licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.1
e819b0d814ad86f0b6edbd52278fe6f5660c7fec
code
215
include("../../src/IpyJL.jl") using Main.IpyJL using Test # Doesn't properly test now, ideally this will # read the file after and test output, but I am lazy. ipynbjl("ipynbtestbook.ipynb", "example.jl")
IPyCells
https://github.com/ChifiSource/IPyCells.jl.git
[ "MIT" ]
0.1.1
e819b0d814ad86f0b6edbd52278fe6f5660c7fec
docs
2205
<div align="center" style = "box-pack: start;"> </br> <img width = 300 src="https://github.com/ChifiSource/image_dump/blob/main/ipyjl/logo.png" > [![version](https://juliahub.com/docs/Lathe/version.svg)](https://juliahub.com/ui/Packages/Lathe/6rMNJ) [![deps](https://juliahub.com/docs/Lathe/deps.svg)](https://juliahub.com/ui/Packages/Lathe/6rMNJ?t=2) [![pkgeval](https://juliahub.com/docs/Lathe/pkgeval.svg)](https://juliahub.com/ui/Packages/Lathe/6rMNJ) </br> </br> <h1>IPyCells</h1> </div> `IPyCells` provides parametric cell-based functionality, as well as readers and writers for different cell formats (Ipynb, JL), as well as offering the option to extend the cells via parametric typing. This module provides ###### cells - `AbstractCell` - `Cell(n::Int64, type::String, content::String, outputs::Any = ""; id::String = "")` - `string(Cell{<:Any})` - `string(cell::Cell{:md})` - `string(cell::Cell{:doc})` - `getindex(v::Vector{Cell{<:Any}}, s::String)` ###### read/write - `read_plto(uri::String)` - `read_jlcells(uri::String)` - `read_jl(uri::String)` - `save(cells::Vector{<:AbstractCell}, path::String)` - `save_ipynb(cells::Vector{<:AbstractCell}, path::String)` (this **does not** work just right yet) cells are readable by Olive, not jupyter post-save. - `read_ipynb(f::String)` - `ipyjl(ipynb_path::String, output_path::String)` ###### (internal) - `plto_cell_lines(uri::String)` - `sep(content::Any)` ### Adding ```julia julia> ] pkg> add IPyCells ``` ### Usage There are many ways to use `IPyCells` -- This package could be used to convert Pluto notebooks into Olive notebooks, IPython notebooks into Julia notebooks. Currently, the ipynb save method will break your `.ipynb` files where IJulia cannot read them, [Olive](https://github.com/ChifiSource/Olive.jl) eventually this is planned to be fixed. Anyway, this package could be used to read any package and save it into (currently) ipynb or julia. ```julia ipynbjl("ipynbtestbook.ipynb", "example.jl") ``` ```julia cells = read_ipynb save_jl(cells) ``` This preserves both the output and markdown. Alternatively, you could write functions around cells enabling for different cell types to be read by this reader.
IPyCells
https://github.com/ChifiSource/IPyCells.jl.git
[ "MIT" ]
0.1.3
483e5daedd6b57d74f951bab69f3cb68948fed55
code
760
using SimpleDrawing, Plots, Clines #resize_gr_window() C = Circle(0, 0, 15) D = Circle(23, 0, 8) newdraw() draw(C, linewidth = 2); draw(D, linewidth = 2); x = 15 * cos(pi / 6) y = 15 * sin(pi / 6) draw_vector(x, y, linecolor = :black) annotate!(x / 2, y / 2 + 1, "a") x = 8 * cos(pi / 6) y = 8 * sin(pi / 6) draw_vector(x, y, 23, 0, color = :black) annotate!(x + 19, y / 2 + 0.7, "b") #draw_point(23+offset,0,marker=4,color=:red,linecolor=:white) offset = 6 draw(Circle(23 + offset + 0.2, 0, 0.2), fill = true, linecolor = :red, color = :red) draw_vector(offset, 0, 23, 0, linecolor = :red) annotate!(26, -0.5, "offset", annotationfontsize = 10) draw_point(0, 0, color = :black, marker = 4) draw_point(23, 0, color = :black, marker = 4) finish()
Spirograph
https://github.com/scheinerman/Spirograph.jl.git
[ "MIT" ]
0.1.3
483e5daedd6b57d74f951bab69f3cb68948fed55
code
1354
using SimpleDrawing, Plots, ProgressMeter """ mechanism(a,b,offset,t) Draw a picture of the spirograph mechanism. Draw with `spirograph` first, then follow with `mechanism` using the same parameters. """ function mechanism(a::Int, b::Int, offset::Real, t::Real = 0) draw_circle(0, 0, a, linecolor = :black) θ = Spirograph.inner_angle(a, b, t) x = a + b z = (a + b) * exp(im * θ) * im draw_circle(z, abs(b), linecolor = :black) pen = Spirograph.spot(a, b, offset, t) draw_segment(z,pen,color=:black) draw_point(pen, color = :red, linecolor = :red, marker = 3, linewidth = 0) finish() end function spiro_movie(a, b, offset, step = Spirograph._DEFAULT_STEP) zvals = Spirograph.spiro_points(a, b, offset, step) T = Spirograph.stop_t(a, b) tvals = collect(0:step:T) npts = length(zvals) x = real(zvals) y = imag(zvals) bound = 0 if b>0 bound = a+b+max(abs(offset), b) else bound = a + max(abs(offset)-abs(b), 0) end PM = Progress(npts) movie = @animate for j = 1:npts newdraw() draw_rectangle(-bound, -bound, bound, bound, linecolor = :white) xx = x[1:j] yy = y[1:j] plot!(xx, yy, linecolor = :blue) mechanism(a, b, offset, tvals[j]) next!(PM) finish() end return movie end
Spirograph
https://github.com/scheinerman/Spirograph.jl.git
[ "MIT" ]
0.1.3
483e5daedd6b57d74f951bab69f3cb68948fed55
code
1665
module Spirograph using Plots function lastly() plot!(aspectratio = 1, legend = false, axis = false, grid = false, ticks = false) end @inline inner_angle(a::Int, b::Int, t::Real)::Float64 = b * t / a @inline function spot(a::Int, b::Int, offset::Real, t::Real)::Complex{Float64} θ = inner_angle(a, b, t) return im * ((a + b) * exp(θ * im) + offset * exp(t * im)) end @inline stop_t(a::Int, b::Int) = 2 * π * (lcm(a, b) ÷ abs(b)) function spiro_points(a::Int, b::Int, offset::Real, step::Real) if a <= 0 || b == 0 error( "Radius of fixed circle must be positive and radius of the rolling disk must be nonzero", ) end T = stop_t(a, b) #+ step return [spot(a, b, offset, t) for t = 0:step:T] end _DEFAULT_STEP = 0.05 """ spirograph(a,b,offset;args...) Draw a spirograph picture where + `a` is the radius of the fixed wheel, + `b` is the radius of the moving wheel, and + `offset` is the distance from the center of the moving wheel to the pen. The optional `args` are passed to `plot`. ## Example `spirograph(20,-9,12,linecolor=:green)` """ function spirograph(a::Int, b::Int, offset::Real, step::Real = _DEFAULT_STEP; args...) pts = spiro_points(a, b, offset, step) plot(real(pts), imag(pts); args...) lastly() end """ spirograph! Same as `spirograph` but does not clear the drawing screen first. This way spirograph images can be combined. """ function spirograph!(a::Int, b::Int, offset::Real, step::Real = _DEFAULT_STEP; args...) pts = spiro_points(a, b, offset, step) plot!(real(pts), imag(pts); args...) lastly() end export spirograph, spirograph! end # module
Spirograph
https://github.com/scheinerman/Spirograph.jl.git
[ "MIT" ]
0.1.3
483e5daedd6b57d74f951bab69f3cb68948fed55
code
61
using Spirograph using Test spirograph(10, 3, 5) @test true
Spirograph
https://github.com/scheinerman/Spirograph.jl.git
[ "MIT" ]
0.1.3
483e5daedd6b57d74f951bab69f3cb68948fed55
docs
1822
# Spirograph Julia implementation of the classic [Spirograph](https://en.wikipedia.org/wiki/Spirograph) toy. ## Creating Spirograph Drawings To make a spirograph drawing, use the function ``` spirograph(a,b,offset,args...) ``` where + `a` is the radius of the fixed wheel, + `b` is the radius of the moving wheel, and + `offset` is the distance from the center of the moving wheel to the pen location. Here `a` and `b` are integers. The argument `b` may be negative, in which case the moving wheel glides along the inside of the fixed wheel. This is shown in the following diagram in which the red dot shows the pen location. ![](diagram.png) See also [this diagram](diagram2.pdf) that shows the spirograph with `a=14`, `b=-5`, and `offset=4` overlayed with a picture of the two wheels with a red dot for the pen location. (This picture was created using the `mechanism` function defined in the file `diagram/mechanism.jl`.) See also [this animation](animation.gif). ### Drawing Options The optional `args` can be used to change aspects of the plot. For example: ``` spirograph(25,11,18,linecolor=:red) ``` produces this image: ![](spiro-sample.png) ### Combining Drawings We also provide the function `spirograph!` that operates exactly like `spirograph` but does not first clear the drawing window. In this way, multiple spirograph images can be combined. ``` julia> spirograph(40,-11,18,linecolor=:red) julia> spirograph!(40,-11,16,linecolor=:blue) julia> spirograph!(40,-11,14,linecolor=:green) ``` ![](multicolor.png) ## Saving To save an image, use the `savefig` function from [Plots](http://docs.juliaplots.org/latest/). For example: ``` julia> using Spirograph, Plots julia> spirograph(80,-33,45,linewidth=0.5) julia> savefig("my-spiro.pdf") ``` [Click here](my-spiro.pdf) to see the result.
Spirograph
https://github.com/scheinerman/Spirograph.jl.git
[ "MIT" ]
1.1.0
d039f3ef7481270be1584a50edea804ae3c83953
code
31839
module StructUtils using Dates, UUIDs export @noarg, @defaults, @tags, Selectors """ StructUtils.StructStyle Abstract type that all concrete struct styles must subtype. Custom struct styles allow fine-grained control over various StructUtils.jl interface methods like `fieldtags`, `fielddefaults`, `lift`, `lower`, etc. """ abstract type StructStyle end """ StructUtils.DefaultStyle Default struct style that all StructUtils.jl interface methods are defined for by default. """ struct DefaultStyle <: StructStyle end include("macros.jl") """ StructUtils.dictlike(::Type{T}) -> Bool StructUtils.dictlike(::StructStyle, ::Type{T}) -> Bool Returns `true` if `T` is a dictionary-like type, `false` otherwise. When `StructUtils.make(T, source)` is called, if `dictlike(T)` is `true`, an instance will be `initialize`d, and then `addkeyval!`ed for each key-value pair in `source`. """ function dictlike end dictlike(::Type{<:AbstractDict}) = true dictlike(::Type{<:AbstractVector{<:Pair}}) = true dictlike(_) = false dictlike(_, ::Type{T}) where {T} = dictlike(T) dictlike(st, ::T) where {T} = dictlike(st, T) """ StructUtils.noarg(::Type{T}) -> Bool StructUtils.noarg(::StructStyle, ::Type{T}) -> Bool Signals that `T` is a mutable type that can be constructed by calling an empty constructor, like `t = T()`. Automatically overloaded when structs use the `@noarg` macro in their struct definition. The default value is `false` unless explicitly overloaded. """ function noarg end noarg(_) = false noarg(_, ::Type{T}) where {T} = noarg(T) noarg(st, ::T) where {T} = noarg(st, T) """ StructUtils.kwdef(::Type{T}) -> Bool StructUtils.kwdef(::StructStyle, ::Type{T}) -> Bool Signals that `T` can be constructed by passing struct fields as keyword arguments to the constructor, like `t = T(field1=a, field2=b, ...)`. Automatically overloaded when structs use the `@kwdef` macro in their struct definition. The default value is `false` unless explicitly overloaded. Note that `StructUtils.@kwdef` currently has no relation to `Base.@kwdef`, yet should be a drop-in replacement for it. """ function kwdef end kwdef(_) = false kwdef(_, ::Type{T}) where {T} = kwdef(T) kwdef(st, ::T) where {T} = kwdef(st, T) """ StructUtils.fieldtagkey(::Type{<:StructStyle}) -> Symbol Field tags defined on struct fields can be grouped by keys that are associated with a particular struct style. This function returns the key that should be used to retrieve field tags for a given struct style. By default, this function returns `nothing`. An example overload might look like: ```julia struct MySQLStyle <: StructStyle end StructUtils.fieldtagkey(::Type{MySQLStyle}) = :mysql @tags struct Foo a::Int &(mysql=(name="foo_a",),) b::String end ``` In this example, when `StructUtils.make` is called on `Foo` with the `MySQLStyle` style, only `(name="foo_a",)` will be retrieved from the field tags for `a` because the `mysql` key is associated with the `MySQLStyle` struct style. """ function fieldtagkey end fieldtagkey(::Type{T}) where {T} = nothing """ StructUtils.fieldtags(::Type{T}) -> NamedTuple StructUtils.fieldtags(::StructStyle, ::Type{T}) -> NamedTuple StructUtils.fieldtags(::StructStyle, ::Type{T}, fieldname) -> NamedTuple Returns a `NamedTuple` of field tags for the struct `T`. Field tags can be added manually by overloading `fieldtags`, or included via convenient syntax using the StructUtils.jl macros: `@tags`, `@noarg`, `@defaults`, or `@kwdef`. """ function fieldtags end fieldtags(::Type{T}) where {T} = (;) fieldtags(_, ::Type{T}) where {T} = fieldtags(T) fieldtags(::Type{T}, field) where {T} = get(() -> (;), fieldtags(T), field) function fieldtags(st::StructStyle, ::Type{T}, field) where {T} ft = fieldtags(st, T) fft = get(() -> (;), ft, field) ftk = fieldtagkey(typeof(st)) return ftk === nothing ? fft : get(() -> (;), fft, ftk) end """ StructUtils.fielddefaults(::Type{T}) -> NamedTuple StructUtils.fielddefaults(::StructStyle, ::Type{T}) -> NamedTuple StructUtils.fielddefault(::StructStyle, ::Type{T}, fieldname) -> NamedTuple Returns a `NamedTuple` of field defaults for the struct `T`. Field defaults can be added manually by overloading `fielddefaults`, or included via convenient syntax using the StructUtils.jl macros: `@tags`, `@noarg`, `@defaults`, or `@kwdef`. """ function fielddefaults end fielddefaults(::Type{T}) where {T} = (;) fielddefaults(_, ::Type{T}) where {T} = fielddefaults(T) fielddefault(::Type{T}, key) where {T} = haskey(fielddefaults(T), key) ? fielddefaults(T)[key] : nothing fielddefault(st, ::Type{T}, key) where {T} = haskey(fielddefaults(st, T), key) ? fielddefaults(st, T)[key] : nothing @doc (@doc fielddefaults) fielddefault """ StructUtils.initialize(T) -> T StructUtils.initialize(T, dims) -> T StructUtils.initialize(::StructStyle, T) -> T StructUtils.initialize(::StructStyle, T, dims) -> T In `StructUtils.make`, this function is called to initialize a new instance of `T`, when `T` is `dictlike`, `arraylike`, or `noarg`. For `arraylike`, if the `source` in `make` is discovered to have multiple dimensions, `dims` will be passed to `initialize`. The default implementation of `initialize` is to call `T()` or `T(undef, dims...)` for `<:AbstractArray` types. """ function initialize end initialize(::Type{T}) where {T} = T() initialize(AT::Type{<:AbstractArray{T,0}}) where {T} = AT(undef) initialize(::Type{T}) where {T<:AbstractVector} = T(undef, 0) initialize(::Type{T}, dims) where {T<:AbstractArray} = T(undef, dims) initialize(_, ::Type{T}) where {T} = initialize(T) initialize(_, ::Type{T}, dims) where {T} = initialize(T, dims) """ StructUtils.addkeyval!(d, k, v) Add a key-value pair to a dictionary-like object `d`. This function is called by `StructUtils.make` when `d` is `dictlike`. The default implementation is to call `d[k] = v` for `AbstractDict`. """ function addkeyval! end addkeyval!(d::AbstractDict, k, v) = d[k] = v addkeyval!(d::AbstractVector, k, v) = push!(d, k => v) _keytype(d) = keytype(d) _keytype(::AbstractVector{Pair{A,B}}) where {A,B} = A _valtype(d) = valtype(d) _valtype(::AbstractVector{Pair{A,B}}) where {A,B} = B """ StructUtils.arraylike(::Type{T}) -> Bool StructUtils.arraylike(::StructStyle, ::Type{T}) -> Bool Returns `true` if `T` is an array-like type, `false` otherwise. This function is called by `StructUtils.make` to determine if `T` is array-like. The default implementation returns `true` for `<:AbstractArray`, `<:AbstractSet`, `<:Tuple`, `<:Base.Generator`, and `<:Core.SimpleVector` types, and `false` for `<:AbstractArray{T,0}`. Once `initialize` is called, `StructUtils.make` will call `push!` to add values to the array-like object. """ function arraylike end arraylike(::Type{T}) where {T} = false arraylike(::T) where {T} = arraylike(T) arraylike(_, ::Type{T}) where {T} = arraylike(T) arraylike(_, ::T) where {T} = arraylike(T) arraylike(::Type{<:Union{AbstractArray,AbstractSet,Tuple,Base.Generator,Core.SimpleVector}}) = true arraylike(::Type{<:AbstractArray{T,0}}) where {T} = false """ StructUtils.structlike(::Type{T}) -> Bool StructUtils.structlike(::StructStyle, ::Type{T}) -> Bool Returns `true` if `T` is a struct-like type, `false` otherwise. This function is called by `StructUtils.make` to determine if `T` is struct-like. The default implementation returns `true` for `isstructtype(T)` and `!Base.issingletontype(T)`. `structlike` structs are expected to be able to be constructed by the default constructor like `T(field1, field2, ...)`. Due to how `StructUtils.make` works, `structlike` is often overloaded to `false` by "unit" types where fields should be considered private the `make` process should instead attempt to `lift` the `source` object into the `unit` type. """ function structlike end structlike(::Type{T}) where {T} = isstructtype(T) && !Base.issingletontype(T) structlike(_, ::Type{T}) where {T} = structlike(T) structlike(::T) where {T} = structlike(T) structlike(_, ::T) where {T} = structlike(T) structlike(::Type{<:Dates.TimeType}) = false structlike(::Type{<:AbstractString}) = false structlike(::Type{Symbol}) = false structlike(::Type{<:Number}) = false structlike(::Type{<:AbstractChar}) = false structlike(::Type{Nothing}) = false structlike(::Type{Missing}) = false structlike(::Type{UUID}) = false structlike(::Type{VersionNumber}) = false structlike(::Type{Regex}) = false structlike(::Type{<:AbstractArray{T,0}}) where {T} = false structlike(::Module) = false structlike(::Function) = false """ StructUtils.nulllike(T) -> Bool StructUtils.nulllike(::StructStyle, T) -> Bool Returns `true` if `T` is a null-like type, `false` otherwise. This function is mainly used in the default `choosetype` implementation to determine if a `Union` type can be narrowed by excluding `nulllike` types like `Nothing` and `Missing`. """ function nulllike end nulllike(::Type{T}) where {T} = false nulllike(::T) where {T} = nulllike(T) nulllike(_, ::Type{T}) where {T} = nulllike(T) nulllike(_, ::T) where {T} = nulllike(T) nulllike(::Type{Nothing}) = true nulllike(::Type{Missing}) = true """ StructUtils.lower(x) -> x StructUtils.lower(::StructStyle, x) -> x Domain value transformation function. This function is called by `StructUtils.applyeach` on each value in the `source` object before calling the apply function. By default, `lower` is the identity function. This allows a domain transformation of values according to the style used. """ function lower end lower(x) = x lower(::StructStyle, x) = lower(x) function lower(st::StructStyle, x, tags) if x isa Dates.TimeType && haskey(tags, :dateformat) return Dates.format(x, tags.dateformat) elseif haskey(tags, :lower) return tags.lower(x) else return lower(st, x) end end """ StructUtils.lift(::Type{T}, x) -> T StructUtils.lift(::StructStyle, ::Type{T}, x) -> T Lifts a value `x` to a type `T`. This function is called by `StructUtils.make` to lift values to the appropriate type. The default implementation is the identity function for most types, but it also includes special cases for `Symbol`, `Char`, `UUID`, `VersionNumber`, `Regex`, and `TimeType` types. Allows transforming a "domain value" that may be some primitive representation into a more complex Julia type. """ function lift end lift(::Type{Symbol}, x) = Symbol(x) lift(::Type{T}, x) where {T} = Base.issingletontype(T) ? T() : convert(T, x) lift(::Type{>:Missing}, ::Nothing) = missing lift(::Type{>:Nothing}, ::Nothing) = nothing lift(::Type{>:Union{Missing,Nothing}}, ::Nothing) = nothing lift(::Type{>:Union{Missing,Nothing}}, ::Missing) = missing lift(::Type{Char}, x::AbstractString) = length(x) == 1 ? x[1] : throw(ArgumentError("expected single character, got $x")) lift(::Type{UUID}, x::AbstractString) = UUID(x) lift(::Type{VersionNumber}, x::AbstractString) = VersionNumber(x) lift(::Type{Regex}, x::AbstractString) = Regex(x) lift(::Type{T}, x::AbstractString) where {T<:Dates.TimeType} = T(x) function lift(::Type{T}, x, tags) where {T<:Dates.TimeType} if haskey(tags, :dateformat) return T(x, tags.dateformat) else return T(x) end end # bit of an odd case, but support 0-dimensional array lifting from scalar value function lift(::Type{A}, x) where {A<:AbstractArray{T,0}} where {T} m = A(undef) m[1] = lift(T, x) return m end @inline lift(::Type{T}, x, _) where {T} = lift(T, x) @inline lift(::StructStyle, ::Type{T}, x) where {T} = lift(T, x) @inline function lift(st::StructStyle, ::Type{T}, x, tags) where {T} if haskey(tags, :lift) return tags.lift(x) elseif !isempty(tags) return lift(T, x, tags) else return lift(st, T, x) end end @inline lift(f::F, st::StructStyle, ::Type{T}, x, tags) where {F,T} = f(lift(st, T, x, tags)) """ StructUtils.choosetype(::Type{T}, x) -> T StructUtils.choosetype(::StructStyle, ::Type{T}, x) -> T Chooses a concrete type from an abstract or union type `T` based on the value `x`, where `x` is the "source" object in the context of `StructUtils.make`. This allows a runtime decision to be made around a concrete subtype that should be used for `StructUtils.make` based on potentially dynamic values of the source object. """ function choosetype end choosetype(::Type{T}, x) where {T} = (T >: Missing && !nulllike(x)) ? nonmissingtype(T) : (T >: Nothing && !nulllike(x)) ? Base.nonnothingtype(T) : T @inline choosetype(::Type{T}, x, tags) where {T} = choosetype(T, x) @inline choosetype(::StructStyle, ::Type{T}, x) where {T} = choosetype(T, x) @inline function choosetype(st::StructStyle, ::Type{T}, x, tags) where {T} if haskey(tags, :choosetype) return tags.choosetype(x) elseif !isempty(tags) return choosetype(T, x, tags) else return choosetype(st, T, x) end end @inline choosetype(f, style::StructStyle, ::Type{T}, x, tags) where {T} = f(style, choosetype(style, T, x, tags), x, tags) """ StructUtils.applyeach(style, f, x) -> Union{StructUtils.EarlyReturn, Nothing} A custom `foreach`-like function that operates specifically on `(key, val)` or `(ind, val)` pairs, and supports short-circuiting (via `StructUtils.EarlyReturn`). It also supports a `StructStyle` argument to allow for style-specific behavior for non-owned types. For each key-value or index-value pair in `x`, call `f(k, v)`. If `f` returns a `StructUtils.EarlyReturn` instance, `applyeach` should return the `EarlyReturn` immediately and stop iterating (i.e. short-circuit). Otherwise, the return value of `f` is ignored and iteration continues. Key types are generally expected to be Symbols, Strings, or Integers. An example overload of `applyeach` for a generic iterable would be: ```julia function StructUtils.applyeach(style::StructUtils.StructStyle, f, x::MyIterable) for (i, v) in enumerate(x) ret = f(i, StructUtils.lower(style, v)) # if `f` returns EarlyReturn, return immediately ret isa StructUtils.EarlyReturn && return ret end return end ``` Note that `applyeach` must include the `style` argument when overloading, even though it can be _called_ with out it, where the `DefaultStyle` will be used. Also note that before applying `f`, the value `v` is passed through `StructUtils.lower(style, v)`. If a value is `#undef` or otherwise not defined, the `f` function should be called with `nothing`. """ function applyeach end """ StructUtils.EarlyReturn{T} A wrapper type that can be used in function arguments to `applyeach` to short-circuit iteration and return a value from `applyeach`. Example usage: ```julia function find_needle_in_haystack(haystack, needle) ret = applyeach(haystack) do k, v k == needle && return StructUtils.EarlyReturn(v) end ret isa StructUtils.EarlyReturn && return ret.value throw(ArgumentError("needle not found in haystack") end ```` """ struct EarlyReturn{T} value::T end @inline applyeach(f, x) = applyeach(DefaultStyle(), f, x) @inline applyeach(f, st::StructStyle, x) = applyeach(st, f, x) @inline function applyeach(st::StructStyle, f, x::AbstractArray) for i in eachindex(x) ret = if @inbounds(isassigned(x, i)) f(i, lower(st, @inbounds(x[i]))) else f(i, lower(st, nothing)) end ret isa EarlyReturn && return ret end return length(x) end # special-case Pair vectors to act like Dicts @inline function applyeach(st::StructStyle, f, x::AbstractVector{Pair{K,V}}) where {K,V} for (k, v) in x ret = f(k, lower(st, v)) ret isa EarlyReturn && return ret end return end # appropriate definition for iterables that # can't have #undef values @inline function applyeach(st::StructStyle, f, x::Union{AbstractSet,Base.Generator,Core.SimpleVector}) for (i, v) in enumerate(x) ret = f(i, lower(st, v)) ret isa EarlyReturn && return ret end return end # generic definition for Tuple, NamedTuple, structs function applyeach(st::StructStyle, f, x::T) where {T} if @generated N = fieldcount(T) ex = quote Base.@_inline_meta defs = fielddefaults(st, T) end for i = 1:N fname = Meta.quot(fieldname(T, i)) push!(ex.args, quote ftags = fieldtags(st, T, $fname) if !haskey(ftags, :ignore) || !ftags.ignore fname = get(ftags, :name, $fname) ret = if isdefined(x, $i) f(fname, lower(st, getfield(x, $i), ftags)) elseif haskey(defs, $fname) # this branch should be really rare because we should # have applied a field default in the struct constructor f(fname, lower(st, defs[$fname], ftags)) else f(fname, lower(st, nothing, ftags)) end ret isa EarlyReturn && return ret end end) end push!(ex.args, :(return)) return ex else defs = fielddefaults(st, T) for i = 1:fieldcount(T) fname = fieldname(T, i) ftags = fieldtags(st, T, fname) if !haskey(ftags, :ignore) || !ftags.ignore fname = get(ftags, :name, fname) ret = if isdefined(x, i) f(fname, lower(st, getfield(x, i), ftags)) elseif haskey(defs, fname) f(fname, lower(st, defs[fname], ftags)) else f(fname, lower(st, nothing, ftags)) end ret isa EarlyReturn && return ret end end return end end @inline function applyeach(st::StructStyle, f, x::AbstractDict) for (k, v) in x ret = f(k, lower(st, v)) ret isa EarlyReturn && return ret end return end struct KeyValStructClosure{T,S,V} style::S val::V # either actual T for noarg or Tuple of Refs otherwise and tuples i::Union{Base.RefValue{Int},Nothing} end KeyValStructClosure{T}(style::S, val::V) where {T,S,V} = KeyValStructClosure{T,S,V}(style, val, T <: Tuple ? Ref(0) : nothing) struct NoArgFieldRef{T} val::T i::Int end @static if VERSION < v"1.10" function _isfieldatomic(@nospecialize(t::Type), s::Int) t = Base.unwrap_unionall(t) # TODO: what to do for `Union`? isa(t, DataType) || return false # uncertain ismutabletype(t) || return false # immutable structs are never atomic 1 <= s <= length(t.name.names) || return false # OOB reads are not atomic (they always throw) atomicfields = t.name.atomicfields atomicfields === C_NULL && return false s -= 1 return unsafe_load(Ptr{UInt32}(atomicfields), 1 + s÷32) & (1 << (s%32)) != 0 end else const _isfieldatomic = Base.isfieldatomic end (f::NoArgFieldRef{T})(val::S) where {T,S} = setfield!(f.val, f.i, val, _isfieldatomic(T, f.i) ? :sequentially_consistent : :not_atomic) mutable struct FieldRef{T} set::Bool val::T FieldRef{T}() where {T} = new{T}(false) FieldRef{T}(x) where {T} = new{T}(true, x) end (f::FieldRef{T})(val) where {T} = (f.set = true; f.val = val) Base.getindex(f::FieldRef) = f.set ? f.val : nothing keyeq(a, b::String) = string(a) == b keyeq(a::AbstractString, b::String) = String(a) == b keyeq(a, b) = isequal(a, b) keyeq(x) = y -> keyeq(x, y) function (f::KeyValStructClosure{T,S,V})(key::K, val::VV) where {T,S,V,K,VV} if @generated N = fieldcount(T) ex = quote Base.@_inline_meta if T <: Tuple f.i[] += 1 end end for i = 1:N ftype = fieldtype(T, i) if T <: Tuple push!(ex.args, quote if f.i[] == $i return make(f.val[$i], f.style, $ftype, val) end end) else fname = Meta.quot(fieldname(T, i)) mexpr = quote if noarg(f.style, T) return make(NoArgFieldRef(f.val, $i), f.style, $ftype, val, ftags) else return make(f.val[$i], f.style, $ftype, val, ftags) end end if K == Int push!(ex.args, quote if key == $i ftags = fieldtags(f.style, T, $fname) $mexpr end end) elseif K == Symbol push!(ex.args, quote ftags = fieldtags(f.style, T, $fname) fname = get(ftags, :name, $fname) if key == fname $mexpr end end) else fstr = String(fieldname(T, i)) push!(ex.args, quote ftags = fieldtags(f.style, T, $fname) fstr = String(get(ftags, :name, $fstr)) if keyeq(key, fstr) $mexpr end end) end end end # Core.println(ex) return ex else if T <: Tuple i = f.i[] += 1 if i <= fieldcount(T) return make(f.val[i], f.style, fieldtype(T, i), val) end else for i = 1:fieldcount(T) ftype = fieldtype(T, i) if K == Int if key == i fname = fieldname(T, key) ftags = fieldtags(f.style, T, fname) if noarg(f.style, T) return make(NoArgFieldRef(f.val, i), f.style, ftype, val, ftags) else return make(f.val[i], f.style, ftype, val, ftags) end end elseif K == Symbol fname = fieldname(T, i) ftags = fieldtags(f.style, T, fname) fname = get(ftags, :name, fname) if key == fname if noarg(f.style, T) return make(NoArgFieldRef(f.val, i), f.style, ftype, val, ftags) else return make(f.val[i], f.style, ftype, val, ftags) end end else # K == String fname = fieldname(T, i) ftags = fieldtags(f.style, T, fname) fstr = String(fname) fstr = String(get(ftags, :name, fstr)) if keyeq(key, fstr) if noarg(f.style, T) return make(NoArgFieldRef(f.val, i), f.style, ftype, val, ftags) else return make(f.val[i], f.style, ftype, val, ftags) end end end end end end end function getfielddefault(style::S, ::Type{T}, key) where {S,T} fd = fielddefault(style, T, key) if fd !== nothing return FieldRef{fieldtype(T, key)}(fd) else return FieldRef{fieldtype(T, key)}() end end function makestruct(f::F, style::S, ::Type{T}, source) where {F,S,T} if @generated N = fieldcount(T) ex = quote Base.@_inline_meta end syms = Symbol[] for i = 1:N nm = gensym(T <: Tuple ? :tuple : fieldname(T, i)) push!(syms, nm) fname = Meta.quot(fieldname(T, i)) FT = fieldtype(T, i) push!(ex.args, quote fd = fielddefault(style, $T, $fname) $nm = fd === nothing ? FieldRef{$FT}() : FieldRef{$FT}(fd) end) end if T <: Tuple vals = Expr(:tuple, Any[:($(syms[i])) for i = 1:N]...) push!(ex.args, :(st = applyeach(style, KeyValStructClosure{$T}(style, $vals), source))) push!(ex.args, :(x = $(Expr(:tuple, Any[:($(syms[i])[]) for i = 1:N]...)))) else vals = Expr(:tuple, Any[:($(syms[i])) for i = 1:N]...) push!(ex.args, :(st = applyeach(style, KeyValStructClosure{$T}(style, $vals), source))) push!(ex.args, :(x = $(Expr(:new, :($T), Any[:($(syms[i])[]) for i = 1:N]...)))) end push!(ex.args, :(f(x))) push!(ex.args, :(return st)) # println(ex) return ex else # println("non-generated makestruct") vals = ntuple(i -> getfielddefault(style, T, fieldname(T, i)), fieldcount(T)) st = applyeach(style, KeyValStructClosure{T}(style, vals), source) if T <: Tuple f(ntuple(i -> vals[i][], fieldcount(T))) elseif T <: NamedTuple f(T(Tuple(vals[i][] for i = 1:fieldcount(T)))) else f(T((vals[i][] for i = 1:fieldcount(T))...)) end return st end end struct DictClosure{S,T} style::S dict::T end mutable struct DictKeyClosure{K} key::K DictKeyClosure{K}() where {K} = new{K}() end @inline (f::DictKeyClosure{K})(x) where {K} = setfield!(f, :key, x) struct DictValClosure{D,K} dict::D # Dict instance key::DictKeyClosure{K} end @inline (f::DictValClosure{D,K})(x) where {D,K} = addkeyval!(f.dict, f.key.key, x) @inline function (f::DictClosure{S,T})(k, v) where {S,T} KT = _keytype(f.dict) VT = _valtype(f.dict) kc = DictKeyClosure{KT}() make(kc, f.style, KT, k) return make(DictValClosure(f.dict, kc), f.style, VT, v) end struct ArrayClosure{S,T} style::S arr::T end struct ArrayPushClosure{T} arr::T end @inline (f::ArrayPushClosure{T})(x) where {T} = push!(f.arr, x) function (f::ArrayClosure{S,T})(k, v) where {S,T} return make(ArrayPushClosure(f.arr), f.style, eltype(f.arr), v) end struct LengthClosure len::Ptr{Int} end @inline (f::LengthClosure)(_, _) = unsafe_store!(f.len, unsafe_load(f.len) + 1) function applylength(x) ref = Ref(0) lc = LengthClosure(Base.unsafe_convert(Ptr{Int}, ref)) GC.@preserve ref begin StructUtils.applyeach(lc, x) return unsafe_load(lc.len) end end # recursively build up multidimensional array dimensions # "[[1.0],[2.0]]" => (1, 2) # "[[1.0,2.0]]" => (2, 1) # "[[[1.0]],[[2.0]]]" => (1, 1, 2) # "[[[1.0],[2.0]]]" => (1, 2, 1) # "[[[1.0,2.0]]]" => (2, 1, 1) # length of innermost array is 1st dim function discover_dims(x) @assert arraylike(x) len = applylength(x) ret = applyeach(x) do _, v return arraylike(v) ? EarlyReturn(discover_dims(v)) : EarlyReturn(()) end return (ret.value..., len) end struct MultiDimClosure{S,A} style::S arr::A dims::Vector{Int} cur_dim::Base.RefValue{Int} end @inline function (f::MultiDimClosure{S,A})(i, val) where {S,A} f.dims[f.cur_dim[]] = i if arraylike(val) f.cur_dim[] -= 1 st = applyeach(f, val) f.cur_dim[] += 1 else st = make(MultiDimValFunc(f.style, f.arr, f.dims), f.style, eltype(f.arr), val) end return st end struct MultiDimValFunc{S,A} style::S arr::A dims::Vector{Int} end @inline (f::MultiDimValFunc{S,A})(x) where {S,A} = setindex!(f.arr, x, f.dims...) """ StructUtils.make(T, source) -> T StructUtils.make(style, T, source) -> T StructUtils.make(f, style, T, source) -> nothing StructUtils.make!(style, x::T, source) Construct a struct of type `T` from `source` using the given `style`. The `source` can be any type of object, and the `style` can be any `StructStyle` subtype. `make` will use any knowledge of `noarg`, `arraylike`, or `dictlike` in order to determine how to construct an instance of `T`. The fallback for structs is to rely on the automatic "all argument" constructor that structs have defined by default. `make` calls `applyeach` on the `source` object, where the key-value pairs from `source` will be used in constructing `T`. The 3rd definition above allows passing in an "applicator" function that is applied to the constructed struct. This is useful when the initial `T` is abstract or a union type and `choosetype` is used to determine the concrete runtime type to construct. The 4th definition allows passing in an already-constructed instance of `T` (`x`),, which must be mutable, and source key-value pairs will be applied as appropriate to `x`. For structs, `fieldtags` will be accounted for and certain tags can be used to influence the construction of the struct. """ function make end make(::Type{T}, source; style::StructStyle=DefaultStyle()) where {T} = make(style, T, source) mutable struct ValueClosure{T} x::T ValueClosure{T}() where {T} = new{T}() end @inline (f::ValueClosure{T})(x) where {T} = setfield!(f, :x, x) struct MakeClosure{F} f::F end @inline (f::MakeClosure)(style::S, ::Type{T}, source::V, tags) where {S,T,V} = _make(f.f, style, T, source, tags) @inline function make(style::StructStyle, ::Type{T}, source, tags=(;)) where {T} vc = ValueClosure{T}() choosetype(MakeClosure(vc), style, T, source, tags) return vc.x end @inline function make(f::F, style::StructStyle, ::Type{T}, source, tags=(;)) where {F,T} return choosetype(MakeClosure(f), style, T, source, tags) end # assume choosetype has been applied to T # f is function to be applied to made value # returns state from applyeach if any function _make(f::F, style::StructStyle, ::Type{T}, source, tags=(;)) where {F,T} if dictlike(style, T) x = initialize(style, T) st = applyeach(style, DictClosure(style, x), source) f(x) elseif arraylike(style, T) if T <: Tuple # special-case Tuple since it's arraylike, but we want to "make" it like a struct st = makestruct(f, style, T, source) elseif ndims(T) > 1 # multidimensional arrays dims = discover_dims(source) x = initialize(style, T, dims) n = ndims(T) st = applyeach(style, MultiDimClosure(style, x, ones(Int, n), Ref(n)), source) f(x) else x = initialize(style, T) st = applyeach(style, ArrayClosure(style, x), source) f(x) end elseif noarg(style, T) x = initialize(style, T) st = applyeach(style, KeyValStructClosure{T}(style, x), source) f(x) elseif structlike(style, T) st = makestruct(f, style, T, source) else st = lift(f, style, T, source, tags) end return st end make!(x::T, source; style::StructStyle=DefaultStyle()) where {T} = make!(style, x, source) make!(::Type{T}, source; style::StructStyle=DefaultStyle()) where {T} = make!(style, T, source) function make!(style::StructStyle, x::T, source) where {T} if dictlike(style, T) st = applyeach(DictClosure(style, x), source) return x elseif arraylike(style, T) st = applyeach(ArrayClosure(style, x), source) return x elseif noarg(style, T) st = applyeach(KeyValStructClosure{T}(style, x), source) return x else throw(ArgumentError("Type `$T` does not support in-place `make!`")) end end make!(style::StructStyle, ::Type{T}, source) where {T} = make!(style, initialize(style, T), source) @doc (@doc make) make! include("selectors.jl") end
StructUtils
https://github.com/quinnj/StructUtils.jl.git
[ "MIT" ]
1.1.0
d039f3ef7481270be1584a50edea804ae3c83953
code
13066
struct None end const none = None() struct FieldExpr isconst::Bool isatomic::Bool name::Symbol type::Any # none or Symbol or Expr default::Any # literal or Expr or none tags::Union{None, Expr} end function _expr(f::FieldExpr) nm_typ = f.type === none ? f.name : :($(f.name)::$(f.type)) if f.isconst return Expr(:const, nm_typ) elseif f.isatomic return :(@atomic($nm_typ)) else return nm_typ end end function _kw(f::FieldExpr) # don't include type to allow for more flexible inputs # and we can rely on implicit convert call in setfield! nm_typ = f.name # f.type === none ? f.name : :($(f.name)::$(f.type)) return f.default === none ? nm_typ : Expr(:kw, nm_typ, f.default) end # parse a single-line field expression # we progressively peel off layers of the expression to extract field information # supported field expression types include: # mutable struct Foo # no_type # with_type::Int # with_default = 1 # with_type_default::Int = 1 # with_tag &(xml=(key="with-tag",),) # with_tag_type::Int &(xml=(key="with-tag-type",),) # with_tag_default = 1 &(xml=(key="with-tag-default",),) # with_tag_type_default::Int = 1 &(xml=(key="with-tag-default",),) # @atomic no_type_atomic # @atomic with_type_atomic::Int # @atomic(with_default_atomic) = 1 # @atomic(with_type_default_atomic::Int) = 1 # @atomic(with_tag_atomic) &(xml=(key="with-tag-atomic",),) # @atomic(with_tag_type_atomic::Int) &(xml=(key="with-tag-type-atomic",),) # @atomic(with_tag_default_atomic) = 1 &(xml=(key="with-tag-default-atomic",),) # @atomic(with_tag_type_default_atomic::Int) = 1 &(xml=(key="with-tag-default-atomic",),) # const no_type_const # const with_type_const::Int # const with_default_const = 1 # const with_type_default_const::Int = 1 # const with_tag_const &(xml=(key="with-tag-const",),) # const with_tag_type_const::Int &(xml=(key="with-tag-type-const",),) # const with_tag_default_const = 1 &(xml=(key="with-tag-default-const",),) # const with_tag_type_default_const::Int = 1 &(xml=(key="with-tag-default-const",),) # end function FieldExpr(ex) isconst = isatomic = false name = Symbol() type = none default = none tags = none if Meta.isexpr(ex, :const) isconst = true ex = ex.args[1] end if Meta.isexpr(ex, :(=)) def_and_tags = ex.args[2] if Meta.isexpr(def_and_tags, :call) && def_and_tags.args[1] == :& default = def_and_tags.args[2] tags = def_and_tags.args[3] else default = def_and_tags end ex = ex.args[1] end if Meta.isexpr(ex, :call) && ex.args[1] == :& tags = ex.args[3] ex = ex.args[2] end if Meta.isexpr(ex, :atomic) isatomic = true ex = ex.args[1] end if ex isa Symbol name = ex elseif Meta.isexpr(ex, :(::)) name, type = ex.args else return nothing end name = Meta.isexpr(name, :escape) ? name.args[1] : name return FieldExpr(isconst, isatomic, name, type, default, tags) end function parsefields!(field_exprs::Vector{Any}) fields = FieldExpr[] for (i, fex) in enumerate(field_exprs) fex isa LineNumberNode && continue f = FieldExpr(fex) if f !== nothing push!(fields, f) # replace field expression that may include defaults/tags w/ just the field name/type # + const/atomic annotations field_exprs[i] = _expr(f) else # ignore lines that aren't fields end end return fields end function parse_struct_def(kind, src, mod, expr) expr = macroexpand(mod, expr) Meta.isexpr(expr, :struct) || throw(ArgumentError("Invalid usage of @$kind macro")) ismutable, T, fieldsblock = expr.args if Meta.isexpr(T, :<:) T = T.args[1] end if Meta.isexpr(T, :curly) T_with_typeparams = copy(T) # sanitize T_with_typeparams to remove any type param bounds for i = 2:length(T_with_typeparams.args) if T_with_typeparams.args[i] isa Expr T_with_typeparams.args[i] = T_with_typeparams.args[i].args[1] end end typeparams = T.args[2:end] T = T.args[1] end # kind is: :noarg, :kwdef, :defaults, :tags ret = Expr(:block) # we always want to return original struct definition expression push!(ret.args, :($Base.@__doc__ $expr)) # parse field exprs and sanitize field definitions fields = parsefields!(fieldsblock.args) if kind == :noarg ismutable || throw(ArgumentError("@noarg structs must be mutable")) if any(f.isconst for f in fields) #TODO: we could allow non-trailing const fields if they have default values # by setting the default value in the initial new() call # or if all fields have default values, we could allow const fields # because we'd have a value for each field to pass to new() throw(ArgumentError("const fields are not allowed in @noarg structs")) end # generate noarg constructor if @isdefined(T_with_typeparams) sig = Expr(:where, Expr(:call, T_with_typeparams), typeparams...) new_expr = Expr(:(=), :x, Expr(:call, Expr(:curly, :new, T_with_typeparams.args[2:end]...))) else sig = Expr(:call, T) new_expr = :(x = new()) end cexpr = Expr(:function, sig, Expr(:block, src, new_expr)) defs = [:(setfield!(x, $(Meta.quot(f.name)), $(f.default), $(f.isatomic ? Meta.quot(:sequentially_consistent) : Meta.quot(:not_atomic)))) for f in fields if f.default !== none] append!(cexpr.args[2].args, defs) push!(cexpr.args[2].args, Expr(:return, :x)) # add inner constructor right after field definitions push!(expr.args[3].args, cexpr) #TODO: should we also generate an all-arg constructor like default struct constructors # that call convert to the field type for each field? # override StructUtils.noarg(::Type{nm}) = true and add outside struct definition push!(ret.args, :(StructUtils.noarg(::Type{<:$T}) = true)) generate_field_defaults_and_tags!(ret, T, fields) elseif kind == :kwdef if !isempty(fields) # generate outer kwdef constructor, like: Foo(; a=1, b=2, ...) = Foo(a, b, ...) params = Expr(:parameters, (_kw(fex) for fex in fields)...) sig = Expr(:call, T, params) fexpr = Expr(:function, sig, Expr(:block, src, :(return $T($((f.name for f in fields)...))))) push!(ret.args, fexpr) if @isdefined(T_with_typeparams) # generate another kwdef constructor with type parameters sig = Expr(:where, Expr(:call, T_with_typeparams, params), typeparams...) fexpr = Expr(:function, sig, Expr(:block, src, :(return $T_with_typeparams($((f.name for f in fields)...))))) push!(ret.args, fexpr) end end # override StructUtils.kwdef(::Type{T}) = true and add outside struct definition push!(ret.args, :(StructUtils.kwdef(::Type{<:$T}) = true)) generate_field_defaults_and_tags!(ret, T, fields) else # if any default are specified, ensure all trailing fields have defaults # then generate an outer constructor with leading non-default fields as arguments # passing defaults to inner constructor anydefaults = false for (i, f) in enumerate(fields) anydefaults |= f.default !== none if anydefaults && f.default === none throw(ArgumentError("All trailing fields must have default values in @$kind structs")) end end if anydefaults sig = Expr(:call, T, (f.name for f in fields if f.default === none)...) fexpr = Expr(:function, sig, Expr(:block, src, :(return $T($((f.default === none ? f.name : f.default for f in fields)...))))) push!(ret.args, fexpr) end generate_field_defaults_and_tags!(ret, T, fields) end return esc(ret) end function generate_field_defaults_and_tags!(ret, T, fields) # generate fielddefaults override if applicable if any(f.default !== none for f in fields) defs_nt = Expr(:tuple, Expr(:parameters, [:(($(f.name)=$(f.default))) for f in fields if f.default !== none]...)) push!(ret.args, :(StructUtils.fielddefaults(::Type{<:$T}) = $defs_nt)) end # generate fieldtags override if applicable if any(f.tags !== none for f in fields) tags_nt = Expr(:tuple, Expr(:parameters, [:($(f.name)=$(f.tags)) for f in fields if f.tags !== none]...)) push!(ret.args, :(StructUtils.fieldtags(::Type{<:$T}) = $tags_nt)) end end const SHARED_MACRO_DOCS = """ The `@noarg`, `@kwdef`, `@defaults`, and `@tags` macros all support specifying "field tags" for each field in a struct. Field tags are a NamedTuple prefixed by `&` and are a way to attach metadata to a field. The field tags are accessible via the `StructUtils.fieldtags` function, and certain field tags are used by the `StructUtils.make` function to control how fields are constructed, including: * `dateformat`: a `DateFormat` object to use when parsing or formatting a `Dates.TimeType` field * `lower`: a function to apply to a field when `applyeach` is called on a struct * `lift`: a function to apply to a field when `StructUtils.make` is called on for a struct * `ignore`: a `Bool` to indicate if a field should be skipped/ignored when `applyeach` or `make` is called * `name`: a `Symbol` to be used instead of a defined field name in `applyeach` or used to match a field in `make` * `choosetype`: a function to apply to a field when `StructUtils.make` is called to determine the concrete type of an abstract or Union typed field For example, the following struct definition includes a field with a `dateformat` tag: ```julia @tags struct MyStruct date::Date &(dateformat=dateformat"yyyy-mm-dd",) end ``` """ """ @noarg mutable struct T ... end Macro to enhance a `mutable struct` definition by automatically generating an empty or "no-argument" constructor. Similar to the `@kwdef` macro, default values can be specified for fields, which will be set in the generated constructor. `StructUtils.noarg` trait is also overridden to return `true` for the struct type. This allows structs to easily participate in programmatic construction via `StructUtils.make`. Note that `const` fields are currently not allowed in `@noarg` structs. $SHARED_MACRO_DOCS Example ```julia @noarg mutable struct Foo a::Int b::String c::Float64 = 1.0 d::Vector{Int} = [1, 2, 3] end ``` In the above example, the `@noarg` macro generates the following inner constructor: ```julia function Foo() x = new() x.c = 1.0 x.d = [1, 2, 3] return x end ``` """ macro noarg(expr) parse_struct_def(:noarg, __source__, __module__, expr) end """ @kwdef struct T ... end Macro to enhance a `struct` definition by automatically generating a keyword argument constructor. Default values can be specified for fields, which will be set in the generated constructor. `StructUtils.kwdef` trait is also overridden to return `true` for the struct type. This allows structs to easily participate in programmatic construction via `StructUtils.make`. $SHARED_MACRO_DOCS Example ```julia @kwdef struct Foo a::Int b::String = "foo" c::Float64 = 1.0 d::Vector{Int} = [1, 2, 3] end ``` In the above example, the `@kwdef` macro generates the following inner constructor: ```julia function Foo(; a, b="foo", c=1.0, d=[1, 2, 3]) return Foo(a, b, c, d) end ``` """ macro kwdef(expr) parse_struct_def(:kwdef, __source__, __module__, expr) end """ @defaults struct T ... end Macro to enhance a `struct` definition by automatically generating an outer constructor with default values for trailing fields. The generated constructor will accept arguments for non-default fields and pass default values to the inner constructor. `StructUtils.fielddefaults` trait is also overridden to return a `NamedTuple` of default values for the struct type. $SHARED_MACRO_DOCS Example ```julia @defaults struct Foo a::Int b::String = "foo" c::Float64 = 1.0 d::Vector{Int} = [1, 2, 3] end ``` In the above example, the `@defaults` macro generates the following outer constructor: ```julia function Foo(a) return Foo(a, "foo", 1.0, [1, 2, 3]) end ``` """ macro defaults(expr) parse_struct_def(:defaults, __source__, __module__, expr) end """ @tags struct T ... end Macro to enhance a `struct` definition by allowing field tags to be specified for each field. $SHARED_MACRO_DOCS """ macro tags(expr) parse_struct_def(:tags, __source__, __module__, expr) end
StructUtils
https://github.com/quinnj/StructUtils.jl.git
[ "MIT" ]
1.1.0
d039f3ef7481270be1584a50edea804ae3c83953
code
7457
