licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.2
4217710242df1f4708e58e00763de2569cfbe880
code
8210
""" $(TYPEDEF) An abstract type whose subtypes denote a specific electric field basis. """ abstract type ElectricFieldBasis end """ $(TYPEDEF) The right circular electric field basis, i.e. a right-handed circular feed. """ struct RPol <: ElectricFieldBasis end """ $(TYPEDEF) The left circular electric field basis, i.e. a left-handed circular feed. """ struct LPol <: ElectricFieldBasis end """ $(TYPEDEF) The horizontal or X electric feed basis, i.e. the horizontal linear feed. """ struct XPol <: ElectricFieldBasis end """ $(TYPEDEF) The vertical or Y electric feed basis, i.e. the vertical linear feed. """ struct YPol <: ElectricFieldBasis end abstract type StokesBasis end struct IPol end struct QPol end struct UPol end struct VPol end """ $(TYPEDEF) Denotes a general polarization basis, with basis vectors (B1,B2) which are typically `<: Union{ElectricFieldBasis, Missing}` """ struct PolBasis{B1<:Union{ElectricFieldBasis, Missing}, B2<:Union{ElectricFieldBasis, Missing}} end """ CirBasis <: PolBasis Measurement uses the circular polarization basis, which is typically used for circular feed interferometers. """ const CirBasis = PolBasis{RPol,LPol} """ LinBasis <: PolBasis Measurement uses the linear polarization basis, which is typically used for linear feed interferometers. """ const LinBasis = PolBasis{XPol,YPol} """ $(TYPEDEF) Static vector that holds the stokes parameters of a polarized complex visibility To convert between a `StokesParams` and `CoherencyMatrix` use the `convert` function ```julia convert(::CoherencyMatrix, StokesVector(1.0, 0.1, 0.1, 0.4)) ``` """ struct StokesParams{T} <: FieldVector{4,T} I::T Q::T U::T V::T end StokesParams(::SArray) = throw(ArgumentError("argument does not have a basis please wrap it in a `CoherencyMatrix`")) StaticArraysCore.similar_type(::Type{<:StokesParams}, ::Type{T}, s::Size{(4,)}) where {T} = StokesParams{T} """ $(TYPEDEF) Coherency matrix for a single baseline with bases `B1` and `B2`. The two bases correspond to the type of feeds used for each telescope and should be subtypes of `PolBasis`. To see which bases are implemented type `subtypes(Rimes.PolBasis)` in the REPL. For a circular basis the layout of the coherency matrix is ``` RR* RL* LR* RR* ``` which can be constructed using ```julia-repl c = CoherencyMatrix(RR, LR, RL, LL, CirBasis()) ``` For a linear basis the layout of the coherency matrix is ``` XX* XY* YX* YY* ``` which can be constructed using ```julia-repl c = CoherencyMatrix(XX, YX, XY, YY, CirBasis()) ``` For a mixed (e.g., circular and linear basis) the layout of the coherency matrix is ``` RX* RY* LX* LY* ``` or e.g., linear and circular the layout of the coherency matrix is ``` XR* XL* YR* YL* ``` These coherency matrices can be constructed using: ```julia-repl # Circular and linear feeds i.e., |R><X| c = CoherencyMatrix(RX, LX, RY, LY, LinBasis(), CirBasis()) # Linear and circular feeds i.e., |X><R| c = CoherencyMatrix(XR, YR, XL, YL, LinBasis(), CirBasis()) ``` """ struct CoherencyMatrix{B1,B2,T} <: StaticArraysCore.FieldMatrix{2,2,T} e11::T e21::T e12::T e22::T end StaticArraysCore.similar_type(::Type{CoherencyMatrix{B1,B2}}, ::Type{T}, s::Size{(2,2)}) where {B1,B2,T} = CoherencyMatrix{B1,B2,T} """ CoherencyMatrix(e11, e21, e12, e22, basis::NTuple{2, PolBasis}) Constructs the coherency matrix with components e11 e12 e21 e22 relative to the tensor product basis, `|basis[1]><basis[2]|`. Note that basis[1] and basis[2] could be different. For instance ```julia c = Coherency(1.0, 0.0, 0.0, 1.0, CirBasis(), LinBasis()) ``` elements correspond to RX* RY* LX* LY* """ @inline function CoherencyMatrix(e11::Number, e21::Number, e12::Number, e22::Number, basis::NTuple{2,PolBasis}) T = promote_type(typeof(e11), typeof(e12), typeof(e21), typeof(e22)) return CoherencyMatrix{typeof(basis[1]), typeof(basis[2]),T}(T(e11), T(e21), T(e12), T(e22)) end """ CoherencyMatrix(e11, e21, e12, e22, basis::PolBasis) Constructs the coherency matrix with components e11 e12 e21 e22 relative to the tensor product basis, `basis` given by `|basis><basis|`. For instance ```julia c = Coherency(1.0, 0.0, 0.0, 1.0, CirBasis()) ``` elements correspond to RR* RL* LR* LL* """ @inline function CoherencyMatrix(e11::Number, e21::Number, e12::Number, e22::Number, basis::PolBasis) return CoherencyMatrix(e11, e21, e12, e22, (basis, basis)) end """ CoherencyMatrix(e11, e21, e12, e22, basis1::PolBasis basis2::PolBasis) Constructs the coherency matrix with components e11 e12 e21 e22 relative to the tensor product basis, `basis` given by `|basis1><basis2|`. For instance ```julia c = Coherency(1.0, 0.0, 0.0, 1.0, CirBasis(), LinBasis()) ``` elements correspond to RX* RY* LX* LY* """ @inline function CoherencyMatrix(e11::Number, e21::Number, e12::Number, e22::Number, basis1::PolBasis, basis2::PolBasis) return CoherencyMatrix(e11, e21, e12, e22, (basis1, basis2)) end @inline function CoherencyMatrix(mat::AbstractMatrix, basis1::PolBasis, basis2::PolBasis) return CoherencyMatrix(mat[1], mat[2], mat[3], mat[4], basis1, basis2) end @inline function CoherencyMatrix(mat::AbstractMatrix, basis::PolBasis) return CoherencyMatrix(mat[1], mat[2], mat[3], mat[4], basis) end """ CoherencyMatrix(s::StokesParams, basis1::PolBasis) CoherencyMatrix(s::StokesParams, basis1::PolBasis, basis2::PolBasis) CoherencyMatrix(s::StokesParams, basis1::PolBasis, basis2::PolBasis, refbasis=CirBasis()) Constructs the coherency matrix from the set of stokes parameters `s`. This is specialized on `basis1` and `basis2` which form the tensor product basis `|basis1><basis2|`, or if a single basis is given then by `|basis><basis|`. For example ```julia CoherencyMatrix(s, CircBasis()) ``` will give the coherency matrix ``` I+V Q+iU Q-iU I-V ``` while ```julia CoherencyMatrix(s, LinBasis()) ``` will give ``` I+Q U+iV U-iV I-Q ``` # Notes Internally this function first converts to a reference basis and then the final basis. You can select the reference basis used with the optional argument refbasis. By default we use the circular basis as our reference. Note that this is only important for mixed bases, e.g., if `basis1` and `basis2` are different. If `basis1==basis2` then the reference basis is never used. """ @inline function CoherencyMatrix(s::StokesParams, b1::PolBasis, b2::PolBasis, refbasis::Union{LinBasis, CirBasis}=CirBasis()) t1 = basis_transform(refbasis=>b1) # Flip because these are the dual elements t2 = basis_transform(b2=>refbasis) # Use circular basis as a reference c_cir = CoherencyMatrix(s, refbasis) return CoherencyMatrix(t1*c_cir*t2, b1, b2) end function CoherencyMatrix(s::StokesParams, b1::T, b2::T, refbasis=CirBasis()) where {T<:PolBasis} return CoherencyMatrix(s, b1) end @inline function CoherencyMatrix(s::StokesParams, b::PolBasis) return CoherencyMatrix{typeof(b), typeof(b)}(s) end @inline function CoherencyMatrix{CirBasis,CirBasis}(s::StokesParams) (;I,Q,U,V) = s RR = complex((I + V)) LR = (Q - 1im*U) RL = (Q + 1im*U) LL = complex((I - V)) return CoherencyMatrix(RR, LR, RL, LL, CirBasis(), CirBasis()) end @inline function CoherencyMatrix{B1, B2}(s::StokesParams) where {B1, B2} return CoherencyMatrix(s, B1(), B2()) end @inline function CoherencyMatrix{LinBasis, LinBasis}(s::StokesParams) (;I,Q,U,V) = s XX = (I + Q) YX = (U - 1im*V) XY = (U + 1im*V) YY = (I - Q) return CoherencyMatrix(XX, YX, XY, YY, LinBasis(), LinBasis()) end @inline function StokesParams(c::CoherencyMatrix{CirBasis, CirBasis}) I = (c.e11 + c.e22)/2 Q = (c.e21 + c.e12)/2 U = 1im*(c.e21 - c.e12)/2 V = (c.e11 - c.e22)/2 return StokesParams(I, Q, U, V) end @inline function StokesParams(c::CoherencyMatrix{B1, B2}) where {B1, B2} t1 = basis_transform(B1()=>CirBasis()) # Flip because these are the dual elements t2 = basis_transform(CirBasis()=>B2()) c_cir = CoherencyMatrix(t1*c*t2, CirBasis()) return StokesParams(c_cir) end
PolarizedTypes
https://github.com/EHTJulia/PolarizedTypes.jl.git
[ "MIT" ]
0.1.2
4217710242df1f4708e58e00763de2569cfbe880
code
1227
ChainRulesCore.ProjectTo(x::CoherencyMatrix{B1, B2, <: Number}) where {B1, B2} = ProjectTo{CoherencyMatrix}(; element = ProjectTo(eltype(x)), basis1=B1(), basis2=B2()) function (project::ProjectTo{CoherencyMatrix})(dx::AbstractMatrix) @assert size(dx) == (2,2) "Issue in Coherency pullback the matrix is not 2x2" return CoherencyMatrix(dx, project.basis1, project.basis2) end function (project::ProjectTo{CoherencyMatrix})(dx::CoherencyMatrix{B1, B2}) where {B1, B2} @assert B1() == project.basis1 "First basis does not match in $(typeof(dx)) and $(project.basis1)" @assert B2() == project.basis2 "Second basis does not match in $(typeof(dx)) and $(project.basis2)" @assert size(dx) == (2,2) "Issue in Coherency pullback the matrix is not 2x2" return dx end # function ChainRulesCore.rrule(::Type{<:CoherencyMatrix}, e11, e21, e12, e22, basis::NTuple{2, <:PolBasis}) # c = CoherencyMatrix(e11, e21, e12, e22, basis) # pr = ProjectTo(e11) # function _CoherencyMatrix_sep_pullback(Ξ”) # return NoTangent(), pr(Ξ”[1,1]), pr(Ξ”[2,1]), pr(Ξ”[1,2]), pr(Ξ”[2,2]), NoTangent() # end # return c, _CoherencyMatrix_sep_pullback # end # Needed to ensure everything is constructed nicely
PolarizedTypes
https://github.com/EHTJulia/PolarizedTypes.jl.git
[ "MIT" ]
0.1.2
4217710242df1f4708e58e00763de2569cfbe880
code
9269
using PolarizedTypes using StaticArrays using ChainRulesCore using JET using Test @testset "PolarizedTypes.jl" begin @testset "Basis transform" begin @test basis_transform(PolBasis{XPol,YPol}()=>PolBasis{RPol,LPol}())*basis_transform(PolBasis{RPol,LPol}()=>PolBasis{XPol,YPol}()) β‰ˆ [1.0 0.0;0.0 1.0] @test basis_transform(PolBasis{RPol,LPol}()=>PolBasis{XPol,YPol}())*basis_transform(PolBasis{XPol,YPol}()=>PolBasis{RPol,LPol}()) β‰ˆ [1.0 0.0;0.0 1.0] @test basis_transform(CirBasis(), LinBasis()) == basis_transform(CirBasis()=>LinBasis()) @test basis_components(RPol(), CirBasis()) β‰ˆ basis_transform(CirBasis()=>CirBasis())*SVector(1.0, 0.0) @test basis_components(LPol(), CirBasis()) β‰ˆ basis_transform(CirBasis()=>CirBasis())*SVector(0.0, 1.0) @test basis_components(RPol(), LinBasis()) β‰ˆ basis_transform(CirBasis()=>LinBasis())*SVector(1.0, 0.0) @test basis_components(LPol(), LinBasis()) β‰ˆ basis_transform(CirBasis()=>LinBasis())*SVector(0.0, 1.0) @test basis_components(XPol(), CirBasis()) β‰ˆ basis_transform(LinBasis()=>CirBasis())*SVector(1.0, 0.0) @test basis_components(YPol(), CirBasis()) β‰ˆ basis_transform(LinBasis()=>CirBasis())*SVector(0.0, 1.0) @test basis_components(XPol(), LinBasis()) β‰ˆ basis_transform(LinBasis()=>LinBasis())*SVector(1.0, 0.0) @test basis_components(YPol(), LinBasis()) β‰ˆ basis_transform(LinBasis()=>LinBasis())*SVector(0.0, 1.0) for (e1, e2) in [(RPol, LPol), (LPol, RPol), (XPol, YPol), (XPol, YPol), ] @test basis_transform(PolBasis{e1,e2}()=>PolBasis{e1,e2}()) β‰ˆ [1.0 0.0; 0.0 1.0] end end @testset "Non-orthogonal" begin @test_throws AssertionError basis_transform(PolBasis{XPol,YPol}(), PolBasis{RPol,XPol}()) @test_throws AssertionError basis_transform(PolBasis{XPol,YPol}(), PolBasis{RPol,YPol}()) @test_throws AssertionError basis_transform(PolBasis{XPol,YPol}(), PolBasis{XPol,RPol}()) @test_throws AssertionError basis_transform(PolBasis{XPol,YPol}(), PolBasis{XPol,LPol}()) end @testset "Missing feeds" begin for E in (XPol,YPol,RPol,LPol) c1 = basis_components(E(), PolBasis{E, Missing}()) @test c1[1] β‰ˆ 1.0 @test c1[2] isa Missing c2 = basis_components(E(), PolBasis{Missing, E}()) @test c2[2] β‰ˆ 1.0 @test c2[1] isa Missing # Test that the compiler realized the Union @inferred basis_components(E(), PolBasis{Missing, E}()) @inferred basis_components(E(), PolBasis{E, Missing}()) @inferred basis_transform(PolBasis{E, Missing}()=>CirBasis()) @inferred basis_transform(PolBasis{E, Missing}()=>LinBasis()) @inferred basis_transform(CirBasis()=>PolBasis{E, Missing}()) @inferred basis_transform(LinBasis()=>PolBasis{E, Missing}()) end end @testset "Simple stokes test" begin sQ = StokesParams(1.0, 0.5, 0.0, 0.0) sU = StokesParams(1.0, 0.0, 0.5, 0.0) sV = StokesParams(1.0, 0.0, 0.0, 0.5) @test CoherencyMatrix(sQ, LinBasis()) β‰ˆ ([1.5 0.0; 0.0 0.5]) @test CoherencyMatrix(sQ, CirBasis()) β‰ˆ ([1.0 0.5; 0.5 1.0]) @test CoherencyMatrix(sU, LinBasis()) β‰ˆ ([1.0 0.5; 0.5 1.0]) @test CoherencyMatrix(sU, CirBasis()) β‰ˆ ([1.0 0.5im; -0.5im 1.0]) @test CoherencyMatrix(sV, LinBasis()) β‰ˆ ([1.0 0.5im; -0.5im 1.0]) @test CoherencyMatrix(sV, CirBasis()) β‰ˆ ([1.5 0.0; 0.0 0.5]) end @testset "Simple Coherency test" begin cRR = CoherencyMatrix(0.5, 0.0, 0.0, 0.0, CirBasis()) cLR = CoherencyMatrix(0.0, 0.5, 0.0, 0.0, CirBasis()) cRL = CoherencyMatrix(0.0, 0.0, 0.5, 0.0, CirBasis()) cLL = CoherencyMatrix(0.0, 0.0, 0.0, 0.5, CirBasis()) @test StokesParams(cRR) β‰ˆ inv(2)*[0.5, 0.0, 0.0, 0.5] @test StokesParams(cLR) β‰ˆ inv(2)*[0.0, 0.5, 0.5im, 0.0] @test StokesParams(cRL) β‰ˆ inv(2)*[0.0, 0.5, -0.5im, 0.0] @test StokesParams(cLL) β‰ˆ inv(2)*[0.5, 0.0, 0.0, -0.5] cXX = CoherencyMatrix(0.5, 0.0, 0.0, 0.0, LinBasis()) cYX = CoherencyMatrix(0.0, 0.5, 0.0, 0.0, LinBasis()) cXY = CoherencyMatrix(0.0, 0.0, 0.5, 0.0, LinBasis()) cYY = CoherencyMatrix(0.0, 0.0, 0.0, 0.5, LinBasis()) @test StokesParams(cXX) β‰ˆ inv(2)*[0.5, 0.5, 0.0, 0.0] @test StokesParams(cYX) β‰ˆ inv(2)*[0.0, 0.0, 0.5, 0.5im] @test StokesParams(cXY) β‰ˆ inv(2)*[0.0, 0.0, 0.5, -0.5im] @test StokesParams(cYY) β‰ˆ inv(2)*[0.5, -0.5, 0.0, 0.0] @test StaticArraysCore.similar_type(CoherencyMatrix{CirBasis,LinBasis}, Float64, Size(2,2)) == CoherencyMatrix{CirBasis,LinBasis,Float64} @test StaticArraysCore.similar_type(StokesParams, Float64, Size(4,)) == StokesParams{Float64} end @testset "Conversions back and forward" begin s = StokesParams(1.0 .+ 0.0im, 0.2 + 0.2im, 0.2 - 0.2im, 0.1+0.05im) @test s β‰ˆ StokesParams(CoherencyMatrix(s, CirBasis())) @test s β‰ˆ StokesParams(CoherencyMatrix(s, LinBasis())) @test s β‰ˆ StokesParams(CoherencyMatrix(s, CirBasis(), LinBasis())) @test s β‰ˆ StokesParams(CoherencyMatrix(s, LinBasis(), CirBasis())) @test s β‰ˆ StokesParams(CoherencyMatrix(s, PolBasis{YPol,XPol}(), PolBasis{LPol,RPol}())) end @testset "Mixed Pol" begin I = 2.0 + 0.5im Q = rand(ComplexF64) - 0.5 U = rand(ComplexF64) - 0.5 V = rand(ComplexF64) - 0.5 s = StokesParams(I, Q, U, V) c1 = CoherencyMatrix(s, CirBasis(), LinBasis()) c2 = CoherencyMatrix{CirBasis, LinBasis}(s) c3 = basis_transform(CoherencyMatrix(s, CirBasis()), CirBasis(), LinBasis()) @test c1 β‰ˆ c2 @test c1 β‰ˆ c3 @test StokesParams(c1) β‰ˆ s @test StokesParams(c2) β‰ˆ s @test StokesParams(c3) β‰ˆ s end @testset "Conversion Consistency" begin s = StokesParams(1.0 .+ 0.0im, 0.2 + 0.2im, 0.2 - 0.2im, 0.1+0.05im) c_lin1 = CoherencyMatrix(s, LinBasis()) c_lin2 = CoherencyMatrix(s, PolBasis{XPol,YPol}()) c_lin3 = CoherencyMatrix(s, PolBasis{XPol,YPol}(), PolBasis{XPol,YPol}()) @test c_lin1 β‰ˆ c_lin2 β‰ˆ c_lin3 c_cir1 = CoherencyMatrix(s, CirBasis()) c_cir2 = CoherencyMatrix(s, PolBasis{RPol,LPol}()) c_cir3 = CoherencyMatrix(s, PolBasis{RPol,LPol}(), PolBasis{RPol,LPol}()) @test c_cir1 β‰ˆ c_cir2 β‰ˆ c_cir3 t1 = basis_transform(LinBasis()=>CirBasis()) t2 = basis_transform(CirBasis()=>LinBasis()) @test t2*c_cir1*t1 β‰ˆ c_lin1 @test t1*c_lin1*t2 β‰ˆ c_cir1 @test_throws ArgumentError StokesParams(t1*c_lin1*t2) # Test the mixed basis @test c_cir1*t1 β‰ˆ t1*c_lin1 @test c_lin1*t2 β‰ˆ t2*c_cir1 end @testset "Performance test" begin s = StokesParams(1.0 .+ 0.0im, 0.2 + 0.2im, 0.2 - 0.2im, 0.1+0.05im) @test_opt StokesParams(CoherencyMatrix(s, LinBasis())) @test_opt StokesParams(CoherencyMatrix(s, CirBasis())) @test_opt StokesParams(CoherencyMatrix(s, LinBasis(), CirBasis())) @test_opt StokesParams(CoherencyMatrix(s, LinBasis(), CirBasis(), LinBasis())) end @testset "Polarized Functions" begin s = StokesParams(2.0, 0.25, -0.25, 0.25) @test linearpol(s) == complex(0.25, -0.25) @test evpa(s) β‰ˆ atan(-0.5, 0.5)/2 @test s[2:end] β‰ˆ polarization(s) slin = StokesParams(2.0, 0.2, 0.2, 0.0) fp = fracpolarization(slin) @test complex(fp[1], fp[2]) β‰ˆ linearpol(slin)/slin.I @test fp[end] β‰ˆ 0 @testset "ellipse" begin p = polellipse(s) @test p.a*p.b β‰ˆ s.V^2/4 @test p.evpa β‰ˆ evpa(s) plin = polellipse(slin) @test plin.a β‰ˆ (abs(linearpol(slin))) @test isapprox(plin.b, 0, atol=1e-8) @test plin.evpa β‰ˆ evpa(slin) @test p.sn β‰ˆ sign(s.V) end @test mpol(s) β‰ˆ complex(0.25, -0.25)/2 @testset "Complex Vis" begin I = 2.0 + 0.5im Q = rand(ComplexF64) - 0.5 U = rand(ComplexF64) - 0.5 V = rand(ComplexF64) - 0.5 s = StokesParams(I, Q, U, V) @test mbreve(s) == mΜ†(s) c = CoherencyMatrix{CirBasis, LinBasis}(s) @test linearpol(c) β‰ˆ linearpol(s) @test polarization(c) β‰ˆ polarization(s) @test fracpolarization(c) β‰ˆ fracpolarization(s) @test mΜ†(c) β‰ˆ mΜ†(s) @test mbreve(c) β‰ˆ mbreve(s) @test evpa(c) β‰ˆ evpa(s) end end @testset "ChainRules" begin I = 2.0 + 0.5im Q = rand(ComplexF64) - 0.5 U = rand(ComplexF64) - 0.5 V = rand(ComplexF64) - 0.5 s = StokesParams(I, Q, U, V) c = CoherencyMatrix{CirBasis, LinBasis}(s) cmat = SMatrix(c) prc = ChainRulesCore.ProjectTo(c) @test prc(cmat) == c @test prc(c) == c @test_throws AssertionError prc(CoherencyMatrix(cmat, LinBasis())) @test_throws AssertionError prc(CoherencyMatrix(cmat, CirBasis())) end end
PolarizedTypes
https://github.com/EHTJulia/PolarizedTypes.jl.git
[ "MIT" ]
0.1.2
4217710242df1f4708e58e00763de2569cfbe880
docs
1202
# PolarizedTypes [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://ehtjulia.github.io/PolarizedTypes.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://ehtjulia.github.io/PolarizedTypes.jl/dev/) [![Build Status](https://github.com/ehtjulia/PolarizedTypes.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/ehtjulia/PolarizedTypes.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/ehtjulia/PolarizedTypes.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/ehtjulia/PolarizedTypes.jl) [![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet)](https://github.com/SciML/ColPrac) This defines the basic for polarized types for use in VLBI, including: - `StokesParams` for the stokes parameters - `CoherencyMatrix` for coherency matrices in arbitrary bases, including a mixed basis. ```julia using PolarizedTypes s = StokesParams(1.0, 0.1, 0.1, -0.05) c = CoherencyMatrix(s, CirBasis(), CirBasis()) l = CoherencyMatrix(s, CirBasis(), LinBasis()) m = CoherencyMatrix(x, LinBasis(), CirBasis()) ```
PolarizedTypes
https://github.com/EHTJulia/PolarizedTypes.jl.git
[ "MIT" ]
0.1.2
4217710242df1f4708e58e00763de2569cfbe880
docs
204
```@meta CurrentModule = PolarizedTypes ``` # PolarizedTypes Documentation for [PolarizedTypes](https://github.com/ptiede/PolarizedTypes.jl). ```@index ``` ```@autodocs Modules = [PolarizedTypes] ```
PolarizedTypes
https://github.com/EHTJulia/PolarizedTypes.jl.git
[ "MIT" ]
2.3.0
842c0e8cb146524ffa5caf097e3014ab45b441d9
code
413
using Documenter, AWSTools makedocs(; modules=[AWSTools], format=Documenter.HTML(; prettyurls=get(ENV, "CI", nothing) == "true", assets=["assets/invenia.css"] ), pages=["Home" => "index.md"], repo="https://github.com/JuliaCloud/AWSTools.jl/blob/{commit}{path}#L{line}", sitename="AWSTools.jl", authors="Invenia Technical Computing", checkdocs=:exports, strict=true, )
AWSTools
https://github.com/JuliaCloud/AWSTools.jl.git
[ "MIT" ]
2.3.0
842c0e8cb146524ffa5caf097e3014ab45b441d9
code
1748
module AWSTools using AWS using AWSS3 using Mocking using Random using Dates export assume_role @service STS get_caller_identity() = STS.get_caller_identity()["GetCallerIdentityResult"] account_id() = (@mock get_caller_identity())["GetCallerIdentityResult"]["Account"] """ assume_role(role_arn, [role_session_name]) -> AWSConfig Generate a new `AWSConfig` by assuming a new role. In order to use the assumed role you need to use this config in the various AWS calls you perform. # Arguments - `role_arn::AbstractString`: The ARN of the role to assume. - `role_session_name::AbstractString`: An optional string which is the unique identifier for the session name. # Keywords - `config::AWSConfig`: The AWS configuration to use when assuming the role. """ function assume_role( role_arn::AbstractString, role_session_name::AbstractString=randstring(16); config::AWSConfig=global_aws_config(), ) function get_role_creds(role_arn, role_session_name, config) response = @mock STS.assume_role(role_arn, role_session_name; aws_config=config) response = response["AssumeRoleResult"] credentials = response["Credentials"] return AWSCredentials( credentials["AccessKeyId"], credentials["SecretAccessKey"], credentials["SessionToken"]; expiry=DateTime(credentials["Expiration"], dateformat"yyyy-mm-ddTHH:MM:SSZ"), ) end renew = () -> get_role_creds(role_arn, role_session_name, config) creds = renew() creds.renew = renew return AWSConfig(; creds=creds) end include("timeout.jl") include("CloudFormation.jl") include("EC2.jl") include("ECR.jl") include("Docker.jl") Base.@deprecate_binding S3 AWSS3 end # AWSTools
AWSTools
https://github.com/JuliaCloud/AWSTools.jl.git
[ "MIT" ]
2.3.0
842c0e8cb146524ffa5caf097e3014ab45b441d9
code
3640
module CloudFormation using AWS using AWS: AWSExceptions.AWSException using EzXML using MbedTLS: MbedException using Memento using Mocking using OrderedCollections: OrderedDict using XMLDict # Improper casing to avoid issues with Module name and AWS.AWSService @service cloudFormation const logger = getlogger(@__MODULE__) # Register the module level logger at runtime so that folks can access the logger via `getlogger(MyModule)` # NOTE: If this line is not included then the precompiled `MyModule.logger` won't be registered at runtime. __init__() = Memento.register(logger) export raw_stack_description, stack_output function describe_stacks(config::AWSConfig, params::AbstractDict) dep_msg = """ `describe_stacks(config::AWSConfig, params::AbstractDict)` is deprecated and will be removed. Use the AWS @service CloudFormation.describe_stacks() functionality instead. """ Base.depwarn(dep_msg, :get_authorization_token) return cloudFormation.describe_stacks(params; aws_config=config) end const _NRETRIES = 5 # for APIs we don't want to hammer function cautious_delays(; kwargs...) return ExponentialBackOff(; n=_NRETRIES, first_delay=5, max_delay=300, kwargs...) end function minimal_delays(; kwargs...) return ExponentialBackOff(; n=_NRETRIES, first_delay=0.1, max_delay=60, kwargs...) end """ raw_stack_description(stack_name::AbstractString) -> String Returns the description for the specified stack. Can optionally pass in the aws `config` as a keyword argument. """ function raw_stack_description( stack_name::AbstractString; config::AWSConfig=global_aws_config() ) function retry_cond(s, e) if e isa AWSException if 500 <= e.cause.status <= 504 debug(logger, "CloudFormation request encountered $(e.code); retrying") return (s, true) elseif e.cause.status == 429 || (e.cause.status == 400 && e.code == "Throttling") debug(logger, "CloudFormation request encountered $(e.code); retrying") return (s, true) end elseif e isa MbedException debug(logger, "CloudFormation request encountered $e; retrying") return (s, true) end return (s, false) end f = retry(; delays=cautious_delays(; jitter=0.2), check=retry_cond) do @mock describe_stacks(config, Dict("StackName" => stack_name, "return_raw" => true)) end response = String(f()) return response end """ stack_output(stack_name::AbstractString) -> OrderedDict The stack's OutputKey and OutputValue values as a dictionary. Can pass in the aws `config` as a keyword argument. """ function stack_output(stack_name::AbstractString; config::AWSConfig=global_aws_config()) outputs = OrderedDict{String,String}() description = raw_stack_description(stack_name; config=config) xml = root(parsexml(description)) ns = ["ns" => namespace(xml)] output_elements = findall("//ns:Outputs/ns:member", xml, ns) for el in output_elements key = nodecontent(findfirst("ns:OutputKey", el, ns)) val = nodecontent(findfirst("ns:OutputValue", el, ns)) outputs[key] = val end return outputs end function output_pair(item::AbstractDict) key = item["OutputKey"]::String value = if isa(item["OutputValue"], String) item["OutputValue"]::String elseif isa(item["OutputValue"], AbstractDict) && isempty(item["OutputValue"]) "" else throw(ArgumentError("Unhandled output value: $(repr(item["OutputValue"]))")) end return key => value end end # CloudFormation
AWSTools
https://github.com/JuliaCloud/AWSTools.jl.git
[ "MIT" ]
2.3.0
842c0e8cb146524ffa5caf097e3014ab45b441d9
code
1284
module Docker using AWS using ..ECR export login, pull, push, build """ login(registry_id::Union{AbstractString, Integer}="") Gets the AWS ECR authorization token and runs the corresponding docker login command. Takes an optional AWS `config` keyword argument or uses the default. """ function login( registry_id::Union{AbstractString,Integer}=""; config::AWSConfig=global_aws_config() ) return login(ECR.get_login(registry_id; config=config)) end function login(docker_login::Cmd) success(pipeline(docker_login, stdout=stdout, stderr=stderr)) end """ pull(image::AbstractString, tags::AbstractVector{<:AbstractString}=String[]) Pulls a docker image and tags it if `tags` is specified. """ function pull(image::AbstractString, tags::AbstractVector{<:AbstractString}=String[]) run(`docker pull $image`) for tag in tags run(`docker tag $image $tag`) end end """ push(image::AbstractString) Pushes a docker image. """ function push(image::AbstractString) run(`docker push $image`) end """ build(dir::AbstractString, tag::AbstractString="") Builds the docker image. """ function build(dir::AbstractString, tag::AbstractString="") opts = isempty(tag) ? `` : `-t $tag` run(`docker build $opts $dir`) end end # Docker
AWSTools
https://github.com/JuliaCloud/AWSTools.jl.git
[ "MIT" ]
2.3.0
842c0e8cb146524ffa5caf097e3014ab45b441d9
code
1842
module EC2 using ...AWSTools: timeout using HTTP: HTTP using Mocking export instance_metadata, instance_region, instance_availability_zone """ instance_metadata(path) -> Union{String,Nothing} Retrieve AWS EC2 instance metadata as a string from the provided `path`. If no instance metadata is available (typically due to not running within an EC2 instance) then `nothing` will be returned. See the AWS documentation for details on what metadata is available. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html """ function instance_metadata(path::AbstractString) # Retrieve details about the instance: # https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html # # Note: When running outside of EC2 the connection to the local-link address will fail # with a connection timeout (ETIMEDOUT) after a 60 seconds (tested on HTTP.jl v0.8.2) # See: https://github.com/JuliaWeb/HTTP.jl/issues/114 uri = HTTP.URI(scheme="http", host="169.254.169.254", path=path) r = timeout(5) do @mock HTTP.get(uri, status_exception=false) end return r !== nothing ? String(something(r).body) : r end """ instance_availability_zone() -> Union{String,Nothing} Get the availability zone of the host if running inside of an EC2 instance. If not running within an EC2 instance `nothing` is returned. """ function instance_availability_zone() # Get the availability zone information from the EC2 instance metadata. return instance_metadata("/latest/meta-data/placement/availability-zone") end """ instance_availability_zone() -> Union{String,Nothing} Get the region of the host if executed inside of an EC2 instance. If not running within an EC2 instance `nothing` is returned. """ instance_region() = chop(instance_availability_zone()) end
AWSTools
https://github.com/JuliaCloud/AWSTools.jl.git
[ "MIT" ]
2.3.0
842c0e8cb146524ffa5caf097e3014ab45b441d9
code
1967
module ECR using AWS using Base64 using Mocking # Improper casing to avoid issues with Module name and AWS.AWSService @service Ecr function get_authorization_token(config::AWSConfig, params::AbstractDict=Dict{String,Any}()) dep_msg = """ `get_authorization_token(config::AWSConfig, params::AbstractDict=Dict{String,Any}())` is deprecated and will be removed. Use the AWS @service ECR.get_authorization_token() functionality instead. """ Base.depwarn(dep_msg, :get_authorization_token) return Ecr.get_authorization_token(params; aws_config=config) end export get_login """ get_login(registry_ids::Union{AbstractString, Integer}="") -> Cmd Gets the AWS ECR authorization token and returns the corresponding docker login command. The AWS `config` keyword parameter is optional (will use the default if it's not passed in). """ get_login function get_login(registry_id::AbstractString=""; config::AWSConfig=global_aws_config()) # Note: Although `get_authorization_token` can take multiple registry IDs at once it # will only return a "proxyEndpoint" for the first registry. Additionally, the # `aws ecr get-login` command returns a `docker login` command for each registry ID # passed in. Because of these factors we'll do our processing on a single registry. response = if !isempty(registry_id) @mock get_authorization_token(config, Dict("registryIds" => [registry_id])) else @mock get_authorization_token(config) end authorization_data = first(response["authorizationData"]) token = String(base64decode(authorization_data["authorizationToken"])) username, password = split(token, ':') endpoint = authorization_data["proxyEndpoint"] return `docker login -u $username -p $password $endpoint` end function get_login(registry_id::Integer; config::AWSConfig=global_aws_config()) return get_login(lpad(registry_id, 12, '0'); config=config) end end # ECR
AWSTools
https://github.com/JuliaCloud/AWSTools.jl.git
[ "MIT" ]
2.3.0
842c0e8cb146524ffa5caf097e3014ab45b441d9
code
1662
""" timeout(f::Function, seconds::Real) -> Union{Some,Nothing} Executes the provided function `f` and returns the result wrapped in a `Some`. If the given function takes longer than `seconds` the function is terminated and `nothing` is returned. Note that the timeout will only work correctly if the called function `f` yields which will occur automatically if performing an I/O operation. """ function timeout(f::Function, seconds::Real) result = nothing c = Condition() try # Execute the given function as a task so we can interrupt it if necessary t = @async begin result = Some(f()) notify(c) end # Create a timeout task which aborts the wait early if we hit the timeout. # Note: We use an async task here to ensure when `f` finishes before the timeout it # is not blocked by the timer. @async begin # Note: The `pollint` will may cause abort events to occur after the specified # timeout. e.g. if `seconds = 1.5` then the abort would occur at 2 seconds. timedwait(float(seconds); pollint=1.0) do istaskdone(t) end notify(c) end wait(c) # Kill the function task if it is still executing istaskdone(t) || @async Base.throwto(t, InterruptException()) wait(t) catch e # Unwrap the TaskFailedException if VERSION >= v"1.3.0-alpha.110" && e isa TaskFailedException e = e.task.exception end # Ignore the kill exception e isa InterruptException || rethrow(e) end return result end
AWSTools
https://github.com/JuliaCloud/AWSTools.jl.git
[ "MIT" ]
2.3.0
842c0e8cb146524ffa5caf097e3014ab45b441d9
code
784
using AWSTools.EC2: instance_metadata, instance_availability_zone, instance_region @testset "EC2" begin @testset "instance_metadata" begin r = HTTP.Response("{}") # Instance identity document is JSON apply(instance_metadata_patch(r)) do @test instance_metadata("/latest/dynamic/instance-identity/document") == "{}" end end @testset "instance_availability_zone" begin r = HTTP.Response("us-east-1a") apply(instance_metadata_patch(r)) do @test instance_availability_zone() == "us-east-1a" end end @testset "instance_region" begin r = HTTP.Response("us-east-1a") apply(instance_metadata_patch(r)) do @test instance_region() == "us-east-1" end end end
AWSTools
https://github.com/JuliaCloud/AWSTools.jl.git
[ "MIT" ]
2.3.0
842c0e8cb146524ffa5caf097e3014ab45b441d9
code
15264
