licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.2.2
805af53b51077c382eafab33772073fcbfd83d11
docs
1043
# Extras for `SimplePadics` ## `sqrt_table.jl` This file includes the following functions. Use Julia's help facility for more information. ### `sqrt_table` Print out a table of `p`-adic square roots for a range of integers. ``` julia> sqrt_table(7,-20,20) √-20 …5513441121.0_{7} √-19 …6045320643.0_{7} √-17 …5064235312.0_{7} √-13 …2211416261.0_{7} √-12 …344121533.0_{7} √-10 …6062122632.0_{7} √-6 …6301140231.0_{7} √-5 …425112623.0_{7} √-3 …6511256052.0_{7} √0 …0.0_{7} √1 …1.0_{7} √2 …6421216213.0_{7} √4 …2.0_{7} √8 …524231241.0_{7} √9 …3.0_{7} √11 …3144334422.0_{7} √15 …2343420311.0_{7} √16 …6666666663.0_{7} √18 …5563654642.0_{7} ``` ### `has_i` and `has_i_list` Use `has_i(p)` to determine if `√-1` exists as a `p`-adic number. ``` julia> has_i(3) false julia> has_i(5) true ``` Use `has_i_list` to create a list of primes `p` such that `√-1` exists as a `p`-adic number. ``` julia> has_i_list(50) 6-element Vector{Int64}: 5 13 17 29 37 41 ```
SimplePadics
https://github.com/scheinerman/SimplePadics.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
1286
using Pkg using LuxorGraphPlot using Documenter using DocThemeIndigo using Literate for each in readdir(pkgdir(LuxorGraphPlot, "examples")) input_file = pkgdir(LuxorGraphPlot, "examples", each) endswith(input_file, ".jl") || continue @info "building" input_file output_dir = pkgdir(LuxorGraphPlot, "docs", "src", "generated") Literate.markdown(input_file, output_dir; name=each[1:end-3], execute=false) end indigo = DocThemeIndigo.install(LuxorGraphPlot) DocMeta.setdocmeta!(LuxorGraphPlot, :DocTestSetup, :(using LuxorGraphPlot); recursive=true) makedocs(; modules=[LuxorGraphPlot], authors="Jinguo Liu", #repo="https://github.com/GiggleLiu/LuxorGraphPlot.jl/blob/{commit}{path}#{line}", sitename="LuxorGraphPlot.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://giggleliu.github.io/LuxorGraphPlot.jl", assets=String[indigo], ), pages=[ "Home" => "index.md", "Examples" => [ "Tutorials" => "generated/tutorials.md", "Features" => "generated/features.md", ], "References" => "ref.md", ], doctest=false, warnonly = :missing_docs, ) deploydocs(; repo="github.com/GiggleLiu/LuxorGraphPlot.jl", )
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
832
function serve(;host::String="0.0.0.0", port::Int=8000) # setup environment docs_dir = @__DIR__ julia_cmd = "using Pkg; Pkg.instantiate()" run(`$(Base.julia_exename()) --project=$docs_dir -e $julia_cmd`) serve_cmd = """ using LiveServer; LiveServer.servedocs(; doc_env=true, skip_dirs=[ #joinpath("docs", "src", "generated"), joinpath("docs", "src"), joinpath("docs", "build"), joinpath("docs", "Manifest.toml"), ], literate="examples", host=\"$host\", port=$port, ) """ try run(`$(Base.julia_exename()) --project=$docs_dir -e $serve_cmd`) catch e if e isa InterruptException return else rethrow(e) end end return end serve()
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
2982
using LuxorGraphPlot, LuxorGraphPlot.Luxor using LuxorGraphPlot.TensorNetwork # ## Node styles # We a combination of [`nodestore`](@ref) and [`with_nodes`](@ref) to draw nodes with automatically inferred bounding boxes. nodestore() do ns # store nodes in the nodestore (used to infer the bounding box) a = circle!((0, 0), 30) b = ellipse!((100, 0), 60, 40) c = box!((200, 0), 50, 50; smooth=10) d = polygon!([rotatepoint(Point(30, 0), i*π/3) for i=1:6] .+ Ref(Point(300, 0)); smooth=5) with_nodes(ns) do # the context manager to draw nodes fontsize(6) for (node, shape) in [(a, "circle"), (b, "ellipse"), (c, "box"), (d, "polygon")] stroke(node) text(shape, node) for p in [left, right, top, bottom, topleft, bottomleft, topright, bottomright, LuxorGraphPlot.center] text(string(p), offset(fill(circlenode(p(node), 3)), (0, 6))) end end end end # ## Connection points nodestore() do ns a1 = circle!((150, 150), 30) a2 = circle!((450, 150), 30) box1s = [offset(boxnode(rotatepoint(Point(100, 0), i*π/8), 20, 20), a1.loc) for i=1:16] box2s = offset.(box1s, Ref(a2.loc-a1.loc)) append!(ns, box1s) append!(ns, box2s) with_nodes(ns) do fontsize(14) stroke(a1) stroke(a2) for b in box1s stroke(b) line(a1, b; mode=:exact) end for b in box2s stroke(b) line(a2, b; mode=:natural) end text("exact", a1) text("natural", a2) end end # ## Connector styles nodestore() do ns radius = 30 a = boxnode(Point(50, 50), 40, 40; smooth=5) b = offset(a, (100, 0)) groups = Matrix{Vector{Node}}(undef, 2, 3) for j=0:1 for k = 0:2 items = [offset(a, (200k, 150j)), offset(b, (200k, 150j))] groups[j+1, k+1] = items append!(ns, items) push!(ns, offset(midpoint(items...), (0, 70))) end end with_nodes() do fontsize(28) ## the default smooth method is "curve", it must take two control points. for j=1:2 for k = 1:3 a, b = groups[j, k] cps = [[offset(midpoint(a, b), (0, 50))], [offset(a, (0, 50)), offset(b, (0, 50))]][j] smoothprops = [ Dict(:method=>length(cps) == 1 ? "nosmooth" : "curve"), Dict(:method=>"smooth", :radius=>10), Dict(:method=>"bezier", :radius=>10), ][k] stroke(a) stroke(b) text("A", a) text("B", b) Connection(a, b; smoothprops, control_points=cps) |> stroke @layer begin fontsize(14) text(string(get(smoothprops, :method, "")), offset(midpoint(a, b), (0, 70))) end end end end end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
2163
## Show a graph using Graphs, LuxorGraphPlot, LuxorGraphPlot.Luxor # Show a graph with spring (default) layout. graph = smallgraph(:petersen) show_graph(graph) # specify the layout and texts manually rot15(a, b, i::Int) = cos(2i*π/5)*a + sin(2i*π/5)*b, cos(2i*π/5)*b - sin(2i*π/5)*a locations = [[rot15(0.0, 50.0, i) for i=0:4]..., [rot15(0.0, 25.0, i) for i=0:4]...] show_graph(graph, locations, texts=[string('a'+i) for i=0:9], padding_right=300, config=GraphDisplayConfig(; background="gray")) do nd ## extra commands, transformer is a function that convert graph-axis to canvas axis. LuxorGraphPlot.Luxor.fontsize(22) xmin, xmax, ymin, ymax = LuxorGraphPlot.get_bounding_box(nd) LuxorGraphPlot.text("haha, the fontsize is so big!", Point(xmax + 20, (ymin + ymax) / 2)) end # specify colors, shapes and sizes show_graph(graph; vertex_colors=rand(["blue", "red"], 10), vertex_sizes=rand(10) .* 10 .+ 5, vertex_stroke_colors=rand(["blue", "red"], 10), vertex_text_colors=rand(["white", "black"], 10), edge_colors=rand(["blue", "red"], 15), vertex_shapes=rand([:circle, :box], 10) ) # for uniform colors/sizes, you can make life easier by specifying global colors. show_graph(graph; config = GraphDisplayConfig( vertex_color="blue", vertex_size=7.5, vertex_stroke_color="transparent", vertex_text_color="white", edge_color="green" ) ) # One can also dump an image to a file show_graph(graph; format=:svg) # or render it in another format show_graph(graph; format=:svg) # ## Layouts # The default layout is `:auto`, which uses `:spring` if `locs` is `nothing`. show_graph(graph, SpringLayout()) show_graph(graph, StressLayout()) show_graph(graph, SpectralLayout()) # ## Show a gallery # One can use a boolean vector to represent boolean variables on a vertex or an edge. locs = render_locs(graph, SpringLayout()) matrix = [GraphViz(graph, locs; vertex_colors=[rand(Luxor.RGB) for i=1:10], edge_colors=[rand(Luxor.RGB) for i=1:15]) for i=1:2, j=1:4] show_gallery(matrix; format=:png, padding_left=20, padding_right=20, padding_top=20, padding_bottom=20)
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
932
module LuxorGraphPlot using Luxor, Graphs using LinearAlgebra using MLStyle: @match export show_graph, show_gallery, left, right, top, bottom, center, boundary, connect, offset, topright, topleft, bottomleft, bottomright export bottomalign, topalign, rightalign, leftalign export Node, Connection, circlenode, ellipsenode, boxnode, polygonnode, dotnode, linenode, tonode export NodeStore, nodestore, with_nodes export box!, circle!, polygon!, dot!, line!, stroke, ellipse! export GraphDisplayConfig, GraphViz export SpringLayout, StressLayout, SpectralLayout, render_locs, LayeredStressLayout, LayeredSpringLayout, AbstractLayout, Layred export lighttheme!, darktheme! include("nodes.jl") include("layouts/layouts.jl") using .Layouts: SpringLayout, StressLayout, SpectralLayout, render_locs, LayeredStressLayout, LayeredSpringLayout, AbstractLayout, Layered include("nodestore.jl") include("graphplot.jl") include("tnet.jl") end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
11985