""" Selection syntax Special "selection syntax" is provided that allows easy querying of objects/arrays that implement `StructUtils.applyeach` using a syntax similar to XPath or CSS selectors, applied using common Julia syntax. This syntax mainly uses various forms of `getindex` to select elements of an object or array. Supported syntax includes: * `x["key"]` / `x.key` / `x[:key]` / `x[1]` - select the value associated for a key in object `x` (key can be a String, Symbol, or Integer for an array) * `x[:]` - select all values in object or array `x`, returned as a `Selectors.List`, which is a custom array type that supports the selection syntax * `x.key` - when `x` is a `List`, select the value for `key` in each element of the `List` (like a broadcasted `getindex`) * `x[~, key]` - recursively select all values in object or array `x` that have `key` * `x[~, :]` - recursively select all values in object or array `x`, returned as a flattened `List` * `x[:, (k, v) -> Bool]` - apply a key-value function `f` to each key-value/index-value in object or array `x`, and return a `List` of all values for which `f` returns `true` """ module Selectors using ..StructUtils export List, @selectors """ List(...) A custom array wrapper that supports the Selectors selection syntax. """ struct List{T} <: AbstractVector{T} items::Vector{T} end items(x::List) = getfield(x, :items) Base.getindex(x::List) = map(getindex, items(x)) List(T=Any) = List(T[]) Base.size(x::List) = size(items(x)) Base.eltype(::List{T}) where {T} = T Base.isassigned(x::List, args::Integer...) = isassigned(items(x), args...) Base.push!(x::List, item) = push!(items(x), item) Base.append!(x::List, items_to_append) = append!(items(x), items_to_append) StructUtils.arraylike(::List) = true function StructUtils.applyeach(f, x::List) # note that there should *never* be #undef # values in a list, since we only ever initialize empty # then push!/append! to it for (i, v) in enumerate(items(x)) ret = f(i, v) ret isa StructUtils.EarlyReturn && return ret end return end const KeyInd = Union{AbstractString, Symbol} const Inds = Union{AbstractVector{<:KeyInd}, NTuple{N, <:KeyInd} where {N}, AbstractVector{<:Integer}, NTuple{N, <:Integer} where {N}} function _getindex(x, key::Union{KeyInd, Integer}) if StructUtils.arraylike(x) && key isa KeyInd # indexing an array with a key, so we check # each element if it's an object and if the # object has the key # like a broadcasted getindex over x values = List() StructUtils.applyeach(x) do _, item if StructUtils.structlike(item) # if array elements are objects, we do a broadcasted getproperty with `key` # should we try-catch and ignore KeyErrors? push!(values, _getindex(item, key)) else # non-objects are just ignored end return end return values elseif StructUtils.structlike(x) || StructUtils.arraylike(x) # indexing object w/ key or array w/ index # returns a single value ret = StructUtils.applyeach(x) do k, v StructUtils.keyeq(k, key) && return StructUtils.EarlyReturn(v) return end ret isa StructUtils.EarlyReturn || throw(KeyError(key)) return ret.value else noselection(x) end end # return all values of an object or elements of an array as a List function _getindex(x, ::Colon) selectioncheck(x) values = List() StructUtils.applyeach(x) do _, v push!(values, v) return end return values end # a list is already a list of all its elements _getindex(x::List, ::Colon) = x # indexing object or array w/ a list of keys/indexes function _getindex(x, inds::Inds) selectioncheck(x) values = List() StructUtils.applyeach(x) do k, v i = findfirst(StructUtils.keyeq(k), inds) i !== nothing && push!(values, v) return end return values end # return all values of an object or elements of an array as a List # that satisfy a key-value function function _getindex(x, S::Union{typeof(~), Colon}, f::Base.Callable) selectioncheck(x) values = List() StructUtils.applyeach(x) do k, v f(k, v) && push!(values, v) if S == ~ if StructUtils.structlike(v) ret = _getindex(v, ~, f) append!(values, ret) elseif StructUtils.arraylike(v) ret = _getindex(v, ~, f) append!(values, ret) end end return end return values end # recursively return all values of an object or elements of an array as a List (:) # as a single flattened List; or all properties that match key function _getindex(x, ::typeof(~), key::Union{KeyInd, Colon}) values = List() if StructUtils.structlike(x) StructUtils.applyeach(x) do k, v if key === Colon() push!(values, v) elseif StructUtils.keyeq(k, key) if StructUtils.arraylike(v) StructUtils.applyeach(v) do _, vv push!(values, vv) return end else push!(values, v) end end if StructUtils.structlike(v) ret = _getindex(v, ~, key) append!(values, ret) elseif StructUtils.arraylike(v) ret = _getindex(v, ~, key) append!(values, ret) end return end elseif StructUtils.arraylike(x) StructUtils.applyeach(x) do _, item if StructUtils.structlike(item) ret = _getindex(item, ~, key) append!(values, ret) elseif StructUtils.arraylike(item) ret = _getindex(item, ~, key) append!(values, ret) end return end else noselection(x) end return values end selectioncheck(x) = StructUtils.structlike(x) || StructUtils.arraylike(x) || noselection(x) @noinline noselection(x) = throw(ArgumentError("Selection syntax not defined for this object of type: `$(typeof(x))`")) tosymbol(x::Symbol) = x tosymbol(x) = Symbol(x) # build up propertynames by iterating over each key-value pair function _propertynames(x) selectioncheck(x) nms = Symbol[] StructUtils.applyeach(x) do k, _ push!(nms, tosymbol(k)) return end return nms end # convenience macro for defining high-level getindex/getproperty methods macro selectors(T) esc(quote Base.getindex(x::$T, arg) = StructUtils.Selectors._getindex(x, arg) Base.getindex(x::$T, ::Colon, arg) = StructUtils.Selectors._getindex(x, :, arg) Base.getindex(x::$T, ::typeof(~), arg) = StructUtils.Selectors._getindex(x, ~, arg) Base.getindex(x::$T, ::typeof(~), key, val) = StructUtils.Selectors._getindex(x, ~, key, val) Base.getproperty(x::$T, key::Symbol) = StructUtils.Selectors._getindex(x, key) Base.propertynames(x::$T) = StructUtils.Selectors._propertynames(x) Base.hasproperty(x::$T, key::Symbol) = key in propertynames(x) Base.length(x::$T) = StructUtils.applylength(x) end) end @selectors List end # module
StructUtils
https://github.com/quinnj/StructUtils.jl.git
[ "MIT" ]
1.1.0
d039f3ef7481270be1584a50edea804ae3c83953
code
10621
@noarg mutable struct NoArg end @noarg mutable struct NoArg2 no_type with_type::Int with_default = 1 with_type_default::Int = 1 with_tag &(xml=(key="with-tag",),) with_tag_type::Int &(xml=(key="with-tag-type",),) with_tag_default = 1 &(xml=(key="with-tag-default",),) with_tag_type_default::Int = 1 &(xml=(key="with-tag-default",),) @atomic no_type_atomic @atomic with_type_atomic::Int # atomic fields w/ defaults *must* use parens to disambiguate from atomic # variable assignment syntax: https://github.com/JuliaLang/julia/issues/53893 @atomic(with_default_atomic) = 1 @atomic(with_type_default_atomic::Int) = 1 @atomic(with_tag_atomic) &(xml=(key="with-tag-atomic",),) @atomic(with_tag_type_atomic::Int) &(xml=(key="with-tag-type-atomic",),) @atomic(with_tag_default_atomic) = 1 &(xml=(key="with-tag-default-atomic",),) @atomic(with_tag_type_default_atomic::Int) = 1 &(xml=(key="with-tag-default-atomic",),) end abstract type AbstractNoArg end @noarg mutable struct NoArg3{T, S <: IO} <: AbstractNoArg a::T = 10 * 20 io::S end """ Documentation for NoArg4 """ @noarg mutable struct NoArg4 a::String end StructUtils.@kwdef mutable struct KwDef1 no_type with_type::Int with_default = 1 with_type_default::Int = 1 with_tag &(xml=(key="with-tag",),) with_tag_type::Int &(xml=(key="with-tag-type",),) with_tag_default = 1 &(xml=(key="with-tag-default",),) with_tag_type_default::Int = 1 &(xml=(key="with-tag-default",),) @atomic no_type_atomic @atomic with_type_atomic::Int @atomic(with_default_atomic) = 1 @atomic(with_type_default_atomic::Int) = 1 @atomic(with_tag_atomic) &(xml=(key="with-tag-atomic",),) @atomic(with_tag_type_atomic::Int) &(xml=(key="with-tag-type-atomic",),) @atomic(with_tag_default_atomic) = 1 &(xml=(key="with-tag-default-atomic",),) @atomic(with_tag_type_default_atomic::Int) = 1 &(xml=(key="with-tag-default-atomic",),) const no_type_const const with_type_const::Int const with_default_const = 1 const with_type_default_const::Int = 1 const with_tag_const &(xml=(key="with-tag-const",),) const with_tag_type_const::Int &(xml=(key="with-tag-type-const",),) const with_tag_default_const = 1 &(xml=(key="with-tag-default-const",),) const with_tag_type_default_const::Int = 1 &(xml=(key="with-tag-default-const",),) end StructUtils.@kwdef struct NoFields end StructUtils.@kwdef struct KwDef2{T, S <: IO} <: AbstractNoArg a::T = 10 * 20 io::S end # tests from Base.@kwdef misc.jl StructUtils.@kwdef struct Test27970Typed a::Int b::String = "hi" end StructUtils.@kwdef struct Test27970Untyped a end StructUtils.@kwdef struct Test27970Empty end abstract type AbstractTest29307 end StructUtils.@kwdef struct Test29307{T<:Integer} <: AbstractTest29307 a::T=2 end StructUtils.@kwdef struct TestInnerConstructor a = 1 TestInnerConstructor(a::Int) = (@assert a>0; new(a)) function TestInnerConstructor(a::String) @assert length(a) > 0 new(a) end end const outsidevar = 7 StructUtils.@kwdef struct TestOutsideVar a::Int=outsidevar end @test TestOutsideVar() == TestOutsideVar(7) StructUtils.@kwdef mutable struct Test_kwdef_const_atomic a b::Int c::Int = 1 const d const e::Int const f = 1 const g::Int = 1 @atomic h::Int end StructUtils.@kwdef struct Test_kwdef_lineinfo a::String end # @testset "StructUtils.@kwdef constructor line info" begin # for method in methods(Test_kwdef_lineinfo) # @test method.file === Symbol(@__FILE__) # @test ((@__LINE__)-6) ≤ method.line ≤ ((@__LINE__)-5) # end # end StructUtils.@kwdef struct Test_kwdef_lineinfo_sparam{S<:AbstractString} a::S end # @testset "@kwdef constructor line info with static parameter" begin # for method in methods(Test_kwdef_lineinfo_sparam) # @test method.file === Symbol(@__FILE__) # @test ((@__LINE__)-6) ≤ method.line ≤ ((@__LINE__)-5) # end # end module KwdefWithEsc using StructUtils const Int1 = Int const val1 = 42 macro define_struct() quote StructUtils.@kwdef struct $(esc(:Struct)) a b = val1 c::Int1 d::Int1 = val1 $(esc(quote e f = val2 g::Int2 h::Int2 = val2 end)) $(esc(:(i = val2))) $(esc(:(j::Int2))) $(esc(:(k::Int2 = val2))) l::$(esc(:Int2)) m::$(esc(:Int2)) = val1 n = $(esc(:val2)) o::Int1 = $(esc(:val2)) $(esc(:p)) $(esc(:q)) = val1 $(esc(:s))::Int1 $(esc(:t))::Int1 = val1 end end end end module KwdefWithEsc_TestModule using ..KwdefWithEsc const Int2 = Int const val2 = 42 KwdefWithEsc.@define_struct() end @defaults struct Defaults1 a::Int b::String c::Float64 = 3.14 d::Int = 42 end @defaults struct Defaults2{S <: IO, T} <: AbstractNoArg io::S a::T = 10 * 20 end @testset "macros" begin @test NoArg() isa NoArg x = NoArg2() x.no_type = :hey @test x isa NoArg2 @test StructUtils.noarg(NoArg2) fd = StructUtils.fielddefaults(NoArg2) @test fd.with_default == 1 && fd.with_type_default == 1 && fd.with_tag_default == 1 && fd.with_tag_type_default == 1 && fd.with_default_atomic == 1 && fd.with_type_default_atomic == 1 && fd.with_tag_default_atomic == 1 && fd.with_tag_type_default_atomic == 1 ft = StructUtils.fieldtags(NoArg2) @test ft.with_tag == (xml=(key="with-tag",),) && ft.with_tag_type == (xml=(key="with-tag-type",),) && ft.with_tag_default == (xml=(key="with-tag-default",),) && ft.with_tag_type_default == (xml=(key="with-tag-default",),) && ft.with_tag_atomic == (xml=(key="with-tag-atomic",),) && ft.with_tag_type_atomic == (xml=(key="with-tag-type-atomic",),) && ft.with_tag_default_atomic == (xml=(key="with-tag-default-atomic",),) && ft.with_tag_type_default_atomic == (xml=(key="with-tag-default-atomic",),) @static if VERSION >= v"1.11-DEV" @test @doc(NoArg4).text[1] == "Documentation for NoArg4\n" else @test string(@doc(NoArg4)) == "Documentation for NoArg4\n" end @test_throws ArgumentError @macroexpand StructUtils.@noarg struct NonMutableNoArg with_type::Int = 1 end # can't use @noarg w/ struct w/ const fields @test_throws ArgumentError @macroexpand StructUtils.@noarg mutable struct NoArgConst const a::Int = 1 end x = KwDef1(no_type=1, with_type=1, with_tag=1, with_tag_type=1, no_type_atomic=1, with_type_atomic=1, with_tag_atomic=1, with_tag_type_atomic=1, no_type_const=1, with_type_const=1, with_tag_const=1, with_tag_type_const=1) @test x.no_type == 1 @test StructUtils.kwdef(KwDef1) fd = StructUtils.fielddefaults(KwDef1) @test fd.with_default == 1 && fd.with_type_default == 1 && fd.with_tag_default == 1 && fd.with_tag_type_default == 1 && fd.with_default_atomic == 1 && fd.with_type_default_atomic == 1 && fd.with_tag_default_atomic == 1 && fd.with_tag_type_default_atomic == 1 && fd.with_default_const == 1 && fd.with_type_default_const == 1 && fd.with_tag_default_const == 1 && fd.with_tag_type_default_const == 1 ft = StructUtils.fieldtags(KwDef1) @test ft.with_tag == (xml=(key="with-tag",),) && ft.with_tag_type == (xml=(key="with-tag-type",),) && ft.with_tag_default == (xml=(key="with-tag-default",),) && ft.with_tag_type_default == (xml=(key="with-tag-default",),) && ft.with_tag_atomic == (xml=(key="with-tag-atomic",),) && ft.with_tag_type_atomic == (xml=(key="with-tag-type-atomic",),) && ft.with_tag_default_atomic == (xml=(key="with-tag-default-atomic",),) && ft.with_tag_type_default_atomic == (xml=(key="with-tag-default-atomic",),) && ft.with_tag_const == (xml=(key="with-tag-const",),) && ft.with_tag_type_const == (xml=(key="with-tag-type-const",),) && ft.with_tag_default_const == (xml=(key="with-tag-default-const",),) && ft.with_tag_type_default_const == (xml=(key="with-tag-default-const",),) @test NoFields() isa NoFields @testset "No default values in @kwdef" begin @test Test27970Typed(a=1) == Test27970Typed(1, "hi") # Implicit type conversion (no assertion on kwarg) @test Test27970Typed(a=0x03) == Test27970Typed(3, "hi") @test_throws UndefKeywordError Test27970Typed() @test Test27970Untyped(a=1) == Test27970Untyped(1) @test_throws UndefKeywordError Test27970Untyped() # Just checking that this doesn't stack overflow on construction @test Test27970Empty() == Test27970Empty() end @testset "subtyped @kwdef" begin @test Test29307() == Test29307{Int}(2) @test Test29307(a=0x03) == Test29307{UInt8}(0x03) @test Test29307{UInt32}() == Test29307{UInt32}(2) @test Test29307{UInt32}(a=0x03) == Test29307{UInt32}(0x03) end @testset "@kwdef inner constructor" begin @test TestInnerConstructor() == TestInnerConstructor(1) @test TestInnerConstructor(a=2) == TestInnerConstructor(2) @test_throws AssertionError TestInnerConstructor(a=0) @test TestInnerConstructor(a="2") == TestInnerConstructor("2") @test_throws AssertionError TestInnerConstructor(a="") end @testset "const and @atomic fields in @kwdef" begin x = Test_kwdef_const_atomic(a = 1, b = 1, d = 1, e = 1, h = 1) for f in fieldnames(Test_kwdef_const_atomic) @test getfield(x, f) == 1 end @testset "const fields" begin @test_throws ErrorException x.d = 2 @test_throws ErrorException x.e = 2 @test_throws MethodError x.e = "2" @test_throws ErrorException x.f = 2 @test_throws ErrorException x.g = 2 end @testset "atomic fields" begin @test_throws ConcurrencyViolationError x.h = 1 @atomic x.h = 1 @test @atomic(x.h) == 1 @atomic x.h = 2 @test @atomic(x.h) == 2 end end @test isdefined(KwdefWithEsc_TestModule, :Struct) @test Defaults1(1, "hey") == Defaults1(1, "hey", 3.14, 42) io = IOBuffer() @test Defaults2(io) == Defaults2(io, 200) @test_throws ArgumentError @macroexpand @defaults struct FooFoo a::Int = 1 b::String end end # @testset "macros"
StructUtils
https://github.com/quinnj/StructUtils.jl.git
[ "MIT" ]
1.1.0
d039f3ef7481270be1584a50edea804ae3c83953
code
7167
using Test, Dates, UUIDs, StructUtils struct TestStyle <: StructUtils.StructStyle end include(joinpath(dirname(pathof(StructUtils)), "../test/macros.jl")) include(joinpath(dirname(pathof(StructUtils)), "../test/struct.jl")) @testset "StructUtils" begin # Dict{Symbol, Int}, NamedTuple, A struct, Vector Pair d = Dict(:a => 1, :b => 2, :c => 3, :d => 4) ds = Dict("a" => 1, "b" => 2, "c" => 3, "d" => 4) nt = (a = 1, b = 2, c = 3, d = 4) a = A(1, 2, 3, 4) aa = AA(1, 2, 3, 4, 5) b = B(); b.a = 1; b.b = 2; b.c = 3; b.d = 4; b bb = BB() vp = [:a => 1, :b => 2, :c => 3, :d => 4] v = [1, 2, 3, 4] t = (1, 2, 3, 4) println("Dict{Symbol, Int}") @test StructUtils.make(Dict{Symbol, Int}, d) == d @test StructUtils.make(Dict{Symbol, Int}, ds) == d @test StructUtils.make(Dict{Symbol, Int}, nt) == d @test StructUtils.make(Dict{Symbol, Int}, a) == d @test StructUtils.make(Dict{Symbol, Int}, vp) == d # @test StructUtils.make(Dict{Symbol, Int}, aa) == d # fails because of extra field @test StructUtils.make(Dict{Symbol, Int}, v) == Dict(Symbol(1) => 1, Symbol(2) => 2, Symbol(3) => 3, Symbol(4) => 4) @test StructUtils.make(Dict{Symbol, Int}, t) == Dict(Symbol(1) => 1, Symbol(2) => 2, Symbol(3) => 3, Symbol(4) => 4) @test StructUtils.make(Dict{Symbol, Int}, b) == d @test StructUtils.make(Dict{Symbol, Int}, bb) == d println("NamedTuple") @test StructUtils.make(typeof(nt), d) == nt @test StructUtils.make(typeof(nt), ds) == nt @test StructUtils.make(typeof(nt), nt) == nt @test StructUtils.make(typeof(nt), a) == nt @test StructUtils.make(typeof(nt), vp) == nt @test StructUtils.make(typeof(nt), v) == nt @test StructUtils.make(typeof(nt), t) == nt @test StructUtils.make(typeof(nt), aa) == nt # extra field is ignored @test StructUtils.make(typeof(nt), b) == nt @test StructUtils.make(typeof(nt), bb) == nt println("A struct") @test StructUtils.make(A, d) == a @test StructUtils.make(A, ds) == a # slower @test StructUtils.make(A, nt) == a @test StructUtils.make(A, a) == a @test StructUtils.make(A, vp) == a @test StructUtils.make(A, v) == a # relies on order of vector elements @test StructUtils.make(A, t) == a # relies on order of tuple elements @test StructUtils.make(A, aa) == a # extra field is ignored @test StructUtils.make(A, b) == a @test StructUtils.make(A, bb) == a println("AA struct") @test StructUtils.make(AA, d) == aa # works because of AA field e default @test StructUtils.make(AA, ds) == aa @test StructUtils.make(AA, nt) == aa @test StructUtils.make(AA, a) == aa @test StructUtils.make(AA, vp) == aa @test StructUtils.make(AA, v) == aa # relies on order of vector elements @test StructUtils.make(AA, t) == aa # relies on order of tuple elements @test StructUtils.make(AA, aa) == aa # extra field is ignored @test StructUtils.make(AA, b) == aa @test StructUtils.make(AA, bb) == aa println("B struct") @test StructUtils.make(B, d) == b @test StructUtils.make(B, ds) == b @test StructUtils.make(B, nt) == b @test StructUtils.make(B, a) == b @test StructUtils.make(B, vp) == b @test StructUtils.make(B, v) == b # relies on order of vector elements @test StructUtils.make(B, t) == b # relies on order of tuple elements @test StructUtils.make(B, aa) == b # extra field is ignored @test StructUtils.make(B, b) == b @test StructUtils.make(B, bb) == b println("BB struct") @test StructUtils.make(BB, d) == bb @test StructUtils.make(BB, ds) == bb @test StructUtils.make(BB, nt) == bb @test StructUtils.make(BB, a) == bb @test StructUtils.make(BB, vp) == bb @test StructUtils.make(BB, v) == bb # relies on order of vector elements @test StructUtils.make(BB, t) == bb # relies on order of tuple elements @test StructUtils.make(BB, aa) == bb # extra field is ignored @test StructUtils.make(BB, b) == bb @test StructUtils.make(BB, bb) == bb println("Vector Pair") # @test StructUtils.make(typeof(vp), d) == vp # unordered Dict doesn't work # @test StructUtils.make(typeof(vp), ds) == vp # unordered Dict doesn't work @test StructUtils.make(typeof(vp), nt) == vp @test StructUtils.make(typeof(vp), a) == vp @test StructUtils.make(typeof(vp), vp) == vp println("Vector") # @test StructUtils.make(typeof(v), d) == v # relies on order of Dict elements # @test StructUtils.make(typeof(v), ds) == v # relies on order of Dict elements @test StructUtils.make(typeof(v), nt) == v @test StructUtils.make(typeof(v), a) == v @test StructUtils.make(typeof(v), vp) == v @test StructUtils.make(typeof(v), v) == v @test StructUtils.make(typeof(v), t) == v # @test StructUtils.make(typeof(v), aa) == v # fails because of extra field println("Tuple") # @test StructUtils.make(typeof(t), d) == t # relies on order of Dict elements # @test StructUtils.make(typeof(t), ds) == t # relies on order of Dict elements @test StructUtils.make(typeof(t), nt) == t @test StructUtils.make(typeof(t), a) == t @test StructUtils.make(typeof(t), vp) == t @test StructUtils.make(typeof(t), v) == t @test StructUtils.make(typeof(t), t) == t @test StructUtils.make(typeof(t), aa) == t println("C") @test StructUtils.make(C, ()) == C() @test StructUtils.make(C, (1,)) == C() println("D") @test StructUtils.make(D, (1, 3.14, "hey")) == D(1, 3.14, "hey") println("Wrapper") @test StructUtils.make(Wrapper, Dict("x" => Dict("a" => 1, "b" => "hey"))) == Wrapper((a=1, b="hey")) println("UndefGuy") x = StructUtils.make(UndefGuy, (id=1, name="2")) @test x.id == 1 && x.name == "2" x = StructUtils.make(UndefGuy, (id=1,)) @test x.id == 1 && !isdefined(x, :name) println("E") @test StructUtils.make(E, Dict("id" => 1, "a" => (a=1, b=2, c=3, d=4))) == E(1, A(1, 2, 3, 4)) println("G") @test StructUtils.make(G, Dict("id" => 1, "rate" => 3.14, "name" => "Jim", "f" => Dict("id" => 2, "rate" => 6.28, "name" => "Bob"))) == G(1, 3.14, "Jim", F(2, 6.28, "Bob")) println("H") x = StructUtils.make(H, (id=0, name="", properties=Dict("a" => 1), addresses=["a", "b", "c"])) @test x.id == 0 && x.name == "" && x.properties == Dict("a" => 1) && x.addresses == ["a", "b", "c"] println("I") @test StructUtils.make(I, (id=2, name="Aubrey", fruit=apple)) == I(2, "Aubrey", apple) println("Vehicle") StructUtils.choosetype(::Type{Vehicle}, source) = source["type"] == "car" ? Car : Truck x = StructUtils.make(Vehicle, Dict("type" => "car", "make" => "Toyota", "model" => "Corolla", "seatingCapacity" => 4, "topSpeed" => 120.5)) @test x == Car("Toyota", "Corolla", 4, 120.5) println("J") @test StructUtils.make(J, (id=1, name=nothing, rate=3.14)) == J(1, nothing, 3.14) @test StructUtils.make(J, (id=nothing, name=nothing, rate=3)) == J(nothing, nothing, 3) println("Recurs") @test StructUtils.make(Recurs, (id=0, value=(id=1, value=(id=2, value=(id=3, value=(id=4, value=nothing)))))) == Recurs(0, Recurs(1, Recurs(2, Recurs(3, Recurs(4, nothing))))) println("O") @test StructUtils.make(O, (id=0, name=missing)) == O(0, missing) @test StructUtils.make(O, (id=0, name=nothing)) == O(0, nothing) @test StructUtils.make(O, (id=0, name=(id=2, first_name="Jim", rate=3.14))) == O(0, L(2, "Jim", 3.14)) @test StructUtils.make(O, (id=0, name=(id=2, name="Jane", fruit=banana))) == O(0, I(2, "Jane", banana)) println("P") p = StructUtils.make(P, (id=0, name="Jane")) @test p.id == 0 && p.name == "Jane" end
StructUtils
https://github.com/quinnj/StructUtils.jl.git
[ "MIT" ]
1.1.0
d039f3ef7481270be1584a50edea804ae3c83953
code
3020
struct A a::Int b::Int c::Int d::Int end struct AA a::Int b::Int c::Int d::Int e::Int end StructUtils.fielddefaults(::Type{AA}) = (e=5,) mutable struct B a::Int b::Int c::Int d::Int B() = new() end StructUtils.noarg(::Type{B}) = true Base.:(==)(b1::B, b2::B) = b1.a == b2.a && b1.b == b2.b && b1.c == b2.c && b1.d == b2.d Base.@kwdef struct BB a::Int = 1 b::Int = 2 c::Int = 3 d::Int = 4 end StructUtils.kwdef(::Type{BB}) = true struct C end struct D a::Int b::Float64 c::String end struct LotsOfFields x1::String x2::String x3::String x4::String x5::String x6::String x7::String x8::String x9::String x10::String x11::String x12::String x13::String x14::String x15::String x16::String x17::String x18::String x19::String x20::String x21::String x22::String x23::String x24::String x25::String x26::String x27::String x28::String x29::String x30::String x31::String x32::String x33::String x34::String x35::String end struct Wrapper x::NamedTuple{(:a, :b), Tuple{Int, String}} end mutable struct UndefGuy id::Int name::String UndefGuy() = new() end StructUtils.noarg(::Type{UndefGuy}) = true struct E id::Int a::A end Base.@kwdef struct F id::Int rate::Float64 name::String end StructUtils.kwdef(::Type{F}) = true Base.@kwdef struct G id::Int rate::Float64 name::String f::F end StructUtils.kwdef(::Type{G}) = true struct H id::Int name::String properties::Dict{String, Any} addresses::Vector{String} end @enum Fruit apple banana struct I id::Int name::String fruit::Fruit end abstract type Vehicle end struct Car <: Vehicle make::String model::String seatingCapacity::Int topSpeed::Float64 end struct Truck <: Vehicle make::String model::String payloadCapacity::Float64 end struct J id::Union{Int, Nothing} name::Union{String, Nothing} rate::Union{Int64, Float64} end struct K id::Int value::Union{Float64, Missing} end Base.@kwdef struct System duration::Real = 0 # mandatory cwd::Union{Nothing, String} = nothing environment::Union{Nothing, Dict} = nothing batch::Union{Nothing, Dict} = nothing shell::Union{Nothing, Dict} = nothing end StructUtils.kwdef(::Type{System}) = true struct L id::Int first_name::String rate::Float64 end struct ThreeDates date::Date datetime::DateTime time::Time end struct M id::Int value::Union{Nothing,K} end struct Recurs id::Int value::Union{Nothing,Recurs} end struct N id::Int uuid::UUID end @tags struct O id::Int name::Union{I,L,Missing,Nothing} &(choosetype=x->isnothing(x) ? Nothing : ismissing(x) ? Missing : haskey(x, :fruit) ? I : L,) end @noarg mutable struct P id::Int @atomic(name::String) = "Jim" end
StructUtils
https://github.com/quinnj/StructUtils.jl.git
[ "MIT" ]
1.1.0
d039f3ef7481270be1584a50edea804ae3c83953
docs
3491
# StructUtils [![CI](https://github.com/quinnj/StructUtils.jl/workflows/CI/badge.svg)](https://github.com/quinnj/StructUtils.jl/actions?query=workflow%3ACI) [![codecov](https://codecov.io/gh/quinnj/StructUtils.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/quinnj/StructUtils.jl) [![deps](https://juliahub.com/docs/StructUtils/deps.svg)](https://juliahub.com/ui/Packages/StructUtils/HHBkp?t=2) [![version](https://juliahub.com/docs/StructUtils/version.svg)](https://juliahub.com/ui/Packages/StructUtils/HHBkp) [![pkgeval](https://juliahub.com/docs/StructUtils/pkgeval.svg)](https://juliahub.com/ui/Packages/StructUtils/HHBkp) ## Installation The package is registered in the [`General`](https://github.com/JuliaRegistries/General) registry and so can be installed at the REPL with `] add StructUtils`. ## Documentation The primary interface provided by StructUtils.jl is in the form of the exported `@noarg`, `@defaults`, and `@tags` macros, along with the unexported (to avoid clashing with the Base definition) of `StructUtils.@kwdef`. These macros can be used on struct definitions to provide a more ergonomic and flexible way to define structs with default values, keyword constructors, and more. The `@noarg` macro can be used to define a "no argument" constructor, and must be used with mutable structs. This allows for programmatic construction and discovery of the supported behavior. Default values and field tags can also be defined in `@noarg` structs. The `@defaults` macro can be used to define default values for fields in any kind of struct, and constructors will be defined that allow for the omission of fields with default values. Note that all fields with default values must be defined after any fields without default values. The `@tags` macro can be used to define tags for fields in any kind of struct. The `@kwdef` macro mirros the functionality of the Base defintion, while also allowing for the inclusion of field tags. The other major interface StructUtils.jl provides is the `StructUtils.make(T, source)` function. It allows programmatic construction of a type `T` from a variety of source objects. For example, I could have a custom struct `Foo` and be able to construct an instance from an array of values, a dictionary, a database cursor, a JSON object, etc. This is done by allowing source objects to implement interfaces for how fields should be provided programmatically (the primary means being the `StructUtils.applyeach` function), while `StructUtils.make` uses the programmatic knowledge from the above-mentioned macros, along with potential field tags, to construct the object. Additional documentation is forth-coming around how package developers can use the "under the hood" machinery of StructUtils.jl to provide a more flexible and ergonomic interface to their users, like custom serialization/deserialization, database interaction, etc. ## Contributing and Questions Contributions are very welcome, as are feature requests and suggestions. Please open an [issue][issues-url] if you encounter any problems or would just like to ask a question. [ci-img]: https://github.com/quinnj/StructUtils.jl/workflows/CI/badge.svg [ci-url]: https://github.com/quinnj/StructUtils.jl/actions?query=workflow%3ACI+branch%3Amaster [codecov-img]: https://codecov.io/gh/quinnj/StructUtils.jl/branch/master/graph/badge.svg [codecov-url]: https://codecov.io/gh/quinnj/StructUtils.jl [issues-url]: https://github.com/quinnj/StructUtils.jl/issues
StructUtils
https://github.com/quinnj/StructUtils.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
227
using Documenter, AxisArrays makedocs( modules = [AxisArrays], sitename = "AxisArrays", ) deploydocs( deps = Deps.pip("mkdocs", "python-markdown-math"), repo = "github.com/JuliaArrays/AxisArrays.jl.git" )
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
539
VERSION < v"0.7.0-beta2.199" && __precompile__() module AxisArrays using Base: tail import Base.Iterators: repeated using RangeArrays, IntervalSets using IterTools using Dates function axes end export AxisArray, Axis, AxisMatrix, AxisVector export axisnames, axisvalues, axisdim, axes, atindex, atvalue, collapse # From IntervalSets: export ClosedInterval, .. include("core.jl") include("intervals.jl") include("search.jl") include("indexing.jl") include("sortedvector.jl") include("categoricalvector.jl") include("combine.jl") end
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
2489
""" A CategoricalVector is an AbstractVector which is treated as a categorical axis regardless of the element type. Duplicate values are not allowed but are not filtered out. A CategoricalVector axis can be indexed with an ClosedInterval, with a value, or with a vector of values. Use of a CategoricalVector{Tuple} axis allows indexing similar to the hierarchical index of the Python Pandas package or the R data.table package. In general, indexing into a CategoricalVector will be much slower than the corresponding SortedVector or another sorted axis type, as linear search is required. ### Constructors ```julia CategoricalVector(x::AbstractVector) ``` ### Arguments * `x::AbstractVector` : the wrapped vector ### Examples ```julia v = CategoricalVector(collect([1; 8; 10:15])) A = AxisArray(reshape(1:16, 8, 2), v, [:a, :b]) A[Axis{:row}(1), :] A[Axis{:row}(10), :] A[Axis{:row}([1, 10]), :] ## Hierarchical index example with three key levels data = reshape(1.:40., 20, 2) v = collect(zip([:a, :b, :c][rand(1:3,20)], [:x,:y][rand(1:2,20)], [:x,:y][rand(1:2,20)])) A = AxisArray(data, CategoricalVector(v), [:a, :b]) A[:b, :] A[[:a,:c], :] A[(:a,:x), :] A[(:a,:x,:x), :] ``` """ struct CategoricalVector{T, A<:AbstractVector{T}} <: AbstractVector{T} data::A end Base.getindex(v::CategoricalVector, idx::Int) = v.data[idx] Base.getindex(v::CategoricalVector, idx::AbstractVector) = CategoricalVector(v.data[idx]) Base.length(v::CategoricalVector) = length(v.data) Base.size(v::CategoricalVector) = size(v.data) Base.size(v::CategoricalVector, i) = size(v.data, i) Base.axes(v::CategoricalVector) = Base.axes(v.data) axistrait(::Type{CategoricalVector{T,A}}) where {T,A} = Categorical checkaxis(::CategoricalVector) = nothing ## Add some special indexing for CategoricalVector{Tuple}'s to achieve something like ## Panda's hierarchical indexing axisindexes(ax::Axis{S,CategoricalVector{T,A}}, idx) where {T<:Tuple,S,A} = axisindexes(ax, (idx,)) function axisindexes(ax::Axis{S,CategoricalVector{T,A}}, idx::Tuple) where {T<:Tuple,S,A} collect(filter(ax_idx->_tuple_matches(ax.val[ax_idx], idx), Base.axes(ax.val)...)) end function _tuple_matches(element::Tuple, idx::Tuple) length(idx) <= length(element) || return false for (x, y) in zip(element, idx) x == y || return false end return true end axisindexes(ax::Axis{S,CategoricalVector{T,A}}, idx::AbstractArray) where {T<:Tuple,S,A} = vcat([axisindexes(ax, i) for i in idx]...)
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
11854
function equalvalued(X::NTuple) n = length(X) allequal = true i = 2 while allequal && i <= n allequal = X[i] == X[i-1] i += 1 end #while return allequal end #equalvalued sizes(As::AxisArray...) = tuple(zip(map(a -> map(length, Base.axes(a)), As)...)...) matchingdims(As::Tuple{Vararg{AxisArray}}) = all(equalvalued, sizes(As...)) matchingdimsexcept(As::Tuple{Vararg{AxisArray}}, n::Int) = all(equalvalued, sizes(As...)[[1:n-1; n+1:end]]) Base.cat(A1::AxisArray{T}, As::AxisArray{T}...; dims) where {T} = _cat(dims, A1, As...) _cat(::Val{n}, As...) where {n} = _cat(n, As...) @inline function _cat(n::Integer, As...) if n <= ndims(As[1]) matchingdimsexcept(As, n) || error("All non-concatenated axes must be identically-valued") newaxis = Axis{axisnames(As[1])[n]}(vcat(map(A -> A.axes[n].val, As)...)) checkaxis(newaxis) return AxisArray(cat(map(A->A.data, As)..., dims=n), (As[1].axes[1:n-1]..., newaxis, As[1].axes[n+1:end]...)) else matchingdims(As) || error("All axes must be identically-valued") return AxisArray(cat(map(A->A.data, As)..., dims=n), As[1].axes) end #if end function axismerge(method::Symbol, axes::Axis{name,T}...) where {name,T} axisvals = if method == :inner intersect(axisvalues(axes...)...) elseif method == :left axisvalues(axes[1])[1] elseif method == :right axisvalues(axes[end])[1] elseif method == :outer union(axisvalues(axes...)...) else error("Join method must be one of :inner, :left, :right, :outer") end #if isa(axistrait(axisvals), Dimensional) && sort!(axisvals) return Axis{name}(collect(axisvals)) end function indexmappings(oldaxes::NTuple{N,Axis}, newaxes::NTuple{N,Axis}) where N oldvals = axisvalues(oldaxes...) newvals = axisvalues(newaxes...) return collect(zip(indexmapping.(oldvals, newvals)...)) end function indexmapping(old::AbstractVector, new::AbstractVector) before = Int[] after = Int[] oldperm = sortperm(old) newperm = sortperm(new) oldsorted = old[oldperm] newsorted = new[newperm] oldlength = length(old) newlength = length(new) oi = ni = 1 while oi <= oldlength && ni <= newlength oldval = oldsorted[oi] newval = newsorted[ni] if oldval == newval push!(before, oldperm[oi]) push!(after, newperm[ni]) oi += 1 ni += 1 elseif oldval < newval oi += 1 else ni += 1 end end return before, after end """ merge(As::AxisArray...) Combines AxisArrays with matching axis names into a single AxisArray spanning all of the axis values of the inputs. If a coordinate is defined in more than ones of the inputs, it takes its value from last input in which it appears. If a coordinate in the output array is not defined in any of the input arrays, it takes the value of the optional `fillvalue` keyword argument (default zero). """ function Base.merge(As::AxisArray{T,N,D,Ax}...; fillvalue::T=zero(T)) where {T,N,D,Ax} resultaxes = map(as -> axismerge(:outer, as...), map(tuple, axes.(As)...)) resultdata = fill(fillvalue, length.(resultaxes)...) result = AxisArray(resultdata, resultaxes...) for A in As before_idxs, after_idxs = indexmappings(A.axes, result.axes) result.data[after_idxs...] = A.data[before_idxs...] end return result end #merge """ join(As::AxisArray...) Combines AxisArrays with matching axis names into a single AxisArray. Unlike `merge`, the inputs are joined along a newly created axis (optionally specified with the `newaxis` keyword argument). The `method` keyword argument can be used to specify the join type: `:inner` - keep only those array values at axis values common to all AxisArrays to be joined `:left` - keep only those array values at axis values present in the first AxisArray passed `:right` - keep only those array values at axis values present in the last AxisArray passed `:outer` (default) - keep all array values: create an AxisArray spanning all of the input axis values If an array value in the output array is not defined in any of the input arrays (i.e. in the case of a left, right, or outer join), it takes the value of the optional `fillvalue` keyword argument (default zero). """ function Base.join(As::AxisArray{T,N,D,Ax}...; fillvalue::T=zero(T), newaxis::Axis=_default_axis(1:length(As), ndims(As[1])+1), method::Symbol=:outer) where {T,N,D,Ax} prejoin_resultaxes = map(as -> axismerge(method, as...), map(tuple, axes.(As)...)) resultaxes = (prejoin_resultaxes..., newaxis) resultdata = fill(fillvalue, length.(resultaxes)...) result = AxisArray(resultdata, resultaxes...) for (i, A) in enumerate(As) before_idxs, after_idxs = indexmappings(A.axes, prejoin_resultaxes) result.data[(after_idxs..., i)...] = A.data[before_idxs...] end #for return result end #join function _collapse_array_axes(array_name, array_axes...) ((array_name, (idx isa Tuple ? idx : (idx,))...) for idx in Iterators.product((Ax.val for Ax in array_axes)...)) end function _collapse_axes(array_names, array_axes) collect(Iterators.flatten(map(array_names, array_axes) do tup_name, tup_array_axes _collapse_array_axes(tup_name, tup_array_axes...) end)) end function _splitall(::Val{N}, As...) where N tuple((Base.IteratorsMD.split(A, Val(N)) for A in As)...) end function _reshapeall(::Val{N}, As...) where N tuple((reshape(A, Val(N)) for A in As)...) end function _check_common_axes(common_axis_tuple) if !all(axisname(first(common_axis_tuple)) .=== axisname.(common_axis_tuple[2:end])) throw(ArgumentError("Leading common axes must have the same name in each array")) end return nothing end function _collapsed_axis_eltype(LType, trailing_axes) eltypes = map(trailing_axes) do array_trailing_axes Tuple{LType, eltype.(array_trailing_axes)...} end return typejoin(eltypes...) end function collapse(::Val{N}, As::Vararg{AxisArray, AN}) where {N, AN} collapse(Val(N), ntuple(identity, AN), As...) end function collapse(::Val{N}, ::Type{NewArrayType}, As::Vararg{AxisArray, AN}) where {N, AN, NewArrayType<:AbstractArray} collapse(Val(N), NewArrayType, ntuple(identity, AN), As...) end @generated function collapse(::Val{N}, labels::NTuple{AN, LType}, As::Vararg{AxisArray, AN}) where {N, AN, LType} collapsed_dim_int = Int(N) + 1 new_eltype = Base.promote_eltype(As...) quote collapse(Val(N), Array{$new_eltype, $collapsed_dim_int}, labels, As...) end end """ collapse(::Val{N}, As::AxisArray...) -> AxisArray collapse(::Val{N}, labels::Tuple, As::AxisArray...) -> AxisArray collapse(::Val{N}, ::Type{NewArrayType}, As::AxisArray...) -> AxisArray collapse(::Val{N}, ::Type{NewArrayType}, labels::Tuple, As::AxisArray...) -> AxisArray Collapses `AxisArray`s with `N` equal leading axes into a single `AxisArray`. All additional axes in any of the arrays are collapsed into a single additional axis of type `Axis{:collapsed, CategoricalVector{Tuple}}`. ### Arguments * `::Val{N}`: the greatest common dimension to share between all input arrays. The remaining axes are collapsed. All `N` axes must be common to each input array, at the same dimension. Values from `0` up to the minimum number of dimensions across all input arrays are allowed. * `labels::Tuple`: (optional) an index for each array in `As` used as the leading element in the index tuples in the `:collapsed` axis. Defaults to `1:length(As)`. * `::Type{NewArrayType<:AbstractArray{_, N+1}}`: (optional) the desired underlying array type for the returned `AxisArray`. * `As::AxisArray...`: `AxisArray`s to be collapsed together. ### Examples ``` julia> price_data = AxisArray(rand(10), Axis{:time}(Date(2016,01,01):Day(1):Date(2016,01,10))) 1-dimensional AxisArray{Float64,1,...} with axes: :time, 2016-01-01:1 day:2016-01-10 And data, a 10-element Array{Float64,1}: 0.885014 0.418562 0.609344 0.72221 0.43656 0.840304 0.455337 0.65954 0.393801 0.260207 julia> size_data = AxisArray(rand(10,2), Axis{:time}(Date(2016,01,01):Day(1):Date(2016,01,10)), Axis{:measure}([:area, :volume])) 2-dimensional AxisArray{Float64,2,...} with axes: :time, 2016-01-01:1 day:2016-01-10 :measure, Symbol[:area, :volume] And data, a 10×2 Array{Float64,2}: 0.159434 0.456992 0.344521 0.374623 0.522077 0.313256 0.994697 0.320953 0.95104 0.900526 0.921854 0.729311 0.000922581 0.148822 0.449128 0.761714 0.650277 0.135061 0.688773 0.513845 julia> collapsed = collapse(Val(1), (:price, :size), price_data, size_data) 2-dimensional AxisArray{Float64,2,...} with axes: :time, 2016-01-01:1 day:2016-01-10 :collapsed, Tuple{Symbol,Vararg{Symbol,N} where N}[(:price,), (:size, :area), (:size, :volume)] And data, a 10×3 Array{Float64,2}: 0.885014 0.159434 0.456992 0.418562 0.344521 0.374623 0.609344 0.522077 0.313256 0.72221 0.994697 0.320953 0.43656 0.95104 0.900526 0.840304 0.921854 0.729311 0.455337 0.000922581 0.148822 0.65954 0.449128 0.761714 0.393801 0.650277 0.135061 0.260207 0.688773 0.513845 julia> collapsed[Axis{:collapsed}(:size)] == size_data true ``` """ @generated function collapse(::Val{N}, ::Type{NewArrayType}, labels::NTuple{AN, LType}, As::Vararg{AxisArray, AN}) where {N, AN, LType, NewArrayType<:AbstractArray} if N < 0 throw(ArgumentError("collapse dimension N must be at least 0")) end if N > minimum(ndims.(As)) throw(ArgumentError( """ collapse dimension N must not be greater than the maximum number of dimensions across all input arrays """ )) end collapsed_dim = Val(N + 1) collapsed_dim_int = Int(N) + 1 common_axes, trailing_axes = zip(_splitall(Val(N), axisparams.(As)...)...) foreach(_check_common_axes, zip(common_axes...)) new_common_axes = first(common_axes) collapsed_axis_eltype = _collapsed_axis_eltype(LType, trailing_axes) collapsed_axis_type = CategoricalVector{collapsed_axis_eltype, Vector{collapsed_axis_eltype}} new_axes_type = Tuple{new_common_axes..., Axis{:collapsed, collapsed_axis_type}} new_eltype = Base.promote_eltype(As...) quote common_axes, trailing_axes = zip(_splitall(Val(N), axes.(As)...)...) for common_axis_tuple in zip(common_axes...) if !isempty(common_axis_tuple) for common_axis in common_axis_tuple[2:end] if !all(axisvalues(common_axis) .== axisvalues(common_axis_tuple[1])) throw(ArgumentError( """ Leading common axes must be identical across all input arrays""" )) end end end end array_data = cat(_reshapeall($collapsed_dim, As...)..., dims=$collapsed_dim) axis_array_type = AxisArray{ $new_eltype, $collapsed_dim_int, $NewArrayType, $new_axes_type } new_axes = ( first(common_axes)..., Axis{:collapsed, $collapsed_axis_type}($collapsed_axis_type(_collapse_axes(labels, trailing_axes))), ) return axis_array_type(array_data, new_axes) end end
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
25497
# Core types and definitions using Base: @pure const Symbols = Tuple{Symbol,Vararg{Symbol}} # We absolutely need ntuple of small numbers (ndims) to inline, but it might not in Base. Do it here: @inline function ntuple(f::F, n::Integer) where F t = n == 0 ? () : n == 1 ? (f(1),) : n == 2 ? (f(1), f(2)) : n == 3 ? (f(1), f(2), f(3)) : n == 4 ? (f(1), f(2), f(3), f(4)) : n == 5 ? (f(1), f(2), f(3), f(4), f(5)) : n == 6 ? (f(1), f(2), f(3), f(4), f(5), f(6)) : n == 7 ? (f(1), f(2), f(3), f(4), f(5), f(6), f(7)) : n == 8 ? (f(1), f(2), f(3), f(4), f(5), f(6), f(7), f(8)) : n == 9 ? (f(1), f(2), f(3), f(4), f(5), f(6), f(7), f(8), f(9)) : n == 10 ? (f(1), f(2), f(3), f(4), f(5), f(6), f(7), f(8), f(9), f(10)) : Base._ntuple(f, n) return t end """ Type-stable axis-specific indexing and identification with a parametric type. ### Type parameters ```julia struct Axis{name,T} ``` * `name` : the name of the axis, a Symbol * `T` : the type of the axis ### Constructors ```julia Axis{name}(I) ``` ### Arguments * `name` : the axis name Symbol or integer dimension * `I` : the indexer, any indexing type that the axis supports ### Examples Here is an example with a Dimensional axis representing a time sequence along rows and a Categorical axis of Symbols for column headers. ```julia A = AxisArray(reshape(1:60, 12, 5), .1:.1:1.2, [:a, :b, :c, :d, :e]) A[Axis{:col}(2)] # grabs the second column A[Axis{:col}(:b)] # Same as above, grabs column :b (the second column) A[Axis{:row}(2)] # grabs the second row A[Axis{2}(2:5)] # grabs the second through 5th columns ``` """ struct Axis{name,T} val::T end # Constructed exclusively through Axis{:symbol}(...) or Axis{1}(...) Axis{name}(I::T=()) where {name,T} = Axis{name,T}(I) Base.:(==)(A::Axis{name}, B::Axis{name}) where {name} = A.val == B.val Base.hash(A::Axis{name}, hx::UInt) where {name} = hash(A.val, hash(name, hx)) axistype(::Axis{name,T}) where {name,T} = T axistype(::Type{Axis{name,T}}) where {name,T} = T # Pass indexing and related functions straight through to the wrapped value # TODO: should Axis be an AbstractArray? AbstractArray{T,0} for scalar T? Base.getindex(A::Axis, i...) = A.val[i...] Base.eltype(::Type{Axis{name,T}}) where {name,T} = eltype(T) Base.size(A::Axis) = size(A.val) VERSION < v"0.7.0" && (Base.endof(A::Axis) = length(A)) Base.lastindex(A::Axis) = length(A) Base.axes(A::Axis) = Base.axes(A.val) Base.axes(A::Axis, d) = Base.axes(A.val, d) Base.length(A::Axis) = length(A.val) (A::Axis{name})(i) where {name} = Axis{name}(i) Base.convert(::Type{Axis{name,T}}, ax::Axis{name,T}) where {name,T} = ax Base.convert(::Type{Axis{name,T}}, ax::Axis{name}) where {name,T} = Axis{name}(convert(T, ax.val)) Base.iterate(A::Axis, i...) = Base.iterate(A.val, i...) Base.IteratorSize(::Type{<:Axis}) = Base.HasShape{1}() Base.IteratorEltype(::Type{<:Axis}) = Base.HasEltype() Base.iterate(::Type{T}) where {T<:Axis} = (T, nothing) Base.iterate(::Type{T}, ::Any) where {T<:Axis} = nothing Base.first(A::Axis) = first(A.val) Base.last(A::Axis) = last(A.val) Base.step(A::Axis{name,<:AbstractRange}) where {name} = step(A.val) """ An AxisArray is an AbstractArray that wraps another AbstractArray and adds axis names and values to each array dimension. AxisArrays can be indexed by using the named axes as an alternative to positional indexing by dimension. Other advanced indexing along axis values are also provided. ### Type parameters The AxisArray contains several type parameters: ```julia struct AxisArray{T,N,D,Ax} <: AbstractArray{T,N} ``` * `T` : the elemental type of the AbstractArray * `N` : the number of dimensions * `D` : the type of the wrapped AbstractArray * `Ax` : the names and types of the axes, as a (specialized) NTuple{N, Axis} ### Constructors ```julia AxisArray(A::AbstractArray, axes::Axis...) AxisArray(A::AbstractArray, names::Symbol...) AxisArray(A::AbstractArray, vectors::AbstractVector...) AxisArray(A::AbstractArray, (names...,), (steps...,), [(offsets...,)]) ``` ### Arguments * `A::AbstractArray` : the wrapped array data * `axes` or `names` or `vectors` : dimensional information for the wrapped array The dimensional information may be passed in one of three ways and is entirely optional. When the axis name or value is missing for a dimension, a default is substituted. The default axis names for dimensions `(1, 2, 3, 4, 5, ...)` are `(:row, :col, :page, :dim_4, :dim_5, ...)`. The default axis values are `Base.axes(A, d)` for each missing dimension `d`. ### Indexing Indexing returns a view into the original data. The returned view is a new AxisArray that wraps a SubArray. Indexing should be type stable. Use `Axis{axisname}(idx)` to index based on a specific axis. `axisname` is a Symbol specifying the axis to index/slice, and `idx` is a normal indexing object (`Int`, `Array{Int,1}`, etc.) or a custom indexing type for that particular type of axis. Two main types of axes supported by default include: * Categorical axis -- These are vectors of labels, normally Symbols or strings. Elements or slices can be indexed by elements or vectors of elements. * Dimensional axis -- These are sorted vectors or iterators that can be indexed by `ClosedInterval()`. These are commonly used for sequences of times or date-times. For regular sample rates, ranges can be used. User-defined axis types can be added along with custom indexing behaviors. To add add a custom type as a Categorical or Dimensional axis, add a trait using [`AxisArrays.axistrait`](@ref). For more advanced indexing, you can define custom methods for [`AxisArrays.axisindexes`](@ref). ### Examples Here is an example with a Dimensional axis representing a time sequence along rows (it's a FloatRange) and a Categorical axis of Symbols for column headers. ```julia A = AxisArray(reshape(1:15, 5, 3), Axis{:time}(.1:.1:0.5), Axis{:col}([:a, :b, :c])) A[Axis{:time}(1:3)] # equivalent to A[1:3,:] A[Axis{:time}(ClosedInterval(.2,.4))] # restrict the AxisArray along the time axis A[ClosedInterval(0.,.3), [:a, :c]] # select an interval and two columns ``` """ struct AxisArray{T,N,D,Ax} <: AbstractArray{T,N} data::D # D <:AbstractArray, enforced in constructor to avoid dispatch bugs (https://github.com/JuliaLang/julia/issues/6383) axes::Ax # Ax<:NTuple{N, Axis}, but with specialized Axis{...} types AxisArray{T,N,D,Ax}(data::AbstractArray{T,N}, axs::Tuple{Vararg{Axis,N}}) where {T,N,D,Ax} = new{T,N,D,Ax}(data, axs) end """ AxisMatrix{T} Alias for [`AxisArray{T,2,D,Ax}`](@ref AxisArray). """ const AxisMatrix{T,D,Ax} = AxisArray{T,2,D,Ax} const AxisVector{T,D,Ax} = AxisArray{T,1,D,Ax} # Helper functions: Default axis names (if not provided) @inline _defaultdimname(i) = i == 1 ? (:row) : i == 2 ? (:col) : i == 3 ? (:page) : i == 4 ? :dim_4 : Symbol(:dim_, i) _merge(::Tuple{}, ::Tuple{}) = () _merge(array_axes::Tuple{}, given_axes) = given_axes _merge(array_axes, given_axes::Tuple{}) = array_axes @inline _merge(array_axes, given_axes) = (given_axes[1], _merge(tail(array_axes), tail(given_axes))...) @inline _default_axis(ax, i) = Axis{_defaultdimname(i)}(ax) _default_axis(ax::Axis, i) = ax """ default_axes(A::AbstractArray) default_axes(A::AbstractArray, axs) Return a tuple of Axis objects that appropriately index into the array A. The optional second argument can take a tuple of vectors or axes, which will be wrapped with the appropriate axis name. """ @inline function default_axes(A::AbstractArray, given_axs=()) axs = _merge(Base.axes(A), given_axs) ntuple(i->(Base.@_inline_meta; _default_axis(axs[i], i)), length(axs)) end # Axis consistency checks — ensure sizes match and the names are unique @inline checksizes(axs, sz) = (length(axs[1]) == sz[1]) & checksizes(tail(axs), tail(sz)) checksizes(::Tuple{}, sz) = true @inline function checknames(name::Symbol, names...) matches = false for n in names matches |= name == n end matches && throw(ArgumentError("axis name :$name is used more than once")) checknames(names...) end checknames(name, names...) = throw(ArgumentError("the Axis names must be Symbols")) checknames() = () # The primary AxisArray constructors — specify an array to wrap and the axes AxisArray(A::AbstractArray, vects::Union{AbstractVector, Axis}...) = AxisArray(A, vects) AxisArray(A::AbstractArray, vects::Tuple{Vararg{Union{AbstractVector, Axis}}}) = AxisArray(A, default_axes(A, vects)) function AxisArray(A::AbstractArray, vects::Tuple{Vararg{Axis}}) length(vects) > ndims(A) && throw(ArgumentError("too many axes ($(length(vects))) given for a $(ndims(A))-dimensional array")) AxisArray(A, default_axes(A, vects)) end function AxisArray(A::D, axs::Ax) where {T,N,D<:AbstractArray{T,N},Ax<:NTuple{N,Axis}} checksizes(axs, _size(A)) || throw(ArgumentError("the length of each axis must match the corresponding size of data")) checknames(axisnames(axs...)