licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.4.12
dc182956229ff16d5a4d90a562035e633bd2561d
code
4338
function save(f::Stream{format"STL_ASCII"}, mesh::AbstractMesh) io = stream(f) points = decompose(Point3f, mesh) faces = decompose(GLTriangleFace, mesh) normals = decompose_normals(mesh) n_points = length(points) n_faces = length(faces) # write the header write(io,"solid vcg\n") # write the data for i = 1:n_faces f = faces[i] n = normals[f][1] # TODO: properly compute normal(f) v1, v2, v3 = points[f] @printf io " facet normal %e %e %e\n" n[1] n[2] n[3] write(io," outer loop\n") @printf io " vertex %e %e %e\n" v1[1] v1[2] v1[3] @printf io " vertex %e %e %e\n" v2[1] v2[2] v2[3] @printf io " vertex %e %e %e\n" v3[1] v3[2] v3[3] write(io," endloop\n") write(io," endfacet\n") end write(io,"endsolid vcg\n") end show(io::IO, ::MIME"model/stl+ascii", mesh::AbstractMesh) = save(io, mesh) function save(f::Stream{format"STL_BINARY"}, mesh::AbstractMesh) io = stream(f) points = decompose(Point3f, mesh) faces = decompose(GLTriangleFace, mesh) normals = decompose_normals(mesh) n_faces = length(faces) # Implementation made according to https://en.wikipedia.org/wiki/STL_%28file_format%29#Binary_STL for i in 1:80 # write empty header write(io, 0x00) end write(io, UInt32(n_faces)) # write triangle count for i = 1:n_faces f = faces[i] n = normals[f][1] # TODO: properly compute normal(f) triangle = points[f] foreach(j-> write(io, n[j]), 1:3) for point in triangle foreach(p-> write(io, p), point) end write(io, 0x0000) # write 16bit empty bit end end function load(fs::Stream{format"STL_BINARY"}; facetype=GLTriangleFace, pointtype=Point3f, normaltype=Vec3f) #Binary STL #https://en.wikipedia.org/wiki/STL_%28file_format%29#Binary_STL io = stream(fs) read(io, 80) # throw out header triangle_count = read(io, UInt32) faces = Array{facetype}(undef, triangle_count) vertices = Array{pointtype}(undef, triangle_count * 3) normals = Array{normaltype}(undef, triangle_count * 3) i = 0 while !eof(io) faces[i+1] = GLTriangleFace(i * 3 + 1, i * 3 + 2, i * 3 + 3) normal = (read(io, Float32), read(io, Float32), read(io, Float32)) normals[i*3+1] = normaltype(normal...) normals[i*3+2] = normals[i*3+1] # hurts, but we need per vertex normals normals[i*3+3] = normals[i*3+1] vertices[i*3+1] = pointtype(read(io, Float32), read(io, Float32), read(io, Float32)) vertices[i*3+2] = pointtype(read(io, Float32), read(io, Float32), read(io, Float32)) vertices[i*3+3] = pointtype(read(io, Float32), read(io, Float32), read(io, Float32)) skip(io, 2) # throwout 16bit attribute i += 1 end return Mesh(meta(vertices; normals=normals), faces) end function load(fs::Stream{format"STL_ASCII"}; facetype=GLTriangleFace, pointtype=Point3f, normaltype=Vec3f, topology=false) #ASCII STL #https://en.wikipedia.org/wiki/STL_%28file_format%29#ASCII_STL io = stream(fs) points = pointtype[] faces = facetype[] normals = normaltype[] vert_count = 0 vert_idx = [0, 0, 0] while !eof(io) line = split(lowercase(readline(io))) if !isempty(line) && line[1] == "facet" normal = normaltype(parse.(eltype(normaltype), line[3:5])) readline(io) # Throw away outerloop for i in 1:3 vertex = pointtype(parse.(eltype(pointtype), split(readline(io))[2:4])) if topology idx = findfirst(vertices(mesh), vertex) end if topology && idx != 0 vert_idx[i] = idx else push!(points, vertex) push!(normals, normal) vert_count += 1 vert_idx[i] = vert_count end end readline(io) # throwout endloop readline(io) # throwout endfacet push!(faces, TriangleFace{Int}(vert_idx...)) end end return Mesh(meta(points; normals=normals), faces) end
MeshIO
https://github.com/JuliaIO/MeshIO.jl.git
[ "MIT" ]
0.4.12
dc182956229ff16d5a4d90a562035e633bd2561d
code
7602
using FileIO, GeometryBasics using Test const tf = joinpath(dirname(@__FILE__), "testfiles") using MeshIO function test_face_indices(mesh) for face in faces(mesh) for index in face pass = firstindex(coordinates(mesh)) <= index <= lastindex(coordinates(mesh)) pass || return false end end return true end @testset "MeshIO" begin dirlen = 1.0f0 baselen = 0.02f0 mesh = [ Rect3f(Vec3f(baselen), Vec3f(dirlen, baselen, baselen)), Rect3f(Vec3f(baselen), Vec3f(baselen, dirlen, baselen)), Rect3f(Vec3f(baselen), Vec3f(baselen, baselen, dirlen)) ] uvn_mesh = merge(map(uv_normal_mesh, mesh)) mesh = merge(map(triangle_mesh, mesh)) mktempdir() do tmpdir for ext in ["2dm", "off", "obj"] @testset "load save $ext" begin save(joinpath(tmpdir, "test.$ext"), mesh) mesh_loaded = load(joinpath(tmpdir, "test.$ext")) @test mesh_loaded == mesh end end @testset "PLY ascii and binary" begin f = File{format"PLY_ASCII"}(joinpath(tmpdir, "test.ply")) save(f, mesh) mesh_loaded = load(joinpath(tmpdir, "test.ply")) @test mesh_loaded == mesh save(File{format"PLY_BINARY"}(joinpath(tmpdir, "test.ply")), mesh) end @testset "STL ascii and binary" begin save(File{format"STL_ASCII"}(joinpath(tmpdir, "test.stl")), mesh) mesh_loaded = load(joinpath(tmpdir, "test.stl")) @test Set(mesh.position) == Set(mesh_loaded.position) save(File{format"STL_BINARY"}(joinpath(tmpdir, "test.stl")), mesh) mesh_loaded = load(joinpath(tmpdir, "test.stl")) @test Set(mesh.position) == Set(mesh_loaded.position) end @testset "load save OBJ" begin save(joinpath(tmpdir, "test.obj"), uvn_mesh) mesh_loaded = load(joinpath(tmpdir, "test.obj")) @test mesh_loaded == uvn_mesh end end @testset "Real world files" begin @testset "STL" begin msh = load(joinpath(tf, "ascii.stl")) @test length(faces(msh)) == 12 @test length(coordinates(msh)) == 36 @test length(normals(msh)) == 36 @test test_face_indices(msh) msh = load(joinpath(tf, "binary.stl")) @test msh isa GLNormalMesh @test length(faces(msh)) == 828 @test length(coordinates(msh)) == 2484 @test length(msh.normals) == 2484 @test test_face_indices(msh) mktempdir() do tmpdir save(File{format"STL_BINARY"}(joinpath(tmpdir, "test.stl")), msh) msh1 = load(joinpath(tmpdir, "test.stl")) @test msh1 isa GLNormalMesh @test faces(msh) == faces(msh1) @test coordinates(msh) == coordinates(msh1) @test msh.normals == msh1.normals end msh = load(joinpath(tf, "binary_stl_from_solidworks.STL")) @test msh isa GLNormalMesh @test length(faces(msh)) == 12 @test length(coordinates(msh)) == 36 @test test_face_indices(msh) # STL Import msh = load(joinpath(tf, "cube_binary.stl")) @test length(coordinates(msh)) == 36 @test length(faces(msh)) == 12 @test test_face_indices(msh) msh = load(joinpath(tf, "cube.stl")) @test length(coordinates(msh)) == 36 @test length(faces(msh)) == 12 @test test_face_indices(msh) end @testset "PLY" begin msh = load(joinpath(tf, "ascii.ply")) @test length(faces(msh)) == 36 @test test_face_indices(msh) @test length(coordinates(msh)) == 72 msh = load(joinpath(tf, "binary.ply")) @test length(faces(msh)) == 36 @test test_face_indices(msh) @test length(coordinates(msh)) == 72 msh = load(joinpath(tf, "cube.ply")) # quads @test length(coordinates(msh)) == 24 @test length(faces(msh)) == 12 @test test_face_indices(msh) end @testset "OFF" begin msh = load(joinpath(tf, "test.off")) @test length(faces(msh)) == 28 @test length(coordinates(msh)) == 20 @test test_face_indices(msh) msh = load(joinpath(tf, "test2.off")) @test length(faces(msh)) == 810 @test length(coordinates(msh)) == 405 @test test_face_indices(msh) msh = load(joinpath(tf, "cube.off")) @test length(faces(msh)) == 12 @test length(coordinates(msh)) == 8 @test test_face_indices(msh) end @testset "OBJ" begin msh = load(joinpath(tf, "test.obj")) @test length(faces(msh)) == 3954 @test length(coordinates(msh)) == 2519 @test length(normals(msh)) == 2519 @test test_face_indices(msh) msh = load(joinpath(tf, "cube.obj")) # quads @test length(faces(msh)) == 12 @test length(coordinates(msh)) == 8 @test test_face_indices(msh) msh = load(joinpath(tf, "cube_uv.obj")) @test typeof(msh.uv) == Vector{Vec{2,Float32}} @test length(msh.uv) == 8 msh = load(joinpath(tf, "cube_uvw.obj")) @test typeof(msh.uv) == Vector{Vec{3,Float32}} @test length(msh.uv) == 8 msh = load(joinpath(tf, "polygonal_face.obj")) @test length(faces(msh)) == 4 @test length(coordinates(msh)) == 6 @test test_face_indices(msh) msh = load(joinpath(tf, "test_face_normal.obj")) @test length(faces(msh)) == 1 @test length(coordinates(msh)) == 3 @test test_face_indices(msh) end @testset "2DM" begin msh = load(joinpath(tf, "test.2dm")) @test test_face_indices(msh) end @testset "GMSH" begin msh = load(joinpath(tf, "cube.msh")) @test length(faces(msh)) == 24 @test length(coordinates(msh)) == 14 @test test_face_indices(msh) end @testset "GTS" begin # TODO: FileIO upstream #msh = load(joinpath(tf, "sphere5.gts")) #@test typeof(msh) == GLNormalMesh #test_face_indices(msh) end @testset "Index remapping" begin pos_faces = GLTriangleFace[(5, 6, 7), (5, 6, 8), (5, 7, 8)] normal_faces = GLTriangleFace[(5, 6, 7), (3, 6, 8), (5, 7, 8)] uv_faces = GLTriangleFace[(1, 2, 3), (4, 2, 5), (1, 3, 1)] # unique combinations -> new indices # 551 662 773 534 885 881 1 2 3 4 5 6 (or 0..5 with 0 based indices) faces, maps = MeshIO.merge_vertex_attribute_indices(pos_faces, normal_faces, uv_faces) @test length(faces) == 3 @test faces == GLTriangleFace[(1, 2, 3), (4, 2, 5), (1, 3, 6)] # maps are structured as map[new_index] = old_index, so they grab the # first/second/third index of the unique combinations above # maps = (pos_map, normal_map, uv_map) @test maps[1] == [5, 6, 7, 5, 8, 8] @test maps[2] == [5, 6, 7, 3, 8, 8] @test maps[3] == [1, 2, 3, 4, 5, 1] end end end
MeshIO
https://github.com/JuliaIO/MeshIO.jl.git
[ "MIT" ]
0.4.12
dc182956229ff16d5a4d90a562035e633bd2561d
docs
4075
# MeshIO [![codecov.io](http://codecov.io/github/JuliaIO/MeshIO.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaIO/MeshIO.jl?branch=master) [![Coverage Status](https://coveralls.io/repos/JuliaIO/MeshIO.jl/badge.svg?branch=master&service=github)](https://coveralls.io/github/JuliaIO/MeshIO.jl?branch=master) This package supports loading 3D model file formats: `obj`, `stl`, `ply`, `off` and `2DM`. More 3D model formats will be supported in the future. ## Installation Enter package mode in the Julia REPL and run the following command: ```Julia pkg> add FileIO MeshIO ``` ## Usage Loading works over the [FileIO](https://github.com/JuliaIO/FileIO.jl) interface. This means loading a mesh is as simple as this: ```Julia using FileIO mesh = load("path/to/mesh.obj") ``` Displaying a mesh can be achieved with [Makie](https://github.com/JuliaPlots/Makie.jl). Functions for mesh manipulation can be found in [JuliaGeometry](https://github.com/JuliaGeometry) ## Additional Information MeshIO now has the HomogenousMesh type. Name is still not settled, but it's supposed to be a dense mesh with all attributes either having the length of one (constant over the whole mesh) or the same length (per vertex). This meshtype holds a large variability for all the different attribute mixtures that I've encountered while trying to visualize things over at GLVisualize. This is the best type I've found so far to encode this large variability, without an explosion of functions. The focus is on conversion between different mesh types and creation of different mesh types. This has led to some odd seeming design choices. First, you can get an attribute via `decompose(::Type{AttributeType}, ::Mesh)`. This will try to get this attribute, and if it has the wrong type try to convert it, or if it is not available try to create it. So `decompose(Point3{Float32}, mesh)` on a mesh with vertices of type `Point3{Float64}` will return a vector of type `Point3{Float32}`. Similarly, if you call `decompose(Normal{3, Float32}, mesh)` but the mesh doesn't have normals, it will call the function `normals(mesh.vertices, mesh.faces, Normal{3, Float32}`, which will create the normals for the mesh. As most attributes are independent, this enables us to easily create all kinds of conversions. Also, I can define `decompose` for arbitrary geometric types. `decompose{T}(Point3{T}, r::Rectangle)` can actually return the needed vertices for a rectangle. This together with `convert` enables us to create mesh primitives like this: ```Julia MeshType(Cube(...)) MeshType(Sphere(...)) MeshType(Volume, 0.4f0) #0.4f0 => isovalue ``` Similarly, I can pass a meshtype to an IO function, which then parses only the attributes that I really need. So passing `Mesh{Point3{Float32}, Face3{UInt32}}` to the obj importer will skip normals, uv coordinates etc, and automatically converts the given attributes to the right number type. To put this one level further, the `Face` type has the index offset relative to Julia's indexing as a parameter (e.g. `Face3{T, 0}` is 1 indexed). Also, you can index into an array with this face type, and it will convert the indexes correctly while accessing the array. So something like this always works, independent of the underlying index offset: ```Julia v1, v2, v3 = vertices[face] ``` Also, the importer is sensitive to this, so if you always want to work with 0-indexed faces (like it makes sense for opengl based visualizations), you can parse the mesh already as an 0-indexed mesh, by just defining the mesh format to use `Face3{T, -1}`. (only the OBJ importer yet) Small example to demonstrate the advantage for IO: ```Julia #Export takes any mesh function write{M <: Mesh}(msh::M, fn::File{:ply_binary}) # even if the native mesh format doesn't have an array of dense points or faces, the correct ones will # now be created, or converted: vts = decompose(Point3{Float32}, msh) # I know ply_binary needs Point3{Float32} fcs = decompose(Face3{Int32, -1}, msh) # And 0 indexed Int32 faces. #write code... end ```
MeshIO
https://github.com/JuliaIO/MeshIO.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
279
# This file is a part of project JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE using Documenter using Materials deploydocs( deps = Deps.pip("mkdocs", "python-markdown-math"), repo = "github.com/JuliaFEM/Materials.jl.git")
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
239
# This file is a part of project JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE using Documenter using Materials makedocs( modules = [Materials], checkdocs = :all, strict = true)
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
9897
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE # # Some examples of how to use the Chaboche material model. using Parameters using ForwardDiff using DelimitedFiles, Test using Materials function simple_integration_test() parameters = ChabocheParameterState(E = 200.0e3, nu = 0.3, R0 = 100.0, Kn = 100.0, nn = 10.0, C1 = 10000.0, D1 = 100.0, C2 = 50000.0, D2 = 1000.0, Q = 50.0, b = 0.1) dstrain_dtime = fromvoigt(Symm2{Float64}, 1e-3*[1.0, -0.3, -0.3, 0.0, 0.0, 0.0]; offdiagscale=2.0) ddrivers = ChabocheDriverState(time=0.25, strain=0.25*dstrain_dtime) chabmat = Chaboche(parameters=parameters, ddrivers=ddrivers) @info "time = $(chabmat.drivers.time), stress = $(chabmat.variables.stress)" integrate_material!(chabmat) update_material!(chabmat) @info "time = $(chabmat.drivers.time), stress = $(chabmat.variables.stress)" chabmat.ddrivers = ddrivers integrate_material!(chabmat) update_material!(chabmat) @info "time = $(chabmat.drivers.time), stress = $(chabmat.variables.stress)" chabmat.ddrivers = ddrivers integrate_material!(chabmat) update_material!(chabmat) @info "time = $(chabmat.drivers.time), stress = $(chabmat.variables.stress)" end simple_integration_test() function test_chaboche() path = joinpath(@__DIR__, "one_elem_disp_chaboche", "unitelement_results.rpt") data = readdlm(path, Float64; skipstart=4) ts = data[:,1] s11_ = data[:,2] s12_ = data[:,3] s13_ = data[:,4] s22_ = data[:,5] s23_ = data[:,6] s33_ = data[:,7] e11_ = data[:,8] e12_ = data[:,9] e13_ = data[:,10] e22_ = data[:,11] e23_ = data[:,12] e33_ = data[:,13] strains = [[e11_[i], e22_[i], e33_[i], e23_[i], e13_[i], e12_[i]] for i in 1:length(ts)] parameters = ChabocheParameterState(E = 200.0e3, nu = 0.3, R0 = 100.0, Kn = 100.0, nn = 10.0, C1 = 10000.0, D1 = 100.0, C2 = 50000.0, D2 = 1000.0, Q = 50.0, b = 0.1) chabmat = Chaboche(parameters=parameters) s33s = [chabmat.variables.stress[3,3]] for i=2:length(ts) dtime = ts[i]-ts[i-1] dstrain = fromvoigt(Symm2{Float64}, strains[i]-strains[i-1]; offdiagscale=2.0) chabmat.ddrivers = ChabocheDriverState(time = dtime, strain = dstrain) integrate_material!(chabmat) update_material!(chabmat) push!(s33s, chabmat.variables.stress[3,3]) end @test isapprox(s33s, s33_; rtol=0.01) end test_chaboche() # Profile.clear_malloc_data() # test_chaboche() # using BenchmarkTools # @btime test_chaboche() function simple_integration_test_fd_tangent() parameters = ChabocheParameterState(E = 200.0e3, nu = 0.3, R0 = 100.0, Kn = 100.0, nn = 10.0, C1 = 10000.0, D1 = 100.0, C2 = 50000.0, D2 = 1000.0, Q = 50.0, b = 0.1) dstrain_dtime = fromvoigt(Symm2{Float64}, 1e-3*[1.0, -0.3, -0.3, 0.0, 0.0, 0.0]; offdiagscale=2.0) ddrivers = ChabocheDriverState(time=0.25, strain=0.25*dstrain_dtime) chabmat = Chaboche(parameters=parameters, ddrivers=ddrivers) function get_stress(dstrain::Symm2) chabmat.ddrivers.strain = dstrain integrate_material!(chabmat) return chabmat.variables_new.stress end # stress = get_stress(0.25*dstrain_dtime) # @info "stress = $stress" # https://kristofferc.github.io/Tensors.jl/stable/man/automatic_differentiation/ # TODO: doesn't work, a Nothing ends up in the type for some reason? D, dstress = Tensors.gradient(get_stress, 0.25*dstrain_dtime, :all) @info "D_mat = $(tovoigt(chabmat.variables_new.jacobian))" @info "D = $(tovoigt(D))" chabmat.variables_new = typeof(chabmat.variables_new)() chabmat.ddrivers = ChabocheDriverState(time=0.25, strain=0.25*dstrain_dtime) @info "time = $(chabmat.drivers.time), stress = $(chabmat.variables.stress)" integrate_material!(chabmat) update_material!(chabmat) @info "time = $(chabmat.drivers.time), stress = $(chabmat.variables.stress)" # stress = get_stress(0.25*dstrain_dtime) # @info "stress = $stress" D, dstress = Tensors.gradient(get_stress, 0.25*dstrain_dtime, :all) @info "D = $(tovoigt(D))" chabmat.variables_new = typeof(chabmat.variables_new)() chabmat.ddrivers = ChabocheDriverState(time=0.25, strain=0.25*dstrain_dtime) integrate_material!(chabmat) update_material!(chabmat) @info "time = $(chabmat.drivers.time), stress = $(chabmat.variables.stress)" # stress = get_stress(0.25*dstrain_dtime) # @info "stress = $stress" D, dstress = Tensors.gradient(get_stress, 0.25*dstrain_dtime, :all) @info "D = $(tovoigt(D))" chabmat.variables_new = typeof(chabmat.variables_new)() chabmat.ddrivers = ChabocheDriverState(time=0.25, strain=0.25*dstrain_dtime) integrate_material!(chabmat) update_material!(chabmat) @info "time = $(chabmat.drivers.time), stress = $(chabmat.variables.stress)" # stress = get_stress(0.25*dstrain_dtime) # @info "stress = $stress" D, dstress = Tensors.gradient(get_stress, 0.25*dstrain_dtime, :all) @info "D = $(tovoigt(D))" end simple_integration_test_fd_tangent() function simple_integration_test_fd_tangent2() parameters = ChabocheParameterState(E = 200.0e3, nu = 0.3, R0 = 100.0, Kn = 100.0, nn = 10.0, C1 = 10000.0, D1 = 100.0, C2 = 50000.0, D2 = 1000.0, Q = 50.0, b = 0.1) dstrain_dtime = fromvoigt(Symm2{Float64}, 1e-3*[1.0, -0.3, -0.3, 0.0, 0.0, 0.0]; offdiagscale=2.0) ddrivers = ChabocheDriverState(time=0.25, strain=0.25*dstrain_dtime) chabmat = Chaboche(parameters=parameters, ddrivers=ddrivers) integrate_material!(chabmat) update_material!(chabmat) @info "time = $(chabmat.drivers.time), stress = $(chabmat.variables.stress)" chabmat.ddrivers = ddrivers integrate_material!(chabmat) update_material!(chabmat) @info "time = $(chabmat.drivers.time), stress = $(chabmat.variables.stress)" chabmat.ddrivers = ddrivers integrate_material!(chabmat) g! = Materials.ChabocheModule.create_nonlinear_system_of_equations(chabmat) x0 = [tovoigt(chabmat.variables_new.stress); chabmat.variables_new.R; tovoigt(chabmat.variables_new.X1); tovoigt(chabmat.variables_new.X2)] drdx = ForwardDiff.jacobian(debang(g!), x0) @info "size(drdx) = $(size(drdx))" @info "drdx = $drdx" @unpack E, nu, R0, Kn, nn, C1, D1, C2, D2, Q, b = parameters mu = E/(2.0*(1.0+nu)) lambda = E*nu/((1.0+nu)*(1.0-2.0*nu)) jacobian = isotropic_elasticity_tensor(lambda, mu) drde = zeros((19,6)) drde[1:6, 1:6] = -tovoigt(jacobian) @info "drde = $drde" @info "size(drde) = $(size(drde))" jacobian2 = (drdx\drde)[1:6, 1:6] @info "jacobian = $(tovoigt(jacobian))" @info "jacobian2 = $jacobian2" jacobian3 = (drdx[1:6, 1:6] + drdx[1:6,7:end]*(drdx[7:end,7:end]\-drdx[7:end, 1:6]))\drde[1:6, 1:6] @info "jacobian3 = $jacobian3" @info "jacobian4 = $(tovoigt(chabmat.variables_new.jacobian))" update_material!(chabmat) @info "time = $(chabmat.drivers.time), stress = $(chabmat.variables.stress)" chabmat.ddrivers = ddrivers integrate_material!(chabmat) g! = Materials.ChabocheModule.create_nonlinear_system_of_equations(chabmat) x0 = [tovoigt(chabmat.variables_new.stress); chabmat.variables_new.R; tovoigt(chabmat.variables_new.X1); tovoigt(chabmat.variables_new.X2)] drdx = ForwardDiff.jacobian(debang(g!), x0) @info "size(drdx) = $(size(drdx))" @info "drdx = $drdx" @unpack E, nu, R0, Kn, nn, C1, D1, C2, D2, Q, b = parameters mu = E/(2.0*(1.0+nu)) lambda = E*nu/((1.0+nu)*(1.0-2.0*nu)) jacobian = isotropic_elasticity_tensor(lambda, mu) drde = zeros((19,6)) drde[1:6, 1:6] = -tovoigt(jacobian) @info "drde = $drde" @info "size(drde) = $(size(drde))" jacobian2 = (drdx\drde)[1:6, 1:6] @info "jacobian = $(tovoigt(jacobian))" @info "jacobian2 = $jacobian2" jacobian3 = (drdx[1:6, 1:6] + drdx[1:6,7:end]*(drdx[7:end,7:end]\-drdx[7:end, 1:6]))\drde[1:6, 1:6] @info "jacobian3 = $jacobian3" @info "jacobian4 = $(tovoigt(chabmat.variables_new.jacobian))" update_material!(chabmat) @info "time = $(chabmat.drivers.time), stress = $(chabmat.variables.stress)" end simple_integration_test_fd_tangent2()
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
3697
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE # # Some performance benchmarks for the current design for AbstractMaterial. mutable struct Variable{T} value :: T dvalue :: T end function Variable(x) return Variable(x, zero(x)) end reset!(v::Variable) = (v.dvalue = zero(v.value)) update!(v::Variable) = (v.value += v.dvalue; reset!(v)) update!(v::Variable{<:Array}) = v.value .+= v.dvalue using Tensors a = 1.0 b = [1.0, 2.0, 3.0] c = Tensor{2, 3}([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]) vara = Variable(a) varb = Variable(b) varc = Variable(c) @info "Initial state: $vara" vara.dvalue += rand() @info "After setting dvalue: $vara" update!(vara) @info "After update!: $vara" @info "Initial state: $varb" varb.dvalue += rand(3) @info "After setting dvalue: $varb" update!(varb) @info "After update!: $varb" @info "Initial state: $varc" varc.dvalue += Tensor{2,3}(rand(9)) @info "After setting dvalue: $varc" update!(varc) @info "After update!: $varc" using BenchmarkTools N = 1000 function bench_float64() # Random walk test" var = Variable(1.0) for i in 1:N var.dvalue += randn() update!(var) end return var end function bench_array() # Random walk test var = Variable([1.0, 2.0, 3.0]) for i in 1:N var.dvalue += randn(3) update!(var) end return var end function bench_tensor() # Random walk test var = Variable(Tensor{2, 3}([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])) for i in 1:N var.dvalue += randn(Tensor{2,3}) update!(var) end end function bench_symtensor() # Random walk test var = Variable(Symm2([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])) for i in 1:N var.dvalue += randn(Symm2{Float64}) update!(var) end end # println("Benchmark Variable{Float64}") # @btime bench_float64() # println("Benchmark Variable{Array{Float64,1}}") # @btime bench_array() # println("Benchmark Variable{Tensor{2,3,Float64,9}}") # @btime bench_tensor() # println("Benchmark Variable{SymmetricTensor{2,3,Float64,6}}") # @btime bench_symtensor() abstract type AbstractVariableState end mutable struct TestState <: AbstractVariableState x :: Variable{Float64} end mutable struct VariableState <: AbstractVariableState stress::Variable{SymmetricTensor{2,3,Float64,6}} strain::Variable{SymmetricTensor{2,3,Float64,6}} backstress1::Variable{SymmetricTensor{2,3,Float64,6}} backstress2::Variable{SymmetricTensor{2,3,Float64,6}} plastic_strain::Variable{SymmetricTensor{2,3,Float64,6}} cumeq::Variable{Float64} R::Variable{Float64} end function update!(state::T) where {T<:AbstractVariableState} for fn in fieldnames(T) update!(getfield(state, fn)) end end function bench_chaboche_style_variablestate() stress = Variable(zero(Symm2)) strain = Variable(zero(Symm2)) backstress1 = Variable(zero(Symm2)) backstress2 = Variable(zero(Symm2)) plastic_strain = Variable(zero(Symm2)) cumeq = Variable(0.0) R = Variable(0.0) state = VariableState(stress, strain, backstress1, backstress2, plastic_strain, cumeq, R) for i in 1:N state.stress.dvalue = randn(Symm2) state.strain.dvalue = randn(Symm2) state.backstress1.dvalue = randn(Symm2) state.backstress2.dvalue = randn(Symm2) state.plastic_strain.dvalue = randn(Symm2) state.cumeq.dvalue = norm(state.plastic_strain.dvalue) state.R.dvalue = randn() update!(state) end return state end println("Benchmark Chaboche VariableState") @btime bench_chaboche_style_variablestate()
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
2010
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE # # Some performance benchmarks for the current design for AbstractMaterialState. using Tensors using BenchmarkTools abstract type AbstractMaterialState end @generated function Base.:+(state::T, dstate::T) where {T <: AbstractMaterialState} expr = [:(state.$p+ dstate.$p) for p in fieldnames(T)] return :(T($(expr...))) end struct SomeState <: AbstractMaterialState stress::Symm2{Float64} end state = SomeState(Symm2{Float64}([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])) N = 1000 function bench_state(N) state = SomeState(Symm2{Float64}([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])) for i in 1:N dstate = SomeState(randn(Symm2{Float64})) state = state + dstate end return state end # println("Benchmark State{Symm2{Float64}}") # @btime bench_state(N) struct AnotherState <: AbstractMaterialState stress::SymmetricTensor{2,3,Float64,6} strain::SymmetricTensor{2,3,Float64,6} backstress1::SymmetricTensor{2,3,Float64,6} backstress2::SymmetricTensor{2,3,Float64,6} plastic_strain::SymmetricTensor{2,3,Float64,6} cumeq::Float64 R::Float64 end function bench_chaboche_style_state(N) stress = zero(Symm2) strain = zero(Symm2) backstress1 = zero(Symm2) backstress2 = zero(Symm2) plastic_strain = zero(Symm2) cumeq = 0.0 R = 0.0 state = AnotherState(stress, strain, backstress1, backstress2, plastic_strain, cumeq, R) for i in 1:N dstress = randn(Symm2) dstrain = randn(Symm2) dbackstress1 = randn(Symm2) dbackstress2 = randn(Symm2) dplastic_strain = randn(Symm2) dcumeq = norm(dplastic_strain) dR = randn() dstate = AnotherState(dstress, dstrain, dbackstress1, dbackstress2, dplastic_strain, dcumeq, dR) state = state + dstate end return state end println("Benchmark Chaboche State") @btime bench_chaboche_style_state(N)
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
6386
# An example of the Chaboche material model using just 2-dimensional Arrays # (no tensors or Materials.jl). using LinearAlgebra using Einsum using Test using NLsolve using Plots pyplot() # OLD BACKEND: plotly() # Tensors I_ = Matrix(1.0I,3,3) # Second order identity tensor II = zeros(3,3,3,3) @einsum II[i,j,k,l] = 0.5*(I_[i,k]*I_[j,l] + I_[i,l]*I_[j,k]) # Fourth order symmetric identity tensor IxI = zeros(3,3,3,3) @einsum IxI[i,j,k,l] = I_[i,j]*I_[k,l] # "Trace" tensor P = II - 1/3*IxI # Deviatoric projection tensor # Functions function double_contraction(x::AbstractArray{<:Number,2},y::AbstractArray{<:Number,2}) return sum(x.*y) end function double_contraction(x::AbstractArray{<:Number,4},y::AbstractArray{<:Number,2}) retval = zeros(3,3) @einsum retval[i,j] = x[i,j,k,l]*y[k,l] return retval end A = rand(3,3) # Create Random second order tensor A += A' # Symmetrize it @test isapprox(double_contraction(II, A), A) @test isapprox(double_contraction(IxI, A), I_*tr(A)) function deviator(x::AbstractArray{<:Number,2}) s = zeros(3,3) @einsum s[i,j] = P[i,j,k,l]*x[k,l] return s end function von_mises_stress(stress::AbstractArray{<:Number,2}) s = deviator(stress) return sqrt(3/2*double_contraction(s,s)) end S = [100 0 0; 0 0 0; 0 0 0] @test isapprox(von_mises_stress(S), 100) ### Material parameters ### # Isotropic elasticity: \dot{sigma} = \mathcal{C}:(\dot{\varepsilon}_{tot} - \dot{\varepsilon}_{pl}) E = 210000.0 # Young's modulus nu = 0.3 # Poisson's ratio K = E/(3*(1-2*nu)) # Bulk modulus G = E/(2*(1+nu)) # Shear modulus C = K*IxI + 2*G*P # Elasticity Tensor \mathcal{C} @test isapprox(double_contraction(C, [0.001 0 0; 0 -nu*0.001 0; 0 0 -nu*0.001]), [E*0.001 0 0; 0 0 0; 0 0 0]) # Non-linear isotropic hardening: \dot{R} = b(Q-R)\dot{p} # where \dot{p} = \sqrt{2/3 \dot{\varepsilon}_{pl}:\dot{\varepsilon}_{pl}}} - equivalent plastic strain rate R0 = 100.0 # Initial proportionality limit Q = 50.0 # Hardening magnitude b = 0.1 # Hardening rate # Non-linear kinematic hardening: \dot{X}_i = 2/3C_i\dot{p}(n - \frac{3D_i}{2C_i}X_i) # where n = \frac{\partial f}{\partial \sigma} - plastic strain direction # and X = \sum_{i=1}^N X_i C_1 = 10000.0 # Slope parameter 1 D_1 = 100.0 # Rate parameter 1 C_2 = 50000.0 # Slope parameter 2 D_2 = 1000.0 # Rate parameter 2 # Viscoplasticity: Norton viscoplastic potential \phi = \frac{K_n}{n_n+1}\left( \frac{f}{K_n} \right)^{n_n+1} # \dot{\varepsilon}_{pl} = \frac{\partial \phi}{\partial \sigma} = \frac{\partial \phi}{\partial f}\frac{\partial f}{\partial \sigma} # => \dot{p} = \frac{\partial \phi}{\partial f} = \left( \frac{f}{K_n} \right)^n_n # => n = \frac{\partial f}{\partial \sigma} # => \dot{\varepsilon}_{pl} = \dot{p} n K_n = 100.0 # Drag stress n_n = 3.0 # Viscosity exponent # Initialize variables sigma = zeros(3,3) R = R0 X_1 = zeros(3,3) X_2 = zeros(3,3) varepsilon_pl = zeros(3,3) varepsilon_el = zeros(3,3) t = 0.0 # Determine loading sequence varepsilon_a = 0.01 # Strain amplitude #varepsilon_tot(t) = sin(t)*[varepsilon_a 0 0; 0 -nu*varepsilon_a 0; 0 0 -nu*varepsilon_a] dt = 0.01 # Time step T0 = 1.0 T = 10.0 # Time span # varepsilon_tot(t) = t/T*[varepsilon_a 0 0; 0 -nu*varepsilon_a 0; 0 0 -nu*varepsilon_a] function varepsilon_tot(t) if t<T0 return t/T0*[varepsilon_a 0 0; 0 -nu*varepsilon_a 0; 0 0 -nu*varepsilon_a] else return [varepsilon_a 0 0; 0 -nu*varepsilon_a 0; 0 0 -nu*varepsilon_a] end end # Initialize result storage ts = [t] sigmas = [sigma] Rs = [R] X_1s = [X_1] X_2s = [X_2] varepsilon_pls = [varepsilon_pl] varepsilon_els = [varepsilon_el] # Time integration while t < T global t, sigma, R, X_1, X_2, varepsilon_pl, varepsilon_el, ts, sigmas, Rs, X_1s, X2_s, varepsilon_pls, varepsilon_els global C, K_n, n_n, C_1, D_1, C_2, D_2, Q, b # Store initial state sigma_n = sigma R_n = R X_1n = X_1 X_2n = X_2 varepsilon_pln = varepsilon_pl varepsilon_eln = varepsilon_el t_n = t # Increments t = t + dt dvarepsilon_tot = varepsilon_tot(t) - varepsilon_tot(t_n) # Elastic trial sigma_tr = sigma_n + double_contraction(C, dvarepsilon_tot) # Check for yield f_tr = von_mises_stress(sigma_tr - X_1 - X_2) - R println("***************************************") if f_tr <= 0 # Elastic step # Update variables println("Elastic step!") sigma = sigma_tr varepsilon_el += dvarepsilon_tot else # Viscoplastic step println("Viscoplastic step!") function g!(F, x) # System of non-linear equations sigma = reshape(x[1:9], 3,3) R = x[10] X_1 = reshape(x[11:19], 3,3) X_2 = reshape(x[20:28], 3,3) dotp = ((von_mises_stress(sigma - X_1 - X_2) - R)/K_n)^n_n dp = dotp*dt s = deviator(sigma - X_1 - X_2) n = 3/2*s/von_mises_stress(sigma - X_1 - X_2) dvarepsilon_pl = dp*n f1 = vec(sigma_n - sigma + double_contraction(C, dvarepsilon_tot - dvarepsilon_pl)) f2 = R_n - R + b*(Q-R)*dp f3 = vec(X_1n - X_1 + 2/3*C_1*dp*(n - 3*D_1/(2*C_1)*X_1)) f4 = vec(X_2n - X_2 + 2/3*C_2*dp*(n - 3*D_2/(2*C_2)*X_2)) F[:] = vec([f1; f2; f3; f4]) end x0 = vec([vec(sigma_tr); R; vec(X_1); vec(X_2)]) F = similar(x0) res = nlsolve(g!, x0) x = res.zero sigma = reshape(x[1:9],3,3) R = x[10] X_1 = reshape(x[11:19], 3,3) X_2 = reshape(x[20:28], 3,3) dotp = ((von_mises_stress(sigma - X_1 - X_2) - R)/K_n)^n_n dp = dotp*dt s = deviator(sigma - X_1 - X_2) n = 3/2*s/von_mises_stress(sigma - X_1 - X_2) dvarepsilon_pl = dp*n varepsilon_pl += dvarepsilon_pl varepsilon_el += dvarepsilon_tot - dvarepsilon_pl end # Store variables push!(ts, t) push!(sigmas, sigma) push!(Rs, R) push!(X_1s, X_1) push!(X_2s, X_2) push!(varepsilon_pls, varepsilon_pl) push!(varepsilon_els, varepsilon_el) end qs = [von_mises_stress(sigma_i) for sigma_i in sigmas] ps = [tr(sigma_i)/3 for sigma_i in sigmas] xs = [von_mises_stress(X_1s[i] + X_2s[i]) for i in 1:length(ts)] plot(ps, qs, label="Stress") plot!(ps, xs+Rs, label="Static yield surface") xlabel!("Hydrostatic stress") ylabel!("Von Mises stress")
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
42802
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE using Printf using Tensors using Plots using Test using DelimitedFiles using Materials pyplot() let # https://rosettacode.org/wiki/Align_columns#Julia # left/right/center justification of strings: ljust(s::String, width::Integer) = s * " "^max(0, width - length(s)) # rjust(s::String, width::Integer) = " "^max(0, width - length(s)) * s # function center(s::String, width::Integer) # pad = width - length(s) # if pad <= 0 # return s # else # pad2 = div(pad, 2) # return " "^pad2 * s * " "^(pad - pad2) # end # end """ format_numbers(xx::Array{<:Real}) Format a rank-1 array of numbers to "%0.6g", align the ones column, and pad to the same length. Return a rank-1 array of the resulting strings. """ function format_numbers(xx::Array{<:Real}) # TODO: extend to handle complex numbers, too # - real numbers x for which |x| < 1 always have "0." at the start # - e-notation always has a dot function find_ones_column(s::String) dot_column = findfirst(".", s) ones_column = (dot_column !== nothing) ? (dot_column[1] - 1) : length(s) @assert (ones_column isa Integer) "failed to detect column for ones" return ones_column end ss = [@sprintf("%0.6g", x) for x in xx] ones_columns = [find_ones_column(s) for s in ss] ones_target_column = maximum(ones_columns) left_pads = ones_target_column .- ones_columns @assert all(p >= 0 for p in left_pads) "negative padding length" ss = [" "^p * s for (s, p) in zip(ss, left_pads)] max_length = maximum(length(s) for s in ss) ss = [ljust(s, max_length) for s in ss] return ss end function constant(value::Real) function interpolate(x::Real) # `x` may be a `ForwardDiff.Dual` even when `value` is a float. return convert(typeof(x), value) end return interpolate end function capped_linear(x1::Real, y1::Real, x2::Real, y2::Real) if x1 > x2 x1, x2 = x2, x1 y1, y2 = y2, y1 end dx = x2 - x1 dx > 0 || error("must have x2 > x1") dy = y2 - y1 function interpolate(x::Real) alpha = (x - x1) / dx alpha = max(0, min(alpha, 1)) return y1 + alpha * dy end return interpolate end """Celsius to Kelvin.""" function K(degreesC::Real) return degreesC + 273.15 end """Kelvin to Celsius.""" function degreesC(K::Real) return K - 273.15 end let T0 = K(20.0), T1 = K(620.0), # Thermal elongation, Eurocode, SFS-EN 1993-1-2, carbon steel # 1.2e-5 * T[C°] + 0.4e-8 * T[C°]^2 - 2.416e-4 # α is the derivative of this. # # using SymPy # @vars T real=true # thermal_elongation = 1.2e-5 * T + 0.4e-8 * T^2 - 2.416e-4 # alpha = diff(thermal_elongation, T) # alpha0 = subs(alpha, (T, 20)) # 1.216e-5 # alpha1 = subs(alpha, (T, 600)) # 1.680e-5 # # See also: # https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html parameters = ChabocheThermalParameterState(theta0=T0, E=capped_linear(T0, 200.0e3, T1, 100.0e3), #nu=capped_linear(T0, 0.3, T1, 0.35), nu=constant(0.3), #alpha=capped_linear(T0, 1.216e-5, T1, 1.680e-5), alpha=constant(1.216e-5), R0=capped_linear(T0, 100.0, T1, 50.0), # R0=constant(1000.0), # viscous hardening in constant strain rate test: (tvp * ε')^(1/nn) * Kn tvp=1000.0, Kn=capped_linear(T0, 100.0, T1, 50.0), nn=capped_linear(T0, 1.0, T1, 4.0), # C1=constant(10000.0), # D1=constant(100.0), # C2=constant(50000.0), # D2=constant(1000.0), C1=constant(1000.0), D1=constant(10.0), C2=constant(0.0), D2=constant(0.0), C3=constant(0.0), D3=constant(0.0), # Q=capped_linear(T0, 50.0, T1, 10.0), # b=capped_linear(T0, 100.0, T1, 0.01)), Q=constant(0.0), b=constant(0.0)), # uniaxial pull test, so we set only dε11. # stress_rate=10.0, # dσ/dt [MPa/s] (for stress-driven test) strain_rate=1e-3, # dε/dt [1/s] (for strain-driven test) strain_final=0.005, # when to stop the pull test dt=0.05, # simulation timestep, [s] # dstress11 = stress_rate * dt, # dσ11 during one timestep (stress-driven) dstrain11 = strain_rate * dt, # dε11 during one timestep (strain-driven) n_timesteps = Integer(round(strain_final / dstrain11)), #constant_temperatures = range(T0, T1, length=3), constant_temperatures = [K(20.0), K(150.0), K(300.0), K(620.0)], timevar_temperature = range(T0, T0 + 130, length=n_timesteps + 1) # TODO: Improve the plotting to use two separate figures so that we can plot these examples too # TODO: (without making individual plots too small). # TODO: Plots.jl can't currently do that; investigate whether the underlying PyPlot.jl can. # p1 = plot() # make empty figure # # # # -------------------------------------------------------------------------------- # # constant temperature, constant strain rate pull test # # println("Constant temperature tests") # for T in constant_temperatures # println("T = $(degreesC(T))°C") # mat = ChabocheThermal(parameters=parameters) # mat.drivers.temperature = T # mat.ddrivers.temperature = 0 # stresses = [mat.variables.stress[1,1]] # strains = [mat.drivers.strain[1,1]] # for i in 1:n_timesteps # uniaxial_increment!(mat, dstrain11, dt) # # stress_driven_uniaxial_increment!(mat, dstress11, dt) # update_material!(mat) # push!(strains, mat.drivers.strain[1,1]) # push!(stresses, mat.variables.stress[1,1]) # end # println(" ε11, σ11, at end of simulation") # println(" $(strains[end]), $(stresses[end])") # plot!(strains, stresses, label="\$\\sigma(\\varepsilon)\$ @ \$$(degreesC(T))°C\$") # end # # # # -------------------------------------------------------------------------------- # # varying temperature, constant strain rate pull test # # println("Time-varying temperature tests (activates ΔT terms)") # println("T = $(degreesC(timevar_temperature[1]))°C ... $(degreesC(timevar_temperature[end]))°C, linear profile.") # mat = ChabocheThermal(parameters=parameters) # stresses = [mat.variables.stress[1,1]] # strains = [mat.drivers.strain[1,1]] # temperature_pairs = zip(timevar_temperature, timevar_temperature[2:end]) # for (Tcurr, Tnext) in temperature_pairs # # println(" Tcurr = $(degreesC(Tcurr))°C, Tnext = $(degreesC(Tnext))°C, ΔT = $(Tnext - Tcurr)°C") # mat.drivers.temperature = Tcurr # mat.ddrivers.temperature = Tnext - Tcurr # uniaxial_increment!(mat, dstrain11, dt) # # stress_driven_uniaxial_increment!(mat, dstress11, dt) # update_material!(mat) # push!(strains, mat.drivers.strain[1,1]) # push!(stresses, mat.variables.stress[1,1]) # end # println(" ε11, σ11, at end of simulation") # println(" $(strains[end]), $(stresses[end])") # plot!(strains, stresses, label="\$\\sigma(\\varepsilon)\$ @ $(degreesC(timevar_temperature[1]))°C ... $(degreesC(timevar_temperature[end]))°C") # # xlabel!("\$\\varepsilon\$") # ylabel!("\$\\sigma\$") # title!("Uniaxial pull test (strain-driven)") # # # # -------------------------------------------------------------------------------- # # cyclic temperature/strain # # # # - boomerang/fan in elastic region, no hysteresis # # - check that the endpoint stays the same # # - It doesn't when temperature effects are enabled; linearly dt-dependent drift; from the integrator? # # println("Elastic behavior under cyclic loading") # function halfcycle(x0, x1, n) # return x0 .+ (x1 - x0) .* range(0, 1, length=n) # end # function cycle(x0, x1, halfn) # 2 * halfn - 1 steps in total (duplicate at middle omitted) # return cat(halfcycle(x0, x1, halfn), # halfcycle(x1, x0, halfn)[2:end], # dims=1) # end # # strain_rate = 1e-4 # uniaxial constant strain rate, [1/s] # cycle_time = 10.0 # one complete cycle, [s] # ncycles = 20 # n = 201 # points per half-cycle (including endpoints; so n - 1 timesteps per half-cycle) # # Ta = T0 # temperature at cycle start, [K] # Tb = K(50.0) # temperature at maximum strain (at cycle halfway point), [K] # # # Observe that: # strain_max = strain_rate * (cycle_time / 2) # dt = cycle_time / (2 * (n - 1)) # # description = "$(ncycles) cycles, εₘₐₓ = $(strain_max), Ta = $(degreesC(Ta))°C, Tb = $(degreesC(Tb))°C" # println(" $(description)") # mat = ChabocheThermal(parameters=parameters) # stresses = [mat.variables.stress[1,1]] # strains = [mat.drivers.strain[1,1]] # temperatures = cycle(Ta, Tb, n) # temperature_pairs = zip(temperatures, temperatures[2:end]) # dstrain11 = strain_rate * dt # = strain_rate * (cycle_time / 2) / (n - 1) = strain_max / (n - 1) # dstrain11s = cat(repeat([dstrain11], n - 1), # repeat([-dstrain11], n - 1), # dims=1) # for cycle in 1:ncycles # cycle_str = @sprintf("%02d", cycle) # println(" start cycle $(cycle_str), ε11 = $(strains[end]), σ11 = $(stresses[end])") # for ((Tcurr, Tnext), dstrain) in zip(temperature_pairs, dstrain11s) # mat.drivers.temperature = Tcurr # mat.ddrivers.temperature = Tnext - Tcurr # uniaxial_increment!(mat, dstrain, dt) # # stress_driven_uniaxial_increment!(mat, dstress11, dt) # update_material!(mat) # push!(strains, mat.drivers.strain[1,1]) # push!(stresses, mat.variables.stress[1,1]) # end # end # println(" ε11, σ11, at end of simulation") # println(" $(strains[end]), $(stresses[end])") # # println(" $(mat.variables.plastic_strain[end])") # p2 = plot(strains, stresses, label="\$\\sigma(\\varepsilon)\$") # # # plot!(xx2, yy2, label="...") # to add new curves into the same figure # xlabel!("\$\\varepsilon\$") # ylabel!("\$\\sigma\$") # title!("Elastic test, $(description)") # # # # -------------------------------------------------------------------------------- # # non-symmetric cyclic loading # # # # Strain-driven case. Should exhibit stress relaxation. # # println("Non-symmetric strain cycle") # strain_rate = 1e-3 # uniaxial constant strain rate, [1/s] # cycle_time = 5.0 # one complete cycle, [s] # ncycles = 20 # n = 51 # points per half-cycle (including endpoints; so n - 1 timesteps per half-cycle) # # Ta = T0 # temperature at simulation start, [K] # Tb = K(50.0) # temperature at maximum strain (at cycle halfway point), [K] # Tm = Ta + (Tb - Ta) / 2 # temperature at start of each cycle, [K] # # strain_max = strain_rate * cycle_time # accounting for initial loading, too. # dt = cycle_time / (2 * (n - 1)) # # description = "$(ncycles) cycles, εₘₐₓ = $(strain_max), Ta = $(degreesC(Ta))°C, Tb = $(degreesC(Tb))°C" # println(" $(description)") # mat = ChabocheThermal(parameters=parameters) # TODO: always use the AF model here (one backstress). # stresses = [mat.variables.stress[1,1]] # strains = [mat.drivers.strain[1,1]] # # # initial loading # temperatures = halfcycle(Ta, Tm, n) # temperature_pairs = zip(temperatures, temperatures[2:end]) # dstrain11 = strain_rate * dt # dstrain11s = repeat([dstrain11], n - 1) # # for ((Tcurr, Tnext), dstrain) in zip(temperature_pairs, dstrain11s) # mat.drivers.temperature = Tcurr # mat.ddrivers.temperature = Tnext - Tcurr # uniaxial_increment!(mat, dstrain, dt) # # stress_driven_uniaxial_increment!(mat, dstress11, dt) # update_material!(mat) # push!(strains, mat.drivers.strain[1,1]) # push!(stresses, mat.variables.stress[1,1]) # end # # # cycles # eps0 = strains[end] # for marking the start of the first cycle in the figure # sig0 = stresses[end] # temperatures = cycle(Tm, Tb, n) # temperature_pairs = zip(temperatures, temperatures[2:end]) # dstrain11 = strain_rate * dt # dstrain11s = cat(repeat([dstrain11], n - 1), # repeat([-dstrain11], n - 1), # dims=1) # cycle_midpoint = n - 1 # # for cycle in 1:ncycles # cycle_str = @sprintf("%02d", cycle) # println(" cycle $(cycle_str)") # data_to_print = [] # for (k, ((Tcurr, Tnext), dstrain)) in enumerate(zip(temperature_pairs, dstrain11s)) # if k == 1 || k == cycle_midpoint # push!(data_to_print, (strains[end], stresses[end])) # end # # mat.drivers.temperature = Tcurr # mat.ddrivers.temperature = Tnext - Tcurr # uniaxial_increment!(mat, dstrain, dt) # # stress_driven_uniaxial_increment!(mat, dstress11, dt) # update_material!(mat) # push!(strains, mat.drivers.strain[1,1]) # push!(stresses, mat.variables.stress[1,1]) # end # # strains_to_print, stresses_to_print = (collect(col) for col in zip(data_to_print...)) # strains_to_print = format_numbers(strains_to_print) # stresses_to_print = format_numbers(stresses_to_print) # println(" start ε11 = $(strains_to_print[1]), σ11 = $(stresses_to_print[1])") # println(" midpoint ε11 = $(strains_to_print[2]), σ11 = $(stresses_to_print[2])") # end # # p3 = plot(strains, stresses, label="\$\\sigma(\\varepsilon)\$") # scatter!([eps0], [sig0], markercolor=:blue, label="First cycle start") # xlabel!("\$\\varepsilon\$") # ylabel!("\$\\sigma\$") # title!("Non-symmetric strain cycle, $(ncycles) cycles") # # # # -------------------------------------------------------------------------------- # # stress-driven non-symmetric cycle # # # # - AF (Chaboche with one kinematic hardening backstress) should lead to constant # # ratcheting strain per stress cycle. # # println("Non-symmetric stress cycle") # stress_rate = 40.0 # uniaxial constant stress rate, [MPa/s] # cycle_time = 5.0 # one complete cycle, [s] # ncycles = 40 # n = 51 # points per half-cycle (including endpoints; so n - 1 timesteps per half-cycle) # # Ta = T0 # temperature at simulation start, [K] # Tb = K(50.0) # temperature at maximum strain (at cycle halfway point), [K] # Tm = Ta + (Tb - Ta) / 2 # temperature at start of each cycle, [K] # # strain_max = strain_rate * cycle_time # accounting for initial loading, too. # dt = cycle_time / (2 * (n - 1)) # # description = "$(ncycles) cycles, εₘₐₓ = $(strain_max), Ta = $(degreesC(Ta))°C, Tb = $(degreesC(Tb))°C" # println(" $(description)") # mat = ChabocheThermal(parameters=parameters) # TODO: always use the AF model here (one backstress). # stresses = [mat.variables.stress[1,1]] # strains = [mat.drivers.strain[1,1]] # # # initial loading # temperatures = halfcycle(Ta, Tm, n) # temperature_pairs = zip(temperatures, temperatures[2:end]) # dstress11 = stress_rate * dt # dstress11s = repeat([dstress11], n - 1) # # for ((Tcurr, Tnext), dstress) in zip(temperature_pairs, dstress11s) # mat.drivers.temperature = Tcurr # mat.ddrivers.temperature = Tnext - Tcurr # stress_driven_uniaxial_increment!(mat, dstress, dt) # update_material!(mat) # push!(strains, mat.drivers.strain[1,1]) # push!(stresses, mat.variables.stress[1,1]) # end # # # cycles # eps0 = strains[end] # sig0 = stresses[end] # temperatures = cycle(Tm, Tb, n) # temperature_pairs = zip(temperatures, temperatures[2:end]) # dstress11 = stress_rate * dt # dstress11s = cat(repeat([dstress11], n - 1), # repeat([-dstress11], n - 1), # dims=1) # cycle_midpoint = n - 1 # # cycle_start_strains = convert(Array{Float64}, []) # TODO: what's the julianic way to do this? # for cycle in 1:ncycles # cycle_str = @sprintf("%02d", cycle) # println(" cycle $(cycle_str)") # push!(cycle_start_strains, strains[end]) # data_to_print = [] # for (k, ((Tcurr, Tnext), dstress)) in enumerate(zip(temperature_pairs, dstress11s)) # if k == 1 || k == cycle_midpoint # push!(data_to_print, (strains[end], stresses[end])) # end # # mat.drivers.temperature = Tcurr # mat.ddrivers.temperature = Tnext - Tcurr # stress_driven_uniaxial_increment!(mat, dstress, dt) # update_material!(mat) # push!(strains, mat.drivers.strain[1,1]) # push!(stresses, mat.variables.stress[1,1]) # end # # strains_to_print, stresses_to_print = (collect(col) for col in zip(data_to_print...)) # strains_to_print = format_numbers(strains_to_print) # stresses_to_print = format_numbers(stresses_to_print) # println(" start ε11 = $(strains_to_print[1]), σ11 = $(stresses_to_print[1])") # println(" midpoint ε11 = $(strains_to_print[2]), σ11 = $(stresses_to_print[2])") # end # # println("Strain at cycle start:") # cycle_start_strains_to_print = format_numbers(cycle_start_strains) # diffs = diff(cycle_start_strains) # diffs_to_print = cat([nothing], format_numbers(diffs), dims=1) # for (cycle, (strain, dstrain)) in enumerate(zip(cycle_start_strains_to_print, diffs)) # cycle_str = @sprintf("%02d", cycle) # println(" cycle $(cycle_str), ε11 = $(strain), Δε11 w.r.t. previous cycle = $(dstrain)") # end # # p4 = plot(strains, stresses, label="\$\\sigma(\\varepsilon)\$") # scatter!([eps0], [sig0], markercolor=:blue, label="First cycle start") # xlabel!("\$\\varepsilon\$") # ylabel!("\$\\sigma\$") # title!("Non-symmetric stress cycle, $(ncycles) cycles") # # # # -------------------------------------------------------------------------------- # # TODO: # # - more tests based on Bari's thesis # # - we need to implement pure plasticity (compute dotp from the consistency condition) # # in order to compare to Bari's results. # # # # 1 ksi = 6.8947572932 MPa # # # # From Bari's thesis, paper 1, p. 25 (PDF page 31): # # # # E = 26300 ksi = 181332.11681116 MPa # # ν = 0.302 # # σ₀ = 18.8 ksi = 129.62143711216 MPa (initial yield) # # C₁ = 60000 ksi = 413685.437592 MPa # # C₂ = 12856 ksi = 88638.9997613792 MPa # # C₃ = 455 ksi = 3137.1145684059998 MPa # # γ₁ = 20000 (D₁ in Materials.jl) # # γ₂ = 800 # # γ₃ = 9 # # # # From the article text and figure captions, these values seem to be for CS1026 steel. # # # # c = 6.8947572932 # MPa/ksi # # parameters = ChabocheThermalParameterState(theta0=T0, # # E=constant(26300*c), # # nu=constant(0.302), # # alpha=constant(1.216e-5), # not used in tests based on Bari # # R0=constant(18.8*c), # # # viscous hardening in constant strain rate test: (tvp * ε')^(1/nn) * Kn # # tvp=1000.0, # # Kn=constant(0.0), # TODO # # nn=constant(0.0), # TODO # # C1=constant(60000*c), # # D1=constant(20000), # # C2=constant(12856*c), # # D2=constant(800), # # C3=constant(455*c), # # D3=constant(9), # # Q=constant(0.0), # # b=constant(0.0)) # # # -------------------------------------------------------------------------------- # # plot the results # # # https://docs.juliaplots.org/latest/layouts/ # plot(p1, p2, p3, p4, layout=(2, 2)) # Abaqus as reference point. Data provided by Joona. # The data describes a strain-driven uniaxial cyclic push-pull test in the 22 direction. # let path = joinpath("test_chabochethermal", "cyclic_notherm", # "chabochethermal_cyclic_test_nktherm.rpt"), let path = joinpath("test_chabochethermal", "chabochethermal_cyclic_test_no_autostep.rpt"), data = readdlm(path, Float64; skipstart=4), ts = data[:, 1], e11_ = data[:, 2], # note Abaqus component ordering e12_ = data[:, 3], e13_ = data[:, 4], e22_ = data[:, 5], e23_ = data[:, 6], e33_ = data[:, 7], s11_ = data[:, 8], s12_ = data[:, 9], s13_ = data[:, 10], s22_ = data[:, 11], s23_ = data[:, 12], s33_ = data[:, 13], cumeq_ = data[:, 14], temperature_ = data[:, 15], # note our component ordering (standard Voigt) strains = [[e11_[i], e22_[i], e33_[i], e23_[i], e13_[i], e12_[i]] for i in 1:length(ts)], stresses = [[s11_[i], s22_[i], s33_[i], s23_[i], s13_[i], s12_[i]] for i in 1:length(ts)], T0 = K(23.0), T1 = K(400.0), # original test parameters = ChabocheThermalParameterState(theta0=T0, E=capped_linear(T0, 200.0e3, T1, 120.0e3), nu=capped_linear(T0, 0.3, T1, 0.45), alpha=capped_linear(K(0.0), 1.0e-5, T1, 1.5e-5), R0=capped_linear(T0, 100.0, T1, 50.0), # viscous hardening in constant strain rate test: (tvp * ε')^(1/nn) * Kn tvp=1.0, Kn=capped_linear(T0, 50.0, T1, 250.0), nn=capped_linear(T0, 10.0, T1, 3.0), C1=capped_linear(T0, 100000.0, T1, 20000.0), D1=constant(1000.0), C2=capped_linear(T0, 10000.0, T1, 2000.0), D2=constant(100.0), C3=capped_linear(T0, 1000.0, T1, 200.0), D3=constant(10.0), Q=capped_linear(T0, 100.0, T1, 50.0), b=capped_linear(T0, 50.0, T1, 10.0)), # # DEBUG: notherm test data # parameters = ChabocheThermalParameterState(theta0=T0, # E=constant(200.0e3), # nu=constant(0.3), # alpha=constant(1.0e-5), # R0=constant(100.0), # tvp=1.0, # Kn=constant(50.0), # nn=constant(10.0), # C1=constant(100000.0), # D1=constant(1000.0), # C2=constant(10000.0), # D2=constant(100.0), # C3=constant(1000.0), # D3=constant(10.0), # Q=constant(100.0), # b=constant(50.0)), # # DEBUG: ctherm test data # parameters = ChabocheThermalParameterState(theta0=T0, # E=constant(200.0e3), # nu=constant(0.3), # alpha=constant(1.0e-5), # R0=constant(100.0), # tvp=1.0, # Kn=constant(50.0), # nn=constant(10.0), # C1=capped_linear(T0, 100000.0, T1, 20000.0), # D1=constant(1000.0), # C2=capped_linear(T0, 10000.0, T1, 2000.0), # D2=constant(100.0), # C3=capped_linear(T0, 1000.0, T1, 200.0), # D3=constant(10.0), # Q=constant(100.0), # b=constant(50.0)), # # DEBUG: nktherm test data # parameters = ChabocheThermalParameterState(theta0=T0, # E=constant(200.0e3), # nu=constant(0.3), # alpha=constant(1.0e-5), # R0=constant(100.0), # tvp=1.0, # Kn=capped_linear(T0, 50.0, T1, 250.0), # nn=capped_linear(T0, 10.0, T1, 3.0), # C1=constant(100000.0), # D1=constant(1000.0), # C2=constant(10000.0), # D2=constant(100.0), # C3=constant(1000.0), # D3=constant(10.0), # Q=constant(100.0), # b=constant(50.0)), # # DEBUG: rqbtherm test data # parameters = ChabocheThermalParameterState(theta0=T0, # E=constant(200.0e3), # nu=constant(0.3), # alpha=constant(1.0e-5), # R0=capped_linear(T0, 100.0, T1, 50.0), # tvp=1.0, # Kn=constant(50.0), # nn=constant(10.0), # C1=constant(100000.0), # D1=constant(1000.0), # C2=constant(10000.0), # D2=constant(100.0), # C3=constant(1000.0), # D3=constant(10.0), # Q=capped_linear(T0, 100.0, T1, 50.0), # b=capped_linear(T0, 50.0, T1, 10.0)), mat = ChabocheThermal(parameters=parameters) time_pairs = zip(ts, ts[2:end]) strain_pairs = zip(strains, strains[2:end]) stress_pairs = zip(stresses, stresses[2:end]) thetas = [K(celsius) for celsius in temperature_] temperature_pairs = zip(thetas, thetas[2:end]) # print(count(dt -> dt < 0.001, diff(ts))) ts_output = [copy(mat.drivers.time)] es = [copy(mat.drivers.strain)] ss = [copy(mat.variables.stress)] X1s = [copy(mat.variables.X1)] X2s = [copy(mat.variables.X2)] X3s = [copy(mat.variables.X3)] Rs = [copy(mat.variables.R)] flags = [false] # plastic response activation flag (computed from output) for (step, ((tcurr_, tnext_), (Tcurr_, Tnext_), (ecurr_, enext_), (scurr_, snext_))) in enumerate(zip(time_pairs, temperature_pairs, strain_pairs, stress_pairs)) print("$(step) out of $(length(time_pairs)), t = $(tcurr_)...\n") cumeq_old = mat.variables.cumeq # for plastic response activation detection dtime_ = tnext_ - tcurr_ dtemperature_ = Tnext_ - Tcurr_ dstrain_ = enext_ - ecurr_ dstress_ = snext_ - scurr_ if dtime_ < 1e-8 print(" zero Δt in input data, skipping\n") continue end # Use a smaller timestep internally and gather results every N timesteps. # We have just backward Euler for now, so the integrator is not very accurate. # TODO: We offer this substepping possibility to obtain higher accuracy. # TODO: We don't know what Abaqus internally does here when autostep is on. # TODO: Likely, it uses some kind of error indicator and adapts the # TODO: timestep size based on that. # TODO: Should disable autostep and recompute the Abaqus reference results, so that we can be sure of what the results mean. N = 1 for substep in 1:N tcurr = tcurr_ + ((substep - 1) / N) * dtime_ tnext = tcurr_ + (substep / N) * dtime_ Tcurr = Tcurr_ + ((substep - 1) / N) * dtemperature_ Tnext = Tcurr_ + (substep / N) * dtemperature_ ecurr = ecurr_ + ((substep - 1) / N) * dstrain_ enext = ecurr_ + (substep / N) * dstrain_ scurr = scurr_ + ((substep - 1) / N) * dstress_ snext = scurr_ + (substep / N) * dstress_ dtime = tnext - tcurr dtemperature = Tnext - Tcurr mat.drivers.temperature = Tcurr # value at start of timestep mat.ddrivers.time = dtime mat.ddrivers.temperature = dtemperature # # For reference only: # # This is how we would use the whole strain tensor from the Abaqus data as driver. # # # dstrain = enext - ecurr # mat.ddrivers.strain = fromvoigt(Symm2{Float64}, dstrain, offdiagscale=2.0) # integrate_material!(mat) # This one is the actual test setup. # Strain-driven uniaxial pull test in 22 direction, using only ε22 data as driver. # # note: our component ordering (Julia's standard Voigt) dstrain22 = (enext - ecurr)[2] dstrain_knowns = [missing, dstrain22, missing, missing, missing, missing] dstrain_initialguess = [-dstrain22 * mat.parameters.nu(Tcurr), dstrain22, -dstrain22 * mat.parameters.nu(Tcurr), 0.0, 0.0, 0.0] general_increment!(mat, dstrain_knowns, dt, dstrain_initialguess) # # For reference only: # # This is how we would do this for a stress-driven test, using the σ22 data as driver. # # # # note: our component ordering (Julia's standard Voigt) # dstress22 = (snext - scurr)[2] # dstress_knowns = [missing, dstress22, missing, missing, missing, missing] # dstrain22_initialguess = dstress22 / mat.parameters.E(Tcurr) # dstrain_initialguess = [-dstrain22_initialguess * mat.parameters.nu(Tcurr), # dstrain22_initialguess, # -dstrain22_initialguess * mat.parameters.nu(Tcurr), # 0.0, 0.0, 0.0] # stress_driven_general_increment!(mat, dstress_knowns, dt, dstrain_initialguess) update_material!(mat) end push!(ts_output, tnext_) push!(es, copy(mat.drivers.strain)) push!(ss, copy(mat.variables.stress)) push!(X1s, copy(mat.variables.X1)) push!(X2s, copy(mat.variables.X2)) push!(X3s, copy(mat.variables.X3)) push!(Rs, copy(mat.variables.R)) plastic_active = (mat.variables.cumeq != cumeq_old) push!(flags, plastic_active) end # print("reference\n") # print(e33_) # print("\nresult\n") # print(e33s) # @test isapprox(e33s, e33_; rtol=0.05) # ------------------------------------------------------------ current_run = Int64[] runs = Array{typeof(current_run), 1}() if flags[1] # signal may be "on" at start push!(current_run, 1) end for (k, (flag1, flag2)) in enumerate(zip(flags, flags[2:end])) if flag2 && !flag1 # signal switches on in this interval @assert length(current_run) == 0 push!(current_run, k + 1) # run starts at the edge where the signal is "on" elseif flag1 && !flag2 # signal switches off in this interval @assert length(current_run) == 1 push!(current_run, k) # run ends at the edge where the signal was last "on" push!(runs, current_run) current_run = Int64[] end end if flags[end] # signal may be "on" at end push!(current_run, length(flags)) push!(runs, current_run) current_run = Int64[] end @assert length(current_run) == 0 # ------------------------------------------------------------ e11s = [strain[1,1] for strain in es] e22s = [strain[2,2] for strain in es] s11s = [stress[1,1] for stress in ss] s22s = [stress[2,2] for stress in ss] X1_11s = [X1[1,1] for X1 in X1s] X1_22s = [X1[2,2] for X1 in X1s] X2_11s = [X2[1,1] for X2 in X2s] X2_22s = [X2[2,2] for X2 in X2s] X3_11s = [X3[1,1] for X3 in X3s] X3_22s = [X3[2,2] for X3 in X3s] # debug p1 = plot() plot!(ts, e22_, label="\$\\varepsilon_{22}\$ (Abaqus)") plot!(ts, e11_, label="\$\\varepsilon_{11}\$ (Abaqus)") plot!(ts_output, e22s, label="\$\\varepsilon_{22}\$ (Materials.jl)") plot!(ts_output, e11s, label="\$\\varepsilon_{11}\$ (Materials.jl)") for (s, e) in runs plot!(ts_output[s:e], e22s[s:e], linecolor=:black, label=nothing) end plot!([NaN], [NaN], linecolor=:black, label="plastic response active") p2 = plot() plot!(ts, s22_, label="\$\\sigma_{22}\$ [MPa] (Abaqus)") plot!(ts, s11_, label="\$\\sigma_{11}\$ [MPa] (Abaqus)") plot!(ts_output, s22s, label="\$\\sigma_{22}\$ [MPa] (Materials.jl)") plot!(ts_output, s11s, label="\$\\sigma_{11}\$ [MPa] (Materials.jl)") # scatter!(ts[flags], s22s[flags], markersize=3, markercolor=:black, markershape=:rect, label="in plastic region") for (s, e) in runs plot!(ts_output[s:e], s22s[s:e], linecolor=:black, label=nothing) end plot!([NaN], [NaN], linecolor=:black, label="plastic response active") p3 = plot() plot!(ts, temperature_, label="\$\\theta\$ [°C]") plot!(ts_output, Rs, label="\$R\$ [MPa]") # stress-like, unrelated, but the range of values fits here best. for (s, e) in runs plot!(ts[s:e], temperature_[s:e], linecolor=:black, label=nothing) end plot!([NaN], [NaN], linecolor=:black, label="plastic response active") p4 = plot() plot!(e22_, s22_, label="22 (Abaqus)") plot!(e22s, s22s, label="22 (Materials.jl)") # plot!(e11_, s11_, label="11 (Abaqus)") # plot!(e11s, s11s, label="11 (Materials.jl)") plot(p1, p2, p3, p4, layout=(2, 2)) # p4 = plot() # plot!(ts_output, X1_22s, label="\$(X_1)_{22}\$ [MPa]") # plot!(ts_output, X1_11s, label="\$(X_1)_{11}\$ [MPa]") # for (s, e) in runs # plot!(ts_output[s:e], X1_22s[s:e], linecolor=:black, label=nothing) # end # plot!([NaN], [NaN], linecolor=:black, label="plastic response active") # # p5 = plot() # plot!(ts_output, X2_22s, label="\$(X_2)_{22}\$ [MPa]") # plot!(ts_output, X2_11s, label="\$(X_2)_{11}\$ [MPa]") # for (s, e) in runs # plot!(ts_output[s:e], X2_22s[s:e], linecolor=:black, label=nothing) # end # plot!([NaN], [NaN], linecolor=:black, label="plastic response active") # # p6 = plot() # plot!(ts_output, X3_22s, label="\$(X_3)_{22}\$ [MPa]") # plot!(ts_output, X3_11s, label="\$(X_3)_{11}\$ [MPa]") # for (s, e) in runs # plot!(ts_output[s:e], X3_22s[s:e], linecolor=:black, label=nothing) # end # plot!([NaN], [NaN], linecolor=:black, label="plastic response active") # # plot(p1, p2, p3, p4, p5, p6, layout=(2, 3)) end end end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
3907
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE # # Low-level definitions for one_elem_disp_chaboche.jl. mutable struct Continuum3D <: FieldProblem material_model :: Symbol end Continuum3D() = Continuum3D(:PerfectPlastic) FEMBase.get_unknown_field_name(::Continuum3D) = "displacement" function FEMBase.assemble_elements!(problem::Problem{Continuum3D}, assembly::Assembly, elements::Vector{Element{Hex8}}, time::Float64) for element in elements for ip in get_integration_points(element) material = ip("material", time) preprocess_increment!(material, element, ip, time) end end bi = BasisInfo(Hex8) dim = 3 nnodes = 8 ndofs = dim*nnodes BL = zeros(6, ndofs) Km = zeros(ndofs, ndofs) f_int = zeros(ndofs) f_ext = zeros(ndofs) D = zeros(6, 6) S = zeros(6) dtime = 0.05 # super dirty hack # data = first(elements).fields["displacement"].data # if length(data) > 1 # time0 = data[end-1].first # dtime = time - time0 # end for element in elements u = element("displacement", time) fill!(Km, 0.0) fill!(f_int, 0.0) fill!(f_ext, 0.0) for ip in get_integration_points(element) J, detJ, N, dN = element_info!(bi, element, ip, time) material = ip("material", time) w = ip.weight*detJ # Kinematic matrix, linear part fill!(BL, 0.0) for i=1:nnodes BL[1, 3*(i-1)+1] = dN[1,i] BL[2, 3*(i-1)+2] = dN[2,i] BL[3, 3*(i-1)+3] = dN[3,i] BL[4, 3*(i-1)+1] = dN[2,i] BL[4, 3*(i-1)+2] = dN[1,i] BL[5, 3*(i-1)+2] = dN[3,i] BL[5, 3*(i-1)+3] = dN[2,i] BL[6, 3*(i-1)+1] = dN[3,i] BL[6, 3*(i-1)+3] = dN[1,i] end # Calculate stress response integrate_material!(material) D = material.jacobian S = material.stress + material.dstress #@info("material matrix", D) # Material stiffness matrix Km += w*BL'*D*BL # Internal force vector f_int += w*BL'*S # External force vector for i=1:dim haskey(element, "displacement load $i") || continue b = element("displacement load $i", ip, time) f_ext[i:dim:end] += w*B*vec(N) end end # add contributions to K, Kg, f gdofs = get_gdofs(problem, element) add!(assembly.K, gdofs, gdofs, Km) add!(assembly.f, gdofs, f_ext - f_int) end return nothing end function FEMBase.assemble_elements!(problem::Problem{Continuum3D}, assembly::Assembly, elements::Vector{Element{Quad4}}, time::Float64) nnodes = 4 ndofs = 3 f = zeros(nnodes*ndofs) bi = BasisInfo(Quad4) for element in elements fill!(f, 0.0) for ip in get_integration_points(element) J, detJ, N, dN = element_info!(bi, element, ip, time) w = ip.weight*detJ if haskey(element, "surface pressure") J = element(ip, time, Val{:Jacobian})' n = cross(J[:,1], J[:,2]) n /= norm(n) # sign convention, positive pressure is towards surface p = element("surface pressure", ip, time) f += w*p*vec(n*N) end end gdofs = get_gdofs(problem, element) add!(assembly.f, gdofs, f) end return nothing end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
6150
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE using JuliaFEM, FEMBase, LinearAlgebra, Materials, DelimitedFiles include("continuum.jl") X = Dict( 1 => [0.0, 0.0, 0.0], 2 => [1.0, 0.0, 0.0], 3 => [1.0, 1.0, 0.0], 4 => [0.0, 1.0, 0.0], 5 => [0.0, 0.0, 1.0], 6 => [1.0, 0.0, 1.0], 7 => [1.0, 1.0, 1.0], 8 => [0.0, 1.0, 1.0]) body_element = Element(Hex8, (1, 2, 3, 4, 5, 6, 7, 8)) body_elements = [body_element] update!(body_elements, "geometry", X) update!(body_elements, "youngs modulus", 200.0e3) update!(body_elements, "poissons ratio", 0.3) update!(body_elements, "yield stress", 100.0) update!(body_elements, "K_n", 100.0) update!(body_elements, "n_n", 10.0) update!(body_elements, "C_1", 10000.0) update!(body_elements, "D_1", 100.0) update!(body_elements, "C_2", 50000.0) update!(body_elements, "D_2", 1000.0) update!(body_elements, "Q", 50.0) update!(body_elements, "b", 0.1) bc_element_1 = Element(Poi1, (1,)) bc_element_2 = Element(Poi1, (2,)) bc_element_3 = Element(Poi1, (3,)) bc_element_4 = Element(Poi1, (4,)) bc_element_5 = Element(Poi1, (5,)) bc_element_6 = Element(Poi1, (6,)) bc_element_7 = Element(Poi1, (7,)) bc_element_8 = Element(Poi1, (8,)) bc_elements = [bc_element_1, bc_element_2, bc_element_3, bc_element_4, bc_element_5, bc_element_6, bc_element_7, bc_element_8] update!(bc_elements, "geometry", X) for element in (bc_element_1, bc_element_2, bc_element_3, bc_element_4) update!(element, "displacement 3", 0.0) end for element in (bc_element_5, bc_element_6, bc_element_7, bc_element_8) update!(element, "displacement 3", 0.0 => 0.0) update!(element, "displacement 3", 1.0 => 5.0e-3) update!(element, "displacement 3", 3.0 => -5.0e-3) update!(element, "displacement 3", 5.0 => 5.0e-3) update!(element, "displacement 3", 7.0 => -5.0e-3) update!(element, "displacement 3", 9.0 => 5.0e-3) update!(element, "displacement 3", 10.0 => 0.0) end update!(bc_element_1, "displacement 1", 0.0) update!(bc_element_1, "displacement 2", 0.0) update!(bc_element_2, "displacement 2", 0.0) update!(bc_element_4, "displacement 1", 0.0) update!(bc_element_5, "displacement 1", 0.0) update!(bc_element_5, "displacement 2", 0.0) update!(bc_element_6, "displacement 2", 0.0) update!(bc_element_8, "displacement 1", 0.0) #update!(bc_element_5, "displacement 1", 0.0) #update!(bc_element_5, "displacement 2", 0.0) #update!(bc_element_5, "displacement 3", 0.0 => 0.0) #update!(bc_element_5, "displacement 3", 1.0 => 1.0e-3) # Initialize material model to integration points for ip in get_integration_points(body_element) mat = Material(Chaboche, tuple()) mat.dtime = 0.05 Materials.initialize!(mat, body_element, ip, 0.0) ip.fields["material"] = field(mat) end body = Problem(Continuum3D, "1 element problem", 3) bc = Problem(Dirichlet, "fix displacement", 3, "displacement") add_elements!(body, body_elements) add_elements!(bc, bc_elements) analysis = Analysis(Nonlinear, "solve problem") # xdmf = Xdmf("results"; overwrite=true) # add_results_writer!(analysis, xdmf) add_problems!(analysis, body, bc) # time_end = 1.0 time_end = 10.0 dtime = 0.05 for problem in get_problems(analysis) FEMBase.initialize!(problem, analysis.properties.time) end while analysis.properties.time < time_end analysis.properties.time += dtime update!(body_element, "displacement", analysis.properties.time => Dict(j => zeros(3) for j in 1:8)) @info("time = $(analysis.properties.time)") for element in body_elements for ip in get_integration_points(element) material = ip("material", analysis.properties.time) preprocess_analysis!(material, element, ip, analysis.properties.time) end end run!(analysis) for element in body_elements for ip in get_integration_points(element) material = ip("material", analysis.properties.time) postprocess_analysis!(material, element, ip, analysis.properties.time) end end # update material internal parameters end # close(xdmf) using Plots if true ip1 = first(get_integration_points(body_element)) t = range(0, stop=time_end, length=Int(time_end/dtime)+1) s11(t) = ip1("stress", t)[1] s22(t) = ip1("stress", t)[2] s33(t) = ip1("stress", t)[3] s12(t) = ip1("stress", t)[4] s23(t) = ip1("stress", t)[5] s31(t) = ip1("stress", t)[6] e11(t) = ip1("strain", t)[1] e22(t) = ip1("strain", t)[2] e33(t) = ip1("strain", t)[3] s(t) = ip1("stress", t) function vmis(t) s11, s22, s33, s12, s23, s31 = ip1("stress", t) return sqrt(1/2*((s11-s22)^2 + (s22-s33)^2 + (s33-s11)^2 + 6*(s12^2+s23^2+s31^2))) end path = joinpath("one_elem_disp_chaboche", "unitelement_results.rpt") data = readdlm(path, Float64; skipstart=4) t_ = data[:,1] s11_ = data[:,2] s12_ = data[:,3] s13_ = data[:,4] s22_ = data[:,5] s23_ = data[:,6] s33_ = data[:,7] e11_ = data[:,8] e12_ = data[:,9] e13_ = data[:,10] e22_ = data[:,11] e23_ = data[:,12] e33_ = data[:,13] plot(e11.(t), s11.(t), label="\$\\sigma_{11}\$", legend=:topleft, fg_legend=:transparent, bg_legend=:transparent) plot!(e22.(t), s22.(t), label="\$\\sigma_{22}\$") plot!(e33.(t), s33.(t), linecolor=:red, label="\$\\sigma_{33}\$") plot!(e11_, s11_, ls=:dash, label="\$\\sigma_{11} \\quad \\mathrm{Commercial}\$") plot!(e22_, s22_, ls=:dash, label="\$\\sigma_{22} \\quad \\mathrm{Commercial}\$") plot!(e33_, s33_, linecolor=:black, lw=1, ls=:dash, label="\$\\sigma_{33} \\quad \\mathrm{Commercial}\$") title!("Chaboche plasticity model\nOne element model with uniaxial stress") # xlabel!("\$\\varepsilon\$") # ylabel!("\$\\sigma\$") # labels = ["s11" "s22" "s33" "s12" "s23" "s31"] # plot(t, s11, title="stress at integration point 1", label="s11") # plot!(t, s22, label="s22") # plot!(t, s33, label="s33") # plot!(t, s12, label="s12") # plot!(t, s23, label="s23") # plot!(t, s31, label="s31") end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
1675
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE using Materials, FEMBase, LinearAlgebra # Standard simulation of perfect plastic material model analysis, problem, element, bc_elements, ip = get_material_analysis(:PerfectPlastic) update!(element, "youngs modulus", 200.0e3) update!(element, "poissons ratio", 0.3) update!(element, "yield stress", 100.0) for element in bc_elements update!(element, "fixed displacement 3", 0.0 => 0.0) update!(element, "fixed displacement 3", 1.0 => 1.0e-3) update!(element, "fixed displacement 3", 2.0 => -1.0e-3) update!(element, "fixed displacement 3", 3.0 => 1.0e-3) end analysis.properties.t1 = 3.0 analysis.properties.extrapolate_initial_guess = false run!(analysis) s11(t) = ip("stress", t)[1] s22(t) = ip("stress", t)[2] s33(t) = ip("stress", t)[3] s12(t) = ip("stress", t)[4] s23(t) = ip("stress", t)[5] s31(t) = ip("stress", t)[6] e11(t) = ip("strain", t)[1] e22(t) = ip("strain", t)[2] e33(t) = ip("strain", t)[3] e12(t) = ip("strain", t)[4] e23(t) = ip("strain", t)[5] e31(t) = ip("strain", t)[6] using Plots, Test t = 0.0:0.1:3.0 @test isapprox(maximum(e33.(t)), 0.001) @test isapprox(minimum(e33.(t)), -0.001) @test isapprox(maximum(s33.(t)), 100.0) @test isapprox(minimum(s33.(t)), -100.0) plot(e11.(t), s11.(t), label="\$\\sigma_{11}\$") plot!(e22.(t), s22.(t), label="\$\\sigma_{22}\$") plot!(e33.(t), s33.(t), label="\$\\sigma_{33}\$") title!("Stress-strain curve of perfect plastic material model, uniaxial strain") ylabel!("Stress [MPa]") xlabel!("Strain [str]") savefig(joinpath("one_element_ideal_plastic/uniaxial_strain.svg"))
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
13766
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE module DSAModule using LinearAlgebra, ForwardDiff, Tensors, NLsolve, Parameters import ..AbstractMaterial, ..AbstractMaterialState import ..Utilities: Symm2, Symm4, isotropic_elasticity_tensor, lame, debang import ..integrate_material! # for method extension # parametrically polymorphic for any type representing ℝ export GenericDSA, GenericDSADriverState, GenericDSAParameterState, GenericDSAVariableState # specialization for Float64 export DSA, DSADriverState, DSAParameterState, DSAVariableState @with_kw mutable struct GenericDSADriverState{T <: Real} <: AbstractMaterialState time::T = zero(T) strain::Symm2{T} = zero(Symm2{T}) end """Parameter state for DSA (dynamic strain aging) material. This is similar to the Chaboche model, but with additional static recovery terms. Parameters: - `E`: Young's modulus - `nu`: Poisson's ratio - `R0`: initial yield strength - `Kn`: plasticity multiplier divisor (drag stress) - `nn`: plasticity multiplier exponent - `C1`, `D1`: parameters governing behavior of backstress X1 - `C2`, `D2`: parameters governing behavior of backstress X2 - `Q`: shift parameter for yield strength evolution - `b`: multiplier for yield strength evolution - `w`: controls the average waiting time a dislocation is arrested at localized obstacles. It represents a strain increment produced when all arrested dislocations overcome localized obstacles, and move toward the next pinned configuration. In practice, this parameter controls how fast the effective aging time reacts to plastic flow: \$\\dot{t}_a = 1 - t_a \\dot{p} / w\$ - `P1`, `P2`: controls the maximum hardening in the fully aged state. Has the units of stress. - `m`: controls the characteristic diffusion time. Depends on the type of diffusion. The value `1/3` is thought to represent pipe diffusion along dislocation lines. Another typical value is `2/3`. - `m1`, `m2`: The exponent of the power-law type static recovery of backstresses. The static recovery mechanism becomes activated at higher temperatures. This parameter controls the secondary creep and constant slope relaxation of stresses over a longer period of time. Higher values (>6..10) effectively deactivate static recovery, whereas lower values (<5) activate it. - `M1`, `M2`: The normalizer of the power-law type static recovery of backstresses. Has the units of stress. Can be used to activate/deactivate static recovery. Deactivation occurs with high values. - `ba`: Controls the rate of evolution of aging stress to its asymptotic value. Dimensionless. Similar to the isotropic hardening `b`. - `xi`: Controls the magnitude of the Marquis effect from the aging stress. The Marquis effect is that increased hardening due to aging shows as increased relaxation. Dimensionless. Support `[0,1]`. At `0`, the aging stress contributes solely to the size of the yield surface `R` (isotropic hardening). At `1`, the aging stress contributes solely to the viscoplastic drag stress `K`. """ @with_kw struct GenericDSAParameterState{T <: Real} <: AbstractMaterialState E::T = 0.0 nu::T = 0.0 R0::T = 0.0 Kn::T = 0.0 nn::T = 0.0 C1::T = 0.0 D1::T = 0.0 C2::T = 0.0 D2::T = 0.0 Q::T = 0.0 b::T = 0.0 w::T = 0.0 P1::T = 0.0 P2::T = 0.0 m::T = 0.0 m1::T = 0.0 m2::T = 0.0 M1::T = 0.0 M2::T = 0.0 ba::T = 0.0 xi::T = 0.0 end """Problem state for DSA material. - `stress`: stress tensor - `X1`: backstress 1 - `X2`: backstress 2 - `plastic_strain`: plastic part of strain tensor - `cumeq`: cumulative equivalent plastic strain (scalar, ≥ 0) - `R`: yield strength - `ta`: effective aging time - `Ra`: aging stress - `jacobian`: ∂σij/∂εkl """ @with_kw struct GenericDSAVariableState{T <: Real} <: AbstractMaterialState stress::Symm2{T} = zero(Symm2{T}) X1::Symm2{T} = zero(Symm2{T}) X2::Symm2{T} = zero(Symm2{T}) plastic_strain::Symm2{T} = zero(Symm2{T}) cumeq::T = zero(T) R::T = zero(T) ta::T = zero(T) Ra::T = zero(T) jacobian::Symm4{T} = zero(Symm4{T}) end # TODO: Does this eventually need a {T}? @with_kw struct DSAOptions <: AbstractMaterialState nlsolve_method::Symbol = :trust_region end @with_kw mutable struct GenericDSA{T <: Real} <: AbstractMaterial drivers::GenericDSADriverState{T} = GenericDSADriverState{T}() ddrivers::GenericDSADriverState{T} = GenericDSADriverState{T}() variables::GenericDSAVariableState{T} = GenericDSAVariableState{T}() variables_new::GenericDSAVariableState{T} = GenericDSAVariableState{T}() parameters::GenericDSAParameterState{T} = GenericDSAParameterState{T}() dparameters::GenericDSAParameterState{T} = GenericDSAParameterState{T}() options::DSAOptions = DSAOptions() end DSADriverState = GenericDSADriverState{Float64} DSAParameterState = GenericDSAParameterState{Float64} DSAVariableState = GenericDSAVariableState{Float64} DSA = GenericDSA{Float64} """ state_to_vector(sigma::U, R::T, X1::U, X2::U, ta::T, Ra::T) where U <: Symm2{T} where T <: Real Adaptor for `nlsolve`. Marshal the problem state into a `Vector`. """ function state_to_vector(sigma::U, R::T, X1::U, X2::U, ta::T, Ra::T) where U <: Symm2{T} where T <: Real return [tovoigt(sigma); R; tovoigt(X1); tovoigt(X2); ta; Ra]::Vector{T} end """ state_from_vector(x::AbstractVector{<:Real}) Adaptor for `nlsolve`. Unmarshal the problem state from a `Vector`. """ function state_from_vector(x::AbstractVector{T}) where T <: Real sigma::Symm2{T} = fromvoigt(Symm2{T}, @view x[1:6]) R::T = x[7] X1::Symm2{T} = fromvoigt(Symm2{T}, @view x[8:13]) X2::Symm2{T} = fromvoigt(Symm2{T}, @view x[14:19]) ta::T = x[20] Ra::T = x[21] return sigma, R, X1, X2, ta, Ra end """ integrate_material!(material::GenericDSA{T}) where T <: Real Material model with dynamic strain aging (DSA). This is similar to the Chaboche material with two backstresses, with both kinematic and isotropic hardening, but this model also features static recovery terms. This model captures dynamic (and static) strain aging (DSA) induced hardening. The related phenomena are: - Portevin le Chatelier effect. Serrated yield, plastic instabilities. - Discontinuous yielding - Inverse strain rate sensitivity (inverse SRS) - Secondary hardening in low cycle fatigue (LCF) tests These typically occur in a certain temperature/strain rate regime, where the dislocations are pinned due to the diffusion of solute atoms. In the most effective conditions, the speed of diffusion is comparable to the applied strain rate (speed of dislocations). See: J.-L. Chaboche, A. Gaubert, P. Kanouté, A. Longuet, F. Azzouz, M. Mazière. Viscoplastic constitutive equations of combustion chamber materials including cyclic hardening and dynamic strain aging. International Journal of Plasticity 46 (2013), 1--22. http://dx.doi.org/10.1016/j.ijplas.2012.09.011 Further reading: M. Mazière, H. Dierke. Investigations on the Portevin Le Chatelier critical strain in an aluminum alloy. Computational Materials Science 52(1) (2012), 68--72. https://doi.org/10.1016/j.commatsci.2011.05.039 """ function integrate_material!(material::GenericDSA{T}) where T <: Real p = material.parameters v = material.variables dd = material.ddrivers d = material.drivers @unpack E, nu, R0, Kn, nn, C1, D1, C2, D2, Q, b, w, P1, P2, m, m1, m2, M1, M2, ba, xi = p lambda, mu = lame(E, nu) @unpack strain, time = d dstrain = dd.strain dtime = dd.time @unpack stress, X1, X2, plastic_strain, cumeq, R, jacobian, ta, Ra = v # elastic part jacobian = isotropic_elasticity_tensor(lambda, mu) stress += dcontract(jacobian, dstrain) # resulting deviatoric plastic stress (accounting for backstresses Xm) seff_dev = dev(stress - X1 - X2) # von Mises yield function f = sqrt(1.5)*norm(seff_dev) - (R0 + R + (1 - xi) * Ra) # using elastic trial problem state if f > 0.0 g! = create_nonlinear_system_of_equations(material) x0 = state_to_vector(stress, R, X1, X2, ta + dtime, Ra) res = nlsolve(g!, x0; method=material.options.nlsolve_method, autodiff = :forward) converged(res) || error("Nonlinear system of equations did not converge!") x = res.zero stress, R, X1, X2, ta, Ra = state_from_vector(x) # using the new problem state seff_dev = dev(stress - X1 - X2) f = sqrt(1.5)*norm(seff_dev) - (R0 + R + (1 - xi) * Ra) dotp = ((f >= 0.0 ? f : 0.0) / (Kn + xi * Ra))^nn dp = dotp*dtime n = sqrt(1.5)*seff_dev/norm(seff_dev) plastic_strain += dp*n cumeq += dp # Compute the new Jacobian, accounting for the plastic contribution. drdx = ForwardDiff.jacobian(debang(g!), x) drde = zeros((length(x), 6)) drde[1:6, 1:6] = -tovoigt(jacobian) # elastic Jacobian. Follows from the defn. of g!. jacobian = fromvoigt(Symm4, (drdx\drde)[1:6, 1:6]) else ta += dtime end variables_new = GenericDSAVariableState{T}(stress = stress, X1 = X1, X2 = X2, R = R, plastic_strain = plastic_strain, cumeq = cumeq, jacobian = jacobian, ta = ta, Ra = Ra) material.variables_new = variables_new return nothing end """ create_nonlinear_system_of_equations(material::GenericDSA{T}) where T <: Real Create and return an instance of the equation system for the incremental form of the evolution equations of the DSA material. Used internally for computing the plastic contribution in `integrate_material!`. The input `material` represents the problem state at the end of the previous timestep. The created equation system will hold its own copy of that state. The equation system is represented as a mutating function `g!` that computes the residual: ```julia g!(F::V, x::V) where V <: AbstractVector{<:Real} ``` Both `F` (output) and `x` (input) are length-21 vectors containing [sigma, R, X1, X2, ta, Ra], in that order. The tensor quantities sigma, X1, X2 are encoded in Voigt format. The function `g!` is intended to be handed over to `nlsolve`. """ function create_nonlinear_system_of_equations(material::GenericDSA{T}) where T <: Real p = material.parameters v = material.variables dd = material.ddrivers d = material.drivers @unpack E, nu, R0, Kn, nn, C1, D1, C2, D2, Q, b, w, P1, P2, m, m1, m2, M1, M2, ba, xi = p lambda, mu = lame(E, nu) # Old problem state (i.e. the problem state at the time when this equation # system instance was created). # # Note this does not include the elastic trial; this is the state at the # end of the previous timestep. @unpack strain, time = d dstrain = dd.strain dtime = dd.time @unpack stress, X1, X2, plastic_strain, cumeq, R, ta, Ra = v jacobian = isotropic_elasticity_tensor(lambda, mu) # Compute the residual. F is output, x is filled by NLsolve. # The solution is x = x* such that g(x*) = 0. function g!(F::V, x::V) where V <: AbstractVector{<:Real} stress_new, R_new, X1_new, X2_new, ta_new, Ra_new = state_from_vector(x) # tentative new values from nlsolve seff_dev = dev(stress_new - X1_new - X2_new) f = sqrt(1.5)*norm(seff_dev) - (R0 + R_new + (1 - xi) * Ra_new) dotp = ((f >= 0.0 ? f : 0.0) / (Kn + xi * Ra_new))^nn dp = dotp*dtime n = sqrt(1.5)*seff_dev/norm(seff_dev) # The equations are written in an incremental form. # TODO: multiply the equations by -1 to make them easier to understand in the context of the rest of the model. dstrain_plastic = dp*n dstrain_elastic = dstrain - dstrain_plastic tovoigt!(view(F, 1:6), stress - stress_new + dcontract(jacobian, dstrain_elastic)) F[7] = R - R_new + b*(Q - R_new)*dp # HACK: The zero special case is needed here to make ForwardDiff happy. # # Otherwise, when ndX1_new = 0, the components 2:end of the automatic # derivative of JX1_new will be NaN, which causes the calculation of the # material jacobian to silently fail. This usually manifests itself as a # mysterious convergence failure, when this model is used in the strain # optimizer. ndX1_new = norm(dev(X1_new)) if iszero(ndX1_new) JX1_new = 0.0 else JX1_new = sqrt(1.5) * ndX1_new end sr1_new = (JX1_new^(m1 - 1) * X1_new) / (M1^m1) # static recovery term tovoigt!(view(F, 8:13), X1 - X1_new + dp*(2.0/3.0*C1*n - D1*X1_new) - dtime*sr1_new) ndX2_new = norm(dev(X2_new)) if iszero(ndX2_new) JX2_new = 0.0 else JX2_new = sqrt(1.5) * ndX2_new end sr2_new = (JX2_new^(m2 - 1) * X2_new) / (M2^m2) # static recovery term tovoigt!(view(F, 14:19), X2 - X2_new + dp*(2.0/3.0*C2*n - D2*X2_new) - dtime*sr2_new) Ras = P1 * (1.0 - exp(-P2 * ta_new^m)) F[20] = ta - ta_new + dtime - (ta_new / w)*dp F[21] = Ra - Ra_new + ba*(Ras - Ra_new)*dp return nothing end return g! end end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
3403
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE module Materials abstract type AbstractMaterial end abstract type AbstractMaterialState end export AbstractMaterial, AbstractMaterialState export integrate_material!, update_material!, reset_material! """ :+(a::T, b::T) where T <: AbstractMaterialState Fieldwise addition for material states. """ @generated function Base.:+(a::T, b::T) where T <: AbstractMaterialState expr = [:(a.$p + b.$p) for p in fieldnames(T)] return :(T($(expr...))) end """ integrate_material!(material::AbstractMaterial) Integrate one timestep. The input `material.variables` represents the old problem state. Abstract method. Must be implemented for each material type. When integration is done, the method **must** write the new state into `material.variables_new`. **Do not** write into `material.variables`; actually committing the timestep (i.e. accepting that one step of time evolution and applying it permanently) is the job of `update_material!`. """ function integrate_material!(material::M) where M <: AbstractMaterial error("One needs to define how to integrate material $M!") end """ update_material!(material::AbstractMaterial) Commit the result of `integrate_material!`. In `material`, we add `ddrivers` into `drivers`, `dparameters` into `parameters`, and replace `variables` by `variables_new`. Then we automatically invoke `reset_material!`. """ function update_material!(material::AbstractMaterial) material.drivers += material.ddrivers # material.parameters += material.dparameters # TODO: fix this material.variables = material.variables_new reset_material!(material) return nothing end """ reset_material!(material::AbstractMaterial) In `material`, we zero out `ddrivers`, `dparameters` and `variables_new`. This clears out the tentative state produced when a timestep has been computed, but has not yet been committed. Used internally by `update_material!`. """ function reset_material!(material::AbstractMaterial) material.ddrivers = typeof(material.ddrivers)() material.dparameters = typeof(material.dparameters)() material.variables_new = typeof(material.variables_new)() return nothing end include("utilities.jl") using .Utilities export Symm2, Symm4 export delta, II, IT, IS, IA, IV, ID, isotropic_elasticity_tensor, isotropic_compliance_tensor export lame, delame, debang, find_root include("perfectplastic.jl") using .PerfectPlasticModule export PerfectPlastic, PerfectPlasticDriverState, PerfectPlasticParameterState, PerfectPlasticVariableState include("chaboche.jl") using .ChabocheModule export Chaboche, ChabocheDriverState, ChabocheParameterState, ChabocheVariableState include("chabochethermal.jl") using .ChabocheThermalModule export ChabocheThermal, ChabocheThermalDriverState, ChabocheThermalParameterState, ChabocheThermalVariableState include("memory.jl") using .MemoryModule export Memory, MemoryDriverState, MemoryParameterState, MemoryVariableState include("DSA.jl") using .DSAModule export DSA, DSADriverState, DSAParameterState, DSAVariableState include("increments.jl") using .Increments export uniaxial_increment!, biaxial_increment!, stress_driven_uniaxial_increment!, general_increment!, stress_driven_general_increment!, general_mixed_increment!, find_dstrain! end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
11176
