licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
1.0.2
377585d2d44d9717448ddb079abe61272ada26b4
docs
721
# DungBase ![Lifecycle](https://img.shields.io/badge/lifecycle-experimental-orange.svg)<!-- ![Lifecycle](https://img.shields.io/badge/lifecycle-maturing-blue.svg) ![Lifecycle](https://img.shields.io/badge/lifecycle-stable-green.svg) ![Lifecycle](https://img.shields.io/badge/lifecycle-retired-orange.svg) ![Lifecycle](https://img.shields.io/badge/lifecycle-archived-red.svg) ![Lifecycle](https://img.shields.io/badge/lifecycle-dormant-blue.svg) --> [![Build Status](https://travis-ci.org/yakir12/DungBase.jl.svg?branch=master)](https://travis-ci.org/yakir12/DungBase.jl) [![codecov.io](http://codecov.io/github/yakir12/DungBase.jl/coverage.svg?branch=master)](http://codecov.io/github/yakir12/DungBase.jl?branch=master)
DungBase
https://github.com/yakir12/DungBase.jl.git
[ "MIT" ]
1.0.2
377585d2d44d9717448ddb079abe61272ada26b4
docs
39
# DungBase *Documentation goes here.*
DungBase
https://github.com/yakir12/DungBase.jl.git
[ "MIT" ]
0.3.5
844be8f8ea59a458ebd65b2c2db20c17b43943e4
code
729
using SampleChainsDynamicHMC using Documenter DocMeta.setdocmeta!(SampleChainsDynamicHMC, :DocTestSetup, :(using SampleChainsDynamicHMC); recursive=true) makedocs(; modules=[SampleChainsDynamicHMC], authors="Chad Scherrer <[email protected]> and contributors", repo="https://github.com/cscherrer/SampleChainsDynamicHMC.jl/blob/{commit}{path}#{line}", sitename="SampleChainsDynamicHMC.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://cscherrer.github.io/SampleChainsDynamicHMC.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/cscherrer/SampleChainsDynamicHMC.jl", )
SampleChainsDynamicHMC
https://github.com/cscherrer/SampleChainsDynamicHMC.jl.git
[ "MIT" ]
0.3.5
844be8f8ea59a458ebd65b2c2db20c17b43943e4
code
440
using TupleVectors function divergence_indices(chain::DynamicHMCChain) inds = findall(isdivergence, SampleChains.info(chain)) end function divergences(chain::DynamicHMCChain) TupleVector(chain[divergence_indices(chain)]) end using SampleChainsDynamicHMC.DynamicHMC: TreeStatisticsNUTS using SampleChainsDynamicHMC.DynamicHMC: is_divergent isdivergence(tree::TreeStatisticsNUTS) = tree.termination.left == tree.termination.right
SampleChainsDynamicHMC
https://github.com/cscherrer/SampleChainsDynamicHMC.jl.git
[ "MIT" ]
0.3.5
844be8f8ea59a458ebd65b2c2db20c17b43943e4
code
5573
module SampleChainsDynamicHMC using Reexport @reexport using SampleChains @reexport using DynamicHMC using LogDensityProblems using NestedTuples using ElasticArrays using StructArrays using ConcreteStructs using TransformVariables using MappedArrays using Random using TupleVectors using TupleVectors:chainvec export dynamichmc @concrete mutable struct DynamicHMCChain{T} <: AbstractChain{T} samples # :: AbstractVector{T} logq # log-density for distribution the sample was drawn from info # Per-sample metadata, type depends on sampler used meta # Metadata associated with the sample as a whole state transform reporter end function DynamicHMCChain(t::TransformVariables.TransformTuple, Q::DynamicHMC.EvaluatedLogDensity, tree_stats, steps, reporter = NoProgressReport()) tQq = TransformVariables.transform(t, Q.q) T = typeof(tQq) samples = chainvec(tQq) logq = chainvec(Q.ℓq) info = chainvec(tree_stats) meta = steps transform = t return DynamicHMCChain{T}(samples, logq, info, meta, Q, transform, reporter) end TupleVectors.summarize(ch::DynamicHMCChain) = summarize(samples(ch)) function gettransform(chain::DynamicHMCChain) return getfield(chain, :transform) end function SampleChains.pushsample!(chain::DynamicHMCChain, Q::DynamicHMC.EvaluatedLogDensity, tree_stats) push!(samples(chain), transform(gettransform(chain), Q.q)) push!(logq(chain), Q.ℓq) push!(info(chain), tree_stats) end function SampleChains.step!(chain::DynamicHMCChain) Q, tree_stats = DynamicHMC.mcmc_next_step(getfield(chain, :meta), getfield(chain, :state)) setfield!(chain, :state, Q) return Q, tree_stats end @concrete struct DynamicHMCConfig <: ChainConfig{DynamicHMCChain} init warmup_stages algorithm reporter ad_backend end # Docs adapted from https://tamaspapp.eu/DynamicHMC.jl/stable/interface/ """ dynamichmc( ; init = () , warmup_stages = DynamicHMC.default_warmup_stages() , algorithm = DynamicHMC.NUTS() , reporter = DynamicHMC.NoProgressReport() , ad_backend = Val(:ForwardDiff) ) `init`: a `NamedTuple` that can contain the following fields (all of them optional and provided with reasonable defaults): - `q`: initial position. Default: random (uniform `[-2,2]` for each coordinate). - `κ`: kinetic energy specification. Default: Gaussian with identity matrix. - `ϵ`: a scalar for initial step size, or `nothing` for heuristic finders. `warmup_stages`: a sequence of warmup stages. See `DynamicHMC.default_warmup_stages` and `DynamicHMC.fixed_stepsize_warmup_stages`; the latter requires an `ϵ` in initialization. `algorithm`: see `DynamicHMC.NUTS`. It is very unlikely you need to modify this, except perhaps for the maximum depth. `reporter`: how progress is reported. This is currently silent by default (see `DynamicHMC.NoProgressReport`), but this default will likely change in future releases. `ad_backend`: The automatic differentiation backend to use for gradient computation, specified as either a symbol or a `Val` type with a symbol that refers to an AD package. See [LogDensityProblems.jl](https://tamaspapp.eu/LogDensityProblems.jl/stable/#Automatic-differentiation) for supported packages, including `ForwardDiff`, `ReverseDiff`, `Zygote`, and `Tracker`. For more details see https://tamaspapp.eu/DynamicHMC.jl/stable/interface/ # Example ```jldoctest julia> using LinearAlgebra, ReverseDiff julia> config = dynamichmc( warmup_stages=default_warmup_stages( M=Symmetric, # adapt dense positive definite metric stepsize_adaptation=DualAveraging(δ=0.9), # target acceptance rate 0.9 doubling_stages=7, # 7-stage metric adaptation ), reporter=LogProgressReport(), # log progress using Logging ad_backend=Val(:ReverseDiff), # use ReverseDiff AD package ); ``` """ function dynamichmc(; init = () , warmup_stages = DynamicHMC.default_warmup_stages() , algorithm = DynamicHMC.NUTS() , reporter = DynamicHMC.NoProgressReport() , ad_backend = Val(:ForwardDiff) ) DynamicHMCConfig(init, warmup_stages, algorithm, reporter, ad_backend) end function SampleChains.newchain(rng::Random.AbstractRNG, config::DynamicHMCConfig, ℓ, tr) P = LogDensityProblems.TransformedLogDensity(tr, ℓ) ∇P = LogDensityProblems.ADgradient(config.ad_backend, P) reporter = config.reporter results = DynamicHMC.mcmc_keep_warmup(rng, ∇P, 0; initialization = config.init , warmup_stages = config.warmup_stages , algorithm = config.algorithm , reporter = reporter ) steps = DynamicHMC.mcmc_steps( results.sampling_logdensity, results.final_warmup_state, ) Q = results.final_warmup_state.Q Q, tree_stats = DynamicHMC.mcmc_next_step(steps, Q) chain = DynamicHMCChain(tr, Q, tree_stats, steps, reporter) end function SampleChains.newchain(config::DynamicHMCConfig, ℓ, tr) return newchain(Random.GLOBAL_RNG, config, ℓ, tr) end function SampleChains.sample!(chain::DynamicHMCChain, n::Int=1000) reporter = getfield(chain, :reporter) mcmc_reporter = DynamicHMC.make_mcmc_reporter(reporter, n; currently_warmup = false) @cleanbreak for j in 1:n Q, tree_stats = step!(chain) pushsample!(chain, Q, tree_stats) DynamicHMC.report(mcmc_reporter, j) end return chain end end
SampleChainsDynamicHMC
https://github.com/cscherrer/SampleChainsDynamicHMC.jl.git
[ "MIT" ]
0.3.5
844be8f8ea59a458ebd65b2c2db20c17b43943e4
code
1925
using SampleChainsDynamicHMC using TransformVariables using Logging using Test function ℓ(nt) z = nt.x/nt.σ return -z^2 - nt.σ - log(nt.σ) end t = as((x=asℝ, σ=asℝ₊)) @testset "single chain" begin chain = newchain(dynamichmc(), ℓ, t) @test chain isa SampleChainsDynamicHMC.DynamicHMCChain @test length(chain) == 1 sample!(chain, 9) @test length(chain) == 10 sample!(chain, 90) @test length(chain) == 100 end @testset "multichain" begin chains = newchain(4, dynamichmc(), ℓ, t) @test chains isa MultiChain chains_chains = getfield(chains, :chains) @test length(chains_chains) == 4 @test all(x -> length(x) == 1, chains_chains) sample!(chains, 9) @test all(x -> length(x) == 10, chains_chains) sample!(chains, 90) @test all(x -> length(x) == 100, chains_chains) samples(chains) end using LinearAlgebra using ReverseDiff using SampleChainsDynamicHMC.LogDensityProblems @testset "config options" begin config = dynamichmc( warmup_stages=default_warmup_stages( M=Symmetric, # adapt dense positive definite metric stepsize_adaptation=DualAveraging(δ=0.9), # target acceptance rate 0.9 doubling_stages=7, # 7-stage metric adaptation ), reporter=LogProgressReport(), # log progress using Logging ad_backend=Val(:ReverseDiff), # use ReverseDiff AD package ) chain = newchain(config, ℓ, t) @test length(chain) == 1 meta = getfield(chain, :meta) @test meta.H.κ.M⁻¹ isa Symmetric @test meta.H.ℓ isa LogDensityProblems.ReverseDiffLogDensity sample!(chain, 9) @test length(chain) == 10 sample!(chain, 90) @test length(chain) == 100 end @testset "reporting" begin io = IOBuffer() chains = with_logger(SimpleLogger(io)) do newchain(dynamichmc(reporter=LogProgressReport()), ℓ, t) end warmup_log = String(take!(io)) @test !isempty(warmup_log) io = IOBuffer() with_logger(SimpleLogger(io)) do sample!(chains, 10) end log = String(take!(io)) @test !isempty(log) end
SampleChainsDynamicHMC
https://github.com/cscherrer/SampleChainsDynamicHMC.jl.git
[ "MIT" ]
0.3.5
844be8f8ea59a458ebd65b2c2db20c17b43943e4
code
115
using SampleChainsDynamicHMC using Test @testset "SampleChainsDynamicHMC.jl" begin include("notebook.jl") end
SampleChainsDynamicHMC
https://github.com/cscherrer/SampleChainsDynamicHMC.jl.git
[ "MIT" ]
0.3.5
844be8f8ea59a458ebd65b2c2db20c17b43943e4
docs
3459
# SampleChainsDynamicHMC [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://cscherrer.github.io/SampleChainsDynamicHMC.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://cscherrer.github.io/SampleChainsDynamicHMC.jl/dev) [![Build Status](https://github.com/cscherrer/SampleChainsDynamicHMC.jl/workflows/CI/badge.svg)](https://github.com/cscherrer/SampleChainsDynamicHMC.jl/actions) [![Coverage](https://codecov.io/gh/cscherrer/SampleChainsDynamicHMC.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/cscherrer/SampleChainsDynamicHMC.jl) Setting up: ```julia julia> using SampleChainsDynamicHMC julia> using TransformVariables julia> function ℓ(nt) z = nt.x/nt.σ return -z^2 - nt.σ - log(nt.σ) end ℓ (generic function with 1 method) julia> t = as((x=asℝ, σ=asℝ₊)) TransformVariables.TransformTuple{NamedTuple{(:x, :σ), Tuple{TransformVariables.Identity, TransformVariables.ShiftedExp{true, Float64}}}}((x = asℝ, σ = asℝ₊), 2) ``` Initialize and take some samples: ```julia julia> chain = newchain(DynamicHMCChain, ℓ, t) 1-element Chain with schema (x = Float64, σ = Float64) (x = -0.66±0.0, σ = 0.65±0.0) julia> sample!(chain, 9) 10-element Chain with schema (x = Float64, σ = Float64) (x = -0.36±0.38, σ = 1.26±0.69) julia> sample!(chain, 90) 100-element Chain with schema (x = Float64, σ = Float64) (x = -0.32±0.68, σ = 1.06±0.66) julia> chain[1] (x = -0.660818661864279, σ = 0.6482824278360845) julia> chain.x[1:10] 10-element ElasticArrays.ElasticVector{Float64, 0, Vector{Float64}}: -0.660818661864279 -0.31966349282522916 -0.5030732787889958 -0.27788387641411594 -0.9287874718868021 -0.6260927333733151 0.4303096842134812 -0.3844104968943612 0.05987431572954072 -0.351002647246055 ``` Or multiple chains: ```julia julia> chains = newchain(4, DynamicHMCChain, ℓ, t) 4-element MultiChain with 4 chains and schema (x = Float64, σ = Float64) (x = -0.38±0.75, σ = 0.76±0.76) julia> sample!(chains, 9) 40-element MultiChain with 4 chains and schema (x = Float64, σ = Float64) (x = -0.11±0.73, σ = 0.83±0.8) julia> sample!(chains, 90) 400-element MultiChain with 4 chains and schema (x = Float64, σ = Float64) (x = -0.18±0.75, σ = 0.9±0.97) julia> samples(chains) 400-element TupleVector with schema (x = Float64, σ = Float64) (x = -0.18±0.75, σ = 0.9±0.97) julia> getchains(chains) .|> summarize 4-element Vector{NamedTuple{(:x, :σ), Tuple{RealSummary, RealSummary}}}: (x = -0.22±0.73, σ = 1.4±0.92) (x = -0.031±0.33, σ = 0.46±0.37) (x = -0.0214±0.014, σ = 0.07497±0.0044) (x = -0.46±1.2, σ = 1.7±1.0) ``` A `MultiChain` is still represented abstractly similarly to a single chain, for easy comptuations: ```julia julia> chains[1] (x = -0.36681258114618465, σ = 1.7508963122497017) julia> chains.x[1:10] vcat(10-element view(::ElasticArrays.ElasticVector{Float64, 0, Vector{Float64}}, 1:10) with eltype Float64, 0-element view(::ElasticArrays.ElasticVector{Float64, 0, Vector{Float64}}, 1:0) with eltype Float64, 0-element view(::ElasticArrays.ElasticVector{Float64, 0, Vector{Float64}}, 1:0) with eltype Float64, 0-element view(::ElasticArrays.ElasticVector{Float64, 0, Vector{Float64}}, 1:0) with eltype Float64): -0.36681258114618465 -0.09339967949694516 -0.3089171887973833 -1.5420534117776032 -0.10574714292144685 -0.11312594562766448 -0.008799704824529742 0.5209894936643252 -0.11204122979765113 -1.100922340370071 ```
SampleChainsDynamicHMC
https://github.com/cscherrer/SampleChainsDynamicHMC.jl.git
[ "MIT" ]
0.3.5
844be8f8ea59a458ebd65b2c2db20c17b43943e4
docs
146
```@meta CurrentModule = SampleChainsDynamicHMC ``` # SampleChainsDynamicHMC ```@index ``` ```@autodocs Modules = [SampleChainsDynamicHMC] ```
SampleChainsDynamicHMC
https://github.com/cscherrer/SampleChainsDynamicHMC.jl.git
[ "MIT" ]
1.3.2
b0fcc10a08442dbb97021711b3d9be783415f911
code
1317
using Dash using DashTextareaAutocomplete const WORDLIST = ["apple", "application", "apartment", "boat", "banana", "boss", "coast", "code", "cat"] app = dash(;external_stylesheets=["https://codepen.io/chriddyp/pen/bWLwgP.css"]) app.layout = html_div(className = "container") do dashtextareaautocomplete(id = "input", # value = "initial value", placeholder = "Type something!", wordList = WORDLIST, # common options with their default values # triggerChar = ":", # minChar = 1, style = (minHeight = "100px",), dropdownStyle = (maxHeight = "120px", overflow = "auto")), html_div(id = "output"), html_button("CLICK", id = "btn"), html_div(id = "output2") end callback!(app, Output("output", "children"), Input("input", "value")) do value return "You have entered $value" end callback!(app, Output("output2", "children"), Input("btn", "n_clicks"), State("input", "value")) do clicks, value return "After click, you have: $value" end run_server(app, "0.0.0.0", 8050, debug=true)
DashTextareaAutocomplete
https://github.com/etpinard/dash-textarea-autocomplete.git
[ "MIT" ]
1.3.2
b0fcc10a08442dbb97021711b3d9be783415f911
code
1011
module DashTextareaAutocomplete using Dash, Pkg.Artifacts resources_path() = artifact"dash_textarea_autocomplete_resources" const version = "1.3.2" include("jl/dashtextareaautocomplete.jl") function __init__() DashBase.register_package( DashBase.ResourcePkg( "dash_textarea_autocomplete", resources_path(), version = version, [ DashBase.Resource( relative_package_path = "dash_textarea_autocomplete.min.js", external_url = "https://unpkg.com/[email protected]/dash_textarea_autocomplete/dash_textarea_autocomplete.min.js", dynamic = nothing, async = nothing, type = :js ), DashBase.Resource( relative_package_path = "dash_textarea_autocomplete.min.js.map", external_url = "https://unpkg.com/[email protected]/dash_textarea_autocomplete/dash_textarea_autocomplete.min.js.map", dynamic = true, async = nothing, type = :js ) ] ) ) end end
DashTextareaAutocomplete
https://github.com/etpinard/dash-textarea-autocomplete.git
[ "MIT" ]
1.3.2
b0fcc10a08442dbb97021711b3d9be783415f911
code
2151
# AUTO GENERATED FILE - DO NOT EDIT export dashtextareaautocomplete """ dashtextareaautocomplete(;kwargs...) A DashTextareaAutocomplete component. DashTextareaAutocomplete Simple `@webscopeio/react-textarea-autocomplete` wrapper for Dash enabling auto-completion in multi-line `<textarea>` elements. Keyword arguments: - `id` (String; optional): The ID used to identify this component in Dash callbacks. - `className` (String; optional): Class names of the <textarea> (from `react-textarea-autocomplete`). - `containerClassName` (String; optional): Class names of the textarea container (from `react-textarea-autocomplete`). - `containerStyle` (Dict; optional): Styles of the textarea container (from `react-textarea-autocomplete`). - `dropdownStyle` (Dict; optional): Styles of the dropdown wrapper. - `itemStyle` (Dict; optional): Styles of the items wrapper. - `listStyle` (Dict; optional): Style of the list wrapper (from `react-textarea-autocomplete`). - `loaderStyle` (Dict; optional): Style of the loader wrapper (from `react-textarea-autocomplete`). - `minChar` (Real; optional): Number of characters that user should type for trigger a suggestion. Defaults to 1. (from `react-textarea-autocomplete`) - `placeholder` (String; optional): Provides a hint to the user of what can be entered in the <textarea> field. - `style` (Dict; optional): Style of the <textarea>.(from `react-textarea-autocomplete`). - `triggerChar` (String; optional): Character that triggers auto-completion machinery. Defaults to `:`. (from `react-textarea-autocomplete`) - `value` (String; optional): The value displayed in the <textarea>. - `wordList` (Array; required): List of string available for auto-completion. """ function dashtextareaautocomplete(; kwargs...) available_props = Symbol[:id, :className, :containerClassName, :containerStyle, :dropdownStyle, :itemStyle, :listStyle, :loaderStyle, :minChar, :placeholder, :style, :triggerChar, :value, :wordList] wild_props = Symbol[] return Component("dashtextareaautocomplete", "DashTextareaAutocomplete", "dash_textarea_autocomplete", available_props, wild_props; kwargs...) end
DashTextareaAutocomplete
https://github.com/etpinard/dash-textarea-autocomplete.git
[ "MIT" ]
1.3.2
b0fcc10a08442dbb97021711b3d9be783415f911
docs
6123
# CONTRIBUTING This project was generated by the [dash-component-boilerplate](https://github.com/plotly/dash-component-boilerplate) it contains the minimal set of code required to create your own custom Dash component. _N.B.: because of the current usage of `postbuild_fixups.sh` build script, this project can only be build on a Linux distribution_ --- ## Install dependencies 1. Install npm packages ``` $ npm install ``` 2. Create a virtual env and activate. ``` $ python3 -m venv venv $ . venv/bin/activate ``` 3. Install python packages required to build components. ``` $ pip install wheel $ pip install -r requirements.txt # or $ pip install -r requirements.txt --upgrade ``` 4. Install the python packages for testing (optional) ``` $ pip install -r tests/requirements.txt # or $ pip install -r tests/requirements.txt --upgrade ``` ## Write your component code in `src/lib/components/DashTextareaAutocomplete.react.js`. - The demo app is in `src/demo` and you will import your example component code into your demo app. - Test your code in a Python environment: 1. Build your code ``` $ npm run build ``` **N.B.** + We use `postbuild_fixups.sh` to re-write certain lines in the generated Julia files of this package to allow usage of Julia's [Artifact](https://pkgdocs.julialang.org/v1/artifacts/#Artifacts) system. 2. Run and modify the `usage.py` sample dash app: ``` $ python usage.py ``` - Write tests for your component. - A sample test is available in `tests/test_usage.py`, it will load `usage.py` and you can then automate interactions with selenium. - Run the tests with `$ pytest tests`. - The Dash team uses these types of integration tests extensively. Browse the Dash component code on GitHub for more examples of testing (e.g. https://github.com/plotly/dash-core-components) - <strike>Add custom styles to your component by putting your custom CSS files into your distribution folder (`dash_textarea_autocomplete`). - Make sure that they are referenced in `MANIFEST.in` so that they get properly included when you're ready to publish your component. - Make sure the stylesheets are added to the `_css_dist` dict in `dash_textarea_autocomplete/__init__.py` so dash will serve them automatically when the component suite is requested.</strike> **does not apply** - [Review your code](./review_checklist.md) ## Create a production build and publish: 0. Pre-requisites 1. Contact @etpinard to get write access to this repo 2. Create an npmjs.com account and a pypi.org account and ask @etpinard for publish rights 3. Provide your login/pass for Pypi (if you're not using a keychain-type Python module for that) and sign-in to NPM with `npm login` 4. Install dependencies and activate python virtualenv [ref](#install-dependencies) 1. Version, build, commit and push your code: ``` $ npm version --no-git-tag-version <patch|minor|major> $ npm run build $ git add --all $ git commit -m "X.Y.Z" $ git push ``` **N.B.** + we use the `--no-git-tag-version` flag, because [`Registrator.jl`](https://github.com/JuliaRegistries/Registrator.jl) won't work if a tag corresponding to the to-be-registered version already exists. 2. Create a Python distribution ``` $ rm -rf dist/* $ pip install wheel $ python setup.py sdist bdist_wheel ``` This will create source and wheel distribution in the generated the `dist/` folder. See [PyPA](https://packaging.python.org/guides/distributing-packages-using-setuptools/#packaging-your-project) for more information. 3. Test your tarball by copying it into a new environment and installing it locally: ``` $ mkdir some-tmp-dir $ cd some-tmp-dir $ python3 -m venv venv $ . venv/bin/activate $ pip install wheel $ pip install /path/to/dist/dash_textarea_autocomplete-X.Y.Z.tar.gz ``` 4. If it works, then you can publish the component: 1. Publish on PyPI (N.B. must have PyPI token and `$HOME/.pypirc` filled correctly) ``` $ pip install twine $ twine upload dist/* ``` 2. Publish on NPM ``` $ npm publish ``` _Publishing your component to NPM will make the JavaScript bundles available on the unpkg CDN. By default, Dash serves the component library's CSS and JS locally, but if you choose to publish the package to NPM you can set `serve_locally` to `False` and you may see faster load times._ 3. Publish to Julia's General Registry + Go to the repo's Github's page and add the following comment on the version commit: ``` @JuliaRegistrator register branch=main ``` <details> <summary>If something goes wrong (like a test failure), click here</summary> + fix the problem, + run `npm run build`, + add, commit and push (but do not bump the version!), + redo step 2-3 and + make another `@JuliaRegistrator register branch=main` comment on the newly pushed commit on Github. The JuliaRegistrator bot will match the version number with the opened `JuliaRegistries/General` PR. After the `JuliaRegistries/General` PR is merged, the Julia version of the package will be out-of-sync with the NPM and PyPI versions. So, it is hightly recommanded to redo the publish process from scratch starting with an `npm version --no-git-tag-version patch` call. Note that we cannot simply abandoned an opened `JuliaRegistries/General` PR, as the Julia registries require "sequential" version increments as of 2021-12-16. That is, going from `v1.1.0` to `v1.2.1` if the `v1.2.0` release is botched is not allowed. </details> 5. Tag and make a Github release + Done automatically by [`TagBot`](https://github.com/JuliaRegistries/TagBot) after the new version has been merged in Julia's General Registry.