using AWS using Base: CmdRedirect using Base64 using Dates: datetime2unix, now const invalid_access_key = "ThisIsMyInvalidAccessKey" const invalid_secret_key = "ThisIsMyInvalidSecretKey" function get_auth(config::AWSConfig; params::AbstractDict=Dict()) id = lpad(!haskey(params, "registryIds") ? "" : first(params["registryIds"]), 12, '0') return Dict( "authorizationData" => [ Dict( "authorizationToken" => base64encode("AWS:password"), "proxyEndpoint" => "https://$(id).dkr.ecr.us-east-1.amazonaws.com", ), ], ) end get_caller_identity_patch = @patch function AWSTools.get_caller_identity() account_id = join(rand(0:9, 12), "") return Dict( "GetCallerIdentityResult" => Dict( Dict( "Account" => account_id, "Arn" => "arn:aws:iam::$account_id:user/UserName", "UserId" => join(rand('A':'Z', 21), ""), ), ), ) end sts_assume_role = @patch function AWSTools.STS.assume_role( role_arn, role_session_name; aws_config ) return Dict( "AssumeRoleResult" => Dict( "Credentials" => Dict( "AccessKeyId" => "TESTACCESSKEYID", "SecretAccessKey" => "TESTSECRETACEESSKEY", "SessionToken" => "TestSessionToken", "Expiration" => "2021-11-03T16:37:10Z", ), ), ) end function instance_metadata_patch(result) @patch HTTP.get(args...; kwargs...) = result end get_authorization_token_patch = @patch function AWSTools.ECR.get_authorization_token( config::AWSConfig, params::AbstractDict ) return get_auth(config; params=params) end get_authorization_token_no_param_patch = @patch function AWSTools.ECR.get_authorization_token( config::AWSConfig ) return get_auth(config) end describe_stacks_patch = @patch function AWSTools.CloudFormation.describe_stacks( config, params ) responses = Dict( Dict("StackName" => "stackname", "return_raw" => true) => """ <DescribeStacksResponse xmlns="http://cloudformation.amazonaws.com/doc/2010-05-15/"> <DescribeStacksResult> <Stacks> <member> <StackId>Stack Id</StackId> <StackName>Stack Name</StackName> <Description>Stack Description</Description> </member> </Stacks> </DescribeStacksResult> </DescribeStacksResponse> """, Dict("StackName" => "1-stack-output-stackname", "return_raw" => true) => """ <DescribeStacksResponse xmlns="http://cloudformation.amazonaws.com/doc/2010-05-15/"> <DescribeStacksResult> <Stacks> <member> <Outputs> <member> <OutputKey>TestBucketArn1</OutputKey> <OutputValue>arn:aws:s3:::test-bucket-1</OutputValue> </member> </Outputs> <StackId>Stack Id</StackId> <StackName>Stack Name</StackName> <Description>Stack Description</Description> </member> </Stacks> </DescribeStacksResult> </DescribeStacksResponse> """, Dict("StackName" => "multiple-stack-outputs-stackname", "return_raw" => true) => """ <DescribeStacksResponse xmlns="http://cloudformation.amazonaws.com/doc/2010-05-15/"> <DescribeStacksResult> <Stacks> <member> <Outputs> <member> <OutputKey>TestBucketArn1</OutputKey> <OutputValue>arn:aws:s3:::test-bucket-1</OutputValue> </member> <member> <OutputKey>TestBucketArn2</OutputKey> <OutputValue>arn:aws:s3:::test-bucket-2</OutputValue> </member> </Outputs> <StackId>Stack Id</StackId> <StackName>Stack Name</StackName> <Description>Stack Description</Description> </member> </Stacks> </DescribeStacksResult> </DescribeStacksResponse> """, Dict("StackName" => "empty-value", "return_raw" => true) => """ <DescribeStacksResponse xmlns="http://cloudformation.amazonaws.com/doc/2010-05-15/"> <DescribeStacksResult> <Stacks> <member> <Outputs> <member> <OutputKey>ParquetConversionTriggerName</OutputKey> <OutputValue></OutputValue> </member> </Outputs> <StackId>Stack Id</StackId> <StackName>Stack Name</StackName> <Description>Stack Description</Description> </member> </Stacks> </DescribeStacksResult> </DescribeStacksResponse> """, Dict("StackName" => "export", "return_raw" => true) => """ <DescribeStacksResponse xmlns="http://cloudformation.amazonaws.com/doc/2010-05-15/"> <DescribeStacksResult> <Stacks> <member> <Outputs> <member> <Description>Exported output for use in other stacks</Description> <ExportName>ExportedKey</ExportName> <OutputKey>Key</OutputKey> <OutputValue>Value</OutputValue> </member> </Outputs> <StackId>Stack Id</StackId> <StackName>Stack Name</StackName> <Description>Stack Description</Description> </member> </Stacks> </DescribeStacksResult> </DescribeStacksResponse> """, ) # So we can test that we get an error using the invalid access and secret keys access_key = config.credentials.access_key_id secret_key = config.credentials.secret_key if access_key == invalid_access_key && secret_key == invalid_secret_key throw( AWSException( HTTP.StatusError( 403, "", "", HTTP.Messages.Response( 403, """ <ErrorResponse xmlns="http://cloudformation.amazonaws.com/doc/2010-05-15/"> <Error> <Type>Sender</Type> <Code>InvalidClientTokenId</Code> <Message>The security token included in the request is invalid.</Message> </Error> <RequestId>cff5beb8-4b7b-11e9-9c2b-43c18f6078dc</RequestId> </ErrorResponse> """, ), ), ), ) else return responses[params] end end function throttle_patch(allow) describe_stacks_throttle_count = 0 @patch function AWSTools.CloudFormation.describe_stacks(config, params) describe_stacks_throttle_count += 1 if !(describe_stacks_throttle_count in allow) error_message = """ <ErrorResponse xmlns="http://cloudformation.amazonaws.com/doc/2010-05-15/"> <Error> <Type>Sender</Type> <Code>Throttling</Code> <Message>Rate exceeded</Message> </Error> <RequestId>d0c477ac-f267-11e8-9d2b-93e3aa6368c5</RequestId> </ErrorResponse> """ response = HTTP.Messages.Response(400, error_message) http_error = HTTP.ExceptionRequest.StatusError(400, "", "", response) throw(AWSException(http_error)) end responses = Dict( Dict("StackName" => "stackname", "return_raw" => true) => """ <DescribeStacksResponse xmlns="http://cloudformation.amazonaws.com/doc/2010-05-15/"> <DescribeStacksResult> <Stacks> <member> <StackId>Stack Id</StackId> <StackName>Stack Name</StackName> <Description>Stack Description</Description> <ThrottleCount>$describe_stacks_throttle_count</ThrottleCount> </member> </Stacks> </DescribeStacksResult> </DescribeStacksResponse> """, ) return responses[params] end end
AWSTools
https://github.com/JuliaCloud/AWSTools.jl.git
[ "MIT" ]
2.3.0
842c0e8cb146524ffa5caf097e3014ab45b441d9
code
4813
using AWS using AWS: AWSExceptions.AWSException using AWSTools using Dates using Documenter using HTTP using Memento using Mocking using OrderedCollections: OrderedDict using Test import AWSTools.Docker using AWSTools: account_id using AWSTools.CloudFormation: raw_stack_description, stack_output using AWSTools.EC2: instance_availability_zone, instance_region using AWSTools.ECR: get_login Memento.config!("debug"; fmt="[{level} | {name}]: {msg}") # Need this so that submodules are able to use the debug log level setlevel!(getlogger(AWSTools), "debug") Mocking.activate() include("patch.jl") """ describe_stack_string(throttle_count::Integer=0) -> String Returns the expected xml string for CloudFormation tests. Pass in a throttle count for throttling. """ function describe_stack_string(throttle_count::Integer=0) result = """ <DescribeStacksResponse xmlns="http://cloudformation.amazonaws.com/doc/2010-05-15/"> <DescribeStacksResult> <Stacks> <member> <StackId>Stack Id</StackId> <StackName>Stack Name</StackName> <Description>Stack Description</Description> $(throttle_count > 0 ? "<ThrottleCount>$throttle_count</ThrottleCount>" : "") </member> </Stacks> </DescribeStacksResult> </DescribeStacksResponse> """ return replace(result, r"^\s*\n"m => "") end # TODO: Include in Base function Base.convert(::Type{Vector{String}}, cmd::Cmd) cmd.exec end @testset "AWSTools Tests" begin include("timeout.jl") include("EC2.jl") @testset "account_id" begin apply(get_caller_identity_patch) do @test occursin(r"^\d{12}$", account_id()) end end @testset "assume_role" begin apply(sts_assume_role) do result = AWSTools.assume_role("TestArn") @test isa(result.credentials, AWSCredentials) @test isa(result.credentials.renew, Function) end end @testset "CloudFormation" begin apply(describe_stacks_patch) do @testset "raw_stack_description" begin resp = raw_stack_description("stackname") @test resp == describe_stack_string() @test_throws AWSException begin creds = AWSCredentials(invalid_access_key, invalid_secret_key) raw_stack_description("stackname"; config=AWSConfig(; creds=creds)) end end @testset "stack_output" begin outputs = stack_output("stackname") @test outputs == Dict() outputs = stack_output("1-stack-output-stackname") @test outputs == Dict("TestBucketArn1"=>"arn:aws:s3:::test-bucket-1") outputs = stack_output("multiple-stack-outputs-stackname") @test outputs == Dict( "TestBucketArn1" => "arn:aws:s3:::test-bucket-1", "TestBucketArn2" => "arn:aws:s3:::test-bucket-2", ) # Empty output values outputs = stack_output("empty-value") @test outputs == Dict( "ParquetConversionTriggerName" => "", ) outputs = stack_output("export") @test outputs == Dict("Key" => "Value") end end end @testset "raw_stack_description throttling" begin allow = [1, 3, 5, 7, 8, 11, 13, 14, 15, 16] apply(throttle_patch(allow)) do for i in allow @test_skip raw_stack_description("stackname") == describe_stack_string(i) end end end @testset "ECR" begin @testset "Basic login" begin apply(get_authorization_token_no_param_patch) do docker_login = get_login() @test docker_login == `docker login -u AWS -p password https://000000000000.dkr.ecr.us-east-1.amazonaws.com` end end @testset "Login specifying registry ID" begin apply(get_authorization_token_patch) do docker_login = get_login(1) @test docker_login == `docker login -u AWS -p password https://000000000001.dkr.ecr.us-east-1.amazonaws.com` end end end @testset "Online Tests" begin @testset "ECR" begin command = convert(Vector{String}, get_login()) @test command[1] == "docker" @test command[2] == "login" @test command[3] == "-u" @test command[4] == "AWS" @test command[5] == "-p" @test length(command) == 7 end end doctest(AWSTools) end
AWSTools
https://github.com/JuliaCloud/AWSTools.jl.git
[ "MIT" ]
2.3.0
842c0e8cb146524ffa5caf097e3014ab45b441d9
code
1345
using AWSTools: timeout @testset "timeout" begin # Ensure that timeout is compiled for elapsed time tests timeout(() -> 0, 1) @testset "finish" begin secs = @elapsed begin result = timeout(() -> 0, 1) end @test result == Some(0) @test secs < 0.2 # Should execute almost as fast as calling the function directly end @testset "abort" begin secs = @elapsed begin result = timeout(1) do sleep(5) error("unexpected error") end end @test result === nothing @test 1 <= secs < 5 end @testset "return nothing" begin secs = @elapsed begin result = timeout(() -> nothing, 1) end @test result == Some(nothing) @test secs < 1 @test secs < 0.2 # Should execute almost as fast as calling the function directly end @testset "exception" begin local exception secs = @elapsed begin try timeout(() -> error("function error"), 5) catch e exception = e end end @test exception == ErrorException("function error") @test secs < 5 @test secs < 0.2 # Should execute almost as fast as calling the function directly end end
AWSTools
https://github.com/JuliaCloud/AWSTools.jl.git
[ "MIT" ]
2.3.0
842c0e8cb146524ffa5caf097e3014ab45b441d9
docs
161
# AWSTools [![build status](https://github.com/JuliaCloud/AWS.jl/workflows/CI/badge.svg)](https://github.com/JuliaCloud/AWSTools.jl/actions?query=workflow%3ACI)
AWSTools
https://github.com/JuliaCloud/AWSTools.jl.git
[ "MIT" ]
2.3.0
842c0e8cb146524ffa5caf097e3014ab45b441d9
docs
1345
# AWSTools AWSTools provides several helper methods for working with AWSSDK.jl from julia. ## Installation ```julia julia> Pkg.add("AWSTools.jl") ``` You will also need to have the proper IAM permissions for the actions you wish to perform. Currently the permissions AWSTools requires (if run in it's entirety) are: - cloudformation:DescribeStacks - ecr:GetAuthorizationToken - s3:GetObject - s3:ListBucket - s3:PutObject - s3:DeleteObject ## Basic Usage This example uses the Docker module directly and the ECR module indirectly. See the API for other uses of AWSTools. ```julia julia> using AWSTools julia> using AWSTools.Docker julia> Docker.login() WARNING! Using --password via the CLI is insecure. Use --password-stdin. Login Succeeded true ``` ## API ```@docs AWSTools.assume_role ``` ### CloudFormation ```@docs AWSTools.CloudFormation.raw_stack_description(::AbstractString) AWSTools.CloudFormation.stack_output(::AbstractString) ``` ### Docker ```@docs AWSTools.Docker.login() AWSTools.Docker.pull(::AbstractString) AWSTools.Docker.push(::AbstractString) AWSTools.Docker.build(::AbstractString, ::AbstractString) ``` ### ECR ```@docs AWSTools.ECR.get_login ``` ### EC2 ```@docs AWSTools.EC2.instance_metadata(::AbstractString) AWSTools.EC2.instance_availability_zone() AWSTools.EC2.instance_region() ```
AWSTools
https://github.com/JuliaCloud/AWSTools.jl.git
[ "MIT" ]
0.2.0
5666b8b2ce833fb6502db9ddba352f9e915f44b2
code
1360
module RemoteSemaphores export RemoteSemaphore, acquire, release using Base: Semaphore, acquire, release using Distributed """ RemoteSemaphore(n::Int, pid=myid()) A semaphore living on a specific process. Do not attempt to fetch the future to a different process and use it there, as that will be an isolated, unsynced copy of the semaphore. """ struct RemoteSemaphore n::Int # stored for printing only rref::Future function RemoteSemaphore(n::Integer, pid=myid()) sem = Semaphore(n) fut = Future(pid) put!(fut, sem) return new(n, fut) end end function Base.acquire(rsem::RemoteSemaphore) fut = rsem.rref loc = fut.where remotecall_wait(loc) do sem = fetch(fut) acquire(sem) end return nothing end function Base.release(rsem::RemoteSemaphore) fut = rsem.rref loc = fut.where remotecall_wait(loc) do sem = fetch(fut) release(sem) end return nothing end function Base.show(io::IO, rsem::RemoteSemaphore) print(io, typeof(rsem), '(', rsem.n, ", pid=", rsem.rref.where, ')') end # expensive, easily out of sync, for testing only function _current_count(rsem::RemoteSemaphore) fut = rsem.rref loc = fut.where return remotecall_fetch(loc) do sem = fetch(fut) return sem.curr_cnt end end end
RemoteSemaphores
https://github.com/invenia/RemoteSemaphores.jl.git
[ "MIT" ]
0.2.0
5666b8b2ce833fb6502db9ddba352f9e915f44b2
code
6176
using RemoteSemaphores using RemoteSemaphores: _current_count using Test using Dates using Distributed include("utils.jl") @testset "RemoteSemaphores.jl" begin @testset "Single Process" begin @test_throws ArgumentError RemoteSemaphore(0) rsem = RemoteSemaphore(2) @test _current_count(rsem) == 0 @test string(rsem) == "$(typeof(rsem))(2, pid=$(myid()))" try asynctimedwait(1.0; kill=true) do release(rsem) end @test "Expected error but no error thrown" == nothing catch err @test err isa RemoteException if VERSION >= v"1.2.0-DEV.28" expected = ErrorException @test err.captured.ex isa expected @test occursin("release count must match acquire count", err.captured.ex.msg) else expected = AssertionError @test err.captured.ex isa expected end if !isa(err, RemoteException) || !isa(err.captured.ex, expected) rethrow(err) end end @test asynctimedwait(1.0; kill=true) do acquire(rsem) end @test _current_count(rsem) == 1 @test asynctimedwait(1.0; kill=true) do acquire(rsem) end @test _current_count(rsem) == 2 acquired = false @test asynctimedwait(1.0) do acquire(rsem) acquired = true end == false @test !acquired @test _current_count(rsem) == 2 @test asynctimedwait(1.0; kill=true) do release(rsem) end @test acquired @test _current_count(rsem) == 2 @test asynctimedwait(10.0; kill=true) do @sync for i = 1:100 @async (isodd(i) ? acquire(rsem) : release(rsem)) end end @test _current_count(rsem) == 2 end @testset "Multiple Processes" begin @testset "Simple remote" begin worker_pid = addprocs(1)[1] @everywhere using RemoteSemaphores @everywhere include("utils.jl") rsem = RemoteSemaphore(2, worker_pid) @test _current_count(rsem) == 0 @test string(rsem) == "$(typeof(rsem))(2, pid=$worker_pid)" try asynctimedwait(1.0; kill=true) do release(rsem) end @test "Expected error but no error thrown" == nothing catch err @test err isa RemoteException if VERSION >= v"1.2.0-DEV.28" expected = ErrorException @test err.captured.ex isa expected @test occursin("release count must match acquire count", err.captured.ex.msg) else expected = AssertionError @test err.captured.ex isa expected end if !isa(err, RemoteException) || !isa(err.captured.ex, expected) rethrow(err) end end @test asynctimedwait(1.0; kill=true) do acquire(rsem) end @test _current_count(rsem) == 1 @test asynctimedwait(1.0; kill=true) do acquire(rsem) end @test _current_count(rsem) == 2 acquired = false @test asynctimedwait(1.0) do acquire(rsem) acquired = true end == false @test !acquired @test _current_count(rsem) == 2 @test asynctimedwait(1.0; kill=true) do release(rsem) end @test acquired @test _current_count(rsem) == 2 @test asynctimedwait(10.0; kill=true) do @sync for i = 1:100 @async (isodd(i) ? acquire(rsem) : release(rsem)) end end @test _current_count(rsem) == 2 end @testset "Multiple processes" begin addprocs(3 - nprocs()) worker1_pid, worker2_pid = workers() @everywhere using RemoteSemaphores @everywhere using RemoteSemaphores: _current_count @everywhere include("utils.jl") rsem = RemoteSemaphore(3, worker1_pid) @test _current_count(rsem) == 0 @test (@fetchfrom worker1_pid _current_count(rsem)) == 0 @test (@fetchfrom worker2_pid _current_count(rsem)) == 0 @test asynctimedwait(10.0; kill=true) do acquire(rsem) end @test _current_count(rsem) == 1 @test (@fetchfrom worker1_pid _current_count(rsem)) == 1 @test (@fetchfrom worker2_pid _current_count(rsem)) == 1 @test @fetchfrom worker2_pid asynctimedwait(1.0; kill=true) do acquire(rsem) end @test _current_count(rsem) == 2 @test (@fetchfrom worker1_pid _current_count(rsem)) == 2 @test (@fetchfrom worker2_pid _current_count(rsem)) == 2 @test @fetchfrom worker1_pid asynctimedwait(1.0; kill=true) do acquire(rsem) end @test _current_count(rsem) == 3 @test (@fetchfrom worker1_pid _current_count(rsem)) == 3 @test (@fetchfrom worker2_pid _current_count(rsem)) == 3 acquired1 = false @test asynctimedwait(10.0) do acquire(rsem) acquired1 = true end == false acquired2 = Future() @test @fetchfrom worker1_pid begin asynctimedwait(10.0) do acquire(rsem) put!(acquired2, true) end end == false acquired3 = Future() @test @fetchfrom worker2_pid begin asynctimedwait(10.0) do acquire(rsem) put!(acquired3, true) end end == false conditions_hit() = acquired1 + isready(acquired2) + isready(acquired3) sleep(10) @test conditions_hit() == 0 @test asynctimedwait(10.0; kill=true) do release(rsem) end sleep(2) @test conditions_hit() == 1 @test asynctimedwait(10.0; kill=true) do release(rsem) end sleep(2) @test conditions_hit() == 2 @test asynctimedwait(10.0; kill=true) do release(rsem) end sleep(2) @test conditions_hit() == 3 @test acquired1 @test isready(acquired2) @test isready(acquired3) end end end
RemoteSemaphores
https://github.com/invenia/RemoteSemaphores.jl.git
[ "MIT" ]
0.2.0
5666b8b2ce833fb6502db9ddba352f9e915f44b2
code
539
struct TimeoutException duration end function Base.showerror(io::IO, te::TimeoutException) print(io, "TimeoutException: Operation did not finish in ", te.duration) if !isa(te.duration, Period) print(io, " seconds") end end function asynctimedwait(fn, secs; kill=false) t = @async fn() timedwait(() -> istaskdone(t), secs) if istaskdone(t) fetch(t) return true else if kill Base.throwto(t, TimeoutException(secs)) end return false end end
RemoteSemaphores
https://github.com/invenia/RemoteSemaphores.jl.git
[ "MIT" ]
0.2.0
5666b8b2ce833fb6502db9ddba352f9e915f44b2
docs
967
# RemoteSemaphores [![Build Status](https://travis-ci.com/invenia/RemoteSemaphores.jl.svg?branch=master)](https://travis-ci.com/invenia/RemoteSemaphores.jl) [![Build Status](https://ci.appveyor.com/api/projects/status/github/invenia/RemoteSemaphores.jl?svg=true)](https://ci.appveyor.com/project/invenia/RemoteSemaphores-jl) [![CodeCov](https://codecov.io/gh/invenia/RemoteSemaphores.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/invenia/RemoteSemaphores.jl) ## Documentation ```julia RemoteSemaphore(n::Int, pid=myid()) ``` A `RemoteSemaphore` is a [counting semaphore](https://www.quora.com/What-is-a-counting-semaphore) that lives on a particular process in order to control access to a resource from multiple processes. It is implemented using the unexported `Base.Semaphore` stored inside a `Future` which is only accessed on the process it was initialized on. Like `Base.Semaphore`, it implements `acquire` and `release`, and is not thread-safe.
RemoteSemaphores
https://github.com/invenia/RemoteSemaphores.jl.git
[ "MIT" ]
1.0.1
5ed2f06644b4cdc96f25b2f8527cebde1ec77506
code
267
module InteractiveErrorsCthulhuExt import Cthulhu import InteractiveErrors InteractiveErrors.has_cthulhu() = true InteractiveErrors.ascend(mi::Core.MethodInstance) = Cthulhu.ascend(mi) InteractiveErrors.descend(mi::Core.MethodInstance) = Cthulhu.descend(mi) end
InteractiveErrors
https://github.com/MichaelHatherly/InteractiveErrors.jl.git
[ "MIT" ]
1.0.1
5ed2f06644b4cdc96f25b2f8527cebde1ec77506
code
225
module InteractiveErrorsDebuggerExt import Debugger import InteractiveErrors InteractiveErrors.has_debugger() = true InteractiveErrors.breakpoint(file::AbstractString, line::Integer) = Debugger.breakpoint(file, line) end
InteractiveErrors
https://github.com/MichaelHatherly/InteractiveErrors.jl.git
[ "MIT" ]
1.0.1
5ed2f06644b4cdc96f25b2f8527cebde1ec77506
code
389
module InteractiveErrorsJETExt import JET import InteractiveErrors InteractiveErrors.has_jet() = true function InteractiveErrors.report_call(mi::Core.MethodInstance) func = Base.tuple_type_head(mi.specTypes).instance sig = Base.tuple_type_tail(mi.specTypes) result = JET.report_call(func, sig) @info "Press return to continue." readline() return result end end
InteractiveErrors
https://github.com/MichaelHatherly/InteractiveErrors.jl.git
[ "MIT" ]
1.0.1
5ed2f06644b4cdc96f25b2f8527cebde1ec77506
code
560
module InteractiveErrorsJuliaFormatterExt import JuliaFormatter import InteractiveErrors import PrecompileTools InteractiveErrors.has_juliaformatter() = true function InteractiveErrors.format_julia_source(source::String) try return JuliaFormatter.format_text(source) catch err @debug "failed to format source" err source return source end end PrecompileTools.@compile_workload begin InteractiveErrors.format_julia_source( read(joinpath(@__DIR__, "..", "src", "InteractiveErrors.jl"), String), ) end end
InteractiveErrors
https://github.com/MichaelHatherly/InteractiveErrors.jl.git
[ "MIT" ]
1.0.1
5ed2f06644b4cdc96f25b2f8527cebde1ec77506
code
780
module InteractiveErrorsOhMyREPLExt import OhMyREPL import InteractiveErrors import PrecompileTools InteractiveErrors.has_ohmyrepl() = true function InteractiveErrors.highlight(source::String) O = OhMyREPL tokens = collect(O.tokenize(source)) crayons = fill(O.Crayon(), length(tokens)) O.Passes.SyntaxHighlighter.SYNTAX_HIGHLIGHTER_SETTINGS(crayons, tokens, 0, source) io = IOBuffer() for (token, crayon) in zip(tokens, crayons) print(io, crayon) print(io, O.untokenize(token, source)) print(io, O.Crayon(reset = true)) end return String(take!(io)) end PrecompileTools.@compile_workload begin InteractiveErrors.highlight( read(joinpath(@__DIR__, "..", "src", "InteractiveErrors.jl"), String), ) end end
InteractiveErrors
https://github.com/MichaelHatherly/InteractiveErrors.jl.git
[ "MIT" ]
1.0.1
5ed2f06644b4cdc96f25b2f8527cebde1ec77506
code
13193
module InteractiveErrors using FoldingTrees using REPL, REPL.TerminalMenus, InteractiveUtils, IterTools import PackageExtensionCompat, PrecompileTools export toggle, current_theme, set_theme!, reset_theme!, adjust_theme! # # Themes. # const DEFAULT_THEME = ( function_name = (bold = true,), directory = (color = :light_black,), filename = (color = :magenta, bold = true), line_number = (color = :green, bold = true), user_stack = (color = :green, bold = true), system_stack = (color = :red, bold = true), stdlib_module = (color = :yellow,), base_module = (color = :blue,), core_module = (color = :light_black,), package_module = (color = :cyan, bold = true), unknown_module = (color = :red,), inlined_frames = (color = :light_black,), toplevel_frames = (color = :light_black,), repeated_frames = (color = :red,), file_contents = (color = :light_black,), signature = (color = :light_black, format = true, highlight = true), source = (color = :normal, bold = true, highlight = true), line_range = (before = 0, after = 5), charset = :unicode, ) const THEME = Ref{Any}(DEFAULT_THEME) current_theme() = THEME[] set_theme!(nt::NamedTuple) = THEME[] = nt set_theme!(; kws...) = set_theme!(_nt(kws)) _nt(kws) = NamedTuple{Tuple(keys(kws))}(values(kws)) reset_theme!() = set_theme!(DEFAULT_THEME) adjust_theme!(nt::NamedTuple) = set_theme!(merge(current_theme(), nt)) adjust_theme!(; kws...) = adjust_theme!(_nt(kws)) get_theme(key) = get(NamedTuple, current_theme(), key) get_theme(key, default) = get(current_theme(), key, default) function style(str; kws...) sprint(; context = :color => true) do io printstyled(io, str; bold = get(kws, :bold, false), color = get(kws, :color, :normal)) end end style(str, key::Symbol) = style(str; get_theme(key)...) # # Stackframe Wrapping. # struct StackFrameWrapper sf::StackTraces.StackFrame n::Int StackFrameWrapper(tuple) = new(tuple...) end function Base.show(io::IO, s::StackFrameWrapper) func = style(s.sf.func, :function_name) file = rewrite_path(s.sf.file) dir, file = dirname(file), basename(file) file = style(file, :filename) dir = style(joinpath(dir, ""), :directory) line = style(s.sf.line, :line_number) repeated = s.n > 1 ? style("x $(s.n)", :repeated_frames) : "" print(io, strip("$func $dir$file:$line $repeated")) end function rewrite_path(path) fn(path, replacer) = replace(String(path), replacer; count = 1) path = fn(path, normpath(Sys.BUILD_STDLIB_PATH) => "@stdlib") path = fn(path, normpath(Sys.STDLIB) => "@stdlib") path = fn(path, homedir() => "~") return path end function find_source(file) # Binary versions of Julia have the wrong stdlib path, fix it. file = replace(string(file), normpath(Sys.BUILD_STDLIB_PATH) => Sys.STDLIB; count = 1) return Base.find_source_file(file) end # # Explorer. # struct CapturedError err::Any bt::Any end Base.show(io::IO, ce::CapturedError) = showerror(io, ce.err, ce.bt) explore(err::CapturedError) = explore(stdout, err) function explore(io::IO, err::CapturedError; interactive = true) # Give a printout of the actual error message prior to launching tree # explorer since it's probably useful to have. println(io, sprint(showerror, err.err, context = :color => true)) # Use the default cleaning functionality from Base. No need to reinvent. clean = Base.process_backtrace(err.bt) wrapped = StackFrameWrapper.(clean) toplevel = findfirst(s -> StackTraces.is_top_level_frame(s.sf), wrapped) toplevel = toplevel === nothing ? length(wrapped) : toplevel user_frames = wrapped[1:toplevel] system_frames = wrapped[toplevel+1:end] root = Node{Any}("(stacktrace)") function make_nodes(root_node, frames; fold = false) for (nth, frame_group) in enumerate(aggregate_modules(frames)) m = module_of(first(frame_group)) if m === :unknown for frame in frame_group fold!(Node{Any}(frame, root_node)) end else name = m === :inlined ? style("[inlined]", :inlined_frames) : m === :toplevel ? style("[top-level]", :toplevel_frames) : is_from_stdlib(m) ? style("$(m)", :stdlib_module) : is_from_base(m) ? style("$(m)", :base_module) : is_from_core(m) ? style("$(m)", :core_module) : is_from_package(m) ? style("$(m)", :package_module) : style("$(m)", :unknown_module) node = Node{Any}(name, root_node) for frame in frame_group current = Node{Any}(frame, node) fold!(current) # Formatted signature for the frame: if !StackTraces.is_top_level_frame(frame.sf) let lines = _formatted_signature(frame) if !isempty(lines) sig = Node{Any}(style("signature", :signature), current) fold!(sig) for line in lines Node{Any}(line, sig) end end end end # Source code for the frame: let lines = _lines_around(frame) if !isempty(lines) src = Node{Any}(style("source", :source), current) for line in lines Node{Any}(line, src) end end end end # Hide any of the following by default: if m in (:inlined, :toplevel) || is_from_stdlib(m) || is_from_base(m) || is_from_core(m) || fold fold!(node) end # Always open up the very first node, unless it's a toplevel. if nth === 1 && m !== :toplevel unfold!(node) end end end end user_nodes = Node{Any}(style("(user)", :user_stack), root) make_nodes(user_nodes, user_frames) system_nodes = Node{Any}(style("(system)", :system_stack), root) make_nodes(system_nodes, system_frames; fold = true) fold!(system_nodes) menu = TreeMenu(root; dynamic = true, maxsize = 30) result = interactive ? TerminalMenus.request(menu; cursor = 3) : user_nodes result === nothing && return actions = [ "clipboard" => () -> (maybe_clipboard(sprint(showerror, err.err, err.bt[1:toplevel])); nothing), "print" => () -> (showerror(io, err.err, err.bt[1:toplevel]); nothing), "stacktrace" => () -> clean, "exception" => () -> err.err, "backtrace" => () -> err.bt, ] data = result.data extras = [] if isa(data, StackFrameWrapper) file, line = data.sf.file, data.sf.line file = find_source(file) if file !== nothing && isfile(file) file, line extras = ["edit" => () -> (edit(file, line); nothing), "retry" => () -> true] has_debugger() && push!(extras, "breakpoint" => () -> breakpoint(file, line)) push!(extras, "less" => () -> (less(file, line); nothing)) actions = vcat(extras, actions) end if isdefined(data.sf, :linfo) mi = data.sf.linfo if isa(mi, Core.MethodInstance) extras = [] if has_cthulhu() push!(extras, "ascend" => () -> ascend(mi)) push!(extras, "descend" => () -> descend(mi)) end if has_jet() push!(extras, "JET" => () -> report_call(mi)) end actions = vcat(extras, actions) end end end result = interactive ? request(MultiSelectMenu(first.(actions); charset = get_theme(:charset, :unicode))) : collect(1:length(actions)) choice = sort(collect(result)) if !isempty(choice) output = [] for (name, func) in actions[choice] out = func() out === nothing || push!(output, Symbol(name) => out) end isempty(output) || return NamedTuple{Tuple(first.(output))}(last.(output)) end return nothing end function _lines_around(s::StackFrameWrapper) file, line = s.sf.file, s.sf.line file = find_source(file) if file !== nothing && isfile(file) lines = readlines(file) range = get_theme(:line_range) above = max(1, line - get(range, :before, 0)) below = min(line + get(range, :after, 5), length(lines)) highlighter = get(get_theme(:source), :highlight, true) === true ? highlight : s -> style(s, :file_contents) return highlighter.(lines[above:below]) else return String[] end end function _formatted_signature(s::StackFrameWrapper) str = String(rsplit(string(s.sf), " at "; limit = 2)[1]) str = replace(str, "#unused#" => "") formatter = get(get_theme(:signature), :format, true) === true ? format_julia_source : identity highlighter = get(get_theme(:signature), :highlight, true) === true ? highlight : s -> style(s, :file_contents) fmt = highlighter(formatter(str)) return collect(eachline(IOBuffer(fmt))) end # Just give up when there is no clipboard available. function maybe_clipboard(str) try clipboard(str) catch err @warn "Could not find a clipboard." end end rootmodule(m::Module) = m === Base ? m : m === parentmodule(m) ? m : rootmodule(parentmodule(m)) rootmodule(::Any) = nothing modulepath(m::Module) = string(pkgdir(m)) modulepath(other) = "" is_from_stdlib(m) = startswith(modulepath(rootmodule(m)), Sys.STDLIB) is_from_base(m) = rootmodule(m) === Base is_from_core(m) = rootmodule(m) === Core is_from_package(m) = (r = rootmodule(m); !is_from_core(r) && !is_from_base(r) && !is_from_stdlib(r)) module_of(sf) = sf.sf.inlined ? :inlined : sf.sf.func === Symbol("top-level scope") ? :toplevel : isa(sf.sf.linfo, Core.MethodInstance) ? sf.sf.linfo.def.module : :unknown aggregate_modules(stacktrace) = IterTools.groupby(module_of, stacktrace) # # REPL hook. # const ENABLED = Ref(true) """ Turn interactive errors on or off. """ toggle() = ENABLED[] = !ENABLED[] is_toggle_expr(expr) = Meta.isexpr(expr, :call, 1) && expr.args[1] === :toggle is_retry(::Nothing) = false is_retry(nt::NamedTuple) = haskey(nt, :retry) && nt.retry === true maybe_retry(out, expr) = is_retry(out) ? Core.eval(Main, _ast_transforms(expr)) : out function _ast_transforms(ast) if isdefined(Base, :active_repl_backend) for xf in Base.active_repl_backend.ast_transforms ast = Base.invokelatest(xf, ast) end end return ast end function wrap_errors(expr) if ENABLED[] && !is_toggle_expr(expr) quote try $(Expr(:toplevel, expr)) catch e $(maybe_retry)( $(explore)(($CapturedError)(e, catch_backtrace())), $(Expr(:quote, expr)), ) end end else expr end end function setup_repl() # Skip REPL setup if we are precompiling. Avoids warnings in precompilation. ccall(:jl_generating_output, Cint, ()) == 1 && return nothing @async begin done = false for _ = 1:10 if isdefined(Base, :active_repl_backend) backend = Base.active_repl_backend if isdefined(backend, :ast_transforms) pushfirst!(backend.ast_transforms, wrap_errors) done = true break end end sleep(0.5) end done || @warn "Could not start `InteractiveErrors` REPL hook." end end # # Extensions, these get extended in the `/ext` modules. # has_cthulhu(args...) = false ascend(args...) = @warn "`import Cthulhu` to enable `ascend` action." descend(args...) = @warn "`import Cthulhu` to enable `descend` action." has_debugger(args...) = false breakpoint(args...) = @warn "`import Debugger` to enable `breakpoint` action." has_jet(args...) = false report_call(args...) = @warn "`import JET` to enable `report_call` action." has_juliaformatter(args...) = false format_julia_source(source) = source has_ohmyrepl(args...) = false highlight(source) = style(source, :file_contents) # # Module Initialisation. # function __init__() setup_repl() PackageExtensionCompat.@require_extensions end PrecompileTools.@compile_workload begin try div(1, 0) catch error explore(IOBuffer(), CapturedError(error, catch_backtrace()); interactive = false) end end end # module