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE module ChabocheModule using LinearAlgebra, ForwardDiff, Tensors, NLsolve, Parameters import ..AbstractMaterial, ..AbstractMaterialState import ..Utilities: Symm2, Symm4, isotropic_elasticity_tensor, lame, debang import ..integrate_material! # for method extension # parametrically polymorphic for any type representing ℝ export GenericChaboche, GenericChabocheDriverState, GenericChabocheParameterState, GenericChabocheVariableState # specialization for Float64 export Chaboche, ChabocheDriverState, ChabocheParameterState, ChabocheVariableState @with_kw mutable struct GenericChabocheDriverState{T <: Real} <: AbstractMaterialState time::T = zero(T) strain::Symm2{T} = zero(Symm2{T}) end """Parameter state for Chaboche material. The classical viscoplastic material is a special case of this model with `C1 = C2 = 0`. - `E`: Young's modulus - `nu`: Poisson's ratio - `R0`: initial yield strength - `Kn`: plasticity multiplier divisor (drag stress) - `nn`: plasticity multiplier exponent - `C1`, `D1`: parameters governing behavior of backstress X1 - `C2`, `D2`: parameters governing behavior of backstress X2 - `Q`: hardening saturation state - `b`: rate of convergence to hardening saturation """ @with_kw struct GenericChabocheParameterState{T <: Real} <: AbstractMaterialState E::T = 0 nu::T = 0 R0::T = 0 Kn::T = 0 nn::T = 0 C1::T = 0 D1::T = 0 C2::T = 0 D2::T = 0 Q::T = 0 b::T = 0 end """Problem state for Chaboche material. - `stress`: stress tensor - `X1`: backstress 1 - `X2`: backstress 2 - `plastic_strain`: plastic part of strain tensor - `cumeq`: cumulative equivalent plastic strain (scalar, ≥ 0) - `R`: yield strength - `jacobian`: ∂σij/∂εkl """ @with_kw struct GenericChabocheVariableState{T <: Real} <: AbstractMaterialState stress::Symm2{T} = zero(Symm2{T}) X1::Symm2{T} = zero(Symm2{T}) X2::Symm2{T} = zero(Symm2{T}) plastic_strain::Symm2{T} = zero(Symm2{T}) cumeq::T = zero(T) R::T = zero(T) jacobian::Symm4{T} = zero(Symm4{T}) end # TODO: Does this eventually need a {T}? @with_kw struct ChabocheOptions <: AbstractMaterialState nlsolve_method::Symbol = :trust_region end @with_kw mutable struct GenericChaboche{T <: Real} <: AbstractMaterial drivers::GenericChabocheDriverState{T} = GenericChabocheDriverState{T}() ddrivers::GenericChabocheDriverState{T} = GenericChabocheDriverState{T}() variables::GenericChabocheVariableState{T} = GenericChabocheVariableState{T}() variables_new::GenericChabocheVariableState{T} = GenericChabocheVariableState{T}() parameters::GenericChabocheParameterState{T} = GenericChabocheParameterState{T}() dparameters::GenericChabocheParameterState{T} = GenericChabocheParameterState{T}() options::ChabocheOptions = ChabocheOptions() end ChabocheDriverState = GenericChabocheDriverState{Float64} ChabocheParameterState = GenericChabocheParameterState{Float64} ChabocheVariableState = GenericChabocheVariableState{Float64} Chaboche = GenericChaboche{Float64} """ state_to_vector(sigma::U, R::T, X1::U, X2::U) where U <: Symm2{T} where T <: Real Adaptor for `nlsolve`. Marshal the problem state into a `Vector`. """ function state_to_vector(sigma::U, R::T, X1::U, X2::U) where U <: Symm2{T} where T <: Real return [tovoigt(sigma); R; tovoigt(X1); tovoigt(X2)]::Vector{T} end """ state_from_vector(x::AbstractVector{<:Real}) Adaptor for `nlsolve`. Unmarshal the problem state from a `Vector`. """ function state_from_vector(x::AbstractVector{T}) where T <: Real sigma::Symm2{T} = fromvoigt(Symm2{T}, @view x[1:6]) R::T = x[7] X1::Symm2{T} = fromvoigt(Symm2{T}, @view x[8:13]) X2::Symm2{T} = fromvoigt(Symm2{T}, @view x[14:19]) return sigma, R, X1, X2 end """ integrate_material!(material::GenericChaboche{T}) where T <: Real Chaboche material with two backstresses. Both kinematic and isotropic hardening. See: J.-L. Chaboche. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. International Journal of Plasticity 5(3) (1989), 247--302. https://doi.org/10.1016/0749-6419(89)90015-6 Further reading: J.-L. Chaboche. A review of some plasticity and viscoplasticity constitutive theories. International Journal of Plasticity 24 (2008), 1642--1693. https://dx.doi.org/10.1016/j.ijplas.2008.03.009 J.-L. Chaboche, A. Gaubert, P. Kanouté, A. Longuet, F. Azzouz, M. Mazière. Viscoplastic constitutive equations of combustion chamber materials including cyclic hardening and dynamic strain aging. International Journal of Plasticity 46 (2013), 1--22. https://dx.doi.org/10.1016/j.ijplas.2012.09.011 """ function integrate_material!(material::GenericChaboche{T}) where T <: Real p = material.parameters v = material.variables dd = material.ddrivers d = material.drivers @unpack E, nu, R0, Kn, nn, C1, D1, C2, D2, Q, b = p lambda, mu = lame(E, nu) @unpack strain, time = d dstrain = dd.strain dtime = dd.time @unpack stress, X1, X2, plastic_strain, cumeq, R = v # elastic part jacobian = isotropic_elasticity_tensor(lambda, mu) # dσ/dε, i.e. ∂σij/∂εkl stress += dcontract(jacobian, dstrain) # add the elastic stress increment, get the elastic trial stress # resulting deviatoric plastic stress (accounting for backstresses Xm) seff_dev = dev(stress - X1 - X2) # von Mises yield function f = sqrt(1.5)*norm(seff_dev) - (R0 + R) # using elastic trial problem state if f > 0.0 g! = create_nonlinear_system_of_equations(material) x0 = state_to_vector(stress, R, X1, X2) res = nlsolve(g!, x0; method=material.options.nlsolve_method, autodiff=:forward) # user manual: https://github.com/JuliaNLSolvers/NLsolve.jl converged(res) || error("Nonlinear system of equations did not converge!") x = res.zero stress, R, X1, X2 = state_from_vector(x) # using the new problem state seff_dev = dev(stress - X1 - X2) f = sqrt(1.5)*norm(seff_dev) - (R0 + R) dotp = ((f >= 0.0 ? f : 0.0)/Kn)^nn # power law viscoplasticity (Norton-Bailey type) dp = dotp*dtime # |dε_p|, using backward Euler (dotp is ∂ε_p/∂t at the end of the timestep) n = sqrt(1.5)*seff_dev/norm(seff_dev) # Chaboche: a (tensorial) unit direction, s.t. 2/3 * (n : n) = 1; also n = ∂f/∂σ. plastic_strain += dp*n cumeq += dp # cumulative equivalent plastic strain (note dp ≥ 0) # Compute the new Jacobian, accounting for the plastic contribution. Because # x ≡ [σ R X1 X2] (vector of length 19, with tensors encoded in Voigt format) # we have # dσ/dε = (dx/dε)[1:6,1:6] # for which we can compute the LHS as follows: # dx/dε = dx/dr dr/dε = inv(dr/dx) dr/dε ≡ (dr/dx) \ (dr/dε) # where r = r(x) is the residual, given by the function g!. AD can get us dr/dx automatically, # the other factor we will have to supply manually. drdx = ForwardDiff.jacobian(debang(g!), x) # Array{19, 19} drde = zeros((length(x),6)) # Array{19, 6} drde[1:6, 1:6] = tovoigt(jacobian) # elastic Jacobian. Follows from the defn. of g!. jacobian = fromvoigt(Symm4, (drdx\drde)[1:6, 1:6]) end variables_new = GenericChabocheVariableState{T}(stress = stress, X1 = X1, X2 = X2, R = R, plastic_strain = plastic_strain, cumeq = cumeq, jacobian = jacobian) material.variables_new = variables_new return nothing end """ create_nonlinear_system_of_equations(material::GenericChaboche{T}) where T <: Real Create and return an instance of the equation system for the incremental form of the evolution equations of the Chaboche material. Used internally for computing the plastic contribution in `integrate_material!`. The input `material` represents the problem state at the end of the previous timestep. The created equation system will hold its own copy of that state. The equation system is represented as a mutating function `g!` that computes the residual: ```julia g!(F::V, x::V) where V <: AbstractVector{<:Real} ``` Both `F` (output) and `x` (input) are length-19 vectors containing [sigma, R, X1, X2], in that order. The tensor quantities sigma, X1, X2 are encoded in Voigt format. The function `g!` is intended to be handed over to `nlsolve`. """ function create_nonlinear_system_of_equations(material::GenericChaboche{T}) where T <: Real p = material.parameters v = material.variables dd = material.ddrivers d = material.drivers @unpack E, nu, R0, Kn, nn, C1, D1, C2, D2, Q, b = p lambda, mu = lame(E, nu) # Old problem state (i.e. the problem state at the time when this equation # system instance was created). # # Note this does not include the elastic trial; this is the state at the # end of the previous timestep. @unpack strain, time = d dstrain = dd.strain dtime = dd.time @unpack stress, X1, X2, plastic_strain, cumeq, R = v jacobian = isotropic_elasticity_tensor(lambda, mu) # Compute the residual. F is output, x is filled by NLsolve. # The solution is x = x* such that g(x*) = 0. function g!(F::V, x::V) where V <: AbstractVector{<:Real} stress_new, R_new, X1_new, X2_new = state_from_vector(x) # tentative new values from nlsolve seff_dev = dev(stress_new - X1_new - X2_new) f = sqrt(1.5)*norm(seff_dev) - (R0 + R_new) dotp = ((f >= 0.0 ? f : 0.0)/Kn)^nn dp = dotp*dtime n = sqrt(1.5)*seff_dev/norm(seff_dev) # The equations are written in an incremental form: # # Δσ = (∂σ/∂ε)_e : dε_e = (∂σ/∂ε)_e : (dε - dε_p) (components 1:6) # ΔR = b (Q - R_new) |dε_p| (component 7) # ΔX1 = (2/3) C1 |dε_p| (n - (3/2) (D1/C1) X1_new) (components 8:13) # ΔX2 = (2/3) C2 |dε_p| (n - (3/2) (D2/C2) X2_new) (components 14:19) # # where # # Δ(...) = (...)_new - (...)_old # # Then move the terms on the RHS to the LHS to get the standard form, (stuff) = 0. # Also, below we avoid the multiplication and division that cancel each other # in the last terms of the equations for ΔX1 and ΔX2. # dstrain_plastic = dp*n dstrain_elastic = dstrain - dstrain_plastic tovoigt!(view(F, 1:6), stress_new - stress - dcontract(jacobian, dstrain_elastic)) F[7] = R_new - R - b*(Q - R_new)*dp tovoigt!(view(F, 8:13), X1_new - X1 - dp*(2.0/3.0*C1*n - D1*X1_new)) tovoigt!(view(F, 14:19), X2_new - X2 - dp*(2.0/3.0*C2*n - D2*X2_new)) return nothing end return g! end end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
43965
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE module ChabocheThermalModule using LinearAlgebra, ForwardDiff, Tensors, NLsolve, Parameters import ..AbstractMaterial, ..AbstractMaterialState import ..Utilities: Symm2, Symm4, isotropic_elasticity_tensor, isotropic_compliance_tensor, lame, debang import ..integrate_material! # for method extension # parametrically polymorphic for any type representing ℝ export GenericChabocheThermal, GenericChabocheThermalDriverState, GenericChabocheThermalParameterState, GenericChabocheThermalVariableState # specialization for Float64 export ChabocheThermal, ChabocheThermalDriverState, ChabocheThermalParameterState, ChabocheThermalVariableState """Rank-2 identity tensor in three spatial dimensions.""" I2 = Symm2(I(3)) @with_kw mutable struct GenericChabocheThermalDriverState{T <: Real} <: AbstractMaterialState time::T = zero(T) strain::Symm2{T} = zero(Symm2{T}) temperature::T = zero(T) end # TODO: hierarchize parameters: elasticity, kinematic hardening, isotropic hardening, ... # plasticity: yield criterion, flow rule, hardening """Parameter state for ChabocheThermal material. The classical viscoplastic material is a special case of this model with `C1 = C2 = C3 = 0`. Maximum hardening for each backstress is `Cj / Dj`. Any parameter that is a `Function` should takes a single argument, the absolute temperature. - `theta0`: reference temperature at which thermal expansion is considered zero - `E`: Young's modulus [N/mm^2] - `nu`: Poisson's ratio - `alpha`: linear thermal expansion coefficient - `R0`: initial yield strength - `tvp`: viscoplastic pseudo-relaxation-time (has the units of time) - `Kn`: drag stress (has the units of stress) - `nn`: Norton-Bailey power law exponent - `C1`, `D1`: parameters governing behavior of backstress X1. C1 has the units of stress; D1 is dimensionless. - `C2`, `D2`: parameters governing behavior of backstress X2. - `C3`, `D3`: parameters governing behavior of backstress X3. - `Q`: isotropic hardening saturation state (has the units of stress) - `b`: rate of convergence to isotropic hardening saturation (dimensionless) """ @with_kw struct GenericChabocheThermalParameterState{T <: Real} <: AbstractMaterialState theta0::T = zero(T) # reference temperature for thermal behavior # basic material parameters E::Function = (theta::Real -> zero(T)) nu::Function = (theta::Real -> zero(T)) alpha::Function = (theta::Real -> zero(T)) R0::Function = (theta::Real -> zero(T)) # parameters for viscoplastic overstress model tvp::T = zero(T) Kn::Function = (theta::Real -> zero(T)) nn::Function = (theta::Real -> zero(T)) # kinematic hardening parameters C1::Function = (theta::Real -> zero(T)) D1::Function = (theta::Real -> zero(T)) C2::Function = (theta::Real -> zero(T)) D2::Function = (theta::Real -> zero(T)) C3::Function = (theta::Real -> zero(T)) D3::Function = (theta::Real -> zero(T)) # isotropic hardening parameters Q::Function = (theta::Real -> zero(T)) b::Function = (theta::Real -> zero(T)) end """Problem state for ChabocheThermal material. - `stress`: stress tensor - `R`: yield strength (isotropic hardening) - `X1`: backstress 1 (kinematic hardening) - `X2`: backstress 2 (kinematic hardening) - `X3`: backstress 3 (kinematic hardening) - `plastic_strain`: plastic part of strain tensor - `cumeq`: cumulative equivalent plastic strain (scalar, ≥ 0) - `jacobian`: ∂σij/∂εkl (algorithmic) The other `dXXXdYYY` properties are the algorithmic jacobians for the indicated variables. The elastic and thermal contributions to the strain tensor are not stored. To get them: θ₀ = ... θ = ... p = material.parameters v = material.variables C(θ) = compliance_tensor(p.E, p.nu, θ) elastic_strain = dcontract(C(θ), v.stress) thermal_strain = thermal_strain_tensor(p.alpha, θ₀, θ) Then it holds that: material.drivers.strain = elastic_strain + v.plastic_strain + thermal_strain """ @with_kw struct GenericChabocheThermalVariableState{T <: Real} <: AbstractMaterialState stress::Symm2{T} = zero(Symm2{T}) R::T = zero(T) X1::Symm2{T} = zero(Symm2{T}) X2::Symm2{T} = zero(Symm2{T}) X3::Symm2{T} = zero(Symm2{T}) plastic_strain::Symm2{T} = zero(Symm2{T}) cumeq::T = zero(T) jacobian::Symm4{T} = zero(Symm4{T}) dRdstrain::Symm2{T} = zero(Symm2{T}) dX1dstrain::Symm4{T} = zero(Symm4{T}) dX2dstrain::Symm4{T} = zero(Symm4{T}) dX3dstrain::Symm4{T} = zero(Symm4{T}) dstressdtemperature::Symm2{T} = zero(Symm2{T}) dRdtemperature::T = zero(T) dX1dtemperature::Symm2{T} = zero(Symm2{T}) dX2dtemperature::Symm2{T} = zero(Symm2{T}) dX3dtemperature::Symm2{T} = zero(Symm2{T}) end # TODO: Does this eventually need a {T}? @with_kw struct ChabocheThermalOptions <: AbstractMaterialState nlsolve_method::Symbol = :trust_region end @with_kw mutable struct GenericChabocheThermal{T <: Real} <: AbstractMaterial drivers::GenericChabocheThermalDriverState{T} = GenericChabocheThermalDriverState{T}() ddrivers::GenericChabocheThermalDriverState{T} = GenericChabocheThermalDriverState{T}() variables::GenericChabocheThermalVariableState{T} = GenericChabocheThermalVariableState{T}() variables_new::GenericChabocheThermalVariableState{T} = GenericChabocheThermalVariableState{T}() parameters::GenericChabocheThermalParameterState{T} = GenericChabocheThermalParameterState{T}() dparameters::GenericChabocheThermalParameterState{T} = GenericChabocheThermalParameterState{T}() options::ChabocheThermalOptions = ChabocheThermalOptions() end ChabocheThermalDriverState = GenericChabocheThermalDriverState{Float64} ChabocheThermalParameterState = GenericChabocheThermalParameterState{Float64} ChabocheThermalVariableState = GenericChabocheThermalVariableState{Float64} ChabocheThermal = GenericChabocheThermal{Float64} """ state_to_vector(sigma::U, R::T, X1::U, X2::U, X3::U) where U <: Symm2{T} where T <: Real Adaptor for `nlsolve`. Marshal the problem state into a `Vector`. """ function state_to_vector(sigma::U, R::T, X1::U, X2::U, X3::U) where U <: Symm2{T} where T <: Real return [tovoigt(sigma); R; tovoigt(X1); tovoigt(X2); tovoigt(X3)]::Vector{T} end """ state_from_vector(x::AbstractVector{<:Real}) Adaptor for `nlsolve`. Unmarshal the problem state from a `Vector`. """ function state_from_vector(x::AbstractVector{T}) where T <: Real sigma::Symm2{T} = fromvoigt(Symm2{T}, @view x[1:6]) R::T = x[7] X1::Symm2{T} = fromvoigt(Symm2{T}, @view x[8:13]) X2::Symm2{T} = fromvoigt(Symm2{T}, @view x[14:19]) X3::Symm2{T} = fromvoigt(Symm2{T}, @view x[20:25]) return sigma, R, X1, X2, X3 end """ elasticity_tensor(E::Function, nu::Function, theta::Real) Usage example: E(θ) = ... ν(θ) = ... D(θ) = elasticity_tensor(E, ν, θ) dDdθ(θ) = gradient(D, θ) """ function elasticity_tensor(E::Function, nu::Function, theta::Real) lambda, mu = lame(E(theta), nu(theta)) return isotropic_elasticity_tensor(lambda, mu) end """ compliance_tensor(E::Function, nu::Function, theta::Real) Usage example: E(θ) = ... ν(θ) = ... C(θ) = compliance_tensor(E, ν, θ) dCdθ(θ) = gradient(C, θ) """ function compliance_tensor(E::Function, nu::Function, theta::Real) lambda, mu = lame(E(theta), nu(theta)) return isotropic_compliance_tensor(lambda, mu) end """ thermal_strain_tensor(alpha::Function, theta0::Real, theta::Real) Return the isotropic thermal strain tensor: εth = α(θ) (θ - θ₀) I Here `alpha` is the linear thermal expansion coefficient, and `theta0` is a reference temperature, at which thermal expansion is considered zero. Usage example: α(θ) = ... θ₀ = ... εth(θ) = thermal_strain_tensor(α, θ₀, θ) dεthdθ(θ) = gradient(εth, θ) Given θ and Δθ, you can easily get the increment Δεth: Δεth(θ, Δθ) = dεthdθ(θ) * Δθ """ function thermal_strain_tensor(alpha::Function, theta0::Real, theta::Real) return alpha(theta) * (theta - theta0) * I2 end # TODO: Add this interface to the general API in `AbstractMaterial`? # # We should be careful to accept also `ForwardDiff.Dual`, because this stuff # gets differentiated when computing the jacobian of the residual. # For `yield_jacobian`, that leads to nested uses of `ForwardDiff`. """ yield_criterion(state::GenericChabocheThermalVariableState{<:Real}, drivers::GenericChabocheThermalDriverState{<:Real}, parameters::GenericChabocheThermalParameterState{<:Real}) Temperature-dependent yield criterion. This particular one is the von Mises criterion for a Chaboche model with thermal effects, three backstresses, and isotropic hardening. `state` should contain `stress`, `R`, `X1`, `X2`, `X3`. `drivers` should contain `temperature`. `parameters` should contain `R0`, a function of temperature. Other properties of the structures are not used by this function. The return value is a scalar, the value of the yield function `f`. """ function yield_criterion(state::GenericChabocheThermalVariableState{<:Real}, drivers::GenericChabocheThermalDriverState{<:Real}, parameters::GenericChabocheThermalParameterState{<:Real}) @unpack stress, R, X1, X2, X3 = state @unpack temperature = drivers @unpack R0 = parameters # deviatoric part of stress, accounting for plastic backstresses Xm. seff_dev = dev(stress - X1 - X2 - X3) f = sqrt(1.5)*norm(seff_dev) - (R0(temperature) + R) return f end """ yield_jacobian(state::GenericChabocheThermalVariableState{<:Real}, drivers::GenericChabocheThermalDriverState{<:Real}, parameters::GenericChabocheThermalParameterState{<:Real}) Compute `n = ∂f/∂σ`. `state` should contain `stress`, `R`, `X1`, `X2`, `X3`. `drivers` should contain `temperature`. `parameters` should contain `R0`, a function of temperature. Other properties of the structures are not used by this function. The return value is the symmetric rank-2 tensor `n`. """ function yield_jacobian(state::GenericChabocheThermalVariableState{<:Real}, drivers::GenericChabocheThermalDriverState{<:Real}, parameters::GenericChabocheThermalParameterState{<:Real}) # We only need ∂f/∂σ, so let's compute only that to make this run faster. # # # TODO: The `gradient` wrapper of `Tensors.jl` is nice, but it doesn't tag its Dual. # # # # When using `Tensors.gradient` in `yield_jacobian` (n = ∂f/∂σ), the # # differentiation of `yield_criterion` with respect to stress doesn't work # # when computing the temperature jacobian for the residual function, which # # needs ∂n/∂θ = ∂²f/∂σ∂θ. `ForwardDiff` fails to find an ordering for the # # `Dual` terms (the temperature Dual having a tag, but the stress Dual not). # # # # Using `ForwardDiff.jacobian` directly, both Duals are tagged, so this works. # # @unpack stress, R, X1, X2, X3 = state # function f(stress::Symm2{<:Real}) # state = GenericChabocheThermalVariableState{eltype(stress)}(stress=stress, # R=R, # X1=X1, # X2=X2, # X3=X3) # return yield_criterion(state, drivers, parameters) # end # return gradient(f, stress) @unpack stress, R, X1, X2, X3 = state marshal(tensor::Symm2) = tovoigt(tensor) unmarshal(x::AbstractVector{T}) where T <: Real = fromvoigt(Symm2{T}, x) function f(x::AbstractVector{<:Real}) # x = stress state = GenericChabocheThermalVariableState{eltype(x)}(stress=unmarshal(x), X1=X1, X2=X2, X3=X3, R=R) return [yield_criterion(state, drivers, parameters)]::Vector end J = ForwardDiff.jacobian(f, marshal(stress)) # The result is a row vector, so drop the singleton dimension. return unmarshal(J[1,:]) end """ overstress_function(state::GenericChabocheThermalVariableState{<:Real}, drivers::GenericChabocheThermalDriverState{<:Real}, parameters::GenericChabocheThermalParameterState{<:Real}) Norton-Bailey type power law. `parameters` should contain `tvp`, `Kn` and `nn`. `drivers` should contain `temperature`. Additionally, `state`, `drivers` and `parameters` will be passed to `yield_criterion`. The return value is `dotp` that can be used in `dp = dotp * dtime`. """ function overstress_function(state::GenericChabocheThermalVariableState{<:Real}, drivers::GenericChabocheThermalDriverState{<:Real}, parameters::GenericChabocheThermalParameterState{<:Real}) f = yield_criterion(state, drivers, parameters) @unpack tvp, Kn, nn = parameters @unpack temperature = drivers K = Kn(temperature) n = nn(temperature) return 1 / tvp * ((f >= 0.0 ? f : 0.0) / K)^n end """ integrate_material!(material::GenericChabocheThermal{T}) where T <: Real Chaboche viscoplastic material with thermal effects. The model includes kinematic hardening with three backstresses, and isotropic hardening. Let the prime (') denote the time derivative. The evolution equations are: σ' = D : εel' + dD/dθ : εel θ' R' = b (Q - R) p' Xj' = ((2/3) Cj n - Dj Xj) p' (no sum) where j = 1, 2, 3. The strain consists of elastic, thermal and viscoplastic contributions: ε = εel + εth + εpl Outside the elastic region, the viscoplastic strain response is given by: εpl' = n p' where n = ∂f/∂σ and p' obeys a Norton-Bailey power law: p' = 1/tvp * (<f> / Kn)^nn Here <...> are the Macaulay brackets (a.k.a. positive part), and the yield criterion is of the von Mises type: f = √(3/2 dev(σ_eff) : dev(σ_eff)) - (R0 + R) σ_eff = σ - ∑ Xj See: J.-L. Chaboche. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. International Journal of Plasticity 5(3) (1989), 247--302. https://doi.org/10.1016/0749-6419(89)90015-6 Further reading: J.-L. Chaboche. A review of some plasticity and viscoplasticity constitutive theories. International Journal of Plasticity 24 (2008), 1642--1693. https://dx.doi.org/10.1016/j.ijplas.2008.03.009 J.-L. Chaboche, A. Gaubert, P. Kanouté, A. Longuet, F. Azzouz, M. Mazière. Viscoplastic constitutive equations of combustion chamber materials including cyclic hardening and dynamic strain aging. International Journal of Plasticity 46 (2013), 1--22. https://dx.doi.org/10.1016/j.ijplas.2012.09.011 """ function integrate_material!(material::GenericChabocheThermal{T}) where T <: Real p = material.parameters v = material.variables dd = material.ddrivers d = material.drivers theta0 = p.theta0 Ef = p.E nuf = p.nu alphaf = p.alpha temperature = d.temperature dstrain = dd.strain dtime = dd.time dtemperature = dd.temperature @unpack stress, X1, X2, X3, plastic_strain, cumeq, R = v VariableState{U} = GenericChabocheThermalVariableState{U} DriverState{U} = GenericChabocheThermalDriverState{U} ff(sigma, R, X1, X2, X3, theta) = yield_criterion(VariableState{T}(stress=sigma, R=R, X1=X1, X2=X2, X3=X3), DriverState{T}(temperature=theta), p) # n = ∂f/∂σ nf(sigma, R, X1, X2, X3, theta) = yield_jacobian(VariableState{T}(stress=sigma, R=R, X1=X1, X2=X2, X3=X3), DriverState{T}(temperature=theta), p) # p' (dp = p' * dtime) dotpf(sigma, R, X1, X2, X3, theta) = overstress_function(VariableState{T}(stress=sigma, R=R, X1=X1, X2=X2, X3=X3), DriverState{T}(temperature=theta), p) # Compute the elastic trial stress. # # We compute the elastic trial stress increment by using data from the # start of the timestep, so we have essentially a forward Euler predictor. # # Relevant equations (thermoelasto(-visco-)plastic model): # # ε = εel + εpl + εth # σ = D : εel (Hooke's law) # # where D = D(θ) is the elastic stiffness tensor (symmetric, rank-4), # and θ is the absolute temperature (scalar, θ > 0). # # Thus: # # Δσ = Δ(D : εel) # = ΔD : εel + D : Δεel # = (dD/dθ Δθ) : εel + D : Δεel # = dD/dθ : εel Δθ + D : Δεel # # where the elastic strain increment # # Δεel = Δε - Δεpl - Δεth # # In the elastic trial step, we temporarily assume Δεpl = 0, so then: # # Δεel = Δε - Δεth # # The elastic stiffness tensor D is explicitly known. Its derivative dD/dθ # we can obtain by autodiff. The temperature increment Δθ is a driver. # # What remains to consider are the various strains. Because we store the total # stress σ, we can obtain the elastic strain εel by inverting Hooke's law: # # εel = C : σ # # where C = C(θ) is the elastic compliance tensor (i.e. the inverse of # the elastic stiffness tensor D with respect to the double contraction), # and σ is a known total stress. (We have it at the start of the timestep.) # # The total strain increment Δε is a driver. So we only need to obtain Δεth. # The thermal strain εth is, generally speaking, # # εth = α(θ) (θ - θ₀) # # where α is the linear thermal expansion tensor (symmetric, rank-2), and # θ₀ is a reference temperature, where thermal expansion is considered zero. # # We can autodiff this to obtain dεth/dθ. Then the thermal strain increment # Δεth is just: # # Δεth = dεth/dθ Δθ # Cf(theta) = compliance_tensor(Ef, nuf, theta) C = Cf(temperature) elastic_strain = dcontract(C, stress) # This is a function so we can autodiff it to get the algorithmic jacobian in the elastic region. # Δσ = D : Δεel + dD/dθ : εel Δθ function elastic_dstress(dstrain::Symm2{<:Real}, dtemperature::Real) local temperature_new = temperature + dtemperature thermal_strainf(theta) = thermal_strain_tensor(alphaf, theta0, theta) thermal_dstrain = thermal_strainf(temperature_new) - thermal_strainf(temperature) trial_elastic_dstrain = dstrain - thermal_dstrain Df(theta) = elasticity_tensor(Ef, nuf, theta) # dσ/dε, i.e. ∂σij/∂εkl dDdthetaf(theta) = gradient(Df, theta) # Evaluating `Df` and `dDdthetaf` at `temperature_new` eliminates integrator drift # in cyclic uniaxial loading conditions inside the elastic region. # Note in the second term we use the *old* elastic strain. return (dcontract(Df(temperature_new), trial_elastic_dstrain) + dcontract(dDdthetaf(temperature_new), elastic_strain) * dtemperature) end stress += elastic_dstress(dstrain, dtemperature) # using elastic trial problem state if true # ff(stress, R, X1, X2, X3, temperature) > 0.0 # plastic region rx!, rdstrain, rtemperature = create_nonlinear_system_of_equations(material) x0 = state_to_vector(stress, R, X1, X2, X3) res = nlsolve(rx!, x0; method=material.options.nlsolve_method, autodiff=:forward) # user manual: https://github.com/JuliaNLSolvers/NLsolve.jl converged(res) || error("Nonlinear system of equations did not converge!") x = res.zero stress, R, X1, X2, X3 = state_from_vector(x) # using the new problem state temperature_new = temperature + dtemperature # Compute the new plastic strain dotp = dotpf(stress, R, X1, X2, X3, temperature_new) n = nf(stress, R, X1, X2, X3, temperature_new) dp = dotp * dtime # Δp, using backward Euler (dotp is |∂εpl/∂t| at the end of the timestep) plastic_strain += dp * n cumeq += dp # cumulative equivalent plastic strain (note Δp ≥ 0) # Compute the new algorithmic jacobian Jstrain by implicit differentiation of the residual function, # using `ForwardDiff` to compute the derivatives. Details in `create_nonlinear_system_of_equations`. # We compute ∂V/∂D ∀ V ∈ state, D ∈ drivers (excluding time). drdx = ForwardDiff.jacobian(debang(rx!), x) # Here we don't bother with offdiagscale, since this Voigt conversion is just a marshaling. # All `rdstrain` does with the Voigt `dstrain` is to unmarshal it back into a tensor. # All computations are performed in tensor format. rdstrainf(dstrain) = rdstrain(stress, R, X1, X2, X3, dstrain) # at solution point drdstrain = ForwardDiff.jacobian(rdstrainf, tovoigt(dstrain)) Jstrain = -drdx \ drdstrain jacobian = fromvoigt(Symm4, Jstrain[1:6, 1:6]) dRdstrain = fromvoigt(Symm2, Jstrain[7, 1:6]) dX1dstrain = fromvoigt(Symm4, Jstrain[8:13, 1:6]) dX2dstrain = fromvoigt(Symm4, Jstrain[14:19, 1:6]) dX3dstrain = fromvoigt(Symm4, Jstrain[20:25, 1:6]) rtemperaturef(theta) = rtemperature(stress, R, X1, X2, X3, theta) # at solution point drdtemperature = ForwardDiff.jacobian(rtemperaturef, [temperature_new]) Jtemperature = -drdx \ drdtemperature dstressdtemperature = fromvoigt(Symm2, Jtemperature[1:6, 1]) dRdtemperature = Jtemperature[7, 1] dX1dtemperature = fromvoigt(Symm2, Jtemperature[8:13, 1]) dX2dtemperature = fromvoigt(Symm2, Jtemperature[14:19, 1]) dX3dtemperature = fromvoigt(Symm2, Jtemperature[20:25, 1]) else # elastic region # TODO: update R (thermal effects), see if Xs also need updating jacobian = gradient(((dstrain) -> elastic_dstress(dstrain, dtemperature)), dstrain) dstressdtemperature = gradient(((dtemperature) -> elastic_dstress(dstrain, dtemperature)), dtemperature) # In the elastic region, the plastic variables stay constant, # so their jacobians vanish. dRdstrain = zero(Symm2{T}) dX1dstrain = zero(Symm4{T}) dX2dstrain = zero(Symm4{T}) dX3dstrain = zero(Symm4{T}) dRdtemperature = zero(T) dX1dtemperature = zero(Symm2{T}) dX2dtemperature = zero(Symm2{T}) dX3dtemperature = zero(Symm2{T}) end variables_new = VariableState{T}(stress=stress, R=R, X1=X1, X2=X2, X3=X3, plastic_strain=plastic_strain, cumeq=cumeq, jacobian=jacobian, dRdstrain=dRdstrain, dX1dstrain=dX1dstrain, dX2dstrain=dX2dstrain, dX3dstrain=dX3dstrain, dstressdtemperature=dstressdtemperature, dRdtemperature=dRdtemperature, dX1dtemperature=dX1dtemperature, dX2dtemperature=dX2dtemperature, dX3dtemperature=dX3dtemperature) material.variables_new = variables_new return nothing end """ create_nonlinear_system_of_equations(material::GenericChabocheThermal{T}) where T <: Real Create and return an instance of the equation system for the incremental form of the evolution equations. Used internally for computing the viscoplastic contribution in `integrate_material!`. The input `material` represents the problem state at the end of the previous timestep. The created equation system will hold its own copy of that state. The equation system is represented as a mutating function `r!` that computes the residual: ```julia r!(F::V, x::V) where V <: AbstractVector{<:Real} ``` Both `F` (output) and `x` (input) are length-25 vectors containing [sigma, R, X1, X2, X3], in that order. The tensor quantities sigma, X1, X2, X3 are encoded in Voigt format. The function `r!` is intended to be handed over to `nlsolve`. """ function create_nonlinear_system_of_equations(material::GenericChabocheThermal{T}) where T <: Real p = material.parameters v = material.variables dd = material.ddrivers d = material.drivers theta0 = p.theta0 Ef = p.E nuf = p.nu alphaf = p.alpha C1f = p.C1 D1f = p.D1 C2f = p.C2 D2f = p.D2 C3f = p.C3 D3f = p.D3 Qf = p.Q bf = p.b VariableState{U} = GenericChabocheThermalVariableState{U} DriverState{U} = GenericChabocheThermalDriverState{U} # n = ∂f/∂σ nf(sigma, R, X1, X2, X3, theta) = yield_jacobian(VariableState{eltype(sigma)}(stress=sigma, R=R, X1=X1, X2=X2, X3=X3), DriverState{typeof(theta)}(temperature=theta), p) # p' (dp = p' * dtime) dotpf(sigma, R, X1, X2, X3, theta) = overstress_function(VariableState{eltype(sigma)}(stress=sigma, R=R, X1=X1, X2=X2, X3=X3), DriverState{typeof(theta)}(temperature=theta), p) # Old problem state (i.e. the problem state at the time when this equation # system instance was created). # # Note this does not include the elastic trial; this is the actual state # at the end of the previous timestep. temperature = d.temperature dtime = dd.time dtemperature = dd.temperature @unpack stress, X1, X2, X3, plastic_strain, cumeq, R = v # To compute Δσ (and thus σ_new) in the residual, we need the new elastic # strain εel_new, as well as the elastic strain increment Δεel. By the # definition of Δεel, # # εel_new = εel_old + Δεel # # The elastic strain isn't stored in the model, but the total stress is, # so we can obtain εel_old from Hooke's law, using the old problem state. # # The other quantity we need is Δεel. Recall that, in general: # # Δεel = Δε - Δεpl - Δεth # # The total strain increment Δε is a driver. The (visco-)plastic model gives # us Δεpl (iteratively). The thermal contribution Δεth we can obtain as before. # # Thus we obtain εel and Δεel, which we can use to compute the residual for # the new total stress σ_new. # Cf(theta) = compliance_tensor(Ef, nuf, theta) C = Cf(temperature) elastic_strain_old = dcontract(C, stress) # To solve the equation system, we need to parameterize the residual function # by all unknowns. # # To obtain the algorithmic jacobian ∂(Δσ)/∂(Δε), first keep in mind that as # far as the algorithm is concerned, σ_old and ε_old are constants. Therefore, # ∂(...)/∂(Δσ) = ∂(...)/∂(σ_new), and similarly for Δε, ε_new. # # Let r denote the residual function. For simplicity, consider only the increments # Δε, Δσ for now (we will generalize below). At a solution point, we have: # # r(Δε, Δσ) = 0 # # **On the condition that** we stay on the solution surface - i.e. it remains true # that r = 0 - let us consider what happens to Δσ when we change Δε. On the solution # surface, we can locally consider Δσ as a function of Δε: # # Δσ = Δσ(Δε) # # Taking this into account, we differentiate both sides of r = 0 w.r.t. Δε: # # dr/d(Δε) = d(0)/d(Δε) # # which yields, by applying the chain rule on the LHS: # # ∂r/∂(Δε) + ∂r/∂(Δσ) d(Δσ)/d(Δε) = 0 # # Solving for d(Δσ)/d(Δε) now yields: # # d(Δσ)/d(Δε) = -∂r/∂(Δσ) \ ∂r/∂(Δε) # # which we can compute as: # # d(Δσ)/d(Δε) = -∂r/∂σ_new \ ∂r/∂(Δε) # # This completes the solution for the jacobian of the simple two-variable # case. We can extend the same strategy to compute the jacobian for our # actual problem. At a solution point, the residual equation is: # # r(Δε, Δσ, ΔR, ΔX1, ΔX2, ΔX3) = 0 # # Packing the state variables into the vector x ≡ [σ R X1 X2 X3] (with tensors # encoded into Voigt notation), we can rewrite this as: # # r(Δε, Δx) = 0 # # Proceeding as before, we differentiate both sides w.r.t. Δε: # # dr/d(Δε) = d(0)/d(Δε) # # Considering Δx as a function of Δε (locally, on the solution surface), # and applying the chain rule, we have: # # ∂r/∂(Δε) + ∂r/∂(Δx) d(Δx)/d(Δε) = 0 # # Solving for d(Δx)/d(Δε) (which contains d(Δσ)/d(Δε) in its [1:6, 1:6] block) yields: # # d(Δx)/d(Δε) = -∂r/∂(Δx) \ ∂r/∂(Δε) # # which we can compute as: # # d(Δx)/d(Δε) = -∂r/∂x_new \ ∂r/∂(Δε) # # So, we can autodiff the algorithm to obtain both RHS terms, if we # parameterize the residual function twice: once by x_new (which is # already needed for solving the nonlinear equation system), and # once by Δε (keeping all other quantities constant). # # Note this is slightly expensive. ∂r/∂x_new is a 25×25 matrix, # and ∂r/∂(Δε) is 25×6. So essentially, to obtain d(Δx)/d(Δε), # from which we can read off d(Δσ)/d(Δε), we must solve six # linear equation systems, each of size 25. (In a FEM solver, # this must be done for each integration point.) # # But if we are willing to pay for that, we get the algorithmic jacobian # exactly (up to the effects of finite precision arithmetic) - which gives # us quadratic convergence in a FEM solver using this material model. # Residual function. (Actual implementation in `r!`, below.) # # This variant is for solving the equation system. F is output, x is filled by NLsolve. # The solution is x = x* such that g(x*) = 0. # # This is a mutating function for performance reasons. # # Parameterized by the whole new state x_new. # We can also autodiff this at the solution point to obtain ∂r/∂x_new. function rx!(F::V, x::V) where V <: AbstractVector{<:Real} # x = new state # IMPORTANT: Careful here not to overwrite cell variables # from the outer scope. (Those variables hold the *old* values # at the start of the timestep.) Either use a new name, or use # the `local` annotation. stress_new, R_new, X1_new, X2_new, X3_new = state_from_vector(x) r!(F, stress_new, R_new, X1_new, X2_new, X3_new, dd.strain, temperature + dtemperature) return nothing end # Residual parameterized by Δε, for algorithmic jacobian computation. # Autodiff this (w.r.t. strain) at the solution point to get ∂r/∂(Δε). # # This we only need to compute once per timestep, so this allocates # the output array. # # The quantity w.r.t. which the function is to be autodiffed must be a # parameter, so `ForwardDiff` can promote it to use dual numbers. # So `dstrain` must be a parameter. But the old state (from `material`) # is used in several internal computations above. So the value of `dstrain` # given to this routine **must be** `material.ddrivers.strain`. # # We also need to pass the new state (the solution point) to the underlying # residual function `r!`. Use the partial application pattern to provide that: # # r(dstrain) = rdstrain(stress, R, X1, X2, X3, dstrain) # ForwardDiff.jacobian(r, tovoigt(dstrain)) function rdstrain(stress_new::Symm2{<:Real}, R_new::Real, X1_new::Symm2{<:Real}, X2_new::Symm2{<:Real}, X3_new::Symm2{<:Real}, x::V) where V <: AbstractVector{<:Real} # x = dstrain F = similar(x, eltype(x), (25,)) # We don't bother with offdiagscale, since this Voigt conversion is just a marshaling. # All computations are performed in tensor format. dstrain = fromvoigt(Symm2, x) r!(F, stress_new, R_new, X1_new, X2_new, X3_new, dstrain, temperature + dtemperature) return F end function rtemperature(stress_new::Symm2{<:Real}, R_new::Real, X1_new::Symm2{<:Real}, X2_new::Symm2{<:Real}, X3_new::Symm2{<:Real}, x::V) where V <: AbstractVector{<:Real} # x = temperature_new F = similar(x, eltype(x), (25,)) temperature_new = x[1] r!(F, stress_new, R_new, X1_new, X2_new, X3_new, dd.strain, temperature_new) return F end # TODO: decouple integrator # The evolution equations are written in an incremental form: # # Δσ = D : Δεel + dD/dθ : εel Δθ (components 1:6) # ΔR = b (Q - R_new) Δp (component 7) # ΔXj = ((2/3) Cj n - Dj Xj_new) Δp (components 8:13, 14:19, 20:25) (no sum) # # where # # Δ(...) = (...)_new - (...)_old # # (Δp and n are described below.) # # Then in each equation, move the terms on the RHS to the LHS to get # the standard form, (stuff) = 0. Then the LHS is the residual. # # The viscoplastic response is updated by: # # Δεpl = Δp n # # where # # Δp = p' Δt # p' = 1/tvp * (<f> / Kn)^nn (Norton-Bailey power law; <...>: Macaulay brackets) # f = √(3/2 dev(σ_eff) : dev(σ_eff)) - (R0 + R) # σ_eff = σ - ∑ Xj # n = ∂f/∂σ # # `F` is output, length 25. function r!(F::V, stress_new::Symm2{<:Real}, R_new::Real, X1_new::Symm2{<:Real}, X2_new::Symm2{<:Real}, X3_new::Symm2{<:Real}, dstrain::Symm2{<:Real}, temperature_new::Real) where {V <: AbstractVector{<:Real}} # This stuff must be done here so we can autodiff it w.r.t. temperature_new. thermal_strainf(theta) = thermal_strain_tensor(alphaf, theta0, theta) # thermal_strain_derivative(theta) = gradient(thermal_strainf, theta) # thermal_dstrain = thermal_strain_derivative(temperature_new) * (temperature_new - temperature) thermal_dstrain = thermal_strainf(temperature_new) - thermal_strainf(temperature) Df(theta) = elasticity_tensor(Ef, nuf, theta) # dσ/dε, i.e. ∂σij/∂εkl dDdthetaf(theta) = gradient(Df, theta) D = Df(temperature_new) dDdtheta = dDdthetaf(temperature_new) dotp = dotpf(stress_new, R_new, X1_new, X2_new, X3_new, temperature_new) n = nf(stress_new, R_new, X1_new, X2_new, X3_new, temperature_new) local dtemperature = temperature_new - temperature # Hooke's law in elastic regime # # σ = D : ε_el # # leads to # # σ' = D : (ε_el)' + ∂D/∂θ : ε_el θ' # # We have postulated that the evolution equation for the stress # remains the same also in the viscoplastic regime, but now # plastic contributions to the total strain ε affect the # elastic strain ε_el: # # ε = ε_el + ε_pl + ε_th # # so that # # ε_el = ε - ε_pl - ε_th # # and similarly for the increments. Note that the old elastic # strain can be obtained by inverting Hooke's law at the old # stress value. # dp = dotp * dtime plastic_dstrain = dp * n elastic_dstrain = dstrain - plastic_dstrain - thermal_dstrain elastic_strain = elastic_strain_old + elastic_dstrain # # σ' = D : (ε_el)' + ∂D/∂θ : ε_el θ' # tovoigt!(view(F, 1:6), # stress_new - stress # - dcontract(D, elastic_dstrain) # - dcontract(dDdtheta, elastic_strain) * dtemperature) # σ = D : ε_el tovoigt!(view(F, 1:6), stress_new - dcontract(D, elastic_strain)) # Reijo's equations (37) and (43), for exponentially saturating # isotropic hardening, are: # # Kiso = Kiso∞ (1 - exp(-hiso κiso / Kiso∞)) # κiso' = 1 / tvp <fhat / σ0>^p # # Our equation for R in the case without thermal effects, where # Q and b are constant, is: # # R' = b (Q - R) p' # # We identify (LHS Reijo's notation; RHS Materials.jl notation): # # Kiso = R, κiso = p, σ0 = Kn, p = nn # TODO: is fhat our f? Looks a bit different. # # So in the notation used in Materials.jl: # # R = R∞ (1 - exp(-hiso p / R∞)) # p' = 1 / tvp <fhat / Kn>^nn # # which leads to # # R' = -R∞ * (-hiso p'/ R∞) exp(-hiso p / R∞) # = hiso exp(-hiso p / R∞) p' # = hiso (1 - R / R∞) p' # = hiso p' / R∞ (R∞ - R) # = (hiso / R∞) (R∞ - R) p' # ≡ b (Q - R) p' # # where # # Q := R∞ # b := hiso / R∞ # # Thus we can write # # R = Q (1 - exp(-b p)) # # # Now, if we model thermal effects by Q = Q(θ), b = b(θ), we have # # R' = ∂Q/∂θ θ' (1 - exp(-b p)) - Q (-b p)' exp(-b p) # = ∂Q/∂θ θ' (1 - exp(-b p)) + Q (∂b/∂θ θ' p + b p') exp(-b p) # # Observe that # # Q exp(-b p) = Q - R # 1 - exp(-b p) = R / Q # # so we can write # # R' = (∂Q/∂θ / Q) θ' R + (∂b/∂θ θ' p + b p') (Q - R) # = b (Q - R) p' + ((∂Q/∂θ / Q) R + ∂b/∂θ (Q - R) p) θ' # # on the condition that Q ≠ 0. # # But that's a disaster when Q = 0 (no isotropic hardening), # so let's use R / Q = 1 - exp(-b p) to obtain # # R' = b (Q - R) p' + (∂Q/∂θ (1 - exp(-b p)) + ∂b/∂θ (Q - R) p) θ' # # which is the form we use here. # Q = Qf(temperature_new) b = bf(temperature_new) dQdtheta = gradient(Qf, temperature_new) dbdtheta = gradient(bf, temperature_new) cumeq_new = v.cumeq + dp # TODO: p (cumeq) accumulates too much error to be usable here. # TODO: As t increases, R will drift until the solution becomes nonsense. # TODO: So for now, we approximate ∂Q/∂θ = ∂b/∂θ = 0 to eliminate terms # TODO: that depend on p. (p' is fine; computed afresh every timestep.) # F[7] = R_new - R - (b*(Q - R_new) * dp # + (dQdtheta * (1 - exp(-b * cumeq_new)) # + dbdtheta * (Q - R_new) * cumeq_new) # * dtemperature) # numerically bad # F[7] = R_new - R - b*(Q - R_new) * dp # original equation, no dependence on temperature # # consistent, including effects of temperature (and numerically much better than the above) # F[7] = R_new - R - (dQdtheta * dtemperature * (1 - exp(-b * cumeq_new)) # + Q * (dbdtheta * dtemperature * cumeq_new + b * dp) * exp(-b * cumeq_new)) # # equivalent with the previous one, no difference in numerical behavior either F[7] = R_new - R - (b*(Q - R_new) * dp + (dQdtheta * (1 - exp(-b * cumeq_new)) + Q * dbdtheta * cumeq_new * exp(-b * cumeq_new)) * dtemperature) # Reijo's equations (44) and (38): # # κk' = εp' - 1 / tvp <fhat / σ0>^p (3 / Kk∞) Kk # Kk = 2/3 hk κk # # In Materials.jl, we have: # # εp' = p' n # p' = 1 / tvp <fhat / Kn>^nn # # so (in a mixed abuse of notation) # # κk' = p' n - p' (3 / Kk∞) Kk # = p' (n - (3 / Kk∞) Kk) # # In the case without thermal effects, hk is a constant, so: # # Kk' = 2/3 hk κk' # = 2/3 hk p' (n - (3 / Kk∞) Kk) # = p' (2/3 hk n - (2 hk / Kk∞) Kk) # # The equation used in Materials.jl is: # # Xk' = p' (2/3 Ck n - Dk Xk) # # so we identify # # Xk = Kk, Ck = hk, Dk = 2 hk / Kk∞ # # # Now let us model thermal effects by Ck = Ck(θ), Dk = Dk(θ). # In Materials.jl notation, we have: # # Kk∞ = 2 Ck / Dk # # when Dk ≠ 0, so if also Ck ≠ 0, then # # 3 / Kk∞ = 3/2 Dk / Ck # # We have: # # κk' = p' (n - 3/2 (Dk / Ck) Kk) # Kk = 2/3 Ck κk # # Differentiating: # # Kk' = 2/3 (Ck' κk + Ck κk') # = 2/3 (∂Ck/∂θ θ' κk + Ck κk') # = 2/3 (∂Ck/∂θ θ' κk + p' (Ck n - 3/2 Dk Kk)) # = 2/3 ∂Ck/∂θ θ' κk + p' (2/3 Ck n - Dk Kk) # # To avoid the need to track the internal variables κk as part of the # problem state, we can use: # # Kk = 2/3 Ck κk # # So whenever Ck ≠ 0, # # κk = 3/2 Kk / Ck # # Final result: # # Xk' = 2/3 ∂Ck/∂θ θ' κk + p' (2/3 Ck n - Dk Xk) # = 2/3 ∂Ck/∂θ θ' (3/2 Xk / Ck) + p' (2/3 Ck n - Dk Xk) # = (∂Ck/∂θ / Ck) Xk θ' + p' (2/3 Ck n - Dk Xk) # # ------------------------------------------------------------ # # We identified Ck = hk, Dk = 2 hk / Kk∞. The special case # Ck(θ) = Dk(θ) ≡ 0 corresponds to hk = 0, Kk∞ → +∞. Then we have: # # κk' = p' (n - (3 / Kk∞) Kk) → p' n # Kk' ≡ 0 # # Also, because Kk = 2/3 Ck κk, we have Kk ≡ 0. # # In this case we can discard the internal variables κk, because they # only contribute to Kk. # # ------------------------------------------------------------ # # Incremental form: # # ΔXk = 2/3 ∂Ck/∂θ Δθ κk + Δp (2/3 Ck n - Dk Xk) # = 2/3 ∂Ck/∂θ Δθ (3/2 Xk / Ck) + Δp (2/3 Ck n - Dk Xk) # = (∂Ck/∂θ / Ck) Xk Δθ + Δp (2/3 Ck n - Dk Xk) # C1 = C1f(temperature_new) dC1dtheta = gradient(C1f, temperature_new) logdiff1 = (C1 != 0.0) ? (dC1dtheta / C1) : 0.0 D1 = D1f(temperature_new) C2 = C2f(temperature_new) dC2dtheta = gradient(C2f, temperature_new) logdiff2 = (C2 != 0.0) ? (dC2dtheta / C2) : 0.0 D2 = D2f(temperature_new) C3 = C3f(temperature_new) dC3dtheta = gradient(C3f, temperature_new) logdiff3 = (C3 != 0.0) ? (dC3dtheta / C3) : 0.0 D3 = D3f(temperature_new) tovoigt!(view(F, 8:13), X1_new - X1 - (logdiff1 * X1_new * dtemperature + dp*(2.0/3.0*C1*n - D1*X1_new))) tovoigt!(view(F, 14:19), X2_new - X2 - (logdiff2 * X2_new * dtemperature + dp*(2.0/3.0*C2*n - D2*X2_new))) tovoigt!(view(F, 20:25), X3_new - X3 - (logdiff3 * X3_new * dtemperature + dp*(2.0/3.0*C3*n - D3*X3_new))) return nothing end return rx!, rdstrain, rtemperature end end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
18408
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE """ The functions in this module are made to be able to easily simulate stress states produced by some of the most common test machines. Take for example the function `uniaxial_increment!`. In a push-pull machine (with a smooth specimen), we know that the stress state is uniaxial (in the measuring volume). Given the strain increment in the direction where the stress is nonzero, we find a strain increment that produces zero stress in the other directions. Similarly for the other functions. """ module Increments import LinearAlgebra: norm import Tensors: tovoigt, fromvoigt import ..AbstractMaterial, ..integrate_material! import ..Utilities: Symm2 export find_dstrain!, general_increment!, stress_driven_general_increment!, general_mixed_increment!, uniaxial_increment!, biaxial_increment!, stress_driven_uniaxial_increment! """ find_dstrain!(material::AbstractMaterial, dstrain::AbstractVector{<:Real}, dt::Real, update_dstrain!::Function; max_iter::Integer=50, tol::Real=1e-9) Find a compatible strain increment for `material`. Chances are you'll only need to call this low-level function directly if you want to implement new kinds of strain optimizers. See `general_increment!` and `stress_driven_general_increment!` for usage examples. This is the skeleton of the optimizer. The individual specific optimizer functions (`update_dstrain!)` only need to define how to update `dstrain`. The skeleton itself isn't a Newton-Raphson root finder. It just abstracts away the iteration loop, convergence checking and data plumbing, so it can be used, among other kinds, to conveniently implement Newton-Raphson root finders. The `dstrain` supplied to this function is the initial guess for the optimization. At each iteration, it must be updated by the user-defined corrector `update_dstrain!`, whose call signature is: update_dstrain!(dstrain::V, dstress::V, jacobian::AbstractArray{T}) where V <: AbstractVector{T} where T <: Real -> err::Real `dstrain` is the current value of the strain increment, in Voigt format. Conversion to tensor format uses `offdiagscale=2.0`. The function must update the Voigt format `dstrain` in-place. `dstress = stress - stress0`, where `stress` is the stress state predicted by integrating the material for one timestep of length `dt`, using the current value of `dstrain` as a driving strain increment, and `stress0` is the stress state stored in `materials.variables.stress`. `jacobian` is ∂σij/∂εkl (`material.variables_new.jacobian`), as computed by the material implementation. In many cases, the dstrain optimization can actually be performed by a Newton-Raphson root finder, so we pass the jacobian to facilitate writing the update formula for such a root finder. The return value `err` must be an error measure (Real, >= 0). The update is iterated at most `max_iter` times, until `err` falls below `tol`. If `max_iter` is reached and the error measure is still `tol` or greater, `ErrorException` is thrown. To keep features orthogonal, the timestep is **not** committed automatically. We call `integrate_material!`, but not `update_material!`. In other words, we only update `material.variables_new`. To commit the timestep, call `update_material!` after the optimizer is done. """ function find_dstrain!(material::AbstractMaterial, dstrain::AbstractVector{<:Real}, dt::Real, update_dstrain!::Function; max_iter::Integer=50, tol::Real=1e-9) stress0 = tovoigt(material.variables.stress) # stored T = typeof(dstrain[1]) # @debug "---START---" for i=1:max_iter # @debug "$i, $dstrain, $stress0, $(material.variables.stress)" material.ddrivers.time = dt material.ddrivers.strain = fromvoigt(Symm2{T}, dstrain; offdiagscale=2.0) integrate_material!(material) stress = tovoigt(material.variables_new.stress) # predicted dstress = stress - stress0 jacobian = tovoigt(material.variables_new.jacobian) e = update_dstrain!(dstrain, dstress, jacobian) if e < tol return nothing end end error("No convergence in strain increment") end # -------------------------------------------------------------------------------- """ general_increment!(material::AbstractMaterial, dstrain_knowns::AbstractVector{Union{T, Missing}}, dstrain::AbstractVector{Union{T, Missing}}=dstrain_knowns, max_iter::Integer=50, norm_acc::T=1e-9) where T <: Real Find a compatible strain increment for `material`. The material state (`material.variables`) and any non-`missing` components of the *strain* increment `dstrain_knowns` are taken as prescribed. Any `missing` components will be solved for. This routine computes the `missing` components of the strain increment, such that those components of the new stress state that correspond to the `missing` strain increment components, remain at the old values stored in `material.variables.stress`. (Often in practice, those old values are set to zero, allowing simulation of uniaxial push-pull tests and similar.) "New" stress state means the stress state after integrating the material by one timestep of length `dt`. The type of the initial guess `dstrain` is `AbstractVector{Union{T, Missing}}` only so we can make it default to `dstrain_knowns`, which has that type. Any `missing` components in the initial guess `dstrain` will be replaced by zeroes before we invoke the solver. See `find_dstrain!`. """ function general_increment!(material::AbstractMaterial, dstrain_knowns::AbstractVector{<:Union{T, Missing}}, dt::Real, dstrain::AbstractVector{<:Union{T, Missing}}=dstrain_knowns, max_iter::Integer=50, norm_acc::T=1e-9) where T <: Real function validate_size(name::String, v::AbstractVector) if ndims(v) != 1 || size(v)[1] != 6 error("""Expected a length-6 vector for $(name), got $(typeof(v)) with size $(join(size(v), "×"))""") end end validate_size("dstrain_knowns", dstrain_knowns) validate_size("dstrain", dstrain) dstrain_actual::AbstractVector{T} = T[((x !== missing) ? x : T(0)) for x in dstrain] dstrain_knowns_idxs = Integer[k for k in 1:6 if dstrain_knowns[k] !== missing] dstrain_unknown_idxs = setdiff(1:6, dstrain_knowns_idxs) if length(dstrain_unknown_idxs) == 0 error("Optimizer needs at least one unknown dstrain component to solve for") end function update_dstrain!(dstrain::V, dstress::V, jacobian::AbstractArray{T}) where V <: AbstractVector{T} where T <: Real # See the stress-driven routine (`stress_driven_general_increment!`) for the general idea # of how this works. The differences to that algorithm are that: # # - We update only components whose dstrain is not prescribed. # - We want all corresponding components of dstress to converge to zero in the # surrounding Newton-Raphson iteration. # dstrain_correction = (-jacobian[dstrain_unknown_idxs, dstrain_unknown_idxs] \ dstress[dstrain_unknown_idxs]) dstrain[dstrain_unknown_idxs] .+= dstrain_correction return norm(dstrain_correction) end find_dstrain!(material, dstrain_actual, dt, update_dstrain!, max_iter=max_iter, tol=norm_acc) dstrain[:] = dstrain_actual return nothing end """ stress_driven_general_increment!(material::AbstractMaterial, dstress_knowns::AbstractVector{<:Union{T, Missing}}, dt::Real, dstrain::AbstractVector{T}, max_iter::Integer=50, norm_acc::T=1e-9) where T <: Real Find a compatible strain increment for `material`. The material state (`material.variables`) and any non-`missing` components of the *stress* increment `dstress_knowns` are taken as prescribed. This routine computes a *strain* increment such that those components of the new stress state, that correspond to non-`missing` components of `dstress_knowns`, match those components of `material.variables.stress + dstress_knowns`. For any `missing` components of `dstress_knowns`, the new stress state will match the corresponding components of `material.variables.stress`. (So the `missing` components act as if they were zero.) *All* strain increment components will be solved for. If you need to prescribe some of them, while also prescribing stresses, see `general_mixed_increment!`. "New" stress state means the stress state after integrating the material by one timestep of length `dt`. `dstrain` is the initial guess for the strain increment. See `find_dstrain!`. """ function stress_driven_general_increment!(material::AbstractMaterial, dstress_knowns::AbstractVector{<:Union{T, Missing}}, dt::Real, dstrain::AbstractVector{T}, max_iter::Integer=50, norm_acc::T=1e-9) where T <: Real function validate_size(name::String, v::AbstractVector) if ndims(v) != 1 || size(v)[1] != 6 error("""Expected a length-6 vector for $(name), got $(typeof(v)) with size $(join(size(v), "×"))""") end end validate_size("dstress_knowns", dstress_knowns) validate_size("dstrain", dstrain) dstrain_actual::AbstractVector{T} = T[((x !== missing) ? x : T(0)) for x in dstrain] dstress_knowns_idxs = Integer[k for k in 1:6 if dstress_knowns[k] !== missing] function update_dstrain!(dstrain::V, dstress::V, jacobian::AbstractArray{T}) where V <: AbstractVector{T} where T <: Real # For the stress-driven correction, we have # # dε = dε₀ + dεₐ # # where dε₀ is the dstrain currently suggested by the optimizer, and the adjustment dεₐ is # # dεₐ = -(∂σ/∂ε)⁻¹ dσₑ # dσₑ = dσ - dσₖ # # Here dσₑ is the effective stress increment, and dσₖ is the prescribed # (known) stress increment, which is zero for unknown dstress components. # As the Newton-Raphson iteration proceeds, dσₑ will converge to zero. # # Mutation of `dstress` doesn't matter, since `dstress` is freshly generated at each iteration. dstress[dstress_knowns_idxs] -= dstress_knowns[dstress_knowns_idxs] dstrain_correction = -jacobian \ dstress dstrain .+= dstrain_correction return norm(dstrain_correction) end find_dstrain!(material, dstrain_actual, dt, update_dstrain!, max_iter=max_iter, tol=norm_acc) dstrain[:] = dstrain_actual return nothing end """ general_mixed_increment!(material::AbstractMaterial, dstrain_knowns::AbstractVector{<:Union{T, Missing}}, dstress_knowns::AbstractVector{<:Union{T, Missing}}, dt::Real, dstrain::AbstractVector{<:Union{T, Missing}}=dstrain_knowns, max_iter::Integer=50, norm_acc::T=1e-9) where T <: Real Find a compatible strain increment for `material`. A combination of `general_increment!` and `stress_driven_general_increment!`, which allows for loadings where some components are strain-driven and some are stress-driven, such as the biaxial "bow-tie" and "reverse bow-tie" loadings of: Corona, E., Hassan, T. and Kyriakides, S. (1996) On the Performance of Kinematic Hardening Rules in Predicting a Class of Biaxial Ratcheting Histories. International Journal of Plasticity, Vol 12, pp. 117--145. See also: Bari, Shafiqul. (2001) Constitutive modeling for cyclic plasticity and ratcheting. Ph.D. thesis, North Carolina State University. which compares the response of several different plasticity models under these loadings. Each known component must be either strain-driven or stress-driven, not both. The combination of the known components of dstrain and dstress must describe a valid material state. Otherwise the optimizer may fail to converge, or return a nonsensical solution. """ function general_mixed_increment!(material::AbstractMaterial, dstrain_knowns::AbstractVector{<:Union{T, Missing}}, dstress_knowns::AbstractVector{<:Union{T, Missing}}, dt::Real, dstrain::AbstractVector{<:Union{T, Missing}}=dstrain_knowns, max_iter::Integer=50, norm_acc::T=1e-9) where T <: Real function validate_size(name::String, v::AbstractVector) if ndims(v) != 1 || size(v)[1] != 6 error("""Expected a length-6 vector for $(name), got $(typeof(v)) with size $(join(size(v), "×"))""") end end validate_size("dstrain_knowns", dstrain_knowns) validate_size("dstress_knowns", dstress_knowns) validate_size("dstrain", dstrain) dstrain_actual::AbstractVector{T} = T[((x !== missing) ? x : T(0)) for x in dstrain] dstrain_knowns_idxs = Integer[k for k in 1:6 if dstrain_knowns[k] !== missing] dstress_knowns_idxs = Integer[k for k in 1:6 if dstress_knowns[k] !== missing] dstrain_unknown_idxs = setdiff(1:6, dstrain_knowns_idxs) if length(dstrain_unknown_idxs) == 0 error("Optimizer needs at least one unknown dstrain component to solve for") end # check that no component is being prescribed both ways let bad_idxs = intersect(dstrain_knowns_idxs, dstress_knowns_idxs) if length(bad_idxs) > 0 plural = (length(bad_idxs) != 1) ? "s" : "" error("""Each known component must be either strain- or stress-driven, not both; please check the input for component$(plural) $(bad_idxs)""") end end function update_dstrain!(dstrain::V, dstress::V, jacobian::AbstractArray{T}) where V <: AbstractVector{T} where T <: Real # This update algorithm is a combination of those in `general_increment!` # and `stress_driven_general_increment!`. # # - Like `general_increment!`, we update only components whose dstrain is not prescribed. # - Like `stress_driven_general_increment!`, we allow for nonzero target dstress. # dstress[dstress_knowns_idxs] -= dstress_knowns[dstress_knowns_idxs] dstrain_correction = -(jacobian[dstrain_unknown_idxs, dstrain_unknown_idxs] \ dstress[dstrain_unknown_idxs]) dstrain[dstrain_unknown_idxs] .+= dstrain_correction return norm(dstrain_correction) end find_dstrain!(material, dstrain_actual, dt, update_dstrain!, max_iter=max_iter, tol=norm_acc) dstrain[:] = dstrain_actual return nothing end # -------------------------------------------------------------------------------- """ uniaxial_increment!(material::AbstractMaterial, dstrain11::Real, dt::Real; dstrain::AbstractVector{<:Real}=[dstrain11, -0.3*dstrain11, -0.3*dstrain11, 0.0, 0.0, 0.0], max_iter::Integer=50, norm_acc::Real=1e-9) Find a compatible strain increment for `material`. The material state (`material.variables`) and the component 11 of the *strain* increment are taken as prescribed. Convenience function; see `general_increment!`. See `find_dstrain!`. """ function uniaxial_increment!(material::AbstractMaterial, dstrain11::Real, dt::Real; dstrain::AbstractVector{<:Real}=[dstrain11, -0.3*dstrain11, -0.3*dstrain11, 0.0, 0.0, 0.0], max_iter::Integer=50, norm_acc::Real=1e-9) dstrain_knowns = [dstrain11, missing, missing, missing, missing, missing] general_increment!(material, dstrain_knowns, dt, dstrain, max_iter, norm_acc) return nothing end """ biaxial_increment!(material::AbstractMaterial, dstrain11::Real, dstrain12::Real, dt::Real; dstrain::AbstractVector{<:Real}=[dstrain11, -0.3*dstrain11, -0.3*dstrain11, 0, 0, dstrain12], max_iter::Integer=50, norm_acc::Real=1e-9) Find a compatible strain increment for `material`. By "biaxial", we mean a stress state with one normal component and one shear component. The material state (`material.variables`) and the components 11 and 12 of the *strain* increment are taken as prescribed. Convenience function; see `general_increment!`. See `find_dstrain!`. """ function biaxial_increment!(material::AbstractMaterial, dstrain11::Real, dstrain12::Real, dt::Real; dstrain::AbstractVector{<:Real}=[dstrain11, -0.3*dstrain11, -0.3*dstrain11, 0, 0, dstrain12], max_iter::Integer=50, norm_acc::Real=1e-9) dstrain_knowns = [dstrain11, missing, missing, missing, missing, dstrain12] general_increment!(material, dstrain_knowns, dt, dstrain, max_iter, norm_acc) return nothing end """ stress_driven_uniaxial_increment!(material::AbstractMaterial, dstress11::Real, dt::Real; dstrain::AbstractVector{<:Real}=[dstress11/200e3, -0.3*dstress11/200e3, -0.3*dstress11/200e3, 0.0, 0.0, 0.0], max_iter::Integer=50, norm_acc::Real=1e-9) Find a compatible strain increment for `material`. The material state (`material.variables`) and the component 11 of the *stress* increment are taken as prescribed. Convenience function; see `stress_driven_general_increment!`. See `find_dstrain!`. """ function stress_driven_uniaxial_increment!(material::AbstractMaterial, dstress11::Real, dt::Real; dstrain::AbstractVector{<:Real}=[dstress11/200e3, -0.3*dstress11/200e3, -0.3*dstress11/200e3, 0.0, 0.0, 0.0], max_iter::Integer=50, norm_acc::Real=1e-9) dstress_knowns = [dstress11, missing, missing, missing, missing, missing] stress_driven_general_increment!(material, dstress_knowns, dt, dstrain, max_iter, norm_acc) return nothing end end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
12126
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE module MemoryModule using LinearAlgebra, ForwardDiff, Tensors, NLsolve, Parameters import ..AbstractMaterial, ..AbstractMaterialState import ..Utilities: Symm2, Symm4, isotropic_elasticity_tensor, lame, debang import ..integrate_material! # for method extension # parametrically polymorphic for any type representing ℝ export GenericMemory, GenericMemoryDriverState, GenericMemoryParameterState, GenericMemoryVariableState # specialization for Float64 export Memory, MemoryDriverState, MemoryParameterState, MemoryVariableState @with_kw mutable struct GenericMemoryDriverState{T <: Real} <: AbstractMaterialState time::T = zero(T) strain::Symm2{T} = zero(Symm2{T}) end """Parameter state for Memory material. - `E`: Young's modulus - `nu`: Poisson's ratio - `R0`: initial yield strength - `Kn`: plasticity multiplier divisor (drag stress) - `nn`: plasticity multiplier exponent - `C1`, `D1`: parameters governing behavior of backstress X1 - `C2`, `D2`: parameters governing behavior of backstress X2 - `Q0`: The initial isotropic hardening saturation value. Has the units of stress. - `QM`: The asymptotic isotropic hardening saturation value reached with high strain amplitude. Has the units of stress. - `mu`: Controls the rate of evolution of the strain-amplitude dependent isotropic hardening saturation value. - `b`: Controls the rate of evolution for isotropic hardening. - `eta`: Controls the balance between memory surface kinematic and isotropic hardening. Dimensionless, support `[0,1]`. At `0`, the memory surface hardens kinematically. At `1`, the memory surface hardens isotropically. Initially, the value `1/2` was used by several authors. Later, values `< 1/2` have been suggested to capture the progressive process of memorization. - `m`: memory evanescence exponent. Controls the non-linearity of the memory evanescence. - `pt`: threshold of equivalent plastic strain, after which the memory evanescence starts. - `xi`: memory evanescence strength multiplier. """ @with_kw struct GenericMemoryParameterState{T <: Real} <: AbstractMaterialState E::T = 0.0 nu::T = 0.0 R0::T = 0.0 Kn::T = 0.0 nn::T = 0.0 C1::T = 0.0 D1::T = 0.0 C2::T = 0.0 D2::T = 0.0 Q0::T = 0.0 QM::T = 0.0 mu::T = 0.0 b::T = 0.0 eta::T = 0.0 m::T = 0.0 pt::T = 0.0 xi::T = 0.0 end """Problem state for Memory material. - `stress`: stress tensor - `X1`: backstress 1 - `X2`: backstress 2 - `plastic_strain`: plastic part of strain tensor - `cumeq`: cumulative equivalent plastic strain (scalar, ≥ 0) - `R`: yield strength - `q`: size of the strain memory surface (~plastic strain amplitude) - `zeta`: strain memory surface kinematic hardening variable - `jacobian`: ∂σij/∂εkl """ @with_kw struct GenericMemoryVariableState{T <: Real} <: AbstractMaterialState stress::Symm2{T} = zero(Symm2{T}) X1::Symm2{T} = zero(Symm2{T}) X2::Symm2{T} = zero(Symm2{T}) plastic_strain::Symm2{T} = zero(Symm2{T}) cumeq::T = zero(T) R::T = zero(T) q::T = zero(T) zeta::Symm2{T} = zero(Symm2{T}) jacobian::Symm4{T} = zero(Symm4{T}) end # TODO: Does this eventually need a {T}? @with_kw struct MemoryOptions <: AbstractMaterialState nlsolve_method::Symbol = :trust_region end @with_kw mutable struct GenericMemory{T <: Real} <: AbstractMaterial drivers::GenericMemoryDriverState{T} = GenericMemoryDriverState{T}() ddrivers::GenericMemoryDriverState{T} = GenericMemoryDriverState{T}() variables::GenericMemoryVariableState{T} = GenericMemoryVariableState{T}() variables_new::GenericMemoryVariableState{T} = GenericMemoryVariableState{T}() parameters::GenericMemoryParameterState{T} = GenericMemoryParameterState{T}() dparameters::GenericMemoryParameterState{T} = GenericMemoryParameterState{T}() options::MemoryOptions = MemoryOptions() end MemoryDriverState = GenericMemoryDriverState{Float64} MemoryParameterState = GenericMemoryParameterState{Float64} MemoryVariableState = GenericMemoryVariableState{Float64} Memory = GenericMemory{Float64} """ state_to_vector(sigma::U, R::T, X1::U, X2::U) where U <: Symm2{T} where T <: Real Adaptor for `nlsolve`. Marshal the problem state into a `Vector`. """ function state_to_vector(sigma::U, R::T, X1::U, X2::U) where U <: Symm2{T} where T <: Real return [tovoigt(sigma); R; tovoigt(X1); tovoigt(X2)]::Vector{T} end """ state_from_vector(x::AbstractVector{<:Real}) Adaptor for `nlsolve`. Unmarshal the problem state from a `Vector`. """ function state_from_vector(x::AbstractVector{T}) where T <: Real sigma::Symm2{T} = fromvoigt(Symm2{T}, @view x[1:6]) R::T = x[7] X1::Symm2{T} = fromvoigt(Symm2{T}, @view x[8:13]) X2::Symm2{T} = fromvoigt(Symm2{T}, @view x[14:19]) return sigma, R, X1, X2 end """ strain_memory_explicit_update(q, zeta, plastic_strain, dp, cumeq, pt, n, eta, xi, m) Internal helper function for what it says on the tin. Return `(dq, dzeta)`, the computed increments for `q` and `zeta` for the given input. """ function strain_memory_explicit_update(q, zeta, plastic_strain, dp, cumeq, pt, n, eta, xi, m) dq = zero(q) dzeta = zero(zeta) JF = sqrt(1.5)*norm(dev(plastic_strain - zeta)) FF = 2.0/3.0*JF - q if FF > 0.0 nF = 1.5*dev(plastic_strain - zeta)/JF nnF = dcontract(n, nF) if nnF > 0 dq = 2.0/3.0*eta*nnF*dp dzeta = 2.0/3.0*(1.0 - eta)*nnF*nF*dp end else # Memory evanescence term if cumeq >= pt dq = -xi*q^m*dp end end return dq, dzeta end """ integrate_material!(material::GenericMemory{T}) where T <: Real Material model with a strain memory effect. This is similar to the Chaboche material with two backstresses, with both kinematic and isotropic hardening, but this model also features a strain memory term. Strain memory is used to be able to model strain amplitude-dependent isotropic hardening. In practice, the transition from a tensile test curve to cyclic behavior can be captured with this model. See: D. Nouailhas, J.-L. Chaboche, S. Savalle, G. Cailletaud. On the constitutive equations for cyclic plasticity under nonproportional loading. International Journal of Plasticity 1(4) (1985), 317--330. https://doi.org/10.1016/0749-6419(85)90018-X """ function integrate_material!(material::GenericMemory{T}) where T <: Real p = material.parameters v = material.variables dd = material.ddrivers d = material.drivers @unpack E, nu, R0, Kn, nn, C1, D1, C2, D2, Q0, QM, mu, b, eta, m, pt, xi = p lambda, elastic_mu = lame(E, nu) @unpack strain, time = d dstrain = dd.strain dtime = dd.time @unpack stress, X1, X2, plastic_strain, cumeq, R, q, zeta, jacobian = v # elastic part jacobian = isotropic_elasticity_tensor(lambda, elastic_mu) stress += dcontract(jacobian, dstrain) # resulting deviatoric plastic stress (accounting for backstresses Xm) seff_dev = dev(stress - X1 - X2) # von Mises yield function f = sqrt(1.5)*norm(seff_dev) - (R0 + R) # using elastic trial problem state if f > 0.0 # Explicit update to memory-surface g! = create_nonlinear_system_of_equations(material) x0 = state_to_vector(stress, R, X1, X2) res = nlsolve(g!, x0; method=material.options.nlsolve_method, autodiff = :forward) converged(res) || error("Nonlinear system of equations did not converge!") x = res.zero stress, R, X1, X2 = state_from_vector(x) # using the new problem state seff_dev = dev(stress - X1 - X2) f = sqrt(1.5)*norm(seff_dev) - (R0 + R) dotp = ((f >= 0.0 ? f : 0.0)/Kn)^nn dp = dotp*dtime n = sqrt(1.5)*seff_dev/norm(seff_dev) plastic_strain += dp*n cumeq += dp dq, dzeta = strain_memory_explicit_update(q, zeta, plastic_strain, dp, cumeq, pt, n, eta, xi, m) q += dq zeta += dzeta # Compute the new Jacobian, accounting for the plastic contribution. drdx = ForwardDiff.jacobian(debang(g!), x) drde = zeros((length(x),6)) drde[1:6, 1:6] = -tovoigt(jacobian) jacobian = fromvoigt(Symm4, (drdx\drde)[1:6, 1:6]) end variables_new = GenericMemoryVariableState{T}(stress = stress, X1 = X1, X2 = X2, R = R, plastic_strain = plastic_strain, cumeq = cumeq, q = q, zeta = zeta, jacobian = jacobian) material.variables_new = variables_new return nothing end """ create_nonlinear_system_of_equations(material::GenericMemory{T}) where T <: Real Create and return an instance of the equation system for the incremental form of the evolution equations of the Memory material. Used internally for computing the plastic contribution in `integrate_material!`. The input `material` represents the problem state at the end of the previous timestep. The created equation system will hold its own copy of that state. The equation system is represented as a mutating function `g!` that computes the residual: ```julia g!(F::V, x::V) where V <: AbstractVector{<:Real} ``` Both `F` (output) and `x` (input) are length-19 vectors containing [sigma, R, X1, X2], in that order. The tensor quantities sigma, X1, X2 are encoded in Voigt format. The function `g!` is intended to be handed over to `nlsolve`. """ function create_nonlinear_system_of_equations(material::GenericMemory{T}) where T <: Real p = material.parameters v = material.variables dd = material.ddrivers d = material.drivers @unpack E, nu, R0, Kn, nn, C1, D1, C2, D2, Q0, QM, mu, b, eta, m, pt, xi = p lambda, elastic_mu = lame(E, nu) # Old problem state (i.e. the problem state at the time when this equation # system instance was created). # # Note this does not include the elastic trial; this is the state at the # end of the previous timestep. @unpack strain, time = d dstrain = dd.strain dtime = dd.time @unpack stress, X1, X2, plastic_strain, cumeq, R, q, zeta, jacobian = v jacobian = isotropic_elasticity_tensor(lambda, elastic_mu) # Explicit update of memory surface. # # Compute the residual. F is output, x is filled by NLsolve. # The solution is x = x* such that g(x*) = 0. function g!(F::V, x::V) where V <: AbstractVector{<:Real} stress_new, R_new, X1_new, X2_new = state_from_vector(x) # tentative new values from nlsolve seff_dev = dev(stress_new - X1_new - X2_new) f = sqrt(1.5)*norm(seff_dev) - (R0 + R_new) dotp = ((f >= 0.0 ? f : 0.0)/Kn)^nn dp = dotp*dtime n = sqrt(1.5)*seff_dev/norm(seff_dev) dstrain_plastic = dp*n # Strain memory - explicit update plastic_strain_new = plastic_strain + dstrain_plastic dq, dzeta = strain_memory_explicit_update(q, zeta, plastic_strain_new, dp, cumeq, pt, n, eta, xi, m) q_new = q + dq zeta_new = zeta + dzeta # The equations are written in an incremental form. # TODO: multiply the equations by -1 to make them easier to understand in the context of the rest of the model. dstrain_elastic = dstrain - dstrain_plastic tovoigt!(view(F, 1:6), stress - stress_new + dcontract(jacobian, dstrain_elastic)) F[7] = R - R_new + b*((QM + (Q0 - QM)*exp(-2.0*mu*q_new)) - R_new)*dp tovoigt!(view(F, 8:13), X1 - X1_new + dp*(2.0/3.0*C1*n - D1*X1_new)) tovoigt!(view(F, 14:19), X2 - X2_new + dp*(2.0/3.0*C2*n - D2*X2_new)) return nothing end return g! end end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
5183
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE module PerfectPlasticModule using LinearAlgebra, ForwardDiff, Tensors, NLsolve, Parameters import ..AbstractMaterial, ..AbstractMaterialState import ..Utilities: Symm2, Symm4, isotropic_elasticity_tensor, IS, ID, lame import ..integrate_material! # for method extension # parametrically polymorphic for any type representing ℝ export GenericPerfectPlastic, GenericPerfectPlasticDriverState, GenericPerfectPlasticParameterState, GenericPerfectPlasticVariableState # specialization for Float64 export PerfectPlastic, PerfectPlasticDriverState, PerfectPlasticParameterState, PerfectPlasticVariableState @with_kw mutable struct GenericPerfectPlasticDriverState{T <: Real} <: AbstractMaterialState time::T = zero(T) strain::Symm2{T} = zero(Symm2{T}) end """Parameter state for perfect plastic material. - youngs_modulus - poissons_ratio - yield_stress """ @with_kw struct GenericPerfectPlasticParameterState{T <: Real} <: AbstractMaterialState youngs_modulus::T = zero(T) poissons_ratio::T = zero(T) yield_stress::T = zero(T) end """Problem state for perfect plastic material. - `stress`: stress tensor - `plastic_strain`: plastic part of strain tensor - `cumeq`: cumulative equivalent plastic strain (scalar, ≥ 0) - `jacobian`: ∂σij/∂εkl """ @with_kw struct GenericPerfectPlasticVariableState{T <: Real} <: AbstractMaterialState stress::Symm2{T} = zero(Symm2{T}) plastic_strain::Symm2{T} = zero(Symm2{T}) cumeq::T = zero(T) jacobian::Symm4{T} = zero(Symm4{T}) end @with_kw mutable struct GenericPerfectPlastic{T <: Real} <: AbstractMaterial drivers::GenericPerfectPlasticDriverState{T} = GenericPerfectPlasticDriverState{T}() ddrivers::GenericPerfectPlasticDriverState{T} = GenericPerfectPlasticDriverState{T}() variables::GenericPerfectPlasticVariableState{T} = GenericPerfectPlasticVariableState{T}() variables_new::GenericPerfectPlasticVariableState{T} = GenericPerfectPlasticVariableState{T}() parameters::GenericPerfectPlasticParameterState{T} = GenericPerfectPlasticParameterState{T}() dparameters::GenericPerfectPlasticParameterState{T} = GenericPerfectPlasticParameterState{T}() end PerfectPlastic = GenericPerfectPlastic{Float64} PerfectPlasticDriverState = GenericPerfectPlasticDriverState{Float64} PerfectPlasticParameterState = GenericPerfectPlasticParameterState{Float64} PerfectPlasticVariableState = GenericPerfectPlasticVariableState{Float64} """ integrate_material!(material::GenericPerfectPlastic) Perfect plastic material: no hardening. The elastic region remains centered on the origin, and retains its original size. This is a standard basic plasticity model; see a textbook, such as: J. C. Simo, T. J. R. Hughes. Computational Inelasticity. Interdisciplinary Applied Mathematics volume 7. Springer. 1998. http://dx.doi.org/10.1007/b98904 The notation in the book somewhat differs from ours; see: https://github.com/JuliaFEM/Materials.jl/pull/66#issuecomment-674786955 """ function integrate_material!(material::GenericPerfectPlastic{T}) where T <: Real p = material.parameters v = material.variables dd = material.ddrivers d = material.drivers E = p.youngs_modulus nu = p.poissons_ratio lambda, mu = lame(E, nu) R0 = p.yield_stress # @unpack strain, time = d # not needed for this material dstrain = dd.strain dtime = dd.time @unpack stress, plastic_strain, cumeq, jacobian = v jacobian = isotropic_elasticity_tensor(lambda, mu) # dσ/dε, i.e. ∂σij/∂εkl stress += dcontract(jacobian, dstrain) # add the elastic stress increment, get the elastic trial stress seff_dev = dev(stress) f = sqrt(1.5)*norm(seff_dev) - R0 # von Mises yield function; f := J(seff_dev) - Y if f > 0.0 # see Simo & Hughes ch. 3.1: radial return mapping, eq. (3.37) dp = 1.0/(3.0*mu) * f n = sqrt(1.5)*seff_dev/norm(seff_dev) # a (tensorial) unit direction, s.t. 2/3 * (n : n) = 1 plastic_strain += dp*n cumeq += dp # cumulative equivalent plastic strain (note dp ≥ 0) # Perfect plastic material: the stress state cannot be outside the yield surface. # Project it back to the yield surface. stress -= dcontract(jacobian, dp*n) # Compute ∂σij/∂εkl, accounting for the plastic contribution. # EE = IS + dp/R0 * (∂σ/∂ε)_e : ((3/2) ID - n ⊗ n) EE = IS(T) + dp/R0 * dcontract(jacobian, 1.5*ID(T) - otimes(n,n)) # using the elastic jacobian ED = dcontract(inv(EE), jacobian) # J = ED - (ED : n) ⊗ (n : ED) / (n : ED : n) jacobian = ED - otimes(dcontract(ED, n), dcontract(n, ED)) / dcontract(dcontract(n, ED), n) end variables_new = GenericPerfectPlasticVariableState(stress=stress, plastic_strain=plastic_strain, cumeq=cumeq, jacobian=jacobian) material.variables_new = variables_new return nothing end end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
6814
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE module Utilities using Tensors, ForwardDiff export Symm2, Symm4 export delta, II, IT, IS, IA, IV, ID, isotropic_elasticity_tensor, isotropic_compliance_tensor export lame, delame, debang, find_root """Symm2{T} is an alias for SymmetricTensor{2,3,T}.""" const Symm2{T} = SymmetricTensor{2,3,T} """Symm4{T} is an alias for SymmetricTensor{4,3,T}.""" const Symm4{T} = SymmetricTensor{4,3,T} """ delta(i::Integer, j::Integer) Kronecker delta, defined by delta(i, j) = (i == j) ? 1 : 0. """ delta(i::T, j::T) where T <: Integer = (i == j) ? one(T) : zero(T) # TODO: We could probably remove the type argument, and just let the results be # inferred as Symm4{Int64}, Symm4{Rational{Int64}} and similar. Simpler to use, # and those behave correctly in calculations with types involving other reals # such as Float64. # Performance implications? Is the Julia compiler smart enough to optimize? """ II(T::Type=Float64) Rank-4 unit tensor, defined by II : A = A for any rank-2 tensor A. """ II(T::Type=Float64) = Symm4{T}((i,j,k,l) -> delta(i,k)*delta(j,l)) """ IT(T::Type=Float64) Rank-4 unit tensor, defined by IT : A = transpose(A) for any rank-2 tensor A. """ IT(T::Type=Float64) = Symm4{T}((i,j,k,l) -> delta(i,l)*delta(j,k)) """ IS(T::Type=Float64) Rank-4 unit tensor, symmetric. IS ≡ (1/2) (II + IT). """ IS(T::Type=Float64) = 1//2 * (II(T) + IT(T)) """ IA(T::Type=Float64) Rank-4 unit tensor, screw-symmetric. IA ≡ (1/2) (II - IT). """ IA(T::Type=Float64) = 1//2 * (II(T) - IT(T)) """ IV(T::Type=Float64) Rank-4 unit tensor, volumetric. IS ≡ (1/3) I ⊗ I, where I is the rank-2 unit tensor. """ IV(T::Type=Float64) = Symm4{T}((i,j,k,l) -> 1//3 * delta(i,j)*delta(k,l)) """ ID(T::Type=Float64) Rank-4 unit tensor, deviatoric. ID ≡ IS - IV. """ ID(T::Type=Float64) = IS(T) - IV(T) # TODO: implement other symmetry groups, not just isotropic. # # Only 8 elastic symmetry groups exist, so we could implement all of them. # # The elasticity and compliance tensors are the inverses of each other, and the # `inv` function can invert rank-4 tensors numerically. So we can use that, # if one of these tensors is not easily available in analytical form for some # symmetry group. Could also investigate if SymPy can invert them symbolically # (possible at least in Voigt notation). """ isotropic_elasticity_tensor(lambda::T, mu::T) where T <: Real Compute the elasticity tensor C(i,j,k,l) (rank 4, symmetric) for an isotropic material having the Lamé parameters `lambda` and `mu`. If you have (E, nu) instead, use `lame` to get (lambda, mu). """ isotropic_elasticity_tensor(lambda::T, mu::T) where T <: Real = 3 * lambda * IV(T) + 2 * mu * IS(T) # TODO: check: original expr from upstream/master: # g(i,j,k,l) = -lambda/(2.0*mu*(3.0*lambda + 2.0*mu))*delta(i,j)*delta(k,l) + 1.0/(4.0*mu)*(delta(i,k)*delta(j,l)+delta(i,l)*delta(j,k)) """ isotropic_compliance_tensor(lambda::T, mu::T) where T <: Real Compute the compliance tensor S(i,j,k,l) (rank 4, symmetric) for an isotropic material having the Lamé parameters `lambda` and `mu`. If you have (E, nu) instead, use `lame` to get (lambda, mu). """ isotropic_compliance_tensor(lambda::T, mu::T) where T <: Real = -3 * lambda / (2*mu * (3*lambda + 2*mu)) * IV(T) + 1 / (2*mu) * IS(T) """ lame(E::Real, nu::Real) Convert elastic parameters (E, nu) of an isotropic material to Lamé parameters (lambda, mu). See: https://en.wikipedia.org/wiki/Template:Elastic_moduli """ function lame(E::Real, nu::Real) lambda = E * nu / ((1 + nu) * (1 - 2 * nu)) mu = E / (2 * (1 + nu)) return lambda, mu end """ delame(lambda::Real, mu::Real) Convert Lamé parameters (lambda, mu) of an isotropic material to elastic parameters (E, nu). See: https://en.wikipedia.org/wiki/Template:Elastic_moduli """ function delame(lambda::Real, mu::Real) E = mu * (3 * lambda + 2 * mu) / (lambda + mu) nu = lambda / (2 * (lambda + mu)) return E, nu end """ debang(f!::Function, ex=nothing) Convert a mutating function into non-mutating form. `f!` must be a two-argument mutating function, which writes the result into its first argument. The result of `debang` is then `f`, a single-argument non-mutating function that allocates and returns the result. Schematically, `f!(out, x)` becomes `f(x)`. When the type, size and shape of `out` is the same as those of `x`, it is enough to supply just `f!`. When `f` is called, output will be allocated as `similar(x)`. When the type, size and/or shape of `out` are different from those of `x`, then an example instance of the correct type with the correct size and shape for the output must be supplied, as debang's `ex` argument. When `f` is called, output will be allocated as `similar(ex)`. The `ex` instance will be automatically kept alive by the lexical closure of `f`. # Note While the type of `out` is known at compile time, the size and shape are typically runtime properties, not encoded into the type. For example, arrays have the number of dimensions as part of the type, but the length of each dimension is only defined at run time, when an instance is created. This is why the `ex` argument is needed. # Etymology By convention, mutating functions are marked with an exclamation mark, a.k.a. bang. This function takes away the bang. """ function debang(f!::Function, ex=nothing) if ex === nothing function f(x) out = similar(x) f!(out, x) return out end return f else # We use a different name to make incremental compilation happy. function f_with_ex(x) out = similar(ex) f!(out, x) return out end return f_with_ex end end # This comes from the old viscoplastic.jl, and is currently unused. # The original wording of the error message suggested this was planned to be used for "radial return". """A simple Newton solver for the vector x* such that f(x*) = 0. The input `x` is the initial guess. The default `dfdx=nothing` uses `ForwardDiff.jacobian` to compute the jacobian automatically. In this case the output of `f` must be an `AbstractArray`. `tol` is measured in the vector norm of the change in `x` between successive iterations. """ function find_root(f::Function, x::AbstractVector{<:Real}, dfdx::Union{Function, Nothing}=nothing; max_iter::Integer=50, tol::Real=1e-9) if dfdx === nothing dfdx = (x) -> ForwardDiff.jacobian(f, x) end for i=1:max_iter dx = -dfdx(x) \ f(x) x += dx if norm(dx) < tol return x end end error("No convergence!") end end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
1167
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE using Materials, Test @testset "Test Materials.jl" begin @testset "test utilities" begin include("test_utilities.jl") end @testset "test perfect plastic uniaxial stress" begin include("test_perfectplastic.jl") end @testset "test perfect plastic pure shear" begin include("test_perfectplastic_shear.jl") end @testset "test chaboche uniaxial stress" begin include("test_chaboche.jl") end @testset "test chaboche pure shear" begin include("test_chaboche_shear.jl") end @testset "test memory material model" begin include("test_memory.jl") end @testset "test DSA material model" begin include("test_DSA.jl") end @testset "test uniaxial increment" begin include("test_uniaxial_increment.jl") end @testset "test biaxial increment" begin include("test_biaxial_increment.jl") end @testset "test stress-driven uniaxial increment" begin include("test_stress_driven_uniaxial_increment.jl") end end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
20864
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE using Tensors, Materials, Test # TODO: Civilized way to place this wall of numbers at the end of the source file? # TODO: Or maybe read the expected results from a text file, like the other tests do? let stresses_expected = [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [10.0, 0.0, 0.0, 0.0, 0.0, 0.0], [20.0, 0.0, 0.0, 0.0, 0.0, 0.0], [30.0, 0.0, 0.0, 0.0, 0.0, 0.0], [40.0, 0.0, 0.0, 0.0, 0.0, 0.0], [50.0, 0.0, 0.0, 0.0, 0.0, 0.0], [60.0, 0.0, 0.0, 0.0, 0.0, 0.0], [70.0, 0.0, 0.0, 0.0, 0.0, 0.0], [80.0, 0.0, 0.0, 0.0, 0.0, 0.0], [90.0, 0.0, 0.0, 0.0, 0.0, 0.0], [100.0, 0.0, 0.0, 0.0, 0.0, 0.0], [110.0, 0.0, 0.0, 0.0, 0.0, 0.0], [119.995, 0.0, 0.0, 0.0, 0.0, 0.0], [129.743, 0.0, 0.0, 0.0, 0.0, 0.0], [137.812, 0.0, 0.0, 0.0, 0.0, 0.0], [143.250, 0.0, 0.0, 0.0, 0.0, 0.0], [146.767, 0.0, 0.0, 0.0, 0.0, 0.0], [149.313, 0.0, 0.0, 0.0, 0.0, 0.0], [151.463, 0.0, 0.0, 0.0, 0.0, 0.0], [153.465, 0.0, 0.0, 0.0, 0.0, 0.0], [155.402, 0.0, 0.0, 0.0, 0.0, 0.0], [157.301, 0.0, 0.0, 0.0, 0.0, 0.0], [159.164, 0.0, 0.0, 0.0, 0.0, 0.0], [160.991, 0.0, 0.0, 0.0, 0.0, 0.0], [162.780, 0.0, 0.0, 0.0, 0.0, 0.0], [164.529, 0.0, 0.0, 0.0, 0.0, 0.0], [166.236, 0.0, 0.0, 0.0, 0.0, 0.0], [167.902, 0.0, 0.0, 0.0, 0.0, 0.0], [169.527, 0.0, 0.0, 0.0, 0.0, 0.0], [171.110, 0.0, 0.0, 0.0, 0.0, 0.0], [172.653, 0.0, 0.0, 0.0, 0.0, 0.0], [174.155, 0.0, 0.0, 0.0, 0.0, 0.0], [175.618, 0.0, 0.0, 0.0, 0.0, 0.0], [177.042, 0.0, 0.0, 0.0, 0.0, 0.0], [178.429, 0.0, 0.0, 0.0, 0.0, 0.0], [179.779, 0.0, 0.0, 0.0, 0.0, 0.0], [181.094, 0.0, 0.0, 0.0, 0.0, 0.0], [182.373, 0.0, 0.0, 0.0, 0.0, 0.0], [183.619, 0.0, 0.0, 0.0, 0.0, 0.0], [184.833, 0.0, 0.0, 0.0, 0.0, 0.0], [186.014, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [10.0, 0.0, 0.0, 0.0, 0.0, 0.0], [20.0, 0.0, 0.0, 0.0, 0.0, 0.0], [30.0, 0.0, 0.0, 0.0, 0.0, 0.0], [40.0, 0.0, 0.0, 0.0, 0.0, 0.0], [50.0, 0.0, 0.0, 0.0, 0.0, 0.0], [60.0, 0.0, 0.0, 0.0, 0.0, 0.0], [70.0, 0.0, 0.0, 0.0, 0.0, 0.0], [80.0, 0.0, 0.0, 0.0, 0.0, 0.0], [90.0, 0.0, 0.0, 0.0, 0.0, 0.0], [100.0, 0.0, 0.0, 0.0, 0.0, 0.0], [110.0, 0.0, 0.0, 0.0, 0.0, 0.0], [120.0, 0.0, 0.0, 0.0, 0.0, 0.0], [130.0, 0.0, 0.0, 0.0, 0.0, 0.0], [140.0, 0.0, 0.0, 0.0, 0.0, 0.0], [150.0, 0.0, 0.0, 0.0, 0.0, 0.0], [159.999, 0.0, 0.0, 0.0, 0.0, 0.0], [169.920, 0.0, 0.0, 0.0, 0.0, 0.0], [179.177, 0.0, 0.0, 0.0, 0.0, 0.0], [187.533, 0.0, 0.0, 0.0, 0.0, 0.0], [195.357, 0.0, 0.0, 0.0, 0.0, 0.0], [202.848, 0.0, 0.0, 0.0, 0.0, 0.0], [209.935, 0.0, 0.0, 0.0, 0.0, 0.0], [216.120, 0.0, 0.0, 0.0, 0.0, 0.0], [219.606, 0.0, 0.0, 0.0, 0.0, 0.0], [216.262, 0.0, 0.0, 0.0, 0.0, 0.0], [209.090, 0.0, 0.0, 0.0, 0.0, 0.0], [203.945, 0.0, 0.0, 0.0, 0.0, 0.0], [201.241, 0.0, 0.0, 0.0, 0.0, 0.0], [200.038, 0.0, 0.0, 0.0, 0.0, 0.0], [199.668, 0.0, 0.0, 0.0, 0.0, 0.0], [199.760, 0.0, 0.0, 0.0, 0.0, 0.0], [200.115, 0.0, 0.0, 0.0, 0.0, 0.0], [200.622, 0.0, 0.0, 0.0, 0.0, 0.0], [201.219, 0.0, 0.0, 0.0, 0.0, 0.0], [201.867, 0.0, 0.0, 0.0, 0.0, 0.0], [202.542, 0.0, 0.0, 0.0, 0.0, 0.0], [203.231, 0.0, 0.0, 0.0, 0.0, 0.0], [203.922, 0.0, 0.0, 0.0, 0.0, 0.0], [204.611, 0.0, 0.0, 0.0, 0.0, 0.0], [205.293, 0.0, 0.0, 0.0, 0.0, 0.0], [205.967, 0.0, 0.0, 0.0, 0.0, 0.0], [206.630, 0.0, 0.0, 0.0, 0.0, 0.0], [207.282, 0.0, 0.0, 0.0, 0.0, 0.0], [207.922, 0.0, 0.0, 0.0, 0.0, 0.0], [208.551, 0.0, 0.0, 0.0, 0.0, 0.0], [209.168, 0.0, 0.0, 0.0, 0.0, 0.0], [209.774, 0.0, 0.0, 0.0, 0.0, 0.0], [210.368, 0.0, 0.0, 0.0, 0.0, 0.0], [210.952, 0.0, 0.0, 0.0, 0.0, 0.0], [211.525, 0.0, 0.0, 0.0, 0.0, 0.0], [212.087, 0.0, 0.0, 0.0, 0.0, 0.0], [212.640, 0.0, 0.0, 0.0, 0.0, 0.0], [213.183, 0.0, 0.0, 0.0, 0.0, 0.0], [213.717, 0.0, 0.0, 0.0, 0.0, 0.0], [214.242, 0.0, 0.0, 0.0, 0.0, 0.0], [214.758, 0.0, 0.0, 0.0, 0.0, 0.0], [215.266, 0.0, 0.0, 0.0, 0.0, 0.0], [215.766, 0.0, 0.0, 0.0, 0.0, 0.0], [216.259, 0.0, 0.0, 0.0, 0.0, 0.0], [216.743, 0.0, 0.0, 0.0, 0.0, 0.0], [217.221, 0.0, 0.0, 0.0, 0.0, 0.0], [217.691, 0.0, 0.0, 0.0, 0.0, 0.0], [218.155, 0.0, 0.0, 0.0, 0.0, 0.0], [218.612, 0.0, 0.0, 0.0, 0.0, 0.0], [219.063, 0.0, 0.0, 0.0, 0.0, 0.0], [219.507, 0.0, 0.0, 0.0, 0.0, 0.0], [219.946, 0.0, 0.0, 0.0, 0.0, 0.0], [220.379, 0.0, 0.0, 0.0, 0.0, 0.0], [220.807, 0.0, 0.0, 0.0, 0.0, 0.0], [221.229, 0.0, 0.0, 0.0, 0.0, 0.0], [221.646, 0.0, 0.0, 0.0, 0.0, 0.0], [222.059, 0.0, 0.0, 0.0, 0.0, 0.0], [222.466, 0.0, 0.0, 0.0, 0.0, 0.0], [222.868, 0.0, 0.0, 0.0, 0.0, 0.0], [223.266, 0.0, 0.0, 0.0, 0.0, 0.0], [223.660, 0.0, 0.0, 0.0, 0.0, 0.0], [224.049, 0.0, 0.0, 0.0, 0.0, 0.0], [224.435, 0.0, 0.0, 0.0, 0.0, 0.0], [224.816, 0.0, 0.0, 0.0, 0.0, 0.0]], strains_expected = [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.00005, -0.00002, -0.00002, 0.0, 0.0, 0.0], [0.00010, -0.00003, -0.00003, 0.0, 0.0, 0.0], [0.00015, -0.00004, -0.00004, 0.0, 0.0, 0.0], [0.00020, -0.00006, -0.00006, 0.0, 0.0, 0.0], [0.00025, -0.00008, -0.00008, 0.0, 0.0, 0.0], [0.00030, -0.00009, -0.00009, 0.0, 0.0, 0.0], [0.00035, -0.00010, -0.00010, 0.0, 0.0, 0.0], [0.00040, -0.00012, -0.00012, 0.0, 0.0, 0.0], [0.00045, -0.00014, -0.00014, 0.0, 0.0, 0.0], [0.00050, -0.00015, -0.00015, 0.0, 0.0, 0.0], [0.00055, -0.00017, -0.00017, 0.0, 0.0, 0.0], [0.00060, -0.00018, -0.00018, 0.0, 0.0, 0.0], [0.00065, -0.00020, -0.00020, 0.0, 0.0, 0.0], [0.00070, -0.00021, -0.00021, 0.0, 0.0, 0.0], [0.00075, -0.00023, -0.00023, 0.0, 0.0, 0.0], [0.00080, -0.00025, -0.00025, 0.0, 0.0, 0.0], [0.00085, -0.00028, -0.00028, 0.0, 0.0, 0.0], [0.00090, -0.00030, -0.00030, 0.0, 0.0, 0.0], [0.00095, -0.00032, -0.00032, 0.0, 0.0, 0.0], [0.00100, -0.00034, -0.00034, 0.0, 0.0, 0.0], [0.00105, -0.00037, -0.00037, 0.0, 0.0, 0.0], [0.00110, -0.00039, -0.00039, 0.0, 0.0, 0.0], [0.00115, -0.00041, -0.00041, 0.0, 0.0, 0.0], [0.00120, -0.00044, -0.00044, 0.0, 0.0, 0.0], [0.00125, -0.00046, -0.00046, 0.0, 0.0, 0.0], [0.00130, -0.00048, -0.00048, 0.0, 0.0, 0.0], [0.00135, -0.00051, -0.00051, 0.0, 0.0, 0.0], [0.00140, -0.00053, -0.00053, 0.0, 0.0, 0.0], [0.00145, -0.00055, -0.00055, 0.0, 0.0, 0.0], [0.00150, -0.00058, -0.00058, 0.0, 0.0, 0.0], [0.00155, -0.00060, -0.00060, 0.0, 0.0, 0.0], [0.00160, -0.00062, -0.00062, 0.0, 0.0, 0.0], [0.00165, -0.00065, -0.00065, 0.0, 0.0, 0.0], [0.00170, -0.00067, -0.00067, 0.0, 0.0, 0.0], [0.00175, -0.00070, -0.00070, 0.0, 0.0, 0.0], [0.00180, -0.00072, -0.00072, 0.0, 0.0, 0.0], [0.00185, -0.00074, -0.00074, 0.0, 0.0, 0.0], [0.00190, -0.00077, -0.00077, 0.0, 0.0, 0.0], [0.00195, -0.00079, -0.00079, 0.0, 0.0, 0.0], [0.00200, -0.00081, -0.00081, 0.0, 0.0, 0.0], [0.00107, -0.00053, -0.00053, 0.0, 0.0, 0.0], [0.00107, -0.00053, -0.00053, 0.0, 0.0, 0.0], [0.00112, -0.00055, -0.00055, 0.0, 0.0, 0.0], [0.00117, -0.00056, -0.00056, 0.0, 0.0, 0.0], [0.00122, -0.00058, -0.00058, 0.0, 0.0, 0.0], [0.00127, -0.00059, -0.00059, 0.0, 0.0, 0.0], [0.00132, -0.00061, -0.00061, 0.0, 0.0, 0.0], [0.00137, -0.00062, -0.00062, 0.0, 0.0, 0.0], [0.00142, -0.00064, -0.00064, 0.0, 0.0, 0.0], [0.00147, -0.00065, -0.00065, 0.0, 0.0, 0.0], [0.00152, -0.00067, -0.00067, 0.0, 0.0, 0.0], [0.00157, -0.00068, -0.00068, 0.0, 0.0, 0.0], [0.00162, -0.00070, -0.00070, 0.0, 0.0, 0.0], [0.00167, -0.00071, -0.00071, 0.0, 0.0, 0.0], [0.00172, -0.00073, -0.00073, 0.0, 0.0, 0.0], [0.00177, -0.00074, -0.00074, 0.0, 0.0, 0.0], [0.00182, -0.00076, -0.00076, 0.0, 0.0, 0.0], [0.00187, -0.00077, -0.00077, 0.0, 0.0, 0.0], [0.00192, -0.00079, -0.00079, 0.0, 0.0, 0.0], [0.00197, -0.00081, -0.00081, 0.0, 0.0, 0.0], [0.00202, -0.00082, -0.00082, 0.0, 0.0, 0.0], [0.00207, -0.00084, -0.00084, 0.0, 0.0, 0.0], [0.00212, -0.00086, -0.00086, 0.0, 0.0, 0.0], [0.00217, -0.00088, -0.00088, 0.0, 0.0, 0.0], [0.00222, -0.00089, -0.00089, 0.0, 0.0, 0.0], [0.00227, -0.00092, -0.00092, 0.0, 0.0, 0.0], [0.00232, -0.00094, -0.00094, 0.0, 0.0, 0.0], [0.00237, -0.00098, -0.00098, 0.0, 0.0, 0.0], [0.00242, -0.00101, -0.00101, 0.0, 0.0, 0.0], [0.00247, -0.00103, -0.00103, 0.0, 0.0, 0.0], [0.00252, -0.00106, -0.00106, 0.0, 0.0, 0.0], [0.00257, -0.00109, -0.00109, 0.0, 0.0, 0.0], [0.00262, -0.00111, -0.00111, 0.0, 0.0, 0.0], [0.00267, -0.00113, -0.00113, 0.0, 0.0, 0.0], [0.00272, -0.00116, -0.00116, 0.0, 0.0, 0.0], [0.00277, -0.00118, -0.00118, 0.0, 0.0, 0.0], [0.00282, -0.00121, -0.00121, 0.0, 0.0, 0.0], [0.00287, -0.00123, -0.00123, 0.0, 0.0, 0.0], [0.00292, -0.00126, -0.00126, 0.0, 0.0, 0.0], [0.00297, -0.00128, -0.00128, 0.0, 0.0, 0.0], [0.00302, -0.00131, -0.00131, 0.0, 0.0, 0.0], [0.00307, -0.00133, -0.00133, 0.0, 0.0, 0.0], [0.00312, -0.00135, -0.00135, 0.0, 0.0, 0.0], [0.00317, -0.00138, -0.00138, 0.0, 0.0, 0.0], [0.00322, -0.00140, -0.00140, 0.0, 0.0, 0.0], [0.00327, -0.00143, -0.00143, 0.0, 0.0, 0.0], [0.00332, -0.00145, -0.00145, 0.0, 0.0, 0.0], [0.00337, -0.00148, -0.00148, 0.0, 0.0, 0.0], [0.00342, -0.00150, -0.00150, 0.0, 0.0, 0.0], [0.00347, -0.00152, -0.00152, 0.0, 0.0, 0.0], [0.00352, -0.00155, -0.00155, 0.0, 0.0, 0.0], [0.00357, -0.00157, -0.00157, 0.0, 0.0, 0.0], [0.00362, -0.00160, -0.00160, 0.0, 0.0, 0.0], [0.00367, -0.00162, -0.00162, 0.0, 0.0, 0.0], [0.00372, -0.00165, -0.00165, 0.0, 0.0, 0.0], [0.00377, -0.00167, -0.00167, 0.0, 0.0, 0.0], [0.00382, -0.00170, -0.00170, 0.0, 0.0, 0.0], [0.00387, -0.00172, -0.00172, 0.0, 0.0, 0.0], [0.00392, -0.00174, -0.00174, 0.0, 0.0, 0.0], [0.00397, -0.00177, -0.00177, 0.0, 0.0, 0.0], [0.00402, -0.00179, -0.00179, 0.0, 0.0, 0.0], [0.00407, -0.00182, -0.00182, 0.0, 0.0, 0.0], [0.00412, -0.00184, -0.00184, 0.0, 0.0, 0.0], [0.00417, -0.00187, -0.00187, 0.0, 0.0, 0.0], [0.00422, -0.00189, -0.00189, 0.0, 0.0, 0.0], [0.00427, -0.00192, -0.00192, 0.0, 0.0, 0.0], [0.00432, -0.00194, -0.00194, 0.0, 0.0, 0.0], [0.00437, -0.00197, -0.00197, 0.0, 0.0, 0.0], [0.00442, -0.00199, -0.00199, 0.0, 0.0, 0.0], [0.00447, -0.00201, -0.00201, 0.0, 0.0, 0.0], [0.00452, -0.00204, -0.00204, 0.0, 0.0, 0.0], [0.00457, -0.00206, -0.00206, 0.0, 0.0, 0.0], [0.00462, -0.00209, -0.00209, 0.0, 0.0, 0.0], [0.00467, -0.00211, -0.00211, 0.0, 0.0, 0.0], [0.00472, -0.00214, -0.00214, 0.0, 0.0, 0.0], [0.00477, -0.00216, -0.00216, 0.0, 0.0, 0.0], [0.00482, -0.00219, -0.00219, 0.0, 0.0, 0.0], [0.00487, -0.00221, -0.00221, 0.0, 0.0, 0.0], [0.00492, -0.00224, -0.00224, 0.0, 0.0, 0.0], [0.00497, -0.00226, -0.00226, 0.0, 0.0, 0.0], [0.00502, -0.00229, -0.00229, 0.0, 0.0, 0.0]], parameters = DSAParameterState(E = 200.0e3, nu = 0.3, R0 = 100.0, Kn = 100.0, nn = 10.0, C1 = 10000.0, D1 = 100.0, C2 = 50000.0, D2 = 1000.0, Q = 50.0, b = 0.1, w = 1e-5, P1 = 200.0, P2 = 1e-1, m = 0.66, m1 = 6.0, m2 = 6.0, M1 = 6000.0, M2 = 6000.0, ba = 1e4, xi = 1.0), material = DSA(parameters=parameters), dtime = 0.25, n_steps = 100, n_interrupt = 40, # for interrupt-and-hold test dstrain11 = 2e-4 * dtime, # Corresponds to 10 MPa elastic stress response tostrain(tens::Symm2) = copy(tovoigt(tens; offdiagscale=2.0)), tostress(tens::Symm2) = copy(tovoigt(tens)), times = [material.drivers.time], stresses = [tostress(material.variables.stress)], strains = [tostrain(material.drivers.strain)], Ras = [copy(material.variables.Ra)], tas = [copy(material.variables.ta)], cumeqs = [copy(material.variables.cumeq)] function snapshot!() push!(times, material.drivers.time) push!(stresses, tostress(material.variables.stress)) push!(strains, tostrain(material.drivers.strain)) push!(Ras, material.variables.Ra) push!(tas, material.variables.ta) push!(cumeqs, copy(material.variables.cumeq)) end # TODO: This doesn't actually test anything. # # Uninterrupted test # material2 = DSA(parameters = parameters) # times2 = [material2.drivers.time] # stresses2 = [tostress(material2.variables.stress)] # strains2 = [tostrain(material2.drivers.strain)] # for i in 1:n_steps # uniaxial_increment!(material2, dstrain11, dtime) # update_material!(material2) # push!(times2, material2.drivers.time) # push!(stresses2, copy(tovoigt(material2.variables.stress))) # push!(strains2, copy(tovoigt(material2.drivers.strain; offdiagscale = 2.0))) # end # Interrupted test for i in 1:n_interrupt uniaxial_increment!(material, dstrain11, dtime) update_material!(material) snapshot!() end # Interrupt and hold # Drive to zero stress strain_at_stop = material.drivers.strain[1,1] let dstress11 = -material.variables.stress[1,1] stress_driven_uniaxial_increment!(material, dstress11, dtime) end update_material!(material) snapshot!() # Hold for 3600 seconds stress_driven_uniaxial_increment!(material, 0.0, 3600) update_material!(material) snapshot!() # Continue test dstrain_extra = strain_at_stop - material.drivers.strain[1,1] n_extra_steps = Int(ceil(dstrain_extra / dstrain11)) for i in (n_interrupt + 1):(n_steps + n_extra_steps) uniaxial_increment!(material, dstrain11, dtime) update_material!(material) snapshot!() end for i in 1:length(times) @test isapprox(stresses[i], stresses_expected[i]; atol = 1e-3) @test isapprox(strains[i], strains_expected[i]; atol = 1e-5) end dcumeq = cumeqs[end] - cumeqs[end - 1] @test dcumeq > 0 end # Plotting # using PyPlot # x11 = [a[1] for a in strains] # y11 = [a[1] for a in stresses] # x112 = [a[1] for a in strains2] # y112 = [a[1] for a in stresses2] # RasNorm = [Ra / parameters.P1 for Ra in Ras] # tasNorm = [ta / maximum(tas) for ta in tas] # fig = figure("test_DSA.jl", figsize = (5, 12)) # Create a new blank figure # subplot(211) # plot(x11,y11, label = "interrupted") # plot(x112,y112,linestyle = "--", label = "uninterrupted") # title("test_DSA.jl") # xlabel("Strain, \$\\varepsilon_{11}\$") # ylabel("Stress, \$\\sigma_{11}\$") # legend() # subplot(212) # plot(times, RasNorm, label = "\$R_a\$") # plot(times, tasNorm, linestyle = "--", label = "\$t_a\$") # xlim([3600.0, maximum(times)]) # title("Normalized Evolution of \$R_a\$ & \$t_a\$") # xlabel("Time") # ylabel("Ra, ta") # legend() # fig.canvas.draw() # Update the figure # show() # gcf()