DashTextareaAutocomplete
https://github.com/etpinard/dash-textarea-autocomplete.git
[ "MIT" ]
1.3.2
b0fcc10a08442dbb97021711b3d9be783415f911
docs
3805
# Dash Textarea Autocomplete Dash component wrapper for [`@webscopeio/react-textarea-autocomplete`](https://github.com/webscopeio/react-textarea-autocomplete). ![demo](https://github.com/etpinard/dash-textarea-autocomplete/blob/main/demo.gif) ## Get started ### Dash for Python 1. Install `dash-textarea-autocomplete`, Dash and its dependencies: ``` pip install dash dash-textarea-autocomplete ``` 2. Run `python usage.py` ```py # usage.py import dash_textarea_autocomplete from dash import Dash, callback, html, Input, Output, State WORD_LIST = ['apple', 'application', 'apartment', 'boat', 'banana', 'boss', 'coast', 'code', 'cat'] external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = Dash(__name__, external_stylesheets=external_stylesheets) app.layout = html.Div([ dash_textarea_autocomplete.DashTextareaAutocomplete( id='input', # value='initial value', placeholder='Type something, use `:` to invoke auto-completion', wordList=WORD_LIST, # common options with their default values # triggerChar=':', # minChar=1, style={'minHeight': '100px'}, dropdownStyle={'maxHeight': '120px', 'overflow': 'auto'}), html.Div(id='output'), html.Button('CLICK', id='btn'), html.Div(id='output2') ], className='container') @callback(Output('output', 'children'), Input('input', 'value')) def display_output(value): return 'You have entered: {}'.format(value) @callback(Output('output2', 'children'), Input('btn', 'n_clicks'), State('input', 'value')) def display_output2(n_clicks, value): return 'After click, you have: {}'.format(value) if __name__ == '__main__': app.run_server(debug=True) ``` 3. Visit http://localhost:8050 in your web browser ### Dash for Julia 1. Install `DashTextareaAutocomplete.jl` and `Dash.jl`: ```jl pkg> activate . pkg> add Dash DashTextareaAutocomplete ``` 2. Run `julia --project usage.jl` - [click here to see `usage.jl`](https://github.com/etpinard/dash-textarea-autocomplete/blob/main/usage.jl) 3. Visit http://localhost:8050 in your web browser ### Dash for R _TODO_ ## Props ``` - id (string; optional): The ID used to identify this component in Dash callbacks. - value (string; optional): The value displayed in the <textarea>. - placeholder (string; optional): Provides a hint to the user of what can be entered in the <textarea> field. - wordList (list; required): List of string available for auto-completion. - triggerChar (string; default ":"): Character that triggers auto-completion machinery. Defaults to `:`. (from `react-textarea-autocomplete`) - minChar (number; default 1): Number of characters that user should type for trigger a suggestion. Defaults to 1. (from `react-textarea-autocomplete`) - className (string; optional): Class names of the <textarea> (from `react-textarea-autocomplete`). - containerClassName (string; optional): Class names of the textarea container (from `react-textarea-autocomplete`). - style (dict; optional): Style of the <textarea>.(from `react-textarea-autocomplete`). - listStyle (dict; optional): Style of the list wrapper (from `react-textarea-autocomplete`). - itemStyle (dict; optional): Styles of the items wrapper. - loaderStyle (dict; optional): Style of the loader wrapper (from `react-textarea-autocomplete`). - containerStyle (dict; optional): Styles of the textarea container (from `react-textarea-autocomplete`). - dropdownStyle (dict; optional): Styles of the dropdown wrapper. ``` ## Contributing See [CONTRIBUTING.md](https://github.com/etpinard/dash-textarea-autocomplete/blob/main/CONTRIBUTING.md) ## License [MIT](https://github.com/etpinard/dash-textarea-autocomplete/blob/main/LICENSE)
DashTextareaAutocomplete
https://github.com/etpinard/dash-textarea-autocomplete.git
[ "MIT" ]
1.3.2
b0fcc10a08442dbb97021711b3d9be783415f911
docs
3296
# Code Review Checklist ## Code quality & design - Is your code clear? If you had to go back to it in a month, would you be happy to? If someone else had to contribute to it, would they be able to? A few suggestions: - Make your variable names descriptive and use the same naming conventions throughout the code. - For more complex pieces of logic, consider putting a comment, and maybe an example. - In the comments, focus on describing _why_ the code does what it does, rather than describing _what_ it does. The reader can most likely read the code, but not necessarily understand why it was necessary. - Don't overdo it in the comments. The code should be clear enough to speak for itself. Stale comments that no longer reflect the intent of the code can hurt code comprehension. * Don't repeat yourself. Any time you see that the same piece of logic can be applied in multiple places, factor it out into a function, or variable, and reuse that code. * Scan your code for expensive operations (large computations, DOM queries, React re-renders). Have you done your possible to limit their impact? If not, it is going to slow your app down. * Can you think of cases where your current code will break? How are you handling errors? Should the user see them as notifications? Should your app try to auto-correct them for them? ## Component API - Have you tested your component on the Python side by creating an app in `usage.py` ? Do all of your component's props work when set from the back-end? Should all of them be settable from the back-end or are some only relevant to user interactions in the front-end? - Have you provided some basic documentation about your component? The Dash community uses [react docstrings](https://github.com/plotly/dash-docs/blob/master/tutorial/plugins.py#L45) to provide basic information about dash components. Take a look at this [Checklist component example](https://github.com/plotly/dash-core-components/blob/master/src/components/Checklist.react.js) and others from the dash-core-components repository. At a minimum, you should describe what your component does, and describe its props and the features they enable. Be careful to use the correct formatting for your docstrings for them to be properly recognized. ## Tests - The Dash team uses integration tests extensively, and we highly encourage you to write tests for the main functionality of your component. In the `tests` folder of the boilerplate, you can see a sample integration test. By launching it, you will run a sample Dash app in a browser. You can run the test with: ``` python -m tests.test_render ``` [Browse the Dash component code on GitHub for more examples of testing.](https://github.com/plotly/dash-core-components) ## Ready to publish? Final scan - Take a last look at the external resources that your component is using. Are all the external resources used [referenced in `MANIFEST.in`](https://github.com/plotly/dash-docs/blob/0b2fd8f892db720a7f3dc1c404b4cff464b5f8d4/tutorial/plugins.py#L55)? - [You're ready to publish!](https://github.com/plotly/dash-component-boilerplate/blob/master/%7B%7Bcookiecutter.project_shortname%7D%7D/README.md#create-a-production-build-and-publish)
DashTextareaAutocomplete
https://github.com/etpinard/dash-textarea-autocomplete.git
[ "MIT" ]
0.1.0
0f5467d9014b72e5b86927f4d168fd68e49633e1
code
4070
module Gateway using Sockets export getgateway function parse_linux_proc_net_route(file::IOStream) # /proc/net/route file: # Iface Destination Gateway Flags RefCnt Use Metric Mask MTU Window IRTT # wlo1 00000000 0100A8C0 0003 0 0 600 00000000 0 0 0 # wlo1 0000A8C0 00000000 0001 0 0 600 00FFFFFF 0 0 0 sep = "\t" field = 14 scanner = read(file, String) tokens = split(scanner, sep) if length(tokens) <= field throw(error("No gateway found")) end gateway = parse(UInt32, tokens[field], base=16) gateway = hton(gateway) # Convert hex address to big endian Sockets.IPv4(gateway) end function parse_windows_route(output::IOStream) # Windows "route print 0.0.0.0" output: # =========================================================================== # Interface List # 3 ...02 16 4a a8 72 ca ...... Intel(R) PRO/100 VE Network Connection # 1 ........................... Software Loopback Interface 1 # =========================================================================== # IPv4 Route Table # =========================================================================== # Active Routes: # Network Destination Netmask Gateway Interface Metric # 0.0.0.0 0.0.0.0 192.168.0.1 192.168.0.100 20 # =========================================================================== # # Get to "Active Routes" section and jump 2 lines below and pick address from 3rd column sep = "\n" column = 3 scanner = read(output, String) tokens = split(output, sep) sep = 0 for (idx, line) in enumerate(tokens) if sep == 3 if length(tokens) <= idx + 2 throw(error("No gateway found")) end fields = split(tokens[idx+2]) if length(fields) < 3 throw(error("No gateway found")) end return Sockets.IPv4(fields[column]) end if startswith(line, "=======") sep += 1 continue end end throw(error("No gateway found")) end function parse_osx_route(output::IOStream) # Darwin route frame: # route to: default # destination: default # mask: default # gateway: 192.168.1.1 sep = "\n" column = 2 scanner = read(output, String) tokens = split(scanner, sep) for line in tokens fields = split(line) if length(fields) >=2 && fields[column - 1] == "gateway:" return Sockets.IPv4(fields[column]) end end throw(error("No gateway found")) end function parse_unix_netstat(output::IOStream) # For unix based OS such as *BSD, solaris etc # netstat -rn output: # Routing tables # # Internet: # Destination Gateway Flags Netif Expire # default 10.88.88.2 UGS em0 # 10.88.88.0/24 link#1 U em0 # 10.88.88.148 link#1 UHS lo0 # 127.0.0.1 link#2 UH lo0 # # Internet6: # Destination Gateway Flags Netif Expire # ::/96 ::1 UGRS lo0 # ::1 link#2 UH lo0 # ::ffff:0.0.0.0/96 ::1 UGRS lo0 # fe80::/10 ::1 UGRS lo0 # ... sep = "\n" column = 2 scanner = read(output, String) tokens = split(scanner, sep) for line in tokens fields = split(line) if length(fields) >=2 && fields[column - 1] == "default" return Sockets.IPv4(fields[column]) end end throw(error("No gateway found")) end function getgateway() if Sys.islinux() open("/proc/net/route") do file return parse_linux_proc_net_route(file) end elseif Sys.iswindows() output = read(`cmd /c route print 0.0.0.0`) return parse_windows_route(output) elseif Sys.isapple() output = read(`/sbin/route -n get 0.0.0.0`) return parse_osx_route(output) elseif Sys.isbsd() output = read(`netstat -rn`) return parse_unix_netstat(output) else println("Operating system not supported please file a issue on github") end end end #module
Gateway
https://github.com/glitzflitz/Gateway.jl.git
[ "MIT" ]
0.1.0
0f5467d9014b72e5b86927f4d168fd68e49633e1
code
198
using Gateway using Test @testset "GetGateway.jl" begin if Sys.islinux() result = Gateway.parse_linux_proc_net_route(open("/proc/net/route")) @test Gateway.getgateway() == result end end
Gateway
https://github.com/glitzflitz/Gateway.jl.git
[ "MIT" ]
0.1.0
0f5467d9014b72e5b86927f4d168fd68e49633e1
docs
566
# Gateway.jl [![Build Status](https://travis-ci.org/glitzflitz/Gateway.jl.svg?branch=master)](https://travis-ci.org/glitzflitz/Gateway.jl) Julia library for obtaining IP address of the default gateway Provides implementation for: + Linux + Windows + OS X + FreeBSD + Solaris ## Documentation For most use cases, all you ever need is: ```julia getgateway() => Sockets.IPv4 ``` ## Project Status The package is tested against Julia `v1.2` release on Linux and Windows. If you have OS X and BSD variant/Solaris environment please feel free to submit test results.
Gateway
https://github.com/glitzflitz/Gateway.jl.git
[ "MIT" ]
0.1.0
d7365528f2a2c2c99979c867ed5cd98ad7037835
code
61
module AstroConstants using Logging include("tpc.jl") end
AstroConstants
https://github.com/JuliaSpaceMissionDesign/AstroConstants.jl.git
[ "MIT" ]
0.1.0
d7365528f2a2c2c99979c867ed5cd98ad7037835
code
4533
export load_tpc, load_tpc! # TPC associated regular expressions (precompiled) const _FIND_BODY_REGEX = Regex("(BODY\\w{1,}\\D{1,}=)") const _FIND_DATA_REGEX = Regex("=\\D{1,}\\(([^()]*)\\)|(=\\D{1,}([0-9]*\\.?[0-9]*))") const _FIND_BODY_INDEX = Regex("(?<=BODY)(.*?)(?=_)") const _FIND_PROP_NAME_REGEX = Regex("(?<=\\d_)(.*?)(?==)") """ PlanetaryConstantsDict{T} Store TPC associated constants by NAIF ID. """ struct PlanetaryConstantsDict{T} data::Dict{Int, Dict{Symbol, Vector{T}}} end PlanetaryConstantsDict{T}() where T = PlanetaryConstantsDict{T}(Dict{Int, Dict{Symbol, Vector{T}}}()) Base.length(c::PlanetaryConstantsDict{T}) where T = length(c.data) Base.keys(c::PlanetaryConstantsDict{T}) where T = keys(c.data) Base.values(c::PlanetaryConstantsDict{T}) where T = values(c.data) Base.eltype(::PlanetaryConstantsDict{T}) where T = T Base.getindex(c::PlanetaryConstantsDict{T}, key) where T = getindex(c.data, key) function Base.show(io::IO, cache::PlanetaryConstantsDict{T}) where T println(io, "ConstantsDict{$T} with $(length(cache.data)) entries:") for (idx, props) in cache.data propstr = join([String(p) for p in keys(props)], ", ") println(io, "$idx => ($(propstr))") end end """ load_tpc!(cache::ConstantsDict{T}, file::String) where T Load TPC file in the `cache` dictionary. """ function load_tpc!(cache::PlanetaryConstantsDict{T}, file::String) where T @info "Loading constants from $file" # read document lines = readlines(file) # pre-allocate data for processing saved = Vector{String}(undef, length(lines)) save = false last_saved_index = 0 # load and strip lines (remove tabs and spaces) # extract lines which are within `\begindata` and `\begintext` for line in lines line = strip(line) if line == "\\begindata" save = true continue elseif line == "\\begintext" save = false continue end if save if line == "" continue end @inbounds saved[last_saved_index+1] = line last_saved_index += 1 end end @inbounds resolved_lines = @view saved[1:last_saved_index] resolved_lines = join(resolved_lines, " ") # extract lines which actually have data using the `BODY**** =` pattern # this vector contains a list of `BODY******* =` elements name_idx = findall(_FIND_BODY_REGEX, resolved_lines) # row data are extracted as between square brackets, the `=` # before the brackets is kept data_idx = findall(_FIND_DATA_REGEX, resolved_lines) # data are mapped to a dictionary @inbounds for i in eachindex(name_idx) if length(name_idx[i]) > 0 # extract full name of the entry raw_name = resolved_lines[name_idx[i]] # parse naif id naif = parse(Int, match(_FIND_BODY_INDEX, raw_name).match) # parse property name prop = Symbol(lowercase(strip(match(_FIND_PROP_NAME_REGEX, raw_name).match))) # parse data raw_data = split(replace(resolved_lines[data_idx[i]], "D" => "E")) if raw_data[2] == "(" # data is a vector mergewith!( merge!, cache.data, Dict( naif => Dict( prop => map( x -> parse(T, x), @view raw_data[3:(end-1)] ) ) ) ) else # data is a value valfloat = tryparse(T, raw_data[2]) mergewith!( merge!, cache.data, Dict( naif => Dict( prop => T[valfloat !== nothing ? valfloat : tryparse(Int64, raw_data[2])] ) ) ) end end end return cache end """ load_tpc(::Type{T}, file::String) where T Load TPC file in a [`PlanetaryConstantsDict`](@ref) object. """ function load_tpc(::Type{T}, file::String) where T cache = PlanetaryConstantsDict{T}() return load_tpc!(cache, file) end function load_tpc(::Type{T}, files::AbstractVector{String}) where T cache = PlanetaryConstantsDict{T}() for file in files load_tpc!(cache, file) end return cache end
AstroConstants
https://github.com/JuliaSpaceMissionDesign/AstroConstants.jl.git
[ "MIT" ]
0.1.0
d7365528f2a2c2c99979c867ed5cd98ad7037835
code
101
using AstroConstants using Test @testset "AstroConstants.jl" begin # Write your tests here. end
AstroConstants
https://github.com/JuliaSpaceMissionDesign/AstroConstants.jl.git
[ "MIT" ]
0.1.0
d7365528f2a2c2c99979c867ed5cd98ad7037835
docs
66
# AstroConstants _Astrodynamics constants parsing and handling._
AstroConstants
https://github.com/JuliaSpaceMissionDesign/AstroConstants.jl.git
[ "MIT" ]
1.0.3
52957a97998867e1a6405483af12e05d8d352a44
code
587
using Documenter using Cosmology using Documenter.Remotes: GitHub DocMeta.setdocmeta!(Cosmology, :DocTestSetup, :(using Cosmology); recursive = true) include("pages.jl") makedocs(; modules = [Cosmology], authors = "Julia Astro", repo = GitHub("JuliaAstro/Cosmology.jl"), sitename = "Cosmology.jl", format = Documenter.HTML(; prettyurls = get(ENV, "CI", "false") == "true", canonical = "https://juliaastro.github.io/Cosmology.jl", assets = String[], ), pages=pages, ) deploydocs(; repo = "github.com/JuliaAstro/Cosmology.jl", )
Cosmology
https://github.com/JuliaAstro/Cosmology.jl.git
[ "MIT" ]
1.0.3
52957a97998867e1a6405483af12e05d8d352a44
code
69
pages = [ "Home" => "index.md", "API/Reference" => "api.md" ]
Cosmology
https://github.com/JuliaAstro/Cosmology.jl.git
[ "MIT" ]
1.0.3
52957a97998867e1a6405483af12e05d8d352a44
code
9348
module Cosmology using QuadGK using Unitful import Unitful: km, s, Gyr using UnitfulAstro: Mpc, Gpc export cosmology, age, angular_diameter_dist, comoving_radial_dist, comoving_transverse_dist, comoving_volume, comoving_volume_element, distmod, H, hubble_dist, hubble_time, luminosity_dist, lookback_time, scale_factor abstract type AbstractCosmology end abstract type AbstractClosedCosmology <: AbstractCosmology end abstract type AbstractFlatCosmology <: AbstractCosmology end abstract type AbstractOpenCosmology <: AbstractCosmology end struct FlatLCDM{T <: Real} <: AbstractFlatCosmology h::T Ω_Λ::T Ω_m::T Ω_r::T end FlatLCDM(h::Real, Ω_Λ::Real, Ω_m::Real, Ω_r::Real) = FlatLCDM(promote(float(h), float(Ω_Λ), float(Ω_m), float(Ω_r))...) a2E(c::FlatLCDM, a) = sqrt(c.Ω_r + c.Ω_m * a + c.Ω_Λ * a^4) struct ClosedLCDM{T <: Real} <: AbstractClosedCosmology h::T Ω_k::T Ω_Λ::T Ω_m::T Ω_r::T end ClosedLCDM(h::Real, Ω_k::Real, Ω_Λ::Real, Ω_m::Real, Ω_r::Real) = ClosedLCDM(promote(float(h), float(Ω_k), float(Ω_Λ), float(Ω_m), float(Ω_r))...) struct OpenLCDM{T <: Real} <: AbstractOpenCosmology h::T Ω_k::T Ω_Λ::T Ω_m::T Ω_r::T end OpenLCDM(h::Real, Ω_k::Real, Ω_Λ::Real, Ω_m::Real, Ω_r::Real) = OpenLCDM(promote(float(h), float(Ω_k), float(Ω_Λ), float(Ω_m), float(Ω_r))...) function a2E(c::Union{ClosedLCDM,OpenLCDM}, a) a2 = a * a sqrt(c.Ω_r + c.Ω_m * a + (c.Ω_k + c.Ω_Λ * a2) * a2) end for c in ("Flat", "Open", "Closed") name = Symbol("$(c)WCDM") @eval begin struct $(name){T <: Real} <: $(Symbol("Abstract$(c)Cosmology")) h::T Ω_k::T Ω_Λ::T Ω_m::T Ω_r::T w0::T wa::T end function $(name)(h::Real, Ω_k::Real, Ω_Λ::Real, Ω_m::Real, Ω_r::Real, w0::Real, wa::Real) $(name)(promote(float(h), float(Ω_k), float(Ω_Λ), float(Ω_m), float(Ω_r), float(w0), float(wa))...) end end end function WCDM(h::Real, Ω_k::Real, Ω_Λ::Real, Ω_m::Real, Ω_r::Real, w0::Real, wa::Real) if Ω_k < 0 ClosedWCDM(h, Ω_k, Ω_Λ, Ω_m, Ω_r, w0, wa) elseif Ω_k > 0 OpenWCDM(h, Ω_k, Ω_Λ, Ω_m, Ω_r, w0, wa) else FlatWCDM(h, Ω_k, Ω_Λ, Ω_m, Ω_r, w0, wa) end end function a2E(c::Union{FlatWCDM,ClosedWCDM,OpenWCDM}, a) ade = exp((1 - 3 * (c.w0 + c.wa)) * log(a) + 3 * c.wa * (a - 1)) sqrt(c.Ω_r + (c.Ω_m + c.Ω_k * a) * a + c.Ω_Λ * ade) end """ cosmology(;h = 0.69, Neff = 3.04, OmegaK = 0, OmegaM = 0.29, OmegaR = nothing, Tcmb = 2.7255, w0 = -1, wa = 0) # Parameters * `h` - Dimensionless Hubble constant * `OmegaK` - Curvature density (Ω_k) * `OmegaM` - Matter density (Ω_m) * `OmegaR` - Radiation density (Ω_r) * `Tcmb` - CMB temperature in Kelvin; used to compute Ω_γ * `Neff` - Effective number of massless neutrino species; used to compute Ω_ν * `w0` - CPL dark energy equation of state; `w = w0 + wa(1-a)` * `wa` - CPL dark energy equation of state; `w = w0 + wa(1-a)` # Examples ```jldoctest julia> c = cosmology() Cosmology.FlatLCDM{Float64}(0.69, 0.7099122024007928, 0.29, 8.77975992071536e-5) julia> c = cosmology(OmegaK=0.1) Cosmology.OpenLCDM{Float64}(0.69, 0.1, 0.6099122024007929, 0.29, 8.77975992071536e-5) julia> c = cosmology(w0=-0.9, OmegaK=-0.1) Cosmology.ClosedWCDM{Float64}(0.69, -0.1, 0.8099122024007929, 0.29, 8.77975992071536e-5, -0.9, 0.0) ``` """ function cosmology(;h = 0.69, Neff = 3.04, OmegaK = 0, OmegaM = 0.29, OmegaR = nothing, Tcmb = 2.7255, w0 = -1, wa = 0) if OmegaR === nothing OmegaG = 4.48131e-7 * Tcmb^4 / h^2 OmegaN = Neff * OmegaG * (7 / 8) * (4 / 11)^(4 / 3) OmegaR = OmegaG + OmegaN end OmegaL = 1 - OmegaK - OmegaM - OmegaR if !(w0 == -1 && wa == 0) return WCDM(h, OmegaK, OmegaL, OmegaM, OmegaR, w0, wa) end if OmegaK < 0 return ClosedLCDM(h, OmegaK, OmegaL, OmegaM, OmegaR) elseif OmegaK > 0 return OpenLCDM(h, OmegaK, OmegaL, OmegaM, OmegaR) else return FlatLCDM(h, OmegaL, OmegaM, OmegaR) end end # hubble rate scale_factor(z) = 1 / (1 + z) E(c::AbstractCosmology, z) = (a = scale_factor(z); a2E(c, a) / a^2) H(c::AbstractCosmology, z) = 100 * c.h * E(c, z) * km / s / Mpc hubble_dist0(c::AbstractCosmology) = 2997.92458 / c.h * Mpc hubble_dist(c::AbstractCosmology, z) = hubble_dist0(c) / E(c, z) hubble_time0(c::AbstractCosmology) = 9.777922216807891 / c.h * Gyr hubble_time(c::AbstractCosmology, z) = hubble_time0(c) / E(c, z) # distances Z(c::AbstractCosmology, z::Real, ::Nothing; kws...) = QuadGK.quadgk(a->1 / a2E(c, a), scale_factor(z), 1; kws...)[1] Z(c::AbstractCosmology, z₁::Real, z₂::Real; kws...) = QuadGK.quadgk(a->1 / a2E(c, a), scale_factor(z₂), scale_factor(z₁); kws...)[1] comoving_radial_dist(c::AbstractCosmology, z₁, z₂ = nothing; kws...) = hubble_dist0(c) * Z(c, z₁, z₂; kws...) """ comoving_radial_dist([u::Unitlike,] c::AbstractCosmology, [z₁,] z₂) Comoving radial distance in Mpc at redshift `z₂` as seen by an observer at `z₁`. Redshift `z₁` defaults to 0 if omitted. Will convert to compatible unit `u` if provided. """ comoving_radial_dist comoving_transverse_dist(c::AbstractFlatCosmology, z₁, z₂ = nothing; kws...) = comoving_radial_dist(c, z₁, z₂; kws...) function comoving_transverse_dist(c::AbstractOpenCosmology, z₁, z₂ = nothing; kws...) sqrtok = sqrt(c.Ω_k) hubble_dist0(c) * sinh(sqrtok * Z(c, z₁, z₂; kws...)) / sqrtok end function comoving_transverse_dist(c::AbstractClosedCosmology, z₁, z₂ = nothing; kws...) sqrtok = sqrt(abs(c.Ω_k)) hubble_dist0(c) * sin(sqrtok * Z(c, z₁, z₂; kws...)) / sqrtok end angular_diameter_dist(c::AbstractCosmology, z; kws...) = comoving_transverse_dist(c, z; kws...) / (1 + z) angular_diameter_dist(c::AbstractCosmology, z₁, z₂; kws...) = comoving_transverse_dist(c, z₁, z₂; kws...) / (1 + z₂) """ angular_diameter_dist([u::Unitlike,] c::AbstractCosmology, [z₁,] z₂) Ratio of the proper transverse size in Mpc of an object at redshift `z₂` to its angular size in radians, as seen by an observer at `z₁`. Redshift `z₁` defaults to 0 if omitted. Will convert to compatible unit `u` if provided. """ angular_diameter_dist luminosity_dist(c::AbstractCosmology, z; kws...) = comoving_transverse_dist(c, z; kws...) * (1 + z) """ luminosity_dist([u::Unitlike,] c::AbstractCosmology, z) Bolometric luminosity distance in Mpc at redshift `z`. Will convert to compatible unit `u` if provided. """ luminosity_dist """ distmod(c::AbstractCosmology, z) Distance modulus in magnitudes at redshift `z`. """ distmod(c::AbstractCosmology, z; kws...) = 5 * log10(luminosity_dist(c, z; kws...) / Mpc) + 25 # volumes """ comoving_volume([u::Unitlike,] c::AbstractCosmology, z) Comoving volume in cubic Gpc out to redshift `z`. Will convert to compatible unit `u` if provided. """ comoving_volume(c::AbstractFlatCosmology, z; kws...) = (4pi / 3) * (comoving_radial_dist(Gpc, c, z; kws...))^3 function comoving_volume(c::AbstractOpenCosmology, z; kws...) DH = hubble_dist0(Gpc, c) x = comoving_transverse_dist(Gpc, c, z; kws...) / DH sqrtok = sqrt(c.Ω_k) 2pi * (DH)^3 * (x * sqrt(1 + c.Ω_k * x^2) - asinh(sqrtok * x) / sqrtok) / c.Ω_k end function comoving_volume(c::AbstractClosedCosmology, z; kws...) DH = hubble_dist0(Gpc, c) x = comoving_transverse_dist(Gpc, c, z; kws...) / DH sqrtok = sqrt(abs(c.Ω_k)) 2pi * (DH)^3 * (x * sqrt(1 + c.Ω_k * x^2) - asin(sqrtok * x) / sqrtok) / c.Ω_k end """ comoving_volume_element([u::Unitlike,] c::AbstractCosmology, z) Comoving volume element in Gpc out to redshift `z`. Will convert to compatible unit `u` if provided. """ comoving_volume_element(c::AbstractCosmology, z; kws...) = hubble_dist0(Gpc, c) * angular_diameter_dist(Gpc, c, z; kws...)^2 / a2E(c, scale_factor(z)) # times T(c::AbstractCosmology, a0, a1; kws...) = QuadGK.quadgk(x->x / a2E(c, x), a0, a1; kws...)[1] """ age([u::Unitlike,] c::AbstractCosmology, z) Age of the universe in Gyr at redshift `z`. Will convert to compatible unit `u` if provided. """ age(c::AbstractCosmology, z; kws...) = hubble_time0(c) * T(c, 0, scale_factor(z); kws...) """ lookback_time([u::Unitlike,] c::AbstractCosmology, z) Difference between age at redshift 0 and age at redshift `z` in Gyr. Will convert to compatible unit `u` if provided. """ lookback_time(c::AbstractCosmology, z; kws...) = hubble_time0(c) * T(c, scale_factor(z), 1; kws...) # Easily select a different unit for f in (:hubble_dist0, :hubble_dist, :hubble_time0, :hubble_time, :comoving_radial_dist, :comoving_transverse_dist, :angular_diameter_dist, :luminosity_dist, :comoving_volume, :comoving_volume_element, :age, :lookback_time) @eval $f(u::Unitful.Unitlike, args...; kws...) = uconvert(u, $f(args...; kws...)) end end # module