InteractiveErrors
https://github.com/MichaelHatherly/InteractiveErrors.jl.git
[ "MIT" ]
1.0.1
5ed2f06644b4cdc96f25b2f8527cebde1ec77506
code
3057
using Test, InteractiveErrors @testset "InteractiveErrors" begin IE = InteractiveErrors @test IE.rootmodule(Main) === Main @test IE.rootmodule(Base) === Base @test IE.rootmodule(Core) === Core @test IE.rootmodule(InteractiveErrors) === InteractiveErrors @test IE.rootmodule(Base.Math) === Base @test IE.is_from_stdlib(Test) @test !IE.is_from_base(Test) @test IE.is_from_base(Base) @test !IE.is_from_package(Base) @test IE.is_from_package(InteractiveErrors) @test !IE.is_from_core(InteractiveErrors) @test IE.is_from_core(Core) build = joinpath(normpath(Sys.BUILD_STDLIB_PATH), "Test", "src", "Test.jl") stdlib = joinpath(normpath(Sys.STDLIB), "Test", "src", "Test.jl") package = @__FILE__ @test isfile(InteractiveErrors.find_source(build)) @test isfile(InteractiveErrors.find_source(stdlib)) @test isfile(InteractiveErrors.find_source(package)) @test startswith(InteractiveErrors.rewrite_path(build), "@stdlib") @test startswith(InteractiveErrors.rewrite_path(stdlib), "@stdlib") @test isa(IE.wrap_errors(:(1 + 1)), Expr) @test isa(IE.wrap_errors(:(toggle())), Expr) toggle() @test isa(IE.wrap_errors(:(1 + 1)), Expr) @test isa(IE.wrap_errors(:(toggle())), Expr) toggle() @test IE.style("func", :function_name) == "\e[0m\e[1mfunc\e[22m" @test isa(IE.adjust_theme!(function_name = (color = :yellow, bold = false)), NamedTuple) @test IE.style("func", :function_name) == "\e[33mfunc\e[39m" @test isa(IE.current_theme(), NamedTuple) @test IE.maybe_retry((; retry = true), :(true)) @test IE.maybe_retry((; retry = false), :(true)) == (; retry = false) try div(1, 0) catch err ce = IE.CapturedError(err, catch_backtrace()) io = IOBuffer() nt = IE.explore(io, ce; interactive = false) str = String(take!(io)) @test !isempty(str) @test contains(str, "DivideError:") @test isa(nt, NamedTuple) @test collect(keys(nt)) == [:stacktrace, :exception, :backtrace] @test isa(nt.exception, DivideError) @test !isempty(nt.stacktrace) @test !isempty(nt.backtrace) end @test !IE.has_cthulhu() @test !IE.has_debugger() @test !IE.has_jet() @test !IE.has_ohmyrepl() @test !IE.has_juliaformatter() using Cthulhu, Debugger, JET, OhMyREPL, JuliaFormatter @test IE.has_cthulhu() @test IE.has_debugger() @test IE.has_jet() @test IE.has_ohmyrepl() @test IE.has_juliaformatter() try sqrt(-1) catch err ce = IE.CapturedError(err, catch_backtrace()) io = IOBuffer() nt = IE.explore(io, ce; interactive = false) str = String(take!(io)) @test !isempty(str) @test contains(str, "DomainError") @test isa(nt, NamedTuple) @test collect(keys(nt)) == [:stacktrace, :exception, :backtrace] @test isa(nt.exception, DomainError) @test !isempty(nt.stacktrace) @test !isempty(nt.backtrace) end end
InteractiveErrors
https://github.com/MichaelHatherly/InteractiveErrors.jl.git
[ "MIT" ]
1.0.1
5ed2f06644b4cdc96f25b2f8527cebde1ec77506
docs
5229
# InteractiveErrors.jl Interactive error messages for the Julia REPL. ![demo](https://user-images.githubusercontent.com/6144086/113480599-fc0d6280-948c-11eb-9dd2-19fa3a85ff59.gif) ## Installation Requires Julia `1.6+`. ``` julia> using Pkg julia> Pkg.add("InteractiveErrors") ``` Add `using InteractiveErrors` to your `startup.jl` file after `using Revise`. If you don't have that installed yet you should install it. ## Usage Just start using your REPL normally. Once you hit an error you'll be presented with an interactive tree representing your stacktrace which you can explore. To turn interactive errors off and return to using normal stacktraces call `toggle()`. Call `toggle()` again to turn it back on. Press `up` and `down` arrows to move through the stacktrace. Press `space` to fold or unfold the currently selected line. A `+` will appear on folded lines. Press `enter` once finished. If you are on a line that references a particular file then that will present additional options in the next menu. `q` can be pressed to exit back to the REPL. **Note:** a lot of information is hidden inside some of the folded lines and some is completely stripped from the display (such as method arguments). The default choice of information to display is up for discussion. Unfolding a line containing a file and line number will display the immediate lines surrounding it. The second menu offers several actions that can be taken on the selected line. ``` [press: d=done, a=all, n=none] β€’ [ ] ascend [ ] descend [ ] JET [ ] edit [ ] retry [ ] breakpoint [ ] less [ ] clipboard [ ] print [ ] stacktrace [ ] exception [ ] backtrace ``` Press `enter` to choose the currently selected line. More than one can be chosen: - `ascend` (available if `Cthulhu` is loaded) calls `Cthulhu.ascend` on the selected method. - `descend` (available if `Cthulhu` is loaded) calls `Cthulhu.descend` on the selected method. - `JET` (available if `JET` is loaded) calls `JET.report_call` on the selected method. - `edit` opens default editor on the selected file and line. - `retry` runs the code entered in the REPL again. - `breakpoint` (available if `Debugger` is loaded) sets a `Debugger.breakpoint` on the selected file and line. - `less` opens the pager on the selected file and line. - `clipboard` copies the normal Julia stacktrace to the clipboard. Useful for posting bug reports. Don't send the interactive printout as an error message when reporting issues to packages or Julia. - `print` prints out the normal Julia stacktrace to `stdout`. - `stacktrace` returns the stacktrace object. - `exception` returns the exception object that was caught. - `backtrace` returns the *raw* backtrace object. Contains `Ptr`s. Not terribly useful. More than one action can be selected at once. A common combination is `edit` and `retry`. Press `d` (for done) once you're finished making your choices. ## Optional Packages Additional features are available when certain packages are loaded within the REPL session. - `Cthulhu`, provides `ascend` and `descend` options on selected method. - `Debugger`, provides `breakpoint` on selected method. - `JET`, provides `report_call` on selected method. - `JuliaFormatter`, provides syntax formatting for method signatures. - `OhMyREPL`, provides syntax highlighting for source code and method signatures. Depending on the maintenance burden of compatibility with these packages they may in future versions become direct dependencies instead of using `Requires`. ## Themes Most of the default coloring in the stack-tree can be adjusted to the user's liking via a simple theming system. - `current_theme()` returns the currently active theme: a nested `NamedTuple` of customisation options. - `set_theme!` can be used to set your own custom theme that follows the same naming scheme as the default theme. Takes either keyword arguments, or a `NamedTuple`. - `reset_theme!` will reset the theme. - `adjust_theme!` can be used if you only want to make some minor adjustments to the `current_theme`. Takes a `NamedTuple` or keyword arguments that will be `merge`d with the `current_theme`. The default theme is shown below: ``` pairs(::NamedTuple) with 19 entries: :function_name => (bold = true,) :directory => (color = :light_black,) :filename => (color = :magenta, bold = true) :line_number => (color = :green, bold = true) :user_stack => (color = :green, bold = true) :system_stack => (color = :red, bold = true) :stdlib_module => (color = :yellow,) :base_module => (color = :blue,) :core_module => (color = :light_black,) :package_module => (color = :cyan, bold = true) :unknown_module => (color = :red,) :inlined_frames => (color = :light_black,) :toplevel_frames => (color = :light_black,) :repeated_frames => (color = :red,) :file_contents => (color = :light_black,) :signature => (color = :light_black, format = true, highlight = true) :source => (color = :normal, bold = true, highlight = true) :line_range => (before = 0, after = 5) :charset => :unicode ```
InteractiveErrors
https://github.com/MichaelHatherly/InteractiveErrors.jl.git
[ "MIT" ]
0.2.2
e2e045a2aba9da8fadb5b14bf28ae96f58d0883e
code
459
using Documenter, DailyTreasuryYieldCurve makedocs( modules = [DailyTreasuryYieldCurve], format = Documenter.HTML(; prettyurls = get(ENV, "CI", nothing) == "true"), authors = "Tyler Beason", sitename = "DailyTreasuryYieldCurve.jl", pages = Any["Main"=>"index.md"] # strict = true, # clean = true, # checkdocs = :exports, ) deploydocs( repo = "github.com/tbeason/DailyTreasuryYieldCurve.jl.git", push_preview = true )
DailyTreasuryYieldCurve
https://github.com/tbeason/DailyTreasuryYieldCurve.jl.git
[ "MIT" ]
0.2.2
e2e045a2aba9da8fadb5b14bf28ae96f58d0883e
code
4087
module DailyTreasuryYieldCurve using Reexport using EzXML import HTTP @reexport using Dates using Missings @reexport using DataFrames using Interpolations export getyieldcurves export RateInterpolator, createRateInterpolator const DATAFEED = "https://data.treasury.gov/feed.svc/DailyTreasuryYieldCurveRateData" const DATAFEEDREAL = "http://data.treasury.gov/feed.svc/DailyTreasuryRealYieldCurveRateData" # these fields are provided by the feed (as of 20200413) # note that we must use :m1 because :1m is not a valid symbol const COLNAMES = [:id,:date,:m1,:m2,:m3,:m6,:y1,:y2,:y3,:y5,:y7,:y10,:y20,:y30,:y30dup] const COLNAMESREAL = [:id,:date,:y5,:y7,:y10,:y20,:y30] """ getyieldcurves(;real::Bool=false,begdt::Date=Date(1990,1,2),enddt::Date=today()) Download the whole published history of daily US Treasury yield curves from the official data feed. Optionally, pass a filename if you have already downloaded the data, eg. `getyieldcurves(fn::AbstractString)`. By default, gets the nominal yield curve. Pass `realrates=true` to get the real yield curve. The nominal series starts in 1990, while the real series starts in 2003. Returns a `DataFrame`. """ function getyieldcurves(;realrates::Bool=false,begdt::Date=Date(1990,1,2),enddt::Date=today()) startyr=max(year(begdt),1990)-1 endyr=min(year(enddt),year(today()))+1 datefilter = string("?\$filter=","year(NEW_DATE)%20gt%20",startyr,"%20and%20","year(NEW_DATE)%20lt%20",endyr) if realrates h = HTTP.get(string(DATAFEEDREAL,datefilter)) else h = HTTP.get(string(DATAFEED,datefilter)) end thexml = parsexml(String(h.body)) df =_parseyieldcurves(thexml,realrates) filter!(row -> begdt <= row.date <= enddt,df) return df end function getyieldcurves(fn::AbstractString;realrates::Bool=false,begdt::Date=Date(1990,1,2),enddt::Date=today()) thexml = readxml(fn) df =_parseyieldcurves(thexml,realrates) filter!(row -> begdt <= row.date <= enddt,df) return df end """ _parseyieldcurves(thexml,realrates) Parser function for Treasury yield curve data. (unexported) """ function _parseyieldcurves(thexml,realrates) if realrates return _parserealcurves(thexml) else return _parsenominalcurves(thexml) end end function _parsenominalcurves(thexml) r = thexml.root cnod=findall("/*/*/*[position()=7]",r) @assert length(cnod) >= 1 "Rate XML parse error likely." stripsplitstrip(s) = strip.(split(strip(s),"\n")) strarr = map(stripsplitstrip,nodecontent.(cnod)) df=DataFrame(Tuple.(strarr)) @assert nrow(df) >= 1 "Rate XML parse error likely." rename!(df,COLNAMES) select!(df,Not([:id; :y30dup])) for c in COLNAMES[2:end-1] if c == :date df[!,c] = Date.(parse.(DateTime,df[!,c])) else df[!,c] = passmissing(x->parse(Float64,x)).(replace(df[!,c],""=>missing)) end end sort!(df,:date) return df end function _parserealcurves(thexml) r = thexml.root cnod=findall("/*/*/*[position()=7]",r) @assert length(cnod) >= 1 "Rate XML parse error likely." nodestr = nodecontent.(cnod) function splitandfill(s) spl = split(s) L = length(spl) L == length(COLNAMESREAL) && return spl strvec = Vector{eltype(spl)}(undef,length(COLNAMESREAL)) for i in 1:length(COLNAMESREAL) if i <= L strvec[i] = spl[i] else strvec[i] = "" end end return strvec end strarr = splitandfill.(nodestr) df=DataFrame(Tuple.(strarr)) @assert nrow(df) >= 1 "Rate XML parse error likely." rename!(df,COLNAMESREAL) select!(df,Not(:id)) for c in COLNAMESREAL[2:end] if c == :date df[!,c] = Date.(parse.(DateTime,df[!,c])) else df[!,c] = passmissing(x->parse(Float64,x)).(replace(df[!,c],""=>missing)) end end sort!(df,:date) return df end # include additional files include("interp.jl") end # module
DailyTreasuryYieldCurve
https://github.com/tbeason/DailyTreasuryYieldCurve.jl.git
[ "MIT" ]
0.2.2
e2e045a2aba9da8fadb5b14bf28ae96f58d0883e
code
2730
# Treasury uses Act/Act (ICMA) day count convention # unclear how this translates to constant maturities # I use months = 30 days, years = 365 days const DAYSTOMATURITY = [30,60,90,180,365,730,1095,1825,2555,3650,7300,10950] const DAYSTOMATURITYREAL = [1825,2555,3650,7300,10950] const TTM = (;Iterators.zip(DailyTreasuryYieldCurve.COLNAMES[3:end-1],DAYSTOMATURITY)...) const TTMREAL = (;Iterators.zip(DailyTreasuryYieldCurve.COLNAMESREAL[3:end],DAYSTOMATURITYREAL)...) """ RateInterpolator A container for the series of daily yield curve interpolators. Fields: `dates` and `interpolators`, both `Vector`. To interpolate, just call it with the value to interpolate (days to maturity) and the date of the curve. ``` (ri::RateInterpolator)(d::Real,dt::Date) ``` Currently supports only linear interpolation and extrapolation. See [`createRateInterpolator`](@ref) for construction. """ struct RateInterpolator{T} dates::Vector{Date} interpolators::Vector{T} realrates::Bool end function (ri::RateInterpolator)(d::Real,dt::Date) idx = searchsortedlast(ri.dates,dt) return ri.interpolators[idx](d) end """ createRateInterpolator(df;realrates::Bool=false) Preferred method to construct a [`RateInterpolator`](@ref), just pass the `df` that you get from [`getyieldcurves`](@ref). """ function createRateInterpolator(df0;realrates::Bool=false) loc = [!all(ismissing(x) for x in r) for r in eachrow(select(df0,Not(:date)))] # 0 for rows with only missing data df = df0[loc,:] dates = unique(df.date) dfs = DataFrames.stack(df,Not(:date); variable_eltype=Symbol) if realrates dfs.DTM = [TTMREAL[k] for k in dfs.variable] else dfs.DTM = [TTM[k] for k in dfs.variable] end gd = groupby(dfs,:date) rateinterps = [buildsingleinterpolator(g) for g in gd] @assert length(dates) == length(rateinterps) "Number of dates is different than number of daily interpolators." return RateInterpolator(dates,rateinterps,realrates) end """ buildsingleinterpolator(df::AbstractDataFrame) Builds a single (one day) interpolation of the yield curve. Used in `createRateInterpolator`. """ function buildsingleinterpolator(df::AbstractDataFrame) dfdm = dropmissing(df) x = dfdm.DTM y = dfdm.value itp = LinearInterpolation(x,y,extrapolation_bc=Line()) return itp end function Base.show(io::IO, ri::RateInterpolator) itpT = Interpolations.itptype(first(ri.interpolators)) begdt = first(ri.dates) enddt = last(ri.dates) ndays = length(ri.dates) kind = ri.realrates ? "Real" : "Nominal" print(io,"$kind RateInterpolator{$itpT interpolators} starting $begdt and ending $enddt ($ndays days)") end
DailyTreasuryYieldCurve
https://github.com/tbeason/DailyTreasuryYieldCurve.jl.git
[ "MIT" ]
0.2.2
e2e045a2aba9da8fadb5b14bf28ae96f58d0883e
code
999
using DailyTreasuryYieldCurve, Dates using Test testdf = getyieldcurves() @testset "Nominal" begin @test Symbol.(names(testdf)) == DailyTreasuryYieldCurve.COLNAMES[2:end-1] @test testdf[1,:date] == Date(1990,1,2) @test isapprox(testdf[1,:y30],8.0) end @testset "Real" begin testdfr = getyieldcurves(;realrates=true) @test Symbol.(names(testdfr)) == DailyTreasuryYieldCurve.COLNAMESREAL[2:end] @test testdfr[1,:date] == Date(2003,1,2) @test isapprox(testdfr[1,:y5],1.752231) end @testset "Interpolation" begin # testdf = getyieldcurves() testri = createRateInterpolator(testdf) @test isapprox(testri(45,Date(2020,4,13)),0.23) @test isapprox(testri.([30;60],Date(2020,4,13)),[0.17;0.29]) end @testset "Filters" begin # testdf = getyieldcurves() smalltestdf = getyieldcurves(;begdt=Date(2019,1,1),enddt=Date(2019,12,31)) filter!(row->Date(2019,1,1) <= row.date <= Date(2019,12,31),testdf) @test testdf == smalltestdf end
DailyTreasuryYieldCurve
https://github.com/tbeason/DailyTreasuryYieldCurve.jl.git
[ "MIT" ]
0.2.2
e2e045a2aba9da8fadb5b14bf28ae96f58d0883e
code
363
#### #### Coverage summary, printed as "(percentage) covered". #### #### Useful for CI environments that just want a summary (eg a Gitlab setup). #### using Coverage cd(joinpath(@__DIR__, "..", "..")) do covered_lines, total_lines = get_summary(process_folder()) percentage = covered_lines / total_lines * 100 println("($(percentage)%) covered") end
DailyTreasuryYieldCurve
https://github.com/tbeason/DailyTreasuryYieldCurve.jl.git
[ "MIT" ]
0.2.2
e2e045a2aba9da8fadb5b14bf28ae96f58d0883e
code
266
# only push coverage from one bot get(ENV, "TRAVIS_OS_NAME", nothing) == "linux" || exit(0) get(ENV, "TRAVIS_JULIA_VERSION", nothing) == "1.3" || exit(0) using Coverage cd(joinpath(@__DIR__, "..", "..")) do Codecov.submit(Codecov.process_folder()) end
DailyTreasuryYieldCurve
https://github.com/tbeason/DailyTreasuryYieldCurve.jl.git
[ "MIT" ]
0.2.2
e2e045a2aba9da8fadb5b14bf28ae96f58d0883e
docs
2164
# DailyTreasuryYieldCurve.jl ![Lifecycle](https://img.shields.io/badge/lifecycle-experimental-orange.svg)<!-- ![Lifecycle](https://img.shields.io/badge/lifecycle-maturing-blue.svg) ![Lifecycle](https://img.shields.io/badge/lifecycle-stable-green.svg) ![Lifecycle](https://img.shields.io/badge/lifecycle-retired-orange.svg) ![Lifecycle](https://img.shields.io/badge/lifecycle-archived-red.svg) ![Lifecycle](https://img.shields.io/badge/lifecycle-dormant-blue.svg) --> [![Build Status](https://travis-ci.com/tbeason/DailyTreasuryYieldCurve.jl.svg?branch=master)](https://travis-ci.com/tbeason/DailyTreasuryYieldCurve.jl) [![codecov.io](http://codecov.io/github/tbeason/DailyTreasuryYieldCurve.jl/coverage.svg?branch=master)](http://codecov.io/github/tbeason/DailyTreasuryYieldCurve.jl?branch=master) [![Documentation](https://img.shields.io/badge/docs-stable-blue.svg)](https://tbeason.github.io/DailyTreasuryYieldCurve.jl/stable) <!---[![Documentation](https://img.shields.io/badge/docs-master-blue.svg)](https://tbeason.github.io/DailyTreasuryYieldCurve.jl/dev)--> This Julia package does one thing: gets you daily yield curves from the [US Treasury](https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield). The data is served via an XML feed, but this package cleans it up into a `DataFrame` so that you can use it. # Example Add the package via the Julia Package Manager. ```julia ] add DailyTreasuryYieldCurve ``` It is easy to get the historical yield curves: ```julia using DailyTreasuryYieldCurve df_rates = getyieldcurves() df_realrates = getyieldcurves(;realrates=true) ``` You can also build a `RateInterpolator` which helps you interpolate/extrapolate using the data: ```julia using Dates nominal_itp = createRateInterpolator(df_rates) nominal_itp(45,Date(2020,4,13)) # gets the 45 day rate on 2020-4-13 ``` For more information check the [documentation](https://tbeason.github.io/DailyTreasuryYieldCurve.jl/stable). ## Disclaimer This package is provided as-is and without guarantees. I am not affiliated with the US Treasury. Please cite the original source when using this data.
DailyTreasuryYieldCurve
https://github.com/tbeason/DailyTreasuryYieldCurve.jl.git
[ "MIT" ]
0.2.2
e2e045a2aba9da8fadb5b14bf28ae96f58d0883e
docs
2271
# DailyTreasuryYieldCurve [DailyTreasuryYieldCurve.jl](https://github.com/tbeason/DailyTreasuryYieldCurve.jl) is a Julia package for downloading and working with historical daily yield curve data from the [US Treasury](https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield). ## Getting Daily Yield Curves ```@docs getyieldcurves ``` Structure of returned data for *nominal* curve: | Column Name | Description | | ---- | ---- | | date | Date of yield curve | | m1 | 1 month constant maturity rate | | m2 | 2 month constant maturity rate | | m3 | 3 month constant maturity rate | | m6 | 6 month constant maturity rate | | y1 | 1 year constant maturity rate | | y2 | 2 year constant maturity rate | | y3 | 3 year constant maturity rate | | y5 | 5 year constant maturity rate | | y7 | 7 year constant maturity rate | | y10 | 10 year constant maturity rate | | y20 | 20 year constant maturity rate | | y30 | 30 year constant maturity rate | Structure of returned data for *real* curve: | Column Name | Description | | ---- | ---- | | date | Date of yield curve | | y5 | 5 year constant maturity real rate | | y7 | 7 year constant maturity real rate | | y10 | 10 year constant maturity real rate | | y20 | 20 year constant maturity real rate | | y30 | 30 year constant maturity real rate | Not all maturities were reported on every day. ## Interpolation The package contains some convenience utilities for interpolating/extrapolating with the yield curve data. ```@docs RateInterpolator createRateInterpolator ``` !!! warning "Last curve carried forward" If you request a date that does not exist in `RateInterpolator.dates`, it will (blindly) carry forward the curve from the previous available date. It is your responsibility to double-check your inputs. ## Day Count Convention The standard day count convention for valuing US Treasuries is [Actual/Actual (ICMA)](https://en.wikipedia.org/wiki/Day_count_convention#Actual/Actual_ICMA) (as opposed to something like 30/360). However, it is unclear (to me) exactly how to match this to constant maturities. Therefore, I use the convention that months are 30 days (for maturities less than 1 year) and years are 365 days (for maturities 1 year or more).
DailyTreasuryYieldCurve
https://github.com/tbeason/DailyTreasuryYieldCurve.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
765
using BioMASS using Documenter makedocs(; modules=[BioMASS], authors="Hiroaki Imoto <[email protected]>", repo="https://github.com/biomass-dev/BioMASS.jl/blob/{commit}{path}#L{line}", sitename="BioMASS.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://biomass-dev.github.io/BioMASS.jl", assets=String[], ), pages=[ "Home" => "index.md", "Getting started with BioMASS.jl" => [ "Parameter Estimation" => "usage/parameter_estimation.md", "Bifurcation Analysis" => "usage/bifurcation_analysis.md", ], "References" => "references.md" ], ) deploydocs(; repo="github.com/biomass-dev/BioMASS.jl", )
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
2596
""" Barr, A. R., Heldt, F. S., Zhang, T., Bakal, C. & NovΓ‘k, B. A Dynamical Framework for the All-or-None G1/S Transition. Cell Syst. 2, 27–37 (2016). https://doi.org/10.1016/j.cels.2016.01.001 """ include("./name2idx/parameters.jl") include("./name2idx/species.jl") include("./set_model.jl") include("./forwarddiff.jl") const BP = C.CycElevel # name(index) of bifurcation parameter const SN = V.NUM # num of state variables const PN = 1 # num of parameters const VN = SN + PN # num of variables function calc_fixed_point_vec(model_path::String)::Tuple{Array,Array} fp::Array = [] ev::Array = [] br::Array = [] for i in 1:6 global p = param_values() if i == 1 p[C.Emi1T] = 0.0 elseif i == 2 p[C.Emi1T] = 0.5 elseif i == 3 p[C.Emi1T] = 0.75 elseif i == 4 p[C.Emi1T] = 1.0 elseif i == 5 p[C.Emi1T] = 1.25 elseif i == 6 p[C.Emi1T] = 2.0 end new_curve!( model_path, p, diffeq, get_derivatives, get_steady_state, direction=false, bifparam=BP, n_state=SN ) push!(fp, readdlm(joinpath(model_path, "data", "fp.dat"), '\t', Float64, '\n')) push!(ev, readdlm(joinpath(model_path, "data", "ev.dat"), '\t', Float64, '\n')) push!(br, get_bistable_regime(ev[i], SN)) end return fp, br end function bifurcation_diagram(model_path::String, fp::Array, br::Array) rc("figure", figsize=(9, 6)) rc("font", family="Arial") rc("font", size=20) rc("axes", linewidth=1.2) rc("xtick.major", width=1.2) rc("ytick.major", width=1.2) rc("lines", linewidth=2) for (i, (fixed_point, unstable_ss)) in enumerate(zip(fp, br)) if i == 1 color = "red" else color = "silver" end plot( fixed_point[1:unstable_ss[1]-1, VN+1], fixed_point[1:unstable_ss[1]-1, V.p27T+1], "-", color=color ) plot( fixed_point[unstable_ss, VN+1], fixed_point[unstable_ss, V.p27T+1], "--", color=color ) plot( fixed_point[unstable_ss[end]+1:end, VN+1], fixed_point[unstable_ss[end]+1:end, V.p27T+1], "-", color=color ) end xlabel("CycE level") ylabel("p27 level") xlim(0.0, 1.0) xticks([0, 0.5, 1]) ylim(0.0, 2.05) yticks([0, 1, 2]) savefig(joinpath(model_path, "bifurcation_diagram.pdf"), bbox_inches="tight") close() end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
2551
function diffeq!(du,u,p,t) CycE = p[C.CycElevel] - u[V.CycEp27] Vdp27 = p[C.kd27] + (p[C.kd27e]*CycE)*u[V.Skp2] Vdcyce = p[C.kdcyce] + p[C.kdcycee]*CycE Vdskp2 = p[C.kdskp2] + p[C.kdskp2c1]*u[V.Cdh1] Vicdh1 = p[C.kicdh1e]*CycE du[V.p27T] = p[C.ks27] - Vdp27*u[V.p27T] du[V.Skp2] = p[C.ksskp2] - Vdskp2*u[V.Skp2] du[V.CycEp27] = p[C.kasse]*(p[C.CycElevel]-u[V.CycEp27])*(u[V.p27T]-u[V.CycEp27])-(p[C.kdise]+Vdp27+Vdcyce)*u[V.CycEp27] du[V.EmiC] = p[C.kasec]*(p[C.Cdh1T]-u[V.EmiC])*(p[C.Emi1T]-u[V.EmiC]) - (p[C.kdiec]+p[C.kdemi1])*u[V.EmiC] du[V.Cdh1dp] = p[C.kacdh1]*(p[C.Cdh1T]-u[V.Cdh1dp]) - Vicdh1*u[V.Cdh1dp] du[V.Cdh1] = (p[C.kdiec]+p[C.kdemi1])*(u[V.Cdh1dp]-u[V.Cdh1]) - p[C.kasec]*u[V.Cdh1]*(p[C.Emi1T]-u[V.EmiC])+p[C.kacdh1]*(p[C.Cdh1T]-u[V.EmiC]-u[V.Cdh1])-Vicdh1*u[V.Cdh1] end function param_values()::Vector{Float64} p::Vector{Float64} = zeros(C.NUM) p[C.kscyce] = 0.003 p[C.kdcyce] = 0.001 p[C.kdcycee] = 0.0001 p[C.kdcycea] = 0.03 p[C.kasse] = 1 p[C.kdise] = 0.02 ## CYCA SYNTHESISp[C.DEGRADATION AND P27 BINDING/DISSOCIATION: p[C.kscyca] = 0.0025 p[C.kdcyca] = 0.002 p[C.kdcycac1] = 0.4 p[C.kassa] = 1 p[C.kdisa] = 0.02 ## P27 SYNTHESIS AND DEGRADATION: p[C.ks27] = 0.008 p[C.kd27] = 0.004 p[C.kd27e] = 2 p[C.kd27a] = 2 ## EMI1 SYNTHESIS AND DEGRADATION: p[C.ksemi1] = 0.003 p[C.kdemi1] = 0.001 ## CDH1 REGULATION: p[C.Cdh1T] = 1 p[C.kacdh1] = 0.02 p[C.kicdh1e] = 0.07 p[C.kicdh1a] = 0.2 p[C.kasec] = 2 p[C.kdiec] = 0.02 ## SKP2 SYNTHESIS AND DEGRADATION: p[C.ksskp2] = 0.004 p[C.kdskp2] = 0.002 p[C.kdskp2c1] = 0.2 ## CDK INHIBITOR p[C.Inhibitor] = 0.0 p[C.Emi1T] = 0.0 p[C.CycElevel] = 1.0 return p end function get_derivatives(u::Vector{Float64},p::Vector{Float64}) # derivatives: dF/d[bifurcation_param] dFdp::Vector{Float64} = zeros(V.NUM) dFdp[V.p27T] = -p[C.kd27e]*u[V.Skp2]*u[V.p27T] dFdp[V.CycEp27] = p[C.kasse]*(1.0-u[V.CycEp27])*(u[V.p27T]-u[V.CycEp27])-(p[C.kd27e]*u[V.Skp2]+p[C.kdcycee])*u[V.CycEp27] dFdp[V.Cdh1dp] = -p[C.kicdh1e]*u[V.Cdh1dp] dFdp[V.Cdh1] = -p[C.kicdh1e]*u[V.Cdh1] return dFdp end function get_steady_state(p::Vector{Float64}) tspan::Tuple{Float64,Float64} = (0.0,Inf) u0::Vector{Float64} = zeros(V.NUM) prob = ODEProblem(diffeq!,u0,tspan,p) prob = SteadyStateProblem(prob) sol = solve(prob,DynamicSS(CVODE_BDF()),dt=1.0) return sol.u end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
538
module C const NAMES = [ "kscyce" "kdcyce" "kdcycee" "kdcycea" "kasse" "kdise" "kscyca" "kdcyca" "kdcycac1" "kassa" "kdisa" "ks27" "kd27" "kd27e" "kd27a" "ksemi1" "kdemi1" "Cdh1T" "kacdh1" "kicdh1e" "kicdh1a" "kasec" "kdiec" "ksskp2" "kdskp2" "kdskp2c1" "Inhibitor" "CycElevel" "Emi1T" ] #name2idx for (idx,name) in enumerate(NAMES) eval(Meta.parse("const $name = $idx")) end const NUM = length(NAMES) end # module
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
232
module V const NAMES = [ "p27T" "CycEp27" "Cdh1dp" "EmiC" "Cdh1" "Skp2" ] #name2idx for (idx,name) in enumerate(NAMES) eval(Meta.parse("const $name = $idx")) end const NUM = length(NAMES) end # module
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
5280
""" Rata, S. et al. Two Interlinked Bistable Switches Govern Mitotic Control in Mammalian Cells. Curr. Biol. 28, 3824-3832.e6 (2018). https://doi.org/10.1016/j.cub.2018.09.059 """ include("./name2idx/parameters.jl") include("./name2idx/species.jl") include("./set_model.jl") include("./forwarddiff.jl") const BP = C.InhCDK # name(index) of bifurcation parameter const SN = V.NUM # num of state variables const PN = 1 # num of parameters const VN = SN + PN # num of variables function calc_fixed_point_vec(model_path::String)::Tuple{Array,Array} fp::Array = [] ev::Array = [] br::Array = [] for i in 1:4 global p = param_values() # i==1 -> Control if i == 2 # Wee1 inhibition p[C.kweeS] = 0.0 p[C.kweeF] = 0.0 elseif i == 3 # Gwl siRNA p[C.Gwtot] = 0.0 elseif i == 4 # Wee1 inhibition & Gwl siRNA p[C.kweeS] = 0.0 p[C.kweeF] = 0.0 p[C.Gwtot] = 0.0 end new_curve!( model_path, p, diffeq, get_derivatives, get_steady_state, direction=false, bifparam=BP, n_state=SN ) push!(fp, readdlm(joinpath(model_path, "data", "fp.dat"), '\t', Float64, '\n')) push!(ev, readdlm(joinpath(model_path, "data", "ev.dat"), '\t', Float64, '\n')) push!(br, get_bistable_regime(ev[i], SN)) end return fp, br end function bifurcation_diagram(model_path::String, fp::Array, br::Array) rc("figure", figsize=(20, 3)) rc("font", family="Arial") rc("font", size=14) rc("axes", linewidth=1.2) rc("xtick.major", width=1.2) rc("ytick.major", width=1.2) rc("lines", linewidth=2) for (i, (fixed_point, unstable_ss)) in enumerate(zip(fp, br)) if length(unstable_ss) > 0 intermediate_ss = [] for j = 2:length(unstable_ss) if unstable_ss[j] - unstable_ss[j-1] != 1 intermediate_ss = unstable_ss[j-1]:unstable_ss[j] end end end subplot(1, 4, i) if i == 1 plot( fixed_point[1:unstable_ss[1]-1, VN+1], fixed_point[1:unstable_ss[1]-1, V.Subp+1], color="royalblue" ) plot( fixed_point[unstable_ss[1]:intermediate_ss[1]-1, VN+1], fixed_point[unstable_ss[1]:intermediate_ss[1]-1, V.Subp+1], color="darkgray", "--" ) plot( fixed_point[intermediate_ss, VN+1], fixed_point[intermediate_ss, V.Subp+1], color="darkorange" ) plot( fixed_point[intermediate_ss[end]+1:unstable_ss[end], VN+1], fixed_point[intermediate_ss[end]+1:unstable_ss[end], V.Subp+1], color="darkgray", "--" ) plot( fixed_point[unstable_ss[end]+1:end, VN+1], fixed_point[unstable_ss[end]+1:end, V.Subp+1], color="crimson" ) xlim(0, 0.81) xlabel("1NMPP1 (ΞΌM)") ylim(-0.05, 1.05) yticks([0, 0.5, 1], [0, 50, 100]) ylabel("Sub-p (%)") title("Control", fontsize=18) elseif i == 2 plot( fixed_point[1:unstable_ss[1]-1, VN+1], fixed_point[1:unstable_ss[1]-1, V.Subp+1], color="royalblue" ) plot( fixed_point[unstable_ss, VN+1], fixed_point[unstable_ss, V.Subp+1], color="darkgray", "--" ) plot( fixed_point[unstable_ss[end]+1:end, VN+1], fixed_point[unstable_ss[end]+1:end, V.Subp+1], color="crimson" ) xlim(0, 0.81) xlabel("1NMPP1 (ΞΌM)") ylim(-0.05, 1.05) yticks([0, 0.5, 1], [0, 50, 100]) title("Wee1 inhibition", fontsize=18) elseif i == 3 plot( fixed_point[1:unstable_ss[1]-1, VN+1], fixed_point[1:unstable_ss[1]-1, V.Subp+1], color="royalblue" ) plot( fixed_point[unstable_ss, VN+1], fixed_point[unstable_ss, V.Subp+1], color="darkgray", "--" ) plot( fixed_point[unstable_ss[end]+1:end, VN+1], fixed_point[unstable_ss[end]+1:end, V.Subp+1], color="crimson" ) xlim(0, 0.81) xlabel("1NMPP1 (ΞΌM)") ylim(-0.05, 1.05) yticks([0, 0.5, 1], [0, 50, 100]) title("Gwl siRNA", fontsize=18) elseif i == 4 plot( fixed_point[:, VN+1], fixed_point[:, V.Subp+1], color="darkorange" ) xlim(0, 0.81) xlabel("1NMPP1 (ΞΌM)") ylim(-0.05, 1.05) yticks([0, 0.5, 1], [0, 50, 100]) title("Wee1 inhibition & Gwl siRNA", fontsize=18) end end savefig(joinpath(model_path, "bifurcation_diagram.pdf"), bbox_inches="tight") close() end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
4106
