, px, py, pz, isKinematic)
ccall((:TS_BtAddRigidBox, libtelescope), Cvoid, (Cint, Cfloat, Cfloat, Cfloat, Cfloat, Cfloat, Cfloat, Cfloat, Bool), id, hx, hy, hz, m, px, py, pz, isKinematic)
end
function TS_BtAddStaticBox(id, hx, hy, hz, px, py, pz)
ccall((:TS_BtAddStaticBox, libtelescope), Cvoid, (Cint, Cfloat, Cfloat, Cfloat, Cfloat, Cfloat, Cfloat), id, hx, hy, hz, px, py, pz)
end
function TS_BtAddTriggerBox(id, hx, hy, hz, px, py, pz)
ccall((:TS_BtAddTriggerBox, libtelescope), Cvoid, (Cint, Cfloat, Cfloat, Cfloat, Cfloat, Cfloat, Cfloat), id, hx, hy, hz, px, py, pz)
end
function TS_BtRemovePhysicsObject(id)
ccall((:TS_BtRemovePhysicsObject, libtelescope), Cvoid, (Cint,), id)
end
function TS_BtSetLinearVelocity(id, vx, vy, vz)
ccall((:TS_BtSetLinearVelocity, libtelescope), Cvoid, (Cint, Cfloat, Cfloat, Cfloat), id, vx, vy, vz)
end
function TS_BtGetLinearVelocity(id)
ccall((:TS_BtGetLinearVelocity, libtelescope), TS_VelocityInfo, (Cint,), id)
end
function TS_BtSetGravity(gx, gy, gz)
ccall((:TS_BtSetGravity, libtelescope), Cvoid, (Cfloat, Cfloat, Cfloat), gx, gy, gz)
end
function TS_BtSetCollisionMargin(id, margin)
ccall((:TS_BtSetCollisionMargin, libtelescope), Cvoid, (Cint, Cfloat), id, margin)
end
# no prototype is found for this function at telescope.h:51:6, please use with caution
function TS_BtStepSimulation()
ccall((:TS_BtStepSimulation, libtelescope), Cvoid, ())
end
# no prototype is found for this function at telescope.h:53:26, please use with caution
function TS_BtGetNextCollision()
ccall((:TS_BtGetNextCollision, libtelescope), TS_CollisionEvent, ())
end
function TS_BtGetPosition(id)
ccall((:TS_BtGetPosition, libtelescope), TS_PositionInfo, (Cint,), id)
end
# no prototype is found for this function at telescope.h:57:14, please use with caution
function TS_SDLGetError()
ccall((:TS_SDLGetError, libtelescope), Ptr{Cchar}, ())
end
function TS_VkCmdDrawRect(r, g, b, a, x, y, w, h)
ccall((:TS_VkCmdDrawRect, libtelescope), Cvoid, (Cfloat, Cfloat, Cfloat, Cfloat, Cfloat, Cfloat, Cfloat, Cfloat), r, g, b, a, x, y, w, h)
end
function TS_VkCmdDrawSprite(img, r, g, b, a, rx, ry, rw, rh, cw, ch, ci, cj, px, py, sx, sy)
ccall((:TS_VkCmdDrawSprite, libtelescope), Cvoid, (Ptr{Cchar}, Cfloat, Cfloat, Cfloat, Cfloat, Cint, Cint, Cint, Cint, Cint, Cint, Cint, Cint, Cfloat, Cfloat, Cfloat, Cfloat), img, r, g, b, a, rx, ry, rw, rh, cw, ch, ci, cj, px, py, sx, sy)
end
function TS_VkCmdClearColorImage(r, g, b, a)
ccall((:TS_VkCmdClearColorImage, libtelescope), Cvoid, (Cfloat, Cfloat, Cfloat, Cfloat), r, g, b, a)
end
# no prototype is found for this function at telescope.h:65:6, please use with caution
function TS_VkBeginDrawPass()
ccall((:TS_VkBeginDrawPass, libtelescope), Cvoid, ())
end
function TS_VkEndDrawPass(r, g, b, a)
ccall((:TS_VkEndDrawPass, libtelescope), Cvoid, (Cfloat, Cfloat, Cfloat, Cfloat), r, g, b, a)
end
function TS_Init(ttl, wdth, hght)
ccall((:TS_Init, libtelescope), Cvoid, (Ptr{Cchar}, Cint, Cint), ttl, wdth, hght)
end
# no prototype is found for this function at telescope.h:71:6, please use with caution
function TS_Quit()
ccall((:TS_Quit, libtelescope), Cvoid, ())
end
function TS_PlaySound(sound_file, loops, ticks)
ccall((:TS_PlaySound, libtelescope), Cvoid, (Ptr{Cchar}, Cint, Cint), sound_file, loops, ticks)
end
# exports
const PREFIXES = ["TS_"]
for name in names(@__MODULE__; all=true), prefix in PREFIXES
if startswith(string(name), prefix)
@eval export $name
end
end
end # module
| Telescope | https://github.com/jhigginbotham64/Telescope.jl.git |
|
[
"MIT"
] | 0.2.1 | 862a932ea451f5dd272d8ae796b726c7227e755b | code | 91 | using Telescope
using Test
@testset "Telescope.jl" begin
# Write your tests here.
end
| Telescope | https://github.com/jhigginbotham64/Telescope.jl.git |
|
[
"MIT"
] | 0.2.1 | 862a932ea451f5dd272d8ae796b726c7227e755b | docs | 88 | # Telescope
Julia bindings for Telescope: https://github.com/jhigginbotham64/Telescope
| Telescope | https://github.com/jhigginbotham64/Telescope.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | code | 832 | using Documenter, DocumenterMarkdown, FluxMPI
deployconfig = Documenter.auto_detect_deploy_system()
Documenter.post_status(
deployconfig; type="pending", repo="github.com/avik-pal/FluxMPI.jl.git")
makedocs(;
sitename="Lux", authors="Avik Pal et al.", clean=true, doctest=true, modules=[FluxMPI],
strict=[:doctest, :linkcheck, :parse_error, :example_block], checkdocs=:all,
format=DocumenterMarkdown.Markdown(), draft=false, build=joinpath(@__DIR__, "docs"))
deploydocs(; repo="github.com/avik-pal/FluxMPI.jl.git",
push_preview=true,
deps=Documenter.Deps.pip("mkdocs", "pygments", "python-markdown-math", "mkdocs-material",
"pymdown-extensions", "mkdocstrings", "mknotebooks",
"pytkdocs_tweaks", "mkdocs_include_exclude_files", "jinja2"),
make=() -> run(`mkdocs build`),
target="site",
devbranch="main")
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | code | 319 | module FluxMPIComponentArraysExt
isdefined(Base, :get_extension) ? (using ComponentArrays) : (using ..ComponentArrays)
using FluxMPI, MPI
function FluxMPI.synchronize!(x::ComponentArray; root_rank::Integer=0)
d = FluxMPI.bcast!(getdata(x), root_rank, MPI.COMM_WORLD)
return ComponentArray(d, getaxes(x))
end
end
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | code | 258 | module FluxMPIFluxExt
isdefined(Base, :get_extension) ? (using Flux) : (using ..Flux)
using FluxMPI, Functors
function FluxMPI.synchronize!(x::FluxMPIFluxModel; root_rank::Integer=0)
return fmap(x -> FluxMPI.synchronize!(x; root_rank), x.model)
end
end
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | code | 2663 | module FluxMPI
using Adapt, CUDA, Dates, Functors, MPI, Optimisers, Setfield
using Preferences
import ChainRulesCore as CRC
const FluxMPI_Initialized = Ref(false)
# Extensions
if !isdefined(Base, :get_extension)
using Requires
end
const MPI_IS_CUDA_AWARE = Ref(false)
function __init__()
if haskey(ENV, "FLUXMPI_DISABLE_CUDAMPI_SUPPORT")
@warn "FLUXMPI_DISABLE_CUDAMPI_SUPPORT environment variable has been removed and has no effect. Please use `FluxMPI.disable_cudampi_support()` instead." maxlog=1``
end
disable_cuda_aware_support = @load_preference("FluxMPIDisableCUDAMPISupport", false)
MPI_IS_CUDA_AWARE[] = !disable_cuda_aware_support && MPI.has_cuda()
if disable_cuda_aware_support && MPI.has_cuda()
@info "CUDA-aware MPI support disabled using LocalPreferences.toml." maxlog=1
elseif !MPI_IS_CUDA_AWARE[]
@warn "MPI Implementation is not CUDA Aware." maxlog=1
else
@info "MPI Implementation is CUDA Aware." maxlog=1
end
@static if !isdefined(Base, :get_extension)
# Handling ComponentArrays
@require ComponentArrays="b0b7db55-cfe3-40fc-9ded-d10e2dbeff66" begin
include("../ext/FluxMPIComponentArraysExt.jl")
end
# Handling Flux
@require Flux="587475ba-b771-5e3f-ad9e-33799f191a9c" begin
include("../ext/FluxMPIFluxExt.jl")
end
end
end
"""
disable_cudampi_support(; disable=true)
Disable CUDA MPI support. Julia Session needs to be restarted for this to take effect.
"""
function disable_cudampi_support(; disable=true)
@set_preferences!("FluxMPIDisableCUDAMPISupport"=>disable)
@info "CUDA-aware MPI support "*
(disable ? "disabled" : "enabled")*
". Restart Julia for this change to take effect!" maxlog=1
end
# Error Handling
struct FluxMPINotInitializedError <: Exception end
function Base.showerror(io::IO, e::FluxMPINotInitializedError)
return print(io, "Please call FluxMPI.init(...) before using FluxMPI functionalities!")
end
# MPI Extensions
include("mpi_extensions.jl")
# General Utilities -- Init, Clean Printing
include("common.jl")
# synchronize!
include("synchronize.jl")
# Implementation of Distributed Optimiser
include("optimizer.jl")
# Support for MLUtils.jl DataLoader
include("data.jl")
# Extensions: Flux
## We need this because Flux works on arbitrary types. Which means we cannot dispatch
## `synchronize!` correctly. It is the user's responsibility to call `synchronize!` on
## `FluxMPIFluxModel`.
struct FluxMPIFluxModel{M}
model::M
end
export local_rank, total_workers, DistributedOptimizer, fluxmpi_print, fluxmpi_println,
DistributedDataContainer, allreduce_gradients
export FluxMPIFluxModel
end
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | code | 2569 | """
Initialized()
Has FluxMPI been initialized?
"""
Initialized() = FluxMPI_Initialized[]
"""
Init(; gpu_devices::Union{Nothing,Vector{Int}}=nothing, verbose::Bool=false)
Setup `FluxMPI`. If GPUs are available and CUDA is functional, each rank is allocated a
GPU in a round-robin fashion.
If calling this function, no need to call `MPI.Init` first.
"""
function Init(; gpu_devices::Union{Nothing, Vector{Int}}=nothing, verbose::Bool=false)
if Initialized()
verbose && fluxmpi_println("FluxMPI already initialized; Skipping...")
return
end
!MPI.Initialized() && MPI.Init()
FluxMPI_Initialized[] = true
if verbose && total_workers() == 1
@warn "Using FluxMPI with only 1 worker. It might be faster to run the code without MPI" maxlog=1
end
rank = local_rank()
if CUDA.functional()
gpu_device = if gpu_devices === nothing
device_count = length(CUDA.devices())
(rank + 1) % device_count
else
gpu_devices[rank + 1]
end
verbose && fluxmpi_println("Using GPU $gpu_device")
CUDA.device!(gpu_device)
else
verbose && fluxmpi_println("Using CPU")
end
return
end
"""
local_rank()
Get the rank of the process.
"""
@inline function local_rank()
!Initialized() && throw(FluxMPINotInitializedError())
return MPI.Comm_rank(MPI.COMM_WORLD)
end
CRC.@non_differentiable local_rank()
"""
total_workers()
Get the total number of workers.
"""
@inline function total_workers()
!Initialized() && throw(FluxMPINotInitializedError())
return MPI.Comm_size(MPI.COMM_WORLD)
end
CRC.@non_differentiable total_workers()
# Print Functions
for print_fn in (:println, :print)
function_name = Symbol("fluxmpi_" * string(print_fn))
@eval begin
function $(function_name)(args...; kwargs...)
if !Initialized()
$(print_fn)("$(Dates.now()) ", args...; kwargs...)
return
end
rank = local_rank()
size = total_workers()
if size == 1
$(print_fn)(args...; kwargs...)
return
end
for r in 0:(size - 1)
if r == rank
$(print_fn)("$(Dates.now()) [$(rank) / $(size)] ", args...; kwargs...)
flush(stdout)
end
MPI.Barrier(MPI.COMM_WORLD)
end
return
end
CRC.@non_differentiable $(function_name)(::Any...)
end
end
"""
fluxmpi_println(args...; kwargs...)
Add `rank` and `size` information to the printed statement
"""
fluxmpi_println
"""
fluxmpi_print(args...; kwargs...)
Add `rank` and `size` information to the printed statement
"""
fluxmpi_print
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | code | 768 | """
DistributedDataContainer(data)
`data` must be compatible with `MLUtils` interface. The returned container is compatible
with `MLUtils` interface and is used to partition the dataset across the available
processes.
"""
struct DistributedDataContainer
data::Any
idxs::Any
end
function DistributedDataContainer(data)
total_size = length(data)
split_across = total_workers()
size_per_process = Int(ceil(total_size / split_across))
partitions = collect(Iterators.partition(1:total_size, size_per_process))
idxs = collect(partitions[local_rank() + 1])
return DistributedDataContainer(data, idxs)
end
Base.length(ddc::DistributedDataContainer) = length(ddc.idxs)
Base.getindex(ddc::DistributedDataContainer, i) = getindex(ddc.data, ddc.idxs[i])
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | code | 4284 | # NOTE(@avik-pal): Data Movement between CPU and GPU. `Lux` & `Flux` have much better
# support for this but this is all we need here. If not an abstract array
# don't do anything.
# Maybe we want to have a central repository containing these device transfer utilities
cpu(x) = x
gpu(x) = x
cpu(x::AbstractArray) = adapt(Array, x)
gpu(x::AbstractArray) = adapt(CuArray, x)
## Certain Non-blocking collective communication primitives
"""
Iallreduce!(sendbuf, recvbuf, op, comm)
Iallreduce!(sendrecvbuf, op, comm)
Performs non-blocking elementwise reduction using the operator `op` on the buffer `sendbuf`.
`sendbuf` can also be a scalar, in which case `recvbuf` will be a value of the same type.
`recvbuf` and an MPI_Request object are returned. The value in `recvbuf` is only valid after
the request has been completed. (`MPI.Wait!`)
!!! warning
OpenMPI doesn't support Iallreduce! with CUDA. See
[this issue](https://github.com/open-mpi/ompi/issues/9845).
"""
function Iallreduce!(rbuf::MPI.RBuffer, op::Union{MPI.Op, MPI.MPI_Op}, comm::MPI.Comm)
req = MPI.Request()
# int MPI_Iallreduce(const void *sendbuf, void *recvbuf, int count,
# MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
# MPI_Request * request)
MPI.@mpichk ccall((:MPI_Iallreduce, MPI.libmpi),
Cint,
(MPI.MPIPtr, MPI.MPIPtr, Cint, MPI.MPI_Datatype,
MPI.MPI_Op, MPI.MPI_Comm, Ptr{MPI.MPI_Request}),
rbuf.senddata,
rbuf.recvdata,
rbuf.count,
rbuf.datatype,
op,
comm,
req)
req.buffer = rbuf
finalizer(MPI.free, req)
return rbuf.recvdata, req
end
function Iallreduce!(rbuf::MPI.RBuffer, op, comm::MPI.Comm)
return Iallreduce!(rbuf, MPI.Op(op, eltype(rbuf)), comm)
end
function Iallreduce!(sendbuf, recvbuf, op, comm::MPI.Comm)
return Iallreduce!(MPI.RBuffer(sendbuf, recvbuf), op, comm)
end
Iallreduce!(buf, op, comm::MPI.Comm) = Iallreduce!(MPI.IN_PLACE, buf, op, comm)
"""
Ibcast!(buf, root, comm)
Non-blocking broadcast of the buffer `buf` to all processes in `comm`.
`recvbuf` and an MPI_Request object are returned. The value in `recvbuf` is only valid after
the request has been completed. (`MPI.Wait!`)
"""
function Ibcast!(buf::MPI.Buffer, root::Integer, comm::MPI.Comm)
req = MPI.Request()
# int MPI_Ibcast(void *buffer, int count, MPI_Datatype datatype, int root,
# MPI_Comm comm, MPI_Request *request)
MPI.@mpichk ccall((:MPI_Ibcast, MPI.libmpi), Cint,
(MPI.MPIPtr, Cint, MPI.MPI_Datatype, Cint, MPI.MPI_Comm, Ptr{MPI.MPI_Request}),
buf.data, buf.count, buf.datatype, root, comm, req)
req.buffer = buf
finalizer(MPI.free, req)
return buf.data, req
end
Ibcast!(buf, root::Integer, comm::MPI.Comm) = Ibcast!(MPI.Buffer(buf), root, comm)
# Simpler wrappers
"""
allreduce!(v, op, comm)
Perform `MPI.Allreduce!` ensuring that CuArrays are safely transfered to CPU if CUDA-aware
MPI is unavailable/disabled.
"""
function allreduce!(v::CuArray, op::Any, comm::MPI.Comm)
@static if !MPI_IS_CUDA_AWARE[]
v = cpu(v)
end
MPI.Allreduce!(v, op, comm)
@static if !MPI_IS_CUDA_AWARE[]
v = gpu(v)
end
return v
end
function allreduce!(v::AbstractArray, op::Any, comm::MPI.Comm)
MPI.Allreduce!(v, op, comm)
return v
end
"""
bcast!(v, op, comm)
Perform `MPI.Bcast!` ensuring that CuArrays are safely transfered to CPU if CUDA-aware MPI
is unavailable/disabled.
"""
function bcast!(v::CuArray, root::Integer, comm::MPI.Comm)
@static if !MPI_IS_CUDA_AWARE[]
v = cpu(v)
end
MPI.Bcast!(v, root, comm)
@static if !MPI_IS_CUDA_AWARE[]
v = gpu(v)
end
return v
end
function bcast!(v::AbstractArray, root::Integer, comm::MPI.Comm)
MPI.Bcast!(v, root, comm)
return v
end
"""
reduce!(v, op, comm)
Perform `MPI.Reduce!` ensuring that CuArrays are safely transfered to CPU if CUDA-aware MPI
is unavailable/disabled.
"""
function reduce!(v::CuArray, op::Any, root::Integer, comm::MPI.Comm)
@static if !MPI_IS_CUDA_AWARE[]
v = cpu(v)
end
MPI.Reduce!(v, op, root, comm)
@static if !MPI_IS_CUDA_AWARE[]
v = gpu(v)
end
return v
end
function reduce!(v::AbstractArray, op::Any, root::Integer, comm::MPI.Comm)
MPI.Reduce!(v, op, root, comm)
return v
end
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | code | 1735 | """
DistributedOptimizer(optimizer)
Wrap the `optimizer` in a `DistributedOptimizer`. Before updating the parameters, this adds
the gradients across the processes using non-blocking Allreduce
## Arguments
- `optimizer`: An Optimizer compatible with the Optimisers.jl package
!!! note
Remember to scale the loss function by `1 / total_workers()` to ensure
that the gradients are correctly averaged
"""
struct DistributedOptimizer{O} <: Optimisers.AbstractRule
optimizer::O
end
function Optimisers.apply!(o::DistributedOptimizer, state, x, y)
y_ = allreduce!(y, +, MPI.COMM_WORLD)
return Optimisers.apply!(o.optimizer, state, x, y_)
end
Optimisers.init(o::DistributedOptimizer, x::AbstractArray) = Optimisers.init(o.optimizer, x)
"""
allreduce_gradients(gs::NamedTuple; on_gpu::Bool=CUDA.functional())
Allreduce the gradients. This uses a non-blocking API which will be efficient for large
containers of multiple parameter arrays.
## Arguments
- `gs`: A `NamedTuple` of gradients
## Keyword Arguments
- `on_gpu`: Specify if the gradients are on GPU. Defaults to `CUDA.functional()`
## Returns
- `Allreduce`d NamedTuple of gradients
"""
function allreduce_gradients(gs::NamedTuple; on_gpu::Bool=CUDA.functional())
# Transfer data to CPU since OpenMPI Iallreduce! doesn't work for CUDA
gs = on_gpu ? fmap(cpu, gs) : gs
requests = MPI.Request[]
nonblocking_reduce_gradients(g) = g
function nonblocking_reduce_gradients(g::AbstractArray)
g, req = Iallreduce!(g, +, MPI.COMM_WORLD)
push!(requests, req)
return g
end
gs = fmap(nonblocking_reduce_gradients, gs)
MPI.Waitall!(requests)
# Transfer data back to GPU
gs = on_gpu ? fmap(gpu, gs) : gs
return gs
end
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | code | 1012 | """
synchronize!(x; root_rank::Integer=0)
Synchronize `x` across all processes.
!!! note
this function is not in-place for CuArrays when MPI is not CUDA aware.
"""
function synchronize!(ps::Union{NamedTuple, Tuple}; root_rank::Integer=0)
length(ps) == 0 && return ps
return fmap(x -> synchronize!(x; root_rank), ps)
end
function synchronize!(x::AbstractArray{T}; root_rank::Integer=0) where {T <: Number}
return bcast!(x, root_rank, MPI.COMM_WORLD)
end
# Ideally these things should be Tuples and not arrays
function synchronize!(x::AbstractArray; root_rank::Integer=0)
return synchronize!.(x; root_rank)
end
function synchronize!(l::Optimisers.Leaf; root_rank::Integer=0)
@set! l.state = synchronize!(l.state; root_rank)
return l
end
function synchronize!(x::Number; root_rank::Integer=0)
return bcast!([x], root_rank, MPI.COMM_WORLD)[1]
end
# If we don't know what to synchronize, we don't do it
# -- Symbols, Nothing, Missing, Val, etc.
synchronize!(x; root_rank::Integer=0) = x
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | code | 482 | using FluxMPI, MPI, Test
nprocs_str = get(ENV, "JULIA_MPI_TEST_NPROCS", "")
nprocs = nprocs_str == "" ? clamp(Sys.CPU_THREADS, 2, 4) : parse(Int, nprocs_str)
testdir = @__DIR__
istest(f) = endswith(f, ".jl") && startswith(f, "test_")
testfiles = sort(filter(istest, readdir(testdir)))
@info "Running FluxMPI tests" nprocs
@testset "$f" for f in testfiles
MPI.mpiexec() do cmd
run(`$cmd -n $nprocs $(Base.julia_cmd()) $(joinpath(testdir, f))`)
Test.@test true
end
end
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | code | 424 | using FluxMPI, MPI, Test
FluxMPI.Init(; verbose=true)
@testset "Common Utilities" begin
@test FluxMPI.Initialized()
# Should always hold true
@test FluxMPI.local_rank() < FluxMPI.total_workers()
@test_nowarn FluxMPI.fluxmpi_println("Printing from Rank ", FluxMPI.local_rank())
@test_nowarn FluxMPI.fluxmpi_print("Printing from Rank ", FluxMPI.local_rank(), "\n")
MPI.Finalize()
@test MPI.Finalized()
end
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | code | 671 | using FluxMPI, MPI, Random, Test
rng = Random.MersenneTwister()
Random.seed!(rng, 19)
FluxMPI.Init(; verbose=true)
@testset "DistributedDataContainer" begin
data = randn(rng, Float32, 10)
tworkers = total_workers()
rank = local_rank()
dcontainer = DistributedDataContainer(data)
if rank != tworkers - 1
@test length(dcontainer) == ceil(length(data) / tworkers)
else
@test length(dcontainer) ==
length(data) - ceil(length(data) / tworkers) * (tworkers - 1)
end
dsum = 0
for i in 1:length(dcontainer)
dsum += dcontainer[i]
end
@test isapprox(FluxMPI.allreduce!([dsum], +, MPI.COMM_WORLD)[1], sum(data))
end
MPI.Finalize()
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | code | 1259 | using FluxMPI, MPI, Test
FluxMPI.Init(; verbose=true)
function _get_array_based_on_rank(dims; root_rank)
return local_rank() == root_rank ? ones(dims...) : zeros(dims...)
end
@testset "Iallreduce!" begin
x = ones(4)
y = similar(x)
y, req = FluxMPI.Iallreduce!(x, y, +, MPI.COMM_WORLD)
MPI.Wait!(req)
@test y == x .* total_workers()
y = similar(x)
y, req = FluxMPI.Iallreduce!(x, y, *, MPI.COMM_WORLD)
MPI.Wait!(req)
@test y == x
end
@testset "Ibcast!" begin
x = _get_array_based_on_rank((2, 3); root_rank=0)
y, req = FluxMPI.Ibcast!(x, 0, MPI.COMM_WORLD)
MPI.Wait!(req)
@test y == one.(x)
end
@testset "Wrappers" begin
@testset "allreduce" begin
x = ones(4)
y = FluxMPI.allreduce!(copy(x), +, MPI.COMM_WORLD)
@test y == x .* total_workers()
y = FluxMPI.allreduce!(copy(x), *, MPI.COMM_WORLD)
@test y == x
end
@testset "bcast" begin
x = _get_array_based_on_rank((2, 3); root_rank=0)
y = FluxMPI.bcast!(copy(x), 0, MPI.COMM_WORLD)
@test y == one.(x)
end
@testset "reduce" begin
x = ones(4)
y = FluxMPI.reduce!(copy(x), +, 0, MPI.COMM_WORLD)
if local_rank() == 0
@test y == x .* total_workers()
else
@test y == x
end
end
end
MPI.Finalize()
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | code | 1012 | using FluxMPI, MPI, Optimisers, Test
FluxMPI.Init(; verbose=true)
@testset "DistributedOptimizer" begin
opt = Adam(0.001f0)
ps = (a=zeros(4), b=zeros(4))
st_opt = Optimisers.setup(opt, ps)
dopt = FluxMPI.DistributedOptimizer(opt)
st_dopt = Optimisers.setup(dopt, ps)
@test st_dopt.a.state == st_opt.a.state
@test st_dopt.b.state == st_opt.b.state
@test_nowarn FluxMPI.synchronize!(st_dopt; root_rank=0)
gs = (a=ones(4), b=ones(4))
_, ps_dopt = Optimisers.update(st_dopt, ps, gs)
_, ps_opt = Optimisers.update(
st_opt, ps, (a=gs.a .* FluxMPI.total_workers(), b=gs.b .* FluxMPI.total_workers()))
@test isapprox(ps_dopt.a, ps_opt.a; atol=1.0e-5, rtol=1.0e-5)
@test isapprox(ps_dopt.b, ps_opt.b; atol=1.0e-5, rtol=1.0e-5)
end
@testset "allreduce_gradients" begin
gs = (a=ones(4), b=ones(4))
gs_ = FluxMPI.allreduce_gradients(deepcopy(gs); on_gpu=false)
@test gs_.a == gs.a .* FluxMPI.total_workers()
@test gs_.b == gs.b .* FluxMPI.total_workers()
end
MPI.Finalize()
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | code | 2569 | using ComponentArrays, FluxMPI, MPI, Optimisers, Test
FluxMPI.Init(; verbose=true)
function _get_array_based_on_rank(dims; root_rank)
if FluxMPI.local_rank() == root_rank
return ones(dims...)
else
return zeros(dims...)
end
end
@testset "synchronize" begin
root_rank = 0
@testset "NamedTuple" begin
gs = (
a=(b=_get_array_based_on_rank((2, 3); root_rank),
c=_get_array_based_on_rank((2, 3); root_rank)),
d=_get_array_based_on_rank((2, 3); root_rank))
gs_ = FluxMPI.synchronize!(gs; root_rank)
@test all(gs_.a.b .== 1)
@test all(gs_.a.c .== 1)
@test all(gs_.d .== 1)
@testset "Optimisers" begin
opt = Adam(0.001f0)
st_opt = Optimisers.setup(opt, gs)
if local_rank() == root_rank
st_opt.a.b.state[1] .= 1
st_opt.a.b.state[2] .= 1
st_opt.a.c.state[1] .= 1
st_opt.a.c.state[2] .= 1
st_opt.d.state[1] .= 1
st_opt.d.state[2] .= 1
end
st_opt = FluxMPI.synchronize!(st_opt; root_rank)
@test all(st_opt.a.b.state[1] .== 1)
@test all(st_opt.a.b.state[2] .== 1)
@test all(st_opt.a.c.state[1] .== 1)
@test all(st_opt.a.c.state[2] .== 1)
@test all(st_opt.d.state[1] .== 1)
@test all(st_opt.d.state[2] .== 1)
# Has no state
opt = Descent(0.001f0)
st_opt = Optimisers.setup(opt, gs)
@test_nowarn FluxMPI.synchronize!(st_opt; root_rank)
end
@testset "ComponentArray" begin
gs = (
a=(b=_get_array_based_on_rank((2, 3); root_rank),
c=_get_array_based_on_rank((2, 3); root_rank)),
d=_get_array_based_on_rank((2, 3); root_rank))
cgs = ComponentArray(gs)
cgs_ = FluxMPI.synchronize!(cgs; root_rank)
@test all(cgs_.a.b .== 1)
@test all(cgs_.a.c .== 1)
@test all(cgs_.d .== 1)
end
end
@testset "Tuple" begin
gs = (
(_get_array_based_on_rank((2, 3); root_rank),
_get_array_based_on_rank((2, 3); root_rank)),
_get_array_based_on_rank((2, 3); root_rank))
gs = FluxMPI.synchronize!(gs; root_rank)
@test all(gs[1][1] .== 1)
@test all(gs[1][2] .== 1)
@test all(gs[2] .== 1)
end
@testset "Misc." begin
x = nothing
x = FluxMPI.synchronize!(x; root_rank)
@test x == nothing
if root_rank == local_rank()
x = :x
else
x = :y
end
x_ = FluxMPI.synchronize!(x; root_rank)
# Symbol should not change
@test x_ == x
x = FluxMPI.synchronize!(local_rank(); root_rank)
@test x == root_rank
end
end
MPI.Finalize()
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | docs | 5198 | # FluxMPI.jl
[](https://avik-pal.github.io/FluxMPI.jl/stable/)
[](https://avik-pal.github.io/FluxMPI.jl/dev/)
[](https://github.com/avik-pal/FluxMPI.jl/actions/workflows/CI.yml)
[](https://codecov.io/github/avik-pal/FluxMPI.jl)
[](https://pkgs.genieframework.com?packages=FluxMPI)
[](https://github.com/SciML/ColPrac)
[](https://github.com/SciML/SciMLStyle)
Distributed Data Parallel Training of Neural Networks
## Installation
Stable release:
```julia
] add FluxMPI
```
Latest development version:
```julia
] add FluxMPI#main
```
## Quick Start
```julia
using CUDA, FluxMPI, Lux, Optimisers, Random, Zygote
FluxMPI.Init()
CUDA.allowscalar(false)
model = Chain(Dense(1 => 256, tanh), Dense(256 => 512, tanh), Dense(512 => 256, tanh),
Dense(256 => 1))
rng = Random.default_rng()
Random.seed!(rng, local_rank())
ps, st = Lux.setup(rng, model) .|> gpu
ps = FluxMPI.synchronize!(ps; root_rank = 0)
st = FluxMPI.synchronize!(st; root_rank = 0)
x = rand(rng, 1, 16) |> gpu
y = x .^ 2
opt = DistributedOptimizer(Adam(0.001f0))
st_opt = Optimisers.setup(opt, ps)
loss(p) = sum(abs2, model(x, p, st)[1] .- y)
st_opt = FluxMPI.synchronize!(st_opt; root_rank = 0)
gs_ = gradient(loss, ps)[1]
Optimisers.update(st_opt, ps, gs_)
t1 = time()
for epoch in 1:100
global ps, st_opt
l, back = Zygote.pullback(loss, ps)
FluxMPI.fluxmpi_println("Epoch $epoch: Loss $l")
gs = back(one(l))[1]
st_opt, ps = Optimisers.update(st_opt, ps, gs)
end
FluxMPI.fluxmpi_println(time() - t1)
```
Run the code using `mpiexecjl -n 3 julia --project=. <filename>.jl`.
