licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | code | 236 | @testset "Statistics" begin
fname = joinpath(dirname(@__FILE__), "..", "data", "test_Hz19.5-testing.bdf")
s = read_SSR(fname)
@testset "Global Field Power" begin
~ = gfp(s.data) # TODO: Check result
end
end
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | code | 2656 | using Neuroimaging, Test, BDF
@testset "GeneralEEG" begin
fname = joinpath(dirname(@__FILE__), "..", "data", "test_Hz19.5-testing.bdf")
s = read_EEG(fname)
@test isa(s, NeuroimagingMeasurement)
@test isa(s, EEG)
@testset "Show" begin
show(s)
end
@testset "Read file" begin
s = read_EEG(fname)
@info samplingrate(s)
@test samplingrate(s) == 8192.0
@info samplingrate(s)
@test samplingrate(Int, s) == 8192
@test isa(samplingrate(s), AbstractFloat) == true
@test isa(samplingrate(Int, s), Int) == true
@test isapprox(maximum(s.data[:, 2]), 54.5939; atol = 0.1)
@test isapprox(minimum(s.data[:, 4]), -175.2503; atol = 0.1)
s = read_EEG(fname, valid_triggers = [8])
s = read_EEG(fname, min_epoch_length = 8388)
s = read_EEG(fname, max_epoch_length = 8389)
s = read_EEG(fname)
original_length = length(s.triggers["Index"])
s = read_EEG(fname, remove_first = 10)
@test original_length - 10 == length(s.triggers["Index"])
s = read_EEG(fname, max_epochs = 12)
@test length(s.triggers["Index"]) == 12
s = read_EEG(fname)
s.triggers = extra_triggers(s.triggers, 1, 7, 0.7, samplingrate(s))
@test length(s.triggers["Index"]) == 56
end
@testset "Sensors" begin
s1 = sensors(deepcopy(s))
@test length(s1) == 6
@test length(x(s1)) == 6
@test length(labels(s1)) == 6
end
@testset "Channel names" begin
s1 = deepcopy(s)
s1 = channelnames(s1, 1, "A01")
s1 = channelnames(s1, 2, "A05")
s1 = channelnames(s1, 3, "A11")
s1 = channelnames(s1, 4, "B03")
s1 = channelnames(s1, 5, "A17")
s1 = channelnames(s1, 6, "B17")
@test channelnames(s1) == ["A01", "A05", "A11", "B03", "A17", "B17"]
end
@testset "Triggers" begin
dats, evtTab, trigs, statusChan = readBDF(fname)
sampRate = readBDFHeader(fname)["sampRate"][1]
@test trigs == create_channel(
evtTab,
dats,
sampRate,
code = "code",
index = "idx",
duration = "dur",
)
@test trigs ==
trigger_channel(read_EEG(fname, valid_triggers = collect(-1000:10000)))
# Convert between events and channels
dats, evtTab, trigs, statusChan = readBDF(fname)
events = create_events(trigs, sampRate)
channel = create_channel(events, dats, sampRate)
@test size(channel) == size(trigs)
@test channel == trigs
end
end
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | code | 2326 | @testset "Coordinates" begin
@testset "Create" begin
@testset "Brain Vision" begin
bv = BrainVision(0, 0, 0)
@testset "Show" begin
show(bv)
end
end
@testset "Talairach" begin
tal = Talairach(68.3, -26.9, 8.3)
@testset "Show" begin
show(tal)
end
end
@testset "SPM" begin
spm = SPM(68.3, -26.9, 8.3)
@testset "Show" begin
show(spm)
end
end
@testset "Unknown" begin
uk = UnknownCoordinate(1.2, 2, 3.2)
@testset "Show" begin
show(uk)
end
end
end
@testset "Convert" begin
@testset "MNI -> Talairach" begin
# Values from table IV in Lancaster et al 2007
# TODO Find better points to translate
mni = SPM(73.7u"mm", -26.0u"mm", 7.0u"mm")
tal = Talairach(68.3u"mm", -26.9u"mm", 8.3u"mm")
mni_converted = convert(Talairach, mni)
dist = euclidean(mni_converted, tal)
@test isapprox(dist, 0; atol = 2)
# As an electrode
# Test as an electrode
e = Electrode("test", SPM(73.7u"mm", -26.0u"mm", 7.0u"mm"), Dict())
e = conv_spm_mni2tal(e)
@test isapprox(e.coordinate.x, tal.x; atol = 1.5u"m")
@test isapprox(e.coordinate.y, tal.y; atol = 1.5u"m")
@test isapprox(e.coordinate.z, tal.z; atol = 1.5u"m")
@test isa(e, Neuroimaging.Sensor) == true
@test isa(e, Neuroimaging.Electrode) == true
@test isa(e.coordinate, Neuroimaging.Talairach) == true
end
@testset "BrainVision -> Talairach" begin
# TODO this just tests it runs, need to check values
bv = BrainVision(0, 0, 0)
tal = Talairach(128u"mm", 128u"mm", 128u"mm")
@test isapprox(euclidean(convert(Talairach, bv), tal), 0; atol = 1.5)
end
end
@testset "Distances" begin
@test euclidean(Talairach(0, 0, 0), Talairach(1, 1, 1)) == sqrt.(3)
v = [0, 0, 0]
@test euclidean(Talairach(1, 1, 1), v) == sqrt.(3)
@test euclidean(v, Talairach(1, 1, 1)) == sqrt.(3)
end
end
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | code | 1980 | using Unitful, Statistics
@testset "Dipoles" begin
dips = Dipole[]
@testset "Create" begin
dip1 = Dipole("Talairach", 1u"m", 2u"m", 1u"m", 0, 0, 0, 1, 1, 1)
dip2 = Dipole("Talairach", 1u"m", 2u"m", 3u"m", 0, 0, 0, 2, 2, 2)
dips = push!(dips, dip1)
dips = push!(dips, dip2)
@test length(dips) == 2
end
@testset "Show" begin
show(dips[1])
show(dips)
end
@testset "Mean" begin
b = Neuroimaging.mean(dips)
@test b.x == 1.0u"m"
@test b.y == 2.0u"m"
@test b.z == 2.0u"m"
end
@testset "Std" begin
b = Neuroimaging.std(dips)
@test b.x == 0.0u"m"
@test b.y == 0.0u"m"
@test b.z == Statistics.std([1, 3])u"m"
end
@testset "Best" begin
dip1 = Dipole("Talairach", 1u"mm", 2u"mm", 1u"mm", 0, 0, 0, 1, 1, 1)
dip2 = Dipole("Talairach", 1u"mm", 2u"mm", 3u"mm", 0, 0, 0, 2, 2, 2)
dip3 = Dipole("Talairach", 3u"mm", 2u"mm", 3u"mm", 0, 0, 0, 2, 2, 2)
dip4 = Dipole("Talairach", 3u"mm", 4u"mm", 3u"mm", 0, 0, 0, 2, 2, 2)
dips = Dipole[]
dips = push!(dips, dip1)
dips = push!(dips, dip2)
dips = push!(dips, dip3)
dips = push!(dips, dip4)
# Takes the closest dipole
bd = best_dipole(dip2, dips)
@test bd == dip2
# Takes a larger dipole thats further away if within specified radius
dip5 = Dipole("Talairach", 1u"mm", 2.01u"mm", 3u"mm", 0, 0, 0, 2, 2, 20)
dips = push!(dips, dip5)
bd = best_dipole(dip2, dips)
@test bd == dip5
# Reduce radius
bd = best_dipole(dip2, dips, maxdist = 0.00000001)
@test bd == dip2
# Or when nothing of appropriate size
bd = best_dipole(
Dipole("Talairach", 10u"mm", 2.01u"mm", 3u"mm", 0, 0, 0, 2, 2, 20),
dips,
min_dipole_size = 999,
)
@test isnan(bd)
end
end
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | code | 2150 | @testset "Leadfield" begin
L = 1
@testset "Create" begin
L = Leadfield(
rand(2000, 3, 6),
vec(rand(2000, 1)),
vec(rand(2000, 1)),
vec(rand(2000, 1)),
vec([
"Cz",
"80Hz_SWN_70dB_R",
"20Hz_SWN_70dB_R",
"40Hz_SWN_70dB_R",
"10Hz_SWN_70dB_R",
"_4Hz_SWN_70dB_R",
]),
)
@test size(L.L) == (2000, 3, 6)
end
@testset "Show" begin
show(L)
end
@testset "Match" begin
s = read_SSR(joinpath(dirname(@__FILE__), "../../data", "test_Hz19.5-testing.bdf"))
L1 = match_leadfield(L, s)
@test size(L1.L) == (2000, 3, 6)
keep_channel!(s, ["Cz", "80Hz_SWN_70dB_R", "20Hz_SWN_70dB_R", "40Hz_SWN_70dB_R"])
L2 = match_leadfield(deepcopy(L), s)
@test size(L2.L) == (2000, 3, 4)
@test L2.L[:, :, 1] == L1.L[:, :, 1]
@test L2.L[:, :, 2] == L1.L[:, :, 3]
@test L2.L[:, :, 4] == L1.L[:, :, 6]
@test L2.sensors == channelnames(s)
s = merge_channels(s, "Cz", "garbage")
@test_throws BoundsError match_leadfield(L, s)
L = Leadfield(
rand(2000, 3, 5),
vec(rand(2000, 1)),
vec(rand(2000, 1)),
vec(rand(2000, 1)),
vec(["Cz", "80Hz_SWN_70dB_R", "10Hz_SWN_70dB_R", "_4Hz_SWN_70dB_R"]),
)
@test_throws ErrorException match_leadfield(L, s)
end
@testset "Operations" begin
ldf = Leadfield(
rand(5, 3, 2),
collect(1:5.0),
collect(1:5.0),
collect(1:5.0),
["ch1", "ch2"],
)
@testset "Find location" begin
for n = 1:size(ldf.L, 1)
@test n == find_location(ldf, Talairach(ldf.x[n], ldf.y[n], ldf.z[n]))
end
for n = 1:size(ldf.L, 1)
@test n == find_location(
ldf,
Talairach(ldf.x[n] + 0.1, ldf.y[n] - 0.1, ldf.z[n]),
)
end
end
end
end
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | code | 12258 | @testset "Steady State Responses" begin
fname = joinpath(dirname(@__FILE__), "..", "..", "data", "test_Hz19.5-testing.bdf")
fname2 = joinpath(dirname(@__FILE__), "..", "..", "data", "tmp", "test_Hz19.5-copy.bdf")
fname_out = joinpath(dirname(@__FILE__), "..", "..", "data", "tmp", "testwrite.bdf")
cp(fname, fname2, force = true) # So doesnt use .mat file
s = read_SSR(fname)
@test isa(s, NeuroimagingMeasurement)
@test isa(s, EEG)
@test isa(s, SSR)
@testset "Show" begin
show(s)
end
@testset "Read file" begin
s = read_SSR(fname2)
@info samplingrate(s)
@test samplingrate(s) == 8192.0
@info samplingrate(s)
@test samplingrate(Int, s) == 8192
@test isa(samplingrate(s), AbstractFloat) == true
@test isa(samplingrate(Int, s), Int) == true
@info modulationrate(s)
@test modulationrate(s) == 19.5
@test isa(modulationrate(s), AbstractFloat) == true
@test isapprox(maximum(s.data[:, 2]), 54.5939; atol = 0.1)
@test isapprox(minimum(s.data[:, 4]), -175.2503; atol = 0.1)
s = read_SSR(fname, valid_triggers = [8])
s = read_SSR(fname, min_epoch_length = 8388)
s = read_SSR(fname, max_epoch_length = 8389)
s = read_SSR(fname)
original_length = length(s.triggers["Index"])
s = read_SSR(fname, remove_first = 10)
@test original_length - 10 == length(s.triggers["Index"])
s = read_SSR(fname, max_epochs = 12)
@test length(s.triggers["Index"]) == 12
s = read_SSR(fname)
s.triggers = extra_triggers(s.triggers, 1, 7, 0.7, samplingrate(s))
@test length(s.triggers["Index"]) == 56
end
@testset "Channel names" begin
s1 = deepcopy(s)
s1 = channelnames(s1, 1, "A01")
s1 = channelnames(s1, 2, "A05")
s1 = channelnames(s1, 3, "A11")
s1 = channelnames(s1, 4, "B03")
s1 = channelnames(s1, 5, "A17")
s1 = channelnames(s1, 6, "B17")
@test channelnames(s1) == ["A01", "A05", "A11", "B03", "A17", "B17"]
end
@testset "Triggers" begin
dats, evtTab, trigs, statusChan = readBDF(fname)
sampRate = readBDFHeader(fname)["sampRate"][1]
@test trigs == create_channel(
evtTab,
dats,
sampRate,
code = "code",
index = "idx",
duration = "dur",
)
@test trigs ==
trigger_channel(read_SSR(fname, valid_triggers = collect(-1000:10000)))
# Convert between events and channels
dats, evtTab, trigs, statusChan = readBDF(fname)
events = create_events(trigs, sampRate)
channel = create_channel(events, dats, sampRate)
@test size(channel) == size(trigs)
@test channel == trigs
end
@testset "Extra Triggers" begin
s = read_SSR(fname)
end
@testset "Extract epochs" begin
s = extract_epochs(s, valid_triggers = [1, 2])
@test size(s.processing["epochs"]) == (8388, 28, 6)
s = extract_epochs(s, valid_triggers = [1])
@test size(s.processing["epochs"]) == (16776, 14, 6)
s = extract_epochs(s, valid_triggers = 1)
@test size(s.processing["epochs"]) == (16776, 14, 6)
s = extract_epochs(s)
@test size(s.processing["epochs"]) == (8388, 28, 6)
if VERSION >= VersionNumber(0, 4, 0)
@test_throws ArgumentError extract_epochs(s, valid_triggers = -4)
else
@test_throws ErrorException extract_epochs(s, valid_triggers = -4)
end
end
@testset "Epoch rejection" begin
s = epoch_rejection(s)
@test floor(28 * 0.95) == size(s.processing["epochs"], 2)
@test_throws BoundsError epoch_rejection(s, retain_percentage = 1.1)
@test_throws BoundsError epoch_rejection(s, retain_percentage = -0.1)
for r = 0.1:0.1:1
s = extract_epochs(s)
s = epoch_rejection(s, retain_percentage = r)
@test floor(28 * r) == size(s.processing["epochs"], 2)
end
end
@testset "Channel rejection" begin
s1 = channel_rejection(deepcopy(s))
@test size(s1.processing["epochs"]) == (8388, 28, 5)
data = randn(400, 10) * diagm(0 => [1, 1, 2, 1, 11, 1, 2, 100, 1, 1])
valid = channel_rejection(data, 20, 1)
@test valid == [true true true true false true true false true true]
end
@testset "Create sweeps" begin
s = extract_epochs(s)
@test_throws ErrorException create_sweeps(s)
for l = 4:4:24
s = extract_epochs(s)
s = create_sweeps(s, epochsPerSweep = l)
@test size(s.processing["sweeps"], 2) == floor(28 / l)
@test size(s.processing["sweeps"], 1) == l * size(s.processing["epochs"], 1)
@test size(s.processing["sweeps"], 3) == size(s.processing["epochs"], 3)
end
s = read_SSR(fname)
s = extract_epochs(s)
s = create_sweeps(s; epochsPerSweep = 4)
@test size(s.processing["sweeps"]) == (33552, 7, 6)
julia_result = average_epochs(s.processing["sweeps"])
filen = matopen(joinpath(dirname(@__FILE__), "..", "..", "data", "sweeps.mat"))
matlab_sweeps = read(filen, "sweep")
close(filen)
@test size(matlab_sweeps[:, 1:6]) == size(julia_result)
@test isapprox(matlab_sweeps[:, 1:6], julia_result; atol = 0.01) # why so different?
end
@testset "Low pass filter" begin
s2 = lowpass_filter(deepcopy(s))
end
@testset "High pass filter" begin
s2 = highpass_filter(deepcopy(s))
end
@testset "Band pass filter" begin
s2 = bandpass_filter(deepcopy(s))
end
@testset "Downsample" begin
s2 = downsample(deepcopy(s), 1 // 4)
@test size(s2.data, 1) == div(size(s.data, 1), 4)
end
@testset "Rereference" begin
s2 = rereference(deepcopy(s), "Cz")
@test size(s2.data, 1) == 237568
@test_throws ArgumentError rereference(deepcopy(s), "C5")
@test_throws ArgumentError rereference(deepcopy(s), ["t3", "old"])
@test_throws ArgumentError rereference(deepcopy(s), ["Cz", "old"])
end
@testset "Merge channels" begin
s2 = merge_channels(deepcopy(s), "Cz", "MergedCz")
s2 = merge_channels(deepcopy(s), ["Cz" "10Hz_SWN_70dB_R"], "Merged")
end
@testset "Concatenate" begin
s2 = hcat(deepcopy(s), deepcopy(s))
@test size(s2.data, 1) == 2 * size(s.data, 1)
@test size(s2.data, 2) == size(s.data, 2)
keep_channel!(s2, ["Cz" "10Hz_SWN_70dB_R"])
@test_throws ArgumentError hcat(s, s2)
end
@testset "Remove channels" begin
s = extract_epochs(s)
s = create_sweeps(s, epochsPerSweep = 2)
s2 = deepcopy(s)
remove_channel!(s2, "Cz")
@test size(s2.data, 2) == 5
@test size(s2.processing["epochs"], 3) == 5
@test size(s2.processing["epochs"], 1) == size(s.processing["epochs"], 1)
@test size(s2.processing["epochs"], 2) == size(s.processing["epochs"], 2)
@test size(s2.processing["sweeps"], 3) == 5
@test size(s2.processing["sweeps"], 1) == size(s.processing["sweeps"], 1)
@test size(s2.processing["sweeps"], 2) == size(s.processing["sweeps"], 2)
s2 = deepcopy(s)
remove_channel!(s2, ["10Hz_SWN_70dB_R"])
@test size(s2.data, 2) == 5
s2 = deepcopy(s)
remove_channel!(s2, [2])
@test size(s2.data, 2) == 5
@test s2.data[:, 2] == s.data[:, 3]
s2 = deepcopy(s)
remove_channel!(s2, 3)
@test size(s2.data, 2) == 5
@test s2.data[:, 3] == s.data[:, 4]
s2 = deepcopy(s)
remove_channel!(s2, [2, 4])
@test size(s2.data, 2) == 4
@test s2.data[:, 2] == s.data[:, 3]
@test s2.data[:, 3] == s.data[:, 5]
@test size(s2.processing["epochs"], 3) == 4
@test size(s2.processing["epochs"], 1) == size(s.processing["epochs"], 1)
@test size(s2.processing["epochs"], 2) == size(s.processing["epochs"], 2)
@test size(s2.processing["sweeps"], 3) == 4
@test size(s2.processing["sweeps"], 1) == size(s.processing["sweeps"], 1)
@test size(s2.processing["sweeps"], 2) == size(s.processing["sweeps"], 2)
s2 = deepcopy(s)
remove_channel!(s2, ["Cz", "10Hz_SWN_70dB_R"])
@test size(s2.data, 2) == 4
end
@testset "Keep channels" begin
s2 = deepcopy(s)
remove_channel!(s2, [2, 4])
# Check keeping channel is same as removing channels
s3 = deepcopy(s)
keep_channel!(s3, [1, 3, 5, 6])
@test s3.data == s2.data
@test s3.processing["sweeps"] == s2.processing["sweeps"]
# Check order of removal does not matter
s3 = deepcopy(s)
keep_channel!(s3, [3, 5, 1, 6])
@test s3.data == s2.data
@test s3.processing["sweeps"] == s2.processing["sweeps"]
# Check can remove by name
s3 = deepcopy(s)
keep_channel!(s3, ["20Hz_SWN_70dB_R", "_4Hz_SWN_70dB_R", "Cz", "80Hz_SWN_70dB_R"])
@test s3.data == s2.data
@test s3.processing["sweeps"] == s2.processing["sweeps"]
# Check the order of removal does not matter
s4 = deepcopy(s)
keep_channel!(s4, ["_4Hz_SWN_70dB_R", "20Hz_SWN_70dB_R", "80Hz_SWN_70dB_R", "Cz"])
@test s3.data == s4.data
@test s3.processing["sweeps"] == s4.processing["sweeps"]
end
@testset "Frequency fixing" begin
@test assr_frequency(4) == 3.90625
@test assr_frequency([4, 10, 20, 40, 80]) ==
[3.90625, 9.765625, 19.53125, 40.0390625, 80.078125]
end
@testset "Write files" begin
s = read_SSR(fname)
s.header["subjID"] = "test"
write_SSR(s, fname_out)
s = read_SSR(fname, valid_triggers = collect(-1000:10000))
s.header["subjID"] = "test"
write_SSR(s, fname_out)
s2 = read_SSR(fname_out, valid_triggers = collect(-1000:10000))
@test s.data == s2.data
@test s.triggers == s2.triggers
@test s.samplingrate == s2.samplingrate
@test occursin("test", s2.header["subjID"]) == true
s = channelnames(s, ["B24", "B16", "A3", "B18", "A02", "B17"])
write_SSR(s, fname_out)
s2 = read_SSR(fname_out)
@test channelnames(s2) == ["CP2", "Cz", "AF3", "C4", "AF7", "C2"]
end
@testset "Ftest" begin
s = read_SSR(fname)
s.modulationrate = 19.5 * 1.0u"Hz"
s = rereference(s, "Cz")
s = extract_epochs(s)
s = create_sweeps(s, epochsPerSweep = 4)
snrDb, signal_phase, signal_power, noise_power, statistic =
ftest(s.processing["sweeps"], 40.0391, 8192, 2.5, nothing, 2)
@test isnan(snrDb[1]) == true
@test isnan(statistic[1]) == true
@test isapprox(
snrDb[2:end],
[-7.0915, -7.8101, 2.6462, -10.2675, -4.1863];
atol = 0.001,
)
@test isapprox(
statistic[2:end],
[0.8233, 0.8480, 0.1721, 0.9105, 0.6854];
atol = 0.001,
)
s = ftest(s, side_freq = 2.5, Note = "Original channels", Additional_columns = 22)
@test isnan(s.processing["statistics"][!, :SNRdB][1]) == true
@test isapprox(
s.processing["statistics"][!, :SNRdB][2:end],
[-1.2386, 0.5514, -1.5537, -2.7541, -6.7079];
atol = 0.001,
)
s = ftest(s, side_freq = 1.2, Note = "SecondTest", Additional_columns = 24)
@testset "Save results" begin
save_results(s)
file_name = string(s.file_name, ".csv")
@test isfile(file_name)
end
end
@testset "Adding triggers" begin
for rate in [4, 10, 20, 40]
s = read_SSR(fname)
s.modulationrate = rate * 1.0u"Hz"
s = add_triggers(s)
s = extract_epochs(s)
@test isapprox(size(s.processing["epochs"], 1) * rate / 8192, 1; atol = 0.005)
end
end
end
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | code | 2257 | using Neuroimaging, Test
@testset "Sensors" begin
fname = joinpath(dirname(@__FILE__), "..", "..", "data", "test.sfp")
s = read_sfp(fname)
@testset "Read file" begin
s = read_sfp(fname)
@test length(s) == 3
end
@testset "Show" begin
show(s)
show(s[1])
end
@testset "Info" begin
@test label(s) == ["Fp1", "Fpz", "Fp2"]
@test label(s[1]) == "Fp1"
@test labels(s) == ["Fp1", "Fpz", "Fp2"]
@test labels(s[1]) == "Fp1"
@test Neuroimaging.x(s) == [-27.747648u"m", -0.085967u"m", 27.676888u"m"]
@test Neuroimaging.x(s[1]) == -27.747648u"m"
@test Neuroimaging.y(s) == [98.803864u"m", 103.555275u"m", 99.133354u"m"]
@test Neuroimaging.y(s[1]) == 98.803864u"m"
@test Neuroimaging.z(s) == [34.338360u"m", 34.357265u"m", 34.457005u"m"]
@test Neuroimaging.z(s[1]) == 34.338360u"m"
end
@testset "Matching" begin
a, b = match_sensors(s, ["Fp1", "Fp2"])
end
@testset "Leadfield matching" begin
L = ones(4, 3, 5)
L[:, :, 2] = L[:, :, 2] * 2
L[:, :, 3] = L[:, :, 3] * 3
L[:, :, 4] = L[:, :, 4] * 4
L[:, :, 5] = L[:, :, 5] * 5
L, idx = match_sensors(L, ["meh", "Cz", "Fp1", "Fp2", "eh"], ["Fp2", "Cz"])
@test size(L) == (4, 3, 2)
@test L[:, :, 1] == ones(4, 3) * 4
@test L[:, :, 2] == ones(4, 3) * 2
@test idx == [4, 2]
end
@testset "Standard sets" begin
@test length(EEG_64_10_20) == 64
@test length(EEG_Vanvooren_2014) == 18
@test length(EEG_Vanvooren_2014_Left) == 9
@test length(EEG_Vanvooren_2014_Right) == 9
end
@testset "Optodes" begin
label = "source1"
coord = Talairach(68.3, -26.9, 8.3)
s = Source(label, coord, Dict())
@test isa(s, Neuroimaging.Sensor)
@test isa(s, Neuroimaging.Optode)
@test isa(s, Neuroimaging.Source)
@test !isa(s, Neuroimaging.Detector)
@test !isa(s, Neuroimaging.Electrode)
d = Detector(label, coord, Dict())
@test isa(d, Neuroimaging.Sensor)
@test isa(d, Neuroimaging.Optode)
@test isa(d, Neuroimaging.Detector)
end
end
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | code | 6323 | @testset "Volume Image" begin
fname = joinpath(dirname(@__FILE__), "../../data", "test-3d.dat")
t = read_VolumeImage(fname)
t2 = read_VolumeImage(fname)
@testset "Reading" begin
t = read_VolumeImage(fname)
@test isa(t, Neuroimaging.VolumeImage) == true
end
@testset "Create" begin
# Array
n = VolumeImage(
t.data,
t.units,
t.x,
t.y,
t.z,
t.t,
t.method,
t.info,
t.coord_system,
)
@test isa(n, Neuroimaging.VolumeImage) == true
@test isequal(n.data, t.data) == true
# Vector
d = zeros(length(t.data))
x = zeros(length(t.data))
y = zeros(length(t.data))
z = zeros(length(t.data))
s = zeros(length(t.data)) # t is already taken
i = 1
for xi = 1:length(t.x)
for yi = 1:length(t.y)
for zi = 1:length(t.z)
for ti = 1:length(t.t)
d[i] = ustrip(t.data[xi, yi, zi, ti])
x[i] = ustrip(t.x[xi])
y[i] = ustrip(t.y[yi])
z[i] = ustrip(t.z[zi])
s[i] = ustrip(t.t[ti])
i += 1
end
end
end
end
n2 = VolumeImage(d, t.units, x, y, z, s, t.method, t.info, t.coord_system)
@test isa(n2, Neuroimaging.VolumeImage) == true
@test isequal(n2.data, t.data) == true
@test isequal(n2.x, t.x) == true
@test isequal(n2.y, t.y) == true
@test isequal(n2.z, t.z) == true
@test isequal(n2.t, t.t) == true
# 4D array
da = zeros(2, 3, 4, 5)
xa = [1.0, 2]
ya = [1.0, 2, 3]
za = [1.0, 2, 3, 4]
ta = [1.0, 2, 3, 4, 5]
VolumeImage(da, "s", xa, ya, za, ta, "m", Dict(), "unkonwn")
end
@testset "Querying" begin
x, y, z = find_location(t, 0.001, 20, -6)
@test x == 16
@test y == 36
@test z == 1
end
@testset "Maths" begin
@test isequal(t, t2) == true
@test t + t == t * 2
t4 = t * 4
@test t4 / 2 == t + t
@test t4 / 2 == t4 - t - t
t2 = read_VolumeImage(fname)
t2.units = "A/m^3"
tdiv = t
tdiv.data = tdiv.data .+ 0.2
tdiv = tdiv / tdiv
@test minimum(tdiv.data) == 1
@test maximum(tdiv.data) == 1
end
@testset "Min/Max" begin
t = read_VolumeImage(fname)
@test maximum(t) == 33.2692985535
@test minimum(t) == -7.5189352036
b = t * 2
@test b.data[1, 1, 1] == 2 * b.data[1, 1, 1]
@test b.data[2, 2, 2] == 2 * b.data[2, 2, 2]
c = Neuroimaging.mean([b, t])
@test size(c.data) == size(b.data)
@test c.data[1, 1, 1] == (b.data[1, 1, 1] + t.data[1, 1, 1]) / 2
@test maximum([b, t]) == maximum(t) * 2
@test minimum([b, t]) == minimum(b)
n = normalise([b, t])
@test maximum(n) <= 1.0
@test minimum(n) >= -1.0
end
@testset "Dimension checks" begin
t2 = deepcopy(t)
t2.x = t2.x[1:3]
@test_throws KeyError Neuroimaging.dimensions_equal(t, t2)
t2 = deepcopy(t)
t2.y = t2.y[1:3]
@test_throws KeyError Neuroimaging.dimensions_equal(t, t2)
t2 = deepcopy(t)
t2.z = t2.z[1:3]
@test_throws KeyError Neuroimaging.dimensions_equal(t, t2)
# t2 = read_VolumeImage(joinpath(dirname(@__FILE__), "../../data", "test-4d.dat"))
# @test_throws KeyError Neuroimaging.dimensions_equal(t, t2)
end
@testset "Average" begin
s = Neuroimaging.mean(t)
end
@testset "Find dipoles" begin
t = read_VolumeImage(fname)
dips = find_dipoles(Neuroimaging.mean(t))
@test size(dips) == (16,)
#dips = Neuroimaging.new_dipole_method(mean(t))
#@test size(dips) == (9,)
# fname = joinpath(dirname(@__FILE__), "../../data", "test-4d.dat")
# t2 = read_VolumeImage(fname)
# dips = find_dipoles(Neuroimaging.mean(t2))
# @test size(dips) == (3,)
# Test dipoles are returned in order of size
@test issorted([dip.size for dip in dips], rev = true) == true
end
# @testset "Best Dipole" begin
# dips = find_dipoles(Neuroimaging.mean(t))
# # Plots.pyplot(size=(1400, 400))
# # p = plot(t, c = :inferno)
# # p = plot(p, Talairach(-0.04, 0.01, 0.02))
# bd = best_dipole(Talairach(-0.05, 0, 0.01), dips)
# #p = plot(p, Talairach(-0.05, 0, 0.01), c = :red)
# @test float(bd.x) ≈ -0.0525 atol = 0.001
# @test float(bd.y) ≈ -0.00378 atol = 0.001
# @test float(bd.z) ≈ 0.0168099 atol = 0.001
# # Take closest
# bd = best_dipole(Talairach(-0.05, 0, 0.01), dips, maxdist = 0.0015)
# @test float(bd.x) ≈ -0.0525 atol = 0.001
# @test float(bd.y) ≈ -0.00378 atol = 0.001
# @test float(bd.z) ≈ 0.0168099 atol = 0.001
# # Take only valid dipole
# dists = [euclidean(Talairach(-0.05, 0, 0.01), dip) for dip=dips]
# bd = best_dipole(Talairach(-0.05, 0, 0.01), dips, maxdist = 0.015)
# @test float(bd.x) ≈ -0.0525 atol = 0.001
# @test float(bd.y) ≈ -0.00378 atol = 0.001
# @test float(bd.z) ≈ 0.0168099 atol = 0.001
# bd = best_dipole(Talairach(-0.05, 0, 0.01), Dipole[])
# @test isnan(bd) == true
# end
@testset "Show" begin
show(t)
show(normalise(t))
t.info["Regularisation"] = 1.2
show(t)
end
@testset "Plotting" begin
Neuroimaging.plot(Neuroimaging.mean(t))
Neuroimaging.plot(Neuroimaging.mean(t), min_val = 0, max_val = 50)
Neuroimaging.plot(
Neuroimaging.mean(t),
elp = joinpath(dirname(@__FILE__), "../../data", "test.elp"),
)
p = Neuroimaging.plot(Neuroimaging.mean(t), threshold = 24)
@testset "Overlay dipole" begin
dips = find_dipoles(Neuroimaging.mean(t))
p = Neuroimaging.plot(p, dips)
p = Neuroimaging.plot(p, dips[1], c = :red)
end
end
end
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | docs | 1387 | # Contributing to Neuroimaging.jl
Contributions to this project are warmly welcomed. The project accepts contributions in the form of bug reports, fixes, feature requests or additions, documentation improvements (including typo corrections), etc. The best way to start contributing is by opening an issue on our GitHub page to discuss ideas for changes or enhancements, or to tell us about behavior that you think might be a bug.
This project has many areas that could be improved. If you think something could be done better, then it probably can. I welcome constructive contributions.
## Contributing code
If you wish to make a contribution first raise an issue.
To contribute code you should submit it as a PR.
Your code will then be run through the various continuous integration (CI) services.
The CI checks for various issues such as spelling mistakes, code errors, documentation errors, code coverage, etc.
Do not worry if the CI comes back negative the first time, we can work through any issues together.
#### Requirements for code to be accepted
Before any new code is accepted we will need to ensure that:
* The code has unit tests
* The code is documented
* The code is demonstrated in an example in the documentation
As above, do not worry if all these conditions are not initially met. First submit what you have and we can work through the improvements together.
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | docs | 293 | # Neuroimaging.jl News
## v0.3.1
* Remove warnings
* Clean test output
## v0.3.0
* Drop support for julia v0.5
* Only supports julia v0.6
## v0.2.0
* Dropped support for julia v0.4
* Only supports julia v0.5
## v0.1.1
* Added support for julia v0.5
* Last version to support julia v0.4
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | docs | 1086 | # Neuromaging.jl
[](https://rob-luke.github.io/Neuroimaging.jl/)
[](https://github.com/rob-luke/Neuroimaging.jl/actions/workflows/runtests.yml)
[](https://codecov.io/gh/rob-luke/Neuroimaging.jl)
Process neuroimaging data using the [Julia](http://julialang.org/) language.
## Documentation
See https://rob-luke.github.io/Neuroimaging.jl
## Contributing
This package has been around since Julia v0.1!
The Julia language has evolved since the early days,
and there are many places in the codebase that should be bought up to date with the latest Julia standards.
We are currently trying to revitalise this project, so if you have any feedback or suggestions please let us know.
See [CONTRIBUTING.md](https://github.com/rob-luke/Neuroimaging.jl/blob/main/CONTRIBUTING.md) for details on how to get involved.
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | docs | 438 | # Input/Output
Functions are provided to read and write data in various formats.
## Readers
In addition to reading EEG data the following file reading functions are available.
```@meta
CurrentModule = Neuroimaging
```
```@docs
import_biosemi
read_elp
read_avr
read_evt
read_sfp
read_dat
read_bsa
```
## Writers
In addition to reading EEG data the following file reading functions are available.
```@docs
write_avr
write_dat
``` | Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | docs | 1020 | # Low-Level Function API
As well as providing convenient types for analysis.
This package also provides low-level functions for dealing with
data in its raw form.
These low-level functions are described below.
Note: Currently sorting out the docs, so its a bit of a mess.
Is there an automated way to list all functions using documenter?
---
```@meta
CurrentModule = Neuroimaging
```
## Preprocessing
### Filtering
```@docs
highpass_filter
lowpass_filter
bandpass_filter
compensate_for_filter
```
### Referencing
```@docs
rereference
remove_template
```
### Epoching
```@docs
epoch_rejection
peak2peak
extract_epochs
```
## Channels
```@docs
match_sensors
channel_rejection
```
## Triggers
TODO: Make a type subsection similar to EEG and ASSR.
```@docs
join_triggers
validate_triggers
clean_triggers
```
## Dipoles
TODO: Make a type subsection similar to EEG and ASSR.
```@docs
find_dipoles
find_location
```
## Plotting
```@docs
plot_single_channel_timeseries
plot_multi_channel_timeseries
```
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | docs | 1470 | # Neuroimaging.jl Manual
A [Julia](http://julialang.org) package for processing neuroimaging data.
### Installation
To install this package enter the package manager by pressing `]` at the julia prompt and enter:
```julia
pkg> add Neuroimaging
```
### Overview
This package provides a framework for processing neuroimaging data.
It provides tools to handle high level data structures such as EEG data types,
electrode and optode sensor types, coordinate systems etc.
Low-level functions are also provided for operating on Julia native data types.
An overview of different data types is provided along with an example for each type and list of available functions.
This is followed by a list of the low-level function APIs.
!!! note "This package is in the process of being updated"
This package has been around since Julia v0.1!
The Julia language has evolved since the early days,
and there are many places in the codebase that should be bought up to date with the latest Julia standards.
General improvements are planned to this package. But before changes are made,
the existing features and functions will be documented. This will help to highlight
what has already been implemented, and where improvements need to be made.
For a rough plan of how the package is being redeveloped see the GitHub issues and
[project board](https://github.com/rob-luke/Neuroimaging.jl/projects/1).
```@meta
CurrentModule = Neuroimaging
```
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | docs | 3977 | # Data Types
A feature of the Julia programming language is the strong type system.
This package exploits that strength and defines various types for storing
information about your neuroimaging data. A general hierarchy of neuroimaging types is provided.
A number of types are provided to handle different types of data.
Functions are provided to perform common operations on each type.
For example, the function `channelnames` would return the correct
information when called on a general eeg recording or steady state response data type.
Users should interact with types using function, and not address the underlying
fields directly. This allows the underlying data type to be improved without breaking
existing code. For example, do not address `sensor.label`, you should use `label(sensor)`.
Types also exist for storing metadata. For example, `electrodes`
are a sub type of the `Sensor` type. And the position
of the sensors may be in the `Talairach` space, which is a subtype of
the `Coordinate` type.
This type hierarchy may be more than two levels deep. For example,
the `source` type inherits from the `optode` type which inherits from the `sensor` type.
All functions that operate on the top level type will also operate on lower level types,
but not all functions that operate on low level types would operate on the top level.
For example, the `SSR` type supports the function `modulationrate()` but the `EEG` type does not,
as not all EEG measurements were obtained with a modulated stimulus.
A brief description of each type is provided below.
See the following documentation sections for more details of each type,
including examples and function APIs.
## Supported Data Types
```@meta
CurrentModule = Neuroimaging
```
```@docs
Neuroimaging
```
### Measurement
This package provides for different neuroimaging techniques such as EEG and fNIRS.
All of these types inherit from the top level abstract `NeuroimagingMeasurement` type.
```@docs
NeuroimagingMeasurement
```
Within the `NeuroimagingMeasurement` type a sub type is provided for each supported imaging modality (e.g., `EEG`).
Within each imaging modality, types are provided to represent the experimental paradigm used to collect the data (e.g., `SSR` or `RestingStateEEG`).
Additionally a `General` type is provided for data that is collected using a paradigm not yet supported in _Neuroimaging.jl_ (e.g., `GeneralEEG`).
This hierarchical structure allows for specific features to be added to analysis procedures for specific experimental designs,
while inheriting generic features and function from the parent types.
For example, see the [Auditory Steady State Response Example](@ref) which uses the `SSR` type which is a sub type of `EEG`.
In this example, we see that any EEG function to be run on `SSR` data, such as filtering or resampling,
but also allows for application specific functions such as specific frequency analysis statistical tests.
!!! note "Support for more types is welcomed"
If you would like to add support for a different experimental paradigm by adding a sub type
then please raise an issue on the GitHub page and we can work through it together.
Some additional types that would be good to support are `RestingStateEEG`, `EventRelatedPotential`, etc.
```@docs
EEG
GeneralEEG
SSR
```
### Sensor
Support is provided for the storing of sensor information via the `Sensor` type.
As with the neuroimaging type, several sub types inherit from this top level type.
```@docs
Sensor
```
Support is currently provided for EEG and fNIRS sensor types.
Additional types are welcomed.
```@docs
Electrode
Optode
Source
Detector
```
### Coordinate
Support is provided for the storing of coordinate information via the `Coordinate` type.
```@docs
Coordinate
```
Specific coordinate systems available are.
```@docs
BrainVision
Talairach
SPM
UnknownCoordinate
```
### Other
These types need to be better documented.
```@docs
VolumeImage
Dipole
```
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | docs | 712 | # Introduction
Auditory steady state-responses (ASSRs) are neural responses to periodic auditory stimuli (Picton, 2010). When a repetitive stimulus is perceived by the listener, EEG measurements contain increased activity at the repetition or modulation frequency (fm). The frequency specific nature of the response allows for truly objective response detection. The most common use of ASSRs is to obtain frequency specific hearing thresholds, this is achieved by reducing the stimulus intensity until no response is detected (Rance et al., 1995).
[Luke 2016](https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1777844&context=L&vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US&fromSitemap=1) | Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | docs | 6285 | # Auditory Steady State Response Example
This tutorial demonstrates how to analyse an EEG measurement
that was acquired while the participant was listening to a modulated
noise. This stimulus should evoke an Auditory Steady State Response (ASSR)
that can be observed in the signal.
The stimulus was modulated at 40.0391 Hz. As such, the frequency content of
the signal will be examined. An increase in stimulus locked activity is
expected at the modulation rate and harmonics, but not other frequencies.
A standard ASSR analysis is performed. After an introduction to the data
structure, a high pass filter is applied, the signal is referenced to Cz,
epochs are extracted then combined in to sweeps, then finally an f-test
is applied to the sweep data in the frequency domain. For further details on analysis see:
* Picton, Terence W. Human auditory evoked potentials. Plural Publishing, 2010.
* Luke, Robert, Astrid De Vos, and Jan Wouters. "Source analysis of auditory steady-state responses in acoustic and electric hearing." NeuroImage 147 (2017): 568-576.
* Luke, Robert, et al. "Assessing temporal modulation sensitivity using electrically evoked auditory steady state responses." Hearing research 324 (2015): 37-45.
!!! note "Refactoring in progress"
This example demonstrates the existing capabilities of the package.
General improvements are planned to this package. But before changes are made,
the existing features and functions will be documented. This will help to highlight
was has already been implemented, and where improvements need to be made.
For a rough plan of how the package is being redeveloped see the GitHub issues and
[project board](https://github.com/rob-luke/Neuroimaging.jl/projects/1).
## Read data
First we read the measurement data which is stored in biosemi data format.
```@example fileread
using DisplayAs # hide
using Neuroimaging, DataDeps, Unitful
data_path = joinpath(
datadep"ExampleSSR",
"Neuroimaging.jl-example-data-master",
"neuroimaingSSR.bdf",
)
s = read_SSR(data_path)
```
The function will extract the modulation from the function name if available.
In this case the file name was not meaningful, and so we must inform the software of
information that is essential to analysis, but not stored in the data.
When analysing a steady state response a modulation rate is required.
Which can be set according to:
```@example fileread
s.modulationrate = 40.0391u"Hz"
s
```
## Preprocessing
```@example fileread
s = highpass_filter(s)
s = rereference(s, "Cz")
remove_channel!(s, "Cz")
s
```
## Visualise processed continuous data
```@example fileread
using Plots # hide
plot_timeseries(s, channels="TP7")
current() |> DisplayAs.PNG # hide
```
## Epoch and combine data
To emphasise the stimulus locked nature of the response and combat clock drift
the signal is then cut in to epochs based on the trigger information.
To increase the available frequency resolution the epochs are
then concatenated in to sweeps.
```@example fileread
s = extract_epochs(s)
s = create_sweeps(s, epochsPerSweep = 8)
```
## Extract Steady State Response Statistics
Standard statistical tests can then be run on the data.
An ftest will automatically convert the sweeps in to the frequency domain and
apply the appropriate tests with sane default values.
By default, it analyses the modulation frequency.
The result is stored in the `statistics` processing log by default,
but this can be specified by the user.
```@example fileread
s = ftest(s)
s.processing["statistics"]
```
## Visualise spectrum
Next we can visualise the spectral content of the signal.
As the response statistics have already been computed,
this will be overlaid on the plot.
```@example fileread
plot_spectrum(s, 3)
current() |> DisplayAs.PNG # hide
```
## Quantify the false positive rate of statistical analysis
While its interesting to observe a significant response at the modulation rate as expected,
it is important to ensure that the false detection rate at other frequencies is not too high.
As such we can analyse all other frequencies from 10 to 400 Hz and quantify
the false detection rate.
For this example file the resulting false detection rate is slightly over 5%.
```@example fileread
using DataFrames, Query, Statistics
s = ftest(s, freq_of_interest=[10:38; 42:400])
s.processing["statistics"][!, "Significant"] = Int.(s.processing["statistics"][!, "Statistic"] .< 0.05)
s.processing["statistics"] |>
@groupby(_.AnalysisType) |>
@map({AnalysisType=key(_),
FalseDiscoveryRate_Percentage=100*Statistics.mean(_.Significant)}) |>
DataFrame
```
## Visualise response amplitude
Finally we can plot the ASSR spectrum.
You can use the same convenient function as above, but here we will demonstrate
how to do this using the `StatsPlot` library.
This is possible because the results are stored in the format of a data frame.
We will also mark with red dots the frequency components which
contained a significant stimulus locked response according to the f-test.
And we add a vertical line at the modulation rate.
```@example fileread
using StatsPlots
df = s.processing["statistics"] |>
@groupby(_.AnalysisFrequency) |>
@map({AnalysisFrequency=key(_),
AverageAmplitude=Statistics.mean(_.SignalAmplitude),
AverageStatistic=Int(Statistics.mean(_.Statistic).<0.05)}) |>
@orderby_descending(_.AnalysisFrequency) |>
DataFrame
vline([40], ylims=(0, 0.3), colour="grey", line=:dash, lab="Modulation rate")
df |> @df StatsPlots.plot!(:AnalysisFrequency, :AverageAmplitude, xlabel="Frequency (Hz)", ylabel="Amplitude (uV)", lab="", color="black")
df|> @filter(_.AverageStatistic == 1) |> @df StatsPlots.scatter!(:AnalysisFrequency, :AverageAmplitude, color="red", ms=4, lab="Significant response")
current() |> DisplayAs.PNG # hide
```
## Conclusion
An analysis pipeline of a steady state response measurement has been demonstrated.
Importing the file and specifying the required information was described.
As was preprocessing and statistical analysis.
The false detection rate of the analysis was quantified.
Finally, a figure was created to summarise the underlying data and demonstrate the
increased stimulus locked response at the modulation rate.
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | docs | 474 | # Functions
In addition to the function available for processing EEG data,
a number of functions are provided specifically for the processing of SSR data
## Import
```@docs
read_SSR
```
### Filtering
```@docs
highpass_filter(::SSR)
lowpass_filter(::SSR)
bandpass_filter(::SSR)
downsample(s::SSR, ratio::Rational)
```
## Preprocessing
```@docs
extract_epochs(::SSR)
```
## Statistics
```@docs
ftest(::SSR)
```
## Plotting
```@docs
plot_spectrum(::SSR, ::Int)
```
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | docs | 3481 | # Coordinate Systems
There are a wide variety of coordinate systems used in Neuroimaging.
`Neuroimaging.jl` provides a coordinate data type, and several
subtypes associated with specific systems. Conversion between coordinate
systems is available.
For a general overview of coordinate systems in neuroimaging see:
* https://mne.tools/dev/auto_tutorials/forward/20_source_alignment.html
* https://www.fieldtriptoolbox.org/faq/coordsys/
This package currently supports `SPM`, `BrainVision`, and `Talairach`
coordinates and conversion. Additionally, an `Unknown` coordinate system
can be used if you don't know how your locations are mapped.
!!! note "Refactoring in progress"
This example demonstrates the existing capabilities of the package.
General improvements are planned to this package. But before changes are made,
the existing features and functions will be documented. This will help to highlight
was has already been implemented, and where improvements need to be made.
For a rough plan of how the package is being redeveloped see the GitHub issues and
[project board](https://github.com/rob-luke/Neuroimaging.jl/projects/1).
## Create a coordinate
We can create a coordinate point by calling the appropriate type.
Internally `Neuroimaging.jl` uses SI units, so meters for these locations.
But the results are displayed in the more convenient centimeter notation.
By default everything is SI units, so if you pass in a distance without
specifying the unit it will be in meters.
```@example fileread
using DisplayAs # hide
using Neuroimaging, Unitful
SPM(0.0737, -0.0260, 0.0070)
```
However, it is clearer and less prone to error if you specify the unit
at construction, and let the internals handle the conversion.
```@example fileread
location_1 = SPM(73.7u"mm", -26u"mm", 7u"mm")
```
Note that this position is taken from table IV from:
* Lancaster, Jack L., et al. "Bias between MNI and Talairach coordinates analyzed using the ICBM‐152 brain template." Human brain mapping 28.11 (2007): 1194-1205.
## Conversion between coordinates
To convert between different coordinate systems simply call the `convert` function
with the first arguments as the desired coordinate system. The `show` function
displays the passed type nicely with domain appropriate units.
```@example fileread
show(convert(Talairach, location_1))
```
And we can see that the resulting value is similar to what is provided in the Lancaster 2007 article.
Although not exact, there is some loss in the transformations.
## Sensors
Sensors contain location information stored as coordinate types.
So if we load an EEG measurement...
```@example fileread
using Neuroimaging, DataDeps
data_path = joinpath(
datadep"ExampleSSR",
"Neuroimaging.jl-example-data-master",
"neuroimaingSSR.bdf",
)
s = read_SSR(data_path)
```
we can then query the sensors by calling...
```@example fileread
sensors(s)
```
And we can see that there are 7 electrodes with standard 10-20 names.
However, they do not have positions encoded by default.
!!! note "Great first issue"
A mapping for standard position names like 10-20 or 10-05 to coordinates
would be a great improvement to the project.
We can query the coordinate positions for the electrodes. For example,
to obtain the x locations for all sensors in the EEG measurement use...
```@example fileread
x(sensors(s))
```
or to get all the labels use...
```@example fileread
labels(sensors(s))
``` | Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | docs | 929 | # EEG
Electroencephalography (EEG) is an electrophysiological monitoring method to record electrical activity on the scalp that has been shown to represent the macroscopic activity of the surface layer of the brain underneath.
EEG measures voltage fluctuations resulting from ionic current within the neurons of the brain. Clinically, EEG refers to the recording of the brain's spontaneous electrical activity over a period of time, as recorded from multiple electrodes placed on the scalp. Diagnostic applications generally focus either on event-related potentials or on the spectral content of EEG. The former investigates potential fluctuations time locked to an event, such as 'stimulus onset' or 'button press'. The latter analyses the type of neural oscillations (popularly called "brain waves") that can be observed in EEG signals in the frequency domain.
[Wikipedia](https://en.wikipedia.org/wiki/Electroencephalography) | Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | docs | 4145 | # Example
This example demonstrates basic processing of an EEG measurement with Neuroimaging.jl`.
An example file is imported, and the basic properties of the data structure are reported
including sampling rate and channel information.
Simple preprocessing, such as referencing and channel manipulation is demonstrated.
And the data of a single channel and multiple channels is visualised.
!!! note "Refactoring in progress"
This example demonstrates the existing capabilities of the package.
General improvements are planned to this package. But before changes are made,
the existing features and functions will be documented. This will help to highlight
was has already been implemented, and where improvements need to be made.
For a rough plan of how the package is being redeveloped see the GitHub issues and
[project board](https://github.com/rob-luke/Neuroimaging.jl/projects/1).
## Import EEG measurement in to Neuroimaging.jl for analysis
The first step in this example is to import the required packages.
In addition to importing the `Neuroimaging.jl` package, the
`DataDeps` package is imported to facilitate access to the example dataset _ExampleSSR_
which contains an example EEG measurement in the Biosemi data format.
To read the data the function `read_EEG` is used.
This returns the data as a `GeneralEEG` type which stores EEG measurements that are not associated
with any particular experimental paradigm.
```@example fileread
using DisplayAs # hide
using Neuroimaging, DataDeps
data_path = joinpath(
datadep"ExampleSSR",
"Neuroimaging.jl-example-data-master",
"neuroimaingSSR.bdf",
)
s = read_EEG(data_path)
```
To view a summary of the returned data simply call the returned variable.
```@example fileread
s
```
## Probe information about the EEG measurement
The summary output of the imported data only includes basic information.
Several functions are provided to access more detailed aspects of the recording.
To list the names of the channels in this measurement call:
```@example fileread
channelnames(s)
```
Similarly to query the sample rate of the measurement.
Internally `Neuroimaging.jl` makes extensive use of the `Uniful` package and stores many values with their associated units.
To obtain the sampling rate in Hz as a floating point number call:
```@example fileread
samplingrate(s)
```
!!! tip "Accessing data structure fields"
Note that we call the function `channelnames`, and do not access properties of the type itself.
This allows the use of the same functions across multiple datatypes due to the excellent dispatch system in the Julia language.
Accessing the fields of data types directly is not supported in `Neuroimaging.jl` and may break at any time.
If you wish to access an internal type field and a function is not provided then raise a GitHub issue.
## Basic signal processing for EEG data
Once data is imported then standard preprocessing procedures can be applied.
For example to rereference the data to the `Cz` channel call:
```@example fileread
s = rereference(s, "Cz")
```
After which the Cz channel will not contain meaningful information any longer.
So you may wish to remove it from further analysis.
You can remove multiple channels by providing an array of channel names by calling:
```@example fileread
remove_channel!(s, ["Cz", "TP7"])
s
```
And the resulting data structure will now have less channels as the output describes.
## Visualise continuous EEG data
It is also useful to visualise the EEG data.
You can view a single channel or subset of channels by passing the string or strings you wish to plot.
```@example fileread
using Plots # hide
plot_timeseries(s, channels="F6")
current() |> DisplayAs.PNG # hide
```
Or you can plot all channels by calling `plot_timeseries` with no arguments.
```@example fileread
using Plots # hide
plot_timeseries(s)
current() |> DisplayAs.PNG # hide
```
## Conclusion
A demonstration of how to read in EEG data was provided.
A brief explanation of how to query the returned data type was discussed.
Basic signal processing and plotting was demonstrated.
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | docs | 606 | # Functions
In addition to the function available for processing EEG data,
a number of functions are provided specifically for the processing of SSR data
## Import
```@docs
read_EEG
```
## Querying data
```@docs
samplingrate(::EEG)
channelnames(::EEG)
sensors(::EEG)
```
## Manipulating data
```@docs
hcat(::EEG, ::EEG)
add_channel(::EEG, ::Vector, ::AbstractString)
remove_channel!(::EEG, ::AbstractString)
keep_channel!(::EEG, ::AbstractString)
trim_channel(::EEG, ::Int)
merge_channels
```
## Epoching
```@docs
epoch_rejection(a::EEG)
```
## Plotting
```@docs
plot_timeseries(::EEG)
```
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | docs | 1054 | # Source Modelling
`Neuroimaging.jl` supports opening volume image data.
In this example we open a `.dat` file as is
exported by the BESA software.
Volume image data represents the estimated activity
at each source location. The magnitude of the activity
can be displayed in a figure (see below).
In this example we read data from an EEG distributed source analysis procedure
run in the BESA software using the CLARA approach (Jordanov T., Hoechstetter K., Berg P., Paul-Jordanov I., Scherg M. CLARA: classical LORETA analysis recursively applied. F1000Posters. 2014;5:895.).
```@example fileread
using DisplayAs, Plots # hide
using Neuroimaging
data_path = joinpath("..", "..", "..", "test", "data", "test-3d.dat")
t = read_VolumeImage(data_path)
```
## Plotting
Next we can view the volume image by calling the plot method on it.
Note that each dot represents the distributed source activity at that
location, in this location the estimates are in units nAm/cm^3.
```@example fileread
Neuroimaging.plot(t)
current() |> DisplayAs.PNG # hide
``` | Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"BSD-3-Clause"
] | 1.1.2 | 658b4dd2b445c13a4fef067f98cd0f9c97a72a7c | docs | 198 | # Source Code
All source code resides in this directory.
Low level functions are split in to folders by functionality.
Higher level types, that call the low level functions, exist in `types`.
| Neuroimaging | https://github.com/rob-luke/Neuroimaging.jl.git |
|
[
"MIT"
] | 0.1.0 | 5cc7400ff141a91c7c1b0fd1ba5eea46910b09e3 | code | 848 | push!(LOAD_PATH,"../src/")
using Documenter
using SmoothedSpectralAbscissa ; const SSA=SmoothedSpectralAbscissa
using Plots,NamedColors
using LinearAlgebra
using Random
DocMeta.setdocmeta!(SmoothedSpectralAbscissa, :DocTestSetup, :(using SmoothedSpectralAbscissa); recursive=true)
makedocs(;
modules=[SmoothedSpectralAbscissa],
authors="Dylan Festa",
repo="https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl/blob/{commit}{path}#{line}",
sitename="SmoothedSpectralAbscissa.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://dylanfesta.github.io/SmoothedSpectralAbscissa.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/dylanfesta/SmoothedSpectralAbscissa.jl",
devbranch="master",
)
| SmoothedSpectralAbscissa | https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl.git |
|
[
"MIT"
] | 0.1.0 | 5cc7400ff141a91c7c1b0fd1ba5eea46910b09e3 | code | 1736 | # # Comparison between SSA and SA
#=
In this example, I compare changes in the SA and in the SSA for a matrix that varies
parametrically.
=#
# ### Initialization
using Plots,NamedColors
using LinearAlgebra
using Random
using SmoothedSpectralAbscissa ; const SSA=SmoothedSpectralAbscissa
Random.seed!(0);
# the function below generates a random non-normal matrix
function rand_nonnormal(n::Integer,(ud::Real)=1.01)
mat = randn(n,n) ./ sqrt(n)
sh = schur(mat)
upd = diagm(0=>fill(1.0,n),1=>fill(ud,n-1))
return sh.vectors*upd*sh.Schur*inv(upd)*sh.vectors'
end;
# ### Example matrix generated parametrically
n = 100
mat1 = rand_nonnormal(n,0.8)
mat2 = randn(n,n) ./ sqrt(n)
mat(θ) = @. θ*mat1 + (1-θ)*mat2
thetas = range(0.0,1.0;length=100);
# Now we look at the spectral abscissa as a function of the parameter
## #src
# ### Set ϵ for the SSA
ssa_eps_vals = [0.005,0.001,0.0005];
# ### Compute and plot the SA
sas = map(θ->SSA.spectral_abscissa(mat(θ)),thetas)
plt=plot(thetas,sas ; color=:black, linewidth=3,lab="SA",
xlabel="θ",ylabel="SA value",leg=:top)
# ### Compute and plot the SSA
mycols=cgrad([colorant"DarkGreen",colorant"orange"])
for ϵ in ssa_eps_vals
ssas = map(θ->SSA.ssa(mat(θ),ϵ),thetas)
plot!(plt,thetas,ssas ; linewidth=2.5 ,
lab="SSA $ϵ",palette=mycols)
end
plot!(plt,xlabel="θ",ylabel="SA/SSA value",leg=:top)
#=
This plot shows that the SSA is a smoothed version of the SA, and
coverges to it as as ϵ decreases.
Moreover if we reduce the SSA parametrically, we find (approximately) a good minimum for
the SA, as well.
=#
# Literate.markdown("examples/01_show_ssa.jl","docs/src";documenter=true,repo_root_url="https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl/blob/master") #src
| SmoothedSpectralAbscissa | https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl.git |
|
[
"MIT"
] | 0.1.0 | 5cc7400ff141a91c7c1b0fd1ba5eea46910b09e3 | code | 6737 | # # Faster convergence for linear dynamcs
#=
In this example, I show how the SSA can be used as objective to guarantee
convergence or faster convergence for a linear dynamical system.
=#
# ## Optimization of all matrix elements
# ### Initialization
using Plots,NamedColors
using LinearAlgebra
using Random
using SmoothedSpectralAbscissa ; const SSA=SmoothedSpectralAbscissa
Random.seed!(0);
# ### Linear Dynamics
#=
Consider continuous linear dynamics, regulated by
```math
\frac{\text{d} \mathbf{x}}{\text{d}t} = A \mathbf{x}
```
The soluton is analytic and takes the form:
```math
\mathbf{x}(t) = \exp( A\,t )\;\mathbf{x}_0
```
Where $\mathbf{x}_0$ are the initial conditions. The function below computes the dynamical
evolution of the system.
=#
function run_linear_dyn(A::Matrix{R},x0::Vector{R},tmax::Real,dt::Real=0.01) where R
ts = range(0,tmax;step=dt)
ret = Matrix{R}(undef,length(x0),length(ts))
for (k,t) in enumerate(ts)
ret[:,k]=exp(A.*t)*x0
end
retnrm = mapslices(norm,ret;dims=1)[:]
return ts,ret,retnrm
end;
# ### The optimization of the objective is done through Optim.jl and BFGS
using Optim
function objective_and_grad_simple(x::Vector{R},grad::Union{Nothing,Vector{R}},
n::Integer,ssa_eps::R,alloc::SSA.SSAAlloc) where R
mat=reshape(x,(n,n))
gradmat = isnothing(grad) ? nothing : similar(mat)
obj = SSA.ssa!(mat,gradmat,alloc,ssa_eps)
if !isnothing(grad)
for i in eachindex(gradmat)
grad[i]=gradmat[i]
end
end
return obj
end;
## #src
# ### Start with an unstable matrix
n = 50
A = randn(n,n) ./ sqrt(n) + 0.2I
x0=randn(n)
times,_,dyn_norms = run_linear_dyn(A,x0,3.,0.1)
plot(times,dyn_norms; leg=false,linewidth=3,color=:black,xlabel="time",ylabel="norm(x(t))")
# as expected, the norm grows exponentially with time.
# ### Now do the gradient-based optimization
const ssa_eps=0.001
const alloc = SSA.SSAAlloc(n)
const y0 = A[:];
#=
The objective function to be minimized is
```math
\text{obj}(A) = \text{SSA}(A) + \lambda \frac12 \left\| A - A_0 \right\|^2
```
Where $\lambda$ sets the relative weight.
We are reducing the SSA while keeping the matrix elements close to their initial value.
Adding some form of regularization is **always** necessary when otpimizing. If not,
the SSA would run to $-\infty$.
=#
function objfun!(F,G,y)
λ = 50.0/length(y) # regularizer weight
obj=objective_and_grad_simple(y,G,n,ssa_eps,alloc) # SSA and gradient
ydiffs = y.-y0
obj += 0.5*λ*mapreduce(x->x^2,+,ydiffs) # add the regularizer
if !isnothing(G)
@. G += λ*ydiffs # add gradient of regularizer
end
return obj
end;
# ### Optimize and show the results
opt_out = optimize(Optim.only_fg!(objfun!),A[:],BFGS(),Optim.Options(iterations=50))
y_opt=Optim.minimizer(opt_out)
A_opt = reshape(y_opt,(n,n))
times,_,dyn_norms_opt = run_linear_dyn(A_opt,x0,3.,0.1)
plot(times,dyn_norms_opt;
leg=false,linewidth=3,color=:blue,xlabel="time",ylabel="norm(x(t)) optimized")
#=
The optimized matrix produces stable dynamics, as shown in the plot above.
We can also take a look at the matrices before and after optimization
=#
heatmap(hcat(A,fill(NaN,n,10),A_opt);ratio=1,axis=nothing,ticks=nothing,border=:none,
colorbar=nothing)
#=
The optimized version simply has negative diagonal terms.
This may appear a bit trivial. In the next part, I optimize a system *excluding* the diagonal.
=#
# ## Optimization that excludes the diagonal
#=
Here I consider a matrix that is stable, but produces a large nonlinear amplification.
It is generated by the function:
=#
function rand_nonnormal(n::Integer,(ud::Real)=1.01)
mat = randn(n,n) ./ sqrt(n)
@show SSA.spectral_abscissa(mat)
mat = mat - (1.1*SSA.spectral_abscissa(mat))*I
sh = schur(mat)
upd = diagm(0=>fill(1.0,n),1=>fill(ud,n-1))
return sh.vectors*upd*sh.Schur*inv(upd)*sh.vectors'
end
# Let's make one and see how it looks like
A = rand_nonnormal(n,1.0)
x0=randn(n)
times,dyn_t,dyn_norms = run_linear_dyn(A,x0,30.,0.5)
plot(times,dyn_norms;
leg=false,linewidth=3,color=:black,xlabel="time",ylabel="norm(x(t))")
#=
The norm is initally amplified, and decreases slowly. This is due to the
non-normality of matrix $A$.
=#
# ### Objective function that excludes diagonal
function objective_and_grad_nodiag(x::Vector{R},grad::Union{Nothing,Vector{R}},
n::Integer,ssa_eps::R,alloc::SSA.SSAAlloc,A0::Matrix{R}) where R
mat=reshape(x,(n,n))
for i in 1:n
mat[i,i]=A0[i,i] # diagonal copied from original matrix
end
gradmat = isnothing(grad) ? nothing : similar(mat)
obj = SSA.ssa!(mat,gradmat,alloc,ssa_eps)
if !isnothing(grad)
for i in 1:n
gradmat[i,i] = 0.0 # diagonal has zero gradient
end
for i in eachindex(gradmat)
grad[i]=gradmat[i] # copy the gradient
end
end
return obj
end;
# ### Optimizer and optimization
#=
The only difference from before is using
`objective_and_grad_nodiag` rather than `objective_and_grad_simple`
=#
const ssa_eps=0.001
const alloc = SSA.SSAAlloc(n)
const y0 = A[:];
function objfun!(F,G,y)
λ = 1.0/length(y) # regularizer weight
obj=objective_and_grad_nodiag(y,G,n,ssa_eps,alloc,A) # add the regularizer
ydiffs = y.-y0
obj += 0.5*λ*mapreduce(x->x^2,+,ydiffs)
if !isnothing(G)
@. G += λ*ydiffs # gradient of regularizer
end
return obj
end
opt_out = optimize(Optim.only_fg!(objfun!),A[:],BFGS(),Optim.Options(iterations=50))
y_opt=Optim.minimizer(opt_out)
A_opt = reshape(y_opt,(n,n));
# Now the optimized matrix looks remarkably similar to ro the original one,
# as shown below.
heatmap(hcat(A,fill(NaN,n,10),A_opt);ratio=1,axis=nothing,ticks=nothing,border=:none)
# Here I show the differences between $A$ and $A_{\text{opt}}$.
# (in case you don't believe they are different)
heatmap(A-A_opt;ratio=1,axis=nothing,ticks=nothing,border=:none)
# Let's compare the time evolution of the norms
times,dyn_t_opt,dyn_norms_opt = run_linear_dyn(A_opt,x0,30.,0.5)
plot(times,[dyn_norms dyn_norms_opt];
leg=:topright,linewidth=3,color=[:black :blue],
xlabel="time",ylabel="norm(x(t))", label=["before otpimization" "after optimization"])
#=

=#
# ## Extras
#=
In gradient based optimization with no automatic differentiation, it is
always necessary to test the gradient of the objective function.
The procedure is illustrated below.
=#
using Calculus
function test_gradient(myobjfun,y0)
grad_an = similar(y0)
_ = myobjfun(1.0,grad_an,y0) # compute gradient analytically
grad_num = Calculus.gradient(y->myobjfun(1.0,nothing,y),y0) # compute it numerically
return (grad_an,grad_num)
end
_ = let do_the_test = false
if do_the_test
(x1,x2)=test_gradient(objfun!,randn(n^2))
scatter(x1,x2;ratio=1)
plot!(identity)
end
end
| SmoothedSpectralAbscissa | https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl.git |
|
[
"MIT"
] | 0.1.0 | 5cc7400ff141a91c7c1b0fd1ba5eea46910b09e3 | code | 5161 | # # Optimiziation of an excitatory/inhibitory (E/I) recurrent network
#=
In this example, I optimize an RNN network with E/I units.
The dynamics is expressed as follows:
```math
\tau\, \frac{\text{d} \mathbf{u}}{\text{d}t} = - \mathbf{u} + W
\left(\mathbf{u}\right) + \mathbf{h}
```
Where $W$ is a connection matrix with no autapses that preserves the separation
between E and I units (Dale's law). There is also a sparseness parameter for $W$,
to increase the difficulty (and as proof of concept).
Then there is a leak term $-\mathbf{u}$
and a constant external input $\mathbf{h}$. Finally the activation function
$f\left( \cdot \right)$ is a rectified-linear function.
=#
# ## Initialization
using Plots,NamedColors
using LinearAlgebra,Statistics
using Random
using SmoothedSpectralAbscissa ; const SSA=SmoothedSpectralAbscissa
using OrdinaryDiffEq # to run the dynamics
Random.seed!(0)
iofunction(x::Real) = max(0.0,x)
function run_rnn_dynamics(u0::Vector{R},W::Matrix{R},h::Vector{R},
tmax::R,dt::R=0.01;verbose=false) where R
f = function (du,u,p,t)
mul!(du,W,iofunction.(u))
@. du = du - u + h
return du
end
prob = ODEProblem(f,u0,(0.,tmax))
solv = solve(prob,Tsit5();verbose=verbose,saveat=dt)
ret_u =hcat(solv.u...)
ret_norms = mapslices(norm,ret_u;dims=1)[:]
return solv.t,ret_u,ret_norms
end;
# ## Build the starting weight matrix
const sparseness = 0.5
const ne = 35
const ni = 15
const ntot = ne+ni
Wmask = hcat(fill(1.,ntot,ne),fill(-1.,ntot,ni)) # 1 for E , -1 for I, 0. for no connection
for i in 1:ntot,j in 1:ntot
if i==j || rand()<sparseness
Wmask[i,j]=0.
end
end
heatmap(Wmask;ratio=1,color=:greys,axis=nothing,ticks=nothing,border=:none)
#=
The matrix `Wmask` shown above specifies the connectivy (presence of an edge, and sign)
The initial matrix is defined as follows:
=#
W0 = 2.0 .* rand(ntot,ntot) .* Wmask;
#=
Even with the leaky term, the dynamics is quite unstable,
due to the presence of excitatory closed loops, and not enough inhibition.
=#
u0 = 3.0.*randn(ntot)
h = 0.1 .* rand(ntot)
times,dyn_t,dyn_norms = run_rnn_dynamics(u0,W0,h,10.0,0.05)
plot(times,dyn_norms;
leg=false,linewidth=3,color=:black,xlabel="time",ylabel="norm(x(t))",
yscale=:log10,label="before optimization")
# Note that the y-scale is exponential here. The system is highly unstable.
# ## Objective function that excludes diagonal
using Optim
#=
To keep the signs of $W_{i,j}$ I make a reparametrization as follows.
```math
W_{i,j} = s_j \; \exp\left(\beta_{i,j}\right)
```
I then need to propagate the gradient of the SSA. I will also inclide a
2-norm regularizer on the weights
=#
function objective_and_grad_constraints(x::Vector{R},grad::Union{Nothing,Vector{R}},
n::Integer,ssa_eps::R,alloc::SSA.SSAAlloc,W0::Matrix{R}) where R
betas=reshape(x,(n,n))
mat = @. exp(betas) * W0 # transform, apply constraints
gradmat = isnothing(grad) ? nothing : similar(mat)
obj = SSA.ssa!(mat,gradmat,alloc,ssa_eps)
if !isnothing(grad)
gradmat .*= mat # propagate gradient for constraint
for i in eachindex(gradmat)
grad[i]=gradmat[i]
end
end
return obj
end;
# ## Optimizer and optimization
const ssa_eps=0.005
const alloc = SSA.SSAAlloc(ntot)
const y0 = map(w-> w!=0. ? log(abs(w)) : 0. ,W0[:])
function objfun!(F,G,y)
λ = 3.0/length(y) # regularizer calibration
obj=objective_and_grad_constraints(y,G,ntot,ssa_eps,alloc,W0) # add the regularizer
obj += 0.5*λ*mapreduce(x->x^2,+,y)
if !isnothing(G)
@. G += λ*y # gradient of regularizer
end
return obj
end
opt_out = optimize(Optim.only_fg!(objfun!),y0,BFGS(),Optim.Options(iterations=1_000))
y_opt=Optim.minimizer(opt_out)
W_opt = Wmask .* exp.(reshape(y_opt,(ntot,ntot))); # convert from beta to weight
# Comparison between inital matrix and the optimized verion. Note the E/I separation.
heatmap(hcat(W0,fill(NaN,ntot,10),W_opt);ratio=1,axis=nothing,ticks=nothing,border=:none)
# Now, as before I consider the norm...
times,dyn_t_opt,dyn_norms_opt = run_rnn_dynamics(u0,W_opt,h,30.0,0.05)
plot(times,dyn_norms_opt;
leg=:topright,linewidth=3,color=[:blue],
xlabel="time",ylabel="norm(x(t))", label="after optimization")
#=
STABLE !
There seems to be a large initial amplificaiton, but the activity settles to low values.
=#
# ## Extras
#=
In gradient based optimization with no automatic differentiation, it is
always necessary to test the gradient of the objective function.
The procedure is illustrated below.
=#
using Calculus
function test_gradient(myobjfun,y0)
grad_an = similar(y0)
_ = myobjfun(1.0,grad_an,y0) # compute gradient analytically
grad_num = Calculus.gradient(y->myobjfun(1.0,nothing,y),y0) # compute it numerically
for (k,y) in enumerate(y0)
if y == 0.
grad_num[k] = 0.
end end
return (grad_an,grad_num)
end
#=
To enable testing, set `do_the_test=true`
It is advised to reduce the size of the system.
=#
(x1,x2)=test_gradient(objfun!,randn(ntot^2))
scatter(x1,x2;ratio=1)
plot!(identity)
# Literate.markdown("examples/03_EI.jl","docs/src";documenter=true,repo_root_url="https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl/blob/master") #src
| SmoothedSpectralAbscissa | https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl.git |
|
[
"MIT"
] | 0.1.0 | 5cc7400ff141a91c7c1b0fd1ba5eea46910b09e3 | code | 9233 | module SmoothedSpectralAbscissa
using LinearAlgebra, Roots
abstract type AbstractIOMatrices end
struct IOIdentity <:AbstractIOMatrices end
abstract type OptimMethod end
struct OptimOrder2 end
struct OptimNewton end
@inline function spectral_abscissa(A::Matrix{R}) where R
convert(R,maximum(real.(eigvals(A))))
end
# trace of matrix product
@inline function trace_of_product(A::Matrix{R},B::Matrix{R}) where R
n=size(A,1)
acc=zero(R)
for i in 1:n, j in 1:n
@inbounds acc += A[i,j]*B[j,i]
end
return acc
end
# remove value from the diagonal
# equivalent to copy!(A,A-s*I)
@inline function subtract_diagonal!(A::Matrix{R},s::R) where R
n=size(A,1)
@simd for i in 1:n
@inbounds A[i,i] -= s
end
return nothing
end
"""
default_eps_ssa(A::Matrix{Float64}) -> eps_ssa
default value for the ``\\varepsilon`` used to compute the SSA. It scales with the matrix
size, so that it takes the value 0.05 for a ``150 \\times 150`` matrix.
"""
default_eps_ssa(A::Matrix{<:Real}) = 0.01 * 150.0 / size(A,1)
struct SSAAlloc{R,C}
R::Matrix{R}
R_alloc::Matrix{R}
Rt::Matrix{R}
Z::Matrix{R}
Zt::Matrix{R}
D::Matrix{R}
D_alloc::Matrix{R}
Dt::Matrix{R}
At::Matrix{R}
P::Matrix{R}
Q::Matrix{R}
YZt_alloc::Matrix{R}
A_eigvals::Vector{C}
end
"""
SSAAlloc(n::Integer) -> SSAAlloc
Memory allocation to avoid re-allocating space for repeated SSA computations.
# Arguments
- `n::Integer`: the size of the matrix (or matrices) on which the SSA will be computed
"""
function SSAAlloc(n::Integer)
return SSAAlloc(
map( _ -> Matrix{Float64}(undef,n,n),1:12)... , Vector{ComplexF32}(undef,n))
end
"""
SSAAlloc(A::Matrix) -> SSAAlloc
Memory allocation to avoid re-allocating space for repeated SSA computations.
This corresponds to `SSAAlloc(size(A,1))`
"""
function SSAAlloc(A::Matrix{<:Real})
return SSAAlloc(size(A,1))
end
"""
PQ_init!(PQ::SSAAlloc,A::Matrix) -> nothing
Stores some (costly) pre-computed quantities on SSAAlloc.
Should be called only once before the root-finding procedure.
Schur decompositions are performed here.
"""
function PQ_init!(PQ::SSAAlloc{R,C},A::Matrix{R}) where {R,C}
At=transpose!(PQ.At,A)
F = schur(A)
copyto!(PQ.R,F.T)
copyto!(PQ.Z,F.Z)
copyto!(PQ.A_eigvals,F.values)
F = schur!(At)
copyto!(PQ.Rt,F.T)
copyto!(PQ.Zt,F.Z)
mul!(PQ.D,transpose(PQ.Z),PQ.Z,-1.0,0.0)
mul!(PQ.Dt,transpose(PQ.Zt),PQ.Zt,-1.0,0.0)
return nothing
end
@inline function spectral_abscissa(PQ::SSAAlloc{R,C}) where {R,C}
return convert(R,maximum(real.(PQ.A_eigvals)))
end
function get_P_or_Q!(PorQ::M,s::Real,Z::M,R::M,D::M,
YZt_alloc::M) where M<:Matrix{<:Real}
subtract_diagonal!(R,s)
Y, scale = LAPACK.trsyl!('N','T', R, R, D)
mul!(YZt_alloc,Y,transpose(Z))
mul!(PorQ,Z,YZt_alloc,inv(scale),0.0)
return nothing
end
function get_P!(s::T, PQ::SSAAlloc{T,C}) where {T,C}
R=copyto!(PQ.R_alloc,PQ.R)
D=copyto!(PQ.D_alloc,PQ.D)
get_P_or_Q!(PQ.P,s,PQ.Z,R,D,PQ.YZt_alloc)
return nothing
end
function get_Q!(s::T, PQ::SSAAlloc{T,C}) where {T,C}
R=copyto!(PQ.R_alloc,PQ.Rt)
D=copyto!(PQ.D_alloc,PQ.Dt)
get_P_or_Q!(PQ.Q,s,PQ.Zt,R,D,PQ.YZt_alloc)
return nothing
end
function ssa_simple_obj(s::R,PQ::SSAAlloc{R,C},ssa_eps::R,sa::R) where {R,C}
get_P!( max(sa+eps(10.0),s) ,PQ) # SSA is not defined below SA !
return inv(tr(PQ.P)) - ssa_eps
end
# Find zero with Newton!
function ssa_simple_obj_newton(s::R,PQ::SSAAlloc{R,C},ssa_eps::R,sa::R) where {R,C}
_s = max(sa+eps(10.0),s)
get_P!(_s,PQ) # SSA is not defined below SA !
get_Q!(_s,PQ)
fs = tr(PQ.P)
mdfs = 2.0*trace_of_product(PQ.P,PQ.Q)
obj = inv(fs) - ssa_eps
dobj = mdfs/(fs*fs)
return (obj,obj/dobj)
end
"""
ssa!(A,grad,PQ,ssa_eps=nothing ;
io_matrices=SmoothedSpectralAbscissa.IOIdentity,
optim_method=SmoothedSpectralAbscissa.OptimOrder2) -> ssa_value
Computes the smoothed spectral abscissa (SSA) of matrix A and its gradient (optionally).