function diffeq!(du,u,p,t) Complex = p[C.B55tot] - u[V.PP2AB55] Wee1p = 1 - u[V.Wee1] - u[V.Wee1pp] Cdc25p = 1 - u[V.Cdc25] - u[V.Cdc25pp] Vwee = (p[C.kweeS]*(1-u[V.Wee1]) + p[C.kweeF]*u[V.Wee1]) V25 = p[C.k25S]*(1-u[V.Cdc25pp]) + p[C.k25F]*u[V.Cdc25pp] VGwl = p[C.kGwENSA]*u[V.Gwlp] du[V.Subp] = p[C.kcBc1Sub]*u[V.CycBCdk1]/((1 + (p[C.InhCDK]/p[C.Kd])))*(p[C.SubT]-u[V.Subp]) - p[C.kB55Sub]*u[V.PP2AB55]*u[V.Subp] du[V.CycBCdk1] = V25*(p[C.CycBCdk1T] - u[V.CycBCdk1]) - Vwee*u[V.CycBCdk1] du[V.PP1] = (p[C.kapp1] + p[C.kapp1a]*u[V.PP1])*(p[C.PP1T] - u[V.PP1]) - (p[C.kipp1] + p[C.kipp1C]*u[V.CycBCdk1]/((1 + (p[C.InhCDK]/p[C.Kd]))))*u[V.PP1] du[V.pENSAt] = VGwl*(p[C.ENSAtot] - u[V.pENSAt]) - p[C.kcatB55]*Complex du[V.Gwlp] = (p[C.kcBc1G]*u[V.CycBCdk1]/((1 + (p[C.InhCDK]/p[C.Kd]))) + p[C.kcAc2G]*p[C.CycACdk2T])*(p[C.Gwtot] - u[V.Gwlp]) - (p[C.kB55G]*u[V.PP2AB55] + p[C.kppxGwl] + p[C.kPP1Gw]*u[V.PP1])*u[V.Gwlp] du[V.PP2AB55] = p[C.kdis]*Complex + p[C.kcatB55]*Complex - p[C.kass]*u[V.PP2AB55]*(u[V.pENSAt] - Complex) du[V.Wee1] = (p[C.kppxY15] + p[C.kB55W1]*u[V.PP2AB55])*Wee1p - (p[C.kcBc1W1]*u[V.CycBCdk1]/((1 + (p[C.InhCDK]/p[C.Kd]))) + p[C.kcAc2W1]*p[C.CycACdk2T])*u[V.Wee1] du[V.Wee1pp] = (p[C.kcBc1W1]*u[V.CycBCdk1]/((1 + (p[C.InhCDK]/p[C.Kd]))) + p[C.kcAc2W1]*p[C.CycACdk2T])*Wee1p - (p[C.kppxY15] + p[C.kB55W1]*u[V.PP2AB55])*u[V.Wee1pp] du[V.Cdc25] = (p[C.kppxY15] + p[C.kB5525]*u[V.PP2AB55])*Cdc25p - (p[C.kcBc125]*u[V.CycBCdk1]/((1 + (p[C.InhCDK]/p[C.Kd]))) + p[C.kcAc225]*p[C.CycACdk2T])*u[V.Cdc25] du[V.Cdc25pp] = (p[C.kcBc125]*u[V.CycBCdk1]/((1 + (p[C.InhCDK]/p[C.Kd]))) + p[C.kcAc225]*p[C.CycACdk2T])*(Cdc25p) - (p[C.kppxY15] + p[C.kB5525]*u[V.PP2AB55])*u[V.Cdc25pp] end function param_values()::Vector{Float64} p::Vector{Float64} = zeros(C.NUM) p[C.InhCDK] = 2.0 p[C.CycBCdk1T] = 8.1808 p[C.CycACdk2T] = 1.0000 p[C.PP1T] = 1.0000 p[C.kapp1] = 0.0115 p[C.kapp1a] = 0.7054 p[C.kipp1] = 0.0018 p[C.kipp1C] = 0.7549 p[C.kPP1Gw] = 18.4724 p[C.ENSAtot] = 1.0000 p[C.B55tot] = 0.2500 p[C.SubT] = 1.0000 p[C.kass] = 617.2807 p[C.kdis] = 0.0088 p[C.kcatB55] = 1.0338 p[C.kGwENSA] = 20.8811 p[C.kppxGwl] = 0.1560 p[C.kcBc1Sub] = 0.0080 p[C.kcBc1G] = 0.2393 p[C.Gwtot] = 1.0000 p[C.kB55G] = 496.5636 p[C.kB55Sub] = 0.0593 p[C.kcAc2G] = 0.1916 p[C.k25S] = 0.0050 p[C.k25F] = 0.9411 p[C.kweeS] = 0.0050 p[C.kweeF] = 47.2937 p[C.kcBc1W1] = 1.3132 p[C.kcBc125] = 1.3132 p[C.kppxY15] = 0.0050 p[C.kcAc2W1] = 0.1096 p[C.kcAc225] = 0.1096 p[C.kB55W1] = 0.5511 p[C.kB5525] = 0.5511 p[C.Kd] = 0.025 return p end function get_derivatives(u::Vector{Float64},p::Vector{Float64}) # derivatives: dF/d[bifurcation_param] dFdp::Vector{Float64} = zeros(V.NUM) Wee1p = 1 - u[V.Wee1] - u[V.Wee1pp] Cdc25p = 1 - u[V.Cdc25] - u[V.Cdc25pp] dFdp[V.Subp] = - (1/p[C.Kd])*(p[C.kcBc1Sub]*u[V.CycBCdk1]/(1 + (p[C.InhCDK]/p[C.Kd]))^2)*(p[C.SubT]-u[V.Subp]) dFdp[V.PP1] = (1/p[C.Kd])*(p[C.kipp1] + p[C.kipp1C]*u[V.CycBCdk1]/(1 + (p[C.InhCDK]/p[C.Kd]))^2)*u[V.PP1] dFdp[V.Gwlp] = - (1/p[C.Kd])*(p[C.kcBc1G]*u[V.CycBCdk1]/(1 + (p[C.InhCDK]/p[C.Kd]))^2)*(p[C.Gwtot] - u[V.Gwlp]) dFdp[V.Wee1] = (1/p[C.Kd])*(p[C.kcBc1W1]*u[V.CycBCdk1]/(1 + (p[C.InhCDK]/p[C.Kd]))^2)*u[V.Wee1] dFdp[V.Wee1pp] = - (1/p[C.Kd])*(p[C.kcBc1W1]*u[V.CycBCdk1]/(1 + (p[C.InhCDK]/p[C.Kd]))^2)*Wee1p dFdp[V.Cdc25] = (1/p[C.Kd])*(p[C.kcBc125]*u[V.CycBCdk1]/(1 + (p[C.InhCDK]/p[C.Kd]))^2)*u[V.Cdc25] dFdp[V.Cdc25pp] = - (1/p[C.Kd])*(p[C.kcBc125]*u[V.CycBCdk1]/(1 + (p[C.InhCDK]/p[C.Kd]))^2)*(Cdc25p) return dFdp end function get_steady_state(p::Vector{Float64}) tspan::Tuple{Float64,Float64} = (0.0,Inf) u0::Vector{Float64} = zeros(V.NUM) u0[V.PP1] = 1.0 u0[V.PP2AB55] = 0.25 u0[V.Wee1] = 1.0 u0[V.Cdc25] = 1.0 prob = ODEProblem(diffeq!,u0,tspan,p) prob = SteadyStateProblem(prob) sol = solve(prob,DynamicSS(CVODE_BDF()),dt=1.0) return sol.u end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
612
module C const NAMES = [ "InhCDK" "CycBCdk1T" "CycACdk2T" "PP1T" "kapp1" "kapp1a" "kipp1" "kipp1C" "kPP1Gw" "ENSAtot" "B55tot" "SubT" "kass" "kdis" "kcatB55" "kGwENSA" "kppxGwl" "kcBc1Sub" "kcBc1G" "Gwtot" "kB55G" "kB55Sub" "kcAc2G" "k25S" "k25F" "kweeS" "kweeF" "kcBc1W1" "kcBc125" "kppxY15" "kcAc2W1" "kcAc225" "kB55W1" "kB5525" "Kd" ] #name2idx for (idx,name) in enumerate(NAMES) eval(Meta.parse("const $name = $idx")) end const NUM = length(NAMES) end # module
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
285
module V const NAMES = [ "Subp" "CycBCdk1" "PP1" "pENSAt" "Gwlp" "PP2AB55" "Wee1" "Wee1pp" "Cdc25" "Cdc25pp" ] #name2idx for (idx,name) in enumerate(NAMES) eval(Meta.parse("const $name = $idx")) end const NUM = length(NAMES) end # module
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
1699
""" Yao, G., Lee, T. J., Mori, S., Nevins, J. R. & You, L. A bistable Rb-E2F switch underlies the restriction point. Nat. Cell Biol. 10, 476–482 (2008). https://doi.org/10.1038/ncb1711 """ include("./name2idx/parameters.jl") include("./name2idx/species.jl") include("./set_model.jl") include("./forwarddiff.jl") const BP = C.S # name(index) of bifurcation parameter const SN = V.NUM # num of state variables const PN = 1 # num of parameters const VN = SN + PN # num of variables function calc_fixed_point_vec(model_path::String)::Tuple{Array,Array} global p = param_values() new_curve!( model_path, p, diffeq, get_derivatives, get_steady_state, direction=false, bifparam=BP, n_state=SN ) fp::Array = readdlm(joinpath(model_path, "data", "fp.dat"), '\t', Float64, '\n') ev::Array = readdlm(joinpath(model_path, "data", "ev.dat"), '\t', Float64, '\n') br::Array = get_bistable_regime(ev, SN) return fp, br end function bifurcation_diagram(model_path::String, fp::Array, br::Array) rc("figure", figsize=(8, 6)) rc("font", family="Arial") rc("font", size=24) rc("axes", linewidth=1) rc("xtick.major", width=1) rc("ytick.major", width=1) rc("lines", linewidth=3) plot(fp[1:br[1]-1, VN+1], fp[1:br[1]-1, V.E+1], "k-") plot(fp[br, VN+1], fp[br, V.E+1], lw=1.5, "k--") plot(fp[br[end]+1:end, VN+1], fp[br[end]+1:end, V.E+1], "k-") xlabel("Serum (percentage)") ylabel("E2F (ΞΌM)") xlim(0, 2) xticks([0, 0.5, 1, 1.5, 2]) yscale("log") ylim(1e-4, 2) yticks([1e-4, 1e-2, 1]) savefig(joinpath(model_path, "bifurcation_diagram.pdf"), bbox_inches="tight") close() end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
2469
function diffeq!(du, u, p, t) du[V.M] = p[C.kM] * p[C.S] / (p[C.KS] + p[C.S]) - p[C.dM] * u[V.M] du[V.E] = p[C.kE] * (u[V.M] / (p[C.KM] + u[V.M])) * (u[V.E] / (p[C.KE] + u[V.E])) + p[C.kb] * u[V.M] / (p[C.KM] + u[V.M]) + p[C.kP1] * u[V.CD] * u[V.RE] / (p[C.KCD] + u[V.RE]) + p[C.kP2] * u[V.CE] * u[V.RE] / (p[C.KCE] + u[V.RE]) - p[C.dE] * u[V.E] - p[C.kRE] * u[V.R] * u[V.E] du[V.CD] = p[C.kCD] * u[V.M] / (p[C.KM] + u[V.M]) + p[C.kCDS] * p[C.S] / (p[C.KS] + p[C.S]) - p[C.dCD] * u[V.CD] du[V.CE] = p[C.kCE] * u[V.E] / (p[C.KE] + u[V.E]) - p[C.dCE] * u[V.CE] du[V.R] = p[C.kR] + p[C.kDP] * u[V.RP] / (p[C.KRP] + u[V.RP]) - p[C.kRE] * u[V.R] * u[V.E] - p[C.kP1] * u[V.CD] * u[V.R] / (p[C.KCD] + u[V.R]) - p[C.kP2] * u[V.CE] * u[V.R] / (p[C.KCE] + u[V.R]) - p[C.dR] * u[V.R] du[V.RP] = p[C.kP1] * u[V.CD] * u[V.R] / (p[C.KCD] + u[V.R]) + p[C.kP2] * u[V.CE] * u[V.R] / (p[C.KCE] + u[V.R]) + p[C.kP1] * u[V.CD] * u[V.RE] / (p[C.KCD] + u[V.RE]) + p[C.kP2] * u[V.CE] * u[V.RE] / (p[C.KCE] + u[V.RE]) - p[C.kDP] * u[V.RP] / (p[C.KRP] + u[V.RP]) - p[C.dRP] * u[V.RP] du[V.RE] = p[C.kRE] * u[V.R] * u[V.E] - p[C.kP1] * u[V.CD] * u[V.RE] / (p[C.KCD] + u[V.RE]) - p[C.kP2] * u[V.CE] * u[V.RE] / (p[C.KCE] + u[V.RE]) - p[C.dRE] * u[V.RE] end function param_values()::Vector{Float64} p::Vector{Float64} = zeros(C.NUM) p[C.S] = 2.0 p[C.kE] = 0.4 p[C.kM] = 1.0 p[C.kCD] = 0.03 p[C.kCDS] = 0.45 p[C.kR] = 0.18 p[C.kRE] = 180 p[C.kb] = 0.003 p[C.KS] = 0.5 p[C.kCE] = 0.35 p[C.dM] = 0.7 p[C.dE] = 0.25 p[C.dCD] = 1.5 p[C.dCE] = 1.5 p[C.dR] = 0.06 p[C.dRP] = 0.06 p[C.dRE] = 0.03 p[C.kP1] = 18.0 p[C.kP2] = 18.0 p[C.kDP] = 3.6 p[C.KM] = 0.15 p[C.KE] = 0.15 p[C.KCD] = 0.92 p[C.KCE] = 0.92 p[C.KRP] = 0.01 return p end function get_derivatives(u::Vector{Float64}, p::Vector{Float64}) # derivatives: dF/d[bifurcation_param] dFdp::Vector{Float64} = zeros(V.NUM) dFdp[V.M] = p[C.kM] * p[C.KS] / (p[C.KS] + p[C.S])^2 dFdp[V.CD] = p[C.kCDS] * p[C.KS] / (p[C.KS] + p[C.S])^2 return dFdp end function get_steady_state(p::Vector{Float64}) tspan::Tuple{Float64,Float64} = (0.0, Inf) u0::Vector{Float64} = zeros(V.NUM) prob = ODEProblem(diffeq!, u0, tspan, p) prob = SteadyStateProblem(prob) sol = solve(prob, DynamicSS(CVODE_BDF()), dt=1.0) return sol.u end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
399
module C const NAMES = [ "S" "kE" "kM" "kCD" "kCDS" "kR" "kRE" "kb" "KS" "kCE" "dM" "dE" "dCD" "dCE" "dR" "dRP" "dRE" "kP1" "kP2" "kDP" "KM" "KE" "KCD" "KCE" "KRP" ] #name2idx for (idx,name) in enumerate(NAMES) eval(Meta.parse("const $name = $idx")) end const NUM = length(NAMES) end # module
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
210
module V const NAMES = [ "M" "E" "CD" "CE" "R" "RP" "RE" ] for (idx,name) in enumerate(NAMES) eval(Meta.parse("const $name = $idx")) end const NUM = length(NAMES) end # module
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
3698
module Exp include("./observable.jl") experiments = Array{Dict{String,Array{Float64,1}},1}(undef, length(observables)) error_bars = Array{Dict{String,Array{Float64,1}},1}(undef, length(observables)) experiments[observables_index("Phosphorylated_MEKc")] = Dict( "EGF" => [0.000,0.773,0.439,0.252,0.130,0.087,0.080,0.066], "HRG" => [0.000,0.865,1.000,0.837,0.884,0.920,0.875,0.789], ) error_bars[observables_index("Phosphorylated_MEKc")] = Dict( "EGF" => [0.000,0.030,0.048,0.009,0.009,0.017,0.012,0.008] ./ sqrt(3), "HRG" => [0.000,0.041,0.000,0.051,0.058,0.097,0.157,0.136] ./ sqrt(3), ) experiments[observables_index("Phosphorylated_ERKc")] = Dict( "EGF" => [0.000,0.867,0.799,0.494,0.313,0.266,0.200,0.194], "HRG" => [0.000,0.848,1.000,0.971,0.950,0.812,0.747,0.595], ) error_bars[observables_index("Phosphorylated_ERKc")] = Dict( "EGF" => [0.000,0.137,0.188,0.126,0.096,0.087,0.056,0.012] ./ sqrt(3), "HRG" => [0.000,0.120,0.000,0.037,0.088,0.019,0.093,0.075] ./ sqrt(3), ) experiments[observables_index("Phosphorylated_RSKw")] = Dict( "EGF" => [0,0.814,0.812,0.450,0.151,0.059,0.038,0.030], "HRG" => [0,0.953,1.000,0.844,0.935,0.868,0.779,0.558], ) error_bars[observables_index("Phosphorylated_RSKw")] = Dict( "EGF" => [0,0.064,0.194,0.030,0.027,0.031,0.043,0.051] ./ sqrt(3), "HRG" => [0,0.230,0.118,0.058,0.041,0.076,0.090,0.077] ./ sqrt(3), ) experiments[observables_index("Phosphorylated_cFos")] = Dict( "EGF" => [0,0.060,0.109,0.083,0.068,0.049,0.027,0.017], "HRG" => [0,0.145,0.177,0.158,0.598,1.000,0.852,0.431], ) error_bars[observables_index("Phosphorylated_cFos")] = Dict( "EGF" => [0,0.003,0.021,0.013,0.016,0.007,0.003,0.002] ./ sqrt(3), "HRG" => [0,0.010,0.013,0.001,0.014,0.000,0.077,0.047] ./ sqrt(3), ) experiments[observables_index("Phosphorylated_CREBw")] = Dict( "EGF" => [0,0.446,0.030,0.000,0.000], "HRG" => [0,1.000,0.668,0.460,0.340], ) error_bars[observables_index("Phosphorylated_CREBw")] = Dict( "EGF" => [0,0.0,0.0,0.0,0.0] ./ sqrt(3), "HRG" => [0,0.0,0.0,0.0,0.0] ./ sqrt(3), ) experiments[observables_index("cfos_mRNA")] = Dict( "EGF" => [0,0.181,0.476,0.518,0.174,0.026,0.000], "HRG" => [0,0.353,0.861,1.000,0.637,0.300,0.059], ) error_bars[observables_index("cfos_mRNA")] = Dict( "EGF" => [0.017,0.004,0.044,0.004,0.023,0.007,0.008] ./ sqrt(3), "HRG" => [0.017,0.006,0.065,0.044,0.087,0.023,0.001] ./ sqrt(3), ) experiments[observables_index("cFos_Protein")] = Dict( "EGF" => [0,0.078,0.216,0.240,0.320,0.235], "HRG" => [0,0.089,0.552,0.861,1.000,0.698], ) error_bars[observables_index("cFos_Protein")] = Dict( "EGF" => [0,0.036,0.028,0.056,0.071,0.048] ./ sqrt(3), "HRG" => [0,0.021,0.042,0.063,0.000,0.047] ./ sqrt(3), ) experiments[observables_index("dusp_mRNA")] = Dict( "EGF" => [0.000,0.177,0.331,0.214,0.177,0.231], "HRG" => [0.000,0.221,0.750,1.000,0.960,0.934], ) error_bars[observables_index("dusp_mRNA")] = Dict( "EGF" => [0.033,0.060,0.061,0.032,0.068,0.050] ./ sqrt(3), "HRG" => [0.027,0.059,0.094,0.124,0.113,0.108] ./ sqrt(3), ) function get_timepoint(obs_name::String)::Vector{Float64} if obs_name in ["Phosphorylated_MEKc", "Phosphorylated_ERKc", "Phosphorylated_RSKw", "Phosphorylated_cFos"] return [0., 300., 600., 900., 1800., 2700., 3600., 5400.] elseif obs_name == "Phosphorylated_CREBw" return [0., 600., 1800., 3600., 5400.] elseif obs_name == "cfos_mRNA" return [0.,600.,1200.,1800.,2700.,3600.,5400.] elseif obs_name in ["cFos_Protein", "dusp_mRNA"] return [0.,900.,1800.,2700.,3600.,5400.] end end end # module
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
440
const observables = [ "Phosphorylated_MEKc" "Phosphorylated_ERKc" "Phosphorylated_RSKw" "Phosphorylated_CREBw" "dusp_mRNA" "cfos_mRNA" "cFos_Protein" "Phosphorylated_cFos" ] function observables_index(observable_name::String)::Int if !(observable_name in observables) error("$observable_name is not defined in observables.") end return findfirst(isequal(observable_name),observables) end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
10340
function get_ppMEK_slope(t, ligand)::Float64 timepoints = [0, 300, 600, 900, 1800, 2700, 3600, 5400] ppMEK_data = Dict( "EGF" => [0.000, 0.773, 0.439, 0.252, 0.130, 0.087, 0.080, 0.066], "HRG" => [0.000, 0.865, 1.000, 0.837, 0.884, 0.920, 0.875, 0.789], ) slope = [ (ppMEK_data[ligand][i+1] - activity) / (timepoints[i+1] - timepoint) for (i, (timepoint, activity)) in enumerate(zip(timepoints, ppMEK_data[ligand])) if i + 1 <= length(timepoints) ] for (i, timepoint) in enumerate(timepoints) if timepoint <= t <= timepoints[i+1] return slope[i] end end end function diffeq!(du, u, p, t) #= for (i, ui) in enumerate(u) if ui < 0 && abs(ui) < eps() u[i] = 0.0 end end =# v = Dict{Int64,Float64}() v[1] = p[C.V1] * p[C.a] * u[V.ppMEKc] * u[V.ERKc] / (p[C.Km1] * (1 + u[V.pERKc] / p[C.Km2]) + u[V.ERKc]) v[2] = p[C.V2] * p[C.a] * u[V.ppMEKc] * u[V.pERKc] / (p[C.Km2] * (1 + u[V.ERKc] / p[C.Km1]) + u[V.pERKc]) v[3] = p[C.V3] * u[V.pERKc] / (p[C.Km3] * (1 + u[V.ppERKc] / p[C.Km4]) + u[V.pERKc]) v[4] = p[C.V4] * u[V.ppERKc] / (p[C.Km4] * (1 + u[V.pERKc] / p[C.Km3]) + u[V.ppERKc]) v[5] = p[C.V5] * u[V.pERKn] / (p[C.Km5] * (1 + u[V.ppERKn] / p[C.Km6]) + u[V.pERKn]) v[6] = p[C.V6] * u[V.ppERKn] / (p[C.Km6] * (1 + u[V.pERKn] / p[C.Km5]) + u[V.ppERKn]) v[7] = p[C.KimERK] * u[V.ERKc] - p[C.KexERK] * (p[C.Vn] / p[C.Vc]) * u[V.ERKn] v[8] = p[C.KimpERK] * u[V.pERKc] - p[C.KexpERK] * (p[C.Vn] / p[C.Vc]) * u[V.pERKn] v[9] = p[C.KimppERK] * u[V.ppERKc] - p[C.KexppERK] * (p[C.Vn] / p[C.Vc]) * u[V.ppERKn] v[10] = p[C.V10] * u[V.ppERKn]^p[C.n10] / (p[C.Km10]^p[C.n10] + u[V.ppERKn]^p[C.n10]) v[11] = p[C.p11] * u[V.PreduspmRNAn] v[12] = p[C.p12] * u[V.duspmRNAc] v[13] = p[C.p13] * u[V.duspmRNAc] v[14] = p[C.V14] * u[V.ppERKc] * u[V.DUSPc] / (p[C.Km14] + u[V.DUSPc]) v[15] = p[C.V15] * u[V.pDUSPc] / (p[C.Km15] + u[V.pDUSPc]) v[16] = p[C.p16] * u[V.DUSPc] v[17] = p[C.p17] * u[V.pDUSPc] v[18] = p[C.KimDUSP] * u[V.DUSPc] - p[C.KexDUSP] * (p[C.Vn] / p[C.Vc]) * u[V.DUSPn] v[19] = p[C.KimpDUSP] * u[V.pDUSPc] - p[C.KexpDUSP] * (p[C.Vn] / p[C.Vc]) * u[V.pDUSPn] v[20] = p[C.V20] * u[V.ppERKn] * u[V.DUSPn] / (p[C.Km20] + u[V.DUSPn]) v[21] = p[C.V21] * u[V.pDUSPn] / (p[C.Km21] + u[V.pDUSPn]) v[22] = p[C.p22] * u[V.DUSPn] v[23] = p[C.p23] * u[V.pDUSPn] v[24] = p[C.V24] * u[V.ppERKc] * u[V.RSKc] / (p[C.Km24] + u[V.RSKc]) v[25] = p[C.V25] * u[V.pRSKc] / (p[C.Km25] + u[V.pRSKc]) v[26] = p[C.KimRSK] * u[V.pRSKc] - p[C.KexRSK] * (p[C.Vn] / p[C.Vc]) * u[V.pRSKn] v[27] = p[C.V27] * u[V.pRSKn] * u[V.CREBn] / (p[C.Km27] + u[V.CREBn]) v[28] = p[C.V28] * u[V.pCREBn] / (p[C.Km28] + u[V.pCREBn]) v[29] = p[C.V29] * u[V.ppERKn] * u[V.Elk1n] / (p[C.Km29] + u[V.Elk1n]) v[30] = p[C.V30] * u[V.pElk1n] / (p[C.Km30] + u[V.pElk1n]) v[31] = p[C.V31] * (u[V.pCREBn] * u[V.pElk1n])^p[C.n31] / (p[C.Km31]^p[C.n31] + (u[V.pCREBn] * u[V.pElk1n])^p[C.n31] + (u[V.Fn] / p[C.KF31])^p[C.nF31]) v[32] = p[C.p32] * u[V.PrecfosmRNAn] v[33] = p[C.p33] * u[V.cfosmRNAc] v[34] = p[C.p34] * u[V.cfosmRNAc] v[35] = p[C.V35] * u[V.ppERKc] * u[V.cFOSc] / (p[C.Km35] + u[V.cFOSc]) v[36] = p[C.V36] * u[V.pRSKc] * u[V.cFOSc] / (p[C.Km36] + u[V.cFOSc]) v[37] = p[C.V37] * u[V.pcFOSc] / (p[C.Km37] + u[V.pcFOSc]) v[38] = p[C.p38] * u[V.cFOSc] v[39] = p[C.p39] * u[V.pcFOSc] v[40] = p[C.KimFOS] * u[V.cFOSc] - p[C.KexFOS] * (p[C.Vn] / p[C.Vc]) * u[V.cFOSn] v[41] = p[C.KimpcFOS] * u[V.pcFOSc] - p[C.KexpcFOS] * (p[C.Vn] / p[C.Vc]) * u[V.pcFOSn] v[42] = p[C.V42] * u[V.ppERKn] * u[V.cFOSn] / (p[C.Km42] + u[V.cFOSn]) v[43] = p[C.V43] * u[V.pRSKn] * u[V.cFOSn] / (p[C.Km43] + u[V.cFOSn]) v[44] = p[C.V44] * u[V.pcFOSn] / (p[C.Km44] + u[V.pcFOSn]) v[45] = p[C.p45] * u[V.cFOSn] v[46] = p[C.p46] * u[V.pcFOSn] v[47] = p[C.p47] * u[V.DUSPn] * u[V.ppERKn] - p[C.m47] * u[V.DUSPn_ppERKn] v[48] = p[C.p48] * u[V.DUSPn_ppERKn] v[49] = p[C.p49] * u[V.DUSPn] * u[V.pERKn] - p[C.m49] * u[V.DUSPn_pERKn] v[50] = p[C.p50] * u[V.DUSPn_pERKn] v[51] = p[C.p51] * u[V.DUSPn] * u[V.ERKn] - p[C.m51] * u[V.DUSPn_ERKn] v[52] = p[C.p52] * u[V.pDUSPn] * u[V.ppERKn] - p[C.m52] * u[V.pDUSPn_ppERKn] v[53] = p[C.p53] * u[V.pDUSPn_ppERKn] v[54] = p[C.p54] * u[V.pDUSPn] * u[V.pERKn] - p[C.m54] * u[V.pDUSPn_pERKn] v[55] = p[C.p55] * u[V.pDUSPn_pERKn] v[56] = p[C.p56] * u[V.pDUSPn] * u[V.ERKn] - p[C.m56] * u[V.pDUSPn_ERKn] v[57] = p[C.V57] * u[V.pcFOSn]^p[C.n57] / (p[C.Km57]^p[C.n57] + u[V.pcFOSn]^p[C.n57]) v[58] = p[C.p58] * u[V.PreFmRNAn] v[59] = p[C.p59] * u[V.FmRNAc] v[60] = p[C.p60] * u[V.FmRNAc] v[61] = p[C.p61] * u[V.Fc] v[62] = p[C.KimF] * u[V.Fc] - p[C.KexF] * (p[C.Vn] / p[C.Vc]) * u[V.Fn] v[63] = p[C.p63] * u[V.Fn] if p[C.Ligand] == p[C.EGF] # EGF=10nM du[V.ppMEKc] = get_ppMEK_slope(t, "EGF") elseif p[C.Ligand] == p[C.HRG] # HRG=10nM du[V.ppMEKc] = get_ppMEK_slope(t, "HRG") else du[V.ppMEKc] = 0.0 end du[V.CREBn] = -v[27] + v[28] du[V.pCREBn] = v[27] - v[28] du[V.ERKc] = -v[1] + v[3] - v[7] du[V.ERKn] = v[5] + v[7] * (p[C.Vc] / p[C.Vn]) + v[50] - v[51] + v[55] - v[56] du[V.pERKc] = v[1] - v[2] - v[3] + v[4] - v[8] du[V.pERKn] = -v[5] + v[6] + v[8] * (p[C.Vc] / p[C.Vn]) + v[48] - v[49] + v[53] - v[54] du[V.ppERKc] = v[2] - v[4] - v[9] du[V.ppERKn] = -v[6] + v[9] * (p[C.Vc] / p[C.Vn]) - v[47] - v[52] du[V.Elk1n] = -v[29] + v[30] du[V.pElk1n] = v[29] - v[30] du[V.cFOSc] = v[34] - v[35] - v[36] + v[37] - v[38] - v[40] du[V.cFOSn] = v[40] * (p[C.Vc] / p[C.Vn]) - v[42] - v[43] + v[44] - v[45] du[V.pcFOSc] = v[35] + v[36] - v[37] - v[39] - v[41] du[V.pcFOSn] = v[41] * (p[C.Vc] / p[C.Vn]) + v[42] + v[43] - v[44] - v[46] du[V.DUSPc] = v[13] - v[14] + v[15] - v[16] - v[18] du[V.DUSPn] = v[18] * (p[C.Vc] / p[C.Vn]) - v[20] + v[21] - v[22] - v[47] + v[48] - v[49] + v[50] - v[51] du[V.pDUSPc] = v[14] - v[15] - v[17] - v[19] du[V.pDUSPn] = v[19] * (p[C.Vc] / p[C.Vn]) + v[20] - v[21] - v[23] - v[52] + v[53] - v[54] + v[55] - v[56] du[V.DUSPn_ERKn] = v[51] du[V.DUSPn_pERKn] = v[49] - v[50] du[V.DUSPn_ppERKn] = v[47] - v[48] du[V.pDUSPn_ERKn] = v[56] du[V.pDUSPn_pERKn] = v[54] - v[55] du[V.pDUSPn_ppERKn] = v[52] - v[53] du[V.RSKc] = -v[24] + v[25] du[V.pRSKc] = v[24] - v[25] - v[26] du[V.pRSKn] = v[26] * (p[C.Vc] / p[C.Vn]) du[V.PrecfosmRNAn] = v[31] - v[32] du[V.PreduspmRNAn] = v[10] - v[11] du[V.cfosmRNAc] = v[32] * (p[C.Vn] / p[C.Vc]) - v[33] du[V.duspmRNAc] = v[11] * (p[C.Vn] / p[C.Vc]) - v[12] du[V.Fc] = v[60] - v[61] - v[62] du[V.Fn] = v[62] * (p[C.Vc] / p[C.Vn]) - v[63] du[V.FmRNAc] = v[58] * (p[C.Vn] / p[C.Vc]) - v[59] du[V.PreFmRNAn] = v[57] - v[58] end function param_values()::Vector{Float64} p::Vector{Float64} = zeros(C.NUM) p[C.V1] = 0.34284837 p[C.Km1] = 307.0415253 p[C.V2] = 2.20e-01 p[C.Km2] = 3.50e+02 p[C.V3] = 7.20e-01 p[C.Km3] = 1.60e+02 p[C.V4] = 6.48e-01 p[C.Km4] = 6.00e+01 p[C.V5] = 19.49872346 p[C.Km5] = 29.94073716 p[C.V6] = p[C.V5] p[C.Km6] = p[C.Km5] p[C.KimERK] = 1.20e-02 p[C.KexERK] = 1.80e-02 p[C.KimpERK] = 1.20e-02 p[C.KexpERK] = 1.80e-02 p[C.KimppERK] = 1.10e-02 p[C.KexppERK] = 1.30e-02 p[C.V10] = 29.24109258 p[C.Km10] = 169.0473748 p[C.n10] = 3.970849295 p[C.p11] = 0.000126129 p[C.p12] = 0.007875765 p[C.p13] = 0.001245747 p[C.V14] = 5.636949216 p[C.Km14] = 34180.48 p[C.V15] = 2.992346912 p[C.Km15] = 0.001172165 p[C.p16] = 2.57e-04 p[C.p17] = 9.63e-05 p[C.KimDUSP] = 0.024269764 p[C.KexDUSP] = 0.070467899 p[C.KimpDUSP] = p[C.KimDUSP] p[C.KexpDUSP] = p[C.KexDUSP] p[C.V20] = 0.157678678 p[C.Km20] = 735598.6967 p[C.V21] = 0.005648117 p[C.Km21] = 387.8377182 p[C.p22] = 2.57e-04 p[C.p23] = 9.63e-05 p[C.V24] = 0.550346114 p[C.Km24] = 29516.06587 p[C.V25] = 10.09063736 p[C.Km25] = 0.913939859 p[C.KimRSK] = 0.025925065 p[C.KexRSK] = 0.129803956 p[C.V27] = 19.23118154 p[C.Km27] = 441.5834425 p[C.V28] = 6.574759504 p[C.Km28] = 14.99180922 p[C.V29] = 0.518529841 p[C.Km29] = 21312.69109 p[C.V30] = 13.79479021 p[C.Km30] = 15.04396629 p[C.V31] = 0.655214248 p[C.Km31] = 185.9760682 p[C.n31] = 1.988003164 p[C.KF31] = 0.013844393 p[C.nF31] = 2.800340453 p[C.p32] = 0.003284434 p[C.p33] = 0.000601234 p[C.p34] = 7.65E-05 p[C.V35] = 8.907637012 p[C.Km35] = 8562.744184 p[C.V36] = 0.000597315 p[C.Km36] = 528.552427 p[C.V37] = 1.745848179 p[C.Km37] = 0.070379236 p[C.p38] = 2.57e-04 p[C.p39] = 9.63e-05 p[C.KimFOS] = 0.54528521 p[C.KexFOS] = 0.133249762 p[C.KimpcFOS] = p[C.KimFOS] p[C.KexpcFOS] = p[C.KexFOS] p[C.V42] = 0.909968714 p[C.Km42] = 3992.061328 p[C.V43] = 0.076717457 p[C.Km43] = 1157.116021 p[C.V44] = 0.078344305 p[C.Km44] = 0.051168202 p[C.p45] = 2.57e-04 p[C.p46] = 9.63e-05 p[C.p47] = 0.001670815 p[C.m47] = 15.80783969 p[C.p48] = 0.686020478 p[C.p49] = 0.314470502 p[C.m49] = 2.335459127 p[C.p50] = 26.59483436 p[C.p51] = 0.01646825 p[C.m51] = 9.544308421 p[C.p52] = p[C.p47] p[C.m52] = p[C.m47] p[C.p53] = p[C.p48] p[C.p54] = p[C.p49] p[C.m54] = p[C.m49] p[C.p55] = p[C.p50] p[C.p56] = p[C.p51] p[C.m56] = p[C.m51] p[C.V57] = 1.026834758 p[C.Km57] = 0.637490056 p[C.n57] = 3.584464176 p[C.p58] = 0.000270488 p[C.p59] = 0.001443889 p[C.p60] = 0.002448164 p[C.p61] = 3.50E-05 p[C.KimF] = 0.019898797 p[C.KexF] = 0.396950616 p[C.p63] = 4.13E-05 p[C.a] = 218.6276381 p[C.Vn] = 0.22 p[C.Vc] = 0.94 p[C.EGF] = 0.0 p[C.HRG] = 1.0 p[C.no_ligand] = 2.0 return p end function initial_values()::Vector{Float64} u0::Vector{Float64} = zeros(V.NUM) u0[V.ERKc] = 9.60e+02 u0[V.RSKc] = 3.53e+02 u0[V.CREBn] = 1.00e+03 u0[V.Elk1n] = 1.51e+03 return u0 end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
3118
# Residual Sum of Squares function compute_objval_rss( sim_data::Vector{Float64}, exp_data::Vector{Float64})::Float64 error::Float64 = 0.0 for i in eachindex(exp_data) @inbounds error += (sim_data[i] - exp_data[i])^2 end return error end # Cosine similarity function compute_objval_cos( sim_data::Vector{Float64}, exp_data::Vector{Float64})::Float64 error::Float64 = 1.0 - dot(sim_data, exp_data) / (norm(sim_data) * norm(exp_data)) return error end function conditions_index(condition_name::String)::Int if !(condition_name in Sim.conditions) error("$condition_name is not defined in Sim.conditions") end return findfirst(isequal(condition_name), Sim.conditions) end function diff_sim_and_exp( sim_matrix::Matrix{Float64}, exp_dict::Dict{String,Array{Float64,1}}, exp_timepoint::Vector{Float64}, conditions::Vector{String}; sim_norm_max::Float64)::Tuple{Vector{Float64},Vector{Float64}} sim_result::Vector{Float64} = [] exp_result::Vector{Float64} = [] for (idx, condition) in enumerate(conditions) if condition in keys(exp_dict) append!(sim_result, sim_matrix[idx, Int.(exp_timepoint .+ 1)]) append!(exp_result, exp_dict[condition]) end end return (sim_result ./ sim_norm_max, exp_result) end # Define an objective function to be minimized. function objective(indiv_gene)::Float64 indiv::Vector{Float64} = decode_gene2val(indiv_gene) (p, u0) = update_param(indiv) if Sim.simulate!(p, u0) === nothing error::Vector{Float64} = zeros(length(observables)) for (i, obs_name) in enumerate(observables) if isassigned(Exp.experiments, i) if length(Sim.normalization) > 0 norm_max::Float64 = ( Sim.normalization[obs_name]["timepoint"] !== nothing ? maximum( Sim.simulations[ i, [conditions_index(c) for c in Sim.normalization[obs_name]["condition"]], Sim.normalization[obs_name]["timepoint"] ] ) : maximum( Sim.simulations[ i, [conditions_index(c) for c in Sim.normalization[obs_name]["condition"]], :, ] ) ) end error[i] = compute_objval_rss( diff_sim_and_exp( Sim.simulations[i, :, :], Exp.experiments[i], Exp.get_timepoint(obs_name), Sim.conditions, sim_norm_max=ifelse( length(Sim.normalization) == 0, 1.0, norm_max ) )... ) end end return sum(error) # < 1e12 else return 1e12 end end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
11992
# Specify model parameters and/or initial values to optimize function get_search_index()::Tuple{Array{Int64,1},Array{Int64,1}} # parameters search_idx_params::Vector{Int} = [ C.V1 C.Km1 C.V5 C.Km5 C.V10 C.Km10 C.n10 C.p11 C.p12 C.p13 C.V14 C.Km14 C.V15 C.Km15 C.KimDUSP C.KexDUSP C.V20 C.Km20 C.V21 C.Km21 C.V24 C.Km24 C.V25 C.Km25 C.KimRSK C.KexRSK C.V27 C.Km27 C.V28 C.Km28 C.V29 C.Km29 C.V30 C.Km30 C.V31 C.Km31 C.n31 C.p32 C.p33 C.p34 C.V35 C.Km35 C.V36 C.Km36 C.V37 C.Km37 C.KimFOS C.KexFOS C.V42 C.Km42 C.V43 C.Km43 C.V44 C.Km44 C.p47 C.m47 C.p48 C.p49 C.m49 C.p50 C.p51 C.m51 C.V57 C.Km57 C.n57 C.p58 C.p59 C.p60 C.p61 C.KimF C.KexF C.p63 C.KF31 C.nF31 C.a ] # initial values search_idx_initials::Vector{Int} = [ # V.(variableName) ] return search_idx_params, search_idx_initials end function get_search_region()::Matrix{Float64} p::Vector{Float64} = param_values() u0::Vector{Float64} = initial_values() search_idx::Tuple{Array{Int64,1},Array{Int64,1}} = get_search_index() search_param::Vector{Float64} = initialize_search_param(search_idx, p, u0) search_rgn::Matrix{Float64} = zeros(2, length(p) + length(u0)) # Default: 0.1 ~ 10x for (i, j) in enumerate(search_idx[1]) search_rgn[1, j] = search_param[i] * 0.1 # lower bound search_rgn[2, j] = search_param[i] * 10.0 # upper bound end # Default: 0.5 ~ 2x for (i, j) in enumerate(search_idx[2]) search_rgn[1, j+length(p)] = search_param[i+length(search_idx[1])] * 0.5 # lower bound search_rgn[2, j+length(p)] = search_param[i+length(search_idx[1])] * 2.0 # upper bound end # search_rgn[:, C.param_name] = [lower_bound, upper_bound] # search_rgn[:, V.var_name+length(p)] = [lower_bound, upper_bound] search_rgn[:, C.V1] = [7.33e-2, 6.60e-01] search_rgn[:, C.Km1] = [1.83e+2, 8.50e+2] search_rgn[:, C.V5] = [6.48e-3, 7.20e+1] search_rgn[:, C.Km5] = [6.00e-1, 1.60e+04] search_rgn[:, C.V10] = [exp(-10), exp(10)] search_rgn[:, C.Km10] = [exp(-10), exp(10)] search_rgn[:, C.n10] = [1.00, 4.00] search_rgn[:, C.p11] = [8.30e-13, 1.44e-2] search_rgn[:, C.p12] = [8.00e-8, 5.17e-2] search_rgn[:, C.p13] = [1.38e-7, 4.84e-1] search_rgn[:, C.V14] = [4.77e-3, 4.77e+1] search_rgn[:, C.Km14] = [2.00e+2, 2.00e+6] search_rgn[:, C.V15] = [exp(-10), exp(10)] search_rgn[:, C.Km15] = [exp(-10), exp(10)] search_rgn[:, C.KimDUSP] = [2.20e-4, 5.50e-1] search_rgn[:, C.KexDUSP] = [2.60e-4, 6.50e-1] search_rgn[:, C.V20] = [4.77e-3, 4.77e+1] search_rgn[:, C.Km20] = [2.00e+2, 2.00e+6] search_rgn[:, C.V21] = [exp(-10), exp(10)] search_rgn[:, C.Km21] = [exp(-10), exp(10)] search_rgn[:, C.V24] = [4.77e-2, 4.77e+0] search_rgn[:, C.Km24] = [2.00e+3, 2.00e+5] search_rgn[:, C.V25] = [exp(-10), exp(10)] search_rgn[:, C.Km25] = [exp(-10), exp(10)] search_rgn[:, C.KimRSK] = [2.20e-4, 5.50e-1] search_rgn[:, C.KexRSK] = [2.60e-4, 6.50e-1] search_rgn[:, C.V27] = [exp(-10), exp(10)] search_rgn[:, C.Km27] = [1.00e+2, 1.00e+4] search_rgn[:, C.V28] = [exp(-10), exp(10)] search_rgn[:, C.Km28] = [exp(-10), exp(10)] search_rgn[:, C.V29] = [4.77e-2, 4.77e+0] search_rgn[:, C.Km29] = [2.93e+3, 2.93e+5] search_rgn[:, C.V30] = [exp(-10), exp(10)] search_rgn[:, C.Km30] = [exp(-10), exp(10)] search_rgn[:, C.V31] = [exp(-10), exp(10)] search_rgn[:, C.Km31] = [exp(-10), exp(10)] search_rgn[:, C.n31] = [1.00, 4.00] search_rgn[:, C.p32] = [8.30e-13, 1.44e-2] search_rgn[:, C.p33] = [8.00e-8, 5.17e-2] search_rgn[:, C.p34] = [1.38e-7, 4.84e-1] search_rgn[:, C.V35] = [4.77e-3, 4.77e+1] search_rgn[:, C.Km35] = [2.00e+2, 2.00e+6] search_rgn[:, C.V36] = [exp(-10), exp(10)] search_rgn[:, C.Km36] = [1.00e+2, 1.00e+4] search_rgn[:, C.V37] = [exp(-10), exp(10)] search_rgn[:, C.Km37] = [exp(-10), exp(10)] search_rgn[:, C.KimFOS] = [2.20e-4, 5.50e-1] search_rgn[:, C.KexFOS] = [2.60e-4, 6.50e-1] search_rgn[:, C.V42] = [4.77e-3, 4.77e+1] search_rgn[:, C.Km42] = [2.00e+2, 2.00e+6] search_rgn[:, C.V43] = [exp(-10), exp(10)] search_rgn[:, C.Km43] = [1.00e+2, 1.00e+4] search_rgn[:, C.V44] = [exp(-10), exp(10)] search_rgn[:, C.Km44] = [exp(-10), exp(10)] search_rgn[:, C.p47] = [1.45e-4, 1.45e+0] search_rgn[:, C.m47] = [6.00e-3, 6.00e+1] search_rgn[:, C.p48] = [2.70e-3, 2.70e+1] search_rgn[:, C.p49] = [5.00e-5, 5.00e-1] search_rgn[:, C.m49] = [5.00e-3, 5.00e+1] search_rgn[:, C.p50] = [3.00e-3, 3.00e+1] search_rgn[:, C.p51] = [exp(-10), exp(10)] search_rgn[:, C.m51] = [exp(-10), exp(10)] search_rgn[:, C.V57] = [exp(-10), exp(10)] search_rgn[:, C.Km57] = [exp(-10), exp(10)] search_rgn[:, C.n57] = [1.00, 4.00] search_rgn[:, C.p58] = [8.30e-13, 1.44e-2] search_rgn[:, C.p59] = [8.00e-8, 5.17e-2] search_rgn[:, C.p60] = [1.38e-7, 4.84e-1] search_rgn[:, C.p61] = [exp(-10), exp(10)] search_rgn[:, C.KimF] = [2.20e-4, 5.50e-1] search_rgn[:, C.KexF] = [2.60e-4, 6.50e-1] search_rgn[:, C.p63] = [exp(-10), exp(10)] search_rgn[:, C.KF31] = [exp(-10), exp(10)] search_rgn[:, C.nF31] = [1.00, 4.00] search_rgn[:, C.a] = [1.00e+2, 5.00e+2] search_rgn = convert_scale!(search_rgn, search_idx) return search_rgn end function update_param(indiv::Vector{Float64})::Tuple{Array{Float64,1},Array{Float64,1}} p::Vector{Float64} = param_values() u0::Vector{Float64} = initial_values() search_idx::Tuple{Array{Int64,1},Array{Int64,1}} = get_search_index() for (i, j) in enumerate(search_idx[1]) @inbounds p[j] = indiv[i] end for (i, j) in enumerate(search_idx[2]) @inbounds u0[j] = indiv[i+length(search_idx[1])] end # constraints -------------------------------------------------------------- p[C.V6] = p[C.V5] p[C.Km6] = p[C.Km5] p[C.KimpDUSP] = p[C.KimDUSP] p[C.KexpDUSP] = p[C.KexDUSP] p[C.KimpcFOS] = p[C.KimFOS] p[C.KexpcFOS] = p[C.KexFOS] p[C.p52] = p[C.p47] p[C.m52] = p[C.m47] p[C.p53] = p[C.p48] p[C.p54] = p[C.p49] p[C.m54] = p[C.m49] p[C.p55] = p[C.p50] p[C.p56] = p[C.p51] p[C.m56] = p[C.m51] # -------------------------------------------------------------------------- return p, u0 end function decode_gene2val(indiv_gene)::Vector{Float64} search_rgn::Matrix{Float64} = get_search_region() indiv::Vector{Float64} = zeros(length(indiv_gene)) for (i, g) in enumerate(indiv_gene) indiv[i] = 10^( g * ( search_rgn[2, i] - search_rgn[1, i] ) + search_rgn[1, i] ) end # return round.(indiv, sigdigits=7) return indiv end function encode_val2gene(indiv::Vector{Float64}) search_rgn::Matrix{Float64} = get_search_region() indiv_gene::Vector{Float64} = zeros(length(indiv)) for i in eachindex(indiv) indiv_gene[i] = ( log10(indiv[i]) - search_rgn[1, i] ) / ( search_rgn[2, i] - search_rgn[1, i] ) end return indiv_gene end function encode_bestIndivVal2randGene( gene_idx::Int64, best_indiv::Vector{Float64}, p0_bounds::Vector{Float64})::Float64 search_rgn::Matrix{Float64} = get_search_region() rand_gene::Float64 = ( log10( best_indiv[gene_idx] * 10^( rand() * log10(p0_bounds[2] / p0_bounds[1]) + log10(p0_bounds[1]) ) ) - search_rgn[1, gene_idx] ) / ( search_rgn[2, gene_idx] - search_rgn[1, gene_idx] ) return rand_gene end function initialize_search_param( search_idx::Tuple{Array{Int64,1},Array{Int64,1}}, p::Vector{Float64}, u0::Vector{Float64})::Vector{Float64} duplicate::Vector{String} = [] if length(search_idx[1]) != length(unique(search_idx[1])) for idx in findall( [count(x -> x == i, search_idx[1]) for i in unique(search_idx[1])] .!= 1 ) push!(duplicate, C.NAMES[search_idx[1][idx]]) end error( "Duplicate parameters (C.): $duplicate" ) elseif length(search_idx[2]) != length(unique(search_idx[2])) for idx in findall( [count(x -> x == i, search_idx[2]) for i in unique(search_idx[2])] .!= 1 ) push!(duplicate, V.NAMES[search_idx[2][idx]]) end error( "Duplicate initial conditions (V.): $duplicate" ) end search_param = zeros( length(search_idx[1]) + length(search_idx[2]) ) for (i, j) in enumerate(search_idx[1]) @inbounds search_param[i] = p[j] end for (i, j) in enumerate(search_idx[2]) @inbounds search_param[i+length(search_idx[1])] = u0[j] end if any(x -> x == 0.0, search_param) msg::String = "search_param must not contain zero." for idx in search_idx[1] if p[idx] == 0.0 error( @sprintf( "`C.%s` in search_idx_params: ", C.NAMES[idx] ) * msg ) end end for idx in search_idx[2] if u0[idx] == 0.0 error( @sprintf( "`V.%s` in search_idx_initials: ", V.NAMES[idx] ) * msg ) end end end return search_param end function convert_scale!( search_rgn::Matrix{Float64}, search_idx::Tuple{Array{Int64,1},Array{Int64,1}})::Matrix{Float64} for i = 1:size(search_rgn, 2) if minimum(search_rgn[:, i]) < 0.0 msg = "search_rgn[lower_bound,upper_bound] must be positive.\n" if i <= C.NUM error(@sprintf("`C.%s` ", C.NAMES[i]) * msg) else error(@sprintf("`V.%s` ", V.NAMES[i-C.NUM]) * msg) end elseif minimum(search_rgn[:, i]) == 0.0 && maximum(search_rgn[:, i]) != 0.0 msg = "lower_bound must be larger than 0.\n" if i <= C.NUM error(@sprintf("`C.%s` ", C.NAMES[i]) * msg) else error(@sprintf("`V.%s` ", V.NAMES[i-C.NUM]) * msg) end elseif search_rgn[2, i] - search_rgn[1, i] < 0.0 msg = "lower_bound must be smaller than upper_bound.\n" if i <= C.NUM error(@sprintf("`C.%s` ", C.NAMES[i]) * msg) else error(@sprintf("`V.%s` ", V.NAMES[i-C.NUM]) * msg) end end end nonzero_idx::Vector{Int} = [] for i = 1:size(search_rgn, 2) if search_rgn[:, i] != [0.0, 0.0] push!(nonzero_idx, i) end end difference::Vector{Int} = collect( symdiff( Set(nonzero_idx), Set(append!(search_idx[1], C.NUM .+ search_idx[2])) ) ) if length(difference) > 0 for idx in difference if idx <= C.NUM println(@sprintf("`C.%s`", C.NAMES[Int(idx)])) else println(@sprintf("`V.%s`", V.NAMES[Int(idx)-C.NUM])) end end error( "Set these search_params in both search_idx and search_rgn." ) end search_rgn = search_rgn[:, nonzero_idx] return log10.(search_rgn) end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
4146