Cosmology
https://github.com/JuliaAstro/Cosmology.jl.git
[ "MIT" ]
1.0.3
52957a97998867e1a6405483af12e05d8d352a44
code
8385
using Cosmology using Test, Unitful, UnitfulAstro, QuadGK using Documenter DocMeta.setdocmeta!(Cosmology, :DocTestSetup, :(using Cosmology); recursive = true) doctest(Cosmology) # values from http://icosmos.co.uk/ dist_rtol = 1e-6 age_rtol = 2e-4 # Integrating a unitful function would require UnitfulIntegration.jl. Without using it, we # strip the units away from the integrand function integrand(c, z) = 4pi*ustrip(comoving_volume_element(c, z)) @testset "FlatLCDM" begin c = cosmology(h=0.7, OmegaM=0.3, OmegaR=0) @test angular_diameter_dist(c,1,rtol=dist_rtol) ≈ 1651.9145u"Mpc" rtol = dist_rtol @test angular_diameter_dist(c,1,2,rtol=dist_rtol) ≈ 625.3444u"Mpc" rtol = dist_rtol @test angular_diameter_dist(c,pi,rtol=dist_rtol) ≈ angular_diameter_dist(c,0,pi,rtol=dist_rtol) rtol = dist_rtol @test comoving_radial_dist(c,1,rtol=dist_rtol) ≈ 3303.829u"Mpc" rtol = dist_rtol @test comoving_volume(c,1,rtol=dist_rtol) ≈ 151.0571u"Gpc^3" rtol = dist_rtol @test quadgk(z -> integrand(c, z), 0, 2.5)[1] ≈ ustrip(comoving_volume(c, 2.5)) @test luminosity_dist(c,1,rtol=dist_rtol) ≈ 6607.6579u"Mpc" rtol = dist_rtol @test distmod(c,1,rtol=dist_rtol) ≈ 44.1002 rtol = dist_rtol @test age(c,0,rtol=age_rtol) ≈ 13.4694u"Gyr" rtol = age_rtol @test age(c,1,rtol=age_rtol) ≈ 5.7527u"Gyr" rtol = age_rtol @test lookback_time(c,1,rtol=age_rtol) ≈ (13.4694-5.7527)u"Gyr" rtol = age_rtol @test age(c, 1) + lookback_time(c, 1) ≈ age(c, 0) end @testset "OpenLCDM" begin c = cosmology(h=0.7, OmegaK=0.1, OmegaM=0.3, OmegaR=0) @test angular_diameter_dist(c,1,rtol=dist_rtol) ≈ 1619.9588u"Mpc" rtol = dist_rtol @test angular_diameter_dist(c,1,2,rtol=dist_rtol) ≈ 598.9118u"Mpc" rtol = dist_rtol @test angular_diameter_dist(c,pi,rtol=dist_rtol) ≈ angular_diameter_dist(c,0,pi,rtol=dist_rtol) rtol = dist_rtol @test comoving_radial_dist(c,1,rtol=dist_rtol) ≈ 3209.784u"Mpc" rtol = dist_rtol @test comoving_volume(c,1,rtol=dist_rtol) ≈ 140.0856u"Gpc^3" rtol = dist_rtol @test quadgk(z -> integrand(c, z), 0, 2.5)[1] ≈ ustrip(comoving_volume(c, 2.5)) @test luminosity_dist(c,1,rtol=dist_rtol) ≈ 6479.8352u"Mpc" rtol = dist_rtol @test distmod(c,1,rtol=dist_rtol) ≈ 44.0578 rtol = dist_rtol @test age(c,0,rtol=age_rtol) ≈ 13.064u"Gyr" rtol = age_rtol @test age(c,1,rtol=age_rtol) ≈ 5.5466u"Gyr" rtol = age_rtol @test lookback_time(c,1,rtol=age_rtol) ≈ (13.064-5.5466)u"Gyr" rtol = age_rtol @test age(c, 1) + lookback_time(c, 1) ≈ age(c, 0) end @testset "ClosedLCDM" begin c = cosmology(h=0.7, OmegaK=-0.1, OmegaM=0.3, OmegaR=0) @test angular_diameter_dist(c,1,rtol=dist_rtol) ≈ 1686.5272u"Mpc" rtol = dist_rtol @test angular_diameter_dist(c,1,2,rtol=dist_rtol) ≈ 655.6019u"Mpc" rtol = dist_rtol @test angular_diameter_dist(c,pi,rtol=dist_rtol) ≈ angular_diameter_dist(c,0,pi,rtol=dist_rtol) rtol = dist_rtol @test comoving_radial_dist(c,1,rtol=dist_rtol) ≈ 3408.937u"Mpc" rtol = dist_rtol @test comoving_volume(c,1,rtol=dist_rtol) ≈ 163.8479u"Gpc^3" rtol = dist_rtol @test quadgk(z -> integrand(c, z), 0, 2.5)[1] ≈ ustrip(comoving_volume(c, 2.5)) @test luminosity_dist(c,1,rtol=dist_rtol) ≈ 6746.1088u"Mpc" rtol = dist_rtol @test distmod(c,1,rtol=dist_rtol) ≈ 44.1453 rtol = dist_rtol @test age(c,0,rtol=age_rtol) ≈ 13.925u"Gyr" rtol = age_rtol @test age(c,1,rtol=age_rtol) ≈ 5.9868u"Gyr" rtol = age_rtol @test lookback_time(c,1,rtol=age_rtol) ≈ (13.925-5.9868)u"Gyr" rtol = age_rtol @test age(c, 1) + lookback_time(c, 1) ≈ age(c, 0) end @testset "FlatWCDM" begin c = cosmology(h=0.7, OmegaM=0.3, OmegaR=0, w0=-0.9, wa=0.1) @test angular_diameter_dist(c,1,rtol=dist_rtol) ≈ 1612.0585u"Mpc" rtol = dist_rtol @test angular_diameter_dist(c,1,2,rtol=dist_rtol) ≈ 607.6802u"Mpc" rtol = dist_rtol @test angular_diameter_dist(c,pi,rtol=dist_rtol) ≈ angular_diameter_dist(c,0,pi,rtol=dist_rtol) rtol = dist_rtol @test comoving_radial_dist(c,1,rtol=dist_rtol) ≈ 3224.1169u"Mpc" rtol = dist_rtol @test comoving_volume(c,1,rtol=dist_rtol) ≈ 140.3851u"Gpc^3" rtol = dist_rtol @test quadgk(z -> integrand(c, z), 0, 2.5)[1] ≈ ustrip(comoving_volume(c, 2.5)) @test luminosity_dist(c,1,rtol=dist_rtol) ≈ 6448.2338u"Mpc" rtol = dist_rtol @test distmod(c,1,rtol=dist_rtol) ≈ 44.0472 rtol = dist_rtol @test age(c,0,rtol=age_rtol) ≈ 13.1915u"Gyr" rtol = age_rtol @test age(c,1,rtol=age_rtol) ≈ 5.6464u"Gyr" rtol = age_rtol @test lookback_time(c,1,rtol=age_rtol) ≈ (13.1915-5.6464)u"Gyr" rtol = age_rtol @test age(c, 1) + lookback_time(c, 1) ≈ age(c, 0) end @testset "OpenWCDM" begin c = cosmology(h=0.7, OmegaK=0.1, OmegaM=0.3, OmegaR=0, w0=-0.9, wa=0.1) @test angular_diameter_dist(c,1,rtol=dist_rtol) ≈ 1588.0181u"Mpc" rtol = dist_rtol @test angular_diameter_dist(c,1,2,rtol=dist_rtol) ≈ 585.4929u"Mpc" rtol = dist_rtol @test angular_diameter_dist(c,pi,rtol=dist_rtol) ≈ angular_diameter_dist(c,0,pi,rtol=dist_rtol) rtol = dist_rtol @test comoving_radial_dist(c,rtol=dist_rtol,1) ≈ 3147.6227u"Mpc" rtol = dist_rtol @test comoving_volume(c,1,rtol=dist_rtol) ≈ 132.0466u"Gpc^3" rtol = dist_rtol @test quadgk(z -> integrand(c, z), 0, 2.5)[1] ≈ ustrip(comoving_volume(c, 2.5)) @test luminosity_dist(c,1,rtol=dist_rtol) ≈ 6352.0723u"Mpc" rtol = dist_rtol @test distmod(c,1,rtol=dist_rtol) ≈ 44.0146 rtol = dist_rtol @test age(c,0,rtol=age_rtol) ≈ 12.8488u"Gyr" rtol = age_rtol @test age(c,1,rtol=age_rtol) ≈ 5.4659u"Gyr" rtol = age_rtol @test lookback_time(c,1,rtol=age_rtol) ≈ (12.8488-5.4659)u"Gyr" rtol = age_rtol @test age(c, 1) + lookback_time(c, 1) ≈ age(c, 0) end @testset "ClosedWCDM" begin c = cosmology(h=0.7, OmegaK=-0.1, OmegaM=0.3, OmegaR=0, w0=-0.9, wa=0.1) @test angular_diameter_dist(c,1,rtol=dist_rtol) ≈ 1637.5993u"Mpc" rtol = dist_rtol @test angular_diameter_dist(c,1,2,rtol=dist_rtol) ≈ 632.5829u"Mpc" rtol = dist_rtol @test angular_diameter_dist(c,pi,rtol=dist_rtol) ≈ angular_diameter_dist(c,0,pi,rtol=dist_rtol) rtol = dist_rtol @test comoving_radial_dist(c,1,rtol=dist_rtol) ≈ 3307.9932u"Mpc" rtol = dist_rtol @test comoving_volume(c,1,rtol=dist_rtol) ≈ 149.8301u"Gpc^3" rtol = dist_rtol @test quadgk(z -> integrand(c, z), 0, 2.5)[1] ≈ ustrip(comoving_volume(c, 2.5)) @test luminosity_dist(c,1,rtol=dist_rtol) ≈ 6550.3973u"Mpc" rtol = dist_rtol @test distmod(c,1,rtol=dist_rtol) ≈ 44.0813 rtol = dist_rtol @test age(c,0,rtol=age_rtol) ≈ 13.5702u"Gyr" rtol = age_rtol @test age(c,1,rtol=age_rtol) ≈ 5.8482u"Gyr" rtol = age_rtol @test lookback_time(c,1,rtol=age_rtol) ≈ (13.5702-5.8482)u"Gyr" rtol = age_rtol @test age(c, 1) + lookback_time(c, 1) ≈ age(c, 0) end @testset "Non-Float64" begin # Test that FlatLCDM works with non-Float64 (BigFloat in this example) c = cosmology(h=0.7, OmegaM=big(0.3), OmegaR=0) @test angular_diameter_dist(c,1,rtol=dist_rtol) ≈ 1651.9145u"Mpc" rtol = dist_rtol @test angular_diameter_dist(c,1,2,rtol=dist_rtol) ≈ 625.3444u"Mpc" rtol = dist_rtol @test angular_diameter_dist(c,pi,rtol=dist_rtol) ≈ angular_diameter_dist(c,0,pi,rtol=dist_rtol) rtol = dist_rtol @test comoving_volume_element(c, big(1.41)) ≈ 3.4030879e10u"Mpc^3" rtol = dist_rtol # Test that FlatWCDM works with non-Float64 (BigFloat in this example) c = cosmology(h=big(0.7), OmegaM=0.3, OmegaR=0, w0=-0.9, wa=0.1) @test angular_diameter_dist(c,1,rtol=dist_rtol) ≈ 1612.0585u"Mpc" rtol = dist_rtol @test angular_diameter_dist(c,1,2,rtol=dist_rtol) ≈ 607.6802u"Mpc" rtol = dist_rtol @test angular_diameter_dist(c,pi,rtol=dist_rtol) ≈ angular_diameter_dist(c,0,pi,rtol=dist_rtol) rtol = dist_rtol @test comoving_volume_element(c, big(1.41)) ≈ 3.1378625e10u"Mpc^3" rtol = dist_rtol end @testset "Unit conversion" begin c = cosmology(h=0.9, OmegaM=0.5, OmegaR=0) for u in (u"m", u"pc", u"ly") @test unit(luminosity_dist(u, c, 1)) == u @test unit(angular_diameter_dist(u, c, 2)) == u end for u in (u"s", u"yr") @test unit(age(u, c, 3)) == u @test unit(lookback_time(u, c, 4)) == u end end @testset "Utilities" begin c = cosmology(h = 0.7) @test hubble_time(c, 0) ≈ Cosmology.hubble_time0(c) @test hubble_dist(c, 0) ≈ Cosmology.hubble_dist0(c) @test H(c, 0) ≈ 70u"km/s/Mpc" end
Cosmology
https://github.com/JuliaAstro/Cosmology.jl.git
[ "MIT" ]
1.0.3
52957a97998867e1a6405483af12e05d8d352a44
docs
729
# Cosmology.jl [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliaastro.github.io/Cosmology.jl/stable) [![Latest](https://img.shields.io/badge/docs-latest-blue.svg)](https://juliaastro.github.io/Cosmology.jl/dev) [![CI](https://github.com/JuliaAstro/Cosmology.jl/workflows/CI/badge.svg)](https://github.com/JuliaAstro/Cosmology.jl/actions?query=workflow%3ACI) [![Coverage Status](http://img.shields.io/coveralls/JuliaAstro/Cosmology.jl.svg?style=flat-square)](https://coveralls.io/r/JuliaAstro/Cosmology.jl?branch=master) A cosmology calculator for Julia. ## Installation To install the package: ```julia pkg> add Cosmology ``` Then, to load into your session: ```julia julia> using Cosmology ```
Cosmology
https://github.com/JuliaAstro/Cosmology.jl.git
[ "MIT" ]
1.0.3
52957a97998867e1a6405483af12e05d8d352a44
docs
1755
```@meta DocTestSetup = quote using Cosmology, Unitful, UnitfulAstro ENV["UNITFUL_FANCY_EXPONENTS"] = false end ``` # API/Reference !!! tip "Unitful" [Unitful.jl](https://github.com/painterqubits/Unitful.jl) works seamlessly with Cosmology.jl. In order to use its features, make sure it is installed and imported, along with [UnitfulAstro](https://github.com/juliaastro/UnitfulAstro.jl). ```julia pkg> add Unitful UnitfulAstro julia> using Unitful, UnitfulAstro ``` ## Cosmological Models ```@docs cosmology ``` ## Distances ```@docs angular_diameter_dist comoving_radial_dist luminosity_dist distmod ``` ### Examples ```jldoctest julia> c = cosmology(OmegaM=0.26) Cosmology.FlatLCDM{Float64}(0.69, 0.7399122024007928, 0.26, 8.77975992071536e-5) julia> angular_diameter_dist(c, 1.2) 1784.0089227105113 Mpc julia> angular_diameter_dist(c, 0.7, 1.2) 606.6521737365097 Mpc julia> luminosity_dist(c, 1.5) 11420.338287150073 Mpc julia> luminosity_dist(u"Gpc", c, 1.5) # Can convert to appropriate unit 11.420338287150074 Gpc ``` ## Volumes ```@docs comoving_volume_element comoving_volume ``` ### Examples ```jldoctest julia> c = cosmology(OmegaM=0.26) Cosmology.FlatLCDM{Float64}(0.69, 0.7399122024007928, 0.26, 8.77975992071536e-5) julia> comoving_volume_element(c, 2.1) 46.74459228888613 Gpc^3 julia> comoving_volume(c, 0.6) 49.3633436631307 Gpc^3 julia> comoving_volume(u"ly^3", c, 0.6) 1.7127035381753e30 ly^3 ``` ## Times ```@docs age lookback_time ``` ### Examples ```jldoctest julia> c = cosmology(OmegaM=0.26) Cosmology.FlatLCDM{Float64}(0.69, 0.7399122024007928, 0.26, 8.77975992071536e-5) julia> age(c, 1.2) 5.4454795007229455 Gyr julia> lookback_time(u"yr", c, 1.2) 8.761465604385489e9 yr ```
Cosmology
https://github.com/JuliaAstro/Cosmology.jl.git
[ "MIT" ]
1.0.3
52957a97998867e1a6405483af12e05d8d352a44
docs
953
# Cosmology.jl [![Build Status](https://img.shields.io/travis/JuliaAstro/Cosmology.jl.svg?style=flat-square&label=build)](https://travis-ci.org/JuliaAstro/Cosmology.jl) [![Coverage Status](http://img.shields.io/coveralls/JuliaAstro/Cosmology.jl.svg?style=flat-square)](https://coveralls.io/r/JuliaAstro/Cosmology.jl?branch=master) [`Cosmology.jl`](https://github.com/JuliaAstro/Cosmology.jl) provides functions for quick cosmological calculations, written in pure Julia. ## Installation To install the package, enter `pkg` mode (`]`) ```julia-repl pkg> add Cosmology ``` Then, to load the package ```julia-repl julia> using Cosmology ``` ## Contributing If you would like to contribute to `Cosmology.jl`, head over to our [GitHub page](https://github.com/juliaastro/cosmology.jl) and open an issue or pull request! For any new features, we ask the contributors to add any relevant unit tests and bump the package version by one minor version.
Cosmology
https://github.com/JuliaAstro/Cosmology.jl.git
[ "MIT" ]
0.1.0
04e73b60c712d19b41cfc75a986ce1fdbaa42dec
code
718
using ModuleDocstrings using Documenter DocMeta.setdocmeta!(ModuleDocstrings, :DocTestSetup, :(using ModuleDocstrings); recursive=true) makedocs(; modules=[ModuleDocstrings], authors="Tim Holy <[email protected]> and contributors", repo="https://github.com/JuliaDocs/ModuleDocstrings.jl/blob/{commit}{path}#{line}", sitename="ModuleDocstrings.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://JuliaDocs.github.io/ModuleDocstrings.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/JuliaDocs/ModuleDocstrings.jl", devbranch="main", push_preview = true, )
ModuleDocstrings
https://github.com/JuliaDocs/ModuleDocstrings.jl.git
[ "MIT" ]
0.1.0
04e73b60c712d19b41cfc75a986ce1fdbaa42dec
code
3797
""" - `ModuleDocstrings.generate`: Create an API summary docstring for a module. - `ModuleDocstrings.write`: add an API summary docstring to a package. """ module ModuleDocstrings """ ModuleDocstrings.generate(mod::Module) Return an API summary string for `mod`. The summary is assembled from all docstrings in the package, picking the first sentence of each docstring. When added to the package (see [`ModuleDocstrings.write`](@ref)), you should expect to make edits by hand: - exclude docstrings that shouldn't appear in the API summary - rephrase summaries for greater clarity or compactness (alternatively, consider making such changes to the original docstring) """ function generate(mod::Module) exported = Set(names(mod)) docex, docpriv = Pair{String,Vector{String}}[], Pair{String,Vector{String}}[] for (bind, doc) in Base.Docs.meta(mod) tgt, key = bind.var ∈ exported ? (docex, String(bind.var)) : (docpriv, string(bind)) push!(tgt, key => firstsentences(doc)) end sort!(docex; by=first) sort!(docpriv; by=first) io = IOBuffer() for doc in (docex, docpriv) for (key, methsummaries) in doc print(io, "- `", key, "`:") if length(methsummaries) == 1 print(io, ' ', methsummaries[1]) else for msum in methsummaries print(io, "\n + ", msum) end end print(io, '\n') end end return String(take!(io)) end firstsentences(docs::Base.Docs.MultiDoc) = String[firstsentences(docstr) for (sig, docstr) in docs.docs] firstsentences(doc) = firstsentence(doc) firstsentence(docstr::Base.Docs.DocStr) = firstsentence(docstr.text) firstsentence(itr) = firstsentence(join(itr)) function firstsentence(d::AbstractDict) @assert length(d) == 1 "multiple entries ($(length(itr))) for a given signature" return firstsentence(first(d).second) end function firstsentence(str::AbstractString) # @show str io = IOBuffer() for line in split(str, '\n') startswith(line, " ") && continue # code line all(isspace, line) && continue idx = findfirst(r"\.(\s|$)", line) if idx === nothing print(io, line, ' ') continue end print(io, line[1:first(idx)]) return String(take!(io)) end return String(take!(io)) end """ ModuleDocstrings.write(mod, str) Edit the module-defining file to insert `str` as a docstring for `mod`. The package should be checked out in `develop` mode before calling `write`. """ function write(mod::Module, str) path = pathof(mod) (path === nothing || !iswritable(path)) && error_write(mod, path) modstr = read(path, String) idxs = findfirst("module $mod", modstr) idxs === nothing && error("could not identify start of module") open(path, "w") do io print(io, modstr[1:first(idxs)-1], "\"\"\"\n", str, "\"\"\"\n", modstr[first(idxs):end]) end end """ ModuleDocstrings.write(mod) Modify the source file for `mod` to add an API summary docstring. The docstring is produced by [ModuleDocstrings.generate](@ref). The package should be checked out in `develop` mode before calling `write`. """ write(mod::Module) = write(mod, generate(mod)) # this is replacing, not extending, the Base function of the same name iswritable(filename::AbstractString) = isfile(filename) && (uperm(filename) & 0x02) != 0x00 error_write(mod, ::Nothing) = error("$mod must be a writable package, but there is no corresponding file, suggesting it wasn't loaded from a package.") error_write(mod, path::AbstractString) = error("$mod must be a writable package, but the path \"$path\" is not writable.\nDid you forget to `Pkg.develop` the package?") end
ModuleDocstrings
https://github.com/JuliaDocs/ModuleDocstrings.jl.git
[ "MIT" ]
0.1.0
04e73b60c712d19b41cfc75a986ce1fdbaa42dec
code
2139
using ModuleDocstrings using Example # test error on a non-devved package using Pkg using Test @testset "ModuleDocstrings.jl" begin str = ModuleDocstrings.generate(ModuleDocstrings) @test occursin("ModuleDocstrings.generate", str) @test occursin("ModuleDocstrings.write", str) m = @eval Module() begin """ foo1() `foo1` is pretty useful. """ foo1() = 0 """ `foo2` doesn't show the signature. """ foo2() = 0 """ foo3() `foo3` contains a [`$(string(@__MODULE__)).foo1`](@ref) that contains a period. """ foo3() @__MODULE__ end str = ModuleDocstrings.generate(m) @test occursin("- `Main.anonymous.foo1`: `foo1` is pretty useful.", str) @test occursin("- `Main.anonymous.foo2`: `foo2` doesn't show the signature.", str) @test occursin("- `Main.anonymous.foo3`: `foo3` contains a [`Main.anonymous.foo1`](@ref) that contains a period.", str) if Base.VERSION >= v"1.8.0-DEV.363" # use strings in @test_throws; we don't care what type of error this is @test_throws "must be a writable package, but there is no corresponding file" ModuleDocstrings.write(m) @test_throws r"must be a writable package, but the path \".*\" is not writable" ModuleDocstrings.write(Example) else @test_throws Exception ModuleDocstrings.write(m) @test_throws Exception ModuleDocstrings.write(Example) end mktempdir() do pkgs push!(LOAD_PATH, pkgs) newpkgdir = joinpath(pkgs, "DevDummy") Pkg.generate(newpkgdir) open(joinpath(newpkgdir, "src", "DevDummy.jl"), "w") do io print(io, """ module DevDummy \"\"\" greet() Print a delightful greeting. \"\"\" greet() = print("Hello World!") end # module """ ) end @eval using DevDummy ModuleDocstrings.write(DevDummy) str = read(joinpath(newpkgdir, "src", "DevDummy.jl"), String) @test occursin( """ \"\"\" - `DevDummy.greet`: Print a delightful greeting. \"\"\" module DevDummy """, str) end end
ModuleDocstrings
https://github.com/JuliaDocs/ModuleDocstrings.jl.git
[ "MIT" ]
0.1.0
04e73b60c712d19b41cfc75a986ce1fdbaa42dec
docs
1762
# ModuleDocstrings [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaDocs.github.io/ModuleDocstrings.jl/stable) [![Build Status](https://github.com/JuliaDocs/ModuleDocstrings.jl/workflows/CI/badge.svg)](https://github.com/JuliaDocs/ModuleDocstrings.jl/actions) [![Coverage](https://codecov.io/gh/JuliaDocs/ModuleDocstrings.jl/branch/main/graph/badge.svg?token=5Wdh1eXbGc)](https://codecov.io/gh/JuliaDocs/ModuleDocstrings.jl) A package to create simple "module docstrings" for Julia packages. These are targeted at summarizing the main components of your package, essentially as a prompt or reminder to users. For example: ```julia julia> using ModuleDocstrings help?> ModuleDocstrings search: ModuleDocstrings • ModuleDocstrings.generate: Create an API summary docstring for a module. • ModuleDocstrings.write: add an API summary docstring to a package. ``` This reminds users that the two main functions are `ModuleDocstrings.generate` and `ModuleDocstrings.write`. These summaries are brief; to learn more about a particular function, read its help in full: ```julia help?> ModuleDocstrings.generate ModuleDocstrings.generate(mod::Module) Return an API summary string for mod. The summary is assembled from all docstrings in the package, picking the first sentence of each docstring. When added to the package (see ModuleDocstrings.write), you should expect to make edits by hand: • exclude docstrings that shouldn't appear in the API summary • rephrase summaries for greater clarity or compactness (alternatively, consider making such changes to the original docstring) ``` Once you've added the docstring to a `Pkg.develop`ed package, it can be submitted as a pull request.