const CONFIGHELP = """ * `fontsize::Float64 = 12.0`, the font size * `fontface::String = ""`, the font face, leave empty to follow system * `vertex_text_color = "black"`, the default text color * `vertex_stroke_color = "black"`, the default stroke color for vertices * `vertex_color = "transparent"`, the default default fill color for vertices * `vertex_size::Float64 = 10.0`, the default vertex size * `vertex_shape::Symbol = :circle`, the default vertex shape, which can be :circle, :box or :dot * `vertex_line_width::Float64 = 1`, the default vertex stroke line width * `vertex_line_style::String = "solid"`, the line style of vertex stroke, which can be one of ["solid", "dotted", "dot", "dotdashed", "longdashed", "shortdashed", "dash", "dashed", "dotdotdashed", "dotdotdotdashed"] * `edge_color = "black"`, the default edge color * `edge_line_width::Float64 = 1`, the default line width * `edge_style::String = "solid"`, the line style of edges, which can be one of ["solid", "dotted", "dot", "dotdashed", "longdashed", "shortdashed", "dash", "dashed", "dotdotdashed", "dotdotdotdashed"] """ const VIZHELP = """ * `vertex_colors` is a vector of color strings for specifying vertex fill colors. * `vertex_sizes` is a vector of real numbers for specifying vertex sizes. * `vertex_shapes` is a vector of strings for specifying vertex shapes, the string should be "circle" or "box". * `vertex_stroke_colors` is a vector of color strings for specifying vertex stroke colors. * `vertex_text_colors` is a vector of color strings for specifying vertex text colors. * `edge_colors` is a vector of color strings for specifying edge colors. * `texts` is a vector of strings for labeling vertices. """ """ GraphDisplayConfig The configuration for graph display. Keyword arguments ------------------------------- * `locs` is a vector of tuples for specifying the vertex locations. * `edges` is a vector of tuples for specifying the edges. $CONFIGHELP """ Base.@kwdef mutable struct GraphDisplayConfig # line, vertex and text fontface::String = "" background::String = "white" fontsize::Float64 = 12.0 # vertex vertex_shape::Symbol = :circle vertex_line_width::Float64 = 1.0 # in pt vertex_line_style::String = "solid" vertex_text_color::String = "black" vertex_stroke_color::String = "black" vertex_color::String = "transparent" vertex_size::Float64 = 10.0 # edge edge_color::String = "black" edge_line_width::Float64 = 1.0 # in pt edge_line_style::String = "solid" end Base.copy(config::GraphDisplayConfig) = deepcopy(config) """ darktheme!(config::GraphDisplayConfig) Set the dark theme for the graph display. """ darktheme!(config::GraphDisplayConfig) = begin config.background = "transparent" config.vertex_text_color = "white" config.vertex_stroke_color = "white" config.edge_color = "white" return config end """ lighttheme!(config::GraphDisplayConfig) Set the light theme for the graph display. """ lighttheme!(config::GraphDisplayConfig) = begin config.background = "transparent" config.vertex_text_color = "black" config.vertex_stroke_color = "black" config.edge_color = "black" return config end """ GraphViz The struct for storing graph visualization information. Keyword arguments ------------------------------- $VIZHELP """ Base.@kwdef mutable struct GraphViz locs::Vector{Tuple{Float64, Float64}} edges::Vector{Tuple{Int, Int}} vertex_shapes = nothing vertex_sizes = nothing vertex_colors = nothing vertex_stroke_colors = nothing vertex_text_colors = nothing edge_colors = nothing texts = nothing end function GraphViz(graph::SimpleGraph, locs=SpringLayout(); kwargs...) rlocs = getfield.(render_locs(graph, locs), :data) return GraphViz(; locs=rlocs, edges=[(src(e), dst(e)) for e in edges(graph)], kwargs...) end get_bounding_box(g::GraphViz) = (minimum(getindex.(g.locs, 1)), maximum(getindex.(g.locs, 1)), minimum(getindex.(g.locs, 2)), maximum(getindex.(g.locs, 2))) struct GraphDiagram <: AbstractNodeStore nodes::Vector{Node} edges::Vector{Connection} end nodes(d::GraphDiagram) = d.nodes function offset(d::GraphDiagram, point) GraphDiagram([offset(n, point) for n in d.nodes], [offset(e, point) for e in d.edges]) end """ show_graph([f, ]graph::AbstractGraph; kwargs... ) Show a graph in VSCode, Pluto or Jupyter notebook, or save it to a file. Positional arguments ----------------------------- * `f` is a function that returns extra `Luxor` plotting statements. * `graph` is a graph instance. * `locs` is a vector of tuples for specifying the vertex locations, or a [`AbstractLayout`](@ref) instance. Keyword arguments ----------------------------- * `config` is a [`GraphDisplayConfig`](@ref) instance. $VIZHELP * `padding_left::Int = 10`, the padding on the left side of the drawing * `padding_right::Int = 10`, the padding on the right side of the drawing * `padding_top::Int = 10`, the padding on the top side of the drawing * `padding_bottom::Int = 10`, the padding on the bottom side of the drawing * `format` is the output format, which can be `:svg`, `:png` or `:pdf`. * `filename` is a string as the output filename. Example ------------------------------ ```jldoctest julia> using Graphs, LuxorGraphPlot julia> show_graph(smallgraph(:petersen); format=:png, vertex_colors=rand(["blue", "red"], 10)); ``` """ show_graph(graph::GraphViz; kwargs...) = show_graph(x->nothing, graph; kwargs...) show_graph(graph::SimpleGraph, locs=SpringLayout(); kwargs...) = show_graph(x->nothing, graph, locs; kwargs...) function show_graph(f, g::GraphViz; format = :svg, filename = nothing, padding_left = 10, padding_right = 10, padding_top = 10, padding_bottom = 10, config = GraphDisplayConfig(), ) diag = diagram(g.locs, g.edges; vertex_shapes=g.vertex_shapes, vertex_sizes=g.vertex_sizes, config) with_nodes(diag; format, filename, padding_bottom, padding_left, padding_right, padding_top, background=config.background) do f(diag) show_diagram(diag; config, texts=g.texts, vertex_colors=g.vertex_colors, vertex_stroke_colors = g.vertex_stroke_colors, vertex_text_colors = g.vertex_text_colors, edge_colors = g.edge_colors) end end function diagram(locs, edges; vertex_sizes=nothing, vertex_shapes=nothing, config=GraphDisplayConfig()) nodes = Node[] for i in eachindex(locs) shape = _get(vertex_shapes, i, config.vertex_shape) vertex_size = _get(vertex_sizes, i, config.vertex_size) props = Dict( :circle => Dict(:radius=>vertex_size), :box => Dict(:width=>2*vertex_size, :height=>2*vertex_size), :dot => Dict() )[shape] push!(nodes, Node(shape, locs[i]; props...)) end edgs = Connection[] for (i, j) in edges push!(edgs, Connection(nodes[i], nodes[j])) end return GraphDiagram(nodes, edgs) end function show_graph(f, graph::SimpleGraph, locs=SpringLayout(); vertex_shapes = nothing, vertex_sizes = nothing, vertex_colors = nothing, vertex_stroke_colors = nothing, vertex_text_colors = nothing, edge_colors = nothing, texts = nothing, padding_left = 10, padding_right = 10, padding_top = 10, padding_bottom = 10, format = :svg, filename = nothing, config = GraphDisplayConfig() ) viz = GraphViz(graph, locs; vertex_shapes, vertex_sizes, vertex_colors, vertex_stroke_colors, vertex_text_colors, edge_colors, texts) show_graph(f, viz; format, filename, padding_bottom, padding_left, padding_right, padding_top, config) end function show_diagram(diag::GraphDiagram; config=GraphDisplayConfig(), vertex_colors, vertex_stroke_colors, vertex_text_colors, texts, edge_colors) render_edges(diag.edges, config; edge_colors) render_nodes(diag.nodes, config; texts, vertex_colors, vertex_stroke_colors, vertex_text_colors) end function render_nodes(nodes::AbstractVector, config::GraphDisplayConfig; texts=nothing, vertex_colors=nothing, vertex_stroke_colors=nothing, vertex_text_colors=nothing) setline(config.vertex_line_width) setdash(config.vertex_line_style) Luxor.fontsize(config.fontsize) !isempty(config.fontface) && Luxor.fontface(config.fontface) for (i, node) in enumerate(nodes) setcolor(_get(vertex_colors, i, config.vertex_color)) fill(node) setcolor(_get(vertex_stroke_colors, i, config.vertex_stroke_color)) stroke(node) text = _get(texts, i, "") if !isempty(text) setcolor(_get(vertex_text_colors, i, config.vertex_text_color)) Luxor.text(text, node) end end end function render_edges(edges::AbstractVector, config::GraphDisplayConfig; edge_colors=nothing) setline(config.edge_line_width) setdash(config.edge_line_style) for (k, e) in enumerate(edges) setcolor(_get(edge_colors, k, config.edge_color)) stroke(e) end end _get(::Nothing, i, default) = default _get(x, i, default) = x[i] """ show_gallery([f, ]stores::AbstractMatrix{GraphViz}; kwargs... ) Show a gallery of graphs in VSCode, Pluto or Jupyter notebook, or save it to a file. Positional arguments ----------------------------- * `f` is a function that returns extra `Luxor` plotting statements. * `stores` is a matrix of `GraphViz` instances. Keyword arguments ----------------------------- * `config` is a [`GraphDisplayConfig`](@ref) instance. * `padding_left::Int = 10`, the padding on the left side of the drawing * `padding_right::Int = 10`, the padding on the right side of the drawing * `padding_top::Int = 10`, the padding on the top side of the drawing * `padding_bottom::Int = 10`, the padding on the bottom side of the drawing * `format` is the output format, which can be `:svg`, `:png` or `:pdf`. * `filename` is a string as the output filename. """ function show_gallery(f, stores::AbstractMatrix{GraphViz}; padding_left=10, padding_right=10, padding_top=10, padding_bottom=10, config=GraphDisplayConfig(), format=:svg, filename=nothing ) if isempty(stores) return Luxor.Drawing(1, 1, filename === nothing ? format : filename) end xmin, _, ymin, _ = get_bounding_box(stores[1, 1]) .+ (-padding_left, padding_right, -padding_top, padding_bottom) xspans = map(stores[1, :]) do d xmin, xmax, _, _ = get_bounding_box(d) .+ (-padding_left, padding_right, -padding_top, padding_bottom) xmax - xmin end yspans = map(stores[:, 1]) do d _, _, ymin, ymax = get_bounding_box(d) .+ (-padding_left, padding_right, -padding_top, padding_bottom) ymax - ymin end m, n = size(stores) xoffsets = cumsum([0; xspans[1:end-1]]) yoffsets = cumsum([0; yspans[1:end-1]]) Luxor.Drawing(ceil(Int, sum(xspans)), ceil(Int, sum(yspans)), filename === nothing ? format : filename) Luxor.origin(-xmin, -ymin) Luxor.background(config.background) for i=1:m, j=1:n g = stores[i, j] diag_ = diagram(g.locs, g.edges; vertex_shapes=g.vertex_shapes, vertex_sizes=g.vertex_sizes, config) diag = offset(diag_, (xoffsets[j], yoffsets[i])) f(diag) show_diagram(diag; config, texts=g.texts, vertex_colors=g.vertex_colors, vertex_stroke_colors = g.vertex_stroke_colors, vertex_text_colors = g.vertex_text_colors, edge_colors = g.edge_colors) end Luxor.finish() Luxor.preview() end show_gallery(stores::AbstractMatrix{GraphViz}; kwargs...) = show_gallery(x->nothing, stores; kwargs...)