module Sim include("./name2idx/parameters.jl") include("./name2idx/species.jl") include("./ode.jl") include("./observable.jl") using .C using .V using Sundials using SteadyStateDiffEq # Options for ODE solver const ABSTOL = 1e-8 const RELTOL = 1e-8 normalization = Dict{String,Dict{}}() for observable in observables normalization[observable] = Dict( "timepoint" => nothing, "condition" => ["EGF", "HRG"] ) end const dt = 1.0 const t = collect(0.0:dt:5400.0) # 0, 1, 2, ..., 5400 [sec.] const conditions = ["EGF", "HRG"] simulations = Array{Float64,3}( undef, length(observables), length(conditions), length(t) ) function solveode( f::Function, u0::Vector{Float64}, t::Vector{Float64}, p::Vector{Float64})::Union{ODESolution{},Nothing} local sol::ODESolution{}, is_successful::Bool prob = ODEProblem(f, u0, (t[1], t[end]), p) try prob = ODEProblem(f, u0, (t[1], t[end]), p) sol = solve( prob, CVODE_BDF(), abstol=ABSTOL, reltol=RELTOL, saveat=dt, dtmin=eps(), verbose=false ) is_successful = ifelse(sol.t[end] == t[end], true, false) catch is_successful = false #finally # if !is_successful # GC.gc() # end end return is_successful ? sol : nothing end function get_steady_state( f::Function, u0::Vector{Float64}, p::Vector{Float64})::Vector{Float64} local sol::SteadyStateSolution{} try prob = ODEProblem(f, u0, (0.0, Inf), p) prob = SteadyStateProblem(prob) sol = solve( prob, DynamicSS( CVODE_BDF(); abstol=ABSTOL, reltol=RELTOL ), dt=dt, dtmin=eps(), verbose=false ) #is_successful = ifelse(sol.retcode === :Success, true, false) return sol.u catch #is_successful = false # GC.gc() #finally # if !is_successful # GC.gc() # end return [] end #return is_successful ? sol.u : [] end function simulate!(p::Vector{Float64}, u0::Vector{Float64})::Union{Bool,Nothing} # get steady state p[C.Ligand] = p[C.no_ligand] u0 = get_steady_state(diffeq!, u0, p) if isempty(u0) return false end # add ligand for (i, condition) in enumerate(conditions) if condition == "EGF" p[C.Ligand] = p[C.EGF] elseif condition == "HRG" p[C.Ligand] = p[C.HRG] end sol = solveode(diffeq!, u0, t, p) if sol === nothing return false else @inbounds @simd for j in eachindex(t) simulations[observables_index("Phosphorylated_MEKc"), i, j] = ( sol.u[j][V.ppMEKc] ) simulations[observables_index("Phosphorylated_ERKc"), i, j] = ( sol.u[j][V.pERKc] + sol.u[j][V.ppERKc] ) simulations[observables_index("Phosphorylated_RSKw"), i, j] = ( sol.u[j][V.pRSKc] + sol.u[j][V.pRSKn] * (p[C.Vn] / p[C.Vc]) ) simulations[observables_index("Phosphorylated_CREBw"), i, j] = ( sol.u[j][V.pCREBn] * (p[C.Vn] / p[C.Vc]) ) simulations[observables_index("dusp_mRNA"), i, j] = ( sol.u[j][V.duspmRNAc] ) simulations[observables_index("cfos_mRNA"), i, j] = ( sol.u[j][V.cfosmRNAc] ) simulations[observables_index("cFos_Protein"), i, j] = ( (sol.u[j][V.pcFOSn] + sol.u[j][V.cFOSn]) * (p[C.Vn] / p[C.Vc]) + sol.u[j][V.cFOSc] + sol.u[j][V.pcFOSc] ) simulations[observables_index("Phosphorylated_cFos"), i, j] = ( sol.u[j][V.pcFOSn] * (p[C.Vn] / p[C.Vc]) + sol.u[j][V.pcFOSc] ) end end end end end # module
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
1394
module C const NAMES = [ "V1" "Km1" "V2" "Km2" "V3" "Km3" "V4" "Km4" "V5" "Km5" "V6" "Km6" "KimERK" "KexERK" "KimpERK" "KexpERK" "KimppERK" "KexppERK" "V10" "Km10" "n10" "p11" "p12" "p13" "V14" "Km14" "V15" "Km15" "p16" "p17" "KimDUSP" "KexDUSP" "KimpDUSP" "KexpDUSP" "V20" "Km20" "V21" "Km21" "p22" "p23" "V24" "Km24" "V25" "Km25" "KimRSK" "KexRSK" "V27" "Km27" "V28" "Km28" "V29" "Km29" "V30" "Km30" "V31" "Km31" "n31" "p32" "p33" "p34" "V35" "Km35" "V36" "Km36" "V37" "Km37" "p38" "p39" "KimFOS" "KexFOS" "KimpcFOS" "KexpcFOS" "V42" "Km42" "V43" "Km43" "V44" "Km44" "p45" "p46" "p47" "m47" "p48" "p49" "m49" "p50" "p51" "m51" "p52" "m52" "p53" "p54" "m54" "p55" "p56" "m56" "V57" "Km57" "n57" "p58" "p59" "p60" "p61" "KimF" "KexF" "p63" "KF31" "nF31" # "a" "Vn" "Vc" "Ligand" "EGF" "HRG" "no_ligand" ] for (idx,name) in enumerate(NAMES) eval(Meta.parse("const $name = $idx")) end const NUM = length(NAMES) end # module
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
650
module V const NAMES = [ "ppMEKc" "CREBn" "pCREBn" "ERKc" "ERKn" "pERKc" "pERKn" "ppERKc" "ppERKn" "Elk1n" "pElk1n" "cFOSc" "cFOSn" "pcFOSc" "pcFOSn" "DUSPc" "DUSPn" "pDUSPc" "pDUSPn" "DUSPn_ERKn" "DUSPn_pERKn" "DUSPn_ppERKn" "pDUSPn_ERKn" "pDUSPn_pERKn" "pDUSPn_ppERKn" "RSKc" "pRSKc" "pRSKn" "PrecfosmRNAn" "PreduspmRNAn" "cfosmRNAc" "duspmRNAc" "Fc" "Fn" "FmRNAc" "PreFmRNAn" ] for (idx,name) in enumerate(NAMES) eval(Meta.parse("const $name = $idx")) end const NUM = length(NAMES) end # module
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
906
module Exp include("./observable.jl") experiments = Array{Dict{String,Array{Float64,1}},1}(undef, length(observables)) error_bars = Array{Dict{String,Array{Float64,1}},1}(undef, length(observables)) experiments[observables_index("Nuclear_NFkB")] = Dict( "WT" => [ 11.505 51.52262857 59.289 83.68132857 64.46 45.027 34.62007143 36.81375 53.31616 49.223625 38.17835714 39.38095714 44.80163333 37.23936667 30.32244 36.295 35.46456 31.04 34.05333333 32.175 29.0548 30.96566 35.023 28.58318571 22.54135 ] ./ 83.68132857 ) function get_timepoint(obs_name::String)::Vector{Float64} if obs_name == "Nuclear_NFkB" [15.0*i for i in 0:24] # 0, 15, 30, ..., 360 [min.] end end end # module
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
164
const observables = [ "Nuclear_NFkB" ] function observables_index(observable_name::String)::Int return findfirst(isequal(observable_name),observables) end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
32354
function MA(k,S) return k*S end function MAcom2(k,S1,S2) return k*S1*S2 end function MM(k,Km,S) return k*S/(Km+S) end function Hill2(A,n) return A^n end function libPulseDelay(t,X,term) # signal parameter sinput = 1.0 - (1.0 - 0.01)*X sbase = 0.01 slate = 0.05 - (0.05 - 0.01)*X tpulse = 0.25 traise = 0.5 tdecay = 0.5 tdelay = 0.0 if t <= tdelay || term == 1.0 return sbase elseif tdelay < t <= (traise + tdelay) return (t - tdelay)*(sinput - sbase)/traise + sbase elseif (traise + tdelay) < t <= (tpulse + traise + tdelay) return sinput elseif (tpulse + traise + tdelay) < t return (sinput - slate)*exp(-(t - tpulse - traise - tdelay)/tdecay) + slate else return 0.0 end end function diffeq!(du,u,h,p,t) #IKK activity IKKa = u[V.IKKp] + u[V.IKKpC] + u[V.IKKppC] + u[V.IKKpp] if IKKa == 0.0 IKKa = 1.0 end ##### time delay NFKBnDelay = h(p,t-p[C.delayrnae])[V.NFKBn] ###################----CBM module----####################### signal = libPulseDelay(t,p[C.X],p[C.term]) v = Dict{Int64,Float64}() v[1] = MA(p[C.kCp0], u[V.C]) # (*basal C phosphorylation*) v[2] = signal * MM(p[C.kCpS], p[C.kmCpS], u[V.C]) # (*signal-dependent C phosphorylation*) v[3] = MM(p[C.kCpu], p[C.kmCpu], u[V.Cp]) # (* Cp dephosphorylation*) v[4] = MA(p[C.kCpB0], u[V.CB]) # (*basal CB phosphorylation*) v[5] = signal * MM(p[C.kCpBS], p[C.kmCpBS], u[V.CB]) # (*signal-dependent CB phosphorylation*) v[6] = MM(p[C.kCpBu], p[C.kmCpBu], u[V.CpB]) # (* CpB dephosphorylation*) v[7] = MA(p[C.kCpM0], u[V.CM]) # (*basal CM phosphorylation*) v[8] = signal * MM(p[C.kCpMS], p[C.kmCpMS], u[V.CM]) # (*signal-dependent CM phosphorylation*) v[9] = MM(p[C.kCpMu], p[C.kmCpMu], u[V.CpM]) # (* CpM dephosphorylation*) v[10] = MA(p[C.kCpBM0], u[V.CBM]) # (*basal CBM phosphorylation*) v[11] = signal * MM(p[C.kCpBMS], p[C.kmCpBMS], u[V.CBM]) # (*signal-dependent CBM phosphorylation*) v[12] = MM(p[C.kCpBMu], p[C.kmCpBMu], u[V.CpBM]) # (* CpBM dephosphorylation*) v[13] = MAcom2(p[C.kBaM], u[V.B], u[V.M]) # (*association between B and M*) v[14] = MA(p[C.kBdM], u[V.BM]) # (*disassociation between B and M*) v[15] = MAcom2(p[C.kCaB], u[V.C], u[V.B]) # (*association between C and B*) v[16] = MA(p[C.kCdB], u[V.CB]) # (*disassociation between C and B*) v[17] = MAcom2(p[C.kCpaB], u[V.Cp], u[V.B]) # (*association between Cp and B*) v[18] = MA(p[C.kCpdB], u[V.CpB]) # (*disassociation between Cp and B*) v[19] = MAcom2(p[C.kCaM], u[V.C], u[V.M]) # (*association between C and M*) v[20] = MA(p[C.kCdM], u[V.CM]) # (*disassociation between C and M*) v[21] = MAcom2(p[C.kCpaM], u[V.Cp], u[V.M]) # (*association between Cp and M*) v[22] = MA(p[C.kCpdM], u[V.CpM]) # (*disassociation between Cp and M*) v[23] = MAcom2(p[C.kCBaM], u[V.CB], u[V.M]) # (*association between CB and M*) v[24] = MA(p[C.kCBdM], u[V.CBM]) # (*disassociation between CB and M*) v[25] = MAcom2(p[C.kCpBaM], u[V.CpB], u[V.M]) # (*association between CpB and M*) v[26] = MA(p[C.kCpBdM], u[V.CpBM]) # (*disassociation between CpB and M*) v[27] = MAcom2(p[C.kCMaB], u[V.CM], u[V.B]) # (*association between CM and B*) v[28] = MA(p[C.kCMdB], u[V.CBM]) # (*disassociation between CM and B*) v[29] = MAcom2(p[C.kCpMaB], u[V.CpM], u[V.B]) # (*association between CpM and B*) v[30] = MA(p[C.kCpMdB], u[V.CpBM]) # (*disassociation between CpM and B*) v[31] = MAcom2(p[C.kCaBM], u[V.C], u[V.BM]) # (*association between C and BM*) v[32] = MA(p[C.kCdBM], u[V.CBM]) # (*disassociation between C and BM*) v[33] = MAcom2(p[C.kCpaBM], u[V.Cp], u[V.BM]) # (*association between Cp and BM*) v[34] = MA(p[C.kCpdBM], u[V.CpBM]) # (*disassociation between Cp and BM*) ###################----CBM module----####################### ###################----TAK1 module----###################### v[35] = MA(p[C.kTp0], u[V.TAK1]) # (*basal TAK1 phosphorylation*) v[36] = u[V.Cp] * MM(p[C.kCTpS], p[C.kmCTpS], u[V.TAK1]) # (*Cp-dependent TAK1 phosphorylation*) v[37] = u[V.CpB] * MM(p[C.kCBTpS], p[C.kmCBTpS], u[V.TAK1]) # (*CpB-dependent TAK1 phosphorylation*) v[38] = u[V.CpM] * MM(p[C.kCMTpS], p[C.kmCMTpS], u[V.TAK1]) # (*CpM-dependent TAK1 phosphorylation*) v[39] = u[V.CpBM] * MM(p[C.kCBMTpS], p[C.kmCBMTpS], u[V.TAK1]) # (*CpBM-dependent TAK1 phosphorylation*) v[40] = u[V.IKKp] * MM(p[C.kTpIKK1], p[C.kmTpIKK1], u[V.TAK1]) # (*IKKp-dependent TAK1 phosphorylation*) v[41] = MM(p[C.kTpu], p[C.kmTpu], u[V.TAK1p]) # (*TAK1 dephosphorylation*) v[42] = MA(p[C.kTpC0], u[V.TAK1C]) # (*basal TAK1C phosphorylation*) v[43] = u[V.Cp] * MM(p[C.kCTpCS], p[C.kmCTpCS], u[V.TAK1C]) # (*Cp-dependent TAK1C phosphorylation*) v[44] = u[V.CpB] * MM(p[C.kCBTpCS], p[C.kmCBTpCS], u[V.TAK1C]) # (*CpB-dependent TAK1C phosphorylation*) v[45] = u[V.CpM] * MM(p[C.kCMTpCS], p[C.kmCMTpCS], u[V.TAK1C]) # (*CpM-dependent TAK1C phosphorylation*) v[46] = u[V.CpBM] * MM(p[C.kCBMTpCS], p[C.kmCBMTpCS], u[V.TAK1C]) # (*CpBM-dependent TAK1C phosphorylation*) v[47] = u[V.IKKp] * MM(p[C.kTpCIKK1], p[C.kmTpCIKK1], u[V.TAK1C]) # (*IKKp-dependent TAK1C phosphorylation*) v[48] = u[V.IKKpC] * MM(p[C.kTpCIKK2], p[C.kmTpCIKK2], u[V.TAK1C]) # (*IKKpC-dependent TAK1C phosphorylation*) v[49] = u[V.IKKppC] * MM(p[C.kTpCIKK3], p[C.kmTpCIKK3], u[V.TAK1C]) # (*IKKppC-dependent TAK1C phosphorylation*) v[50] = MM(p[C.kTpCu], p[C.kmTpCu], u[V.TAK1pC]) # (*basal TAK1C dephosphorylation*) v[51] = MAcom2(p[C.kTaB], (u[V.CB] + u[V.CpB]), u[V.TAK1]) # (*association between TAK1 and CB*) v[52] = MAcom2(p[C.kTaM], (u[V.CM] + u[V.CpM]), u[V.TAK1]) # (*association between TAK1 and CM*) v[53] = MAcom2(p[C.kTaBM], (u[V.CBM] + u[V.CpBM]), u[V.TAK1]) # (*association between TAK1 and CBM*) v[54] = MA(p[C.kTCd], u[V.TAK1C]) # (*dissociation between TAK1 and CBM*) v[55] = MAcom2(p[C.kTpaB], (u[V.CB] + u[V.CpB]), u[V.TAK1p]) # (*association between TAK1p and CBM*) v[56] = MAcom2(p[C.kTpaM], (u[V.CM] + u[V.CpM]), u[V.TAK1p]) # (*association between TAK1p and CBM*) v[57] = MAcom2(p[C.kTpaBM], (u[V.CBM] + u[V.CpBM]), u[V.TAK1p]) # (*association between TAK1p and CBM*) v[58] = MA(p[C.kTpCd], u[V.TAK1pC]) # (*dissociation between TAK1 and CBM*) ###################----TAK1 module----###################### ###################----IKK module----####################### v[59] = MA(p[C.kIp0], u[V.IKK]) # (*basal IKK phosphorylation*) v[60] = u[V.TAK1p] * MM(p[C.kIpTAKp], p[C.kmIpTAKp], u[V.IKK]) # (*TAK1p-dependent IKK phosphorylation*) v[61] = u[V.TAK1pC] * MM(p[C.kIpTAKpC], p[C.kmIpTAKpC], u[V.IKK]) # (*TAKpC-dependent IKK phosphorylation*) v[62] = MA(p[C.kICp0], u[V.IKKC]) # (*basal IKKC phosphorylation*) v[63] = u[V.TAK1p] * MM(p[C.kICpTAKp], p[C.kmICpTAKp], u[V.IKKC]) # (*TAK1p-dependent IKKC phosphorylation*) v[64] = u[V.TAK1pC] * MM(p[C.kICpTAKpC], p[C.kmICpTAKpC], u[V.IKKC]) # (*TAK1pC-dependent IKKC phosphorylation*) v[65] = MM(p[C.kIpu], p[C.kmIpu], u[V.IKKp]) # (*IKKp dephosphorylation*) v[66] = MM(p[C.kIpCu], p[C.kmIpCu], u[V.IKKpC]) # (*IKKpC dephosphorylation*) v[67] = MAcom2(p[C.kIaB], (u[V.CB] + u[V.CpB]), u[V.IKK]) # (*association between IKK and CB*) v[68] = MAcom2(p[C.kIaM], (u[V.CM] + u[V.CpM]), u[V.IKK]) # (*association between IKK and CM*) v[69] = MAcom2(p[C.kIaBM], (u[V.CBM] + u[V.CpBM]), u[V.IKK]) # (*association between IKK and CBM*) v[70] = MA(p[C.kICd], u[V.IKKC]) # (*dissociation between IKK and CBM*) v[71] = MAcom2(p[C.kIpaB], (u[V.CB] + u[V.CpB]), u[V.IKKp]) # (*association between IKKp and CB*) v[72] = MAcom2(p[C.kIpaM], (u[V.CM] + u[V.CpM]), u[V.IKKp]) # (*association between IKKp and CM*) v[73] = MAcom2(p[C.kIpaBM], (u[V.CBM] + u[V.CpBM]), u[V.IKKp]) # (*association between IKKp and CBM*) v[74] = MA(p[C.kIpCd], u[V.IKKpC]) # (*dissociation between IKKp and CBM*) v[75] = MM(p[C.kIpCfaIKKpC], p[C.kmIpCfaIKKpC], u[V.IKKpC]) # (*basal IKKpC phosphorylation*) v[76] = u[V.IKKppC] * MM(p[C.kIpCfaIKKppC], p[C.kmIpCfaIKKppC], u[V.IKKpC]) # (*IKKppC-dependent IKKpC phosphorylation*) v[77] = MM(p[C.kIppCu], p[C.kmIppCu], u[V.IKKppC]) # (*basal IKKppC dephosphorylation*) v[78] = MA(p[C.kIppCd], u[V.IKKppC]) # (*dissociation between IKKpp and CBM (IKKppC->IKKpp*) v[79] = MM(p[C.kIpphf], p[C.kmIpphf], u[V.IKKpp]) # (*basal IKKpp inactivation (IKKpp->IKKi)*) v[80] = MM(p[C.kIppChf], p[C.kmIppChf], u[V.IKKppC]) # (*basal IKKppC inactivation (IKKppC->IKKi)*) v[81] = MM(p[C.kIir], p[C.kmIir], u[V.IKKi]) # (* recycling (IKKi->IKK)*) v[82] = u[V.A20c] * MM(p[C.kIpA20], p[C.kmIpA20], u[V.IKKp]) # (* A20-dependent IKKp phosphorylation inhibition *) v[83] = u[V.A20c] * MM(p[C.kIpCA20], p[C.kmIpCA20], u[V.IKKpC]) # (* A20-dependent IKKpC phosphorylation inhibition *) ###################----IKK module----####################### ########----IKKNFkBIkB module----################ v[84] = MAcom2(p[C.kassanfkbikk], IKKa, u[V.NFKBIKBac]) # (*association between IKKa and NFkBIkBac*) v[85] = MAcom2(p[C.kassbnfkbikk], IKKa, u[V.NFKBIKBbc]) # (*association between IKKa and NFkBIkBbc*) v[86] = MAcom2(p[C.kassenfkbikk], IKKa, u[V.NFKBIKBec]) # (*association between IKKa and NFkBIkBec*) v[87] = MA(p[C.kdisanfkbikk], u[V.IKKNFKBIKBac]) # (*dissociation between IKKa and NFkBIkBac*) v[88] = MA(p[C.kdisbnfkbikk], u[V.IKKNFKBIKBbc]) # (*dissociation between IKKa and NFkBIkBbc*) v[89] = MA(p[C.kdisenfkbikk], u[V.IKKNFKBIKBec]) # (*dissociation between IKKa and NFkBIkBec*) v[90] = MA(p[C.kdegboundaIKK], u[V.IKKNFKBIKBac]) # (*dissociation between IKKa and NFkBc and degradation of IkBac*) v[91] = MA(p[C.kdegboundbIKK], u[V.IKKNFKBIKBbc]) # (*dissociation between IKKa and NFkBc and degradation of IkBbc*) v[92] = MA(p[C.kdegboundeIKK], u[V.IKKNFKBIKBec]) # (*dissociation between IKKa and NFkBc and degradation of IkBec*) v[93] = MAcom2(p[C.kassaikk], u[V.IKBac], IKKa) # (*association between IKKa and IkBac*) v[94] = MAcom2(p[C.kassbikk], u[V.IKBbc], IKKa) # (*association between IKKa and IkBbc*) v[95] = MAcom2(p[C.kasseikk], u[V.IKBec], IKKa) # (*association between IKKa and IkBec*) v[96] = MA(p[C.kdisaikk], u[V.IKKIKBac]) # (*dissociation between IKKa and IkBac*) v[97] = MA(p[C.kdisbikk], u[V.IKKIKBbc]) # (*dissociation between IKKa and IkBbc*) v[98] = MA(p[C.kdiseikk], u[V.IKKIKBec]) # (*dissociation between IKKa and IkBec*) v[99] = MA(p[C.kdegfreeaIKK], u[V.IKKIKBac]) # (*dissociation of IKKa and degradation of IkBac*) v[100] = MA(p[C.kdegfreebIKK], u[V.IKKIKBbc]) # (*dissociation of IKKa and degradation of IkBbc*) v[101] = MA(p[C.kdegfreeeIKK], u[V.IKKIKBec]) # (*dissociation of IKKa and degradation of IkBec*) ########----IKKNFkBIkB module----################ ###################----NFkB module----###################### v[102] = MAcom2(p[C.kassa], u[V.IKBac], u[V.NFKBc]) # (*association between NFkBc and IkBac*) v[103] = MA(p[C.kdisa], u[V.NFKBIKBac]) # (*dissociation between NFkBc and IkBac*) v[104] = MA(p[C.kdegbounda], u[V.NFKBIKBac]) # (*dissociation of NFkBc and degradation of IkBac*) v[105] = MAcom2(p[C.kassaikknfkb], u[V.IKKIKBac], u[V.NFKBc]) # (*association between NFkBc and IKKaIkBac*) v[106] = MA(p[C.kdisaikknfkb], u[V.IKKNFKBIKBac]) # (*dissociation between NFkBc and IKKaIkBac*) v[107] = MAcom2(p[C.kassa], u[V.IKBan], u[V.NFKBn]) # (*association between NFkBn and IkBan*) v[108] = MA(p[C.kdisa], u[V.NFKBIKBan]) # (*dissociation between NFkBn and IkBan*) v[109] = MA(p[C.kdegbounda], u[V.NFKBIKBan]) # (*dissociation of NFkBn and degradation of IkBan*) v[110] = MAcom2(p[C.kassb], u[V.IKBbc], u[V.NFKBc]) # (*association between NFkBc and IkBbc*) v[111] = MA(p[C.kdisb], u[V.NFKBIKBbc]) # (*dissociation between NFkBc and IkBbc*) v[112] = MA(p[C.kdegboundb], u[V.NFKBIKBbc]) # (*dissociation of NFkBc and degradation of IkBbc*) v[113] = MAcom2(p[C.kassbikknfkb], u[V.IKKIKBbc], u[V.NFKBc]) # (*association between NFkBc and IKKaIkBbc*) v[114] = MA(p[C.kdisbikknfkb], u[V.IKKNFKBIKBbc]) # (*dissociation between NFkBc and IKKaIkBbc*) v[115] = MAcom2(p[C.kassb], u[V.IKBbn], u[V.NFKBn]) # (*association between NFkBn and IkBbn*) v[116] = MA(p[C.kdisb], u[V.NFKBIKBbn]) # (*dissociation between NFkBn and IkBbn*) v[117] = MA(p[C.kdegboundb], u[V.NFKBIKBbn]) # (*dissociation of NFkBn and degradation of IkBbn*) v[118] = MAcom2(p[C.kasse], u[V.IKBec], u[V.NFKBc]) # (*association between NFkBc and IkBec*) v[119] = MA(p[C.kdise], u[V.NFKBIKBec]) # (*dissociation between NFkBc and IkBec*) v[120] = MA(p[C.kdegbounde], u[V.NFKBIKBec]) # (*dissociation of NFkBc and degradation of IkBec*) v[121] = MAcom2(p[C.kasseikknfkb], u[V.IKKIKBec], u[V.NFKBc]) # (*association between NFkBc and IKKaIkBec*) v[122] = MA(p[C.kdiseikknfkb], u[V.IKKNFKBIKBec]) # (*dissociation between NFkBc and IKKaIkBec*) v[123] = MAcom2(p[C.kasse], u[V.IKBen], u[V.NFKBn]) # (*association between NFkBn and IkBen*) v[124] = MA(p[C.kdise], u[V.NFKBIKBen]) # (*dissociation between NFkBn and IkBen*) v[125] = MA(p[C.kdegbounde], u[V.NFKBIKBen]) # (*dissociation of NFkBn and degradation of IkBen*) v[126] = MA(p[C.kshutboundikbain], u[V.NFKBIKBac]) # (*transport NFkBIkBac into nucleos*) v[127] = MA(p[C.kshutboundikbaout], u[V.NFKBIKBan]) # (*transport NFkBIkBan into cytoplasm*) v[128] = MA(p[C.kshutboundikbbin], u[V.NFKBIKBbc]) # (*transport NFkBIkBbc into nucleos*) v[129] = MA(p[C.kshutboundikbbout], u[V.NFKBIKBbn]) # (*transport NFkBIkBbn into cytoplasm*) v[130] = MA(p[C.kshutboundikbein], u[V.NFKBIKBec]) # (*transport NFkBIkBec into nucleos*) v[131] = MA(p[C.kshutboundikbeout], u[V.NFKBIKBen]) # (*transport NFkBIkBen into cytoplasm*) v[132] = MA(p[C.kshutfreeikbain], u[V.IKBac]) # (*transport IkBac into nucleos*) v[133] = MA(p[C.kshutfreeikbaout], u[V.IKBan]) # (*transport IkBan into cytoplasm*) v[134] = MA(p[C.kshutfreeikbbin], u[V.IKBbc]) # (*transport IkBbc into nucleos*) v[135] = MA(p[C.kshutfreeikbbout], u[V.IKBbn]) # (*transport IkBbn into cytoplasm*) v[136] = MA(p[C.kshutfreeikbein], u[V.IKBec]) # (*transport IkBec into nucleos*) v[137] = MA(p[C.kshutfreeikbeout], u[V.IKBen]) # (*transport IkBen into cytoplasm*) v[138] = MA(p[C.kshutnfkbin], u[V.NFKBc]) # (*transport NFkBc into nucleos*) v[139] = MA(p[C.kshutnfkbout], u[V.NFKBn]) # (*transport NFkBn into cytoplasm*) v[140] = p[C.k0mrnaikba] # (*basal mRNA(IkBa) transcription*) v[141] = p[C.kprodmrnaikba] * Hill2(u[V.NFKBn], p[C.khillprodmrnaikba]) # (*NFkB-induced IkBa transcription*) v[142] = MA(p[C.kdegmrnaikba], u[V.mRNAac]) # (*mRNA(IkBa) degradation*) v[143] = MA(p[C.kpikba], u[V.mRNAac]) # (*mRNA(IkBa) translation*) v[144] = MA(p[C.kdegfreea], u[V.IKBac]) # (*IkBac degradation*) v[145] = MA(p[C.kdegfreea], u[V.IKBan]) # (*IkBan degradation*) v[146] = p[C.k0mrnaikbb] # (*basal mRNA(IkBb) transcription*) v[147] = MA(p[C.kdegmrnaikbb], u[V.mRNAbc]) # (*mRNA(IkBb) degradation*) v[148] = MA(p[C.kpikbb], u[V.mRNAbc]) # (*mRNA(IkBb) translation*) v[149] = MA(p[C.kdegfreeb], u[V.IKBbc]) # (*IkBbc degradation*) v[150] = MA(p[C.kdegfreeb], u[V.IKBbn]) # (*IkBbn degradation*) v[151] = p[C.k0mrnaikbe] # (*basal mRNA(IkBe) transcription*) v[152] = p[C.kprodmrnaikbe] * Hill2(NFKBnDelay, p[C.khillprodmrnaikbe]) # (*NFkB-induced IkBe transcription*) v[153] = MA(p[C.kdegmrnaikbe], u[V.mRNAec]) # (*mRNA(IkBe) degradation*) v[154] = MA(p[C.kpikbe], u[V.mRNAec]) # (*mRNA(IkBe) translation*) v[155] = MA(p[C.kdegfreee], u[V.IKBec]) # (*IkBec degradation*) v[156] = MA(p[C.kdegfreee], u[V.IKBen]) # (*IkBen degradation*) v[157] = p[C.k0mrnaa20] # (*basal mRNA(A20) transcription*) v[158] = p[C.kprodmrnaa20] * Hill2(u[V.NFKBn], p[C.khillprodmrnaa20]) # (*NFkB-induced A20 transcription*) v[159] = MA(p[C.kdegmrnaa20], u[V.mRNAa20c]) # (*mRNA(A20) degradation*) v[160] = MA(p[C.kpa20], u[V.mRNAa20c]) # (*mRNA(A20) translation*) v[161] = MA(p[C.kdega20], u[V.A20c]) # (*A20 degradation*) IKKaNFKBIKB = - v[93] - v[94] - v[95] + v[99] + v[96] + v[100] + v[97] + v[101] + v[98] + v[90] + v[87] + v[91] + v[88] + v[92] + v[89] - v[84] - v[85] - v[86] ###################----CBM module----###################### du[V.B] = (- v[15] + v[16]) + (- v[17] + v[18]) + (- v[27] + v[28]) + (- v[29] + v[30]) + (- v[13] + v[14]) du[V.M] = (- v[19] + v[20]) + (- v[21] + v[22]) + (- v[23] + v[24]) + (- v[25] + v[26]) + (- v[13] + v[14]) du[V.BM] = ( v[13] - v[14]) + (- v[31] + v[32]) + (- v[33] + v[34]) du[V.C] = (- v[15] + v[16]) + (- v[19] + v[20]) + (- v[31] + v[32]) + ( v[3] -(v[1] + v[2]) ) du[V.CB] = (v[15] - v[16]) + (- v[23] + v[24]) + ( v[6] -(v[4] + v[5]) ) du[V.CM] = (v[19] - v[20]) + (- v[27] + v[28]) + ( v[9] -(v[7] + v[8]) ) du[V.Cp] = (- v[17] + v[18]) + (- v[21] + v[22]) + (- v[33] + v[34]) + (- v[3] +(v[1] + v[2]) ) du[V.CpB] = (v[17] - v[18]) + (- v[25] + v[26]) + (- v[6] +(v[4] + v[5]) ) du[V.CpM] = (v[21] - v[22]) + (- v[29] + v[30]) + (- v[9] +(v[7] + v[8]) ) du[V.CBM] = (v[27] - v[28]) + (v[23] - v[24]) + ( v[31] - v[32]) + ( v[12] -(v[10] + v[11]) ) du[V.CpBM] = (v[29] - v[30]) + (v[25] - v[26]) + ( v[33] - v[34]) + ( - v[12] +(v[10] + v[11]) ) ###################----CBM module----###################### ###################----TAK1 module---###################### du[V.TAK1] = -(v[35] + v[36] + v[37] + v[38] + v[39] + v[40]) + v[41] - (v[51] + v[52] + v[53]) + v[54] du[V.TAK1p] = (v[35] + v[36] + v[37] + v[38] + v[39] + v[40]) - v[41] - (v[55] + v[56] + v[57]) + v[58] du[V.TAK1C] = -(v[42] + v[43] + v[44] + v[45] + v[46] + v[47] + v[48] + v[49] ) + v[50] + (v[51] + v[52] + v[53]) - v[54] du[V.TAK1pC] = (v[42] + v[43] + v[44] + v[45] + v[46] + v[47] + v[48] + v[49] ) - v[50] + (v[55] + v[56] + v[57]) - v[58] ###################----TAK1 module---###################### ###################----IKK module----###################### du[V.IKK] = -(v[59] + v[60] + v[61]) + v[65] + v[81] - (v[67] + v[68] + v[69]) + v[70] + v[82] du[V.IKKC] = -(v[62] + v[63] + v[64]) + v[66] + (v[67] + v[68] + v[69]) - v[70] + v[83] du[V.IKKp] = (v[59] + v[60] + v[61]) - v[65] - (v[71] + v[72] + v[73]) + v[74] - v[82] + u[V.IKKp]*IKKaNFKBIKB/IKKa du[V.IKKpC] = (v[71] + v[72] + v[73]) - v[74] - ( v[75] + v[76]) + v[77]+ (v[62] + v[63] + v[64]) - v[66] - v[83] + u[V.IKKpC]*IKKaNFKBIKB/IKKa du[V.IKKppC] = ( v[75] + v[76]) - v[77] - v[78] - v[80] + u[V.IKKppC]*IKKaNFKBIKB/IKKa du[V.IKKpp] = v[78] - v[79] + u[V.IKKpp]*IKKaNFKBIKB/IKKa du[V.IKKi] = v[79] + v[80] - v[81] ###################----IKK module----###################### ###################----NFkB module----###################### du[V.NFKBc] = v[90] + v[91] + v[92] - v[102] + v[103]+ v[104] - v[105] + v[106] - v[110] + v[111] + v[112] - v[113] + v[114] - v[118] + v[119] + v[120] - v[121] + v[122] - v[138] + v[139] du[V.NFKBn] = - v[107] + v[108] + v[109] - v[115] + v[116] + v[117] - v[123] + v[124] + v[125] + v[138] - v[139] du[V.IKBac] = - v[93] + v[96] - v[102] + v[103] - v[132] + v[133] + v[143] - v[144] du[V.IKBbc] = - v[94] + v[97] - v[110] + v[111] - v[134] + v[135] + v[148] - v[149] du[V.IKBec] = - v[95] + v[98] - v[118] + v[119] - v[136] + v[137] + v[154] - v[155] du[V.IKBan] = - v[107] + v[108] + v[132] - v[133] - v[145] du[V.IKBbn] = - v[115] + v[116] + v[134] - v[135] - v[150] du[V.IKBen] = - v[123] + v[124] + v[136] - v[137] - v[156] du[V.NFKBIKBac] = - v[84] + v[87] + v[102] - v[103] - v[104] - v[126] + v[127] du[V.NFKBIKBbc] = - v[85] + v[88] + v[110] - v[111] - v[112] - v[128] + v[129] du[V.NFKBIKBec] = - v[86] + v[89] + v[118] - v[119] - v[120] - v[130] + v[131] du[V.NFKBIKBan] = v[107] - v[108] - v[109] + v[126] - v[127] du[V.NFKBIKBbn] = v[115] - v[116] - v[117] + v[128] - v[129] du[V.NFKBIKBen] = v[123] - v[124] - v[125] + v[130] - v[131] du[V.IKKIKBac] = v[93] - v[96] - v[99] - v[105] + v[106] du[V.IKKIKBbc] = v[94] - v[97] - v[100] - v[113] + v[114] du[V.IKKIKBec] = v[95] - v[98] - v[101] - v[121] + v[122] du[V.IKKNFKBIKBac] = v[84] - v[87] - v[90] + v[105] - v[106] du[V.IKKNFKBIKBbc] = v[85] - v[88] - v[91] + v[113] - v[114] du[V.IKKNFKBIKBec] = v[86] - v[89] - v[92] + v[121] - v[122] du[V.mRNAac] = v[140] + v[141] - v[142] du[V.mRNAbc] = v[146] - v[147] du[V.mRNAec] = v[151] + v[152] - v[153] du[V.mRNAa20c] = v[157] + v[158] - v[159] du[V.A20c] = v[160] - v[161] ###################----NFkB module----###################### end function param_values() p = zeros(C.NUM) p[C.kCp0] = 1.000000e-04 p[C.kCpB0] = 1.000000e-04 p[C.kCpM0] = 1.000000e-04 p[C.kCpBM0] = 1.000000e-04 p[C.kCpS] = 7.000000e+00 p[C.kCpBS] = 2.000000e+01 p[C.kCpMS] = 1.700000e+01 p[C.kCpBMS] = 1.000000e+00 p[C.kmCpS] = 1.000000e+00 p[C.kmCpBS] = 1.000000e+00 p[C.kmCpMS] = 1.000000e+00 p[C.kmCpBMS] = 5.000000e+00 p[C.kCpu] = 7.500000e-01 p[C.kCpBu] = 1.950000e+00 p[C.kCpMu] = 3.750000e+00 p[C.kCpBMu] = 2.500000e-01 p[C.kmCpu] = 1.000000e+00 p[C.kmCpBu] = 1.000000e+00 p[C.kmCpMu] = 1.000000e+00 p[C.kmCpBMu] = 2.500000e+00 p[C.kBaM] = 5.000000e-01 p[C.kCaB] = 5.000000e-01 p[C.kCaM] = 5.000000e-01 p[C.kCBaM] = 1.500000e+00 p[C.kCMaB] = 5.000000e-01 p[C.kCaBM] = 5.000000e-01 p[C.kCpaBM] = 1.885000e+00 p[C.kCpaB] = 7.885000e+00 p[C.kCpaM] = 4.585000e+00 p[C.kCpBaM] = 2.500000e+00 p[C.kCpMaB] = 1.500000e+00 p[C.kBdM] = 2.500000e+00 p[C.kCdB] = 1.000000e+00 p[C.kCdM] = 2.500000e+00 p[C.kCBdM] = 1.500000e+00 p[C.kCMdB] = 2.500000e+00 p[C.kCpdB] = 3.000000e-01 p[C.kCpdM] = 3.000000e-01 p[C.kCpBdM] = 1.500000e-01 p[C.kCpMdB] = 4.500000e-01 p[C.kCdBM] = 2.000000e-01 p[C.kCpdBM] = 2.500000e-01 p[C.kTp0] = 2.700000e-01 p[C.kCTpS] = 3.200000e-01 p[C.kCBTpS] = 1.320000e+00 p[C.kCMTpS] = 1.320000e+00 p[C.kCBMTpS] = 1.320000e+00 p[C.kmCTpS] = 2.100000e+00 p[C.kmCBTpS] = 2.100000e+00 p[C.kmCMTpS] = 2.100000e+00 p[C.kmCBMTpS] = 2.100000e+00 p[C.kTpIKK1] = 1.670000e+01 p[C.kmTpIKK1] = 7.800000e-01 p[C.kTpu] = 3.400000e+00 p[C.kmTpu] = 1.790000e+00 p[C.kTpC0] = 3.300000e-01 p[C.kCTpCS] = 5.500000e+00 p[C.kCBTpCS] = 1.750000e+01 p[C.kCMTpCS] = 1.650000e+01 p[C.kCBMTpCS] = 2.450000e+01 p[C.kmCTpCS] = 5.200000e-01 p[C.kmCBTpCS] = 5.200000e-01 p[C.kmCMTpCS] = 5.200000e-01 p[C.kmCBMTpCS] = 5.200000e-01 p[C.kTpCIKK1] = 1.000000e+01 p[C.kmTpCIKK1] = 7.800000e-01 p[C.kTpCIKK2] = 1.710000e+01 p[C.kmTpCIKK2] = 1.300000e-01 p[C.kTpCIKK3] = 8.000000e+01 p[C.kmTpCIKK3] = 7.000000e-01 p[C.kTpCu] = 1.533000e+01 p[C.kmTpCu] = 8.000000e-01 p[C.kTaB] = 1.790000e+02 p[C.kTaM] = 1.690000e+02 p[C.kTaBM] = 3.690000e+02 p[C.kTpaB] = 3.790000e+00 p[C.kTpaM] = 3.790000e+00 p[C.kTpaBM] = 3.790000e+00 p[C.kTCd] = 4.000000e+02 p[C.kTpCd] = 3.210000e+00 p[C.kIp0] = 5.500000e-02 p[C.kIpTAKp] = 1.930000e+00 p[C.kmIpTAKp] = 4.000000e-01 p[C.kIpTAKpC] = 3.800000e+00 p[C.kmIpTAKpC] = 5.800000e-01 p[C.kIpu] = 1.500000e+01 p[C.kmIpu] = 6.700000e-01 p[C.kICp0] = 5.100000e-02 p[C.kICpTAKp] = 8.640000e+00 p[C.kmICpTAKp] = 7.100000e+00 p[C.kICpTAKpC] = 1.230000e+01 p[C.kmICpTAKpC] = 7.177000e+00 p[C.kIpCu] = 1.250000e+01 p[C.kmIpCu] = 5.410000e+00 p[C.kIaB] = 3.030000e+01 p[C.kIaM] = 2.230000e+01 p[C.kIaBM] = 5.030000e+01 p[C.kIpaB] = 3.130000e+01 p[C.kIpaM] = 2.330000e+01 p[C.kIpaBM] = 6.030000e+01 p[C.kICd] = 3.280000e+01 p[C.kIpCd] = 1.320000e+00 p[C.kIpCfaIKKpC] = 1.000000e-05 p[C.kmIpCfaIKKpC] = 2.560000e+00 p[C.kIpCfaIKKppC] = 1.085700e+02 p[C.kmIpCfaIKKppC] = 2.010000e+00 p[C.kIppCu] = 1.530000e+00 p[C.kmIppCu] = 2.000000e-01 p[C.kIppCd] = 4.500000e-01 p[C.kIppChf] = 1.000000e-01 p[C.kmIppChf] = 5.000000e-01 p[C.kIpphf] = 9.000000e-03 p[C.kmIpphf] = 1.520000e+00 p[C.kIir] = 1.440000e+00 p[C.kmIir] = 3.440000e+00 p[C.kIpA20] = 2.000000e+01 p[C.kmIpA20] = 1.000000e-03 p[C.kIpCA20] = 2.000000e+01 p[C.kmIpCA20] = 1.000000e-03 p[C.kassaikk] = 1.631051e-03 p[C.kassaikknfkb] = 1.305073e+01 p[C.kassanfkbikk] = 4.812297e-02 p[C.kdisaikk] = 1.375438e-01 p[C.kdisaikknfkb] = 2.296074e-05 p[C.kdisanfkbikk] = 3.030804e-02 p[C.kassa] = 3.655315e+01 p[C.kdisa] = 3.495116e-04 p[C.kdegbounda] = 2.089360e-03 p[C.kdegboundaIKK] = 1.774837e-01 p[C.kdegfreea] = 2.010515e-02 p[C.kdegfreeaIKK] = 2.265038e-03 p[C.kshutboundikbain] = 4.102701e-01 p[C.kshutboundikbaout] = 1.632918e-01 p[C.kshutfreeikbain] = 1.011242e-01 p[C.kshutfreeikbaout] = 1.158262e-03 p[C.k0mrnaikba] = 3.450000e-05 p[C.kdegmrnaikba] = 8.326217e-02 p[C.khillprodmrnaikba] = 1.620503e+00 p[C.kpikba] = 8.484488e+00 p[C.kprodmrnaikba] = 1.290500e-01 p[C.kassbikk] = 5.609029e-03 p[C.kassbikknfkb] = 1.423728e+02 p[C.kassbnfkbikk] = 1.541680e-02 p[C.kdisbikk] = 2.771705e-02 p[C.kdisbikknfkb] = 1.742842e-03 p[C.kdisbnfkbikk] = 1.068148e-01 p[C.kassb] = 2.437209e+01 p[C.kdegboundb] = 2.804468e-04 p[C.kdegboundbIKK] = 3.645044e-01 p[C.kdegfreeb] = 1.486087e-01 p[C.kdegfreebIKK] = 2.818781e-04 p[C.kdisb] = 1.856372e-04 p[C.kshutboundikbbin] = 2.155431e-01 p[C.kshutboundikbbout] = 7.783843e-01 p[C.kshutfreeikbbin] = 1.505364e-03 p[C.kshutfreeikbbout] = 8.350086e-04 p[C.k0mrnaikbb] = 9.336099e-05 p[C.kdegmrnaikbb] = 4.101465e-03 p[C.khillprodmrnaikbb] = 0.000000e+00 p[C.kpikbb] = 4.171048e-02 p[C.kprodmrnaikbb] = 0.000000e+00 p[C.kasseikk] = 4.423523e-03 p[C.kasseikknfkb] = 1.485352e+02 p[C.kassenfkbikk] = 1.531672e-02 p[C.kdiseikk] = 3.827432e-01 p[C.kdiseikknfkb] = 2.124084e-04 p[C.kdisenfkbikk] = 2.691468e-01 p[C.kasse] = 2.413478e+02 p[C.kdegbounde] = 1.712910e-02 p[C.kdegboundeIKK] = 6.934859e-02 p[C.kdegfreee] = 2.201754e-01 p[C.kdegfreeeIKK] = 4.819481e-05 p[C.kdise] = 2.215707e-02 p[C.kshutboundikbein] = 8.666062e-03 p[C.kshutboundikbeout] = 4.006261e-02 p[C.kshutfreeikbein] = 1.364442e-03 p[C.kshutfreeikbeout] = 1.014252e-04 p[C.k0mrnaikbe] = 1.232627e-04 p[C.kdegmrnaikbe] = 9.773320e-03 p[C.khillprodmrnaikbe] = 1.944545e+00 p[C.kpikbe] = 2.384772e-01 p[C.kprodmrnaikbe] = 1.052365e-01 p[C.kshutnfkbin] = 2.072176e-01 p[C.kshutnfkbout] = 5.537618e-04 p[C.k0mrnaa20] = 1.118559e-03 p[C.kdegmrnaa20] = 2.809754e-01 p[C.kprodmrnaa20] = 1.788303e+00 p[C.kpa20] = 2.445338e-01 p[C.kdega20] = 6.217866e+00 p[C.khillprodmrnaa20] = 1.243583e+00 p[C.delayrnae] = 4.500000e+01 p[C.X] = 0.0 p[C.term] = 1.0 return p end function initial_values() u0 = zeros(V.NUM) u0[V.B] = 1.0 # B u0[V.M] = 1.0 # M u0[V.C] = 1.0 # C u0[V.TAK1] = 1.0 # TAK1 u0[V.IKK] = 1.0 # IKK u0[V.NFKBc] = 1.0 # NFKBc return u0 end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
3117