...) AxisArray{T,N,D,Ax}(A, axs) end # Simple non-type-stable constructors to specify names as symbols AxisArray(A::AbstractArray) = AxisArray(A, ()) # Disambiguation AxisArray(A::AbstractArray, names::Symbol...) = (inds = Base.axes(A); AxisArray(A, ntuple(i->Axis{names[i]}(inds[i]), length(names)))) function AxisArray(A::AbstractArray{T,N}, names::NTuple{N,Symbol}, steps::NTuple{N,Number}, offsets::NTuple{N,Number}=map(zero, steps)) where {T,N} axs = ntuple(i->Axis{names[i]}(range(offsets[i], step=steps[i], length=size(A,i))), N) AxisArray(A, axs...) end # Alternative constructor, takes names as keywords: AxisArray(A; kw...) = AxisArray(A, nt_to_axes(values(kw))) @generated nt_to_axes(nt::NamedTuple{names}) where {names} = Expr(:tuple, (:(Axis{$(QuoteNode(n))}(getfield(nt, $(QuoteNode(n))))) for n in names)...) AxisArray(A::AxisArray) = A AxisArray(A::AxisArray, ax::Vararg{Axis, N}) where N = AxisArray(A.data, ax..., last(Base.IteratorsMD.split(axes(A), Val(N)))...) AxisArray(A::AxisArray, ax::NTuple{N, Axis}) where N = AxisArray(A.data, ax..., last(Base.IteratorsMD.split(axes(A), Val(N)))...) # Traits struct HasAxes{B} end HasAxes(::Type{<:AxisArray}) = HasAxes{true}() HasAxes(::Type{<:AbstractArray}) = HasAxes{false}() HasAxes(::A) where A<:AbstractArray = HasAxes(A) """ axisnames(A::AxisArray) -> (Symbol...) axisnames(::Type{AxisArray{...}}) -> (Symbol...) axisnames(ax::Axis...) -> (Symbol...) axisnames(::Type{Axis{...}}...) -> (Symbol...) Returns the axis names of an AxisArray or list of Axises as a tuple of Symbols. """ axisnames(::AxisArray{T,N,D,Ax}) where {T,N,D,Ax} = _axisnames(Ax) axisnames(::Type{AxisArray{T,N,D,Ax}}) where {T,N,D,Ax} = _axisnames(Ax) axisnames(::Type{Ax}) where {Ax<:Tuple{Vararg{Axis}}} = _axisnames(Ax) @pure _axisnames(Ax) = axisnames(Ax.parameters...) axisnames() = () @inline axisnames(::Axis{name}, B::Axis...) where {name} = tuple(name, axisnames(B...)...) @inline axisnames(::Type{<:Axis{name}}, B::Type...) where {name} = tuple(name, axisnames(B...)...) axisname(::Union{Type{<:Axis{name}},Axis{name}}) where {name} = name # Axis definitions """ axisdim(::AxisArray, ::Axis) -> Int axisdim(::AxisArray, ::Type{Axis}) -> Int Given an AxisArray and an Axis, return the integer dimension of the Axis within the array. """ axisdim(A::AxisArray, ax::Axis) = axisdim(A, typeof(ax)) axisdim(A::AxisArray, ax::Type{Ax}) where Ax<:Axis = axisdim(typeof(A), Ax) # The actual computation is done in the type domain, which is a little tricky # due to type invariance. @generated function axisdim(::Type{AxisArray{T,N,D,Ax}}, ::Type{<:Axis{name,S} where S}) where {T,N,D,Ax,name} isa(name, Int) && return name <= N ? name : error("axis $name greater than array dimensionality $N") names = axisnames(Ax) idx = findfirst(isequal(name), names) idx === nothing && error("axis $name not found in array axes $names") idx end # Base definitions that aren't provided by AbstractArray @inline Base.size(A::AxisArray) = size(A.data) @inline Base.size(A::AxisArray, Ax::Axis) = size(A.data, axisdim(A, Ax)) @inline Base.size(A::AxisArray, ::Type{Ax}) where {Ax<:Axis} = size(A.data, axisdim(A, Ax)) @inline Base.axes(A::AxisArray) = Base.axes(A.data) @inline Base.axes(A::AxisArray, Ax::Axis) = Base.axes(A.data, axisdim(A, Ax)) @inline Base.axes(A::AxisArray, ::Type{Ax}) where {Ax<:Axis} = Base.axes(A.data, axisdim(A, Ax)) Base.convert(::Type{Array{T,N}}, A::AxisArray{T,N}) where {T,N} = convert(Array{T,N}, A.data) Base.parent(A::AxisArray) = A.data # Similar is tricky. If we're just changing the element type, it can stay as an # AxisArray. But if we're changing dimensions, there's no way it can know how # to keep track of the axes, so just punt and return a regular old Array. # TODO: would it feel more consistent to return an AxisArray without any axes? Base.similar(A::AxisArray, ::Type{S}) where {S} = (d = similar(A.data, S); AxisArray(d, A.axes)) Base.similar(A::AxisArray, ::Type{S}, dims::Dims{N}) where {S,N} = similar(A.data, S, dims) # If, however, we pass Axis objects containing the new axis for that dimension, # we can return a similar AxisArray with an appropriately modified size Base.similar(A::AxisArray{T}, ax1::Axis, axs::Axis...) where {T} = similar(A, T, (ax1, axs...)) Base.similar(A::AxisArray, ::Type{S}, ax1::Axis, axs::Axis...) where {S} = similar(A, S, (ax1, axs...)) @generated function Base.similar(A::AxisArray{T,N}, ::Type{S}, axs::Tuple{Axis,Vararg{Axis}}) where {T,S,N} inds = Expr(:tuple) ax = Expr(:tuple) for d=1:N push!(inds.args, :(Base.axes(A, Axis{$d}))) push!(ax.args, :(axes(A, Axis{$d}))) end to_delete = Int[] for i=1:length(axs.parameters) a = axs.parameters[i] d = axisdim(A, a) axistype(a) <: Tuple{} && push!(to_delete, d) inds.args[d] = :(Base.axes(axs[$i].val, 1)) ax.args[d] = :(axs[$i]) end sort!(to_delete) deleteat!(inds.args, to_delete) deleteat!(ax.args, to_delete) quote d = similar(A.data, S, $inds) AxisArray(d, $ax) end end const AxisUnitRange{T,N,D<:AbstractUnitRange,Ax} = AxisArray{T,N,D,Ax} Base.similar(A::AxisArray{T}, ax1::AxisUnitRange, axs::AxisUnitRange...) where {T} = similar(A, T, (ax1, axs...)) Base.similar(A::AxisArray, ::Type{S}, ax1::AxisUnitRange, axs::AxisUnitRange...) where {S} = similar(A, S, (ax1, axs...)) Base.similar(A::AxisArray, ::Type{S}, axs::Tuple{AxisUnitRange,Vararg{AxisUnitRange}}) where {S} = similar(A, S, map(x->x.axes[1], axs)) # These methods allow us to preserve the AxisArray under reductions # Note that we only extend the following two methods, and then have it # dispatch to package-local `reduced_indices` and `reduced_indices0` # methods. This avoids a whole slew of ambiguities. Base.reduced_indices(A::AxisArray, region) = map(ax->AxisArray(Base.axes(ax.val, 1), ax), reduced_indices(axes(A), region)) Base.reduced_indices0(A::AxisArray, region) = map(ax->AxisArray(Base.axes(ax.val, 1), ax), reduced_indices0(axes(A), region)) reduced_indices(axs::Tuple{Vararg{Axis}}, ::Tuple{}) = axs reduced_indices0(axs::Tuple{Vararg{Axis}}, ::Tuple{}) = axs reduced_indices(axs::Tuple{Vararg{Axis}}, region::Integer) = reduced_indices(axs, (region,)) reduced_indices0(axs::Tuple{Vararg{Axis}}, region::Integer) = reduced_indices0(axs, (region,)) reduced_indices(axs::Tuple{Vararg{Axis,N}}, region::Dims) where {N} = map((ax,d)->d∈region ? reduced_axis(ax) : ax, axs, ntuple(identity, N)) reduced_indices0(axs::Tuple{Vararg{Axis,N}}, region::Dims) where {N} = map((ax,d)->d∈region ? reduced_axis0(ax) : ax, axs, ntuple(identity, N)) @inline reduced_indices(axs::Tuple{Vararg{Axis}}, region::Type{<:Axis}) = _reduced_indices(reduced_axis, (), region, axs...) @inline reduced_indices0(axs::Tuple{Vararg{Axis}}, region::Type{<:Axis}) = _reduced_indices(reduced_axis0, (), region, axs...) @inline reduced_indices(axs::Tuple{Vararg{Axis}}, region::Axis) = _reduced_indices(reduced_axis, (), region, axs...) @inline reduced_indices0(axs::Tuple{Vararg{Axis}}, region::Axis) = _reduced_indices(reduced_axis0, (), region, axs...) reduced_indices(axs::Tuple{Vararg{Axis}}, region::Tuple) = reduced_indices(reduced_indices(axs, region[1]), tail(region)) reduced_indices(axs::Tuple{Vararg{Axis}}, region::Tuple{Vararg{Axis}}) = reduced_indices(reduced_indices(axs, region[1]), tail(region)) reduced_indices0(axs::Tuple{Vararg{Axis}}, region::Tuple) = reduced_indices0(reduced_indices0(axs, region[1]), tail(region)) reduced_indices0(axs::Tuple{Vararg{Axis}}, region::Tuple{Vararg{Axis}}) = reduced_indices0(reduced_indices0(axs, region[1]), tail(region)) @pure samesym(::Type{Axis{n1}}, ::Type{Axis{n2}}) where {n1,n2} = Val(n1==n2) samesym(::Type{<:Axis{n1}}, ::Type{<:Axis{n2}}) where {n1,n2} = samesym(Axis{n1},Axis{n2}) samesym(::Type{Axis{n1}}, ::Axis{n2}) where {n1,n2} = samesym(Axis{n1}, Axis{n2}) samesym(::Axis{n1}, ::Type{Axis{n2}}) where {n1,n2} = samesym(Axis{n1}, Axis{n2}) samesym(::Axis{n1}, ::Axis{n2}) where {n1,n2} = samesym(Axis{n1}, Axis{n2}) @inline _reduced_indices(f, out, chosen::Type{<:Axis}, ax::Axis, axs...) = __reduced_indices(f, out, samesym(chosen, ax), chosen, ax, axs) @inline _reduced_indices(f, out, chosen::Axis, ax::Axis, axs...) = __reduced_indices(f, out, samesym(chosen, ax), chosen, ax, axs) _reduced_indices(f, out, chosen) = out @inline __reduced_indices(f, out, ::Val{true}, chosen, ax, axs) = _reduced_indices(f, (out..., f(ax)), chosen, axs...) @inline __reduced_indices(f, out, ::Val{false}, chosen, ax, axs) = _reduced_indices(f, (out..., ax), chosen, axs...) reduced_axis( ax::Axis{name,<:AbstractArray{T}}) where {name,T<:Number} = ax(oftype(ax.val, Base.OneTo(1))) reduced_axis0(ax::Axis{name,<:AbstractArray{T}}) where {name,T<:Number} = ax(oftype(ax.val, length(ax.val) == 0 ? Base.OneTo(0) : Base.OneTo(1))) reduced_axis( ax) = ax(Base.OneTo(1)) reduced_axis0(ax) = ax(length(ax.val) == 0 ? Base.OneTo(0) : Base.OneTo(1)) function Base.permutedims(A::AxisArray, perm) p = permutation(perm, axisnames(A)) AxisArray(permutedims(A.data, p), axes(A)[[p...]]) end Base.transpose(A::AxisArray{T,2}) where {T} = AxisArray(transpose(A.data), A.axes[2], A.axes[1]) Base.adjoint(A::AxisArray{T,2}) where {T} = AxisArray(adjoint(A.data), A.axes[2], A.axes[1]) Base.transpose(A::AxisArray{T,1}) where {T} = AxisArray(transpose(A.data), Axis{:transpose}(Base.OneTo(1)), A.axes[1]) Base.adjoint(A::AxisArray{T,1}) where {T} = AxisArray(adjoint(A.data), Axis{:transpose}(Base.OneTo(1)), A.axes[1]) Base.map!(f::F, A::AxisArray) where {F} = (map!(f, A.data); A) Base.map(f, A::AxisArray) = AxisArray(map(f, A.data), A.axes...) function Base.map!(f::F, dest::AxisArray{T,N,D,Ax}, As::AxisArray{T,N,D,Ax}...) where {F,T,N,D,Ax<:Tuple{Vararg{Axis}}} matchingdims((dest, As...)) || error("All axes must be identically-valued") data = map(a -> a.data, As) map!(f, dest.data, data...) return dest end function Base.map(f, As::AxisArray{T,N,D,Ax}...) where {T,N,D,Ax<:Tuple{Vararg{Axis}}} matchingdims(As) || error("All axes must be identically-valued") data = map(a -> a.data, As) return AxisArray(map(f, data...), As[1].axes...) end permutation(to::Union{AbstractVector{Int},Tuple{Int,Vararg{Int}}}, from::Symbols) = to """ permutation(to, from) -> p Calculate the permutation of labels in `from` to produce the order in `to`. Any entries in `to` that are missing in `from` will receive an index of 0. Any entries in `from` that are missing in `to` will have their indices appended to the end of the permutation. Consequently, the length of `p` is equal to the longer of `to` and `from`. """ function permutation(to::Symbols, from::Symbols) n = length(to) nf = length(from) li = eachindex(from) d = Dict(from[i]=>i for i in li) covered = Array(falses(length(li))) ind = Array{Int}(undef, max(n, nf)) for (i,toi) in enumerate(to) j = get(d, toi, 0) ind[i] = j if j != 0 covered[j] = true end end k = n for i in li if !covered[i] d[from[i]] != i && throw(ArgumentError("$(from[i]) is a duplicated argument")) k += 1 k > nf && throw(ArgumentError("no incomplete containment allowed in $to and $from")) ind[k] = i end end ind end @inline Base.dropdims(A::AxisArray; dims) = _dropdims(A, dims) function _dropdims(A::AxisArray, dims) keepdims = setdiff(1:ndims(A), dims) AxisArray(dropdims(A.data; dims=dims), axes(A)[keepdims]) end # This version attempts to be type-stable function _dropdims(A::AxisArray, ::Type{Ax}) where {Ax<:Axis} dim = axisdim(A, Ax) AxisArray(dropdims(A.data; dims=dim), dropax(Ax, axes(A)...)) end @inline dropax(ax, ax1, axs...) = (ax1, dropax(ax, axs...)...) @inline dropax(ax::Axis{name}, ax1::Axis{name}, axs...) where {name} = dropax(ax, axs...) @inline dropax(ax::Type{<:Axis{name}}, ax1::Axis{name}, axs...) where {name} = dropax(ax, axs...) dropax(ax) = () # A simple display method to include axis information. It might be nice to # eventually display the axis labels alongside the data array, but that is # much more difficult. function Base.summary(io::IO, A::AxisArray) _summary(io, A) for (name, val) in zip(axisnames(A), axisvalues(A)) print(io, " :$name, ") show(IOContext(io, :limit=>true), val) println(io) end print(io, "And data, a ", summary(A.data)) end _summary(io, A::AxisArray{T,N}) where {T,N} = println(io, "$N-dimensional AxisArray{$T,$N,...} with axes:") # Custom methods specific to AxisArrays """ axisvalues(A::AxisArray) -> (AbstractVector...) axisvalues(ax::Axis...) -> (AbstractVector...) Returns the axis values of an AxisArray or list of Axises as a tuple of vectors. """ axisvalues(A::AxisArray) = axisvalues(A.axes...) axisvalues() = () axisvalues(ax::Axis, axs::Axis...) = tuple(ax.val, axisvalues(axs...)...) """ axes(A::AxisArray) -> (Axis...) axes(A::AxisArray, ax::Axis) -> Axis axes(A::AxisArray, dim::Int) -> Axis Returns the tuple of axis vectors for an AxisArray. If an specific `Axis` is specified, then only that axis vector is returned. Note that when extracting a single axis vector, `axes(A, Axis{1})`) is type-stable and will perform better than `axes(A)[1]`. For an AbstractArray without `Axis` information, `axes` returns the default axes, i.e., those that would be produced by `AxisArray(A)`. """ axes(A::AxisArray) = A.axes axes(A::AxisArray, dim::Int) = A.axes[dim] axes(A::AxisArray, ax::Axis) = axes(A, typeof(ax)) @generated function axes(A::AxisArray, ax::Type{T}) where T<:Axis dim = axisdim(A, T) :(A.axes[$dim]) end axes(A::AbstractArray) = default_axes(A) axes(A::AbstractArray, dim::Int) = default_axes(A)[dim] """ axisparams(::AxisArray) -> Vararg{::Type{Axis}} axisparams(::Type{AxisArray}) -> Vararg{::Type{Axis}} Returns the axis parameters for an AxisArray. """ axisparams(::AxisArray{T,N,D,Ax}) where {T,N,D,Ax} = (Ax.parameters...,) axisparams(::Type{AxisArray{T,N,D,Ax}}) where {T,N,D,Ax} = (Ax.parameters...,) ### Axis traits ### abstract type AxisTrait end struct Dimensional <: AxisTrait end struct Categorical <: AxisTrait end struct Unsupported <: AxisTrait end """ axistrait(ax::Axis) -> Type{<:AxisTrait} axistrait{T}(::Type{T}) -> Type{<:AxisTrait} Returns the indexing type of an `Axis`, any subtype of `AxisTrait`. The default is `Unsupported`, meaning there is no special indexing behaviour for this axis and indexes into this axis are passed directly to the underlying array. Two main types of axes supported by default are `Categorical` and `Dimensional`; see [Indexing](@ref) for more information on these types. User-defined axis types can be added along with custom indexing behaviors by defining new methods of this function. Here is the example of adding a custom Dimensional axis: ```julia AxisArrays.axistrait(::Type{MyCustomAxis}) = AxisArrays.Dimensional ``` """ axistrait(::T) where {T} = axistrait(T) axistrait(::Type{T}) where {T} = Unsupported axistrait(::Type{Axis{name,T}}) where {name,T} = axistrait(T) axistrait(::Type{T}) where {T<:AbstractVector} = _axistrait_el(eltype(T)) _axistrait_el(::Type{<:Union{Number, Dates.AbstractTime}}) = Dimensional _axistrait_el(::Type{<:Union{Symbol, AbstractString}}) = Categorical _axistrait_el(::Type{T}) where {T} = Categorical checkaxis(ax::Axis) = checkaxis(ax.val) checkaxis(ax) = checkaxis(axistrait(ax), ax) checkaxis(::Type{Unsupported}, ax) = nothing # TODO: warn or error? # Dimensional axes must be monotonically increasing checkaxis(::Type{Dimensional}, ax) = issorted(ax) || throw(ArgumentError("Dimensional axes must be monotonically increasing")) # Categorical axes must simply be unique function checkaxis(::Type{Categorical}, ax) seen = Set{eltype(ax)}() for elt in ax if elt in seen throw(ArgumentError("Categorical axes must be unique")) end push!(seen, elt) end end _length(A::AbstractArray) = length(eachindex(A)) _length(A) = length(A) _size(A::AbstractArray) = map(length, Base.axes(A)) _size(A) = size(A) _size(A::AbstractArray, d) = length(Base.axes(A, d)) _size(A, d) = size(A, d)
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
18672
const Idx = Union{Real,Colon,AbstractArray{Int}} using Base: ViewIndex, @propagate_inbounds, tail abstract type Value{T} end struct TolValue{T} <: Value{T} val::T tol::T end TolValue(x, tol=Base.rtoldefault(typeof(x))*abs(x)) = TolValue(promote(x,tol)...) struct ExactValue{T} <: Value{T} val::T end atvalue(x::Number; rtol=Base.rtoldefault(typeof(x)), atol=zero(x)) = TolValue(x, atol+rtol*abs(x)) atvalue(x) = ExactValue(x) const Values = AbstractArray{<:Value} # For throwing a BoundsError with a Value index, we need to define the following # (note that we could inherit them for free, were Value <: Number) Base.iterate(x::Value, state = false) = state ? nothing : (x, true) # Values have the indexing trait of their wrapped type _axistrait_el(::Type{<:Value{T}}) where {T} = _axistrait_el(T) # How to show Value objects (e.g. in a BoundsError) Base.show(io::IO, v::TolValue) = print(io, string("TolValue(", v.val, ", tol=", v.tol, ")")) Base.show(io::IO, v::ExactValue) = print(io, string("ExactValue(", v.val, ")")) # Defer IndexStyle to the wrapped array Base.IndexStyle(::Type{AxisArray{T,N,D,Ax}}) where {T,N,D,Ax} = IndexStyle(D) # Simple scalar indexing where we just set or return scalars @propagate_inbounds Base.getindex(A::AxisArray, idxs::Int...) = A.data[idxs...] @propagate_inbounds Base.setindex!(A::AxisArray, v, idxs::Int...) = (A.data[idxs...] = v) # Cartesian iteration Base.eachindex(A::AxisArray) = eachindex(A.data) # Avoid an ambiguity -- [email protected] takes .. from EllipsisNotation, # which defines A[..] for any AbstractArray, like this: Base.getindex(A::AxisArray, ::typeof(..)) = A """ reaxis(A::AxisArray, I...) This internal function determines the new set of axes that are constructed upon indexing with I. """ reaxis(A::AxisArray, I::Idx...) = _reaxis(make_axes_match(axes(A), I), I) # Linear indexing reaxis(A::AxisArray{<:Any,1}, I::AbstractArray{Int}) = _new_axes(A.axes[1], I) reaxis(A::AxisArray, I::AbstractArray{Int}) = default_axes(I) reaxis(A::AxisArray{<:Any,1}, I::Real) = () reaxis(A::AxisArray, I::Real) = () reaxis(A::AxisArray{<:Any,1}, I::Colon) = _new_axes(A.axes[1], Base.axes(A, 1)) reaxis(A::AxisArray, I::Colon) = default_axes(Base.OneTo(length(A))) reaxis(A::AxisArray{<:Any,1}, I::AbstractArray{Bool}) = _new_axes(A.axes[1], findall(I)) reaxis(A::AxisArray, I::AbstractArray{Bool}) = default_axes(findall(I)) # Ensure the number of axes matches the number of indexing dimensions @inline function make_axes_match(axs, idxs) nidxs = Base.index_ndims(idxs...) ntuple(i->(Base.@_inline_meta; _default_axis(i > length(axs) ? Base.OneTo(1) : axs[i], i)), length(nidxs)) end # Now we can reaxis without worrying about mismatched axes/indices @inline _reaxis(axs::Tuple{}, idxs::Tuple{}) = () # Scalars are dropped const ScalarIndex = Union{Real, AbstractArray{<:Any, 0}} @inline _reaxis(axs::Tuple, idxs::Tuple{ScalarIndex, Vararg{Any}}) = _reaxis(tail(axs), tail(idxs)) # Colon passes straight through @inline _reaxis(axs::Tuple, idxs::Tuple{Colon, Vararg{Any}}) = (axs[1], _reaxis(tail(axs), tail(idxs))...) # But arrays can add or change dimensions and accompanying axis names @inline _reaxis(axs::Tuple, idxs::Tuple{AbstractArray, Vararg{Any}}) = (_new_axes(axs[1], idxs[1])..., _reaxis(tail(axs), tail(idxs))...) # Vectors simply create new axes with the same name; just subsetted by their value @inline _new_axes(ax::Axis{name}, idx::AbstractVector) where {name} = (Axis{name}(ax.val[idx]),) # Arrays create multiple axes with _N appended to the axis name containing their indices @generated function _new_axes(ax::Axis{name}, idx::AbstractArray{<:Any,N}) where {name,N} newaxes = Expr(:tuple) for i=1:N push!(newaxes.args, :($(Axis{Symbol(name, "_", i)})(Base.axes(idx, $i)))) end newaxes end # And indexing with an AxisArray joins the name and overrides the values @generated function _new_axes(ax::Axis{name}, idx::AxisArray{<:Any, N}) where {name,N} newaxes = Expr(:tuple) idxnames = axisnames(idx) for i=1:N push!(newaxes.args, :($(Axis{Symbol(name, "_", idxnames[i])})(idx.axes[$i].val))) end newaxes end @propagate_inbounds function Base.getindex(A::AxisArray, idxs::Idx...) AxisArray(A.data[idxs...], reaxis(A, idxs...)) end # To resolve ambiguities, we need several definitions using Base: AbstractCartesianIndex @propagate_inbounds Base.view(A::AxisArray, idxs::Idx...) = AxisArray(view(A.data, idxs...), reaxis(A, idxs...)) # Setindex is so much simpler. Just assign it to the data: @propagate_inbounds Base.setindex!(A::AxisArray, v, idxs::Idx...) = (A.data[idxs...] = v) # Logical indexing @propagate_inbounds function Base.getindex(A::AxisArray, idx::AbstractArray{Bool}) AxisArray(A.data[idx], reaxis(A, idx)) end @propagate_inbounds Base.setindex!(A::AxisArray, v, idx::AbstractArray{Bool}) = (A.data[idx] = v) ### Fancier indexing capabilities provided only by AxisArrays ### # To avoid StackOverflowErrors on indexes that we don't know how to convert, we # give AxisArrays once chance to convert into known format and then defer to the parent @propagate_inbounds Base.getindex(A::AxisArray, idxs...) = getindex_converted(A, to_index(A,idxs...)...) @propagate_inbounds Base.setindex!(A::AxisArray, v, idxs...) = setindex!_converted(A, v, to_index(A,idxs...)...) # Deal with lots of ambiguities here @propagate_inbounds Base.view(A::AxisArray, idxs::ViewIndex...) = view(A, to_index(A,idxs...)...) @propagate_inbounds Base.view(A::AxisArray, idxs::Union{ViewIndex,AbstractCartesianIndex}...) = view(A, to_index(A,Base.IteratorsMD.flatten(idxs)...)...) @propagate_inbounds Base.view(A::AxisArray, idxs...) = view(A, to_index(A,idxs...)...) @propagate_inbounds getindex_converted(A, idxs::Idx...) = A[idxs...] @propagate_inbounds setindex!_converted(A, v, idxs::Idx...) = (A[idxs...] = v) @propagate_inbounds getindex_converted(A, idxs...) = A.data[idxs...] @propagate_inbounds setindex!_converted(A, v, idxs...) = (A.data[idxs...] = v) # First is indexing by named axis. We simply sort the axes and re-dispatch. # When indexing by named axis the shapes of omitted dimensions are preserved # TODO: should we handle multidimensional Axis indexes? It could be interpreted # as adding dimensions in the middle of an AxisArray. # TODO: should we allow repeated axes? As a union of indices of the duplicates? @generated function to_index(A::AxisArray{T,N,D,Ax}, I::Axis...) where {T,N,D,Ax} dims = Int[axisdim(A, ax) for ax in I] idxs = Expr[:(Colon()) for d = 1:N] names = axisnames(A) for i=1:length(dims) idxs[dims[i]] == :(Colon()) || return :(throw(ArgumentError(string("multiple indices provided ", "on axis ", $(string(names[dims[i]])))))) idxs[dims[i]] = :(I[$i].val) end meta = Expr(:meta, :inline) return :($meta; to_index(A, $(idxs...))) end function Base.reshape(A::AxisArray, ::Val{N}) where N axN, _ = Base.IteratorsMD.split(axes(A), Val(N)) AxisArray(reshape(A.data, Val(N)), Base.front(axN)) end # Keyword indexing, reconstructs the Axis{}() objects @propagate_inbounds Base.view(A::AxisArray; kw...) = view(A, kw_to_axes(parent(A), values(kw))...) @propagate_inbounds Base.getindex(A::AxisArray; kw...) = getindex(A, kw_to_axes(parent(A), values(kw))...) @propagate_inbounds Base.setindex!(A::AxisArray, val; kw...) = setindex!(A, val, kw_to_axes(parent(A), values(kw))...) function kw_to_axes(A::AbstractArray, nt::NamedTuple) length(nt) == 0 && throw(BoundsError(A, ())) # Trivial case A[] lands here nt_to_axes(nt) end ### Indexing along values of the axes ### # Default axes indexing throws an error """ axisindexes(ax::Axis, axis_idx) -> array_idx axisindexes(::Type{<:AxisTrait}, axis_values, axis_idx) -> array_idx Translate an index into an axis into an index into the underlying array. Users can add additional indexing behaviours for custom axes or custom indices by adding methods to this function. ## Examples Add a method for indexing into an `Axis{name, SortedSet}`: ```julia AxisArrays.axisindexes(::Type{Categorical}, ax::SortedSet, idx::AbstractVector) = findin(collect(ax), idx) ``` Add a method for indexing into a `Categorical` axis with a `SortedSet`: ```julia AxisArrays.axisindexes(::Type{Categorical}, ax::AbstractVector, idx::SortedSet) = findin(ax, idx) ``` """ axisindexes(ax, idx) = axisindexes(axistrait(ax.val), ax.val, idx) axisindexes(::Type{Unsupported}, ax, idx) = error("elementwise indexing is not supported for axes of type $(typeof(ax))") axisindexes(t, ax, idx) = error("cannot index $(typeof(ax)) with $(typeof(idx)); expected $(eltype(ax)) axis value or Integer index") # Dimensional axes may be indexed directly by their elements if Non-Real and unique # Maybe extend error message to all <: Numbers if Base allows it? axisindexes(::Type{Dimensional}, ax::AbstractVector, idx::Real) = throw(ArgumentError("invalid index: $idx. Use `atvalue` when indexing by value.")) function axisindexes(::Type{Dimensional}, ax::AbstractVector{T}, idx::T) where T idxs = searchsorted(ax, ClosedInterval(idx,idx)) length(idxs) > 1 && error("more than one datapoint lies on axis value $idx; use an interval to return all values") if length(idxs) == 1 idxs[1] else throw(BoundsError(ax, idx)) end end function axisindexes(::Type{Dimensional}, ax::AbstractVector, idx::Axis) idxs = searchsorted(ax, idx.val) length(idxs) > 1 && error("more than one datapoint lies on axis value $idx; use an interval to return all values") if length(idxs) == 1 idxs[1] else throw(BoundsError(ax, idx)) end end # Dimensional axes may always be indexed by value if in a Value type wrapper. function axisindexes(::Type{Dimensional}, ax::AbstractVector, idx::TolValue) idxs = searchsorted(ax, ClosedInterval(idx.val,idx.val)) length(idxs) > 1 && error("more than one datapoint lies on axis value $idx; use an interval to return all values") if length(idxs) == 1 idxs[1] else # it's zero last(idxs) > 0 && abs(ax[last(idxs)] - idx.val) < idx.tol && return last(idxs) first(idxs) <= length(ax) && abs(ax[first(idxs)] - idx.val) < idx.tol && return first(idxs) throw(BoundsError(ax, idx)) end end function axisindexes(::Type{Dimensional}, ax::AbstractVector, idx::ExactValue) idxs = searchsorted(ax, ClosedInterval(idx.val,idx.val)) length(idxs) > 1 && error("more than one datapoint lies on axis value $idx; use an interval to return all values") if length(idxs) == 1 idxs[1] else # it's zero throw(BoundsError(ax, idx)) end end # For index types that AxisArrays doesn't know about axisindexes(::Type{Dimensional}, ax::AbstractVector, idx) = idx # Dimensional axes may be indexed by intervals to select a range axisindexes(::Type{Dimensional}, ax::AbstractVector, idx::ClosedInterval) = searchsorted(ax, idx) # Or repeated intervals, which only work if the axis is a range since otherwise # there will be a non-constant number of indices in each repetition. # # There are a number of challenges here: # * This operation adds a dimension to the result; rows represent the interval # (or subset) and columns are offsets (or repetition). A RepeatedRangeMatrix # represents the resulting matrix of indices very nicely. # * We also want the returned matrix to keep track of its axes; the axis # subset (ax_sub) is the relative location of the interval with respect to # each offset, and the repetitions (ax_rep) is the array of offsets. # * We are interested in the resulting *addition* of the interval against the # offsets. Either the offsets or the interval may independently be out of # bounds prior to this addition. Even worse: the interval may have different # units than the axis (e.g., `(Day(-1)..Day(1)) + dates` for a three-day # span around dates of interest over a Date axis). # * It is possible (and likely!) that neither the interval endpoints nor the # offsets fall exactly upon an axis value. Or even worse: the some offsets # when added to the interval could span more elements than others (the # fencepost problem). As such, we need to be careful about how and when we # snap the provided intervals and offsets to exact axis values (and indices). # # To avoid the fencepost problems and to define the axes, we convert the # interval to a UnitRange of relative indices and the array of offsets to an # array of absolute indices (independently of each other). Exactly how we do so # must be carefully considered. # # Note that this is fundamentally different than indexing by a single interval; # whereas those intervals are specified in the same units as the elements of the # axis itself, these intervals are specified in terms of _offsets_. At the same # time, we want `A[interval] == vec(A[interval + [0]])`. To make these # computations as similar as possible, we use a phony range of the form # `step(ax):step(ax):step(ax)` in order to search for the interval. phony_range(r::AbstractRange) = step(r):step(r):step(r) phony_range(r::AbstractUnitRange) = step(r):step(r) phony_range(r::StepRangeLen) = StepRangeLen(r.step, r.step, 1) function relativewindow(r::AbstractRange, x::ClosedInterval) pr = phony_range(r) idxs = Extrapolated.searchsorted(pr, x) vals = Extrapolated.getindex(pr, idxs) return (idxs, vals) end axisindexes(::Type{Dimensional}, ax::AbstractVector, idx::RepeatedInterval) = error("repeated intervals might select a varying number of elements for non-range axes; use a repeated Range of indices instead") function axisindexes(::Type{Dimensional}, ax::AbstractRange, idx::RepeatedInterval) idxs, vals = relativewindow(ax, idx.window) offsets = [Extrapolated.searchsortednearest(ax, offset) for offset in idx.offsets] AxisArray(RepeatedRangeMatrix(idxs, offsets), Axis{:sub}(vals), Axis{:rep}(Extrapolated.getindex(ax, offsets))) end # We also have special datatypes to represent intervals about indices axisindexes(::Type{Dimensional}, ax::AbstractVector, idx::IntervalAtIndex) = searchsorted(ax, idx.window + ax[idx.index]) function axisindexes(::Type{Dimensional}, ax::AbstractRange, idx::IntervalAtIndex) idxs, vals = relativewindow(ax, idx.window) AxisArray(idxs .+ idx.index, Axis{:sub}(vals)) end axisindexes(::Type{Dimensional}, ax::AbstractVector, idx::RepeatedIntervalAtIndexes) = error("repeated intervals might select a varying number of elements for non-range axes; use a repeated Range of indices instead") function axisindexes(::Type{Dimensional}, ax::AbstractRange, idx::RepeatedIntervalAtIndexes) idxs, vals = relativewindow(ax, idx.window) AxisArray(RepeatedRangeMatrix(idxs, idx.indexes), Axis{:sub}(vals), Axis{:rep}(ax[idx.indexes])) end # Categorical axes may be indexed by their elements function axisindexes(::Type{Categorical}, ax::AbstractVector, idx) i = findfirst(isequal(idx), ax) i === nothing && throw(ArgumentError("index $idx not found")) i end function axisindexes(::Type{Categorical}, ax::AbstractVector, idx::Value) val = idx.val i = findfirst(isequal(val), ax) i === nothing && throw(ArgumentError("index $val not found")) i end # Categorical axes may be indexed by a vector of their elements function axisindexes(::Type{Categorical}, ax::AbstractVector, idx::AbstractVector) res = findall(in(idx), ax) length(res) == length(idx) || throw(ArgumentError("index $(setdiff(idx,ax)) not found")) res end # Creates *instances* of axis traits for a set of axes. # TODO: Transition axistrait() to return trait instances in line with common # practice in Base and other packages. # # This function is a utility tool to ensure that `axistrait` is only called # from outside the generated function below. (If not, we can get world age # errors.) _axistraits(ax1, rest...) = (axistrait(ax1)(), _axistraits(rest...)...) _axistraits() = () # This catch-all method attempts to convert any axis-specific non-standard # indexing types to their integer or integer range equivalents using axisindexes # It is separate from the `Base.getindex` function to allow reuse between # set- and get- index. @inline to_index(A::AxisArray, I...) = _to_index(A, _axistraits(I...), I...) @generated function _to_index(A::AxisArray{T,N,D,Ax}, axtraits, I...) where {T,N,D,Ax} ex = Expr(:tuple) n = 0 axtrait_types = axtraits.parameters for i=1:length(I) if axtrait_types[i] <: Categorical && i <= length(Ax.parameters) if I[i] <: Axis push!(ex.args, :(axisindexes(A.axes[$i], I[$i].val))) else push!(ex.args, :(axisindexes(A.axes[$i], I[$i]))) end n += 1 continue end if I[i] <: Idx push!(ex.args, :(I[$i])) n += 1 elseif I[i] <: AbstractArray{Bool} push!(ex.args, :(findall(I[$i]))) n += 1 elseif I[i] <: Values push!(ex.args, :(axisindexes.(Ref(A.axes[$i]), I[$i]))) n += 1 elseif I[i] <: CartesianIndex for j = 1:length(I[i]) push!(ex.args, :(I[$i][$j])) end n += length(I[i]) elseif i <= length(Ax.parameters) if I[i] <: Axis push!(ex.args, :(axisindexes(A.axes[$i], I[$i].val))) else push!(ex.args, :(axisindexes(A.axes[$i], I[$i]))) end n += 1 else push!(ex.args, :(error("dimension ", $i, " does not have an axis to index"))) end end for _=n+1:N push!(ex.args, :(Colon())) end meta = Expr(:meta, :inline) return :($meta; $ex) end ## Extracting the full axis (name + values) from the Axis{:name} type @inline Base.getindex(A::AxisArray, ::Type{Ax}) where {Ax<:Axis} = getaxis(Ax, axes(A)...) @inline getaxis(::Type{Ax}, ax::Ax, axs...) where {Ax<:Axis} = ax @inline getaxis(::Type{Ax}, ax::Axis, axs...) where {Ax<:Axis} = getaxis(Ax, axs...) @noinline getaxis(::Type{Ax}) where {Ax<:Axis} = throw(ArgumentError("no axis of type $Ax was found")) # Boundschecking specialization: defer to the data array. # Note that we could unwrap AxisArrays when they are used as indices into other # arrays within Base's to_index/to_indices methods, but that requires a bigger # refactor to merge our to_index method with Base's. @inline Base.checkindex(::Type{Bool}, inds::AbstractUnitRange, A::AxisArray) = Base.checkindex(Bool, inds, A.data)
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
5009
# Promotion rules for "promiscuous" types like Intervals and SIUnits, which both # simply wrap any Number, are often ambiguous. That is, which type should "win" # -- is the promotion between an SIUnit and an ClosedInterval an SIQuantity{ClosedInterval} # or is it an ClosedInterval{SIQuantity}? For our uses in AxisArrays, though, we can # sidestep this problem by making Intervals *not* a subtype of Number. Then in # order for them to plug into the promotion system, we *extend* the promoting # operator behaviors to Union{Number, ClosedInterval}. This way other types can # similarly define their own extensions to the promoting operators without fear # of ambiguity -- there will simply be, e.g., # # f(x::Number, y::Number) = f(promote(x,y)...) # in base # f(x::Union{Number, ClosedInterval}, y::Union{Number, ClosedInterval}) = f(promote(x,y)...) # f(x::Union{Number, T}, y::Union{Number, T}) = f(promote(x,y)...) # # In this way, these "promiscuous" types will never interact unless explicitly # made subtypes of Number or otherwise defined with knowledge of eachother. The # downside is that Intervals are not as useful as they could be; they really # could be considered as <: Number themselves. We do this in general for any # supported Scalar: const Scalar = Union{Number, Dates.AbstractTime} Base.promote_rule(::Type{ClosedInterval{T}}, ::Type{T}) where {T<:Scalar} = ClosedInterval{T} Base.promote_rule(::Type{ClosedInterval{T}}, ::Type{S}) where {T,S<:Scalar} = ClosedInterval{promote_type(T,S)} import Base: isless, <=, >=, ==, +, -, *, /, ^, // # TODO: Is this a total ordering? (antisymmetric, transitive, total)? isless(a::ClosedInterval, b::ClosedInterval) = isless(a.right, b.left) # The default definition for <= assumes a strict total order (<=(x,y) = !(y < x)) <=(a::ClosedInterval, b::ClosedInterval) = a.left <= b.left && a.right <= b.right +(a::ClosedInterval) = a +(a::ClosedInterval, b::ClosedInterval) = ClosedInterval(a.left + b.left, a.right + b.right) -(a::ClosedInterval) = ClosedInterval(-a.right, -a.left) -(a::ClosedInterval, b::ClosedInterval) = a + (-b) for f in (:(*), :(/), :(//)) # For a general monotonic operator, we compute the operation over all # combinations of the endpoints and return the widest interval @eval function $(f)(a::ClosedInterval, b::ClosedInterval) w = $(f)(a.left, b.left) x = $(f)(a.left, b.right) y = $(f)(a.right, b.left) z = $(f)(a.right, b.right) ClosedInterval(min(w,x,y,z), max(w,x,y,z)) end end # Extend the promoting operators to include Intervals. The comparison operators # (<, <=, and ==) are a pain since they are non-promoting fallbacks that call # isless, !(y < x) (which is wrong), and ===. So implementing promotion with # Union{T, ClosedInterval} causes stack overflows for the base types. This is safer: for f in (:isless, :(<=), :(>=), :(==), :(+), :(-), :(*), :(/), :(//)) # We don't use promote here, though, because promotions can be lossy... and # that's particularly bad for comparisons. Just make an interval instead. @eval $(f)(x::ClosedInterval, y::Scalar) = $(f)(x, y..y) @eval $(f)(x::Scalar, y::ClosedInterval) = $(f)(x..x, y) end # And, finally, we have an Array-of-Structs to Struct-of-Arrays transform for # the common case where the interval is constant over many offsets: struct RepeatedInterval{T,S,A} <: AbstractVector{T} window::ClosedInterval{S} offsets::A # A <: AbstractVector end RepeatedInterval(window::ClosedInterval{S}, offsets::A) where {S,A<:AbstractVector} = RepeatedInterval{promote_type(ClosedInterval{S}, eltype(A)), S, A}(window, offsets) Base.size(r::RepeatedInterval) = size(r.offsets) Base.IndexStyle(::Type{<:RepeatedInterval}) = IndexLinear() Base.getindex(r::RepeatedInterval, i::Int) = r.window + r.offsets[i] +(window::ClosedInterval, offsets::AbstractVector) = RepeatedInterval(window, offsets) +(offsets::AbstractVector, window::ClosedInterval) = RepeatedInterval(window, offsets) -(window::ClosedInterval, offsets::AbstractVector) = RepeatedInterval(window, -offsets) -(offsets::AbstractVector, window::ClosedInterval) = RepeatedInterval(-window, offsets) # As a special extension to intervals, we allow specifying Intervals about a # particular index, which is resolved by an axis upon indexing. struct IntervalAtIndex{T} window::ClosedInterval{T} index::Int end atindex(window::ClosedInterval, index::Integer) = IntervalAtIndex(window, index) # And similarly, an AoS -> SoA transform: struct RepeatedIntervalAtIndexes{T,A<:AbstractVector{Int}} <: AbstractVector{IntervalAtIndex{T}} window::ClosedInterval{T} indexes::A # A <: AbstractVector{Int} end atindex(window::ClosedInterval, indexes::AbstractVector) = RepeatedIntervalAtIndexes(window, indexes) Base.size(r::RepeatedIntervalAtIndexes) = size(r.indexes) Base.IndexStyle(::Type{<:RepeatedIntervalAtIndexes}) = IndexLinear() Base.getindex(r::RepeatedIntervalAtIndexes, i::Int) = IntervalAtIndex(r.window, r.indexes[i])
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
3958
# Additions to Base's searchsorted functionality """ searchsortednearest(vec::AbstractVector, x) Like `searchsortedfirst` or `searchsortedlast`, this returns the the index of the element in the sorted vector `vec` whose value is closest to `x`, rounding up. If there are multiple elements that are equally close to `x`, this will return the first index if `x` is less than or equal to those in the vector or the last index if `x` is greater. """ function searchsortednearest(vec::AbstractVector, x) idx = searchsortedfirst(vec, x) # Returns the first idx | vec[idx] >= x if idx > 1 && (idx > length(vec) || (vec[idx] - x) > (x - vec[idx-1])) idx -= 1 # The previous element is closer end return idx end # Base only specializes searching ranges by Numbers; so optimize for Intervals function Base.searchsorted(a::AbstractRange, I::ClosedInterval) searchsortedfirst(a, I.left):searchsortedlast(a, I.right) end """ The internal `Extrapolated` module contains implementations for indexing and searching into ranges beyond their bounds. The `@inbounds` macro is not sufficient since it can be turned off by `--check-bounds=yes`. """ module Extrapolated using IntervalSets: ClosedInterval function searchsortednearest(vec::AbstractRange, x) idx = searchsortedfirst(vec, x) # Returns the first idx | vec[idx] >= x if (getindex(vec, idx) - x) > (x - getindex(vec, idx-1)) idx -= 1 # The previous element is closer end return idx end """ searchsorted(a::AbstractRange, I::ClosedInterval) Return the indices of the range that fall within an interval without checking bounds, possibly extrapolating outside the range if needed. """ function searchsorted(a::AbstractRange, I::ClosedInterval) searchsortedfirst(a, I.left):searchsortedlast(a, I.right) end # When running with `--check-bounds=yes` (like on Travis), the bounds-check isn't elided @inline function getindex(v::AbstractRange{T}, i::Integer) where T convert(T, first(v) + (i-1)*step(v)) end @inline function getindex(r::AbstractRange, s::AbstractRange{<:Integer}) f = first(r) st = oftype(f, f + (first(s)-1)*step(r)) range(st, step=step(r)*step(s), length=length(s)) end getindex(r::AbstractRange, I::Array) = [getindex(r, i) for i in I] @inline getindex(r::StepRangeLen, i::Integer) = Base.unsafe_getindex(r, i) @inline function getindex(r::StepRangeLen, s::AbstractUnitRange) soffset = 1 + (r.offset - first(s)) soffset = clamp(soffset, 1, length(s)) ioffset = first(s) + (soffset-1) if ioffset == r.offset StepRangeLen(r.ref, r.step, length(s), max(1,soffset)) else StepRangeLen(r.ref + (ioffset-r.offset)*r.step, r.step, length(s), max(1,soffset)) end end function searchsortedlast(a::AbstractRange, x) step(a) == 0 && throw(ArgumentError("ranges with a zero step are unsupported")) n = round(Integer,(x-first(a))/step(a))+1 isless(x, getindex(a, n)) ? n-1 : n end function searchsortedfirst(a::AbstractRange, x) step(a) == 0 && throw(ArgumentError("ranges with a zero step are unsupported")) n = round(Integer,(x-first(a))/step(a))+1 isless(getindex(a, n), x) ? n+1 : n end function searchsortedlast(a::AbstractRange{<:Integer}, x) step(a) == 0 && throw(ArgumentError("ranges with a zero step are unsupported")) fld(floor(Integer,x)-first(a),step(a))+1 end function searchsortedfirst(a::AbstractRange{<:Integer}, x) step(a) == 0 && throw(ArgumentError("ranges with a zero step are unsupported")) -fld(floor(Integer,-x)+first(a),step(a))+1 end function searchsortedfirst(a::AbstractRange{<:Integer}, x::Unsigned) step(a) == 0 && throw(ArgumentError("ranges with a zero step are unsupported")) -fld(first(a)-signed(x),step(a))+1 end function searchsortedlast(a::AbstractRange{<:Integer}, x::Unsigned) step(a) == 0 && throw(ArgumentError("ranges with a zero step are unsupported")) fld(signed(x)-first(a),step(a))+1 end end
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
3627
export SortedVector """ A SortedVector is an AbstractVector where the underlying data is ordered (monotonically increasing). Indexing that would unsort the data is prohibited. A SortedVector is a Dimensional axis, and no checking is done to ensure that the data is sorted. Duplicate values are allowed. A SortedVector axis can be indexed with an ClosedInterval, with a value, or with a vector of values. Use of a SortedVector{Tuple} axis allows indexing similar to the hierarchical index of the Python Pandas package or the R data.table package. ### Constructors ```julia SortedVector(x::AbstractVector) ``` ### Keyword Arguments * `x::AbstractVector` : the wrapped vector ### Examples ```julia v = SortedVector(collect([1.; 10.; 10:15.])) A = AxisArray(reshape(1:16, 8, 2), v, [:a, :b]) A[ClosedInterval(8.,12.), :] A[1., :] A[10., :] ## Hierarchical index example with three key levels data = reshape(1.:40., 20, 2) v = collect(zip([:a, :b, :c][rand(1:3,20)], [:x,:y][rand(1:2,20)], [:x,:y][rand(1:2,20)])) idx = sortperm(v) A = AxisArray(data[idx,:], SortedVector(v[idx]), [:a, :b]) A[:b, :] A[[:a,:c], :] A[(:a,:x), :] A[(:a,:x,:x), :] A[ClosedInterval(:a,:b), :] A[ClosedInterval((:a,:x),(:b,:x)), :] ``` """ struct SortedVector{T} <: AbstractVector{T} data::AbstractVector{T} end Base.getindex(v::SortedVector, idx::Int) = v.data[idx] Base.getindex(v::SortedVector, idx::UnitRange) = SortedVector(v.data[idx]) Base.getindex(v::SortedVector, idx::StepRange) = step(idx) > 0 ? SortedVector(v.data[idx]) : error("step must be positive to index a SortedVector") Base.getindex(v::SortedVector, idx::AbstractVector) = issorted(idx) ? SortedVector(v.data[idx]) : error("index must be monotonically increasing to index a SortedVector") Base.length(v::SortedVector) = length(v.data) Base.size(v::SortedVector) = size(v.data) Base.size(v::SortedVector, i) = size(v.data, i) Base.axes(v::SortedVector) = Base.axes(v.data) axistrait(::Type{<:SortedVector}) = Dimensional checkaxis(::SortedVector) = nothing ## Add some special indexing for SortedVector{Tuple}'s to achieve something like ## Panda's hierarchical indexing axisindexes(ax::Axis{S,SortedVector{T}}, idx) where {T<:Tuple,S} = searchsorted(ax.val, idx, 1, length(ax.val), Base.ord(_isless,identity,false,Base.Forward)) axisindexes(ax::Axis{S,SortedVector{T}}, idx::AbstractArray) where {T<:Tuple,S} = vcat([axisindexes(ax, i) for i in idx]...) ## Use a modification of `isless`, so that (:a,) is not less than (:a, :b). ## This allows for more natural indexing. _isless(x,y) = isless(x,y) function _isless(t1::Tuple, t2::Tuple) n1, n2 = length(t1), length(t2) for i = 1:min(n1, n2) a, b = t1[i], t2[i] if !isequal(a, b) return _isless(a, b) end end return false end # Additionally, we allow comparing scalars against tuples, which enables # indexing by the first scalar in the tuple _isless(t1::Tuple, t2) = _isless(t1,(t2,)) _isless(t1, t2::Tuple) = _isless((t1,),t2) # And then we add special comparisons to Intervals, because by default they # only define comparisons against Numbers and Dates. We're able to do this on # our own local function... doing this directly on isless itself would be # fraught with trouble. _isless(a::ClosedInterval, b::ClosedInterval) = _isless(a.right, b.left) _isless(t1::ClosedInterval, t2::Tuple) = _isless(t1, ClosedInterval(t2,t2)) _isless(t1::Tuple, t2::ClosedInterval) = _isless(ClosedInterval(t1,t1), t2) _isless(a::ClosedInterval, b) = _isless(a, ClosedInterval(b,b)) _isless(a, b::ClosedInterval) = _isless(ClosedInterval(a,a), b)
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
1715
# Test CategoricalVector with a hierarchical index (indexed using Tuples) data = reshape(1.:40., 20, 2) # v = collect(zip([:a, :b, :c][rand(1:3,20)], [:x,:y][rand(1:2,20)], [:x,:y][rand(1:2,20)])) v = [(:b, :x, :y), (:c, :y, :y), (:b, :x, :y), (:a, :y, :y), (:b, :y, :y), (:c, :y, :y), (:b, :x, :x), (:c, :x, :y), (:c, :y, :y), (:a, :y, :y), (:a, :y, :y), (:b, :x, :y), (:c, :x, :y), (:c, :y, :y), (:b, :x, :y), (:a, :x, :x), (:c, :x, :x), (:c, :y, :y), (:b, :y, :x), (:b, :y, :y)] idx = sortperm(v) A = AxisArray(data[idx,:], AxisArrays.CategoricalVector(v[idx]), [:a, :b]) @test A[:b, :] == A[5:12, :] @test A[[:a,:c], :] == A[[1:4;13:end], :] @test A[(:a,:y), :] == A[2:4, :] @test A[(:c,:y,:y), :] == A[16:end, :] @test AxisArrays.axistrait(AxisArrays.axes(A)[1]) <: AxisArrays.Categorical v = AxisArrays.CategoricalVector(collect([1; 8; 10:15])) @test size(v) == (8,) @test size(v, 1) == 8 @test size(v, 2) == 1 @test AxisArrays.axistrait(AxisArrays.axes(A)[1]) <: AxisArrays.Categorical A = AxisArray(reshape(1:16, 8, 2), v, [:a, :b]) @test A[Axis{:row}(AxisArrays.CategoricalVector([15]))] == AxisArray(reshape(A.data[8, :], 1, 2), AxisArrays.CategoricalVector([15]), [:a, :b]) @test A[Axis{:row}(AxisArrays.CategoricalVector([15])), 1] == AxisArray([A.data[8, 1]], AxisArrays.CategoricalVector([15])) @test A[atvalue(15), :] == AxisArray(A.data[8, :], [:a, :b]) @test A[atvalue(15), 1] == 8 @test AxisArrays.axistrait(AxisArrays.axes(A)[1]) <: AxisArrays.Categorical # TODO: maybe make this work? Would require removing or modifying Base.getindex(A::AxisArray, idxs::Idx...) # @test A[AxisArrays.CategoricalVector([15]), 1] == AxisArray([A.data[8, 1]], AxisArrays.CategoricalVector([15]))
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
4744