ModuleDocstrings
https://github.com/JuliaDocs/ModuleDocstrings.jl.git
[ "MIT" ]
0.1.0
04e73b60c712d19b41cfc75a986ce1fdbaa42dec
docs
3613
```@meta CurrentModule = ModuleDocstrings ``` # ModuleDocstrings This package aims to make it easier to attach a docstring to a module, providing users with a quick summary of the core functionality in a package. To demonstrate, let's create a module with a few docstrings. This module has two functions: `radius` with a single method, and `distance` with two methods (the details of the methods don't really matter much for this demonstration): ```jldoctest example julia> module TestDocStrings export radius, distance """ radius(x, y, z) Compute the radius of the cartesian-coordinate position `[x, y, z]`. There really isn't much more to say; it's pretty straightforward. """ radius(x, y, z) = sqrt(x^2 + y^2 + z^2) """ distance(pos1::AbstractVector, pos2::AbstractVector) Compute the distance between points `pos1` and `pos2`. """ distance(pos1::AbstractVector, pos2::AbstractVector) = radius((pos1 - pos2)...) """ distance(pos::AbstractVector, points::PointCollection) Compute the minimum distance between `pos` and any point in `points`. """ distance(pos::AbstractVector, points::AbstractVector{<:AbstractVector}) = minimum(p -> distance(pos, p), points) end TestDocStrings ``` Now let's generate a module doctring: ```jldoctest example julia> using ModuleDocstrings julia> print(ModuleDocstrings.generate(TestDocStrings)) - `distance`: + Compute the minimum distance between `pos` and any point in `points`. + Compute the distance between points `pos1` and `pos2`. - `radius`: Compute the radius of the cartesian-coordinate position `[x, y, z]`. ``` From this, you can see that both methods of `distance` are listed, as well as the single method for `radius`. For each, only the first sentence is used in the summary. If this were a package that you have in `Pkg.develop` mode, you could insert this string into the package with [`ModuleDocstrings.write`](@ref). However, in this case, you get ```jldoctest example; filter=(r"julia/dev/.*") julia> ModuleDocstrings.write(TestDocStrings) ERROR: TestDocStrings must be a writable package, but there is no corresponding file, suggesting it wasn't loaded from a package. Stacktrace: [1] error(s::String) @ Base ./error.jl:33 [2] error_write(mod::Module, #unused#::Nothing) @ ModuleDocstrings ~/.julia/dev/ModuleDocstrings/src/ModuleDocstrings.jl:101 [3] write(mod::Module, str::String) @ ModuleDocstrings ~/.julia/dev/ModuleDocstrings/src/ModuleDocstrings.jl:79 [4] write(mod::Module) @ ModuleDocstrings ~/.julia/dev/ModuleDocstrings/src/ModuleDocstrings.jl:96 [5] top-level scope @ none:1 ``` This error ocurred because we defined the module at the REPL; it will likewise error if you have `Pkg.add`ed rather than `Pkg.develop`ed. But for a package checked out in `develop` mode it will modify the main package file. !!! warning Be sure you've saved any work *before* running `ModuleDocstrings.write`. Generally speaking, you should then edit the docstring to trim any methods that don't merit a mention in the summary, and/or to improve the clarity, brevity, or organization of the summaries. Sometimes, you may discover that you can improve the original source docstring as well. Your changes can then be submitted as a pull request. ## API Documentation for [ModuleDocstrings](https://github.com/JuliaDocs/ModuleDocstrings.jl). ```@docs ModuleDocstrings.generate ModuleDocstrings.write ```
ModuleDocstrings
https://github.com/JuliaDocs/ModuleDocstrings.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
code
212
module ScTenifold export Net, Knk, sctenifoldnet, sctenifoldknk, sctenifoldxct include("sctenifoldnet.jl") include("sctenifoldknk.jl") include("sctenifoldxct.jl") using .Net using .Knk using .Xct end # module
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
code
376
cd(dirname(@__FILE__)) # include("tensordecomp.jl") include("ScTenifold.jl") using .ScTenifold using LinearAlgebra, Statistics, Distributions, Random d=NegativeBinomial(20,0.98) X=rand(d,100,2000) lbszv=30 X=X[:,vec(sum(X,dims=1).>lbszv)] @time Z1,A1=ScTenifold.tenrnet(X, donorm=true) include("tensordecomp2.jl") Z0a=ScTenifold.tensordecomp(A1) Z2=tensordecomp2(A1)
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
code
229
function drgenes(d::AbstractVector{T}) where T<:Real d²=d.^2 fc=d²./mean(d²) χ² = Chisq(1) pVals = ccdf.(χ², fc) pAdjusted = MultipleTesting.adjust(pVals, BenjaminiHochberg()) return fc,pVals,pAdjusted end
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
code
570
function manialn(X::AbstractMatrix{T},Y::AbstractMatrix{T}) where T<:Real μ,dim=0.9,30 n1,n2=size(X,1),size(Y,1) W₁,W₂=X.+1,Y.+1 ℐ=Matrix(I,n1,n2) μ = μ*(sum(W₁)+sum(W₂))/(2*sum(ℐ)) 𝕎 = [W₁ μ*ℐ; μ*ℐ' W₂] L=diagm(vec(sum(abs.(𝕎),dims=1))).-𝕎 # λ,V =KrylovKit.eigsolve(L,35,:SR,krylovdim=40) # V=hcat(V) λ,V = eigen(L) i=real(λ).>=1e-8 V=real(V[:,i]) dim=min(dim,size(V,2)) V=V[:,1:dim] aln0=V[1:n1,:] aln1=V[n1+1:end,:] d = norm.((aln0.-aln1)[i,:] for i = 1:n1) # _,idx=findmax(dd) return d end
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
code
673
function pcnet(X::AbstractMatrix{T}, p::Int=3; scalein::Bool=true, scaleout::Bool=false, symmout::Bool=false) where T<:Real if scalein σ=std(X,dims=1) σ[σ.==0].=1.0 X=(X.-mean(X,dims=1))./σ end ℊ=size(X,2) A=1.0 .-Matrix(I,ℊ,ℊ) Threads.@threads for k in 1:ℊ y=X[:,k] 𝒳=X[:,1:end.≠k] ϕ=TSVD.tsvd(𝒳,p)[3] s=𝒳*ϕ s ./= (vecnorm(s).^2)' b=sum(y.*s,dims=1) 𝒷=ϕ*b' @inbounds A[k,A[k,:].==1.0]=𝒷 end if symmout A=0.5*(A+A') end if scaleout A=A./maximum(abs.(A)) end return convert(Matrix{Float16},A) end
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
code
783
module Knk export sctenifoldknk function sctenifoldknk(X::AbstractMatrix{T}, k::Float64) where T<:Real #X1=copy(X) #X1[k,:].=0 end end #= using DelimitedFiles cd(dirname(@__FILE__)) X0=readdlm("X.txt",',',Int16) X1=copy(X0) genelist=vec(readdlm("genelist.txt",String)) idx=findall(genelist.=="Cftr") X1[idx[1],:].=0 lbsz=sum(X0,dims=1) X0=(X0./lbsz)*1e4 lbsz=sum(X1,dims=1) X1=(X1./lbsz)*1e4 include("scTenifoldNet.jl") using .scTenifoldNet #X0=rand(100,1000); #X1=rand(100,1000); @show Threads.nthreads() @time Z0=scTenifoldNet.pcnet(X0') @time Z1=scTenifoldNet.pcnet(X1') @time d,aln0,aln1=scTenifoldNet.manialn(Z0,Z1) fc,p,adjp=scTenifoldNet.drgenes(d) writedlm("qvalues.txt",[fc p adjp]) using StatsPlots, Distributions x=rand(Chisq(1), length(fc)) qqplot(x, fc) end =#
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
code
810
module Net export sctenifoldnet, tenrnet, manialn, drgenes, pcnet, tensordecomp, tensordecomp2 const NCOMP1,NCOMP2=3,5 const NLAYERS,NCELLS=10,500 using Statistics, LinearAlgebra, Distributions, Random using MultipleTesting, Random, SparseArrays, TSVD, TensorToolbox # import KrylovKit include("support.jl") include("pcnet.jl") # include the contents of other files in the module include("tenrnet.jl") include("tensordecomp.jl") include("manialn.jl") include("drgenes.jl") function sctenifoldnet(X::AbstractMatrix{T}, Y::AbstractMatrix{T}; donorm::Bool=false) where T<:Real Z0,_=tenrnet(X,donorm=donorm) Z1,_=tenrnet(Y,donorm=donorm) Z0=0.5*(Z0+Z0') Z1=0.5*(Z1+Z1') d=manialn(Z0,Z1) fc,p,adjp=drgenes(d) return d,fc,p,adjp end end
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
code
360
module Xct export sctenifoldxct const NCOMP1,NCOMP2=3,5 const NLAYERS,NCELLS=10,500 using Statistics, LinearAlgebra, Distributions, Random using MultipleTesting, Random, SparseArrays, TSVD, TensorToolbox # import KrylovKit include("support.jl") function sctenifoldxct(X::AbstractMatrix{T}, Y::AbstractMatrix{T}; donorm::Bool=false) where T<:Real end end
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
code
210
# vecnorm(x) = x./norm.(x[:,i] for i in 1:size(x,2))' vecnorm(x::AbstractMatrix) = norm.(x[:,i] for i in 1:size(x,2)) function normc!(x) for i in 1:size(x,2) x[:,i]=x[:,i]./norm(x[:,i]) end end
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
code
624
function tenrnet(X::AbstractMatrix{T}; donorm::Bool=true) where T<:Real ℊ,𝒸=size(X) if donorm lbsz=sum(X,dims=1) # X=(X./lbsz)*median(lbsz) X=(X./lbsz)*1e4 end A=zeros(Float16, ℊ, ℊ, NLAYERS) for k=1:NLAYERS println("network ... $k") 𝕩=X[:,randperm(𝒸)][:,1:NCELLS] # jackknife (m-out-of-n) # 𝕩=X[:,rand(1:𝒸,NCELLS)]; # bootstrapping (m-out-of-n) 𝕩ᵀ=transpose(𝕩) a=pcnet(𝕩ᵀ,NCOMP1) a[abs.(a).<quantile(vec(abs.(a)),0.95)].=0.0 @inbounds A[:,:,k]=sparse(a) end Z=tensordecomp(A,NCOMP2) return Z,A end
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
code
266
function tensordecomp(Λ::AbstractArray{T,3}, p::Int=5; scaleout::Bool=true) where T 𝒯=TensorToolbox.cp_als(Λ,p) 𝕏=TensorToolbox.full(𝒯) A=mean(𝕏[:,:,i] for i=1:size(𝕏,3)) if scaleout A ./=maximum(abs.(A)) end return A end
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
code
1206
using TensorDecompositions function tensordecomp2(Λ::AbstractArray{T,3}, p::Int=5; scaleout::Bool=true) where T Λ=convert(Array{Float64}, Λ) size(Λ) 𝒯=TensorDecompositions.candecomp(Λ, p, (randn(size(Λ,1), k), randn(size(Λ,2), k), randn(size(Λ,3), k)), compute_error=true, method=:ALS); # 𝒯=TensorToolbox.cp_als(Λ,p) 𝕏=TensorDecompositions.compose(𝒯) A=mean(𝕏[:,:,i] for i=1:size(𝕏,3)) if scaleout A ./=maximum(abs.(A)) end return A end #= u = randn(10); v = randn(20); w = randn(30) T = cat(map(x -> x * u * v', w)..., dims=3) + 0.2 * randn(10, 20, 30) k=2 F = candecomp(T, k, (randn(10, k), randn(20, k), randn(30, k)), compute_error=true, method=:ALS); # https://juliapackages.com/p/ntfk import NTFk import TensorDecompositions csize = (2, 3, 4) tsize = (5, 10, 15) tucker_orig = NTFk.rand_tucker(csize, tsize; factors_nonneg=true, core_nonneg=true) T_orig = TensorDecompositions.compose(tucker_orig) T_orig .*= 1000 sizes = [csize, (1,3,4), (3,3,4), (2,2,4), (2,4,4), (2,3,3), (2,3,5)] tucker_estimated, csize_estimated = NTFk.analysis(T_orig, sizes, 3; eigmethod=[false,false,false], progressbar=false, tol=1e-16, max_iter=100000, lambda=0.); =#
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
code
680
import CanDecomp A = rand(2, 3) B = rand(5, 3) C = rand(10, 3) T_orig = CanDecomp.totensor(A, B, C) Af = rand(size(A)...); Bf = rand(size(B)...); Cf = rand(size(C)...); import StaticArrays CanDecomp.candecomp!(StaticArrays.SVector(Af, Bf, Cf), T_orig, Val{:nnoptim}; regularization=1e-3, print_level=0, max_cd_iters=1000) T_est = CanDecomp.totensor(Af, Bf, Cf); import NTFk import LinearAlgebra @info("Norm $(LinearAlgebra.norm(T_est .- T_orig))") import Cairo, Fontconfig NTFk.plot2matrices(A, Af; progressbar=nothing) NTFk.plot2matrices(B, Bf; progressbar=nothing) NTFk.plot2matrices(C, Cf; progressbar=nothing) NTFk.plotlefttensor(T_orig, T_est; progressbar=nothing)
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
code
463
import TensorDecompositions import NTFk csize = (2, 3, 4) tsize = (5, 10, 15) tucker_orig = NTFk.rand_tucker(csize, tsize; factors_nonneg=true, core_nonneg=true) T_orig = TensorDecompositions.compose(tucker_orig) T_orig .*= 1000 sizes = [csize, (1,3,4), (3,3,4), (2,2,4), (2,4,4), (2,3,3), (2,3,5)] tucker_estimated, csize_estimated = NTFk.analysis(T_orig, sizes, 3; eigmethod=[false,false,false], progressbar=false, tol=1e-16, max_iter=100000, lambda=0.);
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
code
444
using ScTenifold X0=rand(100,1000); X1=copy(X0) X1[4,:].=0.0 d,fc,p,adjp=ScTenifold.sctenifoldnet(X0,X1,donorm=false) #@show Threads.nthreads() #@time Z0=ScTenifoldNet.tenrnet(X0, donorm=false) #@time Z1=ScTenifoldNet.tenrnet(X1, donorm=false) #Z0=0.5*(Z0+Z0') #Z1=0.5*(Z1+Z1') #@time d,aln0,aln1=ScTenifoldNet.manialn(Z0,Z1) #fc,p,adjp=ScTenifoldNet.drgenes(d) #using StatsPlots, Distributions #x=rand(Chisq(1), length(fc)) #qqplot(x, fc)
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
code
623
using ScTenifold using LinearAlgebra, Statistics, Distributions, Random d=NegativeBinomial(20,0.98) X=rand(d,100,2000) lbszv=30 Y=copy(X) Y[10,:]=Y[50,:] Y[2,:]=Y[11,:] Y[3,:]=Y[5,:] X=X[:,vec(sum(X,dims=1).>lbszv)] Y=Y[:,vec(sum(Y,dims=1).>lbszv)] @show Threads.nthreads() @time Z0,_=ScTenifold.tenrnet(X, donorm=true) @time Z1,_=ScTenifold.tenrnet(Y, donorm=true) Z0=0.5*(Z0+Z0') Z1=0.5*(Z1+Z1') @time d=ScTenifold.manialn(Z0,Z1) fc,p,adjp=ScTenifold.drgenes(d) @show [adjp[10] adjp[11] adjp[50] adjp[20]]; @show [adjp[70] adjp[31] adjp[55] adjp[26]]; using StatsPlots x=rand(Chisq(1), length(fc)) qqplot(x, fc)
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
code
419
# push!(LOAD_PATH,"E:/GitHub/ScTenifold.jl/src/"); using ScTenifold # obviously the tests use the ScTenifoldNet module... using Test # and the Base.Test module... tests = ["code_test1", "code_test2"] # the test file names are stored as strings... for t in tests include("$(t).jl") # ... so that they can be evaluated in a loop end
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.1.1
3372d4b1cfea67b8efafebbcf4a37394022be057
docs
1675
# ScTenifold.jl *A single-cell gene regulatory network analysis suite in Julia.* [![Build status](https://ci.appveyor.com/api/projects/status/8ue869x2nadkjvi6?svg=true)](https://ci.appveyor.com/project/jamesjcai/sctenifold-jl) ## Installation First of all, you need to install a Julia compiler. A recommended way is to download a pre-built binary of Julia. The pre-built binaries for several major platforms are distributed at <https://julialang.org/downloads/>. Currently, `ScTenifold.jl` is an unregistered package. Then, install `ScTenifold.jl` with the following command: ```julia using Pkg; Pkg.add(PackageSpec(url="git://github.com/jamesjcai/ScTenifold.jl.git")) ``` To check the installation, you can try `using ScTenifold` in your REPL: ``` _ _ _(_)_ | Documentation: https://docs.julialang.org (_) | (_) (_) | _ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help. | | | | | | |/ _` | | | | |_| | | | (_| | | Version 1.5.3 (2020-11-09) _/ |\__'_|_|_|\__'_| | Official https://julialang.org/ release |__/ | julia> using ScTenifold [ Info: Precompiling ScTenifold [fcca1770-266e-4af5-8612-876362e279e9] julia> ``` No error messages mean you have successfully installed ScTenifold.jl. To run unit tests, execute the following command: ```julia using Pkg; Pkg.test("ScTenifold") ``` ## Contributing and Questions Contributions are very welcome, as are feature requests and suggestions. Please open an [issue][issues-url] if you encounter any problems or would just like to ask a question. [issues-url]: https://github.com/jamesjcai/ScTenifold.jl/issues
ScTenifold
https://github.com/jamesjcai/ScTenifold.jl.git
[ "MIT" ]
0.10.0
3b131b0726fc1b56e9ae86668b5e5bc44fe14d08
code
897
using Genie, Genie.Router using Genie.Renderer, Genie.Renderer.Html, Genie.Renderer.Json using JSON using SwagUI swagger_document = JSON.parsefile("./swagger.json") urls = Array{Dict{String, Any}, 1}() url1 = Dict{String, Any}() url1["url"] = "https://petstore.swagger.io/v2/swagger.json" url1["name"] = "Spec1" url2 = Dict{String, Any}() url2["url"] = "https://petstore.swagger.io/v2/swagger.json" url2["name"] = "Spec2" push!(urls, url1) push!(urls, url2) options = Options() # options.custom_css = ".swagger-ui .topbar { display: none }" options.show_explorer = true # options.swagger_options["validatorUrl"] = nothing options.swagger_options["url"] = "https://petstore.swagger.io/v2/swagger.json" # options.swagger_options["urls"] = urls route("/docs") do render_swagger(nothing, options=options) # render_swagger(swagger_document, options=options) end up(8001, async = false)
SwagUI
https://github.com/GenieFramework/SwagUI.jl.git
[ "MIT" ]
0.10.0
3b131b0726fc1b56e9ae86668b5e5bc44fe14d08
code
3793
const SWAGGER_UI_BUNDLE_JS_URL = "https://cdnjs.cloudflare.com/ajax/libs/swagger-ui/4.9.1/swagger-ui-bundle.js" const SWAGGER_UI_STANDALONE_JS_URL = "https://cdnjs.cloudflare.com/ajax/libs/swagger-ui/4.9.1/swagger-ui-standalone-preset.js" const SWAGGER_UI_CSS_URL = "https://cdnjs.cloudflare.com/ajax/libs/swagger-ui/4.9.1/swagger-ui.css" function build_js_string(options::Options, swagger_doc::Union{Dict{String, Any}, Nothing})::String swagger_options = _options_to_json(options, swagger_doc) return """ window.onload = function() { let url = window.location.search.match(/url=([^&]+)/); if (url && url.length > 1) { url = decodeURIComponent(url[1]); } else { url = window.location.origin; } const options = $(swagger_options) url = options.swaggerUrl || url const customOptions = options.customOptions const swaggerOptions = { spec: options.swaggerDoc, url: url, urls: options.swaggerUrls, dom_id: '#swagger-ui', deepLinking: true, presets: [ SwaggerUIBundle.presets.apis, SwaggerUIStandalonePreset ], plugins: [ SwaggerUIBundle.plugins.DownloadUrl ], layout: "StandaloneLayout" } for (const attr in customOptions) { swaggerOptions[attr] = customOptions[attr] } const ui = SwaggerUIBundle(swaggerOptions); if (customOptions.oauth) { ui.initOAuth(customOptions.oauth) } if (customOptions.authAction) { ui.authActions.authorize(customOptions.authAction) } window.ui = ui; }; """ end function build_html_string(options::Options, js_string::String)::String favicon = options.custom_favicon == "" ? DEFAULT_FAVICON : "<link rel='icon' href=$(options.custom_favicon) />" title = options.custom_site_title style = options.custom_css stylesheet = options.custom_css_url == "" ? "" : "<link rel='stylesheet' type='text/css' href=$(options.custom_css_url) />" script = options.custom_js == "" ? "" : "<script src=$(options.custom_js) charset='UTF-8'></script>" explorer = options.show_explorer ? "" : ".swagger-ui .topbar .download-url-wrapper { display: none; }" return """ <!-- HTML for static distribution bundle build --> <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>$(title)</title> <link rel="stylesheet" type="text/css" href="$(SWAGGER_UI_CSS_URL)" /> $(favicon) $(script) <style> html { box-sizing: border-box; overflow: -moz-scrollbars-vertical; overflow-y: scroll; } *, *:before, *:after { box-sizing: inherit; } body { margin:0; background: #fafafa; } $(explorer) $(style) </style> </head> <body> <div id="swagger-ui"></div> <script src="$(SWAGGER_UI_BUNDLE_JS_URL)" charset="UTF-8"></script> <script src="$(SWAGGER_UI_STANDALONE_JS_URL)" charset="UTF-8"></script> <script>$(js_string)</script> $(stylesheet) </body> </html> """ end
SwagUI
https://github.com/GenieFramework/SwagUI.jl.git
[ "MIT" ]
0.10.0
3b131b0726fc1b56e9ae86668b5e5bc44fe14d08
code
1692
const DEFAULT_FAVICON = "<link rel='icon' type='image/png' href='./favicon-16x16.png' sizes='16x16' /><link rel='icon' type='image/png' href='./favicon-32x32.png' sizes='32x32' />" const DEFAULT_TITLE = "Swagger UI" """ mutable struct Options """ mutable struct Options show_explorer::Bool custom_js::String custom_css::String custom_css_url::String custom_site_title::String custom_favicon::String swagger_options::Dict{String, Any} function Options(; show_explorer::Bool=true, custom_js::String="", custom_css::String="", custom_css_url::String="", custom_site_title::String=DEFAULT_TITLE, custom_favicon::String="", swagger_options::Dict{String, Any}=Dict{String, Any}()) this = new() this.show_explorer = show_explorer this.custom_js = custom_js this.custom_css = custom_css this.custom_css_url = custom_css_url this.custom_site_title = custom_site_title this.custom_favicon = custom_favicon this.swagger_options = swagger_options return this end end function _options_to_json(options::Options, swagger_doc::Union{Dict{String, Any}, Nothing})::String swagger_options = options.swagger_options opts = Dict{String, Any}() opts["customOptions"] = swagger_options if !isnothing(swagger_doc) opts["swaggerDoc"] = swagger_doc end if haskey(swagger_options, "swaggerUrl") opts["swaggerUrl"] = swagger_options["swaggerUrl"] end if haskey(swagger_options, "swaggerUrls") opts["swaggerUrls"] = swagger_options["swaggerUrls"] end return JSON.json(opts) end
SwagUI
https://github.com/GenieFramework/SwagUI.jl.git
[ "MIT" ]
0.10.0
3b131b0726fc1b56e9ae86668b5e5bc44fe14d08
code
1131
module SwagUI using JSON include("Options.jl") include("Builders.jl") export Options, render_swagger """ render_swagger(swagger_doc::Union{Dict{String, Any}, Nothing}; options=nothing, kw...) Render Swagger UI's HTML as `String`, based on the options passed in. If a vaid `swagger_doc` is passed, the `url` and `urls` in the `Options.swagger_options` are ignored by the UI. If `swagger_doc` is `nothing`, `url` or `urls` has to be included in the `Options.swagger_options`. Options can be passed as an `Options` struct or indirectly via keyword arguments (see `Options`). # Arguments Required: - `swagger_doc::Union{Dict{String, Any}, Nothing}` : The swagger specification file `swagger.json` as a `Dict{String, Any}`. """ function render_swagger(swagger_doc::Union{AbstractDict{<:AbstractString,<:Any}, Nothing}; options::Union{Options,Nothing}=nothing, kw...)::String isnothing(options) && (options = Options(;kw...)) js_string = build_js_string(options, swagger_doc) html_string = build_html_string(options, js_string) return html_string end end # module
SwagUI
https://github.com/GenieFramework/SwagUI.jl.git
[ "MIT" ]
0.10.0
3b131b0726fc1b56e9ae86668b5e5bc44fe14d08
code
3152
using JSON using Genie, HTTP using Genie.Router, Genie.Responses const PORT = 8000 const HOST = "127.0.0.1" const PROTOCAL = "http" const BASE_URL = "$PROTOCAL://$HOST:$PORT" const ASSETS_PATH = joinpath(dirname(dirname(@__FILE__)), "test", "assets") const DEFAULT_SWAGGER_JSON = "https://petstore.swagger.io/v2/swagger.json" function serve_assets(path::String; excludes::Array{String, 1}=Array{String, 1}()) for (root, _, files) in walkdir(path) for file in files if !(file in excludes) route(file) do open(read, joinpath(root, file)) |> String end end end end end serve_assets(ASSETS_PATH) up(PORT, HOST; open_browser = false, verbose = true, async = true) # basic settings swagger_document = JSON.parsefile(joinpath(ASSETS_PATH, "swagger.json")) swagger_options = Dict{String, Any}() options = Options() swagger_options["url"] = "https://petstore.swagger.io/v2/swagger.json" options.swagger_options = swagger_options @testset "Render Assets Tests" begin for (root, dirs, files) in walkdir(ASSETS_PATH) for file in files r = HTTP.request("GET", "$BASE_URL/$file") local_file = read(open(joinpath(ASSETS_PATH, file)), String) @test r.status == 200 @test local_file == String(r.body) end end end @testset "Basic Swagger Tests" begin route_name = "docs" route("/$route_name", method = GET) do render_swagger(nothing, options=options) end r = HTTP.request("GET", "$BASE_URL/$route_name") html_string = String(r.body) opts = Dict{String, Any}() opts["customOptions"] = swagger_options @test r.status == 200 @test occursin("<title>$(options.custom_site_title)</title>", html_string) @test occursin("const options = $(JSON.json(opts))", html_string) end @testset "Customizations Tests" begin route_name = "docs_custom" custom_options = Options() custom_swagger_options = Dict{String, Any}() custom_swagger_options["url"] = DEFAULT_SWAGGER_JSON custom_options.swagger_options = custom_swagger_options # custom css css_string = ".swagger-ui .topbar { display: none }" custom_options.custom_css = css_string # custom stylesheet stylesheet_path = joinpath(ASSETS_PATH, "custom.css") custom_options.custom_css_url = stylesheet_path # custom favicon favicon_path = joinpath(ASSETS_PATH, "favicon.ico") custom_options.custom_favicon = favicon_path # custom site title title = "Jimmy's new API" custom_options.custom_site_title = title route("/$route_name", method = GET) do render_swagger(nothing, options=custom_options) end r = HTTP.request("GET", "$BASE_URL/$route_name") html_string = replace(String(r.body), "\n" => "") @test r.status == 200 @test occursin(css_string, html_string) @test occursin("<link rel='stylesheet' type='text/css' href=$(stylesheet_path) />", html_string) @test occursin("<title>$(title)</title>", html_string) @test occursin("<link rel='icon' href=$(favicon_path) />", html_string) end
SwagUI
https://github.com/GenieFramework/SwagUI.jl.git
[ "MIT" ]
0.10.0
3b131b0726fc1b56e9ae86668b5e5bc44fe14d08
code
42
using SwagUI using Test include("app.jl")
SwagUI
https://github.com/GenieFramework/SwagUI.jl.git
[ "MIT" ]
0.10.0
3b131b0726fc1b56e9ae86668b5e5bc44fe14d08
docs
3831
# Julia Swagger UI [![codecov](https://codecov.io/gh/jiachengzhang1/SwaggerUI/branch/master/graph/badge.svg?token=H88TK4G1NY)](https://codecov.io/gh/jiachengzhang1/SwaggerUI) Want to use [Swagger UI](https://swagger.io/tools/swagger-ui/) in Julia? This package has your back! Inspired by [swagger-ui-express](https://github.com/scottie1984/swagger-ui-express), the package auto-generates Swagger UI based on `swagger.json`. The generated API documentation can be served as an endpoint using package such as [Genie.jl](https://github.com/GenieFramework/Genie.jl). Pre-built [swagger-ui](https://github.com/swagger-api/swagger-ui/tree/master/dist) is used. Because swagger-ui is implemented in Node.js, all pre-built files and assets are included in the [dist](dist) folder for serving. (Open an issue if there are better ways to do this.) ## Installation ```julia julia> ] pkg> add SwagUI ``` ## Usage Genie simple setup ```julia using Genie, Genie.Router using JSON using SwagUI # use a swagger json from the local machine swagger_document = JSON.parsefile("./swagger.json") route("/docs") do render_swagger(swagger_document) end ``` ### Inegrate with [Swagger Markdown](https://github.com/GenieFramework/SwaggerMarkdown.jl) ```julia using Genie, Genie.Router using JSON using SwagUI using SwaggerMarkdown @swagger """ /doge: get: description: Doge to the moon! responses: '200': description: Doge to the moon!!. """ route("/doge") do JSON.json("Doge to the moon!!") end # build a swagger document from markdown info = Dict{String, Any}() info["title"] = "Swagger Petstore" info["version"] = "1.0.5" openApi = OpenAPI("2.0", info) swagger_document = build(openApi) route("/docs") do render_swagger(swagger_document) end up(8001, async = false) ``` [SwaggerMarkdown](https://github.com/jiachengzhang1/SwaggerMarkdown) builds the swagger document from markdown comments in the code. It returns a `swagger_document::Dict{String, Any}` that can be used by `SwaggerUI.render_swagger` to render the API documentation as Swagger's fashion. ### Configuration & Customization **Swagger Explorer** The explorer can be turned off through setting the `Options.show_explorer` to `false`. It's turned on, i.e. `Options.show_explorer = true` by default. ```julia using Genie, Genie.Router using JSON using SwagUI swagger_document = JSON.parsefile("./swagger.json") # turn off the explorer options = Options() options.show_explorer = false route("/docs") do render_swagger(swagger_document, options=options) end ``` **Custom swagger options** Swagger UI can be configured by setting `Options.swagger_options::Dict{String, Any}`. The key is the name of the configuration while the value is the setting. More details about configuration can be found through the [Official Swagger UI Configuration page](https://github.com/swagger-api/swagger-ui/blob/master/docs/usage/configuration.md). The example below sets the URL pointing to API definition to `https://petstore.swagger.io/v2/swagger.json`. ```julia using Genie, Genie.Router using JSON using SwagUI # set the URL pointing to API definition options = Options() options.swagger_options["url"] = "https://petstore.swagger.io/v2/swagger.json" route("/docs") do # if swagger_options["url"] or swagger_options["urls"] is set, # swagger_document is not needed render_swagger(nothing, options=options) end ``` **Custom CSS** Set `Options.custom_css` to a custom CSS as `String`. ```julia using Genie, Genie.Router using JSON using SwagUI swagger_document = JSON.parsefile("./swagger.json") # set custom css using options options = Options() options.custom_css = ".swagger-ui .topbar { display: none }" route("/docs") do render_swagger(swagger_document, options=options) end ``` **TODO** More examples
SwagUI
https://github.com/GenieFramework/SwagUI.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
358
push!(LOAD_PATH,"../src/") using Pkg Pkg.activate(".") using Mangal using Weave _path_elements = ["docs", "src", "vignettes"] _jmd_files = filter(x -> endswith(x, ".Jmd"), readdir(joinpath(_path_elements...))) _files_to_compile = [joinpath(_path_elements..., f) for f in _jmd_files] for _file in _files_to_compile weave(_file, doctype="github") end
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
805
using Pkg using Documenter # push!(LOAD_PATH,"../src/") using Mangal _pkg_doc = [ "Data types" => "pkg/types.md", "Counting objects" => "pkg/count.md", "Methods for data retrieval" => "pkg/methods.md", "Networks retrieval" => "pkg/ecologicalnetworks.md", "Internal functions" => "pkg/internals.md" ] _pkg_vig = [ "Introduction" => "vignettes/introduction.md", "Counting & paging" => "vignettes/counting.md", ] _list_of_pages = [ "index.md", "Vignettes" => _pkg_vig, "Package documentation" => _pkg_doc ] makedocs( sitename = "Mangal.jl", authors = "Timothée Poisot", modules = [Mangal], pages = _list_of_pages ) deploydocs( deps = Deps.pip("pygments", "python-markdown-math"), repo = "github.com/PoisotLab/Mangal.jl.git", devbranch = "main" )
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
2169