# Residual Sum of Squares function compute_objval_rss( sim_data::Vector{Float64}, exp_data::Vector{Float64})::Float64 error::Float64 = 0.0 for i in eachindex(exp_data) @inbounds error += (sim_data[i] - exp_data[i])^2 end return error end # Cosine similarity function compute_objval_cos( sim_data::Vector{Float64}, exp_data::Vector{Float64})::Float64 error::Float64 = 1.0 - dot(sim_data, exp_data) / (norm(sim_data) * norm(exp_data)) return error end function conditions_index(condition_name::String)::Int if !(condition_name in Sim.conditions) error("$condition_name is not defined in Sim.conditions") end return findfirst(isequal(condition_name), Sim.conditions) end function diff_sim_and_exp( sim_matrix::Matrix{Float64}, exp_dict::Dict{String,Array{Float64,1}}, exp_timepoint::Vector{Float64}, conditions::Vector{String}; sim_norm_max::Float64)::Tuple{Vector{Float64},Vector{Float64}} sim_result::Vector{Float64} = [] exp_result::Vector{Float64} = [] for (idx, condition) in enumerate(conditions) if condition in keys(exp_dict) append!(sim_result, sim_matrix[idx, Int.(exp_timepoint .+ 1)]) append!(exp_result, exp_dict[condition]) end end return (sim_result ./ sim_norm_max, exp_result) end # Define an objective function to be minimized. function objective(indiv_gene)::Float64 indiv::Vector{Float64} = decode_gene2val(indiv_gene) (p, u0) = update_param(indiv) if Sim.simulate!(p, u0) isa Nothing error::Vector{Float64} = zeros(length(observables)) for (i, obs_name) in enumerate(observables) if isassigned(Exp.experiments, i) if length(Sim.normalization) > 0 norm_max::Float64 = ( Sim.normalization[obs_name]["timepoint"] !== nothing ? maximum( Sim.simulations[ i, [conditions_index(c) for c in Sim.normalization[obs_name]["condition"]], Sim.normalization[obs_name]["timepoint"] ] ) : maximum( Sim.simulations[ i, [conditions_index(c) for c in Sim.normalization[obs_name]["condition"]], :, ] ) ) end error[i] = compute_objval_rss( diff_sim_and_exp( Sim.simulations[i, :, :], Exp.experiments[i], Exp.get_timepoint(obs_name), Sim.conditions, sim_norm_max=ifelse( length(Sim.normalization) == 0, 1.0, norm_max ) )... ) end end return sum(error) # < 1e12 else return 1e12 end end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
8644
# Specify model parameters and/or initial values to optimize function get_search_index()::Tuple{Array{Int64,1},Array{Int64,1}} # parameters search_idx_params::Vector{Int} = [ C.kassaikk C.kassaikknfkb C.kassanfkbikk C.kdisaikk C.kdisaikknfkb C.kdisanfkbikk C.kassa C.kdisa C.kdegbounda C.kdegboundaIKK C.kdegfreea C.kdegfreeaIKK C.kshutboundikbain C.kshutboundikbaout C.kshutfreeikbain C.kshutfreeikbaout C.k0mrnaikba C.kdegmrnaikba C.khillprodmrnaikba C.kpikba C.kprodmrnaikba C.kassbikk C.kassbikknfkb C.kassbnfkbikk C.kdisbikk C.kdisbikknfkb C.kdisbnfkbikk C.kassb C.kdegboundb C.kdegboundbIKK C.kdegfreeb C.kdegfreebIKK C.kdisb C.kshutboundikbbin C.kshutboundikbbout C.kshutfreeikbbin C.kshutfreeikbbout C.k0mrnaikbb C.kdegmrnaikbb # C.khillprodmrnaikbb C.kpikbb # C.kprodmrnaikbb C.kasseikk C.kasseikknfkb C.kassenfkbikk C.kdiseikk C.kdiseikknfkb C.kdisenfkbikk C.kasse C.kdegbounde C.kdegboundeIKK C.kdegfreee C.kdegfreeeIKK C.kdise C.kshutboundikbein C.kshutboundikbeout C.kshutfreeikbein C.kshutfreeikbeout C.k0mrnaikbe C.kdegmrnaikbe C.khillprodmrnaikbe C.kpikbe C.kprodmrnaikbe C.kshutnfkbin C.kshutnfkbout C.k0mrnaa20 C.kdegmrnaa20 C.kprodmrnaa20 C.kpa20 C.kdega20 C.khillprodmrnaa20 ] # initial values search_idx_initials::Vector{Int} = [ # V.(variableName) ] return search_idx_params, search_idx_initials end function get_search_region()::Matrix{Float64} p::Vector{Float64} = param_values() u0::Vector{Float64} = initial_values() search_idx::Tuple{Array{Int64,1},Array{Int64,1}} = get_search_index() search_param::Vector{Float64} = initialize_search_param(search_idx, p, u0) search_rgn::Matrix{Float64} = zeros(2, length(p) + length(u0)) # Default: 0.1 ~ 10x for (i, j) in enumerate(search_idx[1]) search_rgn[1,j] = search_param[i] * 0.1 # lower bound search_rgn[2,j] = search_param[i] * 10.0 # upper bound end # Default: 0.5 ~ 2x for (i, j) in enumerate(search_idx[2]) search_rgn[1,j + length(p)] = search_param[i + length(search_idx[1])] * 0.5 # lower bound search_rgn[2,j + length(p)] = search_param[i + length(search_idx[1])] * 2.0 # upper bound end # search_rgn[:, C.param_name] = [lower_bound, upper_bound] # search_rgn[:, V.var_name+length(p)] = [lower_bound, upper_bound] search_rgn[:, C.khillprodmrnaikba] = [1.0, 2.0] search_rgn[:, C.khillprodmrnaikbe] = [1.0, 2.0] search_rgn[:, C.khillprodmrnaa20] = [1.0, 2.0] search_rgn = convert_scale!(search_rgn, search_idx) return search_rgn end function update_param(indiv::Vector{Float64})::Tuple{Array{Float64,1},Array{Float64,1}} p::Vector{Float64} = param_values() u0::Vector{Float64} = initial_values() search_idx::Tuple{Array{Int64,1},Array{Int64,1}} = get_search_index() for (i, j) in enumerate(search_idx[1]) @inbounds p[j] = indiv[i] end for (i, j) in enumerate(search_idx[2]) @inbounds u0[j] = indiv[i + length(search_idx[1])] end return p, u0 end function decode_gene2val(indiv_gene)::Vector{Float64} search_rgn::Matrix{Float64} = get_search_region() indiv::Vector{Float64} = zeros(length(indiv_gene)) for i in eachindex(indiv_gene) indiv[i] = 10^( indiv_gene[i] * ( search_rgn[2,i] - search_rgn[1,i] ) + search_rgn[1,i] ) end return round.(indiv, sigdigits=7) end function encode_val2gene(indiv::Vector{Float64}) search_rgn::Matrix{Float64} = get_search_region() indiv_gene::Vector{Float64} = zeros(length(indiv)) for i in eachindex(indiv) indiv_gene[i] = ( log10(indiv[i]) - search_rgn[1,i] ) / ( search_rgn[2,i] - search_rgn[1,i] ) end return indiv_gene end function encode_bestIndivVal2randGene( gene_idx::Int64, best_indiv::Vector{Float64}, p0_bounds::Vector{Float64})::Float64 search_rgn::Matrix{Float64} = get_search_region() rand_gene::Float64 = ( log10( best_indiv[gene_idx] * 10^( rand() * log10(p0_bounds[2] / p0_bounds[1]) + log10(p0_bounds[1]) ) ) - search_rgn[1,gene_idx] ) / ( search_rgn[2,gene_idx] - search_rgn[1,gene_idx] ) return rand_gene end function initialize_search_param( search_idx::Tuple{Array{Int64,1},Array{Int64,1}}, p::Vector{Float64}, u0::Vector{Float64})::Vector{Float64} duplicate::Vector{String} = [] if length(search_idx[1]) != length(unique(search_idx[1])) for idx in findall( [count(x -> x == i, search_idx[1]) for i in unique(search_idx[1])] .!= 1 ) push!(duplicate, C.NAMES[search_idx[1][idx]]) end error( "Duplicate parameters (C.): $duplicate" ) elseif length(search_idx[2]) != length(unique(search_idx[2])) for idx in findall( [count(x -> x == i, search_idx[2]) for i in unique(search_idx[2])] .!= 1 ) push!(duplicate, V.NAMES[search_idx[2][idx]]) end error( "Duplicate initial conditions (V.): $duplicate" ) end search_param = zeros( length(search_idx[1]) + length(search_idx[2]) ) for (i, j) in enumerate(search_idx[1]) @inbounds search_param[i] = p[j] end for (i, j) in enumerate(search_idx[2]) @inbounds search_param[i + length(search_idx[1])] = u0[j] end if any(x -> x == 0.0, search_param) msg::String = "search_param must not contain zero." for idx in search_idx[1] if p[idx] == 0.0 error( @sprintf( "`C.%s` in search_idx_params: ", C.NAMES[idx] ) * msg ) end end for idx in search_idx[2] if u0[idx] == 0.0 error( @sprintf( "`V.%s` in search_idx_initials: ", V.NAMES[idx] ) * msg ) end end end return search_param end function convert_scale!( search_rgn::Matrix{Float64}, search_idx::Tuple{Array{Int64,1},Array{Int64,1}})::Matrix{Float64} for i = 1:size(search_rgn, 2) if minimum(search_rgn[:,i]) < 0.0 msg = "search_rgn[lower_bound,upper_bound] must be positive.\n" if i <= C.NUM error(@sprintf("`C.%s` ", C.NAMES[i]) * msg) else error(@sprintf("`V.%s` ", V.NAMES[i - C.NUM]) * msg) end elseif minimum(search_rgn[:,i]) == 0.0 && maximum(search_rgn[:,i]) != 0.0 msg = "lower_bound must be larger than 0.\n" if i <= C.NUM error(@sprintf("`C.%s` ", C.NAMES[i]) * msg) else error(@sprintf("`V.%s` ", V.NAMES[i - C.NUM]) * msg) end elseif search_rgn[2,i] - search_rgn[1,i] < 0.0 msg = "lower_bound must be smaller than upper_bound.\n" if i <= C.NUM error(@sprintf("`C.%s` ", C.NAMES[i]) * msg) else error(@sprintf("`V.%s` ", V.NAMES[i - C.NUM]) * msg) end end end nonzero_idx::Vector{Int} = [] for i = 1:size(search_rgn, 2) if search_rgn[:,i] != [0.0,0.0] push!(nonzero_idx, i) end end difference::Vector{Int} = collect( symdiff( Set(nonzero_idx), Set(append!(search_idx[1], C.NUM .+ search_idx[2])) ) ) if length(difference) > 0 for idx in difference if j <= C.NUM println(@sprintf("`C.%s`", C.NAMES[Int(idx)])) else println(@sprintf("`V.%s`", V.NAMES[Int(idx) - C.NUM])) end end error( "Set these search_params in both search_idx and search_rgn." ) end search_rgn = search_rgn[:,nonzero_idx] return log10.(search_rgn) end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
2567
module Sim include("./name2idx/parameters.jl") include("./name2idx/species.jl") include("./ode.jl") include("./observable.jl") using .C using .V using DelayDiffEq normalization = Dict{String,Dict{}}() for observable in observables normalization[observable] = Dict( "timepoint" => nothing, "condition" => ["WT"] ) end const dt = 1.0 t = collect(0.0:1.0:360.0) # 0, 1, 2, ..., 360 [min.] const sstime = 1000.0 # time to reach steady state const conditions = ["WT"] simulations = Array{Float64,3}( undef, length(observables), length(conditions), length(t) ) function solvedde( f::Function, u0::Vector{Float64}, history::Vector{Float64}, tspan::Tuple{Float64,Float64}, p::Vector{Float64}, tau::Float64) h(p, t) = history lags = [tau] prob = DDEProblem(f, u0, h, tspan, p; constant_lags=lags) alg = MethodOfSteps(BS3()) sol = solve( prob, alg, saveat=dt, abstol=1e-8, reltol=1e-8, verbose=false ) return sol end function get_steady_state( p::Vector{Float64}, u0::Vector{Float64}, sstime::Float64, tau::Float64)::Vector{Float64} # get steady state (t<0) p[C.term] = 1.0 history::Vector{Float64} = u0 tspan::Tuple{Float64,Float64} = (0.0, sstime) try sol = solvedde(diffeq!, u0, history, tspan, p, tau) if sol.retcode === :Success return sol[:, end] else return [] end catch return [] end end function get_time_course( p::Vector{Float64}, u0::Vector{Float64}, sstime::Float64, tau::Float64) p1::Vector{Float64} = copy(p) p1[C.term] = 0.0 u1::Vector{Float64} = get_steady_state(p, u0, sstime, tau) if isempty(u1) return nothing end history::Vector{Float64} = u1 tspan::Tuple{Float64,Float64} = (0.0, t[end]) try sol = solvedde(diffeq!, u1, history, tspan, p1, tau) return ifelse(sol.retcode === :Success, sol, nothing) catch return nothing end end function simulate!( p::Vector{Float64}, u0::Vector{Float64})::Union{Bool,Nothing} for (i, condition) in enumerate(conditions) # if condition == "WT" # pass # end sol = get_time_course(p, u0, sstime, p[C.delayrnae]) if sol === nothing return false else @inbounds @simd for j in eachindex(t) simulations[observables_index("Nuclear_NFkB"), i, j] = ( sol.u[j][V.NFKBn] ) end end end end end # module
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
3058
module C const NAMES = [ "kCp0" "kCpB0" "kCpM0" "kCpBM0" "kCpS" "kCpBS" "kCpMS" "kCpBMS" "kmCpS" "kmCpBS" "kmCpMS" "kmCpBMS" "kCpu" "kCpBu" "kCpMu" "kCpBMu" "kmCpu" "kmCpBu" "kmCpMu" "kmCpBMu" "kBaM" "kCaB" "kCaM" "kCBaM" "kCMaB" "kCaBM" "kCpaBM" "kCpaB" "kCpaM" "kCpBaM" "kCpMaB" "kBdM" "kCdB" "kCdM" "kCBdM" "kCMdB" "kCpdB" "kCpdM" "kCpBdM" "kCpMdB" "kCdBM" "kCpdBM" "kTp0" "kCTpS" "kCBTpS" "kCMTpS" "kCBMTpS" "kmCTpS" "kmCBTpS" "kmCMTpS" "kmCBMTpS" "kTpIKK1" "kmTpIKK1" "kTpu" "kmTpu" "kTpC0" "kCTpCS" "kCBTpCS" "kCMTpCS" "kCBMTpCS" "kmCTpCS" "kmCBTpCS" "kmCMTpCS" "kmCBMTpCS" "kTpCIKK1" "kmTpCIKK1" "kTpCIKK2" "kmTpCIKK2" "kTpCIKK3" "kmTpCIKK3" "kTpCu" "kmTpCu" "kTaB" "kTaM" "kTaBM" "kTpaB" "kTpaM" "kTpaBM" "kTCd" "kTpCd" "kIp0" "kIpTAKp" "kmIpTAKp" "kIpTAKpC" "kmIpTAKpC" "kIpu" "kmIpu" "kICp0" "kICpTAKp" "kmICpTAKp" "kICpTAKpC" "kmICpTAKpC" "kIpCu" "kmIpCu" "kIaB" "kIaM" "kIaBM" "kIpaB" "kIpaM" "kIpaBM" "kICd" "kIpCd" "kIpCfaIKKpC" "kmIpCfaIKKpC" "kIpCfaIKKppC" "kmIpCfaIKKppC" "kIppCu" "kmIppCu" "kIppCd" "kIppChf" "kmIppChf" "kIpphf" "kmIpphf" "kIir" "kmIir" "kIpA20" "kmIpA20" "kIpCA20" "kmIpCA20" "kassaikk" "kassaikknfkb" "kassanfkbikk" "kdisaikk" "kdisaikknfkb" "kdisanfkbikk" "kassa" "kdisa" "kdegbounda" "kdegboundaIKK" "kdegfreea" "kdegfreeaIKK" "kshutboundikbain" "kshutboundikbaout" "kshutfreeikbain" "kshutfreeikbaout" "k0mrnaikba" "kdegmrnaikba" "khillprodmrnaikba" "kpikba" "kprodmrnaikba" "kassbikk" "kassbikknfkb" "kassbnfkbikk" "kdisbikk" "kdisbikknfkb" "kdisbnfkbikk" "kassb" "kdegboundb" "kdegboundbIKK" "kdegfreeb" "kdegfreebIKK" "kdisb" "kshutboundikbbin" "kshutboundikbbout" "kshutfreeikbbin" "kshutfreeikbbout" "k0mrnaikbb" "kdegmrnaikbb" "khillprodmrnaikbb" "kpikbb" "kprodmrnaikbb" "kasseikk" "kasseikknfkb" "kassenfkbikk" "kdiseikk" "kdiseikknfkb" "kdisenfkbikk" "kasse" "kdegbounde" "kdegboundeIKK" "kdegfreee" "kdegfreeeIKK" "kdise" "kshutboundikbein" "kshutboundikbeout" "kshutfreeikbein" "kshutfreeikbeout" "k0mrnaikbe" "kdegmrnaikbe" "khillprodmrnaikbe" "kpikbe" "kprodmrnaikbe" "kshutnfkbin" "kshutnfkbout" "k0mrnaa20" "kdegmrnaa20" "kprodmrnaa20" "kpa20" "kdega20" "khillprodmrnaa20" "delayrnae" "X" "term" ] for (idx,name) in enumerate(NAMES) eval(Meta.parse("const $name = $idx")) end const NUM = length(NAMES) end # module
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
726
module V const NAMES = [ "B" "M" "BM" "C" "CB" "CM" "Cp" "CpB" "CpM" "CBM" "CpBM" #(* "TAK1 module*) "TAK1" "TAK1p" "TAK1C" "TAK1pC" #(* "IKK module*) "IKK" "IKKC" "IKKp" "IKKpC" "IKKppC" "IKKpp" "IKKi" #(* NFkB module*) c:cytoplasm n:nucleus "NFKBc" "NFKBn" "IKBac" "IKBbc" "IKBec" "IKBan" "IKBbn" "IKBen" "NFKBIKBac" "NFKBIKBbc" "NFKBIKBec" "NFKBIKBan" "NFKBIKBbn" "NFKBIKBen" "IKKIKBac" "IKKIKBbc" "IKKIKBec" "IKKNFKBIKBac" "IKKNFKBIKBbc" "IKKNFKBIKBec" "mRNAac" "mRNAbc" "mRNAec" "mRNAa20c" "A20c" ] for (idx,name) in enumerate(NAMES) eval(Meta.parse("const $name = $idx")) end const NUM = length(NAMES) end # module
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
1867
module BioMASS using Printf using LinearAlgebra using StatsBase using Statistics using DelimitedFiles export Model, numpy_load, generate_initial_population, scipy_differential_evolution, run_simulation, create_diffeq, new_curve!, get_bistable_regime const requirements = [ joinpath("name2idx", "parameters.jl"), joinpath("name2idx", "species.jl"), "ode.jl", "observable.jl", "simulation.jl", "experimental_data.jl", "search_param.jl", "problem.jl", ] struct Model path::String parameters::Module species::Module observables::Vector{String} sim::Module exp::Module obj_func::Function cond2idx::Function search_idx::Function search_region::Function update_param::Function gene2val::Function val2gene::Function bestIndivVal2randGene::Function end function Model(model_path::String, show_info::Bool=false) for req in requirements include(joinpath(model_path, req)) end if show_info print( "Model information\n" * "-----------------\n" * @sprintf( "%d species\n%d parameters, of which %d to be estimated", length(V.NAMES), length(C.NAMES), length(get_search_index()[1]) ) ) end Model( model_path, C, V, observables, Sim, Exp, objective, conditions_index, get_search_index, get_search_region, update_param, decode_gene2val, encode_val2gene, encode_bestIndivVal2randGene, ) end function isinstalled(pymodule::String)::Bool try pyimport(pymodule) return true catch return false end end include("pyproject.jl") include("visulalize.jl") include("continuation.jl") end # module
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
9785
using ForwardDiff: jacobian function create_diffeq(model_path::String) lines::Vector{String} = [] open(joinpath(model_path, "set_model.jl"), "r") do f append!(lines, readlines(f)) end for (i, line) in enumerate(lines) if occursin("function diffeq!", line) lines[i] = "function diffeq(u::Vector)\n du = similar(u)\n\n" elseif line == "end" lines[i] = " return du\nend" lines = lines[1:i] break end end open(joinpath(model_path, "forwarddiff.jl"), "w") do f for line in lines write(f, line * "\n") end end end # matrix transformation (large diagonal elements move to upper) function pivoting!(s::Matrix{Float64}, pivot::Int, dim_newton::Int) v0::Vector{Float64} = zeros(dim_newton + 1) v1::Vector{Float64} = zeros(dim_newton + 1) possess::Int = 0 max_element::Float64 = 0.0 for i in pivot:size(s, 1) current_element = abs(s[i, pivot]) if max_element <= current_element max_element = current_element possess = i end end for j in 1:size(s, 2) v0[j] = s[possess, j] v1[j] = s[pivot, j] end for j in 1:size(s, 2) s[possess, j] = v1[j] s[pivot, j] = v0[j] end end # Gaussian elimination (row reduction) function gaussian_elimination!(s::Matrix{Float64}, e::Vector{Float64}, dim_newton::Int) for i in 1:dim_newton pivoting!(s, i, dim_newton) end # forward for k in 1:size(s, 1) w = (s[k, k] != 0.0) ? 1.0 / s[k, k] : 1.0 for j in k:size(s, 2) s[k, j] *= w for i in k:size(s, 1) s[i, j] -= s[i, k] * s[k, j] end end end # backward for i in size(s, 1):-1:1 sum = 0.0 for j in i:length(e) sum += s[i, j] * e[j] end e[i] = s[i, end] - sum end end # Newton's method function newtons_method!( diffeq::Function, get_derivatives::Function, x::Vector{Float64}, real_part::Vector{Float64}, imaginary_part::Vector{Float64}, fix_num::Int, p::Vector{Float64}, successful::Bool, bifparam::Int, n_state::Int, dim_newton::Int, n_variable::Int; NEPS::Float64) u::Vector{Float64} = zeros(n_state) vx::Vector{Float64} = zeros(dim_newton) s::Matrix{Float64} = zeros(dim_newton, dim_newton + 1) for i in eachindex(x) if fix_num == i for j in eachindex(vx) idx = i + j if idx > length(x) idx -= length(x) end vx[j] = x[idx] end break else continue end end # initial error e::Vector{Float64} = zeros(dim_newton) error::Float64 = 1.0 while error > NEPS for i in 1:n_variable if fix_num == i idx_param = n_variable - i p[bifparam] = (idx_param == 0) ? x[fix_num] : vx[idx_param] for j in eachindex(u) idx = j - i if idx == 0 u[j] = x[fix_num] elseif idx < 0 u[j] = vx[n_variable+idx] else u[j] = vx[idx] end end break else continue end end # initialization dFdx::Matrix{Float64} = jacobian(diffeq, u) dFdp::Vector{Float64} = get_derivatives(u, p) F::Vector{Float64} = diffeq(u) eigenvalues::Array{Complex{Float64},1} = eigvals(dFdx) for (i, eigenvalue) in enumerate(eigenvalues) real_part[i] = real(eigenvalue) imaginary_part[i] = imag(eigenvalue) end # s = [dF-F] for i in 1:n_variable if fix_num == i for k in 1:n_state for j in 1:n_state idx = i + j if idx == n_variable s[k, j] = dFdp[k] elseif idx > n_variable s[k, j] = dFdx[k, idx-n_variable] else s[k, j] = dFdx[k, idx] end end s[k, n_variable] = -F[k] end break else continue end end gaussian_elimination!(s, e, dim_newton) # update error error = 0.0 @inbounds for i in eachindex(e) vx[i] += e[i] error += e[i] * e[i] end error = sqrt(error) if isnan(error) || isinf(error) successful = false break end end for i in eachindex(x) if fix_num == i for j in eachindex(vx) idx = i + j if idx > length(x) idx -= length(x) end x[idx] = vx[j] end break else continue end end end function new_curve!( model_path::Union{String,SubString{String}}, p::Vector{Float64}, diffeq::Function, get_derivatives::Function, get_steady_state::Function; direction::Bool=false, bifparam::Int, n_state::Int, n_param::Int=1, n_variable::Int=n_state + 1, dim_newton::Int=n_state, MC::Int=100000, IVAL::Float64=1e-2, RATE::Float64=1e-3, NEPS::Float64=1e-12) # direction : Set to true to +IVAL, false to -IVAL # bifparam : name(index) of bifurcation parameter # n_state : num of state variables # n_param : num of parameters # n_variable : num of variables # dim_newton : dim of Newton's method # MC : maximum of counts # IVAL : first variation # RATE : variation rate # NEPS : eps of Newton's method count::Int = 1 x::Vector{Float64} = zeros(n_variable) dx::Vector{Float64} = zeros(n_variable) real_part::Vector{Float64} = zeros(n_state) imaginary_part::Vector{Float64} = zeros(n_state) # file if !isdir(joinpath(model_path, "data")) mkdir(joinpath(model_path, "data")) else files::Vector{String} = readdir(joinpath(model_path, "data")) for file in files rm(joinpath(model_path, "data", "$file")) end end FOUT1 = open(joinpath(model_path, "data", "fp.dat"), "w") # file for fixed point FOUT2 = open(joinpath(model_path, "data", "ev.dat"), "w") # file for eigenvalues # initial condition x[1:n_state] = get_steady_state(p) x[end] = p[bifparam] # x-axis # initial fixed fix_val::Float64 = x[end] fix_num::Int = n_variable x[fix_num] = fix_val # first Newton's method successful::Bool = true newtons_method!( diffeq, get_derivatives, x, real_part, imaginary_part, fix_num, p, successful, bifparam, n_state, dim_newton, n_variable, NEPS=NEPS, ) write(FOUT1, @sprintf("%d\t", count)) for i in eachindex(x) write(FOUT1, @sprintf("%10.8e\t", x[i])) end write(FOUT1, @sprintf("%d\n", fix_num)) write(FOUT2, @sprintf("%d\t", count)) for i in 1:n_state write( FOUT2, @sprintf( "%10.8e\t%10.8e\t", real_part[i], imaginary_part[i] ) ) end write(FOUT2, @sprintf("%10.8e\t%d\n", p[bifparam], fix_num)) count += 1 # keep optimums px::Vector{Float64} = copy(x) # variation fix_val += ifelse(direction, +IVAL, -IVAL) # same fixed variable x[fix_num] = fix_val while count <= MC && successful newtons_method!( diffeq, get_derivatives, x, real_part, imaginary_part, fix_num, p, successful, bifparam, n_state, dim_newton, n_variable, NEPS=NEPS, ) # maximum variation for (i, prev) in enumerate(px) @inbounds dx[i] = x[i] - prev end sum::Float64 = 0.0 for i in eachindex(dx) @inbounds sum += dx[i] * dx[i] end ave::Float64 = sqrt(sum) for i in eachindex(dx) @inbounds dx[i] /= ave end px = copy(x) for (i, diff) in enumerate(dx) @inbounds x[i] += abs(RATE) * diff end # fix variable with maximum variation fix_num = 1 for i in 2:length(dx) if abs(dx[fix_num]) < abs(dx[i]) fix_num = i end end # Stop calc. if x[end] <= 0.0 successful = false end write(FOUT1, @sprintf("%d\t", count)) for i in eachindex(x) write(FOUT1, @sprintf("%10.8e\t", x[i])) end write(FOUT1, @sprintf("%d\n", fix_num)) write(FOUT2, @sprintf("%d\t", count)) for i in 1:n_state write( FOUT2, @sprintf( "%10.8e\t%10.8e\t", real_part[i], imaginary_part[i] ) ) end write(FOUT2, @sprintf("%10.8e\t%d\n", p[bifparam], fix_num)) count += 1 end close(FOUT1) close(FOUT2) end function get_bistable_regime(ev::Matrix{Float64}, n_state::Int) br::Vector{Int} = [] for i in 1:size(ev, 1) if maximum(ev[i, [2j for j in 1:n_state]]) > 0.0 push!(br, i) end end return br end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
5985
using PyCall function __init__() py""" import os import shutil import re import sys import warnings from typing import Callable, Optional, List, Union try: import numpy as np except ImportError: print("numpy: Not installed") DIRNAME = "_tmp" class _Logger(object): def __init__(self, model_path: str, x_id: int): self.log = open( os.path.join(model_path, "fitparam", DIRNAME + str(x_id), "optimization.log"), mode="w", encoding="utf-8", ) def write(self, message: str): self.log.write(message) class Optimizer(object): def __init__( self, model_path, model_objective, model_gene2val, x_id, ): self.model_path = model_path self.model_objective = model_objective self.model_gene2val = model_gene2val self.x_id = x_id self.savedir = os.path.join(self.model_path, "fitparam", f"{self.x_id}") if os.path.isdir(self.savedir): raise ValueError( f"out{os.sep}{self.x_id} already exists in {self.model_path}. " "Use another parameter id." ) else: os.makedirs(self.savedir) os.makedirs(os.path.join(self.model_path, "fitparam", DIRNAME + str(self.x_id)), exist_ok=True) self.default_stdout = sys.stdout def minimize(self, *args, **kwargs): try: from scipy.optimize import differential_evolution except ImportError: print("scipy: Not installed.") os.makedirs(os.path.join(self.model_path, "fitparam", DIRNAME + str(self.x_id)), exist_ok=True) try: sys.stdout = _Logger(self.model_path, self.x_id) with warnings.catch_warnings(): warnings.simplefilter("ignore") res = differential_evolution(*args, **kwargs) return res finally: sys.stdout = self.default_stdout def _get_n_iter(self) -> int: n_iter: int = 0 path_to_log = os.path.join(self.savedir, "optimization.log") with open(path_to_log, mode="r", encoding="utf-8") as f: log_file = f.readlines() for message in log_file: if len(message.strip()) > 0: n_iter += 1 return n_iter def import_solution(self, x: Union[np.ndarray, List[float]], cleanup: bool = True) -> None: shutil.move( os.path.join(self.model_path, "fitparam", DIRNAME + str(self.x_id), "optimization.log"), self.savedir, ) best_fitness: float = self.model_objective(x) n_iter = self._get_n_iter() np.save(os.path.join(self.savedir, "best_fitness"), best_fitness) np.save(os.path.join(self.savedir, "count_num"), n_iter) np.save(os.path.join(self.savedir, "generation"), n_iter) np.save(os.path.join(self.savedir, f"fit_param{n_iter}"), x) if cleanup: shutil.rmtree(os.path.join(self.model_path, "fitparam", DIRNAME + str(self.x_id))) def optimize( model_path, model_objective, model_gene2val, n_search_param, x_id, **kwargs, ) -> None: optimizer = Optimizer( model_path, model_objective, model_gene2val, x_id, ) res = optimizer.minimize( model_objective, [(0.0, 1.0) for _ in range(n_search_param)], **kwargs, ) param_values = model_gene2val(res.x) optimizer.import_solution(param_values) """ end param2biomass(model_path::String) = py"convert"(model_path) numpy_load(path::String) = py"np.load"(path) function scipy_differential_evolution( model::Model, x_id::Int; strategy::String="best1bin", maxiter::Int=100, popsize::Int=3, tol::Float64=1e-4, mutation::Union{Float64,Tuple{Float64,Float64}}=0.1, recombination::Float64=0.5, seed::Union{Nothing,Int}=nothing, disp::Bool=true, polish::Bool=false, init::Union{String,Matrix{Float64}}="latinhypercube", atol::Float64=0.0, updating::String="immediate" )::Nothing search_bounds::Matrix{Float64} = model.search_region() n_search_param::Int = size(search_bounds)[2] if !disp error("Set 'disp' to true.") end if polish error("Set 'polish' to false.") end return py"optimize"( model.path, model.obj_func, model.gene2val, n_search_param, x_id, strategy=strategy, maxiter=maxiter, popsize=popsize, tol=tol, mutation=mutation, recombination=recombination, seed=seed, disp=disp, polish=polish, init=init, atol=atol, updating=updating, ) end function generate_initial_population( model::Model; popsize::Int=3, threshold::Float64=1e12, show_progress::Bool=true )::Matrix{Float64} search_bounds::Matrix{Float64} = model.search_region() n_gene::Int = size(search_bounds)[2] n_population::Int = popsize * n_gene population::Matrix{Float64} = fill( Inf, (n_population, n_gene + 1) ) for i = 1:n_population while threshold <= population[i, end] for j = 1:n_gene population[i, j] = rand() end population[i, end] = model.obj_func(population[i, 1:n_gene]) end if show_progress print("\r$i / $n_population") end end population = sortslices(population, dims=1, by=x -> x[end]) return population[:, 1:n_gene] end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
15650
using PyPlot function get_indiv(model::Model, paramset::Int)::Vector{Float64} dirname = joinpath( model.path, "fitparam", "$paramset", ) if isfile( local path_to_generation = joinpath(dirname, "generation.dat") ) best_generation::Int64 = readdlm( path_to_generation )[1, 1] else best_generation = numpy_load( joinpath(dirname, "generation.npy") )[1, 1] end if isfile( local path_to_fitparam = joinpath(dirname, "fit_param$best_generation.dat") ) best_indiv::Vector{Float64} = readdlm( path_to_fitparam )[:, 1] else best_indiv = numpy_load( joinpath(dirname, "fit_param$best_generation.npy") )[:, 1] end return best_indiv end function load_param( model::Model, paramset::Int)::Tuple{Array{Float64,1},Array{Float64,1}} best_indiv::Vector{Float64} = get_indiv(model, paramset) (p, u0) = model.update_param(best_indiv) return p, u0 end function get_executable(model::Model)::Vector{Int} n_file::Vector{Int} = [] fitparam_files::Vector{String} = readdir( joinpath( model.path, "fitparam" ) ) for file in fitparam_files if occursin(r"\d", file) push!(n_file, parse(Int64, file)) end end empty_folder::Vector{Int} = [] for (i, nth_param_set) in enumerate(n_file) local filepath = joinpath( model.path, "fitparam", "$nth_param_set", "generation", ) if !isfile(filepath * ".dat") && !isfile(filepath * ".npy") push!(empty_folder, i) end end for i in sort(empty_folder, rev=true) deleteat!(n_file, i) end return n_file end function validate!(model::Model, nth_param_set::Int64) (p, u0) = load_param(model, nth_param_set) if model.sim.simulate!(p, u0) isa Nothing return model, true else print("Simulation failed. #$nth_param_set\n") return model, false end return model end function get_norm_max( model::Model, i::Int, j::Int, obs_name::String, simulations_all::Array{Float64,4})::Float64 if length(model.sim.normalization) > 0 norm_max::Float64 = ( model.sim.normalization[obs_name]["timepoint"] !== nothing ? maximum( simulations_all[ i, j, [model.cond2idx(c) for c in model.sim.normalization[obs_name]["condition"]], model.sim.normalization[obs_name]["timepoint"], ] ) : maximum( simulations_all[ i, j, [model.cond2idx(c) for c in model.sim.normalization[obs_name]["condition"]], :, ] ) ) return norm_max else return 0.0 end end function plot_timecourse( model::Model, n_file::Vector{Int}, viz_type::String, show_all::Bool, stdev::Bool, simulations_all::Array{Float64,4}, save_format::String) if !isdir( joinpath( model.path, "figure", "simulation", "$viz_type" ) ) mkpath( joinpath( model.path, "figure", "simulation", "$viz_type" ) ) end cmap = [ "#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd", "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf" ] shape = [ "o", "v", "^", "<", ">", "8", "s", "p", "*", "h", "H", "D", "d", "P", "X" ] # rcParams rc("figure", figsize=(4, 3)) rc("font", size=18) rc("axes", linewidth=1.5) rc("xtick.major", width=1.5) rc("ytick.major", width=1.5) rc("lines", linewidth=1.8) rc("lines", markersize=12) for (i, obs_name) in enumerate(model.observables) gca().spines["right"].set_visible(false) gca().spines["top"].set_visible(false) gca().yaxis.set_ticks_position("left") gca().xaxis.set_ticks_position("bottom") if viz_type != "experiment" if show_all for j in eachindex(n_file) if length(model.sim.normalization) > 0 norm_max = get_norm_max(model, i, j, obs_name, simulations_all) end for (k, condition) in enumerate(model.sim.conditions) plot( model.sim.t, simulations_all[i, j, k, :] ./ ifelse( length(model.sim.normalization) == 0 || maximum(simulations_all[i, j, k, :]) == 0.0, 1.0, norm_max ), color=cmap[k], lw=0.5, alpha=0.35 ) end end end if viz_type == "average" normalized = Array{Float64,4}( undef, length(model.observables), length(n_file), length(model.sim.t), length(model.sim.conditions) ) @inbounds for j in eachindex(n_file) if length(model.sim.normalization) > 0 norm_max = get_norm_max(model, i, j, obs_name, simulations_all) end @simd for k in eachindex(model.sim.conditions) normalized[i, j, k, :] = ( simulations_all[i, j, k, :] ./ ifelse( length(model.sim.normalization) == 0 || maximum(simulations_all[i, j, k, :]) == 0.0, 1.0, norm_max ) ) end end if length(model.sim.normalization) > 0 && model.sim.normalization[obs_name]["timepoint"] === nothing mean_norm_max::Float64 = maximum( vcat( [ [ mean( filter( !isnan, normalized[i, :, k, l] ) ) for l in eachindex(model.sim.t) ] for k in eachindex(model.sim.normalization[obs_name]["condition"]) ]... ) ) for j in eachindex(n_file) for k in eachindex(model.sim.conditions) for l in eachindex(model.sim.t) if !isnan(mean_norm_max) && mean_norm_max != 0.0 @inbounds normalized[i, j, k, l] /= mean_norm_max end end end end end for (k, condition) in enumerate(model.sim.conditions) plot( model.sim.t, [ mean( filter( !isnan, normalized[i, :, k, l] ) ) for l in eachindex(model.sim.t) ], color=cmap[k], label=condition ) end if stdev for (k, condition) in enumerate(model.sim.conditions) y_mean = [ mean( filter( !isnan, normalized[i, :, k, l] ) ) for l in eachindex(model.sim.t) ] y_std = [ std( filter( !isnan, normalized[i, :, k, l] ) ) for l in eachindex(model.sim.t) ] fill_between( model.sim.t, y_mean - y_std, y_mean + y_std, color=cmap[k], lw=0, alpha=0.1, ) end end else norm_max = length(model.sim.normalization) > 0 ? ( model.sim.normalization[obs_name]["timepoint"] !== nothing ? maximum( model.sim.simulations[ i, [model.cond2idx(c) for c in model.sim.normalization[obs_name]["condition"]], model.sim.normalization[obs_name]["timepoint"], ] ) : maximum( model.sim.simulations[ i, [model.cond2idx(c) for c in model.sim.normalization[obs_name]["condition"]], :, ] ) ) : 1.0 for (j, condition) in enumerate(model.sim.conditions) plot( model.sim.t, model.sim.simulations[i, j, :] ./ ifelse( length(model.sim.normalization) == 0 || maximum(model.sim.simulations[i, j, :]) == 0.0, 1.0, norm_max ), color=cmap[j], label=condition ) end end end if isassigned(model.exp.experiments, i) exp_t = model.exp.get_timepoint(obs_name) if isassigned(model.exp.error_bars, i) for (k, condition) in enumerate(model.sim.conditions) if condition in keys(model.exp.experiments[i]) exp_data = errorbar( exp_t, model.exp.experiments[i][condition], yerr=model.exp.error_bars[i][condition], lw=1, markerfacecolor="None", color=cmap[k], markeredgecolor=cmap[k], ecolor=cmap[k], fmt=shape[k], capsize=8, clip_on=false ) for capline in exp_data[2] capline.set_clip_on(false) end for barlinecol in exp_data[3] barlinecol.set_clip_on(false) end end end else for (k, condition) in enumerate(model.sim.conditions) if condition in keys(model.exp.experiments[i]) plot( exp_t, model.exp.experiments[i][condition], shape[k], color=cmap[k], markerfacecolor="None", markeredgecolor=cmap[k], clip_on=false ) end end end end xlabel("Time") ylabel(replace(obs_name, "_" => " ")) savefig( joinpath( model.path, "figure", "simulation", "$viz_type", "$obs_name." * "$save_format" ), dpi=save_format == "pdf" ? nothing : 600, bbox_inches="tight" ) close() end end function run_simulation( model::Model; viz_type::String="original", show_all::Bool=false, stdev::Bool=false, save_format::String="pdf") if !isdir( joinpath( model.path, "figure" ) ) mkdir( joinpath( model.path, "figure" ) ) end if !(viz_type in ["best", "average", "original", "experiment"]) try parse(Int64, viz_type) catch error( "Avairable viz_type are: 'best','average','original','experiment','n(=1,2,...)'" ) end end n_file::Vector{Int} = viz_type in ["original", "experiment"] ? [] : get_executable(model) simulaitons_all::Array{Float64,4} = fill( NaN, ( length(model.observables), length(n_file), length(model.sim.conditions), length(model.sim.t), ) ) if viz_type != "experiment" if length(n_file) > 0 if length(n_file) == 1 && viz_type == "average" error("viz_type should be best, not $viz_type") end for (j, nth_param_set) in enumerate(n_file) (model, is_successful) = validate!(model, nth_param_set) if is_successful for i in eachindex(model.observables) @inbounds simulaitons_all[i, j, :, :] = model.sim.simulations[i, :, :] end end end best_fitness_all::Vector{Float64} = fill(Inf, length(n_file)) for (i, nth_param_set) in enumerate(n_file) local filepath = joinpath( model.path, "fitparam", "$nth_param_set", "best_fitness", ) if isfile(filepath * ".dat") best_fitness_all[i] = readdlm( filepath * ".dat" )[1, 1] elseif isfile(filepath * ".npy") best_fitness_all[i] = numpy_load( filepath * ".npy" )[1, 1] end end best_param_set::Int = n_file[argmin(best_fitness_all)] if viz_type == "best" model, _ = validate!(model, best_param_set) elseif viz_type != "average" && parse(Int64, viz_type) <= length(n_file) model, _ = validate!(model, parse(Int64, viz_type)) elseif viz_type != "average" && parse(Int64, viz_type) > length(n_file) error( @sprintf( "n (%d) must be smaller than n_fitparam (%d)", parse(Int64, viz_type), length(n_file) ) ) end else p::Vector{Float64} = param_values() u0::Vector{Float64} = initial_values() if model.sim.simulate!(p, u0) !== nothing error( "Simulation failed." ) end end end plot_timecourse( model, n_file, viz_type, show_all, stdev, simulaitons_all, save_format ) end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
