licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"BSD-3-Clause"
] | 0.1.4 | 688e5028028e0dd8807efe6fff4a55a1a0832818 | docs | 2838 | # OptimalTransmissionRouting.jl
Status:
[](https://github.com/Electa-Git/OptimalTransmissionRouting.jl/actions?query=workflow%3ACI)
<a href="https://codecov.io/gh/Electa-Git/OptimalTransmissionRouting.jl"><img src="https://img.shields.io/codecov/c/github/Electa-Git/OptimalTransmissionRouting.jl?logo=Codecov"></img></a>
<a href="https://electa-git.github.io/OptimalTransmissionRouting.jl/stable/"><img src="https://github.com/Electa-Git/OptimalTransmissionRouting.jl/workflows/Documentation/badge.svg"></img></a>
OptimalTransmissionRouting.jl is a Julia/JuMP package to determine the optimal transmission system route considering spatial information. The underlying priciple is that spatial information coming from an image file is convertered to an array of installation cost weights (see io/spatial_image_files). To that end spatial infromation from http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-2 is used. The created array represents a weighted graph connecting a number of nodes horizontally, vertiacally and diagonally with graph weights reflecting the installation costs for each region of the map. Using the A-star algorithm, the shortest path in this weighted graph is found, which provides the least cost transmission path.
**Installation**
The latest stable release of OptimalTransmissionRouting.jl can be installed using the Julia package manager with
```julia
Pkg.add("OptimalTransmissionRouting")
```
The current version of OptimalTransmissionRouting.jl is 0.1..
## Citing OptimalTransmissionRouting.jl
If you find OptimalTransmissionRouting.jl useful in your work, we kindly request that you cite the following publications:
[Detailed description of the mathematical model](https://ieeexplore.ieee.org/abstract/document/6746189):
```
@ARTICLE{6746189,
author={Ergun, Hakan and Rawn, Barry and Belmans, Ronnie and Van Hertem, Dirk},
journal={IEEE Transactions on Power Systems},
title={Technology and Topology Optimization for Multizonal Transmission Systems},
year={2014},
volume={29},
number={5},
pages={2469-2477},
doi={10.1109/TPWRS.2014.2305174}}
```
and
```
@ARTICLE{7293709,
author={Ergun, Hakan and Rawn, Barry and Belmans, Ronnie and Van Hertem, Dirk},
journal={IEEE Transactions on Power Systems},
title={Stepwise Investment Plan Optimization for Large Scale and Multi-Zonal Transmission System Expansion},
year={2016},
volume={31},
number={4},
pages={2726-2739},
doi={10.1109/TPWRS.2015.2480751}}
```
## Acknowledgement
This software implementation is conducted within the European Unionβs Horizon 2020 research and innovation programme under the FlexPlan project (grantagreement no. 863819).
## License
This code is provided under a BSD license.
| OptimalTransmissionRouting | https://github.com/Electa-Git/OptimalTransmissionRouting.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.4 | 688e5028028e0dd8807efe6fff4a55a1a0832818 | docs | 5211 | # OptimalTransmissionRouting.jl Documentation
```@meta
CurrentModule = OptimalTransmissionRouting
```
## Overview
OptimalTransmissionRouting.jl is a Julia/JuMP package to determine the optimal transmission system route considering spatial information. The underlying priciple is that spatial information coming from an image file is convertered to an array of installation cost weights (see io/spatial_image_files). To that end spatial infromation from http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-2 is used. The created array represents a weighted graph connecting a number of nodes horizontally, vertiacally and diagonally with graph weights reflecting the installation costs for each region of the map. Using the A-star algorithm, the shortest path in this weighted graph is found, which provides the least cost transmission path.
Developed by:
- Hakan Ergun KU Leuven / EnergyVille
**Installation**
The latest stable release of OptimalTransmissionRouting.jl can be installed using the Julia package manager with
```julia
Pkg.add("OptimalTransmissionRouting")
```
## Usage
The first step is to define the locations of the sending and recieving end buses in latitude and longitude using a dictionary, e.g.,
```julia
bus1 = Dict{String, Any}()
bus1["longitude"] = 16.2487678
bus1["latitude"] = 40.358515
bus2 = Dict{String, Any}()
bus2["longitude"] = 14.1482998
bus2["latitude"] = 37.5900782
```
First using:
```julia
spatial_weights, voltages, resolution, impedances = OTR.define_weights_voltages(strategy)
```
the spatial weights can be defined, which uses the chosen strategy as input as a string. The possible options are:
```julia
strategy = "all_permitted"
strategy = "OHL_on_existing_corridors"
strategy = "cables_only"
```
Furter the vertices of the graph are created, assinging each vertex to one or more spatial regions, e.g., urban, mountain, sea, ....., using:
```julia
rgb_values, nodes_lp, boundaries, plot_dictionary = OTR.convert_image_files_to_weights(bus1, bus2)
```
Additional input data is required as a dictionary, which is provided below:
```julia
#define inputs
input_data = Dict{String, Any}()
input_data["resolution_factor"] = 2 # resolution_factor 1,2,3, ... to speed up algorithm
input_data["algorithm_factor"] = 1 # algorithm_factor 1.....1.3 to speed up Astar algorithm, goes at expense of accuracy
input_data["distance"] = 2.5 # do not change: this is the standard resolution of the environmental data
input_data["algorithm"] = "Astar" # "Astar" or "Dijkstra"
input_data["voltages"] = voltages # transmission voltages
input_data["spatial_weights"] = spatial_weights # spatial weights
input_data["rgb_values"] = rgb_values # Spatial data as RGB values
input_data["boundaries"] = boundaries # VBoundaries of the area (to avoid using full European range)
input_data["overlapping_area_weight"] = "average" # "average" = average weight of the spatial weights; "minimum" = minimum of the overlapping weights
input_data["strategy"] = strategy # or "OHL_on_existing_corridors" or "cables_only"
input_data["losses"] = 0.01 # proxy for losses
input_data["lifetime"] = 30 # lifetime: NOT USED in FLEXPLAN
input_data["interest"] = 0.02 # Interest: NOT USED in FLEXPLAN
input_data["technology"] = "dc" # or "dc"
input_data["power_rating"] = 2000 # power rating
input_data["start_node"] = Dict{String, Any}()
input_data["start_node"]["x"] = nodes_lp["x1"]
input_data["start_node"]["y"] = nodes_lp["y1"]
input_data["end_node"] = Dict{String, Any}()
input_data["end_node"]["x"] = nodes_lp["x2"]
input_data["end_node"]["y"] = nodes_lp["y2"]
input_data["impedances"] = impedances # Provide look-up table for OHL & OGC impedances
```
Finally, the creation of the edges of the graph and the optimisation of the route is carried out using:
```julia
spatial_data, spatial_data_matrices, cost_data, equipment_data, c_tot, optimal_path, ac_dc, ac_cab, dc_cab, route_impedance, route_legnth = OTR.do_optimal_routing(input_data)
```
During the route optimisation, following aspects are considered:
- Maximum offshore length for AC cables
- Costs for switching between overhead lines and underground cables, e.g., transition station costs
- In case of HVDC technology: Costs of the converter stations
- Chosen strategy:
-- OHL can be installed everywhere (depending on the chosen weights)
-- OHL can only be installed in existing infrastructure corridors
-- Only underground cables can be installed
- If certain vertices belong to multiple spatial areas, which weight should be chosen:
-- The average of both weights
-- The minimum of both weights
The tool delivers as output
- ```julia c_tot ```, the total cost of the transmission link
- ```julia cost_data ```, the per km cost of equipment
- ```julia equipment_data ```, number of circuits, bundles and cross-sections
- ```julia route_impedance ```, resistance, admittance and capaciatance in Ohm in pu (base power = 100 MVA)
- ```julia route_legnth ```, the total length, as well as length of the OHL and UGC sections
Also using the function:
```julia
OTR.plot_result(plot_dictionary, input_data, spatial_data, spatial_data_matrices, optimal_path)
```
a PDF of the obtained solution can be created.
| OptimalTransmissionRouting | https://github.com/Electa-Git/OptimalTransmissionRouting.jl.git |
|
[
"MIT"
] | 0.1.4 | ae277f699ad0abb4743ee9bc7deeb89b554de867 | code | 16015 | """
Created in July, 2022 by
[chifi - an open source software dynasty.](https://github.com/orgs/ChifiSource)
by team
[toolips](https://github.com/orgs/ChifiSource/teams/toolips)
This software is MIT-licensed.
### Toolips Markdown
A simple markdown to Toolips Component parser. Wraps markdown components into
a Toolips.div
##### Module Composition
- [**ToolipsMarkdown**](https://github.com/ChifiSource/ToolipsMarkdown.jl)
"""
module ToolipsMarkdown
using Toolips
import Toolips: Modifier
import Toolips: style!, string
import Base: push!
using Markdown
"""
**Toolips Markdown**
### @tmd_str -> ::Component
------------------
Turns a markdown string into a Toolips Component. Markdown will always use
default styling.
#### example
```
tmd\"#hello world\"
```
"""
macro tmd_str(s::String)
tmd("tmd", s)::Component{:div}
end
"""
**Toolips Markdown**
### tmd(name::String = "tmd", s::String = "") -> ::Component
------------------
Turns a markdown string into a Toolips Component. Markdown will always use
default styling.
#### example
```
route("/") do c::Connection
mymdcomp = tmd("mainmarkdown", "# Hello! [click](http://toolips.app/)")
write!(c, mymdcomp)
end
```
"""
function tmd(name::String = "markdown", s::String = "", p::Pair{String, <:Any} ...;
args ...)
mddiv::Component{:div} = divider(name, p ..., args ...)
md = Markdown.parse(replace(s, "<" => "", ">" => "", "\"" => ""))
htm::String = html(md)
mddiv[:text] = htm
mddiv
end
"""
**Toolips Markdown**
### itmd(name::String = "markdown", s::String = "", interpolators::Pair{String, Vector{Function}} ...) -> ::Component{:div}
------------------
Interpolated TMD! This method allows you to provide your own TextModifier functions
in a Vector for each type of code block inside of a markdown document.
#### example
```
route("/") do c::Connection
mymdcomp = tmd("mainmarkdown", "# Hello! [click](http://toolips.app/)")
write!(c, mymdcomp)
end
```
"""
function itmd(name::String = "markdown",
interpolators::Pair{String, Vector{Function}} ...)
throw("Interpolated TMD is a Toolips Markdown 0.1.3 feature. Not yet implemented.")
mddiv::Component{:div} = divider(name)
md = Markdown.parse(s)
htm::String = html(md)
htm = replace(htm, """ => "", "(" => "(", ")" => ")", "=" => "=", "+" => "+")
codepos = findall("<code", htm)
for code in codepos
codeend = findnext("</code>", htm, code[2])
tgend = findnext(">", htm, code[2])[1] + 1
codeoutput = htm[tgend[1]:codeend[1] - 1]
htm = htm[1:code[1] - 1] * "<code>" * String(b.data) * "</code>" * htm[maximum(codeend) + 1:length(htm)]
end
mddiv[:text] = htm
mddiv
end
"""
### abstract type TextModifier <: Toolips.Modifier
TextModifiers are modifiers that change outgoing text into different forms,
whether this be in servables or web-formatted strings. These are unique in that
they can be provided to `itmd` (`0.1.3`+) in order to create interpolated tmd
blocks, or just handle these things on their own.
##### Consistencies
- raw**::String**
- marks**::Dict{UnitRange{Int64}, Symbol}**
"""
abstract type TextModifier <: Modifier end
"""
### TextStyleModifier
- raw**::String**
- marks**::Dict{UnitRange{Int64}, Symbol}**
- styles**::Dict{Symbol, Vector{Pair{String, String}}}**
This type is provided
##### example
```
```
------------------
##### constructors
- TextStyleModifier(::String)
"""
mutable struct TextStyleModifier <: TextModifier
raw::String
taken::Vector{Int64}
marks::Dict{UnitRange{Int64}, Symbol}
styles::Dict{Symbol, Vector{Pair{String, String}}}
function TextStyleModifier(raw::String)
marks = Dict{Symbol, UnitRange{Int64}}()
styles = Dict{Symbol, Vector{Pair{String, String}}}()
new(replace(raw, "<br>" => "\n", "</br>" => "\n", " " => " "), Vector{Int64}(), marks, styles)
end
end
set_text!(tm::TextModifier, s::String) = tm.raw = replace(s, "<br>" => "\n", "</br>" => "\n", " " => " ")
clear!(tm::TextStyleModifier) = begin
tm.marks = Dict{UnitRange{Int64}, Symbol}()
tm.taken = Vector{Int64}()
end
function push!(tm::TextStyleModifier, p::Pair{UnitRange{Int64}, Symbol})
r = p[1]
found = findfirst(mark -> mark in r, tm.taken)
if isnothing(found)
push!(tm.marks, p)
vecp = Vector(p[1])
[push!(tm.taken, val) for val in p[1]]
end
end
function push!(tm::TextStyleModifier, p::Pair{Int64, Symbol})
if ~(p[1] in tm.taken)
push!(tm.marks, p[1]:p[1] => p[2])
push!(tm.taken, p[1])
end
end
"""
**Toolips Markdown**
### style!(tm::TextStyleModifier, marks::Symbol, sty::Vector{Pair{String, String}})
------------------
Styles marks assigned with symbol `marks` to `sty`.
#### example
```
```
"""
function style!(tm::TextStyleModifier, marks::Symbol, sty::Vector{Pair{String, String}})
push!(tm.styles, marks => sty)
end
repeat_offenders = ['\n', ' ', ',', '(', ')', ';', '\"', ']', '[']
"""
**Toolips Markdown**
### mark_all!(tm::TextModifier, s::String, label::Symbol)
------------------
Marks all instances of `s` in `tm.raw` as `label`.
#### example
```
```
"""
function mark_all!(tm::TextModifier, s::String, label::Symbol)::Nothing
[begin
if maximum(v) == length(tm.raw) && minimum(v) == 1
push!(tm, v => label)
elseif maximum(v) == length(tm.raw)
if tm.raw[v[1] - 1] in repeat_offenders
push!(tm, v => label)
end
elseif minimum(v) == 1
if tm.raw[maximum(v) + 1] in repeat_offenders
push!(tm, v => label)
end
else
if tm.raw[v[1] - 1] in repeat_offenders && tm.raw[maximum(v) + 1] in repeat_offenders
push!(tm, v => label)
end
end
end for v in findall(s, tm.raw)]
nothing
end
function mark_all!(tm::TextModifier, c::Char, label::Symbol)
[begin
push!(tm, v => label)
end for v in findall(c, tm.raw)]
end
"""
**Toolips Markdown**
### mark_between!(tm::TextModifier, s::String, label::Symbol; exclude::String = "\\"", excludedim::Int64 = 2)
------------------
Marks between each delimeter, unique in that this is done with by dividing the
count by two.
#### example
```
```
"""
function mark_between!(tm::TextModifier, s::String, label::Symbol)
positions::Vector{UnitRange{Int64}} = findall(s, tm.raw)
discounted::Vector{UnitRange{Int64}} = Vector{Int64}()
[begin
if ~(pos in discounted)
nd = findnext(s, tm.raw, maximum(pos) + length(s))
if isnothing(nd)
push!(tm, pos[1]:length(tm.raw) => label)
else
push!(discounted, nd)
push!(tm, minimum(pos):maximum(nd) => label)
end
end
end for pos in positions]
nothing
end
function mark_between!(tm::TextModifier, s::String, s2::String, label::Symbol)
positions::Vector{UnitRange{Int64}} = findall(s, tm.raw)
[begin
nd = findnext(s2, tm.raw, maximum(pos) + length(s))
if isnothing(nd)
push!(tm, pos[1]:length(tm.raw) => label)
else
push!(tm, minimum(pos):maximum(nd) => label)
end
end for pos in positions]
nothing
end
"""
**Toolips Markdown**
```julia
mark_before!(tm::TextModifier, s::String, label::Symbol; until::Vector{String},
includedims_l::Int64 = 0, includedims_r::Int64 = 0)
```
------------------
marks before a given string until hitting any value in `until`.
#### example
```
```
"""
function mark_before!(tm::TextModifier, s::String, label::Symbol;
until::Vector{String} = Vector{String}(), includedims_l::Int64 = 0,
includedims_r::Int64 = 0)
chars = findall(s, tm.raw)
for labelrange in chars
previous = findprev(" ", tm.raw, labelrange[1])
if isnothing(previous)
previous = length(tm.raw)
else
previous = previous[1]
end
if length(until) > 0
lens = [begin
point = findprev(d, tm.raw, minimum(labelrange) - 1)
if ~(isnothing(point))
minimum(point) + length(d)
else
1
end
end for d in until]
previous = maximum(lens)
end
pos = previous - includedims_l:maximum(labelrange) - 1 + includedims_r
push!(tm, pos => label)
end
end
"""
**Toolips Markdown**
```julia
mark_after!(tm::TextModifier, s::String, label::Symbol; until::Vector{String},
includedims_l::Int64 = 0, includedims_r::Int64 = 0)
```
------------------
marks after a given string until hitting any value in `until`.
#### example
```
```
"""
function mark_after!(tm::TextModifier, s::String, label::Symbol;
until::Vector{String} = Vector{String}(), includedims_r::Int64 = 0,
includedims_l::Int64 = 0)
chars = findall(s, tm.raw)
for labelrange in chars
ending = findnext(" ", tm.raw, labelrange[1])
if isnothing(ending)
ending = length(tm.raw)
else
ending = ending[1]
end
if length(until) > 0
lens = [begin
point = findnext(d, tm.raw, maximum(labelrange) + 1)
if ~(isnothing(point))
maximum(point) - length(d)
else
length(tm.raw)
end
end for d in until]
ending = minimum(lens)
end
pos = minimum(labelrange) - includedims_l:ending - includedims_r
push!(tm,
pos => label)
end
end
"""
**Toolips Markdown**
```julia
mark_inside!(f::Function, tm::TextModifier)
```
------------------
marks before a given string until hitting any value in `until`.
#### example
```
```
"""
function mark_inside!(f::Function, tm::TextModifier, label::Symbol)
end
"""
**Toolips Markdown**
### mark_for!(tm::TextModifier, s::String, f::Int64, label::Symbol)
------------------
Marks a certain number of characters after a given value.
#### example
```
```
"""
function mark_for!(tm::TextModifier, ch::String, f::Int64, label::Symbol)
if length(tm.raw) == 1
return
end
chars = findall(ch, tm.raw)
[begin
if ~(length(findall(i -> length(findall(n -> n in i, pos)) > 0,
collect(keys(tm.marks)))) > 0)
push!(tm.marks, minimum(pos):maximum(pos) + f => label)
end
end for pos in chars]
end
mark_line_after!(tm::TextModifier, ch::String, label::Symbol) = mark_between!(tm, ch, "\n", label)
function mark_line_startswith!(tm::TextModifier, ch::String, label::Symbol)
marks = findall("\n$ch", tm.raw)
[push!(tm.marks, mark[2]:findnext("\n", mark[2], tm.raw) => label) for mark in marks]
end
"""
**Toolips Markdown**
### clear_marks!(tm::TextModifier)
------------------
Clears all marks in text modifier.
#### example
```
```
"""
clear_marks!(tm::TextModifier) = tm.marks = Dict{UnitRange{Int64}, Symbol}()
"""
**Toolips Markdown**
### mark_julia!(tm::TextModifier)
------------------
Marks julia syntax.
#### example
```
```
"""
mark_julia!(tm::TextModifier) = begin
tm.raw = replace(tm.raw, "<br>" => "\n", "</br>" => "\n", " " => " ")
# delim
mark_line_after!(tm, "#", :comment)
mark_before!(tm, "(", :funcn, until = [" ", "\n", ",", ".", "\"", " ",
"<br>", "("])
mark_after!(tm, "::", :type, until = [" ", ",", ")", "\n", "<br>", " ", " ",
";"])
mark_after!(tm, "@", :type, until = [" ", ",", ")", "\n", "<br>", " ", " ",
";"])
mark_between!(tm, "\"", :string)
mark_between!(tm, "'", :char)
# keywords
mark_all!(tm, "function", :func)
mark_all!(tm, "import", :import)
mark_all!(tm, "using", :using)
mark_all!(tm, "end", :end)
mark_all!(tm, "struct", :struct)
mark_all!(tm, "abstract", :abstract)
mark_all!(tm, "mutable", :mutable)
mark_all!(tm, "if", :if)
mark_all!(tm, "else", :if)
mark_all!(tm, "elseif", :if)
mark_all!(tm, "in", :in)
mark_all!(tm, "export ", :using)
mark_all!(tm, "try ", :if)
mark_all!(tm, "catch ", :if)
mark_all!(tm, "elseif", :if)
mark_all!(tm, "for", :for)
mark_all!(tm, "while", :for)
mark_all!(tm, "quote", :for)
mark_all!(tm, "begin", :begin)
mark_all!(tm, "module", :module)
# math
[mark_all!(tm, Char('0' + dig), :number) for dig in digits(1234567890)]
mark_all!(tm, "true", :number)
mark_all!(tm, "false", :number)
[mark_all!(tm, string(op), :op) for op in split(
"""<: = == < > => -> || -= += + / * - ~ <= >= &&""", " ")]
mark_between!(tm, "#=", "=#", :comment)
#= mark_inside!(tm, :string) do tm2
mark_for!(tm2, "\\", 1, :exit)
end =#
end
"""
**Toolips Markdown**
### highlight_julia!(tm::TextModifier)
------------------
Marks default style for julia code.
#### example
```
```
"""
highlight_julia!(tm::TextStyleModifier) = begin
style!(tm, :default, ["color" => "#3D3D3D"])
style!(tm, :func, ["color" => "#fc038c"])
style!(tm, :funcn, ["color" => "#2F387B"])
style!(tm, :using, ["color" => "#006C67"])
style!(tm, :import, ["color" => "#fc038c"])
style!(tm, :end, ["color" => "#b81870"])
style!(tm, :mutable, ["color" => "#006C67"])
style!(tm, :struct, ["color" => "#fc038c"])
style!(tm, :begin, ["color" => "#fc038c"])
style!(tm, :module, ["color" => "#b81870"])
style!(tm, :string, ["color" => "#007958"])
style!(tm, :if, ["color" => "#fc038c"])
style!(tm, :for, ["color" => "#fc038c"])
style!(tm, :in, ["color" => "#006C67"])
style!(tm, :abstract, ["color" => "#006C67"])
style!(tm, :number, ["color" => "#8b0000"])
style!(tm, :char, ["color" => "#8b0000"])
style!(tm, :type, ["color" => "#D67229"])
style!(tm, :exit, ["color" => "#006C67"])
style!(tm, :op, ["color" => "#0C023E"])
style!(tm, :comment, ["color" => "#808080"])
end
"""
**Toolips Markdown**
### julia_block!(tm::TextModifier)
------------------
Marks default style for julia code.
#### example
```
```
"""
function julia_block!(tm::TextStyleModifier)
mark_julia!(tm)
highlight_julia!(tm)
end
"""
**Toolips Markdown**
### string(tm::TextModifier) -> ::String
------------------
Styles marks together into `String`.
#### example
```
```
"""
function string(tm::TextStyleModifier)
if length(tm.marks) == 0
txt = a("modiftxt", text = rep_str(tm.raw))
style!(txt, tm.styles[:default] ...)
sc = Toolips.SpoofConnection()
write!(sc, txt)
return(sc.http.text)::String
end
prev = 1
finales = Vector{Servable}()
sortedmarks = sort(collect(tm.marks), by=x->x[1])
lastmax::Int64 = length(tm.raw)
loop_len = length(keys(tm.marks))
[begin
if length(mark) > 0
mname = tm.marks[mark]
if minimum(mark) - prev > 0
txt = span("modiftxt", text = rep_str(tm.raw[prev:minimum(mark) - 1]))
style!(txt, tm.styles[:default] ...)
push!(finales, txt)
end
txt = span("modiftxt", text = rep_str(tm.raw[mark]))
if mname in keys(tm.styles)
style!(txt, tm.styles[mname] ...)
else
style!(txt, tm.styles[:default] ...)
end
push!(finales, txt)
prev = maximum(mark) + 1
end
if e == loop_len
lastmax = maximum(mark)
end
end for (e, mark) in enumerate((k[1] for k in sortedmarks))]
if lastmax != length(tm.raw)
txt = span("modiftxt", text = rep_str(tm.raw[lastmax + 1:length(tm.raw)]))
style!(txt, tm.styles[:default] ...)
push!(finales, txt)
end
sc = Toolips.SpoofConnection()
write!(sc, finales)
sc.http.text::String
end
rep_str(s::String) = replace(s, " " => " ",
"\n" => "<br>", "\\" => "\")
export tmd, @tmd_str
end # module
| ToolipsMarkdown | https://github.com/ChifiSource/ToolipsMarkdown.jl.git |
|
[
"MIT"
] | 0.1.4 | ae277f699ad0abb4743ee9bc7deeb89b554de867 | docs | 1347 | <div align="center">
<img src = "https://github.com/ChifiSource/image_dump/blob/main/toolips/toolipsmarkdown.png"></img>
Parse markdown strings into Toolips Components.
</div>
- [Documentation]()
- [Toolips](https://github.com/ChifiSource/Toolips.jl)
- [Extension Gallery](https://toolips.app/?page=extensions&selected=markdown)
```julia
using Toolips
using ToolipsMarkdown
markdownexample1 = tmd"""# Hello world, this is an example.
This extension, **[toolips markdown](http://github.com/ChifiSource/ToolipsMarkdown.jl)** allows the conversion of regular markdown into Toolips components.
"""
heading1s = Style("h1", color = "pink")
heading1s:"hover":["color" => "lightblue"]
myroute = route("/") do c::Connection
write!(c, heading1s)
mdexample2 = tmd("mymarkdown", "### hello world!")
write!(c, markdownexample1)
write!(c, mdexample2)
end
st = ServerTemplate()
st.add(myroute)
st.start()
[2022:07:01:17:22]: π· toolips> Toolips Server starting on port 8000
[2022:07:01:17:22]: π· toolips> /home/emmac/dev/toolips/ToolipsMarkdown/logs/log.txt not in current working directory.
[2022:07:01:17:22]: π· toolips> Successfully started server on port 8000
[2022:07:01:17:22]: π· toolips> You may visit it now at http://127.0.0.1:8000
```
<img src = "https://github.com/ChifiSource/ToolipsMarkdown.jl/blob/main/tgeregergerg.png"></img>
| ToolipsMarkdown | https://github.com/ChifiSource/ToolipsMarkdown.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 1359 | using Documenter, Gasdynamics1D
#ENV["GKSwstype"] = "nul" # removes GKS warnings during plotting
ENV["GKSwstype"] = "100" # removes GKS warnings during plotting
makedocs(
sitename = "Gasdynamics1D.jl",
doctest = true,
clean = true,
pages = [
"Home" => "index.md",
"Manual" => ["manual/0-BasicGasDynamics.md",
"manual/1-IsentropicGasDynamics.md",
"manual/2-ConvergingDivergingNozzle.md",
"manual/3-NormalShocks.md",
"manual/4-FannoFlow.md",
"manual/5-RayleighFlow.md",
"manual/functions.md"
]
#"Internals" => [ "internals/properties.md"]
],
#format = Documenter.HTML(assets = ["assets/custom.css"])
format = Documenter.HTML(
prettyurls = get(ENV, "CI", nothing) == "true",
mathengine = MathJax(Dict(
:TeX => Dict(
:equationNumbers => Dict(:autoNumber => "AMS"),
:Macros => Dict()
)
))
),
#assets = ["assets/custom.css"],
#strict = true
)
#if "DOCUMENTER_KEY" in keys(ENV)
deploydocs(
repo = "github.com/UCLAMAEThreads/Gasdynamics1D.jl.git",
target = "build",
devbranch = "main",
deps = nothing,
make = nothing
#versions = "v^"
)
#end
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 1700 | module Gasdynamics1D
#=
Quasi-1d gas dynamics routines
=#
using Roots
using Requires
using Reexport
@reexport using ThermofluidQuantities
import ThermofluidQuantities: Unitful, Temperature, Density, Pressure, StagnationTemperature, StagnationDensity,
StagnationPressure, SoundSpeed, Enthalpy, StagnationEnthalpy, InternalEnergy,
StagnationInternalEnergy, Velocity, MachNumber, MassFlowRate, Entropy,
HeatFlux, FrictionFactor, Area, FLOverD, AreaRatio, TemperatureRatio,
PressureRatio, StagnationPressureRatio, DensityRatio, VelocityRatio
include("plot_recipes.jl")
export ThermodynamicProcess, Isentropic, NormalShock, FannoFlow, RayleighFlow
export SubsonicMachNumber,SupersonicMachNumber
export SubsonicPOverP0,SupersonicPOverP0
export T0OverT,P0OverP,Ο0OverΟ,AOverAStar,AStar
export FLStarOverD,POverPStar,ΟOverΟStar,TOverTStar,P0OverP0Star
export T0OverT0Star,VOverVStar
function __init__()
@require Plots="91a5bcdd-55d7-5caf-9e0b-520d859cae80" begin
@reexport using LaTeXStrings
Plots.default(markerstrokealpha = 0, legend = false,
dpi = 100, size = (400, 300), grid = false)
end
end
###### THERMODYNAMIC PROCESSES #######
abstract type ThermodynamicProcess end
abstract type Isentropic <: ThermodynamicProcess end
abstract type NormalShock <: ThermodynamicProcess end
abstract type FannoFlow <: ThermodynamicProcess end
abstract type RayleighFlow <: ThermodynamicProcess end
include("thermodynamics.jl")
include("isentropic.jl")
include("normalshocks.jl")
include("fanno.jl")
include("rayleigh.jl")
include("nozzle.jl")
include("vectors.jl")
end
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 5909 | ######## FANNO FLOW ########
"""
FLStarOverD(M::MachNumber,FannoFlow[;gas=Air])
Compute the friction factor times distance to sonic point, divided by diameter, for the
given Mach number `M`, using the equation
``\\dfrac{fL^*}{D} = \\dfrac{1-M^2}{\\gamma M^2} + \\dfrac{\\gamma+1}{2\\gamma} \\ln \\left(\\dfrac{(\\gamma+1)M^2}{2+(\\gamma-1)M^2}\\right)``
"""
function FLStarOverD(M::MachNumber,::Type{FannoFlow};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
return FLOverD((1-M^2)/(Ξ³*M^2) + (Ξ³+1)/(2Ξ³)*log((Ξ³+1)*M^2/(2+(Ξ³-1)*M^2)))
end
"""
SubsonicMachNumber(fL_over_D::FLOverD,FannoFlow[;gas=Air]) -> MachNumber
Compute the subsonic Mach number, given the ratio friction factor times distance to sonic point, divided by diameter, `fL_over_D`,
by solving the equation
``\\dfrac{fL^*}{D} = \\dfrac{1-M^2}{\\gamma M^2} + \\dfrac{\\gamma+1}{2\\gamma} \\ln \\left(\\dfrac{(\\gamma+1)M^2}{2+(\\gamma-1)M^2}\\right)``
"""
function SubsonicMachNumber(fL_over_D::FLOverD,::Type{FannoFlow};gas::PerfectGas=DefaultPerfectGas)
value(fL_over_D) >= 0.0 || error("fL*/D must be positive")
MachNumber(_subsonic_mach_number_fanno(fL_over_D,gas))
end
"""
SupersonicMachNumber(fL_over_D::FLOverD,FannoFlow[;gas=Air]) -> MachNumber
Compute the supersonic Mach number, given the ratio friction factor times distance to sonic point, divided by diameter, `fL_over_D`,
by solving the equation
``\\dfrac{fL^*}{D} = \\dfrac{1-M^2}{\\gamma M^2} + \\dfrac{\\gamma+1}{2\\gamma} \\ln \\left(\\dfrac{(\\gamma+1)M^2}{2+(\\gamma-1)M^2}\\right)``
"""
function SupersonicMachNumber(fL_over_D::FLOverD,::Type{FannoFlow};gas::PerfectGas=DefaultPerfectGas)
max_fLD = FLStarOverD(MachNumber(1e10),FannoFlow,gas=gas)
value(fL_over_D) >= 0.0 || error("fL*/D must be positive")
value(fL_over_D) > value(max_fLD) ? MachNumber(NaN) : MachNumber(_supersonic_mach_number_fanno(fL_over_D,gas))
end
"""
MachNumber(fL_over_D::FLOverD,FannoFlow[;gas=Air]) -> MachNumber, MachNumber
Compute the subsonic and supersonic Mach numbers, given the ratio friction factor times distance to sonic point, divided by diameter, `fL_over_D`,
by solving the equation
``\\dfrac{fL^*}{D} = \\dfrac{1-M^2}{\\gamma M^2} + \\dfrac{\\gamma+1}{2\\gamma} \\ln \\left(\\dfrac{(\\gamma+1)M^2}{2+(\\gamma-1)M^2}\\right)``
"""
function MachNumber(fL_over_D::FLOverD,::Type{FannoFlow};gas::PerfectGas=DefaultPerfectGas)
SubsonicMachNumber(fL_over_D,FannoFlow,gas=gas), SupersonicMachNumber(fL_over_D,FannoFlow,gas=gas)
end
_subsonic_mach_number_fanno(fL_over_D::FLOverD,gas::PerfectGas) =
find_zero(x -> FLStarOverD(MachNumber(x),FannoFlow,gas=gas)-fL_over_D,(0.001,1),order=16)
_supersonic_mach_number_fanno(fL_over_D::FLOverD,gas::PerfectGas) =
find_zero(x -> FLStarOverD(MachNumber(x),FannoFlow,gas=gas)-fL_over_D,(1,1e10),order=16)
FLOverD(f::FrictionFactor,L::Length,D::Diameter) = FLOverD(f*L/D)
Length(fLoverD::FLOverD,D::Diameter,f::FrictionFactor) = Length(fLoverD*D/f)
"""
POverPStar(M::MachNumber,FannoFlow[;gas=PerfectGas]) -> PressureRatio
Compute the ratio of pressure to the sonic pressure in Fanno flow, given Mach number `M`, from
``\\dfrac{p}{p^*} = \\dfrac{1}{M} \\left(\\dfrac{1+\\gamma}{2+(\\gamma-1)M^2}\\right)^{1/2}``
"""
function POverPStar(M::MachNumber,::Type{FannoFlow};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
return PressureRatio(1/M*sqrt((1+Ξ³)/(2+(Ξ³-1)*M^2)))
end
"""
ΟOverΟStar(M::MachNumber,FannoFlow[;gas=PerfectGas]) -> DensityRatio
Compute the ratio of density to the sonic density in Fanno flow, given Mach number `M`, from
``\\dfrac{\\rho}{\\rho^*} = \\dfrac{1}{M} \\left(\\dfrac{2+(\\gamma-1)M^2}{\\gamma+1}\\right)^{1/2}``
"""
function ΟOverΟStar(M::MachNumber,::Type{FannoFlow};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
return DensityRatio(1/M*sqrt((2+(Ξ³-1)*M^2)/(Ξ³+1)))
end
"""
TOverTStar(M::MachNumber,FannoFlow[;gas=PerfectGas]) -> TemperatureRatio
Compute the ratio of temperature to the sonic temperature in Fanno flow, given Mach number `M`, from
``\\dfrac{T}{T^*} =\\dfrac{\\gamma+1}{2+(\\gamma-1)M^2}``
"""
function TOverTStar(M::MachNumber,::Type{FannoFlow};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
return TemperatureRatio((Ξ³+1)/(2+(Ξ³-1)*M^2))
end
"""
MachNumber(T_over_Tstar::TemperatureRatio,FannoFlow[;gas=PerfectGas])
Compute the Mach number for a given ratio of temperature to the sonic temperature `T_over_Tstar` in Fanno flow, from
the solution of
``\\dfrac{T}{T^*} = \\dfrac{\\gamma+1}{2+(\\gamma-1)M^2}``
"""
function MachNumber(T_over_Tstar::TemperatureRatio,::Type{FannoFlow};gas::PerfectGas=DefaultPerfectGas)
M = find_zero(x -> TOverTStar(MachNumber(x),FannoFlow,gas=gas)-T_over_Tstar,(1e-10,1e10),order=16)
return MachNumber(M)
end
"""
P0OverP0Star(M::MachNumber,FannoFlow[;gas=PerfectGas]) -> StagnationPressureRatio
Compute the ratio of stagnation pressure to the sonic stagnation pressure in Fanno flow, given Mach number `M`, from
``\\dfrac{p_0}{p_0^*} = \\dfrac{1}{M} \\left(\\dfrac{2+(\\gamma-1)M^2}{\\gamma+1}\\right)^{(\\gamma+1)/2/(\\gamma-1)}``
"""
function P0OverP0Star(M::MachNumber,::Type{FannoFlow};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
return StagnationPressureRatio(1/M*((2+(Ξ³-1)*M^2)/(Ξ³+1))^((Ξ³+1)/(2(Ξ³-1))))
end
function MachNumber(p0_over_p0star::StagnationPressureRatio,::Type{FannoFlow};gas::PerfectGas=DefaultPerfectGas)
Msub = find_zero(x -> P0OverP0Star(MachNumber(x),FannoFlow,gas=gas)-p0_over_p0star,(0.001,1),order=16)
max_p0_over_p0star = P0OverP0Star(MachNumber(1e10),FannoFlow,gas=gas)
if value(p0_over_p0star) > value(max_p0_over_p0star)
return MachNumber(Msub)
else
Msup = find_zero(x -> P0OverP0Star(MachNumber(x),FannoFlow,gas=gas)-p0_over_p0star,(1,1e10),order=16)
return MachNumber(Msub), MachNumber(Msup)
end
end
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 16069 | ######## ISENTROPIC RELATIONS #########
"""
TemperatureRatio(pr::PressureRatio,Isentropic[;gas=Air])
Compute the ratio of temperatures between two points connected isentropically, given the ratio of pressures `pr` between those
two points, using the isentropic relation
``\\dfrac{T_2}{T_1} = \\left(\\dfrac{p_2}{p_1}\\right)^{(\\gamma-1)/\\gamma}``
"""
function TemperatureRatio(pratio::PressureRatio,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
TemperatureRatio(pratio^((Ξ³-1)/Ξ³))
end
"""
TemperatureRatio(dr::DensityRatio,Isentropic[;gas=Air])
Compute the ratio of temperatures between two points connected isentropically, given the ratio of densities `dr` between those
two points, using the isentropic relation
``\\dfrac{T_2}{T_1} = \\left(\\dfrac{\\rho_2}{\\rho_1}\\right)^{\\gamma-1}``
"""
function TemperatureRatio(Οratio::DensityRatio,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
TemperatureRatio(Οratio^(Ξ³-1))
end
"""
PressureRatio(Tr::TemperatureRatio,Isentropic[;gas=Air])
Compute the ratio of temperatures between two points connected isentropically, given the ratio of densities `dr` between those
two points, using the isentropic relation
``\\dfrac{p_2}{p_1} = \\left(\\dfrac{T_2}{T_1}\\right)^{\\gamma/(\\gamma-1)}``
"""
function PressureRatio(Tratio::TemperatureRatio,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
PressureRatio(Tratio^(Ξ³/(Ξ³-1)))
end
"""
PressureRatio(dr::DensityRatio,Isentropic[;gas=Air])
Compute the ratio of pressures between two points connected isentropically, given the ratio of densities `dr` between those
two points, using the isentropic relation
``\\dfrac{p_2}{p_1} = \\left(\\dfrac{\\rho_2}{\\rho_1}\\right)^{\\gamma}``
"""
function PressureRatio(Οratio::DensityRatio,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas).val
PressureRatio(Οratio^(Ξ³))
end
"""
T0OverT(M::MachNumber,Isentropic[;gas=PerfectGas]) -> TemperatureRatio
Compute the ratio of stagnation temperature to temperature for Mach number `M`.
``\\dfrac{T_0}{T} = 1 + \\dfrac{\\gamma-1}{2}M^2``
Can also omit the `Isentropic` argument, `T0OverT(M)`
"""
function T0OverT(M::MachNumber,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
return TemperatureRatio(1+0.5*(Ξ³-1)*M^2)
end
T0OverT(M::MachNumber;gas::PerfectGas=DefaultPerfectGas) = T0OverT(M,Isentropic,gas=gas)
"""
P0OverP(M::MachNumber,Isentropic[;gas=PerfectGas]) -> PressureRatio
Compute the ratio of stagnation pressure to pressure for Mach number `M`.
``\\dfrac{p_0}{p} = \\left(1 + \\dfrac{\\gamma-1}{2}M^2 \\right)^{\\gamma/(\\gamma-1)}``
"""
function P0OverP(M::MachNumber,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
Tratio = T0OverT(M,Isentropic,gas=gas)
PressureRatio(Tratio,Isentropic,gas=gas)
end
"""
DensityRatio(Tr::TemperatureRatio,Isentropic[;gas=Air])
Compute the ratio of densities between two points connected isentropically, given the ratio of temperatures `Tr` between those
two points, using the isentropic relation
``\\dfrac{\\rho_2}{\\rho_1} = \\left(\\dfrac{T_2}{T_1}\\right)^{1/(\\gamma-1)}``
"""
function DensityRatio(Tratio::TemperatureRatio,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
DensityRatio(Tratio^(1/(Ξ³-1)))
end
"""
DensityRatio(pr::PressureRatio,Isentropic[;gas=Air])
Compute the ratio of densities between two points connected isentropically, given the ratio of pressures `pr` between those
two points, using the isentropic relation
``\\dfrac{\\rho_2}{\\rho_1} = \\left(\\dfrac{p_2}{p_1}\\right)^{1/\\gamma}``
"""
function DensityRatio(pratio::PressureRatio,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
DensityRatio(pratio^(1/Ξ³))
end
"""
Ο0OverΟ(M::MachNumber,Isentropic[;gas=PerfectGas]) -> DensityRatio
Compute the ratio of stagnation density to density for Mach number `M`.
``\\dfrac{\\rho_0}{\\rho} = \\left(1 + \\dfrac{\\gamma-1}{2}M^2 \\right)^{1/(\\gamma-1)}``
"""
function Ο0OverΟ(M::MachNumber,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
Tratio = T0OverT(M,Isentropic,gas=gas)
DensityRatio(Tratio,Isentropic,gas=gas)
end
# Temperature relations
"""
StagnationTemperature(T::Temperature,M::MachNumber,Isentropic[;gas=Air])
Compute the stagnation temperature corresponding to temperature `T` and Mach number `M`, using
``T_0 = T \\left( 1 + \\dfrac{\\gamma-1}{2} M^2\\right)``
Can also omit the `Isentropic` argument, `StagnationTemperature(T,M)`.
"""
function StagnationTemperature(T::Temperature,M::MachNumber,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
StagnationTemperature(T*T0OverT(M,Isentropic,gas=gas))
end
StagnationTemperature(T::Temperature,M::MachNumber;gas::PerfectGas=DefaultPerfectGas) = StagnationTemperature(T,M,Isentropic,gas=gas)
"""
Temperature(T0::StagnationTemperature,M::MachNumber,Isentropic[;gas=Air])
Compute the temperature corresponding to stagnation temperature `T0` and Mach number `M`, using
``T = T_0 \\left( 1 + \\dfrac{\\gamma-1}{2} M^2\\right)^{-1}``
Can also omit the `Isentropic` argument, `Temperature(T0,M)`.
"""
Temperature(T0::StagnationTemperature,M::MachNumber,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas) = Temperature(T0/T0OverT(M,gas=gas))
Temperature(T0::StagnationTemperature,M::MachNumber;gas::PerfectGas=DefaultPerfectGas) = Temperature(T0,M,Isentropic,gas=gas)
"""
MachNumber(T_over_T0::TemperatureRatio,Isentropic[;gas=Air])
Compute the Mach number corresponding to the ratio of temperature to stagnation temperature `T_over_T0`, using
``M = \\left( \\dfrac{2}{\\gamma-1}\\left(\\dfrac{1}{T/T_0} - 1 \\right)\\right)^{1/2}``
Can also omit the `Isentropic` argument, `MachNumber(T_over_T0)`. Can also
supply the arguments for `T` and `T0` separately, `MachNumber(T,T0)`
"""
function MachNumber(T_over_T0::TemperatureRatio,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
value(T_over_T0) <= 1.0 || error("T/T0 must be 1 or smaller. Maybe you need to supply the inverse?")
Ξ³ = SpecificHeatRatio(gas)
M2 = ((1.0/T_over_T0)-1)*2/(Ξ³-1)
MachNumber(sqrt(M2))
end
MachNumber(T_over_T0::TemperatureRatio;gas::PerfectGas=DefaultPerfectGas) = MachNumber(T_over_T0,Isentropic,gas=gas)
MachNumber(T::Temperature,T0::StagnationTemperature,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas) = MachNumber(TemperatureRatio(T/T0),gas=gas)
MachNumber(T::Temperature,T0::StagnationTemperature;gas::PerfectGas=DefaultPerfectGas) = MachNumber(T,T0,Isentropic,gas=gas)
# Pressure relations
"""
StagnationPressure(p::Pressure,M::MachNumber,Isentropic[;gas=Air])
Compute the stagnation pressure corresponding to pressure `p` and Mach number `M`, using
``p_0 = p \\left( 1 + \\dfrac{\\gamma-1}{2} M^2\\right)^{\\gamma/(\\gamma-1)}``
Can also omit the `Isentropic` argument, `StagnationTemperature(T,M)`.
"""
function StagnationPressure(p::Pressure,M::MachNumber,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
StagnationPressure(p*PressureRatio(T0OverT(M,gas=gas),Isentropic,gas=gas))
end
"""
Pressure(p0::StagnationPressure,M::MachNumber,Isentropic[;gas=Air])
Compute the pressure corresponding to stagnation pressure `p0` and Mach number `M`, using
``p = p_0 \\left( 1 + \\dfrac{\\gamma-1}{2} M^2\\right)^{-\\gamma/(\\gamma-1)}``
Can also omit the `Isentropic` argument, `Temperature(T0,M)`.
"""
function Pressure(p0::StagnationPressure,M::MachNumber,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
Pressure(p0/PressureRatio(T0OverT(M,gas=gas),Isentropic,gas=gas))
end
"""
MachNumber(p_over_p0::PressureRatio,Isentropic[;gas=Air])
Compute the Mach number corresponding to the ratio of pressure to stagnation pressure `p_over_p0`, using
``M = \\left( \\dfrac{2}{\\gamma-1}\\left(\\dfrac{1}{(p/p_0)^{(\\gamma-1)/\\gamma}} - 1 \\right)\\right)^{1/2}``
Can also supply the arguments for `p` and `p0` separately, `MachNumber(p,p0)`
"""
function MachNumber(p_over_p0::PressureRatio,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
value(p_over_p0) <= 1.0 || error("p/p0 must be 1 or smaller. Maybe you need to supply the inverse?")
Ξ³ = SpecificHeatRatio(gas)
MachNumber(TemperatureRatio(p_over_p0,Isentropic,gas=gas),gas=gas)
end
MachNumber(p::Pressure,p0::StagnationPressure,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas) = MachNumber(PressureRatio(p/p0),Isentropic,gas=gas)
# Density relations
"""
StagnationDensity(Ο::Density,M::MachNumber,Isentropic[;gas=Air])
Compute the stagnation density corresponding to density `Ο` and Mach number `M`, using
``\\rho_0 = \\rho \\left( 1 + \\dfrac{\\gamma-1}{2} M^2\\right)^{1/(\\gamma-1)}``
"""
function StagnationDensity(Ο::Density,M::MachNumber,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
StagnationDensity(Ο*DensityRatio(T0OverT(M,gas=gas),Isentropic,gas=gas))
end
"""
Density(Ο0::StagnationDensity,M::MachNumber,Isentropic[;gas=Air])
Compute the density corresponding to stagnation density `Ο0` and Mach number `M`, using
``\\rho = \\rho_0 \\left( 1 + \\dfrac{\\gamma-1}{2} M^2\\right)^{-1/(\\gamma-1)}``
"""
function Density(Ο0::StagnationDensity,M::MachNumber,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
Density(Ο0/DensityRatio(T0OverT(M,gas=gas),Isentropic,gas=gas))
end
"""
MachNumber(Ο_over_Ο0::DensityRatio,Isentropic[;gas=Air])
Compute the Mach number corresponding to the ratio of density to stagnation density `Ο_over_Ο0`, using
``M = \\left( \\dfrac{2}{\\gamma-1}\\left(\\dfrac{1}{(\\rho/\\rho_0)^{(\\gamma-1)}} - 1 \\right)\\right)^{1/2}``
Can also supply the arguments for `Ο` and `Ο0` separately, `MachNumber(Ο,Ο0)`
"""
function MachNumber(Ο_over_Ο0::DensityRatio,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
value(Ο_over_Ο0) <= 1.0 || error("Ο/Ο0 must be 1 or smaller. Maybe you need to supply the inverse?")