# cat A1data, A2data = [1 3; 2 4], [5 7; 6 8] A1 = AxisArray(A1data, Axis{:Row}([:First, :Second]), Axis{:Col}([:A, :B])) A2 = AxisArray(A2data, Axis{:Row}([:Third, :Fourth]), Axis{:Col}([:A, :B])) @test isa(cat(A1, A2, dims=1), AxisArray) @test cat(A1, A2, dims=1) == AxisArray(vcat(A1data, A2data), Axis{:Row}([:First, :Second, :Third, :Fourth]), Axis{:Col}([:A, :B])) A2 = AxisArray(A2data, Axis{:Row}([:First, :Second]), Axis{:Col}([:C, :D])) @test isa(cat(A1, A2, dims=2), AxisArray) @test cat(A1, A2, dims=2) == AxisArray(hcat(A1data, A2data), Axis{:Row}([:First, :Second]), Axis{:Col}([:A, :B, :C, :D])) A2 = AxisArray(A2data, Axis{:Row}([:First, :Second]), Axis{:Col}([:A, :B])) @test isa(cat(A1, A2, dims=3), AxisArray) @test cat(A1, A2, dims=3) == AxisArray(cat(A1data, A2data, dims=3), Axis{:Row}([:First, :Second]), Axis{:Col}([:A, :B]), Axis{:page}(1:2)) A1 = AxisArray(A1data, :Row, :Col) A2 = AxisArray(A2data, :Row, :Col) @test_throws ArgumentError cat(A1, A2, dims=2) @test cat(A1, A2, dims=3) == AxisArray(cat(A1data, A2data, dims=3), :Row, :Col) # merge Adata, Bdata, Cdata = randn(4,4,2), randn(4,4,2), randn(4,4,2) A = AxisArray(Adata, Axis{:X}([1,2,3,4]), Axis{:Y}([10.,20,30,40]), Axis{:Z}([:First, :Second])) B = AxisArray(Bdata, Axis{:X}([3,4,5,6]), Axis{:Y}([30.,40,50,60]), Axis{:Z}([:First, :Second])) ABdata = zeros(6,6,2) ABdata[1:4,1:4,:] = Adata ABdata[3:6,3:6,:] = Bdata @test merge(A,B) == AxisArray(ABdata, Axis{:X}([1,2,3,4,5,6]), Axis{:Y}([10.,20,30,40,50,60]), Axis{:Z}([:First, :Second])) @test_throws ErrorException AxisArrays.axismerge(:notouter, Axis{:X}([1,2,3,4]), Axis{:X}([1,2,3,4])) AC = AxisArray(cat(Adata, Cdata, dims=3), :X, :Y, :Z) B2 = AxisArray(Bdata, :X, :Y, :Z) @test merge(AC,B2) == AxisArray(cat(Bdata, Cdata, dims=3), :X, :Y, :Z) # join ABdata = zeros(6,6,2,2) ABdata[1:4,1:4,:,1] = Adata ABdata[3:6,3:6,:,2] = Bdata @test join(A,B) == AxisArray(ABdata, Axis{:X}([1,2,3,4,5,6]), Axis{:Y}([10.,20,30,40,50,60]), Axis{:Z}([:First, :Second])) @test join(A,B, newaxis=Axis{:JoinAxis}([:A, :B])) == AxisArray(ABdata, Axis{:X}([1,2,3,4,5,6]), Axis{:Y}([10.,20,30,40,50,60]), Axis{:Z}([:First, :Second]), Axis{:JoinAxis}([:A, :B])) @test join(A,B,method=:inner) == AxisArray(ABdata[3:4, 3:4, :, :], Axis{:X}([3,4]), Axis{:Y}([30.,40]), Axis{:Z}([:First, :Second])) @test join(A,B,method=:left) == AxisArray(ABdata[1:4, 1:4, :, :], A.axes...) @test join(A,B,method=:right) == AxisArray(ABdata[3:6, 3:6, :, :], B.axes...) @test join(A,B,method=:outer) == join(A,B) # collapse A1 = AxisArray(A1data, Axis{:X}(1:2), Axis{:Y}(1:2)) A2 = AxisArray(reshape(A2data, size(A2data)..., 1), Axis{:X}(1:2), Axis{:Y}(1:2), Axis{:Z}([:foo])) @test @inferred(collapse(Val(2), A1, A2)) == AxisArray(cat(A1data, A2data, dims=3), Axis{:X}(1:2), Axis{:Y}(1:2), Axis{:collapsed}(AxisArrays.CategoricalVector([(1,), (2, :foo)]))) @test @inferred(collapse(Val(2), A1)) == AxisArray(reshape(A1, 2, 2, 1), Axis{:X}(1:2), Axis{:Y}(1:2), Axis{:collapsed}(AxisArrays.CategoricalVector([(1,)]))) @test @inferred(collapse(Val(2), A1)) == AxisArray(reshape(A1.data, size(A1)..., 1), AxisArrays.axes(A1)..., Axis{:collapsed}(AxisArrays.CategoricalVector([(1,)]))) @test @inferred(collapse(Val(2), (:A1, :A2), A1, A2)) == AxisArray(cat(A1data, A2data, dims=3), Axis{:X}(1:2), Axis{:Y}(1:2), Axis{:collapsed}(AxisArrays.CategoricalVector([(:A1,), (:A2, :foo)]))) @test @inferred(collapse(Val(2), (:foo,), A1)) == AxisArray(reshape(A1, 2, 2, 1), Axis{:X}(1:2), Axis{:Y}(1:2), Axis{:collapsed}(AxisArrays.CategoricalVector([(:foo,)]))) @test @inferred(collapse(Val(2), (:a,), A1)) == AxisArray(reshape(A1.data, size(A1)..., 1), AxisArrays.axes(A1)..., Axis{:collapsed}(AxisArrays.CategoricalVector([(:a,)]))) @test @inferred(collapse(Val(0), A1)) == AxisArray(vec(A1data), Axis{:collapsed}(AxisArrays.CategoricalVector(vec(collect(Iterators.product((1,), axisvalues(A1)...)))))) @test @inferred(collapse(Val(1), A1)) == AxisArray(A1data, Axis{:row}(1:2), Axis{:collapsed}(AxisArrays.CategoricalVector(vec(collect(Iterators.product((1,), axisvalues(A1)[2])))))) @test @inferred(collapse(Val(1), (1,), A1)) == collapse(Val(1), A1) @test @inferred(collapse(Val(1), Array{Int, 2}, A1)) == collapse(Val(1), A1) @test @inferred(collapse(Val(1), Array{Int, 2}, (1,), A1)) == collapse(Val(1), A1) @test_throws ArgumentError collapse(Val(-1), A1) @test_throws ArgumentError collapse(Val(10), A1) A1ᵀ = transpose(A1) @test_throws ArgumentError collapse(Val(-1), A1, A1ᵀ) @test_throws ArgumentError collapse(Val(1), A1, A1ᵀ) @test_throws ArgumentError collapse(Val(10), A1, A1ᵀ)
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
14249
macro maybe_test_broken(brokenif, args...) if VERSION < v"1" return quote @test_broken $(esc(args...)) end else return quote if $(esc(brokenif)) @test_broken $(esc(args...)) else @test $(esc(args...)) end end end end # FIXME: type stability broken. The following should NOT error A = @inferred(AxisArray(reshape(1:24, 2,3,4), .1:.1:.2, .1:.1:.3, .1:.1:.4)) @test_throws ArgumentError AxisArray(reshape(1:24, 2,3,4), .1:.1:.1, .1:.1:.3, .1:.1:.4) @test_throws ArgumentError AxisArray(reshape(1:24, 2,3,4), .1:.1:.1, .1:.1:.3) @test_throws ArgumentError AxisArray(reshape(1:24, 2,3,4), .1:.1:.2, .1:.1:.3, .1:.1:.4, 1:1) @test parent(A) === reshape(1:24, 2,3,4) # Test iteration for (a,b) in zip(A, A.data) @test a == b end # Cartesian indexing for idx in eachindex(A) @test A[idx] == A.data[idx] end # Conversion and similar @test Array(A) == A.data @test reshape(A, length(A)) == A.data[:] B = similar(A, Float64) for i in eachindex(A) B[i] = A[i] end @test A == B for i=1:length(A) @test float(A[i]) === B[i] end C = similar(A, 0) @test isa(C, Array{Int,1}) @test C == [] D = similar(A) @test size(A) == size(D) @test eltype(A) == eltype(D) # permutedims and transpose @test axisnames(permutedims(A, (2,1,3))) == (:col, :row, :page) @test axisnames(permutedims(A, (2,3,1))) == (:col, :page, :row) @test axisnames(permutedims(A, (3,2,1))) == (:page, :col, :row) @test axisnames(permutedims(A, (3,1,2))) == (:page, :row, :col) for perm in ((:col, :row, :page), (:col, :page, :row), (:page, :col, :row), (:page, :row, :col), (:row, :page, :col), (:row, :col, :page)) @test axisnames(permutedims(A, perm)) == perm end @test axisnames(permutedims(A, (:col,))) == (:col, :row, :page) @test axisnames(permutedims(A, (:page,))) == (:page, :row, :col) A2 = @inferred(AxisArray(reshape(1:15, 3, 5))) A1 = AxisArray(1:5, :t) for f in (transpose, adjoint) @test f(A2).data == f(A2.data) @test axisnames(f(A2)) == (:col, :row) @test f(A1).data == f(A1.data) @test axisnames(f(A1)) == (:transpose, :t) end # Test modifying a particular axis E = similar(A, Float64, Axis{:col}(1:2)) @test size(E) == (2,2,4) @test eltype(E) == Float64 F = similar(A, Axis{:row}()) @test size(F) == size(A)[2:end] @test eltype(F) == eltype(A) @test axisvalues(F) == axisvalues(A)[2:end] @test axisnames(F) == axisnames(A)[2:end] G = similar(A, Float64) @test size(G) == size(A) @test eltype(G) == Float64 @test axisvalues(A) == axisvalues(G) @test axisnames(A) == axisnames(G) H = similar(A, 1,1,1) @test size(H) == (1,1,1) @test eltype(H) == eltype(A) @test typeof(H) <: Array H = similar(A, Float64, 1,1,1) @test size(H) == (1,1,1) @test eltype(H) == Float64 @test typeof(H) <: Array # Size @test size(A, 1) == size(A, Axis{1}) == size(A, Axis{:row}) == size(A, Axis{:row}()) ## Test constructors # No axis or time args A = AxisArray(1:3) @test A.data == 1:3 @test axisnames(A) == (:row,) @inferred(axisnames(A)) @test axisvalues(A) == (1:3,) A = AxisArray(reshape(1:16, 2,2,2,2)) @test A.data == reshape(1:16, 2,2,2,2) @test axisnames(A) == (:row,:col,:page,:dim_4) @inferred(axisnames(A)) @test axisvalues(A) == (1:2, 1:2, 1:2, 1:2) # Just axis names A = AxisArray(1:3, :a) @test A.data == 1:3 @test axisnames(A) == (:a,) @inferred(axisnames(A)) @test axisvalues(A) == (1:3,) A = AxisArray([1 3; 2 4], :a) @test A.data == [1 3; 2 4] @test axisnames(A) == (:a, :col) @inferred(axisnames(A)) @test axisvalues(A) == (1:2, 1:2) # Just axis values A = @inferred(AxisArray(1:3, .1:.1:.3)) @test A.data == 1:3 @test axisnames(A) == (:row,) @inferred(axisnames(A)) @test axisvalues(A) == (.1:.1:.3,) # FIXME: reintroduce inferred A = @inferred(AxisArray(reshape(1:16, 2,2,2,2), .5:.5:1)) @test A.data == reshape(1:16, 2,2,2,2) @test axisnames(A) == (:row,:col,:page,:dim_4) @inferred(axisnames(A)) @test axisvalues(A) == (.5:.5:1, 1:2, 1:2, 1:2) A = AxisArray([0]', :x, :y) @test axisnames(dropdims(A, dims=1)) == (:y,) @test axisnames(dropdims(A, dims=2)) == (:x,) @test axisnames(dropdims(A, dims=(1,2))) == axisnames(dropdims(A, dims=(2,1))) == () @test axisnames((dropdims(A, dims=Axis{:x}))) == (:y,) @test axisnames((dropdims(A, dims=Axis{:x,UnitRange{Int}}))) == (:y,) @test axisnames((dropdims(A, dims=Axis{:y}))) == (:x,) @test axisnames((dropdims(dropdims(A, dims=Axis{:x}), dims=Axis{:y}))) == () @test_broken @inferred(dropdims(A, dims=Axis{:x})) @test_broken @inferred(dropdims(A, dims=Axis{:x,UnitRange{Int}})) @test_broken @inferred(dropdims(A, dims=Axis{:y})) @test_broken @inferred(dropdims(dropdims(A, dims=Axis{:x}), dims=Axis{:y})) # Names, steps, and offsets B = AxisArray([1 4; 2 5; 3 6], (:x, :y), (0.2, 100)) @test axisnames(B) == (:x, :y) @test axisvalues(B) == (0:0.2:0.4, 0:100:100) B = AxisArray([1 4; 2 5; 3 6], (:x, :y), (0.2, 100), (-3,14)) @test axisnames(B) == (:x, :y) @test axisvalues(B) == (-3:0.2:-2.6, 14:100:114) # Keyword constructor C = AxisArray([1 4; 2 5; 3 6], x=10:10:30, y=[:a, :b]) @test axisnames(C) == (:x, :y) @test axisvalues(C) == (10:10:30, [:a, :b]) @test @inferred(AxisArray(parent(C), x=1:3, y=1:2)) isa AxisArray @test AxisArrays.HasAxes(A) == AxisArrays.HasAxes{true}() @test AxisArrays.HasAxes([1]) == AxisArrays.HasAxes{false}() @test_throws ArgumentError AxisArray(reshape(1:24, 2,3,4), Axis{1}(.1:.1:.2), Axis{2}(1//10:1//10:3//10), Axis{3}(["a", "b", "c", "d"])) # Axis need to be symbols @test_throws ArgumentError AxisArray(reshape(1:24, 2,3,4), Axis{:x}(.1:.1:.2), Axis{:y}(1//10:1//10:3//10), Axis{:z}(["a", "b", "c", "d"]), Axis{:_}(1:1)) # Too many Axes A = @inferred(AxisArray(reshape(1:24, 2,3,4), Axis{:x}(.1:.1:.2), Axis{:y}(1//10:1//10:3//10), Axis{:z}(["a", "b", "c", "d"]))) # recursive constructor @test A === @inferred AxisArray(A) @test axisnames(AxisArray(A, Axis{:yoyo}(1:length(A[Axis{:x}])))) == (:yoyo, :y, :z) @test AxisArray(A, Axis{:yoyo}(1:length(A[Axis{:x}]))).data === A.data @test AxisArray(A, (Axis{:yoyo}(1:length(A[Axis{:x}])),)).data === A.data @test axisnames(AxisArray(A, :something, :in, :the)) == (:something, :in, :the) @test AxisArray(A, :way, :you, :move).data === A.data @test axisnames(AxisArray(A, (:c, :a, :b), (2, 3, 4))) == (:c, :a, :b) @test AxisArray(A, (:c, :a, :b), (2, 3, 4)).data === A.data @inferred AxisArray(A, Axis{:yoyo}(1:length(A[Axis{:x}]))) @inferred AxisArray(A, (Axis{:yoyo}(1:length(A[Axis{:x}])),)) # Test axisdim @test axisdim(A, Axis{:x}) == axisdim(A, Axis{:x}()) == 1 @test axisdim(A, Axis{:y}) == axisdim(A, Axis{:y}()) == 2 @test axisdim(A, Axis{:z}) == axisdim(A, Axis{:z}()) == 3 # Test axes @test @inferred(AxisArrays.axes(A)) == (Axis{:x}(.1:.1:.2), Axis{:y}(1//10:1//10:3//10), Axis{:z}(["a", "b", "c", "d"])) @test @inferred(AxisArrays.axes(A, Axis{:x})) == @inferred(AxisArrays.axes(A, Axis{:x}())) == Axis{:x}(.1:.1:.2) @test @inferred(AxisArrays.axes(A, Axis{:y})) == @inferred(AxisArrays.axes(A, Axis{:y}())) == Axis{:y}(1//10:1//10:3//10) @test @inferred(AxisArrays.axes(A, Axis{:z})) == @inferred(AxisArrays.axes(A, Axis{:z}())) == Axis{:z}(["a", "b", "c", "d"]) @test AxisArrays.axes(A, 2) == Axis{:y}(1//10:1//10:3//10) Aplain = rand(2,3) @test @inferred(AxisArrays.axes(Aplain)) === AxisArrays.axes(AxisArray(Aplain)) @test AxisArrays.axes(Aplain, 1) === AxisArrays.axes(AxisArray(Aplain))[1] @test AxisArrays.axes(Aplain, 2) === AxisArrays.axes(AxisArray(Aplain))[2] @test Axis{:col}(1) == Axis{:col}(1) @test Axis{:col}(1) != Axis{:com}(1) @test Axis{:x}(1:3) == Axis{:x}(Base.OneTo(3)) @test hash(Axis{:col}(1)) == hash(Axis{:col}(1.0)) @test hash(Axis{:row}()) != hash(Axis{:col}()) @test hash(Axis{:x}(1:3)) == hash(Axis{:x}(Base.OneTo(3))) @test AxisArrays.axistype(Axis{1}(1:2)) == typeof(1:2) @test AxisArrays.axistype(Axis{1,UInt32}) == UInt32 @test axisnames(Axis{1}, Axis{2}, Axis{3}) == (1,2,3) @test Axis{:row}(2:7)[4] == 5 @test eltype(Axis{:row}(1.0:1.0:3.0)) == Float64 @test size(Axis{:row}(2:7)) === (6,) T = A[AxisArrays.Axis{:x}] @test T[end] == 0.2 @test Base.axes(Axis{:row}(2:7)) === (Base.OneTo(6),) @test Base.axes(Axis{:row}(-1:1), 1) === Base.OneTo(3) @test length(Axis{:col}(-1:2)) === 4 @test AxisArrays.axisname(Axis{:foo}(1:2)) == :foo @test AxisArrays.axisname(Axis{:foo}) == :foo @test first(Axis{:row}(1:3)) == 1 @test step(Axis{:row}(1:3)) == 1 @test last(Axis{:row}(1:3)) == 3 # Test Timetype axis construction dt, vals = DateTime(2010, 1, 2, 3, 40), randn(5,2) A = @inferred(AxisArray(vals, Axis{:Timestamp}(dt-Dates.Hour(2):Dates.Hour(1):dt+Dates.Hour(2)), Axis{:Cols}([:A, :B]))) @test A[:, :A].data == vals[:, 1] @test A[dt, :].data == vals[3, :] @test AxisArrays.axistrait(A.axes[1]) == AxisArrays.Dimensional @test AxisArrays.axistrait(typeof(A.axes[1])) == AxisArrays.Dimensional @test AxisArrays.axistrait(A.axes[1].val) == AxisArrays.Dimensional @test AxisArrays.axistrait(typeof(A.axes[1].val)) == AxisArrays.Dimensional @test AxisArrays.axistrait(A.axes[2]) == AxisArrays.Categorical @test AxisArrays.axistrait(typeof(A.axes[2])) == AxisArrays.Categorical @test AxisArrays.axistrait(A.axes[2].val) == AxisArrays.Categorical @test AxisArrays.axistrait(typeof(A.axes[2].val)) == AxisArrays.Categorical @test_throws ArgumentError AxisArrays.checkaxis(Axis{:x}(10:-1:1)) @test_throws ArgumentError AxisArrays.checkaxis(10:-1:1) # Simply run the display method to ensure no stupid errors show(IOBuffer(),MIME("text/plain"),A) # With unconventional indices import OffsetArrays # import rather than using because OffsetArrays has a deprecation for .. A = AxisArray(OffsetArrays.OffsetArray([5,3,4], -1:1), :x) @test AxisArrays.axes(A) == (Axis{:x}(-1:1),) @test A[-1] == 5 A[0] = 12 @test A.data[0] == 12 @test Base.axes(A) == Base.axes(A.data) @test LinearIndices(A) == LinearIndices(A.data) A = AxisArray(OffsetArrays.OffsetArray(rand(4,5), -1:2, 5:9), :x, :y) @test Base.axes(A) == Base.axes(A.data) @test LinearIndices(A) == LinearIndices(A.data) @test AxisArrays.matchingdims((A, A)) f1(x) = x < 0 A2 = map(f1, A) @test isa(A2, AxisArray) @test A2.axes == A.axes @test A2.data == map(f1, A.data) map!(~, A2, A2) @test isa(A2, AxisArray) @test A2.axes == A.axes @test A2.data == map(~, map(f1, A).data) A2 = map(+, A, A) @test isa(A2, AxisArray) @test A2.axes == A.axes @test A2.data == A.data .+ A.data map!(*, A2, A, A) @test isa(A2, AxisArray) @test A2.axes == A.axes @test A2.data == A.data .* A.data # Reductions (issue #55) A = AxisArray(collect(reshape(1:15,3,5)), :y, :x) B = @inferred(AxisArray(collect(reshape(1:15,3,5)), Axis{:y}(0.1:0.1:0.3), Axis{:x}(10:10:50))) arrays = (A, B) functions = (sum, minimum) for C in arrays local C for op in functions # together, cover both reduced_indices and reduced_indices0 axv = axisvalues(C) @maybe_test_broken (op === minimum) @inferred(op(C; dims=1)) isa AxisArray C1 = op(C; dims=1) @test typeof(C1) == typeof(C) @test axisnames(C1) == (:y,:x) @test axisvalues(C1) === (oftype(axv[1], Base.OneTo(1)), axv[2]) @maybe_test_broken (op === minimum) @inferred(op(C, dims=2)) isa AxisArray C2 = op(C, dims=2) @test typeof(C2) == typeof(C) @test axisnames(C2) == (:y,:x) @test axisvalues(C2) === (axv[1], oftype(axv[2], Base.OneTo(1))) @maybe_test_broken (op === minimum) @inferred(op(C, dims=(1,2))) isa AxisArray C12 = op(C, dims=(1,2)) @test typeof(C12) == typeof(C) @test axisnames(C12) == (:y,:x) @test axisvalues(C12) === (oftype(axv[1], Base.OneTo(1)), oftype(axv[2], Base.OneTo(1))) if op == sum @test C1 == [6 15 24 33 42] @test C2 == reshape([35,40,45], 3, 1) @test C12 == reshape([120], 1, 1) else @test C1 == [1 4 7 10 13] @test C2 == reshape([1,2,3], 3, 1) @test C12 == reshape([1], 1, 1) end # TODO: add @inferred @test (op(C, dims=Axis{:y})) == C1 @test (op(C, dims=Axis{:x})) == C2 @test (op(C, dims=(Axis{:y},Axis{:x}))) == C12 @test (op(C, dims=Axis{:y}())) == C1 @test (op(C, dims=Axis{:x}())) == C2 @test (op(C, dims=(Axis{:y}(),Axis{:x}()))) == C12 end end function typeof_noaxis(::AxisArray{T,N,D}) where {T,N,D} AxisArray{T,N,D} end # uninferrable C = AxisArray(collect(reshape(1:15,3,5)), Axis{:y}([:a,:b,:c]), Axis{:x}(["a","b","c","d","e"])) for op in functions # together, cover both reduced_indices and reduced_indices0 axv = axisvalues(C) C1 = op(C, dims=1) @test typeof_noaxis(C1) == typeof_noaxis(C) @test axisnames(C1) == (:y,:x) @test axisvalues(C1) === (Base.OneTo(1), axv[2]) C2 = op(C, dims=2) @test typeof_noaxis(C2) == typeof_noaxis(C) @test axisnames(C2) == (:y,:x) @test axisvalues(C2) === (axv[1], Base.OneTo(1)) C12 = op(C, dims=(1,2)) @test typeof_noaxis(C12) == typeof_noaxis(C) @test axisnames(C12) == (:y,:x) @test axisvalues(C12) === (Base.OneTo(1), Base.OneTo(1)) if op == sum @test C1 == [6 15 24 33 42] @test C2 == reshape([35,40,45], 3, 1) @test C12 == reshape([120], 1, 1) else @test C1 == [1 4 7 10 13] @test C2 == reshape([1,2,3], 3, 1) @test C12 == reshape([1], 1, 1) end # TODO: These should be @inferred, but are currently broken @test (op(C, dims=Axis{:y})) == C1 @test (op(C, dims=Axis{:x})) == C2 # Unfortunately the type of (Axis{:y},Axis{:x}) is Tuple{UnionAll,UnionAll} so methods will not specialize @test (op(C, dims=(Axis{:y},Axis{:x}))) == C12 @test (op(C, dims=Axis{:y}())) == C1 @test (op(C, dims=Axis{:x}())) == C2 @test (op(C, dims=(Axis{:y}(),Axis{:x}()))) == C12 end C = AxisArray(collect(reshape(1:15,3,5)), Axis{:y}([:a,:b,:c]), Axis{:x}(["a","b","c","d","e"])) @test occursin(r"axes:\n\s+:y,", summary(C))
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
15317
A = AxisArray(reshape(1:24, 2,3,4), .1:.1:.2, .1:.1:.3, .1:.1:.4) D = similar(A) D[1,1,1,1,1] = 10 @test @inferred(D[1,1,1,1,1]) == @inferred(D[1]) == D.data[1] == 10 @test @inferred(D[1,1,1,:]) == @inferred(D[1,1,1,1:1]) == @inferred(D[1,1,1,[1]]) == AxisArray([10], Axis{:dim_4}(Base.OneTo(1))) # Test slices @test A == A.data @test A[:,:,:] == A[Axis{:row}(:)] == A[Axis{:col}(:)] == A[Axis{:page}(:)] == A.data[:,:,:] # Test UnitRange slices @test @inferred(A[1:2,:,:]) == A.data[1:2,:,:] == @inferred(A[Axis{:row}(1:2)]) == @inferred(A[Axis{1}(1:2)]) == @inferred(A[Axis{:row}(ClosedInterval(-Inf,Inf))]) == @inferred(A[[true,true],:,:]) @test @inferred(view(A,1:2,:,:)) == A.data[1:2,:,:] == @inferred(view(A,Axis{:row}(1:2))) == @inferred(view(A,Axis{1}(1:2))) == @inferred(view(A,Axis{:row}(ClosedInterval(-Inf,Inf)))) == @inferred(view(A,[true,true],:,:)) @test @inferred(A[:,1:2,:]) == A.data[:,1:2,:] == @inferred(A[Axis{:col}(1:2)]) == @inferred(A[Axis{2}(1:2)]) == @inferred(A[Axis{:col}(ClosedInterval(0.0, .25))]) == @inferred(A[:,[true,true,false],:]) @test @view(A[:,1:2,:]) == A.data[:,1:2,:] == @view(A[Axis{:col}(1:2)]) == @view(A[Axis{2}(1:2)]) == @view(A[Axis{:col}(ClosedInterval(0.0, .25))]) == @view(A[:,[true,true,false],:]) @test A[:,:,1:2] == A.data[:,:,1:2] == A[Axis{:page}(1:2)] == A[Axis{3}(1:2)] == A[Axis{:page}(ClosedInterval(-1., .22))] == A[:,:,[true,true,false,false]] @test @view(A[:,:,1:2]) == @view(A.data[:,:,1:2]) == @view(A[Axis{:page}(1:2)]) == @view(A[Axis{3}(1:2)]) == @view(A[Axis{:page}(ClosedInterval(-1., .22))]) == @view(A[:,:,[true,true,false,false]]) # Test scalar slices @test A[2,:,:] == A.data[2,:,:] == A[Axis{:row}(2)] @test A[:,2,:] == A.data[:,2,:] == A[Axis{:col}(2)] @test A[:,:,2] == A.data[:,:,2] == A[Axis{:page}(2)] # Test fallback methods @test A[[1 2; 3 4]] == @view(A[[1 2; 3 4]]) == A.data[[1 2; 3 4]] VERSION >= v"1.0.0-rc" && @test_throws BoundsError A[] # Test axis restrictions @test A[:,:,:].axes == A.axes @test A[Axis{:row}(1:2)].axes[1].val == A.axes[1].val[1:2] @test A[Axis{:row}(1:2)].axes[2:3] == A.axes[2:3] @test A[Axis{:col}(1:2)].axes[2].val == A.axes[2].val[1:2] @test A[Axis{:col}(1:2)].axes[[1,3]] == A.axes[[1,3]] @test A[Axis{:page}(1:2)].axes[3].val == A.axes[3].val[1:2] @test A[Axis{:page}(1:2)].axes[1:2] == A.axes[1:2] # Linear indexing across multiple dimensions drops tracking of those dims @test A[:].axes[1].val == 1:length(A) B2 = reshape(A, Val(2)) B = B2[1:2,:] @test B.axes[1].val == A.axes[1].val[1:2] @test B.axes[2].val == 1:Base.trailingsize(A,2) # Logical indexing all_inds = collect(1:length(A)) odd_inds = collect(1:2:length(A)) @test @inferred(A[trues(size(A))]) == A[:] == A[all_inds] @test AxisArrays.axes(A[trues(size(A))]) == AxisArrays.axes(A[all_inds]) @test @inferred(A[isodd.(A)]) == A[1:2:length(A)] == A[odd_inds] @test AxisArrays.axes(A[isodd.(A)]) == AxisArrays.axes(A[odd_inds]) @test @inferred(A[vec(trues(size(A)))]) == A[:] == A[all_inds] @test AxisArrays.axes(A[vec(trues(size(A)))]) == AxisArrays.axes(A[all_inds]) @test @inferred(A[vec(isodd.(A))]) == A[1:2:length(A)] == A[odd_inds] @test AxisArrays.axes(A[vec(isodd.(A))]) == AxisArrays.axes(A[odd_inds]) B = AxisArray(reshape(1:15, 5,3), .1:.1:0.5, [:a, :b, :c]) # Test indexing by Intervals @test B[ClosedInterval(0.0, 0.5), :] == B[ClosedInterval(0.0, 0.5)] == B[:,:] @test B[ClosedInterval(0.0, 0.3), :] == B[ClosedInterval(0.0, 0.3)] == B[1:3,:] @test B[ClosedInterval(0.15, 0.3), :] == B[ClosedInterval(0.15, 0.3)] == B[2:3,:] @test B[ClosedInterval(0.2, 0.5), :] == B[ClosedInterval(0.2, 0.5)] == B[2:end,:] @test B[ClosedInterval(0.2, 0.6), :] == B[ClosedInterval(0.2, 0.6)] == B[2:end,:] @test @view(B[ClosedInterval(0.0, 0.5), :]) == @view(B[ClosedInterval(0.0, 0.5)]) == B[:,:] @test @view(B[ClosedInterval(0.0, 0.3), :]) == @view(B[ClosedInterval(0.0, 0.3)]) == B[1:3,:] @test @view(B[ClosedInterval(0.15, 0.3), :]) == @view(B[ClosedInterval(0.15, 0.3)]) == B[2:3,:] @test @view(B[ClosedInterval(0.2, 0.5), :]) == @view(B[ClosedInterval(0.2, 0.5)]) == B[2:end,:] @test @view(B[ClosedInterval(0.2, 0.6), :]) == @view(B[ClosedInterval(0.2, 0.6)]) == B[2:end,:] # Test Categorical indexing @test @inferred(B[:, :a]) == @view(B[:, :a]) == B[:,1] @test @inferred(B[:, :c]) == @view(B[:, :c]) == B[:,3] @test @inferred(B[:, [:a]]) == @view(B[:, [:a]]) == B[:,[1]] @test @inferred(B[:, [:c]]) == @view(B[:, [:c]]) == B[:,[3]] @test @inferred(B[:, [:a,:c]]) == @view(B[:, [:a,:c]]) == B[:,[1,3]] @test B[Axis{:row}(ClosedInterval(0.15, 0.3))] == @view(B[Axis{:row}(ClosedInterval(0.15, 0.3))]) == B[2:3,:] # Test indexing by Intervals that aren't of the form step:step:last B = AxisArray(reshape(1:15, 5,3), 1.1:0.1:1.5, [:a, :b, :c]) @test B[ClosedInterval(1.0, 1.5), :] == B[ClosedInterval(1.0, 1.5)] == B[:,:] @test B[ClosedInterval(1.0, 1.3), :] == B[ClosedInterval(1.0, 1.3)] == B[1:3,:] @test B[ClosedInterval(1.15, 1.3), :] == B[ClosedInterval(1.15, 1.3)] == B[2:3,:] @test B[ClosedInterval(1.2, 1.5), :] == B[ClosedInterval(1.2, 1.5)] == B[2:end,:] @test B[ClosedInterval(1.2, 1.6), :] == B[ClosedInterval(1.2, 1.6)] == B[2:end,:] @test @view(B[ClosedInterval(1.0, 1.5), :]) == @view(B[ClosedInterval(1.0, 1.5)]) == B[:,:] @test @view(B[ClosedInterval(1.0, 1.3), :]) == @view(B[ClosedInterval(1.0, 1.3)]) == B[1:3,:] @test @view(B[ClosedInterval(1.15, 1.3), :]) == @view(B[ClosedInterval(1.15, 1.3)]) == B[2:3,:] @test @view(B[ClosedInterval(1.2, 1.5), :]) == @view(B[ClosedInterval(1.2, 1.5)]) == B[2:end,:] @test @view(B[ClosedInterval(1.2, 1.6), :]) == @view(B[ClosedInterval(1.2, 1.6)]) == B[2:end,:] A = AxisArray(reshape(1:256, 4,4,4,4), Axis{:d1}(.1:.1:.4), Axis{:d2}(1//10:1//10:4//10), Axis{:d3}(["1","2","3","4"]), Axis{:d4}([:a, :b, :c, :d])) ax1 = AxisArrays.axes(A)[1] @test A[Axis{:d1}(2)] == A[ax1(2)] @test A.data[1:2,:,:,:] == A[Axis{:d1}(ClosedInterval(.1,.2))] == A[ClosedInterval(.1,.2),:,:,:] == A[ClosedInterval(.1,.2),:,:,:,1] == A[ClosedInterval(.1,.2)] @test A.data[:,1:2,:,:] == A[Axis{:d2}(ClosedInterval(1//10,2//10))] == A[:,ClosedInterval(1//10,2//10),:,:] == A[:,ClosedInterval(1//10,2//10),:,:,1] == A[:,ClosedInterval(1//10,2//10)] @test A.data[:,:,1:2,:] == A[Axis{:d3}(["1","2"])] == A[:,:,["1","2"],:] == A[:,:,["1","2"],:,1] == A[:,:,["1","2"]] @test A.data[:,:,:,1:2] == A[Axis{:d4}([:a,:b])] == A[:,:,:,[:a,:b]] == A[:,:,:,[:a,:b],1] A = AxisArray(reshape(1:32, 2, 2, 2, 2, 2), .1:.1:.2, .1:.1:.2, .1:.1:.2, [:a, :b], [:c, :d]) @test A[ClosedInterval(.15, .25), ClosedInterval(.05, .15), ClosedInterval(.15, .25), :a] == A.data[2:2, 1:1, 2:2, 1, :] @test A[Axis{:dim_5}(2)] == A.data[:, :, :, :, 2] # Test vectors v = AxisArray(collect(.1:.1:10.0), .1:.1:10.0) @test v[Colon()] == v @test v[:] == v.data[:] == v[Axis{:row}(:)] @test v[3:8] == v.data[3:8] == v[ClosedInterval(.25,.85)] == v[Axis{:row}(3:8)] == v[Axis{:row}(ClosedInterval(.22,.88))] # Test repeated intervals, for different range types # First, since integers mean "location" rather than value, we have to # create a number type from which we build a StepRange but which is # not an Int. module IL # put in a module so this file can be re-run struct IntLike <: Number val::Int end IntLike(x::IntLike) = x Base.one(x::IntLike) = IntLike(0) Base.zero(x::IntLike) = IntLike(0) Base.isless(x::IntLike, y::IntLike) = isless(x.val, y.val) Base.:+(x::IntLike, y::IntLike) = IntLike(x.val+y.val) Base.:-(x::IntLike, y::IntLike) = IntLike(x.val-y.val) Base.:/(x::IntLike, y::IntLike) = x.val / y.val Base.rem(x::IntLike, y::IntLike) = IntLike(rem(x.val, y.val)) Base.div(x::IntLike, y::IntLike) = div(x.val, y.val) Base.:*(x::IntLike, y::Int) = IntLike(x.val * y) Base.:*(x::Int, y::IntLike) = y*x Base.:/(x::IntLike, y::Int) = IntLike(x.val / y) Base.promote_rule(::Type{IntLike}, ::Type{Int}) = Int Base.convert(::Type{Int}, x::IntLike) = x.val using AxisArrays AxisArrays.axistrait(::AbstractVector{IntLike}) = AxisArrays.Dimensional end for (r, Irel) in ((0.1:0.1:10.0, -0.5..0.5), # FloatRange (22.1:0.1:32.0, -0.5..0.5), (range(0.1, stop=10.0, length=100), -0.51..0.51), # LinSpace (IL.IntLike(1):IL.IntLike(1):IL.IntLike(100), IL.IntLike(-5)..IL.IntLike(5))) # StepRange local A, B Iabs = r[20]..r[30] A = AxisArray([1:100 -1:-1:-100], r, [:c1, :c2]) @test A[Iabs, :] == A[atindex(Irel, 25), :] == [20:30 -20:-1:-30] @test A[Iabs, :] == A[r[25]+Irel, :] == [20:30 -20:-1:-30] @test A[Iabs, [:c1,:c2]] == A[atindex(Irel, 25), [:c1, :c2]] == [20:30 -20:-1:-30] @test A[Iabs, :c1] == A[atindex(Irel, 25), :c1] == collect(20:30) @test A[atindex(Irel, 25), :c1] == collect(20:30) @test A[atindex(Irel, [25, 35]), :c1] == [20:30 30:40] @test A[r[[25, 35]] + Irel, :c1] == [20:30 30:40] @test_throws BoundsError A[atindex(Irel, 5), :c1] @test_throws BoundsError A[atindex(Irel, [5, 15, 25]), :] B = A[r[[25, 35]] + Irel, :c1] @test B[:,:] == B[Irel, :] == [20:30 30:40] end # Indexing with CartesianIndex A = AxisArray(reshape(1:15, 3, 5), :x, :y) @test A[2,2,CartesianIndex(())] == 5 @test A[2,CartesianIndex(()),2] == 5 @test A[CartesianIndex(()),2,2] == 5 A3 = AxisArray(reshape(1:24, 4, 3, 2), :x, :y, :z) @test A3[2,CartesianIndex(2,2)] == 18 @test A3[CartesianIndex(2,2),2] == 18 @test A3[CartesianIndex(2,2,2)] == 18 # Extracting the full axis axx = @inferred(A[Axis{:x}]) @test isa(axx, Axis{:x}) @test axx.val == 1:3 axy = @inferred(A[Axis{:y}]) @test isa(axy, Axis{:y}) @test axy.val == 1:5 @test_throws ArgumentError A[Axis{:z}] # indexing by value (implicitly) in a dimensional axis some_dates = DateTime(2016, 1, 2, 0):Hour(1):DateTime(2016, 1, 2, 2) A1 = AxisArray(reshape(1:6, 2, 3), Axis{:x}(1:2), Axis{:y}(some_dates)) A2 = AxisArray(reshape(1:6, 2, 3), Axis{:x}(1:2), Axis{:y}(collect(some_dates))) for A in (A1, A2) local A @test A[:, DateTime(2016, 1, 2, 1)] == [3; 4] @test A[:, DateTime(2016, 1, 2, 1) .. DateTime(2016, 1, 2, 2)] == [3 5; 4 6] @test_throws BoundsError A[:, DateTime(2016, 1, 2, 3)] @test_throws BoundsError A[:, DateTime(2016, 1, 1, 23)] try A[:, DateTime(2016, 1, 2, 3)] @test "unreachable" === false catch err @test err == BoundsError(A.axes[2].val, DateTime(2016, 1, 2, 3)) end end # Test for the expected exception type given repeated axes A = AxisArray(rand(2,2), :x, :y) @test_throws ArgumentError A[Axis{:x}(1), Axis{:x}(1)] @test_throws ArgumentError A[Axis{:y}(1), Axis{:y}(1)] # Reductions (issues #66, #62) @test maximum(A3; dims=1) == reshape([4 16; 8 20; 12 24], 1, 3, 2) @test maximum(A3; dims=2) == reshape([9 21; 10 22; 11 23; 12 24], 4, 1, 2) @test maximum(A3; dims=3) == reshape(A3[:,:,2], 4, 3, 1) acc = zeros(Int, 4, 1, 2) Base.mapreducedim!(x->x>5, +, acc, A3) @test acc == reshape([1 3; 2 3; 2 3; 2 3], 4, 1, 2) # Value axistraits @testset for typ in (IL.IntLike, Complex{Float32}, DateTime, String, Symbol, Int) @test AxisArrays.axistrait(Axis{:foo, Vector{AxisArrays.ExactValue{typ}}}) === AxisArrays.axistrait(Axis{:foo, Vector{AxisArrays.TolValue{typ}}}) === AxisArrays.axistrait(Axis{:bar, Vector{typ}}) end # Indexing by value using `atvalue` A = AxisArray([1 2; 3 4], Axis{:x}([1.0,4.0]), Axis{:y}([2.0,6.1])) @test @inferred(A[atvalue(1.0)]) == @inferred(A[atvalue(1.0), :]) == [1,2] # `atvalue` doesn't require same type: @test @inferred(A[atvalue(1)]) == @inferred(A[atvalue(1), :]) ==[1,2] @test A[atvalue(4.0)] == A[atvalue(4.0),:] == [3,4] @test A[atvalue(4)] == A[atvalue(4),:] == [3,4] @test_throws BoundsError A[atvalue(5.0)] @test @inferred(A[atvalue(1.0), atvalue(2.0)]) == 1 @test @inferred(A[:, atvalue(2.0)]) == [1,3] @test @inferred(A[Axis{:x}(atvalue(4.0))]) == [3,4] @test @inferred(A[Axis{:y}(atvalue(6.1))]) == [2,4] @test @inferred(A[Axis{:x}(atvalue(4.00000001))]) == [3,4] @test @inferred(A[Axis{:x}(atvalue(2.0, atol=5))]) == [1,2] @test_throws BoundsError A[Axis{:x}(atvalue(4.00000001, rtol=0))] # Showing Values @test sprint(show, AxisArrays.ExactValue(1)) == "ExactValue(1)" @test sprint(show, AxisArrays.TolValue(1., 0.1)) == "TolValue(1.0, tol=0.1)" # Indexing with ExactValue on Dimensional axes A = AxisArray([2.0,4.0,6.1], Axis{:x}([-10,1,3])) @test @inferred(A[AxisArrays.ExactValue(1)]) == @inferred(A[atvalue(1)]) == 4.0 @test_throws BoundsError A[AxisArrays.ExactValue(2)] # Indexing by array of values A = AxisArray([1 2 3 4; 5 6 7 8; 9 10 11 12], -1:1, [5.1, 5.4, 5.7, 5.8]) @test @inferred(A[atvalue(-1), atvalue.([5.1, 5.7])]) == [1, 3] @test_throws BoundsError A[atvalue.([1,2])] # Indexing by value into an OffsetArray A = AxisArray(OffsetArrays.OffsetArray([1 2; 3 4], 0:1, 1:2), Axis{:x}([1.0,4.0]), Axis{:y}([2.0,6.1])) @test_broken @inferred(A[atvalue(4.0)]) == [3,4] @test @inferred(A[:, atvalue(2.0)]) == OffsetArrays.OffsetArray([1,3], 0:1) @test_throws BoundsError A[atvalue(5.0)] # Indexing by value directly is forbidden for indexes that are Real @test_throws ArgumentError A[4.0] @test_throws ArgumentError A[BigFloat(1.0)] @test_throws ArgumentError A[1.0f0] @test_throws ArgumentError A[:,6.1] # Indexing with `atvalue` on Categorical axes A = AxisArray([1 2; 3 4], Axis{:x}([:a, :b]), Axis{:y}(["c", "d"])) @test @inferred(A[atvalue(:a)]) == @inferred(A[atvalue(:a), :]) == [1,2] @test @inferred(A[atvalue(:b)]) == @inferred(A[atvalue(:b), :]) == [3,4] @test_throws ArgumentError A[atvalue(:c)] @test @inferred(A[atvalue(:a), atvalue("c")]) == 1 @test @inferred(A[:, atvalue("c")]) == [1,3] @test @inferred(A[Axis{:x}(atvalue(:b))]) == [3,4] @test @inferred(A[Axis{:y}(atvalue("d"))]) == [2,4] # Index by mystery types categorically struct Foo x end A = AxisArray(1:10, Axis{:x}(map(Foo, 1:10))) @test A[map(Foo, 3:6)] == collect(3:6) @test_throws ArgumentError A[map(Foo, 3:11)] @test A[Foo(4)] == 4 @test_throws ArgumentError A[Foo(0)] # Test using dates using Dates: Day, Month A = AxisArray(1:365, Date(2017,1,1):Day(1):Date(2017,12,31)) @test A[Date(2017,2,1) .. Date(2017,2,28)] == collect(31 .+ (1:28)) # February @test A[(-Day(13)..Day(14)) + Date(2017,2,14)] == collect(31 .+ (1:28)) @test A[(-Day(14)..Day(14)) + DateTime(2017,2,14,12)] == collect(31 .+ (1:28)) @test A[(Day(0)..Day(6)) + (Date(2017,1,1):Month(1):Date(2017,4,12))] == [1:7 32:38 60:66 91:97] # Test using index types that AxisArrays doesn't understand # This example is inspired from Interpolations.jl and would implement linear interpolation struct WeightedIndex{T} idx::Int weights::Tuple{T,T} end Base.to_indices(A, I::Tuple{Vararg{Union{Int,WeightedIndex}}}) = I @inline function Base._getindex(::IndexStyle, A::AbstractVector, I::WeightedIndex) A[I.idx]*I.weights[1] + A[I.idx+1]*I.weights[2] end idx = WeightedIndex(2, (0.2, 0.8)) a = [2, 3, 7] @test a[idx] ≈ 6.2 aa = AxisArray(a, :x) @test aa[idx] ≈ 6.2 # Keyword indexing A = AxisArray([1 2; 3 4], Axis{:x}(10:10:20), Axis{:y}(["c", "d"])) @test @inferred(A[x=1, y=1]) == 1 @test @inferred(A[x=1]) == [1, 2] @test axisnames(A[x=1]) == (:y,) @test @inferred(view(A, x=1)) == [1,2] @test parent(view(A, x=1)) isa SubArray @test @inferred(A[x=atvalue(20), y=atvalue("d")]) == 4
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
2726
# Specific intervals tests import IntervalSets # Promotion behaviors -- we only allow concrete endpoints of the same type @test 1.0 .. 2 === 1.0 .. 2.0 @test 1//2 .. 3.5 === 0.5 .. 3.5 # IntervalSets v0.7: https://github.com/JuliaMath/IntervalSets.jl/pull/93 thrown_err = isdefined(IntervalSets, :duration) ? ArgumentError : ErrorException @test_throws thrown_err :a .. "b" @test_throws thrown_err 1 .. (2,3) v = [1 .. 2, 3.0 .. 4.0] @test v[1] === 1.0 .. 2.0 @test v[2] === 3.0 .. 4.0 # Test simple arithmetic, with promotion behaviors @test (1.0 .. 2.0) + 1 === (2.0 .. 3.0) @test (1 .. 2) + 1.0 === (2.0 .. 3.0) @test (1 .. 2) + (1.0 .. 2.0) === (2.0 .. 4.0) @test (1 .. 2) - (1 .. 2) === (-1 .. 1) @test +(1 .. 2) === (1 .. 2) @test -(1 .. 2) === (-2 .. -1) @test (1..2)*3 === 3..6 @test (-1..1)*3 === -3..3 @test (2..4)/2 === 1.0 .. 2.0 @test 1/(2..4) === 1/4 .. 1/2 @test 3.2 in 3..4 @test 4 in 2.0 .. 6.0 @test 4 in 4.0 .. 4.0 @test 4 in 4.0 .. 5 @test (1..2) ⊆ (0.5 .. 2.5) @test !((1..2) ⊆ (1.5 .. 2.5)) @test maximum(1..2) === 2 @test minimum(1..2) === 1 # Comparisons are "for-all" like, with <= and >= allowing overlap @test 0 <= 1 .. 2 @test !(0 >= 1 .. 2) @test 1 <= 1 .. 2 @test !(1 >= 1 .. 2) @test !(2 <= 1 .. 2) @test 2 >= 1 .. 2 @test !(3 <= 1 .. 2) @test 3 >= 1 .. 2 @test 0 < 1 .. 2 @test !(0 > 1 .. 2) @test !(1 < 1 .. 2) @test !(1 > 1 .. 2) @test !(2 < 1 .. 2) @test !(2 > 1 .. 2) @test !(3 < 1 .. 2) @test 3 > 1 .. 2 # Test dictionary lookup by numeric value d = Dict(1..2 => 1, 2.0..3.0 => 2) @test d[1..2] === 1 @test d[1.0..2.0] === 1 @test d[2..3] === 2 @test d[2.0..3.0] === 2 d[0x1 .. 0x2] = 3 @test d[1..2] === 3 @test length(d) == 2 # Test repeated intervals: @test (1..2) + [1,2,3] == [(1..2)+i for i in [1,2,3]] @test (1..2) + (1:3) == [(1..2)+i for i in 1:3] @test (1..2) - [1,2,3] == [(1..2)-i for i in [1,2,3]] @test (1..2) - (1:3) == [(1..2)-i for i in 1:3] @test [1,2,3] + (1..2)== [i+(1..2) for i in [1,2,3]] @test (1:3) + (1..2)== [i+(1..2) for i in 1:3] @test [1,2,3] - (1..2)== [i-(1..2) for i in [1,2,3]] @test (1:3) - (1..2)== [i-(1..2) for i in 1:3] # And intervals at indices @test atindex(1..2, [3,4,5]) == [atindex(1..2, i) for i in [3,4,5]] @test atindex(1..2, 3:5) == [atindex(1..2, i) for i in 3:5] # Ensure comparisons are exact (and not lossy) @assert 0.2 > 2//10 # 0.2 == 2.0000000000000001 @test !(0.1 .. 0.2 <= 2//10) # Conversion and construction: @test 1 .. 2 === ClosedInterval(1, 2) === ClosedInterval{Int}(1.0, 2.0) === ClosedInterval{Int}(1.0 .. 2.0) @test 1.0 .. 2.0 === ClosedInterval(1.0, 2) === ClosedInterval{Float64}(1, 2) === ClosedInterval{Float64}(1 .. 2) @test 1 .. 1 === ClosedInterval(1, 1) === ClosedInterval{Int}(1.0, 1.0)
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
1709
# Intended to ensure the README stays working (this is a copy) using AxisArrays, Unitful import Unitful: s, ms, µs fs = 40000 y = randn(60*fs+1)*3 for spk = (sin.(0.8:0.2:8.6) .* [0:0.01:.1; .15:.1:.95; 1:-.05:.05] .* 50, sin.(0.8:0.4:8.6) .* [0:0.02:.1; .15:.1:1; 1:-.2:.1] .* 50) i = rand(round(Int,.001fs):1fs) while i+length(spk)-1 < length(y) y[i:i+length(spk)-1] += spk i += rand(round(Int,.001fs):1fs) end end A = AxisArray([y 2y], Axis{:time}(0s:1s/fs:60s), Axis{:chan}([:c1, :c2])) A = AxisArray(hcat(y, 2 .* y); time = (0s:1s/fs:60s), chan = ([:c1, :c2])) A[Axis{:time}(4)] A[time=4] A[Axis{:chan}(:c2), Axis{:time}(1:5)] A[chan = :c2, time = 1:5] ax = A[40µs .. 220µs, :c1] AxisArrays.axes(ax, 1) A[atindex(-90µs .. 90µs, 5), :c2] idxs = findall(diff(A[:,:c1] .< -15) .> 0) spks = A[atindex(-200µs .. 800µs, idxs), :c1] A[atvalue(2.5e-5s), :c1] A[2.5e-5s..2.5e-5s, :c1] A[atvalue(25.0µs)] # # A possible "dynamic verification" strategy # const readmefile = joinpath(dirname(dirname(@__FILE__)), "README.md") # function extract_julialines(iowr, filein) # open(filein) do iord # while !eof(iord) # line = readline(iord) # if startswith(line, "julia>") # print(iowr, line[8:end]) # while !eof(iord) # line = readline(iord) # if !startswith(line, " ") # break # end # print(iowr, line[8:end]) # end # end # end # end # end # tmpfile, iowr = mktemp() # extract_julialines(iowr, readmefile) # close(iowr) # include(tmpfile) # rm(tmpfile)
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
756
using AxisArrays using Dates using Test using Random import IterTools @testset "AxisArrays" begin VERSION >= v"1.1" && @test isempty(detect_ambiguities(AxisArrays, Base, Core)) @testset "Core" begin include("core.jl") end @testset "Intervals" begin include("intervals.jl") end @testset "Indexing" begin include("indexing.jl") end @testset "SortedVector" begin include("sortedvector.jl") end @testset "CategoricalVector" begin include("categoricalvector.jl") end @testset "Search" begin include("search.jl") end @testset "Combine" begin include("combine.jl") end @testset "README" begin include("readme.jl") end end
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
1879
# Internal searching methods import AxisArrays: searchsortednearest @test searchsortednearest(1:5, 2.5) === 3 @test searchsortednearest(1:5, prevfloat(2.5)) === 2 @test searchsortednearest([1,1,2,2,3,3], 1.5) === 3 @test searchsortednearest([1,1,2,2,3,3], 2.0) === 3 @test searchsortednearest([1,1,2,2,3,3], 2.4) === 4 @test searchsortednearest([1,1,2,2,3,3], 3.0) === 5 @test searchsortednearest([1,1,2,2,3,3], Inf) === 6 @test searchsortednearest([1,1,2,2,3,3], -Inf) === 1 # Extrapolated searching for ranges import AxisArrays: Extrapolated @test Extrapolated.searchsorted(1:10, -1 .. 1) === -1:1 @test Extrapolated.searchsorted(1:10, 12 .. 15) === 12:15 @test Extrapolated.searchsorted(0:2:10, -3 .. -1) === 0:0 @test Extrapolated.searchsorted(0:2:10, -5 .. 3) === -1:2 @test Extrapolated.searchsorted(1:2, 4.5 .. 4.5) === 5:4 @test Extrapolated.searchsorted(1:2, 3.5 .. 3.5) === 4:3 @test Extrapolated.searchsorted(1:2, 2.5 .. 2.5) === 3:2 === searchsorted(1:2, 2.5 .. 2.5) @test Extrapolated.searchsorted(1:2, 1.5 .. 1.5) === 2:1 === searchsorted(1:2, 1.5 .. 1.5) @test Extrapolated.searchsorted(1:2, 0.5 .. 0.5) === 1:0 === searchsorted(1:2, 0.5 .. 0.5) @test Extrapolated.searchsorted(1:2, -0.5 .. -0.5) === 0:-1 @test Extrapolated.searchsorted(1:2, -1.5 .. -1.5) === -1:-2 @test Extrapolated.searchsorted(2:2:4, 0x6 .. 0x6) === 3:3 @test Extrapolated.searchsorted(2:2:4, 0x5 .. 0x5) === searchsorted(2:2:4, 0x5 .. 0x5) === 3:2 @test Extrapolated.searchsorted(2:2:4, 0x4 .. 0x4) === searchsorted(2:2:4, 0x4 .. 0x4) === 2:2 @test Extrapolated.searchsorted(2:2:4, 0x3 .. 0x3) === searchsorted(2:2:4, 0x3 .. 0x3) === 2:1 @test Extrapolated.searchsorted(2:2:4, 0x2 .. 0x2) === searchsorted(2:2:4, 0x2 .. 0x2) === 1:1 @test Extrapolated.searchsorted(2:2:4, 0x1 .. 0x1) === searchsorted(2:2:4, 0x1 .. 0x1) === 1:0 @test Extrapolated.searchsorted(2:2:4, 0x0 .. 0x0) === 0:0
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
code
1257
# Test SortedVector v = SortedVector(collect([1.; 10.; 10:15.])) A = AxisArray(reshape(1:16, 8, 2), v, [:a, :b]) @test A[ClosedInterval(8.,12.), :] == A[2:5, :] @test A[1. .. 1., :] == A[1:1, :] @test A[10. .. 10., :] == A[2:3, :] @test size(v) == (8,) @test size(v, 1) == 8 @test size(v, 2) == 1 # test StepRange indexing @test v[1:2:8] == [1.0; 10.0; 12.0; 14.0] # Test SortedVector with a hierarchical index (indexed using Tuples) data = reshape(1.:40., 20, 2) # v = collect(zip([:a, :b, :c][rand(1:3,20)], [:x,:y][rand(1:2,20)], [:x,:y][rand(1:2,20)])) v = [(:b, :x, :y), (:c, :y, :y), (:b, :x, :y), (:a, :y, :y), (:b, :y, :y), (:c, :y, :y), (:b, :x, :x), (:c, :x, :y), (:c, :y, :y), (:a, :y, :y), (:a, :y, :y), (:b, :x, :y), (:c, :x, :y), (:c, :y, :y), (:b, :x, :y), (:a, :x, :x), (:c, :x, :x), (:c, :y, :y), (:b, :y, :x), (:b, :y, :y)] idx = sortperm(v) A = AxisArray(data[idx,:], SortedVector(v[idx]), [:a, :b]) @test A[:b, :] == A[5:12, :] @test A[[:a,:c], :] == A[[1:4;13:end], :] @test A[(:a,:y), :] == A[2:4, :] @test A[(:c,:y,:y), :] == A[16:end, :] @test A[ClosedInterval(:a,:b), :] == A[1:12, :] @test A[ClosedInterval((:a,:x),(:b,:x)), :] == A[1:9, :] @test A[[ClosedInterval((:a,:x),(:b,:x)),:c], :] == A[[1:9;13:end], :]
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
docs
11955
# AxisArrays.jl [![][action-img]][action-url] [![][pkgeval-img]][pkgeval-url] [![][codecov-img]][codecov-url] This package for the Julia language provides an array type (the `AxisArray`) that knows about its dimension names and axis values. This allows for indexing by name without incurring any runtime overhead. This permits one to implement algorithms that are oblivious to the storage order of the underlying arrays. AxisArrays can also be indexed by the values along their axes, allowing column names or interval selections. In contrast to similar approaches in [Images.jl](https://github.com/timholy/Images.jl) and [NamedArrays.jl](https://github.com/davidavdav/NamedArrays), this allows for type-stable selection of dimensions and compile-time axis lookup. It is also better suited for regularly sampled axes, like samples over time. Collaboration is welcome! This is still a work-in-progress. See [the roadmap](https://github.com/JuliaArrays/AxisArrays.jl/issues/7) for the project's current direction. ### Note about `Axis{}` and keywords An `AxisArray` stores an object of type `Axis{:name}` for each dimension, containing both the name (a `Symbol`) and the "axis values" (an `AbstractVector`). These types are what made compile-time lookup possible. Instead of providing them explicitly, it is now possible to use keyword arguments for both construction and indexing: ```julia V = AxisArray(rand(10); row='a':'j') # AxisArray(rand(10), Axis{:row}('a':'j')) V[row='c'] == V[Axis{:row}('c')] == V[row=3] == V[3] ``` ### Note about `axes()` and `indices()` The function `AxisArrays.axes` returns the tuple of such `Axis` objects. Since Julia version 0.7, `Base.axes(V) == (1:10,)` gives instead the range of possible ordinary integer indices. (This was called `Base.indices`.) Since both names are exported, this collision results in a warning if you try to use `axes` without qualification: ```julia julia> axes([1,2]) WARNING: both AxisArrays and Base export "axes"; uses of it in module Main must be qualified ERROR: UndefVarError: axes not defined ``` Packages that are upgrading to support Julia 0.7+ should: * Replace all uses of the `axes` function with the fully-qualified `AxisArrays.axes` * Replace all uses of the deprecated `indices` function with the un-qualified `axes` * Immediately after `using AxisArrays`, add `const axes = Base.axes` In the future, AxisArrays will be looking for a new name for its functionality. This will allow you to use the idiomatic `Base` name and offers an easy upgrade path to whatever the new name will be. ## Example of currently-implemented behavior: ```julia julia> using Pkg; pkg"add AxisArrays Unitful" julia> using AxisArrays, Unitful, Random julia> fs = 40000; # Generate a 40kHz noisy signal, with spike-like stuff added for testing julia> import Unitful: s, ms, µs julia> rng = Random.MersenneTwister(123); # Seed a random number generator for repeatable examples julia> y = randn(rng, 60*fs+1)*3; julia> for spk = (sin.(0.8:0.2:8.6) .* [0:0.01:.1; .15:.1:.95; 1:-.05:.05] .* 50, sin.(0.8:0.4:8.6) .* [0:0.02:.1; .15:.1:1; 1:-.2:.1] .* 50) i = rand(rng, round(Int,.001fs):1fs) while i+length(spk)-1 < length(y) y[i:i+length(spk)-1] += spk i += rand(rng, round(Int,.001fs):1fs) end end julia> A = AxisArray(hcat(y, 2 .* y); time = (0s:1s/fs:60s), chan = ([:c1, :c2])) 2-dimensional AxisArray{Float64,2,...} with axes: :time, 0.0 s:2.5e-5 s:60.0 s :chan, Symbol[:c1, :c2] And data, a 2400001×2 Array{Float64,2}: 3.5708 7.14161 6.14454 12.2891 3.42795 6.85591 1.37825 2.75649 -1.19004 -2.38007 -1.99414 -3.98828 2.9429 5.88581 -0.226449 -0.452898 0.821446 1.64289 -0.582687 -1.16537 ⋮ -3.50593 -7.01187 2.26783 4.53565 -0.16902 -0.33804 -3.84852 -7.69703 0.226457 0.452914 0.560809 1.12162 4.67663 9.35326 -2.41005 -4.8201 -3.71612 -7.43224 ``` AxisArrays behave like regular arrays, but they additionally use the axis information to enable all sorts of fancy behaviors. For example, we can specify indices in *any* order, just so long as we annotate them with the axis name: ```julia julia> A[time=4] # or A[Axis{:time}(4)] 1-dimensional AxisArray{Float64,1,...} with axes: :chan, Symbol[:c1, :c2] And data, a 2-element Array{Float64,1}: 1.37825 2.75649 julia> A[chan = :c2, time = 1:5] # or A[Axis{:chan}(:c2), Axis{:time}(1:5)] 1-dimensional AxisArray{Float64,1,...} with axes: :time, 0.0 s:2.5e-5 s:0.0001 s And data, a 5-element Array{Float64,1}: 7.14161 12.2891 6.85591 2.75649 -2.38007 ``` We can also index by the *values* of each axis using an `Interval` type that selects all values between two endpoints `a .. b` or the axis values directly. Notice that the returned AxisArray still has axis information itself... and it still has the correct time information for those datapoints! ```julia julia> A[40µs .. 220µs, :c1] 1-dimensional AxisArray{Float64,1,...} with axes: :time, 5.0e-5 s:2.5e-5 s:0.0002 s And data, a 7-element Array{Float64,1}: 3.42795 1.37825 -1.19004 -1.99414 2.9429 -0.226449 0.821446 julia> AxisArrays.axes(ans, 1) AxisArrays.Axis{:time,StepRangeLen{Quantity{Float64, Dimensions:{𝐓}, Units:{s}},Base.TwicePrecision{Quantity{Float64, Dimensions:{𝐓}, Units:{s}}},Base.TwicePrecision{Quantity{Float64, Dimensions:{𝐓}, Units:{s}}}}}(5.0e-5 s:2.5e-5 s:0.0002 s) ``` You can also index by a single value using `atvalue(t)`. This function is not needed for categorical axes like `:chan` here, as `:c1` is a `Symbol` which can't be confused with an integer index. Using `atvalue()` will drop a dimension (like using a single integer). Indexing with an `Interval(lo, hi)` type retains dimensions, even when the ends of the interval are equal (like using a range `1:1`): ```julia julia> A[atvalue(2.5e-5s), :c1] 6.14453912336772 julia> A[2.5e-5s..2.5e-5s, :c1] 1-dimensional AxisArray{Float64,1,...} with axes: :time, 2.5e-5 s:2.5e-5 s:2.5e-5 s And data, a 1-element Array{Float64,1}: 6.14454 ``` You can even index by multiple values by broadcasting `atvalue` over an array: ```julia julia> A[atvalue.([2.5e-5s, 75.0µs])] 2-dimensional AxisArray{Float64,2,...} with axes: :time, Quantity{Float64, Dimensions:{𝐓}, Units:{s}}[2.5e-5 s, 7.5e-5 s] :chan, Symbol[:c1, :c2] And data, a 2×2 Array{Float64,2}: 6.14454 12.2891 1.37825 2.75649 ``` Sometimes, though, what we're really interested in is a window of time about a specific index. One of the operations above (looking for values in the window from 40µs to 220µs) might be more clearly expressed as a symmetrical window about a specific index where we know something interesting happened. To represent this, we use the `atindex` function: ```julia julia> A[atindex(-90µs .. 90µs, 5), :c2] 1-dimensional AxisArray{Float64,1,...} with axes: :time_sub, -7.5e-5 s:2.5e-5 s:7.500000000000002e-5 s And data, a 7-element Array{Float64,1}: 6.85591 2.75649 -2.38007 -3.98828 5.88581 -0.452898 1.64289 ``` Note that the returned AxisArray has its time axis shifted to represent the interval about the given index! This simple concept can be extended to some very powerful behaviors. For example, let's threshold our data and find windows about those threshold crossings. ```julia julia> idxs = findall(diff(A[:,:c1] .< -15) .> 0); julia> spks = A[atindex(-200µs .. 800µs, idxs), :c1] 2-dimensional AxisArray{Float64,2,...} with axes: :time_sub, -0.0002 s:2.5e-5 s:0.0008 s :time_rep, Quantity{Float64, Dimensions:{𝐓}, Units:{s}}[0.162 s, 0.20045 s, 0.28495 s, 0.530325 s, 0.821725 s, 1.0453 s, 1.11967 s, 1.1523 s, 1.22085 s, 1.6253 s … 57.0094 s, 57.5818 s, 57.8716 s, 57.8806 s, 58.4353 s, 58.7041 s, 59.1015 s, 59.1783 s, 59.425 s, 59.5657 s] And data, a 41×247 Array{Float64,2}: 0.672063 7.25649 0.633375 … 1.54583 5.81194 -4.706 -1.65182 2.57487 0.477408 3.09505 3.52478 4.13037 4.46035 2.11313 4.78372 1.23385 7.2525 3.57485 5.25651 -2.19785 3.05933 0.965021 6.78414 5.94854 7.8537 0.345008 0.960533 0.812989 0.336715 0.303909 0.466816 0.643649 -3.67087 … 3.92978 -3.1242 0.789722 -6.0445 -13.2441 -4.60716 0.265144 -4.50987 -8.84897 -9.21703 -13.2254 -14.4409 -8.6664 -13.3457 -11.6213 -16.1809 -22.7037 -25.023 -15.9376 -28.0817 -16.996 -23.2671 -31.2021 -25.3787 -24.4914 -32.2599 -26.1118 ⋮ ⋱ ⋮ -0.301629 0.0683982 -4.36574 1.92362 -5.12333 -3.4431 4.7182 1.18615 4.40717 -4.51757 -8.64314 0.0800021 -2.43775 -0.151882 -1.40817 -3.38555 -2.23418 0.728549 3.2482 -0.60967 0.471288 … 2.53395 0.468817 -3.65905 -4.26967 2.24747 -3.13758 1.74967 4.5052 -0.145357 -0.752487 1.69446 -1.20491 1.71429 1.81936 0.290158 4.64348 -3.94187 -1.59213 7.15428 -0.539748 4.82309 1.09652 -2.66999 0.521931 -3.80528 1.70421 3.40583 -0.94341 2.60785 -3.34291 … 1.10584 4.31118 3.6404 ``` By indexing with a repeated interval, we have *added* a dimension to the output! The returned AxisArray's columns specify each repetition of the interval, and each datapoint in the column represents a timepoint within that interval, adjusted by the time of the theshold crossing. The best part here is that the returned matrix knows precisely where its data came from, and has labeled its dimensions appropriately. Not only is there the proper time base for each waveform, but we also have recorded the event times as the axis across the columns. ## Indexing Two main types of Axes supported by default include: * Categorical axis -- These are vectors of labels, normally symbols or strings. Elements or slices can be selected by elements or vectors of elements. * Dimensional axis -- These are sorted vectors or iterators that can be selected by `Intervals`. These are commonly used for sequences of times or date-times. For regular sample rates, ranges can be used. Here is an example with a Dimensional axis representing a time sequence along rows and a Categorical axis of symbols for column headers. ```julia B = AxisArray(reshape(1:15, 5, 3), .1:.1:0.5, [:a, :b, :c]) B[row = (0.2..0.4)] # restrict the AxisArray along the time axis B[0.0..0.3, [:a, :c]] # select an interval and two of the columns ``` User-defined axis types can be added along with custom indexing behaviors. ### Example: compute the intensity-weighted mean along the z axis ```julia B = AxisArray(randn(100,100,100), :x, :y, :z) Itotal = sumz = 0.0 for iter in CartesianIndices(Base.axes(B)) # traverses in storage order for cache efficiency global Itotal, sumz I = B[iter] # intensity in a single voxel Itotal += I sumz += I * iter[axisdim(B, Axis{:z})] # axisdim "looks up" the z dimension end meanz = sumz/Itotal ``` The intention is that all of these operations are just as efficient as they would be if you used traditional position-based indexing with all the inherent assumptions about the storage order of `B`. <!-- badges --> [pkgeval-img]: https://juliaci.github.io/NanosoldierReports/pkgeval_badges/A/AxisArrays.svg [pkgeval-url]: https://juliaci.github.io/NanosoldierReports/pkgeval_badges/report.html [action-img]: https://github.com/JuliaArrays/AxisArrays.jl/workflows/Unit%20test/badge.svg [action-url]: https://github.com/JuliaArrays/AxisArrays.jl/actions [codecov-img]: https://codecov.io/github/JuliaArrays/AxisArrays.jl/coverage.svg?branch=master [codecov-url]: https://codecov.io/gh/JuliaArrays/AxisArrays.jl
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