If `ssa_eps` is not specified, the default value is set by `default_eps_ssa(A)`
# Arguments
- `A::Matrix{<:Real}`: A square matrix
- `grad::Union{Nothing,Matrix{<:Real}}`: `nothing` skips the gradient computation. To compute the gradient, provide a matrix `grad` of the same size as A. The matrix will be rewritten in-place with entries ``\\frac{\\partial\\; \\tilde{\\alpha}_\\varepsilon(A)}{\\partial\\; A_{i,j}}``
- `alloc::SSAAlloc` : Pre-allocated matrices for iterative computations. Can be generated by `SSAAlloc(A)`
- `ssa_eps::Union{Nothing,R}=nothing` The ``\\varepsilon`` parameter associated with the SSA computation. If not specified, it is set by `default_eps_ssa(A)`
- `io_matrices=SmoothedSpectralAbscissa.IOIdentity` : input and output matrix. **WARNING** for now the only option is identity.
- `optim_method=SmoothedSpectralAbscissa.OptimOrder2` : root finding algorithm. Two methods implemented: `OptimOrder2` and `OptimNewton`.
# Returns
- `ssa_value<:Real`: this is ``\\tilde{\\alpha}_\\varepsilon(A)``
"""
function ssa!(A::Matrix{R},grad::Union{Nothing,Matrix{R}}, alloc::SSAAlloc{R,C},
ssa_eps::Union{Nothing,R}=nothing ; optim_method::Type=OptimOrder2,
io_matrices::Type=IOIdentity) where {R,C}
_ssa_eps = something(ssa_eps, default_eps_ssa(A))
return ssa!(A,grad,alloc,_ssa_eps,optim_method,io_matrices)
end
# Order2() to find roots
function ssa!(A::Matrix{R},grad::Union{Nothing,Matrix{R}}, alloc::SSAAlloc{R,C},
ssa_eps::R , optim_method::Type{OptimOrder2},
io_matrices::Type{IOIdentity}) where {R,C}
PQ_init!(alloc,A)
_sa = spectral_abscissa(alloc)
# _start = _sa + 0.1abs(_sa)
_start = _sa + 0.5*ssa_eps
objfun(s)=ssa_simple_obj(s,alloc,ssa_eps,_sa)
_method = Roots.Order2()
s_star::R = find_zero(objfun, _start,_method;maxevals=1_000)
isnothing(grad) && return s_star
# compute gradient
get_P!(s_star,alloc)
get_Q!(s_star,alloc)
cc=inv(trace_of_product(alloc.Q,alloc.P))
mul!(grad,alloc.Q,alloc.P,cc,0.0)
return s_star
end
# newton to find roots
function ssa!(A::Matrix{R},grad::Union{Nothing,Matrix{R}}, alloc::SSAAlloc{R,C},
ssa_eps::R , optim_method::Type{OptimNewton},
io_matrices::Type{IOIdentity}) where {R,C}
PQ_init!(alloc,A)
_sa = spectral_abscissa(alloc)
# _start = _sa + 0.1abs(_sa)
_start = _sa + 0.5*ssa_eps
objfun(s)=ssa_simple_obj_newton(s,alloc,ssa_eps,_sa)
_method = Roots.Newton()
s_star::R = find_zero(objfun, _start,_method;maxevals=1_000)
isnothing(grad) && return s_star
# compute gradient
get_P!(s_star,alloc)
get_Q!(s_star,alloc)
cc=inv(trace_of_product(alloc.Q,alloc.P))
mul!(grad,alloc.Q,alloc.P,cc,0.0)
return s_star
end
"""
ssa_simple!(A,grad,PQ,ssa_eps=nothing) -> ssa
deprecated ... kept for testing
"""
function ssa_simple!(A::Matrix{R},grad::Union{Nothing,Matrix{R}},
PQ::SSAAlloc{R,C},ssa_eps::Union{Nothing,R}=nothing) where {R,C}
return ssa!(A,grad,PQ,ssa_eps)
end
# short versions that also allocates the memory
"""
ssa(A,ssa_eps=nothing) -> ssa_val
Computes the smoothed spectral abscissa (SSA) of matrix A (with identity input-output weighting matrices). If `ssa_eps` is not specified, the default value is set by `default_eps_ssa(A)`
# Arguments
- `A::Matrix{<:Real}`: A square matrix
- `ssa_eps::Union{Nothing,R}=nothing` The ``\\varepsilon`` parameter associated with the SSA computation. If not specified, it is set by `default_eps_ssa(A)`
- `io_matrices=SmoothedSpectralAbscissa.IOIdentity` : input and output matrix. **WARNING** for now the only option is identity.
# Returns
- `ssa_val<:Real`: this is the ``\\tilde{\\alpha}_\\varepsilon(A)``
"""
function ssa(A::Matrix{R},ssa_eps::Union{Nothing,R}=nothing,
io_matrices::Type=IOIdentity) where R
alloc=SSAAlloc(size(A,1))
_epsssa = something(ssa_eps, default_eps_ssa(A))
return ssa!(copy(A),nothing,alloc, _epsssa;io_matrices=io_matrices)
end
"""
ssa_withgradient(A,ssa_eps) -> (ssa_val,gradient_matrix)
Computes the Smoothed Spectral Abscissa (SSA) of matrix A
and also its gradient with respect to each element of A.
If `ssa_eps` is not specified, the default value is set by `default_eps_ssa(A)`
In case you need to call the SSA iteratively (e.g. gradient-based optimization),
please consider pre-allocating memory and using `ssa_simple!(...)`.
# Arguments
- `A::Matrix{<:Real}`: A square matrix
- `ssa_eps::Union{Nothing,R}=nothing` The ``\\varepsilon`` parameter associated with the SSA computation. If not specified, it is set by `default_eps_ssa(A)`
- `io_matrices=SmoothedSpectralAbscissa.IOIdentity` : input and output matrix. **WARNING** for now the only option is identity.
# Returns
- `ssa_val<:Real`: this is the ``\\tilde{\\alpha}_\\varepsilon(A)``
- `gradient_matrix::Matrix{<:Real}`: the gradient of the SSA w.r.t. each entry of matrix `A`
"""
function ssa_withgradient(A::Matrix{R},ssa_eps::Union{Nothing,R}=nothing,
io_matrices::Type=IOIdentity) where R
alloc=SSAAlloc(size(A,1))
gradmat=similar(A)
epsssa = something(ssa_eps, default_eps_ssa(A))
_ssa = ssa!(copy(A),gradmat,alloc, epsssa;io_matrices=io_matrices)
return ssa,gradmat
end
end # module
| SmoothedSpectralAbscissa | https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl.git |
|
[
"MIT"
] | 0.1.0 | 5cc7400ff141a91c7c1b0fd1ba5eea46910b09e3 | code | 857 |
using Pkg
Pkg.activate(joinpath(@__DIR__,".."))
using LinearAlgebra
using BenchmarkTools, Test
using Cthulhu
using Plots ; theme(:dark)
using SmoothedSpectralAbscissa ; const SSA = SmoothedSpectralAbscissa
function rand_gauss(n::Integer)
return randn(n,n) ./ sqrt(n)
end
function rand_nonnormal(n::Integer,(ud::Real)=1.01)
mat = rand_gauss(n)
sh = schur(mat)
upd = diagm(0=>fill(1.0,n),1=>fill(ud,n-1))
return sh.vectors*upd*sh.Schur*inv(upd)*sh.vectors'
end
##
sizes = [25,50,75,100,125,150]
ssa_times = similar(sizes,Float64)
ssa_allocs = similar(ssa_times)
for (k,n) in enumerate(sizes)
alloc = SSA.SSAAlloc(n)
A=rand_nonnormal(n,1.0)
be = @benchmark SSA.ssa!($A,nothing,$alloc)
ssa_times[k] = median(be.times)
ssa_allocs[k] = be.allocs
end
##
bar(sizes,ssa_times;leg=false,yscale=:log10)
@show ssa_times ./ ssa_times_old
| SmoothedSpectralAbscissa | https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl.git |
|
[
"MIT"
] | 0.1.0 | 5cc7400ff141a91c7c1b0fd1ba5eea46910b09e3 | code | 3806 | using SmoothedSpectralAbscissa ; const SSA=SmoothedSpectralAbscissa
using LinearAlgebra, Random
using Roots,Calculus
using Test
Random.seed!(0)
"""
lyap_simple!(A::AbstractMatrix)
returns the naive implementation of the Lyapunov objective function and its
derivative. Can be used for testing, plotting, etc
"""
function lyap_simple!(A::AbstractMatrix)
function myf(s::Float64)::Float64
P = lyap(A - UniformScaling(s),one(A))
tr(P)
end
function d_myf(s::Float64)::Float64
sc,Id = UniformScaling(s), one(A)
P = lyap(A - sc,Id)
Q = lyap(A' - sc,Id)
-2.0tr(P*Q)
end
myf,d_myf
end
"""
ssa_test(A::Matrix{Float64})
This is the easiest implementation
for testing and benchmarking.
"""
function ssa_test(A::Matrix{Float64} ; ssa_eps=nothing)
myf,d_myf = lyap_simple!(A)
ssa_eps = something(ssa_eps,SSA.default_eps_ssa(A))
myg(s)= 1.0 / myf(s) - ssa_eps
d_myg(s) = - d_myf(s) / myf(s)^2
sa = SSA.spectral_abscissa(A)
ssa_start = sa + eps(3sa)
find_zero( (myg,d_myg),ssa_start, Roots.Newton())
end
function f_for_gradient(vmat)
n = sqrt(length(vmat))
@assert isinteger(n)
n = Int64(n)
mat = copy(reshape(vmat,(n,n)))
return SSA.ssa(mat)
end
#
@testset "SA and SSA" begin
# check SA
n = 100
mat = randn(n,n) + 7.4517I
alloc = SSA.SSAAlloc(n)
@test begin
sa1 = maximum(real.(eigvals(mat)))
SSA.PQ_init!(alloc,mat)
sa2 = SSA.spectral_abscissa(alloc)
sa3 = SSA.spectral_abscissa(mat)
isapprox(sa1,sa2 ; rtol=1E-4) && isapprox(sa1,sa3 ; rtol=1E-4)
end
# now test SSA against simpler version
ssa1 = ssa_test(mat)
ssa2 = SSA.ssa(mat)
@test isapprox(ssa1,ssa2 ; rtol=1E-4)
# same , but with a different epsilon
mat = randn(n,n) + 1.456I
eps = 0.31313131
ssa1 = ssa_test(mat; ssa_eps=eps)
ssa2 = SSA.ssa(mat,eps)
@test isapprox(ssa1,ssa2 ; rtol=1E-4)
end
@testset "SSA Vs Lyapunov eq" begin
# when the epsilon of the ssa is the inverse of the energy integral
# (computed by the lyap eq) , then the SSA is zero
n = 130
idm =diagm(0=>fill(1.0,n))
matd = diagm(0=>fill(-0.05,n))
fval=tr(lyap(matd,idm))
ssa=SSA.ssa!(matd,nothing,SSA.SSAAlloc(n),inv(fval))
@test isapprox(ssa,0.0;atol=1E-6)
matrand=randn(n,n) ./ sqrt(n) - 1.1I
fval=tr(lyap(matrand,idm))
ssa = SSA.ssa!(matrand,nothing,SSA.SSAAlloc(n),inv(fval))
@test isapprox(ssa,0.0;atol=1E-6)
matrand2 = matrand + 1.234I
ssa = SSA.ssa!(matrand2,nothing,SSA.SSAAlloc(n),inv(fval))
@test isapprox(ssa,1.234;atol=1E-6)
end
@testset "SSA Newton method" begin
n = 50
matrand=randn(n,n) ./ sqrt(n)
alloc=SSA.SSAAlloc(n)
SSA.PQ_init!(alloc,matrand)
sa_mat = SSA.spectral_abscissa(matrand)
eps_ssa = SSA.default_eps_ssa(matrand)
fungrad(s) = SSA.ssa_simple_obj_newton(s,alloc,eps_ssa,sa_mat)[1]
stests=range(sa_mat+0.01,3sa_mat;length=100)
grad_num = map(s->Calculus.gradient(fungrad,s),stests)
grad_an = let vv = map(s->SSA.ssa_simple_obj_newton(s,alloc,eps_ssa,sa_mat),stests)
map(v-> v[1]/v[2],vv)
end
@test all(isapprox.(grad_num,grad_an;atol=1E-5))
ssa = SSA.ssa_simple!(matrand,nothing,alloc)
ssa_ntw = SSA.ssa!(matrand,nothing,alloc;optim_method=SSA.OptimNewton)
@test isapprox(ssa,ssa_ntw;atol=1E-5)
end
@testset "SSA gradient" begin
n = 26
mat = rand(n,n) + UniformScaling(2.222)
@test begin
ssa1 = ssa_test(mat)
ssa2 = SSA.ssa(mat)
isapprox(ssa1,ssa2 ; rtol=1E-4)
end
@test begin
ssa,grad_an = SSA.ssa_withgradient(mat)
grad_num = Calculus.gradient(f_for_gradient,mat[:])
all(isapprox.(grad_an[:],grad_num ; rtol=1E-3) )
end
end
| SmoothedSpectralAbscissa | https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl.git |
|
[
"MIT"
] | 0.1.0 | 5cc7400ff141a91c7c1b0fd1ba5eea46910b09e3 | code | 2644 | using Pkg ; Pkg.activate(joinpath(@__DIR__,".."))
using SmoothedSpectralAbscissa ; const SSA = SmoothedSpectralAbscissa
using Test
using Plots
using BenchmarkTools
using LinearAlgebra
using Random
using Roots
##
"""
lyap_simple(A::AbstractMatrix)
returns the naive implementation of the Lyapunov objective function and its
derivative. Can be used for testing, plotting, etc
"""
function lyap_simple(A::AbstractMatrix)
function myf(s::Float64)::Float64
P = lyap(A - UniformScaling(s),one(A))
tr(P)
end
function d_myf(s::Float64)::Float64
sc,Id = UniformScaling(s), one(A)
P = lyap(A - sc,Id)
Q = lyap(A' - sc,Id)
-2.0tr(P*Q)
end
myf,d_myf
end
"""
ssa_test(A::Matrix{Float64})
This is the easiest implementation, to make sure it is the same as in the
ocaml code, and try to benchmark it already.
"""
function ssa_test(A::Matrix{Float64})
myf,d_myf = lyap_simple(A)
ssa_eps = SSA.default_eps_ssa(A)
myg(s)= 1.0 / myf(s) - ssa_eps
d_myg(s) = - d_myf(s) / myf(s)^2
sa = SSA.spectral_abscissa(A)
ssa_start = sa + eps(3sa)
find_zero( (myg,d_myg),ssa_start, Roots.Newton())
# find_zero( myg ,ssa_start, Order1())
end
##
function ssa_simple(A::AbstractMatrix, with_gradient::Bool,PQ,
ssa_eps::Union{Nothing,Float64}=nothing)
_ssa_eps = something(ssa_eps, SSA.default_eps_ssa(A))
SSA.PQ_init!(A,PQ)
_sa = SSA.spectral_abscissa(PQ)
_start = _sa + 1.05_ssa_eps
g(s)=SSA._g(s,PQ,_ssa_eps,_sa)
x = range(_start, 10 ; length=200)
y = g.(x)
(x,y)
end
##
# check SA
n = 100
mat = randn(n,n) + UniformScaling(7.4517)
Malloc = SSA.SSAAlloc(n)
@test begin
sa1 = maximum(real.(eigvals(mat)))
SSA.PQ_init!(mat,Malloc)
sa2 = SSA.spectral_abscissa(Malloc)
sa3 = SSA.spectral_abscissa(mat)
isapprox(sa1,sa2 ; rtol=1E-4) && isapprox(sa1,sa3 ; rtol=1E-4)
end
# now test SSA against simpler version
ssa1 = ssa_test(mat)
SSA.default_eps_ssa(mat) |> typeof
ssa2 = SSA.ssa_simple(mat)
@test isapprox(ssa1,ssa2 ; rtol=1E-4)
# same , but with a different epsilon
mat = randn(n,n) + UniformScaling(1.456)
eps = 0.31313131
ssa1 = ssa_test(mat; ssa_eps=eps)
ssa2 = SSA.ssa_simple(mat,eps)
@test isapprox(ssa1,ssa2 ; rtol=1E-4)
##
const n = 100
Alloc = SSA.SSAAlloc(n)
A = randn(n,n)
SSA.PQ_init!(A,Alloc)
SSA.spectral_abscissa(A)
SSA.spectral_abscissa(Alloc)
ssa_test(A)
xt,yt = ssa_simple(A,false,Alloc)
plot(xt,yt ; leg = false, linewidth=3)
using Cthulhu
@code_warntype SSA.ssa_simple(A)
descend(SSA.get_P!,
Tuple{Float64,SSA.SSAAlloc{Array{Float64,2},Array{Complex{Float32},1}}})
| SmoothedSpectralAbscissa | https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl.git |
|
[
"MIT"
] | 0.1.0 | 5cc7400ff141a91c7c1b0fd1ba5eea46910b09e3 | code | 1679 | using Pkg
Pkg.activate(joinpath(@__DIR__,".."))
using LinearAlgebra
using BenchmarkTools, Test
using Cthulhu
using Plots ; theme(:dark)
using SmoothedSpectralAbscissa ; const SSA = SmoothedSpectralAbscissa
# using OrdinaryDiffEq
using StochasticDiffEq
##
function easydyn(mat::Matrix{R},x0::Vector{R},tmax::Real,dt::Real=0.01) where R
ts = range(0,tmax;step=dt)
ret = Matrix{R}(undef,length(x0),length(ts))
for (k,t) in enumerate(ts)
ret[:,k]=exp(mat.*t)*x0
end
retnrm = mapslices(norm,ret;dims=1)[:]
return ts,ret,retnrm
end
function lessnormal(mat::Matrix{R},d::R) where R
n=size(mat,1)
sh = schur(mat)
upd = diagm(0=>fill(1.0,n),1=>fill(d,n-1))
return sh.vectors*upd*sh.Schur*inv(upd)*sh.vectors'
end
function dyn_noise(mat::Matrix{R},
x0::Vector{R},noiselevel::Real,t_end::Real;
stepsize::Real=0.05,verbose=false) where R<:Real
f(du,u,p,t) = let _du = mat*u ; copy!(du,_du) ; end
σ_f(du,u,p,t) = fill!(du,noiselevel)
prob = SDEProblem(f,σ_f,x0,(0.,t_end))
solv = solve(prob,EM();verbose=verbose,dt=stepsize)
ret_u = hcat(solv.u...)
retnrm = mapslices(norm,ret_u;dims=1)[:]
return solv.t,ret_u,retnrm
end
##
n = 15
idm =diagm(0=>fill(1.0,n))
matrand=randn(n,n) ./ sqrt(n) - 1.1I
matrandln = lessnormal(matrand,1.00001)
alloc=SSA.SSAAlloc(n)
##
SSA.ssa!(matrand,nothing,alloc)
SSA.ssa!(matrandln,nothing,alloc)
##
@btime SSA.ssa!($matrand,nothing,$alloc)
@btime SSA.ssa!($matrandln,nothing,$alloc)
println("\n\n")
@btime SSA.ssa!($matrand,nothing,$alloc;optim_method=SSA.OptimNewton)
@btime SSA.ssa!($matrandln,nothing,$alloc;optim_method=SSA.OptimNewton )
##
@descend_code_warntype SSA.ssa!(matrand,nothing,alloc)
| SmoothedSpectralAbscissa | https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl.git |
|
[
"MIT"
] | 0.1.0 | 5cc7400ff141a91c7c1b0fd1ba5eea46910b09e3 | docs | 1354 | # SmoothedSpectralAbscissa
| **Documentation** | **Build Status** |
|:------------------------- |:--------------------------------------------------------------------- |
| [](https://dylanfesta.github.io/SmoothedSpectralAbscissa.jl/dev) | [](https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl/actions) [](https://codecov.io/gh/dylanfesta/SmoothedSpectralAbscissa.jl) |
This package implements a memory-efficient algorithm to compute the smoothed spectral abscissa (SSA) of square matrices, and the associated gradient. The computation can be optimized for recursion, so that each new calculation does not reallocate memory.
I implemented only the "simplified" version that does not have projections.
The algorithm is described in the following paper:
> The Smoothed Spectral Abscissa for Robust Stability Optimization , J Vanbiervliet et al , 2009. [DOI: 10.1137/070704034](https://doi.org/10.1137/070704034)
**WORK IN PROGRESS!**
[Documentation and usage](https://dylanfesta.github.io/SmoothedSpectralAbscissa.jl/dev)
| SmoothedSpectralAbscissa | https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl.git |
|
[
"MIT"
] | 0.1.0 | 5cc7400ff141a91c7c1b0fd1ba5eea46910b09e3 | docs | 1981 | ```@meta
EditURL = "https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl/blob/master/examples/01_show_ssa.jl"
```
# Comparison between SSA and SA
In this example, I compare changes in the SA and in the SSA for a matrix that varies
parametrically.
### Initialization
```@example 01_show_ssa
using Plots,NamedColors
using LinearAlgebra
using Random
using SmoothedSpectralAbscissa ; const SSA=SmoothedSpectralAbscissa
Random.seed!(0);
nothing #hide
```
the function below generates a random non-normal matrix
```@example 01_show_ssa
function rand_nonnormal(n::Integer,(ud::Real)=1.01)
mat = randn(n,n) ./ sqrt(n)
sh = schur(mat)
upd = diagm(0=>fill(1.0,n),1=>fill(ud,n-1))
return sh.vectors*upd*sh.Schur*inv(upd)*sh.vectors'
end;
nothing #hide
```
### Example matrix generated parametrically
```@example 01_show_ssa
n = 100
mat1 = rand_nonnormal(n,0.8)
mat2 = randn(n,n) ./ sqrt(n)
mat(θ) = @. θ*mat1 + (1-θ)*mat2
thetas = range(0.0,1.0;length=100);
nothing #hide
```
Now we look at the spectral abscissa as a function of the parameter
### Set ϵ for the SSA
```@example 01_show_ssa
ssa_eps_vals = [0.005,0.001,0.0005];
nothing #hide
```
### Compute and plot the SA
```@example 01_show_ssa
sas = map(θ->SSA.spectral_abscissa(mat(θ)),thetas)
plt=plot(thetas,sas ; color=:black, linewidth=3,lab="SA",
xlabel="θ",ylabel="SA value",leg=:top)
```
### Compute and plot the SSA
```@example 01_show_ssa
mycols=cgrad([colorant"DarkGreen",colorant"orange"])
for ϵ in ssa_eps_vals
ssas = map(θ->SSA.ssa(mat(θ),ϵ),thetas)
plot!(plt,thetas,ssas ; linewidth=2.5 ,
lab="SSA $ϵ",palette=mycols)
end
plot!(plt,xlabel="θ",ylabel="SA/SSA value",leg=:top)
```
This plot shows that the SSA is a smoothed version of the SA, and
coverges to it as as ϵ decreases.
Moreover if we reduce the SSA parametrically, we find (approximately) a good minimum for
the SA, as well.
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| SmoothedSpectralAbscissa | https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl.git |
|
[
"MIT"
] | 0.1.0 | 5cc7400ff141a91c7c1b0fd1ba5eea46910b09e3 | docs | 7404 | ```@meta
EditURL = "https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl/blob/master/examples/02_dynamics.jl"
```
# Faster convergence for linear dynamcs
In this example, I show how the SSA can be used as objective to guarantee
convergence or faster convergence for a linear dynamical system.
## Optimization of all matrix elements
### Initialization
```@example 02_dynamics
using Plots,NamedColors
using LinearAlgebra
using Random
using SmoothedSpectralAbscissa ; const SSA=SmoothedSpectralAbscissa
Random.seed!(0);
nothing #hide
```
### Linear Dynamics
Consider continuous linear dynamics, regulated by
```math
\frac{\text{d} \mathbf{x}}{\text{d}t} = A \mathbf{x}
```
The soluton is analytic and takes the form:
```math
\mathbf{x}(t) = \exp( A\,t )\;\mathbf{x}_0
```
Where $\mathbf{x}_0$ are the initial conditions. The function below computes the dynamical
evolution of the system.
```@example 02_dynamics
function run_linear_dyn(A::Matrix{R},x0::Vector{R},tmax::Real,dt::Real=0.01) where R
ts = range(0,tmax;step=dt)
ret = Matrix{R}(undef,length(x0),length(ts))
for (k,t) in enumerate(ts)
ret[:,k]=exp(A.*t)*x0
end
retnrm = mapslices(norm,ret;dims=1)[:]
return ts,ret,retnrm
end;
nothing #hide
```
### The optimization of the objective is done through Optim.jl and BFGS
```@example 02_dynamics
using Optim
function objective_and_grad_simple(x::Vector{R},grad::Union{Nothing,Vector{R}},
n::Integer,ssa_eps::R,alloc::SSA.SSAAlloc) where R
mat=reshape(x,(n,n))
gradmat = isnothing(grad) ? nothing : similar(mat)
obj = SSA.ssa!(mat,gradmat,alloc,ssa_eps)
if !isnothing(grad)
for i in eachindex(gradmat)
grad[i]=gradmat[i]
end
end
return obj
end;
nothing #hide
```
### Start with an unstable matrix
```@example 02_dynamics
n = 50
A = randn(n,n) ./ sqrt(n) + 0.2I
x0=randn(n)
times,_,dyn_norms = run_linear_dyn(A,x0,3.,0.1)
plot(times,dyn_norms; leg=false,linewidth=3,color=:black,xlabel="time",ylabel="norm(x(t))")
```
as expected, the norm grows exponentially with time.
### Now do the gradient-based optimization
```@example 02_dynamics
const ssa_eps=0.001
const alloc = SSA.SSAAlloc(n)
const y0 = A[:];
nothing #hide
```
The objective function to be minimized is
```math
\text{obj}(A) = \text{SSA}(A) + \lambda \frac12 \left\| A - A_0 \right\|^2
```
Where $\lambda$ sets the relative weight.
We are reducing the SSA while keeping the matrix elements close to their initial value.
Adding some form of regularization is **always** necessary when otpimizing. If not,
the SSA would run to $-\infty$.
```@example 02_dynamics
function objfun!(F,G,y)
λ = 50.0/length(y) # regularizer weight
obj=objective_and_grad_simple(y,G,n,ssa_eps,alloc) # SSA and gradient
ydiffs = y.-y0
obj += 0.5*λ*mapreduce(x->x^2,+,ydiffs) # add the regularizer
if !isnothing(G)
@. G += λ*ydiffs # add gradient of regularizer
end
return obj
end;
nothing #hide
```
### Optimize and show the results
```@example 02_dynamics
opt_out = optimize(Optim.only_fg!(objfun!),A[:],BFGS(),Optim.Options(iterations=50))
y_opt=Optim.minimizer(opt_out)
A_opt = reshape(y_opt,(n,n))
times,_,dyn_norms_opt = run_linear_dyn(A_opt,x0,3.,0.1)
plot(times,dyn_norms_opt;
leg=false,linewidth=3,color=:blue,xlabel="time",ylabel="norm(x(t)) optimized")
```
The optimized matrix produces stable dynamics, as shown in the plot above.
We can also take a look at the matrices before and after optimization
```@example 02_dynamics
heatmap(hcat(A,fill(NaN,n,10),A_opt);ratio=1,axis=nothing,ticks=nothing,border=:none,
colorbar=nothing)
```
The optimized version simply has negative diagonal terms.
This may appear a bit trivial. In the next part, I optimize a system *excluding* the diagonal.
## Optimization that excludes the diagonal
Here I consider a matrix that is stable, but produces a large nonlinear amplification.
It is generated by the function:
```@example 02_dynamics
function rand_nonnormal(n::Integer,(ud::Real)=1.01)
mat = randn(n,n) ./ sqrt(n)
@show SSA.spectral_abscissa(mat)
mat = mat - (1.1*SSA.spectral_abscissa(mat))*I
sh = schur(mat)
upd = diagm(0=>fill(1.0,n),1=>fill(ud,n-1))
return sh.vectors*upd*sh.Schur*inv(upd)*sh.vectors'
end
```
Let's make one and see how it looks like
```@example 02_dynamics
A = rand_nonnormal(n,1.0)
x0=randn(n)
times,dyn_t,dyn_norms = run_linear_dyn(A,x0,30.,0.5)
plot(times,dyn_norms;
leg=false,linewidth=3,color=:black,xlabel="time",ylabel="norm(x(t))")
```
The norm is initally amplified, and decreases slowly. This is due to the
non-normality of matrix $A$.
### Objective function that excludes diagonal
```@example 02_dynamics
function objective_and_grad_nodiag(x::Vector{R},grad::Union{Nothing,Vector{R}},
n::Integer,ssa_eps::R,alloc::SSA.SSAAlloc,A0::Matrix{R}) where R
mat=reshape(x,(n,n))
for i in 1:n
mat[i,i]=A0[i,i] # diagonal copied from original matrix
end
gradmat = isnothing(grad) ? nothing : similar(mat)
obj = SSA.ssa!(mat,gradmat,alloc,ssa_eps)
if !isnothing(grad)
for i in 1:n
gradmat[i,i] = 0.0 # diagonal has zero gradient
end
for i in eachindex(gradmat)
grad[i]=gradmat[i] # copy the gradient
end
end
return obj
end;
nothing #hide
```
### Optimizer and optimization
The only difference from before is using
`objective_and_grad_nodiag` rather than `objective_and_grad_simple`
```@example 02_dynamics
const ssa_eps=0.001
const alloc = SSA.SSAAlloc(n)
const y0 = A[:];
function objfun!(F,G,y)
λ = 1.0/length(y) # regularizer weight
obj=objective_and_grad_nodiag(y,G,n,ssa_eps,alloc,A) # add the regularizer
ydiffs = y.-y0
obj += 0.5*λ*mapreduce(x->x^2,+,ydiffs)
if !isnothing(G)
@. G += λ*ydiffs # gradient of regularizer
end
return obj
end
opt_out = optimize(Optim.only_fg!(objfun!),A[:],BFGS(),Optim.Options(iterations=50))
y_opt=Optim.minimizer(opt_out)
A_opt = reshape(y_opt,(n,n));
nothing #hide
```
Now the optimized matrix looks remarkably similar to ro the original one,
as shown below.
```@example 02_dynamics
heatmap(hcat(A,fill(NaN,n,10),A_opt);ratio=1,axis=nothing,ticks=nothing,border=:none)
```
Here I show the differences between $A$ and $A_{\text{opt}}$.
(in case you don't believe they are different)
```@example 02_dynamics
heatmap(A-A_opt;ratio=1,axis=nothing,ticks=nothing,border=:none)
```
Let's compare the time evolution of the norms
```@example 02_dynamics
times,dyn_t_opt,dyn_norms_opt = run_linear_dyn(A_opt,x0,30.,0.5)
plot(times,[dyn_norms dyn_norms_opt];
leg=:topright,linewidth=3,color=[:black :blue],
xlabel="time",ylabel="norm(x(t))", label=["before otpimization" "after optimization"])
```

## Extras
In gradient based optimization with no automatic differentiation, it is
always necessary to test the gradient of the objective function.
The procedure is illustrated below.
```@example 02_dynamics
using Calculus
function test_gradient(myobjfun,y0)
grad_an = similar(y0)
_ = myobjfun(1.0,grad_an,y0) # compute gradient analytically
grad_num = Calculus.gradient(y->myobjfun(1.0,nothing,y),y0) # compute it numerically
return (grad_an,grad_num)
end
_ = let do_the_test = false
if do_the_test
(x1,x2)=test_gradient(objfun!,randn(n^2))
scatter(x1,x2;ratio=1)
plot!(identity)
end
end
```
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| SmoothedSpectralAbscissa | https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl.git |
|
[
"MIT"
] | 0.1.0 | 5cc7400ff141a91c7c1b0fd1ba5eea46910b09e3 | docs | 5461 | ```@meta
EditURL = "https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl/blob/master/examples/03_EI.jl"
```
# Optimiziation of an excitatory/inhibitory (E/I) recurrent network
In this example, I optimize an RNN network with E/I units.
The dynamics is expressed as follows:
```math
\tau\, \frac{\text{d} \mathbf{u}}{\text{d}t} = - \mathbf{u} + W
\left(\mathbf{u}\right) + \mathbf{h}
```
Where $W$ is a connection matrix with no autapses that preserves the separation
between E and I units (Dale's law). There is also a sparseness parameter for $W$,
to increase the difficulty (and as proof of concept).
Then there is a leak term $-\mathbf{u}$
and a constant external input $\mathbf{h}$. Finally the activation function
$f\left( \cdot \right)$ is a rectified-linear function.
## Initialization
```@example 03_EI
using Plots,NamedColors
using LinearAlgebra,Statistics
using Random
using SmoothedSpectralAbscissa ; const SSA=SmoothedSpectralAbscissa
using OrdinaryDiffEq # to run the dynamics
Random.seed!(0)
iofunction(x::Real) = max(0.0,x)
function run_rnn_dynamics(u0::Vector{R},W::Matrix{R},h::Vector{R},
tmax::R,dt::R=0.01;verbose=false) where R
f = function (du,u,p,t)
mul!(du,W,iofunction.(u))
@. du = du - u + h
return du
end
prob = ODEProblem(f,u0,(0.,tmax))
solv = solve(prob,Tsit5();verbose=verbose,saveat=dt)
ret_u =hcat(solv.u...)
ret_norms = mapslices(norm,ret_u;dims=1)[:]
return solv.t,ret_u,ret_norms
end;
nothing #hide
```
## Build the starting weight matrix
```@example 03_EI
const sparseness = 0.5
const ne = 35
const ni = 15
const ntot = ne+ni
Wmask = hcat(fill(1.,ntot,ne),fill(-1.,ntot,ni)) # 1 for E , -1 for I, 0. for no connection
for i in 1:ntot,j in 1:ntot
if i==j || rand()<sparseness
Wmask[i,j]=0.
end
end
heatmap(Wmask;ratio=1,color=:greys,axis=nothing,ticks=nothing,border=:none)
```
The matrix `Wmask` shown above specifies the connectivy (presence of an edge, and sign)
The initial matrix is defined as follows:
```@example 03_EI
W0 = 2.0 .* rand(ntot,ntot) .* Wmask;
nothing #hide
```
Even with the leaky term, the dynamics is quite unstable,
due to the presence of excitatory closed loops, and not enough inhibition.
```@example 03_EI
u0 = 3.0.*randn(ntot)
h = 0.1 .* rand(ntot)
times,dyn_t,dyn_norms = run_rnn_dynamics(u0,W0,h,10.0,0.05)
plot(times,dyn_norms;
leg=false,linewidth=3,color=:black,xlabel="time",ylabel="norm(x(t))",
yscale=:log10,label="before optimization")
```
Note that the y-scale is exponential here. The system is highly unstable.
## Objective function that excludes diagonal
```@example 03_EI
using Optim
```
To keep the signs of $W_{i,j}$ I make a reparametrization as follows.
```math
W_{i,j} = s_j \; \exp\left(\beta_{i,j}\right)
```
I then need to propagate the gradient of the SSA. I will also inclide a
2-norm regularizer on the weights
```@example 03_EI
function objective_and_grad_constraints(x::Vector{R},grad::Union{Nothing,Vector{R}},
n::Integer,ssa_eps::R,alloc::SSA.SSAAlloc,W0::Matrix{R}) where R
betas=reshape(x,(n,n))
mat = @. exp(betas) * W0 # transform, apply constraints
gradmat = isnothing(grad) ? nothing : similar(mat)
obj = SSA.ssa!(mat,gradmat,alloc,ssa_eps)
if !isnothing(grad)
gradmat .*= mat # propagate gradient for constraint
for i in eachindex(gradmat)
grad[i]=gradmat[i]
end
end
return obj
end;
nothing #hide
```
## Optimizer and optimization
```@example 03_EI
const ssa_eps=0.005
const alloc = SSA.SSAAlloc(ntot)
const y0 = map(w-> w!=0. ? log(abs(w)) : 0. ,W0[:])
function objfun!(F,G,y)
λ = 3.0/length(y) # regularizer calibration
obj=objective_and_grad_constraints(y,G,ntot,ssa_eps,alloc,W0) # add the regularizer
obj += 0.5*λ*mapreduce(x->x^2,+,y)
if !isnothing(G)
@. G += λ*y # gradient of regularizer
end
return obj
end
opt_out = optimize(Optim.only_fg!(objfun!),y0,BFGS(),Optim.Options(iterations=1_000))
y_opt=Optim.minimizer(opt_out)
W_opt = Wmask .* exp.(reshape(y_opt,(ntot,ntot))); # convert from beta to weight
nothing #hide
```
Comparison between inital matrix and the optimized verion. Note the E/I separation.
```@example 03_EI
heatmap(hcat(W0,fill(NaN,ntot,10),W_opt);ratio=1,axis=nothing,ticks=nothing,border=:none)
```
Now, as before I consider the norm...
```@example 03_EI
times,dyn_t_opt,dyn_norms_opt = run_rnn_dynamics(u0,W_opt,h,30.0,0.05)
plot(times,dyn_norms_opt;
leg=:topright,linewidth=3,color=[:blue],
xlabel="time",ylabel="norm(x(t))", label="after optimization")
```
STABLE !
There seems to be a large initial amplificaiton, but the activity settles to low values.
## Extras
In gradient based optimization with no automatic differentiation, it is
always necessary to test the gradient of the objective function.
The procedure is illustrated below.
```@example 03_EI
using Calculus
function test_gradient(myobjfun,y0)
grad_an = similar(y0)
_ = myobjfun(1.0,grad_an,y0) # compute gradient analytically
grad_num = Calculus.gradient(y->myobjfun(1.0,nothing,y),y0) # compute it numerically
for (k,y) in enumerate(y0)
if y == 0.
grad_num[k] = 0.
end end
return (grad_an,grad_num)
end
```
To enable testing, set `do_the_test=true`
It is advised to reduce the size of the system.
```@example 03_EI
(x1,x2)=test_gradient(objfun!,randn(ntot^2))
scatter(x1,x2;ratio=1)
plot!(identity)
```
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| SmoothedSpectralAbscissa | https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl.git |
|
[
"MIT"
] | 0.1.0 | 5cc7400ff141a91c7c1b0fd1ba5eea46910b09e3 | docs | 2756 | # Smoothed Spectral Abscissa (SSA)
[](https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl)
This package computes the smoothed spectral abscissa (SSA) of square matrices, and the associated gradient, as described in:
> The Smoothed Spectral Abscissa for Robust Stability Optimization , J Vanbiervliet et al , 2009. [DOI: 10.1137/070704034](https://doi.org/10.1137/070704034)
The SSA is a smooth upper bound to the spectral abscissa of a matrix, that is, the highest real part of the eigenvalues.
The current version implements only the "simplified" version of SSA, i.e. the one where input and output transformations are identity matrices.
## Definition of SSA
Consider a square real matrix ``A``, that regulates a dynamical system as follows:
``\text{d} \mathbf{x}/\text{d}t = A\,\mathbf{x}``. The stability of the dynamical system
can be assessed using the following quantity:
```math
f(A,s) := \int_0^{\infty} \text{d}t \;\left\| \exp\left( \left(A-sI\right)t \right)\right\|^2
```
where ``\left\| M \right\|^2 := \text{trace}\left(M \,M^\top \right)``.
For a given ``\varepsilon``, the SSA can be denoted as ``\tilde{\alpha}_\varepsilon(A)``.
By definition, it satisfies the following equality:
```math
f(A,\tilde{\alpha}_\varepsilon(A)) = \frac{1}{\varepsilon}
```
The SSA is an upper bound to the spectral abscissa (SA) of ``A``.
If matrix ``A`` is modified so that its SSA is below 0, the SA of ``A`` will also be
negative, which guarantees the stability of the associated linear dynamics.
## Usage
This module does not export functions in the global scope. It is therefore convenient to
shorten the module name as follows:
```julia
using SmoothedSpectralAbscissa ; const SSA=SmoothedSpectralAbscissa
```
It then becomes possible to use the shorter notation `SSA.foo` in place of `SmoothedSpectralAbscissa.foo`.
The functions below compute the SSA (and its gradient) for a matrix ``A``.
```@docs
SSA.ssa
```
```@docs
SSA.ssa_withgradient
```
## Examples
1. [**Comparison of SA and SSA**](./01_show_ssa.md)
2. [**Stability-optimized linear systems**](./02_dynamics.md)
3. [**Optimization of excitatory/inhibitory recurrent neural network**](./03_EI.md)
## Advanced Interface
When the SSA is used as optimization objective, it is convenient to use the advanced
interface to avoid memory reallocation. The memory is pre-allocated in an object of type
`SSA.SSAlloc`, which can then be used to call the `SSA.ssa_simple(...)` function multiple times.
```@docs
SSA.SSAAlloc
```
Once the space is allocated, the SSA and its gradient can be computed by the following
function.
```@docs
SSA.ssa!
```
## Index
```@index
```
| SmoothedSpectralAbscissa | https://github.com/dylanfesta/SmoothedSpectralAbscissa.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 132 | function check_error(error_code)
error_code == RPR_SUCCESS && return
return error("Error code returned: $(error_code)")
end
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 2026 | using Clang
using Clang.Generators
using RadeonProRender_jll
# current version checked in is v2.2.9
include_dir = joinpath(RadeonProRender_jll.artifact_dir, "include")
# LIBCLANG_HEADERS are those headers to be wrapped.
headers = joinpath.(include_dir, [
"RadeonProRender_v2.h",
"RadeonProRender_MaterialX.h",
"RadeonProRender_GL.h"
])
# wrapper generator options
options = load_options(joinpath(@__DIR__, "rpr.toml"))
# add compiler flags, e.g. "-DXXXXXXXXX"
args = get_default_args()
push!(args, "-I$include_dir")
push!(args, "-D__APPLE__")
push!(args, "-DRPR_API_USE_HEADER_V2")
ctx = create_context(headers, args, options)
# run generator
build!(ctx, BUILDSTAGE_NO_PRINTING)
isline(ex) = Meta.isexpr(ex, :line) || isa(ex, LineNumberNode)
striplines!(@nospecialize(expr)) = isline(expr) ? false : true
function striplines!(expr::Expr)
isline(expr) && return false
args = filter!(striplines!, expr.args)
return true
end
function rewrite!(e::Expr)
if Meta.isexpr(e, :function)
func_args = e.args[1].args
last_arg = func_args[end]
body = e.args[2]
ccall_expr = body.args[end]
type_tuple = ccall_expr.args[4]
new_body = if startswith(string(last_arg), "out_")
last_type_ptr = type_tuple.args[end]
@assert Meta.isexpr(last_type_ptr, :curly)
@assert last_type_ptr.args[1] == :Ptr
last_type = last_type_ptr.args[2]
pop!(func_args) # remove from input args
:($(last_arg) = Ref{$(last_type)}(); check_error($(ccall_expr)); return $(last_arg)[])
elseif ccall_expr.args[3] == :rpr_status
:(check_error($(ccall_expr)))
else
ccall_expr
end
e.args[2] = new_body
end
striplines!(e)
return
end
function rewrite!(dag::ExprDAG)
for node in get_nodes(dag)
for expr in get_exprs(node)
rewrite!(expr)
end
end
end
rewrite!(ctx.dag)
cd(@__DIR__)
build!(ctx, BUILDSTAGE_PRINTING_ONLY)
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 927 | using Tar, Inflate, SHA, Downloads, CodecZlib
rpr_version = v"3.1.2"
url = "https://github.com/JuliaGraphics/RadeonProRender.jl/releases/download/binaries-v$(rpr_version)/hipbin.tar.gz"
# TODO use in a tempdir? Also, fetch specific commit
kernel_folder = joinpath(@__DIR__, "..", "..", "RadeonProRenderSDKKernels") |> normpath
exclude(path) = any(x -> endswith(path, x), [".git", ".gitattributes", "README.md"])
io = IOBuffer()
Tar.create(!exclude, kernel_folder, io)
bin = take!(io)
compressed = transcode(GzipCompressor, bin)
filename = joinpath(@__DIR__, "hipbin.tar.gz")
write(filename, compressed)
sha = bytes2hex(open(sha256, filename))
git_tree_sha1 = Tar.tree_hash(IOBuffer(bin))
Inflate.inflate_gzip(filename)
artifact = """
[hipbin]
git-tree-sha1 = $(repr(git_tree_sha1))
[[hipbin.download]]
url = $(repr(url))
sha256 = $(repr(sha))
"""
write(joinpath(@__DIR__, "..", "Artifacts.toml"), artifact)
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 630 | using RadeonProRender
using Documenter
DocMeta.setdocmeta!(RadeonProRender, :DocTestSetup, :(using RadeonProRender); recursive=true)
makedocs(; modules=[RadeonProRender], authors="Simon Danisch",
repo="https://github.com/SimonDanisch/RadeonProRender.jl/blob/{commit}{path}#{line}",
sitename="RadeonProRender.jl",
format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://SimonDanisch.github.io/RadeonProRender.jl", assets=String[]),
pages=["Home" => "index.md"])
deploydocs(; repo="github.com/SimonDanisch/RadeonProRender.jl")
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 3118 | using RadeonProRender, GeometryBasics, Colors
const RPR = RadeonProRender
using Colors: N0f8
# Create a scene
context = RPR.Context()
scene = RPR.Scene(context)
matsys = RPR.MaterialSystem(context, 0)
camera = RPR.Camera(context)
lookat!(camera, Vec3f(3), Vec3f(0), Vec3f(0, 0, 1))
set!(scene, camera)
# create some x,y,z data
function create_mesh(DN = 512, dphi=pi/200.0f0, dtheta=dphi)
phi = 0.0f0:dphi:(pi + dphi * 1.5f0)
theta = (0.0f0:dtheta:(2.0f0 * pi + dtheta * 1.5f0))'
m0 = 4.0f0;
m1 = 3.0f0;
m2 = 2.0f0;
m3 = 3.0f0;
m4 = 6.0f0;
m5 = 2.0f0;
m6 = 6.0f0;
m7 = 4.0f0;
a = @. sin(m0 * phi) ^ m1
b = @. cos(m2 * phi) ^ m3
c = @. sin(m4 * theta) ^ m5
d = @. cos(m6 * theta) ^ m7
r = @. a + b + c + d;
x = @. r * sin(phi) * cos(theta)
y = @. r * cos(phi)
z = @. r * sin(phi) * sin(theta)
xyz = Point3f[Point3f(x[i, j], y[i, j], z[i, j]) for i in 1:size(x, 1), j in 1:size(x, 2)]
r = Tesselation(Rect2f((0, 0), (1, 1)), size(x))
# decomposing a rectangle into uv and triangles is what we need to map the z coordinates on
# since the xyz data assumes the coordinates to have the same neighouring relations
# like a grid
faces = decompose(GLTriangleFace, r)
uv = decompose_uv(r)
# with this we can beuild a mesh
return GeometryBasics.Mesh(meta(vec(xyz), uv=uv), faces), xyz
end
raw_mesh, xyz = create_mesh()
surfacemesh = RPR.Shape(context, raw_mesh)
push!(scene, surfacemesh)
# create layered material
tex = RPR.MaterialNode(matsys, RPR.RPR_MATERIAL_NODE_IMAGE_TEXTURE)
base = RPR.MaterialNode(matsys, RPR.RPR_MATERIAL_NODE_DIFFUSE)
top = RPR.MaterialNode(matsys, RPR.RPR_MATERIAL_NODE_REFLECTION)
# Diffuse color
set!(base, RPR.RPR_MATERIAL_INPUT_COLOR, tex);
set!(base, RPR.RPR_MATERIAL_INPUT_ROUGHNESS, 0.12, 0.0, 0.0, 1.0)
set!(top, RPR.RPR_MATERIAL_INPUT_COLOR, 0.1, 0.3, 0.9, 1.0)
# Create layered shader
layered = RPR.layeredshader(matsys, base, top)
colorim = map(xyz) do xyz
return RGBA{N0f8}(clamp(abs(xyz[1]), 0, 1), clamp(abs(xyz[2]), 0, 1), clamp(abs(xyz[3]), 0, 1), 1.0)
end
color = RPR.Image(context, colorim)
set!(tex, RPR.RPR_MATERIAL_INPUT_DATA, color)
set!(surfacemesh, layered)
set!(context, scene)
ibl = RPR.EnvironmentLight(context)
image_path = joinpath(@__DIR__, "studio026.exr")
set!(ibl, context, image_path)
set!(scene, ibl)
set_standard_tonemapping!(context)
fb_size = (800, 600)
frame_buffer = RPR.FrameBuffer(context, RGBA, fb_size)
frame_bufferSolved = RPR.FrameBuffer(context, RGBA, fb_size)
frame_buffer_post = RPR.FrameBuffer(context, RGBA, fb_size)
set!(context, RPR.RPR_AOV_COLOR, frame_buffer)
begin
clear!(frame_buffer)
clear!(frame_buffer_post)
RPR.rprContextSetParameterByKey1u(context, RPR.RPR_CONTEXT_ITERATIONS, 100)
RPR.render(context)
RPR.rprContextResolveFrameBuffer(context, frame_buffer, frame_bufferSolved, true)
RPR.save(frame_bufferSolved, "surface_mesh.png")
RPR.rprContextResolveFrameBuffer(context, frame_buffer, frame_buffer_post, false)
RPR.save(frame_buffer_post, "surface_mesh_postprocess.png")
end
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 4677 | using RadeonProRender, GeometryBasics, Colors
const RPR = RadeonProRender
function translationmatrix(t::Vec{3,T}) where {T}
T0, T1 = zero(T), one(T)
return Mat{4}(T1, T0, T0, T0, T0, T1, T0, T0, T0, T0, T1, T0, t[1], t[2], t[3], T1)
end
context = RPR.Context()
scene = RPR.Scene(context)
matsys = RPR.MaterialSystem(context, 0)
camera = RPR.Camera(context)
lookat!(camera, Vec3f(8, 0, 5), Vec3f(2, 0, 2), Vec3f(0, 0, 1))
RPR.rprCameraSetFocalLength(camera, 45.0)
set!(scene, camera)
set!(context, scene)
env_light = RadeonProRender.EnvironmentLight(context)
image_path = RPR.assetpath("studio026.exr")
img = RPR.Image(context, image_path)
set!(env_light, img)
setintensityscale!(env_light, 1.1)
push!(scene, env_light)
light = RPR.PointLight(context)
transform!(light, translationmatrix(Vec3f(2, 0, 5)))
f = 16
RPR.setradiantpower!(light, 700 / f, 641 / f, 630 / f)
push!(scene, light)
function add_shape!(scene, context, matsys, mesh; material=RPR.RPR_MATERIAL_NODE_DIFFUSE,
color=colorant"green", roughness=0.01)
rpr_mesh = RPR.Shape(context, mesh)
push!(scene, rpr_mesh)
m = RPR.MaterialNode(matsys, material)
set!(m, RPR.RPR_MATERIAL_INPUT_COLOR, color)
set!(m, RPR.RPR_MATERIAL_INPUT_ROUGHNESS, roughness, roughness, roughness, roughness)
set!(rpr_mesh, m)
return rpr_mesh, m
end
mesh, mat = add_shape!(scene, context, matsys, Rect3f(Vec3f(-10, -10, -1), Vec3f(20, 20, 1));
color=colorant"white")
mesh, mat = add_shape!(scene, context, matsys, Rect3f(Vec3f(0, -10, 0), Vec3f(0.1, 20, 5));
color=colorant"white")
mesh, mat = add_shape!(scene, context, matsys, Rect3f(Vec3f(0, -2, 0), Vec3f(5, 0.1, 5));
color=colorant"white")
mesh, mat = add_shape!(scene, context, matsys, Rect3f(Vec3f(0, 2, 0), Vec3f(5, 0.1, 5));
color=colorant"white")
mesh, mat = add_shape!(scene, context, matsys, Tesselation(Sphere(Point3f(2, 0, 2), 0.95f0), 100);
color=colorant"white")
rpr_mesh = RPR.Shape(context, Tesselation(Sphere(Point3f(2, 0, 2), 1.0f0), 100))
push!(scene, rpr_mesh)
material = RPR.MaterialNode(matsys, RPR.RPR_MATERIAL_NODE_UBERV2)
# set!(material, RPR.RPR_MATERIAL_INPUT_UBER_DIFFUSE_COLOR, 0.358878, 0.497024 , 1.07771, 1.0)
# set!(material, RPR.RPR_MATERIAL_INPUT_UBER_DIFFUSE_WEIGHT, Vec4f(0.0)...)
# set!(material, RPR.RPR_MATERIAL_INPUT_UBER_DIFFUSE_ROUGHNESS, Vec4f(0.1)...)
# set!(material, RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_COLOR, 0.01f0, 0.01f0, 0.01f0, 0.01f0)
# set!(material, RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_WEIGHT, Vec4f(0.01)...)
# set!(material, RPR.RPR_MATERIAL_INPUT_UBER_TRANSPARENCY, Vec4f(0.99)...)
set!(material, RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_COLOR, Vec4f(0.358878, 0.497024 , 1.07771, 1.0)...)
set!(material, RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_WEIGHT, Vec4f(0.8)...)
set!(material, RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_ROUGHNESS, Vec4f(0.01)...)
set!(material, RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_IOR, Vec4f(1.0)...)
set!(material, RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_ABSORPTION_COLOR, Vec4f(0.7, 0.6, 0.09, 1.0)...)
set!(material, RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_ABSORPTION_DISTANCE, Vec4f(3.0)...)
set!(material, RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_CAUSTICS, Vec4f(0.0)...)
# set!(material, RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_ROUGHNESS, 0.1f0, 0f0, 0f0, 0f0)
# set!(material, RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_MODE, Int(RPR.RPR_UBER_MATERIAL_IOR_MODE_PBR))
# set!(material, RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_METALNESS, 0.f0, 0f0, 0f0, 0f0)
set!(material, RPR.RPR_MATERIAL_INPUT_UBER_SSS_SCATTER_COLOR, 0.358878, 0.497024 , 1.07771, 1.0)
set!(material, RPR.RPR_MATERIAL_INPUT_UBER_SSS_SCATTER_DISTANCE, Vec4f(3)...)
set!(material, RPR.RPR_MATERIAL_INPUT_UBER_SSS_SCATTER_DIRECTION, Vec4f(0)...)
set!(material, RPR.RPR_MATERIAL_INPUT_UBER_SSS_WEIGHT, Vec4f(1)...)
set!(material, RPR.RPR_MATERIAL_INPUT_UBER_SSS_MULTISCATTER, 1)
# set!(material, RPR.RPR_MATERIAL_INPUT_UBER_BACKSCATTER_WEIGHT, Vec4f(1.0)...)
# set!(material, RPR.RPR_MATERIAL_INPUT_UBER_BACKSCATTER_COLOR, 0.4, 0.4, 0.5, 0.1)
set!(rpr_mesh, material)
fb_size = (800, 600)
frame_buffer = RPR.FrameBuffer(context, RGBA, fb_size)
frame_bufferSolved = RPR.FrameBuffer(context, RGBA, fb_size)
set!(context, RPR.RPR_AOV_COLOR, frame_buffer)
set_standard_tonemapping!(context)
begin
clear!(frame_buffer)
RPR.rprContextSetParameterByKey1u(context, RPR.RPR_CONTEXT_ITERATIONS, 200)
RPR.render(context)
RPR.rprContextResolveFrameBuffer(context, frame_buffer, frame_bufferSolved, false)
RPR.save(frame_bufferSolved, "test.png")
end
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 2622 | using RadeonProRender, GeometryBasics, Colors
const RPR = RadeonProRender
function translationmatrix(t::Vec{3,T}) where {T}
T0, T1 = zero(T), one(T)
return Mat{4}(T1, T0, T0, T0, T0, T1, T0, T0, T0, T0, T1, T0, t[1], t[2], t[3], T1)
end
context = RPR.Context()
scene = RPR.Scene(context)
matsys = RPR.MaterialSystem(context, 0)
camera = RPR.Camera(context)
lookat!(camera, Vec3f(8, 0, 5), Vec3f(2, 0, 2), Vec3f(0, 0, 1))
RPR.rprCameraSetFocalLength(camera, 45.0)
set!(scene, camera)
set!(context, scene)
env_light = RadeonProRender.EnvironmentLight(context)
image_path = joinpath(@__DIR__, "studio026.exr")
img = RPR.Image(context, image_path)
set!(env_light, img)
setintensityscale!(env_light, 1.1)
push!(scene, env_light)
light = RPR.PointLight(context)
transform!(light, translationmatrix(Vec3f(2, 0, 5)))
f = 20
RPR.setradiantpower!(light, 500 / f, 641 / f, 630 / f)
push!(scene, light)
function add_shape!(scene, context, matsys, mesh; material=RPR.RPR_MATERIAL_NODE_DIFFUSE,
color=colorant"green", roughness=0.01)
rpr_mesh = RadeonProRender.Shape(context, mesh)
push!(scene, rpr_mesh)
m = RPR.MaterialNode(matsys, material)
set!(m, RPR.RPR_MATERIAL_INPUT_COLOR, color)
set!(m, RPR.RPR_MATERIAL_INPUT_ROUGHNESS, roughness, roughness, roughness, roughness)
set!(rpr_mesh, m)
return rpr_mesh, m
end
mesh, mat = add_shape!(scene, context, matsys, Rect3f(Vec3f(-10, -10, -1), Vec3f(20, 20, 1));
color=colorant"white")
mesh, mat = add_shape!(scene, context, matsys, Rect3f(Vec3f(0, -10, 0), Vec3f(0.1, 20, 5));
color=colorant"white")
mesh, mat = add_shape!(scene, context, matsys, Rect3f(Vec3f(0, -2, 0), Vec3f(5, 0.1, 5));
color=colorant"white")
mesh, mat = add_shape!(scene, context, matsys, Rect3f(Vec3f(0, 2, 0), Vec3f(5, 0.1, 5));
color=colorant"white")
mesh, mat_sphere = add_shape!(scene, context, matsys, Tesselation(Sphere(Point3f(2, 0, 2), 1.0f0), 100);
material=RPR.RPR_MATERIAL_NODE_MICROFACET, roughness=0.2, color=colorant"red")
fb_size = (800, 600)
frame_buffer = RPR.FrameBuffer(context, RGBA, fb_size)
frame_bufferSolved = RPR.FrameBuffer(context, RGBA, fb_size)
set!(context, RPR.RPR_AOV_COLOR, frame_buffer)
set_standard_tonemapping!(context)
begin
clear!(frame_buffer)
RPR.rprContextSetParameterByKey1u(context, RPR.RPR_CONTEXT_ITERATIONS, 100)
RPR.render(context)
RPR.rprContextResolveFrameBuffer(context, frame_buffer, frame_bufferSolved, false)
RPR.save(frame_bufferSolved, "test.png")
end
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 2850 | using RadeonProRender, GeometryBasics, Colors
const RPR = RadeonProRender
function translationmatrix(t::Vec{3,T}) where {T}
T0, T1 = zero(T), one(T)
return Mat{4}(T1, T0, T0, T0, T0, T1, T0, T0, T0, T0, T1, T0, t[1], t[2], t[3], T1)
end
isdefined(Main, :context) && RPR.release(context)
context = RPR.Context()
scene = RPR.Scene(context)
matsys = RPR.MaterialSystem(context, 0)
camera = RPR.Camera(context)
lookat!(camera, Vec3f(7, 0, 5), Vec3f(2, 0, 2), Vec3f(0, 0, 1))
RPR.rprCameraSetFocalLength(camera, 45.0)
set!(scene, camera)
set!(context, scene)
env_light = RadeonProRender.EnvironmentLight(context)
image_path = joinpath(@__DIR__, "studio026.exr")
img = RPR.Image(context, image_path)
set!(env_light, img)
setintensityscale!(env_light, 1.1)
push!(scene, env_light)
light = RPR.PointLight(context)
transform!(light, translationmatrix(Vec3f(2, 0, 5)))
f = 20
RPR.setradiantpower!(light, 500 / f, 641 / f, 630 / f)
push!(scene, light)
function add_shape!(scene, context, matsys, mesh; material=RPR.RPR_MATERIAL_NODE_DIFFUSE,
color=colorant"green", roughness=0.01)
rpr_mesh = RadeonProRender.Shape(context, mesh)
push!(scene, rpr_mesh)
m = RPR.MaterialNode(matsys, material)
set!(m, RPR.RPR_MATERIAL_INPUT_COLOR, color)
set!(m, RPR.RPR_MATERIAL_INPUT_ROUGHNESS, roughness, roughness, roughness, roughness)
set!(rpr_mesh, m)
return rpr_mesh, m
end
mesh, mat = add_shape!(scene, context, matsys, Rect3f(Vec3f(-50, -50, -1), Vec3f(50*2, 50*2, 1));
color=colorant"white")
x, y = collect(-8:0.5:8), collect(-8:0.5:8)
z = [sinc(√(X^2 + Y^2) / π) for X ∈ x, Y ∈ y]
M, N = size(z)
points = map(x-> x ./ Point3f(4, 4, 1.0) .+ Point3f(0, 0, 1.0), vec(Point3f.(x, y', z)))
# Connect the vetices with faces, as one would use for a 2D Rectangle
# grid with M,N grid points
faces = decompose(LineFace{GLIndex}, Tesselation(Rect2(0, 0, 1, 1), (M, N)))
indices = RPR.rpr_int[]
for elem in faces
push!(indices, first(elem)-1, first(elem)-1, last(elem)-1, last(elem)-1)
end
curve = RPR.Curve(context, points, indices, [0.01], [Vec2f(0.1)], [length(faces)])
m = RPR.MaterialNode(matsys, RPR.RPR_MATERIAL_NODE_DIFFUSE)
set!(m, RPR.RPR_MATERIAL_INPUT_COLOR, colorant"red")
set!(m, RPR.RPR_MATERIAL_INPUT_ROUGHNESS, 0.0, 0.0, 0.0, 0.0)
set!(curve, m)
push!(scene, curve)
fb_size = (800, 600)
frame_buffer = RPR.FrameBuffer(context, RGBA, fb_size)
frame_bufferSolved = RPR.FrameBuffer(context, RGBA, fb_size)
set!(context, RPR.RPR_AOV_COLOR, frame_buffer)
set_standard_tonemapping!(context)
begin
clear!(frame_buffer)
RPR.rprContextSetParameterByKey1u(context, RPR.RPR_CONTEXT_ITERATIONS, 200)
@time RPR.render(context)
RPR.rprContextResolveFrameBuffer(context, frame_buffer, frame_bufferSolved, false)
RPR.save(frame_bufferSolved, "curves.png")
end
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 3544 | using RadeonProRender, MeshIO, FileIO, GeometryBasics, Colors
using Makie
using Colors: N0f8
const RPR = RadeonProRender
loadasset(paths...) = FileIO.load(joinpath(dirname(pathof(Makie)), "..", "assets", paths...))
function trans_matrix(scale::Vec3, rotation::Vec3)
trans_scale = Makie.transformationmatrix(Vec3f(0), scale)
rotation = Mat4f(to_rotation(rotation))
return trans_scale * rotation
end
# Create a scene
context = RPR.Context()
matsys = RPR.MaterialSystem(context, 0)
scene = RPR.Scene(context)
set!(context, scene)
set_standard_tonemapping!(context)
camera = RPR.Camera(context)
lookat!(camera, Vec3f(1.5), Vec3f(0), Vec3f(0, 0, 1))
RPR.rprCameraSetFocalLength(camera, 45.0)
set!(scene, camera)
env_light = RadeonProRender.EnvironmentLight(context)
image_path = joinpath(@__DIR__, "studio026.exr")
img = RPR.Image(context, image_path)
set!(env_light, img)
setintensityscale!(env_light, 1.5)
push!(scene, env_light)
light = RPR.PointLight(context)
transform!(light, Makie.translationmatrix(Vec3f(2, 2, 4)))
RPR.setradiantpower!(light, 500, 641, 800)
push!(scene, light)
"""
Generate scales for instances
"""
function update_scales!(last_scales, t)
n = length(last_scales)
for i in 1:n
last_scales[i] = Vec3f(1, 1, sin((t * n) / i)) ./ 3.1
end
return last_scales
end
"""
Generate color for instances
"""
function update_colors!(last_colors, t)
l = length(last_colors)
for i in eachindex(last_colors)
last_colors[i] = RGBA{N0f8}(i / l, (cos(t) + 1) / 2, (sin(i / l / 3) + 1) / 2.0, 1.0)
end
return last_colors
end
# create some geometry
t = 2.0f0 * pi
cat = loadasset("cat.obj")
sphere = Sphere(Point3f(0), 1.0f0)
position = decompose(Point3f, sphere) # use sphere vertices as position
scale_start = Vec3f[Vec3f(1, 1, rand()) for i in 1:length(position)]
# create a signal of changing colors
color = update_colors!(zeros(RGBA{N0f8}, length(position)), t)
# use sphere normals as rotation vector
rotations = -decompose_normals(sphere)
# create material system
diffuse = RPR.MaterialNode(matsys, RPR.RPR_MATERIAL_NODE_DIFFUSE)
# create firerender shape
primitive = RPR.Shape(context, cat)
# pre allocate instances
fr_instances = [RPR.Shape(context, primitive) for i in 1:(length(position) - 1)]
push!(fr_instances, primitive)
# pre allocate shaders
fr_shader = [RPR.MaterialNode(matsys, RPR.RPR_MATERIAL_NODE_REFLECTION) for elem in 1:length(position)]
# set shaders and attach instances to scene
for (shader, inst) in zip(fr_shader, fr_instances)
set!(inst, shader)
push!(scene, inst)
end
# update scene with the instance signal
fb_size = (800, 600)
frame_buffer = RPR.FrameBuffer(context, RGBA, fb_size)
frame_bufferSolved = RPR.FrameBuffer(context, RGBA, fb_size)
set!(context, RPR.RPR_AOV_COLOR, frame_buffer)
function render_scene(path, n=5)
clear!(frame_buffer)
RPR.rprContextSetParameterByKey1u(context, RPR.RPR_CONTEXT_ITERATIONS, n)
RPR.render(context)
RPR.rprContextResolveFrameBuffer(context, frame_buffer, frame_bufferSolved, false)
RPR.save(frame_bufferSolved, path)
end
for (i, t) in enumerate(LinRange(0, 3.0, 1000))
color = update_colors!(color, t)
scale_start = update_scales!(scale_start, t)
for (scale, rotation, c, inst, shader) in zip(scale_start, rotations, color, fr_instances, fr_shader)
transform!(inst, trans_matrix(scale, rotation))
set!(shader, RPR.RPR_MATERIAL_INPUT_COLOR, c)
end
path = joinpath(@__DIR__, "instances", "frame$i.png")
render_scene(path, 100)
end
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 2020 | using RadeonProRender, GeometryTypes, GLAbstraction, GLVisualize, Colors, ModernGL, FileIO, Reactive
const FR = RadeonProRender
w = glscreen()
# create interactive context, which uses gl interop to display render result
# with opengl
context, glframebuffer = interactive_context(w)
scene = FR.Scene(context)
set!(context, scene)
# create a RadeonProRender.Camera from a GLAbstraction.Camera
camera = FR.Camera(context, glframebuffer, PerspectiveCamera(w.inputs, Vec3f(3), Vec3f(0)))
set!(scene, camera)
DN = 512
# borrow loadasset from GLVisualize (just uses load(GLVisualize.assetpath(name)))
# Load an obj
cat = FR.Shape(context, loadasset("cat.obj"))
push!(scene, cat)
transform!(cat, translationmatrix(Vec3f(0, 0.5, 0)))
# Load an obj
r = SimpleRectangle{Float32}(-5, -5, 10, 10)
plane = FR.Shape(context, r, (div(DN, 2), div(DN, 2)))
push!(scene, plane)
matsys = FR.MaterialSystem(context, 0)
diffuse = FR.MaterialNode(matsys, FR.MATERIAL_NODE_REFLECTION)
reflective = FR.MaterialNode(matsys, FR.MATERIAL_NODE_DIFFUSE)
tex = FR.MaterialNode(matsys, FR.MATERIAL_NODE_IMAGE_TEXTURE)
set!(diffuse, "color", HSVA(181, 0.23, 0.5, 1.0)) # all colors from the Color package can be used
pirange = linspace(0, 4pi, DN)
set!(tex, "data", context,
RGBA{U8}[RGBA{U8}((sin(x) + 1) / 2, (cos(x) + 1) / 2, (cos(x) + 1) / 4, (cos(x) * sin(x) + 1) / 2)
for x in pirange, y in pirange])
set!(reflective, "color", tex)
set!(cat, diffuse)
set!(plane, reflective)
set!(plane, context, Float32[(sin(x) * cos(y) + 1) / 2.0f0 for x in pirange, y in pirange])
setdisplacementscale!(plane, 1.0)
# seems like displacement doesn't work without setting subdevision to at least 1
setsubdivisions!(plane, 1)
# create a HDR ligth
ibl = FR.EnvironmentLight(context)
imgpath = joinpath(homedir(), "Desktop", "FRSDK 1.078", "Resources", "Textures", "Apartment.hdr")
set!(ibl, context, imgpath)
set!(scene, ibl)
set_standard_tonemapping!(context; aacellsize=1.0, aasamples=1.0)
tiledrenderloop(w, context, glframebuffer)
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 2870 | using RadeonProRender, GeometryBasics, Colors
using Colors
const RPR = RadeonProRender
function setup_scene()
context = RPR.Context(resource=RPR.RPR_CREATION_FLAGS_ENABLE_GPU1, plugin=RPR.Northstar)
scene = RPR.Scene(context)
matsys = RPR.MaterialSystem(context, 0)
camera = RPR.Camera(context)
lookat!(camera, Vec3f(8, 0, 5), Vec3f(2, 0, 2), Vec3f(0, 0, 1))
RPR.rprCameraSetFocalLength(camera, 45.0)
set!(scene, camera)
set!(context, scene)
env_light = RadeonProRender.EnvironmentLight(context)
image_path = RPR.assetpath("studio026.exr")
img = RPR.Image(context, image_path)
set!(env_light, img)
setintensityscale!(env_light, 1.1)
push!(scene, env_light)
light = RPR.PointLight(context)
transform!(light, Float32[1.0 0.0 0.0 2.0; 0.0 1.0 0.0 0.0; 0.0 0.0 1.0 5.0; 0.0 0.0 0.0 1.0])
f = 20
RPR.setradiantpower!(light, 500 / f, 641 / f, 630 / f)
push!(scene, light)
context, scene, matsys
end
context, scene, matsys = setup_scene()
vol_cube = RPR.VolumeCube(context)
transform = Float32[4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 1]
transform!(vol_cube, transform)
push!(scene, vol_cube)
r = LinRange(-1, 1, 100)
cube = [(x .^ 2 + y .^ 2 + z .^ 2) for x in r, y in r, z in r]
volume = Float32.(cube .* (cube .> 1.4))
mini, maxi = extrema(volume)
grid = RPR.VoxelGrid(context, (volume .- mini) ./ (maxi - mini))
gridsampler = RPR.GridSamplerMaterial(matsys)
gridsampler.data = grid
ramp = [
RGB{Float32}(1.f0, 0.f0, 0.f0),
RGB{Float32}(0.f0, 1.f0, 0.f0),
RGB{Float32}(0.f0, 0.f0, 1.f0)
]
img = RPR.Image(context, ramp)
gridsampler2 = RPR.GridSamplerMaterial(matsys)
gridsampler2.data = RPR.VoxelGrid(context, volume.*10f0)
rampSampler2 = RPR.ImageTextureMaterial(matsys)
rampSampler2.data = img
rampSampler2.uv = gridsampler2
# for ramp texture, it's better to clamp it to edges.
# set!(rampSampler2, RPR.RPR_MATERIAL_INPUT_WRAP_U, RPR.RPR_IMAGE_WRAP_TYPE_CLAMP_TO_EDGE)
# set!(rampSampler2, RPR.RPR_MATERIAL_INPUT_WRAP_V, RPR.RPR_IMAGE_WRAP_TYPE_CLAMP_TO_EDGE)
volmat = RPR.VolumeMaterial(matsys)
RPR.rprShapeSetVolumeMaterial(vol_cube, volmat.node)
volmat.density = Vec4f(10, 0, 0, 0)
volmat.densitygrid = gridsampler
volmat.color = rampSampler2
function render(context, path)
fb_size = (800, 600)
frame_buffer = RPR.FrameBuffer(context, RGBA, fb_size)
frame_bufferSolved = RPR.FrameBuffer(context, RGBA, fb_size)
set!(context, RPR.RPR_AOV_COLOR, frame_buffer)
set_standard_tonemapping!(context)
clear!(frame_buffer)
RPR.rprContextSetParameterByKey1u(context, RPR.RPR_CONTEXT_ITERATIONS, 5000)
@time RPR.render(context)
RPR.rprContextResolveFrameBuffer(context, frame_buffer, frame_bufferSolved, false)
return RPR.save(frame_bufferSolved, path)
end
path = joinpath(@__DIR__, "test.png")
render(context, path)
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 2861 | using RadeonProRender, GeometryTypes, GLAbstraction, GLVisualize, Colors, ModernGL, FileIO, Reactive
using GLWindow
const FR = RadeonProRender
w = glscreen()
# Create OpenCL context using a single GPU, which is the default
context, glframebuffer = interactive_context(w)
# Create a scene
scene = FR.Scene(context)
N = 256
const xrange = linspace(-5.0f0, 5.0f0, N)
const yrange = linspace(-5.0f0, 5.0f0, N)
z = Float32[sin(1.3 * x) * cos(0.9 * y) + cos(0.8 * x) * sin(1.9 * y) + cos(y * 0.2 * x)
for x in xrange, y in yrange]
mini = minimum(z)
maxi = maximum(z)
const cmap = map(x -> RGBA{U8}(x, 1.0), colormap("Blues"))
to_color(val, mini, maxi) = cmap[floor(Int, (((val - mini) / (maxi - mini)) * (length(cmap) - 1))) + 1]
image = map(z) do height
return to_color(height, mini, maxi)
end
plane = FR.Shape(context, SimpleRectangle(-5, -5, 10, 10), (N, N))
push!(scene, plane)
const t = Signal(2.0f0 * pi)
matsys = FR.MaterialSystem(context, 0)
reflective = FR.MaterialNode(matsys, FR.MATERIAL_NODE_MICROFACET)
tex = FR.MaterialNode(matsys, FR.MATERIAL_NODE_IMAGE_TEXTURE)
displace = FR.Image(context, z)
color = FR.Image(context, image)
set!(tex, "data", color)
set!(reflective, "color", tex)
set!(plane, reflective)
set!(plane, displace)
setdisplacementscale!(plane, 1.0)
setsubdivisions!(plane, 1)
preserve(map(t) do i
z = Float32[sin(1.3 * x * i) * cos(0.9 * y * i) +
cos(0.8 * x * i) * sin(1.9 * y * i) +
cos(y * 0.2 * x * i) for x in xrange, y in yrange]
mini = minimum(z)
maxi = maximum(z)
image = map(z) do height
return to_color(height, mini, maxi)
end
displace = FR.Image(context, z)
color = FR.Image(context, image)
set!(tex, "data", color)
return set!(plane, displace)
end)
camera = FR.Camera(context)
lookat!(camera, Vec3f(0, 9.5, 11), Vec3f(0), Vec3f(0, 0, 1))
FR.CameraSetFocusDistance(camera.x, 7.0f0)
FR.CameraSetFStop(camera.x, 1.8f0)
set!(scene, camera)
set!(context, scene)
ibl = FR.EnvironmentLight(context)
imgpath = joinpath("C:\\", "Program Files", "KeyShot6", "bin", "Materials 2k.hdr")
set!(ibl, context, imgpath)
set!(scene, ibl)
pl = FR.PointLight(context);
setradiantpower!(pl, fill(10.0f0^3, 3)...)