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
1555
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE using Test, Tensors let dtime = 0.25, parameters = ChabocheParameterState(E=200.0e3, nu=0.3, R0=100.0, Kn=100.0, nn=10.0, C1=10000.0, D1=100.0, C2=50000.0, D2=1000.0, Q=50.0, b=0.1), mat = Chaboche(parameters = parameters), dstrain11 = 1e-3*dtime, dstrain12 = 1e-3*dtime, dtimes = dtime*[1.0, 1.0, 1.0, 1.0, 4.0], dstrains11 = dstrain11*[1.0, 1.0, 1.0, -1.0, -4.0], dstrains12 = dstrain12*[1.0, 1.0, 1.0, -1.0, -4.0] plastic_flow_occurred = zeros(Bool, length(dtimes) - 1) for i in 1:length(dtimes) dstrain11 = dstrains11[i] dstrain12 = dstrains12[i] dtime = dtimes[i] biaxial_increment!(mat, dstrain11, dstrain12, dtime) update_material!(mat) if i > 1 plastic_flow_occurred[i-1] = (mat.variables.cumeq > 0.0) end @test !iszero(mat.variables.stress[1,1]) && !iszero(mat.variables.stress[1,2]) @test isapprox(tovoigt(mat.variables.stress)[2:5], zeros(4); atol=1e-8) end @test any(plastic_flow_occurred) end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
1670
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE using Test, Tensors using DelimitedFiles let path = joinpath("test_chaboche", "unitelement_results.rpt"), data = readdlm(path, Float64; skipstart=4), ts = data[:,1], s11_ = data[:,2], s12_ = data[:,3], s13_ = data[:,4], s22_ = data[:,5], s23_ = data[:,6], s33_ = data[:,7], e11_ = data[:,8], e12_ = data[:,9], e13_ = data[:,10], e22_ = data[:,11], e23_ = data[:,12], e33_ = data[:,13], strains = [[e11_[i], e22_[i], e33_[i], e23_[i], e13_[i], e12_[i]] for i in 1:length(ts)], parameters = ChabocheParameterState(E=200.0e3, nu=0.3, R0=100.0, Kn=100.0, nn=10.0, C1=10000.0, D1=100.0, C2=50000.0, D2=1000.0, Q=50.0, b=0.1), mat = Chaboche(parameters=parameters) s33s = [mat.variables.stress[3,3]] for i=2:length(ts) dtime = ts[i] - ts[i-1] dstrain = fromvoigt(Symm2{Float64}, strains[i] - strains[i-1]; offdiagscale=2.0) mat.ddrivers = ChabocheDriverState(time = dtime, strain = dstrain) integrate_material!(mat) update_material!(mat) push!(s33s, mat.variables.stress[3,3]) end @test isapprox(s33s, s33_; rtol=0.05) end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
2882
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE using Test, Tensors let E = 200.0e3, nu = 0.3, yield_strength = 100.0, parameters = ChabocheParameterState(E=E, nu=nu, R0=yield_strength, # yield in shear = R0 / sqrt(3) Kn=100.0, nn=3.0, C1=0.0, D1=100.0, C2=0.0, D2=1000.0, Q=0.0, b=0.1), mat = Chaboche(parameters=parameters), times = [0.0], loads = [0.0], dt = 1.0, G = 0.5*E/(1+nu), # vonMises = sqrt(3 J_2) = sqrt(3/2 tr(s^2)) = sqrt(3) |tau| = sqrt(3)*G*|gamma| # gamma = 2 e12 # set vonMises = Y gamma_yield = yield_strength/(sqrt(3)*G) # Go to elastic border push!(times, times[end] + dt) push!(loads, loads[end] + gamma_yield*dt) # Proceed to plastic flow push!(times, times[end] + dt) push!(loads, loads[end] + gamma_yield*dt) # Reverse direction push!(times, times[end] + dt) push!(loads, loads[end] - gamma_yield*dt) # Continue and pass yield criterion push!(times, times[end] + dt) push!(loads, loads[end] - gamma_yield*dt) push!(times, times[end] + dt) push!(loads, loads[end] - gamma_yield*dt) eeqs = [mat.variables.cumeq] stresses = [copy(tovoigt(mat.variables.stress))] for i=2:length(times) dtime = times[i] - times[i-1] dstrain12 = loads[i] - loads[i-1] dstrain_voigt = [0.0, 0.0, 0.0, 0.0, 0.0, dstrain12] dstrain_tensor = fromvoigt(Symm2{Float64}, dstrain_voigt; offdiagscale=2.0) mat.ddrivers = ChabocheDriverState(time=dtime, strain=dstrain_tensor) integrate_material!(mat) # @info "$i, $gamma_yield, $(mat.variables_new.stress[1,2]), $(2.0*mat.variables_new.plastic_strain[1,2])\n" update_material!(mat) push!(stresses, copy(tovoigt(mat.variables.stress))) push!(eeqs, mat.variables.cumeq) # @info "time = $(mat.time), stress = $(mat.stress), cumeq = $(mat.properties.cumulative_equivalent_plastic_strain))" end for i in 1:length(times) @test isapprox(stresses[i][1:5], zeros(5); atol=1e-6) end s31 = [s[6] for s in stresses] @test isapprox(s31[2], yield_strength/sqrt(3.0)) @test isapprox(s31[3]*sqrt(3.0), yield_strength + 100.0*((eeqs[3] - eeqs[2])/dt)^(1.0/3.0); rtol=1e-2) @test isapprox(s31[4], s31[3] - G*gamma_yield*dt) @test isapprox(s31[6]*sqrt(3.0), -(yield_strength + 100.0*((eeqs[6] - eeqs[5])/dt)^(1.0/3.0)); rtol=1e-2) end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
3272
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE using Test, Tensors let parameters = MemoryParameterState(E = 200.0e3, nu = 0.3, R0 = 100.0, Kn = 20.0, nn = 3.0, C1 = 10000.0, D1 = 100.0, C2 = 50000.0, D2 = 1000.0, Q0 = 100.0, QM = 500.0, mu = 100.0, b = 30.0, eta = 0.5, m = 0.5, pt = 0.0, xi = 0.3), mat = Memory(parameters=parameters), tostrain(tens::Symm2) = copy(tovoigt(tens; offdiagscale=2.0)), tostress(tens::Symm2) = copy(tovoigt(tens)), n_cycles = 30, points_per_cycle = 40, t = range(0.0; stop=Float64(n_cycles), length=n_cycles * points_per_cycle + 1), dtime = t[end] / (length(t) - 1), # We initialize these manually to automatically get the correct type. times = [copy(mat.drivers.time)], stresses = [tostress(mat.variables.stress)], strains = [tostrain(mat.drivers.strain)], plastic_strains = [tostrain(mat.variables.plastic_strain)], cumeqs = [copy(mat.variables.cumeq)], qs = [copy(mat.variables.q)], Rs = [copy(mat.variables.R)], zetas = [tostrain(mat.variables.zeta)] function snapshot!() push!(times, mat.drivers.time) push!(stresses, tostress(mat.variables.stress)) push!(strains, tostrain(mat.drivers.strain)) push!(plastic_strains, tostrain(mat.variables.plastic_strain)) push!(cumeqs, copy(mat.variables.cumeq)) push!(qs, copy(mat.variables.q)) push!(Rs, copy(mat.variables.R)) push!(zetas, tostrain(mat.variables.zeta)) end # Amplitude 1 ea = 0.003 strains11 = ea * sin.(2*pi*t) for dstrain11 in diff(strains11) uniaxial_increment!(mat, dstrain11, dtime) update_material!(mat) snapshot!() end R1 = copy(Rs[end]) # Amplitude 2 ea = 0.005 strains11 = ea * sin.(2*pi*t) for dstrain11 in diff(strains11) uniaxial_increment!(mat, dstrain11, dtime) update_material!(mat) snapshot!() end R2 = copy(Rs[end]) # Amplitude 3 ea = 0.007 strains11 = ea * sin.(2*pi*t) for dstrain11 in diff(strains11) uniaxial_increment!(mat, dstrain11, dtime) update_material!(mat) snapshot!() end R3 = copy(Rs[end]) # Amplitude 4 - evanescence ea = 0.003 strains11 = ea * sin.(2*pi*t) for _ in 1:3 for dstrain11 in diff(strains11) uniaxial_increment!(mat, dstrain11, dtime) update_material!(mat) snapshot!() end end R4 = copy(Rs[end]) @test R2 > R1 @test R3 > R2 @test R4 < R3 @test isapprox(R1, R4; atol=1.0) end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
2977
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE using Test, Tensors let nu = 0.3, yield_strength=100.0, parameters = PerfectPlasticParameterState(youngs_modulus=200.0e3, poissons_ratio=nu, yield_stress=yield_strength), epsilon=1e-3, mat, # scope the name to this level; actual definition follows later tostrain(vec) = fromvoigt(Symm2, vec; offdiagscale=2.0), tostress(vec) = fromvoigt(Symm2, vec), uniaxial_stress(sigma) = tostress([sigma, 0, 0, 0, 0, 0]) let dtime=0.25 # elastic straining dstrain_dtime = tostrain(epsilon*[1.0, -nu, -nu, 0.0, 0.0, 0.0]) ddrivers = PerfectPlasticDriverState(time=dtime, strain=dstrain_dtime*dtime) mat = PerfectPlastic(parameters=parameters, ddrivers=ddrivers) integrate_material!(mat) update_material!(mat) @test isapprox(mat.variables.stress, uniaxial_stress(yield_strength / 2)) mat.ddrivers = ddrivers integrate_material!(mat) update_material!(mat) # We should now be at the yield surface. @test isapprox(mat.variables.stress, uniaxial_stress(yield_strength)) @test isapprox(mat.variables.cumeq, 0.0; atol=1.0e-12) # plastic straining # von Mises material, plastically incompressible, so plastic nu=0.5. dstrain_dtime = tostrain(epsilon*[1.0, -0.5, -0.5, 0.0, 0.0, 0.0]) ddrivers = PerfectPlasticDriverState(time=dtime, strain=dstrain_dtime*dtime) mat.ddrivers = ddrivers integrate_material!(mat) update_material!(mat) @test isapprox(mat.variables.stress, uniaxial_stress(yield_strength); atol=1.0e-12) @test isapprox(mat.variables.cumeq, dtime*epsilon) # return to elastic state dstrain_dtime = tostrain(-epsilon*[1.0, -nu, -nu, 0.0, 0.0, 0.0]) ddrivers = PerfectPlasticDriverState(time=dtime, strain=dstrain_dtime*dtime) mat.ddrivers = ddrivers integrate_material!(mat) update_material!(mat) @test isapprox(mat.variables.stress, uniaxial_stress(yield_strength / 2); atol=1.0e-12) end let dtime=1.0 # loading in reverse direction to plastic state # The 0.75 term: one 0.25 cancels the current elastic stress state, # and the remaining 0.5 reaches the yield surface. # The 0.25 term: plastic strain. dstrain_dtime = (-0.75*tostrain(epsilon*[1.0, -nu, -nu, 0.0, 0.0, 0.0]) -0.25*tostrain(epsilon*[1.0, -0.5, -0.5, 0.0, 0.0, 0.0])) ddrivers = PerfectPlasticDriverState(time=1.0, strain=dstrain_dtime*dtime) mat.ddrivers = ddrivers integrate_material!(mat) integrate_material!(mat) update_material!(mat) @test isapprox(mat.variables.stress, uniaxial_stress(-yield_strength)) end end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
1987
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE using Test, Tensors let E = 200.0e3, nu = 0.3, yield_strength = 100.0, parameters = PerfectPlasticParameterState(youngs_modulus=E, poissons_ratio=nu, yield_stress=yield_strength), # yield in shear = R0 / sqrt(3) mat = PerfectPlastic(parameters=parameters), times = [0.0], loads = [0.0], dt = 1.0, G = 0.5*E/(1+nu), # vonMises = sqrt(3 J_2) = sqrt(3/2 tr(s^2)) = sqrt(3) |tau| = sqrt(3)*G*|gamma| # gamma = 2 e12 # set vonMises = Y gamma_yield = yield_strength/(sqrt(3)*G) # Go to elastic border push!(times, times[end] + dt) push!(loads, loads[end] + gamma_yield*dt) # Proceed to plastic flow push!(times, times[end] + dt) push!(loads, loads[end] + gamma_yield*dt) # Reverse direction push!(times, times[end] + dt) push!(loads, loads[end] - gamma_yield*dt) # Continue and pass yield criterion push!(times, times[end] + dt) push!(loads, loads[end] - 2*gamma_yield*dt) stresses = [copy(tovoigt(mat.variables.stress))] for i=2:length(times) dtime = times[i] - times[i-1] dstrain31 = loads[i] - loads[i-1] dstrain_voigt = [0.0, 0.0, 0.0, 0.0, 0.0, dstrain31] dstrain_tensor = fromvoigt(Symm2{Float64}, dstrain_voigt; offdiagscale=2.0) mat.ddrivers = PerfectPlasticDriverState(time=dtime, strain=dstrain_tensor) integrate_material!(mat) update_material!(mat) push!(stresses, copy(tovoigt(mat.variables.stress))) end for i in 1:length(times) @test isapprox(stresses[i][1:5], zeros(5); atol=1e-6) end let y = yield_strength/sqrt(3.0) s31 = [s[6] for s in stresses] s31_expected = [0.0, y, y, 0.0, -y] @test isapprox(s31, s31_expected; rtol=1.0e-2) end end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
2563
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE using Test, Tensors let dtime = 0.25, R0 = 100.0, parameters = ChabocheParameterState(E=200.0e3, nu=0.3, R0=R0, Kn=100.0, nn=10.0, C1=10000.0, D1=100.0, C2=50000.0, D2=1000.0, Q=0.0, b=0.1), material = Chaboche(parameters=parameters), times = [material.drivers.time], stresses = [copy(tovoigt(material.variables.stress))], strains = [copy(tovoigt(material.drivers.strain; offdiagscale=2.0))], cumeqs = [copy(material.variables.cumeq)], tostrain(vec) = fromvoigt(Symm2, vec; offdiagscale=2.0), tostress(vec) = fromvoigt(Symm2, vec), uniaxial_stress(sigma) = tostress([sigma, 0, 0, 0, 0, 0]), stresses_expected = [uniaxial_stress(R0 / 2), uniaxial_stress(R0), uniaxial_stress(1.5 * R0), uniaxial_stress(1.5 * R0), uniaxial_stress(R0), uniaxial_stress(-R0)], dstress = R0 / 2, dstresses11 = dstress*[1.0, 1.0, 1.0, 0.0, -1.0, -4.0] dtimes = [dtime, dtime, dtime, 1e3, dtime, 1e3] for i in 1:length(dtimes) dstress11 = dstresses11[i] dtime = dtimes[i] stress_driven_uniaxial_increment!(material, dstress11, dtime) update_material!(material) push!(times, material.drivers.time) push!(stresses, copy(tovoigt(material.variables.stress))) push!(strains, copy(tovoigt(material.drivers.strain; offdiagscale=2.0))) push!(cumeqs, copy(material.variables.cumeq)) @test isapprox(material.variables.stress, stresses_expected[i]; atol=1e-4) end # Plastic creep should have occurred at the portion of the test # where the stress was held at 1.5*R0. dstrain_creep = strains[5] - strains[4] # von Mises material, so the plastic nu = 0.5. @test isapprox(dstrain_creep[2], -dstrain_creep[1]*0.5; atol=1e-4) # ε22 = -0.5 ε11 @test isapprox(dstrain_creep[3], -dstrain_creep[1]*0.5; atol=1e-4) # ε33 = -0.5 ε11 dcumeq = cumeqs[end] - cumeqs[end-1] @test dcumeq > 0 end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
1690
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE using Test, Tensors let dtime = 0.25, nu = 0.3, R = 100.0, parameters = PerfectPlasticParameterState(youngs_modulus=200.0e3, poissons_ratio=nu, yield_stress=R), mat = PerfectPlastic(parameters=parameters), tostrain(vec) = fromvoigt(Symm2, vec; offdiagscale=2.0), tostress(vec) = fromvoigt(Symm2, vec), uniaxial_stress(sigma) = tostress([sigma, 0, 0, 0, 0, 0]), stresses_expected = [uniaxial_stress(R / 2), uniaxial_stress(R), uniaxial_stress(R), uniaxial_stress(R / 2), uniaxial_stress(-R)], dstrain11 = 1e-3*dtime, strains_expected = [tostrain(dstrain11*[1.0, -nu, -nu, 0.0, 0.0, 0.0]), tostrain(dstrain11*[2, -2*nu, -2*nu, 0.0, 0.0, 0.0]), tostrain(dstrain11*[3, -2*nu - 0.5, -2*nu - 0.5, 0.0, 0.0, 0.0]), tostrain(dstrain11*[2, -nu - 0.5, -nu - 0.5, 0.0, 0.0, 0.0]), tostrain(dstrain11*[-2, 2*nu, 2*nu, 0.0, 0.0, 0.0])], dtimes = [dtime, dtime, dtime, dtime, 1.0], dstrains11 = dstrain11*[1.0, 1.0, 1.0, -1.0, -4.0] for i in 1:length(dtimes) dstrain11 = dstrains11[i] dtime = dtimes[i] uniaxial_increment!(mat, dstrain11, dtime) update_material!(mat) @test isapprox(mat.variables.stress, stresses_expected[i]) @test isapprox(mat.drivers.strain, strains_expected[i]) end end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
code
2387
# This file is a part of JuliaFEM. # License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE using Test, Tensors, LinearAlgebra # Kronecker delta @test delta(1, 1) == 1 @test delta(1, 2) == 0 @test_throws MethodError delta(1.0, 2.0) # indices must be integers @test_throws MethodError delta(1, BigInt(2)) # both must have the same type @test delta(1, 2) isa Int # the output type matches the input @test delta(BigInt(1), BigInt(2)) isa BigInt # Various tensors let Z3 = zeros(3, 3), O3 = ones(3, 3) @test isapprox(tovoigt(II()), I) @test isapprox(tovoigt(IT()), [I Z3; Z3 Z3]) @test isapprox(tovoigt(IS()), [I Z3; Z3 1//2*I]) @test isapprox(tovoigt(IA()), [Z3 Z3; Z3 1//2*I]) @test isapprox(tovoigt(IV()), [1//3*O3 Z3; Z3 Z3]) @test isapprox(tovoigt(ID()), [(I - 1//3*O3) Z3; Z3 1//2*I]) @test let lambda = 10.0, mu = 1.0 isapprox(tovoigt(isotropic_elasticity_tensor(lambda, mu)), [(lambda*O3 + 2*mu*I) Z3; Z3 mu*I]) end end # Lamé parameters for isotropic solids @test all(isapprox(result, expected) for (result, expected) in zip(lame(1e11, 0.3), (5.769230769230769e10, 3.846153846153846e10))) @test all(isapprox(result, expected) for (result, expected) in zip(delame(lame(1e11, 0.3)...), (1e11, 0.3))) # Mutating function to non-mutating function conversion let # introduce a local scope so the name `f!` is only defined locally for this test. function f!(out, x) out[:] = [sin(elt) for elt in x] return nothing end let out = [0.0] @test all([f!(out, [pi/4]) == nothing, isapprox(out, [1/sqrt(2)])]) end let out = [0.0] f = debang(f!) @test f isa Function @test all([isapprox(f([pi/4]), [1/sqrt(2)]), out == [0.0]]) end end # Newton root finder let g(x) = [(1 - x[1]^2) + x[2]], x0 = [0.8, 0.2] @test !isapprox(g(x0), [0.0], atol=1e-15) # find_root should have to actually do something @test isapprox(g(find_root(g, x0)), [0.0], atol=1e-15) end
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
docs
1622
# Materials.jl A computational material models package for JuliaFEM, concentrating on plasticity and viscoplasticity. The public API is defined in [src/Materials.jl](src/Materials.jl). For details, see the docstrings. For usage examples, see the [automated tests](test/). [![][gitter-img]][gitter-url] [![][travis-img]][travis-url] [![][coveralls-img]][coveralls-url] [![][docs-stable-img]][docs-stable-url] [![][docs-latest-img]][docs-latest-url] [![][issues-img]][issues-url] [![][appveyor-img]][appveyor-url] ![](docs/src/figs/plastic_joing.png) ![](examples/one_elem_disp_chaboche/comparison_with_commercial.png) [gitter-img]: https://badges.gitter.im/Join%20Chat.svg [gitter-url]: https://gitter.im/JuliaFEM/JuliaFEM.jl [travis-img]: https://travis-ci.org/JuliaFEM/Materials.jl.svg?branch=master [travis-url]: https://travis-ci.org/JuliaFEM/Materials.jl [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: https://juliafem.github.io/Materials.jl/stable [docs-latest-img]: (https://img.shields.io/badge/docs-latest-blue.svg [docs-latest-url]: https://juliafem.github.io/InterfaceMechanics.jl/latest [coveralls-img]: https://coveralls.io/repos/github/JuliaFEM/Materials.jl/badge.svg?branch=master [coveralls-url]: https://coveralls.io/github/JuliaFEM/Materials.jl?branch=master [issues-img]: https://img.shields.io/github/issues/JuliaFEM/Materials.jl.svg [issues-url]: https://github.com/JuliaFEM/Materials.jl/issues [appveyor-img]: https://ci.appveyor.com/api/projects/status/akjpmgbfjv97t4ts?svg=true [appveyor-url]: https://ci.appveyor.com/project/JuliaFEM/materials-jl
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.4.0
d7a67c1c8ae6118f253a137ffa5291421e757a8a
docs
195
# Materials.jl documentation ```@contents ``` ```@meta DocTestSetup = quote using Materials end ``` ## Types ```@autodocs Modules = [Materials] ``` ## Functions ## Index ```@index ```
Materials
https://github.com/JuliaFEM/Materials.jl.git
[ "MIT" ]
0.1.0
e25bfc35fe2f2be3a9aae6979daf51d8bc843add
code
311
using Documenter, ElectricWires makedocs( modules = [ElectricWires], sitename = "ElectricWires.jl", pages = Any[ "ElectricWires.jl"=>"index.md", "API references"=>Any["api/materials.md", "api/cross_sections.md"], ], ) deploydocs(repo = "github.com/ryd-yb/ElectricWires.jl.git")
ElectricWires
https://github.com/rydyb/ElectricWires.jl.git
[ "MIT" ]
0.1.0
e25bfc35fe2f2be3a9aae6979daf51d8bc843add
code
118
module ElectricWires using DynamicQuantities include("profiles.jl") include("materials.jl") include("wire.jl") end
ElectricWires
https://github.com/rydyb/ElectricWires.jl.git
[ "MIT" ]
0.1.0
e25bfc35fe2f2be3a9aae6979daf51d8bc843add
code
1459
""" Material{T} A material with a name, resistivity, density, and heat capacity. # Fields - `resistivity::AbstractQuantity`: The resistivity of the material. - `density::AbstractQuantity`: The density of the material. - `heat_capacity::AbstractQuantity`: The heat capacity of the material. """ struct Material{T<:AbstractQuantity} resistivity::T density::T heat_capacity::T function Material(; resistivity::T, density::T, heat_capacity::T) where {T} @assert dimension(resistivity) == dimension(u"Ω*m") "resistivity must have units of resistance times length" @assert dimension(density) == dimension(u"g/cm^3") "density must have units of mass per volume" @assert dimension(heat_capacity) == dimension(u"J/(g*K)") "heat capacity must have units of energy per mass per temperature" @assert ustrip(heat_capacity) > 0 "heat_capacity must be positive" @assert ustrip(resistivity) > 0 "resistivity must be positive" @assert ustrip(density) > 0 "density must be positive" new{T}(resistivity, density, heat_capacity) end end export Material export Cu """ Cu Cu as instance of `Material` with properties from [Wikipedia][1]. [1]: https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity#Resistivity_and_conductivity_of_various_materials """ const Cu = Material(; resistivity = 1.68e-8u"Ω*m", density = 8.96u"g/cm^3", heat_capacity = 0.385u"J/(g*K)", )
ElectricWires
https://github.com/rydyb/ElectricWires.jl.git
[ "MIT" ]
0.1.0
e25bfc35fe2f2be3a9aae6979daf51d8bc843add
code
2174
export Profile, CircularProfile, RectangularProfile, DifferenceProfile, RectangularHollowProfile export area """ Profile Abstract type for wire cross-sections. """ abstract type Profile end """ CircularProfile{T} A circular wire cross-section. # Fields - `diameter::T`: The diameter of the wire. """ struct CircularProfile{T<:AbstractQuantity} <: Profile diameter::T function CircularProfile(; diameter::T) where {T} @assert dimension(diameter) == dimension(u"m") "diameter must have units of length" @assert ustrip(diameter) > 0 "diameter must be positive" new{T}(diameter) end end """ RectangularProfile{T} A rectangular wire cross-section. # Fields - `width::T`: The width of the wire. - `height::T`: The height of the wire. """ struct RectangularProfile{T<:AbstractQuantity} <: Profile width::T height::T function RectangularProfile(; width::T, height::T) where {T} @assert dimension(width) == dimension(u"m") "width must have units of length" @assert dimension(height) == dimension(u"m") "height must have units of length" @assert ustrip(width) > 0 "width must be positive" @assert ustrip(height) > 0 "height must be positive" new{T}(width, height) end end """ DifferenceProfile{S1,S2} A difference of two wire cross-sections. # Fields - `a::S1`: The first wire cross-section which is subtracted from. - `b::S2`: The second wire cross-section which is subtracted. """ struct DifferenceProfile{S1<:Profile,S2<:Profile} <: Profile a::S1 b::S2 end RectangularHollowProfile(; width::AbstractQuantity, height::AbstractQuantity, hole_diameter::AbstractQuantity, ) = DifferenceProfile(RectangularProfile(width = width, height = height), CircularProfile(diameter = hole_diameter)) """ area(s::CrossSection) Returns the area of the given wire cross-section. # Arguments - `s::Profile`: The wire cross-section. # Returns - `Unitful.Area`: The area of the wire cross-section. """ area(s::CircularProfile) = π * (s.diameter / 2)^2 area(s::RectangularProfile) = s.width * s.height area(s::DifferenceProfile) = area(s.a) - area(s.b)
ElectricWires
https://github.com/rydyb/ElectricWires.jl.git
[ "MIT" ]
0.1.0
e25bfc35fe2f2be3a9aae6979daf51d8bc843add
code
919
export Wire export weight, resistance, heat_capacity """ Wire{T} A wire with a cross-section, material, and length. # Fields # - `profile::Profile`: The wire's cross-section. # - `material::Material{T}`: The material of the wire. # - `length::T`: The length of the wire. """ struct Wire{T<:AbstractQuantity} profile::Profile material::Material{T} length::T function Wire(; profile::Profile, material::Material{T}, length::T) where {T} @assert dimension(length) == dimension(u"m") "length must have units of length" @assert ustrip(length) > 0 "length must be positive" new{T}(profile, material, length) end end weight(w::Wire) = uconvert(us"g", w.length * area(w.profile) * w.material.density) resistance(w::Wire) = uconvert(us"mΩ", w.length * w.material.resistivity / area(w.profile)) heat_capacity(w::Wire) = uconvert(us"J/K", w.material.heat_capacity * weight(w))
ElectricWires
https://github.com/rydyb/ElectricWires.jl.git
[ "MIT" ]
0.1.0
e25bfc35fe2f2be3a9aae6979daf51d8bc843add
code
569
@testset "Material" begin m = Material(density = 8.96u"g/cm^3", resistivity=1u"Ω*m", heat_capacity=1u"J/(g*K)") @test m.density == 8.96u"g/cm^3" @test m.resistivity == 1u"Ω*m" @test m.heat_capacity == 1u"J/(g*K)" @test_throws AssertionError Material(density = 8.96u"m/s", resistivity=1u"Ω*m", heat_capacity=1u"J/(g*K)") @test_throws AssertionError Material(density = 8.96u"g/cm^3", resistivity=1u"Ω", heat_capacity=1u"J/(g*K)") @test_throws AssertionError Material(density = 8.96u"g/cm^3", resistivity=1u"Ω*m", heat_capacity=1u"J/K") end
ElectricWires
https://github.com/rydyb/ElectricWires.jl.git
[ "MIT" ]
0.1.0
e25bfc35fe2f2be3a9aae6979daf51d8bc843add
code
1398
@testset "CircularProfile" begin circ = CircularProfile(diameter = 1u"mm") @test circ.diameter == 1u"mm" @test_throws AssertionError CircularProfile(diameter = 1u"s") end @testset "RectangularProfile" begin rect = RectangularProfile(width = 1u"mm", height = 2u"mm") @test rect.width == 1u"mm" @test rect.height == 2u"mm" @test_throws AssertionError RectangularProfile(width = 1u"s", height = 1u"mm") @test_throws AssertionError RectangularProfile(width = 1u"mm", height = 1u"s") end @testset "RectangularHollowCoreProfile" begin recth = RectangularHollowProfile(width = 5u"mm", height = 5u"mm", hole_diameter = 2.7u"mm") @test recth.a.width == 5u"mm" @test recth.a.height == 5u"mm" @test recth.b.diameter == 2.7u"mm" @test_throws AssertionError RectangularHollowProfile( width = 5u"s", height = 5u"mm", hole_diameter = 2.7u"mm", ) @test_throws AssertionError RectangularHollowProfile( width = 5u"mm", height = 5u"s", hole_diameter = 2.7u"mm", ) @test_throws AssertionError RectangularHollowProfile( width = 5u"mm", height = 5u"mm", hole_diameter = 2.7u"s", ) @testset "area" begin @test area(circ) ≈ 0.7854u"mm^2" rtol = 1e-4 @test area(rect) == 1u"mm^2" @test area(recth) ≈ 19.27u"mm^2" rtol = 1e-2 end end
ElectricWires
https://github.com/rydyb/ElectricWires.jl.git
[ "MIT" ]
0.1.0
e25bfc35fe2f2be3a9aae6979daf51d8bc843add
code
316
using ElectricWires using Test using DynamicQuantities circ = CircularProfile(diameter = 1u"mm") rect = RectangularProfile(width = 1u"mm", height = 1u"mm") recth = RectangularHollowProfile(width = 5u"mm", height = 5u"mm", hole_diameter = 2.7u"mm") include("profiles.jl") include("materials.jl") include("wire.jl")
ElectricWires
https://github.com/rydyb/ElectricWires.jl.git
[ "MIT" ]
0.1.0
e25bfc35fe2f2be3a9aae6979daf51d8bc843add
code
636
@testset "Wire" begin cw = Wire( profile = circ, material = Cu, length = 1u"m", ) @test cw.profile.diameter == 1u"mm" @test cw.material.density == 8.96u"g/cm^3" rw = Wire( profile = recth, material = Cu, length = 1u"m", ) @testset "weight" begin @test weight(cw) ≈ 7.04u"g" rtol = 1e-2 end @testset "resistance" begin @test resistance(cw) ≈ 21.39u"mΩ" rtol = 1e-2 @test resistance(rw) ≈ 0.8716u"mΩ" rtol = 1e-2 end @testset "heat_capacity" begin @test heat_capacity(rw) ≈ 66u"J/K" rtol = 1 end end
ElectricWires
https://github.com/rydyb/ElectricWires.jl.git
[ "MIT" ]
0.1.0
e25bfc35fe2f2be3a9aae6979daf51d8bc843add
docs
786
# ElectricWires.jl | **Build Status** | **Code Coverage** | |:-----------------------------------------:|:-------------------------------:| | [![][CI-img]][CI-url] | [![][codecov-img]][codecov-url] | ElectricWires.jl is a Julia library that provides various types and functions for engineering wiring. ## Installation ```julia using Pkg Pkg.add("ElectricWires.jl") ``` ## Usage See the tests in `test`. [CI-img]: https://github.com/ryd-yb/ElectricWires.jl/actions/workflows/CI.yml/badge.svg [CI-url]: https://github.com/ryd-yb/ElectricWires.jl/actions/workflows/CI.yml [codecov-img]: https://codecov.io/gh/ryd-yb/ElectricWires.jl/branch/main/graph/badge.svg?token=CNF55N4HDZ [codecov-url]: https://codecov.io/gh/ryd-yb/ElectricWires.jl
ElectricWires
https://github.com/rydyb/ElectricWires.jl.git
[ "MIT" ]
0.1.0
e25bfc35fe2f2be3a9aae6979daf51d8bc843add
docs
207
# ElectricWires.jl ElectricWires.jl is a Julia library that provides various types and functions for engineering heat transfer with fluids. ## Installation ```julia using Pkg; Pkg.add("ElectricWires") ```
ElectricWires
https://github.com/rydyb/ElectricWires.jl.git
[ "MIT" ]
0.1.0
e25bfc35fe2f2be3a9aae6979daf51d8bc843add
docs
294
# Cross-sections ```@docs ElectricWires.CrossSection ``` ```@docs ElectricWires.Circular ``` ```@docs ElectricWires.Rectangular ``` ```@docs ElectricWires.RectangularHollow ``` ```@docs ElectricWires.area ``` ```@docs ElectricWires.resistance ``` ```@docs ElectricWires.heat_capacity ```
ElectricWires
https://github.com/rydyb/ElectricWires.jl.git
[ "MIT" ]
0.1.0
e25bfc35fe2f2be3a9aae6979daf51d8bc843add
docs
83
# Materials ```@docs ElectricWires.Material ``` ```@docs ElectricWires.Copper ```
ElectricWires
https://github.com/rydyb/ElectricWires.jl.git
[ "MIT" ]
0.1.0
e25bfc35fe2f2be3a9aae6979daf51d8bc843add
docs
126
# Properties ```@docs ElectricWires.area ``` ```@docs ElectricWires.resistance ``` ```@docs ElectricWires.heat_capacity ```
ElectricWires
https://github.com/rydyb/ElectricWires.jl.git
[ "MIT" ]
0.3.4
f53e386411d9c596624bc254b13ce9aa31d5307a
code
2109
using AVLTrees, BenchmarkTools using Random using Plots using DataFrames function batch_insert!(t::AVLTree{K,D}, v::Vector{K}) where {K,D} for i in v insert!(t, i, i) end end function batch_delete!(t::AVLTree{K,D}, v::Vector{K}) where {K,D} for i in v delete!(t, i) end end function batch_find(t::AVLTree{K,D}, v::Vector{K}) where {K,D} for i in v i in t end end insertion_vec = [] deletion_vec = [] search_vec = [] d = DataFrame((op=[], time=[], n=[])) x = [1_000, 10_000, 100_000, 1_000_000, 10_000_000] function prepare_t(t) _t = deepcopy(t) for i in nums_test insert!(_t, i, i) end _t end for attempt in 1:1 for N in x global t = AVLTree{Int64,Int64}() rng = MersenneTwister(1111) global nums_fill = rand(rng, Int64, N) global nums_test = rand(rng, Int64, 10_000) for i in nums_fill insert!(t, i, i) end insertion = @benchmark batch_insert!(_t, nums_test) setup=(_t =deepcopy(t)) search = @benchmark batch_find(t, nums_test) setup=(_t = prepare_t(t)) deletion = @benchmark batch_delete!(t, nums_test) setup=(_t = prepare_t(t)) push!(d, ("insert", minimum(insertion).time, N)) push!(d, ("delete", minimum(deletion).time,N)) push!(d, ("search", minimum(search).time,N)) println("done $N") end end c = combine(groupby(d, [:op,:n]), :time => minimum) # plot(x, insertion_vec/1000, xscale=:log10, ylabel="us") # plot(x, deletion_vec/1000, xscale=:log10, ylabel="us") # plot(x, search_vec/1000, xscale=:log10, ylabel="us") plot( x, [c[(c.op.=="insert"),:].time_minimum,c[(c.op.=="delete"),:].time_minimum, c[(c.op.=="search"),:].time_minimum], xscale = :log10, ylabel = "operation time [us]", xlabel = "N", xticks = [1e3, 1e4, 1e5, 1e6, 1e7], markershape =[:diamond :utriangle :dtriangle], labels= ["insert" "delete" "lookup"], legend=:topleft, ) savefig("branch_results_new2.svg") savefig("result_new2.png") using CSV CSV.write("branch_results_new2.csv", c)
AVLTrees
https://github.com/krynju/AVLTrees.jl.git
[ "MIT" ]
0.3.4
f53e386411d9c596624bc254b13ce9aa31d5307a
code
307
module AVLTrees import Base: iterate, haskey, getkey, getindex, setindex!, length, eltype, isempty, insert!, popfirst!, insert!, delete! print, show, firstindex, pop!, popfirst! include("node.jl") include("tree.jl") include("set.jl") export AVLTree, AVLSet, findkey end # module
AVLTrees
https://github.com/krynju/AVLTrees.jl.git
[ "MIT" ]
0.3.4
f53e386411d9c596624bc254b13ce9aa31d5307a
code
669
""" Node struct """ mutable struct Node{K,D} parent::Union{Node{K,D},Nothing} left::Union{Node{K,D},Nothing} right::Union{Node{K,D},Nothing} key::K bf::Int8 data::D end # Node Node{K,D}(key, data, parent) where {K,D} = Node{K,D}(parent, nothing, nothing, key, Int8(0), data) Node{K,D}(key, data) where {K,D} = Node{K,D}(key, data, nothing) Node(key::K, data::D) where {K,D} = Node{K,D}(key, data) Node(key::K, data::D, parent::Union{Node{K,D},Nothing}) where {K,D} = Node{K,D}(key, data, parent) Base.show(io::IO, ::MIME"text/plain", node::Node{K,D}) where {K,D} = print(io, "Node{$(K),$(D)}: $(node.key) -> $(node.data)")
AVLTrees
https://github.com/krynju/AVLTrees.jl.git
[ "MIT" ]
0.3.4
f53e386411d9c596624bc254b13ce9aa31d5307a
code
1747
import Base: union, union!, setdiff, setdiff!, intersect!, intersect struct AVLSet{K} <: AbstractSet{K} tree::AVLTree{K,Nothing} end AVLSet() = AVLSet{Any}(AVLTree{Any,Nothing}()) AVLSet{K}() where {K} = AVLSet{K}(AVLTree{K,Nothing}()) function AVLSet(x::K) where {K <: AbstractVector} t = AVLTree{eltype(x),Nothing}() for i in x insert!(t, i, nothing) end return AVLSet{eltype(x)}(t) end Base.eltype(::Type{AVLSet{K}}) where {K} = K Base.length(set::AVLSet) = length(set.tree) Base.in(x::K, set::AVLSet{K}) where {K} = x in set.tree function iterate(set::AVLSet{K}) where {K} ret = iterate(set.tree) if ret === nothing return nothing else return (ret[1][1], ret[2]) end end function iterate(set::AVLSet{K}, node::Node{K,Nothing}) where {K} ret = iterate(set.tree, node) if ret === nothing return nothing else return (ret[1][1], ret[2]) end end Base.push!(set::AVLSet{K}, item::K) where {K} = insert!(set.tree, item, nothing) Base.delete!(set::AVLSet{K}, item) where {K} = delete!(set.tree, item) Base.union(set::AVLSet{K}, sets...) where {K} = union!(deepcopy(set), sets...) function Base.union!(set::AVLSet{K}, sets...) where {K} (key -> push!.(Ref(set), key)).(sets) return set end Base.setdiff(set::AVLSet{K}, sets...) where {K} = setdiff!(deepcopy(set), sets...) function Base.setdiff!(set::AVLSet{K}, sets...) where {K} (key -> delete!.(Ref(set), key)).(sets) return set end Base.intersect(set::AVLSet{K}, s::AbstractSet) where {K} = intersect!(deepcopy(set), s) function Base.intersect!(set::AVLSet{K}, s::AbstractSet) where {K} _set = collect(set) for key in _set if key ∉ s delete!(set, key) end end return set end
AVLTrees
https://github.com/krynju/AVLTrees.jl.git
[ "MIT" ]
0.3.4
f53e386411d9c596624bc254b13ce9aa31d5307a
code
11419
""" AVLTree struct """ mutable struct AVLTree{K,D} root::Union{Node{K,D},Nothing} end AVLTree() = AVLTree{Any,Any}(nothing) AVLTree{K,D}() where {K,D} = AVLTree{K,D}(nothing) Base.eltype(::Type{AVLTree{K,D}}) where {K,D} = Tuple{K,D} Base.getindex(tr::AVLTree{K,D}, k::K) where {K,D} = Base.getkey(tr, k) Base.setindex!(tr::AVLTree{K,D}, k::K, d::D) where {K,D} = AVLTrees.insert!(tr, k, d) Base.haskey(tr::AVLTree{K,D}, k::K) where {K,D} = !(find_node(tr, k) === nothing) Base.length(tr::AVLTree{K,D}) where {K,D} = AVLTrees.size(tr) Base.isempty(tr::AVLTree{K,D}) where {K,D} = tr.root === nothing Base.in(x::K, tr::AVLTree{K,D}) where {K,D} = find_node(tr, x) !== nothing function Base.getkey(tr::AVLTree{K,D}, k::K) where {K,D} d = findkey(tr, k) if d === nothing throw(KeyError(k)) else d end end function Base.size(tree::AVLTree) return __size(tree.root) end # function @inline function __size(node::Union{Nothing,Node}) if node === nothing return 0 end return __size(node.left) + __size(node.right) + 1 end """ insert!(args) documentation """ function Base.insert!(tree::AVLTree{K,D}, key, data) where {K,D} parent = nothing node = tree.root while node !== nothing parent = node if key < node.key node = node.left elseif key > node.key node = node.right else node.data = data return end end if parent === nothing tree.root = Node{K,D}(key, data) elseif key < parent.key parent.left = Node{K,D}(key, data, parent) balance_insertion(tree, parent, true) elseif key > parent.key parent.right = Node{K,D}(key, data, parent) balance_insertion(tree, parent, false) end return end # function macro rebalance!(_tree, _node, _height_changed) tree = esc(_tree) node = esc(_node) height_changed = esc(_height_changed) return :( if $(node).bf == 2 $(node), $(height_changed) = _rebalance_barrier_p2($(tree), $(node), $(node).right) elseif $(node).bf == -2 $(node), $(height_changed) = _rebalance_barrier_m2($(tree), $(node), $(node).left) else $(height_changed) = $(node).bf == zero(Int8) end ) end @inline function _rebalance_barrier_p2(tree::AVLTree{K,D}, node::Node{K,D}, node_right::Node{K,D}) where {K,D} height_changed = node_right.bf != zero(Int8) if node_right.bf == -one(Int8) rotate_right(tree, node_right, node_right.left) end rotate_left(tree, node, node.right), height_changed end @inline function _rebalance_barrier_m2(tree::AVLTree{K,D}, node::Node{K,D}, node_left::Node{K,D}) where {K,D} height_changed = node_left.bf != zero(Int8) if node_left.bf == one(Int8) rotate_left(tree, node_left, node_left.right) end rotate_right(tree, node, node.left), height_changed end """ balance_insertion(tree::AVLTree{K,D},node::Node{K,D},left_insertion::Bool) where {K,D} documentation """ @inline function balance_insertion( tree::AVLTree{K,D}, node::Node{K,D}, left_insertion::Bool, ) where {K,D} while true node.bf += ifelse(left_insertion, -one(Int8), one(Int8)) height_changed = false @rebalance!(tree, node, height_changed) height_changed && break node_parent = node.parent if node_parent !== nothing left_insertion = node_parent.left == node node = node_parent else break end end end # function @inline function rotate_left(t::AVLTree{K,D}, x::Node{K,D}, x_right::Node{K,D}) where {K,D} y = x_right if y.left !== nothing x.right = y.left y.left.parent = x else x.right = nothing end y.left = x xp = x.parent if xp === nothing t.root = y else if xp.left == x xp.left = y else xp.right = y end end y.parent = xp x.parent = y x.bf -= y.bf * (y.bf >= zero(Int8)) + one(Int8) y.bf += x.bf * (x.bf < zero(Int8)) - one(Int8) return y end @inline function rotate_right(t::AVLTree{K,D}, x::Node{K,D}, x_left::Node{K,D}) where {K,D} y = x_left if y.right !== nothing x.left = y.right y.right.parent = x else x.left = nothing end y.right = x xp = x.parent if xp === nothing t.root = y else if xp.left == x xp.left = y else xp.right = y end end y.parent = xp x.parent = y x.bf -= y.bf * (y.bf < zero(Int8)) - one(Int8) y.bf += x.bf * (x.bf >= zero(Int8)) + one(Int8) return y end """ delete!(tree::AVLTree{K,D}, node::Node{K,D}) where {K,D} documentation """ function Base.delete!(tree::AVLTree{K,D}, node::Node{K,D}) where {K,D} if node.left !== nothing node_right = node.right if node_right !== nothing # left != nothing && right != nothing temp = node_right temp_left = temp.left while temp_left !== nothing temp = temp_left temp_left = temp.left end # switch spots completely node.key = temp.key node.data = temp.data delete!(tree, temp) else # left != nothing && right == nothing dir = __parent_replace(tree, node, node.left) balance_deletion(tree, node.parent, dir) end else node_right = node.right if node_right !== nothing # left == nothing && right != nothing dir = __parent_replace(tree, node, node_right) balance_deletion(tree, node.parent, dir) else # left == nothing && right == nothing dir = __parent_replace(tree, node, nothing) balance_deletion(tree, node.parent, dir) end end return end # function function Base.delete!(tree::AVLTree{K,D}, key::K) where {K,D} node = find_node(tree, key) if node !== nothing delete!(tree, node) end end # function @inline balance_deletion(tree::AVLTree, node::Nothing, left_delete::Bool) where {K,D} = return @inline function balance_deletion( tree::AVLTree{K,D}, node::Node{K,D}, left_delete::Bool, ) where {K,D} while node !== nothing node.bf += ifelse(left_delete, one(Int8), -one(Int8)) height_changed = false @rebalance!(tree, node, height_changed) !height_changed && break node_parent = node.parent if node_parent !== nothing left_delete = node_parent.left == node node = node_parent else break end end end # function # __parent_replace(tree::AVLTree{K,D}, node::Node{K,D}, replacement::Node{K,D}) # # Replaces node with its only child. Used on nodes with a single child when erasing a node. @inline function __parent_replace( tree::AVLTree{K,D}, node::Node{K,D}, replacement::Node{K,D}, ) where {K,D} node_parent = node.parent if node_parent !== nothing replacement.parent = node_parent if node_parent.right == node node_parent.right = replacement return false else node_parent.left = replacement return true end else replacement.parent = nothing tree.root = replacement return false end end # function # __parent_replace(tree::AVLTree{K,D}, node::Node{K,D}, replacement::Nothing) # Replaces node with nothing. Used on leaf nodes when erasing a node. @inline function __parent_replace( tree::AVLTree{K,D}, node::Node{K,D}, replacement::Nothing, ) where {K,D} node_parent = node.parent if node_parent !== nothing if node_parent.right == node node_parent.right = replacement return false else node_parent.left = replacement return true end else tree.root = replacement return false end end # function """ find(tree::AVLTree{K,D}, key::K) where {K,D} Warning: do not use it to check whether `key` is in the `tree`. It returns the node.data if found which can be `nothing`. """ @inline function findkey(tree::AVLTree{K,D}, key::K) where {K,D} node = tree.root while node !== nothing if key < node.key node = node.left elseif key > node.key node = node.right else return node.data end end return nothing end # function """ find_node(args) """ @inline function find_node(tree::AVLTree{K,D}, key::K) where {K,D} node = tree.root while node !== nothing if key < node.key node = node.left elseif key > node.key node = node.right else return node end end return nothing end # function # Iteration interface function Base.iterate(tree::AVLTree) if tree.root === nothing return nothing end node = tree.root while node.left !== nothing node = node.left end return (node.key, node.data), node end function Base.iterate(tree::AVLTree, node::Node) if node.right !== nothing node = node.right while node.left !== nothing node = node.left end else prev = node while node !== nothing && node.left != prev prev = node node = node.parent end end if node === nothing return nothing end return (node.key, node.data), node end # Pop and get methods function Base.popfirst!(tree::AVLTree) # traverse to left-most node if tree.root === nothing return end node = tree.root while node.left !== nothing node = node.left end # delete node and return data node_data = node.data delete!(tree, node) return node_data end function Base.pop!(tree::AVLTree{K,D}, key::K) where {K,D} node = AVLTrees.find_node(tree, key) if node !== nothing node_dat = node.data delete!(tree, node) return node_dat else return end end function Base.firstindex(tree::AVLTree) # traverse to left-most node if tree.root === nothing return end node = tree.root while node.left !== nothing node = node.left end # return node key return node.key end ## Print and Show methods function Base.print(io::IO, tree::AVLTree{K,D}) where {K,D} str_lst = Vector{String}() for (k, v) in Base.Iterators.take(tree, 10) push!(str_lst, "$k => $v") end print(io, "AVLTree{$K,$D}(") print(io, join(str_lst, ", ")) length(str_lst) == 10 && print(io, ", ⋯ ") print(io, ")") end function Base.show(io::IO, ::MIME"text/plain", tree::AVLTree{K,D}) where {K,D} str_lst = Vector{String}() indent_str = " " for (k, v) in Base.Iterators.take(tree, 10) push!(str_lst, indent_str * "$k => $v") end if length(str_lst) > 0 print(io, "AVLTree{$K,$D} with $(length(tree)) entries:\n") print(io, join(str_lst, "\n")) else print(io, "AVLTree{$K,$D}()") end length(str_lst) == 10 && print(io, "\n", indent_str * "⋮ => ⋮ \n") end
AVLTrees
https://github.com/krynju/AVLTrees.jl.git
[ "MIT" ]
0.3.4
f53e386411d9c596624bc254b13ce9aa31d5307a
code
298
@testset "node" begin @testset "constructors" begin n = AVLTrees.Node(10, 10) @test n.key == 10 @test n.data == 10 @test isnothing(n.parent) n1 = AVLTrees.Node(12, 12, n) @test n1.parent == n @test isnothing(n1.parent.parent) end end
AVLTrees
https://github.com/krynju/AVLTrees.jl.git
[ "MIT" ]
0.3.4
f53e386411d9c596624bc254b13ce9aa31d5307a
code
128
using AVLTrees using Test @testset "AVLTrees.jl" begin include("node.jl") include("tree.jl") include("set.jl") end
AVLTrees
https://github.com/krynju/AVLTrees.jl.git
[ "MIT" ]
0.3.4
f53e386411d9c596624bc254b13ce9aa31d5307a
code
1926
@testset "set.jl" begin @testset "basic" begin s = AVLSet() items = ["anything", "anything2"] push!(s, items[1]) r = collect(s) @test length(r) == 1 @test items[1] in r push!(s, items[2]) r = collect(s) @test length(r) == 2 @test all(items .∈ Ref(s)) @test all(items .∈ Ref(r)) delete!(s, items[1]) delete!(s, items[2]) @test isempty(s) end @testset "constructor with AbstractVector input" begin items = rand(1_000) s = AVLSet(items) @test eltype(items) == eltype(s) @test all(items .∈ Ref(s)) @test all(items .∈ Ref(collect(s))) end @testset "union" begin a = rand(1:1000, 800) b = rand(1:1000, 800) avl_a = AVLSet(a) avl_b = AVLSet(b) sa = Set(a) sb = Set(b) @test union(avl_a, avl_b) == union(sa, sb) @test union(avl_a, avl_a) == union(sa, sa) @test union(avl_a, avl_b, avl_b) == union(sa, sb) @test union(avl_a, sb, avl_b, avl_a, sb) == union(sa, sb) @test union!(avl_a, avl_b) == union(sa, sb) @test union!(avl_b, avl_a) == union(sa, sb) end @testset "setdiff" begin a = rand(1:1000, 800) b = rand(1:1000, 800) avl_a = AVLSet(a) avl_b = AVLSet(b) sa = Set(a) sb = Set(b) @test setdiff(avl_a, avl_b, avl_b) == setdiff(sa, sb) @test setdiff(avl_a, avl_a) == setdiff(sa, sa) @test setdiff(avl_a, sb) == setdiff(sa, sb) end @testset "intersect" begin a = rand(1:1000, 800) b = rand(1:1000, 800) avl_a = AVLSet(a) avl_b = AVLSet(b) sa = Set(a) sb = Set(b) @test intersect(avl_a, avl_b) == intersect(sa, sb) @test intersect(avl_a, avl_a) == intersect(sa, sa) end end
AVLTrees
https://github.com/krynju/AVLTrees.jl.git
[ "MIT" ]
0.3.4
f53e386411d9c596624bc254b13ce9aa31d5307a
code
4787
@testset "tree.jl" begin @testset "root insertion test" begin t = AVLTree{Int64,Int64}() insert!(t, 1, 2) @test !isnothing(t.root) @test t.root.bf == 0 @test isnothing(t.root.right) && isnothing(t.root.left) @test t.root.key == 1 && t.root.data == 2 @test size(t) == 1 insert!(t, 1, 10) delete!(t, 999) @test t.root.data == 10 @test size(t) == 1 end @testset "left rotation test" begin t = AVLTree{Int64,Int64}() insert!(t, 1, 2) insert!(t, 2, 2) insert!(t, 3, 2) @test t.root.bf == 0 && t.root.left.bf == 0 && t.root.right.bf == 0 @test t.root.key == 2 && t.root.left.key == 1 && t.root.right.key == 3 @test size(t) == 3 end @testset "right rotation test" begin t = AVLTree{Int64,Int64}() insert!(t, 3, 2) insert!(t, 2, 2) insert!(t, 1, 2) @test t.root.bf == 0 && t.root.left.bf == 0 && t.root.right.bf == 0 @test t.root.key == 2 && t.root.left.key == 1 && t.root.right.key == 3 @test size(t) == 3 end @testset "left-right rotation test" begin t = AVLTree{Int64,Int64}() insert!(t, 3, 2) insert!(t, 1, 2) insert!(t, 2, 2) @test t.root.bf == 0 && t.root.left.bf == 0 && t.root.right.bf == 0 @test t.root.key == 2 && t.root.left.key == 1 && t.root.right.key == 3 @test size(t) == 3 end @testset "right-left rotation test" begin t = AVLTree{Int64,Int64}() insert!(t, 1, 2) insert!(t, 3, 2) insert!(t, 2, 2) @test t.root.bf == 0 && t.root.left.bf == 0 && t.root.right.bf == 0 @test t.root.key == 2 && t.root.left.key == 1 && t.root.right.key == 3 @test size(t) == 3 end @testset "tree{Any,Any} test" begin t = AVLTree() insert!(t, "item1", "item1") @test t.root.key == "item1" insert!(t, "item2", "item2") insert!(t, "item3", "item3") @test t.root.key == "item2" @test size(t) == 3 end @testset "fill test" begin t = AVLTree{Int64,Int64}() for i in rand(Int64, 100) insert!(t, i, 0) end @test size(t) <= 100 end @testset "delete basic" begin t = AVLTree{Int64,Int64}() insert!(t, 1, 2) insert!(t, 2, 2) insert!(t, 3, 2) @test size(t) == 3 delete!(t, t.root.left) @test isnothing(t.root.left) @test t.root.bf == 1 @test size(t) == 2 delete!(t, t.root.right) @test isnothing(t.root.right) @test t.root.bf == 0 @test size(t) == 1 delete!(t, t.root) @test size(t) == 0 @test isnothing(t.root) end @testset "fill and delete all test" begin t = AVLTree{Int64,Int64}() for i in rand(Int64, 100) insert!(t, i, 0) end @test size(t) <= 100 while !isnothing(t.root) delete!(t, t.root) end @test isnothing(t.root) @test size(t) == 0 end @testset "fill and delete keys test" begin t = AVLTree{Int64,Int64}() nums = rand(Int64, 100) for i in nums insert!(t, i, i) end @test size(t) <= 100 for i in nums delete!(t, i) end @test size(t) == 0 @test isnothing(t.root) end @testset "findkey test" begin t = AVLTree{Int64,Int64}() for i = 1:1000 insert!(t, i, i) end @test size(t) == 1000 @test 500 == findkey(t, 500) @test nothing == findkey(t, 1001) @test size(t) == 1000 end @testset "iteration test" begin t = AVLTree{Int64,Int64}() for i = 1:1000 insert!(t, i, i) end s1 = Set{Tuple{Int64,Int64}}([(_x,_x) for _x in 1:1000]) s2 = Set{Tuple{Int64,Int64}}() for i in t push!(s2,i) end @test s1 == s2 end @testset "Base.*" begin t = AVLTree{Int64, Int64}() for i in 1:100 insert!(t, i, i) end @test eltype(t) == Tuple{Int64, Int64} @test getindex.(Ref(t), 1:100) == 1:100 try getindex(t, -100) catch x @test x == KeyError(-100) end setindex!(t, 10, -10) @test t[10] == -10 @test haskey(t,10) @test !haskey(t,-10) @test length(t) == 100 t[-10] = -10 @test length(t) == 101 @test !isempty(t) @test popfirst!(t) == -10 @test firstindex(t) == 1 t[10] = 10 @test pop!.(Ref(t), 1:100) == 1:100 end end
AVLTrees
https://github.com/krynju/AVLTrees.jl.git
[ "MIT" ]
0.3.4
f53e386411d9c596624bc254b13ce9aa31d5307a
docs
1295
# AVLTrees [![Build Status](https://travis-ci.com/krynju/AVLTrees.jl.svg?branch=master)](https://travis-ci.com/krynju/AVLTrees.jl) [![codecov](https://codecov.io/gh/krynju/AVLTrees.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/krynju/AVLTrees.jl) AVL self-balancing tree written in pure Julia. Implemented on raw heap assigned storage with minimal overhead coming from balancing the tree itself. The tree node structure only has an additional Int8 keeping the balance factor. All balancing procedures are dynamically propagated (no height calculations during balancing). ## Benchmark An overview of performance is shown below. Times are shown for an average of 1000 operations made at N elements in the structure. ### Table ```julia Row │ n insert[us] delete[us] search[us] │ Any Float64? Float64? Float64? ─────┼──────────────────────────────────────────────── 1 │ 1000 152.67 32.02 0.00222892 2 │ 10000 174.1 63.86 0.00227912 3 │ 100000 299.6 165.86 0.00235597 4 │ 1000000 629.11 524.92 0.00304124 5 │ 10000000 964.76 912.39 0.025 ``` ### Plot ![benchmark results](https://github.com/krynju/AVLTrees.jl/blob/master/benchmark/result.svg)
AVLTrees
https://github.com/krynju/AVLTrees.jl.git
[ "MIT" ]
0.1.0
47441aacebbc89a276d4c4cff49eab45cdf6b993
code
2411
""" AdjustQuasiGLM(model, ϕ; level) Estimates dispersion parameter, adjusts original GLM to reflect the dispersion and returns results in a pretty DataFrame. Usage: ```julia-repl AdjustQuasiGLM(model, ϕ; level) ``` Arguments: - `model` : The `GLM` model. - `data` : The `DataFrame` containing data that was used as input to the model. - `level` : The desired degree of confidence. """ function AdjustQuasiGLM(model::StatsModels.TableRegressionModel, data::DataFrame; level::Real=0.95) # Calculate Pearson residuals resids = PearsonResiduals(model, data) # Estimate dispersion parameter ϕ and take √ to convert to multiplier ϕ = √EstimateDispersionParameter(resids, model) # Correct standard errors and calculate updated test statistics, p-values, and confidence intervals CorrectedOutputs = coefarray(model, ϕ; level) levstr = isinteger(level * 100) ? string(Integer(level * 100)) : string(level * 100) header = (["Parameter", "Estimate", "Std. Error", "t value", "Pr(>|t|)", "Lower $levstr%", "Upper $levstr%"]) #-------------------------------------------- # Organise results in a neat coeftable format #-------------------------------------------- # Table formatting ctf = TextFormat( up_right_corner = ' ', up_left_corner = ' ', bottom_left_corner = ' ', bottom_right_corner = ' ', up_intersection = '─', left_intersection = ' ', right_intersection = ' ', middle_intersection = '─', bottom_intersection = '─', column = ' ', hlines = [ :begin, :header, :end] ) # Render table println("\nCoefficients:") CorrectedOutputsPretty = PrettyTables.pretty_table(CorrectedOutputs; header = header, tf = ctf) # Return results in a DataFrame for further use CorrectedOutputs = DataFrame(CorrectedOutputs, :auto) CorrectedOutputs = rename!(CorrectedOutputs, [:x1, :x2, :x3, :x4, :x5, :x6, :x7] .=> [Symbol(header[1]), Symbol(header[2]), Symbol(header[3]), Symbol(header[4]), Symbol(header[5]), Symbol(header[6]), Symbol(header[7])]) # Recode column types from `Any` to `String` for parameter names and `Float64` for values columns for i in 2:size(header, 1) CorrectedOutputs[!, i] = convert(Array{Float64, 1}, CorrectedOutputs[!, i]) end CorrectedOutputs[!, 1] = convert(Array{String, 1}, CorrectedOutputs[!, 1]) return CorrectedOutputs end
QuasiGLM
https://github.com/hendersontrent/QuasiGLM.jl.git
[ "MIT" ]
0.1.0
47441aacebbc89a276d4c4cff49eab45cdf6b993
code
2526
""" PearsonResiduals(model, data) Calculates Pearson residuals between model predicted values and the actual response variable values. Usage: ```julia-repl PearsonResiduals(model, data) ``` Arguments: - `model` : The `GLM` model. - `data` : The `DataFrame` containing data that was used as input to the model. """ function PearsonResiduals(model::StatsModels.TableRegressionModel, data::DataFrame) # Generate predictions f_hat = predict(model) # Parse response vector y_name = string(formula(model).lhs) y = Array(data[!, names(data, y_name)]) # Calculate residuals as per https://www.datascienceblog.net/post/machine-learning/interpreting_generalized_linear_models/ r = (y .- f_hat) ./ .√(f_hat) r = sum(r .^ 2) return r end """ EstimateDispersionParameter(residuals, model) Estimates the dispersion parameter ϕ by standardising the sum of squared Pearson residuals against the residual degrees of freedom. Usage: ```julia-repl EstimateDispersionParameter(residuals, model) ``` Arguments: - `residuals` : The sum of squared Pearson residuals. - `model` : The `GLM` model. """ function EstimateDispersionParameter(residuals::Float64, model::StatsModels.TableRegressionModel) # Calculate dispersion/scale parameter estimate by dividing Pearson residuals by residual degrees of freedom ϕ = residuals / (dof_residual(model) - 1) # This aligns calculation with R's df.residuals function println("\nDispersion parameter (ϕ) for model taken to be " * string(round(ϕ, digits = 5))) println("Standard errors are multiplied by " * string(round(sqrt(ϕ), digits = 5)) * " to adjust for dispersion parameter (ϕ)") return ϕ end """ coefarray(model, ϕ; level) Calculates relevant statistics for inference based of estimates and dispersion-adjusted standard errors and returns results in a concatenated array. Usage: ```julia-repl coefarray(model, ϕ; level) ``` Arguments: - `model` : The `GLM` model. - `ϕ` : The estimated dispersion parameter. - `level` : The desired degree of confidence. """ function coefarray(model::StatsModels.TableRegressionModel, ϕ::Real; level::Real=0.95) # NOTE: Function modified from https://docs.juliahub.com/AxisIndices/AHOcZ/0.6.3/coeftable/ cc = coef(model) se = stderror(model) * ϕ tt = cc ./ se p = ccdf.(Ref(FDist(1, dof_residual(model))), abs2.(tt)) ci = se * quantile(TDist(dof_residual(model)), (1 - level) / 2) ct = hcat(coefnames(model), cc, se, tt, p, cc + ci, cc - ci) return ct end
QuasiGLM
https://github.com/hendersontrent/QuasiGLM.jl.git
[ "MIT" ]
0.1.0
47441aacebbc89a276d4c4cff49eab45cdf6b993
code
247
module QuasiGLM using DataFrames, Distributions, GLM, PrettyTables include("PeripheralFunctions.jl") include("AdjustQuasiGLM.jl") # Exports export PearsonResiduals export EstimateDispersionParameter export coefarray export AdjustQuasiGLM end
QuasiGLM
https://github.com/hendersontrent/QuasiGLM.jl.git
[ "MIT" ]
0.1.0
47441aacebbc89a276d4c4cff49eab45cdf6b993
code
1868
using DataFrames, CategoricalArrays, GLM, Distributions, PrettyTables, QuasiGLM, Test #------------- Run package tests -------------- @testset "QuasiGLM.jl" begin #------------- # Quasipoisson #------------- # Define some data dobson = DataFrame(Counts = [18,17,15,20,10,20,25,13,12], Outcome = categorical([1,2,3,1,2,3,1,2,3]), Treatment = categorical([1,1,1,2,2,2,3,3,3])) # Fit Poisson model gm = fit(GeneralizedLinearModel, @formula(Counts ~ Outcome + Treatment), dobson, Poisson()) # Correct standard errors using quasi correction testOutputs = AdjustQuasiGLM(gm, dobson; level=0.95) @test testOutputs isa DataFrames.DataFrame #-------------- # Quasibinomial #-------------- # Set up data and divide percentage by 100 to get proportion blotchData = DataFrame(blotch = [0.05,0.00,1.25,2.50,5.50,1.00,5.00,5.00,17.50,0.00,0.05,1.25,0.50,1.00,5.00,0.10,10.00,25.00,0.00,0.05,2.50,0.01,6.00,5.00,5.00,5.00,42.50,0.10,0.30,16.60,3.00,1.10,5.00,5.00,5.00,50.00,0.25,0.75,2.50,2.50,2.50,5.00,50.00,25.00,37.50,0.05,0.30,2.50,0.01,8.00,5.00,10.00,75.00,95.00,0.50,3.00,0.00,25.00,16.50,10.00,50.00,50.00,62.50,1.30,7.50,20.00,55.00,29.50,5.00,25.00,75.00,95.00,1.50,1.00,37.50,5.00,20.00,50.00,50.00,75.00,95.00,1.50,12.70,26.25,40.00,43.50,75.00,75.00,75.00,95.00], variety = categorical(repeat([1,2,3,4,5,6,7,8,9], inner=1, outer=10)), site = categorical(repeat([1,2,3,4,5,6,7,8,9,10], inner=9, outer=1))) blotchData.blotch = blotchData.blotch ./ 100 # Fit binomial model gm2 = fit(GeneralizedLinearModel, @formula(blotch ~ variety + site), blotchData, Binomial()) # Correct standard errors using quasi correction testOutputs2 = AdjustQuasiGLM(gm2, blotchData; level=0.95) @test testOutputs2 isa DataFrames.DataFrame end
QuasiGLM
https://github.com/hendersontrent/QuasiGLM.jl.git
[ "MIT" ]
0.1.0
47441aacebbc89a276d4c4cff49eab45cdf6b993
docs
4612
# QuasiGLM Adjust Poisson and Binomial Generalised Linear Models to their quasi equivalents for dispersed data ## Installation You can install `QuasiGLM.jl` from the Julia Registry via: ``` using Pkg Pkg.add("QuasiGLM") ``` ## Motivation `R` has an excellent interface for specifying [generalised linear models](https://en.wikipedia.org/wiki/Generalized_linear_model) (GLM) and its base functionality includes a wide variety of probability distributions and link functions. [`GLM.jl`](https://juliastats.org/GLM.jl/v0.11/) in `Julia` is also excellent, and boasts a similar interface to its `R` counterpart. However, in `GLM.jl`, two key model types are not readily available: 1. quasipoisson 2. quasibinomial While neither defines an explicit probability distribution, these models are useful in a variety of contexts as they enable the modelling of overdispersion in data. If the data is indeed overdispersed, the estimated dispersion parameter will be >1. Failure to estimate and adjust for this dispersion may lead to inappropriate statistical inference. `QuasiGLM.jl` is a simple package that provides intuitive one-line-of-code adjustments to existing Poisson and Binomial `GLM.jl` models to convert them to their quasi equivalents. It achieves this through estimating the dispersion parameter and using this to make adjustments to standard errors. These adjustments then flow through to updated test statistics, *p*-values, and confidence intervals. ## Usage Here's a Poisson to quasipoisson conversion using the Dobson (1990) Page 93: Randomized Controlled Trial dataset (as presented in the [`GLM.jl` documentation](https://juliastats.org/GLM.jl/v0.11/#Fitting-GLM-models-1)). ``` using DataFrames, CategoricalArrays, GLM, QuasiGLM dobson = DataFrame(Counts = [18,17,15,20,10,20,25,13,12], Outcome = categorical([1,2,3,1,2,3,1,2,3]), Treatment = categorical([1,1,1,2,2,2,3,3,3])) gm = fit(GeneralizedLinearModel, @formula(Counts ~ Outcome + Treatment), dobson, Poisson()) testOutputs = AdjustQuasiGLM(gm, dobson; level=0.95) ``` And here's a binomial to quasibinomial example using the leaf blotch dataset (McCullagh and Nelder (1989, Ch. 9.2.4)) as seen in multiple textbooks and the [SAS documentation](https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_glimmix_sect016.htm): ``` using DataFrames, CategoricalArrays, GLM, QuasiGLM blotchData = DataFrame(blotch = [0.05,0.00,1.25,2.50,5.50,1.00,5.00,5.00,17.50,0.00,0.05,1.25,0.50,1.00,5.00,0.10,10.00,25.00,0.00,0.05,2.50,0.01,6.00,5.00,5.00,5.00,42.50,0.10,0.30,16.60,3.00,1.10,5.00,5.00,5.00,50.00,0.25,0.75,2.50,2.50,2.50,5.00,50.00,25.00,37.50,0.05,0.30,2.50,0.01,8.00,5.00,10.00,75.00,95.00,0.50,3.00,0.00,25.00,16.50,10.00,50.00,50.00,62.50,1.30,7.50,20.00,55.00,29.50,5.00,25.00,75.00,95.00,1.50,1.00,37.50,5.00,20.00,50.00,50.00,75.00,95.00,1.50,12.70,26.25,40.00,43.50,75.00,75.00,75.00,95.00], variety = categorical(repeat([1,2,3,4,5,6,7,8,9], inner=1, outer=10)), site = categorical(repeat([1,2,3,4,5,6,7,8,9,10], inner=9, outer=1))) blotchData.blotch = blotchData.blotch ./ 100 gm2 = fit(GeneralizedLinearModel, @formula(blotch ~ variety + site), blotchData, Binomial()) testOutputs2 = AdjustQuasiGLM(gm2, blotchData; level=0.95) ``` ### Comparison to R results Note that results do not exactly equal the `R` equivalent of GLMs fit with `quasibinomial` or `quasipoisson` families. While explorations are continuing, the discrepancy is believed to be the result of differences in optimisation methods in the GLM machinery and floating point calculations. For example, in the quasipoisson example presented above, the dispersion parameter returned by `QuasiGLM.jl` and `R`'s `glm` function with quasipoisson family are equivalent, and the numerical values for the `Intercept` and `Outcome` in the summary coefficient table are also equivalent. However, the `Treatment` variable exhibits different coefficient estimates despite exhibiting the same standard error and *p*-values. Here is the `R` code to test it: ``` dobson <- data.frame(Counts = c(18,17,15,20,10,20,25,13,12), Outcome = as.factor(c(1,2,3,1,2,3,1,2,3)), Treatment = as.factor(c(1,1,1,2,2,2,3,3,3))) mod <- glm(Counts ~ Outcome + Treatment, dobson, family = quasipoisson) summary(mod) ``` ## Citation instructions If you use `QuasiGLM.jl` in your work, please cite it using the following (included as BibTeX file in the package folder): ``` @Manual{QuasiGLM.jl, title={{QuasiGLM.jl}}, author={Henderson, Trent}, year={2022}, month={2}, url={https://github.com/hendersontrent/QuasiGLM.jl} } ```
QuasiGLM
https://github.com/hendersontrent/QuasiGLM.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
2449
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ module PlatformAware using CpuId using XMLDict using TOML using JSON using Scratch using Downloads using InteractiveUtils using HTTP using Distributed include("utils.jl") # features (platform types) include("features/features.jl") # platform types base include("features/detection.jl") # feature detection # quantifiers include("features/quantifiers/atleast.jl") include("features/quantifiers/atmost.jl") include("features/quantifiers/macros.jl") # qualifiers include("features/qualifiers/general.jl") include("features/qualifiers/common.jl") include("features/qualifiers/ec2/ec2.jl") include("features/qualifiers/gcp/gcp.jl") include("features/qualifiers/nvidia/nvidia.jl") include("features/qualifiers/intel/intel.jl") include("features/qualifiers/intel/intel_accelerators_xeonphi.jl") include("features/qualifiers/intel/intel_processors_atom.jl") include("features/qualifiers/intel/intel_processors_celeron.jl") include("features/qualifiers/intel/intel_processors_core.jl") include("features/qualifiers/intel/intel_processors_itanium.jl") include("features/qualifiers/intel/intel_processors_pentium.jl") include("features/qualifiers/intel/intel_processors_xeon.jl") include("features/qualifiers/amd/amd_processors.jl") include("features/qualifiers/aws/aws_processors.jl") include("features/qualifiers/amd/amd_accelerators.jl") include("features/qualifiers/xilinx/xilinx.jl") # main functionality (@platform macro and default types) include("platform.jl") function __init__() load!() end export @platform, @quantifier, @atleast, @atmost, @between, @just, @unlimited, @api, @assumption, platform_feature, platform_features, PlatformType, QuantifierFeature, QualifierFeature, Query, Yes, No, Provider, OnPremises, CloudProvider, MachineFamily, MachineType, Locale, Manufacturer, ProcessorMicroarchitecture, ProcessorISA, ProcessorSIMD, Processor, AcceleratorType, AcceleratorArchitecture, AcceleratorBackend, Accelerator, XPU, GPU, TPU, IPU, FPGA, MIC, InterconnectionTopology, Interconnection, StorageType, StorageInterface, MemoryType end
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
15511
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ mutable struct PlatformFeatures platform_feature_default_all platform_feature_default platform_feature_all platform_feature function PlatformFeatures() new(Dict(),Dict(),Dict(),Dict()) end end state = PlatformFeatures() defT =[ :node_count => Tuple{AtLeast1,AtMostInf,Q} where Q, :node_threads_count => Tuple{AtLeast1,AtMostInf,Q} where Q, :node_provider => Provider, :node_virtual => Query, :node_dedicated => Query, :node_machinefamily => MachineFamily, :node_machinetype => MachineType, :node_vcpus_count => Tuple{AtLeast1,AtMostInf,Q} where Q, :node_memory_size => Tuple{AtLeast0,AtMostInf,Q} where Q, :node_memory_latency => Tuple{AtLeast0,AtMostInf,Q} where Q, :node_memory_bandwidth => Tuple{AtLeast0,AtMostInf,Q} where Q, :node_memory_type => MemoryType, :node_memory_frequency => Tuple{AtLeast1,AtMostInf,Q} where Q, :node_coworker_count => WorkerCount, # number of worker processes (i.e., julia -p N) :processor_count => Tuple{AtLeast1,AtMostInf,Q} where Q, :processor_manufacturer => Manufacturer, :processor_microarchitecture => ProcessorMicroarchitecture, :processor_simd => ProcessorSIMD, :processor_isa => ProcessorISA, :processor_tdp => Tuple{AtLeast0,AtMostInf,Q} where Q, :processor_core_clock => Tuple{AtLeast0,AtMostInf,Q} where Q, :processor_core_count => Tuple{AtLeast1,AtMostInf,Q} where Q, :processor_core_threads_count => Tuple{AtLeast1,AtMostInf,Q} where Q, # :processor_core_L1_mapping => :PC1M, :processor_core_L1_size => Tuple{AtLeast0,AtMostInf,Q} where Q, # :processor_core_L1_latency => :PC1T, # :processor_core_L1_bandwidth => :PC1B, # :processor_core_L1_linesize => :PC1L, # :processor_core_L2_mapping => :PC2M, :processor_core_L2_size => Tuple{AtLeast0,AtMostInf,Q} where Q, # :processor_core_L2_latency => :PC2T, # :processor_core_L2_bandwidth => :PC2B, # :processor_core_L2_linesize => :PC2L, # :processor_L3_mapping => :PC3M, :processor_L3_size => Tuple{AtLeast0,AtMostInf,Q} where Q, # :processor_L3_latency => :PC3T, # :processor_L3_bandwidth => :PC3B, # :processor_L3_linesize => :PC3L, :processor => Processor, :accelerator_count => Tuple{AtLeast0,AtMostInf,Q} where Q, :accelerator_type => AcceleratorType, :accelerator_manufacturer => Manufacturer, :accelerator_interconnect => AcceleratorInterconnect, :accelerator_api => Tuple{AcceleratorBackend,AcceleratorBackend,AcceleratorBackend,AcceleratorBackend,AcceleratorBackend,AcceleratorBackend,AcceleratorBackend}, :accelerator_architecture => AcceleratorArchitecture, :accelerator_memory_size => Tuple{AtLeast0,AtMostInf,Q} where Q, :accelerator_tdp => Tuple{AtLeast0,AtMostInf,Q} where Q, :accelerator_processor => AcceleratorProcessor, :accelerator_processor_count => Tuple{AtLeast1,AtMostInf,Q} where Q, :accelerator_memory_type => MemoryType, :accelerator => Accelerator, :interconnection_startuptime => Tuple{AtLeast0,AtMostInf,Q} where Q, :interconnection_latency => Tuple{AtLeast0,AtMostInf,Q} where Q, :interconnection_bandwidth => Tuple{AtLeast0,AtMostInf,Q} where Q, :interconnection_topology => InterconnectionTopology, :interconnection_RDMA => Query, :interconnection => Interconnection, :storage_size => Tuple{AtLeast0,AtMostInf,Q} where Q, :storage_latency => Tuple{AtLeast0,AtMostInf,Q} where Q, :storage_bandwidth => Tuple{AtLeast0,AtMostInf,Q} where Q, :storage_networkbandwidth => Tuple{AtLeast0,AtMostInf,Q} where Q, :storage_type => StorageType, :storage_interface => StorageInterface ] state.platform_feature_default_all = Dict(defT...) state.platform_feature_default = copy(state.platform_feature_default_all) function setupWorkers(platform_description_dict, platform_feature) try colocated_procs = procs(myid()) node_coworker_count = if (1 in colocated_procs) length(colocated_procs) - 1 else length(colocated_procs) end vcount = platform_description_dict[:node_vcpus_count] pcount = platform_description_dict[:processor_count] ccount = pcount * platform_description_dict[:processor_core_count] tcount = ccount * platform_description_dict[:processor_core_threads_count] if vcount == node_coworker_count && platform_description_dict[:maintainer] == CloudProvider platform_feature[:node_coworker_count] = PerVCPU elseif (node_coworker_count = 0) platform_feature[:node_coworker_count] = NoCoworkers elseif node_coworker_count == 1 platform_feature[:node_coworker_count] = PerNode elseif pcount == node_coworker_count platform_feature[:node_coworker_count] = PerProcessor elseif ccount == node_coworker_count platform_feature[:node_coworker_count] = PerCore elseif tcount == node_coworker_count platform_feature[:node_coworker_count] = PerThread else platform_feature[:node_coworker_count] = Unmapped end catch _ platform_feature[:node_coworker_count] = NoCoworkers end end function load!() empty!(state.platform_feature_all) platform_description_dict = readPlatormDescription() platform_description_dict["node"]["node_count"] = try Distributed.nworkers() catch _ 1 end platform_description_dict["node"]["node_threads_count"] = try Threads.nthreads() catch _ 1 end loadFeatures!(platform_description_dict, state.platform_feature_default_all, state.platform_feature_all) setupWorkers(platform_description_dict, state.platform_feature_all) empty!(state.platform_feature) for (k,v) in state.platform_feature_all state.platform_feature[k] = v end end # load!() function update_platform_feature!(parameter_id, actual_type) state.platform_feature[parameter_id] = actual_type (parameter_id,actual_type) end function platform_feature(parameter_id) state.platform_feature[parameter_id] end function platform_features() state.platform_feature end function empty_platform_feature!() empty!(state.platform_feature) empty!(state.platform_feature_default) end function reset_platform_feature!() for (k,v) in state.platform_feature_all state.platform_feature[k] = v end for (k,v) in state.platform_feature_default_all state.platform_feature_default[k] = v end keys(state.platform_feature) end function all_platform_feature!() for (k,v) in state.platform_feature_all if (!haskey(state.platform_feature, k)) state.platform_feature[k] = v end end for (k,v) in state.platform_feature_default_all state.platform_feature_default[k] = v end keys(state.platform_feature) end function default_platform_feature!() for (k,v) in state.platform_feature_default_all state.platform_feature[k] = v end for (k,v) in state.platform_feature_default_all state.platform_feature_default[k] = v end keys(state.platform_feature) end function include_platform_feature!(f) state.platform_feature[f] = state.platform_feature_all[f] state.platform_feature_default[f] = state.platform_feature_default_all[f] keys(state.platform_feature) end function platform_parameter_macro!(f) if (f == :clear) empty_platform_feature!() elseif (f == :all) all_platform_feature!() elseif (f == :reset) reset_platform_feature!() elseif (f == :default) default_platform_feature!() elseif typeof(f) == Symbol check_all(f) include_platform_feature!(f) elseif f.head == :(::) x = f.args[2] f = f.args[1] check_all(f) update_platform_feature!(f,getFeature(f, string(x), state.platform_feature_default_all, feature_type)) else platform_syntax_message() end end function platform_parameters_kernel(p_list) # move p_list (p::T) to p_dict (p => T) p_dict = Dict(); foreach(x->get!(p_dict, check(x.args[1]), x.args[2]), p_list) # replace default types to required types in kernel platform parameters r = [] for k in keys(state.platform_feature) found = get(p_dict, k, nothing) # found_v = !isnothing(found) && !(typeof(found) == Symbol) && ((found.head == :curly && length(found.args) == 2 && found.args[1] == :Type) || (found.head == :macrocall && length(found.args) > 0 && found.args[1] in [Symbol("@atleast"), Symbol("@atmost"), Symbol("@between"), Symbol("@just"), Symbol("@unrestricted")])) ? :(::$found) : :(::Type{<:$found}) found_v = :(::Type{<:$found}) v = state.platform_feature_default[k] push!(r, isnothing(found) ? :(::Type{<:$v}) : found_v) end return r end function check_all(parameter_id) if (!haskey(state.platform_feature_all,parameter_id)) throw(parameter_id) end parameter_id end function check(parameter_id) if (!haskey(state.platform_feature,parameter_id)) throw(parameter_id) end parameter_id end global const can_add_parameter = Ref{Bool}(true) function denyaddparameter!() global can_add_parameter[] = false end function getaddparameter() return can_add_parameter[] end macro platform(t, f, ff...) try if (length(ff) > 0) platform_syntax_message() return end if (t == :default) # @platform default creates an entry function, called from outside, and a (default) kernel function denyaddparameter!() e = build_entry_function(f) k = build_kernel_function(f) return esc(:($e;$k)) #return k elseif (t == :aware) denyaddparameter!() return esc(build_kernel_function(f)) elseif ((t == :parameter || t == :feature) && getaddparameter()) platform_parameter_macro!(f) elseif ((t == :parameter || t == :feature) && !getaddparameter()) @info "cannot add parameters after including the first kernel method" elseif (t == :assumption) assumptions_dict[][f.args[1]] = f.args[2] return nothing else platform_syntax_message() end catch e @error e platform_syntax_message() end end const assumptions_dict = Ref(Dict{Symbol,Expr}()) function platform_syntax_message() @info "usage: @platform [default | aware] <function declaration>" @info " @platform feature [clear | all | reset]" @info " @platform feature <feature name>" @info " @platform feature <feature name> new_feature" end # build_entry_function function build_entry_function(f::Expr) # builds the entry function signature (fname, fargs, kargs, fsign) = build_entry_signature(f.args[1]) # builds the entry function body fbody = build_entry_body(fname, fargs, kargs) # builds the :function node Expr(:function, fsign, fbody) end function build_entry_signature(fsign::Expr) fsign_args = copy(fsign.args) # take the :call node arguments from inside the :where node if there is a where clause in the default kernel. where_vars == [] if it does not exist. (call_node_args, where_vars) = fsign.head == :where ? (popfirst!(fsign_args).args, fsign_args) : (fsign_args, []) # takes the name of the kernel (first argument to :call) fname = popfirst!(call_node_args) # look for the existence of keyword parameters (second argument to :call). keyword_parameters == [], if they do not exist. keyword_parameters = length(call_node_args) > 1 && typeof(call_node_args[1]) == Expr && call_node_args[1].head == :parameters ? popfirst!(call_node_args).args : [] # takes a dictionary mapping par->actual_type and returns an expression :(par::actual_type) # the remaining elements in call_node_args are the kernel parameters. platform_parameters = map(p->Expr(:kw,Expr(:(::),p[1],Type{<:state.platform_feature_default[p[1]]}),p[2]), collect(state.platform_feature)) # rebuild the keyword parameters node for the entry function, including the platform_parameters keyword_parameters_node = Expr(:parameters, platform_parameters..., keyword_parameters...) # collect the identifiers of the kernel parameters fargs = map(collect_arg_names, call_node_args) # collect the identifiers of the keyword parameters kargs = map(p -> p.args[1] , keyword_parameters) # build the argument list of the call node (:call) of the entry function new_call_node_args = [fname, keyword_parameters_node, call_node_args...] return (fname, fargs, kargs, Expr(:where, Expr(:call, new_call_node_args...), where_vars...)) end function build_entry_body(fname, fargs, kargs) # takes the identifiers of the platform parameters pargs = keys(state.platform_feature) # builds the :parameters node for the keyword arguments of the kernel invocation (kargs), since the identifiers must be reerenced. kargs = Expr(:parameters, map(p -> Expr(:kw, p, p), kargs)...) # returns the :call node for the kernel invocation (note that platform arguments comes before kernel arguments) Expr(:call, fname, kargs, pargs..., fargs...) end # build_kernel_function function build_kernel_function(f::Expr) # builds the kernel signature. The kernel's body (f.args[2]) is not modified. fsign = build_kernel_signature(f.args[1]) # returns the :function node. Expr(:function, fsign, f.args[2]) end # the code is similar to the code of build_kernel_entry function build_kernel_signature(fsign::Expr) fsign_args = copy(fsign.args) (call_node_args, where_vars) = fsign.head == :where ? (popfirst!(fsign_args).args, fsign_args) : (fsign_args, []) fname = popfirst!(call_node_args) keyword_parameters_node = length(call_node_args) > 0 && typeof(call_node_args[1]) == Expr && call_node_args[1].head == :parameters ? popfirst!(call_node_args) : nothing # takes the platform parameters of the kernel aware_parameters_args = [] if length(call_node_args) > 0 if typeof(call_node_args[1]) == Expr && call_node_args[1].head == :braces aware_parameters_args = popfirst!(call_node_args).args elseif typeof(call_node_args[1]) == Expr && call_node_args[1].head == :$ aware_parameters_args = assumptions_dict[][call_node_args[1].args[1]].args popfirst!(call_node_args) end end # inserts the kernel's platform parameters into the list platform parameters. ppars = platform_parameters_kernel(aware_parameters_args) new_call_node_args = isnothing(keyword_parameters_node) ? [fname, ppars..., call_node_args...] : [fname, keyword_parameters_node, ppars..., call_node_args...] Expr(:where, Expr(:call, new_call_node_args...), where_vars...) end # utility functions function collect_arg_names(par) if (typeof(par) == Symbol) par elseif (par.head == :kw) par.args[1].args[1] elseif (par.head == :(::)) par.args[1] elseif (par.head == :(...)) par.args[1] end end
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
2084
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ function try_download(url,fname) try if (isfile(fname)) cp(fname,fname * ".backup", force=true) end Downloads.download(url, fname) catch e @info "error downloading $url." if (isfile(fname) || isfile(fname * ".backup")) @info " Using existing file $fname" if (!isfile(fname)) cp(fname * ".backup", fname) end else @info " Check internet connection and try again." rethrow(e) end end end function readDB(filename) d = Vector() i=0 for ls in readlines(filename) if i>0 l = split(ls,',') ks = split(l[1],';') d2 = d for k in ks next_d = nothing for (key,value) in d if (k == key) next_d = value end end if (isnothing(next_d)) next_d = Vector() push!(d,(k,next_d)) end d = next_d end push!(d,(l[2],tuple(l[2:length(l)]...))) d = d2 end i = i + 1 end return d end function lookupDB(db, key) d = db while typeof(d) <: Vector ks = d found = false for (k,v) in ks if (occursin(k,key)) d = v; found = true break end end if !found return nothing end end return d end function readDB2(filename) d = Dict() i=0 for ls in readlines(filename) l = split(ls,',') if i==0 global columns = Vector() for c in l push!(columns, c) end elseif i>0 dd = Dict() i = 1 for c in columns dd[c] = l[i] i = i + 1 end d[l[1]] = dd end i = i + 1 end return d end
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
30937