docs
10733
```@meta DocTestSetup = quote using AxisArrays, Unitful, Random import Unitful: s, ms, µs rng = MersenneTwister(123) fs = 40000 y = randn(rng, 60*fs+1)*3 for spk = (sin.(0.8:0.2:8.6) .* [0:0.01:.1; .15:.1:.95; 1:-.05:.05] .* 50, sin.(0.8:0.4:8.6) .* [0:0.02:.1; .15:.1:1; 1:-.2:.1] .* 50) i = rand(rng, round(Int,.001fs):1fs) while i+length(spk)-1 < length(y) y[i:i+length(spk)-1] += spk i += rand(rng, round(Int,.001fs):1fs) end end A = AxisArray([y 2y], Axis{:time}(0s:1s/fs:60s), Axis{:chan}([:c1, :c2])) end ``` # AxisArrays [![Build Status](https://travis-ci.org/JuliaArrays/AxisArrays.jl.svg?branch=master)](https://travis-ci.org/JuliaArrays/AxisArrays.jl) [![Coverage Status](https://coveralls.io/repos/github/JuliaArrays/AxisArrays.jl/badge.svg?branch=master)](https://coveralls.io/github/JuliaArrays/AxisArrays.jl?branch=master) This package for the Julia language provides an array type (the `AxisArray`) that knows about its dimension names and axis values. This allows for indexing with the axis name without incurring any runtime overhead. AxisArrays can also be indexed by the values of their axes, allowing column names or interval selections. This permits one to implement algorithms that are oblivious to the storage order of the underlying arrays. In contrast to similar approaches in [Images.jl](https://github.com/timholy/Images.jl) and [NamedArrays.jl](https://github.com/davidavdav/NamedArrays), this allows for type-stable selection of dimensions and compile-time axis lookup. It is also better suited for regularly sampled axes, like samples over time. Collaboration is welcome! This is still a work-in-progress. See [the roadmap](https://github.com/JuliaArrays/AxisArrays.jl/issues/7) for the project's current direction. ## Example of currently-implemented behavior: ```julia julia> Pkg.add("AxisArrays") julia> using AxisArrays, Unitful, Random julia> import Unitful: s, ms, µs julia> rng = MersenneTwister(123) # Seed a random number generator for repeatable examples julia> fs = 40000 # Generate a 40kHz noisy signal, with spike-like stuff added for testing julia> y = randn(rng, 60*fs+1)*3 julia> for spk = (sin.(0.8:0.2:8.6) .* [0:0.01:.1; .15:.1:.95; 1:-.05:.05] .* 50, sin.(0.8:0.4:8.6) .* [0:0.02:.1; .15:.1:1; 1:-.2:.1] .* 50) i = rand(rng, round(Int,.001fs):1fs) while i+length(spk)-1 < length(y) y[i:i+length(spk)-1] += spk i += rand(rng, round(Int,.001fs):1fs) end end ``` ```jldoctest julia> A = AxisArray([y 2y], Axis{:time}(0s:1s/fs:60s), Axis{:chan}([:c1, :c2])) 2-dimensional AxisArray{Float64,2,...} with axes: :time, 0.0 s:2.5e-5 s:60.0 s :chan, Symbol[:c1, :c2] And data, a 2400001×2 Array{Float64,2}: 3.5708 7.14161 6.14454 12.2891 3.42795 6.85591 1.37825 2.75649 -1.19004 -2.38007 -1.99414 -3.98828 2.9429 5.88581 -0.226449 -0.452898 0.821446 1.64289 -0.582687 -1.16537 ⋮ -3.50593 -7.01187 2.26783 4.53565 -0.16902 -0.33804 -3.84852 -7.69703 0.226457 0.452914 0.560809 1.12162 4.67663 9.35326 -2.41005 -4.8201 -3.71612 -7.43224 ``` AxisArrays behave like regular arrays, but they additionally use the axis information to enable all sorts of fancy behaviors. For example, we can specify indices in *any* order, just so long as we annotate them with the axis name: ```jldoctest julia> A[Axis{:time}(4)] 1-dimensional AxisArray{Float64,1,...} with axes: :chan, Symbol[:c1, :c2] And data, a 2-element Array{Float64,1}: 1.378246861221241 2.756493722442482 julia> A[Axis{:chan}(:c2), Axis{:time}(1:5)] 1-dimensional AxisArray{Float64,1,...} with axes: :time, 0.0 s:2.5e-5 s:0.0001 s And data, a 5-element Array{Float64,1}: 7.141607285917661 12.28907824673544 6.855905417203194 2.756493722442482 -2.380074475771338 ``` We can also index by the *values* of each axis using an `Interval` type that selects all values between two endpoints `a .. b` or the axis values directly. Notice that the returned AxisArray still has axis information itself... and it still has the correct time information for those datapoints! ```jldoctest julia> A[40µs .. 220µs, :c1] 1-dimensional AxisArray{Float64,1,...} with axes: :time, 5.0e-5 s:2.5e-5 s:0.0002 s And data, a 7-element Array{Float64,1}: 3.427952708601597 1.378246861221241 -1.190037237885669 -1.994137635575063 2.9429034802756004 -0.22644919919326786 0.8214461136364685 julia> AxisArrays.axes(ans, 1) Axis{:time,StepRangeLen{Unitful.Quantity{Float64,𝐓,Unitful.FreeUnits{(s,),𝐓,nothing}},Base.TwicePrecision{Unitful.Quantity{Float64,𝐓,Unitful.FreeUnits{(s,),𝐓,nothing}}},Base.TwicePrecision{Unitful.Quantity{Float64,𝐓,Unitful.FreeUnits{(s,),𝐓,nothing}}}}}(5.0e-5 s:2.5e-5 s:0.0002 s) ``` You can also index by a single value on an axis using `atvalue`. This will drop a dimension. Indexing with an `Interval` type retains dimensions, even when the ends of the interval are equal: ```jldoctest julia> A[atvalue(2.5e-5s), :c1] 6.14453912336772 julia> A[2.5e-5s..2.5e-5s, :c1] 1-dimensional AxisArray{Float64,1,...} with axes: :time, 2.5e-5 s:2.5e-5 s:2.5e-5 s And data, a 1-element Array{Float64,1}: 6.14453912336772 ``` You can even index by multiple values by broadcasting `atvalue` over an array: ```jldoctest julia> A[atvalue.([2.5e-5s, 75.0µs])] 2-dimensional AxisArray{Float64,2,...} with axes: :time, Unitful.Quantity{Float64,𝐓,Unitful.FreeUnits{(s,),𝐓,nothing}}[2.5e-5 s, 7.5e-5 s] :chan, Symbol[:c1, :c2] And data, a 2×2 Array{Float64,2}: 6.14454 12.2891 1.37825 2.75649 ``` Sometimes, though, what we're really interested in is a window of time about a specific index. One of the operations above (looking for values in the window from 40µs to 220µs) might be more clearly expressed as a symmetrical window about a specific index where we know something interesting happened. To represent this, we use the `atindex` function: ```jldoctest julia> A[atindex(-90µs .. 90µs, 5), :c2] 1-dimensional AxisArray{Float64,1,...} with axes: :time_sub, -7.5e-5 s:2.5e-5 s:7.5e-5 s And data, a 7-element Array{Float64,1}: 12.28907824673544 6.855905417203194 2.756493722442482 -2.380074475771338 -3.988275271150126 5.885806960551201 -0.4528983983865357 ``` Note that the returned AxisArray has its time axis shifted to represent the interval about the given index! This simple concept can be extended to some very powerful behaviors. For example, let's threshold our data and find windows about those threshold crossings. ```jldoctest julia> idxs = findall(diff(A[:,:c1] .< -15) .> 0); julia> spks = A[atindex(-200µs .. 800µs, idxs), :c1] 2-dimensional AxisArray{Float64,2,...} with axes: :time_sub, -0.0002 s:2.5e-5 s:0.0008 s :time_rep, Unitful.Quantity{Float64,𝐓,Unitful.FreeUnits{(s,),𝐓,nothing}}[0.161275 s, 0.489925 s, 0.957175 s, 1.1457 s, 1.40185 s, 1.84193 s, 2.07365 s, 2.32947 s, 2.7763 s, 2.79275 s … 57.6724 s, 57.7152 s, 57.749 s, 58.1109 s, 58.3783 s, 58.4178 s, 58.921 s, 59.1693 s, 59.6546 s, 59.7824 s] And data, a 41×273 Array{Float64,2}: -2.47171 -1.72242 4.54491 … 2.74969 3.1869 -2.00435 6.78576 3.65903 5.14183 -0.98535 3.96603 -5.74065 1.56584 1.88131 0.470257 2.66664 5.27674 0.0610194 4.78242 3.20142 3.28502 5.20484 -3.66085 1.16247 3.23148 -1.24878 -0.0252124 5.46585 4.88651 3.64283 6.5714 0.572557 3.038 … -0.974689 2.61297 7.3496 4.46643 -0.444754 -4.52857 0.304449 -1.54659 -2.53197 -9.57806 -1.29114 -2.23969 -9.10793 -6.35711 -5.06038 -12.2567 -5.06283 -8.53581 -11.9826 -14.868 -14.0543 -24.5458 -19.9823 -20.0798 -20.3065 -18.5437 -25.3609 ⋮ ⋱ ⋮ 2.14059 -0.365031 1.36771 -4.23763 5.9211 -3.84708 3.58157 2.87076 0.835568 -2.27752 1.18686 2.3412 6.7953 -1.32384 -3.0897 0.464151 -1.12327 -2.14844 1.19649 2.44709 -5.16029 … -0.965397 2.37465 -2.36185 -1.57253 0.526027 0.831144 0.6505 3.61602 1.93462 0.739684 -1.74925 -6.18072 -7.36229 -0.187708 1.97774 0.645211 1.04006 -1.33676 4.30262 -4.46544 -0.278097 1.32901 -1.74821 1.94781 0.780325 3.22951 -0.436806 0.387814 0.128453 -0.00287742 … -1.51196 -2.10081 -2.26663 ``` By indexing with a repeated interval, we have *added* a dimension to the output! The returned AxisArray's columns specify each repetition of the interval, and each datapoint in the column represents a timepoint within that interval, adjusted by the time of the theshold crossing. The best part here is that the returned matrix knows precisely where its data came from, and has labeled its dimensions appropriately. Not only is there the proper time base for each waveform, but we also have recorded the event times as the axis across the columns. ## Indexing ### Indexing axes Two main types of Axes supported by default include: * Categorical axis -- These are vectors of labels, normally symbols or strings. Elements or slices can be selected by elements or vectors of elements. * Dimensional axis -- These are sorted vectors or iterators that can be selected by `Intervals`. These are commonly used for sequences of times or date-times. For regular sample rates, ranges can be used. Here is an example with a Dimensional axis representing a time sequence along rows and a Categorical axis of symbols for column headers. ```julia B = AxisArray(reshape(1:15, 5, 3), .1:.1:0.5, [:a, :b, :c]) B[Axis{:row}(Interval(.2,.4))] # restrict the AxisArray along the time axis B[Interval(0.,.3), [:a, :c]] # select an interval and two of the columns ``` User-defined axis types can be added along with custom indexing behaviors. ### Example: compute the intensity-weighted mean along the z axis ```julia B = AxisArray(randn(100,100,100), :x, :y, :z) Itotal = sumz = 0.0 for iter in eachindex(B) # traverses in storage order for cache efficiency I = B[iter] # intensity in a single voxel Itotal += I sumz += I * iter[axisdim(B, Axis{:z})] # axisdim "looks up" the z dimension end meanz = sumz/Itotal ``` The intention is that all of these operations are just as efficient as they would be if you used traditional position-based indexing with all the inherent assumptions about the storage order of `B`.
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.4.7
16351be62963a67ac4083f748fdb3cca58bfd52f
docs
40
```@autodocs Modules = [AxisArrays] ```
AxisArrays
https://github.com/JuliaArrays/AxisArrays.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
263
using Documenter, QueryOperators makedocs( modules = [QueryOperators], sitename = "QueryOperators.jl", analytics="UA-132838790-1", pages = [ "Introduction" => "index.md" ] ) deploydocs( repo = "github.com/queryverse/QueryOperators.jl.git" )
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
7472
module NamedTupleUtilities """ select(a::NamedTuple, v::Val{n}) Select a field `n` from `a` if it is in `a`. ```jldoctest julia> QueryOperators.NamedTupleUtilities.select((a=1,b=2,c=3),Val(:a)) (a = 1,) ``` """ @generated function select(a::NamedTuple{an}, ::Val{bn}) where {an, bn} names = ((i for i in an if i == bn)...,) types = Tuple{(fieldtype(a, n) for n in names)...} vals = Expr[:(getfield(a, $(QuoteNode(n)))) for n in names] return :(NamedTuple{$names,$types}(($(vals...),))) end """ remove(a::NamedTuple, v::Val{n}) Remove a field `n` from the `a` if it is in `a`. ```jldoctest julia> QueryOperators.NamedTupleUtilities.remove((a=1,b=2,c=3),Val(:c)) (a = 1, b = 2) ``` """ @generated function remove(a::NamedTuple{an}, ::Val{bn}) where {an, bn} names = ((i for i in an if i != bn)...,) types = Tuple{(fieldtype(a, n) for n in names)...} vals = Expr[:(getfield(a, $(QuoteNode(n)))) for n in names] return :(NamedTuple{$names,$types}(($(vals...),))) end """ range(a::NamedTuple, b::Val{n}, c::Val{n}) Return a NamedTuple which retains the fields from `b` to `c` in `a`. If `b` is not in `a`, then it will return the empty NamedTuple. If `c` is not in `a`, then it will return everything starting with `b`. ```jldoctest julia> QueryOperators.NamedTupleUtilities.range((a=1,b=2,c=3),Val(:a),Val(:b)) (a = 1, b = 2) ``` """ @generated function range(a::NamedTuple{an}, ::Val{bn}, ::Val{cn}) where {an, bn, cn} rangeStarted = false names = Symbol[] for n in an if n == bn rangeStarted = true end if rangeStarted push!(names, n) end if n == cn rangeStarted = false break end end types = Tuple{(fieldtype(a, n) for n in names)...} vals = Expr[:(getfield(a, $(QuoteNode(n)))) for n in names] return :( NamedTuple{$(names...,),$types}(($(vals...),)) ) end """ rename(a::NamedTuple, b::Val{n}, c::Val{n}) Return a NamedTuple derived from `a` in which the the field from `b` is renamed to `c`. If `b` is not in `a`, then it will return the original NamedTuple. If `c` is in `a`, then `ERROR: duplicate field name in NamedTuple: "c" is not unique` will occur. ```jldoctest julia> QueryOperators.NamedTupleUtilities.rename((a = 1, b = 2, c = 3),Val(:a),Val(:d)) (d = 1, b = 2, c = 3) julia> QueryOperators.NamedTupleUtilities.rename((a = 1, b = 2, c = 3),Val(:m),Val(:d)) (a = 1, b = 2, c = 3) julia> QueryOperators.NamedTupleUtilities.rename((a = 1, b = 2, c = 3),Val(:a),Val(:c)) ERROR: duplicate field name in NamedTuple: "c" is not unique ``` """ @generated function rename(a::NamedTuple{an}, ::Val{bn}, ::Val{cn}) where {an, bn, cn} names = Symbol[] typesArray = DataType[] vals = Expr[] for n in an if n == bn push!(names, cn) else push!(names, n) end push!(typesArray, fieldtype(a, n)) push!(vals, :(getfield(a, $(QuoteNode(n))))) end types = Tuple{typesArray...} return :(NamedTuple{$(names...,),$types}(($(vals...),))) end """ startswith(a::NamedTuple, b::Val{n}) Return a NamedTuple which retains the fields with names starting with `b` in `a`. ```jldoctest julia> QueryOperators.NamedTupleUtilities.startswith((abc=1,bcd=2,cde=3),Val(:a)) (abc = 1,) ``` """ @generated function startswith(a::NamedTuple{an}, ::Val{bn}) where {an, bn} names = ((i for i in an if Base.startswith(String(i), String(bn)))...,) types = Tuple{(fieldtype(a, n) for n in names)...} vals = Expr[:(getfield(a, $(QuoteNode(n)))) for n in names] return :(NamedTuple{$names,$types}(($(vals...),))) end """ not_startswith(a::NamedTuple, b::Val{n}) Return a NamedTuple which retains the fields with names that do not start with `b` in `a`. ```jldoctest julia> QueryOperators.NamedTupleUtilities.not_startswith((abc=1,bcd=2,cde=3),Val(:a)) (bcd = 2, cde = 3) ``` """ @generated function not_startswith(a::NamedTuple{an}, ::Val{bn}) where {an, bn} names = ((i for i in an if !Base.startswith(String(i), String(bn)))...,) types = Tuple{(fieldtype(a, n) for n in names)...} vals = Expr[:(getfield(a, $(QuoteNode(n)))) for n in names] return :(NamedTuple{$names,$types}(($(vals...),))) end """ endswith(a::NamedTuple, b::Val{n}) Return a NamedTuple which retains the fields with names that do not end with `b` in `a`. ```jldoctest julia> QueryOperators.NamedTupleUtilities.not_endswith((abc=1,bcd=2,cde=3),Val(:d)) (abc = 1, cde = 3) ``` """ @generated function endswith(a::NamedTuple{an}, ::Val{bn}) where {an, bn} names = ((i for i in an if Base.endswith(String(i), String(bn)))...,) types = Tuple{(fieldtype(a, n) for n in names)...} vals = Expr[:(getfield(a, $(QuoteNode(n)))) for n in names] return :(NamedTuple{$names,$types}(($(vals...),))) end """ not_endswith(a::NamedTuple, b::Val{n}) Return a NamedTuple which retains the fields with names ending with `b` in `a`. ```jldoctest julia> QueryOperators.NamedTupleUtilities.endswith((abc=1,bcd=2,cde=3),Val(:d)) (bcd = 2,) ``` """ @generated function not_endswith(a::NamedTuple{an}, ::Val{bn}) where {an, bn} names = ((i for i in an if !Base.endswith(String(i), String(bn)))...,) types = Tuple{(fieldtype(a, n) for n in names)...} vals = Expr[:(getfield(a, $(QuoteNode(n)))) for n in names] return :(NamedTuple{$names,$types}(($(vals...),))) end """ occursin(a::NamedTuple, b::Val{n}) Return a NamedTuple which retains the fields with names containing `b` as a substring. ```jldoctest julia> QueryOperators.NamedTupleUtilities.occursin((abc=1,bcd=2,cde=3),Val(:d)) (bcd = 2, cde = 3) ``` """ @generated function occursin(a::NamedTuple{an}, ::Val{bn}) where {an, bn} names = ((i for i in an if Base.occursin(String(bn), String(i)))...,) types = Tuple{(fieldtype(a, n) for n in names)...} vals = Expr[:(getfield(a, $(QuoteNode(n)))) for n in names] return :(NamedTuple{$names,$types}(($(vals...),))) end """ not_occursin(a::NamedTuple, b::Val{n}) Return a NamedTuple which retains the fields without names containing `b` as a substring. ```jldoctest julia> QueryOperators.NamedTupleUtilities.not_occursin((abc=1,bcd=2,cde=3),Val(:d)) (abc = 1,) ``` """ @generated function not_occursin(a::NamedTuple{an}, ::Val{bn}) where {an, bn} names = ((i for i in an if !Base.occursin(String(bn), String(i)))...,) types = Tuple{(fieldtype(a, n) for n in names)...} vals = Expr[:(getfield(a, $(QuoteNode(n)))) for n in names] return :(NamedTuple{$names,$types}(($(vals...),))) end """ oftype(a::NamedTuple, b::DataType) Returns a NamedTuple which retains the fields whose elements have type `b`. ```jldoctest julia> QueryOperators.NamedTupleUtilities.oftype((a = [4,5,6], b = [3.,2.,1.], c = ["He","llo","World!"]), Val(Int64)) (a = [4, 5, 6],) julia> QueryOperators.NamedTupleUtilities.oftype((a = [4,5,6], b = [3.,2.,1.], c = ["He","llo","World!"]), Val(Number)) (a = [4, 5, 6], b = [3., 2., 1.]) julia> QueryOperators.NamedTupleUtilities.oftype((a = [4,5,6], b = [3.,2.,1.], c = ["He","llo","World!"]), Val(Float32)) NamedTuple() ``` """ @generated function oftype(a::NamedTuple{an}, ::Val{b}) where {an, b} names = ((i for i in an if fieldtype(a, i) <: b)...,) types = Tuple{(fieldtype(a, n) for n in names)...} vals = Expr[:(getfield(a, $(QuoteNode(n)))) for n in names] return :(NamedTuple{$names,$types}(($(vals...),))) end end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
873
module QueryOperators using DataStructures using IteratorInterfaceExtensions using TableShowUtils import DataValues export Grouping, key include("operators.jl") include("NamedTupleUtilities.jl") include("enumerable/enumerable.jl") include("enumerable/enumerable_groupby.jl") include("enumerable/enumerable_join.jl") include("enumerable/enumerable_groupjoin.jl") include("enumerable/enumerable_orderby.jl") include("enumerable/enumerable_map.jl") include("enumerable/enumerable_gather.jl") include("enumerable/enumerable_filter.jl") include("enumerable/enumerable_mapmany.jl") include("enumerable/enumerable_defaultifempty.jl") include("enumerable/enumerable_count.jl") include("enumerable/enumerable_take.jl") include("enumerable/enumerable_drop.jl") include("enumerable/enumerable_unique.jl") include("enumerable/show.jl") include("source_iterable.jl") end # module
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
3354
function count end macro count(source, f) q = Expr(:quote, f) :(count($(esc(source)), $(esc(f)), $(esc(q)))) end macro count(source) :(count($(esc(source)))) end function default_if_empty end macro default_if_empty(source) :(default_if_empty($(esc(source)))) end macro default_if_empty(source, default_value) :(default_if_empty($(esc(source)), $(esc(default_value)))) end function filter end macro filter(source, f) q = Expr(:quote, f) :(QueryOperators.filter($(esc(source)), $(esc(f)), $(esc(q)))) end function gather end macro gather(source, withIndex = False) :(groupby($(esc(source)), $(esc(withIndex)))) end function groupby end macro groupby(source,elementSelector,resultSelector) q_elementSelector = Expr(:quote, elementSelector) q_resultSelector = Expr(:quote, resultSelector) :(groupby($(esc(source)), $(esc(elementSelector)), $(esc(q_elementSelector)), $(esc(resultSelector)), $(esc(q_resultSelector)))) end macro groupby_simple(source,elementSelector) q_elementSelector = Expr(:quote, elementSelector) :(groupby($(esc(source)), $(esc(elementSelector)), $(esc(q_elementSelector)))) end function groupjoin end macro groupjoin(outer, inner, outerKeySelector, innerKeySelector, resultSelector) q_outerKeySelector = Expr(:quote, outerKeySelector) q_innerKeySelector = Expr(:quote, innerKeySelector) q_resultSelector = Expr(:quote, resultSelector) :(groupjoin($(esc(outer)), $(esc(inner)), $(esc(outerKeySelector)), $(esc(q_outerKeySelector)), $(esc(innerKeySelector)),$(esc(q_innerKeySelector)), $(esc(resultSelector)),$(esc(q_resultSelector)))) end function join end macro join(outer, inner, outerKeySelector, innerKeySelector, resultSelector) q_outerKeySelector = Expr(:quote, outerKeySelector) q_innerKeySelector = Expr(:quote, innerKeySelector) q_resultSelector = Expr(:quote, resultSelector) :(join($(esc(outer)), $(esc(inner)), $(esc(outerKeySelector)), $(esc(q_outerKeySelector)), $(esc(innerKeySelector)),$(esc(q_innerKeySelector)), $(esc(resultSelector)),$(esc(q_resultSelector)))) end function map end macro map(source, f) q = Expr(:quote, f) :(map($(esc(source)), $(esc(f)), $(esc(q)))) end function mapmany end macro mapmany(source,collectionSelector,resultSelector) q_collectionSelector = Expr(:quote, collectionSelector) q_resultSelector = Expr(:quote, resultSelector) :(mapmany($(esc(source)), $(esc(collectionSelector)), $(esc(q_collectionSelector)), $(esc(resultSelector)), $(esc(q_resultSelector)))) end function orderby end macro orderby(source, f) q = Expr(:quote, f) :(orderby($(esc(source)), $(esc(f)), $(esc(q)))) end function orderby_descending end macro orderby_descending(source, f) q = Expr(:quote, f) :(orderby_descending($(esc(source)), $(esc(f)), $(esc(q)))) end function thenby end macro thenby(source, f) q = Expr(:quote, f) :(thenby($(esc(source)), $(esc(f)), $(esc(q)))) end function thenby_descending end macro thenby_descending(source, f) q = Expr(:quote, f) :(thenby_descending($(esc(source)), $(esc(f)), $(esc(q)))) end function take end macro take(source, n) :(take($(esc(source)), $(esc(n)))) end function drop end macro drop(source, n) :(drop($(esc(source)), $(esc(n)))) end function unique end macro unique(source, f) q = Expr(:quote, f) :(unique($(esc(source)), $(esc(f)), $(esc(q)))) end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
710
struct EnumerableIterable{T,S} <: Enumerable source::S end function query(source) IteratorInterfaceExtensions.isiterable(source) || error() typed_source = IteratorInterfaceExtensions.getiterator(source) T = eltype(typed_source) S = typeof(typed_source) source_enumerable = EnumerableIterable{T,S}(typed_source) return source_enumerable end Base.IteratorSize(::Type{EnumerableIterable{T,S}}) where {T,S} = haslength(S) Base.eltype(::Type{EnumerableIterable{T,S}}) where {T,S} = T Base.length(iter::EnumerableIterable{T,S}) where {T,S} = length(iter.source) function Base.iterate(iter::EnumerableIterable{T,S}, state...) where {T,S} return iterate(iter.source, state...) end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
285
abstract type Enumerable end Base.IteratorSize(::Type{T}) where {T <: Enumerable} = Base.SizeUnknown() IteratorInterfaceExtensions.isiterable(x::Enumerable) = true haslength(S) = Base.IteratorSize(S) isa Union{Base.HasLength, Base.HasShape} ? Base.HasLength() : Base.IteratorSize(S)
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
193
function count(source::Enumerable, filter::Function, filter_expr::Expr) return Base.count(filter, source) end function count(source::Enumerable) return Base.count(i->true, source) end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
1599
struct EnumerableDefaultIfEmpty{T,S} <: Enumerable source::S default_value::T end Base.eltype(iter::Type{EnumerableDefaultIfEmpty{T,S}}) where {T,S} = T _default_value_expr(::Type{T}) where {T} = :( DataValues.DataValue{$T}() ) _default_value_expr(::Type{T}) where {T<:DataValues.DataValue} = :( $T() ) function _default_value_expr(::Type{T}) where {T<:NamedTuple} return :( NamedTuple{$(fieldnames(T))}( ($( (_default_value_expr(fieldtype(T,i)) for i in 1:length(fieldnames(T)))... ),)) ) end @generated function default_if_empty(source::S) where {S} T_source = eltype(source) default_value_expr = _default_value_expr(T_source) q = quote default_value = $default_value_expr T = typeof(default_value) return EnumerableDefaultIfEmpty{T,$S}(source, default_value) end return q end function default_if_empty(source::S, default_value::TD) where {S,TD} T = eltype(source) if T!=TD error("The default value must have the same type as the elements from the source.") end return EnumerableDefaultIfEmpty{T,S}(source, default_value) end function Base.iterate(iter::EnumerableDefaultIfEmpty{T,S}) where {T,S} s = iterate(iter.source) if s===nothing return iter.default_value, nothing else return convert(T,s[1]), s[2] end end function Base.iterate(iter::EnumerableDefaultIfEmpty{T,S}, state) where {T,S} state===nothing && return nothing s = iterate(iter.source, state) if s===nothing return nothing else return convert(T, s[1]), s[2] end end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
924
struct EnumerableDrop{T,S} <: Enumerable source::S n::Int end function drop(source::Enumerable, n::Integer) T = eltype(source) S = typeof(source) return EnumerableDrop{T,S}(source, Int(n)) end Base.IteratorSize(::Type{EnumerableDrop{T,S}}) where {T,S} = (Base.IteratorSize(S) isa Base.HasLength || Base.IteratorSize(S) isa Base.HasShape) ? Base.HasLength() : Base.SizeUnknown() Base.eltype(::Type{EnumerableDrop{T,S}}) where {T,S} = T Base.length(iter::EnumerableDrop{T,S}) where {T,S} = max(length(iter.source)-iter.n,0) function Base.iterate(iter::EnumerableDrop{T,S}) where {T,S} ret = iterate(iter.source) for i in 1:iter.n if ret===nothing return nothing else ret = iterate(iter.source, ret[2]) end end return ret end function Base.iterate(iter::EnumerableDrop{T,S}, state) where {T,S} return iterate(iter.source, state) end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
712
# T is the type of the elements produced by this iterator struct EnumerableFilter{T,S,Q<:Function} <: Enumerable source::S filter::Q end Base.eltype(iter::Type{EnumerableFilter{T,S,Q}}) where {T,S,Q} = T function filter(source::Enumerable, filter_func::Function, filter_expr::Expr) T = eltype(source) S = typeof(source) Q = typeof(filter_func) return EnumerableFilter{T,S,Q}(source, filter_func) end function Base.iterate(iter::EnumerableFilter{T,S,Q}, state...) where {T,S,Q} ret = iterate(iter.source, state...) while ret!==nothing if iter.filter(ret[1]) return ret end ret = iterate(iter.source, ret[2]) end return nothing end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
3138
struct EnumerableGather{T,S,F,I,A} <: Enumerable source::S fields::F indexFields::I savedFields::A key::Symbol value::Symbol end struct Not{T} val::T end function gather(source::Enumerable, args...; key::Symbol = :key, value::Symbol = :value) fields = fieldnames(eltype(source)) if length(args) > 0 indexFields_vector = Vector{Symbol}(undef, 0) firstArg = true for arg in args if typeof(arg) == Symbol push!(indexFields_vector, arg) else typeof(arg) == Not{Symbol} if firstArg indexFields_vector = [a for a in fields if a != arg.val] else indexFields_vector = [a for a in indexFields_vector if a != arg.val] end end firstArg = false end indexFields = tuple(indexFields_vector...) else indexFields = fields end savedFields = (n for n in fields if !(n in indexFields)) # fields that are not in `indexFields` savedFieldsType = (fieldtype(eltype(source), savedField) for savedField in savedFields) valueTypes = (fieldtype(eltype(source), indexField) for indexField in indexFields) valueType = reduce(promote_type, valueTypes) T = NamedTuple{(savedFields..., key, value), Tuple{savedFieldsType..., Symbol, valueType}} return EnumerableGather{T, typeof(source), typeof(fields), typeof(indexFields), typeof(savedFields)}(source, fields, indexFields, savedFields, key, value) end function Base.iterate(iter::EnumerableGather{T, S, F, I, A}) where {T, S, F, I, A} source_iterate = iterate(iter.source) if source_iterate == nothing || length(iter.indexFields) == 0 return nothing end key = iter.indexFields[1] current_source_row = source_iterate[1] value = current_source_row[key] return (T((Base.map(n->current_source_row[n], iter.savedFields)..., key, value)), (current_source_row=current_source_row, source_state=source_iterate[2], current_index_field_index=1)) end function Base.iterate(iter::EnumerableGather{T, S, F, I, A}, state) where {T, S, F, I, A} current_index_field_index = state.current_index_field_index + 1 if current_index_field_index > length(iter.indexFields) source_iterate = iterate(iter.source, state.source_state) if source_iterate == nothing || length(iter.indexFields) == 0 return nothing end current_index_field_index = 1 source_state = source_iterate[2] current_source_row = source_iterate[1] else source_state = state.source_state current_source_row = state.current_source_row end key = iter.indexFields[current_index_field_index] value = current_source_row[key] return (T((Base.map(n->current_source_row[n], iter.savedFields)..., key, value)), (current_source_row=current_source_row, source_state=source_state, current_index_field_index=current_index_field_index)) end function Base.eltype(iter::EnumerableGather{T, S, F, I, A}) where {T, S, F, I, A} return T end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
3656
struct EnumerableGroupBySimple{T,TKey,TS,SO,ES<:Function} <: Enumerable source::SO elementSelector::ES end struct Grouping{TKey,T} <: AbstractArray{T,1} _key::TKey elements::Array{T,1} end key(g::Grouping) = getfield(g, :_key) struct GroupColumnArrayView{T,G,INDEX} <: AbstractVector{T} grouping::G end function Base.size(gcav::GroupColumnArrayView) return size(gcav.grouping) end function Base.getindex(gcav::GroupColumnArrayView{T,G,INDEX}, i::Int) where {T,G,INDEX} return getproperty(gcav.grouping[i],INDEX) end Base.IndexStyle(::Type{GroupColumnArrayView}) = IndexLinear() function Base.getproperty(g::Grouping{TKey,T}, name::Symbol) where {TKey,T} return GroupColumnArrayView{fieldtype(T,name),Grouping{TKey,T},name}(g) end Base.size(A::Grouping{TKey,T}) where {TKey,T} = size(getfield(A, :elements)) Base.getindex(A::Grouping{TKey,T},i) where {TKey,T} = getfield(A, :elements)[i] Base.length(A::Grouping{TKey,T}) where {TKey,T} = length(getfield(A, :elements)) Base.eltype(::Type{EnumerableGroupBySimple{T,TKey,TS,SO,ES}}) where {T,TKey,TS,SO,ES} = T function groupby(source::Enumerable, f_elementSelector::Function, elementSelector::Expr) TS = eltype(source) TKey = Base._return_type(f_elementSelector, Tuple{TS,}) SO = typeof(source) T = Grouping{TKey,TS} ES = typeof(f_elementSelector) return EnumerableGroupBySimple{T,TKey,TS,SO,ES}(source,f_elementSelector) end function Base.iterate(iter::EnumerableGroupBySimple{T,TKey,TS,SO,ES}) where {T,TKey,TS,SO,ES} result = OrderedDict{TKey,T}() for i in iter.source key = iter.elementSelector(i) if !haskey(result, key) result[key] = T(key,Array{TS}(undef, 0)) end push!(getfield(result[key], :elements),i) end groups = collect(values(result)) if length(groups)==0 return nothing else return groups[1], (groups, 2) end end function Base.iterate(iter::EnumerableGroupBySimple{T,TKey,TS,SO,ES}, state) where {T,TKey,TS,SO,ES} if state[2]>length(state[1]) return nothing else return state[1][state[2]], (state[1], state[2]+1) end end struct EnumerableGroupBy{T,TKey,TR,SO,ES<:Function,RS<:Function} <: Enumerable source::SO elementSelector::ES resultSelector::RS end Base.eltype(::Type{EnumerableGroupBy{T,TKey,TR,SO,ES, RS}}) where {T,TKey,TR,SO,ES,RS} = T function groupby(source::Enumerable, f_elementSelector::Function, elementSelector::Expr, f_resultSelector::Function, resultSelector::Expr) TS = eltype(source) TKey = Base._return_type(f_elementSelector, Tuple{TS,}) SO = typeof(source) TR = Base._return_type(f_resultSelector, Tuple{TS,}) T = Grouping{TKey,TR} ES = typeof(f_elementSelector) RS = typeof(f_resultSelector) return EnumerableGroupBy{T,TKey,TR,SO,ES,RS}(source,f_elementSelector,f_resultSelector) end function Base.iterate(iter::EnumerableGroupBy{T,TKey,TR,SO,ES}) where {T,TKey,TR,SO,ES} result = OrderedDict{TKey,T}() for i in iter.source key = iter.elementSelector(i) if !haskey(result, key) result[key] = T(key,Array{TR}(undef,0)) end push!(getfield(result[key], :elements),iter.resultSelector(i)) end groups = collect(values(result)) if length(groups)==0 return nothing else return groups[1], (groups, 2) end end function Base.iterate(iter::EnumerableGroupBy{T,TKey,TR,SO,ES}, state) where {T,TKey,TR,SO,ES} if state[2]>length(state[1]) return nothing else return state[1][state[2]], (state[1], state[2]+1) end end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
2251
struct EnumerableGroupJoin{T,TKey,TI,SO,SI,OKS<:Function,IKS<:Function,RS<:Function} <: Enumerable outer::SO inner::SI outerKeySelector::OKS innerKeySelector::IKS resultSelector::RS end Base.eltype(::Type{EnumerableGroupJoin{T,TKeyOuter,TI,SO,SI,OKS,IKS,RS}}) where {T,TKeyOuter,TI,SO,SI,OKS,IKS,RS} = T function groupjoin(outer::Enumerable, inner::Enumerable, f_outerKeySelector::Function, outerKeySelector::Expr, f_innerKeySelector::Function, innerKeySelector::Expr, f_resultSelector::Function, resultSelector::Expr) TO = eltype(outer) TI = eltype(inner) TKeyOuter = Base._return_type(f_outerKeySelector, Tuple{TO,}) TKeyInner = Base._return_type(f_innerKeySelector, Tuple{TI,}) if TKeyOuter!=TKeyInner error("The keys in the join clause have different types, $TKeyOuter and $TKeyInner.") end SO = typeof(outer) SI = typeof(inner) T = Base._return_type(f_resultSelector, Tuple{TO,Array{TI,1}}) OKS = typeof(f_outerKeySelector) IKS = typeof(f_innerKeySelector) RS = typeof(f_resultSelector) return EnumerableGroupJoin{T,TKeyOuter,TI,SO,SI,OKS,IKS,RS}(outer,inner,f_outerKeySelector,f_innerKeySelector,f_resultSelector) end function Base.iterate(iter::EnumerableGroupJoin{T,TKeyOuter,TI,SO,SI,OKS,IKS,RS}) where {T,TKeyOuter,TI,SO,SI,OKS,IKS,RS} results = Array{T}(undef, 0) inner_dict = OrderedDict{TKeyOuter,Array{TI,1}}() for i in iter.inner key = iter.innerKeySelector(i) if !haskey(inner_dict, key) inner_dict[key] = Array{TI}(undef, 0) end push!(inner_dict[key], i) end for i in iter.outer outerKey = iter.outerKeySelector(i) if haskey(inner_dict,outerKey) g = inner_dict[outerKey] else g = Array{TI}(undef, 0) end push!(results, iter.resultSelector(i,g)) end if length(results)==0 return nothing end return results[1], (results,2) end function Base.iterate(iter::EnumerableGroupJoin{T,TKeyOuter,TI,SO,SI,OKS,IKS,RS}, state) where {T,TKeyOuter,TI,SO,SI,OKS,IKS,RS} if state[2]>length(state[1]) return nothing else return state[1][state[2]], (state[1], state[2]+1) end end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
2193
struct EnumerableJoin{T,TKey,TI,SO,SI,OKS<:Function,IKS<:Function,RS<:Function} <: Enumerable outer::SO inner::SI outerKeySelector::OKS innerKeySelector::IKS resultSelector::RS end Base.eltype(::Type{EnumerableJoin{T,TKeyOuter,TI,SO,SI,OKS,IKS,RS}}) where {T,TKeyOuter,TI,SO,SI,OKS,IKS,RS} = T function join(outer::Enumerable, inner::Enumerable, f_outerKeySelector::Function, outerKeySelector::Expr, f_innerKeySelector::Function, innerKeySelector::Expr, f_resultSelector::Function, resultSelector::Expr) TO = eltype(outer) TI = eltype(inner) TKeyOuter = Base._return_type(f_outerKeySelector, Tuple{TO,}) TKeyInner = Base._return_type(f_innerKeySelector, Tuple{TI,}) if TKeyOuter!=TKeyInner error("The keys in the join clause have different types, $TKeyOuter and $TKeyInner.") end SO = typeof(outer) SI = typeof(inner) T = Base._return_type(f_resultSelector, Tuple{TO,TI}) OKS = typeof(f_outerKeySelector) IKS = typeof(f_innerKeySelector) RS = typeof(f_resultSelector) return EnumerableJoin{T,TKeyOuter,TI,SO,SI,OKS,IKS,RS}(outer,inner,f_outerKeySelector,f_innerKeySelector,f_resultSelector) end function Base.iterate(iter::EnumerableJoin{T,TKeyOuter,TI,SO,SI,OKS,IKS,RS}) where {T,TKeyOuter,TI,SO,SI,OKS,IKS,RS} results = Array{T}(undef, 0) inner_dict = OrderedDict{TKeyOuter,Array{TI,1}}() for i in iter.inner key = iter.innerKeySelector(i) if !haskey(inner_dict, key) inner_dict[key] = Array{TI}(undef, 0) end push!(inner_dict[key], i) end for i in iter.outer outerKey = iter.outerKeySelector(i) if haskey(inner_dict,outerKey) for j in inner_dict[outerKey] push!(results, iter.resultSelector(i,j)) end end end if length(results)==0 return nothing end return results[1], (results, 2) end function Base.iterate(iter::EnumerableJoin{T,TKeyOuter,TI,SO,SI,OKS,IKS,RS}, state) where {T,TKeyOuter,TI,SO,SI,OKS,IKS,RS} if state[2]>length(state[1]) return nothing else return state[1][state[2]], (state[1], state[2]+1) end end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
734
struct EnumerableMap{T, S, Q<:Function} <: Enumerable source::S f::Q end Base.IteratorSize(::Type{EnumerableMap{T,S,Q}}) where {T,S,Q} = haslength(S) Base.eltype(iter::Type{EnumerableMap{T,S,Q}}) where {T,S,Q} = T Base.length(iter::EnumerableMap{T,S,Q}) where {T,S,Q} = length(iter.source) function map(source::Enumerable, f::Function, f_expr::Expr) TS = eltype(source) T = Base._return_type(f, Tuple{TS,}) S = typeof(source) Q = typeof(f) return EnumerableMap{T,S,Q}(source, f) end function Base.iterate(iter::EnumerableMap{T,S,Q}, state...) where {T,S,Q} ret = iterate(iter.source, state...) if ret===nothing return nothing else return iter.f(ret[1]), ret[2] end end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
2999
struct EnumerableMapMany{T,SO,CS<:Function,RS<:Function} <: Enumerable source::SO collectionSelector::CS resultSelector::RS end Base.eltype(::Type{EnumerableMapMany{T,SO,CS,RS}}) where {T,SO,CS,RS} = T # TODO Make sure this is actually correct. We might have to be more selective, # i.e. only scan arguments for certain types of expression etc. function expr_contains_ref_to(expr::Expr, var_name::Symbol) for sub_expr in expr.args if isa(sub_expr, Symbol) if sub_expr==var_name return true end else test_sub = expr_contains_ref_to(sub_expr, var_name) if test_sub return true end end end return false end function expr_contains_ref_to(expr::Symbol, var_name::Symbol) return expr==var_name end function expr_contains_ref_to(expr::QuoteNode, var_name::Symbol) return expr==var_name end function expr_contains_ref_to(expr::Function, var_name::Symbol) return false end expr_contains_ref_to(::Number, ::Symbol) = false function mapmany(source::Enumerable, f_collectionSelector::Function, collectionSelector::Expr, f_resultSelector::Function, resultSelector::Expr) TS = eltype(source) # First detect whether the collectionSelector return value depends at all # on the value of the anonymous function argument anon_var = collectionSelector.head==:escape ? collectionSelector.args[1].args[1] : collectionSelector.args[1] body = collectionSelector.head==:escape ? collectionSelector.args[1].args[2].args[2] : collectionSelector.args[2].args[2] crossJoin = !expr_contains_ref_to(body, anon_var) if crossJoin inner_collection = f_collectionSelector(nothing) input_type_collection_selector = typeof(inner_collection) TCE = input_type_collection_selector.parameters[1] else input_type_collection_selector = Base._return_type(f_collectionSelector, Tuple{TS,}) TCE = typeof(input_type_collection_selector)==Union || input_type_collection_selector==Any ? Any : eltype(input_type_collection_selector) end T = Base._return_type(f_resultSelector, Tuple{TS,TCE}) SO = typeof(source) CS = typeof(f_collectionSelector) RS = typeof(f_resultSelector) return EnumerableMapMany{T,SO,CS,RS}(source,f_collectionSelector,f_resultSelector) end # TODO This should be changed to a lazy implementation function Base.iterate(iter::EnumerableMapMany{T,SO,CS,RS}) where {T,SO,CS,RS} results = Array{T}(undef, 0) for i in iter.source for j in iter.collectionSelector(i) push!(results,iter.resultSelector(i,j)) end end if length(results)==0 return nothing end return results[1], (results,2) end function Base.iterate(iter::EnumerableMapMany{T,SO,CS,RS}, state) where {T,SO,CS,RS} if state[2]>length(state[1]) return nothing else return state[1][state[2]], (state[1], state[2]+1) end end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
4163
struct EnumerableOrderby{T,S,KS<:Function,TKS} <: Enumerable source::S keySelector::KS descending::Bool end Base.IteratorSize(::Type{EnumerableOrderby{T,S,KS,TKS}}) where {T,S,KS,TKS} = haslength(S) Base.eltype(::Type{EnumerableOrderby{T,S,KS,TKS}}) where {T,S,KS,TKS} = T Base.length(iter::EnumerableOrderby{T,S,KS,TKS}) where {T,S,KS,TKS} = length(iter.source) function orderby(source::Enumerable, f::Function, f_expr::Expr) T = eltype(source) TKS = Base._return_type(f, Tuple{T,}) KS = typeof(f) return EnumerableOrderby{T,typeof(source), KS,TKS}(source, f, false) end function orderby_descending(source::Enumerable, f::Function, f_expr::Expr) T = eltype(source) TKS = Base._return_type(f, Tuple{T,}) KS = typeof(f) return EnumerableOrderby{T,typeof(source),KS,TKS}(source, f, true) end function Base.iterate(iter::EnumerableOrderby{T,S,KS,TKS}) where {T,S,KS,TKS} rows = (Base.IteratorSize(typeof(iter)) isa Base.HasLength || Base.IteratorSize(typeof(iter)) isa Base.HasShape) ? length(iter) : 0 elements = Array{T}(undef, rows) if Base.IteratorSize(typeof(iter)) isa Base.HasLength || Base.IteratorSize(typeof(iter)) isa Base.HasShape for i in enumerate(iter.source) elements[i[1]] = i[2] end else for i in iter.source push!(elements, i) end end if length(elements)==0 return nothing end sort!(elements, by=iter.keySelector, rev=iter.descending) return elements[1], (elements, 2) end function Base.iterate(iter::EnumerableOrderby{T,S,KS,TKS}, state) where {T,S,KS,TKS} if state[2]>length(state[1]) return nothing else return state[1][state[2]], (state[1], state[2]+1) end end struct EnumerableThenBy{T,S,KS<:Function,TKS} <: Enumerable source::S keySelector::KS descending::Bool end Base.eltype(::Type{EnumerableThenBy{T,S,KS,TKS}}) where {T,S,KS,TKS} = T Base.length(iter::EnumerableThenBy{T,S,KS,TKS}) where {T,S,KS,TKS} = length(iter.source) function thenby(source::Enumerable, f::Function, f_expr::Expr) T = eltype(source) TKS = Base._return_type(f, Tuple{T,}) KS = typeof(f) return EnumerableThenBy{T,typeof(source),KS,TKS}(source, f, false) end function thenby_descending(source::Enumerable, f::Function, f_expr::Expr) T = eltype(source) TKS = Base._return_type(f, Tuple{T,}) KS = typeof(f) return EnumerableThenBy{T,typeof(source),KS,TKS}(source, f, true) end function Base.iterate(iter::EnumerableThenBy{T,S,KS,TKS}) where {T,S,KS,TKS} # Find start of ordering sequence source = iter.source keySelectors = [source.keySelector,iter.keySelector] directions = [source.descending, iter.descending] while !isa(source, EnumerableOrderby) source = source.source insert!(keySelectors,1,source.keySelector) insert!(directions,1,source.descending) end keySelector = element->[i(element) for i in keySelectors] lt = (t1,t2) -> begin n1, n2 = length(t1), length(t2) for i = 1:min(n1, n2) a, b = t1[i], t2[i] descending = directions[i] if !isequal(a, b) return descending ? !isless(a, b) : isless(a, b) end end return n1 < n2 end rows = (Base.IteratorSize(typeof(iter)) isa Base.HasLength || Base.IteratorSize(typeof(iter)) isa Base.HasShape) ? length(iter) : 0 elements = Array{T}(undef, rows) if (Base.IteratorSize(typeof(iter)) isa Base.HasLength || Base.IteratorSize(typeof(iter)) isa Base.HasShape) for i in enumerate(iter.source) elements[i[1]] = i[2] end else for i in iter.source push!(elements, i) end end if length(elements)==0 return nothing end sort!(elements, by=keySelector, lt=lt) return elements[1], (elements, 2) end function Base.iterate(iter::EnumerableThenBy{T,S,KS,TKS}, state) where {T,S,KS,TKS} if state[2]>length(state[1]) return nothing else return state[1][state[2]], (state[1], state[2]+1) end end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
978
struct EnumerableTake{T,S} <: Enumerable source::S n::Int end function take(source::Enumerable, n::Integer) T = eltype(source) S = typeof(source) return EnumerableTake{T,S}(source, Int(n)) end Base.IteratorSize(::Type{EnumerableTake{T,S}}) where {T,S} = haslength(S) Base.eltype(::Type{EnumerableTake{T,S}}) where {T,S} = T Base.length(iter::EnumerableTake{T,S}) where {T,S} = min(length(iter.source),iter.n) function Base.iterate(iter::EnumerableTake{T,S}) where {T,S} ret = iterate(iter.source) if ret===nothing return nothing elseif iter.n==0 return nothing else return ret[1], (ret[2],1) end end function Base.iterate(iter::EnumerableTake{T,S}, state) where {T,S} if state[2]==iter.n return nothing else ret = iterate(iter.source, state[1]) if ret===nothing return nothing else return ret[1], (ret[2], state[2]+1) end end end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
1404
struct EnumerableUnique{T,TKEY,S,Q<:Function} <: Enumerable source::S f::Q end function unique(source::Enumerable, f::Function, f_expr::Expr) T = eltype(source) S = typeof(source) TKEY = Base._return_type(f, Tuple{T,}) return EnumerableUnique{T,TKEY,S,typeof(f)}(source, f) end Base.eltype(::Type{EnumerableUnique{T,TKEY,S,Q}}) where {T,TKEY,S,Q} = T function Base.iterate(iter::EnumerableUnique{T,TKEY,S,Q}) where {T,TKEY,S,Q} ret = iterate(iter.source) ret===nothing && return nothing observed_keys = Set{TKEY}() first_element = ret[1] source_state = ret[2] key_first_element = iter.f(first_element) push!(observed_keys, key_first_element) return first_element, (observed_keys=observed_keys, source_state=source_state) end function Base.iterate(iter::EnumerableUnique{T,TKEY,S,Q}, state) where {T,TKEY,S,Q} ret = iterate(iter.source, state.source_state) ret===nothing && return nothing while true current_element = ret[1] key_current_element=iter.f(current_element) if key_current_element in state.observed_keys ret = iterate(iter.source, ret[2]) ret===nothing && return nothing else push!(state.observed_keys, key_current_element) return current_element, (observed_keys=state.observed_keys, source_state=ret[2]) end end end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
1858
function printsequence(io::IO, source::Enumerable) T = eltype(source) rows = Base.IteratorSize(source) == Base.HasLength() ? length(source) : "?" print(io, "$(rows)-element query result") max_element_to_show = 10 i = 1 foo = iterate(source) while foo!==nothing v, s = foo println(io) if i==max_element_to_show+1 print(io, "... with ") if Base.IteratorSize(source)!=Base.HasLength() print(io, " more elements") else extra_rows = length(source) - max_element_to_show print(io, "$extra_rows more $(extra_rows==1 ? "element" : "elements")") end break else print(io, " ") show(IOContext(io, :compact => true), v) end i += 1 foo = iterate(source, s) end end function Base.show(io::IO, source::Enumerable) if eltype(source) <: NamedTuple TableShowUtils.printtable(io, source, "query result") else printsequence(io, source) end end function Base.show(io::IO, ::MIME"text/html", source::Enumerable) if eltype(source) <: NamedTuple TableShowUtils.printHTMLtable(io, source) else error("Cannot write this Enumerable as text/html.") end end function Base.Multimedia.showable(::MIME"text/html", source::Enumerable) return eltype(source) <: NamedTuple end function Base.show(io::IO, ::MIME"application/vnd.dataresource+json", source::Enumerable) if eltype(source) <: NamedTuple TableShowUtils.printdataresource(io, source) else error("Cannot write this Enumerable as 'application/vnd.dataresource+json'.") end end function Base.Multimedia.showable(::MIME"application/vnd.dataresource+json", source::Enumerable) return eltype(source) <: NamedTuple end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
5290