transform!(pl, translationmatrix(Vec3f(0, 0, 7)))
push!(scene, pl)
set_standard_tonemapping!(context)
frame = 1
for i in (0.5f0:0.01f0:(pi * 2.0f0))
push!(t, i)
yield()
isopen(w) || break
clear!(glframebuffer)
for i in 1:10
glBindTexture(GL_TEXTURE_2D, 0)
@time render(context)
isopen(w) || break
GLWindow.render_frame(w)
end
isopen(w) || break
try
screenshot(w; path="test$frame.png")
catch e
println(e)
end
frame += 1
end
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 3118 | using RadeonProRender, GeometryBasics, Colors
const RPR = RadeonProRender
using Colors: N0f8
# Create a scene
context = RPR.Context()
scene = RPR.Scene(context)
matsys = RPR.MaterialSystem(context, 0)
camera = RPR.Camera(context)
lookat!(camera, Vec3f(3), Vec3f(0), Vec3f(0, 0, 1))
set!(scene, camera)
# create some x,y,z data
function create_mesh(DN = 512, dphi=pi/200.0f0, dtheta=dphi)
phi = 0.0f0:dphi:(pi + dphi * 1.5f0)
theta = (0.0f0:dtheta:(2.0f0 * pi + dtheta * 1.5f0))'
m0 = 4.0f0;
m1 = 3.0f0;
m2 = 2.0f0;
m3 = 3.0f0;
m4 = 6.0f0;
m5 = 2.0f0;
m6 = 6.0f0;
m7 = 4.0f0;
a = @. sin(m0 * phi) ^ m1
b = @. cos(m2 * phi) ^ m3
c = @. sin(m4 * theta) ^ m5
d = @. cos(m6 * theta) ^ m7
r = @. a + b + c + d;
x = @. r * sin(phi) * cos(theta)
y = @. r * cos(phi)
z = @. r * sin(phi) * sin(theta)
xyz = Point3f[Point3f(x[i, j], y[i, j], z[i, j]) for i in 1:size(x, 1), j in 1:size(x, 2)]
r = Tesselation(Rect2f((0, 0), (1, 1)), size(x))
# decomposing a rectangle into uv and triangles is what we need to map the z coordinates on
# since the xyz data assumes the coordinates to have the same neighouring relations
# like a grid
faces = decompose(GLTriangleFace, r)
uv = decompose_uv(r)
# with this we can beuild a mesh
return GeometryBasics.Mesh(meta(vec(xyz), uv=uv), faces), xyz
end
raw_mesh, xyz = create_mesh()
surfacemesh = RPR.Shape(context, raw_mesh)
push!(scene, surfacemesh)
# create layered material
tex = RPR.MaterialNode(matsys, RPR.RPR_MATERIAL_NODE_IMAGE_TEXTURE)
base = RPR.MaterialNode(matsys, RPR.RPR_MATERIAL_NODE_DIFFUSE)
top = RPR.MaterialNode(matsys, RPR.RPR_MATERIAL_NODE_REFLECTION)
# Diffuse color
set!(base, RPR.RPR_MATERIAL_INPUT_COLOR, tex);
set!(base, RPR.RPR_MATERIAL_INPUT_ROUGHNESS, 0.12, 0.0, 0.0, 1.0)
set!(top, RPR.RPR_MATERIAL_INPUT_COLOR, 0.1, 0.3, 0.9, 1.0)
# Create layered shader
layered = RPR.layeredshader(matsys, base, top)
colorim = map(xyz) do xyz
return RGBA{N0f8}(clamp(abs(xyz[1]), 0, 1), clamp(abs(xyz[2]), 0, 1), clamp(abs(xyz[3]), 0, 1), 1.0)
end
color = RPR.Image(context, colorim)
set!(tex, RPR.RPR_MATERIAL_INPUT_DATA, color)
set!(surfacemesh, layered)
set!(context, scene)
ibl = RPR.EnvironmentLight(context)
image_path = joinpath(@__DIR__, "studio026.exr")
set!(ibl, context, image_path)
set!(scene, ibl)
set_standard_tonemapping!(context)
fb_size = (800, 600)
frame_buffer = RPR.FrameBuffer(context, RGBA, fb_size)
frame_bufferSolved = RPR.FrameBuffer(context, RGBA, fb_size)
frame_buffer_post = RPR.FrameBuffer(context, RGBA, fb_size)
set!(context, RPR.RPR_AOV_COLOR, frame_buffer)
begin
clear!(frame_buffer)
clear!(frame_buffer_post)
RPR.rprContextSetParameterByKey1u(context, RPR.RPR_CONTEXT_ITERATIONS, 100)
RPR.render(context)
RPR.rprContextResolveFrameBuffer(context, frame_buffer, frame_bufferSolved, true)
RPR.save(frame_bufferSolved, "surface_mesh.png")
RPR.rprContextResolveFrameBuffer(context, frame_buffer, frame_buffer_post, false)
RPR.save(frame_buffer_post, "surface_mesh_postprocess.png")
end
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 2757 | using RadeonProRender, GeometryBasics, Colors
const RPR = RadeonProRender
function translationmatrix(t::Vec{3,T}) where {T}
T0, T1 = zero(T), one(T)
return Mat{4}(T1, T0, T0, T0, T0, T1, T0, T0, T0, T0, T1, T0, t[1], t[2], t[3], T1)
end
isdefined(Main, :context) && RPR.release(context)
context = RPR.Context()
scene = RPR.Scene(context)
set!(context, scene)
matsys = RPR.MaterialSystem(context, 0)
camera = RPR.Camera(context)
lookat!(camera, Vec3f(1.5, 0.75, 1.5), Vec3f(0), Vec3f(0, 0, 1))
RPR.rprCameraSetFocalLength(camera, 45.0)
set!(scene, camera)
env_light = RadeonProRender.EnvironmentLight(context)
image_path = joinpath(@__DIR__, "studio026.exr")
img = RPR.Image(context, image_path)
set!(env_light, img)
setintensityscale!(env_light, 1.2)
push!(scene, env_light)
light = RPR.PointLight(context)
transform!(light, translationmatrix(Vec3f(2, 0, 5)))
f = 1.5
RPR.setradiantpower!(light, 500 / f, 641 / f, 630 / f)
push!(scene, light)
vol_cube = RadeonProRender.Shape(context, Rect3f(Vec3f(0), Vec3f(1)))
push!(scene, vol_cube)
color_lookup = [colorant"red", colorant"yellow", colorant"green"]
convert(Vector{RGB{Float32}}, color_lookup)
density_lookup = [Vec3f.(10:-1:0);]
n = 128
gridvals = Float32[]
indices1 = UInt64[]
for x in 0:(n-1)
for y in 0:(n-1)
for z in 0:(n-1)
v = y / n
push!(indices1, (x)*(n*n) + (y)*(n)+z)
push!(gridvals, v)
end
end
end
(a, b) = -1, 2
r = range(-3, stop = 3, length = 800)
z = ((x,y) -> y.^4 - x.^4 + a.*y.^2 + b.*x.^2).(r, r')
me = [cos.(2 .* pi .* sqrt.(x.^2 + y.^2)) .* (4 .* z) for x=r, y=r, z=r]
mini, maxi = extrema(me)
grid = RPR.VoxelGrid(context, (me .- mini) ./ (maxi - mini))
volume1 = RPR.HeteroVolume(context)
RPR.set_albedo_grid!(volume1, grid)
RPR.set_albedo_lookup!(volume1, color_lookup)
RPR.set_density_grid!(volume1, grid)
RPR.set_density_lookup!(volume1, density_lookup)
mat = RPR.MaterialNode(matsys, RPR.RPR_MATERIAL_NODE_TRANSPARENT)
set!(mat, RPR.RPR_MATERIAL_INPUT_COLOR, 1.0f0, 1.0f0, 1.0f0, 1.0f0)
RPR.rprSceneAttachHeteroVolume(scene, volume1)
set!(vol_cube, volume1)
set!(vol_cube, mat)
fb_size = (800, 600)
frame_buffer = RPR.FrameBuffer(context, RGBA, fb_size)
frame_bufferSolved = RPR.FrameBuffer(context, RGBA, fb_size)
set!(context, RPR.RPR_AOV_COLOR, frame_buffer)
# to avoid dark transparency, we raise recursion
RPR.rprContextSetParameterByKey1u(context, RPR.RPR_CONTEXT_MAX_RECURSION, 10)
# set_standard_tonemapping!(context)
begin
clear!(frame_buffer)
RPR.rprContextSetParameterByKey1u(context, RPR.RPR_CONTEXT_ITERATIONS, 4)
RPR.render(context)
RPR.rprContextResolveFrameBuffer(context, frame_buffer, frame_bufferSolved, true)
RPR.save(frame_bufferSolved, "test.png")
end
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 184430 | module RPR
using RadeonProRender_jll
export RadeonProRender_jll
using CEnum
function check_error(error_code)
error_code == RPR_SUCCESS && return
return error("Error code returned: $(error_code)")
end
const rpr_char = Cchar
const rpr_uchar = Cuchar
const rpr_int = Cint
const rpr_uint = Cuint
const rpr_long = Clong
const rpr_ulong = Culong
const rpr_short = Cshort
const rpr_ushort = Cushort
const rpr_float = Cfloat
const rpr_double = Cdouble
const rpr_longlong = Clonglong
const rpr_bool = Cint
const rpr_bitfield = rpr_uint
struct rpr_context_t
_::Ptr{Cvoid}
end
const rpr_context = Ptr{rpr_context_t}
struct rpr_camera_t
_::Ptr{Cvoid}
end
const rpr_camera = Ptr{rpr_camera_t}
struct rpr_shape_t
_::Ptr{Cvoid}
end
const rpr_shape = Ptr{rpr_shape_t}
struct rpr_light_t
_::Ptr{Cvoid}
end
const rpr_light = Ptr{rpr_light_t}
struct rpr_scene_t
_::Ptr{Cvoid}
end
const rpr_scene = Ptr{rpr_scene_t}
struct rpr_image_t
_::Ptr{Cvoid}
end
const rpr_image = Ptr{rpr_image_t}
struct rpr_buffer_t
_::Ptr{Cvoid}
end
const rpr_buffer = Ptr{rpr_buffer_t}
struct rpr_hetero_volume_t
_::Ptr{Cvoid}
end
const rpr_hetero_volume = Ptr{rpr_hetero_volume_t}
struct rpr_grid_t
_::Ptr{Cvoid}
end
const rpr_grid = Ptr{rpr_grid_t}
struct rpr_curve_t
_::Ptr{Cvoid}
end
const rpr_curve = Ptr{rpr_curve_t}
struct rpr_framebuffer_t
_::Ptr{Cvoid}
end
const rpr_framebuffer = Ptr{rpr_framebuffer_t}
struct rpr_material_system_t
_::Ptr{Cvoid}
end
const rpr_material_system = Ptr{rpr_material_system_t}
struct rpr_material_node_t
_::Ptr{Cvoid}
end
const rpr_material_node = Ptr{rpr_material_node_t}
struct rpr_post_effect_t
_::Ptr{Cvoid}
end
const rpr_post_effect = Ptr{rpr_post_effect_t}
struct rpr_context_properties_t
_::Ptr{Cvoid}
end
const rpr_context_properties = Ptr{rpr_context_properties_t}
struct rpr_composite_t
_::Ptr{Cvoid}
end
const rpr_composite = Ptr{rpr_composite_t}
struct rpr_lut_t
_::Ptr{Cvoid}
end
const rpr_lut = Ptr{rpr_lut_t}
const rpr_image_option = rpr_uint
const rpr_context_type = rpr_uint
const rpr_creation_flags = rpr_bitfield
const rpr_channel_order = rpr_uint
const rpr_channel_type = rpr_uint
const rpr_material_system_type = rpr_uint
const rpr_environment_override = rpr_uint
@cenum rpr_status::Int32 begin
RPR_SUCCESS = 0
RPR_ERROR_COMPUTE_API_NOT_SUPPORTED = -1
RPR_ERROR_OUT_OF_SYSTEM_MEMORY = -2
RPR_ERROR_OUT_OF_VIDEO_MEMORY = -3
RPR_ERROR_SHADER_COMPILATION = -4
RPR_ERROR_INVALID_LIGHTPATH_EXPR = -5
RPR_ERROR_INVALID_IMAGE = -6
RPR_ERROR_INVALID_AA_METHOD = -7
RPR_ERROR_UNSUPPORTED_IMAGE_FORMAT = -8
RPR_ERROR_INVALID_GL_TEXTURE = -9
RPR_ERROR_INVALID_CL_IMAGE = -10
RPR_ERROR_INVALID_OBJECT = -11
RPR_ERROR_INVALID_PARAMETER = -12
RPR_ERROR_INVALID_TAG = -13
RPR_ERROR_INVALID_LIGHT = -14
RPR_ERROR_INVALID_CONTEXT = -15
RPR_ERROR_UNIMPLEMENTED = -16
RPR_ERROR_INVALID_API_VERSION = -17
RPR_ERROR_INTERNAL_ERROR = -18
RPR_ERROR_IO_ERROR = -19
RPR_ERROR_UNSUPPORTED_SHADER_PARAMETER_TYPE = -20
RPR_ERROR_MATERIAL_STACK_OVERFLOW = -21
RPR_ERROR_INVALID_PARAMETER_TYPE = -22
RPR_ERROR_UNSUPPORTED = -23
RPR_ERROR_OPENCL_OUT_OF_HOST_MEMORY = -24
RPR_ERROR_OPENGL = -25
RPR_ERROR_OPENCL = -26
RPR_ERROR_NULLPTR = -27
RPR_ERROR_NODETYPE = -28
RPR_ERROR_ABORTED = -29
end
@cenum rpr_parameter_type::UInt32 begin
RPR_PARAMETER_TYPE_UNDEF = 0
RPR_PARAMETER_TYPE_FLOAT = 1
RPR_PARAMETER_TYPE_FLOAT2 = 2
RPR_PARAMETER_TYPE_FLOAT3 = 3
RPR_PARAMETER_TYPE_FLOAT4 = 4
RPR_PARAMETER_TYPE_IMAGE = 5
RPR_PARAMETER_TYPE_STRING = 6
RPR_PARAMETER_TYPE_SHADER = 7
RPR_PARAMETER_TYPE_UINT = 8
RPR_PARAMETER_TYPE_ULONG = 9
RPR_PARAMETER_TYPE_LONGLONG = 10
end
@cenum rpr_creation_flags_t::Int32 begin
RPR_CREATION_FLAGS_ENABLE_GPU0 = 1
RPR_CREATION_FLAGS_ENABLE_GPU1 = 2
RPR_CREATION_FLAGS_ENABLE_GPU2 = 4
RPR_CREATION_FLAGS_ENABLE_GPU3 = 8
RPR_CREATION_FLAGS_ENABLE_CPU = 16
RPR_CREATION_FLAGS_ENABLE_GL_INTEROP = 32
RPR_CREATION_FLAGS_ENABLE_GPU4 = 64
RPR_CREATION_FLAGS_ENABLE_GPU5 = 128
RPR_CREATION_FLAGS_ENABLE_GPU6 = 256
RPR_CREATION_FLAGS_ENABLE_GPU7 = 512
RPR_CREATION_FLAGS_ENABLE_METAL = 1024
RPR_CREATION_FLAGS_ENABLE_GPU8 = 2048
RPR_CREATION_FLAGS_ENABLE_GPU9 = 4096
RPR_CREATION_FLAGS_ENABLE_GPU10 = 8192
RPR_CREATION_FLAGS_ENABLE_GPU11 = 16384
RPR_CREATION_FLAGS_ENABLE_GPU12 = 32768
RPR_CREATION_FLAGS_ENABLE_GPU13 = 65536
RPR_CREATION_FLAGS_ENABLE_GPU14 = 131072
RPR_CREATION_FLAGS_ENABLE_GPU15 = 262144
RPR_CREATION_FLAGS_ENABLE_HIP = 524288
RPR_CREATION_FLAGS_ENABLE_OPENCL = 1048576
RPR_CREATION_FLAGS_ENABLE_DEBUG = -2147483648
end
@cenum rpr_aa_filter::UInt32 begin
RPR_FILTER_NONE = 0
RPR_FILTER_BOX = 1
RPR_FILTER_TRIANGLE = 2
RPR_FILTER_GAUSSIAN = 3
RPR_FILTER_MITCHELL = 4
RPR_FILTER_LANCZOS = 5
RPR_FILTER_BLACKMANHARRIS = 6
end
@cenum rpr_context_sampler_type::UInt32 begin
RPR_CONTEXT_SAMPLER_TYPE_SOBOL = 1
RPR_CONTEXT_SAMPLER_TYPE_RANDOM = 2
RPR_CONTEXT_SAMPLER_TYPE_CMJ = 3
end
@cenum rpr_primvar_interpolation_type::UInt32 begin
RPR_PRIMVAR_INTERPOLATION_CONSTANT = 1
RPR_PRIMVAR_INTERPOLATION_UNIFORM = 2
RPR_PRIMVAR_INTERPOLATION_VERTEX = 3
RPR_PRIMVAR_INTERPOLATION_FACEVARYING_NORMAL = 4
RPR_PRIMVAR_INTERPOLATION_FACEVARYING_UV = 5
end
@cenum rpr_shape_type::UInt32 begin
RPR_SHAPE_TYPE_MESH = 1
RPR_SHAPE_TYPE_INSTANCE = 2
end
@cenum rpr_light_type::UInt32 begin
RPR_LIGHT_TYPE_POINT = 1
RPR_LIGHT_TYPE_DIRECTIONAL = 2
RPR_LIGHT_TYPE_SPOT = 3
RPR_LIGHT_TYPE_ENVIRONMENT = 4
RPR_LIGHT_TYPE_SKY = 5
RPR_LIGHT_TYPE_IES = 6
RPR_LIGHT_TYPE_SPHERE = 7
RPR_LIGHT_TYPE_DISK = 8
end
@cenum rpr_context_info::UInt32 begin
RPR_CONTEXT_CREATION_FLAGS = 258
RPR_CONTEXT_CACHE_PATH = 259
RPR_CONTEXT_RENDER_STATUS = 260
RPR_CONTEXT_RENDER_STATISTICS = 261
RPR_CONTEXT_DEVICE_COUNT = 262
RPR_CONTEXT_PARAMETER_COUNT = 263
RPR_CONTEXT_ACTIVE_PLUGIN = 264
RPR_CONTEXT_SCENE = 265
RPR_CONTEXT_ITERATIONS = 267
RPR_CONTEXT_IMAGE_FILTER_TYPE = 268
RPR_CONTEXT_TONE_MAPPING_TYPE = 275
RPR_CONTEXT_TONE_MAPPING_LINEAR_SCALE = 276
RPR_CONTEXT_TONE_MAPPING_PHOTO_LINEAR_SENSITIVITY = 277
RPR_CONTEXT_TONE_MAPPING_PHOTO_LINEAR_EXPOSURE = 278
RPR_CONTEXT_TONE_MAPPING_PHOTO_LINEAR_FSTOP = 279
RPR_CONTEXT_TONE_MAPPING_REINHARD02_PRE_SCALE = 280
RPR_CONTEXT_TONE_MAPPING_REINHARD02_POST_SCALE = 281
RPR_CONTEXT_TONE_MAPPING_REINHARD02_BURN = 282
RPR_CONTEXT_MAX_RECURSION = 283
RPR_CONTEXT_RAY_CAST_EPSILON = 284
RPR_CONTEXT_RADIANCE_CLAMP = 285
RPR_CONTEXT_X_FLIP = 286
RPR_CONTEXT_Y_FLIP = 287
RPR_CONTEXT_TEXTURE_GAMMA = 288
RPR_CONTEXT_PDF_THRESHOLD = 289
RPR_CONTEXT_RENDER_MODE = 290
RPR_CONTEXT_ROUGHNESS_CAP = 291
RPR_CONTEXT_DISPLAY_GAMMA = 292
RPR_CONTEXT_MATERIAL_STACK_SIZE = 293
RPR_CONTEXT_CUTTING_PLANES = 294
RPR_CONTEXT_GPU0_NAME = 295
RPR_CONTEXT_GPU1_NAME = 296
RPR_CONTEXT_GPU2_NAME = 297
RPR_CONTEXT_GPU3_NAME = 298
RPR_CONTEXT_CPU_NAME = 299
RPR_CONTEXT_GPU4_NAME = 300
RPR_CONTEXT_GPU5_NAME = 301
RPR_CONTEXT_GPU6_NAME = 302
RPR_CONTEXT_GPU7_NAME = 303
RPR_CONTEXT_TONE_MAPPING_EXPONENTIAL_INTENSITY = 304
RPR_CONTEXT_FRAMECOUNT = 305
RPR_CONTEXT_TEXTURE_COMPRESSION = 306
RPR_CONTEXT_AO_RAY_LENGTH = 307
RPR_CONTEXT_OOC_TEXTURE_CACHE = 308
RPR_CONTEXT_PREVIEW = 309
RPR_CONTEXT_CPU_THREAD_LIMIT = 310
RPR_CONTEXT_LAST_ERROR_MESSAGE = 311
RPR_CONTEXT_MAX_DEPTH_DIFFUSE = 312
RPR_CONTEXT_MAX_DEPTH_GLOSSY = 313
RPR_CONTEXT_OOC_CACHE_PATH = 314
RPR_CONTEXT_MAX_DEPTH_REFRACTION = 315
RPR_CONTEXT_MAX_DEPTH_GLOSSY_REFRACTION = 316
RPR_CONTEXT_RENDER_LAYER_MASK = 317
RPR_CONTEXT_SINGLE_LEVEL_BVH_ENABLED = 318
RPR_CONTEXT_TRANSPARENT_BACKGROUND = 319
RPR_CONTEXT_MAX_DEPTH_SHADOW = 320
RPR_CONTEXT_API_VERSION = 321
RPR_CONTEXT_GPU8_NAME = 322
RPR_CONTEXT_GPU9_NAME = 323
RPR_CONTEXT_GPU10_NAME = 324
RPR_CONTEXT_GPU11_NAME = 325
RPR_CONTEXT_GPU12_NAME = 326
RPR_CONTEXT_GPU13_NAME = 327
RPR_CONTEXT_GPU14_NAME = 328
RPR_CONTEXT_GPU15_NAME = 329
RPR_CONTEXT_API_VERSION_MINOR = 330
RPR_CONTEXT_METAL_PERFORMANCE_SHADER = 331
RPR_CONTEXT_USER_TEXTURE_0 = 332
RPR_CONTEXT_USER_TEXTURE_1 = 333
RPR_CONTEXT_USER_TEXTURE_2 = 334
RPR_CONTEXT_USER_TEXTURE_3 = 335
RPR_CONTEXT_MIPMAP_LOD_OFFSET = 336
RPR_CONTEXT_AO_RAY_COUNT = 337
RPR_CONTEXT_SAMPLER_TYPE = 338
RPR_CONTEXT_ADAPTIVE_SAMPLING_TILE_SIZE = 339
RPR_CONTEXT_ADAPTIVE_SAMPLING_MIN_SPP = 340
RPR_CONTEXT_ADAPTIVE_SAMPLING_THRESHOLD = 341
RPR_CONTEXT_TILE_SIZE = 342
RPR_CONTEXT_LIST_CREATED_CAMERAS = 343
RPR_CONTEXT_LIST_CREATED_MATERIALNODES = 344
RPR_CONTEXT_LIST_CREATED_LIGHTS = 345
RPR_CONTEXT_LIST_CREATED_SHAPES = 346
RPR_CONTEXT_LIST_CREATED_POSTEFFECTS = 347
RPR_CONTEXT_LIST_CREATED_HETEROVOLUMES = 348
RPR_CONTEXT_LIST_CREATED_GRIDS = 349
RPR_CONTEXT_LIST_CREATED_BUFFERS = 350
RPR_CONTEXT_LIST_CREATED_IMAGES = 351
RPR_CONTEXT_LIST_CREATED_FRAMEBUFFERS = 352
RPR_CONTEXT_LIST_CREATED_SCENES = 353
RPR_CONTEXT_LIST_CREATED_CURVES = 354
RPR_CONTEXT_LIST_CREATED_MATERIALSYSTEM = 355
RPR_CONTEXT_LIST_CREATED_COMPOSITE = 356
RPR_CONTEXT_LIST_CREATED_LUT = 357
RPR_CONTEXT_AA_ENABLED = 358
RPR_CONTEXT_ACTIVE_PIXEL_COUNT = 359
RPR_CONTEXT_TRACING_ENABLED = 360
RPR_CONTEXT_TRACING_PATH = 361
RPR_CONTEXT_TILE_RECT = 362
RPR_CONTEXT_PLUGIN_VERSION = 363
RPR_CONTEXT_RUSSIAN_ROULETTE_DEPTH = 364
RPR_CONTEXT_SHADOW_CATCHER_BAKING = 365
RPR_CONTEXT_RENDER_UPDATE_CALLBACK_FUNC = 366
RPR_CONTEXT_RENDER_UPDATE_CALLBACK_DATA = 367
RPR_CONTEXT_COMPILE_CALLBACK_FUNC = 1537
RPR_CONTEXT_COMPILE_CALLBACK_DATA = 1538
RPR_CONTEXT_TEXTURE_CACHE_PATH = 368
RPR_CONTEXT_OCIO_CONFIG_PATH = 369
RPR_CONTEXT_OCIO_RENDERING_COLOR_SPACE = 370
RPR_CONTEXT_CONTOUR_USE_OBJECTID = 371
RPR_CONTEXT_CONTOUR_USE_MATERIALID = 372
RPR_CONTEXT_CONTOUR_USE_NORMAL = 373
RPR_CONTEXT_CONTOUR_USE_UV = 390
RPR_CONTEXT_CONTOUR_NORMAL_THRESHOLD = 374
RPR_CONTEXT_CONTOUR_UV_THRESHOLD = 391
RPR_CONTEXT_CONTOUR_UV_SECONDARY = 404
RPR_CONTEXT_CONTOUR_LINEWIDTH_OBJECTID = 375
RPR_CONTEXT_CONTOUR_LINEWIDTH_MATERIALID = 376
RPR_CONTEXT_CONTOUR_LINEWIDTH_NORMAL = 377
RPR_CONTEXT_CONTOUR_LINEWIDTH_UV = 392
RPR_CONTEXT_CONTOUR_ANTIALIASING = 378
RPR_CONTEXT_CONTOUR_DEBUG_ENABLED = 383
RPR_CONTEXT_GPUINTEGRATOR = 379
RPR_CONTEXT_CPUINTEGRATOR = 380
RPR_CONTEXT_BEAUTY_MOTION_BLUR = 381
RPR_CONTEXT_CAUSTICS_REDUCTION = 382
RPR_CONTEXT_GPU_MEMORY_LIMIT = 384
RPR_CONTEXT_RENDER_LAYER_LIST = 385
RPR_CONTEXT_WINDING_ORDER_CORRECTION = 386
RPR_CONTEXT_DEEP_SUBPIXEL_MERGE_Z_THRESHOLD = 387
RPR_CONTEXT_DEEP_GPU_ALLOCATION_LEVEL = 388
RPR_CONTEXT_DEEP_COLOR_ENABLED = 389
RPR_CONTEXT_FOG_COLOR = 393
RPR_CONTEXT_FOG_DISTANCE = 394
RPR_CONTEXT_FOG_HEIGHT = 395
RPR_CONTEXT_ATMOSPHERE_VOLUME_COLOR = 396
RPR_CONTEXT_ATMOSPHERE_VOLUME_DENSITY = 397
RPR_CONTEXT_ATMOSPHERE_VOLUME_RADIANCE_CLAMP = 399
RPR_CONTEXT_FOG_HEIGHT_OFFSET = 398
RPR_CONTEXT_INDIRECT_DOWNSAMPLE = 400
RPR_CONTEXT_CRYPTOMATTE_EXTENDED = 401
RPR_CONTEXT_CRYPTOMATTE_SPLIT_INDIRECT = 402
RPR_CONTEXT_FOG_DIRECTION = 403
RPR_CONTEXT_RANDOM_SEED = 4096
RPR_CONTEXT_IBL_DISPLAY = 405
RPR_CONTEXT_FRAMEBUFFER_SAVE_FLOAT32 = 406
RPR_CONTEXT_UPDATE_TIME_CALLBACK_FUNC = 407
RPR_CONTEXT_UPDATE_TIME_CALLBACK_DATA = 408
RPR_CONTEXT_RENDER_TIME_CALLBACK_FUNC = 409
RPR_CONTEXT_RENDER_TIME_CALLBACK_DATA = 410
RPR_CONTEXT_FIRST_ITERATION_TIME_CALLBACK_FUNC = 411
RPR_CONTEXT_FIRST_ITERATION_TIME_CALLBACK_DATA = 412
RPR_CONTEXT_IMAGE_FILTER_RADIUS = 413
RPR_CONTEXT_PRECOMPILED_BINARY_PATH = 414
RPR_CONTEXT_NAME = 7829367
RPR_CONTEXT_UNIQUE_ID = 7829368
RPR_CONTEXT_CUSTOM_PTR = 7829369
end
@cenum rpr_camera_info::UInt32 begin
RPR_CAMERA_TRANSFORM = 513
RPR_CAMERA_FSTOP = 514
RPR_CAMERA_APERTURE_BLADES = 515
RPR_CAMERA_RESPONSE = 516
RPR_CAMERA_EXPOSURE = 517
RPR_CAMERA_FOCAL_LENGTH = 518
RPR_CAMERA_SENSOR_SIZE = 519
RPR_CAMERA_MODE = 520
RPR_CAMERA_ORTHO_WIDTH = 521
RPR_CAMERA_ORTHO_HEIGHT = 522
RPR_CAMERA_FOCUS_DISTANCE = 523
RPR_CAMERA_POSITION = 524
RPR_CAMERA_LOOKAT = 525
RPR_CAMERA_UP = 526
RPR_CAMERA_FOCAL_TILT = 527
RPR_CAMERA_LENS_SHIFT = 528
RPR_CAMERA_IPD = 529
RPR_CAMERA_TILT_CORRECTION = 530
RPR_CAMERA_NEAR_PLANE = 531
RPR_CAMERA_FAR_PLANE = 532
RPR_CAMERA_LINEAR_MOTION = 533
RPR_CAMERA_ANGULAR_MOTION = 534
RPR_CAMERA_MOTION_TRANSFORMS_COUNT = 535
RPR_CAMERA_MOTION_TRANSFORMS = 536
RPR_CAMERA_POST_SCALE = 537
RPR_CAMERA_UV_DISTORTION = 538
RPR_CAMERA_NAME = 7829367
RPR_CAMERA_UNIQUE_ID = 7829368
RPR_CAMERA_CUSTOM_PTR = 7829369
end
@cenum rpr_image_info::UInt32 begin
RPR_IMAGE_FORMAT = 769
RPR_IMAGE_DESC = 770
RPR_IMAGE_DATA = 771
RPR_IMAGE_DATA_SIZEBYTE = 772
RPR_IMAGE_WRAP = 773
RPR_IMAGE_FILTER = 774
RPR_IMAGE_GAMMA = 775
RPR_IMAGE_MIPMAP_ENABLED = 776
RPR_IMAGE_MIP_COUNT = 777
RPR_IMAGE_GAMMA_FROM_FILE = 778
RPR_IMAGE_UDIM = 779
RPR_IMAGE_OCIO_COLORSPACE = 780
RPR_IMAGE_INTERNAL_COMPRESSION = 781
RPR_IMAGE_NAME = 7829367
RPR_IMAGE_UNIQUE_ID = 7829368
RPR_IMAGE_CUSTOM_PTR = 7829369
end
@cenum rpr_buffer_info::UInt32 begin
RPR_BUFFER_DESC = 848
RPR_BUFFER_DATA = 849
RPR_BUFFER_NAME = 7829367
RPR_BUFFER_UNIQUE_ID = 7829368
RPR_BUFFER_CUSTOM_PTR = 7829369
end
@cenum rpr_shape_info::UInt32 begin
RPR_SHAPE_TYPE = 1025
RPR_SHAPE_VIDMEM_USAGE = 1026
RPR_SHAPE_TRANSFORM = 1027
RPR_SHAPE_MATERIAL = 1028
RPR_SHAPE_LINEAR_MOTION = 1029
RPR_SHAPE_ANGULAR_MOTION = 1030
RPR_SHAPE_SHADOW_FLAG = 1032
RPR_SHAPE_SUBDIVISION_FACTOR = 1033
RPR_SHAPE_DISPLACEMENT_SCALE = 1034
RPR_SHAPE_SHADOW_CATCHER_FLAG = 1038
RPR_SHAPE_VOLUME_MATERIAL = 1039
RPR_SHAPE_OBJECT_GROUP_ID = 1040
RPR_SHAPE_SUBDIVISION_CREASEWEIGHT = 1041
RPR_SHAPE_SUBDIVISION_BOUNDARYINTEROP = 1042
RPR_SHAPE_DISPLACEMENT_MATERIAL = 1043
RPR_SHAPE_MATERIALS_PER_FACE = 1045
RPR_SHAPE_SCALE_MOTION = 1046
RPR_SHAPE_HETERO_VOLUME = 1047
RPR_SHAPE_LAYER_MASK = 1048
RPR_SHAPE_VISIBILITY_PRIMARY_ONLY_FLAG = 1036
RPR_SHAPE_VISIBILITY_SHADOW = 1050
RPR_SHAPE_VISIBILITY_REFLECTION = 1051
RPR_SHAPE_VISIBILITY_REFRACTION = 1052
RPR_SHAPE_VISIBILITY_TRANSPARENT = 1053
RPR_SHAPE_VISIBILITY_DIFFUSE = 1054
RPR_SHAPE_VISIBILITY_GLOSSY_REFLECTION = 1055
RPR_SHAPE_VISIBILITY_GLOSSY_REFRACTION = 1056
RPR_SHAPE_VISIBILITY_LIGHT = 1057
RPR_SHAPE_LIGHT_GROUP_ID = 1058
RPR_SHAPE_STATIC = 1059
RPR_SHAPE_PER_VERTEX_VALUE0 = 1060
RPR_SHAPE_PER_VERTEX_VALUE1 = 1061
RPR_SHAPE_PER_VERTEX_VALUE2 = 1062
RPR_SHAPE_PER_VERTEX_VALUE3 = 1063
RPR_SHAPE_REFLECTION_CATCHER_FLAG = 1064
RPR_SHAPE_OBJECT_ID = 1065
RPR_SHAPE_SUBDIVISION_AUTO_RATIO_CAP = 1066
RPR_SHAPE_MOTION_TRANSFORMS_COUNT = 1067
RPR_SHAPE_MOTION_TRANSFORMS = 1068
RPR_SHAPE_CONTOUR_IGNORE = 1069
RPR_SHAPE_RENDER_LAYER_LIST = 1070
RPR_SHAPE_SHADOW_COLOR = 1071
RPR_SHAPE_VISIBILITY_RECEIVE_SHADOW = 1072
RPR_SHAPE_PRIMVARS = 1073
RPR_SHAPE_ENVIRONMENT_LIGHT = 1074
RPR_SHAPE_NAME = 7829367
RPR_SHAPE_UNIQUE_ID = 7829368
RPR_SHAPE_CUSTOM_PTR = 7829369
end
@cenum rpr_mesh_info::UInt32 begin
RPR_MESH_POLYGON_COUNT = 1281
RPR_MESH_VERTEX_COUNT = 1282
RPR_MESH_NORMAL_COUNT = 1283
RPR_MESH_UV_COUNT = 1284
RPR_MESH_VERTEX_ARRAY = 1285
RPR_MESH_NORMAL_ARRAY = 1286
RPR_MESH_UV_ARRAY = 1287
RPR_MESH_VERTEX_INDEX_ARRAY = 1288
RPR_MESH_NORMAL_INDEX_ARRAY = 1289
RPR_MESH_UV_INDEX_ARRAY = 1290
RPR_MESH_VERTEX_STRIDE = 1292
RPR_MESH_NORMAL_STRIDE = 1293
RPR_MESH_UV_STRIDE = 1294
RPR_MESH_VERTEX_INDEX_STRIDE = 1295
RPR_MESH_NORMAL_INDEX_STRIDE = 1296
RPR_MESH_UV_INDEX_STRIDE = 1297
RPR_MESH_NUM_FACE_VERTICES_ARRAY = 1298
RPR_MESH_UV2_COUNT = 1299
RPR_MESH_UV2_ARRAY = 1300
RPR_MESH_UV2_INDEX_ARRAY = 1301
RPR_MESH_UV2_STRIDE = 1302
RPR_MESH_UV2_INDEX_STRIDE = 1303
RPR_MESH_UV_DIM = 1304
RPR_MESH_MOTION_DIMENSION = 1305
RPR_MESH_VOLUME_FLAG = 1306
end
@cenum rpr_scene_info::UInt32 begin
RPR_SCENE_SHAPE_COUNT = 1793
RPR_SCENE_LIGHT_COUNT = 1794
RPR_SCENE_SHAPE_LIST = 1796
RPR_SCENE_LIGHT_LIST = 1797
RPR_SCENE_CAMERA = 1798
RPR_SCENE_CAMERA_RIGHT = 1799
RPR_SCENE_BACKGROUND_IMAGE = 1800
RPR_SCENE_AABB = 1805
RPR_SCENE_HETEROVOLUME_LIST = 1806
RPR_SCENE_HETEROVOLUME_COUNT = 1807
RPR_SCENE_CURVE_LIST = 1808
RPR_SCENE_CURVE_COUNT = 1809
RPR_SCENE_ENVIRONMENT_LIGHT = 1810
RPR_SCENE_NAME = 7829367
RPR_SCENE_UNIQUE_ID = 7829368
RPR_SCENE_CUSTOM_PTR = 7829369
end
@cenum rpr_lut_info::UInt32 begin
RPR_LUT_FILENAME = 2128
RPR_LUT_DATA = 2129
end
@cenum rpr_light_info::UInt32 begin
RPR_LIGHT_TYPE = 2049
RPR_LIGHT_TRANSFORM = 2051
RPR_LIGHT_GROUP_ID = 2053
RPR_LIGHT_RENDER_LAYER_LIST = 2054
RPR_LIGHT_VISIBILITY_LIGHT = 2055
RPR_LIGHT_NAME = 7829367
RPR_LIGHT_UNIQUE_ID = 7829368
RPR_LIGHT_CUSTOM_PTR = 7829369
RPR_POINT_LIGHT_RADIANT_POWER = 2052
RPR_DIRECTIONAL_LIGHT_RADIANT_POWER = 2056
RPR_DIRECTIONAL_LIGHT_SHADOW_SOFTNESS_ANGLE = 2058
RPR_SPOT_LIGHT_RADIANT_POWER = 2059
RPR_SPOT_LIGHT_CONE_SHAPE = 2060
RPR_SPOT_LIGHT_IMAGE = 2061
RPR_ENVIRONMENT_LIGHT_IMAGE = 2063
RPR_ENVIRONMENT_LIGHT_INTENSITY_SCALE = 2064
RPR_ENVIRONMENT_LIGHT_PORTAL_LIST = 2072
RPR_ENVIRONMENT_LIGHT_PORTAL_COUNT = 2073
RPR_ENVIRONMENT_LIGHT_OVERRIDE_REFLECTION = 2074
RPR_ENVIRONMENT_LIGHT_OVERRIDE_REFRACTION = 2075
RPR_ENVIRONMENT_LIGHT_OVERRIDE_TRANSPARENCY = 2076
RPR_ENVIRONMENT_LIGHT_OVERRIDE_BACKGROUND = 2077
RPR_ENVIRONMENT_LIGHT_OVERRIDE_IRRADIANCE = 2078
RPR_SKY_LIGHT_TURBIDITY = 2066
RPR_SKY_LIGHT_ALBEDO = 2067
RPR_SKY_LIGHT_SCALE = 2068
RPR_SKY_LIGHT_DIRECTION = 2069
RPR_SKY_LIGHT_PORTAL_LIST = 2080
RPR_SKY_LIGHT_PORTAL_COUNT = 2081
RPR_IES_LIGHT_RADIANT_POWER = 2070
RPR_IES_LIGHT_IMAGE_DESC = 2071
RPR_SPHERE_LIGHT_RADIANT_POWER = 2082
RPR_SPHERE_LIGHT_RADIUS = 2084
RPR_DISK_LIGHT_RADIANT_POWER = 2083
RPR_DISK_LIGHT_RADIUS = 2085
RPR_DISK_LIGHT_ANGLE = 2086
RPR_DISK_LIGHT_INNER_ANGLE = 2087
end
@cenum rpr_parameter_info::UInt32 begin
RPR_PARAMETER_NAME = 4609
RPR_PARAMETER_TYPE = 4611
RPR_PARAMETER_DESCRIPTION = 4612
RPR_PARAMETER_VALUE = 4613
end
@cenum rpr_framebuffer_info::UInt32 begin
RPR_FRAMEBUFFER_FORMAT = 4865
RPR_FRAMEBUFFER_DESC = 4866
RPR_FRAMEBUFFER_DATA = 4867
RPR_FRAMEBUFFER_GL_TARGET = 4868
RPR_FRAMEBUFFER_GL_MIPLEVEL = 4869
RPR_FRAMEBUFFER_GL_TEXTURE = 4870
RPR_FRAMEBUFFER_LPE = 4871
RPR_FRAMEBUFFER_NAME = 7829367
RPR_FRAMEBUFFER_UNIQUE_ID = 7829368
RPR_FRAMEBUFFER_CUSTOM_PTR = 7829369
end
@cenum rpr_component_type::UInt32 begin
RPR_COMPONENT_TYPE_UINT8 = 1
RPR_COMPONENT_TYPE_FLOAT16 = 2
RPR_COMPONENT_TYPE_FLOAT32 = 3
RPR_COMPONENT_TYPE_UNKNOWN = 4
RPR_COMPONENT_TYPE_DEEP = 5
RPR_COMPONENT_TYPE_UINT32 = 6
end
@cenum rpr_buffer_element_type::UInt32 begin
RPR_BUFFER_ELEMENT_TYPE_INT32 = 1
RPR_BUFFER_ELEMENT_TYPE_FLOAT32 = 2
end
@cenum rpr_render_mode::UInt32 begin
RPR_RENDER_MODE_GLOBAL_ILLUMINATION = 1
RPR_RENDER_MODE_DIRECT_ILLUMINATION = 2
RPR_RENDER_MODE_DIRECT_ILLUMINATION_NO_SHADOW = 3
RPR_RENDER_MODE_WIREFRAME = 4
RPR_RENDER_MODE_MATERIAL_INDEX = 5
RPR_RENDER_MODE_POSITION = 6
RPR_RENDER_MODE_NORMAL = 7
RPR_RENDER_MODE_TEXCOORD = 8
RPR_RENDER_MODE_AMBIENT_OCCLUSION = 9
RPR_RENDER_MODE_DIFFUSE = 10
end
@cenum rpr_camera_mode::UInt32 begin
RPR_CAMERA_MODE_PERSPECTIVE = 1
RPR_CAMERA_MODE_ORTHOGRAPHIC = 2
RPR_CAMERA_MODE_LATITUDE_LONGITUDE_360 = 3
RPR_CAMERA_MODE_LATITUDE_LONGITUDE_STEREO = 4
RPR_CAMERA_MODE_CUBEMAP = 5
RPR_CAMERA_MODE_CUBEMAP_STEREO = 6
RPR_CAMERA_MODE_FISHEYE = 7
end
@cenum rpr_tonemapping_operator::UInt32 begin
RPR_TONEMAPPING_OPERATOR_NONE = 0
RPR_TONEMAPPING_OPERATOR_LINEAR = 1
RPR_TONEMAPPING_OPERATOR_PHOTOLINEAR = 2
RPR_TONEMAPPING_OPERATOR_AUTOLINEAR = 3
RPR_TONEMAPPING_OPERATOR_MAXWHITE = 4
RPR_TONEMAPPING_OPERATOR_REINHARD02 = 5
RPR_TONEMAPPING_OPERATOR_EXPONENTIAL = 6
end
@cenum rpr_volume_type::UInt32 begin
RPR_VOLUME_TYPE_NONE = 65535
RPR_VOLUME_TYPE_HOMOGENEOUS = 0
RPR_VOLUME_TYPE_HETEROGENEOUS = 1
end
@cenum rpr_material_system_info::UInt32 begin
RPR_MATERIAL_SYSTEM_NODE_LIST = 4352
end
@cenum rpr_material_node_info::UInt32 begin
RPR_MATERIAL_NODE_TYPE = 4353
RPR_MATERIAL_NODE_SYSTEM = 4354
RPR_MATERIAL_NODE_INPUT_COUNT = 4355
RPR_MATERIAL_NODE_ID = 4356
RPR_MATERIAL_NODE_NAME = 7829367
RPR_MATERIAL_NODE_UNIQUE_ID = 7829368
RPR_MATERIAL_CUSTOM_PTR = 7829369
end
@cenum rpr_material_node_input_info::UInt32 begin
RPR_MATERIAL_NODE_INPUT_NAME = 4355
RPR_MATERIAL_NODE_INPUT_DESCRIPTION = 4357
RPR_MATERIAL_NODE_INPUT_VALUE = 4358
RPR_MATERIAL_NODE_INPUT_TYPE = 4359
end
@cenum rpr_material_node_type::UInt32 begin
RPR_MATERIAL_NODE_DIFFUSE = 1
RPR_MATERIAL_NODE_MICROFACET = 2
RPR_MATERIAL_NODE_REFLECTION = 3
RPR_MATERIAL_NODE_REFRACTION = 4
RPR_MATERIAL_NODE_MICROFACET_REFRACTION = 5
RPR_MATERIAL_NODE_TRANSPARENT = 6
RPR_MATERIAL_NODE_EMISSIVE = 7
RPR_MATERIAL_NODE_WARD = 8
RPR_MATERIAL_NODE_ADD = 9
RPR_MATERIAL_NODE_BLEND = 10
RPR_MATERIAL_NODE_ARITHMETIC = 11
RPR_MATERIAL_NODE_FRESNEL = 12
RPR_MATERIAL_NODE_NORMAL_MAP = 13
RPR_MATERIAL_NODE_IMAGE_TEXTURE = 14
RPR_MATERIAL_NODE_NOISE2D_TEXTURE = 15
RPR_MATERIAL_NODE_DOT_TEXTURE = 16
RPR_MATERIAL_NODE_GRADIENT_TEXTURE = 17
RPR_MATERIAL_NODE_CHECKER_TEXTURE = 18
RPR_MATERIAL_NODE_CONSTANT_TEXTURE = 19
RPR_MATERIAL_NODE_INPUT_LOOKUP = 20
RPR_MATERIAL_NODE_BLEND_VALUE = 22
RPR_MATERIAL_NODE_PASSTHROUGH = 23
RPR_MATERIAL_NODE_ORENNAYAR = 24
RPR_MATERIAL_NODE_FRESNEL_SCHLICK = 25
RPR_MATERIAL_NODE_DIFFUSE_REFRACTION = 27
RPR_MATERIAL_NODE_BUMP_MAP = 28
RPR_MATERIAL_NODE_VOLUME = 29
RPR_MATERIAL_NODE_MICROFACET_ANISOTROPIC_REFLECTION = 30
RPR_MATERIAL_NODE_MICROFACET_ANISOTROPIC_REFRACTION = 31
RPR_MATERIAL_NODE_TWOSIDED = 32
RPR_MATERIAL_NODE_UV_PROCEDURAL = 33
RPR_MATERIAL_NODE_MICROFACET_BECKMANN = 34
RPR_MATERIAL_NODE_PHONG = 35
RPR_MATERIAL_NODE_BUFFER_SAMPLER = 36
RPR_MATERIAL_NODE_UV_TRIPLANAR = 37
RPR_MATERIAL_NODE_AO_MAP = 38
RPR_MATERIAL_NODE_USER_TEXTURE_0 = 39
RPR_MATERIAL_NODE_USER_TEXTURE_1 = 40
RPR_MATERIAL_NODE_USER_TEXTURE_2 = 41
RPR_MATERIAL_NODE_USER_TEXTURE_3 = 42
RPR_MATERIAL_NODE_UBERV2 = 43
RPR_MATERIAL_NODE_TRANSFORM = 44
RPR_MATERIAL_NODE_RGB_TO_HSV = 45
RPR_MATERIAL_NODE_HSV_TO_RGB = 46
RPR_MATERIAL_NODE_USER_TEXTURE = 47
RPR_MATERIAL_NODE_TOON_CLOSURE = 48
RPR_MATERIAL_NODE_TOON_RAMP = 49
RPR_MATERIAL_NODE_VORONOI_TEXTURE = 50
RPR_MATERIAL_NODE_GRID_SAMPLER = 51
RPR_MATERIAL_NODE_BLACKBODY = 52
RPR_MATERIAL_NODE_RAMP = 53
RPR_MATERIAL_NODE_PRIMVAR_LOOKUP = 54
RPR_MATERIAL_NODE_ROUNDED_CORNER = 55
RPR_MATERIAL_NODE_MATX_DIFFUSE_BRDF = 4096
RPR_MATERIAL_NODE_MATX_DIELECTRIC_BRDF = 4097
RPR_MATERIAL_NODE_MATX_GENERALIZED_SCHLICK_BRDF = 4098
RPR_MATERIAL_NODE_MATX_NOISE3D = 4099
RPR_MATERIAL_NODE_MATX_TANGENT = 4100
RPR_MATERIAL_NODE_MATX_NORMAL = 4101
RPR_MATERIAL_NODE_MATX_POSITION = 4102
RPR_MATERIAL_NODE_MATX_ROUGHNESS_ANISOTROPY = 4103
RPR_MATERIAL_NODE_MATX_ROTATE3D = 4104
RPR_MATERIAL_NODE_MATX_NORMALIZE = 4105
RPR_MATERIAL_NODE_MATX_IFGREATER = 4106
RPR_MATERIAL_NODE_MATX_SHEEN_BRDF = 4107
RPR_MATERIAL_NODE_MATX_DIFFUSE_BTDF = 4108
RPR_MATERIAL_NODE_MATX_CONVERT = 4109
RPR_MATERIAL_NODE_MATX_SUBSURFACE_BRDF = 4110
RPR_MATERIAL_NODE_MATX_DIELECTRIC_BTDF = 4111
RPR_MATERIAL_NODE_MATX_CONDUCTOR_BRDF = 4112
RPR_MATERIAL_NODE_MATX_FRESNEL = 4113
RPR_MATERIAL_NODE_MATX_LUMINANCE = 4114
RPR_MATERIAL_NODE_MATX_FRACTAL3D = 4115
RPR_MATERIAL_NODE_MATX_MIX = 4116
RPR_MATERIAL_NODE_MATX = 4117
RPR_MATERIAL_NODE_MATX_ARTISTIC_IOR = 4118
RPR_MATERIAL_NODE_MATX_GENERALIZED_SCHLICK_BTDF = 4119
RPR_MATERIAL_NODE_MATX_LAYER = 4120
RPR_MATERIAL_NODE_MATX_THIN_FILM = 4121
RPR_MATERIAL_NODE_MATX_BITANGENT = 4122
RPR_MATERIAL_NODE_MATX_TEXCOORD = 4123
RPR_MATERIAL_NODE_MATX_MODULO = 4124
RPR_MATERIAL_NODE_MATX_ABSVAL = 4125
RPR_MATERIAL_NODE_MATX_SIGN = 4126
RPR_MATERIAL_NODE_MATX_FLOOR = 4127
RPR_MATERIAL_NODE_MATX_CEIL = 4128
RPR_MATERIAL_NODE_MATX_ATAN2 = 4129
RPR_MATERIAL_NODE_MATX_SQRT = 4130
RPR_MATERIAL_NODE_MATX_LN = 4131
RPR_MATERIAL_NODE_MATX_EXP = 4132
RPR_MATERIAL_NODE_MATX_CLAMP = 4133
RPR_MATERIAL_NODE_MATX_MIN = 4134
RPR_MATERIAL_NODE_MATX_MAX = 4135
RPR_MATERIAL_NODE_MATX_MAGNITUDE = 4136
RPR_MATERIAL_NODE_MATX_CROSSPRODUCT = 4137
RPR_MATERIAL_NODE_MATX_REMAP = 4138
RPR_MATERIAL_NODE_MATX_SMOOTHSTEP = 4139
RPR_MATERIAL_NODE_MATX_RGBTOHSV = 4140
RPR_MATERIAL_NODE_MATX_HSVTORGB = 4141
RPR_MATERIAL_NODE_MATX_IFGREATEREQ = 4142
RPR_MATERIAL_NODE_MATX_IFEQUAL = 4143
RPR_MATERIAL_NODE_MATX_SWIZZLE = 4144
RPR_MATERIAL_NODE_MATX_NOISE2D = 4145
RPR_MATERIAL_NODE_MATX_PLUS = 4146
RPR_MATERIAL_NODE_MATX_MINUS = 4147
RPR_MATERIAL_NODE_MATX_DIFFERENCE = 4148
RPR_MATERIAL_NODE_MATX_BURN = 4149
RPR_MATERIAL_NODE_MATX_DODGE = 4150
RPR_MATERIAL_NODE_MATX_SCREEN = 4151
RPR_MATERIAL_NODE_MATX_OVERLAY = 4152
RPR_MATERIAL_NODE_MATX_INSIDE = 4153
RPR_MATERIAL_NODE_MATX_OUTSIDE = 4154
RPR_MATERIAL_NODE_MATX_RAMPLR = 4155
RPR_MATERIAL_NODE_MATX_RAMPTB = 4156
RPR_MATERIAL_NODE_MATX_SPLITLR = 4157
RPR_MATERIAL_NODE_MATX_SPLITTB = 4158
RPR_MATERIAL_NODE_MATX_CELLNOISE2D = 4159
RPR_MATERIAL_NODE_MATX_CELLNOISE3D = 4160
RPR_MATERIAL_NODE_MATX_ROTATE2D = 4161
RPR_MATERIAL_NODE_MATX_DOT = 4162
RPR_MATERIAL_NODE_MATX_RANGE = 4163
RPR_MATERIAL_NODE_MATX_SWITCH = 4164
RPR_MATERIAL_NODE_MATX_EXTRACT = 4165
RPR_MATERIAL_NODE_MATX_COMBINE2 = 4166
RPR_MATERIAL_NODE_MATX_COMBINE3 = 4167
RPR_MATERIAL_NODE_MATX_COMBINE4 = 4168
RPR_MATERIAL_NODE_MATX_TRIPLANARPROJECTION = 4169
RPR_MATERIAL_NODE_MATX_MULTIPLY = 4170
end
@cenum rpr_material_node_input::UInt32 begin
RPR_MATERIAL_INPUT_COLOR = 0
RPR_MATERIAL_INPUT_COLOR0 = 1
RPR_MATERIAL_INPUT_COLOR1 = 2
RPR_MATERIAL_INPUT_NORMAL = 3
RPR_MATERIAL_INPUT_UV = 4
RPR_MATERIAL_INPUT_DATA = 5
RPR_MATERIAL_INPUT_ROUGHNESS = 6
RPR_MATERIAL_INPUT_IOR = 7
RPR_MATERIAL_INPUT_ROUGHNESS_X = 8
RPR_MATERIAL_INPUT_ROUGHNESS_Y = 9
RPR_MATERIAL_INPUT_ROTATION = 10
RPR_MATERIAL_INPUT_WEIGHT = 11
RPR_MATERIAL_INPUT_OP = 12
RPR_MATERIAL_INPUT_INVEC = 13
RPR_MATERIAL_INPUT_UV_SCALE = 14
RPR_MATERIAL_INPUT_VALUE = 15
RPR_MATERIAL_INPUT_REFLECTANCE = 16
RPR_MATERIAL_INPUT_SCALE = 17
RPR_MATERIAL_INPUT_SCATTERING = 18
RPR_MATERIAL_INPUT_ABSORBTION = 19
RPR_MATERIAL_INPUT_EMISSION = 20
RPR_MATERIAL_INPUT_G = 21
RPR_MATERIAL_INPUT_MULTISCATTER = 22
RPR_MATERIAL_INPUT_COLOR2 = 23
RPR_MATERIAL_INPUT_COLOR3 = 24
RPR_MATERIAL_INPUT_ANISOTROPIC = 25
RPR_MATERIAL_INPUT_FRONTFACE = 26
RPR_MATERIAL_INPUT_BACKFACE = 27
RPR_MATERIAL_INPUT_ORIGIN = 28
RPR_MATERIAL_INPUT_ZAXIS = 29
RPR_MATERIAL_INPUT_XAXIS = 30
RPR_MATERIAL_INPUT_THRESHOLD = 31
RPR_MATERIAL_INPUT_OFFSET = 32
RPR_MATERIAL_INPUT_UV_TYPE = 33
RPR_MATERIAL_INPUT_RADIUS = 34
RPR_MATERIAL_INPUT_SIDE = 35
RPR_MATERIAL_INPUT_CAUSTICS = 36
RPR_MATERIAL_INPUT_TRANSMISSION_COLOR = 37
RPR_MATERIAL_INPUT_THICKNESS = 38
RPR_MATERIAL_INPUT_0 = 39
RPR_MATERIAL_INPUT_1 = 40
RPR_MATERIAL_INPUT_2 = 41
RPR_MATERIAL_INPUT_3 = 42
RPR_MATERIAL_INPUT_4 = 43
RPR_MATERIAL_INPUT_SCHLICK_APPROXIMATION = 44
RPR_MATERIAL_INPUT_APPLYSURFACE = 45
RPR_MATERIAL_INPUT_TANGENT = 46
RPR_MATERIAL_INPUT_DISTRIBUTION = 47
RPR_MATERIAL_INPUT_BASE = 48
RPR_MATERIAL_INPUT_TINT = 49
RPR_MATERIAL_INPUT_EXPONENT = 50
RPR_MATERIAL_INPUT_AMPLITUDE = 51
RPR_MATERIAL_INPUT_PIVOT = 52
RPR_MATERIAL_INPUT_POSITION = 53
RPR_MATERIAL_INPUT_AMOUNT = 54
RPR_MATERIAL_INPUT_AXIS = 55
RPR_MATERIAL_INPUT_LUMACOEFF = 56
RPR_MATERIAL_INPUT_REFLECTIVITY = 57
RPR_MATERIAL_INPUT_EDGE_COLOR = 58
RPR_MATERIAL_INPUT_VIEW_DIRECTION = 59
RPR_MATERIAL_INPUT_INTERIOR = 60
RPR_MATERIAL_INPUT_OCTAVES = 61
RPR_MATERIAL_INPUT_LACUNARITY = 62
RPR_MATERIAL_INPUT_DIMINISH = 63
RPR_MATERIAL_INPUT_WRAP_U = 64
RPR_MATERIAL_INPUT_WRAP_V = 65
RPR_MATERIAL_INPUT_WRAP_W = 66
RPR_MATERIAL_INPUT_5 = 67
RPR_MATERIAL_INPUT_6 = 68
RPR_MATERIAL_INPUT_7 = 69
RPR_MATERIAL_INPUT_8 = 70
RPR_MATERIAL_INPUT_9 = 71
RPR_MATERIAL_INPUT_10 = 72
RPR_MATERIAL_INPUT_11 = 73
RPR_MATERIAL_INPUT_12 = 74
RPR_MATERIAL_INPUT_13 = 75
RPR_MATERIAL_INPUT_14 = 76
RPR_MATERIAL_INPUT_15 = 77
RPR_MATERIAL_INPUT_DIFFUSE_RAMP = 78
RPR_MATERIAL_INPUT_SHADOW = 79
RPR_MATERIAL_INPUT_MID = 80
RPR_MATERIAL_INPUT_HIGHLIGHT = 81
RPR_MATERIAL_INPUT_POSITION1 = 82
RPR_MATERIAL_INPUT_POSITION2 = 83
RPR_MATERIAL_INPUT_RANGE1 = 84
RPR_MATERIAL_INPUT_RANGE2 = 85
RPR_MATERIAL_INPUT_INTERPOLATION = 86
RPR_MATERIAL_INPUT_RANDOMNESS = 87
RPR_MATERIAL_INPUT_DIMENSION = 88
RPR_MATERIAL_INPUT_OUTTYPE = 89
RPR_MATERIAL_INPUT_DENSITY = 90
RPR_MATERIAL_INPUT_DENSITYGRID = 91
RPR_MATERIAL_INPUT_DISPLACEMENT = 92
RPR_MATERIAL_INPUT_TEMPERATURE = 93
RPR_MATERIAL_INPUT_KELVIN = 94
RPR_MATERIAL_INPUT_EXTINCTION = 95
RPR_MATERIAL_INPUT_THIN_FILM = 96
RPR_MATERIAL_INPUT_TOP = 97
RPR_MATERIAL_INPUT_HIGHLIGHT2 = 98
RPR_MATERIAL_INPUT_SHADOW2 = 99
RPR_MATERIAL_INPUT_POSITION_SHADOW = 100
RPR_MATERIAL_INPUT_POSITION_HIGHLIGHT = 101
RPR_MATERIAL_INPUT_RANGE_SHADOW = 102
RPR_MATERIAL_INPUT_RANGE_HIGHLIGHT = 103
RPR_MATERIAL_INPUT_TOON_5_COLORS = 104
RPR_MATERIAL_INPUT_X = 105
RPR_MATERIAL_INPUT_Y = 106
RPR_MATERIAL_INPUT_Z = 107
RPR_MATERIAL_INPUT_W = 108
RPR_MATERIAL_INPUT_LIGHT = 109
RPR_MATERIAL_INPUT_MID_IS_ALBEDO = 110
RPR_MATERIAL_INPUT_SAMPLES = 111
RPR_MATERIAL_INPUT_BASE_NORMAL = 112
RPR_MATERIAL_INPUT_UBER_DIFFUSE_COLOR = 2320
RPR_MATERIAL_INPUT_UBER_DIFFUSE_WEIGHT = 2343
RPR_MATERIAL_INPUT_UBER_DIFFUSE_ROUGHNESS = 2321
RPR_MATERIAL_INPUT_UBER_DIFFUSE_NORMAL = 2322
RPR_MATERIAL_INPUT_UBER_REFLECTION_COLOR = 2323
RPR_MATERIAL_INPUT_UBER_REFLECTION_WEIGHT = 2344
RPR_MATERIAL_INPUT_UBER_REFLECTION_ROUGHNESS = 2324
RPR_MATERIAL_INPUT_UBER_REFLECTION_ANISOTROPY = 2325
RPR_MATERIAL_INPUT_UBER_REFLECTION_ANISOTROPY_ROTATION = 2326
RPR_MATERIAL_INPUT_UBER_REFLECTION_MODE = 2327
RPR_MATERIAL_INPUT_UBER_REFLECTION_IOR = 2328
RPR_MATERIAL_INPUT_UBER_REFLECTION_METALNESS = 2329
RPR_MATERIAL_INPUT_UBER_REFLECTION_NORMAL = 2345
RPR_MATERIAL_INPUT_UBER_REFLECTION_DIELECTRIC_REFLECTANCE = 2366
RPR_MATERIAL_INPUT_UBER_REFRACTION_COLOR = 2330
RPR_MATERIAL_INPUT_UBER_REFRACTION_WEIGHT = 2346
RPR_MATERIAL_INPUT_UBER_REFRACTION_ROUGHNESS = 2331
RPR_MATERIAL_INPUT_UBER_REFRACTION_IOR = 2332
RPR_MATERIAL_INPUT_UBER_REFRACTION_NORMAL = 2347
RPR_MATERIAL_INPUT_UBER_REFRACTION_THIN_SURFACE = 2333
RPR_MATERIAL_INPUT_UBER_REFRACTION_ABSORPTION_COLOR = 2348
RPR_MATERIAL_INPUT_UBER_REFRACTION_ABSORPTION_DISTANCE = 2349
RPR_MATERIAL_INPUT_UBER_REFRACTION_CAUSTICS = 2350
RPR_MATERIAL_INPUT_UBER_COATING_COLOR = 2334
RPR_MATERIAL_INPUT_UBER_COATING_WEIGHT = 2351
RPR_MATERIAL_INPUT_UBER_COATING_ROUGHNESS = 2335
RPR_MATERIAL_INPUT_UBER_COATING_MODE = 2336
RPR_MATERIAL_INPUT_UBER_COATING_IOR = 2337
RPR_MATERIAL_INPUT_UBER_COATING_METALNESS = 2338
RPR_MATERIAL_INPUT_UBER_COATING_NORMAL = 2339
RPR_MATERIAL_INPUT_UBER_COATING_TRANSMISSION_COLOR = 2352
RPR_MATERIAL_INPUT_UBER_COATING_THICKNESS = 2353
RPR_MATERIAL_INPUT_UBER_SHEEN = 2354
RPR_MATERIAL_INPUT_UBER_SHEEN_TINT = 2355
RPR_MATERIAL_INPUT_UBER_SHEEN_WEIGHT = 2356
RPR_MATERIAL_INPUT_UBER_EMISSION_COLOR = 2340
RPR_MATERIAL_INPUT_UBER_EMISSION_WEIGHT = 2341
RPR_MATERIAL_INPUT_UBER_EMISSION_MODE = 2357
RPR_MATERIAL_INPUT_UBER_TRANSPARENCY = 2342
RPR_MATERIAL_INPUT_UBER_SSS_SCATTER_COLOR = 2359
RPR_MATERIAL_INPUT_UBER_SSS_SCATTER_DISTANCE = 2360
RPR_MATERIAL_INPUT_UBER_SSS_SCATTER_DIRECTION = 2361
RPR_MATERIAL_INPUT_UBER_SSS_WEIGHT = 2362
RPR_MATERIAL_INPUT_UBER_SSS_MULTISCATTER = 2363
RPR_MATERIAL_INPUT_UBER_BACKSCATTER_WEIGHT = 2364
RPR_MATERIAL_INPUT_UBER_BACKSCATTER_COLOR = 2365
RPR_MATERIAL_INPUT_ADDRESS = 2366
RPR_MATERIAL_INPUT_TYPE = 2367
RPR_MATERIAL_INPUT_UBER_FRESNEL_SCHLICK_APPROXIMATION = 44
end
@cenum rpr_material_input_raster::UInt32 begin
RPR_MATERIAL_INPUT_RASTER_METALLIC = 2305
RPR_MATERIAL_INPUT_RASTER_ROUGHNESS = 2306
RPR_MATERIAL_INPUT_RASTER_SUBSURFACE = 2307
RPR_MATERIAL_INPUT_RASTER_ANISOTROPIC = 2308
RPR_MATERIAL_INPUT_RASTER_SPECULAR = 2309
RPR_MATERIAL_INPUT_RASTER_SPECULARTINT = 2310
RPR_MATERIAL_INPUT_RASTER_SHEEN = 2311
RPR_MATERIAL_INPUT_RASTER_SHEENTINT = 2312
RPR_MATERIAL_INPUT_RASTER_CLEARCOAT = 2314
RPR_MATERIAL_INPUT_RASTER_CLEARCOATGLOSS = 2315
RPR_MATERIAL_INPUT_RASTER_COLOR = 2316
RPR_MATERIAL_INPUT_RASTER_NORMAL = 2317
end
@cenum rpr_interpolation_mode::UInt32 begin
RPR_INTERPOLATION_MODE_NONE = 0
RPR_INTERPOLATION_MODE_LINEAR = 1
RPR_INTERPOLATION_MODE_EXPONENTIAL_UP = 2
RPR_INTERPOLATION_MODE_EXPONENTIAL_DOWN = 3
RPR_INTERPOLATION_MODE_SMOOTH = 4
RPR_INTERPOLATION_MODE_BUMP = 5
RPR_INTERPOLATION_MODE_SPIKE = 6
end
@cenum rpr_ubermaterial_ior_mode::UInt32 begin
RPR_UBER_MATERIAL_IOR_MODE_PBR = 1
RPR_UBER_MATERIAL_IOR_MODE_METALNESS = 2
end
@cenum rpr_ubermaterial_emission_mode::UInt32 begin
RPR_UBER_MATERIAL_EMISSION_MODE_SINGLESIDED = 1
RPR_UBER_MATERIAL_EMISSION_MODE_DOUBLESIDED = 2
end
@cenum rpr_material_node_arithmetic_operation::UInt32 begin
RPR_MATERIAL_NODE_OP_ADD = 0
RPR_MATERIAL_NODE_OP_SUB = 1
RPR_MATERIAL_NODE_OP_MUL = 2
RPR_MATERIAL_NODE_OP_DIV = 3
RPR_MATERIAL_NODE_OP_SIN = 4
RPR_MATERIAL_NODE_OP_COS = 5
RPR_MATERIAL_NODE_OP_TAN = 6
RPR_MATERIAL_NODE_OP_SELECT_X = 7
RPR_MATERIAL_NODE_OP_SELECT_Y = 8
RPR_MATERIAL_NODE_OP_SELECT_Z = 9
RPR_MATERIAL_NODE_OP_COMBINE = 10
RPR_MATERIAL_NODE_OP_DOT3 = 11
RPR_MATERIAL_NODE_OP_CROSS3 = 12
RPR_MATERIAL_NODE_OP_LENGTH3 = 13
RPR_MATERIAL_NODE_OP_NORMALIZE3 = 14
RPR_MATERIAL_NODE_OP_POW = 15
RPR_MATERIAL_NODE_OP_ACOS = 16
RPR_MATERIAL_NODE_OP_ASIN = 17
RPR_MATERIAL_NODE_OP_ATAN = 18
RPR_MATERIAL_NODE_OP_AVERAGE_XYZ = 19
RPR_MATERIAL_NODE_OP_AVERAGE = 20
RPR_MATERIAL_NODE_OP_MIN = 21
RPR_MATERIAL_NODE_OP_MAX = 22
RPR_MATERIAL_NODE_OP_FLOOR = 23
RPR_MATERIAL_NODE_OP_MOD = 24
RPR_MATERIAL_NODE_OP_ABS = 25
RPR_MATERIAL_NODE_OP_SHUFFLE_YZWX = 26
RPR_MATERIAL_NODE_OP_SHUFFLE_ZWXY = 27
RPR_MATERIAL_NODE_OP_SHUFFLE_WXYZ = 28
RPR_MATERIAL_NODE_OP_MAT_MUL = 29
RPR_MATERIAL_NODE_OP_SELECT_W = 30
RPR_MATERIAL_NODE_OP_DOT4 = 31
RPR_MATERIAL_NODE_OP_LOG = 32
RPR_MATERIAL_NODE_OP_LOWER_OR_EQUAL = 33
RPR_MATERIAL_NODE_OP_LOWER = 34
RPR_MATERIAL_NODE_OP_GREATER_OR_EQUAL = 35
RPR_MATERIAL_NODE_OP_GREATER = 36
RPR_MATERIAL_NODE_OP_EQUAL = 37
RPR_MATERIAL_NODE_OP_NOT_EQUAL = 38
RPR_MATERIAL_NODE_OP_AND = 39
RPR_MATERIAL_NODE_OP_OR = 40
RPR_MATERIAL_NODE_OP_TERNARY = 41
RPR_MATERIAL_NODE_OP_EXP = 42
RPR_MATERIAL_NODE_OP_ROTATE2D = 43
RPR_MATERIAL_NODE_OP_ROTATE3D = 44
RPR_MATERIAL_NODE_OP_NOP = 45
RPR_MATERIAL_NODE_OP_CEIL = 4138
RPR_MATERIAL_NODE_OP_ROUND = 4139
RPR_MATERIAL_NODE_OP_SIGN = 4140
RPR_MATERIAL_NODE_OP_SQRT = 4143
RPR_MATERIAL_NODE_OP_CLAMP = 4149
end
@cenum rpr_material_node_lookup_value::UInt32 begin
RPR_MATERIAL_NODE_LOOKUP_UV = 0
RPR_MATERIAL_NODE_LOOKUP_N = 1
RPR_MATERIAL_NODE_LOOKUP_P = 2
RPR_MATERIAL_NODE_LOOKUP_INVEC = 3
RPR_MATERIAL_NODE_LOOKUP_OUTVEC = 4
RPR_MATERIAL_NODE_LOOKUP_UV1 = 5
RPR_MATERIAL_NODE_LOOKUP_P_LOCAL = 6
RPR_MATERIAL_NODE_LOOKUP_VERTEX_VALUE0 = 7
RPR_MATERIAL_NODE_LOOKUP_VERTEX_VALUE1 = 8
RPR_MATERIAL_NODE_LOOKUP_VERTEX_VALUE2 = 9
RPR_MATERIAL_NODE_LOOKUP_VERTEX_VALUE3 = 10
RPR_MATERIAL_NODE_LOOKUP_SHAPE_RANDOM_COLOR = 11
RPR_MATERIAL_NODE_LOOKUP_OBJECT_ID = 12
RPR_MATERIAL_NODE_LOOKUP_PRIMITIVE_RANDOM_COLOR = 13
end
@cenum rpr_material_gradient_procedural_type::UInt32 begin
RPR_MATERIAL_GRADIENT_PROCEDURAL_TYPE_LINEAR = 1
RPR_MATERIAL_GRADIENT_PROCEDURAL_TYPE_QUADRATIC = 2
RPR_MATERIAL_GRADIENT_PROCEDURAL_TYPE_EASING = 3
RPR_MATERIAL_GRADIENT_PROCEDURAL_TYPE_DIAGONAL = 4
RPR_MATERIAL_GRADIENT_PROCEDURAL_TYPE_SPHERICAL = 5
RPR_MATERIAL_GRADIENT_PROCEDURAL_TYPE_QUAD_SPHERE = 6
RPR_MATERIAL_GRADIENT_PROCEDURAL_TYPE_RADIAL = 7
end
@cenum rpr_material_node_uvtype_value::UInt32 begin
RPR_MATERIAL_NODE_UVTYPE_PLANAR = 0
RPR_MATERIAL_NODE_UVTYPE_CYLINDICAL = 1
RPR_MATERIAL_NODE_UVTYPE_SPHERICAL = 2
RPR_MATERIAL_NODE_UVTYPE_PROJECT = 3
end
@cenum rpr_material_node_transform_op::UInt32 begin
RPR_MATERIAL_NODE_TRANSFORM_ROTATE_LOCAL_TO_WORLD = 1
end
@cenum rpr_post_effect_info::UInt32 begin
RPR_POST_EFFECT_TYPE = 0
RPR_POST_EFFECT_WHITE_BALANCE_COLOR_SPACE = 4
RPR_POST_EFFECT_WHITE_BALANCE_COLOR_TEMPERATURE = 5
RPR_POST_EFFECT_SIMPLE_TONEMAP_EXPOSURE = 6
RPR_POST_EFFECT_SIMPLE_TONEMAP_CONTRAST = 7
RPR_POST_EFFECT_SIMPLE_TONEMAP_ENABLE_TONEMAP = 8
RPR_POST_EFFECT_BLOOM_RADIUS = 9
RPR_POST_EFFECT_BLOOM_THRESHOLD = 10
RPR_POST_EFFECT_BLOOM_WEIGHT = 11
RPR_POST_EFFECT_NAME = 7829367
RPR_POST_EFFECT_UNIQUE_ID = 7829368
RPR_POST_EFFECT_CUSTOM_PTR = 7829369
end
@cenum rpr_aov::UInt32 begin
RPR_AOV_COLOR = 0
RPR_AOV_OPACITY = 1
RPR_AOV_WORLD_COORDINATE = 2
RPR_AOV_UV = 3
RPR_AOV_MATERIAL_ID = 4
RPR_AOV_GEOMETRIC_NORMAL = 5
RPR_AOV_SHADING_NORMAL = 6
RPR_AOV_DEPTH = 7
RPR_AOV_OBJECT_ID = 8
RPR_AOV_OBJECT_GROUP_ID = 9
RPR_AOV_SHADOW_CATCHER = 10
RPR_AOV_BACKGROUND = 11
RPR_AOV_EMISSION = 12
RPR_AOV_VELOCITY = 13
RPR_AOV_DIRECT_ILLUMINATION = 14
RPR_AOV_INDIRECT_ILLUMINATION = 15
RPR_AOV_AO = 16
RPR_AOV_DIRECT_DIFFUSE = 17
RPR_AOV_DIRECT_REFLECT = 18
RPR_AOV_INDIRECT_DIFFUSE = 19
RPR_AOV_INDIRECT_REFLECT = 20
RPR_AOV_REFRACT = 21
RPR_AOV_VOLUME = 22
RPR_AOV_LIGHT_GROUP0 = 23
RPR_AOV_LIGHT_GROUP1 = 24
RPR_AOV_LIGHT_GROUP2 = 25
RPR_AOV_LIGHT_GROUP3 = 26
RPR_AOV_DIFFUSE_ALBEDO = 27
RPR_AOV_VARIANCE = 28
RPR_AOV_VIEW_SHADING_NORMAL = 29
RPR_AOV_REFLECTION_CATCHER = 30
RPR_AOV_COLOR_RIGHT = 31
RPR_AOV_LPE_0 = 32
RPR_AOV_LPE_1 = 33
RPR_AOV_LPE_2 = 34
RPR_AOV_LPE_3 = 35
RPR_AOV_LPE_4 = 36
RPR_AOV_LPE_5 = 37
RPR_AOV_LPE_6 = 38
RPR_AOV_LPE_7 = 39
RPR_AOV_LPE_8 = 40
RPR_AOV_CAMERA_NORMAL = 41
RPR_AOV_MATTE_PASS = 42
RPR_AOV_SSS = 43
RPR_AOV_CRYPTOMATTE_MAT0 = 48
RPR_AOV_CRYPTOMATTE_MAT1 = 49
RPR_AOV_CRYPTOMATTE_MAT2 = 50
RPR_AOV_CRYPTOMATTE_MAT3 = 51
RPR_AOV_CRYPTOMATTE_MAT4 = 52
RPR_AOV_CRYPTOMATTE_MAT5 = 53
RPR_AOV_CRYPTOMATTE_OBJ0 = 56
RPR_AOV_CRYPTOMATTE_OBJ1 = 57
RPR_AOV_CRYPTOMATTE_OBJ2 = 58
RPR_AOV_CRYPTOMATTE_OBJ3 = 59
RPR_AOV_CRYPTOMATTE_OBJ4 = 60
RPR_AOV_CRYPTOMATTE_OBJ5 = 61
RPR_AOV_DEEP_COLOR = 64
RPR_AOV_LIGHT_GROUP4 = 80
RPR_AOV_LIGHT_GROUP5 = 81
RPR_AOV_LIGHT_GROUP6 = 82
RPR_AOV_LIGHT_GROUP7 = 83
RPR_AOV_LIGHT_GROUP8 = 84
RPR_AOV_LIGHT_GROUP9 = 85
RPR_AOV_LIGHT_GROUP10 = 86
RPR_AOV_LIGHT_GROUP11 = 87
RPR_AOV_LIGHT_GROUP12 = 88
RPR_AOV_LIGHT_GROUP13 = 89
RPR_AOV_LIGHT_GROUP14 = 90
RPR_AOV_LIGHT_GROUP15 = 91
RPR_AOV_MESH_ID = 96
end
@cenum rpr_post_effect_type::UInt32 begin
RPR_POST_EFFECT_TONE_MAP = 0
RPR_POST_EFFECT_WHITE_BALANCE = 1
RPR_POST_EFFECT_SIMPLE_TONEMAP = 2
RPR_POST_EFFECT_NORMALIZATION = 3
RPR_POST_EFFECT_GAMMA_CORRECTION = 4
RPR_POST_EFFECT_BLOOM = 5
end
@cenum rpr_color_space::UInt32 begin
RPR_COLOR_SPACE_SRGB = 1
RPR_COLOR_SPACE_ADOBE_RGB = 2
RPR_COLOR_SPACE_REC2020 = 3
RPR_COLOR_SPACE_DCIP3 = 4
end
@cenum rpr_material_node_input_type::UInt32 begin
RPR_MATERIAL_NODE_INPUT_TYPE_FLOAT4 = 1
RPR_MATERIAL_NODE_INPUT_TYPE_UINT = 2
RPR_MATERIAL_NODE_INPUT_TYPE_NODE = 3
RPR_MATERIAL_NODE_INPUT_TYPE_IMAGE = 4
RPR_MATERIAL_NODE_INPUT_TYPE_BUFFER = 5
RPR_MATERIAL_NODE_INPUT_TYPE_GRID = 6
RPR_MATERIAL_NODE_INPUT_TYPE_DATA = 7
RPR_MATERIAL_NODE_INPUT_TYPE_LIGHT = 8
end
@cenum rpr_subdiv_boundary_interfop_type::UInt32 begin
RPR_SUBDIV_BOUNDARY_INTERFOP_TYPE_EDGE_AND_CORNER = 1
RPR_SUBDIV_BOUNDARY_INTERFOP_TYPE_EDGE_ONLY = 2
end
@cenum rpr_image_wrap_type::UInt32 begin
RPR_IMAGE_WRAP_TYPE_REPEAT = 1
RPR_IMAGE_WRAP_TYPE_MIRRORED_REPEAT = 2
RPR_IMAGE_WRAP_TYPE_CLAMP_TO_EDGE = 3
RPR_IMAGE_WRAP_TYPE_CLAMP_ZERO = 5
RPR_IMAGE_WRAP_TYPE_CLAMP_ONE = 6
end
@cenum rpr_voronoi_out_type::UInt32 begin
RPR_VORONOI_OUT_TYPE_DISTANCE = 1
RPR_VORONOI_OUT_TYPE_COLOR = 2
RPR_VORONOI_OUT_TYPE_POSITION = 3
end
@cenum rpr_image_filter_type::UInt32 begin
RPR_IMAGE_FILTER_TYPE_NEAREST = 1
RPR_IMAGE_FILTER_TYPE_LINEAR = 2
end
@cenum rpr_composite_info::UInt32 begin
RPR_COMPOSITE_TYPE = 1
RPR_COMPOSITE_FRAMEBUFFER_INPUT_FB = 2
RPR_COMPOSITE_NORMALIZE_INPUT_COLOR = 3
RPR_COMPOSITE_NORMALIZE_INPUT_AOVTYPE = 4
RPR_COMPOSITE_CONSTANT_INPUT_VALUE = 5
RPR_COMPOSITE_LERP_VALUE_INPUT_COLOR0 = 6
RPR_COMPOSITE_LERP_VALUE_INPUT_COLOR1 = 7
RPR_COMPOSITE_LERP_VALUE_INPUT_WEIGHT = 8
RPR_COMPOSITE_ARITHMETIC_INPUT_COLOR0 = 9
RPR_COMPOSITE_ARITHMETIC_INPUT_COLOR1 = 10
RPR_COMPOSITE_ARITHMETIC_INPUT_OP = 11
RPR_COMPOSITE_GAMMA_CORRECTION_INPUT_COLOR = 12
RPR_COMPOSITE_LUT_INPUT_LUT = 13
RPR_COMPOSITE_LUT_INPUT_COLOR = 14
RPR_COMPOSITE_NAME = 7829367
RPR_COMPOSITE_UNIQUE_ID = 7829368
RPR_COMPOSITE_CUSTOM_PTR = 7829369
end
@cenum rpr_composite_type::UInt32 begin
RPR_COMPOSITE_ARITHMETIC = 1
RPR_COMPOSITE_LERP_VALUE = 2
RPR_COMPOSITE_INVERSE = 3
RPR_COMPOSITE_NORMALIZE = 4
RPR_COMPOSITE_GAMMA_CORRECTION = 5
RPR_COMPOSITE_EXPOSURE = 6
RPR_COMPOSITE_CONTRAST = 7
RPR_COMPOSITE_SIDE_BY_SIDE = 8
RPR_COMPOSITE_TONEMAP_ACES = 9
RPR_COMPOSITE_TONEMAP_REINHARD = 10
RPR_COMPOSITE_TONEMAP_LINEAR = 11
RPR_COMPOSITE_FRAMEBUFFER = 12
RPR_COMPOSITE_CONSTANT = 13
RPR_COMPOSITE_LUT = 14
end
@cenum rpr_grid_parameter::UInt32 begin
RPR_GRID_SIZE_X = 2352
RPR_GRID_SIZE_Y = 2353
RPR_GRID_SIZE_Z = 2354
RPR_GRID_DATA = 2355
RPR_GRID_DATA_SIZEBYTE = 2356
RPR_GRID_INDICES = 2358
RPR_GRID_INDICES_NUMBER = 2359
RPR_GRID_INDICES_TOPOLOGY = 2360
RPR_GRID_NAME = 7829367
RPR_GRID_UNIQUE_ID = 7829368
RPR_GRID_CUSTOM_PTR = 7829369
end
@cenum rpr_hetero_volume_parameter::UInt32 begin
RPR_HETEROVOLUME_TRANSFORM = 1845
RPR_HETEROVOLUME_ALBEDO_V2 = 1852
RPR_HETEROVOLUME_DENSITY_V2 = 1853
RPR_HETEROVOLUME_EMISSION_V2 = 1854
RPR_HETEROVOLUME_ALBEDO_LOOKUP_VALUES = 1855
RPR_HETEROVOLUME_ALBEDO_LOOKUP_VALUES_COUNT = 1856
RPR_HETEROVOLUME_DENSITY_LOOKUP_VALUES = 1857
RPR_HETEROVOLUME_DENSITY_LOOKUP_VALUES_COUNT = 1858
RPR_HETEROVOLUME_EMISSION_LOOKUP_VALUES = 1859
RPR_HETEROVOLUME_EMISSION_LOOKUP_VALUES_COUNT = 1860
RPR_HETEROVOLUME_ALBEDO_SCALE = 1861
RPR_HETEROVOLUME_DENSITY_SCALE = 1862
RPR_HETEROVOLUME_EMISSION_SCALE = 1863
RPR_HETEROVOLUME_NAME = 7829367
RPR_HETEROVOLUME_UNIQUE_ID = 7829368
RPR_HETEROVOLUME_CUSTOM_PTR = 7829369
end
@cenum rpr_grid_indices_topology::UInt32 begin
RPR_GRID_INDICES_TOPOLOGY_I_U64 = 2384
RPR_GRID_INDICES_TOPOLOGY_XYZ_U32 = 2385
RPR_GRID_INDICES_TOPOLOGY_I_S64 = 2386
RPR_GRID_INDICES_TOPOLOGY_XYZ_S32 = 2387
end
@cenum rpr_curve_parameter::UInt32 begin
RPR_CURVE_CONTROLPOINTS_COUNT = 2096
RPR_CURVE_CONTROLPOINTS_DATA = 2097
RPR_CURVE_CONTROLPOINTS_STRIDE = 2098
RPR_CURVE_INDICES_COUNT = 2099
RPR_CURVE_INDICES_DATA = 2100
RPR_CURVE_RADIUS = 2101
RPR_CURVE_UV = 2102
RPR_CURVE_COUNT_CURVE = 2103
RPR_CURVE_SEGMENTS_PER_CURVE = 2104
RPR_CURVE_CREATION_FLAG = 2105
RPR_CURVE_NAME = 7829367
RPR_CURVE_UNIQUE_ID = 7829368
RPR_CURVE_CUSTOM_PTR = 7829369
RPR_CURVE_TRANSFORM = 1027
RPR_CURVE_MATERIAL = 1028
RPR_CURVE_VISIBILITY_PRIMARY_ONLY_FLAG = 1036
RPR_CURVE_VISIBILITY_SHADOW = 1050
RPR_CURVE_VISIBILITY_REFLECTION = 1051
RPR_CURVE_VISIBILITY_REFRACTION = 1052
RPR_CURVE_VISIBILITY_TRANSPARENT = 1053
RPR_CURVE_VISIBILITY_DIFFUSE = 1054
RPR_CURVE_VISIBILITY_GLOSSY_REFLECTION = 1055
RPR_CURVE_VISIBILITY_GLOSSY_REFRACTION = 1056
RPR_CURVE_VISIBILITY_LIGHT = 1057
RPR_CURVE_VISIBILITY_RECEIVE_SHADOW = 1072
end
struct rpr_image_desc
image_width::rpr_uint
image_height::rpr_uint
image_depth::rpr_uint
image_row_pitch::rpr_uint
image_slice_pitch::rpr_uint
end
struct rpr_buffer_desc
nb_element::rpr_uint
element_type::rpr_buffer_element_type
element_channel_size::rpr_uint
end
struct rpr_framebuffer_desc
fb_width::rpr_uint
fb_height::rpr_uint
end
struct rpr_render_statistics
gpumem_usage::rpr_longlong
gpumem_total::rpr_longlong
gpumem_max_allocation::rpr_longlong
sysmem_usage::rpr_longlong
end
struct rpr_image_format
num_components::rpr_uint
type::rpr_component_type
end
struct rpr_framebuffer_format
num_components::rpr_uint
type::rpr_component_type
end
struct rpr_ies_image_desc
w::rpr_int
h::rpr_int
data::Ptr{rpr_char}
filename::Ptr{rpr_char}
end
"""
rprRegisterPlugin(path)
Register rendering plugin
<Description>
### Parameters
* `path`: Path of plugin to load (for UNICODE, supports UTF-8 encoding)
### Returns
unique identifier of plugin, -1 otherwise
"""
function rprRegisterPlugin(path)
ccall((:rprRegisterPlugin, libRadeonProRender64), rpr_int, (Ptr{rpr_char},), path)
end
"""
rprCreateContext(api_version, pluginIDs, pluginCount, creation_flags, props, cache_path)
Create rendering context
Rendering context is a root concept encapsulating the render states and responsible for execution control. All the entities in Radeon ProRender are created for a particular rendering context. Entities created for some context can't be used with other contexts. Possible error codes for this call are:
RPR\\_ERROR\\_COMPUTE\\_API\\_NOT\\_SUPPORTED RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY RPR\\_ERROR\\_INVALID\\_API\\_VERSION RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `api_version`: Api version constant
* `context_type`: Determines compute API to use, OPENCL only is supported for now
* `creation_flags`: Determines multi-gpu or cpu-gpu configuration
* `props`: Context creation properties. Specifies a list of context property names and their corresponding values. Each property name is immediately followed by the corresponding desired value. The list is terminated with 0.