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ const processor_dict = Ref{Vector}() const accelerator_dict = Ref{Vector}() function loadDBs!() database_path = @get_scratch!("database_path") procdb_intel_url = "https://raw.githubusercontent.com/PlatformAwareProgramming/PlatformAware.jl/master/src/features/qualifiers/intel/db-processors.Intel.csv" procdb_amd_url = "https://raw.githubusercontent.com/PlatformAwareProgramming/PlatformAware.jl/master/src/features/qualifiers/amd/db-processors.AMD.csv" procdb_aws_url = "https://raw.githubusercontent.com/PlatformAwareProgramming/PlatformAware.jl/master/src/features/qualifiers/aws/db-processors.AWS.csv" accdb_intel_url = "https://raw.githubusercontent.com/PlatformAwareProgramming/PlatformAware.jl/master/src/features/qualifiers/intel/db-accelerators.Intel.csv" accdb_amd_url = "https://raw.githubusercontent.com/PlatformAwareProgramming/PlatformAware.jl/master/src/features/qualifiers/amd/db-accelerators.AMD.csv" accdb_nvidia_url = "https://raw.githubusercontent.com/PlatformAwareProgramming/PlatformAware.jl/master/src/features/qualifiers/nvidia/db-accelerators.NVIDIA.csv" # procdb_intel_fname = "/home/heron/Dropbox/Copy/ufc_mdcc_hpc/PlatformAware/PlatformAware.jl/src/features/qualifiers/intel/db-processors.Intel.csv" #joinpath(database_path,basename(procdb_intel_url)) # procdb_amd_fname = "/home/heron/Dropbox/Copy/ufc_mdcc_hpc/PlatformAware/PlatformAware.jl/src/features/qualifiers/amd/db-processors.AMD.csv" #joinpath(database_path,basename(procdb_amd_url)) # accdb_intel_fname = "/home/heron/Dropbox/Copy/ufc_mdcc_hpc/PlatformAware/PlatformAware.jl/src/features/qualifiers/intel/db-accelerators.Intel.csv" #joinpath(database_path,basename(accdb_intel_url)) # accdb_amd_fname = "/home/heron/Dropbox/Copy/ufc_mdcc_hpc/PlatformAware/PlatformAware.jl/src/features/qualifiers/amd/db-accelerators.AMD.csv" #joinpath(database_path,basename(accdb_amd_url)) # accdb_nvidia_fname = "/home/heron/Dropbox/Copy/ufc_mdcc_hpc/PlatformAware/PlatformAware.jl/src/features/qualifiers/nvidia/db-accelerators.NVIDIA.csv" #joinpath(database_path,basename(accdb_nvidia_url)) procdb_intel_fname = joinpath(database_path,basename(procdb_intel_url)) procdb_amd_fname = joinpath(database_path,basename(procdb_amd_url)) procdb_aws_fname = joinpath(database_path,basename(procdb_aws_url)) accdb_intel_fname = joinpath(database_path,basename(accdb_intel_url)) accdb_amd_fname = joinpath(database_path,basename(accdb_amd_url)) accdb_nvidia_fname = joinpath(database_path,basename(accdb_nvidia_url)) try_download(procdb_intel_url, procdb_intel_fname) try_download(procdb_amd_url, procdb_amd_fname) try_download(procdb_aws_url, procdb_aws_fname) try_download(accdb_intel_url, accdb_intel_fname) try_download(accdb_amd_url, accdb_amd_fname) try_download(accdb_nvidia_url, accdb_nvidia_fname) processor_dict_intel = readDB(procdb_intel_fname) processor_dict_amd = readDB(procdb_amd_fname) processor_dict_aws = readDB(procdb_aws_fname) accelerator_dict_intel = readDB(accdb_intel_fname) accelerator_dict_amd = readDB(accdb_amd_fname) accelerator_dict_nvidia = readDB(accdb_nvidia_fname) global processor_dict[] = vcat(processor_dict_amd, processor_dict_aws, processor_dict_intel) global accelerator_dict[] = vcat(accelerator_dict_intel, accelerator_dict_amd, accelerator_dict_nvidia) end function get_info_dict(idtype) command = `sudo lshw -xml -quiet -C $idtype` xmlinfo = read(command, String) xml_dict(xmlinfo) end function identifyComponent(idtype) dict = get_info_dict(idtype) l = Vector() node = dict["list"]["node"] if (typeof(node) == Vector{Any}) for v in enumerate(node) push!(l,v[2]) end else push!(l,node) end return l end function identifySIMD(capabilities) l = Vector() # collect the supported SIMD extensions for capacity in capabilities if (occursin("avx512",capacity)) push!(l,:AVX512) elseif (occursin("avx2",capacity)) push!(l,:AVX2) elseif (occursin("avx",capacity)) push!(l,:AVX) elseif (occursin("sse4_a",capacity)) push!(l,:SSE4a) elseif (occursin("sse4_1",capacity)) push!(l,:SSE41) elseif (occursin("sse4_2",capacity)) push!(l,:SSE42) elseif (occursin("ssse3",capacity)) push!(l,:SSSE3) elseif (occursin("sse3",capacity)) push!(l,:SSE3) elseif (occursin("sse2",capacity)) push!(l,:SSE2) elseif (occursin("sse",capacity)) push!(l,:SSE) elseif (occursin("mmx",capacity)) push!(l,:MMX) elseif (occursin("3dnowext",capacity)) push!(l,:Now3Dx) elseif (occursin("3dnow",capacity)) push!(l,:Now3D) end end # take the most advanced one (currently, only one is supported) if (in(:AVX512,l)) return string(:AVX512) elseif (in(:AVX2,l)) return string(:AVX2) elseif (in(:AVX,l)) return string(:AVX) elseif (in(:SSE4a,l)) return string(:SSE4a) elseif (in(:SSE41,l)) return string(:SSE41) elseif (in(:SSE42,l)) return string(:SSE42) elseif (in(:SSSE3,l)) return string(:SSSE3) elseif (in(:SSE3,l)) return string(:SSE3) elseif (in(:SSE2,l)) return string(:SSE2) elseif (in(:SSE,l)) return string(:SSE) elseif (in(:MMX,l)) return string(:MMX) else return nothing end end function identifySIMD_2(exts) exts = split(exts,';') if (!isnothing(exts)) if in("AVX-512",exts) return string(:AVX512) elseif in("AVX2", exts) return string(:AVX2) elseif in("SSE4.1",exts) return string(:SSE_4_1) elseif in("SSE4.2",exts) return string(:SSE_4_2) elseif in("SSSE3",exts) return string(:SSSE_3) elseif in("SSE3",exts) return string(:SSE_3) elseif in("SSE2",exts) return string(:SSE_2) elseif in("SSE", exts) return string(:SSE) elseif in("MMX", exts) return string(:MMX) else exts == "nothing" return string(:ProcessorSIMD) end else return string(:ProcessorSIMD) end end function determineLevel(capabilities) reduce(&, map(v -> in(v, capabilities), ["avx512f","avx512bw","avx512cd","avx512dq","avx512vl"])) ? 4 : reduce(&, map(v -> in(v, capabilities), ["avx","avx2","bmi1","bmi2","f16c","fma","abm","movbe","xsave"])) ? 3 : reduce(&, map(v -> in(v, capabilities), ["cx16","lahf_lm","popcnt","sse4_1","sse4_2","ssse3"])) ? 2 : reduce(&, map(v -> in(v, capabilities), ["lm","cmov","cx8","fpu","fxsr","mmx","syscall","sse2"])) ? 1 : 0 end function determineLevel_2() reduce(&, CpuId.cpufeature.([:AVX512F,:AVX512BW,:AVX512CD,:AVX512DQ,:AVX512VL])) ? 4 : reduce(&, CpuId.cpufeature.([:AVX,:AVX2,:BMI1,:BMI2,:F16C,:FMA3,#=:ABM,=#:MOVBE,:XSAVE])) ? 3 : reduce(&, CpuId.cpufeature.([:CX16,#=:LAHF_LM,=#:POPCNT,:SSE41,:SSE42,:SSSE3])) ? 2 : reduce(&, CpuId.cpufeature.([:LM,:CMOV,:CX8,:FPU,:FXSR,:MMX,:SYSCALL,:SSE2])) ? 1 : 0 end # https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/ function identifyISA(capabilities) for capacity in capabilities if (occursin("x86-64",capacity)) level_dict = Dict(0 => string(:ISA_x86_64), 1 => string(:ISA_x86_64_v1), 2 => string(:ISA_x86_64_v2), 3 => string(:ISA_x86_64_v3), 4 => string(:ISA_x86_64_v4)) level = determineLevel(capabilities) return level_dict[level] elseif (occursin("x86-32",capacity)) return string(:ISA_x86_32) elseif (occursin("amd64",capacity)) return string(:ISA_AMD_64) elseif (occursin("ia64",capacity)) return string(:ISA_IA_64) elseif (occursin("i386",capacity)) return string(:ISA_x86_32) end end end function identifyISA_2(isa) if (isa == "64-bit") level_dict = Dict(0 => string(:ISA_x86_64), 1 => string(:ISA_x86_64_v1), 2 => string(:ISA_x86_64_v2), 3 => string(:ISA_x86_64_v3), 4 => string(:ISA_x86_64_v4)) level = determineLevel_2() return level_dict[level] else (isa == "Itanium 64-bit") return string(:ISA_IA_64) end end #= fn = open("src/features/qualifiers/database/processors/intel_processors_data.txt") d = JSON.parse(fn) close(fn) fn_out = open("intel_processors_info.jl","w") for p in d if (haskey(p,"Processor Number")) println(fn_out, (haskey(p,"Product Collection") ? get(p,"Product Collection",nothing) : nothing, haskey(p,"Processor Number") ? get(p,"Processor Number",nothing) : nothing, haskey(p,"Total Cores") ? parse(Int64,get(p,"Total Cores",nothing)) : nothing, haskey(p,"Processor Base Frequency") ? get(p,"Processor Base Frequency",nothing) : nothing, haskey(p,"Total Threads") ? parse(Int64,get(p,"Total Threads",nothing)) : nothing, haskey(p,"Instruction Set") ? get(p,"Instruction Set",nothing) : nothing, haskey(p,"Instruction Set Extensions") ? split(replace(get(p,"Instruction Set Extensions",nothing),"Intel®"=>"", " "=>""),',') : nothing, haskey(p,"Product Collection") ? replace(get(p,"Code Name",nothing),"Products formerly" => "", " " => "") : nothing)) else end end close(fn_out) =# function identifyProcessorModel(processor_string) lookupDB(processor_dict[], processor_string) end function identifyAcceleratorModel(accelerator_string) lookupDB(accelerator_dict[], accelerator_string) end function getCoreClockString(clock_string) if (!isnothing(clock_string)) clock_unit = match(r"GHz|MHz",clock_string) clock_unit = isnothing(clock_unit) ? nothing : clock_unit.match multiplier = Dict("GHz" => "G", "MHz" => "M", nothing => "") result = match(r"^[-+]?[0-9]*\.?[0-9]+",clock_string) isnothing(result) ? "unknown" : result.match * multiplier[clock_unit] else "unknown" end end function identifySIMD_CpuId() if CpuId.cpufeature(:AVX512F) return string(:AVX512) elseif CpuId.cpufeature(:AVX2) return string(:AVX2) elseif CpuId.cpufeature(:SSE41) return "SSE_4_1" elseif CpuId.cpufeature(:SSE42) return "SSE_4_2" elseif CpuId.cpufeature(:SSSE3) return "SSSE_3" elseif CpuId.cpufeature(:SSE3) return "SSE_3" elseif CpuId.cpufeature(:SSE2) return "SSE_2" elseif CpuId.cpufeature(:SSE) return "SSE" elseif CpuId.cpufeature(:MMX) return "MMX" else return "ProcessorSIMD" end end # using CpuId function collectProcessorFeatures_CpuId() processor_features = Dict{String,Any}() processor_features["processor_count"] = CpuId.cpunodes() processor_features["processor_core_count"] = CpuId.cpucores() processor_features["processor_core_threads_count"] = CpuId.cputhreads() processor_features["processor_core_clock"] = CpuId.cpu_base_frequency() processor_features["processor_simd"] = identifySIMD_CpuId() cache_config = CpuId.cachesize() processor_features["processor_core_L1_size"] = cache_config[1] processor_features["processor_core_L2_size"] = cache_config[2] processor_features["processor_L3_size"] = cache_config[3] processor_features["processor_manufacturer"] = string(CpuId.cpuvendor()) cpu_brand = string(CpuId.cpuvendor()) * " " * CpuId.cpubrand() cpu_brand = replace(cpu_brand,"(tm)" => "","(TM)" => "", "(r)" => "", "(R)" => "") proc_info = identifyProcessorModel(cpu_brand) if (!isnothing(proc_info)) processor_features["processor_manufacturer"] = isnothing(processor_features["processor_manufacturer"]) ? proc_info[9] : processor_features["processor_manufacturer"] processor_features["processor_core_clock"] = isnothing(processor_features["processor_core_clock"]) ? getCoreClockString(proc_info[3]) : processor_features["processor_core_clock"] processor_features["processor_core_count"] = isnothing(processor_features["processor_core_count"]) ? parse(Int64,proc_info[2]) : processor_features["processor_core_count"] processor_features["processor_core_threads_count"] = isnothing(processor_features["processor_core_threads_count"]) ? parse(Int64,proc_info[4]) : processor_features["processor_core_count"] processor_features["processor_simd"] = isnothing(processor_features["processor_simd"]) ? identifySIMD_2(proc_info[6]) : processor_features["processor_simd"] processor_features["processor_isa"] = identifyISA_2(proc_info[5]) processor_features["processor_microarchitecture"] = proc_info[7] tdp = tryparse(Int64, proc_info[10]) processor_features["processor_tdp"] = isnothing(tdp) ? proc_info[11] : parse(Int64,proc_info[10]) processor_features["processor"] = proc_info[8] end return processor_features end # https://unix.stackexchange.com/questions/43539/what-do-the-flags-in-proc-cpuinfo-mean # https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/x86/include/asm/cpufeatures.h #=function collectProcessorFeatures(l) processor_features_list = Dict{String,Any}() i=1 for processor_info in l # take the first processor in the list, by supposing homogeneity. processor_features = Dict{String,Any}() get!(processor_features_list, string(i), processor_features) processor_features["processor_count"] = 1 processor_features["processor_core_count"] = processor_info[2] processor_features["processor_core_threads_count"] = processor_info[3] processor_features["processor_core_clock"] = nothing processor_features["processor_simd"] = identifySIMD(processor_info[4]) processor_features["processor_isa"] = identifyISA(processor_info[4]) processor_features["processor_core_L1_size"] = "unset" #TODO processor_features["processor_core_L2_size"] = "unset" #TODO processor_features["processor_L3_size"] = "unset" #TODO # looking at the database proc_info = identifyProcessorModel(processor_info[1]) if (!isnothing(proc_info)) processor_features["processor_manufacturer"] = proc_info[10] processor_features["processor_core_clock"] = isnothing(processor_features["processor_core_clock"]) ? getCoreClockString(proc_info[3]) : processor_features["processor_core_clock"] processor_features["processor_core_count"] = isnothing(processor_features["processor_core_count"]) ? proc_info[2] : processor_features["processor_core_count"] processor_features["processor_core_threads_count"] = isnothing(processor_features["processor_core_threads_count"]) ? proc_info[4] : processor_features["processor_core_count"] processor_features["processor_simd"] = isnothing(processor_features["processor_simd"]) ? identifySIMD_2(proc_info[6]) : processor_features["processor_simd"] processor_features["processor_isa"] = isnothing(processor_features["processor_isa"]) ? identifyISA_2(proc_info[5]) : processor_features["processor_isa"] processor_features["processor_microarchitecture"] = proc_info[7] processor_features["processor_tdp"] = !isnothing(proc_info[9]) ? parse(Int64,match(r"[1-9]*",proc_info[11]).match) : nothing processor_features["processor"] = proc_info[9] end i = i + 1 end return length(processor_features_list) > 1 ? processor_features_list : processor_features_list["1"] end =# function collectProcessorFeaturesDefault() processor_features = Dict() processor_features["processor_count"] = 1 processor_features["processor_core_count"] = 1 processor_features["processor_core_threads_count"] = 1 processor_features["processor_core_clock"] = "unset" processor_features["processor_simd"] = "unset" processor_features["processor_core_L1_size"] = "unset" processor_features["processor_core_L2_size"] = "unset" processor_features["processor_L3_size"] = "unset" processor_features["processor_manufacturer"] = "unset" processor_features["processor_tdp"] = "unset" processor_features["processor"] = "unset" return processor_features end # using CpuId (safe) function identifyProcessor() try processor_features = collectProcessorFeatures_CpuId() @info "Main processor detection succesful." return processor_features catch @warn "Main processor detection failed." @info "Detection of main processors failed. Using default features. You can setup manually." return collectProcessorFeaturesDefault() end #= l = Vector() for p in identifyComponent("processor") # using lshw lc = Vector() for c in p["capabilities"]["capability"] push!(lc,c[:id]) end cdict = Dict() for c in values(p["configuration"]["setting"]) get!(cdict,c[:id],c[:value]) end processor_core_count = parse(Int64,cdict["enabledcores"]) processor_core_threads_count = parse(Int64,cdict["threads"]) push!(l,(p["product"],processor_core_count, processor_core_threads_count,lc)) end collectProcessorFeatures(l) =# end function collectAcceleratorFeatures(l) accelerator_features = Dict() # Return the first display device that is an accelerator. # This is valid only for GPUs. i = 1 for acc_brand in keys(l) # looking at the database acc_info = identifyAcceleratorModel(replace(acc_brand,"[" => "", "]" => "", "(" => "", ")" => "" )) if (isnothing(acc_info)) continue end device = Dict() accelerator_features[string(i)] = device device["accelerator_count"] = l[acc_brand] device["accelerator"] = acc_info[2] device["accelerator_type"] = acc_info[3] device["accelerator_manufacturer"] = acc_info[4] device["accelerator_api"] = acc_info[5] device["accelerator_architecture"] = acc_info[6] device["accelerator_memory_size"] = acc_info[7] device["accelerator_tdp"] = acc_info[8] device["accelerator_processor_count"] = length(acc_info) > 8 ? acc_info[9] : "unset" device["accelerator_processor"] = length(acc_info) > 9 ? acc_info[10] : "unset" device["accelerator_memory_type"] = length(acc_info) > 10 ? acc_info[11] : "unset" i = i + 1 end return i > 1 ? accelerator_features["1"] : accelerator_features end function collectAcceleratorFeaturesDefault() default_features = Dict() default_features["accelerator_count"] = 0 default_features["accelerator"] = "unset" default_features["accelerator_type"] = "unset" default_features["accelerator_manufacturer"] = "unset" default_features["accelerator_interconnect"] = "unset" default_features["accelerator_api"] = "unset" default_features["accelerator_architecture"] = "unset" default_features["accelerator_memory_size"] = "unset" default_features["accelerator_tdp"] = "unset" default_features["accelerator_processor"] = "unset" default_features["accelerator_processor_count"] = "unset" default_features["accelerator_memory_type"] = "unset" return default_features end function identifyAccelerator() try l = Dict() for d in identifyComponent("display") k = "$(d["vendor"]) $(d["product"])" l[k] = haskey(l,k) ? l[k] + 1 : 1 end accelerator_features = if (!isempty(l)) collectAcceleratorFeatures(l) else collectAcceleratorFeaturesDefault() end @info "Accelerator detection successful" return accelerator_features catch @warn "Accelerator detection failed." @info "Detection of accelerators failed. Using default features. You can setup manually." return collectAcceleratorFeaturesDefault() end end #= function identifyMemoryBank!(l,node) size = 0 if ("node" in keys(node[2])) if (typeof(node[2]["node"]) == Vector{Any}) for v2 in enumerate(node[2]["node"]) if ("description" in keys(v2[2])) size = parse(Int64,v2[2]["size"][""]) push!(l, (v2[2]["description"],size)) end end else if ("description" in keys(node[2]["node"])) size = parse(Int64,node[2]["node"]["size"][""]) push!(l, (node[2]["node"]["description"],size)) end end end end =# function getMemorySize(mem_size) try size_unit = match(r"KB|MB|GB|TB",mem_size) size_unit = isnothing(size_unit) ? nothing : size_unit.match multiplier = Dict("KB" => 2^10, "MB" => 2^20, "GB" => 2^30, "TB" => 2^40, nothing => 1) return parse(Int64,match(r"^[-+]?[0-9]*\.?[0-9]+",mem_size).match) * multiplier[size_unit] catch error @warn string(error) return "unknown" end end function getMemorySpeed(mem_speed) try speed_unit = match(r"MT/s|GT/s|MHz|GHz",mem_speed) speed_unit = isnothing(speed_unit) ? nothing : speed_unit.match multiplier = Dict("MT/s" => 1, "GT/s" => 2^10, "MHz" => 1, "GHz" => 2^10, nothing => 1) return parse(Int64,match(r"^[-+]?[0-9]*\.?[0-9]+",mem_speed).match) * multiplier[speed_unit] catch error @warn string(error) return "unknown" end end # using dmidecode function collectMemoryFeatures(dict_list) # dict_list is a dictionary with the memory banks returned by "dmidecode". # It is assumed that all banks have the same characteristics. # the total memory size is the sum of the size of memory banks. memory_features = Dict() memory_features["node_memory_size"] = 0 for (k,dict) in dict_list memory_features["node_memory_type"] = !haskey(dict,"Type") || dict["Type"] == "Unknown" ? "unknown" : dict["Type"] memory_features["node_memory_frequency"] = !haskey(dict,"Speed") || dict["Speed"] == "Unknown" ? "unknown" : getMemorySpeed(dict["Speed"]) memory_features["node_memory_size"] = !haskey(dict,"Size") || dict["Size"] == "Unknown" ? "unknown" : memory_features["node_memory_size"] + getMemorySize(dict["Size"]) memory_features["node_memory_latency"] = "unset" memory_features["node_memory_bandwidth"] = !haskey(dict,"Configured Memory Speed") || dict["Configured Memory Speed"] == "Unknown" ? "unknown" : getMemorySpeed(dict["Configured Memory Speed"]) end return memory_features end function collectMemoryFeaturesDefault() memory_features = Dict() memory_features["node_memory_size"] = 0 memory_features["node_memory_type"] = "unknown" memory_features["node_memory_frequency"] = "unknown" memory_features["node_memory_size"] = "unknown" memory_features["node_memory_latency"] = "unknown" memory_features["node_memory_bandwidth"] = "unknown" return memory_features end # using dmidecode (unsafe ! text output) function identifyMemory() try command = `sudo dmidecode -t memory` l = split(replace(read(command, String),"\t"=>""),'\n') d1 = Dict() i=0 j=0 for s in l if s == "Memory Device" i = i + 1; j = j + 1 d1[j] = Dict() else if (i>0 && in(':',s)) ss = split(s,':') d1[j][strip(ss[1])] = strip(ss[2]) elseif (i>0 && !in(':',s)) i=0 end end end memory_features = collectMemoryFeatures(d1) @info "Memory detection successfull." return memory_features catch @warn "Memory detection failed." @info "Detection of memory features failed. Using default features. You can setup manually." return collectMemoryFeaturesDefault() end #=dict = get_info_dict("memory") l = Vector() node = dict["list"]["node"] if (typeof(node) == Vector{Any}) for v1 in enumerate(node) identifyMemoryBank!(l,v1) end else identifyMemoryBank!(l,node) end return l =# end # using lsblk (safe - JSON output) function identifyStorage() storage_features = Dict() try command = `lsblk --json -d --bytes -o rota,size,tran,type` dict = JSON.parse(read(command, String)) i = 1 for device in dict["blockdevices"] if (device["type"] == "disk") storage_device = Dict() storage_features[string(i)] = storage_device storage_type = device["rota"] ? "StorageType_HDD" : "StorageType_SSD"; storage_interface = isnothing(device["tran"]) ? "unknown" : uppercase(device["tran"]) storage_size = device["size"] storage_latency = "unset" storage_bandwidth = "unset" storage_networkbandwidth = "unset" storage_device["storage_type"] = storage_type storage_device["storage_interface"] = storage_interface storage_device["storage_size"] = storage_size storage_device["storage_latency"] = storage_latency storage_device["storage_bandwidth"] = storage_bandwidth storage_device["storage_networkbandwidth"] = storage_networkbandwidth i = i + 1 end end @info "Storage detection successfull." catch @warn "Storage detection failed." @info "Detection of storage features failed. Using default features. You can setup manually." # default storage_features["storage_type"] = "unset" storage_features["storage_interface"] = "unset" storage_features["storage_size"] = "unset" storage_features["storage_latency"] = "unset" storage_features["storage_bandwidth"] = "unset" storage_features["storage_networkbandwidth"] = "unset" end return length(storage_features) > 1 ? storage_features : storage_features["1"] end # TODO function identityInterconnection() @warn "Interconnection detection failed" @info "Detection of interconnection features (for cluster computing) not yet implemented. Using default features." @info "You can setup interconnection features manually." interconnection_features = Dict() interconnection_features["interconnection_startuptime"] = "unset" interconnection_features["interconnection_latency"] = "unset" interconnection_features["interconnection_bandwidth"] = "unset" interconnection_features["interconnection_topology"] = "unset" interconnection_features["interconnection_RDMA"] = "unset" interconnection_features["interconnection"] = "unset" return interconnection_features end function identifyNode() node_features = Dict() node_features["node_count"] = 1 node_features["node_threads_count"] = 1 node_features["node_provider"] = "OnPremises" node_features["node_virtual"] = "No" node_features["node_dedicated"] = "No" node_features["node_machinefamily"] = "unset" node_features["node_machinetype"] = "unset" node_features["node_vcpus_count"] = "unset" for p in subtypes(CloudProvider) @info "Checking $(string(p)) provider." ok = getNodeFeatures(p, node_features) if (isnothing(ok)) @info "$(string(p)) provider failed" else @info "$(string(p)) provider succesful" end; end @info "Node identification complete." return node_features end function addNodeFeatures!(platform_features, node_features) platform_features["node"] = node_features end function addProcessorFeatures!(platform_features, processor_features) platform_features["processor"] = processor_features end function addAcceleratorFeatures!(platform_features, accelerator_features) platform_features["accelerator"] = accelerator_features end function addMemoryFeatures!(platform_features, memory_features) platform_features["memory"] = memory_features end function addStorageFeatures!(platform_features, storage_features) platform_features["storage"] = storage_features end function addInterconnectionFeatures!(platform_features, interconnection_features) platform_features["interconnection"] = interconnection_features end function setup() platform_features = Dict() node_features = nothing @sync begin @async begin @info "Started node identification."; node_features = identifyNode() end @async begin @info "Started processor detection."; processor_features = identifyProcessor(); @info "Started accelerator detection."; accelerator_features = identifyAccelerator() @info "Started memory system detection."; memory_features = identifyMemory() @info "Started storage detection."; storage_features = identifyStorage() @info "Started interconnection detection."; interconnection_features = identityInterconnection() addProcessorFeatures!(platform_features, processor_features) addAcceleratorFeatures!(platform_features, accelerator_features) addMemoryFeatures!(platform_features, memory_features) addStorageFeatures!(platform_features, storage_features) addInterconnectionFeatures!(platform_features, interconnection_features) end end addNodeFeatures!(platform_features, node_features) if (!isfile("Platform.toml")) @sync begin Threads.@spawn begin fn = open("Platform.toml","w") TOML.print(fn, platform_features) close(fn) end end @info "The platform description file (Platform.toml) was created in the current folder." @info "You can move it to your preferred target." @info "Platform.toml will be searched in the following locations:" @info " 1) A file path pointed by a PLATFORM_DESCRIPTION environment variable;" @info " 2) The current directory;" @info " 3) The /etc directory." else TOML.print(stdout, platform_features) @info "A platform description file (Platform.toml) already exists in the current folder. It will not be removed or overwritten." @info "You can see above the Platform.toml content calculated by the feature detection processing." end end
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
9720
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ abstract type PlatformType end abstract type QuantifierFeature <: PlatformType end abstract type QualifierFeature <: PlatformType end @enum FeatureType qualifier=1 api_qualifier quantifier export FeatureType global feature_type = Dict( :node_count => quantifier, :node_threads_count => quantifier, :node_provider => qualifier, :node_virtual => qualifier, :node_dedicated => qualifier, :node_machinefamily => qualifier, :node_machinetype => qualifier, :node_vcpus_count => quantifier, :node_memory_size => quantifier, :node_memory_latency => quantifier, :node_memory_bandwidth => quantifier, :node_memory_type => qualifier, :node_memory_frequency => quantifier, :node_coworker_count => qualifier, :processor_count => quantifier, :processor_manufacturer => qualifier, :processor_microarchitecture => qualifier, :processor_simd => qualifier, :processor_isa => qualifier, :processor_tdp => quantifier, :processor_core_clock => quantifier, :processor_core_count => quantifier, :processor_core_threads_count => quantifier, # :processor_core_L1_mapping => , :processor_core_L1_size => quantifier, # :processor_core_L1_latency => , # :processor_core_L1_bandwidth => , # :processor_core_L1_linesize => , # :processor_core_L2_mapping => , :processor_core_L2_size => quantifier, # :processor_core_L2_latency => , # :processor_core_L2_bandwidth => , # :processor_core_L2_linesize => , # :processor_L3_mapping => , :processor_L3_size => quantifier, # :processor_L3_latency => , # :processor_L3_bandwidth => , # :processor_L3_linesize => , :processor => qualifier, :accelerator_count => quantifier, :accelerator_manufacturer => qualifier, :accelerator_interconnect => qualifier, :accelerator_type => qualifier, :accelerator_architecture => qualifier, :accelerator_api => api_qualifier, :accelerator_memory_size => quantifier, :accelerator_tdp => quantifier, :accelerator_processor => qualifier, :accelerator_processor_count => quantifier, :accelerator_memory_type => qualifier, :accelerator => qualifier, :interconnection_startuptime => quantifier, :interconnection_latency => quantifier, :interconnection_bandwidth => quantifier, :interconnection_topology => qualifier, :interconnection_RDMA => qualifier, :interconnection => qualifier, :storage_size => quantifier, :storage_latency => quantifier, :storage_bandwidth => quantifier, :storage_networkbandwidth => quantifier, :storage_type => qualifier, :storage_interface => qualifier ) function readPlatormDescription() # read the platform description file (default to the current directory) filename = get(ENV,"PLATFORM_DESCRIPTION","Platform.toml") @info "reading platform description at $filename" platform_description_toml = try io = open(filename) read(io,String) catch default_location = "/etc/Platform.toml" try # defaul system location io = open(default_location) contents = read(io,String) close(io) contents catch @info "The platform description file (Platform.toml) was not found." @info "Using default platform features (calling default kernels)." @info "A Platform.toml file may be created by calling PlatformAware.setup()" dpf_path = @get_scratch!("default_platform_path") dpf_url = "https://raw.githubusercontent.com/PlatformAwareProgramming/PlatformAware.jl/master/src/features/default/Platform.toml" dpf_fname = joinpath(dpf_path, basename(dpf_url)) try_download(dpf_url, dpf_fname) read(dpf_fname,String) end end TOML.parse(platform_description_toml) end get_quantifier_from_number(n) = get_quantifier_from_number(n,'.') function get_quantifier_from_number(n, d) if n >= 1.0 magnitude = Dict(0 => "", 1 => "K", 2 => "M", 3 => "G", 4 => "T", 5 => "P", 6 => "E") l = log(2,n) a = floor(l) b = isinteger(l) ? a : a + 1; # the following loop separates a and b in multiplier*magnitude. if d == '<' a_str = "AtLeast0" else # let A = 2^a m1=0 while a>9 # loop invariant: A = 2^a * 2^(10*m) a = a - 10 m1 = m1 + 1 end if n==0.5 @info n, d end a_str = "AtLeast" * string(Integer(2^a)) * magnitude[m1] end if d == '>' b_str = "AtMostInf" else m2=0 while b>9 # loop invariant: A = 2^a * 2^(10*m) b = b - 10 m2 = m2 + 1 end b_str = "AtMost" * string(Integer(2^b)) * magnitude[m2] end elseif n < 1.0 #TODO: consider 'n', 'u', and 'm' multipliers. a_str = "AtLeast0" b_str = "AtMost1" else a_str = "AtLeast0" b_str = "AtMost0" end a_type = getfield(@__MODULE__, Meta.parse(a_str)) b_type = getfield(@__MODULE__, Meta.parse(b_str)) Tuple{a_type,b_type,n} end mag_mult = Dict('n' => 2^(-30), 'u' => 2^(-20), 'm' => 2^(-10), 'K' => 2^10, 'M' => 2^20, 'G' => 2^30, 'T' => 2^40, 'P'=> 2^50, 'E' => 2^60) function get_quantifier_from_string(nn) d = nn[1] if d in ['<','>'] n = nn[2:length(nn)] else n = nn end m = n[length(n)] v1 = get(mag_mult,m,1) v0 = v1 == 1 ? parse(Float64,n) : parse(Float64,n[1:length(n)-1]) get_quantifier_from_number(v0*v1, d) end function get_quantifier(feature) if (typeof(feature) <: Number) get_quantifier_from_number(feature) else #if (typeof(feature) == String) get_quantifier_from_string(feature) end end function get_qualifier(feature) getfield(@__MODULE__, Meta.parse(feature)) end function check_blank_feature(parameter_id, feature, platform_feature_default) if (feature == "na") platform_feature_default[parameter_id] elseif (feature == "unset") platform_feature_default[parameter_id] elseif (feature == "unknown") platform_feature_default[parameter_id] elseif (feature == "ignore") platform_feature_default[parameter_id] else nothing end end function identifyAPI_oldversion(api_string) dt = AcceleratorBackend api_type = get_qualifier(api_string) if (startswith(api_string, "CUDA")) return Tuple{api_type,dt,dt,dt,dt,dt,dt} elseif (startswith(api_string, "OpenCL")) return Tuple{dt,api_type,dt,dt,dt,dt,dt} elseif (startswith(api_string, "OpenACC")) return Tuple{dt,dt,api_type,dt,dt,dt,dt} elseif (startswith(api_string, "OneAPI")) return Tuple{dt,dt,dt,api_type,dt,dt,dt} elseif (startswith(api_string, "OpenGL")) return Tuple{dt,dt,dt,dt,api_type,dt,dt} elseif (startswith(api_string, "Vulkan")) return Tuple{dt,dt,dt,dt,dt,api_type,dt} elseif (startswith(api_string, "DirectX")) return Tuple{dt,dt,dt,dt,dt,dt,api_type} else return Tuple{dt,dt,dt,dt,dt,dt} end end function get_api_qualifier(api_string) apis = split(api_string,';') if length(apis) == 1 return identifyAPI_oldversion(api_string) end cuda_api = get_qualifier(apis[1] in ["na","unset","unknown","ignore"] ? "AcceleratorBackend" : apis[1]) opencl_api = get_qualifier(apis[2] in ["na","unset","unknown","ignore"] ? "AcceleratorBackend" : apis[2]) openacc_api = get_qualifier(apis[3] in ["na","unset","unknown","ignore"] ? "AcceleratorBackend" : apis[3]) oneapi_api = get_qualifier(apis[4] in ["na","unset","unknown","ignore"] ? "AcceleratorBackend" : apis[4]) opengl_api = get_qualifier(apis[5] in ["na","unset","unknown","ignore"] ? "AcceleratorBackend" : apis[5]) vulkan_api = get_qualifier(apis[6] in ["na","unset","unknown","ignore"] ? "AcceleratorBackend" : apis[6]) directx_api = get_qualifier(apis[7] in ["na","unset","unknown","ignore"] ? "AcceleratorBackend" : apis[7]) Tuple{cuda_api,opencl_api,openacc_api,oneapi_api,opengl_api,vulkan_api,directx_api} end function loadFeaturesSection!(dict, platform_feature, platform_feature_default) if ("1" in keys(dict)) dict = dict["1"] end for (parameter_id, feature) in dict p = Meta.parse(parameter_id) platform_feature[p]= getFeature(p, feature, platform_feature_default, feature_type) end end function getFeature(p, feature, platform_feature_default, feature_type) try return getfield(@__MODULE__, Meta.parse(feature)) catch(_) end v0 = check_blank_feature(p, feature, platform_feature_default) return if isnothing(v0) feature_type[p] == qualifier ? get_qualifier(feature) : feature_type[p] == api_qualifier ? get_api_qualifier(feature) : get_quantifier(feature) else v0 end end function loadFeatures!(dict, platform_feature_default, platform_feature) loadDBs!() for key in ["node", "processor", "accelerator", "memory", "storage", "interconnection"] loadFeaturesSection!(dict[key], platform_feature, platform_feature_default) end end
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
5008
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ # OpenCL abstract type OpenCL_API <: AcceleratorBackend end abstract type OpenCL_1_0 <: OpenCL_API end abstract type OpenCL_1_1 <: OpenCL_1_0 end abstract type OpenCL_1_2 <: OpenCL_1_1 end abstract type OpenCL_2_0 <: OpenCL_1_2 end abstract type OpenCL_2_1 <: OpenCL_2_0 end abstract type OpenCL_2_2 <: OpenCL_2_1 end abstract type OpenCL_3_0 <: OpenCL_2_2 end export OpenCL_API, OpenCL_1_0, OpenCL_1_1, OpenCL_1_2, OpenCL_2_0, OpenCL_2_1, OpenCL_2_2, OpenCL_3_0 # OpenGL abstract type OpenGL_API <: AcceleratorBackend end abstract type OpenGL_4_6 <: OpenGL_API end export OpenGL_API, OpenGL_4_6 # Vulkan abstract type Vulkan_API <: AcceleratorBackend end abstract type Vulkan_1_1 <: Vulkan_API end abstract type Vulkan_1_2 <: Vulkan_1_1 end abstract type Vulkan_1_3 <: Vulkan_1_2 end export Vulkan_API, Vulkan_1_1, Vulkan_1_2, Vulkan_1_3 # DirectX abstract type DirectX_API <: AcceleratorBackend end abstract type DirectX_11_0 <: DirectX_API end abstract type DirectX_12_1 <: DirectX_11_0 end abstract type DirectX_12_2 <: DirectX_12_1 end export DirectX_API, DirectX_11_0, DirectX_12_1, DirectX_12_2 # SIMD extensions abstract type Now3D <: ProcessorSIMD end abstract type Now3Dx <: Now3D end abstract type MMX <: ProcessorSIMD end abstract type SSE <: ProcessorSIMD end abstract type SSE_2 <: SSE end; const SSE2 = SSE_2 abstract type SSE_3 <: SSE_2 end; const SSE3 = SSE_3 abstract type SSSE_3 <: SSE_3 end; const SSSE3 = SSSE_3 abstract type SSE_4 <: SSSE_3 end; const SSE4 = SSE_4 abstract type SSE_4_1 <: SSE_4 end abstract type SSE_4_2 <: SSE_4 end abstract type SSE_4a <: SSE_3 end abstract type AVX <: ProcessorSIMD end abstract type AVX2 <: AVX end abstract type AVX512 <: AVX2 end # https://en.wikipedia.org/wiki/AVX-512 export Now3D, Now3Dx, MMX, SSE, SSE_2, SSE2, SSE_3, SSE3, SSSE_3, SSSE3, SSE_4, SSE4, SSE_4_1, SSE_4_2, AVX, AVX2, AVX512 # Memory types abstract type RAM <: MemoryType end abstract type SDRAM <: RAM end abstract type DDR2 <: SDRAM end abstract type DDR3 <: SDRAM end abstract type DDR3L <: SDRAM end abstract type DDR4 <: SDRAM end abstract type LPDDR4 <: SDRAM end abstract type LPDDR4X <: SDRAM end abstract type DDR5 <: SDRAM end abstract type LPDDR5 <: SDRAM end abstract type DDR_SDRAM <: SDRAM end abstract type GDDR2 <: SDRAM end abstract type GDDR3 <: SDRAM end abstract type GDDR4 <: SDRAM end abstract type GDDR5 <: SDRAM end abstract type GDDR5X <: SDRAM end abstract type GDDR6 <: SDRAM end abstract type GDDR6X <: SDRAM end abstract type HBM2 <: SDRAM end abstract type HBM2e <: SDRAM end abstract type HBM3 <: SDRAM end abstract type HBM_PIM <: SDRAM end export RAM, DDR2, DDR3, DDR33L, DDR4, LPDDR4, LPDDR4X, DDR5, LPDDR5 export DDR_SDRAM, GDDR2, GDDR3, GDDR4, GDDR5, GDDR5X, GDDR6, GDDR6X # Storage types abstract type StorageType_SSD <: StorageType end abstract type StorageType_HDD <: StorageType end export Storage_SSD, Storage_HDD # Storage interfaces abstract type StorageInterface_SATA <: StorageInterface end abstract type StorageInterface_IDE <: StorageInterface end; const StorageInterface_PATA = StorageInterface_IDE abstract type StorageInterface_SAS <: StorageInterface end abstract type StorageInterface_SCSI <: StorageInterface end abstract type StorageInterface_FC <: StorageInterface end export StorageInterface_SATA, StorageInterface_IDE, StorageInterface_SAS, StorageInterface_SCSI, StorageInterface_FC # cache mappings abstract type CacheMapping_Direct <: CacheMapping end abstract type CacheMapping_FullyAssociative <: CacheMapping end abstract type CacheMapping_SetAssociative8 <: CacheMapping end abstract type CacheMapping_SetAssociative12 <: CacheMapping end export CacheMapping_Direct, CacheMapping_FullyAssociative, CacheMapping_SetAssociative8, CacheMapping_SetAssociative12 # processor ISA # https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/ abstract type ISA_x86_32 <: ProcessorISA end const ISA_x86 = ISA_x86_32 abstract type ISA_x86_64 <: ISA_x86_32 end const ISA_AMD_64 = ISA_x86_64 abstract type ISA_x86_64_v1 <: ISA_x86_64 end abstract type ISA_x86_64_v2 <: ISA_x86_64_v1 end abstract type ISA_x86_64_v3 <: ISA_x86_64_v2 end abstract type ISA_x86_64_v4 <: ISA_x86_64_v3 end abstract type ISA_IA_64 <: ProcessorISA end export ISA_x86_32, ISA_x86, ISA_x86_64, ISA_AMD_64, ISA_x86_64_v1, ISA_x86_64_v2, ISA_x86_64_v3, ISA_x86_64_v4, ISA_IA_64 # TODO: ARM !!! abstract type WorkerCount end abstract type NoCoworkers <: WorkerCount end abstract type PerNode <: WorkerCount end abstract type PerProcessor <: WorkerCount end abstract type PerCore <: WorkerCount end abstract type PerThread <: WorkerCount end abstract type PerVCPU <: WorkerCount end abstract type Unmapped <: WorkerCount end export PerNode, PerProcessor, PerCore, PerThread, PerVCPU
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
3215
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ # query abstract type Query <: QualifierFeature end abstract type Yes <: Query end abstract type No <: Query end # maintainer abstract type Provider <: QualifierFeature end abstract type OnPremises <: Provider end abstract type CloudProvider <: Provider end # machine abstract type MachineFamily <: QualifierFeature end abstract type MachineType <: QualifierFeature end # locale abstract type Locale <: QualifierFeature end # manufacturer abstract type Manufacturer <: QualifierFeature end # processor abstract type ProcessorMicroarchitecture <: QualifierFeature end abstract type ProcessorISA <: QualifierFeature end abstract type ProcessorSIMD <: ProcessorISA end abstract type Processor end # accelerator abstract type AcceleratorInterconnect <: QualifierFeature end abstract type AcceleratorType <: QualifierFeature end abstract type AcceleratorArchitecture <: QualifierFeature end abstract type AcceleratorBackend <: QualifierFeature end abstract type AcceleratorProcessor <: QualifierFeature end abstract type Accelerator <: QualifierFeature end abstract type XPU <: AcceleratorType end abstract type GPU <: XPU end abstract type TPU <: XPU end abstract type IPU <: XPU end abstract type FPGA <: AcceleratorType end abstract type MIC <: AcceleratorType end abstract type PCIe <: AcceleratorInterconnect end abstract type NVLink <: AcceleratorInterconnect end abstract type NVLink_V1 <: NVLink end abstract type NVLink_V2 <: NVLink end abstract type NVLink_SLI <: NVLink end abstract type NVSwitch <: AcceleratorInterconnect end abstract type GPUDirect <: AcceleratorInterconnect end #interconnection abstract type InterconnectionTopology <: QualifierFeature end abstract type Interconnection <: QualifierFeature end # storage abstract type StorageType <: QualifierFeature end abstract type StorageInterface <: QualifierFeature end # memory system abstract type MemoryType <: QualifierFeature end # cache abstract type CacheMapping <: QualifierFeature end function apitype(api, version_number) version = isnothing(version_number) ? "API" : string(version_number) version = replace(version, "." => "_") dt = AcceleratorBackend if (api == :CUDA) return Tuple{get_qualifier("CUDA_$version"),dt,dt,dt,dt,dt,dt} elseif (api == :OpenCL) return Tuple{dt,get_qualifier("OpenCL_$version"),dt,dt,dt,dt,dt} elseif (api == :OpenACC) return Tuple{dt,dt,get_qualifier("OpenACC_$version"),dt,dt,dt,dt} elseif (api == :OneAPI) return Tuple{dt,dt,dt,get_qualifier("OneAPI_$version"),dt,dt,dt} elseif (api == :OpenGL) return Tuple{dt,dt,dt,dt,get_qualifier("OpenGL_$version"),dt,dt} elseif (api == :Vulkan) return Tuple{dt,dt,dt,dt,dt,get_qualifier("Vulkan_$version"),dt} elseif (api == :DirectX) return Tuple{dt,dt,dt,dt,dt,dt,get_qualifier("DirectX_$version")} else return Tuple{dt,dt,dt,dt,dt,dt} end end macro api(api, version_number) apitype(api,version_number) end macro api(api) apitype(api,nothing) end
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
18444
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ # GPU architectures abstract type AMDGPUArchitecture <: AcceleratorArchitecture end export AMDGPUArchitecture abstract type CDNA <: AMDGPUArchitecture end abstract type CDNA_1_0 <: CDNA end; const CDNA1 = CDNA_1_0 abstract type CDNA_2_0 <: CDNA end; const CDNA2 = CDNA_2_0 export CDNA, CDNA_1_0, CDNA_2_0, CDNA1, CDNA2 abstract type RDNA <: AMDGPUArchitecture end abstract type RDNA_1_0 <: RDNA end; const RDNA1 = RDNA_1_0 abstract type RDNA_2_0 <: RDNA_1_0 end; const RDNA2 = RDNA_2_0 abstract type RDNA_3_0 <: RDNA_2_0 end; const RDNA3 = RDNA_3_0 export RDNA, RDNA_1_0, RDNA_2_0, RDNA_3_0, RDNA1, RDNA2, RDNA3 abstract type GCN <: AMDGPUArchitecture end abstract type GCN_1_0 <: GCN end; const CGN1 = GCN_1_0 abstract type GCN_2_0 <: GCN_1_0 end; const GCN2 = GCN_2_0 abstract type GCN_3_0 <: GCN_2_0 end; const GCN3 = GCN_3_0 abstract type GCN_4_0 <: GCN_3_0 end; const GCN4 = GCN_4_0; const Polaris = GCN4 abstract type GCN_5_0 <: GCN_4_0 end; const GCN5 = GCN_5_0; const Vega = GCN5 abstract type GCN_5_1 <: GCN_5_0 end; const Vega20 = GCN_5_1 export GCN, GCN_1_0, GCN_2_0, GCN_3_0, GCN_4_0, GCN_5_0, GCN_5_1, GCN1, GCN2, GCN3, GCN4, Polaris, GCN5, Vega, Vega20 abstract type TeraScale <: AMDGPUArchitecture end abstract type TeraScale_1_0 <: TeraScale end; const TeraScale1 = TeraScale_1_0 abstract type TeraScale_2_0 <: TeraScale_1_0 end; const TeraScale2 = TeraScale_2_0 abstract type TeraScale_3_0 <: TeraScale_2_0 end; const TeraScale3 = TeraScale_3_0 export TeraScale, TeraScale_1_0, TeraScale_2_0, TeraScale_3_0, TeraScale1, TeraScale2, TeraScale3 # Accelerators abstract type AMDAccelerator <: Accelerator end # families 1 abstract type AMDRadeon <: AMDAccelerator end abstract type AMDRadeon_Vega <: AMDRadeon end abstract type AMDRadeon_PRO <: AMDRadeon end abstract type AMDInstinct <: AMDAccelerator end abstract type AMDFirePro <: AMDAccelerator end # families 2 abstract type AMDRadeon_Vega2 <: AMDRadeon end abstract type AMDRadeon_Vega_RX <: AMDRadeon_Vega end abstract type AMDRadeon_RX_6000 <: AMDRadeon end abstract type AMDRadeon_RX_6000S <: AMDRadeon_RX_6000 end abstract type AMDRadeon_RX_6000M <: AMDRadeon_RX_6000 end abstract type AMDRadeon_R9 <: AMDRadeon end abstract type AMDRadeon_R7 <: AMDRadeon end abstract type AMDRadeon_R5 <: AMDRadeon end abstract type AMDRadeon_HD <: AMDRadeon end abstract type AMDRadeon_600 <: AMDRadeon end abstract type AMDRadeon_5700 <: AMDRadeon end abstract type AMDRadeon_5600 <: AMDRadeon end abstract type AMDRadeon_5500 <: AMDRadeon end abstract type AMDRadeon_5300 <: AMDRadeon end abstract type AMDRadeon_5000M <: AMDRadeon end abstract type AMDRadeon_500 <: AMDRadeon end abstract type AMDRadeon_400 <: AMDRadeon end # families 2 abstract type AMDRadeon_500X <: AMDRadeon_500 end abstract type ATIRadeon_HD_5000 <: AMDRadeon_HD end abstract type AMDRadeon_HD_6000 <: AMDRadeon_HD end abstract type AMDRadeon_HD_7000 <: AMDRadeon_HD end abstract type AMDRadeon_HD_8000M <: AMDRadeon_HD end abstract type AMDRadeon_R5_200 <: AMDRadeon_R5 end abstract type AMDRadeon_R5_300 <: AMDRadeon_R5 end abstract type AMDRadeon_R7_200 <: AMDRadeon_R7 end abstract type AMDRadeon_R7_300 <: AMDRadeon_R7 end abstract type AMDRadeon_R9_200 <: AMDRadeon_R9 end abstract type AMDRadeon_R9_300 <: AMDRadeon_R9 end abstract type AMDRadeon_R9_Fury <: AMDRadeon_R9 end abstract type AMDRadeon_RX_400 <: AMDRadeon_400 end abstract type AMDRadeon_RX_500 <: AMDRadeon_500 end abstract type AMDRadeon_RX_5000M <: AMDRadeon_5000M end abstract type AMDRadeon_RX_500X <: AMDRadeon_500 end abstract type AMDRadeon_RX_5300 <: AMDRadeon_5300 end abstract type AMDRadeon_RX_5500 <: AMDRadeon_5500 end abstract type AMDRadeon_RX_5600 <: AMDRadeon_5600 end abstract type AMDRadeon_RX_5700 <: AMDRadeon_5700 end abstract type AMDRadeon_RX_6400 <: AMDRadeon_RX_6000 end abstract type AMDRadeon_RX_6500 <: AMDRadeon_RX_6000 end abstract type AMDRadeon_RX_6600 <: AMDRadeon_RX_6000 end abstract type AMDRadeon_RX_6700 <: AMDRadeon_RX_6000 end abstract type AMDRadeon_RX_6800 <: AMDRadeon_RX_6000 end abstract type AMDRadeon_RX_6900 <: AMDRadeon_RX_6000 end abstract type AMDRadeon_RX_Vega <: AMDRadeon_Vega_RX end abstract type AMDRadeon_PRO_V <: AMDRadeon_PRO end abstract type AMDInstinct_MI <: AMDInstinct end abstract type AMDRadeon_PRO_W6000 <: AMDRadeon_PRO end abstract type AMDRadeon_PRO_W6000_Mobile <: AMDRadeon_PRO end abstract type AMDRadeon_PRO_VII <: AMDRadeon_PRO end abstract type AMDRadeon_PRO_W5000 <: AMDRadeon_PRO end abstract type AMDRadeon_PRO_W5000_Mobile <: AMDRadeon_PRO end abstract type AMDRadeon_PRO_WX_x200 <: AMDRadeon_PRO end abstract type AMDRadeon_PRO_WX_x100 <: AMDRadeon_PRO end abstract type AMDFirePro_Wx100 <: AMDFirePro end abstract type AMDFirePro_Wx000 <: AMDFirePro end abstract type AMDFirePro_S <: AMDFirePro end abstract type AMDFirePro_R <: AMDFirePro end abstract type AMDFirePro_Mobility <: AMDFirePro end abstract type AMDFirePro_MultiView <: AMDFirePro end # models abstract type AMDInstinct_MI250X <: AMDInstinct_MI end abstract type AMDInstinct_MI250 <: AMDInstinct_MI end abstract type AMDInstinct_MI210 <: AMDInstinct_MI end abstract type AMDInstinct_MI100 <: AMDInstinct_MI end abstract type AMDInstinct_MI60 <: AMDInstinct_MI end abstract type AMDInstinct_MI50_32GB <: AMDInstinct_MI end abstract type AMDInstinct_MI50_16GB <: AMDInstinct_MI end abstract type AMDInstinct_MI25 <: AMDInstinct_MI end abstract type AMDInstinct_MI8 <: AMDInstinct_MI end abstract type AMDInstinct_MI6 <: AMDInstinct_MI end abstract type AMDRadeonPRO_V_250 <: AMDRadeon_PRO_V end abstract type AMDRadeon_PRO_V620 <: AMDRadeon_PRO_V end abstract type AMDRadeon_PRO_W6800 <: AMDRadeon_PRO_W6000 end abstract type AMDRadeon_PRO_W6600 <: AMDRadeon_PRO_W6000 end abstract type AMDRadeon_PRO_V520 <: AMDRadeon_PRO_V end abstract type AMDRadeon_PRO_W6600M <: AMDRadeon_PRO_W6000_Mobile end abstract type AMDRadeon_PRO_W6400 <: AMDRadeon_PRO_W6000 end abstract type AMDRadeon_PRO_W6500M <: AMDRadeon_PRO_W6000_Mobile end abstract type AMDRadeon_PRO_W5700 <: AMDRadeon_PRO_W5000 end abstract type AMDRadeon_PRO_W5500 <: AMDRadeon_PRO_W5000 end abstract type AMDRadeon_PRO_W6300M <: AMDRadeon_PRO_W6000_Mobile end abstract type AMDRadeon_PRO_WX_8200 <: AMDRadeon_PRO_WX_x200 end abstract type AMDRadeon_PRO_WX_3200 <: AMDRadeon_PRO_WX_x200 end abstract type AMDRadeon_PRO_SSG <: AMDRadeon_PRO end abstract type AMDRadeon_Vega_Frontier <: AMDRadeon_PRO end abstract type AMDRadeon_PRO_Duo <: AMDRadeon_PRO end abstract type AMDRadeon_PRO_WX_9100 <: AMDRadeon_PRO_WX_x100 end abstract type AMDRadeon_PRO_WX_7100 <: AMDRadeon_PRO_WX_x100 end abstract type AMDRadeon_PRO_WX_5100 <: AMDRadeon_PRO_WX_x100 end abstract type AMDRadeon_PRO_WX_4100 <: AMDRadeon_PRO_WX_x100 end abstract type AMDRadeon_PRO_WX_3100 <: AMDRadeon_PRO_WX_x100 end abstract type AMDRadeon_PRO_WX_2100 <: AMDRadeon_PRO_WX_x100 end abstract type AMDFirePro_W9100_32GB <: AMDFirePro_Wx100 end abstract type AMDFirePro_W9100 <: AMDFirePro_Wx100 end abstract type AMDFirePro_W8100 <: AMDFirePro_Wx100 end abstract type AMDFirePro_W7100 <: AMDFirePro_Wx100 end abstract type AMDFirePro_W5100 <: AMDFirePro_Wx100 end abstract type AMDFirePro_W4300 <: AMDFirePro_Wx100 end abstract type AMDFirePro_W4100 <: AMDFirePro_Wx100 end abstract type AMDFirePro_W2100 <: AMDFirePro_Wx100 end abstract type AMDFirePro_W9000 <: AMDFirePro_Wx000 end abstract type AMDFirePro_W8000 <: AMDFirePro_Wx000 end abstract type AMDFirePro_W7000 <: AMDFirePro_Wx000 end abstract type AMDFirePro_W5000 <: AMDFirePro_Wx000 end abstract type AMDFirePro_W5000_DVI <: AMDFirePro_Wx000 end abstract type AMDFirePro_W600 <: AMDFirePro_Wx000 end abstract type AMDFirePro_S10000 <: AMDFirePro_S end abstract type AMDFirePro_S10000_12GB <: AMDFirePro_S end abstract type AMDFirePro_S9300_x2 <: AMDFirePro_S end abstract type AMDFirePro_S9170 <: AMDFirePro_S end abstract type AMDFirePro_S9150 <: AMDFirePro_S end abstract type AMDFirePro_S9100 <: AMDFirePro_S end abstract type AMDFirePro_S9050 <: AMDFirePro_S end abstract type AMDFirePro_S9000 <: AMDFirePro_S end abstract type AMDFirePro_S7150_x2 <: AMDFirePro_S end abstract type AMDFirePro_S7150 <: AMDFirePro_S end abstract type AMDFirePro_S7100X <: AMDFirePro_S end abstract type AMDFirePro_S7000 <: AMDFirePro_S end abstract type AMDFirePro_S4000X <: AMDFirePro_S end abstract type AMDRadeon_PRO_W5500M <: AMDRadeon_PRO_W5000_Mobile end abstract type AMDFirePro_R5000 <: AMDFirePro_R end abstract type AMDFirePro_W7170M <: AMDFirePro_Mobility end abstract type AMDFirePro_W6150M <: AMDFirePro_Mobility end abstract type AMDFirePro_W5170M <: AMDFirePro_Mobility end abstract type AMDFirePro_W5130M <: AMDFirePro_Mobility end abstract type AMDFirePro_W4190M <: AMDFirePro_Mobility end abstract type AMDFirePro_W4170M <: AMDFirePro_Mobility end abstract type AMDFirePro_2460 <: AMDFirePro_MultiView end abstract type AMDFirePro_2270_x1 <: AMDFirePro_MultiView end abstract type AMDFirePro_2270_1GB <: AMDFirePro_MultiView end abstract type AMDFirePro_2270 <: AMDFirePro_MultiView end abstract type AMDRadeon_RX_6950_XT <: AMDRadeon_RX_6900 end abstract type AMDRadeon_RX_6900_XT <: AMDRadeon_RX_6900 end abstract type AMDRadeon_RX_6800_XT <: AMDRadeon_RX_6800 end abstract type AMDRadeon_RX_6850M_XT <: AMDRadeon_RX_6000M end abstract type AMDRadeon_RX_6750_XT <: AMDRadeon_RX_6700 end abstract type AMDRadeon_RX_6800S <: AMDRadeon_RX_6000S end abstract type AMDRadeon_RX_6700_XT <: AMDRadeon_RX_6700 end abstract type AMDRadeon_RX_6650_XT <: AMDRadeon_RX_6600 end abstract type AMDRadeon_RX_6800M <: AMDRadeon_RX_6000M end abstract type AMDRadeon_RX_6600_XT <: AMDRadeon_RX_6600 end abstract type AMDRadeon_RX_6700M <: AMDRadeon_RX_6000M end abstract type AMDRadeon_RX_5700_XT <: AMDRadeon_RX_5700 end abstract type AMDRadeon_RX_6500_XT <: AMDRadeon_RX_6500 end abstract type AMDRadeon_RX_6650M_XT <: AMDRadeon_RX_6000M end abstract type AMDRadeon_VII <: AMDRadeon_Vega2 end abstract type AMDRadeon_RX_6650M <: AMDRadeon_RX_6000M end abstract type AMDRadeon_RX_5600_XT <: AMDRadeon_RX_5600 end abstract type AMDRadeon_RX_6600M <: AMDRadeon_RX_6000M end abstract type AMDRadeon_RX_5500_XT <: AMDRadeon_RX_5500 end abstract type AMDRadeon_RX_5700M <: AMDRadeon_RX_5000M end abstract type AMDRadeon_RX_6500M <: AMDRadeon_RX_6000M end abstract type AMDRadeon_RX_5600M <: AMDRadeon_RX_5000M end abstract type AMDRadeon_RX_Vega_64_L <: AMDRadeon_RX_Vega end abstract type AMDRadeon_RX_6300M <: AMDRadeon_RX_6000M end abstract type AMDRadeon_RX_6700S <: AMDRadeon_RX_6000S end abstract type AMDRadeon_RX_5500M <: AMDRadeon_RX_5000M end abstract type AMDRadeon_RX_5300M <: AMDRadeon_RX_5000M end abstract type AMDRadeon_RX_Vega_64 <: AMDRadeon_RX_Vega end abstract type AMDRadeon_RX_Vega_56 <: AMDRadeon_RX_Vega end abstract type AMDRadeon_RX_6600S <: AMDRadeon_RX_6000S end abstract type AMDRadeon_RX_590 <: AMDRadeon_RX_500 end abstract type AMDRadeon_RX_640 <: AMDRadeon_600 end abstract type AMDRadeon_RX_580 <: AMDRadeon_RX_500 end abstract type AMDRadeon_RX_580X <: AMDRadeon_RX_500X end abstract type AMDRadeon_RX_570 <: AMDRadeon_RX_500 end abstract type AMDRadeon_630 <: AMDRadeon_600 end abstract type AMDRadeon_RX_570X <: AMDRadeon_RX_500X end abstract type AMDRadeon_RX_560 <: AMDRadeon_RX_500 end abstract type AMDRadeon_625 <: AMDRadeon_600 end abstract type AMDRadeon_RX_560X <: AMDRadeon_RX_500X end abstract type AMDRadeon_RX_550 <: AMDRadeon_RX_500 end abstract type AMDRadeon_620 <: AMDRadeon_600 end abstract type AMDRadeon_RX_550X <: AMDRadeon_RX_500X end abstract type AMDRadeon_RX_540 <: AMDRadeon_RX_500 end abstract type AMDRadeon_610 <: AMDRadeon_600 end abstract type AMDRadeon_550X <: AMDRadeon_500X end abstract type AMDRadeon_RX_540X <: AMDRadeon_RX_500X end abstract type AMDRadeon_540 <: AMDRadeon_500 end abstract type AMDRadeon_540X <: AMDRadeon_500X end abstract type AMDRadeon_535 <: AMDRadeon_500 end abstract type AMDRadeon_530 <: AMDRadeon_500 end abstract type AMDRadeon_520 <: AMDRadeon_500 end abstract type AMDRadeon_RX_480 <: AMDRadeon_RX_400 end abstract type AMDRadeon_RX_470 <: AMDRadeon_RX_400 end abstract type AMDRadeon_RX_460 <: AMDRadeon_RX_400 end abstract type AMDRadeon_R9_Fury_X <: AMDRadeon_R9_Fury end abstract type AMDRadeon_R9_Nano <: AMDRadeon_R9_Fury end abstract type AMDRadeon_R9_390X <: AMDRadeon_R9_300 end abstract type AMDRadeon_R9_390 <: AMDRadeon_R9_300 end abstract type AMDRadeon_R9_380X <: AMDRadeon_R9_300 end abstract type AMDRadeon_R9_380 <: AMDRadeon_R9_300 end abstract type AMDRadeon_R9_M395X <: AMDRadeon_R9_300 end abstract type AMDRadeon_R9_M395 <: AMDRadeon_R9_300 end abstract type AMDRadeon_R9_M390X <: AMDRadeon_R9_300 end abstract type AMDRadeon_R9_M390 <: AMDRadeon_R9_300 end abstract type AMDRadeon_R9_M385X <: AMDRadeon_R9_300 end abstract type AMDRadeon_R9_M385 <: AMDRadeon_R9_300 end abstract type AMDRadeon_R9_M380 <: AMDRadeon_R9_300 end abstract type AMDRadeon_R9_M375X <: AMDRadeon_R9_300 end abstract type AMDRadeon_R9_M375 <: AMDRadeon_R9_300 end abstract type AMDRadeon_R9_M365X <: AMDRadeon_R9_300 end abstract type AMDRadeon_R9_M360 <: AMDRadeon_R9_300 end abstract type AMDRadeon_R9_295X2 <: AMDRadeon_R9_200 end abstract type AMDRadeon_R9_290X <: AMDRadeon_R9_200 end abstract type AMDRadeon_R9_290 <: AMDRadeon_R9_200 end abstract type AMDRadeon_R9_285 <: AMDRadeon_R9_200 end abstract type AMDRadeon_R9_280X <: AMDRadeon_R9_200 end abstract type AMDRadeon_R9_280 <: AMDRadeon_R9_200 end abstract type AMDRadeon_R9_270X <: AMDRadeon_R9_200 end abstract type AMDRadeon_R9_270 <: AMDRadeon_R9_200 end abstract type AMDRadeon_R9_M295X <: AMDRadeon_R9_200 end abstract type AMDRadeon_R9_M290X <: AMDRadeon_R9_200 end abstract type AMDRadeon_R9_M285X <: AMDRadeon_R9_200 end abstract type AMDRadeon_R9_M280X <: AMDRadeon_R9_200 end abstract type AMDRadeon_R9_M280 <: AMDRadeon_R9_200 end abstract type AMDRadeon_R9_M275X <: AMDRadeon_R9_200 end abstract type AMDRadeon_R9_M270X <: AMDRadeon_R9_200 end abstract type AMDRadeon_R9_M265X <: AMDRadeon_R9_200 end abstract type AMDRadeon_R7_370 <: AMDRadeon_R7_300 end abstract type AMDRadeon_R7_360 <: AMDRadeon_R7_300 end abstract type AMDRadeon_R7_M380 <: AMDRadeon_R7_300 end abstract type AMDRadeon_R7_M375 <: AMDRadeon_R7_300 end abstract type AMDRadeon_R7_M370 <: AMDRadeon_R7_300 end abstract type AMDRadeon_R7_M365X <: AMDRadeon_R7_300 end abstract type AMDRadeon_R7_M365 <: AMDRadeon_R7_300 end abstract type AMDRadeon_R7_M360 <: AMDRadeon_R7_300 end abstract type AMDRadeon_R7_M350 <: AMDRadeon_R7_300 end abstract type AMDRadeon_R7_M340 <: AMDRadeon_R7_300 end abstract type AMDRadeon_R7_265 <: AMDRadeon_R7_200 end abstract type AMDRadeon_R7_260X <: AMDRadeon_R7_200 end abstract type AMDRadeon_R7_260 <: AMDRadeon_R7_200 end abstract type AMDRadeon_R7_250X <: AMDRadeon_R7_200 end abstract type AMDRadeon_R7_250 <: AMDRadeon_R7_200 end abstract type AMDRadeon_R7_240 <: AMDRadeon_R7_200 end abstract type AMDRadeon_R7_M270 <: AMDRadeon_R7_200 end abstract type AMDRadeon_R7_M265X <: AMDRadeon_R7_200 end abstract type AMDRadeon_R7_M265AE <: AMDRadeon_R7_200 end abstract type AMDRadeon_R7_M265 <: AMDRadeon_R7_200 end abstract type AMDRadeon_R7_M260X <: AMDRadeon_R7_200 end abstract type AMDRadeon_R7_M260 <: AMDRadeon_R7_200 end abstract type AMDRadeon_R5_M335X <: AMDRadeon_R5_300 end abstract type AMDRadeon_R5_M335 <: AMDRadeon_R5_300 end abstract type AMDRadeon_R5_M330 <: AMDRadeon_R5_300 end abstract type AMDRadeon_R5_M320 <: AMDRadeon_R5_300 end abstract type AMDRadeon_R5_M315 <: AMDRadeon_R5_300 end abstract type AMDRadeon_R5_235 <: AMDRadeon_R5_200 end abstract type AMDRadeon_R5_230 <: AMDRadeon_R5_200 end abstract type AMDRadeon_R5_M255X <: AMDRadeon_R5_200 end abstract type AMDRadeon_R5_M255 <: AMDRadeon_R5_200 end abstract type AMDRadeon_R5_M240X <: AMDRadeon_R5_200 end abstract type AMDRadeon_R5_M240 <: AMDRadeon_R5_200 end abstract type AMDRadeon_R5_M230 <: AMDRadeon_R5_200 end abstract type AMDRadeon_HD_8970M <: AMDRadeon_HD_8000M end abstract type AMDRadeon_HD_8870M <: AMDRadeon_HD_8000M end abstract type AMDRadeon_HD_8850M <: AMDRadeon_HD_8000M end abstract type AMDRadeon_HD_8830M <: AMDRadeon_HD_8000M end abstract type AMDRadeon_HD_8790M <: AMDRadeon_HD_8000M end abstract type AMDRadeon_HD_8770M <: AMDRadeon_HD_8000M end abstract type AMDRadeon_HD_8750M <: AMDRadeon_HD_8000M end abstract type AMDRadeon_HD_8730M <: AMDRadeon_HD_8000M end abstract type AMDRadeon_HD_8690M <: AMDRadeon_HD_8000M end abstract type AMDRadeon_HD_8670M <: AMDRadeon_HD_8000M end abstract type AMDRadeon_HD_8590M <: AMDRadeon_HD_8000M end abstract type AMDRadeon_HD_8570M <: AMDRadeon_HD_8000M end abstract type AMDRadeon_HD_7990 <: AMDRadeon_HD_7000 end abstract type AMDRadeon_HD_7970_GE <: AMDRadeon_HD_7000 end abstract type AMDRadeon_HD_7970 <: AMDRadeon_HD_7000 end abstract type AMDRadeon_HD_7950 <: AMDRadeon_HD_7000 end abstract type AMDRadeon_HD_7870_GE <: AMDRadeon_HD_7000 end abstract type AMDRadeon_HD_7850 <: AMDRadeon_HD_7000 end abstract type AMDRadeon_HD_7790 <: AMDRadeon_HD_7000 end abstract type AMDRadeon_HD_7770_GE <: AMDRadeon_HD_7000 end abstract type AMDRadeon_HD_7750 <: AMDRadeon_HD_7000 end abstract type AMDRadeon_HD_7730 <: AMDRadeon_HD_7000 end abstract type AMDRadeon_HD_6970 <: AMDRadeon_HD_6000 end abstract type AMDRadeon_HD_6950 <: AMDRadeon_HD_6000 end abstract type AMDRadeon_HD_6870 <: AMDRadeon_HD_6000 end abstract type AMDRadeon_HD_6850 <: AMDRadeon_HD_6000 end abstract type AMDRadeon_HD_6770 <: AMDRadeon_HD_6000 end abstract type AMDRadeon_HD_6750 <: AMDRadeon_HD_6000 end abstract type AMDRadeon_HD_6670 <: AMDRadeon_HD_6000 end abstract type AMDRadeon_HD_6570 <: AMDRadeon_HD_6000 end abstract type AMDRadeon_HD_6450 <: AMDRadeon_HD_6000 end abstract type ATIRadeon_HD_5970 <: ATIRadeon_HD_5000 end abstract type ATIRadeon_HD_5870 <: ATIRadeon_HD_5000 end abstract type ATIRadeon_HD_5850 <: ATIRadeon_HD_5000 end abstract type ATIRadeon_HD_5830 <: ATIRadeon_HD_5000 end abstract type ATIRadeon_HD_5770 <: ATIRadeon_HD_5000 end abstract type ATIRadeon_HD_5750 <: ATIRadeon_HD_5000 end abstract type ATIRadeon_HD_5670 <: ATIRadeon_HD_5000 end abstract type ATIRadeon_HD_5570 <: ATIRadeon_HD_5000 end abstract type ATIRadeon_HD_5450 <: ATIRadeon_HD_5000 end
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
41939
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ abstract type AMD <: Manufacturer end; export AMD # AMD Processors - source: https://www.amd.com/en/products/specifications/processors abstract type AMDProcessor <: Processor end; export AMDProcessor # AMD Microarchictetures (from 2010) abstract type AMDMicroarchitecture <: ProcessorMicroarchitecture end abstract type K6 <: AMDMicroarchitecture end abstract type K7 <: AMDMicroarchitecture end abstract type K8 <: AMDMicroarchitecture end const Hammer = K8 abstract type K10 <: AMDMicroarchitecture end abstract type Zen <: AMDMicroarchitecture end abstract type Zen2 <: AMDMicroarchitecture end abstract type Zen3 <: AMDMicroarchitecture end abstract type Zen4 <: AMDMicroarchitecture end abstract type Zen4c <: Zen4 end abstract type Zen5 <: AMDMicroarchitecture end abstract type Bobcat <: AMDMicroarchitecture end abstract type Bulldozer <: AMDMicroarchitecture end abstract type Piledriver <: AMDMicroarchitecture end abstract type Steamroller <: AMDMicroarchitecture end abstract type Excavator <: AMDMicroarchitecture end abstract type Jaguar <: AMDMicroarchitecture end abstract type Puma <: AMDMicroarchitecture end # Families abstract type AMD_ASeries <: AMDProcessor end # AMD A-Series Processors abstract type AMD_ASeries_PRO <: AMD_ASeries end # AMD PRO A-Series Processors abstract type AMDAthlon <: AMDProcessor end # AMD Athlon™ Processors abstract type AMDAthlon_PRO <: AMDAthlon end # AMD Athlon™ PRO Processors abstract type AMD_ESeries <: AMDProcessor end # AMD E-Series Processors abstract type AMDEPYC <: AMDProcessor end # AMD EPYC™ abstract type AMD_FX <: AMDProcessor end # AMD FX-Series Processors abstract type AMDOpteron <: AMDProcessor end # AMD Opteron™ abstract type AMDPhenom <: AMDProcessor end # AMD Phenom™ abstract type AMDRyzen <: AMDProcessor end # AMD Ryzen™ Processors abstract type AMDRyzen_PRO <: AMDRyzen end # AMD Ryzen™ PRO Processors abstract type AMDSempron <: AMDProcessor end # AMD Sempron™ abstract type AMDTurion <: AMDProcessor end # AMD Turion™ #Lines abstract type AMD_3000 <: AMDProcessor end # AMD 3000 Series Mobile Processors with Radeon™ Graphics abstract type AMD_A12 <: AMD_ASeries end # AMD A12-Series APU abstract type AMD_A10 <: AMD_ASeries end # AMD A10-Series APU abstract type AMD_A8 <: AMD_ASeries end # AMD A8-Series APU abstract type AMD_A6 <: AMD_ASeries end # AMD A6-Series APU abstract type AMD_A9 <: AMD_ASeries end # AMD A9-Series APU abstract type AMD_A4 <: AMD_ASeries end # AMD A4-Series APU abstract type AMD_A10_Business <: AMD_ASeries end # AMD Business Class - Quad-Core A10-Series APU abstract type AMD_A8_Business <: AMD_ASeries end # AMD Business Class - Quad-Core A8-Series APU abstract type AMD_A6_Business <: AMD_ASeries end # AMD Business Class - Dual-Core A6-Series APU abstract type AMDAthlon_PRO_3000 <: AMDAthlon_PRO end # AMD Athlon™ PRO 3000 Series Desktop Processors abstract type AMDAthlon_PRO_Vega <: AMDAthlon_PRO end # AMD Athlon™ PRO Desktop Processors with Radeon™ Vega Graphics abstract type AMDAthlon_Vega <: AMDAthlon end # AMD Athlon™ Desktop Processors with Radeon™ Vega Graphics abstract type AMDAthlon_3000G <: AMDAthlon end # AMD Athlon™ 3000 G-Series Desktop Processors with Radeon™ Graphics abstract type AMDAthlonII_X4 <: AMDAthlon end # AMD Athlon™ II X4 abstract type AMDAthlonII_X3 <: AMDAthlon end # AMD Athlon™ II X3 abstract type AMDAthlonII_X2 <: AMDAthlon end # AMD Athlon™ II X2 abstract type AMDAthlon_X4 <: AMDAthlon end # AMD Athlon™ X4 abstract type AMDAthlon_APU <: AMDAthlon end # AMD Athlon™ Quad-Core APU abstract type AMD_E2 <: AMD_ESeries end # AMD E2-Series APU abstract type AMD_E1 <: AMD_ESeries end # AMD E1-Series APU abstract type AMDEPYC_7003 <: AMDEPYC end # AMD EPYC™ 7003 Series abstract type AMDEPYC_7003_VCache <: AMDEPYC_7003 end # AMD EPYC™ 7003 Series with AMD 3D V-Cache™ abstract type AMDEPYC_7002 <: AMDEPYC end # AMD EPYC™ 7002 Series abstract type AMDEPYC_7001 <: AMDEPYC end # AMD EPYC™ 7001 Series abstract type AMDEPYC_9R14 <: AMDEPYC end abstract type AMDEPYC_7B13 <: AMDEPYC end abstract type AMDEPYC_7R13 <: AMDEPYC end abstract type AMDEPYC_7R32 <: AMDEPYC end abstract type AMD_FX_8_Black <: AMD_FX end # AMD FX 8-Core Black Edition Processors abstract type AMD_FX_6_Black <: AMD_FX end # AMD FX 6-Core Black Edition Processors abstract type AMD_FX_4_Black <: AMD_FX end # AMD FX 4-Core Black Edition Processors abstract type AMDOpteron_X1100 <: AMDOpteron end # AMD Opteron™ X1100 Series Processors abstract type AMDOpteron_6300 <: AMDOpteron end # AMD Opteron™ 6300 Series Processor abstract type AMDOpteron_6200 <: AMDOpteron end # AMD Opteron™ 6200 Series Processor abstract type AMDOpteron_6100 <: AMDOpteron end # AMD Opteron™ 6100 Series Processor abstract type AMDOpteron_4300 <: AMDOpteron end # AMD Opteron™ 4300 Series Processor abstract type AMDOpteron_4200 <: AMDOpteron end # AMD Opteron™ 4200 Series Processor abstract type AMDOpteron_3300 <: AMDOpteron end # AMD Opteron™ 3300 Series Processor abstract type AMDOpteron_3200 <: AMDOpteron end # AMD Opteron™ 3200 Series Processor abstract type AMDOpteron_X2100 <: AMDOpteron end # AMD Opteron™ X2100 Series APU abstract type AMDPhenom_II_X6 <: AMDPhenom end # AMD Phenom™ II X6 abstract type AMDPhenom_II_X4 <: AMDPhenom end # AMD Phenom™ II X4 abstract type AMDPhenom_II_X4_Black <: AMDPhenom end # AMD Phenom™ II X4 Black abstract type AMDPhenom_II_X2 <: AMDPhenom end # AMD Phenom™ II X2 abstract type AMDPhenom_II_X2_Black <: AMDPhenom end # AMD Phenom™ II X2 Black abstract type AMDPhenom_II_Black <: AMDPhenom end # AMD Phenom™ II Black Edition Quad-Core Mobile Processors abstract type AMDPhenom_II_QuadCore <: AMDPhenom end # AMD Phenom™ II Quad-Core Mobile Processors abstract type AMDPhenom_II_TripleCore <: AMDPhenom end # AMD Phenom™ II Triple-Core Mobile Processors abstract type AMDPhenom_II_DualCore <: AMDPhenom end # AMD Phenom™ II Dual-Core Mobile Processors abstract type AMDPhenom_X4 <: AMDPhenom end # AMD Business Class - AMD Phenom™ X4 Quad-Core abstract type AMDPhenom_X3 <: AMDPhenom end # AMD Business Class - AMD Phenom™ X3 Triple-Core abstract type AMDPhenom_X2 <: AMDPhenom end # AMD Business Class - AMD Ph enom™ X2 Dual-Core abstract type AMD_A4_PRO <: AMD_ASeries_PRO end # AMD PRO A-Series A4 APU abstract type AMD_A6_PRO <: AMD_ASeries_PRO end # AMD PRO A-Series A6 APU abstract type AMD_A12_PRO <: AMD_ASeries_PRO end # AMD PRO A-Series A12 APU abstract type AMD_A10_PRO <: AMD_ASeries_PRO end # AMD PRO A-Series A10 APU abstract type AMD_A8_PRO <: AMD_ASeries_PRO end # AMD PRO A-Series A8 APU abstract type AMDRyzen_PRO_Threadripper_5000_WX <: AMDRyzen_PRO end # AMD Ryzen™ Threadripper™ PRO 5000 WX-Series abstract type AMDRyzen_PRO_Threadripper <: AMDRyzen_PRO end # AMD Ryzen™ Threadripper™ PRO Processors abstract type AMDRyzen_PRO_9 <: AMDRyzen_PRO end # AMD Ryzen™ 9 PRO Desktop Processors abstract type AMDRyzen_PRO_9_D <: AMDRyzen_PRO_9 end # AMD Ryzen™ 9 PRO Desktop Processors abstract type AMDRyzen_PRO_9_6000 <: AMDRyzen_PRO end # AMD Ryzen™ 9 PRO 6000 Series Mobile Processors abstract type AMDRyzen_PRO_9_6000_M <: AMDRyzen_PRO_9_6000 end # AMD Ryzen™ 9 PRO 6000 Series Mobile Processors abstract type AMDRyzen_PRO_7 <: AMDRyzen_PRO end # AMD Ryzen™ 7 PRO Desktop Processors abstract type AMDRyzen_PRO_7_D <: AMDRyzen_PRO_7 end # AMD Ryzen™ 7 PRO Desktop Processors abstract type AMDRyzen_PRO_7_Vega <: AMDRyzen_PRO end # AMD Ryzen™ 7 PRO Mobile Processors with Radeon™ Vega Graphics abstract type AMDRyzen_PRO_7_Vega_M <: AMDRyzen_PRO_7_Vega end # AMD Ryzen™ 7 PRO Mobile Processors with Radeon™ Vega Graphics abstract type AMDRyzen_PRO_7_5000 <: AMDRyzen_PRO end # AMD Ryzen™ 7 PRO 5000 Series Desktop Processors abstract type AMDRyzen_PRO_7_5000_D <: AMDRyzen_PRO_7_5000 end # AMD Ryzen™ 7 PRO 5000 Series Desktop Processors abstract type AMDRyzen_PRO_7_5000_M <: AMDRyzen_PRO_7_5000 end # AMD Ryzen™ 7 PRO 5000 Series Mobile Processors abstract type AMDRyzen_PRO_7_4000 <: AMDRyzen_PRO end # AMD Ryzen™ 7 PRO 4000 Series Desktop Processors abstract type AMDRyzen_PRO_7_4000_D <: AMDRyzen_PRO_7_4000 end # AMD Ryzen™ 7 PRO 4000 Series Desktop Processors abstract type AMDRyzen_PRO_7_4000_M <: AMDRyzen_PRO_7_4000 end # AMD Ryzen™ 7 PRO 4000 Series Mobile Processors abstract type AMDRyzen_PRO_7_6000 <: AMDRyzen_PRO end # AMD Ryzen™ 7 PRO 6000 Series Mobile Processors abstract type AMDRyzen_PRO_7_6000_M <: AMDRyzen_PRO_7_6000 end # AMD Ryzen™ 7 PRO 6000 Series Mobile Processors abstract type AMDRyzen_PRO_5 <: AMDRyzen_PRO end # AMD Ryzen™ 5 PRO Desktop Processors abstract type AMDRyzen_PRO_5_D <: AMDRyzen_PRO_5 end # AMD Ryzen™ 5 PRO Desktop Processors abstract type AMDRyzen_PRO_5_Vega <: AMDRyzen_PRO end # AMD Ryzen™ 5 PRO Desktop Processors with Radeon™ Vega Graphics abstract type AMDRyzen_PRO_5_3000 <: AMDRyzen_PRO end # AMD Ryzen™ 5 PRO 3000 Series Desktop Processors abstract type AMDRyzen_PRO_5_4000 <: AMDRyzen_PRO end # AMD Ryzen™ 5 PRO 4000 Series Desktop Processors abstract type AMDRyzen_PRO_5_5000 <: AMDRyzen_PRO end # AMD Ryzen™ 5 PRO 5000 Series Mobile Processors abstract type AMDRyzen_PRO_5_6000 <: AMDRyzen_PRO end # AMD Ryzen™ 5 PRO 5000 Series Desktop Processors abstract type AMDRyzen_PRO_3 <: AMDRyzen_PRO end # AMD Ryzen™ 3 PRO Desktop Processors abstract type AMDRyzen_PRO_3_Vega <: AMDRyzen_PRO end # AMD Ryzen™ 3 PRO Desktop Processors with Radeon™ Vega Graphics abstract type AMDRyzen_PRO_3_4000 <: AMDRyzen_PRO end # AMD Ryzen™ 3 PRO 4000 Series Desktop Processors abstract type AMDRyzen_PRO_3_5000 <: AMDRyzen_PRO end # AMD Ryzen™ 3 PRO 5000 Series Desktop Processors abstract type AMDRyzen_9 <: AMDRyzen end # AMD Ryzen™ 9 Desktop Processors abstract type AMDRyzen_7 <: AMDRyzen end # AMD Ryzen™ 7 Desktop Processors abstract type AMDRyzen_5 <: AMDRyzen end # AMD Ryzen™ 5 Desktop Processors abstract type AMDRyzen_Threadripper <: AMDRyzen end # AMD Ryzen™ Threadripper™ Processors abstract type AMDRyzen_3 <: AMDRyzen end # AMD Ryzen™ 3 Mobile Processors with Radeon™ Graphics abstract type AMDRyzen_7_5000G <: AMDRyzen_7 end # AMD Ryzen™ 7 5000 G-Series Desktop Processors with Radeon™ Graphics abstract type AMDRyzen_5_5000G <: AMDRyzen_5 end # AMD Ryzen™ 5 5000 G-Series Desktop Processors with Radeon™ Graphics abstract type AMDRyzen_3_5000G <: AMDRyzen_3 end # AMD Ryzen™ 3 5000 G-Series Desktop Processors with Radeon™ Graphics abstract type AMDRyzen_7_4000G <: AMDRyzen_7 end # AMD Ryzen™ 7 4000 G-Series Desktop Processors with Radeon™ Graphics abstract type AMDRyzen_5_4000G <: AMDRyzen_5 end # AMD Ryzen™ 5 4000 G-Series Desktop Processors with Radeon™ Graphics abstract type AMDRyzen_3_4000G <: AMDRyzen_3 end # AMD Ryzen™ 3 4000 G-Series Desktop Processors with Radeon™ Graphics abstract type AMDRyzen_5_Vega <: AMDRyzen_5 end # AMD Ryzen™ 5 Desktop Processors with Radeon™ Vega Graphics abstract type AMDRyzen_7_Surface <: AMDRyzen_7 end # AMD Ryzen™ 7 Mobile Processors with Radeon™ Graphics Microsoft Surface® Edition abstract type AMDRyzen_5_Surface <: AMDRyzen_5 end # AMD Ryzen™ 5 Mobile Processors with Radeon™ Graphics Microsoft Surface® Edition abstract type AMDRyzen_7_RXVega11_Surface <: AMDRyzen_7 end # AMD Ryzen™ 7 Mobile Processors with Radeon™ RX Vega 11 Graphics Microsoft Surface® Edition abstract type AMDRyzen_3_Vega <: AMDRyzen_3 end # AMD Ryzen™ 3 Desktop Processors with Radeon™ Vega Graphics abstract type AMDRyzen_7_RXVega <: AMDRyzen_7 end # AMD Ryzen™ 7 Mobile Processors with Radeon™ RX Vega Graphics abstract type AMDRyzen_5_Vega_9_Surface <: AMDRyzen_5 end # AMD Ryzen™ 5 Mobile Processors with Radeon™ Vega 9 Graphics Microsoft Surface® Edition abstract type AMDSempron_Quad_APU <: AMDSempron end # AMD Sempron™ Quad-Core APU abstract type AMDSempron_Dual_APU <: AMDSempron end # AMD Sempron™ Dual-Core APU abstract type AMDTurion_64_X2 <: AMDTurion end # AMD Turion™ 64 X2 Dual-Core Mobile Technology # models abstract type AMDAthlon_II_X2_255e <: AMDAthlonII_X2 end abstract type AMDAthlon_II_X3_460 <: AMDAthlonII_X3 end abstract type AMDAthlon_II_X3_425e <: AMDAthlonII_X3 end abstract type AMDAthlon_II_X4_631 <: AMDAthlonII_X4 end abstract type AMDAthlon_II_X4_638 <: AMDAthlonII_X4 end abstract type AMDAthlon_II_X4_641 <: AMDAthlonII_X4 end abstract type AMDAthlon_II_X4_620e <: AMDAthlonII_X4 end abstract type AMDAthlon_X4_740 <: AMDAthlon_X4 end abstract type AMDAthlon_X4_750 <: AMDAthlon_X4 end abstract type AMDAthlon_X4_750K <: AMDAthlon_X4 end abstract type AMDAthlon_X4_760K <: AMDAthlon_X4 end abstract type AMDAthlon_X4_845 <: AMDAthlon_X4 end abstract type AMDAthlon_X4_860K <: AMDAthlon_X4 end abstract type AMDAthlon_X4_870K <: AMDAthlon_X4 end abstract type AMDAthlon_X4_880K <: AMDAthlon_X4 end abstract type AMDPhenom_X2_B57 <: AMDPhenom_X2 end abstract type AMDPhenom_X2_B59 <: AMDPhenom_X2 end abstract type AMDPhenom_X2_B60 <: AMDPhenom_X2 end abstract type AMDPhenom_X3_B75 <: AMDPhenom_X3 end abstract type AMDPhenom_X3_B77 <: AMDPhenom_X3 end abstract type AMDPhenom_X4_B95 <: AMDPhenom_X4 end abstract type AMDPhenom_X4_B97 <: AMDPhenom_X4 end abstract type AMDPhenom_X4_B99 <: AMDPhenom_X4 end abstract type AMD_E1_7010 <: AMD_E1 end abstract type AMD_E1_Micro_6200T <: AMD_E1 end abstract type AMD_E1_2100 <: AMD_E1 end abstract type AMD_E1_2200 <: AMD_E1 end abstract type AMD_E1_2500 <: AMD_E1 end abstract type AMD_E1_6010 <: AMD_E1 end abstract type AMD_E2_7110 <: AMD_E2 end abstract type AMD_E2_3000 <: AMD_E2 end abstract type AMD_E2_3800 <: AMD_E2 end abstract type AMD_E2_6110 <: AMD_E2 end abstract type AMD_FX_4100 <: AMD_FX_4_Black end abstract type AMD_FX_4130 <: AMD_FX_4_Black end abstract type AMD_FX_4170 <: AMD_FX_4_Black end abstract type AMD_FX_4300 <: AMD_FX_4_Black end abstract type AMD_FX_4320 <: AMD_FX_4_Black end abstract type AMD_FX_4350 <: AMD_FX_4_Black end abstract type AMD_FX_6100 <: AMD_FX_6_Black end abstract type AMD_FX_6200 <: AMD_FX_6_Black end abstract type AMD_FX_6300 <: AMD_FX_6_Black end abstract type AMD_FX_6350 <: AMD_FX_6_Black end abstract type AMD_FX_8120 <: AMD_FX_8_Black end abstract type AMD_FX_8150 <: AMD_FX_8_Black end abstract type AMD_FX_8300 <: AMD_FX_8_Black end abstract type AMD_FX_8310 <: AMD_FX_8_Black end abstract type AMD_FX_8320 <: AMD_FX_8_Black end abstract type AMD_FX_8320E <: AMD_FX_8_Black end abstract type AMD_FX_8350 <: AMD_FX_8_Black end abstract type AMD_FX_8370 <: AMD_FX_8_Black end abstract type AMD_FX_8370E <: AMD_FX_8_Black end abstract type AMD_FX_9370 <: AMD_FX_8_Black end abstract type AMD_FX_9590 <: AMD_FX_8_Black end abstract type AMD_FX_8800P <: AMD_FX end abstract type AMD_FX_7500 <: AMD_FX end abstract type AMD_FX_7600P <: AMD_FX end abstract type AMDOpteron_3280 <: AMDOpteron_3200 end abstract type AMDOpteron_3250 <: AMDOpteron_3200 end abstract type AMDOpteron_3260 <: AMDOpteron_3200 end abstract type AMDOpteron_3365 <: AMDOpteron_3300 end abstract type AMDOpteron_3380 <: AMDOpteron_3300 end abstract type AMDOpteron_3320 <: AMDOpteron_3300 end abstract type AMDOpteron_3350 <: AMDOpteron_3300 end abstract type AMDOpteron_4226 <: AMDOpteron_4200 end abstract type AMDOpteron_4234 <: AMDOpteron_4200 end abstract type AMDOpteron_4238 <: AMDOpteron_4200 end abstract type AMDOpteron_4240 <: AMDOpteron_4200 end abstract type AMDOpteron_4280 <: AMDOpteron_4200 end abstract type AMDOpteron_4284 <: AMDOpteron_4200 end abstract type AMDOpteron_4228 <: AMDOpteron_4200 end abstract type AMDOpteron_4230 <: AMDOpteron_4200 end abstract type AMDOpteron_4256 <: AMDOpteron_4200 end abstract type AMDOpteron_4274 <: AMDOpteron_4200 end abstract type AMDOpteron_4276 <: AMDOpteron_4200 end abstract type AMDOpteron_4334 <: AMDOpteron_4300 end abstract type AMDOpteron_4340 <: AMDOpteron_4300 end abstract type AMDOpteron_4365 <: AMDOpteron_4300 end abstract type AMDOpteron_4386 <: AMDOpteron_4300 end abstract type AMDOpteron_4310 <: AMDOpteron_4300 end abstract type AMDOpteron_4332 <: AMDOpteron_4300 end abstract type AMDOpteron_4376 <: AMDOpteron_4300 end abstract type AMDOpteron_6140 <: AMDOpteron_6100 end abstract type AMDOpteron_6176 <: AMDOpteron_6100 end abstract type AMDOpteron_6132 <: AMDOpteron_6100 end abstract type AMDOpteron_6166 <: AMDOpteron_6100 end abstract type AMDOpteron_6180 <: AMDOpteron_6100 end abstract type AMDOpteron_6204 <: AMDOpteron_6200 end abstract type AMDOpteron_6212 <: AMDOpteron_6200 end abstract type AMDOpteron_6220 <: AMDOpteron_6200 end abstract type AMDOpteron_6234 <: AMDOpteron_6200 end abstract type AMDOpteron_6238 <: AMDOpteron_6200 end abstract type AMDOpteron_6272 <: AMDOpteron_6200 end abstract type AMDOpteron_6274 <: AMDOpteron_6200 end abstract type AMDOpteron_6276 <: AMDOpteron_6200 end abstract type AMDOpteron_6278 <: AMDOpteron_6200 end abstract type AMDOpteron_6262 <: AMDOpteron_6200 end abstract type AMDOpteron_6282 <: AMDOpteron_6200 end abstract type AMDOpteron_6284 <: AMDOpteron_6200 end abstract type AMDOpteron_6308 <: AMDOpteron_6300 end abstract type AMDOpteron_6320 <: AMDOpteron_6300 end abstract type AMDOpteron_6328 <: AMDOpteron_6300 end abstract type AMDOpteron_6344 <: AMDOpteron_6300 end abstract type AMDOpteron_6348 <: AMDOpteron_6300 end abstract type AMDOpteron_6376 <: AMDOpteron_6300 end abstract type AMDOpteron_6378 <: AMDOpteron_6300 end abstract type AMDOpteron_6380 <: AMDOpteron_6300 end abstract type AMDOpteron_6338P <: AMDOpteron_6300 end abstract type AMDOpteron_6366 <: AMDOpteron_6300 end abstract type AMDOpteron_6370P <: AMDOpteron_6300 end abstract type AMDOpteron_6386 <: AMDOpteron_6300 end abstract type AMDOpteron_X1150 <: AMDOpteron_X1100 end abstract type AMDPhenom_II_X940 <: AMDPhenom_II_Black end abstract type AMDPhenom_II_N640 <: AMDPhenom_II_DualCore end abstract type AMDPhenom_II_N660 <: AMDPhenom_II_DualCore end abstract type AMDPhenom_II_P650 <: AMDPhenom_II_DualCore end abstract type AMDPhenom_II_N960 <: AMDPhenom_II_QuadCore end abstract type AMDPhenom_II_N970 <: AMDPhenom_II_QuadCore end abstract type AMDPhenom_II_N870 <: AMDPhenom_II_TripleCore end abstract type AMDPhenom_II_P860 <: AMDPhenom_II_TripleCore end abstract type AMDPhenom_II_X2_565 <: AMDPhenom_II_X2 end abstract type AMDPhenom_II_X2_Black_555 <: AMDPhenom_II_X2_Black end abstract type AMDPhenom_II_X2_Black_565 <: AMDPhenom_II_X2_Black end abstract type AMDPhenom_II_X2_Black_570 <: AMDPhenom_II_X2_Black end abstract type AMDPhenom_II_840 <: AMDPhenom_II_X4 end abstract type AMDPhenom_II_850 <: AMDPhenom_II_X4 end abstract type AMDPhenom_II_965 <: AMDPhenom_II_X4_Black end abstract type AMDPhenom_II_975 <: AMDPhenom_II_X4_Black end abstract type AMDPhenom_II_980 <: AMDPhenom_II_X4_Black end abstract type AMDPhenom_II_960T <: AMDPhenom_II_X4_Black end abstract type AMDPhenom_II_1045T <: AMDPhenom_II_X6 end abstract type AMDPhenom_II_1075T <: AMDPhenom_II_X6 end abstract type AMDSempron_2800plus <: AMDSempron end abstract type AMDTurion_TL52 <: AMDTurion_64_X2 end abstract type AMDTurion_TL56 <: AMDTurion_64_X2 end abstract type AMDTurion_TL60 <: AMDTurion_64_X2 end abstract type AMDTurion_TL64 <: AMDTurion_64_X2 end abstract type AMD_3015Ce <: AMD_3000 end abstract type AMD_3015e <: AMD_3000 end abstract type AMD_3020e <: AMD_3000 end abstract type AMD_A10_6_8700P_APU <: AMD_A10 end abstract type AMD_A10_6700 <: AMD_A10 end abstract type AMD_A10_6700T <: AMD_A10 end abstract type AMD_A10_6790B <: AMD_A10_Business end abstract type AMD_A10_6790K <: AMD_A10 end abstract type AMD_A10_6800B <: AMD_A10_Business end abstract type AMD_A10_6800K <: AMD_A10 end abstract type AMD_A10_7_9600P_APU <: AMD_A10 end abstract type AMD_A10_7_9630P_APU <: AMD_A10 end abstract type AMD_A10_7_9700_APU <: AMD_A10 end abstract type AMD_A10_7_9700E_APU <: AMD_A10 end abstract type AMD_A10_7300 <: AMD_A10 end abstract type AMD_A10_7400P <: AMD_A10 end abstract type AMD_A10_7700K <: AMD_A10 end abstract type AMD_A10_7800 <: AMD_A10 end abstract type AMD_A10_7850K <: AMD_A10 end abstract type AMD_A10_7860K <: AMD_A10 end abstract type AMD_A10_7870K <: AMD_A10 end abstract type AMD_A10_7890K <: AMD_A10 end abstract type AMD_A10_8700P <: AMD_A10 end abstract type AMD_A10_Micro_6700T <: AMD_A10 end abstract type AMD_A10_PRO_7350B <: AMD_A10 end abstract type AMD_A10_PRO_7800B <: AMD_A10 end abstract type AMD_A10_PRO_7850B <: AMD_A10 end abstract type AMD_A12_7_9700P_APU <: AMD_A12 end abstract type AMD_A12_7_9730P_APU <: AMD_A12 end abstract type AMD_A12_7_9800_APU <: AMD_A12 end abstract type AMD_A12_7_9800E_APU <: AMD_A12 end abstract type AMD_A4_5000 <: AMD_A4 end abstract type AMD_A4_5100 <: AMD_A4 end abstract type AMD_A4_6210 <: AMD_A4 end abstract type AMD_A4_6300 <: AMD_A4 end abstract type AMD_A4_6320 <: AMD_A4 end abstract type AMD_A4_7_9120_APU <: AMD_A4 end abstract type AMD_A4_7_9120C_APU <: AMD_A4 end abstract type AMD_A4_7_9125_APU <: AMD_A4 end abstract type AMD_A4_7210 <: AMD_A4 end abstract type AMD_A4_7300 <: AMD_A4 end abstract type AMD_A4_Micro_6400T <: AMD_A4 end abstract type AMD_A4_PRO_3340B <: AMD_A4 end abstract type AMD_A4_PRO_3350B <: AMD_A4 end abstract type AMD_A4_PRO_7300B <: AMD_A4 end abstract type AMD_A4_PRO_7350B <: AMD_A4 end abstract type AMD_A6_5200 <: AMD_A6 end abstract type AMD_A6_5200M <: AMD_A6 end abstract type AMD_A6_5350M <: AMD_A6 end abstract type AMD_A6_6310 <: AMD_A6 end abstract type AMD_A6_6400B <: AMD_A6_Business end abstract type AMD_A6_6400K <: AMD_A6 end abstract type AMD_A6_6420B <: AMD_A6_Business end abstract type AMD_A6_6420K <: AMD_A6 end abstract type AMD_A6_7_9210_APU <: AMD_A6 end abstract type AMD_A6_7_9220_APU <: AMD_A6 end abstract type AMD_A6_7_9220C_APU <: AMD_A6 end abstract type AMD_A6_7_9225_APU <: AMD_A6 end abstract type AMD_A6_7_9500_APU <: AMD_A6 end abstract type AMD_A6_7_9500E_APU <: AMD_A6 end abstract type AMD_A6_7_9550_APU <: AMD_A6 end abstract type AMD_A6_7000 <: AMD_A6 end abstract type AMD_A6_7310 <: AMD_A6 end abstract type AMD_A6_7400K <: AMD_A6 end abstract type AMD_A6_7470K <: AMD_A6 end abstract type AMD_A6_8500P <: AMD_A6 end abstract type AMD_A6_PRO_7050B <: AMD_A6 end abstract type AMD_A6_PRO_7400B <: AMD_A6 end abstract type AMD_A8_6_8600P_APU <: AMD_A8 end abstract type AMD_A8_6410 <: AMD_A8 end abstract type AMD_A8_6500 <: AMD_A8 end abstract type AMD_A8_6500B <: AMD_A8_Business end abstract type AMD_A8_6500T <: AMD_A8 end abstract type AMD_A8_6600K <: AMD_A8 end abstract type AMD_A8_7_9600_APU <: AMD_A8 end abstract type AMD_A8_7100 <: AMD_A8 end abstract type AMD_A8_7200P <: AMD_A8 end abstract type AMD_A8_7410 <: AMD_A8 end abstract type AMD_A8_7600 <: AMD_A8 end abstract type AMD_A8_7650K <: AMD_A8 end abstract type AMD_A8_7670K <: AMD_A8 end abstract type AMD_A8_8600P <: AMD_A8 end abstract type AMD_A8_PRO_7150B <: AMD_A8 end abstract type AMD_A8_PRO_7600B <: AMD_A8 end abstract type AMD_A9_7_9410_APU <: AMD_A9 end abstract type AMD_A9_7_9420_APU <: AMD_A9 end abstract type AMD_A9_7_9425_APU <: AMD_A9 end abstract type AMD_E2_7_9010_APU <: AMD_E2 end abstract type AMD_FX_6_8800P_APU <: AMD_FX end abstract type AMD_FX_7_9800P_APU <: AMD_FX end abstract type AMD_FX_7_9830P_APU <: AMD_FX end abstract type AMD_A10_PRO_6_8700B_APU <: AMD_A10 end abstract type AMD_A10_PRO_6_8730B_APU <: AMD_A10 end abstract type AMD_A10_PRO_6_8750B_APU <: AMD_A10 end abstract type AMD_A10_PRO_6_8770_APU <: AMD_A10 end abstract type AMD_A10_PRO_6_8770E_APU <: AMD_A10 end abstract type AMD_A10_PRO_6_8850B_APU <: AMD_A10 end abstract type AMD_A10_PRO_7_9700_APU <: AMD_A10 end abstract type AMD_A10_PRO_7_9700B_APU <: AMD_A10 end abstract type AMD_A10_PRO_7_9700E_APU <: AMD_A10 end abstract type AMD_A10_PRO_7_9730B_APU <: AMD_A10 end abstract type AMD_A12_PRO_6_8800B_APU <: AMD_A12 end abstract type AMD_A12_PRO_6_8830B_APU <: AMD_A12 end abstract type AMD_A12_PRO_6_8870_APU <: AMD_A12 end abstract type AMD_A12_PRO_6_8870E_APU <: AMD_A12 end abstract type AMD_A12_PRO_7_9800_APU <: AMD_A12 end abstract type AMD_A12_PRO_7_9800B_APU <: AMD_A12 end abstract type AMD_A12_PRO_7_9800E_APU <: AMD_A12 end abstract type AMD_A12_PRO_7_9830B_APU <: AMD_A12 end abstract type AMD_A4_PRO_6_8350B_APU <: AMD_A4 end abstract type AMD_A4_PRO_7_4350B_APU <: AMD_A4 end abstract type AMD_A4_PRO_7_5350B_APU <: AMD_A4 end abstract type AMD_A6_PRO_6_8500B_APU <: AMD_A6 end abstract type AMD_A6_PRO_6_8530B_APU <: AMD_A6 end abstract type AMD_A6_PRO_6_8550B_APU <: AMD_A6 end abstract type AMD_A6_PRO_6_8570_APU <: AMD_A6 end abstract type AMD_A6_PRO_6_8570E_APU <: AMD_A6 end abstract type AMD_A6_PRO_7_7350B_APU <: AMD_A6 end abstract type AMD_A6_PRO_7_8350B_APU <: AMD_A6 end abstract type AMD_A6_PRO_7_9500_APU <: AMD_A6 end abstract type AMD_A6_PRO_7_9500B_APU <: AMD_A6 end abstract type AMD_A6_PRO_7_9500E_APU <: AMD_A6 end abstract type AMD_A8_PRO_6_8600B_APU <: AMD_A8 end abstract type AMD_A8_PRO_6_8650B_APU <: AMD_A8 end abstract type AMD_A8_PRO_7_9600_APU <: AMD_A8 end abstract type AMD_A8_PRO_7_9600B_APU <: AMD_A8 end abstract type AMD_A8_PRO_7_9630B <: AMD_A8 end abstract type AMDAthlon_200GE <: AMDAthlon_Vega end abstract type AMDAthlon_220GE <: AMDAthlon_Vega end abstract type AMDAthlon_240GE <: AMDAthlon_Vega end abstract type AMDAthlon_300GE <: AMDAthlon_Vega end abstract type AMDAthlon_300U <: AMDAthlon_Vega end abstract type AMDAthlon_320GE <: AMDAthlon_Vega end abstract type AMDAthlon_5150_APU <: AMDAthlon_APU end abstract type AMDAthlon_5350_APU <: AMDAthlon_APU end abstract type AMDAthlon_5370_APU <: AMDAthlon_APU end abstract type AMDAthlon_7_X4_940 <: AMDAthlon_X4 end abstract type AMDAthlon_7_X4_950 <: AMDAthlon_X4 end abstract type AMDAthlon_7_X4_970 <: AMDAthlon_X4 end abstract type AMDAthlon_Gold_3150C <: AMDAthlon end abstract type AMDAthlon_Gold_3150G <: AMDAthlon_3000G end abstract type AMDAthlon_Gold_3150GE <: AMDAthlon_3000G end abstract type AMDAthlon_Gold_3150U <: AMDAthlon end abstract type AMDAthlon_Gold_PRO_3150G <: AMDAthlon_PRO_3000 end abstract type AMDAthlon_Gold_PRO_3150GE <: AMDAthlon_PRO_3000 end abstract type AMDAthlon_PRO_200GE <: AMDAthlon_PRO_Vega end abstract type AMDAthlon_PRO_200U <: AMDAthlon_PRO_Vega end abstract type AMDAthlon_PRO_300GE <: AMDAthlon_PRO_Vega end abstract type AMDAthlon_PRO_300U <: AMDAthlon_PRO_Vega end abstract type AMDAthlon_PRO_3045B <: AMDAthlon_PRO end abstract type AMDAthlon_PRO_3145B <: AMDAthlon_PRO end abstract type AMDAthlon_Silver_3050C <: AMDAthlon end abstract type AMDAthlon_Silver_3050e <: AMDAthlon end abstract type AMDAthlon_Silver_3050GE <: AMDAthlon_3000G end abstract type AMDAthlon_Silver_3050U <: AMDAthlon end abstract type AMDAthlon_Silver_PRO_3125GE <: AMDAthlon_PRO_3000 end abstract type AMDEPYC_7232P <: AMDEPYC_7002 end abstract type AMDEPYC_7251 <: AMDEPYC_7001 end abstract type AMDEPYC_7252 <: AMDEPYC_7002 end abstract type AMDEPYC_7261 <: AMDEPYC_7001 end abstract type AMDEPYC_7262 <: AMDEPYC_7002 end abstract type AMDEPYC_7272 <: AMDEPYC_7002 end abstract type AMDEPYC_7281 <: AMDEPYC_7001 end abstract type AMDEPYC_7282 <: AMDEPYC_7002 end abstract type AMDEPYC_72F3 <: AMDEPYC_7003 end abstract type AMDEPYC_7301 <: AMDEPYC_7001 end abstract type AMDEPYC_7302 <: AMDEPYC_7002 end abstract type AMDEPYC_7302P <: AMDEPYC_7002 end abstract type AMDEPYC_7313 <: AMDEPYC_7003 end abstract type AMDEPYC_7313P <: AMDEPYC_7003 end abstract type AMDEPYC_7343 <: AMDEPYC_7003 end abstract type AMDEPYC_7351 <: AMDEPYC_7001 end abstract type AMDEPYC_7351P <: AMDEPYC_7001 end abstract type AMDEPYC_7352 <: AMDEPYC_7002 end abstract type AMDEPYC_7371 <: AMDEPYC_7001 end abstract type AMDEPYC_7373X <: AMDEPYC_7003_VCache end abstract type AMDEPYC_73F3 <: AMDEPYC_7003 end abstract type AMDEPYC_7401 <: AMDEPYC_7001 end abstract type AMDEPYC_7401P <: AMDEPYC_7001 end abstract type AMDEPYC_7402 <: AMDEPYC_7002 end abstract type AMDEPYC_7402P <: AMDEPYC_7002 end abstract type AMDEPYC_7413 <: AMDEPYC_7003 end abstract type AMDEPYC_7443 <: AMDEPYC_7003 end abstract type AMDEPYC_7443P <: AMDEPYC_7003 end abstract type AMDEPYC_7451 <: AMDEPYC_7001 end abstract type AMDEPYC_7452 <: AMDEPYC_7002 end abstract type AMDEPYC_7453 <: AMDEPYC_7003 end abstract type AMDEPYC_7473X <: AMDEPYC_7003_VCache end abstract type AMDEPYC_74F3 <: AMDEPYC_7003 end abstract type AMDEPYC_7501 <: AMDEPYC_7001 end abstract type AMDEPYC_7502 <: AMDEPYC_7002 end abstract type AMDEPYC_7502P <: AMDEPYC_7002 end abstract type AMDEPYC_7513 <: AMDEPYC_7003 end abstract type AMDEPYC_7532 <: AMDEPYC_7002 end abstract type AMDEPYC_7542 <: AMDEPYC_7002 end abstract type AMDEPYC_7543 <: AMDEPYC_7003 end abstract type AMDEPYC_7543P <: AMDEPYC_7003 end abstract type AMDEPYC_7551 <: AMDEPYC_7001 end abstract type AMDEPYC_7551P <: AMDEPYC_7001 end abstract type AMDEPYC_7552 <: AMDEPYC_7002 end abstract type AMDEPYC_7571 <: AMDEPYC_7003_VCache end abstract type AMDEPYC_7573X <: AMDEPYC_7003_VCache end abstract type AMDEPYC_75F3 <: AMDEPYC_7003 end abstract type AMDEPYC_7601 <: AMDEPYC_7001 end abstract type AMDEPYC_7642 <: AMDEPYC_7002 end abstract type AMDEPYC_7643 <: AMDEPYC_7003 end abstract type AMDEPYC_7662 <: AMDEPYC_7002 end abstract type AMDEPYC_7663 <: AMDEPYC_7003 end abstract type AMDEPYC_7702 <: AMDEPYC_7002 end abstract type AMDEPYC_7702P <: AMDEPYC_7002 end abstract type AMDEPYC_7713 <: AMDEPYC_7003 end abstract type AMDEPYC_7713P <: AMDEPYC_7003 end abstract type AMDEPYC_7742 <: AMDEPYC_7002 end abstract type AMDEPYC_7763 <: AMDEPYC_7003 end abstract type AMDEPYC_7773X <: AMDEPYC_7003_VCache end abstract type AMDEPYC_7F32 <: AMDEPYC_7002 end abstract type AMDEPYC_7F52 <: AMDEPYC_7002 end abstract type AMDEPYC_7F72 <: AMDEPYC_7002 end abstract type AMDEPYC_7H12 <: AMDEPYC_7002 end abstract type AMDOpteron_X2150_APU <: AMDOpteron_X2100 end abstract type AMDOpteron_X2170 <: AMDOpteron_X2100 end abstract type AMDRyzen_3_1200 <: AMDRyzen_3 end abstract type AMDRyzen_3_1300X <: AMDRyzen_3 end abstract type AMDRyzen_3_2200G <: AMDRyzen_3_Vega end abstract type AMDRyzen_3_2200GE <: AMDRyzen_3_Vega end abstract type AMDRyzen_3_2200U <: AMDRyzen_3_Vega end abstract type AMDRyzen_3_2300U <: AMDRyzen_3_Vega end abstract type AMDRyzen_3_2300X <: AMDRyzen_3 end abstract type AMDRyzen_3_3100 <: AMDRyzen_3 end abstract type AMDRyzen_3_3200G <: AMDRyzen_3_Vega end abstract type AMDRyzen_3_3200GE <: AMDRyzen_3_Vega end abstract type AMDRyzen_3_3200U <: AMDRyzen_3_Vega end abstract type AMDRyzen_3_3250C <: AMDRyzen_3 end abstract type AMDRyzen_3_3250U <: AMDRyzen_3 end abstract type AMDRyzen_3_3300U <: AMDRyzen_3_Vega end abstract type AMDRyzen_3_3300X <: AMDRyzen_3 end abstract type AMDRyzen_3_3350U <: AMDRyzen_3_Vega end abstract type AMDRyzen_3_4100 <: AMDRyzen_3 end abstract type AMDRyzen_3_4300G <: AMDRyzen_3_4000G end abstract type AMDRyzen_3_4300GE <: AMDRyzen_3_4000G end abstract type AMDRyzen_3_4300U <: AMDRyzen_3 end abstract type AMDRyzen_3_5125C <: AMDRyzen_3 end abstract type AMDRyzen_3_5300G <: AMDRyzen_3_5000G end abstract type AMDRyzen_3_5300GE <: AMDRyzen_3_5000G end abstract type AMDRyzen_3_5300U <: AMDRyzen_3 end abstract type AMDRyzen_3_5400U <: AMDRyzen_3 end abstract type AMDRyzen_3_5425C <: AMDRyzen_3 end abstract type AMDRyzen_3_5425U <: AMDRyzen_3 end abstract type AMDRyzen_3_PRO_1200 <: AMDRyzen_PRO_3 end abstract type AMDRyzen_3_PRO_1300 <: AMDRyzen_PRO_3 end abstract type AMDRyzen_3_PRO_2200G <: AMDRyzen_PRO_3_Vega end abstract type AMDRyzen_3_PRO_2200GE <: AMDRyzen_PRO_3_Vega end abstract type AMDRyzen_3_PRO_2300U <: AMDRyzen_PRO_3_Vega end abstract type AMDRyzen_3_PRO_3200G <: AMDRyzen_PRO_3_Vega end abstract type AMDRyzen_3_PRO_3200GE <: AMDRyzen_PRO_3_Vega end abstract type AMDRyzen_3_PRO_3300U <: AMDRyzen_PRO_3_Vega end abstract type AMDRyzen_3_PRO_4350G <: AMDRyzen_PRO_3_4000 end abstract type AMDRyzen_3_PRO_4350GE <: AMDRyzen_PRO_3_4000 end abstract type AMDRyzen_3_PRO_4450U <: AMDRyzen_PRO_3_4000 end abstract type AMDRyzen_3_PRO_5350G <: AMDRyzen_PRO_3_5000 end abstract type AMDRyzen_3_PRO_5350GE <: AMDRyzen_PRO_3_5000 end abstract type AMDRyzen_3_PRO_5450U <: AMDRyzen_PRO_3_5000 end abstract type AMDRyzen_3_PRO_5475U <: AMDRyzen_PRO_3_5000 end abstract type AMDRyzen_5_1400 <: AMDRyzen_5 end abstract type AMDRyzen_5_1500X <: AMDRyzen_5 end abstract type AMDRyzen_5_1600 <: AMDRyzen_5 end abstract type AMDRyzen_5_1600_AF <: AMDRyzen_5 end abstract type AMDRyzen_5_1600X <: AMDRyzen_5 end abstract type AMDRyzen_5_2400G <: AMDRyzen_5_Vega end abstract type AMDRyzen_5_2400GE <: AMDRyzen_5_Vega end abstract type AMDRyzen_5_2500U <: AMDRyzen_5_Vega end abstract type AMDRyzen_5_2500X <: AMDRyzen_5 end abstract type AMDRyzen_5_2600 <: AMDRyzen_5 end abstract type AMDRyzen_5_2600E <: AMDRyzen_5 end abstract type AMDRyzen_5_2600H <: AMDRyzen_5_Vega end abstract type AMDRyzen_5_2600X <: AMDRyzen_5 end abstract type AMDRyzen_5_3400G <: AMDRyzen_5_Vega end abstract type AMDRyzen_5_3400GE <: AMDRyzen_5_Vega end abstract type AMDRyzen_5_3450U <: AMDRyzen_5_Vega end abstract type AMDRyzen_5_3500 <: AMDRyzen_5 end abstract type AMDRyzen_5_3500C <: AMDRyzen_5 end abstract type AMDRyzen_5_3500U <: AMDRyzen_5_Vega end abstract type AMDRyzen_5_3550H <: AMDRyzen_5_Vega end abstract type AMDRyzen_5_3580U <: AMDRyzen_5_Vega_9_Surface end abstract type AMDRyzen_5_3600 <: AMDRyzen_5 end abstract type AMDRyzen_5_3600X <: AMDRyzen_5 end abstract type AMDRyzen_5_3600XT <: AMDRyzen_5 end abstract type AMDRyzen_5_4500 <: AMDRyzen_5 end abstract type AMDRyzen_5_4500U <: AMDRyzen_5 end abstract type AMDRyzen_5_4600G <: AMDRyzen_5_4000G end abstract type AMDRyzen_5_4600GE <: AMDRyzen_5_4000G end abstract type AMDRyzen_5_4600H <: AMDRyzen_5 end abstract type AMDRyzen_5_4600U <: AMDRyzen_5 end abstract type AMDRyzen_5_4680U <: AMDRyzen_5_Surface end abstract type AMDRyzen_5_5500 <: AMDRyzen_5 end abstract type AMDRyzen_5_5500U <: AMDRyzen_5 end abstract type AMDRyzen_5_5560U <: AMDRyzen_5 end abstract type AMDRyzen_5_5600 <: AMDRyzen_5 end abstract type AMDRyzen_5_5600G <: AMDRyzen_5_5000G end abstract type AMDRyzen_5_5600GE <: AMDRyzen_5_5000G end abstract type AMDRyzen_5_5600H <: AMDRyzen_5 end abstract type AMDRyzen_5_5600HS <: AMDRyzen_5 end abstract type AMDRyzen_5_5600U <: AMDRyzen_5 end abstract type AMDRyzen_5_5600X <: AMDRyzen_5 end abstract type AMDRyzen_5_5625C <: AMDRyzen_5 end abstract type AMDRyzen_5_5625U <: AMDRyzen_5 end abstract type AMDRyzen_5_6600H <: AMDRyzen_5 end abstract type AMDRyzen_5_6600HS <: AMDRyzen_5 end abstract type AMDRyzen_5_6600U <: AMDRyzen_5 end abstract type AMDRyzen_5_PRO_1500 <: AMDRyzen_PRO_5 end abstract type AMDRyzen_5_PRO_1600 <: AMDRyzen_PRO_5 end abstract type AMDRyzen_5_PRO_2400G <: AMDRyzen_PRO_5_Vega end abstract type AMDRyzen_5_PRO_2400GE <: AMDRyzen_PRO_5_Vega end abstract type AMDRyzen_5_PRO_2500U <: AMDRyzen_PRO_5_Vega end abstract type AMDRyzen_5_PRO_2600 <: AMDRyzen_PRO_5 end abstract type AMDRyzen_5_PRO_3350G <: AMDRyzen_PRO_5_3000 end abstract type AMDRyzen_5_PRO_3350GE <: AMDRyzen_PRO_5_3000 end abstract type AMDRyzen_5_PRO_3400G <: AMDRyzen_PRO_5_Vega end abstract type AMDRyzen_5_PRO_3400GE <: AMDRyzen_PRO_5_Vega end abstract type AMDRyzen_5_PRO_3500U <: AMDRyzen_PRO_5_Vega end abstract type AMDRyzen_5_PRO_3600 <: AMDRyzen_PRO_5 end abstract type AMDRyzen_5_PRO_4650G <: AMDRyzen_PRO_5_4000 end abstract type AMDRyzen_5_PRO_4650GE <: AMDRyzen_PRO_5_4000 end abstract type AMDRyzen_5_PRO_4650U <: AMDRyzen_PRO_5_4000 end abstract type AMDRyzen_5_PRO_5650G <: AMDRyzen_PRO_5_6000 end abstract type AMDRyzen_5_PRO_5650GE <: AMDRyzen_PRO_5_6000 end abstract type AMDRyzen_5_PRO_5650U <: AMDRyzen_PRO_5_5000 end abstract type AMDRyzen_5_PRO_5675U <: AMDRyzen_PRO_5_5000 end abstract type AMDRyzen_5_PRO_6650H <: AMDRyzen_PRO_5_6000 end abstract type AMDRyzen_5_PRO_6650HS <: AMDRyzen_PRO_5_6000 end abstract type AMDRyzen_5_PRO_6650U <: AMDRyzen_PRO_5_6000 end abstract type AMDRyzen_7_1700 <: AMDRyzen_7 end abstract type AMDRyzen_7_1700X <: AMDRyzen_7 end abstract type AMDRyzen_7_1800X <: AMDRyzen_7 end abstract type AMDRyzen_7_2700 <: AMDRyzen_7 end abstract type AMDRyzen_7_2700E <: AMDRyzen_7 end abstract type AMDRyzen_7_2700U <: AMDRyzen_7_RXVega end abstract type AMDRyzen_7_2700X <: AMDRyzen_7 end abstract type AMDRyzen_7_2800H <: AMDRyzen_7_RXVega end abstract type AMDRyzen_7_3700C <: AMDRyzen_7 end abstract type AMDRyzen_7_3700U <: AMDRyzen_7_RXVega end abstract type AMDRyzen_7_3700X <: AMDRyzen_7 end abstract type AMDRyzen_7_3750H <: AMDRyzen_7_RXVega end abstract type AMDRyzen_7_3780U <: AMDRyzen_7_RXVega11_Surface end abstract type AMDRyzen_7_3800X <: AMDRyzen_7 end abstract type AMDRyzen_7_3800XT <: AMDRyzen_7 end abstract type AMDRyzen_7_4700G <: AMDRyzen_7_4000G end abstract type AMDRyzen_7_4700GE <: AMDRyzen_7_4000G end abstract type AMDRyzen_7_4700U <: AMDRyzen_7 end abstract type AMDRyzen_7_4800H <: AMDRyzen_7 end abstract type AMDRyzen_7_4800HS <: AMDRyzen_7 end abstract type AMDRyzen_7_4800U <: AMDRyzen_7 end abstract type AMDRyzen_7_4980U <: AMDRyzen_7_Surface end abstract type AMDRyzen_7_5700G <: AMDRyzen_7_5000G end abstract type AMDRyzen_7_5700GE <: AMDRyzen_7_5000G end abstract type AMDRyzen_7_5700U <: AMDRyzen_7 end abstract type AMDRyzen_7_5700X <: AMDRyzen_7 end abstract type AMDRyzen_7_5800 <: AMDRyzen_7 end abstract type AMDRyzen_7_5800H <: AMDRyzen_7 end abstract type AMDRyzen_7_5800HS <: AMDRyzen_7 end abstract type AMDRyzen_7_5800U <: AMDRyzen_7 end abstract type AMDRyzen_7_5800X <: AMDRyzen_7 end abstract type AMDRyzen_7_5800X3D <: AMDRyzen_7 end abstract type AMDRyzen_7_5825C <: AMDRyzen_7 end abstract type AMDRyzen_7_5825U <: AMDRyzen_7 end abstract type AMDRyzen_7_6800H <: AMDRyzen_7 end abstract type AMDRyzen_7_6800HS <: AMDRyzen_7 end abstract type AMDRyzen_7_6800U <: AMDRyzen_7 end abstract type AMDRyzen_7_PRO_1700 <: AMDRyzen_PRO_7 end abstract type AMDRyzen_7_PRO_1700X <: AMDRyzen_PRO_7 end abstract type AMDRyzen_7_PRO_2700 <: AMDRyzen_PRO_7 end abstract type AMDRyzen_7_PRO_2700U <: AMDRyzen_PRO_7_Vega end abstract type AMDRyzen_7_PRO_2700X <: AMDRyzen_PRO_7 end abstract type AMDRyzen_7_PRO_3700 <: AMDRyzen_PRO_7 end abstract type AMDRyzen_7_PRO_3700U <: AMDRyzen_PRO_7_Vega end abstract type AMDRyzen_7_PRO_4750G <: AMDRyzen_PRO_7_4000 end abstract type AMDRyzen_7_PRO_4750GE <: AMDRyzen_PRO_7_4000 end abstract type AMDRyzen_7_PRO_4750U <: AMDRyzen_PRO_7_4000 end abstract type AMDRyzen_7_PRO_5750G <: AMDRyzen_PRO_7_5000 end abstract type AMDRyzen_7_PRO_5750GE <: AMDRyzen_PRO_7_5000 end abstract type AMDRyzen_7_PRO_5850U <: AMDRyzen_PRO_7_5000 end abstract type AMDRyzen_7_PRO_5875U <: AMDRyzen_PRO_7_5000 end abstract type AMDRyzen_7_PRO_6850H <: AMDRyzen_PRO_7_6000 end abstract type AMDRyzen_7_PRO_6850HS <: AMDRyzen_PRO_7_6000 end abstract type AMDRyzen_7_PRO_6850U <: AMDRyzen_PRO_7_6000 end abstract type AMDRyzen_9_3900 <: AMDRyzen_9 end abstract type AMDRyzen_9_3900X <: AMDRyzen_9 end abstract type AMDRyzen_9_3900XT <: AMDRyzen_9 end abstract type AMDRyzen_9_3950X <: AMDRyzen_9 end abstract type AMDRyzen_9_4900H <: AMDRyzen_9 end abstract type AMDRyzen_9_4900HS <: AMDRyzen_9 end abstract type AMDRyzen_9_5900 <: AMDRyzen_9 end abstract type AMDRyzen_9_5900HS <: AMDRyzen_9 end abstract type AMDRyzen_9_5900HX <: AMDRyzen_9 end abstract type AMDRyzen_9_5900X <: AMDRyzen_9 end abstract type AMDRyzen_9_5950X <: AMDRyzen_9 end abstract type AMDRyzen_9_5980HS <: AMDRyzen_9 end abstract type AMDRyzen_9_5980HX <: AMDRyzen_9 end abstract type AMDRyzen_9_6900HS <: AMDRyzen_9 end abstract type AMDRyzen_9_6900HX <: AMDRyzen_9 end abstract type AMDRyzen_9_6980HS <: AMDRyzen_9 end abstract type AMDRyzen_9_6980HX <: AMDRyzen_9 end abstract type AMDRyzen_9_PRO_3900 <: AMDRyzen_PRO_9 end abstract type AMDRyzen_9_PRO_6950H <: AMDRyzen_PRO_9_6000 end abstract type AMDRyzen_9_PRO_6950HS <: AMDRyzen_PRO_9_6000 end abstract type AMDRyzen_Threadripper_1900X <: AMDRyzen_Threadripper end abstract type AMDRyzen_Threadripper_1920X <: AMDRyzen_Threadripper end abstract type AMDRyzen_Threadripper_1950X <: AMDRyzen_Threadripper end abstract type AMDRyzen_Threadripper_2920X <: AMDRyzen_Threadripper end abstract type AMDRyzen_Threadripper_2950X <: AMDRyzen_Threadripper end abstract type AMDRyzen_Threadripper_2970WX <: AMDRyzen_Threadripper end abstract type AMDRyzen_Threadripper_2990WX <: AMDRyzen_Threadripper end abstract type AMDRyzen_Threadripper_3960X <: AMDRyzen_Threadripper end abstract type AMDRyzen_Threadripper_3970X <: AMDRyzen_Threadripper end abstract type AMDRyzen_Threadripper_3990X <: AMDRyzen_Threadripper end abstract type AMDRyzen_Threadripper_PRO_3945WX <: AMDRyzen_PRO_Threadripper end abstract type AMDRyzen_Threadripper_PRO_3955WX <: AMDRyzen_PRO_Threadripper end abstract type AMDRyzen_Threadripper_PRO_3975WX <: AMDRyzen_PRO_Threadripper end abstract type AMDRyzen_Threadripper_PRO_3995WX <: AMDRyzen_PRO_Threadripper end abstract type AMDRyzen_Threadripper_PRO_5945WX <: AMDRyzen_PRO_Threadripper_5000_WX end abstract type AMDRyzen_Threadripper_PRO_5955WX <: AMDRyzen_PRO_Threadripper_5000_WX end abstract type AMDRyzen_Threadripper_PRO_5965WX <: AMDRyzen_PRO_Threadripper_5000_WX end abstract type AMDRyzen_Threadripper_PRO_5975WX <: AMDRyzen_PRO_Threadripper_5000_WX end abstract type AMDRyzen_Threadripper_PRO_5995WX <: AMDRyzen_PRO_Threadripper_5000_WX end abstract type AMDSempron_2650_APU <: AMDSempron_Dual_APU end abstract type AMDSempron_3850_APU <: AMDSempron_Quad_APU end