using QueryOperators using DataValues using Test @testset "QueryOperators" begin @testset "Core" begin source_1 = [1,2,2,3,4] enum = QueryOperators.query(source_1) @test collect(QueryOperators.@filter(QueryOperators.query(source_1), i->i>2)) == [3,4] @test collect(QueryOperators.@map(QueryOperators.query(source_1), i->i^2)) == [1,4,4,9,16] @test collect(QueryOperators.@take(enum, 2)) == [1,2] @test collect(QueryOperators.@drop(enum, 2)) == [2,3,4] @test QueryOperators.@count(enum) == 5 @test QueryOperators.@count(enum, x->x%2==0) == 3 dropped_str = "" for i in QueryOperators.drop(enum, 2) dropped_str *= string(i) end @test dropped_str == "234" dropped_str = "" for i in QueryOperators.drop(enum, 80) dropped_str *= string(i) end @test dropped_str == "" taken_str = "" for i in QueryOperators.take(enum, 2) taken_str *= string(i) end @test taken_str == "12" filtered_str = "" for i in QueryOperators.@filter(enum, x->x%2==0) filtered_str *= string(i) end @test filtered_str == "224" filtered_str = "" for i in QueryOperators.@filter(enum, x->x>100) filtered_str *= string(i) end @test filtered_str == "" @test collect(QueryOperators.@filter(enum, x->x<3)) == [1,2,2] grouped = [] for i in QueryOperators.@groupby(QueryOperators.query(source_1), i->i, i->i^2) push!(grouped, i) end @test grouped == [[1],[4,4],[9],[16]] mapped = [] for i in collect(QueryOperators.@map(enum, i->i*3)) push!(mapped, i) end @test mapped == [3,6,6,9,12] # ensure that the default value must be of the same type errored = false try QueryOperators.@default_if_empty(source_1, "string") catch errored = true end @test errored == true # default_if_empty for regular array d = [] for i in QueryOperators.@default_if_empty(source_1, 0) push!(d, i) end @test d == [1, 2, 2, 3, 4] @test collect(QueryOperators.default_if_empty(DataValue{Int}[]))[1] == DataValue{Int}() @test collect(QueryOperators.default_if_empty(DataValue{Int}[], DataValue{Int}()))[1] == DataValue{Int}() # passing in a NamedTuple of DataValues nt = (a=DataValue(2), b=DataValue("test"), c=DataValue(3)) def = QueryOperators.default_if_empty(typeof(nt)[]) @test typeof(collect(def)[1]) == typeof(nt) ordered = QueryOperators.@orderby(enum, x -> -x) @test collect(ordered) == [4, 3, 2, 2, 1] filtered = QueryOperators.@orderby(QueryOperators.@filter(enum, x->x%2 == 0), x->x) @test collect(filtered) == [2, 2, 4] ordered = QueryOperators.@orderby_descending(enum, x -> -x) @test collect(ordered) == [1, 2, 2, 3, 4] desired = [[1], [2, 2, 3], [4]] grouped = QueryOperators.@groupby(enum, x -> floor(x/2), x->x) @test collect(grouped) == desired group_no_macro = QueryOperators.groupby(enum, x -> floor(x/2), quote x->floor(x/2) end) @test collect(group_no_macro) == desired outer = QueryOperators.query([1,2,3,4,5,6]) inner = QueryOperators.query([2,3,4,5]) join_desired = [[3,2], [4,3], [5,4], [6,5]] @test collect(QueryOperators.@join(outer, inner, x->x, x->x+1, (i,j)->[i,j])) == join_desired group_desired = [[1, Int64[]], [2, Int64[]], [3, [2]], [4, [3]], [5, [4]], [6, [5]]] @test collect(QueryOperators.@groupjoin(outer, inner, x->x, x->x+1, (i,j)->[i,j])) == group_desired many_map_desired = [[1, 2], [2, 4], [2, 4], [3, 6], [4, 8]] success = collect(QueryOperators.@mapmany(enum, x->[x*2], (x,y)->[x,y])) == many_map_desired @test success # for some reason, this is required to avoid a BoundsError first = QueryOperators.query([1, 2]) second = [3, 4] many_map_desired = [(1,3), (1,4), (2,3), (2,4)] success = collect(QueryOperators.@mapmany(first, i->second, (x,y)->(x,y))) == many_map_desired @test success ntups = QueryOperators.query([(a=1, b=2, c=3), (a=4, b=5, c=6)]) @test sprint(show, ntups) == """ 2x3 query result a │ b │ c ──┼───┼── 1 │ 2 │ 3 4 │ 5 │ 6""" @test sprint(show, enum) == """ 5-element query result 1 2 2 3 4""" @test sprint((stream,data)->show(stream, "text/html", data), ntups) == "<table><thead><tr><th>a</th><th>b</th><th>c</th></tr></thead><tbody><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></tbody></table>" gather_result1 = QueryOperators.gather(QueryOperators.query([(US=1, EU=1, CN=1), (US=2, EU=2, CN=2), (US=3, EU=3, CN=3)])) @test sprint(show, gather_result1) == """9x2 query result\nkey │ value\n────┼──────\n:US │ 1 \n:EU │ 1 \n:CN │ 1 \n:US │ 2 \n:EU │ 2 \n:CN │ 2 \n:US │ 3 \n:EU │ 3 \n:CN │ 3 """ gather_result2 = QueryOperators.gather(QueryOperators.query([(Year=2017, US=1, EU=1, CN=1), (Year=2018, US=2, EU=2, CN=2), (Year=2019, US=3, EU=3, CN=3)]), :US, :EU, :CN) @test sprint(show, gather_result2) == "9x3 query result\nYear │ key │ value\n─────┼─────┼──────\n2017 │ :US │ 1 \n2017 │ :EU │ 1 \n2017 │ :CN │ 1 \n2018 │ :US │ 2 \n2018 │ :EU │ 2 \n2018 │ :CN │ 2 \n2019 │ :US │ 3 \n2019 │ :EU │ 3 \n2019 │ :CN │ 3 " @test sprint((stream,data)->show(stream, "application/vnd.dataresource+json", data), ntups) == "{\"schema\":{\"fields\":[{\"name\":\"a\",\"type\":\"integer\"},{\"name\":\"b\",\"type\":\"integer\"},{\"name\":\"c\",\"type\":\"integer\"}]},\"data\":[{\"a\":1,\"b\":2,\"c\":3},{\"a\":4,\"b\":5,\"c\":6}]}" end include("test_enumerable_unique.jl") include("test_namedtupleutilities.jl") end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
428
using Test @testset "unique" begin source_1 = [1,2,2,3,3,3,4] enum = QueryOperators.query(source_1) @test collect(QueryOperators.@unique(enum, i->i)) == [1,2,3,4] source_1 = [1,2,3,4] enum = QueryOperators.query(source_1) @test collect(QueryOperators.@unique(enum, i->i)) == [1,2,3,4] source_1 = [1,-1,2,3,4] enum = QueryOperators.query(source_1) @test collect(QueryOperators.@unique(enum, i->abs(i))) == [1,2,3,4] end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
code
2861
using Test using QueryOperators @testset "NamedTupleUtilities" begin @test QueryOperators.NamedTupleUtilities.select((a = 1, b = 2, c = 3), Val(:a)) == (a = 1,) @test QueryOperators.NamedTupleUtilities.select((a = 1, b = 2, c = 3), Val(:d)) == NamedTuple() @inferred QueryOperators.NamedTupleUtilities.remove((a = 1, b = 2), Val(:b)) @test QueryOperators.NamedTupleUtilities.remove((a = 1, b = 2, c = 3),Val(:c)) == (a = 1, b = 2) @test QueryOperators.NamedTupleUtilities.remove((a = 1, b = 2),Val(:c)) == (a = 1, b = 2) @inferred QueryOperators.NamedTupleUtilities.remove((a = 1, b = 2),Val(:c)) @test QueryOperators.NamedTupleUtilities.range((a = 1, b = 2, c = 3),Val(:a),Val(:b)) == (a = 1, b = 2) @test QueryOperators.NamedTupleUtilities.range((a = 1, b = 2, c = 3),Val(:b),Val(:d)) == (b = 2, c = 3) @test QueryOperators.NamedTupleUtilities.range((a = 1, b = 2, c = 3),Val(:d),Val(:c)) == NamedTuple() @inferred QueryOperators.NamedTupleUtilities.range((a = 1, b = 2, c = 3),Val(:a),Val(:b)) @test QueryOperators.NamedTupleUtilities.rename((a = 1, b = 2, c = 3),Val(:a),Val(:d)) == (d = 1, b = 2, c = 3) @test QueryOperators.NamedTupleUtilities.rename((a = 1, b = 2, c = 3),Val(:m),Val(:d)) == (a = 1, b = 2, c = 3) @test_throws ErrorException QueryOperators.NamedTupleUtilities.rename((a = 1, b = 2, c = 3),Val(:a),Val(:c)) @inferred QueryOperators.NamedTupleUtilities.rename((a = 1, b = 2, c = 3),Val(:a),Val(:d)) @test QueryOperators.NamedTupleUtilities.startswith((abc=1,bcd=2,cde=3),Val(:a)) == (abc = 1,) @test QueryOperators.NamedTupleUtilities.not_startswith((abc=1,bcd=2,cde=3),Val(:a)) == (bcd = 2, cde = 3) @test QueryOperators.NamedTupleUtilities.endswith((abc=1,bcd=2,cde=3),Val(:d)) == (bcd = 2,) @test QueryOperators.NamedTupleUtilities.not_endswith((abc=1,bcd=2,cde=3),Val(:d)) == (abc = 1, cde = 3) @test QueryOperators.NamedTupleUtilities.occursin((abc=1,bcd=2,cde=3),Val(:d)) == (bcd = 2, cde = 3) @test QueryOperators.NamedTupleUtilities.not_occursin((abc=1,bcd=2,cde=3),Val(:d)) == (abc = 1,) @inferred QueryOperators.NamedTupleUtilities.startswith((abc=1,bcd=2,cde=3),Val(:a)) @inferred QueryOperators.NamedTupleUtilities.not_startswith((abc=1,bcd=2,cde=3),Val(:a)) @inferred QueryOperators.NamedTupleUtilities.endswith((abc=1,bcd=2,cde=3),Val(:d)) @inferred QueryOperators.NamedTupleUtilities.not_endswith((abc=1,bcd=2,cde=3),Val(:d)) @inferred QueryOperators.NamedTupleUtilities.occursin((abc=1,bcd=2,cde=3),Val(:d)) @inferred QueryOperators.NamedTupleUtilities.not_occursin((abc=1,bcd=2,cde=3),Val(:d)) nt = (a=4,b=true,c="Named") @test QueryOperators.NamedTupleUtilities.oftype(nt, Val(Int)) == (a=4,) @test QueryOperators.NamedTupleUtilities.oftype(nt, Val(Any)) == nt @test QueryOperators.NamedTupleUtilities.oftype(nt, Val(Float64)) == NamedTuple() @inferred QueryOperators.NamedTupleUtilities.oftype(nt, Val(Int)) end
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
docs
1471
# QueryOperators.jl v0.9.1 Release Notes * Fix a bug in the oftype function # QueryOperators.jl v0.9.0 Release Notes * Drop julia 0.7 support * Move to Project.toml * Various performance improvements # QueryOperators.jl v0.8.0 Release Notes * Add gather # QueryOperators.jl v0.7.1 Release Notes * Fix bug in mapmany # QueryOperators.jl v0.7.0 Release Notes * Add support for "application/vnd.dataresource+json" MIME showing # QueryOperators.jl v0.6.0 Release Notes * Add unique command # QueryOperators.jl v0.5.2 Release Notes * Various bug fixes * Some new features for NamedTupleUtilities # QueryOperators.jl v0.5.1 Release Notes * Various bug fixes # QueryOperators.jl v0.5.0 Release Notes * Add NamedTupleUtilities # QueryOperators.jl v0.4.0 Release Notes * Add GroupColumnArrayView # QueryOperators.jl v0.3.0 Release Notes * Drop julia 0.6 support, add julia 0.7 support # QueryOperators.jl v0.2.3 Release Notes * Fix bug in mapmany # QueryOperators.jl v0.2.2 Release Notes * Fix show bug # QueryOperators.jl v0.2.1 Release Notes * Add missing eltype methods # QueryOperators.jl v0.2.0 Release Notes * Add pretty show method * Fix some bugs * Add @drop and @take operators # QueryOperators.jl v0.1.1 Release Notes * Enable precompile # QueryOperators.jl v0.1.0 Release Notes * Rename many query operators # QueryOperators.jl v0.0.2 Release Notes * Depend on IteratorInterfaceExtensions.jl # QueryOperators.jl v0.0.1 Release Notes * Initial release
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.9.3
911c64c204e7ecabfd1872eb93c49b4e7c701f02
docs
829
# QueryOperators [![Project Status: Active - The project has reached a stable, usable state and is being actively developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![Build Status](https://travis-ci.org/queryverse/QueryOperators.jl.svg?branch=master)](https://travis-ci.org/queryverse/QueryOperators.jl) [![Build status](https://ci.appveyor.com/api/projects/status/meh2oi6tiomi3y4l/branch/master?svg=true)](https://ci.appveyor.com/project/queryverse/queryoperators-jl/branch/master) [![codecov](https://codecov.io/gh/queryverse/QueryOperators.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/queryverse/QueryOperators.jl) ## Overview This package contains the underlying query operators that are exposed to users in [Query.jl](https://github.com/queryverse/Query.jl).
QueryOperators
https://github.com/queryverse/QueryOperators.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
901
using Revise, Documenter, GModelFit, Gnuplot makedocs(sitename="GModelFit.jl", authors = "Giorgio Calderone", # format = Documenter.HTML(prettyurls = false), # uncomment for local use, comment for deployment modules=[GModelFit], pages = [ "Home" => "index.md", "Basic concepts and data types" => "concepts.md", "Main functionalities" => "mainfunctions.md", "Built-in components" => "builtincomp.md", "Custom components" => "customcomp.md", "Parameter constraints" => "parameter.md", "Multi-dataset fitting" => "multifit.md", "Minimizers" => "minimizers.md", "Miscellaneous" => "misc.md", "API" => "api.md" ]) Gnuplot.quitall() if !(@isdefined is_compiled) is_compiled = true error("Re-run with compiled code!") end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
305
using Gnuplot, Dates Gnuplot.quitall() mkpath("assets") Gnuplot.options.term = "unknown" empty!(Gnuplot.options.init) push!( Gnuplot.options.init, linetypes(:Set1_5, lw=2.5, ps=1.5)) function saveas(file) Gnuplot.save(term="pngcairo size 550,350 fontscale 0.8", "assets/$(file).png") nothing end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
14649
module GModelFit using Printf, PrettyTables using Statistics using DataStructures using LsqFit using MacroTools using Dates using ProgressMeter using Random using JSON, GZip import Base.show import Base.ndims import Base.size import Base.length import Base.haskey import Base.keys import Base.getindex import Base.setindex! import Base.reshape import Base.propertynames import Base.getproperty import Base.iterate import Base.values import Base.push! import Base.empty! export AbstractDomain, Domain, CartesianDomain, coords, axis, Measures, uncerts, CompEval, Model, @fd, select_maincomp!, SumReducer, domain, comptype, isfreezed, thaw!, freeze!, fit, fit!, compare include("PV.jl") using .PV include("domain.jl") # ==================================================================== """ FunctDesc A "Julia function" descriptor containing the reference to the function itself, a string representation of its source code definition (for displaying purposes) and the lists of its arguments. It can be invoked using the standard syntax for functions ### Example: ``` julia> f = GModelFit.FunctDesc( (x, p=0) -> x + p, # actual function definition "(x, p=0) -> x + p", # string representation [:x], # vector of argument namess [:(p = 0)]) # vector of `Expr` with arguments default values julia> f(1, 2) 3 ``` Note that it is inconvenient to directly create a `FunctDescr` using its constructor, and the above results can be obtained by using the @fd macro: ``` f = @fd (x, p=0) -> x + p ``` """ struct FunctDesc funct::Function display::String args::Vector{Symbol} # positional arguments optargs::Vector{Expr} # optional arguments with default values end (f::FunctDesc)(args...; kws...) = f.funct(args...; kws...) """ @fd expr Macro to generate a `FunctDesc` object using the same syntax as for a standard Julia anonymous function. ### Example ``` julia> f = @fd (x, p=0) -> x + p julia> f(1, 2) 3 ``` """ macro fd(_expr) @assert isexpr(longdef(_expr), :function) expr = prettify(_expr) def = splitdef(expr) args = convert(Vector{Symbol}, filter(x -> isa(x, Symbol), def[:args])) optargs = convert(Vector{Expr} , filter(x -> isa(x, Expr) , def[:args])) return esc(:(GModelFit.FunctDesc($expr, string($(QuoteNode(expr))), $args, $optargs))) end # ==================================================================== """ Parameter A structure representing a model parameter. # Fields: - `val::Float64`: parameter value (initial guess before fitting, or best fit one after fitting); - `low::Float64`: lower limit for the value (default: `-Inf`); - `high::Float64`: upper limit for the value (default: `+Inf`); - `fixed::Bool`: whether the parameter is fixed during fitting (default: `false`); - `patch::Union{Nothing, Symbol, FunctDesc}`: patch prescription within the same model; - `mpatch::Union{Nothing, FunctDesc}`: patch prescription in a multi-model analysis; - `actual::Float64`: actual value for the parameter (i.e. after applying the patch prescription)`; - `unc::Float64`: 1σ uncertainty associated to the parameter value. Note: the `Parameter` fields are supposed to be accessed directly by the user, without invoking any get/set method. """ mutable struct Parameter val::Float64 low::Float64 # lower limit value high::Float64 # upper limit value fixed::Bool patch::Union{Nothing, Symbol, FunctDesc} mpatch::Union{Nothing, FunctDesc} actual::Float64 unc::Float64 end Parameter(value::Number) = Parameter(float(value), -Inf, +Inf, false, nothing, nothing, NaN, NaN) # ==================================================================== # Components: # # A *component* is a generic implementation of a building block for a # model. It must inherit `AbstractComponent` and implement the # `evaluate!` method. The structure should contain zero or more field # of type Parameter, or have all parameters collected in a single # field of type OrderedDict{Symbol, Parameter}() abstract type AbstractComponent end abstract type AbstractCompWDeps end # Note: this function must mirror setparams!() function getparams(comp::AbstractComponent) out = OrderedDict{Symbol, Parameter}() for name in fieldnames(typeof(comp)) field = getfield(comp, name) if isa(field, Parameter) out[name] = field elseif isa(field, OrderedDict{Symbol, Parameter}) @assert length(out) == 0 # avoid parameter name clash return field end end return out end # Note: this function must mirror getparams() function setparams!(comp::AbstractComponent, params::PVComp{Parameter}) for name in fieldnames(typeof(comp)) field = getfield(comp, name) if isa(field, Parameter) field.val = params[name].val field.unc = params[name].unc field.actual = params[name].actual elseif isa(field, OrderedDict{Symbol, Parameter}) for (name, par) in field par.val = params[name].val par.unc = params[name].unc par.actual = params[name].actual end end end nothing end """ prepare!(comp::AbstractComponent, domain::AbstractDomain) Allocate the buffer for a component evaluation on a specific domain. Return value must be a `Vector{Float64}`. This function is invoked only once when the `ModelEval` structure is created (typically within a `fit` of `fit!` call), hence it is the perfect place to pre-compute quantities associated to a component evaluation on a specific domain. Default implementation returns a vector filled with `NaN`s with the same length as the domain. """ prepare!(comp::AbstractComponent, domain::AbstractDomain) = fill(NaN, length(domain)) """ dependencies(comp::AbstractComponent) Return the name of dependecies for a component. Return value must be a `Vector{Symbol}`. Default implementation returns `Symbol[]` (i.e. no dependencies. """ dependencies(comp::AbstractComponent) = Symbol[] # ==================================================================== # Model # """ Model A structure containing a model description. Constructor is: `Model(components...)`. Components may be specified as: - a single `Dict{Symbol, AbstractComponent}`, where the keys are the names and the values the component objects; - a single component (the default `:main` is automatically assigned); - a single `FunctDesc` which will be wrapped into an `FComp` component and a default name will be assigned (`:main`); - one or more `Pair{Symbol, AbstractComponent}`, where the first element is the name and the second is the component. You may access the individual component in a `Model` using the indexing syntax, as if it was a `Dict{Symbol, AbstractComponent}`. Also, you may add new components to a `Model` after it has been created using the same syntax. Finally, you may use the `keys()` and `haskey()` functions with their usual meanings. Individual components may be *freezed* (i.e. have all its parameters fixed during fitting, despite the individual `Parameter` settings) or *thawed* using the `freeze!()` and `thaw!()` functions. Use the `isfreezed()` function to check if a component is freezed. The main component, i.e. the one whose evaluation corresponds to the overall model evaluation, is automatically identified by analyzing the component dependencies. However a specific component may be forced to be the main one by invoking `select_maincomp!`. The most important function for a `Model` object is `fit()` which allows to fit the model against an empirical dataset. The `fit!()` function has the same purpose, with the only difference that it stores the best fit parameter values into the original `Model` object. The model and all component evaluation can be evaluated has if they were a function by simply passing a `Domain` object. """ mutable struct Model comps::OrderedDict{Symbol, AbstractComponent} fixed::OrderedDict{Symbol, Bool} maincomp::Union{Nothing, Symbol} Model() = new(OrderedDict{Symbol, AbstractComponent}(), OrderedDict{Symbol, Bool}(), nothing) function Model(dict::AbstractDict) model = Model() for (name, item) in dict # isa(item, Number) && (item = SimplePar(item)) @assert isa(name, Symbol) @assert isa(item, AbstractComponent) model[name] = item end return model end function Model(args::Vararg{Pair}) model = Model() for arg in args @assert isa(arg[1], Symbol) if isa(arg[2], AbstractComponent) model[arg[1]] = arg[2] elseif isa(arg[2], FunctDesc) model[arg[1]] = FComp(arg[2]) # elseif isa(arg[2], Number) # out[arg[1]] = SimplePar(arg[2]) else error("Unsupported data type: " * string(typeof(arg[2])) * ". (accepted types ar T <: AbstractComponent or FunctDesc.") end end return model end Model(arg::AbstractComponent) = Model(:main => arg) Model(arg::FunctDesc) = Model(:main => FComp(arg)) end function find_maincomp(model::Model) # Identify parent for all comps parent = OrderedDict{Symbol, Symbol}() for (cname, comp) in model.comps for d in GModelFit.dependencies(model, cname) @assert !haskey(parent, d) "Component $d has two parent nodes: $(parent[d]) and $cname" parent[d] = cname end end # Ensure no circular dependency is present by checking all parent # nodes of a given component to be different from the component # itself. Also collect components with no parent. comps_with_no_parent = Vector{Symbol}() for cname in keys(model.comps) if haskey(parent, cname) p = parent[cname] @assert p != cname "Component $cname depends on itself" while haskey(parent, p) p = parent[p] if cname == p display(parent) error("Circular dependency detected for component $cname") end end else push!(comps_with_no_parent, cname) end end # If multiple possibilities are stll available neglect components # with no dependencies while length(comps_with_no_parent) > 1 if length(dependencies(model, comps_with_no_parent[1])) == 0 deleteat!(comps_with_no_parent, 1) end end # The above check is always performed even if an explicit maincomp # has been set if isnothing(model.maincomp) return comps_with_no_parent[end] else return model.maincomp end end function dependencies(model::Model, cname::Symbol; select_domain=false) domdeps = Vector{Symbol}() compdeps = Vector{Symbol}() # nd = ndims(domain(model)) for d in dependencies(model.comps[cname]) if haskey(model.comps, d) # dependency with known name push!(compdeps, d) else # dependency with unknown name is intended as a domain dimension @assert length(compdeps) == 0 "Domain dependencies must be listed first" # @assert length(domdeps) < nd "Component $cname depends on $d, but the latter is not a component in the model." push!(domdeps, d) end end # @assert (length(domdeps) == 0) || (length(domdeps) == nd) "Domain has $nd dimensions but only $(length(domdeps)) are listed as dependencies" return (select_domain ? domdeps : compdeps) end # User interface setindex!(model::Model, f::FunctDesc, cname::Symbol) = model[cname] = FComp(f) function setindex!(model::Model, comp::AbstractComponent, cname::Symbol) model.comps[cname] = deepcopy(comp) model.fixed[cname] = false end function iterate(model::Model, i=1) k = collect(keys(model)) (i > length(k)) && return nothing return (k[i] => model[k[i]], i+1) end """ isfreezed(model::Model, cname::Symbol) Check whether a component is *freezed* in the model. """ function isfreezed(model::Model, cname::Symbol) @assert cname in keys(model.fixed) "Component $cname is not defined" return model.fixed[cname] end """ freeze!(model::Model, cname::Symbol) Freeze a component in the model (i.e. treat all component parameters as fixed for fitting). """ function freeze!(model::Model, cname::Symbol) @assert cname in keys(model.fixed) "Component $cname is not defined" model.fixed[cname] = true nothing end """ thaw!(model::Model, cname::Symbol) Thaw a freezed component in the model (i.e. treat component parameters as fixed only if explicitly set in the corresponding `Parameter` structure). """ function thaw!(model::Model, cname::Symbol) @assert cname in keys(model.fixed) "Component $cname is not defined" model.fixed[cname] = false nothing end Base.keys(model::Model) = collect(keys(model.comps)) """ haskey(m::Model, name::Symbol) Check whether a component exists in model. """ Base.haskey(model::Model, cname::Symbol) = haskey(model.comps, cname) """ getindex(model::Model, cname::Symbol) Return the model component with name `cname`. """ function Base.getindex(model::Model, cname::Symbol) @assert cname in keys(model.comps) "Component $cname is not defined" return model.comps[cname] end """ length(model::Model) Return number of components in a model. """ Base.length(model::Model) = length(model.comps) """ comptype(model::Model, cname::Symbol) Return a component type as a string. """ comptype(model::Model, cname::Symbol) = replace(string(typeof(model[cname])), "GModelFit." => "") """ comptypes(model::Model) Return a `OrderedDict{Symbol, String}` with the model component types. """ comptypes(model::Model) = OrderedDict([cname => comptype(model, cname) for cname in keys(model)]) """ select_maincomp!(model::Model, cname::Symbol) Force a component to be the final one for model evaluation. """ function select_maincomp!(model::Model, cname::Symbol) @assert haskey(model, cname) "Component $cname is not defined" model.maincomp = cname end include("evaluation.jl") include("snapshot.jl") include("minimizers.jl") include("fit.jl") include("multimodel.jl") include("serialize.jl") include("show.jl") include("utils.jl") include("gnuplot_recipe.jl") include("precompile.jl") end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
2505
module PV using DataStructures import Base.keys, Base.getindex, Base.setindex!, Base.propertynames, Base.getproperty, Base.setproperty!, Base.push!, Base.empty!, Base.iterate export PVComp, PVModel, items struct PVComp{T} pnames::Vector{Symbol} indices::Vector{Int} data::Vector{T} end struct PVModel{T} comps::OrderedDict{Symbol, PVComp{T}} indices::Vector{Int} data::Vector{T} end PVComp(parent::PVModel{T}) where T = PVComp{T}(Vector{Symbol}(), Vector{Int}(), parent.data) propertynames(comp::PVComp) = getfield(comp, :pnames) function index(comp::PVComp, pname::Symbol) i = findfirst(getfield(comp, :pnames) .== pname) @assert !isnothing(i) "Unknwon parameter name: $pname" return getfield(comp, :indices)[i] end getindex(comp::PVComp, pname::Symbol) = getfield(comp, :data)[index(comp, pname)] setindex!(comp::PVComp, value, pname::Symbol) = setindex!(getfield(comp, :data), value, index(comp, pname)) getproperty( comp::PVComp, pname::Symbol) = getindex(comp, pname) setproperty!(comp::PVComp, pname::Symbol, value) = setindex!(comp, value, pname) items(comp::PVComp) = view(getfield(comp, :data), getfield(comp, :indices)) function iterate(comp::PVComp, i=1) (i > length(getfield(comp, :pnames))) && return nothing return (getfield(comp, :pnames)[i] => getfield(comp, :data)[getfield(comp, :indices)[i]], i+=1) end PVModel{T}() where T = PVModel{T}(OrderedDict{Symbol, PVComp{T}}(), Vector{Int}(), Vector{T}()) function empty!(pv::PVModel) empty!(pv.comps) empty!(pv.indices) empty!(pv.data) end keys(pv::PVModel) = collect(keys(pv.comps)) function push!(pv::PVModel{T}, cname::Symbol, pname::Symbol, value::T) where T comp = pv[cname] if pname in getfield(comp, :pnames) comp[pname] = value else i = length(getfield(comp, :data)) + 1 push!(getfield(comp, :pnames), pname) push!(getfield(comp, :indices), i) push!(getfield(comp, :data), value) end # Collect indices from components empty!(pv.indices) for (cname, comp) in pv.comps append!(pv.indices, getfield(comp, :indices)) end return value end function getindex(pv::PVModel{T}, cname::Symbol) where T (cname in keys(pv.comps)) || (pv.comps[cname] = PVComp(pv)) return pv.comps[cname] end items(pv::PVModel) = view(pv.data, pv.indices) iterate(pv::PVModel, state...) = iterate(pv.comps, state...) end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
7993
abstract type AbstractDomain{N} end # A non-cartesian domain has the same number of points in all # dimensions. """ Domain{N} An object representing a model, or a dataset, N-dimensional linear domain. Available constructors: - `Domain(coords...)`: each argument is a vector, one for each dimension (all arguments must have same lengths); - `Domain(length)`: returns a 1-dim `Domain` object of the given length. Coordinates for all points along a given axis can be obtained with the `coords` function. """ struct Domain{N} <: AbstractDomain{N} axis::NTuple{N, Vector{Float64}} function Domain(coords::Vararg{AbstractVector{T},N}) where {T <: Real, N} @assert N >= 1 @assert all(length(coords[1]) .== [length.(coords)...]) return new{N}(convert(NTuple{N, Vector{Float64}}, coords)) end function Domain(length::Integer) @assert length >= 1 return Domain(collect(1.:length)) end end # A cartesian domain has the coordinates specified independently for # each axis, and can always be trasformed into a non-cartesian one. # Cartesian domains also support region-of-interest (ROI). """ CartesianDomain{N} An object representing a model, or a dataset, N-dimensional cartesian domain (i.e. a grid). Available constructors: - `Domain(axis...)`: each argument is a vector containing the coordinates on a given axis (arguments may have different lengths); - `Domain(lengths...)`: returns a N-dim `CartesianDomain` object whose axis lengths are specified in the arguments. Note that a `CartesianDomain` requires at least 2 dimensions. Coordinates for all points along a given axis can be obtained with the `coords()` function, while the coordinates of the grid can be obtained with `axis()`. """ struct CartesianDomain{N} <: AbstractDomain{N} axis::NTuple{N, Vector{Float64}} roi::Vector{Int} ldomain::Domain{N} function CartesianDomain(axis::Vararg{AbstractVector{T},N}; roi=nothing) where {T <: Real, N} @assert N >= 2 "A cartesian domain requires at least 2 dimensions" isnothing(roi) && (roi = collect(1:prod(length.(axis)))) # Pre-compute corresponding linear domain ss = tuple(length.(axis)...) ci = Tuple.(CartesianIndices(ss))[roi] vv = Vector{Vector{Float64}}() for i = 1:N push!(vv, axis[i][getindex.(ci, i)]) end ldomain = Domain(vv...) return new{N}(deepcopy(axis), roi, ldomain) end function CartesianDomain(lengths::Vararg{T,N}; kw...) where {T <: Integer, N} @assert N >= 2 "A cartesian domain requires at least 2 dimensions" @assert all(lengths .>= 1) axis = [collect(1.:lengths[i]) for i in 1:N] return CartesianDomain(axis...; kw...) end end ndims(d::Union{Domain{N}, CartesianDomain{N}}) where N = N length(d::Domain) = length(d.axis[1]) length(d::CartesianDomain) = length(coords(d, 1)) """ coords(d::Domain{1}) coords(d::Domain, dim::Integer) coords(d::CartesianDomain, dim::Integer) Returns coordinates of all points along a given dimension as a `Vector{Float64}`. """ coords(d::Domain{1}) = d.axis[1] coords(d::Domain, dim::Integer) = d.axis[dim] coords(d::CartesianDomain, dim::Integer) = coords(flatten(d), dim) # Iterate through domain dimensions returning coordinates function iterate(d::Union{Domain, CartesianDomain}, ii=1) (ii > ndims(d)) && (return nothing) return (coords(d, ii), ii+1) end # Cartesian-only methods flatten(d::CartesianDomain) = d.ldomain size(d::CartesianDomain) = tuple([length(v) for v in d.axis]...) """ axis(d::CartesianDomain, dim::Integer) Returns the coordinates of the grid along a given dimension as a `Vector{Float64}`. """ axis(d::CartesianDomain, dim::Integer) = d.axis[dim] # ==================================================================== # Measures and Counts types # abstract type AbstractMeasures{N} end """ domain(d::AbstractMeasures) Return the domain associated to an AbstractMeasures object. """ domain(d::AbstractMeasures) = d.domain ndims(d::AbstractMeasures) = ndims(domain(d)) length(d::AbstractMeasures) = length(domain(d)) size(d::AbstractMeasures) = size(domain(d)) reshape(d::Domain, v::Vector{Float64}) = v function reshape(d::CartesianDomain, v::Vector{Float64}) out = fill(NaN, size(d)) out[d.roi] .= v return out end """ Measures{N} An object representing a set of empirical measurements (with Gaussian uncertainties) as measured on a specific domain. Available constructors: - `Measures(domain::Domain{N}, values::AbstractVector{T}, uncerts::AbstractVector{T}) where {T <: AbstractFloat, N}` - `Measures(domain::CartesianDomain{N}, values::AbstractArray{T, N}, uncerts::AbstractArray{T, N}) where {T <: AbstractFloat, N}` - `Measures(values::AbstractVector, uncerts)` In the above constructor methods the last argument may also be a scalar value, to set the same uncertainty for all the measurements. The method accepting a `CartesianDomain` requires arrays with at least 2 dimensions. In the last constructor the `Domain` object is automatically built depending on the length of the `values` vector. The domain, values and uncertainties for a `Measures` object can be retrieved using the `domain`, `values` and `uncerts` functions respectively. """ struct Measures{N} <: AbstractMeasures{N} domain::AbstractDomain{N} values::NTuple{2, Vector{Float64}} labels::NTuple{2, String} # If no domain is provided we generate one Measures(values::AbstractVector, uncerts) = Measures(Domain(length(values)), values, uncerts) # Measures with linear domain are built using 1D vector(s). function Measures(domain::Domain{N}, values::AbstractVector{T}, uncerts::AbstractVector{T}) where {T <: AbstractFloat, N} @assert length(domain) == length(values) == length(uncerts) "Domain and dataset have incompatible length" return new{N}(deepcopy(domain), tuple(deepcopy(values), deepcopy(uncerts)), ("values", "uncerts")) end # Measures with cartesian domain are built using N-dim arrays(s). function Measures(domain::CartesianDomain{N}, values::AbstractArray{T, N}, uncerts::AbstractArray{T, N}) where {T <: AbstractFloat, N} @assert size(domain) == size(values) == size(uncerts) "Domain and dataset have incompatible size" return new{N}(deepcopy(domain), tuple(deepcopy(values[domain.roi]), deepcopy(uncerts[domain.roi])), ("values", "uncerts")) end Measures(domain::AbstractDomain{N}, values::AbstractArray{T, N}, uncert::T) where {T <: AbstractFloat, N} = Measures(domain, values, fill(uncert, size(values))) end """ values(d::Measures) Returns the measurement values as a `Vector{Float64}`. """ values(d::Measures) = reshape(d.domain, d.values[1]) """ uncerts(d::Measures) Returns the measurement uncertainties as a `Vector{Float64}`. """ uncerts(d::Measures) = reshape(d.domain, d.values[2]) Measures(dom::AbstractDomain, values::AbstractArray, uncert::Real) = Measures(dom, values, fill(uncert, size(values))) struct PoissonCounts{N} <: AbstractMeasures{N} domain::AbstractDomain{N} values::NTuple{1, Vector{Int}} labels::NTuple{1, String} # Measures with linear domain are built using 1D vector(s). function PoissonCounts(domain::Domain{N}, values::AbstractVector{T}) where {T <: Integer, N} @assert length(domain) == length(values) "Domain and dataset have incompatible length" return new{N}(deepcopy(domain), tuple(deepcopy(values)), ("counts", )) end # Measures with cartesian domain are built using N-dim arrays(s). function PoissonCounts(domain::CartesianDomain{N}, values::AbstractArray{T, N}) where {T <: Integer, N} @assert size(domain) == size(values) "Domain and dataset have incompatible size" return new{N}(deepcopy(domain), tuple(deepcopy(values[domain.roi])), ("counts", )) end end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
12667
""" CompEval(comp::AbstractComponent, domain::AbstractDomain) A container for a component to be evaluated on a specific domain. # Fields: - `comp::AbstractComponent`: the wrapped component; - `domain::AbstractDomain`: the domain where the component is supposed to be evaluated; - `counter::Int`: the number of times the component has been evaluated since creatio of the `CompEval` object; - `lastparvalues::Vector{Float64}`: the parameter values used in the last evaluation. A call to `update!()` with the same values stored in `lastparvalues` will not result in a new evaluation; - `deps::Vector{Vector{Float64}}`: the evaluation buffers of all dependencies; - `buffer::Vector{Float64}`: the buffer to store the outcome of the component. """ mutable struct CompEval{TComp <: AbstractComponent, TDomain <: AbstractDomain} comp::TComp domain::TDomain counter::Int lastparvalues::Vector{Float64} deps::Vector{Vector{Float64}} buffer::Vector{Float64} function CompEval(comp::AbstractComponent, domain::AbstractDomain) buffer = prepare!(comp, domain) return new{typeof(comp), typeof(domain)}( comp, domain, 0, fill(NaN, length(getparams(comp))), Vector{Vector{Float64}}(), buffer) end end """ evaluate!(ceval::CompEval, pvalues::Vector{Float64}) Evaluate a component using the provided parameter values. Outcomes shall be stored in the `CompEval.buffer` vector. """ evaluate!(ceval::CompEval{T, D}, par_values...) where {T <: AbstractComponent, D <: AbstractDomain} = error("No evaluate! method implemented for CompEval{$(T), $(D)}") """ update!(ceval::CompEval, pvalues::Vector{Float64}) Update a `CompEval` structure using the provided parameter values. The component is actually evaluated if one of the following applies: - the component has never been evaluated; - the component has at least one dependency (whose evaluation may have changed since its last evaluation); - at least one parameter value has changed since last evaluation. If none of the above applies, no evaluation occurs. """ function update!(ceval::CompEval{<: AbstractComponent, <: AbstractDomain}, pvalues::AbstractVector{Float64}) if any(ceval.lastparvalues .!= pvalues) || (ceval.counter == 0) || (length(ceval.deps) > 0) evaluate!(ceval, pvalues...) ceval.lastparvalues .= pvalues ceval.counter += 1 end end # Evaluate component on the given domain. Parameter values are the # ones stored in the component unless a custom value is provided via a # keyword. function (comp::AbstractComponent)(domain::AbstractDomain; kws...) @assert length(dependencies(comp)) == 0 "Can't evaluate a stand-alone component with dependencies." ceval = CompEval(comp, domain) pvalues = OrderedDict([(pname, par.val) for (pname, par) in getparams(comp)]) for (pname, pval) in kws if pname in keys(pvalues) pvalues[pname] = pval else @warn "$pname is not a parameter name for $(typeof(comp)). Valid names are: " * join(string.(keys(pvalues)), ", ") end end update!(ceval, collect(values(pvalues))) return ceval.buffer end # ==================================================================== # Built-in components include("components/FComp.jl") include("components/OffsetSlope.jl") include("components/Polynomial.jl") include("components/Gaussian.jl") include("components/Lorentzian.jl") include("components/SumReducer.jl") # ==================================================================== struct ParameterVectors params::PVModel{Parameter} values::PVModel{Float64} actual::PVModel{Float64} ifree::Vector{Int} ParameterVectors() = new(PVModel{Parameter}(), PVModel{Float64}(), PVModel{Float64}(), Vector{Int}()) end function empty!(pv::ParameterVectors) empty!(pv.params) empty!(pv.values) empty!(pv.actual) empty!(pv.ifree) end function push!(pv::ParameterVectors, cname::Symbol, pname::Symbol, par::Parameter) push!(pv.params, cname, pname, par) push!(pv.values, cname, pname, par.val) push!(pv.actual, cname, pname, par.actual) if !par.fixed push!(pv.ifree, length(items(pv.params))) end end # ==================================================================== """ ModelEval(model::Model, domain::AbstractDomain) A structure containing the required informations to evaluate a model on a specific domain, and to compare the outcomes to a single empirical dataset. The model and all component evaluation can be obtained by using the `Model` object has if it was a function: with no arguments it will return the main component evaluation, while if a `Symbol` is given as argument it will return the evaluation of the component with the same name. """ struct ModelEval model::Model domain::AbstractDomain cevals::OrderedDict{Symbol, CompEval} pv::ParameterVectors pvmulti::Vector{PVModel{Float64}} maincomp::Vector{Symbol} function ModelEval(model::Model, domain::AbstractDomain) out = new(model, domain, OrderedDict{Symbol, CompEval}(), ParameterVectors(), Vector{PVModel{Float64}}(), Vector{Symbol}()) # update!(out) This would cause error in the multimodel case return out end end free_params(meval::ModelEval) = collect(items(meval.pv.params)[meval.pv.ifree]) nfree(meval::ModelEval) = length(meval.pv.ifree) """ update!(meval::ModelEval) Update a `ModelEval` structure by evaluating all components in the model. """ function update!(meval::ModelEval) (length(meval.model) == 0) && (return meval) # to handle empty Model object update_init!(meval) update_evaluation!(meval) update_finalize!(meval) return meval end # Evaluation step init: # - update internal structures before fitting function update_init!(meval::ModelEval) empty!(meval.maincomp) push!(meval.maincomp, find_maincomp(meval.model)) for (cname, comp) in meval.model.comps (cname in keys(meval.cevals)) && continue meval.cevals[cname] = CompEval(comp, meval.domain) end empty!(meval.pv) for (cname, ceval) in meval.cevals for (pname, _par) in getparams(ceval.comp) # Parameter may be changed here, hence we take a copy of the original one par = deepcopy(_par) if !(par.low <= par.val <= par.high) s = "Value outside limits for param [$(cname)].$(pname):\n" * string(par) error(s) end if isnan(par.low) || isnan(par.high) || isnan(par.val) s = "NaN value detected for param [$(cname)].$(pname):\n" * string(par) error(s) end if !isnothing(par.patch) @assert isnothing(par.mpatch) "Parameter [$cname].$pname has both patch and mpatch fields set, while only one is allowed" if isa(par.patch, Symbol) # use same param. value from a different component par.fixed = true else # invoke a patch function @assert length(par.patch.args) in [1,2] if length(par.patch.args) == 1 par.fixed = true else par.fixed = false end end elseif !isnothing(par.mpatch) @assert length(meval.pvmulti) > 0 "Parameter [:$(cname)].$pname has the mpatch field set but no other Model is being considered" @assert length(par.mpatch.args) in [1,2] if length(par.mpatch.args) == 1 par.fixed = true else par.fixed = false end end if meval.model.fixed[cname] par.fixed = true end push!(meval.pv, cname, pname, par) end empty!(ceval.deps) i = 1 for d in dependencies(meval.model, cname, select_domain=true) push!(ceval.deps, coords(meval.domain, i)) i += 1 end for d in dependencies(meval.model, cname, select_domain=false) push!(ceval.deps, meval.cevals[d].buffer) end end end # Set new model parameters function update_setparvals(meval::ModelEval, pvalues::Vector{Float64}) items(meval.pv.values)[meval.pv.ifree] .= pvalues end # Evaluation step fit: # - copy all parameter values into actual; # - update actual by invoking the patch functions; # - evaluation of all components function update_evaluation!(meval::ModelEval) # Copy pvalues into actual items(meval.pv.actual) .= items(meval.pv.values) # Patch parameter values for (cname, comp) in meval.pv.params for (pname, par) in comp if !isnothing(par.patch) @assert isnothing(par.mpatch) "Parameter [:$(cname)].$pname has both patch and mpatch fields set, while only one is allowed" if isa(par.patch, Symbol) # use same param. value from a different component meval.pv.actual[cname][pname] = meval.pv.values[par.patch][pname] else # invoke a patch function if length(par.patch.args) == 1 meval.pv.actual[cname][pname] = par.patch(meval.pv.values) else meval.pv.actual[cname][pname] = par.patch(meval.pv.values, meval.pv.values[cname][pname]) end end elseif !isnothing(par.mpatch) @assert length(meval.pvmulti) > 0 "Parameter [:$(cname)].$pname has the mpatch field set but no other Model is being considered" if length(par.mpatch.args) == 1 meval.pv.actual[cname][pname] = par.mpatch(meval.pvmulti) else meval.pv.actual[cname][pname] = par.mpatch(meval.pvmulti, meval.pv.values[cname][pname]) end end end end # Evaluation of all components, starting from the main one and # following dependencies function update_compeval_recursive(meval::ModelEval, cname::Symbol) for d in dependencies(meval.model, cname) update_compeval_recursive(meval, d) end update!(meval.cevals[cname], items(meval.pv.actual[cname])) end update_compeval_recursive(meval, meval.maincomp[1]) end # Evaluation step finalize: # - copy back bestfit, actual values and uncertainties into their original Parameter structures. function update_finalize!(meval::ModelEval, uncerts=Vector{Float64}[]) i = 1 for (cname, comp) in meval.pv.params for (pname, par) in comp par.val = meval.pv.values[cname][pname] par.actual = meval.pv.actual[ cname][pname] if (length(uncerts) > 0) && (!par.fixed) par.unc = uncerts[i] i += 1 else par.unc = NaN end end end # Also update Model's parameters for (cname, ceval) in meval.cevals setparams!(meval.model[cname], meval.pv.params[cname]) end end """ evalcounter(meval::ModelEval, cname::Symbol) Return the number of times a component has been evaluated. """ evalcounter(meval::ModelEval, cname::Symbol) = meval.cevals[cname].counter evalcounter(model::Model, cname::Symbol) = "???" """ evalcounters(meval::ModelEval) Return a `OrderedDict{Symbol, Int}` with the number of times each model component has been evaluated. """ evalcounters(meval::ModelEval) = OrderedDict([cname => evalcounter(meval, cname) for cname in keys(meval.cevals)]) """ last_evaluation(meval::ModelEval) last_evaluation(meval::ModelEval, name::Symbol) Return last evaluation of a component whose name is `cname` in a `ModelEval` object. If `cname` is not provided the evaluation of the main component is returned. """ last_evaluation(meval::ModelEval) = last_evaluation(meval, meval.maincomp[1]) last_evaluation(meval::ModelEval, name::Symbol) = reshape(meval.domain, meval.cevals[name].buffer) # ==================================================================== # Evaluate Model on the given domain function (model::Model)(domain::AbstractDomain, cname::Union{Nothing, Symbol}=nothing) meval = ModelEval(model, domain) update!(meval) if isnothing(cname) return last_evaluation(meval) else return last_evaluation(meval, cname) end end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
4545
# ==================================================================== """ FitStats A structure representing the results of a fitting process. # Fields: - `elapsed::Float64`: elapsed time (in seconds); - `ndata::Int`: number of data empirical points; - `nfree::Int`: number of free parameters; - `dof::Int`: ndata - nfree; - `fitstat::Float64`: fit statistics (equivalent ro reduced χ^2 for `Measures` objects); - `status`: minimizer exit status (tells whether convergence criterion has been satisfied, or if an error has occurred during fitting); Note: the `FitStats` fields are supposed to be accessed directly by the user. """ struct FitStats elapsed::Float64 ndata::Int nfree::Int dof::Int fitstat::Float64 # gofstat::Float64 # log10testprob::Float64 status::AbstractMinimizerStatus end function FitStats(resid::AbstractResiduals, status::AbstractMinimizerStatus, elapsed=NaN) # tp = logccdf(Chisq(resid.dof), gof_stat) * log10(exp(1)) ndata = length(residuals(resid)) nf = nfree(resid) FitStats(elapsed, ndata, nf, ndata - nf, fit_stat(resid), status) end # ==================================================================== """ Residuals{T <: AbstractMeasures, M <: AbstractMinimizer} A structure representing the distance between a `ModelEval` and a dataset. The "distance" is expressed in terms of weighted residuals. A minimizer can be invoked via the `minimize!` function to reduce such distance by varying the model parameter values. # Fields: - `meval::ModelEval`: Model evaluation on a given domain; - `data::AbstractMeasures`: Empirical dataset to be compared to the model; - `buffer::Vector{Float64}`: Weighted residuals for each point in the domain; - `mzer::AbstractMinimizer`: Minimizer used to reduce the residuals. """ struct Residuals{T <: AbstractMeasures, M <: AbstractMinimizer} <: AbstractResiduals{T, M} meval::ModelEval data::T buffer::Vector{Float64} mzer::M function Residuals(meval::ModelEval, data::T, mzer::M=dry()) where {T <: AbstractMeasures, M <: AbstractMinimizer} update!(meval) buffer = fill(NaN, length(data)) return new{T,M}(meval, data, buffer, mzer) end end free_params(resid::Residuals) = free_params(resid.meval) nfree(resid::Residuals) = nfree(resid.meval) dof(resid::Residuals) = length(resid.data) - nfree(resid) residuals(resid::Residuals) = resid.buffer function residuals(resid::Residuals, pvalues::Vector{Float64}) update_setparvals(resid.meval, pvalues) update_evaluation!(resid.meval) resid.buffer .= reshape((last_evaluation(resid.meval) .- values(resid.data)) ./ uncerts(resid.data), :) return resid.buffer end fit_stat(resid::Residuals{Measures{N}}) where N = sum(abs2, resid.buffer) / dof(resid) function finalize!(resid::Residuals, best::Vector{Float64}, uncerts::Vector{Float64}) @assert nfree(resid) == length(best) == length(uncerts) residuals(resid, best) update_finalize!(resid.meval, uncerts) end # ==================================================================== """ minimize!(resid::Residuals) Invoke a minimizer to reduce the residuals between a model and a dataset. """ function minimize!(resid::Residuals) starttime = time() update!(resid.meval) @assert nfree(resid) > 0 "No free parameter in the model" status = _minimize!(resid) bestfit = ModelSnapshot(resid.meval) stats = FitStats(resid, status, time() - starttime) # test_serialization(bestfit, stats, resid.data) return (bestfit, stats) end """ fit!(model::Model, data::Measures; minimizer::AbstractMinimizer=lsqfit()) Fit a model to an empirical data set using the specified minimizer (default: `lsqfit()`). Upon return the parameter values in the `Model` object are set to the best fit ones. """ function fit!(model::Model, data::Measures; minimizer::AbstractMinimizer=lsqfit()) meval = ModelEval(model, data.domain) update!(meval) resid = Residuals(meval, data, minimizer) return minimize!(resid) end """ fit(model::Model, data::Measures; minimizer::AbstractMinimizer=lsqfit()) Fit a model to an empirical data set using the specified minimizer (default: `lsqfit()`). See also `fit!`. """ fit(model::Model, data::Measures; kws...) = fit!(deepcopy(model), data; kws...) """ compare(model::Model, data::Measures) Compare a model to a dataset and return a `FitStats` object. """ compare(model::Model, data::Measures) = fit!(model, data, minimizer=dry())
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
1104
import Gnuplot import Gnuplot.recipe Gnuplot.recipe(data::Measures{1}) = Gnuplot.parseSpecs("set bars 0", coords(domain(data)), values(data), uncerts(data), "with yerr t 'Data' lc rgb 'gray'") Gnuplot.recipe(meval::ModelEval) = Gnuplot.recipe(GModelFit.ModelSnapshot(model)) function Gnuplot.recipe(model::GModelFit.ModelSnapshot; keep=Symbol[], skip=Symbol[]) @assert ndims(domain(model)) == 1 out = Vector{Gnuplot.AbstractGPSpec}() for (k,v) in model.buffers (k == model.maincomp) && continue (k in skip) && continue if (length(keep) == 0) || (k in keep) #isa(v.comp, GModelFit.FComp) || isa(v.comp, GModelFit.SumReducer) || continue append!(out, Gnuplot.parseSpecs(coords(domain(model)), model(k), "with lines t '$(k)'")) end end append!(out, Gnuplot.parseSpecs(coords(domain(model)), model(), "with lines t 'Model' lc rgb 'black' lw 2")) return out end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
5611