* `cache_path`: Full path to kernel cache created by Radeon ProRender, NULL means to use current folder (for UNICODE, supports UTF-8 encoding)
* `cpu_thread_limit`: Limit for the number of threads used for CPU rendering
* `out_context`: Pointer to context object
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCreateContext(api_version, pluginIDs, pluginCount, creation_flags, props, cache_path)
out_context = Ref{rpr_context}()
check_error(ccall((:rprCreateContext, libRadeonProRender64), rpr_status, (rpr_uint, Ptr{rpr_int}, Csize_t, rpr_creation_flags, Ptr{rpr_context_properties}, Ptr{rpr_char}, Ptr{rpr_context}), api_version, pluginIDs, pluginCount, creation_flags, props, cache_path, out_context))
return out_context[]
end
"""
rprContextSetActivePlugin(context, pluginID)
Set active context plugin
"""
function rprContextSetActivePlugin(context, pluginID)
check_error(ccall((:rprContextSetActivePlugin, libRadeonProRender64), rpr_status, (rpr_context, rpr_int), context, pluginID))
end
"""
rprContextGetInfo(context, context_info, size, data, size_ret)
Query information about a context
The workflow is usually two-step: query with the data == NULL and size = 0 to get the required buffer size in size\\_ret, then query with size\\_ret == NULL to fill the buffer with the data. Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `context`: The context to query
* `context_info`: The type of info to query
* `size`: The size of the buffer pointed by data
* `data`: The buffer to store queried info
* `size_ret`: Returns the size in bytes of the data being queried
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextGetInfo(context, context_info, size, data, size_ret)
check_error(ccall((:rprContextGetInfo, libRadeonProRender64), rpr_status, (rpr_context, rpr_context_info, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), context, context_info, size, data, size_ret))
end
"""
rprContextGetParameterInfo(context, param_idx, parameter_info, size, data, size_ret)
Query information about a context parameter
The workflow is usually two-step: query with the data == NULL and size = 0 to get the required buffer size in size\\_ret, then query with size\\_ret == NULL to fill the buffer with the data Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `context`: The context to query
* `param_idx`: The index of the parameter - must be between 0 and (value stored by RPR\\_CONTEXT\\_PARAMETER\\_COUNT)-1
* `parameter_info`: The type of info to query
* `size`: The size of the buffer pointed by data
* `data`: The buffer to store queried info
* `size_ret`: Returns the size in bytes of the data being queried
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextGetParameterInfo(context, param_idx, parameter_info, size, data, size_ret)
check_error(ccall((:rprContextGetParameterInfo, libRadeonProRender64), rpr_status, (rpr_context, Cint, rpr_parameter_info, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), context, param_idx, parameter_info, size, data, size_ret))
end
"""
rprContextGetAOV(context, aov)
Query the AOV
### Parameters
* `context`: The context to get a frame buffer from
* `out_fb`: Pointer to framebuffer object
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextGetAOV(context, aov)
out_fb = Ref{rpr_framebuffer}()
check_error(ccall((:rprContextGetAOV, libRadeonProRender64), rpr_status, (rpr_context, rpr_aov, Ptr{rpr_framebuffer}), context, aov, out_fb))
return out_fb[]
end
"""
rprContextSetAOV(context, aov, frame_buffer)
Set AOV
### Parameters
* `context`: The context to set AOV
* `aov`: AOV
* `frame_buffer`: Frame buffer object to set
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextSetAOV(context, aov, frame_buffer)
check_error(ccall((:rprContextSetAOV, libRadeonProRender64), rpr_status, (rpr_context, rpr_aov, rpr_framebuffer), context, aov, frame_buffer))
end
"""
rprContextAttachRenderLayer(context, renderLayerString)
### Parameters
* `context`: The context to set
* `renderLayerString`: Render layer name to attach
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextAttachRenderLayer(context, renderLayerString)
check_error(ccall((:rprContextAttachRenderLayer, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_char}), context, renderLayerString))
end
"""
rprContextDetachRenderLayer(context, renderLayerString)
### Parameters
* `context`: The context to set
* `renderLayerString`: Render layer name to detach
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextDetachRenderLayer(context, renderLayerString)
check_error(ccall((:rprContextDetachRenderLayer, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_char}), context, renderLayerString))
end
"""
rprFrameBufferSetLPE(frame_buffer, lpe)
Set a LPE ( Light Path Expression ) to a framebuffer. Note that this framebuffer should also be assigned to a LPE AOV: RPR\\_AOV\\_LPE\\_0 , RPR\\_AOV\\_LPE\\_1 ....
### Parameters
* `frame_buffer`: Frame buffer object to set
* `lpe`: Light Path Expression
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprFrameBufferSetLPE(frame_buffer, lpe)
check_error(ccall((:rprFrameBufferSetLPE, libRadeonProRender64), rpr_status, (rpr_framebuffer, Ptr{rpr_char}), frame_buffer, lpe))
end
"""
rprContextSetAOVindexLookup(context, key, colorR, colorG, colorB, colorA)
Set AOV Index Lookup Color change the color of AOV rendering IDs, like : RPR\\_AOV\\_MATERIAL\\_ID , RPR\\_AOV\\_OBJECT\\_ID, RPR\\_AOV\\_OBJECT\\_GROUP\\_ID. for example, you can render all the shapes with ObjectGroupID=4 in the Red color inside the RPR\\_AOV\\_OBJECT\\_GROUP\\_ID AOV
### Parameters
* `context`: The context to set AOV index lookup
* `key`: id
* `colorR`: red channel
* `colorG`: green channel
* `colorB`: blue channel
* `colorA`: alpha channel
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextSetAOVindexLookup(context, key, colorR, colorG, colorB, colorA)
check_error(ccall((:rprContextSetAOVindexLookup, libRadeonProRender64), rpr_status, (rpr_context, rpr_int, rpr_float, rpr_float, rpr_float, rpr_float), context, key, colorR, colorG, colorB, colorA))
end
"""
rprContextSetCuttingPlane(context, index, a, b, c, d)
Set a Cutting Plane (also called Clipping plane).
Notes: - In order to disable the 'index' cutting plane, set (A,B,C,D) = (0,0,0,0) By default, on context creation all cutting planes are disabled.
- Index can be any number. It doesn't need to define the list of plane as a contiguous list of indices.
- If the number of enabled planes is greater than the limit supported by the renderer, then RPR\\_ERROR\\_UNSUPPORTED is return by the function.
- The normal of the equation plane points toward the area that is kept.
- If several clipping planes are used the rendered area will be the one commonly facing all the planes.
- Plane equation is Ax + By + Cz + D = 0
### Parameters
* `context`: The context to set the Cutting Plane
* `index`: cutting plane index ( starts from 0 )
* `a`: equation plane A
* `b`: equation plane B
* `c`: equation plane C
* `d`: equation plane D
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextSetCuttingPlane(context, index, a, b, c, d)
check_error(ccall((:rprContextSetCuttingPlane, libRadeonProRender64), rpr_status, (rpr_context, rpr_int, rpr_float, rpr_float, rpr_float, rpr_float), context, index, a, b, c, d))
end
"""
rprContextSetAOVindicesLookup(context, keyOffset, keyCount, colorRGBA)
call a batch of [`rprContextSetAOVindexLookup`](@ref)
example: [`rprContextSetAOVindicesLookup`](@ref)(ctx, 2, 3, table); is equivalent to call : [`rprContextSetAOVindexLookup`](@ref)(ctx, 2, table[0], table[1], table[2], table[3]); [`rprContextSetAOVindexLookup`](@ref)(ctx, 3, table[4], table[5], table[6], table[7]); [`rprContextSetAOVindexLookup`](@ref)(ctx, 4, table[8], table[9], table[10], table[11]);
Depending on the plugin, [`rprContextSetAOVindicesLookup`](@ref) could be faster than calling several [`rprContextSetAOVindexLookup`](@ref).
"""
function rprContextSetAOVindicesLookup(context, keyOffset, keyCount, colorRGBA)
check_error(ccall((:rprContextSetAOVindicesLookup, libRadeonProRender64), rpr_status, (rpr_context, rpr_int, rpr_int, Ptr{rpr_float}), context, keyOffset, keyCount, colorRGBA))
end
"""
rprContextSetUserTexture(context, index, gpuCode, cpuCode)
API user can create its own procedural texture. The API needs both a GPU code ( OpenCL string code ) and a CPU code ( callback ) (API function supported by Northstar only)
example: #define DEFINE\\_FUNC(FUNCNAME, FUNC) FUNC; const std::string g\\_str\\_##FUNCNAME = #FUNC; DEFINE\\_FUNC( RprCustomMatA , void RprCustomMatA(float* a, float* b, float* c, float* d, float* e, float* f, float* valueOut){ valueOut[0]=0.0; valueOut[1]=sin(d[0]*3.14159); valueOut[2]=0.0; } ); [`rprContextSetUserTexture`](@ref)(context, 3, g\\_str\\_RprCustomMatA.c\\_str(), RprCustomMatA); // use slot 3 // create material based on slot 3 : [`rpr_material_node`](@ref) matUserTex3; [`rprMaterialSystemCreateNode`](@ref)(matsys, RPR\\_MATERIAL\\_NODE\\_USER\\_TEXTURE, & matUserTex3); [`rprMaterialNodeSetInputUByKey`](@ref)(matUserTex3, RPR\\_MATERIAL\\_INPUT\\_OP, 3 ); // bind matUserTex3 to slot 3 [`rprMaterialNodeSetInputNByKey`](@ref)(matUserTex3, RPR\\_MATERIAL\\_INPUT\\_4, paramInput ); // bind 'paramInput' to the 'e' argument of 'RprCustomMatA'
Notes: - If only the GPU is used, a nullptr can be given to 'cpuCode'. - RPR\\_MATERIAL\\_NODE\\_USER\\_TEXTURE\\_0...RPR\\_MATERIAL\\_NODE\\_USER\\_TEXTURE\\_3 , RPR\\_CONTEXT\\_USER\\_TEXTURE\\_0...RPR\\_CONTEXT\\_USER\\_TEXTURE\\_3 are deprecated and should only be used with the old Tahoe plugin. - When exporting the RPR scene to RPRS or GLTF, the CPU callback pointer will be lost in the imported scene.
"""
function rprContextSetUserTexture(context, index, gpuCode, cpuCode)
check_error(ccall((:rprContextSetUserTexture, libRadeonProRender64), rpr_status, (rpr_context, rpr_int, Ptr{rpr_char}, Ptr{Cvoid}), context, index, gpuCode, cpuCode))
end
"""
rprContextGetUserTexture(context, index, bufferSizeByte, buffer, size_ret)
get the gpuCode string set by [`rprContextSetUserTexture`](@ref). (API function supported by Northstar only)
"""
function rprContextGetUserTexture(context, index, bufferSizeByte, buffer, size_ret)
check_error(ccall((:rprContextGetUserTexture, libRadeonProRender64), rpr_status, (rpr_context, rpr_int, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), context, index, bufferSizeByte, buffer, size_ret))
end
"""
rprContextSetScene(context, scene)
Set the scene
The scene is a collection of objects and lights along with all the data required to shade those. The scene is used by the context to render the image.
### Parameters
* `context`: The context to set the scene
* `scene`: The scene to set
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextSetScene(context, scene)
check_error(ccall((:rprContextSetScene, libRadeonProRender64), rpr_status, (rpr_context, rpr_scene), context, scene))
end
"""
rprContextGetScene(arg0)
Get the current scene
The scene is a collection of objects and lights along with all the data required to shade those. The scene is used by the context ro render the image.
### Parameters
* `context`: The context to get the scene from
* `out_scene`: Pointer to scene object
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextGetScene(arg0)
out_scene = Ref{rpr_scene}()
check_error(ccall((:rprContextGetScene, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_scene}), arg0, out_scene))
return out_scene[]
end
"""
rprContextSetParameterByKey1u(context, in_input, x)
Set context parameter
Parameters are used to control rendering modes, global sampling and AA settings, etc
### Parameters
* `context`: The context to set the value to
* `in_input`: Param name, can be any RPR\\_CONTEXT\\_* value
* `x,y,z,w`: Parameter value
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextSetParameterByKey1u(context, in_input, x)
check_error(ccall((:rprContextSetParameterByKey1u, libRadeonProRender64), rpr_status, (rpr_context, rpr_context_info, rpr_uint), context, in_input, x))
end
function rprContextSetParameterByKeyPtr(context, in_input, x)
check_error(ccall((:rprContextSetParameterByKeyPtr, libRadeonProRender64), rpr_status, (rpr_context, rpr_context_info, Ptr{Cvoid}), context, in_input, x))
end
function rprContextSetParameterByKey1f(context, in_input, x)
check_error(ccall((:rprContextSetParameterByKey1f, libRadeonProRender64), rpr_status, (rpr_context, rpr_context_info, rpr_float), context, in_input, x))
end
function rprContextSetParameterByKey3f(context, in_input, x, y, z)
check_error(ccall((:rprContextSetParameterByKey3f, libRadeonProRender64), rpr_status, (rpr_context, rpr_context_info, rpr_float, rpr_float, rpr_float), context, in_input, x, y, z))
end
function rprContextSetParameterByKey4f(context, in_input, x, y, z, w)
check_error(ccall((:rprContextSetParameterByKey4f, libRadeonProRender64), rpr_status, (rpr_context, rpr_context_info, rpr_float, rpr_float, rpr_float, rpr_float), context, in_input, x, y, z, w))
end
function rprContextSetParameterByKeyString(context, in_input, value)
check_error(ccall((:rprContextSetParameterByKeyString, libRadeonProRender64), rpr_status, (rpr_context, rpr_context_info, Ptr{rpr_char}), context, in_input, value))
end
"""
rprContextSetInternalParameter4f(context, pluginIndex, paramName, x, y, z, w)
This is an internal/experimental backdoor for RPR developers team.
A classic usage of RPR doesn't require usage of this call. Use this only if you understand what you are doing. It's sending the name/value directly to the plugin without any process of RPR API. the 'paramName' is not related with the parameters of [`rprContextSetParameterByKey4f`](@ref). 'pluginIndex' can be used if the context has more than one plugin - Not Implemented for now, set it to 0.
"""
function rprContextSetInternalParameter4f(context, pluginIndex, paramName, x, y, z, w)
check_error(ccall((:rprContextSetInternalParameter4f, libRadeonProRender64), rpr_status, (rpr_context, rpr_uint, Ptr{rpr_char}, rpr_float, rpr_float, rpr_float, rpr_float), context, pluginIndex, paramName, x, y, z, w))
end
function rprContextSetInternalParameter1u(context, pluginIndex, paramName, x)
check_error(ccall((:rprContextSetInternalParameter1u, libRadeonProRender64), rpr_status, (rpr_context, rpr_uint, Ptr{rpr_char}, rpr_uint), context, pluginIndex, paramName, x))
end
function rprContextSetInternalParameterBuffer(context, pluginIndex, paramName, buffer, bufferSizeByte)
check_error(ccall((:rprContextSetInternalParameterBuffer, libRadeonProRender64), rpr_status, (rpr_context, rpr_uint, Ptr{rpr_char}, Ptr{Cvoid}, Csize_t), context, pluginIndex, paramName, buffer, bufferSizeByte))
end
function rprContextGetInternalParameter4f(context, pluginIndex, paramName, x, y, z, w)
check_error(ccall((:rprContextGetInternalParameter4f, libRadeonProRender64), rpr_status, (rpr_context, rpr_uint, Ptr{rpr_char}, Ptr{rpr_float}, Ptr{rpr_float}, Ptr{rpr_float}, Ptr{rpr_float}), context, pluginIndex, paramName, x, y, z, w))
end
function rprContextGetInternalParameter1u(context, pluginIndex, paramName, x)
check_error(ccall((:rprContextGetInternalParameter1u, libRadeonProRender64), rpr_status, (rpr_context, rpr_uint, Ptr{rpr_char}, Ptr{rpr_uint}), context, pluginIndex, paramName, x))
end
function rprContextGetInternalParameterBuffer(context, pluginIndex, paramName, bufferSizeByte, buffer, size_ret)
check_error(ccall((:rprContextGetInternalParameterBuffer, libRadeonProRender64), rpr_status, (rpr_context, rpr_uint, Ptr{rpr_char}, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), context, pluginIndex, paramName, bufferSizeByte, buffer, size_ret))
end
"""
rprContextRender(context)
Perform evaluation and accumulation of a single sample (or number of AA samples if AA is enabled)
The call is blocking and the image is ready when returned. The context accumulates the samples in order to progressively refine the image and enable interactive response. So each new call to Render refines the resultin image with 1 (or num aa samples) color samples. Call [`rprFrameBufferClear`](@ref) if you want to start rendering new image instead of refining the previous one.
Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_INTERNAL\\_ERROR RPR\\_ERROR\\_MATERIAL\\_STACK\\_OVERFLOW
if you have the RPR\\_ERROR\\_MATERIAL\\_STACK\\_OVERFLOW error, you have created a shader graph with too many nodes. you can check the nodes limit with [`rprContextGetInfo`](@ref)(,RPR\\_CONTEXT\\_MATERIAL\\_STACK\\_SIZE,)
### Parameters
* `context`: The context object
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextRender(context)
check_error(ccall((:rprContextRender, libRadeonProRender64), rpr_status, (rpr_context,), context))
end
"""
rprContextAbortRender(context)
can be called in a different thread to interrupt the rendering then, [`rprContextRender`](@ref) will return RPR\\_ERROR\\_ABORTED instead of RPR\\_SUCCESS
"""
function rprContextAbortRender(context)
check_error(ccall((:rprContextAbortRender, libRadeonProRender64), rpr_status, (rpr_context,), context))
end
"""
rprContextRenderTile(context, xmin, xmax, ymin, ymax)
Perform evaluation and accumulation of a single sample (or number of AA samples if AA is enabled) on the part of the image
The call is blocking and the image is ready when returned. The context accumulates the samples in order to progressively refine the image and enable interactive response. So each new call to Render refines the resultin image with 1 (or num aa samples) color samples. Call [`rprFrameBufferClear`](@ref) if you want to start rendering new image instead of refining the previous one. Possible error codes are:
RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_INTERNAL\\_ERROR
### Parameters
* `context`: The context to use for the rendering
* `xmin`: X coordinate of the top left corner of a tile
* `xmax`: X coordinate of the bottom right corner of a tile
* `ymin`: Y coordinate of the top left corner of a tile
* `ymax`: Y coordinate of the bottom right corner of a tile
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextRenderTile(context, xmin, xmax, ymin, ymax)
check_error(ccall((:rprContextRenderTile, libRadeonProRender64), rpr_status, (rpr_context, rpr_uint, rpr_uint, rpr_uint, rpr_uint), context, xmin, xmax, ymin, ymax))
end
"""
rprContextClearMemory(context)
Clear all video memory used by the context
This function should be called after all context objects have been destroyed. It guarantees that all context memory is freed and returns the context into its initial state. Will be removed later. Possible error codes are:
RPR\\_ERROR\\_INTERNAL\\_ERROR
### Parameters
* `context`: The context to wipe out
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextClearMemory(context)
check_error(ccall((:rprContextClearMemory, libRadeonProRender64), rpr_status, (rpr_context,), context))
end
"""
rprContextCreateImage(context, format, image_desc, data)
Create an image from memory data
Images are used as HDRI maps or inputs for various shading system nodes. Possible error codes are:
RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY RPR\\_ERROR\\_UNSUPPORTED\\_IMAGE\\_FORMAT RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `context`: The context to create image
* `format`: Image format
* `image_desc`: Image layout description
* `data`: Image data in system memory, can be NULL in which case the memory is allocated
* `out_image`: Pointer to image object
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextCreateImage(context, format, image_desc, data)
out_image = Ref{rpr_image}()
check_error(ccall((:rprContextCreateImage, libRadeonProRender64), rpr_status, (rpr_context, rpr_image_format, Ptr{rpr_image_desc}, Ptr{Cvoid}, Ptr{rpr_image}), context, format, image_desc, data, out_image))
return out_image[]
end
"""
rprContextCreateBuffer(context, buffer_desc, data)
Create a buffer from memory data
Buffers are used as arbitrary input for other nodes
RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY RPR\\_ERROR\\_UNSUPPORTED\\_IMAGE\\_FORMAT RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `context`: The context to create image
* `buffer_desc`: Buffer layout description
* `data`: Image data in system memory, can be NULL in which case the memory is allocated
* `out_buffer`: Pointer to buffer object
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextCreateBuffer(context, buffer_desc, data)
out_buffer = Ref{rpr_buffer}()
check_error(ccall((:rprContextCreateBuffer, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_buffer_desc}, Ptr{Cvoid}, Ptr{rpr_buffer}), context, buffer_desc, data, out_buffer))
return out_buffer[]
end
"""
rprContextCreateImageFromFile(context, path)
Create an image from file
Images are used as HDRI maps or inputs for various shading system nodes.
The following image formats are supported: PNG, JPG, TGA, BMP, TIFF, TX(0-mip), HDR, EXR
Possible error codes are:
RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY RPR\\_ERROR\\_UNSUPPORTED\\_IMAGE\\_FORMAT RPR\\_ERROR\\_INVALID\\_PARAMETER RPR\\_ERROR\\_IO\\_ERROR
### Parameters
* `context`: The context to create image
* `path`: NULL terminated path to an image file (can be relative) (for UNICODE, supports UTF-8 encoding)
* `out_image`: Pointer to image object
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextCreateImageFromFile(context, path)
out_image = Ref{rpr_image}()
check_error(ccall((:rprContextCreateImageFromFile, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_char}, Ptr{rpr_image}), context, path, out_image))
return out_image[]
end
"""
rprContextCreateImageFromFileMemory(context, extension, data, dataSizeByte)
similar to [`rprContextCreateImageFromFile`](@ref), except that the file input as a memory buffer extension must look like : ".png" , ".bmp" , ".hdr" , ".exr" , ".jpg" ....
"""
function rprContextCreateImageFromFileMemory(context, extension, data, dataSizeByte)
out_image = Ref{rpr_image}()
check_error(ccall((:rprContextCreateImageFromFileMemory, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_char}, Ptr{Cvoid}, Csize_t, Ptr{rpr_image}), context, extension, data, dataSizeByte, out_image))
return out_image[]
end
"""
rprContextCreateScene(context)
Create a scene
Scene serves as a container for lights and objects.
Possible error codes are:
RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY
### Parameters
* `out_scene`: Pointer to scene object
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextCreateScene(context)
out_scene = Ref{rpr_scene}()
check_error(ccall((:rprContextCreateScene, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_scene}), context, out_scene))
return out_scene[]
end
"""
rprContextCreateInstance(context, shape)
Create an instance of an object
Possible error codes are:
RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `context`: The context to create an instance for
* `shape`: Parent shape for an instance
* `out_instance`: Pointer to instance object
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextCreateInstance(context, shape)
out_instance = Ref{rpr_shape}()
check_error(ccall((:rprContextCreateInstance, libRadeonProRender64), rpr_status, (rpr_context, rpr_shape, Ptr{rpr_shape}), context, shape, out_instance))
return out_instance[]
end
"""
rprContextCreateMesh(context, vertices, num_vertices, vertex_stride, normals, num_normals, normal_stride, texcoords, num_texcoords, texcoord_stride, vertex_indices, vidx_stride, normal_indices, nidx_stride, texcoord_indices, tidx_stride, num_face_vertices, num_faces)
Create a mesh
Radeon ProRender supports mixed meshes consisting of triangles and quads.
Possible error codes are:
RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `vertices`: Pointer to position data (each position is described with 3 [`rpr_float`](@ref) numbers)
* `num_vertices`: Number of entries in position array
* `vertex_stride`: Number of bytes between the beginnings of two successive position entries
* `normals`: Pointer to normal data (each normal is described with 3 [`rpr_float`](@ref) numbers), can be NULL
* `num_normals`: Number of entries in normal array
* `normal_stride`: Number of bytes between the beginnings of two successive normal entries
* `texcoord`: Pointer to texcoord data (each texcoord is described with 2 [`rpr_float`](@ref) numbers), can be NULL
* `num_texcoords`: Number of entries in texcoord array
* `texcoord_stride`: Number of bytes between the beginnings of two successive texcoord entries
* `vertex_indices`: Pointer to an array of vertex indices
* `vidx_stride`: Number of bytes between the beginnings of two successive vertex index entries
* `normal_indices`: Pointer to an array of normal indices
* `nidx_stride`: Number of bytes between the beginnings of two successive normal index entries
* `texcoord_indices`: Pointer to an array of texcoord indices
* `tidx_stride`: Number of bytes between the beginnings of two successive texcoord index entries
* `num_face_vertices`: Pointer to an array of num\\_faces numbers describing number of vertices for each face (can be 3(triangle) or 4(quad))
* `num_faces`: Number of faces in the mesh
* `out_mesh`: Pointer to mesh object
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextCreateMesh(context, vertices, num_vertices, vertex_stride, normals, num_normals, normal_stride, texcoords, num_texcoords, texcoord_stride, vertex_indices, vidx_stride, normal_indices, nidx_stride, texcoord_indices, tidx_stride, num_face_vertices, num_faces)
out_mesh = Ref{rpr_shape}()
check_error(ccall((:rprContextCreateMesh, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_float}, Csize_t, rpr_int, Ptr{rpr_float}, Csize_t, rpr_int, Ptr{rpr_float}, Csize_t, rpr_int, Ptr{rpr_int}, rpr_int, Ptr{rpr_int}, rpr_int, Ptr{rpr_int}, rpr_int, Ptr{rpr_int}, Csize_t, Ptr{rpr_shape}), context, vertices, num_vertices, vertex_stride, normals, num_normals, normal_stride, texcoords, num_texcoords, texcoord_stride, vertex_indices, vidx_stride, normal_indices, nidx_stride, texcoord_indices, tidx_stride, num_face_vertices, num_faces, out_mesh))
return out_mesh[]
end
function rprContextCreateMeshEx(context, vertices, num_vertices, vertex_stride, normals, num_normals, normal_stride, perVertexFlag, num_perVertexFlags, perVertexFlag_stride, numberOfTexCoordLayers, texcoords, num_texcoords, texcoord_stride, vertex_indices, vidx_stride, normal_indices, nidx_stride, texcoord_indices, tidx_stride, num_face_vertices, num_faces)
out_mesh = Ref{rpr_shape}()
check_error(ccall((:rprContextCreateMeshEx, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_float}, Csize_t, rpr_int, Ptr{rpr_float}, Csize_t, rpr_int, Ptr{rpr_int}, Csize_t, rpr_int, rpr_int, Ptr{Ptr{rpr_float}}, Ptr{Csize_t}, Ptr{rpr_int}, Ptr{rpr_int}, rpr_int, Ptr{rpr_int}, rpr_int, Ptr{Ptr{rpr_int}}, Ptr{rpr_int}, Ptr{rpr_int}, Csize_t, Ptr{rpr_shape}), context, vertices, num_vertices, vertex_stride, normals, num_normals, normal_stride, perVertexFlag, num_perVertexFlags, perVertexFlag_stride, numberOfTexCoordLayers, texcoords, num_texcoords, texcoord_stride, vertex_indices, vidx_stride, normal_indices, nidx_stride, texcoord_indices, tidx_stride, num_face_vertices, num_faces, out_mesh))
return out_mesh[]
end
function rprContextCreateMeshEx2(context, vertices, num_vertices, vertex_stride, normals, num_normals, normal_stride, perVertexFlag, num_perVertexFlags, perVertexFlag_stride, numberOfTexCoordLayers, texcoords, num_texcoords, texcoord_stride, vertex_indices, vidx_stride, normal_indices, nidx_stride, texcoord_indices, tidx_stride, num_face_vertices, num_faces, mesh_properties)
out_mesh = Ref{rpr_shape}()
check_error(ccall((:rprContextCreateMeshEx2, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_float}, Csize_t, rpr_int, Ptr{rpr_float}, Csize_t, rpr_int, Ptr{rpr_int}, Csize_t, rpr_int, rpr_int, Ptr{Ptr{rpr_float}}, Ptr{Csize_t}, Ptr{rpr_int}, Ptr{rpr_int}, rpr_int, Ptr{rpr_int}, rpr_int, Ptr{Ptr{rpr_int}}, Ptr{rpr_int}, Ptr{rpr_int}, Csize_t, Ptr{rpr_mesh_info}, Ptr{rpr_shape}), context, vertices, num_vertices, vertex_stride, normals, num_normals, normal_stride, perVertexFlag, num_perVertexFlags, perVertexFlag_stride, numberOfTexCoordLayers, texcoords, num_texcoords, texcoord_stride, vertex_indices, vidx_stride, normal_indices, nidx_stride, texcoord_indices, tidx_stride, num_face_vertices, num_faces, mesh_properties, out_mesh))
return out_mesh[]
end
"""
rprContextCreateCamera(context)
Create a camera
There are several camera types supported by a single [`rpr_camera`](@ref) type. Possible error codes are:
RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY
### Parameters
* `context`: The context to create a camera for
* `out_camera`: Pointer to camera object
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextCreateCamera(context)
out_camera = Ref{rpr_camera}()
check_error(ccall((:rprContextCreateCamera, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_camera}), context, out_camera))
return out_camera[]
end
"""
rprContextCreateFrameBuffer(context, format, fb_desc)
Create framebuffer object
Framebuffer is used to store final rendering result.
Possible error codes are:
RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY
### Parameters
* `context`: The context to create framebuffer
* `format`: Framebuffer format
* `fb_desc`: Framebuffer layout description
* `status`: Pointer to framebuffer object
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprContextCreateFrameBuffer(context, format, fb_desc)
out_fb = Ref{rpr_framebuffer}()
check_error(ccall((:rprContextCreateFrameBuffer, libRadeonProRender64), rpr_status, (rpr_context, rpr_framebuffer_format, Ptr{rpr_framebuffer_desc}, Ptr{rpr_framebuffer}), context, format, fb_desc, out_fb))
return out_fb[]
end
"""
rprContextGetFunctionPtr(context, function_name)
Loads extension function from context
"""
function rprContextGetFunctionPtr(context, function_name)
out_function_ptr = Ref{Ptr{Cvoid}}()
check_error(ccall((:rprContextGetFunctionPtr, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_char}, Ptr{Ptr{Cvoid}}), context, function_name, out_function_ptr))
return out_function_ptr[]
end
"""
rprCameraGetInfo(camera, camera_info, size, data, size_ret)
Query information about a camera
The workflow is usually two-step: query with the data == NULL to get the required buffer size, then query with size\\_ret == NULL to fill the buffer with the data. Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `camera`: The camera to query
* `camera_info`: The type of info to query
* `size`: The size of the buffer pointed by data
* `data`: The buffer to store queried info
* `size_ret`: Returns the size in bytes of the data being queried
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCameraGetInfo(camera, camera_info, size, data, size_ret)
check_error(ccall((:rprCameraGetInfo, libRadeonProRender64), rpr_status, (rpr_camera, rpr_camera_info, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), camera, camera_info, size, data, size_ret))
end
"""
rprCameraSetFocalLength(camera, flength)
Set camera focal length.
### Parameters
* `camera`: The camera to set focal length
* `flength`: Focal length in millimeters, default is 35mm
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCameraSetFocalLength(camera, flength)
check_error(ccall((:rprCameraSetFocalLength, libRadeonProRender64), rpr_status, (rpr_camera, rpr_float), camera, flength))
end
function rprCameraSetMotionTransformCount(camera, transformCount)
check_error(ccall((:rprCameraSetMotionTransformCount, libRadeonProRender64), rpr_status, (rpr_camera, rpr_uint), camera, transformCount))
end
function rprCameraSetMotionTransform(camera, transpose, transform, timeIndex)
check_error(ccall((:rprCameraSetMotionTransform, libRadeonProRender64), rpr_status, (rpr_camera, rpr_bool, Ptr{rpr_float}, rpr_uint), camera, transpose, transform, timeIndex))
end
"""
rprCameraSetFocusDistance(camera, fdist)
Set camera focus distance
### Parameters
* `camera`: The camera to set focus distance
* `fdist`: Focus distance in meters, default is 1m
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCameraSetFocusDistance(camera, fdist)
check_error(ccall((:rprCameraSetFocusDistance, libRadeonProRender64), rpr_status, (rpr_camera, rpr_float), camera, fdist))
end
"""
rprCameraSetTransform(camera, transpose, transform)
Set world transform for the camera
### Parameters
* `camera`: The camera to set transform for
* `transpose`: Determines whether the basis vectors are in columns(false) or in rows(true) of the matrix
* `transform`: Array of 16 [`rpr_float`](@ref) values (row-major form)
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCameraSetTransform(camera, transpose, transform)
check_error(ccall((:rprCameraSetTransform, libRadeonProRender64), rpr_status, (rpr_camera, rpr_bool, Ptr{rpr_float}), camera, transpose, transform))
end
"""
rprCameraSetSensorSize(camera, width, height)
Set sensor size for the camera
Default sensor size is the one corresponding to full frame 36x24mm sensor
### Parameters
* `camera`: The camera to set transform for
* `width`: Sensor width in millimeters
* `height`: Sensor height in millimeters
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCameraSetSensorSize(camera, width, height)
check_error(ccall((:rprCameraSetSensorSize, libRadeonProRender64), rpr_status, (rpr_camera, rpr_float, rpr_float), camera, width, height))
end
"""
rprCameraLookAt(camera, posx, posy, posz, atx, aty, atz, upx, upy, upz)
Set camera transform in lookat form
### Parameters
* `camera`: The camera to set transform for
* `posx`: X component of the position
* `posy`: Y component of the position
* `posz`: Z component of the position
* `atx`: X component of the center point
* `aty`: Y component of the center point
* `atz`: Z component of the center point
* `upx`: X component of the up vector
* `upy`: Y component of the up vector
* `upz`: Z component of the up vector
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCameraLookAt(camera, posx, posy, posz, atx, aty, atz, upx, upy, upz)
check_error(ccall((:rprCameraLookAt, libRadeonProRender64), rpr_status, (rpr_camera, rpr_float, rpr_float, rpr_float, rpr_float, rpr_float, rpr_float, rpr_float, rpr_float, rpr_float), camera, posx, posy, posz, atx, aty, atz, upx, upy, upz))
end
"""
rprCameraSetFStop(camera, fstop)
Set f-stop for the camera
### Parameters
* `camera`: The camera to set f-stop for
* `fstop`: f-stop value in mm^-1, default is FLT\\_MAX
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCameraSetFStop(camera, fstop)
check_error(ccall((:rprCameraSetFStop, libRadeonProRender64), rpr_status, (rpr_camera, rpr_float), camera, fstop))
end
"""
rprCameraSetApertureBlades(camera, num_blades)
Set the number of aperture blades
Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `camera`: The camera to set aperture blades for
* `num_blades`: Number of aperture blades 4 to 32
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCameraSetApertureBlades(camera, num_blades)
check_error(ccall((:rprCameraSetApertureBlades, libRadeonProRender64), rpr_status, (rpr_camera, rpr_uint), camera, num_blades))
end
"""
rprCameraSetExposure(camera, exposure)
Set the exposure of a camera
Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `camera`: The camera to set aperture blades for
* `exposure`: Represents a time length in the same time scale than [`rprShapeSetMotionTransform`](@ref),[`rprCameraSetMotionTransform`](@ref)...
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCameraSetExposure(camera, exposure)
check_error(ccall((:rprCameraSetExposure, libRadeonProRender64), rpr_status, (rpr_camera, rpr_float), camera, exposure))
end
"""
rprCameraSetMode(camera, mode)
Set camera mode
Camera modes include: RPR\\_CAMERA\\_MODE\\_PERSPECTIVE RPR\\_CAMERA\\_MODE\\_ORTHOGRAPHIC RPR\\_CAMERA\\_MODE\\_LATITUDE\\_LONGITUDE\\_360 RPR\\_CAMERA\\_MODE\\_LATITUDE\\_LONGITUDE\\_STEREO RPR\\_CAMERA\\_MODE\\_CUBEMAP RPR\\_CAMERA\\_MODE\\_CUBEMAP\\_STEREO RPR\\_CAMERA\\_MODE\\_FISHEYE
### Parameters
* `camera`: The camera to set mode for
* `mode`: Camera mode, default is RPR\\_CAMERA\\_MODE\\_PERSPECTIVE
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCameraSetMode(camera, mode)
check_error(ccall((:rprCameraSetMode, libRadeonProRender64), rpr_status, (rpr_camera, rpr_camera_mode), camera, mode))
end
"""
rprCameraSetOrthoWidth(camera, width)
Set orthographic view volume width
### Parameters
* `camera`: The camera to set volume width for
* `width`: View volume width in meters, default is 1 meter
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCameraSetOrthoWidth(camera, width)
check_error(ccall((:rprCameraSetOrthoWidth, libRadeonProRender64), rpr_status, (rpr_camera, rpr_float), camera, width))
end
function rprCameraSetFocalTilt(camera, tilt)
check_error(ccall((:rprCameraSetFocalTilt, libRadeonProRender64), rpr_status, (rpr_camera, rpr_float), camera, tilt))
end
function rprCameraSetIPD(camera, ipd)
check_error(ccall((:rprCameraSetIPD, libRadeonProRender64), rpr_status, (rpr_camera, rpr_float), camera, ipd))
end
function rprCameraSetLensShift(camera, shiftx, shifty)
check_error(ccall((:rprCameraSetLensShift, libRadeonProRender64), rpr_status, (rpr_camera, rpr_float, rpr_float), camera, shiftx, shifty))
end
function rprCameraSetTiltCorrection(camera, tiltX, tiltY)
check_error(ccall((:rprCameraSetTiltCorrection, libRadeonProRender64), rpr_status, (rpr_camera, rpr_float, rpr_float), camera, tiltX, tiltY))
end
"""
rprCameraSetOrthoHeight(camera, height)
Set orthographic view volume height
### Parameters
* `camera`: The camera to set volume height for
* `width`: View volume height in meters, default is 1 meter
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCameraSetOrthoHeight(camera, height)
check_error(ccall((:rprCameraSetOrthoHeight, libRadeonProRender64), rpr_status, (rpr_camera, rpr_float), camera, height))
end
"""
rprCameraSetNearPlane(camera, near)
Set near plane of a camera
### Parameters
* `camera`: The camera to set near plane for
* `near`: Near plane distance in meters, default is 0.01f
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCameraSetNearPlane(camera, near)
check_error(ccall((:rprCameraSetNearPlane, libRadeonProRender64), rpr_status, (rpr_camera, rpr_float), camera, near))
end
"""
rprCameraSetPostScale(camera, scale)
Set the post scale of camera ( 2D camera zoom )
### Parameters
* `camera`: The camera to set
* `scale`: post scale value.
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCameraSetPostScale(camera, scale)
check_error(ccall((:rprCameraSetPostScale, libRadeonProRender64), rpr_status, (rpr_camera, rpr_float), camera, scale))
end
"""
rprCameraSetFarPlane(camera, far)
Set far plane of a camera
### Parameters
* `camera`: The camera to set far plane for
* `far`: Far plane distance in meters, default is 100000000.f
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCameraSetFarPlane(camera, far)
check_error(ccall((:rprCameraSetFarPlane, libRadeonProRender64), rpr_status, (rpr_camera, rpr_float), camera, far))
end
"""
rprCameraSetUVDistortion(camera, distortionMap)
Set distorion image for camera
### Parameters
* `camera`: The camera to set UV Distortion for
* `distortionMap`: distorion image
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCameraSetUVDistortion(camera, distortionMap)
check_error(ccall((:rprCameraSetUVDistortion, libRadeonProRender64), rpr_status, (rpr_camera, rpr_image), camera, distortionMap))
end
"""
rprImageGetInfo(image, image_info, size, data, size_ret)
Query information about an image
The workflow is usually two-step: query with the data == NULL to get the required buffer size, then query with size\\_ret == NULL to fill the buffer with the data Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `image`: An image object to query
* `image_info`: The type of info to query
* `size`: The size of the buffer pointed by data
* `data`: The buffer to store queried info
* `size_ret`: Returns the size in bytes of the data being queried
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprImageGetInfo(image, image_info, size, data, size_ret)
check_error(ccall((:rprImageGetInfo, libRadeonProRender64), rpr_status, (rpr_image, rpr_image_info, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), image, image_info, size, data, size_ret))
end
"""
rprImageSetWrap(image, type)
this is DEPRECATED in the Northstar plugin. In this plugin, the wrapping is done inside the RPR\\_MATERIAL\\_NODE\\_IMAGE\\_TEXTURE owning the image, example: [`rprMaterialNodeSetInputUByKey`](@ref)(materialNodeTexture, RPR\\_MATERIAL\\_INPUT\\_WRAP\\_U, RPR\\_IMAGE\\_WRAP\\_TYPE\\_REPEAT);
### Parameters
* `image`: The image to set wrap for
* `type`:
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprImageSetWrap(image, type)
check_error(ccall((:rprImageSetWrap, libRadeonProRender64), rpr_status, (rpr_image, rpr_image_wrap_type), image, type))
end
"""
rprImageSetInternalCompression(image, compressionEnabled)
( Northstar-only feature ) By default, images are compressed by the Northstar renderer. Setting 'compressionEnabled'=0 will disable the compression for the images. For better performance, it's advised to only disable it for textures that need it.
"""
function rprImageSetInternalCompression(image, compressionEnabled)
check_error(ccall((:rprImageSetInternalCompression, libRadeonProRender64), rpr_status, (rpr_image, rpr_uint), image, compressionEnabled))
end
"""
rprImageSetOcioColorspace(image, ocioColorspace)
Set the OCIO Color Space
"""
function rprImageSetOcioColorspace(image, ocioColorspace)
check_error(ccall((:rprImageSetOcioColorspace, libRadeonProRender64), rpr_status, (rpr_image, Ptr{rpr_char}), image, ocioColorspace))
end
"""
rprImageSetUDIM(imageUdimRoot, tileIndex, imageTile)
Set a tile to an UDIM image.
### Parameters
* `imageUdimRoot`: must be an UDIM image ( created with no data: [`rprContextCreateImage`](@ref)(context, {0,RPR\\_COMPONENT\\_TYPE\\_UINT8}, nullptr, nullptr, ); )
* `tileIndex`: a valid UDIM index: 1001 , 1002, 1003 ... 1011, 1012, 1013 ... etc ...
* `imageTile`: a valid classic [`rpr_image`](@ref)
"""
function rprImageSetUDIM(imageUdimRoot, tileIndex, imageTile)
check_error(ccall((:rprImageSetUDIM, libRadeonProRender64), rpr_status, (rpr_image, rpr_uint, rpr_image), imageUdimRoot, tileIndex, imageTile))
end
"""
rprImageSetFilter(image, type)
### Parameters
* `image`: The image to set filter for
* `type`:
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprImageSetFilter(image, type)
check_error(ccall((:rprImageSetFilter, libRadeonProRender64), rpr_status, (rpr_image, rpr_image_filter_type), image, type))
end
"""
rprImageSetGamma(image, type)
### Parameters
* `image`: The image to set gamma for
* `type`:
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprImageSetGamma(image, type)
check_error(ccall((:rprImageSetGamma, libRadeonProRender64), rpr_status, (rpr_image, rpr_float), image, type))
end
"""
rprImageSetMipmapEnabled(image, enabled)
### Parameters
* `image`: The image to set mipmap for
* `enabled`: true (enable) or false (disable)
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprImageSetMipmapEnabled(image, enabled)
check_error(ccall((:rprImageSetMipmapEnabled, libRadeonProRender64), rpr_status, (rpr_image, rpr_bool), image, enabled))
end
"""
rprShapeSetTransform(shape, transpose, transform)
Set shape world transform
### Parameters
* `shape`: The shape to set transform for
* `transpose`: Determines whether the basis vectors are in columns(false) or in rows(true) of the matrix
* `transform`: Array of 16 [`rpr_float`](@ref) values (row-major form)
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetTransform(shape, transpose, transform)
check_error(ccall((:rprShapeSetTransform, libRadeonProRender64), rpr_status, (rpr_shape, rpr_bool, Ptr{rpr_float}), shape, transpose, transform))
end
"""
rprShapeSetVertexValue(in_shape, setIndex, indices, values, indicesCount)
assign custom float value to some vertices of the mesh
example : // indicesSet and values must have the same size [`rpr_int`](@ref) indicesSet[] = {4,0,1,2,3}; [`rpr_float`](@ref) values[] = { 0.8 , 0.1 , 0.0 , 1.0 , 1.0 }; [`rprShapeSetVertexValue`](@ref)(meshC, 0 , indicesSet , values , sizeof(indicesSet)/sizeof(indicesSet[0]) );
setIndex can be between 0 and 3 : we can assign up to 4 floats for each vertex.
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetVertexValue(in_shape, setIndex, indices, values, indicesCount)
check_error(ccall((:rprShapeSetVertexValue, libRadeonProRender64), rpr_status, (rpr_shape, rpr_int, Ptr{rpr_int}, Ptr{rpr_float}, rpr_int), in_shape, setIndex, indices, values, indicesCount))
end
function rprShapeSetPrimvar(in_shape, key, data, floatCount, componentCount, interop)
check_error(ccall((:rprShapeSetPrimvar, libRadeonProRender64), rpr_status, (rpr_shape, rpr_uint, Ptr{rpr_float}, rpr_uint, rpr_uint, rpr_primvar_interpolation_type), in_shape, key, data, floatCount, componentCount, interop))
end
"""
rprShapeSetSubdivisionFactor(shape, factor)
Set shape subdivision
### Parameters
* `shape`: The shape to set subdivision for
* `factor`: Number of subdivision steps to do
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetSubdivisionFactor(shape, factor)
check_error(ccall((:rprShapeSetSubdivisionFactor, libRadeonProRender64), rpr_status, (rpr_shape, rpr_uint), shape, factor))
end
"""
rprShapeSetSubdivisionAutoRatioCap(shape, autoRatioCap)
Enable or Disable the auto ratio cap for subdivision
autoRatioCap is a value from 0.0 to 1.0. autoRatioCap=1.0 means very large polygons, less tessellation. as it goes to 0.0, it does more tessellation. This value is ratio of the largest edge in the screen. Example: If you want to make an edge 10 pixels on 1080p, you need to set 10/1080.
### Parameters
* `shape`: The shape to set
* `autoRatioCap`: 0.0 to 1.0
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetSubdivisionAutoRatioCap(shape, autoRatioCap)
check_error(ccall((:rprShapeSetSubdivisionAutoRatioCap, libRadeonProRender64), rpr_status, (rpr_shape, rpr_float), shape, autoRatioCap))
end
"""
rprShapeSetSubdivisionCreaseWeight(shape, factor)
### Parameters
* `shape`: The shape to set subdivision for
* `factor`:
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetSubdivisionCreaseWeight(shape, factor)
check_error(ccall((:rprShapeSetSubdivisionCreaseWeight, libRadeonProRender64), rpr_status, (rpr_shape, rpr_float), shape, factor))
end
"""
rprShapeAttachRenderLayer(shape, renderLayerString)
### Parameters
* `shape`: The shape to set
* `renderLayerString`: Render layer name to attach
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeAttachRenderLayer(shape, renderLayerString)
check_error(ccall((:rprShapeAttachRenderLayer, libRadeonProRender64), rpr_status, (rpr_shape, Ptr{rpr_char}), shape, renderLayerString))
end
"""
rprShapeDetachRenderLayer(shape, renderLayerString)
### Parameters
* `shape`: The shape to set
* `renderLayerString`: Render layer name to detach
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeDetachRenderLayer(shape, renderLayerString)
check_error(ccall((:rprShapeDetachRenderLayer, libRadeonProRender64), rpr_status, (rpr_shape, Ptr{rpr_char}), shape, renderLayerString))
end
"""
rprLightAttachRenderLayer(light, renderLayerString)
### Parameters
* `light`: The light to set
* `renderLayerString`: Render layer name to attach
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprLightAttachRenderLayer(light, renderLayerString)
check_error(ccall((:rprLightAttachRenderLayer, libRadeonProRender64), rpr_status, (rpr_light, Ptr{rpr_char}), light, renderLayerString))
end
"""
rprLightDetachRenderLayer(light, renderLayerString)
### Parameters
* `light`: The light to set
* `renderLayerString`: Render layer name to detach
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprLightDetachRenderLayer(light, renderLayerString)
check_error(ccall((:rprLightDetachRenderLayer, libRadeonProRender64), rpr_status, (rpr_light, Ptr{rpr_char}), light, renderLayerString))
end
"""
rprShapeSetSubdivisionBoundaryInterop(shape, type)
### Parameters
* `shape`: The shape to set subdivision for
* `type`:
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetSubdivisionBoundaryInterop(shape, type)
check_error(ccall((:rprShapeSetSubdivisionBoundaryInterop, libRadeonProRender64), rpr_status, (rpr_shape, rpr_subdiv_boundary_interfop_type), shape, type))
end
"""
rprShapeAutoAdaptSubdivisionFactor(shape, framebuffer, camera, factor)
Call this function to automatically set the Subdivision Factor depending on the camera position, frame buffer size. You can retrieve the internally computed factor with [`rprShapeGetInfo`](@ref)(...,RPR\\_SHAPE\\_SUBDIVISION\\_FACTOR,...) You have to call this function each time you want to re-adapt the Subdivision Factor : internally the factor will NOT be automatically re-computed when camera/shape/framebuffer changes.
### Parameters
* `shape`: The shape to set subdivision for
* `framebuffer`: frame buffer used for factor adaptation
* `camera`: camera used for factor adaptation
* `factor`: factor to regulate the intensity of adaptation
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeAutoAdaptSubdivisionFactor(shape, framebuffer, camera, factor)
check_error(ccall((:rprShapeAutoAdaptSubdivisionFactor, libRadeonProRender64), rpr_status, (rpr_shape, rpr_framebuffer, rpr_camera, rpr_int), shape, framebuffer, camera, factor))
end
"""
rprShapeSetDisplacementScale(shape, minscale, maxscale)
Set displacement scale
### Parameters
* `shape`: The shape to set subdivision for
* `scale`: The amount of displacement applied
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetDisplacementScale(shape, minscale, maxscale)
check_error(ccall((:rprShapeSetDisplacementScale, libRadeonProRender64), rpr_status, (rpr_shape, rpr_float, rpr_float), shape, minscale, maxscale))
end
"""
rprShapeSetObjectGroupID(shape, objectGroupID)
Set object group ID (mainly for debugging).
### Parameters
* `shape`: The shape to set
* `objectGroupID`: The ID
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetObjectGroupID(shape, objectGroupID)
check_error(ccall((:rprShapeSetObjectGroupID, libRadeonProRender64), rpr_status, (rpr_shape, rpr_uint), shape, objectGroupID))
end
"""
rprShapeSetObjectID(shape, objectID)
Set object ID (mainly for debugging).
### Parameters
* `shape`: The shape to set
* `objectID`: The ID
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetObjectID(shape, objectID)
check_error(ccall((:rprShapeSetObjectID, libRadeonProRender64), rpr_status, (rpr_shape, rpr_uint), shape, objectID))
end
"""
rprShapeSetLightGroupID(shape, lightGroupID)
Set light group ID when shape has an emissive material (mainly for debugging).
### Parameters
* `shape`: The shape to set
* `lightGroupID`: The ID
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetLightGroupID(shape, lightGroupID)
check_error(ccall((:rprShapeSetLightGroupID, libRadeonProRender64), rpr_status, (rpr_shape, rpr_uint), shape, lightGroupID))
end
"""
rprShapeSetLayerMask(shape, layerMask)
Set object rendering layer mask then, use rprContextSetParameter1u(context,"renderLayerMask",mask) in order to render only a group of shape
WARNING: this function is deprecated and will be removed in the future, use [`rprShapeAttachRenderLayer`](@ref)/[`rprShapeDetachRenderLayer`](@ref) and [`rprContextAttachRenderLayer`](@ref)/[`rprContextDetachRenderLayer`](@ref) instead
### Parameters
* `shape`: The shape to set
* `layerMask`: The render mask
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetLayerMask(shape, layerMask)
check_error(ccall((:rprShapeSetLayerMask, libRadeonProRender64), rpr_status, (rpr_shape, rpr_uint), shape, layerMask))
end
"""
rprShapeSetDisplacementMaterial(shape, materialNode)
Set displacement texture
### Parameters
* `shape`: The shape to set subdivision for
* `materialNode`: Displacement texture , as material.
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetDisplacementMaterial(shape, materialNode)
check_error(ccall((:rprShapeSetDisplacementMaterial, libRadeonProRender64), rpr_status, (rpr_shape, rpr_material_node), shape, materialNode))
end
"""
rprShapeSetMaterial(shape, node)
Set shape material
"""
function rprShapeSetMaterial(shape, node)
check_error(ccall((:rprShapeSetMaterial, libRadeonProRender64), rpr_status, (rpr_shape, rpr_material_node), shape, node))
end
"""
rprShapeSetMaterialFaces(shape, node, face_indices, num_faces)
Set shape materials for specific faces
### Parameters
* `shape`: The shape to set the material for
* `node`: The material to set
* `face_indices`:
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetMaterialFaces(shape, node, face_indices, num_faces)
check_error(ccall((:rprShapeSetMaterialFaces, libRadeonProRender64), rpr_status, (rpr_shape, rpr_material_node, Ptr{rpr_int}, Csize_t), shape, node, face_indices, num_faces))
end
"""
rprShapeSetVolumeMaterial(shape, node)
Set shape volume material
"""
function rprShapeSetVolumeMaterial(shape, node)
check_error(ccall((:rprShapeSetVolumeMaterial, libRadeonProRender64), rpr_status, (rpr_shape, rpr_material_node), shape, node))
end
function rprShapeSetMotionTransformCount(shape, transformCount)
check_error(ccall((:rprShapeSetMotionTransformCount, libRadeonProRender64), rpr_status, (rpr_shape, rpr_uint), shape, transformCount))
end
function rprShapeSetMotionTransform(shape, transpose, transform, timeIndex)
check_error(ccall((:rprShapeSetMotionTransform, libRadeonProRender64), rpr_status, (rpr_shape, rpr_bool, Ptr{rpr_float}, rpr_uint), shape, transpose, transform, timeIndex))
end
"""
rprShapeSetVisibilityFlag(shape, visibilityFlag, visible)
Set visibility flag
### Parameters
* `shape`: The shape to set visibility for
* `visibilityFlag`: . one of the visibility flags : RPR\\_SHAPE\\_VISIBILITY\\_PRIMARY\\_ONLY\\_FLAG RPR\\_SHAPE\\_VISIBILITY\\_SHADOW RPR\\_SHAPE\\_VISIBILITY\\_REFLECTION RPR\\_SHAPE\\_VISIBILITY\\_REFRACTION RPR\\_SHAPE\\_VISIBILITY\\_TRANSPARENT RPR\\_SHAPE\\_VISIBILITY\\_DIFFUSE RPR\\_SHAPE\\_VISIBILITY\\_GLOSSY\\_REFLECTION RPR\\_SHAPE\\_VISIBILITY\\_GLOSSY\\_REFRACTION RPR\\_SHAPE\\_VISIBILITY\\_LIGHT RPR\\_SHAPE\\_VISIBILITY\\_RECEIVE\\_SHADOW
* `visible`: set the flag to TRUE or FALSE
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetVisibilityFlag(shape, visibilityFlag, visible)
check_error(ccall((:rprShapeSetVisibilityFlag, libRadeonProRender64), rpr_status, (rpr_shape, rpr_shape_info, rpr_bool), shape, visibilityFlag, visible))
end
"""
rprCurveSetVisibilityFlag(curve, visibilityFlag, visible)
Set visibility flag
### Parameters
* `curve`: The curve to set visibility for
* `visibilityFlag`: . one of the visibility flags : RPR\\_CURVE\\_VISIBILITY\\_PRIMARY\\_ONLY\\_FLAG RPR\\_CURVE\\_VISIBILITY\\_SHADOW RPR\\_CURVE\\_VISIBILITY\\_REFLECTION RPR\\_CURVE\\_VISIBILITY\\_REFRACTION RPR\\_CURVE\\_VISIBILITY\\_TRANSPARENT RPR\\_CURVE\\_VISIBILITY\\_DIFFUSE RPR\\_CURVE\\_VISIBILITY\\_GLOSSY\\_REFLECTION RPR\\_CURVE\\_VISIBILITY\\_GLOSSY\\_REFRACTION RPR\\_CURVE\\_VISIBILITY\\_LIGHT RPR\\_CURVE\\_VISIBILITY\\_RECEIVE\\_SHADOW
* `visible`: set the flag to TRUE or FALSE
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCurveSetVisibilityFlag(curve, visibilityFlag, visible)
check_error(ccall((:rprCurveSetVisibilityFlag, libRadeonProRender64), rpr_status, (rpr_curve, rpr_curve_parameter, rpr_bool), curve, visibilityFlag, visible))
end
"""
rprShapeSetVisibility(shape, visible)
Set visibility flag
This function sets all RPR\\_SHAPE\\_VISIBILITY\\_* flags to the 'visible' argument value Calling [`rprShapeSetVisibilityFlag`](@ref)(xxx,visible); on each flags would lead to the same result.
### Parameters
* `shape`: The shape to set visibility for
* `visible`: Determines if the shape is visible or not
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetVisibility(shape, visible)
check_error(ccall((:rprShapeSetVisibility, libRadeonProRender64), rpr_status, (rpr_shape, rpr_bool), shape, visible))
end
"""
rprLightSetVisibilityFlag(light, visibilityFlag, visible)
Set visibility flag for Light
### Parameters
* `light`: The light to set visibility for
* `visibilityFlag`: one of the visibility flags : - RPR\\_LIGHT\\_VISIBILITY\\_LIGHT
* `visible`: set the flag to TRUE or FALSE
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprLightSetVisibilityFlag(light, visibilityFlag, visible)
check_error(ccall((:rprLightSetVisibilityFlag, libRadeonProRender64), rpr_status, (rpr_light, rpr_light_info, rpr_bool), light, visibilityFlag, visible))
end
"""
rprCurveSetVisibility(curve, visible)
Set visibility flag
This function sets all RPR\\_CURVE\\_VISIBILITY\\_* flags to the 'visible' argument value Calling [`rprCurveSetVisibilityFlag`](@ref)(xxx,visible); on each flags would lead to the same result.
### Parameters
* `curve`: The curve to set visibility for
* `visible`: Determines if the curve is visible or not
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCurveSetVisibility(curve, visible)
check_error(ccall((:rprCurveSetVisibility, libRadeonProRender64), rpr_status, (rpr_curve, rpr_bool), curve, visible))
end
"""
rprShapeSetVisibilityInSpecular(shape, visible)
Set visibility flag for specular refleacted rays
This function sets both RPR\\_SHAPE\\_VISIBILITY\\_REFLECTION and RPR\\_SHAPE\\_VISIBILITY\\_REFRACTION flags to the 'visible' argument value Calling [`rprShapeSetVisibilityFlag`](@ref)(xxx,visible); on those 2 flags would lead to the same result.
### Parameters
* `shape`: The shape to set visibility for
* `visible`: Determines if the shape is visible or not
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetVisibilityInSpecular(shape, visible)
check_error(ccall((:rprShapeSetVisibilityInSpecular, libRadeonProRender64), rpr_status, (rpr_shape, rpr_bool), shape, visible))
end
"""
rprShapeSetShadowCatcher(shape, shadowCatcher)
Set shadow catcher flag
### Parameters
* `shape`: The shape to set shadow catcher flag for
* `shadowCatcher`: Determines if the shape behaves as shadow catcher
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetShadowCatcher(shape, shadowCatcher)
check_error(ccall((:rprShapeSetShadowCatcher, libRadeonProRender64), rpr_status, (rpr_shape, rpr_bool), shape, shadowCatcher))
end
"""
rprShapeSetShadowColor(shape, r, g, b)
Set shadow color
### Parameters
* `shape`: The shape to set shadow color for
* `r`: Red component of the color
* `g`: Green component of the color
* `b`: Blue component of the color
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetShadowColor(shape, r, g, b)
check_error(ccall((:rprShapeSetShadowColor, libRadeonProRender64), rpr_status, (rpr_shape, rpr_float, rpr_float, rpr_float), shape, r, g, b))
end
"""
rprShapeSetReflectionCatcher(shape, reflectionCatcher)
Set Reflection catcher flag
### Parameters
* `shape`: The shape to set Reflection catcher flag for
* `reflectionCatcher`: Determines if the shape behaves as Reflection catcher
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetReflectionCatcher(shape, reflectionCatcher)
check_error(ccall((:rprShapeSetReflectionCatcher, libRadeonProRender64), rpr_status, (rpr_shape, rpr_bool), shape, reflectionCatcher))
end
"""
rprShapeSetContourIgnore(shape, ignoreInContour)
Set 1 if ignore shape in the Contour rendering flag. ( This flag is used only if Contour is enabled )
### Parameters
* `shape`: The shape to set
* `ignoreInContour`: 0 or 1.
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetContourIgnore(shape, ignoreInContour)
check_error(ccall((:rprShapeSetContourIgnore, libRadeonProRender64), rpr_status, (rpr_shape, rpr_bool), shape, ignoreInContour))
end
"""
rprShapeSetEnvironmentLight(shape, envLight)
Set 1 if the shape should be treated as an environment light (finite sphere environment light).
### Parameters
* `shape`: The shape to set
* `envLight`: 0 or 1.
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeSetEnvironmentLight(shape, envLight)
check_error(ccall((:rprShapeSetEnvironmentLight, libRadeonProRender64), rpr_status, (rpr_shape, rpr_bool), shape, envLight))
end
"""
rprShapeMarkStatic(in_shape, in_is_static)
Sets static flag on shape.
Setting such flag will result in marking object as static. Such objects can be processed more efficiently but with some restrictions:
* Static object can't change its properties.
* Static object can't change its transformation.
!!! note
Static flag can be set only before first call to [`rprContextRender`](@ref). By default all objects created as dynamic.
### Parameters
* `in_shape`: shape to set flag on
* `in_is_static`: is object static or not
"""
function rprShapeMarkStatic(in_shape, in_is_static)
check_error(ccall((:rprShapeMarkStatic, libRadeonProRender64), rpr_status, (rpr_shape, rpr_bool), in_shape, in_is_static))
end
"""
rprLightSetTransform(light, transpose, transform)
Set light world transform
### Parameters
* `light`: The light to set transform for
* `transpose`: Determines whether the basis vectors are in columns(false) or in rows(true) of the matrix
* `transform`: Array of 16 [`rpr_float`](@ref) values (row-major form)
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprLightSetTransform(light, transpose, transform)
check_error(ccall((:rprLightSetTransform, libRadeonProRender64), rpr_status, (rpr_light, rpr_bool, Ptr{rpr_float}), light, transpose, transform))
end
"""
rprLightSetGroupId(light, groupId)
Set light group ID. This parameter can be used with RPR\\_AOV\\_LIGHT\\_GROUP0, RPR\\_AOV\\_LIGHT\\_GROUP1, ...
### Parameters
* `light`: The light to set transform for
* `groupId`: -1 to remove the group. or a value between 0 and 3.
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprLightSetGroupId(light, groupId)
check_error(ccall((:rprLightSetGroupId, libRadeonProRender64), rpr_status, (rpr_light, rpr_uint), light, groupId))
end
"""
rprShapeGetInfo(arg0, arg1, arg2, arg3, arg4)
Query information about a shape
The workflow is usually two-step: query with the data == NULL to get the required buffer size, then query with size\\_ret == NULL to fill the buffer with the data Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `shape`: The shape object to query
* `material_info`: The type of info to query
* `size`: The size of the buffer pointed by data
* `data`: The buffer to store queried info
* `size_ret`: Returns the size in bytes of the data being queried
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprShapeGetInfo(arg0, arg1, arg2, arg3, arg4)
check_error(ccall((:rprShapeGetInfo, libRadeonProRender64), rpr_status, (rpr_shape, rpr_shape_info, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), arg0, arg1, arg2, arg3, arg4))
end
"""
rprMeshGetInfo(mesh, mesh_info, size, data, size_ret)
Query information about a mesh
The workflow is usually two-step: query with the data == NULL to get the required buffer size, then query with size\\_ret == NULL to fill the buffer with the data Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `shape`: The mesh to query
* `mesh_info`: The type of info to query
* `size`: The size of the buffer pointed by data
* `data`: The buffer to store queried info
* `size_ret`: Returns the size in bytes of the data being queried
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprMeshGetInfo(mesh, mesh_info, size, data, size_ret)
check_error(ccall((:rprMeshGetInfo, libRadeonProRender64), rpr_status, (rpr_shape, rpr_mesh_info, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), mesh, mesh_info, size, data, size_ret))
end
"""
rprCurveGetInfo(curve, curve_info, size, data, size_ret)
Query information about a Curve
The workflow is usually two-step: query with the data == NULL to get the required buffer size, then query with size\\_ret == NULL to fill the buffer with the data Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `shape`: The Curve to query
* `rpr_curve_parameter`: The type of info to query
* `size`: The size of the buffer pointed by data
* `data`: The buffer to store queried info
* `size_ret`: Returns the size in bytes of the data being queried
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprCurveGetInfo(curve, curve_info, size, data, size_ret)
check_error(ccall((:rprCurveGetInfo, libRadeonProRender64), rpr_status, (rpr_curve, rpr_curve_parameter, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), curve, curve_info, size, data, size_ret))
end
"""
rprHeteroVolumeGetInfo(heteroVol, heteroVol_info, size, data, size_ret)
Query information about a hetero volume
The workflow is usually two-step: query with the data == NULL to get the required buffer size, then query with size\\_ret == NULL to fill the buffer with the data Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `heteroVol`: The heteroVolume to query
* `heteroVol_info`: The type of info to query
* `size`: The size of the buffer pointed by data
* `data`: The buffer to store queried info
* `size_ret`: Returns the size in bytes of the data being queried
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprHeteroVolumeGetInfo(heteroVol, heteroVol_info, size, data, size_ret)
check_error(ccall((:rprHeteroVolumeGetInfo, libRadeonProRender64), rpr_status, (rpr_hetero_volume, rpr_hetero_volume_parameter, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), heteroVol, heteroVol_info, size, data, size_ret))
end
function rprGridGetInfo(grid, grid_info, size, data, size_ret)
check_error(ccall((:rprGridGetInfo, libRadeonProRender64), rpr_status, (rpr_grid, rpr_grid_parameter, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), grid, grid_info, size, data, size_ret))
end
"""
rprBufferGetInfo(buffer, buffer_info, size, data, size_ret)
Query information about a Buffer
The workflow is usually two-step: query with the data == NULL to get the required buffer size, then query with size\\_ret == NULL to fill the buffer with the data Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `buffer`: The heteroVolume to query
* `buffer_info`: The type of info to query
* `size`: The size of the buffer pointed by data
* `data`: The buffer to store queried info
* `size_ret`: Returns the size in bytes of the data being queried
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprBufferGetInfo(buffer, buffer_info, size, data, size_ret)
check_error(ccall((:rprBufferGetInfo, libRadeonProRender64), rpr_status, (rpr_buffer, rpr_buffer_info, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), buffer, buffer_info, size, data, size_ret))
end
"""
rprInstanceGetBaseShape(shape)
Get the parent shape for an instance
Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `shape`: The shape to get a parent shape from
* `status`: RPR\\_SUCCESS in case of success, error code otherwise
### Returns
Shape object
"""
function rprInstanceGetBaseShape(shape)
out_shape = Ref{rpr_shape}()
check_error(ccall((:rprInstanceGetBaseShape, libRadeonProRender64), rpr_status, (rpr_shape, Ptr{rpr_shape}), shape, out_shape))
return out_shape[]
end
"""
rprContextCreatePointLight(context)
Create point light
Create analytic point light represented by a point in space. Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY
### Parameters
* `context`: The context to create a light for
* `status`: RPR\\_SUCCESS in case of success, error code otherwise
### Returns
Light object
"""
function rprContextCreatePointLight(context)
out_light = Ref{rpr_light}()
check_error(ccall((:rprContextCreatePointLight, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_light}), context, out_light))
return out_light[]
end
"""
rprPointLightSetRadiantPower3f(light, r, g, b)
Set radiant power of a point light source
### Parameters
* `r`: R component of a radiant power vector
* `g`: G component of a radiant power vector
* `b`: B component of a radiant power vector
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprPointLightSetRadiantPower3f(light, r, g, b)
check_error(ccall((:rprPointLightSetRadiantPower3f, libRadeonProRender64), rpr_status, (rpr_light, rpr_float, rpr_float, rpr_float), light, r, g, b))
end
"""
rprContextCreateSpotLight(context, light)
Create spot light
Create analytic spot light
Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY
### Parameters
* `context`: The context to create a light for
* `status`: RPR\\_SUCCESS in case of success, error code otherwise
### Returns
Light object
"""
function rprContextCreateSpotLight(context, light)
check_error(ccall((:rprContextCreateSpotLight, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_light}), context, light))
end
function rprContextCreateSphereLight(context, light)
check_error(ccall((:rprContextCreateSphereLight, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_light}), context, light))
end
function rprContextCreateDiskLight(context, light)
check_error(ccall((:rprContextCreateDiskLight, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_light}), context, light))
end
"""
rprSpotLightSetRadiantPower3f(light, r, g, b)
Set radiant power of a spot light source
### Parameters
* `r`: R component of a radiant power vector
* `g`: G component of a radiant power vector
* `b`: B component of a radiant power vector
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSpotLightSetRadiantPower3f(light, r, g, b)
check_error(ccall((:rprSpotLightSetRadiantPower3f, libRadeonProRender64), rpr_status, (rpr_light, rpr_float, rpr_float, rpr_float), light, r, g, b))
end
"""
rprSpotLightSetImage(light, img)
turn this spot-light into a textured light.