module Mangal using HTTP using JSON using GeoInterface using Dates using TestItems const web_root = "https://mangal.io/" const api_root = web_root * "api/v2/" # Login include(joinpath(".", "login.jl")) # Types include(joinpath(".", "types.jl")) export MangalDataset export MangalNetwork export MangalReferenceTaxon export MangalNode export MangalInteraction export MangalReference export MangalAttribute export MangalUser # Endpoints const _MANGAL_ENDPOINTS = Dict( MangalReferenceTaxon => "taxonomy", MangalNode => "node", MangalInteraction => "interaction", MangalNetwork => "network", MangalDataset => "dataset", MangalReference => "reference", MangalAttribute => "attribute", MangalUser => "user", ) #trait = "trait", # The cache! global _MANGAL_CACHES = Dict( MangalNode => Dict{Int64,MangalNode}(), MangalReferenceTaxon => Dict{Int64,MangalReferenceTaxon}(), MangalNetwork => Dict{Int64,MangalNetwork}(), MangalAttribute => Dict{Int64,MangalAttribute}(), ) # Response formatters include("response_format.jl") # Basic functions include(joinpath(".", "basics.jl")) # Generate code to write most of the API -- including count method include(joinpath(".", "generators.jl")) export nodes, node export backbones, backbone export datasets, dataset export networks, network export references, reference export interactions, interaction export attributes, attribute export users, user # Datasets include(joinpath(".", "dataset.jl")) # Networks include(joinpath(".", "network.jl")) # Taxonomy backbone(s) include(joinpath(".", "backbone.jl")) # Network nodes include(joinpath(".", "node.jl")) # Interactions include(joinpath(".", "interaction.jl")) # References include(joinpath(".", "reference.jl")) # Counts include(joinpath(".", "count.jl")) # Show include(joinpath(".", "show.jl")) @testitem "We can get data in/out of cache" begin N = nodes()[1] n = node(N.id) @test length(Mangal._MANGAL_CACHES[MangalNode]) != 0 end @testitem "We can get attribute data" begin @test typeof(attributes()) <: Vector{MangalAttribute} @test typeof(attribute(6)) <: MangalAttribute end end # module
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
796
""" backbone(name::AbstractString) Returns the backbone entry for a taxon, matched by *exact* name. """ function backbone(name::AbstractString) q = backbones(Pair("name", name)) return isequal(1)(length(q)) ? only(q) : nothing end @testitem "We can get data from the backbone" begin @test typeof(backbones()) <: Vector{MangalReferenceTaxon} end @testitem "We can get data from the backbone with a search" begin @test typeof(backbones("q" => "Salix")) <: Vector{MangalReferenceTaxon} end @testitem "We can get specific taxa from the backbone" begin @test backbone(1).name == "Abutilon theophrasti" @test backbone("Abutilon theophrasti").id == 1 end @testitem "We can get paged data from the backbone" begin @test length(backbones(Pair("count", 10))) == 10 end
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
3491
""" cache(results::Vector{T}) where {T <: Union{MangalReferenceTaxon,MangalNode,MangalNetwork}} Internally, the `Mangal` package uses a cache to store some objects that are likely to be queried more than once. These are `MangalNode` and `MangalReferenceTaxon`, which are called in a nested way during the querying of *e.g.* `Interactions`. This is **not** a fancy mechanism, and it only works when calling the nodes or backbones by their `id` (which is what the resources-hungry functions do internally anyways). """ function cache(results::Vector{T}) where {T <: Union{MangalReferenceTaxon,MangalNode,MangalNetwork,MangalAttribute}} for result in results if !haskey(_MANGAL_CACHES[T], result.id) global _MANGAL_CACHES[T][result.id] = result end end end """ generate_base_header() If a bearer token is present, this function will add it to the header. """ function generate_base_header() headers = ["Content-Type" => "application/json"] if haskey(ENV, "MANGAL_BEARER_TOKEN") push!(headers, "Authorization" => "bearer $(ENV["MANGAL_BEARER_TOKEN"])") end return headers end """ generate_request_query(parameters::Pair...) Takes a series of `Pairs`, and returns an URL-ready query string. """ function generate_request_query(parameters::Pair...) query = "" for (i, pair) in enumerate(promote(parameters...)) i == 1 || (query *= "&") i == 1 && (query *= "?") query *= pair.first * "=" * string(pair.second) end return replace(query, " " => "+") end """ search_objects_by_query(endpoint::AbstractString, formatter::Function, query::Pair...) In all cases, it is assumed that the functions will be wrapepd in calls to query objects until no further objects are found. """ function search_objects_by_query(ReturnType::Type, query::Pair...) # Headers headers = Mangal.generate_base_header() # Full endpoint endpoint = Mangal.api_root * Mangal._MANGAL_ENDPOINTS[ReturnType] # Convert query parameters request_url = length(query) == 0 ? endpoint : endpoint*Mangal.generate_request_query(query...) # Perform the request this_request = HTTP.get(request_url, headers) request_body = String(this_request.body) request_body = replace(request_body, "–" => "-") # This shouldn't be necessary anymore but... # Returns the collection parsed_json = JSON.parse.(request_body) # Return the formatted object(s) formatter = (x) -> format_mangal_response(ReturnType, x) return convert(Vector{ReturnType}, formatter.(parsed_json)) end """ number_of_objects(endpoint::AbstractString, query::Pair...) This function will return the number of objects already queried, and remaining to query, for any given query. """ function number_of_objects(endpoint::AbstractString, query::Pair...) # Headers headers = Mangal.generate_base_header() # Full endpoint endpoint = Mangal.api_root * endpoint # Convert query parameters request_url = query == nothing ? endpoint : endpoint*Mangal.generate_request_query("count" => 1, query...) # Perform the request this_request = HTTP.get(request_url, headers) content_range = first(filter(head -> head.first == "Content-Range", this_request.headers)) positions = parse.(Int64, split(content_range.second, [' ', '-', '/'])[2:end]) range_begin = positions[1]+1 range_stop = positions[2]+1 range_ends = positions[3] return range_ends end
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
1289
""" count(::Type{MangalNetwork}, d::MangalDataset, query::Pair...) Return the number of networks that belong to a dataset, according to an optional series of queries. """ function count(::Type{MangalNetwork}, d::MangalDataset, query::Pair...) return count(MangalNetwork, "dataset_id" => d.id, query...) end """ count(::Type{MangalInteraction}, n::MangalNetwork, query::Pair...) Return the number of interactions that belong to a network, according to an optional series of queries. """ function count(::Type{MangalInteraction}, n::MangalNetwork, query::Pair...) return count(MangalInteraction, "network_id" => n.id, query...) end """ count(::Type{MangalNode}, n::MangalNetwork, query::Pair...) Return the number of nodes that belong to a network, according to an optional series of queries. """ function count(::Type{MangalNode}, n::MangalNetwork, query::Pair...) return count(MangalNode, "network_id" => n.id, query...) end """ count(::Type{MangalNode}, n::MangalReferenceTaxon, query::Pair...) Return the number of nodes that are instances of a reference taxon, according to an optional series of queries. """ function count(::Type{MangalNode}, r::MangalReferenceTaxon, query::Pair...) return count(MangalNode, "taxonomy_id" => r.id, query...) end
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
665
""" dataset(name::AbstractString) Return a single dataset by its name. """ function dataset(name::AbstractString) q = datasets(Pair("name", name)) return isequal(1)(length(q)) ? only(q) : nothing end @testitem "We can get dataset data" begin @test typeof(datasets()) <: Vector{MangalDataset} # Datasets with count count_2 = datasets(Pair("count", 2)) @test typeof(count_2) <: Vector{MangalDataset} @test length(count_2) == 2 # Dataset by id @test typeof(dataset(1)) <: MangalDataset # Dataset by name @test typeof(dataset("roberson_1929")) <: MangalDataset @test isnothing(dataset("This_DOESNOT_exist")) end
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
2621
types_names = ( (MangalReferenceTaxon, :backbone), (MangalNode, :node), (MangalNetwork, :network), (MangalDataset, :dataset), (MangalReference, :reference), (MangalInteraction, :interaction), (MangalAttribute, :attribute), (MangalUser, :user), ) import Base.count for mg_type_pair in types_names mg_type, mg_singular = mg_type_pair mg_plural = Symbol(string(mg_singular) * "s") @eval begin """ count(::Type{$($mg_type)}, query::Pair...) Returns the number of $($mg_type) objects that match a query. """ function Base.count(::Type{$mg_type}, query::Pair...) return Mangal.number_of_objects(Mangal._MANGAL_ENDPOINTS[$mg_type], query...) end end if haskey(Mangal._MANGAL_CACHES, mg_type) @eval begin """ $($mg_plural)(query::Pair...) This function will return objects of type $($mg_type) according to the query parameters. To accelerate future queries, the objects returned will be cached. To get the latest $($mg_type) records, this function can be called with no arguments. """ function $mg_plural(query::Pair...) results = search_objects_by_query($mg_type, query...) Mangal.cache(results) return results end """ $($mg_singular)(id::Int64) Returns the object of type $($mg_type) whose identifier is `id`. """ function $mg_singular(id::Int64) if haskey(Mangal._MANGAL_CACHES[$mg_type], id) return Mangal._MANGAL_CACHES[$mg_type][id] else return first($mg_plural(Pair("id", id))) end end end else @eval begin """ $($mg_plural)(query::Pair...) This function will return objects of type $($mg_type) according to the query parameters. To get the latest $($mg_type) records, this function can be called with no arguments. """ function $mg_plural(query::Pair...) results = search_objects_by_query($mg_type, query...) return results end """ $($mg_singular)(id::Int64) Returns the object of type $($mg_type) whose identifier is `id`. """ function $mg_singular(id::Int64) return first($mg_plural(Pair("id", id))) end end end end
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
2621
""" interactions(from::MangalNode, ::Colon, query::Pair...) Returns interactions established *by* the species given as its first argument. """ function interactions(from::MangalNode, ::Colon, query::Pair...) return interactions(Pair("node_from", string(from.id)), query...) end """ interactions(::Colon, to::MangalNode, query::Pair...) Returns interactions established *to* the species given as its second argument. """ function interactions(::Colon, to::MangalNode, query::Pair...) return interactions(Pair("node_to", string(to.id)), query...) end """ interactions(with::MangalNode, query::Pair...) Returns interactions established *around* the species given as its first argument. """ function interactions(with::MangalNode, query::Pair...) to = interactions(with, :, query...) fr = interactions(:, with, query...) append!(to, fr) return unique(to) end """ interactions(from::MangalNode, to::MangalNode, query::Pair...) Returns interactions between two nodes. """ function interactions(from::MangalNode, to::MangalNode, query::Pair...) return interactions(Pair("node_from", string(from.id)), Pair("node_to", string(to.id)), query...) end """ interactions(n::MangalNetwork, query::Pair...) Returns interactions within a network. """ function interactions(n::MangalNetwork, query::Pair...) return interactions("network_id" => n.id, query...) end @testitem "We can get all interactions" begin @test typeof(interactions()) <: Vector{MangalInteraction} end @testitem "We can get all interactions by type" begin @test typeof(interactions(Pair("type", "mutualism"))) <: Vector{MangalInteraction} end @testitem "We can get all interactions to a node" begin @test typeof(interactions(:, node(31863))) <: Vector{MangalInteraction} end @testitem "We can get all interactions from a node" begin @test typeof(interactions(node(31904), :)) <: Vector{MangalInteraction} end @testitem "We can get all interactions to a node by type" begin @test typeof(interactions(:, node(31863), Pair("type", "predation"))) <: Vector{MangalInteraction} end @testitem "We can get all interactions from a node by type" begin @test typeof(interactions(node(31904), :, Pair("type", "predation"))) <: Vector{MangalInteraction} end @testitem "We can get interactions between nodes" begin @test typeof(interactions(node(31904), node(31863))) <: Vector{MangalInteraction} end @testitem "We can get interactions between nodes by type" begin @test typeof(interactions(node(31904), node(31863), Pair("type", "predation"))) <: Vector{MangalInteraction} end
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
1555
""" login(token::AbstractString) This function will store the token in the `MANGAL_BEARER_TOKEN` environmental variable. To get the your token, please use `login` with no argument. """ function login(token::AbstractString) ENV["MANGAL_BEARER_TOKEN"] = token @info "Bearer token registered" end """ login() Read the bearer token from the `MANGAL_BEARER_TOKEN` environment variable. If not found, displays a login message with a login URL. Currently, being logged in is only necessary to access private datasets. """ function login() if haskey(ENV, "MANGAL_BEARER_TOKEN") @info "Your bearer token is already registered" else Mangal.login_message() end end """ login_message() Points user to the login URL, and explains how the bearer token can be saved persistently. """ function login_message() @info "You need to login" msg = """ To login, please go to $(Mangal.web_root)auth/ You will be prompted to login using ORCID - when this is done, you will be returned to your profile page, which contains the access_token. Copy and paste this value, and use it in the login function: julia> my_access_token = "12345654-1234-1234-4321-4343435353" julia> Mangal.login(my_access_token) If you want to save your bearer token, you can place it in an environmental variable named MANGAL_BEARER_TOKEN -- this will let you use julia> Mangal.login() """ @info msg end @testitem "We can get user data" begin @test typeof(users()) <: Vector{MangalUser} end
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
1687
""" networks(dataset::MangalDataset, query::Pair...) Returns networks that are part of a `MangalDataset`. Allows additional query parameters. """ function networks(dataset::MangalDataset, query::Pair...) return networks(Pair("dataset_id", dataset.id), query...) end """ network(name::AbstractString) Returns a network of a given name. """ function network(name::AbstractString) q = networks(Pair("name", name)) return isequal(1)(length(q)) ? only(q) : nothing end @testitem "We can get networks" begin @test typeof(networks()) <: Vector{MangalNetwork} end @testitem "We can get a network by ID" begin @test typeof(network(19)) <: MangalNetwork end @testitem "We can get a network by name" begin @test typeof(network("howking_1968_19680601_12")) <: MangalNetwork end @testitem "We can get a network by dataset" begin ds = dataset(62) n_ds = networks(ds) @test typeof(n_ds) <: Vector{MangalNetwork} end @testitem "We can get a network by dataset with additional arguments" begin ds = dataset(62) n_ds_q = networks(ds, Pair("count", 2)) @test typeof(n_ds_q) <: Vector{MangalNetwork} @test length(n_ds_q) == 2 end @testitem "We can page through multiple network queries" begin this_page = 1 networks_ponisio = networks(dataset("ponisio_2017"), Pair("count", 10), Pair("page", this_page)) keep_querying = true while keep_querying global this_page += 1 response = networks(dataset("ponisio_2017"), Pair("count", 10), Pair("page", this_page)) append!(networks_ponisio, response) global keep_querying = length(response) > 0 end @test length(networks_ponisio) == 131 end
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
1071
""" nodes(network::MangalNetwork, query::Pair...) Returns the nodes that are part of a `MangalNetwork`, with an additional optional query. """ function nodes(network::MangalNetwork, query::Pair...) return nodes(Pair("network_id", network.id), query...) end """ nodes(taxon::MangalReferenceTaxon, query::Pair...) Returns the nodes that are instance of a `MangalReferenceTaxon`, with an additional query. """ function nodes(taxon::MangalReferenceTaxon, query::Pair...) return nodes(Pair("taxonomy_id", taxon.id), query...) end @testitem "We can get node data" begin @test typeof(nodes()) <: Vector{MangalNode} end @testitem "We can get nodes of a network" begin N1 = network(19) nN1 = nodes(N1) @test typeof(nN1) <: Vector{MangalNode} end @testitem "We can get taxonomic data in nodes" begin n1 = node(2158) @test typeof(n1) <: MangalNode @test typeof(n1.taxon) <: MangalReferenceTaxon end @testitem "We can get nodes from backbone data" begin b1 = backbone(1) nb1 = nodes(b1) @test first(nb1).taxon == b1 end
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
250
""" reference(d::MangalDataset) Returns the `MangalReference` associated to a `MangalDataset`. This is a convenience function that returns the `reference` field of the dataset. """ function reference(d::MangalDataset) return d.reference end
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
5573
""" format_mangal_coordinates(d::Dict{T,Any}) where {T <: AbstractString} Returns a set of coordinates in a `GeoInterface` object, which can be a `PointTrait` or a `PolygonTrait`. """ function format_mangal_coordinates(d::Dict{T,Any}) where {T <: AbstractString} point_type = d["geom"]["type"] == "Point" ? PointTrait : PolygonTrait if point_type == PolygonTrait coords = [float.(x) for x in first(d["geom"]["coordinates"])] point_coordinates = coords else coords = float.(d["geom"]["coordinates"]) point_coordinates = coords end return point_coordinates end function format_mangal_response(::Type{MangalDataset}, d::Dict{T,Any}) where {T <: AbstractString} obj_id = d["id"] obj_public = d["public"] obj_name = d["name"] obj_created = DateTime(d["created_at"][1:19]) obj_updated = DateTime(d["updated_at"][1:19]) obj_reference = isnothing(d["ref_id"]) ? missing : reference(d["ref_id"]) obj_user = d["user_id"] obj_description = d["description"] return MangalDataset(obj_id, obj_public, obj_name, obj_created, obj_updated, obj_reference, obj_user, obj_description ) end function format_mangal_response(::Type{MangalNetwork}, d::Dict{T,Any}) where {T <: AbstractString} obj_id = d["id"] obj_public = d["public"] obj_name = d["name"] obj_date = isnothing(d["date"]) ? missing : DateTime(d["date"][1:19]) obj_position = isnothing(d["geom"]) ? missing : format_mangal_coordinates(d) obj_created = DateTime(d["created_at"][1:19]) obj_updated = DateTime(d["updated_at"][1:19]) obj_user = isnothing(d["user_id"]) ? missing : d["user_id"] obj_description = d["description"] obj_complete = d["all_interactions"] obj_dataset = isnothing(d["dataset_id"]) ? missing : dataset(d["dataset_id"]) return MangalNetwork(obj_id, obj_public, obj_name, obj_date, obj_position, obj_created, obj_updated, obj_user, obj_description, obj_complete, obj_dataset) end function format_mangal_response(::Type{MangalNode}, d::Dict{T,Any}) where {T <: AbstractString} obj_id = d["id"] obj_name = d["original_name"] obj_created = DateTime(d["created_at"][1:19]) obj_updated = DateTime(d["updated_at"][1:19]) obj_taxon = isnothing(d["taxonomy"]) ? missing : Mangal.format_mangal_response(MangalReferenceTaxon, d["taxonomy"]) return MangalNode(obj_id, obj_name, obj_created, obj_updated, obj_taxon) end function format_mangal_response(::Type{MangalReferenceTaxon}, d::Dict{T,Any}) where {T <: AbstractString} obj_id = d["id"] obj_name = d["name"] obj_bold = isnothing(d["bold"]) ? missing : d["bold"] obj_tsn = isnothing(d["tsn"]) ? missing : d["tsn"] obj_ncbi = isnothing(d["ncbi"]) ? missing : d["ncbi"] obj_eol = isnothing(d["eol"]) ? missing : d["eol"] obj_gbif = isnothing(d["gbif"]) ? missing : d["gbif"] obj_created = DateTime(d["created_at"][1:19]) obj_updated = DateTime(d["updated_at"][1:19]) return MangalReferenceTaxon(obj_id, obj_name, obj_bold, obj_tsn, obj_ncbi, obj_eol, obj_gbif, obj_created, obj_updated) end function format_mangal_response(::Type{MangalInteraction}, d::Dict{T,Any}) where {T <: AbstractString} obj_id = d["id"] obj_network = network(d["network_id"]) obj_from = node(d["node_from"]) obj_to = node(d["node_to"]) obj_date = isnothing(d["date"]) ? missing : DateTime(d["date"][1:19]) obj_position = isnothing(d["geom"]) ? missing : format_mangal_coordinates(d) obj_directed = d["direction"] == "directed" obj_interaction = Symbol(d["type"]) obj_method = isnothing(d["method"]) ? missing : d["method"] obj_strength = isnothing(d["value"]) ? missing : d["value"] obj_created = DateTime(d["created_at"][1:19]) obj_updated = DateTime(d["updated_at"][1:19]) obj_attribute = isnothing(d["attr_id"]) ? missing : format_mangal_response(MangalAttribute, d["attribute"]) return MangalInteraction(obj_id, obj_network, obj_from, obj_to, obj_date, obj_position, obj_directed, obj_interaction, obj_method, obj_strength, obj_created, obj_updated, obj_attribute) end function format_mangal_response(::Type{MangalReference}, d::Dict{T,Any}) where {T <: AbstractString} obj_id = d["id"] obj_year = d["year"] == "NA" ? missing : parse(Int64, d["year"][1:4]) obj_doi = isnothing(d["doi"]) ? missing : d["doi"] obj_jstor = isnothing(d["jstor"]) ? missing : d["jstor"] obj_pmid = isnothing(d["pmid"]) ? missing : d["pmid"] obj_bibtex = isnothing(d["bibtex"]) ? missing : d["bibtex"] obj_paper = isnothing(d["paper_url"]) ? missing : d["paper_url"] obj_data = isnothing(d["data_url"]) ? missing : d["data_url"] return MangalReference(obj_id, obj_year, obj_doi, obj_jstor, obj_pmid, obj_bibtex, obj_paper, obj_data) end function format_mangal_response(::Type{MangalAttribute}, d::Dict{T,Any}) where {T <: AbstractString} obj_id = d["id"] obj_name = d["name"] obj_description = d["description"] obj_unit = isnothing(d["unit"]) ? missing : d["unit"] return MangalAttribute(obj_id, obj_name, obj_description, obj_unit) end function format_mangal_response(::Type{MangalUser}, d::Dict{T,Any}) where {T <: AbstractString} obj_id = d["id"] obj_name = d["name"] obj_orcid = d["orcid"] obj_email = isnothing(d["email"]) ? missing : d["email"] obj_org = isnothing(d["organization"]) ? missing : d["organization"] return MangalUser(obj_id, obj_name, obj_email, obj_orcid, obj_org) end
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
893
function _short_desc(s::String) return length(s) < 80 ? s : strip(s[1:79]*"…") end function Base.show(io::IO, dataset::MangalDataset) print(io, """🗃️ Mangal dataset #$(dataset.id) ($(dataset.name))""") end function Base.show(io::IO, network::MangalNetwork) print(io, """🕸️ Mangal network #$(network.id) ($(network.name))""") end function Base.show(io::IO, interaction::MangalInteraction) print(io, """🔄 Mangal int° #$(interaction.id): from $(interaction.from.name) to $(interaction.to.name)""") end function Base.show(io::IO, user::MangalUser) print(io, """🫂 Mangal contributor #$(user.id): $(user.name) - $(user.orcid)""") end function Base.show(io::IO, node::MangalNode) print(io, """🦝 Mangal node #$(node.id): $(node.name)""") end function Base.show(io::IO, taxon::MangalReferenceTaxon) print(io, """🌲 Mangal taxon #$(taxon.id): $(taxon.name)""") end
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
4793
""" Attribute """ struct MangalAttribute id::Int64 name:: AbstractString description::AbstractString unit::Union{Missing,AbstractString} end """ Reference """ struct MangalReference id::Int64 year::Union{Missing,Int64} doi::Union{String,Missing} jstor::Union{String,Missing} pmid::Union{String,Missing} bibtex::Union{String,Missing} paper::Union{String,Missing} data::Union{String,Missing} end """ A `MangalDataset` identifies a collection of networks, possibly containing a single element. A dataset is identified by its `id` or `name` (both of which are *unique*). `name` (`AbstractString`): a unique name describing the dataset. `public` (`Bool`): indicates whether the dataset details are available to others than its owner. `reference` (`Union{Int64,Nothing}`) (*optional*): a reference to the `id` of the `MangalReference`, or `nothing` if there is no associated reference for this dataset. `user` (`Int64`): `id` of the user who added the dataset to the database. This is *not necessarily* the author of the dataset, see `reference` (and the same field in the `MangalNetwork`) to get the actual authorship. `description` (`AbstractString`): a free-form description of the dataset. """ struct MangalDataset id::Int64 public::Bool name::AbstractString created::DateTime updated::DateTime reference::Union{MangalReference,Missing} user::Int64 description::AbstractString end """ A `MangalNetwork` is a wrapper around *nodes* (and not around interactions, for reasons which are really not worth mentioning here, but see the documentation for `MangalNode` for some hints). `name` (`AbstractString`): a unique name describing the network. `dataset` (`Int64`): the unique id of the `MangalDataset` to which the network belongs. `public` (`Bool`): indicates whether the network details are available to others than its owner. `date` (`DateTime`): date and time at which the network was sampled. `position` (`AbstractGeometryTrait`): the location at which the network was sampled. This can be any sort of geospatial construct, most notably points *or* polygons. `complete` (`Bool`): indicates whether the network was sampled completely, or is a collection of interactions with possible gaps. `reference` (`Union{Int64,Nothing}`) (*optional*): a reference to the `id` of the `MangalReference`, or `nothing` if there is no associated reference for this network. `user` (`Int64`): `id` of the user who added the network to the database. This is *not necessarily* the author of the network, see `reference` to get the actual authorship. `description` (`AbstractString`): a free-form description of the network. """ struct MangalNetwork id::Int64 public::Bool name::AbstractString date::Union{DateTime,Missing} position created::DateTime updated::DateTime user::Union{Int64,Missing} description::AbstractString complete::Bool dataset::Union{MangalDataset,Missing} end """ Reference taxon (unique identifier of network nodes) """ struct MangalReferenceTaxon id::Int64 name::AbstractString bold::Union{Int64,Missing} tsn::Union{Int64,Missing} ncbi::Union{Int64,Missing} eol::Union{Int64,Missing} gbif::Union{Int64,Missing} created::DateTime updated::DateTime end """ Node in a network The `taxon` field is a `MangalReferenceTaxon` object, so that one can, for example, query the TSN identifier of a node through `object.taxon.tsn`. This approach has been chosen because (i) names of nodes in networks can be non unique and (ii) nodes within the same networks can refer to various taxonomic levels. As an example, if a network has four distinct nodes identified as `Ascariasis sp.`, they will represent four nodes in the networks, but map onto the same `MangalReferenceTaxon` (representing the entire *Ascariasis* genus). This approach provides a seemless representation of the same taxon across different networks, but also of the same taxon *within* networks. """ struct MangalNode id::Int64 name::AbstractString created::DateTime updated::DateTime taxon::Union{MangalReferenceTaxon,Missing} end """ Interaction """ struct MangalInteraction id::Int64 network::MangalNetwork from::MangalNode to::MangalNode date::Union{DateTime,Missing} position directed::Bool interaction::Symbol method::Union{AbstractString,Missing} strength::Union{Number,Missing} created::DateTime updated::DateTime attribute::Union{Missing,MangalAttribute} end """ MangalUser """ struct MangalUser id::Int64 name::AbstractString email::Union{Missing,AbstractString} orcid::Union{Missing,AbstractString} organization::Union{Missing,AbstractString} end
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
552
module MangalTestKnownBugs using Mangal using EcologicalNetworks using Test _problematic_ids = [28, 83, 86, 100, 101, 102, 103, 1280, 2463, 2464, 3258, 922, 924, 889, 890, 907, 906, 1516] for (idx,netid) in enumerate(_problematic_ids) thisnet = Mangal.network(netid) @test typeof(thisnet) <: MangalNetwork U = convert(UnipartiteNetwork, thisnet) @test typeof(U) <: UnipartiteNetwork T = taxonize(U) @test eltype(EcologicalNetworks.species(T)) <: MangalReferenceTaxon end end
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
code
39
using TestItemRunner @run_package_tests
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
docs
1420
### Mangal.jl [![latest doc](https://img.shields.io/badge/documentation-stable-brightgreen)](https://poisotlab.github.io/Mangal.jl/stable/) [![latest doc](https://img.shields.io/badge/documentation-latest-green)](https://poisotlab.github.io/Mangal.jl/latest/) ![CI](https://github.com/PoisotLab/Mangal.jl/workflows/CI/badge.svg?branch=master) [![codecov](https://codecov.io/gh/PoisotLab/Mangal.jl/branch/master/graph/badge.svg?token=HKaubLliPG)](https://codecov.io/gh/PoisotLab/Mangal.jl) [![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active) [![DOI](https://zenodo.org/badge/144035225.svg)](https://zenodo.org/badge/latestdoi/144035225) This package is a wrapper around the *new* API for the mangal ecological interactions database. It uses [Julia 1.1][jl] to provide a programmatic interface to *read* the data. Development of this package and the underlying database was funded by the [Canadian Foundation for Innovation][cfi] and [NSERC][nserc]. [cfi]: https://www.innovation.ca/ [nserc]: http://www.nserc-crsng.gc.ca/index_eng.asp [jl]: https://julialang.org/ ## Getting started Enter package mode by pressing `]` from the Julia REPL. Then install: ~~~ add Mangal ~~~ That's it. Now head over to the [documentation](https://poisotlab.github.io/Mangal.jl/dev/).