# ==================================================================== # Minimizers # # -------------------------------------------------------------------- abstract type AbstractMinimizerStatus end struct MinimizerStatusOK <: AbstractMinimizerStatus end struct MinimizerStatusDry <: AbstractMinimizerStatus end struct MinimizerStatusWarn <: AbstractMinimizerStatus message::String end struct MinimizerStatusError <: AbstractMinimizerStatus message::String end # -------------------------------------------------------------------- abstract type AbstractMinimizer end abstract type AbstractResiduals{T <: AbstractMeasures, M <: AbstractMinimizer} end # -------------------------------------------------------------------- struct dry <: AbstractMinimizer; end function _minimize!(resid::AbstractResiduals{Measures{N}, dry}) where N params = free_params(resid) residuals(resid, getfield.(params, :val)) finalize!(resid, getfield.(params, :val), fill(NaN, length(params))) return MinimizerStatusDry() end # -------------------------------------------------------------------- import LsqFit mutable struct lsqfit <: AbstractMinimizer result lsqfit() = new(nothing) end function _minimize!(resid::AbstractResiduals{Measures{N}, lsqfit}) where N params = free_params(resid) ndata = length(residuals(resid)) dof = ndata - length(params) prog = ProgressUnknown(desc="Model (dof=$(dof)) evaluations:", dt=0.5, showspeed=true, color=:light_black) resid.mzer.result = LsqFit.curve_fit((dummy, pvalues) -> begin ProgressMeter.next!(prog; showvalues=() -> [(:fit_stat, fit_stat(resid))]) residuals(resid, pvalues) end, 1.:ndata, fill(0., ndata), getfield.(params, :val), lower=getfield.(params, :low), upper=getfield.(params, :high)) ProgressMeter.finish!(prog) if !resid.mzer.result.converged return MnimizerStatusError("Not converged") end finalize!(resid, getfield.(Ref(resid.mzer.result), :param), LsqFit.stderror(resid.mzer.result)) return MinimizerStatusOK() end # -------------------------------------------------------------------- import CMPFit #= NOTE: using custom thresholds for ftol, gtol and xtol may lead to unexpected behaviour. E.g. settings ftol = 1.e-6 may lead to a non-optimal fit with exit status 2 (possibly because in a single iteration the improvement is particularly small). The best approach is probably to use default tolerance values and either increase the maximum allowed number of iterations (config.maxiter) or set a threshold for relative fit statistic improvements (ftol_after_maxiter) to be checked after the minimizer iterated for the maximum allowed number of times. =# mutable struct cmpfit <: AbstractMinimizer config::CMPFit.Config ftol_after_maxiter::Float64 result function cmpfit() out = new(CMPFit.Config(), 1e-4, nothing) out.config.maxiter = 1000 return out end end function _minimize!(resid::AbstractResiduals{Measures{N}, cmpfit}) where N params = free_params(resid) guess = getfield.(params, :val) low = getfield.(params, :low) high = getfield.(params, :high) parinfo = CMPFit.Parinfo(length(guess)) for i in 1:length(guess) llow = isfinite(low[i]) ? 1 : 0 lhigh = isfinite(high[i]) ? 1 : 0 parinfo[i].limited = (llow, lhigh) parinfo[i].limits = (low[i], high[i]) end dof = length(residuals(resid)) - length(params) residuals(resid, guess) last_fitstat = sum(abs2, residuals(resid)) prog = ProgressUnknown(desc="Model (dof=$(dof)) evaluations:", dt=0.5, showspeed=true, color=:light_black) while true resid.mzer.result = CMPFit.cmpfit((pvalues) -> begin ProgressMeter.next!(prog; showvalues=() -> [(:fit_stat, fit_stat(resid))]) residuals(resid, pvalues) end, guess, parinfo=parinfo, config=resid.mzer.config) if resid.mzer.result.status <= 0 return MinimizerStatusError("CMPFit status = $(resid.mzer.result.status)") end if (resid.mzer.result.status == 5) Δfitstat = (last_fitstat - resid.mzer.result.bestnorm) / last_fitstat if Δfitstat > resid.mzer.ftol_after_maxiter println("Reached max. number of iteration but relative Δfitstat = $(Δfitstat) > $(resid.mzer.ftol_after_maxiter), continue minimization...\n") last_fitstat = resid.mzer.result.bestnorm guess = getfield.(Ref(resid.mzer.result), :param) continue end end ProgressMeter.finish!(prog) finalize!(resid, getfield.(Ref(resid.mzer.result), :param), getfield.(Ref(resid.mzer.result), :perror)) if resid.mzer.result.status == 2 return MinimizerStatusWarn("CMPFit status = 2 may imply one (or more) guess values are too far from optimum") elseif resid.mzer.result.status == 5 return MinimizerStatusWarn("CMPFit status = 5, reached maximum allowed number of iteration.") end return MinimizerStatusOK() end end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
5940
function free_params_indices(mevals::Vector{ModelEval}) out = Vector{NTuple{3, Int}}() i1 = 1 for id in 1:length(mevals) nn = length(mevals[id].pv.ifree) if nn > 0 i2 = i1 + nn - 1 push!(out, (id, i1, i2)) i1 += nn end end return out end function update!(mevals::Vector{ModelEval}) update_init!(mevals) update_evaluation!(mevals) update_finalize!(mevals) return mevals end function update_init!(mevals::Vector{ModelEval}) # Populate pvmulti fields in all Model structures to notify we are # going to perform a multi-model fitting for i in 1:length(mevals) empty!(mevals[i].pvmulti) for j in 1:length(mevals) push!(mevals[i].pvmulti, mevals[j].pv.values) end end update_init!.(mevals) end function update_setparvals(mevals::Vector{ModelEval}, pvalues::Vector{Float64}) for (id, i1, i2) in free_params_indices(mevals) update_setparvals(mevals[id], pvalues[i1:i2]) end end function update_evaluation!(mevals::Vector{ModelEval}) update_evaluation!.(mevals) end function update_finalize!(mevals::Vector{ModelEval}, uncerts=Vector{Float64}[]) if length(uncerts) > 0 for (id, i1, i2) in free_params_indices(mevals) update_finalize!(mevals[id], pvalues[i1:i2]) end else update_finalize!.(mevals) end end function free_params(mevals::Vector{ModelEval}) out = Vector{Parameter}() for id in 1:length(mevals) append!(out, free_params(mevals[id])) end return out end nfree(mevals::Vector{ModelEval}) = sum(nfree.(mevals)) # ==================================================================== """ MultiResiduals{T <: AbstractMeasures, M <: AbstractMinimizer} A structure representing the distance between a `Vector{ModelEval}` and a corresponding number of datasets. The "distance" is expressed in terms of weighted residuals. A minimizer can be invoked via the `minimize!` function to reduce such distance by varying the parameter valuesfor each model. # Fields: - `mevals::Vector{ModelEval}`: Vector of model evaluations; - `data::Vector{<: AbstractMeasures}`: Empirical datasets to be compared to the models; - `buffer::Vector{Float64}`: Weighted residuals for each point in the domain of each dataset; - `mzer::AbstractMinimizer`: Minimizer used to reduce the residuals. """ struct MultiResiduals{T <: AbstractMeasures, M <: AbstractMinimizer} <: AbstractResiduals{T, M} mevals::Vector{ModelEval} data::Vector{T} buffer::Vector{Float64} mzer::M function MultiResiduals(mevals::Vector{ModelEval}, datasets::Vector{T}, mzer::M=dry()) where {T <: AbstractMeasures, M <: AbstractMinimizer} @assert length(mevals) == length(datasets) update!(mevals) buffer = fill(NaN, sum(length.(datasets))) return new{T,M}(mevals, datasets, buffer, mzer) end end free_params(mresid::MultiResiduals) = free_params(mresid.mevals) nfree(mresid::MultiResiduals) = nfree(mresid.mevals) dof(mresid::MultiResiduals) = sum(length.(mresid.data)) - nfree(mresid) residuals(mresid::MultiResiduals) = mresid.buffer function residuals(mresid::MultiResiduals, pvalues::Vector{Float64}) # Must set pvalues on all models before any evaluation update_setparvals(mresid.mevals, pvalues) # Populate residuals i1 = 1 for i in 1:length(mresid.mevals) meval = mresid.mevals[i] update_evaluation!(meval) nn = length(last_evaluation(meval)) if nn > 0 i2 = i1 + nn - 1 mresid.buffer[i1:i2] .= (last_evaluation(meval) .- values(mresid.data[i])) ./ uncerts(mresid.data[i]) i1 += nn end end return mresid.buffer end fit_stat(mresid::MultiResiduals) = sum(abs2, mresid.buffer) / dof(mresid) function finalize!(mresid::MultiResiduals, best::Vector{Float64}, uncerts::Vector{Float64}) @assert nfree(mresid) == length(best) == length(uncerts) residuals(mresid, best) for (id, i1, i2) in free_params_indices(mresid.mevals) update_finalize!(mresid.mevals[id], uncerts[i1:i2]) end end # ==================================================================== """ minimize!(mresid::MultiResiduals) Invoke a minimizer to reduce the residuals between a set of models and a corresponding number of datasets. """ function minimize!(mresid::MultiResiduals) starttime = time() update!(mresid.mevals) @assert nfree(mresid) > 0 "No free parameter in the model" status = _minimize!(mresid) bestfit = ModelSnapshot.(mresid.mevals) stats = FitStats(mresid, status, time() - starttime) # test_serialization(bestfit, stats, mresid.data) return (bestfit, stats) end """ fit!(multi::Vector{Model}, data::Vector{Measures{N}}; minimizer::AbstractMinimizer=lsqfit()) Fit a multi-model to a set of empirical data sets using the specified minimizer (default: `lsqfit()`). Upon return the parameter values in the `Model` objects are set to the best fit ones. """ function fit!(multi::Vector{Model}, data::Vector{Measures{N}}; minimizer::AbstractMinimizer=lsqfit()) where N mevals = [ModelEval(multi[i], data[i].domain) for i in 1:length(multi)] update!(mevals) mresid = MultiResiduals(mevals, data, minimizer) return minimize!(mresid) end """ fit(multi::Vector{Model}, data::Vector{Measures{N}}; minimizer::AbstractMinimizer=lsqfit()) Fit a multi-model to a set of empirical data sets using the specified minimizer (default: `lsqfit()`). See also `fit!`. """ fit(multi::Vector{Model}, data::Vector{Measures{N}}; kws...) where N = fit!(deepcopy(multi), data; kws...) """ compare(multi::Vector{Model}, data::Vector{Measures{N}}) Compare a multi-model to a multi-dataset and return a `FitStats` object. """ compare(multi::Vector{Model}, data::Vector{Measures{N}}) where N = fit!(multi, data, dry())
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
2349
#= Note: I can't compile ModelSnapshot since it involves a show() call, which in turn involve PrettyTables, which is not currently possible to precompile (an error is raised). =# using PrecompileTools @compile_workload begin let x = [0.1, 1.1, 2.1, 3.1, 4.1] domain = Domain(x) model = Model(@fd (x, a2=1, a1=1, a0=5) -> (a2 .* x.^2 .+ a1 .* x .+ a0)) data = GModelFit.mock(Measures, model, domain, seed=1) bestfit, stats = fit(model, data) x = 0:0.05:6 model = Model(:l1 => GModelFit.Gaussian(1, 2, 0.2), :l2 => GModelFit.Gaussian(1, 3, 0.5), :bkg => GModelFit.OffsetSlope(0.5, 1, 0.1), :main => SumReducer(:l1, :l2, :bkg)); model[:l2].norm.patch = :l1 model[:l2].norm.patch = @fd (m, v) -> v + m[:l1].norm data = GModelFit.mock(Measures, model, Domain(x), seed=1) bestfit, stats = fit(model, data, minimizer=GModelFit.cmpfit()) x = 0:0.05:6 model1 = Model(:l1 => GModelFit.Gaussian(1, 2, 0.2), :l2 => GModelFit.Gaussian(1, 3, 0.5), :bkg => GModelFit.OffsetSlope(0.5, 1, 0.1), :main => SumReducer(:l1, :l2, :bkg)); model2 = Model(:l1 => GModelFit.Gaussian(0.8, 2.1, 0.1), :l2 => GModelFit.Gaussian(1.2, 2.5, 0.4), :bkg => GModelFit.OffsetSlope(0.5, 1, 0.1), :main => SumReducer(:l1, :l2, :bkg)); model = [model1, model2] freeze!(model[1], :bkg); freeze!(model[2], :bkg); thaw!(model[1], :bkg); thaw!(model[2], :bkg); model[2][:bkg].offset.mpatch = @fd m -> m[1][:bkg].offset model[2][:bkg].slope.mpatch = @fd m -> m[1][:bkg].slope model[1][:l2].center.mpatch = @fd m -> m[2][:l2].center data = GModelFit.mock(Measures, model, [Domain(x), Domain(x)], seed=1) bestfit, stats = fit(model, data) # mevals = [GModelFit.ModelEval(model[i], data[i].domain) for i in 1:length(model)] # GModelFit.update!(mevals); # GModelFit.update_setparvals(mevals[1], rand(GModelFit.nfree(mevals[1]))) # GModelFit.update_evaluation!(mevals[1]) # @gp GModelFit.last_evaluation(mevals[1]) end end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
9763
#= Serialization methods: output must be suitable to be stored in a file using the JSON format. =# _serialize(::Nothing) = nothing _serialize(::Function) = nothing _serialize(v::Expr) = "_TE_" * string(v) _serialize(v::Date) = "_TD_" * string(v) _serialize(v::DateTime) = "_TDT" * string(v) _serialize(v::String) = v _serialize(v::Symbol) = "_TS_" * string(v) _serialize(v::AbstractVector) = _serialize.(v) _serialize(v::Tuple) = [_serialize.(v)...] _serialize(v::Number) = (isnan(v) || isinf(v) ? "_TN_" * string(v) : v) function _serialize(vv::AbstractDict{Symbol,T}) where {T <: Any} out = OrderedDict{String, Any}() for (key, val) in vv out[String(key)] = _serialize(val) end return out end function _serialize_struct(vv; add_show=false) out = OrderedDict{String, Any}() out["_structtype"] = string(typeof(vv)) for field in fieldnames(typeof(vv)) ff = getfield(vv, field) out[String(field)] = _serialize(ff) end if add_show io = IOBuffer() if showsettings.plain show(io , vv) else ctx = IOContext(io, :color => true) show(ctx, vv) end out["show"] = String(take!(io)) end return out end _serialize(vv::PV.PVComp) = _serialize_struct(vv) _serialize(vv::PV.PVModel) = _serialize_struct(vv) _serialize(vv::Parameter) = _serialize_struct(vv) _serialize(vv::FunctDesc) = _serialize_struct(vv) _serialize(vv::FitStats) = _serialize_struct(vv, add_show=true) _serialize(vv::ModelSnapshot) = _serialize_struct(vv, add_show=true) _serialize(vv::AbstractMinimizerStatus) = _serialize_struct(vv, add_show=true) _serialize(vv::AbstractDomain) = _serialize_struct(vv, add_show=true) _serialize(vv::AbstractMeasures) = _serialize_struct(vv, add_show=true) _serialize(model::ModelSnapshot, fitstats::FitStats ) = _serialize([model, fitstats]) _serialize(model::ModelSnapshot, fitstats::FitStats, data::AbstractMeasures ) = _serialize([model, fitstats, data]) _serialize(multi::Vector{Model } ) = _serialize(ModelSnapshot.(multi)) _serialize(multi::Vector{ModelSnapshot}, fitstats::FitStats ) = _serialize([multi, fitstats]) function _serialize(multi::Vector{ModelSnapshot}, fitstats::FitStats, data::Vector{T}) where T <: AbstractMeasures @assert length(multi) == length(data) _serialize([multi, fitstats, data]) end """ GModelFit.serialize(filename::String, ::ModelSnapshot[, ::FitStats[, ::Measures]]; compress=false) GModelFit.serialize(filename::String, ::Vector{ModelSnapshot}[, ::FitStats[, ::Vector{Measures}]]; compress=false) Serialize GModelFit object(s) using a JSON format. The serializable objects are: - `ModelSnapshot` and `Vector{ModelSnapshot}` (mandatory argument); - `FitStats` (optional); - `Measures` and `Vector{Measures}` (optional); If `compress=true` the resulting JSON file will be compressed using GZip. Objects can later be deserialized in a different Julia session with `GModelFit.deserialize`. Note: The `GModelFit.serialize` function also accepts `Model` and `Vector{Model}` but they will be internally converted to `ModelSnapshot`(s). ## Example: ```julia-repl # Create GModelFit objects using GModelFit model = Model(:linear => @fd (x, b=2, m=0.5) -> (b .+ x .* m)) data = Measures([4.01, 7.58, 12.13, 19.78, 29.04], 0.4) bestfit, stats = fit(model, data) # Serialize objects and save in a file GModelFit.serialize("my_snapshot.json", bestfit, stats, data) # Restore objects (possibly in a different Julia session) using GModelFit (bestit, stats, data) = GModelFit.deserialize("my_snapshot.json") ``` """ function serialize(filename::String, args...; compress=false) data = _serialize(args...) filename = ensure_file_extension(filename, "json") if compress filename = ensure_file_extension(filename, "gz") io = GZip.open(filename, "w") else io = open(filename, "w") end JSON.print(io, data) close(io) return filename end # ==================================================================== # Deserialization methods _deserialize(::Nothing) = nothing _deserialize(v::Number) = v function _deserialize(v::AbstractVector) tmp = _deserialize.(v) tt = unique(typeof.(tmp)) if length(tt) == 1 out = similar(tmp, tt[1]) out .= tmp else out = tmp end return out end function _deserialize(v::String) if length(v) > 4 magic = v[1:4] if magic == "_TE_" return Meta.parse(v) elseif magic == "_TD_" return Date(v[5:end]) elseif magic == "_TDT" return DateTime(v[5:end]) elseif magic == "_TS_" return Symbol(v[5:end]) elseif v == "_TN_Inf" return +Inf elseif v == "_TN_-Inf" return -Inf elseif v == "_TN_NaN" return NaN end end return v end function _deserialize(dd::AbstractDict) function deserialized_function(args...) @warn "Can't evaluate a deserialized function" nothing end if "_structtype" in keys(dd) if !isnothing(findfirst("PVComp{GModelFit.Parameter}", dd["_structtype"])) return PVComp{Parameter}(_deserialize(dd["pnames"]), _deserialize(dd["indices"]), _deserialize(dd["data"])) elseif !isnothing(findfirst("PVModel{GModelFit.Parameter}", dd["_structtype"])) return PVModel{Parameter}(_deserialize(dd["comps"]), _deserialize(dd["indices"]), _deserialize(dd["data"])) elseif dd["_structtype"] == "GModelFit.FunctDesc" return FunctDesc(deserialized_function, _deserialize(dd["display"]), _deserialize(dd["args"]), _deserialize(dd["optargs"])) elseif dd["_structtype"] == "GModelFit.Parameter" return Parameter(_deserialize(dd["val"]), _deserialize(dd["low"]), _deserialize(dd["high"]), _deserialize(dd["fixed"]), _deserialize(dd["patch"]), _deserialize(dd["mpatch"]), _deserialize(dd["actual"]), _deserialize(dd["unc"])) elseif dd["_structtype"] == "GModelFit.ModelSnapshot" return ModelSnapshot(_deserialize(dd["domain"]), _deserialize(dd["params"]), _deserialize(dd["buffers"]), _deserialize(dd["maincomp"]), _deserialize(dd["comptypes"]), _deserialize(dd["isfreezed"]), _deserialize(dd["deps"]), _deserialize(dd["evalcounters"])) elseif dd["_structtype"] == "GModelFit.FitStats" return FitStats(_deserialize(dd["elapsed"]), _deserialize(dd["ndata"]), _deserialize(dd["nfree"]), _deserialize(dd["dof"]), _deserialize(dd["fitstat"]), _deserialize(dd["status"])) elseif dd["_structtype"] == "GModelFit.MinimizerStatusOK" return MinimizerStatusOK() elseif dd["_structtype"] == "GModelFit.MinimizerStatusDry" return MinimizerStatusDry() elseif dd["_structtype"] == "GModelFit.MinimizerStatusWarn" return MinimizerStatusWarn(_deserialize(dd["message"])) elseif dd["_structtype"] == "GModelFit.MinimizerStatusError" return MinimizerStatusError(_deserialize(dd["message"])) elseif !isnothing(findfirst("CartesianDomain", dd["_structtype"])) axis = _deserialize(dd["axis"]) roi = _deserialize(dd["roi"]) return CartesianDomain(axis..., roi=roi) elseif !isnothing(findfirst("Domain", dd["_structtype"])) axis = _deserialize(dd["axis"]) return Domain(axis...) elseif !isnothing(findfirst("Measures", dd["_structtype"])) dom = _deserialize(dd["domain"]) tmp = _deserialize(dd["values"]) if isa(dom, CartesianDomain) return Measures(dom, reshape(tmp[1], size(dom)), reshape(tmp[2], size(dom))) else return Measures(dom, tmp[1], tmp[2]) end else error("Unrecognized structure in serialized data: " * dd["_structtype"]) end else out = OrderedDict{Symbol, Any}() for (kk, vv) in dd out[Symbol(kk)] = _deserialize(vv) end return out end end function deserialize(filename::String) if filename[end-2:end] == ".gz" io = GZip.open(filename) else io = open(filename) end j = JSON.parse(io, dicttype=OrderedDict) close(io) return _deserialize(j) end function test_serialization(args...) function comparedata(A::TA, B::TB) where {TA, TB} isa(B, Function) && return @assert TA == TB if (TA <: AbstractVector) || (TA <: Tuple) || (TA <: AbstractDict) @assert length(A) == length(B) for i in eachindex(A) comparedata(getindex(A, i), getindex(B, i)) end elseif isstructtype(TA) for i in 1:nfields(A) comparedata(getfield(A, i), getfield(B, i)) end else @assert isequal(A, B) end end dd = deserialize(serialize(tempname(), args...)) comparedata(dd, [args...]) end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
12701
mutable struct ShowSettings plain::Bool tableformat::TextFormat floatformat::String showfixed::Bool border::Crayon header::Crayon subheader::Crayon fixed::Crayon error::Crayon highlighted::Crayon section::Crayon ShowSettings() = new(false, tf_unicode_rounded, "%9.4g", true, crayon"light_blue", crayon"light_blue negative bold", crayon"dark_gray bold", crayon"dark_gray", crayon"light_red", crayon"negative", crayon"green bold") end const showsettings = ShowSettings() function printtable(io, table, header, args...; formatters=(), hlines=:none, kw...) if showsettings.plain pretty_table(io, table; header=header, formatters=formatters, alignment=:l, crop=:none, tf=tf_compact, hlines=hlines, highlighters=()) else pretty_table(io, table; header=header, formatters=formatters, alignment=:l, crop=:none, tf=showsettings.tableformat, hlines=hlines, border_crayon=showsettings.border, header_crayon=showsettings.header, subheader_crayon=showsettings.subheader, kw...) end end function section(io, args...; newline=true) nl = newline ? "\n" : "" if showsettings.plain print(io, args..., nl) else print(io, showsettings.section, args..., nl, crayon"default") end end function show(io::IO, dom::AbstractDomain) section(io, string(typeof(dom)) * " (ndims: ", ndims(dom), ", length: ", length(dom), ")") hrule = Vector{Int}() push!(hrule, 0, 1, ndims(dom)+1) table = Matrix{Union{Int,Float64}}(undef, ndims(dom), 6) for i in 1:ndims(dom) if isa(dom, CartesianDomain) vv = axis(dom, i) else vv = coords(dom, i) end steps = 0 if length(vv) > 1 steps = vv .- circshift(vv, 1) steps = steps[2:end] end table[i, 1] = i table[i, 2] = length(vv) table[i, 3:6] = [minimum(vv), maximum(vv), minimum(steps), maximum(steps)] end printtable(io, table, ["Dim", "Length", "Min val", "Max val", "Min step", "Max step"], hlines=hrule, formatters=ft_printf(showsettings.floatformat, 3:6)) end function show(io::IO, data::AbstractMeasures) section(io, typeof(data), ": (length: ", (length(data)), ")") table = Matrix{Union{String,Float64}}(undef, 0, 7) hrule = Vector{Int}() push!(hrule, 0, 1) names = fieldnames(typeof(data)) error = Vector{Bool}() for i in 1:length(data.labels) vv = data.values[i] nan = length(findall(isnan.(vv))) + length(findall(isinf.(vv))) vv = vv[findall(isfinite.(vv))] push!(error, nan > 0) table = vcat(table, [data.labels[i] minimum(vv) maximum(vv) mean(vv) median(vv) std(vv) (nan > 0 ? string(nan) : "") ]) end push!(hrule, 0, size(table)[1]+1) if showsettings.plain highlighters = nothing else highlighters = Highlighter((data,i,j) -> error[i], showsettings.error) end printtable(io, table, ["", "Min", "Max", "Mean", "Median", "Std. dev.", "Nan/Inf"], hlines=hrule, formatters=ft_printf(showsettings.floatformat, 2:6), highlighters=highlighters) end function show(io::IO, par::Parameter) if par.fixed println(io, "Value : ", par.val, " (fixed)") elseif isnan(par.unc) println(io, "Value : ", par.val, " [", par.low , " : ", par.high, "]") else if par.val == par.actual println(io, "Value : ", par.val, " ± ", par.unc, " [", par.low , " : ", par.high, "] ") else println(io, "Value : ", par.val, " ± ", par.unc, " [", par.low , " : ", par.high, "], actual: " , par.actual) end end end function preparetable(comp::Union{AbstractComponent, GModelFit.PV.PVComp{GModelFit.Parameter}}; cname::String="?", ctype="?", cfixed=false) table = Matrix{Union{String,Float64}}(undef, 0, 8) fixed = Vector{Bool}() warns = Vector{Bool}() for (pname, param) in getparams(comp) (!showsettings.showfixed) && param.fixed && continue range = strip(@sprintf("%7.2g:%-7.2g", param.low, param.high)) # (range == "-Inf:Inf") && (range = "") patch = "" isa(param.patch, Symbol) && (patch = string(param.patch)) isa(param.patch, FunctDesc) && (patch = param.patch.display) isa(param.mpatch,FunctDesc) && (patch = param.mpatch.display) table = vcat(table, permutedims([cname * (cfixed ? " (fixed)" : ""), ctype, string(pname), range, param.val, (param.fixed | cfixed ? " (fixed)" : param.unc), (patch == "" ? "" : param.actual), patch])) push!(fixed, param.fixed) if !param.fixed && (isnan(param.unc) || (param.unc <= 0.)) push!(warns, true) table[end,6] = "" else push!(warns, false) end if !showsettings.plain cname = "" # delete from following lines within the same component box ctype = "" cfixed = false end end return (table, fixed, warns) end function show(io::IO, comp::Union{AbstractComponent, GModelFit.PV.PVComp{GModelFit.Parameter}}) ctype = isa(comp, AbstractComponent) ? string(typeof(comp)) : "?" (table, fixed, warns) = preparetable(comp, ctype=ctype) if showsettings.plain highlighters = nothing else highlighters = (Highlighter((data,i,j) -> (fixed[i] && (j in (3,4,5,6))), showsettings.fixed), Highlighter((data,i,j) -> (warns[i] && (j in (3,4,5,6))), showsettings.error)) end printtable(io, table, ["Component", "Type", "Param.", "Range", "Value", "Uncert.", "Actual", "Patch"], formatters=ft_printf(showsettings.floatformat, 5:7), highlighters=highlighters) end function show(io::IO, red::FunctDesc) println(io, red.display) end function tabledeps(model::Union{Model, ModelSnapshot}) function alldeps(model::Union{Model, GModelFit.ModelSnapshot}, cname=nothing, level=0) out = Vector{Tuple}() if isnothing(cname) cname = GModelFit.find_maincomp(model) append!(out, alldeps(model, cname, level+1)) else push!(out, (level, cname)) for d in GModelFit.dependencies(model, cname) append!(out, alldeps(model, d, level+1)) end end return out end allcomps = alldeps(model) maxdepth = maximum(getindex.(allcomps, 1)) prefix = fill("", length(allcomps), maxdepth) for i in 1:length(allcomps) prefix[i, allcomps[i][1]] = string(allcomps[i][2]) end BRANCH = "├─╴" BRCONT = "│ " BREND = "└─╴" for i in 2:length(allcomps) for j in 1:(maxdepth-1) if prefix[i,j] == "" # empty cell if any(prefix[1:(i-1), j] .!= "") # ...it has a parent if prefix[i,j+1] != "" # ...it is a branch prefix[i,j] = BRANCH # Add a branch end end end end end for i in 2:length(allcomps) for j in 1:(maxdepth-1) if prefix[i,j] == BRANCH # it is a branch # Check if this is the last row for this branch if all(prefix[(i+1):end,j] .== "") prefix[i,j] = BREND elseif (prefix[i+1,j] != "") && (prefix[i+1,j] != BRANCH) prefix[i,j] = BREND end end end end # Join branches with vertical lines for i in 2:length(allcomps) for j in 1:(maxdepth-1) if (prefix[i,j] == "") && (prefix[i-1,j] in [BRANCH, BRCONT]) prefix[i,j] = BRCONT end end end prefix[prefix .== ""] .= " "^length(BRANCH) prefix = [string(rstrip(join(prefix[i,:]))) for i in 1:length(allcomps)] if showsettings.plain prefix = [replace(p, BRANCH => "+ ", BRCONT => "| ", BREND => "+ ") for p in prefix] end table = Matrix{Union{String,Int,Float64}}(undef, length(allcomps), 8) fixed = Vector{Bool}() for i in 1:length(allcomps) cname = allcomps[i][2] table[i, 1] = prefix[i] table[i, 2] = comptype(model, cname) table[i, 3] = count(getproperty.(values(getparams(model[cname])), :fixed) .== false) (table[i, 3] == 0) && (table[i, 3] = "") if !isa(model, Model) table[i, 4] = evalcounter(model, cname) result = model(cname) v = view(result, findall(isfinite.(result))) if length(v) > 0 table[i, 5:7] .= [minimum(v), maximum(v), mean(v)] else table[i, 5:7] .= ["", "", ""] end table[i, 8] = count(isnan.(result)) + count(isinf.(result)) end push!(fixed, isfreezed(model, cname)) end return table, fixed end function show(io::IO, model::Union{Model, ModelSnapshot}) section(io, "Components:") (length(keys(model)) == 0) && (return nothing) table, fixed = tabledeps(model) if showsettings.plain highlighters = nothing else highlighters = Highlighter((data,i,j) -> fixed[i], showsettings.fixed) end if !isa(model, Model) printtable(io, table, ["Component", "Type", "#Free", "Eval. count", "Min", "Max", "Mean", "NaN/Inf"], hlines=[0,1, size(table)[1]+1], formatters=ft_printf(showsettings.floatformat, 5:7), highlighters=highlighters) else printtable(io, table[:, 1:3], ["Component", "Type", "#Free"], hlines=[0,1, size(table)[1]+1], formatters=ft_printf(showsettings.floatformat, 5:7), highlighters=highlighters) end println(io) section(io, "Parameters:") (length(keys(model)) == 0) && (return nothing) table = Matrix{Union{String,Float64}}(undef, 0, 8) fixed = Vector{Bool}() warns = Vector{Bool}() hrule = Vector{Int}() push!(hrule, 0, 1) for cname in keys(model) comp = model[cname] (t, f, w) = preparetable(comp, cname=string(cname), ctype=comptype(model, cname), cfixed=isfreezed(model, cname)) table = vcat(table, t) append!(fixed, f .| isfreezed(model, cname)) append!(warns, w) push!(hrule, length(fixed)+1) end if showsettings.plain highlighters = nothing else if !isa(model, Model) highlighters = (Highlighter((data,i,j) -> (fixed[i]), showsettings.fixed), Highlighter((data,i,j) -> (warns[i] && (j in (3,4,5,6))), showsettings.error)) else highlighters = Highlighter((data,i,j) -> (fixed[i]), showsettings.fixed) end end printtable(io, table, ["Component", "Type", "Param.", "Range", "Value", "Uncert.", "Actual", "Patch"], hlines=hrule, formatters=ft_printf(showsettings.floatformat, 5:7), highlighters=highlighters) end function show(io::IO, multi::Union{Vector{Model}, Vector{ModelSnapshot}}) for id in 1:length(multi) println(io) section(io, join(fill("=", 30)) * " Model $id " * join(fill("=", 30))) show(io, multi[id]) end println(io) end getmessage(status::MinimizerStatusOK) = crayon"green", "OK" getmessage(status::MinimizerStatusDry) = crayon"dark_gray", "Residuals not minimized" getmessage(status::MinimizerStatusWarn) = crayon"bold yellow", "WARN\n" * status.message getmessage(status::MinimizerStatusError) = crayon"bold red", "ERROR\n" * status.message function show(io::IO, status::AbstractMinimizerStatus) print(io, "Status: ") color, ss = getmessage(status) if showsettings.plain print(io, @sprintf("%-8s", ss)) else print(io, color, @sprintf("%-8s", ss), crayon"default") end end function show(io::IO, res::FitStats) section(io, "Fit results:", newline=false) print(io, @sprintf(" #data: %d, #free pars: %d, red. fit stat.: %10.5g, ", res.ndata, res.nfree, res.fitstat)) show(io, res.status) println(io) end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
2740
""" ModelSnapshot A structure containing a *snapshot* (i.e. a "*frozen*" state) of a `Model`. A snapshot contains the same parameters and component evaluations of the original model, and provide the same user interface. Moreover, a `ModelSnapshot` can be serialized to a file and de-serialized in another Julia session (see `GModelFit.serialize()`). The best fit model and parameter values returned by the `fit()` function are provided as a `ModelSnapshot` object . """ struct ModelSnapshot domain::AbstractDomain params::PVModel{Parameter} buffers::OrderedDict{Symbol, Vector{Float64}} maincomp::Symbol comptypes::OrderedDict{Symbol, String} isfreezed::OrderedDict{Symbol, Bool} deps::OrderedDict{Symbol, Vector{Symbol}} evalcounters::OrderedDict{Symbol, Int} end function ModelSnapshot(meval::ModelEval) deps = OrderedDict{Symbol, Vector{Symbol}}() for cname in keys(meval.cevals) deps[cname] = dependencies(meval.model, cname) end ModelSnapshot(deepcopy(meval.domain), deepcopy(meval.pv.params), OrderedDict([Pair(cname, ceval.buffer) for (cname, ceval) in meval.cevals]), meval.maincomp[1], comptypes(meval.model), OrderedDict([Pair(cname, isfreezed(meval.model, cname)) for cname in keys(meval.cevals)]), deps, evalcounters(meval)) end domain(model::ModelSnapshot) = model.domain Base.keys(model::ModelSnapshot) = collect(keys(model.buffers)) (model::ModelSnapshot)() = reshape(domain(model), model.buffers[model.maincomp]) (model::ModelSnapshot)(name::Symbol) = reshape(domain(model), model.buffers[name]) find_maincomp(model::ModelSnapshot) = model.maincomp isfreezed(model::ModelSnapshot, cname::Symbol) = model.isfreezed[cname] dependencies(model::ModelSnapshot, cname::Symbol) = model.deps[cname] evalcounter(model::ModelSnapshot, cname::Symbol) = model.evalcounters[cname] comptype(model::ModelSnapshot, cname::Symbol) = model.comptypes[cname] comptypes(model::ModelSnapshot) = model.comptypes Base.haskey(m::ModelSnapshot, name::Symbol) = haskey(m.params, name) function Base.getindex(model::ModelSnapshot, name::Symbol) if name in keys(model.params) return model.params[name] end error("Name $name not defined") end Base.length(model::ModelSnapshot) = length(model.buffers) function iterate(model::ModelSnapshot, i=1) k = collect(keys(model)) (i > length(k)) && return nothing return (k[i] => model[k[i]], i+1) end function getparams(comp::GModelFit.PV.PVComp{GModelFit.Parameter}) out = OrderedDict{Symbol, Parameter}() for pname in propertynames(comp) out[pname] = getproperty(comp, pname) end return out end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
3811
version() = Pkg.TOML.parsefile(joinpath(pkgdir(GModelFit), "Project.toml"))["version"] function ensure_file_extension(_filename, _ext) filename = deepcopy(_filename) ext = "." * _ext nn = length(ext) if (length(filename) <= nn) || (filename[(end-nn+1):end] != ext) filename *= ext end return filename end # ==================================================================== #= TODO function print_param_covariance(fitres::FitStats; select=nothing, sort=false, threshold=0.) @assert isa(fitres.status.internal, CMPFit.Result) "Minimizer is not CMPFit" parnames = String[] if isa(fitres.bestfit, Vector{GModelFit.HashHashVector{GModelFit.Parameter}}) for i in 1:length(fitres.bestfit) for (cname, hv) in fitres.bestfit[i] for (pname, par) in hv par.fixed && continue push!(parnames, "[$(i)][$(cname)].$(pname)") end end end else for (cname, hv) in fitres.bestfit for (pname, _) in hv par.fixed && continue push!(parnames, "[$(cname)].$(pname)") end end end @assert length(parnames)^2 == length(fitres.status.internal.covar) ii = Vector{Int}() jj = Vector{Int}() covar = Vector{Float64}() for i in 1:length(parnames) for j in i+1:length(parnames) push!(covar, fitres.status.internal.covar[i, j]) push!(ii, i) push!(jj, j) end end if sort ii = ii[ sortperm(abs.(covar))] jj = jj[ sortperm(abs.(covar))] covar = covar[sortperm(abs.(covar))] end for i in 1:length(ii) if !isnothing(select) (parnames[ii[i]] in select) || continue end (abs(covar[i]) < threshold) && continue @printf "%-30s %-30s %10.4f\n" parnames[ii[i]] parnames[jj[i]] covar[i] end end =# """ mock(::Type{Measures}, model::Model; keywords...) mock(::Type{Measures}, multi::Vector{Model}; keywords...) Generate mock dataset(s) using a ground truth `Model` or `Vector{Model}` object. The first version returns a single `Measures` object, while the second returns a `Vector{Measures}`. The measurement random errors added to the data points are drawn from a Normal distribution centered on the data value itself, and a width given by the sum of three contributions: - *proportional* part: error proportional to each data point value; - *range* part: error proportional to the range spanned by all values in a single dataset; - *absolute* part: absolute error value. No systematic error is considered when generating mock dataset(s). # Accepted keywords: - `properr=0.01`: proportional error; - `rangeerr=0.05`: range error; - `abserr=0.`: absolute error; - `seed=nothing`: seed for the `Random.MersenneTwister` generator. """ function mock(::Type{Measures}, meval::ModelEval; properr=0.01, rangeerr=0.05, abserr=0., seed=nothing) rng = MersenneTwister(seed); update!(meval) values = last_evaluation(meval) ee = extrema(values) range = ee[2] - ee[1] @assert range > 0 err = (properr .* abs.(values) .+ rangeerr .* range .+ abserr) values .+= err .* randn(rng, size(values)) Measures(meval.domain, values, err) end mock(::Type{T}, model::Model, domain::AbstractDomain; kws...) where T = mock(T, ModelEval(model, domain); kws...) function mock(T, multi::Vector{ModelEval}; kws...) update!(multi) return [mock(T, multi[i]; kws...) for i in 1:length(multi)] end mock(::Type{T}, models::Vector{Model}, domains::Vector{<: AbstractDomain}; kws...) where T = mock(T, [ModelEval(models[i], domains[i]) for i in 1:length(models)])
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
2570
struct FComp <: AbstractComponent func::Function deps::Vector{Symbol} params::OrderedDict{Symbol, Parameter} function FComp(f::FunctDesc) deps = deepcopy(f.args) params = OrderedDict{Symbol, Parameter}() for i in 1:length(f.optargs) @assert f.optargs[1].head != :... "Splat not allowed" @assert f.optargs[i].head == :(=) @assert isa(f.optargs[i].args[1], Symbol) @assert isa(f.optargs[i].args[2], Number) params[f.optargs[i].args[1]] = Parameter(f.optargs[i].args[2]) end return new(f.funct, deps, params) end function FComp(funct::Function, deps=Symbol[]; kws...) params = OrderedDict{Symbol, Parameter}() for (name, val) in kws @assert isa(name, Symbol) @assert isa(val , Number) params[name] = Parameter(val) end return new(funct, deps, params) end end # Allow access to parameters as `comp.parname` propertynames(comp::FComp) = collect(keys(getfield(comp, :params))) getproperty(comp::FComp, key::Symbol) = getfield(comp, :params)[key] dependencies(comp::FComp) = getfield(comp, :deps) function evaluate!(ceval::CompEval{FComp, <: AbstractDomain}, params...) if length(ceval.deps) > 0 ceval.buffer .= getfield(ceval.comp, :func)(ceval.deps..., params...) else ceval.buffer .= getfield(ceval.comp, :func)(params...) end end # ==================================================================== struct FCompv <: GModelFit.AbstractComponent funct::Function deps::Vector{Symbol} params::OrderedDict{Symbol, Parameter} FCompv(funct::Function, guess::Vector{T}) where T <: Number = FCompv(funct, Symbol[], guess) function FCompv(funct::Function, deps::Vector{Symbol}, guess::Vector{T}) where T <: Number params = OrderedDict{Symbol, Parameter}() for i in 1:length(guess) params[Symbol(:p, i)] = Parameter(guess[i]) end new(funct, deps, params) end end propertynames(comp::FCompv) = collect(keys(getfield(comp, :params))) getproperty(comp::FCompv, key::Symbol) = getfield(comp, :params)[key] dependencies(comp::FCompv) = getfield(comp, :deps) function evaluate!(ceval::CompEval{FCompv, <: AbstractDomain}, params::Vararg{Float64}) if length(ceval.deps) > 0 ceval.buffer .= getfield(ceval.comp, :func)(deps..., [params...]) else ceval.buffer .= getfield(ceval.comp, :funct)([params...]) end end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
2650
# ==================================================================== # Component structure # mutable struct Gaussian_1D <: AbstractComponent norm::Parameter center::Parameter sigma::Parameter function Gaussian_1D(norm::Number, center::Number, sigma::Number) @assert norm > 0 @assert sigma > 0 out = new(Parameter(norm), Parameter(center), Parameter(sigma)) out.norm.low = 0 out.sigma.low = 0 return out end end mutable struct Gaussian_2D <: AbstractComponent norm::Parameter centerX::Parameter centerY::Parameter sigmaX::Parameter sigmaY::Parameter angle::Parameter function Gaussian_2D(norm::Number, centerX::Number, centerY::Number, sigmaX::Number, sigmaY::Number, angle::Number) @assert norm > 0 @assert sigmaX > 0 @assert sigmaY > 0 out = new(Parameter(norm), Parameter(centerX), Parameter(centerY), Parameter(sigmaX), Parameter(sigmaY), Parameter(angle)) out.norm.low = 0 out.sigmaX.low = 0 out.sigmaY.low = 0 return out end end # ==================================================================== Gaussian(norm, center, sigma) = Gaussian_1D(norm, center, sigma) Gaussian(norm, centerX, centerY, sigmaX, sigmaY, angle) = Gaussian_2D(norm, centerX, centerY, sigmaX, sigmaY, angle) function Gaussian(norm, centerX, centerY, sigma) out = Gaussian_2D(norm, centerX, centerY, sigma, sigma, 0.) out.sigmaX.fixed = true out.angle.fixed = true return out end # ==================================================================== # Evaluate component function evaluate!(ceval::CompEval{Gaussian_1D, Domain{1}}, norm, center, sigma) X = coords(ceval.domain) @. (ceval.buffer = exp( ((X - center) / sigma)^2. / (-2.)) / 2.5066282746310002 / sigma * norm) # sqrt(2pi) = 2.5066282746310002 end function evaluate!(ceval::CompEval{Gaussian_2D, <: AbstractDomain{2}}, norm, centerX, centerY, sigmaX, sigmaY, angle) angle *= -pi / 180. a = (cos(angle) / sigmaX)^2 / 2 + (sin(angle) / sigmaY)^2 / 2 b = -sin(2angle) / sigmaX^2 / 2 + sin(2angle) / sigmaY^2 / 2 c = (sin(angle) / sigmaX)^2 / 2 + (cos(angle) / sigmaY)^2 / 2 x = coords(ceval.domain, 1) y = coords(ceval.domain, 2) @. (ceval.buffer = norm * exp( -( a * (x - centerX)^2. + b * (x - centerX) * (y - centerY) + c * (y - centerY)^2. ) ) / 6.283185307179586 / sigmaX / sigmaY) # 2pi = 6.283185307179586 end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
1888
# ==================================================================== # Component structure # mutable struct Lorentzian_1D <: AbstractComponent norm::Parameter center::Parameter fwhm::Parameter function Lorentzian_1D(norm::Number, center::Number, fwhm::Number) @assert norm > 0 @assert fwhm > 0 out = new(Parameter(norm), Parameter(center), Parameter(fwhm)) out.norm.low = 0 out.fwhm.low = 0 return out end end mutable struct Lorentzian_2D <: AbstractComponent norm::Parameter centerX::Parameter centerY::Parameter fwhmX::Parameter fwhmY::Parameter function Lorentzian_2D(norm::Number, centerX::Number, centerY::Number, fwhmX::Number, fwhmY::Number) @assert norm > 0 @assert fwhmX > 0 @assert fwhmY > 0 out = new(Parameter(norm), Parameter(centerX), Parameter(centerY), Parameter(fwhmX), Parameter(fwhmY)) out.norm.low = 0 out.fwhmX.low = 0 out.fwhmY.low = 0 return out end end Lorentzian(norm, center, fwhm) = Lorentzian_1D(norm, center, fwhm) Lorentzian(norm, centerX, centerY, fwhmX, fwhmY) = Lorentzian_2D(norm, centerX, centerY, fwhmX, fwhmY) # ==================================================================== # Evaluate component function evaluate!(ceval::CompEval{Lorentzian_1D, <: AbstractDomain{1}}, norm, center, fwhm) X = coords(ceval.domain) @. (ceval.buffer = norm / (1. + ((X - center) / fwhm)^2. )) end function evaluate!(ceval::CompEval{Lorentzian_2D, <: AbstractDomain{2}}, norm, centerX, centerY, fwhmX, fwhmY) x = coords(ceval.domain, 1) y = coords(ceval.domain, 2) @. (ceval.buffer = norm / (1. + ((x - centerX) / fwhmX)^2. + ((y - centerY) / fwhmY)^2. )) end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
1594
# ==================================================================== # Component structure mutable struct OffsetSlope_1D <: AbstractComponent offset::Parameter x0::Parameter slope::Parameter function OffsetSlope_1D(offset::Number, x0::Number, slope::Number) out = new(Parameter(offset), Parameter(x0), Parameter(slope)) out.x0.fixed = true return out end end mutable struct OffsetSlope_2D <: AbstractComponent offset::Parameter x0::Parameter y0::Parameter slopeX::Parameter slopeY::Parameter function OffsetSlope_2D(offset::Number, x0::Number, y0::Number, slopeX::Number, slopeY::Number) out = new(Parameter(offset), Parameter(x0), Parameter(y0), Parameter(slopeX), Parameter(slopeY)) out.x0.fixed = true out.y0.fixed = true return out end end OffsetSlope(offset, x0, slope) = OffsetSlope_1D(offset, x0, slope) OffsetSlope(offset, x0, y0, slopeX, slopeY) = OffsetSlope_2D(offset, x0, y0, slopeX, slopeY) # ==================================================================== # Evaluate component function evaluate!(ceval::CompEval{OffsetSlope_1D, <: AbstractDomain{1}}, offset, x0, slope) X = coords(ceval.domain) @. (ceval.buffer = slope * (X - x0) + offset) end function evaluate!(ceval::CompEval{OffsetSlope_2D, <: AbstractDomain{2}}, offset, x0, y0, slopeX, slopeY) x = coords(ceval.domain, 1) y = coords(ceval.domain, 2) @. (ceval.buffer = slopeX * (x - x0) + slopeY * (y - y0) + offset) end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
554
mutable struct Polynomial <: AbstractComponent params::OrderedDict{Symbol, Parameter} function Polynomial(args...) params = OrderedDict{Symbol, Parameter}() for i in 1:length(args) params[Symbol(:p, (i-1))] = Parameter(args[i]) end new(params) end end function evaluate!(ceval::CompEval{Polynomial, <: AbstractDomain{1}}, params...) ceval.buffer .= params[1] for deg in 1:length(params)-1 ceval.buffer .+= coords(ceval.domain).^deg .* params[deg+1] end end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
488
struct SumReducer <: AbstractComponent list::Vector{Symbol} SumReducer() = new(Symbol[]) SumReducer(args::AbstractSet{Symbol}) = new(collect(args)) SumReducer(args::Vector{Symbol}) = new(args) SumReducer(args::Vararg{Symbol}) = new([args...]) end dependencies(comp::SumReducer) = comp.list function evaluate!(ceval::CompEval{SumReducer, <: AbstractDomain}) ceval.buffer .= 0. for i in 1:length(ceval.deps) ceval.buffer .+= ceval.deps[i] end end
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
code
4735
using Random, Test, GModelFit, GModelFit.PV # Test Model mm = PVModel{Float64}() @assert typeof(mm) == PVModel{Float64} mm[:comp] # empty component push!(mm, :comp3, :par, 3.1) push!(mm, :comp1, :par, 1.1) push!(mm, :comp1, :alt, 1.2) mm[:comp3][:par] = 99 @assert getfield(mm, :data) == [99, 1.1, 1.2] @assert mm[:comp1].par == 1.1 @assert mm[:comp1].alt == 1.2 @assert mm[:comp3].par == 99 @assert keys(mm) == [:comp, :comp3, :comp1] @assert propertynames(mm[:comp]) == Symbol[] @assert propertynames(mm[:comp1]) == [:par, :alt] @assert propertynames(mm[:comp3]) == [:par] @assert items(mm) == [99, 1.1, 1.2] @assert items(mm[:comp]) == Float64[] @assert items(mm[:comp1]) == [1.1, 1.2] @assert items(mm[:comp3]) == [99] for (cname, comp) in mm println(cname) for (pname, par) in comp println(" ", pname, ": ", par) @assert getproperty(mm[cname], pname) == par end end # ==================================================================== x = [0.1, 1.1, 2.1, 3.1, 4.1] meas = [6.29, 7.27, 10.41, 18.67, 25.3] unc = [1.1, 1.1, 1.1, 1.2, 1.2] domain = Domain(x) data = Measures(domain, meas, unc) model = Model(@fd (x, a2=1, a1=1, a0=5) -> (a2 .* x.^2 .+ a1 .* x .+ a0)) res = fit(model, data) # @gp data model # ==================================================================== x = 0:0.1:5 model = Model(:parabola => @fd (x, a2=1, a1=1, a0=5) -> @. (a2 * x^2 + a1 * x + a0)) res = fit(model, GModelFit.mock(Measures, model, Domain(x), seed=1)) # @gp x y "w l t 'True model'" x values(data) uncerts(data) "w yerr t 'Data'" x model() "w l t 'Best fit'" # ==================================================================== x = 0:0.1:5 model = Model(@fd (x, a2=1, a1=1, a0=5) -> @. (a2 * x^2 + a1 * x + a0)) res = fit(model, GModelFit.mock(Measures, model, Domain(x), seed=1)) # ==================================================================== f = @fd (x, p1=1, p2=1.e-3, p3=1e-6, p4=4, p5=5) -> @. (p1 + p2 * x + p3 * x^2 + p4 * sin(p5 * x)) * cos(x) x = 1.:50:10000 model = Model(f) res = fit(model, GModelFit.mock(Measures, model, Domain(x), seed=1)) # ==================================================================== f1 = @fd (x, p1=1, p2=1e-3, p3=1e-6) -> @. p1 + p2 * x + p3 * x^2 f2 = @fd (x, p4=4, p5=5) -> @. p4 * sin(p5 * x) f3 = @fd (x) -> cos.(x) x = 1.:50:10000 model = Model(:f1 => f1, :f2 => f2, :f3 => f3, :main => @fd (x, f1, f2, f3) -> (f1 .+ f2) .* f3) res = fit(model, GModelFit.mock(Measures, model, Domain(x), seed=1)) # Same results with model = Model(:f1 => f1) model[:f2] = f2 model[:f3] = f3 model[:main] = @fd (x, f1, f2, f3) -> (f1 .+ f2) .* f3 res = fit(model, GModelFit.mock(Measures, model, Domain(x), seed=1)) # ==================================================================== x = 0:0.05:6 model = Model(:l1 => GModelFit.Gaussian(1, 2, 0.2), :l2 => GModelFit.Gaussian(1, 3, 0.5), :bkg => GModelFit.OffsetSlope(0.5, 1, 0.1), :main => SumReducer(:l1, :l2, :bkg)); res = fit(model, GModelFit.mock(Measures, model, Domain(x), seed=1)) # Tie two parameters model[:l2].norm.patch = :l1 res = fit(model, GModelFit.mock(Measures, model, Domain(x), seed=1)) # Patch one parameter to another via a λ function model[:l2].norm.patch = @fd (m, v) -> v + m[:l1].norm res = fit(model, GModelFit.mock(Measures, model, Domain(x), seed=1)) # ==================================================================== x = 0:0.05:6 model1 = Model(:l1 => GModelFit.Gaussian(1, 2, 0.2), :l2 => GModelFit.Gaussian(1, 3, 0.5), :bkg => GModelFit.OffsetSlope(0.5, 1, 0.1), :main => SumReducer(:l1, :l2, :bkg)); model2 = Model(:l1 => GModelFit.Gaussian(0.8, 2.1, 0.1), :l2 => GModelFit.Gaussian(1.2, 2.5, 0.4), :bkg => GModelFit.OffsetSlope(0.5, 1, 0.1), :main => SumReducer(:l1, :l2, :bkg)); models = [model1, model2] freeze!(models[1], :bkg); freeze!(models[2], :bkg); data = GModelFit.mock(Measures, models, [Domain(x), Domain(x)], seed=1) res = fit(models, data, minimizer=GModelFit.cmpfit()) # GModelFit.print_param_covariance(res, sort=true, select=["[2][l1].norm"]) thaw!(models[1], :bkg); thaw!(models[2], :bkg); models[2][:bkg].offset.mpatch = @fd m -> m[1][:bkg].offset models[2][:bkg].slope.mpatch = @fd m -> m[1][:bkg].slope models[1][:l2].center.mpatch = @fd m -> m[2][:l2].center @time res = fit(models, data) #= @gp x y1 "w l t 'True model'" x values(data1) uncerts(data1) "w yerr t 'Data'" x model1() "w l t 'Best fit'" @gp x y2 "w l t 'True model'" x values(data2) uncerts(data2) "w yerr t 'Data'" x model2() "w l t 'Best fit'" =#
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
docs
1926
# Version 0.3.2 * Updated docstrings and documentation; * Internals: ModelEval is now able to track the changes in the original Model after it has been created; # Version 0.3.1 * Updated docstrings * Removed unused dependency # Version 0.3.0 - Breaking Changes: * The `Model` constructor no longer accepts a `Domain` argument; * The `mock()` function now requires a `Domain` argument; * The `fit()` function no longer modifies the provided `Model` argument. The old behaviour is available with the newly added `fit!()` function; * The `@λ` macro has been renamed to `@fd` to remind that the resulting value is a `FunctDesc` structure; * Domain objects can no longer be indexed as if they were vectors. The same functionality is available via the `coords()` or `axis()` functions; * The minimizer status is no longer an `Enum`, the same information is now indicated by the corresponding subtypes of `AbstractMinimizerStatus`; # Version 0.2.1 - New features: * Components can now be directly evaluated on a domain by invoking them as function, e.g. ``` comp = GModelFit.Gaussian(1, 0, 1); comp(Domain(-5:5)) ``` - Performance improvements: * During a fit the `Model.maincomp` is temporarily set to the main component name. This allow avoiding unnecessay invocations of `find_maincomp()` during model evaluation; * Refactored code in GModelFit.PV - Bugfix: * Fixed a bug in `show()` when a component evaluates to NaN; # Version 0.2.0 - New features: * using PrecompileTools to reduce time-to-first-run in Julia v1.9; * Implemented `GModelFit.evalcounter()` to retrieve the number of times a component has been evaluated; * Implemented `show()` method for `ModelSnapshot` objects; * Refactored serialization code; - Bugfix: * Fixed accessibility issue for parameter of `FCompv`; # Version 0.1.0 - First release.