904
using DelimitedFiles using Sundials using SteadyStateDiffEq import BioMASS: isinstalled @testset "Bifurcation analysis" begin for model in ["restriction_point", "g1s_transition", "mitotic_control"] @testset "$model" begin MODEL_PATH = "../examples/bifurcation/" * model create_diffeq(MODEL_PATH) include(MODEL_PATH * "/diagram.jl") fp, br = calc_fixed_point_vec(MODEL_PATH) for file in ["/data/fp.dat", "/data/ev.dat"] @test isfile(MODEL_PATH * file) end if isinstalled("matplotlib") using PyPlot bifurcation_diagram(MODEL_PATH, fp, br) @test isfile(MODEL_PATH * "/bifurcation_diagram.pdf") end rm(MODEL_PATH * "/forwarddiff.jl") rm(MODEL_PATH * "/data", recursive=true, force=true) end end end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
1228
@testset "Parameter Estimation" begin let model_ode = Model("../examples/fos_model") output = [] @testset "optimization" begin initpop = generate_initial_population(model_ode) @test size(initpop) == (225, 75) scipy_differential_evolution(model_ode, 1, maxiter=10, init=initpop) lines = open(joinpath(model_ode.path, "fitparam", "1", "optimization.log"), "r") do f readlines(f) end @test startswith(lines[end], "differential_evolution step 10:") push!(output, "logs") push!(output, "fitparam") end @testset "visualization" begin @test run_simulation(model_ode, viz_type="best") === nothing files = readdir(joinpath(model_ode.path, "figure", "simulation", "best")) n_pdf = 0 for file in files if occursin(".pdf", file) n_pdf += 1 end end @test n_pdf == length(model_ode.observables) push!(output, "figure") end for dir in output rm(joinpath(model_ode.path, "$dir"), recursive=true, force=true) end end end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
code
168
using BioMASS using Test @time begin @testset "BioMASS.jl" begin include("parameter_estimation.jl") include("bifurcation_analysis.jl") end end
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
docs
3389
# The BioMASS module for Julia [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://biomass-dev.github.io/BioMASS.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://biomass-dev.github.io/BioMASS.jl/dev) [![Actions Status](https://github.com/biomass-dev/BioMASS.jl/workflows/CI/badge.svg)](https://github.com/biomass-dev/BioMASS.jl/actions) [![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT) [![Cancers Paper](https://img.shields.io/badge/DOI-10.3390%2Fcancers12102878-blue)](https://doi.org/10.3390/cancers12102878) This module provides a Julia interface to the [BioMASS](https://github.com/biomass-dev/biomass) parameter estimation. ## Installation The package is a registered package, and can be installed with `Pkg.add`. ```julia julia> using Pkg; Pkg.add("BioMASS") ``` or through the `pkg` REPL mode by typing ``` ] add BioMASS ``` ### Python package requirements: - numpy - https://numpy.org - scipy - https://scipy.org - matplotlib - https://matplotlib.org ## Example ### Model development This example shows you how to build a simple Michaelis-Menten two-step enzyme catalysis model. > E + S ⇄ ES β†’ E + P [`pasmopy.Text2Model`](https://pasmopy.readthedocs.io/en/latest/model_development.html) allows you to build a BioMASS model from text. You simply describe biochemical reactions and the molecular mechanisms extracted from text are converted into an executable model. Prepare a text file describing the biochemical reactions (e.g., `michaelis_menten.txt`) ``` E + S ⇄ ES | kf=0.003, kr=0.001 | E=100, S=50 ES β†’ E + P | kf=0.002 @obs Substrate: u[S] @obs E_free: u[E] @obs E_total: u[E] + u[ES] @obs Product: u[P] @obs Complex: u[ES] @sim tspan: [0, 100] ``` Convert the text into an executable model ```shell $ python # pasmopy requires Python 3.7+ ``` ```python >>> from pasmopy import Text2Model >>> description = Text2Model("michaelis_menten.txt", lang="julia") >>> description.convert() # generate 'michaelis_menten_jl/' ``` Simulate the model using BioMASS.jl ```shell $ julia ``` ```julia using BioMASS model = Model("./michaelis_menten_jl"); run_simulation(model) ``` ![michaelis_menten](https://raw.githubusercontent.com/pasmopy/pasmopy/master/docs/_static/img/michaelis_menten_sim.png) ### Parameter estimation ```julia using BioMASS model = Model("./examples/fos_model"); # Estimate unknown model parameters from experimental observations scipy_differential_evolution(model, 1) # requires scipy package # Save simulation results to figure/ in the model folder run_simulation(model, viz_type="best", show_all=true) ``` ![estimated_parameter_sets](https://raw.githubusercontent.com/biomass-dev/biomass/master/docs/_static/img/estimated_parameter_sets.png) ## References - Imoto, H., Zhang, S. & Okada, M. A Computational Framework for Prediction and Analysis of Cancer Signaling Dynamics from RNA Sequencing Dataβ€”Application to the ErbB Receptor Signaling Pathway. _Cancers_ **12**, 2878 (2020). https://doi.org/10.3390/cancers12102878 - Imoto, H., Yamashiro, S. & Okada, M. A text-based computational framework for patient -specific modeling for classification of cancers. _iScience_ **25**, 103944 (2022). https://doi.org/10.1016/j.isci.2022.103944 ## License [MIT](https://github.com/biomass-dev/BioMASS.jl/blob/master/LICENSE)
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
docs
1113
# BioMASS.jl [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT) [![Source](https://img.shields.io/badge/source-github-blue)](https://github.com/biomass-dev/BioMASS.jl) [![Actions Status](https://github.com/biomass-dev/BioMASS.jl/workflows/CI/badge.svg)](https://github.com/biomass-dev/BioMASS.jl/actions) [![Cancers Paper](https://img.shields.io/badge/DOI-10.3390%2Fcancers12102878-blue)](https://doi.org/10.3390/cancers12102878) This module provides a Julia interface to the [BioMASS](https://github.com/biomass-dev/biomass) parameter estimation. The open access publication describing BioMASS is available here: - Imoto, H., Zhang, S. & Okada, M. A Computational Framework for Prediction and Analysis of Cancer Signaling Dynamics from RNA Sequencing Dataβ€”Application to the ErbB Receptor Signaling Pathway. _Cancers_ **12**, 2878 (2020). https://doi.org/10.3390/cancers12102878 ## Installation ``` ] add BioMASS ``` ```@contents Pages = [ "usage/parameter_estimation.md", "usage/bifurcation_analysis.md", ] Depth = 3 ```
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
docs
1253
- Imoto, H., Zhang, S. & Okada, M. A Computational Framework for Prediction and Analysis of Cancer Signaling Dynamics from RNA Sequencing Dataβ€”Application to the ErbB Receptor Signaling Pathway. _Cancers_ **12**, 2878 (2020). https://doi.org/10.3390/cancers12102878 - Imoto, H., Yamashiro, S. & Okada, M. A text-based computational framework for patient -specific modeling for classification of cancers. _iScience_ **25**, 103944 (2022). https://doi.org/10.1016/j.isci.2022.103944 - Nakakuki, T. *et al.* Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics. *Cell* **141**, 884–896 (2010). https://doi.org/10.1016/j.cell.2010.03.054 - Yao, G., Lee, T. J., Mori, S., Nevins, J. R. & You, L. A bistable Rb-E2F switch underlies the restriction point. *Nat. Cell Biol.* **10**, 476–482 (2008). https://doi.org/10.1038/ncb1711 - Barr, A. R., Heldt, F. S., Zhang, T., Bakal, C. & NovΓ‘k, B. A Dynamical Framework for the All-or-None G1/S Transition. *Cell Syst.* **2**, 27–37 (2016). https://doi.org/10.1016/j.cels.2016.01.001 - Rata, S. *et al.* Two Interlinked Bistable Switches Govern Mitotic Control in Mammalian Cells. *Curr. Biol.* **28**, 3824-3832.e6 (2018). https://doi.org/10.1016/j.cub.2018.09.059
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
docs
4137
# Bifurcation Analysis A numerical study of the changes in the dynamics and stability of a system upon variations in its parameters. ![](../assets/Subp_1NMPP1.png) ## Procedure for stability analysis at fixed points Consider the following system of ordinary differential equations: ```math \dfrac{dx}{dt} = F(x) ``` 1. Determine the fixed point vector, ``x^*``, solving ``F(x^*) = 0`` 1. Construct the Jacobian matrix, ``J(x) = \dfrac{\partial F(x)}{\partial x}`` 1. Compute eigenvalues of ``J(x^*)``: ``|J(x^*) βˆ’ Ξ»E| = 0`` 1. Conclude on stability or instability of ``x^*`` based on the real parts of eigenvalues - All eigenvalues have real parts less than zero β†’ ``x^*`` is stable - At least one of the eigenvalues has a real part greater than zero β†’ ``x^*`` is unstable ## Usage Here I would like to use a mathematical model of Rb–E2F pathway ([Yao et al., 2008](https://www.nature.com/articles/ncb1711)) to show you how to perform bifurcation analysis with [`BioMASS.jl`](https://github.com/biomass-dev/BioMASS.jl). ### Prepare `name2idx/` to define model species and parameters - See [examples](https://github.com/biomass-dev/BioMASS.jl/tree/master/examples/bifurcation/restriction_point/name2idx). ### Create [`set_model.jl`](https://github.com/biomass-dev/BioMASS.jl/blob/master/examples/bifurcation/restriction_point/set_model.jl) In this file, you will need to prepare four functions: - `diffeq!`: Ordinary differential equations of the model. - `param_values`: Model parameters. - `get_derivatives`: ``\dfrac{\partial F(x)}{\partial bp}``, where ``bp`` is the bifurcation parameter (x-axis). - `get_steady_state`: Function to equilibrate the system. ### Run `create_diffeq` function ```julia create_diffeq(".") ``` Then you will get `forwarddiff.jl` file in your model folder. ### Load requirements ```julia using DelimitedFiles using Sundials using SteadyStateDiffEq using PyPlot include("./name2idx/parameters.jl") include("./name2idx/species.jl") include("./set_model.jl") include("./forwarddiff.jl") const BP = C.S # name(index) of bifurcation parameter (x-axis) const SN = V.NUM # num of state variables const PN = 1 # num of parameters const VN = SN + PN # num of variables ``` ### Calculate fixed points and analyze their stability After executing `new_curve!` function, you will get `data/fp.dat` and `data/ev.dat` files, where they contain fixed points and eigenvalues, respectively. ```julia function calc_fixed_point_vec(model_path::String)::Tuple{Array,Array} global p = param_values() new_curve!( model_path, p, diffeq, get_derivatives, get_steady_state, direction=false, bifparam=BP, n_state=SN ) fp::Array = readdlm(joinpath(model_path, "data", "fp.dat"), '\t', Float64, '\n') ev::Array = readdlm(joinpath(model_path, "data", "ev.dat"), '\t', Float64, '\n') br::Array = get_bistable_regime(ev, SN) return fp, br end ``` ### Plot results ```julia function bifurcation_diagram(model_path::String, fp::Array, br::Array) rc("figure", figsize=(8, 6)) rc("font", family="Arial") rc("font", size=24) rc("axes", linewidth=1) rc("xtick.major", width=1) rc("ytick.major", width=1) rc("lines", linewidth=3) plot(fp[1:br[1]-1, VN+1], fp[1:br[1]-1, V.E+1], "k-") plot(fp[br, VN+1], fp[br, V.E+1], lw=1.5, "k--") plot(fp[br[end]+1:end, VN+1], fp[br[end]+1:end, V.E+1], "k-") xlabel("Serum (percentage)") ylabel("E2F (ΞΌM)") xlim(0, 2) xticks([0, 0.5, 1, 1.5, 2]) yscale("log") ylim(1e-4, 2) yticks([1e-4, 1e-2, 1]) savefig(joinpath(model_path, "bifurcation_diagram.pdf"), bbox_inches="tight") close() end ``` ### Run all functions defined above ```julia const MODEL_PATH = "." fp, br = calc_fixed_point_vec(MODEL_PATH); bifurcation_diagram(MODEL_PATH, fp, br); ``` ![](../assets/bifurcation_diagram.png) *Stable (solid) and unstable (dashed) steady states of E2F activity with respect to serum stimulation.* For more examples, please refer to [examples/bifurcation](https://github.com/biomass-dev/BioMASS.jl/tree/master/examples/bifurcation).
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
docs
1586
# Model Construction [`pasmopy.Text2Model`](https://pasmopy.readthedocs.io/en/latest/model_development.html) allows you to build a BioMASS model from text. You simply describe biochemical reactions and the molecular mechanisms extracted from text are converted into an executable model. ## Example This example shows you how to build a simple Michaelis-Menten two-step enzyme catalysis model with Pasmopy. > E + S ⇄ ES β†’ E + P _An enzyme, E, binding to a substrate, S, to form a complex, ES, which in turn releases a product, P, regenerating the original enzyme._ 1. Prepare a text file describing biochemical reactions (e.g., `michaelis_menten.txt`) ``` E binds S <--> ES | kf=0.003, kr=0.001 | E=100, S=50 ES dissociates to E and P | kf=0.002, kr=0 @obs Substrate: u[S] @obs E_free: u[E] @obs E_total: u[E] + u[ES] @obs Product: u[P] @obs Complex: u[ES] @sim tspan: [0, 100] ``` 1. Convert the text into an executable model ```shell $ python ``` ```python >>> from pasmopy import Text2Model >>> description = Text2Model("michaelis_menten.txt", lang="julia") >>> description.convert() # generate 'michaelis_menten_jl/' Model information ----------------- 2 reactions 4 species 4 parameters ``` 1. Run simulation ```shell $ julia ``` ```julia using BioMASS model = Model("./michaelis_menten_jl"); run_simulation(model) ``` ![michaelis_menten](https://raw.githubusercontent.com/pasmopy/pasmopy/master/docs/_static/img/michaelis_menten_sim.png)
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.8.2
398e9ae41e9e5898e13166a251d542056f36e54c
docs
4495
# Parameter Estimation ![](../assets/result.png) ## Core functions --- ### Model(`path_to_model`::String) Load a BioMASS model. The model must include the following files: | Name | Content | | :--------------------- | :------------------------------------------------------------------------------------------------------- | | `name2idx/` | Names of model parameters and species | | `ode.jl` | Differential equation, parameters and initial condition | | `observalbe.jl` | Model observables for correlating simulation results with experimental observations | | `simulation.jl` | Simulation condition | | `experimental_data.jl` | Experimental measurements | | `search_param.jl` | Lower and upper bounds of model parameters to be estimated | | `problem.jl` | An objective function to be minimized, i.e., the distance between model simulation and experimental data | - **Parameters** - `path_to_model`::String - The model folder to read. - **Returns** - `model`::Model - The executable model in BioMASS. !!! note [`pasmopy.Text2Model`](https://pasmopy.readthedocs.io/en/latest/model_development.html) allows you to build a BioMASS model from text [[Imoto et al., 2022](https://www.cell.com/iscience/fulltext/S2589-0042(22)00214-0)]. You simply describe biochemical reactions and the molecular mechanisms extracted from text are converted into an executable model. To build a model for BioMASS.jl, please set `lang="julia"`. --- ### scipy\_differential\_evolution(`model`::Model, `ix_id`::Int, `kwargs`...) Estimate model parameters from experimental data. - **Parameters** - `model`::Model - Model for parameter estimation. - `x_id`::Int - Index of parameter set to estimate. - `kwargs`... - Keyword arguments to pass to [`scipy.optimize.differential_evolution`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html.). --- ### run\_simulation(`model`::Model, `viz_type`::String, `show_all`::Bool=false, `stdev`::Bool=false) Save simulation results with optimized parameter values. - **Parameters** - `viz_type`::String - `"average"` - `"best"` - `"original"` - `"experiment"` - `show_all`::Bool (default: `false`) - Whether to show all simulation results. - `stdev`::Bool (default: `false`) - If True, the standard deviation of simulated values will be shown (only available for `"average"` visualization type). - `save_format`::String (default: `"pdf"`) - Either "png" or "pdf", indicating whether to save figures as png or pdf format. ## Estimate unknown model parameters ```julia using BioMASS model = Model("./examples/fos_model"); initpop = generate_initial_population(model) scipy_differential_evolution(model, 1, init=initpop) ``` ## Simultaneous parameter optimization ### Using module `Distributed` ```julia using Distributed addprocs(); # add worker processes @everywhere using BioMASS @everywhere begin model = Model("./examples/fos_model") function optimize_parallel(i) scipy_differential_evolution(model, i) end end pmap(optimize_parallel, 1:10) ``` ### Calling multiple bash scripts - main.jl ```julia using BioMASS model = Model("./examples/fos_model") if abspath(PROGRAM_FILE) == @__FILE__ scipy_differential_evolution(model, parse(Int64, ARGS[1])) end ``` - optimize_parallel.sh ```bash #!/bin/sh for i in $(seq 1 10); do nohup julia main.jl $i >> errout/$i.log 2>&1 & done # To terminate the process, # $ pgrep -f main.jl | xargs kill -9 ``` Run optimize_parallel.sh ```bash $ mkdir errout $ sh optimize_parallel.sh ``` ## How to track optimization process The temporary result will be saved in `path_to_model/fitparam/n/optimization.log`. ```bash $ tail examples/fos_model/fitparam/1/optimization.log ``` ## Visualization of simulation results The simulation results will be saved in `figure/`. ```julia run_simulation(model, viz_type="best", show_all=true) ```
BioMASS
https://github.com/biomass-dev/BioMASS.jl.git
[ "MIT" ]
0.5.2
7979027234c190955d3aa25ca5d9fbdf94e896c6
code
329
using Documenter, HTMLTables Documenter.makedocs( modules=[HTMLTables], format=Documenter.HTML(), pages=["Home" => "index.md", "Reading" => "reading.md", "Writing" => "writing.md"], sitename="HTMLTables.jl", authors="Ceco Elijah Maples", ) Documenter.deploydocs(repo="github.com/cecoeco/HTMLTables.jl.git")
HTMLTables
https://github.com/cecoeco/HTMLTables.jl.git
[ "MIT" ]
0.5.2
7979027234c190955d3aa25ca5d9fbdf94e896c6
code
11643
""" # HTMLTables Julia package for reading and writing HTML tables using the Tables.jl interface ## exported functions: - `HTMLTables.readtable`: reads an HTML table into a Julia table such as a `DataFrame`. - `HTMLTables.writetable`: converts a Julia table to an HTML table and writes it to a file or IO stream. """ module HTMLTables using Cascadia, Colors, ColorSchemes, Gumbo, HTTP, Tables export readtable, writetable include("themes.jl") function isurl(source::String)::Bool return Base.startswith(source, r"^(http://|https://|ftp://)") end function ishtmlfile(source::String)::Bool return Base.Filesystem.splitext(source)[2] == ".html" end function extract_row_data(row::Gumbo.HTMLNode)::Vector cells::Vector{Gumbo.HTMLNode} = Base.eachmatch(Cascadia.Selector("td,th"), row) return [Cascadia.nodeText(cell) for cell in cells] end """ readtable( source, sink; id::String="", class::Union{String,Vector{String}}="", index::Int=1 ) Reads an HTML table into a sink function such as `DataFrame`. ## Arguments - `source`: URL or path to the HTML table. - `sink`: the function that materializes the table data. ## Keyword Arguments - `id::String`: the id of the HTML table in the HTML document. - `class::Union{String,Vector{String}}`: the class of the HTML table. - `index::Int`: the index of the HTML table in the HTML document. ## Returns - `sink`: the sink function such as `DataFrame` with the HTML table data. ## Examples reading an HTML table from a website into a DataFrame: ```julia using HTMLTables, DataFrames url = "https://www.w3schools.com/html/html_tables.asp" df = HTMLTables.readtable(url, DataFrame, index=1) println(df) ``` output: ``` 6Γ—3 DataFrame Row β”‚ Company Contact Country β”‚ String String String ─────┼───────────────────────────────────────────────────────── 1 β”‚ Alfreds Futterkiste Maria Anders Germany 2 β”‚ Centro comercial Moctezuma Francisco Chang Mexico 3 β”‚ Ernst Handel Roland Mendel Austria 4 β”‚ Island Trading Helen Bennett UK 5 β”‚ Laughing Bacchus Winecellars Yoshi Tannamuri Canada 6 β”‚ Magazzini Alimentari Riuniti Giovanni Rovelli Italy ``` """ function readtable( source, sink; id::String="", class::Union{String,Vector{String}}="", index::Int=1 ) if isa(source, IO) source = Base.read(source, String) end html_content::String = "" if isurl(source) == true html_content *= Base.String(HTTP.get(source).body) elseif ishtmlfile(source) == true html_content *= Base.read(source, String) else html_content *= source end html_document::Gumbo.HTMLDocument = Gumbo.parsehtml(html_content) selector::String = "" if Base.isempty(id) if Base.isempty(class) selector *= "table" elseif !Base.isempty(class) && Base.isa(class, String) selector *= "table.$class" elseif !Base.isempty(class) && Base.isa(class, Vector{String}) selector *= "table." * Base.join(class, ".") end elseif !Base.isempty(id) selector *= "#$id" end tables::Vector{Gumbo.HTMLNode} = Base.eachmatch( Cascadia.Selector(selector), html_document.root ) table::Gumbo.HTMLNode = tables[index] rows::Vector{Gumbo.HTMLNode} = Base.eachmatch(Cascadia.Selector("tr"), table) headers::Vector = [] data::Vector{Vector} = [] for (i, row) in Base.enumerate(rows) rowdata = extract_row_data(row) if (i == 1 && Base.isempty(headers)) == true headers = rowdata else Base.push!(data, rowdata) end end tuples::Vector = [Base.Tuple(row) for row in data] return sink(tuples, headers) end function writetheme(theme::Symbol; styles::Bool)::String if theme == "" || !styles return "" end theme_dictionary::Dict{Symbol,String} = Base.Dict( :default => DEFAULT, :red => RED, :orange => ORANGE, :yellow => YELLOW, :green => GREEN, :blue => BLUE, :violet => VIOLET, :magenta => MAGENTA, :brown => BROWN, :gray => GRAY, :black => BLACK, :gold => GOLD, :silver => SILVER, :bronze => BRONZE, :julia => JULIA, :sunstone => SUNSTONE, :moonstone => MOONSTONE, :dracula => DRACULA, :solarized => SOLARIZED ) if Base.haskey(theme_dictionary, theme) theme = theme_dictionary[theme] else Base.throw(Base.ArgumentError("$(theme) is not a valid theme")) end return """<style>\n$theme\n</style>\n""" end function writetheme(theme::String; styles::Bool)::String return writetheme(Symbol(theme); styles=styles) end function iscssfile(file::String)::Bool if file == "" return false end return Base.splitext(file)[end] == ".css" end function writestyle(css::String; styles::Bool)::String if css == "" || !styles return "" end if iscssfile(css) css::String = Base.read(css, String) end return """<style>\n$css\n</style>\n""" end function writeid(id::String)::String if id == "" return "" else return " id=\"$id\"" end end function writeclass(class::String)::String if class == "" return "" else return " class=\"$class\"" end end function writeclass(class::Vector)::String if class == [] return "" else return " class=\"" * Base.join(class, " ") * "\"" end end function writecaption(caption::String)::String if caption == "" return "" else return "<caption>$caption</caption>\n" end end function writetooltip(tooltips::Bool, cell_value)::String if tooltips return " title=\"$cell_value\"" else return "" end end function writethead(tbl; header::Bool, editable::Bool)::String if !header return "" end contenteditable::String = "" if editable contenteditable *= " contenteditable=\"true\"" else contenteditable *= "" end thead::String = "<thead$contenteditable>\n<tr>\n" for col in Base.names(tbl) thead *= "<td$contenteditable>$col</td>\n" end thead *= "</tr>\n</thead>\n" return thead end function getnumbers(tbl)::Vector{Float64} numbers::Vector{Float64} = Float64[] for col in Base.names(tbl) for val in tbl[!, col] if Base.isa(val, Number) Base.push!(numbers, val) end end end return numbers end function css_rgb(color::Colors.Colorant)::String r::Float64 = Colors.red(color) * 255 g::Float64 = Colors.green(color) * 255 b::Float64 = Colors.blue(color) * 255 return "rgb(" * Base.join(["$r", "$g", "$b"], ",") * ")" end function cellcolor(tbl; colorscale::String, cell_value, styles::Bool)::String numbers::Vector{Number} = getnumbers(tbl) if colorscale == "" || Base.ismissing(cell_value) || !(cell_value in numbers) || !styles return "" end colorscheme::ColorSchemes.ColorScheme = Base.getfield(ColorSchemes, Symbol(colorscale)) cell_position::Float64 = (cell_value - Base.minimum(numbers)) / (Base.maximum(numbers) - Base.minimum(numbers)) color::Colors.Colorant = ColorSchemes.get(colorscheme, cell_position) css_color::String = css_rgb(color) return " style=\"background-color: $css_color;\"" end function writetbody( tbl; colorscale::String, tooltips::Bool, styles::Bool, editable::Bool )::String contenteditable::String = "" if editable contenteditable *= " contenteditable=\"true\"" else contenteditable *= "" end tbody::String = "<tbody $contenteditable>\n" for row in Tables.rows(tbl) tbody *= "<tr $contenteditable>\n" for col in Base.names(tbl) cell_value = row[Base.Symbol(col)] cell::String = "" cell *= "<td $contenteditable" cell *= writetooltip(tooltips, cell_value) cell *= cellcolor( tbl; colorscale=colorscale, cell_value=cell_value, styles=styles ) cell *= ">$cell_value</td>\n" tbody *= cell end tbody *= "</tr>\n" end tbody *= "</tbody>\n" return tbody end function writetfoot(tbl; footer::Bool, editable::Bool)::String if !footer return "" end contenteditable::String = "" if editable contenteditable *= " contenteditable=\"true\"" else contenteditable *= "" end tfoot::String = "<tfoot $contenteditable>\n<tr>\n" for _ in Base.names(tbl) tfoot *= "<td $contenteditable></td>\n" end tfoot *= "</tr>\n</tfoot>\n" return tfoot end """ writetable( out, tbl; header::Bool=true, footer::Bool=true, id::String="", class::Union{String,Vector{String}}="", caption::String="", editable::Bool=false, tooltips::Bool=true, styles::Bool=true, css::String="", theme::Union{String,Symbol}=:default, colorscale::Union{String,Symbol}="" ) Uses the Tables.jl interface to write an HTML table. ## Arguments - `out`: accepts the same types as [`Base.write`](https://docs.julialang.org/en/v1/base/io-network/#Base.write). - `tbl`: the table to write. ## Keyword Arguments - `header::Bool`: whether to include the table header. - `footer::Bool`: whether to include the table footer. - `id::String`: the id of the HTML table. - `class::Union{String,Vector{String}}`: the class of the HTML table. - `caption::String`: the caption of the HTML table. - `editable::Bool`: whether to enable table editing. - `tooltips::Bool`: whether to include tooltips. - `styles::Bool`: whether to include the CSS. If false `css`, `theme` and `colorscale` are ignored. - `css::String`: the path to the CSS file to include. - `theme::Union{Symbol,String}`: the theme of the HTML table. - `colorscale::Union{Symbol,String}`: the colorscale of the HTML table. ## Examples creates a simple HTML table from a DataFrame and writes it to the standard output: ```julia using HTMLTables, DataFrames df = DataFrame(x=[1, 2, 3], y=[45, 67, 89]) HTMLTables.writetable(stdout, df) ``` creates a simple HTML table from a DataFrame and writes it to a file: ```julia using HTMLTables, DataFrames df = DataFrame(x=[1, 2, 3], y=[4, 11, 28]) HTMLTables.writetable("table.html", df) ``` """ function writetable( out, tbl; header::Bool=true, footer::Bool=true, id::String="", class::Union{String,Vector{String}}="", caption::String="", editable::Bool=false, tooltips::Bool=true, styles::Bool=true, css::String="", theme::Union{String,Symbol}=:default, colorscale::Union{String,Symbol}="", ) html_table::String = "" html_table *= writetheme(theme; styles=styles) html_table *= writestyle(css; styles=styles) html_table *= "<table$(writeid(id))$(writeclass(class))>\n" html_table *= writecaption(caption) html_table *= writethead(tbl; header=header, editable=editable) html_table *= writetbody( tbl; colorscale=colorscale, tooltips=tooltips, styles=styles, editable=editable ) html_table *= writetfoot(tbl; footer=footer, editable=editable) html_table *= "</table>" Base.write(out, html_table) return nothing end end
HTMLTables
https://github.com/cecoeco/HTMLTables.jl.git
[ "MIT" ]
0.5.2
7979027234c190955d3aa25ca5d9fbdf94e896c6
code
7588