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
docs
600
<!-- Thank you for opening an issue! If your issue is about a question, or a suggestion, please replace all of the content between curly brackets, {like so}, by the appropriate information. If your issue is a more technical point, or a suggestion for improvement, feel free to remove all of this and just write as usual. --> {short description of the problem} {what you were trying to do} ```julia # Please put the relevant code here ``` {what you expected to see} {what you got instead} --- Using {operating system}, Julia {version}, EcologicalNetwork {version} {any additional information}
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
docs
689
# {describe feature here} <!-- Thank you for this pull request! Please replace any information between curly brackets {like so} with the relevant information. --> {short description of what the PR does} ## Related issues <!-- If relevant, please add links to the relevant issues, using `#00` --> ## Checklist - [ ] The code is covered by unit tests - [ ] Additional cases or module in `test/...` - [ ] Relevant lines in `test/runtests.jl` - [ ] The code is *documented* - [ ] Docstrings written for every function - [ ] If needed, additional lines in `docs/src/...` - [ ] All contributors have added their name and affiliation to `.zenodo.json` ## Pinging Pinging @tpoisot
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
docs
848
--- name: Bug report about: Create a report to help us improve title: '' labels: bug, need triage assignees: '' --- **Describe the bug** A clear and concise description of what the bug is. **To Reproduce** Steps to reproduce the behavior: 1. Go to '...' 2. Click on '....' 3. Scroll down to '....' 4. See error **Expected behavior** A clear and concise description of what you expected to happen. **Screenshots** If applicable, add screenshots to help explain your problem. **Desktop (please complete the following information):** - OS: [e.g. iOS] - Browser [e.g. chrome, safari] - Version [e.g. 22] **Smartphone (please complete the following information):** - Device: [e.g. iPhone6] - OS: [e.g. iOS8.1] - Browser [e.g. stock browser, safari] - Version [e.g. 22] **Additional context** Add any other context about the problem here.
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
docs
617
--- name: Feature request about: Suggest an idea for this project title: '' labels: enhancement, need triage assignees: '' --- **Is your feature request related to a problem? Please describe.** A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] **Describe the solution you'd like** A clear and concise description of what you want to happen. **Describe alternatives you've considered** A clear and concise description of any alternative solutions or features you've considered. **Additional context** Add any other context or screenshots about the feature request here.
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
docs
171
--- name: To-do about: Short notes on development tasks title: '' labels: need triage, to do assignees: '' --- ## What to do? ... ## Why? ... ## Any ideas how? ...
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
docs
837
# Mangal This manual describes the functionalities of the `Mangal.jl` package, to query data from species interaction networks. This package is a wrapper around the *new* API for the mangal ecological interactions database. It uses [Julia 1.1](https://julialang.org/) to provide a programmatic interface to *read* the data. Development of this package and the underlying database was funded by the [Canadian Foundation for Innovation](https://www.innovation.ca/) and the [Natural Sciences and Engineering Research Council of Canada](http://www.nserc-crsng.gc.ca/). ## Original publication Poisot, T. , Baiser, B. , Dunne, J. A., Kéfi, S. , Massol, F. , Mouquet, N. , Romanuk, T. N., Stouffer, D. B., Wood, S. A. and Gravel, D. (2016), mangal – making ecological network analysis simple. Ecography, 39: 384-390. doi:10.1111/ecog.00976
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
docs
484
The recommended way to get data is through `Mangal.jl` integration with the `EcologicalNetworks.jl` package for networks analysis. There is no obvious way to know in advance if a network is bipartite or not. For this reason, this wrapper *only* returns unipartite objects. They can be converted into bipartite networks using the `convert` methods in `EcologicalNetworks.jl`. ## Generate network objects ```@docs convert ``` ## Increase taxonomic resolution ```@docs taxonize ```
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
docs
531
## Login !!! info "Login" Mangal relies on [ORCID](https://orcid.org/) for authentication and login. As long as you have an ORCID profile, you can login. ```@docs Mangal.login ``` ## Formatters ```@docs Mangal.format_mangal_response Mangal.format_mangal_coordinates ``` ## Other functions ```@docs Mangal.generate_base_header Mangal.generate_request_query Mangal.search_objects_by_query ``` ## Caching ```@docs Mangal.cache ``` ## Full data retrieval ```@docs Mangal.get_all_nodes Mangal.get_all_interactions ```
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
docs
1840
This page presents the basic functions to access all of the data stored in *mangal*. !!! note "Naming conventions" Functions whose name is plural (*e.g* `networks`) will return a `Vector` of their type. Functions whose name is singular (*e.g.* `network`) return a single object. All functions returning a `Vector` can accept `Pair` object for querying. In addition to the search by name (when available) and ID (for all objects), most of the functions have methods to work on other types of objects. For example, `networks` has a function taking a `MangalDataset` as an object, which will retrieve the networks belonging to this dataset. !!! danger "Paging matters!" The server returns (by default) 200 objects for a given query, and this number can be increased up to 1000. This may not be sufficient to retrieve the entire information, for example in networks with more than 200 nodes. Not paying attention to paging when using these functions directly (as opposed to within the `EcologicalNetworks` wrappers) means that you are at risk of *not working with the entire dataset*. ## A note on queries The Mangal API is built on [`epilogue`](https://github.com/dchester/epilogue#rest-api) -- this offers sorting and filtering functionalities. These operations are referred to as "queries" across the package. All queries are passed as *pairs*. For example, filtering interactions that are of the mutualist type, and sorting them by `id`, is done with: ~~~ interactions("type" => "mutualism", "sort" => "id") ~~~ ## For datasets ```@docs datasets dataset ``` ## Networks ```@docs networks network ``` ## Interactions ```@docs interactions interaction ``` ## Nodes ```@docs nodes node ``` ## Reference taxon ```@docs backbones backbone ``` ## References ```@docs references reference ```
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
docs
459
All types have three fields in common: `id` (`Int64`), a unique identifier, and `created` and `updated` (both `DateTime`), which give the time of in-database creation and last modification. ## Core types ```@docs MangalDataset MangalNetwork MangalInteraction ``` ## Taxonomy types ```@docs MangalNode MangalReferenceTaxon ``` ## Additional information ```@docs MangalTrait MangalAttribute ``` ## Metadata types ```@docs MangalUser MangalReference ```
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
docs
2548
# Counting objects and paging The goal of this vignette is to see how we can *count* objects, *i.e.* get the number of entries in the database, and how we can then use this information to *page* through the objects, *i.e.* download all of the matching records. To illustrate, we will use a simple use case: plotting the relationship between number of species and number of links in a number of food webs. ```julia using Mangal using Plots ``` ## Counting and querying Each type in **Mangal** has its own `count` method, which can be called without any argument to return the total number of entries in the database. For example, the total number of networks is: ```julia count(MangalNetwork) ``` We can also pass queries to the `count` methods. One of the most general way to query things is to use `"q"`, which will look for a match in all text fields for the type. In this use case, we want to retrieve the dataset corresponding to Karl Havens' classical study about food web scaling, so we can look for the datasets with the string `"havens"` in them: ```julia Havens_data = first(datasets("q" => "havens")) ``` This information can be used to only count the number of networks that belong to this dataset: ```julia count(MangalNetwork, "dataset_id" => Havens_data.id) ``` Note that for convenience, there is a `count` method that will accept a `MangalDataset` object to return the number of networks in this dataset. As you may assume, it does nothing more internally than what we did at the step above. ```julia Havens_count = count(MangalNetwork, Havens_data) ``` ## Paging Paging refers to retrieving multiple records from the database. It is regulated by two parameters: `"count"`, the number of records to return *per* page (default: `100`), and `"page"`, the page number (starting at 0). In this example, we will return 10 objects per page, and so we will need to loop through multiple pages: ```julia Havens_networks = networks(Havens_data, "count" => 10) page = 0 while length(Havens_networks) < Havens_count global page = page + 1 append!(Havens_networks, networks(Havens_data, "page" => page, "count" => 10) ) end ``` ## Producing the plot Finally, we can use additional `count` methods to get the number of nodes (species) and interactions within each network, to produce the figure: ```julia LS = [ (count(MangalInteraction, n), count(MangalNode, n)) for n in Havens_networks ] scatter(LS, c=:white, leg=false, frame=:box) xaxis!(:log, "Species richness") yaxis!(:log, "Number of interactions") ```
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
docs
3389
# Counting objects and paging The goal of this vignette is to see how we can *count* objects, *i.e.* get the number of entries in the database, and how we can then use this information to *page* through the objects, *i.e.* download all of the matching records. To illustrate, we will use a simple use case: plotting the relationship between number of species and number of links in a number of food webs. ````julia using Mangal using Plots ```` ## Counting and querying Each type in **Mangal** has its own `count` method, which can be called without any argument to return the total number of entries in the database. For example, the total number of networks is: ````julia count(MangalNetwork) ```` ```` 1386 ```` We can also pass queries to the `count` methods. One of the most general way to query things is to use `"q"`, which will look for a match in all text fields for the type. In this use case, we want to retrieve the dataset corresponding to Karl Havens' classical study about food web scaling, so we can look for the datasets with the string `"havens"` in them: ````julia Havens_data = first(datasets("q" => "havens")) ```` ```` MangalDataset(15, true, "havens_1992", 1984-06-01T04:00:00, 2019-02-23T01:4 7:06, 2019-02-23T01:47:06, MangalReference(15, 1992, "10.1126/science.257.5 073.1107", missing, missing, "@article{Havens_1992, doi = {10.1126/science. 257.5073.1107}, url = {https://doi.org/10.1126%2Fscience.257.5073.1107}, ye ar = 1992, month = {aug}, publisher = {American Association for the Advance ment of Science ({AAAS})}, volume = {257}, number = {5073}, pages = {1107-- 1109}, author = {K. Havens}, title = {Scale and Structure in Natural Food W ebs}, journal = {Science}}", "https://doi.org/10.1126%2Fscience.257.5073.11 07", "URL of the attached data"), 3, "Pelagic communities of small lakes an d ponds of the Adirondack") ```` This information can be used to only count the number of networks that belong to this dataset: ````julia count(MangalNetwork, "dataset_id" => Havens_data.id) ```` ```` 50 ```` Note that for convenience, there is a `count` method that will accept a `MangalDataset` object to return the number of networks in this dataset. As you may assume, it does nothing more internally than what we did at the step above. ````julia Havens_count = count(MangalNetwork, Havens_data) ```` ```` 50 ```` ## Paging Paging refers to retrieving multiple records from the database. It is regulated by two parameters: `"count"`, the number of records to return *per* page (default: `100`), and `"page"`, the page number (starting at 0). In this example, we will return 10 objects per page, and so we will need to loop through multiple pages: ````julia Havens_networks = networks(Havens_data, "count" => 10) page = 0 while length(Havens_networks) < Havens_count global page = page + 1 append!(Havens_networks, networks(Havens_data, "page" => page, "count" => 10) ) end ```` ## Producing the plot Finally, we can use additional `count` methods to get the number of nodes (species) and interactions within each network, to produce the figure: ````julia LS = [ (count(MangalInteraction, n), count(MangalNode, n)) for n in Havens_networks ] scatter(LS, c=:white, leg=false, frame=:box) xaxis!(:log, "Species richness") yaxis!(:log, "Number of interactions") ```` ![](figures/counting_7_1.png)
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
docs
3474
# Integration with `EcologicalNetworks.jl` The **Mangal** package is integrated with **EcologicalNetworks** for analysis. ```julia using Mangal using EcologicalNetworks ``` ## A simple example In this simple example, we will look at a food web from 1956, retrieve it from the Mangal database, then convert it into a usable object: ```julia db_version = network("johnston_1956_19560101_947"); db_version.description ``` The conversion to the network is done using the `convert` method, which by default will return a `UnipartiteNetwork`, where species are the `MangalNode` of the original network: ```julia N = convert(UnipartiteNetwork, db_version) ``` We can check that the type of the network is correct: ```julia eltype(N) ``` We can also confirm that all interactions and node counts match: ```julia count(MangalInteraction, db_version) == links(N) ``` ```julia count(MangalNode, db_version) == richness(N) ``` ## A more complex example In this ```julia hp_dataset = dataset("hadfield_2014"); hp_networks = networks(hp_dataset); ``` The next step might take a minute or two, but will consist in downloading every information related to the network, and converting it into one `UnipartiteNetwork` for every network in the dataset. ```julia N = [convert(UnipartiteNetwork, n) for n in hp_networks]; ``` Note that the previous step could use queries too, so it would be possible to restrict the interactions to, *e.g.* a certain type, for networks with multiple interaction types. ```julia B = [convert(BipartiteNetwork, n) for n in N]; ``` ```julia using Plots histogram(η.(B), frame=:box, c=:white) xaxis!("Nestedness", (0,1)) yaxis!("", (0, 25)) ``` ## Building custom networks Converting to a network is *always* a wrapper around converting an array of interactions. Let's imagine that we are interested in representing the network of species that either consume, or are consumed by, salmonids. The first step will be to retrieve the `MangalReferenceTaxon` that correspond to these species: ```julia salmonids = backbones("q" => "Salmo") ``` For every `MangalReferenceTaxon`, we need to retrieve its number of `MangalNode` -- let's see how many there are, using the shorthand `count` method for this: ```julia count.(MangalNode, salmonids) ``` Since none of these are very high, we can retrieve the nodes directly: ```julia salmonids_nodes = vcat(nodes.(salmonids)...); ``` At this point, we may want to count the number of interactions for all of the nodes, but let us (for the sake of simplicity) trust that there are fewer than 500 in all cases: ```julia all_int = [Mangal.interactions(salmo, "count" => 500) for salmo in salmonids_nodes]; salmonids_interactions = vcat(all_int...); ``` At this point, we end up with a `Vector{MangalInteraction}`, *i.e.* an array of interactions. An interesting consequence of this approach is that we now can look at all the datasets that are part of this query, and *e.g.* retrieve their DOI: ```julia salmonids_datasets = unique([i.network.dataset for i in salmonids_interactions]) [d.reference.doi for d in salmonids_datasets] ``` Finally, the array of interactions can be converted into a `UnipartiteNetwork`: ```julia salmonid_network = convert(UnipartiteNetwork, salmonids_interactions) ``` Get the taxa ```julia salmonid_resolved_network = taxonize(salmonid_network) ``` show interactions ```julia for i in salmonid_resolved_network println("$(i.from.name) -> $(i.to.name)") end ```
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
docs
6726
# Integration with `EcologicalNetworks.jl` The **Mangal** package is integrated with **EcologicalNetworks** for analysis. ````julia using Mangal using EcologicalNetworks ```` ## A simple example In this simple example, we will look at a food web from 1956, retrieve it from the Mangal database, then convert it into a usable object: ````julia db_version = network("johnston_1956_19560101_947"); db_version.description ```` ```` "Predation by short-eared owls on a salicornia salt marsh" ```` The conversion to the network is done using the `convert` method, which by default will return a `UnipartiteNetwork`, where species are the `MangalNode` of the original network: ````julia N = convert(UnipartiteNetwork, db_version) ```` ```` 19×19 unipartite ecological network (Bool, MangalNode) (L: 58) ```` We can check that the type of the network is correct: ````julia eltype(N) ```` ```` (Bool, MangalNode) ```` We can also confirm that all interactions and node counts match: ````julia count(MangalInteraction, db_version) == links(N) ```` ```` true ```` ````julia count(MangalNode, db_version) == richness(N) ```` ```` true ```` ## A more complex example In this ````julia hp_dataset = dataset("hadfield_2014"); hp_networks = networks(hp_dataset); ```` The next step might take a minute or two, but will consist in downloading every information related to the network, and converting it into one `UnipartiteNetwork` for every network in the dataset. ````julia N = [convert(UnipartiteNetwork, n) for n in hp_networks]; ```` Note that the previous step could use queries too, so it would be possible to restrict the interactions to, *e.g.* a certain type, for networks with multiple interaction types. ````julia B = [convert(BipartiteNetwork, n) for n in N]; ```` ````julia using Plots histogram(η.(B), frame=:box, c=:white) xaxis!("Nestedness", (0,1)) yaxis!("", (0, 25)) ```` ![](figures/ecologicalnetworks_10_1.png) ## Building custom networks Converting to a network is *always* a wrapper around converting an array of interactions. Let's imagine that we are interested in representing the network of species that either consume, or are consumed by, salmonids. The first step will be to retrieve the `MangalReferenceTaxon` that correspond to these species: ````julia salmonids = backbones("q" => "Salmo") ```` ```` 5-element Array{MangalReferenceTaxon,1}: MangalReferenceTaxon(4173, "Salmo trutta", 47318, 161997, 8032, 10237843, missing, 2019-02-22T22:40:06, 2019-02-22T22:40:06) MangalReferenceTaxon(4261, "Salmo gairdneri", missing, 161991, 857570, mis sing, missing, 2019-02-22T22:40:12, 2019-02-22T22:40:12) MangalReferenceTaxon(4286, "Salmoninae", 71162, 623286, 504568, missing, m issing, 2019-02-23T03:04:02, 2019-02-23T03:04:02) MangalReferenceTaxon(5300, "Salmonidae", 1340, 161931, 8015, 11144860, mis sing, 2019-02-27T04:10:07, 2019-02-27T04:10:07) MangalReferenceTaxon(7015, "Salmo salar", 30453, 161996, 8030, 11144931, m issing, 2019-03-19T19:16:54, 2019-03-19T19:16:54) ```` For every `MangalReferenceTaxon`, we need to retrieve its number of `MangalNode` -- let's see how many there are, using the shorthand `count` method for this: ````julia count.(MangalNode, salmonids) ```` ```` 5-element Array{Int64,1}: 12 1 1 5 1 ```` Since none of these are very high, we can retrieve the nodes directly: ````julia salmonids_nodes = vcat(nodes.(salmonids)...); ```` At this point, we may want to count the number of interactions for all of the nodes, but let us (for the sake of simplicity) trust that there are fewer than 500 in all cases: ````julia all_int = [Mangal.interactions(salmo, "count" => 500) for salmo in salmonids_nodes]; salmonids_interactions = vcat(all_int...); ```` At this point, we end up with a `Vector{MangalInteraction}`, *i.e.* an array of interactions. An interesting consequence of this approach is that we now can look at all the datasets that are part of this query, and *e.g.* retrieve their DOI: ````julia salmonids_datasets = unique([i.network.dataset for i in salmonids_interactions]) [d.reference.doi for d in salmonids_datasets] ```` ```` 9-element Array{Union{Missing, String},1}: missing "10.1126/science.257.5073.1107" "10.2307/1604" missing "10.1080/00288330.2004.9517265" "10.1016/j.ecolmodel.2010.10.024" missing "10.1016/j.pocean.2012.02.002" "10.2307/1599" ```` Finally, the array of interactions can be converted into a `UnipartiteNetwork`: ````julia salmonid_network = convert(UnipartiteNetwork, salmonids_interactions) ```` ```` 408×408 unipartite ecological network (Bool, MangalNode) (L: 406) ```` Get the taxa ````julia salmonid_resolved_network = taxonize(salmonid_network) ```` ```` 59×59 unipartite ecological network (Bool, MangalReferenceTaxon) (L: 57) ```` show interactions ````julia for i in salmonid_resolved_network println("$(i.from.name) -> $(i.to.name)") end ```` ```` Salmo gairdneri -> Salvelinus fontinalis Salmo gairdneri -> Semotilus atromaculatus Salmo gairdneri -> Catostomus commersoni Salmo gairdneri -> Rhinichthys atratulus Salmo trutta -> Diporeia Salmo trutta -> Benthos Salmo trutta -> Mysis Salmonidae -> Osmeridae Salmo trutta -> Alosa pseudoharengus Salmo trutta -> Cottoidea Salvelinus fontinalis -> Salmo gairdneri Salmo gairdneri -> Salmo gairdneri Salmo gairdneri -> Semotilus corporalis Salmo gairdneri -> Notropis cornutus Salmoninae -> Mugilidae Salmonidae -> Salmonidae Oncorhynchus kisutch -> Salmonidae Sebastes -> Salmonidae Cephalopoda -> Salmonidae Oncorhynchus tshawytscha -> Salmonidae Selachimorpha -> Salmonidae Trachurus symmetricus -> Salmonidae Squalus -> Salmonidae Phycidae -> Salmonidae Anoplopoma fimbria -> Salmonidae Flatfish -> Salmonidae Ardenna grisea -> Salmonidae Uria aalge -> Salmonidae Laridae -> Salmonidae Alcidae -> Salmonidae Aves -> Salmonidae Phocidae -> Salmonidae Procellariiformes -> Salmonidae Mysticeti -> Salmonidae Odontoceti -> Salmonidae Hexagrammidae -> Salmonidae Metacarcinus magister -> Salmonidae Salmonidae -> Copepods Salmonidae -> Amphipoda Salmonidae -> Medusozoa Salmonidae -> Pacifica Salmonidae -> Spinifera Salmonidae -> Clupeidae Salmonidae -> Engraulidae Salmonidae -> Mysida Salmonidae -> Isopoda Salmo salar -> Baetis Salmo salar -> Chironomidae Salmo salar -> Leuctra Salmo salar -> Diatoms Salmo salar -> Desmidiales Salmo salar -> Algae Salmo salar -> Ephemeroptera Salmo salar -> Chimarra marginata Salmo salar -> Protozoa Salmo salar -> Micronecta poweri Salmo salar -> Collembola ````
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
docs
2633
# Introduction to `Mangal.jl` The goal of this vignette is to explain the core design principles of the **Mangal** package. Other vignettes present more realistic use-cases. ```julia using Mangal ``` ## Database status | Object | Total number | | --------------- | -------------------------------:| | Datasets | `j count(MangalDataset)` | | Networks | `j count(MangalNetwork)` | | Interactions | `j count(MangalInteraction)` | | Nodes | `j count(MangalNode)` | | Reference taxon | `j count(MangalReferenceTaxon)` | ## Types The package exposes resources from the <mangal.io> database in a series of types, whose fields are all documented in the manual. Every object in the `mangal.io` hierarchy is represented by its type: | object | type | definition | | ------------ | ---------------------- | ---------------------------------------------------- | | dataset | `MangalDataset` | description of a dataset, and references | | network | `MangalNetwork` | finer description of a network, including positions | | interactions | `MangalInteraction` | taxonomic entities involved and metadata | | node | `MangalNode` | description of the node in the original dataset | | backbone | `MangalReferenceTaxon` | actual taxonomic entity reconciled against backbones | | reference | `MangalReference` | bibliographic information | | attribute | `MangalAttribute` | key/value (used *e.g.* for interaction strength) | ## A note on speed The package is designed to facilitate the user experience: as objects are nested within one another, we will retrieve the full hierarchy instead of just pointing you to the `id` of the parent/childrens. For example, this means than querying a `MangalInteraction` will return not only the interaction itself, but also the `MangalNode` for each species involved and their `MangalReferenceTaxon`. This results in a larger number of queries, *i.e.* you initially wait longer to get your data. One clear advantage is that the data that are returned are complete, and so can be used directly. Note also that the package uses a caching mechanism to speed up this process; in short, a `MangalNode` or `MangalReferenceTaxon` are only queried one, and then read from cache when they are next part of an interaction. ## Queries *Almost* all functions in the package accept query arguments, which are simply given as a series of pairs.
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.5.0
df14d6e68cabd69ca97c9b4cb424501370eb4197
docs
2533
# Introduction to `Mangal.jl` The goal of this vignette is to explain the core design principles of the **Mangal** package. Other vignettes present more realistic use-cases. ````julia using Mangal ```` ## Database status | Object | Total number | | --------------- | -------------------------------:| | Datasets | 172 | | Networks | 1386 | | Interactions | 128331 | | Nodes | 28408 | | Reference taxon | 6874 | ## Types The package exposes resources from the <mangal.io> database in a series of types, whose fields are all documented in the manual. Every object in the `mangal.io` hierarchy is represented by its type: | object | type | definition | | ------------ | ---------------------- | ---------------------------------------------------- | | dataset | `MangalDataset` | description of a dataset, and references | | network | `MangalNetwork` | finer description of a network, including positions | | interactions | `MangalInteraction` | taxonomic entities involved and metadata | | node | `MangalNode` | description of the node in the original dataset | | backbone | `MangalReferenceTaxon` | actual taxonomic entity reconciled against backbones | | reference | `MangalReference` | bibliographic information | | attribute | `MangalAttribute` | key/value (used *e.g.* for interaction strength) | ## A note on speed The package is designed to facilitate the user experience: as objects are nested within one another, we will retrieve the full hierarchy instead of just pointing you to the `id` of the parent/childrens. For example, this means than querying a `MangalInteraction` will return not only the interaction itself, but also the `MangalNode` for each species involved and their `MangalReferenceTaxon`. This results in a larger number of queries, *i.e.* you initially wait longer to get your data. One clear advantage is that the data that are returned are complete, and so can be used directly. Note also that the package uses a caching mechanism to speed up this process; in short, a `MangalNode` or `MangalReferenceTaxon` are only queried one, and then read from cache when they are next part of an interaction. ## Queries *Almost* all functions in the package accept query arguments, which are simply given as a series of pairs.