## Examples
* [Deep Equilibrium Models](https://github.com/SciML/FastDEQ.jl) -- Deep Implicit Neural
Networks & Infinite Time Neural ODEs
* [ImageNet Training with Lux.jl](https://github.com/avik-pal/Lux.jl/tree/main/examples/ImageNet)
## Style Guide
We follow the [Lux Style Guide](http://lux.csail.mit.edu/stable/devdocs/style_guide/). All
contributions must adhere to this style guide.
## Changelog
### v0.7
* Dropped support for MPI v0.19.
* `FLUXMPI_DISABLE_CUDAMPI_SUPPORT` is no longer used. Instead use
`FluxMPI.disable_cudampi_support()` to setup a LocalPreferences.toml file.
* `clean_(print/println)` functions are now `fluxmpi_(print/println)`.
<details>
<summary><h3>v0.6</h3></summary>
* Dropped support for `LearnBase`, aka `DataLoaders.jl`. `DistributedDataContainer` is now
the only compatible with `MLUtils.jl`.
* `DistributedOptimiser` name changed to `DistributedOptimizer`.
</details>
<details>
<summary><h3>v0.5</h3></summary>
#### v0.5.3
* Introduces a new API for gradient synchronization
* Don't wrap in `DistributedOptimiser`
* Instead just add a line `allreduce_gradients(gs::NamedTuple)`
#### v0.5.1
* Internal `MPIExtensions` functions renamed
* `Allreduce!` --> `allreduce!`
* `Bcast!` --> `bcast!`
* `Reduce!` --> `reduce!`
* CUDA-unaware MPI bug resolved https://github.com/avik-pal/Lux.jl/issues/18
* Disable CUDA-aware MPI support from `FluxMPI` using `FLUXMPI_DISABLE_CUDAMPI_SUPPORT=true`
* Temporarily re-added dependencies on `MLDataUtils` and `LearnBase` to ensure
`DataLoaders.jl` still works -- This will be dropped in a future release
#### v0.5.0
* `DistributedOptimiser` no longer averages the gradients. Instead, the values are summed
across the processes. To ensure averaging divide the loss by `total_workers()`
* `rrule`s and `frule`s defined for `local_rank()` and `total_workers` -- they can now be
safely used inside loss functions.
</details>
<details>
<summary><h3>v0.4</h3></summary>
* `fluxmpi_print` and `fluxmpi_println` print the current time even if `FluxMPI` has not been
initialized.
* Calling `local_rank` or `total_workers` before `FluxMPI.Init` doesn't lead to a segfault.
Rather we throw an error.
* `MLDataUtils` and `LearnBase` dependencies have been dropped
(See https://github.com/avik-pal/FluxMPI.jl/issues/17)
* `Zygote` and `Flux` dependencies have been removed
* No dispatch for `FluxMPI.synchronize!` is now available for `Zygote.Params`. Instead
users should be manually broadcasting the function over `Zygote.Params`
</details>
<details>
<summary><h3>v0.3</h3></summary>
* `broadcast_parameters` has been renamed to `FluxMPI.synchronize!` since it synchronizes
a lot more than trainable parameters now.
* DistributedOptimiser is no longer tied with Flux. We can essentially deal with any
training as long as it is compatible with
[Optimisers.jl](https://github.com/FluxML/Optimisers.jl)
</details>
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | docs | 653 | ```@meta
CurrentModule = FluxMPI
```
```@index
Pages = ["api.md"]
```
## Data Helpers
```@docs
DistributedDataContainer
```
## General Functions
```@docs
FluxMPI.Init
FluxMPI.Initialized
fluxmpi_print
fluxmpi_println
local_rank
total_workers
```
## MPIExtensions: Blocking Communication Wrappers
```@docs
FluxMPI.allreduce!
FluxMPI.bcast!
FluxMPI.reduce!
```
## MPIExtensions: Non-Blocking Communication
```@docs
FluxMPI.Iallreduce!
FluxMPI.Ibcast!
```
## Optimization
```@docs
DistributedOptimizer
allreduce_gradients
```
## Synchronization
```@docs
FluxMPI.synchronize!
```
## Configuration
```@docs
FluxMPI.disable_cudampi_support
```
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | docs | 633 | ## CUDA-aware MPI
### Setup
OpenMPI has extensive instructions on building
[CUDA-aware MPI](https://www-lb.open-mpi.org/faq/?category=buildcuda). Next rebuild MPI.jl
using these
[instructions](https://juliaparallel.org/MPI.jl/stable/configuration/#Using-a-system-provided-MPI).
Additionally, make sure to set `JULIA_CUDA_USE_MEMPOOL=none`.
### Should you use CUDA-aware MPI?
I would recommend **not** using this atm, since `JULIA_CUDA_USE_MEMPOOL=none` will severely
slow down your code (*~2-3x* for most workloads I tested). Instead setup `MPI.jl` using you
system provided MPI and execute `FluxMPI.disable_cudampi_support()`.
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | docs | 856 | # Guide to integrating FluxMPI into your code
There are essentially 6 main steps to remember:
1. Initialize FluxMPI [`FluxMPI.Init()`](@ref).
2. Sync Model Parameters and States [`FluxMPI.synchronize!(ps; root_rank)`](@ref). (Remember
to use `FluxMPIFluxModel` for Flux models.)
3. Use [`DistributedDataContainer`](@ref) to distribute your data evenly across the
processes. (Of course an alternative is to just manually partition your data.)
4. Wrap the optimizer in [`DistributedOptimizer`](@ref) or call
[`allreduce_gradients(gs::NamedTuple)`](@ref) before eveery `Optimisers.update`.
5. Sync the optimizer state across the processes
[`FluxMPI.synchronize!(opt_state; root_rank)`](@ref).
6. Change logging code to check for [`local_rank`](@ref) == 0.
Finally, start the code using `mpiexecjl -n <np> julia --project=. <filename>.jl`
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | docs | 1410 | # FluxMPI.jl
Distributed Data Parallel Training of Neural Networks
!!! note
This package has very little to do with Flux. FWIW it doesn't even depend on it.
It can be seamlessly used with [Flux.jl](https://github.com/FluxML/Flux.jl),
[Lux.jl](https://github.com/avik-pal/Lux.jl), and pretty much any framework which works
with [Optimisers.jl](https://github.com/FluxML/Optimisers.jl).
## Installation
Install [julia v1.6 or above](https://julialang.org/downloads/). Next Install the stable
release:
```julia
using Pkg
Pkg.add("FluxMPI")
```
To install the Latest development version (not very beneficial we release most patches
almost immediately):
```julia
using Pkg
Pkg.add("FluxMPI", rev="main")
```
## Design Principles
- Efficient distributed data parallelism using MPI.
- Not tied to any specific framework -- works with
[Lux.jl](https://github.com/avik-pal/Lux.jl),
[Flux.jl](https://github.com/FluxML/Flux.jl), etc.
- Should not be too intrusive.
## Citation
If you found this library to be useful in academic work, then please cite:
```bibtex
@misc{pal2022lux,
author = {Pal, Avik},
title = {FluxMPI: Distributed Data Parallel Training of Neural Networks},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/avik-pal/FluxMPI.jl/}}
}
```
Also consider starring our github repo
| FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | docs | 3084 | # Usage example with FLux.jl
[Flux.jl](http://lux.csail.mit.edu/stable/) is one of the defacto deep learning framework
in Julia.
## Step 0: Import the necessary packages
!!! tip
You can install these packages using
`using Pkg; Pkg.add.(["CUDA", "Optimisers", "Flux", "Random", "Zygote"])`
```julia
using CUDA, Optimisers, FluxMPI, Flux, Random, Zygote
```
## Step 1: Initialize FluxMPI. Not doing this will segfault your code
```julia
FluxMPI.Init()
CUDA.allowscalar(false)
```
## Step 2: Sync Model Parameters and States
```julia
model = Chain(Dense(1 => 256, tanh), Dense(256 => 512, tanh), Dense(512 => 256, tanh),
Dense(256 => 1))
rng = Random.default_rng()
Random.seed!(rng, local_rank())
# Always remember to wrap the model in FluxMPIFluxModel
model = FluxMPI.synchronize!(FluxMPIFluxModel(model); root_rank=0)
```
## Step 3: Ensure data is properly partitioned
It is the user's responsibility to partition the data across the processes. In this case,
we are training on a total of `16 * <np>` samples. Instead of manually partitioning the
data, we can use [`DistributedDataContainer`](@ref) to partition the data.
```julia
x = rand(rng, 1, 16) |> gpu
y = x .^ 2
```
## Step 4: Wrap the optimizer in [`DistributedOptimizer`](@ref)
Remember to scale the learning rate by the number of workers [`total_workers`](@ref).
```julia
opt = DistributedOptimizer(Optimisers.Adam(0.001f0))
st_opt = Optimisers.setup(opt, model)
loss(model) = sum(abs2, model(x) .- y)
```
## Step 5: Synchronize the optimizer state
```julia
st_opt = FluxMPI.synchronize!(st_opt; root_rank = 0)
```
## Step 6: Train your model
Remember to print using [`fluxmpi_println`](@ref) or [`fluxmpi_print`](@ref).
```julia
gs_ = gradient(loss, model)[1]
Optimisers.update(st_opt, ps, gs_)
t1 = time()
for epoch in 1:100
global model, st_opt
l, back = Zygote.pullback(loss, model)
FluxMPI.fluxmpi_println("Epoch $epoch: Loss $l")
gs = back(one(l))[1]
st_opt, model = Optimisers.update(st_opt, model, gs)
end
FluxMPI.fluxmpi_println(time() - t1)
```
Run the code using `mpiexecjl -n 3 julia --project=. <filename>.jl`.
## Complete Script
```julia
using CUDA, FluxMPI, Flux, Optimisers, Random, Zygote
FluxMPI.Init()
CUDA.allowscalar(false)
model = Chain(Dense(1 => 256, tanh), Dense(256 => 512, tanh), Dense(512 => 256, tanh),
Dense(256 => 1)) |> gpu
rng = Random.default_rng()
Random.seed!(rng, local_rank())
model = FluxMPI.synchronize!(FluxMPIFluxModel(model); root_rank=0)
x = rand(rng, 1, 16) |> gpu
y = x .^ 2
opt = DistributedOptimizer(Optimisers.Adam(0.001f0))
st_opt = Optimisers.setup(opt, model)
loss(model) = sum(abs2, model(x) .- y)
st_opt = FluxMPI.synchronize!(st_opt; root_rank = 0)
gs_ = gradient(loss, model)[1]
Optimisers.update(st_opt, ps, gs_)
t1 = time()
for epoch in 1:100
global model, st_opt
l, back = Zygote.pullback(loss, model)
FluxMPI.fluxmpi_println("Epoch $epoch: Loss $l")
gs = back(one(l))[1]
st_opt, model = Optimisers.update(st_opt, model, gs)
end
FluxMPI.fluxmpi_println(time() - t1)
``` | FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.7.2 | b59264f8a69d35191671a4db42dd50b7548345d1 | docs | 3301 | # Usage example with Lux.jl
[Lux.jl](http://lux.csail.mit.edu/stable/) is a deep learning framework which provides a
functional design to implement neural networks in Julia. If you are not familiar with Lux,
first check-out
[this tutorial](http://lux.csail.mit.edu/stable/examples/generated/beginner/Basics/main/)
before proceeding.
## Step 0: Import the necessary packages
!!! tip
You can install these packages using
`using Pkg; Pkg.add.(["CUDA", "Optimisers", "Lux", "Random", "Zygote"])`
```julia
using CUDA, Optimisers, FluxMPI, Lux, Random, Zygote
```
## Step 1: Initialize FluxMPI. Not doing this will segfault your code
```julia
FluxMPI.Init()
CUDA.allowscalar(false)
```
## Step 2: Sync Model Parameters and States
```julia
model = Chain(Dense(1 => 256, tanh), Dense(256 => 512, tanh), Dense(512 => 256, tanh),
Dense(256 => 1))
rng = Random.default_rng()
Random.seed!(rng, local_rank())
ps, st = Lux.setup(rng, model) .|> gpu
ps = FluxMPI.synchronize!(ps; root_rank = 0)
st = FluxMPI.synchronize!(st; root_rank = 0)
```
## Step 3: Ensure data is properly partitioned
It is the user's responsibility to partition the data across the processes. In this case,
we are training on a total of `16 * <np>` samples. Instead of manually partitioning the
data, we can use [`DistributedDataContainer`](@ref) to partition the data.
```julia
x = rand(rng, 1, 16) |> gpu
y = x .^ 2
```
## Step 4: Wrap the optimizer in [`DistributedOptimizer`](@ref)
Remember to scale the learning rate by the number of workers [`total_workers`](@ref).
```julia
opt = DistributedOptimizer(Adam(0.001f0))
st_opt = Optimisers.setup(opt, ps)
loss(p) = sum(abs2, model(x, p, st)[1] .- y)
```
## Step 5: Synchronize the optimizer state
```julia
st_opt = FluxMPI.synchronize!(st_opt; root_rank = 0)
```
## Step 6: Train your model
Remember to print using [`fluxmpi_println`](@ref) or [`fluxmpi_print`](@ref).
```julia
gs_ = gradient(loss, ps)[1]
Optimisers.update(st_opt, ps, gs_)
t1 = time()
for epoch in 1:100
global ps, st_opt
l, back = Zygote.pullback(loss, ps)
FluxMPI.fluxmpi_println("Epoch $epoch: Loss $l")
gs = back(one(l))[1]
st_opt, ps = Optimisers.update(st_opt, ps, gs)
end
FluxMPI.fluxmpi_println(time() - t1)
```
Run the code using `mpiexecjl -n 3 julia --project=. <filename>.jl`.
## Complete Script
```julia
using CUDA, FluxMPI, Lux, Optimisers, Random, Zygote
FluxMPI.Init()
CUDA.allowscalar(false)
model = Chain(Dense(1 => 256, tanh), Dense(256 => 512, tanh), Dense(512 => 256, tanh),
Dense(256 => 1))
rng = Random.default_rng()
Random.seed!(rng, local_rank())
ps, st = Lux.setup(rng, model) .|> gpu
ps = FluxMPI.synchronize!(ps; root_rank = 0)
st = FluxMPI.synchronize!(st; root_rank = 0)
x = rand(rng, 1, 16) |> gpu
y = x .^ 2
opt = DistributedOptimizer(Adam(0.001f0))
st_opt = Optimisers.setup(opt, ps)
loss(p) = sum(abs2, model(x, p, st)[1] .- y)
st_opt = FluxMPI.synchronize!(st_opt; root_rank = 0)
gs_ = gradient(loss, ps)[1]
Optimisers.update(st_opt, ps, gs_)
t1 = time()
for epoch in 1:100
global ps, st_opt
l, back = Zygote.pullback(loss, ps)
FluxMPI.fluxmpi_println("Epoch $epoch: Loss $l")
gs = back(one(l))[1]
st_opt, ps = Optimisers.update(st_opt, ps, gs)
end
FluxMPI.fluxmpi_println(time() - t1)
``` | FluxMPI | https://github.com/avik-pal/FluxMPI.jl.git |
|
[
"MIT"
] | 0.1.4 | 2c4204585df32fe31eaa9ea346ed469f844996b1 | code | 4098 | ## Load WGPU
using WGPUNative
include("$(pkgdir(WGPUNative))/examples/requestDevice.jl")
## Buffer dimensions
width, height = (200, 200)
struct BufferDimensions
height::UInt32
width::UInt32
padded_bytes_per_row::UInt32
unpadded_bytes_per_row::UInt32
function BufferDimensions(width, height)
bytes_per_pixel = sizeof(UInt32)
unpadded_bytes_per_row = width*bytes_per_pixel
align = 256
padded_bytes_per_row_padding = (align - unpadded_bytes_per_row % align) % align
padded_bytes_per_row = unpadded_bytes_per_row + padded_bytes_per_row_padding
return new(height, width, padded_bytes_per_row, unpadded_bytes_per_row)
end
end
bufferDimensions = BufferDimensions(width, height)
bufferSize = bufferDimensions.padded_bytes_per_row*bufferDimensions.height
outputBuffer = wgpuDeviceCreateBuffer(
device[],
cStruct(
WGPUBufferDescriptor;
nextInChain = C_NULL,
label = toCString("Output Buffer"),
usage = WGPUBufferUsage_MapRead | WGPUBufferUsage_CopyDst,
size = bufferSize,
mappedAtCreation = false
) |> ptr
)
## textureExtent
textureExtent = cStruct(
WGPUExtent3D;
width = bufferDimensions.width,
height = bufferDimensions.height,
depthOrArrayLayers = 1
)
## texture
texture = wgpuDeviceCreateTexture(
device[],
cStruct(
WGPUTextureDescriptor;
size = textureExtent |> concrete,
mipLevelCount = 1,
sampleCount = 1,
dimension = WGPUTextureDimension_2D,
format = WGPUTextureFormat_RGBA8UnormSrgb,
usage = WGPUTextureUsage_RenderAttachment | WGPUTextureUsage_CopySrc,
) |> ptr
)
## encoder
encoder = wgpuDeviceCreateCommandEncoder(
device[],
cStruct(WGPUCommandEncoderDescriptor) |> ptr
)
## outputAttachment
# outputAttachment = wgpuTextureCreateView(
# texture,
# pointer_from_objref(Ref(defaultInit(WGPUTextureViewDescriptor)))
# )
outputAttachment = wgpuTextureCreateView(
texture,
C_NULL
)
## renderPass
renderPass = wgpuCommandEncoderBeginRenderPass(
encoder,
cStruct(
WGPURenderPassDescriptor;
colorAttachments = cStruct(
WGPURenderPassColorAttachment;
view = outputAttachment,
resolveTarget = 0,
loadOp = WGPULoadOp_Clear,
storeOp = WGPUStoreOp_Store,
clearValue = WGPUColor(1.0, 0.0, 0.0, 1.0),
) |> ptr,
colorAttachmentCount = 1,
depthStencilAttachment = C_NULL
) |> ptr
)
## end renderpass
wgpuRenderPassEncoderEnd(renderPass)
## Copy texture to buffer
wgpuCommandEncoderCopyTextureToBuffer(
encoder,
cStruct(
WGPUImageCopyTexture;
texture = texture,
miplevel = 0,
origin = WGPUOrigin3D(0, 0, 0)
) |> ptr,
cStruct(
WGPUImageCopyBuffer;
buffer = outputBuffer,
layout = cStruct(
WGPUTextureDataLayout;
offset = 0,
bytesPerRow = bufferDimensions.padded_bytes_per_row,
rowsPerImage = WGPU_COPY_STRIDE_UNDEFINED
) |> concrete
) |> ptr,
(textureExtent) |> ptr
)
queue = wgpuDeviceGetQueue(device[])
## commandBuffer
cmdBuffer = wgpuCommandEncoderFinish(
encoder,
cStruct(WGPUCommandBufferDescriptor) |> ptr
)
## submit queue
wgpuQueueSubmit(queue, 1, Ref(cmdBuffer))
## MapAsync
asyncstatus = Ref(WGPUBufferMapAsyncStatus(3))
function readBufferMap(
status::WGPUBufferMapAsyncStatus,
userData)
asyncstatus[] = status
return nothing
end
readbuffermap = @cfunction(readBufferMap, Cvoid, (WGPUBufferMapAsyncStatus, Ptr{Cvoid}))
wgpuBufferMapAsync(outputBuffer, WGPUMapMode_Read, 0, bufferSize, readbuffermap, C_NULL)
print(asyncstatus[])
## device polling
wgpuDevicePoll(device[], true, C_NULL)
## times
times = convert(Ptr{UInt8}, wgpuBufferGetMappedRange(outputBuffer, 0, bufferSize))
## result
for i in 1:width*height
println(i, " : ", unsafe_load(times, i))
end
## Unmap
wgpuBufferUnmap(outputBuffer)
## TODO dump as an image
| WGPUNative | https://github.com/JuliaWGPU/WGPUNative.jl.git |
|
[
"MIT"
] | 0.1.4 | 2c4204585df32fe31eaa9ea346ed469f844996b1 | code | 8904 | ## Load WGPU
using WGPUNative
## Constants
numbers = UInt32[1,2,3,4]
const DEFAULT_ARRAY_SIZE = 256
## Init Window Size
const width = 200
const height = 200
## default inits for non primitive types
defaultInit(::Type{T}) where T<:Number = T(0)
defaultInit(::Type{T}) where T = begin
if isprimitivetype(T)
return T(0)
else
ins = []
for t = fieldnames(T)
push!(ins, defaultInit(fieldtype(T, t)))
end
return T(ins...)
end
end
defaultInit(::Type{WGPUNativeFeature}) = WGPUNativeFeature(0x10000000)
defaultInit(::Type{WGPUSType}) = WGPUSType(6)
defaultInit(::Type{T}) where T<:Ptr{Nothing} = Ptr{Nothing}()
defaultInit(::Type{Array{T, N}}) where T where N = zeros(T, DEFAULT_ARRAY_SIZE)
defaultInit(::Type{WGPUPowerPreference}) = WGPUPowerPreference(1)
function partialInit(target::Type{T}; fields...) where T
ins = []
inPairs = pairs(fields)
for field in fieldnames(T)
if field in keys(inPairs)
push!(ins, inPairs[field])
else
push!(ins, defaultInit(fieldtype(T, field)))
end
end
return T(ins...)
end
println("Current Version : $(wgpuGetVersion())")
function logCallBack(logLevel::WGPULogLevel, msg::Ptr{Cchar})
if logLevel == WGPULogLevel_Error
level_str = "ERROR"
elseif logLevel == WGPULogLevel_Warn
level_str = "WARN"
elseif logLevel == WGPULogLevel_Info
level_str = "INFO"
elseif logLevel == WGPULogLevel_Debug
level_str = "DEBUG"
elseif logLevel == WGPULogLevel_Trace
level_str = "TRACE"
else
level_str = "UNKNOWN LOG LEVEL"
end
println("$(level_str) $(unsafe_string(msg))")
end
logcallback = @cfunction(logCallBack, Cvoid, (WGPULogLevel, Ptr{Cchar}))
wgpuSetLogCallback(logcallback, Ptr{Cvoid}())
wgpuSetLogLevel(WGPULogLevel(4))
##
adapter = Ref(WGPUAdapter())
device = Ref(WGPUDevice())
adapterOptions = Ref(defaultInit(WGPURequestAdapterOptions))
function request_adapter_callback(
a::WGPURequestAdapterStatus,
b::WGPUAdapter,
c::Ptr{Cchar},
d::Ptr{Nothing})
global adapter[] = b
return nothing
end
requestAdapterCallback = @cfunction(request_adapter_callback, Cvoid, (WGPURequestAdapterStatus, WGPUAdapter, Ptr{Cchar}, Ptr{Cvoid}))
## device callback
function request_device_callback(
a::WGPURequestDeviceStatus,
b::WGPUDevice,
c::Ptr{Cchar},
d::Ptr{Nothing})
global device[] = b
return nothing
end
requestDeviceCallback = @cfunction(request_device_callback, Cvoid, (WGPURequestDeviceStatus, WGPUDevice, Ptr{Cchar}, Ptr{Cvoid}))
## request adapter
instance = wgpuCreateInstance(WGPUInstanceDescriptor(0) |> Ref)
wgpuInstanceRequestAdapter(instance,
adapterOptions,
requestAdapterCallback,
adapter)
##
# chain = WGPUChainedStruct(C_NULL, WGPUSType(6))
#
# deviceName = Vector{UInt8}("Device")
# deviceExtras = WGPUDeviceExtras(chain, defaultInit(WGPUNativeFeature), pointer(deviceName), C_NULL)
#
# const DEFAULT_ARRAY_SIZE = 256
#
# wgpuLimits = partialInit(WGPULimits; maxBindGroups = 1)
#
# wgpuRequiredLimits = WGPURequiredLimits(C_NULL, wgpuLimits)
#
# wgpuQueueDescriptor = WGPUQueueDescriptor(C_NULL, C_NULL)
#
# wgpuDeviceDescriptor = Ref(
# partialInit(
# WGPUDeviceDescriptor,
# nextInChain = pointer_from_objref(Ref(partialInit(WGPUChainedStruct, chain=deviceExtras))),
# requiredLimits = pointer_from_objref(Ref(wgpuRequiredLimits)),
# defaultQueue = wgpuQueueDescriptor
# )
# )
wgpuAdapterRequestDevice(
adapter[],
C_NULL,
requestDeviceCallback,
device[])
## Buffer dimensions
struct BufferDimensions
height::UInt32
width::UInt32
padded_bytes_per_row::UInt32
unpadded_bytes_per_row::UInt32
function BufferDimensions(width, height)
bytes_per_pixel = sizeof(UInt32)
unpadded_bytes_per_row = width*bytes_per_pixel
align = 256
padded_bytes_per_row_padding = (align - unpadded_bytes_per_row % align) % align
padded_bytes_per_row = unpadded_bytes_per_row + padded_bytes_per_row_padding
return new(height, width, padded_bytes_per_row, unpadded_bytes_per_row)
end
end
bufferDimensions = BufferDimensions(width, height)
bufferSize = bufferDimensions.padded_bytes_per_row*bufferDimensions.height
outputBuffer = wgpuDeviceCreateBuffer(
device[],
pointer_from_objref(Ref(partialInit(WGPUBufferDescriptor;
nextInChain = C_NULL,
label = pointer(Vector{UInt8}("Output Buffer")),
usage = WGPUBufferUsage_MapRead | WGPUBufferUsage_CopyDst,
size = bufferSize,
mappedAtCreation = false
)))
)
## textureExtent
textureExtent = partialInit(
WGPUExtent3D;
width = bufferDimensions.width,
height = bufferDimensions.height,
depthOrArrayLayers = 1
)
## texture
texture = wgpuDeviceCreateTexture(
device[],
pointer_from_objref(Ref(partialInit(WGPUTextureDescriptor;
size = textureExtent,
mipLevelCount = 1,
sampleCount = 1,
dimension = WGPUTextureDimension_2D,
format = WGPUTextureFormat_RGBA8UnormSrgb,
usage = WGPUTextureUsage_RenderAttachment | WGPUTextureUsage_CopySrc,
))))
## encoder
encoder = wgpuDeviceCreateCommandEncoder(
device[],
pointer_from_objref(Ref(defaultInit(WGPUCommandEncoderDescriptor))))
## outputAttachment
# outputAttachment = wgpuTextureCreateView(
# texture,
# pointer_from_objref(Ref(defaultInit(WGPUTextureViewDescriptor)))
# )
outputAttachment = wgpuTextureCreateView(
texture,
C_NULL
)
## renderPass
renderPass = wgpuCommandEncoderBeginRenderPass(
encoder,
pointer_from_objref(Ref(partialInit(WGPURenderPassDescriptor;
colorAttachments = pointer_from_objref(Ref(partialInit(WGPURenderPassColorAttachment;
view = outputAttachment,
resolveTarget = 0,
loadOp = WGPULoadOp_Clear,
storeOp = WGPUStoreOp_Store,
clearValue = WGPUColor(1.0, 0.0, 0.0, 1.0),
))),
colorAttachmentCount = 1,
depthStencilAttachment = C_NULL
)))
)
## end renderpass
wgpuRenderPassEncoderEnd(renderPass)
## Copy texture to buffer
wgpuCommandEncoderCopyTextureToBuffer(
encoder,
pointer_from_objref(Ref(partialInit(WGPUImageCopyTexture;
texture = texture,
miplevel = 0,
origin = WGPUOrigin3D(0, 0, 0)))),
pointer_from_objref(Ref(partialInit(WGPUImageCopyBuffer;
buffer = outputBuffer,
layout = partialInit(WGPUTextureDataLayout;
offset = 0,
bytesPerRow = bufferDimensions.padded_bytes_per_row,
rowsPerImage = WGPU_COPY_STRIDE_UNDEFINED
)))),
Ref(textureExtent))
##
##
#
#
#
#
##
#
#
#
##
#
#
#
#
##
#
#
#
#
## queue
queue = wgpuDeviceGetQueue(device[])
## commandBuffer
cmdBuffer = wgpuCommandEncoderFinish(
encoder,
pointer_from_objref(Ref(defaultInit(WGPUCommandBufferDescriptor)))
)
## submit queue
wgpuQueueSubmit(queue, 1, Ref(cmdBuffer))
## MapAsync
asyncstatus = Ref(WGPUBufferMapAsyncStatus(3))
function readBufferMap(
status::WGPUBufferMapAsyncStatus,
userData)
asyncstatus[] = status
return nothing
end
readbuffermap = @cfunction(readBufferMap, Cvoid, (WGPUBufferMapAsyncStatus, Ptr{Cvoid}))
wgpuBufferMapAsync(outputBuffer, WGPUMapMode_Read, 0, bufferSize, readbuffermap, C_NULL)
print(asyncstatus[])
## device polling
wgpuDevicePoll(device[], true, C_NULL)
## times
times = convert(Ptr{UInt8}, wgpuBufferGetMappedRange(outputBuffer, 0, bufferSize))
## result
for i in 1:width*height
println(i, " : ", unsafe_load(times, i))
end
## Unmap
#
wgpuBufferUnmap(outputBuffer)
## TODO dump as an image
| WGPUNative | https://github.com/JuliaWGPU/WGPUNative.jl.git |
|
[
"MIT"
] | 0.1.4 | 2c4204585df32fe31eaa9ea346ed469f844996b1 | code | 5989 | using WGPUNative
numbers = UInt32[1,2,3,4]
include("$(pkgdir(WGPUNative))/examples/requestDevice.jl")
##
b = read("examples/shader.wgsl")
wgslDescriptor = cStruct(WGPUShaderModuleWGSLDescriptor)
wgslDescriptor.chain = cStruct(WGPUChainedStruct) |> concrete
wgslDescriptor.code = pointer(b)
# wgslDescriptor = WGPUShaderModuleWGSLDescriptor(
# cStruct(WGPUChainedStruct) |> concrete,
# pointer(b)
# )
## WGSL loading
function load_wgsl(filename)
b = read(filename)
wgslDescriptor = cStruct(WGPUShaderModuleWGSLDescriptor)
wgslDescriptor.chain = cStruct(
WGPUChainedStruct;
sType=WGPUSType_ShaderModuleWGSLDescriptor
) |> concrete
wgslDescriptor.code = pointer(b)
a = cStruct(
WGPUShaderModuleDescriptor;
nextInChain = wgslDescriptor |> ptr,
label = toCString(filename)
)
return (a, wgslDescriptor)
end
(shaderSource, _) = load_wgsl("examples/shader.wgsl")
##
shader = wgpuDeviceCreateShaderModule(
device[],
shaderSource |> ptr
)
## StagingBuffer
stagingBuffer = wgpuDeviceCreateBuffer(
device[],
cStruct(
WGPUBufferDescriptor;
nextInChain = C_NULL,
label = toCString("StagingBuffer"),
usage = WGPUBufferUsage_MapRead | WGPUBufferUsage_CopyDst,
size = sizeof(numbers),
mappedAtCreation = false
) |> ptr
)
## StorageBuffer
storageBuffer = wgpuDeviceCreateBuffer(
device[],
cStruct(
WGPUBufferDescriptor;
nextInChain = C_NULL,
label = toCString("StorageBuffer"),
usage = WGPUBufferUsage_Storage | WGPUBufferUsage_CopyDst | WGPUBufferUsage_CopySrc,
size = sizeof(numbers),
mappedAtCreation = false
) |> ptr
)
## BindGroupLayout
bindGroupLayout = wgpuDeviceCreateBindGroupLayout(
device[],
cStruct(
WGPUBindGroupLayoutDescriptor;
label = toCString("Bind Group Layout"),
entries = cStruct(
WGPUBindGroupLayoutEntry;
nextInChain = C_NULL,
binding = 0,
visibility = WGPUShaderStage_Compute,
buffer = cStruct(
WGPUBufferBindingLayout;
type=WGPUBufferBindingType_Storage
) |> concrete,
sampler = cStruct(
WGPUSamplerBindingLayout;
) |> concrete,
texture = cStruct(
WGPUTextureBindingLayout;
) |> concrete,
storageTexture = cStruct(
WGPUStorageTextureBindingLayout;
) |> concrete
) |> ptr,
entryCount = 1
) |> ptr
)
## BindGroup
bindGroup = wgpuDeviceCreateBindGroup(
device[],
cStruct(
WGPUBindGroupDescriptor;
label = toCString("Bind Group"),
layout = bindGroupLayout,
entries = cStruct(
WGPUBindGroupEntry;
binding = 0,
buffer = storageBuffer,
offset = 0,
size = sizeof(numbers)
) |> ptr,
entryCount = 1
) |> ptr
)
## bindGroupLayouts
bindGroupLayouts = [bindGroupLayout,]
## Pipeline Layout
pipelineLayout = wgpuDeviceCreatePipelineLayout(
device[],
cStruct(
WGPUPipelineLayoutDescriptor;
bindGroupLayouts = pointer(bindGroupLayouts),
bindGroupLayoutCount = 1
) |> ptr
)
## TODO fix
compute = cStruct(
WGPUProgrammableStageDescriptor;
_module = shader,
entryPoint = toCString("main")
) |> concrete
## compute pipeline
computePipeline = wgpuDeviceCreateComputePipeline(
device[],
cStruct(
WGPUComputePipelineDescriptor,
layout = pipelineLayout,
compute = cStruct(
WGPUProgrammableStageDescriptor;
_module = shader,
entryPoint = toCString("main")
) |> concrete
) |> ptr
)
## encoder
encoder = wgpuDeviceCreateCommandEncoder(
device[],
cStruct(
WGPUCommandEncoderDescriptor;
label = toCString("Command Encoder")
) |> ptr
)
## computePass
computePass = wgpuCommandEncoderBeginComputePass(
encoder,
cStruct(
WGPUComputePassDescriptor;
label = toCString("Compute Pass")
) |> ptr
)
## set pipeline
wgpuComputePassEncoderSetPipeline(computePass, computePipeline)
wgpuComputePassEncoderSetBindGroup(computePass, 0, bindGroup, 0, C_NULL)
wgpuComputePassEncoderDispatchWorkgroups(computePass, length(numbers), 1, 1)
wgpuComputePassEncoderEnd(computePass)
## buffer copy buffer
wgpuCommandEncoderCopyBufferToBuffer(encoder, storageBuffer, 0, stagingBuffer, 0, sizeof(numbers))
## queue
queue = wgpuDeviceGetQueue(device[])
## commandBuffer
cmdBuffer = wgpuCommandEncoderFinish(
encoder,
cStruct(WGPUCommandBufferDescriptor) |> ptr
)
## writeBuffer
wgpuQueueWriteBuffer(queue, storageBuffer, 0, pointer(numbers), sizeof(numbers))
## submit queue
wgpuQueueSubmit(queue, 1, Ref(cmdBuffer))
## MapAsync
asyncstatus = Ref(WGPUBufferMapAsyncStatus(3))
function readBufferMap(
status::WGPUBufferMapAsyncStatus,
userData)
asyncstatus[] = status
return nothing
end
readbuffermap = @cfunction(readBufferMap, Cvoid, (WGPUBufferMapAsyncStatus, Ptr{Cvoid}))
wgpuBufferMapAsync(stagingBuffer, WGPUMapMode_Read, 0, sizeof(numbers), readbuffermap, C_NULL)
print(asyncstatus[])
## device polling
wgpuDevicePoll(device[], true, C_NULL)
## times
times = convert(Ptr{UInt32}, wgpuBufferGetMappedRange(stagingBuffer, 0, sizeof(numbers)))
## result
for i in eachindex(numbers)
println(numbers[i], " : " ,unsafe_load(times, i))
end
| WGPUNative | https://github.com/JuliaWGPU/WGPUNative.jl.git |
|
[
"MIT"
] | 0.1.4 | 2c4204585df32fe31eaa9ea346ed469f844996b1 | code | 10116 | ## Load WGPU
using WGPUNative
## Constants
numbers = UInt32[1,2,3,4]
const DEFAULT_ARRAY_SIZE = 256
## Init Window Size
const width = 200
const height = 200
## default inits for non primitive types
defaultInit(::Type{T}) where T<:Number = T(0)
defaultInit(::Type{T}) where T = begin
if isprimitivetype(T)
return T(0)
else
ins = []
for t = fieldnames(T)
push!(ins, defaultInit(fieldtype(T, t)))
end
return T(ins...)