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
13126
const REQUIRED_PARAMS = Dict( :circle => [:radius], :ellipse => [:width, :height], :box => [:width, :height], :polygon => [:relpath], :line => [:relpath], :dot => Symbol[] ) const OPTIONAL_PARAMS = Dict( :circle => Dict{Symbol, Any}(), :ellipse => Dict{Symbol, Any}(), :box => Dict{Symbol, Any}(:smooth=>0), :polygon => Dict{Symbol, Any}(:smooth=>0, :close=>true), :line => Dict{Symbol, Any}(:arrowstyle=>"-"), :dot => Dict{Symbol, Any}() ) dict2md(d::Dict) = join(["- `$(k)`: $(v)" for (k, v) in d], "\n") """ Node(shape::Symbol, loc; props...) Create a node with a shape and a location. The shape can be `:circle`, `:ellipse`, `:box`, `:polygon`, `:line` or `:dot`. ### Required Keyword Arguments $(dict2md(REQUIRED_PARAMS)) ### Optional Keyword Arguments $(dict2md(OPTIONAL_PARAMS)) """ struct Node shape::Symbol loc::Point props::Dict{Symbol, Any} end function Node(shape::Symbol, loc; props...) d = Dict{Symbol, Any}(props) check_props!(shape, d) return Node(shape, topoint(loc), d) end """ offset(n::Node, p::Union{Tuple,Point}) offset(n::Node, direction, distance) offset(n::Node, direction::Node, distance) Offset a node towards a direction or another node. The direction can be specified by a tuple, a `Point` or a `Node`. """ offset(n::Node, p::Union{Tuple,Point}) = Node(n.shape, n.loc + topoint(p), n.props) offset(n::Node, direction, distance) = offset(n, render_offset(direction, distance)) function offset(n::Node, direction::Node, distance) p = direction.loc - n.loc return offset(n, normalize(p) * distance) end function render_offset(direction, distance) angle = render_direction(direction) return Point(distance * cos(angle), -distance * sin(angle)) end render_direction(s) = @match s begin ::Real => Float64(s) "right" => 0.0 "topright" => 7π/4 "top" => -π/2 "topleft" => 5π/4 "left" => 1.0π "bottomleft" => 3π/4 "bottom" => -3π/2 "bottomright" => π/4 end Luxor.distance(a::Node, b::Node) = distance(a.loc, b.loc) topoint(x::Point) = x topoint(x::Node) = x.loc topoint(x::Tuple) = Point(x...) """ dotnode(x, y) dotnode(p::Point) Create a node with a shape `:dot` and a location. """ dotnode(x::Real, y::Real) = dotnode(Point(x, y)) dotnode(p) = Node(:dot, topoint(p)) """ circle(loc, radius; props...) = Node(:circle, loc; radius, props...) """ circlenode(loc, radius) = Node(:circle, loc; radius) """ ellipse(loc, width, height; props...) = Node(:ellipse, loc; width, height, props...) """ ellipsenode(loc, width, height) = Node(:ellipse, loc; width, height) """ box(loc, width, height; props...) = Node(:box, loc; width, height, props...) """ boxnode(loc, width, height; kwargs...) = Node(:box, loc; width, height, kwargs...) """ polygon([loc, ]relpath::AbstractVector; props...) = Node(:polygon, loc; relpath, props...) """ polygonnode(loc, relpath::AbstractVector; kwargs...) = Node(:polygon, loc; relpath=topoint.(relpath), kwargs...) function polygonnode(path::AbstractVector; kwargs...) mid, relpath = centerize([topoint(x) for x in path]) Node(:polygon, mid; relpath, kwargs...) end """ line(args...; props...) = Node(:line, mid; relpath, props...) """ function linenode(args...) mid, relpath = centerize([topoint(x) for x in args]) return Node(:line, mid; relpath) end function centerize(path) mid = sum(path) / length(path) return mid, path .- mid end function check_props!(shape, props) assert_has_props!(shape, props, REQUIRED_PARAMS[shape], OPTIONAL_PARAMS[shape]) end function assert_has_props!(shape, props, syms, optional) # required arguments for sym in syms if !haskey(props, sym) error("missing property (keyword argument) for shape $shape: $sym ") end end # optional arguments for (k, v) in optional if !haskey(props, k) props[k] = v end end # not recognized arguments for (k, v) in props if !(k ∈ syms || haskey(optional, k)) @warn "property not recognized by shape $shape: $k" end end return true end function Base.getproperty(n::Node, p::Symbol) return hasfield(Node, p) ? getfield(n, p) : n.props[p] end """ Connection(start, stop; isarrow=false, mode=:exact, arrowprops=Dict{Symbol, Any}(), control_points=Point[], smoothprops=Dict{Symbol, Any}()) Create a connection between two nodes. The connection can be a line, a curve, a bezier curve, a smooth curve or a zig-zag line. ### Required Arguments - `start::Node`: the start node - `stop::Node`: the stop node ### Optional Keyword Arguments - `isarrow=false`: whether to draw an arrow at the end of the connection - `mode=:exact`: the mode to get the connection point, can be `:exact` or `:natural` - `arrowprops=Dict{Symbol, Any}()`: the properties of the arrow - `control_points=Point[]`: the control points for the connection - `smoothprops=Dict{Symbol, Any}()`: the properties of the smooth curve """ struct Connection start::Node stop::Node mode::Symbol isarrow::Bool arrowprops::Dict{Symbol, Any} control_points::Vector{Point} smoothprops::Dict{Symbol, Any} end # TODO: polish arrow props, smooth corners function Connection(start::Node, stop::Node; isarrow=false, mode=:exact, arrowprops=Dict{Symbol, Any}(), control_points=Point[], smoothprops=Dict{Symbol, Any}()) return Connection(start, stop, mode, isarrow, arrowprops, Point[topoint(x) for x in control_points], smoothprops) end offset(c::Connection, p::Union{Tuple,Point}) = Connection(offset(c.start, p), offset(c.stop, p); c.mode, c.isarrow, c.arrowprops, c.control_points, c.smoothprops) connect(a, b; kwargs...) = Connection(tonode(a), tonode(b); kwargs...) tonode(a::Point) = dotnode(a) tonode(a::Node) = a """ circle(n::Node, action=:stroke) Stroke a node with line. """ stroke(n::Union{Node, Connection}) = (apply_action(n, :stroke); n) Base.fill(n::Union{Node, Connection}) = (apply_action(n, :fill); n) function Luxor.text(t::AbstractString, n::Node; angle=0.0) text(t, n.loc; valign=:middle, halign=:center, angle) end function apply_action(n::Node, action) @match n.shape begin :circle => circle(n.loc, n.radius, action) :ellipse => ellipse(n.loc, n.width, n.height, action) :box => box(n.loc, n.width, n.height, n.smooth, action) :polygon => if n.props[:smooth] == 0 poly(Ref(n.loc) .+ n.relpath, action; close=n.props[:close]) else #move(n.loc + n.relpath[1]) polysmooth(Ref(n.loc) .+ n.relpath, n.props[:smooth], action) end :line => line((Ref(n.loc) .+ n.relpath)..., action) :dot => nothing #circle(n.loc, 1, action) # dot has unit radius end end function apply_action(n::Connection, action) a_ = get_connect_point(n.start, isempty(n.control_points) ? n.stop.loc : n.control_points[1]; mode=n.mode) b_ = get_connect_point(n.stop, isempty(n.control_points) ? n.start.loc : n.control_points[end]; mode=n.mode) if n.isarrow # arrow, line or curve arrow(a_, n.control_points..., b_; n.arrowprops...) do_action(action) else method = get(n.smoothprops, :method, "curve") @assert method ∈ ["nosmooth", "smooth", "bezier", "curve"] if method == "nosmooth" || isempty(n.control_points) if isempty(n.control_points) # line line(a_, b_, action) else # zig-zag line # TODO: support arrow poly([a_, n.control_points..., b_], action; close=false) end elseif method == "smooth" # TODO: support close=false #move(a_) polysmooth([a_, n.control_points..., b_], get(n.smoothprops, :radius, 5), action; close=false) elseif method == "bezier" # bezier curve pts = [a_, n.control_points..., b_] bezpath = makebezierpath(pts) drawbezierpath(bezpath, action, close=false) else # curve move(a_) curve(n.control_points..., b_) do_action(action) end end end xmin(path) = minimum(x->x.x, path) xmax(path) = maximum(x->x.x, path) ymin(path) = minimum(x->x.y, path) ymax(path) = maximum(x->x.y, path) for F in [:left, :right, :top, :bottom, :topright, :topleft, :bottomleft, :bottomright] SF = String(F) @eval begin """ $($SF)(n::Node) Get the $($SF) boundary point of a node. Returns a `Node` of shape `:dot`. """ $F(n::Node) = boundary(n, $(String(F))) end end """ midpoint(a::Node, b::Node) Get the midpoint of two nodes. Returns a `Node` of shape `:dot`. """ Luxor.midpoint(a::Node, b::Node) = dotnode(midpoint(a.loc, b.loc)) """ center(n::Node) Get the center point of a node. Returns a `Node` of shape `:dot`. """ center(n::Node) = dotnode(n.loc) """ boundary(n::Node, s::String) boundary(n::Node, angle::Real) Get the boundary point of a node in a direction. The direction can be specified by a string or an angle. Possible strings are: "left", "right", "top", "bottom", "topright", "topleft", "bottomleft", "bottomright". """ boundary(n::Node, s::String) = boundary(n, render_direction(s)) function boundary(n::Node, angle::Real) @match n.shape begin :circle => dotnode(n.loc.x + n.radius * cos(angle), n.loc.y + n.radius * sin(angle)) :ellipse => dotnode(n.loc.x + n.width/2 * cos(angle), n.loc.y + n.height/2 * sin(angle)) # TODO: polish for rounded corners :box || :polygon => begin path = getpath(n) radi = max(xmax(path) - xmin(path), ymax(path) - ymin(path)) x = n.loc.x + 2*radi * cos(angle) y = n.loc.y + 2*radi * sin(angle) # NOTE: polygon must intersect with its center! intersect = intersectlinepoly(n.loc, Point(x, y), path) if isempty(intersect) @warn "boundary point not found, return center instead: path=$path, angle=$angle" return center(n) else return dotnode(intersect[1]) end end :dot => n :line => begin path = getpath(n) # project to angle direction, find the one with the largest norm unitv = Point(cos(angle), sin(angle)) projects = dotproduct.