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
docs
2238
# GModelFit.jl [![License](http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat)](LICENSE.md) [![DocumentationStatus](https://img.shields.io/badge/docs-stable-blue.svg?style=flat)](https://gcalderone.github.io/GModelFit.jl/) `GModelFit` is a general purpose, data-driven model fitting framework for Julia. > [!WARNING] > The code in version 0.3.0 underwent a signficant refactoring, and a few details may break your code. > **Please have a look at ChangeLog.md !!** ## Installation Install with: ```julia ]add GModelFit ``` ## Example ```julia using GModelFit # Prepare vectors with domain points, empirical measures and uncertainties x = [0.1, 1.1, 2.1, 3.1, 4.1] meas = [6.29, 7.27, 10.41, 18.67, 25.3] unc = [1.1, 1.1, 1.1, 1.2, 1.2] dom = Domain(x) data = Measures(dom, meas, unc) # Create a model using an explicit mathematical expression, and provide the # initial guess values: model = Model(@fd (x, a2=1, a1=1, a0=5) -> (a2 .* x.^2 .+ a1 .* x .+ a0)) # Fit model to the data bestfit, stats = fit(model, data) ``` The output is as follows: ```julia (Components: ╭───────────┬───────┬───────┬─────────────┬───────────┬───────────┬───────────┬─────────╮ │ Component │ Type │ #Free │ Eval. count │ Min │ Max │ Mean │ NaN/Inf │ ├───────────┼───────┼───────┼─────────────┼───────────┼───────────┼───────────┼─────────┤ │ main │ FComp │ 3 │ 76 │ 6.088 │ 25.84 │ 13.56 │ 0 │ ╰───────────┴───────┴───────┴─────────────┴───────────┴───────────┴───────────┴─────────╯ Parameters: ╭───────────┬───────┬────────┬──────────┬───────────┬───────────┬────────┬───────╮ │ Component │ Type │ Param. │ Range │ Value │ Uncert. │ Actual │ Patch │ ├───────────┼───────┼────────┼──────────┼───────────┼───────────┼────────┼───────┤ │ main │ FComp │ a2 │ -Inf:Inf │ 1.201 │ 0.3051 │ │ │ │ │ │ a1 │ -Inf:Inf │ -0.106 │ 1.317 │ │ │ │ │ │ a0 │ -Inf:Inf │ 6.087 │ 1.142 │ │ │ ╰───────────┴───────┴────────┴──────────┴───────────┴───────────┴────────┴───────╯ , Fit results: #data: 5, #free pars: 3, red. fit stat.: 1.0129, Status: OK ) ```
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
docs
963
# API ## Index ```@index ``` ## Exported symbols The list of **GModelFit.jl** exported symbols is as follows: ```@docs CartesianDomain{N} Domain{N} Measures{N} Model @fd axis compare comptype coords domain fit fit! freeze! getindex haskey isfreezed length select_maincomp! thaw! uncerts values ``` ## Non-exported symbols The following symbols are not exported by the **GModelFit.jl** package since they are typically not used in every day work, or aimed to debugging purposes. Still, they can be useful in some case, hence they are documented here. ```@docs GModelFit.evalcounter GModelFit.evalcounters GModelFit.CompEval GModelFit.FitStats GModelFit.FunctDesc GModelFit.ModelEval GModelFit.ModelSnapshot GModelFit.MultiResiduals GModelFit.Parameter GModelFit.Residuals GModelFit.comptypes GModelFit.dependencies GModelFit.evaluate! GModelFit.last_evaluation GModelFit.minimize! GModelFit.mock GModelFit.prepare! GModelFit.serialize GModelFit.update! ```
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
docs
11290
```@setup abc include("setup.jl") ``` # Built-in components The **GModelFit.jl** provides several built-in components which may be used to build arbitrarily complex models. ## OffsetSlope An offset and slope component for 1D and 2D domains. The constructors are defined as follows: - 1D: `GModelFit.OffsetSlope(offset, x0, slope)`; - 2D: `GModelFit.OffsetSlope(offset, x0, y0, slopeX, slopeY)`; The parameters are: - 1D: - `offset::Parameter`: a global offset; - `x0::Parameter`: the X coordinate of the point where the component equals `offset`. This parameter is fixed by default; - `slope::Parameter`: the slope of the linear function; - 2D: - `offset::Parameter`: a global offset; - `x0::Parameter`: the X coordinate of the point where the component equals `offset`. This parameter is fixed by default; - `y0::Parameter`: the Y coordinate of the point where the component equals `offset`. This parameter is fixed by default; - `slopeX::Parameter` (only 2D): the slope of the plane along the X direction; - `slopeY::Parameter` (only 2D): the slope of the plane along the Y direction; #### Example ```@example abc using GModelFit # Define a linear model using the OffsetSlope component model = Model(:linear => GModelFit.OffsetSlope(2, 0, 0.5)) # Fit model against data data = Measures([4.01, 7.58, 12.13, 19.78, 29.04], 0.4) bestfit, stats = fit(model, data) show((bestfit, stats)) # hide ``` The best fit parameter values can be retrieved with: ```@example abc println("Best fit values:") println("b: ", bestfit[:linear].offset.val, " ± ", bestfit[:linear].offset.unc) println("m: ", bestfit[:linear].slope.val , " ± ", bestfit[:linear].slope.unc) ``` A similar example in 2D is as follows: ```@example abc using GModelFit # Define a linear model using the OffsetSlope component model = Model(:plane => GModelFit.OffsetSlope(2, 0, 0, 0.5, 0.5)) # Fit model against data dom = CartesianDomain(1:5, 1:5) data = Measures(dom, [ 3.08403 3.46719 4.07612 4.25611 5.04716 3.18361 3.88546 4.52338 5.12838 5.7864 3.80219 4.90894 5.24232 5.06982 6.29545 4.34554 4.68698 5.51505 5.69245 6.35409 4.643 5.91825 6.18011 6.67073 7.01467], 0.25) bestfit, stats = fit(model, data) show((bestfit, stats)) # hide ``` ## Polynomial A *n*-th degree polynomial function (*n > 1*) for 1D domains. The constructor is defined as follows: - `GModelFit.Polynomial(p1, p2, ...)`; where `p1`, `p2`, etc. are the guess values for the coefficients of each degree of the polynomial. The parameters are accessible as `p0`, `p1`, etc. #### Example ```@example abc using GModelFit # Define domain and a linear model using the Polynomial component model = Model(GModelFit.Polynomial(2, 0.5)) # Fit model against data data = Measures([4.01, 7.58, 12.13, 19.78, 29.04], 0.4) bestfit, stats = fit(model, data) show((bestfit, stats)) # hide ``` Note that the numerical results are identical to the previous example involving the `OffsetSlope` component. Also note that the default name for a component (if none is provided) is `:main`. To use a 2nd degree polynomial we can simply replace the `:main` component with a new one: ```@example abc model[:main] = GModelFit.Polynomial(2, 0.5, 1) bestfit, stats = fit(model, data) show((bestfit, stats)) # hide ``` ## Gaussian A normalized Gaussian component for 1D and 2D domains. The constructors are defined as follows: - 1D: `GModelFit.Gaussian(norm, center, sigma)`; - 2D: `GModelFit.Gaussian(norm, centerX, centerY, sigma)` (implies `sigmaX=sigmaY`, `angle=0`); - 2D: `GModelFit.Gaussian(norm, centerX, centerY, sigmaX, sigmaY, angle)`; The parameters are: - 1D: - `norm::Parameter`: the area below the Gaussian function; - `center::Parameter`: the location of the center of the Gaussian; - `sigma::Parameter`: the width the Gaussian; - 2D: - `norm::Parameter`: the volume below the Gaussian function; - `centerX::Parameter`: the X coordinate of the center of the Gaussian; - `centerY::Parameter`: the Y coordinate of the center of the Gaussian; - `sigmaX::Parameter`: the width the Gaussian along the X direction (when `angle=0`); - `sigmaY::Parameter`: the width the Gaussian along the Y direction (when `angle=0`); - `angle::Parameter`: the rotation angle (in degrees) of the Gaussian. #### Example ```@example abc using GModelFit # Define a model with a single Gaussian component model = Model(GModelFit.Gaussian(1, 3, 0.5)) # Fit model against data data = Measures([0, 0.3, 6.2, 25.4, 37.6, 23., 7.1, 0.4, 0], 0.6) bestfit, stats = fit(model, data) show((bestfit, stats)) # hide ``` A very common problem is to fit the histogram of a distribution with a Gaussian model. The following example shows how to fit such Gaussian model to a distribution generated with `Random.randn`, and how to plot the results using [Gnuplot.jl](https://github.com/gcalderone/Gnuplot.jl/): ```@example abc using Random, GModelFit, Gnuplot # Calculate histogram of the distribution hh = hist(randn(10000), bs=0.25) # Define domain and data and fit a model dom = Domain(hist_bins(hh, side=:center, pad=false)) data = Measures(dom, hist_weights(hh, pad=false), 1.) model = Model(GModelFit.Gaussian(1e3, 0, 1)) bestfit, stats = fit(model, data) show((bestfit, stats)) # hide ``` ```@example abc @gp hh coords(dom) bestfit() "w l t 'Model' lw 3" saveas("gaussian") # hide ``` ![](assets/gaussian.png) A similar problem in 2D can be handled as follows: ```@example abc using Random, GModelFit, Gnuplot # Calculate histogram of the distribution hh = hist(1 .+ randn(10000), 2 .* randn(10000)) # Define domain and data and fit a model dom = CartesianDomain(hist_bins(hh, 1), hist_bins(hh, 2)) data = Measures(dom, hist_weights(hh) .* 1., 1.) model = Model(GModelFit.Gaussian(1e3, 0, 0, 1, 1, 0)) bestfit, stats = fit(model, data) show((bestfit, stats)) # hide ``` ## FComp As anticipated in [Basic concepts and data types](@ref) any Julia function can be used as a component to evaluate. The corresponding component type is `FComp`, whose constructors are defined as follows: ```julia FComp(funct::Function, deps=Symbol[]; par1=guess1, par2=guess2, ...) FComp(funct::FunctDesc) ``` In the first constructor `funct` is the Julia function, `deps` is a vector of dependencies (either the domain dimensions or other component names) and `par1`, `par2` etc. are the named parameters with their corresponding initial guess values. #### Example ```@example abc using GModelFit # Define a simple Julia function to evaluate a linear relationship myfunc(x, b, m) = b .+ x .* m # Define a model with a `FComp` wrapping the previously defined function. # Also specify the initial guess parameters. model = Model(:linear => GModelFit.FComp(myfunc, [:x], b=2, m=0.5)) # Fit model against a data set data = Measures([4.01, 7.58, 12.13, 19.78, 29.04], 0.4) bestfit, stats = fit(model, data) show((bestfit, stats)) # hide ``` In the second constructor a [`GModelFit.FunctDesc`](@ref) object is accepted, as generated by the [`@fd`](@ref) macro). The function is typically a mathematical expression combining any number of parameters and/or other component evaluations within the same model. The expression should be given in the form: ``` @fd (x, [y, [further domain dimensions...],] [comp1, [comp2, [further components ...],]] [par1=guess1, [par2=guess2, [further parameters]]]) -> (mathematical expression) ``` where the mathematical expression returns a `Vector{Float64}` with the same length as the model domain. The previous example can be rewritten as follows: ```@example abc using GModelFit # Define a linear model (with initial guess parameters) model = Model(:linear => @fd (x, b=2, m=0.5) -> (b .+ x .* m)) # Fit model against data data = Measures([4.01, 7.58, 12.13, 19.78, 29.04], 0.4) bestfit, stats = fit(model, data) show((bestfit, stats)) # hide ``` Note that a `FComp` component can be added to a model without explicitly invoking its constructor when the [`@fd`](@ref) macro is used. The evaluation of a `FComp` component may also involve the outcomes from other components. Continuing from previous example, whose fit was clearly a poor one, we may add a quadratic term to the previously defined `linear` component: ```@example abc model[:quadratic] = @fd (x, linear, p2=1) -> (linear .+ p2 .* x.^2) bestfit, stats = fit(model, data) show((bestfit, stats)) # hide ``` The keywords given when defining the function are interpreted as component parameters, hence their properties can be retrieved with: ```@example abc println("Best fit values:") println("b: ", bestfit[:linear].b.val , " ± ", bestfit[:linear].b.unc) println("m: ", bestfit[:linear].m.val , " ± ", bestfit[:linear].m.unc) println("p2: ", bestfit[:quadratic].p2.val, " ± ", bestfit[:quadratic].p2.unc) ``` ## FCompv Just like `FComp`, also `FCompv` is a wrapper for a standard Julia function whose evaluation is performed using the function itself. However, `FCompv` parameters are passed to the function as a single vector of floats. The `FCompv` constructors are defined as follows: ```julia FComp(funct::Function, guess::Vector{Float64}) FComp(funct::Function, deps::Vector{Symbol}, guess::Vector{Float64}) ``` where `funct` is the Julia function, `deps` is an optional vector of dependencies (either the domain dimensions or other component names) and `guess` is a vector of initial guess values. #### Example The following example shows how to estimate the vector `x` satisfying the linear equation `Ax = b`, where `A` and `b` are: ```@example abc A = [1.43 2.17 -0.38 0.21 -0.33 -1.71 -1.23 -1.16 0.83 -2.09 0.44 0.64] b = [3.14, -8.48, 0.53, 0.54] println() # hide ``` To define the model we will rewrite the equation as `Ax - b = 0`, and define a model as follows ```@example abc model = Model(GModelFit.FCompv(x -> A*x - b, [1, 1, 1])) println() # hide ``` where `x = [1, 1, 1]` are the initial guess values for the three parameters in the fit. In this case the *empirical data* to compare the model to are just zeros, and we will assume a constant uncertainty of 1 for all samples: ```@example abc data = Measures(fill(0., length(b)), 1.) bestfit, stats = fit(model, data) show((bestfit, stats)) # hide ``` ## SumReducer A component calculating the element-wise sum of a number of other components. The `SumReducer` constructor is defined as follows: ```julia SumReducer(args::AbstractSet{Symbol}) SumReducer(args::Vector{Symbol}) SumReducer(args::Vararg{Symbol}) ``` where the `Symbol`s represent the component names The `SumReducer` component has no parameter. #### Example ```@example abc using GModelFit # Define domain and a linear model (with initial guess parameters) model = Model(:linear => @fd (x, b=2, m=0.5) -> (b .+ x .* m)) # Add a quadratic component to the model model[:quadratic] = @fd (x, p2=1) -> (p2 .* x.^2) # The total model is the sum of `linear` and `quadratic` model[:main] = SumReducer(:linear, :quadratic) # Fit model against data dom = Domain(1:5) data = Measures(dom, [4.01, 7.58, 12.13, 19.78, 29.04], 0.4) bestfit, stats = fit(model, data) show((bestfit, stats)) # hide ```
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
docs
6045
```@setup abc include("setup.jl") ``` # Basic concepts and data types In order to exploit the **GModelFit.jl** model expressiveness a few concepts need to be introduced, along with their associated data types: - *Domain*: an N-dimensional grid of points associated to empirical measures, and used to evaluate a model. It is analogous to the independent varible $\vec{x}$ in the $f(\vec{x})$ notation. It is represented by either: - a [`Domain{N}`](@ref) object for linear domains, where the coordinates for each of the N dimensions are explicitly specified for all the points; - or a [`CartesianDomain{N}`](@ref) object where the coordinates are specified for each of the `N` axis and the coordinates for all points are obtained as the cartesian product of all the axes. A cartesian domain is internally transformed into a linear one when needed; A domain object (either linear or cartesian) is required as first argument for the `Measures` constructor (see below). - *Measures*: a container for the N-dimensional empirical data and their associated $1\sigma$ Gaussian uncertainties, represented by an object of type [`Measures{N}`](@ref) (further options may be available in the future, such as Poisson counts); - *Model component*: the atomic building block of a (potentially complex) model, it is essentially a function used to map a `Domain` or `CartesianDomain` object into a `Vector{Float64}` representing the component evaluation. A component is a structure inheriting from `GModelFit.AbstractComponent` and is typically characterized by one or more *parameters* (see below). The **GModelFit.jl** package provides several [Built-in components](@ref), and new ones can be implemented by the user (see [Custom components](@ref)). The memoization mechanism operates at the component level and aims to avoid unnecessary re-evaluation of the component if none of its parameter values has changed since last evaluation; - *Parameter*: a single floating point number characterizing a specific aspect for the evaluation of a component (e.g. the slope of a power law or the width of a Gaussian profile). The parameter values are automatically varied during the fitting process until the residuals between the global model evaluation and the empirical data are minimized. A parameter can be fixed to a specific value, limited in an interval, and/or be dynamically calculated (patched) according to the values of other parameters. All parameters are represented by an object of type [`GModelFit.Parameter`](@ref); - *Model*: is the overall model description, whose evaluation is supposed to be compared to a single `Measures` object and whose parameters are varied during fitting to reduce the residuals. Internally, a model is implemented as a dictionary containing one or more *components*, each identified by a unique `Symbol` name (see [`Model`](@ref)); - Component dependencies and *main component*: the evaluation of a component, say `A`, may use the outcome of another component, say `B`, to calculate its output, thus inducing a dependency between the two. In this case we say that `A` *depends* on `B`, and therefore `B` needs to be evaluated before `A` (circular dependencies are not allowed, and would raise an error if attempted). The dependencies are automatically identified, and the last component being evaluated is dubbed *main component* since its output represent the overall model evaluation; - *Multi-model*: a `Vector{Model}` containing two or more models, suitable to be compared to a corresponding `Vector{Measures}` to perform [Multi-dataset fitting](@ref); - *Minimizer*: the **GModelFit.jl** package provides just the tools to define and manipulate a model, but the actual fitting (namely, the minimization of the residuals) is performed by an external *minimizer* library. Two minimizers are currently available: - [LsqFit](https://github.com/JuliaNLSolvers/LsqFit.jl): a pure-Julia minimizer; - [CMPFit](https://github.com/gcalderone/CMPFit.jl): a C minimizer wrapped in a Julia package. Both are automatically installed with **GModelFit.jl**, and `LsqFit` is the default choice (unless otherwise specified in the [`fit()`](@ref) function call). - *Model snapshot*: the best fit model, as well as the best fit parameter values and associated uncertainties, are returned by the [`fit()`](@ref) function as a [`GModelFit.ModelSnapshot`](@ref) structure, namely a *frozen snapshot* of the evaluation of a `Model` object on a given `Domain`. Components, parameters and evaluations outcomes are accessed in exactly the same way on both `Model` and `ModelSnapshot` objects, the only difference being that the latter can't be re-evaluated on different domains or parameter values. - *Fit statistics*: the purpose of fitting is to minimize the *distance* between the model and the data, as quantified by a proper fit statistic (typically a reduced $\chi^2$ for the Gaussian uncertainties case). Such statistic, as well as other information concerning the fit, are returned by the [`fit()`](@ref) function in a [`GModelFit.FitStats`](@ref) structure; - *function descriptor*: **GModelFit.jl** uses standard Julia function in two different contexts: - to calculate the value of a `Parameter` as a function of other `Parameter`'s values. In this case the parameters are said to be *patched*, or linked, since there is a constraint between their values. Two (or more) parameters may be patched within the same model, or across models when performing [Multi-dataset fitting](@ref); - to define a model component using a standard Julia mathematical expression involving `Parameter`s values or other components; To use a standard function in this fashion it should be wrapped into a [`GModelFit.FunctDesc`](@ref) object which allows both to invoke the function itself, as well as to provide a string representation for display purposes. In order to create a function descriptor object it typically is much easier to invoke the [`@fd`](@ref) macro rather than the `FunctDesc` constructor.
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
docs
6499
```@setup abc include("setup.jl") ``` # Custom components Besides the [Built-in components](@ref), the user may define any number of custom components. The latter are structures satisfying the following constraints: - They must be structures inheriting from `GModelFit.AbstractComponent`; - The component parameters (if present) must be defined as fields with type `Parameter`, e.g.: ```julia struct MyComponent <: AbstractComponent param1::Parameter param2::Parameter ... end ``` Alternatively, the parameters may be specified as a single field of type `OrderedDict{Symbol, Parameter}` (see the [`Polynomial`](https://github.com/gcalderone/GModelFit.jl/blob/master/src/components/Polynomial.jl) component for an example). The structure may also contain further fields of any type; - The [`GModelFit.evaluate!`](@ref) function should be extended with a dedicated method to evaluate the component, as shown below. Optionally, the user may choose to extend also the following functions: - [`GModelFit.prepare!`](@ref): to pre-compute quantities depending on the evaluation domain, and to allocate the evaluation buffer; - [`GModelFit.dependencies`](@ref): to specify the list of the component dependencies. Note that before being evaluated, all components need to be wrapped into a [`GModelFit.CompEval`](@ref) structure, and that the above mentioned `evaluate!` function requires a `CompEval` object as first argument. The outcomes of the evaluations should be placed in `CompEval.buffer`. The following example shows how to define a custom component: ```@example abc using GModelFit import GModelFit: prepare!, evaluate! struct MyComponent <: GModelFit.AbstractComponent param1::GModelFit.Parameter function MyComponent(param1) println(" -> call to MyComponent constructor;") new(GModelFit.Parameter(param1)) end end function prepare!(comp::MyComponent, domain::AbstractDomain) println(" -> call to prepare!()") return fill(NaN, length(domain)) # buffer for evaluations end function evaluate!(ceval::GModelFit.CompEval{MyComponent, <: AbstractDomain{1}}, param1) println(" -> call to evaluate!() with parameter value: ", param1) ceval.buffer .= param1 end println() # hide ``` ## Life cycle of a component The life cycle of a component is as follows: 1. The component is created by invoking its constructor, and is added to a [`Model`](@ref) object; 1. When the [`fit!`](@ref) function is invoked, all components in a `Model` are wrapped into [`GModelFit.CompEval`](@ref) objects; - During creation of the `CompEval` structure the [`GModelFit.prepare!`](@ref) function is invoked to allocate the proper buffer for evaluations. Note that the `prepare!` function is called only once for each `fit!` invocation, hence it is the perfect place to pre-compute quantities which will be used during the component evaluation; 1. During the minimization process the [`GModelFit.evaluate!`](@ref) function is repeatedly invoked to evalute the component varying the parameter values until a convergence criterion is met. The following example shows how to simulate the life cycle for the `MyComponent` structure defined above: ```@example abc # Create a component and a domain for evaluation comp = MyComponent(1) dom = Domain(1:5) # Create CompEval object (the `prepare!` function is invoked here): ceval = GModelFit.CompEval(comp, dom) # Repeated evaluations varying parameter value: GModelFit.evaluate!(ceval, 1) GModelFit.evaluate!(ceval, 2) GModelFit.evaluate!(ceval, 3) # Retrieve results println(ceval.buffer) ``` The actual life cycle during minimization is slightly more complex since the `evaluate!` function is invoked only if a change in the parameter values with respect to previous evaluation has been detected. ## Complete example A common case is to compare empirical data with a numerically evaluated theoretical model, possibly defined on a different grid with respect to the empirical one. An interpolation is therefore required in order to compare the model to the data. Let's assume the theoretical model is defined as follows: ```@example abc theory_x = 0.:10 theory_y = [0, 0.841, 0.909, 0.141, -0.757, -0.959, -0.279, 0.657, 0.989, 0.412, -0.544] println() # hide ``` while the empirical data are: ```@example abc obs_x = [0.500, 2.071, 3.642, 5.212, 6.783, 8.354, 9.925] obs_y = [2.048, 3.481, 1.060, 0.515, 3.220, 4.398, 1.808] println() # hide ``` The following example shows how to implement a component which interpolates a theoretical model onto a specific empirical domain, with the only parameter being a global scaling factor: ```@example abc using GModelFit, Interpolations import GModelFit.prepare!, GModelFit.evaluate! # Define the component structure and constructor struct Interpolator <: GModelFit.AbstractComponent theory_x::Vector{Float64} theory_y::Vector{Float64} interp_y::Vector{Float64} # will contain the interpolated values scale::GModelFit.Parameter function Interpolator(theory_x, theory_y) scale = GModelFit.Parameter(1) scale.low = 0 # ensure scale parameter is positive interp_y = Vector{Float64}() # this will be populated in prepare!() return new(theory_x, theory_y, interp_y, scale) end end # Component preparation: invoked only once to precompute quantities # and allocate evaluation buffer function prepare!(comp::Interpolator, domain::AbstractDomain{1}) # Pre-compute interpolation on the empirical domain itp = linear_interpolation(comp.theory_x, comp.theory_y) append!(comp.interp_y, itp(coords(domain))) return fill(NaN, length(comp.interp_y)) # buffer for evaluations end # Component evaluation (apply scaling factor) function evaluate!(ceval::GModelFit.CompEval{Interpolator, <: AbstractDomain{1}}, scale) ceval.buffer .= scale .* ceval.comp.interp_y end println() # hide ``` The following code shows how to prepare a `Model` including the interpolated theoretical model, and to take into account the possible background introduced by the detector used to obtain empirical data: ```@example abc model = Model(:theory => Interpolator(theory_x, theory_y), :background => GModelFit.OffsetSlope(1., 0., 0.2), :main => SumReducer(:theory, :background)) data = Measures(Domain(obs_x), obs_y, 0.2) bestfit, stats = fit(model, data) show((bestfit, stats)) # hide ```
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
docs
5484
```@setup abc include("setup.jl") ``` # GModelFit.jl ## A model fitting framework for Julia. [![Stars](https://img.shields.io/github/stars/gcalderone/GModelFit.jl?style=social)](https://github.com/gcalderone/GModelFit.jl) **GModelFit.jl** is a general purpose, data-driven model fitting framework for Julia. It provides the basic tools to define, interactively manipulate and efficiently evaluate a (possibly very complex) model, and to fit the latter to empirical data. The main functionalities are: - it handles datasets of any dimensionality; - the syntax is very simple and concise as it resembles the indexing for dictionaries and the field access for structs. The most relevant functions are the self-explanatory `fit()` and the object constructors (see [Main functionalities](@ref)); - the fitting model is evaluated on a user defined domain, and is the result of a combination of *model components* or mathematical expressions (in the form of [lambda functions](https://en.wikipedia.org/wiki/Anonymous_function)), or any arbitrary mixture of the two; - it provides several ready-to-use [Built-in components](@ref), and it also allows to define new components to suit specific needs ([Custom components](@ref)); - all components results are cached so that repeated evaluations with the same parameter values do not involve further calculations (memoization); - model parameters can be fixed to a specific value, limited in an interval, and/or be dynamically linked (patched) to the values of other parameters (see [Parameter constraints](@ref)); - multiple data sets can be fitted simultaneously against different models whose parameters can be patched (see [Multi-dataset fitting](@ref)); - it supports different minimizers ([LsqFit](https://github.com/JuliaNLSolvers/LsqFit.jl) and [CMPFit](https://github.com/gcalderone/CMPFit.jl)), both aimed to carry out [non-linear least squares](https://en.wikipedia.org/wiki/Non-linear_least_squares) minimization (see [Minimizers](@ref)); - it provides facilities for interactive fitting and quick plotting (see [Quick plot (1D)](@ref)). The fitting process involves the automatic variation of the parameter values, subject to the user defined constraints, until the differences between the evaluated model and the empirical data are minimized. The implementation details depends on the chosen minimizer. The purpose of **GModelFit.jl** is thus to act as an interface between the high-level model definition and manipulation (facing the user), and the low-level implementation details (facing the minimizer). ## Installation In the Julia REPL type: ```julia-repl julia> ]add GModelFit ``` The `]` character starts the Julia [package manager](https://julialang.github.io/Pkg.jl/v1/getting-started.html#Basic-Usage-1). Hit backspace key to return to Julia prompt. In order to easily visualize the outcomes of 1D analysis you may be interested in installing also [Gnuplot.jl](https://github.com/gcalderone/Gnuplot.jl): ```julia-repl julia> ]add Gnuplot ``` ## Workflow The typical workflow to use **GModelFit.jl** is as follows: - Wrap empirical data domain and measures into one (ore more) `Domain` and `Measures` object(s); - Create a `Model` object by providing components or mathematical expressions, each representing a specific *aspect* of the theoretical model; - Optionally set initial guess parameter values and/or constraints between model parameters; - Fit the model against the data and inspect the results; - If needed, modify the model and repeat the fitting process; - Exploit the results and outputs. A very simple example showing the above workflow is: ```@example abc using GModelFit # Prepare vectors with domain points, empirical measures and associated # uncertainties x = [0.1, 1.1, 2.1, 3.1, 4.1] meas = [6.29, 7.27, 10.41, 18.67, 25.3] unc = [1.1, 1.1, 1.1, 1.2, 1.2] # Prepare Domain and Measures objects dom = Domain(x) data = Measures(dom, meas, unc) # Create a model using an explicit mathematical expression, and provide the # initial guess values: model = Model(@fd (x, a2=1, a1=1, a0=5) -> (a2 .* x.^2 .+ a1 .* x .+ a0)) # Fit model to the data bestfit, stats = fit(model, data) nothing # hide ``` The **GModelFit.jl** package implements a `show` method for many of the data types involved, hence the above code results in the following output: ```@example abc show((bestfit, stats)) # hide ``` showing the best fit parameter values and the associated uncertaintites, as well as a few statistics concerning the fitting process. If not saitisfied with the result you may, for instance, change the initial value for a parameter and re-run the fit: ```@example abc model[:main].a0.val = 5 bestfit, stats = fit(model, data) nothing # hide ``` Once done, you may plot the data and the best fit model with a plotting framework of your choice. E.g., with [Gnuplot.jl](https://github.com/gcalderone/Gnuplot.jl): ```@example abc using Gnuplot @gp coords(dom) values(data) uncerts(data) "w yerr t 'Data'" :- @gp :- coords(dom) bestfit() "w l t 'Best fit model'" saveas("simple_example"); # hide ``` ![](assets/simple_example.png) Also, you can easily access the numerical results for further analysis, e.g.: ```@example abc println("Best fit value for the offset parameter: ", bestfit[:main].a0.val, " ± ", bestfit[:main].a0.unc, "\n", "Reduced χ^2: ", stats.fitstat) ``` The above example is definitely a simple one, but more complex ones follow essentially the same workflow.
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
docs
4694
```@setup abc include("setup.jl") ``` # Main functionalities - *Preparation of empirical data*: both the data domain and empirical values (with associated uncertainties) should be wrapped into `Domain` (or `CartesianDomain`) and `Measures` objects respectively. Such objects are created by simply passing `AbstractVector{<: Real}` to their respective constructors, e.g.: ```@example abc using GModelFit dom = Domain([0.1, 1.1, 2.1, 3.1, 4.1]) data = Measures(dom, [6.29, 7.27, 10.41, 18.67, 25.3], [1.1, 1.1, 1.1, 1.2, 1.2]) println() # hide ``` - *Component creation*: a component is a structure inheriting `GModelFit.AbstractComponent` and hosting one or more fields with type [`GModelFit.Parameter`](@ref). It is created by simply invoking its constructor, e.g.: ```@example abc using GModelFit # Create a stand-alone component (i.e. a component used outisde a model) comp = GModelFit.Gaussian(1, 0, 1) # numbers represent the parameter values # A stand-alone component can be evaluated on a user provided domain as follows: comp(Domain(-4:0.1:4)) # Evaluate the component providing custom parameter values: comp(Domain(-4:0.1:4), center=0.1, sigma=1.3) println() # hide ``` The list of available components is available in [Built-in components](@ref). Note: a component with dependencies can't be evaluated as a stand-alone since it requires the corresponding dependencies to be available in a model. - *Model definition* and *manipulation*: a [`Model`](@ref) object is essentially a dictionary of components with `Symbol` keys. The `keys()`, `haskey()` and `iterate()` methods defined for the `Model` object provide the usual functionalities as for any dictionary. . A model object can be created and manipulated as follows: ```@example abc using GModelFit # Create an empty model model = Model() # Add a two Gaussian components, and a third one representing their sum model[:comp1] = GModelFit.Gaussian(1, 3, 1) model[:comp2] = GModelFit.Gaussian(0.5, 4, 0.3) model[:sum] = @fd (comp1, comp2) -> comp1 .+ comp2 # Modify a parameter value: model[:comp1].center.val = 5 # Evaluate the model on a user defined domain dom = Domain(0:0.1:10) model(dom) # Evaluate the model, but retrieve the outcome of the :comp2 component model(dom, :comp2) println() # hide ``` - *Mock data*: the [`GModelFit.mock()`](@ref) function allows to generate mock data set(s) using a (multi-)model as ground truth, and add a random noise to simulate the measurement process. An example using the previously defined model and domain is as follows: ```@example abc data = GModelFit.mock(Measures, model, dom) println() # hide ``` This functionality is used in the examples of the next sections to generate the mock datasets. - *Fitting*: the main functions to fit a model (represented by a [`Model`](@ref) object) to an empirical dataset (represented by a [`Measures`](@ref) object) are [`fit`](@ref) and [`fit!`](@ref). The latter provide the same functionality as the former with the only difference that upon return the `Model` object will have their parameters set to the best fit values. In both cases the `Model` object will be evaluated on the same domain associated with the `Measures` object. An overview of the fit workflow is as follows: ![](assets/schema.svg) The following code shows how to fit the previously generated mock data set to the above model: ```@example abc bestfit, stats = fit(model, data) ``` The [`fit`](@ref) function returns a tuple with: - a [`GModelFit.ModelSnapshot`](@ref) structure containing a snapshot of the best fit model; - a [`GModelFit.FitStats`](@ref) structure containing statistics on the fit. To perform a [Multi-dataset fitting](@ref) simply pass a `Vector{Model}` and a `Vector{Measures` to the `fit` function. - *Serialization*: a few structures (such as [`GModelFit.ModelSnapshot`](@ref), [`GModelFit.FitStats`](@ref) and [`Measures{N}`](@ref)) can be *serialized*, i.e. stored in a file, and later *de-serialized* in a separata Julia session. This is useful when the best fit model and associated informations must be saved for a later use, without the need to re-run the fitting. The best fit model, fit statistics and mock dataset used above can be serialized with: ```@example abc GModelFit.serialize("my_snapshot.json", bestfit, stats, data) println() # hide ``` In a separate Julia session, you can obtain a copy of exactly the same data with ```@example abc using GModelFit (bestit, stats, data) = GModelFit.deserialize("my_snapshot.json") println() # hide ```
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
docs
2674
# Minimizers The **GModelFit.jl** main purpose is to act as an high-level interface between the user and the underlying minimizer. Currently, two [non-linear least squares](https://en.wikipedia.org/wiki/Non-linear_least_squares) minimizers are supported: - [LsqFit](https://github.com/JuliaNLSolvers/LsqFit.jl); - [CMPFit](https://github.com/gcalderone/CMPFit.jl). More minimizers may be added in the future. To choose a specific minimizer use the `minimizer=` keyword when invoking the [`fit()`](@ref) function, e.g. `minimizer=GModelFit.lsqfit()` or `minimizer=GModelFit.cmpfit()`. If the keyword is not provided the `lsqfit()` minimizer is used. There is also a dummy minimizer, `GModelFit.dry()`, whose purpose is to compare the model and the data, and to generate a `FitStats` object without modifying the model parameters. The dry minimizer is used by the [`compare()`](@ref) function. ### Examples ```@example abc using GModelFit model = Model(:main => @fd (x, T=3.14) -> sin.(x ./ T) ./ (x ./ T)) data = GModelFit.mock(Measures, model, Domain(1:0.1:50), seed=1) bestfit, stats = fit(model, data, minimizer=GModelFit.lsqfit()) println(); # hide ``` or ```@example abc bestfit, stats = fit(model, data, minimizer=GModelFit.cmpfit()) println(); # hide ``` The above minimizers typically provide the same results, although in some complex case the [CMPFit](https://github.com/gcalderone/CMPFit.jl) may be more robust and less sensitive to initial guess parameters. ## The `cmpfit()` minimizer The `cmpfit()` minimizer allows to specify several options to fine-tune the minimizer behaviour. Specifically: - the `CMPFit.Config` structure allows to specify the convergence criteria, the maximum number of iterations, etc. (see the "CONFIGURING MPFIT()" section [here](https://pages.physics.wisc.edu/~craigm/idl/cmpfit.html); - the `ftol_after_maxiter` allows to specify a threshold on the relative difference in fit statistics before and after the `mpfit()` execution. If the latter terminates because the maximum number of iterations has been reached, and the relative difference in fit statistics is still greater than `ftol_after_maxiter` the minimization process will continue. E.g.: ```@example abc using GModelFit dom = Domain(1:0.1:50) model = Model(:main => @fd (x, T=3.14) -> sin.(x ./ T) ./ (x ./ T)) data = GModelFit.mock(Measures, model, dom, seed=1) # Set minimizer options mzer = GModelFit.cmpfit() mzer.config.maxiter = 1 mzer.ftol_after_maxiter = 1e-8 # Run the fit model[:main].T.val = 10 # guess value, purposely far from true one bestfit, stats = fit(model, data, minimizer=mzer) println(); # hide ```
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
docs
5356
```@setup abc include("setup.jl") ``` # Miscellaneous ## Generate mock datasets In some case it is useful to test a model for robustness before the emprical data are available for fitting. This can be achieved via the [`GModelFit.mock()`](@ref) function, whose purpose is to generate a mock dataset which simulates a measurement process by adding random noise to the foreseen ground-truth. ### Example ```@example abc using GModelFit model = Model(:main => @fd (x, T=3.14) -> sin.(x ./ T) ./ (x ./ T)) # Generate a mock dataset on a specific domain dom = Domain(1:0.1:50) data = GModelFit.mock(Measures, model, dom, seed=1) # Fit model against the mock dataset bestfit, stats = fit(model, data) ``` ## Serialization A few structures, namely [`GModelFit.ModelSnapshot`](@ref), [`GModelFit.FitStats`](@ref) and [`Measures{N}`](@ref), as well as `Vector`(s) of such structures can be *serialized*, i.e. stored in a file using a dedicated JSON format. The structures can lated be *de-serialized* in a separata Julia session without the need to re-run the fitting process used to create them in the first place. ### Example In the following we will generate a few **GModelFit.jl** objects and serialized them in a file. ```@example abc using GModelFit dom = Domain(1:0.1:50) model = Model(:main => @fd (x, T=3.14) -> sin.(x ./ T) ./ (x ./ T)) data = GModelFit.mock(Measures, model, dom, seed=1) bestfit, stats = fit(model, data) # Serialize objects and save in a file GModelFit.serialize("save_for_future_use.json", bestfit, stats, data) println(); # hide ``` The same objects can be de-serialized in a different Julia session: ```@example abc using GModelFit bestfit, stats, data = GModelFit.deserialize("save_for_future_use.json") ``` ## Quick plot (1D) The **GModelFit.jl** package implements [**Gnuplot.jl**](https://github.com/gcalderone/Gnuplot.jl/) recipes to display plots of `Measures{1}` and `ModelSnapshot` objects., e.g.: ### Example Create a model, a mock dataset and run a fit: ```@example abc using GModelFit dom = Domain(0:0.01:5) model = Model(:bkg => GModelFit.OffsetSlope(1, 1, 0.1), :l1 => GModelFit.Gaussian(1, 2, 0.2), :l2 => GModelFit.Gaussian(1, 3, 0.4), :main => SumReducer(:bkg, :l1, :l2)) data = GModelFit.mock(Measures, model, dom) bestfit, stats = fit(model, data) println(); # hide ``` A plot of the dataset and of the best fit model can be simply obtained with ```@example abc using Gnuplot @gp data bestfit saveas("gnuplot1") # hide ``` ![](assets/gnuplot1.png) You may also specify axis range, labels, title, etc. using the standard [**Gnuplot.jl**](https://github.com/gcalderone/Gnuplot.jl/) keyword syntax, e.g.: ```@example abc using Gnuplot @gp xr=[1, 4.5] xlabel="Wavelength" ylab="Flux" "set key outside" data bestfit saveas("gnuplot2") # hide ``` ![](assets/gnuplot2.png) ## GModelFit internals (This section deals with **GModelFit.jl** internals, feel free to skip if not interested.) During minimization a number of internal data structures are created to avoid reallocating heap memory at each iteration. The most important of such structures are: - [`GModelFit.CompEval`](@ref): a container to perform component evaluation on a specific domain. This structure is relevant when defining [Custom components](@ref) as it is used to dispatch component evaluation to the proper `evaluate!` method; - [`GModelFit.ModelEval`](@ref): a container for a [`Model`](@ref) evaluation on a specific domain. This structure contains a dictionary of `CompEval` structures for all components in a model, as well as the values of *patched* parameters (see [Parameter constraints](@ref)), and is updated at each iteration of the minimizer to reflect the current model evaluaion. An important functionality of the `ModelEval` structure is that it detects the changes in the original `Model` even after it has been created, e.g.: ```@example abc # Create a Model model = Model(:comp1 => @fd (x, p1=1) -> p1 .* x) # Wrap the model into a ModelEval to perform evaluation on a specific domain dom = Domain(1:5) meval = GModelFit.ModelEval(model, dom) # Evaluate and print the maximum value GModelFit.update!(meval) println(maximum(GModelFit.last_evaluation(meval))) # Add a second component to the original model model[:comp2] = @fd (x, comp1, p2=1) -> comp1 .+ p2 .* x.^2 # Re-evaluate the ModelEval (it will automatically detect the addition of :comp2) GModelFit.update!(meval) println(maximum(GModelFit.last_evaluation(meval))) ``` - [`GModelFit.Residuals`](@ref): container for a `ModelEval` object, a `Measures` object, a `Vector{Float64}` to store the normalized residuals, and a minimizer instance. A `Residuals` object contains all the relevant informations to perform minimization, and is therefore the only argument required for the [`GModelFit.minimize!`](@ref) function. Since `Residuals` wraps a `ModelEval` object it is also able to detect changes in the original model. An example of its usage is as follows: ```@example abc data = GModelFit.mock(Measures, model, dom) resid = GModelFit.Residuals(meval, data, GModelFit.lsqfit()) GModelFit.minimize!(resid) println() # hide ``` The [`GModelFit.MultiResiduals`](@ref) has the same purpose in the [Multi-dataset fitting](@ref) case.
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
docs
1962
```@setup abc include("setup.jl") ``` # Multi-dataset fitting **GModelFit.jl** is able to simultaneously fit several models against a corresponding number of datasets, while placing constraints among the models. Typical use cases are: - a single phenomenon is observed with two (or more) instruments/detectors; - a single phenomenon is observed at different times; Fitting multiple datasets simultaneously may provide tighter constraints on the best fit parameters under the assumption that the models are somehow related, i.e. that their parameters are constrained (or *patched*). To perform a multi-dataset fitting we should create one `Model` for each dataset in the usual way, collect them in a `Vector{Model}`, and define patch constraints among models. The following example shows how to fit two Gaussian curves under the hypotesis that the center and normalization parameters are the same: ```@example abc using GModelFit # Create individual models and the Vector{Model} container model1 = Model(GModelFit.Gaussian(1, 0., 1.)) model2 = Model(GModelFit.Gaussian(1, 0., 1.)) multi = [model1, model2] # Patch parameters multi[2][:main].norm.mpatch = @fd m -> m[1][:main].norm multi[2][:main].center.mpatch = @fd m -> m[1][:main].center # Create datasets and fit dom = Domain(-5.:5) data1 = Measures(dom, [-0.006, 0.015, 0.001, 0.049, 0.198, 0.430, 0.226, 0.048, 0.017, -0.001, -0.006], 0.04) data2 = Measures(dom, [-0.072, -0.033, -0.070, 0.108, 0.168, 0.765, 0.113, -0.054, 0.032, 0.013, 0.015], 0.04) bestfit, stats = fit(multi, [data1, data2]) show((bestfit, stats)) # hide ``` The best fit models and values are returned as a `Vector{ModelSnapshot}` in `bestfit`, i.e.: ```@example abc println("Width of Gaussian 1: ", bestfit[1][:main].sigma.val, " ± ", bestfit[1][:main].sigma.unc) println("Width of Gaussian 2: ", bestfit[2][:main].sigma.val, " ± ", bestfit[2][:main].sigma.unc) println("Reduced χ^2: ", stats.fitstat) ```
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
0.3.2
56ffe14a38a29e27091bba299bc8b91172380957
docs
5487
```@setup abc include("setup.jl") ``` # Parameter constraints Models are characterized by *parameters* (see [Basic concepts and data types](@ref)) whose values are modified during fitting until a convergence criterion is met, and the *best fit* values are identified. In many cases, however, the parameters can not vary arbitrarily but should satisfy some constraints for their values to be meaningful. **GModelFit.jl** supports the definition of constraints by fixing the parameter to a specific value, limiting the value in a user defined range, or by dynamically calculating its value using a mathematical expression involving other parameter values. In the latter case the parameter is not free to vary in the fit since its actual value is determined by the patch constraint, hence it is dubbed a *patched* parameter. Such unused parameter can optionally be repurposed as a new free parameter in a *parametrized patch expression* (see example below). An important concept to bear in mind is that the [`GModelFit.Parameter`](@ref) structure provides two field for the associated numerical value: - `val`: is the parameter value which is being varied by the minimizer during fitting. The value set before the fitting is the *guess* value. The value after fitting is the *best fit* one; - `actual`: is the result of the patch expression evaluation, and the actual value used when evaluating a component via its `evaluate!` method. Note that this value will be overwitten at each model evaluation, hence setting this field has no effect. The `val` and `actual` values are identical if no patch constraint has been defined. A parameter constraint is defined by explicitly modifiying the fields of the corresponding [`GModelFit.Parameter`](@ref) structure. More specifically: 1. to set a parameter to a specific value: set the `val` field to the numeric value and set the `fixed` field to `true`; 1. to set a parameter value range: set one or both the `low` and `high` fields (default values are `-Inf` and `+Inf` respectively); 1. to constraint a parameter to have the same numerical value as another one with the same name (but in another component): set the `patch` value to the component name (it must be a `Symbol`); 1. to dynamically calculate an `actual` value using a mathematical expression depending on other parameter values: set the `patch` field to an anonymous function generated with the [`@fd`](@ref) macro. The function must accept a single argument (actually a dictionary of components) and return a scalar numberl; 1. to define a parametrized patch expression: create an anonymous function with the [`@fd`](@ref) macro with two arguments, the first has the same meaning as in the previous case, and the second is the free parameter value. Note that patched parameter loses its original meaning, and becomes the parameter of the patch expression; 1. to define a patch constraint involving parameters from other models in a [Multi-dataset fitting](@ref) scenario: simply use `mpatch` in place of `patch`, and the first argument to the λ-function will be a vector with as many elements as the number of models in the `Vector{Model}` object. The following examples show how to define constraints for each of the afore-mentioned cases. ### Example We will consider a model for a 1D domain consisting of the sum of a linear background component (named `bkg`) and two Gaussian-shaped features (`l1` and `l2`): ```@example abc using GModelFit model = Model(:bkg => GModelFit.OffsetSlope(1, 1, 0.1), :l1 => GModelFit.Gaussian(1, 2, 0.2), :l2 => GModelFit.Gaussian(1, 3, 0.4), :main => SumReducer(:bkg, :l1, :l2)) println() # hide ``` Assume that, for the model to be meaningful, the parameters should satisfy the following constraints: - the `bkg` should have a fixed value of 1 at `x`=1, and a slope which is in the range [0:0.2]: ```@example abc model[:bkg].offset.val = 1 model[:bkg].offset.fixed = true model[:bkg].slope.low = 0 model[:bkg].slope.high = 0.2 println() # hide ``` - the normalization of `l1` and `l2` must be the same: ```@example abc model[:l2].norm.patch = :l1 println() # hide ``` - the width of `l2` must be twice that of `l1` (patched parameter): ```@example abc model[:l2].sigma.patch = @fd m -> 2 * m[:l1].sigma println() # hide ``` - the center of `l2` must be at a larger coordinate with respect to the center of `l1`. In this case we re-interpret the `model[:l2].center` parameter as the distance between the two centers, and create a parametrized patch expression to calculate the actual center value of `l2`: ```@example abc model[:l2].center.patch = @fd (m, v) -> v + m[:l1].center model[:l2].center.val = 1 # guess value for the distance between the centers model[:l2].center.low = 0 # ensure [l2].center > [l1].center println() # hide ``` We can fit the model against a mock dataset (see [Generate mock datasets](@ref)): ```@example abc dom = Domain(0:0.1:5) data = GModelFit.mock(Measures, model, dom) bestfit, stats = fit(model, data) show((bestfit, stats)) # hide ``` and plot the results with [Gnuplot.jl](https://github.com/gcalderone/Gnuplot.jl): ```@example abc using Gnuplot @gp coords(dom) values(data) uncerts(data) "w yerr t 'Data'" :- @gp :- coords(dom) model(dom) "w l t 'Model'" saveas("example_patch1") # hide ``` ![](assets/example_patch1.png) See [Multi-dataset fitting](@ref) for an example on how to create a patch epression involving multiple models.
GModelFit
https://github.com/gcalderone/GModelFit.jl.git
[ "MIT" ]
1.0.0
f39ffb3c8e62a54a0f0be44742c99748ec492ff1
code
368
include("../src/coordinates.jl") include("../src/matrix_elements.jl") include("../src/sampling.jl") include("../src/constants.jl") w_list = [ [1, -1, 0], [1, 0, -1], [0, 1, -1] ] masses = [1, 1, 1] K = [0 0 0; 0 1/2 0; 0 0 1/2] J, U = Ω(masses) K_trans = J * K * J' w_trans = [U' * w_list[i] for i in 1:length(w_list)] p = run_simulation(50,:psudorandom) display(p)
FewBodyPhysics
https://github.com/MartinMikkelsen/FewBodyPhysics.jl.git
[ "MIT" ]
1.0.0
f39ffb3c8e62a54a0f0be44742c99748ec492ff1
code
1149
include("../src/coordinates.jl") include("../src/matrix_elements.jl") include("../src/sampling.jl") include("../src/constants.jl") b = 3.9 S = 41.5 energies, Gaussians, eigenvectors, coordinates, masses = run_simulation_nuclear(5,2,5) rmax = 5 * b rmin = 0.01 * b start = log(rmin) stop = log(rmax) grid_points = range(rmin,rmax,3000) Φ = zeros(length(grid_points), length(coordinates)) for i in 1:length(coordinates) local ϕ = zeros(length(grid_points)) ϕ_sum = zeros(length(grid_points)) rs = coordinates[i] c = eigenvectors[i] A = [1 / (b^2) for b in rs] for j in 2:min(length(c), length(A)) ϕ_sum .+= c[j] .* exp.(-(A[j-1]) .* grid_points.^2) end ϕ .+= ϕ_sum Φ[:, i] = ϕ ./ c[1] end r = range(rmin,rmax, length=3000) p1 = plot(r, Φ[:,1], title="Φ(r)", label="Φ(r)",ylabel="Φ",xlabel="r", linewidth=2) #with phase Φ_prime = diff(Φ[:,1]) ./ diff(r) plot!(r[1:end-1], Φ_prime, label="Φ'(r)", linewidth=2) p2 = plot(Gaussians, energies, title="Energy = $(round(energies[end]; digits=3))", label="Convergence",ylabel="Energy",xlabel="Number of Gaussians",linewidth=2) plot(p1, p2, layout = (2, 1))
FewBodyPhysics
https://github.com/MartinMikkelsen/FewBodyPhysics.jl.git
[ "MIT" ]
1.0.0
f39ffb3c8e62a54a0f0be44742c99748ec492ff1
code
388
include("../src/coordinates.jl") include("../src/matrix_elements.jl") include("../src/sampling.jl") include("../src/constants.jl") w_list = [ [1, -1, 0], [1, 0, -1], [0, 1, -1] ] masses = [5496.918, 3670.481, 206.7686] K = [0 0 0; 0 1/2 0; 0 0 1/2] J, U = Ω(masses) K_trans = J * K * J' w_trans = [U' * w_list[i] for i in 1:length(w_list)] p = run_simulation(50,:quasirandom) display(p)
FewBodyPhysics
https://github.com/MartinMikkelsen/FewBodyPhysics.jl.git
[ "MIT" ]
1.0.0
f39ffb3c8e62a54a0f0be44742c99748ec492ff1
code
264
using Documenter using FewBodyPhysics makedocs( #source = "src", workdir = "build", sitename = "FewBodyPhysics.jl", format = Documenter.HTML(), ) deploydocs( repo = "github.com/MartinMikkelsen/FewBodyPhysics.jl.git", target = "build", )
FewBodyPhysics
https://github.com/MartinMikkelsen/FewBodyPhysics.jl.git
[ "MIT" ]
1.0.0
f39ffb3c8e62a54a0f0be44742c99748ec492ff1
code
158
module FewBodyPhysics using LinearAlgebra, Plots include("coordinates.jl") include("matrix_elements.jl") include("sampling.jl") include("constants.jl") end
FewBodyPhysics
https://github.com/MartinMikkelsen/FewBodyPhysics.jl.git
[ "MIT" ]
1.0.0
f39ffb3c8e62a54a0f0be44742c99748ec492ff1
code
170
export m_π, m_π0, m_p, m_n, μ, m, ħc, mbare m_p = 938.27 m_n = 939.57 m_π0 = 134.98 m_π = 139.57 μ = (m_p+m_n)/2*m_π0/((m_p+m_n)/2+m_π0) ħc = 197.3 mbare=(m_p+m_n)/2
FewBodyPhysics
https://github.com/MartinMikkelsen/FewBodyPhysics.jl.git