end
end
defaultInit(::Type{WGPUNativeFeature}) = WGPUNativeFeature(0x10000000)
defaultInit(::Type{WGPUSType}) = WGPUSType(6)
defaultInit(::Type{T}) where T<:Ptr{Nothing} = Ptr{Nothing}()
defaultInit(::Type{Array{T, N}}) where T where N = zeros(T, DEFAULT_ARRAY_SIZE)
defaultInit(::Type{WGPUPowerPreference}) = WGPUPowerPreference(1)
function partialInit(target::Type{T}; fields...) where T
ins = []
inPairs = pairs(fields)
for field in fieldnames(T)
if field in keys(inPairs)
push!(ins, inPairs[field])
else
push!(ins, defaultInit(fieldtype(T, field)))
end
end
return T(ins...)
end
## Print current version
println("Current Version : $(wgpuGetVersion())")
## Set Log callbacks
function logCallBack(logLevel::WGPULogLevel, msg::Ptr{Cchar})
if logLevel == WGPULogLevel_Error
level_str = "ERROR"
elseif logLevel == WGPULogLevel_Warn
level_str = "WARN"
elseif logLevel == WGPULogLevel_Info
level_str = "INFO"
elseif logLevel == WGPULogLevel_Debug
level_str = "DEBUG"
elseif logLevel == WGPULogLevel_Trace
level_str = "TRACE"
else
level_str = "UNKNOWN LOG LEVEL"
end
println("$(level_str) $(unsafe_string(msg))")
end
logcallback = @cfunction(logCallBack, Cvoid, (WGPULogLevel, Ptr{Cchar}))
wgpuSetLogCallback(logcallback, C_NULL)
wgpuSetLogLevel(WGPULogLevel(4))
##
adapter = Ref(WGPUAdapter())
device = Ref(WGPUDevice())
adapterOptions = Ref(defaultInit(WGPURequestAdapterOptions))
function request_adapter_callback(
a::WGPURequestAdapterStatus,
b::WGPUAdapter,
c::Ptr{Cchar},
d::Ptr{Nothing})
global adapter[] = b
return nothing
end
requestAdapterCallback = @cfunction(request_adapter_callback, Cvoid, (WGPURequestAdapterStatus, WGPUAdapter, Ptr{Cchar}, Ptr{Cvoid}))
## device callback
function request_device_callback(
a::WGPURequestDeviceStatus,
b::WGPUDevice,
c::Ptr{Cchar},
d::Ptr{Nothing})
global device[] = b
return nothing
end
requestDeviceCallback = @cfunction(request_device_callback, Cvoid, (WGPURequestDeviceStatus, WGPUDevice, Ptr{Cchar}, Ptr{Cvoid}))
instance = wgpuCreateInstance(WGPUInstanceDescriptor(0) |> Ref)
## request adapter
wgpuInstanceRequestAdapter(instance,
adapterOptions,
requestAdapterCallback,
adapter)
##
# chain = WGPUChainedStruct(C_NULL, WGPUSType(6))
#
# deviceName = Vector{UInt8}("Device")
# deviceExtras = WGPUDeviceExtras(chain, defaultInit(WGPUNativeFeature), pointer(deviceName), C_NULL)
#
# const DEFAULT_ARRAY_SIZE = 256
#
# wgpuLimits = partialInit(WGPULimits; maxBindGroups = 1)
#
# wgpuRequiredLimits = WGPURequiredLimits(C_NULL, wgpuLimits)
#
# wgpuQueueDescriptor = WGPUQueueDescriptor(C_NULL, C_NULL)
#
# wgpuDeviceDescriptor = Ref(
# partialInit(
# WGPUDeviceDescriptor,
# nextInChain = pointer_from_objref(Ref(partialInit(WGPUChainedStruct, chain=deviceExtras))),
# requiredLimits = pointer_from_objref(Ref(wgpuRequiredLimits)),
# defaultQueue = wgpuQueueDescriptor
# )
# )
# wgpuAdapterRequestDevice(
# adapter[],
# wgpuDeviceDescriptor,
# requestDeviceCallback,
# device[])
wgpuAdapterRequestDevice(
adapter[],
C_NULL,
requestDeviceCallback,
device[])
##
b = read("examples/shader.wgsl")
wgslDescriptor = WGPUShaderModuleWGSLDescriptor(
defaultInit(WGPUChainedStruct),
pointer(b)
)
## WGSL loading
function load_wgsl(filename)
b = read(filename)
wgslDescriptor = Ref(WGPUShaderModuleWGSLDescriptor(
defaultInit(WGPUChainedStruct),
pointer(b)
))
a = partialInit(
WGPUShaderModuleDescriptor;
nextInChain = pointer_from_objref(wgslDescriptor),
label = pointer(Vector{UInt8}("$(filename)"))
)
return (a, wgslDescriptor)
end
shaderSource = Ref(load_wgsl("examples/shader.wgsl")[1])
##
shader = wgpuDeviceCreateShaderModule(
device[],
pointer_from_objref(shaderSource)
)
## StagingBuffer
stagingBuffer = wgpuDeviceCreateBuffer(device[],
Ref(partialInit(WGPUBufferDescriptor;
nextInChain = C_NULL,
label = pointer(Vector{UInt8}("StagingBuffer")),
usage = WGPUBufferUsage_MapRead | WGPUBufferUsage_CopyDst,
size = sizeof(numbers),
mappedAtCreation = false
)))
## StorageBuffer
storageBuffer = wgpuDeviceCreateBuffer(device[],
Ref(partialInit(WGPUBufferDescriptor;
nextInChain = C_NULL,
label = pointer(Vector{UInt8}("StorageBuffer")),
usage = WGPUBufferUsage_Storage | WGPUBufferUsage_CopyDst | WGPUBufferUsage_CopySrc,
size = sizeof(numbers),
mappedAtCreation = false
)))
## BindGroupLayout
bindGroupLayout = wgpuDeviceCreateBindGroupLayout(
device[],
Ref(partialInit(WGPUBindGroupLayoutDescriptor;
label = pointer(Vector{UInt8}("Bind Group Layout")),
entries = pointer_from_objref(Ref(partialInit(
WGPUBindGroupLayoutEntry;
nextInChain = C_NULL,
binding = 0,
visibility = WGPUShaderStage_Compute,
buffer = partialInit(
WGPUBufferBindingLayout;
type=WGPUBufferBindingType_Storage
),
sampler = defaultInit(
WGPUSamplerBindingLayout;
),
texture = defaultInit(
WGPUTextureBindingLayout;
),
storageTexture = defaultInit(
WGPUStorageTextureBindingLayout;
)
))),
entryCount = 1
))
)
## BindGroup
bindGroup = wgpuDeviceCreateBindGroup(
device[],
pointer_from_objref(Ref(partialInit(
WGPUBindGroupDescriptor;
label = pointer(Vector{UInt8}("Bind Group")),
layout = bindGroupLayout,
entries = pointer_from_objref(Ref(partialInit(WGPUBindGroupEntry;
binding = 0,
buffer = storageBuffer,
offset = 0,
size = sizeof(numbers)))),
entryCount = 1
))))
## bindGroupLayouts
bindGroupLayouts = [bindGroupLayout,]
## Pipeline Layout
pipelineLayout = wgpuDeviceCreatePipelineLayout(
device[],
pointer_from_objref(Ref(partialInit(
WGPUPipelineLayoutDescriptor;
bindGroupLayouts = pointer(bindGroupLayouts),
bindGroupLayoutCount = 1
)
)))
## TODO fix
compute = partialInit(
WGPUProgrammableStageDescriptor;
_module = shader,
entryPoint = pointer(Vector{UInt8}("main"))
)
## compute pipeline
computePipeline = wgpuDeviceCreateComputePipeline(
device[],
pointer_from_objref(Ref(partialInit(
WGPUComputePipelineDescriptor,
layout = pipelineLayout,
compute = partialInit(
WGPUProgrammableStageDescriptor;
_module = shader,
entryPoint = pointer(Vector{UInt8}("main"))
)
))))
## encoder
encoder = wgpuDeviceCreateCommandEncoder(device[],
pointer_from_objref(Ref(partialInit(
WGPUCommandEncoderDescriptor;
label = pointer(Vector{UInt8}("Command Encoder"))
))))
## computePass
computePass = wgpuCommandEncoderBeginComputePass(encoder,
pointer_from_objref(Ref(partialInit(
WGPUComputePassDescriptor;
label = pointer(Vector{UInt8}("Compute Pass"))
))))
## set pipeline
wgpuComputePassEncoderSetPipeline(computePass, computePipeline)
wgpuComputePassEncoderSetBindGroup(computePass, 0, bindGroup, 0, C_NULL)
wgpuComputePassEncoderDispatchWorkgroups(computePass, length(numbers), 1, 1)
wgpuComputePassEncoderEnd(computePass)
## buffer copy buffer
wgpuCommandEncoderCopyBufferToBuffer(encoder, storageBuffer, 0, stagingBuffer, 0, sizeof(numbers))
## queue
queue = wgpuDeviceGetQueue(device[])
## commandBuffer
cmdBuffer = wgpuCommandEncoderFinish(
encoder,
pointer_from_objref(Ref(defaultInit(WGPUCommandBufferDescriptor)))
)
## writeBuffer
wgpuQueueWriteBuffer(queue, storageBuffer, 0, pointer(numbers), sizeof(numbers))
## submit queue
wgpuQueueSubmit(queue, 1, Ref(cmdBuffer))
## MapAsync
asyncstatus = Ref(WGPUBufferMapAsyncStatus(3))
function readBufferMap(
status::WGPUBufferMapAsyncStatus,
userData)
asyncstatus[] = status
return nothing
end
readbuffermap = @cfunction(readBufferMap, Cvoid, (WGPUBufferMapAsyncStatus, Ptr{Cvoid}))
wgpuBufferMapAsync(stagingBuffer, WGPUMapMode_Read, 0, sizeof(numbers), readbuffermap, C_NULL)
print(asyncstatus[])
## device polling
wgpuDevicePoll(device[], true, C_NULL)
## times
times = convert(Ptr{UInt32}, wgpuBufferGetMappedRange(stagingBuffer, 0, sizeof(numbers)))
## result
for i in 1:length(numbers)
println(numbers[i], " : " ,unsafe_load(times, i))
end
| WGPUNative | https://github.com/JuliaWGPU/WGPUNative.jl.git |
|
[
"MIT"
] | 0.1.4 | 2c4204585df32fe31eaa9ea346ed469f844996b1 | code | 2315 | ## Load WGPU
using WGPUNative
function logCallBack(logLevel::WGPULogLevel, msg::Ptr{Cchar})
if logLevel == WGPULogLevel_Error
level_str = "ERROR"
elseif logLevel == WGPULogLevel_Warn
level_str = "WARN"
elseif logLevel == WGPULogLevel_Info
level_str = "INFO"
elseif logLevel == WGPULogLevel_Debug
level_str = "DEBUG"
elseif logLevel == WGPULogLevel_Trace
level_str = "TRACE"
else
level_str = "UNKNOWN LOG LEVEL"
end
println("$(level_str) $(unsafe_string(msg))")
end
logcallback = @cfunction(logCallBack, Cvoid, (WGPULogLevel, Ptr{Cchar}))
wgpuSetLogCallback(logcallback, Ptr{Cvoid}())
wgpuSetLogLevel(WGPULogLevel_Debug)
adapter = Ref{WGPUAdapter}()
chain = cStruct(
WGPUChainedStruct;
sType = WGPUSType(Int64(WGPUSType_AdapterExtras)),
)
extras = cStruct(
WGPUAdapterExtras;
backend=WGPUBackendType_Vulkan, # TODO hardcoding on windows for now
chain = chain |> concrete
)
# extras.chain = chain |> concrete
adapterOptions = cStruct(WGPURequestAdapterOptions)
adapterOptions.compatibleSurface = C_NULL
adapterOptions.nextInChain = rawCast(WGPUChainedStruct, extras)
adapterOptions.powerPreference = WGPUPowerPreference_HighPerformance
adapterOptions.forceFallbackAdapter = false
function request_adapter_callback(
status::WGPURequestAdapterStatus,
returnAdapter::WGPUAdapter,
message::Ptr{Cchar},
userData::Ptr{Cvoid})
global adapter
# @debug status
if status == WGPURequestAdapterStatus_Success
adapter[] = returnAdapter
elseif message != C_NULL
@error unsafe_string(message)
end
return nothing
end
requestAdapterCallback = @cfunction(request_adapter_callback, Cvoid, (WGPURequestAdapterStatus, WGPUAdapter, Ptr{Cchar}, Ptr{Cvoid}))
## request adapter
instanceDesc = cStruct(WGPUInstanceDescriptor)
instanceDesc.nextInChain = C_NULL
instance = wgpuCreateInstance(instanceDesc |> ptr)
wgpuInstanceRequestAdapter(instance,
adapterOptions |> ptr,
requestAdapterCallback,
C_NULL)
@assert adapter[] != C_NULL
properties = cStruct(WGPUAdapterProperties)
wgpuAdapterGetProperties(adapter[], properties |> ptr)
supportedLimits = cStruct(WGPUSupportedLimits)
cLimits = supportedLimits.limits
wgpuAdapterGetLimits(adapter[], supportedLimits |> ptr)
| WGPUNative | https://github.com/JuliaWGPU/WGPUNative.jl.git |
|
[
"MIT"
] | 0.1.4 | 2c4204585df32fe31eaa9ea346ed469f844996b1 | code | 2438 | ## Load WGPU
using WGPUNative
function logCallBack(logLevel::WGPULogLevel, msg::Ptr{Cchar})
if logLevel == WGPULogLevel_Error
level_str = "ERROR"
elseif logLevel == WGPULogLevel_Warn
level_str = "WARN"
elseif logLevel == WGPULogLevel_Info
level_str = "INFO"
elseif logLevel == WGPULogLevel_Debug
level_str = "DEBUG"
elseif logLevel == WGPULogLevel_Trace
level_str = "TRACE"
else
level_str = "UNKNOWN LOG LEVEL"
end
println("$(level_str) $(unsafe_string(msg))")
end
logcallback = @cfunction(logCallBack, Cvoid, (WGPULogLevel, Ptr{Cchar}))
wgpuSetLogCallback(logcallback, Ptr{Cvoid}())
wgpuSetLogLevel(WGPULogLevel_Debug)
adapter = Ref{WGPUAdapter}()
adapterOptions = cStruct(WGPURequestAdapterOptions)
adapterOptions.compatibleSurface = C_NULL
adapterOptions.powerPreference = WGPUPowerPreference_HighPerformance
adapterOptions.forceFallbackAdapter = false
function request_adapter_callback(
status::WGPURequestAdapterStatus,
returnAdapter::WGPUAdapter,
message::Ptr{Cchar},
userData::Ptr{Cvoid})
global adapter
# @debug status
if status == WGPURequestAdapterStatus_Success
adapter[] = returnAdapter
elseif message != C_NULL
@error unsafe_string(message)
end
return nothing
end
requestAdapterCallback = @cfunction(request_adapter_callback, Cvoid, (WGPURequestAdapterStatus, WGPUAdapter, Ptr{Cchar}, Ptr{Cvoid}))
## request adapter
instanceDesc = cStruct(WGPUInstanceDescriptor)
instanceDesc.nextInChain = C_NULL
instance = wgpuCreateInstance(instanceDesc |> ptr)
wgpuInstanceRequestAdapter(instance,
adapterOptions |> ptr,
requestAdapterCallback,
C_NULL)
@assert adapter[] != C_NULL
properties = cStruct(WGPUAdapterProperties)
wgpuAdapterGetProperties(adapter[], properties |> ptr)
supportedLimits = cStruct(WGPUSupportedLimits)
cLimits = supportedLimits.limits
wgpuAdapterGetLimits(adapter[], supportedLimits |> ptr)
device = Ref{WGPUDevice}()
function request_device_callback(
a::WGPURequestDeviceStatus,
b::WGPUDevice,
c::Ptr{Cchar},
d::Ptr{Nothing})
global device[] = b
return nothing
end
requestDeviceCallback = @cfunction(request_device_callback, Cvoid, (WGPURequestDeviceStatus, WGPUDevice, Ptr{Cchar}, Ptr{Cvoid}))
wgpuAdapterRequestDevice(
adapter[],
C_NULL,
requestDeviceCallback,
device[])
| WGPUNative | https://github.com/JuliaWGPU/WGPUNative.jl.git |
|
[
"MIT"
] | 0.1.4 | 2c4204585df32fe31eaa9ea346ed469f844996b1 | code | 13415 | ## Load WGPU
using WGPUNative
using GLFW
## Constants
numbers = UInt32[1,2,3,4]
const DEFAULT_ARRAY_SIZE = 256
## Init Window Size
width = 400
height = 400
## default inits for non primitive types
defaultInit(::Type{T}) where T<:Number = T(0)
defaultInit(::Type{T}) where T = begin
if isprimitivetype(T)
return T(0)
else
ins = []
for t = fieldnames(T)
push!(ins, defaultInit(fieldtype(T, t)))
end
return T(ins...)
end
end
defaultInit(::Type{WGPUNativeFeature}) = WGPUNativeFeature(0x10000000)
defaultInit(::Type{WGPUSType}) = WGPUSType(6)
defaultInit(::Type{T}) where T<:Ptr{Nothing} = Ptr{Nothing}()
defaultInit(::Type{Array{T, N}}) where T where N = zeros(T, DEFAULT_ARRAY_SIZE)
defaultInit(::Type{WGPUPowerPreference}) = WGPUPowerPreference(1)
function partialInit(target::Type{T}; fields...) where T
ins = []
inPairs = pairs(fields)
for field in fieldnames(T)
if field in keys(inPairs)
push!(ins, inPairs[field])
else
push!(ins, defaultInit(fieldtype(T, field)))
end
end
return T(ins...)
end
## Print current version
println("Current Version : $(wgpuGetVersion())")
## Set Log callbacks
function logCallBack(logLevel::WGPULogLevel, msg::Ptr{Cchar})
if logLevel == WGPULogLevel_Error
level_str = "ERROR"
elseif logLevel == WGPULogLevel_Warn
level_str = "WARN"
elseif logLevel == WGPULogLevel_Info
level_str = "INFO"
elseif logLevel == WGPULogLevel_Debug
level_str = "DEBUG"
elseif logLevel == WGPULogLevel_Trace
level_str = "TRACE"
else
level_str = "UNKNOWN LOG LEVEL"
end
println("$(level_str) $(unsafe_string(msg))")
end
logcallback = @cfunction(logCallBack, Cvoid, (WGPULogLevel, Ptr{Cchar}))
wgpuSetLogCallback(logcallback, C_NULL)
wgpuSetLogLevel(WGPULogLevel(4))
## Surface
## X11 Surface
# using WGPU
# using WGPU: partialInit, defaultInit, pointerRef
using WGPUNative
using GLFW
surface = Ref(Ptr{Nothing}())
display = GLFW.GetX11Display()
window = GLFW.Window()
windowX11 = GLFW.GetX11Window(window)
surface = wgpuInstanceCreateSurface(
C_NULL,
pointer_from_objref(
Ref(partialInit(
WGPUSurfaceDescriptor;
label = C_NULL,
nextInChain = pointer_from_objref(Ref(partialInit(
WGPUSurfaceDescriptorFromXlibWindow;
chain = partialInit(
WGPUChainedStruct;
next = C_NULL,
sType = WGPUSType_SurfaceDescriptorFromXlibWindow
),
display = display,
window = windowX11.handle
)))
))
)
)
adapter = Ref(WGPUAdapter())
device = Ref(WGPUDevice())
adapterOptions = Ref(defaultInit(WGPURequestAdapterOptions))
function request_adapter_callback(
a::WGPURequestAdapterStatus,
b::WGPUAdapter,
c::Ptr{Cchar},
d::Ptr{Nothing})
global adapter[] = b
return nothing
end
requestAdapterCallback = @cfunction(request_adapter_callback, Cvoid, (WGPURequestAdapterStatus, WGPUAdapter, Ptr{Cchar}, Ptr{Cvoid}))
## device callback
function request_device_callback(
a::WGPURequestDeviceStatus,
b::WGPUDevice,
c::Ptr{Cchar},
d::Ptr{Nothing})
global device[] = b
return nothing
end
requestDeviceCallback = @cfunction(request_device_callback, Cvoid, (WGPURequestDeviceStatus, WGPUDevice, Ptr{Cchar}, Ptr{Cvoid}))
## request adapter
wgpuInstanceRequestAdapter(C_NULL,
adapterOptions,
requestAdapterCallback,
adapter)
##
chain = WGPUChainedStruct(C_NULL, WGPUSType(6))
deviceName = Vector{UInt8}("Device")
deviceExtras = WGPUDeviceExtras(chain, defaultInit(WGPUNativeFeature), pointer(deviceName), C_NULL)
const DEFAULT_ARRAY_SIZE = 256
wgpuLimits = partialInit(WGPULimits; maxBindGroups = 1)
wgpuRequiredLimits = WGPURequiredLimits(C_NULL, wgpuLimits)
wgpuQueueDescriptor = WGPUQueueDescriptor(C_NULL, C_NULL)
wgpuDeviceDescriptor = Ref(
partialInit(
WGPUDeviceDescriptor,
nextInChain = pointer_from_objref(Ref(partialInit(WGPUChainedStruct, chain=deviceExtras))),
requiredLimits = pointer_from_objref(Ref(wgpuRequiredLimits)),
defaultQueue = wgpuQueueDescriptor
)
)
wgpuAdapterRequestDevice(
adapter[],
wgpuDeviceDescriptor,
requestDeviceCallback,
device[])
## Device un captured callbacks
## Device lost callbacks
##
##
b = read(pkgdir(WGPUNative)*"/examples/shader.wgsl")
wgslDescriptor = WGPUShaderModuleWGSLDescriptor(
defaultInit(WGPUChainedStruct),
pointer(b)
)
## WGSL loading
function load_wgsl(filename)
b = read(filename)
wgslDescriptor = Ref(WGPUShaderModuleWGSLDescriptor(
defaultInit(WGPUChainedStruct),
pointer(b)
))
a = partialInit(
WGPUShaderModuleDescriptor;
nextInChain = pointer_from_objref(wgslDescriptor),
label = pointer(Vector{UInt8}("$(filename)"))
)
return (a, wgslDescriptor)
end
shaderSource = Ref(pkgdir(WGPUNative)*"/examples/triangle.wgsl")[1])
##
shader = wgpuDeviceCreateShaderModule(
device[],
pointer_from_objref(shaderSource)
)
##
## Pipeline Layout
pipelineLayout = wgpuDeviceCreatePipelineLayout(
device[],
pointer_from_objref(Ref(partialInit(
WGPUPipelineLayoutDescriptor;
bindGroupLayouts = C_NULL,
bindGroupLayoutCount = 0
)
)))
## swapchains
swapChainFormat = wgpuSurfaceGetPreferredFormat(surface, adapter[])
## pipeline
#
# pipeline = wgpuDeviceCreateRenderPipeline(
# device[],
# pointer_from_objref(Ref(partialInit(
# WGPURenderPipelineDescriptor;
# label = pointer(Vector{UInt8}("Render pipeline")),
# layout = pipelineLayout,
# vertex = partialInit(
# WGPUVertexState,
# _module=shader,
# entryPoint = pointer(Vector{UInt8}("vs_main")),
# bufferCount = 0,
# buffers = C_NULL
# ),
# primitive = partialInit(
# WGPUPrimitiveState;
# topology = WGPUPrimitiveTopology_TriangleList,
# stripIndexFormat = WGPUIndexFormat_Undefined,
# frontFace = WGPUFrontFace_CCW,
# cullMode = WGPUCullMode_None),
# multisample = partialInit(
# WGPUMultisampleState;
# count = 1,
# mask = typemax(UInt32),
# alphaToCoverageEnabled = false,
# ),
# fragment = pointer_from_objref(Ref(partialInit(
# WGPUFragmentState;
# _module = shader,
# entryPoint = pointer(Vector{UInt8}("fs_main")),
# targetCount = 1,
# targets = pointer_from_objref(Ref(partialInit(
# WGPUColorTargetState;
# format=swapChainFormat,
# blend = pointer_from_objref(Ref(partialInit(
# WGPUBlendState;
# color = partialInit(
# WGPUBlendComponent;
# srcFactor = WGPUBlendFactor_One,
# dstFactor = WGPUBlendFactor_Zero,
# operation = WGPUBlendOperation_Add,
# ),
# alpha = partialInit(
# WGPUBlendComponent;
# srcFactor = WGPUBlendFactor_One,
# dstFactor = WGPUBlendFactor_Zero,
# operation = WGPUBlendOperation_Add,
# ),
# ))),
# writeMask = WGPUColorWriteMask_All))))),
# ),
# depthStencil = C_NULL,
# ))))
pipeline = wgpuDeviceCreateRenderPipeline(
device[],
pointer_from_objref(Ref(partialInit(
WGPURenderPipelineDescriptor;
label = pointer(Vector{UInt8}("Render pipeline")),
layout = pipelineLayout,
vertex = partialInit(
WGPUVertexState,
_module=shader,
entryPoint = pointer(Vector{UInt8}("vs_main")),
bufferCount = 0,
buffers = C_NULL
),
primitive = partialInit(
WGPUPrimitiveState;
topology = WGPUPrimitiveTopology_TriangleList,
stripIndexFormat = WGPUIndexFormat_Undefined,
frontFace = WGPUFrontFace_CCW,
cullMode = WGPUCullMode_None),
multisample = partialInit(
WGPUMultisampleState;
count = 1,
mask = typemax(UInt32),
alphaToCoverageEnabled = false,
),
fragment = pointer([partialInit(
WGPUFragmentState;
_module = shader,
entryPoint = pointer(Vector{UInt8}("fs_main")),
targetCount = 1,
targets = pointer([partialInit(
WGPUColorTargetState;
format=swapChainFormat,
blend = pointer_from_objref(Ref(partialInit(
WGPUBlendState;
color = partialInit(
WGPUBlendComponent;
srcFactor = WGPUBlendFactor_One,
dstFactor = WGPUBlendFactor_Zero,
operation = WGPUBlendOperation_Add,
),
alpha = partialInit(
WGPUBlendComponent;
srcFactor = WGPUBlendFactor_One,
dstFactor = WGPUBlendFactor_Zero,
operation = WGPUBlendOperation_Add,
),
))),
writeMask = WGPUColorWriteMask_All)])
)]),
depthStencil = C_NULL,
)))
)
## previos dims
prevWidth = 0;
prevHeight = 0;
(prevWidth, prevHeight) = GLFW.GetWindowSize(window)
swapChain = Ref(wgpuDeviceCreateSwapChain(
device[],
surface,
pointer_from_objref(Ref(partialInit(
WGPUSwapChainDescriptor;
usage = WGPUTextureUsage_RenderAttachment,
format = swapChainFormat,
width = prevWidth,
height = prevHeight,
presentMode = WGPUPresentMode_Fifo,
)))))
## Window loop
queue = Ref(C_NULL)
encoder = Ref(C_NULL)
renderPass = Ref(C_NULL)
nextTexture = Ref(C_NULL)
cmdBuffer = Ref(C_NULL)
while !GLFW.WindowShouldClose(window)
global encoder, renderPass, nextTexture
for attempt in 0:2
global width = 0
global height = 0
(width, height) = GLFW.GetWindowSize(window)
if (width != prevWidth) || (height != prevHeight)
global prevWidth = width
global prevHeight = height
swapChain[] = wgpuDeviceCreateSwapChain(
device[],
surface,
pointer_from_objref(Ref(partialInit(
WGPUSwapChainDescriptor;
usage = WGPUTextureUsage_RenderAttachment,
format = swapChainFormat,
width = prevWidth,
height = prevHeight,
presentMode = WGPUPresentMode_Fifo,
))))
end
nextTexture[] = wgpuSwapChainGetCurrentTextureView(swapChain[]);
if attempt == 0 && nextTexture[] == C_NULL
@error ("wgpuSwapChainGetCurrentTextureView() failed; Trying to create a new swap chain")
prevWidth = 0
prevHeight = 0
continue
end
break
end
if nextTexture[] == C_NULL
@error ("Cannot acquire next swap chain texture\n")
exit(1)
end
encoder[] = wgpuDeviceCreateCommandEncoder(
device[],
pointer_from_objref(Ref(partialInit(
WGPUCommandEncoderDescriptor;
label = pointer(Vector{UInt8}("Command Encoder"))
)
)))
renderPass[] = wgpuCommandEncoderBeginRenderPass(
encoder[],
pointer_from_objref(Ref(partialInit(
WGPURenderPassDescriptor;
colorAttachments = pointer_from_objref(Ref(partialInit(
WGPURenderPassColorAttachment;
view = nextTexture[],
resolveTarget = 0,
loadOp = WGPULoadOp_Clear,
storeOp = WGPUStoreOp_Store,
clearValue = WGPUColor(0.0, 1.0, 0.0, 1.0),
))),
colorAttachmentCount = 1,
depthStencilAttachment = C_NULL,
))))
wgpuRenderPassEncoderSetPipeline(renderPass[], pipeline)
wgpuRenderPassEncoderDraw(renderPass[], 3, 1, 0, 0)
wgpuRenderPassEncoderEnd(renderPass[])
queue[] = wgpuDeviceGetQueue(device[])
cmdBuffer[] = wgpuCommandEncoderFinish(
encoder[],
pointer_from_objref(Ref(partialInit(
WGPUCommandBufferDescriptor;
label = C_NULL
))))
wgpuQueueSubmit(queue[], 1, pointer_from_objref(cmdBuffer))
wgpuSwapChainPresent(swapChain[])
GLFW.PollEvents()
end
## Destroy window
GLFW.DestroyWindow(window)
GLFW.Terminate()
| WGPUNative | https://github.com/JuliaWGPU/WGPUNative.jl.git |
|
[
"MIT"
] | 0.1.4 | 2c4204585df32fe31eaa9ea346ed469f844996b1 | code | 2129 | using Debugger
using Downloads
using Tar, Inflate, SHA
arch = lowercase(String(Sys.ARCH))
kernel = lowercase(String(Sys.KERNEL))
# modifying conventions for wgpu specifically based on
# releases at https://github.com/gfx-rs/wgpu-native/releases/tag/v0.12.0.1
version = "v0.1.4"
kernels = ["macos", "linux", "windows"]
archs = ["aarch64", "i686", "x86_64"]
upstreamVersion = "v0.19.1.1"
io = IOBuffer()
function writeIO(io, arch, kernel, sha1, sha256, filename, url)
write(
io,
"""
[[WGPUNative]]
arch = "$arch"
git-tree-sha1 = "$sha1"
os = "$kernel"
[[WGPUNative.download]]
sha256 = "$sha256"
url = "$url"
"""
)
end
remoteurl = "https://github.com/JuliaWGPU/WGPUNative.jl/releases/download/$(version)"
function generateArtifacts()
for kernel in kernels
for arch in archs
releasefile = "wgpu-$kernel-$arch-release.zip"
tarfile = "WGPU.$(upstreamVersion).$(arch)-$(kernel).tar.gz"
try
url = "https://github.com/gfx-rs/wgpu-native/releases/download/$(upstreamVersion)/$releasefile"
Downloads.download(url, releasefile)
run(`rm -rf "wgpulibs$arch$kernel"`)
run(`mkdir wgpulibs$arch$kernel`)
run(`unzip $releasefile -d wgpulibs$arch$kernel`)
run(`cd "wgpulibs$arch$kernel"`)
run(`tar -C wgpulibs$arch$kernel -czvf $tarfile .`)
run(`cd ".."`)
catch(e)
println("$e")
end
end
end
end
function writeArtifactsTOML()
for kernel in kernels
for arch in archs
releasefile = "wgpu-$kernel-$arch-release.zip"
tarfile = "WGPU.$(upstreamVersion).$(arch)-$(kernel).tar.gz"
try
# Downloads.download(joinpath(remoteurl, tarfile), tarfile)
sha256Val = bytes2hex(open(sha256, tarfile))
sha1Val = Tar.tree_hash(IOBuffer(inflate_gzip(tarfile)))
writeIO(io, arch, kernel, sha1Val, sha256Val, "", joinpath(remoteurl, tarfile))
catch(e)
println("$e")
end
end
end
seek(io, 0)
f = open("Artifacts.toml", "w")
write(f, io)
close(f)
end
generateArtifacts()