'img' can be NULL to disable textured.
"""
function rprSpotLightSetImage(light, img)
check_error(ccall((:rprSpotLightSetImage, libRadeonProRender64), rpr_status, (rpr_light, rpr_image), light, img))
end
"""
rprSphereLightSetRadiantPower3f(light, r, g, b)
Set Power for Sphere Light
### Parameters
* `r`: R component of a radiant power vector
* `g`: G component of a radiant power vector
* `b`: B component of a radiant power vector
### Returns
status RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSphereLightSetRadiantPower3f(light, r, g, b)
check_error(ccall((:rprSphereLightSetRadiantPower3f, libRadeonProRender64), rpr_status, (rpr_light, rpr_float, rpr_float, rpr_float), light, r, g, b))
end
"""
rprSphereLightSetRadius(light, radius)
Set Radius for Sphere Light
### Parameters
* `radius`: Radius to set
### Returns
status RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSphereLightSetRadius(light, radius)
check_error(ccall((:rprSphereLightSetRadius, libRadeonProRender64), rpr_status, (rpr_light, rpr_float), light, radius))
end
"""
rprDiskLightSetRadiantPower3f(light, r, g, b)
Set Power for Disk Light
### Parameters
* `r`: R component of a radiant power vector
* `g`: G component of a radiant power vector
* `b`: B component of a radiant power vector
### Returns
status RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprDiskLightSetRadiantPower3f(light, r, g, b)
check_error(ccall((:rprDiskLightSetRadiantPower3f, libRadeonProRender64), rpr_status, (rpr_light, rpr_float, rpr_float, rpr_float), light, r, g, b))
end
"""
rprDiskLightSetRadius(light, radius)
Set Radius for Disk Light
### Parameters
* `radius`: Radius to set
### Returns
status RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprDiskLightSetRadius(light, radius)
check_error(ccall((:rprDiskLightSetRadius, libRadeonProRender64), rpr_status, (rpr_light, rpr_float), light, radius))
end
"""
rprDiskLightSetAngle(light, angle)
Set Outer Angle for Disk Light
### Parameters
* `angle`: Outer angle in radians
### Returns
status RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprDiskLightSetAngle(light, angle)
check_error(ccall((:rprDiskLightSetAngle, libRadeonProRender64), rpr_status, (rpr_light, rpr_float), light, angle))
end
"""
rprDiskLightSetInnerAngle(light, innerAngle)
Set Inner Angle for Disk Light
### Parameters
* `innerAngle`: Inner angle in radians
### Returns
status RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprDiskLightSetInnerAngle(light, innerAngle)
check_error(ccall((:rprDiskLightSetInnerAngle, libRadeonProRender64), rpr_status, (rpr_light, rpr_float), light, innerAngle))
end
"""
rprSpotLightSetConeShape(light, iangle, oangle)
Set cone shape for a spot light
Spot light produces smooth penumbra in a region between inner and outer circles, the area inside the inner cicrle receives full power while the area outside the outer one is fully in shadow.
### Parameters
* `iangle`: Inner angle of a cone in radians
* `oangle`: Outer angle of a coner in radians, should be greater that or equal to inner angle
### Returns
status RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSpotLightSetConeShape(light, iangle, oangle)
check_error(ccall((:rprSpotLightSetConeShape, libRadeonProRender64), rpr_status, (rpr_light, rpr_float, rpr_float), light, iangle, oangle))
end
"""
rprContextCreateDirectionalLight(context)
Create directional light
Create analytic directional light. Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY
### Parameters
* `context`: The context to create a light for
* `status`: RPR\\_SUCCESS in case of success, error code otherwise
### Returns
light id of a newly created light
"""
function rprContextCreateDirectionalLight(context)
out_light = Ref{rpr_light}()
check_error(ccall((:rprContextCreateDirectionalLight, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_light}), context, out_light))
return out_light[]
end
"""
rprDirectionalLightSetRadiantPower3f(light, r, g, b)
Set radiant power of a directional light source
### Parameters
* `r`: R component of a radiant power vector
* `g`: G component of a radiant power vector
* `b`: B component of a radiant power vector
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprDirectionalLightSetRadiantPower3f(light, r, g, b)
check_error(ccall((:rprDirectionalLightSetRadiantPower3f, libRadeonProRender64), rpr_status, (rpr_light, rpr_float, rpr_float, rpr_float), light, r, g, b))
end
"""
rprDirectionalLightSetShadowSoftnessAngle(light, softnessAngle)
Set softness of shadow produced by the light
### Parameters
* `softnessAngle`: (in Radian) value should be between [ 0 ; pi/4 ]. 0.0 means sharp shadow
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprDirectionalLightSetShadowSoftnessAngle(light, softnessAngle)
check_error(ccall((:rprDirectionalLightSetShadowSoftnessAngle, libRadeonProRender64), rpr_status, (rpr_light, rpr_float), light, softnessAngle))
end
"""
rprContextCreateEnvironmentLight(context)
Create an environment light
Environment light is a light based on lightprobe. Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY
### Parameters
* `context`: The context to create a light for
* `status`: RPR\\_SUCCESS in case of success, error code otherwise
### Returns
Light object
"""
function rprContextCreateEnvironmentLight(context)
out_light = Ref{rpr_light}()
check_error(ccall((:rprContextCreateEnvironmentLight, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_light}), context, out_light))
return out_light[]
end
"""
rprEnvironmentLightSetImage(env_light, image)
Set image for an environment light
Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER RPR\\_ERROR\\_UNSUPPORTED\\_IMAGE\\_FORMAT
### Parameters
* `env_light`: Environment light
* `image`: Image object to set
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprEnvironmentLightSetImage(env_light, image)
check_error(ccall((:rprEnvironmentLightSetImage, libRadeonProRender64), rpr_status, (rpr_light, rpr_image), env_light, image))
end
"""
rprEnvironmentLightSetIntensityScale(env_light, intensity_scale)
Set intensity scale or an env light
### Parameters
* `env_light`: Environment light
* `intensity_scale`: Intensity scale
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprEnvironmentLightSetIntensityScale(env_light, intensity_scale)
check_error(ccall((:rprEnvironmentLightSetIntensityScale, libRadeonProRender64), rpr_status, (rpr_light, rpr_float), env_light, intensity_scale))
end
"""
rprEnvironmentLightAttachPortal(scene, env_light, portal)
Set portal for environment light to accelerate convergence of indoor scenes
Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `env_light`: Environment light
* `portal`: Portal mesh, might have multiple components
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprEnvironmentLightAttachPortal(scene, env_light, portal)
check_error(ccall((:rprEnvironmentLightAttachPortal, libRadeonProRender64), rpr_status, (rpr_scene, rpr_light, rpr_shape), scene, env_light, portal))
end
"""
rprEnvironmentLightDetachPortal(scene, env_light, portal)
Remove portal for environment light.
Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `env_light`: Environment light
* `portal`: Portal mesh, that have been added to light.
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprEnvironmentLightDetachPortal(scene, env_light, portal)
check_error(ccall((:rprEnvironmentLightDetachPortal, libRadeonProRender64), rpr_status, (rpr_scene, rpr_light, rpr_shape), scene, env_light, portal))
end
"""
rprEnvironmentLightSetEnvironmentLightOverride(in_ibl, overrideType, in_iblOverride)
Sets/Gets environment override on IBL
This function sets overrides for different parts of IBL. overrideType argument can take following values:
* RPR\\_ENVIRONMENT\\_LIGHT\\_OVERRIDE\\_REFLECTION
* RPR\\_ENVIRONMENT\\_LIGHT\\_OVERRIDE\\_REFRACTION
* RPR\\_ENVIRONMENT\\_LIGHT\\_OVERRIDE\\_TRANSPARENCY
* RPR\\_ENVIRONMENT\\_LIGHT\\_OVERRIDE\\_BACKGROUND
* RPR\\_ENVIRONMENT\\_LIGHT\\_OVERRIDE\\_IRRADIANCE
### Parameters
* `in_ibl`: image based light created with [`rprContextCreateEnvironmentLight`](@ref)
* `overrideType`: override parameter
* `in_iblOverride`: image based light created with [`rprContextCreateEnvironmentLight`](@ref)
"""
function rprEnvironmentLightSetEnvironmentLightOverride(in_ibl, overrideType, in_iblOverride)
check_error(ccall((:rprEnvironmentLightSetEnvironmentLightOverride, libRadeonProRender64), rpr_status, (rpr_light, rpr_environment_override, rpr_light), in_ibl, overrideType, in_iblOverride))
end
function rprEnvironmentLightGetEnvironmentLightOverride(in_ibl, overrideType)
out_iblOverride = Ref{rpr_light}()
check_error(ccall((:rprEnvironmentLightGetEnvironmentLightOverride, libRadeonProRender64), rpr_status, (rpr_light, rpr_environment_override, Ptr{rpr_light}), in_ibl, overrideType, out_iblOverride))
return out_iblOverride[]
end
"""
rprContextCreateSkyLight(context)
Create sky light
Analytical sky model Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY
### Parameters
* `context`: The context to create a light for
* `status`: RPR\\_SUCCESS in case of success, error code otherwise
### Returns
Light object
"""
function rprContextCreateSkyLight(context)
out_light = Ref{rpr_light}()
check_error(ccall((:rprContextCreateSkyLight, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_light}), context, out_light))
return out_light[]
end
"""
rprSkyLightSetTurbidity(skylight, turbidity)
Set turbidity of a sky light
### Parameters
* `skylight`: Sky light
* `turbidity`: Turbidity value
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSkyLightSetTurbidity(skylight, turbidity)
check_error(ccall((:rprSkyLightSetTurbidity, libRadeonProRender64), rpr_status, (rpr_light, rpr_float), skylight, turbidity))
end
"""
rprSkyLightSetAlbedo(skylight, albedo)
Set albedo of a sky light
### Parameters
* `skylight`: Sky light
* `albedo`: Albedo value
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSkyLightSetAlbedo(skylight, albedo)
check_error(ccall((:rprSkyLightSetAlbedo, libRadeonProRender64), rpr_status, (rpr_light, rpr_float), skylight, albedo))
end
"""
rprSkyLightSetScale(skylight, scale)
Set scale of a sky light
### Parameters
* `skylight`: Sky light
* `scale`: Scale value
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSkyLightSetScale(skylight, scale)
check_error(ccall((:rprSkyLightSetScale, libRadeonProRender64), rpr_status, (rpr_light, rpr_float), skylight, scale))
end
"""
rprSkyLightSetDirection(skylight, x, y, z)
Set the direction of the sky light
### Parameters
* `skylight`: Sky light
* `x`: direction x
* `y`: direction y
* `z`: direction z
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSkyLightSetDirection(skylight, x, y, z)
check_error(ccall((:rprSkyLightSetDirection, libRadeonProRender64), rpr_status, (rpr_light, rpr_float, rpr_float, rpr_float), skylight, x, y, z))
end
"""
rprSkyLightAttachPortal(scene, skylight, portal)
Set portal for sky light to accelerate convergence of indoor scenes
Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `skylight`: Sky light
* `portal`: Portal mesh, might have multiple components
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSkyLightAttachPortal(scene, skylight, portal)
check_error(ccall((:rprSkyLightAttachPortal, libRadeonProRender64), rpr_status, (rpr_scene, rpr_light, rpr_shape), scene, skylight, portal))
end
"""
rprSkyLightDetachPortal(scene, skylight, portal)
Remove portal for Sky light.
Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `env_light`: Sky light
* `portal`: Portal mesh, that have been added to light.
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSkyLightDetachPortal(scene, skylight, portal)
check_error(ccall((:rprSkyLightDetachPortal, libRadeonProRender64), rpr_status, (rpr_scene, rpr_light, rpr_shape), scene, skylight, portal))
end
"""
rprContextCreateIESLight(context, light)
Create IES light
Create IES light
Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY
### Parameters
* `context`: The context to create a light for
* `status`: RPR\\_SUCCESS in case of success, error code otherwise
### Returns
Light object
"""
function rprContextCreateIESLight(context, light)
check_error(ccall((:rprContextCreateIESLight, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_light}), context, light))
end
"""
rprIESLightSetRadiantPower3f(light, r, g, b)
Set radiant power of a IES light source
### Parameters
* `r`: R component of a radiant power vector
* `g`: G component of a radiant power vector
* `b`: B component of a radiant power vector
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprIESLightSetRadiantPower3f(light, r, g, b)
check_error(ccall((:rprIESLightSetRadiantPower3f, libRadeonProRender64), rpr_status, (rpr_light, rpr_float, rpr_float, rpr_float), light, r, g, b))
end
"""
rprIESLightSetImageFromFile(env_light, imagePath, nx, ny)
Set image for an IES light
Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER RPR\\_ERROR\\_UNSUPPORTED\\_IMAGE\\_FORMAT : If the format of the IES file is not supported by Radeon ProRender. RPR\\_ERROR\\_IO\\_ERROR : If the IES image path file doesn't exist.
### Parameters
* `env_light`: Environment light
* `imagePath`: Image path to set (for UNICODE, supports UTF-8 encoding)
* `nx`: resolution X of the IES image
* `ny`: resolution Y of the IES image
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprIESLightSetImageFromFile(env_light, imagePath, nx, ny)
check_error(ccall((:rprIESLightSetImageFromFile, libRadeonProRender64), rpr_status, (rpr_light, Ptr{rpr_char}, rpr_int, rpr_int), env_light, imagePath, nx, ny))
end
"""
rprIESLightSetImageFromIESdata(env_light, iesData, nx, ny)
Set image for an IES light
Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER RPR\\_ERROR\\_UNSUPPORTED\\_IMAGE\\_FORMAT : If the format of the IES data is not supported by Radeon ProRender.
### Parameters
* `env_light`: Environment light
* `iesData`: Image data string defining the IES. null terminated string. IES format.
* `nx`: resolution X of the IES image
* `ny`: resolution Y of the IES image
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprIESLightSetImageFromIESdata(env_light, iesData, nx, ny)
check_error(ccall((:rprIESLightSetImageFromIESdata, libRadeonProRender64), rpr_status, (rpr_light, Ptr{rpr_char}, rpr_int, rpr_int), env_light, iesData, nx, ny))
end
"""
rprLightGetInfo(light, info, size, data, size_ret)
Query information about a light
The workflow is usually two-step: query with the data == NULL to get the required buffer size, then query with size\\_ret == NULL to fill the buffer with the data Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `light`: The light to query
* `light_info`: The type of info to query
* `size`: The size of the buffer pointed by data
* `data`: The buffer to store queried info
* `size_ret`: Returns the size in bytes of the data being queried
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprLightGetInfo(light, info, size, data, size_ret)
check_error(ccall((:rprLightGetInfo, libRadeonProRender64), rpr_status, (rpr_light, rpr_light_info, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), light, info, size, data, size_ret))
end
"""
rprSceneClear(scene)
Remove all objects from a scene Also detaches the camera
A scene is essentially a collection of shapes, lights and volume regions.
### Parameters
* `scene`: The scene to clear
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSceneClear(scene)
check_error(ccall((:rprSceneClear, libRadeonProRender64), rpr_status, (rpr_scene,), scene))
end
"""
rprSceneAttachShape(scene, shape)
Attach a shape to the scene
A scene is essentially a collection of shapes, lights and volume regions.
### Parameters
* `scene`: The scene to attach
* `shape`: The shape to attach
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSceneAttachShape(scene, shape)
check_error(ccall((:rprSceneAttachShape, libRadeonProRender64), rpr_status, (rpr_scene, rpr_shape), scene, shape))
end
"""
rprSceneDetachShape(scene, shape)
Detach a shape from the scene
A scene is essentially a collection of shapes, lights and volume regions.
### Parameters
* `scene`: The scene to dettach from
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSceneDetachShape(scene, shape)
check_error(ccall((:rprSceneDetachShape, libRadeonProRender64), rpr_status, (rpr_scene, rpr_shape), scene, shape))
end
"""
rprSceneAttachHeteroVolume(scene, heteroVolume)
Attach a heteroVolume to the scene
A scene is essentially a collection of shapes, lights and volume regions.
### Parameters
* `scene`: The scene to attach
* `heteroVolume`: The heteroVolume to attach
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSceneAttachHeteroVolume(scene, heteroVolume)
check_error(ccall((:rprSceneAttachHeteroVolume, libRadeonProRender64), rpr_status, (rpr_scene, rpr_hetero_volume), scene, heteroVolume))
end
"""
rprSceneDetachHeteroVolume(scene, heteroVolume)
Detach a heteroVolume from the scene
A scene is essentially a collection of shapes, lights and volume regions.
### Parameters
* `scene`: The scene to dettach from
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSceneDetachHeteroVolume(scene, heteroVolume)
check_error(ccall((:rprSceneDetachHeteroVolume, libRadeonProRender64), rpr_status, (rpr_scene, rpr_hetero_volume), scene, heteroVolume))
end
function rprSceneAttachCurve(scene, curve)
check_error(ccall((:rprSceneAttachCurve, libRadeonProRender64), rpr_status, (rpr_scene, rpr_curve), scene, curve))
end
function rprSceneDetachCurve(scene, curve)
check_error(ccall((:rprSceneDetachCurve, libRadeonProRender64), rpr_status, (rpr_scene, rpr_curve), scene, curve))
end
function rprCurveSetMaterial(curve, material)
check_error(ccall((:rprCurveSetMaterial, libRadeonProRender64), rpr_status, (rpr_curve, rpr_material_node), curve, material))
end
function rprCurveSetTransform(curve, transpose, transform)
check_error(ccall((:rprCurveSetTransform, libRadeonProRender64), rpr_status, (rpr_curve, rpr_bool, Ptr{rpr_float}), curve, transpose, transform))
end
"""
rprContextCreateCurve(context, out_curve, num_controlPoints, controlPointsData, controlPointsStride, num_indices, curveCount, indicesData, radius, textureUV, segmentPerCurve, creationFlag_tapered)
Create a set of curves
A [`rpr_curve`](@ref) is a set of curves A curve is a set of segments A segment is always composed of 4 3D points
### Parameters
* `controlPointsData`: array of [`rpr_float`](@ref)[num\\_controlPoints*3]
* `controlPointsStride`: in most of cases, for contiguous controlPointsData, should be set to 3*sizeof(float)
* `num_indices`: should be set at : 4*(number of segments)
* `indicesData`: array of [`rpr_uint`](@ref)[num\\_indices] . those are indices to the controlPointsData array.
* `radius`: array of N float. if curve is not tapered, N = curveCount. if curve is tapered, N = 2*(number of segments)
* `textureUV`: array of float2[curveCount].
* `segmentPerCurve`: array of [`rpr_int`](@ref)[curveCount]. (number of segments) = sum of each element of this array.
* `creationFlag_tapered`: Set it to 0 by default. Set to 1 if using tapered radius. May be used for other bit field options in the future (so, don't set it to a value > 1 for now.)
"""
function rprContextCreateCurve(context, out_curve, num_controlPoints, controlPointsData, controlPointsStride, num_indices, curveCount, indicesData, radius, textureUV, segmentPerCurve, creationFlag_tapered)
check_error(ccall((:rprContextCreateCurve, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_curve}, Csize_t, Ptr{rpr_float}, rpr_int, Csize_t, rpr_uint, Ptr{rpr_uint}, Ptr{rpr_float}, Ptr{rpr_float}, Ptr{rpr_int}, rpr_uint), context, out_curve, num_controlPoints, controlPointsData, controlPointsStride, num_indices, curveCount, indicesData, radius, textureUV, segmentPerCurve, creationFlag_tapered))
end
"""
rprSceneAttachLight(scene, light)
Attach a light to the scene
A scene is essentially a collection of shapes, lights and volume regions
### Parameters
* `scene`: The scene to attach
* `light`: The light to attach
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSceneAttachLight(scene, light)
check_error(ccall((:rprSceneAttachLight, libRadeonProRender64), rpr_status, (rpr_scene, rpr_light), scene, light))
end
"""
rprSceneDetachLight(scene, light)
Detach a light from the scene
A scene is essentially a collection of shapes, lights and volume regions
### Parameters
* `scene`: The scene to dettach from
* `light`: The light to detach
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSceneDetachLight(scene, light)
check_error(ccall((:rprSceneDetachLight, libRadeonProRender64), rpr_status, (rpr_scene, rpr_light), scene, light))
end
"""
rprSceneSetEnvironmentLight(in_scene, in_light)
Sets/gets environment override as active in scene
### Parameters
* `in_scene`: scene
* `in_light`: ibl
"""
function rprSceneSetEnvironmentLight(in_scene, in_light)
check_error(ccall((:rprSceneSetEnvironmentLight, libRadeonProRender64), rpr_status, (rpr_scene, rpr_light), in_scene, in_light))
end
function rprSceneGetEnvironmentLight(in_scene)
out_light = Ref{rpr_light}()
check_error(ccall((:rprSceneGetEnvironmentLight, libRadeonProRender64), rpr_status, (rpr_scene, Ptr{rpr_light}), in_scene, out_light))
return out_light[]
end
"""
rprSceneGetInfo(scene, info, size, data, size_ret)
Query information about a scene
The workflow is usually two-step: query with the data == NULL to get the required buffer size, then query with size\\_ret == NULL to fill the buffer with the data Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `scene`: The scene to query
* `info`: The type of info to query
* `size`: The size of the buffer pointed by data
* `data`: The buffer to store queried info
* `size_ret`: Returns the size in bytes of the data being queried
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSceneGetInfo(scene, info, size, data, size_ret)
check_error(ccall((:rprSceneGetInfo, libRadeonProRender64), rpr_status, (rpr_scene, rpr_scene_info, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), scene, info, size, data, size_ret))
end
"""
rprSceneSetBackgroundImage(scene, image)
Set background image for the scene which does not affect the scene lighting, it is shown as view-independent rectangular background Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `scene`: The scene to set background for
* `image`: Background image
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSceneSetBackgroundImage(scene, image)
check_error(ccall((:rprSceneSetBackgroundImage, libRadeonProRender64), rpr_status, (rpr_scene, rpr_image), scene, image))
end
"""
rprSceneGetBackgroundImage(scene)
Get background image
### Parameters
* `scene`: The scene to get background image from
* `status`: RPR\\_SUCCESS in case of success, error code otherwise
### Returns
Image object
"""
function rprSceneGetBackgroundImage(scene)
out_image = Ref{rpr_image}()
check_error(ccall((:rprSceneGetBackgroundImage, libRadeonProRender64), rpr_status, (rpr_scene, Ptr{rpr_image}), scene, out_image))
return out_image[]
end
"""
rprSceneSetCameraRight(scene, camera)
Set right camera for the scene
This is the main camera which for rays generation for the scene.
### Parameters
* `scene`: The scene to set camera for
* `camera`: Camera
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSceneSetCameraRight(scene, camera)
check_error(ccall((:rprSceneSetCameraRight, libRadeonProRender64), rpr_status, (rpr_scene, rpr_camera), scene, camera))
end
"""
rprSceneGetCameraRight(scene)
Get right camera for the scene
### Parameters
* `scene`: The scene to get camera for
* `status`: RPR\\_SUCCESS in case of success, error code otherwise
### Returns
camera id for the camera if any, NULL otherwise
"""
function rprSceneGetCameraRight(scene)
out_camera = Ref{rpr_camera}()
check_error(ccall((:rprSceneGetCameraRight, libRadeonProRender64), rpr_status, (rpr_scene, Ptr{rpr_camera}), scene, out_camera))
return out_camera[]
end
"""
rprSceneSetCamera(scene, camera)
Set camera for the scene
This is the main camera which for rays generation for the scene.
### Parameters
* `scene`: The scene to set camera for
* `camera`: Camera
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprSceneSetCamera(scene, camera)
check_error(ccall((:rprSceneSetCamera, libRadeonProRender64), rpr_status, (rpr_scene, rpr_camera), scene, camera))
end
"""
rprSceneGetCamera(scene)
Get camera for the scene
### Parameters
* `scene`: The scene to get camera for
* `status`: RPR\\_SUCCESS in case of success, error code otherwise
### Returns
camera id for the camera if any, NULL otherwise
"""
function rprSceneGetCamera(scene)
out_camera = Ref{rpr_camera}()
check_error(ccall((:rprSceneGetCamera, libRadeonProRender64), rpr_status, (rpr_scene, Ptr{rpr_camera}), scene, out_camera))
return out_camera[]
end
"""
rprFrameBufferGetInfo(framebuffer, info, size, data, size_ret)
Query information about a framebuffer
The workflow is usually two-step: query with the data == NULL to get the required buffer size, then query with size\\_ret == NULL to fill the buffer with the data Possible error codes: RPR\\_ERROR\\_INVALID\\_PARAMETER
### Parameters
* `framebuffer`: Framebuffer object to query
* `info`: The type of info to query
* `size`: The size of the buffer pointed by data
* `data`: The buffer to store queried info
* `size_ret`: Returns the size in bytes of the data being queried
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprFrameBufferGetInfo(framebuffer, info, size, data, size_ret)
check_error(ccall((:rprFrameBufferGetInfo, libRadeonProRender64), rpr_status, (rpr_framebuffer, rpr_framebuffer_info, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), framebuffer, info, size, data, size_ret))
end
"""
rprFrameBufferClear(frame_buffer)
Clear contents of a framebuffer to zero
Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY
The call is blocking and the image is ready when returned
### Parameters
* `frame_buffer`: Framebuffer to clear
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprFrameBufferClear(frame_buffer)
check_error(ccall((:rprFrameBufferClear, libRadeonProRender64), rpr_status, (rpr_framebuffer,), frame_buffer))
end
"""
rprFrameBufferFillWithColor(frame_buffer, r, g, b, a)
Fill contents of a framebuffer with a single color
Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY
The call is blocking and the image is ready when returned. If you want to fill with zeros, it's advised to use [`rprFrameBufferClear`](@ref).
### Parameters
* `frame_buffer`: Framebuffer to clear
* `r,g,b,a`: : the color to fill
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprFrameBufferFillWithColor(frame_buffer, r, g, b, a)
check_error(ccall((:rprFrameBufferFillWithColor, libRadeonProRender64), rpr_status, (rpr_framebuffer, rpr_float, rpr_float, rpr_float, rpr_float), frame_buffer, r, g, b, a))
end
"""
rprFrameBufferSaveToFile(frame_buffer, file_path)
Save frame buffer to file. In case the file format is .bin, the header of the saved file contains [`rpr_framebuffer_desc`](@ref) and [`rpr_framebuffer_format`](@ref) at very begining. The remaining data is raw data of saved framebuffer.
Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY
### Parameters
* `frame_buffer`: Frame buffer to save
* `file_path`: Path to file (for UNICODE, supports UTF-8 encoding)
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprFrameBufferSaveToFile(frame_buffer, file_path)
check_error(ccall((:rprFrameBufferSaveToFile, libRadeonProRender64), rpr_status, (rpr_framebuffer, Ptr{rpr_char}), frame_buffer, file_path))
end
"""
rprFrameBufferSaveToFileEx(framebufferList, framebufferCount, filePath, extraOptions)
Save frame buffer to file
Same that [`rprFrameBufferSaveToFile`](@ref), but more options. A list of frambuffers can be given, they will be saved to a multilayer EXR.
'extraOptions' is not used for now, but may be use in the future to define some export options, like channel configurations, compression... It must be set to NULL for now.
For layer names, the framebuffer names ( from [`rprObjectSetName`](@ref) ) will be used if it exists.
As this function is new ( 2.01.6 SDK ) and still experimental, its arguments may change in the future.
"""
function rprFrameBufferSaveToFileEx(framebufferList, framebufferCount, filePath, extraOptions)
check_error(ccall((:rprFrameBufferSaveToFileEx, libRadeonProRender64), rpr_status, (Ptr{rpr_framebuffer}, rpr_uint, Ptr{rpr_char}, Ptr{Cvoid}), framebufferList, framebufferCount, filePath, extraOptions))
end
"""
rprContextResolveFrameBuffer(context, src_frame_buffer, dst_frame_buffer, noDisplayGamma)
Resolve framebuffer
Convert the input Renderer's native raw format 'src\\_frame\\_buffer' into an output 'dst\\_frame\\_buffer' that can be used for final rendering.
src\\_frame\\_buffer and dst\\_frame\\_buffer should usually have the same dimension/format. src\\_frame\\_buffer is the result of a [`rprContextRender`](@ref) and should be attached to an AOV with [`rprContextSetAOV`](@ref) before the [`rprContextRender`](@ref) call. dst\\_frame\\_buffer should not be attached to any AOV.
The post process that is applied to src\\_frame\\_buffer depends on the AOV it's attached to. So it's important to not modify its AOV ( with [`rprContextSetAOV`](@ref) ) between the [`rprContextRender`](@ref) and [`rprContextResolveFrameBuffer`](@ref) calls.
If noDisplayGamma=FALSE, then RPR\\_CONTEXT\\_DISPLAY\\_GAMMA is applied to the dst\\_frame\\_buffer otherwise, display gamma is not used. It's recommended to set it to FALSE for AOVs representing colors ( like RPR\\_AOV\\_COLOR ) and use TRUE for other AOVs.
"""
function rprContextResolveFrameBuffer(context, src_frame_buffer, dst_frame_buffer, noDisplayGamma)
check_error(ccall((:rprContextResolveFrameBuffer, libRadeonProRender64), rpr_status, (rpr_context, rpr_framebuffer, rpr_framebuffer, rpr_bool), context, src_frame_buffer, dst_frame_buffer, noDisplayGamma))
end
"""
rprMaterialSystemGetInfo(in_material_system, type, in_size, in_data)
Create material system
Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY
"""
function rprMaterialSystemGetInfo(in_material_system, type, in_size, in_data)
out_size = Ref{Csize_t}()
check_error(ccall((:rprMaterialSystemGetInfo, libRadeonProRender64), rpr_status, (rpr_material_system, rpr_material_system_info, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), in_material_system, type, in_size, in_data, out_size))
return out_size[]
end
"""
rprContextCreateMaterialSystem(in_context, type)
Get material system information
Possible error codes: RPR\\_ERROR\\_INTERNAL\\_ERROR
"""
function rprContextCreateMaterialSystem(in_context, type)
out_matsys = Ref{rpr_material_system}()
check_error(ccall((:rprContextCreateMaterialSystem, libRadeonProRender64), rpr_status, (rpr_context, rpr_material_system_type, Ptr{rpr_material_system}), in_context, type, out_matsys))
return out_matsys[]
end
"""
rprMaterialSystemGetSize(in_context)
Create material node
Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY
"""
function rprMaterialSystemGetSize(in_context)
out_size = Ref{rpr_uint}()
check_error(ccall((:rprMaterialSystemGetSize, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_uint}), in_context, out_size))
return out_size[]
end
"""
rprMaterialSystemCreateNode(in_matsys, in_type)
Returns the number of material nodes for a given material system
Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY
"""
function rprMaterialSystemCreateNode(in_matsys, in_type)
out_node = Ref{rpr_material_node}()
check_error(ccall((:rprMaterialSystemCreateNode, libRadeonProRender64), rpr_status, (rpr_material_system, rpr_material_node_type, Ptr{rpr_material_node}), in_matsys, in_type, out_node))
return out_node[]
end
"""
rprMaterialNodeSetID(in_node, id)
set the RPR\\_MATERIAL\\_NODE\\_ID of a material. this ID doesn't need to be unique. this ID can be rendered with the RPR\\_AOV\\_MATERIAL\\_ID AOV - color of this AOV can be customized with [`rprContextSetAOVindexLookup`](@ref).
"""
function rprMaterialNodeSetID(in_node, id)
check_error(ccall((:rprMaterialNodeSetID, libRadeonProRender64), rpr_status, (rpr_material_node, rpr_uint), in_node, id))
end
"""
rprMaterialNodeSetInputNByKey(in_node, in_input, in_input_node)
Connect nodes
Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY
"""
function rprMaterialNodeSetInputNByKey(in_node, in_input, in_input_node)
check_error(ccall((:rprMaterialNodeSetInputNByKey, libRadeonProRender64), rpr_status, (rpr_material_node, rpr_material_node_input, rpr_material_node), in_node, in_input, in_input_node))
end
"""
rprMaterialNodeSetInputFByKey(in_node, in_input, in_value_x, in_value_y, in_value_z, in_value_w)
Set float input value
Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY
"""
function rprMaterialNodeSetInputFByKey(in_node, in_input, in_value_x, in_value_y, in_value_z, in_value_w)
check_error(ccall((:rprMaterialNodeSetInputFByKey, libRadeonProRender64), rpr_status, (rpr_material_node, rpr_material_node_input, rpr_float, rpr_float, rpr_float, rpr_float), in_node, in_input, in_value_x, in_value_y, in_value_z, in_value_w))
end
"""
rprMaterialNodeSetInputDataByKey(in_node, in_input, data, dataSizeByte)
Set generic data input value: Some complex materials inputs may need more than 4-floats or int. This API can be used to set any generic input data. Use it only when documentation requests to do it for specific material inputs.
"""
function rprMaterialNodeSetInputDataByKey(in_node, in_input, data, dataSizeByte)
check_error(ccall((:rprMaterialNodeSetInputDataByKey, libRadeonProRender64), rpr_status, (rpr_material_node, rpr_material_node_input, Ptr{Cvoid}, Csize_t), in_node, in_input, data, dataSizeByte))
end
"""
rprMaterialNodeSetInputUByKey(in_node, in_input, in_value)
Set uint input value
Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY
"""
function rprMaterialNodeSetInputUByKey(in_node, in_input, in_value)
check_error(ccall((:rprMaterialNodeSetInputUByKey, libRadeonProRender64), rpr_status, (rpr_material_node, rpr_material_node_input, rpr_uint), in_node, in_input, in_value))
end
"""
rprMaterialNodeSetInputImageDataByKey(in_node, in_input, image)
Set image input value
Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY
"""
function rprMaterialNodeSetInputImageDataByKey(in_node, in_input, image)
check_error(ccall((:rprMaterialNodeSetInputImageDataByKey, libRadeonProRender64), rpr_status, (rpr_material_node, rpr_material_node_input, rpr_image), in_node, in_input, image))
end
"""
rprMaterialNodeSetInputLightDataByKey(in_node, in_input, light)
Set light input value
"""
function rprMaterialNodeSetInputLightDataByKey(in_node, in_input, light)
check_error(ccall((:rprMaterialNodeSetInputLightDataByKey, libRadeonProRender64), rpr_status, (rpr_material_node, rpr_material_node_input, rpr_light), in_node, in_input, light))
end
"""
rprMaterialNodeSetInputBufferDataByKey(in_node, in_input, buffer)
Set Buffer input value
"""
function rprMaterialNodeSetInputBufferDataByKey(in_node, in_input, buffer)
check_error(ccall((:rprMaterialNodeSetInputBufferDataByKey, libRadeonProRender64), rpr_status, (rpr_material_node, rpr_material_node_input, rpr_buffer), in_node, in_input, buffer))
end
"""
rprMaterialNodeSetInputGridDataByKey(in_node, in_input, grid)
Set Grid input value
"""
function rprMaterialNodeSetInputGridDataByKey(in_node, in_input, grid)
check_error(ccall((:rprMaterialNodeSetInputGridDataByKey, libRadeonProRender64), rpr_status, (rpr_material_node, rpr_material_node_input, rpr_grid), in_node, in_input, grid))
end
function rprMaterialNodeGetInfo(in_node, in_info, in_size, in_data)
out_size = Ref{Csize_t}()
check_error(ccall((:rprMaterialNodeGetInfo, libRadeonProRender64), rpr_status, (rpr_material_node, rpr_material_node_info, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), in_node, in_info, in_size, in_data, out_size))
return out_size[]
end
function rprMaterialNodeGetInputInfo(in_node, in_input_idx, in_info, in_size, in_data)
out_size = Ref{Csize_t}()
check_error(ccall((:rprMaterialNodeGetInputInfo, libRadeonProRender64), rpr_status, (rpr_material_node, rpr_int, rpr_material_node_input_info, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), in_node, in_input_idx, in_info, in_size, in_data, out_size))
return out_size[]
end
function rprContextCreateComposite(context, in_type)
out_composite = Ref{rpr_composite}()
check_error(ccall((:rprContextCreateComposite, libRadeonProRender64), rpr_status, (rpr_context, rpr_composite_type, Ptr{rpr_composite}), context, in_type, out_composite))
return out_composite[]
end
function rprContextCreateLUTFromFile(context, fileLutPath)
out_lut = Ref{rpr_lut}()
check_error(ccall((:rprContextCreateLUTFromFile, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_char}, Ptr{rpr_lut}), context, fileLutPath, out_lut))
return out_lut[]
end
function rprContextCreateLUTFromData(context, lutData)
out_lut = Ref{rpr_lut}()
check_error(ccall((:rprContextCreateLUTFromData, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_char}, Ptr{rpr_lut}), context, lutData, out_lut))
return out_lut[]
end
function rprCompositeSetInputFb(composite, inputName, input)
check_error(ccall((:rprCompositeSetInputFb, libRadeonProRender64), rpr_status, (rpr_composite, Ptr{rpr_char}, rpr_framebuffer), composite, inputName, input))
end
function rprCompositeSetInputC(composite, inputName, input)
check_error(ccall((:rprCompositeSetInputC, libRadeonProRender64), rpr_status, (rpr_composite, Ptr{rpr_char}, rpr_composite), composite, inputName, input))
end
function rprCompositeSetInputLUT(composite, inputName, input)
check_error(ccall((:rprCompositeSetInputLUT, libRadeonProRender64), rpr_status, (rpr_composite, Ptr{rpr_char}, rpr_lut), composite, inputName, input))
end
function rprCompositeSetInput4f(composite, inputName, x, y, z, w)
check_error(ccall((:rprCompositeSetInput4f, libRadeonProRender64), rpr_status, (rpr_composite, Ptr{rpr_char}, Cfloat, Cfloat, Cfloat, Cfloat), composite, inputName, x, y, z, w))
end
function rprCompositeSetInput1u(composite, inputName, value)
check_error(ccall((:rprCompositeSetInput1u, libRadeonProRender64), rpr_status, (rpr_composite, Ptr{rpr_char}, rpr_uint), composite, inputName, value))
end
function rprCompositeSetInputOp(composite, inputName, op)
check_error(ccall((:rprCompositeSetInputOp, libRadeonProRender64), rpr_status, (rpr_composite, Ptr{rpr_char}, rpr_material_node_arithmetic_operation), composite, inputName, op))
end
function rprCompositeCompute(composite, fb)
check_error(ccall((:rprCompositeCompute, libRadeonProRender64), rpr_status, (rpr_composite, rpr_framebuffer), composite, fb))
end
function rprCompositeGetInfo(composite, composite_info, size, data, size_ret)
check_error(ccall((:rprCompositeGetInfo, libRadeonProRender64), rpr_status, (rpr_composite, rpr_composite_info, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), composite, composite_info, size, data, size_ret))
end
"""
rprObjectDelete(obj)
Delete object
[`rprObjectDelete`](@ref)(obj) deletes 'obj' from memory. User has to make sure that 'obj' will not be used anymore after this call.
Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY
"""
function rprObjectDelete(obj)
check_error(ccall((:rprObjectDelete, libRadeonProRender64), rpr_status, (Ptr{Cvoid},), obj))
end
"""
rprObjectSetName(node, name)
Set material node name
### Parameters
* `node`: Node to set the name for
* `name`: NULL terminated string name
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprObjectSetName(node, name)
check_error(ccall((:rprObjectSetName, libRadeonProRender64), rpr_status, (Ptr{Cvoid}, Ptr{rpr_char}), node, name))
end
"""
rprObjectSetCustomPointer(node, customPtr)
Set a custom pointer to an RPR object ( [`rpr_shape`](@ref), [`rpr_image`](@ref) ... ) The custom pointer is not used internally by RPR. The API user only is responsible of it. An example of usage of this pointer is the C++ wrapper ( RadeonProRender.hpp )
### Parameters
* `node`: Node to set the 'custom pointer' for
* `customPtr`: Any 8 bytes value decided by the API user.
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprObjectSetCustomPointer(node, customPtr)
check_error(ccall((:rprObjectSetCustomPointer, libRadeonProRender64), rpr_status, (Ptr{Cvoid}, Ptr{Cvoid}), node, customPtr))
end
"""
rprObjectGetCustomPointer(node, customPtr_out)
outputs the 'custom pointer' set by [`rprObjectSetCustomPointer`](@ref). Equivalent of the calls : [`rprImageGetInfo`](@ref)(image,RPR\\_IMAGE\\_CUSTOM\\_PTR,...) for [`rpr_image`](@ref) , [`rprCameraGetInfo`](@ref)(camera,RPR\\_CAMERA\\_CUSTOM\\_PTR,...) for [`rpr_camera`](@ref) , ...etc...
### Returns
RPR\\_SUCCESS in case of success, error code otherwise
"""
function rprObjectGetCustomPointer(node, customPtr_out)
check_error(ccall((:rprObjectGetCustomPointer, libRadeonProRender64), rpr_status, (Ptr{Cvoid}, Ptr{Ptr{Cvoid}}), node, customPtr_out))
end
"""
rprContextCreatePostEffect(context, type)
Create post effect
Create analytic point light represented by a point in space. Possible error codes: RPR\\_ERROR\\_OUT\\_OF\\_VIDEO\\_MEMORY RPR\\_ERROR\\_OUT\\_OF\\_SYSTEM\\_MEMORY
### Parameters
* `context`: The context to create a light for
* `status`: RPR\\_SUCCESS in case of success, error code otherwise
### Returns
Light object
"""
function rprContextCreatePostEffect(context, type)
out_effect = Ref{rpr_post_effect}()
check_error(ccall((:rprContextCreatePostEffect, libRadeonProRender64), rpr_status, (rpr_context, rpr_post_effect_type, Ptr{rpr_post_effect}), context, type, out_effect))
return out_effect[]
end
function rprContextAttachPostEffect(context, effect)
check_error(ccall((:rprContextAttachPostEffect, libRadeonProRender64), rpr_status, (rpr_context, rpr_post_effect), context, effect))
end
function rprContextDetachPostEffect(context, effect)
check_error(ccall((:rprContextDetachPostEffect, libRadeonProRender64), rpr_status, (rpr_context, rpr_post_effect), context, effect))
end
function rprPostEffectSetParameter1u(effect, name, x)
check_error(ccall((:rprPostEffectSetParameter1u, libRadeonProRender64), rpr_status, (rpr_post_effect, Ptr{rpr_char}, rpr_uint), effect, name, x))
end
function rprPostEffectSetParameter1f(effect, name, x)
check_error(ccall((:rprPostEffectSetParameter1f, libRadeonProRender64), rpr_status, (rpr_post_effect, Ptr{rpr_char}, rpr_float), effect, name, x))
end
function rprPostEffectSetParameter3f(effect, name, x, y, z)
check_error(ccall((:rprPostEffectSetParameter3f, libRadeonProRender64), rpr_status, (rpr_post_effect, Ptr{rpr_char}, rpr_float, rpr_float, rpr_float), effect, name, x, y, z))
end
function rprPostEffectSetParameter4f(effect, name, x, y, z, w)
check_error(ccall((:rprPostEffectSetParameter4f, libRadeonProRender64), rpr_status, (rpr_post_effect, Ptr{rpr_char}, rpr_float, rpr_float, rpr_float, rpr_float), effect, name, x, y, z, w))
end
function rprContextGetAttachedPostEffectCount(context, nb)
check_error(ccall((:rprContextGetAttachedPostEffectCount, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_uint}), context, nb))
end
function rprContextGetAttachedPostEffect(context, i)
out_effect = Ref{rpr_post_effect}()
check_error(ccall((:rprContextGetAttachedPostEffect, libRadeonProRender64), rpr_status, (rpr_context, rpr_uint, Ptr{rpr_post_effect}), context, i, out_effect))
return out_effect[]
end
function rprPostEffectGetInfo(effect, info, size, data, size_ret)
check_error(ccall((:rprPostEffectGetInfo, libRadeonProRender64), rpr_status, (rpr_post_effect, rpr_post_effect_info, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), effect, info, size, data, size_ret))
end
function rprContextCreateGrid(context, out_grid, gridSizeX, gridSizeY, gridSizeZ, indicesList, numberOfIndices, indicesListTopology, gridData, gridDataSizeByte, gridDataTopology___unused)
check_error(ccall((:rprContextCreateGrid, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_grid}, Csize_t, Csize_t, Csize_t, Ptr{Cvoid}, Csize_t, rpr_grid_indices_topology, Ptr{Cvoid}, Csize_t, rpr_uint), context, out_grid, gridSizeX, gridSizeY, gridSizeZ, indicesList, numberOfIndices, indicesListTopology, gridData, gridDataSizeByte, gridDataTopology___unused))
end
function rprContextCreateHeteroVolume(context)
out_heteroVolume = Ref{rpr_hetero_volume}()
check_error(ccall((:rprContextCreateHeteroVolume, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_hetero_volume}), context, out_heteroVolume))
return out_heteroVolume[]
end
function rprShapeSetHeteroVolume(shape, heteroVolume)
check_error(ccall((:rprShapeSetHeteroVolume, libRadeonProRender64), rpr_status, (rpr_shape, rpr_hetero_volume), shape, heteroVolume))
end
function rprHeteroVolumeSetTransform(heteroVolume, transpose, transform)
check_error(ccall((:rprHeteroVolumeSetTransform, libRadeonProRender64), rpr_status, (rpr_hetero_volume, rpr_bool, Ptr{rpr_float}), heteroVolume, transpose, transform))
end
function rprHeteroVolumeSetEmissionGrid(heteroVolume, grid)
check_error(ccall((:rprHeteroVolumeSetEmissionGrid, libRadeonProRender64), rpr_status, (rpr_hetero_volume, rpr_grid), heteroVolume, grid))
end
function rprHeteroVolumeSetDensityGrid(heteroVolume, grid)
check_error(ccall((:rprHeteroVolumeSetDensityGrid, libRadeonProRender64), rpr_status, (rpr_hetero_volume, rpr_grid), heteroVolume, grid))
end
function rprHeteroVolumeSetAlbedoGrid(heteroVolume, grid)
check_error(ccall((:rprHeteroVolumeSetAlbedoGrid, libRadeonProRender64), rpr_status, (rpr_hetero_volume, rpr_grid), heteroVolume, grid))
end
function rprHeteroVolumeSetEmissionLookup(heteroVolume, ptr, n)
check_error(ccall((:rprHeteroVolumeSetEmissionLookup, libRadeonProRender64), rpr_status, (rpr_hetero_volume, Ptr{rpr_float}, rpr_uint), heteroVolume, ptr, n))
end
function rprHeteroVolumeSetDensityLookup(heteroVolume, ptr, n)
check_error(ccall((:rprHeteroVolumeSetDensityLookup, libRadeonProRender64), rpr_status, (rpr_hetero_volume, Ptr{rpr_float}, rpr_uint), heteroVolume, ptr, n))
end
function rprHeteroVolumeSetAlbedoLookup(heteroVolume, ptr, n)
check_error(ccall((:rprHeteroVolumeSetAlbedoLookup, libRadeonProRender64), rpr_status, (rpr_hetero_volume, Ptr{rpr_float}, rpr_uint), heteroVolume, ptr, n))
end
function rprHeteroVolumeSetAlbedoScale(heteroVolume, scale)
check_error(ccall((:rprHeteroVolumeSetAlbedoScale, libRadeonProRender64), rpr_status, (rpr_hetero_volume, rpr_float), heteroVolume, scale))
end
function rprHeteroVolumeSetEmissionScale(heteroVolume, scale)
check_error(ccall((:rprHeteroVolumeSetEmissionScale, libRadeonProRender64), rpr_status, (rpr_hetero_volume, rpr_float), heteroVolume, scale))
end
function rprHeteroVolumeSetDensityScale(heteroVolume, scale)
check_error(ccall((:rprHeteroVolumeSetDensityScale, libRadeonProRender64), rpr_status, (rpr_hetero_volume, rpr_float), heteroVolume, scale))
end
"""
rprLoadMaterialX(in_context, in_matsys, xmlData, incudeData, includeCount, resourcePaths, resourcePathsCount, imageAlreadyCreated_count, imageAlreadyCreated_paths, imageAlreadyCreated_list, listNodesOut, listNodesOut_count, listImagesOut, listImagesOut_count, rootNodeOut, rootDisplacementNodeOut)
Parse a MaterialX XML data, and create the Material graph composed of rpr\\_material\\_nodes, and rpr\\_images
-----> This function is part of the 'Version 1' API - deprecated and replaced by the 'Version 2' API
This function is NOT traced. However internally it's calling some RPR API to build the graph, those calls are traced.
### Parameters
* `xmlData`: null-terminated string of the MaterialX XML data
* `resourcePaths`: and resourcePathsCount list of paths used for image loading
* `imageAlreadyCreated_count`:
* `imageAlreadyCreated_paths`:
* `imageAlreadyCreated_list`: We can specify a list of [`rpr_image`](@ref) that are already loaded. If [`rprLoadMaterialX`](@ref) finds any images in the XML belonging to this list it will use it directly instead of creating it with [`rprContextCreateImageFromFile`](@ref) Those images will not be added in the listImagesOut list. example to add an image in the imageAlreadyCreated list: imageAlreadyCreated\\_count = 1 imageAlreadyCreated\\_paths[0] = "../../Textures/UVCheckerMap13-1024.png" // same path specified in the 'value' of the image in the XML imageAlreadyCreated\\_list[0] = ([`rpr_image`](@ref)) existing\\_rpr\\_image imageAlreadyCreated\\_paths and imageAlreadyCreated\\_list must have the same size.
* `listNodesOut`:
* `listImagesOut`: Thoses 2 buffers are allocated by [`rprLoadMaterialX`](@ref), then you should use [`rprLoadMaterialX_free`](@ref) to free them. they contain the list of rpr\\_material and [`rpr_image`](@ref) created by [`rprLoadMaterialX`](@ref).
* `rootNodeOut`: Closure node in the material graph. Index inside listNodesOut. Could be -1 if an error occured. This is the material that should be assigned to shape: [`rprShapeSetMaterial`](@ref)(shape,listNodesOut[rootNodeOut]);
"""
function rprLoadMaterialX(in_context, in_matsys, xmlData, incudeData, includeCount, resourcePaths, resourcePathsCount, imageAlreadyCreated_count, imageAlreadyCreated_paths, imageAlreadyCreated_list, listNodesOut, listNodesOut_count, listImagesOut, listImagesOut_count, rootNodeOut, rootDisplacementNodeOut)
check_error(ccall((:rprLoadMaterialX, libRadeonProRender64), rpr_status, (rpr_context, rpr_material_system, Ptr{Cchar}, Ptr{Ptr{Cchar}}, Cint, Ptr{Ptr{Cchar}}, Cint, Cint, Ptr{Ptr{Cchar}}, Ptr{rpr_image}, Ptr{Ptr{rpr_material_node}}, Ptr{rpr_uint}, Ptr{Ptr{rpr_image}}, Ptr{rpr_uint}, Ptr{rpr_uint}, Ptr{rpr_uint}), in_context, in_matsys, xmlData, incudeData, includeCount, resourcePaths, resourcePathsCount, imageAlreadyCreated_count, imageAlreadyCreated_paths, imageAlreadyCreated_list, listNodesOut, listNodesOut_count, listImagesOut, listImagesOut_count, rootNodeOut, rootDisplacementNodeOut))
end
"""
rprLoadMaterialX_free(listNodes, listImages)
Free the buffers allocated by [`rprLoadMaterialX`](@ref)
-----> This function is part of the 'Version 1' API - deprecated and replaced by the 'Version 2' API
It does NOT call any [`rprObjectDelete`](@ref) Internally it's doing a simple: delete[] listNodes; delete[] listImages;
This function is NOT traced.
"""
function rprLoadMaterialX_free(listNodes, listImages)
check_error(ccall((:rprLoadMaterialX_free, libRadeonProRender64), rpr_status, (Ptr{rpr_material_node}, Ptr{rpr_image}), listNodes, listImages))
end
"""
rprMaterialXAddResourceFolder(in_context, resourcePath)
Add resource search path.
-----> Note: This function is part of the 'Version 2' MaterialX API that replaces 'Version 1'
example: [`rprMaterialXAddResourceFolder`](@ref)(context, "dependency/"); [`rprMaterialXAddResourceFolder`](@ref)(context, "../imageLib/"); [`rprMaterialXSetFile`](@ref)(material, "materialx.mtlx"); During the parsing of "materialx.mtlx" inside the [`rprMaterialXSetFile`](@ref) call, the folder path "dependency/" , "../imageLib/" will be used to search any files referenced in the materialX
"""
function rprMaterialXAddResourceFolder(in_context, resourcePath)
check_error(ccall((:rprMaterialXAddResourceFolder, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_char}), in_context, resourcePath))
end
"""
rprMaterialXCleanResourceFolder(in_context)
Clean the list created by [`rprMaterialXAddResourceFolder`](@ref) calls
-----> Note: This function is part of the 'Version 2' MaterialX API that replaces 'Version 1'
"""
function rprMaterialXCleanResourceFolder(in_context)
check_error(ccall((:rprMaterialXCleanResourceFolder, libRadeonProRender64), rpr_status, (rpr_context,), in_context))
end
"""
rprMaterialXAddDependencyMtlx(in_context, resourcePath)
Add a dependency Mtlx file.
-----> Note: This function is part of the 'Version 2' MaterialX API that replaces 'Version 1'
example: [`rprMaterialXAddDependencyMtlx`](@ref)(context, "standard\\_surface.mtlx"); [`rprMaterialXSetFile`](@ref)(material, "materialx.mtlx"); During the parsing of "materialx.mtlx" inside the [`rprMaterialXSetFile`](@ref) call, standard\\_surface.mtlx is also parsed and used as a dependancy file.
"""
function rprMaterialXAddDependencyMtlx(in_context, resourcePath)
check_error(ccall((:rprMaterialXAddDependencyMtlx, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_char}), in_context, resourcePath))
end
"""
rprMaterialXAddDependencyMtlxAsBuffer(in_context, buffer, bufferSize)
Add a dependency Mtlx file. Same than [`rprMaterialXAddDependencyMtlx`](@ref), but input a file buffer instead of the file.
-----> Note: This function is part of the 'Version 2' MaterialX API that replaces 'Version 1'
'buffer' represents the content of a XML string defining the MaterialX material. The size of the buffer is defined by 'bufferSize', not by a null-terminated character.
example: [`rprMaterialXAddDependencyMtlxAsBuffer`](@ref)(context, inbuffer, size); [`rprMaterialXSetFile`](@ref)(material, "materialx.mtlx"); During the parsing of "materialx.mtlx" inside the [`rprMaterialXSetFile`](@ref) call, 'inbuffer' is also parsed and used as a dependancy file.
"""
function rprMaterialXAddDependencyMtlxAsBuffer(in_context, buffer, bufferSize)
check_error(ccall((:rprMaterialXAddDependencyMtlxAsBuffer, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_char}, Csize_t), in_context, buffer, bufferSize))
end
"""
rprMaterialXCleanDependencyMtlx(in_context)
Clean the list created by [`rprMaterialXAddDependencyMtlx`](@ref) / [`rprMaterialXAddDependencyMtlxAsBuffer`](@ref) calls
-----> Note: This function is part of the 'Version 2' MaterialX API that replaces 'Version 1'
"""
function rprMaterialXCleanDependencyMtlx(in_context)
check_error(ccall((:rprMaterialXCleanDependencyMtlx, libRadeonProRender64), rpr_status, (rpr_context,), in_context))
end
"""
rprMaterialXAddPreloadedImage(in_context, imgPath, img)
Add a pre-loaded image to the MaterialX creation.
-----> Note: This function is part of the 'Version 2' MaterialX API that replaces 'Version 1'
example: [`rprMaterialXAddPreloadedImage`](@ref)(context, "images/back.png" , imgA); [`rprMaterialXAddPreloadedImage`](@ref)(context, "images/skin.png" , imgB); [`rprMaterialXSetFile`](@ref)(material, "materialx.mtlx"); During the parsing of "materialx.mtlx" inside the [`rprMaterialXSetFile`](@ref) call, if an image uses the exact path "images/back.png" or "images/skin.png" , then [`rprMaterialXSetFile`](@ref) will use imgA/imgB instead of creation the image itself.
"""
function rprMaterialXAddPreloadedImage(in_context, imgPath, img)
check_error(ccall((:rprMaterialXAddPreloadedImage, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_char}, rpr_image), in_context, imgPath, img))
end
"""
rprMaterialXCleanPreloadedImages(in_context)
Clean the map created by [`rprMaterialXAddPreloadedImage`](@ref) calls.
-----> Note: This function is part of the 'Version 2' MaterialX API that replaces 'Version 1'
"""
function rprMaterialXCleanPreloadedImages(in_context)
check_error(ccall((:rprMaterialXCleanPreloadedImages, libRadeonProRender64), rpr_status, (rpr_context,), in_context))
end
"""
rprMaterialXSetFile(material, xmlPath)
Assign the materialX file to a RPR material.
-----> Note: This function is part of the 'Version 2' MaterialX API that replaces 'Version 1'
The material must be created as RPR\\_MATERIAL\\_NODE\\_MATX type.
"""
function rprMaterialXSetFile(material, xmlPath)
check_error(ccall((:rprMaterialXSetFile, libRadeonProRender64), rpr_status, (rpr_material_node, Ptr{rpr_char}), material, xmlPath))
end
"""
rprMaterialXSetFileAsBuffer(material, buffer, bufferSize)
Same that [`rprMaterialXSetFile`](@ref) but input a file buffer instead of the file.
-----> Note: This function is part of the 'Version 2' MaterialX API that replaces 'Version 1'
'buffer' represents the content of a XML string defining the MaterialX material. The size of the buffer is defined by 'bufferSize', not by a null-terminated character.
"""
function rprMaterialXSetFileAsBuffer(material, buffer, bufferSize)
check_error(ccall((:rprMaterialXSetFileAsBuffer, libRadeonProRender64), rpr_status, (rpr_material_node, Ptr{rpr_char}, Csize_t), material, buffer, bufferSize))
end
"""
rprMaterialXGetLoaderMessages(in_context, size, data, size_ret)
Return the Warning/Error messages from the last MaterialX Loading. This function helps to debug. If [`rprMaterialXSetFile`](@ref)/[`rprMaterialXSetFileAsBuffer`](@ref) fails, it's a good practice to call [`rprMaterialXGetLoaderMessages`](@ref) just after.
'size' is the size of allocated 'data' buffer. 'data' can be nullptr if we only want to get 'size\\_ret'. 'size\\_ret' is the actual size of the out buffer - can be nullptr.
"""
function rprMaterialXGetLoaderMessages(in_context, size, data, size_ret)
check_error(ccall((:rprMaterialXGetLoaderMessages, libRadeonProRender64), rpr_status, (rpr_context, Csize_t, Ptr{Cvoid}, Ptr{Csize_t}), in_context, size, data, size_ret))
end
"""
rprMaterialXBindGeomPropToPrimvar(in_context, geompropvalue, key)
In MaterialX, Geompropvalue are referenced as strings, example: input name="geomprop" type="string" value="UVset01" We can map this MaterialX Geompropvalue to a RadeonProRender Primvar, example: [`rprMaterialXBindGeomPropToPrimvar`](@ref)(context, "UVset01", 100 ); In this example, the materialX "UVset01" will be used as the RadeonProRender Primvar key=100 ( created with [`rprShapeSetPrimvar`](@ref) ) Internally this is a map from geompropvalue to key, meaning a geompropvalue only has 1 unique key, but 1 key can have several geompropvalue.
"""
function rprMaterialXBindGeomPropToPrimvar(in_context, geompropvalue, key)
check_error(ccall((:rprMaterialXBindGeomPropToPrimvar, libRadeonProRender64), rpr_status, (rpr_context, Ptr{rpr_char}, rpr_uint), in_context, geompropvalue, key))
end
const rpr_GLuint = Cuint
const rpr_GLint = Cint
const rpr_GLenum = Cuint
const rpr_gl_object_type = rpr_uint
const rpr_gl_texture_info = rpr_uint
const rpr_gl_platform_info = rpr_uint
function rprContextCreateFramebufferFromGLTexture2D(context, target, miplevel, texture)
out_fb = Ref{rpr_framebuffer}()
check_error(ccall((:rprContextCreateFramebufferFromGLTexture2D, libRadeonProRender64), rpr_status, (rpr_context, rpr_GLenum, rpr_GLint, rpr_GLuint, Ptr{rpr_framebuffer}), context, target, miplevel, texture, out_fb))
return out_fb[]
end
const RPR_VERSION_MAJOR = 3
const RPR_VERSION_MINOR = 1
const RPR_VERSION_REVISION = 2
const RPR_VERSION_BUILD = 0xd1cb11d8
const RPR_VERSION_MAJOR_MINOR_REVISION = 0x00300102
const RPR_API_VERSION = RPR_VERSION_MAJOR_MINOR_REVISION
const RPR_API_VERSION_MINOR = RPR_VERSION_BUILD
const RPR_OBJECT_NAME = 0x00777777
const RPR_OBJECT_UNIQUE_ID = 0x00777778
const RPR_OBJECT_CUSTOM_PTR = 0x00777779
const RPR_INSTANCE_PARENT_SHAPE = 0x1601
const RPR_FALSE = Cuint(0)
const RPR_TRUE = Cuint(1)
const RPR_INVALID_GL_SHAREGROUP_REFERENCE_KHR = -1000
const RPR_GL_CONTEXT_KHR = 0x2001
const RPR_EGL_DISPLAY_KHR = 0x2002
const RPR_GLX_DISPLAY_KHR = 0x2003
const RPR_WGL_HDC_KHR = 0x2004
const RPR_CGL_SHAREGROUP_KHR = 0x2005
# exports
const PREFIXES = ["RPR", "rpr"]
for name in names(@__MODULE__; all=true), prefix in PREFIXES
if startswith(string(name), prefix)
@eval export $name
end
end
end # module
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 654 | module RadeonProRender
using GeometryBasics
using Colors
using CEnum
using RadeonProRender_jll
using Printf
using Pkg.Artifacts
assetpath(paths...) = normpath(joinpath(@__DIR__, "..", "assets", paths...))
include("LibRPR.jl")
using .RPR
include("highlevel-api.jl")
include("materials.jl")
export set!
export setradiantpower!
export setintensityscale!
export setportal!
export setalbedo!
export setturbidity!
export setscale!
export clear!
export transform!
export layeredshader
export TileIterator
export set_standard_tonemapping!
export setsubdivisions!
export setdisplacementscale!
export lookat!
export Tahoe, Northstar, Hybrid, HybridPro
end
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 28865 | """
All RadeonProRender types inherit from RPRObject
"""
abstract type RPRObject{PtrType} end
Base.pointer(object::RPRObject) = object.pointer
Base.cconvert(::Type{T}, object::RPRObject{T}) where {T<:Ptr} = object
Base.unsafe_convert(::Type{T}, object::RPRObject{T}) where {T} = pointer(object)
function Base.unsafe_convert(::Type{Ptr{Nothing}}, object::RPRObject{T}) where {T}
return Base.unsafe_convert(Ptr{Nothing}, pointer(object))
end
function release(object::RPRObject)
remove_from_context!(object.parent, object)
if object.pointer != C_NULL
rprObjectDelete(object)
end
object.pointer = C_NULL
if hasproperty(object, :referenced_memory)
object.referenced_memory = nothing
end
return
end
@enum PluginType Tahoe Northstar Hybrid HybridPro
using Libdl
function plugin_path(plugin::PluginType)
if plugin == Tahoe
return RadeonProRender_jll.libTahoe64
elseif plugin == Northstar
return RadeonProRender_jll.libNorthstar64
end
Sys.isapple() && error("Only Tahoe and Northstar are supported")
path_base = dirname(RadeonProRender_jll.libNorthstar64)
# Hybrid isn't currently part of Binarybuilder products, since its missing on Apple
if plugin == Hybrid
return joinpath(path_base, "Hybrid.$(Libdl.dlext)")
elseif plugin == HybridPro
return joinpath(path_base, "HybridPro.$(Libdl.dlext)")
end
end
# Aliases for the incredibly long creation flag names
const GPU0 = RPR_CREATION_FLAGS_ENABLE_GPU0
const GPU1 = RPR_CREATION_FLAGS_ENABLE_GPU1
const GPU2 = RPR_CREATION_FLAGS_ENABLE_GPU2
const GPU3 = RPR_CREATION_FLAGS_ENABLE_GPU3
const CPU = RPR_CREATION_FLAGS_ENABLE_CPU
const GL_INTEROP = RPR_CREATION_FLAGS_ENABLE_GL_INTEROP
const GPU4 = RPR_CREATION_FLAGS_ENABLE_GPU4
const GPU5 = RPR_CREATION_FLAGS_ENABLE_GPU5
const GPU6 = RPR_CREATION_FLAGS_ENABLE_GPU6
const GPU7 = RPR_CREATION_FLAGS_ENABLE_GPU7
const METAL = RPR_CREATION_FLAGS_ENABLE_METAL
const GPU8 = RPR_CREATION_FLAGS_ENABLE_GPU8
const GPU9 = RPR_CREATION_FLAGS_ENABLE_GPU9
const GPU10 = RPR_CREATION_FLAGS_ENABLE_GPU10
const GPU11 = RPR_CREATION_FLAGS_ENABLE_GPU11
const GPU12 = RPR_CREATION_FLAGS_ENABLE_GPU12
const GPU13 = RPR_CREATION_FLAGS_ENABLE_GPU13
const GPU14 = RPR_CREATION_FLAGS_ENABLE_GPU14
const GPU15 = RPR_CREATION_FLAGS_ENABLE_GPU15
const HIP = RPR_CREATION_FLAGS_ENABLE_HIP
const OPENCL = RPR_CREATION_FLAGS_ENABLE_OPENCL
const DEBUG = RPR_CREATION_FLAGS_ENABLE_DEBUG
mutable struct Context <: RPRObject{rpr_context}
pointer::rpr_context
objects::Base.IdSet{RPRObject}
plugin::PluginType
function Context(plugin::PluginType, creation_flags, singleton=true, cache_path=C_NULL)
id = RPR.rprRegisterPlugin(plugin_path(plugin))
@assert(id != -1)
plugin_ids = [id]
if plugin == Northstar
hipbin = artifact"hipbin"
GC.@preserve hipbin begin
binpath_ptr = convert(Ptr{Cvoid}, UInt64(RPR.RPR_CONTEXT_PRECOMPILED_BINARY_PATH))
props = rpr_context_properties[binpath_ptr, pointer(hipbin), convert(Ptr{Cvoid}, 0)]
ctx_ptr = RPR.rprCreateContext(RPR.RPR_API_VERSION, plugin_ids, 1, creation_flags, props,
cache_path)
end
else
# No hip needed here
ctx_ptr = RPR.rprCreateContext(RPR.RPR_API_VERSION, plugin_ids, 1, creation_flags, C_NULL, cache_path)
end
RPR.rprContextSetActivePlugin(ctx_ptr, id)
ctx = new(ctx_ptr, Base.IdSet{RPRObject}(), plugin)
if singleton
if isassigned(ACTIVE_CONTEXT)
@info("releasing old context")
release(ACTIVE_CONTEXT[])
end
ACTIVE_CONTEXT[] = ctx
end
return ctx
end
end
const ACTIVE_CONTEXT = Base.RefValue{Context}()
get_context(object::RPRObject) = get_context(object.parent)
get_context(context::Context) = context
function add_to_context!(contextlike::RPRObject, object::RPRObject)
return push!(get_context(contextlike).objects, object)
end
function remove_from_context!(contextlike::RPRObject, object::RPRObject)
return delete!(get_context(contextlike).objects, object)
end
"""
Context()
Empty constructor, defaults to using opencl, GPU0 and Tahoe as the rendering plugin.
* `resource::rpr_creation_flags_t = RPR_CREATION_FLAGS_ENABLE_GPU0`
* `plugin::PluginType=Northstar`: can be Tahoe, Northstar or Hybrid or HybridPro. Everything is tested with Northstar, which is a complete rewrite of Tahoe. Hybrid is for real time rendering and only supports Uber material.
* `singleton = true`: set to true, to only allow one context at the same time. This is useful, to immediately free all old resources when creating a new context, instead of relying on the GC.
"""
function Context(; plugin=Northstar, resource=RPR_CREATION_FLAGS_ENABLE_GPU0, singleton=true)
return Context(plugin, resource, singleton)
end
"""
Wraps a RadeonProRender type into a gc registered higher level type.
arguments:
`name`: name of the Julia type
`typ`: type of the RadeonProRender object
`target`: RadeonProRender constructor function
`args`: arguments to constructor function
`super` Julia super type
"""
macro rpr_wrapper_type(name, typ, target, args, super)
argnames = args.args
parent = argnames[1]
expr = quote
mutable struct $name{PT} <: $super{$typ}
pointer::$typ
parent::PT
$name(pointer::$typ, parent::PT) where {PT} = new{PT}(pointer, parent)
function $name($(argnames...))
ptr = $target($(argnames...))
object = new{typeof($parent)}(ptr, $parent)
add_to_context!($parent, object)
return object
end
end
end
return esc(expr)
end
function release(context::Context)
if context.pointer == C_NULL
@assert isempty(context.objects)
return
end
scenes = Scene[]
for object in copy(context.objects)
if object isa Scene
push!(scenes, object)
else
release(object)
end
end
empty!(context.objects)
foreach(s -> (rprSceneClear(s); release(s)), scenes)
empty!(scenes)
rprContextClearMemory(context)
rprObjectDelete(context)
context.pointer = C_NULL
return
end
@rpr_wrapper_type MaterialSystem rpr_material_system rprContextCreateMaterialSystem (context, typ) RPRObject
@rpr_wrapper_type MaterialNode rpr_material_node rprMaterialSystemCreateNode (matsystem, typ) RPRObject
@rpr_wrapper_type Camera rpr_camera rprContextCreateCamera (context,) RPRObject
@rpr_wrapper_type Scene rpr_scene rprContextCreateScene (context,) RPRObject
@rpr_wrapper_type PostEffect rpr_post_effect rprContextCreatePostEffect (context, type) RPRObject
function set!(pe::PostEffect, param::String, x::Number)
return rprPostEffectSetParameter1f(pe, param, x)
end
mutable struct VoxelGrid <: RPRObject{rpr_grid}
pointer::rpr_grid
parent::Context
referenced_memory::Any
end
function VoxelGrid(context::Context, nx, ny, nz, grid_values::AbstractArray, grid_indices::AbstractArray)
grid_ptr = Ref{rpr_grid}()
grid_indices = convert(Vector{UInt64}, vec(grid_indices))
valuesf0 = convert(Vector{Float32}, vec(grid_values))
rprContextCreateGrid(context, grid_ptr, nx, ny, nz, grid_indices, length(grid_indices),
RPR.RPR_GRID_INDICES_TOPOLOGY_I_U64, valuesf0, sizeof(valuesf0), 0)
grid = VoxelGrid(grid_ptr[], context, (valuesf0, grid_indices))
add_to_context!(context, grid)
return grid
end
function VoxelGrid(context, values::AbstractArray{<:Number,3})
indices = UInt64.((1:length(values)) .- 1)
return VoxelGrid(context, size(values)..., values, indices)
end
mutable struct Curve <: RPRObject{rpr_curve}
pointer::rpr_curve
parent::Context
referenced_memory::Any
end
function Curve(context::Context, control_points::AbstractVector, indices::AbstractVector,
radius::AbstractVector, uvs::AbstractVector, segments_per_curve::AbstractVector,
creationFlag_tapered=0)
curve_ref = Ref{rpr_curve}()
control_pointsf0 = convert(Vector{Point3f}, control_points)
indices_i = convert(Vector{RPR.rpr_int}, indices)
segments_per_curve_i = convert(Vector{RPR.rpr_int}, segments_per_curve)
uvs_f0 = convert(Vector{Vec2f}, uvs)
radiusf0 = convert(Vector{Float32}, radius)
rprContextCreateCurve(context, curve_ref, length(control_pointsf0), control_pointsf0, sizeof(Point3f),
length(indices_i), length(segments_per_curve_i), indices_i, radiusf0, uvs_f0,
segments_per_curve_i, creationFlag_tapered)
curve = Curve(curve_ref[], context, (control_pointsf0, indices_i, segments_per_curve_i, uvs_f0, radiusf0))
add_to_context!(context, curve)
return curve
end
@rpr_wrapper_type HeteroVolume rpr_hetero_volume rprContextCreateHeteroVolume (context,) RPRObject
function set_albedo_lookup!(volume::HeteroVolume, colors::AbstractVector)
return RPR.rprHeteroVolumeSetAlbedoLookup(volume, convert(Vector{RGB{Float32}}, colors), length(colors))
end
function set_albedo_grid!(volume::HeteroVolume, albedo::VoxelGrid)
return RPR.rprHeteroVolumeSetAlbedoGrid(volume, albedo)
end
function set_density_lookup!(volume::HeteroVolume, density::AbstractVector)
return RPR.rprHeteroVolumeSetDensityLookup(volume, convert(Vector{Vec3f}, density), length(density))
end
function set_density_grid!(volume::HeteroVolume, density::VoxelGrid)
return RPR.rprHeteroVolumeSetDensityGrid(volume, density)
end
function Base.push!(scene::Scene, volume::HeteroVolume)
return rprSceneAttachHeteroVolume(scene, volume)
end
mutable struct Shape <: RPRObject{rpr_shape}
pointer::rpr_shape
parent::Context
referenced_arrays::Any
end
function set!(shape::Shape, volume::HeteroVolume)
return rprShapeSetHeteroVolume(shape, volume)
end
"""
Abstract AbstractLight Type
"""
abstract type AbstractLight{PtrType} <: RPRObject{PtrType} end
@rpr_wrapper_type EnvironmentLight rpr_light rprContextCreateEnvironmentLight (context,) AbstractLight
@rpr_wrapper_type PointLight rpr_light rprContextCreatePointLight (context,) AbstractLight
@rpr_wrapper_type DirectionalLight rpr_light rprContextCreateDirectionalLight (context,) AbstractLight
@rpr_wrapper_type SkyLight rpr_light rprContextCreateSkyLight (context,) AbstractLight
@rpr_wrapper_type SpotLight rpr_light rprContextCreateSpotLight (context,) AbstractLight
"""
Default shape constructor which works with every Geometry from the package
GeometryTypes (Meshes and geometry primitives alike).
"""
function Shape(context::Context, meshlike; kw...)
m = uv_normal_mesh(meshlike; kw...)
v, n, fs, uv = decompose(Point3f, m), normals(m), faces(m), texturecoordinates(m)
if isnothing(n)
n = normals(v, fs)
end
return Shape(context, v, n, fs, uv)
end
#=
The yield + nospecialize somehow prevent some stack/memory corruption when run with `--check-bounds=yes`
This is kind of magical and still under investigation.