Ξ³ = SpecificHeatRatio(gas)
MachNumber(TemperatureRatio(Ο_over_Ο0,Isentropic,gas=gas))
end
MachNumber(Ο::Density,Ο0::StagnationDensity,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas) = MachNumber(DensityRatio(Ο/Ο0),gas=gas)
# Area-Mach number relation
"""
AOverAStar(M::MachNumber,Isentropic[;gas=Air]) -> AreaRatio
Compute the ratio of local area to the sonic area for the given Mach number `M`, using
``\\dfrac{A}{A^*} = \\dfrac{1}{M} \\left( \\dfrac{2}{\\gamma+1} \\left( 1 + \\dfrac{\\gamma-1}{2}M^2\\right)\\right)^{(\\gamma+1)/2/(\\gamma-1)}``
Can omit the `Isentropic` argument.
"""
function AOverAStar(M::MachNumber,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
return AreaRatio(1/M*(2/(Ξ³+1)*(T0OverT(M,gas=gas)))^(0.5*(Ξ³+1)/(Ξ³-1)))
end
AOverAStar(M::MachNumber;gas::PerfectGas=DefaultPerfectGas) = AOverAStar(M,Isentropic,gas=gas)
"""
AStar(A::Area,M::MachNumber,Isentropic[;gas=Air]) -> Area
Compute the sonic area for the given area `A` and Mach number `M`, using
``A^* = A M \\left( \\dfrac{2}{\\gamma+1} \\left( 1 + \\dfrac{\\gamma-1}{2}M^2\\right)\\right)^{-(\\gamma+1)/2/(\\gamma-1)}``
Can omit the `Isentropic` argument.
"""
function AStar(A::Area,M::MachNumber,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
return Area(A/AOverAStar(M,gas=gas))
end
AStar(A::Area,M::MachNumber;gas::PerfectGas=DefaultPerfectGas) = AStar(A,M,Isentropic,gas=gas)
"""
SubsonicMachNumber(A_over_Astar::AreaRatio,Isentropic[;gas=Air]) -> MachNumber
Compute the subsonic Mach number for the given ratio of area to sonic area `A_over_Astar` by solving the equation
``\\dfrac{A}{A^*} = \\dfrac{1}{M} \\left( \\dfrac{2}{\\gamma+1} \\left( 1 + \\dfrac{\\gamma-1}{2}M^2\\right)\\right)^{(\\gamma+1)/2/(\\gamma-1)}``
"""
function SubsonicMachNumber(A_over_Astar::AreaRatio,::Type{Isentropic}; gas::PerfectGas=DefaultPerfectGas)
value(A_over_Astar) >= 1.0 || error("A/A* must be 1 or larger. Maybe you need to supply the inverse?")
Msub = find_zero(x -> AOverAStar(MachNumber(x),gas=gas)-A_over_Astar,(0,1),order=16)
return MachNumber(Msub)
end
"""
SupersonicMachNumber(A_over_Astar::AreaRatio,Isentropic[;gas=Air]) -> MachNumber
Compute the supersonic Mach number for the given ratio of area to sonic area `A_over_Astar` by solving the equation
``\\dfrac{A}{A^*} = \\dfrac{1}{M} \\left( \\dfrac{2}{\\gamma+1} \\left( 1 + \\dfrac{\\gamma-1}{2}M^2\\right)\\right)^{(\\gamma+1)/2/(\\gamma-1)}``
"""
function SupersonicMachNumber(A_over_Astar::AreaRatio,::Type{Isentropic}; gas::PerfectGas=DefaultPerfectGas)
value(A_over_Astar) >= 1.0 || error("A/A* must be 1 or larger. Maybe you need to supply the inverse?")
Msup = find_zero(x -> AOverAStar(MachNumber(x),gas=gas)-A_over_Astar,(1,Inf),order=16)
return MachNumber(Msup)
end
function SubsonicMachNumber(A::Area,Aloc::Area,ploc_over_p0::PressureRatio,::Type{Isentropic}; gas::PerfectGas=DefaultPerfectGas)
Mloc = MachNumber(ploc_over_p0,Isentropic,gas=gas)
Astar = AStar(Aloc,Mloc,gas=gas)
SubsonicMachNumber(A,Astar,Isentropic,gas=gas)
end
function SupersonicMachNumber(A::Area,Aloc::Area,ploc_over_p0::PressureRatio,::Type{Isentropic}; gas::PerfectGas=DefaultPerfectGas)
Mloc = MachNumber(ploc_over_p0,Isentropic,gas=gas)
Astar = AStar(Aloc,Mloc,gas=gas)
SupersonicMachNumber(A,Astar,Isentropic,gas=gas)
end
SubsonicMachNumber(A::Area,Astar::Area, ::Type{Isentropic}; gas::PerfectGas=DefaultPerfectGas) =
SubsonicMachNumber(AreaRatio(A/Astar),Isentropic,gas=gas)
SupersonicMachNumber(A::Area,Astar::Area, ::Type{Isentropic}; gas::PerfectGas=DefaultPerfectGas) =
SupersonicMachNumber(AreaRatio(A/Astar),Isentropic,gas=gas)
"""
MachNumber(A_over_Astar::AreaRatio,Isentropic[;gas=Air]) -> MachNumber, MachNumber
Compute the subsonic and supersonic Mach numbers for the given ratio of area to sonic area `A_over_Astar` by solving the equation
``\\dfrac{A}{A^*} = \\dfrac{1}{M} \\left( \\dfrac{2}{\\gamma+1} \\left( 1 + \\dfrac{\\gamma-1}{2}M^2\\right)\\right)^{(\\gamma+1)/2/(\\gamma-1)}``
Can omit the `Isentropic` argument.
"""
function MachNumber(A_over_Astar::AreaRatio,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
return SubsonicMachNumber(A_over_Astar,Isentropic,gas=gas),
SupersonicMachNumber(A_over_Astar,Isentropic,gas=gas)
end
MachNumber(A_over_Astar::AreaRatio;gas::PerfectGas=DefaultPerfectGas) = MachNumber(A_over_Astar,Isentropic,gas=gas)
"""
MachNumber(M1::MachNumber,A1::AreaRatio,A2::AreaRatio,Isentropic[;gas=Air]) -> MachNumber, MachNumber
Compute the subsonic and supersonic Mach numbers at location 2 with area `A2`, when location 1 has Mach number `M1`
and area `A1`.
"""
function MachNumber(M1::MachNumber,A1::Area,A2::Area,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
M2sub, M2sup = MachNumber(AreaRatio(A2/AStar(A1,M1,gas=gas)),gas=gas)
end
MachNumber(M1::MachNumber,A1::Area,A2::Area;gas::PerfectGas=DefaultPerfectGas) = MachNumber(M1,A2,A2,Isentropic,gas=gas)
function SubsonicPOverP0(A::Area,Aloc::Area,ploc_over_p0::PressureRatio,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
Mloc = MachNumber(ploc_over_p0,Isentropic,gas=gas)
Astar = AStar(Aloc,Mloc,gas=gas)
SubsonicPOverP0(A,Astar,Isentropic,gas=gas)
end
function SupersonicPOverP0(A::Area,Aloc::Area,ploc_over_p0::PressureRatio,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
Mloc = MachNumber(ploc_over_p0,Isentropic,gas=gas)
Astar = AStar(Aloc,Mloc,gas=gas)
SupersonicPOverP0(A,Astar,Isentropic,gas=gas)
end
function SubsonicPOverP0(A::Area,Astar::Area,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
M = SubsonicMachNumber(A,Astar,Isentropic,gas=gas)
PressureRatio(1/P0OverP(M,Isentropic,gas=gas))
end
function SupersonicPOverP0(A::Area,Astar::Area,::Type{Isentropic};gas::PerfectGas=DefaultPerfectGas)
M = SupersonicMachNumber(A,Astar,Isentropic,gas=gas)
PressureRatio(1/P0OverP(M,Isentropic,gas=gas))
end
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 3673 | ###### NORMAL SHOCK RELATIONS #######
"""
MachNumber(M1::MachNumber,NormalShock[;gas=Air])
Return the Mach number after a normal shock, given the Mach number `M1` before the shock, using the equation
``M_2^2 = \\dfrac{2 + (\\gamma-1)M_1^2}{2\\gamma M_1^2 - (\\gamma-1)}``
"""
function MachNumber(M1::MachNumber,::Type{NormalShock};gas::PerfectGas=DefaultPerfectGas)
value(M1) >= 1.0 || error("M1 must be at least 1")
Ξ³ = SpecificHeatRatio(gas)
M2sq = (1 + 0.5*(Ξ³-1)*M1^2)/(Ξ³*M1^2-0.5*(Ξ³-1))
return MachNumber(sqrt(M2sq))
end
"""
TemperatureRatio(M1::MachNumber,NormalShock[;gas=Air])
Return the ratio of temperatures after and before a normal shock, given the Mach number `M1` before the shock, using the equation
``\\dfrac{T_2}{T_1} = 1 + 2\\dfrac{(\\gamma-1)}{(\\gamma+1)^2}\\dfrac{(1+\\gamma M_1^2)(M_1^2-1)}{M_1^2}``
"""
function TemperatureRatio(M1::MachNumber,::Type{NormalShock};gas::PerfectGas=DefaultPerfectGas)
value(M1) >= 1.0 || error("M1 must be at least 1")
Ξ³ = SpecificHeatRatio(gas)
return TemperatureRatio(1 + 2*(Ξ³-1)/(Ξ³+1)^2*((1+Ξ³*M1^2)/M1^2)*(M1^2-1))
end
"""
PressureRatio(M1::MachNumber,NormalShock[;gas=Air])
Return the ratio of pressures after and before a normal shock, given the Mach number `M1` before the shock, using the equation
``\\dfrac{p_2}{p_1} = 1 + 2\\dfrac{\\gamma}{\\gamma+1}(M_1^2-1)``
"""
function PressureRatio(M1::MachNumber,::Type{NormalShock};gas::PerfectGas=DefaultPerfectGas)
value(M1) >= 1.0 || error("M1 must be at least 1")
Ξ³ = SpecificHeatRatio(gas)
return PressureRatio(1 + 2*Ξ³/(Ξ³+1)*(M1^2-1))
end
"""
DensityRatio(M1::MachNumber,NormalShock[;gas=Air])
Return the ratio of densities after and before a normal shock, given the Mach number `M1` before the shock, using the equation
``\\dfrac{\\rho_2}{\\rho_1} = \\dfrac{(\\gamma+1)M_1^2}{2+(\\gamma-1)M_1^2}``
"""
function DensityRatio(M1::MachNumber,::Type{NormalShock};gas::PerfectGas=DefaultPerfectGas)
value(M1) >= 1.0 || error("M1 must be at least 1")
Ξ³ = SpecificHeatRatio(gas)
return DensityRatio((Ξ³+1)*M1^2/(2+(Ξ³-1)*M1^2))
end
"""
StagnationPressureRatio(M1::MachNumber,NormalShock[;gas=Air])
Return the ratio of stagnation pressures after and before a normal shock, given the Mach number `M1` before the shock, using the equation
``\\dfrac{p_{02}}{p_{01}} = \\left(\\dfrac{(\\gamma+1)M_1^2}{2+(\\gamma-1)M_1^2}\\right)^{\\gamma/(\\gamma-1)} \\left(\\dfrac{\\gamma+1}{2\\gamma M_1^2 - (\\gamma-1)}\\right)^{1/(\\gamma-1)}``
"""
function StagnationPressureRatio(M1::MachNumber,::Type{NormalShock};gas::PerfectGas=DefaultPerfectGas)
value(M1) >= 1.0 || error("M1 must be at least 1")
M2 = MachNumber(M1,NormalShock,gas=gas)
pratio = PressureRatio(M1,NormalShock,gas=gas)
p01_unit = StagnationPressure(Pressure(1),M1,Isentropic,gas=gas)
p02_unit = StagnationPressure(Pressure(1),M2,Isentropic,gas=gas)
return StagnationPressureRatio(pratio*p02_unit/p01_unit)
end
"""
Entropy(s1::Entropy,M1::MachNumber,NormalShock[;gas=Air])
Return the entropy after a normal shock, given the entropy before the shock `s1` and the Mach number before
the shock `M1`, using the equation
``s_2 - s_1 = c_v \\ln \\left(1 + \\dfrac{2\\gamma}{\\gamma+1}(M_1^2-1)\\right) - c_p \\ln \\left( \\dfrac{(\\gamma+1)M_1^2}{2+(\\gamma-1)M_1^2}\\right)``
"""
function Entropy(s1::Entropy,M1::MachNumber,::Type{NormalShock};gas::PerfectGas=DefaultPerfectGas)
value(M1) >= 1.0 || error("M1 must be at least 1")
Ξ³ = SpecificHeatRatio(gas)
cv = SpecificHeatVolume(gas)
ds = cv*(log(1+2*Ξ³/(Ξ³+1)*(M1^2-1)) - Ξ³*log((Ξ³+1)*M1^2/(2+(Ξ³-1)*M1^2)))
return Entropy(s1+ds)
end
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 14580 | # Converging-diverging nozzles
export Nozzle, areas, positions, converging, diverging, throat, nozzleexit,
machnumber,temperature, density, massflowrate, flow_quality, NozzleProcess
abstract type NozzleQuality end
abstract type SubsonicIsentropicNozzle <: NozzleQuality end
abstract type SupersonicWithShockNozzle <: NozzleQuality end
abstract type SupersonicIsentropicNozzle <: NozzleQuality end
struct Nozzle{T,S}
Ai :: T
At :: T
Ae :: T
x :: S
areas :: Vector{T}
throat_index :: Integer
end
function Nozzle(Ai::Area,At::Area,Ae::Area;xmin=-1.0,xmax=3.0,len=201)
x = range(xmin,xmax,length=len)
a = areas(x,Ai,At,Ae)
Nozzle(Ai,At,Ae,x,a,_find_throat(a,At))
end
function areas(x,Ai::Area,At::Area,Ae::Area)
a = Array{Area,1}(undef,length(x))
araw = _nozzle_area(x,value(Ai),value(At),value(Ae))
a .= Area.(araw)
end
function _find_throat(a::AbstractVector{T},At::Area) where T <: Area
indx = findall(x -> (value(x) β value(At)),a)
isempty(indx) && error("Can't find the throat")
return indx[1]
end
areas(n::Nozzle) = n.areas
positions(n::Nozzle) = n.x
throat(n::Nozzle) = n.At
nozzleexit(n::Nozzle) = n.Ae
inlet(n::Nozzle) = n.Ai
converging(n::Nozzle) = view(areas(n),1:n.throat_index)
diverging(n::Nozzle) = view(areas(n),n.throat_index+1:length(areas(n)))
function Base.show(io::IO, noz::Nozzle)
println(io, "Converging-diverging nozzle")
println(io, " Inlet area (sq cm)= "*string(value(inlet(noz),u"cm^2")))
println(io, " Throat area (sq cm)= "*string(value(throat(noz),u"cm^2")))
println(io, " Exit area (sq cm)= "*string(value(nozzleexit(noz),u"cm^2")))
end
# Shaping of nozzle cross-section
_rad_conv(x,Rt,Ri) = Rt + (Ri-Rt)*x^2
_rad_div(x,Rt,Re,c) = Re + (Rt-Re)*exp(-c*x^2)
_radius_shape(x,Ri,Rt,Re,c) = x <= 0 ? _rad_conv(x,Rt,Ri) : _rad_div(x,Rt,Re,c)
function _nozzle_area(x,Ai,At,Ae;c=1)
return Ο*_radius_shape.(x,sqrt(Ai/Ο),sqrt(At/Ο),sqrt(Ae/Ο),c).^2
end
struct NozzleProcess{process_type,T,S,G}
noz :: Nozzle{T,S}
p :: Vector{Pressure}
M :: Vector{MachNumber}
p0 :: StagnationPressure
T0 :: StagnationTemperature
pb_subcrit :: Pressure
pb_supcrit_exitshock :: Pressure
pb_supcrit :: Pressure
pb :: Pressure
As :: T
gas :: G
#NozzleProcess{process_type}(noz,p,M,p0,T0,pb,As,gas) = new{process_type,}
end
function NozzleProcess(noz::Nozzle{T,S},pb::Pressure{PU},p0::StagnationPressure{PSU},T0::StagnationTemperature{PTU};gas::PerfectGas=DefaultPerfectGas) where {T,S,PU,PSU,PTU}
pb_subcrit = _pressure_subsonic_critical(noz,p0,gas)
pb_supcrit_exitshock = _pressure_supersonic_shock_critical(noz,p0,gas)
pb_supcrit = _pressure_supersonic_critical(noz,p0,gas)
process_type = pb > pb_subcrit ? SubsonicIsentropicNozzle :
(pb > pb_supcrit_exitshock ? SupersonicWithShockNozzle :
SupersonicIsentropicNozzle)
As = _shock_area(noz,pb,p0,process_type,gas)
p = pressure_nozzle(noz,pb,p0,As,process_type,gas)
M = machnumber_nozzle(noz,pb,p0,As,process_type,gas)
NozzleProcess{process_type,T,S,typeof(gas)}(noz,p,M,p0,T0,
pb_subcrit,pb_supcrit_exitshock,pb_supcrit, pb,As,gas)
end
function Base.show(io::IO, nozproc::NozzleProcess)
println(io, "Flow in a converging-diverging nozzle")
println(io, " Inlet area (sq cm)= "*string(value(inlet(nozproc.noz),u"cm^2")))
println(io, " Throat area (sq cm)= "*string(value(throat(nozproc.noz),u"cm^2")))
println(io, " Exit area (sq cm)= "*string(value(nozzleexit(nozproc.noz),u"cm^2")))
println(io, " Stagnation pressure (KPa) = "*string(value(nozproc.p0,u"kPa")))
println(io, " Stagnation temperature (K) = "*string(value(nozproc.T0,u"K")))
println(io, " Subsonic choked isentropic (KPa) = "*string(value(nozproc.pb_subcrit,u"kPa")))
println(io, " Supersonic choked isentropic (KPa) = "*string(value(nozproc.pb_supcrit,u"kPa")))
println(io, " Back pressure (KPa) = "*string(value(nozproc.pb,u"kPa")))
println(io, " Behavior --> "*flow_quality(nozproc))
end
machnumber(np::NozzleProcess) = np.M
pressure(np::NozzleProcess) = np.p
function temperature(np::NozzleProcess)
Temp = Temperature[]
for Mi in machnumber(np)
T0_over_T = T0OverT(Mi,Isentropic,gas=np.gas)
push!(Temp,Temperature(np.T0/T0_over_T))
end
Temp
end
function density(np::NozzleProcess)
Ο0 = StagnationDensity(np.p0,np.T0,gas=np.gas)
Ο = Density[]
for (pi,Ti) in zip(pressure(np),temperature(np))
push!(Ο,Density(pi,Ti,gas=np.gas))
end
Ο
end
function massflowrate(np::NozzleProcess)
idx = np.noz.throat_index
Mt = machnumber(np)[idx]
pt = pressure(np)[idx]
T0_over_T = T0OverT(Mt,Isentropic,gas=np.gas)
Tt = Temperature(np.T0/T0_over_T)
at = SoundSpeed(Tt,gas=np.gas)
ut = Velocity(at,Mt)
Οt = Density(pt,Tt,gas=np.gas)
MassFlowRate(Οt,ut,throat(np.noz))
end
# ---------------
function machnumber_nozzle(noz::Nozzle,pb::Pressure,p01::StagnationPressure,As::Area,::Type{SupersonicWithShockNozzle},gas::PerfectGas)
vcat(_machnumber_subsonic(converging(noz),converging(noz)[end],gas),
_machnumber_diverging_nozzle_with_shock(diverging(noz),As,throat(noz),p01,gas))
end
function pressure_nozzle(noz::Nozzle,pb::Pressure,p01::StagnationPressure,As::Area,::Type{SupersonicWithShockNozzle},gas::PerfectGas)
vcat(_pressure_subsonic(converging(noz),converging(noz)[end],p01,gas),
_pressure_diverging_nozzle_with_shock(diverging(noz),As,throat(noz),p01,gas))
end
# ---
function machnumber_nozzle(noz::Nozzle,pb,p0,As,::Type{SupersonicIsentropicNozzle},gas::PerfectGas)
vcat(_machnumber_subsonic(converging(noz),converging(noz)[end],gas),
_machnumber_diverging_nozzle(diverging(noz),throat(noz),gas))
end
function pressure_nozzle(noz::Nozzle,pb,p0::StagnationPressure,As,::Type{SupersonicIsentropicNozzle},gas::PerfectGas)
vcat(_pressure_subsonic(converging(noz),converging(noz)[end],p0,gas),
_pressure_diverging_nozzle(diverging(noz),throat(noz),p0,gas))
end
# ---
machnumber_nozzle(noz::Nozzle,pb::Pressure,p0::StagnationPressure,As,::Type{SubsonicIsentropicNozzle},gas::PerfectGas) =
_machnumber_subsonic(areas(noz),pb,p0,gas)
pressure_nozzle(noz::Nozzle,pb::Pressure,p0::StagnationPressure,As,::Type{SubsonicIsentropicNozzle},gas::PerfectGas) =
_pressure_subsonic(areas(noz),pb,p0,gas)
# Subsonic nozzle processes
function _machnumber_subsonic(A::AbstractVector{T},pb::Pressure,p0::StagnationPressure,gas::PerfectGas) where T <: Area
Mb = MachNumber(PressureRatio(pb/p0),Isentropic,gas=gas)
Astar = AStar(A[end],Mb,gas=gas)
_machnumber_subsonic(A,Astar,gas)
end
function _machnumber_subsonic(A::AbstractVector{T},Astar::Area,gas::PerfectGas) where T <: Area
return SubsonicMachNumber(A,Astar,Isentropic,gas=gas)
end
function _pressure_subsonic(A::AbstractVector{T},pb::Pressure,p0::StagnationPressure,gas::PerfectGas) where T <: Area
Mb = MachNumber(PressureRatio(pb/p0),Isentropic,gas=gas)
Astar = AStar(A[end],Mb,gas=gas)
_pressure_subsonic(A,Astar,p0,gas)
end
function _pressure_subsonic(A::AbstractVector{T},Astar::Area,p0::StagnationPressure,gas::PerfectGas) where {T <: Area}
p_over_p0 = SubsonicPOverP0(A,Astar,Isentropic,gas=gas)
p = Pressure[]
for pr in p_over_p0
push!(p,Pressure(pr*p0))
end
return p
end
function _pressure_subsonic_2(A::AbstractVector{T},Astar::Area,p0::StagnationPressure,gas::PerfectGas) where {T <: Area}
p_over_p0 = SubsonicPOverP0(A,Astar,Isentropic,gas=gas)
p = Pressure[]
for pr in p_over_p0
push!(p,Pressure(pr*p0))
end
return p
end
# Diverging nozzle processes
function _pressure_diverging_nozzle(A::AbstractVector{T},Astar::Area,p0::StagnationPressure,gas::PerfectGas) where {T <: Area}
p = Pressure[]
p_over_p0 = SupersonicPOverP0(A,Astar,Isentropic,gas=gas)
for pr in p_over_p0
push!(p,Pressure(pr*p0))
end
return p
end
function _machnumber_diverging_nozzle(A::AbstractVector{T},Astar::Area,gas::PerfectGas) where T <: Area
return SupersonicMachNumber(A,Astar,Isentropic,gas=gas)
end
function _pressure_diverging_nozzle_with_shock(A::AbstractVector{T},As::Area,Astar1::Area,p01::StagnationPressure,gas::PerfectGas) where {T <: Area}
i1 = _index_upstream_of_shock(A,As)
p = Pressure[]
pup_over_p01 = SupersonicPOverP0(A[1:i1],Astar1,Isentropic,gas=gas)
for pr in pup_over_p01
push!(p,Pressure(pr*p01))
end
M1, M2, Astar2, p02_over_p01, _ = _shock(As,Astar1,gas)
p02 = StagnationPressure(p02_over_p01*p01)
pdown_over_p02 = SubsonicPOverP0(A[i1+1:end],Astar2,Isentropic,gas=gas)
for pr in pdown_over_p02
push!(p,Pressure(pr*p02))
end
return p
end
function _machnumber_diverging_nozzle_with_shock(A::AbstractVector{T},As::Area,Astar1::Area,p01::StagnationPressure,gas::PerfectGas) where T <: Area
i1 = _index_upstream_of_shock(A,As)
M = SupersonicMachNumber(A[1:i1],Astar1,Isentropic,gas=gas)
M1, M2, Astar2, _, _ = _shock(As,Astar1,gas)
Mdown = SubsonicMachNumber(A[i1+1:end],Astar2,Isentropic,gas=gas)
for Mi in Mdown
push!(M,Mi)
end
return M
end
# Given an exit area Ae, shock area As, and Astar1, p01 in upstream nozzle
# return the pressure pe at exit
function _pressure_diverging_nozzle_with_shock(Ae::Area,As::Area,Astar1::Area,p01::StagnationPressure,gas::PerfectGas)
value(Astar1) <= value(As) <= value(Ae) || error("Shock area outside of bounds")
M1, M2, Astar2, p02_over_p01, _ = _shock(As,Astar1,gas)
# conditions downstream of shock
p02 = StagnationPressure(p02_over_p01*p01)
pe_over_p02 = SubsonicPOverP0(Ae,Astar2,Isentropic,gas=gas)
return Pressure(pe_over_p02*p02)
end
# Given an exit area Ae, shock area As, and Astar1, p01 in upstream nozzle
# return the Mach number Me at exit
function _machnumber_diverging_nozzle_with_shock(Ae::Area,As::Area,Astar1::Area,p01::StagnationPressure,gas::PerfectGas)
value(Astar1) <= value(As) <= value(Ae) || error("Shock area outside of bounds")
M1, M2, Astar2, _, _ = _shock(As,Astar1,gas)
return SubsonicMachNumber(Ae,Astar2,Isentropic,gas=gas)
end
function _shock(As::Area,Astar1::Area,gas::PerfectGas)
M1 = SupersonicMachNumber(AreaRatio(As/Astar1),Isentropic,gas=gas)
M2 = MachNumber(M1,NormalShock,gas=gas)
Astar2 = AStar(As,M2,Isentropic,gas=gas)
p02_over_p01 = StagnationPressureRatio(M1,NormalShock,gas=gas)
T2_over_T1 = TemperatureRatio(M1,NormalShock,gas=gas)
return M1, M2, Astar2, p02_over_p01, T2_over_T1
end
# Find the index in array A corresponding to just before As.
# Assumes that A is diverging nozzle.
function _index_upstream_of_shock(A::AbstractVector{T},As::Area) where T <: Area
value(A[1]) <= value(As) <= value(A[end]) || error("Shock area outside of bounds")
indx = findall(x -> x >= 1.0,diff(sign.(value.(A) .- value(As))))
return indx[end]
end
#=
Replace these in NozzleProcess...
function machnumber_nozzle(noz::Nozzle,As::Area,pb::Pressure,p01::StagnationPressure;gas::PerfectGas=DefaultPerfectGas)
pb_subcrit = _pressure_subsonic_critical(noz,p01,gas=gas)
pb_supcrit = _pressure_supersonic_shock_critical(noz,p01,gas=gas)
M = pb > pb_subcrit ? machnumber_subsonic(areas(noz),pb,p01,gas=gas) :
(pb > pb_supcrit ? machnumber_nozzle_with_shock(noz,As,pb,p01,gas=gas) :
machnumber_nozzle_supersonic(noz,gas=gas))
return M
end
function pressure_nozzle(noz::Nozzle,As::Area,pb::Pressure,p01::StagnationPressure;gas::PerfectGas=DefaultPerfectGas)
pb_subcrit = _pressure_subsonic_critical(noz,p01,gas=gas)
pb_supcrit = _pressure_supersonic_shock_critical(noz,p01,gas=gas)
p = pb > pb_subcrit ? pressure_subsonic(areas(noz),pb,p01,gas=gas) :
(pb > pb_supcrit ? pressure_nozzle_with_shock(noz,As,pb,p01,gas=gas) :
pressure_nozzle_supersonic(noz,p01,gas=gas))
# Set the final pressure to the back pressure
p[end] = pb
return p
end
=#
# Find area at which shock occurs
function _shock_area(noz::Nozzle,pb::Pressure,p01::StagnationPressure,::Type{SupersonicWithShockNozzle},gas::PerfectGas)
pb_crit = _pressure_subsonic_critical(noz,p01,gas)
pb < pb_crit || error("Back pressure too large for a shock")
return Area(find_zero(x -> value(_pressure_diverging_nozzle_with_shock(nozzleexit(noz),Area(x),throat(noz),p01,gas))-value(pb),
(value(diverging(noz)[1]),value(diverging(noz)[end-1])),order=8))
end
_shock_area(noz::Nozzle,pb,p01,::Type{SubsonicIsentropicNozzle},gas::PerfectGas) = throat(noz)
_shock_area(noz::Nozzle,pb,p01,::Type{SupersonicIsentropicNozzle},gas::PerfectGas) = throat(noz)
flow_quality(nozproc::NozzleProcess) = flow_quality(nozproc.noz,nozproc.pb,nozproc.p0,gas=nozproc.gas)
function flow_quality(noz::Nozzle,pb::Pressure,p0::StagnationPressure;gas::PerfectGas=DefaultPerfectGas)
pb_subcrit = _pressure_subsonic_critical(noz,p0,gas)
pb_supcrit_exitshock = _pressure_supersonic_shock_critical(noz,p0,gas)
pb_supcrit = _pressure_supersonic_critical(noz,p0,gas)
if pb > p0 || pb < Pressure(0.0)
return error("Invalid back pressure")
elseif pb > pb_subcrit
return "Unchoked subsonic"
elseif pb β pb_subcrit
return "Choked subsonic"
elseif pb > pb_supcrit_exitshock
return "Supersonic with normal shock"
elseif pb > pb_supcrit
return "Overexpanded supersonic"
elseif pb β pb_supcrit
return "Perfectly expanded supersonic"
else
return "Underexpanded supersonic"
end
#println(pb_supcrit)
end
# Find critical back pressure for subsonic isentropic branch
function _pressure_subsonic_critical(noz::Nozzle,p0::StagnationPressure,gas::PerfectGas)
pb_crit_over_p0 = SubsonicPOverP0(nozzleexit(noz),throat(noz),Isentropic,gas=gas)
return Pressure(pb_crit_over_p0*p0)
end
# Find critical back pressure for supersonic isentropic branch with shock at exit
function _pressure_supersonic_shock_critical(noz::Nozzle,p0::StagnationPressure,gas::PerfectGas)
pe_supcrit = _pressure_supersonic_critical(noz,p0,gas)
Me_supcrit = SupersonicMachNumber(nozzleexit(noz),throat(noz),Isentropic,gas=gas)
pb_over_pe_supcrit = PressureRatio(Me_supcrit,NormalShock,gas=gas)
return Pressure(pb_over_pe_supcrit*pe_supcrit)
end
# Find critical back pressure for supersonic isentropic branch
function _pressure_supersonic_critical(noz::Nozzle,p0::StagnationPressure,gas::PerfectGas)
pe_supcrit_over_p0 = SupersonicPOverP0(nozzleexit(noz),throat(noz),Isentropic,gas=gas)
return Pressure(pe_supcrit_over_p0*p0)
end
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 3192 | using RecipesBase
using ColorTypes
import PlotUtils: cgrad, palette, color_list
using LaTeXStrings
@userplot NozzlePlot
@recipe function f(h::NozzlePlot;fields=(),gas=DefaultPerfectGas)
nfields = length(fields) + 1
if nfields == 1
length(h.args) == 1 || error("`nozzleplot` should be given one argument. Got: $(typeof(h.args))")
noz, = h.args
else
length(h.args) == 4 || error("`nozzleplot` should be given four arguments. Got: $(typeof(h.args))")
noz, pb, p0, T0 = h.args
nozproc = NozzleProcess(noz,pb,p0,T0,gas=gas)
end
linecolor := 1
if plotattributes[:plot_object].n > 0
lc = plotattributes[:plot_object].series_list[end][:linecolor]
idx = findall(x -> RGBA(x) == lc,color_list(palette(:default)))
linecolor := idx[1] + 1
end
layout := (nfields,1)
size := (500,200*nfields)
xticks := (0:0,["Throat"])
xline = [0,0]
fields_lower = lowercase.(fields)
subnum = 0
if in("pressure",fields_lower)
subnum += 1
p = ustrip.(pressure(nozproc),u"kPa")
pmax = maximum(p)+50
@series begin
subplot := subnum
linestyle --> :dash
linecolor := :black
#label := ""
xline, [0,pmax]
end
@series begin
subplot := subnum
ylims --> (0,pmax)
xlims := (-Inf,Inf)
yguide := "Pressure (KPa)"
#legend := true
#annotations := (positions(noz)[end],p[end],nozzle_quality(noz,pb,p0))
positions(noz), p
end
end
if in("temperature",fields_lower)
subnum += 1
T = ustrip.(temperature(nozproc),u"K")
Tmax = maximum(T)+100.0
@series begin
subplot := subnum
linestyle --> :dash
linecolor := :black
xline, [0,Tmax]
end
@series begin
subplot := subnum
ylims --> (0,Tmax)
xlims := (-Inf,Inf)
yguide := "Temperature (K)"
positions(noz), T
end
end
if in("density",fields_lower)
subnum += 1
Ο = ustrip.(density(nozproc))
Οmax = maximum(Ο)+1.0
@series begin
subplot := subnum
linestyle --> :dash
linecolor := :black
xline, [0,Οmax]
end
@series begin
subplot := subnum
ylims --> (0,Οmax)
xlims := (-Inf,Inf)
yguide := "Density (kg/m3)"
positions(noz), Ο
end
end
if in("machnumber",fields_lower) || in("mach",fields_lower)
subnum += 1
M = ustrip.(machnumber(nozproc))
Mmax = maximum(M)+1.0
@series begin
subplot := subnum
linestyle --> :dash
linecolor := :black
xline, [0,Mmax]
end
@series begin
subplot := subnum
linestyle --> :dash
linecolor := :black
positions(noz), ones(length(positions(noz)))
end
@series begin
subplot := subnum
ylims --> (0,Mmax)
xlims := (-Inf,Inf)
yguide := "Mach Number"
positions(noz), M
end
end
subnum += 1
A = ustrip.(areas(noz),u"cm^2")
Amax = maximum(A)+10
@series begin
subplot := subnum
linestyle --> :dash
linecolor := :black
xline, [0,Amax]
end
#@series begin
subplot := subnum
ylims --> (0,Amax)
xlims := (-Inf,Inf)
yguide := "Area (sq cm)"
positions(noz),A
#end
end
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 4121 | ####### RAYLEIGH FLOW ########
HeatFlux(h01::StagnationEnthalpy,h02::StagnationEnthalpy) = HeatFlux(h02-h01)
"""
HeatFlux(T01::StagnationTemperature,T02::StagnationTemperature[;gas=Air])
Compute the heat flux required to change stagnation temperature `T01` to stagnation temperature `T02`,
using
``q = c_p(T_{02} - T_{01})``
"""
function HeatFlux(T01::StagnationTemperature,T02::StagnationTemperature;gas::PerfectGas=DefaultPerfectGas)
h01 = StagnationEnthalpy(T01;gas=gas)
h02 = StagnationEnthalpy(T02;gas=gas)
return HeatFlux(h01,h02)
end
# Fanno flow produces StagnationPressureRatio. There should also be a StagnationTemperatureRatio
# defined in ThermofluidQuantities.jl
"""
T0OverT0Star(M::MachNumber,RayleighFlow[;gas=Air]) -> TemperatureRatio
Compute the ratio of stagnation temperature to sonic stagnation temperature for the given Mach number
for Rayleigh flow, using the equation
``\\dfrac{T_0}{T_0^*} = \\dfrac{(\\gamma+1)M^2 (2 + (\\gamma-1)M^2)}{(1+\\gamma M^2)^2}``
"""
function T0OverT0Star(M::MachNumber,::Type{RayleighFlow};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
return TemperatureRatio(((Ξ³+1)*M^2*(2+(Ξ³-1)*M^2))/(1+Ξ³*M^2)^2)
end
"""
TOverTStar(M::MachNumber,RayleighFlow[;gas=Air]) -> TemperatureRatio
Compute the ratio of temperature to sonic temperature for the given Mach number
for Rayleigh flow, using the equation
``\\dfrac{T}{T^*} = \\dfrac{(\\gamma+1)^2 M^2}{(1+\\gamma M^2)^2}``
"""
function TOverTStar(M::MachNumber,::Type{RayleighFlow};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
return TemperatureRatio(((Ξ³+1)^2*M^2)/(1+Ξ³*M^2)^2)
end
function MachNumber(T0_over_T0star::TemperatureRatio,::Type{RayleighFlow};gas::PerfectGas=DefaultPerfectGas)
value(T0_over_T0star) <= 1.0 || error("T0/T0* must be 1 or smaller")
Msub = find_zero(x -> T0OverT0Star(MachNumber(x),RayleighFlow,gas=gas)-T0_over_T0star,(0.001,1),order=16)
max_T0ratio = T0OverT0Star(MachNumber(1e10),RayleighFlow,gas=gas)
if value(T0_over_T0star) < value(max_T0ratio)
return MachNumber(Msub)
else
Msup = find_zero(x -> T0OverT0Star(MachNumber(x),RayleighFlow,gas=gas)-T0_over_T0star,(1,1e10),order=16)
return MachNumber(Msub), MachNumber(Msup)
end
end
"""
POverPStar(M::MachNumber,RayleighFlow[;gas=Air]) -> PressureRatio
Compute the ratio of pressure to sonic pressure for the given Mach number
for Rayleigh flow, using the equation
``\\dfrac{p}{p^*} = \\dfrac{\\gamma+1}{1+\\gamma M^2}``
"""
function POverPStar(M::MachNumber,::Type{RayleighFlow};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
return PressureRatio((Ξ³+1)/(1+Ξ³*M^2))
end
"""
VOverVStar(M::MachNumber,RayleighFlow[;gas=Air]) -> VelocityRatio
Compute the ratio of velocity to sonic velocity for the given Mach number
for Rayleigh flow, using the equation
``\\dfrac{V}{V^*} = \\dfrac{(\\gamma+1)M^2}{1+\\gamma M^2}``
"""
function VOverVStar(M::MachNumber,::Type{RayleighFlow};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
return VelocityRatio(((Ξ³+1)*M^2)/(1+Ξ³*M^2))
end
"""
ΟOverΟStar(M::MachNumber,RayleighFlow[;gas=Air]) -> DensityRatio
Compute the ratio of density to sonic density for the given Mach number
for Rayleigh flow, using the equation
``\\dfrac{\\rho}{\\rho^*} = \\dfrac{1+\\gamma M^2}{(\\gamma+1)M^2}``
"""
function ΟOverΟStar(M::MachNumber,::Type{RayleighFlow};gas::PerfectGas=DefaultPerfectGas)
return DensityRatio(1/VOverVStar(M,RayleighFlow,gas=gas))
end
"""
P0OverP0Star(M::MachNumber,RayleighFlow[;gas=Air]) -> PressureRatio
Compute the ratio of stagnation pressure to sonic stagnation pressure for the given Mach number
for Rayleigh flow, using the equation
``\\dfrac{p_0}{p_0^*} = \\dfrac{(\\gamma+1)}{1+\\gamma M^2} \\left[ \\left( \\dfrac{1}{\\gamma+1} \\right)\\left(2 + (\\gamma-1) M^2\\right)\\right]^{\\gamma/(\\gamma-1)}``
"""
function P0OverP0Star(M::MachNumber,::Type{RayleighFlow};gas::PerfectGas=DefaultPerfectGas)
Ξ³ = SpecificHeatRatio(gas)
return PressureRatio((Ξ³+1)/(1+Ξ³*M^2)*((2+(Ξ³-1)*M^2)/(Ξ³+1))^(Ξ³/(Ξ³-1)))
end
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 4819 | #=
Thermodynamic relationships
=#
####### BASIC PERFECT GAS EQUATIONS OF STATE #######
"""
Temperature(Ο::Density,p::Pressure[;gas=Air])
Compute the temperature from the density `Ο` and pressure `p`, using
``T = p/(\\rho R)``
Can also switch the order of the arguments.
"""
Temperature(Ο::Density,p::Pressure;gas::PerfectGas=DefaultPerfectGas) = Temperature(p/(Ο*GasConstant(gas)))
Temperature(p::Pressure,Ο::Density;gas::PerfectGas=DefaultPerfectGas) = Temperature(Ο,p,gas=gas)
"""
Density(T::Temperature,p::Pressure[;gas=Air])
Compute the density from the temperature `T` and pressure `p`, using
``\\rho = p/(\\rho T)``
Can also switch the order of the arguments.
"""
Density(p::Pressure,T::Temperature;gas::PerfectGas=DefaultPerfectGas) = Density(p/(GasConstant(gas)*T))
Density(T::Temperature,p::Pressure;gas::PerfectGas=DefaultPerfectGas) = Density(p,T,gas=gas)
"""
Pressure(T::Temperature,Ο::Density[;gas=Air])
Compute the pressure from the temperature `T` and density `Ο`, using
``p = \\rho R T``
Can also switch the order of the arguments.
"""
Pressure(Ο::Density,T::Temperature;gas::PerfectGas=DefaultPerfectGas) = Pressure(Ο*GasConstant(gas)*T)
Pressure(T::Temperature,Ο::Density;gas::PerfectGas=DefaultPerfectGas) = Pressure(Ο,T,gas=gas)
"""
StagnationTemperature(Ο0::StagnationDensity,p0::StagnationPressure[;gas=Air])
Compute the stagnation temperature from the stagnation density `Ο0` and stagnation pressure `p0`, using
``T_0 = p_0/(\\rho_0 R)``
Can also switch the order of the arguments.
"""
StagnationTemperature(Ο0::StagnationDensity,p0::StagnationPressure;gas::PerfectGas=DefaultPerfectGas) = StagnationTemperature(p0/(Ο0*GasConstant(gas)))
StagnationTemperature(p0::StagnationPressure,Ο0::StagnationDensity;gas::PerfectGas=DefaultPerfectGas) = StagnationTemperature(Ο0,p0,gas=gas)
"""
StagnationDensity(T0::StagnationTemperature,p0::StagnationPressure[;gas=Air])
Compute the stagnation density from the stagnation temperature `T0` and stagnation pressure `p0`, using
``\\rho_0 = p_0/(\\rho T_0)``
Can also switch the order of the arguments.
"""
StagnationDensity(p0::StagnationPressure,T0::StagnationTemperature;gas::PerfectGas=DefaultPerfectGas) = StagnationDensity(p0/(GasConstant(gas)*T0))
StagnationDensity(T0::StagnationTemperature,p0::StagnationPressure;gas::PerfectGas=DefaultPerfectGas) = StagnationDensity(p0,T0,gas=gas)
"""
StagnationPressure(T0::StagnationTemperature,Ο0::StagnationDensity[;gas=Air])
Compute the stagnation pressure from the stagnation temperature `T0` and stagnation density `Ο0`, using
``p_0 = \\rho R T_0``
Can also switch the order of the arguments.
"""
StagnationPressure(Ο0::StagnationDensity,T0::StagnationTemperature;gas::PerfectGas=DefaultPerfectGas) = StagnationPressure(Ο0*GasConstant(gas)*T0)
StagnationPressure(T0::StagnationTemperature,Ο0::StagnationDensity;gas::PerfectGas=DefaultPerfectGas) = StagnationPressure(Ο0,T0,gas=gas)
"""
SoundSpeed(T::Temperature[,Ξ³::SpecificHeatRatio=1.4][,R::GasConstant=287])
Compute the speed of sound of a perfect gas, based on the absolute temperature `T`. The ratio of specific heats `Ξ³` and `R`
can also be supplied, but default to the values for air at standard conditions
(1.4 and 287 J/kg.K, respectively).
"""
SoundSpeed(T::Temperature;gas::PerfectGas=DefaultPerfectGas) = SoundSpeed(sqrt(SpecificHeatRatio(gas)*GasConstant(gas)*T))
Enthalpy(T::Temperature;gas::PerfectGas=DefaultPerfectGas) = Enthalpy(SpecificHeatPressure(gas)*T)
Temperature(h::Enthalpy;gas::PerfectGas=DefaultPerfectGas) = Temperature(h/SpecificHeatPressure(gas))
StagnationEnthalpy(T0::StagnationTemperature;gas::PerfectGas=DefaultPerfectGas) = StagnationEnthalpy(SpecificHeatPressure(gas)*T0)
StagnationTemperature(h0::StagnationEnthalpy;gas::PerfectGas=DefaultPerfectGas) = StagnationTemperature(h0/SpecificHeatPressure(gas))
InternalEnergy(T::Temperature;gas::PerfectGas=DefaultPerfectGas) = InternalEnergy(SpecificHeatVolume(gas)*T)
Temperature(e::InternalEnergy;gas::PerfectGas=DefaultPerfectGas) = Temperature(e/SpecificHeatVolume(gas))
StagnationInternalEnergy(T0::StagnationTemperature;gas::PerfectGas=DefaultPerfectGas) = StagnationInternalEnergy(SpecificHeatVolume(gas)*T0)
StagnationTemperature(e0::StagnationInternalEnergy;gas::PerfectGas=DefaultPerfectGas) = StagnationTemperature(e0/SpecificHeatVolume(gas))
StagnationEnthalpy(h::Enthalpy,u::Velocity) = StagnationEnthalpy(value(h)+0.5*value(u)^2)
Enthalpy(h0::StagnationEnthalpy,u::Velocity) = Enthalpy(value(h0)-0.5*value(u)^2)
# Mach number - velocity relations
Velocity(a::SoundSpeed,M::MachNumber) = Velocity(M*a)
MachNumber(u::Velocity,a::SoundSpeed) = MachNumber(u/a)
SoundSpeed(u::Velocity,M::MachNumber) = SoundSpeed(u/M)
# mass flow rate
MassFlowRate(Ο::Density,u::Velocity,A::Area) = MassFlowRate(Ο*u*A)
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 208 | for f in (:SupersonicMachNumber,:SubsonicMachNumber,
:SupersonicPOverP0,:SubsonicPOverP0)
@eval $f(array::AbstractArray{T},args...;kwargs...) where T = map(x -> $f(x,args...;kwargs...),array)
end
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 1106 | using Gasdynamics1D
@testset "Gases" begin
@test typeof(Air) <: PerfectGas
@test typeof(H2) <: PerfectGas
@test typeof(O2) <: PerfectGas
@test value(GasConstant(Air)) == 287u"J/kg/K"
@test value(SpecificHeatRatio(Air)) == 1.4
@test isapprox(ustrip(GasConstant(Air),u"ft*lbf/(slug*Ra)"),1716.25,atol=1e-2)
end
@testset "Quantities" begin
p = Pressure(50)
@test ustrip(p) == 50
@test unit(p) == u"Pa"
T = Temperature(20u"Β°F")
@test ustrip(T) β 15989//60
@test unit(T) == u"K"
@test ustrip(Temperature(20u"Β°F"),u"Β°C") β -20//3
s1 = Entropy(32)
s2 = Entropy(45)
@test ustrip(s1-s2) == -13
@test unit(s1-s2) == u"J/kg/K"
h1 = Enthalpy(45)
a = SoundSpeed(10)
h2 = Enthalpy(h1 + a^2)
@test ustrip(h2) == 145
@test unit(h2) == u"J/kg"
p = Pressure(80u"kPa")
Ο = Density(1.2)
T = Temperature(p/Ο/GasConstant(287))
@test T == Temperature(p,Ο)
end
@testset "Isentropic relations" begin
p = Pressure(10u"psi")
p0 = StagnationPressure(14.7u"psi")
M = MachNumber(PressureRatio(p/p0),Isentropic,gas=He)
@test M β 0.7069936247021056 atol=1e-10
end
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 838 | using Gasdynamics1D
using Test
using Literate
const GROUP = get(ENV, "GROUP", "All")
#ENV["GKSwstype"] = "nul" # removes GKS warnings during plotting
ENV["GKSwstype"] = "100"
notebookdir = "../notebook"
docdir = "../docs/src/manual"
litdir = "./literate"
if GROUP == "All" || GROUP == "Basics"
include("properties.jl")
end
if GROUP == "All" || GROUP == "Notebooks"
for (root, dirs, files) in walkdir(litdir)
for file in files
#endswith(file,".jl") && startswith(file,"5") && Literate.notebook(joinpath(root, file),notebookdir)
endswith(file,".jl") && Literate.notebook(joinpath(root, file),notebookdir)
end
end
end
if GROUP == "Documentation"
for (root, dirs, files) in walkdir(litdir)
for file in files
endswith(file,".jl") && Literate.markdown(joinpath(root, file),docdir)
end
end
end
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 2597 | #=
# Basic Tools for Quasi-1D Steady Compressible Flow
This notebook demonstrates the basic syntax for some tools for computing
quasi-1d steady compressible flow.