# TODO
# publish artifacts as a release through github through github API
# for now we could simply add input for confirmation of upload.
writeArtifactsTOML()
| WGPUNative | https://github.com/JuliaWGPU/WGPUNative.jl.git |
|
[
"MIT"
] | 0.1.4 | 2c4204585df32fe31eaa9ea346ed469f844996b1 | code | 817 | using Clang.Generators
arch = lowercase(String(Sys.ARCH))
kernel = lowercase(String(Sys.KERNEL))
if kernel == "darwin"
kernel = "macos"
if arch == "aarch64"
arch = "aarch64"
end
end
releasefile = "wgpu-$kernel-$arch-release.zip"
location = "$releasefile"
upstreamVersion = "v0.19.1.1"
url = "https://github.com/gfx-rs/wgpu-native/releases/download/$(upstreamVersion)/wgpu-$kernel-$arch-release.zip"
download(url, location)
run(`rm -rf wgpulib`)
run(`mkdir wgpulib`)
run(`unzip $location -d wgpulib`)
run(`rm $releasefile`)
const C_HEADERS = ["wgpu.h",]
const WGPU_HEADERS = [joinpath(@__DIR__, "wgpulib", h) for h in C_HEADERS]
options = load_options(joinpath(@__DIR__, "generator.toml"))
args = get_default_args()
ctx = create_context(WGPU_HEADERS, args, options)
build!(ctx)
run(`rm -rf wgpulib`)
| WGPUNative | https://github.com/JuliaWGPU/WGPUNative.jl.git |
|
[
"MIT"
] | 0.1.4 | 2c4204585df32fe31eaa9ea346ed469f844996b1 | code | 388 | # SIZE_MAX needs verification
const SIZE_MAX = 2^16
using Libdl
using Pkg
using Pkg.Artifacts
artifact_toml = joinpath(@__DIR__, "..", "Artifacts.toml")
wgpu_hash = artifact_hash("WGPUNative", artifact_toml)
wgpulibpath = artifact_path(wgpu_hash)
resourceName = Sys.iswindows() ? "wgpu_native" : "libwgpu_native"
const libWGPU = "$wgpulibpath/$resourceName.$(Libdl.dlext)" |> normpath
| WGPUNative | https://github.com/JuliaWGPU/WGPUNative.jl.git |
|
[
"MIT"
] | 0.1.4 | 2c4204585df32fe31eaa9ea346ed469f844996b1 | code | 112094 | module LibWGPU
using CEnum
# SIZE_MAX needs verification
const SIZE_MAX = 2^16
using Libdl
using Pkg
using Pkg.Artifacts
artifact_toml = joinpath(@__DIR__, "..", "Artifacts.toml")
wgpu_hash = artifact_hash("WGPUNative", artifact_toml)
wgpulibpath = artifact_path(wgpu_hash)
resourceName = Sys.iswindows() ? "wgpu_native" : "libwgpu_native"
const libWGPU = "$wgpulibpath/$resourceName.$(Libdl.dlext)" |> normpath
const WGPUFlags = UInt32
const WGPUBool = UInt32
mutable struct WGPUAdapterImpl end
const WGPUAdapter = Ptr{WGPUAdapterImpl}
mutable struct WGPUBindGroupImpl end
const WGPUBindGroup = Ptr{WGPUBindGroupImpl}
mutable struct WGPUBindGroupLayoutImpl end
const WGPUBindGroupLayout = Ptr{WGPUBindGroupLayoutImpl}
mutable struct WGPUBufferImpl end
const WGPUBuffer = Ptr{WGPUBufferImpl}
mutable struct WGPUCommandBufferImpl end
const WGPUCommandBuffer = Ptr{WGPUCommandBufferImpl}
mutable struct WGPUCommandEncoderImpl end
const WGPUCommandEncoder = Ptr{WGPUCommandEncoderImpl}
mutable struct WGPUComputePassEncoderImpl end
const WGPUComputePassEncoder = Ptr{WGPUComputePassEncoderImpl}
mutable struct WGPUComputePipelineImpl end
const WGPUComputePipeline = Ptr{WGPUComputePipelineImpl}
mutable struct WGPUDeviceImpl end
const WGPUDevice = Ptr{WGPUDeviceImpl}
mutable struct WGPUInstanceImpl end
const WGPUInstance = Ptr{WGPUInstanceImpl}
mutable struct WGPUPipelineLayoutImpl end
const WGPUPipelineLayout = Ptr{WGPUPipelineLayoutImpl}
mutable struct WGPUQuerySetImpl end
const WGPUQuerySet = Ptr{WGPUQuerySetImpl}
mutable struct WGPUQueueImpl end
const WGPUQueue = Ptr{WGPUQueueImpl}
mutable struct WGPURenderBundleImpl end
const WGPURenderBundle = Ptr{WGPURenderBundleImpl}
mutable struct WGPURenderBundleEncoderImpl end
const WGPURenderBundleEncoder = Ptr{WGPURenderBundleEncoderImpl}
mutable struct WGPURenderPassEncoderImpl end
const WGPURenderPassEncoder = Ptr{WGPURenderPassEncoderImpl}
mutable struct WGPURenderPipelineImpl end
const WGPURenderPipeline = Ptr{WGPURenderPipelineImpl}
mutable struct WGPUSamplerImpl end
const WGPUSampler = Ptr{WGPUSamplerImpl}
mutable struct WGPUShaderModuleImpl end
const WGPUShaderModule = Ptr{WGPUShaderModuleImpl}
mutable struct WGPUSurfaceImpl end
const WGPUSurface = Ptr{WGPUSurfaceImpl}
mutable struct WGPUTextureImpl end
const WGPUTexture = Ptr{WGPUTextureImpl}
mutable struct WGPUTextureViewImpl end
const WGPUTextureView = Ptr{WGPUTextureViewImpl}
@cenum WGPUAdapterType::UInt32 begin
WGPUAdapterType_DiscreteGPU = 0
WGPUAdapterType_IntegratedGPU = 1
WGPUAdapterType_CPU = 2
WGPUAdapterType_Unknown = 3
WGPUAdapterType_Force32 = 2147483647
end
@cenum WGPUAddressMode::UInt32 begin
WGPUAddressMode_Repeat = 0
WGPUAddressMode_MirrorRepeat = 1
WGPUAddressMode_ClampToEdge = 2
WGPUAddressMode_Force32 = 2147483647
end
@cenum WGPUBackendType::UInt32 begin
WGPUBackendType_Undefined = 0
WGPUBackendType_Null = 1
WGPUBackendType_WebGPU = 2
WGPUBackendType_D3D11 = 3
WGPUBackendType_D3D12 = 4
WGPUBackendType_Metal = 5
WGPUBackendType_Vulkan = 6
WGPUBackendType_OpenGL = 7
WGPUBackendType_OpenGLES = 8
WGPUBackendType_Force32 = 2147483647
end
@cenum WGPUBlendFactor::UInt32 begin
WGPUBlendFactor_Zero = 0
WGPUBlendFactor_One = 1
WGPUBlendFactor_Src = 2
WGPUBlendFactor_OneMinusSrc = 3
WGPUBlendFactor_SrcAlpha = 4
WGPUBlendFactor_OneMinusSrcAlpha = 5
WGPUBlendFactor_Dst = 6
WGPUBlendFactor_OneMinusDst = 7
WGPUBlendFactor_DstAlpha = 8
WGPUBlendFactor_OneMinusDstAlpha = 9
WGPUBlendFactor_SrcAlphaSaturated = 10
WGPUBlendFactor_Constant = 11
WGPUBlendFactor_OneMinusConstant = 12
WGPUBlendFactor_Force32 = 2147483647
end
@cenum WGPUBlendOperation::UInt32 begin
WGPUBlendOperation_Add = 0
WGPUBlendOperation_Subtract = 1
WGPUBlendOperation_ReverseSubtract = 2
WGPUBlendOperation_Min = 3
WGPUBlendOperation_Max = 4
WGPUBlendOperation_Force32 = 2147483647
end
@cenum WGPUBufferBindingType::UInt32 begin
WGPUBufferBindingType_Undefined = 0
WGPUBufferBindingType_Uniform = 1
WGPUBufferBindingType_Storage = 2
WGPUBufferBindingType_ReadOnlyStorage = 3
WGPUBufferBindingType_Force32 = 2147483647
end
@cenum WGPUBufferMapAsyncStatus::UInt32 begin
WGPUBufferMapAsyncStatus_Success = 0
WGPUBufferMapAsyncStatus_ValidationError = 1
WGPUBufferMapAsyncStatus_Unknown = 2
WGPUBufferMapAsyncStatus_DeviceLost = 3
WGPUBufferMapAsyncStatus_DestroyedBeforeCallback = 4
WGPUBufferMapAsyncStatus_UnmappedBeforeCallback = 5
WGPUBufferMapAsyncStatus_MappingAlreadyPending = 6
WGPUBufferMapAsyncStatus_OffsetOutOfRange = 7
WGPUBufferMapAsyncStatus_SizeOutOfRange = 8
WGPUBufferMapAsyncStatus_Force32 = 2147483647
end
@cenum WGPUBufferMapState::UInt32 begin
WGPUBufferMapState_Unmapped = 0
WGPUBufferMapState_Pending = 1
WGPUBufferMapState_Mapped = 2
WGPUBufferMapState_Force32 = 2147483647
end
@cenum WGPUCompareFunction::UInt32 begin
WGPUCompareFunction_Undefined = 0
WGPUCompareFunction_Never = 1
WGPUCompareFunction_Less = 2
WGPUCompareFunction_LessEqual = 3
WGPUCompareFunction_Greater = 4
WGPUCompareFunction_GreaterEqual = 5
WGPUCompareFunction_Equal = 6
WGPUCompareFunction_NotEqual = 7
WGPUCompareFunction_Always = 8
WGPUCompareFunction_Force32 = 2147483647
end
@cenum WGPUCompilationInfoRequestStatus::UInt32 begin
WGPUCompilationInfoRequestStatus_Success = 0
WGPUCompilationInfoRequestStatus_Error = 1
WGPUCompilationInfoRequestStatus_DeviceLost = 2
WGPUCompilationInfoRequestStatus_Unknown = 3
WGPUCompilationInfoRequestStatus_Force32 = 2147483647
end
@cenum WGPUCompilationMessageType::UInt32 begin
WGPUCompilationMessageType_Error = 0
WGPUCompilationMessageType_Warning = 1
WGPUCompilationMessageType_Info = 2
WGPUCompilationMessageType_Force32 = 2147483647
end
@cenum WGPUCompositeAlphaMode::UInt32 begin
WGPUCompositeAlphaMode_Auto = 0
WGPUCompositeAlphaMode_Opaque = 1
WGPUCompositeAlphaMode_Premultiplied = 2
WGPUCompositeAlphaMode_Unpremultiplied = 3
WGPUCompositeAlphaMode_Inherit = 4
WGPUCompositeAlphaMode_Force32 = 2147483647
end
@cenum WGPUCreatePipelineAsyncStatus::UInt32 begin
WGPUCreatePipelineAsyncStatus_Success = 0
WGPUCreatePipelineAsyncStatus_ValidationError = 1
WGPUCreatePipelineAsyncStatus_InternalError = 2
WGPUCreatePipelineAsyncStatus_DeviceLost = 3
WGPUCreatePipelineAsyncStatus_DeviceDestroyed = 4
WGPUCreatePipelineAsyncStatus_Unknown = 5
WGPUCreatePipelineAsyncStatus_Force32 = 2147483647
end
@cenum WGPUCullMode::UInt32 begin
WGPUCullMode_None = 0
WGPUCullMode_Front = 1
WGPUCullMode_Back = 2
WGPUCullMode_Force32 = 2147483647
end
@cenum WGPUDeviceLostReason::UInt32 begin
WGPUDeviceLostReason_Undefined = 0
WGPUDeviceLostReason_Destroyed = 1
WGPUDeviceLostReason_Force32 = 2147483647
end
@cenum WGPUErrorFilter::UInt32 begin
WGPUErrorFilter_Validation = 0
WGPUErrorFilter_OutOfMemory = 1
WGPUErrorFilter_Internal = 2
WGPUErrorFilter_Force32 = 2147483647
end
@cenum WGPUErrorType::UInt32 begin
WGPUErrorType_NoError = 0
WGPUErrorType_Validation = 1
WGPUErrorType_OutOfMemory = 2
WGPUErrorType_Internal = 3
WGPUErrorType_Unknown = 4
WGPUErrorType_DeviceLost = 5
WGPUErrorType_Force32 = 2147483647
end
@cenum WGPUFeatureName::UInt32 begin
WGPUFeatureName_Undefined = 0
WGPUFeatureName_DepthClipControl = 1
WGPUFeatureName_Depth32FloatStencil8 = 2
WGPUFeatureName_TimestampQuery = 3
WGPUFeatureName_TextureCompressionBC = 4
WGPUFeatureName_TextureCompressionETC2 = 5
WGPUFeatureName_TextureCompressionASTC = 6
WGPUFeatureName_IndirectFirstInstance = 7
WGPUFeatureName_ShaderF16 = 8
WGPUFeatureName_RG11B10UfloatRenderable = 9
WGPUFeatureName_BGRA8UnormStorage = 10
WGPUFeatureName_Float32Filterable = 11
WGPUFeatureName_Force32 = 2147483647
end
@cenum WGPUFilterMode::UInt32 begin
WGPUFilterMode_Nearest = 0
WGPUFilterMode_Linear = 1
WGPUFilterMode_Force32 = 2147483647
end
@cenum WGPUFrontFace::UInt32 begin
WGPUFrontFace_CCW = 0
WGPUFrontFace_CW = 1
WGPUFrontFace_Force32 = 2147483647
end
@cenum WGPUIndexFormat::UInt32 begin
WGPUIndexFormat_Undefined = 0
WGPUIndexFormat_Uint16 = 1
WGPUIndexFormat_Uint32 = 2
WGPUIndexFormat_Force32 = 2147483647
end
@cenum WGPULoadOp::UInt32 begin
WGPULoadOp_Undefined = 0
WGPULoadOp_Clear = 1
WGPULoadOp_Load = 2
WGPULoadOp_Force32 = 2147483647
end
@cenum WGPUMipmapFilterMode::UInt32 begin
WGPUMipmapFilterMode_Nearest = 0
WGPUMipmapFilterMode_Linear = 1
WGPUMipmapFilterMode_Force32 = 2147483647
end
@cenum WGPUPowerPreference::UInt32 begin
WGPUPowerPreference_Undefined = 0
WGPUPowerPreference_LowPower = 1
WGPUPowerPreference_HighPerformance = 2
WGPUPowerPreference_Force32 = 2147483647
end
@cenum WGPUPresentMode::UInt32 begin
WGPUPresentMode_Fifo = 0
WGPUPresentMode_FifoRelaxed = 1
WGPUPresentMode_Immediate = 2
WGPUPresentMode_Mailbox = 3
WGPUPresentMode_Force32 = 2147483647
end
@cenum WGPUPrimitiveTopology::UInt32 begin
WGPUPrimitiveTopology_PointList = 0
WGPUPrimitiveTopology_LineList = 1
WGPUPrimitiveTopology_LineStrip = 2
WGPUPrimitiveTopology_TriangleList = 3
WGPUPrimitiveTopology_TriangleStrip = 4
WGPUPrimitiveTopology_Force32 = 2147483647
end
@cenum WGPUQueryType::UInt32 begin
WGPUQueryType_Occlusion = 0
WGPUQueryType_Timestamp = 1
WGPUQueryType_Force32 = 2147483647
end
@cenum WGPUQueueWorkDoneStatus::UInt32 begin
WGPUQueueWorkDoneStatus_Success = 0
WGPUQueueWorkDoneStatus_Error = 1
WGPUQueueWorkDoneStatus_Unknown = 2
WGPUQueueWorkDoneStatus_DeviceLost = 3
WGPUQueueWorkDoneStatus_Force32 = 2147483647
end
@cenum WGPURequestAdapterStatus::UInt32 begin
WGPURequestAdapterStatus_Success = 0
WGPURequestAdapterStatus_Unavailable = 1
WGPURequestAdapterStatus_Error = 2
WGPURequestAdapterStatus_Unknown = 3
WGPURequestAdapterStatus_Force32 = 2147483647
end
@cenum WGPURequestDeviceStatus::UInt32 begin
WGPURequestDeviceStatus_Success = 0
WGPURequestDeviceStatus_Error = 1
WGPURequestDeviceStatus_Unknown = 2
WGPURequestDeviceStatus_Force32 = 2147483647
end
@cenum WGPUSType::UInt32 begin
WGPUSType_Invalid = 0
WGPUSType_SurfaceDescriptorFromMetalLayer = 1
WGPUSType_SurfaceDescriptorFromWindowsHWND = 2
WGPUSType_SurfaceDescriptorFromXlibWindow = 3
WGPUSType_SurfaceDescriptorFromCanvasHTMLSelector = 4
WGPUSType_ShaderModuleSPIRVDescriptor = 5
WGPUSType_ShaderModuleWGSLDescriptor = 6
WGPUSType_PrimitiveDepthClipControl = 7
WGPUSType_SurfaceDescriptorFromWaylandSurface = 8
WGPUSType_SurfaceDescriptorFromAndroidNativeWindow = 9
WGPUSType_SurfaceDescriptorFromXcbWindow = 10
WGPUSType_RenderPassDescriptorMaxDrawCount = 15
WGPUSType_Force32 = 2147483647
end
@cenum WGPUSamplerBindingType::UInt32 begin
WGPUSamplerBindingType_Undefined = 0
WGPUSamplerBindingType_Filtering = 1
WGPUSamplerBindingType_NonFiltering = 2
WGPUSamplerBindingType_Comparison = 3
WGPUSamplerBindingType_Force32 = 2147483647
end
@cenum WGPUStencilOperation::UInt32 begin
WGPUStencilOperation_Keep = 0
WGPUStencilOperation_Zero = 1
WGPUStencilOperation_Replace = 2
WGPUStencilOperation_Invert = 3
WGPUStencilOperation_IncrementClamp = 4
WGPUStencilOperation_DecrementClamp = 5
WGPUStencilOperation_IncrementWrap = 6
WGPUStencilOperation_DecrementWrap = 7
WGPUStencilOperation_Force32 = 2147483647
end
@cenum WGPUStorageTextureAccess::UInt32 begin
WGPUStorageTextureAccess_Undefined = 0
WGPUStorageTextureAccess_WriteOnly = 1
WGPUStorageTextureAccess_ReadOnly = 2
WGPUStorageTextureAccess_ReadWrite = 3
WGPUStorageTextureAccess_Force32 = 2147483647
end
@cenum WGPUStoreOp::UInt32 begin
WGPUStoreOp_Undefined = 0
WGPUStoreOp_Store = 1
WGPUStoreOp_Discard = 2
WGPUStoreOp_Force32 = 2147483647
end
@cenum WGPUSurfaceGetCurrentTextureStatus::UInt32 begin
WGPUSurfaceGetCurrentTextureStatus_Success = 0
WGPUSurfaceGetCurrentTextureStatus_Timeout = 1
WGPUSurfaceGetCurrentTextureStatus_Outdated = 2
WGPUSurfaceGetCurrentTextureStatus_Lost = 3
WGPUSurfaceGetCurrentTextureStatus_OutOfMemory = 4
WGPUSurfaceGetCurrentTextureStatus_DeviceLost = 5
WGPUSurfaceGetCurrentTextureStatus_Force32 = 2147483647
end
@cenum WGPUTextureAspect::UInt32 begin
WGPUTextureAspect_All = 0
WGPUTextureAspect_StencilOnly = 1
WGPUTextureAspect_DepthOnly = 2
WGPUTextureAspect_Force32 = 2147483647
end
@cenum WGPUTextureDimension::UInt32 begin
WGPUTextureDimension_1D = 0
WGPUTextureDimension_2D = 1
WGPUTextureDimension_3D = 2
WGPUTextureDimension_Force32 = 2147483647
end
@cenum WGPUTextureFormat::UInt32 begin
WGPUTextureFormat_Undefined = 0
WGPUTextureFormat_R8Unorm = 1
WGPUTextureFormat_R8Snorm = 2
WGPUTextureFormat_R8Uint = 3
WGPUTextureFormat_R8Sint = 4
WGPUTextureFormat_R16Uint = 5
WGPUTextureFormat_R16Sint = 6
WGPUTextureFormat_R16Float = 7
WGPUTextureFormat_RG8Unorm = 8
WGPUTextureFormat_RG8Snorm = 9
WGPUTextureFormat_RG8Uint = 10
WGPUTextureFormat_RG8Sint = 11
WGPUTextureFormat_R32Float = 12
WGPUTextureFormat_R32Uint = 13
WGPUTextureFormat_R32Sint = 14
WGPUTextureFormat_RG16Uint = 15
WGPUTextureFormat_RG16Sint = 16
WGPUTextureFormat_RG16Float = 17
WGPUTextureFormat_RGBA8Unorm = 18
WGPUTextureFormat_RGBA8UnormSrgb = 19
WGPUTextureFormat_RGBA8Snorm = 20
WGPUTextureFormat_RGBA8Uint = 21
WGPUTextureFormat_RGBA8Sint = 22
WGPUTextureFormat_BGRA8Unorm = 23
WGPUTextureFormat_BGRA8UnormSrgb = 24
WGPUTextureFormat_RGB10A2Uint = 25
WGPUTextureFormat_RGB10A2Unorm = 26
WGPUTextureFormat_RG11B10Ufloat = 27
WGPUTextureFormat_RGB9E5Ufloat = 28
WGPUTextureFormat_RG32Float = 29
WGPUTextureFormat_RG32Uint = 30
WGPUTextureFormat_RG32Sint = 31
WGPUTextureFormat_RGBA16Uint = 32
WGPUTextureFormat_RGBA16Sint = 33
WGPUTextureFormat_RGBA16Float = 34
WGPUTextureFormat_RGBA32Float = 35
WGPUTextureFormat_RGBA32Uint = 36
WGPUTextureFormat_RGBA32Sint = 37
WGPUTextureFormat_Stencil8 = 38
WGPUTextureFormat_Depth16Unorm = 39
WGPUTextureFormat_Depth24Plus = 40
WGPUTextureFormat_Depth24PlusStencil8 = 41
WGPUTextureFormat_Depth32Float = 42
WGPUTextureFormat_Depth32FloatStencil8 = 43
WGPUTextureFormat_BC1RGBAUnorm = 44
WGPUTextureFormat_BC1RGBAUnormSrgb = 45
WGPUTextureFormat_BC2RGBAUnorm = 46
WGPUTextureFormat_BC2RGBAUnormSrgb = 47
WGPUTextureFormat_BC3RGBAUnorm = 48
WGPUTextureFormat_BC3RGBAUnormSrgb = 49
WGPUTextureFormat_BC4RUnorm = 50
WGPUTextureFormat_BC4RSnorm = 51
WGPUTextureFormat_BC5RGUnorm = 52
WGPUTextureFormat_BC5RGSnorm = 53
WGPUTextureFormat_BC6HRGBUfloat = 54
WGPUTextureFormat_BC6HRGBFloat = 55
WGPUTextureFormat_BC7RGBAUnorm = 56
WGPUTextureFormat_BC7RGBAUnormSrgb = 57
WGPUTextureFormat_ETC2RGB8Unorm = 58
WGPUTextureFormat_ETC2RGB8UnormSrgb = 59
WGPUTextureFormat_ETC2RGB8A1Unorm = 60
WGPUTextureFormat_ETC2RGB8A1UnormSrgb = 61
WGPUTextureFormat_ETC2RGBA8Unorm = 62
WGPUTextureFormat_ETC2RGBA8UnormSrgb = 63
WGPUTextureFormat_EACR11Unorm = 64
WGPUTextureFormat_EACR11Snorm = 65
WGPUTextureFormat_EACRG11Unorm = 66
WGPUTextureFormat_EACRG11Snorm = 67
WGPUTextureFormat_ASTC4x4Unorm = 68
WGPUTextureFormat_ASTC4x4UnormSrgb = 69
WGPUTextureFormat_ASTC5x4Unorm = 70
WGPUTextureFormat_ASTC5x4UnormSrgb = 71
WGPUTextureFormat_ASTC5x5Unorm = 72
WGPUTextureFormat_ASTC5x5UnormSrgb = 73
WGPUTextureFormat_ASTC6x5Unorm = 74
WGPUTextureFormat_ASTC6x5UnormSrgb = 75
WGPUTextureFormat_ASTC6x6Unorm = 76
WGPUTextureFormat_ASTC6x6UnormSrgb = 77
WGPUTextureFormat_ASTC8x5Unorm = 78
WGPUTextureFormat_ASTC8x5UnormSrgb = 79
WGPUTextureFormat_ASTC8x6Unorm = 80
WGPUTextureFormat_ASTC8x6UnormSrgb = 81
WGPUTextureFormat_ASTC8x8Unorm = 82
WGPUTextureFormat_ASTC8x8UnormSrgb = 83
WGPUTextureFormat_ASTC10x5Unorm = 84
WGPUTextureFormat_ASTC10x5UnormSrgb = 85
WGPUTextureFormat_ASTC10x6Unorm = 86
WGPUTextureFormat_ASTC10x6UnormSrgb = 87
WGPUTextureFormat_ASTC10x8Unorm = 88
WGPUTextureFormat_ASTC10x8UnormSrgb = 89
WGPUTextureFormat_ASTC10x10Unorm = 90
WGPUTextureFormat_ASTC10x10UnormSrgb = 91
WGPUTextureFormat_ASTC12x10Unorm = 92
WGPUTextureFormat_ASTC12x10UnormSrgb = 93
WGPUTextureFormat_ASTC12x12Unorm = 94
WGPUTextureFormat_ASTC12x12UnormSrgb = 95
WGPUTextureFormat_Force32 = 2147483647
end
@cenum WGPUTextureSampleType::UInt32 begin
WGPUTextureSampleType_Undefined = 0
WGPUTextureSampleType_Float = 1
WGPUTextureSampleType_UnfilterableFloat = 2
WGPUTextureSampleType_Depth = 3
WGPUTextureSampleType_Sint = 4
WGPUTextureSampleType_Uint = 5
WGPUTextureSampleType_Force32 = 2147483647
end
@cenum WGPUTextureViewDimension::UInt32 begin
WGPUTextureViewDimension_Undefined = 0
WGPUTextureViewDimension_1D = 1
WGPUTextureViewDimension_2D = 2
WGPUTextureViewDimension_2DArray = 3
WGPUTextureViewDimension_Cube = 4
WGPUTextureViewDimension_CubeArray = 5
WGPUTextureViewDimension_3D = 6
WGPUTextureViewDimension_Force32 = 2147483647
end
@cenum WGPUVertexFormat::UInt32 begin
WGPUVertexFormat_Undefined = 0
WGPUVertexFormat_Uint8x2 = 1
WGPUVertexFormat_Uint8x4 = 2
WGPUVertexFormat_Sint8x2 = 3
WGPUVertexFormat_Sint8x4 = 4
WGPUVertexFormat_Unorm8x2 = 5
WGPUVertexFormat_Unorm8x4 = 6
WGPUVertexFormat_Snorm8x2 = 7
WGPUVertexFormat_Snorm8x4 = 8
WGPUVertexFormat_Uint16x2 = 9
WGPUVertexFormat_Uint16x4 = 10
WGPUVertexFormat_Sint16x2 = 11
WGPUVertexFormat_Sint16x4 = 12
WGPUVertexFormat_Unorm16x2 = 13
WGPUVertexFormat_Unorm16x4 = 14
WGPUVertexFormat_Snorm16x2 = 15
WGPUVertexFormat_Snorm16x4 = 16
WGPUVertexFormat_Float16x2 = 17
WGPUVertexFormat_Float16x4 = 18
WGPUVertexFormat_Float32 = 19
WGPUVertexFormat_Float32x2 = 20
WGPUVertexFormat_Float32x3 = 21
WGPUVertexFormat_Float32x4 = 22
WGPUVertexFormat_Uint32 = 23
WGPUVertexFormat_Uint32x2 = 24
WGPUVertexFormat_Uint32x3 = 25
WGPUVertexFormat_Uint32x4 = 26
WGPUVertexFormat_Sint32 = 27
WGPUVertexFormat_Sint32x2 = 28
WGPUVertexFormat_Sint32x3 = 29
WGPUVertexFormat_Sint32x4 = 30
WGPUVertexFormat_Force32 = 2147483647
end
@cenum WGPUVertexStepMode::UInt32 begin
WGPUVertexStepMode_Vertex = 0
WGPUVertexStepMode_Instance = 1
WGPUVertexStepMode_VertexBufferNotUsed = 2
WGPUVertexStepMode_Force32 = 2147483647
end
@cenum WGPUBufferUsage::UInt32 begin
WGPUBufferUsage_None = 0
WGPUBufferUsage_MapRead = 1
WGPUBufferUsage_MapWrite = 2
WGPUBufferUsage_CopySrc = 4
WGPUBufferUsage_CopyDst = 8
WGPUBufferUsage_Index = 16
WGPUBufferUsage_Vertex = 32
WGPUBufferUsage_Uniform = 64
WGPUBufferUsage_Storage = 128
WGPUBufferUsage_Indirect = 256
WGPUBufferUsage_QueryResolve = 512
WGPUBufferUsage_Force32 = 2147483647
end
const WGPUBufferUsageFlags = WGPUFlags
@cenum WGPUColorWriteMask::UInt32 begin
WGPUColorWriteMask_None = 0
WGPUColorWriteMask_Red = 1
WGPUColorWriteMask_Green = 2
WGPUColorWriteMask_Blue = 4
WGPUColorWriteMask_Alpha = 8
WGPUColorWriteMask_All = 15
WGPUColorWriteMask_Force32 = 2147483647
end
const WGPUColorWriteMaskFlags = WGPUFlags
@cenum WGPUMapMode::UInt32 begin
WGPUMapMode_None = 0
WGPUMapMode_Read = 1
WGPUMapMode_Write = 2
WGPUMapMode_Force32 = 2147483647
end
const WGPUMapModeFlags = WGPUFlags
@cenum WGPUShaderStage::UInt32 begin
WGPUShaderStage_None = 0
WGPUShaderStage_Vertex = 1
WGPUShaderStage_Fragment = 2
WGPUShaderStage_Compute = 4
WGPUShaderStage_Force32 = 2147483647
end
const WGPUShaderStageFlags = WGPUFlags
@cenum WGPUTextureUsage::UInt32 begin
WGPUTextureUsage_None = 0
WGPUTextureUsage_CopySrc = 1
WGPUTextureUsage_CopyDst = 2
WGPUTextureUsage_TextureBinding = 4
WGPUTextureUsage_StorageBinding = 8
WGPUTextureUsage_RenderAttachment = 16
WGPUTextureUsage_Force32 = 2147483647
end
const WGPUTextureUsageFlags = WGPUFlags
# typedef void ( * WGPUBufferMapCallback ) ( WGPUBufferMapAsyncStatus status , void * userdata )
const WGPUBufferMapCallback = Ptr{Cvoid}
# typedef void ( * WGPUCompilationInfoCallback ) ( WGPUCompilationInfoRequestStatus status , struct WGPUCompilationInfo const * compilationInfo , void * userdata )
const WGPUCompilationInfoCallback = Ptr{Cvoid}
# typedef void ( * WGPUCreateComputePipelineAsyncCallback ) ( WGPUCreatePipelineAsyncStatus status , WGPUComputePipeline pipeline , char const * message , void * userdata )
const WGPUCreateComputePipelineAsyncCallback = Ptr{Cvoid}
# typedef void ( * WGPUCreateRenderPipelineAsyncCallback ) ( WGPUCreatePipelineAsyncStatus status , WGPURenderPipeline pipeline , char const * message , void * userdata )
const WGPUCreateRenderPipelineAsyncCallback = Ptr{Cvoid}
# typedef void ( * WGPUDeviceLostCallback ) ( WGPUDeviceLostReason reason , char const * message , void * userdata )
const WGPUDeviceLostCallback = Ptr{Cvoid}
# typedef void ( * WGPUErrorCallback ) ( WGPUErrorType type , char const * message , void * userdata )
const WGPUErrorCallback = Ptr{Cvoid}
# typedef void ( * WGPUProc ) ( void )
const WGPUProc = Ptr{Cvoid}
# typedef void ( * WGPUQueueWorkDoneCallback ) ( WGPUQueueWorkDoneStatus status , void * userdata )
const WGPUQueueWorkDoneCallback = Ptr{Cvoid}
# typedef void ( * WGPURequestAdapterCallback ) ( WGPURequestAdapterStatus status , WGPUAdapter adapter , char const * message , void * userdata )
const WGPURequestAdapterCallback = Ptr{Cvoid}
# typedef void ( * WGPURequestDeviceCallback ) ( WGPURequestDeviceStatus status , WGPUDevice device , char const * message , void * userdata )
const WGPURequestDeviceCallback = Ptr{Cvoid}
struct WGPUChainedStruct
next::Ptr{WGPUChainedStruct}
sType::WGPUSType
end
struct WGPUChainedStructOut
next::Ptr{WGPUChainedStructOut}
sType::WGPUSType
end
struct WGPUAdapterProperties
nextInChain::Ptr{WGPUChainedStructOut}
vendorID::UInt32
vendorName::Ptr{Cchar}
architecture::Ptr{Cchar}
deviceID::UInt32
name::Ptr{Cchar}
driverDescription::Ptr{Cchar}
adapterType::WGPUAdapterType
backendType::WGPUBackendType
end
struct WGPUBindGroupEntry
nextInChain::Ptr{WGPUChainedStruct}
binding::UInt32
buffer::WGPUBuffer
offset::UInt64
size::UInt64
sampler::WGPUSampler
textureView::WGPUTextureView
end
struct WGPUBlendComponent
operation::WGPUBlendOperation
srcFactor::WGPUBlendFactor
dstFactor::WGPUBlendFactor
end
struct WGPUBufferBindingLayout
nextInChain::Ptr{WGPUChainedStruct}
type::WGPUBufferBindingType
hasDynamicOffset::WGPUBool
minBindingSize::UInt64
end
struct WGPUBufferDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
usage::WGPUBufferUsageFlags
size::UInt64
mappedAtCreation::WGPUBool
end
struct WGPUColor
r::Cdouble
g::Cdouble
b::Cdouble
a::Cdouble
end
struct WGPUCommandBufferDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
end
struct WGPUCommandEncoderDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
end
struct WGPUCompilationMessage
nextInChain::Ptr{WGPUChainedStruct}
message::Ptr{Cchar}
type::WGPUCompilationMessageType
lineNum::UInt64
linePos::UInt64