(Ref(unitv), path) mval, mloc = findmax(projects) return dotnode(path[mloc]) end _ => error("can not get boundary point for shape: $(n.shape)") end end bottomalign(n::Node, target::Node) = bottomalign(n, target.loc[1]) bottomalign(n::Node, x::Real) = dotnode(x, bottom(n).loc[2]) topalign(n::Node, target::Node) = topalign(n, target.loc[1]) topalign(n::Node, x::Real) = dotnode(x, top(n).loc[2]) leftalign(n::Node, target::Node) = topalign(n, target.loc[2]) leftalign(n::Node, y::Real) = dotnode(left(n).loc[1], y) rightalign(n::Node, target::Node) = rightalign(n, target.loc[2]) rightalign(n::Node, y::Real) = dotnode(right(n).loc[1], y) # get the path of a node function getpath(n::Node) @match n.shape begin :circle => [Point(n.loc.x + n.radius * cos(θ), n.loc.y + n.radius * sin(θ)) for θ in 0:π/8:2π] :ellipse => [Point(n.loc.x + n.width/2 * cos(θ), n.loc.y + n.height/2 * sin(θ)) for θ in 0:π/8:2π] :box => begin x, y = n.loc w, h = n.width, n.height [Point(x-w/2, y-h/2), Point(x-w/2, y+h/2), Point(x+w/2, y+h/2), Point(x+w/2, y-h/2)] end :polygon => Ref(n.loc) .+ n.relpath :dot => [n.loc] :line => Ref(n.loc) .+ n.relpath end end function Luxor.line(a::Node, b::Node, action=:stroke; mode=:exact, kwargs...) a_ = get_connect_point(a, b.loc; mode) b_ = get_connect_point(b, a.loc; mode) line(a_, b_, action; kwargs...) end function Luxor.arrow(a::Node, b::Node, action=:stroke; mode=:exact, kwargs...) a_ = get_connect_point(a, b.loc; mode) b_ = get_connect_point(b, a.loc; mode) arrow(a_, b_; kwargs...) do_action(action) end function get_connect_point(a::Node, bloc::Point; mode) @match a.shape begin :circle => intersectionlinecircle(a.loc, bloc, a.loc, a.radius)[2] :ellipse => boundary(a, angleof(bloc-a.loc)).loc :dot => a.loc :line => a.loc + a.relpath[end] # the last node :box || :polygon => @match mode begin :natural => closest_natural_point(getpath(a), bloc) :exact => boundary(a, angleof(bloc-a.loc)).loc _ => error("Connection point mode `:$(mode)` is not defined!") end end end angleof(p::Point) = atan(p.y, p.x) function closest_natural_point(path::AbstractVector, p::Point) minval, idx = findmin(x->distance(p, x), path) mid = i->midpoint(path[i], path[mod1(i+1, length(path))]) minval2, idx2 = findmin(i->distance(p, mid(i)), 1:length(path)) return minval > minval2 ? mid(idx2) : path[idx] end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
4116
abstract type AbstractNodeStore end """ NodeStore <: AbstractNodeStore A collection of nodes, which is used to infer the bounding box of a drawing. """ struct NodeStore <: AbstractNodeStore nodes::Vector{Node} end NodeStore() = NodeStore(Node[]) nodes(d::NodeStore) = d.nodes function Base.push!(d::NodeStore, obj::Node) push!(d.nodes, obj) return d end function Base.append!(d::NodeStore, objs) append!(d.nodes, objs) return d end function get_bounding_box(d::AbstractNodeStore) nds = nodes(d) isempty(nds) && return (0.0, 0.0, 0.0, 0.0) xmin_val, xmax_val, ymin_val, ymax_val = Inf, -Inf, Inf, -Inf for n in nds path = getpath(n) xmin_val = min(xmin_val, xmin(path)) xmax_val = max(xmax_val, xmax(path)) ymin_val = min(ymin_val, ymin(path)) ymax_val = max(ymax_val, ymax(path)) end return xmin_val, xmax_val, ymin_val, ymax_val end const CURRENT_CONTEXT = Base.RefValue{AbstractNodeStore}(NodeStore()) function setcontext!(d::AbstractNodeStore) CURRENT_CONTEXT[] = d return d end function emptycontext!() CURRENT_CONTEXT[] = NodeStore() end function getcontext!() return CURRENT_CONTEXT[] end for F in [:line, :dot, :circle, :box, :polygon, :ellipse] SF = String(F) @eval begin """ $($SF)!([nodestore, ]args...; kwargs...) = push!(nodestore, $($SF)node(args...; kwargs...)) Add a $($SF) shaped node to the nodestore. Please refer to [`$($SF)node`](@ref) for more information. If `nodestore` is not provided, the current nodestore is used. """ function $(Symbol(F, :!))(args...; kwargs...) obj = $(Symbol(F, :node))(args...; kwargs...) push!(getcontext!(), obj) return obj end function $(Symbol(F, :!))(d::AbstractNodeStore, args...; kwargs...) obj = $(Symbol(F, :node))(args...; kwargs...) push!(d, obj) return obj end end end """ nodestore(f) Create a [`NodeStore`](@ref) context, such that [`box!`](@ref), [`circle!`](@ref), [`polygon!`](@ref), [`dot!`](@ref) and [`line!`](@ref) will add nodes to the nodestore. The nodestore is passed to the function `f` as an argument. ### Example ```julia julia> using LuxorGraphPlot, LuxorGraphPlot.Luxor julia> nodestore() do ns box = box!(ns, (100, 100), 100, 100) circle = circle!(ns, (200, 200), 50) with_nodes(ns) do stroke(box) stroke(circle) Luxor.line(topright(box), circle) end end ``` """ function nodestore(f) d = NodeStore() setcontext!(d) drawing = f(d) emptycontext!() return drawing end """ with_nodes(f[, nodestore]; kwargs...) Create a drawing with the nodes in the nodestore. The bounding box of the drawing is determined by the bounding box of the nodes in the nodestore. If `nodestore` is not provided, the current nodestore is used. ### Keyword arguments - `padding_left::Int=10`: Padding on the left side of the drawing. - `padding_right::Int=10`: Padding on the right side of the drawing. - `padding_top::Int=10`: Padding on the top side of the drawing. - `padding_bottom::Int=10`: Padding on the bottom side of the drawing. - `format::Symbol=:svg`: The format of the drawing. Available formats are `:png`, `:pdf`, `:svg`... - `filename::String=nothing`: The filename of the drawing. If `nothing`, a temporary file is created. - `background::String="white"`: The background color of the drawing. """ with_nodes(f; kwargs...) = with_nodes(f, getcontext!(); kwargs...) function with_nodes(f, d::AbstractNodeStore; padding_left=10, padding_right=10, padding_top=10, padding_bottom=10, format=:svg, filename=nothing, background="white" ) xmin, xmax, ymin, ymax = get_bounding_box(d) .+ (-padding_left, padding_right, -padding_top, padding_bottom) Luxor.Drawing(ceil(Int, xmax - xmin), ceil(Int, ymax - ymin), filename === nothing ? format : filename) Luxor.origin(-xmin, -ymin) Luxor.background(background) f() Luxor.finish() Luxor.preview() end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
840
module TensorNetwork using ..LuxorGraphPlot import ..LuxorGraphPlot: AbstractNodeStore, nodes using Luxor export mps, TensorNetworkDiagram struct TensorNetworkDiagram <: AbstractNodeStore nodes::Vector{Node} dots::Vector{Node} edges::Vector{Connection} end nodes(tn::TensorNetworkDiagram) = [tn.nodes..., tn.dots...] # tensor network visualization function mps(n::Int; radius=15, distance=50, offset=(0, 0)) nodes = [circlenode(LuxorGraphPlot.topoint(offset) + Point((i-1) * distance, 0), radius) for i=1:n] # pins pins = [LuxorGraphPlot.offset(center(a), "top", distance ÷ 2) for a in nodes] # edges edges = [[connect(a, b) for (a, b) in zip(nodes[1:end-1], nodes[2:end])]..., [connect(a, b) for (a, b) in zip(nodes, pins)]...] return TensorNetworkDiagram(nodes, pins, edges) end end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
1886