=#
# ### Set up the module
using Gasdynamics1D
#=
### Setting basic properties and states
We can set thermodynamic properties and states in a straightforward manner.
However, it is important to remember that we have to explicitly define the
type of property or state we are setting. Examples below will show how this works.
=#
#=
Let's say we wish to set the pressure to 10000 Pa. Pascals are the default units
of pressure, as can be verified by using the `default_unit` function:
=#
default_unit(Pressure)
#=
So if we do not specify the unit, it is **automatically set to the default unit**:
=#
Pressure(10000)
#=
We can set a quantity with another unit using the syntax u"[unit]". For example,
if we set pressure to 1 atm, it will still convert it to the default
unit.
=#
p = Pressure(1u"atm")
#=
However, we can always report the quantity in some desired units with the `value`
function:
=#
value(p,u"atm")
#-
value(p,u"psi")
#-
value(p,u"kPa")
#=
#### Other thermodynamic quantities
We can set most any other thermodynamic quantity in similar fashion:
=#
T = Temperature(20u"Β°C")
#-
T0 = StagnationTemperature(20)
#-
MachNumber(2.0)
#-
Enthalpy(50)
#-
Entropy(10)
#-
Area(50u"cm^2")
#-
Length(5)
#=
and others...
=#
#=
#### Gas properties
We can set the properties of the gas that we are analyzing. (Note: It is
assumed that the gas is perfect.)
=#
SpecificHeatRatio(1.3)
#-
GasConstant(320)
#=
and we can define a gas with these values:
=#
gas = PerfectGas(Ξ³=SpecificHeatRatio(1.3),R=GasConstant(320))
#=
We have **pre-defined gases** (at standard conditions), as well, for convenience:
=#
Air
#-
He
#-
O2
#-
CO2
#-
H2
#-
N2
#-
Ar
#=
#### Equations of state
We can apply the equation of state for a perfect gas to determine other quantities.
For example, suppose we have carbon dioxide at 1.2 kg/m^3 and 80 kPa. What is the temperature?
=#
T = Temperature(Density(1.2),Pressure(80u"kPa"),gas=CO2)
#=
You can switch the order of the arguments and it will still work:
=#
T = Temperature(Pressure(80u"kPa"),Density(1.2),gas=CO2)
#=
Then we can calculate the enthalpy, for example:
=#
Enthalpy(T,gas=CO2)
#=
What is the speed of sound of air at 20 degrees Celsius? Let's find out:
=#
SoundSpeed(Temperature(20u"Β°C"),gas=Air)
#=
How about oxygen?
=#
SoundSpeed(Temperature(20u"Β°C"),gas=O2)
#=
**Note: the default gas is air. So if you do not put the `gas=` argument in,
it will assume air at standard conditions.**
=#
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 6374 | #=
# Isentropic quasi-1D steady compressible flow
This notebook demonstrates the use of the compressible flow tools for computing
states and processes in isentropic quasi-1d steady compressible flow.
=#
# ### Set up the module
using Gasdynamics1D
#-
using Plots
using LaTeXStrings
#=
### Using isentropic relations
Let us apply some basic isentropic relations.
=#
#=
#### Example 1
Let's suppose two states of the flow in air, 1 and 2, are connected with each
other by an isentropic process. We know the pressure p1 is 101 kPa, the temperature
T1 is 20 degrees C, and the pressure p2 is 80 kPa. What is temperature T2?
To answer this, we will use the relationship
$$\dfrac{T_2}{T_1} = \left( \dfrac{p_2}{p_1}\right)^{(\gamma-1)/\gamma}$$
=#
p1 = Pressure(101u"kPa")
T1 = Temperature(20u"Β°C")
p2 = Pressure(80u"kPa")
#=
First, let's set the pressure ratio:
=#
p2_over_p1 = PressureRatio(p2/p1)
#=
Now find the temperature ratio. Note below that we specify the argument
`Isentropic` to make sure it is clear that we are using the isentropic relation.
We only need this argument when it is needed for clarity.
=#
T2_over_T1 = TemperatureRatio(p2_over_p1,Isentropic)
#=
It is important to understand that the tools "know" what formula you want to use
(the one listed above), based on the fact that (a) you supplied it with a pressure
ratio (the purpose of the `PressureRatio` line above), and (b) you told it that
the process is `Isentropic`. It figures out the rest.
=#
#=
Finally, calculate $T_2 = T_1 (T_2/T_1)$:
=#
T2 = Temperature(T1*T2_over_T1)
#=
or, in Celsius, if desired
=#
value(T2,u"Β°C")
#=
We could also do all of this in one line, though it is a bit harder to debug
if something goes wrong:
=#
T2 = Temperature(T1*TemperatureRatio(PressureRatio(p2/p1),Isentropic))
#=
#### Example 2
If the temperature ratio $T/T_0$ is 0.2381, what is the Mach number?
=#
MachNumber(TemperatureRatio(0.2381),Isentropic)
#=
#### Example 3
If the Mach number is 4.4 and stagnation pressure is 800 kPa, what is the pressure?
=#
Pressure(StagnationPressure(800u"kPa"),MachNumber(4.4),Isentropic)
#=
### Mach - area relations
A big part of isentropic quasi-1D flow deals with changes of the flow in variable-area
ducts. For these calculations, we make use of the *sonic area* $A_*$ as a reference area.
Remember that, for any ratio of $A/A_*$, there are two possible Mach numbers,
corresponding to a **subsonic flow** and a **supersonic flow**. Let us see that by
plotting $A/A_*$ versus Mach number $M$. If, for example, $A/A_* = 2$, then
note where the dashed line crosses the plot:
=#
Mrange = range(0,6,length=601)
Aratio = []
for M in Mrange
push!(Aratio,value(AOverAStar(MachNumber(M),Isentropic)))
end
plot(Mrange,Aratio,xlim=(0,4),ylim=(0,12),yticks=0:1:12,xlabel="Mach number",ylabel=L"A/A_*",legend=false)
scatter!([1],[1])
plot!(Mrange,2*ones(length(Mrange)),style=:dash)
#=
#### Example 4
What are the subsonic and supersonic Mach numbers associated with, for example,
an area ratio $A/A_*$ of 2 (the dashed line in the plot above)? We simply input
the desired area ratio and find the two solutions:
=#
M1, M2 = MachNumber(AreaRatio(2),Isentropic);
#-
M1
#-
M2
#=
A related question: What is the local sonic reference area $A_*$ when the Mach
number is 7.1 and the local area is 50 sq cm?
We first compute $A/A_*$ from $M = 7.1$, then compute $A_* = A/(A/A_*)$:
=#
A = Area(50u"cm^2")
M = MachNumber(7.1)
A_over_Astar = AOverAStar(M,Isentropic)
Astar = Area(A/A_over_Astar)
value(Astar,u"cm^2")
#=
So the throat would have to be 0.45 sq cm, much smaller than 50 sq cm!
=#
#=
Note that there is a convenience function to do those steps all in one:
=#
value(AStar(A,M),u"cm^2")
#=
#### Example 5
Consider the flow of air through a converging-diverging nozzle, leaving a stagnant
reservoir at pressure $p_0$ = 700 kPa and temperature $T_0 = 30$ degrees C. The Mach
number at a location (1) in the converging section with area 50 sq cm is equal to 0.4.
The exit of the nozzle has area 60 sq cm.
(a) What are the possible Mach numbers at the exit in choked isentropic conditions?
What are the exit (i.e., "back") pressures $p_2$ associated with these two Mach numbers?
(b) What is the mass flow rate through the nozzle in these conditions?
=#
# First, we set the known values
p0 = StagnationPressure(700u"kPa")
T0 = StagnationTemperature(30u"Β°C")
A1 = Area(50u"cm^2")
A2 = Area(60u"cm^2")
M1 = MachNumber(0.4)
#=
Now, we compute $A_1/A_*$ from $M_1$. Use this to calculate $A_*$ from $A_1/(A_1/A_*)$.
Then calculate $A_2/A_*$:
=#
A1_over_Astar = AOverAStar(M1,Isentropic,gas=Air)
Astar = Area(A1/A1_over_Astar)
A2_over_Astar = AreaRatio(A2/Astar)
#=
Now calculate the Mach numbers at location 2 (the nozzle exit):
=#
M2sub = SubsonicMachNumber(A2_over_Astar,Isentropic,gas=Air);
#-
M2sup = SupersonicMachNumber(A2_over_Astar,Isentropic,gas=Air);
#=
Actually, all of the last few steps can be done in *one step* with a different
version of the function `MachNumber`:
=#
M2sub, M2sup = MachNumber(M1,A1,A2,Isentropic,gas=Air);
#=
Now let's determine the exit pressures (location 2) corresponding to these two Mach numbers:
=#
p0_over_p2sub = P0OverP(M2sub,Isentropic,gas=Air)
p2sub = Pressure(p0/p0_over_p2sub)
value(p2sub,u"kPa")
#-
p0_over_p2sup = P0OverP(M2sup,Isentropic,gas=Air)
p2sup = Pressure(p0/p0_over_p2sup)
value(p2sup,u"kPa")
#=
So if the exit pressure is 651 kPa, then the flow will remain choked and **subsonic**
throughout, and if the exit pressure is 71.5 kPa, then the flow will remain choked
and **supersonic** throughout.
Note that, because the flow is choked, the mass flow rate is the same for both of
these cases. Let's calculate that mass flow rate (using $\rho_1 u_1 A_1$). We need
$\rho_1$ and $u_1$. First, calculate the stagnation density in this nozzle:
=#
Ο0 = StagnationDensity(p0,T0,gas=Air) # this uses the perfect gas law
# Using $M_1$, find $\rho_0/\rho_1$:
Ο0_over_Ο1 = Ο0OverΟ(M1,Isentropic,gas=Air)
# So we can get $\rho_1$ from $\rho_0/(\rho_0/\rho_1)$:
Ο1 = Density(Ο0/Ο0_over_Ο1)
# Now get $u_1$ from $M_1 c_1$, where $c_1$ is the speed of sound. For that, we need $T_1$:
T0_over_T1 = T0OverT(M1,Isentropic,gas=Air)
T1 = Temperature(T0/T0_over_T1)
c1 = SoundSpeed(T1)
#-
u1 = Velocity(M1*c1)
# And now we can put it all together:
mdot = MassFlowRate(Ο1*u1*A1)
# So the mass flow rate is stuck at 5.1 kg/s
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 4020 | #=
# Quasi-1D flow in a converging-diverging nozzle
In this notebook we will explore the flow in a converging-diverging nozzle.
The objective of this notebook is to explore the effect of *back pressure*
relative to the upstream stagnation pressure.
=#
# ### Set up the module
using Gasdynamics1D
#-
using Plots
#=
### Set up a nozzle
First, we will set up a nozzle. For this, we will create a representative
nozzle shape: a bell-shaped converging inlet and a slowly increasing diverging
section. We set the inlet area, the throat area, and the exit area:
=#
Ai = Area(100u"cm^2")
At = Area(30u"cm^2")
Ae = Area(60u"cm^2")
noz = Nozzle(Ai,At,Ae)
# Let's plot this nozzle to see its shape
nozzleplot(noz)
#=
### Create a flow through the nozzle
Let's set the conditions to create a flow through this nozzle. We need
to set the stagnation conditions upstream of the nozzle. We will use stagnation
pressure and temperature.
=#
p0 = StagnationPressure(700u"kPa")
T0 = StagnationTemperature(30u"Β°C")
#=
We also need a back pressure, outside of the nozzle exit. Let's try setting it
to 660 kPa, a little bit below the stagnation pressure
=#
pb = Pressure(660u"kPa")
#=
Now we have enough information to solve this flow. Let's plot it. We
need to specify which quantities we wish to show. We will show pressure
and Mach number. We could also show temperature and density.
The plot below shows that the pressure reaches a minimum in the throat
and the Mach number reaches a maximum there. However, it does not quite
get to sonic conditions.
=#
nozzleplot(noz,pb,p0,T0,fields=("pressure","machnumber"))
# One note on the last plots: We could have specified the gas, but it defaults to air.
#=
### Lowering the back pressure
What happens if we lower the back pressure further? Let's try this.
For several back pressures, we get a *shock* in the diverging section.
As back pressure gets smaller, this shock appears closer to the exit.
Finally, the shock leaves the nozzle entirely.
=#
nozzleplot(noz,Pressure(660u"kPa"),p0,T0,fields=("pressure","mach"))
nozzleplot!(noz,Pressure(600u"kPa"),p0,T0,fields=("pressure","mach"))
nozzleplot!(noz,Pressure(500u"kPa"),p0,T0,fields=("pressure","mach"))
nozzleplot!(noz,Pressure(400u"kPa"),p0,T0,fields=("pressure","mach"))
nozzleplot!(noz,Pressure(360u"kPa"),p0,T0,fields=("pressure","mach"))
nozzleplot!(noz,Pressure(300u"kPa"),p0,T0,fields=("pressure","mach"))
#=
### Mass flow rate
What is the mass flow rate through the nozzle? Let's inspect this value
for a few back pressures. First, the case with 660 kPa:
=#
nozproc = NozzleProcess(noz,Pressure(660u"kPa"),p0,T0)
massflowrate(nozproc)
# Now with 600 kPa
nozproc = NozzleProcess(noz,Pressure(600u"kPa"),p0,T0)
massflowrate(nozproc)
# And now with 500 kPa
nozproc = NozzleProcess(noz,Pressure(500u"kPa"),p0,T0)
massflowrate(nozproc)
#=
Notice that the mass flow rate is stuck. No matter how much we
lower the back pressure, we cannot increase the mass flow rate.
The flow is *choked*.
=#
#=
We can classify the type of flow with the `flow_quality` function:
=#
nozproc = NozzleProcess(noz,Pressure(600u"kPa"),p0,T0)
flow_quality(nozproc)
# There is a normal shock in the diverging section
nozproc = NozzleProcess(noz,Pressure(100u"kPa"),p0,T0)
flow_quality(nozproc)
# This is over-expanded: the exit pressure is too small and the flow needs to pass
# through shocks outside the nozzle to get up to the back pressure.
nozproc = NozzleProcess(noz,Pressure(60u"kPa"),p0,T0)
flow_quality(nozproc)
# This is under-expanded: the exit pressure is not low enough and the flow needs
# to pass through an *expansion fan* outside the nozzle to lower its pressure
# further to get down to the back pressure.
#=
When we seek to generate a supersonic exit flow, as is often the case,
then our goal is to design it so that the flow is *perfectly expanded*.
We can find the required back pressure easily, using isentropic relations:
=#
Ae = nozzleexit(noz)
Astar = throat(noz)
pb = Pressure(SupersonicPOverP0(Ae,Astar,Isentropic)*p0)
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 3861 | #=
# Normal shocks
In the last notebook, we saw that normal shocks develop in a nozzle when it is
not perfectly expanded. This notebook demonstrates the use of the compressible tools
for dealing with **normal shock waves**.
=#
# ### Set up the module
using Gasdynamics1D
#-
using Plots
#=
### General use of normal shock relations
Normal shock relations are designated with the argument `NormalShock`. For example,
let's look at the ratio of stagnation pressures $p_{02}/p_{01}$ across a normal shock
with the Mach number $M_1$ entering the shock equal to 2:
=#
p02_over_p01 = StagnationPressureRatio(MachNumber(2),NormalShock)
# and the density $\rho_2/\rho_1$ increases by the factor:
Ο2_over_Ο1 = DensityRatio(MachNumber(2),NormalShock)
# What is the entropy change across this shock?
s2_minus_s1 = Entropy(Entropy(0),MachNumber(2),NormalShock)
# Let's plot the entropy increase as a function of Mach number:
M1 = range(1,3,length=101)
s2 = []
pratio = []
for M in M1
push!(s2,ustrip(Entropy(Entropy(0),MachNumber(M),NormalShock)))
push!(pratio,ustrip(PressureRatio(MachNumber(M),NormalShock)))
end
#-
plot(M1,s2,xlim=(1,3),ylim=(0,400),xlabel="Mach number",ylabel="Entropy increase (J/kgK)")
# Not surprisingly, the entropy jump gets bigger as the Mach number increases
#=
### Example 1
For air entering a shock at Mach number 3, 1 atm, and 50 degrees F, what are the
Mach number, pressure, and temperature on the other side of the shock?
=#
p1 = Pressure(1u"atm")
M1 = MachNumber(3)
T1 = Temperature(50u"Β°F")
# The Mach number exiting the shock is
M2 = MachNumber(M1,NormalShock)
# Pressure exiting the shock (in atm) is
p2 = Pressure(p1*PressureRatio(M1,NormalShock))
value(p2,u"atm")
# and the temperature exiting the shock (in F) is
T2 = Temperature(T1*TemperatureRatio(M1,NormalShock))
value(T2,u"Β°F")
#=
### Example 2
A blow-down supersonic windtunnel is supplied with air from a large reservoir.
A Pitot tube is placed at the exit plane of a converging-diverging nozzle. The test
section lies at the end of the diverging section. The Mach number in the test
section (M2) is 2 and the pressure is below atmospheric, so a shock is formed at
the exit. The pressure just after the shock (p3) is 14.7 psi. Find the pressure in
the reservoir (p01), the pressure in the throat (pth), the Mach number just after
the shock (M3), the pressure at the Pitot tube (p4), and the temperature at the Pitot
tube (T4).
=#
M2 = MachNumber(2)
p3 = Pressure(14.7u"psi")
#=
First, let's find the pressure just before the shock and the Mach number
just after the shock
=#
# p3/p2
p3_over_p2 = PressureRatio(M2,NormalShock)
# p03/p02
p03_over_p02 = StagnationPressureRatio(M2,NormalShock)
# M3
M3 = MachNumber(M2,NormalShock)
# We can now calculate the pressure just before the shock, using $p_2 = p_3/(p_3/p_2)$
p2 = Pressure(p3/p3_over_p2)
#=
Now, let's find the conditions in the throat and reservoir, based on what we have
been given here. We can immediately find the stagnation pressure upstream of the
shock using the isentropic relation. This stagnation pressure is the same as the
reservoir pressure.
=#
p02 = StagnationPressure(p2,M2,Isentropic)
p01 = p02
#=
We know that the throat is choked. It must be, because the flow is subsonic before
and supersonic after the throat. Therefore, $M_{th}$ is 1, and we can get the local
pressure ($p_{th}$) from knowing the stagnation pressure and Mach number there:
=#
Mth = MachNumber(1)
p0th = p02
pth = Pressure(p0th,Mth,Isentropic)
#=
Now we can calculate the conditions at the Pitot tube at the exit. At the nose of
the Pitot tube, the flow stagnates. Thus, the pressure and temperature are equal
to the stagnation values. The stagnation pressure at the exit is the same as the
stagnation pressure at point 3 (just after the shock):
=#
p03 = Pressure(p03_over_p02*p02)
#-
value(p03,u"psi")
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 4933 | #=
# Steady frictional flow through a constant-area duct
This notebook demonstrates the use of tools for computing flow through a constant-area
duct with frictional effects, also known as **Fanno flow**
=#
# ### Set up the module
using Gasdynamics1D
#-
using Plots
using LaTeXStrings
#=
### Some general aspects of Fanno flow
Most calculations with frictional flow involve the relationship between Mach
number and the reference length $L^*$, representing the length required from that
point to bring the flow to Mach number equal to 1. The relationship is based on
the dimensionless parameter
$$\dfrac{f L^*}{D}$$
where $f$ is the Darcy friction factor and $D$ is the duct diameter. Let's plot
this relationship for air:
=#
Mrange = range(0.1,8,length=801)
fLDarray = []
for M in Mrange
push!(fLDarray,value(FLStarOverD(MachNumber(M),FannoFlow,gas=Air)))
end
#-
plot(Mrange,fLDarray,xlim=(0,8),ylim=(0,10),xticks=0:1:8,xlabel="Mach number",ylabel=L"fL^*/D",legend=false)
#=
Notice that the reference length goes to zero at Mach number 1, as it should, by
its definition. It should also be noted that there are a few values of $fL^*/D$ for
which there are two possible Mach numbers---one subsonic and one supersonic. This
is analogous to the situation in isentropic flow with area changes.
=#
#=
### Example 1
Flow enters a duct of diameter 2 cm at Mach number equal to 0.1 and leaves at
Mach number equal to 0.5. Assume that the friction factor is equal to 0.024 throughout.
(a) What is the length of the duct?
(b) How much longer would the duct have to be to reach Mach number equal to 1 at the exit?
=#
#=
First, we use $M_1 = 0.1$ to calculate $f L_1^*/D$. We will do the same with $M_2$
to calculate $f L_2^*/D$. The actual length $L$ is given by the difference between
$L_1^*$ and $L_2^*$.
=#
f = FrictionFactor(0.024)
D = Diameter(2u"cm")
#-
M1 = MachNumber(0.1)
fL1star_over_D = FLStarOverD(M1,FannoFlow)
#-
M2 = MachNumber(0.5)
fL2star_over_D = FLStarOverD(M2,FannoFlow)
# Now calculate $L_1^*$ and $L_2^*$, and $L$ from their difference:
L1star = Length(fL1star_over_D*D/f)
L2star = Length(fL2star_over_D*D/f)
L = Length(L1star-L2star)
# The additional length needed to bring the flow to Mach number 1 is, by definition, $L_2^*$:
L2star
# So we only need 0.89 m more to bring the flow to sonic (choked) conditions.
#=
### Example 2
Consider a flow of air through a circular pipe of diameter 3 cm, starting at
stagnation pressure 200 kPa, stagnation temperature 500 K, and velocity 100 m/s.
The friction factor in the pipe can be assumed to be 0.02 throughout.
(a) What length of pipe would be needed to drive the flow to Mach number 1 at the exit?
(b) What is the mass flow rate through the pipe at those conditions?
(c) Suppose the pipe were 30 m long. How would the mass flow rate change?
=#
# For (a), we are seeking $L_1^*$. First set the known conditions:
D = Diameter(3u"cm")
p01 = StagnationPressure(200u"kPa")
T01 = StagnationTemperature(500)
u1 = Velocity(100)
f = FrictionFactor(0.02)
#=
Now calculate the Mach number at the entrance. For this, we need $c_1$, the speed
of sound. We get this by using the known stagnation temperature $T_{01} = 500$ K
and velocity $u_1 = 100$ m/s. We will calculate the temperature $T_1$ from these
(using $h_1 = h_{01} - u_1^2/2$), and $c_1$ from that:
=#
h01 = StagnationEnthalpy(T01)
h1 = Enthalpy(h01,u1) # this computes h1 = h01 - u1^2/2
T1 = Temperature(h1)
c1 = SoundSpeed(T1)
M1 = MachNumber(u1/c1)
# Now we can compute $fL_1^*/D$ and then $L_1^*$. This is what we seek.
fL1starD = FLStarOverD(M1,FannoFlow)
L1star = Length(fL1starD*D/f)
#=
so we need a pipe of 16.6 m to reach Mach number 1.
Now let's compute the mass flow rate. We need the area and density. For the density,
we will first get the stagnation density (from $p_{01}$ and $T_{01}$) and then get
density from the isentropic relation. (We are not using isentropic relations
between two different points in the duct; we are using it to relate *local*
stagnation conditions to *local* conditions.)
=#
A = Area(D)
Ο01 = StagnationDensity(p01,T01)
Ο1 = Density(Ο01,M1,Isentropic)
# and the mass flow rate is:
mΜ = MassFlowRate(Ο1*u1*A)
#=
(c) Now suppose the pipe is 30 m long. This becomes our new $L_1^*$, and all of
the conditions at the entrance must adjust accordingly. First find the Mach number
=#
Lstar = L = Length(30u"m")
fLstar_over_D = FLOverD(f*Lstar/D)
M1 = SubsonicMachNumber(fLstar_over_D,FannoFlow)
#=
Note that the entrance Mach number is lower. The flow slows down due to the longer pipe.
Now find the new values of $\rho_1$ and $u_1$ (by finding $c_1$):
=#
T1 = Temperature(T01,M1,Isentropic)
Ο1 = Density(Ο01,M1,Isentropic)
c1 = SoundSpeed(T1)
u1 = Velocity(c1,M1)
mΜ = MassFlowRate(Ο1*u1*A)
#=
So the mass flow rate is smaller than it was with the shorter pipe! For the same
reservoir conditions, less mass flow rate is delivered to a longer (choked) pipe.
=#
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | code | 4948 | #=
# Steady flow through a duct with heat transfer
This notebook demonstrates the use of tools for computing steady compressible flow
through a constant-area duct with heat transfer, commonly known as **Rayleigh flow**.
=#
# ### Set up the module
using Gasdynamics1D
#-
using Plots
using LaTeXStrings
#=
#### Simple example
In a duct with helium, if the flow enters with stagnation temperature of 20 degrees C,
how much does the stagnation temperature change if we add heat 400 kJ/kg?
=#
q = HeatFlux(400u"kJ/kg")
T01 = StagnationTemperature(20u"Β°C")
# starting stagnation enthalpy
h01 = StagnationEnthalpy(T01,gas=He) # h01 = cp*T01
# add the heat
h02 = StagnationEnthalpy(h01 + q)
# calculate the final stagnation temperature
T02 = StagnationTemperature(h02,gas=He) # T02 = h02/cp
# Report the final value in Celsius:
value(T02,u"Β°C")
# so the flow exiting the duct has stagnation temperature 97 C.
#=
The sonic state is used as a reference, similar to Fanno flow and isentropic flow.
All states share the same $T_{0}^*$, $p^*$, $u^*$, etc, so we can relate two points
via this reference. We have functions that allow us to do this. For example, to
find the ratio of the local stagnation temperature to its sonic reference value
at Mach number 0.5 in air:
=#
T0OverT0Star(MachNumber(0.5),RayleighFlow,gas=Air)
#=
Note that the argument `RayleighFlow` was used to designate this function's use.
If the Mach number is 1, then...
=#
T0OverT0Star(MachNumber(1),RayleighFlow,gas=Air)
#=
That is, $T_{0}$ is equal to $T_{0}^*$ when Mach number is 1, as it should be,
by definition.
=#
#=
Alternatively, if we know $T_0/T_0^*$, we can determine $M$. However, there are
sometimes two possible values of Mach number, as with Fanno flow and isentropic flow.
=#
Mrange = range(0.001,8,length=801)
T0_over_T0star = []
for M in Mrange
push!(T0_over_T0star,value(T0OverT0Star(MachNumber(M),RayleighFlow,gas=Air)))
end
#-
plot(Mrange,T0_over_T0star,xlim=(0,8),ylim=(0,2),xticks=0:1:8,xlabel="Mach number",ylabel=L"T_0/T_0^*",legend=false)
plot!(Mrange,0.75*ones(length(Mrange)),style=:dash)
#=
For example, if $T_0/T_0^* = 0.75$, there are two possible Mach numbers, one subsonic
and one supersonic. The correct one depends on the circumstances.
=#
Msub, Msup = MachNumber(TemperatureRatio(0.75),RayleighFlow,gas=Air)
#-
Msub
#-
Msup
#=
### Example
Suppose the flow of air in a duct enters with velocity 75 m/s at a pressure of
150 kPa and temperature 300 K. We add heat 900 kJ/kg. Find
(a) The value of the Mach number at the entrance and exit
(b) The velocity, pressure, and temperature at the exit
(c) The maximum amount of heat we can add so that the flow is just choked
=#
# Set the given values
u1 = Velocity(75u"m/s")
p1 = Pressure(150u"kPa")
T1 = Temperature(300)
q = HeatFlux(900u"kJ/kg")
# We can immediately find the Mach number at the location 1, by finding $c_1$:
c1 = SoundSpeed(T1,gas=Air)
M1 = MachNumber(u1/c1)
# Now, use $M_1$ and $T_1$ to find $T_{01}$.
T01 = StagnationTemperature(T1,M1,Isentropic,gas=Air)
#=
Now let's focus on state 2. We will use the basic relation $h_{02} = h_{01} + q$
to determine $T_{02}$.
=#
h01 = StagnationEnthalpy(T01,gas=Air)
h02 = StagnationEnthalpy(h01+q)
T02 = StagnationTemperature(h02,gas=Air)
#=
To get the other states at location 2, we need the sonic reference conditions.
For example, we will find
$$T_{02}/T_{0}^*$$
to determine $M_2$. We get this by calculating
$$T_{0}^* = T_{01}/(T_{01}/T_{0}^*)$$
=#
T0star = StagnationTemperature(T01/T0OverT0Star(M1,RayleighFlow,gas=Air))
#-
T02_over_T0star = TemperatureRatio(T02/T0star)
#-
M2sub, M2sup = MachNumber(T02_over_T0star,RayleighFlow,gas=Air)
#=
The subsonic one is the only possible candidate, because the flow came in at
subsonic speed and can't have passed through Mach number 1. Thus
=#
M2 = M2sub
# We have increased the Mach number from 0.216 to 0.573 by adding heat.
# Now find the other reference states that we will use:
pstar = Pressure(p1/POverPStar(M1,RayleighFlow,gas=Air))
ustar = Velocity(u1/VOverVStar(M1,RayleighFlow,gas=Air))
Tstar = Temperature(T1/TOverTStar(M1,RayleighFlow,gas=Air))
#=
and now the values themselves. For example, we use $M_2$ to calculate $p_2/p^*$
and then calculate $p_2 = p^*(p_2/p^*)$.
=#
p2 = Pressure(pstar*POverPStar(M2,RayleighFlow,gas=Air))
#-
u2 = Velocity(ustar*VOverVStar(M2,RayleighFlow,gas=Air))
#-
T2 = Temperature(Tstar*TOverTStar(M2,RayleighFlow,gas=Air))
#=
Finally, let us calculate the maximum heat flux -- the heat flux that brings the
flow just to sonic conditions when starting at the given conditions at location 1.
This comes from
$$q_{max} = h_{0}^* - h_{01} = c_p (T_0^* - T_{01})$$
We have a convenience function for that, based on stagnation temperature:
=#
qmax = HeatFlux(T01,T0star,gas=Air)
#-
value(qmax,u"kJ/kg")
#=
Thus, we can add up to 1223 kJ/kg before the flow gets choked. Any more than that
will cause the entrance conditions to change.
=#
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | docs | 1264 | # Gasdynamics1D.jl
_Tools for analysis of 1d gasdynamics problems_
[](https://uclamaethreads.github.io/Gasdynamics1D.jl/stable) [](https://uclamaethreads.github.io/Gasdynamics1D.jl/dev/)
[](https://github.com/UCLAMAEThreads/Gasdynamics1D.jl/actions) [](https://codecov.io/gh/UCLAMAEThreads/Gasdynamics1D.jl)
The tools in this package enable the user to
- specify the thermodynamic state of a flow for a calorically perfect gas
- convert the state variables between different units
- find the change of flow state in various processes, including
- quasi-1d isentropic flow with area changes
- flows through normal shocks
- flows in ducts with effects of wall friction (Fanno flow)
- flows in ducts with effects of heat transfer (Rayleigh flow)
The easiest way to get started is to follow the examples notebooks in the `notebook` directory. Also, please consult the [documentation](https://uclamaethreads.github.io/Gasdynamics1D.jl/dev/).
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | docs | 528 | # Gasdynamics1D.jl
*tools for analysis of 1d gasdynamics problems*
The purpose of this package is to enable easy analysis of 1-d gas dynamics problems.
## Installation
This package works on Julia `1.0` and higher and is registered in the general Julia registry. To install, type
```julia
]add Gasdynamics1D
```
Then type
```julia
julia> using Gasdynamics1D
```
The plots in this documentation are generated using [Plots.jl](http://docs.juliaplots.org/latest/).
You might want to install that, too, to follow the examples.
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | docs | 3720 | ```@meta
EditURL = "../../../test/literate/0-BasicGasDynamics.jl"
```
# Basic Tools for Quasi-1D Steady Compressible Flow
This notebook demonstrates the basic syntax for some tools for computing
quasi-1d steady compressible flow.
### Set up the module
````@example 0-BasicGasDynamics
using Gasdynamics1D
````
### Setting basic properties and states
We can set thermodynamic properties and states in a straightforward manner.
However, it is important to remember that we have to explicitly define the
type of property or state we are setting. Examples below will show how this works.
Let's say we wish to set the pressure to 10000 Pa. Pascals are the default units
of pressure, as can be verified by using the `default_unit` function:
````@example 0-BasicGasDynamics
default_unit(Pressure)
````
So if we do not specify the unit, it is **automatically set to the default unit**:
````@example 0-BasicGasDynamics
Pressure(10000)
````
We can set a quantity with another unit using the syntax u"[unit]". For example,
if we set pressure to 1 atm, it will still convert it to the default
unit.
````@example 0-BasicGasDynamics
p = Pressure(1u"atm")
````
However, we can always report the quantity in some desired units with the `value`
function:
````@example 0-BasicGasDynamics
value(p,u"atm")
````
````@example 0-BasicGasDynamics
value(p,u"psi")
````
````@example 0-BasicGasDynamics
value(p,u"kPa")
````
#### Other thermodynamic quantities
We can set most any other thermodynamic quantity in similar fashion:
````@example 0-BasicGasDynamics
T = Temperature(20u"Β°C")
````
````@example 0-BasicGasDynamics
T0 = StagnationTemperature(20)
````
````@example 0-BasicGasDynamics
MachNumber(2.0)
````
````@example 0-BasicGasDynamics
Enthalpy(50)
````
````@example 0-BasicGasDynamics
Entropy(10)
````
````@example 0-BasicGasDynamics
Area(50u"cm^2")
````
````@example 0-BasicGasDynamics
Length(5)
````
and others...
#### Gas properties
We can set the properties of the gas that we are analyzing. (Note: It is
assumed that the gas is perfect.)
````@example 0-BasicGasDynamics
SpecificHeatRatio(1.3)
````
````@example 0-BasicGasDynamics
GasConstant(320)
````
and we can define a gas with these values:
````@example 0-BasicGasDynamics
gas = PerfectGas(Ξ³=SpecificHeatRatio(1.3),R=GasConstant(320))
````
We have **pre-defined gases** (at standard conditions), as well, for convenience:
````@example 0-BasicGasDynamics
Air
````
````@example 0-BasicGasDynamics
He
````
````@example 0-BasicGasDynamics
O2
````
````@example 0-BasicGasDynamics
CO2
````
````@example 0-BasicGasDynamics
H2
````
````@example 0-BasicGasDynamics
N2
````
````@example 0-BasicGasDynamics
Ar
````
#### Equations of state
We can apply the equation of state for a perfect gas to determine other quantities.
For example, suppose we have carbon dioxide at 1.2 kg/m^3 and 80 kPa. What is the temperature?
````@example 0-BasicGasDynamics
T = Temperature(Density(1.2),Pressure(80u"kPa"),gas=CO2)
````
You can switch the order of the arguments and it will still work:
````@example 0-BasicGasDynamics
T = Temperature(Pressure(80u"kPa"),Density(1.2),gas=CO2)
````
Then we can calculate the enthalpy, for example:
````@example 0-BasicGasDynamics
Enthalpy(T,gas=CO2)
````
What is the speed of sound of air at 20 degrees Celsius? Let's find out:
````@example 0-BasicGasDynamics
SoundSpeed(Temperature(20u"Β°C"),gas=Air)
````
How about oxygen?
````@example 0-BasicGasDynamics
SoundSpeed(Temperature(20u"Β°C"),gas=O2)
````
**Note: the default gas is air. So if you do not put the `gas=` argument in,
it will assume air at standard conditions.**
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | docs | 7689 | ```@meta
EditURL = "../../../test/literate/1-IsentropicGasDynamics.jl"
```
# Isentropic quasi-1D steady compressible flow
This notebook demonstrates the use of the compressible flow tools for computing
states and processes in isentropic quasi-1d steady compressible flow.
### Set up the module
````@example 1-IsentropicGasDynamics
using Gasdynamics1D
````
````@example 1-IsentropicGasDynamics
using Plots
using LaTeXStrings
````
### Using isentropic relations
Let us apply some basic isentropic relations.
#### Example 1
Let's suppose two states of the flow in air, 1 and 2, are connected with each
other by an isentropic process. We know the pressure p1 is 101 kPa, the temperature
T1 is 20 degrees C, and the pressure p2 is 80 kPa. What is temperature T2?
To answer this, we will use the relationship
$$\dfrac{T_2}{T_1} = \left( \dfrac{p_2}{p_1}\right)^{(\gamma-1)/\gamma}$$
````@example 1-IsentropicGasDynamics
p1 = Pressure(101u"kPa")
T1 = Temperature(20u"Β°C")
p2 = Pressure(80u"kPa")
````
First, let's set the pressure ratio:
````@example 1-IsentropicGasDynamics
p2_over_p1 = PressureRatio(p2/p1)
````
Now find the temperature ratio. Note below that we specify the argument
`Isentropic` to make sure it is clear that we are using the isentropic relation.
We only need this argument when it is needed for clarity.
````@example 1-IsentropicGasDynamics
T2_over_T1 = TemperatureRatio(p2_over_p1,Isentropic)
````
It is important to understand that the tools "know" what formula you want to use
(the one listed above), based on the fact that (a) you supplied it with a pressure
ratio (the purpose of the `PressureRatio` line above), and (b) you told it that
the process is `Isentropic`. It figures out the rest.
Finally, calculate $T_2 = T_1 (T_2/T_1)$:
````@example 1-IsentropicGasDynamics
T2 = Temperature(T1*T2_over_T1)
````
or, in Celsius, if desired
````@example 1-IsentropicGasDynamics
value(T2,u"Β°C")
````
We could also do all of this in one line, though it is a bit harder to debug
if something goes wrong:
````@example 1-IsentropicGasDynamics
T2 = Temperature(T1*TemperatureRatio(PressureRatio(p2/p1),Isentropic))
````
#### Example 2
If the temperature ratio $T/T_0$ is 0.2381, what is the Mach number?
````@example 1-IsentropicGasDynamics
MachNumber(TemperatureRatio(0.2381),Isentropic)
````
#### Example 3
If the Mach number is 4.4 and stagnation pressure is 800 kPa, what is the pressure?
````@example 1-IsentropicGasDynamics
Pressure(StagnationPressure(800u"kPa"),MachNumber(4.4),Isentropic)
````
### Mach - area relations
A big part of isentropic quasi-1D flow deals with changes of the flow in variable-area
ducts. For these calculations, we make use of the *sonic area* $A_*$ as a reference area.
Remember that, for any ratio of $A/A_*$, there are two possible Mach numbers,
corresponding to a **subsonic flow** and a **supersonic flow**. Let us see that by
plotting $A/A_*$ versus Mach number $M$. If, for example, $A/A_* = 2$, then
note where the dashed line crosses the plot:
````@example 1-IsentropicGasDynamics
Mrange = range(0,6,length=601)
Aratio = []
for M in Mrange
push!(Aratio,value(AOverAStar(MachNumber(M),Isentropic)))
end
plot(Mrange,Aratio,xlim=(0,4),ylim=(0,12),yticks=0:1:12,xlabel="Mach number",ylabel=L"A/A_*",legend=false)
scatter!([1],[1])
plot!(Mrange,2*ones(length(Mrange)),style=:dash)
````
#### Example 4
What are the subsonic and supersonic Mach numbers associated with, for example,
an area ratio $A/A_*$ of 2 (the dashed line in the plot above)? We simply input
the desired area ratio and find the two solutions:
````@example 1-IsentropicGasDynamics
M1, M2 = MachNumber(AreaRatio(2),Isentropic);
nothing #hide
````
````@example 1-IsentropicGasDynamics
M1
````
````@example 1-IsentropicGasDynamics
M2
````
A related question: What is the local sonic reference area $A_*$ when the Mach
number is 7.1 and the local area is 50 sq cm?
We first compute $A/A_*$ from $M = 7.1$, then compute $A_* = A/(A/A_*)$:
````@example 1-IsentropicGasDynamics
A = Area(50u"cm^2")
M = MachNumber(7.1)
A_over_Astar = AOverAStar(M,Isentropic)
Astar = Area(A/A_over_Astar)
value(Astar,u"cm^2")
````
So the throat would have to be 0.45 sq cm, much smaller than 50 sq cm!
Note that there is a convenience function to do those steps all in one:
````@example 1-IsentropicGasDynamics
value(AStar(A,M),u"cm^2")
````
#### Example 5
Consider the flow of air through a converging-diverging nozzle, leaving a stagnant
reservoir at pressure $p_0$ = 700 kPa and temperature $T_0 = 30$ degrees C. The Mach
number at a location (1) in the converging section with area 50 sq cm is equal to 0.4.
The exit of the nozzle has area 60 sq cm.
(a) What are the possible Mach numbers at the exit in choked isentropic conditions?
What are the exit (i.e., "back") pressures $p_2$ associated with these two Mach numbers?
(b) What is the mass flow rate through the nozzle in these conditions?
First, we set the known values
````@example 1-IsentropicGasDynamics
p0 = StagnationPressure(700u"kPa")
T0 = StagnationTemperature(30u"Β°C")
A1 = Area(50u"cm^2")
A2 = Area(60u"cm^2")
M1 = MachNumber(0.4)
````
Now, we compute $A_1/A_*$ from $M_1$. Use this to calculate $A_*$ from $A_1/(A_1/A_*)$.
Then calculate $A_2/A_*$:
````@example 1-IsentropicGasDynamics
A1_over_Astar = AOverAStar(M1,Isentropic,gas=Air)
Astar = Area(A1/A1_over_Astar)
A2_over_Astar = AreaRatio(A2/Astar)
````
Now calculate the Mach numbers at location 2 (the nozzle exit):
````@example 1-IsentropicGasDynamics
M2sub = SubsonicMachNumber(A2_over_Astar,Isentropic,gas=Air);
nothing #hide
````
````@example 1-IsentropicGasDynamics
M2sup = SupersonicMachNumber(A2_over_Astar,Isentropic,gas=Air);
nothing #hide
````
Actually, all of the last few steps can be done in *one step* with a different
version of the function `MachNumber`:
````@example 1-IsentropicGasDynamics
M2sub, M2sup = MachNumber(M1,A1,A2,Isentropic,gas=Air);
nothing #hide
````
Now let's determine the exit pressures (location 2) corresponding to these two Mach numbers:
````@example 1-IsentropicGasDynamics
p0_over_p2sub = P0OverP(M2sub,Isentropic,gas=Air)
p2sub = Pressure(p0/p0_over_p2sub)
value(p2sub,u"kPa")
````
````@example 1-IsentropicGasDynamics
p0_over_p2sup = P0OverP(M2sup,Isentropic,gas=Air)
p2sup = Pressure(p0/p0_over_p2sup)
value(p2sup,u"kPa")
````
So if the exit pressure is 651 kPa, then the flow will remain choked and **subsonic**
throughout, and if the exit pressure is 71.5 kPa, then the flow will remain choked
and **supersonic** throughout.
Note that, because the flow is choked, the mass flow rate is the same for both of
these cases. Let's calculate that mass flow rate (using $\rho_1 u_1 A_1$). We need
$\rho_1$ and $u_1$. First, calculate the stagnation density in this nozzle:
````@example 1-IsentropicGasDynamics
Ο0 = StagnationDensity(p0,T0,gas=Air) # this uses the perfect gas law
````
Using $M_1$, find $\rho_0/\rho_1$:
````@example 1-IsentropicGasDynamics
Ο0_over_Ο1 = Ο0OverΟ(M1,Isentropic,gas=Air)
````
So we can get $\rho_1$ from $\rho_0/(\rho_0/\rho_1)$:
````@example 1-IsentropicGasDynamics
Ο1 = Density(Ο0/Ο0_over_Ο1)
````
Now get $u_1$ from $M_1 c_1$, where $c_1$ is the speed of sound. For that, we need $T_1$:
````@example 1-IsentropicGasDynamics
T0_over_T1 = T0OverT(M1,Isentropic,gas=Air)
T1 = Temperature(T0/T0_over_T1)
c1 = SoundSpeed(T1)
````
````@example 1-IsentropicGasDynamics
u1 = Velocity(M1*c1)
````
And now we can put it all together:
````@example 1-IsentropicGasDynamics
mdot = MassFlowRate(Ο1*u1*A1)
````
So the mass flow rate is stuck at 5.1 kg/s
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | docs | 4819 | ```@meta
EditURL = "../../../test/literate/2-ConvergingDivergingNozzle.jl"
```
# Quasi-1D flow in a converging-diverging nozzle
In this notebook we will explore the flow in a converging-diverging nozzle.
The objective of this notebook is to explore the effect of *back pressure*
relative to the upstream stagnation pressure.
### Set up the module
````@example 2-ConvergingDivergingNozzle
using Gasdynamics1D
````
````@example 2-ConvergingDivergingNozzle
using Plots
````
### Set up a nozzle
First, we will set up a nozzle. For this, we will create a representative
nozzle shape: a bell-shaped converging inlet and a slowly increasing diverging
section. We set the inlet area, the throat area, and the exit area:
````@example 2-ConvergingDivergingNozzle
Ai = Area(100u"cm^2")
At = Area(30u"cm^2")
Ae = Area(60u"cm^2")
noz = Nozzle(Ai,At,Ae)
````
Let's plot this nozzle to see its shape
````@example 2-ConvergingDivergingNozzle
nozzleplot(noz)
````
### Create a flow through the nozzle
Let's set the conditions to create a flow through this nozzle. We need
to set the stagnation conditions upstream of the nozzle. We will use stagnation
pressure and temperature.
````@example 2-ConvergingDivergingNozzle
p0 = StagnationPressure(700u"kPa")
T0 = StagnationTemperature(30u"Β°C")
````
We also need a back pressure, outside of the nozzle exit. Let's try setting it
to 660 kPa, a little bit below the stagnation pressure
````@example 2-ConvergingDivergingNozzle
pb = Pressure(660u"kPa")
````
Now we have enough information to solve this flow. Let's plot it. We
need to specify which quantities we wish to show. We will show pressure
and Mach number. We could also show temperature and density.
The plot below shows that the pressure reaches a minimum in the throat
and the Mach number reaches a maximum there. However, it does not quite
get to sonic conditions.
````@example 2-ConvergingDivergingNozzle
nozzleplot(noz,pb,p0,T0,fields=("pressure","machnumber"))
````
One note on the last plots: We could have specified the gas, but it defaults to air.
### Lowering the back pressure
What happens if we lower the back pressure further? Let's try this.
For several back pressures, we get a *shock* in the diverging section.
As back pressure gets smaller, this shock appears closer to the exit.
Finally, the shock leaves the nozzle entirely.
````@example 2-ConvergingDivergingNozzle
nozzleplot(noz,Pressure(660u"kPa"),p0,T0,fields=("pressure","mach"))
nozzleplot!(noz,Pressure(600u"kPa"),p0,T0,fields=("pressure","mach"))
nozzleplot!(noz,Pressure(500u"kPa"),p0,T0,fields=("pressure","mach"))
nozzleplot!(noz,Pressure(400u"kPa"),p0,T0,fields=("pressure","mach"))
nozzleplot!(noz,Pressure(360u"kPa"),p0,T0,fields=("pressure","mach"))
nozzleplot!(noz,Pressure(300u"kPa"),p0,T0,fields=("pressure","mach"))
````
### Mass flow rate
What is the mass flow rate through the nozzle? Let's inspect this value
for a few back pressures. First, the case with 660 kPa:
````@example 2-ConvergingDivergingNozzle
nozproc = NozzleProcess(noz,Pressure(660u"kPa"),p0,T0)
massflowrate(nozproc)
````
Now with 600 kPa
````@example 2-ConvergingDivergingNozzle
nozproc = NozzleProcess(noz,Pressure(600u"kPa"),p0,T0)
massflowrate(nozproc)
````
And now with 500 kPa
````@example 2-ConvergingDivergingNozzle
nozproc = NozzleProcess(noz,Pressure(500u"kPa"),p0,T0)
massflowrate(nozproc)
````
Notice that the mass flow rate is stuck. No matter how much we
lower the back pressure, we cannot increase the mass flow rate.