offset::UInt64
length::UInt64
utf16LinePos::UInt64
utf16Offset::UInt64
utf16Length::UInt64
end
struct WGPUComputePassTimestampWrites
querySet::WGPUQuerySet
beginningOfPassWriteIndex::UInt32
endOfPassWriteIndex::UInt32
end
struct WGPUConstantEntry
nextInChain::Ptr{WGPUChainedStruct}
key::Ptr{Cchar}
value::Cdouble
end
struct WGPUExtent3D
width::UInt32
height::UInt32
depthOrArrayLayers::UInt32
end
struct WGPUInstanceDescriptor
nextInChain::Ptr{WGPUChainedStruct}
end
struct WGPULimits
maxTextureDimension1D::UInt32
maxTextureDimension2D::UInt32
maxTextureDimension3D::UInt32
maxTextureArrayLayers::UInt32
maxBindGroups::UInt32
maxBindGroupsPlusVertexBuffers::UInt32
maxBindingsPerBindGroup::UInt32
maxDynamicUniformBuffersPerPipelineLayout::UInt32
maxDynamicStorageBuffersPerPipelineLayout::UInt32
maxSampledTexturesPerShaderStage::UInt32
maxSamplersPerShaderStage::UInt32
maxStorageBuffersPerShaderStage::UInt32
maxStorageTexturesPerShaderStage::UInt32
maxUniformBuffersPerShaderStage::UInt32
maxUniformBufferBindingSize::UInt64
maxStorageBufferBindingSize::UInt64
minUniformBufferOffsetAlignment::UInt32
minStorageBufferOffsetAlignment::UInt32
maxVertexBuffers::UInt32
maxBufferSize::UInt64
maxVertexAttributes::UInt32
maxVertexBufferArrayStride::UInt32
maxInterStageShaderComponents::UInt32
maxInterStageShaderVariables::UInt32
maxColorAttachments::UInt32
maxColorAttachmentBytesPerSample::UInt32
maxComputeWorkgroupStorageSize::UInt32
maxComputeInvocationsPerWorkgroup::UInt32
maxComputeWorkgroupSizeX::UInt32
maxComputeWorkgroupSizeY::UInt32
maxComputeWorkgroupSizeZ::UInt32
maxComputeWorkgroupsPerDimension::UInt32
end
struct WGPUMultisampleState
nextInChain::Ptr{WGPUChainedStruct}
count::UInt32
mask::UInt32
alphaToCoverageEnabled::WGPUBool
end
struct WGPUOrigin3D
x::UInt32
y::UInt32
z::UInt32
end
struct WGPUPipelineLayoutDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
bindGroupLayoutCount::Csize_t
bindGroupLayouts::Ptr{WGPUBindGroupLayout}
end
struct WGPUPrimitiveDepthClipControl
chain::WGPUChainedStruct
unclippedDepth::WGPUBool
end
struct WGPUPrimitiveState
nextInChain::Ptr{WGPUChainedStruct}
topology::WGPUPrimitiveTopology
stripIndexFormat::WGPUIndexFormat
frontFace::WGPUFrontFace
cullMode::WGPUCullMode
end
struct WGPUQuerySetDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
type::WGPUQueryType
count::UInt32
end
struct WGPUQueueDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
end
struct WGPURenderBundleDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
end
struct WGPURenderBundleEncoderDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
colorFormatCount::Csize_t
colorFormats::Ptr{WGPUTextureFormat}
depthStencilFormat::WGPUTextureFormat
sampleCount::UInt32
depthReadOnly::WGPUBool
stencilReadOnly::WGPUBool
end
struct WGPURenderPassDepthStencilAttachment
view::WGPUTextureView
depthLoadOp::WGPULoadOp
depthStoreOp::WGPUStoreOp
depthClearValue::Cfloat
depthReadOnly::WGPUBool
stencilLoadOp::WGPULoadOp
stencilStoreOp::WGPUStoreOp
stencilClearValue::UInt32
stencilReadOnly::WGPUBool
end
struct WGPURenderPassDescriptorMaxDrawCount
chain::WGPUChainedStruct
maxDrawCount::UInt64
end
struct WGPURenderPassTimestampWrites
querySet::WGPUQuerySet
beginningOfPassWriteIndex::UInt32
endOfPassWriteIndex::UInt32
end
struct WGPURequestAdapterOptions
nextInChain::Ptr{WGPUChainedStruct}
compatibleSurface::WGPUSurface
powerPreference::WGPUPowerPreference
backendType::WGPUBackendType
forceFallbackAdapter::WGPUBool
end
struct WGPUSamplerBindingLayout
nextInChain::Ptr{WGPUChainedStruct}
type::WGPUSamplerBindingType
end
struct WGPUSamplerDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
addressModeU::WGPUAddressMode
addressModeV::WGPUAddressMode
addressModeW::WGPUAddressMode
magFilter::WGPUFilterMode
minFilter::WGPUFilterMode
mipmapFilter::WGPUMipmapFilterMode
lodMinClamp::Cfloat
lodMaxClamp::Cfloat
compare::WGPUCompareFunction
maxAnisotropy::UInt16
end
struct WGPUShaderModuleCompilationHint
nextInChain::Ptr{WGPUChainedStruct}
entryPoint::Ptr{Cchar}
layout::WGPUPipelineLayout
end
struct WGPUShaderModuleSPIRVDescriptor
chain::WGPUChainedStruct
codeSize::UInt32
code::Ptr{UInt32}
end
struct WGPUShaderModuleWGSLDescriptor
chain::WGPUChainedStruct
code::Ptr{Cchar}
end
struct WGPUStencilFaceState
compare::WGPUCompareFunction
failOp::WGPUStencilOperation
depthFailOp::WGPUStencilOperation
passOp::WGPUStencilOperation
end
struct WGPUStorageTextureBindingLayout
nextInChain::Ptr{WGPUChainedStruct}
access::WGPUStorageTextureAccess
format::WGPUTextureFormat
viewDimension::WGPUTextureViewDimension
end
struct WGPUSurfaceCapabilities
nextInChain::Ptr{WGPUChainedStructOut}
formatCount::Csize_t
formats::Ptr{WGPUTextureFormat}
presentModeCount::Csize_t
presentModes::Ptr{WGPUPresentMode}
alphaModeCount::Csize_t
alphaModes::Ptr{WGPUCompositeAlphaMode}
end
struct WGPUSurfaceConfiguration
nextInChain::Ptr{WGPUChainedStruct}
device::WGPUDevice
format::WGPUTextureFormat
usage::WGPUTextureUsageFlags
viewFormatCount::Csize_t
viewFormats::Ptr{WGPUTextureFormat}
alphaMode::WGPUCompositeAlphaMode
width::UInt32
height::UInt32
presentMode::WGPUPresentMode
end
struct WGPUSurfaceDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
end
struct WGPUSurfaceDescriptorFromAndroidNativeWindow
chain::WGPUChainedStruct
window::Ptr{Cvoid}
end
struct WGPUSurfaceDescriptorFromCanvasHTMLSelector
chain::WGPUChainedStruct
selector::Ptr{Cchar}
end
struct WGPUSurfaceDescriptorFromMetalLayer
chain::WGPUChainedStruct
layer::Ptr{Cvoid}
end
struct WGPUSurfaceDescriptorFromWaylandSurface
chain::WGPUChainedStruct
display::Ptr{Cvoid}
surface::Ptr{Cvoid}
end
struct WGPUSurfaceDescriptorFromWindowsHWND
chain::WGPUChainedStruct
hinstance::Ptr{Cvoid}
hwnd::Ptr{Cvoid}
end
struct WGPUSurfaceDescriptorFromXcbWindow
chain::WGPUChainedStruct
connection::Ptr{Cvoid}
window::UInt32
end
struct WGPUSurfaceDescriptorFromXlibWindow
chain::WGPUChainedStruct
display::Ptr{Cvoid}
window::UInt64
end
struct WGPUSurfaceTexture
texture::WGPUTexture
suboptimal::WGPUBool
status::WGPUSurfaceGetCurrentTextureStatus
end
struct WGPUTextureBindingLayout
nextInChain::Ptr{WGPUChainedStruct}
sampleType::WGPUTextureSampleType
viewDimension::WGPUTextureViewDimension
multisampled::WGPUBool
end
struct WGPUTextureDataLayout
nextInChain::Ptr{WGPUChainedStruct}
offset::UInt64
bytesPerRow::UInt32
rowsPerImage::UInt32
end
struct WGPUTextureViewDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
format::WGPUTextureFormat
dimension::WGPUTextureViewDimension
baseMipLevel::UInt32
mipLevelCount::UInt32
baseArrayLayer::UInt32
arrayLayerCount::UInt32
aspect::WGPUTextureAspect
end
struct WGPUVertexAttribute
format::WGPUVertexFormat
offset::UInt64
shaderLocation::UInt32
end
struct WGPUBindGroupDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
layout::WGPUBindGroupLayout
entryCount::Csize_t
entries::Ptr{WGPUBindGroupEntry}
end
struct WGPUBindGroupLayoutEntry
nextInChain::Ptr{WGPUChainedStruct}
binding::UInt32
visibility::WGPUShaderStageFlags
buffer::WGPUBufferBindingLayout
sampler::WGPUSamplerBindingLayout
texture::WGPUTextureBindingLayout
storageTexture::WGPUStorageTextureBindingLayout
end
struct WGPUBlendState
color::WGPUBlendComponent
alpha::WGPUBlendComponent
end
struct WGPUCompilationInfo
nextInChain::Ptr{WGPUChainedStruct}
messageCount::Csize_t
messages::Ptr{WGPUCompilationMessage}
end
struct WGPUComputePassDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
timestampWrites::Ptr{WGPUComputePassTimestampWrites}
end
struct WGPUDepthStencilState
nextInChain::Ptr{WGPUChainedStruct}
format::WGPUTextureFormat
depthWriteEnabled::WGPUBool
depthCompare::WGPUCompareFunction
stencilFront::WGPUStencilFaceState
stencilBack::WGPUStencilFaceState
stencilReadMask::UInt32
stencilWriteMask::UInt32
depthBias::Int32
depthBiasSlopeScale::Cfloat
depthBiasClamp::Cfloat
end
struct WGPUImageCopyBuffer
nextInChain::Ptr{WGPUChainedStruct}
layout::WGPUTextureDataLayout
buffer::WGPUBuffer
end
struct WGPUImageCopyTexture
nextInChain::Ptr{WGPUChainedStruct}
texture::WGPUTexture
mipLevel::UInt32
origin::WGPUOrigin3D
aspect::WGPUTextureAspect
end
struct WGPUProgrammableStageDescriptor
nextInChain::Ptr{WGPUChainedStruct}
_module::WGPUShaderModule
entryPoint::Ptr{Cchar}
constantCount::Csize_t
constants::Ptr{WGPUConstantEntry}
end
struct WGPURenderPassColorAttachment
nextInChain::Ptr{WGPUChainedStruct}
view::WGPUTextureView
resolveTarget::WGPUTextureView
loadOp::WGPULoadOp
storeOp::WGPUStoreOp
clearValue::WGPUColor
end
struct WGPURequiredLimits
nextInChain::Ptr{WGPUChainedStruct}
limits::WGPULimits
end
struct WGPUShaderModuleDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
hintCount::Csize_t
hints::Ptr{WGPUShaderModuleCompilationHint}
end
struct WGPUSupportedLimits
nextInChain::Ptr{WGPUChainedStructOut}
limits::WGPULimits
end
struct WGPUTextureDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
usage::WGPUTextureUsageFlags
dimension::WGPUTextureDimension
size::WGPUExtent3D
format::WGPUTextureFormat
mipLevelCount::UInt32
sampleCount::UInt32
viewFormatCount::Csize_t
viewFormats::Ptr{WGPUTextureFormat}
end
struct WGPUVertexBufferLayout
arrayStride::UInt64
stepMode::WGPUVertexStepMode
attributeCount::Csize_t
attributes::Ptr{WGPUVertexAttribute}
end
struct WGPUBindGroupLayoutDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
entryCount::Csize_t
entries::Ptr{WGPUBindGroupLayoutEntry}
end
struct WGPUColorTargetState
nextInChain::Ptr{WGPUChainedStruct}
format::WGPUTextureFormat
blend::Ptr{WGPUBlendState}
writeMask::WGPUColorWriteMaskFlags
end
struct WGPUComputePipelineDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
layout::WGPUPipelineLayout
compute::WGPUProgrammableStageDescriptor
end
struct WGPUDeviceDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
requiredFeatureCount::Csize_t
requiredFeatures::Ptr{WGPUFeatureName}
requiredLimits::Ptr{WGPURequiredLimits}
defaultQueue::WGPUQueueDescriptor
deviceLostCallback::WGPUDeviceLostCallback
deviceLostUserdata::Ptr{Cvoid}
end
struct WGPURenderPassDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
colorAttachmentCount::Csize_t
colorAttachments::Ptr{WGPURenderPassColorAttachment}
depthStencilAttachment::Ptr{WGPURenderPassDepthStencilAttachment}
occlusionQuerySet::WGPUQuerySet
timestampWrites::Ptr{WGPURenderPassTimestampWrites}
end
struct WGPUVertexState
nextInChain::Ptr{WGPUChainedStruct}
_module::WGPUShaderModule
entryPoint::Ptr{Cchar}
constantCount::Csize_t
constants::Ptr{WGPUConstantEntry}
bufferCount::Csize_t
buffers::Ptr{WGPUVertexBufferLayout}
end
struct WGPUFragmentState
nextInChain::Ptr{WGPUChainedStruct}
_module::WGPUShaderModule
entryPoint::Ptr{Cchar}
constantCount::Csize_t
constants::Ptr{WGPUConstantEntry}
targetCount::Csize_t
targets::Ptr{WGPUColorTargetState}
end
struct WGPURenderPipelineDescriptor
nextInChain::Ptr{WGPUChainedStruct}
label::Ptr{Cchar}
layout::WGPUPipelineLayout
vertex::WGPUVertexState
primitive::WGPUPrimitiveState
depthStencil::Ptr{WGPUDepthStencilState}
multisample::WGPUMultisampleState
fragment::Ptr{WGPUFragmentState}
end
# typedef WGPUInstance ( * WGPUProcCreateInstance ) ( WGPU_NULLABLE WGPUInstanceDescriptor const * descriptor )
const WGPUProcCreateInstance = Ptr{Cvoid}
# typedef WGPUProc ( * WGPUProcGetProcAddress ) ( WGPUDevice device , char const * procName )
const WGPUProcGetProcAddress = Ptr{Cvoid}
# typedef size_t ( * WGPUProcAdapterEnumerateFeatures ) ( WGPUAdapter adapter , WGPUFeatureName * features )
const WGPUProcAdapterEnumerateFeatures = Ptr{Cvoid}
# typedef WGPUBool ( * WGPUProcAdapterGetLimits ) ( WGPUAdapter adapter , WGPUSupportedLimits * limits )
const WGPUProcAdapterGetLimits = Ptr{Cvoid}
# typedef void ( * WGPUProcAdapterGetProperties ) ( WGPUAdapter adapter , WGPUAdapterProperties * properties )
const WGPUProcAdapterGetProperties = Ptr{Cvoid}
# typedef WGPUBool ( * WGPUProcAdapterHasFeature ) ( WGPUAdapter adapter , WGPUFeatureName feature )
const WGPUProcAdapterHasFeature = Ptr{Cvoid}
# typedef void ( * WGPUProcAdapterRequestDevice ) ( WGPUAdapter adapter , WGPU_NULLABLE WGPUDeviceDescriptor const * descriptor , WGPURequestDeviceCallback callback , void * userdata )
const WGPUProcAdapterRequestDevice = Ptr{Cvoid}
# typedef void ( * WGPUProcAdapterReference ) ( WGPUAdapter adapter )
const WGPUProcAdapterReference = Ptr{Cvoid}
# typedef void ( * WGPUProcAdapterRelease ) ( WGPUAdapter adapter )
const WGPUProcAdapterRelease = Ptr{Cvoid}
# typedef void ( * WGPUProcBindGroupSetLabel ) ( WGPUBindGroup bindGroup , char const * label )
const WGPUProcBindGroupSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcBindGroupReference ) ( WGPUBindGroup bindGroup )
const WGPUProcBindGroupReference = Ptr{Cvoid}
# typedef void ( * WGPUProcBindGroupRelease ) ( WGPUBindGroup bindGroup )
const WGPUProcBindGroupRelease = Ptr{Cvoid}
# typedef void ( * WGPUProcBindGroupLayoutSetLabel ) ( WGPUBindGroupLayout bindGroupLayout , char const * label )
const WGPUProcBindGroupLayoutSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcBindGroupLayoutReference ) ( WGPUBindGroupLayout bindGroupLayout )
const WGPUProcBindGroupLayoutReference = Ptr{Cvoid}
# typedef void ( * WGPUProcBindGroupLayoutRelease ) ( WGPUBindGroupLayout bindGroupLayout )
const WGPUProcBindGroupLayoutRelease = Ptr{Cvoid}
# typedef void ( * WGPUProcBufferDestroy ) ( WGPUBuffer buffer )
const WGPUProcBufferDestroy = Ptr{Cvoid}
# typedef void const * ( * WGPUProcBufferGetConstMappedRange ) ( WGPUBuffer buffer , size_t offset , size_t size )
const WGPUProcBufferGetConstMappedRange = Ptr{Cvoid}
# typedef WGPUBufferMapState ( * WGPUProcBufferGetMapState ) ( WGPUBuffer buffer )
const WGPUProcBufferGetMapState = Ptr{Cvoid}
# typedef void * ( * WGPUProcBufferGetMappedRange ) ( WGPUBuffer buffer , size_t offset , size_t size )
const WGPUProcBufferGetMappedRange = Ptr{Cvoid}
# typedef uint64_t ( * WGPUProcBufferGetSize ) ( WGPUBuffer buffer )
const WGPUProcBufferGetSize = Ptr{Cvoid}
# typedef WGPUBufferUsageFlags ( * WGPUProcBufferGetUsage ) ( WGPUBuffer buffer )
const WGPUProcBufferGetUsage = Ptr{Cvoid}
# typedef void ( * WGPUProcBufferMapAsync ) ( WGPUBuffer buffer , WGPUMapModeFlags mode , size_t offset , size_t size , WGPUBufferMapCallback callback , void * userdata )
const WGPUProcBufferMapAsync = Ptr{Cvoid}
# typedef void ( * WGPUProcBufferSetLabel ) ( WGPUBuffer buffer , char const * label )
const WGPUProcBufferSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcBufferUnmap ) ( WGPUBuffer buffer )
const WGPUProcBufferUnmap = Ptr{Cvoid}
# typedef void ( * WGPUProcBufferReference ) ( WGPUBuffer buffer )
const WGPUProcBufferReference = Ptr{Cvoid}
# typedef void ( * WGPUProcBufferRelease ) ( WGPUBuffer buffer )
const WGPUProcBufferRelease = Ptr{Cvoid}
# typedef void ( * WGPUProcCommandBufferSetLabel ) ( WGPUCommandBuffer commandBuffer , char const * label )
const WGPUProcCommandBufferSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcCommandBufferReference ) ( WGPUCommandBuffer commandBuffer )
const WGPUProcCommandBufferReference = Ptr{Cvoid}
# typedef void ( * WGPUProcCommandBufferRelease ) ( WGPUCommandBuffer commandBuffer )
const WGPUProcCommandBufferRelease = Ptr{Cvoid}
# typedef WGPUComputePassEncoder ( * WGPUProcCommandEncoderBeginComputePass ) ( WGPUCommandEncoder commandEncoder , WGPU_NULLABLE WGPUComputePassDescriptor const * descriptor )
const WGPUProcCommandEncoderBeginComputePass = Ptr{Cvoid}
# typedef WGPURenderPassEncoder ( * WGPUProcCommandEncoderBeginRenderPass ) ( WGPUCommandEncoder commandEncoder , WGPURenderPassDescriptor const * descriptor )
const WGPUProcCommandEncoderBeginRenderPass = Ptr{Cvoid}
# typedef void ( * WGPUProcCommandEncoderClearBuffer ) ( WGPUCommandEncoder commandEncoder , WGPUBuffer buffer , uint64_t offset , uint64_t size )
const WGPUProcCommandEncoderClearBuffer = Ptr{Cvoid}
# typedef void ( * WGPUProcCommandEncoderCopyBufferToBuffer ) ( WGPUCommandEncoder commandEncoder , WGPUBuffer source , uint64_t sourceOffset , WGPUBuffer destination , uint64_t destinationOffset , uint64_t size )
const WGPUProcCommandEncoderCopyBufferToBuffer = Ptr{Cvoid}
# typedef void ( * WGPUProcCommandEncoderCopyBufferToTexture ) ( WGPUCommandEncoder commandEncoder , WGPUImageCopyBuffer const * source , WGPUImageCopyTexture const * destination , WGPUExtent3D const * copySize )
const WGPUProcCommandEncoderCopyBufferToTexture = Ptr{Cvoid}
# typedef void ( * WGPUProcCommandEncoderCopyTextureToBuffer ) ( WGPUCommandEncoder commandEncoder , WGPUImageCopyTexture const * source , WGPUImageCopyBuffer const * destination , WGPUExtent3D const * copySize )
const WGPUProcCommandEncoderCopyTextureToBuffer = Ptr{Cvoid}
# typedef void ( * WGPUProcCommandEncoderCopyTextureToTexture ) ( WGPUCommandEncoder commandEncoder , WGPUImageCopyTexture const * source , WGPUImageCopyTexture const * destination , WGPUExtent3D const * copySize )
const WGPUProcCommandEncoderCopyTextureToTexture = Ptr{Cvoid}
# typedef WGPUCommandBuffer ( * WGPUProcCommandEncoderFinish ) ( WGPUCommandEncoder commandEncoder , WGPU_NULLABLE WGPUCommandBufferDescriptor const * descriptor )
const WGPUProcCommandEncoderFinish = Ptr{Cvoid}
# typedef void ( * WGPUProcCommandEncoderInsertDebugMarker ) ( WGPUCommandEncoder commandEncoder , char const * markerLabel )
const WGPUProcCommandEncoderInsertDebugMarker = Ptr{Cvoid}
# typedef void ( * WGPUProcCommandEncoderPopDebugGroup ) ( WGPUCommandEncoder commandEncoder )
const WGPUProcCommandEncoderPopDebugGroup = Ptr{Cvoid}
# typedef void ( * WGPUProcCommandEncoderPushDebugGroup ) ( WGPUCommandEncoder commandEncoder , char const * groupLabel )
const WGPUProcCommandEncoderPushDebugGroup = Ptr{Cvoid}
# typedef void ( * WGPUProcCommandEncoderResolveQuerySet ) ( WGPUCommandEncoder commandEncoder , WGPUQuerySet querySet , uint32_t firstQuery , uint32_t queryCount , WGPUBuffer destination , uint64_t destinationOffset )
const WGPUProcCommandEncoderResolveQuerySet = Ptr{Cvoid}
# typedef void ( * WGPUProcCommandEncoderSetLabel ) ( WGPUCommandEncoder commandEncoder , char const * label )
const WGPUProcCommandEncoderSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcCommandEncoderWriteTimestamp ) ( WGPUCommandEncoder commandEncoder , WGPUQuerySet querySet , uint32_t queryIndex )
const WGPUProcCommandEncoderWriteTimestamp = Ptr{Cvoid}
# typedef void ( * WGPUProcCommandEncoderReference ) ( WGPUCommandEncoder commandEncoder )
const WGPUProcCommandEncoderReference = Ptr{Cvoid}
# typedef void ( * WGPUProcCommandEncoderRelease ) ( WGPUCommandEncoder commandEncoder )
const WGPUProcCommandEncoderRelease = Ptr{Cvoid}
# typedef void ( * WGPUProcComputePassEncoderDispatchWorkgroups ) ( WGPUComputePassEncoder computePassEncoder , uint32_t workgroupCountX , uint32_t workgroupCountY , uint32_t workgroupCountZ )
const WGPUProcComputePassEncoderDispatchWorkgroups = Ptr{Cvoid}
# typedef void ( * WGPUProcComputePassEncoderDispatchWorkgroupsIndirect ) ( WGPUComputePassEncoder computePassEncoder , WGPUBuffer indirectBuffer , uint64_t indirectOffset )
const WGPUProcComputePassEncoderDispatchWorkgroupsIndirect = Ptr{Cvoid}
# typedef void ( * WGPUProcComputePassEncoderEnd ) ( WGPUComputePassEncoder computePassEncoder )
const WGPUProcComputePassEncoderEnd = Ptr{Cvoid}
# typedef void ( * WGPUProcComputePassEncoderInsertDebugMarker ) ( WGPUComputePassEncoder computePassEncoder , char const * markerLabel )
const WGPUProcComputePassEncoderInsertDebugMarker = Ptr{Cvoid}
# typedef void ( * WGPUProcComputePassEncoderPopDebugGroup ) ( WGPUComputePassEncoder computePassEncoder )
const WGPUProcComputePassEncoderPopDebugGroup = Ptr{Cvoid}
# typedef void ( * WGPUProcComputePassEncoderPushDebugGroup ) ( WGPUComputePassEncoder computePassEncoder , char const * groupLabel )
const WGPUProcComputePassEncoderPushDebugGroup = Ptr{Cvoid}
# typedef void ( * WGPUProcComputePassEncoderSetBindGroup ) ( WGPUComputePassEncoder computePassEncoder , uint32_t groupIndex , WGPU_NULLABLE WGPUBindGroup group , size_t dynamicOffsetCount , uint32_t const * dynamicOffsets )
const WGPUProcComputePassEncoderSetBindGroup = Ptr{Cvoid}
# typedef void ( * WGPUProcComputePassEncoderSetLabel ) ( WGPUComputePassEncoder computePassEncoder , char const * label )
const WGPUProcComputePassEncoderSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcComputePassEncoderSetPipeline ) ( WGPUComputePassEncoder computePassEncoder , WGPUComputePipeline pipeline )
const WGPUProcComputePassEncoderSetPipeline = Ptr{Cvoid}
# typedef void ( * WGPUProcComputePassEncoderReference ) ( WGPUComputePassEncoder computePassEncoder )
const WGPUProcComputePassEncoderReference = Ptr{Cvoid}
# typedef void ( * WGPUProcComputePassEncoderRelease ) ( WGPUComputePassEncoder computePassEncoder )
const WGPUProcComputePassEncoderRelease = Ptr{Cvoid}
# typedef WGPUBindGroupLayout ( * WGPUProcComputePipelineGetBindGroupLayout ) ( WGPUComputePipeline computePipeline , uint32_t groupIndex )
const WGPUProcComputePipelineGetBindGroupLayout = Ptr{Cvoid}
# typedef void ( * WGPUProcComputePipelineSetLabel ) ( WGPUComputePipeline computePipeline , char const * label )
const WGPUProcComputePipelineSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcComputePipelineReference ) ( WGPUComputePipeline computePipeline )
const WGPUProcComputePipelineReference = Ptr{Cvoid}
# typedef void ( * WGPUProcComputePipelineRelease ) ( WGPUComputePipeline computePipeline )
const WGPUProcComputePipelineRelease = Ptr{Cvoid}
# typedef WGPUBindGroup ( * WGPUProcDeviceCreateBindGroup ) ( WGPUDevice device , WGPUBindGroupDescriptor const * descriptor )
const WGPUProcDeviceCreateBindGroup = Ptr{Cvoid}
# typedef WGPUBindGroupLayout ( * WGPUProcDeviceCreateBindGroupLayout ) ( WGPUDevice device , WGPUBindGroupLayoutDescriptor const * descriptor )
const WGPUProcDeviceCreateBindGroupLayout = Ptr{Cvoid}
# typedef WGPUBuffer ( * WGPUProcDeviceCreateBuffer ) ( WGPUDevice device , WGPUBufferDescriptor const * descriptor )
const WGPUProcDeviceCreateBuffer = Ptr{Cvoid}
# typedef WGPUCommandEncoder ( * WGPUProcDeviceCreateCommandEncoder ) ( WGPUDevice device , WGPU_NULLABLE WGPUCommandEncoderDescriptor const * descriptor )
const WGPUProcDeviceCreateCommandEncoder = Ptr{Cvoid}
# typedef WGPUComputePipeline ( * WGPUProcDeviceCreateComputePipeline ) ( WGPUDevice device , WGPUComputePipelineDescriptor const * descriptor )
const WGPUProcDeviceCreateComputePipeline = Ptr{Cvoid}
# typedef void ( * WGPUProcDeviceCreateComputePipelineAsync ) ( WGPUDevice device , WGPUComputePipelineDescriptor const * descriptor , WGPUCreateComputePipelineAsyncCallback callback , void * userdata )
const WGPUProcDeviceCreateComputePipelineAsync = Ptr{Cvoid}
# typedef WGPUPipelineLayout ( * WGPUProcDeviceCreatePipelineLayout ) ( WGPUDevice device , WGPUPipelineLayoutDescriptor const * descriptor )
const WGPUProcDeviceCreatePipelineLayout = Ptr{Cvoid}
# typedef WGPUQuerySet ( * WGPUProcDeviceCreateQuerySet ) ( WGPUDevice device , WGPUQuerySetDescriptor const * descriptor )
const WGPUProcDeviceCreateQuerySet = Ptr{Cvoid}
# typedef WGPURenderBundleEncoder ( * WGPUProcDeviceCreateRenderBundleEncoder ) ( WGPUDevice device , WGPURenderBundleEncoderDescriptor const * descriptor )
const WGPUProcDeviceCreateRenderBundleEncoder = Ptr{Cvoid}
# typedef WGPURenderPipeline ( * WGPUProcDeviceCreateRenderPipeline ) ( WGPUDevice device , WGPURenderPipelineDescriptor const * descriptor )
const WGPUProcDeviceCreateRenderPipeline = Ptr{Cvoid}
# typedef void ( * WGPUProcDeviceCreateRenderPipelineAsync ) ( WGPUDevice device , WGPURenderPipelineDescriptor const * descriptor , WGPUCreateRenderPipelineAsyncCallback callback , void * userdata )
const WGPUProcDeviceCreateRenderPipelineAsync = Ptr{Cvoid}
# typedef WGPUSampler ( * WGPUProcDeviceCreateSampler ) ( WGPUDevice device , WGPU_NULLABLE WGPUSamplerDescriptor const * descriptor )
const WGPUProcDeviceCreateSampler = Ptr{Cvoid}