MWE:
https://gist.github.com/SimonDanisch/475064ae102141554f65e926f3070630
=#
function Shape(context::Context, vertices, normals, faces, uvs)
@assert length(vertices) == length(normals)
@assert length(vertices) == length(uvs)
vraw = decompose(Point3f, vertices)
nraw = decompose(Vec3f, normals)
uvraw = map(uv -> Vec2f(1 - uv[2], 1 - uv[1]), uvs)
f = decompose(TriangleFace{OffsetInteger{-1,rpr_int}}, faces)
iraw = collect(reinterpret(rpr_int, f))
facelens = fill(rpr_int(3), length(faces))
@assert eltype(vraw) == Point3f
@assert eltype(nraw) == Vec3f
@assert eltype(uvraw) == Vec2f
foreach(i -> checkbounds(vertices, i + 1), iraw)
rpr_mesh = rprContextCreateMesh(context, vraw, length(vertices), sizeof(Point3f), nraw, length(normals),
sizeof(Vec3f), uvraw, length(uvs), sizeof(Vec2f), iraw, sizeof(rpr_int),
iraw, sizeof(rpr_int), iraw, sizeof(rpr_int), facelens, length(faces))
jl_references = (vraw, nraw, uvraw, iraw, facelens)
shape = Shape(rpr_mesh, context, jl_references)
add_to_context!(context, shape)
return shape
end
"""
Creating a shape from a shape is interpreted as creating an instance.
"""
function Shape(context::Context, shape::Shape)
inst = Shape(rprContextCreateInstance(context, shape), context, nothing)
add_to_context!(context, inst)
return inst
end
"""
VolumeCube(context::Context)
Creates a cube that can be used for rendering a volume!
"""
function VolumeCube(context::Context)
mesh_props = Vector{UInt32}(undef, 16)
mesh_props[1] = UInt32(RPR.RPR_MESH_VOLUME_FLAG)
mesh_props[2] = UInt32(1) # enable the Volume flag for the Mesh
mesh_props[3] = UInt32(0)
# Volume shapes don't need any vertices data: the bounds of volume will only be defined by the grid.
# Also, make sure to enable the RPR_MESH_VOLUME_FLAG
rpr_mesh = RPR.rprContextCreateMeshEx2(context,
C_NULL, 0, 0,
C_NULL, 0, 0,
C_NULL, 0, 0, 0,
C_NULL, C_NULL, C_NULL, C_NULL, 0,
C_NULL, 0, C_NULL, C_NULL, C_NULL, 0,
mesh_props)
return Shape(rpr_mesh, context, [])
end
"""
Create layered shader give two shaders and respective IORs
"""
function layeredshader(matsys, base, top, weight=(0.5, 0.5, 0.5, 1.0))
layered = MaterialNode(matsys, RPR.RPR_MATERIAL_NODE_BLEND)
set!(layered, RPR.RPR_MATERIAL_INPUT_COLOR0, base)
# Set shader for top layer
set!(layered, RPR.RPR_MATERIAL_INPUT_COLOR1, top)
# Set index of refraction for base layer
set!(layered, RPR.RPR_MATERIAL_INPUT_WEIGHT, weight...)
return layered
end
"""
FrameBuffer wrapper type
"""
mutable struct FrameBuffer <: RPRObject{rpr_framebuffer}
pointer::rpr_framebuffer
parent::Context
end
function FrameBuffer(context::Context, c::Type{C}, dims::NTuple{2,Int}) where {C<:Colorant}
desc = Ref(RPR.rpr_framebuffer_desc(dims...))
fmt = RPR.rpr_framebuffer_format(length(c), RPR_COMPONENT_TYPE_FLOAT32)
frame_buffer = FrameBuffer(RPR.rprContextCreateFrameBuffer(context, fmt, desc), context)
add_to_context!(context, frame_buffer)
return frame_buffer
end
function get_data(framebuffer::FrameBuffer)
framebuffer_size = Ref{Csize_t}()
RPR.rprFrameBufferGetInfo(framebuffer, RPR.RPR_FRAMEBUFFER_DATA, 0, C_NULL, framebuffer_size)
data = zeros(RGBA{Float32}, framebuffer_size[] ÷ sizeof(RGBA{Float32}))
@assert sizeof(data) == framebuffer_size[]
RPR.rprFrameBufferGetInfo(framebuffer, RPR.RPR_FRAMEBUFFER_DATA, framebuffer_size[], data, C_NULL)
return data
end
"""
Image wrapper type
"""
mutable struct Image <: RPRObject{rpr_image}
pointer::rpr_image
parent::Context
referenced_memory::Any
end
"""
Automatically generated the correct `rpr_image_format` for an array
"""
rpr_image_format(a::Array) = rpr_image_format(eltype(a))
function rpr_image_format(::Type{T}) where {T<:Union{Colorant,Number}}
return RPR.rpr_image_format(T <: Number ? 1 : length(T), component_type(T))
end
"""
Gets the correct component type for Images from array element types
"""
component_type(x::Type{T}) where {T<:Colorant} = component_type(eltype(T))
component_type(x::Type{T}) where {T<:Union{UInt8,Colors.N0f8}} = RPR_COMPONENT_TYPE_UINT8
component_type(x::Type{T}) where {T<:Union{Float16}} = RPR_COMPONENT_TYPE_FLOAT16
component_type(x::Type{T}) where {T<:Union{Float32}} = RPR_COMPONENT_TYPE_FLOAT32
"""
Creates the correct `rpr_image_desc` for a given array.
"""
function rpr_image_desc(image::Array{T,N}) where {T,N}
row_pitch = size(image, 1) * sizeof(T)
imsize = N == 1 ? (1, 1, 0) : ntuple(i -> N < i ? 0 : size(image, i), 3)
return RPR.rpr_image_desc(imsize..., row_pitch, 0)
end
"""
Automatically creates an Image from a matrix of colors
"""
function Image(context::Context, image::Array{T,N}) where {T,N}
desc_ref = Ref(rpr_image_desc(image))
img = Image(rprContextCreateImage(context, rpr_image_format(image), desc_ref, image), context,
(image, desc_ref))
add_to_context!(context, img)
return img
end
function Image(context::Context, image::AbstractArray)
return Image(context, collect(image))
end
"""
Automatically loads an image from the given `path`
"""
function Image(context::Context, path::AbstractString)
img = Image(rprContextCreateImageFromFile(context, path), context, nothing)
add_to_context!(context, img)
return img
end
"""
Sets the radiant power for a given Light
"""
function setradiantpower!(light::AbstractLight, color::Colorant{T,3}) where {T}
c = RGB{Float32}(color)
return setradiantpower!(light, comp1(c), comp2(c), comp3(c))
end
function setradiantpower!(light::PointLight, r::Number, g::Number, b::Number)
return rprPointLightSetRadiantPower3f(light, rpr_float(r), rpr_float(g), rpr_float(b))
end
function setradiantpower!(light::SpotLight, r::Number, g::Number, b::Number)
return rprSpotLightSetRadiantPower3f(light, rpr_float(r), rpr_float(g), rpr_float(b))
end
function setradiantpower!(light::DirectionalLight, r::Number, g::Number, b::Number)
return rprDirectionalLightSetRadiantPower3f(light, rpr_float(r), rpr_float(g), rpr_float(b))
end
"""
Sets the image for an EnvironmentLight
"""
function set!(light::EnvironmentLight, image::Image)
return rprEnvironmentLightSetImage(light, image)
end
function set!(light::EnvironmentLight, context::Context, image::Array)
return set!(light, Image(context, image))
end
function set!(light::EnvironmentLight, context::Context, path::AbstractString)
return set!(light, Image(context, path))
end
"""
Sets the intensity scale an EnvironmentLight
"""
function setintensityscale!(light::EnvironmentLight, intensity_scale::Number)
return rprEnvironmentLightSetIntensityScale(light, intensity_scale)
end
"""
Sets a portal for a Light
"""
function setportal!(light::AbstractLight, portal::AbstractGeometry)
return setportal!(light, Shape(portal))
end
function setportal!(light::EnvironmentLight, portal::Shape)
return rprEnvironmentLightSetPortal(light, portal)
end
function setportal!(light::SkyLight, portal::Shape)
return rprSkyLightSetPortal(light, portal)
end
"""
Sets the albedo for a SkyLight
"""
setalbedo!(skylight::SkyLight, albedo::Number) = rprSkyLightSetAlbedo(skylight.x, albedo)
"""
Sets the turbidity for a SkyLight
"""
setturbidity!(skylight::SkyLight, turbidity::Number) = rprSkyLightSetTurbidity(skylight.x, turbidity)
"""
Sets the scale for a SkyLight
"""
setscale!(skylight::SkyLight, scale::Number) = rprSkyLightSetScale(skylight, scale)
function set!(context::Context, parameter::rpr_context_info, f::AbstractFloat)
return rprContextSetParameterByKey1f(context, parameter, f)
end
function set!(context::Context, parameter::rpr_context_info, ui::Integer)
return rprContextSetParameterByKey1u(context, parameter, ui)
end
function set!(context::Context, parameter::rpr_context_info, ui)
# overload for enums
return rprContextSetParameterByKey1u(context, parameter, ui)
end
set!(context::Context, aov::rpr_aov, fb::FrameBuffer) = rprContextSetAOV(context, aov, fb)
function set!(shape::Shape, image::Image)
return rprShapeSetDisplacementImage(shape, image)
end
function set!(shape::Shape, context::Context, image::Array)
return set!(shape, Image(context, image))
end
"""
Sets arbitrary values to RadeonProRender objects
"""
set!(context::Context, framebuffer::FrameBuffer) = rprContextSetFrameBuffer(context, framebuffer)
function set!(base::MaterialNode, parameter::rpr_material_node_input, a::Number, b::Number, c::Number,
d::Number)
return rprMaterialNodeSetInputFByKey(base, parameter, a, b, c, d)
end
function set!(base::MaterialNode, parameter::rpr_material_node_input, ui::Integer)
return rprMaterialNodeSetInputUByKey(base, parameter, ui)
end
function set!(base::MaterialNode, parameter::rpr_material_node_input, f::Vec4)
return set!(base, parameter, f...)
end
function set!(base::MaterialNode, parameter::rpr_material_node_input, color::Colorant)
c = RGBA{Float32}(color)
return set!(base, parameter, comp1(c), comp2(c), comp3(c), alpha(c))
end
function set!(mat::MaterialNode, parameter::rpr_material_node_input, enum)
return set!(mat, parameter, UInt(enum))
end
function set!(shape::Shape, material::MaterialNode)
return rprShapeSetMaterial(shape, material)
end
function set!(shape::Curve, material::MaterialNode)
return rprCurveSetMaterial(shape, material)
end
function set!(material::MaterialNode, parameter::rpr_material_node_input, material2::MaterialNode)
return rprMaterialNodeSetInputNByKey(material, parameter, material2)
end
function set!(shape::MaterialNode, parameter::rpr_material_node_input, grid::VoxelGrid)
return rprMaterialNodeSetInputGridDataByKey(shape, parameter, grid)
end
function set!(material::MaterialNode, parameter::rpr_material_node_input, image::Image)
return rprMaterialNodeSetInputImageDataByKey(material, parameter, image)
end
function set!(material::MaterialNode, parameter::rpr_material_node_input, context::Context, image::Array)
return set!(material, parameter, Image(context, image))
end
function set!(context::Context, scene::Scene)
return rprContextSetScene(context, scene)
end
function set!(scene::Scene, light::EnvironmentLight)
return rprSceneSetEnvironmentLight(scene, light)
end
function set!(scene::Scene, camera::Camera)
return rprSceneSetCamera(scene, camera)
end
"""
Sets the displacement scale for a shape
"""
function setdisplacementscale!(shape::Shape, scale::Number)
return rprShapeSetDisplacementScale(shape, rpr_float(scale))
end
"""
Sets the subdivions for a shape
"""
function setsubdivisions!(shape::Shape, subdivions::Integer)
return rprShapeSetSubdivisionFactor(shape, rpr_uint(subdivions))
end
"""
Transforms firerender objects with a transformation matrix
"""
function transform!(shape::Shape, transform::AbstractMatrix)
return rprShapeSetTransform(shape, false, convert(Matrix{Float32}, transform))
end
function transform!(light::AbstractLight, transform::AbstractMatrix)
return rprLightSetTransform(light, false, convert(Matrix{Float32}, transform))
end
function transform!(camera::Camera, transform::AbstractMatrix)
return rprCameraSetTransform(camera, false, convert(Matrix{Float32}, transform))
end
"""
Clears a scene
"""
clear!(scene::Scene) = rprSceneClear(scene)
"""
Clears a framebuffer
"""
clear!(frame_buffer::FrameBuffer) = rprFrameBufferClear(frame_buffer)
"""
Pushes objects to Scene
"""
function Base.push!(scene::Scene, shape::Shape)
return rprSceneAttachShape(scene, shape)
end
function Base.push!(scene::Scene, curve::Curve)
return rprSceneAttachCurve(scene, curve)
end
function Base.push!(scene::Scene, light::AbstractLight)
return rprSceneAttachLight(scene, light)
end
function set!(context::Context, pe::PostEffect)
return rprContextAttachPostEffect(context, pe)
end
function Base.delete!(scene::Scene, light::AbstractLight)
return rprSceneDetachLight(scene, light)
end
function Base.delete!(scene::Scene, shape::Shape)
return rprSceneDetachShape(scene, shape)
end
"""
Gets the currently attached EnvironmentLight from a scene
"""
function Base.get(scene::Scene, ::Type{EnvironmentLight})
return EnvironmentLight(rprSceneGetEnvironmentLight(scene))
end
"""
Gets the currently attached Camera from a scene
"""
function Base.get(scene::Scene, ::Type{Camera})
return Camera(rprSceneGetCamera(scene))
end
"""
Sets the lookat of a camera
"""
function lookat!(camera::Camera, position::Vec3, lookatvec::Vec3, upvec::Vec3)
return rprCameraLookAt(camera, position..., lookatvec..., upvec...)
end
"""
renders the context
"""
function render(context::Context)
return rprContextRender(context)
end
"""
Renders a tile of the context
"""
function render(context::Context, tile::Rect)
mini, maxi = minimum(tile), maximum(tile)
return rprContextRenderTile(context, mini[1], maxi[1], mini[2], maxi[2])
end
"""
Saves a picture of the current framebuffer at `path`
"""
function save(fb::FrameBuffer, path::AbstractString)
return rprFrameBufferSaveToFile(fb, path)
end
#=
Some iterators for tiled rendering
=#
"""
Iterates randomly over an iterable
"""
struct RandomIterator{T}
iterable::T
end
function Base.iterate(ti::RandomIterator, state=rand(1:length(ti.iterable)))
return (ti.iterable[state], rand(1:length(ti.iterable)))
end
"""
Iterates randomly over all elements in an iterable.
The middle has a higher sampling probability.
"""
struct MiddleSampleIterator{T}
iterable::T
end
function multiplier(i, j, n1, n2)
a = abs(mod(i - div(n1, 2), n1) - div(n1, 2))
b = abs(mod(j - div(n2, 2), n2) - div(n2, 2))
return max(a, b)
end
function init_sample_pool(ti)
samplepool = Tuple{Int,Int}[]
for i in 1:size(ti.iterable, 1)
for j in 1:size(ti.iterable, 2)
append!(samplepool, fill((i, j), multiplier(i, j, size(ti.iterable)...)))
end
end
return samplepool
end
function Base.iterate(ti::MiddleSampleIterator, state=init_sample_pool(ti))
isempty(state) && return nothing
i = rand(1:length(state))
i2 = state[i]
filter!(state) do s
return s != i2
end
i = sub2ind(size(ti.iterable), i2...)
return (ti.iterable[i], state)
end
"""
Iterates over all tiles in a Rectangular parent tile.
"""
struct TileIterator
size::Vec{2,Int}
tile_size::Vec{2,Int}
lengths::Vec{2,Int}
end
function TileIterator(size, tile_size)
s, ts = Vec(size), Vec(tile_size)
lengths = Vec{2,Int}(ceil(Vec{2,Float64}(s) ./ Vec{2,Float64}(ts)))
return TileIterator(s, ts, lengths)
end
function Base.getindex(ti::TileIterator, i, j)
ts = Vec(ti.tile_size)
xymin = (Vec(i, j) .- 1) .* ts
xymax = xymin .+ ts
return Rect(xymin, min(xymax, ti.size) .- xymin)
end
function Base.getindex(ti::TileIterator, linear_index::Int)
i, j = ind2sub(size(ti), linear_index)
return ti[i, j]
end
Base.size(ti::TileIterator, i) = ti.lengths[i]
Base.size(ti::TileIterator) = (ti.lengths...,)
Base.length(ti::TileIterator) = prod(ti.lengths)
function Base.iterate(ti::TileIterator, state=1)
length(ti) > state && return nothing
return ti[state], state + 1
end
"""
Customizable defaults for the most common tonemapping operations
"""
function set_standard_tonemapping!(context; typ=RPR.RPR_TONEMAPPING_OPERATOR_PHOTOLINEAR,
photolinear_sensitivity=0.5f0, photolinear_exposure=0.5f0,
photolinear_fstop=2.0f0, reinhard02_prescale=1.0f0,
reinhard02_postscale=1.0f0, reinhard02_burn=1.0f0, linear_scale=1.0f0,
aacellsize=4.0, imagefilter_type=RPR.RPR_FILTER_BLACKMANHARRIS,
aasamples=4.0)
if context.plugin != HybridPro
norm = PostEffect(context, RPR.RPR_POST_EFFECT_NORMALIZATION)
set!(context, norm)
tonemap = PostEffect(context, RPR.RPR_POST_EFFECT_TONE_MAP)
set!(context, tonemap)
set!(context, RPR.RPR_CONTEXT_TONE_MAPPING_TYPE, typ)
set!(context, RPR.RPR_CONTEXT_TONE_MAPPING_LINEAR_SCALE, linear_scale)
set!(context, RPR.RPR_CONTEXT_TONE_MAPPING_PHOTO_LINEAR_SENSITIVITY, photolinear_sensitivity)
set!(context, RPR.RPR_CONTEXT_TONE_MAPPING_PHOTO_LINEAR_EXPOSURE, photolinear_exposure)
set!(context, RPR.RPR_CONTEXT_TONE_MAPPING_PHOTO_LINEAR_FSTOP, photolinear_fstop)
set!(context, RPR.RPR_CONTEXT_TONE_MAPPING_REINHARD02_PRE_SCALE, reinhard02_prescale)
set!(context, RPR.RPR_CONTEXT_TONE_MAPPING_REINHARD02_POST_SCALE, reinhard02_postscale)
set!(context, RPR.RPR_CONTEXT_TONE_MAPPING_REINHARD02_BURN, reinhard02_burn)
set!(context, RPR.RPR_CONTEXT_IMAGE_FILTER_TYPE, imagefilter_type)
gamma = PostEffect(context, RPR.RPR_POST_EFFECT_GAMMA_CORRECTION)
set!(context, gamma)
set!(context, RPR.RPR_CONTEXT_DISPLAY_GAMMA, 1.0)
end
# set!(context, "aacellsize", aacellsize)
# set!(context, "aasamples", aasamples)
# set!(context, RPR.RPR_CONTEXT_AA_ENABLED, UInt(1))
# bloom = PostEffect(context, RPR.RPR_POST_EFFECT_BLOOM)
# set!(context, bloom)
# set!(bloom, "weight", 1.0f0)
# set!(bloom, "radius", 0.4f0)
# set!(bloom, "threshold", 0.2f0)
return
end
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 32570 | abstract type RPRMaterial end
struct Material{Typ} <: RPRMaterial
node::MaterialNode
parameters::Dict{Symbol,Any}
matsys::MaterialSystem
end
function set!(shape::Union{Curve, Shape}, material::Material)
return set!(shape, material.node)
end
function set!(m::MaterialNode, input::RPR.rpr_material_node_input, m2::Material)
return set!(m, input, m2.node)
end
const ALL_MATERIALS = [:Diffuse => RPR.RPR_MATERIAL_NODE_DIFFUSE,
:Microfacet => RPR.RPR_MATERIAL_NODE_MICROFACET,
:Reflection => RPR.RPR_MATERIAL_NODE_REFLECTION,
:Refraction => RPR.RPR_MATERIAL_NODE_REFRACTION,
:MicrofacetRefraction => RPR.RPR_MATERIAL_NODE_MICROFACET_REFRACTION,
:Transparent => RPR.RPR_MATERIAL_NODE_TRANSPARENT,
:Emissive => RPR.RPR_MATERIAL_NODE_EMISSIVE, :Ward => RPR.RPR_MATERIAL_NODE_WARD,
:Add => RPR.RPR_MATERIAL_NODE_ADD, :Blend => RPR.RPR_MATERIAL_NODE_BLEND,
:Arithmetic => RPR.RPR_MATERIAL_NODE_ARITHMETIC,
:Fresnel => RPR.RPR_MATERIAL_NODE_FRESNEL,
:NormalMap => RPR.RPR_MATERIAL_NODE_NORMAL_MAP,
:ImageTexture => RPR.RPR_MATERIAL_NODE_IMAGE_TEXTURE,
:Noise2dTexture => RPR.RPR_MATERIAL_NODE_NOISE2D_TEXTURE,
:DotTexture => RPR.RPR_MATERIAL_NODE_DOT_TEXTURE,
:GradientTexture => RPR.RPR_MATERIAL_NODE_GRADIENT_TEXTURE,
:CheckerTexture => RPR.RPR_MATERIAL_NODE_CHECKER_TEXTURE,
:ConstantTexture => RPR.RPR_MATERIAL_NODE_CONSTANT_TEXTURE,
:InputLookup => RPR.RPR_MATERIAL_NODE_INPUT_LOOKUP,
:BlendValue => RPR.RPR_MATERIAL_NODE_BLEND_VALUE,
:Passthrough => RPR.RPR_MATERIAL_NODE_PASSTHROUGH,
:Orennayar => RPR.RPR_MATERIAL_NODE_ORENNAYAR,
:FresnelSchlick => RPR.RPR_MATERIAL_NODE_FRESNEL_SCHLICK,
:DiffuseRefraction => RPR.RPR_MATERIAL_NODE_DIFFUSE_REFRACTION,
:BumpMap => RPR.RPR_MATERIAL_NODE_BUMP_MAP, :Volume => RPR.RPR_MATERIAL_NODE_VOLUME,
:MicrofacetAnisotropicReflection => RPR.RPR_MATERIAL_NODE_MICROFACET_ANISOTROPIC_REFLECTION,
:MicrofacetAnisotropicRefraction => RPR.RPR_MATERIAL_NODE_MICROFACET_ANISOTROPIC_REFRACTION,
:Twosided => RPR.RPR_MATERIAL_NODE_TWOSIDED,
:UvProcedural => RPR.RPR_MATERIAL_NODE_UV_PROCEDURAL,
:MicrofacetBeckmann => RPR.RPR_MATERIAL_NODE_MICROFACET_BECKMANN,
:Phong => RPR.RPR_MATERIAL_NODE_PHONG,
:BufferSampler => RPR.RPR_MATERIAL_NODE_BUFFER_SAMPLER,
:UvTriplanar => RPR.RPR_MATERIAL_NODE_UV_TRIPLANAR,
:AoMap => RPR.RPR_MATERIAL_NODE_AO_MAP,
:UserTexture_0 => RPR.RPR_MATERIAL_NODE_USER_TEXTURE_0,
:UserTexture_1 => RPR.RPR_MATERIAL_NODE_USER_TEXTURE_1,
:UserTexture_2 => RPR.RPR_MATERIAL_NODE_USER_TEXTURE_2,
:UserTexture_3 => RPR.RPR_MATERIAL_NODE_USER_TEXTURE_3,
:Uber => RPR.RPR_MATERIAL_NODE_UBERV2, :Transform => RPR.RPR_MATERIAL_NODE_TRANSFORM,
:RgbToHsv => RPR.RPR_MATERIAL_NODE_RGB_TO_HSV,
:HsvToRgb => RPR.RPR_MATERIAL_NODE_HSV_TO_RGB,
:UserTexture => RPR.RPR_MATERIAL_NODE_USER_TEXTURE,
:ToonClosure => RPR.RPR_MATERIAL_NODE_TOON_CLOSURE,
:ToonRamp => RPR.RPR_MATERIAL_NODE_TOON_RAMP,
:VoronoiTexture => RPR.RPR_MATERIAL_NODE_VORONOI_TEXTURE,
:GridSampler => RPR.RPR_MATERIAL_NODE_GRID_SAMPLER,
:Blackbody => RPR.RPR_MATERIAL_NODE_BLACKBODY,
:MatxDiffuseBrdf => RPR.RPR_MATERIAL_NODE_MATX_DIFFUSE_BRDF,
:MatxDielectricBrdf => RPR.RPR_MATERIAL_NODE_MATX_DIELECTRIC_BRDF,
:MatxGeneralizedSchlickBrdf => RPR.RPR_MATERIAL_NODE_MATX_GENERALIZED_SCHLICK_BRDF,
:MatxNoise3d => RPR.RPR_MATERIAL_NODE_MATX_NOISE3D,
:MatxTangent => RPR.RPR_MATERIAL_NODE_MATX_TANGENT,
:MatxNormal => RPR.RPR_MATERIAL_NODE_MATX_NORMAL,
:MatxPosition => RPR.RPR_MATERIAL_NODE_MATX_POSITION,
:MatxRoughnessAnisotropy => RPR.RPR_MATERIAL_NODE_MATX_ROUGHNESS_ANISOTROPY,
:MatxRotate3d => RPR.RPR_MATERIAL_NODE_MATX_ROTATE3D,
:MatxNormalize => RPR.RPR_MATERIAL_NODE_MATX_NORMALIZE,
:MatxIfgreater => RPR.RPR_MATERIAL_NODE_MATX_IFGREATER,
:MatxSheenBrdf => RPR.RPR_MATERIAL_NODE_MATX_SHEEN_BRDF,
:MatxDiffuseBtdf => RPR.RPR_MATERIAL_NODE_MATX_DIFFUSE_BTDF,
:MatxConvert => RPR.RPR_MATERIAL_NODE_MATX_CONVERT,
:MatxSubsurfaceBrdf => RPR.RPR_MATERIAL_NODE_MATX_SUBSURFACE_BRDF,
:MatxDielectricBtdf => RPR.RPR_MATERIAL_NODE_MATX_DIELECTRIC_BTDF,
:MatxConductorBrdf => RPR.RPR_MATERIAL_NODE_MATX_CONDUCTOR_BRDF,
:MatxFresnel => RPR.RPR_MATERIAL_NODE_MATX_FRESNEL,
:MatxLuminance => RPR.RPR_MATERIAL_NODE_MATX_LUMINANCE,
:MatxFractal3d => RPR.RPR_MATERIAL_NODE_MATX_FRACTAL3D,
:MatxMix => RPR.RPR_MATERIAL_NODE_MATX_MIX, :Matx => RPR.RPR_MATERIAL_NODE_MATX]
const ALL_MATERIALS_DICT = Dict(ALL_MATERIALS)
function Material(matsys::MaterialSystem, @nospecialize(attributes))
type = if haskey(attributes, :type)
attributes[:type]
else
:Uber # default, since it supports most attributes & is the only one supported by all backends
end
material_enum = get(ALL_MATERIALS_DICT, type) do
error("Material type: $(type) not supported. Choose from RadeonProRender.ALL_MATERIALS")
end
delete!(attributes, :type)
return Material{material_enum}(matsys; attributes...)
end
for (name, enum) in ALL_MATERIALS
@eval const $(Symbol(name, :Material)) = Material{$(enum)}
end
function snake2camel(str)
str = replace(lowercase(str), r"_(.)" => r -> uppercase(r[2]))
return uppercase(str[1]) * str[2:end]
end
function Base.show(io::IO, material::Material{Typ}) where {Typ}
typ_str = snake2camel(replace(string(Typ), "RPR_MATERIAL_NODE_" => ""))
println(io, typ_str, "Material:")
params = getfield(material, :parameters)
maxlen = 1
if !isempty(keys(params))
maxlen = maximum(x -> length(string(x)), keys(params)) + 1
end
fstr = Printf.Format(" %-$(maxlen)s %s\n")
for (k, v) in params
Printf.format(io, fstr, string(k, ":"), v)
end
end
function (::Type{Material{Typ}})(matsys::MaterialSystem; kw...) where {Typ}
mat = Material{Typ}(MaterialNode(matsys, Typ), Dict{Symbol,Any}(kw), matsys)
for (key, value) in kw
setproperty!(mat, key, value)
end
return mat
end
function Base.setproperty!(material::T, field::Symbol, value::Vec4) where {T<:Material}
set!(material.node, field2enum(T, field), value...)
getfield(material, :parameters)[field] = value
return
end
function Base.setproperty!(material::T, field::Symbol, value::Vec3) where {T<:Material}
setproperty!(material, field, Vec4f(value..., 0.0))
return
end
function set!(shape::Shape, volume::VolumeMaterial)
rprShapeSetVolumeMaterial(shape, volume.node)
return
end
convert_to_type(matsys::MaterialSystem, ::Type{<:Number}, value) = Vec4f(value)
convert_to_type(matsys::MaterialSystem, ::Type{<:Number}, value::CEnum.Cenum) = value
convert_to_type(matsys::MaterialSystem, ::Type{<:Number}, value::Material) = value
convert_to_type(matsys::MaterialSystem, ::Type{<:Colorant}, value) = to_color(value)
convert_to_type(matsys::MaterialSystem, ::Type{<:Colorant}, value::Material) = value
function convert_to_type(matsys::MaterialSystem, ::Type{<: Number}, value::AbstractMatrix)
convert_to_type(matsys, Material, Float32.(value))
end
function convert_to_type(matsys::MaterialSystem, ::Type{<: Number}, value::AbstractMatrix{<: Colorant})
convert_to_type(matsys, RGB, value)
end
function convert_to_type(matsys::MaterialSystem, ::Type{<: Colorant}, value::AbstractMatrix{<:Number})
convert_to_type(matsys, Float32, value)
end
function convert_to_type(matsys::MaterialSystem, ::Type{<: Colorant}, value::AbstractMatrix{<:Color3})
convert_to_type(matsys, Material, convert(Matrix{RGB{Float32}}, value))
end
function convert_to_type(matsys::MaterialSystem, ::Type{<: Colorant}, value::AbstractMatrix{<:TransparentColor})
convert_to_type(matsys, Material, convert(Matrix{RGBA{Float32}}, value))
end
function convert_to_type(matsys::MaterialSystem, ::Type{<: Material}, value::AbstractMatrix)
return Texture(matsys, value)
end
function convert_to_type(matsys::MaterialSystem, ::Type{<: Image}, value::Image)
return value
end
function convert_to_type(matsys::MaterialSystem, ::Type{<: Image}, value::AbstractMatrix)
return Texture(matsys, value)
end
function convert_to_type(matsys::MaterialSystem, ::Type{<: Union{Colorant, Image}}, value::Material)
return value
end
function convert_to_type(matsys::MaterialSystem, typ, value)
return value
end
function Base.setproperty!(material::T, field::Symbol, value) where {T<:Material}
info = material_field_info()
field_enum = field2enum(T, field)
field_type = info[field_enum]
if field_type isa Tuple
type, range = field_type
field_type = type # ignore range for now
end
matsys = material.matsys
set!(material.node, field_enum, convert_to_type(matsys, field_type, value))
getfield(material, :parameters)[field] = value
return
end
function Base.setproperty!(material::T, field::Symbol, c::Color3) where {T<:Material}
set!(material.node, field2enum(T, field), red(c), green(c), blue(c), 0.0)
getfield(material, :parameters)[field] = c
return
end
function Base.setproperty!(material::T, field::Symbol, value::Nothing) where {T<:Material}
# TODO, can you actually unset a material property?
end
function field2enum(::Type{T}, field::Symbol) where {T}
info = material_info(T)
if haskey(info, field)
return getfield(info, field)
else
error("Material $(T) doesn't have the property $(field)")
end
end
function Base.propertynames(m::T) where {T<:Material}
info = material_info(T)
return propertynames(info)
end
function material_info(::Type{UberMaterial})
return (color=RPR.RPR_MATERIAL_INPUT_UBER_DIFFUSE_COLOR,
diffuse_weight=RPR.RPR_MATERIAL_INPUT_UBER_DIFFUSE_WEIGHT,
diffuse_roughness=RPR.RPR_MATERIAL_INPUT_UBER_DIFFUSE_ROUGHNESS,
diffuse_normal=RPR.RPR_MATERIAL_INPUT_UBER_DIFFUSE_NORMAL,
reflection_color=RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_COLOR,
reflection_weight=RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_WEIGHT,
reflection_roughness=RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_ROUGHNESS,
reflection_anisotropy=RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_ANISOTROPY,
reflection_anisotropy_rotation=RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_ANISOTROPY_ROTATION,
reflection_mode=RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_MODE,
reflection_ior=RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_IOR,
reflection_metalness=RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_METALNESS,
reflection_normal=RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_NORMAL,
reflection_dielectric_reflectance=RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_DIELECTRIC_REFLECTANCE,
refraction_color=RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_COLOR,
refraction_weight=RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_WEIGHT,
refraction_roughness=RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_ROUGHNESS,
refraction_ior=RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_IOR,
refraction_normal=RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_NORMAL,
refraction_thin_surface=RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_THIN_SURFACE,
refraction_absorption_color=RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_ABSORPTION_COLOR,
refraction_absorption_distance=RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_ABSORPTION_DISTANCE,
refraction_caustics=RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_CAUSTICS,
coating_color=RPR.RPR_MATERIAL_INPUT_UBER_COATING_COLOR,
coating_weight=RPR.RPR_MATERIAL_INPUT_UBER_COATING_WEIGHT,
coating_roughness=RPR.RPR_MATERIAL_INPUT_UBER_COATING_ROUGHNESS,
coating_mode=RPR.RPR_MATERIAL_INPUT_UBER_COATING_MODE,
coating_ior=RPR.RPR_MATERIAL_INPUT_UBER_COATING_IOR,
coating_metalness=RPR.RPR_MATERIAL_INPUT_UBER_COATING_METALNESS,
coating_normal=RPR.RPR_MATERIAL_INPUT_UBER_COATING_NORMAL,
coating_transmission_color=RPR.RPR_MATERIAL_INPUT_UBER_COATING_TRANSMISSION_COLOR,
coating_thickness=RPR.RPR_MATERIAL_INPUT_UBER_COATING_THICKNESS,
sheen=RPR.RPR_MATERIAL_INPUT_UBER_SHEEN, sheen_tint=RPR.RPR_MATERIAL_INPUT_UBER_SHEEN_TINT,
sheen_weight=RPR.RPR_MATERIAL_INPUT_UBER_SHEEN_WEIGHT,
emission_color=RPR.RPR_MATERIAL_INPUT_UBER_EMISSION_COLOR,
emission_weight=RPR.RPR_MATERIAL_INPUT_UBER_EMISSION_WEIGHT,
emission_mode=RPR.RPR_MATERIAL_INPUT_UBER_EMISSION_MODE,
transparency=RPR.RPR_MATERIAL_INPUT_UBER_TRANSPARENCY,
sss_scatter_color=RPR.RPR_MATERIAL_INPUT_UBER_SSS_SCATTER_COLOR,
sss_scatter_distance=RPR.RPR_MATERIAL_INPUT_UBER_SSS_SCATTER_DISTANCE,
sss_scatter_direction=RPR.RPR_MATERIAL_INPUT_UBER_SSS_SCATTER_DIRECTION,
sss_weight=RPR.RPR_MATERIAL_INPUT_UBER_SSS_WEIGHT,
sss_multiscatter=RPR.RPR_MATERIAL_INPUT_UBER_SSS_MULTISCATTER,
backscatter_weight=RPR.RPR_MATERIAL_INPUT_UBER_BACKSCATTER_WEIGHT,
backscatter_color=RPR.RPR_MATERIAL_INPUT_UBER_BACKSCATTER_COLOR,
fresnel_schlick_approximation=RPR.RPR_MATERIAL_INPUT_UBER_FRESNEL_SCHLICK_APPROXIMATION)
end
function material_info(::Type{DiffuseMaterial})
return (color=RPR.RPR_MATERIAL_INPUT_COLOR, normal=RPR.RPR_MATERIAL_INPUT_NORMAL,
roughness=RPR.RPR_MATERIAL_INPUT_ROUGHNESS)
end
function material_info(::Type{DiffuseRefractionMaterial})
return material_info(DiffuseMaterial)
end
function material_info(::Type{BumpMapMaterial})
return (color=RPR.RPR_MATERIAL_INPUT_COLOR, scale=RPR.RPR_MATERIAL_INPUT_SCALE)
end
function material_info(::Type{VolumeMaterial})
return (scattering=RPR.RPR_MATERIAL_INPUT_SCATTERING, absorption=RPR.RPR_MATERIAL_INPUT_ABSORBTION,
emission=RPR.RPR_MATERIAL_INPUT_EMISSION, scatter_direction=RPR.RPR_MATERIAL_INPUT_G,
multiscatter=RPR.RPR_MATERIAL_INPUT_MULTISCATTER,
densitygrid=RPR.RPR_MATERIAL_INPUT_DENSITYGRID,
density=RPR_MATERIAL_INPUT_DENSITY,
color=RPR_MATERIAL_INPUT_COLOR)
end
function material_info(::Type{GridSamplerMaterial})
return (data=RPR.RPR_MATERIAL_INPUT_DATA,)
end
function material_info(::Type{MicrofacetAnisotropicReflectionMaterial})
return (color=RPR.RPR_MATERIAL_INPUT_COLOR, normal=RPR.RPR_MATERIAL_INPUT_NORMAL,
ior=RPR.RPR_MATERIAL_INPUT_IOR, roughness=RPR.RPR_MATERIAL_INPUT_ROUGHNESS,
anisotropic=RPR.RPR_MATERIAL_INPUT_ANISOTROPIC, rotation=RPR.RPR_MATERIAL_INPUT_ROTATION)
end
function material_info(::Type{PhongMaterial})
return (color=RPR.RPR_MATERIAL_INPUT_COLOR, normal=RPR.RPR_MATERIAL_INPUT_NORMAL,
ior=RPR.RPR_MATERIAL_INPUT_IOR, roughness=RPR.RPR_MATERIAL_INPUT_ROUGHNESS)
end
function material_info(::Type{BlendMaterial})
return (color1=RPR.RPR_MATERIAL_INPUT_COLOR0, color2=RPR.RPR_MATERIAL_INPUT_COLOR1,
weight=RPR.RPR_MATERIAL_INPUT_WEIGHT,
transmission_color=RPR.RPR_MATERIAL_INPUT_TRANSMISSION_COLOR,
thickness=RPR.RPR_MATERIAL_INPUT_THICKNESS)
end
function material_info(::Type{MicrofacetAnisotropicRefractionMaterial})
return material_info(MicrofacetAnisotropicReflectionMaterial)
end
function material_info(::Type{MicrofacetMaterial})
return (color=RPR.RPR_MATERIAL_INPUT_COLOR, normal=RPR.RPR_MATERIAL_INPUT_NORMAL,
ior=RPR.RPR_MATERIAL_INPUT_IOR, roughness=RPR.RPR_MATERIAL_INPUT_ROUGHNESS)
end
function material_info(::Type{TwosidedMaterial})
return (frontface=RPR.RPR_MATERIAL_INPUT_FRONTFACE, backface=RPR.RPR_MATERIAL_INPUT_BACKFACE)
end
function material_info(::Type{EmissiveMaterial})
return (color=RPR.RPR_MATERIAL_INPUT_COLOR,)
end
function material_info(::Type{RefractionMaterial})
return (color=RPR.RPR_MATERIAL_INPUT_COLOR, normal=RPR.RPR_MATERIAL_INPUT_NORMAL,
ior=RPR.RPR_MATERIAL_INPUT_IOR, caustics=RPR.RPR_MATERIAL_INPUT_CAUSTICS)
end
function material_info(::Type{ReflectionMaterial})
return (color=RPR.RPR_MATERIAL_INPUT_COLOR, normal=RPR.RPR_MATERIAL_INPUT_NORMAL)
end
function material_info(::Type{TransparentMaterial})
return (color=RPR.RPR_MATERIAL_INPUT_COLOR,)
end
function material_info(::Type{ImageTextureMaterial})
return (data=RPR.RPR_MATERIAL_INPUT_DATA, uv=RPR.RPR_MATERIAL_INPUT_UV)
end
function material_info(::Type{InputLookupMaterial})
return (value=RPR.RPR_MATERIAL_INPUT_VALUE,)
end
function material_info(::Type{ArithmeticMaterial})
return (color1=RPR.RPR_MATERIAL_INPUT_COLOR0, color2=RPR.RPR_MATERIAL_INPUT_COLOR1,
color3=RPR.RPR_MATERIAL_INPUT_COLOR2, color4=RPR.RPR_MATERIAL_INPUT_COLOR3,
op=RPR.RPR_MATERIAL_INPUT_OP)
end
function material_field_info()
f01 = (Float32, (0, 1))
return Dict(RPR.RPR_MATERIAL_INPUT_COLOR => RGB,
RPR.RPR_MATERIAL_INPUT_COLOR0 => Material,
RPR.RPR_MATERIAL_INPUT_COLOR1 => Material,
RPR.RPR_MATERIAL_INPUT_NORMAL => Vec3,
RPR.RPR_MATERIAL_INPUT_UV => Vec2,
RPR.RPR_MATERIAL_INPUT_DATA => Image,
RPR.RPR_MATERIAL_INPUT_ROUGHNESS => f01,
RPR.RPR_MATERIAL_INPUT_IOR => (Float32, (1, 5)),
RPR.RPR_MATERIAL_INPUT_ROUGHNESS_X => f01,
RPR.RPR_MATERIAL_INPUT_ROUGHNESS_Y => f01,
RPR.RPR_MATERIAL_INPUT_ROTATION => f01,
RPR.RPR_MATERIAL_INPUT_WEIGHT => f01,
RPR.RPR_MATERIAL_INPUT_OP => RPR.rpr_material_node_arithmetic_operation,
# RPR.RPR_MATERIAL_INPUT_INVEC => ,
# RPR.RPR_MATERIAL_INPUT_UV_SCALE => ,
RPR.RPR_MATERIAL_INPUT_VALUE => RPR.rpr_material_node_lookup_value,
RPR.RPR_MATERIAL_INPUT_REFLECTANCE => f01,
RPR.RPR_MATERIAL_INPUT_SCALE => f01,
RPR.RPR_MATERIAL_INPUT_SCATTERING => RGBA,
RPR.RPR_MATERIAL_INPUT_ABSORBTION => RGBA,
RPR.RPR_MATERIAL_INPUT_EMISSION => RGBA,
RPR.RPR_MATERIAL_INPUT_G => (Float32, (-1, 1)), # Forward or back scattering.
RPR.RPR_MATERIAL_INPUT_MULTISCATTER => Bool,
RPR.RPR_MATERIAL_INPUT_COLOR2 => RGBA,
RPR.RPR_MATERIAL_INPUT_COLOR3 => RGBA,
RPR.RPR_MATERIAL_INPUT_ANISOTROPIC => (Float32, (-1, 1)), # amount forwards/backward
RPR.RPR_MATERIAL_INPUT_FRONTFACE => Material,
RPR.RPR_MATERIAL_INPUT_BACKFACE => Material,
# RPR.RPR_MATERIAL_INPUT_ORIGIN => ,
# RPR.RPR_MATERIAL_INPUT_ZAXIS => ,
# RPR.RPR_MATERIAL_INPUT_XAXIS => ,
# RPR.RPR_MATERIAL_INPUT_THRESHOLD => ,
# RPR.RPR_MATERIAL_INPUT_OFFSET => ,
# RPR.RPR_MATERIAL_INPUT_UV_TYPE => ,
# RPR.RPR_MATERIAL_INPUT_RADIUS => ,
# RPR.RPR_MATERIAL_INPUT_SIDE => ,
RPR.RPR_MATERIAL_INPUT_CAUSTICS => Bool,
RPR.RPR_MATERIAL_INPUT_TRANSMISSION_COLOR => RGBA,
RPR.RPR_MATERIAL_INPUT_THICKNESS => f01,
# RPR.RPR_MATERIAL_INPUT_0 => ,
# RPR.RPR_MATERIAL_INPUT_1 => ,
# RPR.RPR_MATERIAL_INPUT_2 => ,
# RPR.RPR_MATERIAL_INPUT_3 => ,
# RPR.RPR_MATERIAL_INPUT_4 => ,
RPR.RPR_MATERIAL_INPUT_SCHLICK_APPROXIMATION => Float32,
# RPR.RPR_MATERIAL_INPUT_APPLYSURFACE => ,
# RPR.RPR_MATERIAL_INPUT_TANGENT => ,
# RPR.RPR_MATERIAL_INPUT_DISTRIBUTION => ,
# RPR.RPR_MATERIAL_INPUT_BASE => ,
# RPR.RPR_MATERIAL_INPUT_TINT => ,
# RPR.RPR_MATERIAL_INPUT_EXPONENT => ,
# RPR.RPR_MATERIAL_INPUT_AMPLITUDE => ,
# RPR.RPR_MATERIAL_INPUT_PIVOT => ,
# RPR.RPR_MATERIAL_INPUT_POSITION => ,
# RPR.RPR_MATERIAL_INPUT_AMOUNT => ,
# RPR.RPR_MATERIAL_INPUT_AXIS => ,
# RPR.RPR_MATERIAL_INPUT_LUMACOEFF => ,
# RPR.RPR_MATERIAL_INPUT_REFLECTIVITY => ,
# RPR.RPR_MATERIAL_INPUT_EDGE_COLOR => ,
# RPR.RPR_MATERIAL_INPUT_VIEW_DIRECTION => ,
# RPR.RPR_MATERIAL_INPUT_INTERIOR => ,
# RPR.RPR_MATERIAL_INPUT_OCTAVES => ,
# RPR.RPR_MATERIAL_INPUT_LACUNARITY => ,
# RPR.RPR_MATERIAL_INPUT_DIMINISH => ,
# RPR.RPR_MATERIAL_INPUT_WRAP_U => ,
# RPR.RPR_MATERIAL_INPUT_WRAP_V => ,
# RPR.RPR_MATERIAL_INPUT_WRAP_W => ,
# RPR.RPR_MATERIAL_INPUT_5 => ,
# RPR.RPR_MATERIAL_INPUT_6 => ,
# RPR.RPR_MATERIAL_INPUT_7 => ,
# RPR.RPR_MATERIAL_INPUT_8 => ,
# RPR.RPR_MATERIAL_INPUT_9 => ,
# RPR.RPR_MATERIAL_INPUT_10 => ,
# RPR.RPR_MATERIAL_INPUT_11 => ,
# RPR.RPR_MATERIAL_INPUT_12 => ,
# RPR.RPR_MATERIAL_INPUT_13 => ,
# RPR.RPR_MATERIAL_INPUT_14 => ,
# RPR.RPR_MATERIAL_INPUT_15 => ,
# RPR.RPR_MATERIAL_INPUT_DIFFUSE_RAMP => ,
# RPR.RPR_MATERIAL_INPUT_SHADOW => ,
# RPR.RPR_MATERIAL_INPUT_MID => ,
# RPR.RPR_MATERIAL_INPUT_HIGHLIGHT => ,
# RPR.RPR_MATERIAL_INPUT_POSITION1 => ,
# RPR.RPR_MATERIAL_INPUT_POSITION2 => ,
# RPR.RPR_MATERIAL_INPUT_RANGE1 => ,
# RPR.RPR_MATERIAL_INPUT_RANGE2 => ,
# RPR.RPR_MATERIAL_INPUT_INTERPOLATION => ,
# RPR.RPR_MATERIAL_INPUT_RANDOMNESS => ,
# RPR.RPR_MATERIAL_INPUT_DIMENSION => ,
# RPR.RPR_MATERIAL_INPUT_OUTTYPE => ,
RPR.RPR_MATERIAL_INPUT_DENSITY => Vec4f,
RPR.RPR_MATERIAL_INPUT_DENSITYGRID => VoxelGrid,
# RPR.RPR_MATERIAL_INPUT_DISPLACEMENT => ,
# RPR.RPR_MATERIAL_INPUT_TEMPERATURE => ,
# RPR.RPR_MATERIAL_INPUT_KELVIN => ,
RPR.RPR_MATERIAL_INPUT_UBER_DIFFUSE_COLOR => RGB,
RPR.RPR_MATERIAL_INPUT_UBER_DIFFUSE_WEIGHT => f01,
RPR.RPR_MATERIAL_INPUT_UBER_DIFFUSE_ROUGHNESS => f01,
RPR.RPR_MATERIAL_INPUT_UBER_DIFFUSE_NORMAL => Vec3f,
RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_COLOR => RGB,
RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_WEIGHT => f01,
RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_ROUGHNESS => f01,
RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_ANISOTROPY => (Float32, (-1, 1)),
RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_ANISOTROPY_ROTATION => f01,
RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_MODE => f01,
RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_IOR => (Float32, (1, 5)),
RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_METALNESS => f01,
RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_NORMAL => Vec3f,
RPR.RPR_MATERIAL_INPUT_UBER_REFLECTION_DIELECTRIC_REFLECTANCE => f01,
RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_COLOR => RGB,
RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_WEIGHT => f01,
RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_ROUGHNESS => f01,
RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_IOR => (Float32, (1, 5)),
RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_NORMAL => Vec3f,
RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_THIN_SURFACE => Bool,
RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_ABSORPTION_COLOR => RGB,
RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_ABSORPTION_DISTANCE => Float32, # soft 0-10
RPR.RPR_MATERIAL_INPUT_UBER_REFRACTION_CAUSTICS => Bool,
RPR.RPR_MATERIAL_INPUT_UBER_COATING_COLOR => RGB,
RPR.RPR_MATERIAL_INPUT_UBER_COATING_WEIGHT => f01,
RPR.RPR_MATERIAL_INPUT_UBER_COATING_ROUGHNESS => f01,
RPR.RPR_MATERIAL_INPUT_UBER_COATING_MODE => f01,
RPR.RPR_MATERIAL_INPUT_UBER_COATING_IOR => (Float32, (1, 5)),
RPR.RPR_MATERIAL_INPUT_UBER_COATING_METALNESS => f01,
RPR.RPR_MATERIAL_INPUT_UBER_COATING_NORMAL => Vec3f,
RPR.RPR_MATERIAL_INPUT_UBER_COATING_TRANSMISSION_COLOR => RGB,
RPR.RPR_MATERIAL_INPUT_UBER_COATING_THICKNESS => Float32, # soft 0-10
RPR.RPR_MATERIAL_INPUT_UBER_SHEEN => RGB, RPR.RPR_MATERIAL_INPUT_UBER_SHEEN_TINT => f01,
RPR.RPR_MATERIAL_INPUT_UBER_SHEEN_WEIGHT => f01,
RPR.RPR_MATERIAL_INPUT_UBER_EMISSION_COLOR => RGB,
RPR.RPR_MATERIAL_INPUT_UBER_EMISSION_WEIGHT => f01,
RPR.RPR_MATERIAL_INPUT_UBER_EMISSION_MODE => Bool,
RPR.RPR_MATERIAL_INPUT_UBER_TRANSPARENCY => f01,
RPR.RPR_MATERIAL_INPUT_UBER_SSS_SCATTER_COLOR => RGB,
RPR.RPR_MATERIAL_INPUT_UBER_SSS_SCATTER_DISTANCE => Vec3f, # soft 0-10
RPR.RPR_MATERIAL_INPUT_UBER_SSS_SCATTER_DIRECTION => (Float32, (-1, 1)),
RPR.RPR_MATERIAL_INPUT_UBER_SSS_WEIGHT => f01,
RPR.RPR_MATERIAL_INPUT_UBER_SSS_MULTISCATTER => Bool,
RPR.RPR_MATERIAL_INPUT_UBER_BACKSCATTER_WEIGHT => f01,
RPR.RPR_MATERIAL_INPUT_UBER_BACKSCATTER_COLOR => RGB
# RPR.RPR_MATERIAL_INPUT_ADDRESS => ,
# RPR.RPR_MATERIAL_INPUT_TYPE => ,
# RPR.RPR_MATERIAL_INPUT_UBER_FRESNEL_SCHLICK_APPROXIMATION => ,
)
end
to_color(c::Colorant) = convert(RGBA{Float32}, c)
to_color(c::Union{Symbol,String}) = parse(RGBA{Float32}, string(c))
function LayerMaterial(a, b; weight=Vec3f(0.5), transmission_color=nothing, thickness=Vec3f(0.1))
return BlendMaterial(a.matsys; color1=a.node, color2=b.node, weight=weight,
transmission_color=transmission_color, thickness=thickness)
end
function ShinyMetal(matsys; kw...)
return MicrofacetMaterial(matsys; color=to_color(:white), roughness=Vec3f(0.0), ior=Vec3f(1.5), # Aluminium
kw...)
end
function Chrome(matsys; kw...)
return MicrofacetMaterial(matsys; color=to_color(:gray), roughness=Vec3f(0.01), ior=Vec3f(1.390), # Aluminium
kw...)
end
function Plastic(matsys; kw...)
return UberMaterial(matsys; color=to_color(:yellow), reflection_color=Vec4f(1),
reflection_weight=Vec4f(1), reflection_roughness=Vec4f(0),
reflection_anisotropy=Vec4f(0), reflection_anisotropy_rotation=Vec4f(0),
reflection_metalness=Vec4f(0), reflection_ior=Vec4f(1.5), refraction_weight=Vec4f(0),
coating_weight=Vec4f(0), sheen_weight=Vec4f(0), emission_weight=Vec3f(0),
transparency=Vec4f(0), reflection_mode=UInt(RPR.RPR_UBER_MATERIAL_IOR_MODE_PBR),
emission_mode=UInt(RPR.RPR_UBER_MATERIAL_EMISSION_MODE_SINGLESIDED),
coating_mode=UInt(RPR.RPR_UBER_MATERIAL_IOR_MODE_PBR), sss_multiscatter=false,
refraction_thin_surface=false)
end
function Glass(matsys; kw...)
return UberMaterial(matsys; reflection_color=Vec4f(0.9), reflection_weight=Vec4f(1.0),
reflection_roughness=Vec4f(0.0), reflection_anisotropy=Vec4f(0.0),
reflection_anisotropy_rotation=Vec4f(0.0), reflection_mode=1,
reflection_ior=Vec4f(1.5), refraction_color=Vec4f(0.9), refraction_weight=Vec4f(1.0),
refraction_roughness=Vec4f(0.0), refraction_ior=Vec4f(1.5),
refraction_thin_surface=false, refraction_absorption_color=Vec4f(0.6, 0.8, 0.6, 0.0),
refraction_absorption_distance=Vec4f(150), refraction_caustics=true,
coating_weight=Vec4f(0), sheen_weight=Vec4f(0), emission_weight=Vec4f(0),
transparency=Vec4f(0), kw...)
end
function arithmetic_material(op, args...)
idx = findfirst(x -> x isa Material, args)
mat_arg = args[idx]
mat = ArithmeticMaterial(mat_arg.matsys)
for (i, arg) in enumerate(args)
setproperty!(mat, Symbol("color$i"), arg)
end
mat.op = op
return mat
end
function Base.:(*)(mat::Material, arg)
return arithmetic_material(RPR.RPR_MATERIAL_NODE_OP_MUL, mat, arg)
end
function Texture(matsys::MaterialSystem, matrix::AbstractMatrix; uv=nothing)
context = get_context(matsys)
img = Image(context, matrix)
tex = ImageTextureMaterial(matsys)
tex.data = img
if !isnothing(uv)
tex.uv = uv
end
return tex
end
"""
Matx(matsys::MaterialSystem, path::String)
Load a Material X xml definition from a `.mtlx` file.
Only works with Northstar plugin!
"""
function Matx(matsys::MaterialSystem, path::String)
ctx = get_context(matsys)
if ctx.plugin != Northstar
error("Matx needs Northstar plugin")
end
mat = MatxMaterial(matsys)
RPR.rprMaterialXSetFile(mat.node, path)
return mat
end
function DielectricBrdfX(matsys::MaterialSystem)
return Matx(matsys, assetpath("textures", "matx_dielectricBrdf.mtlx"))
end
function SurfaceGoldX(matsys::MaterialSystem)
ctx = get_context(matsys)
RPR.rprMaterialXAddDependencyMtlx(ctx, assetpath("textures", "matx_standard_surface.mtlx"))
return Matx(matsys, assetpath("textures", "matx_standard_surface_gold.mtlx"))
end
function CarPaintX(matsys::MaterialSystem)
ctx = get_context(matsys)
RPR.rprMaterialXAddDependencyMtlx(ctx, assetpath("textures", "matx_standard_surface.mtlx"))
return Matx(matsys, assetpath("textures", "matx_standard_surface_xi_carPaint.mtlx"))
end
function StandardMetalX(matsys::MaterialSystem)
return Matx(matsys, assetpath("textures", "matx_standard_surface_metal_texture.mtlx"))
end
# begin
# mesh!(ax, m, material=athmo)
# athmo = RPR.UberMaterial(matsys)
# athmo.color = Vec4f(1, 1, 1, 1)
# athmo.diffuse_weight = Vec4f(0, 0, 0, 0)
# athmo.diffuse_roughness = Vec4f(0)
# athmo.reflection_ior = Vec4f(1.0)
# athmo.refraction_color = Vec4f(0.5, 0.5, 0.7, 0)
# athmo.refraction_weight = Vec4f(1)
# athmo.refraction_roughness = Vec4f(0)
# athmo.refraction_ior =Vec4f(1.0)
# athmo.refraction_absorption_color = Vec4f(0.9, 0.3, 0.1, 1)
# athmo.refraction_absorption_distance = Vec4f(1)
# athmo.refraction_caustics = false
# athmo.sss_scatter_color = Vec4f(1.4, 0.8, 0.3, 0)
# athmo.sss_scatter_distance = Vec4f(0.3)
# athmo.sss_scatter_direction = Vec4f(0)
# athmo.sss_weight = Vec4f(1)
# athmo.backscatter_weight = Vec4f(1)
# athmo.backscatter_color = Vec4f(0.9, 0.1, 0.1, 1)
# athmo.reflection_mode = UInt(RPR.RPR_UBER_MATERIAL_IOR_MODE_PBR)
# athmo.emission_mode = UInt(RPR.RPR_UBER_MATERIAL_EMISSION_MODE_DOUBLESIDED)
# athmo.coating_mode = UInt(RPR.RPR_UBER_MATERIAL_IOR_MODE_PBR)
# athmo.sss_multiscatter = true
# athmo.refraction_thin_surface = false
# notify(refresh)
# end
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 2217 | import GLMakie.GLAbstraction: Texture, render, std_renderobject, LazyShader
import GLMakie.GLAbstraction: @frag_str, @vert_str
import ModernGL: GL_TEXTURE_2D
function FrameBuffer(context::Context, t::Texture{T,2}) where {T}
frame_buffer = ContextCreateFramebufferFromGLTexture2D(context, GL_TEXTURE_2D, 0, t.id)
x = FrameBuffer(frame_buffer)
finalizer(release, x)
return x
end
"""
Creates an interactive context with the help of glvisualize to view the texture
"""
function interactive_context(glwindow)
context = Context(RPR_CREATION_FLAGS_ENABLE_GPU0 | RPR_CREATION_FLAGS_ENABLE_GL_INTEROP)
w, h = widths(glwindow)
texture = Texture(RGBA{Float16}, (w, h))
view_tex(texture, glwindow)
g_frame_buffer = FrameBuffer(context, texture)
set!(context, RPR_AOV_COLOR, g_frame_buffer)
return context, g_frame_buffer
end
"""
blocking renderloop that uses tiling
"""
function tiledrenderloop(glwindow, context, framebuffer)
ti = TileIterator(widths(glwindow), (256, 256))
tile_state = iterate(ti)
while isopen(glwindow)
glBindTexture(GL_TEXTURE_2D, 0)
if isnothing(tile_state)
# reset iterator
tile_state = iterate(ti)
end
render(context, tile_state[1])
tile_state = iterate(ti, tile_state[2])
GLWindow.render_frame(glwindow)
end
end
const tex_frag = frag"""
{{GLSL_VERSION}}
in vec2 o_uv;
out vec4 fragment_color;
out uvec2 fragment_groupid;
uniform sampler2D image;
void main(){
vec4 color = texture(image, o_uv);
fragment_color = color/color.a;
fragment_groupid = uvec2(0);
}
"""
const tex_vert = vert"""
{{GLSL_VERSION}}
in vec2 vertices;
in vec2 texturecoordinates;
out vec2 o_uv;
void main(){
o_uv = texturecoordinates;
gl_Position = vec4(vertices, 0, 1);
}
"""
"""
A matrix of colors is interpreted as an image
"""
function view_tex(tex::Texture{T,2}, window) where {T}
data = Dict{Symbol,Any}(:image => tex,
:primitive => GLUVMesh2D(SimpleRectangle{Float32}(-1.0f0, -1.0f0, 2.0f0, 2.0f0)))
robj = std_renderobject(data, LazyShader(tex_vert, tex_frag))
return view(robj, window; camera=:nothing)
end
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | code | 2281 | using Test
using RadeonProRender, GeometryBasics, Colors
const RPR = RadeonProRender
context = RPR.Context(resource=RPR.RPR_CREATION_FLAGS_ENABLE_CPU, plugin=RPR.Northstar)
scene = RPR.Scene(context)
matsys = RPR.MaterialSystem(context, 0)
camera = RPR.Camera(context)
lookat!(camera, Vec3f(8, 0, 5), Vec3f(2, 0, 2), Vec3f(0, 0, 1))
RPR.rprCameraSetFocalLength(camera, 45.0)
set!(scene, camera)
set!(context, scene)
env_light = RadeonProRender.EnvironmentLight(context)
image_path = RPR.assetpath("studio026.exr")
img = RPR.Image(context, image_path)
set!(env_light, img)
setintensityscale!(env_light, 1.1)
push!(scene, env_light)
light = RPR.PointLight(context)
transform!(light, Float32[1.0 0.0 0.0 2.0; 0.0 1.0 0.0 0.0; 0.0 0.0 1.0 5.0; 0.0 0.0 0.0 1.0])
f = 20
RPR.setradiantpower!(light, 500 / f, 641 / f, 630 / f)
push!(scene, light)
function add_shape!(scene, context, matsys, mesh; color=colorant"white")
rpr_mesh = RadeonProRender.Shape(context, mesh)
push!(scene, rpr_mesh)
m = RPR.Plastic(matsys)
m.color = color
set!(rpr_mesh, m)
return rpr_mesh, m
end
mesh, mat = add_shape!(scene, context, matsys, Rect3f(Vec3f(-10, -10, -1), Vec3f(20, 20, 1));
color=colorant"white")
mesh, mat = add_shape!(scene, context, matsys, Rect3f(Vec3f(0, -10, 0), Vec3f(0.1, 20, 5));
color=colorant"green")
mesh, mat = add_shape!(scene, context, matsys, Rect3f(Vec3f(0, -2, 0), Vec3f(5, 0.1, 5));
color=colorant"red")
mesh, mat = add_shape!(scene, context, matsys, Rect3f(Vec3f(0, 2, 0), Vec3f(5, 0.1, 5));
color=colorant"blue")
mesh, mat_sphere = add_shape!(scene, context, matsys, Tesselation(Sphere(Point3f(2, 0, 2), 1.0f0), 100); color=colorant"red")
fb_size = (800, 600)
frame_buffer = RPR.FrameBuffer(context, RGBA, fb_size)
frame_bufferSolved = RPR.FrameBuffer(context, RGBA, fb_size)
set!(context, RPR.RPR_AOV_COLOR, frame_buffer)
set_standard_tonemapping!(context)
clear!(frame_buffer)
path = joinpath(@__DIR__, "test.png")
RPR.rprContextSetParameterByKey1u(context, RPR.RPR_CONTEXT_ITERATIONS, 1)
@time RPR.render(context)
RPR.rprContextResolveFrameBuffer(context, frame_buffer, frame_bufferSolved, false)
RPR.save(frame_bufferSolved, path)
@test isfile(path)
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | docs | 1210 | # RadeonProRender
Julia wrapper for AMD's [RadeonProRender](https://radeon-pro.github.io/RadeonProRenderDocs/en/index.html) library.
### Installation
(Windows and Linux only right now!)
In the Julia REPL, execute
```Julia
Pkg.add("RadeonProRender")
```
# Displaced surface

[video](https://vimeo.com/154175783)
[code](https://github.com/JuliaGraphics/RadeonProRender.jl/blob/master/examples/simple_displace.jl)
# 3D wrapped surface

[video](https://vimeo.com/154174476)
[code](https://github.com/JuliaGraphics/RadeonProRender.jl/blob/master/examples/surfacemesh.jl)
# Particles

[video](https://vimeo.com/154174460)
[code](https://github.com/JuliaGraphics/RadeonProRender.jl/blob/master/examples/instancing.jl)
# Interactivity
(slow, because of my slow hardware)

| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | docs | 2783 | ```julia
using RadeonProRender, GeometryBasics, Colors
const RPR = RadeonProRender
function translationmatrix(t::Vec{3,T}) where {T}
T0, T1 = zero(T), one(T)
return Mat{4}(T1, T0, T0, T0, T0, T1, T0, T0, T0, T0, T1, T0, t[1], t[2], t[3], T1)
end
context = RPR.Context()
scene = RPR.Scene(context)
matsys = RPR.MaterialSystem(context, 0)
camera = RPR.Camera(context)
lookat!(camera, Vec3f(7, 0, 5), Vec3f(2, 0, 2), Vec3f(0, 0, 1))
RPR.rprCameraSetFocalLength(camera, 45.0)
set!(scene, camera)
set!(context, scene)
env_light = RPR.EnvironmentLight(context)
image_path = RPR.assetpath("studio026.exr")
img = RPR.Image(context, image_path)
set!(env_light, img)
setintensityscale!(env_light, 1.1)
push!(scene, env_light)
light = RPR.PointLight(context)
transform!(light, translationmatrix(Vec3f(2, 0, 5)))
f = 20
RPR.setradiantpower!(light, 500 / f, 641 / f, 630 / f)
push!(scene, light)
function add_shape!(scene, context, matsys, mesh; material=RPR.RPR_MATERIAL_NODE_DIFFUSE,
color=colorant"green", roughness=0.01)
rpr_mesh = RPR.Shape(context, mesh)
push!(scene, rpr_mesh)
m = RPR.MaterialNode(matsys, material)
set!(m, RPR.RPR_MATERIAL_INPUT_COLOR, color)
set!(m, RPR.RPR_MATERIAL_INPUT_ROUGHNESS, roughness, roughness, roughness, roughness)
set!(rpr_mesh, m)
return rpr_mesh, m
end
mesh, mat = add_shape!(scene, context, matsys, Rect3f(Vec3f(-50, -50, -1), Vec3f(50*2, 50*2, 1));
color=colorant"white")
x, y = collect(-8:0.5:8), collect(-8:0.5:8)
z = [sinc(√(X^2 + Y^2) / π) for X ∈ x, Y ∈ y]
M, N = size(z)
points = map(x-> x ./ Point3f(4, 4, 1.0) .+ Point3f(0, 0, 1.0), vec(Point3f.(x, y', z)))
# Connect the vetices with faces, as one would use for a 2D Rectangle
# grid with M,N grid points
faces = decompose(LineFace{GLIndex}, Tesselation(Rect2(0, 0, 1, 1), (M, N)))
indices = RPR.rpr_int[]
for elem in faces
push!(indices, first(elem)-1, first(elem)-1, last(elem)-1, last(elem)-1)
end
curve = RPR.Curve(context, points, indices, [0.01], [Vec2f(0.1)], [length(faces)])
m = RPR.MaterialNode(matsys, RPR.RPR_MATERIAL_NODE_DIFFUSE)
set!(m, RPR.RPR_MATERIAL_INPUT_COLOR, colorant"red")
set!(m, RPR.RPR_MATERIAL_INPUT_ROUGHNESS, 0.0, 0.0, 0.0, 0.0)
set!(curve, m)
push!(scene, curve)
fb_size = (800, 600)
frame_buffer = RPR.FrameBuffer(context, RGBA, fb_size)
frame_bufferSolved = RPR.FrameBuffer(context, RGBA, fb_size)
set!(context, RPR.RPR_AOV_COLOR, frame_buffer)
set_standard_tonemapping!(context)
begin
clear!(frame_buffer)
RPR.rprContextSetParameterByKey1u(context, RPR.RPR_CONTEXT_ITERATIONS, 200)
@time RPR.render(context)
RPR.rprContextResolveFrameBuffer(context, frame_buffer, frame_bufferSolved, false)
RPR.save(frame_bufferSolved, "curves.png")
end
```
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.3.1 | 11a0186aa3101587e21c16b5baaffefd7f13c43f | docs | 215 | ```@meta
CurrentModule = RadeonProRender
```
# RadeonProRender
Documentation for [RadeonProRender](https://github.com/SimonDanisch/RadeonProRender.jl).
```@index
```
```@autodocs
Modules = [RadeonProRender]
```
| RadeonProRender | https://github.com/JuliaGraphics/RadeonProRender.jl.git |
|
[
"MIT"
] | 0.1.2 | ac31f04f4e5f0161782471b9c913faa26902b475 | code | 682 | using DynamicModelTestUtils
using Documenter
DocMeta.setdocmeta!(DynamicModelTestUtils, :DocTestSetup, :(using DynamicModelTestUtils); recursive=true)
makedocs(;
modules=[DynamicModelTestUtils],
authors="Ben Chung <[email protected]> and contributors",
repo="https://github.com/BenChung/DynamicModelTestUtils.jl/blob/{commit}{path}#{line}",
sitename="DynamicModelTestUtils.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
edit_link="master",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(
repo = "github.com/JuliaComputing/DynamicModelTestUtils.jl.git",
) | DynamicModelTestUtils | https://github.com/JuliaComputing/DynamicModelTestUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | ac31f04f4e5f0161782471b9c913faa26902b475 | code | 911 | module ModelTestingCalibration
using ModelTesting, ModelingToolkit
using JuliaSimModelOptimizer
function ModelTesting.validate(model::AbstractTimeDependentSystem, data; pem_coefficient=nothing, search_space = nothing, experiment_kwargs...)
if !(:model_transformations ∈ keys(experiment_kwargs))
if !isnothing(pem_coefficient)
model_transformations = [PredictionErrorMethod(pem_coefficient)]
else
model_transformations = []
end
else
model_transformations = experiment_kwargs[:model_transformations]
end
experiment = Experiment(data, model;
model_transformations = model_transformations,
filter(arg->first(arg) != :model_transformations, experiment_kwargs)...)
# no search space - this is just a validation run
i = InverseProblem([experiment], nothing, search_space)
return simulate(experiment, i)
end
end | DynamicModelTestUtils | https://github.com/JuliaComputing/DynamicModelTestUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | ac31f04f4e5f0161782471b9c913faa26902b475 | code | 457 | module DynamicModelTestUtils
using DataFrames, StatsBase, LinearAlgebra
using ModelingToolkit, SciMLBase, SymbolicIndexingInterface
using CSV, Test
abstract type DiscreteEvaluation end
abstract type Metric end
include("test/measured.jl")
include("test/discretize.jl")
include("test/instant.jl")
include("test/compare.jl")
include("problem_config/problem.jl")
include("deploy/deploy.jl")
include("deploy/restore.jl")
include("integration/regression.jl")
end
| DynamicModelTestUtils | https://github.com/JuliaComputing/DynamicModelTestUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | ac31f04f4e5f0161782471b9c913faa26902b475 | code | 7354 | using Git
# this is substantially derivative of Documenter.jl's usage of git to run gh-pages
abstract type DeployTarget end
Base.@kwdef struct DeployConfig
branch::String = ""
repo::String = ""
subfolder::String = ""
all_ok::Bool = false
end
@enum AuthenticationMethod SSH HTTPS
authentication_method(::DeployTarget) = SSH
function authenticated_repo_url end
post_status(cfg::Union{DeployTarget,Nothing}; kwargs...) = nothing
function data_key(::DeployTarget)
return ENV["DATA_KEY"]
end
function deploy_folder end
function currentdir()
d = Base.source_dir()
d === nothing ? pwd() : d
end
const NO_KEY_ENV = Dict(
"DOCUMENTER_KEY" => nothing,
"DOCUMENTER_KEY_PREVIEWS" => nothing,
)
function deploy(
root = currentdir(),
target = "data",
dirname = "";
repo = error("no 'repo' keyword provided."),
branch = "data",
deploy_type::DeployTarget = nothing,
archive = nothing
)
deploy_config = deploy_folder(deploy_type;
branch=branch,
repo=repo,
dataurl=dirname)
if !deploy_config.all_ok
return
end
deploy_branch = deploy_config.branch
deploy_repo = deploy_config.repo
deploy_subfolder = deploy_config.subfolder
cd(root) do
sha = try
readchomp(`$(git()) rev-parse --short HEAD`)
catch
# git rev-parse will throw an error and return code 128 if it is not being
# run in a git repository, which will make run/readchomp throw an exception.
# We'll assume that if readchomp fails it is due to this and set the sha
# variable accordingly.
"(not-git-repo)"
end
@debug "setting up target directory."
isdir(target) || mkpath(target)
startswith(realpath(target), realpath(root)) || error("""
target must be a subdirectory of root, got:
target: $(realpath(target))
root: $(realpath(root))
""")
@debug "pushing new data to remote: '$deploy_repo:$deploy_branch'."
mktempdir() do temp
git_push(
temp, deploy_repo;
branch=deploy_branch, dirname=dirname, target=target,
sha=sha, deploy_type=deploy_type, subfolder=deploy_subfolder, forcepush=false,
archive=archive
)
end
end
end
function git_push(
temp, repo;
branch="gh-pages", dirname="", target="site", sha="",
forcepush=false, deploy_type, subfolder,
archive = false
)
dirname = isempty(dirname) ? temp : joinpath(temp, dirname)
isdir(dirname) || mkpath(dirname)
target_dir = abspath(target)
# Generate a closure with common commands for ssh and https
function git_commands(sshconfig=nothing)
# Setup git.
run(`$(git()) init`)
run(`$(git()) config user.name "todo"`)
run(`$(git()) config user.email "[email protected]"`)
if sshconfig !== nothing
run(`$(git()) config core.sshCommand "ssh -F $(sshconfig)"`)
end
# Fetch from remote and checkout the branch.
run(`$(git()) remote add upstream $upstream`)
try
run(`$(git()) fetch upstream`)
catch e
@error """
Git failed to fetch $upstream
This can be caused by a DATA_KEY variable that is not correctly set up.
Make sure that the environment variable is properly set up as a Base64-encoded string
of the SSH private key. You may need to re-generate the keys.
"""
rethrow(e)
end
try
run(`$(git()) checkout -b $branch upstream/$branch`)
catch e
@info """
Checking out $branch failed, creating a new orphaned branch.
This usually happens when deploying to a repository for the first time and
the $branch branch does not exist yet. The fatal error above is expected output
from Git in this situation.
"""
@debug "checking out $branch failed with error: $e"
run(`$(git()) checkout --orphan $branch`)
run(`$(git()) commit --allow-empty -m "Initial empty commit for data"`)
end
# Copy docs to `subfolder` directory.
deploy_dir = subfolder === nothing ? dirname : joinpath(dirname, subfolder)
gitrm_copy(target_dir, deploy_dir)
# Add, commit, and push the docs to the remote.
run(`$(git()) add -A -- ':!.data-identity-file.tmp' ':!**/.data-identity-file.tmp'`)
if !success(`$(git()) diff --cached --exit-code`)
if !isnothing(archive)
run(`$(git()) commit -m "build based on $sha"`)
@info "Skipping push and writing repository to an archive" archive
run(`$(git()) archive -o $(archive) HEAD`)
elseif forcepush
run(`$(git()) commit --amend --date=now -m "build based on $sha"`)
run(`$(git()) push -fq upstream HEAD:$branch`)
else
run(`$(git()) commit -m "build based on $sha"`)
run(`$(git()) push -q upstream HEAD:$branch`)
end
else
@info "new data identical to the old -- not committing nor pushing."
end
end
# The upstream URL to which we push new content authenticated with token
upstream = authenticated_repo_url(deploy_type)
try
cd(() -> withenv(git_commands, NO_KEY_ENV...), temp)
post_status(deploy_type; repo=repo, type="success", subfolder=subfolder)
catch e
@error "Failed to push:" exception=(e, catch_backtrace())
post_status(deploy_type; repo=repo, type="error")
rethrow(e)
end
end
"""
gitrm_copy(src, dst)
Uses `git rm -r` to remove `dst` and then copies `src` to `dst`. Assumes that the working
directory is within the git repository of `dst` is when the function is called.
This is to get around [#507](https://github.com/JuliaDocs/Documenter.jl/issues/507) on
filesystems that are case-insensitive (e.g. on OS X, Windows). Without doing a `git rm`
first, `git add -A` will not detect case changes in filenames.
"""
function gitrm_copy(src, dst)
# Remove individual entries since with versions=nothing the root
# would be removed and we want to preserve previews
if isdir(dst)
for x in filter!(!in((".git", "previews")), readdir(dst))
# --ignore-unmatch so that we wouldn't get errors if dst does not exist
run(`$(git()) rm -rf --ignore-unmatch $(joinpath(dst, x))`)
end
end
# git rm also remove parent directories
# if they are empty so need to mkpath after
mkpath(dst)
# Copy individual entries rather then the full folder since with
# versions=nothing it would replace the root including e.g. the .git folder
for x in readdir(src)
cp(joinpath(src, x), joinpath(dst, x); force=true)
end
end
struct FilesystemDeployConfig <: DynamicModelTestUtils.DeployTarget
repo_path :: String
subfolder :: String
end
function DynamicModelTestUtils.deploy_folder(c::FilesystemDeployConfig; branch, repo, kwargs...)
DynamicModelTestUtils.DeployConfig(; all_ok = true, subfolder = c.subfolder, branch, repo)
end
DynamicModelTestUtils.authentication_method(::FilesystemDeployConfig) = DynamicModelTestUtils.HTTPS
DynamicModelTestUtils.authenticated_repo_url(c::FilesystemDeployConfig) = c.repo_path | DynamicModelTestUtils | https://github.com/JuliaComputing/DynamicModelTestUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | ac31f04f4e5f0161782471b9c913faa26902b475 | code | 1028 |
function load_data(action; root=currentdir(), branch="data")
mktempdir() do temp
cd(temp) do
run(`$(git()) init`)
run(`$(git()) config user.name "todo"`)
run(`$(git()) config user.email "[email protected]"`)
run(`$(git()) remote add upstream $root`)
run(`$(git()) fetch upstream`)
try
run(`$(git()) checkout -b $branch upstream/$branch`)
catch e
@info """
Checking out $branch failed, creating a new orphaned branch.