""" AbstractLayout Abstract type for layout algorithms. """ abstract type AbstractLayout end """ render_locs(graph, layout::Layout) Render the vertex locations for a graph from an [`AbstractLayout`](@ref) instance. ### Arguments * `graph::AbstractGraph`: the graph to render * `layout::AbstractLayout`: the layout algorithm """ function render_locs(graph::AbstractGraph, layout::AbstractVector) @assert nv(graph) == length(layout) "The number of vertices in the graph must match the number of locations, got $(nv(graph)) vertices and $(length(layout)) locations" return Point.(layout) end """ Layered <: AbstractLayout Layered version of a parent layout algorithm. ### Fields * `parent::LT`: the parent layout algorithm * `zlocs::Vector{T}`: the z-axis locations * `aspect_ratio::Float64`: the aspect ratio of the z-axis """ struct Layered{LT<:AbstractLayout, T} <: AbstractLayout parent::LT zlocs::Vector{T} aspect_ratio::Float64 end function render_locs(graph, l::Layered) @assert nv(graph) == length(l.zlocs) "The number of vertices in the graph must match the number of z-axis locations, got $(nv(graph)) vertices and $(length(l.zlocs)) z-axis locations" locs = render_locs(graph, l.parent) map(lz->Point(lz[1][1], lz[1][2]* l.aspect_ratio + lz[2]), zip(locs, l.zlocs)) end struct LayoutQuality closeness::Float64 mean_distance_deviation::Float64 end function quality_of_layout(graph, locs, optimal_distance) average_distance_con = sum([Layouts.distance(locs[e.src], locs[e.dst]) for e in edges(graph)])/ne(graph) average_distance_dis = sum([Layouts.distance(locs[e.src], locs[e.dst]) for e in edges(complement(graph))]) deviation = abs(average_distance_con - optimal_distance) / min(optimal_distance, average_distance_con) return LayoutQuality(average_distance_dis/average_distance_con, deviation) end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
153
module Layouts using LinearAlgebra, Graphs include("point.jl") include("Core.jl") include("spring.jl") include("stress.jl") include("spectral.jl") end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
1401
""" Point{D, T} A point in D-dimensional space, with coordinates of type T. """ struct Point{D, T <: Real} data::NTuple{D, T} end const Point2D{T} = Point{2, T} const Point3D{T} = Point{3, T} dimension(::Point{D}) where D = D Base.eltype(::Type{Point{D, T}}) where {D, T} = T Point(x::Real...) = Point((x...,)) Point(x::Point) = x LinearAlgebra.dot(x::Point, y::Point) = mapreduce(*, +, x.data .* y.data) LinearAlgebra.norm(x::Point) = sqrt(sum(abs2, x.data)) Base.:*(x::Real, y::Point) = Point(x .* y.data) Base.:*(x::Point, y::Real) = Point(x.data .* y) Base.:/(y::Point, x::Real) = Point(y.data ./ x) Base.:+(x::Point, y::Point) = Point(x.data .+ y.data) Base.:-(x::Point, y::Point) = Point(x.data .- y.data) Base.isapprox(x::Point, y::Point; kwargs...) = all(isapprox.(x.data, y.data; kwargs...)) Base.getindex(p::Point, i::Int) = p.data[i] Base.broadcastable(p::Point) = p.data Base.iterate(p::Point, args...) = iterate(p.data, args...) Base.zero(::Type{Point{D, T}}) where {D, T} = Point(ntuple(i->zero(T), D)) Base.zero(::Point{D, T}) where {D, T} = Point(ntuple(i->zero(T), D)) distance(p::Point, q::Point) = norm(p - q) Base.rand(::Type{Point{D, T}}) where {D, T} = Point(ntuple(_->rand(T), D)) Base.randn(::Type{Point{D, T}}) where {D, T} = Point(ntuple(_->randn(T), D)) Base.isfinite(p::Point) = all(isfinite, p.data) rand_points_2d(n::Int) = [Point(randn(), randn()) for _ in 1:n]
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
2070
""" SpectralLayout <: AbstractLayout A layout algorithm based on spectral graph theory. ### Fields * `optimal_distance::Float64`: the optimal distance between vertices * `dimension::Int`: the number of dimensions """ @kwdef struct SpectralLayout <: AbstractLayout optimal_distance::Float64 = 50.0 dimension::Int = 2 end function render_locs(graph, l::SpectralLayout) return spectral_layout(graph; optimal_distance=l.optimal_distance, dimension=l.dimension ) end """ spectral_layout(g::AbstractGraph, weight=nothing; optimal_distance=50.0) Spectral layout for graph plotting, returns a vector of vertex locations. """ function spectral_layout(g::AbstractGraph, weight=nothing; optimal_distance=50.0, dimension=2) if nv(g) == 1 return [zero(Point{dimension, Float64})] elseif nv(g) == 2 return [zero(Point{dimension, Float64}), Point(ntuple(i->i==1 ? Float64(optimal_distance) : 0.0, dimension))] end if weight === nothing weight = ones(ne(g)) end if nv(g) > 500 A = Graphs.sparse(Int[src(e) for e in edges(g)], Int[dst(e) for e in edges(g)], weight, nv(g), nv(g)) if is_directed(g) A = A + transpose(A) end return _spectral(A, dimension) .* 16optimal_distance else L = laplacian_matrix(g) return _spectral(Matrix(L), dimension) .* 16optimal_distance end end function _spectral(L::Matrix, dimension) eigenvalues, eigenvectors = eigen(L) index = sortperm(eigenvalues)[2:1+dimension] return Point.([eigenvectors[:, idx] for idx in index]...) end function _spectral(A, dimension) data = vec(sum(A, dims=1)) D = Graphs.sparse(Base.OneTo(length(data)), Base.OneTo(length(data)), data) L = D - A eigenvalues, eigenvectors = Graphs.LinAlg.eigs(L, nev=3, which=Graphs.SR()) index = sortperm(real(eigenvalues))[2:1+dimension] return Point.([real.(eigenvectors[:, idx]) for idx in index]...) end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
4133
""" SpringLayout <: AbstractLayout A layout algorithm based on a spring model. ### Fields * `optimal_distance::Float64`: the optimal distance between vertices * `maxiter::Int`: the maximum number of iterations * `α0::Float64`: the initial moving speed * `meta::Dict{Symbol, Any}`: graph dependent meta information, including * `initial_locs`: initial vertex locations * `mask`: boolean mask for which vertices to relocate """ @kwdef struct SpringLayout <: AbstractLayout optimal_distance::Float64 = 50.0 maxiter::Int = 100 α0::Float64 = 2*optimal_distance # initial moving speed meta::Dict{Symbol, Any} = Dict{Symbol, Any}() end function render_locs(graph, l::SpringLayout) return spring_layout(graph; optimal_distance=l.optimal_distance, maxiter=l.maxiter, α0=l.α0, locs=get(l.meta, :initial_locs, nothing), mask=get(l.meta, :mask, nothing), ) end """ spring_layout(g::AbstractGraph; locs=nothing, optimal_distance=50.0, # the optimal vertex distance maxiter=100, α0=2*optimal_distance, # initial moving speed mask::AbstractVector{Bool}=trues(nv(g)) # mask for which to relocate ) Spring layout for graph plotting, returns a vector of vertex locations. !!! note This function is copied from [`GraphPlot.jl`](https://github.com/JuliaGraphs/GraphPlot.jl), where you can find more information about his function. """ function spring_layout(g::AbstractGraph; locs=nothing, optimal_distance=50.0, # the optimal vertex distance maxiter=100, α0=2*optimal_distance, mask=nothing, ) locs = locs === nothing ? rand_points_2d(nv(g)) : Point.(locs) ./ optimal_distance mask = mask === nothing ? trues(nv(g)) : mask @assert nv(g) == length(locs) "number of vertices in graph and locs must be the same, got $(nv(g)) and $(length(locs))" # Store forces and apply at end of iteration all at once force = zero(locs) # Iterate maxiter times @inbounds for iter = 1:maxiter # Cool down temp = α0 / iter spring_step!(g, locs, force; optimal_distance=1.0, temp, mask) end optimal_distance .* locs end function spring_step!(g::AbstractGraph, locs, force; optimal_distance, temp, mask) # Calculate forces for i = 1:nv(g) force_i = zero(eltype(locs)) for j = 1:nv(g) i == j && continue dist = distance(locs[i], locs[j]) if has_edge(g, i, j) # Attractive + repulsive force # F_d = dist² / k - k² / dist # original FR algorithm F_d = dist / optimal_distance - optimal_distance^2 / dist^2 else # Just repulsive # F_d = -k² / dist # original FR algorithm F_d = -optimal_distance^2 / dist^2 end force_i += F_d * (locs[j] - locs[i]) end force[i] = force_i end # Now apply them, but limit to temperature for i = 1:nv(g) mask[i] || continue force_mag = norm(force[i]) scale = min(force_mag, temp) / force_mag locs[i] += force[i] * scale end end """ LayeredSpringLayout(; zlocs, optimal_distance, aspect_ration=0.2) Create a layered spring layout. ### Keyword Arguments * `zlocs`: the z-axis locations * `optimal_distance::Float64`: the optimal distance between vertices * `aspect_ration::Float64`: the aspect ratio of the z-axis * `α0::Float64`: the initial moving speed * `maxiter::Int`: the maximum number of iterations """ function LayeredSpringLayout(; zlocs, optimal_distance=50.0, aspect_ratio=0.2, α0=2*optimal_distance, maxiter=100) return Layered(SpringLayout(; optimal_distance, α0, maxiter), zlocs, aspect_ratio) end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