The flow is *choked*.
We can classify the type of flow with the `flow_quality` function:
````@example 2-ConvergingDivergingNozzle
nozproc = NozzleProcess(noz,Pressure(600u"kPa"),p0,T0)
flow_quality(nozproc)
````
There is a normal shock in the diverging section
````@example 2-ConvergingDivergingNozzle
nozproc = NozzleProcess(noz,Pressure(100u"kPa"),p0,T0)
flow_quality(nozproc)
````
This is over-expanded: the exit pressure is too small and the flow needs to pass
through shocks outside the nozzle to get up to the back pressure.
````@example 2-ConvergingDivergingNozzle
nozproc = NozzleProcess(noz,Pressure(60u"kPa"),p0,T0)
flow_quality(nozproc)
````
This is under-expanded: the exit pressure is not low enough and the flow needs
to pass through an *expansion fan* outside the nozzle to lower its pressure
further to get down to the back pressure.
When we seek to generate a supersonic exit flow, as is often the case,
then our goal is to design it so that the flow is *perfectly expanded*.
We can find the required back pressure easily, using isentropic relations:
````@example 2-ConvergingDivergingNozzle
Ae = nozzleexit(noz)
Astar = throat(noz)
pb = Pressure(SupersonicPOverP0(Ae,Astar,Isentropic)*p0)
````
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | docs | 4626 | ```@meta
EditURL = "../../../test/literate/3-NormalShocks.jl"
```
# Normal shocks
In the last notebook, we saw that normal shocks develop in a nozzle when it is
not perfectly expanded. This notebook demonstrates the use of the compressible tools
for dealing with **normal shock waves**.
### Set up the module
````@example 3-NormalShocks
using Gasdynamics1D
````
````@example 3-NormalShocks
using Plots
````
### General use of normal shock relations
Normal shock relations are designated with the argument `NormalShock`. For example,
let's look at the ratio of stagnation pressures $p_{02}/p_{01}$ across a normal shock
with the Mach number $M_1$ entering the shock equal to 2:
````@example 3-NormalShocks
p02_over_p01 = StagnationPressureRatio(MachNumber(2),NormalShock)
````
and the density $\rho_2/\rho_1$ increases by the factor:
````@example 3-NormalShocks
Ο2_over_Ο1 = DensityRatio(MachNumber(2),NormalShock)
````
What is the entropy change across this shock?
````@example 3-NormalShocks
s2_minus_s1 = Entropy(Entropy(0),MachNumber(2),NormalShock)
````
Let's plot the entropy increase as a function of Mach number:
````@example 3-NormalShocks
M1 = range(1,3,length=101)
s2 = []
pratio = []
for M in M1
push!(s2,ustrip(Entropy(Entropy(0),MachNumber(M),NormalShock)))
push!(pratio,ustrip(PressureRatio(MachNumber(M),NormalShock)))
end
````
````@example 3-NormalShocks
plot(M1,s2,xlim=(1,3),ylim=(0,400),xlabel="Mach number",ylabel="Entropy increase (J/kgK)")
````
Not surprisingly, the entropy jump gets bigger as the Mach number increases
### Example 1
For air entering a shock at Mach number 3, 1 atm, and 50 degrees F, what are the
Mach number, pressure, and temperature on the other side of the shock?
````@example 3-NormalShocks
p1 = Pressure(1u"atm")
M1 = MachNumber(3)
T1 = Temperature(50u"Β°F")
````
The Mach number exiting the shock is
````@example 3-NormalShocks
M2 = MachNumber(M1,NormalShock)
````
Pressure exiting the shock (in atm) is
````@example 3-NormalShocks
p2 = Pressure(p1*PressureRatio(M1,NormalShock))
value(p2,u"atm")
````
and the temperature exiting the shock (in F) is
````@example 3-NormalShocks
T2 = Temperature(T1*TemperatureRatio(M1,NormalShock))
value(T2,u"Β°F")
````
### Example 2
A blow-down supersonic windtunnel is supplied with air from a large reservoir.
A Pitot tube is placed at the exit plane of a converging-diverging nozzle. The test
section lies at the end of the diverging section. The Mach number in the test
section (M2) is 2 and the pressure is below atmospheric, so a shock is formed at
the exit. The pressure just after the shock (p3) is 14.7 psi. Find the pressure in
the reservoir (p01), the pressure in the throat (pth), the Mach number just after
the shock (M3), the pressure at the Pitot tube (p4), and the temperature at the Pitot
tube (T4).
````@example 3-NormalShocks
M2 = MachNumber(2)
p3 = Pressure(14.7u"psi")
````
First, let's find the pressure just before the shock and the Mach number
just after the shock
p3/p2
````@example 3-NormalShocks
p3_over_p2 = PressureRatio(M2,NormalShock)
````
p03/p02
````@example 3-NormalShocks
p03_over_p02 = StagnationPressureRatio(M2,NormalShock)
````
M3
````@example 3-NormalShocks
M3 = MachNumber(M2,NormalShock)
````
We can now calculate the pressure just before the shock, using $p_2 = p_3/(p_3/p_2)$
````@example 3-NormalShocks
p2 = Pressure(p3/p3_over_p2)
````
Now, let's find the conditions in the throat and reservoir, based on what we have
been given here. We can immediately find the stagnation pressure upstream of the
shock using the isentropic relation. This stagnation pressure is the same as the
reservoir pressure.
````@example 3-NormalShocks
p02 = StagnationPressure(p2,M2,Isentropic)
p01 = p02
````
We know that the throat is choked. It must be, because the flow is subsonic before
and supersonic after the throat. Therefore, $M_{th}$ is 1, and we can get the local
pressure ($p_{th}$) from knowing the stagnation pressure and Mach number there:
````@example 3-NormalShocks
Mth = MachNumber(1)
p0th = p02
pth = Pressure(p0th,Mth,Isentropic)
````
Now we can calculate the conditions at the Pitot tube at the exit. At the nose of
the Pitot tube, the flow stagnates. Thus, the pressure and temperature are equal
to the stagnation values. The stagnation pressure at the exit is the same as the
stagnation pressure at point 3 (just after the shock):
````@example 3-NormalShocks
p03 = Pressure(p03_over_p02*p02)
````
````@example 3-NormalShocks
value(p03,u"psi")
````
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | docs | 5503 | ```@meta
EditURL = "../../../test/literate/4-FannoFlow.jl"
```
# Steady frictional flow through a constant-area duct
This notebook demonstrates the use of tools for computing flow through a constant-area
duct with frictional effects, also known as **Fanno flow**
### Set up the module
````@example 4-FannoFlow
using Gasdynamics1D
````
````@example 4-FannoFlow
using Plots
using LaTeXStrings
````
### Some general aspects of Fanno flow
Most calculations with frictional flow involve the relationship between Mach
number and the reference length $L^*$, representing the length required from that
point to bring the flow to Mach number equal to 1. The relationship is based on
the dimensionless parameter
$$\dfrac{f L^*}{D}$$
where $f$ is the Darcy friction factor and $D$ is the duct diameter. Let's plot
this relationship for air:
````@example 4-FannoFlow
Mrange = range(0.1,8,length=801)
fLDarray = []
for M in Mrange
push!(fLDarray,value(FLStarOverD(MachNumber(M),FannoFlow,gas=Air)))
end
````
````@example 4-FannoFlow
plot(Mrange,fLDarray,xlim=(0,8),ylim=(0,10),xticks=0:1:8,xlabel="Mach number",ylabel=L"fL^*/D",legend=false)
````
Notice that the reference length goes to zero at Mach number 1, as it should, by
its definition. It should also be noted that there are a few values of $fL^*/D$ for
which there are two possible Mach numbers---one subsonic and one supersonic. This
is analogous to the situation in isentropic flow with area changes.
### Example 1
Flow enters a duct of diameter 2 cm at Mach number equal to 0.1 and leaves at
Mach number equal to 0.5. Assume that the friction factor is equal to 0.024 throughout.
(a) What is the length of the duct?
(b) How much longer would the duct have to be to reach Mach number equal to 1 at the exit?
First, we use $M_1 = 0.1$ to calculate $f L_1^*/D$. We will do the same with $M_2$
to calculate $f L_2^*/D$. The actual length $L$ is given by the difference between
$L_1^*$ and $L_2^*$.
````@example 4-FannoFlow
f = FrictionFactor(0.024)
D = Diameter(2u"cm")
````
````@example 4-FannoFlow
M1 = MachNumber(0.1)
fL1star_over_D = FLStarOverD(M1,FannoFlow)
````
````@example 4-FannoFlow
M2 = MachNumber(0.5)
fL2star_over_D = FLStarOverD(M2,FannoFlow)
````
Now calculate $L_1^*$ and $L_2^*$, and $L$ from their difference:
````@example 4-FannoFlow
L1star = Length(fL1star_over_D*D/f)
L2star = Length(fL2star_over_D*D/f)
L = Length(L1star-L2star)
````
The additional length needed to bring the flow to Mach number 1 is, by definition, $L_2^*$:
````@example 4-FannoFlow
L2star
````
So we only need 0.89 m more to bring the flow to sonic (choked) conditions.
### Example 2
Consider a flow of air through a circular pipe of diameter 3 cm, starting at
stagnation pressure 200 kPa, stagnation temperature 500 K, and velocity 100 m/s.
The friction factor in the pipe can be assumed to be 0.02 throughout.
(a) What length of pipe would be needed to drive the flow to Mach number 1 at the exit?
(b) What is the mass flow rate through the pipe at those conditions?
(c) Suppose the pipe were 30 m long. How would the mass flow rate change?
For (a), we are seeking $L_1^*$. First set the known conditions:
````@example 4-FannoFlow
D = Diameter(3u"cm")
p01 = StagnationPressure(200u"kPa")
T01 = StagnationTemperature(500)
u1 = Velocity(100)
f = FrictionFactor(0.02)
````
Now calculate the Mach number at the entrance. For this, we need $c_1$, the speed
of sound. We get this by using the known stagnation temperature $T_{01} = 500$ K
and velocity $u_1 = 100$ m/s. We will calculate the temperature $T_1$ from these
(using $h_1 = h_{01} - u_1^2/2$), and $c_1$ from that:
````@example 4-FannoFlow
h01 = StagnationEnthalpy(T01)
h1 = Enthalpy(h01,u1) # this computes h1 = h01 - u1^2/2
T1 = Temperature(h1)
c1 = SoundSpeed(T1)
M1 = MachNumber(u1/c1)
````
Now we can compute $fL_1^*/D$ and then $L_1^*$. This is what we seek.
````@example 4-FannoFlow
fL1starD = FLStarOverD(M1,FannoFlow)
L1star = Length(fL1starD*D/f)
````
so we need a pipe of 16.6 m to reach Mach number 1.
Now let's compute the mass flow rate. We need the area and density. For the density,
we will first get the stagnation density (from $p_{01}$ and $T_{01}$) and then get
density from the isentropic relation. (We are not using isentropic relations
between two different points in the duct; we are using it to relate *local*
stagnation conditions to *local* conditions.)
````@example 4-FannoFlow
A = Area(D)
Ο01 = StagnationDensity(p01,T01)
Ο1 = Density(Ο01,M1,Isentropic)
````
and the mass flow rate is:
````@example 4-FannoFlow
mΜ = MassFlowRate(Ο1*u1*A)
````
(c) Now suppose the pipe is 30 m long. This becomes our new $L_1^*$, and all of
the conditions at the entrance must adjust accordingly. First find the Mach number
````@example 4-FannoFlow
Lstar = L = Length(30u"m")
fLstar_over_D = FLOverD(f*Lstar/D)
M1 = SubsonicMachNumber(fLstar_over_D,FannoFlow)
````
Note that the entrance Mach number is lower. The flow slows down due to the longer pipe.
Now find the new values of $\rho_1$ and $u_1$ (by finding $c_1$):
````@example 4-FannoFlow
T1 = Temperature(T01,M1,Isentropic)
Ο1 = Density(Ο01,M1,Isentropic)
c1 = SoundSpeed(T1)
u1 = Velocity(c1,M1)
mΜ = MassFlowRate(Ο1*u1*A)
````
So the mass flow rate is smaller than it was with the shorter pipe! For the same
reservoir conditions, less mass flow rate is delivered to a longer (choked) pipe.
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | docs | 5936 | ```@meta
EditURL = "../../../test/literate/5-RayleighFlow.jl"
```
# Steady flow through a duct with heat transfer
This notebook demonstrates the use of tools for computing steady compressible flow
through a constant-area duct with heat transfer, commonly known as **Rayleigh flow**.
### Set up the module
````@example 5-RayleighFlow
using Gasdynamics1D
````
````@example 5-RayleighFlow
using Plots
using LaTeXStrings
````
#### Simple example
In a duct with helium, if the flow enters with stagnation temperature of 20 degrees C,
how much does the stagnation temperature change if we add heat 400 kJ/kg?
````@example 5-RayleighFlow
q = HeatFlux(400u"kJ/kg")
T01 = StagnationTemperature(20u"Β°C")
````
starting stagnation enthalpy
````@example 5-RayleighFlow
h01 = StagnationEnthalpy(T01,gas=He) # h01 = cp*T01
````
add the heat
````@example 5-RayleighFlow
h02 = StagnationEnthalpy(h01 + q)
````
calculate the final stagnation temperature
````@example 5-RayleighFlow
T02 = StagnationTemperature(h02,gas=He) # T02 = h02/cp
````
Report the final value in Celsius:
````@example 5-RayleighFlow
value(T02,u"Β°C")
````
so the flow exiting the duct has stagnation temperature 97 C.
The sonic state is used as a reference, similar to Fanno flow and isentropic flow.
All states share the same $T_{0}^*$, $p^*$, $u^*$, etc, so we can relate two points
via this reference. We have functions that allow us to do this. For example, to
find the ratio of the local stagnation temperature to its sonic reference value
at Mach number 0.5 in air:
````@example 5-RayleighFlow
T0OverT0Star(MachNumber(0.5),RayleighFlow,gas=Air)
````
Note that the argument `RayleighFlow` was used to designate this function's use.
If the Mach number is 1, then...
````@example 5-RayleighFlow
T0OverT0Star(MachNumber(1),RayleighFlow,gas=Air)
````
That is, $T_{0}$ is equal to $T_{0}^*$ when Mach number is 1, as it should be,
by definition.
Alternatively, if we know $T_0/T_0^*$, we can determine $M$. However, there are
sometimes two possible values of Mach number, as with Fanno flow and isentropic flow.
````@example 5-RayleighFlow
Mrange = range(0.001,8,length=801)
T0_over_T0star = []
for M in Mrange
push!(T0_over_T0star,value(T0OverT0Star(MachNumber(M),RayleighFlow,gas=Air)))
end
````
````@example 5-RayleighFlow
plot(Mrange,T0_over_T0star,xlim=(0,8),ylim=(0,2),xticks=0:1:8,xlabel="Mach number",ylabel=L"T_0/T_0^*",legend=false)
plot!(Mrange,0.75*ones(length(Mrange)),style=:dash)
````
For example, if $T_0/T_0^* = 0.75$, there are two possible Mach numbers, one subsonic
and one supersonic. The correct one depends on the circumstances.
````@example 5-RayleighFlow
Msub, Msup = MachNumber(TemperatureRatio(0.75),RayleighFlow,gas=Air)
````
````@example 5-RayleighFlow
Msub
````
````@example 5-RayleighFlow
Msup
````
### Example
Suppose the flow of air in a duct enters with velocity 75 m/s at a pressure of
150 kPa and temperature 300 K. We add heat 900 kJ/kg. Find
(a) The value of the Mach number at the entrance and exit
(b) The velocity, pressure, and temperature at the exit
(c) The maximum amount of heat we can add so that the flow is just choked
Set the given values
````@example 5-RayleighFlow
u1 = Velocity(75u"m/s")
p1 = Pressure(150u"kPa")
T1 = Temperature(300)
q = HeatFlux(900u"kJ/kg")
````
We can immediately find the Mach number at the location 1, by finding $c_1$:
````@example 5-RayleighFlow
c1 = SoundSpeed(T1,gas=Air)
M1 = MachNumber(u1/c1)
````
Now, use $M_1$ and $T_1$ to find $T_{01}$.
````@example 5-RayleighFlow
T01 = StagnationTemperature(T1,M1,Isentropic,gas=Air)
````
Now let's focus on state 2. We will use the basic relation $h_{02} = h_{01} + q$
to determine $T_{02}$.
````@example 5-RayleighFlow
h01 = StagnationEnthalpy(T01,gas=Air)
h02 = StagnationEnthalpy(h01+q)
T02 = StagnationTemperature(h02,gas=Air)
````
To get the other states at location 2, we need the sonic reference conditions.
For example, we will find
$$T_{02}/T_{0}^*$$
to determine $M_2$. We get this by calculating
$$T_{0}^* = T_{01}/(T_{01}/T_{0}^*)$$
````@example 5-RayleighFlow
T0star = StagnationTemperature(T01/T0OverT0Star(M1,RayleighFlow,gas=Air))
````
````@example 5-RayleighFlow
T02_over_T0star = TemperatureRatio(T02/T0star)
````
````@example 5-RayleighFlow
M2sub, M2sup = MachNumber(T02_over_T0star,RayleighFlow,gas=Air)
````
The subsonic one is the only possible candidate, because the flow came in at
subsonic speed and can't have passed through Mach number 1. Thus
````@example 5-RayleighFlow
M2 = M2sub
````
We have increased the Mach number from 0.216 to 0.573 by adding heat.
Now find the other reference states that we will use:
````@example 5-RayleighFlow
pstar = Pressure(p1/POverPStar(M1,RayleighFlow,gas=Air))
ustar = Velocity(u1/VOverVStar(M1,RayleighFlow,gas=Air))
Tstar = Temperature(T1/TOverTStar(M1,RayleighFlow,gas=Air))
````
and now the values themselves. For example, we use $M_2$ to calculate $p_2/p^*$
and then calculate $p_2 = p^*(p_2/p^*)$.
````@example 5-RayleighFlow
p2 = Pressure(pstar*POverPStar(M2,RayleighFlow,gas=Air))
````
````@example 5-RayleighFlow
u2 = Velocity(ustar*VOverVStar(M2,RayleighFlow,gas=Air))
````
````@example 5-RayleighFlow
T2 = Temperature(Tstar*TOverTStar(M2,RayleighFlow,gas=Air))
````
Finally, let us calculate the maximum heat flux -- the heat flux that brings the
flow just to sonic conditions when starting at the given conditions at location 1.
This comes from
$$q_{max} = h_{0}^* - h_{01} = c_p (T_0^* - T_{01})$$
We have a convenience function for that, based on stagnation temperature:
````@example 5-RayleighFlow
qmax = HeatFlux(T01,T0star,gas=Air)
````
````@example 5-RayleighFlow
value(qmax,u"kJ/kg")
````
Thus, we can add up to 1223 kJ/kg before the flow gets choked. Any more than that
will cause the entrance conditions to change.
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"MIT"
] | 0.2.7 | 8ed5f1e73ceb98ad0681250460a5c310af508149 | docs | 138 | # Types and Functions
```@meta
CurrentModule = Gasdynamics1D
```
```@autodocs
Modules = [Gasdynamics1D]
Order = [:type, :function]
``` | Gasdynamics1D | https://github.com/UCLAMAEThreads/Gasdynamics1D.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 777 | using DifferentiableMetabolism
using Documenter
DocMeta.setdocmeta!(
DifferentiableMetabolism,
:DocTestSetup,
:(using DifferentiableMetabolism);
recursive = true,
)
makedocs(;
modules = [DifferentiableMetabolism],
authors = "St. Elmo Wilken <[email protected]> and contributors",
repo = "https://github.com/stelmo/DifferentiableMetabolism.jl/blob/{commit}{path}#{line}",
sitename = "DifferentiableMetabolism.jl",
format = Documenter.HTML(;
prettyurls = get(ENV, "CI", "false") == "true",
canonical = "https://stelmo.github.io/DifferentiableMetabolism.jl",
assets = String[],
),
pages = ["Home" => "index.md"],
)
deploydocs(; repo = "github.com/stelmo/DifferentiableMetabolism.jl", devbranch = "master")
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 832 | module DifferentiableMetabolism
using COBREXA, JuMP
# using Enzyme: jacobian, Forward, Val, Reverse
using ForwardDiff
using Symbolics
using LinearAlgebra, SparseArrays, RowEchelon
using DocStringExtensions
include("DifferentiableModel.jl")
include("Enzyme.jl")
include("differentiate.jl")
include("scale.jl")
include("utils.jl")
include("update.jl")
include("differentiable_models/gecko.jl")
include("differentiable_models/smoment.jl")
include("analytic_derivatives/analytic_derivatives.jl")
include("analytic_derivatives/analytic_derivatives_with_scaling.jl")
# export everything that isn't prefixed with _ (inspired by JuMP.jl, thanks!)
for sym in names(@__MODULE__, all = true)
if sym in [Symbol(@__MODULE__), :eval, :include] || startswith(string(sym), ['_', '#'])
continue
end
@eval export $sym
end
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 1366 | """
$(TYPEDEF)
A struct representing a generalized differentiable constraint based model.
Format of the model is:
```
minimize Β½ * x' * Q(ΞΈ) * x + c(ΞΈ)' * x
s.t. E(ΞΈ) * x = d(ΞΈ)
M(ΞΈ) * x β€ h(ΞΈ)
```
Nominally, every component can be differentiated.
$(TYPEDFIELDS)
Note, to ensure differentiability, preprocessing of the model used to derive the
[`DifferentiableModel`](@ref) is required. In short, only an active solution may
be differentiated, this requires that:
- the base model does not possess any isozymes, each reaction may be catalyzed
by one enzyme (complex) only,
- all the reactions should be unidirectinal,
- the kcats in `rid_enzyme` are for the appropriate direction used in the model,
- all rids in `rid_enzyme` are used in the model.
"""
mutable struct DifferentiableModel
Q::Function
c::Function
E::Function
d::Function
M::Function
h::Function
ΞΈ::Vector{Float64}
analytic_var_derivs::Function
analytic_par_derivs::Function
var_ids::Vector{String}
param_ids::Vector{String}
end
"""
Pretty printing of a differentiable model.
"""
function Base.show(io::IO, ::MIME"text/plain", m::DifferentiableModel)
println(io, "", "Differentiable metabolic with: ")
println(io, " ", length(m.var_ids), " variables")
println(io, " ", length(m.param_ids), " parameters")
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 1229 | """
$(TYPEDEF)
A struct used to store information about an enzyme. A simplified version of
[`COBREXA.Isozyme`](@ref), which stores only the turnover number (kcat) that
should be used by the differentiable model, as well as information about the
protein complex (stoichiometry and molar mass).
$(TYPEDFIELDS)
"""
mutable struct Enzyme
kcat::Float64
gene_product_count::Dict{String,Int}
gene_product_mass::Dict{String,Float64}
end
"""
$(TYPEDSIGNATURES)
Convert a [`COBREXA.Isozyme`](@ref) to an [`Enzyme`](@ref) using the turnover
number in `direction` (either `:forward` or `:reverse`), as well as
`gene_product_mass_lookup`, which is either a function or a dictionary mapping a
gene product id to its molar mass.
"""
function isozyme_to_enzyme(
isozyme::Isozyme,
gene_product_mass_lookup::Union{Function,Dict{String,Float64}};
direction = :forward,
)
_gpmlu =
gene_product_mass_lookup isa Function ? gene_product_mass_lookup :
(gid -> gene_product_mass_lookup[gid])
Enzyme(
direction == :forward ? isozyme.kcat_forward : isozyme.kcat_reverse,
isozyme.gene_product_count,
Dict(gid => _gpmlu(gid) for gid in keys(isozyme.gene_product_count)),
)
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 6684 | """
$(TYPEDSIGNATURES)
Solve and differentiate an optimization problem using the optimality conditions.
The output can be scaled relative to the parameters and the solved variables
with `scale_output`. *Optimizer* modifications (from COBREXA.jl) can be supplied
through `modifications`. Analytic derivatives of the optimality conditions can
be used by setting `use_analytic` to true.
Internally calls [`differentiate!`](@ref), the in-place variant of this function,
constructs the arguments internally.
"""
function differentiate(
diffmodel::DifferentiableModel,
optimizer;
use_analytic = false,
scale_output = true,
modifications = [],
)
x = zeros(length(diffmodel.var_ids))
Ξ½ = zeros(length(diffmodel.d(diffmodel.ΞΈ)))
Ξ» = zeros(length(diffmodel.h(diffmodel.ΞΈ)))
nA = length(x) + length(Ξ½) + length(Ξ»)
A = spzeros(nA, nA)
B = zeros(nA, length(diffmodel.param_ids))
dx = zeros(size(A, 1), size(B, 2))
differentiate!(
x,
Ξ½,
Ξ»,
A,
B,
dx,
diffmodel,
optimizer;
modifications,
use_analytic,
scale_output,
)
return x, dx
end
"""
$(TYPEDSIGNATURES)
Differentiates `diffmodel` using in-place functions as much as possible. The meaning of
the variables are:
- `x`: primal variables
- `Ξ½`: equality dual variables
- `Ξ»`: inequality dual variables
- `A`: variable derivatives
- `B`: parameter derivitives
- `dx`: the sensitivities of the variables
- `diffmodel`: the model to differantiate
- `optimizer`: the solver used in the forward pass
- `modifications`: COBREXA functions forwarded to the *solver*
- `use_analytic`: use the analytic derivatives (need to be supplied)
- `scale_output`: flag if the primal variable sensitivities should be scaled by `dx/dy => dlog(x)/dlog(y)`
"""
function differentiate!(
x,
Ξ½,
Ξ»,
A,
B,
dx,
diffmodel::DifferentiableModel,
optimizer;
modifications = [],
use_analytic = false,
scale_output = true,
)
DifferentiableMetabolism._solve_model!(x, Ξ½, Ξ», diffmodel, optimizer; modifications)
DifferentiableMetabolism._differentiate_kkt!(
x,
Ξ½,
Ξ»,
A,
B,
dx,
diffmodel;
use_analytic,
)
#: Scale dx/dy => dlog(x)/dlog(y)
scale_output && _scale_derivatives(x, dx, diffmodel)
nothing
end
"""
$(TYPEDSIGNATURES)
Solve the optimization problem, aka the forward pass.
This function is called by [`differentiate!`](@ref).
"""
function _solve_model!(
x,
Ξ½,
Ξ»,
diffmodel::DifferentiableModel,
optimizer;
modifications = [],
)
#: forward pass, solve the optimization problem
opt_model = JuMP.Model(optimizer)
set_silent(opt_model)
@variable(opt_model, z[1:length(diffmodel.var_ids)])
if all(diffmodel.Q(diffmodel.ΞΈ) .== 0) # is LP
@objective(opt_model, Min, diffmodel.c(diffmodel.ΞΈ)' * z)
else
@objective(
opt_model,
Min,
0.5 * z' * diffmodel.Q(diffmodel.ΞΈ) * z + diffmodel.c(diffmodel.ΞΈ)' * z
)
end
@constraint(opt_model, eq, diffmodel.E(diffmodel.ΞΈ) * z .== diffmodel.d(diffmodel.ΞΈ))
@constraint(opt_model, ineq, diffmodel.M(diffmodel.ΞΈ) * z .<= diffmodel.h(diffmodel.ΞΈ))
# apply the modifications
for mod in modifications
mod(nothing, opt_model)
end
optimize!(opt_model)
if termination_status(opt_model) β [JuMP.OPTIMAL, JuMP.LOCALLY_SOLVED]
throw(DomainError(termination_status(opt_model), " model not solved optimally!"))
end
#: differentiate the optimal solution
x .= value.(opt_model[:z])
Ξ½ .= dual.(opt_model[:eq])
Ξ» .= dual.(opt_model[:ineq])
nothing
end
"""
$(TYPEDSIGNATURES)
Implicitly differentiate a convex quadratic or linear program using the KKT
conditions. Suppose `F(z(ΞΈ), ΞΈ) = 0` represents the optimality (KKT) conditions
of some optimization problem specified by `diffmodel`, where `z` is a vector of
the primal, `x`, and dual, `Ξ½` and `Ξ»`, solutions. Then, mutate `A = ββF(z(ΞΈ),
ΞΈ)`, `B = ββF(z(ΞΈ), ΞΈ)`, and the optimal solution.
This function is called by [`differentiate!`](@ref).
"""
function _differentiate_kkt!(
x,
Ξ½,
Ξ»,
A,
B,
dx,
diffmodel::DifferentiableModel;
use_analytic = false,
)
#=
The analytic approaches are much faster than using automatic
differentiation, but more labor intensive because the derivative of the
parameters with respect to the KKT function needs to be manually supplied.
Ideally, use symbolic code to generate the derivatives for you.
However, the autodiff works for any model and the user does not have to
supply any analytic derivatives. However, any sparse arrays encoded
in the model structure must be cast to dense arrays for ForwardDiff to
work. The densification restriction can be dropped once #481 here
https://github.com/JuliaDiff/ForwardDiff.jl/pull/481 gets merged into
ForwardDiff.
=#
if use_analytic
A .= diffmodel.analytic_var_derivs(x, Ξ½, Ξ», diffmodel.ΞΈ)
B .= diffmodel.analytic_par_derivs(x, Ξ½, Ξ», diffmodel.ΞΈ)
else
kkt(x, Ξ½, Ξ», ΞΈ) = [
Array(diffmodel.Q(ΞΈ)) * x + Array(diffmodel.c(ΞΈ)) - Array(diffmodel.E(ΞΈ))' * Ξ½ - Array(diffmodel.M(ΞΈ))' * Ξ»
Array(diffmodel.E(ΞΈ)) * x - Array(diffmodel.d(ΞΈ))
diagm(Ξ») * (Array(diffmodel.M(ΞΈ)) * x - Array(diffmodel.h(ΞΈ)))
]
A = make_analytic_var_derivative(diffmodel)(x, Ξ½, Ξ», diffmodel.ΞΈ)
B = ForwardDiff.jacobian(ΞΈ -> kkt(x, Ξ½, Ξ», ΞΈ), diffmodel.ΞΈ)
end
#=
Solve the linear system of equations.
This is the most time intensive operation, accounting for 75%
of the run time on iML1515. Iterative solvers, and other indirect
approaches did not speed up the solving process. Separating out
the factorization also does not help that much, because the pattern
changes, requiring frequent refactorizations. Sadly, Pardiso is no
longer free for academics. Hence, the standard solve is used.
=#
_linear_solver(A, B, dx)
nothing
end
"""
$(TYPEDSIGNATURES)
Separate linear solve to have the ability to swap it our for something faster.
"""
function _linear_solver(A, B, dx)
ldiv!(dx, lu(-A), B)
nothing
end
"""
$(TYPEDSIGNATURES)
Scale the derivatives: `dx/dy => dlog(x)/dlog(y)`. Note, only scales
the primal variables, *not* the duals.
"""
function _scale_derivatives(x, dx, diffmodel::DifferentiableModel)
for i = 1:length(x)
for j = 1:size(dx, 2)
dx[i, j] *= diffmodel.ΞΈ[j] / x[i]
end
end
nothing
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 2361 | """
$(TYPEDSIGNATURES)
Return scaling factor used to rescale constraints in matrix format (row-wise).
Arguments are assumed to be of the form `A β b` where `β` are usually `=` or `β€`
in the context of an optimization problem. To set the cut-off for when a coefficient
is considered to be zero, change `atol`.
See also [`check_scaling`](@ref).
"""
function scaling_factor(A, b; atol = 1e-8)
mat = [A b]
max_coeff_range, _ = check_scaling(mat; atol)
lb = -round(max_coeff_range, RoundUp) / 2.0
ub = round(max_coeff_range, RoundUp) / 2.0
sfs = zeros(size(mat, 1))
for (j, row) in enumerate(eachrow(mat))
llv, luv = extrema(log10 β abs, row)
if lb <= llv && luv <= ub
sf = 0.0
else # scale to upper bound
sf = ub - luv
end
sfs[j] = 10^sf
end
return sfs
end
"""
$(TYPEDSIGNATURES)
Return `logββ(|x|)` or `x` if `|x| β€ atol`.
"""
_get_exponent_or_cutoff(x; atol = 1e-8) = abs(x) > atol && log10(abs(x))
"""
$(TYPEDSIGNATURES)
Return the best case (if rescaled using [`scaling_factor`](@ref)) and current
scaling of a matrix `mat`. Scaling is defined as the largest difference between
the exponent of the smallest and largest value in each row of a matrix. To set
the cut-off for when a coefficient is considered to be zero, change `atol`.
"""
function check_scaling(mat; atol = 1e-8)
best_case = maximum(
maximum(_get_exponent_or_cutoff.(mat; atol), dims = 2)[:] -
minimum(_get_exponent_or_cutoff.(mat; atol), dims = 2)[:],
)
rlb, rub = log10.(extrema(filter(x -> x > atol, abs.(mat))))
worst_case = rub - rlb
return best_case, worst_case
end
"""
$(TYPEDSIGNATURES)
Helper function to check the scaling of the equality constraint matrix.
"""
function check_scaling(diffmodel::DifferentiableModel; atol = 1e-8, verbose = false)
eq = check_scaling([diffmodel.E(diffmodel.ΞΈ) diffmodel.d(diffmodel.ΞΈ)]; atol)
ineq = check_scaling([diffmodel.M(diffmodel.ΞΈ) diffmodel.h(diffmodel.ΞΈ)]; atol)
obj =
all(diffmodel.Q(diffmodel.ΞΈ) .== 0.0) ? (0.0, 0.0) :
check_scaling(diffmodel.Q(diffmodel.ΞΈ); atol)
if verbose
println("Equality: ", eq)
println("Inequality: ", ineq)
println("Quadratic objective: ", obj)
return nothing
else
return eq, ineq, obj
end
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 611 | """
$(TYPEDSIGNATURES)
Update Q.
"""
update_Q!(diffmodel::DifferentiableModel, Q) = diffmodel.Q = Q
"""
$(TYPEDSIGNATURES)
Update c.
"""
update_c!(diffmodel::DifferentiableModel, c) = diffmodel.c = c
"""
$(TYPEDSIGNATURES)
Update E.
"""
update_E!(diffmodel::DifferentiableModel, E) = diffmodel.E = E
"""
$(TYPEDSIGNATURES)
Update d.
"""
update_d!(diffmodel::DifferentiableModel, d) = diffmodel.d = d
"""
$(TYPEDSIGNATURES)
Update M.
"""
update_M!(diffmodel::DifferentiableModel, M) = diffmodel.M = M
"""
$(TYPEDSIGNATURES)
Update h.
"""
update_h!(diffmodel::DifferentiableModel, h) = diffmodel.h = h
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 5584 | """
$(TYPEDSIGNATURES)
Remove linearly dependent rows in `A` deduced by reducing the matrix to row
echelon form. Adjust sensitivity to numerical issues with `Ο΅`. After row echelon
reduction, all elements are rounded to `digits` after the decimal. Rows of all zeros
(absolute value of the each element in row β€ `atol`) are removed. Beware, this
operation is expensive for very large matrices.
"""
function _remove_lin_dep_rows(A; Ο΅ = 1e-8, atol = 1e-8, digits = 16)
#TODO this method is suboptimal and can be improved for numerical stability
#TODO improve RowEchelon, SVD does not work due to column reordering
rA = round.(rref!(copy(Array(A)), Ο΅); digits)
idxs = Int[]
for i = 1:size(rA, 1)
if !all(abs.(rA[i, :]) .<= atol) # remove rows of all zero
push!(idxs, i)
end
end
return rA[idxs, :]
end
"""
$(TYPEDSIGNATURES)
Helper function to assign the thermodynamic driving force to a reaction.
"""
function _dg(
model,
rid_enzyme,
rid_dg0,
rid,
mangled_rid,
ΞΈ;
RT = 298.15 * 8.314e-3,
ignore_reaction_ids = [],
ignore_metabolite_ids = [],
)
if !haskey(rid_dg0, rid) || rid in ignore_reaction_ids
# no thermo info or should be ignored
return 1.0
end
_rs = reaction_stoichiometry(model, rid)
rs = Dict(k => v for (k, v) in _rs if k β ignore_metabolite_ids)
stoich = values(rs)
mids = collect(keys(rs))
midxs = Int.(indexin(mids, metabolites(model))) .+ length(rid_enzyme)
dir = contains(mangled_rid, "#forward") ? 1 : -1
dg_val = rid_dg0[rid] + RT * sum(nu * log(ΞΈ[midx]) for (nu, midx) in zip(stoich, midxs))
1.0 - exp(dir * dg_val / RT)
end
"""
$(TYPEDSIGNATURES)
A helper function to incorporate saturation effects.
"""
function _saturation(
model,
rid_enzyme,
rid_km,
rid,
mangled_rid,
ΞΈ;
ignore_reaction_ids = [],
ignore_metabolite_ids = [],
)
if !haskey(rid_km, rid) || rid in ignore_reaction_ids
# no kinetic info or should be ignored
return 1.0
end
_rs = reaction_stoichiometry(model, rid)
rs = Dict(k => v for (k, v) in _rs if k β ignore_metabolite_ids)
stoich = values(rs)
mids = collect(keys(rs))
midxs = Int.(indexin(mids, metabolites(model))) .+ length(rid_enzyme)
is_forward = contains(mangled_rid, "#forward") ? true : false
@assert(contains(mangled_rid, rid)) #TODO sanity check, remove
s_term = prod(
(ΞΈ[midx] / rid_km[rid][mid])^(-1*nu) for
(nu, midx, mid) in zip(stoich, midxs, mids) if nu < 0
)
p_term = prod(
(ΞΈ[midx] / rid_km[rid][mid])^nu for
(nu, midx, mid) in zip(stoich, midxs, mids) if nu > 0
)
is_forward ? s_term / (1.0 + s_term + p_term) : p_term / (1.0 + s_term + p_term)
end
"""
$(TYPEDSIGNATURES)
Return a simplified version of `model` that contains only reactions (and the
associated genes and metabolites) that are active, i.e. carry fluxes (from
`reaction_fluxes`) absolutely bigger than `atol`. All reactions are set
unidirectional based on `reaction_fluxes`.
"""
function prune_model(model::StandardModel, reaction_fluxes; atol = 1e-9, verbose = true)
pruned_model = StandardModel("pruned_model")
rxns = Vector{Reaction}()
mets = Vector{Metabolite}()
gs = Vector{Gene}()
mids = String[]
gids = String[]
for rid in reactions(model)
abs(reaction_fluxes[rid]) <= atol && continue
rxn = deepcopy(model.reactions[rid])
if reaction_fluxes[rid] > 0
rxn.lb = max(0, rxn.lb)
else
rxn.ub = min(0, rxn.ub)
end
push!(rxns, rxn)
rs = reaction_stoichiometry(model, rid)
for mid in keys(rs)
push!(mids, mid)
end
grrs = reaction_gene_association(model, rid)
isnothing(grrs) && continue
for grr in grrs
append!(gids, grr)
end
end
for mid in unique(mids)
push!(mets, model.metabolites[mid])
end
for gid in unique(gids)
push!(gs, model.genes[gid])
end
add_reactions!(pruned_model, rxns)
add_metabolites!(pruned_model, mets)
add_genes!(pruned_model, gs)
#: print some info about process
if verbose
rrn = n_reactions(model) - n_reactions(pruned_model)
@info "Removed $rrn reactions."
end
return pruned_model
end
"""
$(TYPEDSIGNATURES)
Internal helper function to construct a basic linear program representing a
differentiable metabolic model.
"""
function _make_differentiable_model(
c,
_E,
_d,
_M,
_h,
ΞΈ,
var_ids,
param_ids;
scale_equality = false,
scale_inequality = false,
)
Q = _ -> spzeros(length(var_ids), length(var_ids))
if scale_equality
eq_row_factors = scaling_factor(_E(ΞΈ), _d(ΞΈ))
else
eq_row_factors = fill(1.0, size(_E(ΞΈ), 1))
end
if scale_inequality
ineq_row_factors = scaling_factor(_M(ΞΈ), _h(ΞΈ))
else
ineq_row_factors = fill(1.0, size(_M(ΞΈ), 1))
end
E(ΞΈ) = eq_row_factors .* _E(ΞΈ)
d(ΞΈ) = eq_row_factors .* _d(ΞΈ)
M(ΞΈ) = ineq_row_factors .* _M(ΞΈ)
h(ΞΈ) = ineq_row_factors .* _h(ΞΈ)
return DifferentiableModel(
Q,
c,
E,
d,
M,
h,
ΞΈ,
(_, _, _, _) ->
throw(MissingException("Missing method: analytic derivatives of variables.")),
(_, _, _, _) ->
throw(MissingException("Missing method: analytic derivatives of parameters.")),
var_ids,
param_ids,
)
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 2185 | """
$(TYPEDSIGNATURES)
Creates analytic derivative functions of the `diffmodel` internals, using
symbolic variables. Note, this function can take some time to construct the
derivatives, but substantially speeds up repeated calls to
[`differentiate`](@ref).
See also [`make_derivatives_with_equality_scaling`](@ref) for a variant
that allows the equality constraints to be rescaled.
"""
function make_derivatives(diffmodel::DifferentiableModel)
diffmodel.analytic_par_derivs = make_symbolic_param_derivative(diffmodel)
diffmodel.analytic_var_derivs = make_analytic_var_derivative(diffmodel)
return nothing
end
"""
$(TYPEDSIGNATURES)
Creates the analytic derivatives of the parameters using symbolic programming.
"""
function make_symbolic_param_derivative(dm::DifferentiableModel)
xidxs = 1:length(dm.c(dm.ΞΈ))
Ξ½idxs = last(xidxs) .+ (1:length(dm.d(dm.ΞΈ)))
Ξ»idxs = last(Ξ½idxs) .+ (1:length(dm.h(dm.ΞΈ)))
ΞΈidxs = last(Ξ»idxs) .+ (1:length(dm.ΞΈ))
Symbolics.@variables begin
sx[1:length(xidxs)]
sΞ½[1:length(Ξ½idxs)]
sΞ»[1:length(Ξ»idxs)]
sΞΈ[1:length(ΞΈidxs)]
end
sparse_F(z) = Array(
[
dm.Q(z[ΞΈidxs]) * z[xidxs] + dm.c(z[ΞΈidxs]) - dm.E(z[ΞΈidxs])' * z[Ξ½idxs] -
dm.M(z[ΞΈidxs])' * z[Ξ»idxs]
dm.E(z[ΞΈidxs]) * z[xidxs] - dm.d(z[ΞΈidxs])
z[Ξ»idxs] .* (dm.M(z[ΞΈidxs]) * z[xidxs] - dm.h(z[ΞΈidxs]))
],
)
sz = [sx; sΞ½; sΞ»; sΞΈ]
#TODO only get jacobian of theta (slower, see #580 in Symbolics.jl)
sj = Symbolics.sparsejacobian(sparse_F(sz), sz)[:, ΞΈidxs]
f_expr = build_function(sj, sz, expression = Val{false})
myf = first(f_expr)
(x, Ξ½, Ξ», ΞΈ) -> reshape(myf([x; Ξ½; Ξ»; ΞΈ]), size(sj)...) #TODO fix this, wait for #587 in Symbolics.jl to get fixed
end
"""
$(TYPEDSIGNATURES)
Creates the analytic derivatives of the variables.
"""
make_analytic_var_derivative(dm::DifferentiableModel) =
(x, Ξ½, Ξ», ΞΈ) -> [
dm.Q(ΞΈ) -dm.E(ΞΈ)' -dm.M(ΞΈ)'
dm.E(ΞΈ) spzeros(size(dm.E(ΞΈ), 1), length(Ξ½)) spzeros(size(dm.E(ΞΈ), 1), length(Ξ»))
spdiagm(Ξ»)*dm.M(ΞΈ) spzeros(size(dm.M(ΞΈ), 1), length(Ξ½)) spdiagm(dm.M(ΞΈ) * x - dm.h(ΞΈ))
]
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 2775 | """
$(TYPEDEF)
A struct used to store information the original optimization problem.
$(TYPEDFIELDS)
"""
struct ReferenceFunctions
Q::Function
c::Function
E::Function
d::Function
M::Function
h::Function
nx::Int
neq::Int
nineq::Int
nΞΈ::Int
end
function Base.show(io::IO, ::MIME"text/plain", m::ReferenceFunctions)
println(io, "", "A reference function collection.")
end
"""
$(TYPEDSIGNATURES)
A constructor for [`ReferenceFunctions`](@ref).
"""
function ReferenceFunctions(dm::DifferentiableModel)
ReferenceFunctions(
dm.Q,
dm.c,
dm.E,
dm.d,
dm.M,
dm.h,
length(dm.c(dm.ΞΈ)),
length(dm.d(dm.ΞΈ)),
length(dm.h(dm.ΞΈ)),
length(dm.ΞΈ),
)
end
"""
$(TYPEDSIGNATURES)
Returns analytic derivatives that allow the equality constraint to be scaled.
See also [`make_derivatives`](@ref).
"""
function make_derivatives_with_equality_scaling(rf::ReferenceFunctions)
param_derivs = make_param_deriv_with_scaling(rf)
var_derivs = make_var_deriv_with_scaling(rf)
return var_derivs, param_derivs
end
"""
$(TYPEDSIGNATURES)
Return the parameter derivative that allows scaling of the equality constraint.
"""
function make_param_deriv_with_scaling(rf::ReferenceFunctions)
xidxs = 1:rf.nx
Ξ½idxs = last(xidxs) .+ (1:rf.neq)
Ξ»idxs = last(Ξ½idxs) .+ (1:rf.nineq)
ΞΈidxs = last(Ξ»idxs) .+ (1:rf.nΞΈ)
rfidxs = last(ΞΈidxs) .+ (1:rf.neq)
Symbolics.@variables begin
sx[1:length(xidxs)]
sΞ½[1:length(Ξ½idxs)]
sΞ»[1:length(Ξ»idxs)]
sΞΈ[1:length(ΞΈidxs)]
srowfacts[1:length(Ξ½idxs)] # row rescaler
end
sparse_F(z) = Array(
[
rf.Q(z[ΞΈidxs]) * z[xidxs] + rf.c(z[ΞΈidxs]) -
(z[rfidxs] .* rf.E(z[ΞΈidxs]))' * z[Ξ½idxs] - rf.M(z[ΞΈidxs])' * z[Ξ»idxs]
(z[rfidxs] .* rf.E(z[ΞΈidxs])) * z[xidxs] - rf.d(z[ΞΈidxs])
z[Ξ»idxs] .* (rf.M(z[ΞΈidxs]) * z[xidxs] - rf.h(z[ΞΈidxs]))
],
)
sz = [sx; sΞ½; sΞ»; sΞΈ; srowfacts]
# sparse_F(sz)
sj = Symbolics.sparsejacobian(sparse_F(sz), sz)[:, ΞΈidxs]
f_expr = build_function(sj, [sx; sΞ½; sΞ»; sΞΈ; srowfacts], expression = Val{false})
myf = first(f_expr)
(x, Ξ½, Ξ», ΞΈ, rfs) -> reshape(myf([x; Ξ½; Ξ»; ΞΈ; rfs]), size(sj)...)
end
"""
$(TYPEDSIGNATURES)
Return the variable derivative that allows scaling of the equality constraint.
"""
function make_var_deriv_with_scaling(rf::ReferenceFunctions)
(x, Ξ½, Ξ», ΞΈ, rfs) -> [
rf.Q(ΞΈ) -(rfs .* rf.E(ΞΈ))' -rf.M(ΞΈ)'
(rfs.*rf.E(ΞΈ)) spzeros(size(rf.E(ΞΈ), 1), length(Ξ½)) spzeros(size(rf.E(ΞΈ), 1), length(Ξ»))
spdiagm(Ξ»)*rf.M(ΞΈ) spzeros(size(rf.M(ΞΈ), 1), length(Ξ½)) spdiagm(rf.M(ΞΈ) * x - rf.h(ΞΈ))
]
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 6904 | """
$(TYPEDSIGNATURES)
Construct a [`DifferentiableModel`](@ref) from a [`COBREXA.GeckoModel`](@ref).