const NORMALIZE::String = """ * { margin: 0; padding: 0; box-sizing: border-box; } html, body { display: flex; flex-direction: column; justify-content: center; align-items: center; width: 100%; height: 100%; } """ const BASIC_STYLING::String = """ table { font-family: Helvetica; font-size: 15px; color: black; border: 0; border-spacing: 0; border-collapse: collapse; border-top: 1px solid black; border-bottom: 1px solid black; cursor: default; } caption { caption-side: top; padding: 10px; } thead { font-weight: bold; border-bottom: 1px solid black; } tbody td:hover { text-decoration: underline; } th, td { padding: 5px 10px; text-align: center; } tfoot { height: 20px; border-top: 1px solid black; } """ const DEFAULT::String = """ $NORMALIZE $BASIC_STYLING table { background-color: white; } tfoot { display: none; } """ const RED::String = """ $NORMALIZE $BASIC_STYLING thead, tfoot { background-color: hsl(0, 100%, 60%); } tbody tr:nth-child(odd) { background-color: hsl(0, 100%, 75%); } tbody tr:nth-child(even) { background-color: hsl(0, 100%, 85%); } """ const ORANGE::String = """ $NORMALIZE $BASIC_STYLING thead, tfoot { background-color: hsl(25, 100%, 60%); } tbody tr:nth-child(odd) { background-color: hsl(25, 100%, 75%); } tbody tr:nth-child(even) { background-color: hsl(25, 100%, 85%); } """ const YELLOW::String = """ $NORMALIZE $BASIC_STYLING thead, tfoot { background-color: hsl(60, 100%, 60%); } tbody tr:nth-child(odd) { background-color: hsl(60, 100%, 75%); } tbody tr:nth-child(even) { background-color: hsl(60, 100%, 85%); } """ const GREEN::String = """ $NORMALIZE $BASIC_STYLING thead, tfoot { background-color: hsl(115, 100%, 60%); } tbody tr:nth-child(odd) { background-color: hsl(115, 100%, 75%); } tbody tr:nth-child(even) { background-color: hsl(115, 100%, 85%); } """ const BLUE::String = """ $NORMALIZE $BASIC_STYLING thead, tfoot { background-color: hsl(205, 100%, 60%); } tbody tr:nth-child(odd) { background-color: hsl(205, 100%, 75%); } tbody tr:nth-child(even) { background-color: hsl(205, 100%, 85%); } """ const VIOLET::String = """ $NORMALIZE $BASIC_STYLING thead, tfoot { background-color: hsl(260, 100%, 60%); } tbody tr:nth-child(odd) { background-color: hsl(260, 100%, 75%); } tbody tr:nth-child(even) { background-color: hsl(260, 100%, 85%); } """ const MAGENTA::String = """ $NORMALIZE $BASIC_STYLING thead, tfoot { background-color: hsl(320, 100%, 60%); } tbody tr:nth-child(odd) { background-color: hsl(320, 100%, 75%); } tbody tr:nth-child(even) { background-color: hsl(320, 100%, 85%); } """ const BROWN::String = """ $NORMALIZE $BASIC_STYLING thead, tfoot { background-color: hsl(20, 40%, 50%); } tbody tr:nth-child(odd) { background-color: hsl(20, 40%, 65%); } tbody tr:nth-child(even) { background-color: hsl(20, 40%, 75%); } """ const GRAY::String = """ $NORMALIZE $BASIC_STYLING thead, tfoot { background-color: hsl(0, 0%, 60%); } tbody tr:nth-child(odd) { background-color: hsl(0, 0%, 75%); } tbody tr:nth-child(even) { background-color: hsl(0, 0%, 85%); } """ const BLACK::String = """ $NORMALIZE table { font-family: Helvetica; font-size: 15px; color: white; border: 0; border-spacing: 0; border-collapse: collapse; border-top: 1px solid white; border-bottom: 1px solid white; cursor: default; } caption { caption-side: top; padding: 10px; } thead { font-weight: bold; border-bottom: 1px solid white; } tbody td:hover { text-decoration: underline; } th, td { padding: 5px 10px; text-align: center; } tfoot { height: 20px; border-top: 1px solid white; } thead, tfoot { background-color: hsl(0, 0%, 0%); } tbody tr:nth-child(odd) { background-color: hsl(0, 0%, 10%); } tbody tr:nth-child(even) { background-color: hsl(0, 0%, 20%); } """ const GOLD::String = """ $NORMALIZE $BASIC_STYLING thead, tfoot { background: linear-gradient(135deg, #FFD700 0%, #FFFACD 100%); } tbody tr:nth-child(odd) { background: linear-gradient(135deg, #FFF8DC 0%, #FFD700 100%); } tbody tr:nth-child(even) { background: linear-gradient(135deg, #FFFACD 0%, #FFD700 100%); } """ const SILVER::String = """ $NORMALIZE $BASIC_STYLING thead, tfoot { background: linear-gradient(135deg, #C0C0C0 0%, #E0E0E0 100%); } tbody tr:nth-child(odd) { background: linear-gradient(135deg, #D3D3D3 0%, #C0C0C0 100%); } tbody tr:nth-child(even) { background: linear-gradient(135deg, #E0E0E0 0%, #C0C0C0 100%); } """ const BRONZE::String = """ $NORMALIZE $BASIC_STYLING thead, tfoot { background: linear-gradient(135deg, #CD7F32 0%, #F4A460 100%); } tbody tr:nth-child(odd) { background: linear-gradient(135deg, #D2B48C 0%, #CD7F32 100%); } tbody tr:nth-child(even) { background: linear-gradient(135deg, #F4A460 0%, #CD7F32 100%); } """ const JULIA::String = """ @import url("https://fonts.googleapis.com/css2?family=Arya:wght@400;700"); $NORMALIZE $BASIC_STYLING table { font-size: 15px; color: #222222; background-color: white; } thead, tfoot { font-family: "Arya"; background-color: #a270ba; } """ const SUNSTONE::String = """ @import url('https://fonts.googleapis.com/css2?family=Caladea:ital,wght@0,400;0,700;1,400;1,700&display=swap'); $NORMALIZE table { font-family: "Arial"; font-size: 15px; color: hsl(20, 100%, 15%); border: 0; border-spacing: 0; border-collapse: collapse; border-top: 2px solid #ff8850; border-bottom: 2px solid #ff8850; cursor: default; } caption { caption-side: top; padding: 10px; } thead { font-family: "Caladea"; font-weight: bold; border-bottom: 2px solid #ff8850; color: #fffdce } thead, tfoot { height: 25px; min-height: 25px; background-color: #e16c52; } tbody td:hover { text-decoration: underline; } tbody tr:nth-child(odd) { background-color: #ffaf91; } tbody tr:nth-child(even) { background-color: #ee8c76; } th, td { padding: 5px 10px; text-align: center; } tfoot { border-top: 2px solid #ff8850; } """ const MOONSTONE::String = """ @import url('https://fonts.googleapis.com/css2?family=Caladea:ital,wght@0,400;0,700;1,400;1,700&display=swap'); $NORMALIZE table { font-family: "Arial"; font-size: 15px; color: hsl(220, 100%, 20%); border: 0; border-spacing: 0; border-collapse: collapse; border-top: 2px solid #477edf; border-bottom: 2px solid #477edf; cursor: default; } caption { caption-side: top; padding: 10px; } thead { font-family: "Caladea"; font-weight: bold; border-bottom: 2px solid #477edf; color: #fffdcc } thead, tfoot { height: 25px; min-height: 25px; background-color: #88c3ff; } tbody td:hover { text-decoration: underline; } tbody tr:nth-child(odd) { background-color: #f5faff; } tbody tr:nth-child(even) { background-color: #c8e4ff; } th, td { padding: 5px 10px; text-align: center; } tfoot { border-top: 2px solid #477edf; } """ # https://draculatheme.com/ const DRACULA::String = """ $NORMALIZE $BASIC_STYLING thead { color: #bd93f9; } thead, tfoot { background-color: hsl(232, 15%, 18%); } tbody tr:nth-child(odd) { background-color: hsl(232, 15%, 31%); } tbody tr:nth-child(even) { background-color: hsl(232, 15%, 25%); } """ # https://ethanschoonover.com/solarized/ const SOLARIZED::String = """ $NORMALIZE $BASIC_STYLING thead { color: #2aa198; } thead, tfoot, tbody tr:nth-child(odd) { background-color: hsl(45, 81%, 95%); } tbody tr:nth-child(even) { background-color: hsl(45, 41%, 90%); } """
HTMLTables
https://github.com/cecoeco/HTMLTables.jl.git
[ "MIT" ]
0.5.2
7979027234c190955d3aa25ca5d9fbdf94e896c6
code
4815
@testset "read HTML table from HTML documents using DataFrame" begin df_01::DataFrame = HTMLTables.readtable(HTML_FILE_01, DataFrame) df_01[!, :Age] = parse.(Int, df_01[!, :Age]) @test size(df_01) == (3, 3) @test names(df_01) == ["Name", "Age", "Occupation"] @test df_01[1, 1] == "Alice" @test df_01[1, 2] == 30 @test df_01[1, 3] == "Engineer" @test df_01[2, 1] == "Bob" @test df_01[2, 2] == 25 @test df_01[2, 3] == "Designer" @test df_01[3, 1] == "Charlie" @test df_01[3, 2] == 35 @test df_01[3, 3] == "Teacher" @test isa(df_01, DataFrame) @test isa(df_01[1, 1], String) @test isa(df_01[1, 2], Int) @test isa(df_01[1, 3], String) @test isa(df_01[2, 1], String) @test isa(df_01[2, 2], Int) @test isa(df_01[2, 3], String) @test isa(df_01[3, 1], String) @test isa(df_01[3, 2], Int) @test isa(df_01[3, 3], String) df_02::DataFrame = HTMLTables.readtable(HTML_FILE_02, DataFrame) @test size(df_02) == (3, 3) @test names(df_02) == ["Name", "Age", "Occupation"] @test isa(df_02, DataFrame) @test all(x -> x == "" || ismissing(x), df_02[!, :Name]) @test all(x -> x == "" || ismissing(x), df_02[!, :Age]) @test all(x -> x == "" || ismissing(x), df_02[!, :Occupation]) for row in eachindex(df_02[:, 1]) @test df_02[row, :Name] == "" || ismissing(df_02[row, :Name]) @test df_02[row, :Age] == "" || ismissing(df_02[row, :Age]) @test df_02[row, :Occupation] == "" || ismissing(df_02[row, :Occupation]) end end @testset "read HTML table from HTML string using DataFrame" begin df_01::DataFrame = HTMLTables.readtable(Base.read(HTML_FILE_01, String), DataFrame) df_01[!, :Age] = parse.(Int, df_01[!, :Age]) @test size(df_01) == (3, 3) @test names(df_01) == ["Name", "Age", "Occupation"] @test df_01[1, 1] == "Alice" @test df_01[1, 2] == 30 @test df_01[1, 3] == "Engineer" @test df_01[2, 1] == "Bob" @test df_01[2, 2] == 25 @test df_01[2, 3] == "Designer" @test df_01[3, 1] == "Charlie" @test df_01[3, 2] == 35 @test df_01[3, 3] == "Teacher" @test isa(df_01, DataFrame) @test isa(df_01[1, 1], String) @test isa(df_01[1, 2], Int) @test isa(df_01[1, 3], String) @test isa(df_01[2, 1], String) @test isa(df_01[2, 2], Int) @test isa(df_01[2, 3], String) @test isa(df_01[3, 1], String) @test isa(df_01[3, 2], Int) @test isa(df_01[3, 3], String) df_02::DataFrame = HTMLTables.readtable(Base.read(HTML_FILE_02, String), DataFrame) @test size(df_02) == (3, 3) @test names(df_02) == ["Name", "Age", "Occupation"] @test isa(df_02, DataFrame) @test all(x -> x == "" || ismissing(x), df_02[!, :Name]) @test all(x -> x == "" || ismissing(x), df_02[!, :Age]) @test all(x -> x == "" || ismissing(x), df_02[!, :Occupation]) for row in eachindex(df_02[:, 1]) @test df_02[row, :Name] == "" || ismissing(df_02[row, :Name]) @test df_02[row, :Age] == "" || ismissing(df_02[row, :Age]) @test df_02[row, :Occupation] == "" || ismissing(df_02[row, :Occupation]) end end @testset "read HTML table from IO using DataFrame" begin html_io_01::IO = open(HTML_FILE_01, "r") df_01::DataFrame = HTMLTables.readtable(html_io_01, DataFrame) df_01[!, :Age] = parse.(Int, df_01[!, :Age]) @test size(df_01) == (3, 3) @test names(df_01) == ["Name", "Age", "Occupation"] @test df_01[1, 1] == "Alice" @test df_01[1, 2] == 30 @test df_01[1, 3] == "Engineer" @test df_01[2, 1] == "Bob" @test df_01[2, 2] == 25 @test df_01[2, 3] == "Designer" @test df_01[3, 1] == "Charlie" @test df_01[3, 2] == 35 @test df_01[3, 3] == "Teacher" @test isa(df_01, DataFrame) @test isa(df_01[1, 1], String) @test isa(df_01[1, 2], Int) @test isa(df_01[1, 3], String) @test isa(df_01[2, 1], String) @test isa(df_01[2, 2], Int) @test isa(df_01[2, 3], String) @test isa(df_01[3, 1], String) @test isa(df_01[3, 2], Int) @test isa(df_01[3, 3], String) html_io_02::IO = Base.open(HTML_FILE_02, "r") df_02::DataFrame = HTMLTables.readtable(html_io_02, DataFrame) @test size(df_02) == (3, 3) @test names(df_02) == ["Name", "Age", "Occupation"] @test isa(df_02, DataFrame) @test all(x -> x == "" || ismissing(x), df_02[!, :Name]) @test all(x -> x == "" || ismissing(x), df_02[!, :Age]) @test all(x -> x == "" || ismissing(x), df_02[!, :Occupation]) for row in eachindex(df_02[:, 1]) @test df_02[row, :Name] == "" || ismissing(df_02[row, :Name]) @test df_02[row, :Age] == "" || ismissing(df_02[row, :Age]) @test df_02[row, :Occupation] == "" || ismissing(df_02[row, :Occupation]) end end
HTMLTables
https://github.com/cecoeco/HTMLTables.jl.git
[ "MIT" ]
0.5.2
7979027234c190955d3aa25ca5d9fbdf94e896c6
code
1103
module TestHTMLTables using DataFrames, HTMLTables, Test const DIR::String = Base.Filesystem.dirname(Base.@__FILE__) const CSS_DIR::String = Base.Filesystem.joinpath(DIR, "css") const CSS_FILE_01::String = Base.Filesystem.joinpath(CSS_DIR, "example-01.css") const CSS_FILE_02::String = Base.Filesystem.joinpath(CSS_DIR, "example-02.css") const CSS_STRING_01::String = Base.read(CSS_FILE_01, String) const CSS_STRING_02::String = Base.read(CSS_FILE_02, String) const HTML_DIR::String = Base.Filesystem.joinpath(DIR, "html") const HTML_FILE_01::String = Base.Filesystem.joinpath(HTML_DIR, "example-01.html") const HTML_FILE_02::String = Base.Filesystem.joinpath(HTML_DIR, "example-02.html") const HTML_STRING_01::String = Base.read(HTML_FILE_01, String) const HTML_STRING_02::String = Base.read(HTML_FILE_02, String) const URL_01::String = "https://www.w3schools.com/html/html_tables.asp" const GLOBAL_DF_01::DataFrame = HTMLTables.readtable(HTML_FILE_01, DataFrame) const GLOBAL_DF_02::DataFrame = HTMLTables.readtable(HTML_FILE_02, DataFrame) include("readtests.jl") include("writetests.jl") end
HTMLTables
https://github.com/cecoeco/HTMLTables.jl.git
[ "MIT" ]
0.5.2
7979027234c190955d3aa25ca5d9fbdf94e896c6
code
7173
@testset "built-in CSS theme" begin themes::Vector{Symbol} = [ :default, :red, :orange, :yellow, :green, :blue, :violet, :magenta, :brown, :gray, :black, :gold, :silver, :bronze, :julia, :sunstone, :moonstone, :dracula, :solarized ] for theme in themes io_01::IO = IOBuffer() HTMLTables.writetable(io_01, GLOBAL_DF_01; theme=theme) table_01::String = String(Base.take!(io_01)) Base.close(io_01) @test occursin("<style>", table_01) io_02::IO = IOBuffer() HTMLTables.writetable(io_02, GLOBAL_DF_01; theme=string(theme)) table_02::String = String(Base.take!(io_02)) Base.close(io_02) @test occursin("<style>", table_02) @test table_01 == table_02 end end @testset "CSS file" begin io_01::IO = IOBuffer() HTMLTables.writetable(io_01, GLOBAL_DF_01; css=CSS_FILE_01) table_01::String = String(Base.take!(io_01)) Base.close(io_01) @test occursin("<style>", table_01) io_02::IO = IOBuffer() HTMLTables.writetable(io_02, GLOBAL_DF_01; css=CSS_FILE_02) table_02::String = String(Base.take!(io_02)) Base.close(io_02) @test occursin("<style>", table_02) end @testset "CSS string" begin io_01::IO = IOBuffer() HTMLTables.writetable(io_01, GLOBAL_DF_01; css=CSS_STRING_01) table_01::String = String(Base.take!(io_01)) Base.close(io_01) @test occursin("<style>", table_01) io_02::IO = IOBuffer() HTMLTables.writetable(io_02, GLOBAL_DF_01; css=CSS_STRING_02) table_02::String = String(Base.take!(io_02)) Base.close(io_02) @test occursin("<style>", table_02) end @testset "header" begin io_01::IO = IOBuffer() HTMLTables.writetable(io_01, GLOBAL_DF_01; header=true) table_01::String = String(Base.take!(io_01)) Base.close(io_01) @test occursin("<thead", table_01) io_02::IO = IOBuffer() HTMLTables.writetable(io_02, GLOBAL_DF_01; header=false) table_02::String = String(Base.take!(io_02)) Base.close(io_02) @test !occursin("<thead", table_02) io_03::IO = IOBuffer() HTMLTables.writetable(io_03, GLOBAL_DF_01) table_03::String = String(Base.take!(io_03)) Base.close(io_03) @test occursin("<thead", table_03) end @testset "footer" begin io_01::IO = IOBuffer() HTMLTables.writetable(io_01, GLOBAL_DF_01; footer=true) table_01::String = String(Base.take!(io_01)) Base.close(io_01) @test occursin("<tfoot", table_01) io_02::IO = IOBuffer() HTMLTables.writetable(io_02, GLOBAL_DF_01; footer=false) table_02::String = String(Base.take!(io_02)) Base.close(io_02) @test !occursin("<tfoot", table_02) io_03::IO = IOBuffer() HTMLTables.writetable(io_03, GLOBAL_DF_01) table_03::String = String(Base.take!(io_03)) Base.close(io_03) @test occursin("<tfoot", table_03) end @testset "id" begin io_01::IO = IOBuffer() HTMLTables.writetable(io_01, GLOBAL_DF_01; id="table_01") table_01::String = String(Base.take!(io_01)) Base.close(io_01) @test occursin("id=\"table_01\"", table_01) io_02::IO = IOBuffer() HTMLTables.writetable(io_02, GLOBAL_DF_01; id="table_02") table_02::String = String(Base.take!(io_02)) Base.close(io_02) @test occursin("id=\"table_02\"", table_02) end @testset "class" begin io_01::IO = IOBuffer() HTMLTables.writetable(io_01, GLOBAL_DF_01; class="table_01") table_01::String = String(Base.take!(io_01)) Base.close(io_01) @test occursin("class=\"table_01\"", table_01) io_02::IO = IOBuffer() HTMLTables.writetable(io_02, GLOBAL_DF_01; class="table_02") table_02::String = String(Base.take!(io_02)) Base.close(io_02) @test occursin("class=\"table_02\"", table_02) io_03::IO = IOBuffer() HTMLTables.writetable(io_03, GLOBAL_DF_01; class="table_01 table_02") table_03::String = String(Base.take!(io_03)) Base.close(io_03) @test occursin("class=\"table_01 table_02\"", table_03) io_04::IO = IOBuffer() HTMLTables.writetable(io_04, GLOBAL_DF_01; class="table_02 table_01") table_04::String = String(Base.take!(io_04)) Base.close(io_04) @test occursin("class=\"table_02 table_01\"", table_04) io_05::IO = IOBuffer() HTMLTables.writetable(io_05, GLOBAL_DF_01; class=["table_01", "table_02"]) table_05::String = String(Base.take!(io_05)) Base.close(io_05) @test occursin("class=\"table_01 table_02\"", table_05) io_06::IO = IOBuffer() HTMLTables.writetable(io_06, GLOBAL_DF_01; class=["table_02", "table_01"]) table_06::String = String(Base.take!(io_06)) Base.close(io_06) @test occursin("class=\"table_02 table_01\"", table_06) end @testset "caption" begin io_01::IO = IOBuffer() HTMLTables.writetable(io_01, GLOBAL_DF_01; caption="Table 1") table_01::String = String(Base.take!(io_01)) Base.close(io_01) @test occursin("<caption", table_01) io_02::IO = IOBuffer() HTMLTables.writetable(io_02, GLOBAL_DF_01) table_02::String = String(Base.take!(io_02)) Base.close(io_02) @test !occursin("<caption", table_02) end @testset "tooltips" begin io_01::IO = IOBuffer() HTMLTables.writetable(io_01, GLOBAL_DF_01; tooltips=true) table_01::String = String(Base.take!(io_01)) Base.close(io_01) @test occursin("title", table_01) io_02::IO = IOBuffer() HTMLTables.writetable(io_02, GLOBAL_DF_01; tooltips=false) table_02::String = String(Base.take!(io_02)) Base.close(io_02) @test !occursin("title", table_02) io_03::IO = IOBuffer() HTMLTables.writetable(io_03, GLOBAL_DF_01) table_03::String = String(Base.take!(io_03)) Base.close(io_03) @test occursin("title", table_03) end @testset "editable" begin io_01::IO = IOBuffer() HTMLTables.writetable(io_01, GLOBAL_DF_01; editable=true) table_01::String = String(Base.take!(io_01)) Base.close(io_01) @test occursin("contenteditable", table_01) io_02::IO = IOBuffer() HTMLTables.writetable(io_02, GLOBAL_DF_01; editable=false) table_02::String = String(Base.take!(io_02)) Base.close(io_02) @test !occursin("contenteditable", table_02) io_03::IO = IOBuffer() HTMLTables.writetable(io_03, GLOBAL_DF_01) table_03::String = String(Base.take!(io_03)) Base.close(io_03) @test !occursin("contenteditable", table_03) end @testset "disabled CSS" begin io_01::IO = IOBuffer() HTMLTables.writetable( io_01, GLOBAL_DF_01; styles=false, css=CSS_STRING_01, theme=:default, colorscale="Reds", ) table_01::String = String(Base.take!(io_01)) @test !occursin("<style>", table_01) io_02::IO = IOBuffer() HTMLTables.writetable( io_02, GLOBAL_DF_01; styles=false, css=CSS_FILE_01, theme=:gold, colorscale="Viridis", ) table_02::String = String(Base.take!(io_02)) @test !occursin("<style>", table_02) @test table_01 == table_02 end
HTMLTables
https://github.com/cecoeco/HTMLTables.jl.git
[ "MIT" ]
0.5.2
7979027234c190955d3aa25ca5d9fbdf94e896c6
docs
2306
<div> <a href="https://github.com/cecoeco/HTMLTables.jl/actions/workflows/CI.yml"><img alt="CI test" src="https://github.com/cecoeco/HTMLTables.jl/actions/workflows/CI.yml/badge.svg"></a> <a href="https://zenodo.org/doi/10.5281/zenodo.11253769"><img src="https://zenodo.org/badge/779591300.svg" alt="DOI"></a> <a href="https://juliapkgstats.com/pkg/HTMLTables"><img src="https://img.shields.io/badge/dynamic/json?url=http%3A%2F%2Fjuliapkgstats.com%2Fapi%2Fv1%2Fmonthly_downloads%2FHTMLTables&query=total_requests&suffix=%2Fmonth&label=Downloads" alt="Package Statistics"></a> <a href="https://github.com/JuliaDiff/BlueStyle"><img alt="Style: Blue" src="https://img.shields.io/badge/code%20style-blue-4495d1.svg"></a> </div> # HTMLTables <i>Julia package for reading and writing HTML tables.</i> :book: **Documentation:** <a href="https://cecoeco.github.io/HTMLTables.jl/stable/"><img src="https://img.shields.io/badge/docs-stable-aquamarine.svg" alt="Documentation Stable" /></a> <a href="https://cecoeco.github.io/HTMLTables.jl/dev/"><img src="https://img.shields.io/badge/docs-dev-aquamarine.svg" alt="Documentation Dev"></a> :arrow_down: **Installation:** use this command in the Julia REPL: `using Pkg; Pkg.add("HTMLTables")` **Examples:** create an HTML table using a `DataFrame`: ```julia using HTMLTables, DataFrames df = DataFrame([i:i+19 for i in 1:20:501], Symbol.('a':'z')) HTMLTables.writetable("viridis.html", df, colorscale="viridis") ``` output: ![viridis table example](examples/viridis.png) create a `DataFrame` from parsing HTML: ```julia using HTMLTables, DataFrames url = "https://www.w3schools.com/html/html_tables.asp" df = HTMLTables.readtable(url, DataFrame) println(df) ``` output: ``` 6Γ—3 DataFrame Row β”‚ Company Contact Country β”‚ String String String ─────┼───────────────────────────────────────────────────────── 1 β”‚ Alfreds Futterkiste Maria Anders Germany 2 β”‚ Centro comercial Moctezuma Francisco Chang Mexico 3 β”‚ Ernst Handel Roland Mendel Austria 4 β”‚ Island Trading Helen Bennett UK 5 β”‚ Laughing Bacchus Winecellars Yoshi Tannamuri Canada 6 β”‚ Magazzini Alimentari Riuniti Giovanni Rovelli Italy ```
HTMLTables
https://github.com/cecoeco/HTMLTables.jl.git
[ "MIT" ]
0.5.2
7979027234c190955d3aa25ca5d9fbdf94e896c6
docs
49
# HTMLTables ```@docs HTMLTables.HTMLTables ```
HTMLTables
https://github.com/cecoeco/HTMLTables.jl.git
[ "MIT" ]
0.5.2
7979027234c190955d3aa25ca5d9fbdf94e896c6
docs
45
## Reading ```@docs HTMLTables.readtable ```
HTMLTables
https://github.com/cecoeco/HTMLTables.jl.git
[ "MIT" ]
0.5.2
7979027234c190955d3aa25ca5d9fbdf94e896c6
docs
46
## Writing ```@docs HTMLTables.writetable ```
HTMLTables
https://github.com/cecoeco/HTMLTables.jl.git
[ "MIT" ]
1.0.2
377585d2d44d9717448ddb079abe61272ada26b4
code
289
using Documenter, DungBase makedocs( modules = [DungBase], format = :html, sitename = "DungBase.jl", pages = Any["index.md"] ) deploydocs( repo = "github.com/yakir12/DungBase.jl.git", target = "build", julia = "1.0", deps = nothing, make = nothing, )
DungBase
https://github.com/yakir12/DungBase.jl.git
[ "MIT" ]
1.0.2
377585d2d44d9717448ddb079abe61272ada26b4
code
1425
module DungBase using Dates, UUIDs, StaticArrays import IntervalSets: width, (..), AbstractInterval, leftendpoint using StatsBase, StructArrays, Dierckx, AngleBetweenVectors, LinearAlgebra export VideoFile, WholeVideo, FragmentedVideo, DisjointVideo, AbstractTimeLine, AbstractPeriod, Instantaneous, Prolonged, Temporal, Board, Calibration, POI, Metadata, Run, Experiment, Track, Common, Point, PointCollection export start, duration, stop, files, filenames, point, pointcollection, homing, searching, searchcenter, turningpoint __init__() = @warn "This package is deprecated" stop(x) = start(x) + duration(x) include("videos.jl") include("temporals.jl") include("calibrations.jl") include("pois.jl") include("track.jl") # include(joinpath(@__DIR__, "experimental_setup.jl")) struct Metadata setup::Dict{Symbol, Any} comment::String date::DateTime end # Base.getproperty(x::Metadata, level::Symbol) = get(x.setup, level, missing) #=getcoord(x::Run, poi::Symbol) = get(x.pois, poi, missing) _getlevel(x::Metadata, level::Symbol) = get(x, level, missing) getlevel(x::Run, level::Symbol) = _getlevel(x.metadata, level)=# struct Run{T, M} data::T # pois::Dict{Symbol, T} or Track metadata::M end #=struct Run setup::Dict{Symbol, Any} pois::Dict{Symbol, POI} comment::String date::DateTime end=# struct Experiment runs::Vector{Run} description::String end end # module
DungBase
https://github.com/yakir12/DungBase.jl.git
[ "MIT" ]
1.0.2
377585d2d44d9717448ddb079abe61272ada26b4
code
1216
struct Board designation::String checker_width_cm::Float64 dimensions::Tuple{Int, Int} description::String function Board(designation, checker_width_cm, dimensions, description) @assert !isempty(designation) "empty board designation is not allowed" @assert checker_width_cm > 0 "checker width must be larger zero" w, h = dimensions @assert w > 1 "number of checkers must be larger one" @assert h > 1 "number of checkers must be larger one" @assert !isempty(description) "empty board description is not allowed" new(designation, checker_width_cm, dimensions, description) end end Board() = Board("_", 1.0, (2,2), "_") struct Calibration{T, S} intrinsic::T # Missing or Temporal{Prolonged} extrinsic::S # Temporal{Instantaneous} board::Board comment::String end Calibration() = Calibration(missing, Temporal(), Board(), "") Calibration(c::Calibration, args) = Calibration(get(args, :intrinsic, c.intrinsic), get(args, :extrinsic, c.extrinsic), get(args, :board, c.board), get(args, :comment, c.comment)) filenames(c::Calibration) = first(filenames(c.extrinsic.video)) start(c::Calibration) = start(c.extrinsic.time)
DungBase
https://github.com/yakir12/DungBase.jl.git
[ "MIT" ]
1.0.2
377585d2d44d9717448ddb079abe61272ada26b4
code
792
#=using DataStructures abstract type AbstractFactor end struct Nominal <: AbstractFactor levels::Set{String} end struct Ordinal <: AbstractFactor levels::OrderedSet{String} end struct Discrete <: AbstractFactor levels::OrderedSet{Int} end struct Continuous <: AbstractFactor levels::Vector{Float64} end struct Run setup::Int start::DateTime comment::String pois::Vector{POI} end struct Experiment{N} description::String factors::NTuple{N, String} levels::NTuple{N, AbstractFactor} setups::Vector{NTuple{N, Int}} runs::Vector{Run} end=# struct Run setup::Vector{Union{Missing, String}} start::DateTime comment::String pois::Dict{Symbol, POI} end struct Experiment description::String runs::Vector{Run} end
DungBase
https://github.com/yakir12/DungBase.jl.git
[ "MIT" ]
1.0.2
377585d2d44d9717448ddb079abe61272ada26b4
code
370
struct POI{T, U} calib::T # Calibration -> name for the matlab calibration file or maybe the transformation matrix itself data::U # Temporal -> pixel coordinates end POI{T, U}() where {T, U} = POI(T(), U()) # struct POI{V <: AbstractTimeLine, T <: AbstractPeriod} # calib::Dict{UUID, <:Calibration} # temporal::Temporal{V, T} # spatial::UUID # end
DungBase
https://github.com/yakir12/DungBase.jl.git
[ "MIT" ]
1.0.2
377585d2d44d9717448ddb079abe61272ada26b4
code
2015
abstract type AbstractPeriod end function checkInstantaneous(x::T) where {T <: TimePeriod} @assert x β‰₯ zero(T) "period start cannot be negative" x end checkInstantaneous(x) = x struct Instantaneous{T} <: AbstractPeriod data::T Instantaneous{T}(x) where {T} = new(checkInstantaneous(x)) end Instantaneous(x::T) where {T} = Instantaneous{T}(x) Instantaneous() = Instantaneous(Millisecond(0)) function checkProlonged(x::I) where {T <: TimePeriod, I <: AbstractInterval{T}} @assert leftendpoint(x) β‰₯ zero(T) "period start cannot be negative" @assert width(x) > zero(T) "period duration must be larger than zero" x end checkProlonged(x) = x struct Prolonged{T} <: AbstractPeriod data::T Prolonged{T}(x) where {T} = new(checkProlonged(x)) end Prolonged(x::T) where {T} = Prolonged{T}(x) Prolonged() = Prolonged(Millisecond(0)..Millisecond(1)) AbstractPeriod(start::T) where {T <: TimePeriod} = Instantaneous(start) AbstractPeriod(x::I) where {T <: TimePeriod, I <: AbstractInterval{T}} = Prolonged(x) AbstractPeriod(start::T1, stop::T2) where {T1 <: TimePeriod, T2 <: TimePeriod} = Prolonged(start..stop) AbstractPeriod(start::T, _::Nothing) where {T <: TimePeriod} = Instantaneous(start) start(x::Instantaneous) = x.data start(x::Prolonged) = leftendpoint(x.data) duration(x::Instantaneous{T}) where {T <: TimePeriod} = zero(T) duration(x::Prolonged) = width(x.data) struct Temporal{V <: AbstractTimeLine, T <: AbstractPeriod} video::V time::T comment::String function Temporal{V, T}(video, time, comment) where {V <: AbstractTimeLine, T <: AbstractPeriod} @assert stop(time) ≀ duration(video) "POIs are outside the video's timeline (stop: $(stop(time)); duration: $(duration(video)); file: $(files(video))" new(video, time, comment) end end Temporal(video::V, time::T, comment::String) where {V <: AbstractTimeLine, T <: AbstractPeriod} = Temporal{V, T}(video, time, comment) Temporal() = Temporal(WholeVideo(), Instantaneous(), "")
DungBase
https://github.com/yakir12/DungBase.jl.git
[ "MIT" ]
1.0.2
377585d2d44d9717448ddb079abe61272ada26b4
code
2577
const ignorefirst = 10 # cm const bigturn = Ο€/3 # 60Β° # const smallturn = Ο€/93 # 60Β° const s = 500 const Point = SVector{2, Float64} point(x::Missing) = x point(x::Instantaneous)= Point(x.data[1], x.data[2]) _getv(spl, k) = SVector{2, Float64}(derivative(spl, k)) function gettpindex(spl, ks) tp = ks[1] vlast = _getv(spl, ks[1]) for k in Iterators.drop(ks, 1) v = _getv(spl, k) Ξ” = angle(vlast, v) tp = k Ξ” > bigturn && break vlast = v end return tp end function gettpknot(spl) ks = Dierckx.get_knots(spl) filter!(k -> norm(spl(k) - spl(0)) > ignorefirst, ks) tp2 = gettpindex(spl, ks) # return tp2 tp1 = copy(tp2) for k in ks k == tp2 && break tp1 = k end tp1 += 0.1 if tp1 < tp2 main = _getv(spl, tp1) for t in tp2:-0.3:tp1 v = _getv(spl, t) Ξ” = angle(main, v) Ξ” < bigturn && return t end end return tp2 end mutable struct TimedPoint xy::Point t::Float64 end const PointCollection = StructVector{TimedPoint} pointcollection(x::Missing, tβ‚€) = StructVector{TimedPoint}(undef, 0) pointcollection(x, tβ‚€) = StructVector(TimedPoint(Point(i[1], i[2]), i[3] - tβ‚€) for i in eachrow(x.data)) struct Track coords::Vector{Point} t::StepRangeLen{Float64,Base.TwicePrecision{Float64},Base.TwicePrecision{Float64}} tp::Int rawcoords::StructArray{TimedPoint} end function filterdance(xy, Ξ”t) xy2 = [xy[1,:]] t = [0.0] for p in eachrow(xy) if norm(p - xy2[end]) > 4 push!(xy2, p) push!(t, t[end] + Ξ”t) else t[end] += Ξ”t end end t .-= t[1] return t, hcat(xy2...) end function Track(x::Prolonged) xyt = !issorted(x.data[:, 3]) ? sortslices(x.data, dims = 1, lt = (x, y) -> isless(x[3], y[3])) : x.data Ξ”t = mean(trim(diff(xyt[:, 3]), prop = 0.1)) t, xy = filterdance(xyt[:,1:2], Ξ”t) spl = ParametricSpline(t, xy; s = s, k = 2) tl = range(0.0, step = Ξ”t, stop = t[end]) xyl = Point.(spl.(tl)) tp = gettpknot(spl) i = findfirst(β‰₯(tp), tl) if isnothing(i) i = length(tl) end raw = pointcollection((data = xyt, ), xyt[1,3]) Track(xyl, tl, i, raw) end homing(t::Track) = t.coords[1:t.tp] searching(t::Track) = t.coords[t.tp:end] searchcenter(t::Track) = mean(searching(t)) turningpoint(t::Track) = t.coords[t.tp] mutable struct Common{N} feeder::Point nest::Point track::Track pellet::PointCollection originalnest::N end
DungBase
https://github.com/yakir12/DungBase.jl.git
[ "MIT" ]
1.0.2
377585d2d44d9717448ddb079abe61272ada26b4
code
4388
struct VideoFile name::String start::DateTime duration::Millisecond function VideoFile(name, start, duration::Millisecond) @assert !isempty(name) "file name is empty" @assert start > DateTime(0) "starting date & time must be larger than zero" @assert duration > Millisecond(0) "zero duration is not supported" new(name, start, duration) end end function VideoFile(name, start, duration::T) where T <: TimePeriod ms = duration/convert(T, Millisecond(1)) VideoFile(name, start, Millisecond(round(Int, ms))) end VideoFile() = VideoFile("_", DateTime(1), Millisecond(1)) start(x::VideoFile) = x.start duration(x::VideoFile) = x.duration VideoFile(vf::VideoFile, args) = VideoFile(get(args, :name, vf.name), get(args, :start, start(vf)), get(args, :duration, duration(vf))) abstract type AbstractTimeLine end struct WholeVideo <: AbstractTimeLine file::VideoFile comment::String end WholeVideo() = WholeVideo(VideoFile(), "") WholeVideo(wv::WholeVideo, args) = WholeVideo(get(args, :files, VideoFile(wv.file, args)), get(args, :comment, wv.comment)) files(x::WholeVideo) = SVector{1, VideoFile}(x.file) struct FragmentedVideo{N, SV <: SVector{N, VideoFile}} <: AbstractTimeLine files::SV comment::String function FragmentedVideo{N, SV}(files, comment) where {N, SV <: SVector{N, VideoFile}} @assert N > 1 "video collection must include more than one file" last = stop(files[1]) for file in files[2:N] @assert start(file) == last "there is a gap between two adjacent videos: $(start(file) - last)" last = stop(file) end @assert allunique(getfield.(files, :name)) "all file names must be unique" new(files, comment) end end FragmentedVideo(files::SV, comment::String) where {N, SV <: SVector{N, VideoFile}} = FragmentedVideo{N, SV}(files, comment) function FragmentedVideo(files::T, comment::String) where {T <: AbstractVector{VideoFile}} n = length(files) FragmentedVideo(SVector{n, VideoFile}(files), comment) end function FragmentedVideo() v1 = VideoFile() v2 = VideoFile("__", stop(v1), Millisecond(1)) FragmentedVideo([v1, v2], "") end FragmentedVideo(fv::FragmentedVideo, args) = FragmentedVideo(get(args, :files, fv.files), get(args, :comment, fv.comment)) struct DisjointVideo{N, SV <: SVector{N, VideoFile}} <: AbstractTimeLine files::SV comment::String function DisjointVideo{N, SV}(files, comment) where {N, SV <: SVector{N, VideoFile}} n = length(files) @assert n > 1 "video collection must include more than one file" last = stop(files[1]) for file in files[2:end] @assert start(file) β‰₯ last "one file starts before the next one ends" last = stop(file) end @assert allunique(getfield.(files, :name)) "all file names must be unique" new(SVector{n}(files), comment) end end DisjointVideo(files::SV, comment::String) where {N, SV <: SVector{N, VideoFile}} = DisjointVideo{N, SV}(files, comment) function DisjointVideo(files::T, comment::String) where {T <: AbstractVector{VideoFile}} n = length(files) DisjointVideo(SVector{n, VideoFile}(files), comment) end function DisjointVideo() v1 = VideoFile() v2 = VideoFile("__", stop(v1) + Millisecond(1), Millisecond(1)) DisjointVideo([v1, v2], "") end DisjointVideo(fv::DisjointVideo, args) = DisjointVideo(get(args, :files, fv.files), get(args, :comment, fv.comment)) AbstractTimeLine(file::VideoFile, comment::String) = WholeVideo(file, comment) function AbstractTimeLine(files::Vector{VideoFile}, comment::String) @assert !isempty(files) "must have some files" if length(files) == 1 WholeVideo(files[], comment) else if all(stop(prev) == start(next) for (prev, next) in zip(files[1:end-1], files[2:end])) FragmentedVideo(files, comment) else DisjointVideo(files, comment) end end end files(x::AbstractTimeLine) = x.files filenames(x::AbstractTimeLine) = getfield.(files(x), :name) start(x::WholeVideo) = start(x.file) start(x::AbstractTimeLine) = start(first(x.files)) duration(x::WholeVideo) = duration(x.file) duration(x::FragmentedVideo) = sum(duration, x.files) duration(x::DisjointVideo) = stop(last(x.files)) - start(first(x.files))
DungBase
https://github.com/yakir12/DungBase.jl.git
[ "MIT" ]
1.0.2
377585d2d44d9717448ddb079abe61272ada26b4
code
26
using DungBase using Test
DungBase
https://github.com/yakir12/DungBase.jl.git
[ "MIT" ]
1.0.2
377585d2d44d9717448ddb079abe61272ada26b4
code
266
# only push coverage from one bot get(ENV, "TRAVIS_OS_NAME", nothing) == "linux" || exit(0) get(ENV, "TRAVIS_JULIA_VERSION", nothing) == "1.0" || exit(0) using Coverage cd(joinpath(@__DIR__, "..", "..")) do Codecov.submit(Codecov.process_folder()) end
DungBase
https://github.com/yakir12/DungBase.jl.git