5175
""" StressLayout <: AbstractLayout A layout algorithm based on stress majorization. ### Fields * `optimal_distance::Float64`: the optimal distance between vertices * `maxiter::Int`: the maximum number of iterations * `rtol::Float64`: the absolute tolerance * `initial_locs`: initial vertex locations * `mask`: boolean mask for which vertices to relocate * `meta::Dict{Symbol, Any}`: graph dependent meta information, including * `initial_locs`: initial vertex locations * `mask`: boolean mask for which vertices to relocate """ @kwdef struct StressLayout <: AbstractLayout optimal_distance::Float64 = 50.0 maxiter::Int = 100 rtol::Float64 = 1e-2 meta::Dict{Symbol, Any} = Dict{Symbol, Any}() end function render_locs(graph, l::StressLayout) return stressmajorize_layout(graph; optimal_distance=l.optimal_distance, maxiter=l.maxiter, rtol=l.rtol, locs=get(l.meta, :initial_locs, nothing), mask=get(l.meta, :mask, nothing), ) end """ stressmajorize_layout(g::AbstractGraph; locs=rand_points_2d(nv(g)), w=nothing, optimal_distance=50.0, # the optimal vertex distance maxiter = 400 * nv(g)^2, rtol=1e-2, ) Stress majorization layout for graph plotting, returns a vector of vertex locations. ### References * https://github.com/JuliaGraphs/GraphPlot.jl/blob/e97063729fd9047c4482070870e17ed1d95a3211/src/stress.jl """ function stressmajorize_layout(g::AbstractGraph; optimal_distance=50.0, # the optimal vertex distance locs=nothing, w=nothing, maxiter = 400 * nv(g)^2, rtol=1e-2, mask=nothing, ) locs = locs === nothing ? rand_points_2d(nv(g)) .* optimal_distance : Point.(locs) mask = mask === nothing ? trues(nv(g)) : mask # the extra factor 3 is for matching the spring layout result δ = 3 * optimal_distance .* hcat([gdistances(g, i) for i=1:nv(g)]...) if w === nothing w = δ .^ -2 w[.!isfinite.(w)] .= 0 end @assert length(locs)==size(δ, 1)==size(δ, 2)==size(w, 1)==size(w, 2) locs = copy(locs) Lw = weighted_laplacian(w) pinvLw = pinv(Lw) newstress = stress(locs, δ, w) iter = 0 L = zeros(eltype(Lw), nv(g), nv(g)) local locs_new for outer iter = 1:maxiter lz = LZ!(L, locs, δ, w) locs_new = pinvLw * (lz * locs) @assert all(isfinite.(locs_new)) newstress, oldstress = stress(locs_new, δ, w), newstress @debug """Iteration $iter Change in coordinates: $(sum(distance.(locs_new, locs))/length(locs)) Stress: $newstress (change: $(newstress-oldstress)) """ isapprox(newstress, oldstress; rtol) && break locs[mask] = locs_new[mask] end iter == maxiter && @warn("Maximum number of iterations reached without convergence") return locs end function stress(locs::AbstractVector{Point{D, T}}, d, w) where {D, T} s = 0.0 n = length(locs) @assert n==size(d, 1)==size(d, 2)==size(w, 1)==size(w, 2) @inbounds for j=1:n, i=1:j-1 s += w[i, j] * (distance(locs[i], locs[j]) - d[i,j])^2 end return s end function weighted_laplacian(w::AbstractMatrix{T}) where T n = LinearAlgebra.checksquare(w) Lw = zeros(T, n, n) for i=1:n D = zero(T) for j=1:n i==j && continue Lw[i, j] = -w[i, j] D += w[i, j] end Lw[i, i] = D end return Lw end function LZ!(L::AbstractMatrix{T}, locs::AbstractVector{Point{D, T2}}, d, w) where {D, T, T2} @assert length(locs)==size(d, 1)==size(d, 2)==size(w, 1)==size(w, 2) fill!(L, zero(T)) n = length(locs) @inbounds for i=1:n-1 diag = zero(T) for j=i+1:n nrmz = distance(locs[i], locs[j]) δ = w[i, j] * d[i, j] lij = -δ/max(nrmz, 1e-8) L[i, j] = lij diag -= lij end L[i, i] += diag end @inbounds for i=2:n diag = zero(T) for j=1:i-1 lij = L[j,i] L[i,j] = lij diag -= lij end L[i,i] += diag end return L end """ LayeredStressLayout(; zlocs, optimal_distance, aspect_ration=0.2) Create a layered stress layout. ### Keyword Arguments * `zlocs`: the z-axis locations * `optimal_distance::Float64`: the optimal distance between vertices * `aspect_ration::Float64`: the aspect ratio of the z-axis * `maxiter::Int`: the maximum number of iterations * `rtol::Float64`: the absolute tolerance """ function LayeredStressLayout(; zlocs, optimal_distance=50.0, aspect_ratio=0.2, maxiter=100, rtol=1e-2) return Layered(StressLayout(; optimal_distance, maxiter, rtol), zlocs, aspect_ratio) end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
1393
using LuxorGraphPlot, Graphs using Luxor using Test @testset "GraphDisplayConfig" begin config = GraphDisplayConfig() @test config isa GraphDisplayConfig c1 = darktheme!(copy(config)) @test c1 isa GraphDisplayConfig @test c1.vertex_stroke_color == "white" c2 = lighttheme!(copy(config)) @test c2 isa GraphDisplayConfig @test c2.vertex_stroke_color == "black" end @testset "GraphViz" begin graph = smallgraph(:petersen) gv = GraphViz(graph) @test gv isa GraphViz @test gv.locs isa Array end @testset "graph plot" begin locations = [(50.0, 100.0), (100.0, 150.0)] @test show_graph(GraphViz(locs=locations, edges=[(1, 2)])) isa Drawing gv = GraphViz(locs=[], edges=[]) @test show_graph(gv) isa Drawing @test show_graph(gv; format=:pdf) isa Drawing @test show_graph(gv; filename=tempname()*".svg") isa Drawing graph = smallgraph(:petersen) @test show_graph(graph) isa Drawing show_graph(graph; vertex_shapes=fill(:box, 10)) isa Drawing end @testset "gallery" begin graph = smallgraph(:petersen) locs = render_locs(graph, StressLayout()) matrix = [GraphViz(graph, locs; vertex_colors=[rand(Luxor.RGB) for i=1:10], edge_colors=[rand(Luxor.RGB) for i=1:15]) for i=1:2, j=1:4] # gallery @test show_gallery(matrix) isa Drawing @test show_gallery(reshape(GraphViz[], 0, 0)) isa Drawing end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
2060
using Test using LuxorGraphPlot: angleof, closest_natural_point, getpath using LuxorGraphPlot using Luxor @testset "angleof and boundary" begin @test angleof(Point(0.5*sqrt(3.0), 0.5)) ≈ π/6 n = boxnode(O, 100, 100) path = getpath(n) @test boundary(n, angleof(Point(0.5*sqrt(3.0), 0.5))).loc ≈ Point(50, 50/sqrt(3)) @test closest_natural_point(path, Point(100, 120)) ≈ Point(50, 50) @test closest_natural_point(path, Point(130, -120)) ≈ Point(50, -50) @test closest_natural_point(path, Point(130, -10)) ≈ Point(50, 0) end @testset "nodes" begin # circle n = circlenode((0.2, 0.4), 0.5) @test right(n).loc == Point(0.7, 0.4) @test left(n).loc == Point(-0.3, 0.4) @test bottom(n).loc == Point(0.2, 0.9) @test top(n).loc == Point(0.2, -0.1) # ellipse n = ellipsenode((0.2, 0.4), 1.0, 2.0) @test right(n).loc == Point(0.7, 0.4) @test left(n).loc == Point(-0.3, 0.4) @test bottom(n).loc == Point(0.2, 1.4) @test top(n).loc == Point(0.2, -0.6) # box n = boxnode((0.2, 0.4), 1.0, 0.4) @test right(n).loc == Point(0.7, 0.4) @test left(n).loc == Point(-0.3, 0.4) @test top(n).loc == Point(0.2, 0.2) @test bottom(n).loc == Point(0.2, 0.6) # polygon path = getpath(n) n = polygonnode((0.2, 0.4), path .- Ref(Point(0.2, 0.4))) @test right(n).loc == Point(0.7, 0.4) @test left(n).loc == Point(-0.3, 0.4) @test bottom(n).loc == Point(0.2, 0.6) @test top(n).loc == Point(0.2, 0.2) # dot n = dotnode((0.2, 0.4)) @test right(n).loc == Point(0.2, 0.4) @test left(n).loc == Point(0.2, 0.4) @test top(n).loc == Point(0.2, 0.4) @test bottom(n).loc == Point(0.2, 0.4) # line n = linenode((-0.1, 0.2), (0.3, 0.4)) @test right(n).loc == Point(0.3, 0.4) @test left(n).loc == Point(-0.1, 0.2) @test bottom(n).loc == Point(0.3, 0.4) @test top(n).loc == Point(-0.1, 0.2) end @testset "connection" begin n = boxnode((0.2, 0.4), 1.0, 0.4) @test Connection(left(n), right(n)) isa Connection end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
476
using LuxorGraphPlot using Luxor using Test @testset "nodestore" begin drawing = nodestore() do ns c1 = circle!((0.4, 0.5), 30) c2 = circle!((0.4, 0.5), 80) with_nodes() do sethue("white") fill(c1) fill(c2) sethue("black") text("y", c1) text("x", c2) line(c1, c2) stroke(c1) stroke(c2) end end @test drawing isa Drawing end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