Each variable in `gm` is differentiated with respect to the kcats in the
dictionary `rid_enzyme`, which is a dictionary mapping reaction ids to
[`Enzyme`](@ref)s. Enzyme constraints are only taken with respect to the entries
of `rid_enzyme`. Optionally, incorporate thermodynamic and saturation constraints through
`rid_dg0` and `rid_km`. If either thermodynamic or saturation (or both) constraints
are added, then metabolite concentrations, `mid_concentration`, need to be
supplied as well.
Note, thermodynamic parameters require special attention. To ignore some
reactions when calculating the thermodynamic factor, include them in
`ignore_reaction_ids`. The units used for the Gibbs free energy are kJ/mol, and
concentrations should be in molar. Importantly, the standard Gibbs free energy
of reaction is assumed to be given *in the forward direction of the reaction* in
the model.
Internally, `Ο΅`, `atol`, and `digits`, are forwarded to
[`_remove_lin_dep_rows`](@ref). Optionally, scale the equality constraints with
`scale_equality`, see [`scaling_factor`](@ref) for more information.
"""
function with_parameters(
gm::GeckoModel,
rid_enzyme::Dict{String,Enzyme};
rid_dg0 = Dict{String,Float64}(),
rid_km = Dict{String,Dict{String,Float64}}(),
mid_concentration = Dict{String,Float64}(),
scale_equality = false,
scale_inequality = false,
Ο΅ = 1e-8,
atol = 1e-12,
digits = 8,
RT = 298.15 * 8.314e-3,
ignore_reaction_ids = [],
ignore_metabolite_ids = [],
)
if isempty(rid_dg0) && isempty(rid_km)
# no concentration parameters
param_ids = "k#" .* collect(keys(rid_enzyme))
ΞΈ = [x.kcat for x in values(rid_enzyme)]
else
# has concentration parameters
isempty(mid_concentration) && throw(error("Missing metabolite concentrations."))
param_ids = [
"k#" .* collect(keys(rid_enzyme))
"c#" .* metabolites(gm.inner)
]
ΞΈ = [
[x.kcat for x in values(rid_enzyme)]
[mid_concentration[mid] for mid in metabolites(gm.inner)]
]
end
c, E, d, M, h, var_ids = _differentiable_michaelis_menten_gecko_opt_problem(
gm,
rid_enzyme,
rid_dg0,
rid_km;
Ο΅,
atol,
digits,
RT,
ignore_reaction_ids,
ignore_metabolite_ids,
)
_make_differentiable_model(
c,
E,
d,
M,
h,
ΞΈ,
var_ids,
param_ids;
scale_equality,
scale_inequality,
)
end
"""
$(TYPEDSIGNATURES)
Return optimization problem where thermodynamic and saturation effects are
incorporated into the gecko problem, but in differentiable format.
"""
function _differentiable_michaelis_menten_gecko_opt_problem(
gm::GeckoModel,
rid_enzyme::Dict{String,Enzyme},
rid_dg0::Dict{String,Float64},
rid_km::Dict{String,Dict{String,Float64}};
Ο΅ = 1e-8,
atol = 1e-12,
digits = 8,
RT = 298.15 * 8.314e-3,
ignore_reaction_ids = [],
ignore_metabolite_ids = [],
)
#: get irreverible stoichiometric matrix from model
irrev_S = stoichiometry(gm.inner) * COBREXA._gecko_reaction_column_reactions(gm)
#: make full rank
S = DifferentiableMetabolism._remove_lin_dep_rows(irrev_S; Ο΅, digits, atol)
#: size of resultant model
num_reactions = n_reactions(gm) - n_genes(gm)
num_genes = n_genes(gm)
num_metabolites = size(S, 1) # take into account removed linear dependencies
num_vars = n_reactions(gm)
#: equality lhs
E_components, kcat_rid_ridx_stoich =
DifferentiableMetabolism._build_gecko_equality_enzyme_constraints(gm, rid_enzyme)
Se(ΞΈ) = sparse(
E_components.row_idxs,
E_components.col_idxs,
[
stoich / (
ΞΈ[ridx] *
DifferentiableMetabolism._dg(
gm,
rid_enzyme,
rid_dg0,
rid,
mangled_rid,
ΞΈ;
RT,
ignore_reaction_ids,
ignore_metabolite_ids,
) *
DifferentiableMetabolism._saturation(
gm,
rid_enzyme,
rid_km,
rid,
mangled_rid,
ΞΈ;
ignore_reaction_ids,
ignore_metabolite_ids,
)
) for (mangled_rid, (rid, ridx, stoich)) in
zip(reactions(gm)[E_components.col_idxs], kcat_rid_ridx_stoich)
],
num_genes,
num_reactions,
)
E(ΞΈ) = [
S spzeros(num_metabolites, num_genes)
Se(ΞΈ) spdiagm(fill(1.0, num_genes))
]
#: equality rhs
d = _ -> spzeros(num_metabolites + num_genes) #TODO handle fixed variables
#: objective inferred from model
c = _ -> -objective(gm)
#: inequality constraints
Cp = coupling(gm)
clb, cub = coupling_bounds(gm)
xlb, xub = bounds(gm)
M = _ -> [
-spdiagm(fill(1.0, num_vars))
spdiagm(fill(1.0, num_vars))
-Cp
Cp
]
h = _ -> [-xlb; xub; -clb; cub]
return c, E, d, M, h, reactions(gm)
end
"""
$(TYPEDSIGNATURES)
Helper function to add an column into the enzyme stoichiometric matrix
parametrically.
"""
function _add_gecko_enzyme_variable_as_function(
rid_enzyme,
original_rid,
E_components,
col_idx,
gene_ids,
)
for (gid, stoich) in rid_enzyme[original_rid].gene_product_count
push!(E_components.row_idxs, first(indexin([gid], gene_ids)))
push!(E_components.col_idxs, col_idx)
push!(E_components.coeff_tuple, (-stoich, original_rid))
end
end
"""
$(TYPEDSIGNATURES)
Helper function to build the equality enzyme constraints.
"""
function _build_gecko_equality_enzyme_constraints(gm::GeckoModel, rid_enzyme)
E_components = ( #TODO add size hints if possible
row_idxs = Vector{Int}(),
col_idxs = Vector{Int}(),
coeff_tuple = Vector{Tuple{Float64,String}}(),
)
gids = genes(gm)
for (col_idx, rid) in enumerate(reactions(gm))
original_rid = string(first(split(rid, "#")))
!haskey(rid_enzyme, original_rid) && continue
#: add all entries to column of matrix
DifferentiableMetabolism._add_gecko_enzyme_variable_as_function(
rid_enzyme,
original_rid,
E_components,
col_idx,
gids,
)
end
kcat_rid_ridx_stoich = [
(rid, first(indexin([rid], collect(keys(rid_enzyme)))), stoich) for
(stoich, rid) in E_components.coeff_tuple
]
return E_components, kcat_rid_ridx_stoich
end | DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 6215 | """
$(TYPEDSIGNATURES)
Construct a [`DifferentiableModel`](@ref) from a [`COBREXA.SMomentModel`](@ref).
Each variable in `smm` is differentiated with respect to the kcats in the
dictionary `rid_enzyme`, which is a dictionary mapping reaction ids to
[`Enzyme`](@ref)s. Enzyme constraints are only taken with respect to the entries
of `rid_enzyme`. Optionally, include thermodynamic parameters. Add the standard
Gibbs free energy of reactions with `rid_dg0`, and the metabolite concentrations
that are to be used as parameters with `mid_concentration` (both arguments are
dictionaries mapping reaction or metabolite ids to values).
Note, thermodynamic parameters require special attention. To ignore some
reactions when calculating the thermodynamic factor, include them in
`ignore_reaction_ids`. The units used for the Gibbs free energy are kJ/mol, and
concentrations should be in molar. Importantly, the standard Gibbs free energy
of reaction is assumed to be given *in the forward direction of the reaction* in
the model.
The analytic derivative of the optimality conditions with respect to the
parameters can be supplied through `analytic_parameter_derivatives`. Internally,
`Ο΅`, `atol`, and `digits`, are forwarded to [`_remove_lin_dep_rows`](@ref).
Note, to ensure differentiability, preprocessing of the model is required. In
short, only an active solution may be differentiated, this required that:
- the model does not possess any isozymes
- all the reactions should be unidirectinal
- the kcats in `rid_enzyme` are for the appropriate direction used in the model
- all rids in `rid_enzyme` are used in the model
"""
function with_parameters(
smm::SMomentModel,
rid_enzyme::Dict{String,Enzyme};
rid_dg0 = Dict{String,Float64}(),
mid_concentration = Dict{String,Float64}(),
scale_equality = false,
scale_inequality = false,
Ο΅ = 1e-8,
atol = 1e-12,
digits = 8,
RT = 298.15 * 8.314e-3,
ignore_reaction_ids = [],
ignore_metabolite_ids = [],
)
if isempty(rid_dg0)
# no concentration parameters
param_ids = "k#" .* collect(keys(rid_enzyme))
ΞΈ = [x.kcat for x in values(rid_enzyme)]
else
# has concentration parameters
isempty(mid_concentration) && throw(error("Missing metabolite concentrations."))
param_ids = [
"k#" .* collect(keys(rid_enzyme))
"c#" .* metabolites(smm)
]
ΞΈ = [
[x.kcat for x in values(rid_enzyme)]
[mid_concentration[mid] for mid in metabolites(smm)]
]
end
c, E, d, M, h, var_ids = _differentiable_thermodynamic_smoment_opt_problem(
smm,
rid_enzyme,
rid_dg0;
Ο΅,
atol,
digits,
RT,
ignore_reaction_ids,
ignore_metabolite_ids,
)
_make_differentiable_model(
c,
E,
d,
M,
h,
ΞΈ,
var_ids,
param_ids;
scale_equality,
scale_inequality,
)
end
"""
$(TYPEDSIGNATURES)
Return structures that will allow the most basic form of smoment to be solved.
No enzyme constraints allowed. Most effective enzyme is the only GRR. Assume
unidirectional reactions.
"""
function _differentiable_thermodynamic_smoment_opt_problem(
smm::SMomentModel,
rid_enzyme::Dict{String,Enzyme},
rid_dg0::Dict{String,Float64};
Ο΅ = 1e-8,
atol = 1e-12,
digits = 8,
RT = 298.15 * 8.314e-3,
ignore_reaction_ids = [],
ignore_metabolite_ids = [],
)
#: get irreverible stoichiometric matrix from model
irrev_S = stoichiometry(smm.inner) * COBREXA._smoment_column_reactions(smm)
#: make full rank
S = sparse(DifferentiableMetabolism._remove_lin_dep_rows(irrev_S; Ο΅, digits, atol))
#: size of resultant model
num_reactions = size(S, 2)
num_eq_cons = size(S, 1)
#: equality lhs
E = _ -> S
#: equality rhs
d = _ -> spzeros(num_eq_cons) #TODO handle fixed variables
#: objective inferred from model
c = _ -> -objective(smm)
#: coupling kcats and thermodynamics
col_idxs, kcat_idxs =
DifferentiableMetabolism._build_smoment_kcat_coupling(smm, rid_enzyme)
kcat_thermo_coupling(ΞΈ) = sparsevec(
col_idxs,
[
mw / (
(ΞΈ[rid_idx]) * DifferentiableMetabolism._dg(
smm,
rid_enzyme,
rid_dg0,
rid,
mangled_rid,
ΞΈ;
RT,
ignore_reaction_ids,
ignore_metabolite_ids,
)
) for (mangled_rid, (rid, rid_idx, mw)) in zip(reactions(smm)[col_idxs], kcat_idxs)
],
n_reactions(smm),
)
#: inequality rhs
Cp = coupling(smm.inner)
M(ΞΈ) = [
-1.0 * spdiagm(fill(1.0, num_reactions))
1.0 * spdiagm(fill(1.0, num_reactions))
Cp
-kcat_thermo_coupling(ΞΈ)'
kcat_thermo_coupling(ΞΈ)'
]
#: inequality lhs
xlb, xub = bounds(smm)
clb, cub = coupling_bounds(smm.inner)
h = _ -> [-xlb; xub; -clb; cub; 0; smm.total_enzyme_capacity]
return c, E, d, M, h, reactions(smm)
end
"""
$(TYPEDSIGNATURES)
Helper function to build kcat coupling in parametric form for smoment problems.
"""
function _build_smoment_kcat_coupling(smm::SMomentModel, rid_enzyme)
kcat_original_rid_order = String[]
col_idxs = Int[]
mws = Float64[]
for (col_idx, rid) in enumerate(reactions(smm))
original_rid = string(first(split(rid, "#")))
# skip these entries
!haskey(rid_enzyme, original_rid) && continue
# these entries have kcats, only one GRR by assumption
mw = sum([
pstoich * rid_enzyme[original_rid].gene_product_mass[gid] for
(gid, pstoich) in rid_enzyme[original_rid].gene_product_count
])
push!(kcat_original_rid_order, original_rid)
push!(col_idxs, col_idx)
push!(mws, mw)
end
kcat_idxs = [
(rid, first(indexin([rid], collect(keys(rid_enzyme)))), mw) for
(rid, mw) in zip(kcat_original_rid_order, mws)
]
return col_idxs, kcat_idxs
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 2495 | @testset "Analytic derivatives with scaling" begin
#=
Note, the analytic derivatives that don't use scaling are tested
in the model tests. The scaling derivatives get special treatment,
because they are more of a pain to setup.
=#
#: Set problem up
stdmodel,
reaction_isozymes,
gene_product_bounds,
gene_product_molar_mass,
gene_product_mass_group_bound = create_test_model()
gm = make_gecko_model(
stdmodel;
reaction_isozymes,
gene_product_bounds,
gene_product_molar_mass,
gene_product_mass_group_bound,
)
rid_enzyme = Dict(
k => isozyme_to_enzyme(first(v), gene_product_molar_mass; direction = :forward)
for (k, v) in reaction_isozymes
)
#: Differentiate an optimal solution
diffmodel = with_parameters(gm, rid_enzyme)
update_Q!(diffmodel, _ -> spdiagm(fill(0.1, length(diffmodel.var_ids))))
rf = ReferenceFunctions(diffmodel)
#: Get reference solution (the unscaled derivatives)
x = zeros(rf.nx)
Ξ½ = zeros(rf.neq)
Ξ» = zeros(rf.nineq)
A = spzeros(rf.nx + rf.neq + rf.nineq, rf.nx + rf.neq + rf.nineq)
B = zeros(rf.nx + rf.neq + rf.nineq, rf.nΞΈ)
dx = zeros(rf.nx + rf.neq + rf.nineq, rf.nΞΈ)
make_derivatives(diffmodel)
differentiate!(
x,
Ξ½,
Ξ»,
A,
B,
dx,
diffmodel,
Ipopt.Optimizer;
scale_output = false,
use_analytic = true,
)
x_ref = deepcopy(x)
dx_ref = deepcopy(dx)
#: Now use the scaling variants
rescale_factors = scaling_factor(rf.E(diffmodel.ΞΈ), rf.d(diffmodel.ΞΈ))
update_E!(diffmodel, ΞΈ -> rescale_factors .* rf.E(ΞΈ))
update_d!(diffmodel, ΞΈ -> rescale_factors .* rf.d(ΞΈ))
var_derivs, par_derivs = make_derivatives_with_equality_scaling(rf)
diffmodel.analytic_var_derivs = (x, Ξ½, Ξ», ΞΈ) -> var_derivs(x, Ξ½, Ξ», ΞΈ, rescale_factors)
diffmodel.analytic_par_derivs = (x, Ξ½, Ξ», ΞΈ) -> par_derivs(x, Ξ½, Ξ», ΞΈ, rescale_factors)
differentiate!(
x,
Ξ½,
Ξ»,
A,
B,
dx,
diffmodel,
Ipopt.Optimizer;
scale_output = false,
use_analytic = true,
)
# test if reproduceable solutions
@test all([isapprox(x_ref[i], x[i]; atol = TEST_TOLERANCE) for i in eachindex(x)])
@test all([
isapprox(dx_ref[1:11, :][i], dx[1:11, :][i]; atol = TEST_TOLERANCE) for
i in eachindex(dx[1:11, :])
])
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 768 | @testset "Enzyme type and conversion" begin
# create dummy isozyme
isozyme = Isozyme(Dict("g1" => 1, "g2" => 3), 10.0, 2.0)
# create dummy molar masses
gene_product_mass_lookup = Dict("g1" => 5.0, "g2" => 7.0)
# convert isozyme to enzyme with forward kcat
enz_for = isozyme_to_enzyme(isozyme, gene_product_mass_lookup; direction = :forward)
@test enz_for.kcat == 10.0
@test enz_for.gene_product_count["g1"] == 1
@test enz_for.gene_product_count["g2"] == 3
@test enz_for.gene_product_mass["g1"] == 5.0
@test enz_for.gene_product_mass["g2"] == 7.0
# convert isozyme to enzyme with reverse kcat
enz_rev = isozyme_to_enzyme(isozyme, gene_product_mass_lookup; direction = :reverse)
@test enz_rev.kcat == 2.0
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 1233 | @testset "Prune model" begin
m = StandardModel("SmallModel")
m1 = Metabolite("m1")
m2 = Metabolite("m2")
m3 = Metabolite("m3")
m4 = Metabolite("m4")
m5 = Metabolite("m5")
@add_reactions! m begin
"r1", nothing β m1, 0, 100
"r2", nothing β m2, 0, 100
"r3", m1 + m2 β m3, 0, 100
"r4", m3 β m4, 0, 100
"r5", m3 β m5, 0, 100
"r6", m5 β m4, 0, 100
"r7", m4 β nothing, 0, 100
end
gs = [Gene("g$i") for i = 1:4]
m.reactions["r3"].grr = [["g1"], ["g2"]]
m.reactions["r4"].grr = [["g3", "g4"]]
m.reactions["r7"].objective_coefficient = 1.0
add_genes!(m, gs)
add_metabolites!(m, [m1, m2, m3, m4, m5])
reaction_fluxes = Dict(
"r1" => 1.0,
"r2" => 1.0,
"r3" => -1.0,
"r4" => 1.0,
"r5" => -0.01,
"r6" => 0.01,
"r7" => 1.0,
)
pruned_model = prune_model(m, reaction_fluxes; atol = 1e-2)
@test !haskey(pruned_model.reactions, "r5")
@test !haskey(pruned_model.reactions, "r6")
@test haskey(pruned_model.reactions, "r1")
@test !isempty(genes(pruned_model))
@test "m1" in metabolites(pruned_model)
@test "m5" β metabolites(pruned_model)
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 993 | using DifferentiableMetabolism
using Test
using Tulip, Ipopt
using COBREXA
using SparseArrays, LinearAlgebra
# Testing infrastructure taken from COBREXA
TEST_TOLERANCE = 1e-6
TEST_TOLERANCE_RELAXED = 1e-3
print_timing(fn, t) = @info "$(fn) done in $(round(t; digits = 2))s"
# Helper functions for running tests en masse
function run_test_file(path...)
fn = joinpath(path...)
t = @elapsed include(fn)
print_timing(fn, t)
end
run_test_file("static_data.jl")
@testset "DifferentiableMetabolism.jl" begin
run_test_file("enzyme.jl")
run_test_file("prune.jl")
run_test_file("update.jl")
run_test_file("differentiable_models/basic_gecko.jl")
run_test_file("differentiable_models/basic_smoment.jl")
run_test_file("differentiable_models/thermodynamic_smoment.jl")
run_test_file("differentiable_models/thermodynamic_gecko.jl")
run_test_file("differentiable_models/michaelis_menten_gecko.jl")
run_test_file("analytic_derivatives_with_scaling.jl")
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 2693 | @testset "Differentiable GECKO" begin
#: Set problem up
stdmodel,
reaction_isozymes,
gene_product_bounds,
gene_product_molar_mass,
gene_product_mass_group_bound = create_test_model()
gm = make_gecko_model(
stdmodel;
reaction_isozymes,
gene_product_bounds,
gene_product_molar_mass,
gene_product_mass_group_bound,
)
rid_enzyme = Dict(
k => isozyme_to_enzyme(first(v), gene_product_molar_mass; direction = :forward)
for (k, v) in reaction_isozymes
)
#: Get classic GECKO solution
opt_model = flux_balance_analysis(
gm,
Tulip.Optimizer;
modifications = [change_optimizer_attribute("IPM_IterationsLimit", 1000)],
)
gecko_fluxes = flux_dict(gm, opt_model)
gecko_gps = gene_product_dict(gm, opt_model)
#: Differentiate an optimal solution
diffmodel = with_parameters(gm, rid_enzyme; scale_equality = false)
x_noscaling, dx_noscaling = differentiate(
diffmodel,
Tulip.Optimizer;
modifications = [change_optimizer_attribute("IPM_IterationsLimit", 1000)],
)
(slb, sub), _, _ = check_scaling(diffmodel)
@test isapprox(slb, 1.845098040014257; atol = TEST_TOLERANCE)
@test isapprox(sub, 2.146128035678238; atol = TEST_TOLERANCE)
#: scale equality
diffmodel = with_parameters(gm, rid_enzyme; scale_equality = true)
x_scaling_eq, dx_scaling_eq = differentiate(
diffmodel,
Tulip.Optimizer;
modifications = [change_optimizer_attribute("IPM_IterationsLimit", 1000)],
)
#: Note, the duals are scaled, so they will not be the same
@test all([
isapprox(
dx_noscaling[1:11, :][i],
dx_scaling_eq[1:11, :][i];
atol = TEST_TOLERANCE,
) for i in eachindex(dx_noscaling[1:11, :])
])
@test all([
isapprox(x_noscaling[i], x_scaling_eq[i]; atol = TEST_TOLERANCE) for
i in eachindex(x_noscaling)
])
#: scale both Inequality and equality
diffmodel =
with_parameters(gm, rid_enzyme; scale_equality = true, scale_inequality = true)
x_scaling_eqineq, dx_scaling_eqineq = differentiate(
diffmodel,
Tulip.Optimizer;
modifications = [change_optimizer_attribute("IPM_IterationsLimit", 1000)],
)
@test all([
isapprox(
dx_noscaling[1:11, :][i],
dx_scaling_eqineq[1:11, :][i];
atol = TEST_TOLERANCE,
) for i in eachindex(dx_noscaling[1:11, :])
])
@test all([
isapprox(x_noscaling[i], x_scaling_eqineq[i]; atol = TEST_TOLERANCE) for
i in eachindex(x_noscaling)
])
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 1635 | function create_test_model()
#=
Implement the small model based on model found in the supplement in the
original GECKO paper. This model is nice to troubleshoot with, because the
stoich matrix is small. All the reactions are active by design and each reaction
that has a kcat has only one grr.
=#
m = StandardModel("SmallModel")
m1 = Metabolite("m1")
m2 = Metabolite("m2")
m3 = Metabolite("m3")
m4 = Metabolite("m4")
m5 = Metabolite("m5")
m6 = Metabolite("m6")
@add_reactions! m begin
"r1", nothing β m1, 0, 100
"r2", nothing β m2, 0, 100
"r3", m1 + m2 β m3, 0, 100
"r4", m3 β m4 + m5, 0, 100
"r5", m2 β m4 + m6, 0, 100
"r6", m4 β nothing, 0, 100
"biomass", m6 + m5 β nothing, 0, 100
end
gs = [Gene("g$i") for i = 1:4]
m.reactions["biomass"].objective_coefficient = 1.0
add_genes!(m, gs)
add_metabolites!(m, [m1, m2, m3, m4, m5, m6])
reaction_isozymes = Dict(
"r3" => [Isozyme(Dict("g1" => 1), 10.0, 10.0)],
"r4" => [Isozyme(Dict("g2" => 1, "g3" => 3), 30.0, 20.0)],
"r5" => [Isozyme(Dict("g3" => 1, "g4" => 2), 70.0, 30.0)],
)
gene_product_bounds = Dict(
"g1" => (0.0, 0.2),
"g2" => (0.0, 0.1),
"g3" => (0.0, 10.0),
"g4" => (0.0, 1000.0),
)
gene_product_molar_mass = Dict("g1" => 1.0, "g2" => 2.0, "g3" => 3.0, "g4" => 4.0)
gene_product_mass_group_bound = Dict("uncategorized" => 1.0)
return m,
reaction_isozymes,
gene_product_bounds,
gene_product_molar_mass,
gene_product_mass_group_bound
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 1401 | @testset "Update" begin
#: Set problem up
stdmodel,
reaction_isozymes,
gene_product_bounds,
gene_product_molar_mass,
gene_product_mass_group_bound = create_test_model()
gm = make_gecko_model(
stdmodel;
reaction_isozymes,
gene_product_bounds,
gene_product_molar_mass,
gene_product_mass_group_bound,
)
rid_enzyme = Dict(
k => isozyme_to_enzyme(first(v), gene_product_molar_mass; direction = :forward)
for (k, v) in reaction_isozymes
)
#: Differentiate an optimal solution
diffmodel = with_parameters(gm, rid_enzyme;)
#: Test if update works
n_vars = length(diffmodel.c(diffmodel.ΞΈ))
n_eqs = size(diffmodel.E(diffmodel.ΞΈ), 1)
n_ineqs = size(diffmodel.M(diffmodel.ΞΈ), 1)
ΞΈ = diffmodel.ΞΈ
_Q = rand(n_vars, n_vars)
_c = rand(n_vars)
_E = rand(n_eqs, n_vars)
_d = rand(n_eqs)
_M = rand(n_ineqs, n_vars)
_h = rand(n_ineqs)
update_Q!(diffmodel, _ -> _Q)
update_c!(diffmodel, _ -> _c)
update_E!(diffmodel, _ -> _E)
update_d!(diffmodel, _ -> _d)
update_M!(diffmodel, _ -> _M)
update_h!(diffmodel, _ -> _h)
@test all(diffmodel.Q(ΞΈ) .== _Q)
@test all(diffmodel.c(ΞΈ) .== _c)
@test all(diffmodel.E(ΞΈ) .== _E)
@test all(diffmodel.d(ΞΈ) .== _d)
@test all(diffmodel.M(ΞΈ) .== _M)
@test all(diffmodel.h(ΞΈ) .== _h)
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 2993 | @testset "Differentiable GECKO" begin
#: Set problem up
stdmodel,
reaction_isozymes,
gene_product_bounds,
gene_product_molar_mass,
gene_product_mass_group_bound = create_test_model()
gm = make_gecko_model(
stdmodel;
reaction_isozymes,
gene_product_bounds,
gene_product_molar_mass,
gene_product_mass_group_bound,
)
rid_enzyme = Dict(
k => isozyme_to_enzyme(first(v), gene_product_molar_mass; direction = :forward)
for (k, v) in reaction_isozymes
)
#: Get classic GECKO solution
opt_model = flux_balance_analysis(
gm,
Tulip.Optimizer;
modifications = [change_optimizer_attribute("IPM_IterationsLimit", 1000)],
)
gecko_fluxes = flux_dict(gm, opt_model)
gecko_gps = gene_product_dict(gm, opt_model)
gene_product_mass_group_dict(gm, opt_model)
#: Differentiate an optimal solution
diffmodel = with_parameters(gm, rid_enzyme;)
x_auto, dx_auto = differentiate(
diffmodel,
Tulip.Optimizer;
modifications = [change_optimizer_attribute("IPM_IterationsLimit", 1000)],
)
# test if solution is the same between gecko and differentiable gecko
sol = Dict(diffmodel.var_ids .=> x_auto)
@test isapprox(sol["g1"], gecko_gps["g1"]; atol = TEST_TOLERANCE)
@test isapprox(sol["r3#forward#1"], gecko_fluxes["r3"]; atol = TEST_TOLERANCE)
# test if automatic and symbolic derivatives are the same
make_derivatives(diffmodel)
x_anal, dx_anal =
differentiate(diffmodel, Tulip.Optimizer; use_analytic = true)
@test all([
isapprox(dx_auto[i], dx_anal[i]; atol = TEST_TOLERANCE) for i in eachindex(dx_anal)
])
#: Add a regularizer and test QP
update_Q!(diffmodel, _ -> spdiagm(fill(0.1, length(diffmodel.var_ids))))
x_qp, dx_qp = differentiate(diffmodel, Ipopt.Optimizer)
# test if reproduceable solutions
x_qp_ref = [
0.7677550153758821
1.5355100307517642
0.7677550153758821
0.7677550153758821
0.7677550153758821
1.5355100307517642
0.7677550153758821
0.07677550153758822
0.025591833845862735
0.08774343032867224
0.02193585758216806
]
@test all([
isapprox(x_qp_ref[i], x_qp[i]; atol = TEST_TOLERANCE) for i in eachindex(x_qp)
])
dx_qp_ref = [
0.000376045 0.00153551 0.00192548
0.000376045 0.00153551 0.00192548
0.000376045 0.00153551 0.00192548
0.000376045 0.00153551 0.00192548
0.000376045 0.00153551 0.00192548
0.000376045 0.00153551 0.00192548
0.000376045 0.00153551 0.00192548
0.000376045 -0.998464 0.00192548
0.000376045 0.00153551 -0.998075
-0.124624 0.00153551 -0.873075
-0.999624 0.00153551 0.00192548
]
@test all([
isapprox(dx_qp_ref[i], dx_qp[1:11, :][i]; atol = TEST_TOLERANCE) for
i in eachindex(dx_qp_ref)
])
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 1916 | @testset "Differentiable SMOMENT" begin
#: Set problem up
stdmodel, reaction_isozymes, _, gene_product_molar_mass, _ = create_test_model()
smm = make_smoment_model(
stdmodel;
reaction_isozyme = Dict(k => first(v) for (k, v) in reaction_isozymes),
gene_product_molar_mass,
total_enzyme_capacity = 1.0,
)
rid_enzyme = Dict(
k => isozyme_to_enzyme(first(v), gene_product_molar_mass; direction = :forward)
for (k, v) in reaction_isozymes
)
#: Get SMoment solution for comparison
fluxes = flux_balance_analysis_dict(
smm,
Tulip.Optimizer;
modifications = [change_optimizer_attribute("IPM_IterationsLimit", 1000)],
)
#: Diffeentiate model
diffmodel = with_parameters(smm, rid_enzyme)
x, dx = differentiate(
diffmodel,
Tulip.Optimizer;
modifications = [change_optimizer_attribute("IPM_IterationsLimit", 1000)],
)
# test if COBREXA Smoment is the same as the differentiable one
sol = Dict(reactions(smm) .=> x)
@test isapprox(sol["r1"], fluxes["r1"]; atol = TEST_TOLERANCE)
@test isapprox(sol["r6"], fluxes["r6"]; atol = TEST_TOLERANCE)
# test if automatic and symbolic derivatives are the same
make_derivatives(diffmodel)
_, dx_sym = differentiate(diffmodel, Tulip.Optimizer; use_analytic = true)
@test all([
isapprox(dx_sym[i], dx[i]; atol = TEST_TOLERANCE) for i in eachindex(dx_sym)
])
# test if reference solution is attained
dx_ref = [
0.251908 0.160305 0.587786
0.251908 0.160305 0.587786
0.251908 0.160305 0.587786
0.251908 0.160305 0.587786
0.251908 0.160305 0.587786
0.251908 0.160305 0.587786
0.251908 0.160305 0.587786
]
@test all([
isapprox(dx_ref[i], dx[1:7, :][i]; atol = TEST_TOLERANCE) for i in eachindex(dx_ref)
])
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 3910 | @testset "Differentiable Michaelis Menten GECKO" begin
#: Set problem up
stdmodel,
reaction_isozymes,
gene_product_bounds,
gene_product_molar_mass,
gene_product_mass_group_bound = create_test_model()
gm = make_gecko_model(
stdmodel;
reaction_isozymes,
gene_product_bounds,
gene_product_molar_mass,
gene_product_mass_group_bound,
)
rid_enzyme = Dict(
k => isozyme_to_enzyme(first(v), gene_product_molar_mass; direction = :forward)
for (k, v) in reaction_isozymes
)
rid_dg0 = Dict("r4" => -1.0, "r5" => -10.0, "r6" => 10.0)
mid_concentration = Dict(
"m6" => 0.001,
"m3" => 0.001,
"m2" => 1.0,
"m4" => 0.01,
"m5" => 0.05,
"m1" => 1.0,
)
rid_km = Dict(
"r4" => Dict("m3" => 0.007, "m4" => 0.02, "m5" => 0.03),
"r5" => Dict("m2" => 0.4, "m4" => 0.02, "m6" => 0.01),
)
#: Solve normal gecko model without thermodynamic effects
opt_model = flux_balance_analysis(
gm,
Tulip.Optimizer;
modifications = [change_optimizer_attribute("IPM_IterationsLimit", 1000)],
)
gecko_fluxes = flux_dict(gm, opt_model)
gecko_gps = gene_product_dict(gm, opt_model)
#: Differentiate model normal gecko
diffmodel = with_parameters(
gm,
rid_enzyme;
rid_dg0,
rid_km,
mid_concentration,
ignore_reaction_ids = ["r6"],
)
x, dx = differentiate(
diffmodel,
Tulip.Optimizer;
modifications = [change_optimizer_attribute("IPM_IterationsLimit", 1000)],
)
sol = Dict(diffmodel.var_ids .=> x)
# check if x, dx can be reproduced
x_ref = [
0.1259560041366511
0.2519120082733372
0.12595600413638888
0.1259560041369218
0.1259560041365431
0.2519120082733372
0.1259560041366511
0.012595600412036653
0.08720892830551037
0.26418189287384747
0.0051102159284440365
]
@test all([isapprox(x_ref[i], x[i]; atol = TEST_TOLERANCE) for i in eachindex(x)])
dx_ref = [
0.0281062 0.0125956 0.959298 -0.0 0.0083131 1.37108 -0.886044 -0.885648 -0.000395867
0.0281062 0.0125956 0.959298 -0.0 0.0083131 1.37108 -0.886044 -0.885648 -0.000395867
0.0281062 0.0125956 0.959298 -0.0 0.0083131 1.37108 -0.886044 -0.885648 -0.000395867
0.0281062 0.0125956 0.959298 -0.0 0.0083131 1.37108 -0.886044 -0.885648 -0.000395867
0.0281062 0.0125956 0.959298 -0.0 0.0083131 1.37108 -0.886044 -0.885648 -0.000395867
0.0281062 0.0125956 0.959298 -0.0 0.0083131 1.37108 -0.886044 -0.885648 -0.000395867
0.0281062 0.0125956 0.959298 0.0 0.0083131 1.37108 -0.886044 -0.885648 -0.000395867
0.0281062 -0.987404 0.959298 -0.0 0.0083131 1.37108 -0.886044 -0.885648 -0.000395867
0.0281062 0.0125956 -0.0407018 -0.0 0.0083131 -0.058173 0.0371811 0.0375769 -0.000395867
0.0184344 0.0125956 -0.03103 -0.0 0.00545244 -0.0443496 0.028388 0.0286477 -0.000259643
-0.971894 0.0125956 0.959298 -0.0 -0.287462 1.37108 -0.87196 -0.885648 0.0136888
]
@test all([
isapprox(dx_ref[i], dx[1:11, :][i]; atol = TEST_TOLERANCE_RELAXED) for
i in eachindex(dx_ref)
])
# test if automatic and symbolic derivatives are the same
make_derivatives(diffmodel)
_, dx_sym = differentiate(
diffmodel,
Tulip.Optimizer;
use_analytic = true,
modifications = [change_optimizer_attribute("IPM_IterationsLimit", 1000)],
)
@test all([
isapprox(dx_sym[i], dx[i]; atol = TEST_TOLERANCE) for i in eachindex(dx_ref)
])
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 3628 | @testset "Differentiable Thermodynamic GECKO" begin
#: Set problem up
stdmodel,
reaction_isozymes,
gene_product_bounds,
gene_product_molar_mass,
gene_product_mass_group_bound = create_test_model()
gm = make_gecko_model(
stdmodel;
reaction_isozymes,
gene_product_bounds,
gene_product_molar_mass,
gene_product_mass_group_bound,
)
rid_enzyme = Dict(
k => isozyme_to_enzyme(first(v), gene_product_molar_mass; direction = :forward)
for (k, v) in reaction_isozymes
)
rid_dg0 = Dict("r4" => -1.0, "r5" => -10.0, "r6" => 10.0)
mid_concentration = Dict(
"m6" => 0.001,
"m3" => 0.001,
"m2" => 1.0,
"m4" => 0.01,
"m5" => 0.05,
"m1" => 1.0,
)
#: Solve normal gecko model without thermodynamic effects
opt_model = flux_balance_analysis(
gm,
Tulip.Optimizer;
modifications = [change_optimizer_attribute("IPM_IterationsLimit", 1000)],
)
gecko_fluxes = flux_dict(gm, opt_model)
gecko_gps = gene_product_dict(gm, opt_model)
#: Differentiate model normal gecko
diffmodel = with_parameters(
gm,
rid_enzyme;
rid_dg0,
mid_concentration,
ignore_reaction_ids = ["r6"],
)
x, dx = differentiate(
diffmodel,
Tulip.Optimizer;
modifications = [change_optimizer_attribute("IPM_IterationsLimit", 1000)],
)
sol = Dict(diffmodel.var_ids .=> x)
#=
sanity check
reaction 4 should require more enzyme due to it being closer to equilibrium
grr reaction 4: (1 * g2 && 3 * g3)
=#
@test sol["g2"] > gecko_gps["g2"]
@test sol["g3"] > gecko_gps["g3"]
# check if x, dx can be reproduced
x_ref = [
1.2380726767460195
2.476145353495478
1.2380726767411319
1.2380726767489294
1.2380726767312122
2.476145353495478
1.2380726767460195
0.12380726766577349
0.061967128585559375
0.2035881413551585
0.03537351102455509
]
@test all([isapprox(x_ref[i], x[i]; atol = TEST_TOLERANCE) for i in eachindex(x)])
dx_ref = [
0.194554 0.123807 0.681638 -0.0 3.44365e-8 0.341868 -0.341868 -0.341868 -3.44365e-8
0.194554 0.123807 0.681638 -0.0 3.44365e-8 0.341868 -0.341868 -0.341868 -3.44365e-8
0.194554 0.123807 0.681638 -0.0 3.44365e-8 0.341868 -0.341868 -0.341868 -3.44365e-8
0.194554 0.123807 0.681638 -0.0 3.44365e-8 0.341868 -0.341868 -0.341868 -3.44365e-8
0.194554 0.123807 0.681638 -0.0 3.44365e-8 0.341868 -0.341868 -0.341868 -3.44365e-8
0.194554 0.123807 0.681638 -0.0 3.44365e-8 0.341868 -0.341868 -0.341868 -3.44365e-8
0.194554 0.123807 0.681638 0.0 3.44365e-8 0.341868 -0.341868 -0.341868 -3.44365e-8
0.194554 -0.876193 0.681638 -0.0 3.44365e-8 0.341868 -0.341868 -0.341868 -3.44365e-8
0.194554 0.123807 -0.318362 -0.0 3.44365e-8 -0.159671 0.159671 0.159671 -3.44365e-8
0.107679 0.123807 -0.231486 -0.0 1.90594e-8 -0.116099 0.116099 0.116099 -1.90594e-8
-0.805446 0.123807 0.681638 -0.0 -1.42566e-7 0.341868 -0.341868 -0.341868 1.42566e-7
]
@test all([
isapprox(dx_ref[i], dx[1:11, :][i]; atol = TEST_TOLERANCE) for
i in eachindex(dx_ref)
])
# test if automatic and symbolic derivatives are the same
make_derivatives(diffmodel)
_, dx_sym = differentiate(diffmodel, Tulip.Optimizer; use_analytic = true)
@test all([
isapprox(dx_sym[i], dx[i]; atol = TEST_TOLERANCE) for i in eachindex(dx_sym)
])
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | code | 2483 | @testset "Differentiable Thermodynamic SMOMENT" begin
#: Set problem up
stdmodel, reaction_isozymes, _, gene_product_molar_mass, _ = create_test_model()
smm = make_smoment_model(
stdmodel;
reaction_isozyme = Dict(k => first(v) for (k, v) in reaction_isozymes),
gene_product_molar_mass,
total_enzyme_capacity = 1.0,
)
rid_enzyme = Dict(
k => isozyme_to_enzyme(first(v), gene_product_molar_mass; direction = :forward)
for (k, v) in reaction_isozymes
)
rid_dg0 = Dict("r4" => -1.0, "r5" => -10.0, "r6" => 10.0)
mid_concentration = Dict(
"m6" => 0.001,
"m3" => 0.001,
"m2" => 1.0,
"m4" => 0.01,
"m5" => 0.05,
"m1" => 1.0,
)
#: Differentiate model
diffmodel = with_parameters(
smm,
rid_enzyme;
rid_dg0,
mid_concentration,
ignore_reaction_ids = ["r6"],
)
x, dx = differentiate(
diffmodel,
Tulip.Optimizer;
modifications = [change_optimizer_attribute("IPM_IterationsLimit", 1000)],
)
# test if can reproduce answers
x_ref = [
1.2380726841130605
2.4761453682260397
1.2380726841129737
1.2380726841134497
1.2380726841130556
2.4761453682260397
1.2380726841130605
]
@test all([isapprox(x_ref[i], x[i]; atol = TEST_TOLERANCE) for i in eachindex(x)])
dx_ref = [
0.194554 0.123807 0.681638 -0.0 3.44365e-8 0.341868 -0.341868 -0.341868 -3.44365e-8
0.194554 0.123807 0.681638 -0.0 3.44365e-8 0.341868 -0.341868 -0.341868 -3.44365e-8
0.194554 0.123807 0.681638 -0.0 3.44365e-8 0.341868 -0.341868 -0.341868 -3.44365e-8
0.194554 0.123807 0.681638 -0.0 3.44365e-8 0.341868 -0.341868 -0.341868 -3.44365e-8
0.194554 0.123807 0.681638 -0.0 3.44365e-8 0.341868 -0.341868 -0.341868 -3.44365e-8
0.194554 0.123807 0.681638 -0.0 3.44365e-8 0.341868 -0.341868 -0.341868 -3.44365e-8
0.194554 0.123807 0.681638 0.0 3.44365e-8 0.341868 -0.341868 -0.341868 -3.44365e-8
]
@test all([
isapprox(dx_ref[i], dx[1:7, :][i]; atol = TEST_TOLERANCE) for i in eachindex(dx_ref)
])
# test if automatic and symbolic derivatives are the same
make_derivatives(diffmodel)
_, dx_sym = differentiate(diffmodel, Tulip.Optimizer; use_analytic = true)
@test all([isapprox(dx_sym[i], dx[i]; atol = TEST_TOLERANCE) for i in eachindex(dx)])
end
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | docs | 4061 | # DifferentiableMetabolism.jl
This package extends [COBREXA.jl](https://github.com/LCSB-BioCore/COBREXA.jl)
with the ability to differentiate an optimal solution of an enzyme constrained
metabolic model.
Currently, there is support for differentiating both `SMomentModel` and
`GeckoModel`, where both turnover numbers and/or intracellular metabolite
concentrations can be taken as parameters. If the latter are parameters, then
generalized Michaelis-Menten kinetics (saturation and thermodynamic) are
assumed.
Note, this package is under active development. Only non-degenerate models can
be differentiated. This means that you will only be able to differentiate the
model if you find an active solution, prune the inactive reactions from the
model, and then differentiate the resulting model. Work is planned to drop this
restriction.
To use this package, [download and install Julia](https://julialang.org/downloads/), and add
the following packages using the built in package manager:
```julia
] add COBREXA, DifferentiableMetabolism, Tulip
```
Note, any optimization solver that is compatible with [JuMP](https://jump.dev/)
can be used. Here we have opted to use
[Tulip.jl](https://github.com/ds4dm/Tulip.jl). To run the tests,
[Ipopt](https://github.com/jump-dev/Ipopt.jl) is also required.
```julia
] test DifferentiableMetabolism
```
## Differentiating a simple model
In this example, a simple model will be differentiated.
```julia
using DifferentiableMetabolism
using Tulip
using COBREXA
# Create model
model = StandardModel("SmallModel")
m1 = Metabolite("m1")
m2 = Metabolite("m2")
m3 = Metabolite("m3")
m4 = Metabolite("m4")
m5 = Metabolite("m5")
m6 = Metabolite("m6")
@add_reactions! model begin
"r1", nothing β m1, 0, 100
"r2", nothing β m2, 0, 100
"r3", m1 + m2 β m3, 0, 100
"r4", m3 β m4 + m5, 0, 100
"r5", m2 β m4 + m6, 0, 100
"r6", m4 β nothing, 0, 100
"r7", m2 β m4 + m6, 0, 100
"biomass", m6 + m5 β nothing, 0, 100
end
gs = [Gene("g$i") for i = 1:5]
model.reactions["biomass"].objective_coefficient = 1.0
add_genes!(model, gs)
add_metabolites!(model, [m1, m2, m3, m4, m5, m6])
reaction_isozymes = Dict(
"r3" => [Isozyme(Dict("g1" => 1), 10.0, 10.0)],
"r4" => [Isozyme(Dict("g2" => 1, "g3" => 3), 30.0, 20.0)],
"r5" => [Isozyme(Dict("g3" => 1, "g4" => 2), 70.0, 30.0)],
"r7" => [Isozyme(Dict("g5" => 1), 50.0, 20.0)],
)
gene_product_bounds = Dict(
"g1" => (0.0, 0.2),
"g2" => (0.0, 0.1),
"g3" => (0.0, 10.0),
"g4" => (0.0, 1000.0),
"g5" => (0.0, 1000.0),
)
gene_product_molar_mass = Dict("g1" => 1.0, "g2" => 2.0, "g3" => 3.0, "g4" => 4.0, "g5" => 5.0)
gene_product_mass_group_bound = Dict("uncategorized" => 1.0)
model
# Construct and simulate a GECKO model
gecko_model = make_gecko_model(
model;
reaction_isozymes,
gene_product_bounds,
gene_product_molar_mass,
gene_product_mass_group_bound,
)
# Get classic GECKO solution
optimized_model = flux_balance_analysis(
gecko_model,
Tulip.Optimizer;
)
gecko_fluxes = flux_dict(gecko_model, optimized_model) # notice that r5 is inactive!
# Prune away inactive reactions
pruned_model = prune_model(model, gecko_fluxes)
# Differentiate an optimal solution
pruned_gecko_model = make_gecko_model(
pruned_model;
reaction_isozymes,
gene_product_bounds,
gene_product_molar_mass,
gene_product_mass_group_bound,
)
rid_enzyme = Dict(
k => isozyme_to_enzyme(first(v), gene_product_molar_mass; direction = :forward)
for (k, v) in reaction_isozymes
)
diffmodel = with_parameters(gecko_model, rid_enzyme)
x, dx = differentiate(
diffmodel,
Tulip.Optimizer
)
```
Here, `x` are the variables, corresponding to `diffmodel.var_ids`, and `dx` are
the derivatives, where rows correspond to `diffmodel.param_ids`, and columns
correspond to `diffmodel.var_ids`.
While this package is under development, you can already use more advanced
functionality. Look at the tests to see how to incorporate thermodynamic and/or
saturation effects these differentiable models. | DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"Apache-2.0"
] | 0.1.1 | 67fef652da188fec439462b55f9015a7d05653e5 | docs | 254 | ```@meta
CurrentModule = DifferentiableMetabolism
```
# DifferentiableMetabolism
Documentation for [DifferentiableMetabolism](https://github.com/stelmo/DifferentiableMetabolism.jl).