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
529
abstract type AWS <: Manufacturer end; export AWS abstract type AWSProcessor <: Processor end; export AWSProcessor abstract type AWSMicroarchitecture <: ProcessorMicroarchitecture end abstract type AWSGravitonMicroarchitecture <: AWSMicroarchitecture end abstract type AWSGraviton1 <: AWSProcessor end; export AWSGraviton1 abstract type AWSGraviton2 <: AWSProcessor end; export AWSGraviton2 abstract type AWSGraviton3 <: AWSProcessor end; export AWSGraviton3 abstract type AWSGraviton4 <: AWSProcessor end; export AWSGraviton4
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
42253
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ # maintainer types abstract type AmazonEC2 <: CloudProvider end; export AmazonEC2 # locale types # machine family types abstract type EC2Family <: MachineFamily end abstract type EC2Family_General <: EC2Family end abstract type EC2Family_Compute <: EC2Family end abstract type EC2Family_Accelerated <: EC2Family end abstract type EC2Family_Memory <: EC2Family end abstract type EC2Family_Storage <: EC2Family end # machine type types and sizes abstract type EC2Type <: MachineType end ## general purpose instances abstract type EC2Type_MAC <: EC2Type end abstract type EC2Type_MAC1 <: EC2Type_MAC end abstract type EC2Type_MAC2 <: EC2Type_MAC end abstract type EC2Type_MAC1_Metal <: EC2Type_MAC1 end abstract type EC2Type_MAC2_Metal <: EC2Type_MAC2 end abstract type EC2Type_T4G <: EC2Type end abstract type EC2Type_T4G_Nano <: EC2Type_T4G end abstract type EC2Type_T4G_Micro <: EC2Type_T4G end abstract type EC2Type_T4G_Small <: EC2Type_T4G end abstract type EC2Type_T4G_Large <: EC2Type_T4G end abstract type EC2Type_T4G_Medium <: EC2Type_T4G end abstract type EC2Type_T4G_xLarge <: EC2Type_T4G end abstract type EC2Type_T4G_2xLarge <: EC2Type_T4G end abstract type EC2Type_T3 <: EC2Type end abstract type EC2Type_T3A <: EC2Type_T3 end abstract type EC2Type_T3_Nano <: EC2Type_T3 end abstract type EC2Type_T3_Micro <: EC2Type_T3 end abstract type EC2Type_T3_Small <: EC2Type_T3 end abstract type EC2Type_T3_Large <: EC2Type_T3 end abstract type EC2Type_T3_Medium <: EC2Type_T3 end abstract type EC2Type_T3_xLarge <: EC2Type_T3 end abstract type EC2Type_T3_2xLarge <: EC2Type_T3 end abstract type EC2Type_T3A_Nano <: EC2Type_T3A end abstract type EC2Type_T3A_Micro <: EC2Type_T3A end abstract type EC2Type_T3A_Small <: EC2Type_T3A end abstract type EC2Type_T3A_Large <: EC2Type_T3A end abstract type EC2Type_T3A_Medium <: EC2Type_T3A end abstract type EC2Type_T3A_xLarge <: EC2Type_T3A end abstract type EC2Type_T3A_2xLarge <: EC2Type_T3A end abstract type EC2Type_T1 <: EC2Type end abstract type EC2Type_T1_Micro <: EC2Type_T1 end abstract type EC2Type_T2 <: EC2Type end abstract type EC2Type_T2_Nano <: EC2Type_T2 end abstract type EC2Type_T2_Micro <: EC2Type_T2 end abstract type EC2Type_T2_Small <: EC2Type_T2 end abstract type EC2Type_T2_Large <: EC2Type_T2 end abstract type EC2Type_T2_Medium <: EC2Type_T2 end abstract type EC2Type_T2_xLarge <: EC2Type_T2 end abstract type EC2Type_T2_2xLarge <: EC2Type_T2 end abstract type EC2Type_M6 <: EC2Type end abstract type EC2Type_M6G <: EC2Type_M6 end abstract type EC2Type_M6I <: EC2Type_M6 end abstract type EC2Type_M6A <: EC2Type_M6 end abstract type EC2Type_M6GD <: EC2Type_M6G end abstract type EC2Type_M6ID <: EC2Type_M6I end abstract type EC2Type_M6G_Metal <: EC2Type_M6G end abstract type EC2Type_M6G_Large <: EC2Type_M6G end abstract type EC2Type_M6G_Medium <: EC2Type_M6G end abstract type EC2Type_M6G_xLarge <: EC2Type_M6G end abstract type EC2Type_M6G_2xLarge <: EC2Type_M6G end abstract type EC2Type_M6G_4xLarge <: EC2Type_M6G end abstract type EC2Type_M6G_8xLarge <: EC2Type_M6G end abstract type EC2Type_M6G_12xLarge <: EC2Type_M6G end abstract type EC2Type_M6G_16xLarge <: EC2Type_M6G end abstract type EC2Type_M6GD_Metal <: EC2Type_M6GD end abstract type EC2Type_M6GD_Large <: EC2Type_M6GD end abstract type EC2Type_M6GD_Medium <: EC2Type_M6GD end abstract type EC2Type_M6GD_xLarge <: EC2Type_M6GD end abstract type EC2Type_M6GD_2xLarge <: EC2Type_M6GD end abstract type EC2Type_M6GD_4xLarge <: EC2Type_M6GD end abstract type EC2Type_M6GD_8xLarge <: EC2Type_M6GD end abstract type EC2Type_M6GD_12xLarge <: EC2Type_M6GD end abstract type EC2Type_M6GD_16xLarge <: EC2Type_M6GD end abstract type EC2Type_M6I_Metal <: EC2Type_M6I end abstract type EC2Type_M6I_Large <: EC2Type_M6I end abstract type EC2Type_M6I_xLarge <: EC2Type_M6I end abstract type EC2Type_M6I_2xLarge <: EC2Type_M6I end abstract type EC2Type_M6I_4xLarge <: EC2Type_M6I end abstract type EC2Type_M6I_8xLarge <: EC2Type_M6I end abstract type EC2Type_M6I_12xLarge <: EC2Type_M6I end abstract type EC2Type_M6I_16xLarge <: EC2Type_M6I end abstract type EC2Type_M6I_24xLarge <: EC2Type_M6I end abstract type EC2Type_M6I_32xLarge <: EC2Type_M6I end abstract type EC2Type_M6ID_Metal <: EC2Type_M6ID end abstract type EC2Type_M6ID_Large <: EC2Type_M6ID end abstract type EC2Type_M6ID_xLarge <: EC2Type_M6ID end abstract type EC2Type_M6ID_2xLarge <: EC2Type_M6ID end abstract type EC2Type_M6ID_4xLarge <: EC2Type_M6ID end abstract type EC2Type_M6ID_8xLarge <: EC2Type_M6ID end abstract type EC2Type_M6ID_12xLarge <: EC2Type_M6ID end abstract type EC2Type_M6ID_16xLarge <: EC2Type_M6ID end abstract type EC2Type_M6ID_24xLarge <: EC2Type_M6ID end abstract type EC2Type_M6ID_32xLarge <: EC2Type_M6ID end abstract type EC2Type_M6A_Metal <: EC2Type_M6A end abstract type EC2Type_M6A_Large <: EC2Type_M6A end abstract type EC2Type_M6A_xLarge <: EC2Type_M6A end abstract type EC2Type_M6A_2xLarge <: EC2Type_M6A end abstract type EC2Type_M6A_4xLarge <: EC2Type_M6A end abstract type EC2Type_M6A_8xLarge <: EC2Type_M6A end abstract type EC2Type_M6A_12xLarge <: EC2Type_M6A end abstract type EC2Type_M6A_16xLarge <: EC2Type_M6A end abstract type EC2Type_M6A_24xLarge <: EC2Type_M6A end abstract type EC2Type_M6A_32xLarge <: EC2Type_M6A end abstract type EC2Type_M6A_48xLarge <: EC2Type_M6A end abstract type EC2Type_M5 <: EC2Type end abstract type EC2Type_M5D <: EC2Type_M5 end abstract type EC2Type_M5A <: EC2Type_M5 end abstract type EC2Type_M5N <: EC2Type_M5 end abstract type EC2Type_M5ZN <: EC2Type_M5 end abstract type EC2Type_M5AD <: EC2Type_M5A end abstract type EC2Type_M5DN <: EC2Type_M5N end abstract type EC2Type_M5_Metal <: EC2Type_M5 end abstract type EC2Type_M5_Large <: EC2Type_M5 end abstract type EC2Type_M5_xLarge <: EC2Type_M5 end abstract type EC2Type_M5_2xLarge <: EC2Type_M5 end abstract type EC2Type_M5_4xLarge <: EC2Type_M5 end abstract type EC2Type_M5_8xLarge <: EC2Type_M5 end abstract type EC2Type_M5_12xLarge <: EC2Type_M5 end abstract type EC2Type_M5_16xLarge <: EC2Type_M5 end abstract type EC2Type_M5_24xLarge <: EC2Type_M5 end abstract type EC2Type_M5D_Metal <: EC2Type_M5D end abstract type EC2Type_M5D_Large <: EC2Type_M5D end abstract type EC2Type_M5D_xLarge <: EC2Type_M5D end abstract type EC2Type_M5D_2xLarge <: EC2Type_M5D end abstract type EC2Type_M5D_4xLarge <: EC2Type_M5D end abstract type EC2Type_M5D_8xLarge <: EC2Type_M5D end abstract type EC2Type_M5D_12xLarge <: EC2Type_M5D end abstract type EC2Type_M5D_16xLarge <: EC2Type_M5D end abstract type EC2Type_M5D_24xLarge <: EC2Type_M5D end abstract type EC2Type_M5A_Large <: EC2Type_M5A end abstract type EC2Type_M5A_xLarge <: EC2Type_M5A end abstract type EC2Type_M5A_2xLarge <: EC2Type_M5A end abstract type EC2Type_M5A_4xLarge <: EC2Type_M5A end abstract type EC2Type_M5A_8xLarge <: EC2Type_M5A end abstract type EC2Type_M5A_12xLarge <: EC2Type_M5A end abstract type EC2Type_M5A_16xLarge <: EC2Type_M5A end abstract type EC2Type_M5A_24xLarge <: EC2Type_M5A end abstract type EC2Type_M5AD_Large <: EC2Type_M5AD end abstract type EC2Type_M5AD_xLarge <: EC2Type_M5AD end abstract type EC2Type_M5AD_2xLarge <: EC2Type_M5AD end abstract type EC2Type_M5AD_4xLarge <: EC2Type_M5AD end abstract type EC2Type_M5AD_8xLarge <: EC2Type_M5AD end abstract type EC2Type_M5AD_12xLarge <: EC2Type_M5AD end abstract type EC2Type_M5AD_16xLarge <: EC2Type_M5AD end abstract type EC2Type_M5AD_24xLarge <: EC2Type_M5AD end abstract type EC2Type_M5N_Metal <: EC2Type_M5N end abstract type EC2Type_M5N_Large <: EC2Type_M5N end abstract type EC2Type_M5N_xLarge <: EC2Type_M5N end abstract type EC2Type_M5N_2xLarge <: EC2Type_M5N end abstract type EC2Type_M5N_4xLarge <: EC2Type_M5N end abstract type EC2Type_M5N_8xLarge <: EC2Type_M5N end abstract type EC2Type_M5N_12xLarge <: EC2Type_M5N end abstract type EC2Type_M5N_16xLarge <: EC2Type_M5N end abstract type EC2Type_M5N_24xLarge <: EC2Type_M5N end abstract type EC2Type_M5DN_Metal <: EC2Type_M5DN end abstract type EC2Type_M5DN_Large <: EC2Type_M5DN end abstract type EC2Type_M5DN_xLarge <: EC2Type_M5DN end abstract type EC2Type_M5DN_2xLarge <: EC2Type_M5DN end abstract type EC2Type_M5DN_4xLarge <: EC2Type_M5DN end abstract type EC2Type_M5DN_8xLarge <: EC2Type_M5DN end abstract type EC2Type_M5DN_12xLarge <: EC2Type_M5DN end abstract type EC2Type_M5DN_16xLarge <: EC2Type_M5DN end abstract type EC2Type_M5DN_24xLarge <: EC2Type_M5DN end abstract type EC2Type_M5ZN_Metal <: EC2Type_M5ZN end abstract type EC2Type_M5ZN_Large <: EC2Type_M5ZN end abstract type EC2Type_M5ZN_xLarge <: EC2Type_M5ZN end abstract type EC2Type_M5ZN_2xLarge <: EC2Type_M5ZN end abstract type EC2Type_M5ZN_3xLarge <: EC2Type_M5ZN end abstract type EC2Type_M5ZN_6xLarge <: EC2Type_M5ZN end abstract type EC2Type_M5ZN_12xLarge <: EC2Type_M5ZN end abstract type EC2Type_M1 <: EC2Type end abstract type EC2Type_M1_Small <: EC2Type_M1 end abstract type EC2Type_M1_Medium <: EC2Type_M1 end abstract type EC2Type_M1_Large <: EC2Type_M1 end abstract type EC2Type_M1_xLarge <: EC2Type_M1 end abstract type EC2Type_M2 <: EC2Type end abstract type EC2Type_M2_xLarge <: EC2Type_M2 end abstract type EC2Type_M2_2xLarge <: EC2Type_M2 end abstract type EC2Type_M2_4xLarge <: EC2Type_M2 end abstract type EC2Type_M3 <: EC2Type end abstract type EC2Type_M3_Medium <: EC2Type_M3 end abstract type EC2Type_M3_Large <: EC2Type_M3 end abstract type EC2Type_M3_xLarge <: EC2Type_M3 end abstract type EC2Type_M3_2xLarge <: EC2Type_M3 end abstract type EC2Type_M3_4xLarge <: EC2Type_M3 end abstract type EC2Type_M4 <: EC2Type end abstract type EC2Type_M4_Large <: EC2Type_M4 end abstract type EC2Type_M4_xLarge <: EC2Type_M4 end abstract type EC2Type_M4_2xLarge <: EC2Type_M4 end abstract type EC2Type_M4_4xLarge <: EC2Type_M4 end abstract type EC2Type_M4_10xLarge <: EC2Type_M4 end abstract type EC2Type_M4_16xLarge <: EC2Type_M4 end abstract type EC2Type_A1 <: EC2Type end abstract type EC2Type_A1_Metal <: EC2Type_A1 end abstract type EC2Type_A1_Large <: EC2Type_A1 end abstract type EC2Type_A1_Medium <: EC2Type_A1 end abstract type EC2Type_A1_xLarge <: EC2Type_A1 end abstract type EC2Type_A1_2xLarge <: EC2Type_A1 end abstract type EC2Type_A1_4xLarge <: EC2Type_A1 end ## compute optimized instances abstract type EC2Type_CR1 <: EC2Type end abstract type EC2Type_CR1_8xLarge <: EC2Type_CR1 end abstract type EC2Type_CC2 <: EC2Type end abstract type EC2Type_CC2_8xLarge <: EC2Type_CC2 end abstract type EC2Type_C7A <: EC2Type end abstract type EC2Type_C7G <: EC2Type end abstract type EC2Type_C7GD <: EC2Type end abstract type EC2Type_C7GN <: EC2Type end abstract type EC2Type_C7I <: EC2Type end abstract type EC2Type_HPC7A <: EC2Type end abstract type EC2Type_HPC7G <: EC2Type end abstract type EC2Type_C7A_12xLarge <: EC2Type_C7A end abstract type EC2Type_C7A_16xLarge <: EC2Type_C7A end abstract type EC2Type_C7A_24xLarge <: EC2Type_C7A end abstract type EC2Type_C7A_2xLarge <: EC2Type_C7A end abstract type EC2Type_C7A_32xLarge <: EC2Type_C7A end abstract type EC2Type_C7A_48xLarge <: EC2Type_C7A end abstract type EC2Type_C7A_4xLarge <: EC2Type_C7A end abstract type EC2Type_C7A_8xLarge <: EC2Type_C7A end abstract type EC2Type_C7A_Large <: EC2Type_C7A end abstract type EC2Type_C7A_Medium <: EC2Type_C7A end abstract type EC2Type_C7A_Metal_48xl <: EC2Type_C7A end abstract type EC2Type_C7A_xLarge <: EC2Type_C7A end abstract type EC2Type_C7G_12xLarge <: EC2Type_C7G end abstract type EC2Type_C7G_16xLarge <: EC2Type_C7G end abstract type EC2Type_C7G_2xLarge <: EC2Type_C7G end abstract type EC2Type_C7G_4xLarge <: EC2Type_C7G end abstract type EC2Type_C7G_8xLarge <: EC2Type_C7G end abstract type EC2Type_C7G_Large <: EC2Type_C7G end abstract type EC2Type_C7G_Medium <: EC2Type_C7G end abstract type EC2Type_C7G_Metal <: EC2Type_C7G end abstract type EC2Type_C7G_xLarge <: EC2Type_C7G end abstract type EC2Type_C7GD_12xLarge <: EC2Type_C7GD end abstract type EC2Type_C7GD_16xLarge <: EC2Type_C7GD end abstract type EC2Type_C7GD_2xLarge <: EC2Type_C7GD end abstract type EC2Type_C7GD_4xLarge <: EC2Type_C7GD end abstract type EC2Type_C7GD_8xLarge <: EC2Type_C7GD end abstract type EC2Type_C7GD_Large <: EC2Type_C7GD end abstract type EC2Type_C7GD_Medium <: EC2Type_C7GD end abstract type EC2Type_C7GD_Metal <: EC2Type_C7GD end abstract type EC2Type_C7GD_xLarge <: EC2Type_C7GD end abstract type EC2Type_C7GN_12xLarge <: EC2Type_C7GN end abstract type EC2Type_C7GN_16xLarge <: EC2Type_C7GN end abstract type EC2Type_C7GN_2xLarge <: EC2Type_C7GN end abstract type EC2Type_C7GN_4xLarge <: EC2Type_C7GN end abstract type EC2Type_C7GN_8xLarge <: EC2Type_C7GN end abstract type EC2Type_C7GN_Large <: EC2Type_C7GN end abstract type EC2Type_C7GN_Medium <: EC2Type_C7GN end abstract type EC2Type_C7GN_Metal <: EC2Type_C7GN end abstract type EC2Type_C7GN_xLarge <: EC2Type_C7GN end abstract type EC2Type_C7I_12xLarge <: EC2Type_C7I end abstract type EC2Type_C7I_16xLarge <: EC2Type_C7I end abstract type EC2Type_C7I_24xLarge <: EC2Type_C7I end abstract type EC2Type_C7I_2xLarge <: EC2Type_C7I end abstract type EC2Type_C7I_48xLarge <: EC2Type_C7I end abstract type EC2Type_C7I_4xLarge <: EC2Type_C7I end abstract type EC2Type_C7I_8xLarge <: EC2Type_C7I end abstract type EC2Type_C7I_Large <: EC2Type_C7I end abstract type EC2Type_C7I_Metal_24xl <: EC2Type_C7I end abstract type EC2Type_C7I_Metal_48xl <: EC2Type_C7I end abstract type EC2Type_C7I_xLarge <: EC2Type_C7I end abstract type EC2Type_HPC7A_12xLarge <: EC2Type_HPC7A end abstract type EC2Type_HPC7A_24xLarge <: EC2Type_HPC7A end abstract type EC2Type_HPC7A_48xLarge <: EC2Type_HPC7A end abstract type EC2Type_HPC7A_96xLarge <: EC2Type_HPC7A end abstract type EC2Type_HPC7G_16xLarge <: EC2Type_HPC7G end abstract type EC2Type_HPC7G_4xLarge <: EC2Type_HPC7G end abstract type EC2Type_HPC7G_8xLarge <: EC2Type_HPC7G end abstract type EC2Type_C6 <: EC2Type end abstract type EC2Type_C6G <: EC2Type_C6 end abstract type EC2Type_C6GN <: EC2Type_C6 end abstract type EC2Type_C6I <: EC2Type_C6 end abstract type EC2Type_C6A <: EC2Type_C6 end abstract type EC2Type_C6GD <: EC2Type_C6G end abstract type EC2Type_C6ID <: EC2Type_C6I end abstract type EC2Type_C6G_Metal <: EC2Type_C6G end abstract type EC2Type_C6G_Large <: EC2Type_C6G end abstract type EC2Type_C6G_Medium <: EC2Type_C6G end abstract type EC2Type_C6G_xLarge <: EC2Type_C6G end abstract type EC2Type_C6G_2xLarge <: EC2Type_C6G end abstract type EC2Type_C6G_4xLarge <: EC2Type_C6G end abstract type EC2Type_C6G_8xLarge <: EC2Type_C6G end abstract type EC2Type_C6G_12xLarge <: EC2Type_C6G end abstract type EC2Type_C6G_16xLarge <: EC2Type_C6G end abstract type EC2Type_C6GD_Metal <: EC2Type_C6GD end abstract type EC2Type_C6GD_Large <: EC2Type_C6GD end abstract type EC2Type_C6GD_Medium <: EC2Type_C6GD end abstract type EC2Type_C6GD_xLarge <: EC2Type_C6GD end abstract type EC2Type_C6GD_2xLarge <: EC2Type_C6GD end abstract type EC2Type_C6GD_4xLarge <: EC2Type_C6GD end abstract type EC2Type_C6GD_8xLarge <: EC2Type_C6GD end abstract type EC2Type_C6GD_12xLarge <: EC2Type_C6G end abstract type EC2Type_C6GD_16xLarge <: EC2Type_C6G end abstract type EC2Type_C6GN_Large <: EC2Type_C6GN end abstract type EC2Type_C6GN_Medium <: EC2Type_C6GN end abstract type EC2Type_C6GN_xLarge <: EC2Type_C6GN end abstract type EC2Type_C6GN_2xLarge <: EC2Type_C6GN end abstract type EC2Type_C6GN_4xLarge <: EC2Type_C6GN end abstract type EC2Type_C6GN_8xLarge <: EC2Type_C6GN end abstract type EC2Type_C6GN_12xLarge <: EC2Type_C6GN end abstract type EC2Type_C6GN_16xLarge <: EC2Type_C6GN end abstract type EC2Type_C6I_Metal <: EC2Type_C6I end abstract type EC2Type_C6I_Large <: EC2Type_C6I end abstract type EC2Type_C6I_xLarge <: EC2Type_C6I end abstract type EC2Type_C6I_2xLarge <: EC2Type_C6I end abstract type EC2Type_C6I_4xLarge <: EC2Type_C6I end abstract type EC2Type_C6I_8xLarge <: EC2Type_C6I end abstract type EC2Type_C6I_12xLarge <: EC2Type_C6I end abstract type EC2Type_C6I_16xLarge <: EC2Type_C6I end abstract type EC2Type_C6I_24xLarge <: EC2Type_C6I end abstract type EC2Type_C6I_32xLarge <: EC2Type_C6I end abstract type EC2Type_C6ID_Metal <: EC2Type_C6ID end abstract type EC2Type_C6ID_Large <: EC2Type_C6ID end abstract type EC2Type_C6ID_xLarge <: EC2Type_C6ID end abstract type EC2Type_C6ID_2xLarge <: EC2Type_C6ID end abstract type EC2Type_C6ID_4xLarge <: EC2Type_C6ID end abstract type EC2Type_C6ID_8xLarge <: EC2Type_C6ID end abstract type EC2Type_C6ID_12xLarge <: EC2Type_C6ID end abstract type EC2Type_C6ID_16xLarge <: EC2Type_C6ID end abstract type EC2Type_C6ID_24xLarge <: EC2Type_C6ID end abstract type EC2Type_C6ID_32xLarge <: EC2Type_C6ID end abstract type EC2Type_C6A_Metal <: EC2Type_C6A end abstract type EC2Type_C6A_Large <: EC2Type_C6A end abstract type EC2Type_C6A_xLarge <: EC2Type_C6A end abstract type EC2Type_C6A_2xLarge <: EC2Type_C6A end abstract type EC2Type_C6A_4xLarge <: EC2Type_C6A end abstract type EC2Type_C6A_8xLarge <: EC2Type_C6A end abstract type EC2Type_C6A_12xLarge <: EC2Type_C6A end abstract type EC2Type_C6A_16xLarge <: EC2Type_C6A end abstract type EC2Type_C6A_24xLarge <: EC2Type_C6A end abstract type EC2Type_C6A_32xLarge <: EC2Type_C6A end abstract type EC2Type_C6A_48xLarge <: EC2Type_C6A end abstract type EC2Type_HPC6A <: EC2Type end abstract type EC2Type_HPC6A_48xLarge <: EC2Type_HPC6A end abstract type EC2Type_C5 <: EC2Type end abstract type EC2Type_C5D <: EC2Type_C5 end abstract type EC2Type_C5A <: EC2Type_C5 end abstract type EC2Type_C5N <: EC2Type_C5 end abstract type EC2Type_C5AD <: EC2Type_C5A end abstract type EC2Type_C5_Metal <: EC2Type_C5 end abstract type EC2Type_C5_Large <: EC2Type_C5 end abstract type EC2Type_C5_xLarge <: EC2Type_C5 end abstract type EC2Type_C5_2xLarge <: EC2Type_C5 end abstract type EC2Type_C5_4xLarge <: EC2Type_C5 end abstract type EC2Type_C5_9xLarge <: EC2Type_C5 end abstract type EC2Type_C5_12xLarge <: EC2Type_C5 end abstract type EC2Type_C5_18xLarge <: EC2Type_C5 end abstract type EC2Type_C5_24xLarge <: EC2Type_C5 end abstract type EC2Type_C5D_Metal <: EC2Type_C5D end abstract type EC2Type_C5D_Large <: EC2Type_C5D end abstract type EC2Type_C5D_xLarge <: EC2Type_C5D end abstract type EC2Type_C5D_2xLarge <: EC2Type_C5D end abstract type EC2Type_C5D_4xLarge <: EC2Type_C5D end abstract type EC2Type_C5D_9xLarge <: EC2Type_C5D end abstract type EC2Type_C5D_12xLarge <: EC2Type_C5D end abstract type EC2Type_C5D_18xLarge <: EC2Type_C5D end abstract type EC2Type_C5D_24xLarge <: EC2Type_C5D end abstract type EC2Type_C5A_Large <: EC2Type_C5A end abstract type EC2Type_C5A_xLarge <: EC2Type_C5A end abstract type EC2Type_C5A_2xLarge <: EC2Type_C5A end abstract type EC2Type_C5A_4xLarge <: EC2Type_C5A end abstract type EC2Type_C5A_8xLarge <: EC2Type_C5A end abstract type EC2Type_C5A_12xLarge <: EC2Type_C5A end abstract type EC2Type_C5A_16xLarge <: EC2Type_C5A end abstract type EC2Type_C5A_24xLarge <: EC2Type_C5A end abstract type EC2Type_C5AD_Large <: EC2Type_C5AD end abstract type EC2Type_C5AD_xLarge <: EC2Type_C5AD end abstract type EC2Type_C5AD_2xLarge <: EC2Type_C5AD end abstract type EC2Type_C5AD_4xLarge <: EC2Type_C5AD end abstract type EC2Type_C5AD_8xLarge <: EC2Type_C5AD end abstract type EC2Type_C5AD_12xLarge <: EC2Type_C5AD end abstract type EC2Type_C5AD_16xLarge <: EC2Type_C5AD end abstract type EC2Type_C5AD_24xLarge <: EC2Type_C5AD end abstract type EC2Type_C5N_Metal <: EC2Type_C5N end abstract type EC2Type_C5N_Large <: EC2Type_C5N end abstract type EC2Type_C5N_xLarge <: EC2Type_C5N end abstract type EC2Type_C5N_2xLarge <: EC2Type_C5N end abstract type EC2Type_C5N_4xLarge <: EC2Type_C5N end abstract type EC2Type_C5N_9xLarge <: EC2Type_C5N end abstract type EC2Type_C5N_18xLarge <: EC2Type_C5N end abstract type EC2Type_C4 <: EC2Type end abstract type EC2Type_C4_Large <: EC2Type_C4 end abstract type EC2Type_C4_xLarge <: EC2Type_C4 end abstract type EC2Type_C4_2xLarge <: EC2Type_C4 end abstract type EC2Type_C4_4xLarge <: EC2Type_C4 end abstract type EC2Type_C4_8xLarge <: EC2Type_C4 end abstract type EC2Type_C3 <: EC2Type end abstract type EC2Type_C3_Large <: EC2Type_C3 end abstract type EC2Type_C3_xLarge <: EC2Type_C3 end abstract type EC2Type_C3_2xLarge <: EC2Type_C3 end abstract type EC2Type_C3_4xLarge <: EC2Type_C3 end abstract type EC2Type_C3_8xLarge <: EC2Type_C3 end abstract type EC2Type_C1 <: EC2Type end abstract type EC2Type_C1_Large <: EC2Type_C1 end abstract type EC2Type_C1_Medium <: EC2Type_C1 end abstract type EC2Type_C1_xLarge <: EC2Type_C1 end ## memory optimized instances abstract type EC2Type_R6 <: EC2Type end abstract type EC2Type_R6A <: EC2Type_R6 end abstract type EC2Type_R6G <: EC2Type_R6 end abstract type EC2Type_R6I <: EC2Type_R6 end abstract type EC2Type_R6GD <: EC2Type_R6G end abstract type EC2Type_R6ID <: EC2Type_R6I end abstract type EC2Type_R6A_Metal <: EC2Type_R6A end abstract type EC2Type_R6A_Large <: EC2Type_R6A end abstract type EC2Type_R6A_xLarge <: EC2Type_R6A end abstract type EC2Type_R6A_2xLarge <: EC2Type_R6A end abstract type EC2Type_R6A_4xLarge <: EC2Type_R6A end abstract type EC2Type_R6A_8xLarge <: EC2Type_R6A end abstract type EC2Type_R6A_12xLarge <: EC2Type_R6A end abstract type EC2Type_R6A_16xLarge <: EC2Type_R6A end abstract type EC2Type_R6A_24xLarge <: EC2Type_R6A end abstract type EC2Type_R6A_32xLarge <: EC2Type_R6A end abstract type EC2Type_R6A_48xLarge <: EC2Type_R6A end abstract type EC2Type_R6G_Metal <: EC2Type_R6G end abstract type EC2Type_R6G_Large <: EC2Type_R6G end abstract type EC2Type_R6G_Medium <: EC2Type_R6G end abstract type EC2Type_R6G_xLarge <: EC2Type_R6G end abstract type EC2Type_R6G_2xLarge <: EC2Type_R6G end abstract type EC2Type_R6G_4xLarge <: EC2Type_R6G end abstract type EC2Type_R6G_8xLarge <: EC2Type_R6G end abstract type EC2Type_R6G_12xLarge <: EC2Type_R6G end abstract type EC2Type_R6G_16xLarge <: EC2Type_R6G end abstract type EC2Type_R6GD_Metal <: EC2Type_R6GD end abstract type EC2Type_R6GD_Large <: EC2Type_R6GD end abstract type EC2Type_R6GD_Medium <: EC2Type_R6GD end abstract type EC2Type_R6GD_xLarge <: EC2Type_R6GD end abstract type EC2Type_R6GD_2xLarge <: EC2Type_R6GD end abstract type EC2Type_R6GD_4xLarge <: EC2Type_R6GD end abstract type EC2Type_R6GD_8xLarge <: EC2Type_R6GD end abstract type EC2Type_R6GD_12xLarge <: EC2Type_R6GD end abstract type EC2Type_R6GD_16xLarge <: EC2Type_R6GD end abstract type EC2Type_R6I_Metal <: EC2Type_R6I end abstract type EC2Type_R6I_Large <: EC2Type_R6I end abstract type EC2Type_R6I_xLarge <: EC2Type_R6I end abstract type EC2Type_R6I_2xLarge <: EC2Type_R6I end abstract type EC2Type_R6I_4xLarge <: EC2Type_R6I end abstract type EC2Type_R6I_8xLarge <: EC2Type_R6I end abstract type EC2Type_R6I_12xLarge <: EC2Type_R6I end abstract type EC2Type_R6I_16xLarge <: EC2Type_R6I end abstract type EC2Type_R6I_24xLarge <: EC2Type_R6I end abstract type EC2Type_R6I_32xLarge <: EC2Type_R6I end abstract type EC2Type_R6ID_Metal <: EC2Type_R6ID end abstract type EC2Type_R6ID_Large <: EC2Type_R6ID end abstract type EC2Type_R6ID_xLarge <: EC2Type_R6ID end abstract type EC2Type_R6ID_2xLarge <: EC2Type_R6ID end abstract type EC2Type_R6ID_4xLarge <: EC2Type_R6ID end abstract type EC2Type_R6ID_8xLarge <: EC2Type_R6ID end abstract type EC2Type_R6ID_12xLarge <: EC2Type_R6ID end abstract type EC2Type_R6ID_16xLarge <: EC2Type_R6ID end abstract type EC2Type_R6ID_24xLarge <: EC2Type_R6ID end abstract type EC2Type_R6ID_32xLarge <: EC2Type_R6ID end abstract type EC2Type_R5 <: EC2Type end abstract type EC2Type_R5D <: EC2Type_R5 end abstract type EC2Type_R5A <: EC2Type_R5 end abstract type EC2Type_R5B <: EC2Type_R5 end abstract type EC2Type_R5N <: EC2Type_R5 end abstract type EC2Type_R5AD <: EC2Type_R5A end abstract type EC2Type_R5DN <: EC2Type_R5N end abstract type EC2Type_R5_Metal <: EC2Type_R5 end abstract type EC2Type_R5_Large <: EC2Type_R5 end abstract type EC2Type_R5_xLarge <: EC2Type_R5 end abstract type EC2Type_R5_2xLarge <: EC2Type_R5 end abstract type EC2Type_R5_4xLarge <: EC2Type_R5 end abstract type EC2Type_R5_8xLarge <: EC2Type_R5 end abstract type EC2Type_R5_12xLarge <: EC2Type_R5 end abstract type EC2Type_R5_16xLarge <: EC2Type_R5 end abstract type EC2Type_R5_24xLarge <: EC2Type_R5 end abstract type EC2Type_R5D_Metal <: EC2Type_R5D end abstract type EC2Type_R5D_Large <: EC2Type_R5D end abstract type EC2Type_R5D_xLarge <: EC2Type_R5D end abstract type EC2Type_R5D_2xLarge <: EC2Type_R5D end abstract type EC2Type_R5D_4xLarge <: EC2Type_R5D end abstract type EC2Type_R5D_8xLarge <: EC2Type_R5D end abstract type EC2Type_R5D_12xLarge <: EC2Type_R5D end abstract type EC2Type_R5D_16xLarge <: EC2Type_R5D end abstract type EC2Type_R5D_24xLarge <: EC2Type_R5D end abstract type EC2Type_R5A_Large <: EC2Type_R5A end abstract type EC2Type_R5A_xLarge <: EC2Type_R5A end abstract type EC2Type_R5A_2xLarge <: EC2Type_R5A end abstract type EC2Type_R5A_4xLarge <: EC2Type_R5A end abstract type EC2Type_R5A_8xLarge <: EC2Type_R5A end abstract type EC2Type_R5A_12xLarge <: EC2Type_R5A end abstract type EC2Type_R5A_16xLarge <: EC2Type_R5A end abstract type EC2Type_R5A_24xLarge <: EC2Type_R5A end abstract type EC2Type_R5AD_Large <: EC2Type_R5AD end abstract type EC2Type_R5AD_xLarge <: EC2Type_R5AD end abstract type EC2Type_R5AD_2xLarge <: EC2Type_R5AD end abstract type EC2Type_R5AD_4xLarge <: EC2Type_R5AD end abstract type EC2Type_R5AD_8xLarge <: EC2Type_R5AD end abstract type EC2Type_R5AD_12xLarge <: EC2Type_R5AD end abstract type EC2Type_R5AD_16xLarge <: EC2Type_R5AD end abstract type EC2Type_R5AD_24xLarge <: EC2Type_R5AD end abstract type EC2Type_R5B_Metal <: EC2Type_R5B end abstract type EC2Type_R5B_Large <: EC2Type_R5B end abstract type EC2Type_R5B_xLarge <: EC2Type_R5B end abstract type EC2Type_R5B_2xLarge <: EC2Type_R5B end abstract type EC2Type_R5B_4xLarge <: EC2Type_R5B end abstract type EC2Type_R5B_8xLarge <: EC2Type_R5B end abstract type EC2Type_R5B_12xLarge <: EC2Type_R5B end abstract type EC2Type_R5B_16xLarge <: EC2Type_R5B end abstract type EC2Type_R5B_24xLarge <: EC2Type_R5B end abstract type EC2Type_R5N_Metal <: EC2Type_R5N end abstract type EC2Type_R5N_Large <: EC2Type_R5N end abstract type EC2Type_R5N_xLarge <: EC2Type_R5N end abstract type EC2Type_R5N_2xLarge <: EC2Type_R5N end abstract type EC2Type_R5N_4xLarge <: EC2Type_R5N end abstract type EC2Type_R5N_8xLarge <: EC2Type_R5N end abstract type EC2Type_R5N_12xLarge <: EC2Type_R5N end abstract type EC2Type_R5N_16xLarge <: EC2Type_R5N end abstract type EC2Type_R5N_24xLarge <: EC2Type_R5N end abstract type EC2Type_R5DN_Metal <: EC2Type_R5DN end abstract type EC2Type_R5DN_Large <: EC2Type_R5DN end abstract type EC2Type_R5DN_xLarge <: EC2Type_R5DN end abstract type EC2Type_R5DN_2xLarge <: EC2Type_R5DN end abstract type EC2Type_R5DN_4xLarge <: EC2Type_R5DN end abstract type EC2Type_R5DN_8xLarge <: EC2Type_R5DN end abstract type EC2Type_R5DN_12xLarge <: EC2Type_R5DN end abstract type EC2Type_R5DN_16xLarge <: EC2Type_R5DN end abstract type EC2Type_R5DN_24xLarge <: EC2Type_R5DN end abstract type EC2Type_R3 <: EC2Type end abstract type EC2Type_R3_Large <: EC2Type_R3 end abstract type EC2Type_R3_xLarge <: EC2Type_R3 end abstract type EC2Type_R3_2xLarge <: EC2Type_R3 end abstract type EC2Type_R3_4xLarge <: EC2Type_R3 end abstract type EC2Type_R3_8xLarge <: EC2Type_R3 end abstract type EC2Type_R4 <: EC2Type end abstract type EC2Type_R4_Large <: EC2Type_R4 end abstract type EC2Type_R4_xLarge <: EC2Type_R4 end abstract type EC2Type_R4_2xLarge <: EC2Type_R4 end abstract type EC2Type_R4_4xLarge <: EC2Type_R4 end abstract type EC2Type_R4_8xLarge <: EC2Type_R4 end abstract type EC2Type_R4_16xLarge <: EC2Type_R4 end abstract type EC2Type_X2 <: EC2Type end abstract type EC2Type_X2GD <: EC2Type_X2 end abstract type EC2Type_X2IDN <: EC2Type_X2 end abstract type EC2Type_X2IEDN <: EC2Type_X2 end abstract type EC2Type_X2IEZN <: EC2Type_X2 end abstract type EC2Type_X2GD_Metal <: EC2Type_X2GD end abstract type EC2Type_X2GD_Large <: EC2Type_X2GD end abstract type EC2Type_X2GD_Medium <: EC2Type_X2GD end abstract type EC2Type_X2GD_xLarge <: EC2Type_X2GD end abstract type EC2Type_X2GD_2xLarge <: EC2Type_X2GD end abstract type EC2Type_X2GD_4xLarge <: EC2Type_X2GD end abstract type EC2Type_X2GD_8xLarge <: EC2Type_X2GD end abstract type EC2Type_X2GD_12xLarge <: EC2Type_X2GD end abstract type EC2Type_X2GD_16xLarge <: EC2Type_X2GD end abstract type EC2Type_X2IDN_Metal <: EC2Type_X2IDN end abstract type EC2Type_X2IDN_16xLarge <: EC2Type_X2IDN end abstract type EC2Type_X2IDN_24xLarge <: EC2Type_X2IDN end abstract type EC2Type_X2IDN_32xLarge <: EC2Type_X2IDN end abstract type EC2Type_X2IEDN_Metal <: EC2Type_X2IEDN end abstract type EC2Type_X2IEDN_xLarge <: EC2Type_X2IEDN end abstract type EC2Type_X2IEDN_2xLarge <: EC2Type_X2IEDN end abstract type EC2Type_X2IEDN_4xLarge <: EC2Type_X2IEDN end abstract type EC2Type_X2IEDN_8xLarge <: EC2Type_X2IEDN end abstract type EC2Type_X2IEDN_16xLarge <: EC2Type_X2IEDN end abstract type EC2Type_X2IEDN_24xLarge <: EC2Type_X2IEDN end abstract type EC2Type_X2IEDN_32xLarge <: EC2Type_X2IEDN end abstract type EC2Type_X2IEZN_Metal <: EC2Type_X2IEZN end abstract type EC2Type_X2IEZN_2xLarge <: EC2Type_X2IEZN end abstract type EC2Type_X2IEZN_4xLarge <: EC2Type_X2IEZN end abstract type EC2Type_X2IEZN_6xLarge <: EC2Type_X2IEZN end abstract type EC2Type_X2IEZN_8xLarge <: EC2Type_X2IEZN end abstract type EC2Type_X2IEZN_12xLarge <: EC2Type_X2IEZN end abstract type EC2Type_X1 <: EC2Type end abstract type EC2Type_X1E <: EC2Type_X1 end abstract type EC2Type_X1E_xLarge <: EC2Type_X1E end abstract type EC2Type_X1E_2xLarge <: EC2Type_X1E end abstract type EC2Type_X1E_4xLarge <: EC2Type_X1E end abstract type EC2Type_X1E_8xLarge <: EC2Type_X1E end abstract type EC2Type_X1E_16xLarge <: EC2Type_X1E end abstract type EC2Type_X1E_32xLarge <: EC2Type_X1E end abstract type EC2Type_X1_16xLarge <: EC2Type_X1 end abstract type EC2Type_X1_32xLarge <: EC2Type_X1 end abstract type EC2Type_U <: EC2Type end abstract type EC2Type_U3TB1 <: EC2Type_U end abstract type EC2Type_U6TB1 <: EC2Type_U end abstract type EC2Type_U9TB1 <: EC2Type_U end abstract type EC2Type_U12TB1 <: EC2Type_U end abstract type EC2Type_U18TB1 <: EC2Type_U end abstract type EC2Type_U24TB1 <: EC2Type_U end abstract type EC2Type_U3TB1_56xLarge <: EC2Type_U3TB1 end abstract type EC2Type_U6TB1_Metal <: EC2Type_U6TB1 end abstract type EC2Type_U6TB1_56xLarge <: EC2Type_U6TB1 end abstract type EC2Type_U6TB1_112xLarge <: EC2Type_U6TB1 end abstract type EC2Type_U9TB1_Metal <: EC2Type_U9TB1 end abstract type EC2Type_U9TB1_112xLarge <: EC2Type_U9TB1 end abstract type EC2Type_U12TB1_Metal <: EC2Type_U12TB1 end abstract type EC2Type_U12TB1_112xLarge <: EC2Type_U12TB1 end abstract type EC2Type_U18TB1_Metal <: EC2Type_U18TB1 end abstract type EC2Type_U24TB1_Metal <: EC2Type_U24TB1 end abstract type EC2Type_Z1D <: EC2Type end abstract type EC2Type_Z1D_Metal <: EC2Type_Z1D end abstract type EC2Type_Z1D_Large <: EC2Type_Z1D end abstract type EC2Type_Z1D_xLarge <: EC2Type_Z1D end abstract type EC2Type_Z1D_2xLarge <: EC2Type_Z1D end abstract type EC2Type_Z1D_3xLarge <: EC2Type_Z1D end abstract type EC2Type_Z1D_6xLarge <: EC2Type_Z1D end abstract type EC2Type_Z1D_12xLarge <: EC2Type_Z1D end ## accelerated computing instances abstract type EC2Type_P4D <: EC2Type end abstract type EC2Type_P4DE <: EC2Type_P4D end abstract type EC2Type_P4D_24xLarge <: EC2Type_P4D end abstract type EC2Type_P4DE_24xLarge <: EC2Type_P4DE end # instance type in preview abstract type EC2Type_P3 <: EC2Type end abstract type EC2Type_P3DN <: EC2Type_P3 end abstract type EC2Type_P3_2xLarge <: EC2Type_P3 end abstract type EC2Type_P3_8xLarge <: EC2Type_P3 end abstract type EC2Type_P3_16xLarge <: EC2Type_P3 end abstract type EC2Type_P3DN_24xLarge <: EC2Type_P3DN end abstract type EC2Type_P2 <: EC2Type end abstract type EC2Type_P2_xLarge <: EC2Type_P2 end abstract type EC2Type_P2_8xLarge <: EC2Type_P2 end abstract type EC2Type_P2_16xLarge <: EC2Type_P2 end abstract type EC2Type_DL1 <: EC2Type end abstract type EC2Type_DL1_24xLarge <: EC2Type_DL1 end abstract type EC2Type_INF1 <: EC2Type end abstract type EC2Type_INF1_xLarge <: EC2Type_INF1 end abstract type EC2Type_INF1_2xLarge <: EC2Type_INF1 end abstract type EC2Type_INF1_6xLarge <: EC2Type_INF1 end abstract type EC2Type_INF1_24xLarge <: EC2Type_INF1 end abstract type EC2Type_G5 <: EC2Type end abstract type EC2Type_G5G <: EC2Type_G5 end abstract type EC2Type_G5_xLarge <: EC2Type_G5 end abstract type EC2Type_G5_2xLarge <: EC2Type_G5 end abstract type EC2Type_G5_4xLarge <: EC2Type_G5 end abstract type EC2Type_G5_8xLarge <: EC2Type_G5 end abstract type EC2Type_G5_12xLarge <: EC2Type_G5 end abstract type EC2Type_G5_16xLarge <: EC2Type_G5 end abstract type EC2Type_G5_24xLarge <: EC2Type_G5 end abstract type EC2Type_G5_48xLarge <: EC2Type_G5 end abstract type EC2Type_G5G_Metal <: EC2Type_G5G end abstract type EC2Type_G5G_xLarge <: EC2Type_G5G end abstract type EC2Type_G5G_2xLarge <: EC2Type_G5G end abstract type EC2Type_G5G_4xLarge <: EC2Type_G5G end abstract type EC2Type_G5G_8xLarge <: EC2Type_G5G end abstract type EC2Type_G5G_16xLarge <: EC2Type_G5G end abstract type EC2Type_G6 <: EC2Type end abstract type EC2Type_G6_xLarge <: EC2Type_G6 end abstract type EC2Type_G6_2xLarge <: EC2Type_G6 end abstract type EC2Type_G6_4xLarge <: EC2Type_G6 end abstract type EC2Type_G6_8xLarge <: EC2Type_G6 end abstract type EC2Type_G6_12xLarge <: EC2Type_G6 end abstract type EC2Type_G6_16xLarge <: EC2Type_G6 end abstract type EC2Type_G6_24xLarge <: EC2Type_G6 end abstract type EC2Type_G6_48xLarge <: EC2Type_G6 end abstract type EC2Type_G4 <: EC2Type end abstract type EC2Type_G4DN <: EC2Type_G4 end abstract type EC2Type_G4AD <: EC2Type_G4 end abstract type EC2Type_G4DN_Metal <: EC2Type_G4DN end abstract type EC2Type_G4DN_xLarge <: EC2Type_G4DN end abstract type EC2Type_G4DN_2xLarge <: EC2Type_G4DN end abstract type EC2Type_G4DN_4xLarge <: EC2Type_G4DN end abstract type EC2Type_G4DN_8xLarge <: EC2Type_G4DN end abstract type EC2Type_G4DN_12xLarge <: EC2Type_G4DN end abstract type EC2Type_G4DN_16xLarge <: EC2Type_G4DN end abstract type EC2Type_G4AD_xLarge <: EC2Type_G4AD end abstract type EC2Type_G4AD_2xLarge <: EC2Type_G4AD end abstract type EC2Type_G4AD_4xLarge <: EC2Type_G4AD end abstract type EC2Type_G4AD_8xLarge <: EC2Type_G4AD end abstract type EC2Type_G4AD_16xLarge <: EC2Type_G4AD end abstract type EC2Type_G3 <: EC2Type end abstract type EC2Type_G3S <: EC2Type_G3 end abstract type EC2Type_G3_4xLarge <: EC2Type_G3 end abstract type EC2Type_G3_8xLarge <: EC2Type_G3 end abstract type EC2Type_G3_16xLarge <: EC2Type_G3 end abstract type EC2Type_G3S_xLarge <: EC2Type_G3S end abstract type EC2Type_G2 <: EC2Type end abstract type EC2Type_G2_2xLarge <: EC2Type_G2 end abstract type EC2Type_G2_8xLarge <: EC2Type_G2 end abstract type EC2Type_F1 <: EC2Type end abstract type EC2Type_F1_2xLarge <: EC2Type_F1 end abstract type EC2Type_F1_4xLarge <: EC2Type_F1 end abstract type EC2Type_F1_16xLarge <: EC2Type_F1 end abstract type EC2Type_VT1 <: EC2Type end abstract type EC2Type_VT1_3xLarge <: EC2Type_VT1 end abstract type EC2Type_VT1_6xLarge <: EC2Type_VT1 end abstract type EC2Type_VT1_24xLarge <: EC2Type_VT1 end ## storage optimized instances abstract type EC2Type_IM4GN <: EC2Type end abstract type EC2Type_IM4GN_Large <: EC2Type_IM4GN end abstract type EC2Type_IM4GN_xLarge <: EC2Type_IM4GN end abstract type EC2Type_IM4GN_2xLarge <: EC2Type_IM4GN end abstract type EC2Type_IM4GN_4xLarge <: EC2Type_IM4GN end abstract type EC2Type_IM4GN_8xLarge <: EC2Type_IM4GN end abstract type EC2Type_IM4GN_16xLarge <: EC2Type_IM4GN end abstract type EC2Type_IS4GEN <: EC2Type end abstract type EC2Type_IS4GEN_Large <: EC2Type_IS4GEN end abstract type EC2Type_IS4GEN_Medium <: EC2Type_IS4GEN end abstract type EC2Type_IS4GEN_xLarge <: EC2Type_IS4GEN end abstract type EC2Type_IS4GEN_2xLarge <: EC2Type_IS4GEN end abstract type EC2Type_IS4GEN_4xLarge <: EC2Type_IS4GEN end abstract type EC2Type_IS4GEN_8xLarge <: EC2Type_IS4GEN end abstract type EC2Type_I4I <: EC2Type end abstract type EC2Type_I4I_Metal <: EC2Type_I4I end abstract type EC2Type_I4I_Large <: EC2Type_I4I end abstract type EC2Type_I4I_xLarge <: EC2Type_I4I end abstract type EC2Type_I4I_2xLarge <: EC2Type_I4I end abstract type EC2Type_I4I_4xLarge <: EC2Type_I4I end abstract type EC2Type_I4I_8xLarge <: EC2Type_I4I end abstract type EC2Type_I4I_16xLarge <: EC2Type_I4I end abstract type EC2Type_I4I_32xLarge <: EC2Type_I4I end abstract type EC2Type_I3 <: EC2Type end abstract type EC2Type_I3EN <: EC2Type_I3 end abstract type EC2Type_I3_Metal <: EC2Type_I3 end abstract type EC2Type_I3_Large <: EC2Type_I3 end abstract type EC2Type_I3_xLarge <: EC2Type_I3 end abstract type EC2Type_I3_2xLarge <: EC2Type_I3 end abstract type EC2Type_I3_4xLarge <: EC2Type_I3 end abstract type EC2Type_I3_8xLarge <: EC2Type_I3 end abstract type EC2Type_I3_16xLarge <: EC2Type_I3 end abstract type EC2Type_I3EN_Metal <: EC2Type_I3EN end abstract type EC2Type_I3EN_Large <: EC2Type_I3EN end abstract type EC2Type_I3EN_xLarge <: EC2Type_I3EN end abstract type EC2Type_I3EN_2xLarge <: EC2Type_I3EN end abstract type EC2Type_I3EN_3xLarge <: EC2Type_I3EN end abstract type EC2Type_I3EN_6xLarge <: EC2Type_I3EN end abstract type EC2Type_I3EN_12xLarge <: EC2Type_I3EN end abstract type EC2Type_I3EN_24xLarge <: EC2Type_I3EN end abstract type EC2Type_I2 <: EC2Type end abstract type EC2Type_I2_Large <: EC2Type_I2 end abstract type EC2Type_I2_xLarge <: EC2Type_I2 end abstract type EC2Type_I2_2xLarge <: EC2Type_I2 end abstract type EC2Type_I2_4xLarge <: EC2Type_I2 end abstract type EC2Type_I2_8xLarge <: EC2Type_I2 end abstract type EC2Type_D2 <: EC2Type end abstract type EC2Type_D2_xLarge <: EC2Type_D2 end abstract type EC2Type_D2_2xLarge <: EC2Type_D2 end abstract type EC2Type_D2_4xLarge <: EC2Type_D2 end abstract type EC2Type_D2_8xLarge <: EC2Type_D2 end abstract type EC2Type_D3 <: EC2Type end abstract type EC2Type_D3EN <: EC2Type_D3 end abstract type EC2Type_D3_xLarge <: EC2Type_D3 end abstract type EC2Type_D3_2xLarge <: EC2Type_D3 end abstract type EC2Type_D3_4xLarge <: EC2Type_D3 end abstract type EC2Type_D3_8xLarge <: EC2Type_D3 end abstract type EC2Type_D3EN_xLarge <: EC2Type_D3EN end abstract type EC2Type_D3EN_2xLarge <: EC2Type_D3EN end abstract type EC2Type_D3EN_4xLarge <: EC2Type_D3EN end abstract type EC2Type_D3EN_6xLarge <: EC2Type_D3EN end abstract type EC2Type_D3EN_8xLarge <: EC2Type_D3EN end abstract type EC2Type_D3EN_12xLarge <: EC2Type_D3EN end abstract type EC2Type_H1 <: EC2Type end abstract type EC2Type_H1_2xLarge <: EC2Type_H1 end abstract type EC2Type_H1_4xLarge <: EC2Type_H1 end abstract type EC2Type_H1_8xLarge <: EC2Type_H1 end abstract type EC2Type_H1_16xLarge <: EC2Type_H1 end abstract type EC2Type_HS1 <: EC2Type end abstract type EC2Type_HS1_8xLarge <: EC2Type_HS1 end # storage types abstract type StorageType_EC2_EBSOnly <: StorageType end abstract type StorageType_EC2_NVMeSSD <: StorageType_SSD end # network performance abstract type NetworkPerformance_EC2 end abstract type NetworkPerformance_EC2_Low <: NetworkPerformance_EC2 end abstract type NetworkPerformance_EC2_High <: NetworkPerformance_EC2 end abstract type NetworkPerformance_EC2_Moderate <: NetworkPerformance_EC2 end abstract type NetworkPerformance_EC2_LowModerate <: NetworkPerformance_EC2 end ## function get_instance_info(provider::Type{<:AmazonEC2}) instance_id = try JSON.parse(String(HTTP.request("GET", "http://169.254.169.254/latest/dynamic/instance-identity/document"; connect_timeout=5, readtimeout=5).body)) # return instance_info["instanceType"], instance_info["region"] catch e return nothing end machinetype_dict_ec2 = readCloudInstancesDB(provider) instance_info = machinetype_dict_ec2[instance_id["instanceType"]] return instance_info end function readCloudInstancesDB(::Type{<:AmazonEC2}) database_path = @get_scratch!("database_path") machinetypedb_ec2_url = "https://raw.githubusercontent.com/PlatformAwareProgramming/PlatformAware.jl/master/src/features/qualifiers/ec2/db-machinetypes.ec2.csv" machinetypedb_ec2_fname = joinpath(database_path,basename(machinetypedb_ec2_url)) #machinetypedb_ec2_fname = "/home/heron/Dropbox/Copy/ufc_mdcc_hpc/PlatformAware/PlatformAware.jl/src/features/qualifiers/ec2/db-machinetypes.ec2.csv" try_download(machinetypedb_ec2_url, machinetypedb_ec2_fname) machinetype_dict_ec2 = readDB2(machinetypedb_ec2_fname) return machinetype_dict_ec2 end # AWS EC2 locale types abstract type EC2Zone end abstract type EC2Zone_US end abstract type EC2Zone_Europe end abstract type EC2Zone_USEast1 <: EC2Zone end # Norte da Vírginia abstract type EC2Zone_USEast1_bos_1a <: EC2Zone_USEast1 end # Boston abstract type EC2Zone_USEast1_chi_1a <: EC2Zone_USEast1 end # ? abstract type EC2Zone_USEast1_dfw_1a <: EC2Zone_USEast1 end # ? function getInstanceLocaleType(::Type{<:AmazonEC2}, locale_desc) EC2InstanceZoneDict[locale_desc] end EC2InstanceZoneDict = Dict( "us-east-1" => EC2Zone_USEast1, "us-east-1-bos-1a" => EC2Zone_USEast1_bos_1a, "us-east-1-chi-1a" => EC2Zone_USEast1_chi_1a, "us-east-1-dfw-1a" => EC2Zone_USEast1_dfw_1a # ... ) function getNodeFeatures(provider::Type{<:AmazonEC2}, node_features) instance_info = get_instance_info(provider) if (!isnothing(instance_info)) node_features["node_count"] = 1 node_features["node_threads_count"] = 1 node_features["node_provider"] = "AmazonEC2" node_features["node_virtual"] = "Yes" node_features["node_dedicated"] = "Yes" # ??? node_features["node_machinefamily"] = instance_info["node_machinefamily"] node_features["node_machinetype"] = instance_info["node_machinesize"] node_features["node_vcpus_count"] = instance_info["node_vcpus_count"] end return instance_info end
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
14143
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ # maintaner types abstract type GoogleCloud <: CloudProvider end; export GoogleCloud # locale types # machine family types abstract type GCPFamily <: MachineFamily end abstract type GCPFamily_General <: GCPFamily end abstract type GCPFamily_Compute <: GCPFamily end abstract type GCPFamily_Memory <: GCPFamily end abstract type GCPFamily_Accelerated <: GCPFamily end # machine types abstract type GCPType <: MachineType end # general purpose machine types abstract type GCPType_E2 <: GCPType end abstract type GCPType_E2_Standard <: GCPType_E2 end abstract type GCPType_E2_Highmem <: GCPType_E2 end abstract type GCPType_E2_Highcpu <: GCPType_E2 end abstract type GCPType_E2_Micro <: GCPType_E2 end abstract type GCPType_E2_Small <: GCPType_E2 end abstract type GCPType_E2_Medium <: GCPType_E2 end abstract type GCPType_E2_Standard2 <: GCPType_E2_Standard end abstract type GCPType_E2_Standard4 <: GCPType_E2_Standard end abstract type GCPType_E2_Standard8 <: GCPType_E2_Standard end abstract type GCPType_E2_Standard16 <: GCPType_E2_Standard end abstract type GCPType_E2_Standard32 <: GCPType_E2_Standard end abstract type GCPType_E2_Highmem2 <: GCPType_E2_Highmem end abstract type GCPType_E2_Highmem4 <: GCPType_E2_Highmem end abstract type GCPType_E2_Highmem8 <: GCPType_E2_Highmem end abstract type GCPType_E2_Highmem16 <: GCPType_E2_Highmem end abstract type GCPType_E2_Highcpu2 <: GCPType_E2_Highcpu end abstract type GCPType_E2_Highcpu4 <: GCPType_E2_Highcpu end abstract type GCPType_E2_Highcpu8 <: GCPType_E2_Highcpu end abstract type GCPType_E2_Highcpu16 <: GCPType_E2_Highcpu end abstract type GCPType_E2_Highcpu32 <: GCPType_E2_Highcpu end abstract type GCPType_N2 <: GCPType end abstract type GCPType_N2_Standard <: GCPType_N2 end abstract type GCPType_N2_Highmem <: GCPType_N2 end abstract type GCPType_N2_Highcpu <: GCPType_N2 end abstract type GCPType_N2_Standard2 <: GCPType_N2_Standard end abstract type GCPType_N2_Standard4 <: GCPType_N2_Standard end abstract type GCPType_N2_Standard8 <: GCPType_N2_Standard end abstract type GCPType_N2_Standard16 <: GCPType_N2_Standard end abstract type GCPType_N2_Standard32 <: GCPType_N2_Standard end abstract type GCPType_N2_Standard48 <: GCPType_N2_Standard end abstract type GCPType_N2_Standard64 <: GCPType_N2_Standard end abstract type GCPType_N2_Standard80 <: GCPType_N2_Standard end abstract type GCPType_N2_Standard96 <: GCPType_N2_Standard end abstract type GCPType_N2_Standard128 <: GCPType_N2_Standard end abstract type GCPType_N2_Highmem2 <: GCPType_N2_Highmem end abstract type GCPType_N2_Highmem4 <: GCPType_N2_Highmem end abstract type GCPType_N2_Highmem8 <: GCPType_N2_Highmem end abstract type GCPType_N2_Highmem16 <: GCPType_N2_Highmem end abstract type GCPType_N2_Highmem32 <: GCPType_N2_Highmem end abstract type GCPType_N2_Highmem48 <: GCPType_N2_Highmem end abstract type GCPType_N2_Highmem64 <: GCPType_N2_Highmem end abstract type GCPType_N2_Highmem80 <: GCPType_N2_Highmem end abstract type GCPType_N2_Highmem96 <: GCPType_N2_Highmem end abstract type GCPType_N2_Highmem128 <: GCPType_N2_Highmem end abstract type GCPType_N2_Highcpu2 <: GCPType_N2_Highcpu end abstract type GCPType_N2_Highcpu4 <: GCPType_N2_Highcpu end abstract type GCPType_N2_Highcpu8 <: GCPType_N2_Highcpu end abstract type GCPType_N2_Highcpu16 <: GCPType_N2_Highcpu end abstract type GCPType_N2_Highcpu32 <: GCPType_N2_Highcpu end abstract type GCPType_N2_Highcpu48 <: GCPType_N2_Highcpu end abstract type GCPType_N2_Highcpu64 <: GCPType_N2_Highcpu end abstract type GCPType_N2_Highcpu80 <: GCPType_N2_Highcpu end abstract type GCPType_N2_Highcpu96 <: GCPType_N2_Highcpu end abstract type GCPType_N2D <: GCPType end abstract type GCPType_N2D_Standard <: GCPType_N2D end abstract type GCPType_N2D_Highmem <: GCPType_N2D end abstract type GCPType_N2D_Highcpu <: GCPType_N2D end abstract type GCPType_N2D_Standard2 <: GCPType_N2D_Standard end abstract type GCPType_N2D_Standard4 <: GCPType_N2D_Standard end abstract type GCPType_N2D_Standard8 <: GCPType_N2D_Standard end abstract type GCPType_N2D_Standard16 <: GCPType_N2D_Standard end abstract type GCPType_N2D_Standard32 <: GCPType_N2D_Standard end abstract type GCPType_N2D_Standard48 <: GCPType_N2D_Standard end abstract type GCPType_N2D_Standard64 <: GCPType_N2D_Standard end abstract type GCPType_N2D_Standard80 <: GCPType_N2D_Standard end abstract type GCPType_N2D_Standard96 <: GCPType_N2D_Standard end abstract type GCPType_N2D_Standard128 <: GCPType_N2D_Standard end abstract type GCPType_N2D_Standard224 <: GCPType_N2D_Standard end abstract type GCPType_N2D_Highmem2 <: GCPType_N2D_Highmem end abstract type GCPType_N2D_Highmem4 <: GCPType_N2D_Highmem end abstract type GCPType_N2D_Highmem8 <: GCPType_N2D_Highmem end abstract type GCPType_N2D_Highmem16 <: GCPType_N2D_Highmem end abstract type GCPType_N2D_Highmem32 <: GCPType_N2D_Highmem end abstract type GCPType_N2D_Highmem48 <: GCPType_N2D_Highmem end abstract type GCPType_N2D_Highmem64 <: GCPType_N2D_Highmem end abstract type GCPType_N2D_Highmem80 <: GCPType_N2D_Highmem end abstract type GCPType_N2D_Highmem96 <: GCPType_N2D_Highmem end abstract type GCPType_N2D_Highcpu2 <: GCPType_N2D_Highcpu end abstract type GCPType_N2D_Highcpu4 <: GCPType_N2D_Highcpu end abstract type GCPType_N2D_Highcpu8 <: GCPType_N2D_Highcpu end abstract type GCPType_N2D_Highcpu16 <: GCPType_N2D_Highcpu end abstract type GCPType_N2D_Highcpu32 <: GCPType_N2D_Highcpu end abstract type GCPType_N2D_Highcpu48 <: GCPType_N2D_Highcpu end abstract type GCPType_N2D_Highcpu64 <: GCPType_N2D_Highcpu end abstract type GCPType_N2D_Highcpu80 <: GCPType_N2D_Highcpu end abstract type GCPType_N2D_Highcpu96 <: GCPType_N2D_Highcpu end abstract type GCPType_N2D_Highcpu128 <: GCPType_N2D_Highcpu end abstract type GCPType_N2D_Highcpu224 <: GCPType_N2D_Highcpu end abstract type GCPType_T2D <: GCPType end abstract type GCPType_T2D_Standard <: GCPType_T2D end abstract type GCPType_T2D_Standard1 <: GCPType_T2D_Standard end abstract type GCPType_T2D_Standard2 <: GCPType_T2D_Standard end abstract type GCPType_T2D_Standard4 <: GCPType_T2D_Standard end abstract type GCPType_T2D_Standard8 <: GCPType_T2D_Standard end abstract type GCPType_T2D_Standard16 <: GCPType_T2D_Standard end abstract type GCPType_T2D_Standard32 <: GCPType_T2D_Standard end abstract type GCPType_T2D_Standard48 <: GCPType_T2D_Standard end abstract type GCPType_T2D_Standard60 <: GCPType_T2D_Standard end abstract type GCPType_T2A <: GCPType end abstract type GCPType_T2A_Standard <: GCPType_T2A end abstract type GCPType_T2A_Standard1 <: GCPType_T2A_Standard end abstract type GCPType_T2A_Standard2 <: GCPType_T2A_Standard end abstract type GCPType_T2A_Standard4 <: GCPType_T2A_Standard end abstract type GCPType_T2A_Standard8 <: GCPType_T2A_Standard end abstract type GCPType_T2A_Standard16 <: GCPType_T2A_Standard end abstract type GCPType_T2A_Standard32 <: GCPType_T2A_Standard end abstract type GCPType_T2A_Standard48 <: GCPType_T2A_Standard end abstract type GCPType_N1 <: GCPType end abstract type GCPType_N1_Standard <: GCPType_N1 end abstract type GCPType_N1_Highmem <: GCPType_N1 end abstract type GCPType_N1_Highcpu <: GCPType_N1 end abstract type GCPType_F1_Micro <: GCPType_N1 end abstract type GCPType_G1_Small <: GCPType_N1 end abstract type GCPType_N1_Standard1 <: GCPType_N1_Standard end abstract type GCPType_N1_Standard2 <: GCPType_N1_Standard end abstract type GCPType_N1_Standard4 <: GCPType_N1_Standard end abstract type GCPType_N1_Standard8 <: GCPType_N1_Standard end abstract type GCPType_N1_Standard16 <: GCPType_N1_Standard end abstract type GCPType_N1_Standard32 <: GCPType_N1_Standard end abstract type GCPType_N1_Standard64 <: GCPType_N1_Standard end abstract type GCPType_N1_Standard96 <: GCPType_N1_Standard end abstract type GCPType_N1_Highmem2 <: GCPType_N1_Highmem end abstract type GCPType_N1_Highmem4 <: GCPType_N1_Highmem end abstract type GCPType_N1_Highmem8 <: GCPType_N1_Highmem end abstract type GCPType_N1_Highmem16 <: GCPType_N1_Highmem end abstract type GCPType_N1_Highmem32 <: GCPType_N1_Highmem end abstract type GCPType_N1_Highmem64 <: GCPType_N1_Highmem end abstract type GCPType_N1_Highmem96 <: GCPType_N1_Highmem end abstract type GCPType_N1_Highcpu2 <: GCPType_N1_Highcpu end abstract type GCPType_N1_Highcpu4 <: GCPType_N1_Highcpu end abstract type GCPType_N1_Highcpu8 <: GCPType_N1_Highcpu end abstract type GCPType_N1_Highcpu16 <: GCPType_N1_Highcpu end abstract type GCPType_N1_Highcpu32 <: GCPType_N1_Highcpu end abstract type GCPType_N1_Highcpu64 <: GCPType_N1_Highcpu end abstract type GCPType_N1_Highcpu96 <: GCPType_N1_Highcpu end # compute optimized machine types abstract type GCPType_C2 <: GCPType end abstract type GCPType_C2_Standard <: GCPType_C2 end abstract type GCPType_C2_Standard4 <: GCPType_C2_Standard end abstract type GCPType_C2_Standard8 <: GCPType_C2_Standard end abstract type GCPType_C2_Standard16 <: GCPType_C2_Standard end abstract type GCPType_C2_Standard30 <: GCPType_C2_Standard end abstract type GCPType_C2_Standard60 <: GCPType_C2_Standard end abstract type GCPType_C2D <: GCPType end abstract type GCPType_C2D_Standard <: GCPType_C2D end abstract type GCPType_C2D_Highmem <: GCPType_C2D end abstract type GCPType_C2D_Highcpu <: GCPType_C2D end abstract type GCPType_C2D_Standard2 <: GCPType_C2D_Standard end abstract type GCPType_C2D_Standard4 <: GCPType_C2D_Standard end abstract type GCPType_C2D_Standard8 <: GCPType_C2D_Standard end abstract type GCPType_C2D_Standard16 <: GCPType_C2D_Standard end abstract type GCPType_C2D_Standard32 <: GCPType_C2D_Standard end abstract type GCPType_C2D_Standard56 <: GCPType_C2D_Standard end abstract type GCPType_C2D_Standard112 <: GCPType_C2D_Standard end abstract type GCPType_C2D_Highcpu2 <: GCPType_C2D_Highcpu end abstract type GCPType_C2D_Highcpu4 <: GCPType_C2D_Highcpu end abstract type GCPType_C2D_Highcpu8 <: GCPType_C2D_Highcpu end abstract type GCPType_C2D_Highcpu16 <: GCPType_C2D_Highcpu end abstract type GCPType_C2D_Highcpu32 <: GCPType_C2D_Highcpu end abstract type GCPType_C2D_Highcpu56 <: GCPType_C2D_Highcpu end abstract type GCPType_C2D_Highcpu112 <: GCPType_C2D_Highcpu end abstract type GCPType_C2D_Highmem2 <: GCPType_C2D_Highmem end abstract type GCPType_C2D_Highmem4 <: GCPType_C2D_Highmem end abstract type GCPType_C2D_Highmem8 <: GCPType_C2D_Highmem end abstract type GCPType_C2D_Highmem16 <: GCPType_C2D_Highmem end abstract type GCPType_C2D_Highmem32 <: GCPType_C2D_Highmem end abstract type GCPType_C2D_Highmem56 <: GCPType_C2D_Highmem end abstract type GCPType_C2D_Highmem112 <: GCPType_C2D_Highmem end # memory optimized machine types abstract type GCPType_M1 <: GCPType end abstract type GCPType_M1_Ultramem40 <: GCPType_M1 end abstract type GCPType_M1_Ultramem80 <: GCPType_M1 end abstract type GCPType_M1_Ultramem160 <: GCPType_M1 end abstract type GCPType_M1_Megamem96 <: GCPType_M1 end abstract type GCPType_M2 <: GCPType end abstract type GCPType_M2_Ultramem208 <: GCPType_M2 end abstract type GCPType_M2_Ultramem416 <: GCPType_M2 end abstract type GCPType_M2_Megamem416 <: GCPType_M2 end abstract type GCPType_M2_Hypermem416 <: GCPType_M2 end abstract type GCPType_M3 <: GCPType end abstract type GCPType_M3_Ultramem32 <: GCPType_M3 end abstract type GCPType_M3_Ultramem64 <: GCPType_M3 end abstract type GCPType_M3_Ultramem128 <: GCPType_M3 end abstract type GCPType_M3_Megamem64 <: GCPType_M3 end abstract type GCPType_M3_Megamem128 <: GCPType_M3 end # accelerator optimized machine types abstract type GCPType_A2 <: GCPType end abstract type GCPType_G2 <: GCPType end abstract type GCPType_A2_Highgpu1G <: GCPType_A2 end abstract type GCPType_A2_Highgpu2G <: GCPType_A2 end abstract type GCPType_A2_Highgpu4G <: GCPType_A2 end abstract type GCPType_A2_Highgpu8G <: GCPType_A2 end abstract type GCPType_A2_Megagpu16G <: GCPType_A2 end abstract type GCPType_A2_Ultragpu1G <: GCPType_A2 end abstract type GCPType_A2_Ultragpu2G <: GCPType_A2 end abstract type GCPType_A2_Ultragpu4G <: GCPType_A2 end abstract type GCPType_A2_Ultragpu8G <: GCPType_A2 end abstract type GCPType_G2_Standard4 <: GCPType_G2 end abstract type GCPType_G2_Standard8 <: GCPType_G2 end abstract type GCPType_G2_Standard12 <: GCPType_G2 end abstract type GCPType_G2_Standard16 <: GCPType_G2 end abstract type GCPType_G2_Standard24 <: GCPType_G2 end abstract type GCPType_G2_Standard32 <: GCPType_G2 end abstract type GCPType_G2_Standard48 <: GCPType_G2 end abstract type GCPType_G2_Standard96 <: GCPType_G2 end # machine size types function getNodeFeatures(provider::Type{<:GoogleCloud}, node_features) nothing end function getMachineType(provider::Type{<:GoogleCloud}) machine_type_url = "http://metadata.google.internal/computeMetadata/v1/instance/machine-type" machine_type = try return last(split(String(HTTP.request("GET", machine_type_url, ["Metadata-Flavor" => "Google"]).body), "/")) catch e return nothing end end function getDiskInfo(provider::Type{<:GoogleCloud}) disk_info_url = "http://metadata.google.internal/computeMetadata/v1/instance/disks/?recursive=true" disk_info = try return JSON.parse(String(HTTP.request("GET", disk_info_url, ["Metadata-Flavor" => "Google"]).body)) catch e return nothing end end function readCloudInstancesDB(::Type{<:GoogleCloud}) database_path = @get_scratch!("database_path") machinetypedb_gcp_url = "https://raw.githubusercontent.com/PlatformAwareProgramming/PlatformAware.jl/master/src/features/qualifiers/gcp/db-machinetypes.gcp.csv" machinetypedb_gcp_fname = joinpath(database_path,basename(machinetypedb_gcp_url)) #machinetypedb_gcp_fname = "/home/heron/Dropbox/Copy/ufc_mdcc_hpc/PlatformAware/PlatformAware.jl/src/features/qualifiers/gcp/db-machinetypes.gcp.csv" try_download(machinetypedb_gcp_url, machinetypedb_gcp_fname) machinetype_dict_gcp = readDB2(machinetypedb_gcp_fname) return machinetype_dict_gcp end
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
4412
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ abstract type Intel <: Manufacturer end; export Intel # Processor models (source: https://ark.intel.com) abstract type IntelProcessor <: Processor end; export IntelProcessor # Microarchictetures (from 2010) abstract type IntelMicroarchitecture <: ProcessorMicroarchitecture end abstract type Westmere <: IntelMicroarchitecture end abstract type Saltwell <: IntelMicroarchitecture end abstract type SandyBridge <: IntelMicroarchitecture end abstract type IvyBridge <: IntelMicroarchitecture end abstract type Silvermont <: IntelMicroarchitecture end abstract type BayTrail <: Silvermont end abstract type Haswell <: IntelMicroarchitecture end abstract type Broadwell <: IntelMicroarchitecture end abstract type Airmont <: IntelMicroarchitecture end abstract type Skylake <: IntelMicroarchitecture end abstract type Goldmont <: IntelMicroarchitecture end abstract type KabyLake <: IntelMicroarchitecture end abstract type GoldmontPlus <: IntelMicroarchitecture end abstract type CoffeeLake <: IntelMicroarchitecture end abstract type CannonLake <: IntelMicroarchitecture end abstract type SunnyCove <: IntelMicroarchitecture end abstract type CometLake <: IntelMicroarchitecture end abstract type IceLake <: IntelMicroarchitecture end abstract type Tremont <: IntelMicroarchitecture end abstract type TigerLake <: IntelMicroarchitecture end abstract type CascadeLake <: IntelMicroarchitecture end abstract type WillowCove <: IntelMicroarchitecture end abstract type AlderLake <: IntelMicroarchitecture end abstract type CypressCove <: IntelMicroarchitecture end abstract type GoldenCove <: IntelMicroarchitecture end abstract type Gracemont <: IntelMicroarchitecture end abstract type WhiskeyLake <: IntelMicroarchitecture end abstract type RocketLake <: IntelMicroarchitecture end abstract type HewittLake <: IntelMicroarchitecture end abstract type CooperLake <: IntelMicroarchitecture end abstract type ElkhartLake <: IntelMicroarchitecture end abstract type JasperLake <: IntelMicroarchitecture end abstract type GeminiLake <: IntelMicroarchitecture end abstract type GeminiLakeRefresh <: GeminiLake end abstract type ApolloLake <: IntelMicroarchitecture end abstract type Braswell <: IntelMicroarchitecture end abstract type AmberLake <: IntelMicroarchitecture end abstract type Kittson <: IntelMicroarchitecture end abstract type Poulson <: IntelMicroarchitecture end abstract type CrystalWell <: IntelMicroarchitecture end abstract type DevilsCanyon <: IntelMicroarchitecture end abstract type Centerton <: IntelMicroarchitecture end abstract type SnowRidge <: IntelMicroarchitecture end abstract type Cedarview <: IntelMicroarchitecture end abstract type ParkerRidge <: IntelMicroarchitecture end abstract type Denverton <: IntelMicroarchitecture end abstract type Rangeley <: IntelMicroarchitecture end abstract type Avoton <: IntelMicroarchitecture end abstract type Tukwila <: IntelMicroarchitecture end abstract type Montvale <: IntelMicroarchitecture end abstract type Montecito <: IntelMicroarchitecture end export Westmere, Saltwell, SandyBridge, SandyBridgeEP, IvyBridge, Silvermont, Haswell, Broadwell, Airmont, Skylake, Goldmont, KabyLake, CascadeLake, GoldmontPlus, CoffeeLake, CannonLake, SunnyCove, CometLake, IceLake, Tremont, TigerLake, WillowCove, AlderLake, CypressCove, GoldenCove, Gracemont, Kittson, Poulson, Tukwila, Montvale, Montecito, WhiskeyLake, HewittLake, CooperLake, ElkhartLake, JasperLake, GeminiLake, GeminiLakeRefresh, ApolloLake, Braswell, AmberLake, CrystalWell, DevilsCanyon, Centerton, SnowRidge, Cedarview, ParkerRidge, Denverton, Rangeley, Avoton # Intel Accelerators abstract type IntelAccelerator <: Accelerator end abstract type IntelAcceleratorArchitecture <: AcceleratorArchitecture end; export IntelAcceleratorArchitecture
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
2382
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ abstract type KnightsLanding <: IntelAcceleratorArchitecture end; export KnightsLanding abstract type KnightsCorner <: IntelAcceleratorArchitecture end; export KnightsCorner abstract type KnightsMill <: IntelAcceleratorArchitecture end; export KnightsMill abstract type IntelXeonPhi <: IntelAccelerator end; export IntelXeonPhi abstract type IntelXeonPhi_72x5 <: IntelXeonPhi end; export IntelXeonPhi_72x5 abstract type IntelXeonPhi_x100 <: IntelXeonPhi end; export IntelXeonPhi_x100 abstract type IntelXeonPhi_x200 <: IntelXeonPhi end; export IntelXeonPhi_x200 abstract type IntelXeonPhi_7120A <: IntelXeonPhi_x100 end; export IntelXeonPhi_7120A abstract type IntelXeonPhi_7120D <: IntelXeonPhi_x100 end; export IntelXeonPhi_7120D abstract type IntelXeonPhi_3120A <: IntelXeonPhi_x100 end; export IntelXeonPhi_3120A abstract type IntelXeonPhi_3120P <: IntelXeonPhi_x100 end; export IntelXeonPhi_3120P abstract type IntelXeonPhi_5120D <: IntelXeonPhi_x100 end; export IntelXeonPhi_5120D abstract type IntelXeonPhi_7120P <: IntelXeonPhi_x100 end; export IntelXeonPhi_7120P abstract type IntelXeonPhi_7120X <: IntelXeonPhi_x100 end; export IntelXeonPhi_7120X abstract type IntelXeonPhi_5110P <: IntelXeonPhi_x100 end; export IntelXeonPhi_5110P abstract type IntelXeonPhi_7210 <: IntelXeonPhi_x200 end; export IntelXeonPhi_7210 abstract type IntelXeonPhi_7210F <: IntelXeonPhi_x200 end; export IntelXeonPhi_7210F abstract type IntelXeonPhi_7230 <: IntelXeonPhi_x200 end; export IntelXeonPhi_7230 abstract type IntelXeonPhi_7230F <: IntelXeonPhi_x200 end; export IntelXeonPhi_7230F abstract type IntelXeonPhi_7250 <: IntelXeonPhi_x200 end; export IntelXeonPhi_7250 abstract type IntelXeonPhi_7250F <: IntelXeonPhi_x200 end; export IntelXeonPhi_7250F abstract type IntelXeonPhi_7290 <: IntelXeonPhi_x200 end; export IntelXeonPhi_7290 abstract type IntelXeonPhi_7290F <: IntelXeonPhi_x200 end; export IntelXeonPhi_7290F abstract type IntelXeonPhi_7235 <: IntelXeonPhi_72x5 end; export IntelXeonPhi_7235 abstract type IntelXeonPhi_7285 <: IntelXeonPhi_72x5 end; export IntelXeonPhi_7285 abstract type IntelXeonPhi_7295 <: IntelXeonPhi_72x5 end; export IntelXeonPhi_7295
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
10251
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ ## Atom processors abstract type IntelAtom <: IntelProcessor end; export IntelAtom abstract type IntelAtom_C <: IntelAtom end; export IntelAtom_C abstract type IntelAtom_D <: IntelAtom end; export IntelAtom_D abstract type IntelAtom_E <: IntelAtom end; export IntelAtom_E abstract type IntelAtom_N <: IntelAtom end; export IntelAtom_N abstract type IntelAtom_P <: IntelAtom end; export IntelAtom_P abstract type IntelAtom_S <: IntelAtom end; export IntelAtom_S abstract type IntelAtom_X <: IntelAtom end; export IntelAtom_X abstract type IntelAtom_Z <: IntelAtom end; export IntelAtom_Z # Atom processor models abstract type IntelAtom_C5115 <: IntelAtom_C end; export IntelAtom_C5115 abstract type IntelAtom_C5125 <: IntelAtom_C end; export IntelAtom_C5125 abstract type IntelAtom_C5310 <: IntelAtom_C end; export IntelAtom_C5310 abstract type IntelAtom_C5315 <: IntelAtom_C end; export IntelAtom_C5315 abstract type IntelAtom_C5320 <: IntelAtom_C end; export IntelAtom_C5320 abstract type IntelAtom_C5325 <: IntelAtom_C end; export IntelAtom_C5325 abstract type IntelAtom_C3338R <: IntelAtom_C end; export IntelAtom_C3338R abstract type IntelAtom_C3436L <: IntelAtom_C end; export IntelAtom_C3436L abstract type IntelAtom_C3558R <: IntelAtom_C end; export IntelAtom_C3558R abstract type IntelAtom_C3758R <: IntelAtom_C end; export IntelAtom_C3758R abstract type IntelAtom_C3336 <: IntelAtom_C end; export IntelAtom_C3336 abstract type IntelAtom_C3308 <: IntelAtom_C end; export IntelAtom_C3308 abstract type IntelAtom_C3508 <: IntelAtom_C end; export IntelAtom_C3508 abstract type IntelAtom_C3538 <: IntelAtom_C end; export IntelAtom_C3538 abstract type IntelAtom_C3558 <: IntelAtom_C end; export IntelAtom_C3558 abstract type IntelAtom_C3708 <: IntelAtom_C end; export IntelAtom_C3708 abstract type IntelAtom_C3750 <: IntelAtom_C end; export IntelAtom_C3750 abstract type IntelAtom_C3758 <: IntelAtom_C end; export IntelAtom_C3758 abstract type IntelAtom_C3808 <: IntelAtom_C end; export IntelAtom_C3808 abstract type IntelAtom_C3830 <: IntelAtom_C end; export IntelAtom_C3830 abstract type IntelAtom_C3850 <: IntelAtom_C end; export IntelAtom_C3850 abstract type IntelAtom_C3858 <: IntelAtom_C end; export IntelAtom_C3858 abstract type IntelAtom_C3950 <: IntelAtom_C end; export IntelAtom_C3950 abstract type IntelAtom_C3955 <: IntelAtom_C end; export IntelAtom_C3955 abstract type IntelAtom_C3958 <: IntelAtom_C end; export IntelAtom_C3958 abstract type IntelAtom_C2316 <: IntelAtom_C end; export IntelAtom_C2316 abstract type IntelAtom_C2516 <: IntelAtom_C end; export IntelAtom_C2516 abstract type IntelAtom_C3338 <: IntelAtom_C end; export IntelAtom_C3338 abstract type IntelAtom_C2308 <: IntelAtom_C end; export IntelAtom_C2308 abstract type IntelAtom_C2508 <: IntelAtom_C end; export IntelAtom_C2508 abstract type IntelAtom_C2338 <: IntelAtom_C end; export IntelAtom_C2338 abstract type IntelAtom_C2350 <: IntelAtom_C end; export IntelAtom_C2350 abstract type IntelAtom_C2358 <: IntelAtom_C end; export IntelAtom_C2358 abstract type IntelAtom_C2518 <: IntelAtom_C end; export IntelAtom_C2518 abstract type IntelAtom_C2530 <: IntelAtom_C end; export IntelAtom_C2530 abstract type IntelAtom_C2538 <: IntelAtom_C end; export IntelAtom_C2538 abstract type IntelAtom_C2550 <: IntelAtom_C end; export IntelAtom_C2550 abstract type IntelAtom_C2558 <: IntelAtom_C end; export IntelAtom_C2558 abstract type IntelAtom_C2718 <: IntelAtom_C end; export IntelAtom_C2718 abstract type IntelAtom_C2730 <: IntelAtom_C end; export IntelAtom_C2730 abstract type IntelAtom_C2738 <: IntelAtom_C end; export IntelAtom_C2738 abstract type IntelAtom_C2750 <: IntelAtom_C end; export IntelAtom_C2750 abstract type IntelAtom_C2758 <: IntelAtom_C end; export IntelAtom_C2758 abstract type IntelAtom_D2550 <: IntelAtom_D end; export IntelAtom_D2550 abstract type IntelAtom_D2500 <: IntelAtom_D end; export IntelAtom_D2500 abstract type IntelAtom_D2700 <: IntelAtom_D end; export IntelAtom_D2700 abstract type IntelAtom_E3805 <: IntelAtom_E end; export IntelAtom_E3805 abstract type IntelAtom_E3815 <: IntelAtom_E end; export IntelAtom_E3815 abstract type IntelAtom_E3825 <: IntelAtom_E end; export IntelAtom_E3825 abstract type IntelAtom_E3826 <: IntelAtom_E end; export IntelAtom_E3826 abstract type IntelAtom_E3827 <: IntelAtom_E end; export IntelAtom_E3827 abstract type IntelAtom_E3845 <: IntelAtom_E end; export IntelAtom_E3845 abstract type IntelAtom_N2600 <: IntelAtom_N end; export IntelAtom_N2600 abstract type IntelAtom_N2800 <: IntelAtom_N end; export IntelAtom_N2800 abstract type IntelAtom_P5322 <: IntelAtom_P end; export IntelAtom_P5322 abstract type IntelAtom_P5332 <: IntelAtom_P end; export IntelAtom_P5332 abstract type IntelAtom_P5342 <: IntelAtom_P end; export IntelAtom_P5342 abstract type IntelAtom_P5352 <: IntelAtom_P end; export IntelAtom_P5352 abstract type IntelAtom_P5362 <: IntelAtom_P end; export IntelAtom_P5362 abstract type IntelAtom_P5721 <: IntelAtom_P end; export IntelAtom_P5721 abstract type IntelAtom_P5731 <: IntelAtom_P end; export IntelAtom_P5731 abstract type IntelAtom_P5742 <: IntelAtom_P end; export IntelAtom_P5742 abstract type IntelAtom_P5752 <: IntelAtom_P end; export IntelAtom_P5752 abstract type IntelAtom_P5921B <: IntelAtom_P end; export IntelAtom_P5921B abstract type IntelAtom_P5931B <: IntelAtom_P end; export IntelAtom_P5931B abstract type IntelAtom_P5942B <: IntelAtom_P end; export IntelAtom_P5942B abstract type IntelAtom_P5962B <: IntelAtom_P end; export IntelAtom_P5962B abstract type IntelAtom_S1220 <: IntelAtom_S end; export IntelAtom_S1220 abstract type IntelAtom_S1240 <: IntelAtom_S end; export IntelAtom_S1240 abstract type IntelAtom_S1260 <: IntelAtom_S end; export IntelAtom_S1260 abstract type IntelAtom_6200FE <: IntelAtom_X end; export IntelAtom_6200FE abstract type IntelAtom_6211E <: IntelAtom_X end; export IntelAtom_6211E abstract type IntelAtom_6212RE <: IntelAtom_X end; export IntelAtom_6212RE abstract type IntelAtom_6413E <: IntelAtom_X end; export IntelAtom_6413E abstract type IntelAtom_6414RE <: IntelAtom_X end; export IntelAtom_6414RE abstract type IntelAtom_6425E <: IntelAtom_X end; export IntelAtom_6425E abstract type IntelAtom_6425RE <: IntelAtom_X end; export IntelAtom_6425RE abstract type IntelAtom_6427FE <: IntelAtom_X end; export IntelAtom_6427FE abstract type IntelAtom_x3_3205RK <: IntelAtom_X end; export IntelAtom_x3_3205RK abstract type IntelAtom_x3_C3235RK <: IntelAtom_X end; export IntelAtom_x3_C3235RK abstract type IntelAtom_x3_C3265RK <: IntelAtom_X end; export IntelAtom_x3_C3265RK abstract type IntelAtom_x3_C3295RK <: IntelAtom_X end; export IntelAtom_x3_C3295RK abstract type IntelAtom_E3930 <: IntelAtom_X end; export IntelAtom_E3930 abstract type IntelAtom_E3940 <: IntelAtom_X end; export IntelAtom_E3940 abstract type IntelAtom_E3950 <: IntelAtom_X end; export IntelAtom_E3950 abstract type IntelAtom_x5_Z8550 <: IntelAtom_X end; export IntelAtom_x5_Z8550 abstract type IntelAtom_x7_Z8750 <: IntelAtom_X end; export IntelAtom_x7_Z8750 abstract type IntelAtom_x5_Z8330 <: IntelAtom_X end; export IntelAtom_x5_Z8330 abstract type IntelAtom_x5_Z8350 <: IntelAtom_X end; export IntelAtom_x5_Z8350 abstract type IntelAtom_E8000 <: IntelAtom_X end; export IntelAtom_E8000 abstract type IntelAtom_x3_C3200RK <: IntelAtom_X end; export IntelAtom_x3_C3200RK abstract type IntelAtom_x3_C3405 <: IntelAtom_X end; export IntelAtom_x3_C3405 abstract type IntelAtom_x3_C3230RK <: IntelAtom_X end; export IntelAtom_x3_C3230RK abstract type IntelAtom_x3_C3445 <: IntelAtom_X end; export IntelAtom_x3_C3445 abstract type IntelAtom_x5_Z8300 <: IntelAtom_X end; export IntelAtom_x5_Z8300 abstract type IntelAtom_x5_Z8500 <: IntelAtom_X end; export IntelAtom_x5_Z8500 abstract type IntelAtom_x7_Z8700 <: IntelAtom_X end; export IntelAtom_x7_Z8700 abstract type IntelAtom_Z3590 <: IntelAtom_Z end; export IntelAtom_Z3590 abstract type IntelAtom_Z3570 <: IntelAtom_Z end; export IntelAtom_Z3570 abstract type IntelAtom_Z3736F <: IntelAtom_Z end; export IntelAtom_Z3736F abstract type IntelAtom_Z3736G <: IntelAtom_Z end; export IntelAtom_Z3736G abstract type IntelAtom_Z3530 <: IntelAtom_Z end; export IntelAtom_Z3530 abstract type IntelAtom_Z3785 <: IntelAtom_Z end; export IntelAtom_Z3785 abstract type IntelAtom_Z3560 <: IntelAtom_Z end; export IntelAtom_Z3560 abstract type IntelAtom_Z3580 <: IntelAtom_Z end; export IntelAtom_Z3580 abstract type IntelAtom_Z3735F <: IntelAtom_Z end; export IntelAtom_Z3735F abstract type IntelAtom_Z3735G <: IntelAtom_Z end; export IntelAtom_Z3735G abstract type IntelAtom_Z3460 <: IntelAtom_Z end; export IntelAtom_Z3460 abstract type IntelAtom_Z3480 <: IntelAtom_Z end; export IntelAtom_Z3480 abstract type IntelAtom_Z3735D <: IntelAtom_Z end; export IntelAtom_Z3735D abstract type IntelAtom_Z3735E <: IntelAtom_Z end; export IntelAtom_Z3735E abstract type IntelAtom_Z3775D <: IntelAtom_Z end; export IntelAtom_Z3775D abstract type IntelAtom_Z3795 <: IntelAtom_Z end; export IntelAtom_Z3795 abstract type IntelAtom_Z3745 <: IntelAtom_Z end; export IntelAtom_Z3745 abstract type IntelAtom_Z3745D <: IntelAtom_Z end; export IntelAtom_Z3745D abstract type IntelAtom_Z3775 <: IntelAtom_Z end; export IntelAtom_Z3775 abstract type IntelAtom_Z3740 <: IntelAtom_Z end; export IntelAtom_Z3740 abstract type IntelAtom_Z3740D <: IntelAtom_Z end; export IntelAtom_Z3740D abstract type IntelAtom_Z3770 <: IntelAtom_Z end; export IntelAtom_Z3770 abstract type IntelAtom_Z3770D <: IntelAtom_Z end; export IntelAtom_Z3770D abstract type IntelAtom_Z2520 <: IntelAtom_Z end; export IntelAtom_Z2520 abstract type IntelAtom_Z2560 <: IntelAtom_Z end; export IntelAtom_Z2560 abstract type IntelAtom_Z2580 <: IntelAtom_Z end; export IntelAtom_Z2580 abstract type IntelAtom_Z2420 <: IntelAtom_Z end; export IntelAtom_Z2420 abstract type IntelAtom_Z2480 <: IntelAtom_Z end; export IntelAtom_Z2480 abstract type IntelAtom_Z2760 <: IntelAtom_Z end; export IntelAtom_Z2760 abstract type IntelAtom_Z2460 <: IntelAtom_Z end; export IntelAtom_Z2460
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
11964
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ ## Celeron processors abstract type IntelCeleron <: IntelProcessor end abstract type IntelCeleron_G <: IntelCeleron end abstract type IntelCeleron_J <: IntelCeleron end abstract type IntelCeleron_N <: IntelCeleron end abstract type IntelCeleron_7000 <: IntelCeleron end abstract type IntelCeleron_6000 <: IntelCeleron end abstract type IntelCeleron_5000 <: IntelCeleron end abstract type IntelCeleron_4000 <: IntelCeleron end abstract type IntelCeleron_3000 <: IntelCeleron end abstract type IntelCeleron_2000 <: IntelCeleron end abstract type IntelCeleron_1000 <: IntelCeleron end export IntelCeleron, IntelCeleron_1000, IntelCeleron_2000, IntelCeleron_3000, IntelCeleron_4000, IntelCeleron_5000, IntelCeleron_6000, IntelCeleron_7000, IntelCeleron_G, IntelCeleron_J, IntelCeleron_N # Celeron processor models abstract type IntelCeleron_7305 <: IntelCeleron_7000 end; export IntelCeleron_7305 abstract type IntelCeleron_6305 <: IntelCeleron_6000 end; export IntelCeleron_6305 abstract type IntelCeleron_4305U <: IntelCeleron_4000 end; export IntelCeleron_4305U abstract type IntelCeleron_G6900 <: IntelCeleron_G end; export IntelCeleron_G6900 abstract type IntelCeleron_G6900E <: IntelCeleron_G end; export IntelCeleron_G6900E abstract type IntelCeleron_G6900T <: IntelCeleron_G end; export IntelCeleron_G6900T abstract type IntelCeleron_G6900TE <: IntelCeleron_G end; export IntelCeleron_G6900TE abstract type IntelCeleron_G5905 <: IntelCeleron_G end; export IntelCeleron_G5905 abstract type IntelCeleron_G5905T <: IntelCeleron_G end; export IntelCeleron_G5905T abstract type IntelCeleron_G5925 <: IntelCeleron_G end; export IntelCeleron_G5925 abstract type IntelCeleron_G5900 <: IntelCeleron_G end; export IntelCeleron_G5900 abstract type IntelCeleron_G5900E <: IntelCeleron_G end; export IntelCeleron_G5900E abstract type IntelCeleron_G5900T <: IntelCeleron_G end; export IntelCeleron_G5900T abstract type IntelCeleron_G5900TE <: IntelCeleron_G end; export IntelCeleron_G5900TE abstract type IntelCeleron_G5920 <: IntelCeleron_G end; export IntelCeleron_G5920 abstract type IntelCeleron_G4930E <: IntelCeleron_G end; export IntelCeleron_G4930E abstract type IntelCeleron_G4932E <: IntelCeleron_G end; export IntelCeleron_G4932E abstract type IntelCeleron_G4930 <: IntelCeleron_G end; export IntelCeleron_G4930 abstract type IntelCeleron_G4930T <: IntelCeleron_G end; export IntelCeleron_G4930T abstract type IntelCeleron_G4950 <: IntelCeleron_G end; export IntelCeleron_G4950 abstract type IntelCeleron_G4900 <: IntelCeleron_G end; export IntelCeleron_G4900 abstract type IntelCeleron_G4900T <: IntelCeleron_G end; export IntelCeleron_G4900T abstract type IntelCeleron_G4920 <: IntelCeleron_G end; export IntelCeleron_G4920 abstract type IntelCeleron_G3930E <: IntelCeleron_G end; export IntelCeleron_G3930E abstract type IntelCeleron_G3930TE <: IntelCeleron_G end; export IntelCeleron_G3930TE abstract type IntelCeleron_G3930 <: IntelCeleron_G end; export IntelCeleron_G3930 abstract type IntelCeleron_G3930T <: IntelCeleron_G end; export IntelCeleron_G3930T abstract type IntelCeleron_G3950 <: IntelCeleron_G end; export IntelCeleron_G3950 abstract type IntelCeleron_G3900E <: IntelCeleron_G end; export IntelCeleron_G3900E abstract type IntelCeleron_G3902E <: IntelCeleron_G end; export IntelCeleron_G3902E abstract type IntelCeleron_G3900 <: IntelCeleron_G end; export IntelCeleron_G3900 abstract type IntelCeleron_G3900T <: IntelCeleron_G end; export IntelCeleron_G3900T abstract type IntelCeleron_G3900TE <: IntelCeleron_G end; export IntelCeleron_G3900TE abstract type IntelCeleron_G3920 <: IntelCeleron_G end; export IntelCeleron_G3920 abstract type IntelCeleron_G1840 <: IntelCeleron_G end; export IntelCeleron_G1840 abstract type IntelCeleron_G1840T <: IntelCeleron_G end; export IntelCeleron_G1840T abstract type IntelCeleron_G1850 <: IntelCeleron_G end; export IntelCeleron_G1850 abstract type IntelCeleron_G1820TE <: IntelCeleron_G end; export IntelCeleron_G1820TE abstract type IntelCeleron_G1820 <: IntelCeleron_G end; export IntelCeleron_G1820 abstract type IntelCeleron_G1820T <: IntelCeleron_G end; export IntelCeleron_G1820T abstract type IntelCeleron_G1830 <: IntelCeleron_G end; export IntelCeleron_G1830 abstract type IntelCeleron_G1620T <: IntelCeleron_G end; export IntelCeleron_G1620T abstract type IntelCeleron_G1630 <: IntelCeleron_G end; export IntelCeleron_G1630 abstract type IntelCeleron_G1610 <: IntelCeleron_G end; export IntelCeleron_G1610 abstract type IntelCeleron_G1610T <: IntelCeleron_G end; export IntelCeleron_G1610T abstract type IntelCeleron_G1620 <: IntelCeleron_G end; export IntelCeleron_G1620 abstract type IntelCeleron_J6412 <: IntelCeleron_J end; export IntelCeleron_J6412 abstract type IntelCeleron_J6413 <: IntelCeleron_J end; export IntelCeleron_J6413 abstract type IntelCeleron_J4025 <: IntelCeleron_J end; export IntelCeleron_J4025 abstract type IntelCeleron_J4125 <: IntelCeleron_J end; export IntelCeleron_J4125 abstract type IntelCeleron_J3355E <: IntelCeleron_J end; export IntelCeleron_J3355E abstract type IntelCeleron_J3455E <: IntelCeleron_J end; export IntelCeleron_J3455E abstract type IntelCeleron_J4005 <: IntelCeleron_J end; export IntelCeleron_J4005 abstract type IntelCeleron_J4105 <: IntelCeleron_J end; export IntelCeleron_J4105 abstract type IntelCeleron_J3355 <: IntelCeleron_J end; export IntelCeleron_J3355 abstract type IntelCeleron_J3455 <: IntelCeleron_J end; export IntelCeleron_J3455 abstract type IntelCeleron_J3060 <: IntelCeleron_J end; export IntelCeleron_J3060 abstract type IntelCeleron_J3160 <: IntelCeleron_J end; export IntelCeleron_J3160 abstract type IntelCeleron_J1800 <: IntelCeleron_J end; export IntelCeleron_J1800 abstract type IntelCeleron_J1900 <: IntelCeleron_J end; export IntelCeleron_J1900 abstract type IntelCeleron_J1750 <: IntelCeleron_J end; export IntelCeleron_J1750 abstract type IntelCeleron_J1850 <: IntelCeleron_J end; export IntelCeleron_J1850 abstract type IntelCeleron_N6210 <: IntelCeleron_N end; export IntelCeleron_N6210 abstract type IntelCeleron_N4500 <: IntelCeleron_N end; export IntelCeleron_N4500 abstract type IntelCeleron_N4505 <: IntelCeleron_N end; export IntelCeleron_N4505 abstract type IntelCeleron_N5100 <: IntelCeleron_N end; export IntelCeleron_N5100 abstract type IntelCeleron_N5105 <: IntelCeleron_N end; export IntelCeleron_N5105 abstract type IntelCeleron_N6211 <: IntelCeleron_N end; export IntelCeleron_N6211 abstract type IntelCeleron_N4020 <: IntelCeleron_N end; export IntelCeleron_N4020 abstract type IntelCeleron_N4120 <: IntelCeleron_N end; export IntelCeleron_N4120 abstract type IntelCeleron_N3350E <: IntelCeleron_N end; export IntelCeleron_N3350E abstract type IntelCeleron_N4000 <: IntelCeleron_N end; export IntelCeleron_N4000 abstract type IntelCeleron_N4100 <: IntelCeleron_N end; export IntelCeleron_N4100 abstract type IntelCeleron_N3350 <: IntelCeleron_N end; export IntelCeleron_N3350 abstract type IntelCeleron_N3450 <: IntelCeleron_N end; export IntelCeleron_N3450 abstract type IntelCeleron_N3010 <: IntelCeleron_N end; export IntelCeleron_N3010 abstract type IntelCeleron_N3060 <: IntelCeleron_N end; export IntelCeleron_N3060 abstract type IntelCeleron_N3160 <: IntelCeleron_N end; export IntelCeleron_N3160 abstract type IntelCeleron_N3000 <: IntelCeleron_N end; export IntelCeleron_N3000 abstract type IntelCeleron_N3050 <: IntelCeleron_N end; export IntelCeleron_N3050 abstract type IntelCeleron_N3150 <: IntelCeleron_N end; export IntelCeleron_N3150 abstract type IntelCeleron_N2808 <: IntelCeleron_N end; export IntelCeleron_N2808 abstract type IntelCeleron_N2840 <: IntelCeleron_N end; export IntelCeleron_N2840 abstract type IntelCeleron_N2940 <: IntelCeleron_N end; export IntelCeleron_N2940 abstract type IntelCeleron_N2807 <: IntelCeleron_N end; export IntelCeleron_N2807 abstract type IntelCeleron_N2830 <: IntelCeleron_N end; export IntelCeleron_N2830 abstract type IntelCeleron_N2930 <: IntelCeleron_N end; export IntelCeleron_N2930 abstract type IntelCeleron_N2806 <: IntelCeleron_N end; export IntelCeleron_N2806 abstract type IntelCeleron_N2815 <: IntelCeleron_N end; export IntelCeleron_N2815 abstract type IntelCeleron_N2820 <: IntelCeleron_N end; export IntelCeleron_N2820 abstract type IntelCeleron_N2920 <: IntelCeleron_N end; export IntelCeleron_N2920 abstract type IntelCeleron_N2805 <: IntelCeleron_N end; export IntelCeleron_N2805 abstract type IntelCeleron_N2810 <: IntelCeleron_N end; export IntelCeleron_N2810 abstract type IntelCeleron_N2910 <: IntelCeleron_N end; export IntelCeleron_N2910 abstract type IntelCeleron_7305E <: IntelCeleron_7000 end; export IntelCeleron_7305E abstract type IntelCeleron_7300 <: IntelCeleron_7000 end; export IntelCeleron_7300 abstract type IntelCeleron_6600HE <: IntelCeleron_6000 end; export IntelCeleron_6600HE abstract type IntelCeleron_6305E <: IntelCeleron_6000 end; export IntelCeleron_6305E abstract type IntelCeleron_5305U <: IntelCeleron_5000 end; export IntelCeleron_5305U abstract type IntelCeleron_5205U <: IntelCeleron_5000 end; export IntelCeleron_5205U abstract type IntelCeleron_4305UE <: IntelCeleron_4000 end; export IntelCeleron_4305UE abstract type IntelCeleron_4205U <: IntelCeleron_4000 end; export IntelCeleron_4205U abstract type IntelCeleron_3867U <: IntelCeleron_3000 end; export IntelCeleron_3867U abstract type IntelCeleron_3965Y <: IntelCeleron_3000 end; export IntelCeleron_3965Y abstract type IntelCeleron_3865U <: IntelCeleron_3000 end; export IntelCeleron_3865U abstract type IntelCeleron_3965U <: IntelCeleron_3000 end; export IntelCeleron_3965U abstract type IntelCeleron_3855U <: IntelCeleron_3000 end; export IntelCeleron_3855U abstract type IntelCeleron_3955U <: IntelCeleron_3000 end; export IntelCeleron_3955U abstract type IntelCeleron_3215U <: IntelCeleron_3000 end; export IntelCeleron_3215U abstract type IntelCeleron_3765U <: IntelCeleron_3000 end; export IntelCeleron_3765U abstract type IntelCeleron_3205U <: IntelCeleron_3000 end; export IntelCeleron_3205U abstract type IntelCeleron_3755U <: IntelCeleron_3000 end; export IntelCeleron_3755U abstract type IntelCeleron_2970M <: IntelCeleron_2000 end; export IntelCeleron_2970M abstract type IntelCeleron_2000E <: IntelCeleron_2000 end; export IntelCeleron_2000E abstract type IntelCeleron_2002E <: IntelCeleron_2000 end; export IntelCeleron_2002E abstract type IntelCeleron_2957U <: IntelCeleron_2000 end; export IntelCeleron_2957U abstract type IntelCeleron_2961Y <: IntelCeleron_2000 end; export IntelCeleron_2961Y abstract type IntelCeleron_2981U <: IntelCeleron_2000 end; export IntelCeleron_2981U abstract type IntelCeleron_2950M <: IntelCeleron_2000 end; export IntelCeleron_2950M abstract type IntelCeleron_2955U <: IntelCeleron_2000 end; export IntelCeleron_2955U abstract type IntelCeleron_2980U <: IntelCeleron_2000 end; export IntelCeleron_2980U abstract type IntelCeleron_1005M <: IntelCeleron_1000 end; export IntelCeleron_1005M abstract type IntelCeleron_1017U <: IntelCeleron_1000 end; export IntelCeleron_1017U abstract type IntelCeleron_1019Y <: IntelCeleron_1000 end; export IntelCeleron_1019Y abstract type IntelCeleron_1000M <: IntelCeleron_1000 end; export IntelCeleron_1000M abstract type IntelCeleron_1007U <: IntelCeleron_1000 end; export IntelCeleron_1007U abstract type IntelCeleron_1020E <: IntelCeleron_1000 end; export IntelCeleron_1020E abstract type IntelCeleron_1020M <: IntelCeleron_1000 end; export IntelCeleron_1020M abstract type IntelCeleron_1037U <: IntelCeleron_1000 end; export IntelCeleron_1037U abstract type IntelCeleron_1047UE <: IntelCeleron_1000 end; export IntelCeleron_1047UE
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
56699