# typedef WGPUShaderModule ( * WGPUProcDeviceCreateShaderModule ) ( WGPUDevice device , WGPUShaderModuleDescriptor const * descriptor )
const WGPUProcDeviceCreateShaderModule = Ptr{Cvoid}
# typedef WGPUTexture ( * WGPUProcDeviceCreateTexture ) ( WGPUDevice device , WGPUTextureDescriptor const * descriptor )
const WGPUProcDeviceCreateTexture = Ptr{Cvoid}
# typedef void ( * WGPUProcDeviceDestroy ) ( WGPUDevice device )
const WGPUProcDeviceDestroy = Ptr{Cvoid}
# typedef size_t ( * WGPUProcDeviceEnumerateFeatures ) ( WGPUDevice device , WGPUFeatureName * features )
const WGPUProcDeviceEnumerateFeatures = Ptr{Cvoid}
# typedef WGPUBool ( * WGPUProcDeviceGetLimits ) ( WGPUDevice device , WGPUSupportedLimits * limits )
const WGPUProcDeviceGetLimits = Ptr{Cvoid}
# typedef WGPUQueue ( * WGPUProcDeviceGetQueue ) ( WGPUDevice device )
const WGPUProcDeviceGetQueue = Ptr{Cvoid}
# typedef WGPUBool ( * WGPUProcDeviceHasFeature ) ( WGPUDevice device , WGPUFeatureName feature )
const WGPUProcDeviceHasFeature = Ptr{Cvoid}
# typedef void ( * WGPUProcDevicePopErrorScope ) ( WGPUDevice device , WGPUErrorCallback callback , void * userdata )
const WGPUProcDevicePopErrorScope = Ptr{Cvoid}
# typedef void ( * WGPUProcDevicePushErrorScope ) ( WGPUDevice device , WGPUErrorFilter filter )
const WGPUProcDevicePushErrorScope = Ptr{Cvoid}
# typedef void ( * WGPUProcDeviceSetLabel ) ( WGPUDevice device , char const * label )
const WGPUProcDeviceSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcDeviceSetUncapturedErrorCallback ) ( WGPUDevice device , WGPUErrorCallback callback , void * userdata )
const WGPUProcDeviceSetUncapturedErrorCallback = Ptr{Cvoid}
# typedef void ( * WGPUProcDeviceReference ) ( WGPUDevice device )
const WGPUProcDeviceReference = Ptr{Cvoid}
# typedef void ( * WGPUProcDeviceRelease ) ( WGPUDevice device )
const WGPUProcDeviceRelease = Ptr{Cvoid}
# typedef WGPUSurface ( * WGPUProcInstanceCreateSurface ) ( WGPUInstance instance , WGPUSurfaceDescriptor const * descriptor )
const WGPUProcInstanceCreateSurface = Ptr{Cvoid}
# typedef void ( * WGPUProcInstanceProcessEvents ) ( WGPUInstance instance )
const WGPUProcInstanceProcessEvents = Ptr{Cvoid}
# typedef void ( * WGPUProcInstanceRequestAdapter ) ( WGPUInstance instance , WGPU_NULLABLE WGPURequestAdapterOptions const * options , WGPURequestAdapterCallback callback , void * userdata )
const WGPUProcInstanceRequestAdapter = Ptr{Cvoid}
# typedef void ( * WGPUProcInstanceReference ) ( WGPUInstance instance )
const WGPUProcInstanceReference = Ptr{Cvoid}
# typedef void ( * WGPUProcInstanceRelease ) ( WGPUInstance instance )
const WGPUProcInstanceRelease = Ptr{Cvoid}
# typedef void ( * WGPUProcPipelineLayoutSetLabel ) ( WGPUPipelineLayout pipelineLayout , char const * label )
const WGPUProcPipelineLayoutSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcPipelineLayoutReference ) ( WGPUPipelineLayout pipelineLayout )
const WGPUProcPipelineLayoutReference = Ptr{Cvoid}
# typedef void ( * WGPUProcPipelineLayoutRelease ) ( WGPUPipelineLayout pipelineLayout )
const WGPUProcPipelineLayoutRelease = Ptr{Cvoid}
# typedef void ( * WGPUProcQuerySetDestroy ) ( WGPUQuerySet querySet )
const WGPUProcQuerySetDestroy = Ptr{Cvoid}
# typedef uint32_t ( * WGPUProcQuerySetGetCount ) ( WGPUQuerySet querySet )
const WGPUProcQuerySetGetCount = Ptr{Cvoid}
# typedef WGPUQueryType ( * WGPUProcQuerySetGetType ) ( WGPUQuerySet querySet )
const WGPUProcQuerySetGetType = Ptr{Cvoid}
# typedef void ( * WGPUProcQuerySetSetLabel ) ( WGPUQuerySet querySet , char const * label )
const WGPUProcQuerySetSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcQuerySetReference ) ( WGPUQuerySet querySet )
const WGPUProcQuerySetReference = Ptr{Cvoid}
# typedef void ( * WGPUProcQuerySetRelease ) ( WGPUQuerySet querySet )
const WGPUProcQuerySetRelease = Ptr{Cvoid}
# typedef void ( * WGPUProcQueueOnSubmittedWorkDone ) ( WGPUQueue queue , WGPUQueueWorkDoneCallback callback , void * userdata )
const WGPUProcQueueOnSubmittedWorkDone = Ptr{Cvoid}
# typedef void ( * WGPUProcQueueSetLabel ) ( WGPUQueue queue , char const * label )
const WGPUProcQueueSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcQueueSubmit ) ( WGPUQueue queue , size_t commandCount , WGPUCommandBuffer const * commands )
const WGPUProcQueueSubmit = Ptr{Cvoid}
# typedef void ( * WGPUProcQueueWriteBuffer ) ( WGPUQueue queue , WGPUBuffer buffer , uint64_t bufferOffset , void const * data , size_t size )
const WGPUProcQueueWriteBuffer = Ptr{Cvoid}
# typedef void ( * WGPUProcQueueWriteTexture ) ( WGPUQueue queue , WGPUImageCopyTexture const * destination , void const * data , size_t dataSize , WGPUTextureDataLayout const * dataLayout , WGPUExtent3D const * writeSize )
const WGPUProcQueueWriteTexture = Ptr{Cvoid}
# typedef void ( * WGPUProcQueueReference ) ( WGPUQueue queue )
const WGPUProcQueueReference = Ptr{Cvoid}
# typedef void ( * WGPUProcQueueRelease ) ( WGPUQueue queue )
const WGPUProcQueueRelease = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderBundleSetLabel ) ( WGPURenderBundle renderBundle , char const * label )
const WGPUProcRenderBundleSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderBundleReference ) ( WGPURenderBundle renderBundle )
const WGPUProcRenderBundleReference = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderBundleRelease ) ( WGPURenderBundle renderBundle )
const WGPUProcRenderBundleRelease = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderBundleEncoderDraw ) ( WGPURenderBundleEncoder renderBundleEncoder , uint32_t vertexCount , uint32_t instanceCount , uint32_t firstVertex , uint32_t firstInstance )
const WGPUProcRenderBundleEncoderDraw = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderBundleEncoderDrawIndexed ) ( WGPURenderBundleEncoder renderBundleEncoder , uint32_t indexCount , uint32_t instanceCount , uint32_t firstIndex , int32_t baseVertex , uint32_t firstInstance )
const WGPUProcRenderBundleEncoderDrawIndexed = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderBundleEncoderDrawIndexedIndirect ) ( WGPURenderBundleEncoder renderBundleEncoder , WGPUBuffer indirectBuffer , uint64_t indirectOffset )
const WGPUProcRenderBundleEncoderDrawIndexedIndirect = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderBundleEncoderDrawIndirect ) ( WGPURenderBundleEncoder renderBundleEncoder , WGPUBuffer indirectBuffer , uint64_t indirectOffset )
const WGPUProcRenderBundleEncoderDrawIndirect = Ptr{Cvoid}
# typedef WGPURenderBundle ( * WGPUProcRenderBundleEncoderFinish ) ( WGPURenderBundleEncoder renderBundleEncoder , WGPU_NULLABLE WGPURenderBundleDescriptor const * descriptor )
const WGPUProcRenderBundleEncoderFinish = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderBundleEncoderInsertDebugMarker ) ( WGPURenderBundleEncoder renderBundleEncoder , char const * markerLabel )
const WGPUProcRenderBundleEncoderInsertDebugMarker = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderBundleEncoderPopDebugGroup ) ( WGPURenderBundleEncoder renderBundleEncoder )
const WGPUProcRenderBundleEncoderPopDebugGroup = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderBundleEncoderPushDebugGroup ) ( WGPURenderBundleEncoder renderBundleEncoder , char const * groupLabel )
const WGPUProcRenderBundleEncoderPushDebugGroup = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderBundleEncoderSetBindGroup ) ( WGPURenderBundleEncoder renderBundleEncoder , uint32_t groupIndex , WGPU_NULLABLE WGPUBindGroup group , size_t dynamicOffsetCount , uint32_t const * dynamicOffsets )
const WGPUProcRenderBundleEncoderSetBindGroup = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderBundleEncoderSetIndexBuffer ) ( WGPURenderBundleEncoder renderBundleEncoder , WGPUBuffer buffer , WGPUIndexFormat format , uint64_t offset , uint64_t size )
const WGPUProcRenderBundleEncoderSetIndexBuffer = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderBundleEncoderSetLabel ) ( WGPURenderBundleEncoder renderBundleEncoder , char const * label )
const WGPUProcRenderBundleEncoderSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderBundleEncoderSetPipeline ) ( WGPURenderBundleEncoder renderBundleEncoder , WGPURenderPipeline pipeline )
const WGPUProcRenderBundleEncoderSetPipeline = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderBundleEncoderSetVertexBuffer ) ( WGPURenderBundleEncoder renderBundleEncoder , uint32_t slot , WGPU_NULLABLE WGPUBuffer buffer , uint64_t offset , uint64_t size )
const WGPUProcRenderBundleEncoderSetVertexBuffer = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderBundleEncoderReference ) ( WGPURenderBundleEncoder renderBundleEncoder )
const WGPUProcRenderBundleEncoderReference = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderBundleEncoderRelease ) ( WGPURenderBundleEncoder renderBundleEncoder )
const WGPUProcRenderBundleEncoderRelease = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderBeginOcclusionQuery ) ( WGPURenderPassEncoder renderPassEncoder , uint32_t queryIndex )
const WGPUProcRenderPassEncoderBeginOcclusionQuery = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderDraw ) ( WGPURenderPassEncoder renderPassEncoder , uint32_t vertexCount , uint32_t instanceCount , uint32_t firstVertex , uint32_t firstInstance )
const WGPUProcRenderPassEncoderDraw = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderDrawIndexed ) ( WGPURenderPassEncoder renderPassEncoder , uint32_t indexCount , uint32_t instanceCount , uint32_t firstIndex , int32_t baseVertex , uint32_t firstInstance )
const WGPUProcRenderPassEncoderDrawIndexed = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderDrawIndexedIndirect ) ( WGPURenderPassEncoder renderPassEncoder , WGPUBuffer indirectBuffer , uint64_t indirectOffset )
const WGPUProcRenderPassEncoderDrawIndexedIndirect = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderDrawIndirect ) ( WGPURenderPassEncoder renderPassEncoder , WGPUBuffer indirectBuffer , uint64_t indirectOffset )
const WGPUProcRenderPassEncoderDrawIndirect = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderEnd ) ( WGPURenderPassEncoder renderPassEncoder )
const WGPUProcRenderPassEncoderEnd = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderEndOcclusionQuery ) ( WGPURenderPassEncoder renderPassEncoder )
const WGPUProcRenderPassEncoderEndOcclusionQuery = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderExecuteBundles ) ( WGPURenderPassEncoder renderPassEncoder , size_t bundleCount , WGPURenderBundle const * bundles )
const WGPUProcRenderPassEncoderExecuteBundles = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderInsertDebugMarker ) ( WGPURenderPassEncoder renderPassEncoder , char const * markerLabel )
const WGPUProcRenderPassEncoderInsertDebugMarker = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderPopDebugGroup ) ( WGPURenderPassEncoder renderPassEncoder )
const WGPUProcRenderPassEncoderPopDebugGroup = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderPushDebugGroup ) ( WGPURenderPassEncoder renderPassEncoder , char const * groupLabel )
const WGPUProcRenderPassEncoderPushDebugGroup = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderSetBindGroup ) ( WGPURenderPassEncoder renderPassEncoder , uint32_t groupIndex , WGPU_NULLABLE WGPUBindGroup group , size_t dynamicOffsetCount , uint32_t const * dynamicOffsets )
const WGPUProcRenderPassEncoderSetBindGroup = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderSetBlendConstant ) ( WGPURenderPassEncoder renderPassEncoder , WGPUColor const * color )
const WGPUProcRenderPassEncoderSetBlendConstant = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderSetIndexBuffer ) ( WGPURenderPassEncoder renderPassEncoder , WGPUBuffer buffer , WGPUIndexFormat format , uint64_t offset , uint64_t size )
const WGPUProcRenderPassEncoderSetIndexBuffer = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderSetLabel ) ( WGPURenderPassEncoder renderPassEncoder , char const * label )
const WGPUProcRenderPassEncoderSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderSetPipeline ) ( WGPURenderPassEncoder renderPassEncoder , WGPURenderPipeline pipeline )
const WGPUProcRenderPassEncoderSetPipeline = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderSetScissorRect ) ( WGPURenderPassEncoder renderPassEncoder , uint32_t x , uint32_t y , uint32_t width , uint32_t height )
const WGPUProcRenderPassEncoderSetScissorRect = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderSetStencilReference ) ( WGPURenderPassEncoder renderPassEncoder , uint32_t reference )
const WGPUProcRenderPassEncoderSetStencilReference = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderSetVertexBuffer ) ( WGPURenderPassEncoder renderPassEncoder , uint32_t slot , WGPU_NULLABLE WGPUBuffer buffer , uint64_t offset , uint64_t size )
const WGPUProcRenderPassEncoderSetVertexBuffer = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderSetViewport ) ( WGPURenderPassEncoder renderPassEncoder , float x , float y , float width , float height , float minDepth , float maxDepth )
const WGPUProcRenderPassEncoderSetViewport = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderReference ) ( WGPURenderPassEncoder renderPassEncoder )
const WGPUProcRenderPassEncoderReference = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPassEncoderRelease ) ( WGPURenderPassEncoder renderPassEncoder )
const WGPUProcRenderPassEncoderRelease = Ptr{Cvoid}
# typedef WGPUBindGroupLayout ( * WGPUProcRenderPipelineGetBindGroupLayout ) ( WGPURenderPipeline renderPipeline , uint32_t groupIndex )
const WGPUProcRenderPipelineGetBindGroupLayout = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPipelineSetLabel ) ( WGPURenderPipeline renderPipeline , char const * label )
const WGPUProcRenderPipelineSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPipelineReference ) ( WGPURenderPipeline renderPipeline )
const WGPUProcRenderPipelineReference = Ptr{Cvoid}
# typedef void ( * WGPUProcRenderPipelineRelease ) ( WGPURenderPipeline renderPipeline )
const WGPUProcRenderPipelineRelease = Ptr{Cvoid}
# typedef void ( * WGPUProcSamplerSetLabel ) ( WGPUSampler sampler , char const * label )
const WGPUProcSamplerSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcSamplerReference ) ( WGPUSampler sampler )
const WGPUProcSamplerReference = Ptr{Cvoid}
# typedef void ( * WGPUProcSamplerRelease ) ( WGPUSampler sampler )
const WGPUProcSamplerRelease = Ptr{Cvoid}
# typedef void ( * WGPUProcShaderModuleGetCompilationInfo ) ( WGPUShaderModule shaderModule , WGPUCompilationInfoCallback callback , void * userdata )
const WGPUProcShaderModuleGetCompilationInfo = Ptr{Cvoid}
# typedef void ( * WGPUProcShaderModuleSetLabel ) ( WGPUShaderModule shaderModule , char const * label )
const WGPUProcShaderModuleSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcShaderModuleReference ) ( WGPUShaderModule shaderModule )
const WGPUProcShaderModuleReference = Ptr{Cvoid}
# typedef void ( * WGPUProcShaderModuleRelease ) ( WGPUShaderModule shaderModule )
const WGPUProcShaderModuleRelease = Ptr{Cvoid}
# typedef void ( * WGPUProcSurfaceConfigure ) ( WGPUSurface surface , WGPUSurfaceConfiguration const * config )
const WGPUProcSurfaceConfigure = Ptr{Cvoid}
# typedef void ( * WGPUProcSurfaceGetCapabilities ) ( WGPUSurface surface , WGPUAdapter adapter , WGPUSurfaceCapabilities * capabilities )
const WGPUProcSurfaceGetCapabilities = Ptr{Cvoid}
# typedef void ( * WGPUProcSurfaceGetCurrentTexture ) ( WGPUSurface surface , WGPUSurfaceTexture * surfaceTexture )
const WGPUProcSurfaceGetCurrentTexture = Ptr{Cvoid}
# typedef WGPUTextureFormat ( * WGPUProcSurfaceGetPreferredFormat ) ( WGPUSurface surface , WGPUAdapter adapter )
const WGPUProcSurfaceGetPreferredFormat = Ptr{Cvoid}
# typedef void ( * WGPUProcSurfacePresent ) ( WGPUSurface surface )
const WGPUProcSurfacePresent = Ptr{Cvoid}
# typedef void ( * WGPUProcSurfaceUnconfigure ) ( WGPUSurface surface )
const WGPUProcSurfaceUnconfigure = Ptr{Cvoid}
# typedef void ( * WGPUProcSurfaceReference ) ( WGPUSurface surface )
const WGPUProcSurfaceReference = Ptr{Cvoid}
# typedef void ( * WGPUProcSurfaceRelease ) ( WGPUSurface surface )
const WGPUProcSurfaceRelease = Ptr{Cvoid}
# typedef void ( * WGPUProcSurfaceCapabilitiesFreeMembers ) ( WGPUSurfaceCapabilities capabilities )
const WGPUProcSurfaceCapabilitiesFreeMembers = Ptr{Cvoid}
# typedef WGPUTextureView ( * WGPUProcTextureCreateView ) ( WGPUTexture texture , WGPU_NULLABLE WGPUTextureViewDescriptor const * descriptor )
const WGPUProcTextureCreateView = Ptr{Cvoid}
# typedef void ( * WGPUProcTextureDestroy ) ( WGPUTexture texture )
const WGPUProcTextureDestroy = Ptr{Cvoid}
# typedef uint32_t ( * WGPUProcTextureGetDepthOrArrayLayers ) ( WGPUTexture texture )
const WGPUProcTextureGetDepthOrArrayLayers = Ptr{Cvoid}
# typedef WGPUTextureDimension ( * WGPUProcTextureGetDimension ) ( WGPUTexture texture )
const WGPUProcTextureGetDimension = Ptr{Cvoid}
# typedef WGPUTextureFormat ( * WGPUProcTextureGetFormat ) ( WGPUTexture texture )
const WGPUProcTextureGetFormat = Ptr{Cvoid}
# typedef uint32_t ( * WGPUProcTextureGetHeight ) ( WGPUTexture texture )
const WGPUProcTextureGetHeight = Ptr{Cvoid}
# typedef uint32_t ( * WGPUProcTextureGetMipLevelCount ) ( WGPUTexture texture )
const WGPUProcTextureGetMipLevelCount = Ptr{Cvoid}
# typedef uint32_t ( * WGPUProcTextureGetSampleCount ) ( WGPUTexture texture )
const WGPUProcTextureGetSampleCount = Ptr{Cvoid}
# typedef WGPUTextureUsageFlags ( * WGPUProcTextureGetUsage ) ( WGPUTexture texture )
const WGPUProcTextureGetUsage = Ptr{Cvoid}
# typedef uint32_t ( * WGPUProcTextureGetWidth ) ( WGPUTexture texture )
const WGPUProcTextureGetWidth = Ptr{Cvoid}
# typedef void ( * WGPUProcTextureSetLabel ) ( WGPUTexture texture , char const * label )
const WGPUProcTextureSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcTextureReference ) ( WGPUTexture texture )
const WGPUProcTextureReference = Ptr{Cvoid}
# typedef void ( * WGPUProcTextureRelease ) ( WGPUTexture texture )
const WGPUProcTextureRelease = Ptr{Cvoid}
# typedef void ( * WGPUProcTextureViewSetLabel ) ( WGPUTextureView textureView , char const * label )
const WGPUProcTextureViewSetLabel = Ptr{Cvoid}
# typedef void ( * WGPUProcTextureViewReference ) ( WGPUTextureView textureView )
const WGPUProcTextureViewReference = Ptr{Cvoid}
# typedef void ( * WGPUProcTextureViewRelease ) ( WGPUTextureView textureView )
const WGPUProcTextureViewRelease = Ptr{Cvoid}
function wgpuCreateInstance(descriptor)
ccall((:wgpuCreateInstance, libWGPU), WGPUInstance, (Ptr{WGPUInstanceDescriptor},), descriptor)
end
function wgpuGetProcAddress(device, procName)
ccall((:wgpuGetProcAddress, libWGPU), WGPUProc, (WGPUDevice, Ptr{Cchar}), device, procName)
end
function wgpuAdapterEnumerateFeatures(adapter, features)
ccall((:wgpuAdapterEnumerateFeatures, libWGPU), Csize_t, (WGPUAdapter, Ptr{WGPUFeatureName}), adapter, features)
end
function wgpuAdapterGetLimits(adapter, limits)
ccall((:wgpuAdapterGetLimits, libWGPU), WGPUBool, (WGPUAdapter, Ptr{WGPUSupportedLimits}), adapter, limits)
end
function wgpuAdapterGetProperties(adapter, properties)
ccall((:wgpuAdapterGetProperties, libWGPU), Cvoid, (WGPUAdapter, Ptr{WGPUAdapterProperties}), adapter, properties)
end
function wgpuAdapterHasFeature(adapter, feature)
ccall((:wgpuAdapterHasFeature, libWGPU), WGPUBool, (WGPUAdapter, WGPUFeatureName), adapter, feature)
end
function wgpuAdapterRequestDevice(adapter, descriptor, callback, userdata)
ccall((:wgpuAdapterRequestDevice, libWGPU), Cvoid, (WGPUAdapter, Ptr{WGPUDeviceDescriptor}, WGPURequestDeviceCallback, Ptr{Cvoid}), adapter, descriptor, callback, userdata)
end
function wgpuAdapterReference(adapter)
ccall((:wgpuAdapterReference, libWGPU), Cvoid, (WGPUAdapter,), adapter)
end
function wgpuAdapterRelease(adapter)
ccall((:wgpuAdapterRelease, libWGPU), Cvoid, (WGPUAdapter,), adapter)
end
function wgpuBindGroupSetLabel(bindGroup, label)
ccall((:wgpuBindGroupSetLabel, libWGPU), Cvoid, (WGPUBindGroup, Ptr{Cchar}), bindGroup, label)
end
function wgpuBindGroupReference(bindGroup)
ccall((:wgpuBindGroupReference, libWGPU), Cvoid, (WGPUBindGroup,), bindGroup)
end
function wgpuBindGroupRelease(bindGroup)
ccall((:wgpuBindGroupRelease, libWGPU), Cvoid, (WGPUBindGroup,), bindGroup)
end
function wgpuBindGroupLayoutSetLabel(bindGroupLayout, label)
ccall((:wgpuBindGroupLayoutSetLabel, libWGPU), Cvoid, (WGPUBindGroupLayout, Ptr{Cchar}), bindGroupLayout, label)
end
function wgpuBindGroupLayoutReference(bindGroupLayout)
ccall((:wgpuBindGroupLayoutReference, libWGPU), Cvoid, (WGPUBindGroupLayout,), bindGroupLayout)
end
function wgpuBindGroupLayoutRelease(bindGroupLayout)
ccall((:wgpuBindGroupLayoutRelease, libWGPU), Cvoid, (WGPUBindGroupLayout,), bindGroupLayout)
end
function wgpuBufferDestroy(buffer)
ccall((:wgpuBufferDestroy, libWGPU), Cvoid, (WGPUBuffer,), buffer)
end
function wgpuBufferGetConstMappedRange(buffer, offset, size)
ccall((:wgpuBufferGetConstMappedRange, libWGPU), Ptr{Cvoid}, (WGPUBuffer, Csize_t, Csize_t), buffer, offset, size)
end
function wgpuBufferGetMapState(buffer)
ccall((:wgpuBufferGetMapState, libWGPU), WGPUBufferMapState, (WGPUBuffer,), buffer)
end
function wgpuBufferGetMappedRange(buffer, offset, size)
ccall((:wgpuBufferGetMappedRange, libWGPU), Ptr{Cvoid}, (WGPUBuffer, Csize_t, Csize_t), buffer, offset, size)
end
function wgpuBufferGetSize(buffer)
ccall((:wgpuBufferGetSize, libWGPU), UInt64, (WGPUBuffer,), buffer)
end
function wgpuBufferGetUsage(buffer)
ccall((:wgpuBufferGetUsage, libWGPU), WGPUBufferUsageFlags, (WGPUBuffer,), buffer)
end
function wgpuBufferMapAsync(buffer, mode, offset, size, callback, userdata)
ccall((:wgpuBufferMapAsync, libWGPU), Cvoid, (WGPUBuffer, WGPUMapModeFlags, Csize_t, Csize_t, WGPUBufferMapCallback, Ptr{Cvoid}), buffer, mode, offset, size, callback, userdata)
end
function wgpuBufferSetLabel(buffer, label)
ccall((:wgpuBufferSetLabel, libWGPU), Cvoid, (WGPUBuffer, Ptr{Cchar}), buffer, label)
end
function wgpuBufferUnmap(buffer)
ccall((:wgpuBufferUnmap, libWGPU), Cvoid, (WGPUBuffer,), buffer)
end
function wgpuBufferReference(buffer)
ccall((:wgpuBufferReference, libWGPU), Cvoid, (WGPUBuffer,), buffer)
end
function wgpuBufferRelease(buffer)
ccall((:wgpuBufferRelease, libWGPU), Cvoid, (WGPUBuffer,), buffer)
end
function wgpuCommandBufferSetLabel(commandBuffer, label)
ccall((:wgpuCommandBufferSetLabel, libWGPU), Cvoid, (WGPUCommandBuffer, Ptr{Cchar}), commandBuffer, label)
end
function wgpuCommandBufferReference(commandBuffer)
ccall((:wgpuCommandBufferReference, libWGPU), Cvoid, (WGPUCommandBuffer,), commandBuffer)
end
function wgpuCommandBufferRelease(commandBuffer)
ccall((:wgpuCommandBufferRelease, libWGPU), Cvoid, (WGPUCommandBuffer,), commandBuffer)
end
function wgpuCommandEncoderBeginComputePass(commandEncoder, descriptor)
ccall((:wgpuCommandEncoderBeginComputePass, libWGPU), WGPUComputePassEncoder, (WGPUCommandEncoder, Ptr{WGPUComputePassDescriptor}), commandEncoder, descriptor)
end
function wgpuCommandEncoderBeginRenderPass(commandEncoder, descriptor)
ccall((:wgpuCommandEncoderBeginRenderPass, libWGPU), WGPURenderPassEncoder, (WGPUCommandEncoder, Ptr{WGPURenderPassDescriptor}), commandEncoder, descriptor)
end
function wgpuCommandEncoderClearBuffer(commandEncoder, buffer, offset, size)
ccall((:wgpuCommandEncoderClearBuffer, libWGPU), Cvoid, (WGPUCommandEncoder, WGPUBuffer, UInt64, UInt64), commandEncoder, buffer, offset, size)
end
function wgpuCommandEncoderCopyBufferToBuffer(commandEncoder, source, sourceOffset, destination, destinationOffset, size)
ccall((:wgpuCommandEncoderCopyBufferToBuffer, libWGPU), Cvoid, (WGPUCommandEncoder, WGPUBuffer, UInt64, WGPUBuffer, UInt64, UInt64), commandEncoder, source, sourceOffset, destination, destinationOffset, size)
end