```@index
```
```@autodocs
Modules = [DifferentiableMetabolism]
```
| DifferentiableMetabolism | https://github.com/stelmo/DifferentiableMetabolism.jl.git |
|
[
"MIT"
] | 0.1.0 | 0bdda826dee28f5e839c5c38b1e7096bd079216e | code | 685 | import PyCall
# , Conda
# Conda.add("git")
# Conda.add("pip")
# Conda.add("cython")
# Conda.add("numpy")
# const pip = joinpath(Conda.BINDIR, "pip")
# proxy_arg = String[]
# if haskey(ENV, "http_proxy")
# push!(proxy_arg, "--proxy")
# push!(proxy_arg, ENV["http_proxy"])
# end
pip = `$(PyCall.python) -m pip`
run(`$pip install --user --upgrade pip setuptools`)
run(`$pip install --user cython numpy`)
# Install pyconcorde (The Concorde TSP Solver + QSOpt LP Library)
# https://github.com/jvkersch/pyconcorde
run(`$pip install git+git://github.com/jvkersch/pyconcorde.git`)
# Install elkai (The LKH Solver)
# https://github.com/filipArena/elkai
run(`$pip install elkai`)
| PyTSP | https://github.com/chkwon/PyTSP.jl.git |
|
[
"MIT"
] | 0.1.0 | 0bdda826dee28f5e839c5c38b1e7096bd079216e | code | 197 | module PyTSP
# Write your package code here.
using PyCall
include("tsp_solvers.jl")
export solve_TSP_Concorde, solve_TSP_LKH,
distance_matrix, tour_length, distance_matrix_float
end
| PyTSP | https://github.com/chkwon/PyTSP.jl.git |
|
[
"MIT"
] | 0.1.0 | 0bdda826dee28f5e839c5c38b1e7096bd079216e | code | 1603 | function distance_matrix_float(x, y)
@assert length(x) == length(y)
n = length(x)
M = zeros(n, n)
for i in 1:n
for j in i+1:n
if i != j
M[i, j] = sqrt( (x[i]-x[j])^2 + (y[i]-y[j])^2 )
M[j, i] = M[i, j]
end
end
end
return M
end
function distance_matrix(x, y)
M = distance_matrix_float(x, y)
return Int.(round.(M))
end
function tour_length(tour, M::Matrix{T}) where T
sum = zero(T)
for i in 1:length(tour)
if i < length(tour)
sum += M[tour[i], tour[i+1]]
else
sum += M[tour[i], tour[1]]
end
end
return sum
end
# function tour_length(tour, x, y)
# M = distance_matrix(x, y)
# return tour_length(tour, M)
# end
function solve_TSP_Concorde(x, y; norm="EUC_2D",)
Concorde = pyimport("concorde.tsp")
solver = Concorde.TSPSolver.from_data(x, y, norm)
tour_data = solver.solve()
tour_concorde = tour_data[1] .+ 1 # 0-index -> 1-index
# length_concorde = tour_length(tour_concorde, x, y)
length_concorde = Int(tour_data[2])
return tour_concorde, length_concorde
end
function solve_TSP_LKH(M::Matrix{T}) where T
Elkai = pyimport("elkai")
if T == Int
tour_LKH = Elkai.solve_int_matrix(M) .+ 1 #adding 1 for indexing
else
tour_LKH = Elkai.solve_float_matrix(M) .+ 1 #adding 1 for indexing
end
length_LKH = tour_length(tour_LKH, M)
return tour_LKH, length_LKH
end
function solve_TSP_LKH(x, y)
M = distance_matrix(x, y)
return solve_TSP_LKH(M)
end
| PyTSP | https://github.com/chkwon/PyTSP.jl.git |
|
[
"MIT"
] | 0.1.0 | 0bdda826dee28f5e839c5c38b1e7096bd079216e | code | 1678 | using PyTSP
using Test
@testset "PyTSP.jl" begin
@testset "Basic TSP solver tests" begin
# random TSP instance
n_cities = 20
factor = 1e5
x = rand(n_cities) .* factor
y = rand(n_cities) .* factor
# The Concorde TSL Solver via pyconcorde
time_concorde = @elapsed tour_concorde, length_concorde = solve_TSP_Concorde(x, y, norm="EUC_2D")
# The LKH Heuristic via elkai
time_LKH = @elapsed tour_LKH, length_LKH = solve_TSP_LKH(x, y)
gap = (length_LKH - length_concorde) / length_LKH * 100
gap = round(gap * 100) / 100
# Compare the solutions
println("============ n_cities = $n_cities ======================")
@show tour_concorde
@show tour_LKH
println("Concorde Tour Length: $length_concorde ($time_concorde seconds)")
println("LKH Tour Length: $length_LKH ($time_LKH seconds) (gap = $gap %)")
@test isapprox(length_concorde, length_LKH; atol=2)
end
@testset "LKH type tests" begin
# random TSP instance
n_cities = 20
factor = 1e5
x = rand(n_cities) .* factor
y = rand(n_cities) .* factor
tour_LKH_int1, length_LKH_int1 = solve_TSP_LKH(x, y)
M = distance_matrix(x, y)
tour_LKH_int2, length_LKH_int2 = solve_TSP_LKH(M)
N = distance_matrix(x, y) .* 1.0
tour_LKH_float, length_LKH_float = solve_TSP_LKH(N)
@test isa(length_LKH_int1, Int)
@test isa(length_LKH_int2, Int)
@test isa(length_LKH_float, Float64)
@test isapprox(length_LKH_int1, length_LKH_int2)
end
end | PyTSP | https://github.com/chkwon/PyTSP.jl.git |
|
[
"MIT"
] | 0.1.0 | 0bdda826dee28f5e839c5c38b1e7096bd079216e | docs | 2348 | # PyTSP
[](https://github.com/chkwon/PyTSP.jl/actions?query=workflow%3ACI)
[](https://codecov.io/gh/chkwon/PyTSP.jl)
This Julia package provides access to the [Concorde TSP Solver](http://www.math.uwaterloo.ca/tsp/concorde/index.html) and the [Lin-Kernighan-Held (LKH) solver](http://webhotel4.ruc.dk/~keld/research/LKH/) via [PyConcorde](https://github.com/jvkersch/pyconcorde) and [elkai](https://github.com/filipArena/elkai), respectively.
As both PyConcorde and elkai are Python libraries, this package merely provides a Julia wrapper using PyCall.
In Windows, this package does not work. Consider using Windows Subsystem for Linux (WSL).
## License
MIT License only applies to PyTSP.jl. The Python parts, PyConcorde and elkai, come in difference licenses. The underlying solvers, the Conrcorde TSP Solver and LKH, require special licenses for commercial usage. Please check their websites.
## Installation
`] add https://github.com/chkwon/PyTSP.jl`
## Usage
### Concorde
Concorde uses integers for distance calculation. Your `(x, y)` coordinate inputs should be scaled appropriately.
```julia
using PyTSP
n_cities = 20
factor = 1e5
x = rand(n_cities) .* factor
y = rand(n_cities) .* factor
# The Concorde TSL Solver via pyconcorde
tour, len = solve_TSP_Concorde(x, y, norm="EUC_2D")
```
```julia
([1, 2, 19, 13, 18, 11, 4, 14, 7, 6, 15, 10, 8, 16, 20, 5, 9, 3, 12, 17], 389803)
```
### LKH
Since LKH also benefits from integer inputs, this package uses integer as default.
```julia
using PyTSP
n_cities = 20
factor = 1e5
x = rand(n_cities) .* factor
y = rand(n_cities) .* factor
# The LKH heuristic solver via elkai
tour_LKH, length_LKH = solve_TSP_LKH(x, y)
```
```julia
([1, 2, 19, 13, 18, 11, 4, 14, 7, 6, 15, 10, 8, 16, 20, 5, 9, 3, 12, 17], 389803)
```
You can also input a distance matrix, either `Matrix{Int}` or `Matrix{Float64}`.
```julia
using PyTSP
n_cities = 20
factor = 1e5
x = rand(n_cities) .* factor
y = rand(n_cities) .* factor
M = distance_matrix(x, y) # returns a rounded Matrix{Int}
tour_LKH, length_LKH = solve_TSP_LKH(M)
N = distance_matrix_float(x, y) # returns a Matrix{Float64}
tour_LKH, length_LKH = solve_TSP_LKH(N)
```
| PyTSP | https://github.com/chkwon/PyTSP.jl.git |
|
[
"MIT"
] | 0.3.0 | 553be75f181bf33a0816833e2244b82f3a80da4f | code | 629 |
module DashCytoscape
using Dash
const resources_path = realpath(joinpath( @__DIR__, "..", "deps"))
const version = "0.3.0"
include("jl/cyto_cytoscape.jl")
function __init__()
DashBase.register_package(
DashBase.ResourcePkg(
"dash_cytoscape",
resources_path,
version = version,
[
DashBase.Resource(
relative_package_path = "dash_cytoscape.min.js",
external_url = "https://unpkg.com/[email protected]/dash_cytoscape/dash_cytoscape.min.js",
dynamic = nothing,
async = nothing,
type = :js
)
]
)
)
end
end
| DashCytoscape | https://github.com/plotly/DashCytoscape.jl.git |
|
[
"MIT"
] | 0.3.0 | 553be75f181bf33a0816833e2244b82f3a80da4f | code | 15357 | # AUTO GENERATED FILE - DO NOT EDIT
export cyto_cytoscape
"""
cyto_cytoscape(;kwargs...)
A Cytoscape component.
A Component Library for Dash aimed at facilitating network visualization in
Python, wrapped around [Cytoscape.js](http://js.cytoscape.org/).
Keyword arguments:
- `id` (String; optional): The ID used to identify this component in Dash callbacks.
- `autoRefreshLayout` (Bool; optional): Whether the layout should be refreshed when elements are added or removed.
- `autolock` (Bool; optional): Whether nodes should be locked (not draggable at all) by default
(if true, overrides individual node state).
- `autoungrabify` (Bool; optional): Whether nodes should be ungrabified (not grabbable by user) by
default (if true, overrides individual node state).
- `autounselectify` (Bool; optional): Whether nodes should be unselectified (immutable selection state) by
default (if true, overrides individual element state).
- `boxSelectionEnabled` (Bool; optional): Whether box selection (i.e. drag a box overlay around, and release it
to select) is enabled. If enabled, the user must taphold to pan the graph.
- `className` (String; optional): Sets the class name of the element (the value of an element's html
class attribute).
- `elements` (optional): A list of dictionaries representing the elements of the networks. Each dictionary describes an element, and
specifies its purpose. The [official Cytoscape.js documentation](https://js.cytoscape.org/#notation/elements-json)
offers an extensive overview and examples of element declaration.
Alternatively, a dictionary with the format { 'nodes': [], 'edges': [] } is allowed at initialization,
but arrays remain the recommended format.. elements has the following type: Array of lists containing elements 'group', 'data', 'position', 'selected', 'selectable', 'locked', 'grabbable', 'classes'.
Those elements have the following types:
- `group` (String; optional): Either 'nodes' or 'edges'. If not given, it's automatically inferred.
- `data` (optional): Element specific data.. data has the following type: lists containing elements 'id', 'label', 'parent', 'source', 'target'.
Those elements have the following types:
- `id` (String; optional): Reference to the element, useful for selectors and edges. Randomly assigned if not given.
- `label` (String; optional): Optional name for the element, useful when `data(label)` is given to a style's `content`
or `label`. It is only a convention.
- `parent` (String; optional): Only for nodes. Optional reference to another node. Needed to create compound nodes.
- `source` (String; optional): Only for edges. The id of the source node, which is where the edge starts.
- `target` (String; optional): Only for edges. The id of the target node, where the edge ends.
- `position` (optional): Only for nodes. The position of the node.. position has the following type: lists containing elements 'x', 'y'.
Those elements have the following types:
- `x` (Real; optional): The x-coordinate of the node.
- `y` (Real; optional): The y-coordinate of the node.
- `selected` (Bool; optional): If the element is selected upon initialisation.
- `selectable` (Bool; optional): If the element can be selected.
- `locked` (Bool; optional): Only for nodes. If the position is immutable.
- `grabbable` (Bool; optional): Only for nodes. If the node can be grabbed and moved by the user.
- `classes` (String; optional): Space separated string of class names of the element. Those classes can be selected
by a style selector.s | lists containing elements 'nodes', 'edges'.
Those elements have the following types:
- `nodes` (Array; optional)
- `edges` (Array; optional)
- `generateImage` (optional): Dictionary specifying options to generate an image of the current cytoscape graph.
Value is cleared after data is received and image is generated. This property will
be ignored on the initial creation of the cytoscape object and must be invoked through
a callback after it has been rendered.
If the app does not need the image data server side and/or it will only be used to download
the image, it may be prudent to invoke `'download'` for `action` instead of
`'store'` to improve performance by preventing transfer of data to the server.. generateImage has the following type: lists containing elements 'type', 'options', 'action', 'filename'.
Those elements have the following types:
- `type` (a value equal to: 'svg', 'png', 'jpg', 'jpeg'; optional): File type to output
- `options` (Dict; optional): Dictionary of options to cy.png() / cy.jpg() or cy.svg() for image generation.
See https://js.cytoscape.org/#core/export for details. For `'output'`, only 'base64'
and 'base64uri' are supported. Default: `{'output': 'base64uri'}`.
- `action` (a value equal to: 'store', 'download', 'both'; optional): `'store'`: Stores the image data (only jpg and png are supported)
in `imageData` and invokes server-side Dash callbacks. `'download'`: Downloads the image
as a file with all data handling done client-side. No `imageData` callbacks are fired.
`'both'`: Stores image data and downloads image as file. The default is `'store'`
- `filename` (String; optional): Name for the file to be downloaded. Default: 'cyto'.
- `imageData` (String; optional): String representation of the image requested with generateImage. Null if no
image was requested yet or the previous request failed. Read-only.
- `layout` (optional): A dictionary specifying how to set the position of the elements in your
graph. The `'name'` key is required, and indicates which layout (algorithm) to
use. The keys accepted by `layout` vary depending on the algorithm, but these
keys are accepted by all layouts: `fit`, `padding`, `animate`, `animationDuration`,
`boundingBox`.
The complete list of layouts and their accepted options are available on the
[Cytoscape.js docs](https://js.cytoscape.org/#layouts) . For the external layouts,
the options are listed in the "API" section of the README.
Note that certain keys are not supported in Dash since the value is a JavaScript
function or a callback. Please visit this
[issue](https://github.com/plotly/dash-cytoscape/issues/25) for more information.. layout has the following type: lists containing elements 'name', 'fit', 'padding', 'animate', 'animationDuration', 'boundingBox'.
Those elements have the following types:
- `name` (a value equal to: 'random', 'preset', 'circle', 'concentric', 'grid', 'breadthfirst', 'cose', 'close-bilkent', 'cola', 'euler', 'spread', 'dagre', 'klay'; required): The layouts available by default are:
`random`: Randomly assigns positions.
`preset`: Assigns position based on the `position` key in element dictionaries.
`circle`: Single-level circle, with optional radius.
`concentric`: Multi-level circle, with optional radius.
`grid`: Square grid, optionally with numbers of `rows` and `cols`.
`breadthfirst`: Tree structure built using BFS, with optional `roots`.
`cose`: Force-directed physics simulation.
Some external layouts are also included. To use them, run
`dash_cytoscape.load_extra_layouts()` before creating your Dash app. Be careful about
using the extra layouts when not necessary, since they require supplementary bandwidth
for loading, which impacts the startup time of the app.
The external layouts are:
[cose-bilkent](https://github.com/cytoscape/cytoscape.js-cose-bilkent),
[cola](https://github.com/cytoscape/cytoscape.js-cola),
[euler](https://github.com/cytoscape/cytoscape.js-dagre),
[spread](https://github.com/cytoscape/cytoscape.js-spread),
[dagre](https://github.com/cytoscape/cytoscape.js-dagre),
[klay](https://github.com/cytoscape/cytoscape.js-klay),
- `fit` (Bool; optional): Whether to render the nodes in order to fit the canvas.
- `padding` (Real; optional): Padding around the sides of the canvas, if fit is enabled.
- `animate` (Bool; optional): Whether to animate change in position when the layout changes.
- `animationDuration` (Real; optional): Duration of animation in milliseconds, if enabled.
- `boundingBox` (Dict; optional): How to constrain the layout in a specific area. Keys accepted are either
`x1, y1, x2, y2` or `x1, y1, w, h`, all of which receive a pixel value.
- `maxZoom` (Real; optional): A maximum bound on the zoom level of the graph. The viewport can not be
scaled larger than this zoom level.
- `minZoom` (Real; optional): A minimum bound on the zoom level of the graph. The viewport can not be
scaled smaller than this zoom level.
- `mouseoverEdgeData` (Dict; optional): The data dictionary of an edge returned when you hover over it. Read-only.
- `mouseoverNodeData` (Dict; optional): The data dictionary of a node returned when you hover over it. Read-only.
- `pan` (optional): Dictionary indicating the initial panning position of the graph. The
following keys are accepted:. pan has the following type: lists containing elements 'x', 'y'.
Those elements have the following types:
- `x` (Real; optional): The x-coordinate of the node
- `y` (Real; optional): The y-coordinate of the node
- `panningEnabled` (Bool; optional): Whether panning the graph is enabled (i.e., the position of the graph is
mutable overall).
- `responsive` (Bool; optional): Toggles intelligent responsive resize of Cytoscape graph with viewport size change
- `selectedEdgeData` (Array; optional): The list of data dictionaries of all selected edges (e.g. using
Shift+Click to select multiple nodes, or Shift+Drag to use box selection). Read-only.
- `selectedNodeData` (Array; optional): The list of data dictionaries of all selected nodes (e.g. using
Shift+Click to select multiple nodes, or Shift+Drag to use box selection). Read-only.
- `style` (Dict; optional): Add inline styles to the root element.
- `stylesheet` (optional): A list of dictionaries representing the styles of the elements.
Each dictionary requires the following keys: `selector` and `style`.
Both the [selector](https://js.cytoscape.org/#selectors) and
the [style](https://js.cytoscape.org/#style/node-body) are
exhaustively documented in the Cytoscape.js docs. Although methods such
as `cy.elements(...)` and `cy.filter(...)` are not available, the selector
string syntax stays the same.. stylesheet has the following type: Array of lists containing elements 'selector', 'style'.
Those elements have the following types:
- `selector` (String; required): Which elements you are styling. Generally, you select a group of elements (node, edges, both),
a class (that you declare in the element dictionary), or an element by ID.
- `style` (Dict; required): What aspects of the elements you want to modify. This could be the size or
color of a node, the shape of an edge arrow, or many more.s
- `tapEdge` (optional): The complete edge dictionary returned when you tap or click it. Read-only.. tapEdge has the following type: lists containing elements 'isLoop', 'isSimple', 'midpoint', 'sourceData', 'sourceEndpoint', 'targetData', 'targetEndpoint', 'timeStamp', 'classes', 'data', 'grabbable', 'group', 'locked', 'selectable', 'selected', 'style'.
Those elements have the following types:
- `isLoop` (Bool; optional): Edge-specific item
- `isSimple` (Bool; optional): Edge-specific item
- `midpoint` (Dict; optional): Edge-specific item
- `sourceData` (Dict; optional): Edge-specific item
- `sourceEndpoint` (Dict; optional): Edge-specific item
- `targetData` (Dict; optional): Edge-specific item
- `targetEndpoint` (Dict; optional): Edge-specific item
- `timeStamp` (Real; optional): Edge-specific item
- `classes` (String; optional): General item (for all elements)
- `data` (Dict; optional): General item (for all elements)
- `grabbable` (Bool; optional): General item (for all elements)
- `group` (String; optional): General item (for all elements)
- `locked` (Bool; optional): General item (for all elements)
- `selectable` (Bool; optional): General item (for all elements)
- `selected` (Bool; optional): General item (for all elements)
- `style` (Dict; optional): General item (for all elements)
- `tapEdgeData` (Dict; optional): The data dictionary of an edge returned when you tap or click it. Read-only.
- `tapNode` (optional): The complete node dictionary returned when you tap or click it. Read-only.. tapNode has the following type: lists containing elements 'edgesData', 'renderedPosition', 'timeStamp', 'classes', 'data', 'grabbable', 'group', 'locked', 'position', 'selectable', 'selected', 'style', 'ancestorsData', 'childrenData', 'descendantsData', 'parentData', 'siblingsData', 'isParent', 'isChildless', 'isChild', 'isOrphan', 'relativePosition'.
Those elements have the following types:
- `edgesData` (Array; optional): node specific item
- `renderedPosition` (Dict; optional): node specific item
- `timeStamp` (Real; optional): node specific item
- `classes` (String; optional): General item (for all elements)
- `data` (Dict; optional): General item (for all elements)
- `grabbable` (Bool; optional): General item (for all elements)
- `group` (String; optional): General item (for all elements)
- `locked` (Bool; optional): General item (for all elements)
- `position` (Dict; optional): General item (for all elements)
- `selectable` (Bool; optional): General item (for all elements)
- `selected` (Bool; optional): General item (for all elements)
- `style` (Dict; optional): General item (for all elements)
- `ancestorsData` (Dict | Array; optional): Item for compound nodes
- `childrenData` (Dict | Array; optional): Item for compound nodes
- `descendantsData` (Dict | Array; optional): Item for compound nodes
- `parentData` (Dict | Array; optional): Item for compound nodes
- `siblingsData` (Dict | Array; optional): Item for compound nodes
- `isParent` (Bool; optional): Item for compound nodes
- `isChildless` (Bool; optional): Item for compound nodes
- `isChild` (Bool; optional): Item for compound nodes
- `isOrphan` (Bool; optional): Item for compound nodes
- `relativePosition` (Dict; optional): Item for compound nodes
- `tapNodeData` (Dict; optional): The data dictionary of a node returned when you tap or click it. Read-only.
- `userPanningEnabled` (Bool; optional): Whether user events (e.g. dragging the graph background) are allowed to
pan the graph.
- `userZoomingEnabled` (Bool; optional): Whether user events (e.g. dragging the graph background) are allowed
to pan the graph.
- `zoom` (Real; optional): The initial zoom level of the graph. You can set `minZoom` and
`maxZoom` to set restrictions on the zoom level.
- `zoomingEnabled` (Bool; optional): Whether zooming the graph is enabled (i.e., the zoom level of the graph
is mutable overall).
"""
function cyto_cytoscape(; kwargs...)
available_props = Symbol[:id, :autoRefreshLayout, :autolock, :autoungrabify, :autounselectify, :boxSelectionEnabled, :className, :elements, :generateImage, :imageData, :layout, :maxZoom, :minZoom, :mouseoverEdgeData, :mouseoverNodeData, :pan, :panningEnabled, :responsive, :selectedEdgeData, :selectedNodeData, :style, :stylesheet, :tapEdge, :tapEdgeData, :tapNode, :tapNodeData, :userPanningEnabled, :userZoomingEnabled, :zoom, :zoomingEnabled]
wild_props = Symbol[]
return Component("cyto_cytoscape", "Cytoscape", "dash_cytoscape", available_props, wild_props; kwargs...)
end
| DashCytoscape | https://github.com/plotly/DashCytoscape.jl.git |
|
[
"MIT"
] | 0.3.0 | 553be75f181bf33a0816833e2244b82f3a80da4f | docs | 9384 | # Changelog
All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.3.0] - 2021-05-19
### Added
* Contributed initial build of Julia package.
* R package now includes an example application for `cytoCytoscape`.
### Changed
* Dash has been upgraded to 1.* in requirements.txt and tests/requirements.txt (#123)
* React/react-dom have been upgraded to 16.14+ (#117)
* Docgen upgraded to 5.3.0 (#117)
* Improved prop typing (#117)
### Fixed
* Various security fixes
## [0.2.0] - 2020-07-09
### Added
* Contributed initial build of R package.
* Added access to cytoscape.js PNG and JPG image generation API through `generateImage` and
`imageData` properties (PR [#88](https://github.com/plotly/dash-cytoscape/pull/88)).
* Added ability to download image files generated with `generateImage` client-side without sending
data to the server (PR [#88](https://github.com/plotly/dash-cytoscape/pull/88)).
* Used the newly added `generateImage` and `imageData` properties to enable svg generation using [cytoscape-svg](https://github.com/kinimesi/cytoscape-svg).
* Added responsive cytoscape.js graph feature toggled using the `responsive` property (PR [#93](https://github.com/plotly/dash-cytoscape/pull/92)).
* One new demo:
* `demos/usage-responsive-graph.py`: Example of graph with the ability to toggle the responsive feature on and off.
* `demos/usage-image-export.py`: Shows how to export images as JPG, PNG or SVG.
### Changed
* Changed the official package manager from `yarn` to `npm`.
* `utils.Tree`: v0.1.1 broke compatibility with Python 2. Therefore, modified code to be compatible
with Python 2. Added `props` and `edge_props` properties to accept arguments passed directly to
the node's and edge's dictionaries, respectively (e.g., 'classes', 'positions', etc.).
* Removed `Tree`'s method `add_child`, because it is redundant with `add_children` called with an
argument of length 1.
* `setup.py`: Remove `dash-html-components` and `dash_renderer` from `install_requires`.
* `usage-events.py`: Fix the size of the cytoscape graph to 500px by 500px.
* Upgrade `react-cytoscape.js` to latest.
### Fixed
* `setup.py`: Use `packages=find_packages(include=[package_name, package_name + ".*"])` so that all
subpackages like `utils` will be included when you `pip install dash-cytoscape`.
* Issue where `dash-cytoscape` cannot read property of 'length' of undefined when elements is not specified.
* `tests.test_interactions`.
## [0.1.1] - 2019-04-05
### Fixed
* Error where `dash_cytoscape.utils` cannot be imported.
## [0.1.0] - 2019-04-05
### Added
* Four new demos:
* `demos/usage-dag-edges.py`: Example of edges in a directed acyclic graph (DAG). It uses the new `dash_cytoscape.utils.Tree` class.
* `demos/usage-elements-extra.py`: Example of loading external layouts.
* `demos/usage-preset-animation.py`: Example of animating nodes using the preset layout.
* `demos/usage-reset-button.py`: Example of resetting the graph position using a button.
* `demos/usage-remove-selected-elements.py`: Example to show how to remove selected elements with button.
* `dash_cytoscape/dash_cytoscape_extra.[min|dev].js`: New bundles containing the extra layouts. Those bundles are double in size compared to the default bundles. Therefore, they are only loaded when the user uses `load_extra_layouts()` to limit bandwidth usage and maximize loading speed. Please view [fast3g-cytoscape](demos/images/fast3g-cytoscape.PNG) for an example of the impact on loading time.
* `dash_cytoscape._display_default_values()`: A helper function to display the default prop values by reading `metadata.json`. Useful for documentation.
* `dash_cytoscape.load_extra_layouts()`: A function that can be called before initializing the Dash app (`app = dash.Dash(__name__)`) to load the JS bundle containing the external layouts.
* `src/lib/extra_index.js`: Loads external layouts before exporting the `Cytoscape` class. Needed to generate the new bundles.
* `webpack.[dev|prod].extra.config.js`: Two new webpack config files for external layouts.
* Images of new external layouts.
* The ability for the user to feed a dictionary with keys `nodes` and `edges` to the `elements` prop of `Cytoscape`, instead of a list. The values corresponding to these keys will be, respectively, lists of nodes and edges in the graph.
### Changed
* `usage-events.py`: Added IDs for the edges in order to pass Percy tests.
* `src/lib/components/Cytoscape.react.js`: Updated component docstring to include information about new external layouts and a warning about nodes that can't be modified by a callback. Added more default props for a better expected behavior.
* `package.json`: Added new builds for the extra layouts, modified `npm build:all` to include new builds. Added external layouts as dependencies.
* `MANIFEST.in`: Included new `dash_cytoscape.[min|dev].js` files.
* `README.md`: Moved images, added more images at the end, added useful links.
### Fixed
* Removing selected elements will now cause the corresponding JSON data to be cleared. Fixed by [PR #49](https://github.com/plotly/dash-cytoscape/pull/49), fixes [issue #45](https://github.com/plotly/dash-cytoscape/issues/45).
## [0.0.5] - 2019-03-08
### Added
* Two new demos: `usage-grid-social-network.py` and `usage-concentric-social-network.py`
* Add Issue and PR templates for Github (located in `.github`)
* `tests.test_usage`: Tests for rendering usage files.
* `tests.test_callbacks`: Tests for updating `Cytoscape` with callbacks.
* `tests.test_interactions`: Tests for interacting with `Cytoscape`, and evaluating its event callbacks.
* `tests.test_percy_snapshot`: Creates a Percy build using screenshots from other tests.
### Changed
* `usage-*.py`: Modified all the import statements from `import dash_cytoscape` to `import dash_cytoscape as cyto`. Optimized imports. They are now linted with pylint/flake8.
* `demos/usage-*`: Formatted all demo apps in order to respect pylint and flake8.
* `usage-phylogeny.py`: Clear callback conditional statement
* `CONTRIBUTING.md`: changed `dash-cytoscape-0.0.1` to `dash-cytoscape-x.x.x`. Added a **Code quality & design** section. Changed the **Making a contribution** section and updated title to **Publishing**. Updated **Pre-Release checklist**. Added the **Development** section from `README.md` (renamed **Setting up the environment**). Added a **Tests** section.
* `npmignore`: Added `venv` to avoid venvs to be included in the npm distribution package, which makes us a large amount of space and many unnecessary files being distributed.
* `config.yml`: Added steps to run the new tests. Added coverage for Python 3.7. Included `demos` and all usage examples in `pylint` and `flake8`. Increased line limit to 100.
* `README.md`: Moved the **Development** section to `CONTRIBUTING.md`. Modified the dash version in **Prerequisites**.
* `requirements.txt`: Updated the dash version to latest.
* `tests/requiremens.txt`: Updated the dash version to latest.
* `package.json`: Removed `"prepublish": "npm run validate-init"` due to conflict with CircleCI build. This script will be deprecated in favor of the upcoming Dash Component CLI.
* `tests/IntegrationTests.py`: Moved the `percy_snapshot` method to `test_percy_snapshot` in order to avoid duplicate (failing) builds on Percy. Decrease the number of processes to 1.
* `setup.py`: Added classifiers and download_url.
### Removed
* `extract-meta.js`, `extract-meta` - they were moved to the dash component CLI, thus are not needed anymore
* `config.py`, `runtime.txt`, `Procfile`, `index.html` - only needed for hosting `usage-*.py` on DDS, they are now moved to `plotly/dash-cytoscape-demos`.
* `review_checklist.md` - redundant since all the information is already contained in CONTRIBUTING.md
* `tests.test_render`: Removed unused test
## [0.0.4] - 2019-01-19
### Added
* Homepage URL for PyPi
* Long Description for PyPi
### Changed
* Cytoscape component docstring for thorough and well-formatted references (#26)
* Refactored code base to match the up-to-date version of `dash-component-boilerplate` (#27)
### Fixed
* Console error where `setProps` gets called even when it is undefined (# 28)
* Incorrect setProps assignment that causes `setProps` to not be properly defined when nested in bigger apps (e.g. `dash-docs`) (#28)
## [0.0.3] - 2018-12-29
### Added
* Detailed usage example for rendering Biopython's Phylo object (phylogeny trees)
into a Cytoscape graph, with interactive features such as highlighting.
### Updated
* React-Cytoscapejs version, from 1.0.1 to 1.1.0
## [0.0.2] - 2018-11-08
### Added
* Author email and improve description
* Data section of demos readme
* Added the components "dash", "dash-html-components", and "dash-renderer" as explicit package requirements.
### Changed
* Move grid layout data file
* Change App.js react demo data to be local
* Installation steps in readme to use yarn
### Updated
* Cytoscape.js version, correct component import
### Fixed
* Correct unpkg link error
* Markdown formatting for CONTRIBUTING.md
## [0.0.1] - 2018-11-03
### Added
- First pre-release version of dash-cytoscape. Still WIP, so prepare to see it break π§
| DashCytoscape | https://github.com/plotly/DashCytoscape.jl.git |
|
[
"MIT"
] | 0.3.0 | 553be75f181bf33a0816833e2244b82f3a80da4f | docs | 3885 | # Dash Cytoscape [](https://github.com/plotly/DashCytoscape.jl/blob/main/LICENSE)
A Dash component library for creating interactive and customizable networks in Julia, wrapped around [Cytoscape.js](http://js.cytoscape.org/).

* π [Medium Article](https://medium.com/@plotlygraphs/introducing-dash-cytoscape-ce96cac824e4)
* π£ [Community Announcement](https://community.plotly.com/t/announcing-dash-cytoscape/19095)
* π» [Github Repository](https://github.com/plotly/DashCytoscape.jl)
* π [User Guide](https://dash-julia-docs.herokuapp.com/cytoscape)
* πΊ [Component Reference](https://dash-julia-docs.herokuapp.com/cytoscape/reference)
* πΊ [Webinar Recording](https://www.youtube.com/watch?v=snXcIsCMQgk)
## Documentation
The [Dash Cytoscape User Guide](https://dash.plotly.com/cytoscape/) contains everything you need to know about the library. It contains useful examples, functioning code, and is fully interactive. You can also use the [component reference](https://dash.plotly.com/cytoscape/reference/) for a complete and concise specification of the API.
To learn more about the core Dash components and how to use callbacks, view the [Dash documentation](https://dash.plotly.com/).
For supplementary information about the underlying Javascript API, view the [Cytoscape.js documentation](http://js.cytoscape.org/).
## Contributing
Make sure that you have read and understood our [code of conduct](CODE_OF_CONDUCT.md), then head over to [CONTRIBUTING](CONTRIBUTING.md) to get started.
### Testing
Instructions on how to run [tests](CONTRIBUTING.md#tests) are given in [CONTRIBUTING.md](CONTRIBUTING.md).
## License
Dash, Cytoscape.js and Dash Cytoscape are licensed under MIT. Please view [LICENSE](LICENSE) for more details.
## Contact and Support
See https://plotly.com/dash/support for ways to get in touch.
## Acknowledgments
Huge thanks to the Cytoscape Consortium and the Cytoscape.js team for their contribution in making such a complete API for creating interactive networks. This library would not have been possible without their massive work!
The Pull Request and Issue Templates were inspired from the
[scikit-learn project](https://github.com/scikit-learn/scikit-learn).
## Gallery
### Dynamically expand elements
[Code](usage-elements.py) | [Demo](https://dash-gallery.plotly.host/cytoscape-elements)

### Interactively update stylesheet
[Code](usage-stylesheet.py) | [Demo](https://dash-gallery.plotly.host/cytoscape-stylesheet)

### Automatically generate interactive phylogeny trees
[Code](demos/usage-phylogeny.py) | [Demo](https://dash-gallery.plotly.host/cytoscape-phylogeny/)

### Create your own stylesheet
[Code](usage-advanced.py) | [Demo](https://dash-gallery.plotly.host/cytoscape-advanced)

### Use event callbacks
[Code](usage-events.py) | [Demo](https://dash-gallery.plotly.host/cytoscape-events)

### Use external layouts
[Code](demos/usage-elements-extra.py)

### Use export graph as image
[Code](demos/usage-image-export.py)

### Make graph responsive
[Code](demos/usage-responsive-graph.py)

For an extended gallery, visit the [demos' readme](demos/README.md).
| DashCytoscape | https://github.com/plotly/DashCytoscape.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 2043 | include("../examples/smiley_examples.jl")
using .SmileyExample22, .SmileyExample52, .SmileyExample54, .SmileyExample55
using BenchmarkTools
using ForwardDiff
using IntervalArithmetic
using IntervalRootFinding
import Random
const SUITE = BenchmarkGroup()
Random.seed!(0) # Seed the RNG to get consistent results
tol = 1e-15
include("dietmar_ratz_functions.jl")
S = SUITE["Smiley"] = BenchmarkGroup()
for example in (SmileyExample22, SmileyExample52, SmileyExample54) #, SmileyExample55)
s = S[example.title] = BenchmarkGroup()
for method in (Newton, Krawczyk)
s[string(method)] = @benchmarkable roots($(example.f), $(example.region), $method, $tol)
end
end
S = SUITE["Rastigrin stationary points"] = BenchmarkGroup()
# Rastrigin function:
const A = 10
f(x, y) = 2A + x^2 - A*cos(2Ο*x) + y^2 - A*cos(2Ο*y)
f(X) = f(X...)
ForwardDiff.gradient(f, X::IntervalBox) = ForwardDiff.gradient(f, X.v)
βf = X -> ForwardDiff.gradient(f, X)
L = 5.0
X = IntervalBox(-L..(L+1), 2)
for method in (Newton, Krawczyk)
S[string(method)] = @benchmarkable roots($(β(f)), $X, $method, 1e-5)
end
S = SUITE["Linear equations"] = BenchmarkGroup()
sizes = (2, 5, 10)
for n in sizes
s = S["n = $n"] = BenchmarkGroup()
A = Interval.(randn(n, n))
b = Interval.(randn(n))
s["Gauss seidel"] = @benchmarkable gauss_seidel_interval($A, $b)
s["Gauss seidel contractor"] = @benchmarkable gauss_seidel_contractor($A, $b)
s["Gauss elimination"] = @benchmarkable gauss_elimination_interval($A, $b)
end
S = SUITE["Dietmar-Ratz"] = BenchmarkGroup()
X = Interval(0.75, 1.75)
for (k, dr) in enumerate(dr_functions)
s = S["Dietmar-Ratz $k"] = BenchmarkGroup()
if k != 8 # dr8 is excluded as it has too many roots
for method in (Newton, Krawczyk)
s[string(method)] = @benchmarkable roots($dr, $X, $method, $tol)
end
end
s["Automatic differentiation"] = @benchmarkable ForwardDiff.derivative($dr, $X)
s["Slope expansion"] = @benchmarkable slope($dr, $X, $(mid(X)))
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 480 | # Example functions from Dietmar Ratz - An Optimized Interval Slope Arithmetic and its Application
dr1(x) = (x + sin(x)) * exp(-x^2)
dr2(x) = x^4 - 10x^3 + 35x^2 - 50x + 24
dr3(x) = (log(x + 1.25) - 0.84x) ^ 2
dr4(x) = 0.02x^2 - 0.03exp(-(20(x - 0.875))^2)
dr5(x) = exp(x^2)
dr6(x) = x^4 - 12x^3 + 47x^2 - 60x - 20exp(-x)
dr7(x) = x^6 - 15x^4 + 27x^2 + 250
dr8(x) = atan(cos(tan(x)))
dr9(x) = asin(cos(acos(sin(x))))
dr_functions = [dr1, dr2, dr3, dr4, dr5, dr6, dr7, dr8, dr9]
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 652 | using Documenter
using IntervalArithmetic, IntervalRootFinding
makedocs(
modules = [IntervalRootFinding],
doctest = true,
format = Documenter.HTML(prettyurls = get(ENV, "CI", nothing) == "true"),
sitename = "IntervalRootFinding.jl",
authors = "David P. Sanders and Luis Benet",
pages = Any[
"Home" => "index.md",
"`roots` interface" => "roots.md",
"Internals" => "internals.md",
"Bibliography" => "biblio.md",
"API" => "api.md"
]
)
deploydocs(
repo = "github.com/JuliaIntervals/IntervalRootFinding.jl.git",
target = "build",
deps = nothing,
make = nothing
)
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 1998 | # Examples from Luc Jaulin, Michel Kieffer, Olivier Didrit and Eric Walter - Applied Interval Analysis
using IntervalArithmetic, IntervalRootFinding, StaticArrays
A = [4..5 -1..1 1.5..2.5; -0.5..0.5 -7.. -5 1..2; -1.5.. -0.5 -0.7.. -0.5 2..3]
sA = SMatrix{3}{3}(A)
mA = MMatrix{3}{3}(A)
b = [3..4, 0..2, 3..4]
sb = SVector{3}(b)
mb = MVector{3}(b)
p = fill(-1e16..1e16, 3)
rts = gauss_seidel_interval!(p, A, b, precondition=true) # Gauss-Seidel Method; precondition=true by default
rts = gauss_seidel_interval!(p, sA, sb, precondition=true) # Gauss-Seidel Method; precondition=true by default
rts = gauss_seidel_interval!(p, mA, mb, precondition=true) # Gauss-Seidel Method; precondition=true by default
rts = gauss_seidel_interval(A, b, precondition=true) # Gauss-Seidel Method; precondition=true by default
rts = gauss_seidel_interval(sA, sb, precondition=true) # Gauss-Seidel Method; precondition=true by default
rts = gauss_seidel_interval(mA, mb, precondition=true) # Gauss-Seidel Method; precondition=true by default
rts = gauss_seidel_contractor!(p, A, b, precondition=true) # Gauss-Seidel Method (Vectorized); precondition=true by default
rts = gauss_seidel_contractor!(p, sA, sb, precondition=true) # Gauss-Seidel Method (Vectorized); precondition=true by default
rts = gauss_seidel_contractor!(p, mA, mb, precondition=true) # Gauss-Seidel Method (Vectorized); precondition=true by default
rts = gauss_seidel_contractor(A, b, precondition=true) # Gauss-Seidel Method (Vectorized); precondition=true by default
rts = gauss_seidel_contractor(sA, sb, precondition=true) # Gauss-Seidel Method (Vectorized); precondition=true by default
rts = gauss_seidel_contractor(mA, mb, precondition=true) # Gauss-Seidel Method (Vectorized); precondition=true by default
rts = gauss_elimination_interval!(p, A, b, precondition=true) # Gaussian Elimination; precondition=true by default
rts = gauss_elimination_interval(A, b, precondition=true) # Gaussian Elimination; precondition=true by default
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 2713 | using IntervalArithmetic
using IntervalRootFinding
##
# Available strategies
##
f(x) = sin(x)
contractor = Newton(f, cos)
@info "Breadth first search."
# A search takes a starting region, a contractor and a tolerance as argument
search = BreadthFirstSearch(-10..10, contractor, 1e-10)
# This is needed to avoid the data being discarded at the end of the loop use
# `local tree` instead inside a function.
global endtree
for (k, tree) in enumerate(search)
println("Tree at iteration $k")
println(tree) # The tree has custom printing
global endtree = tree
end
rts = data(endtree) # Use `data` to only get the leaves marked as `:final`
println("Final $(length(rts)) roots: $rts")
println()
@info "Depth first search."
# The second available type of root search is depth first
search = DepthFirstSearch(-10..10, contractor, 1e-10)
for tree in search
global endtree = tree
end # Go to the end of the iteration
# Since the index of each node is printed and indices are attributed in the
# order nodes are processed, comparing this tree with the last iteration of the
# preceding show the difference between breadth first and depth first searches.
println(endtree)
##
# Custom strategy
##
# Define custom BBSearch that store empty intervals rather than discarding it
# Functions of the interface must be explicitely imported
import IntervalRootFinding
struct MySearch{R <: Region, C <: Contractor, T <: Real} <: BreadthFirstBBSearch{Root{R}}
initial::Root{R}
contractor::C
tol::T
end
# This must be implemented, other functions needed are already implemented for
# BBSearch using Root as data (bisect function) or the general fallback match
# this case (root_element function)
function IntervalRootFinding.process(search::MySearch, r::Root)
contracted_root = search.contractor(r, search.tol)
status = root_status(contracted_root)
# We only store the unrefined intervals so the final intervals cover all
# the initial region
unrefined_root = Root(r.interval, status)
status == :unique && return :store, unrefined_root
status == :empty && return :store, unrefined_root # Store largest known empty intervals
status == :unknown && diam(contracted_root) < search.tol && return :store, unrefined_root
return :bisect, unrefined_root # Always bisect the original interval to bypass [NaN, NaN]
end
@info "Search with no interval discarded."
search = MySearch(Root(-10..10, :unknown), contractor, 1e-10)
for tree in search
global endtree = tree
end # Go to the end of the iteration
# In these tree we can see that the union of the resulting intervals (including
# those containing no solution) covers the starting interval.
println(endtree)
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 1704 | using IntervalArithmetic, IntervalRootFinding, StaticArrays
rts = roots(sin, -5..5)
rts = roots(sin, -5..6, Bisection)
rts = roots(sin, rts, Newton)
# 2D:
f(x, y) = SVector(x^2 + y^2 - 1, y - x)
f(X) = f(X...)
rts = roots(f, (-5..5) Γ (-5..5))
rts = roots(f, rts, Bisection)
# complex:
x = -5..6
Xc = Complex(x, x)
f(z) = z^3 - 1
rts = roots(f, Xc, Bisection)
rts = roots(f, rts, Newton)
rts = roots(f, Xc)
# From R docs:
# https://www.rdocumentation.org/packages/pracma/versions/1.9.9/topics/broyden
function g(x)
(x1, x2, x3) = x
SVector( x1^2 + x2^2 + x3^2 - 1,
x1^2 + x3^2 - 0.25,
x1^2 + x2^2 - 4x3
)
end
X = (-5..5)
@time rts = roots(g, X Γ X Γ X)
h(xv) = ((x,y) = xv; SVector(2*x - y - exp(-x), -x + 2*y - exp(-y)))
rts = roots(h, X Γ X, Bisection)
rts = roots(h, rts, Newton)
# Dennis-Schnabel:
h(xv) = ((x, y) = xv; SVector(x^2 + y^2 - 2, exp(x - 1) + y^3 - 2))
rts = roots(h, X Γ X, Bisection)
rts = roots(h, rts, Newton)
# Test suites:
# http://folk.uib.no/ssu029/Pdf_file/Testproblems/testprobRheinboldt03.pdf
# http://www.mat.univie.ac.at/~neum/glopt/test.html
# http://titan.princeton.edu/TestProblems/
# http://www-sop.inria.fr/saga/POL/
## MINPACK benchmarks: https://github.com/JuliaNLSolvers/NLsolve.jl/blob/master/test/minpack.jl
rosenbrock(x, y) = SVector( 1 - x, 10 * (y - x^2) )
rosenbrock(X) = rosenbrock(X...)
rosenbrock(xx) = ( (x, y) = xx; SVector( 1 - x, 1000 * (y - x^2) ) )
X = IntervalBox(-1e5..1e5, 2)
rts = roots(rosenbrock, X)
# and other files in NLsolve test suite
# Testing unconstrained optimization software, MorΓ©, Garbow, Hillstrom ACM Trans. Math. Soft. 7 (1), 17-41 (1981)
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 8460 | # examples from
# M. W. Smiley and C. Chun, J. Comput. Appl. Math. **137**, 293 (2001).
# https://doi.org/10.1016/S0377-0427(00)00711-1
module SmileyExample22
using IntervalArithmetic
using StaticArrays
const title = "Smiley and Chun (2001), Example 2.2"
f(x) = SVector(
x[1]^2 + 4 * x[2]^2 - 4,
x[2] * (x[1] - 1.995) * (x[2] - x[1]^2) * (x[2] - x[1] + 1)
)
# contains all 8 reported roots
const region = IntervalBox(-3..3, -3..3)
# only three roots are reported explicitely:
# (2, 0) and (1.995, Β±0.071)
end
module SmileyExample52
using IntervalArithmetic
using StaticArrays
const title = "Smiley and Chun (2001), Example 5.2"
const c0 = 1
const a0 = 0.5
const b0 = 0.5
const d01 = 0.2
const d02 = -0.7
const r1 = 1
const r2 = 2
const m = 3
const ΞΈs = [i * pi / m for i in 1:m]
_v(ΞΈ) = -(a0 * cos(ΞΈ) + b0 * sin(ΞΈ)) / c0
const vs = _v.(ΞΈs)
_a(ΞΈ, v) = b0 * v - c0 * sin(ΞΈ)
const as = _a.(ΞΈs, vs)
_b(ΞΈ, v) = c0 * cos(ΞΈ) - a0 * v
const bs = _b.(ΞΈs, vs)
_c(ΞΈ) = a0 * sin(ΞΈ) - b0 * cos(ΞΈ)
const cs = _c.(ΞΈs)
_d(c) = d01 * c / c0
const ds = _d.(cs)
f(x) = SVector(
(x[1]^2 + x[2]^2 + x[3]^2 - r1^2) * (x[1]^2 + x[2]^2 + x[3]^2 - r2^2),
(a0 * x[1] + b0 * x[2] + c0 * x[3] - d01) *
(a0 * x[1] + b0 * x[2] + c0 * x[3] - d02),
prod(as[i] * x[1] + bs[i] * x[2] + cs[i] * x[3] - ds[i] for i in 1:m)
)
# contains all 24 reported roots
const region = IntervalBox(-3..3, -3..3, -3..3)
const known_roots = [
IntervalBox(-1.933009 Β± 1e-6, -0.300000 Β± 1e-6, 0.416504 Β± 1e-6),
IntervalBox(-1.701684 Β± 1e-6, 0.000000 Β± 1e-6, 1.050842 Β± 1e-6),
IntervalBox(-1.258803 Β± 1e-6, 1.360696 Β± 1e-6, -0.750946 Β± 1e-6),
IntervalBox(-1.044691 Β± 1e-6, -1.589843 Β± 1e-6, 0.617267 Β± 1e-6),
IntervalBox(-0.996600 Β± 1e-6, 1.726162 Β± 1e-6, -0.164780 Β± 1e-6),
IntervalBox(-0.951026 Β± 1e-6, -0.300000 Β± 1e-6, -0.074486 Β± 1e-6),
IntervalBox(-0.800000 Β± 1e-6, -0.000000 Β± 1e-6, 0.600000 Β± 1e-6),
IntervalBox(-0.776373 Β± 1e-6, -1.344718 Β± 1e-6, 1.260546 Β± 1e-6),
IntervalBox(-0.717665 Β± 1e-6, 0.423418 Β± 1e-6, -0.552876 Β± 1e-6),
IntervalBox(-0.592072 Β± 1e-6, -0.805884 Β± 1e-6, -0.001021 Β± 1e-6),
IntervalBox(-0.499927 Β± 1e-6, 0.865900 Β± 1e-6, 0.017013 Β± 1e-6),
IntervalBox(-0.360640 Β± 1e-6, -0.624646 Β± 1e-6, 0.692643 Β± 1e-6),
IntervalBox( 0.082249 Β± 1e-6, -0.962075 Β± 1e-6, -0.260086 Β± 1e-6),
IntervalBox( 0.085220 Β± 1e-6, 0.367221 Β± 1e-6, -0.926221 Β± 1e-6),
IntervalBox( 0.453788 Β± 1e-6, 0.785984 Β± 1e-6, -0.419886 Β± 1e-6),
IntervalBox( 0.464511 Β± 1e-6, -0.804557 Β± 1e-6, 0.370022 Β± 1e-6),
IntervalBox( 0.511026 Β± 1e-6, -0.300000 Β± 1e-6, -0.805513 Β± 1e-6),
# the following two roots are suspect, first column probably reported in error
#IntervalBox( 0.623386 Β± 1e-6, 1.151180 Β± 1e-6, -1.544510 Β± 1e-6),
#IntervalBox( 0.869521 Β± 1e-6, -1.899353 Β± 1e-6, -0.062016 Β± 1e-6),
IntervalBox( 0.537839 Β± 1e-6, 1.151180 Β± 1e-6, -1.544510 Β± 1e-6),
IntervalBox( 0.623386 Β± 1e-6, -1.899353 Β± 1e-6, -0.062016 Β± 1e-6),
IntervalBox( 0.869521 Β± 1e-6, 1.506056 Β± 1e-6, -0.987788 Β± 1e-6),
IntervalBox( 0.960000 Β± 1e-6, 0.000000 Β± 1e-6, -0.280000 Β± 1e-6),
IntervalBox( 0.961183 Β± 1e-6, -1.664819 Β± 1e-6, 0.551817 Β± 1e-6),
IntervalBox( 1.493009 Β± 1e-6, -0.300000 Β± 1e-6, -1.296504 Β± 1e-6),
IntervalBox( 1.861684 Β± 1e-6, 0.000000 Β± 1e-6, -0.730842 Β± 1e-6),
]
end
# example 5.4, rescaled form
module SmileyExample54
using IntervalArithmetic
using StaticArrays
const title = "Smiley and Chun (2001), Example 5.4"
const c11 = 1.069e-5
const c12 = 2e2
const c13 = 1e5
const c14 = -1.8e5
const c15 = -1.283e-4
const c21 = 2e-2
const c22 = 1e1
const c23 = -1e1
f(t) = SVector(
c11 * t[1]^4 + c12 * t[1]^3 * t[2] + c13 * t[1]^3 + c14 * t[1] + c15,
c21 * t[1] * t[2]^2 + c22 * t[2]^2 + c23
)
# contains all 7 reported roots
const region = IntervalBox(-5.1e2..1.4, -5.1e2..1.1)
const known_roots = [
IntervalBox(-1.34298 Β± 1e-5, -1.00134 Β± 1e-5),
IntervalBox(-1.34030 Β± 1e-5, 1.00134 Β± 1e-5),
IntervalBox( 1.34030 Β± 1e-5, 0.99866 Β± 1e-5),
IntervalBox( 1.34298 Β± 1e-5, -0.99866 Β± 1e-5),
# following three roots are not reported precisely
IntervalBox(-7e-10 Β± 1e-10, 1 Β± 1e-5),
IntervalBox(-7e-10 Β± 1e-10, -1 Β± 1e-5),
IntervalBox(-5e2 Β± 1, -5e2 Β± 1)
]
end
module SmileyExample55
using IntervalArithmetic
using StaticArrays
const title = "Smiley and Chun (2001), Example 5.5"
const ΞΌ1 = pi / 10
const ΞΌ2 = pi / 5
const Ξ± = 5
const D1 = exp(-2ΞΌ1)
const D2 = exp(-2ΞΌ2)
const C1 = (1 - D1) / 2ΞΌ1
const C2 = (1 - D2) / 2ΞΌ2
g(x) = SVector(C1 * (x[3] - Ξ± * sin(x[1]) * cos(x[2])) + x[1],
C2 * (x[4] - Ξ± * cos(x[1]) * sin(x[2])) + x[2],
D1 * (x[3] - Ξ± * sin(x[1]) * cos(x[2])),
D2 * (x[4] - Ξ± * cos(x[1]) * sin(x[2])))
f(x) = (g β g)(x) .- SVector(x...)