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ ### Core processors abstract type IntelCore <: IntelProcessor end #### Core X processors abstract type IntelCore_X <: IntelCore end #### Core i9 processors abstract type IntelCore_i9 <: IntelCore end abstract type IntelCore_i9_g8 <: IntelCore_i9 end abstract type IntelCore_i9_g9 <: IntelCore_i9 end abstract type IntelCore_i9_g10 <: IntelCore_i9 end abstract type IntelCore_i9_g11 <: IntelCore_i9 end abstract type IntelCore_i9_g12 <: IntelCore_i9 end #### Core i7 processors abstract type IntelCore_i7 <: IntelCore end abstract type IntelCore_i7_g4 <: IntelCore_i7 end abstract type IntelCore_i7_g5 <: IntelCore_i7 end abstract type IntelCore_i7_g6 <: IntelCore_i7 end abstract type IntelCore_i7_g7 <: IntelCore_i7 end abstract type IntelCore_i7_g8 <: IntelCore_i7 end abstract type IntelCore_i7_g9 <: IntelCore_i7 end abstract type IntelCore_i7_g10 <: IntelCore_i7 end abstract type IntelCore_i7_g11 <: IntelCore_i7 end abstract type IntelCore_i7_g12 <: IntelCore_i7 end #### Core i5 processors abstract type IntelCore_i5 <: IntelCore end abstract type IntelCore_i5_g4 <: IntelCore_i5 end abstract type IntelCore_i5_g5 <: IntelCore_i5 end abstract type IntelCore_i5_g6 <: IntelCore_i5 end abstract type IntelCore_i5_g7 <: IntelCore_i5 end abstract type IntelCore_i5_g8 <: IntelCore_i5 end abstract type IntelCore_i5_g9 <: IntelCore_i5 end abstract type IntelCore_i5_g10 <: IntelCore_i5 end abstract type IntelCore_i5_g11 <: IntelCore_i5 end abstract type IntelCore_i5_g12 <: IntelCore_i5 end #### Core i3 processors abstract type IntelCore_i3 <: IntelCore end abstract type IntelCore_i3_g4 <: IntelCore_i3 end abstract type IntelCore_i3_g5 <: IntelCore_i3 end abstract type IntelCore_i3_g6 <: IntelCore_i3 end abstract type IntelCore_i3_g7 <: IntelCore_i3 end abstract type IntelCore_i3_g8 <: IntelCore_i3 end abstract type IntelCore_i3_g9 <: IntelCore_i3 end abstract type IntelCore_i3_g10 <: IntelCore_i3 end abstract type IntelCore_i3_g11 <: IntelCore_i3 end abstract type IntelCore_i3_g12 <: IntelCore_i3 end #### Core M processors abstract type IntelCore_M <: IntelCore end abstract type IntelCore_M_g5 <: IntelCore_M end abstract type IntelCore_M_g6 <: IntelCore_M end abstract type IntelCore_M_g7 <: IntelCore_M end abstract type IntelCore_M_g8 <: IntelCore_M end export IntelCore, IntelCore_i3, IntelCore_i3_g12, IntelCore_i3_g11, IntelCore_i3_g10, IntelCore_i3_g9, IntelCore_i3_g8, IntelCore_i3_g7, IntelCore_i3_g6, IntelCore_i3_g5, IntelCore_i3_g4, IntelCore_i5, IntelCore_i5_g12, IntelCore_i5_g11, IntelCore_i5_g10, IntelCore_i5_g9, IntelCore_i5_g8, IntelCore_i5_g7, IntelCore_i5_g6, IntelCore_i5_g5, IntelCore_i5_g4, IntelCore_i7, IntelCore_i7_g12, IntelCore_i7_g11, IntelCore_i7_g10, IntelCore_i7_g9, IntelCore_i7_g8, IntelCore_i7_g7, IntelCore_i7_g6, IntelCore_i7_g5, IntelCore_i7_g4, IntelCore_i9, IntelCore_i9_g12, IntelCore_i9_g11, IntelCore_i9_g10, IntelCore_i9_g9, IntelCore_i9_g8, IntelCore_X, IntelCore_i9_10900X, IntelCore_M, IntelCore_M_g8, IntelCore_M_g7, IntelCore_M_g6, IntelCore_M_g5, IntelCore_i7_7500U # Processor models abstract type IntelCore_i5_11300H <: IntelCore_i5_g11 end; export IntelCore_i5_11300H abstract type IntelCore_i5_1140G7 <: IntelCore_i5_g11 end; export IntelCore_i5_1140G7 abstract type IntelCore_i5_1145G7 <: IntelCore_i5_g11 end; export IntelCore_i5_1145G7 abstract type IntelCore_i7_11370H <: IntelCore_i7_g11 end; export IntelCore_i7_11370H abstract type IntelCore_i7_11375H <: IntelCore_i7_g11 end; export IntelCore_i7_11375H abstract type IntelCore_i7_1180G7 <: IntelCore_i7_g11 end; export IntelCore_i7_1180G7 abstract type IntelCore_i5_1145G7E <: IntelCore_i5_g11 end; export IntelCore_i5_1145G7E abstract type IntelCore_i5_1145GRE <: IntelCore_i5_g11 end; export IntelCore_i5_1145GRE abstract type IntelCore_i7_1185G7E <: IntelCore_i7_g11 end; export IntelCore_i7_1185G7E abstract type IntelCore_i7_1185GRE <: IntelCore_i7_g11 end; export IntelCore_i7_1185GRE abstract type IntelCore_i5_1130G7 <: IntelCore_i5_g11 end; export IntelCore_i5_1130G7 abstract type IntelCore_i5_1135G7 <: IntelCore_i5_g11 end; export IntelCore_i5_1135G7 abstract type IntelCore_i7_1160G7 <: IntelCore_i7_g11 end; export IntelCore_i7_1160G7 abstract type IntelCore_i7_1165G7 <: IntelCore_i7_g11 end; export IntelCore_i7_1165G7 abstract type IntelCore_i7_1185G7 <: IntelCore_i7_g11 end; export IntelCore_i7_1185G7 abstract type IntelCore_i3_1215U <: IntelCore_i3_g12 end; export IntelCore_i3_1215U abstract type IntelCore_i5_1235U <: IntelCore_i5_g12 end; export IntelCore_i5_1235U abstract type IntelCore_i7_1255U <: IntelCore_i7_g12 end; export IntelCore_i7_1255U abstract type IntelCore_i5_1245U <: IntelCore_i5_g12 end; export IntelCore_i5_1245U abstract type IntelCore_i7_1265U <: IntelCore_i7_g12 end; export IntelCore_i7_1265U abstract type IntelCore_i7_12700 <: IntelCore_i7_g12 end; export IntelCore_i7_12700 abstract type IntelCore_i9_12900 <: IntelCore_i9_g12 end; export IntelCore_i9_12900 abstract type IntelCore_i7_11700B <: IntelCore_i7_g11 end; export IntelCore_i7_11700B abstract type IntelCore_i9_11900KB <: IntelCore_i9_g11 end; export IntelCore_i9_11900KB abstract type IntelCore_i3_1115G4 <: IntelCore_i3_g11 end; export IntelCore_i3_1115G4 abstract type IntelCore_i5_9300H <: IntelCore_i5_g9 end; export IntelCore_i5_9300H abstract type IntelCore_i7_9750H <: IntelCore_i7_g9 end; export IntelCore_i7_9750H abstract type IntelCore_i9_9980HK <: IntelCore_i9_g9 end; export IntelCore_i9_9980HK abstract type IntelCore_i7_9850H <: IntelCore_i7_g9 end; export IntelCore_i7_9850H abstract type IntelCore_i3_8145U <: IntelCore_i3_g8 end; export IntelCore_i3_8145U abstract type IntelCore_i5_8265U <: IntelCore_i5_g8 end; export IntelCore_i5_8265U abstract type IntelCore_i7_8565U <: IntelCore_i7_g8 end; export IntelCore_i7_8565U abstract type IntelCore_i5_8365U <: IntelCore_i5_g8 end; export IntelCore_i5_8365U abstract type IntelCore_i7_8665U <: IntelCore_i7_g8 end; export IntelCore_i7_8665U abstract type IntelCore_i3_10110U <: IntelCore_i3_g10 end; export IntelCore_i3_10110U abstract type IntelCore_i5_10210U <: IntelCore_i5_g10 end; export IntelCore_i5_10210U abstract type IntelCore_i7_10710U <: IntelCore_i7_g10 end; export IntelCore_i7_10710U abstract type IntelCore_i7_8559U <: IntelCore_i7_g8 end; export IntelCore_i7_8559U abstract type IntelCore_i3_8109U <: IntelCore_i3_g8 end; export IntelCore_i3_8109U abstract type IntelCore_i5_8259U <: IntelCore_i5_g8 end; export IntelCore_i5_8259U abstract type IntelCore_i7_8705G <: IntelCore_i7_g8 end; export IntelCore_i7_8705G abstract type IntelCore_i7_8809G <: IntelCore_i7_g8 end; export IntelCore_i7_8809G abstract type IntelCore_i5_7300U <: IntelCore_i5_g7 end; export IntelCore_i5_7300U abstract type IntelCore_i3_7100U <: IntelCore_i3_g7 end; export IntelCore_i3_7100U abstract type IntelCore_i7_7567U <: IntelCore_i7_g7 end; export IntelCore_i7_7567U abstract type IntelCore_i5_7260U <: IntelCore_i5_g7 end; export IntelCore_i5_7260U abstract type IntelCore_i3_6157U <: IntelCore_i3_g6 end; export IntelCore_i3_6157U abstract type IntelCore_i3_6167U <: IntelCore_i3_g6 end; export IntelCore_i3_6167U abstract type IntelCore_i5_6267U <: IntelCore_i5_g5 end; export IntelCore_i5_6267U abstract type IntelCore_i5_6287U <: IntelCore_i5_g5 end; export IntelCore_i5_6287U abstract type IntelCore_i7_6567U <: IntelCore_i7_g6 end; export IntelCore_i7_6567U abstract type IntelCore_i7_6660U <: IntelCore_i7_g6 end; export IntelCore_i7_6660U abstract type IntelCore_i5_6260U <: IntelCore_i5_g5 end; export IntelCore_i5_6260U abstract type IntelCore_i5_6360U <: IntelCore_i5_g5 end; export IntelCore_i5_6360U abstract type IntelCore_i7_6560U <: IntelCore_i7_g6 end; export IntelCore_i7_6560U abstract type IntelCore_i7_6650U <: IntelCore_i7_g6 end; export IntelCore_i7_6650U abstract type IntelCore_i3_5157U <: IntelCore_i3_g5 end; export IntelCore_i3_5157U abstract type IntelCore_i5_5257U <: IntelCore_i5_g5 end; export IntelCore_i5_5257U abstract type IntelCore_i5_5287U <: IntelCore_i5_g5 end; export IntelCore_i5_5287U abstract type IntelCore_i7_5557U <: IntelCore_i7_g5 end; export IntelCore_i7_5557U abstract type IntelCore_i5_4278U <: IntelCore_i5_g4 end; export IntelCore_i5_4278U abstract type IntelCore_i5_4308U <: IntelCore_i5_g4 end; export IntelCore_i5_4308U abstract type IntelCore_i7_4578U <: IntelCore_i7_g4 end; export IntelCore_i7_4578U abstract type IntelCore_i3_4158U <: IntelCore_i3_g4 end; export IntelCore_i3_4158U abstract type IntelCore_i5_4258U <: IntelCore_i5_g4 end; export IntelCore_i5_4258U abstract type IntelCore_i5_4288U <: IntelCore_i5_g4 end; export IntelCore_i5_4288U abstract type IntelCore_i7_4558U <: IntelCore_i7_g4 end; export IntelCore_i7_4558U abstract type IntelCore_i5_8279U <: IntelCore_i5_g8 end; export IntelCore_i5_8279U abstract type IntelCore_i7_8569U <: IntelCore_i7_g8 end; export IntelCore_i7_8569U abstract type IntelCore_i5_8269U <: IntelCore_i5_g8 end; export IntelCore_i5_8269U abstract type IntelCore_i3_7167U <: IntelCore_i3_g7 end; export IntelCore_i3_7167U abstract type IntelCore_i5_7267U <: IntelCore_i5_g7 end; export IntelCore_i5_7267U abstract type IntelCore_i5_7287U <: IntelCore_i5_g7 end; export IntelCore_i5_7287U abstract type IntelCore_i5_8257U <: IntelCore_i5_g8 end; export IntelCore_i5_8257U abstract type IntelCore_i7_8557U <: IntelCore_i7_g8 end; export IntelCore_i7_8557U abstract type IntelCore_i5_7360U <: IntelCore_i5_g7 end; export IntelCore_i5_7360U abstract type IntelCore_i7_7560U <: IntelCore_i7_g7 end; export IntelCore_i7_7560U abstract type IntelCore_i7_7660U <: IntelCore_i7_g7 end; export IntelCore_i7_7660U abstract type IntelCore_i5_1038NG7 <: IntelCore_i5_g10 end; export IntelCore_i5_1038NG7 abstract type IntelCore_i7_1068NG7 <: IntelCore_i7_g10 end; export IntelCore_i7_1068NG7 abstract type IntelCore_i3_1000G4 <: IntelCore_i3_g10 end; export IntelCore_i3_1000G4 abstract type IntelCore_i5_1030G4 <: IntelCore_i5_g10 end; export IntelCore_i5_1030G4 abstract type IntelCore_i5_1030G7 <: IntelCore_i5_g10 end; export IntelCore_i5_1030G7 abstract type IntelCore_i5_1035G4 <: IntelCore_i5_g10 end; export IntelCore_i5_1035G4 abstract type IntelCore_i5_1035G7 <: IntelCore_i5_g10 end; export IntelCore_i5_1035G7 abstract type IntelCore_i7_1060G7 <: IntelCore_i7_g10 end; export IntelCore_i7_1060G7 abstract type IntelCore_i7_1065G7 <: IntelCore_i7_g10 end; export IntelCore_i7_1065G7 abstract type IntelCore_i5_8305G <: IntelCore_i5_g8 end; export IntelCore_i5_8305G abstract type IntelCore_i7_8706G <: IntelCore_i7_g8 end; export IntelCore_i7_8706G abstract type IntelCore_i7_8709G <: IntelCore_i7_g8 end; export IntelCore_i7_8709G abstract type IntelCore_i3_7100 <: IntelCore_i3_g7 end; export IntelCore_i3_7100 abstract type IntelCore_i3_7100E <: IntelCore_i3_g7 end; export IntelCore_i3_7100E abstract type IntelCore_i3_7100H <: IntelCore_i3_g7 end; export IntelCore_i3_7100H abstract type IntelCore_i3_7100T <: IntelCore_i3_g7 end; export IntelCore_i3_7100T abstract type IntelCore_i3_7101E <: IntelCore_i3_g7 end; export IntelCore_i3_7101E abstract type IntelCore_i3_7101TE <: IntelCore_i3_g7 end; export IntelCore_i3_7101TE abstract type IntelCore_i3_7102E <: IntelCore_i3_g7 end; export IntelCore_i3_7102E abstract type IntelCore_i3_7300 <: IntelCore_i3_g7 end; export IntelCore_i3_7300 abstract type IntelCore_i3_7300T <: IntelCore_i3_g7 end; export IntelCore_i3_7300T abstract type IntelCore_i3_7320 <: IntelCore_i3_g7 end; export IntelCore_i3_7320 abstract type IntelCore_i3_7350K <: IntelCore_i3_g7 end; export IntelCore_i3_7350K abstract type IntelCore_i5_7300HQ <: IntelCore_i5_g7 end; export IntelCore_i5_7300HQ abstract type IntelCore_i5_7400 <: IntelCore_i5_g7 end; export IntelCore_i5_7400 abstract type IntelCore_i5_7400T <: IntelCore_i5_g7 end; export IntelCore_i5_7400T abstract type IntelCore_i5_7440EQ <: IntelCore_i5_g7 end; export IntelCore_i5_7440EQ abstract type IntelCore_i5_7440HQ <: IntelCore_i5_g7 end; export IntelCore_i5_7440HQ abstract type IntelCore_i5_7442EQ <: IntelCore_i5_g7 end; export IntelCore_i5_7442EQ abstract type IntelCore_i5_7500 <: IntelCore_i5_g7 end; export IntelCore_i5_7500 abstract type IntelCore_i5_7500T <: IntelCore_i5_g7 end; export IntelCore_i5_7500T abstract type IntelCore_i5_7600 <: IntelCore_i5_g7 end; export IntelCore_i5_7600 abstract type IntelCore_i5_7600K <: IntelCore_i5_g7 end; export IntelCore_i5_7600K abstract type IntelCore_i5_7600T <: IntelCore_i5_g7 end; export IntelCore_i5_7600T abstract type IntelCore_i7_7700 <: IntelCore_i7_g7 end; export IntelCore_i7_7700 abstract type IntelCore_i7_7700HQ <: IntelCore_i7_g7 end; export IntelCore_i7_7700HQ abstract type IntelCore_i7_7700K <: IntelCore_i7_g7 end; export IntelCore_i7_7700K abstract type IntelCore_i7_7700T <: IntelCore_i7_g7 end; export IntelCore_i7_7700T abstract type IntelCore_i7_7820EQ <: IntelCore_i7_g7 end; export IntelCore_i7_7820EQ abstract type IntelCore_i7_7820HK <: IntelCore_i7_g7 end; export IntelCore_i7_7820HK abstract type IntelCore_i7_7820HQ <: IntelCore_i7_g7 end; export IntelCore_i7_7820HQ abstract type IntelCore_i7_7920HQ <: IntelCore_i7_g7 end; export IntelCore_i7_7920HQ abstract type IntelCore_i3_7020U <: IntelCore_i3_g7 end; export IntelCore_i3_7020U abstract type IntelCore_i3_7130U <: IntelCore_i3_g7 end; export IntelCore_i3_7130U abstract type IntelCore_i7_7600U <: IntelCore_i7_g7 end; export IntelCore_i7_7600U abstract type IntelCore_i5_7200U <: IntelCore_i5_g7 end; export IntelCore_i5_7200U abstract type IntelCore_i7_7500U <: IntelCore_i7_g7 end; export IntelCore_i7_7500U abstract type IntelCore_M3_7Y32 <: IntelCore_M_g7 end; export IntelCore_M3_7Y32 abstract type IntelCore_i5_7Y57 <: IntelCore_i5_g7 end; export IntelCore_i5_7Y57 abstract type IntelCore_i5_7Y54 <: IntelCore_i5_g7 end; export IntelCore_i5_7Y54 abstract type IntelCore_i7_7Y75 <: IntelCore_i7_g7 end; export IntelCore_i7_7Y75 abstract type IntelCore_M3_7Y30 <: IntelCore_M_g7 end; export IntelCore_M3_7Y30 abstract type IntelCore_i3_6100E <: IntelCore_i3_g6 end; export IntelCore_i3_6100E abstract type IntelCore_i3_6100TE <: IntelCore_i3_g6 end; export IntelCore_i3_6100TE abstract type IntelCore_i3_6102E <: IntelCore_i3_g6 end; export IntelCore_i3_6102E abstract type IntelCore_i5_6440EQ <: IntelCore_i5_g5 end; export IntelCore_i5_6440EQ abstract type IntelCore_i5_6442EQ <: IntelCore_i5_g5 end; export IntelCore_i5_6442EQ abstract type IntelCore_i5_6500TE <: IntelCore_i5_g5 end; export IntelCore_i5_6500TE abstract type IntelCore_i7_6700TE <: IntelCore_i7_g6 end; export IntelCore_i7_6700TE abstract type IntelCore_i7_6820EQ <: IntelCore_i7_g6 end; export IntelCore_i7_6820EQ abstract type IntelCore_i7_6822EQ <: IntelCore_i7_g6 end; export IntelCore_i7_6822EQ abstract type IntelCore_i3_6100 <: IntelCore_i3_g6 end; export IntelCore_i3_6100 abstract type IntelCore_i3_6100H <: IntelCore_i3_g6 end; export IntelCore_i3_6100H abstract type IntelCore_i3_6100T <: IntelCore_i3_g6 end; export IntelCore_i3_6100T abstract type IntelCore_i3_6300 <: IntelCore_i3_g6 end; export IntelCore_i3_6300 abstract type IntelCore_i3_6300T <: IntelCore_i3_g6 end; export IntelCore_i3_6300T abstract type IntelCore_i3_6320 <: IntelCore_i3_g6 end; export IntelCore_i3_6320 abstract type IntelCore_i5_6300HQ <: IntelCore_i5_g5 end; export IntelCore_i5_6300HQ abstract type IntelCore_i5_6400 <: IntelCore_i5_g5 end; export IntelCore_i5_6400 abstract type IntelCore_i5_6400T <: IntelCore_i5_g5 end; export IntelCore_i5_6400T abstract type IntelCore_i5_6440HQ <: IntelCore_i5_g5 end; export IntelCore_i5_6440HQ abstract type IntelCore_i5_6500 <: IntelCore_i5_g5 end; export IntelCore_i5_6500 abstract type IntelCore_i5_6500T <: IntelCore_i5_g5 end; export IntelCore_i5_6500T abstract type IntelCore_i5_6600 <: IntelCore_i5_g5 end; export IntelCore_i5_6600 abstract type IntelCore_i5_6600T <: IntelCore_i5_g5 end; export IntelCore_i5_6600T abstract type IntelCore_i7_6700 <: IntelCore_i7_g6 end; export IntelCore_i7_6700 abstract type IntelCore_i7_6700HQ <: IntelCore_i7_g6 end; export IntelCore_i7_6700HQ abstract type IntelCore_i7_6700T <: IntelCore_i7_g6 end; export IntelCore_i7_6700T abstract type IntelCore_i7_6820HK <: IntelCore_i7_g6 end; export IntelCore_i7_6820HK abstract type IntelCore_i7_6820HQ <: IntelCore_i7_g6 end; export IntelCore_i7_6820HQ abstract type IntelCore_i7_6920HQ <: IntelCore_i7_g6 end; export IntelCore_i7_6920HQ abstract type IntelCore_i5_6600K <: IntelCore_i5_g5 end; export IntelCore_i5_6600K abstract type IntelCore_i7_6700K <: IntelCore_i7_g6 end; export IntelCore_i7_6700K abstract type IntelCore_i3_6006U <: IntelCore_i3_g6 end; export IntelCore_i3_6006U abstract type IntelCore_i3_6100U <: IntelCore_i3_g6 end; export IntelCore_i3_6100U abstract type IntelCore_i5_6200U <: IntelCore_i5_g5 end; export IntelCore_i5_6200U abstract type IntelCore_i5_6300U <: IntelCore_i5_g5 end; export IntelCore_i5_6300U abstract type IntelCore_i7_6500U <: IntelCore_i7_g6 end; export IntelCore_i7_6500U abstract type IntelCore_i7_6600U <: IntelCore_i7_g6 end; export IntelCore_i7_6600U abstract type IntelCore_M3_6Y30 <: IntelCore_M_g6 end; export IntelCore_M3_6Y30 abstract type IntelCore_M5_6Y54 <: IntelCore_M_g6 end; export IntelCore_M5_6Y54 abstract type IntelCore_M5_6Y57 <: IntelCore_M_g6 end; export IntelCore_M5_6Y57 abstract type IntelCore_M7_6Y75 <: IntelCore_M_g6 end; export IntelCore_M7_6Y75 abstract type IntelCore_i3_6098P <: IntelCore_i3_g6 end; export IntelCore_i3_6098P abstract type IntelCore_i5_6402P <: IntelCore_i5_g5 end; export IntelCore_i5_6402P abstract type IntelCore_i5_5250U <: IntelCore_i5_g5 end; export IntelCore_i5_5250U abstract type IntelCore_i5_5350U <: IntelCore_i5_g5 end; export IntelCore_i5_5350U abstract type IntelCore_i7_5550U <: IntelCore_i7_g5 end; export IntelCore_i7_5550U abstract type IntelCore_i7_5650U <: IntelCore_i7_g5 end; export IntelCore_i7_5650U abstract type IntelCore_i3_5015U <: IntelCore_i3_g5 end; export IntelCore_i3_5015U abstract type IntelCore_i3_5020U <: IntelCore_i3_g5 end; export IntelCore_i3_5020U abstract type IntelCore_i3_5005U <: IntelCore_i3_g5 end; export IntelCore_i3_5005U abstract type IntelCore_i3_5010U <: IntelCore_i3_g5 end; export IntelCore_i3_5010U abstract type IntelCore_i5_5200U <: IntelCore_i5_g5 end; export IntelCore_i5_5200U abstract type IntelCore_i5_5300U <: IntelCore_i5_g5 end; export IntelCore_i5_5300U abstract type IntelCore_i7_5500U <: IntelCore_i7_g5 end; export IntelCore_i7_5500U abstract type IntelCore_i7_5600U <: IntelCore_i7_g5 end; export IntelCore_i7_5600U abstract type IntelCore_5Y10c <: IntelCore_M_g5 end; export IntelCore_5Y10c abstract type IntelCore_5Y31 <: IntelCore_M_g5 end; export IntelCore_5Y31 abstract type IntelCore_5Y51 <: IntelCore_M_g5 end; export IntelCore_5Y51 abstract type IntelCore_5Y71 <: IntelCore_M_g5 end; export IntelCore_5Y71 abstract type IntelCore_5Y10 <: IntelCore_M_g5 end; export IntelCore_5Y10 abstract type IntelCore_5Y10a <: IntelCore_M_g5 end; export IntelCore_5Y10a abstract type IntelCore_5Y70 <: IntelCore_M_g5 end; export IntelCore_5Y70 abstract type IntelCore_i5_4260U <: IntelCore_i5_g4 end; export IntelCore_i5_4260U abstract type IntelCore_i5_4360U <: IntelCore_i5_g4 end; export IntelCore_i5_4360U abstract type IntelCore_i5_4250U <: IntelCore_i5_g4 end; export IntelCore_i5_4250U abstract type IntelCore_i5_4350U <: IntelCore_i5_g4 end; export IntelCore_i5_4350U abstract type IntelCore_i7_4550U <: IntelCore_i7_g4 end; export IntelCore_i7_4550U abstract type IntelCore_i7_4650U <: IntelCore_i7_g4 end; export IntelCore_i7_4650U abstract type IntelCore_i3_4370T <: IntelCore_i3_g4 end; export IntelCore_i3_4370T abstract type IntelCore_i7_4720HQ <: IntelCore_i7_g4 end; export IntelCore_i7_4720HQ abstract type IntelCore_i7_4722HQ <: IntelCore_i7_g4 end; export IntelCore_i7_4722HQ abstract type IntelCore_i3_4360T <: IntelCore_i3_g4 end; export IntelCore_i3_4360T abstract type IntelCore_i3_4370 <: IntelCore_i3_g4 end; export IntelCore_i3_4370 abstract type IntelCore_i5_4210H <: IntelCore_i5_g4 end; export IntelCore_i5_4210H abstract type IntelCore_i5_4690K <: IntelCore_i5_g4 end; export IntelCore_i5_4690K abstract type IntelCore_i7_4790K <: IntelCore_i7_g4 end; export IntelCore_i7_4790K abstract type IntelCore_i3_4340TE <: IntelCore_i3_g4 end; export IntelCore_i3_4340TE abstract type IntelCore_i3_4350 <: IntelCore_i3_g4 end; export IntelCore_i3_4350 abstract type IntelCore_i3_4350T <: IntelCore_i3_g4 end; export IntelCore_i3_4350T abstract type IntelCore_i3_4360 <: IntelCore_i3_g4 end; export IntelCore_i3_4360 abstract type IntelCore_i5_4460 <: IntelCore_i5_g4 end; export IntelCore_i5_4460 abstract type IntelCore_i5_4460S <: IntelCore_i5_g4 end; export IntelCore_i5_4460S abstract type IntelCore_i5_4460T <: IntelCore_i5_g4 end; export IntelCore_i5_4460T abstract type IntelCore_i5_4590 <: IntelCore_i5_g4 end; export IntelCore_i5_4590 abstract type IntelCore_i5_4590S <: IntelCore_i5_g4 end; export IntelCore_i5_4590S abstract type IntelCore_i5_4590T <: IntelCore_i5_g4 end; export IntelCore_i5_4590T abstract type IntelCore_i5_4690 <: IntelCore_i5_g4 end; export IntelCore_i5_4690 abstract type IntelCore_i5_4690S <: IntelCore_i5_g4 end; export IntelCore_i5_4690S abstract type IntelCore_i5_4690T <: IntelCore_i5_g4 end; export IntelCore_i5_4690T abstract type IntelCore_i7_4785T <: IntelCore_i7_g4 end; export IntelCore_i7_4785T abstract type IntelCore_i7_4790 <: IntelCore_i7_g4 end; export IntelCore_i7_4790 abstract type IntelCore_i7_4790S <: IntelCore_i7_g4 end; export IntelCore_i7_4790S abstract type IntelCore_i7_4790T <: IntelCore_i7_g4 end; export IntelCore_i7_4790T abstract type IntelCore_i3_4110E <: IntelCore_i3_g4 end; export IntelCore_i3_4110E abstract type IntelCore_i3_4110M <: IntelCore_i3_g4 end; export IntelCore_i3_4110M abstract type IntelCore_i3_4112E <: IntelCore_i3_g4 end; export IntelCore_i3_4112E abstract type IntelCore_i5_4210M <: IntelCore_i5_g4 end; export IntelCore_i5_4210M abstract type IntelCore_i5_4410E <: IntelCore_i5_g4 end; export IntelCore_i5_4410E abstract type IntelCore_i5_4422E <: IntelCore_i5_g4 end; export IntelCore_i5_4422E abstract type IntelCore_i7_4710HQ <: IntelCore_i7_g4 end; export IntelCore_i7_4710HQ abstract type IntelCore_i7_4710MQ <: IntelCore_i7_g4 end; export IntelCore_i7_4710MQ abstract type IntelCore_i7_4712HQ <: IntelCore_i7_g4 end; export IntelCore_i7_4712HQ abstract type IntelCore_i7_4712MQ <: IntelCore_i7_g4 end; export IntelCore_i7_4712MQ abstract type IntelCore_i5_4310M <: IntelCore_i5_g4 end; export IntelCore_i5_4310M abstract type IntelCore_i5_4340M <: IntelCore_i5_g4 end; export IntelCore_i5_4340M abstract type IntelCore_i7_4610M <: IntelCore_i7_g4 end; export IntelCore_i7_4610M abstract type IntelCore_i7_4810MQ <: IntelCore_i7_g4 end; export IntelCore_i7_4810MQ abstract type IntelCore_i7_4910MQ <: IntelCore_i7_g4 end; export IntelCore_i7_4910MQ abstract type IntelCore_i7_4940MX <: IntelCore_X end; export IntelCore_i7_4940MX abstract type IntelCore_i3_4000M <: IntelCore_i3_g4 end; export IntelCore_i3_4000M abstract type IntelCore_i3_4100E <: IntelCore_i3_g4 end; export IntelCore_i3_4100E abstract type IntelCore_i3_4100M <: IntelCore_i3_g4 end; export IntelCore_i3_4100M abstract type IntelCore_i3_4102E <: IntelCore_i3_g4 end; export IntelCore_i3_4102E abstract type IntelCore_i3_4330 <: IntelCore_i3_g4 end; export IntelCore_i3_4330 abstract type IntelCore_i3_4330T <: IntelCore_i3_g4 end; export IntelCore_i3_4330T abstract type IntelCore_i3_4330TE <: IntelCore_i3_g4 end; export IntelCore_i3_4330TE abstract type IntelCore_i3_4340 <: IntelCore_i3_g4 end; export IntelCore_i3_4340 abstract type IntelCore_i5_4200H <: IntelCore_i5_g4 end; export IntelCore_i5_4200H abstract type IntelCore_i5_4200M <: IntelCore_i5_g4 end; export IntelCore_i5_4200M abstract type IntelCore_i5_4300M <: IntelCore_i5_g4 end; export IntelCore_i5_4300M abstract type IntelCore_i5_4330M <: IntelCore_i5_g4 end; export IntelCore_i5_4330M abstract type IntelCore_i5_4400E <: IntelCore_i5_g4 end; export IntelCore_i5_4400E abstract type IntelCore_i5_4402E <: IntelCore_i5_g4 end; export IntelCore_i5_4402E abstract type IntelCore_i5_4440 <: IntelCore_i5_g4 end; export IntelCore_i5_4440 abstract type IntelCore_i5_4440S <: IntelCore_i5_g4 end; export IntelCore_i5_4440S abstract type IntelCore_i7_4600M <: IntelCore_i7_g4 end; export IntelCore_i7_4600M abstract type IntelCore_i7_4771 <: IntelCore_i7_g4 end; export IntelCore_i7_4771 abstract type IntelCore_i5_4430 <: IntelCore_i5_g4 end; export IntelCore_i5_4430 abstract type IntelCore_i5_4430S <: IntelCore_i5_g4 end; export IntelCore_i5_4430S abstract type IntelCore_i5_4570 <: IntelCore_i5_g4 end; export IntelCore_i5_4570 abstract type IntelCore_i5_4570S <: IntelCore_i5_g4 end; export IntelCore_i5_4570S abstract type IntelCore_i5_4570T <: IntelCore_i5_g4 end; export IntelCore_i5_4570T abstract type IntelCore_i5_4570TE <: IntelCore_i5_g4 end; export IntelCore_i5_4570TE abstract type IntelCore_i5_4670 <: IntelCore_i5_g4 end; export IntelCore_i5_4670 abstract type IntelCore_i5_4670K <: IntelCore_i5_g4 end; export IntelCore_i5_4670K abstract type IntelCore_i5_4670S <: IntelCore_i5_g4 end; export IntelCore_i5_4670S abstract type IntelCore_i5_4670T <: IntelCore_i5_g4 end; export IntelCore_i5_4670T abstract type IntelCore_i7_4700EQ <: IntelCore_i7_g4 end; export IntelCore_i7_4700EQ abstract type IntelCore_i7_4700HQ <: IntelCore_i7_g4 end; export IntelCore_i7_4700HQ abstract type IntelCore_i7_4700MQ <: IntelCore_i7_g4 end; export IntelCore_i7_4700MQ abstract type IntelCore_i7_4702HQ <: IntelCore_i7_g4 end; export IntelCore_i7_4702HQ abstract type IntelCore_i7_4702MQ <: IntelCore_i7_g4 end; export IntelCore_i7_4702MQ abstract type IntelCore_i7_4765T <: IntelCore_i7_g4 end; export IntelCore_i7_4765T abstract type IntelCore_i7_4770 <: IntelCore_i7_g4 end; export IntelCore_i7_4770 abstract type IntelCore_i7_4770K <: IntelCore_i7_g4 end; export IntelCore_i7_4770K abstract type IntelCore_i7_4770S <: IntelCore_i7_g4 end; export IntelCore_i7_4770S abstract type IntelCore_i7_4770T <: IntelCore_i7_g4 end; export IntelCore_i7_4770T abstract type IntelCore_i7_4770TE <: IntelCore_i7_g4 end; export IntelCore_i7_4770TE abstract type IntelCore_i7_4800MQ <: IntelCore_i7_g4 end; export IntelCore_i7_4800MQ abstract type IntelCore_i7_4900MQ <: IntelCore_i7_g4 end; export IntelCore_i7_4900MQ abstract type IntelCore_i7_4930MX <: IntelCore_X end; export IntelCore_i7_4930MX abstract type IntelCore_i3_4170 <: IntelCore_i3_g4 end; export IntelCore_i3_4170 abstract type IntelCore_i3_4170T <: IntelCore_i3_g4 end; export IntelCore_i3_4170T abstract type IntelCore_i3_4160 <: IntelCore_i3_g4 end; export IntelCore_i3_4160 abstract type IntelCore_i3_4160T <: IntelCore_i3_g4 end; export IntelCore_i3_4160T abstract type IntelCore_i3_4150 <: IntelCore_i3_g4 end; export IntelCore_i3_4150 abstract type IntelCore_i3_4150T <: IntelCore_i3_g4 end; export IntelCore_i3_4150T abstract type IntelCore_i3_4025U <: IntelCore_i3_g4 end; export IntelCore_i3_4025U abstract type IntelCore_i3_4030U <: IntelCore_i3_g4 end; export IntelCore_i3_4030U abstract type IntelCore_i3_4120U <: IntelCore_i3_g4 end; export IntelCore_i3_4120U abstract type IntelCore_i5_4210U <: IntelCore_i5_g4 end; export IntelCore_i5_4210U abstract type IntelCore_i7_4510U <: IntelCore_i7_g4 end; export IntelCore_i7_4510U abstract type IntelCore_i5_4310U <: IntelCore_i5_g4 end; export IntelCore_i5_4310U abstract type IntelCore_i3_4005U <: IntelCore_i3_g4 end; export IntelCore_i3_4005U abstract type IntelCore_i3_4130 <: IntelCore_i3_g4 end; export IntelCore_i3_4130 abstract type IntelCore_i3_4130T <: IntelCore_i3_g4 end; export IntelCore_i3_4130T abstract type IntelCore_i5_4300U <: IntelCore_i5_g4 end; export IntelCore_i5_4300U abstract type IntelCore_i7_4600U <: IntelCore_i7_g4 end; export IntelCore_i7_4600U abstract type IntelCore_i3_4010U <: IntelCore_i3_g4 end; export IntelCore_i3_4010U abstract type IntelCore_i3_4100U <: IntelCore_i3_g4 end; export IntelCore_i3_4100U abstract type IntelCore_i5_4200U <: IntelCore_i5_g4 end; export IntelCore_i5_4200U abstract type IntelCore_i7_4500U <: IntelCore_i7_g4 end; export IntelCore_i7_4500U abstract type IntelCore_i3_4030Y <: IntelCore_i3_g4 end; export IntelCore_i3_4030Y abstract type IntelCore_i5_4220Y <: IntelCore_i5_g4 end; export IntelCore_i5_4220Y abstract type IntelCore_i3_4012Y <: IntelCore_i3_g4 end; export IntelCore_i3_4012Y abstract type IntelCore_i3_4020Y <: IntelCore_i3_g4 end; export IntelCore_i3_4020Y abstract type IntelCore_i5_4202Y <: IntelCore_i5_g4 end; export IntelCore_i5_4202Y abstract type IntelCore_i5_4210Y <: IntelCore_i5_g4 end; export IntelCore_i5_4210Y abstract type IntelCore_i5_4300Y <: IntelCore_i5_g4 end; export IntelCore_i5_4300Y abstract type IntelCore_i5_4302Y <: IntelCore_i5_g4 end; export IntelCore_i5_4302Y abstract type IntelCore_i7_4610Y <: IntelCore_i7_g4 end; export IntelCore_i7_4610Y abstract type IntelCore_i3_4010Y <: IntelCore_i3_g4 end; export IntelCore_i3_4010Y abstract type IntelCore_i5_4200Y <: IntelCore_i5_g4 end; export IntelCore_i5_4200Y abstract type IntelCore_i7_3940XM <: IntelCore_X end; export IntelCore_i7_3940XM abstract type IntelCore_i7_3920XM <: IntelCore_X end; export IntelCore_i7_3920XM abstract type IntelCore_i5_1240P <: IntelCore_i5_g12 end; export IntelCore_i5_1240P abstract type IntelCore_i7_1260P <: IntelCore_i7_g12 end; export IntelCore_i7_1260P abstract type IntelCore_i5_11400H <: IntelCore_i5_g11 end; export IntelCore_i5_11400H abstract type IntelCore_i7_11800H <: IntelCore_i7_g11 end; export IntelCore_i7_11800H abstract type IntelCore_i3_10105 <: IntelCore_i3_g10 end; export IntelCore_i3_10105 abstract type IntelCore_i3_10105T <: IntelCore_i3_g10 end; export IntelCore_i3_10105T abstract type IntelCore_i3_10305 <: IntelCore_i3_g10 end; export IntelCore_i3_10305 abstract type IntelCore_i3_10305T <: IntelCore_i3_g10 end; export IntelCore_i3_10305T abstract type IntelCore_i3_10325 <: IntelCore_i3_g10 end; export IntelCore_i3_10325 abstract type IntelCore_i5_10505 <: IntelCore_i5_g10 end; export IntelCore_i5_10505 abstract type IntelCore_i9_10850K <: IntelCore_i9_g10 end; export IntelCore_i9_10850K abstract type IntelCore_i3_10100 <: IntelCore_i3_g10 end; export IntelCore_i3_10100 abstract type IntelCore_i3_10100E <: IntelCore_i3_g10 end; export IntelCore_i3_10100E abstract type IntelCore_i3_10100T <: IntelCore_i3_g10 end; export IntelCore_i3_10100T abstract type IntelCore_i3_10100TE <: IntelCore_i3_g10 end; export IntelCore_i3_10100TE abstract type IntelCore_i3_10300 <: IntelCore_i3_g10 end; export IntelCore_i3_10300 abstract type IntelCore_i3_10300T <: IntelCore_i3_g10 end; export IntelCore_i3_10300T abstract type IntelCore_i3_10320 <: IntelCore_i3_g10 end; export IntelCore_i3_10320 abstract type IntelCore_i5_10400 <: IntelCore_i5_g10 end; export IntelCore_i5_10400 abstract type IntelCore_i5_10400T <: IntelCore_i5_g10 end; export IntelCore_i5_10400T abstract type IntelCore_i5_10500 <: IntelCore_i5_g10 end; export IntelCore_i5_10500 abstract type IntelCore_i5_10500E <: IntelCore_i5_g10 end; export IntelCore_i5_10500E abstract type IntelCore_i5_10500T <: IntelCore_i5_g10 end; export IntelCore_i5_10500T abstract type IntelCore_i5_10500TE <: IntelCore_i5_g10 end; export IntelCore_i5_10500TE abstract type IntelCore_i5_10600 <: IntelCore_i5_g10 end; export IntelCore_i5_10600 abstract type IntelCore_i5_10600K <: IntelCore_i5_g10 end; export IntelCore_i5_10600K abstract type IntelCore_i5_10600T <: IntelCore_i5_g10 end; export IntelCore_i5_10600T abstract type IntelCore_i7_10700 <: IntelCore_i7_g10 end; export IntelCore_i7_10700 abstract type IntelCore_i7_10700E <: IntelCore_i7_g10 end; export IntelCore_i7_10700E abstract type IntelCore_i7_10700K <: IntelCore_i7_g10 end; export IntelCore_i7_10700K abstract type IntelCore_i7_10700T <: IntelCore_i7_g10 end; export IntelCore_i7_10700T abstract type IntelCore_i7_10700TE <: IntelCore_i7_g10 end; export IntelCore_i7_10700TE abstract type IntelCore_i9_10900 <: IntelCore_i9_g10 end; export IntelCore_i9_10900 abstract type IntelCore_i9_10900E <: IntelCore_i9_g10 end; export IntelCore_i9_10900E abstract type IntelCore_i9_10900K <: IntelCore_i9_g10 end; export IntelCore_i9_10900K abstract type IntelCore_i9_10900T <: IntelCore_i9_g10 end; export IntelCore_i9_10900T abstract type IntelCore_i9_10900TE <: IntelCore_i9_g10 end; export IntelCore_i9_10900TE abstract type IntelCore_i9_9900KS <: IntelCore_i9_g9 end; export IntelCore_i9_9900KS abstract type IntelCore_i3_9100E <: IntelCore_i3_g9 end; export IntelCore_i3_9100E abstract type IntelCore_i3_9100HL <: IntelCore_i3_g9 end; export IntelCore_i3_9100HL abstract type IntelCore_i3_9100TE <: IntelCore_i3_g9 end; export IntelCore_i3_9100TE abstract type IntelCore_i5_9500E <: IntelCore_i5_g9 end; export IntelCore_i5_9500E abstract type IntelCore_i5_9500TE <: IntelCore_i5_g9 end; export IntelCore_i5_9500TE abstract type IntelCore_i7_9700E <: IntelCore_i7_g9 end; export IntelCore_i7_9700E abstract type IntelCore_i7_9700TE <: IntelCore_i7_g9 end; export IntelCore_i7_9700TE abstract type IntelCore_i7_9850HE <: IntelCore_i7_g9 end; export IntelCore_i7_9850HE abstract type IntelCore_i7_9850HL <: IntelCore_i7_g9 end; export IntelCore_i7_9850HL abstract type IntelCore_i3_9100 <: IntelCore_i3_g9 end; export IntelCore_i3_9100 abstract type IntelCore_i3_9100T <: IntelCore_i3_g9 end; export IntelCore_i3_9100T abstract type IntelCore_i3_9300 <: IntelCore_i3_g9 end; export IntelCore_i3_9300 abstract type IntelCore_i3_9300T <: IntelCore_i3_g9 end; export IntelCore_i3_9300T abstract type IntelCore_i3_9320 <: IntelCore_i3_g9 end; export IntelCore_i3_9320 abstract type IntelCore_i3_9350K <: IntelCore_i3_g9 end; export IntelCore_i3_9350K abstract type IntelCore_i5_9400H <: IntelCore_i5_g9 end; export IntelCore_i5_9400H abstract type IntelCore_i5_9400T <: IntelCore_i5_g9 end; export IntelCore_i5_9400T abstract type IntelCore_i5_9500 <: IntelCore_i5_g9 end; export IntelCore_i5_9500 abstract type IntelCore_i5_9500T <: IntelCore_i5_g9 end; export IntelCore_i5_9500T abstract type IntelCore_i5_9600 <: IntelCore_i5_g9 end; export IntelCore_i5_9600 abstract type IntelCore_i5_9600T <: IntelCore_i5_g9 end; export IntelCore_i5_9600T abstract type IntelCore_i7_9700 <: IntelCore_i7_g9 end; export IntelCore_i7_9700 abstract type IntelCore_i7_9700T <: IntelCore_i7_g9 end; export IntelCore_i7_9700T abstract type IntelCore_i9_9880H <: IntelCore_i9_g9 end; export IntelCore_i9_9880H abstract type IntelCore_i9_9900 <: IntelCore_i9_g9 end; export IntelCore_i9_9900 abstract type IntelCore_i9_9900T <: IntelCore_i9_g9 end; export IntelCore_i9_9900T abstract type IntelCore_i5_9400 <: IntelCore_i5_g9 end; export IntelCore_i5_9400 abstract type IntelCore_i5_9600K <: IntelCore_i5_g9 end; export IntelCore_i5_9600K abstract type IntelCore_i7_9700K <: IntelCore_i7_g9 end; export IntelCore_i7_9700K abstract type IntelCore_i9_9900K <: IntelCore_i9_g9 end; export IntelCore_i9_9900K abstract type IntelCore_i3_8100B <: IntelCore_i3_g8 end; export IntelCore_i3_8100B abstract type IntelCore_i3_8100H <: IntelCore_i3_g8 end; export IntelCore_i3_8100H abstract type IntelCore_i7_8086K <: IntelCore_i7_g8 end; export IntelCore_i7_8086K abstract type IntelCore_i3_8100T <: IntelCore_i3_g8 end; export IntelCore_i3_8100T abstract type IntelCore_i3_8300 <: IntelCore_i3_g8 end; export IntelCore_i3_8300 abstract type IntelCore_i3_8300T <: IntelCore_i3_g8 end; export IntelCore_i3_8300T abstract type IntelCore_i5_8300H <: IntelCore_i5_g8 end; export IntelCore_i5_8300H abstract type IntelCore_i5_8400 <: IntelCore_i5_g8 end; export IntelCore_i5_8400 abstract type IntelCore_i5_8400B <: IntelCore_i5_g8 end; export IntelCore_i5_8400B abstract type IntelCore_i5_8400H <: IntelCore_i5_g8 end; export IntelCore_i5_8400H abstract type IntelCore_i5_8400T <: IntelCore_i5_g8 end; export IntelCore_i5_8400T abstract type IntelCore_i5_8500 <: IntelCore_i5_g8 end; export IntelCore_i5_8500 abstract type IntelCore_i5_8500B <: IntelCore_i5_g8 end; export IntelCore_i5_8500B abstract type IntelCore_i5_8500T <: IntelCore_i5_g8 end; export IntelCore_i5_8500T abstract type IntelCore_i5_8600 <: IntelCore_i5_g8 end; export IntelCore_i5_8600 abstract type IntelCore_i5_8600T <: IntelCore_i5_g8 end; export IntelCore_i5_8600T abstract type IntelCore_i7_8700 <: IntelCore_i7_g8 end; export IntelCore_i7_8700 abstract type IntelCore_i7_8700B <: IntelCore_i7_g8 end; export IntelCore_i7_8700B abstract type IntelCore_i7_8700T <: IntelCore_i7_g8 end; export IntelCore_i7_8700T abstract type IntelCore_i7_8750H <: IntelCore_i7_g8 end; export IntelCore_i7_8750H abstract type IntelCore_i7_8850H <: IntelCore_i7_g8 end; export IntelCore_i7_8850H abstract type IntelCore_i9_8950HK <: IntelCore_i9_g8 end; export IntelCore_i9_8950HK abstract type IntelCore_i3_8100 <: IntelCore_i3_g8 end; export IntelCore_i3_8100 abstract type IntelCore_i3_8350K <: IntelCore_i3_g8 end; export IntelCore_i3_8350K abstract type IntelCore_i5_8600K <: IntelCore_i5_g8 end; export IntelCore_i5_8600K abstract type IntelCore_i7_8700K <: IntelCore_i7_g8 end; export IntelCore_i7_8700K abstract type IntelCore_i3_8140U <: IntelCore_i3_g8 end; export IntelCore_i3_8140U abstract type IntelCore_i5_8260U <: IntelCore_i5_g8 end; export IntelCore_i5_8260U abstract type IntelCore_i3_8145UE <: IntelCore_i3_g8 end; export IntelCore_i3_8145UE abstract type IntelCore_i5_8365UE <: IntelCore_i5_g8 end; export IntelCore_i5_8365UE abstract type IntelCore_i7_8665UE <: IntelCore_i7_g8 end; export IntelCore_i7_8665UE abstract type IntelCore_i3_8130U <: IntelCore_i3_g8 end; export IntelCore_i3_8130U abstract type IntelCore_i5_8250U <: IntelCore_i5_g8 end; export IntelCore_i5_8250U abstract type IntelCore_i5_8350U <: IntelCore_i5_g8 end; export IntelCore_i5_8350U abstract type IntelCore_i7_8550U <: IntelCore_i7_g8 end; export IntelCore_i7_8550U abstract type IntelCore_i7_8650U <: IntelCore_i7_g8 end; export IntelCore_i7_8650U abstract type IntelCore_i5_8310Y <: IntelCore_i5_g8 end; export IntelCore_i5_8310Y abstract type IntelCore_i5_8210Y <: IntelCore_i5_g8 end; export IntelCore_i5_8210Y abstract type IntelCore_i3_10100Y <: IntelCore_i3_g10 end; export IntelCore_i3_10100Y abstract type IntelCore_i5_8200Y <: IntelCore_i5_g8 end; export IntelCore_i5_8200Y abstract type IntelCore_i7_8500Y <: IntelCore_i7_g8 end; export IntelCore_i7_8500Y abstract type IntelCore_M3_8100Y <: IntelCore_M_g8 end; export IntelCore_M3_8100Y abstract type IntelCore_i3_12300HE <: IntelCore_i3_g12 end; export IntelCore_i3_12300HE abstract type IntelCore_i3_11100HE <: IntelCore_i3_g11 end; export IntelCore_i3_11100HE abstract type IntelCore_i5_11500HE <: IntelCore_i5_g11 end; export IntelCore_i5_11500HE abstract type IntelCore_i7_11850HE <: IntelCore_i7_g11 end; export IntelCore_i7_11850HE abstract type IntelCore_i7_11600H <: IntelCore_i7_g11 end; export IntelCore_i7_11600H abstract type IntelCore_i5_11260H <: IntelCore_i5_g11 end; export IntelCore_i5_11260H abstract type IntelCore_i5_11500H <: IntelCore_i5_g11 end; export IntelCore_i5_11500H abstract type IntelCore_i7_11850H <: IntelCore_i7_g11 end; export IntelCore_i7_11850H abstract type IntelCore_i9_11900H <: IntelCore_i9_g11 end; export IntelCore_i9_11900H abstract type IntelCore_i9_11950H <: IntelCore_i9_g11 end; export IntelCore_i9_11950H abstract type IntelCore_i9_11980HK <: IntelCore_i9_g11 end; export IntelCore_i9_11980HK abstract type IntelCore_i3_1115G4E <: IntelCore_i3_g11 end; export IntelCore_i3_1115G4E abstract type IntelCore_i3_1115GRE <: IntelCore_i3_g11 end; export IntelCore_i3_1115GRE abstract type IntelCore_i3_1120G4 <: IntelCore_i3_g11 end; export IntelCore_i3_1120G4 abstract type IntelCore_i3_1125G4 <: IntelCore_i3_g11 end; export IntelCore_i3_1125G4 abstract type IntelCore_i3_1110G4 <: IntelCore_i3_g11 end; export IntelCore_i3_1110G4 abstract type IntelCore_i5_10500H <: IntelCore_i5_g10 end; export IntelCore_i5_10500H abstract type IntelCore_i7_10870H <: IntelCore_i7_g10 end; export IntelCore_i7_10870H abstract type IntelCore_i5_10200H <: IntelCore_i5_g10 end; export IntelCore_i5_10200H abstract type IntelCore_i5_10310U <: IntelCore_i5_g10 end; export IntelCore_i5_10310U abstract type IntelCore_i7_10610U <: IntelCore_i7_g10 end; export IntelCore_i7_10610U abstract type IntelCore_i7_10810U <: IntelCore_i7_g10 end; export IntelCore_i7_10810U abstract type IntelCore_i9_10885H <: IntelCore_i9_g10 end; export IntelCore_i9_10885H abstract type IntelCore_i5_10300H <: IntelCore_i5_g10 end; export IntelCore_i5_10300H abstract type IntelCore_i5_10400H <: IntelCore_i5_g10 end; export IntelCore_i5_10400H abstract type IntelCore_i7_10750H <: IntelCore_i7_g10 end; export IntelCore_i7_10750H abstract type IntelCore_i7_10850H <: IntelCore_i7_g10 end; export IntelCore_i7_10850H abstract type IntelCore_i7_10875H <: IntelCore_i7_g10 end; export IntelCore_i7_10875H abstract type IntelCore_i9_10980HK <: IntelCore_i9_g10 end; export IntelCore_i9_10980HK abstract type IntelCore_i3_10110Y <: IntelCore_i3_g10 end; export IntelCore_i3_10110Y abstract type IntelCore_i5_10210Y <: IntelCore_i5_g10 end; export IntelCore_i5_10210Y abstract type IntelCore_i5_10310Y <: IntelCore_i5_g10 end; export IntelCore_i5_10310Y abstract type IntelCore_i7_10510U <: IntelCore_i7_g10 end; export IntelCore_i7_10510U abstract type IntelCore_i7_10510Y <: IntelCore_i7_g10 end; export IntelCore_i7_10510Y abstract type IntelCore_i3_1000G1 <: IntelCore_i3_g10 end; export IntelCore_i3_1000G1 abstract type IntelCore_i3_1005G1 <: IntelCore_i3_g10 end; export IntelCore_i3_1005G1 abstract type IntelCore_i5_1035G1 <: IntelCore_i5_g10 end; export IntelCore_i5_1035G1 abstract type IntelCore_i5_6585R <: IntelCore_i5_g5 end; export IntelCore_i5_6585R abstract type IntelCore_i5_6685R <: IntelCore_i5_g5 end; export IntelCore_i5_6685R abstract type IntelCore_i7_6785R <: IntelCore_i7_g6 end; export IntelCore_i7_6785R abstract type IntelCore_i5_6350HQ <: IntelCore_i5_g5 end; export IntelCore_i5_6350HQ abstract type IntelCore_i7_6770HQ <: IntelCore_i7_g6 end; export IntelCore_i7_6770HQ abstract type IntelCore_i7_6870HQ <: IntelCore_i7_g6 end; export IntelCore_i7_6870HQ abstract type IntelCore_i7_6970HQ <: IntelCore_i7_g6 end; export IntelCore_i7_6970HQ abstract type IntelCore_i5_5350H <: IntelCore_i5_g5 end; export IntelCore_i5_5350H abstract type IntelCore_i5_5575R <: IntelCore_i5_g5 end; export IntelCore_i5_5575R abstract type IntelCore_i5_5675C <: IntelCore_i5_g5 end; export IntelCore_i5_5675C abstract type IntelCore_i5_5675R <: IntelCore_i5_g5 end; export IntelCore_i5_5675R abstract type IntelCore_i7_5700HQ <: IntelCore_i7_g5 end; export IntelCore_i7_5700HQ abstract type IntelCore_i7_5750HQ <: IntelCore_i7_g5 end; export IntelCore_i7_5750HQ abstract type IntelCore_i7_5775C <: IntelCore_i7_g5 end; export IntelCore_i7_5775C abstract type IntelCore_i7_5775R <: IntelCore_i7_g5 end; export IntelCore_i7_5775R abstract type IntelCore_i7_5850EQ <: IntelCore_i7_g5 end; export IntelCore_i7_5850EQ abstract type IntelCore_i7_5850HQ <: IntelCore_i7_g5 end; export IntelCore_i7_5850HQ abstract type IntelCore_i7_5950HQ <: IntelCore_i7_g5 end; export IntelCore_i7_5950HQ abstract type IntelCore_i7_4770HQ <: IntelCore_i7_g4 end; export IntelCore_i7_4770HQ abstract type IntelCore_i7_4870HQ <: IntelCore_i7_g4 end; export IntelCore_i7_4870HQ abstract type IntelCore_i7_4980HQ <: IntelCore_i7_g4 end; export IntelCore_i7_4980HQ abstract type IntelCore_i7_4760HQ <: IntelCore_i7_g4 end; export IntelCore_i7_4760HQ abstract type IntelCore_i7_4860HQ <: IntelCore_i7_g4 end; export IntelCore_i7_4860HQ abstract type IntelCore_i7_4960HQ <: IntelCore_i7_g4 end; export IntelCore_i7_4960HQ abstract type IntelCore_i7_4750HQ <: IntelCore_i7_g4 end; export IntelCore_i7_4750HQ abstract type IntelCore_i7_4850HQ <: IntelCore_i7_g4 end; export IntelCore_i7_4850HQ abstract type IntelCore_i7_4950HQ <: IntelCore_i7_g4 end; export IntelCore_i7_4950HQ abstract type IntelCore_i5_4570R <: IntelCore_i5_g4 end; export IntelCore_i5_4570R abstract type IntelCore_i5_4670R <: IntelCore_i5_g4 end; export IntelCore_i5_4670R abstract type IntelCore_i7_4770R <: IntelCore_i7_g4 end; export IntelCore_i7_4770R abstract type IntelCore_i9_10900X <: IntelCore_X end; export IntelCore_i9_10900X abstract type IntelCore_i9_10920X <: IntelCore_X end; export IntelCore_i9_10920X abstract type IntelCore_i9_10940X <: IntelCore_X end; export IntelCore_i9_10940X abstract type IntelCore_i9_10980XE <: IntelCore_X end; export IntelCore_i9_10980XE abstract type IntelCore_i7_9800X <: IntelCore_X end; export IntelCore_i7_9800X abstract type IntelCore_i9_9820X <: IntelCore_X end; export IntelCore_i9_9820X abstract type IntelCore_i9_9900X <: IntelCore_X end; export IntelCore_i9_9900X abstract type IntelCore_i9_9920X <: IntelCore_X end; export IntelCore_i9_9920X abstract type IntelCore_i9_9940X <: IntelCore_X end; export IntelCore_i9_9940X abstract type IntelCore_i9_9960X <: IntelCore_X end; export IntelCore_i9_9960X abstract type IntelCore_i9_9980XE <: IntelCore_X end; export IntelCore_i9_9980XE abstract type IntelCore_i9_7940X <: IntelCore_X end; export IntelCore_i9_7940X abstract type IntelCore_i9_7960X <: IntelCore_X end; export IntelCore_i9_7960X abstract type IntelCore_i9_7980XE <: IntelCore_X end; export IntelCore_i9_7980XE abstract type IntelCore_i9_7920X <: IntelCore_X end; export IntelCore_i9_7920X abstract type IntelCore_i5_7640X <: IntelCore_X end; export IntelCore_i5_7640X abstract type IntelCore_i7_7740X <: IntelCore_X end; export IntelCore_i7_7740X abstract type IntelCore_i7_7800X <: IntelCore_X end; export IntelCore_i7_7800X abstract type IntelCore_i7_7820X <: IntelCore_X end; export IntelCore_i7_7820X abstract type IntelCore_i9_7900X <: IntelCore_X end; export IntelCore_i9_7900X abstract type IntelCore_i7_6800K <: IntelCore_X end; export IntelCore_i7_6800K abstract type IntelCore_i7_6850K <: IntelCore_X end; export IntelCore_i7_6850K abstract type IntelCore_i7_6900K <: IntelCore_X end; export IntelCore_i7_6900K abstract type IntelCore_i7_6950X <: IntelCore_X end; export IntelCore_i7_6950X abstract type IntelCore_i7_5820K <: IntelCore_X end; export IntelCore_i7_5820K abstract type IntelCore_i7_5930K <: IntelCore_X end; export IntelCore_i7_5930K abstract type IntelCore_i7_5960X <: IntelCore_X end; export IntelCore_i7_5960X abstract type IntelCore_i7_4820K <: IntelCore_X end; export IntelCore_i7_4820K abstract type IntelCore_i7_4930K <: IntelCore_X end; export IntelCore_i7_4930K abstract type IntelCore_i7_4960X <: IntelCore_X end; export IntelCore_i7_4960X abstract type IntelCore_i7_3970X <: IntelCore_X end; export IntelCore_i7_3970X abstract type IntelCore_i7_3820 <: IntelCore_X end; export IntelCore_i7_3820 abstract type IntelCore_i7_3930K <: IntelCore_X end; export IntelCore_i7_3930K abstract type IntelCore_i7_3960X <: IntelCore_X end; export IntelCore_i7_3960X abstract type IntelCore_i9_12900HX <: IntelCore_i9_g12 end; export IntelCore_i9_12900HX abstract type IntelCore_i9_12950HX <: IntelCore_i9_g12 end; export IntelCore_i9_12950HX abstract type IntelCore_i9_12900KS <: IntelCore_i9_g12 end; export IntelCore_i9_12900KS abstract type IntelCore_i9_12900E <: IntelCore_i9_g12 end; export IntelCore_i9_12900E abstract type IntelCore_i9_12900F <: IntelCore_i9_g12 end; export IntelCore_i9_12900F abstract type IntelCore_i9_12900H <: IntelCore_i9_g12 end; export IntelCore_i9_12900H abstract type IntelCore_i9_12900HK <: IntelCore_i9_g12 end; export IntelCore_i9_12900HK abstract type IntelCore_i9_12900T <: IntelCore_i9_g12 end; export IntelCore_i9_12900T abstract type IntelCore_i9_12900TE <: IntelCore_i9_g12 end; export IntelCore_i9_12900TE abstract type IntelCore_i9_12900K <: IntelCore_i9_g12 end; export IntelCore_i9_12900K abstract type IntelCore_i9_12900KF <: IntelCore_i9_g12 end; export IntelCore_i9_12900KF abstract type IntelCore_i9_11900 <: IntelCore_i9_g11 end; export IntelCore_i9_11900 abstract type IntelCore_i9_11900F <: IntelCore_i9_g11 end; export IntelCore_i9_11900F abstract type IntelCore_i9_11900K <: IntelCore_i9_g11 end; export IntelCore_i9_11900K abstract type IntelCore_i9_11900KF <: IntelCore_i9_g11 end; export IntelCore_i9_11900KF abstract type IntelCore_i9_11900T <: IntelCore_i9_g11 end; export IntelCore_i9_11900T abstract type IntelCore_i9_10900F <: IntelCore_i9_g10 end; export IntelCore_i9_10900F abstract type IntelCore_i9_10900KF <: IntelCore_i9_g10 end; export IntelCore_i9_10900KF abstract type IntelCore_i9_9900KF <: IntelCore_i9_g9 end; export IntelCore_i9_9900KF abstract type IntelCore_i7_12650HX <: IntelCore_i7_g12 end; export IntelCore_i7_12650HX abstract type IntelCore_i7_12800HX <: IntelCore_i7_g12 end; export IntelCore_i7_12800HX abstract type IntelCore_i7_12850HX <: IntelCore_i7_g12 end; export IntelCore_i7_12850HX abstract type IntelCore_i7_1265UE <: IntelCore_i7_g12 end; export IntelCore_i7_1265UE abstract type IntelCore_i7_1270PE <: IntelCore_i7_g12 end; export IntelCore_i7_1270PE abstract type IntelCore_i7_1250U <: IntelCore_i7_g12 end; export IntelCore_i7_1250U abstract type IntelCore_i7_1260U <: IntelCore_i7_g12 end; export IntelCore_i7_1260U abstract type IntelCore_i7_1270P <: IntelCore_i7_g12 end; export IntelCore_i7_1270P abstract type IntelCore_i7_1280P <: IntelCore_i7_g12 end; export IntelCore_i7_1280P abstract type IntelCore_i7_12650H <: IntelCore_i7_g12 end; export IntelCore_i7_12650H abstract type IntelCore_i7_12700E <: IntelCore_i7_g12 end; export IntelCore_i7_12700E abstract type IntelCore_i7_12700F <: IntelCore_i7_g12 end; export IntelCore_i7_12700F abstract type IntelCore_i7_12700H <: IntelCore_i7_g12 end; export IntelCore_i7_12700H abstract type IntelCore_i7_12700T <: IntelCore_i7_g12 end; export IntelCore_i7_12700T abstract type IntelCore_i7_12700TE <: IntelCore_i7_g12 end; export IntelCore_i7_12700TE abstract type IntelCore_i7_12800H <: IntelCore_i7_g12 end; export IntelCore_i7_12800H abstract type IntelCore_i7_12800HE <: IntelCore_i7_g12 end; export IntelCore_i7_12800HE abstract type IntelCore_i7_12700K <: IntelCore_i7_g12 end; export IntelCore_i7_12700K abstract type IntelCore_i7_12700KF <: IntelCore_i7_g12 end; export IntelCore_i7_12700KF abstract type IntelCore_i7_11390H <: IntelCore_i7_g11 end; export IntelCore_i7_11390H abstract type IntelCore_i7_1195G7 <: IntelCore_i7_g11 end; export IntelCore_i7_1195G7 abstract type IntelCore_i7_11700 <: IntelCore_i7_g11 end; export IntelCore_i7_11700 abstract type IntelCore_i7_11700F <: IntelCore_i7_g11 end; export IntelCore_i7_11700F abstract type IntelCore_i7_11700K <: IntelCore_i7_g11 end; export IntelCore_i7_11700K abstract type IntelCore_i7_11700KF <: IntelCore_i7_g11 end; export IntelCore_i7_11700KF abstract type IntelCore_i7_11700T <: IntelCore_i7_g11 end; export IntelCore_i7_11700T abstract type IntelCore_i7_10700F <: IntelCore_i7_g10 end; export IntelCore_i7_10700F abstract type IntelCore_i7_10700KF <: IntelCore_i7_g10 end; export IntelCore_i7_10700KF abstract type IntelCore_i7_9700F <: IntelCore_i7_g9 end; export IntelCore_i7_9700F abstract type IntelCore_i7_9750HF <: IntelCore_i7_g9 end; export IntelCore_i7_9750HF abstract type IntelCore_i7_9700KF <: IntelCore_i7_g9 end; export IntelCore_i7_9700KF abstract type IntelCore_i7_5700EQ <: IntelCore_i7_g5 end; export IntelCore_i7_5700EQ abstract type IntelCore_i7_4700EC <: IntelCore_i7_g4 end; export IntelCore_i7_4700EC abstract type IntelCore_i7_4702EC <: IntelCore_i7_g4 end; export IntelCore_i7_4702EC abstract type IntelCore_i5_12450HX <: IntelCore_i5_g12 end; export IntelCore_i5_12450HX abstract type IntelCore_i5_12600HX <: IntelCore_i5_g12 end; export IntelCore_i5_12600HX abstract type IntelCore_i5_1245UE <: IntelCore_i5_g12 end; export IntelCore_i5_1245UE abstract type IntelCore_i5_1250PE <: IntelCore_i5_g12 end; export IntelCore_i5_1250PE abstract type IntelCore_i5_1230U <: IntelCore_i5_g12 end; export IntelCore_i5_1230U abstract type IntelCore_i5_1240U <: IntelCore_i5_g12 end; export IntelCore_i5_1240U abstract type IntelCore_i5_1250P <: IntelCore_i5_g12 end; export IntelCore_i5_1250P abstract type IntelCore_i5_12400 <: IntelCore_i5_g12 end; export IntelCore_i5_12400 abstract type IntelCore_i5_12400F <: IntelCore_i5_g12 end; export IntelCore_i5_12400F abstract type IntelCore_i5_12400T <: IntelCore_i5_g12 end; export IntelCore_i5_12400T abstract type IntelCore_i5_12450H <: IntelCore_i5_g12 end; export IntelCore_i5_12450H abstract type IntelCore_i5_12500 <: IntelCore_i5_g12 end; export IntelCore_i5_12500 abstract type IntelCore_i5_12500E <: IntelCore_i5_g12 end; export IntelCore_i5_12500E abstract type IntelCore_i5_12500H <: IntelCore_i5_g12 end; export IntelCore_i5_12500H abstract type IntelCore_i5_12500T <: IntelCore_i5_g12 end; export IntelCore_i5_12500T abstract type IntelCore_i5_12500TE <: IntelCore_i5_g12 end; export IntelCore_i5_12500TE abstract type IntelCore_i5_12600 <: IntelCore_i5_g12 end; export IntelCore_i5_12600 abstract type IntelCore_i5_12600H <: IntelCore_i5_g12 end; export IntelCore_i5_12600H abstract type IntelCore_i5_12600HE <: IntelCore_i5_g12 end; export IntelCore_i5_12600HE abstract type IntelCore_i5_12600T <: IntelCore_i5_g12 end; export IntelCore_i5_12600T abstract type IntelCore_i5_12600K <: IntelCore_i5_g12 end; export IntelCore_i5_12600K abstract type IntelCore_i5_12600KF <: IntelCore_i5_g12 end; export IntelCore_i5_12600KF abstract type IntelCore_i5_11320H <: IntelCore_i5_g11 end; export IntelCore_i5_11320H abstract type IntelCore_i5_1155G7 <: IntelCore_i5_g11 end; export IntelCore_i5_1155G7 abstract type IntelCore_i5_11400 <: IntelCore_i5_g11 end; export IntelCore_i5_11400 abstract type IntelCore_i5_11400F <: IntelCore_i5_g11 end; export IntelCore_i5_11400F abstract type IntelCore_i5_11400T <: IntelCore_i5_g11 end; export IntelCore_i5_11400T abstract type IntelCore_i5_11500 <: IntelCore_i5_g11 end; export IntelCore_i5_11500 abstract type IntelCore_i5_11500T <: IntelCore_i5_g11 end; export IntelCore_i5_11500T abstract type IntelCore_i5_11600 <: IntelCore_i5_g11 end; export IntelCore_i5_11600 abstract type IntelCore_i5_11600K <: IntelCore_i5_g11 end; export IntelCore_i5_11600K abstract type IntelCore_i5_11600KF <: IntelCore_i5_g11 end; export IntelCore_i5_11600KF abstract type IntelCore_i5_11600T <: IntelCore_i5_g11 end; export IntelCore_i5_11600T abstract type IntelCore_i5_10400F <: IntelCore_i5_g10 end; export IntelCore_i5_10400F abstract type IntelCore_i5_10600KF <: IntelCore_i5_g10 end; export IntelCore_i5_10600KF abstract type IntelCore_i5_9500F <: IntelCore_i5_g9 end; export IntelCore_i5_9500F abstract type IntelCore_i5_9300HF <: IntelCore_i5_g9 end; export IntelCore_i5_9300HF abstract type IntelCore_i5_9400F <: IntelCore_i5_g9 end; export IntelCore_i5_9400F abstract type IntelCore_i5_9600KF <: IntelCore_i5_g9 end; export IntelCore_i5_9600KF abstract type IntelCore_i5_4402EC <: IntelCore_i5_g4 end; export IntelCore_i5_4402EC abstract type IntelCore_i3_1215UE <: IntelCore_i3_g12 end; export IntelCore_i3_1215UE abstract type IntelCore_i3_1220PE <: IntelCore_i3_g12 end; export IntelCore_i3_1220PE abstract type IntelCore_i3_1210U <: IntelCore_i3_g12 end; export IntelCore_i3_1210U abstract type IntelCore_i3_1220P <: IntelCore_i3_g12 end; export IntelCore_i3_1220P abstract type IntelCore_i3_12100 <: IntelCore_i3_g12 end; export IntelCore_i3_12100 abstract type IntelCore_i3_12100E <: IntelCore_i3_g12 end; export IntelCore_i3_12100E abstract type IntelCore_i3_12100F <: IntelCore_i3_g12 end; export IntelCore_i3_12100F abstract type IntelCore_i3_12100T <: IntelCore_i3_g12 end; export IntelCore_i3_12100T abstract type IntelCore_i3_12100TE <: IntelCore_i3_g12 end; export IntelCore_i3_12100TE abstract type IntelCore_i3_12300 <: IntelCore_i3_g12 end; export IntelCore_i3_12300 abstract type IntelCore_i3_12300T <: IntelCore_i3_g12 end; export IntelCore_i3_12300T abstract type IntelCore_i3_10105F <: IntelCore_i3_g10 end; export IntelCore_i3_10105F abstract type IntelCore_i3_10100F <: IntelCore_i3_g10 end; export IntelCore_i3_10100F abstract type IntelCore_i3_9100F <: IntelCore_i3_g9 end; export IntelCore_i3_9100F abstract type IntelCore_i3_9350KF <: IntelCore_i3_g9 end; export IntelCore_i3_9350KF
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
2906
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ ## Itanium processors abstract type IntelItanium <: IntelProcessor end abstract type IntelItanium_9700 <: IntelItanium end abstract type IntelItanium_9500 <: IntelItanium end abstract type IntelItanium_9300 <: IntelItanium end abstract type IntelItanium_9100 <: IntelItanium end abstract type IntelItanium_9000 <: IntelItanium end abstract type IntelItanium_FSB <: IntelItanium end abstract type IntelItanium_FSB_400 <: IntelItanium_FSB end abstract type IntelItanium_FSB_533 <: IntelItanium_FSB end abstract type IntelItanium_FSB_677 <: IntelItanium_FSB end export IntelItanium, IntelItanium_9000, IntelItanium_9100, IntelItanium_9300, IntelItanium_9500, IntelItanium_9700, IntelItanium_FSB, IntelItanium_FSB_400, IntelItanium_FSB_533, IntelItanium_FSB_677 # Itanium processor models abstract type IntelItanium_9720 <: IntelItanium_9700 end; export IntelItanium_9720 abstract type IntelItanium_9740 <: IntelItanium_9700 end; export IntelItanium_9740 abstract type IntelItanium_9750 <: IntelItanium_9700 end; export IntelItanium_9750 abstract type IntelItanium_9760 <: IntelItanium_9700 end; export IntelItanium_9760 abstract type IntelItanium_9520 <: IntelItanium_9500 end; export IntelItanium_9520 abstract type IntelItanium_9540 <: IntelItanium_9500 end; export IntelItanium_9540 abstract type IntelItanium_9550 <: IntelItanium_9500 end; export IntelItanium_9550 abstract type IntelItanium_9560 <: IntelItanium_9500 end; export IntelItanium_9560 abstract type IntelItanium_9310 <: IntelItanium_9300 end; export IntelItanium_9310 abstract type IntelItanium_9320 <: IntelItanium_9300 end; export IntelItanium_9320 abstract type IntelItanium_9330 <: IntelItanium_9300 end; export IntelItanium_9330 abstract type IntelItanium_9340 <: IntelItanium_9300 end; export IntelItanium_9340 abstract type IntelItanium_9350 <: IntelItanium_9300 end; export IntelItanium_9350 abstract type IntelItanium_9110N <: IntelItanium_9100 end; export IntelItanium_9110N abstract type IntelItanium_9120N <: IntelItanium_9100 end; export IntelItanium_9120N abstract type IntelItanium_9130M <: IntelItanium_9100 end; export IntelItanium_9130M abstract type IntelItanium_9140M <: IntelItanium_9100 end; export IntelItanium_9140M abstract type IntelItanium_9140N <: IntelItanium_9100 end; export IntelItanium_9140N abstract type IntelItanium_9150M <: IntelItanium_9100 end; export IntelItanium_9150M abstract type IntelItanium_9150N <: IntelItanium_9100 end; export IntelItanium_9150N abstract type IntelItanium_9152M <: IntelItanium_9100 end; export IntelItanium_9152M abstract type IntelItanium_9015 <: IntelItanium_9000 end; export IntelItanium_9015
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
11348
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ ## Pentium processors abstract type IntelPentium <: IntelProcessor end abstract type IntelPentium_Gold <: IntelPentium end abstract type IntelPentium_Silver <: IntelPentium end abstract type IntelPentium_D <: IntelPentium end abstract type IntelPentium_G <: IntelPentium end abstract type IntelPentium_J <: IntelPentium end abstract type IntelPentium_N <: IntelPentium end abstract type IntelPentium_6800 <: IntelPentium end abstract type IntelPentium_4000 <: IntelPentium end abstract type IntelPentium_3000 <: IntelPentium end abstract type IntelPentium_2000 <: IntelPentium end abstract type IntelPentium_1000 <: IntelPentium end export IntelPentium, IntelPentium_1000, IntelPentium_2000, IntelPentium_3000, IntelPentium_4000, IntelPentium_6800, IntelPentium_D, IntelPentium_G, IntelPentium_Gold, IntelPentium_J, IntelPentium_N, IntelPentium_Silver # Pentium processor models abstract type IntelPentium_N3700 <: IntelPentium_N end; export IntelPentium_N3700 abstract type IntelPentium_G4600 <: IntelPentium_G end; export IntelPentium_G4600 abstract type IntelPentium_G4600T <: IntelPentium_G end; export IntelPentium_G4600T abstract type IntelPentium_G4620 <: IntelPentium_G end; export IntelPentium_G4620 abstract type IntelPentium_4415Y <: IntelPentium_Gold end; export IntelPentium_4415Y abstract type IntelPentium_4410Y <: IntelPentium_Gold end; export IntelPentium_4410Y abstract type IntelPentium_4417U <: IntelPentium_Gold end; export IntelPentium_4417U abstract type IntelPentium_4415U <: IntelPentium_Gold end; export IntelPentium_4415U abstract type IntelPentium_G4560 <: IntelPentium_G end; export IntelPentium_G4560 abstract type IntelPentium_G4560T <: IntelPentium_G end; export IntelPentium_G4560T abstract type IntelPentium_G4500 <: IntelPentium_G end; export IntelPentium_G4500 abstract type IntelPentium_G4500T <: IntelPentium_G end; export IntelPentium_G4500T abstract type IntelPentium_G4520 <: IntelPentium_G end; export IntelPentium_G4520 abstract type IntelPentium_4405Y <: IntelPentium_4000 end; export IntelPentium_4405Y abstract type IntelPentium_G4400TE <: IntelPentium_G end; export IntelPentium_G4400TE abstract type IntelPentium_4405U <: IntelPentium_4000 end; export IntelPentium_4405U abstract type IntelPentium_G4400 <: IntelPentium_G end; export IntelPentium_G4400 abstract type IntelPentium_G4400T <: IntelPentium_G end; export IntelPentium_G4400T abstract type IntelPentium_N4200E <: IntelPentium_N end; export IntelPentium_N4200E abstract type IntelPentium_J4205 <: IntelPentium_J end; export IntelPentium_J4205 abstract type IntelPentium_N4200 <: IntelPentium_N end; export IntelPentium_N4200 abstract type IntelPentium_3825U <: IntelPentium_3000 end; export IntelPentium_3825U abstract type IntelPentium_3805U <: IntelPentium_3000 end; export IntelPentium_3805U abstract type IntelPentium_G3260 <: IntelPentium_G end; export IntelPentium_G3260 abstract type IntelPentium_G3260T <: IntelPentium_G end; export IntelPentium_G3260T abstract type IntelPentium_G3460T <: IntelPentium_G end; export IntelPentium_G3460T abstract type IntelPentium_G3470 <: IntelPentium_G end; export IntelPentium_G3470 abstract type IntelPentium_G3250 <: IntelPentium_G end; export IntelPentium_G3250 abstract type IntelPentium_G3250T <: IntelPentium_G end; export IntelPentium_G3250T abstract type IntelPentium_G3450T <: IntelPentium_G end; export IntelPentium_G3450T abstract type IntelPentium_G3460 <: IntelPentium_G end; export IntelPentium_G3460 abstract type IntelPentium_G3258 <: IntelPentium_G end; export IntelPentium_G3258 abstract type IntelPentium_G3240 <: IntelPentium_G end; export IntelPentium_G3240 abstract type IntelPentium_G3240T <: IntelPentium_G end; export IntelPentium_G3240T abstract type IntelPentium_G3440 <: IntelPentium_G end; export IntelPentium_G3440 abstract type IntelPentium_G3440T <: IntelPentium_G end; export IntelPentium_G3440T abstract type IntelPentium_G3450 <: IntelPentium_G end; export IntelPentium_G3450 abstract type IntelPentium_3560M <: IntelPentium_3000 end; export IntelPentium_3560M abstract type IntelPentium_3558U <: IntelPentium_3000 end; export IntelPentium_3558U abstract type IntelPentium_3561Y <: IntelPentium_3000 end; export IntelPentium_3561Y abstract type IntelPentium_3550M <: IntelPentium_3000 end; export IntelPentium_3550M abstract type IntelPentium_3556U <: IntelPentium_3000 end; export IntelPentium_3556U abstract type IntelPentium_3560Y <: IntelPentium_3000 end; export IntelPentium_3560Y abstract type IntelPentium_G3220 <: IntelPentium_G end; export IntelPentium_G3220 abstract type IntelPentium_G3220T <: IntelPentium_G end; export IntelPentium_G3220T abstract type IntelPentium_G3320TE <: IntelPentium_G end; export IntelPentium_G3320TE abstract type IntelPentium_G3420 <: IntelPentium_G end; export IntelPentium_G3420 abstract type IntelPentium_G3420T <: IntelPentium_G end; export IntelPentium_G3420T abstract type IntelPentium_G3430 <: IntelPentium_G end; export IntelPentium_G3430 abstract type IntelPentium_A1018 <: IntelPentium_1000 end; export IntelPentium_A1018 abstract type IntelPentium_2127U <: IntelPentium_2000 end; export IntelPentium_2127U abstract type IntelPentium_G2030 <: IntelPentium_G end; export IntelPentium_G2030 abstract type IntelPentium_G2030T <: IntelPentium_G end; export IntelPentium_G2030T abstract type IntelPentium_G2120T <: IntelPentium_G end; export IntelPentium_G2120T abstract type IntelPentium_G2140 <: IntelPentium_G end; export IntelPentium_G2140 abstract type IntelPentium_2030M <: IntelPentium_2000 end; export IntelPentium_2030M abstract type IntelPentium_G2010 <: IntelPentium_G end; export IntelPentium_G2010 abstract type IntelPentium_G2020 <: IntelPentium_G end; export IntelPentium_G2020 abstract type IntelPentium_G2020T <: IntelPentium_G end; export IntelPentium_G2020T abstract type IntelPentium_G2130 <: IntelPentium_G end; export IntelPentium_G2130 abstract type IntelPentium_2129Y <: IntelPentium_2000 end; export IntelPentium_2129Y abstract type IntelPentium_2020M <: IntelPentium_2000 end; export IntelPentium_2020M abstract type IntelPentium_2117U <: IntelPentium_2000 end; export IntelPentium_2117U abstract type IntelPentium_G2100T <: IntelPentium_G end; export IntelPentium_G2100T abstract type IntelPentium_G2120 <: IntelPentium_G end; export IntelPentium_G2120 abstract type IntelPentium_A1020 <: IntelPentium_1000 end; export IntelPentium_A1020 abstract type IntelPentium_N3540 <: IntelPentium_N end; export IntelPentium_N3540 abstract type IntelPentium_N3530 <: IntelPentium_N end; export IntelPentium_N3530 abstract type IntelPentium_J2900 <: IntelPentium_J end; export IntelPentium_J2900 abstract type IntelPentium_N3520 <: IntelPentium_N end; export IntelPentium_N3520 abstract type IntelPentium_J2850 <: IntelPentium_J end; export IntelPentium_J2850 abstract type IntelPentium_N3510 <: IntelPentium_N end; export IntelPentium_N3510 abstract type IntelPentium_8500 <: IntelPentium_Gold end; export IntelPentium_8500 abstract type IntelPentium_8505 <: IntelPentium_Gold end; export IntelPentium_8505 abstract type IntelPentium_G7400 <: IntelPentium_Gold end; export IntelPentium_G7400 abstract type IntelPentium_G7400E <: IntelPentium_Gold end; export IntelPentium_G7400E abstract type IntelPentium_G7400T <: IntelPentium_Gold end; export IntelPentium_G7400T abstract type IntelPentium_G7400TE <: IntelPentium_Gold end; export IntelPentium_G7400TE abstract type IntelPentium_G6405 <: IntelPentium_Gold end; export IntelPentium_G6405 abstract type IntelPentium_G6405T <: IntelPentium_Gold end; export IntelPentium_G6405T abstract type IntelPentium_G6505 <: IntelPentium_Gold end; export IntelPentium_G6505 abstract type IntelPentium_G6505T <: IntelPentium_Gold end; export IntelPentium_G6505T abstract type IntelPentium_G6605 <: IntelPentium_Gold end; export IntelPentium_G6605 abstract type IntelPentium_6500Y <: IntelPentium_Gold end; export IntelPentium_6500Y abstract type IntelPentium_7505 <: IntelPentium_Gold end; export IntelPentium_7505 abstract type IntelPentium_G6400 <: IntelPentium_Gold end; export IntelPentium_G6400 abstract type IntelPentium_G6400E <: IntelPentium_Gold end; export IntelPentium_G6400E abstract type IntelPentium_G6400T <: IntelPentium_Gold end; export IntelPentium_G6400T abstract type IntelPentium_G6400TE <: IntelPentium_Gold end; export IntelPentium_G6400TE abstract type IntelPentium_G6500 <: IntelPentium_Gold end; export IntelPentium_G6500 abstract type IntelPentium_G6500T <: IntelPentium_Gold end; export IntelPentium_G6500T abstract type IntelPentium_G6600 <: IntelPentium_Gold end; export IntelPentium_G6600 abstract type IntelPentium_6405U <: IntelPentium_Gold end; export IntelPentium_6405U abstract type IntelPentium_G5420 <: IntelPentium_Gold end; export IntelPentium_G5420 abstract type IntelPentium_G5420T <: IntelPentium_Gold end; export IntelPentium_G5420T abstract type IntelPentium_G5600T <: IntelPentium_Gold end; export IntelPentium_G5600T abstract type IntelPentium_G5620 <: IntelPentium_Gold end; export IntelPentium_G5620 abstract type IntelPentium_4425Y <: IntelPentium_Gold end; export IntelPentium_4425Y abstract type IntelPentium_G5400 <: IntelPentium_Gold end; export IntelPentium_G5400 abstract type IntelPentium_G5400T <: IntelPentium_Gold end; export IntelPentium_G5400T abstract type IntelPentium_G5500 <: IntelPentium_Gold end; export IntelPentium_G5500 abstract type IntelPentium_G5500T <: IntelPentium_Gold end; export IntelPentium_G5500T abstract type IntelPentium_N6000 <: IntelPentium_Silver end; export IntelPentium_N6000 abstract type IntelPentium_N6005 <: IntelPentium_Silver end; export IntelPentium_N6005 abstract type IntelPentium_J5040 <: IntelPentium_Silver end; export IntelPentium_J5040 abstract type IntelPentium_N5030 <: IntelPentium_Silver end; export IntelPentium_N5030 abstract type IntelPentium_J5005 <: IntelPentium_Silver end; export IntelPentium_J5005 abstract type IntelPentium_N5000 <: IntelPentium_Silver end; export IntelPentium_N5000 abstract type IntelPentium_D1519 <: IntelPentium_D end; export IntelPentium_D1519 abstract type IntelPentium_D1507 <: IntelPentium_D end; export IntelPentium_D1507 abstract type IntelPentium_D1508 <: IntelPentium_D end; export IntelPentium_D1508 abstract type IntelPentium_D1509 <: IntelPentium_D end; export IntelPentium_D1509 abstract type IntelPentium_D1517 <: IntelPentium_D end; export IntelPentium_D1517 abstract type IntelPentium_J6426 <: IntelPentium_J end; export IntelPentium_J6426 abstract type IntelPentium_J3710 <: IntelPentium_J end; export IntelPentium_J3710 abstract type IntelPentium_N6415 <: IntelPentium_N end; export IntelPentium_N6415 abstract type IntelPentium_N3710 <: IntelPentium_N end; export IntelPentium_N3710 abstract type IntelPentium_6805 <: IntelPentium_6800 end; export IntelPentium_6805 abstract type IntelPentium_1405V2 <: IntelPentium_1000 end; export IntelPentium_1405V2 abstract type IntelPentium_1405 <: IntelPentium_1000 end; export IntelPentium_1405 abstract type IntelPentium_5405U <: IntelPentium_Gold end; export IntelPentium_5405U
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
62826
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ ## Xeon processors abstract type IntelXeon <: IntelProcessor end abstract type IntelXeon_W <: IntelXeon end abstract type IntelXeon_D <: IntelXeon end abstract type IntelXeon_E <: IntelXeon end abstract type IntelXeon_E3 <: IntelXeon_E end abstract type IntelXeon_E3_v2 <: IntelXeon_E3 end abstract type IntelXeon_E3_v3 <: IntelXeon_E3 end abstract type IntelXeon_E3_v4 <: IntelXeon_E3 end abstract type IntelXeon_E3_v5 <: IntelXeon_E3 end abstract type IntelXeon_E3_v6 <: IntelXeon_E3 end abstract type IntelXeon_E5 <: IntelXeon_E end abstract type IntelXeon_E5_v2 <: IntelXeon_E5 end abstract type IntelXeon_E5_v3 <: IntelXeon_E5 end abstract type IntelXeon_E5_v4 <: IntelXeon_E5 end abstract type IntelXeon_E5_v5 <: IntelXeon_E5 end abstract type IntelXeon_E7 <: IntelXeon_E end abstract type IntelXeon_E7_v2 <: IntelXeon_E7 end abstract type IntelXeon_E7_v3 <: IntelXeon_E7 end abstract type IntelXeon_E7_v4 <: IntelXeon_E7 end abstract type IntelXeon_Scalable <: IntelXeon end abstract type IntelXeon_Scalable_g2 <: IntelXeon_Scalable end abstract type IntelXeon_Scalable_g3 <: IntelXeon_Scalable end export IntelXeon, IntelXeon_D, IntelXeon_E, IntelXeon_E3, IntelXeon_E3_v2, IntelXeon_E3_v3, IntelXeon_E3_v4, IntelXeon_E3_v5, IntelXeon_E3_v6, IntelXeon_E5, IntelXeon_E5_v2, IntelXeon_E5_v3, IntelXeon_E5_v4, IntelXeon_E5_v5, IntelXeon_E7, IntelXeon_E7_v2, IntelXeon_E7_v3, IntelXeon_E7_v4, IntelXeon_Scalable, IntelXeon_Scalable_g2, IntelXeon_Scalable_g3, IntelXeon_W # Xeon processor models abstract type IntelXeon_E_2286M <: IntelXeon_E end; export IntelXeon_E_2286M abstract type IntelXeon_E3_1285V6 <: IntelXeon_E3_v6 end; export IntelXeon_E3_1285V6 abstract type IntelXeon_E3_1501LV6 <: IntelXeon_E3_v6 end; export IntelXeon_E3_1501LV6 abstract type IntelXeon_E3_1501MV6 <: IntelXeon_E3_v6 end; export IntelXeon_E3_1501MV6 abstract type IntelXeon_E3_1225V6 <: IntelXeon_E3_v6 end; export IntelXeon_E3_1225V6 abstract type IntelXeon_E3_1245V6 <: IntelXeon_E3_v6 end; export IntelXeon_E3_1245V6 abstract type IntelXeon_E3_1275V6 <: IntelXeon_E3_v6 end; export IntelXeon_E3_1275V6 abstract type IntelXeon_E3_1505LV6 <: IntelXeon_E3_v6 end; export IntelXeon_E3_1505LV6 abstract type IntelXeon_E3_1505MV6 <: IntelXeon_E3_v6 end; export IntelXeon_E3_1505MV6 abstract type IntelXeon_E3_1535MV6 <: IntelXeon_E3_v6 end; export IntelXeon_E3_1535MV6 abstract type IntelXeon_E3_1225V5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1225V5 abstract type IntelXeon_E3_1235LV5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1235LV5 abstract type IntelXeon_E3_1245V5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1245V5 abstract type IntelXeon_E3_1268LV5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1268LV5 abstract type IntelXeon_E3_1275V5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1275V5 abstract type IntelXeon_E3_1505LV5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1505LV5 abstract type IntelXeon_E3_1505MV5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1505MV5 abstract type IntelXeon_E3_1535MV5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1535MV5 abstract type IntelXeon_E3_1268LV3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1268LV3 abstract type IntelXeon_E3_1265LV2 <: IntelXeon_E3_v2 end; export IntelXeon_E3_1265LV2 abstract type IntelXeon_E3_1260L <: IntelXeon_E3 end; export IntelXeon_E3_1260L abstract type IntelXeon_E3_1275LV3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1275LV3 abstract type IntelXeon_E3_1265Lv3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1265Lv3 abstract type IntelXeon_W_1250 <: IntelXeon_W end; export IntelXeon_W_1250 abstract type IntelXeon_W_1250P <: IntelXeon_W end; export IntelXeon_W_1250P abstract type IntelXeon_W_1270 <: IntelXeon_W end; export IntelXeon_W_1270 abstract type IntelXeon_W_1270P <: IntelXeon_W end; export IntelXeon_W_1270P abstract type IntelXeon_W_1290 <: IntelXeon_W end; export IntelXeon_W_1290 abstract type IntelXeon_W_1290P <: IntelXeon_W end; export IntelXeon_W_1290P abstract type IntelXeon_W_1290T <: IntelXeon_W end; export IntelXeon_W_1290T abstract type IntelXeon_E_2254ME <: IntelXeon_E end; export IntelXeon_E_2254ME abstract type IntelXeon_E_2254ML <: IntelXeon_E end; export IntelXeon_E_2254ML abstract type IntelXeon_E_2276ME <: IntelXeon_E end; export IntelXeon_E_2276ME abstract type IntelXeon_E_2276ML <: IntelXeon_E end; export IntelXeon_E_2276ML abstract type IntelXeon_E_2224G <: IntelXeon_E end; export IntelXeon_E_2224G abstract type IntelXeon_E_2226G <: IntelXeon_E end; export IntelXeon_E_2226G abstract type IntelXeon_E_2244G <: IntelXeon_E end; export IntelXeon_E_2244G abstract type IntelXeon_E_2246G <: IntelXeon_E end; export IntelXeon_E_2246G abstract type IntelXeon_E_2274G <: IntelXeon_E end; export IntelXeon_E_2274G abstract type IntelXeon_E_2276G <: IntelXeon_E end; export IntelXeon_E_2276G abstract type IntelXeon_E_2276M <: IntelXeon_E end; export IntelXeon_E_2276M abstract type IntelXeon_E_2278G <: IntelXeon_E end; export IntelXeon_E_2278G abstract type IntelXeon_E_2286G <: IntelXeon_E end; export IntelXeon_E_2286G abstract type IntelXeon_E_2288G <: IntelXeon_E end; export IntelXeon_E_2288G abstract type IntelXeon_E_2124G <: IntelXeon_E end; export IntelXeon_E_2124G abstract type IntelXeon_E_2126G <: IntelXeon_E end; export IntelXeon_E_2126G abstract type IntelXeon_E_2144G <: IntelXeon_E end; export IntelXeon_E_2144G abstract type IntelXeon_E_2146G <: IntelXeon_E end; export IntelXeon_E_2146G abstract type IntelXeon_E_2174G <: IntelXeon_E end; export IntelXeon_E_2174G abstract type IntelXeon_E_2176G <: IntelXeon_E end; export IntelXeon_E_2176G abstract type IntelXeon_E_2186G <: IntelXeon_E end; export IntelXeon_E_2186G abstract type IntelXeon_E_2176M <: IntelXeon_E end; export IntelXeon_E_2176M abstract type IntelXeon_E_2186M <: IntelXeon_E end; export IntelXeon_E_2186M abstract type IntelXeon_W_1250E <: IntelXeon_W end; export IntelXeon_W_1250E abstract type IntelXeon_W_1250TE <: IntelXeon_W end; export IntelXeon_W_1250TE abstract type IntelXeon_W_1270E <: IntelXeon_W end; export IntelXeon_W_1270E abstract type IntelXeon_W_1270TE <: IntelXeon_W end; export IntelXeon_W_1270TE abstract type IntelXeon_W_1290E <: IntelXeon_W end; export IntelXeon_W_1290E abstract type IntelXeon_W_1290TE <: IntelXeon_W end; export IntelXeon_W_1290TE abstract type IntelXeon_E_2226GE <: IntelXeon_E end; export IntelXeon_E_2226GE abstract type IntelXeon_E_2278GE <: IntelXeon_E end; export IntelXeon_E_2278GE abstract type IntelXeon_E_2278GEL <: IntelXeon_E end; export IntelXeon_E_2278GEL abstract type IntelXeon_W_11155MLE <: IntelXeon_W end; export IntelXeon_W_11155MLE abstract type IntelXeon_W_11155MRE <: IntelXeon_W end; export IntelXeon_W_11155MRE abstract type IntelXeon_W_11555MLE <: IntelXeon_W end; export IntelXeon_W_11555MLE abstract type IntelXeon_W_11555MRE <: IntelXeon_W end; export IntelXeon_W_11555MRE abstract type IntelXeon_W_11865MLE <: IntelXeon_W end; export IntelXeon_W_11865MLE abstract type IntelXeon_W_11865MRE <: IntelXeon_W end; export IntelXeon_W_11865MRE abstract type IntelXeon_W_11855M <: IntelXeon_W end; export IntelXeon_W_11855M abstract type IntelXeon_W_11955M <: IntelXeon_W end; export IntelXeon_W_11955M abstract type IntelXeon_W_10855M <: IntelXeon_W end; export IntelXeon_W_10855M abstract type IntelXeon_W_10885M <: IntelXeon_W end; export IntelXeon_W_10885M abstract type IntelXeon_E3_1565LV5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1565LV5 abstract type IntelXeon_E3_1578LV5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1578LV5 abstract type IntelXeon_E3_1585V5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1585V5 abstract type IntelXeon_E3_1585LV5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1585LV5 abstract type IntelXeon_E3_1515MV5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1515MV5 abstract type IntelXeon_E3_1545MV5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1545MV5 abstract type IntelXeon_E3_1575MV5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1575MV5 abstract type IntelXeon_5315Y <: IntelXeon_Scalable_g3 end; export IntelXeon_5315Y abstract type IntelXeon_5317 <: IntelXeon_Scalable_g3 end; export IntelXeon_5317 abstract type IntelXeon_5318N <: IntelXeon_Scalable_g3 end; export IntelXeon_5318N abstract type IntelXeon_5318S <: IntelXeon_Scalable_g3 end; export IntelXeon_5318S abstract type IntelXeon_5318Y <: IntelXeon_Scalable_g3 end; export IntelXeon_5318Y abstract type IntelXeon_5320 <: IntelXeon_Scalable_g3 end; export IntelXeon_5320 abstract type IntelXeon_5320T <: IntelXeon_Scalable_g3 end; export IntelXeon_5320T abstract type IntelXeon_6312U <: IntelXeon_Scalable_g3 end; export IntelXeon_6312U abstract type IntelXeon_6314U <: IntelXeon_Scalable_g3 end; export IntelXeon_6314U abstract type IntelXeon_6326 <: IntelXeon_Scalable_g3 end; export IntelXeon_6326 abstract type IntelXeon_6330 <: IntelXeon_Scalable_g3 end; export IntelXeon_6330 abstract type IntelXeon_6330N <: IntelXeon_Scalable_g3 end; export IntelXeon_6330N abstract type IntelXeon_6334 <: IntelXeon_Scalable_g3 end; export IntelXeon_6334 abstract type IntelXeon_6336Y <: IntelXeon_Scalable_g3 end; export IntelXeon_6336Y abstract type IntelXeon_6338 <: IntelXeon_Scalable_g3 end; export IntelXeon_6338 abstract type IntelXeon_6338N <: IntelXeon_Scalable_g3 end; export IntelXeon_6338N abstract type IntelXeon_6338T <: IntelXeon_Scalable_g3 end; export IntelXeon_6338T abstract type IntelXeon_6342 <: IntelXeon_Scalable_g3 end; export IntelXeon_6342 abstract type IntelXeon_6346 <: IntelXeon_Scalable_g3 end; export IntelXeon_6346 abstract type IntelXeon_6348 <: IntelXeon_Scalable_g3 end; export IntelXeon_6348 abstract type IntelXeon_6354 <: IntelXeon_Scalable_g3 end; export IntelXeon_6354 abstract type IntelXeon_8351N <: IntelXeon_Scalable_g3 end; export IntelXeon_8351N abstract type IntelXeon_8352M <: IntelXeon_Scalable_g3 end; export IntelXeon_8352M abstract type IntelXeon_8352S <: IntelXeon_Scalable_g3 end; export IntelXeon_8352S abstract type IntelXeon_8352V <: IntelXeon_Scalable_g3 end; export IntelXeon_8352V abstract type IntelXeon_8352Y <: IntelXeon_Scalable_g3 end; export IntelXeon_8352Y abstract type IntelXeon_8358 <: IntelXeon_Scalable_g3 end; export IntelXeon_8358 abstract type IntelXeon_8358P <: IntelXeon_Scalable_g3 end; export IntelXeon_8358P abstract type IntelXeon_8362 <: IntelXeon_Scalable_g3 end; export IntelXeon_8362 abstract type IntelXeon_8368 <: IntelXeon_Scalable_g3 end; export IntelXeon_8368 abstract type IntelXeon_8368Q <: IntelXeon_Scalable_g3 end; export IntelXeon_8368Q abstract type IntelXeon_8380 <: IntelXeon_Scalable_g3 end; export IntelXeon_8380 abstract type IntelXeon_4309Y <: IntelXeon_Scalable_g3 end; export IntelXeon_4309Y abstract type IntelXeon_4310 <: IntelXeon_Scalable_g3 end; export IntelXeon_4310 abstract type IntelXeon_4310T <: IntelXeon_Scalable_g3 end; export IntelXeon_4310T abstract type IntelXeon_4314 <: IntelXeon_Scalable_g3 end; export IntelXeon_4314 abstract type IntelXeon_4316 <: IntelXeon_Scalable_g3 end; export IntelXeon_4316 abstract type IntelXeon_6330H <: IntelXeon_Scalable_g3 end; export IntelXeon_6330H abstract type IntelXeon_8356H <: IntelXeon_Scalable_g3 end; export IntelXeon_8356H abstract type IntelXeon_8360H <: IntelXeon_Scalable_g3 end; export IntelXeon_8360H abstract type IntelXeon_8360HL <: IntelXeon_Scalable_g3 end; export IntelXeon_8360HL abstract type IntelXeon_5318H <: IntelXeon_Scalable_g3 end; export IntelXeon_5318H abstract type IntelXeon_5320H <: IntelXeon_Scalable_g3 end; export IntelXeon_5320H abstract type IntelXeon_6328H <: IntelXeon_Scalable_g3 end; export IntelXeon_6328H abstract type IntelXeon_6328HL <: IntelXeon_Scalable_g3 end; export IntelXeon_6328HL abstract type IntelXeon_6348H <: IntelXeon_Scalable_g3 end; export IntelXeon_6348H abstract type IntelXeon_8353H <: IntelXeon_Scalable_g3 end; export IntelXeon_8353H abstract type IntelXeon_8354H <: IntelXeon_Scalable_g3 end; export IntelXeon_8354H abstract type IntelXeon_8375 <: IntelXeon_Scalable_g3 end; export IntelXeon_8375 abstract type IntelXeon_8375C <: IntelXeon_Scalable_g3 end; export IntelXeon_8375C abstract type IntelXeon_8376H <: IntelXeon_Scalable_g3 end; export IntelXeon_8376H abstract type IntelXeon_8376HL <: IntelXeon_Scalable_g3 end; export IntelXeon_8376HL abstract type IntelXeon_8380H <: IntelXeon_Scalable_g3 end; export IntelXeon_8380H abstract type IntelXeon_3206R <: IntelXeon_Scalable_g2 end; export IntelXeon_3206R abstract type IntelXeon_5218R <: IntelXeon_Scalable_g2 end; export IntelXeon_5218R abstract type IntelXeon_5220R <: IntelXeon_Scalable_g2 end; export IntelXeon_5220R abstract type IntelXeon_6208U <: IntelXeon_Scalable_g2 end; export IntelXeon_6208U abstract type IntelXeon_6226R <: IntelXeon_Scalable_g2 end; export IntelXeon_6226R abstract type IntelXeon_6230R <: IntelXeon_Scalable_g2 end; export IntelXeon_6230R abstract type IntelXeon_6238R <: IntelXeon_Scalable_g2 end; export IntelXeon_6238R abstract type IntelXeon_6240R <: IntelXeon_Scalable_g2 end; export IntelXeon_6240R abstract type IntelXeon_6242R <: IntelXeon_Scalable_g2 end; export IntelXeon_6242R abstract type IntelXeon_6246R <: IntelXeon_Scalable_g2 end; export IntelXeon_6246R abstract type IntelXeon_6248R <: IntelXeon_Scalable_g2 end; export IntelXeon_6248R abstract type IntelXeon_6250 <: IntelXeon_Scalable_g2 end; export IntelXeon_6250 abstract type IntelXeon_6250L <: IntelXeon_Scalable_g2 end; export IntelXeon_6250L abstract type IntelXeon_6256 <: IntelXeon_Scalable_g2 end; export IntelXeon_6256 abstract type IntelXeon_6258R <: IntelXeon_Scalable_g2 end; export IntelXeon_6258R abstract type IntelXeon_4210R <: IntelXeon_Scalable_g2 end; export IntelXeon_4210R abstract type IntelXeon_4210T <: IntelXeon_Scalable_g2 end; export IntelXeon_4210T abstract type IntelXeon_4214R <: IntelXeon_Scalable_g2 end; export IntelXeon_4214R abstract type IntelXeon_4215R <: IntelXeon_Scalable_g2 end; export IntelXeon_4215R abstract type IntelXeon_9221 <: IntelXeon_Scalable_g2 end; export IntelXeon_9221 abstract type IntelXeon_9222 <: IntelXeon_Scalable_g2 end; export IntelXeon_9222 abstract type IntelXeon_3204 <: IntelXeon_Scalable_g2 end; export IntelXeon_3204 abstract type IntelXeon_5215 <: IntelXeon_Scalable_g2 end; export IntelXeon_5215 abstract type IntelXeon_5215L <: IntelXeon_Scalable_g2 end; export IntelXeon_5215L abstract type IntelXeon_5217 <: IntelXeon_Scalable_g2 end; export IntelXeon_5217 abstract type IntelXeon_5218 <: IntelXeon_Scalable_g2 end; export IntelXeon_5218 abstract type IntelXeon_5218B <: IntelXeon_Scalable_g2 end; export IntelXeon_5218B abstract type IntelXeon_5218N <: IntelXeon_Scalable_g2 end; export IntelXeon_5218N abstract type IntelXeon_5218T <: IntelXeon_Scalable_g2 end; export IntelXeon_5218T abstract type IntelXeon_5220 <: IntelXeon_Scalable_g2 end; export IntelXeon_5220 abstract type IntelXeon_5220S <: IntelXeon_Scalable_g2 end; export IntelXeon_5220S abstract type IntelXeon_5220T <: IntelXeon_Scalable_g2 end; export IntelXeon_5220T abstract type IntelXeon_5222 <: IntelXeon_Scalable_g2 end; export IntelXeon_5222 abstract type IntelXeon_6209U <: IntelXeon_Scalable_g2 end; export IntelXeon_6209U abstract type IntelXeon_6210U <: IntelXeon_Scalable_g2 end; export IntelXeon_6210U abstract type IntelXeon_6212U <: IntelXeon_Scalable_g2 end; export IntelXeon_6212U abstract type IntelXeon_6222V <: IntelXeon_Scalable_g2 end; export IntelXeon_6222V abstract type IntelXeon_6226 <: IntelXeon_Scalable_g2 end; export IntelXeon_6226 abstract type IntelXeon_6230 <: IntelXeon_Scalable_g2 end; export IntelXeon_6230 abstract type IntelXeon_6230N <: IntelXeon_Scalable_g2 end; export IntelXeon_6230N abstract type IntelXeon_6230T <: IntelXeon_Scalable_g2 end; export IntelXeon_6230T abstract type IntelXeon_6234 <: IntelXeon_Scalable_g2 end; export IntelXeon_6234 abstract type IntelXeon_6238 <: IntelXeon_Scalable_g2 end; export IntelXeon_6238 abstract type IntelXeon_6238L <: IntelXeon_Scalable_g2 end; export IntelXeon_6238L abstract type IntelXeon_6238T <: IntelXeon_Scalable_g2 end; export IntelXeon_6238T abstract type IntelXeon_6240 <: IntelXeon_Scalable_g2 end; export IntelXeon_6240 abstract type IntelXeon_6240L <: IntelXeon_Scalable_g2 end; export IntelXeon_6240L abstract type IntelXeon_6240Y <: IntelXeon_Scalable_g2 end; export IntelXeon_6240Y abstract type IntelXeon_6242 <: IntelXeon_Scalable_g2 end; export IntelXeon_6242 abstract type IntelXeon_6244 <: IntelXeon_Scalable_g2 end; export IntelXeon_6244 abstract type IntelXeon_6246 <: IntelXeon_Scalable_g2 end; export IntelXeon_6246 abstract type IntelXeon_6248 <: IntelXeon_Scalable_g2 end; export IntelXeon_6248 abstract type IntelXeon_6252 <: IntelXeon_Scalable_g2 end; export IntelXeon_6252 abstract type IntelXeon_6252N <: IntelXeon_Scalable_g2 end; export IntelXeon_6252N abstract type IntelXeon_6254 <: IntelXeon_Scalable_g2 end; export IntelXeon_6254 abstract type IntelXeon_6262V <: IntelXeon_Scalable_g2 end; export IntelXeon_6262V abstract type IntelXeon_8252 <: IntelXeon_Scalable_g2 end; export IntelXeon_8252 abstract type IntelXeon_8253 <: IntelXeon_Scalable_g2 end; export IntelXeon_8253 abstract type IntelXeon_8256 <: IntelXeon_Scalable_g2 end; export IntelXeon_8256 abstract type IntelXeon_8259 <: IntelXeon_Scalable_g2 end; export IntelXeon_8259 abstract type IntelXeon_8259CL <: IntelXeon_Scalable_g2 end; export IntelXeon_8259CL abstract type IntelXeon_8260 <: IntelXeon_Scalable_g2 end; export IntelXeon_8260 abstract type IntelXeon_8260L <: IntelXeon_Scalable_g2 end; export IntelXeon_8260L abstract type IntelXeon_8260Y <: IntelXeon_Scalable_g2 end; export IntelXeon_8260Y abstract type IntelXeon_8268 <: IntelXeon_Scalable_g2 end; export IntelXeon_8268 abstract type IntelXeon_8270 <: IntelXeon_Scalable_g2 end; export IntelXeon_8270 abstract type IntelXeon_8275 <: IntelXeon_Scalable_g2 end; export IntelXeon_8275 abstract type IntelXeon_8275L <: IntelXeon_Scalable_g2 end; export IntelXeon_8275L abstract type IntelXeon_8275CL <: IntelXeon_Scalable_g2 end; export IntelXeon_8275CL abstract type IntelXeon_8276 <: IntelXeon_Scalable_g2 end; export IntelXeon_8276 abstract type IntelXeon_8276L <: IntelXeon_Scalable_g2 end; export IntelXeon_8276L abstract type IntelXeon_8280 <: IntelXeon_Scalable_g2 end; export IntelXeon_8280 abstract type IntelXeon_8280L <: IntelXeon_Scalable_g2 end; export IntelXeon_8280L abstract type IntelXeon_9242 <: IntelXeon_Scalable_g2 end; export IntelXeon_9242 abstract type IntelXeon_9282 <: IntelXeon_Scalable_g2 end; export IntelXeon_9282 abstract type IntelXeon_4208 <: IntelXeon_Scalable_g2 end; export IntelXeon_4208 abstract type IntelXeon_4209T <: IntelXeon_Scalable_g2 end; export IntelXeon_4209T abstract type IntelXeon_4210 <: IntelXeon_Scalable_g2 end; export IntelXeon_4210 abstract type IntelXeon_4214 <: IntelXeon_Scalable_g2 end; export IntelXeon_4214 abstract type IntelXeon_4214Y <: IntelXeon_Scalable_g2 end; export IntelXeon_4214Y abstract type IntelXeon_4215 <: IntelXeon_Scalable_g2 end; export IntelXeon_4215 abstract type IntelXeon_4216 <: IntelXeon_Scalable_g2 end; export IntelXeon_4216 abstract type IntelXeon_6138P <: IntelXeon_Scalable end; export IntelXeon_6138P abstract type IntelXeon_3104 <: IntelXeon_Scalable end; export IntelXeon_3104 abstract type IntelXeon_3106 <: IntelXeon_Scalable end; export IntelXeon_3106 abstract type IntelXeon_5115 <: IntelXeon_Scalable end; export IntelXeon_5115 abstract type IntelXeon_5118 <: IntelXeon_Scalable end; export IntelXeon_5118 abstract type IntelXeon_5119T <: IntelXeon_Scalable end; export IntelXeon_5119T abstract type IntelXeon_5120 <: IntelXeon_Scalable end; export IntelXeon_5120 abstract type IntelXeon_5120T <: IntelXeon_Scalable end; export IntelXeon_5120T abstract type IntelXeon_5122 <: IntelXeon_Scalable end; export IntelXeon_5122 abstract type IntelXeon_6126 <: IntelXeon_Scalable end; export IntelXeon_6126 abstract type IntelXeon_6126F <: IntelXeon_Scalable end; export IntelXeon_6126F abstract type IntelXeon_6126T <: IntelXeon_Scalable end; export IntelXeon_6126T abstract type IntelXeon_6128 <: IntelXeon_Scalable end; export IntelXeon_6128 abstract type IntelXeon_6130 <: IntelXeon_Scalable end; export IntelXeon_6130 abstract type IntelXeon_6130F <: IntelXeon_Scalable end; export IntelXeon_6130F abstract type IntelXeon_6130T <: IntelXeon_Scalable end; export IntelXeon_6130T abstract type IntelXeon_6132 <: IntelXeon_Scalable end; export IntelXeon_6132 abstract type IntelXeon_6134 <: IntelXeon_Scalable end; export IntelXeon_6134 abstract type IntelXeon_6136 <: IntelXeon_Scalable end; export IntelXeon_6136 abstract type IntelXeon_6138 <: IntelXeon_Scalable end; export IntelXeon_6138 abstract type IntelXeon_6138F <: IntelXeon_Scalable end; export IntelXeon_6138F abstract type IntelXeon_6138T <: IntelXeon_Scalable end; export IntelXeon_6138T abstract type IntelXeon_6140 <: IntelXeon_Scalable end; export IntelXeon_6140 abstract type IntelXeon_6142 <: IntelXeon_Scalable end; export IntelXeon_6142 abstract type IntelXeon_6142F <: IntelXeon_Scalable end; export IntelXeon_6142F abstract type IntelXeon_6144 <: IntelXeon_Scalable end; export IntelXeon_6144 abstract type IntelXeon_6146 <: IntelXeon_Scalable end; export IntelXeon_6146 abstract type IntelXeon_6148 <: IntelXeon_Scalable end; export IntelXeon_6148 abstract type IntelXeon_6148F <: IntelXeon_Scalable end; export IntelXeon_6148F abstract type IntelXeon_6150 <: IntelXeon_Scalable end; export IntelXeon_6150 abstract type IntelXeon_6152 <: IntelXeon_Scalable end; export IntelXeon_6152 abstract type IntelXeon_6154 <: IntelXeon_Scalable end; export IntelXeon_6154 abstract type IntelXeon_8124M <: IntelXeon_Scalable end; export IntelXeon_8124M abstract type IntelXeon_8151 <: IntelXeon_Scalable end; export IntelXeon_8151 abstract type IntelXeon_8153 <: IntelXeon_Scalable end; export IntelXeon_8153 abstract type IntelXeon_8156 <: IntelXeon_Scalable end; export IntelXeon_8156 abstract type IntelXeon_8158 <: IntelXeon_Scalable end; export IntelXeon_8158 abstract type IntelXeon_8160 <: IntelXeon_Scalable end; export IntelXeon_8160 abstract type IntelXeon_8160F <: IntelXeon_Scalable end; export IntelXeon_8160F abstract type IntelXeon_8160T <: IntelXeon_Scalable end; export IntelXeon_8160T abstract type IntelXeon_8164 <: IntelXeon_Scalable end; export IntelXeon_8164 abstract type IntelXeon_8168 <: IntelXeon_Scalable end; export IntelXeon_8168 abstract type IntelXeon_8170 <: IntelXeon_Scalable end; export IntelXeon_8170 abstract type IntelXeon_8175 <: IntelXeon_Scalable end; export IntelXeon_8175 abstract type IntelXeon_8176 <: IntelXeon_Scalable end; export IntelXeon_8176 abstract type IntelXeon_8176F <: IntelXeon_Scalable end; export IntelXeon_8176F abstract type IntelXeon_8180 <: IntelXeon_Scalable end; export IntelXeon_8180 abstract type IntelXeon_4108 <: IntelXeon_Scalable end; export IntelXeon_4108 abstract type IntelXeon_4109T <: IntelXeon_Scalable end; export IntelXeon_4109T abstract type IntelXeon_4110 <: IntelXeon_Scalable end; export IntelXeon_4110 abstract type IntelXeon_4112 <: IntelXeon_Scalable end; export IntelXeon_4112 