function wgpuCommandEncoderCopyBufferToTexture(commandEncoder, source, destination, copySize)
ccall((:wgpuCommandEncoderCopyBufferToTexture, libWGPU), Cvoid, (WGPUCommandEncoder, Ptr{WGPUImageCopyBuffer}, Ptr{WGPUImageCopyTexture}, Ptr{WGPUExtent3D}), commandEncoder, source, destination, copySize)
end
function wgpuCommandEncoderCopyTextureToBuffer(commandEncoder, source, destination, copySize)
ccall((:wgpuCommandEncoderCopyTextureToBuffer, libWGPU), Cvoid, (WGPUCommandEncoder, Ptr{WGPUImageCopyTexture}, Ptr{WGPUImageCopyBuffer}, Ptr{WGPUExtent3D}), commandEncoder, source, destination, copySize)
end
function wgpuCommandEncoderCopyTextureToTexture(commandEncoder, source, destination, copySize)
ccall((:wgpuCommandEncoderCopyTextureToTexture, libWGPU), Cvoid, (WGPUCommandEncoder, Ptr{WGPUImageCopyTexture}, Ptr{WGPUImageCopyTexture}, Ptr{WGPUExtent3D}), commandEncoder, source, destination, copySize)
end
function wgpuCommandEncoderFinish(commandEncoder, descriptor)
ccall((:wgpuCommandEncoderFinish, libWGPU), WGPUCommandBuffer, (WGPUCommandEncoder, Ptr{WGPUCommandBufferDescriptor}), commandEncoder, descriptor)
end
function wgpuCommandEncoderInsertDebugMarker(commandEncoder, markerLabel)
ccall((:wgpuCommandEncoderInsertDebugMarker, libWGPU), Cvoid, (WGPUCommandEncoder, Ptr{Cchar}), commandEncoder, markerLabel)
end
function wgpuCommandEncoderPopDebugGroup(commandEncoder)
ccall((:wgpuCommandEncoderPopDebugGroup, libWGPU), Cvoid, (WGPUCommandEncoder,), commandEncoder)
end
function wgpuCommandEncoderPushDebugGroup(commandEncoder, groupLabel)
ccall((:wgpuCommandEncoderPushDebugGroup, libWGPU), Cvoid, (WGPUCommandEncoder, Ptr{Cchar}), commandEncoder, groupLabel)
end
function wgpuCommandEncoderResolveQuerySet(commandEncoder, querySet, firstQuery, queryCount, destination, destinationOffset)
ccall((:wgpuCommandEncoderResolveQuerySet, libWGPU), Cvoid, (WGPUCommandEncoder, WGPUQuerySet, UInt32, UInt32, WGPUBuffer, UInt64), commandEncoder, querySet, firstQuery, queryCount, destination, destinationOffset)
end
function wgpuCommandEncoderSetLabel(commandEncoder, label)
ccall((:wgpuCommandEncoderSetLabel, libWGPU), Cvoid, (WGPUCommandEncoder, Ptr{Cchar}), commandEncoder, label)
end
function wgpuCommandEncoderWriteTimestamp(commandEncoder, querySet, queryIndex)
ccall((:wgpuCommandEncoderWriteTimestamp, libWGPU), Cvoid, (WGPUCommandEncoder, WGPUQuerySet, UInt32), commandEncoder, querySet, queryIndex)
end
function wgpuCommandEncoderReference(commandEncoder)
ccall((:wgpuCommandEncoderReference, libWGPU), Cvoid, (WGPUCommandEncoder,), commandEncoder)
end
function wgpuCommandEncoderRelease(commandEncoder)
ccall((:wgpuCommandEncoderRelease, libWGPU), Cvoid, (WGPUCommandEncoder,), commandEncoder)
end
function wgpuComputePassEncoderDispatchWorkgroups(computePassEncoder, workgroupCountX, workgroupCountY, workgroupCountZ)
ccall((:wgpuComputePassEncoderDispatchWorkgroups, libWGPU), Cvoid, (WGPUComputePassEncoder, UInt32, UInt32, UInt32), computePassEncoder, workgroupCountX, workgroupCountY, workgroupCountZ)
end
function wgpuComputePassEncoderDispatchWorkgroupsIndirect(computePassEncoder, indirectBuffer, indirectOffset)
ccall((:wgpuComputePassEncoderDispatchWorkgroupsIndirect, libWGPU), Cvoid, (WGPUComputePassEncoder, WGPUBuffer, UInt64), computePassEncoder, indirectBuffer, indirectOffset)
end
function wgpuComputePassEncoderEnd(computePassEncoder)
ccall((:wgpuComputePassEncoderEnd, libWGPU), Cvoid, (WGPUComputePassEncoder,), computePassEncoder)
end
function wgpuComputePassEncoderInsertDebugMarker(computePassEncoder, markerLabel)
ccall((:wgpuComputePassEncoderInsertDebugMarker, libWGPU), Cvoid, (WGPUComputePassEncoder, Ptr{Cchar}), computePassEncoder, markerLabel)
end
function wgpuComputePassEncoderPopDebugGroup(computePassEncoder)
ccall((:wgpuComputePassEncoderPopDebugGroup, libWGPU), Cvoid, (WGPUComputePassEncoder,), computePassEncoder)
end
function wgpuComputePassEncoderPushDebugGroup(computePassEncoder, groupLabel)
ccall((:wgpuComputePassEncoderPushDebugGroup, libWGPU), Cvoid, (WGPUComputePassEncoder, Ptr{Cchar}), computePassEncoder, groupLabel)
end
function wgpuComputePassEncoderSetBindGroup(computePassEncoder, groupIndex, group, dynamicOffsetCount, dynamicOffsets)
ccall((:wgpuComputePassEncoderSetBindGroup, libWGPU), Cvoid, (WGPUComputePassEncoder, UInt32, WGPUBindGroup, Csize_t, Ptr{UInt32}), computePassEncoder, groupIndex, group, dynamicOffsetCount, dynamicOffsets)
end
function wgpuComputePassEncoderSetLabel(computePassEncoder, label)
ccall((:wgpuComputePassEncoderSetLabel, libWGPU), Cvoid, (WGPUComputePassEncoder, Ptr{Cchar}), computePassEncoder, label)
end
function wgpuComputePassEncoderSetPipeline(computePassEncoder, pipeline)
ccall((:wgpuComputePassEncoderSetPipeline, libWGPU), Cvoid, (WGPUComputePassEncoder, WGPUComputePipeline), computePassEncoder, pipeline)
end
function wgpuComputePassEncoderReference(computePassEncoder)
ccall((:wgpuComputePassEncoderReference, libWGPU), Cvoid, (WGPUComputePassEncoder,), computePassEncoder)
end
function wgpuComputePassEncoderRelease(computePassEncoder)
ccall((:wgpuComputePassEncoderRelease, libWGPU), Cvoid, (WGPUComputePassEncoder,), computePassEncoder)
end
function wgpuComputePipelineGetBindGroupLayout(computePipeline, groupIndex)
ccall((:wgpuComputePipelineGetBindGroupLayout, libWGPU), WGPUBindGroupLayout, (WGPUComputePipeline, UInt32), computePipeline, groupIndex)
end
function wgpuComputePipelineSetLabel(computePipeline, label)
ccall((:wgpuComputePipelineSetLabel, libWGPU), Cvoid, (WGPUComputePipeline, Ptr{Cchar}), computePipeline, label)
end
function wgpuComputePipelineReference(computePipeline)
ccall((:wgpuComputePipelineReference, libWGPU), Cvoid, (WGPUComputePipeline,), computePipeline)
end
function wgpuComputePipelineRelease(computePipeline)
ccall((:wgpuComputePipelineRelease, libWGPU), Cvoid, (WGPUComputePipeline,), computePipeline)
end
function wgpuDeviceCreateBindGroup(device, descriptor)
ccall((:wgpuDeviceCreateBindGroup, libWGPU), WGPUBindGroup, (WGPUDevice, Ptr{WGPUBindGroupDescriptor}), device, descriptor)
end
function wgpuDeviceCreateBindGroupLayout(device, descriptor)
ccall((:wgpuDeviceCreateBindGroupLayout, libWGPU), WGPUBindGroupLayout, (WGPUDevice, Ptr{WGPUBindGroupLayoutDescriptor}), device, descriptor)
end
function wgpuDeviceCreateBuffer(device, descriptor)
ccall((:wgpuDeviceCreateBuffer, libWGPU), WGPUBuffer, (WGPUDevice, Ptr{WGPUBufferDescriptor}), device, descriptor)
end
function wgpuDeviceCreateCommandEncoder(device, descriptor)
ccall((:wgpuDeviceCreateCommandEncoder, libWGPU), WGPUCommandEncoder, (WGPUDevice, Ptr{WGPUCommandEncoderDescriptor}), device, descriptor)
end
function wgpuDeviceCreateComputePipeline(device, descriptor)
ccall((:wgpuDeviceCreateComputePipeline, libWGPU), WGPUComputePipeline, (WGPUDevice, Ptr{WGPUComputePipelineDescriptor}), device, descriptor)
end
function wgpuDeviceCreateComputePipelineAsync(device, descriptor, callback, userdata)
ccall((:wgpuDeviceCreateComputePipelineAsync, libWGPU), Cvoid, (WGPUDevice, Ptr{WGPUComputePipelineDescriptor}, WGPUCreateComputePipelineAsyncCallback, Ptr{Cvoid}), device, descriptor, callback, userdata)
end
function wgpuDeviceCreatePipelineLayout(device, descriptor)
ccall((:wgpuDeviceCreatePipelineLayout, libWGPU), WGPUPipelineLayout, (WGPUDevice, Ptr{WGPUPipelineLayoutDescriptor}), device, descriptor)
end
function wgpuDeviceCreateQuerySet(device, descriptor)
ccall((:wgpuDeviceCreateQuerySet, libWGPU), WGPUQuerySet, (WGPUDevice, Ptr{WGPUQuerySetDescriptor}), device, descriptor)
end
function wgpuDeviceCreateRenderBundleEncoder(device, descriptor)
ccall((:wgpuDeviceCreateRenderBundleEncoder, libWGPU), WGPURenderBundleEncoder, (WGPUDevice, Ptr{WGPURenderBundleEncoderDescriptor}), device, descriptor)
end
function wgpuDeviceCreateRenderPipeline(device, descriptor)
ccall((:wgpuDeviceCreateRenderPipeline, libWGPU), WGPURenderPipeline, (WGPUDevice, Ptr{WGPURenderPipelineDescriptor}), device, descriptor)
end
function wgpuDeviceCreateRenderPipelineAsync(device, descriptor, callback, userdata)
ccall((:wgpuDeviceCreateRenderPipelineAsync, libWGPU), Cvoid, (WGPUDevice, Ptr{WGPURenderPipelineDescriptor}, WGPUCreateRenderPipelineAsyncCallback, Ptr{Cvoid}), device, descriptor, callback, userdata)
end
function wgpuDeviceCreateSampler(device, descriptor)
ccall((:wgpuDeviceCreateSampler, libWGPU), WGPUSampler, (WGPUDevice, Ptr{WGPUSamplerDescriptor}), device, descriptor)
end
function wgpuDeviceCreateShaderModule(device, descriptor)
ccall((:wgpuDeviceCreateShaderModule, libWGPU), WGPUShaderModule, (WGPUDevice, Ptr{WGPUShaderModuleDescriptor}), device, descriptor)
end
function wgpuDeviceCreateTexture(device, descriptor)
ccall((:wgpuDeviceCreateTexture, libWGPU), WGPUTexture, (WGPUDevice, Ptr{WGPUTextureDescriptor}), device, descriptor)
end
function wgpuDeviceDestroy(device)
ccall((:wgpuDeviceDestroy, libWGPU), Cvoid, (WGPUDevice,), device)
end
function wgpuDeviceEnumerateFeatures(device, features)
ccall((:wgpuDeviceEnumerateFeatures, libWGPU), Csize_t, (WGPUDevice, Ptr{WGPUFeatureName}), device, features)
end
function wgpuDeviceGetLimits(device, limits)
ccall((:wgpuDeviceGetLimits, libWGPU), WGPUBool, (WGPUDevice, Ptr{WGPUSupportedLimits}), device, limits)
end
function wgpuDeviceGetQueue(device)
ccall((:wgpuDeviceGetQueue, libWGPU), WGPUQueue, (WGPUDevice,), device)
end
function wgpuDeviceHasFeature(device, feature)
ccall((:wgpuDeviceHasFeature, libWGPU), WGPUBool, (WGPUDevice, WGPUFeatureName), device, feature)
end
function wgpuDevicePopErrorScope(device, callback, userdata)
ccall((:wgpuDevicePopErrorScope, libWGPU), Cvoid, (WGPUDevice, WGPUErrorCallback, Ptr{Cvoid}), device, callback, userdata)
end
function wgpuDevicePushErrorScope(device, filter)
ccall((:wgpuDevicePushErrorScope, libWGPU), Cvoid, (WGPUDevice, WGPUErrorFilter), device, filter)
end
function wgpuDeviceSetLabel(device, label)
ccall((:wgpuDeviceSetLabel, libWGPU), Cvoid, (WGPUDevice, Ptr{Cchar}), device, label)
end
function wgpuDeviceSetUncapturedErrorCallback(device, callback, userdata)
ccall((:wgpuDeviceSetUncapturedErrorCallback, libWGPU), Cvoid, (WGPUDevice, WGPUErrorCallback, Ptr{Cvoid}), device, callback, userdata)
end
function wgpuDeviceReference(device)
ccall((:wgpuDeviceReference, libWGPU), Cvoid, (WGPUDevice,), device)
end
function wgpuDeviceRelease(device)
ccall((:wgpuDeviceRelease, libWGPU), Cvoid, (WGPUDevice,), device)
end
function wgpuInstanceCreateSurface(instance, descriptor)
ccall((:wgpuInstanceCreateSurface, libWGPU), WGPUSurface, (WGPUInstance, Ptr{WGPUSurfaceDescriptor}), instance, descriptor)
end
function wgpuInstanceProcessEvents(instance)
ccall((:wgpuInstanceProcessEvents, libWGPU), Cvoid, (WGPUInstance,), instance)
end
function wgpuInstanceRequestAdapter(instance, options, callback, userdata)
ccall((:wgpuInstanceRequestAdapter, libWGPU), Cvoid, (WGPUInstance, Ptr{WGPURequestAdapterOptions}, WGPURequestAdapterCallback, Ptr{Cvoid}), instance, options, callback, userdata)
end
function wgpuInstanceReference(instance)
ccall((:wgpuInstanceReference, libWGPU), Cvoid, (WGPUInstance,), instance)
end
function wgpuInstanceRelease(instance)
ccall((:wgpuInstanceRelease, libWGPU), Cvoid, (WGPUInstance,), instance)
end
function wgpuPipelineLayoutSetLabel(pipelineLayout, label)
ccall((:wgpuPipelineLayoutSetLabel, libWGPU), Cvoid, (WGPUPipelineLayout, Ptr{Cchar}), pipelineLayout, label)
end
function wgpuPipelineLayoutReference(pipelineLayout)
ccall((:wgpuPipelineLayoutReference, libWGPU), Cvoid, (WGPUPipelineLayout,), pipelineLayout)
end
function wgpuPipelineLayoutRelease(pipelineLayout)
ccall((:wgpuPipelineLayoutRelease, libWGPU), Cvoid, (WGPUPipelineLayout,), pipelineLayout)
end
function wgpuQuerySetDestroy(querySet)
ccall((:wgpuQuerySetDestroy, libWGPU), Cvoid, (WGPUQuerySet,), querySet)
end
function wgpuQuerySetGetCount(querySet)
ccall((:wgpuQuerySetGetCount, libWGPU), UInt32, (WGPUQuerySet,), querySet)
end
function wgpuQuerySetGetType(querySet)
ccall((:wgpuQuerySetGetType, libWGPU), WGPUQueryType, (WGPUQuerySet,), querySet)
end
function wgpuQuerySetSetLabel(querySet, label)
ccall((:wgpuQuerySetSetLabel, libWGPU), Cvoid, (WGPUQuerySet, Ptr{Cchar}), querySet, label)
end
function wgpuQuerySetReference(querySet)
ccall((:wgpuQuerySetReference, libWGPU), Cvoid, (WGPUQuerySet,), querySet)
end
function wgpuQuerySetRelease(querySet)
ccall((:wgpuQuerySetRelease, libWGPU), Cvoid, (WGPUQuerySet,), querySet)
end
function wgpuQueueOnSubmittedWorkDone(queue, callback, userdata)
ccall((:wgpuQueueOnSubmittedWorkDone, libWGPU), Cvoid, (WGPUQueue, WGPUQueueWorkDoneCallback, Ptr{Cvoid}), queue, callback, userdata)
end
function wgpuQueueSetLabel(queue, label)
ccall((:wgpuQueueSetLabel, libWGPU), Cvoid, (WGPUQueue, Ptr{Cchar}), queue, label)
end
function wgpuQueueSubmit(queue, commandCount, commands)
ccall((:wgpuQueueSubmit, libWGPU), Cvoid, (WGPUQueue, Csize_t, Ptr{WGPUCommandBuffer}), queue, commandCount, commands)
end
function wgpuQueueWriteBuffer(queue, buffer, bufferOffset, data, size)
ccall((:wgpuQueueWriteBuffer, libWGPU), Cvoid, (WGPUQueue, WGPUBuffer, UInt64, Ptr{Cvoid}, Csize_t), queue, buffer, bufferOffset, data, size)
end
function wgpuQueueWriteTexture(queue, destination, data, dataSize, dataLayout, writeSize)
ccall((:wgpuQueueWriteTexture, libWGPU), Cvoid, (WGPUQueue, Ptr{WGPUImageCopyTexture}, Ptr{Cvoid}, Csize_t, Ptr{WGPUTextureDataLayout}, Ptr{WGPUExtent3D}), queue, destination, data, dataSize, dataLayout, writeSize)
end
function wgpuQueueReference(queue)
ccall((:wgpuQueueReference, libWGPU), Cvoid, (WGPUQueue,), queue)
end
function wgpuQueueRelease(queue)
ccall((:wgpuQueueRelease, libWGPU), Cvoid, (WGPUQueue,), queue)
end
function wgpuRenderBundleSetLabel(renderBundle, label)
ccall((:wgpuRenderBundleSetLabel, libWGPU), Cvoid, (WGPURenderBundle, Ptr{Cchar}), renderBundle, label)
end
function wgpuRenderBundleReference(renderBundle)
ccall((:wgpuRenderBundleReference, libWGPU), Cvoid, (WGPURenderBundle,), renderBundle)
end
function wgpuRenderBundleRelease(renderBundle)
ccall((:wgpuRenderBundleRelease, libWGPU), Cvoid, (WGPURenderBundle,), renderBundle)
end
function wgpuRenderBundleEncoderDraw(renderBundleEncoder, vertexCount, instanceCount, firstVertex, firstInstance)
ccall((:wgpuRenderBundleEncoderDraw, libWGPU), Cvoid, (WGPURenderBundleEncoder, UInt32, UInt32, UInt32, UInt32), renderBundleEncoder, vertexCount, instanceCount, firstVertex, firstInstance)
end
function wgpuRenderBundleEncoderDrawIndexed(renderBundleEncoder, indexCount, instanceCount, firstIndex, baseVertex, firstInstance)
ccall((:wgpuRenderBundleEncoderDrawIndexed, libWGPU), Cvoid, (WGPURenderBundleEncoder, UInt32, UInt32, UInt32, Int32, UInt32), renderBundleEncoder, indexCount, instanceCount, firstIndex, baseVertex, firstInstance)
end
function wgpuRenderBundleEncoderDrawIndexedIndirect(renderBundleEncoder, indirectBuffer, indirectOffset)
ccall((:wgpuRenderBundleEncoderDrawIndexedIndirect, libWGPU), Cvoid, (WGPURenderBundleEncoder, WGPUBuffer, UInt64), renderBundleEncoder, indirectBuffer, indirectOffset)
end
function wgpuRenderBundleEncoderDrawIndirect(renderBundleEncoder, indirectBuffer, indirectOffset)
ccall((:wgpuRenderBundleEncoderDrawIndirect, libWGPU), Cvoid, (WGPURenderBundleEncoder, WGPUBuffer, UInt64), renderBundleEncoder, indirectBuffer, indirectOffset)
end
function wgpuRenderBundleEncoderFinish(renderBundleEncoder, descriptor)
ccall((:wgpuRenderBundleEncoderFinish, libWGPU), WGPURenderBundle, (WGPURenderBundleEncoder, Ptr{WGPURenderBundleDescriptor}), renderBundleEncoder, descriptor)
end
function wgpuRenderBundleEncoderInsertDebugMarker(renderBundleEncoder, markerLabel)
ccall((:wgpuRenderBundleEncoderInsertDebugMarker, libWGPU), Cvoid, (WGPURenderBundleEncoder, Ptr{Cchar}), renderBundleEncoder, markerLabel)
end
function wgpuRenderBundleEncoderPopDebugGroup(renderBundleEncoder)
ccall((:wgpuRenderBundleEncoderPopDebugGroup, libWGPU), Cvoid, (WGPURenderBundleEncoder,), renderBundleEncoder)
end
function wgpuRenderBundleEncoderPushDebugGroup(renderBundleEncoder, groupLabel)
ccall((:wgpuRenderBundleEncoderPushDebugGroup, libWGPU), Cvoid, (WGPURenderBundleEncoder, Ptr{Cchar}), renderBundleEncoder, groupLabel)
end
function wgpuRenderBundleEncoderSetBindGroup(renderBundleEncoder, groupIndex, group, dynamicOffsetCount, dynamicOffsets)
ccall((:wgpuRenderBundleEncoderSetBindGroup, libWGPU), Cvoid, (WGPURenderBundleEncoder, UInt32, WGPUBindGroup, Csize_t, Ptr{UInt32}), renderBundleEncoder, groupIndex, group, dynamicOffsetCount, dynamicOffsets)
end
function wgpuRenderBundleEncoderSetIndexBuffer(renderBundleEncoder, buffer, format, offset, size)
ccall((:wgpuRenderBundleEncoderSetIndexBuffer, libWGPU), Cvoid, (WGPURenderBundleEncoder, WGPUBuffer, WGPUIndexFormat, UInt64, UInt64), renderBundleEncoder, buffer, format, offset, size)
end
function wgpuRenderBundleEncoderSetLabel(renderBundleEncoder, label)
ccall((:wgpuRenderBundleEncoderSetLabel, libWGPU), Cvoid, (WGPURenderBundleEncoder, Ptr{Cchar}), renderBundleEncoder, label)
end
function wgpuRenderBundleEncoderSetPipeline(renderBundleEncoder, pipeline)
ccall((:wgpuRenderBundleEncoderSetPipeline, libWGPU), Cvoid, (WGPURenderBundleEncoder, WGPURenderPipeline), renderBundleEncoder, pipeline)
end
function wgpuRenderBundleEncoderSetVertexBuffer(renderBundleEncoder, slot, buffer, offset, size)
ccall((:wgpuRenderBundleEncoderSetVertexBuffer, libWGPU), Cvoid, (WGPURenderBundleEncoder, UInt32, WGPUBuffer, UInt64, UInt64), renderBundleEncoder, slot, buffer, offset, size)
end
function wgpuRenderBundleEncoderReference(renderBundleEncoder)
ccall((:wgpuRenderBundleEncoderReference, libWGPU), Cvoid, (WGPURenderBundleEncoder,), renderBundleEncoder)
end
function wgpuRenderBundleEncoderRelease(renderBundleEncoder)
ccall((:wgpuRenderBundleEncoderRelease, libWGPU), Cvoid, (WGPURenderBundleEncoder,), renderBundleEncoder)
end
function wgpuRenderPassEncoderBeginOcclusionQuery(renderPassEncoder, queryIndex)
ccall((:wgpuRenderPassEncoderBeginOcclusionQuery, libWGPU), Cvoid, (WGPURenderPassEncoder, UInt32), renderPassEncoder, queryIndex)
end
function wgpuRenderPassEncoderDraw(renderPassEncoder, vertexCount, instanceCount, firstVertex, firstInstance)
ccall((:wgpuRenderPassEncoderDraw, libWGPU), Cvoid, (WGPURenderPassEncoder, UInt32, UInt32, UInt32, UInt32), renderPassEncoder, vertexCount, instanceCount, firstVertex, firstInstance)
end
function wgpuRenderPassEncoderDrawIndexed(renderPassEncoder, indexCount, instanceCount, firstIndex, baseVertex, firstInstance)
ccall((:wgpuRenderPassEncoderDrawIndexed, libWGPU), Cvoid, (WGPURenderPassEncoder, UInt32, UInt32, UInt32, Int32, UInt32), renderPassEncoder, indexCount, instanceCount, firstIndex, baseVertex, firstInstance)
end
function wgpuRenderPassEncoderDrawIndexedIndirect(renderPassEncoder, indirectBuffer, indirectOffset)
ccall((:wgpuRenderPassEncoderDrawIndexedIndirect, libWGPU), Cvoid, (WGPURenderPassEncoder, WGPUBuffer, UInt64), renderPassEncoder, indirectBuffer, indirectOffset)
end
function wgpuRenderPassEncoderDrawIndirect(renderPassEncoder, indirectBuffer, indirectOffset)
ccall((:wgpuRenderPassEncoderDrawIndirect, libWGPU), Cvoid, (WGPURenderPassEncoder, WGPUBuffer, UInt64), renderPassEncoder, indirectBuffer, indirectOffset)
end
function wgpuRenderPassEncoderEnd(renderPassEncoder)
ccall((:wgpuRenderPassEncoderEnd, libWGPU), Cvoid, (WGPURenderPassEncoder,), renderPassEncoder)
end
function wgpuRenderPassEncoderEndOcclusionQuery(renderPassEncoder)
ccall((:wgpuRenderPassEncoderEndOcclusionQuery, libWGPU), Cvoid, (WGPURenderPassEncoder,), renderPassEncoder)
end
function wgpuRenderPassEncoderExecuteBundles(renderPassEncoder, bundleCount, bundles)
ccall((:wgpuRenderPassEncoderExecuteBundles, libWGPU), Cvoid, (WGPURenderPassEncoder, Csize_t, Ptr{WGPURenderBundle}), renderPassEncoder, bundleCount, bundles)
end
function wgpuRenderPassEncoderInsertDebugMarker(renderPassEncoder, markerLabel)
ccall((:wgpuRenderPassEncoderInsertDebugMarker, libWGPU), Cvoid, (WGPURenderPassEncoder, Ptr{Cchar}), renderPassEncoder, markerLabel)
end
function wgpuRenderPassEncoderPopDebugGroup(renderPassEncoder)
ccall((:wgpuRenderPassEncoderPopDebugGroup, libWGPU), Cvoid, (WGPURenderPassEncoder,), renderPassEncoder)
end
function wgpuRenderPassEncoderPushDebugGroup(renderPassEncoder, groupLabel)
ccall((:wgpuRenderPassEncoderPushDebugGroup, libWGPU), Cvoid, (WGPURenderPassEncoder, Ptr{Cchar}), renderPassEncoder, groupLabel)
end
function wgpuRenderPassEncoderSetBindGroup(renderPassEncoder, groupIndex, group, dynamicOffsetCount, dynamicOffsets)
ccall((:wgpuRenderPassEncoderSetBindGroup, libWGPU), Cvoid, (WGPURenderPassEncoder, UInt32, WGPUBindGroup, Csize_t, Ptr{UInt32}), renderPassEncoder, groupIndex, group, dynamicOffsetCount, dynamicOffsets)
end
function wgpuRenderPassEncoderSetBlendConstant(renderPassEncoder, color)
ccall((:wgpuRenderPassEncoderSetBlendConstant, libWGPU), Cvoid, (WGPURenderPassEncoder, Ptr{WGPUColor}), renderPassEncoder, color)
end
function wgpuRenderPassEncoderSetIndexBuffer(renderPassEncoder, buffer, format, offset, size)
ccall((:wgpuRenderPassEncoderSetIndexBuffer, libWGPU), Cvoid, (WGPURenderPassEncoder, WGPUBuffer, WGPUIndexFormat, UInt64, UInt64), renderPassEncoder, buffer, format, offset, size)
end
function wgpuRenderPassEncoderSetLabel(renderPassEncoder, label)
ccall((:wgpuRenderPassEncoderSetLabel, libWGPU), Cvoid, (WGPURenderPassEncoder, Ptr{Cchar}), renderPassEncoder, label)
end
function wgpuRenderPassEncoderSetPipeline(renderPassEncoder, pipeline)
ccall((:wgpuRenderPassEncoderSetPipeline, libWGPU), Cvoid, (WGPURenderPassEncoder, WGPURenderPipeline), renderPassEncoder, pipeline)
end
function wgpuRenderPassEncoderSetScissorRect(renderPassEncoder, x, y, width, height)
ccall((:wgpuRenderPassEncoderSetScissorRect, libWGPU), Cvoid, (WGPURenderPassEncoder, UInt32, UInt32, UInt32, UInt32), renderPassEncoder, x, y, width, height)
end
function wgpuRenderPassEncoderSetStencilReference(renderPassEncoder, reference)
ccall((:wgpuRenderPassEncoderSetStencilReference, libWGPU), Cvoid, (WGPURenderPassEncoder, UInt32), renderPassEncoder, reference)
end
function wgpuRenderPassEncoderSetVertexBuffer(renderPassEncoder, slot, buffer, offset, size)
ccall((:wgpuRenderPassEncoderSetVertexBuffer, libWGPU), Cvoid, (WGPURenderPassEncoder, UInt32, WGPUBuffer, UInt64, UInt64), renderPassEncoder, slot, buffer, offset, size)
end
function wgpuRenderPassEncoderSetViewport(renderPassEncoder, x, y, width, height, minDepth, maxDepth)
ccall((:wgpuRenderPassEncoderSetViewport, libWGPU), Cvoid, (WGPURenderPassEncoder, Cfloat, Cfloat, Cfloat, Cfloat, Cfloat, Cfloat), renderPassEncoder, x, y, width, height, minDepth, maxDepth)
end
function wgpuRenderPassEncoderReference(renderPassEncoder)
ccall((:wgpuRenderPassEncoderReference, libWGPU), Cvoid, (WGPURenderPassEncoder,), renderPassEncoder)
end
function wgpuRenderPassEncoderRelease(renderPassEncoder)
ccall((:wgpuRenderPassEncoderRelease, libWGPU), Cvoid, (WGPURenderPassEncoder,), renderPassEncoder)
end
function wgpuRenderPipelineGetBindGroupLayout(renderPipeline, groupIndex)
ccall((:wgpuRenderPipelineGetBindGroupLayout, libWGPU), WGPUBindGroupLayout, (WGPURenderPipeline, UInt32), renderPipeline, groupIndex)
end
function wgpuRenderPipelineSetLabel(renderPipeline, label)
ccall((:wgpuRenderPipelineSetLabel, libWGPU), Cvoid, (WGPURenderPipeline, Ptr{Cchar}), renderPipeline, label)
end
function wgpuRenderPipelineReference(renderPipeline)
ccall((:wgpuRenderPipelineReference, libWGPU), Cvoid, (WGPURenderPipeline,), renderPipeline)
end
function wgpuRenderPipelineRelease(renderPipeline)
ccall((:wgpuRenderPipelineRelease, libWGPU), Cvoid, (WGPURenderPipeline,), renderPipeline)
end
function wgpuSamplerSetLabel(sampler, label)
ccall((:wgpuSamplerSetLabel, libWGPU), Cvoid, (WGPUSampler, Ptr{Cchar}), sampler, label)
end