# contains all 41 reported roots of f
const region =
IntervalBox(-1.02pi..1.02pi, -1.02pi..1.02pi, -0.5pi..0.5pi, -0.5pi..0.5pi)
# roots from
# C. S. Hsu and R. S. Guttalu, Trans. ASME **50**, 858 (1983).
# http://dx.doi.org/10.1115/1.3167157
const known_roots = [
# period 1 points
IntervalBox(-pi Β± 0, -pi Β± 0, 0 Β± 0, 0 Β± 0),
IntervalBox(-pi Β± 0, 0 Β± 0, 0 Β± 0, 0 Β± 0),
IntervalBox(-pi Β± 0, pi Β± 0, 0 Β± 0, 0 Β± 0),
IntervalBox(-0.5pi Β± 0, -0.5pi Β± 0, 0 Β± 0, 0 Β± 0),
IntervalBox(-0.5pi Β± 0, 0.5pi Β± 0, 0 Β± 0, 0 Β± 0),
IntervalBox( 0 Β± 0, -pi Β± 0, 0 Β± 0, 0 Β± 0),
IntervalBox( 0 Β± 0, 0 Β± 0, 0 Β± 0, 0 Β± 0),
IntervalBox( 0 Β± 0, pi Β± 0, 0 Β± 0, 0 Β± 0),
IntervalBox( 0.5pi Β± 0, -0.5pi Β± 0, 0 Β± 0, 0 Β± 0),
IntervalBox( 0.5pi Β± 0, 0.5pi Β± 0, 0 Β± 0, 0 Β± 0),
IntervalBox( pi Β± 0, -pi Β± 0, 0 Β± 0, 0 Β± 0),
IntervalBox( pi Β± 0, 0 Β± 0, 0 Β± 0, 0 Β± 0),
IntervalBox( pi Β± 0, pi Β± 0, 0 Β± 0, 0 Β± 0),
# period 2 points
IntervalBox( (0.33419 Β± 1e-5)pi, 0 Β± 0, (0.48025 Β± 1e-5)pi, 0 Β± 0),
IntervalBox(-(0.33419 Β± 1e-5)pi, 0 Β± 0, -(0.48025 Β± 1e-5)pi, 0 Β± 0),
IntervalBox( 0 Β± 0, (0.24702 Β± 1e-5)pi, 0 Β± 0, (0.24699 Β± 1e-5)pi),
IntervalBox( 0 Β± 0, -(0.24702 Β± 1e-5)pi, 0 Β± 0, -(0.24699 Β± 1e-5)pi),
IntervalBox( (0.09648 Β± 1e-5)pi, (0.18318 Β± 1e-5)pi, (0.13864 Β± 1e-5)pi, (0.18316 Β± 1e-5)pi),
IntervalBox(-(0.09648 Β± 1e-5)pi, -(0.18318 Β± 1e-5)pi, -(0.13864 Β± 1e-5)pi, -(0.18316 Β± 1e-5)pi),
IntervalBox(-(0.09648 Β± 1e-5)pi, (0.18318 Β± 1e-5)pi, -(0.13864 Β± 1e-5)pi, (0.18316 Β± 1e-5)pi),
IntervalBox( (0.09648 Β± 1e-5)pi, -(0.18318 Β± 1e-5)pi, (0.13864 Β± 1e-5)pi, -(0.18316 Β± 1e-5)pi),
IntervalBox(-(0.66580 Β± 1e-5)pi, -(1 Β± 0)pi, (0.48025 Β± 1e-5)pi, 0 Β± 0),
IntervalBox( (0.66580 Β± 1e-5)pi, -(1 Β± 0)pi, -(0.48025 Β± 1e-5)pi, 0 Β± 0),
IntervalBox(-(0.66580 Β± 1e-5)pi, (1 Β± 0)pi, (0.48025 Β± 1e-5)pi, 0 Β± 0),
IntervalBox( (0.66580 Β± 1e-5)pi, (1 Β± 0)pi, -(0.48025 Β± 1e-5)pi, 0 Β± 0),
IntervalBox( (1 Β± 0)pi, -(0.75298 Β± 1e-5)pi, 0 Β± 0, (0.24699 Β± 1e-5)pi),
IntervalBox( (1 Β± 0)pi, (0.75298 Β± 1e-5)pi, 0 Β± 0, -(0.24699 Β± 1e-5)pi),
IntervalBox(-(1 Β± 0)pi, -(0.75298 Β± 1e-5)pi, 0 Β± 0, (0.24699 Β± 1e-5)pi),
IntervalBox(-(1 Β± 0)pi, (0.75298 Β± 1e-5)pi, 0 Β± 0, -(0.24699 Β± 1e-5)pi),
IntervalBox( (0.90352 Β± 1e-5)pi, (0.81682 Β± 1e-5)pi, -(0.13864 Β± 1e-5)pi, -(0.18316 Β± 1e-5)pi),
IntervalBox(-(0.90352 Β± 1e-5)pi, -(0.81682 Β± 1e-5)pi, (0.13864 Β± 1e-5)pi, (0.18316 Β± 1e-5)pi),
IntervalBox( (0.90352 Β± 1e-5)pi, -(0.81682 Β± 1e-5)pi, -(0.13864 Β± 1e-5)pi, (0.18316 Β± 1e-5)pi),
IntervalBox(-(0.90352 Β± 1e-5)pi, (0.81682 Β± 1e-5)pi, (0.13864 Β± 1e-5)pi, -(0.18316 Β± 1e-5)pi),
IntervalBox( (0.34989 Β± 1e-5)pi, -(0.64408 Β± 1e-5)pi, -(0.21572 Β± 1e-5)pi, -(0.14406 Β± 1e-5)pi),
IntervalBox( (0.65011 Β± 1e-5)pi, -(0.35592 Β± 1e-5)pi, (0.21572 Β± 1e-5)pi, (0.14406 Β± 1e-5)pi),
IntervalBox( (0.34989 Β± 1e-5)pi, (0.64408 Β± 1e-5)pi, -(0.21572 Β± 1e-5)pi, (0.14406 Β± 1e-5)pi),
IntervalBox( (0.65011 Β± 1e-5)pi, (0.35592 Β± 1e-5)pi, (0.21572 Β± 1e-5)pi, -(0.14406 Β± 1e-5)pi),
IntervalBox(-(0.34989 Β± 1e-5)pi, -(0.64408 Β± 1e-5)pi, (0.21572 Β± 1e-5)pi, -(0.14406 Β± 1e-5)pi),
IntervalBox(-(0.65011 Β± 1e-5)pi, -(0.35592 Β± 1e-5)pi, -(0.21572 Β± 1e-5)pi, (0.14406 Β± 1e-5)pi),
IntervalBox(-(0.34989 Β± 1e-5)pi, (0.64408 Β± 1e-5)pi, (0.21572 Β± 1e-5)pi, (0.14406 Β± 1e-5)pi),
IntervalBox(-(0.65011 Β± 1e-5)pi, (0.35592 Β± 1e-5)pi, -(0.21572 Β± 1e-5)pi, -(0.14406 Β± 1e-5)pi)
]
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 1795 | using BenchmarkTools, Compat, DataFrames, IntervalRootFinding, IntervalArithmetic, StaticArrays
function randVec(n::Int)
a = randn(n)
A = Interval.(a)
mA = MVector{n}(A)
sA = SVector{n}(A)
return A, mA, sA
end
function randMat(n::Int)
a = randn(n, n)
A = Interval.(a)
mA = MMatrix{n, n}(A)
sA = SMatrix{n, n}(A)
return A, mA, sA
end
function benchmark(max=10)
df = DataFrame()
df[:Method] = ["Array", "MArray", "SArray", "Contractor", "ContractorMArray", "ContractorSArray"]
for n in 1:max
A, mA, sA = randMat(n)
b, mb, sb = randVec(n)
t1 = @belapsed gauss_seidel_interval($A, $b)
t2 = @belapsed gauss_seidel_interval($mA, $mb)
t3 = @belapsed gauss_seidel_interval($sA, $sb)
t4 = @belapsed gauss_seidel_contractor($A, $b)
t5 = @belapsed gauss_seidel_contractor($mA, $mb)
t6 = @belapsed gauss_seidel_contractor($sA, $sb)
df[Symbol("$n")] = [t1, t2, t3, t4, t5, t6]
end
a = []
for i in 1:max
push!(a, Symbol("$i"))
end
df1 = stack(df, a)
dfnew = unstack(df1, :variable, :Method, :value)
dfnew = rename(dfnew, :variable => :n)
println(dfnew)
dfnew
end
function benchmark_elimination(max=10)
df = DataFrame()
df[:Method] = ["Gauss Elimination", "Base.\\"]
for n in 1:max
A, mA, sA = randMat(n)
b, mb, sb = randVec(n)
t1 = @belapsed gauss_elimination_interval($A, $b)
t2 = @belapsed gauss_elimination_interval1($A, $b)
df[Symbol("$n")] = [t1, t2]
end
a = []
for i in 1:max
push!(a, Symbol("$i"))
end
df1 = stack(df, a)
dfnew = unstack(df1, :variable, :Method, :value)
dfnew = rename(dfnew, :variable => :n)
println(dfnew)
dfnew
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 2148 | using BenchmarkTools, Compat, DataFrames, IntervalRootFinding, IntervalArithmetic, StaticArrays
function benchmark_results()
f = [] # Example functions from Dietmar Ratz - An Optimized Interval Slope Arithmetic and its Application
push!(f, x->((x + sin(x)) * exp(-x^2)))
push!(f, x->(x^4 - 10x^3 + 35x^2 - 50x + 24))
push!(f, x->((log(x + 1.25) - 0.84x) ^ 2))
push!(f, x->(0.02x^2 - 0.03exp(-(20(x - 0.875))^2)))
push!(f, x->(exp(x^2)))
push!(f, x->(x^4 - 12x^3 + 47x^2 - 60x - 20exp(-x)))
push!(f, x->(x^6 - 15x^4 + 27x^2 + 250))
push!(f, x->(atan(cos(tan(x)))))
push!(f, x->(asin(cos(acos(sin(x))))))
s = interval(0.75, 1.75)
df = DataFrame()
df[:Method] = ["Automatic Differentiation", "Slope Expansion"]
for n in 1:length(f)
t1 = ForwardDiff.derivative(f[n], s)
t2 = slope(f[n], s, mid(s))
df[Symbol("f" * "$n")] = [t1, t2]
end
a = []
for i in 1:length(f)
push!(a, Symbol("f" * "$i"))
end
df1 = stack(df, a)
dfnew = unstack(df1, :variable, :Method, :value)
dfnew = rename(dfnew, :variable => :Function)
println(dfnew)
dfnew
end
function benchmark_time()
f = []
push!(f, x->((x + sin(x)) * exp(-x^2)))
push!(f, x->(x^4 - 10x^3 + 35x^2 - 50x + 24))
push!(f, x->((log(x + 1.25) - 0.84x) ^ 2))
push!(f, x->(0.02x^2 - 0.03exp(-(20(x - 0.875))^2)))
push!(f, x->(exp(x^2)))
push!(f, x->(x^4 - 12x^3 + 47x^2 - 60x - 20exp(-x)))
push!(f, x->(x^6 - 15x^4 + 27x^2 + 250))
push!(f, x->(atan(cos(tan(x)))))
push!(f, x->(asin(cos(acos(sin(x))))))
s = interval(0.75, 1.75)
df = DataFrame()
df[:Method] = ["Automatic Differentiation", "Slope Expansion"]
for n in 1:length(f)
t1 = @belapsed ForwardDiff.derivative($f[$n], $s)
t2 = @belapsed slope($f[$n], $s, mid($s))
df[Symbol("f" * "$n")] = [t1, t2]
end
a = []
for i in 1:length(f)
push!(a, Symbol("f" * "$i"))
end
df1 = stack(df, a)
dfnew = unstack(df1, :variable, :Method, :value)
dfnew = rename(dfnew, :variable => :Function)
println(dfnew)
dfnew
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 3838 | # This file is part of the ValidatedNumerics.jl package; MIT licensed
module IntervalRootFinding
using IntervalArithmetic
using ForwardDiff
using StaticArrays
using LinearAlgebra: I, Diagonal
import Base: β, show, big, \
import Polynomials: roots
## Root finding
export
derivative, jacobian, # reexport derivative from ForwardDiff
Root, is_unique,
roots, find_roots,
bisect, newton1d, quadratic_roots,
gauss_seidel_interval, gauss_seidel_interval!,
gauss_seidel_contractor, gauss_seidel_contractor!,
gauss_elimination_interval, gauss_elimination_interval!,
slope
export isunique, root_status
using Reexport
@reexport using IntervalArithmetic
import IntervalArithmetic: interval, wideinterval
const derivative = ForwardDiff.derivative
const D = derivative
const where_bisect = IntervalArithmetic.where_bisect ## 127//256
include("root_object.jl")
include("newton.jl")
include("krawczyk.jl")
include("complex.jl")
include("contractors.jl")
include("branch_and_bound.jl")
include("roots.jl")
include("newton1d.jl")
include("quadratic.jl")
include("linear_eq.jl")
include("slopes.jl")
gradient(f) = X -> ForwardDiff.gradient(f, X[:])
ForwardDiff.jacobian(f, X::IntervalBox) = ForwardDiff.jacobian(f, X.v)
const β = gradient
export β
function find_roots(f::Function, a::Interval{T}, method::Function = newton;
tolerance = eps(T), debug = false, maxlevel = 30) where {T}
method(f, a; tolerance=tolerance, debug=debug, maxlevel=maxlevel)
end
function find_roots(f::Function, f_prime::Function, a::Interval{T}, method::Function=newton;
tolerance=eps(T), debug=false, maxlevel=30) where {T}
method(f, f_prime, a; tolerance=tolerance, debug=debug, maxlevel=maxlevel)
end
function find_roots(f::Function, a::Real, b::Real, method::Function=newton;
tolerance=eps(1.0*a), debug=false, maxlevel=30, precision::Int=-1)
if precision >= 0
setprecision(Interval, precision) do
find_roots(f, @interval(a, b), method; tolerance=tolerance, debug=debug, maxlevel=maxlevel)
end
else # use current precision
find_roots(f, @interval(a, b), method; tolerance=tolerance, debug=debug, maxlevel=maxlevel)
end
end
function find_roots_midpoint(f::Function, a::Real, b::Real, method::Function=newton;
tolerance=eps(1.0*a), debug=false, maxlevel=30, precision=-1)
roots = find_roots(f, a, b, method; tolerance=tolerance, debug=debug, maxlevel=maxlevel, precision=precision)
T = eltype(roots[1].interval)
midpoints = T[]
radii = T[]
root_symbols = Symbol[] # :unique or :unknown
if length(roots) == 0
return (midpoints, radii, root_symbols) # still empty
end
for root in roots
midpoint, radius = midpoint_radius(root.interval)
push!(midpoints, midpoint)
push!(radii, radius)
push!(root_symbols, root.status)
end
(midpoints, radii, root_symbols)
end
function clean_roots(f, roots)
# order, remove duplicates, and include intervals X only if f(X) contains 0
sort!(roots, lt=lexless)
roots = unique(roots)
roots = filter(x -> 0 β f(x.interval), roots)
# merge neighbouring roots if they touch:
if length(roots) < 2
return roots
end
new_roots = eltype(roots)[]
base_root = roots[1]
for i in 2:length(roots)
current_root = roots[i]
if isempty(base_root.interval β© current_root.interval) ||
(base_root.status != current_root.status)
push!(new_roots, base_root)
base_root = current_root
else
base_root = Root(hull(base_root.interval, current_root.interval), base_root.status)
end
end
push!(new_roots, base_root)
return new_roots
end
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 10157 | import Base: copy, eltype, iterate, IteratorSize
import Base: getindex, setindex!, delete!
export BBSearch, BreadthFirstBBSearch, DepthFirstBBSearch
export data
export copy, eltype, iterate, IteratorSize
abstract type AbstractBBNode end
"""
BBNode <: AbstractBBNode
Intermediate node of a `BBTree`. Does not contain any data by itself,
only redirect toward its children.
"""
struct BBNode <: AbstractBBNode
parent::Int
children::Vector{Int}
end
"""
BBLeaf{DATA} <: AbstractBBLeaf
Leaf node of a `BBTree` that contains some data. Its status is either
- `:working`: the leaf will be further processed.
- `:final`: the leaf won't be touched anymore.
"""
struct BBLeaf{DATA} <: AbstractBBNode
data::DATA
parent::Int
status::Symbol
end
function BBLeaf(data::DATA, parent::Int) where {DATA}
BBLeaf{DATA}(data, parent, :working)
end
function BBNode(leaf::BBLeaf, child1::Int, child2::Int)
BBNode(leaf.parent, Int[child1, child2])
end
"""
BBTree{DATA}
Tree storing the data used and produced by a branch and bound search in a
structured way.
Nodes and leaves can be accessed using their index using the bracket syntax
`wt[node_id]`. However this is slow, as nodes and leaves are stored separately.
Support the iterator interface. The element yielded by the iteration are
tuples `(node_id, lvl)` where `lvl` is the depth of the node in the tree.
"""
struct BBTree{DATA}
nodes::Dict{Int, BBNode}
leaves::Dict{Int, BBLeaf{DATA}}
working_leaves::Vector{Int}
end
function BBTree(rootdata::DATA) where {DATA}
rootleaf = BBLeaf(rootdata, 0)
BBTree{DATA}(Dict{Int, BBNode}(), Dict(1 => rootleaf), Int[1])
end
show(io::IO, wn::BBNode) = print(io, "Node with children $(wn.children)")
function show(io::IO, wl::BBLeaf)
print(io, "Leaf (:$(wl.status)) with data $(wl.data)")
end
function show(io::IO, wt::BBTree{DATA}) where {DATA}
println(io, "Working tree with $(nnodes(wt)) elements of type $DATA")
if nnodes(wt) > 0
println(io, "Indices: ", vcat(collect(keys(wt.nodes)), collect(keys(wt.leaves))) |> sort)
println(io, "Structure:")
for (id, lvl) in wt
println(io, " "^lvl * "[$id] $(wt[id])")
end
end
end
# Root node has id 1 and parent id 0
root(wt::BBTree) = wt[1]
is_root(wt::BBTree, id::Int) = (id == 1)
"""
nnodes(wt::BBTree)
Number of nodes (including leaves) in a `BBTree`.
"""
nnodes(wt::BBTree) = length(wt.nodes) + length(wt.leaves)
"""
data(leaf::BBLeaf)
Return the data stored in the leaf.
"""
data(leaf::BBLeaf) = leaf.data
"""
data(wt::BBTree)
Return all the data stored in a `BBTree` as a list. The ordering of the elements
is arbitrary.
"""
data(wt::BBTree) = data.(values(wt.leaves))
function newid(wt::BBTree)
k1 = keys(wt.nodes)
k2 = keys(wt.leaves)
if length(k1) > 0
m1 = maximum(k1)
else
m1 = 0
end
if length(k2) > 0
m2 = maximum(k2)
else
m2 = 0
end
return max(m1, m2) + 1
end
# Index operations (slower than manipulating the node directly in the correct
# dictionary)
function getindex(wt::BBTree, id)
haskey(wt.nodes, id) && return wt.nodes[id]
haskey(wt.leaves, id) && return wt.leaves[id]
error("getindex failed: no index $id") # TODO: make better error
end
setindex!(wt::BBTree, val::BBNode, id) = setindex!(wt.nodes, val, id)
setindex!(wt::BBTree, val::BBLeaf, id) = setindex!(wt.leaves, val, id)
function delete!(wt::BBTree, id)
if haskey(wt.nodes, id)
delete!(wt.nodes, id)
elseif haskey(wt.leaves, id)
delete!(wt.leaves, id)
else
error("delete! failed: no index $id") # TODO: make better error
end
end
"""
discard_leaf!(wt::BBTree, id::Int)
Delete the `BBLeaf` with index `id` and all its ancestors to which it is
the last descendant.
"""
function discard_leaf!(wt::BBTree, id::Int)
leaf = wt.leaves[id]
delete!(wt.leaves, id)
recursively_delete_parent!(wt, leaf.parent, id)
end
function recursively_delete_parent!(wt, id_parent, id_child)
if !is_root(wt, id_child)
parent = wt.nodes[id_parent]
siblings = parent.children
if length(parent.children) == 1 # The child has no siblings, so delete the parent
delete!(wt.nodes, id_parent)
recursively_delete_parent!(wt, parent.parent, id_parent)
else # The child has siblings so remove it from the children list
deleteat!(parent.children, searchsortedfirst(parent.children, id_child))
end
end
end
function iterate(wt::BBTree, (id, lvl)=(0, 0))
id, lvl = next_id(wt, id, lvl)
lvl == 0 && return nothing
return (id, lvl), (id, lvl)
end
function next_id(wt::BBTree, id, lvl)
lvl == 0 && return (1, 1)
node = wt[id]
isa(node, BBNode) && return (node.children[1], lvl + 1)
return next_sibling(wt, id, lvl)
end
function next_sibling(wt::BBTree, sibling, lvl)
parent = wt[sibling].parent
parent == 0 && return (0, 0)
children = wt[parent].children
maximum(children) == sibling && return next_sibling(wt, parent, lvl - 1)
id = minimum(filter(x -> x > sibling, children))
return (id, lvl)
end
"""
BBSearch{DATA}
Branch and bound search interface in element of type DATA.
This interface provide an iterable that perform the search.
There is currently three types of search supported `BreadFirstBBSearch`,
`DepthFirstBBSearch` and `KeyBBSearch`, each one processing the element of the
tree in a different order. When subtyping one of these, the following methods
must be implemented:
- `root_element(::BBSearch)`: return the element with which the search is started
- `process(::BBSearch, elem::DATA)`: return a symbol representing the action
to perform with the element `elem` and an object of type `DATA` reprensenting
the state of the element after processing (may return `elem` unchanged).
- `bisect(::BBSearch, elem::DATA)`: return two elements of type `DATA` build
by bisecting `elem`
Subtyping `BBSearch` directly allows to have control over the order in which
the elements are process. To do this the following methods must be implemented:
- `root_element(::BBSearch)`: return the first element to be processed. Use
to build the initial tree.
- `get_leaf_id!(::BBSearch, wt::BBTree)`: return the id of the next leaf that
will be processed and remove it from the list of working leaves of `wt`.
- `insert_leaf!(::BBSearch, wt::BBTree, leaf::BBLeaf)`: insert a leaf in the
list of working leaves.
# Valid symbols returned by the process function
- `:store`: the element is considered as final and is stored, it will not be
further processed
- `:bisect`: the element is bisected and each of the two resulting part will
be processed
- `:discard`: the element is discarded from the tree, allowing to free memory
"""
abstract type BBSearch{DATA} end
abstract type BreadthFirstBBSearch{DATA} <: BBSearch{DATA} end
abstract type DepthFirstBBSearch{DATA} <: BBSearch{DATA} end
"""
KeyBBSearch{DATA} <: BBSearch{DATA}
Interface to a branch and bound search that use a key function to decide which
element to process first. The search process first the element with the largest
key as computed by `keyfunc(ks::KeyBBSearch, elem)`.
!!! warning
Untested.
"""
abstract type KeyBBSearch{DATA} <: BBSearch{DATA} end
"""
root_element(search::BBSearch)
Return the initial element of the search. The `BBTree` will be build around it.
Can be define for custom searches that are direct subtype of `BBSearch`, default
behavior is to fetch the field `initial` of the search.
"""
root_element(search::BBSearch) = search.initial
"""
get_leaf_id!(::BBSearch, wt::BBTree)
Return the id of the next leaf that will be processed and remove it from the
list of working leaves.
Must be define for custom searches that are direct subtype of `BBSearch`.
"""
get_leaf_id!(::BreadthFirstBBSearch, wt::BBTree) = popfirst!(wt.working_leaves)
get_leaf_id!(::DepthFirstBBSearch, wt::BBTree) = pop!(wt.working_leaves)
get_leaf_id!(::KeyBBSearch, wt::BBTree) = popfirst!(wt.working_leaves)
"""
insert_leaf!(::BBSearch, wt::BBTree, leaf::BBLeaf)
Insert the id of a new leaf that has been produced by bisecting an older leaf
into the list of working leaves.
Must be define for custom searches that are direct subtype of `BBSearch`.
"""
function insert_leaf!(::Union{BreadthFirstBBSearch{DATA}, DepthFirstBBSearch{DATA}},
wt::BBTree{DATA}, leaf::BBLeaf{DATA}) where {DATA}
id = newid(wt)
wt.leaves[id] = leaf
push!(wt.working_leaves, id)
return id
end
function insert_leaf!(::KS, wt::BBTree{DATA}, leaf::BBLeaf{DATA}) where {DATA, KS <: KeyBBSearch{DATA}}
id = newid(wt)
wt.leaves[id] = leaf
keys = keyfunc.(KS, wt.working_leaves)
current = keyfunc(KS, leaf)
# Keep the working_leaves sorted
insert!(wt.working_leaves, searchsortedfirst(keys, current), id)
return id
end
eltype(::Type{BBS}) where {DATA, BBS <: BBSearch{DATA}} = BBTree{DATA}
IteratorSize(::Type{BBS}) where {BBS <: BBSearch} = Base.SizeUnknown()
function iterate(search::BBSearch{DATA},
wt::BBTree=BBTree(root_element(search))) where {DATA}
isempty(wt.working_leaves) && return nothing
id = get_leaf_id!(search, wt)
X = wt.leaves[id]
action, newdata = process(search, data(X))
if action == :store
wt.leaves[id] = BBLeaf(newdata, X.parent, :final)
elseif action == :bisect
child1, child2 = bisect(search, newdata)
leaf1 = BBLeaf(child1, id, :working)
leaf2 = BBLeaf(child2, id, :working)
id1 = insert_leaf!(search, wt, leaf1)
id2 = insert_leaf!(search, wt, leaf2)
wt.nodes[id] = BBNode(X, id1, id2)
delete!(wt.leaves, id)
elseif action == :discard
discard_leaf!(wt, id)
else
error("Branch and bound: process function of the search object return " *
"unknown action: $action for element $X. Valid actions are " *
":store, :bisect and :discard.")
end
return wt, wt
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 1310 | """
Complex numbers as 2-vectors, enough for polynomials.
"""
struct Compl{T} <: Number
re::T
im::T
end
Base.promote_rule(::Type{Compl{T}}, ::Type{S}) where {T, S<:Real} = Compl{T}
Base.convert(::Type{Compl{T}}, x::Real) where {T} = Compl{T}(x, 0)
Base.show(io::IO, c::Compl) = println(io, c.re, " + ", c.im, "im")
Base.:+(a::Compl{T}, b::Compl{T}) where {T} = Compl{T}(a.re+b.re, a.im+b.im)
Base.:-(a::Compl{T}, b::Compl{T}) where {T} = Compl{T}(a.re-b.re, a.im-b.im)
Base.:*(a::Compl{T}, b::Compl{T}) where {T} = Compl{T}(a.re*b.re - a.im*b.im, a.re*b.im + a.im*b.re)
Base.:*(Ξ±::Number, z::Compl{T}) where {T} = Compl{T}(Ξ±*z.re, Ξ±*z.im)
Base.one(z::Compl{T}) where {T} = Compl{T}(one(T), zero(T))
Base.copy(z::Compl{T}) where {T} = Compl{T}(z.re, z.im)
"""
Takes a complex (polynomial) function f and returns a function g:R^2 -> R^2
that implements it.
"""
function realify(f)
function g(x)
z = Compl(x[1], x[2])
z2 = f(z)
SVector(z2.re, z2.im)
end
return g
end
"""
Takes the derivative of a complex function and returns the real jacobian
that implements it.
"""
function realify_derivative(fp)
function g_jac(x)
z = Compl(x[1], x[2])
fpz = fp(z)
SMatrix{2, 2}(fpz.re, fpz.im, -fpz.im, fpz.re)
end
return g_jac
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 4499 | export Contractor
export Bisection, Newton, Krawczyk
"""
π©(f, fβ², X, Ξ±)
Single-variable Newton operator.
The symbol for the operator is accessed with `\\scrN<tab>`.
"""
function π©(f, fβ², X::Interval{T}, Ξ±) where {T}
m = Interval(mid(X, Ξ±))
return m - (f(m) / fβ²(X))
end
"""
π©(f, jacobian, X, Ξ±)
Multi-variable Newton operator.
"""
function π©(f::Function, jacobian::Function, X::IntervalBox, Ξ±) # multidimensional Newton operator
m = Interval.(mid(X, Ξ±))
J = jacobian(X)
y = gauss_elimination_interval(J, f(m)) # J \ f(m)
return IntervalBox(m .- y)
end
"""
π¦(f, fβ², X, Ξ±)
Single-variable Krawczyk operator.
The symbol for the operator is accessed with `\\scrK<tab>`.
"""
function π¦(f, fβ², X::Interval{T}, Ξ±) where {T}
m = Interval(mid(X, Ξ±))
Y = 1 / fβ²(m)
return m - Y*f(m) + (1 - Y*fβ²(X)) * (X - m)
end
"""
π¦(f, jacobian, X, Ξ±)
Multi-variable Krawczyk operator.
"""
function π¦(f, jacobian, X::IntervalBox{T}, Ξ±) where {T}
m = mid(X, Ξ±)
mm = IntervalBox(m)
J = jacobian(X)
Y = mid.(inv(jacobian(mm)))
return m - Y*f(mm) + (I - Y*J) * (X.v - m)
end
"""
Contractor{F}
Abstract type for contractors.
"""
abstract type Contractor{F} end
"""
Bisection{F} <: Contractor{F}
Contractor type for the bisection method.
"""
struct Bisection{F} <: Contractor{F}
f::F
end
function (contractor::Bisection)(r, tol)
X = interval(r)
image = (contractor.f)(X)
if root_status(r) == :empty || !(contains_zero(image))
return Root(X, :empty)
end
return Root(X, :unknown)
end
for (Method, πͺ) in ((:Newton, π©), (:Krawczyk, π¦))
doc = """
$Method{F, FP} <: Contractor{F}
Contractor type for the $Method method.
# Fields
- `f::F`: function whose roots are searched
- `f::FP`: derivative or jacobian of `f`
-----
(C::$Method)(X, tol, Ξ±=where_bisect)
Contract an interval `X` using $Method operator and return the
contracted interval together with its status.
# Inputs
- `R`: Root object containing the interval to contract.
- `tol`: Precision to which unique solutions are refined.
- `Ξ±`: Point of bisection of intervals.
"""
@eval begin
struct $Method{F, FP} <: Contractor{F}
f::F
fβ²::FP # use \prime<TAB> for β²
end
function (C::$Method)(R, tol, Ξ±=where_bisect)
op = x -> $πͺ(C.f, C.fβ², x, Ξ±)
rt = determine_region_status(op, C.f, R)
return refine(op, rt, tol)
end
@doc $doc $Method
end
end
"""
safe_isempty(X)
Similar to `isempty` function for `IntervalBox`, but also works for `SVector`
of `Interval`.
"""
safe_isempty(X) = isempty(IntervalBox(X))
"""
determine_region_status(contract, f, R)
Contraction operation for contractors using the first derivative of the
function.
Currently `Newton` and `Krawczyk` contractors use this.
"""
function determine_region_status(op, f, R)
X = interval(R)
former_status = root_status(R)
imX = f(X)
if former_status == :empty || !(contains_zero(imX))
return Root(X, :empty)
end
safe_isempty(imX) && return Root(X, :empty) # X is fully outside of the domain of f
contracted_X = op(X)
# Only happens if X is partially out of the domain of f
safe_isempty(contracted_X) && return Root(X, :unknown) # force bisection
# given that have the Jacobian, can also do mean value form
NX = contracted_X β© X
isinf(X) && return Root(NX, :unknown) # force bisection
safe_isempty(NX) && return Root(X, :empty)
if former_status == :unique || NX βͺ½ X # isinterior; know there's a unique root inside
return Root(NX, :unique)
end
return Root(NX, :unknown)
end
"""
refine(op, X::Region, tol)
Generic refine operation for Krawczyk and Newton.
This function assumes that it is already known that `X` contains a unique root.
"""
function refine(op, X::Region, tol)
while diam(X) > tol # avoid problem with tiny floating-point numbers if 0 is a root
NX = op(X) β© X
NX == X && break # reached limit of precision
X = NX
end
return X
end
"""
refine(op, X::Tuple{Symbol, Region}, tol)
Wrap the refine method to leave unchanged intervals that are not guaranteed to
contain an unique solution.
"""
function refine(op, R::Root, tol)
root_status(R) != :unique && return R
return Root(refine(op, interval(R), tol), :unique)
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 3291 | # This file is part of the ValidatedNumerics.jl package; MIT licensed
# Krawczyk method, following Tucker
# const D = differentiate
"""Returns two intervals, the first being a point within the
interval x such that the interval corresponding to the derivative of f there
does not contain zero, and the second is the inverse of its derivative"""
function guarded_derivative_midpoint(f::Function, f_prime::Function, x::Interval{T}) where {T}
Ξ± = convert(T, 0.46875) # close to 0.5, but exactly representable as a floating point
m = Interval(mid(x))
C = inv(f_prime(m))
# Check that 0 is not in C; if so, consider another point rather than m
i = 0
while zero(T) β C || isempty(C)
m = Interval( Ξ±*x.lo + (one(T)-Ξ±)*x.hi )
C = inv(f_prime(m))
i += 1
Ξ± /= 2
i > 20 && error("""Error in guarded_deriv_midpoint:
the derivative of the function seems too flat""")
end
return m, C
end
function K(f::Function, f_prime::Function, x::Interval{T}) where {T}
m, C = guarded_derivative_midpoint(f, f_prime, x)
deriv = f_prime(x)
Kx = m - C*f(m) + (one(T) - C*deriv) * (x - m)
Kx
end
function krawczyk_refine(f::Function, f_prime::Function, x::Interval{T};
tolerance=eps(one(T)), debug=false) where {T}
debug && (print("Entering krawczyk_refine:"); @show x)
while diam(x) > tolerance # avoid problem with tiny floating-point numbers if 0 is a root
Kx = K(f, f_prime, x)
debug && @show(x, Kx)
Kx = Kx β© x
Kx == x && break
x = Kx
end
return [Root(x, :unique)]
end
function krawczyk(f::Function, f_prime::Function, x::Interval{T}, level::Int=0;
tolerance=eps(one(T)), debug=false, maxlevel=30) where {T}
debug && (print("Entering krawczyk:"); @show(level); @show(x))
# Maximum level of bisection
level >= maxlevel && return [Root(x, :unknown)]
isempty(x) && return Root{typeof(x)}[] # [(x, :none)]
Kx = K(f, f_prime, x) β© x
isempty(Kx β© x) && return Root{typeof(x)}[] # [(x, :none)]
if Kx βͺ½ x # isinterior
debug && (print("Refining "); @show(x))
return krawczyk_refine(f, f_prime, Kx, tolerance=tolerance, debug=debug)
end
m = mid(x)
debug && @show(x,m)
isthin(x) && return [Root(x, :unknown)]
# bisecting
roots = vcat(
krawczyk(f, f_prime, Interval(x.lo, m), level+1,
tolerance=tolerance, debug=debug, maxlevel=maxlevel),
krawczyk(f, f_prime, Interval(m, x.hi), level+1,
tolerance=tolerance, debug=debug, maxlevel=maxlevel)
)
roots = clean_roots(f, roots)
return roots
end
# use automatic differentiation if no derivative function given
krawczyk(f::Function,x::Interval{T}; args...) where {T} =
krawczyk(f, x->D(f,x), x; args...)
# krawczyk for vector of intervals:
krawczyk(f::Function, f_prime::Function, xx::Vector{Interval{T}}; args...) where {T} =
vcat([krawczyk(f, f_prime, @interval(x); args...) for x in xx]...)
krawczyk(f::Function, xx::Vector{Interval{T}}, level; args...) where {T} =
krawczyk(f, x->D(f,x), xx; args...)
krawczyk(f::Function, xx::Vector{Root{T}}; args...) where {T} =
krawczyk(f, x->D(f,x), [x.interval for x in xx]; args...)
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 4218 | """
Preconditions the matrix A and b with the inverse of mid(A)
"""
function preconditioner(A::AbstractMatrix, b::AbstractArray)
AαΆ = mid.(A)
B = inv(AαΆ)
return B*A, B*b
end
function gauss_seidel_interval(A::AbstractMatrix, b::AbstractArray; precondition=true, maxiter=100)
n = size(A, 1)
x = similar(b)
x .= -1e16..1e16
gauss_seidel_interval!(x, A, b, precondition=precondition, maxiter=maxiter)
return x
end
"""
Iteratively solves the system of interval linear
equations and returns the solution set. Uses the
Gauss-Seidel method (Hansen-Sengupta version) to solve the system.
Keyword `precondition` to turn preconditioning off.
Eldon Hansen and G. William Walster : Global Optimization Using Interval Analysis - Chapter 5 - Page 115
"""
function gauss_seidel_interval!(x::AbstractArray, A::AbstractMatrix, b::AbstractArray; precondition=true, maxiter=100)
precondition && ((A, b) = preconditioner(A, b))
n = size(A, 1)
@inbounds for iter in 1:maxiter
xΒΉ = copy(x)
for i in 1:n
Y = b[i]
for j in 1:n
(i == j) || (Y -= A[i, j] * x[j])
end
Z = extended_div(Y, A[i, i])
x[i] = hull((x[i] β© Z[1]), x[i] β© Z[2])
end
if all(x .== xΒΉ)
break
end
end
x
end
function gauss_seidel_contractor(A::AbstractMatrix, b::AbstractArray; precondition=true, maxiter=100)
n = size(A, 1)
x = similar(b)
x .= -1e16..1e16
x = gauss_seidel_contractor!(x, A, b, precondition=precondition, maxiter=maxiter)
return x
end
function gauss_seidel_contractor!(x::AbstractArray, A::AbstractMatrix, b::AbstractArray; precondition=true, maxiter=100)
precondition && ((A, b) = preconditioner(A, b))
n = size(A, 1)
diagA = Diagonal(A)
extdiagA = copy(A)
for i in 1:n
if (typeof(b) <: SArray)
extdiagA = setindex(extdiagA, Interval(0), i, i)
else
extdiagA[i, i] = Interval(0)
end
end
inv_diagA = inv(diagA)
for iter in 1:maxiter
xΒΉ = copy(x)
x = x .β© (inv_diagA * (b - extdiagA * x))
if all(x .== xΒΉ)
break
end
end
x
end
function gauss_elimination_interval(A::AbstractMatrix, b::AbstractArray; precondition=true)
x = similar(b)
x .= -Inf..Inf
x = gauss_elimination_interval!(x, A, b, precondition=precondition)
return x
end
"""
Solves the system of linear equations using Gaussian Elimination.
Preconditioning is used when the `precondition` keyword argument is `true`.
REF: Luc Jaulin et al.,
*Applied Interval Analysis*, pg. 72
"""
function gauss_elimination_interval!(x::AbstractArray, A::AbstractMatrix, b::AbstractArray; precondition=true)
if precondition
(A, b) = preconditioner(A, b)
end
_A = A
_b = b
A = similar(A)
b = similar(b)
A .= _A
b .= _b
n = size(A, 1)
p = similar(b)
p .= 0
for i in 1:(n-1)
if 0 β A[i, i] # diagonal matrix is not invertible
p .= entireinterval(b[1])
return p .β© x # return x?
end
for j in (i+1):n
Ξ± = A[j, i] / A[i, i]
b[j] -= Ξ± * b[i]
for k in (i+1):n
A[j, k] -= Ξ± * A[i, k]
end
end
end
for i in n:-1:1
temp = zero(b[1])
for j in (i+1):n
temp += A[i, j] * p[j]
end
p[i] = (b[i] - temp) / A[i, i]
end
return p .β© x
end
function gauss_elimination_interval1(A::AbstractMatrix, b::AbstractArray; precondition=true)
n = size(A, 1)
x = fill(-1e16..1e16, n)
x = gauss_elimination_interval1!(x, A, b, precondition=precondition)
return x
end
"""
Using `Base.\``
"""
function gauss_elimination_interval1!(x::AbstractArray, a::AbstractMatrix, b::AbstractArray; precondition=true)
precondition && ((a, b) = preconditioner(a, b))
a \ b
end
\(A::SMatrix{S, S, Interval{T}}, b::SVector{S, Interval{T}}; kwargs...) where {S, T} = gauss_elimination_interval(A, b, kwargs...)
\(A::Matrix{Interval{T}}, b::Vector{Interval{T}}; kwargs...) where T = gauss_elimination_interval(A, b, kwargs...)
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 3659 | # This file is part of the ValidatedNumerics.jl package; MIT licensed
# Newton method
"""If a root is known to be inside an interval,
`newton_refine` iterates the interval Newton method until that root is found."""
function newton_refine(f::Function, f_prime::Function, X::Union{Interval{T}, IntervalBox{N,T}};
tolerance=eps(T), debug=false) where {N,T}
debug && (print("Entering newton_refine:"); @show X)
while diam(X) > tolerance # avoid problem with tiny floating-point numbers if 0 is a root
deriv = f_prime(X)
NX = π©(f, X, deriv)
debug && @show(X, NX)
NX = NX β© X
NX == X && break
X = NX
end
debug && @show "Refined root", X
return [Root(X, :unique)]
end
"""`newton` performs the interval Newton method on the given function `f`
with its optional derivative `f_prime` and initial interval `x`.
Optional keyword arguments give the `tolerance`, `maxlevel` at which to stop
subdividing, and a `debug` boolean argument that prints out diagnostic information."""
function newton(f::Function, f_prime::Function, x::Interval{T}, level::Int=0;
tolerance=eps(T), debug=false, maxlevel=30) where {T}
debug && (print("Entering newton:"); @show(level); @show(x))
isempty(x) && return Root{typeof(x)}[] #[(x, :none)]
z = zero(x.lo)
tolerance = abs(tolerance)
# Tolerance reached or maximum level of bisection
(diam(x) < tolerance || level >= maxlevel) && return [Root(x, :unknown)]
deriv = f_prime(x)
debug && @show(deriv)
if !(z in deriv)
Nx = π©(f, x, deriv)
debug && @show(Nx, Nx β x, Nx β© x)
isempty(Nx β© x) && return Root{typeof(x)}[]
if Nx β x
debug && (print("Refining "); @show(x))
return newton_refine(f, f_prime, Nx, tolerance=tolerance, debug=debug)
end
m = mid(x)
debug && @show(x,m)
# bisect:
roots = vcat(
newton(f, f_prime, Interval(x.lo, m), level+1,
tolerance=tolerance, debug=debug, maxlevel=maxlevel),
newton(f, f_prime, Interval(m, x.hi), level+1,
tolerance=tolerance, debug=debug, maxlevel=maxlevel)
# note the nextfloat here to prevent repetition
)
debug && @show(roots)
else # 0 in deriv; this does extended interval division by hand
y1 = Interval(deriv.lo, -z)
y2 = Interval(z, deriv.hi)
if debug
@show (y1, y2)
@show N(f, x, y1)
@show N(f, x, y2)
end
y1 = π©(f, x, y1) β© x
y2 = π©(f, x, y2) β© x
debug && @show(y1, y2)
roots = vcat(
newton(f, f_prime, y1, level+1,
tolerance=tolerance, debug=debug, maxlevel=maxlevel),
newton(f, f_prime, y2, level+1,
tolerance=tolerance, debug=debug, maxlevel=maxlevel)
)
debug && @show(roots)
end
roots = clean_roots(f, roots)
return roots
end
# use automatic differentiation if no derivative function given:
newton(f::Function, x::Interval{T}; args...) where {T} =
newton(f, x->D(f,x), x; args...)