abstract type IntelXeon_4114T <: IntelXeon_Scalable end; export IntelXeon_4114T abstract type IntelXeon_4116 <: IntelXeon_Scalable end; export IntelXeon_4116 abstract type IntelXeon_4116T <: IntelXeon_Scalable end; export IntelXeon_4116T abstract type IntelXeon_E_2314 <: IntelXeon_E end; export IntelXeon_E_2314 abstract type IntelXeon_E_2324G <: IntelXeon_E end; export IntelXeon_E_2324G abstract type IntelXeon_E_2334 <: IntelXeon_E end; export IntelXeon_E_2334 abstract type IntelXeon_E_2336 <: IntelXeon_E end; export IntelXeon_E_2336 abstract type IntelXeon_E_2356G <: IntelXeon_E end; export IntelXeon_E_2356G abstract type IntelXeon_E_2374G <: IntelXeon_E end; export IntelXeon_E_2374G abstract type IntelXeon_E_2378 <: IntelXeon_E end; export IntelXeon_E_2378 abstract type IntelXeon_E_2378G <: IntelXeon_E end; export IntelXeon_E_2378G abstract type IntelXeon_E_2386G <: IntelXeon_E end; export IntelXeon_E_2386G abstract type IntelXeon_E_2388G <: IntelXeon_E end; export IntelXeon_E_2388G abstract type IntelXeon_E_2224 <: IntelXeon_E end; export IntelXeon_E_2224 abstract type IntelXeon_E_2234 <: IntelXeon_E end; export IntelXeon_E_2234 abstract type IntelXeon_E_2236 <: IntelXeon_E end; export IntelXeon_E_2236 abstract type IntelXeon_E_2124 <: IntelXeon_E end; export IntelXeon_E_2124 abstract type IntelXeon_E_2134 <: IntelXeon_E end; export IntelXeon_E_2134 abstract type IntelXeon_E_2136 <: IntelXeon_E end; export IntelXeon_E_2136 abstract type IntelXeon_W_3323 <: IntelXeon_W end; export IntelXeon_W_3323 abstract type IntelXeon_W_3335 <: IntelXeon_W end; export IntelXeon_W_3335 abstract type IntelXeon_W_3345 <: IntelXeon_W end; export IntelXeon_W_3345 abstract type IntelXeon_W_3365 <: IntelXeon_W end; export IntelXeon_W_3365 abstract type IntelXeon_W_3375 <: IntelXeon_W end; export IntelXeon_W_3375 abstract type IntelXeon_W_1350 <: IntelXeon_W end; export IntelXeon_W_1350 abstract type IntelXeon_W_1350P <: IntelXeon_W end; export IntelXeon_W_1350P abstract type IntelXeon_W_1370 <: IntelXeon_W end; export IntelXeon_W_1370 abstract type IntelXeon_W_1370P <: IntelXeon_W end; export IntelXeon_W_1370P abstract type IntelXeon_W_1390 <: IntelXeon_W end; export IntelXeon_W_1390 abstract type IntelXeon_W_1390P <: IntelXeon_W end; export IntelXeon_W_1390P abstract type IntelXeon_W_1390T <: IntelXeon_W end; export IntelXeon_W_1390T abstract type IntelXeon_W_2223 <: IntelXeon_W end; export IntelXeon_W_2223 abstract type IntelXeon_W_2225 <: IntelXeon_W end; export IntelXeon_W_2225 abstract type IntelXeon_W_2235 <: IntelXeon_W end; export IntelXeon_W_2235 abstract type IntelXeon_W_2245 <: IntelXeon_W end; export IntelXeon_W_2245 abstract type IntelXeon_W_2255 <: IntelXeon_W end; export IntelXeon_W_2255 abstract type IntelXeon_W_2265 <: IntelXeon_W end; export IntelXeon_W_2265 abstract type IntelXeon_W_2275 <: IntelXeon_W end; export IntelXeon_W_2275 abstract type IntelXeon_W_2295 <: IntelXeon_W end; export IntelXeon_W_2295 abstract type IntelXeon_W_3223 <: IntelXeon_W end; export IntelXeon_W_3223 abstract type IntelXeon_W_3225 <: IntelXeon_W end; export IntelXeon_W_3225 abstract type IntelXeon_W_3235 <: IntelXeon_W end; export IntelXeon_W_3235 abstract type IntelXeon_W_3245 <: IntelXeon_W end; export IntelXeon_W_3245 abstract type IntelXeon_W_3245M <: IntelXeon_W end; export IntelXeon_W_3245M abstract type IntelXeon_W_3265 <: IntelXeon_W end; export IntelXeon_W_3265 abstract type IntelXeon_W_3265M <: IntelXeon_W end; export IntelXeon_W_3265M abstract type IntelXeon_W_3275 <: IntelXeon_W end; export IntelXeon_W_3275 abstract type IntelXeon_W_3275M <: IntelXeon_W end; export IntelXeon_W_3275M abstract type IntelXeon_W_3175X <: IntelXeon_W end; export IntelXeon_W_3175X abstract type IntelXeon_W_2123 <: IntelXeon_W end; export IntelXeon_W_2123 abstract type IntelXeon_W_2125 <: IntelXeon_W end; export IntelXeon_W_2125 abstract type IntelXeon_W_2133 <: IntelXeon_W end; export IntelXeon_W_2133 abstract type IntelXeon_W_2135 <: IntelXeon_W end; export IntelXeon_W_2135 abstract type IntelXeon_W_2145 <: IntelXeon_W end; export IntelXeon_W_2145 abstract type IntelXeon_W_2155 <: IntelXeon_W end; export IntelXeon_W_2155 abstract type IntelXeon_W_2175 <: IntelXeon_W end; export IntelXeon_W_2175 abstract type IntelXeon_W_2195 <: IntelXeon_W end; export IntelXeon_W_2195 abstract type IntelXeon_D_1702 <: IntelXeon_D end; export IntelXeon_D_1702 abstract type IntelXeon_D_1712TR <: IntelXeon_D end; export IntelXeon_D_1712TR abstract type IntelXeon_D_1713NT <: IntelXeon_D end; export IntelXeon_D_1713NT abstract type IntelXeon_D_1713NTE <: IntelXeon_D end; export IntelXeon_D_1713NTE abstract type IntelXeon_D_1714 <: IntelXeon_D end; export IntelXeon_D_1714 abstract type IntelXeon_D_1715TER <: IntelXeon_D end; export IntelXeon_D_1715TER abstract type IntelXeon_D_1718T <: IntelXeon_D end; export IntelXeon_D_1718T abstract type IntelXeon_D_1722NE <: IntelXeon_D end; export IntelXeon_D_1722NE abstract type IntelXeon_D_1726 <: IntelXeon_D end; export IntelXeon_D_1726 abstract type IntelXeon_D_1732TE <: IntelXeon_D end; export IntelXeon_D_1732TE abstract type IntelXeon_D_1733NT <: IntelXeon_D end; export IntelXeon_D_1733NT abstract type IntelXeon_D_1734NT <: IntelXeon_D end; export IntelXeon_D_1734NT abstract type IntelXeon_D_1735TR <: IntelXeon_D end; export IntelXeon_D_1735TR abstract type IntelXeon_D_1736 <: IntelXeon_D end; export IntelXeon_D_1736 abstract type IntelXeon_D_1736NT <: IntelXeon_D end; export IntelXeon_D_1736NT abstract type IntelXeon_D_1739 <: IntelXeon_D end; export IntelXeon_D_1739 abstract type IntelXeon_D_1746TER <: IntelXeon_D end; export IntelXeon_D_1746TER abstract type IntelXeon_D_1747NTE <: IntelXeon_D end; export IntelXeon_D_1747NTE abstract type IntelXeon_D_1748TE <: IntelXeon_D end; export IntelXeon_D_1748TE abstract type IntelXeon_D_1749NT <: IntelXeon_D end; export IntelXeon_D_1749NT abstract type IntelXeon_D_2712T <: IntelXeon_D end; export IntelXeon_D_2712T abstract type IntelXeon_D_2733NT <: IntelXeon_D end; export IntelXeon_D_2733NT abstract type IntelXeon_D_2738 <: IntelXeon_D end; export IntelXeon_D_2738 abstract type IntelXeon_D_2752NTE <: IntelXeon_D end; export IntelXeon_D_2752NTE abstract type IntelXeon_D_2752TER <: IntelXeon_D end; export IntelXeon_D_2752TER abstract type IntelXeon_D_2753NT <: IntelXeon_D end; export IntelXeon_D_2753NT abstract type IntelXeon_D_2766NT <: IntelXeon_D end; export IntelXeon_D_2766NT abstract type IntelXeon_D_2775TE <: IntelXeon_D end; export IntelXeon_D_2775TE abstract type IntelXeon_D_2776NT <: IntelXeon_D end; export IntelXeon_D_2776NT abstract type IntelXeon_D_2779 <: IntelXeon_D end; export IntelXeon_D_2779 abstract type IntelXeon_D_2786NTE <: IntelXeon_D end; export IntelXeon_D_2786NTE abstract type IntelXeon_D_2795NT <: IntelXeon_D end; export IntelXeon_D_2795NT abstract type IntelXeon_D_2796NT <: IntelXeon_D end; export IntelXeon_D_2796NT abstract type IntelXeon_D_2796TE <: IntelXeon_D end; export IntelXeon_D_2796TE abstract type IntelXeon_D_2798NT <: IntelXeon_D end; export IntelXeon_D_2798NT abstract type IntelXeon_D_2799 <: IntelXeon_D end; export IntelXeon_D_2799 abstract type IntelXeon_D_1602 <: IntelXeon_D end; export IntelXeon_D_1602 abstract type IntelXeon_D_1622 <: IntelXeon_D end; export IntelXeon_D_1622 abstract type IntelXeon_D_1623N <: IntelXeon_D end; export IntelXeon_D_1623N abstract type IntelXeon_D_1627 <: IntelXeon_D end; export IntelXeon_D_1627 abstract type IntelXeon_D_1633N <: IntelXeon_D end; export IntelXeon_D_1633N abstract type IntelXeon_D_1637 <: IntelXeon_D end; export IntelXeon_D_1637 abstract type IntelXeon_D_1649N <: IntelXeon_D end; export IntelXeon_D_1649N abstract type IntelXeon_D_1653N <: IntelXeon_D end; export IntelXeon_D_1653N abstract type IntelXeon_D_2123IT <: IntelXeon_D end; export IntelXeon_D_2123IT abstract type IntelXeon_D_2141I <: IntelXeon_D end; export IntelXeon_D_2141I abstract type IntelXeon_D_2142IT <: IntelXeon_D end; export IntelXeon_D_2142IT abstract type IntelXeon_D_2143IT <: IntelXeon_D end; export IntelXeon_D_2143IT abstract type IntelXeon_D_2145NT <: IntelXeon_D end; export IntelXeon_D_2145NT abstract type IntelXeon_D_2161I <: IntelXeon_D end; export IntelXeon_D_2161I abstract type IntelXeon_D_2163IT <: IntelXeon_D end; export IntelXeon_D_2163IT abstract type IntelXeon_D_2166NT <: IntelXeon_D end; export IntelXeon_D_2166NT abstract type IntelXeon_D_2173IT <: IntelXeon_D end; export IntelXeon_D_2173IT abstract type IntelXeon_D_2177NT <: IntelXeon_D end; export IntelXeon_D_2177NT abstract type IntelXeon_D_2183IT <: IntelXeon_D end; export IntelXeon_D_2183IT abstract type IntelXeon_D_2187NT <: IntelXeon_D end; export IntelXeon_D_2187NT abstract type IntelXeon_D_1513N <: IntelXeon_D end; export IntelXeon_D_1513N abstract type IntelXeon_D_1523N <: IntelXeon_D end; export IntelXeon_D_1523N abstract type IntelXeon_D_1533N <: IntelXeon_D end; export IntelXeon_D_1533N abstract type IntelXeon_D_1543N <: IntelXeon_D end; export IntelXeon_D_1543N abstract type IntelXeon_D_1553N <: IntelXeon_D end; export IntelXeon_D_1553N abstract type IntelXeon_D_1529 <: IntelXeon_D end; export IntelXeon_D_1529 abstract type IntelXeon_D_1539 <: IntelXeon_D end; export IntelXeon_D_1539 abstract type IntelXeon_D_1559 <: IntelXeon_D end; export IntelXeon_D_1559 abstract type IntelXeon_D_1557 <: IntelXeon_D end; export IntelXeon_D_1557 abstract type IntelXeon_D_1567 <: IntelXeon_D end; export IntelXeon_D_1567 abstract type IntelXeon_D_1571 <: IntelXeon_D end; export IntelXeon_D_1571 abstract type IntelXeon_D_1577 <: IntelXeon_D end; export IntelXeon_D_1577 abstract type IntelXeon_D_1518 <: IntelXeon_D end; export IntelXeon_D_1518 abstract type IntelXeon_D_1521 <: IntelXeon_D end; export IntelXeon_D_1521 abstract type IntelXeon_D_1527 <: IntelXeon_D end; export IntelXeon_D_1527 abstract type IntelXeon_D_1528 <: IntelXeon_D end; export IntelXeon_D_1528 abstract type IntelXeon_D_1531 <: IntelXeon_D end; export IntelXeon_D_1531 abstract type IntelXeon_D_1537 <: IntelXeon_D end; export IntelXeon_D_1537 abstract type IntelXeon_D_1541 <: IntelXeon_D end; export IntelXeon_D_1541 abstract type IntelXeon_D_1548 <: IntelXeon_D end; export IntelXeon_D_1548 abstract type IntelXeon_D_1520 <: IntelXeon_D end; export IntelXeon_D_1520 abstract type IntelXeon_D_1540 <: IntelXeon_D end; export IntelXeon_D_1540 abstract type IntelXeon_E7_8894V4 <: IntelXeon_E7_v4 end; export IntelXeon_E7_8894V4 abstract type IntelXeon_E7_4809V4 <: IntelXeon_E7_v4 end; export IntelXeon_E7_4809V4 abstract type IntelXeon_E7_4820V4 <: IntelXeon_E7_v4 end; export IntelXeon_E7_4820V4 abstract type IntelXeon_E7_4830V4 <: IntelXeon_E7_v4 end; export IntelXeon_E7_4830V4 abstract type IntelXeon_E7_4850V4 <: IntelXeon_E7_v4 end; export IntelXeon_E7_4850V4 abstract type IntelXeon_E7_8860V4 <: IntelXeon_E7_v4 end; export IntelXeon_E7_8860V4 abstract type IntelXeon_E7_8867V4 <: IntelXeon_E7_v4 end; export IntelXeon_E7_8867V4 abstract type IntelXeon_E7_8870V4 <: IntelXeon_E7_v4 end; export IntelXeon_E7_8870V4 abstract type IntelXeon_E7_8880V4 <: IntelXeon_E7_v4 end; export IntelXeon_E7_8880V4 abstract type IntelXeon_E7_8890V4 <: IntelXeon_E7_v4 end; export IntelXeon_E7_8890V4 abstract type IntelXeon_E7_8891V4 <: IntelXeon_E7_v4 end; export IntelXeon_E7_8891V4 abstract type IntelXeon_E7_8893V4 <: IntelXeon_E7_v4 end; export IntelXeon_E7_8893V4 abstract type IntelXeon_E7_4809V3 <: IntelXeon_E7_v3 end; export IntelXeon_E7_4809V3 abstract type IntelXeon_E7_4820V3 <: IntelXeon_E7_v3 end; export IntelXeon_E7_4820V3 abstract type IntelXeon_E7_4830V3 <: IntelXeon_E7_v3 end; export IntelXeon_E7_4830V3 abstract type IntelXeon_E7_4850V3 <: IntelXeon_E7_v3 end; export IntelXeon_E7_4850V3 abstract type IntelXeon_E7_8860V3 <: IntelXeon_E7_v3 end; export IntelXeon_E7_8860V3 abstract type IntelXeon_E7_8867V3 <: IntelXeon_E7_v3 end; export IntelXeon_E7_8867V3 abstract type IntelXeon_E7_8870V3 <: IntelXeon_E7_v3 end; export IntelXeon_E7_8870V3 abstract type IntelXeon_E7_8880V3 <: IntelXeon_E7_v3 end; export IntelXeon_E7_8880V3 abstract type IntelXeon_E7_8880LV3 <: IntelXeon_E7_v3 end; export IntelXeon_E7_8880LV3 abstract type IntelXeon_E7_8890V3 <: IntelXeon_E7_v3 end; export IntelXeon_E7_8890V3 abstract type IntelXeon_E7_8891V3 <: IntelXeon_E7_v3 end; export IntelXeon_E7_8891V3 abstract type IntelXeon_E7_8893V3 <: IntelXeon_E7_v3 end; export IntelXeon_E7_8893V3 abstract type IntelXeon_E7_2850V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_2850V2 abstract type IntelXeon_E7_2870V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_2870V2 abstract type IntelXeon_E7_2880V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_2880V2 abstract type IntelXeon_E7_2890V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_2890V2 abstract type IntelXeon_E7_4809V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_4809V2 abstract type IntelXeon_E7_4820V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_4820V2 abstract type IntelXeon_E7_4830V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_4830V2 abstract type IntelXeon_E7_4850V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_4850V2 abstract type IntelXeon_E7_4860V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_4860V2 abstract type IntelXeon_E7_4870V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_4870V2 abstract type IntelXeon_E7_4880V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_4880V2 abstract type IntelXeon_E7_4890V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_4890V2 abstract type IntelXeon_E7_8850V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_8850V2 abstract type IntelXeon_E7_8857V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_8857V2 abstract type IntelXeon_E7_8870V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_8870V2 abstract type IntelXeon_E7_8880V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_8880V2 abstract type IntelXeon_E7_8880LV2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_8880LV2 abstract type IntelXeon_E7_8890V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_8890V2 abstract type IntelXeon_E7_8891V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_8891V2 abstract type IntelXeon_E7_8893V2 <: IntelXeon_E7_v2 end; export IntelXeon_E7_8893V2 abstract type IntelXeon_E7_2803 <: IntelXeon_E7 end; export IntelXeon_E7_2803 abstract type IntelXeon_E7_2820 <: IntelXeon_E7 end; export IntelXeon_E7_2820 abstract type IntelXeon_E7_2830 <: IntelXeon_E7 end; export IntelXeon_E7_2830 abstract type IntelXeon_E7_2850 <: IntelXeon_E7 end; export IntelXeon_E7_2850 abstract type IntelXeon_E7_2860 <: IntelXeon_E7 end; export IntelXeon_E7_2860 abstract type IntelXeon_E7_2870 <: IntelXeon_E7 end; export IntelXeon_E7_2870 abstract type IntelXeon_E7_4807 <: IntelXeon_E7 end; export IntelXeon_E7_4807 abstract type IntelXeon_E7_4820 <: IntelXeon_E7 end; export IntelXeon_E7_4820 abstract type IntelXeon_E7_4830 <: IntelXeon_E7 end; export IntelXeon_E7_4830 abstract type IntelXeon_E7_4850 <: IntelXeon_E7 end; export IntelXeon_E7_4850 abstract type IntelXeon_E7_4860 <: IntelXeon_E7 end; export IntelXeon_E7_4860 abstract type IntelXeon_E7_4870 <: IntelXeon_E7 end; export IntelXeon_E7_4870 abstract type IntelXeon_E7_8830 <: IntelXeon_E7 end; export IntelXeon_E7_8830 abstract type IntelXeon_E7_8837 <: IntelXeon_E7 end; export IntelXeon_E7_8837 abstract type IntelXeon_E7_8850 <: IntelXeon_E7 end; export IntelXeon_E7_8850 abstract type IntelXeon_E7_8860 <: IntelXeon_E7 end; export IntelXeon_E7_8860 abstract type IntelXeon_E7_8867L <: IntelXeon_E7 end; export IntelXeon_E7_8867L abstract type IntelXeon_E7_8870 <: IntelXeon_E7 end; export IntelXeon_E7_8870 abstract type IntelXeon_E5_2699AV4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2699AV4 abstract type IntelXeon_E5_2699RV4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2699RV4 abstract type IntelXeon_E5_4610V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_4610V4 abstract type IntelXeon_E5_4620V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_4620V4 abstract type IntelXeon_E5_4627V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_4627V4 abstract type IntelXeon_E5_4628LV4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_4628LV4 abstract type IntelXeon_E5_4640V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_4640V4 abstract type IntelXeon_E5_4650V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_4650V4 abstract type IntelXeon_E5_4655V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_4655V4 abstract type IntelXeon_E5_4660V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_4660V4 abstract type IntelXeon_E5_4667V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_4667V4 abstract type IntelXeon_E5_4669V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_4669V4 abstract type IntelXeon_E5_1620V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_1620V4 abstract type IntelXeon_E5_1630V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_1630V4 abstract type IntelXeon_E5_1650V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_1650V4 abstract type IntelXeon_E5_1660V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_1660V4 abstract type IntelXeon_E5_1680V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_1680V4 abstract type IntelXeon_E5_2603V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2603V4 abstract type IntelXeon_E5_2608LV4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2608LV4 abstract type IntelXeon_E5_2609V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2609V4 abstract type IntelXeon_E5_2618LV4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2618LV4 abstract type IntelXeon_E5_2620V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2620V4 abstract type IntelXeon_E5_2623V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2623V4 abstract type IntelXeon_E5_2628LV4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2628LV4 abstract type IntelXeon_E5_2630V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2630V4 abstract type IntelXeon_E5_2630LV4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2630LV4 abstract type IntelXeon_E5_2637V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2637V4 abstract type IntelXeon_E5_2640V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2640V4 abstract type IntelXeon_E5_2643V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2643V4 abstract type IntelXeon_E5_2648LV4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2648LV4 abstract type IntelXeon_E5_2650V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2650V4 abstract type IntelXeon_E5_2650LV4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2650LV4 abstract type IntelXeon_E5_2658V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2658V4 abstract type IntelXeon_E5_2660V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2660V4 abstract type IntelXeon_E5_2667V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2667V4 abstract type IntelXeon_E5_2680V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2680V4 abstract type IntelXeon_E5_2683V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2683V4 abstract type IntelXeon_E5_2686V5 <: IntelXeon_E5_v5 end; export IntelXeon_E5_2686V5 abstract type IntelXeon_E5_2686V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2686V4 abstract type IntelXeon_E5_2687WV4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2687WV4 abstract type IntelXeon_E5_2690V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2690V4 abstract type IntelXeon_E5_2695V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2695V4 abstract type IntelXeon_E5_2697V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2697V4 abstract type IntelXeon_E5_2697AV4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2697AV4 abstract type IntelXeon_E5_2698V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2698V4 abstract type IntelXeon_E5_2699V4 <: IntelXeon_E5_v4 end; export IntelXeon_E5_2699V4 abstract type IntelXeon_E5_4610V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_4610V3 abstract type IntelXeon_E5_4620V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_4620V3 abstract type IntelXeon_E5_4627V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_4627V3 abstract type IntelXeon_E5_4640V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_4640V3 abstract type IntelXeon_E5_4648V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_4648V3 abstract type IntelXeon_E5_4650V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_4650V3 abstract type IntelXeon_E5_4655V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_4655V3 abstract type IntelXeon_E5_4660V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_4660V3 abstract type IntelXeon_E5_4667V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_4667V3 abstract type IntelXeon_E5_4669V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_4669V3 abstract type IntelXeon_E5_2658AV3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2658AV3 abstract type IntelXeon_E5_1428LV3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_1428LV3 abstract type IntelXeon_E5_2408LV3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2408LV3 abstract type IntelXeon_E5_2418LV3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2418LV3 abstract type IntelXeon_E5_2428LV3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2428LV3 abstract type IntelXeon_E5_2438LV3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2438LV3 abstract type IntelXeon_E5_1620V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_1620V3 abstract type IntelXeon_E5_1630V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_1630V3 abstract type IntelXeon_E5_1650V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_1650V3 abstract type IntelXeon_E5_1660V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_1660V3 abstract type IntelXeon_E5_1680V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_1680V3 abstract type IntelXeon_E5_2603V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2603V3 abstract type IntelXeon_E5_2608LV3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2608LV3 abstract type IntelXeon_E5_2609V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2609V3 abstract type IntelXeon_E5_2618LV3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2618LV3 abstract type IntelXeon_E5_2620V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2620V3 abstract type IntelXeon_E5_2623V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2623V3 abstract type IntelXeon_E5_2628LV3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2628LV3 abstract type IntelXeon_E5_2630V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2630V3 abstract type IntelXeon_E5_2630LV3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2630LV3 abstract type IntelXeon_E5_2637V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2637V3 abstract type IntelXeon_E5_2640V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2640V3 abstract type IntelXeon_E5_2643V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2643V3 abstract type IntelXeon_E5_2648LV3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2648LV3 abstract type IntelXeon_E5_2650V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2650V3 abstract type IntelXeon_E5_2650LV3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2650LV3 abstract type IntelXeon_E5_2658V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2658V3 abstract type IntelXeon_E5_2660V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2660V3 abstract type IntelXeon_E5_2666V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2666V3 abstract type IntelXeon_E5_2667V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2667V3 abstract type IntelXeon_E5_2670V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2670V3 abstract type IntelXeon_E5_2676V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2676V3 abstract type IntelXeon_E5_2680V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2680V3 abstract type IntelXeon_E5_2683V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2683V3 abstract type IntelXeon_E5_2687WV3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2687WV3 abstract type IntelXeon_E5_2690V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2690V3 abstract type IntelXeon_E5_2695V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2695V3 abstract type IntelXeon_E5_2697V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2697V3 abstract type IntelXeon_E5_2698V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2698V3 abstract type IntelXeon_E5_2699V3 <: IntelXeon_E5_v3 end; export IntelXeon_E5_2699V3 abstract type IntelXeon_E5_4603V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_4603V2 abstract type IntelXeon_E5_4607V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_4607V2 abstract type IntelXeon_E5_4610V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_4610V2 abstract type IntelXeon_E5_4620V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_4620V2 abstract type IntelXeon_E5_4624LV2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_4624LV2 abstract type IntelXeon_E5_4627V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_4627V2 abstract type IntelXeon_E5_4640V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_4640V2 abstract type IntelXeon_E5_4650V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_4650V2 abstract type IntelXeon_E5_4657LV2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_4657LV2 abstract type IntelXeon_E5_1428LV2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_1428LV2 abstract type IntelXeon_E5_2403V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2403V2 abstract type IntelXeon_E5_2407V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2407V2 abstract type IntelXeon_E5_2418LV2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2418LV2 abstract type IntelXeon_E5_2420V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2420V2 abstract type IntelXeon_E5_2428LV2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2428LV2 abstract type IntelXeon_E5_2430V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2430V2 abstract type IntelXeon_E5_2430LV2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2430LV2 abstract type IntelXeon_E5_2440V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2440V2 abstract type IntelXeon_E5_2448LV2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2448LV2 abstract type IntelXeon_E5_2450V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2450V2 abstract type IntelXeon_E5_2450LV2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2450LV2 abstract type IntelXeon_E5_2470V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2470V2 abstract type IntelXeon_E5_1620V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_1620V2 abstract type IntelXeon_E5_1650V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_1650V2 abstract type IntelXeon_E5_1660V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_1660V2 abstract type IntelXeon_E5_2603V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2603V2 abstract type IntelXeon_E5_2609V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2609V2 abstract type IntelXeon_E5_2618LV2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2618LV2 abstract type IntelXeon_E5_2620V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2620V2 abstract type IntelXeon_E5_2628LV2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2628LV2 abstract type IntelXeon_E5_2630V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2630V2 abstract type IntelXeon_E5_2630LV2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2630LV2 abstract type IntelXeon_E5_2637V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2637V2 abstract type IntelXeon_E5_2640V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2640V2 abstract type IntelXeon_E5_2643V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2643V2 abstract type IntelXeon_E5_2648LV2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2648LV2 abstract type IntelXeon_E5_2650V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2650V2 abstract type IntelXeon_E5_2650LV2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2650LV2 abstract type IntelXeon_E5_2658V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2658V2 abstract type IntelXeon_E5_2660V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2660V2 abstract type IntelXeon_E5_2667V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2667V2 abstract type IntelXeon_E5_2670V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2670V2 abstract type IntelXeon_E5_2680V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2680V2 abstract type IntelXeon_E5_2687WV2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2687WV2 abstract type IntelXeon_E5_2690V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2690V2 abstract type IntelXeon_E5_2695V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2695V2 abstract type IntelXeon_E5_2697V2 <: IntelXeon_E5_v2 end; export IntelXeon_E5_2697V2 abstract type IntelXeon_E5_1428L <: IntelXeon_E5 end; export IntelXeon_E5_1428L abstract type IntelXeon_E5_2403 <: IntelXeon_E5 end; export IntelXeon_E5_2403 abstract type IntelXeon_E5_2407 <: IntelXeon_E5 end; export IntelXeon_E5_2407 abstract type IntelXeon_E5_2418L <: IntelXeon_E5 end; export IntelXeon_E5_2418L abstract type IntelXeon_E5_2420 <: IntelXeon_E5 end; export IntelXeon_E5_2420 abstract type IntelXeon_E5_2428L <: IntelXeon_E5 end; export IntelXeon_E5_2428L abstract type IntelXeon_E5_2430 <: IntelXeon_E5 end; export IntelXeon_E5_2430 abstract type IntelXeon_E5_2430L <: IntelXeon_E5 end; export IntelXeon_E5_2430L abstract type IntelXeon_E5_2440 <: IntelXeon_E5 end; export IntelXeon_E5_2440 abstract type IntelXeon_E5_2448L <: IntelXeon_E5 end; export IntelXeon_E5_2448L abstract type IntelXeon_E5_2450 <: IntelXeon_E5 end; export IntelXeon_E5_2450 abstract type IntelXeon_E5_2450L <: IntelXeon_E5 end; export IntelXeon_E5_2450L abstract type IntelXeon_E5_2470 <: IntelXeon_E5 end; export IntelXeon_E5_2470 abstract type IntelXeon_E5_4603 <: IntelXeon_E5 end; export IntelXeon_E5_4603 abstract type IntelXeon_E5_4607 <: IntelXeon_E5 end; export IntelXeon_E5_4607 abstract type IntelXeon_E5_4610 <: IntelXeon_E5 end; export IntelXeon_E5_4610 abstract type IntelXeon_E5_4617 <: IntelXeon_E5 end; export IntelXeon_E5_4617 abstract type IntelXeon_E5_4620 <: IntelXeon_E5 end; export IntelXeon_E5_4620 abstract type IntelXeon_E5_4640 <: IntelXeon_E5 end; export IntelXeon_E5_4640 abstract type IntelXeon_E5_4650 <: IntelXeon_E5 end; export IntelXeon_E5_4650 abstract type IntelXeon_E5_4650L <: IntelXeon_E5 end; export IntelXeon_E5_4650L abstract type IntelXeon_E5_1620 <: IntelXeon_E5 end; export IntelXeon_E5_1620 abstract type IntelXeon_E5_1650 <: IntelXeon_E5 end; export IntelXeon_E5_1650 abstract type IntelXeon_E5_1660 <: IntelXeon_E5 end; export IntelXeon_E5_1660 abstract type IntelXeon_E5_2603 <: IntelXeon_E5 end; export IntelXeon_E5_2603 abstract type IntelXeon_E5_2609 <: IntelXeon_E5 end; export IntelXeon_E5_2609 abstract type IntelXeon_E5_2620 <: IntelXeon_E5 end; export IntelXeon_E5_2620 abstract type IntelXeon_E5_2630 <: IntelXeon_E5 end; export IntelXeon_E5_2630 abstract type IntelXeon_E5_2630L <: IntelXeon_E5 end; export IntelXeon_E5_2630L abstract type IntelXeon_E5_2637 <: IntelXeon_E5 end; export IntelXeon_E5_2637 abstract type IntelXeon_E5_2640 <: IntelXeon_E5 end; export IntelXeon_E5_2640 abstract type IntelXeon_E5_2643 <: IntelXeon_E5 end; export IntelXeon_E5_2643 abstract type IntelXeon_E5_2648L <: IntelXeon_E5 end; export IntelXeon_E5_2648L abstract type IntelXeon_E5_2650 <: IntelXeon_E5 end; export IntelXeon_E5_2650 abstract type IntelXeon_E5_2650L <: IntelXeon_E5 end; export IntelXeon_E5_2650L abstract type IntelXeon_E5_2658 <: IntelXeon_E5 end; export IntelXeon_E5_2658 abstract type IntelXeon_E5_2660 <: IntelXeon_E5 end; export IntelXeon_E5_2660 abstract type IntelXeon_E5_2665 <: IntelXeon_E5 end; export IntelXeon_E5_2665 abstract type IntelXeon_E5_2667 <: IntelXeon_E5 end; export IntelXeon_E5_2667 abstract type IntelXeon_E5_2670 <: IntelXeon_E5 end; export IntelXeon_E5_2670 abstract type IntelXeon_E5_2680 <: IntelXeon_E5 end; export IntelXeon_E5_2680 abstract type IntelXeon_E5_2687W <: IntelXeon_E5 end; export IntelXeon_E5_2687W abstract type IntelXeon_E5_2690 <: IntelXeon_E5 end; export IntelXeon_E5_2690 abstract type IntelXeon_E3_1220V6 <: IntelXeon_E3_v6 end; export IntelXeon_E3_1220V6 abstract type IntelXeon_E3_1230V6 <: IntelXeon_E3_v6 end; export IntelXeon_E3_1230V6 abstract type IntelXeon_E3_1240V6 <: IntelXeon_E3_v6 end; export IntelXeon_E3_1240V6 abstract type IntelXeon_E3_1270V6 <: IntelXeon_E3_v6 end; export IntelXeon_E3_1270V6 abstract type IntelXeon_E3_1280V6 <: IntelXeon_E3_v6 end; export IntelXeon_E3_1280V6 abstract type IntelXeon_E3_1558LV5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1558LV5 abstract type IntelXeon_E3_1220V5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1220V5 abstract type IntelXeon_E3_1230V5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1230V5 abstract type IntelXeon_E3_1240V5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1240V5 abstract type IntelXeon_E3_1240LV5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1240LV5 abstract type IntelXeon_E3_1260LV5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1260LV5 abstract type IntelXeon_E3_1270V5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1270V5 abstract type IntelXeon_E3_1280V5 <: IntelXeon_E3_v5 end; export IntelXeon_E3_1280V5 abstract type IntelXeon_E3_1258LV4 <: IntelXeon_E3_v4 end; export IntelXeon_E3_1258LV4 abstract type IntelXeon_E3_1265LV4 <: IntelXeon_E3_v4 end; export IntelXeon_E3_1265LV4 abstract type IntelXeon_E3_1278LV4 <: IntelXeon_E3_v4 end; export IntelXeon_E3_1278LV4 abstract type IntelXeon_E3_1285V4 <: IntelXeon_E3_v4 end; export IntelXeon_E3_1285V4 abstract type IntelXeon_E3_1285LV4 <: IntelXeon_E3_v4 end; export IntelXeon_E3_1285LV4 abstract type IntelXeon_E3_1226V3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1226V3 abstract type IntelXeon_E3_1231V3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1231V3 abstract type IntelXeon_E3_1240LV3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1240LV3 abstract type IntelXeon_E3_1241V3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1241V3 abstract type IntelXeon_E3_1246V3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1246V3 abstract type IntelXeon_E3_1271V3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1271V3 abstract type IntelXeon_E3_1276V3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1276V3 abstract type IntelXeon_E3_1281V3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1281V3 abstract type IntelXeon_E3_1286V3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1286V3 abstract type IntelXeon_E3_1286LV3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1286LV3 abstract type IntelXeon_E3_1220LV3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1220LV3 abstract type IntelXeon_E3_1220_v3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1220_v3 abstract type IntelXeon_E3_1225V3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1225V3 abstract type IntelXeon_E3_1230_v3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1230_v3 abstract type IntelXeon_E3_1230Lv3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1230Lv3 abstract type IntelXeon_E3_1240_v3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1240_v3 abstract type IntelXeon_E3_1245_v3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1245_v3 abstract type IntelXeon_E3_1270_v3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1270_v3 abstract type IntelXeon_E3_1275_v3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1275_v3 abstract type IntelXeon_E3_1280_v3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1280_v3 abstract type IntelXeon_E3_1285_v3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1285_v3 abstract type IntelXeon_E3_1285Lv3 <: IntelXeon_E3_v3 end; export IntelXeon_E3_1285Lv3 abstract type IntelXeon_E3_1105CV2 <: IntelXeon_E3_v2 end; export IntelXeon_E3_1105CV2 abstract type IntelXeon_E3_1125CV2 <: IntelXeon_E3_v2 end; export IntelXeon_E3_1125CV2 abstract type IntelXeon_E3_1220V2 <: IntelXeon_E3_v2 end; export IntelXeon_E3_1220V2 abstract type IntelXeon_E3_1220LV2 <: IntelXeon_E3_v2 end; export IntelXeon_E3_1220LV2 abstract type IntelXeon_E3_1225V2 <: IntelXeon_E3_v2 end; export IntelXeon_E3_1225V2 abstract type IntelXeon_E3_1230V2 <: IntelXeon_E3_v2 end; export IntelXeon_E3_1230V2 abstract type IntelXeon_E3_1240V2 <: IntelXeon_E3_v2 end; export IntelXeon_E3_1240V2 abstract type IntelXeon_E3_1245V2 <: IntelXeon_E3_v2 end; export IntelXeon_E3_1245V2 abstract type IntelXeon_E3_1270V2 <: IntelXeon_E3_v2 end; export IntelXeon_E3_1270V2 abstract type IntelXeon_E3_1275V2 <: IntelXeon_E3_v2 end; export IntelXeon_E3_1275V2 abstract type IntelXeon_E3_1280V2 <: IntelXeon_E3_v2 end; export IntelXeon_E3_1280V2 abstract type IntelXeon_E3_1290V2 <: IntelXeon_E3_v2 end; export IntelXeon_E3_1290V2 abstract type IntelXeon_E3_1105C <: IntelXeon_E3 end; export IntelXeon_E3_1105C abstract type IntelXeon_E3_1125C <: IntelXeon_E3 end; export IntelXeon_E3_1125C abstract type IntelXeon_E3_1290 <: IntelXeon_E3 end; export IntelXeon_E3_1290 abstract type IntelXeon_E3_1220 <: IntelXeon_E3 end; export IntelXeon_E3_1220 abstract type IntelXeon_E3_1220L <: IntelXeon_E3 end; export IntelXeon_E3_1220L abstract type IntelXeon_E3_1225 <: IntelXeon_E3 end; export IntelXeon_E3_1225 abstract type IntelXeon_E3_1230 <: IntelXeon_E3 end; export IntelXeon_E3_1230 abstract type IntelXeon_E3_1235 <: IntelXeon_E3 end; export IntelXeon_E3_1235 abstract type IntelXeon_E3_1240 <: IntelXeon_E3 end; export IntelXeon_E3_1240 abstract type IntelXeon_E3_1245 <: IntelXeon_E3 end; export IntelXeon_E3_1245 abstract type IntelXeon_E3_1270 <: IntelXeon_E3 end; export IntelXeon_E3_1270 abstract type IntelXeon_E3_1275 <: IntelXeon_E3 end; export IntelXeon_E3_1275 abstract type IntelXeon_E3_1280 <: IntelXeon_E3 end; export IntelXeon_E3_1280
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
26602
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ # abstract types abstract type NVIDIA <: Manufacturer end; export NVIDIA abstract type NVIDIAArchitecture <: AcceleratorArchitecture end; export NVIDIAArchitecture abstract type Farenheit <: NVIDIAArchitecture end; export Farenheit abstract type Celsius <: Farenheit end; export Celsius abstract type Kelvin <: Celsius end; export Kelvin abstract type Rankine <: Kelvin end; export Rankine abstract type Curie <: Rankine end; export Curie abstract type Tesla <: Curie end; export Tesla abstract type Tesla2 <: Tesla end; export Tesla2 abstract type Fermi <: Tesla2 end; export Fermi abstract type Kepler <: Fermi end; export Kepler abstract type Kepler2 <: Kepler end; export Kepler2 abstract type Maxwell <: Kepler2 end; export Maxwell abstract type Maxwell2 <: Maxwell end; export Maxwell2 abstract type Pascal <: Maxwell2 end; export Pascal abstract type Volta <: Pascal end; export Volta abstract type Turing <: Volta end; export Turing abstract type Ampere <: Turing end; export Ampere abstract type Ada <: Ampere end; export Ada abstract type Hopper <: Ada end; export Hopper # GPU processors abstract type NVIDIAGPUProcessor <: AcceleratorProcessor end abstract type GT200 <: NVIDIAGPUProcessor end; export GT200 abstract type GT200GL <: GT200 end; export GT200GL abstract type G80 <: NVIDIAGPUProcessor end; export G80 abstract type GF100 <: NVIDIAGPUProcessor end; export GF100 abstract type GK104 <: NVIDIAGPUProcessor end; export GK104 abstract type GK110 <: NVIDIAGPUProcessor end; export GK110 abstract type GK110B <: GK110 end; export GK110B abstract type GK210 <: NVIDIAGPUProcessor end; export GK210 abstract type GM107 <: NVIDIAGPUProcessor end; export GM107 abstract type GM200 <: NVIDIAGPUProcessor end; export GM200 abstract type GM204 <: NVIDIAGPUProcessor end; export GM206 abstract type GM204_995_A1 <: GM204 end; export GM204_995_A1 abstract type GM204_895_A1 <: GM204 end; export GM204_895_A1 abstract type GM206 <: NVIDIAGPUProcessor end; export GM206 abstract type GP100 <: NVIDIAGPUProcessor end; export GP100 abstract type GP100_890_A1 <: GP100 end; export GP100_890_A1 abstract type GP102 <: NVIDIAGPUProcessor end; export GP102 abstract type GP104 <: NVIDIAGPUProcessor end; export GP104 abstract type GP104_995_A1 <: GP104 end; export GP104_995_A1 abstract type GV100 <: NVIDIAGPUProcessor end; export GV100 abstract type GV100_895_A1 <: GV100 end; export GV100_895_A1 abstract type TU104_895_A1 <: NVIDIAGPUProcessor end; export TU104_895_A1 abstract type GA100 <: NVIDIAGPUProcessor end; export GA100 abstract type GA100_883AA_A1 <: GA100 end; export GA100_883AA_A1 abstract type GA102 <: NVIDIAGPUProcessor end; export GA102 abstract type GA102_890_A1 <: GA102 end; export GA102_890_A1 abstract type GA107 <: NVIDIAGPUProcessor end; export GA107 abstract type GH100 <: NVIDIAGPUProcessor end; export GH100 abstract type AD102 <: NVIDIAGPUProcessor end; export AD102 abstract type AD103 <: NVIDIAGPUProcessor end; export AD103 abstract type AD104 <: NVIDIAGPUProcessor end; export AD104 abstract type GA103S <: NVIDIAGPUProcessor end; export GA103S abstract type GA104 <: NVIDIAGPUProcessor end; export GA104 abstract type GA106 <: NVIDIAGPUProcessor end; export GA106 abstract type GA107S <: NVIDIAGPUProcessor end; export GA107S abstract type GF108 <: NVIDIAGPUProcessor end; export GF108 abstract type GF119 <: NVIDIAGPUProcessor end; export GF119 abstract type GK106 <: NVIDIAGPUProcessor end; export GK106 abstract type GK107 <: NVIDIAGPUProcessor end; export GK107 abstract type GK208B <: NVIDIAGPUProcessor end; export GK208B abstract type GM108 <: NVIDIAGPUProcessor end; export GM108 abstract type GM108M <: NVIDIAGPUProcessor end; export GM108M abstract type GM20B <: NVIDIAGPUProcessor end; export GM20B abstract type GP106 <: NVIDIAGPUProcessor end; export GP106 abstract type GP107 <: NVIDIAGPUProcessor end; export GP107 abstract type GP108 <: NVIDIAGPUProcessor end; export GP108 abstract type GP108B <: NVIDIAGPUProcessor end; export GP108B abstract type GP10B <: NVIDIAGPUProcessor end; export GP10B abstract type GV10B <: NVIDIAGPUProcessor end; export GV10B abstract type TU102 <: NVIDIAGPUProcessor end; export TU102 abstract type TU104 <: NVIDIAGPUProcessor end; export TU104 abstract type TU104B <: NVIDIAGPUProcessor end; export TU104B abstract type TU106 <: NVIDIAGPUProcessor end; export TU106 abstract type TU106B <: NVIDIAGPUProcessor end; export TU106B abstract type TU116 <: NVIDIAGPUProcessor end; export TU116 abstract type TU117 <: NVIDIAGPUProcessor end; export TU117 abstract type TU117B <: NVIDIAGPUProcessor end; export TU117B # CUDA API abstract type CUDA_API <: AcceleratorBackend end; export CUDA_API abstract type CUDA_1_0 <: CUDA_API end; const CUDA1 = CUDA_1_0; export CUDA_1_0, CUDA1 abstract type CUDA_1_3 <: CUDA_1_0 end; export CUDA_1_3 abstract type CUDA_2_0 <: CUDA_1_3 end; const CUDA2 = CUDA_2_0; export CUDA_2_0, CUDA2 abstract type CUDA_2_1 <: CUDA_2_0 end; export CUDA_2_1 abstract type CUDA_3_0 <: CUDA_2_1 end; const CUDA3 = CUDA_3_0; export CUDA_3_0, CUDA3 abstract type CUDA_3_5 <: CUDA_3_0 end; export CUDA_3_5 abstract type CUDA_3_7 <: CUDA_3_5 end; export CUDA_3_7 abstract type CUDA_5_0 <: CUDA_3_7 end; export CUDA_5_2 abstract type CUDA_5_2 <: CUDA_5_0 end; export CUDA_5_0 abstract type CUDA_5_3 <: CUDA_5_2 end; export CUDA_5_3 abstract type CUDA_6_0 <: CUDA_5_3 end; const CUDA6 = CUDA_6_0; export CUDA_6_0, CUDA6 abstract type CUDA_6_1 <: CUDA_6_0 end; export CUDA_6_1 abstract type CUDA_6_2 <: CUDA_6_1 end; export CUDA_6_2 abstract type CUDA_7_0 <: CUDA_6_2 end; const CUDA7 = CUDA_7_0; export CUDA_7_0, CUDA7 abstract type CUDA_7_2 <: CUDA_7_0 end; export CUDA_7_2 abstract type CUDA_7_5 <: CUDA_7_2 end; export CUDA_7_5 abstract type CUDA_8_0 <: CUDA_7_5 end; const CUDA8 = CUDA_8_0; export CUDA_8_0, CUDA8 abstract type CUDA_8_6 <: CUDA_8_0 end; export CUDA_8_6 abstract type CUDA_8_9 <: CUDA_8_6 end; export CUDA_8_9 abstract type CUDA_9_0 <: CUDA_8_9 end; const CUDA9 = CUDA_9_0; export CUDA_9_0, CUDA9 # GPU models abstract type NVIDIAAccelerator <: Accelerator end; export NVIDIAAccelerator # GPU models (Tensor Core) abstract type NVIDIATensorCore <: NVIDIAAccelerator end; export NVIDIATensorCore abstract type NVIDIA_L4 <: NVIDIATensorCore end; export NVIDIA_L4 # 23/05/2024 abstract type NVIDIA_A10 <: NVIDIATensorCore end; export NVIDIA_A10 abstract type NVIDIA_A100 <: NVIDIATensorCore end; export NVIDIA_A100 abstract type NVIDIA_A10G <: NVIDIATensorCore end; export NVIDIA_A10G abstract type NVIDIA_A16 <: NVIDIATensorCore end; export NVIDIA_A16 abstract type NVIDIA_A2 <: NVIDIATensorCore end; export NVIDIA_A2 abstract type NVIDIA_A30 <: NVIDIATensorCore end; export NVIDIA_A30 abstract type NVIDIA_A40 <: NVIDIATensorCore end; export NVIDIA_A40 abstract type NVIDIA_H100 <: NVIDIATensorCore end; export NVIDIA_H100 # GPU models (Tesla) abstract type NVIDIATesla <: NVIDIAAccelerator end; export NVIDIATesla abstract type NVIDIATesla_C870 <: NVIDIATesla end; export NVIDIATesla_C870 abstract type NVIDIATesla_D870 <: NVIDIATesla end; export NVIDIATesla_D870 abstract type NVIDIATesla_S870 <: NVIDIATesla end; export NVIDIATesla_S870 abstract type NVIDIATesla_S1070 <: NVIDIATesla end; export NVIDIATesla_S1070 abstract type NVIDIATesla_S1075 <: NVIDIATesla end; export NVIDIATesla_S1075 abstract type NVIDIATesla_C1060 <: NVIDIATesla end; export NVIDIATesla_C1060 abstract type NVIDIATesla_C2050 <: NVIDIATesla end; export NVIDIATesla_C2050 abstract type NVIDIATesla_M2050 <: NVIDIATesla end; export NVIDIATesla_M2050 abstract type NVIDIATesla_C2070 <: NVIDIATesla end; export NVIDIATesla_C2070 abstract type NVIDIATesla_C2075 <: NVIDIATesla end; export NVIDIATesla_C2075 abstract type NVIDIATesla_M2070 <: NVIDIATesla end; export NVIDIATesla_M2070 abstract type NVIDIATesla_M2070Q <: NVIDIATesla end; export NVIDIATesla_M2070Q abstract type NVIDIATesla_M2090 <: NVIDIATesla end; export NVIDIATesla_M2090 abstract type NVIDIATesla_S2050 <: NVIDIATesla end; export NVIDIATesla_S2050 abstract type NVIDIATesla_S2070 <: NVIDIATesla end; export NVIDIATesla_S2070 abstract type NVIDIATesla_K10 <: NVIDIATesla end; export NVIDIATesla_K10 abstract type NVIDIATesla_K20 <: NVIDIATesla end; export NVIDIATesla_K20 abstract type NVIDIATesla_K20X <: NVIDIATesla end; export NVIDIATesla_K20X abstract type NVIDIATesla_K40 <: NVIDIATesla end; export NVIDIATesla_K40 abstract type NVIDIATesla_K80 <: NVIDIATesla end; export NVIDIATesla_K80 abstract type NVIDIATesla_M6 <: NVIDIATesla end; export NVIDIATesla_M6 abstract type NVIDIATesla_M60 <: NVIDIATesla end; export NVIDIATesla_M60 abstract type NVIDIATesla_M4 <: NVIDIATesla end; export NVIDIATesla_M4 abstract type NVIDIATesla_M40 <: NVIDIATesla end; export NVIDIATesla_M40 abstract type NVIDIATesla_M10 <: NVIDIATesla end; export NVIDIATesla_M10 abstract type NVIDIATesla_P100 <: NVIDIATesla end; export NVIDIATesla_P100 abstract type NVIDIATesla_P4 <: NVIDIATesla end; export NVIDIATesla_P4 abstract type NVIDIATesla_P40 <: NVIDIATesla end; export NVIDIATesla_P40 abstract type NVIDIATesla_P6 <: NVIDIATesla end; export NVIDIATesla_P6 abstract type NVIDIATesla_V100 <: NVIDIATesla end; export NVIDIATesla_V100 abstract type NVIDIATesla_T4 <: NVIDIATesla end; export NVIDIATesla_T4 abstract type NVIDIATesla_A100 <: NVIDIATesla end; export NVIDIATesla_A100 abstract type NVIDIATesla_A40 <: NVIDIATesla end; export NVIDIATesla_A40 abstract type NVIDIATesla_A10 <: NVIDIATesla end; export NVIDIATesla_A10 abstract type NVIDIATesla_A16 <: NVIDIATesla end; export NVIDIATesla_A16 abstract type NVIDIATesla_A30 <: NVIDIATesla end; export NVIDIATesla_A30 abstract type NVIDIATesla_A2 <: NVIDIATesla end; export NVIDIATesla_A2 abstract type NVIDIATesla_H100 <: NVIDIATesla end; export NVIDIATesla_H100 abstract type NVIDIATesla_P10 <: NVIDIATesla end; export NVIDIATesla_P10 abstract type NVIDIATesla_PG500_216 <: NVIDIATesla end; export NVIDIATesla_PG500_216 abstract type NVIDIATesla_PG503_216 <: NVIDIATesla end; export NVIDIATesla_PG503_216 abstract type NVIDIATesla_V100S <: NVIDIATesla end; export NVIDIATesla_V100S # GPU models (RTX) abstract type NVIDIA_RTX <: NVIDIAAccelerator end; export NVIDIA_RTX abstract type NVIDIA_RTX_A1000 <: NVIDIA_RTX end; export NVIDIA_RTX_A1000 abstract type NVIDIA_RTX_A2000 <: NVIDIA_RTX end; export NVIDIA_RTX_A2000 abstract type NVIDIA_RTX_A3000 <: NVIDIA_RTX end; export NVIDIA_RTX_A3000 abstract type NVIDIA_RTX_A4 <: NVIDIA_RTX end; export NVIDIA_RTX_A4 abstract type NVIDIA_RTX_A4000 <: NVIDIA_RTX end; export NVIDIA_RTX_A4000 abstract type NVIDIA_RTX_A4500 <: NVIDIA_RTX end; export NVIDIA_RTX_A4500 abstract type NVIDIA_RTX_A500 <: NVIDIA_RTX end; export NVIDIA_RTX_A500 abstract type NVIDIA_RTX_A5000 <: NVIDIA_RTX end; export NVIDIA_RTX_A5000 abstract type NVIDIA_RTX_A5500 <: NVIDIA_RTX end; export NVIDIA_RTX_A5500 abstract type NVIDIA_RTX_A6000 <: NVIDIA_RTX end; export NVIDIA_RTX_A6000 # GPU models (NVS) abstract type NVIDIA_NVS <: NVIDIAAccelerator end; export NVIDIA_NVS abstract type NVIDIA_NVS_810 <: NVIDIA_NVS end; export NVIDIA_NVS_810 # GPU models (Switch) abstract type NVIDIA_Switch <: NVIDIAAccelerator end; export NVIDIA_Switch # GPU models (P) abstract type NVIDIA_P <: NVIDIAAccelerator end; export NVIDIA_P abstract type NVIDIA_P102_100 <: NVIDIA_P end; export NVIDIA_P102_100 abstract type NVIDIA_P102_101 <: NVIDIA_P end; export NVIDIA_P102_101 abstract type NVIDIA_P104_100 <: NVIDIA_P end; export NVIDIA_P104_100 abstract type NVIDIA_P104_101 <: NVIDIA_P end; export NVIDIA_P104_101 abstract type NVIDIA_P106_090 <: NVIDIA_P end; export NVIDIA_P106_090 abstract type NVIDIA_P106_100 <: NVIDIA_P end; export NVIDIA_P106_100 abstract type NVIDIA_P106M <: NVIDIA_P end; export NVIDIA_P106M abstract type NVIDIA_PG506_232 <: NVIDIA_P end; export NVIDIA_PG506_232 abstract type NVIDIA_PG506_242 <: NVIDIA_P end; export NVIDIA_PG506_242 # GPU models (T) abstract type NVIDIA_T <: NVIDIAAccelerator end; export NVIDIA_T abstract type NVIDIA_T1000 <: NVIDIA_T end; export NVIDIA_T1000 abstract type NVIDIA_T400 <: NVIDIA_T end; export NVIDIA_T400 abstract type NVIDIA_T500 <: NVIDIA_T end; export NVIDIA_T500 abstract type NVIDIA_T550 <: NVIDIA_T end; export NVIDIA_T550 abstract type NVIDIA_T600 <: NVIDIA_T end; export NVIDIA_T600 # GPU models (Titan) abstract type NVIDIATitan <: NVIDIAAccelerator end; export NVIDIATitan abstract type NVIDIATitan_RTX <: NVIDIATitan end; export NVIDIATitan_RTX abstract type NVIDIATitan_V <: NVIDIATitan end; export NVIDIATitan_V abstract type NVIDIATitan_X <: NVIDIATitan end; export NVIDIATitan_X abstract type NVIDIATitan_Xp <: NVIDIATitan end; export NVIDIATitan_Xp # GPU models (Grid) abstract type NVIDIAGrid <: NVIDIAAccelerator end; export NVIDIAGrid abstract type NVIDIAGrid_K520 <: NVIDIAGrid end; export NVIDIAGrid_K520 abstract type NVIDIAGrid_A100A <: NVIDIAGrid end; export NVIDIAGrid_A100A abstract type NVIDIAGrid_A100B <: NVIDIAGrid end; export NVIDIAGrid_A100B abstract type NVIDIAGrid_M10_8Q <: NVIDIAGrid end; export NVIDIAGrid_M10_8Q abstract type NVIDIAGrid_M3_3020 <: NVIDIAGrid end; export NVIDIAGrid_M3_3020 abstract type NVIDIAGrid_M40 <: NVIDIAGrid end; export NVIDIAGrid_M40 abstract type NVIDIAGrid_M6_8Q <: NVIDIAGrid end; export NVIDIAGrid_M6_8Q abstract type NVIDIAGrid_M60_1Q <: NVIDIAGrid end; export NVIDIAGrid_M60_1Q abstract type NVIDIAGrid_M60_2Q <: NVIDIAGrid end; export NVIDIAGrid_M60_2Q abstract type NVIDIAGrid_M60_4A <: NVIDIAGrid end; export NVIDIAGrid_M60_4A abstract type NVIDIAGrid_M60_8Q <: NVIDIAGrid end; export NVIDIAGrid_M60_8Q abstract type NVIDIAGrid_RTX_T10_16 <: NVIDIAGrid end; export NVIDIAGrid_RTX_T10_16 abstract type NVIDIAGrid_RTX_T10_2 <: NVIDIAGrid end; export NVIDIAGrid_RTX_T10_2 abstract type NVIDIAGrid_RTX_T10_4 <: NVIDIAGrid end; export NVIDIAGrid_RTX_T10_4 abstract type NVIDIAGrid_RTX_T10_8 <: NVIDIAGrid end; export NVIDIAGrid_RTX_T10_8 # GPU models (Quadro) abstract type NVIDIAQuadro <: NVIDIAAccelerator end; export NVIDIAQuadro abstract type NVIDIAQuadro_Plex <: NVIDIAAccelerator end; export NVIDIAQuadro_Plex abstract type NVIDIAQuadro_2200_D2 <: NVIDIAQuadro_Plex end; export NVIDIAQuadro_2200_D2 abstract type NVIDIAQuadro_2200_S4 <: NVIDIAQuadro_Plex end; export NVIDIAQuadro_2200_S4 abstract type NVIDIAQuadro_GP100 <: NVIDIAQuadro end; export NVIDIAQuadro_GP100 abstract type NVIDIAQuadro_GV100 <: NVIDIAQuadro end; export NVIDIAQuadro_GV100 abstract type NVIDIAQuadro_K1200 <: NVIDIAQuadro end; export NVIDIAQuadro_K1200 abstract type NVIDIAQuadro_K620M <: NVIDIAQuadro end; export NVIDIAQuadro_K620M abstract type NVIDIAQuadro_M1000M <: NVIDIAQuadro end; export NVIDIAQuadro_M1000M abstract type NVIDIAQuadro_M1200 <: NVIDIAQuadro end; export NVIDIAQuadro_M1200 abstract type NVIDIAQuadro_M2000 <: NVIDIAQuadro end; export NVIDIAQuadro_M2000 abstract type NVIDIAQuadro_M2000M <: NVIDIAQuadro end; export NVIDIAQuadro_M2000M abstract type NVIDIAQuadro_M2200 <: NVIDIAQuadro end; export NVIDIAQuadro_M2200 abstract type NVIDIAQuadro_M3000 <: NVIDIAQuadro end; export NVIDIAQuadro_M3000 abstract type NVIDIAQuadro_M3000M <: NVIDIAQuadro end; export NVIDIAQuadro_M3000M abstract type NVIDIAQuadro_M4000 <: NVIDIAQuadro end; export NVIDIAQuadro_M4000 abstract type NVIDIAQuadro_M4000M <: NVIDIAQuadro end; export NVIDIAQuadro_M4000M abstract type NVIDIAQuadro_M5000 <: NVIDIAQuadro end; export NVIDIAQuadro_M5000 abstract type NVIDIAQuadro_M5000M <: NVIDIAQuadro end; export NVIDIAQuadro_M5000M abstract type NVIDIAQuadro_M500M <: NVIDIAQuadro end; export NVIDIAQuadro_M500M abstract type NVIDIAQuadro_M520 <: NVIDIAQuadro end; export NVIDIAQuadro_M520 abstract type NVIDIAQuadro_M5500 <: NVIDIAQuadro end; export NVIDIAQuadro_M5500 abstract type NVIDIAQuadro_M6000 <: NVIDIAQuadro end; export NVIDIAQuadro_M6000 abstract type NVIDIAQuadro_M600M <: NVIDIAQuadro end; export NVIDIAQuadro_M600M abstract type NVIDIAQuadro_M620 <: NVIDIAQuadro end; export NVIDIAQuadro_M620 abstract type NVIDIAQuadro_P1000 <: NVIDIAQuadro end; export NVIDIAQuadro_P1000 abstract type NVIDIAQuadro_P2000 <: NVIDIAQuadro end; export NVIDIAQuadro_P2000 abstract type NVIDIAQuadro_P2200 <: NVIDIAQuadro end; export NVIDIAQuadro_P2200 abstract type NVIDIAQuadro_P3000 <: NVIDIAQuadro end; export NVIDIAQuadro_P3000 abstract type NVIDIAQuadro_P3200 <: NVIDIAQuadro end; export NVIDIAQuadro_P3200 abstract type NVIDIAQuadro_P400 <: NVIDIAQuadro end; export NVIDIAQuadro_P400 abstract type NVIDIAQuadro_P4000 <: NVIDIAQuadro end; export NVIDIAQuadro_P4000 abstract type NVIDIAQuadro_P4200 <: NVIDIAQuadro end; export NVIDIAQuadro_P4200 abstract type NVIDIAQuadro_P500 <: NVIDIAQuadro end; export NVIDIAQuadro_P500 abstract type NVIDIAQuadro_P5000 <: NVIDIAQuadro end; export NVIDIAQuadro_P5000 abstract type NVIDIAQuadro_P520 <: NVIDIAQuadro end; export NVIDIAQuadro_P520 abstract type NVIDIAQuadro_P5200 <: NVIDIAQuadro end; export NVIDIAQuadro_P5200 abstract type NVIDIAQuadro_P600 <: NVIDIAQuadro end; export NVIDIAQuadro_P600 abstract type NVIDIAQuadro_P6000 <: NVIDIAQuadro end; export NVIDIAQuadro_P6000 abstract type NVIDIAQuadro_P620 <: NVIDIAQuadro end; export NVIDIAQuadro_P620 abstract type NVIDIAQuadro_RTX_3000 <: NVIDIAQuadro end; export NVIDIAQuadro_RTX_3000 abstract type NVIDIAQuadro_RTX_4000 <: NVIDIAQuadro end; export NVIDIAQuadro_RTX_4000 abstract type NVIDIAQuadro_RTX_5000 <: NVIDIAQuadro end; export NVIDIAQuadro_RTX_5000 abstract type NVIDIAQuadro_RTX_6000 <: NVIDIAQuadro end; export NVIDIAQuadro_RTX_6000 abstract type NVIDIAQuadro_RTX_8000 <: NVIDIAQuadro end; export NVIDIAQuadro_RTX_8000 abstract type NVIDIAQuadro_T1000 <: NVIDIAQuadro end; export NVIDIAQuadro_T1000 abstract type NVIDIAQuadro_T1200 <: NVIDIAQuadro end; export NVIDIAQuadro_T1200 abstract type NVIDIAQuadro_T2000 <: NVIDIAQuadro end; export NVIDIAQuadro_T2000 # GPU models (Jetson) abstract type NVIDIAJetson <: NVIDIAAccelerator end; export NVIDIAJetson abstract type NVIDIAJetson_Nano <: NVIDIAJetson end; export NVIDIAJetson_Nano abstract type NVIDIAJetson_TX1 <: NVIDIAJetson end; export NVIDIAJetson_TX1 abstract type NVIDIAJetson_TX2 <: NVIDIAJetson end; export NVIDIAJetson_TX2 abstract type NVIDIAJetson_Xavier <: NVIDIAJetson end; export NVIDIAJetson_Xavier # GPU models (Cmp) abstract type NVIDIACmp <: NVIDIAAccelerator end; export NVIDIACmp abstract type NVIDIACmp_170HX <: NVIDIACmp end; export NVIDIACmp_170HX abstract type NVIDIACmp_30HX <: NVIDIACmp end; export NVIDIACmp_30HX abstract type NVIDIACmp_40HX <: NVIDIACmp end; export NVIDIACmp_40HX abstract type NVIDIACmp_50HX <: NVIDIACmp end; export NVIDIACmp_50HX abstract type NVIDIACmp_70HX <: NVIDIACmp end; export NVIDIACmp_70HX abstract type NVIDIACmp_90HX <: NVIDIACmp end; export NVIDIACmp_90HX # GPU models (GeForce) abstract type NVIDIAGeForce <: NVIDIAAccelerator end; export NVIDIA_GeForce abstract type NVIDIAGeForce7 <: NVIDIAGeForce end; export NVIDIA_GeForce7 abstract type NVIDIAGeForce8 <: NVIDIAGeForce end; export NVIDIA_GeForce8 abstract type NVIDIAGeForce9 <: NVIDIAGeForce end; export NVIDIA_GeForce9 abstract type NVIDIAGeForce_GT <: NVIDIAGeForce end; export NVIDIAGeForce_GT abstract type NVIDIAGeForce_MX <: NVIDIAGeForce end; export NVIDIAGeForce_MX abstract type NVIDIAGeForce_GTX <: NVIDIAGeForce end; export NVIDIAGeForce_GTX abstract type NVIDIAGeForce_RTX <: NVIDIAGeForce end; export NVIDIAGeForce_RTX abstract type NVIDIAGeForce_GTX7Series <: NVIDIAGeForce_GTX end; export NVIDIAGeForce_GTX7Series abstract type NVIDIAGeForce_GTX8Series <: NVIDIAGeForce_GTX end; export NVIDIAGeForce_GTX8Series abstract type NVIDIAGeForce_GTX9Series <: NVIDIAGeForce_GTX end; export NVIDIAGeForce_GTX9Series abstract type NVIDIAGeForce_GTX10Series <: NVIDIAGeForce_GTX end; export NVIDIAGeForce_GTX10Series abstract type NVIDIAGeForce_GTX16Series <: NVIDIAGeForce_GTX end; export NVIDIAGeForce_GTX16Series abstract type NVIDIAGeForce_RTX20Series <: NVIDIAGeForce_RTX end; export NVIDIAGeForce_RTX20Series abstract type NVIDIAGeForce_RTX30Series <: NVIDIAGeForce_RTX end; export NVIDIAGeForce_RTX30Series abstract type NVIDIAGeForce_RTX40Series <: NVIDIAGeForce_RTX end; export NVIDIAGeForce_RTX30Series abstract type NVIDIAGeForce_710A <: NVIDIAGeForce7 end; export NVIDIAGeForce_710A abstract type NVIDIAGeForce_810M <: NVIDIAGeForce8 end; export NVIDIAGeForce_810M abstract type NVIDIAGeForce_820M <: NVIDIAGeForce8 end; export NVIDIAGeForce_820M abstract type NVIDIAGeForce_845M <: NVIDIAGeForce8 end; export NVIDIAGeForce_845M abstract type NVIDIAGeForce_910M <: NVIDIAGeForce9 end; export NVIDIAGeForce_910M abstract type NVIDIAGeForce_920A <: NVIDIAGeForce9 end; export NVIDIAGeForce_920A abstract type NVIDIAGeForce_920M <: NVIDIAGeForce9 end; export NVIDIAGeForce_920M abstract type NVIDIAGeForce_920MX <: NVIDIAGeForce9 end; export NVIDIAGeForce_920MX abstract type NVIDIAGeForce_930A <: NVIDIAGeForce9 end; export NVIDIAGeForce_930A abstract type NVIDIAGeForce_930M <: NVIDIAGeForce9 end; export NVIDIAGeForce_930M abstract type NVIDIAGeForce_930MX <: NVIDIAGeForce9 end; export NVIDIAGeForce_930MX abstract type NVIDIAGeForce_940A <: NVIDIAGeForce9 end; export NVIDIAGeForce_940A abstract type NVIDIAGeForce_940M <: NVIDIAGeForce9 end; export NVIDIAGeForce_940M abstract type NVIDIAGeForce_940MX <: NVIDIAGeForce9 end; export NVIDIAGeForce_940MX abstract type NVIDIAGeForce_945A <: NVIDIAGeForce9 end; export NVIDIAGeForce_945A abstract type NVIDIAGeForce_945M <: NVIDIAGeForce9 end; export NVIDIAGeForce_945M abstract type NVIDIAGeForce_GT_1010 <: NVIDIAGeForce_GT end; export NVIDIAGeForce_GT_1010 abstract type NVIDIAGeForce_GT_1030 <: NVIDIAGeForce_GT end; export NVIDIAGeForce_GT_1030 abstract type NVIDIAGeForce_GT_610 <: NVIDIAGeForce_GT end; export NVIDIAGeForce_GT_610 abstract type NVIDIAGeForce_GT_710 <: NVIDIAGeForce_GT end; export NVIDIAGeForce_GT_710 abstract type NVIDIAGeForce_GT_720 <: NVIDIAGeForce_GT end; export NVIDIAGeForce_GT_720 abstract type NVIDIAGeForce_GT_730 <: NVIDIAGeForce_GT end; export NVIDIAGeForce_GT_730 abstract type NVIDIAGeForce_GT_740 <: NVIDIAGeForce_GT end; export NVIDIAGeForce_GT_740 abstract type NVIDIAGeForce_GTX_1050 <: NVIDIAGeForce_GTX10Series end; export NVIDIAGeForce_GTX_1050 abstract type NVIDIAGeForce_GTX_1060 <: NVIDIAGeForce_GTX10Series end; export NVIDIAGeForce_GTX_1060 abstract type NVIDIAGeForce_GTX_1070 <: NVIDIAGeForce_GTX10Series end; export NVIDIAGeForce_GTX_1070 abstract type NVIDIAGeForce_GTX_1080 <: NVIDIAGeForce_GTX10Series end; export NVIDIAGeForce_GTX_1080 abstract type NVIDIAGeForce_GTX_1630 <: NVIDIAGeForce_GTX16Series end; export NVIDIAGeForce_GTX_1630 abstract type NVIDIAGeForce_GTX_1650 <: NVIDIAGeForce_GTX16Series end; export NVIDIAGeForce_GTX_1650 abstract type NVIDIAGeForce_GTX_1660 <: NVIDIAGeForce_GTX16Series end; export NVIDIAGeForce_GTX_1660 abstract type NVIDIAGeForce_GTX_750 <: NVIDIAGeForce_GTX7Series end; export NVIDIAGeForce_GTX_750 abstract type NVIDIAGeForce_GTX_760 <: NVIDIAGeForce_GTX7Series end; export NVIDIAGeForce_GTX_760 abstract type NVIDIAGeForce_GTX_860M <: NVIDIAGeForce_GTX8Series end; export NVIDIAGeForce_GTX_860M abstract type NVIDIAGeForce_GTX_950 <: NVIDIAGeForce_GTX9Series end; export NVIDIAGeForce_GTX_950 abstract type NVIDIAGeForce_GTX_950A <: NVIDIAGeForce_GTX9Series end; export NVIDIAGeForce_GTX_950A abstract type NVIDIAGeForce_GTX_950M <: NVIDIAGeForce_GTX9Series end; export NVIDIAGeForce_GTX_950M abstract type NVIDIAGeForce_GTX_960 <: NVIDIAGeForce_GTX9Series end; export NVIDIAGeForce_GTX_960 abstract type NVIDIAGeForce_GTX_960A <: NVIDIAGeForce_GTX9Series end; export NVIDIAGeForce_GTX_960A abstract type NVIDIAGeForce_GTX_960M <: NVIDIAGeForce_GTX9Series end; export NVIDIAGeForce_GTX_960M abstract type NVIDIAGeForce_GTX_965M <: NVIDIAGeForce_GTX9Series end; export NVIDIAGeForce_GTX_965M abstract type NVIDIAGeForce_GTX_980 <: NVIDIAGeForce_GTX9Series end; export NVIDIAGeForce_GTX_980 abstract type NVIDIAGeForce_GTX_980MX <: NVIDIAGeForce_GTX9Series end; export NVIDIAGeForce_GTX_980MX abstract type NVIDIAGeForce_GTX_TITAN_X <: NVIDIAGeForce_GTX end; export NVIDIAGeForce_GTX_TITAN_X abstract type NVIDIAGeForce_MX110 <: NVIDIAGeForce_MX end; export NVIDIAGeForce_MX110 abstract type NVIDIAGeForce_MX130 <: NVIDIAGeForce_MX end; export NVIDIAGeForce_MX130 abstract type NVIDIAGeForce_MX150 <: NVIDIAGeForce_MX end; export NVIDIAGeForce_MX150 abstract type NVIDIAGeForce_MX230 <: NVIDIAGeForce_MX end; export NVIDIAGeForce_MX230 abstract type NVIDIAGeForce_MX250 <: NVIDIAGeForce_MX end; export NVIDIAGeForce_MX250 abstract type NVIDIAGeForce_MX330 <: NVIDIAGeForce_MX end; export NVIDIAGeForce_MX330 abstract type NVIDIAGeForce_MX350 <: NVIDIAGeForce_MX end; export NVIDIAGeForce_MX350 abstract type NVIDIAGeForce_MX450 <: NVIDIAGeForce_MX end; export NVIDIAGeForce_MX450 abstract type NVIDIAGeForce_MX550 <: NVIDIAGeForce_MX end; export NVIDIAGeForce_MX550 abstract type NVIDIAGeForce_MX570 <: NVIDIAGeForce_MX end; export NVIDIAGeForce_MX570 abstract type NVIDIAGeForce_RTX_2050 <: NVIDIAGeForce_RTX20Series end; export NVIDIAGeForce_RTX_2050 abstract type NVIDIAGeForce_RTX_2060 <: NVIDIAGeForce_RTX20Series end; export NVIDIAGeForce_RTX_2060 abstract type NVIDIAGeForce_RTX_2070 <: NVIDIAGeForce_RTX20Series end; export NVIDIAGeForce_RTX_2070 abstract type NVIDIAGeForce_RTX_2080 <: NVIDIAGeForce_RTX20Series end; export NVIDIAGeForce_RTX_2080 abstract type NVIDIAGeForce_RTX_3050 <: NVIDIAGeForce_RTX30Series end; export NVIDIAGeForce_RTX_3050 abstract type NVIDIAGeForce_RTX_3060 <: NVIDIAGeForce_RTX30Series end; export NVIDIAGeForce_RTX_3060 abstract type NVIDIAGeForce_RTX_3070 <: NVIDIAGeForce_RTX30Series end; export NVIDIAGeForce_RTX_3070 abstract type NVIDIAGeForce_RTX_3080 <: NVIDIAGeForce_RTX30Series end; export NVIDIAGeForce_RTX_3080 abstract type NVIDIAGeForce_RTX_3090 <: NVIDIAGeForce_RTX30Series end; export NVIDIAGeForce_RTX_3090 abstract type NVIDIAGeForce_RTX_4060 <: NVIDIAGeForce_RTX40Series end; export NVIDIAGeForce_RTX_4060 abstract type NVIDIAGeForce_RTX_4070 <: NVIDIAGeForce_RTX40Series end; export NVIDIAGeForce_RTX_4070 abstract type NVIDIAGeForce_RTX_4080 <: NVIDIAGeForce_RTX40Series end; export NVIDIAGeForce_RTX_4080 abstract type NVIDIAGeForce_RTX_4090 <: NVIDIAGeForce_RTX40Series end; export NVIDIAGeForce_RTX_4090
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
448
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ abstract type Xilinx <: Manufacturer end; export Xilinx abstract type UltrascalePlus_HBM_FPGA <: AcceleratorType end; export UltrascalePlus_HBM_FPGA abstract type UltrascalePlus_VU9P <: AcceleratorType end; export UltrascalePlus_VU9P #TODO
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
6414
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ # automated declaration of at-least quantifier types abstract type AtLeast0 <: QuantifierFeature end; export AtLeast0 let mul_super = 0 mag_ = "" for mag in ["n", "u", "m", "", "K", "M", "G", "T", "P", "E"] for mul in [1, 2, 4, 8, 16, 32, 64, 128, 256, 512] mag_super = mul == 1 ? mag_ : mag nm1 = Symbol("AtLeast" * string(mul) * mag) nm2 = Symbol("AtLeast" * string(mul_super) * mag_super) @eval abstract type $nm1 <: $nm2 end @eval export $nm1 mul_super = mul end mag_ = mag end end abstract type AtLeastInf <: AtLeast512E end #= abstract type AtLeast0 end # 0 abstract type AtLeast1n <: AtLeast0 end # 2^-30 abstract type AtLeast2n <: AtLeast1n end # 2^-29 abstract type AtLeast4n <: AtLeast2n end # 2^-28 abstract type AtLeast8n <: AtLeast4n end # 2^-27 abstract type AtLeast16n <: AtLeast8n end # 2^-26 abstract type AtLeast32n <: AtLeast16n end # 2^-25 abstract type AtLeast64n <: AtLeast32n end # 2^-24 abstract type AtLeast128n <: AtLeast64n end # 2^-23 abstract type AtLeast256n <: AtLeast128n end # 2^-22 abstract type AtLeast512n <: AtLeast256n end # 2^-21 abstract type AtLeast1u <: AtLeast512n end # 2^-20 abstract type AtLeast2u <: AtLeast1u end # 2^-19 abstract type AtLeast4u <: AtLeast2u end # 2^-18 abstract type AtLeast8u <: AtLeast4u end # 2^-17 abstract type AtLeast16u <: AtLeast8u end # 2^-16 abstract type AtLeast32u <: AtLeast16u end # 2^-15 abstract type AtLeast64u <: AtLeast32u end # 2^-14 abstract type AtLeast128u <: AtLeast64u end # 2^-13 abstract type AtLeast256u <: AtLeast128u end # 2^-12 abstract type AtLeast512u <: AtLeast256u end # 2^-11 abstract type AtLeast1m <: AtLeast512u end # 2^-10 abstract type AtLeast2m <: AtLeast1m end # 2^-9 abstract type AtLeast4m <: AtLeast2m end # 2^-8 abstract type AtLeast8m <: AtLeast4m end # 2^-7 abstract type AtLeast16m <: AtLeast8m end # 2^-6 abstract type AtLeast32m <: AtLeast16m end # 2^-5 abstract type AtLeast64m <: AtLeast32m end # 2^-4 abstract type AtLeast128m <: AtLeast64m end # 2^-3 abstract type AtLeast256m <: AtLeast128m end # 2^-2 abstract type AtLeast512m <: AtLeast256m end # 2^-1 abstract type AtLeast1 <: AtLeast512m end # 2^0 abstract type AtLeast2 <: AtLeast1 end # 2^1 abstract type AtLeast4 <: AtLeast2 end # 2^2 abstract type AtLeast8 <: AtLeast4 end # 2^3 abstract type AtLeast16 <: AtLeast8 end # 2^4 abstract type AtLeast32 <: AtLeast16 end # 2^5 abstract type AtLeast64 <: AtLeast32 end # 2^6 abstract type AtLeast128 <: AtLeast64 end # 2^7 abstract type AtLeast256 <: AtLeast128 end # 2^8 abstract type AtLeast512 <: AtLeast256 end # 2^9 abstract type AtLeast1K <: AtLeast512 end # 2^10 abstract type AtLeast2K <: AtLeast1K end # 2^11 abstract type AtLeast4K <: AtLeast2K end # 2^12 abstract type AtLeast8K <: AtLeast4K end # 2^13 abstract type AtLeast16K <: AtLeast8K end # 2^14 abstract type AtLeast32K <: AtLeast16K end # 2^15 abstract type AtLeast64K <: AtLeast32K end # 2^16 abstract type AtLeast128K <: AtLeast64K end # 2^17 abstract type AtLeast256K <: AtLeast128K end # 2^18 abstract type AtLeast512K <: AtLeast256K end # 2^19 abstract type AtLeast1M <: AtLeast512K end # 2^20 abstract type AtLeast2M <: AtLeast1M end # 2^21 abstract type AtLeast4M <: AtLeast2M end # 2^22 abstract type AtLeast8M <: AtLeast4M end # 2^23 abstract type AtLeast16M <: AtLeast8M end # 2^24 abstract type AtLeast32M <: AtLeast16M end # 2^25 abstract type AtLeast64M <: AtLeast32M end # 2^26 abstract type AtLeast128M <: AtLeast64M end # 2^27 abstract type AtLeast256M <: AtLeast128M end # 2^28 abstract type AtLeast512M <: AtLeast256M end # 2^29 abstract type AtLeast1G <: AtLeast512M end # 2^30 abstract type AtLeast2G <: AtLeast1G end # 2^31 abstract type AtLeast4G <: AtLeast2G end # 2^32 abstract type AtLeast8G <: AtLeast4G end # 2^33 abstract type AtLeast16G <: AtLeast8G end # 2^34 abstract type AtLeast32G <: AtLeast16G end # 2^35 abstract type AtLeast64G <: AtLeast32G end # 2^36 abstract type AtLeast128G <: AtLeast64G end # 2^37 abstract type AtLeast256G <: AtLeast128G end # 2^38 abstract type AtLeast512G <: AtLeast256G end # 2^39 abstract type AtLeast1T <: AtLeast512G end # 2^40 abstract type AtLeast2T <: AtLeast1T end # 2^41 abstract type AtLeast4T <: AtLeast2T end # 2^42 abstract type AtLeast8T <: AtLeast4T end # 2^43 abstract type AtLeast16T <: AtLeast8T end # 2^44 abstract type AtLeast32T <: AtLeast16T end # 2^45 abstract type AtLeast64T <: AtLeast32T end # 2^46 abstract type AtLeast128T <: AtLeast64T end # 2^47 abstract type AtLeast256T <: AtLeast128T end # 2^48 abstract type AtLeast512T <: AtLeast256T end # 2^49 abstract type AtLeast1P <: AtLeast512T end # 2^50 abstract type AtLeast2P <: AtLeast1P end # 2^51 abstract type AtLeast4P <: AtLeast2P end # 2^52 abstract type AtLeast8P <: AtLeast4P end # 2^53 abstract type AtLeast16P <: AtLeast8P end # 2^54 abstract type AtLeast32P <: AtLeast16P end # 2^55 abstract type AtLeast64P <: AtLeast32P end # 2^56 abstract type AtLeast128P <: AtLeast64P end # 2^57 abstract type AtLeast256P <: AtLeast128P end # 2^58 abstract type AtLeast512P <: AtLeast256P end # 2^59 abstract type AtLeast1E <: AtLeast512T end # 2^60 abstract type AtLeast2E <: AtLeast1E end # 2^61 abstract type AtLeast4E <: AtLeast2E end # 2^62 abstract type AtLeast8E <: AtLeast4E end # 2^63 abstract type AtLeast16E <: AtLeast8E end # 2^64 abstract type AtLeast32E <: AtLeast16E end # 2^65 abstract type AtLeast64E <: AtLeast32E end # 2^66 abstract type AtLeast128E <: AtLeast64E end # 2^67 abstract type AtLeast256E <: AtLeast128E end # 2^68 abstract type AtLeast512E <: AtLeast256E end # 2^69 # ... abstract type AtLeastInf <: AtLeast512E end # ∞ =#
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
7366
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ # automated declaration of at-most quantifier types abstract type AtMostInf <: QuantifierFeature end; export AtMostInf let mul_super = "Inf" , mag_ = "" ; for mag in reverse(["n", "u", "m", "", "K", "M", "G", "T", "P", "E"]) for mul in reverse([1, 2, 4, 8, 16, 32, 64, 128, 256, 512]) mag_super = mul==512 ? mag_ : mag nm1 = Symbol("AtMost" * string(mul) * mag) nm2 = Symbol("AtMost" * string(mul_super) * mag_super) @eval abstract type $nm1 <: $nm2 end @eval export $nm1 mul_super = mul end mag_ = mag end end abstract type AtMost0 <: AtMost1n end; export AtMost0 #= abstract type AtMostInf end # ∞ abstract type AtMost512E <: AtMostInf end # 2^69 abstract type AtMost256E <: AtMost512E end # 2^68 abstract type AtMost128E <: AtMost256E end # 2^67 abstract type AtMost64E <: AtMost128E end # 2^66 abstract type AtMost32E <: AtMost64E end # 2^65 abstract type AtMost16E <: AtMost32E end # 2^64 abstract type AtMost8E <: AtMost16E end # 2^63 abstract type AtMost4E <: AtMost8E end # 2^62 abstract type AtMost2E <: AtMost4E end # 2^61 abstract type AtMost1E <: AtMost2E end # 2^60 abstract type AtMost512P <: AtMost1E end # 2^59 abstract type AtMost256P <: AtMost512P end # 2^58 abstract type AtMost128P <: AtMost256P end # 2^57 abstract type AtMost64P <: AtMost128P end # 2^56 abstract type AtMost32P <: AtMost64P end # 2^55 abstract type AtMost16P <: AtMost32P end # 2^54 abstract type AtMost8P <: AtMost16P end # 2^53 abstract type AtMost4P <: AtMost8P end # 2^52 abstract type AtMost2P <: AtMost4P end # 2^51 abstract type AtMost1P <: AtMost2P end # 2^50 abstract type AtMost512T <: AtMost1P end # 2^49 abstract type AtMost256T <: AtMost512T end # 2^48 abstract type AtMost128T <: AtMost256T end # 2^47 abstract type AtMost64T <: AtMost128T end # 2^46 abstract type AtMost32T <: AtMost64T end # 2^45 abstract type AtMost16T <: AtMost32T end # 2^44 abstract type AtMost8T <: AtMost16T end # 2^43 abstract type AtMost4T <: AtMost8T end # 2^42 abstract type AtMost2T <: AtMost4T end # 2^41 abstract type AtMost1T <: AtMost2T end # 2^40 abstract type AtMost512G <: AtMost1T end # 2^39 abstract type AtMost256G <: AtMost512G end # 2^38 abstract type AtMost128G <: AtMost256G end # 2^37 abstract type AtMost64G <: AtMost128G end # 2^36 abstract type AtMost32G <: AtMost64G end # 2^35 abstract type AtMost16G <: AtMost32G end # 2^34 abstract type AtMost8G <: AtMost16G end # 2^33 abstract type AtMost4G <: AtMost8G end # 2^32 abstract type AtMost2G <: AtMost4G end # 2^31 abstract type AtMost1G <: AtMost2G end # 2^30 abstract type AtMost512M <: AtMost1G end # 2^29 abstract type AtMost256M <: AtMost512M end # 2^28 abstract type AtMost128M <: AtMost256M end # 2^27 abstract type AtMost64M <: AtMost128M end # 2^26 abstract type AtMost32M <: AtMost64M end # 2^25 abstract type AtMost16M <: AtMost32M end # 2^24 abstract type AtMost8M <: AtMost16M end # 2^23 abstract type AtMost4M <: AtMost8M end # 2^22 abstract type AtMost2M <: AtMost4M end # 2^21 abstract type AtMost1M <: AtMost2M end # 2^20 abstract type AtMost512K <: AtMost1M end # 2^19 abstract type AtMost256K <: AtMost512K end # 2^18 abstract type AtMost128K <: AtMost256K end # 2^17 abstract type AtMost64K <: AtMost128K end # 2^16 abstract type AtMost32K <: AtMost64K end # 2^15 abstract type AtMost16K <: AtMost32K end # 2^14 abstract type AtMost8K <: AtMost16K end # 2^13 abstract type AtMost4K <: AtMost8K end # 2^12 abstract type AtMost2K <: AtMost4K end # 2^11 abstract type AtMost1K <: AtMost2K end # 2^10 abstract type AtMost512 <: AtMost1K end # 2^9 abstract type AtMost256 <: AtMost512 end # 2^8 abstract type AtMost128 <: AtMost256 end # 2^7 abstract type AtMost64 <: AtMost128 end # 2^6 abstract type AtMost32 <: AtMost64 end # 2^5 abstract type AtMost16 <: AtMost32 end # 2^4 abstract type AtMost8 <: AtMost16 end # 2^3 abstract type AtMost4 <: AtMost8 end # 2^2 abstract type AtMost2 <: AtMost4 end # 2^1 abstract type AtMost1 <: AtMost2 end # 2^0 abstract type AtMost512m <: AtMost1 end # 2^-1 abstract type AtMost256m <: AtMost512m end # 2^-2 abstract type AtMost128m <: AtMost256m end # 2^-3 abstract type AtMost64m <: AtMost128m end # 2^-4 abstract type AtMost32m <: AtMost64m end # 2^-5 abstract type AtMost16m <: AtMost32m end # 2^-6 abstract type AtMost8m <: AtMost16m end # 2^-7 abstract type AtMost4m <: AtMost8m end # 2^-8 abstract type AtMost2m <: AtMost4m end # 2^-9 abstract type AtMost1m <: AtMost2m end # 2^-10 abstract type AtMost512u <: AtMost1m end # 2^-11 abstract type AtMost256u <: AtMost512u end # 2^-12 abstract type AtMost128u <: AtMost256u end # 2^-13 abstract type AtMost64u <: AtMost128u end # 2^-14 abstract type AtMost32u <: AtMost64u end # 2^-15 abstract type AtMost16u <: AtMost32u end # 2^-16 abstract type AtMost8u <: AtMost16u end # 2^-17 abstract type AtMost4u <: AtMost8u end # 2^-18 abstract type AtMost2u <: AtMost4u end # 2^-19 abstract type AtMost1u <: AtMost2u end # 2^-20 abstract type AtMost512n <: AtMost1u end # 2^-21 abstract type AtMost256n <: AtMost512n end # 2^-22 abstract type AtMost128n <: AtMost256n end # 2^-23 abstract type AtMost64n <: AtMost128n end # 2^-24 abstract type AtMost32n <: AtMost64n end # 2^-25 abstract type AtMost16n <: AtMost32n end # 2^-26 abstract type AtMost8n <: AtMost16n end # 2^-27 abstract type AtMost4n <: AtMost8n end # 2^-28 abstract type AtMost2n <: AtMost4n end # 2^-29 abstract type AtMost1n <: AtMost2n end # 2^-30 abstract type AtMost0 <: AtMost1n end # 0 =#
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
1992
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ macro quantifier(n) nn = eval(n) get_quantifier(nn) end macro atleast(n) N = n==:∞ || n==:inf ? "AtLeastInf" : "AtLeast" * string(n) # Meta.parse("Type{<:Tuple{$N,AtMostInf,X} where X}") Meta.parse("Tuple{$N,AtMostInf,X} where X") end macro atleast(n,x) N = n==:∞ || n==:inf ? "AtLeastInf" : "AtLeast" * string(n) # Meta.parse("Type{<:Tuple{$N,AtMostInf,$(x)}}") Meta.parse("Tuple{$N,AtMostInf,$(x)}") end macro atmost(n) N = n==:∞ || n==:inf ? "AtMostInf" : "AtMost" * string(n); # Meta.parse("Type{<:Tuple{AtLeast0,$N,X} where X}") Meta.parse("Tuple{AtLeast0,$N,X} where X") end macro atmost(n,x) N = n==:∞ || n==:inf ? "AtMostInf" : "AtMost" * string(n); # Meta.parse("Type{<:Tuple{AtLeast0,$N,$(x)}}") Meta.parse("Tuple{AtLeast0,$N,$(x)}") end macro between(m,n) M = m==:∞ || n==:inf ? "AtLeastInf" : "AtLeast" * string(m) N = n==:∞ || n==:inf ? "AtMostInf" : "AtMost" * string(n) # Meta.parse("Type{<:Tuple{$M,$N,X} where X}") Meta.parse("Tuple{$M,$N,X} where X") end macro between(m,n,x) M = m==:∞ || n==:inf ? "AtLeastInf" : "AtLeast" * string(m) N = n==:∞ || n==:inf ? "AtMostInf" : "AtMost" * string(n) # Meta.parse("Type{<:Tuple{$M,$N,$(x)}}") Meta.parse("Tuple{$M,$N,$(x)}") end macro just(m) M = m==:∞ || m==:inf ? "AtLeastInf" : "AtLeast" * string(m) N = m==:∞ || m==:inf ? "AtMostInf" : "AtMost" * string(m) # Meta.parse("Type{<:Tuple{$M,$N,X} where X}") Meta.parse("Tuple{$M,$N,X} where X") end macro just(m,x) M = m==:∞ || m==:inf ? "AtLeastInf" : "AtLeast" * string(m) N = m==:∞ || m==:inf ? "AtMostInf" : "AtMost" * string(m) # Meta.parse("Type{<:Tuple{$M,$N,$(x)}}") Meta.parse("Tuple{$M,$N,$(x)}") end macro unrestricted() @atleast 0 end
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
4051
@testset "Basics" begin @platform feature clear #= for the first 5 kernels =# @platform feature accelerator_count @platform feature accelerator_manufacturer @platform feature accelerator_api @platform feature node_count @platform feature processor @platform feature accelerator_architecture #= for all kernels =# @platform feature node_memory_size @platform feature processor_count @platform feature processor_core_count @platform feature interconnection_bandwidth @platform feature interconnection_latency @platform feature accelerator_type @platform feature accelerator_memory_size @platform feature processor_simd # define a kernel @platform default function kernel(x,y,args...; z=0, kwargs...) println(z,": default implementation of kernel_example:") end # specify platform-aware implementations @platform aware function kernel({accelerator_count::(@atleast 1)}, y, args...; z=1, kwargs...) println(z,": kernel for 1 accelerators of unspecified kind") end @platform aware function kernel({accelerator_count::Tuple{AtLeast1,AtMostInf,C} #=(@atleast(1,C))=#, accelerator_manufacturer::NVIDIA, accelerator_api::(@api CUDA 6.0)},y,args...; z=2, kwargs...) where C println(z,": kernel 1 for $C NVIDIA accelerators") end @platform aware function kernel({accelerator_count::Tuple{AtLeast1,AtMostInf,C}#=(@atleast(1,C))=#, accelerator_manufacturer::NVIDIA, accelerator_api::(@api CUDA 5.0)},y,args...; z=2, kwargs...) where C println(z,": kernel 2 for $C NVIDIA accelerators") end @platform assumption some_cluster = {node_count::(@atleast 32), processor::IntelCore_i7_7500U} @platform aware function kernel($some_cluster, x,y,args...; z=3, kwargs...) println(z,": kernel optimized to the features of clusters with at least 32 nodes with Intel(R) Core(TM) i7-7500U processors") end @platform aware function kernel({accelerator_count::(@just 4), accelerator_manufacturer::NVIDIA, accelerator_architecture::Turing}, x,y,args...; z=4, kwargs...) println(z,": kernel for exactly 4 accelerators of NVIDIA's Turing architecture") end @platform aware function kernel({node_count::(@between 8 16), node_memory_size::(@atleast 16G), processor_count::(@atleast 2), processor_core_count::(@atleast 8), interconnection_latency::(@atmost 32u), interconnection_bandwidth::(@atleast 128G) }, x,y,args...; z=5, kwargs...) println(z,": kernel tuned for a cluster of 8 to 16 nodes having at least 2 processors with at least 8 cores each,") println(z,": connected through an intereconnection having at most 32us latency and at least 128Gbs bandwidth.") end @platform aware function kernel({accelerator_count::(@atleast 1), accelerator_type::FPGA, accelerator_memory_size::(@atleast 16G), processor_simd::AVX512, node_memory_size::(@atleast 256G) }, x,y,args...; z=6, kwargs...) println(z,": kernel for a platform equipped with a FPGA accelerator with at least 16GB of memory,") println(z,": a processor with AVX512 SIMD support, and 256GB of primary memory.") end kernel(@quantifier(7),1,2,3;z=10,kwargs=0) kernel(@quantifier(18),1,2,3;z=10,kwargs=0) end
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
code
223
using PlatformAware using Test # list of tests testfiles = [ "basics.jl" ] @testset "PlatformAware.jl" begin for testfile in testfiles println("Testing $testfile...") include(testfile) end end
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.6.0
d8f50cbc077c0992b472a07f99013cd5be80b11a
docs
16069
# PlatformAware.jl [![TagBot](https://github.com/PlatformAwareProgramming/PlatformAware.jl/actions/workflows/TagBot.yml/badge.svg)](https://github.com/decarvalhojunior-fh/PlatformAware.jl/actions/workflows/TagBot.yml) [![CompatHelper](https://github.com/PlatformAwareProgramming/PlatformAware.jl/actions/workflows/CompatHelper.yml/badge.svg)](https://github.com/PlatformAwareProgramming/PlatformAware.jl/actions/workflows/CompatHelper.yml) _A package for improving the practice of **platform-aware programming** in Julia_. It helps HPC package developers write code for different versions of computationally intensive functions (kernels) according to different assumptions about the features of the execution platform. # What is platform-aware programming ? We define platform-aware programming as the practice of coding computationally intensive functions, called _kernels_, using the most appropriate abstractions and programming interfaces, as well as performance tuning techniques, to take better advantage of the features of the target execution platform. This is a well-known practice in programming for HPC applications. Platform-aware programming is especially suitable when the developer is interested in employing heterogeneous computing resources, such as accelerators (e.g., GPUs, FPGAs, and MICs), especially in conjunction with multicore and cluster computing. For example, suppose a package developer is interested in providing a specialized kernel implementation for [NVIDIA A100 Tensor Core GPUs](https://www.nvidia.com/en-us/data-center/a100), meeting the demand from users of a specific cloud provider offering virtual machines with accelerators of this model. The developer would like to use CUDA programming with this device's supported *computing capability* (8.0). However, other users may require support from other cloud providers that support different accelerator models, from different vendors (for example, [AMD Instinct™ MI210](https://www.amd.com/en/products/server-accelerators/amd-instinct-mi210) and [Intel® Agilex™ F-Series FPGA and SoC FPGA]( https://www.intel.com/content/www/us/en/products/details/fpga/agilex/f-series.html)). In this scenario, the developer will face the challenge of coding and deploying for multiple devices. This is a typical platform-aware programming scenario where _PlatformAware.jl_ should be useful, which is becoming increasingly common as the use of heterogeneous computing platforms increases to accelerate AI and data analytics applications. ## Target users _PlatformAware.jl_ is aimed primarily at **_package developers_** dealing with HPC concerns, especially using heterogenous computing resources. We assume that **_package users_** are only interested in using package operations without being concerned about how they are implemented. # Usage tutorial We present a simple example that readers may reproduce to test _PlatformAware.jl_ features. Consider the problem of performing a convolution operation using a Fast Fourier Transform (FFT). To do this, the user can implement a ```fftconv``` function that uses a ```fft``` function offered by a user-defined package called _MyFFT.jl_, capable of performing the FFT on an accelerator (e.g., GPU) if it is present. ```julia using MyFFT fftconv(X,K) = fft(X) .* conj.(fft(K)) ``` This tutorial shows how to create _MyFFT.jl_, demonstrating the basics of how to install _PlatformAware.jl_ and how to use it to create a platform-aware package. ## Creating the _MyFFT.jl_ project In the Julia REPL, as shown in the screenshot below, run ```] generate MyFFT.jl``` to create a new project called _MyFFT.jl_, run ```🔙cd("MyFFT.jl")``` to move to the directory of the created project, and ```] activate .``` to enable the current project (_MyFFT.jl_) in the current Julia REPL session. ![f1](https://raw.githubusercontent.com/PlatformAwareProgramming/PlatformAware.jl/master/docs/src/images/f1.png) These operations create a standard _"hello world"_ project, with the contents of the following snapshot: ![f2](https://raw.githubusercontent.com/PlatformAwareProgramming/PlatformAware.jl/master/docs/src/images/f2.png) ## Installing _PlatformAware.jl_ Before coding the platform-aware package, it is necessary to add _PlatormAware.jl_ as a dependency of _MyFFT.jl_ by running the following command in the Julia REPL: ```julia ] add PlatformAware ``` Now, load the _PlatfomAware.jl_ package (```using PlatformAware``` or ```import PlatformAware```) and read the output message: ![f3](https://raw.githubusercontent.com/PlatformAwareProgramming/PlatformAware.jl/master/docs/src/images/f3.png) _Platform.toml_ is the _platform description file_, containing a set of key-value pairs, each describing a feature of the underlying platform. It must be created by the user running ```PlatformWare.setup()```, which performs a sequence of feature detection operations on the platform. _Platform.toml_ is written in a human-editable format. Therefore, it can be modified by users to add undetected platform features or ignore detected features. ## Sketching the _MyFFT.jl_ code In order to implement the _fft_ kernel function, we edit the _src/MyFFT.jl_ file. First, we sketch the code of the _fft_ kernel methods: ```julia module MyFFT import PlatformAware # setup platorm features (parameters) @platform feature clear @platform feature accelerator_count @platform feature accelerator_api # Fallback kernel @platform default fft(X) = ... # OpenCL kernel, to be called @platform aware fft({accelerator_count::(@atleast 1), accelerator_api::(@api OpenCL)}, X) = ... # CUDA kernel @platform aware fft({accelerator_count::(@atleast 1), accelerator_api::(@api CUDA)},X) = ... export fft end ``` The sequence of ```@platorm feature``` macro declarations specifies the set of platform parameters that will be used by subsequent kernel method declarations, that is, the assumptions that will be made to distinguish them. You can refer to [this table](https://docs.google.com/spreadsheets/d/1n-c4b7RxUduaKV43XrTnt54w-SR1AXgVNI7dN2OkEUc/edit?usp=sharing) for a list of all supported _**platform parameters**_. By default, they are all included. In the case of ```fft```, the kernel methods are differentiated using only two parameters: ```accelerator_count``` and ```accelerator_api```. They denote, respectively, assumptions about the number of accelerator devices and the native API they support. The ```@platorm default``` macro declares the _default kernel method_, which will be called if none of the assumptions of other kernel methods declared using ```@platform aware``` macro calls are valid. The default kernel must be unique to avoid ambiguity. Finally, the kernels for accelerators that support OpenCL and CUDA APIs are declared using the macro ```@platform aware```. The list of platform parameters is declared just before the regular parameters, such as ```X```, in braces. Their types denote assumptions. For example, ```@atleast 1``` denotes a quantifier representing one or more units of a resource, while``` @api CUDA``` and ```@api OpenCL``` denote types of qualifiers that refer to the CUDA and OpenCL APIs. The programmer must be careful not to declare kernel methods with overlapping assumptions in order to avoid ambiguities. ## Other dependencies Before adding the code for the kernels, add the code to load their dependencies. This can be done directly by adding the following code to the _src/MyFFT.jl_ file, right after ```import PlatformAware```: ```julia import CUDA import OpenCL import CLFFT import FFTW ``` Also, you should add _CUDA.jl_, _OpenCL.jl_, _CLFFT.jl_, and _FFFT.jl_ as dependencies of _MyFFT.jl_. To do this, execute the following commands in the Julia REPL: ```julia ] add CUDA OpenCL CLFFT FFTW ``` > **NOTE**: [_CLFFT.jl_](https://github.com/JuliaGPU/CLFFT.jl) is not available on JuliaHub due to compatibility issues with recent versions of Julia. We're working with the CLFFT.jl maintainers to address this issue. If you have an error with the CLFFT dependency, point to our _CLFFT.jl_ fork by running ```add https://github.com/JuliaGPU/CLFFT.jl#master```. As a performance optimization, we can take advantage of platform-aware features to selectively load dependencies, speeding up the loading of _MyFFT.jl_. To do this, we first declare a kernel function called ```which_api``` in _src/MyFFT.jl_, right after the ```@platform feature``` declaration: ```julia @platform default which_api() = :fftw @platform aware which_api({accelerator_api::(@api CUDA)}) = :cufft @platform aware which_api({accelerator_api::(@api OpenCL)}) = :clfft ``` Next, we add the code for selective dependency loading: ```julia api = which_api() if (api == :cufft) import CUDA elseif (api == :clfft) import OpenCL import CLFFT else # api == :fftw import FFTW end ``` ## Full _src/MyFFT.jl_ code Finally, we present the complete code for _src/MyFFT.jl_, with the implementation of the kernel methods: ```julia module MyFFT using PlatformAware @platform feature clear @platform feature accelerator_count @platform feature accelerator_api @platform default which_api() = :fftw @platform aware which_api({accelerator_count::(@atleast 1), accelerator_api::(@api CUDA)}) = :cufft @platform aware which_api({accelerator_count::(@atleast 1), accelerator_api::(@api OpenCL)}) = :clfft api = which_api() @info "seleted FFT API" api if (api == :cufft) using CUDA; const cufft = CUDA.CUFFT elseif (api == :clfft) using OpenCL using CLFFT; const clfft = CLFFT else # api == :fftw using FFTW; const fftw = FFTW end # Fallback kernel @platform default fft(X) = fftw.fft(X) # OpenCL kernel @platform aware function fft({accelerator_count::(@atleast 1), accelerator_api::(@api OpenCL)}, X) T = eltype(X) _, ctx, queue = cl.create_compute_context() bufX = cl.Buffer(T, ctx, :copy, hostbuf=X) p = clfft.Plan(T, ctx, size(X)) clfft.set_layout!(p, :interleaved, :interleaved) clfft.set_result!(p, :inplace) clfft.bake!(p, queue) clfft.enqueue_transform(p, :forward, [queue], bufX, nothing) reshape(cl.read(queue, bufX), size(X)) end # CUDA kernel @platform aware fft({accelerator_count::(@atleast 1), accelerator_api::(@api CUDA)},X) = cufft.fft(X |> CuArray) export fft end # module MyFFT ``` ## Running and testing the _fft_ kernel methods To test _fft_ in a convolution, open a Julia REPL session in the _MyFFT.jl_ directory and execute the following commands: > **NOTE**: If you receive an ambiguity error after executing _fftconv_, don't panic ! Read the next paragraphs. ```julia import Pkg; Pkg.activate(".") using MyFFT function fftconv(img,krn) padkrn = zeros(size(img)) copyto!(padkrn,CartesianIndices(krn),krn,CartesianIndices(krn)) fft(img) .* conj.(fft(padkrn)) end img = rand(Float64,(20,20,20)) # image krn = rand(Float64,(4,4,4)) # kernel fftconv(img,krn) ``` The _fft_ kernel method that corresponds to the current _Platform.toml_ will be selected. If _Platform.toml_ was not created before, the default kernel method will be selected. The reader can consult the _Platform.toml_ file to find out about the platform features detected by _PlatformAware.setup()_. The reader can also see the selected FFT API in the logging messages after ```using MyFFT```. By carefully modifying the _Platform.toml_ file, the reader can test all kernel methods. For example, if an NVIDIA GPU was recognized by _PlatformAware.setup()_, the ```accelerator_api``` entry in _Platform.toml_ will probably include the supported CUDA and OpenCL versions. For example, for an NVIDIA GeForce 940MX GPU, ```accelerator_api = "CUDA_5_0;OpenCL_3_0;unset;unset;OpenGL_4_6;Vulkan_1_3;DirectX_11_0"```. This may lead to an ambiguity error, as multiple dispatch will not be able to distinguish between the OpenCL and CUDA kernel methods based on the ```accelerator_api``` parameter alone. In this case, there are two alternatives: * To edit _Platform.toml_ by setting CUDA or OpenCL platform type (e.g. ```CUDA_5_0``` or ```OpenCL_3_0```) to ```unset``` in the ```accelerator_api``` entry, making it possible to select manually the kernel method that will be selected; * To modify the CUDA kernel signature by including, for example, ```accelerator_manufacturer::NVIDIA``` in the list of platform parameters, so that NVIDIA GPUs will give preference to CUDA and OpenCL will be applied to accelerators of other vendors (recommended). ## A general guideline Therefore, we suggest the following general guideline for package developers who want to take advantage of _PlatformWare.jl_. 1. Identify the _kernel functions_, that is, the functions with high computational requirements in your package, which are the natural candidates to exploit parallel computing, acceleration resources, or both. 2. Provide a default (fallback) method for each kernel function, using the ```@platform default``` macro. 3. Identify the target execution platforms to which you want to provide specialized methods for each kernel function. You can choose a set of execution platforms for all kernels, or you can select one or more platforms for each kernel independently. For helping your choice, look at the following information sources: - the [table of supported _platform **parameters**_](https://docs.google.com/spreadsheets/d/1n-c4b7RxUduaKV43XrTnt54w-SR1AXgVNI7dN2OkEUc/edit?usp=sharing), which will help you to know which assumptions _PlatformAware.jl_ already allow you to make about the target execution platorm; - the database of supported _platform **features**_, where the features of the models of processors and accelerators that are currently suported by _PlatformAware.jl_ are described: - AMD [accelerators](https://github.com/PlatformAwareProgramming/PlatformAware.jl/blob/master/src/features/qualifiers/amd/db-accelerators.AMD.csv) and [processors](https://github.com/PlatformAwareProgramming/PlatformAware.jl/blob/master/src/features/qualifiers/amd/db-processors.AMD.csv); - Intel [accelerators](https://github.com/PlatformAwareProgramming/PlatformAware.jl/blob/master/src/features/qualifiers/intel/db-accelerators.Intel.csv) and [processors](https://github.com/PlatformAwareProgramming/PlatformAware.jl/blob/master/src/features/qualifiers/intel/db-processors.Intel.csv); - NVIDIA [accelerators](https://github.com/PlatformAwareProgramming/PlatformAware.jl/blob/master/src/features/qualifiers/nvidia/db-accelerators.NVIDIA.csv). 4. For each platform you select, define a set of assumptions about its features that will guide your implementation decisions. In fact, it is possible to define different assumptions for the same platform, leading to multiple implementations of a kernel for the same platform. For example, you might decide to implement different parallel algorithms to solve a problem according to the number of nodes and the interconnection characteristics of a cluster. 5. Provide platform-aware methods for each kernel function using the ```@platform aware``` macro. 6. After implementing and testing all platform-aware methods, you have a list of platform parameters that were used to make assumptions about the target execution platform(s). You can optionally instruct the _PlatformAware.jl_ to use only that parameters by using the ``@platform feature`` macro. # Contributing Contributions are very welcome, as are feature requests and suggestions. Please [open an issue](https://github.com/PlatformAwareProgramming/PlatformAware.jl) if you encounter any problems. # License _PlatformAware.jl_ is licensed under the [MIT License](https://github.com/PlatformAwareProgramming/PlatformAware.jl/blob/master/LICENSE) [build-img]: https://img.shields.io/github/workflow/status/JuliaEarth/ImageQuilting.jl/CI [build-url]: https://github.com/PlatformAwareProgramming/PlatformAware.jl/actions
PlatformAware