This usually happens when deploying to a repository for the first time and
the $branch branch does not exist yet. The fatal error above is expected output
from Git in this situation. Generate and commit some data to $branch, then try again.
"""
throw(Exception("checking out $branch failed with error: $e"))
end
action(temp)
end
end
end
| DynamicModelTestUtils | https://github.com/JuliaComputing/DynamicModelTestUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | ac31f04f4e5f0161782471b9c913faa26902b475 | code | 2767 | function default_comparison(name, sol, df; tol=1e-3, show_results=true, kwargs...)
cmp_df = compare(sol, df; kwargs...)
if show_results
@show cmp_df
end
# this is lame but is better than the alternatives
for (idx, var) in enumerate(cmp_df[:, :var])
for (cidx, col) in enumerate(names(cmp_df))
if col ∈ ["observed", "var"]
continue
end
@test cmp_df[idx, cidx] < tol # "Solution $name differs from regression data using metric $col on variable $var by $(cmp_df[idx, cidx])."
end
end
return cmp_df
end
function regression_test(
runs::Dict{Symbol, <:SciMLBase.AbstractTimeseriesSolution},
rootdir=currentdir(),
data_dir="data",
should_deploy="--deploy_data" ∈ ARGS;
make_output_dir=false,
clean_output_dir=false,
deploy_only=false,
restore=(go, root) -> load_data(go; root=root),
cmp=(name, sol, df) -> default_comparison(name, sol, df),
do_load=(filename) -> CSV.read(filename, DataFrame),
discretize=(sol) -> discretize_solution(sol),
save=(filename, df) -> CSV.write(filename, df),
do_deploy=deploy,
mk_filename=(symbol) -> string(symbol) * ".csv")
should_save = false
data_fulldir = joinpath(rootdir, data_dir)
if !isfile(data_fulldir) && make_output_dir
mkpath(data_fulldir)
should_save = true
elseif isfile(data_fulldir) && make_output_dir
if clean_output_dir
if !isempty(readdir(data_fulldir))
for rmfile in readdir(data_fulldir)
@warn "Removing existing data file $rmfile"
rm(rmfile)
end
end
end
should_save = true
end
if !deploy_only
restore(rootdir) do restored
cd(restored) do
for (name, new_sol) in runs
@assert isfile(mk_filename(name))
data = do_load(mk_filename(name))
cmp(name, new_sol, data)
end
end
end
end
if should_save
for (name, new_sol) in runs
save(joinpath(data_fulldir, mk_filename(name)), discretize(new_sol))
end
end
if should_save && should_deploy
do_deploy(rootdir, data_dir,
deploy_type = DynamicModelTestUtils.FilesystemDeployConfig(rootdir, "."),
repo = rootdir)
elseif !should_save && should_deploy
mktempdir() do temp
cd(temp) do
mkdir(data_dir)
do_deploy(temp, data_dir,
deploy_type = DynamicModelTestUtils.FilesystemDeployConfig(rootdir, "."),
repo = rootdir)
end
end
end
end | DynamicModelTestUtils | https://github.com/JuliaComputing/DynamicModelTestUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | ac31f04f4e5f0161782471b9c913faa26902b475 | code | 721 | module ProblemHelpers
import SciMLBase
using DataFrames
# some thin wrappers over remake
initial_condition(prob::SciMLBase.AbstractDEProblem, u0) = remake(prob, u0 = u0)
tspan(prob::SciMLBase.AbstractDEProblem, tspan) = remake(prob, tspan = tspan)
parameters(prob::SciMLBase.AbstractDEProblem, ps) = remake(prob, p = ps)
remake_solver_kwarg(prob, merge; kwargs...) = remake(prob; kwargs = mergewith(merge, kwargs, prob.kwargs))
tstops(prob::SciMLBase.AbstractDEProblem, tstops) = remake_solver_kwarg(prob, (new, old) -> sort!([new; old]); tstops = tstops)
tstops(prob::SciMLBase.AbstractDEProblem, tstops::DataFrame) = tstops(prob, collect(tstops[:, :timestamp]))
export initial_condition, tspan, parameters, tstops
end | DynamicModelTestUtils | https://github.com/JuliaComputing/DynamicModelTestUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | ac31f04f4e5f0161782471b9c913faa26902b475 | code | 7635 | """
`DefaultComparison` is a convenience default comparison method for solutions and reference data.
By default it's instantiated with l∞, l1, l2, RMS, and final l1 comparsons. More can be added by
passing a dict of name=>comparison function pairs into `field_cmp`, with the signature (delta, dt_delta, t) -> [vector difference].
The arguments of these comparison functions are `delta` for the raw difference beteween the value, `dt_delta` for the
product of dt and delta (if you want to approximate the integral of the error), and the timestamps at which the data was produced.
The arguments consist of a vector per compared field.
"""
struct DefaultComparison
field_cmp::Dict{Symbol, Function}
function DefaultComparison(field_cmp::Dict{Symbol, Function}=Dict{Symbol, Function}(); use_defaults=true)
if use_defaults
merge!(field_cmp, Dict{Symbol, Function}([
:L∞ => (delta, dt_delta, t) -> norm.(dt_delta, Inf),
:L1 => (delta, dt_delta, t) -> norm.(dt_delta, 1),
:L2 => (delta, dt_delta, t) -> norm.(dt_delta, 2),
:rms => (delta, dt_delta, t) -> sqrt.(1/length(t) .* sum.(map(d-> d .^ 2, dt_delta))),
:final => (delta, dt_delta, t) -> last.(delta)]))
end
return new(field_cmp)
end
end
"""
(d::DefaultComparison)(c, names, b, t, n, r)
Default comparison implementation. Returns a dataframe that describes the result of running each comparison operation on the given data.
#Arguments
* `c`: The symbolic container from which the values we're comparing came
* `names`: The names to output for the fields we're comparing (not always the same as the names of the fields being compared)
* `b`: The symbolic variables that are being compared
* `t`: The timestamps at which the comparison is taking place
* `n`: The new values being compared
* `r`: The reference values to compare against
"""
function (d::DefaultComparison)(c, names, b, t, n, r)
delta = map((o, re) -> o .- re, n, r)
dt_delta = map(d -> 0.5 * (d[1:end-1] .+ d[2:end]) .* (t[2:end] .- t[1:end-1]), delta)
cmps = [name => cmper(delta, dt_delta, t) for (name, cmper) in d.field_cmp]
return DataFrame([:var => names, cmps...,
:observed => SymbolicIndexingInterface.is_observed.(c, b)])
end
function default_near_zero(result; ϵ=1e-7)
obses = stack(result, 2:ncol(result)-1)
for obs in eachrow(obses)
@test obs[:value] < ϵ || "$(obs[:variable])($(obs[:var])) = $(obs[:value]) > ϵ = $ϵ"
end
@show result
end
"""
compare(
new_sol::SciMLBase.AbstractTimeseriesSolution,
reference::DataFrame,
over::Vector{<:Union{Pair{<:Any, String}, Pair{<:Any, Pair{String, String}}}}
cmp=DefaultComparison(); warn_observed=true)
Lower level version of `compare` that lets you specify the mapping from values in `new_sol` (specified as either variable => name or variable => (input_name, output_name) pairs) to
the column names in `reference`. The tuple-result version lets you specify what the column names are when passed to the comparison method. Since the mapping is explicit
this version does not take `to_name`, but it still does take `warn_observed`. See the implicit-comparison version of `compare` for more information.
"""
function compare(
new_sol::SciMLBase.AbstractTimeseriesSolution,
reference::DataFrame,
over::Vector{<:Union{Pair{<:Any, String}, Pair{<:Any, Pair{String, String}}}},
cmp=DefaultComparison(); warn_observed=true)
basis = first.(over)
reference_basis = map(e -> e isa Pair ? first(e) : e, last.(over))
output_names = map((n1, n2) -> n2 isa Pair ? last(n2) : string(n1), basis, last.(over))
@assert "timestamp" ∈ names(reference) "The dataset must contain a column named `timestamp`"
new_container = SymbolicIndexingInterface.symbolic_container(new_sol)
@assert all(SymbolicIndexingInterface.is_observed.((new_container, ), basis) .| SymbolicIndexingInterface.is_variable.((new_container, ), basis)) "All basis symbols must be observed in the new system"
@assert all(b ∈ names(reference) for b in reference_basis) "The reference basis must be a subset of the columns in the reference data"
if new_sol.dense
dat = new_sol(reference[:, :timestamp], idxs=basis)
obs = [[dat[i, j] for j=1:nrow(reference)] for i in eachindex(basis)]
ref = collect.(eachcol(reference[:, Not(:timestamp)]))
cmp(new_container, output_names, basis, reference[:, :timestamp], obs, ref)
else
foldl(red, cmp(row[:timestamp], new_sol[row[:timestamp], basis], row[reference_basis]) for row in eachrow(reference); init=isnothing(init) ? nothing : init(basis))
end
end
"""
compare(
new_sol::SciMLBase.AbstractTimeseriesSolution,
reference::DataFrame,
cmp=DefaultComparison(); to_name=string, warn_observed=true)
`compare` compares the results of `new_sol` to a result in `reference`, which may come from either experiment or a previous model execution.
The format of `reference` is that produced by [`discretize_solution`](@ref):
* A column named "timestamp" that indicates the time the measurement was taken (referenced to the same timebase as the solution provided)
* Columns with names matching the names in the completed system `new_sol` (fully qualified)
If `new_sol` is dense then the discretization nodes don't need to line up with the `reference` and the interpolant will be used instead.
If it is not dense then the user must ensure that the saved states in are at the same times as the "timestamp"s are in the reference data.
`compare` will use the comparison method specified by `cmp` to compare the two solutions; by default it uses the [`DefaultComparison`](@ref)
(which offers l1, l2, and rms comparisons per observed value), but you can pass your own. Look at `DefaultComparison` for more details on how.
The two optional named parameters are `to_name` (which is used to convert the symbolic variables in `new_sol` into valid column names for
the dataframe) and `warn_observed` which controls whether `compare` complains about comparing observed values to non-observed values. We suggest
leaving `warn_observed` on for regression testing (it'll give you a note when MTK changes the simplifcation of the system).
"""
function compare(
new_sol::SciMLBase.AbstractTimeseriesSolution,
reference::DataFrame,
cmp=DefaultComparison(); to_name=string, warn_observed=true)
@assert "timestamp" ∈ names(reference) "The dataset must contain a column named `timestamp`"
eval_syms = reference_syms(SymbolicIndexingInterface.symbolic_container(new_sol), reference, to_name, warn_observed)
return compare(new_sol, reference, eval_syms .=> setdiff(names(reference), ["timestamp"]), cmp)
end
function reference_syms(new_container, reference, to_name, warn_observed)
all_available = SymbolicIndexingInterface.all_variable_symbols(new_container)
all_available_syms = Dict(to_name.(all_available) .=> all_available)
return [ begin
@assert ref_name ∈ keys(all_available_syms) "Reference value $ref_name not found in the new solution (either as state or observed)"
matching_sym = all_available_syms[ref_name]
if warn_observed && SymbolicIndexingInterface.is_observed(new_container, matching_sym)
@warn "The variable $matching_sym is observed in the new solution while the past $ref_name is provided explicitly; problem structure may have changed"
end
matching_sym
end for ref_name in setdiff(names(reference), ["timestamp"])]
end
export compare | DynamicModelTestUtils | https://github.com/JuliaComputing/DynamicModelTestUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | ac31f04f4e5f0161782471b9c913faa26902b475 | code | 3875 | _symbolic_subset(a, b) = all(av->any(bv->isequal(av, bv), b), a)
function namespace_symbol(prefix, sym)
return Symbol(string(prefix) * "/" * string(sym))
end
function make_cols(names, rows)
cols = []
for (i, name) in enumerate(names)
col = zeros(length(rows))
for (j, row) in enumerate(rows)
col[j] = row[i]
end
push!(cols, name=>col)
end
return cols
end
"""
discretize_solution(solution::SciMLBase.AbstractTimeseriesSolution[, time_ref::SciMLBase.AbstractTimeseriesSolution]; measured=nothing, all_observed=false)
`discretize_solution` takes a solution and an optional time reference and converts it into a dataframe. This dataframe will contain either:
* The variables (unknowns or observeds) named in `measured`, if provided.
* The variables marked as `measured` if `all_observed` is `false` and `measured` is `nothing`.
* All variables in the system if `all_observed` is `true` and `measured` is `nothing`.
The dataframe will contain a column called `timestamp` for each of the discretization times and a column for each observed value.
If no time reference is provided then the timebase used to discretize `solution` will be used instead.
"""
function discretize_solution(solution::SciMLBase.AbstractTimeseriesSolution, time_ref::SciMLBase.AbstractTimeseriesSolution; measured=nothing, all_observed=false)
container = SymbolicIndexingInterface.symbolic_container(time_ref)
ref_t_vars = independent_variable_symbols(container)
if length(ref_t_vars) > 1
@error "PDE solutions not currently supported; only one iv is allowed"
end
return discretize_solution(solution, time_ref[first(ref_t_vars)]; measured=measured, all_observed=all_observed)
end
function discretize_solution(solution::SciMLBase.AbstractTimeseriesSolution, time_ref::DataFrame; measured=nothing, all_observed=false)
@assert "timestamp" ∈ names(time_ref) "The dataset B must contain a column named `timestamp`"
return discretize_solution(solution, collect(time_ref[!, "timestamp"]); measured=measured, all_observed=all_observed)
end
function discretize_solution(solution::SciMLBase.AbstractTimeseriesSolution; measured=nothing, all_observed=false)
container = SymbolicIndexingInterface.symbolic_container(solution)
ref_t_vars = independent_variable_symbols(container)
if length(ref_t_vars) > 1
@error "PDE solutions not currently supported; only one iv is allowed"
end
return discretize_solution(solution, solution[first(ref_t_vars)]; measured=measured, all_observed=all_observed )
end
function discretize_solution(solution::SciMLBase.AbstractTimeseriesSolution, time_ref::AbstractArray; measured=nothing, all_observed=false)
container = SymbolicIndexingInterface.symbolic_container(solution)
if isnothing(measured)
if all_observed
measured = all_variable_symbols(container)
else
measured = measured_values(container)
end
end
ref_t_vars = independent_variable_symbols(container)
if length(ref_t_vars) > 1
@error "PDE solutions not currently supported; only one iv is allowed"
end
ref_t_var = first(ref_t_vars)
matching_timebase = solution[ref_t_var] == time_ref
if matching_timebase # if the time_ref match the timebase of the problem then use the value at the nodes regardless of if it's dense or sparse
cols = make_cols(String["timestamp"; measured_names(measured)], solution[[ref_t_var; measured]])
elseif solution.dense # continious-time solution, use the interpolant
cols = make_cols(String["timestamp"; measured_names(measured)], solution(time_ref, idxs=[ref_t_var; measured]))
else
throw("Cannot discretize_solution sparse solution about a different timebase.")
end
return DataFrame(cols)
end
export discretize_solution
| DynamicModelTestUtils | https://github.com/JuliaComputing/DynamicModelTestUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | ac31f04f4e5f0161782471b9c913faa26902b475 | code | 1208 |
function test_instantaneous(
sys::ModelingToolkit.AbstractSystem,
ic,
checks::Num;
t = nothing)
return test_instantaneous(sys, ic, checks; t = t)
end
"""
test_instantaneous(sys::ModelingToolkit.AbstractSystem,
ic,
checks::Union{Num, Array};
t = nothing)
`test_instantaneous` is a helper wrapper around constructing and executing an `ODEProblem` at a specific condition. It's intended for use in basic
sanity checking of MTK models, for example to ensure that the derivative at a given condition has the correct sign. It should be passed the system,
the initial condition dictionary to be given to the ODEProblem constructor (including parameters), and a list of observable values from the system to
extract from the ODEProblem. If `checks` is a single `Num` then the result will be that observed value; otherwise it will return an array in the same
order as the provided checks.
"""
function test_instantaneous(
sys::ModelingToolkit.AbstractSystem,
ic,
checks::Array;
t = nothing)
t = isnothing(t) ? 0.0 : t
prob = ODEProblem(sys, ic, (0.0, 0.0))
getter = getu(prob, checks)
return getter(prob)
end
export test_instantaneous | DynamicModelTestUtils | https://github.com/JuliaComputing/DynamicModelTestUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | ac31f04f4e5f0161782471b9c913faa26902b475 | code | 1184 |
struct MeasuredVariable end
Symbolics.option_to_metadata_type(::Val{:measured}) = MeasuredVariable
ismeasured(x::Num, args...) = ismeasured(Symbolics.unwrap(x), args...)
function ismeasured(x, default = false)
p = Symbolics.getparent(x, nothing)
p === nothing || (x = p)
Symbolics.getmetadata(x, MeasuredVariable, default)
end
function setmeasured(x)
setmetadata(x, MeasuredVariable, true)
end
function measured_values(sys, v=all_variable_symbols(sys))
filter(x -> ismeasured(x, false), v)
end
function measured_system_values(sys)
reference_container = symbolic_container(sys)
return measured_values(reference_container)
end
function measured_names(measured)
return string.(measured)
end
@mtkmodel MeasureComponent begin
@variables begin
value(t), [measured = true]
end
end
function Measurement(sensor; name)
@assert length(variable_symbols(sensor)) == 1 "The Measurement helper requires that the measurement component have only one scalar-valued state"
@variables t value(t) [measured = true]
return ODESystem([
value ~ first(sensor.states)
], t; name = name)
end
export Measurement, MeasureComponent
| DynamicModelTestUtils | https://github.com/JuliaComputing/DynamicModelTestUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | ac31f04f4e5f0161782471b9c913faa26902b475 | code | 2813 | using ModelingToolkitStandardLibrary.Electrical
using ModelingToolkitStandardLibrary.Blocks: Constant
using SymbolicIndexingInterface
@testset "Block Modeling" begin
@testset "RC Functional" begin
R = 1.0
C = 1.0
V = 1.0
@variables t
@named resistor = Resistor(R = R)
@named capacitor = Capacitor(C = C)
@named source = Voltage()
@named constant = Constant(k = V)
@named ground = Ground()
@named sensor = PotentialSensor()
@named key_parameter = MeasureComponent()
rc_eqs = [connect(constant.output, source.V)
connect(source.p, resistor.p)
connect(resistor.n, capacitor.p)
connect(capacitor.n, source.n, ground.g)
connect(sensor.p, capacitor.p)
sensor.phi ~ key_parameter.value]
@named rc_model = ODESystem(rc_eqs, t,
systems = [resistor, capacitor, constant, source, ground, sensor, key_parameter])
sys = structural_simplify(rc_model)
prob1 = ODEProblem(sys, Pair[], (0, 10.0))
sol1 = solve(prob1, Tsit5())
prob2 = ODEProblem(sys, Pair[capacitor.C => 0.9], (0, 10.0)) # this converges to nearly the same solution but is a little too fast
sol2 = solve(prob2, Tsit5())
prob3 = ODEProblem(sys, Pair[capacitor.C => 5.0], (0, 10.0)) # this doesn't stabilize in the allotted time
sol3 = solve(prob3, Tsit5())
d1 = discretize_solution(sol1, sol1)
ds1 = discretize_solution(sol1, sol1; measured=SymbolicIndexingInterface.all_variable_symbols(sys))
@test sum(compare(sol1, ds1; warn_observed=false)[:, :L∞]) < 0.01
@test sum(compare(sol2, ds1; warn_observed=false)[:, :L∞]) > sum(compare(sol1, ds1; warn_observed=false)[:, :L∞])
@test sum(compare(sol3, ds1; warn_observed=false)[:, :L∞]) > sum(compare(sol2, ds1; warn_observed=false)[:, :L∞])
@test sum(compare(sol1, ds1; warn_observed=false)[:, :L∞]) > sum(compare(sol1, d1; warn_observed=false)[:, :L∞])
@test sum(compare(sol2, ds1; warn_observed=false)[:, :L∞]) > sum(compare(sol2, d1; warn_observed=false)[:, :L∞])
@test sum(compare(sol3, ds1; warn_observed=false)[:, :L∞]) > sum(compare(sol3, d1; warn_observed=false)[:, :L∞])
# construct a fictional power measurement
power_synth = select(ds1, :timestamp, ["capacitor₊v(t)", "capacitor₊i(t)"] => ((v, i) -> v .* i) => "power")
@test compare(sol1, power_synth, [capacitor.i * capacitor.v => "power" => "power"])[1, "L∞"] < 0.01
@test compare(sol2, power_synth, [capacitor.i * capacitor.v => "power" => "power"])[1, "L∞"] < 0.05
@test compare(sol3, power_synth, [capacitor.i * capacitor.v => "power" => "power"])[1, "L∞"] < 0.3
end
end
| DynamicModelTestUtils | https://github.com/JuliaComputing/DynamicModelTestUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | ac31f04f4e5f0161782471b9c913faa26902b475 | code | 4793 | using Git, CSV
@testset "deploy" begin
@testset "bare" begin
mktempdir() do dir
cd(dir) do
mkdir("repo")
run(`$(git()) -C repo init -q --bare`)
full_repo_path = joinpath(pwd(), "repo")
mkdir("runs")
write("runs/run.csv", "1,2,3")
DynamicModelTestUtils.deploy(
pwd(), "runs",
deploy_type = DynamicModelTestUtils.FilesystemDeployConfig(full_repo_path, "."),
repo = full_repo_path
)
run(`$(git()) clone -q -b data $(full_repo_path) worktree`)
println(readdir("worktree/"))
@test isfile(joinpath("worktree", "run.csv"))
DynamicModelTestUtils.load_data(root=full_repo_path) do localdir
@test isfile("run.csv")
end
end
end
end
@testset "RC deploy" begin
R = 1.0
C = 1.0
V = 1.0
@variables t
@named resistor = Resistor(R = R)
@named capacitor = Capacitor(C = C)
@named source = Voltage()
@named constant = Constant(k = V)
@named ground = Ground()
@named sensor = PotentialSensor()
@named key_parameter = MeasureComponent()
rc_eqs = [connect(constant.output, source.V)
connect(source.p, resistor.p)
connect(resistor.n, capacitor.p)
connect(capacitor.n, source.n, ground.g)
connect(sensor.p, capacitor.p)
sensor.phi ~ key_parameter.value]
@named rc_model = ODESystem(rc_eqs, t,
systems = [resistor, capacitor, constant, source, ground, sensor, key_parameter])
sys = structural_simplify(rc_model)
prob1 = ODEProblem(sys, Pair[], (0, 10.0))
sol = solve(prob1, Tsit5())
d1 = discretize_solution(sol)
mktempdir() do dir
cd(dir) do
mkdir("repo")
run(`$(git()) -C repo init -q --bare`)
full_repo_path = joinpath(pwd(), "repo")
mkdir("data")
CSV.write("data/output.csv", d1)
DynamicModelTestUtils.deploy(
pwd(), "data",
deploy_type = DynamicModelTestUtils.FilesystemDeployConfig(full_repo_path, "."),
repo = full_repo_path,
)
DynamicModelTestUtils.load_data(root=full_repo_path) do localdir
@test isfile("output.csv")
restored = CSV.read("output.csv", DataFrame)
@test sum(compare(sol, restored)[:, :L∞]) < 0.01
end
end
end
end
@testset "RC regression" begin
R = 1.0
C = 1.0
V = 1.0
@variables t
@named resistor = Resistor(R = R)
@named capacitor = Capacitor(C = C)
@named source = Voltage()
@named constant = Constant(k = V)
@named ground = Ground()
@named sensor = PotentialSensor()
@named key_parameter = MeasureComponent()
rc_eqs = [connect(constant.output, source.V)
connect(source.p, resistor.p)
connect(resistor.n, capacitor.p)
connect(capacitor.n, source.n, ground.g)
connect(sensor.p, capacitor.p)
sensor.phi ~ key_parameter.value]
@named rc_model = ODESystem(rc_eqs, t,
systems = [resistor, capacitor, constant, source, ground, sensor, key_parameter])
sys = structural_simplify(rc_model)
prob1 = ODEProblem(sys, Pair[], (0, 10.0))
sol = solve(prob1, Tsit5())
prob2 = ODEProblem(sys, Pair[capacitor.C => 0.5], (0, 10.0))
sol2 = solve(prob2, Tsit5())
println("\n\n\nstart deploy test")
mktempdir() do dir
cd(dir) do
mkdir("repo")
run(`$(git()) -C repo init -q --bare`)
full_repo_path = joinpath(pwd(), "repo")
DynamicModelTestUtils.regression_test(Dict(:rc => sol), full_repo_path, "data", true;
deploy_only = true,
make_output_dir = true)
println("deployed! to $full_repo_path")
run(`$(git()) clone -q -b data $(full_repo_path) worktree`)
println(readdir("worktree/"))
DynamicModelTestUtils.regression_test(Dict(
:rc => sol
), full_repo_path)
#DynamicModelTestUtils.regression_test(Dict(
# :rc => sol2
#), full_repo_path)
end
end
end
end | DynamicModelTestUtils | https://github.com/JuliaComputing/DynamicModelTestUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | ac31f04f4e5f0161782471b9c913faa26902b475 | code | 1135 | @testset "Instantaneous" begin
@testset "RC Functional" begin
R = 1.0
C = 1.0
V = 1.0
@variables t
@named resistor = Resistor(R = R)
@named capacitor = Capacitor(C = C)
@named source = Voltage()
@named constant = Constant(k = V)
@named ground = Ground()
@named sensor = PotentialSensor()
rc_eqs = [connect(constant.output, source.V)
connect(source.p, resistor.p)
connect(resistor.n, capacitor.p)
connect(capacitor.n, source.n, ground.g)
connect(sensor.p, capacitor.p)]
@named rc_model = ODESystem(rc_eqs, t,
systems = [resistor, capacitor, constant, source, ground, sensor])
sys = structural_simplify(rc_model)
@test test_instantaneous(sys, [], [resistor.v]; t = 0.0)[1] > 0
@test test_instantaneous(sys, [], [resistor.i]; t = 0.0)[1] > 0
@test test_instantaneous(sys, [constant.k => 0.0], [resistor.v]; t = 0.0)[1] == 0
@test test_instantaneous(sys, [constant.k => 5.0], [resistor.v]; t = 0.0)[1] == 5
end
end | DynamicModelTestUtils | https://github.com/JuliaComputing/DynamicModelTestUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | ac31f04f4e5f0161782471b9c913faa26902b475 | code | 330 | #using JuliaSimModelOptimizer
using DynamicModelTestUtils
using DifferentialEquations, DataFrames, ModelingToolkit
import SymbolicIndexingInterface
using Test
@testset "DynamicModelTestUtils.jl" begin
#include("timeseries.jl")
include("block_modeling.jl")
include("instantaneous.jl")
include("deployment.jl")
end
| DynamicModelTestUtils | https://github.com/JuliaComputing/DynamicModelTestUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | ac31f04f4e5f0161782471b9c913faa26902b475 | docs | 361 | # DynamicModelTestUtils
DynamicModelTestUtils is a simple package that wraps SymbolicIndexingInterface to provide straightforward model regression analysis & comparision functionality.
It can export model result data using `discretize_solution` into a DataFrame and can compare against those DataFrames using `compare`. It's intended for use in CI pipelines.
| DynamicModelTestUtils | https://github.com/JuliaComputing/DynamicModelTestUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | ac31f04f4e5f0161782471b9c913faa26902b475 | docs | 586 | ```@meta
CurrentModule = DynamicModelTestUtils
```
# DynamicModelTestUtils
Documentation for [DynamicModelTestUtils](https://github.com/BenChung/DynamicModelTestUtils.jl).
DynamicModelTestUtils is intended to facilitate the easy testing and post-facto analysis of ModelingToolkit models. It currently provides two key bits of functionality:
* Serialization of MTK solutions into a common format through `discretize_solution`.
* Comparison of solutions to each other and to previously-saved data through `compare`.
```@index
```
```@autodocs
Modules = [DynamicModelTestUtils]
```
| DynamicModelTestUtils | https://github.com/JuliaComputing/DynamicModelTestUtils.jl.git |
|
[
"MIT"
] | 0.1.0 | 2147f4d3442e2cc9a3e7d3961dda2341e3f4f3c4 | code | 730 | using CitationRecipes
using Documenter
DocMeta.setdocmeta!(CitationRecipes, :DocTestSetup, :(using CitationRecipes); recursive=true)
makedocs(;
modules=[CitationRecipes],
authors="singularitti <[email protected]> and contributors",
repo="https://github.com/singularitti/CitationRecipes.jl/blob/{commit}{path}#{line}",
sitename="CitationRecipes.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://singularitti.github.io/CitationRecipes.jl",
edit_link="main",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/singularitti/CitationRecipes.jl",
devbranch="main",
)
| CitationRecipes | https://github.com/singularitti/CitationRecipes.jl.git |
|
[
"MIT"
] | 0.1.0 | 2147f4d3442e2cc9a3e7d3961dda2341e3f4f3c4 | code | 1168 | module CitationRecipes
using Bibliography: Entry, xyear
using RecipesBase: AbstractPlot, @recipe, @series, @shorthands
@recipe function f(
::Type{Val{:experimentaldata}}, plt::AbstractPlot; ref=nothing, n_authors=1
)
label = if ref isa Entry
join((truncate_authors(ref, n_authors), xyear(ref)), ", ")
else
string(get(plotattributes, :label, ""))
end
seriestype := :scatter # It has to be `:=`!
markersize --> 3
markerstrokecolor --> :auto
markerstrokewidth --> 0
label --> label
return ()
end
@shorthands experimentaldata
@recipe function f(::Type{Val{:prediction}}, plt::AbstractPlot; ref=nothing, n_authors=1)
label = if ref isa Entry
join((truncate_authors(ref, n_authors), xyear(ref)), ", ")
else
string(get(plotattributes, :label, ""))
end
seriestype := :path # It has to be `:=`!
label --> label
return ()
end
@shorthands prediction
function truncate_authors(ref::Entry, n::Integer)
authors = Iterators.take(ref.authors, n)
suffix = n < length(ref.authors) ? "et. al." : ""
return join([[author.last for author in authors]; suffix], ", ")
end
end
| CitationRecipes | https://github.com/singularitti/CitationRecipes.jl.git |
|
[
"MIT"
] | 0.1.0 | 2147f4d3442e2cc9a3e7d3961dda2341e3f4f3c4 | code | 103 | using CitationRecipes
using Test
@testset "CitationRecipes.jl" begin
# Write your tests here.
end
| CitationRecipes | https://github.com/singularitti/CitationRecipes.jl.git |
|
[
"MIT"
] | 0.1.0 | 2147f4d3442e2cc9a3e7d3961dda2341e3f4f3c4 | docs | 4044 | # CitationRecipes
| **Documentation** | **Build Status** | **Others** |
| :--------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------: |
| [![Stable][docs-stable-img]][docs-stable-url] [![Dev][docs-dev-img]][docs-dev-url] | [![Build Status][gha-img]][gha-url] [![Build Status][appveyor-img]][appveyor-url] [![Build Status][cirrus-img]][cirrus-url] [![pipeline status][gitlab-img]][gitlab-url] [![Coverage][codecov-img]][codecov-url] | [![GitHub license][license-img]][license-url] [![Code Style: Blue][style-img]][style-url] |
[docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg
[docs-stable-url]: https://singularitti.github.io/CitationRecipes.jl/stable
[docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg
[docs-dev-url]: https://singularitti.github.io/CitationRecipes.jl/dev
[gha-img]: https://github.com/singularitti/CitationRecipes.jl/workflows/CI/badge.svg
[gha-url]: https://github.com/singularitti/CitationRecipes.jl/actions
[appveyor-img]: https://ci.appveyor.com/api/projects/status/github/singularitti/CitationRecipes.jl?svg=true
[appveyor-url]: https://ci.appveyor.com/project/singularitti/CitationRecipes-jl
[cirrus-img]: https://api.cirrus-ci.com/github/singularitti/CitationRecipes.jl.svg
[cirrus-url]: https://cirrus-ci.com/github/singularitti/CitationRecipes.jl
[gitlab-img]: https://gitlab.com/singularitti/CitationRecipes.jl/badges/main/pipeline.svg
[gitlab-url]: https://gitlab.com/singularitti/CitationRecipes.jl/-/pipelines
[codecov-img]: https://codecov.io/gh/singularitti/CitationRecipes.jl/branch/main/graph/badge.svg
[codecov-url]: https://codecov.io/gh/singularitti/CitationRecipes.jl
[license-img]: https://img.shields.io/github/license/singularitti/CitationRecipes.jl
[license-url]: https://github.com/singularitti/CitationRecipes.jl/blob/main/LICENSE
[style-img]: https://img.shields.io/badge/code%20style-blue-4495d1.svg
[style-url]: https://github.com/invenia/BlueStyle
The code is [hosted on GitHub](https://github.com/singularitti/CitationRecipes.jl),
with some continuous integration services to test its validity.
This repository is created and maintained by [@singularitti](https://github.com/singularitti).
You are very welcome to contribute.
## Installation
The package can be installed with the Julia package manager.
From the Julia REPL, type `]` to enter the Pkg REPL mode and run:
```
pkg> add CitationRecipes
```
Or, equivalently, via the [`Pkg` API](https://pkgdocs.julialang.org/v1/getting-started/):
```julia
julia> import Pkg; Pkg.add("CitationRecipes")
```
## Documentation
- [**STABLE**][docs-stable-url] — **documentation of the most recently tagged version.**
- [**DEV**][docs-dev-url] — _documentation of the in-development version._
## Project status
The package is tested against, and being developed for, Julia `1.6` and above on Linux,
macOS, and Windows.
## Questions and contributions
You are welcome to post usage questions on [our discussion page][discussions-url].
Contributions are very welcome, as are feature requests and suggestions. Please open an
[issue][issues-url] if you encounter any problems. The [Contributing](@ref) page has
guidelines that should be followed when opening pull requests and contributing code.
[discussions-url]: https://github.com/singularitti/CitationRecipes.jl/discussions
[issues-url]: https://github.com/singularitti/CitationRecipes.jl/issues
| CitationRecipes | https://github.com/singularitti/CitationRecipes.jl.git |
|
[
"MIT"
] | 0.1.0 | 2147f4d3442e2cc9a3e7d3961dda2341e3f4f3c4 | docs | 1999 | ```@meta
CurrentModule = CitationRecipes
```
# CitationRecipes
Documentation for [CitationRecipes](https://github.com/singularitti/CitationRecipes.jl).
See the [Index](@ref main-index) for the complete list of documented functions
and types.
The code is [hosted on GitHub](https://github.com/singularitti/CitationRecipes.jl),
with some continuous integration services to test its validity.
This repository is created and maintained by [@singularitti](https://github.com/singularitti).
You are very welcome to contribute.
## Installation
The package can be installed with the Julia package manager.
From the Julia REPL, type `]` to enter the Pkg REPL mode and run:
```julia
pkg> add CitationRecipes
```
Or, equivalently, via the `Pkg` API:
```@repl
import Pkg; Pkg.add("CitationRecipes")
```
## Documentation
- [**STABLE**](https://singularitti.github.io/CitationRecipes.jl/stable) — **documentation of the most recently tagged version.**
- [**DEV**](https://singularitti.github.io/CitationRecipes.jl/dev) — _documentation of the in-development version._
## Project status
The package is tested against, and being developed for, Julia `1.6` and above on Linux,
macOS, and Windows.
## Questions and contributions
Usage questions can be posted on
[our discussion page](https://github.com/singularitti/CitationRecipes.jl/discussions).
Contributions are very welcome, as are feature requests and suggestions. Please open an
[issue](https://github.com/singularitti/CitationRecipes.jl/issues)
if you encounter any problems. The [Contributing](@ref) page has
a few guidelines that should be followed when opening pull requests and contributing code.
## Manual outline
```@contents
Pages = [
"installation.md",
"developers/contributing.md",
"developers/style-guide.md",
"developers/design-principles.md",
"troubleshooting.md",
]
Depth = 3
```
## Library outline
```@contents
Pages = ["public.md"]
```
### [Index](@id main-index)
```@index
Pages = ["public.md"]
```
| CitationRecipes | https://github.com/singularitti/CitationRecipes.jl.git |
|
[
"MIT"
] | 0.1.0 | 2147f4d3442e2cc9a3e7d3961dda2341e3f4f3c4 | docs | 5241 | # [Installation Guide](@id installation)
Here are the installation instructions for package
[CitationRecipes](https://github.com/singularitti/CitationRecipes.jl).
If you have trouble installing it, please refer to our [Troubleshooting](@ref) page
for more information.
## Install Julia
First, you should install [Julia](https://julialang.org/). We recommend downloading it from
[its official website](https://julialang.org/downloads/). Please follow the detailed
instructions on its website if you have to
[build Julia from source](https://docs.julialang.org/en/v1/devdocs/build/build/).
Some computing centers provide preinstalled Julia. Please contact your administrator for
more information in that case.
Here's some additional information on
[how to set up Julia on HPC systems](https://github.com/hlrs-tasc/julia-on-hpc-systems).
If you have [Homebrew](https://brew.sh) installed,
[open `Terminal.app`](https://support.apple.com/guide/terminal/open-or-quit-terminal-apd5265185d-f365-44cb-8b09-71a064a42125/mac)
and type
```shell
brew install julia
```
to install it as a [formula](https://docs.brew.sh/Formula-Cookbook).
If you are also using macOS and want to install it as a prebuilt binary app, type
```shell
brew install --cask julia
```
instead.
If you want to install multiple Julia versions in the same operating system,
a recommended way is to use a version manager such as
[`juliaup`](https://github.com/JuliaLang/juliaup).
First, [install `juliaup`](https://github.com/JuliaLang/juliaup#installation).
Then, run
```shell
juliaup add release
juliaup default release
```
to configure the `julia` command to start the latest stable version of
Julia (this is also the default value).
There is a [short video introduction to `juliaup`](https://youtu.be/14zfdbzq5BM)
made by its authors.
### Which version should I pick?
You can install the "Current stable release" or the "Long-term support (LTS)
release".
- The "Current stable release" is the latest release of Julia. It has access to
newer features, and is likely faster.
- The "Long-term support release" is an older version of Julia that has
continued to receive bug and security fixes. However, it may not have the
latest features or performance improvements.
For most users, you should install the "Current stable release", and whenever
Julia releases a new version of the current stable release, you should update
your version of Julia. Note that any code you write on one version of the
current stable release will continue to work on all subsequent releases.
For users in restricted software environments (e.g., your enterprise IT controls
what software you can install), you may be better off installing the long-term
support release because you will not have to update Julia as frequently.
Versions higher than `v1.3`,
especially `v1.6`, are strongly recommended. This package may not work on `v1.0` and below.
Since the Julia team has set `v1.6` as the LTS release,
we will gradually drop support for versions below `v1.6`.
Julia and Julia packages support multiple operating systems and CPU architectures; check
[this table](https://julialang.org/downloads/#supported_platforms) to see if it can be
installed on your machine. For Mac computers with M-series processors, this package and its
dependencies may not work. Please install the Intel-compatible version of Julia (for macOS
x86-64) if any platform-related error occurs.
## Install CitationRecipes
Now I am using [macOS](https://en.wikipedia.org/wiki/MacOS) as a standard
platform to explain the following steps:
1. Open `Terminal.app`, and type `julia` to start an interactive session (known as the
[REPL](https://docs.julialang.org/en/v1/stdlib/REPL/)).
2. Run the following commands and wait for them to finish:
```julia-repl
julia> using Pkg
julia> Pkg.update()
julia> Pkg.add("CitationRecipes")
```
3. Run
```julia-repl
julia> using CitationRecipes
```
and have fun!
4. While using, please keep this Julia session alive. Restarting might cost some time.
If you want to install the latest in-development (probably buggy)
version of CitationRecipes, type
```@repl
using Pkg
Pkg.update()
pkg"add https://github.com/singularitti/CitationRecipes.jl"
```
in the second step above.
## Update CitationRecipes
Please [watch](https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications#configuring-your-watch-settings-for-an-individual-repository)
our [GitHub repository](https://github.com/singularitti/CitationRecipes.jl)
for new releases.
Once we release a new version, you can update CitationRecipes by typing
```@repl
using Pkg
Pkg.update("CitationRecipes")
Pkg.gc()
```
in the Julia REPL.
## Uninstall and reinstall CitationRecipes
Sometimes errors may occur if the package is not properly installed.
In this case, you may want to uninstall and reinstall the package. Here is how to do that:
1. To uninstall, in a Julia session, run
```julia-repl
julia> using Pkg
julia> Pkg.rm("CitationRecipes")
julia> Pkg.gc()
```
2. Press `ctrl+d` to quit the current session. Start a new Julia session and
reinstall CitationRecipes.
| CitationRecipes | https://github.com/singularitti/CitationRecipes.jl.git |
|
[
"MIT"
] | 0.1.0 | 2147f4d3442e2cc9a3e7d3961dda2341e3f4f3c4 | docs | 2150 | # Troubleshooting
```@contents
Pages = ["troubleshooting.md"]
Depth = 3
```
This page collects some possible errors you may encounter and trick how to fix them.
If you have some questions about how to use this code, you are welcome to
[discuss with us](https://github.com/singularitti/CitationRecipes.jl/discussions).
If you have additional tips, please either
[report an issue](https://github.com/singularitti/CitationRecipes.jl/issues/new) or
[submit a PR](https://github.com/singularitti/CitationRecipes.jl/compare) with suggestions.
## Installation problems
### Cannot find the `julia` executable
Make sure you have Julia installed in your environment. Please download the latest
[stable version](https://julialang.org/downloads/#current_stable_release) for your platform.
If you are using a *nix system, the recommended way is to use
[Juliaup](https://github.com/JuliaLang/juliaup). If you do not want to install Juliaup
or you are using other platforms that Julia supports, download the corresponding binaries.
Then, create a symbolic link to the Julia executable. If the path is not in your `$PATH`
environment variable, export it to your `$PATH`.
Some clusters, like
[Habanero](https://confluence.columbia.edu/confluence/display/rcs/Habanero+HPC+Cluster+User+Documentation),
[Comet](https://www.sdsc.edu/support/user_guides/comet.html),
or [Expanse](https://www.sdsc.edu/services/hpc/expanse/index.html),
already have Julia installed as a module, you may
just `module load julia` to use it. If not, either install by yourself or contact your
administrator.
## Loading CitationRecipes
### Julia compiles/loads slow
First, we recommend you download the latest version of Julia. Usually, the newest version
has the best performance.
If you just want Julia to do a simple task and only once, you could start the Julia REPL with
```bash
julia --compile=min
```
to minimize compilation or
```bash
julia --optimize=0
```
to minimize optimizations, or just use both. Or you could make a system image
and run with
```bash
julia --sysimage custom-image.so
```
See [Fredrik Ekre's talk](https://youtu.be/IuwxE3m0_QQ?t=313) for details.
| CitationRecipes | https://github.com/singularitti/CitationRecipes.jl.git |
|
[
"MIT"
] | 0.1.0 | 2147f4d3442e2cc9a3e7d3961dda2341e3f4f3c4 | docs | 8537 | # Contributing
```@contents
Pages = ["contributing.md"]
Depth = 3
```
Welcome! This document explains some ways you can contribute to CitationRecipes.
## Code of conduct
This project and everyone participating in it is governed by the
["Contributor Covenant Code of Conduct"](https://github.com/MineralsCloud/.github/blob/main/CODE_OF_CONDUCT.md).
By participating, you are expected to uphold this code.
## Join the community forum
First up, join the [community forum](https://github.com/singularitti/CitationRecipes.jl/discussions).
The forum is a good place to ask questions about how to use CitationRecipes. You can also
use the forum to discuss possible feature requests and bugs before raising a
GitHub issue (more on this below).
Aside from asking questions, the easiest way you can contribute to CitationRecipes is to
help answer questions on the forum!
## Improve the documentation
Chances are, if you asked (or answered) a question on the community forum, then
it is a sign that the [documentation](https://singularitti.github.io/CitationRecipes.jl/dev/) could be
improved. Moreover, since it is your question, you are probably the best-placed
person to improve it!
The docs are written in Markdown and are built using
[Documenter.jl](https://github.com/JuliaDocs/Documenter.jl).
You can find the source of all the docs
[here](https://github.com/singularitti/CitationRecipes.jl/tree/main/docs).
If your change is small (like fixing typos, or one or two sentence corrections),
the easiest way to do this is via GitHub's online editor. (GitHub has
[help](https://help.github.com/articles/editing-files-in-another-user-s-repository/)
on how to do this.)
If your change is larger, or touches multiple files, you will need to make the
change locally and then use Git to submit a
[pull request](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests).
(See [Contribute code to CitationRecipes](@ref) below for more on this.)
## File a bug report
Another way to contribute to CitationRecipes is to file
[bug reports](https://github.com/singularitti/CitationRecipes.jl/issues/new?template=bug_report.md).
Make sure you read the info in the box where you write the body of the issue
before posting. You can also find a copy of that info
[here](https://github.com/singularitti/CitationRecipes.jl/blob/main/.github/ISSUE_TEMPLATE/bug_report.md).
!!! tip
If you're unsure whether you have a real bug, post on the
[community forum](https://github.com/singularitti/CitationRecipes.jl/discussions)
first. Someone will either help you fix the problem, or let you know the
most appropriate place to open a bug report.
## Contribute code to CitationRecipes
Finally, you can also contribute code to CitationRecipes!
!!! warning
If you do not have experience with Git, GitHub, and Julia development, the
first steps can be a little daunting. However, there are lots of tutorials
available online, including:
- [GitHub](https://guides.github.com/activities/hello-world/)
- [Git and GitHub](https://try.github.io/)
- [Git](https://git-scm.com/book/en/v2)
- [Julia package development](https://docs.julialang.org/en/v1/stdlib/Pkg/#Developing-packages-1)
Once you are familiar with Git and GitHub, the workflow for contributing code to
CitationRecipes is similar to the following:
### Step 1: decide what to work on
The first step is to find an [open issue](https://github.com/singularitti/CitationRecipes.jl/issues)
(or open a new one) for the problem you want to solve. Then, _before_ spending
too much time on it, discuss what you are planning to do in the issue to see if
other contributors are fine with your proposed changes. Getting feedback early can
improve code quality, and avoid time spent writing code that does not get merged into
CitationRecipes.
!!! tip
At this point, remember to be patient and polite; you may get a _lot_ of
comments on your issue! However, do not be afraid! Comments mean that people are
willing to help you improve the code that you are contributing to CitationRecipes.
### Step 2: fork CitationRecipes
Go to [https://github.com/singularitti/CitationRecipes.jl](https://github.com/singularitti/CitationRecipes.jl)
and click the "Fork" button in the top-right corner. This will create a copy of
CitationRecipes under your GitHub account.
### Step 3: install CitationRecipes locally
Similar to [Installation](@ref), open the Julia REPL and run:
```@repl
using Pkg
Pkg.update()
Pkg.develop("CitationRecipes")
```
Then the package will be cloned to your local machine. On *nix systems, the default path is
`~/.julia/dev/CitationRecipes` unless you modify the
[`JULIA_DEPOT_PATH`](http://docs.julialang.org/en/v1/manual/environment-variables/#JULIA_DEPOT_PATH-1)
environment variable. If you're on
Windows, this will be `C:\\Users\\<my_name>\\.julia\\dev\\CitationRecipes`.
In the following text, we will call it `PKGROOT`.
Go to `PKGROOT`, start a new Julia session and run
```@repl
using Pkg
Pkg.instantiate()
```
to instantiate the project.
### Step 4: checkout a new branch
!!! note
In the following, replace any instance of `GITHUB_ACCOUNT` with your GitHub
username.
The next step is to checkout a development branch. In a terminal (or command
prompt on Windows), run:
```shell
cd ~/.julia/dev/CitationRecipes
git remote add GITHUB_ACCOUNT https://github.com/GITHUB_ACCOUNT/CitationRecipes.jl.git
git checkout main
git pull
git checkout -b my_new_branch
```
### Step 5: make changes
Now make any changes to the source code inside the `~/.julia/dev/CitationRecipes`
directory.
Make sure you:
- Follow our [Style Guide](@ref style) and [run `JuliaFormatter.jl`](@ref formatter)
- Add tests and documentation for any changes or new features
!!! tip
When you change the source code, you'll need to restart Julia for the
changes to take effect. This is a pain, so install
[Revise.jl](https://github.com/timholy/Revise.jl).
### Step 6a: test your code changes
To test that your changes work, run the CitationRecipes test-suite by opening Julia and
running:
```@repl
cd("~/.julia/dev/CitationRecipes")
using Pkg
Pkg.activate(".")
Pkg.test()
```
!!! warning
Running the tests might take a long time.
!!! tip
If you're using `Revise.jl`, you can also run the tests by calling `include`:
```julia
include("test/runtests.jl")
```
This can be faster if you want to re-run the tests multiple times.
### Step 6b: test your documentation changes
Open Julia, then run:
```@repl
cd("~/.julia/dev/CitationRecipes/docs")
using Pkg
Pkg.activate(".")
include("src/make.jl")
```
After a while, a folder `PKGROOT/docs/build` will appear. Open
`PKGROOT/docs/build/index.html` with your favorite browser, and have fun!
!!! warning
Building the documentation might take a long time.
!!! tip
If there's a problem with the tests that you don't know how to fix, don't
worry. Continue to step 5, and one of the CitationRecipes contributors will comment
on your pull request telling you how to fix things.
### Step 7: make a pull request
Once you've made changes, you're ready to push the changes to GitHub. Run:
```shell
cd ~/.julia/dev/CitationRecipes
git add .
git commit -m "A descriptive message of the changes"
git push -u GITHUB_ACCOUNT my_new_branch
```
Then go to [https://github.com/singularitti/CitationRecipes.jl/pulls](https://github.com/singularitti/CitationRecipes.jl/pulls)
and follow the instructions that pop up to open a pull request.
### Step 8: respond to comments
At this point, remember to be patient and polite; you may get a _lot_ of
comments on your pull request! However, do not be afraid! A lot of comments
means that people are willing to help you improve the code that you are
contributing to CitationRecipes.
To respond to the comments, go back to step 5, make any changes, test the
changes in step 6, and then make a new commit in step 7. Your PR will
automatically update.
### Step 9: cleaning up
Once the PR is merged, clean-up your Git repository ready for the
next contribution!
```shell
cd ~/.julia/dev/CitationRecipes
git checkout main
git pull
```
!!! note
If you have suggestions to improve this guide, please make a pull request!
It's particularly helpful if you do this after your first pull request
because you'll know all the parts that could be explained better.
Thanks for contributing to CitationRecipes!
| CitationRecipes | https://github.com/singularitti/CitationRecipes.jl.git |
|
[
"MIT"
] | 0.1.0 | 2147f4d3442e2cc9a3e7d3961dda2341e3f4f3c4 | docs | 15492 | # Design Principles
```@contents
Pages = ["design-principles.md"]
Depth = 3
```
We adopt some [`SciML`](https://sciml.ai/) design [guidelines](https://github.com/SciML/SciMLStyle)
here. Please read it before contributing!
## Consistency vs adherence
According to PEP8:
> A style guide is about consistency. Consistency with this style guide is important.
> Consistency within a project is more important. Consistency within one module or function is the most important.
>
> However, know when to be inconsistent—sometimes style guide recommendations just aren't
> applicable. When in doubt, use your best judgment. Look at other examples and decide what
> looks best. And don’t hesitate to ask!
## Community contribution guidelines
For a comprehensive set of community contribution guidelines, refer to [ColPrac](https://github.com/SciML/ColPrac).
A relevant point to highlight PRs should do one thing. In the context of style, this means that PRs which update
the style of a package's code should not be mixed with fundamental code contributions. This separation makes it
easier to ensure that large style improvement are isolated from substantive (and potentially breaking) code changes.
## Open source contributions are allowed to start small and grow over time
If the standard for code contributions is that every PR needs to support every possible input type that anyone can
think of, the barrier would be too high for newcomers. Instead, the principle is to be as correct as possible to
begin with, and grow the generic support over time. All recommended functionality should be tested, any known
generality issues should be documented in an issue (and with a `@test_broken` test when possible). However, a
function which is known to not be GPU-compatible is not grounds to block merging, rather it is an encouragement for a
follow-up PR to improve the general type support!
## Generic code is preferred unless code is known to be specific
For example, the code:
```@repl
function f(A, B)
for i in 1:length(A)
A[i] = A[i] + B[i]
end
end
```
would not be preferred for two reasons. One is that it assumes `A` uses one-based indexing, which would fail in cases
like [OffsetArrays](https://github.com/JuliaArrays/OffsetArrays.jl) and [FFTViews](https://github.com/JuliaArrays/FFTViews.jl).
Another issue is that it requires indexing, while not all array types support indexing (for example,
[CuArrays](https://github.com/JuliaGPU/CuArrays.jl)). A more generic compatible implementation of this function would be
to use broadcast, for example:
```@repl
function f(A, B)
@. A = A + B
end
```
which would allow support for a wider variety of array types.
## Internal types should match the types used by users when possible
If `f(A)` takes the input of some collections and computes an output from those collections, then it should be
expected that if the user gives `A` as an `Array`, the computation should be done via `Array`s. If `A` was a
`CuArray`, then it should be expected that the computation should be internally done using a `CuArray` (or appropriately
error if not supported). For these reasons, constructing arrays via generic methods, like `similar(A)`, is preferred when
writing `f` instead of using non-generic constructors like `Array(undef,size(A))` unless the function is documented as
being non-generic.
## Trait definition and adherence to generic interface is preferred when possible
Julia provides many interfaces, for example:
- [Iteration](https://docs.julialang.org/en/v1/manual/interfaces/#man-interface-iteration)
- [Indexing](https://docs.julialang.org/en/v1/manual/interfaces/#Indexing)
- [Broadcast](https://docs.julialang.org/en/v1/manual/interfaces/#man-interfaces-broadcasting)
Those interfaces should be followed when possible. For example, when defining broadcast overloads,
one should implement a `BroadcastStyle` as suggested by the documentation instead of simply attempting
to bypass the broadcast system via `copyto!` overloads.
When interface functions are missing, these should be added to Base Julia or an interface package,
like [ArrayInterface.jl](https://github.com/JuliaArrays/ArrayInterface.jl). Such traits should be
declared and used when appropriate. For example, if a line of code requires mutation, the trait
`ArrayInterface.ismutable(A)` should be checked before attempting to mutate, and informative error
messages should be written to capture the immutable case (or, an alternative code which does not
mutate should be given).
One example of this principle is demonstrated in the generation of Jacobian matrices. In many scientific
applications, one may wish to generate a Jacobian cache from the user's input `u0`. A naive way to generate
this Jacobian is `J = similar(u0,length(u0),length(u0))`. However, this will generate a Jacobian `J` such
that `J isa Matrix`.
## Macros should be limited and only be used for syntactic sugar
Macros define new syntax, and for this reason they tend to be less composable than other coding styles
and require prior familiarity to be easily understood. One principle to keep in mind is, "can the person
reading the code easily picture what code is being generated?". For example, a user of Soss.jl may not know
what code is being generated by:
```julia
@model (x, α) begin
σ ~ Exponential()
β ~ Normal()
y ~ For(x) do xj
Normal(α + β * xj, σ)
end
return y
end
```
and thus using such a macro as the interface is not preferred when possible. However, a macro like
[`@muladd`](https://github.com/SciML/MuladdMacro.jl) is trivial to picture on a code (it recursively
transforms `a*b + c` to `muladd(a,b,c)` for more
[accuracy and efficiency](https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation)), so using
such a macro for example:
```julia
julia> @macroexpand(@muladd k3 = f(t + c3 * dt, @. uprev + dt * (a031 * k1 + a032 * k2)))
:(k3 = f((muladd)(c3, dt, t), (muladd).(dt, (muladd).(a032, k2, (*).(a031, k1)), uprev)))
```
is recommended. Some macros in this category are:
- `@inbounds`
- [`@muladd`](https://github.com/SciML/MuladdMacro.jl)
- `@view`
- [`@named`](https://github.com/SciML/ModelingToolkit.jl)
- `@.`
- [`@..`](https://github.com/YingboMa/FastBroadcast.jl)
Some performance macros, like `@simd`, `@threads`, or
[`@turbo` from LoopVectorization.jl](https://github.com/JuliaSIMD/LoopVectorization.jl),
make an exception in that their generated code may be foreign to many users. However, they still are
classified as appropriate uses as they are syntactic sugar since they do (or should) not change the behavior
of the program in measurable ways other than performance.
## Errors should be caught as high as possible, and error messages should be contextualized for newcomers
Whenever possible, defensive programming should be used to check for potential errors before they are encountered
deeper within a package. For example, if one knows that `f(u0,p)` will error unless `u0` is the size of `p`, this
should be caught at the start of the function to throw a domain specific error, for example "parameters and initial
condition should be the same size".
## Subpackaging and interface packages is preferred over conditional modules via Requires.jl
Requires.jl should be avoided at all costs. If an interface package exists, such as
[ChainRulesCore.jl](https://github.com/JuliaDiff/ChainRulesCore.jl) for defining automatic differentiation
rules without requiring a dependency on the whole ChainRules.jl system, or
[RecipesBase.jl](https://github.com/JuliaPlots/RecipesBase.jl) which allows for defining Plots.jl
plot recipes without a dependency on Plots.jl, a direct dependency on these interface packages is
preferred.
Otherwise, instead of resorting to a conditional dependency using Requires.jl, it is
preferred one creates subpackages, i.e. smaller independent packages kept within the same Github repository
with independent versioning and package management. An example of this is seen in
[Optimization.jl](https://github.com/SciML/Optimization.jl) which has subpackages like
[OptimizationBBO.jl](https://github.com/SciML/Optimization.jl/tree/master/lib/OptimizationBBO) for
BlackBoxOptim.jl support.
Some important interface packages to know about are:
- [ChainRulesCore.jl](https://github.com/JuliaDiff/ChainRulesCore.jl)
- [RecipesBase.jl](https://github.com/JuliaPlots/RecipesBase.jl)
- [ArrayInterface.jl](https://github.com/JuliaArrays/ArrayInterface.jl)
- [CommonSolve.jl](https://github.com/SciML/CommonSolve.jl)
- [SciMLBase.jl](https://github.com/SciML/SciMLBase.jl)
## Functions should either attempt to be non-allocating and reuse caches, or treat inputs as immutable
Mutating codes and non-mutating codes fall into different worlds. When a code is fully immutable,
the compiler can better reason about dependencies, optimize the code, and check for correctness.
However, many times a code making the fullest use of mutation can outperform even what the best compilers
of today can generate. That said, the worst of all worlds is when code mixes mutation with non-mutating
code. Not only is this a mishmash of coding styles, it has the potential non-locality and compiler
proof issues of mutating code while not fully benefiting from the mutation.
## Out-Of-Place and Immutability is preferred when sufficient performant
Mutation is used to get more performance by decreasing the amount of heap allocations. However,
if it's not helpful for heap allocations in a given spot, do not use mutation. Mutation is scary
and should be avoided unless it gives an immediate benefit. For example, if
matrices are sufficiently large, then `A*B` is as fast as `mul!(C,A,B)`, and thus writing
`A*B` is preferred (unless the rest of the function is being careful about being fully non-allocating,
in which case this should be `mul!` for consistency).
Similarly, when defining types, using `struct` is preferred to `mutable struct` unless mutating
the struct is a common occurrence. Even if mutating the struct is a common occurrence, see whether
using [Setfield.jl](https://github.com/jw3126/Setfield.jl) is sufficient. The compiler will optimize
the construction of immutable structs, and thus this can be more efficient if it's not too much of a
code hassle.
## Tests should attempt to cover a wide gamut of input types
Code coverage numbers are meaningless if one does not consider the input types. For example, one can
hit all the code with `Array`, but that does not test whether `CuArray` is compatible! Thus, it's
always good to think of coverage not in terms of lines of code but in terms of type coverage. A good
list of number types to think about are:
- `Float64`
- `Float32`
- `Complex`
- [`Dual`](https://github.com/JuliaDiff/ForwardDiff.jl)
- `BigFloat`
Array types to think about testing are:
- `Array`
- [`OffsetArray`](https://github.com/JuliaArrays/OffsetArrays.jl)
- [`CuArray`](https://github.com/JuliaGPU/CUDA.jl)
## When in doubt, a submodule should become a subpackage or separate package
Keep packages to one core idea. If there's something separate enough to be a submodule, could it
instead be a separate well-tested and documented package to be used by other packages? Most likely
yes.
## Globals should be avoided whenever possible
Global variables should be avoided whenever possible. When required, global variables should be
constants and have an all uppercase name separated with underscores (e.g. `MY_CONSTANT`). They should be
defined at the top of the file, immediately after imports and exports but before an `__init__` function.
If you truly want mutable global style behavior you may want to look into mutable containers.
## Type-stable and Type-grounded code is preferred wherever possible
Type-stable and type-grounded code helps the compiler create not only more optimized code, but also
faster to compile code. Always keep containers well-typed, functions specializing on the appropriate
arguments, and types concrete.
## Closures should be avoided whenever possible
Closures can cause accidental type instabilities that are difficult to track down and debug; in the
long run it saves time to always program defensively and avoid writing closures in the first place,
even when a particular closure would not have been problematic. A similar argument applies to reading
code with closures; if someone is looking for type instabilities, this is faster to do when code does
not contain closures.
Furthermore, if you want to update variables in an outer scope, do so explicitly with `Ref`s or self
defined structs.
For example,
```julia
map(Base.Fix2(getindex, i), vector_of_vectors)
```
is preferred over
```julia
map(v -> v[i], vector_of_vectors)
```
or
```julia
[v[i] for v in vector_of_vectors]
```
## Numerical functionality should use the appropriate generic numerical interfaces
While you can use `A\b` to do a linear solve inside a package, that does not mean that you should.
This interface is only sufficient for performing factorizations, and so that limits the scaling
choices, the types of `A` that can be supported, etc. Instead, linear solves within packages should
use LinearSolve.jl. Similarly, nonlinear solves should use NonlinearSolve.jl. Optimization should use
Optimization.jl. Etc. This allows the full generic choice to be given to the user without depending
on every solver package (effectively recreating the generic interfaces within each package).
## Functions should capture one underlying principle
Functions mean one thing. Every dispatch of `+` should be "the meaning of addition on these types".
While in theory you could add dispatches to `+` that mean something different, that will fail in
generic code for which `+` means addition. Thus, for generic code to work, code needs to adhere to
one meaning for each function. Every dispatch should be an instantiation of that meaning.
## Internal choices should be exposed as options whenever possible
Whenever possible, numerical values and choices within scripts should be exposed as options
to the user. This promotes code reusability beyond the few cases the author may have expected.
## Prefer code reuse over rewrites whenever possible
If a package has a function you need, use the package. Add a dependency if you need to. If the
function is missing a feature, prefer to add that feature to said package and then add it as a
dependency. If the dependency is potentially troublesome, for example because it has a high
load time, prefer to spend time helping said package fix these issues and add the dependency.
Only when it does not seem possible to make the package "good enough" should using the package
be abandoned. If it is abandoned, consider building a new package for this functionality as you
need it, and then make it a dependency.
## Prefer to not shadow functions
Two functions can have the same name in Julia by having different namespaces. For example,
`X.f` and `Y.f` can be two different functions, with different dispatches, but the same name.
This should be avoided whenever possible. Instead of creating `MyPackage.sort`, consider
adding dispatches to `Base.sort` for your types if these new dispatches match the underlying
principle of the function. If it doesn't, prefer to use a different name. While using `MyPackage.sort`
is not conflicting, it is going to be confusing for most people unfamiliar with your code,
so `MyPackage.special_sort` would be more helpful to newcomers reading the code.
| CitationRecipes | https://github.com/singularitti/CitationRecipes.jl.git |
|
[
"MIT"
] | 0.1.0 | 2147f4d3442e2cc9a3e7d3961dda2341e3f4f3c4 | docs | 2296 | # [Style Guide](@id style)
```@contents
Pages = ["style.md"]
Depth = 3
```
This section describes the coding style rules that apply to our code and that
we recommend you to use it also.
In some cases, our style guide diverges from Julia's official
[Style Guide](https://docs.julialang.org/en/v1/manual/style-guide/) (Please read it!).
All such cases will be explicitly noted and justified.
Our style guide adopts many recommendations from the
[BlueStyle](https://github.com/invenia/BlueStyle).
Please read the [BlueStyle](https://github.com/invenia/BlueStyle)
before contributing to this package.
If not following, your pull requests may not be accepted.
!!! info
The style guide is always a work in progress, and not all CitationRecipes code
follows the rules. When modifying CitationRecipes, please fix the style violations
of the surrounding code (i.e., leave the code tidier than when you
started). If large changes are needed, consider separating them into
another pull request.
## Formatting
### [Run JuliaFormatter](@id formatter)
CitationRecipes uses [JuliaFormatter](https://github.com/domluna/JuliaFormatter.jl) as
an auto-formatting tool.
We use the options contained in [`.JuliaFormatter.toml`](https://github.com/singularitti/CitationRecipes.jl/blob/main/.JuliaFormatter.toml).
To format your code, `cd` to the CitationRecipes directory, then run:
```@repl
using Pkg
Pkg.add("JuliaFormatter")
using JuliaFormatter: format
format("docs");
format("src");
format("test");
```
!!! info
A continuous integration check verifies that all PRs made to CitationRecipes have
passed the formatter.
The following sections outline extra style guide points that are not fixed
automatically by JuliaFormatter.
### Use the Julia extension for Visual Studio Code
Please use [VS Code](https://code.visualstudio.com/) with the
[Julia extension](https://marketplace.visualstudio.com/items?itemName=julialang.language-julia)
to edit, format, and test your code.
We do not recommend using other editors to edit your code for the time being.
This extension already has [JuliaFormatter](https://github.com/domluna/JuliaFormatter.jl)
integrated. So to format your code, follow the steps listed
[here](https://www.julia-vscode.org/docs/stable/userguide/formatter/).
| CitationRecipes | https://github.com/singularitti/CitationRecipes.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.4 | 688e5028028e0dd8807efe6fff4a55a1a0832818 | code | 503 | using Documenter, OptimalTransmissionRouting
Documenter.makedocs(
modules = OptimalTransmissionRouting,
format = Documenter.HTML(),
sitename = "OptimalTransmissionRouting",
authors = "Hakan Ergun",
pages = [
"Home" => "index.md"
]
)
Documenter.deploydocs(
target = "build",
repo = "github.com/Electa-Git/OptimalTransmissionRouting.jl.git",
branch = "gh-pages",
devbranch = "main",
versions = ["stable" => "v^", "v#.#"],
push_preview = false
)
| OptimalTransmissionRouting | https://github.com/Electa-Git/OptimalTransmissionRouting.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.4 | 688e5028028e0dd8807efe6fff4a55a1a0832818 | code | 1379 | isdefined(Base, :__precompile__) && __precompile__()
module OptimalTransmissionRouting
# import Compat
import JuMP
import Memento
import Images
import FileIO
import ColorTypes
import Plots
# Create our module level logger (this will get precompiled)
const _LOGGER = Memento.getlogger(@__MODULE__)