# newton for vector of intervals:
newton(f::Function, f_prime::Function, xx::Vector{Interval{T}}; args...) where {T} =
vcat([newton(f, f_prime, @interval(x); args...) for x in xx]...)
newton(f::Function, xx::Vector{Interval{T}}, level; args...) where {T} =
newton(f, x->D(f,x), xx, 0, args...)
newton(f::Function, xx::Vector{Root{T}}; args...) where {T} =
newton(f, x->D(f,x), [x.interval for x in xx], args...)
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 7317 | """`newton1d` performs the interval Newton method on the given function `f`
with its derivative `fβ²` and initial interval `x`.
Optional keyword arguments give the tolerances `reltol` and `abstol`.
`reltol` is the tolerance on the relative error whereas `abstol` is the tolerance on |f(X)|,
and a `debug` boolean argument that prints out diagnostic information."""
function newton1d(f::Function, fβ²::Function, x::Interval{T};
reltol=eps(T), abstol=eps(T), debug=false, debugroot=false) where {T}
L = Interval{T}[] # Array to hold the intervals still to be processed
R = Root{Interval{T}}[] # Array to hold the `root` objects obtained
reps = reps1 = 0
push!(L, x) # Initialize
initial_width = β
X = emptyinterval(T) # Initialize
while !isempty(L) # Until all intervals have been processed
X = pop!(L) # Process next interval
debug && (print("Current interval popped: "); @show X)
m = mid(X)
if (isempty(X))
continue
end
if 0 β fβ²(X) # if 0 β fβ²(X), Newton steps can be made normally until either X becomes empty, or is known to contain a unique root
debug && println("0 β fβ²(X)")
while true
m = mid(X)
N = m - (f(interval(m)) / fβ²(X)) # Newton step
debug && (print("Newton step1: "); @show (X, X β© N))
if X == X β© N # Checking if Newton step was redundant
reps1 += 1
if reps1 > 20
reps1 = 0
break
end
end
X = X β© N
if (isempty(X)) # No root in X
break
elseif 0 β f(wideinterval(mid(X))) # Root guaranteed to be in X
n = fa = fb = 0
root_exist = true
while (n < 4 && (fa == 0 || fb == 0)) # Narrowing the interval further
if fa == 0
if 0 β f(wideinterval(X.lo))
fa = 1
else
N = X.lo - (f(interval(X.lo)) / fβ²(X))
X = X β© N
if (isempty(X))
root_exist = false
break
end
end
end
if fb == 0
if 0 β f(wideinterval(X.hi))
fb = 1
else
if 0 β f(wideinterval(mid(X)))
N = X.hi - (f(interval(X.hi)) / fβ²(X))
else
N = mid(X) - (f(interval(mid(X))) / fβ²(X))
end
X = X β© N
if (isempty(X))
root_exist = false
break
end
end
end
N = mid(X) - (f(interval(mid(X))) / fβ²(X))
X = X β© N
if (isempty(X))
root_exist = false
break
end
n += 1
end
if root_exist
push!(R, Root(X, :unique))
debugroot && @show "Root found", X # Storing determined unique root
end
break
end
end
else # 0 β fβ²(X)
if diam(X) == initial_width # if no improvement occuring for a number of iterations
reps += 1
if reps > 10
push!(R, Root(X, :unknown))
debugroot && @show "Repeated root found", X
reps = 0
continue
end
end
initial_width = diam(X)
debug && println("0 β f'(X)")
expansion_pt = Inf
# expansion point for the newton step might be m, X.lo or X.hi according to some conditions
if 0 β f(wideinterval(mid(X))) # if root in X, narrow interval further
# 0 β fβ±(x)
debug && println("0 β fβ±(x)")
if 0 β f(wideinterval(X.lo))
expansion_pt = X.lo
elseif 0 β f(wideinterval(X.hi))
expansion_pt = X.hi
else
x1 = mid(interval(X.lo, mid(X)))
x2 = mid(interval(mid(X), X.hi))
if 0 β f(wideinterval(x1)) || 0 β f(wideinterval(x2))
push!(L, interval(X.lo, m))
push!(L, interval(m, X.hi))
continue
else
push!(R, Root(X, :unknown))
debugroot && @show "Multiple root found", X
continue
end
end
else
# 0 β fβ±(x)
debug && println("0 β fβ±(x)")
if (diam(X)/mag(X)) < reltol && diam(f(X)) < abstol # checking if X is still within tolerances
push!(R, Root(X, :unknown))
debugroot && @show "Tolerance root found", X
continue
end
end
# Step 8
if isinf(expansion_pt)
expansion_pt = mid(X)
end
a = f(interval(expansion_pt))
b = fβ²(X)
# Newton steps with extended division creating two intervals
if 0 < b.hi && 0 > b.lo && 0 β a
if a.hi < 0
push!(L, X β© (expansion_pt - interval(-Inf, a.hi / b.hi)))
push!(L, X β© (expansion_pt - interval(a.hi / b.lo, Inf)))
elseif a.lo > 0
push!(L, X β© (expansion_pt - interval(-Inf, a.lo / b.lo)))
push!(L, X β© (expansion_pt - interval(a.lo / b.hi, Inf)))
end
continue
else
N = expansion_pt - (f(interval(expansion_pt))/fβ²(X))
debug && (print("Newton step2: "); @show (X, X β© N))
X = X β© N
m = mid(X)
if isempty(X)
continue
end
end
push!(L, X) # Pushing X into L to be processed again
end
end
return R
end
"""`newton1d` performs the interval Newton method on the given function `f` and initial interval `x`.
Optional keyword arguments give the tolerances `reltol` and `abstol`.
`reltol` is the tolerance on the relative error whereas `abstol` is the tolerance on |f(X)|,
and a `debug` boolean argument that prints out diagnostic information."""
newton1d(f::Function, x::Interval{T}; args...) where {T} =
newton1d(f, x->D(f,x), x; args...)
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 2025 | """
Helper function for quadratic_interval that computes roots of a
real quadratic using interval arithmetic to bound rounding errors.
"""
function quadratic_helper!(a::Interval{T}, b::Interval{T}, c::Interval{T}, L::Array{Interval{T}}) where {T}
Ξ = b^2 - 4*a*c
Ξ.hi < 0 && return
Ξ = sqrt(Ξ)
if (b.lo >= 0)
x0 = -0.5 * (b + Ξ)
else
x0 = -0.5 * (b - Ξ)
end
if (0 β x0)
push!(L, x0)
else
x1 = c / x0
x0 = x0 / a
push!(L, x0, x1)
end
end
"""
Function to solve a quadratic equation where the coefficients are intervals.
Returns an array of intervals of the roots.
Arguments `a`, `b` and `c` are interval coefficients of `xΒ²`, `x` and `1` respectively.
The interval case differs from the non-interval case in that
there might be three disjoint interval roots. In the third
case, one interval root extends to ββ and another extends to +β.
This algorithm finds the set of points where `F.lo(x) β₯ 0` and the set
of points where `F.hi(x) β€ 0` and takes the intersection of these two sets.
Eldon Hansen and G. William Walster : Global Optimization Using Interval Analysis - Chapter 8
"""
function quadratic_roots(a::Interval{T}, b::Interval{T}, c::Interval{T}) where {T}
L = Interval{T}[]
R = Interval{T}[]
quadratic_helper!(Interval(a.lo), Interval(b.lo), Interval(c.lo), L)
quadratic_helper!(Interval(a.hi), Interval(b.hi), Interval(c.hi), L)
quadratic_helper!(Interval(a.lo), Interval(b.hi), Interval(c.lo), L)
quadratic_helper!(Interval(a.hi), Interval(b.lo), Interval(c.hi), L)
if (length(L) == 8)
resize!(L, 4)
end
if (a.lo < 0 || (a.lo == 0 && b.hi == 0) || (a.lo == 0 && b.hi == 0 && c.lo β€ 0))
push!(L, Interval(-β))
end
if (a.lo < 0 || (a.lo == 0 && b.lo == 0) || (a.lo == 0 && b.lo == 0 && c.lo β€ 0))
push!(L, Interval(β))
end
sort!(L, by = x -> x.lo)
for i in 1:2:length(L)
push!(R, Interval(L[i].lo, L[i+1].hi))
end
R
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 1400 | """
Root
Object representing a possible root inside a given region. The field `status`
is either `:unknown` or `:unique`. If `status` is `:unique` then we know that
there is a unique root of the function in question inside the given region.
Internally the status may also be `:empty` for region guaranteed to contain no
root, however such `Root`s are discarded by default and thus never returned
by the `roots` function.
# Fields
- `interval`: a region (either `Interval` of `IntervalBox`) searched for
roots.
- `status`: the status of the region, valid values are `:empty`, `unkown` and
`:unique`.
"""
struct Root{T}
interval::T
status::Symbol
end
interval(rt::Root) = rt.interval
"""
root_status(rt)
Return the status of a `Root`.
"""
root_status(rt::Root) = rt.status # Use root_status since just `status` is too generic
"""
root_region(rt)
Return the region associated to a `Root`.
"""
root_region(rt::Root) = rt.interval # More generic name than `interval`.
"""
isunique(rt)
Return whether a `Root` is unique.
"""
isunique(rt::Root{T}) where {T} = (rt.status == :unique)
show(io::IO, rt::Root) = print(io, "Root($(rt.interval), :$(rt.status))")
β(a::Interval, b::Root) = a β b.interval # the Root object has the interval in the first entry
β(a::Root, b::Root) = a.interval β b.interval
big(a::Root) = Root(big(a.interval), a.status)
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 8340 |
import IntervalArithmetic: diam, isinterior, bisect, isnan
export branch_and_prune, Bisection, Newton
export BreadthFirstSearch, DepthFirstSearch
diam(r::Root) = diam(interval(r))
isnan(X::IntervalBox) = any(isnan.(X))
isnan(r::Root) = isnan(interval(r))
"""
BreadthFirstSearch <: BreadthFirstBBSearch
Type implementing the `BreadthFirstBBSearch` interface for interval roots finding.
# Fields:
- `initial`: region (as a `Root` object) in which roots are searched.
- `contractor`: contractor to use (`Bisection`, `Newton` or `Krawczyk`)
- `tol`: tolerance of the search
"""
struct BreadthFirstSearch{R <: Region, C <: Contractor, T <: Real} <: BreadthFirstBBSearch{Root{R}}
initial::Root{R}
contractor::C
tol::T
end
"""
DepthFirstSearch <: DepthFirstBBSearch
Type implementing the `DepthFirstBBSearch` interface for interval roots finding.
# Fields:
- `initial`: region (as a `Root` object) in which roots are searched.
- `contractor`: contractor to use (`Bisection`, `Newton` or `Krawczyk`)
- `tol`: tolerance of the search
"""
struct DepthFirstSearch{R <: Region, C <: Contractor, T <: Real} <: DepthFirstBBSearch{Root{R}}
initial::Root{R}
contractor::C
tol::T
end
BreadthFirstSearch(X::Region, C::Contractor, tol::Real) = BreadthFirstSearch(Root(X, :unknown), C, tol)
DepthFirstSearch(X::Region, C::Contractor, tol::Real) = DepthFirstSearch(Root(X, :unknown), C, tol)
root_element(search::BBSearch{Root{R}}) where {R <: Region} = search.initial
function bisect(r::Root)
Y1, Y2 = bisect(interval(r))
return Root(Y1, :unknown), Root(Y2, :unknown)
end
bisect(::BBSearch, r::Root) = bisect(r::Root)
function process(search::Union{BreadthFirstSearch, DepthFirstSearch}, r::Root)
contracted_root = search.contractor(r, search.tol)
status = root_status(contracted_root)
status == :unique && return :store, contracted_root
status == :empty && return :discard, contracted_root
if status == :unknown
# Avoid infinite division of intervals with singularity
isnan(contracted_root) && diam(r) < search.tol && return :store, r
diam(contracted_root) < search.tol && return :store, contracted_root
return :bisect, r
else
error("Unrecognized root status: $status")
end
end
"""
branch_and_prune(X, contractor, strategy, tol)
Generic branch and prune routine for finding isolated roots using the given
contractor to determine the status of a given box `X`.
See the documentation of the `roots` function for explanation of the other
arguments.
"""
function branch_and_prune(r::Root, contractor, search, tol)
iter = search(r, contractor, tol)
local endstate
# complete iteration
for state in iter
endstate = state
end
return data(endstate)
end
const NewtonLike = Union{Type{Newton}, Type{Krawczyk}}
const default_strategy = DepthFirstSearch
const default_tolerance = 1e-7
const default_contractor = Newton
"""
roots(f, X, contractor=Newton, strategy=BreadthFirstSearch, tol=1e-15)
roots(f, deriv, X, contractor=Newton, strategy=BreadthFirstSearch, tol=1e-15)
roots(f, X, contractor, tol)
roots(f, deriv, X, contractor, tol)
Uses a generic branch and prune routine to find in principle all isolated roots
of a function `f:R^n β R^n` in a region `X`, if the number of roots is finite.
Inputs:
- `f`: function whose roots will be found
- `X`: `Interval` or `IntervalBox` in which roots are searched
- `contractor`: function that, when applied to the function `f`, determines
the status of a given box `X`. It returns the new box and a symbol indicating
the status. Current possible values are `Bisection`, `Newton` and `Krawczyk`
- `deriv`: explicit derivative of `f` for `Newton` and `Krawczyk`
- `strategy`: `SearchStrategy` determining the order in which regions are
processed.
- `tol`: Absolute tolerance. If a region has a diameter smaller than `tol`, it
is returned with status `:unknown`.
"""
function roots(f::Function, X, contractor::Type{C}=default_contractor,
strategy::Type{S}=default_strategy,
tol::Float64=default_tolerance) where {C <: Contractor, S <: BBSearch}
_roots(f, X, contractor, strategy, tol)
end
function roots(f::Function, deriv::Function, X, contractor::Type{C}=default_contractor,
strategy::Type{S}=default_strategy,
tol::Float64=default_tolerance) where {C <: Contractor, S <: BBSearch}
_roots(f, deriv, X, contractor, strategy, tol)
end
function roots(f::Function, X, contractor::Type{C},
tol::Float64) where {C <: Contractor}
_roots(f, X, contractor, default_strategy, tol)
end
function roots(f::Function, deriv::Function, X, contractor::Type{C},
tol::Float64) where {C <: Contractor}
_roots(f, deriv, X, contractor, default_strategy, tol)
end
#===
More specific `roots` methods (all parameters are present)
These functions are called `_roots` to avoid recursive calls.
===#
# For `Bisection` method
function _roots(f, r::Root{T}, ::Type{Bisection},
strategy::Type{S}, tol::Float64) where {T, S <: BBSearch}
branch_and_prune(r, Bisection(f), strategy, tol)
end
# For `NewtonLike` acting on `Interval`
function _roots(f, r::Root{Interval{T}}, contractor::NewtonLike,
strategy::Type{S}, tol::Float64) where {T, S <: BBSearch}
deriv = x -> ForwardDiff.derivative(f, x)
_roots(f, deriv, r, contractor, strategy, tol)
end
function _roots(f, deriv, r::Root{Interval{T}}, contractor::NewtonLike,
strategy::Type{S}, tol::Float64) where {T, S <: BBSearch}
branch_and_prune(r, contractor(f, deriv), strategy, tol)
end
# For `NewtonLike` acting on `IntervalBox`
function _roots(f, r::Root{IntervalBox{N, T}}, contractor::NewtonLike,
strategy::Type{S}, tol::Float64) where {N, T, S <: BBSearch}
deriv = x -> ForwardDiff.jacobian(f, x)
_roots(f, deriv, r, contractor, strategy, tol)
end
function _roots(f, deriv, r::Root{IntervalBox{N, T}}, contractor::NewtonLike,
strategy::Type{S}, tol::Float64) where {N, T, S <: BBSearch}
branch_and_prune(r, contractor(f, deriv), strategy, tol)
end
# Acting on `Interval`
function _roots(f, X::Region, contractor::Type{C},
strategy::Type{S}, tol::Float64) where {C <: Contractor, S <: BBSearch}
_roots(f, Root(X, :unknown), contractor, strategy, tol)
end
function _roots(f, deriv, X::Region, contractor::Type{C},
strategy::Type{S}, tol::Float64) where {C <: Contractor, S <: BBSearch}
_roots(f, deriv, Root(X, :unknown), contractor, strategy, tol)
end
# Acting on `Vector` of `Root`
function _roots(f, V::Vector{Root{T}}, contractor::Type{C},
strategy::Type{S}, tol::Float64) where {T, C <: Contractor, S <: BBSearch}
vcat(_roots.(f, V, contractor, strategy, tol)...)
end
function _roots(f, deriv, V::Vector{Root{T}}, contractor::Type{C},
strategy::Type{S}, tol::Float64) where {T, C <: Contractor, S <: BBSearch}
vcat(_roots.(f, deriv, V, contractor, strategy, tol)...)
end
# Acting on complex `Interval`
function _roots(f, Xc::Complex{Interval{T}}, contractor::Type{C},
strategy::Type{S}, tol::Float64) where {T, C <: Contractor, S <: BBSearch}
g = realify(f)
Y = IntervalBox(reim(Xc)...)
rts = _roots(g, Root(Y, :unknown), contractor, strategy, tol)
return [Root(Complex(root.interval...), root.status) for root in rts]
end
function _roots(f, Xc::Complex{Interval{T}}, contractor::NewtonLike,
strategy::Type{S}, tol::Float64) where {T, S <: BBSearch}
g = realify(f)
g_prime = x -> ForwardDiff.jacobian(g, x)
Y = IntervalBox(reim(Xc)...)
rts = _roots(g, g_prime, Root(Y, :unknown), contractor, strategy, tol)
return [Root(Complex(root.interval...), root.status) for root in rts]
end
function _roots(f, deriv, Xc::Complex{Interval{T}}, contractor::NewtonLike,
strategy::Type{S}, tol::Float64) where {T, S <: BBSearch}
g = realify(f)
g_prime = realify_derivative(deriv)
Y = IntervalBox(reim(Xc)...)
rts = _roots(g, g_prime, Root(Y, :unknown), contractor, strategy, tol)
return [Root(Complex(root.interval...), root.status) for root in rts]
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 4149 | # Reference : Dietmar Ratz - An Optimized Interval Slope Arithmetic and its Application
using IntervalArithmetic, ForwardDiff
import Base: +, -, *, /, ^, sqrt, exp, log, sin, cos, tan, asin, acos, atan
import IntervalArithmetic: mid, interval
function slope(f::Function, x::Interval, c::Number)
f(slope_var(x, c)).s
end
struct Slope{T}
x::Interval{T} # Interval on which slope is evaluated
c::Interval{T} # Point about which slope is evaluated (Interval to get bounded rounding errors)
s::Interval{T} # Variable which propogates the slope information
end
Slope(c) = Slope(c, c, 0)
Slope(a, b, c) = Slope(promote(convert(Interval, a), b, c)...)
function slope_var(v::Number)
Slope(v, v, 1)
end
function slope_var(v::Interval, c::Number)
Slope(v, c, 1)
end
function interval(u::Slope)
u.x
end
function mid(u::Slope)
u.c
end
function slope(u::Slope)
u.s
end
function +(u::Slope, v::Slope)
Slope(u.x + v.x, u.c + v.c, u.s + v.s)
end
function -(u::Slope, v::Slope)
Slope(u.x - v.x, u.c - v.c, u.s - v.s)
end
function *(u::Slope, v::Slope)
Slope(u.x * v.x, u.c * v.c, u.s * v.c + u.x * v.s)
end
function /(u::Slope, v::Slope)
Slope(u.x / v.x, u.c / v.c, (u.s - (u.c / v.c) * v.s) / v.x)
end
function +(u, v::Slope)
Slope(u + v.x, u + v.c, v.s)
end
function -(u, v::Slope)
Slope(u - v.x, u - v.c, -v.s)
end
function *(u, v::Slope)
Slope(u * v.x, u * v.c, u * v.s)
end
function /(u, v::Slope)
Slope(u / v.x, u / v.c, -(u / v.c) * (v.s / v.x))
end
+(v::Slope, u) = u + v
*(v::Slope, u) = u * v
function -(u::Slope, v)
Slope(u.x - v, u.c - v, u.s)
end
function -(u::Slope)
Slope(-u.x, -u.c, -u.s)
end
function /(u::Slope, v)
Slope(u.x / v, u.c / v, u.s / v)
end
function sqr(u::Slope)
Slope(u.x ^ 2, u.c ^ 2, (u.x + u.c) * u.s)
end
function ^(u::Slope, k::Integer)
if k == 0
return Slope(1)
elseif k == 1
return u
elseif k == 2
return sqr(u)
else
hxi = interval(u.x.lo) ^ k
hxs = interval(u.x.hi) ^ k
hx = hull(hxi, hxs)
if (k % 2 == 0) && (0 β u.x)
hx = interval(0, hx.hi)
end
hc = u.c ^ k
i = u.x.lo - u.c.lo
s = u.x.hi - u.c.hi
if ((i == 0) || (s == 0) || (k % 2 == 1 && zero(u.x) βͺ½ u.x))
h1 = k * (u.x ^ (k - 1))
else
if k % 2 == 0 || u.x.lo >= 0
h1 = interval((hxi.hi - hc.lo) / i, (hxs.hi - hc.lo) / s)
else
h1 = interval((hxs.lo - hc.hi) / s, (hxi.lo - hc.hi) / i)
end
end
return Slope(hx, hc, h1 * u.s)
end
end
function sqrt(u::Slope)
Slope(sqrt(u.x), sqrt(u.c), u.s / (sqrt(u.x) + sqrt(u.c)))
end
function exp(u::Slope)
hx = exp(u.x)
hc = exp(u.c)
i = u.x.lo - u.c.lo
s = u.x.hi - u.c.hi
if (i == 0 || s == 0)
h1 = hx
else
h1 = interval((hx.lo - hc.lo) / i, (hx.hi - hc.hi) / s)
end
Slope(hx, hc, h1 * u.s)
end
function log(u::Slope)
hx = log(u.x)
hc = log(u.c)
i = u.x.lo - u.c.lo
s = u.x.hi - u.c.hi
if (i == 0 || s == 0)
h1 = 1 / u.x
else
h1 = interval((hx.hi - hc.hi) / s, (hx.lo - hc.lo) / i)
end
Slope(hx, hc, h1 * u.s)
end
function sin(u::Slope) # Using derivative to upper bound the slope expansion for now
hx = sin(u.x)
hc = sin(u.c)
hs = cos(u.x)
Slope(hx, hc, hs)
end
function cos(u::Slope) # Using derivative to upper bound the slope expansion for now
hx = cos(u.x)
hc = cos(u.c)
hs = -sin(u.x)
Slope(hx, hc, hs)
end
function tan(u::Slope) # Using derivative to upper bound the slope expansion for now
hx = tan(u.x)
hc = tan(u.c)
hs = (sec(u.x)) ^ 2
Slope(hx, hc, hs)
end
function asin(u::Slope)
hx = asin(u.x)
hc = asin(u.c)
hs = 1 / sqrt(1 - (u.x ^ 2))
Slope(hx, hc, hs)
end
function acos(u::Slope)
hx = acos(u.x)
hc = acos(u.c)
hs = -1 / sqrt(1 - (u.x ^ 2))
Slope(hx, hc, hs)
end
function atan(u::Slope)
hx = atan(u.x)
hc = atan(u.c)
hs = 1 / 1 + (u.x ^ 2)
Slope(hx, hc, hs)
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 1513 | using ValidatedNumerics, ValidatedNumerics.RootFinding
using Test
@testset "Bisection tests" begin
@testset "Single variable" begin
f(x) = sin(x) + cos(x/2) + x/5
roots = bisection(f, -β..β, tolerance=1e-3)
roots2 = [root.interval for root in roots]
@test roots2 == [ Interval(-0.8408203124999999, -0.8398437499999999),
Interval(3.6425781249999996, 3.6435546874999996),
Interval(6.062499999999999, 6.063476562499999)
]
end
@testset "Two variables" begin
@intervalbox g(x, y) = (x^2 + y^2 - 1, y - x)
X = (-β..β) Γ (-β..β)
roots = bisection(g, X, tolerance=1e-3)
roots2 = [root.interval for root in roots]
@test roots2 == [IntervalBox(Interval(-0.7080078124999999, -0.7070312499999999), Interval(-0.7080078124999999, -0.7070312499999999)),
IntervalBox(Interval(-0.7080078124999999, -0.7070312499999999), Interval(-0.7070312499999999, -0.7060546874999999)),
IntervalBox(Interval(-0.7070312499999999, -0.7060546874999999), Interval(-0.7080078124999999, -0.7070312499999999)),
IntervalBox(Interval(0.7060546874999999, 0.7070312499999999), Interval(0.7070312499999999, 0.7080078124999999)),
IntervalBox(Interval(0.7070312499999999, 0.7080078124999999), Interval(0.7060546874999999, 0.7070312499999999)),
IntervalBox(Interval(0.7070312499999999, 0.7080078124999999), Interval(0.7070312499999999, 0.7080078124999999))]
end
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 3409 | import IntervalRootFinding: BBLeaf, BBNode, BBTree
import IntervalRootFinding: root, nnodes, data, newid, discard_leaf!
import IntervalRootFinding: BreadthFirstBBSearch
import IntervalRootFinding: process, bisect
@testset "Branch and bound tree" begin
#= Manually create a simple tree with the following structure
(1)
|
(2)
=#
leaf = BBLeaf("I'm a leaf", 1, :final)
node = BBNode(0, [2])
tree = BBTree(Dict(1 => node),
Dict(2 => leaf),
[2])
# Check that printing does not error
io = IOBuffer()
println(io, leaf)
println(io, node)
println(io, tree)
@test root(tree) == node
@test nnodes(tree) == 2
d = data(tree)
@test length(d) == 1
@test d[1] == "I'm a leaf"
k = newid(tree)
@test k β 0:2 # The new ID must be new and not 0
@test isa(k, Integer)
discard_leaf!(tree, 2)
# The last leaf was deleted so the tree should be empty
@test nnodes(tree) == 0
#= Tests on a slighty more complicated tree
(1)
/ \
(2) (8)
/ \ \
(3) (5) (9)
| | \ \
(4) (6) (7) (10)
=#
n1 = BBNode(0, [2, 8])
n2 = BBNode(1, [3, 5])
n3 = BBNode(2, [4])
n4 = BBLeaf("Leaf 4", 3, :working)
n5 = BBNode(2, [6, 7])
n6 = BBLeaf("Leaf 6", 5, :final)
n7 = BBLeaf("Leaf 7", 5, :working)
n8 = BBNode(1, [9])
n9 = BBNode(8, [10])
n10 = BBLeaf("Leaf 10", 9, :working)
tree = BBTree(Dict(1 => n1, 2 => n2, 3 => n3, 5 => n5, 8 => n8, 9 => n9),
Dict(4 => n4, 6 => n6, 7 => n7, 10 => n10),
[3, 4, 8])
# Check that printing does not error
io = IOBuffer()
println(io, tree)
@test newid(tree) β 0:10
@test length(data(tree)) == 4
@test nnodes(tree) == 10
discard_leaf!(tree, 6)
@test nnodes(tree) == 9
discard_leaf!(tree, 4)
@test nnodes(tree) == 7
discard_leaf!(tree, 10)
@test nnodes(tree) == 4
@test length(data(tree)) == 1
end
# Implement the interface for breadth first in a dummy way
struct DummySearch <: BreadthFirstBBSearch{Symbol} end
process(::DummySearch, s::Symbol) = s, s
bisect(::DummySearch, s::Symbol) = :store, :store
@testset "Interface functions" begin
#= Build the following tree for testing
(1)
/ \
(2) (5: to_bisect)
/ \
(3: to_store) (4: to_discard)
=#
rt = BBNode(0, [2, 5])
node = BBNode(1, [3, 4])
to_store = BBLeaf(:store, 2, :working)
to_discard = BBLeaf(:discard, 2, :working)
to_bisect = BBLeaf(:bisect, 1, :working)
tree = BBTree(Dict(1 => rt, 2 => node),
Dict(3 => to_store, 4 => to_discard, 5 => to_bisect),
[3, 4, 5])
search = DummySearch()
# First iteration processes the to_store leaf
tree, _ = iterate(search, tree)
@test nnodes(tree) == 5
@test tree[3].status == :final
@test length(tree.working_leaves) == 2
# Second iteration processes the to_discard leaf
tree, _ = iterate(search, tree)
@test nnodes(tree) == 4
@test length(tree.working_leaves) == 1
# Second iteration processes the to_bisect leaf
tree, _ = iterate(search, tree)
@test nnodes(tree) == 6
@test length(tree.working_leaves) == 2
@test isa(tree[5], BBNode)
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 5168 |
using IntervalArithmetic, IntervalRootFinding
using ForwardDiff
using Test
const D = IntervalRootFinding.derivative
include("wilkinson.jl")
function generate_wilkinson(n)#, T=BigFloat) # SLOW
p = poly(collect(1:n))
p_prime = polyder(p)
coeffs = p.a #[convert(T, coeff) for coeff in p.a]
# coeffs_prime = [convert(T, coeff) for coeff in p_prime.a]
function f(x)
total = coeffs[1]
for i in 2:length(coeffs)
total += coeffs[i]*x^(i-1)
end
total
end
f
end
setprecision(Interval, Float64)
float_pi = @interval(pi)
setprecision(Interval, 10000)
big_pi = @interval(pi)
# Using precision "only" 256 leads to overestimation of the true roots for `cos`
# i.e the Newton method gives more accurate results!
half_pi = big_pi / 2
three_halves_pi = 3*big_pi/2
# Format: (function, derivative, lower_bound, upper_bound, [true_roots])
function_list = [
(sin, cos, -5, 5, [ -big_pi, @interval(0), big_pi ] ) ,
(cos, x->D(cos, x), -7.5, 7.5, [ -three_halves_pi, -half_pi, half_pi, three_halves_pi ] ),
(Wβ, x->D(Wβ, x), -10, 10, [ @interval(1), @interval(2), @interval(3) ] ),
(Wβ, x->D(Wβ, x), -10, 10, [ @interval(i) for i in 1:7 ] ),
(x->exp(x)-2, y->D(x->exp(x),y), -20, 20, [log(@biginterval(2))] ),
(x->asin(sin(x)) - 0.1, y->D(x->asin(sin(x)),y), 0, 1, [@biginterval(0.1)])
]
@testset "Testing root finding" begin
for rounding_type in (:wide, :narrow)
@testset "Interval rounding: $rounding_type" begin
# setrounding(Interval, rounding_type)
for prec in ( (BigFloat,53), (BigFloat,256), (Float64,64) )
@testset "Precision: $prec" begin
setprecision(Interval, prec)
for method in (IntervalRootFinding.newton, IntervalRootFinding.krawczyk)
@testset "Method $method" begin
for func in function_list
f, f_prime, a_lower, a_upper, true_roots = func
a = @interval(a_lower, a_upper)
@testset "Function $f; interval $a" begin
for autodiff in (false, true)
@testset "With autodiff=$autodiff" begin
if autodiff
rts = find_roots(f, a, method)
else
rts = find_roots(f, f_prime, a, method)
end
@test length(rts) == length(true_roots)
for i in 1:length(rts)
root = rts[i]
@test isa(root, Root)
@test is_unique(root)
@test true_roots[i] β root.interval
end
end
end
end
end
end
end
end
end
end
end
end
setprecision(Interval, Float64)
@testset "find_roots tests" begin
f(x) = x^2 - 2
rts = IntervalRootFinding.newton(f, @interval(10, 11))
@test length(rts) == 0
rts = IntervalRootFinding.find_roots_midpoint(f, -5, 5)
@test length(rts) == 3
@test length(rts[1]) == 2
rts = find_roots(f, -5, 5)
@test length(rts) == 2
setprecision(Interval, 256)
for method in (IntervalRootFinding.newton, IntervalRootFinding.krawczyk)
new_roots = method(f, rts)
@test length(new_roots) == length(rts)
for (root1, root2) in zip(new_roots, rts)
@test root1 β root2
end
end
end
@testset "Multiple roots" begin
setprecision(Interval, Float64)
let
f(x) = (x-1) * (x^2 - 2)^3 * (x^3 - 2)^4
rts = IntervalRootFinding.newton(f, -5..5.1, maxlevel=1000)
@test length(rts) == 4
@test rts[1].status == :unknown
@test rts[1].interval == Interval(-1.4142135623730954, -1.414213562373095)
@test rts[3].interval == Interval(1.259921049894873, 1.2599210498948734)
end
end
@testset "Iterated logistic function fixed points" begin
β(f, g) = x -> f(g(x))
iterate(f, n) = n == 1 ? f : f β iterate(f, n-1)
f(x) = 4x*(1-x) # logistic map
for n in 1:10
g = x -> iterate(f, n)(x) - x # look for fixed points of f^n
rts = IntervalRootFinding.newton(g, 0..1)
@test length(rts) == 2^n
rts = IntervalRootFinding.krawczyk(g, 0..1)
@test length(rts) == 2^n
end
end
# Example of a function with a double root at 0 from Burden & Faires, 9th ed, p.84
# exp(x) - x - 1
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 1083 | using IntervalArithmetic, StaticArrays, IntervalRootFinding
using Test
function rand_vec(n::Int)
a = randn(n)
A = Interval.(a)
mA = MVector{n}(A)
sA = SVector{n}(A)
return A, mA, sA
end
function rand_mat(n::Int)
a = randn(n, n)
A = Interval.(a)
mA = MMatrix{n, n}(A)
sA = SMatrix{n, n}(A)
return A, mA, sA
end
@testset "Linear Equations" begin
As = [[2..3 0..1; 1..2 2..3], ]
bs = [[0..120, 60..240], ]
xs = [[-120..90, -60..240], ]
for i in 1:10
rand_A = rand_mat(i)[1]
rand_x = rand_vec(i)[1]
rand_b = rand_A * rand_x
push!(As, rand_A)
push!(bs, rand_b)
push!(xs, rand_x)
end
n = length(As)
for solver in (gauss_seidel_interval, gauss_seidel_contractor, gauss_elimination_interval, \)
@testset "Solver $solver" begin
#for precondition in (false, true)
for i in 1:n
soln = solver(As[i], bs[i])
@test all(xs[i] .β soln)
end
#end
end
end
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 2641 |
using IntervalArithmetic, IntervalRootFinding
using ForwardDiff
using Test
const D = IntervalRootFinding.derivative
setprecision(Interval, Float64)
float_pi = @interval(pi)
setprecision(Interval, 10000)
big_pi = @interval(pi)
# Using precision "only" 256 leads to overestimation of the true roots for `cos`
# i.e the Newton method gives more accurate results!
half_pi = big_pi / 2
three_halves_pi = 3*big_pi/2
@testset "Testing newton1d" begin
f(x) = exp(x^2) - cos(x) #double root
fβ²(x) = 2*x*exp(x^2) + sin(x)
f1(x) = x^4 - 10x^3 + 35x^2 - 50x + 24 #four unique roots
f1β²(x) = 4x^3 - 30x^2 + 70x - 50
f2(x) = 4567x^2 - 9134x + 4567 #double root
f2β²(x) = 9134x - 9134
f3(x) = (x^2 - 2)^2 #two double roots
f3β²(x) = 4x * (x^2 - 2)
f4(x) = sin(x) - x #triple root at 0
f4β²(x) = cos(x) - 1
f5(x) = (x^2 - 1)^4 * (x^2 - 2)^4 #two quadruple roots
f5β²(x) = 8x * (-3 + 2x^2) * (2 - 3x^2 + x^4)^3
for autodiff in (false, true)
if autodiff
rts1 = newton1d(sin, -5..5)
rts2 = newton1d(f, -β..β)
rts3 = newton1d(f1, -10..10)
rts4 = newton1d(f2, -10..11)
rts5 = newton1d(f3, -10..10)
rts6 = newton1d(f4, -10..10)
rts7 = newton1d(f5, -10..10)
else
rts1 = newton1d(sin, cos, -5..5)
rts2 = newton1d(f, fβ², -β..β)
rts3 = newton1d(f1, f1β², -10..10)
rts4 = newton1d(f2, f2β², -10..11)
rts5 = newton1d(f3, f3β², -10..10)
rts6 = newton1d(f4, f4β², -10..10)
rts7 = newton1d(f5, f5β², -10..10, reltol=0)
end
@test length(rts1) == 3
L = [-pi, 0, pi]
for i = 1:length(rts1)
@test L[i] in rts1[i].interval && :unique == rts1[i].status
end
@test length(rts2) == 1
@test (0..0) == rts2[1].interval && :unknown == rts2[1].status
@test length(rts3) == 4
L = [1, 2, 3, 4]
for i = 1:length(rts3)
@test L[i] in rts3[i].interval && :unique == rts3[i].status
end
@test length(rts4) == 1
@test 1 in rts4[1].interval && :unknown == rts4[1].status
L1 = [-sqrt(2), sqrt(2)]
for i = 1:length(rts5)
@test L1[i] in rts5[i].interval && :unknown == rts5[i].status
end
@test length(rts6) == 1
@test 0 in rts6[1].interval && :unknown == rts6[1].status
@test length(rts7) == 4
L = [-sqrt(2), -1, 1, sqrt(2)]
for i = 1:length(rts7)
@test L[i] in rts7[i].interval && :unknown == rts7[i].status
end
end
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 770 | using IntervalArithmetic, IntervalRootFinding
struct Quad{T}
a::Interval{T}
b::Interval{T}
c::Interval{T}
x::Vector{Interval{T}}
end
@testset "Quadratic Interval Equations" begin
rts = Quad{Float64}[]
push!(rts, Quad(interval(1, 5), interval(2, 4), interval(0, 2), [interval(-4, -2), interval(-0, -0)]))
push!(rts, Quad(interval(-1, 1), interval(-2, 2), interval(-1, 1), [interval(-β, -1), interval(-1, -1), interval(-1, β)]))
push!(rts, Quad(interval(1, 2), interval(1, 3), interval(2, 6), [interval(-2, -1)]))
push!(rts, Quad(interval(1, 1), interval(2, 2), interval(1, 1), [interval(-1, -1), interval(-1, -1)]))
for i in 1:length(rts)
@test quadratic_roots(rts[i].a, rts[i].b, rts[i].c) == rts[i].x
end
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 4081 |
using IntervalArithmetic, IntervalRootFinding, StaticArrays, ForwardDiff
using Test
function all_unique(rts)
all(root_status.(rts) .== :unique)
end
function roots_dist(rt1::Root{T}, rt2::Root{T}) where {T <: Interval}
d = dist(interval(rt1), interval(rt2))
return sum(d)
end
function roots_dist(rt1::Root{T}, rt2::Root{T}) where {T <: IntervalBox}
return sum(dist.(interval(rt1), interval(rt2)))
end
function roots_dist(rt1::Root{Complex{T}}, rt2::Root{Complex{T}}) where {T <: Interval}
dreal = dist(real(interval(rt1)), real(interval(rt2)))
dimag = dist(imag(interval(rt1)), imag(interval(rt2)))
return sum(dreal) + sum(dimag)
end
function test_newtonlike(f, deriv, X, method, nsol, tol=1e-10)
rts = roots(f, X, method)
@test length(rts) == nsol
@test all_unique(rts)
@test sum(roots_dist.(rts, roots(f, deriv, X, method))) < tol
end
newtonlike_methods = [Newton, Krawczyk]
@testset "1D roots" begin
# Default
rts = roots(sin, -5..5)
@test length(rts) == 3
@test all_unique(rts)
# Bisection
rts = roots(sin, -5..6, Bisection, 1e-3)
@test length(rts) == 3
# Refinement
rts = roots(sin, rts, Newton)
@test all_unique(rts)
for method in newtonlike_methods
test_newtonlike(sin, cos, -5..5, method, 3)
end
# Infinite interval
rts = roots(x -> x^2 - 2, -β..β)
@test length(rts) == 2
end
in_solution_set(point, solution_intervals) =
any(interval -> point in interval, solution_intervals)
@testset "2D roots" begin
f(x, y) = SVector(x^2 + y^2 - 1, y - 2x)
f(X) = f(X...)
X = (-6..6) Γ (-6..6)
# Bisection
rts = roots(f, X, Bisection, 1e-3)
exact_sol = [sqrt(1/5), 2sqrt(1/5)]
@test in_solution_set(exact_sol, interval.(rts))
@test in_solution_set(-exact_sol, interval.(rts))
for method in newtonlike_methods
deriv = xx -> ForwardDiff.jacobian(f, xx)
test_newtonlike(f, deriv, X, method, 2)
end
# Infinite interval
X = IntervalBox(-β..β, 2)
rts = roots(f, X, Newton)
@test length(rts) == 2
end
# From R docs:
# https://www.rdocumentation.org/packages/pracma/versions/1.9.9/topics/broyden
@testset "3D roots" begin
function g(x)
(x1, x2, x3) = x
SVector( x1^2 + x2^2 + x3^2 - 1,
x1^2 + x3^2 - 0.25,
x1^2 + x2^2 - 4x3
)
end
X = (-5..5)
XX = IntervalBox(X, 3)
for method in newtonlike_methods
rts = roots(g, XX, method)
@test length(rts) == 4
@test all_unique(rts)
deriv = xx -> ForwardDiff.jacobian(g, xx)
@test rts == roots(g, deriv, XX, method)
end
end
@testset "Out of domain" begin
for method in newtonlike_methods
@test length(roots(log, -100..2, method)) == 1
@test length(roots(log, -100..(-1), method)) == 0
end
end
@testset "Infinite domain" begin
for method in newtonlike_methods
rts = roots(x -> x^2 - 2, -β..β, method)
@test length(filter(isunique, rts)) == 2
end
end
@testset "NaN return value" begin
f(xx) = ( (x, y) = xx; SVector(log(y/x) + 3x, y - 2x) )
X = IntervalBox(-100..100, 2)
for method in newtonlike_methods
rts = roots(f, X, method)
@test length(filter(isunique, rts)) == 1
@test length(filter(x -> contains_zero(x.interval), rts)) == 1
end
end
@testset "Stationary points" begin
f(xx) = ( (x, y) = xx; sin(x) * sin(y) )
gradf = β(f)
XX = IntervalBox(-5..6, 2)
tol = 1e-5
for method in newtonlike_methods
deriv = xx -> ForwardDiff.jacobian(gradf, xx)
test_newtonlike(gradf, deriv, XX, method, 25, tol)
end
end
@testset "Complex roots" begin
X = -5..5
Xc = Complex(X, X)
f(z) = z^3 - 1
# Default
rts = roots(f, Xc)
@test length(rts) == 3
# Bisection
rts = roots(f, Xc, Bisection, 1e-3)
@test length(rts) == 7
for method in newtonlike_methods
deriv = z -> 3*z^2
test_newtonlike(f, deriv, Xc, method, 3, 1e-10)
end
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 238 | using IntervalRootFinding
using Test
include("branch_and_bound.jl")
include("search_interface.jl")
include("roots.jl")
include("test_smiley.jl")
include("newton1d.jl")
include("quadratic.jl")
include("linear_eq.jl")
include("slopes.jl")
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 594 | using IntervalArithmetic
using IntervalRootFinding
@testset "Root search iterator interface" begin
contractor = Newton(sin, cos)
search = BreadthFirstSearch(-10..10, contractor, 1e-3)
# First iteration of the search
elem, state = iterate(search)
# Optional iterator methods
@test eltype(search) != Any
end
@testset "Search strategies" begin
# DepthFristSearch and BreadthFristSearch should return the same results
X = -5..5
rts = roots(sin, cos, X, Newton, DepthFirstSearch)
@test Set(rts) == Set(roots(sin, cos, X, Newton, BreadthFirstSearch))
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 1365 | using IntervalArithmetic, IntervalRootFinding
using ForwardDiff
using Test
struct Slopes{T}
f::Function
x::Interval{T}
c::T
sol::Interval{T}
end
@testset "Automatic slope expansion" begin
for T in [Float64, BigFloat]
s = interval(T(0.75), T(1.75))
example = Slopes{T}[]
push!(example, Slopes(x->((x + sin(x)) * exp(-x^2)), s, mid(s), interval(T(-2.8), T(0.1))))
push!(example, Slopes(x->(x^4 - 10x^3 + 35x^2 - 50x + 24), s, mid(s), interval(T(-44), T(38.5))))
push!(example, Slopes(x->((log(x + 1.25) - 0.84x) ^ 2), s, mid(s), interval(T(-0.16), T(0.44))))
push!(example, Slopes(x->(0.02x^2 - 0.03exp(-(20(x - 0.875))^2)), s, mid(s), interval(T(0.03), T(0.33))))
push!(example, Slopes(x->(exp(x^2)), s, mid(s), interval(T(6.03), T(33.23))))
push!(example, Slopes(x->(x^4 - 12x^3 + 47x^2 - 60x - 20exp(-x)), s, mid(s), interval(T(-39), T(65.56))))
push!(example, Slopes(x->(x^6 - 15x^4 + 27x^2 + 250), s, mid(s), interval(T(-146.9), T(67.1))))
push!(example, Slopes(x->(atan(cos(tan(x)))), s, mid(s), interval(T(1), T(2))))
push!(example, Slopes(x->(asin(cos(acos(sin(x))))), s, mid(s), interval(T(1.36), T(β))))
for i in 1:length(example)
@test slope(example[i].f, example[i].x, example[i].c) β example[i].sol
end
end
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 1193 | include("../examples/smiley_examples.jl")
using Test
using IntervalArithmetic, IntervalRootFinding
using .SmileyExample22, .SmileyExample52, .SmileyExample54, .SmileyExample55
function test_all_unique(xs)
for x in xs
@test x.status == :unique
end
return nothing
end
const tol = 1e-6
for method in (Newton, Krawczyk) # NOTE: Bisection method performs badly in all examples
@info("Testing method $(method)")
@testset "$(SmileyExample22.title)" begin
roots_found = roots(SmileyExample22.f, SmileyExample22.region, method, tol)
@test length(roots_found) == 8
test_all_unique(roots_found)
# no reference data for roots given
end
for example in (SmileyExample52, SmileyExample54)#, SmileyExample55)
@testset "$(example.title)" begin
roots_found = roots(example.f, example.region, method, tol)
@test length(roots_found) == length(example.known_roots)
test_all_unique(roots_found)
for rf in roots_found
# check there is exactly one known root for each found root
@test sum(!isempty(rk β© rf.interval)
for rk in example.known_roots) == 1
end
end
end
end # method loop
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | code | 1115 | # Wilkinson-type polynomial defined by its roots:
# wβ(x) = (x-1)β
(x-2)β
β― β
(x-n)
using Polynomials
# function generate_wilkinson(n)#, T=BigFloat) # SLOW
# p = poly(collect(1:n))
# p_prime = polyder(p)
# coeffs = p.a #[convert(T, coeff) for coeff in p.a]
# # coeffs_prime = [convert(T, coeff) for coeff in p_prime.a]
# function f(x)
# total = coeffs[1]
# for i in 2:length(coeffs)
# total += coeffs[i]*x^(i-1)
# end
# total
# end
# f
# end
function generate_wilkinson_horner(n)
p = poly(collect(1:n)) # make polynomial with roots 1 to n
coeffs = p.a
expr = :($(coeffs[end]))
for i in length(coeffs)-1:-1:1
expr = :($expr*x + $(coeffs[i]))
end
expr
end
function subscriptify(n::Int)
subscript_digits = [c for c in "ββββββ
ββββ"]
dig = reverse(digits(n))
join([subscript_digits[i+1] for i in dig])
end
# Generate Wilkinson functions Wβ etc.:
for n in 1:15
fn_name = Symbol("W", subscriptify(n))
expr = generate_wilkinson_horner(n)
@eval $(fn_name)(x) = $(expr)
end
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
|
[
"MIT"
] | 0.5.11 | b92e9e2b356146918c4f3f3845571abcf0501594 | docs | 215 | # Updates to `IntervalRootFinding.jl`
## v0.2
The package has been completely rewritten for v0.2.
It now contains basic bisection and Newton interval routines for functions with an arbitrary number of parameters.
| IntervalRootFinding | https://github.com/JuliaIntervals/IntervalRootFinding.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.