https://github.com/PlatformAwareProgramming/PlatformAware.jl.git
[ "MIT" ]
0.2.7
e58d5904fa7ffa914a3eb60f8705e2ea3aaea1b9
code
538
using Documenter push!(LOAD_PATH, "../src/") using LazyAlgebra DEPLOYDOCS = (get(ENV, "CI", nothing) == "true") makedocs( sitename = "LazyAlgebra for Julia", format = Documenter.HTML( prettyurls = DEPLOYDOCS, ), authors = "Éric Thiébaut and contributors", pages = ["index.md", "install.md", "introduction.md", "vectors.md", "sparse.md", "mappings.md", "simplifications.md", "refs.md"] ) if DEPLOYDOCS deploydocs( repo = "github.com/emmt/LazyAlgebra.jl.git", ) end
LazyAlgebra
https://github.com/emmt/LazyAlgebra.jl.git
[ "MIT" ]
0.2.7
e58d5904fa7ffa914a3eb60f8705e2ea3aaea1b9
code
2802
# # LazyAlgebra.jl - # # A simple linear algebra system. # #------------------------------------------------------------------------------- # # This file is part of LazyAlgebra (https://github.com/emmt/LazyAlgebra.jl) # released under the MIT "Expat" license. # # Copyright (c) 2017-2021 Éric Thiébaut. # module LazyAlgebra export CirculantConvolution, CompressedSparseOperator, CroppingOperator, Diag, Diff, FFTOperator, GeneralMatrix, Gram, Id, Identity, Jacobian, LinearMapping, Mapping, NonuniformScaling, RankOneOperator, SingularSystem, SparseOperator, SparseOperatorCOO, SparseOperatorCSC, SparseOperatorCSR, SymbolicLinearMapping, SymbolicMapping, SymmetricRankOneOperator, ZeroPaddingOperator, ∇, adjoint, apply!, apply, coefficients, col_size, conjgrad!, conjgrad, diag, gram, input_eltype, input_ndims, input_size, input_type, is_diagonal, is_endomorphism, is_linear, is_selfadjoint, isone, iszero, jacobian, lgemm!, lgemm, lgemv!, lgemv, multiplier, ncols, nnz, nonzeros, nrows, output_eltype, output_ndims, output_size, output_type, row_size, sparse, terms, unpack!, unscaled, unveil, vcombine!, vcombine, vcopy!, vcopy, vcreate, vdot, vfill!, vmul!, vmul, vnorm1, vnorm2, vnorminf, vones, vproduct!, vproduct, vscale!, vscale, vswap!, vupdate!, vzero!, vzeros using Printf using ArrayTools import Base: *, ∘, +, -, \, /, == import Base: Tuple, adjoint, inv, axes, show, showerror, convert, eltype, ndims, size, length, stride, strides, getindex, setindex!, eachindex, first, last, firstindex, lastindex, one, zero, isone, iszero, @propagate_inbounds # Import/using from LinearAlgebra, BLAS and SparseArrays. using LinearAlgebra import LinearAlgebra: UniformScaling, diag, ⋅, mul!, rmul! using LinearAlgebra.BLAS using LinearAlgebra.BLAS: libblas, @blasfunc, BlasInt, BlasReal, BlasFloat, BlasComplex using SparseArrays: sparse include("types.jl") include("traits.jl") include("utils.jl") include("methods.jl") include("vectors.jl") include("genmult.jl") import .GenMult: lgemm!, lgemm, lgemv!, lgemv include("blas.jl") include("rules.jl") include("mappings.jl") include("foundations.jl") include("sparse.jl") using .SparseOperators import .SparseOperators: unpack! include("cropping.jl") import .Cropping: CroppingOperator, ZeroPaddingOperator, defaultoffset include("diff.jl") import .FiniteDifferences: Diff include("fft.jl") import .FFTs: CirculantConvolution, FFTOperator include("conjgrad.jl") include("init.jl") end
LazyAlgebra
https://github.com/emmt/LazyAlgebra.jl.git
[ "MIT" ]
0.2.7
e58d5904fa7ffa914a3eb60f8705e2ea3aaea1b9
code
2453
# # blas.jl - # # Code based on BLAS (Basic Linear Algebra Subroutines). # #------------------------------------------------------------------------------- # # This file is part of LazyAlgebra (https://github.com/emmt/LazyAlgebra.jl) # released under the MIT "Expat" license. # # Copyright (c) 2017-2019 Éric Thiébaut. # # The idea is to generalize the dot product as follows: # # `vdot(x,y)` yields the sum of `conj(x[i])*y[i]` for each `i` in # `eachindex(x,y)` providing `x` and `y` have the same dimensions # (i.e., same `indices`). # # `A*x` yields the matrix-vector product providing that the trailing # dimensions of `A` match the dimensions of `x`. The result has # the same dimensions as the leading dimensions of `A`. # # We may want to use fast BLAS routines. # # According to the following timings (for n = 96 and 4 threads), the fastest # method is the BLAS version of `apply!(,Adjoint,,)`. When looking at the # loops, this is understandable as `apply!(,Adjoint,,)` is easier to # parallelize than `apply!(,Direct,,)`. Note that Julia implementations are # with SIMD and no bounds checking. # # A⋅x A'.x x'⋅y # --------------------------------- # BLAS 3.4 µs 2.0 µs 65 ns # Julia 4.5 µs 24.2 μs 65 ns const BlasVec{T} = Union{DenseVector{T},StridedVector{T}} const BlasArr{T,N} = DenseArray{T,N} for T in (Float32, Float64) @eval begin vdot(::Type{$T}, x::BlasVec{$T}, y::BlasVec{$T}) = __call_blas_dot(BLAS.dot, x, y) vdot(::Type{$T}, x::BlasArr{$T,N}, y::BlasArr{$T,N}) where {N} = __call_blas_dot(BLAS.dot, x, y) vdot(::Type{Complex{$T}}, x::BlasVec{Complex{$T}}, y::BlasVec{Complex{$T}}) = __call_blas_dot(BLAS.dotc, x, y) vdot(::Type{Complex{$T}}, x::BlasArr{Complex{$T},N}, y::BlasArr{Complex{$T},N}) where {N} = __call_blas_dot(BLAS.dotc, x, y) end end @inline function __call_blas_dot(f, x, y) size(x) == size(y) || throw_dimensions_mismatch() return f(length(x), pointer(x), stride(x, 1), pointer(y), stride(y, 1)) end function vupdate!(y::BlasVec{T}, alpha::Real, x::BlasVec{T}) where {T<:BlasFloat} size(x) == size(y) || throw_dimensions_mismatch() BLAS.axpy!(length(x), T(alpha), pointer(x), stride(x, 1), pointer(y), stride(y, 1)) return y end
LazyAlgebra
https://github.com/emmt/LazyAlgebra.jl.git
[ "MIT" ]
0.2.7
e58d5904fa7ffa914a3eb60f8705e2ea3aaea1b9
code
9428
# # conjgrad.jl - # # Linear conjugate-gradient. # #------------------------------------------------------------------------------- # # This file is part of LazyAlgebra (https://github.com/emmt/LazyAlgebra.jl) # released under the MIT "Expat" license. # # Copyright (c) 2017-2020 Éric Thiébaut. # struct WrappedLeftHandSideMatrix{T} op::T end (obj::WrappedLeftHandSideMatrix)(dst, src) = apply!(dst, obj.op, src) """ ```julia conjgrad(A, b, x0=vzeros(b)) -> x ``` solves the symmetric linear system `A⋅x = b` starting at `x0` by means of the iterative conjugate gradient method. The returned solution `x` is a new object similar to `b` and to `x0`. Argument `A` implements the symmetric positive definite linear mapping `A`, it can be provided as a Julia array (interpreted as a general matrix, see [`GeneralMatrix`](@ref)), as an instance of [`LinearMapping`](@ref) or as a callable object (like a function) which is used as: ```julia A(dst, src) ``` to overwrite `dst` with `A⋅src`. If `A` has been implemented as a callable object, such that `A(x)` yields `A⋅x`, then call `conjgrad` with an inline function: ```julia conjgrad((dst,src) -> (dst .= A(src); return dst), b, ...) ``` See [`conjgrad!`](@ref) for accepted keywords and more details. """ conjgrad(A, b, x0; kwds...) = conjgrad!(vcreate(b), A, b, x0; kwds...) function conjgrad(A, b; kwds...) x = vzeros(b) return conjgrad!(x, A, b, x; kwds...) end """ # Linear conjugate gradient ```julia conjgrad!(x, A, b, [x0=vfill!(x,0), p, q, r]) -> x ``` finds an approximate solution to the symmetric linear system `A⋅x = b` starting at `x0` by means of the iterative conjugate gradient method. The result is stored in `x` which is returned. Argument `A` implements the symmetric positive definite linear mapping `A`, it can be provided as a Julia array (interpreted as a general matrix, see [`GeneralMatrix`](@ref)), as an instance of [`LinearMapping`](@ref) or as a callable object (like a function) which is used as: ```julia A(dst, src) ``` to overwrite `dst` with `A⋅src`. If `A` has been implemented as a callable object, such that `A(x)` yields `A⋅x`, then call `conjgrad!` with an inline function: ```julia conjgrad!(x, (dst,src) -> (dst .= A(src); return dst), b, ...) ``` If no initial variables are specified, the default is to start with all variables set to zero. Optional arguments `p`, `q` and `r` are writable workspace *vectors*. On return, `p` is the last search direction, `q = A⋅p` and `r = b - A⋅xp` with `xp` the previous or last solution. If provided, these workspaces must be distinct. All *vectors* must have the same sizes. If all workspace vectors are provided, no other memory allocation is necessary (unless `A` needs to allocate some temporaries). Provided `A` be positive definite, the solution `x` of the equations `A⋅x = b` is also the minimum of the quadratic function: f(x) = (1/2) x'⋅A⋅x - b'⋅x + ϵ where `ϵ` is an arbitrary constant. The variations of `f(x)` between successive iterations, the norm of the gradient of `f(x)` or the variations of `x` may be used to decide the convergence of the algorithm (see keywords `ftol`, `gtol` and `xtol` below). ## Saving memory To save memory, `x` and `x0` can be the same object. Otherwise, if no restarting occurs (see keyword `restart` below), `b` can also be the same as `r` but this is not recommended. ## Keywords There are several keywords to control the algorithm: * Keyword `ftol` specifies the function tolerance for convergence. The convergence is assumed as soon as the variation of the objective function `f(x)` between two successive iterations is less or equal `ftol` times the largest variation so far. By default, `ftol = 1e-8`. * Keyword `gtol` specifies the gradient tolerances for convergence, it is a tuple of two values `(gatol, grtol)` which are the absolute and relative tolerances. Convergence occurs when the Euclidean norm of the residuals (which is that of the gradient of the associated objective function) is less or equal the largest of `gatol` and `grtol` times the Euclidean norm of the initial residuals. By default, `gtol = (0.0, 0.0)`. * Keyword `xtol` specifies the variables tolerance for convergence. The convergence is assumed as soon as the Euclidean norm of the change of variables is less or equal `xtol` times the Euclidean norm of the variables `x`. By default, `xtol = 0`. * Keyword `maxiter` specifies the maximum number of iterations which is practically unlimited by default. * Keyword `restart` may be set with the maximum number of iterations before restarting the algorithm. By default, `restart` is set with the smallest of `50` and the number of variables. Set `restart` to at least `maxiter` if you do not want that any restarts ever occur. * Keyword `strict` can be set to a boolean value (default is `true`) to specify whether non-positive definite operator `A` throws a `NonPositiveDefinite` exception or just returns the best solution found so far (with a warning if `quiet` is false). * Keyword `quiet` can be set to a boolean value (default is `false`) to specify whether or not to print warning messages. See also: [`conjgrad`][@ref). """ conjgrad!(x, A::Union{LinearMapping,AbstractArray}, b, args...; kwds...) = conjgrad!(x, WrappedLeftHandSideMatrix(A), b, args...; kwds...) function conjgrad!(x, A::Mapping, b, args...; kwds...) is_linear(A) || bad_argument("`A` must be a linear map") conjgrad!(x, WrappedLeftHandSideMatrix(A), b, args...; kwds...) end function conjgrad!(x, A, b, x0 = vfill!(x, 0), p = vcreate(x), q = vcreate(x), r = vcreate(x); ftol::Real = 1e-8, gtol::NTuple{2,Real} = (0.0,0.0), xtol::Real = 0.0, maxiter::Integer = typemax(Int), restart::Integer = min(50, length(b)), verb::Bool = false, io::IO = stdout, quiet::Bool = false, strict::Bool = true) # Initialization. 0 ≤ ftol < 1 || bad_argument("bad function tolerance (ftol = ", ftol, ")") gtol[1] ≥ 0 || bad_argument("bad gradient absolute tolerance (gtol[1] = ", gtol[1], ")") 0 ≤ gtol[2] < 1 || bad_argument("bad gradient relative tolerance (gtol[2] = ", gtol[2], ")") 0 ≤ xtol < 1 || bad_argument("bad variables tolerance (xtol = ", xtol, ")") restart ≥ 1 || bad_argument("bad number of iterations for restarting (restart = ", restart,")") vcopy!(x, x0) if maxiter < 1 && quiet && !verb return x end if vnorm2(x) > 0 # cheap trick to check whether x is non-zero # Compute r = b - A⋅x. A(r, x) vcombine!(r, 1, b, -1, r) else # Save applying A since x = 0. vcopy!(r, b) end local rho :: Float64 = vdot(r, r) local ftest :: Float64 = ftol local gtest :: Float64 = max(gtol[1], gtol[2]*sqrt(rho)) local xtest :: Float64 = xtol local psimax :: Float64 = 0 local psi :: Float64 = 0 local oldrho :: Float64 local gamma :: Float64 # Conjugate gradient iterations. k = 0 while true if verb if k == 0 @printf(io, "# %s\n# %s\n", "Iter. Δf(x) ||∇f(x)||", "-------------------------------") end @printf(io, "%6d %12.4e %12.4e\n", k, psi, sqrt(rho)) end k += 1 if sqrt(rho) ≤ gtest # Normal convergence. if verb @printf(io, "# %s\n", "Convergence (gtest statisfied).") end break elseif k > maxiter verb && @printf(io, "# %s\n", "Too many iteration(s).") quiet || warn("too many (", k, " conjugate gradient iteration(s)") break end if rem(k, restart) == 1 # Restart or first iteration. if k > 1 # Restart. A(r, x) vcombine!(r, 1, b, -1, r) end vcopy!(p, r) else beta = rho/oldrho vcombine!(p, beta, p, +1, r) end # Compute optimal step size. A(q, p) gamma = vdot(p, q) if gamma ≤ 0 verb && @printf(io, "# %s\n", "Operator is not positive definite.") strict && throw(NonPositiveDefinite("in conjugate gradient")) quiet || warn("operator is not positive definite") break end alpha = rho/gamma # Update variables and check for convergence. vupdate!(x, +alpha, p) psi = alpha*rho/2 # psi = f(x_{k}) - f(x_{k+1}) psimax = max(psi, psimax) if psi ≤ ftest*psimax # Normal convergence. verb && @printf(io, "# %s\n", "Convergence (ftest statisfied).") break end if xtest > 0 && alpha*vnorm2(p) ≤ xtest*vnorm2(x) # Normal convergence. verb && @printf(io, "# %s\n", "Convergence (xtest statisfied).") break end # Update residuals and related quantities. vupdate!(r, -alpha, q) oldrho = rho rho = vdot(r, r) end return x end
LazyAlgebra
https://github.com/emmt/LazyAlgebra.jl.git
[ "MIT" ]
0.2.7
e58d5904fa7ffa914a3eb60f8705e2ea3aaea1b9
code
9385
# # cropping.jl - # # Provide zero-padding and cropping operators. # #------------------------------------------------------------------------------- # # This file is part of LazyAlgebra (https://github.com/emmt/LazyAlgebra.jl) # released under the MIT "Expat" license. # # Copyright (c) 2019-2021, Éric Thiébaut. # module Cropping # FIXME: add simplifying rules: # Z'*Z = Id (not Z*Z' = Id) crop zero-padded array is identity export CroppingOperator, ZeroPaddingOperator, defaultoffset using ArrayTools using ..Foundations using ..LazyAlgebra using ..LazyAlgebra: bad_argument, bad_size import ..LazyAlgebra: apply!, vcreate, input_size, input_ndims, output_size, output_ndims """ CroppingOperator(outdims, inpdims, offset=defaultoffset(outdims,inpdims)) yields a linear map which implements cropping of arrays of size `inpdims` to produce arrays of size `outdims`. By default, the output array is centered with respect to the inpput array (using the same conventions as `fftshift`). Optional argument `offset` can be used to specify a different relative position. If `offset` is given, the output value at multi-dimensional index `i` is given by input value at index `j = i + offset`. The adjoint of a cropping operator is a zero-padding operator. See also: [`ZeroPaddingOperator`](@ref). """ struct CroppingOperator{N} <: LinearMapping outdims::NTuple{N,Int} # cropped dimensions inpdims::NTuple{N,Int} # input dimensions offset::CartesianIndex{N} # offset of cropped region w.r.t. input array function CroppingOperator{N}(outdims::NTuple{N,Int}, inpdims::NTuple{N,Int}) where {N} @inbounds for d in 1:N 1 ≤ outdims[d] || error("invalid output dimension(s)") outdims[d] ≤ inpdims[d] || error(1 ≤ inpdims[d] ? "invalid input dimension(s)" : "output dimensions must be less or equal input ones") end offset = defaultoffset(inpdims, outdims) return new{N}(outdims, inpdims, offset) end function CroppingOperator{N}(outdims::NTuple{N,Int}, inpdims::NTuple{N,Int}, offset::CartesianIndex{N}) where {N} @inbounds for d in 1:N 1 ≤ outdims[d] || error("invalid output dimension(s)") outdims[d] ≤ inpdims[d] || error(1 ≤ inpdims[d] ? "invalid input dimension(s)" : "output dimensions must less or equal input ones") 0 ≤ offset[d] ≤ inpdims[d] - outdims[d] || error("out of range offset(s)") end return new{N}(outdims, inpdims, offset) end end @callable CroppingOperator commonpart(C::CroppingOperator) = CartesianIndices(output_size(C)) offset(C::CroppingOperator) = C.offset input_ndims(C::CroppingOperator{N}) where {N} = N input_size(C::CroppingOperator) = C.inpdims input_size(C::CroppingOperator, i...) = input_size(C)[i...] output_ndims(C::CroppingOperator{N}) where {N} = N output_size(C::CroppingOperator) = C.outdims output_size(C::CroppingOperator, i...) = output_size(C)[i...] # Union of acceptable types for the offset. const Offset = Union{CartesianIndex,Integer,Tuple{Vararg{Integer}}} CroppingOperator(outdims::ArraySize, inpdims::ArraySize) = CroppingOperator(to_size(outdims), to_size(inpdims)) CroppingOperator(outdims::ArraySize, inpdims::ArraySize, offset::Offset) = CroppingOperator(to_size(outdims), to_size(inpdims), CartesianIndex(offset)) CroppingOperator(::Tuple{Vararg{Int}}, ::Tuple{Vararg{Int}}) = error("numbers of output and input dimensions must be equal") CroppingOperator(::Tuple{Vararg{Int}}, ::Tuple{Vararg{Int}}, ::CartesianIndex) = error("numbers of output and input dimensions and offsets must be equal") CroppingOperator(outdims::NTuple{N,Int}, inpdims::NTuple{N,Int}) where {N} = CroppingOperator{N}(outdims, inpdims) CroppingOperator(outdims::NTuple{N,Int}, inpdims::NTuple{N,Int}, offset::CartesianIndex{N}) where {N} = CroppingOperator{N}(outdims, inpdims, offset) function vcreate(::Type{Direct}, C::CroppingOperator{N}, x::AbstractArray{T,N}, scratch::Bool) where {T,N} (scratch && isa(x, Array{T,N}) && input_size(C) == output_size(C)) ? x : Array{T,N}(undef, output_size(C)) end function vcreate(::Type{Adjoint}, C::CroppingOperator{N}, x::AbstractArray{T,N}, scratch::Bool) where {T,N} (scratch && isa(x, Array{T,N}) && input_size(C) == output_size(C)) ? x : Array{T,N}(undef, input_size(C)) end # Apply cropping operation. # # for I in R # J = I + K # y[I] = α*x[J] + β*y[I] # end # function apply!(α::Number, ::Type{Direct}, C::CroppingOperator{N}, x::AbstractArray{T,N}, scratch::Bool, β::Number, y::AbstractArray{T,N}) where {T,N} has_standard_indexing(x) || bad_argument("input array has non-standard indexing") size(x) == input_size(C) || bad_size("bad input array dimensions") has_standard_indexing(y) || bad_argument("output array has non-standard indexing") size(y) == output_size(C) || bad_size("bad output array dimensions") if α == 0 β == 1 || vscale!(y, β) else k = offset(C) I = commonpart(C) if α == 1 if β == 0 @inbounds @simd for i in I y[i] = x[i + k] end elseif β == 1 @inbounds @simd for i in I y[i] += x[i + k] end else beta = convert(T, β) @inbounds @simd for i in I y[i] = x[i + k] + beta*y[i] end end else alpha = convert(T, α) if β == 0 @inbounds @simd for i in I y[i] = alpha*x[i + k] end elseif β == 1 @inbounds @simd for i in I y[i] += alpha*x[i + k] end else beta = convert(T, β) @inbounds @simd for i in I y[i] = alpha*x[i + k] + beta*y[i] end end end end return y end # Apply zero-padding operation. # # for i in I # y[i + k] = α*x[i] + β*y[i + k] # end # # Plus y[i + k] *= β outside common region R # function apply!(α::Number, ::Type{Adjoint}, C::CroppingOperator{N}, x::AbstractArray{T,N}, scratch::Bool, β::Number, y::AbstractArray{T,N}) where {T,N} has_standard_indexing(x) || bad_argument("input array has non-standard indexing") size(x) == output_size(C) || bad_size("bad input array dimensions") has_standard_indexing(y) || bad_argument("output array has non-standard indexing") size(y) == input_size(C) || bad_size("bad output array dimensions") β == 1 || vscale!(y, β) if α != 0 k = offset(C) I = commonpart(C) if α == 1 if β == 0 @inbounds @simd for i in I y[i + k] = x[i] end else @inbounds @simd for i in I y[i + k] += x[i] end end else alpha = convert(T, α) if β == 0 @inbounds @simd for i in I y[i + k] = alpha*x[i] end else @inbounds @simd for i in I y[i + k] += alpha*x[i] end end end end return y end """ ZeroPaddingOperator(outdims, inpdims, offset=defaultoffset(outdims,inpdims)) yields a linear map which implements zero-padding of arrays of size `inpdims` to produce arrays of size `outdims`. By default, the input array is centered with respect to the output array (using the same conventions as `fftshift`). Optional argument `offset` can be used to specify a different relative position. If `offset` is given, the input value at multi-dimensional index `j` is copied at index `i = j + offset` in the result. A zero-padding operator is implemented as the adjoint of a cropping operator. See also: [`CroppingOperator`](@ref). """ ZeroPaddingOperator(outdims, inpdims) = Adjoint(CroppingOperator(inpdims, outdims)) ZeroPaddingOperator(outdims, inpdims, offset) = Adjoint(CroppingOperator(inpdims, outdims, offset)) """ defaultoffset(dim1,dim2) yields the index offset such that the centers (in the same sense as assumed by `fftshift`) of dimensions of lengths `dim1` and `dim2` are coincident. If `off = defaultoffset(dim1,dim2)` and `i2` is the index along `dim2`, then the index along `dim1` is `i1 = i2 + off`. """ defaultoffset(dim1::Integer, dim2::Integer) = (Int(dim1) >> 1) - (Int(dim2) >> 1) defaultoffset(dims1::NTuple{N,Integer}, dims2::NTuple{N,Integer}) where {N} = CartesianIndex(map(defaultoffset, dims1, dims2)) end # module
LazyAlgebra
https://github.com/emmt/LazyAlgebra.jl.git
[ "MIT" ]
0.2.7
e58d5904fa7ffa914a3eb60f8705e2ea3aaea1b9
code
44103
# # diff.jl - # # Implement finite differences operators. # #------------------------------------------------------------------------------- # # This file is part of LazyAlgebra (https://github.com/emmt/LazyAlgebra.jl) # released under the MIT "Expat" license. # # Copyright (c) 2017-2021 Éric Thiébaut. # module FiniteDifferences export Diff using MayOptimize using LazyAlgebra using LazyAlgebra.Foundations import LazyAlgebra: apply!, vcreate, identical using Base: @propagate_inbounds import Base: show const ArrayAxis = AbstractUnitRange{Int} const ArrayAxes{N} = NTuple{N,ArrayAxis} """ limits(r) -> (first(r), last(r)) yields the first and last value of the unit-range `r`. """ limits(r::AbstractUnitRange) = (first(r), last(r)) """ Diff([opt::MayOptimize.Vectorize,] n=1, dims=:) yields a linear mapping that computes a finite difference approximation of the `n`-order derivative along the dimension(s) specified by `dims`. Arguments `dims` is an integer, a tuple or a vector of integers specifying along which dimension(s) to apply the operator or `:` to specify all dimensions. If multiple dimensions are specified, the result is as if the operator is applied separately on the specified dimension(s). Optional argument `opt` is the optimization level and may be specified as the first or last argument. By default, `opt` is assumed to be `Vectorize`, however depending on the dimensions of the array, the dimensions of interest and on the machine, setting `opt` to `InBounds` may be more efficient. If `dims` is a scalar, the result, say `y`, of applying the finite difference operator to an array, say `x`, has the same axes as `x`. Otherwise and even though `x` has a single dimension or `dims` is a 1-tuple, `y` has one more dimension than `x`, the last dimension of `y` is used to store the finite differences along each dimensions specified by `dims` and the leading dimensions of `y` are the same as the dimensions of `x`. More specifically, the operator created by `Diff` implements **forward finite differences** with **flat boundary conditions**, that is to say extrapolated entries are assumed equal to the nearest entry. """ struct Diff{L,D,O<:OptimLevel} <: LinearMapping end # L = level of differentiation # D = list of dimensions along which compute the differences # O = optimization level # Constructors. function Diff(n::Integer = 1, dims::Union{Colon,Integer,Tuple{Vararg{Integer}}, AbstractVector{<:Integer}}=Colon(), opt::Type{<:OptimLevel} = Vectorize) return Diff{to_int(n), to_dims(dims), opt}() end function Diff(opt::Type{<:OptimLevel}, n::Integer = 1, dims::Union{Colon,Integer,Tuple{Vararg{Integer}}, AbstractVector{<:Integer}}=Colon()) return Diff{to_int(n), to_dims(dims), opt}() end function Diff(n::Integer, opt::Type{<:OptimLevel}) return Diff{to_int(n), Colon, opt}() end # Make a finite difference operator callable. @callable Diff # Two finite difference operators are identical if they have the same level of # differentiation and list of dimensions along which compute the differences. # Their optimization levels may be different. identical(::Diff{L,D}, ::Diff{L,D}) where {L,D} = true # Print operator in such a way that is similar to how the operator would be # created in Julia. show(io::IO, ::Diff{L,D,Opt}) where {L,D,Opt} = print(io, "Diff(", L, ',', (D === Colon ? ":" : D),',', (Opt === Debug ? "Debug" : Opt === InBounds ? "InBounds" : Opt === Vectorize ? "Vectorize" : Opt), ')') """ differentiation_order(A) yields the differentiation order of finite difference operator `A` (argument can also be a type). """ differentiation_order(::Type{<:Diff{L,D,Opt}}) where {L,D,Opt} = L """ dimensions_of_interest(A) yields the list of dimensions of interest of finite difference operator `A` (argument can also be a type). """ dimensions_of_interest(::Type{<:Diff{L,D,Opt}}) where {L,D,Opt} = D """ optimization_level(A) yields the optimization level for applying finite difference operator `A` (argument can also be a type). """ optimization_level(::Type{<:Diff{L,D,Opt}}) where {L,D,Opt} = Opt for f in (:differentiation_order, :dimensions_of_interest, :optimization_level) @eval begin $f(A::Diff) = $f(typeof(A)) $f(A::Gram{<:Diff}) = $f(typeof(A)) $f(::Type{<:Gram{T}}) where {T<:Diff} = $f(T) end end # Convert argument to `Int`. to_int(x::Int) = x to_int(x::Integer) = Int(x) # Convert argument to the type parameter which specifies the list of dimensions # of interest. to_dims(::Colon) = Colon to_dims(x::Int) = x to_dims(x::Integer) = to_int(x) to_dims(x::Tuple{Vararg{Int}}) = x to_dims(x::Tuple{Vararg{Integer}}) = map(to_int, x) to_dims(x::AbstractVector{<:Integer}) = to_dims((x...,)) # Drop list of dimensions from type to avoid unecessary specializations. anydims(::Diff{L,D,P}) where {L,D,P} = Diff{L,Any,P}() anydims(::Gram{Diff{L,D,P}}) where {L,D,P} = gram(Diff{L,Any,P}()) # Applying a separable operator is split in several stages: # # 1. Check arguments (so that avoiding bound checking should be safe) and deal # with the trivial cases α = 0 or no dimension of interest to apply the # operation (to simplify subsequent stages). # # 2. If α is non-zero, dispatch on dimension(s) along which to apply the # operation and on the specific values of the multipliers α and β. # # The second stage may be split in several sub-stages. # Declare all possible signatures (not using unions) to avoid ambiguities. for (P,A) in ((:Direct, :Diff), (:Adjoint, :Diff), (:Direct, :(Gram{<:Diff}))) @eval function apply!(α::Number, P::Type{$P}, A::$A, x::AbstractArray, scratch::Bool, β::Number, y::AbstractArray) inds, ndims = check_arguments(P, A, x, y) if α == 0 || ndims < 1 # Get rid of this stupid case! vscale!(y, β) else # Call unsafe_apply! to dispatch on the dimensions of interest and on # the values of the multipliers. unsafe_apply!(α, P, A, x, β, y, inds) end return y end end # FIXME: This should not be necessary. function apply!(α::Number, ::Type{<:Adjoint}, A::Gram{<:Diff}, x::AbstractArray, scratch::Bool, β::Number, y::AbstractArray) apply!(α, Direct, A, x, scratch, β, y) end function vcreate(::Type{Direct}, A::Diff{L,D,P}, x::AbstractArray{T,N}, scratch::Bool) where {L,D,P,T,N} if D === Colon return Array{T}(undef, size(x)..., N) elseif isa(D, Tuple{Vararg{Int}}) return Array{T}(undef, size(x)..., length(D)) elseif isa(D, Int) # if L === 1 && scratch && isa(x, Array) # # First order finite difference along a single dimension. # # Operation could be done in-place but we must preserve # # type-stability. # return x #else # return Array{T}(undef, size(x)) #end return Array{T}(undef, size(x)) else error("invalid list of dimensions") end end function vcreate(::Type{Adjoint}, A::Diff{L,D,P}, x::AbstractArray{T,N}, scratch::Bool) where {L,D,P,T,N} # Checking the validity of the argument dimensions is done by applying the # opererator. In-place operation never possible, so ignore the scratch # flag. if D === Colon || isa(D, Tuple{Vararg{Int}}) return Array{T}(undef, size(x)[1:N-1]) elseif isa(D, Int) return Array{T}(undef, size(x)) else error("invalid list of dimensions") end end #------------------------------------------------------------------------------ # CHECKING OF ARGUMENTS """ check_arguments(P, A, x, y) -> inds, ndims checks that arguments `x` and `y` are valid for applying `P(A)`, with `A` a separable operator, to `x` and store the result in `y`. The result is a 2-tuple, `inds` is the axes that the arguments have in common and `ndims` is the number of dimensions of interest. If this function returns normally, the caller may safely assume that index bound checking is not needed; hence, this function must throw an exception if the dimensions/indices of `x` and `y` are not compatible or if the dimensions of interest in `A` are out of range. This function may also throw an exception if the element types of `x` and `y` are not compatible. This method must be specialized for the different types of separable operators. """ function check_arguments(P::Type{<:Union{Direct,Adjoint}}, A::Union{Diff{L,D},Gram{<:Diff{L,D}}}, x::AbstractArray, y::AbstractArray) where {L,D} inds = check_axes(P, A, axes(x), axes(y)) ndims = check_dimensions_of_interest(D, length(inds)) return inds, ndims end function check_axes(P::Type{<:Union{Direct,Adjoint}}, A::Diff{L,D}, xinds::ArrayAxes, yinds::ArrayAxes) where {L,D} if D === Colon || isa(D, Dims) if P === Direct length(yinds) == length(xinds) + 1 || throw_dimension_mismatch("output array must have one more dimension than input array") N = (D === Colon ? length(xinds) : length(D)) yinds[end] == 1:N || throw_dimension_mismatch("last axis of output array must be 1:", N) yinds[1:end-1] == xinds || throw_dimension_mismatch("leading axes must be identical") return xinds else length(yinds) == length(xinds) - 1 || throw_dimension_mismatch("output array must have one less dimension than input array") N = (D === Colon ? length(yinds) : length(D)) xinds[end] == 1:N || throw_dimension_mismatch("last axis of input array must be 1:", N) xinds[1:end-1] == yinds || throw_dimension_mismatch("leading axes must be identical") return yinds end elseif isa(D, Int) xinds == yinds || throw_dimension_mismatch("array axes must be identical") return xinds else throw(ArgumentError("invalid dimensions of interest")) end end function check_axes(P::Type{<:Operations}, A::Gram{<:Diff}, xinds::ArrayAxes, yinds::ArrayAxes) xinds == yinds || throw_dimension_mismatch("array axes must be identical") return xinds end check_dimensions_of_interest(::Type{Colon}, ndims::Int) = ndims check_dimensions_of_interest(dim::Int, ndims::Int) = begin 1 ≤ dim ≤ ndims || throw_dimension_mismatch("out of range dimension ", dim, "for ", ndims,"-dimensional arrays") return 1 end check_dimensions_of_interest(dims::Dims{N}, ndims::Int) where {N} = begin for dim in dims 1 ≤ dim ≤ ndims || throw_dimension_mismatch("out of range dimension ", dim, "for ", ndims,"-dimensional arrays") end return N end throw_dimension_mismatch(str::String) = throw(DimensionMismatch(str)) @noinline throw_dimension_mismatch(args...) = throw_dimension_mismatch(string(args...)) #------------------------------------------------------------------------------ # Apply the operation along all dimensions of interest but one dimension at a # time and knowing that α is not zero. @generated function unsafe_apply!(α::Number, ::Type{P}, A::Diff{L,D}, x::AbstractArray, β::Number, y::AbstractArray, inds::ArrayAxes{N}) where {L,D,N, P<:Union{Direct, Adjoint}} # Allocate empty vector of statements. exprs = Expr[] # Discard type parameter specifying the dimensions of interest to avoid # specialization on this parameter. push!(exprs, :(B = anydims(A))) # Dispatch on dimensions of interest. if isa(D, Int) # Arrays x and y have the same dimensions. push!(exprs, :(unsafe_apply!(α, P, B, x, β, y, inds[1:$(D-1)], inds[$D], inds[$(D+1):$N], CartesianIndex()))) elseif D === Colon || isa(D, Dims) # One of x or y (depending on whether the direct or the adjoint # operator is applied) has an extra leading dimension used to store the # result computed along a given dimension. keep_beta = true # initially scale y by β dims = (D === Colon ? (1:N) : D) for l in 1:length(dims) d = dims[l] push!(exprs, :(unsafe_apply!(α, P, B, x, $(keep_beta ? :β : 1), y, inds[1:$(d-1)], inds[$d], inds[$(d+1):$N], CartesianIndex($l)))) keep_beta = (P === Direct && A <: Diff) end else # This should never happen. return quote error("invalid list of dimensions of interest") end end return quote $(Expr(:meta, :inline)) $(exprs...) nothing end end @generated function unsafe_apply!(α::Number, ::Type{P}, A::Gram{<:Diff{L,D}}, x::AbstractArray, β::Number, y::AbstractArray, inds::ArrayAxes{N}) where {L,D,N, P<:Direct} # Allocate empty vector of statements. exprs = Expr[] # Discard type parameter specifying the dimensions of interest to avoid # specialization on this parameter. push!(exprs, :(B = anydims(A))) # Dispatch on dimensions of interest. Arrays x and y have the same # dimensions and there is no last index `l` to specify. if isa(D, Int) push!(exprs, :(unsafe_apply!(α, P, B, x, β, y, inds[1:$(D-1)], inds[$D], inds[$(D+1):$N]))) elseif D === Colon || isa(D, Dims) # β is set to 1 after first dimension of interest. dims = (D === Colon ? (1:N) : D) for l in 1:length(dims) d = dims[l] push!(exprs, :(unsafe_apply!(α, P, B, x, $(l == 1 ? :β : 1), y, inds[1:$(d-1)], inds[$d], inds[$(d+1):$N]))) end else # This should never happen. return quote error("invalid list of dimensions of interest") end end return quote $(Expr(:meta, :inline)) $(exprs...) nothing end end # Dispatch on multipliers values (α is not zero). function unsafe_apply!(alpha::Number, P::Type{<:Operations}, A::Union{Diff{L,Any,Opt}, Gram{Diff{L,Any,Opt}}}, x::AbstractArray, beta::Number, y::AbstractArray, I::ArrayAxes, J::ArrayAxis, K::ArrayAxes, l::CartesianIndex) where {L,Opt} if alpha == 1 if beta == 0 unsafe_apply!(axpby_yields_x, 1, P, A, x, 0, y, I, J, K, l) elseif beta == 1 unsafe_apply!(axpby_yields_xpy, 1, P, A, x, 1, y, I, J, K, l) else β = promote_multiplier(beta, y) unsafe_apply!(axpby_yields_xpby, 1, P, A, x, β, y, I, J, K, l) end else α = promote_multiplier(alpha, y) if beta == 0 unsafe_apply!(axpby_yields_ax, α, P, A, x, 0, y, I, J, K, l) elseif beta == 1 unsafe_apply!(axpby_yields_axpy, α, P, A, x, 1, y, I, J, K, l) else β = promote_multiplier(beta, y) unsafe_apply!(axpby_yields_axpby, α, P, A, x, β, y, I, J, K, l) end end nothing end # Dispatch on multipliers values (α is not zero) for Gram compositions of a # finite difference operator. function unsafe_apply!(alpha::Number, P::Type{<:Operations}, A::Gram{<:Diff}, x::AbstractArray, beta::Number, y::AbstractArray, I::ArrayAxes, J::ArrayAxis, K::ArrayAxes) if alpha == 1 if beta == 0 unsafe_apply!(axpby_yields_x, 1, P, A, x, 0, y, I, J, K) elseif beta == 1 unsafe_apply!(axpby_yields_xpy, 1, P, A, x, 1, y, I, J, K) else β = promote_multiplier(beta, y) unsafe_apply!(axpby_yields_xpby, 1, P, A, x, β, y, I, J, K) end else α = promote_multiplier(alpha, y) if beta == 0 unsafe_apply!(axpby_yields_ax, α, P, A, x, 0, y, I, J, K) elseif beta == 1 unsafe_apply!(axpby_yields_axpy, α, P, A, x, 1, y, I, J, K) else β = promote_multiplier(beta, y) unsafe_apply!(axpby_yields_axpby, α, P, A, x, β, y, I, J, K) end end nothing end #------------------------------------------------------------------------------ # # The operator D implementing 1st order forward finite difference with flat # boundary conditions and its adjoint D' are given by: # # D = [ -1 1 0 0 # 0 -1 1 0 # 0 0 -1 1 # 0 0 0 0]; # # D' = [ -1 0 0 0 # 1 -1 0 0 # 0 1 -1 0 # 0 0 1 0]; # # The row (for D) and column (for D') of zeros are to preserve the size. This # is needed for multi-dimensional arrays when derivatives along each dimension # are stored into a single array. # # Apply 1st order finite differences along 1st dimension: # function unsafe_apply!(f::Function, α::Number, ::Type{Direct}, A::Diff{1,Any,Opt}, x::AbstractArray, β::Number, y::AbstractArray, I::Tuple{}, J::ArrayAxis, K::ArrayAxes, l::CartesianIndex) where {Opt} T = real(eltype(x)) jmin, jmax = limits(J) if jmin ≤ jmax @maybe_inbounds Opt for k in CartesianIndices(K) @maybe_vectorized Opt for j in jmin:jmax-1 z = x[j+1,k] - x[j,k] y[j,k,l] = f(α, z, β, y[j,k,l]) end let j = jmax, z = zero(T) y[j,k,l] = f(α, z, β, y[j,k,l]) end end end nothing end # # Apply 1st order finite differences along 2nd and subsequent dimensions: # function unsafe_apply!(f::Function, α::Number, ::Type{Direct}, A::Diff{1,Any,Opt}, x::AbstractArray, β::Number, y::AbstractArray, I::ArrayAxes, J::ArrayAxis, K::ArrayAxes, l::CartesianIndex) where {Opt} T = real(eltype(x)) jmin, jmax = limits(J) if jmin ≤ jmax @maybe_inbounds Opt for k in CartesianIndices(K) for j in jmin:jmax-1 @maybe_vectorized Opt for i in CartesianIndices(I) z = x[i,j+1,k] - x[i,j,k] y[i,j,k,l] = f(α, z, β, y[i,j,k,l]) end end let j = jmax, z = zero(T) @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k,l] = f(α, z, β, y[i,j,k,l]) end end end end nothing end # # Apply adjoint of 1st order finite differences along 1st dimension: # function unsafe_apply!(f::Function, α::Number, ::Type{Adjoint}, A::Diff{1,Any,Opt}, x::AbstractArray, β::Number, y::AbstractArray, I::Tuple{}, J::ArrayAxis, K::ArrayAxes, l::CartesianIndex) where {Opt} T = real(eltype(x)) jmin, jmax = limits(J) if jmin < jmax @maybe_inbounds Opt for k in CartesianIndices(K) let j = jmin z = -x[j,k,l] y[j,k] = f(α, z, β, y[j,k]) end @maybe_vectorized Opt for j in jmin+1:jmax-1 z = x[j-1,k,l] - x[j,k,l] y[j,k] = f(α, z, β, y[j,k]) end let j = jmax z = x[j-1,k,l] y[j,k] = f(α, z, β, y[j,k]) end end elseif jmin == jmax && β != 1 let j = jmin, z = zero(T) @maybe_vectorized Opt for k in CartesianIndices(K) y[j,k] = f(α, z, β, y[j,k]) end end end nothing end # # Apply adjoint of 1st order finite differences along 2nd and subsequent # dimensions: # function unsafe_apply!(f::Function, α::Number, ::Type{Adjoint}, A::Diff{1,Any,Opt}, x::AbstractArray, β::Number, y::AbstractArray, I::ArrayAxes, J::ArrayAxis, K::ArrayAxes, l::CartesianIndex) where {Opt} T = real(eltype(x)) jmin, jmax = limits(J) if jmin < jmax @maybe_inbounds Opt for k in CartesianIndices(K) let j = jmin @maybe_vectorized Opt for i in CartesianIndices(I) z = -x[i,j,k,l] y[i,j,k] = f(α, z, β, y[i,j,k]) end end for j in jmin+1:jmax-1 @maybe_vectorized Opt for i in CartesianIndices(I) z = x[i,j-1,k,l] - x[i,j,k,l] y[i,j,k] = f(α, z, β, y[i,j,k]) end end let j = jmax @maybe_vectorized Opt for i in CartesianIndices(I) z = x[i,j-1,k,l] y[i,j,k] = f(α, z, β, y[i,j,k]) end end end elseif jmin == jmax && β != 1 let j = jmin, z = zero(T) @maybe_inbounds Opt for k in CartesianIndices(K) @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, z, β, y[i,j,k]) end end end end nothing end # # The Gram composition D'*D of the 1st order forward finite differences D with # flat boundary conditions writes: # # D'*D = [ 1 -1 0 0 0 # -1 2 -1 0 0 # 0 -1 2 -1 0 # 0 0 -1 2 -1 # 0 0 0 -1 1 ] # # Apply D'*D along 1st dimension: # function unsafe_apply!(f::Function, α::Number, ::Type{<:Union{Direct,Adjoint}}, A::Gram{Diff{1,Any,Opt}}, x::AbstractArray, β::Number, y::AbstractArray, I::Tuple{}, J::ArrayAxis, K::ArrayAxes) where {Opt} T = real(eltype(x)) jmin, jmax = limits(J) if jmin < jmax @maybe_inbounds Opt for k in CartesianIndices(K) let j = jmin z = x[j,k] - x[j+1,k] y[j,k] = f(α, z, β, y[j,k]) end @maybe_vectorized Opt for j in jmin+1:jmax-1 z = T(2)*x[j,k] - (x[j-1,k] + x[j+1,k]) y[j,k] = f(α, z, β, y[j,k]) end let j = jmax z = x[j,k] - x[j-1,k] y[j,k] = f(α, z, β, y[j,k]) end end elseif jmin == jmax && β != 1 let j = jmin, z = zero(T) @maybe_vectorized Opt for k in CartesianIndices(K) y[j,k] = f(α, z, β, y[j,k]) end end end nothing end # # Apply D'*D along 2nd and subsequent dimensions: # function unsafe_apply!(f::Function, α::Number, ::Type{<:Union{Direct,Adjoint}}, A::Gram{Diff{1,Any,Opt}}, x::AbstractArray, β::Number, y::AbstractArray, I::ArrayAxes, J::ArrayAxis, K::ArrayAxes) where {Opt} T = real(eltype(x)) jmin, jmax = limits(J) if jmin < jmax @maybe_inbounds Opt for k in CartesianIndices(K) let j = jmin @maybe_vectorized Opt for i in CartesianIndices(I) z = x[i,j,k] - x[i,j+1,k] y[i,j,k] = f(α, z, β, y[i,j,k]) end end for j in jmin+1:jmax-1 @maybe_vectorized Opt for i in CartesianIndices(I) z = T(2)*x[i,j,k] - (x[i,j-1,k] + x[i,j+1,k]) y[i,j,k] = f(α, z, β, y[i,j,k]) end end let j = jmax @maybe_vectorized Opt for i in CartesianIndices(I) z = x[i,j,k] - x[i,j-1,k] y[i,j,k] = f(α, z, β, y[i,j,k]) end end end elseif jmin == jmax && β != 1 let j = jmin, z = zero(T) @maybe_inbounds Opt for k in CartesianIndices(K) @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, z, β, y[i,j,k]) end end end end nothing end #------------------------------------------------------------------------------ # # 2nd order finite differences with flat boundary conditions are computed by: # # D = [-1 1 0 0 0 0 # 1 -2 1 0 0 0 # 0 1 -2 1 0 0 # 0 0 1 -2 1 0 # 0 0 0 1 -2 1 # 0 0 0 0 1 -1] # # Remarks: # # - Applying this operator on a single dimension is self-adjoint. # # - For a single dimension, this operator is the opposite of the Gram # composition of 1st order finite differences (backward or forward). # # Apply 2nd order finite differences along 1st dimension: # function unsafe_apply!(f::Function, α::Number, ::Type{Direct}, A::Diff{2,Any,Opt}, x::AbstractArray, β::Number, y::AbstractArray, I::Tuple{}, J::ArrayAxis, K::ArrayAxes, l::CartesianIndex) where {Opt} T = real(eltype(x)) jmin, jmax = limits(J) if jmin < jmax @maybe_inbounds Opt for k in CartesianIndices(K) let j = jmin z = x[j+1,k] - x[j,k] y[j,k,l] = f(α, z, β, y[j,k,l]) end @maybe_vectorized Opt for j in jmin+1:jmax-1 z = x[j-1,k] + x[j+1,k] - T(2)*x[j,k] y[j,k,l] = f(α, z, β, y[j,k,l]) end let j = jmax z = x[j-1,k] - x[j,k] y[j,k,l] = f(α, z, β, y[j,k,l]) end end elseif jmin == jmax && β != 1 let j = jmin, z = zero(T) @maybe_vectorized Opt for k in CartesianIndices(K) y[j,k,l] = f(α, z, β, y[j,k,l]) end end end nothing end # # Apply 2nd order finite differences along 2nd and subsequent dimensions: # function unsafe_apply!(f::Function, α::Number, ::Type{Direct}, A::Diff{2,Any,Opt}, x::AbstractArray, β::Number, y::AbstractArray, I::ArrayAxes, J::ArrayAxis, K::ArrayAxes, l::CartesianIndex) where {Opt} T = real(eltype(x)) jmin, jmax = limits(J) if jmin < jmax @maybe_inbounds Opt for k in CartesianIndices(K) let j = jmin @maybe_vectorized Opt for i in CartesianIndices(I) z = x[i,j+1,k] - x[i,j,k] y[i,j,k,l] = f(α, z, β, y[i,j,k,l]) end end for j in jmin+1:jmax-1 @maybe_vectorized Opt for i in CartesianIndices(I) # Other possibility: # z = (x[i,j-1,k] - x[i,j,k]) + (x[i,j+1,k] - x[i,j,k]) z = x[i,j-1,k] + x[i,j+1,k] - T(2)*x[i,j,k] y[i,j,k,l] = f(α, z, β, y[i,j,k,l]) end end let j = jmax @maybe_vectorized Opt for i in CartesianIndices(I) z = x[i,j-1,k] - x[i,j,k] y[i,j,k,l] = f(α, z, β, y[i,j,k,l]) end end end elseif jmin == jmax && β != 1 let j = jmin, z = zero(T) @maybe_inbounds Opt for k in CartesianIndices(K) @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k,l] = f(α, z, β, y[i,j,k,l]) end end end end nothing end # # Apply adjoint of 2nd order finite differences along 1st dimension: # function unsafe_apply!(f::Function, α::Number, ::Type{Adjoint}, A::Diff{2,Any,Opt}, x::AbstractArray, β::Number, y::AbstractArray, I::Tuple{}, J::ArrayAxis, K::ArrayAxes, l::CartesianIndex) where {Opt} T = real(eltype(x)) jmin, jmax = limits(J) if jmin < jmax @maybe_inbounds Opt for k in CartesianIndices(K) let j = jmin z = x[j+1,k,l] - x[j,k,l] y[j,k] = f(α, z, β, y[j,k]) end @maybe_vectorized Opt for j in jmin+1:jmax-1 # Other possibility: # z = (x[j-1,k,l] - x[j,k,l]) + (x[j+1,k,l] - x[j,k,l]) z = x[j-1,k,l] + x[j+1,k,l] - T(2)*x[j,k,l] y[j,k] = f(α, z, β, y[j,k]) end let j = jmax z = x[j-1,k,l] - x[j,k,l] y[j,k] = f(α, z, β, y[j,k]) end end elseif jmin == jmax && β != 1 let j = jmin, z = zero(T) @maybe_vectorized Opt for k in CartesianIndices(K) y[j,k] = f(α, z, β, y[j,k]) end end end nothing end # # Apply 2nd order finite differences along 2nd and subsequent dimensions: # function unsafe_apply!(f::Function, α::Number, ::Type{Adjoint}, A::Diff{2,Any,Opt}, x::AbstractArray, β::Number, y::AbstractArray, I::ArrayAxes, J::ArrayAxis, K::ArrayAxes, l::CartesianIndex) where {Opt} T = real(eltype(x)) jmin, jmax = limits(J) if jmin < jmax @maybe_inbounds Opt for k in CartesianIndices(K) let j = jmin @maybe_vectorized Opt for i in CartesianIndices(I) z = x[i,j+1,k,l] - x[i,j,k,l] y[i,j,k] = f(α, z, β, y[i,j,k]) end end for j in jmin+1:jmax-1 @maybe_vectorized Opt for i in CartesianIndices(I) z = x[i,j-1,k,l] + x[i,j+1,k,l] - T(2)*x[i,j,k,l] y[i,j,k] = f(α, z, β, y[i,j,k]) end end let j = jmax @maybe_vectorized Opt for i in CartesianIndices(I) z = x[i,j-1,k,l] - x[i,j,k,l] y[i,j,k] = f(α, z, β, y[i,j,k]) end end end elseif jmin == jmax && β != 1 let j = jmin, z = zero(T) @maybe_inbounds Opt for k in CartesianIndices(K) @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, z, β, y[i,j,k]) end end end end nothing end # # The Gram composition of 2nd order finite differences writes: # # D'*D = [ 2 -3 1 0 0 0 (1) # -3 6 -4 1 0 0 (2) # 1 -4 6 -4 1 0 (3) # 0 1 -4 6 -4 1 (3) # 0 0 1 -4 6 -3 (4) # 0 0 0 1 -3 2] (5) # # The above is for len ≥ 4, with len is the length of the dimension of # interest, omitting the Eq. (5) for len = 4 and repeating Eq. (5) as necessary # for the central rows for n ≥ 5. For len = 3: # # D'*D = [ 2 -3 1 (1) # -3 6 -3 (6) # 1 -3 2] (5) # # For len = 2: # # D'*D = [ 2 -2 (7) # -2 2] (8) # # For len = 1, D = 0 and D'*D = 0 (the null 1×1 operator). # # Methods to apply the rows of D'D (): # # - Eq. (1), first row when len ≥ 3: # @inline @propagate_inbounds D2tD2_1(x::AbstractArray, j::Int, k) = begin T = real(eltype(x)) T(2)*x[j,k] - T(3)*x[j+1,k] + x[j+2,k] end @inline @propagate_inbounds D2tD2_1(x::AbstractArray, i, j::Int, k) = begin T = real(eltype(x)) T(2)*x[i,j,k] - T(3)*x[i,j+1,k] + x[i,j+2,k] end # # - Eq. (2), second row when len ≥ 4: # @inline @propagate_inbounds D2tD2_2(x::AbstractArray, j::Int, k) = begin T = real(eltype(x)) T(6)*x[j,k] - T(3)*x[j-1,k] - T(4)*x[j+1,k] + x[j+2,k] end @inline @propagate_inbounds D2tD2_2(x::AbstractArray, i, j::Int, k) = begin T = real(eltype(x)) T(6)*x[i,j,k] - T(3)*x[i,j-1,k] - T(4)*x[i,j+1,k] + x[i,j+2,k] end # # - Eq. (3), central rows when len ≥ 5: # @inline @propagate_inbounds D2tD2_3(x::AbstractArray, j::Int, k) = begin T = real(eltype(x)) (x[j-2,k] + x[j+2,k]) + T(6)*x[j,k] - T(4)*(x[j-1,k] + x[j+1,k]) end @inline @propagate_inbounds D2tD2_3(x::AbstractArray, i, j::Int, k) = begin T = real(eltype(x)) (x[i,j-2,k] + x[i,j+2,k]) + T(6)*x[i,j,k] - T(4)*(x[i,j-1,k] + x[i,j+1,k]) end # # - Eq. (4), before last row when len ≥ 4: # @inline @propagate_inbounds D2tD2_4(x::AbstractArray, j::Int, k) = begin T = real(eltype(x)) T(6)*x[j,k] - T(3)*x[j+1,k] - T(4)*x[j-1,k] + x[j-2,k] end @inline @propagate_inbounds D2tD2_4(x::AbstractArray, i, j::Int, k) = begin T = real(eltype(x)) T(6)*x[i,j,k] - T(3)*x[i,j+1,k] - T(4)*x[i,j-1,k] + x[i,j-2,k] end # # - Eq. (5), last row when len ≥ 3: # @inline @propagate_inbounds D2tD2_5(x::AbstractArray, j::Int, k) = begin T = real(eltype(x)) T(2)*x[j,k] - T(3)*x[j-1,k] + x[j-2,k] end @inline @propagate_inbounds D2tD2_5(x::AbstractArray, i, j::Int, k) = begin T = real(eltype(x)) T(2)*x[i,j,k] - T(3)*x[i,j-1,k] + x[i,j-2,k] end # # - Eq. (6), central row when len = 3: # @inline @propagate_inbounds D2tD2_6(x::AbstractArray, j::Int, k) = begin T = real(eltype(x)) T(6)*x[j,k] - T(3)*(x[j-1,k] + x[j+1,k]) end @inline @propagate_inbounds D2tD2_6(x::AbstractArray, i, j::Int, k) = begin T = real(eltype(x)) T(6)*x[i,j,k] - T(3)*(x[i,j-1,k] + x[i,j+1,k]) end # # - Eq. (7), first row when len = 2: # @inline @propagate_inbounds D2tD2_7(x::AbstractArray, j::Int, k) = begin z = x[j,k] - x[j+1,k] return z + z end @inline @propagate_inbounds D2tD2_7(x::AbstractArray, i, j::Int, k) = begin z = x[i,j,k] - x[i,j+1,k] return z + z end # # - Eq. (8), last row when len = 2: # @inline @propagate_inbounds D2tD2_8(x::AbstractArray, j::Int, k) = begin z = x[j,k] - x[j-1,k] return z + z end @inline @propagate_inbounds D2tD2_8(x::AbstractArray, i, j::Int, k) = begin z = x[i,j,k] - x[i,j-1,k] return z + z end # # Apply Gram composition of 2nd order finite differences along 1st dimension: # function unsafe_apply!(f::Function, α::Number, ::Type{<:Union{Direct,Adjoint}}, A::Gram{Diff{2,Any,Opt}}, x::AbstractArray, β::Number, y::AbstractArray, I::Tuple{}, J::ArrayAxis, K::ArrayAxes) where {Opt} T = real(eltype(x)) jmin, jmax = limits(J) len = length(J) if len ≥ 5 @maybe_inbounds Opt for k in CartesianIndices(K) let j = jmin y[j,k] = f(α, D2tD2_1(x,j,k), β, y[j,k]) end let j = jmin+1 y[j,k] = f(α, D2tD2_2(x,j,k), β, y[j,k]) end @maybe_vectorized Opt for j in jmin+2:jmax-2 y[j,k] = f(α, D2tD2_3(x,j,k), β, y[j,k]) end let j = jmax-1 y[j,k] = f(α, D2tD2_4(x,j,k), β, y[j,k]) end let j = jmax y[j,k] = f(α, D2tD2_5(x,j,k), β, y[j,k]) end end elseif len == 4 @maybe_vectorized Opt for k in CartesianIndices(K) let j = jmin y[j,k] = f(α, D2tD2_1(x,j,k), β, y[j,k]) end let j = jmin+1 y[j,k] = f(α, D2tD2_2(x,j,k), β, y[j,k]) end let j = jmax-1 y[j,k] = f(α, D2tD2_4(x,j,k), β, y[j,k]) end let j = jmax y[j,k] = f(α, D2tD2_5(x,j,k), β, y[j,k]) end end elseif len == 3 @maybe_vectorized Opt for k in CartesianIndices(K) let j = jmin y[j,k] = f(α, D2tD2_1(x,j,k), β, y[j,k]) end let j = jmin+1 y[j,k] = f(α, D2tD2_6(x,j,k), β, y[j,k]) end let j = jmax y[j,k] = f(α, D2tD2_5(x,j,k), β, y[j,k]) end end elseif len == 2 @maybe_vectorized Opt for k in CartesianIndices(K) let j = jmin y[j,k] = f(α, D2tD2_7(x,j,k), β, y[j,k]) end let j = jmax y[j,k] = f(α, D2tD2_8(x,j,k), β, y[j,k]) end end elseif len == 1 && β != 1 let j = jmin, z = zero(T) @maybe_vectorized Opt for k in CartesianIndices(K) y[j,k] = f(α, z, β, y[j,k]) end end end nothing end # # Apply Gram composition of 2nd order finite differences along 2nd and # subsequent dimensions: # function unsafe_apply!(f::Function, α::Number, ::Type{<:Union{Direct,Adjoint}}, A::Gram{Diff{2,Any,Opt}}, x::AbstractArray, β::Number, y::AbstractArray, I::ArrayAxes, J::ArrayAxis, K::ArrayAxes) where {Opt} T = real(eltype(x)) jmin, jmax = limits(J) len = length(J) if len ≥ 5 @maybe_inbounds Opt for k in CartesianIndices(K) let j = jmin @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, D2tD2_1(x,i,j,k), β, y[i,j,k]) end end let j = jmin+1 @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, D2tD2_2(x,i,j,k), β, y[i,j,k]) end end for j in jmin+2:jmax-2 @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, D2tD2_3(x,i,j,k), β, y[i,j,k]) end end let j = jmax-1 @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, D2tD2_4(x,i,j,k), β, y[i,j,k]) end end let j = jmax @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, D2tD2_5(x,i,j,k), β, y[i,j,k]) end end end elseif len == 4 @maybe_inbounds Opt for k in CartesianIndices(K) let j = jmin @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, D2tD2_1(x,i,j,k), β, y[i,j,k]) end end let j = jmin+1 @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, D2tD2_2(x,i,j,k), β, y[i,j,k]) end end let j = jmax-1 @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, D2tD2_4(x,i,j,k), β, y[i,j,k]) end end let j = jmax @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, D2tD2_5(x,i,j,k), β, y[i,j,k]) end end end elseif len == 3 @maybe_inbounds Opt for k in CartesianIndices(K) let j = jmin @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, D2tD2_1(x,i,j,k), β, y[i,j,k]) end end let j = jmin+1 @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, D2tD2_6(x,i,j,k), β, y[i,j,k]) end end let j = jmax @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, D2tD2_5(x,i,j,k), β, y[i,j,k]) end end end elseif len == 2 @maybe_inbounds Opt for k in CartesianIndices(K) let j = jmin @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, D2tD2_7(x,i,j,k), β, y[i,j,k]) end end let j = jmax @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, D2tD2_8(x,i,j,k), β, y[i,j,k]) end end end elseif len == 1 && β != 1 let j = jmin, z = zero(T) @maybe_inbounds Opt for k in CartesianIndices(K) @maybe_vectorized Opt for i in CartesianIndices(I) y[i,j,k] = f(α, z, β, y[i,j,k]) end end end end nothing end end # module
LazyAlgebra
https://github.com/emmt/LazyAlgebra.jl.git
[ "MIT" ]
0.2.7
e58d5904fa7ffa914a3eb60f8705e2ea3aaea1b9
code
33017
# # fft.jl - # # Implementation of FFT and circulant convolution operators. # #------------------------------------------------------------------------------ # # This file is part of LazyAlgebra (https://github.com/emmt/LazyAlgebra.jl) # released under the MIT "Expat" license. # # Copyright (C) 2017-2021, Éric Thiébaut. # Copyright (C) 2015-2016, Éric Thiébaut, Jonathan Léger & Matthew Ozon. # module FFTs # Be nice with the caller: re-export `fftshift` and `ifftshift` but not `fft`, # `ifft`, etc. as the `FFTOperator` is meant to replace them. export CirculantConvolution, FFTOperator, fftfreq, fftshift, goodfftdim, goodfftdims, ifftshift, rfftdims using ..Foundations using ..LazyAlgebra using ..LazyAlgebra: @certify, bad_argument, bad_size, compose import ..LazyAlgebra: adjoint, apply!, vcreate, MorphismType, mul!, input_size, input_ndims, input_eltype, output_size, output_ndims, output_eltype, identical import Base: *, /, \, inv, show using ArrayTools import AbstractFFTs: Plan, fftshift, ifftshift using FFTW import FFTW: fftwNumber, fftwReal, fftwComplex, FFTWPlan, cFFTWPlan, rFFTWPlan # All planning flags. const PLANNING = (FFTW.ESTIMATE | FFTW.MEASURE | FFTW.PATIENT | FFTW.EXHAUSTIVE | FFTW.WISDOM_ONLY) # The time needed to allocate temporary arrays is negligible compared to the # time taken to compute a FFT (e.g., 5µs to allocate a 256×256 array of double # precision complexes versus 1.5ms to compute its FFT). We therefore do not # store any temporary arrays in the FFT operator. Only the FFT plans are # cached in the operator. #------------------------------------------------------------------------------ # Extend LazyAlgebra framework for FFTW plans. # # This simplify a lot the implementation of FFT and circulant convolution # operators without loss of performances. macro checksize(name, arg, dims) return quote size($(esc(arg))) == $(esc(dims)) || bad_size($(esc(name)), " must have dimensions ", $(esc(dims))) end end input_size(P::FFTWPlan) = P.sz output_size(P::FFTWPlan) = P.osz #input_strides(P::FFTWPlan) = P.istride #output_strides(P::FFTWPlan) = P.ostride flags(P::FFTWPlan) = P.flags destroys_input(A::FFTWPlan) = (flags(A) & (FFTW.PRESERVE_INPUT|FFTW.DESTROY_INPUT)) == FFTW.DESTROY_INPUT preserves_input(A::FFTWPlan) = (flags(A) & (FFTW.PRESERVE_INPUT|FFTW.DESTROY_INPUT)) == FFTW.PRESERVE_INPUT # Extend `vcreate` for FFTW plans. Rationale: result must be of predictible type # and checking input argument is skipped (this will be done by `apply!`). # # Create result for an in-place complex-complex forward/backward FFT # transform. function vcreate(::Type{Direct}, A::cFFTWPlan{Complex{T},K,true,N}, x::StridedArray{Complex{T},N}, scratch::Bool) where {T<:fftwReal,K,N} return (scratch && isa(x, Array) ? x : Array{Complex{T}}(undef, output_size(A))) end # Create result for an out-of-place complex-complex forward/backward FFT # transform. function vcreate(::Type{Direct}, A::cFFTWPlan{Complex{T},K,false,N}, x::StridedArray{Complex{T},N}, scratch::Bool) where {T<:fftwReal,K,N} return Array{Complex{T}}(undef, output_size(A)) end # Create result for a real-complex or a complex-real forward/backward FFT # transform. The result is necessarily a new array whatever the `scratch` # flag. function vcreate(::Type{Direct}, A::rFFTWPlan{T,K,false,N}, x::StridedArray{T,N}, scratch::Bool) where {T<:fftwReal,K,N} return Array{Complex{T}}(undef, output_size(A)) end function vcreate(::Type{Direct}, A::rFFTWPlan{Complex{T},K,false,N}, x::StridedArray{Complex{T},N}, scratch::Bool) where {T<:fftwReal,K,N} return Array{T}(undef, output_size(A)) end # Extend `apply!` for FFTW plans. We want to compute: # # y = α⋅F⋅x + β⋅y # # with as few temporaries as possible. If β = 0, then there are no needs # to save the contents of y which can be used directly for the output of # the transform. Extra checks are required to make sure the contents x is # not damaged unless scratch is true. It tuns out that the implementation # depends on the type of transform so several versions are coded below. # Apply in-place complex-complex forward/backward FFT transform. function apply!(α::Number, ::Type{Direct}, A::cFFTWPlan{Complex{T},K,true,N}, x::StridedArray{Complex{T},N}, scratch::Bool, β::Number, y::StridedArray{Complex{T},N}) where {T<:fftwReal,N,K} @checksize "argument" x input_size(A) @checksize "result" y output_size(A) if α == 0 vscale!(y, β) elseif β == 0 mul!(y, A, vscale!(y, α, x)) elseif scratch vcombine!(y, α, mul!(x, A, x), β, y) else z = copy(x) vcombine!(y, α, mul!(z, A, z), β, y) end return y end # Apply out-of-place complex-complex forward/backward FFT transform. function apply!(α::Number, ::Type{Direct}, A::cFFTWPlan{Complex{T},K,false,N}, x::StridedArray{Complex{T},N}, scratch::Bool, β::Number, y::StridedArray{Complex{T},N}) where {T<:fftwReal,N,K} @checksize "argument" x input_size(A) @checksize "result" y output_size(A) if α == 0 vscale!(y, β) elseif β == 0 safe_mul!(y, A, x, scratch && x !== y) α == 1 || vscale!(y, α) else vcombine!(y, α, safe_mul(A, x, scratch), β, y) end return y end # Apply real-to-complex forward transform. The transform is necessarily # out-of-place. function apply!(α::Number, ::Type{Direct}, A::rFFTWPlan{T,K,false,N}, x::StridedArray{T,N}, scratch::Bool, β::Number, y::StridedArray{Complex{T},N}) where {T<:fftwReal,K,N} @checksize "argument" x input_size(A) @checksize "result" y output_size(A) if α == 0 vscale!(y, β) elseif β == 0 safe_mul!(y, A, x, scratch) α == 1 || vscale!(y, α) else vcombine!(y, α, safe_mul(A, x, scratch), β, y) end return y end # Apply complex-to-real (c2r) backward transform. Preserving input is not # possible for multi-dimensional c2r transforms so we must copy the input # argument x. function apply!(α::Number, ::Type{Direct}, A::rFFTWPlan{Complex{T},K,false,N}, x::StridedArray{Complex{T},N}, scratch::Bool, β::Number, y::StridedArray{T,N}) where {T<:fftwReal,K,N} @checksize "argument" x input_size(A) @checksize "result" y output_size(A) if α == 0 vscale!(y, β) elseif β == 0 safe_mul!(y, A, x, scratch) α == 1 || vscale!(y, α) else vcombine!(y, α, safe_mul(A, x, scratch), β, y) end return y end """ ```julia safe_mul!(dest, A, src, scratch=false) -> dest ``` overwrite `dest` with the result of applying operator `A` to `src` and returns `dest`. Unless `scratch` is true, it is guaranteed that `src` is preserved which may involve making a temporary copy of it. See also [`safe_mul`](@ref). """ function safe_mul!(dest::StridedArray{Complex{T},N}, A::cFFTWPlan{Complex{T},K,inplace,N}, src::StridedArray{Complex{T},N}, scratch::Bool = false) where {T<:fftwReal,K,inplace,N} _safe_mul!(dest, A, src, scratch) end function safe_mul!(dest::StridedArray{Complex{T},N}, A::rFFTWPlan{T,K,inplace,N}, src::StridedArray{T,N}, scratch::Bool = false) where {T<:fftwReal,K,inplace,N} _safe_mul!(dest, A, src, scratch) end function safe_mul!(dest::StridedArray{T,N}, A::rFFTWPlan{Complex{T},K,inplace,N}, src::StridedArray{Complex{T},N}, scratch::Bool = false) where {T<:fftwReal,K,inplace,N} _safe_mul!(dest, A, src, scratch) end function _safe_mul!(dest::StridedArray, A::FFTWPlan, src::StridedArray{T,N}, scratch::Bool) where {T,N} if scratch || preserves_input(A) mul!(dest, A, src) else mul!(dest, A, copy(src)) end return dest end """ ```julia safe_mul(A, x, scratch=false) ``` yields the result of applying operator `A` to `x`. Unless `scratch` is true, it is guaranteed that input `x` is preserved which may involve making a temporary copy of it. See also [`safe_mul!`](@ref). """ function safe_mul(A::cFFTWPlan{Complex{T},K,inplace,N}, x::StridedArray{Complex{T},N}, scratch::Bool = false) where {T<:fftwReal,K,inplace,N} y = Array{Complex{T},N}(undef, output_size(A)) safe_mul!(y, A, x, scratch) end function safe_mul(A::rFFTWPlan{T,K,inplace,N}, x::StridedArray{T,N}, scratch::Bool = false) where {T<:fftwReal,K,inplace,N} y = Array{Complex{T},N}(undef, output_size(A)) safe_mul!(y, A, x, scratch) end function safe_mul(A::rFFTWPlan{Complex{T},K,inplace,N}, x::StridedArray{Complex{T},N}, scratch::Bool = false) where {T<:fftwReal,K,inplace,N} y = Array{T,N}(undef, output_size(A)) safe_mul!(y, A, x, scratch) end #------------------------------------------------------------------------------ # FFT operator. """ ```julia FFTOperator(A) -> F ``` yields an FFT operator suitable for computing the fast Fourier transform of arrays similar to `A`. The operator can also be specified by the real/complex floating-point type of the elements of the arrays to transform and their dimensions: ```julia FFTOperator(T, dims) -> F ``` where `T` is one of `Float64`, `Float32` (for a real-complex FFT), `Complex{Float64}`, `Complex{Float32}` (for a complex-complex FFT) and `dims` gives the dimensions of the arrays to transform (by the `Direct` or `InverseAdjoint` operation). The interest of creating such an operator is that it caches the ressources necessary for fast computation of the FFT and can be therefore *much* faster than calling `fft`, `rfft`, `ifft`, etc. This is especially true on small arrays. Keywords `flags` and `timelimit` may be used to specify planning options and time limit to create the FFT plans (see http://www.fftw.org/doc/Planner-Flags.html). The defaults are `flags=FFTW.MEASURE` and no time limit. An instance of `FFTOperator` is a linear mapping which can be used as any other mapping: ```julia F*x # yields the FFT of x F'*x # yields the adjoint FFT applied to x, that is the backward FFT of x F\\x # yields the inverse FFT of x ``` See also: [`fft`](@ref), [`plan_fft`](@ref), [`bfft`](@ref), [`plan_bfft`](@ref), [`rfft`](@ref), [`plan_rfft`](@ref), [`brfft`](@ref), [`plan_brfft`](@ref). """ struct FFTOperator{T<:fftwNumber, # element type of input N, # number of dimensions C<:fftwComplex, # element type of output F<:Plan{T}, # type of forward plan B<:Plan{C} # type of backward plan } <: LinearMapping ncols::Int # number of input elements inpdims::NTuple{N,Int} # input dimensions outdims::NTuple{N,Int} # output dimensions forward::F # plan for forward transform backward::B # plan for backward transform end # Real-to-complex FFT. function FFTOperator(::Type{T}, dims::NTuple{N,Int}; timelimit::Real = FFTW.NO_TIMELIMIT, flags::Integer = FFTW.MEASURE) where {T<:fftwReal,N} # Check arguments and build dimension list of the result of the forward # real-to-complex (r2c) transform. planning = check_flags(flags) ncols = check_size(dims) zdims = rfftdims(dims) # Compute the plans with suitable FFTW flags. The forward transform (r2c) # must preserve its input, while the backward transform (c2r) may destroy # it (in fact there are no input-preserving algorithms for # multi-dimensional c2r transforms implemented in FFTW, see # http://www.fftw.org/doc/Planner-Flags.html). forward = plan_rfft(Array{T}(undef, dims); flags = (planning | FFTW.PRESERVE_INPUT), timelimit = timelimit) backward = plan_brfft(Array{Complex{T}}(undef, zdims), dims[1]; flags = (planning | FFTW.DESTROY_INPUT), timelimit = timelimit) # Build operator. F = typeof(forward) B = typeof(backward) return FFTOperator{T,N,Complex{T},F,B}(ncols, dims, zdims, forward, backward) end # Complex-to-complex FFT. function FFTOperator(::Type{T}, dims::NTuple{N,Int}; timelimit::Real = FFTW.NO_TIMELIMIT, flags::Integer = FFTW.MEASURE) where {T<:fftwComplex,N} # Check arguments. The input and output of the complex-to-complex # transform have the same dimensions. planning = check_flags(flags) ncols = check_size(dims) temp = Array{T}(undef, dims) # Compute the plans with suitable FFTW flags. For maximum efficiency, the # transforms are always applied in-place and thus cannot preserve their # inputs. forward = plan_fft!(temp; flags = (planning | FFTW.DESTROY_INPUT), timelimit = timelimit) backward = plan_bfft!(temp; flags = (planning | FFTW.DESTROY_INPUT), timelimit = timelimit) # Build operator. F = typeof(forward) B = typeof(backward) return FFTOperator{T,N,T,F,B}(ncols, dims, dims, forward, backward) end @callable FFTOperator # Constructor for dimensions not specified as a tuple. FFTOperator(T::Type{<:fftwNumber}, dims::Integer...; kwds...) = FFTOperator(T, dims; kwds...) # The following 2 definitions are needed to avoid ambiguities. FFTOperator(T::Type{<:fftwReal}, dims::Tuple{Vararg{Integer}}; kwds...) = FFTOperator(T, to_size(dims); kwds...) FFTOperator(T::Type{<:fftwComplex}, dims::Tuple{Vararg{Integer}}; kwds...) = FFTOperator(T, to_size(dims); kwds...) # Constructor for transforms applicable to a given array. FFTOperator(A::DenseArray{T,N}; kwds...) where {T<:fftwNumber,N} = FFTOperator(T, size(A); kwds...) # Traits: MorphismType(::FFTOperator{<:Complex}) = Endomorphism() ncols(A::FFTOperator) = A.ncols ncols(A::Adjoint{<:FFTOperator}) = ncols(unveil(A)) ncols(A::Inverse{<:FFTOperator}) = ncols(unveil(A)) ncols(A::InverseAdjoint{<:FFTOperator}) = ncols(unveil(A)) input_size(A::FFTOperator) = A.inpdims # FIXME: input_size(A.forward) input_size(A::FFTOperator, i::Integer) = get_dimension(input_size(A), i) output_size(A::FFTOperator) = A.outdims output_size(A::FFTOperator, i::Integer) = get_dimension(output_size(A), i) input_ndims(A::FFTOperator{T,N,C}) where {T,N,C} = N output_ndims(A::FFTOperator{T,N,C}) where {T,N,C} = N input_eltype(A::FFTOperator{T,N,C}) where {T,N,C} = T output_eltype(A::FFTOperator{T,N,C}) where {T,N,C} = C # 2 FFT operators can be considered the same if they operate on arguments with # the same element type and the same dimensions. If the types do not match, # the matching method is the one which return false, so it is only needed to # implement the method for two arguments with the same types (omitting the type # of the plans as it is irrelevant here). identical(A::FFTOperator{T,N,C}, B::FFTOperator{T,N,C}) where {T,N,C} = (input_size(A) == input_size(B)) show(io::IO, A::FFTOperator) = print(io, "FFT") # Impose the following simplifying rules: # inv(F) = n\F' # ==> F⋅F' = F'⋅F = n⋅Id # ==> inv(F⋅F') = inv(F'⋅F) = inv(F)⋅inv(F') = inv(F')⋅inv(F) = n\Id *(A::Adjoint{F}, B::F) where {F<:FFTOperator} = (identical(unveil(A), B) ? ncols(A)*Id : compose(A, B)) *(A::F, B::Adjoint{F}) where {F<:FFTOperator} = (identical(A, unveil(B)) ? ncols(A)*Id : compose(A, B)) *(A::InverseAdjoint{F}, B::Inverse{F}) where {F<:FFTOperator} = (identical(unveil(A), unveil(B)) ? (1//ncols(A))*Id : compose(A, B)) *(A::Inverse{F}, B::InverseAdjoint{F}) where {F<:FFTOperator} = (identical(unveil(A), unveil(B)) ? (1//ncols(A))*Id : compose(A, B)) function vcreate(P::Type{<:Union{Direct,InverseAdjoint}}, A::FFTOperator{T,N,C}, x::DenseArray{T,N}, scratch::Bool) where {T,N,C} vcreate(Direct, A.forward, x, scratch) end function vcreate(P::Type{<:Union{Adjoint,Inverse}}, A::FFTOperator{T,N,C}, x::DenseArray{C,N}, scratch::Bool) where {T,N,C} vcreate(Direct, A.backward, x, scratch) end # # In principle, FFTW plans can be applied to strided arrays (StridedArray) but # this imposes that the arguments have the same strides. So for now, we choose # to restrict arguments to arrays with contiguous elements (DenseArray). # function apply!(α::Number, ::Type{Direct}, A::FFTOperator{T,N,C}, x::DenseArray{T,N}, scratch::Bool, β::Number, y::DenseArray{C,N}) where {T,N,C} return apply!(α, Direct, A.forward, x, scratch, β, y) end function apply!(α::Number, ::Type{Adjoint}, A::FFTOperator{T,N,C}, x::DenseArray{C,N}, scratch::Bool, β::Number, y::DenseArray{T,N}) where {T,N,C} return apply!(α, Direct, A.backward, x, scratch, β, y) end function apply!(α::Number, ::Type{Inverse}, A::FFTOperator{T,N,C}, x::DenseArray{C,N}, scratch::Bool, β::Number, y::DenseArray{T,N}) where {T,N,C} return apply!(α/ncols(A), Direct, A.backward, x, scratch, β, y) end function apply!(α::Number, ::Type{InverseAdjoint}, A::FFTOperator{T,N,C}, x::DenseArray{T,N}, scratch::Bool, β::Number, y::DenseArray{C,N}) where {T,N,C} return apply!(α/ncols(A), Direct, A.forward, x, scratch, β, y) end #------------------------------------------------------------------------------ # Circulant convolution. struct CirculantConvolution{T<:fftwNumber,N, C<:fftwComplex, F<:Plan{T}, B<:Plan{C}} <: LinearMapping dims::NTuple{N,Int} # input/output dimensions zdims::NTuple{N,Int} # complex dimensions mtf::Array{C,N} # modulation transfer function forward::F # plan for forward transform backward::B # plan for backward transform end @callable CirculantConvolution # Traits: MorphismType(::CirculantConvolution) = Endomorphism() # Basic methods for a linear operator on Julia's arrays. input_size(H::CirculantConvolution) = H.dims output_size(H::CirculantConvolution) = H.dims input_size(H::CirculantConvolution, i::Integer) = get_dimension(H.dims, i) output_size(H::CirculantConvolution, i::Integer) = get_dimension(H.dims, i) input_ndims(H::CirculantConvolution{T,N}) where {T,N} = N output_ndims(H::CirculantConvolution{T,N}) where {T,N} = N input_eltype(H::CirculantConvolution{T,N}) where {T,N} = T output_eltype(H::CirculantConvolution{T,N}) where {T,N} = T # Basic methods for an array. Base.eltype(H::CirculantConvolution{T,N}) where {T,N} = T Base.size(H::CirculantConvolution{T,N}) where {T,N} = ntuple(i -> H.dims[(i ≤ N ? i : i - N)], 2*N) Base.size(H::CirculantConvolution{T,N}, i::Integer) where {T,N} = (i < 1 ? bad_dimension_index() : i ≤ N ? H.dims[i] : i ≤ 2N ? H.dims[i-N] : 1) Base.ndims(H::CirculantConvolution{T,N}) where {T,N} = 2*N """ # Circulant convolution operator The circulant convolution operator `H` is defined by: ```julia H = (1/n)*F'*Diag(mtf)*F ``` with `n` the number of elements, `F` the discrete Fourier transform operator and `mtf` the modulation transfer function. The operator `H` can be created by: ```julia H = CirculantConvolution(psf; flags=FFTW.MEASURE, timelimit=Inf, shift=false) ``` where `psf` is the point spread function (PSF). Note that the PSF is assumed to be centered according to the convention of the discrete Fourier transform. You may use `ifftshift` or the keyword `shift` if the PSF is geometrically centered: ```julia H = CirculantConvolution(ifftshift(psf)) H = CirculantConvolution(psf, shift=true) ``` The following keywords can be specified: * `shift` (`false` by default) indicates whether to apply `ifftshift` to `psf`. * `normalize` (`false` by default) indicates whether to divide `psf` by the sum of its values. This keyword is only available for real-valued PSF. * `flags` is a bitwise-or of FFTW planner flags, defaulting to `FFTW.MEASURE`. If the operator is to be used many times (as in iterative methods), it is recommended to use at least `flags=FFTW.MEASURE` (the default) which generally yields faster transforms compared to `flags=FFTW.ESTIMATE`. * `timelimit` specifies a rough upper bound on the allowed planning time, in seconds. The operator can be used as a regular linear operator: `H(x)` or `H*x` to compute the convolution of `x` and `H'(x)` or `H'*x` to apply the adjoint of `H` to `x`. For a slight improvement of performances, an array `y` to store the result of the operation can be provided: ```julia apply!(y, [P=Direct,] H, x) -> y apply!(y, H, x) apply!(y, H', x) ``` If provided, `y` must be at a different memory location than `x`. """ CirculantConvolution function CirculantConvolution(psf::AbstractArray{T,N}; kwds...) where {T<:fftwNumber,N} CirculantConvolution(copy(psf); kwds...) end # Create a circular convolution operator for real arrays. function CirculantConvolution(psf::DenseArray{T,N}; flags::Integer = FFTW.MEASURE, normalize::Bool = false, shift::Bool = false, kwds...) where {T<:fftwReal,N} # Check arguments and compute dimensions. planning = check_flags(flags) n = length(psf) dims = size(psf) zdims = rfftdims(dims) # Allocate array for the scaled MTF, this array also serves as a workspace # for planning operations which may destroy their input. mtf = Array{Complex{T}}(undef, zdims) # Compute the plans with suitable FFTW flags. The forward transform (r2c) # must preserve its input, while the backward transform (c2r) may destroy # it (in fact there are no input-preserving algorithms for # multi-dimensional c2r transforms). forward = safe_plan_rfft(psf; flags = (planning | FFTW.PRESERVE_INPUT), kwds...) backward = plan_brfft(mtf, dims[1]; flags = (planning | FFTW.DESTROY_INPUT), kwds...) # Compute the scaled MTF *after* computing the plans. mul!(mtf, forward, (shift ? ifftshift(psf) : psf)) if normalize sum = mtf[1] sum <= 0 && bad_argument("cannot normalize: sum(PSF) ≤ 0") sum != 1 && vscale!(mtf, 1/sum) end # Build operator. F = typeof(forward) B = typeof(backward) CirculantConvolution{T,N,Complex{T},F,B}(dims, zdims, mtf, forward, backward) end # Create a circular convolution operator for complex arrays (see # docs/convolution.md for explanations). function CirculantConvolution(psf::DenseArray{T,N}; flags::Integer = FFTW.MEASURE, normalize::Bool = false, shift::Bool = false, kwds...) where {T<:fftwComplex,N} # Check arguments and get dimensions. @certify normalize == false "normalizing a complex PSF has no sense" planning = check_flags(flags) n = length(psf) dims = size(psf) # Allocate array for the scaled MTF, this array also serves as a workspace # for planning operations which may destroy their input. mtf = Array{T}(undef, dims) # Compute the plans with FFTW flags suitable for out-of-place forward # transform and in-place backward transform. forward = plan_fft(mtf; flags = (planning | FFTW.PRESERVE_INPUT), kwds...) backward = plan_bfft!(mtf; flags = (planning | FFTW.DESTROY_INPUT), kwds...) # Compute the MTF *after* computing the plans. mul!(mtf, forward, (shift ? ifftshift(psf) : psf)) # Build the operator. F = typeof(forward) B = typeof(backward) CirculantConvolution{T,N,T,F,B}(dims, dims, mtf, forward, backward) end """ `safe_plan_rfft(x; kwds...)` yields a FFTW plan for computing the real to complex fast Fourier transform of `x`. This method is the same as `plan_rfft` except that it makes sure that `x` is preserved. """ function safe_plan_rfft(x::AbstractArray{T,N}; flags::Integer = FFTW.MEASURE, kwds...) where {T<:fftwReal,N} planning = (flags & PLANNING) if isa(x, StridedArray) && (planning == FFTW.ESTIMATE || planning == FFTW.WISDOM_ONLY) return plan_rfft(x; flags=flags, kwds...) else return plan_rfft(Array{T}(undef, size(x)); flags=flags, kwds...) end end function vcreate(::Type{<:Operations}, H::CirculantConvolution{T,N}, x::AbstractArray{T,N}, scratch::Bool) where {T<:fftwNumber,N} return Array{T,N}(undef, H.dims) end function apply!(α::Number, P::Type{<:Union{Direct,Adjoint}}, H::CirculantConvolution{Complex{T},N,Complex{T}}, x::AbstractArray{Complex{T},N}, scratch::Bool, β::Number, y::AbstractArray{Complex{T},N}) where {T<:fftwReal,N} @certify !Base.has_offset_axes(x, y) if α == 0 @certify size(y) == H.dims vscale!(y, β) else n = length(x) if β == 0 # Use y as a workspace. mul!(y, H.forward, x) # out-of-place forward FFT of x in y _apply!(y, α/n, P, H.mtf) # in-place multiply y by mtf/n mul!(y, H.backward, y) # in-place backward FFT of y else # Must allocate a workspace. z = Array{Complex{T}}(undef, H.zdims) # allocate temporary mul!(z, H.forward, x) # out-of-place forward FFT of x in z _apply!(z, α/n, P, H.mtf) # in-place multiply z by mtf/n mul!(z, H.backward, z) # in-place backward FFT of z vcombine!(y, 1, z, β, y) end end return y end function apply!(α::Number, P::Type{<:Union{Direct,Adjoint}}, H::CirculantConvolution{T,N,Complex{T}}, x::AbstractArray{T,N}, scratch::Bool, β::Number, y::AbstractArray{T,N}) where {T<:fftwReal,N} @certify !Base.has_offset_axes(x, y) if α == 0 @certify size(y) == H.dims vscale!(y, β) else n = length(x) z = Array{Complex{T}}(undef, H.zdims) # allocate temporary mul!(z, H.forward, x) # out-of-place forward FFT of x in z _apply!(z, α/n, P, H.mtf) # in-place multiply z by mtf/n if β == 0 mul!(y, H.backward, z) # out-of-place backward FFT of z in y else w = Array{T}(undef, H.dims) # allocate another temporary mul!(w, H.backward, z) # out-of-place backward FFT of z in y vcombine!(y, 1, w, β, y) end end return y end """ ```julia _apply!(arr, α, P, mtf) ``` stores in `arr` the elementwise multiplication of `arr` by `α*mtf` if `P` is `Direct` or by `α*conj(mtf)` if `P` is `Adjoint`. An error is thrown if the arrays do not have the same dimensions. It is assumed that `α ≠ 0`. """ function _apply!(arr::AbstractArray{Complex{T},N}, α::Number, ::Type{Direct}, mtf::AbstractArray{Complex{T},N}) where {T,N} @certify axes(arr) == axes(mtf) if α == 1 @inbounds @simd for i in eachindex(arr, mtf) arr[i] *= mtf[i] end else alpha = promote_multiplier(α, T) @inbounds @simd for i in eachindex(arr, mtf) arr[i] *= alpha*mtf[i] end end end function _apply!(arr::AbstractArray{Complex{T},N}, α::Number, ::Type{Adjoint}, mtf::AbstractArray{Complex{T},N}) where {T,N} @certify axes(arr) == axes(mtf) if α == 1 @inbounds @simd for i in eachindex(arr, mtf) arr[i] *= conj(mtf[i]) end else alpha = promote_multiplier(α, T) @inbounds @simd for i in eachindex(arr, mtf) arr[i] *= alpha*conj(mtf[i]) end end end #------------------------------------------------------------------------------ # Utilities. """ `check_flags(flags)` checks whether `flags` is an allowed bitwise-or combination of FFTW planner flags (see http://www.fftw.org/doc/Planner-Flags.html) and returns the filtered flags. """ function check_flags(flags::Integer) planning = flags & PLANNING flags == planning || bad_argument("only FFTW planning flags can be specified") return UInt32(planning) end """ `get_dimension(dims, i)` yields the `i`-th dimension in tuple of integers `dims`. Like for broadcasting rules, it is assumed that the length of all dimensions after the last one are equal to 1. """ get_dimension(dims::NTuple{N,Int}, i::Integer) where {N} = (i < 1 ? bad_dimension_index() : i ≤ N ? dims[i] : 1) # FIXME: should be in ArrayTools bad_dimension_index() = error("invalid dimension index") """ ```julia goodfftdim(len) ``` yields the smallest integer which is greater or equal `len` and which is a multiple of powers of 2, 3 and/or 5. If argument is an array dimesion list (i.e. a tuple of integers), a tuple of good FFT dimensions is returned. Also see: [`goodfftdims`](@ref), [`rfftdims`](@ref), [`FFTOperator`](@ref). """ goodfftdim(len::Integer) = goodfftdim(Int(len)) goodfftdim(len::Int) = nextprod([2,3,5], len) """ ```julia goodfftdims(dims) ``` yields a list of dimensions suitable for computing the FFT of arrays whose dimensions are `dims` (a tuple or a vector of integers). Also see: [`goodfftdim`](@ref), [`rfftdims`](@ref), [`FFTOperator`](@ref). """ goodfftdims(dims::Integer...) = map(goodfftdim, dims) goodfftdims(dims::Union{AbstractVector{<:Integer},Tuple{Vararg{Integer}}}) = map(goodfftdim, dims) """ ```julia rfftdims(dims) ``` yields the dimensions of the complex array produced by a real-complex FFT of a real array of size `dims`. Also see: [`goodfftdim`](@ref), [`FFTOperator`](@ref). """ rfftdims(dims::Integer...) = rfftdims(dims) rfftdims(dims::NTuple{N,Integer}) where {N} = ntuple(d -> (d == 1 ? (Int(dims[d]) >>> 1) + 1 : Int(dims[d])), Val(N)) # Note: The above version is equivalent but much faster than # ((dims[1] >>> 1) + 1, dims[2:end]...) # which is not optimized out by the compiler. """ ### Generate Discrete Fourier Transform frequency indexes or frequencies Syntax: ```julia k = fftfreq(dim) f = fftfreq(dim, step) ``` With a single argument, the function returns a vector of `dim` values set with the frequency indexes: ``` k = [0, 1, 2, ..., n-1, -n, ..., -2, -1] if dim = 2*n k = [0, 1, 2, ..., n, -n, ..., -2, -1] if dim = 2*n + 1 ``` depending whether `dim` is even or odd. These rules are compatible to what is assumed by `fftshift` (which to see) in the sense that: ``` fftshift(fftfreq(dim)) = [-n, ..., -2, -1, 0, 1, 2, ...] ``` With two arguments, `step` is the sample spacing in the direct space and the result is a floating point vector with `dim` elements set with the frequency bin centers in cycles per unit of the sample spacing (with zero at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second. This is equivalent to: ``` fftfreq(dim)/(dim*step) ``` See also: [`FFTOperator`](@ref), [`fftshift`](@ref). """ function fftfreq(_dim::Integer) dim = Int(_dim) n = div(dim, 2) f = Array{Int}(undef, dim) @inbounds begin for k in 1:dim-n f[k] = k - 1 end for k in dim-n+1:dim f[k] = k - (1 + dim) end end return f end function fftfreq(_dim::Integer, step::Real) dim = Int(_dim) scl = Cdouble(1/(dim*step)) n = div(dim, 2) f = Array{Cdouble}(undef, dim) @inbounds begin for k in 1:dim-n f[k] = (k - 1)*scl end for k in dim-n+1:dim f[k] = (k - (1 + dim))*scl end end return f end end # module
LazyAlgebra
https://github.com/emmt/LazyAlgebra.jl.git
[ "MIT" ]
0.2.7
e58d5904fa7ffa914a3eb60f8705e2ea3aaea1b9
code
1759
# # foundations.jl - # # Sub-module exporting types and methods needed to extend or implement # LazyAlgebra mappings. # #------------------------------------------------------------------------------- # # This file is part of LazyAlgebra (https://github.com/emmt/LazyAlgebra.jl) # released under the MIT "Expat" license. # # Copyright (c) 2017-2021 Éric Thiébaut. # """ using LazyAlgebra.Foundations imports types and methods that may be useful to extend or implement `LazyAlgebra` mappings. """ module Foundations using ..LazyAlgebra for sym in (Symbol("@callable"), :Adjoint, :AdjointInverse, :DiagonalMapping, :DiagonalType, :Direct, :Endomorphism, :Inverse, :InverseAdjoint, :Linear, :LinearType, :Morphism, :MorphismType, :NonDiagonalMapping, :NonLinear, :NonSelfAdjoint, :Operations, :SelfAdjoint, :SelfAdjointType, :axpby_yields_zero, :axpby_yields_y, :axpby_yields_my, :axpby_yields_by, :axpby_yields_x, :axpby_yields_xpy, :axpby_yields_xmy, :axpby_yields_xpby, :axpby_yields_mx, :axpby_yields_ymx, :axpby_yields_mxmy, :axpby_yields_bymx, :axpby_yields_ax, :axpby_yields_axpy, :axpby_yields_axmy, :axpby_yields_axpby, :multiplier_type, :multiplier_floatingpoint_type, :promote_multiplier) @eval begin import ..LazyAlgebra: $sym export $sym end end end # module Foundations
LazyAlgebra
https://github.com/emmt/LazyAlgebra.jl.git
[ "MIT" ]
0.2.7
e58d5904fa7ffa914a3eb60f8705e2ea3aaea1b9
code
2056
# # genmult.jl - # # Generalized dot product by grouping consecutive dimensions. # #------------------------------------------------------------------------------- # # This file is part of LazyAlgebra (https://github.com/emmt/LazyAlgebra.jl) # released under the MIT "Expat" license. # # Copyright (c) 2017-2020 Éric Thiébaut. # module GenMult export lgemm!, lgemm, lgemv!, lgemv using ..LazyAlgebra using ..LazyAlgebra: Complexes, Floats, Reals, axes, promote_multiplier, libblas, @blasfunc, BlasInt, BlasReal, BlasFloat, BlasComplex, bad_argument, bad_size using ArrayTools # for `cartesian_indices`, `is_flat_array`, etc. using LinearAlgebra using LinearAlgebra.BLAS """ ```julia Implementation(Val(:alg), args...)` ``` is used to quickly determine the most efficient implementation of the code to use for algorithm `alg` with arguments `args...`. The returned value is one of four possible singletons: - `Blas()` when highly optimized BLAS code can be used. This is the preferred implementation as it is assumed to be the fastest. - `Basic()` when *vector* and *matrix* arguments have respectively one and two dimensions. - `Linear()` when *vector* and *matrix* arguments can be efficiently indexed by, respectively, one and two linear indices. - `Generic()` to use generic implementation which can accommodate from any type of arguments and of multi-dimensional indices. This implementation should be always safe to use and should provide the reference implementation of the algorithm `alg`. Whenever possible, the best implementation is automatically determined at compilation time by calling this method. """ abstract type Implementation end for S in (:Basic, :Blas, :Linear, :Generic) @eval begin struct $S <: Implementation end @doc @doc(Implementation) $S end end incompatible_dimensions() = bad_size("incompatible dimensions") invalid_transpose_character() = bad_argument("invalid transpose character") include("lgemv.jl") include("lgemm.jl") end # module
LazyAlgebra
https://github.com/emmt/LazyAlgebra.jl.git