function wgpuSamplerReference(sampler)
ccall((:wgpuSamplerReference, libWGPU), Cvoid, (WGPUSampler,), sampler)
end
function wgpuSamplerRelease(sampler)
ccall((:wgpuSamplerRelease, libWGPU), Cvoid, (WGPUSampler,), sampler)
end
function wgpuShaderModuleGetCompilationInfo(shaderModule, callback, userdata)
ccall((:wgpuShaderModuleGetCompilationInfo, libWGPU), Cvoid, (WGPUShaderModule, WGPUCompilationInfoCallback, Ptr{Cvoid}), shaderModule, callback, userdata)
end
function wgpuShaderModuleSetLabel(shaderModule, label)
ccall((:wgpuShaderModuleSetLabel, libWGPU), Cvoid, (WGPUShaderModule, Ptr{Cchar}), shaderModule, label)
end
function wgpuShaderModuleReference(shaderModule)
ccall((:wgpuShaderModuleReference, libWGPU), Cvoid, (WGPUShaderModule,), shaderModule)
end
function wgpuShaderModuleRelease(shaderModule)
ccall((:wgpuShaderModuleRelease, libWGPU), Cvoid, (WGPUShaderModule,), shaderModule)
end
function wgpuSurfaceConfigure(surface, config)
ccall((:wgpuSurfaceConfigure, libWGPU), Cvoid, (WGPUSurface, Ptr{WGPUSurfaceConfiguration}), surface, config)
end
function wgpuSurfaceGetCapabilities(surface, adapter, capabilities)
ccall((:wgpuSurfaceGetCapabilities, libWGPU), Cvoid, (WGPUSurface, WGPUAdapter, Ptr{WGPUSurfaceCapabilities}), surface, adapter, capabilities)
end
function wgpuSurfaceGetCurrentTexture(surface, surfaceTexture)
ccall((:wgpuSurfaceGetCurrentTexture, libWGPU), Cvoid, (WGPUSurface, Ptr{WGPUSurfaceTexture}), surface, surfaceTexture)
end
function wgpuSurfaceGetPreferredFormat(surface, adapter)
ccall((:wgpuSurfaceGetPreferredFormat, libWGPU), WGPUTextureFormat, (WGPUSurface, WGPUAdapter), surface, adapter)
end
function wgpuSurfacePresent(surface)
ccall((:wgpuSurfacePresent, libWGPU), Cvoid, (WGPUSurface,), surface)
end
function wgpuSurfaceUnconfigure(surface)
ccall((:wgpuSurfaceUnconfigure, libWGPU), Cvoid, (WGPUSurface,), surface)
end
function wgpuSurfaceReference(surface)
ccall((:wgpuSurfaceReference, libWGPU), Cvoid, (WGPUSurface,), surface)
end
function wgpuSurfaceRelease(surface)
ccall((:wgpuSurfaceRelease, libWGPU), Cvoid, (WGPUSurface,), surface)
end
function wgpuSurfaceCapabilitiesFreeMembers(capabilities)
ccall((:wgpuSurfaceCapabilitiesFreeMembers, libWGPU), Cvoid, (WGPUSurfaceCapabilities,), capabilities)
end
function wgpuTextureCreateView(texture, descriptor)
ccall((:wgpuTextureCreateView, libWGPU), WGPUTextureView, (WGPUTexture, Ptr{WGPUTextureViewDescriptor}), texture, descriptor)
end
function wgpuTextureDestroy(texture)
ccall((:wgpuTextureDestroy, libWGPU), Cvoid, (WGPUTexture,), texture)
end
function wgpuTextureGetDepthOrArrayLayers(texture)
ccall((:wgpuTextureGetDepthOrArrayLayers, libWGPU), UInt32, (WGPUTexture,), texture)
end
function wgpuTextureGetDimension(texture)
ccall((:wgpuTextureGetDimension, libWGPU), WGPUTextureDimension, (WGPUTexture,), texture)
end
function wgpuTextureGetFormat(texture)
ccall((:wgpuTextureGetFormat, libWGPU), WGPUTextureFormat, (WGPUTexture,), texture)
end
function wgpuTextureGetHeight(texture)
ccall((:wgpuTextureGetHeight, libWGPU), UInt32, (WGPUTexture,), texture)
end
function wgpuTextureGetMipLevelCount(texture)
ccall((:wgpuTextureGetMipLevelCount, libWGPU), UInt32, (WGPUTexture,), texture)
end
function wgpuTextureGetSampleCount(texture)
ccall((:wgpuTextureGetSampleCount, libWGPU), UInt32, (WGPUTexture,), texture)
end
function wgpuTextureGetUsage(texture)
ccall((:wgpuTextureGetUsage, libWGPU), WGPUTextureUsageFlags, (WGPUTexture,), texture)
end
function wgpuTextureGetWidth(texture)
ccall((:wgpuTextureGetWidth, libWGPU), UInt32, (WGPUTexture,), texture)
end
function wgpuTextureSetLabel(texture, label)
ccall((:wgpuTextureSetLabel, libWGPU), Cvoid, (WGPUTexture, Ptr{Cchar}), texture, label)
end
function wgpuTextureReference(texture)
ccall((:wgpuTextureReference, libWGPU), Cvoid, (WGPUTexture,), texture)
end
function wgpuTextureRelease(texture)
ccall((:wgpuTextureRelease, libWGPU), Cvoid, (WGPUTexture,), texture)
end
function wgpuTextureViewSetLabel(textureView, label)
ccall((:wgpuTextureViewSetLabel, libWGPU), Cvoid, (WGPUTextureView, Ptr{Cchar}), textureView, label)
end
function wgpuTextureViewReference(textureView)
ccall((:wgpuTextureViewReference, libWGPU), Cvoid, (WGPUTextureView,), textureView)
end
function wgpuTextureViewRelease(textureView)
ccall((:wgpuTextureViewRelease, libWGPU), Cvoid, (WGPUTextureView,), textureView)
end
@cenum WGPUNativeSType::UInt32 begin
WGPUSType_DeviceExtras = 196609
WGPUSType_RequiredLimitsExtras = 196610
WGPUSType_PipelineLayoutExtras = 196611
WGPUSType_ShaderModuleGLSLDescriptor = 196612
WGPUSType_SupportedLimitsExtras = 196613
WGPUSType_InstanceExtras = 196614
WGPUSType_BindGroupEntryExtras = 196615
WGPUSType_BindGroupLayoutEntryExtras = 196616
WGPUSType_QuerySetDescriptorExtras = 196617
WGPUSType_SurfaceConfigurationExtras = 196618
WGPUNativeSType_Force32 = 2147483647
end
@cenum WGPUNativeFeature::UInt32 begin
WGPUNativeFeature_PushConstants = 196609
WGPUNativeFeature_TextureAdapterSpecificFormatFeatures = 196610
WGPUNativeFeature_MultiDrawIndirect = 196611
WGPUNativeFeature_MultiDrawIndirectCount = 196612
WGPUNativeFeature_VertexWritableStorage = 196613
WGPUNativeFeature_TextureBindingArray = 196614
WGPUNativeFeature_SampledTextureAndStorageBufferArrayNonUniformIndexing = 196615
WGPUNativeFeature_PipelineStatisticsQuery = 196616
WGPUNativeFeature_Force32 = 2147483647
end
@cenum WGPULogLevel::UInt32 begin
WGPULogLevel_Off = 0
WGPULogLevel_Error = 1
WGPULogLevel_Warn = 2
WGPULogLevel_Info = 3
WGPULogLevel_Debug = 4
WGPULogLevel_Trace = 5
WGPULogLevel_Force32 = 2147483647
end
@cenum WGPUInstanceBackend::UInt32 begin
WGPUInstanceBackend_All = 0
WGPUInstanceBackend_Vulkan = 1
WGPUInstanceBackend_GL = 2
WGPUInstanceBackend_Metal = 4
WGPUInstanceBackend_DX12 = 8
WGPUInstanceBackend_DX11 = 16
WGPUInstanceBackend_BrowserWebGPU = 32
WGPUInstanceBackend_Primary = 45
WGPUInstanceBackend_Secondary = 18
WGPUInstanceBackend_Force32 = 2147483647
end
const WGPUInstanceBackendFlags = WGPUFlags
@cenum WGPUInstanceFlag::UInt32 begin
WGPUInstanceFlag_Default = 0
WGPUInstanceFlag_Debug = 1
WGPUInstanceFlag_Validation = 2
WGPUInstanceFlag_DiscardHalLabels = 4
WGPUInstanceFlag_Force32 = 2147483647
end
const WGPUInstanceFlags = WGPUFlags
@cenum WGPUDx12Compiler::UInt32 begin
WGPUDx12Compiler_Undefined = 0
WGPUDx12Compiler_Fxc = 1
WGPUDx12Compiler_Dxc = 2
WGPUDx12Compiler_Force32 = 2147483647
end
@cenum WGPUGles3MinorVersion::UInt32 begin
WGPUGles3MinorVersion_Automatic = 0
WGPUGles3MinorVersion_Version0 = 1
WGPUGles3MinorVersion_Version1 = 2
WGPUGles3MinorVersion_Version2 = 3
WGPUGles3MinorVersion_Force32 = 2147483647
end
@cenum WGPUPipelineStatisticName::UInt32 begin
WGPUPipelineStatisticName_VertexShaderInvocations = 0
WGPUPipelineStatisticName_ClipperInvocations = 1
WGPUPipelineStatisticName_ClipperPrimitivesOut = 2
WGPUPipelineStatisticName_FragmentShaderInvocations = 3
WGPUPipelineStatisticName_ComputeShaderInvocations = 4
WGPUPipelineStatisticName_Force32 = 2147483647
end
@cenum WGPUNativeQueryType::UInt32 begin
WGPUNativeQueryType_PipelineStatistics = 196608
WGPUNativeQueryType_Force32 = 2147483647
end
struct WGPUInstanceExtras
chain::WGPUChainedStruct
backends::WGPUInstanceBackendFlags
flags::WGPUInstanceFlags
dx12ShaderCompiler::WGPUDx12Compiler
gles3MinorVersion::WGPUGles3MinorVersion
dxilPath::Ptr{Cchar}
dxcPath::Ptr{Cchar}
end
struct WGPUDeviceExtras
chain::WGPUChainedStruct
tracePath::Ptr{Cchar}
end
struct WGPUNativeLimits
maxPushConstantSize::UInt32
maxNonSamplerBindings::UInt32
end
struct WGPURequiredLimitsExtras
chain::WGPUChainedStruct
limits::WGPUNativeLimits
end
struct WGPUSupportedLimitsExtras
chain::WGPUChainedStructOut
limits::WGPUNativeLimits
end
struct WGPUPushConstantRange
stages::WGPUShaderStageFlags
start::UInt32
_end::UInt32
end
struct WGPUPipelineLayoutExtras
chain::WGPUChainedStruct
pushConstantRangeCount::Csize_t
pushConstantRanges::Ptr{WGPUPushConstantRange}
end
const WGPUSubmissionIndex = UInt64
struct WGPUWrappedSubmissionIndex
queue::WGPUQueue
submissionIndex::WGPUSubmissionIndex
end
struct WGPUShaderDefine
name::Ptr{Cchar}
value::Ptr{Cchar}
end
struct WGPUShaderModuleGLSLDescriptor
chain::WGPUChainedStruct
stage::WGPUShaderStage
code::Ptr{Cchar}
defineCount::UInt32
defines::Ptr{WGPUShaderDefine}
end
struct WGPURegistryReport
numAllocated::Csize_t
numKeptFromUser::Csize_t
numReleasedFromUser::Csize_t
numError::Csize_t
elementSize::Csize_t
end
struct WGPUHubReport
adapters::WGPURegistryReport
devices::WGPURegistryReport
queues::WGPURegistryReport
pipelineLayouts::WGPURegistryReport
shaderModules::WGPURegistryReport
bindGroupLayouts::WGPURegistryReport
bindGroups::WGPURegistryReport
commandBuffers::WGPURegistryReport
renderBundles::WGPURegistryReport
renderPipelines::WGPURegistryReport
computePipelines::WGPURegistryReport
querySets::WGPURegistryReport
buffers::WGPURegistryReport
textures::WGPURegistryReport
textureViews::WGPURegistryReport
samplers::WGPURegistryReport
end
struct WGPUGlobalReport
surfaces::WGPURegistryReport
backendType::WGPUBackendType
vulkan::WGPUHubReport
metal::WGPUHubReport
dx12::WGPUHubReport
gl::WGPUHubReport
end
struct WGPUInstanceEnumerateAdapterOptions
nextInChain::Ptr{WGPUChainedStruct}
backends::WGPUInstanceBackendFlags
end
struct WGPUBindGroupEntryExtras
chain::WGPUChainedStruct
buffers::Ptr{WGPUBuffer}
bufferCount::Csize_t
samplers::Ptr{WGPUSampler}
samplerCount::Csize_t
textureViews::Ptr{WGPUTextureView}
textureViewCount::Csize_t
end
struct WGPUBindGroupLayoutEntryExtras
chain::WGPUChainedStruct
count::UInt32
end
struct WGPUQuerySetDescriptorExtras
chain::WGPUChainedStruct
pipelineStatistics::Ptr{WGPUPipelineStatisticName}
pipelineStatisticCount::Csize_t
end
struct WGPUSurfaceConfigurationExtras
chain::WGPUChainedStruct
desiredMaximumFrameLatency::WGPUBool
end
# typedef void ( * WGPULogCallback ) ( WGPULogLevel level , char const * message , void * userdata )
const WGPULogCallback = Ptr{Cvoid}
function wgpuGenerateReport(instance, report)
ccall((:wgpuGenerateReport, libWGPU), Cvoid, (WGPUInstance, Ptr{WGPUGlobalReport}), instance, report)
end
function wgpuInstanceEnumerateAdapters(instance, options, adapters)
ccall((:wgpuInstanceEnumerateAdapters, libWGPU), Csize_t, (WGPUInstance, Ptr{WGPUInstanceEnumerateAdapterOptions}, Ptr{WGPUAdapter}), instance, options, adapters)
end
function wgpuQueueSubmitForIndex(queue, commandCount, commands)
ccall((:wgpuQueueSubmitForIndex, libWGPU), WGPUSubmissionIndex, (WGPUQueue, Csize_t, Ptr{WGPUCommandBuffer}), queue, commandCount, commands)
end
function wgpuDevicePoll(device, wait, wrappedSubmissionIndex)
ccall((:wgpuDevicePoll, libWGPU), WGPUBool, (WGPUDevice, WGPUBool, Ptr{WGPUWrappedSubmissionIndex}), device, wait, wrappedSubmissionIndex)
end
function wgpuSetLogCallback(callback, userdata)
ccall((:wgpuSetLogCallback, libWGPU), Cvoid, (WGPULogCallback, Ptr{Cvoid}), callback, userdata)
end
function wgpuSetLogLevel(level)
ccall((:wgpuSetLogLevel, libWGPU), Cvoid, (WGPULogLevel,), level)
end
function wgpuGetVersion()
ccall((:wgpuGetVersion, libWGPU), UInt32, ())
end
function wgpuRenderPassEncoderSetPushConstants(encoder, stages, offset, sizeBytes, data)
ccall((:wgpuRenderPassEncoderSetPushConstants, libWGPU), Cvoid, (WGPURenderPassEncoder, WGPUShaderStageFlags, UInt32, UInt32, Ptr{Cvoid}), encoder, stages, offset, sizeBytes, data)
end
function wgpuRenderPassEncoderMultiDrawIndirect(encoder, buffer, offset, count)
ccall((:wgpuRenderPassEncoderMultiDrawIndirect, libWGPU), Cvoid, (WGPURenderPassEncoder, WGPUBuffer, UInt64, UInt32), encoder, buffer, offset, count)
end
function wgpuRenderPassEncoderMultiDrawIndexedIndirect(encoder, buffer, offset, count)
ccall((:wgpuRenderPassEncoderMultiDrawIndexedIndirect, libWGPU), Cvoid, (WGPURenderPassEncoder, WGPUBuffer, UInt64, UInt32), encoder, buffer, offset, count)
end
function wgpuRenderPassEncoderMultiDrawIndirectCount(encoder, buffer, offset, count_buffer, count_buffer_offset, max_count)
ccall((:wgpuRenderPassEncoderMultiDrawIndirectCount, libWGPU), Cvoid, (WGPURenderPassEncoder, WGPUBuffer, UInt64, WGPUBuffer, UInt64, UInt32), encoder, buffer, offset, count_buffer, count_buffer_offset, max_count)
end
function wgpuRenderPassEncoderMultiDrawIndexedIndirectCount(encoder, buffer, offset, count_buffer, count_buffer_offset, max_count)
ccall((:wgpuRenderPassEncoderMultiDrawIndexedIndirectCount, libWGPU), Cvoid, (WGPURenderPassEncoder, WGPUBuffer, UInt64, WGPUBuffer, UInt64, UInt32), encoder, buffer, offset, count_buffer, count_buffer_offset, max_count)
end
function wgpuComputePassEncoderBeginPipelineStatisticsQuery(computePassEncoder, querySet, queryIndex)
ccall((:wgpuComputePassEncoderBeginPipelineStatisticsQuery, libWGPU), Cvoid, (WGPUComputePassEncoder, WGPUQuerySet, UInt32), computePassEncoder, querySet, queryIndex)
end
function wgpuComputePassEncoderEndPipelineStatisticsQuery(computePassEncoder)
ccall((:wgpuComputePassEncoderEndPipelineStatisticsQuery, libWGPU), Cvoid, (WGPUComputePassEncoder,), computePassEncoder)
end
function wgpuRenderPassEncoderBeginPipelineStatisticsQuery(renderPassEncoder, querySet, queryIndex)
ccall((:wgpuRenderPassEncoderBeginPipelineStatisticsQuery, libWGPU), Cvoid, (WGPURenderPassEncoder, WGPUQuerySet, UInt32), renderPassEncoder, querySet, queryIndex)
end
function wgpuRenderPassEncoderEndPipelineStatisticsQuery(renderPassEncoder)
ccall((:wgpuRenderPassEncoderEndPipelineStatisticsQuery, libWGPU), Cvoid, (WGPURenderPassEncoder,), renderPassEncoder)
end
const WGPU_ARRAY_LAYER_COUNT_UNDEFINED = Culong(0xffffffff)
const WGPU_COPY_STRIDE_UNDEFINED = Culong(0xffffffff)
const WGPU_LIMIT_U32_UNDEFINED = Culong(0xffffffff)
const WGPU_LIMIT_U64_UNDEFINED = Culonglong(0xffffffffffffffff)
const WGPU_MIP_LEVEL_COUNT_UNDEFINED = Culong(0xffffffff)
const WGPU_QUERY_SET_INDEX_UNDEFINED = Culong(0xffffffff)
const WGPU_WHOLE_MAP_SIZE = SIZE_MAX
const WGPU_WHOLE_SIZE = Culonglong(0xffffffffffffffff)
# exports
const PREFIXES = ["WGPU", "wgpu"]
for name in names(@__MODULE__; all=true), prefix in PREFIXES
if startswith(string(name), prefix)
@eval export $name
end
end
end # module
| WGPUNative | https://github.com/JuliaWGPU/WGPUNative.jl.git |
|
[
"MIT"
] | 0.1.4 | 2c4204585df32fe31eaa9ea346ed469f844996b1 | code | 130 | module WGPUNative
using Reexport
include("cUtils.jl")
include("LibWGPU.jl")
@reexport using .LibWGPU
@reexport using .CUtils
end
| WGPUNative | https://github.com/JuliaWGPU/WGPUNative.jl.git |
|
[
"MIT"
] | 0.1.4 | 2c4204585df32fe31eaa9ea346ed469f844996b1 | code | 3198 |
module CUtils
export CStruct, cStruct, ptr, concrete, rawCast, cast, toCString, fromCString, toByteArray
mutable struct CStruct{T}
ptr::Ptr{T}
function CStruct(cStructType::DataType)
csPtr = Libc.calloc(sizeof(cStructType), sizeof(UInt8))
# f(x) = begin
# @info "Destroying CStruct `$x`"
# ptr = getfield(x, :ptr)
# Libc.free(ptr)
# setfield!(x, :ptr, typeof(ptr)(0))
# end
obj = new{cStructType}(csPtr)
# finalizer(f, obj)
return obj
end
function CStruct(cptr::Ptr{T}) where T
# f(x) = begin
# @info "Destroying CStruct `$x`"
# ptr = getfield(x, :ptr)
# Libc.free(ptr)
# setfield!(x, :ptr, typeof(ptr)(0))
# end
obj = new{T}(csPtr)
# finalizer(f, obj)
return obj
end
end
function cStructFree(cstruct::CStruct{T}) where T
ptr = getfield(cstruct, :ptr)
Libc.free(ptr)
end
function indirectionToField(cstruct::CStruct{T}, x::Symbol) where T
fieldIdx::Int64 = Base.fieldindex(T, x)
fieldOffset = Base.fieldoffset(T, fieldIdx)
fieldType = Base.fieldtype(T, fieldIdx)
fieldSize = fieldType |> sizeof
offsetptr = getfield(cstruct, :ptr) + fieldOffset
field = convert(Ptr{fieldType}, offsetptr)
end
function Base.getproperty(cstruct::CStruct{T}, x::Symbol) where T
unsafe_load(indirectionToField(cstruct, x), 1)
end
function Base.setproperty!(cstruct::CStruct{T}, x::Symbol, v) where T
field = indirectionToField(cstruct, x)
unsafe_store!(field, v)
end
function rawCast(DType::DataType, cs::CStruct{T}) where {T}
convert(Ptr{DType}, getfield(cs, :ptr))
end
function cast(DType::DataType, cs::CStruct{T}) where {T}
CStruct(rawCast(DType, cs))
end
ptr(cs::CStruct{T}) where T = getfield(cs, :ptr)
# TODO this is not working right now
# left it because its not priority.
# Can always use getfield
# function Base.getproperty(cstruct::CStruct{T}, x::Val{:ptr}) where T
# getfield(cstruct, :ptr)
# end
function cStruct(ctype::DataType; fields...)
cs = CStruct(ctype)
inPairs = pairs(fields)
for field in keys(inPairs)
if field in fieldnames(ctype)
setproperty!(cs, field, inPairs[field])
else
@warn """ CStruct : Setting property of non member field. \n
Trying to set non member field `$field`.
only supported fieldnames for `$ctype` are $(fieldnames(ctype))
"""
end
end
return cs
end
function cStructPtr(ctype::DataType; fields...)
return ptr(cStruct(ctype; fields...))
end
function concrete(cstruct::CStruct{T}) where T
return cstruct |> ptr |> unsafe_load
end
function toCString(s::String)
sNullTerminated = s*"\0"
sPtr = pointer(sNullTerminated)
dPtr = Libc.malloc(sizeof(sNullTerminated))
dUInt8Ptr = convert(Ptr{UInt8}, dPtr)
unsafe_copyto!(dUInt8Ptr, sPtr, sizeof(sNullTerminated))
end
function fromCString(s::Ptr{Int8})
s != C_NULL ? unsafe_string(s) : ""
end
Base.sizeof(cstruct::CStruct{T}) where T = sizeof(T)
function toByteArray(cstruct::CStruct{T}) where T
bytePtr = convert(Ptr{UInt8}, cstruct |> ptr)
unsafe_wrap(Array, bytePtr, sizeof(cstruct))
end
#Base.fieldnames(::Type{CStruct{T}}) where T = Base.fieldnames(T)
Base.propertynames(a::CStruct{T}) where T = Base.fieldnames(T)
end
| WGPUNative | https://github.com/JuliaWGPU/WGPUNative.jl.git |
|
[
"MIT"
] | 0.1.4 | 2c4204585df32fe31eaa9ea346ed469f844996b1 | docs | 483 | [](https://github.com/JuliaTesting/Aqua.jl)
# WGPUNative.jl
WGPU (wgpu-native) julia bindings
Supports following architectures
* `macOS aarch64` (`aarch64-apple-darwin`)
* `Linux aarch64 {libc=glibc}` (`aarch64-linux-gnu`)
* `Windows i686` (`i686-w64-mingw32`)
* `macOS x86_64` (`x86_64-apple-darwin`)
* `Linux x86_64 {libc=glibc}` (`x86_64-linux-gnu`)
* `Windows x86_64` (`x86_64-w64-mingw32`)
| WGPUNative | https://github.com/JuliaWGPU/WGPUNative.jl.git |
|
[
"MIT"
] | 0.1.0 | cdbebbe5815426ea98b195f252d7bd83f31fad2e | code | 700 | using Cxx
const path_to_lib = dirname(@__FILE__())
addHeaderDir(path_to_lib, kind=C_System)
# Compiling lastools.so is left as an exercise to the reader
Libdl.dlopen(path_to_lib * "/lastools.so", Libdl.RTLD_GLOBAL)
cxxinclude("~/git/LAStools/LASlib/inc/lasreader_txt.hpp") # random header
# Read .laz file
a = @cxxnew LASreadOpener()
@cxx a -> set_file_name(pointer("~/01608_4.laz"))
reader = @cxx a -> open()
p = @cxx reader -> read_point()
p = @cxx reader -> point
x = @cxx p -> get_X()
y = @cxx p -> get_Y()
z = @cxx p -> get_Z()
# Read .lax file
cxxinclude("~/git/LAStools/LASzip/src/lasindex.hpp")
i = @cxxnew LASindex()
@cxx i -> read(pointer("~/01608_4.lax"))
si = @cxx i -> get_spatial()
| LASindex | https://github.com/evetion/LASindex.jl.git |
|
[
"MIT"
] | 0.1.0 | cdbebbe5815426ea98b195f252d7bd83f31fad2e | code | 312 | module LASindex
using FileIO
using RegionTrees
using StaticArrays
export
quadtree
include("fileio.jl")
include("quadtree.jl")
include("spatial.jl")
include("util.jl")
function __init__()
add_format(format"LAX", "LASX", ".lax", [:LASindex])
end
end # module
| LASindex | https://github.com/evetion/LASindex.jl.git |
|
[
"MIT"
] | 0.1.0 | cdbebbe5815426ea98b195f252d7bd83f31fad2e | code | 2952 | using FileIO
struct LaxHeader
version::UInt32
end
function Base.read(io::IO, ::Type{LaxHeader})
header = LaxHeader(
read(io, UInt32),
)
end
struct LaxQuadtreeHeader
ssignature::UInt32 # LASS
stype::UInt32
qsignature::UInt32 # LASQ
version::UInt32
levels::UInt32
level_index::UInt32
implicit_levels::UInt32
min_x::Float64
max_x::Float64
min_y::Float64
max_y::Float64
end
function Base.read(io::IO, ::Type{LaxQuadtreeHeader})
header = LaxQuadtreeHeader(
read(io, UInt32),
read(io, UInt32),
read(io, UInt32),
read(io, UInt32),
read(io, UInt32),
read(io, UInt32),
read(io, UInt32),
Float64(read(io, Float32)),
Float64(read(io, Float32)),
Float64(read(io, Float32)),
Float64(read(io, Float32))
)
end
struct LaxIntervalHeader
signature::UInt32
version::UInt32
number_cells::UInt32
end
function Base.read(io::IO, ::Type{LaxIntervalHeader})
header = LaxIntervalHeader(
read(io, UInt32),
read(io, UInt32),
read(io, UInt32),
)
end
struct LaxIntervalCell
cell_index::Int32
number_intervals::UInt32
number_points::UInt32
end
function Base.read(io::IO, ::Type{LaxIntervalCell})
header = LaxIntervalCell(
read(io, UInt32),
read(io, UInt32),
read(io, UInt32)
)
end
struct LaxIntervalCellInterval
_start::UInt32
_end::UInt32
end
function Base.read(io::IO, ::Type{UnitRange{T}}) where T <: Integer
range = UnitRange(
Int64(read(io, UInt32))+1, # .lax uses 0 based indices
Int64(read(io, UInt32))+1 # Int32 could theoretically overflow
)
end
function load(f::File{format"LAX"})
open(f) do s
skipmagic(s)
load(s)
end
end
function load(s::Stream{format"LAX"})
# magic bytes are skipped
header = read(s, LaxHeader)
# read quadtree
qheader = read(s, LaxQuadtreeHeader)
# if not, qsignature and version are missing
# but we ignore this other lax type for now
qheader.level_index != 0 && error("Level index other than 0 is not supported yet.")
# create quadtree
qt = quadtree(qheader)
# read cell header
iheader = read(s, LaxIntervalHeader)
ncells = iheader.number_cells
# total number of points
total_points = 0
for i = 1:ncells
# Read cell and its intervals
qcell = read(s, LaxIntervalCell)
total_points += qcell.number_points
intervals = Vector{UnitRange{Integer}}(undef, qcell.number_intervals)
for j = 1:qcell.number_intervals
intervals[j] = read(s, UnitRange{Integer})
end
# Create cell in qt with intervals
quadtree!(qt, qcell.cell_index, intervals)
end
# assert we are at end of file
@assert eof(s)
@info("Processed $(s.filename) with $(total_points) points.")
return qt
end
| LASindex | https://github.com/evetion/LASindex.jl.git |
|
[
"MIT"
] | 0.1.0 | cdbebbe5815426ea98b195f252d7bd83f31fad2e | code | 1833 | """Generate quadtree root from .lax header."""
function quadtree(header::LaxQuadtreeHeader)
root = Cell(SVector(header.min_x, header.min_y), SVector(header.max_x - header.min_x, header.max_y - header.min_y), Vector{UnitRange{Integer}}())
end
"""Add data to a quadtree cell with given index."""
function quadtree!(root::RegionTrees.Cell, index::Integer, data::Vector{UnitRange{T}}) where T <: Integer
cell = quadtree!(root, index)
cell.data = data
return cell
end
"""Split a quadtree until the requested index is reached."""
function quadtree!(root::RegionTrees.Cell, index::Integer)
places = zlevels(index)
places = reverse(places, dims=1) # bottom up
for place in places
(place != 0) && (isleaf(root)) && (split!(root))
root = getindex(root, place)
end
return root
end
"""For a given Quadtree index, return one of [1,2,3,4] for each level in the quadtree.
Levels are defined as follows, where the index is the number.
0
1 2 3 4
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 - 84 etc
"""
function zlevels(index::Integer)
places = Array{Integer,1}()
# Determine places until root is reached
while index > 4
# index one level up in the quadtree
parent_cell = (index - 1) >>> 2
# place is position in Z order of four cells
place = index - (parent_cell << 2)
push!(places, place)
index = parent_cell
end
push!(places, index)
return places
end
"""Convert place in Z order to RegionTrees index."""
function Base.getindex(cell::Cell, place::Integer)
# 3 4
# 1 2
place == 4 && return cell[2,2]
place == 3 && return cell[1,2]
place == 2 && return cell[2,1]
place == 1 && return cell[1,1]
place == 0 && return cell # root cell
error("Place can't be higher than 4.")
end
| LASindex | https://github.com/evetion/LASindex.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.