Mangal
https://github.com/PoisotLab/Mangal.jl.git
[ "MIT" ]
0.4.0
d8ab448f2d6c411159c36cc2283853f006ca180c
code
459
using Documenter, Elfel makedocs( modules = [Elfel], doctest = false, clean = true, format = Documenter.HTML(prettyurls = false), authors = "Petr Krysl", sitename = "Elfel.jl", pages = Any[ "Home" => "index.md", "Tutorials" => "tutorials/tutorials.md", "How to guide" => "guide/guide.md", "Reference" => "man/reference.md", "Concepts" => "concepts/concepts.md" ], ) deploydocs( repo = "github.com/PetrKryslUCSD/Elfel.jl.git", )
Elfel
https://github.com/PetrKryslUCSD/Elfel.jl.git
[ "MIT" ]
0.4.0
d8ab448f2d6c411159c36cc2283853f006ca180c
code
253
using Literate for t in readdir(".") if occursin(r"tut_.*.jl", t) println("\nTutorial $t in $(pwd())\n") Literate.markdown(t, "."; documenter=false); # Literate.notebook(t, "."; execute=false, documenter=false); end end
Elfel
https://github.com/PetrKryslUCSD/Elfel.jl.git
[ "MIT" ]
0.4.0
d8ab448f2d6c411159c36cc2283853f006ca180c
code
9394
# # Solve the heat conduction equation # Synopsis: Compute the solution of the Poisson equation of heat conduction with a # nonzero heat source. Quadrilateral four-node elements are used. # The problem is linear heat conduction equation posed on a bi-unit square, # solved with Dirichlet boundary conditions around the circumference. Uniform # nonzero heat generation rate is present. The exact solution is in this way # manufactured and hence known. That gives us an opportunity to calculate the # true error. # The complete code is in the file [`tut_poisson_q4.jl`](tut_poisson_q4.jl). # The solution will be defined within a module in order to eliminate conflicts # with data or functions defined elsewhere. module tut_poisson_q4 # We'll need some functionality from linear algebra, and the mesh libraries. # Finally we will need the `Elfel` functionality. using LinearAlgebra using MeshCore.Exports using MeshSteward.Exports using Elfel.Exports # This is the top level function. function run() # Input parameters: A = 1.0 # length of the side of the square kappa = 1.0; # thermal conductivity of the material Q = -6.0; # internal heat generation rate tempf(x, y) =(1.0 + x^2 + 2.0 * y^2); # the exact distribution of temperature N = 1000; # number of element edges along the sides of the square domain # Generate the computational mesh. mesh = genmesh(A, N) # Create the finite element space to represent the temperature solution. The # degrees of freedom are real numbers (`Float64`), the quadrilaterals are # defined by the mesh, and each of the elements has the continuity ``H # ^1``, i. e. both the function values and the derivatives are square # integrable. Uh = FESpace(Float64, mesh, FEH1_Q4()) # Apply the essential boundary conditions at the circumference of the square # domain. We find the boundary incidence relation (`boundary(mesh)`), and # then the list of all vertices connected by the boundary cells. The # function `tempf` defines the analytical temperature variation, and hence # for each of the vertices `i` on the boundary (they are of manifold # dimension `0`), we set the component of the field (1) to the exact value # of the temperature at that location. vl = connectedv(boundary(mesh)); locs = geometry(mesh) for i in vl setebc!(Uh, 0, i, 1, tempf(locs[i]...)) end # Number the degrees of freedom, both the unknowns and the data # (prescribed) degrees of freedom. numberdofs!(Uh) @show ndofs(Uh), nunknowns(Uh) # Assemble the conductivity matrix and the vector of the heat loads. Refer # to the definition of this function below. K, F = assembleKF(Uh, kappa, Q) # This is a vector to hold all degrees of freedom in the system. T = fill(0.0, ndofs(Uh)) # Here we collect the data degrees of freedom (the known values). gathersysvec!(T, Uh) # The system of linear algebraic equations is solved. solve!(T, K, F, nunknowns(Uh)) # The values of all the degrees of freedom can now be introduced into the # finite element space. scattersysvec!(Uh, T) # Here we associate the values of the finite element space with the entities # of the mesh as an attribute. makeattribute(Uh, "T", 1) # The correctness of the solution is checked by comparing the values at the # vertices. checkcorrectness(Uh, tempf) # The attribute can now be written out for visualization into a VTK file. vtkwrite("q4-T", baseincrel(mesh), [(name = "T",)]) true # return success end # The domain is a square, meshed with quadrilateral elements. The function # `Q4block` creates an incidence relation that defines the quadrilateral # element shapes by the vertices connected into the shapes. This incidence # relation is then attached to the mesh and the mesh is returned. function genmesh(A, N) conn = Q4block(A, A, N, N) return attach!(Mesh(), conn) end # The `assembleKF` function constructs the left-hand side coefficient matrix, # conductivity matrix, as a sparse matrix, and a vector of the heat loads due # to the internal heat generation rate `Q`. # The boundary value problem is expressed in this weak form # ```math # \int_{V}(\mathrm{grad}\vartheta)\; \kappa (\mathrm{grad}T # )^T\; \mathrm{d} V # -\int_{V} \vartheta Q \; \mathrm{d} V # = 0 # ``` # where the test function vanishes on the boundary where the temperature is # prescribed, ``\vartheta(x) =0`` for ``x \in{S_1}`` # Substituting ``\vartheta = N_j `` and ``T = \sum_i N_i T_i`` we obtain the # linear algebraic equations # ```math # \sum_i T_i \int_{V} \mathrm{grad}N_j \; \kappa (\mathrm{grad}N_i)^T\; \mathrm{d} V # -\int_{V} N_j Q \; \mathrm{d} V = 0 , \quad \forall j. # ``` # The volume element is ``\mathrm{d} V``, which in our case # becomes ``1.0\times\mathrm{d} S``, since the thickness of the two # dimensional domain is assumed to be 1.0. function assembleKF(Uh, kappa, Q) # At the top of the `assembleKF` we look at the function `integrate!` to # evaluate the weak-form integrals. The key to making this calculation # efficient is type stability. All the arguments coming in must have # concrete types. This is why the `integrate!` function is an inner # function: the function barrier allows for all arguments to be resolved to # concrete types. function integrate!(am, av, elit, qpit, kappa, Q) nedof = ndofsperel(elit) # The local assemblers are just like matrices or vectors ke = LocalMatrixAssembler(nedof, nedof, 0.0) fe = LocalVectorAssembler(nedof, 0.0) for el in elit # Loop over all elements init!(ke, eldofs(el), eldofs(el)) # zero out elementwise matrix init!(fe, eldofs(el)) # and vector for qp in qpit # Now loop over the quadrature points Jac, J = jacjac(el, qp) # Calculate the Jacobian matrix, Jacobian gradN = bfungrad(qp, Jac) # Evaluate the spatial gradients JxW = J * weight(qp) # elementary volume N = bfun(qp) # Basis function values at the quadrature point # This double loop evaluates the elementwise conductivity # matrix and the heat load vector precisely as the formula of # the weak form dictates; see above. for i in 1:nedof for j in 1:nedof ke[j, i] += dot(gradN[j], gradN[i]) * (kappa * JxW) end fe[j] += N[j] * Q * JxW end end # Assemble the calculated contributions from this element assemble!(am, ke) assemble!(av, fe) end return am, av # Return the updated assemblers end # In the `assembleKF` function we first we create the element iterator. We # can go through all the elements that define the domain of integration # using this iterator. Each time a new element is accessed, some data are # precomputed such as the element degrees of freedom. elit = FEIterator(Uh) # This is the quadrature point iterator. We know that the elements are # quadrilateral, which makes the Gauss integration rule the obvious choice. # We also select order 2 for accuracy. Quadrature-point iterators provide # access to basis function values and gradients, the Jacobian matrix and # the Jacobian determinant, the location of the quadrature point and so # on. qpit = QPIterator(Uh, (kind = :Gauss, order = 2)) # Next we create assemblers, one for the sparse system matrix and one for # the system vector. am = start!(SysmatAssemblerSparse(0.0), ndofs(Uh), ndofs(Uh)) av = start!(SysvecAssembler(0.0), ndofs(Uh)) # Now we call the integration function. The assemblers are modified inside # this function... @time integrate!(am, av, elit, qpit, kappa, Q) # ...so that when the integration is done, we can materialize the sparse # matrix and the vector and return them. return finish!(am), finish!(av) end # The linear algebraic system is solved by partitioning. The vector `T` is # initially all zero, except in the degrees of freedom which are prescribed as # nonzero. Therefore the product of the conductivity matrix and the vector `T` # are the heat loads due to nonzero essential boundary conditions. To this we # add the vector of heat loads due to the internal heat generation rate. The # submatrix of the heat conduction matrix corresponding to the free degrees of # freedom (unknowns), `K[1:nu, 1:nu]` is then used to solve for the unknowns `T # [1:nu]`. function solve!(T, K, F, nu) @time KT = K * T @time T[1:nu] = K[1:nu, 1:nu] \ (F[1:nu] - KT[1:nu]) end # The correctness can be checked in various ways. Here we calculate the mean # deviation of the calculated temperatures at the nodes relative to the exact # values of the temperature. function checkcorrectness(Uh, tempf) geom = geometry(Uh.mesh) ir = baseincrel(Uh.mesh) T = attribute(ir.right, "T") std = 0.0 for i in 1:length(T) std += abs(T[i][1] - tempf(geom[i]...)) end @show (std / length(T)) <= 1.0e-9 end end # module # The module can now be used. using .tut_poisson_q4 tut_poisson_q4.run()
Elfel
https://github.com/PetrKryslUCSD/Elfel.jl.git
[ "MIT" ]
0.4.0
d8ab448f2d6c411159c36cc2283853f006ca180c
code
17286
# # Solve the Stokes equation of colliding flow: Hood-Taylor, general formulation # Synopsis: Compute the solution of the Stokes equation of two-dimensional # incompressible viscous flow for a manufactured problem of colliding flow. # Hood-Taylor triangular elements are used. # The "manufactured" colliding flow example from Elman et al 2014. The # Hood-Taylor formulation with quadratic triangles for the velocity and # continuous pressure on linear triangles. # The pressure is shown here with contours, and the velocities visualized with # arrows at random points. # ![Pressure and velocity](colliding.png) # The formulation is the general elasticity-like scheme with # strain-rate/velocity matrices. It can be manipulated into the one derived # in Reddy, Introduction to the finite element method, 1993. Page 486 ff. # The complete code is in the file [`tut_stokes_ht_p2_p1_gen.jl`](tut_stokes_ht_p2_p1_gen.jl). # The solution will be defined within a module in order to eliminate conflicts # with data or functions defined elsewhere. module tut_stokes_ht_p2_p1_gen # We'll need some functionality from linear algebra, static arrays, and the mesh # libraries. Some plotting will be produced to visualize structure of the # stiffness matrix. Finally we will need the `Elfel` functionality. using LinearAlgebra using StaticArrays using MeshCore.Exports using MeshSteward.Exports using Elfel.Exports using UnicodePlots # The boundary value problem is expressed in this weak form # ```math # \int_{V}{\underline{\varepsilon}}(\underline{\delta v})^T\; # \underline{\underline{D}}\; {\underline{\varepsilon}}(\underline{u})\; \mathrm{d} V # - \int_{V} \mathrm{div}(\underline{\delta v})\; p\; \mathrm{d} V = 0,\quad \forall \underline{\delta v} # ``` # ```math # - \int_{V} \delta q\; \mathrm{div}(\underline{u}) \; \mathrm{d} V = 0,\quad \forall \delta q # ``` # Here ``\underline{\delta v}`` are the test functions in the velocity space, # and ``\delta q`` are the pressure test functions. Further ``\underline # {u}`` is the trial velocity, and ``p`` is the trial pressure. function run() mu = 1.0 # dynamic viscosity # This is the material-property matrix ``\underline{\underline{D}}``: D = SMatrix{3, 3}( [2*mu 0 0 0 2*mu 0 0 0 mu]) A = 1.0 # half of the length of the side of the square N = 100 # number of element edges per side of the square # These three functions define the true velocity components and the true # pressure. trueux = (x, y) -> 20 * x * y ^ 3 trueuy = (x, y) -> 5 * x ^ 4 - 5 * y ^ 4 truep = (x, y) -> 60 * x ^ 2 * y - 20 * y ^ 3 # Construct the two meshes for the mixed method. They need to support the # velocity and pressure spaces. vmesh, pmesh = genmesh(A, N) # Construct the velocity space: it is a vector space with two components. The # degrees of freedom are real numbers (`Float64`). The velocity mesh # carries the finite elements of the continuity ``H ^1``, i. e. both the # function values and the derivatives are square integrable. Each node # carries 2 degrees of freedom, hence there are two velocity components per # node. Uh = FESpace(Float64, vmesh, FEH1_T6(), 2) # Now we apply the boundary conditions at the nodes around the # circumference. locs = geometry(vmesh) # We use searching based on the presence of the node within a box. The # entire boundary will be captured within these four boxes, provided we # inflate those boxes with a little tolerance (we can't rely on those # nodes to be precisely at the coordinates given, we need to introduce some # tolerance). boxes = [[-A A -A -A], [-A -A -A A], [A A -A A], [-A A A A]] inflate = A / N / 100 for box in boxes vl = vselect(locs; box = box, inflate = inflate) for i in vl # Remember that all components of the velocity are known at the # boundary. setebc!(Uh, 0, i, 1, trueux(locs[i]...)) setebc!(Uh, 0, i, 2, trueuy(locs[i]...)) end end # No we construct the pressure space. It is a continuous, piecewise linear # space supported on a mesh of three-node triangles. Ph = FESpace(Float64, pmesh, FEH1_T3(), 1) # The pressure in this "enclosed" flow example is only known up to a constant. # By setting pressure degree of freedom at one node will make the solution # unique. atcenter = vselect(geometry(pmesh); nearestto = [0.0, 0.0]) setebc!(Ph, 0, atcenter[1], 1, 0.0) # Number the degrees of freedom. First all the free degrees of freedom are # numbered, both velocities and pressures. Next all the data degrees of # freedom are numbered, again both for the velocities and for the # pressures. numberdofs!([Uh, Ph]) # The total number of degrees of freedom is now calculated. tndof = ndofs(Uh) + ndofs(Ph) # As is the total number of unknowns. tnunk = nunknowns(Uh) + nunknowns(Ph) # Assemble the coefficient matrix. K = assembleK(Uh, Ph, tndof, D) # Display the structure of the indefinite stiffness matrix. Note that this # is the complete matrix, including rows and columns for all the degrees of # freedom, unknown and known. p = spy(K, canvas = DotCanvas) display(p) # Solve the linear algebraic system. First construct system vector of all # the degrees of freedom, in the first `tnunk` rows that corresponds to the # unknowns, and the subsequent rows are for the data degrees of freedom. U = fill(0.0, tndof) gathersysvec!(U, [Uh, Ph]) # Note that the vector `U` consists of nonzero numbers in rows are for the # data degrees of freedom. Multiplying the stiffness matrix with this # vector will generate a load vector on the right-hand side. Otherwise # there is no loading, hence the vector `F` consists of all zeros. F = fill(0.0, tndof) solve!(U, K, F, tnunk) # Once we have solved the system of linear equations, we can distribute the # solution from the vector `U` into the finite element spaces. scattersysvec!([Uh, Ph], U) # Given that the solution is manufactured, i. e. exactly known, we can # calculate the true errors. @show ep = evaluate_pressure_error(Ph, truep) @show ev = evaluate_velocity_error(Uh, trueux, trueuy) # Postprocessing. First we make attributes, scalar nodal attributes, # associated with the meshes for the pressures and the velocity. makeattribute(Ph, "p", 1) makeattribute(Uh, "ux", 1) makeattribute(Uh, "uy", 2) # The pressure and the velocity components are then written out into two VTK # files. vtkwrite("tut_stokes_ht_p2_p1_gen-p", baseincrel(pmesh), [(name = "p",), ]) vtkwrite("tut_stokes_ht_p2_p1_gen-v", baseincrel(vmesh), [(name = "ux",), (name = "uy",)]) # The method converges very well, but, why not, here is the true pressure # written out into a VTK file as well. We create a synthetic attribute by # evaluating the true pressure at the locations of the nodes of the # pressure mesh. geom = geometry(Ph.mesh) ir = baseincrel(Ph.mesh) ir.right.attributes["pt"] = VecAttrib([truep(geom[i]...) for i in 1:length(geom)]) vtkwrite("tut_stokes_ht_p2_p1_gen-pt", baseincrel(pmesh), [(name = "pt",), ]) return true end function genmesh(A, N) # Hood-Taylor pair of meshes is needed. The first mesh is for the # velocities, composed of six-node triangles. vmesh = attach!(Mesh(), T6block(2 * A, 2 * A, N, N), "velocity") # Now translate so that the center of the square is at the origin of the # coordinates. ir = baseincrel(vmesh) transform(ir, x -> x .- A) # The second mesh is used for the pressures, and it is composed of # three-node triangles such that the corner nodes are shared between the # first and the second mesh. pmesh = attach!(Mesh(), T6toT3(baseincrel(vmesh, "velocity")), "pressure") # Return the pair of meshes return vmesh, pmesh end function assembleK(Uh, Ph, tndof, D) function integrate!(ass, elits, qpits, D) # Consider the elementwise definition of the test strain rate, `` # {\underline{\varepsilon}}(\underline{\delta v})``. It is calculated # from the elementwise degrees of freedom and the associated basis # functions as # ```math # {\underline{\varepsilon}}(\underline{\delta v}) = # \sum_i{\delta V}_i {\underline{B}_{c(i)}(N_i)} # ``` # where ``i = 1, \ldots, n_{du}``, and ``n_{du}`` is the number of # velocity degrees of freedom per element, ``c(i)`` is the number of # the component corresponding to the degree of freedom ``i``. This is # either 1 when degree of freedom ``i`` is the ``x``-component of the # velocity, 2 otherwise(for the ``y``-component of the velocity). # Analogously for the trial strain rate. # The strain-rate/velocity matrices are defined as # ```math # {\underline{B}_{1}(N_i)} = # \left[\begin{array}{c} # \partial{N_i}/\partial{x} \\ # 0 \\ # \partial{N_i}/\partial{y} # \end{array}\right], # ``` # and # ```math # {\underline{B}_{2}(N_i)} = # \left[\begin{array}{c} # 0 \\ # \partial{N_i}/\partial{y} \\ # \partial{N_i}/\partial{x} # \end{array}\right]. # ``` # This tiny function evaluates the strain-rate/velocity matrices defined above # from the gradient of a basis function and the given number of the # component corresponding to the current degree of freedom. B = (g, k) -> (k == 1 ? SVector{3}((g[1], 0, g[2])) : SVector{3}((0, g[2], g[1]))) # This array defines the components for the element degrees of freedom, # as defined above as ``c(i)``. c = edofcompnt(Uh) # These are the totals of the velocity and pressure degrees of freedom # per element. n_du, n_dp = ndofsperel.((Uh, Ph)) # The local matrix assemblers are used as if they were ordinary # elementwise dense matrices. Here they are defined. kuu = LocalMatrixAssembler(n_du, n_du, 0.0) kup = LocalMatrixAssembler(n_du, n_dp, 0.0) for el in zip(elits...) uel, pel = el # The local matrix assemblers are initialized with zeros for the # values, and with the element degree of freedom vectors to be used # in the assembly. The assembler `kuu` is used for the velocity # degrees of freedom, and the assembler `kup` collect the coupling # coefficients between the velocity and the pressure. The function # `eldofs` collects the global numbers of the degrees of freedom # either for the velocity space, or for the pressure space # (`eldofs(pel)`). init!(kuu, eldofs(uel), eldofs(uel)) init!(kup, eldofs(uel), eldofs(pel)) for qp in zip(qpits...) uqp, pqp = qp # The integration is performed using the velocity quadrature points. Jac, J = jacjac(uel, uqp) JxW = J * weight(uqp) gradNu = bfungrad(uqp, Jac) # gradients of the velocity basis functions Np = bfun(pqp) # pressure basis functions # This double loop corresponds precisely to the integrals of the # weak form. This is the matrix in the upper left corner. for i in 1:n_du DBi = D * B(gradNu[i], c[i]) for j in 1:n_du Bj = B(gradNu[j], c[j]) kuu[j, i] += dot(Bj, DBi) * (JxW) end end # And this is the coupling matrix in the top right corner. for i in 1:n_dp, j in 1:n_du kup[j, i] += gradNu[j][c[j]] * (-JxW * Np[i]) end end # Assemble the matrices. The submatrix off the diagonal is assembled # twice, once as itself, and once as its transpose. assemble!(ass, kuu) assemble!(ass, kup) # top right corner assemble!(ass, transpose(kup)) # bottom left corner end return ass # return the updated assembler of the global matrix end # In the `assembleK` function we first we create the element iterators. We # can go through all the elements, both in the velocity finite element # space and in the pressure finite element space, that define the domain of # integration using this iterator. Each time a new element is accessed, # some data are precomputed such as the element degrees of freedom, # components of the degree of freedom, etc. Note that we need to iterate # two finite element spaces, hence we create a tuple of iterators. elits = (FEIterator(Uh), FEIterator(Ph)) # These are the quadrature point iterators. We know that the elements are # triangular. We choose the three-point rule, to capture the quadratic # component in the velocity space. Quadrature-point iterators provide # access to basis function values and gradients, the Jacobian matrix and # the Jacobian determinant, the location of the quadrature point and so # on. Note that we need to iterate the quadrature rules of # two finite element spaces, hence we create a tuple of iterators. qargs = (kind = :default, npts = 3,) qpits = (QPIterator(Uh, qargs), QPIterator(Ph, qargs)) # The matrix will be assembled into this assembler. Which is initialized # with the total number of degrees of freedom (dimension of the coefficient # matrix before partitioning into unknowns and data degrees of freedom). ass = SysmatAssemblerSparse(0.0) start!(ass, tndof, tndof) # The integration is carried out, and then... integrate!(ass, elits, qpits, D) # ...we materialize the sparse stiffness matrix and return it. return finish!(ass) end # The linear algebraic system is solved by partitioning. The vector `U` is # initially all zero, except in the degrees of freedom which are prescribed as # nonzero. Therefore the product of the stiffness matrix and the vector `U` # are the loads due to nonzero essential boundary conditions. The # submatrix of the stiffness conduction matrix corresponding to the free degrees of # freedom (unknowns), `K[1:nu, 1:nu]` is then used to solve for the unknowns `U # [1:nu]`. function solve!(U, K, F, nu) KT = K * U U[1:nu] = K[1:nu, 1:nu] \ (F[1:nu] - KT[1:nu]) end # The function `evaluate_pressure_error` evaluates the true ``L^2`` error of # the pressure. It does that by integrating the square of the difference # between the approximate pressure and the true pressure, the true pressure # being provided by the `truep` function. function evaluate_pressure_error(Ph, truep) function integrate!(elit, qpit, truep) n_dp = ndofsperel(elit) E = 0.0 for el in elit dofvals = eldofvals(el) for qp in qpit Jac, J = jacjac(el, qp) JxW = J * weight(qp) Np = bfun(qp) pt = truep(location(el, qp)...) pa = 0.0 for j in 1:n_dp pa += (dofvals[j] * Np[j]) end E += (JxW) * (pa - pt)^2 end end return sqrt(E) end elit = FEIterator(Ph) qargs = (kind = :default, npts = 3,) qpit = QPIterator(Ph, qargs) return integrate!(elit, qpit, truep) end # The function `evaluate_velocity_error` evaluates the true ``L^2`` error of # the velocity. It does that by integrating the square of the difference # between the approximate pressure and the true velocity, the true velocity # being provided by the `trueux`, `trueuy` functions. function evaluate_velocity_error(Uh, trueux, trueuy) function integrate!(elit, qpit, trueux, trueuy) n_du = ndofsperel(elit) uedofcomp = edofcompnt(Uh) E = 0.0 for el in elit udofvals = eldofvals(el) for qp in qpit Jac, J = jacjac(el, qp) JxW = J * weight(qp) Nu = bfun(qp) uxt = trueux(location(el, qp)...) uyt = trueuy(location(el, qp)...) uxa = 0.0 uya = 0.0 for j in 1:n_du (uedofcomp[j] == 1) && (uxa += (udofvals[j] * Nu[j])) (uedofcomp[j] == 2) && (uya += (udofvals[j] * Nu[j])) end E += (JxW) * ((uxa - uxt)^2 + (uya - uyt)^2) end end return sqrt(E) end elit = FEIterator(Uh) qargs = (kind = :default, npts = 3,) qpit = QPIterator(Uh, qargs) return integrate!(elit, qpit, trueux, trueuy) end end # To run the example, evaluate this file which will compile the module # `.tut_stokes_ht_p2_p1_gen`. using .tut_stokes_ht_p2_p1_gen tut_stokes_ht_p2_p1_gen.run()
Elfel
https://github.com/PetrKryslUCSD/Elfel.jl.git
[ "MIT" ]
0.4.0
d8ab448f2d6c411159c36cc2283853f006ca180c
code
17623