323
using LuxorGraphPlot, Graphs using Test, Documenter @testset "layouts" begin include("layouts/layouts.jl") end @testset "graphplot" begin include("graphplot.jl") end @testset "nodes" begin include("nodes.jl") end @testset "nodestore" begin include("nodestore.jl") end Documenter.doctest(LuxorGraphPlot)
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
414
using LuxorGraphPlot.TensorNetwork, Luxor, Test, LuxorGraphPlot @testset "mps" begin diagram = mps(4) fig = with_nodes(diagram) do for (i, node) in enumerate(diagram.nodes) LuxorGraphPlot.stroke(node) text("A($i)", node) end for edge in diagram.edges LuxorGraphPlot.stroke(edge) end end display(fig) @test fig isa Drawing end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
1144
module LayoutsTest using Test, LuxorGraphPlot, Graphs @testset "point" begin include("point.jl") end @testset "spring" begin include("spring.jl") end @testset "stress" begin include("stress.jl") end @testset "spectral" begin include("spectral.jl") end @testset "layouts" begin graph = smallgraph(:petersen) for layout in [ [(randn(), randn()) for i=1:nv(graph)], SpringLayout(), StressLayout(), SpectralLayout(), LayeredStressLayout(zlocs=rand([0,200], nv(graph))), LayeredSpringLayout(zlocs=rand([0,200], nv(graph))), ] @test show_graph(graph, layout) isa Drawing gs = [GraphViz(graph, layout; vertex_sizes=rand(Bool, 10) .* 100, edge_colors=rand(RGB, 15)) for i=1:2, j=1:4] @test show_gallery(gs) isa Drawing end locs = [(randn(2)...,) for i=1:10] @test show_graph(graph, SpringLayout()) isa Drawing gs = [GraphViz(graph, SpringLayout(); vertex_sizes=rand(Bool, 10) .* 100, edge_colors=rand(RGB, 15)) for i=1:2, j=1:4] @test show_gallery(gs) isa Drawing end end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
474
using Test, LuxorGraphPlot using LuxorGraphPlot.Layouts: Point, distance, norm, rand_points_2d @testset "Point" begin p1 = Point(1.0, 2.0) @test p1[1] == 1.0 p2 = Point(3.0, 4.0) @test p1 + p2 ≈ Point(4.0, 6.0) @test norm(p1) == sqrt(5) @test distance(p1, p2) == sqrt(8) @test rand_points_2d(10) isa Vector{Point{2, Float64}} @test rand(Point{2, Float64}) isa Point{2, Float64} @test randn(Point{2, Float64}) isa Point{2, Float64} end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
1197
using Test, LuxorGraphPlot, Graphs using Luxor: Drawing, RGB using LuxorGraphPlot.Layouts @testset "stress layout" begin Random.seed!(0) for n =[100, 2000] graph = random_regular_graph(n, 3) optimal_distance = 50 locs = Layouts.spectral_layout(graph; optimal_distance) @test locs isa Vector{<:Layouts.Point{2}} Q = Layouts.quality_of_layout(graph, locs, optimal_distance) @test Q.closeness > 10000 && Q.mean_distance_deviation < 3 end graph = SimpleGraph(1) optimal_distance = 50 locs = Layouts.spectral_layout(graph; optimal_distance) @test locs isa Vector{<:Layouts.Point{2}} && length(locs) == 1 graph = SimpleGraph(2) add_edge!(graph, 1, 2) optimal_distance = 50 locs = Layouts.spectral_layout(graph; optimal_distance) @test locs isa Vector{<:Layouts.Point{2}} && length(locs) == 2 end @testset "data types" begin graph = random_regular_graph(100, 3) optimal_distance = 50.0 # without initial locations layout = Layouts.SpectralLayout(; optimal_distance) @test layout isa Layouts.SpectralLayout @test Layouts.render_locs(graph, layout) isa Vector{<:Layouts.Point{2}} end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
1397
using Test, LuxorGraphPlot, Graphs using LuxorGraphPlot.Layouts using Luxor: Drawing, RGB using Random @testset "spring layout" begin graph = random_regular_graph(100, 3) optimal_distance = 50 locs = Layouts.spring_layout(graph; optimal_distance) @test locs isa Vector{<:Layouts.Point{2}} Q = Layouts.quality_of_layout(graph, locs, optimal_distance) @test Q.closeness > 10000 && Q.mean_distance_deviation < 5 end @testset "data types" begin graph = random_regular_graph(100, 3) optimal_distance = 50.0 # without initial locations layout = Layouts.SpringLayout(; optimal_distance) @test layout isa Layouts.SpringLayout @test Layouts.render_locs(graph, layout) isa Vector{<:Layouts.Point{2}} # with initial locations layout = Layouts.SpringLayout(; optimal_distance, meta=Dict(:initial_locs=>Layouts.rand_points_2d(100))) @test Layouts.render_locs(graph, layout) isa Vector{<:Layouts.Point{2}} # with initial locations and mask layout = Layouts.SpringLayout(; optimal_distance, meta=Dict(:initial_locs=>Layouts.rand_points_2d(100), :mask=>trues(100))) @test Layouts.render_locs(graph, layout) isa Vector{<:Layouts.Point{2}} # layered zlocs = rand([0,200], nv(graph)) layout = Layouts.LayeredSpringLayout(; zlocs, optimal_distance) @test Layouts.render_locs(graph, layout) isa Vector{<:Layouts.Point{2}} end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
code
1533
using Test, LuxorGraphPlot, Graphs using Luxor: Drawing, RGB using LuxorGraphPlot.Layouts @testset "helpers" begin g = smallgraph(:petersen) @test Layouts.weighted_laplacian(adjacency_matrix(g)) == laplacian_matrix(g) end @testset "stress layout" begin graph = random_regular_graph(100, 3) optimal_distance = 50 locs = Layouts.stressmajorize_layout(graph; optimal_distance) @test locs isa Vector{<:Layouts.Point{2}} Q = Layouts.quality_of_layout(graph, locs, optimal_distance) @test Q.closeness > 10000 && Q.mean_distance_deviation < 5 end @testset "data types" begin graph = random_regular_graph(100, 3) optimal_distance = 50.0 # without initial locations layout = Layouts.StressLayout(; optimal_distance) @test layout isa Layouts.StressLayout @test Layouts.render_locs(graph, layout) isa Vector{<:Layouts.Point{2}} # with initial locations layout = Layouts.StressLayout(; optimal_distance, meta=Dict(:initial_locs=>Layouts.rand_points_2d(100))) @test Layouts.render_locs(graph, layout) isa Vector{<:Layouts.Point{2}} # with initial locations and mask layout = Layouts.StressLayout(; optimal_distance, meta=Dict(:initial_locs=>Layouts.rand_points_2d(100), :mask=>trues(100))) @test Layouts.render_locs(graph, layout) isa Vector{<:Layouts.Point{2}} # layered zlocs = rand([0,200], nv(graph)) layout = Layouts.LayeredStressLayout(; zlocs, optimal_distance) @test Layouts.render_locs(graph, layout) isa Vector{<:Layouts.Point{2}} end
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
docs
1287
# LuxorGraphPlot A minimum package for displaying a graph and configurations defined on graphs. It is the [`Luxor`](https://github.com/JuliaGraphics/Luxor.jl) version of [`GraphPlot`](https://github.com/JuliaGraphs/GraphPlot.jl). Install by typing `using Pkg; Pkg.add("LuxorGraphPlot")` in a julia REPL. (NOTE: After implementing this package, I noticed there is a similar package with more features: https://github.com/cormullion/Karnak.jl.) ## Example In a notebook or IDE with graphical display, use the following statements to show your graph. ```julia julia> using LuxorGraphPlot, Graphs julia> show_graph(smallgraph(:petersen); format=:svg) ``` ![](docs/src/assets/petersen.svg) ### Lower-level API You can also use the lower-level API to customize the graph display. ```julia using LuxorGraphPlot, LuxorGraphPlot.Luxor drawing = nodestore() do ns c1 = circle!((-20.0, 0.0), 10) c2 = circle!((20.0, 0.0), 10) c3 = dot!((0.0, 20.0)) with_nodes() do sethue("cyan") fill(c1) fill(c2) sethue("black") text("y", c1) text("x", c2) text("z", offset(c3, (10, 0))) line(c1, c2) line(midpoint(c1, c2), c3) end end ``` The output is as follows: ![](docs/src/assets/nodestore.svg)
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
docs
572
```@meta CurrentModule = LuxorGraphPlot ``` # LuxorGraphPlot ## Features 1. automatically detecting the size of the diagram by combining [`nodestore`](@ref) and [`with_nodes`](@ref). 2. connecting nodes with edges, finding middle points and corners of the nodes. Related APIs: `Luxor.midpoint`, [`left`](@ref), [`right`](@ref), [`top`](@ref), [`bottom`](@ref), [`center`](@ref), [`boundary`](@ref). 3. simple graph layouts, such as [`SpringLayout`](@ref), [`StressLayout`](@ref), [`SpectralLayout`](@ref), [`LayeredSpringLayout`](@ref) and [`LayeredStressLayout`](@ref).