# Register the module level logger at runtime so that folks can access the logger via `getlogger(PowerModels)`
# NOTE: If this line is not included then the precompiled `_PM._LOGGER` won't be registered at runtime.
__init__() = Memento.register(_LOGGER)
include("core/define_weights.jl")
include("core/image2weight.jl")
include("core/optimal_routing.jl")
include("core/costs_and_equipment_details.jl")
include("core/a_star.jl")
include("core/impedance_parameters.jl")
include("core/spatial_data_preparation.jl")
include("io/plot_optimal_path.jl")
# Spatial image files
# include("spatial_image_files/clc_agricultural.tif")
# include("spatial_image_files/clc_mountains.tif")
# include("spatial_image_files/clc_natural.tif")
# include("spatial_image_files/clc_urban.tif")
# include("spatial_image_files/clc_graph_Europe.tif")
# include("spatial_image_files/clc_grid_225kv_400kv.tif")
# include("spatial_image_files/natura2000.tif")
# include("spatial_image_files/clc_railroads.tif")
# include("spatial_image_files/clc_roads.tif")
# include("spatial_image_files/sea.tif")
end
| OptimalTransmissionRouting | https://github.com/Electa-Git/OptimalTransmissionRouting.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.4 | 688e5028028e0dd8807efe6fff4a55a1a0832818 | code | 12281 | function optimize_route(spatial_data, spatial_data_matrices, cost_data, equipment_data, input_data)
# weights_ac = snw.weights_ac_cable;
# snw.meanweight_ac=alg_fac*min(weighy_ac(weighy_ac~=0));
# weighy_dc=snw.weights_dc_cable;
# snw.meanweight_dc=alg_fac*min(weighy_dc(weighy_dc~=0));
# snw.meanweight_dc=alg_fac*min([snw.weights]);
# snw.meanweight_dc=1;
# snw.meanweight_ac=snw.meanweight_dc;
start_position, finish_position = determine_start_and_end_node(spatial_data_matrices, input_data)
average_weight = sum(spatial_data["segment_weights"]) / size(spatial_data["segment_weights"] ,1)
minimum_weight = minimum(spatial_data["segment_weights"][spatial_data["segment_weights"] .!= 0])
from_node = start_position
to_node = finish_position
OPEN_COUNT = 1
path_cost = 0
offshore_distance = 0
average_weight = minimum_weight
target_distance = estimate_initial_distance(start_position, finish_position, spatial_data, average_weight)
hn = path_cost
gn = target_distance
fn = target_distance
wn = target_distance
ac_cable = 0
dc_cable = 0
ac_dc_transition = 0
OPEN = my_insert_open(from_node, to_node, hn, gn, fn, wn, ac_dc_transition, ac_cable, dc_cable, offshore_distance, spatial_data)
OPEN[OPEN_COUNT, 1] = 0
CLOSED_COUNT = 1
CLOSED = [from_node]
NoPath = 1
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# START ALGORITHM
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
while (from_node != finish_position) && (NoPath == 1)
exp_array = my_expand_array(from_node, path_cost, start_position, finish_position, CLOSED, spatial_data, offshore_distance, input_data, average_weight, equipment_data)
exp_count = size(exp_array, 1)
# UPDATE LIST OPEN WITH THE SUCCESSOR NODES
# OPEN LIST FORMAT
#--------------------------------------------------------------------------
#IS ON LIST 1/0 |X val |Y val |Parent X val |Parent Y val |h(n) |g(n)|f(n)|
#--------------------------------------------------------------------------
#EXPANDED ARRAY FORMAT
#--------------------------------
#|X val |Y val ||h(n) |g(n)|f(n)|
#--------------------------------
for i = 1 : exp_count
flag = 0
if any(OPEN[1 : OPEN_COUNT, 2] .== exp_array[i, 1])
j = findfirst(OPEN[1 : OPEN_COUNT, 2] .== exp_array[i, 1])
if exp_array[i, 4] <= OPEN[j, 10]
OPEN[j, 3] = from_node
OPEN[j, 4] = spatial_data["nodes"][from_node, 2]
OPEN[j, 5] = spatial_data["nodes"][from_node, 3]
OPEN[j, 8] = exp_array[i, 2]
OPEN[j, 9] = exp_array[i, 3]
OPEN[j, 10] = exp_array[i, 4]
OPEN[j, 11] = exp_array[i, 5]
OPEN[j, 12] = exp_array[i, 6]
OPEN[j, 13] = exp_array[i, 7]
OPEN[j, 14] = exp_array[i, 8]
OPEN[j, 15] = exp_array[i, 9]
end
else
OPEN_COUNT = OPEN_COUNT + 1
new_line = my_insert_open(exp_array[i, 1], from_node, exp_array[i, 2], exp_array[i, 3], exp_array[i,4], exp_array[i,5], exp_array[i,6], exp_array[i,7], exp_array[i,8], exp_array[i,9], spatial_data)
OPEN = [OPEN; new_line]
end
end
index_min_node = my_min_fn(OPEN, OPEN_COUNT, finish_position)
if index_min_node != -1
from_node = Int.(OPEN[index_min_node, 2])
path_cost = OPEN[index_min_node, 8]
offshore_distance = OPEN[index_min_node, 15]
CLOSED_COUNT = CLOSED_COUNT + 1
CLOSED = [CLOSED; from_node]
OPEN[index_min_node, 1] = 0
else
NoPath = 0
end
end
i = size(CLOSED, 1)
nodeval = CLOSED[i]
i = 1
optimal_path = nodeval
ac_dc = OPEN[OPEN[:, 2] .== nodeval, 12]
ac_cab = OPEN[OPEN[:, 2] .== nodeval, 13]
dc_cab = OPEN[OPEN[:, 2] .== nodeval, 14]
i = i + 1
c_tot = 0
if nodeval == finish_position
parent_node = Int.(OPEN[OPEN[:, 2] .== nodeval, 3][1])
c_tot = c_tot + OPEN[OPEN[:,2] .== nodeval, 11][1]
while parent_node != start_position
optimal_path = [optimal_path; parent_node]
ac_dc = [ac_dc; OPEN[OPEN[:, 2] .== parent_node, 12][1]]
ac_cab = [ac_cab; OPEN[OPEN[:, 2] .== parent_node, 13[1]]]
dc_cab = [dc_cab; OPEN[OPEN[:, 2] .== parent_node, 14][1]]
c_tot = c_tot + OPEN[OPEN[:, 2] .== parent_node, 11][1]
parent_node = Int.(OPEN[OPEN[:, 2] .== parent_node, 3][1])
i = i + 1
end
optimal_path = [optimal_path; start_position]
end
return c_tot, optimal_path, ac_dc, ac_cab, dc_cab
end
function determine_start_and_end_node(spatial_data_matrices, input_data)
idx1 = findall(spatial_data_matrices["ohl"]["nodes"][:, 2] .== input_data["start_node"]["x"])
idx2 = findall(spatial_data_matrices["ohl"]["nodes"][:, 3] .== input_data["start_node"]["y"])
start_position = intersect(idx1, idx2)
idx3 = findall(spatial_data_matrices["ohl"]["nodes"][:, 2] .== input_data["end_node"]["x"])
idx4 = findall(spatial_data_matrices["ohl"]["nodes"][:, 3] .== input_data["end_node"]["y"])
finish_position = intersect(idx3, idx4)
sp = start_position[1]
fp = finish_position[1]
return sp, fp
end
function estimate_initial_distance(start_position, finish_position, spatial_data, average_weight)
distance = sqrt.((spatial_data["nodes"][start_position, 2] - spatial_data["nodes"][finish_position, 2]).^2 + (spatial_data["nodes"][start_position, 3] - spatial_data["nodes"][finish_position, 3]).^2) * average_weight
d = distance[1]
return d
end
function my_insert_open(from_node, to_node, hn, gn, fn, wn, ac_dc, ac_cab, dc_cab, offshore_distance, spatial_data)
new_row = zeros(1, 15)
new_row[1,1] = 1
new_row[1,2] = Int.(from_node)
new_row[1,3] = Int.(to_node)
new_row[1,4] = spatial_data["nodes"][Int.(from_node) ,2]
new_row[1,5] = spatial_data["nodes"][Int.(from_node) ,3]
new_row[1,6] = spatial_data["nodes"][Int.(to_node) ,2]
new_row[1,7] = spatial_data["nodes"][Int.(to_node) ,3]
new_row[1,8] = hn
new_row[1,9] = gn
new_row[1,10] = fn
new_row[1,11] = wn
new_row[1,12] = ac_dc
new_row[1,13] = ac_cab
new_row[1,14] = dc_cab
new_row[1,15] = offshore_distance
return new_row
end
function my_expand_array(from_node, hn, start_node, finish_node, CLOSED, spatial_data, offshore_distance, input_data, average_weight, equipment_data)
seg_index1 = findall(spatial_data["segments"][:, 2] .== from_node)
seg_index2 = findall(spatial_data["segments"][:, 3] .== from_node)
exp_array = Array{Float64, 2}(undef, 0, 9)
for idx = 1:length(seg_index1)
current_node = Int.(spatial_data["segments"][seg_index1[idx], 3])
if !any(CLOSED .== current_node)
seg_index = seg_index1[idx]
new_line = zeros(1, 9)
new_line[1, 1] = current_node
distance = sqrt((spatial_data["nodes"][from_node, 2] - spatial_data["nodes"][current_node, 2])^2 + (spatial_data["nodes"][from_node, 3] - spatial_data["nodes"][current_node, 3])^2)
d_off = input_data["resolution_factor"] * distance * (1 - spatial_data["onshore_flag"][seg_index]) * (1 - spatial_data["onshore_nodes"][from_node]) * (1 - spatial_data["onshore_nodes"][current_node])
w_off = 1
if (offshore_distance + d_off) > equipment_data["ugc"]["offshore"]["maximum_distance"]
w_off = 1e9
end
new_line[1, 2] = hn + distance_w(from_node, current_node, spatial_data, seg_index, w_off)
if d_off == 0
new_line[1, 9] = 0
else
new_line[1, 9] = offshore_distance + d_off
end
od = distance_off(finish_node, current_node, spatial_data, seg_index, input_data)
new_line[1, 3] = distance_est(finish_node, current_node, spatial_data, average_weight)
new_line[1, 4] = new_line[1, 2] + new_line[1, 3]
new_line[1, 5] = new_line[1, 2] - hn
new_line[1, 6] = 0 #nw.ac_dc(seg_index)
new_line[1, 7] = spatial_data["ohl_ugc_transition"][seg_index1[idx]]
new_line[1, 8] = spatial_data["ohl_ugc_transition"][seg_index1[idx]]
exp_array = [exp_array; new_line]
end
end
for idx = 1:length(seg_index2)
current_node = Int.(spatial_data["segments"][seg_index2[idx], 2])
if !any(CLOSED .== current_node)
seg_index = seg_index2[idx]
new_line = zeros(1, 9)
new_line[1, 1] = current_node
distance = sqrt((spatial_data["nodes"][from_node, 2] - spatial_data["nodes"][current_node, 2])^2 + (spatial_data["nodes"][from_node, 3] - spatial_data["nodes"][current_node, 3])^2)
d_off = input_data["resolution_factor"] * distance * (1 - spatial_data["onshore_flag"][seg_index]) * (1 - spatial_data["onshore_nodes"][from_node]) * (1 - spatial_data["onshore_nodes"][current_node])
w_off = 1
if (offshore_distance + d_off ) > equipment_data["ugc"]["offshore"]["maximum_distance"]
w_off = 1e9
end
new_line[1, 2] = hn + distance_w(from_node, current_node, spatial_data, seg_index, w_off)
if d_off == 0
new_line[1, 9] = 0
else
new_line[1, 9] = offshore_distance + d_off
end
od = distance_off(finish_node, current_node, spatial_data, seg_index, input_data)
new_line[1, 3] = distance_est(finish_node, current_node, spatial_data, average_weight)
new_line[1, 4] = new_line[1, 2] + new_line[1, 3]
new_line[1, 5] = new_line[1, 2] - hn
new_line[1, 6] = 0 #nw.ac_dc(seg_index)
new_line[1, 7] = spatial_data["ohl_ugc_transition"][seg_index2[idx]]
new_line[1, 8] = spatial_data["ohl_ugc_transition"][seg_index2[idx]]
exp_array = [exp_array; new_line]
end
end
return exp_array
end
function distance_w(from_node, to_node, spatial_data, index, w_off)
distance = sqrt((spatial_data["nodes"][from_node, 2] - spatial_data["nodes"][to_node, 2])^2 + (spatial_data["nodes"][from_node, 3] - spatial_data["nodes"][to_node, 3])^2) * spatial_data["segment_weights"][index] * w_off
d = distance[1]
return d
end
function distance_est(from_node, to_node, spatial_data, average_weight)
distance = sqrt((spatial_data["nodes"][from_node, 2] - spatial_data["nodes"][to_node, 2])^2 + (spatial_data["nodes"][from_node, 3] - spatial_data["nodes"][to_node, 3])^2) * average_weight
d = distance[1]
return d
end
function distance_off(from_node, to_node, spatial_data, index, input_data)
distance = sqrt((spatial_data["nodes"][from_node, 2] - spatial_data["nodes"][to_node, 2])^2 + (spatial_data["nodes"][from_node, 3] - spatial_data["nodes"][to_node, 3])^2) * (1-spatial_data["onshore_flag"][index]) * input_data["resolution_factor"]
d = distance[1]
return d
end
function my_min_fn(OPEN, OPEN_COUNT, finish_node)
index = (1:OPEN_COUNT)'
temp_array = [OPEN[OPEN[1:OPEN_COUNT, 1] .== 1, :] index[OPEN[1:OPEN_COUNT, 1] .== 1]]
goal_index = findall(OPEN[:, 1] .== finish_node)
if !isempty(goal_index)
i_min = goal_index
end
if size(temp_array, 1) != 0
temp_min = Int.(findfirst(temp_array[:, 10] .== minimum(temp_array[:, 10])))
i_min = Int.(temp_array[temp_min[1], end])
else
i_min = -1
end
return i_min
end | OptimalTransmissionRouting | https://github.com/Electa-Git/OptimalTransmissionRouting.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.4 | 688e5028028e0dd8807efe6fff4a55a1a0832818 | code | 9445 | function calculate_costs_and_losses(input_data; equipment = "ohl")
equipment_ = join([input_data["technology"],"_",equipment])
if equipment_ == "ac_ohl"
costs, equipment_details = ac_ohl_costs_and_losses(input_data)
elseif equipment_ == "ac_ugc"
costs, equipment_details = ac_ugc_costs_and_losses(input_data)
elseif equipment_ == "dc_ohl"
costs, equipment_details = dc_ohl_costs_and_losses(input_data)
elseif equipment_ == "dc_ugc"
costs, equipment_details = dc_ugc_costs_and_losses(input_data)
end
return costs, equipment_details
end
function ac_ohl_costs_and_losses(input_data)
w = 2*pi*50 # frequency
minimum_distance = sqrt((input_data["start_node"]["x"]-input_data["end_node"]["x"])^2 + (input_data["start_node"]["y"]-input_data["start_node"]["y"])^2)
Avecorg=[16 25 50 70 95 120 150 170 185 210 230 240 265 300 340 380 435 450 490 550 560 680]
A = Avecorg[end] # Start with highest cross-section
C = -0.00003705 * input_data["voltages"]["ac_ohl"]^2 + 0.03257649 * input_data["voltages"]["ac_ohl"] + 5.965161265 # estimate capacitance in nF
Imax = -0.00170712*A.^2 + 2.64505501*A + 97.70512024 # estimate maximum current
Ic = w * (C*1e-9) * minimum_distance * (input_data["voltages"]["ac_ohl"] * 1e3) /sqrt(3) # Calculate capacitive current
I = input_data["power_rating"] * 1e6 / (sqrt(3) * input_data["voltages"]["ac_ohl"] * 1e3) # Calculate transmission current
n = ceil(I/(2*sqrt(Imax^2-(Ic/2)^2))) # Calculate minimum number of circuits
nb = ceil(I/(n*sqrt(Imax^2-(Ic/2)^2))) # Calculate minumm number of bundles
Imax1 = sqrt((I/(n*nb))^2+(Ic/2).^2) # Calculate actual current per conductor
K1 = -0.00170712
K2 = 2.64505501
K3 = 97.70512024 - Imax1;
A_new = min(679, real((1 / (2*K1) * (-K2 + sqrt(K2^2 - 4 * K1 * K3)))))
Avec = Avecorg
Aindex = A_new .< Avec
if all(Aindex==0)
A = Avecorg[end]
else
A = Avec[length(Avec) - sum(Aindex) + 1]
end
costs = Dict{String, Any}()
costs["investment"] = n * ((60+0.4 * input_data["voltages"]["ac_ohl"] + 0.4 * A * nb^(1/4)) * 1e3)
costs["installation"] = n * (500*1e3) * sqrt(input_data["voltages"]["ac_ohl"] / 400)
equipment_details = Dict{String,Any}()
equipment_details["cross_section"] = A
equipment_details["circuits"] = n
equipment_details["bundles"] = nb
return costs, equipment_details
end
function ac_ugc_costs_and_losses(input_data)
w = 2*pi*50 # frequency
minimum_distance = 30;
Avecorg_offshore = [70 95 120 150 185 240 300 400 500 630 800 1000 1200 1400]
A_offshore = Avecorg_offshore[end]
C_offshore = (-1.21*1e-7 * A_offshore^2 + 0.000286276 * A_offshore + 0.08212371) * 1.762251064 * input_data["voltages"]["ac_ugc"]^(-0.45531498) / 0.17
Imax_offshore = -5.7698e-4 * A_offshore^2 + 1.1793 * A_offshore + 212.33
Ic_max_offshore = sqrt(2) * Imax_offshore / 2
maximum_distance = Ic_max_offshore / (w * (C_offshore * 1e-6) * (input_data["voltages"]["ac_ugc"] * 1e3 )/ sqrt(3))
Ic_offshore = w * (C_offshore * 1e-6) * minimum_distance * (input_data["voltages"]["ac_ugc"] * 1e3) / sqrt(3)
I_offshore = input_data["power_rating"] * 1e6 /(sqrt(3) * input_data["voltages"]["ac_ugc"] * 1e3)
n_c_offshore = ceil(I_offshore / (sqrt(Imax_offshore^2-(Ic_offshore/2)^2)))
Imax1_offshore = sqrt((I_offshore/n_c_offshore)^2+(Ic_offshore/2).^2)
K1=5.7698e-4
K2=1.1793;
K3=212.33-Imax1_offshore;
Anew_offshore = min(999,real((1/(2*K1).*(-K2+sqrt(K2.^2-4*K1.*K3)))))
Avec_offshore = Avecorg_offshore
Aindex = Anew_offshore .< Avec_offshore
if all(Aindex==0)
A_offshore = Avecorg_offshore[end]
else
A_offshore = Avec_offshore[length(Avec_offshore)-sum(Aindex)+1]
end
Q_offshore = sqrt(3) * Ic_offshore * input_data["voltages"]["ac_ugc"] / 1e3
K1=5.8038;
K2=0.044525;
K3=0.0072;
costs = Dict{String, Any}()
costs["offshore"] = Dict{String, Any}()
costs["offshore"]["investment"] = 1.3e6 * n_c_offshore * (K1+K2*exp(K3*(sqrt(3) * input_data["voltages"]["ac_ugc"] * Imax1_offshore)/1e6))/8.98+ n_c_offshore * Q_offshore *7e6 /(130*minimum_distance)
costs["offshore"]["installation"] = 7e5 * (input_data["voltages"]["ac_ugc"]/400)^(1/2)*(n_c_offshore)^0.9
equipment_details = Dict{String, Any}()
equipment_details["offshore"] = Dict{String, Any}()
equipment_details["offshore"]["cross_section"] = A_offshore
equipment_details["offshore"]["circuits"] = n_c_offshore
equipment_details["offshore"]["maximum_distance"] = maximum_distance
equipment_details["offshore"]["circuits"] = n_c_offshore
## ONSHORE CABLES
Avecorg = [300 400 500 630 800 1000 1200 1400 1600 2000 2500]
A = Avecorg[end]
C = 0.2
Imax = 26.938 * A^(0.521);
Ic= w * (C * 1e-6)*minimum_distance * (input_data["voltages"]["ac_ugc"] * 1e3) / sqrt(3)
I = input_data["power_rating"] * 1e6 / (sqrt(3) * input_data["voltages"]["ac_ugc"] * 1e3)
n_c = ceil(I / (sqrt(Imax^2 - (Ic/2)^2)))
Imax1 = sqrt((I / n_c)^2 + (Ic/2).^2)
Anew = (Imax1 / 26.938)^(1/0.521)
Avec = Avecorg
Aindex = Anew .< Avec
if all(Aindex == 0)
A = Avecorg[end]
else
A = Avec[length(Avec)-sum(Aindex)+1]
end
Q = sqrt(3) * Ic * input_data["voltages"]["ac_ugc"] / 1e3
costs["onshore"] = Dict{String, Any}()
costs["onshore"]["investment"] = 1e6 * ((input_data["voltages"]["ac_ugc"] / 400)^2+ 0.25 * A/2000)*n_c + n_c * Q * 3e6 /(130*minimum_distance) + 0.25e6*(input_data["voltages"]["ac_ugc"]/400)
costs["onshore"]["installation"] = 1e6 * (input_data["voltages"]["ac_ugc"] / 400)^(1/2)*(n_c)^0.9
costs["onshore"]["transition"] = 3 * n_c * 1e6 * (input_data["voltages"]["ac_ugc"]/400)^(1/2)
equipment_details["onshore"] = Dict{String, Any}()
equipment_details["onshore"]["cross_section"] = A
equipment_details["onshore"]["circuits"] = n_c
return costs, equipment_details
end
function dc_ohl_costs_and_losses(input_data)
Avecorg = [16 25 50 70 95 120 150 170 185 210 230 240 265 300 340 380 435 450 490 550 560 680]
A = maximum(Avecorg)
Imax=(-0.00170712*A^2 + 2.64505501 * A +97.70512024) * 1.2
I = input_data["power_rating"] * 1e6 / (2 * input_data["voltages"]["dc_ohl"] * 1e3)
n = ceil(I/(2*Imax))
nb = ceil(I/(n*Imax))
Imax1 = I / (n * nb)
K1 = -0.00170712 * 1.2
K2 = 2.64505501 * 1.2
K3 = 97.70512024 * 1.2 - Imax1
Anew = min(679, real((1/ (2 * K1) * (-K2 + sqrt(K2^2-4 * K1 * K3)))))
Avec = Avecorg;
Aindex = Anew .< Avec
if all(Aindex == 0)
A = Avecorg[end]
else
A = Avec[length(Avec)-sum(Aindex) + 1]
end
costs = Dict{String, Any}()
costs["investment"] = n * (60+0.4 * input_data["voltages"]["dc_ohl"] + 0.4 * A * nb^(1/4)) * 1e3 * 2/3
costs["installation"] = n * 2/3 * (500*1e3) * sqrt(input_data["voltages"]["dc_ohl"] / 320)
costs["converter"] = (input_data["power_rating"] /1000) * (0.8 + 0.2 * sqrt(input_data["voltages"]["dc_ohl"]/320)) * 100e6
equipment_details = Dict{String,Any}()
equipment_details["cross_section"] = A
equipment_details["circuits"] = n
equipment_details["bundles"] = nb
return costs, equipment_details
end
function dc_ugc_costs_and_losses(input_data)
Avecorg = [95 120 150 185 240 300 400 500 630 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000]
A = maximum(Avecorg)
Imax = 25.22218157 * A^(0.57255569)
I = input_data["power_rating"] * 1e6/(2*input_data["voltages"]["dc_ugc"] *1e3)
n = ceil(I/Imax)
Imax1 = I /n
Anew = (Imax1/25.22218157)^(1/0.57255569)
Avec = Avecorg
Aindex = Anew .< Avec
if all(Aindex == 0)
A = 3000
else
A = Avec[length(Avec)-sum(Aindex)+1]
end
costs = Dict{String, Any}()
costs["offshore"] = Dict{String, Any}()
costs["onshore"] = Dict{String, Any}()
costs["onshore"]["converter"] = (input_data["power_rating"] /1000) * (0.8 + 0.2 * sqrt(input_data["voltages"]["dc_ugc"] / 320)) * 100e6
costs["onshore"]["investment"] = n * ((0.0022 * input_data["voltages"]["dc_ugc"] -0.4338) * 1e6 + (0.4906 * input_data["voltages"]["dc_ugc"]^(-0.652)) * input_data["voltages"]["dc_ugc"] * Imax1 * 1e3)/8.94448
costs["onshore"]["installation"] = n^0.9 * 700000 * (input_data["voltages"]["dc_ugc"]/320)^(1/2)
costs["onshore"]["transition"] = 2 * n * 1e6 * (input_data["voltages"]["dc_ugc"]/320)^(1/2)
costs["offshore"]["converter"] = (input_data["power_rating"] /1000) * (0.8 + 0.2 * sqrt(input_data["voltages"]["dc_ugc"]/320)) * 100e6
costs["offshore"]["investment"] = n * ((0.0022 * input_data["voltages"]["dc_ugc"] - 0.4338) * 1e6 + (0.4906 * input_data["voltages"]["dc_ugc"]^(-0.652)) * input_data["voltages"]["dc_ugc"] * Imax1*1e3)/8.94448
costs["offshore"]["installation"] = n^0.9 * 1e6 * (input_data["voltages"]["dc_ugc"]/320)^(1/2)
equipment_details = Dict{String, Any}()
equipment_details["onshore"] = Dict{String, Any}()
equipment_details["onshore"]["cross_section"] = A
equipment_details["onshore"]["circuits"] = n
equipment_details["offshore"] = Dict{String, Any}()
equipment_details["offshore"]["cross_section"] = A
equipment_details["offshore"]["circuits"] = n
equipment_details["offshore"]["maximum_distance"] = 5000 # dummy number
return costs, equipment_details
end | OptimalTransmissionRouting | https://github.com/Electa-Git/OptimalTransmissionRouting.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.4 | 688e5028028e0dd8807efe6fff4a55a1a0832818 | code | 14768 | function define_weights_voltages(strategy)
# Create dictionary of spatial weights for different equipment types / areas
spatial_weights = Dict{String, Any}()
# Weights for AC OHL
spatial_weights["ac_ohl"] = Dict{String, Any}()
spatial_weights["ac_ohl"]["nature"] = 2.5
spatial_weights["ac_ohl"]["urban"] = 40
spatial_weights["ac_ohl"]["mountain"] = 10
spatial_weights["ac_ohl"]["sea"] = 40
spatial_weights["ac_ohl"]["Natura2000"] = 40
spatial_weights["ac_ohl"]["grid"] = 1
spatial_weights["ac_ohl"]["agricultural"] = 1
spatial_weights["ac_ohl"]["roads"] = 1
spatial_weights["ac_ohl"]["railroads"] = 1
if strategy == "OHL_on_existing_corridors"
spatial_weights["ac_ohl"]["agricultural"] = 40
spatial_weights["ac_ohl"]["nature"] = 40
spatial_weights["ac_ohl"]["mountain"] = 40
end
if strategy == "cables_only"
spatial_weights["ac_ohl"]["agricultural"] = 40
spatial_weights["ac_ohl"]["nature"] = 40
spatial_weights["ac_ohl"]["mountain"] = 40
spatial_weights["ac_ohl"]["grid"] = 40
spatial_weights["ac_ohl"]["roads"] = 40
spatial_weights["ac_ohl"]["railroads"] = 40
end
# Weights for AC UGC
spatial_weights["ac_ugc"] = Dict{String, Any}()
spatial_weights["ac_ugc"]["nature"] = 1.5
spatial_weights["ac_ugc"]["urban"] = 2.5
spatial_weights["ac_ugc"]["mountain"] = 4.5
spatial_weights["ac_ugc"]["sea"] = 0.75
spatial_weights["ac_ugc"]["Natura2000"] = 40
spatial_weights["ac_ugc"]["grid"] = 1
spatial_weights["ac_ugc"]["agricultural"] = 1
spatial_weights["ac_ugc"]["roads"] = 1
spatial_weights["ac_ugc"]["railroads"] = 1
# Weights for DC OHL
spatial_weights["dc_ohl"] = Dict{String, Any}()
spatial_weights["dc_ohl"]["nature"] = 2.5
spatial_weights["dc_ohl"]["urban"] = 40
spatial_weights["dc_ohl"]["mountain"] = 10
spatial_weights["dc_ohl"]["sea"] = 40
spatial_weights["dc_ohl"]["Natura2000"] = 10
spatial_weights["dc_ohl"]["grid"] = 1
spatial_weights["dc_ohl"]["agricultural"] = 1
spatial_weights["dc_ohl"]["roads"] = 1
spatial_weights["dc_ohl"]["railroads"] = 1
if strategy == "OHL_on_existing_corridors"
spatial_weights["dc_ohl"]["agricultural"] = 40
spatial_weights["dc_ohl"]["nature"] = 40
spatial_weights["dc_ohl"]["mountain"] = 40
end
if strategy == "cables_only"
spatial_weights["dc_ohl"]["agricultural"] = 40
spatial_weights["dc_ohl"]["nature"] = 40
spatial_weights["dc_ohl"]["mountain"] = 40
spatial_weights["dc_ohl"]["grid"] = 40
spatial_weights["dc_ohl"]["roads"] = 40
spatial_weights["dc_ohl"]["railroads"] = 40
end
# Weights for AC UGC
spatial_weights["dc_ugc"] = Dict{String, Any}()
spatial_weights["dc_ugc"]["nature"] = 1.5
spatial_weights["dc_ugc"]["urban"] = 2.5
spatial_weights["dc_ugc"]["mountain"] = 4.5
spatial_weights["dc_ugc"]["sea"] = 0.75
spatial_weights["dc_ugc"]["Natura2000"] = 10
spatial_weights["dc_ugc"]["grid"] = 1
spatial_weights["dc_ugc"]["agricultural"] = 1
spatial_weights["dc_ugc"]["roads"] = 1
spatial_weights["dc_ugc"]["railroads"] = 1
# Define transmission voltage levels
voltages = Dict{String, Any}()
voltages["ac_ohl"] = 400
voltages["dc_ohl"] = 400
voltages["ac_ugc"] = 400
voltages["dc_ugc"] = 320
#Minimum resolution
resolution = Dict{String, Any}()
resolution["delta_min"] = 4
resolution["weight_min"] = Dict{String, Any}()
resolution["weight_min"]["ac_ohl"] = 1
resolution["weight_min"]["ac_ugc"] = 1
resolution["weight_min"]["dc_ohl"] = 1
resolution["weight_min"]["dc_ugc"] = 1
impedances = Dict{String,Any}()
impedances["ac"] = Dict{String,Any}()
impedances["ac"]["ohl"] = Dict{String,Any}()
impedances["ac"]["ohl"]["16"] = Dict{String,Any}()
impedances["ac"]["ohl"]["16"]["r"] = 1.874
impedances["ac"]["ohl"]["16"]["x"] = 0.347
impedances["ac"]["ohl"]["16"]["c"] = 13.06
impedances["ac"]["ohl"]["25"] = Dict{String,Any}()
impedances["ac"]["ohl"]["25"]["r"] = 1.118
impedances["ac"]["ohl"]["25"]["x"] = 0.334
impedances["ac"]["ohl"]["25"]["c"] = 13.06
impedances["ac"]["ohl"]["50"] = Dict{String,Any}()
impedances["ac"]["ohl"]["50"]["r"] = 0.574
impedances["ac"]["ohl"]["50"]["x"] = 0.312
impedances["ac"]["ohl"]["50"]["c"] = 13.06
impedances["ac"]["ohl"]["70"] = Dict{String,Any}()
impedances["ac"]["ohl"]["70"]["r"] = 0.404
impedances["ac"]["ohl"]["70"]["x"] = 0.302
impedances["ac"]["ohl"]["70"]["c"] = 13.06
impedances["ac"]["ohl"]["95"] = Dict{String,Any}()
impedances["ac"]["ohl"]["95"]["r"] = 0.300
impedances["ac"]["ohl"]["95"]["x"] = 0.291
impedances["ac"]["ohl"]["95"]["c"] = 13.06
impedances["ac"]["ohl"]["120"] = Dict{String,Any}()
impedances["ac"]["ohl"]["120"]["r"] = 0.252
impedances["ac"]["ohl"]["120"]["x"] = 0.284
impedances["ac"]["ohl"]["120"]["c"] = 13.06
impedances["ac"]["ohl"]["150"] = Dict{String,Any}()
impedances["ac"]["ohl"]["150"]["r"] = 0.190
impedances["ac"]["ohl"]["150"]["x"] = 0.279
impedances["ac"]["ohl"]["150"]["c"] = 13.06
impedances["ac"]["ohl"]["170"] = Dict{String,Any}()
impedances["ac"]["ohl"]["170"]["r"] = 0.165
impedances["ac"]["ohl"]["170"]["x"] = 0.276
impedances["ac"]["ohl"]["170"]["c"] = 13.06
impedances["ac"]["ohl"]["185"] = Dict{String,Any}()
impedances["ac"]["ohl"]["185"]["r"] = 0.154
impedances["ac"]["ohl"]["185"]["x"] = 0.274
impedances["ac"]["ohl"]["185"]["c"] = 13.06
impedances["ac"]["ohl"]["210"] = Dict{String,Any}()
impedances["ac"]["ohl"]["210"]["r"] = 0.133
impedances["ac"]["ohl"]["210"]["x"] = 0.270
impedances["ac"]["ohl"]["210"]["c"] = 13.06
impedances["ac"]["ohl"]["230"] = Dict{String,Any}()
impedances["ac"]["ohl"]["230"]["r"] = 0.122
impedances["ac"]["ohl"]["230"]["x"] = 0.268
impedances["ac"]["ohl"]["230"]["c"] = 13.06
impedances["ac"]["ohl"]["240"] = Dict{String,Any}()
impedances["ac"]["ohl"]["240"]["r"] = 0.116
impedances["ac"]["ohl"]["240"]["x"] = 0.267
impedances["ac"]["ohl"]["240"]["c"] = 13.06
impedances["ac"]["ohl"]["265"] = Dict{String,Any}()
impedances["ac"]["ohl"]["265"]["r"] = 0.107
impedances["ac"]["ohl"]["265"]["x"] = 0.264
impedances["ac"]["ohl"]["265"]["c"] = 13.06
impedances["ac"]["ohl"]["300"] = Dict{String,Any}()
impedances["ac"]["ohl"]["300"]["r"] = 0.093
impedances["ac"]["ohl"]["300"]["x"] = 0.261
impedances["ac"]["ohl"]["300"]["c"] = 13.06
impedances["ac"]["ohl"]["340"] = Dict{String,Any}()
impedances["ac"]["ohl"]["340"]["r"] = 0.083
impedances["ac"]["ohl"]["340"]["x"] = 0.258
impedances["ac"]["ohl"]["340"]["c"] = 13.06
impedances["ac"]["ohl"]["380"] = Dict{String,Any}()
impedances["ac"]["ohl"]["380"]["r"] = 0.074
impedances["ac"]["ohl"]["380"]["x"] = 0.255
impedances["ac"]["ohl"]["380"]["c"] = 13.06
impedances["ac"]["ohl"]["435"] = Dict{String,Any}()
impedances["ac"]["ohl"]["435"]["r"] = 0.065
impedances["ac"]["ohl"]["435"]["x"] = 0.252
impedances["ac"]["ohl"]["435"]["c"] = 13.06
impedances["ac"]["ohl"]["450"] = Dict{String,Any}()
impedances["ac"]["ohl"]["450"]["r"] = 0.063
impedances["ac"]["ohl"]["450"]["x"] = 0.251
impedances["ac"]["ohl"]["450"]["c"] = 13.06
impedances["ac"]["ohl"]["490"] = Dict{String,Any}()
impedances["ac"]["ohl"]["490"]["r"] = 0.058
impedances["ac"]["ohl"]["490"]["x"] = 0.249
impedances["ac"]["ohl"]["490"]["c"] = 13.06
impedances["ac"]["ohl"]["550"] = Dict{String,Any}()
impedances["ac"]["ohl"]["550"]["r"] = 0.051
impedances["ac"]["ohl"]["550"]["x"] = 0.246
impedances["ac"]["ohl"]["550"]["c"] = 13.06
impedances["ac"]["ohl"]["560"] = Dict{String,Any}()
impedances["ac"]["ohl"]["560"]["r"] = 0.050
impedances["ac"]["ohl"]["560"]["x"] = 0.26
impedances["ac"]["ohl"]["560"]["c"] = 13.06
impedances["ac"]["ohl"]["680"] = Dict{String,Any}()
impedances["ac"]["ohl"]["680"]["r"] = 0.042
impedances["ac"]["ohl"]["680"]["x"] = 0.241
impedances["ac"]["ohl"]["680"]["c"] = 13.06
impedances["ac"]["ugc"] = Dict{String,Any}()
impedances["ac"]["ugc"]["300"] = Dict{String,Any}()
impedances["ac"]["ugc"]["300"]["r"] = 0.069
impedances["ac"]["ugc"]["300"]["x"] = 0.110
impedances["ac"]["ugc"]["300"]["c"] = 375
impedances["ac"]["ugc"]["400"] = Dict{String,Any}()
impedances["ac"]["ugc"]["400"]["r"] = 0.057
impedances["ac"]["ugc"]["400"]["x"] = 0.130
impedances["ac"]["ugc"]["400"]["c"] = 170
impedances["ac"]["ugc"]["500"] = Dict{String,Any}()
impedances["ac"]["ugc"]["500"]["r"] = 0.047
impedances["ac"]["ugc"]["500"]["x"] = 0.125
impedances["ac"]["ugc"]["500"]["c"] = 180
impedances["ac"]["ugc"]["630"] = Dict{String,Any}()
impedances["ac"]["ugc"]["630"]["r"] = 0.038
impedances["ac"]["ugc"]["630"]["x"] = 0.122
impedances["ac"]["ugc"]["630"]["c"] = 200
impedances["ac"]["ugc"]["800"] = Dict{String,Any}()
impedances["ac"]["ugc"]["800"]["r"] = 0.027
impedances["ac"]["ugc"]["800"]["x"] = 0.102
impedances["ac"]["ugc"]["800"]["c"] = 402
impedances["ac"]["ugc"]["1200"] = Dict{String,Any}()
impedances["ac"]["ugc"]["1200"]["r"] = 0.0151
impedances["ac"]["ugc"]["1200"]["x"] = 0.116
impedances["ac"]["ugc"]["1200"]["c"] = 210
impedances["ac"]["ugc"]["1600"] = Dict{String,Any}()
impedances["ac"]["ugc"]["1600"]["r"] = 0.0113
impedances["ac"]["ugc"]["1600"]["x"] = 0.111
impedances["ac"]["ugc"]["1600"]["c"] = 231
impedances["ac"]["ugc"]["2000"] = Dict{String,Any}()
impedances["ac"]["ugc"]["2000"]["r"] = 0.010
impedances["ac"]["ugc"]["2000"]["x"] = 0.1099
impedances["ac"]["ugc"]["2000"]["c"] = 240
impedances["ac"]["ugc"]["2500"] = Dict{String,Any}()
impedances["ac"]["ugc"]["2500"]["r"] = 0.0095
impedances["ac"]["ugc"]["2500"]["x"] = 0.098
impedances["ac"]["ugc"]["2500"]["c"] = 260
impedances["dc"] = Dict{String,Any}()
impedances["dc"]["ohl"] = Dict{String,Any}()
for (cross_section, cs) in impedances["ac"]["ohl"]
impedances["dc"]["ohl"][cross_section] = Dict{String,Any}()
impedances["dc"]["ohl"][cross_section]["r"] = cs["r"]
impedances["dc"]["ohl"][cross_section]["x"] = 0
impedances["dc"]["ohl"][cross_section]["c"] = 0
end
impedances["dc"]["ugc"] = Dict{String,Any}()
impedances["dc"]["ugc"]["95"] = Dict{String, Any}()
impedances["dc"]["ugc"]["95"]["r"] = 0.247
impedances["dc"]["ugc"]["95"]["x"] = 0
impedances["dc"]["ugc"]["95"]["c"] = 0
impedances["dc"]["ugc"]["120"] = Dict{String, Any}()
impedances["dc"]["ugc"]["120"]["r"] = 0.196
impedances["dc"]["ugc"]["120"]["x"] = 0
impedances["dc"]["ugc"]["120"]["c"] = 0
impedances["dc"]["ugc"]["150"] = Dict{String, Any}()
impedances["dc"]["ugc"]["150"]["r"] = 0.16
impedances["dc"]["ugc"]["150"]["x"] = 0
impedances["dc"]["ugc"]["150"]["c"] = 0
impedances["dc"]["ugc"]["185"] = Dict{String, Any}()
impedances["dc"]["ugc"]["185"]["r"] = 0.128
impedances["dc"]["ugc"]["185"]["x"] = 0
impedances["dc"]["ugc"]["185"]["c"] = 0
impedances["dc"]["ugc"]["240"] = Dict{String, Any}()
impedances["dc"]["ugc"]["240"]["r"] = 0.097
impedances["dc"]["ugc"]["240"]["x"] = 0
impedances["dc"]["ugc"]["240"]["c"] = 0
impedances["dc"]["ugc"]["300"] = Dict{String, Any}()
impedances["dc"]["ugc"]["300"]["r"] = 0.08
impedances["dc"]["ugc"]["300"]["x"] = 0
impedances["dc"]["ugc"]["300"]["c"] = 0
impedances["dc"]["ugc"]["400"] = Dict{String, Any}()
impedances["dc"]["ugc"]["400"]["r"] = 0.062
impedances["dc"]["ugc"]["400"]["x"] = 0
impedances["dc"]["ugc"]["400"]["c"] = 0
impedances["dc"]["ugc"]["500"] = Dict{String, Any}()
impedances["dc"]["ugc"]["500"]["r"] = 0.0508
impedances["dc"]["ugc"]["500"]["x"] = 0
impedances["dc"]["ugc"]["500"]["c"] = 0
impedances["dc"]["ugc"]["630"] = Dict{String, Any}()
impedances["dc"]["ugc"]["630"]["r"] = 0.039
impedances["dc"]["ugc"]["630"]["x"] = 0
impedances["dc"]["ugc"]["630"]["c"] = 0
impedances["dc"]["ugc"]["800"] = Dict{String, Any}()
impedances["dc"]["ugc"]["800"]["r"] = 0.032
impedances["dc"]["ugc"]["800"]["x"] = 0
impedances["dc"]["ugc"]["800"]["c"] = 0
impedances["dc"]["ugc"]["1000"] = Dict{String, Any}()
impedances["dc"]["ugc"]["1000"]["r"] = 0.024
impedances["dc"]["ugc"]["1000"]["x"] = 0
impedances["dc"]["ugc"]["1000"]["c"] = 0
impedances["dc"]["ugc"]["1200"] = Dict{String, Any}()
impedances["dc"]["ugc"]["1200"]["r"] = 0.021
impedances["dc"]["ugc"]["1200"]["x"] = 0
impedances["dc"]["ugc"]["1200"]["c"] = 0
impedances["dc"]["ugc"]["1400"] = Dict{String, Any}()
impedances["dc"]["ugc"]["1400"]["r"] = 0.019
impedances["dc"]["ugc"]["1400"]["x"] = 0
impedances["dc"]["ugc"]["1400"]["c"] = 0
impedances["dc"]["ugc"]["1600"] = Dict{String, Any}()
impedances["dc"]["ugc"]["1600"]["r"] = 0.017
impedances["dc"]["ugc"]["1600"]["x"] = 0
impedances["dc"]["ugc"]["1600"]["c"] = 0
impedances["dc"]["ugc"]["1800"] = Dict{String, Any}()
impedances["dc"]["ugc"]["1800"]["r"] = 0.0155
impedances["dc"]["ugc"]["1800"]["x"] = 0
impedances["dc"]["ugc"]["1800"]["c"] = 0
impedances["dc"]["ugc"]["2000"] = Dict{String, Any}()
impedances["dc"]["ugc"]["2000"]["r"] = 0.014
impedances["dc"]["ugc"]["2000"]["x"] = 0
impedances["dc"]["ugc"]["2000"]["c"] = 0
impedances["dc"]["ugc"]["2200"] = Dict{String, Any}()
impedances["dc"]["ugc"]["2200"]["r"] = 0.013
impedances["dc"]["ugc"]["2200"]["x"] = 0
impedances["dc"]["ugc"]["2200"]["c"] = 0
impedances["dc"]["ugc"]["2400"] = Dict{String, Any}()
impedances["dc"]["ugc"]["2400"]["r"] = 0.012
impedances["dc"]["ugc"]["2400"]["x"] = 0
impedances["dc"]["ugc"]["2400"]["c"] = 0
impedances["dc"]["ugc"]["2600"] = Dict{String, Any}()
impedances["dc"]["ugc"]["2600"]["r"] = 0.010
impedances["dc"]["ugc"]["2600"]["x"] = 0
impedances["dc"]["ugc"]["2600"]["c"] = 0
impedances["dc"]["ugc"]["2800"] = Dict{String, Any}()
impedances["dc"]["ugc"]["2800"]["r"] = 0.09
impedances["dc"]["ugc"]["2800"]["x"] = 0
impedances["dc"]["ugc"]["2800"]["c"] = 0
impedances["dc"]["ugc"]["3000"] = Dict{String, Any}()
impedances["dc"]["ugc"]["3000"]["r"] = 0.075
impedances["dc"]["ugc"]["3000"]["x"] = 0
impedances["dc"]["ugc"]["3000"]["c"] = 0
return spatial_weights, voltages, resolution, impedances
end | OptimalTransmissionRouting | https://github.com/Electa-Git/OptimalTransmissionRouting.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.4 | 688e5028028e0dd8807efe6fff4a55a1a0832818 | code | 5137 | function convert_image_files_to_weights(bus1, bus2)
# create dictionary with rbg rgb_values
rgb_values = Dict{String, Any}()
boundaries = Dict{String, Any}()
nodes_lp = Dict{String, Any}()
plot_dictionary = Dict{String, Any}()
#To Do add rnage based on input location
img_ag = Images.load("../src/spatial_image_files/clc_agricultural.tif")
img_overlay = zeros(size(img_ag))
rgb_values, img_overlay = convert2integer(img_ag, rgb_values, "agricultural", 1, img_overlay)
img_sea = Images.load("../src/spatial_image_files/sea.tif")
rgb_values, img_overlay = convert2integer(img_sea, rgb_values, "sea", 2, img_overlay)
img_grid = Images.load("../src/spatial_image_files/grid_225kv_400kv.tif")
rgb_values, img_overlay = convert2integer(img_grid, rgb_values, "grid", 3, img_overlay)
img_roads = Images.load("../src/spatial_image_files/roads.tif")
rgb_values, img_overlay = convert2integer(img_roads, rgb_values, "roads", 3, img_overlay)
img_railroads = Images.load("../src/spatial_image_files/railroads.tif")
rgb_values, img_overlay = convert2integer(img_railroads, rgb_values, "railroads", 3, img_overlay)
img_nature = Images.load("../src/spatial_image_files/clc_natural.tif")
rgb_values, img_overlay = convert2integer(img_nature, rgb_values, "nature", 4, img_overlay)
img_mountains = Images.load("../src/spatial_image_files/clc_mountains.tif")
rgb_values, img_overlay = convert2integer(img_mountains, rgb_values, "mountain", 5, img_overlay)
img_urban = Images.load("../src/spatial_image_files/clc_urban.tif")
rgb_values, img_overlay = convert2integer(img_urban, rgb_values, "urban", 6, img_overlay)
img_natura2000 = Images.load("../src/spatial_image_files/Natura2000.tif")
rgb_values, img_overlay = convert2integer(img_natura2000, rgb_values, "Natura2000", 7, img_overlay)
X1,Y1 = convert_latlon_to_etrs89(bus1["longitude"], bus1["latitude"])
X2,Y2 = convert_latlon_to_etrs89(bus2["longitude"], bus2["latitude"])
# http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-2
x0=1500000;
xmax=7400000;
y0=900000;
ymax=5500000;
resolution=2500;
# Calculate the positions pof the nodes
xpos=round.([(X1-x0),(X2-x0)] / resolution)
ypos=round.([(ymax-Y1),(ymax-Y2)] / resolution)
# Determine range: Euclidian distance +/- 30%
d = round(0.3 * sqrt((xpos[1] - xpos[1])^2 + (ypos[1] - ypos[2])^2))
x_min = min(xpos[1], xpos[2]) - d
x_max = max(xpos[1], xpos[2]) + d
y_min = min(ypos[1], ypos[2]) - d
y_max = max(ypos[1], ypos[2]) + d
boundaries["xmin"] = x_min
boundaries["xmax"] = x_max
boundaries["ymin"] = y_min
boundaries["ymax"] = y_max
xpos_plot=round.([(X1-x0); (X2-x0)]/resolution .- x_max) #range(1,1);
ypos_plot=round.([(ymax-Y1); (ymax-Y2)]/resolution .- y_min) #- range(2,1);
nodes_lp["x1"] = xpos[1]
nodes_lp["x2"] = xpos[2]
nodes_lp["y1"] = ypos[1]
nodes_lp["y2"] = ypos[2]
plot_dictionary["overlay_image"] = img_overlay
plot_dictionary["x_position"] = xpos
plot_dictionary["y_position"] = ypos
return rgb_values, nodes_lp, boundaries, plot_dictionary
end
function convert2integer(image, rgb_values, imagename, factor, img_overlay)
rw = Images.rawview(Images.channelview(image))
bitarray = (rw .!== 0x00000000)
rgb_values[imagename] = ones(size(bitarray)) .* bitarray
img = findall(x->x==1, rgb_values[imagename])
for idx = 1:length(img)
img_overlay[img[idx]] = max(factor, img_overlay[img[idx]])
end
return rgb_values, img_overlay
end
function convert_latlon_to_etrs89(longitude, latitude)
# Coordinate transformation based on IOGP Geomatics
# Guidance Note Number 7, part 2
# Coordinate Conversions and Transformations including Formulas
# Section 3.4.2 Lambert Azimuthal Equal Area (EPSG Dataset coordinate operation method code 9820)
# https://www.iogp.org/bookstore/product/coordinate-conversions-and-transformation-including-formulas/
# fixed parameters
a = 6378137.0
e = 0.081819191
phi0 = 0.907571211 # rad = 52 degree North
lambda0 = 0.174532925 # rad = 10 degree East
FE = 4321000 # False easting in m
FN = 3210000 # False nortinh in m
phi = latitude * pi / 180
lambda = longitude * pi / 180
q = (1 - e^2) * ((sin(phi) / (1 - e^2 * sin(phi)^2)) - ((1 / (2 * e)) * log((1 - e * sin(phi)) / (1 + e * sin(phi)))))
q0 = (1 - e^2) * ((sin(phi0) / (1 - e^2 * sin(phi0)^2)) - ((1 / (2 * e)) * log((1 - e * sin(phi0)) / (1 + e * sin(phi0)))))
qp = (1 - e^2) * ((1 / (1 - e^2)) - ((1 / (2 * e) * log((1 - e) / (1 + e)))))
Rq = a * (qp / 2)^0.5
beta = asin(q / qp)
beta0 = asin(q0 / qp)
B = Rq * (2 / (1+ sin(beta0) * sin(beta) + (cos(beta0) * cos(beta) * cos(lambda - lambda0))))^0.5
D = a * (cos(phi0) / (1 - e^2 * sin(phi0)^2)^0.5) / (Rq * cos(beta0))
E = FE + (B*D) * (cos(beta) * sin(lambda - lambda0))
N = FN + (B/D) * (cos(beta0) * sin(beta) - (sin(beta0) * cos(beta) * cos(lambda - lambda0)))
return E, N
end | OptimalTransmissionRouting | https://github.com/Electa-Git/OptimalTransmissionRouting.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.4 | 688e5028028e0dd8807efe6fff4a55a1a0832818 | code | 3345 | function determine_impedance_parameters(input_data, spatial_data, spatial_data_matrices, optimal_path, equipment_data)
r = 0
x = 0
bc = 0
r_pu = 0
x_pu = 0
bc_pu = 0
km = 0
km_ohl = 0
km_ugc = 0
for idx = 1 : size(optimal_path, 1) - 1
ohl_cable = ohl_or_cable(spatial_data, spatial_data_matrices, optimal_path[idx], optimal_path[idx + 1])
r_, x_, bc_, r_pu_, x_pu_, bc_pu_ = get_impedance_data(equipment_data, ohl_cable, input_data)
km_ = get_segment_distance(spatial_data, spatial_data_matrices, optimal_path[idx], optimal_path[idx + 1])
km = km + km_
if ohl_cable == "ohl"
km_ohl = km_ohl + km_
else
km_ugc = km_ugc + km_
end
r = r + (r_ * km_)
r_pu = r_pu + (r_pu_ * km_)
x = x + (x_ * km_)
x_pu = x_pu +(x_pu_ * km_)
bc = bc + (bc_ * km_)
bc_pu = bc_pu + (bc_pu_ * km_)
end
route_impedance = Dict{String, Any}()
route_length = Dict{String, Any}()
route_length["total_length"] = km
route_length["ohl_length"] = km_ohl
route_length["ugc_length"] = km_ugc
route_impedance["r"] = r
route_impedance["x"] = x
route_impedance["bc"] = bc
route_impedance["r_pu"] = r_pu
route_impedance["x_pu"] = x_pu
route_impedance["bc_pu"] = bc_pu
return route_impedance, route_length
end
function get_impedance_data(equipment_data::Dict, ohl_cable::String, input_data::Dict)
technology = input_data["technology"]
cross_section = equipment_data[ohl_cable]["onshore"]["cross_section"]
circuits = equipment_data[ohl_cable]["onshore"]["circuits"]
if ohl_cable == "ohl"
bundles = input_data[ohl_cable]["onshore"]["bundles"]
else
bundles = 1
end
r = input_data["impedances"][technology][ohl_cable]["$cross_section"]["r"] / (bundles * circuits)
x = input_data["impedances"][technology][ohl_cable]["$cross_section"]["x"] / (bundles * circuits)
bc = input_data["impedances"][technology][ohl_cable]["$cross_section"]["c"] * circuits * 10e-9 * 2 * pi * 50
v_str = join([technology, "_", ohl_cable])
voltage = input_data["voltages"][v_str]
Zbase = voltage^2 / 100
r_pu = r / Zbase
x_pu = x / Zbase
bc_pu = bc * Zbase
return r, x, bc, r_pu, x_pu, bc_pu
end
function get_segment_distance(spatial_data::Dict, spatial_data_matrices::Dict, node_id1::Int, node_id2::Int)
index_s1 = findall(node_id1 .== spatial_data["segments"][:, 2])
index_s2 = findall(node_id2 .== spatial_data["segments"][:, 3])
index_s = intersect(index_s1, index_s2)
if isempty(index_s)
index_s1 = findall(node_id2 .== spatial_data["segments"][:, 2])
index_s2 = findall(node_id1 .== spatial_data["segments"][:, 3])
index_s = intersect(index_s1, index_s2)
end
if !isempty(findall(index_s .== spatial_data_matrices["ohl"]["segments"][:, 1]))
km = spatial_data_matrices["ohl"]["segment_km"][index_s]
else
index_ugc = index_s[1] - size(spatial_data_matrices["ohl"]["segments"], 1)
if !isempty(findall(index_s .== spatial_data_matrices["ugc"]["segments"][:, 1]))
km = spatial_data_matrices["ugc"]["segment_km"][index_ugc]
else
km = 0
end
end
return km
end | OptimalTransmissionRouting | https://github.com/Electa-Git/OptimalTransmissionRouting.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.4 | 688e5028028e0dd8807efe6fff4a55a1a0832818 | code | 586 | function do_optimal_routing(input_data)
spatial_data, spatial_data_matrices, cost_data, equipment_data = prepare_spatial_data(input_data)
c_tot, optimal_path, ac_dc, ac_cab, dc_cab = optimize_route(spatial_data, spatial_data_matrices, cost_data, equipment_data, input_data)
route_impedance, route_length = determine_impedance_parameters(input_data, spatial_data, spatial_data_matrices, optimal_path, equipment_data)
return spatial_data, spatial_data_matrices, cost_data, equipment_data, c_tot, optimal_path, ac_dc, ac_cab, dc_cab, route_impedance, route_length
end | OptimalTransmissionRouting | https://github.com/Electa-Git/OptimalTransmissionRouting.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.4 | 688e5028028e0dd8807efe6fff4a55a1a0832818 | code | 16781 | function prepare_spatial_data(input_data)
# OHL
spatial_data_ohl, costs_ohl, equipment_data_ohl = build_spatial_matrices_and_cost_data(input_data; equipment = "ohl")
spatial_data_ugc, costs_ugc, equipment_data_ugc = build_spatial_matrices_and_cost_data(input_data; equipment = "ugc")
spatial_data = merge_maps(spatial_data_ohl, costs_ohl, spatial_data_ugc, costs_ugc, input_data)
spatial_data_matrices = Dict{String, Any}()
cost_data = Dict{String, Any}()
equipment_data = Dict{String, Any}()
spatial_data_matrices["ohl"] = spatial_data_ohl
spatial_data_matrices["ugc"] = spatial_data_ugc
cost_data["ohl"] = costs_ohl
cost_data["ugc"] = costs_ugc
equipment_data["ohl"] = equipment_data_ohl
equipment_data["ugc"] = equipment_data_ugc
return spatial_data, spatial_data_matrices, cost_data, equipment_data
end
function build_spatial_matrices_and_cost_data(input_data; equipment = "ohl")
# prepare boundaries
xmax = size(input_data["rgb_values"]["sea"], 2) + 1
ymax = size(input_data["rgb_values"]["sea"], 1) + 1
x_border_min = Int(input_data["boundaries"]["xmin"])
x_border_max = Int(input_data["boundaries"]["xmax"])
y_border_min = Int(input_data["boundaries"]["ymin"])
y_border_max = Int(input_data["boundaries"]["ymax"])
x_node_min = Int(min(input_data["start_node"]["x"], input_data["end_node"]["x"]))
x_node_max = Int(max(input_data["start_node"]["x"], input_data["end_node"]["x"]))
y_node_min = Int(min(input_data["start_node"]["y"], input_data["end_node"]["y"]))
y_node_max = Int(max(input_data["start_node"]["y"], input_data["end_node"]["y"]))
delta_x = Int(max(input_data["resolution_factor"],(x_node_max-x_node_min)/xmax))
delta_y = Int(max(input_data["resolution_factor"],(y_node_max-y_node_min)/ymax))
# make grid
x = collect(x_node_min : delta_x : x_node_max)
y = collect(y_node_min : delta_y : y_node_max)
if x[end] != x_node_max
x = [x; x_node_max]
end
if y[end] != y_node_max
y = [y; y_node_max]
end
x_beg = collect(x_border_min : delta_x : x[1])
if x_beg[end] != x[1]
x_beg = [x; x[1]]
end
if length(x) == 1
x_beg[end] = []
end
y_beg = collect(y_border_min : delta_y : y[1])
if y_beg[end] != y[1]
y_beg = [y; y[1]]
end
if length(y) == 1
y_beg[end]= []
end
x = [x_beg; x[2:end-1]; collect(x[end] : delta_x : x_border_max)]
y = [y_beg; y[2:end-1]; collect(y[end] : delta_y : y_border_max)]
X = x' .* ones(size(y, 1))
Y = (ones(size(x, 1)))' .* y
node_weights = Dict{String, Any}()
for (area_idx, area) in input_data["rgb_values"]
node_weights[area_idx] = assign_rgb_values(X, Y, x, y, input_data, area_idx)
end
onshore_nodes = ones(size(node_weights["sea"],1),1)
onshore_nodes = 1 .- node_weights["sea"][:,4]
nodes = node_weights["sea"][:, 1:3]
equipment_ = join([input_data["technology"],"_",equipment])
node_weights = assign_node_weights(node_weights, input_data, equipment_)
segments, segment_weights, segment_km, onshore_flag = create_segments_and_segment_weights(nodes, node_weights, onshore_nodes, input_data, X, Y, x, y, delta_x, delta_y)
costs, equipment_details = calculate_costs_and_losses(input_data; equipment = equipment)
spatial_data = Dict{String, Any}()
spatial_data["nodes"] = nodes
spatial_data["node_weights"] = node_weights
spatial_data["onshore_nodes"] = onshore_nodes
spatial_data["segments"] = segments
spatial_data["segment_weights"] = segment_weights
spatial_data["segment_km"] = segment_km
spatial_data["onshore_flag"] = onshore_flag
return spatial_data, costs, equipment_details
end
function assign_rgb_values(X, Y, x, y, input_data, area)
nodes_w = zeros(size(x, 1) * size(y, 1), 4)
for idx = 1 : size(X, 2)
nodes_w[((idx-1) * size(X,1)+1) : idx * size(X,1) ,1] = ((idx-1) * size(X,1)+1) :idx * size(X,1)
nodes_w[((idx-1) * size(X,1)+1) : idx * size(X,1), 2] = X[:, idx]
nodes_w[((idx-1) * size(X,1)+1) : idx * size(X,1), 3] = Y[:, idx]
nodes_w[((idx-1) * size(X,1)+1) : idx * size(X,1), 4] = input_data["rgb_values"][area][y, Int.(x[idx])]
end
return nodes_w
end
function assign_node_weights(node_weights, input_data, equipment)
for (area, value) in input_data["spatial_weights"][equipment]
node_weights[area][:, 4] = node_weights[area][:, 4] * input_data["spatial_weights"][equipment][area]
end
node_weights_ = zeros(size(node_weights["sea"]))
node_weights_[:, 1:3] = node_weights["sea"][:, 1:3]
for idx = 1:size(node_weights_, 1)
for (area, value) in node_weights
if node_weights_[idx, 4] == 0 && node_weights[area][idx, 4] !=0
node_weights_[idx, 4] = node_weights[area][idx, 4]
end
if node_weights_[idx, 4] != 0 && node_weights[area][idx, 4] !=0
if input_data["overlapping_area_weight"] == "minimum"
node_weights_[idx, 4] = min(node_weights[area][idx, 4], node_weights_[idx, 4])
else
node_weights_[idx, 4] = (node_weights[area][idx, 4] + node_weights_[idx, 4]) / 2
end
end
end
node_weights_[idx, 4] = max(1, node_weights_[idx, 4])
end
return node_weights_
end
function create_segments_and_segment_weights(nodes, node_weights, onshore_nodes, input_data, X, Y, x, y, delta_x, delta_y)
segments = zeros((length(x)-1)*length(y)+(length(y)-1)*length(x)+2*((length(x)-1)*(length(y)-1)),3);
segments[:,1]=(1:size(segments,1))'
segment_weights=ones(size(segments,1),1)
onshore_flag=ones(size(segments,1),1)
segment_km=ones(size(segment_weights))
# Construct all segments: Up, to the side, and diagonal up.
for idx = 1 : size(X, 2) - 1
# PART1
segments[(4*(idx-1)*size(X,1)+1-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2] = nodes[((idx-1)*size(X,1)+1):idx*size(X,1),1]
segments[(4*(idx-1)*size(X,1)+1-3*(idx-1)):4:4*idx*size(X,1)-3*idx,3] = segments[(4*(idx-1)*size(X,1)+1-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2] .+ 1
if input_data["overlapping_area_weight"] == "minimum"
segment_weights[(4*(idx-1)*size(X,1)+1-3*(idx-1)):4:4*idx*size(X,1)-3*idx] = minimum(node_weights[((idx-1)*size(X,1)+1):idx*size(X,1), 4],node_weights[segments[(4*(idx-1)*size(X,1)+1-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2+1],4])
elseif input_data["overlapping_area_weight"] == "average"
w1 = node_weights[((idx-1)*size(X,1)+1):idx*size(X,1),4]
w2 = node_weights[Int.(segments[(4*(idx-1)*size(X,1)+1-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2] .+ 1), 4]
segment_weights[(4*(idx-1)*size(X,1)+1-3*(idx-1)):4:4*idx*size(X,1)-3*idx] = (w1 + w2) ./ 2
else
print("Overlapping area weight must be average or minimum")
end
idx_ = Int.(segments[(4*(idx-1)*size(X,1)+1-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2].+1)
idx__ = ((idx-1)*size(X,1)+1):idx*size(X,1)
onshore_flag[(4*(idx-1)*size(X,1)+1-3*(idx-1)):4:4*idx*size(X,1)-3*idx] = minimum([onshore_nodes[idx__],onshore_nodes[idx_]])
segments[4*idx*size(X,1)-3*idx,3] = segments[4*idx*size(X,1)-3*idx,2]+size(X,1)
idx1 = (4*(idx-1)*size(X,1)+1-3*(idx-1)):4:4*idx*size(X,1)-3*idx
segment_km[idx1] = sqrt.((nodes[Int.(segments[idx1,2]),2]-nodes[Int.(segments[idx1,3]),2]).^2+(nodes[Int.(segments[idx1,2]),3]-nodes[Int.(segments[idx1,3]),3]).^2)
# PART 2
segments[(4*(idx-1)*size(X,1)+2-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2] = nodes[((idx-1)*size(X,1)+1):idx*size(X,1)-1,1]
segments[(4*(idx-1)*size(X,1)+2-3*(idx-1)):4:4*idx*size(X,1)-3*idx,3] = segments[(4*(idx-1)*size(X,1)+2-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2] .+ size(X,1)
if input_data["overlapping_area_weight"] == "minimum"
segment_weights[(4*(idx-1)*size(X,1)+2-3*(idx-1)):4:4*idx*size(X,1)-3*idx] = mininimum(node_weights[((idx-1)*size(X,1)+1):idx*size(X,1)-1, 4],node_weights[segments[(4*(idx-1)*size(X,1)+2-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2]+size(X,1), 4])
elseif input_data["overlapping_area_weight"] == "average"
w1 = node_weights[((idx-1)*size(X,1)+1):idx*size(X,1)-1, 4]
w2 = node_weights[Int.(segments[(4*(idx-1)*size(X,1)+2-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2] .+ size(X,1)), 4]
segment_weights[(4*(idx-1)*size(X,1)+2-3*(idx-1)):4:4*idx*size(X,1)-3*idx] = (w1 + w2) ./ 2
else
print("Overlapping area weight must be average or minimum")
end
idx__ = Int.(((idx-1)*size(X,1)+1):idx*size(X,1) .- 1)
idx_ = Int.(segments[(4*(idx-1)*size(X,1)+2-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2] .+ size(X,1))
onshore_flag[(4*(idx-1)*size(X,1)+2-3*(idx-1)):4:4*idx*size(X,1)-3*idx] = minimum([onshore_nodes[idx__],onshore_nodes[idx_]])
idx1 = Int.((4*(idx-1)*size(X,1)+2-3*(idx-1)):4:4*idx*size(X,1)-3*idx)
segment_km[idx1] = sqrt.((nodes[Int.(segments[idx1,2]),2]-nodes[Int.(segments[idx1,3]),2]).^2+(nodes[Int.(segments[idx1,2]),3]-nodes[Int.(segments[idx1,3]),3]).^2)
#PART 3
segments[(4*(idx-1)*size(X,1)+3-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2] = nodes[((idx-1)*size(X,1)+1):idx*size(X,1)-1,1]
segments[(4*(idx-1)*size(X,1)+3-3*(idx-1)):4:4*idx*size(X,1)-3*idx,3] = segments[(4*(idx-1)*size(X,1)+3-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2] .+ size(X,1) .+ 1
if input_data["overlapping_area_weight"] == "minimum"
segment_weights[(4*(idx-1)*size(X,1)+3-3*(idx-1)):4:4*idx*size(X,1)-3*idx] = minimum(node_weights[((idx-1)*size(X,1)+1):idx*size(X,1)-1, 4], node_weights[segments[(4*(idx-1)*size(X,1)+3-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2] + size(X,1)+1, 4])
elseif input_data["overlapping_area_weight"] == "average"
w1 = node_weights[((idx-1)*size(X,1)+1):idx*size(X,1)-1, 4]
w2 = node_weights[Int.(segments[(4*(idx-1)*size(X,1)+3-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2] .+ size(X,1) .+ 1), 4]
segment_weights[(4*(idx-1)*size(X,1)+3-3*(idx-1)):4:4*idx*size(X,1)-3*idx] = (w1 + w2) ./ 2
else
print("Overlapping area weight must be average or minimum")
end
idx__ = Int.(((idx-1)*size(X,1)+1):idx*size(X,1)-1)
idx_ = Int.(segments[(4*(idx-1)*size(X,1)+3-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2] .+ size(X,1) .+ 1)
onshore_flag[(4*(idx-1)*size(X,1)+3-3*(idx-1)):4:4*idx*size(X,1)-3*idx] = minimum([onshore_nodes[idx__],onshore_nodes[idx_]])
idx1 = Int.((4*(idx-1)*size(X,1)+3-3*(idx-1)):4:4*idx*size(X,1)-3*idx)
segment_km[idx1]=sqrt.((nodes[Int.(segments[idx1,2]),2]-nodes[Int.(segments[idx1,3]),2]).^2+(nodes[Int.(segments[idx1,2]),3]-nodes[Int.(segments[idx1,3]),3]).^2)
#PART 4
segments[(4*(idx-1)*size(X,1)+4-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2] = nodes[((idx-1)*size(X,1)+1)+1:idx*size(X,1),1]
segments[(4*(idx-1)*size(X,1)+4-3*(idx-1)):4:4*idx*size(X,1)-3*idx,3] = segments[(4*(idx-1)*size(X,1)+2-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2] .+ size(X,1)
if input_data["overlapping_area_weight"] == "minimum"
segment_weights[(4*(idx-1)*size(X,1)+4-3*(idx-1)):4:4*idx*size(X,1)-3*idx] = minimum(node_weights[((idx-1)*size(X,1)+1)+1:idx*size(X,1), 4],node_weights[segments[(4*(idx-1)*size(X,1)+2-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2]+size(X,1), 4])
elseif input_data["overlapping_area_weight"] == "average"
w1 = node_weights[((idx-1)*size(X,1)+1)+1:idx*size(X,1), 4]
w2 = node_weights[Int.(segments[(4*(idx-1)*size(X,1)+2-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2] .+ size(X,1)), 4]
segment_weights[(4*(idx-1)*size(X,1)+4-3*(idx-1)):4:4*idx*size(X,1)-3*idx] = (w1 + w2) ./ 2
else
print("Overlapping area weight must be average or minimum")
end
idx__ = ((idx-1)*size(X,1)+1)+1:idx*size(X,1)
idx_ = Int.(segments[(4*(idx-1)*size(X,1)+2-3*(idx-1)):4:4*idx*size(X,1)-3*idx,2] .+ size(X,1))
onshore_flag[(4*(idx-1)*size(X,1)+4-3*(idx-1)):4:4*idx*size(X,1)-3*idx] = minimum([onshore_nodes[idx__],onshore_nodes[idx_]])
idx1 = Int.((4*(idx-1)*size(X,1)+4-3*(idx-1)):4:4*idx*size(X,1)-3*idx)
segment_km[idx1]=sqrt.((nodes[Int.(segments[idx1,2]),2]-nodes[Int.(segments[idx1,3]),2]).^2+(nodes[Int.(segments[idx1,2]),3]-nodes[Int.(segments[idx1,3]),3]).^2)
end
segments[end-size(X,1)+2:end,2] = nodes[end-size(X,1)+1:end-1,1]
segments[end-size(X,1)+2:end,3] = segments[end-size(X,1)+2:end,2] .+ 1
if input_data["overlapping_area_weight"] == "minimum"
segment_weights[end-size(X,1)+2:end] = minimum(node_weights[end-size(X,1)+1:end-1, 4], node_weights[Int.(segments[end-size(X,1)+2:end, 2] .+ 1) , 4])
elseif input_data["overlapping_area_weight"] == "average"
w1 = node_weights[end-size(X,1)+1:end-1, 4]
w2 = node_weights[Int.(segments[end-size(X,1)+2:end,2] .+ 1), 4]
segment_weights[end-size(X,1)+2:end] = (w1 + w2) ./ 2
else
print("Overlapping area weight must be average or minimum")
end
onshore_flag[end-size(X,1)+2:end] = onshore_nodes[Int.(segments[end-size(X,1)+2:end,2] .+ 1)] .* onshore_nodes[end - size(X,1) + 1 : end-1]
segment_km[end - size(X,1) + 2 : end] .= delta_y * input_data["resolution_factor"]
return segments, segment_weights, segment_km, onshore_flag
end
function merge_maps(spatial_data_ohl, costs_ohl, spatial_data_ugc, costs_ugc, input_data)
costs_ohl["ohl_km"] = spatial_data_ohl["segment_km"] .* (spatial_data_ohl["segment_weights"] .* costs_ohl["installation"] .+ costs_ohl["investment"]) ./ input_data["resolution_factor"]
costs_ugc["ugc_km"] = spatial_data_ugc["segment_km"] .* ((spatial_data_ugc["segment_weights"] .* ((costs_ugc["onshore"]["installation"] .* spatial_data_ugc["onshore_flag"]) .+ (costs_ugc["offshore"]["installation"] .* (1 .- spatial_data_ugc["onshore_flag"])))) .+ ((costs_ugc["onshore"]["investment"] .* spatial_data_ugc["onshore_flag"]) .+ (costs_ugc["offshore"]["investment"] .* (1 .- spatial_data_ugc["onshore_flag"])))) ./ input_data["resolution_factor"]
# Update segment weights based on costs
spatial_data_ohl["segment_weights"] = (spatial_data_ohl["segment_weights"] .* costs_ohl["installation"] .+ costs_ohl["investment"]) .* input_data["resolution_factor"]
spatial_data_ugc["segment_weights"] = ((spatial_data_ugc["segment_weights"] .* ((costs_ugc["onshore"]["installation"] .* spatial_data_ugc["onshore_flag"]) .+ (costs_ugc["offshore"]["installation"] .* (1 .- spatial_data_ugc["onshore_flag"])))) .+ ((costs_ugc["onshore"]["investment"] .* spatial_data_ugc["onshore_flag"]) .+ (costs_ugc["offshore"]["investment"] .* (1 .- spatial_data_ugc["onshore_flag"])))) .* input_data["resolution_factor"]
# # Connect OHL and UGC maps
# # Step 1) Shift node indexes for the UGC map with the number of nodes for OHL
spatial_data_ugc["segments"][:, 1] = spatial_data_ugc["segments"][:, 1] .+ size(spatial_data_ohl["segments"], 1)
spatial_data_ugc["segments"][:, 2:3] = spatial_data_ugc["segments"][:, 2:3] .+ size(spatial_data_ohl["nodes"], 1)
spatial_data_ugc["nodes"][:, 1] = spatial_data_ohl["nodes"][:,1] .+ size(spatial_data_ohl["nodes"], 1)
spatial_data = Dict{String, Any}()
spatial_data["segments"] = [spatial_data_ohl["segments"]; spatial_data_ugc["segments"]]
spatial_data["nodes"] = [spatial_data_ohl["nodes"]; spatial_data_ugc["nodes"]]
spatial_data["onshore_nodes"] = [spatial_data_ohl["onshore_nodes"]; spatial_data_ugc["onshore_nodes"]]
spatial_data["segment_weights"] = [spatial_data_ohl["segment_weights"]; spatial_data_ugc["segment_weights"]]
spatial_data["onshore_flag"] = [spatial_data_ohl["onshore_flag"]; spatial_data_ugc["onshore_flag"]]
# # Step 2) Connect OHL and UGC maps at each X, Y point (node) via a new segment
number_of_additional_segments = size(spatial_data_ohl["nodes"], 1)
segment_idx = 1 : (spatial_data["segments"][end, 1] + number_of_additional_segments)
segment_from_node = [spatial_data["segments"][:, 2]; spatial_data_ohl["nodes"][:, 1]]
segment_to_node = [spatial_data["segments"][:, 3]; spatial_data_ugc["nodes"][:, 1]]
spatial_data["segments"] = [segment_idx segment_from_node segment_to_node]
spatial_data["segment_weights"] = [spatial_data["segment_weights"]; zeros(number_of_additional_segments, 1)]
spatial_data["onshore_flag"] = [spatial_data["onshore_flag"]; ones(number_of_additional_segments, 1)]
spatial_data["ohl_ugc_transition"] = [zeros(2 * size(spatial_data["segments"], 1)); ones(number_of_additional_segments, 1)]
return spatial_data
end | OptimalTransmissionRouting | https://github.com/Electa-Git/OptimalTransmissionRouting.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.4 | 688e5028028e0dd8807efe6fff4a55a1a0832818 | code | 2576 | function plot_result(plot_dictionary, input_data, spatial_data, spatial_data_matrices, optimal_path)
A = zeros(3, size(plot_dictionary["overlay_image"],1), size(plot_dictionary["overlay_image"],2) )
look_up_table = [0 255 0; 176 224 230;255 255 255;255 255 0; 218 165 32;255 160 122;255 0 0] ./ 255
for i in 1:size(plot_dictionary["overlay_image"], 1)
for j in 1:size(plot_dictionary["overlay_image"], 2)
A[:, i, j] = look_up_table[Int.(plot_dictionary["overlay_image"][i, j]), :]'
end
end
p = Images.colorview(ColorTypes.RGB, A)
Plots.plot(p)
for idx = 1 : size(optimal_path, 1) - 1
x1 = spatial_data["nodes"][optimal_path[idx], 2]
y1 = spatial_data["nodes"][optimal_path[idx], 3]
x2 = spatial_data["nodes"][optimal_path[idx + 1], 2]
y2 = spatial_data["nodes"][optimal_path[idx + 1], 3]
ohl_cable = ohl_or_cable(spatial_data, spatial_data_matrices, optimal_path[idx], optimal_path[idx + 1])
if input_data["technology"] == "dc"
if ohl_cable == "ugc"
p = Plots.plot!([x1, x2], [y1, y2], color = :brown, linewidth = 2, label = "")
else
p = Plots.plot!([x1, x2], [y1, y2], color = :brown, linestyle = :dot, linewidth = 2, label = "")
end
else
if ohl_cable == "ugc"
p = Plots.plot!([x1, x2], [y1, y2], color = :black, linewidth = 2, label = "")
else
p = Plots.plot!([x1, x2], [y1, y2], color = :black, linestyle = :dot, linewidth = 2, label = "")
end
end
end
Plots.plot!(xlims=(input_data["boundaries"]["xmin"],input_data["boundaries"]["xmax"]), ylims = (input_data["boundaries"]["ymin"], input_data["boundaries"]["ymax"]))
plot_file = join(["plot_test_",input_data["strategy"],"_",input_data["technology"],".pdf"])
Plots.savefig(p, plot_file)
end
function ohl_or_cable(spatial_data, spatial_data_matrices, node_id1, node_id2)
index_s1 = findall(node_id1 .== spatial_data["segments"][:, 2])
index_s2 = findall(node_id2 .== spatial_data["segments"][:, 3])
index_s = intersect(index_s1, index_s2)
if isempty(index_s)
index_s1 = findall(node_id2 .== spatial_data["segments"][:, 2])
index_s2 = findall(node_id1 .== spatial_data["segments"][:, 3])
index_s = intersect(index_s1, index_s2)
end
if any(index_s[1] .== spatial_data_matrices["ohl"]["segments"][:, 1])
ohl_cable = "ohl"
else
ohl_cable = "ugc"
end
return ohl_cable
end | OptimalTransmissionRouting | https://github.com/Electa-Git/OptimalTransmissionRouting.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.4 | 688e5028028e0dd8807efe6fff4a55a1a0832818 | code | 7891 | # Some branch in Italy
bus1 = Dict{String, Any}()
bus1["longitude"] = 16.2487678
bus1["latitude"] = 40.358515
bus2 = Dict{String, Any}()
bus2["longitude"] = 14.1482998
bus2["latitude"] = 37.5900782
# strategy = "all_permitted"
# strategy = "OHL_on_existing_corridors"
strategy = "cables_only"
spatial_weights, voltages, resolution, impedances = OTR.define_weights_voltages(strategy)
rgb_values, nodes_lp, boundaries, plot_dictionary = OTR.convert_image_files_to_weights(bus1, bus2)
#define inputs
input_data = Dict{String, Any}()
input_data["resolution_factor"] = 2 # resolution_factor 1,2,3, ... to speed up algorithm
input_data["algorithm_factor"] = 1 # algorithm_factor 1.....1.3 to speed up Astar algorithm, goes at expense of accuracy
input_data["distance"] = 2.5 # do not change: this is the standard resolution of the environmental data
input_data["algorithm"] = "Astar" # "Astar" or "Dijkstra"
input_data["voltages"] = voltages # transmission voltages
input_data["spatial_weights"] = spatial_weights # spatial weights
input_data["rgb_values"] = rgb_values # Spatial data as RGB values
input_data["boundaries"] = boundaries # VBoundaries of the area (to avoid using full European range)
input_data["overlapping_area_weight"] = "average" # "average" = average weight of the spatial weights; "minimum" = minimum of the overlapping weights
input_data["strategy"] = strategy # or "OHL_on_existing_corridors" or "cables_only"
input_data["losses"] = 0.01 # proxy for losses
input_data["lifetime"] = 30 # lifetime: NOT USED in FLEXPLAN
input_data["interest"] = 0.02 # Interest: NOT USED in FLEXPLAN
input_data["technology"] = "dc" # or "dc"
input_data["power_rating"] = 2000 # power rating
input_data["start_node"] = Dict{String, Any}()
input_data["start_node"]["x"] = nodes_lp["x1"]
input_data["start_node"]["y"] = nodes_lp["y1"]
input_data["end_node"] = Dict{String, Any}()
input_data["end_node"]["x"] = nodes_lp["x2"]
input_data["end_node"]["y"] = nodes_lp["y2"]
input_data["impedances"] = impedances # Provide look-up table for OHL & OGC impedances
@testset "DC cables only" begin
strategy = "cables_only"
input_data["technology"] = "dc" # or "dc"
input_data["strategy"] = strategy
@time spatial_data, spatial_data_matrices, cost_data, equipment_data, c_tot, optimal_path, ac_dc, ac_cab, dc_cab, route_impedance, route_length = OTR.do_optimal_routing(input_data)
@testset "cost data" begin
@test isapprox(cost_data["ohl"]["ohl_km"][1], 1.24362898072976e7; atol = 1e0)
@test isapprox(cost_data["ohl"]["ohl_km"][17], 1.5231374779172337e7; atol = 1e0)
@test isapprox(cost_data["ohl"]["ohl_km"][9639], 2.1540416786293026e7; atol = 1e0)
end
@testset "total cost" begin
@test isapprox(c_tot, 9.807293638249868e8; atol = 1e0)
end
@testset "optimal path" begin
@test isapprox(optimal_path[52], 13019)
@test isapprox(optimal_path[15], 10790)
end
@testset "impedance_data" begin
@test isapprox(route_impedance["r_pu"], 0.001619311421391319, atol = 1e-5)
@test isapprox(route_impedance["x_pu"], 0.0, atol = 1e-3)
@test isapprox(route_impedance["bc_pu"], 0.0, atol = 1e-3)
end
@testset "route_length" begin
@test isapprox(route_length["total_length"], 174.544725, atol = 1e-1)
@test isapprox(route_length["ohl_length"], 0.0, atol = 1e-3)
@test isapprox(route_length["ugc_length"], 174.54472, atol = 1e-3)
end
end
@testset "DC all permitted" begin
strategy = "all_permitted"
input_data["technology"] = "dc" # or "dc"
input_data["strategy"] = strategy
@time spatial_data, spatial_data_matrices, cost_data, equipment_data, c_tot, optimal_path, ac_dc, ac_cab, dc_cab, route_impedance, route_length = OTR.do_optimal_routing(input_data)
@testset "cost data" begin
@test isapprox(cost_data["ohl"]["ohl_km"][1], 1.24362898072976e7; atol = 1e0)
@test isapprox(cost_data["ohl"]["ohl_km"][17], 1.5231374779172337e7; atol = 1e0)
@test isapprox(cost_data["ohl"]["ohl_km"][9639], 2.1540416786293026e7; atol = 1e0)
end
@testset "total cost" begin
@test isapprox(c_tot, 9.807293638249868e8; atol = 1e0)
end
@testset "optimal path" begin
@test isapprox(optimal_path[52], 13019)
@test isapprox(optimal_path[15], 10790)
end
@testset "impedance_data" begin
@test isapprox(route_impedance["r"], 1.6581748955047106, atol = 1e-3)
@test isapprox(route_impedance["x_pu"], 0.0, atol = 1e-3)
@test isapprox(route_impedance["bc_pu"], 0.0, atol = 1e-3)
end
@testset "route_length" begin
@test isapprox(route_length["total_length"], 174.544725, atol = 1e-1)
@test isapprox(route_length["ohl_length"], 0.0, atol = 1e-3)
@test isapprox(route_length["ugc_length"], 174.54472, atol = 1e-3)
end
end
@testset "AC cables only" begin
strategy = "cables_only"
input_data["technology"] = "ac" # or "dc"
input_data["strategy"] = strategy
@time spatial_data, spatial_data_matrices, cost_data, equipment_data, c_tot, optimal_path, ac_dc, ac_cab, dc_cab, route_impedance, route_length = OTR.do_optimal_routing(input_data)
@testset "cost data" begin
@test isapprox(cost_data["ohl"]["ohl_km"][1], 4.072540970760065e7; atol = 1e0)
@test isapprox(cost_data["ohl"]["ohl_km"][17], 4.072540970760065e7; atol = 1e0)
@test isapprox(cost_data["ohl"]["ohl_km"][9639], 5.759442674168975e7; atol = 1e0)
end
@testset "total cost" begin
@test isapprox(c_tot, 2.0405224791992671e9; atol = 1e0)
end
@testset "optimal path" begin
@test isapprox(optimal_path[52], 13027)
@test isapprox(optimal_path[15], 10790)
end
@testset "impedance_data" begin
@test isapprox(route_impedance["r_pu"], 0.0005509232966856801, atol = 1e-6)
@test isapprox(route_impedance["x"], 9.09313399161207, atol = 1e-3)
@test isapprox(route_impedance["bc_pu"], 485.0546916571823, atol = 1e-3)
end
@testset "route_length" begin
@test isapprox(route_length["total_length"], 185.57416, atol = 1e-1)
@test isapprox(route_length["ohl_length"], 0.0, atol = 1e-3)
@test isapprox(route_length["ugc_length"], 185.57416, atol = 1e-3)
end
end
@testset "AC all permitted" begin
strategy = "all_permitted"
input_data["technology"] = "ac" # or "dc"
input_data["strategy"] = strategy
@time spatial_data, spatial_data_matrices, cost_data, equipment_data, c_tot, optimal_path, ac_dc, ac_cab, dc_cab, route_impedance, route_length = OTR.do_optimal_routing(input_data)
@testset "cost data" begin
@test isapprox(cost_data["ohl"]["ohl_km"][1], 4.072540970760065e7; atol = 1e0)
@test isapprox(cost_data["ohl"]["ohl_km"][17], 4.072540970760065e7; atol = 1e0)
@test isapprox(cost_data["ohl"]["ohl_km"][9639], 5.759442674168975e7; atol = 1e0)
end
@testset "total cost" begin
@test isapprox(c_tot, 2.0405224791992671e9; atol = 1e0)
end
@testset "optimal path" begin
@test isapprox(optimal_path[52], 13027)
@test isapprox(optimal_path[15], 10790)
end
@testset "impedance_data" begin
@test isapprox(route_impedance["r_pu"], 0.0005509232966856801, atol = 1e-6)
@test isapprox(route_impedance["x"], 9.09313399161207, atol = 1e-3)
@test isapprox(route_impedance["bc_pu"], 485.0546916571823, atol = 1e-3)
end
@testset "route_length" begin
@test isapprox(route_length["total_length"], 185.57416, atol = 1e-1)
@test isapprox(route_length["ohl_length"], 0.0, atol = 1e-3)
@test isapprox(route_length["ugc_length"], 185.57416, atol = 1e-3)
end
end
# For plotting the pdf of the result
# OTR.plot_result(plot_dictionary, input_data, spatial_data, spatial_data_matrices, optimal_path)
# | OptimalTransmissionRouting | https://github.com/Electa-Git/OptimalTransmissionRouting.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.4 | 688e5028028e0dd8807efe6fff4a55a1a0832818 | code | 197 | import OptimalTransmissionRouting; const OTR = OptimalTransmissionRouting
import Images
using ColorTypes
using Plots
using Test
@testset "OptimalTransmissionRouting" begin
include("main.jl")
end | OptimalTransmissionRouting | https://github.com/Electa-Git/OptimalTransmissionRouting.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.