# # Solve the Stokes equation of colliding flow: Reddy formulation # Synopsis: Compute the solution of the Stokes equation of two-dimensional # incompressible viscous flow for a manufactured problem of colliding flow. # Hood-Taylor triangular elements are used. # The "manufactured" colliding flow example from Elman et al 2014. The # Hood-Taylor formulation with quadratic triangles for the velocity and # continuous pressure on linear triangles. # The pressure is shown here with contours, and the velocities visualized with # arrows at random points. # ![Pressure and velocity](colliding.png) # The formulation is the one derived in Reddy, Introduction to the finite # element method, 1993. Page 486 ff. # The complete code is in the file [`tut_stokes_ht_p2_p1_reddy.jl`](tut_stokes_ht_p2_p1_reddy.jl). # The solution will be defined within a module in order to eliminate conflicts # with data or functions defined elsewhere. module tut_stokes_ht_p2_p1_reddy # We'll need some functionality from linear algebra, static arrays, and the mesh # libraries. Some plotting will be produced to visualize structure of the # stiffness matrix. Finally we will need the `Elfel` functionality. using LinearAlgebra using StaticArrays using MeshCore.Exports using MeshSteward.Exports using Elfel.Exports using UnicodePlots # The boundary value problem is expressed in this weak form # ```math # \int_{\Omega} \left(2\mu\frac{\partial{w_x}}{\partial{x}}\frac{\partial{u_x}}{\partial{x}} # +\mu\frac{\partial{w_x}}{\partial{y}}\left(\frac{\partial{u_x}}{\partial{y}}+\frac{\partial{u_y}}{\partial{x}}\right) - \frac{\partial{w_x}}{\partial{x}} p \right) d\Omega = 0 # ``` # ```math # \int_{\Omega} \left(2\mu\frac{\partial{w_y}}{\partial{y}}\frac{\partial{u_y}}{\partial{y}} # +\mu\frac{\partial{w_y}}{\partial{x}}\left(\frac{\partial{u_x}}{\partial{y}}+\frac{\partial{u_y}}{\partial{x}}\right) - \frac{\partial{w_y}}{\partial{y}} p \right) d\Omega = 0 # ``` # ```math # -\int_{\Omega} q \left(\frac{\partial{u_x}}{\partial{x}} + \frac{\partial{u_y}}{\partial{y}}\right)d\Omega = 0 # ``` # Here ``w_x, w_y`` are the test functions in the velocity space, # and ``q`` is the pressure test functions. Further ``u_x, u_y`` is the trial velocity, and ``p`` is the trial pressure. function run() mu = 1.0 # dynamic viscosity A = 1.0 # half of the length of the side of the square N = 100 # number of element edges per side of the square # These three functions define the true velocity components and the true # pressure. trueux = (x, y) -> 20 * x * y ^ 3 trueuy = (x, y) -> 5 * x ^ 4 - 5 * y ^ 4 truep = (x, y) -> 60 * x ^ 2 * y - 20 * y ^ 3 # Construct the two meshes for the mixed method. They need to support the # velocity and pressure spaces. vmesh, pmesh = genmesh(A, N) # Construct the velocity spaces: As an alternative to a previous treatment # with a single vector space for the velocity, here we will use to vector # spaces, one for each component of the velocity. The degrees of freedom # are real numbers (`Float64`). The velocity mesh carries the finite # elements of the continuity ``H ^1``, i. e. both the function values and # the derivatives are square integrable. Each node carries just one degree of # freedom (1). Uxh = FESpace(Float64, vmesh, FEH1_T6(), 1) Uyh = FESpace(Float64, vmesh, FEH1_T6(), 1) # Now we apply the boundary conditions at the nodes around the # circumference. locs = geometry(vmesh) # We use searching based on the presence of the node within a box. The # entire boundary will be captured within these four boxes, provided we # inflate those boxes with a little tolerance (we can't rely on those # nodes to be precisely at the coordinates given, we need to introduce some # tolerance). boxes = [[-A A -A -A], [-A -A -A A], [A A -A A], [-A A A A]] inflate = A / N / 100 for box in boxes vl = vselect(locs; box = box, inflate = inflate) for i in vl # Remember that all components of the velocity are known at the # boundary. setebc!(Uxh, 0, i, 1, trueux(locs[i]...)) setebc!(Uyh, 0, i, 1, trueuy(locs[i]...)) end end # No we construct the pressure space. It is a continuous, piecewise linear # space supported on a mesh of three-node triangles. Ph = FESpace(Float64, pmesh, FEH1_T3(), 1) # The pressure in this "enclosed" flow example is only known up to a constant. # By setting pressure degree of freedom at one node will make the solution # unique. atcenter = vselect(geometry(pmesh); nearestto = [0.0, 0.0]) setebc!(Ph, 0, atcenter[1], 1, 0.0) # Number the degrees of freedom. First all the free degrees of freedom are # numbered, both velocities and pressures. Next all the data degrees of # freedom are numbered, again both for the velocities and for the # pressures. numberdofs!([Uxh, Uyh, Ph]) # The total number of degrees of freedom is now calculated. tndof = ndofs(Uxh) + ndofs(Uyh) + ndofs(Ph) # As is the total number of unknowns. tnunk = nunknowns(Uxh) + nunknowns(Uyh) + nunknowns(Ph) # Assemble the coefficient matrix. K = assembleK(Uxh, Uyh, Ph, tndof, mu) # Display the structure of the indefinite stiffness matrix. Note that this # is the complete matrix, including rows and columns for all the degrees of # freedom, unknown and known. p = spy(K, canvas = DotCanvas) display(p) # Solve the linear algebraic system. First construct system vector of all # the degrees of freedom, in the first `tnunk` rows that corresponds to the # unknowns, and the subsequent rows are for the data degrees of freedom. U = fill(0.0, tndof) gathersysvec!(U, [Uxh, Uyh, Ph]) # Note that the vector `U` consists of nonzero numbers in rows are for the # data degrees of freedom. Multiplying the stiffness matrix with this # vector will generate a load vector on the right-hand side. Otherwise # there is no loading, hence the vector `F` consists of all zeros. F = fill(0.0, tndof) solve!(U, K, F, tnunk) # Once we have solved the system of linear equations, we can distribute the # solution from the vector `U` into the finite element spaces. scattersysvec!([Uxh, Uyh, Ph], U) # Given that the solution is manufactured, i. e. exactly known, we can # calculate the true errors. @show ep = evaluate_pressure_error(Ph, truep) @show ev = evaluate_velocity_error(Uxh, Uyh, trueux, trueuy) # Postprocessing. First we make attributes, scalar nodal attributes, # associated with the meshes for the pressures and the velocity. makeattribute(Ph, "p", 1) makeattribute(Uxh, "ux", 1) makeattribute(Uyh, "uy", 1) # The pressure and the velocity components are then written out into two VTK # files. vtkwrite("tut_stokes_ht_p2_p1_reddy-p", baseincrel(pmesh), [(name = "p",), ]) vtkwrite("tut_stokes_ht_p2_p1_reddy-v", baseincrel(vmesh), [(name = "ux",), (name = "uy",)]) return true end function genmesh(A, N) # Hood-Taylor pair of meshes is needed. The first mesh is for the # velocities, composed of six-node triangles. vmesh = attach!(Mesh(), T6block(2 * A, 2 * A, N, N), "velocity") # Now translate so that the center of the square is at the origin of the # coordinates. ir = baseincrel(vmesh) transform(ir, x -> x .- A) # The second mesh is used for the pressures, and it is composed of # three-node triangles such that the corner nodes are shared between the # first and the second mesh. pmesh = attach!(Mesh(), T6toT3(baseincrel(vmesh, "velocity")), "pressure") # Return the pair of meshes return vmesh, pmesh end function assembleK(Uxh, Uyh, Ph, tndof, mu) # Here we demonstrate that the coefficient matrix, which is expected to have # the structure # ```math # K = \left[ # \begin{array}{cc} # A & B^T \\ # B & 0 # \end{array}\right] # ``` # can be constructed in stages. Refer to the description below. The two # functions below carry out the integration of two separate parts of the # coefficient matrix. function integrateApart!(ass, elits, qpits, mu) uxnedof, uynedof, pnedof = ndofsperel.(elits) kuxux = LocalMatrixAssembler(uxnedof, uxnedof, 0.0) kuyuy = LocalMatrixAssembler(uynedof, uynedof, 0.0) kuxuy = LocalMatrixAssembler(uxnedof, uynedof, 0.0) for el in zip(elits...) uxel, uyel, pel = el init!(kuxux, eldofs(uxel), eldofs(uxel)) init!(kuyuy, eldofs(uyel), eldofs(uyel)) init!(kuxuy, eldofs(uxel), eldofs(uyel)) for qp in zip(qpits...) # Step the quadrature point iterators in step: this assumes that # in fact there is the same number of quadrature points in all # the quadrature rules. uxqp, uyqp, pqp = qp Jac, J = jacjac(pel, pqp) JxW = J * weight(pqp) # Note that the gradients of the basis functions are not # necessarily the same in those two velocity spaces. Hence we # must grab the gradient from the correct space. gradNux = bfungrad(uxqp, Jac) gradNuy = bfungrad(uyqp, Jac) for j in 1:uxnedof, i in 1:uxnedof kuxux[i, j] += (mu * JxW) * (2 * gradNux[i][1] * gradNux[j][1] + gradNux[i][2] * gradNux[j][2]) end for j in 1:uynedof, i in 1:uynedof kuyuy[i, j] += (mu * JxW) * (gradNuy[i][1] * gradNuy[j][1] + 2 * gradNuy[i][2] * gradNuy[j][2]) end for j in 1:uynedof, i in 1:uxnedof kuxuy[i, j] += (mu * JxW) * (gradNux[i][1] * gradNuy[j][2]) end end assemble!(ass, kuxux) assemble!(ass, kuxuy) # off-diagonal matrix needs to be assembled twice assemble!(ass, transpose(kuxuy)) assemble!(ass, kuyuy) end return ass end function integrateBBTparts!(ass, elits, qpits) uxnedof, uynedof, pnedof = ndofsperel.(elits) kuxp = LocalMatrixAssembler(uxnedof, pnedof, 0.0) kuyp = LocalMatrixAssembler(uynedof, pnedof, 0.0) for el in zip(elits...) # The iterators of the finite elements are stepped in unison. uxel, uyel, pel = el # Initialize the local matrix assembler with the global degree of # freedom numbers, both for the velocity spaces and for the # pressure space. init!(kuxp, eldofs(uxel), eldofs(pel)) init!(kuyp, eldofs(uyel), eldofs(pel)) for qp in zip(qpits...) # Step the quadrature point iterators in step: this assumes that # in fact there is the same number of quadrature points in all # the quadrature rules. uxqp, uyqp, pqp = qp Jac, J = jacjac(pel, pqp) JxW = J * weight(pqp) gradNux = bfungrad(uxqp, Jac) gradNuy = bfungrad(uyqp, Jac) Np = bfun(pqp) for j in 1:pnedof, i in 1:uxnedof kuxp[i, j] += (-JxW) * (gradNux[i][1] * Np[j]) end for j in 1:pnedof, i in 1:uynedof kuyp[i, j] += (-JxW) * (gradNuy[i][2] * Np[j]) end end assemble!(ass, kuxp) assemble!(ass, transpose(kuxp)) assemble!(ass, kuyp) assemble!(ass, transpose(kuyp)) end return ass end # In the `assembleK` function we first we create the element iterators. We # can go through all the elements, both in the velocity finite element # space and in the pressure finite element space, that define the domain of # integration using this iterator. Each time a new element is accessed, # some data are precomputed such as the element degrees of freedom, # components of the degree of freedom, etc. Note that we need to iterate # two finite element spaces, hence we create a tuple of iterators. elits = (FEIterator(Uxh), FEIterator(Uyh), FEIterator(Ph)) # These are the quadrature point iterators. We know that the elements are # triangular. We choose the three-point rule, to capture the quadratic # component in the velocity space. Quadrature-point iterators provide # access to basis function values and gradients, the Jacobian matrix and # the Jacobian determinant, the location of the quadrature point and so on. # Note that we need to iterate the quadrature rules of three finite element # spaces, hence we create a tuple of iterators. All of these quadrature # point iterators refer to the "same" quadrature rule: the same number of # quadrature points, the same weights, and so on. However, the services # these quadrature points provide do depend on the finite element space as # well, for instance they would typically have different basis functions. qargs = (kind = :default, npts = 3,) qpits = (QPIterator(Uxh, qargs), QPIterator(Uyh, qargs), QPIterator(Ph, qargs)) # The matrix will be assembled into this assembler. Which is initialized # with the total number of degrees of freedom (dimension of the coefficient # matrix before partitioning into unknowns and data degrees of freedom). ass = SysmatAssemblerSparse(0.0) start!(ass, tndof, tndof) # First we calculate the "A" part, using the function below. It # is "assembled" into the assembler, which means that after this function # finishes, the assembler represents this intermediate matrix # ```math # K = \left[ # \begin{array}{cc} # A & 0 \\ # 0 & 0 # \end{array}\right] # ``` integrateApart!(ass, elits, qpits, mu) # Then the "B-transpose(B)" part using this function is added to the # assembler. When the function below finishes, the assembler represents the # entire ``K`` matrix. integrateBBTparts!(ass, elits, qpits) # Finally, we materialize the sparse stiffness matrix from the assembler and # return it. return finish!(ass) end # The linear algebraic system is solved by partitioning. The vector `U` is # initially all zero, except in the degrees of freedom which are prescribed as # nonzero. Therefore the product of the stiffness matrix and the vector `U` # are the loads due to nonzero essential boundary conditions. The # submatrix of the stiffness conduction matrix corresponding to the free degrees of # freedom (unknowns), `K[1:nu, 1:nu]` is then used to solve for the unknowns `U # [1:nu]`. function solve!(U, K, F, nu) KT = K * U U[1:nu] = K[1:nu, 1:nu] \ (F[1:nu] - KT[1:nu]) end # The function `evaluate_pressure_error` evaluates the true ``L^2`` error of # the pressure. It does that by integrating the square of the difference # between the approximate pressure and the true pressure, the true pressure # being provided by the `truep` function. function evaluate_pressure_error(Ph, truep) function integrate!(elit, qpit, truep) n_dp = ndofsperel(elit) E = 0.0 for el in elit dofvals = eldofvals(el) for qp in qpit Jac, J = jacjac(el, qp) JxW = J * weight(qp) Np = bfun(qp) pt = truep(location(el, qp)...) pa = 0.0 for j in 1:n_dp pa += (dofvals[j] * Np[j]) end E += (JxW) * (pa - pt)^2 end end return sqrt(E) end elit = FEIterator(Ph) qargs = (kind = :default, npts = 3,) qpit = QPIterator(Ph, qargs) return integrate!(elit, qpit, truep) end # The function `evaluate_velocity_error` evaluates the true ``L^2`` error of # the velocity. It does that by integrating the square of the difference # between the approximate pressure and the true velocity, the true velocity # being provided by the `trueux`, `trueuy` functions. function evaluate_velocity_error(Uxh, Uyh, trueux, trueuy) function integrate!(elits, qpits, trueux, trueuy) n_du, n_du = ndofsperel.(elits) E = 0.0 for el in zip(elits...) uxel, uyel = el uxdofvals = eldofvals(uxel) uydofvals = eldofvals(uyel) for qp in zip(qpits...) uxqp, uyqp = qp Jac, J = jacjac(uxel, uxqp) JxW = J * weight(uxqp) Nu = bfun(uxqp) uxt = trueux(location(uxel, uxqp)...) uyt = trueuy(location(uxel, uxqp)...) uxa = 0.0 uya = 0.0 for j in 1:n_du uxa += (uxdofvals[j] * Nu[j]) uya += (uydofvals[j] * Nu[j]) end E += (JxW) * ((uxa - uxt)^2 + (uya - uyt)^2) end end return sqrt(E) end elits = (FEIterator(Uxh), FEIterator(Uyh),) qargs = (kind = :default, npts = 3,) qpits = (QPIterator(Uxh, qargs), QPIterator(Uyh, qargs),) return integrate!(elits, qpits, trueux, trueuy) end end # To run the example, evaluate this file which will compile the module # `.tut_stokes_ht_p2_p1_reddy`. using .tut_stokes_ht_p2_p1_reddy tut_stokes_ht_p2_p1_reddy.run()
Elfel
https://github.com/PetrKryslUCSD/Elfel.jl.git
[ "MIT" ]
0.4.0
d8ab448f2d6c411159c36cc2283853f006ca180c
code
15801
# # Solve the Stokes equation of colliding flow: vector Laplacian version # Synopsis: Compute the solution of the Stokes equation of two-dimensional # incompressible viscous flow for a manufactured problem of colliding flow. # Hood-Taylor triangular elements are used. # The "manufactured" colliding flow example from Elman et al 2014. The # Hood-Taylor formulation with quadratic triangles for the velocity and # continuous pressure on linear triangles. # The pressure is shown here with contours, and the velocities visualized with # arrows at random points. # ![Pressure and velocity](colliding.png) # The formulation is the one derived in Donea, Huerta, Introduction to the # finite element method, 1993. Page 486 ff, and Elman, et al., Finite elements # and fast iterative solvers, p. 132. In brief, it is the vector # Laplacian version. # The complete code is in the file [`tut_stokes_ht_p2_p1_veclap.jl`](tut_stokes_ht_p2_p1_veclap.jl). # The solution will be defined within a module in order to eliminate conflicts # with data or functions defined elsewhere. module tut_stokes_ht_p2_p1_veclap # We'll need some functionality from linear algebra, static arrays, and the mesh # libraries. Some plotting will be produced to visualize structure of the # stiffness matrix. Finally we will need the `Elfel` functionality. using LinearAlgebra using StaticArrays using MeshCore.Exports using MeshSteward.Exports using Elfel.Exports using UnicodePlots # The boundary value problem is expressed in this weak form # ```math # \int_{V}\mu {\underline{\nabla}}\;\underline{\delta v}\; :\; # {\underline{\nabla}}\;\underline{u}\; \mathrm{d} V # - \int_{V} \mathrm{div}(\underline{\delta v})\; p\; \mathrm{d} V = 0,\quad \forall \underline{\delta v} # ``` # ```math # - \int_{V} \delta q\; \mathrm{div}(\underline{u}) \; \mathrm{d} V = 0,\quad \forall \delta q # ``` # Here ``\underline{\delta v}`` are the test functions in the velocity space, # and ``\delta q`` are the pressure test functions. Further ``\underline # {u}`` is the trial velocity, and ``p`` is the trial pressure. The operator # ``:`` produces the componentwise scalar product of the gradients, # ```math # A\; :\;B = A_{ij}B_{ij}``. # ``` # Then the first term may be rewritten as # ```math # {\underline{\nabla}}\;\underline{\delta v}\; :\; # {\underline{\nabla}}\;\underline{u} = # (\underline{\nabla}\delta v_x)^T \underline{\nabla}u_x + # (\underline{\nabla}\delta v_y)^T \underline{\nabla}u_y # ``` function run() mu = 1.0 # dynamic viscosity A = 1.0 # half of the length of the side of the square N = 100 # number of element edges per side of the square # These three functions define the true velocity components and the true # pressure. trueux = (x, y) -> 20 * x * y ^ 3 trueuy = (x, y) -> 5 * x ^ 4 - 5 * y ^ 4 truep = (x, y) -> 60 * x ^ 2 * y - 20 * y ^ 3 # Construct the two meshes for the mixed method. They need to support the # velocity and pressure spaces. vmesh, pmesh = genmesh(A, N) # Construct the velocity space: it is a vector space with two components. The # degrees of freedom are real numbers (`Float64`). The velocity mesh # carries the finite elements of the continuity ``H ^1``, i. e. both the # function values and the derivatives are square integrable. Each node # carries 2 degrees of freedom, hence there are two velocity components per # node. Uh = FESpace(Float64, vmesh, FEH1_T6(), 2) # Now we apply the boundary conditions at the nodes around the # circumference. locs = geometry(vmesh) # We use searching based on the presence of the node within a box. The # entire boundary will be captured within these four boxes, provided we # inflate those boxes with a little tolerance (we can't rely on those # nodes to be precisely at the coordinates given, we need to introduce some # tolerance). boxes = [[-A A -A -A], [-A -A -A A], [A A -A A], [-A A A A]] inflate = A / N / 100 for box in boxes vl = vselect(locs; box = box, inflate = inflate) for i in vl # Remember that all components of the velocity are known at the # boundary. setebc!(Uh, 0, i, 1, trueux(locs[i]...)) setebc!(Uh, 0, i, 2, trueuy(locs[i]...)) end end # No we construct the pressure space. It is a continuous, piecewise linear # space supported on a mesh of three-node triangles. Ph = FESpace(Float64, pmesh, FEH1_T3(), 1) # The pressure in this "enclosed" flow example is only known up to a constant. # By setting pressure degree of freedom at one node will make the solution # unique. atcenter = vselect(geometry(pmesh); nearestto = [0.0, 0.0]) setebc!(Ph, 0, atcenter[1], 1, 0.0) # Number the degrees of freedom. First all the free degrees of freedom are # numbered, both velocities and pressures. Next all the data degrees of # freedom are numbered, again both for the velocities and for the # pressures. numberdofs!([Uh, Ph]) # The total number of degrees of freedom is now calculated. tndof = ndofs(Uh) + ndofs(Ph) # As is the total number of unknowns. tnunk = nunknowns(Uh) + nunknowns(Ph) # Assemble the coefficient matrix. K = assembleK(Uh, Ph, tndof, mu) # Display the structure of the indefinite stiffness matrix. Note that this # is the complete matrix, including rows and columns for all the degrees of # freedom, unknown and known. p = spy(K, canvas = DotCanvas) display(p) # Solve the linear algebraic system. First construct system vector of all # the degrees of freedom, in the first `tnunk` rows that corresponds to the # unknowns, and the subsequent rows are for the data degrees of freedom. U = fill(0.0, tndof) gathersysvec!(U, [Uh, Ph]) # Note that the vector `U` consists of nonzero numbers in rows are for the # data degrees of freedom. Multiplying the stiffness matrix with this # vector will generate a load vector on the right-hand side. Otherwise # there is no loading, hence the vector `F` consists of all zeros. F = fill(0.0, tndof) solve!(U, K, F, tnunk) # Once we have solved the system of linear equations, we can distribute the # solution from the vector `U` into the finite element spaces. scattersysvec!([Uh, Ph], U) # Given that the solution is manufactured, i. e. exactly known, we can # calculate the true errors. @show ep = evaluate_pressure_error(Ph, truep) @show ev = evaluate_velocity_error(Uh, trueux, trueuy) # Postprocessing. First we make attributes, scalar nodal attributes, # associated with the meshes for the pressures and the velocity. makeattribute(Ph, "p", 1) makeattribute(Uh, "ux", 1) makeattribute(Uh, "uy", 2) # The pressure and the velocity components are then written out into two VTK # files. vtkwrite("tut_stokes_ht_p2_p1_veclap-p", baseincrel(pmesh), [(name = "p",), ]) vtkwrite("tut_stokes_ht_p2_p1_veclap-v", baseincrel(vmesh), [(name = "ux",), (name = "uy",)]) # The method converges very well, but, why not, here is the true pressure # written out into a VTK file as well. We create a synthetic attribute by # evaluating the true pressure at the locations of the nodes of the # pressure mesh. geom = geometry(Ph.mesh) ir = baseincrel(Ph.mesh) ir.right.attributes["pt"] = VecAttrib([truep(geom[i]...) for i in 1:length(geom)]) vtkwrite("tut_stokes_ht_p2_p1_veclap-pt", baseincrel(pmesh), [(name = "pt",), ]) return true end function genmesh(A, N) # Hood-Taylor pair of meshes is needed. The first mesh is for the # velocities, composed of six-node triangles. vmesh = attach!(Mesh(), T6block(2 * A, 2 * A, N, N), "velocity") # Now translate so that the center of the square is at the origin of the # coordinates. ir = baseincrel(vmesh) transform(ir, x -> x .- A) # The second mesh is used for the pressures, and it is composed of # three-node triangles such that the corner nodes are shared between the # first and the second mesh. pmesh = attach!(Mesh(), T6toT3(baseincrel(vmesh, "velocity")), "pressure") # Return the pair of meshes return vmesh, pmesh end function assembleK(Uh, Ph, tndof, mu) function integrate!(ass, elits, qpits, mu) # This array defines the components for the element degrees of freedom: # ``c(i)`` is 1 or 2. c = edofcompnt(Uh) # These are the totals of the velocity and pressure degrees of freedom # per element. n_du, n_dp = ndofsperel.((Uh, Ph)) # The local matrix assemblers are used as if they were ordinary # elementwise dense matrices. Here they are defined. kuu = LocalMatrixAssembler(n_du, n_du, 0.0) kup = LocalMatrixAssembler(n_du, n_dp, 0.0) for el in zip(elits...) uel, pel = el # The local matrix assemblers are initialized with zeros for the # values, and with the element degree of freedom vectors to be used # in the assembly. The assembler `kuu` is used for the velocity # degrees of freedom, and the assembler `kup` collect the coupling # coefficients between the velocity and the pressure. The function # `eldofs` collects the global numbers of the degrees of freedom # either for the velocity space, or for the pressure space # (`eldofs(pel)`). init!(kuu, eldofs(uel), eldofs(uel)) init!(kup, eldofs(uel), eldofs(pel)) for qp in zip(qpits...) uqp, pqp = qp # The integration is performed using the velocity quadrature points. Jac, J = jacjac(uel, uqp) JxW = J * weight(uqp) gradNu = bfungrad(uqp, Jac) # gradients of the velocity basis functions Np = bfun(pqp) # pressure basis functions # This double loop corresponds precisely to the integrals of the # weak form: dot product of the gradients of the basis # functions. This is the matrix in the upper left corner. for i in 1:n_du, j in 1:n_du if c[i] == c[j] kuu[j, i] += (mu * JxW) * (dot(gradNu[j], gradNu[i])) end end # And this is the coupling matrix in the top right corner. for i in 1:n_dp, j in 1:n_du kup[j, i] += gradNu[j][c[j]] * (-JxW * Np[i]) end end # Assemble the matrices. The submatrix off the diagonal is assembled # twice, once as itself, and once as its transpose. assemble!(ass, kuu) assemble!(ass, kup) # top right corner assemble!(ass, transpose(kup)) # bottom left corner end return ass # return the updated assembler of the global matrix end # In the `assembleK` function we first we create the element iterators. We # can go through all the elements, both in the velocity finite element # space and in the pressure finite element space, that define the domain of # integration using this iterator. Each time a new element is accessed, # some data are precomputed such as the element degrees of freedom, # components of the degree of freedom, etc. Note that we need to iterate # two finite element spaces, hence we create a tuple of iterators. elits = (FEIterator(Uh), FEIterator(Ph)) # These are the quadrature point iterators. We know that the elements are # triangular. We choose the three-point rule, to capture the quadratic # component in the velocity space. Quadrature-point iterators provide # access to basis function values and gradients, the Jacobian matrix and # the Jacobian determinant, the location of the quadrature point and so # on. Note that we need to iterate the quadrature rules of # two finite element spaces, hence we create a tuple of iterators. qargs = (kind = :default, npts = 3,) qpits = (QPIterator(Uh, qargs), QPIterator(Ph, qargs)) # The matrix will be assembled into this assembler. Which is initialized # with the total number of degrees of freedom (dimension of the coefficient # matrix before partitioning into unknowns and data degrees of freedom). ass = SysmatAssemblerSparse(0.0) start!(ass, tndof, tndof) # The integration is carried out, and then... integrate!(ass, elits, qpits, mu) # ...we materialize the sparse stiffness matrix and return it. return finish!(ass) end # The linear algebraic system is solved by partitioning. The vector `U` is # initially all zero, except in the degrees of freedom which are prescribed as # nonzero. Therefore the product of the stiffness matrix and the vector `U` # are the loads due to nonzero essential boundary conditions. The # submatrix of the stiffness conduction matrix corresponding to the free degrees of # freedom (unknowns), `K[1:nu, 1:nu]` is then used to solve for the unknowns `U # [1:nu]`. function solve!(U, K, F, nu) KT = K * U U[1:nu] = K[1:nu, 1:nu] \ (F[1:nu] - KT[1:nu]) end # The function `evaluate_pressure_error` evaluates the true ``L^2`` error of # the pressure. It does that by integrating the square of the difference # between the approximate pressure and the true pressure, the true pressure # being provided by the `truep` function. function evaluate_pressure_error(Ph, truep) function integrate!(elit, qpit, truep) n_dp = ndofsperel(elit) E = 0.0 for el in elit dofvals = eldofvals(el) for qp in qpit Jac, J = jacjac(el, qp) JxW = J * weight(qp) Np = bfun(qp) pt = truep(location(el, qp)...) pa = 0.0 for j in 1:n_dp pa += (dofvals[j] * Np[j]) end E += (JxW) * (pa - pt)^2 end end return sqrt(E) end elit = FEIterator(Ph) qargs = (kind = :default, npts = 3,) qpit = QPIterator(Ph, qargs) return integrate!(elit, qpit, truep) end # The function `evaluate_velocity_error` evaluates the true ``L^2`` error of # the velocity. It does that by integrating the square of the difference # between the approximate pressure and the true velocity, the true velocity # being provided by the `trueux`, `trueuy` functions. function evaluate_velocity_error(Uh, trueux, trueuy) function integrate!(elit, qpit, trueux, trueuy) n_du = ndofsperel(elit) uedofcomp = edofcompnt(Uh) E = 0.0 for el in elit udofvals = eldofvals(el) for qp in qpit Jac, J = jacjac(el, qp) JxW = J * weight(qp) Nu = bfun(qp) uxt = trueux(location(el, qp)...) uyt = trueuy(location(el, qp)...) uxa = 0.0 uya = 0.0 for j in 1:n_du (uedofcomp[j] == 1) && (uxa += (udofvals[j] * Nu[j])) (uedofcomp[j] == 2) && (uya += (udofvals[j] * Nu[j])) end E += (JxW) * ((uxa - uxt)^2 + (uya - uyt)^2) end end return sqrt(E) end elit = FEIterator(Uh) qargs = (kind = :default, npts = 3,) qpit = QPIterator(Uh, qargs) return integrate!(elit, qpit, trueux, trueuy) end end # To run the example, evaluate this file which will compile the module # `.tut_stokes_ht_p2_p1_veclap`. using .tut_stokes_ht_p2_p1_veclap tut_stokes_ht_p2_p1_veclap.run()
Elfel
https://github.com/PetrKryslUCSD/Elfel.jl.git