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.5.1
6ddd60ec24dbb8964a5d4b1cd2c05ca397cdb69d
docs
110
# API manual ```@autodocs Modules = [LuxorGraphPlot, LuxorGraphPlot.Layouts] Order = [:function, :type] ```
LuxorGraphPlot
https://github.com/GiggleLiu/LuxorGraphPlot.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
622
using MOTIFs using Documenter DocMeta.setdocmeta!(MOTIFs, :DocTestSetup, :(using MOTIFs); recursive=true) makedocs(; modules=[MOTIFs], authors="Shane Kuei-Hsien Chu ([email protected])", repo="https://github.com/kchu25/MOTIFs.jl/blob/{commit}{path}#{line}", sitename="MOTIFs.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://kchu25.github.io/MOTIFs.jl", edit_link="main", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/kchu25/MOTIFs.jl", devbranch="main", )
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
2462
module MOTIFs # modules for motif discovery using Flux, CUDA, Zygote, StatsBase, LinearAlgebra, Random, SeqShuffle # modules for inferring the results using Dictionaries, DataStructures, StaticArrays # modules for rendering the results using HypothesisTests, FLoops, Mustache, DataFrames using Zygote: @ignore export discover_motifs const float_type = Float32 const convolution = Flux.NNlib.conv; function randomly_initialize_filters(; dim=4, rng=Random.GLOBAL_RNG, repeats=5, how_many_filters=10, float_type=Float16) arr = zeros(float_type,(dim+1, repeats, 1, how_many_filters)); for i = 1:repeats, j = 1:how_many_filters unif = rand(rng, dim-1); arr[2:dim,i,1,j] .= sort(unif); end arr[dim+1,:,:,:] .= 1; return reshape(diff(arr, dims=1), (dim*repeats,1,how_many_filters)); end function get_data_bg(data) this_bg = reshape(sum(reshape(data.data_matrix, (4, data.L, data.N)), dims=(2,3)), (4,)) this_bg = float_type.(this_bg ./ sum(this_bg)) return this_bg end include("loadfasta/helpers.jl") include("loadfasta/fasta.jl") include("model.jl") include("train.jl") include("inference/_0_const.jl") include("inference/_1_code_retrieval.jl") include("inference/_2_enumerate.jl") include("inference/_3_make_pfms.jl") include("inference/_s1_make_motifs.jl") include("inference/_s2_filter_pos_w_scores.jl") include("inference/_h0_trim.jl") include("inference/_h1_0_merge_header.jl") include("inference/_h1_1_merge_H.jl") include("inference/_h1_2_merge_countmats.jl") include("inference/_h2_Touzet.jl") include("inference/_h3_1_alignment.jl") include("inference/_h3_2_alignment_merge.jl") include("inference/_h4_overlap_ratio.jl") include("inference/_h5_expansion.jl") include("inference/_h6_positions2countmat.jl") include("inference/_h7_fisher.jl") include("inference/_h8_remove_redundancy.jl") include("inference/_h9_order_for_display.jl") include("inference/_g1_obtain_coutmats.jl") include("render/const.jl") include("render/helpers.jl") include("render/html_template_olap.jl") include("render/html_template_no_olap.jl") include("render/plotting.jl") include("render/pvec_calculations.jl") include("render/render.jl") include("wrap.jl") # TODOs: # use progress meter to track the training progress? end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
19298
Base.@kwdef mutable struct Hyperparam filter_len::Int = 8 # length of each filter f_len::Int = filter_len*4 # length of the filter adjusted for one hot DNA sequence M::Int = 50 # number of filters twoM::Int = 2*M # 2*M h::Int = 12 # height of the syntax filter K::Int = 24 # number of syntax filters q::Int = 32 # how sparse the syntax code should be for each sequence batch_size::Int = 6 # batch size num_pass_xyz::Int = 6 # number of passes for the x,y,z parameters num_pass_df::Int = 3 # number of passes for the d,f parameters magnifying_factor::float_type = 10 # magnifying factor for the sparse code Z, Y gamma::float_type = 0.1 # regularization for filter incoherence end struct length_info L::Int # length of the sequence C::Int # code length c::Int # code length divided by 4 l::Int # syntax code length MB::Int # hp.M * hp.batch_size KB::Int # hp.K * hp.batch_size CS_vlen::Int # C + L - 1 last_avail_ind::Int # last data point in the code that can be used for a full batch function length_info(hp, data) L = 4*data.L C = L-hp.f_len+1 c = data.L-hp.filter_len+1 l = c-hp.h+1 MB = hp.M * hp.batch_size KB = hp.K * hp.batch_size CS_vlen = C + L - 1; last_avail_ind = (data.N - data.N % hp.batch_size); new(L, C, c, l, MB, KB, CS_vlen, last_avail_ind) end end struct projectors mapdrange::CuArray{float_type, 2} mapclarge::CuArray{float_type, 2} z_mask_n::CuArray{float_type, 3, CUDA.Mem.DeviceBuffer} pseudocount_matrix::CuArray{float_type, 3} function projectors(hp, len) mapdrange = zeros(float_type, (hp.f_len, len.C+len.L-1)); mapdrange[:, len.C:len.C+hp.f_len-1] = Matrix(I, hp.f_len, hp.f_len); mapdrange = cu(mapdrange); mapclarge = zeros(float_type, (len.C, len.c)); mapclarge[1:4:end,:] = Matrix(I, len.c, len.c); mapclarge = cu(mapclarge); z_mask_col = 1:len.C .∈ [1:4:len.C]; z_mask_n = cu(float_type.(repeat(z_mask_col, outer=(1,hp.M,hp.batch_size)))); pseudocount_matrix = fill(0.001f0, (4, hp.filter_len, hp.M)) new( mapdrange, mapclarge, z_mask_n, pseudocount_matrix ) end end struct ucdl lambda_sparsity_warmup::float_type # sparsity param for Z and Y when their initial values are zero lambda_sparsity::Array{float_type, 1} # sparsity param for Z and Y during iterations kappa_sparsity::Array{float_type, 1} # sparsity param for F during iterations lambda_stepsize_warmup::float_type # step size for Z and Y when their initial values are zero omega_stepsize_warmup::float_type # step size for X when its initial values is zero lambda_stepsize::Array{float_type, 1} # step size for Z and Y during iterations omega_stepsize::Array{float_type, 1} # step size for X during iterations kappa_stepsize::Array{float_type, 1} # step size for F during iterations D::CuArray{float_type, 3} # filters (f_len, 1, M, K) F::CuArray{float_type, 4} # syntax filters (hp.h, hp.twoM, 1, hp.K) penalty_xyz::Array{float_type, 1} # penalty for x,y,z mu::Array{float_type, 1} # step size for D during iterations function ucdl(hp; η₁=float_type(0.05)) D = cu(randomly_initialize_filters( repeats=hp.filter_len, how_many_filters=hp.M, float_type=float_type)); D = sqrt.(D); F = cu(abs.(0.1 .* randn(float_type, (hp.h, hp.twoM, 1, hp.K)))); lambda_sparsity_warmup = η₁ * rand(float_type); lambda_sparsity = η₁ * rand(float_type, hp.num_pass_xyz); kappa_sparsity = η₁ * rand(float_type, hp.num_pass_df); lambda_stepsize_warmup = η₁ * rand(float_type); omega_stepsize_warmup = η₁ * rand(float_type); lambda_stepsize = η₁ * rand(float_type, hp.num_pass_xyz); omega_stepsize = η₁ * rand(float_type, hp.num_pass_xyz); kappa_stepsize = η₁ * rand(float_type, hp.num_pass_df); penalty_xyz = η₁ * rand(float_type, hp.num_pass_xyz); mu = η₁ * rand(float_type, hp.num_pass_df); new( lambda_sparsity_warmup, lambda_sparsity, kappa_sparsity, lambda_stepsize_warmup, omega_stepsize_warmup, lambda_stepsize, omega_stepsize, kappa_stepsize, D, F, penalty_xyz, mu ) end function ucdl(lambda_sparity_warmup, lambda_sparsity, kappa_sparsity, lambda_stepsize_warmup, omega_stepsize_warmup, lambda_stepsize, omega_stepsize, kappa_stepsize, D, F, penalty_xyz, mu) return new( lambda_sparity_warmup, lambda_sparsity, kappa_sparsity, lambda_stepsize_warmup, omega_stepsize_warmup, lambda_stepsize, omega_stepsize, kappa_stepsize, D, F, penalty_xyz, mu ) end end Flux.@functor ucdl function prep_filters(D, hp, projs) D_init = D .^ 2 D_init_r = reshape(D_init, (4, hp.filter_len, hp.M)) D_init_r += projs.pseudocount_matrix # pseudocounts to avoid division by zero D_init_r = D_init_r ./ sum(D_init_r, dims=1) D_init = reshape(D_init_r, (hp.f_len, 1, hp.M)) return D_init end function prep_syntax_filters(F) F = F.^2 return F ./ (sqrt.(sum(F.^2, dims=(1,2)))) # normalize F end function prep_params(ucdl, hp, projs) lambda_sparsity_warmup = ucdl.lambda_sparsity_warmup^2 lambda_sparsity = ucdl.lambda_sparsity.^2 kappa_sparsity = ucdl.kappa_sparsity.^2 lambda_stepsize_warmup = ucdl.lambda_stepsize_warmup^2 omega_stepsize_warmup = ucdl.omega_stepsize_warmup^2 lambda_stepsize = ucdl.lambda_stepsize.^2 omega_stepsize = ucdl.omega_stepsize.^2 kappa_stepsize = ucdl.kappa_stepsize.^2 penalty_xyz = ucdl.penalty_xyz.^2 mu = ucdl.mu.^2 D = prep_filters(ucdl.D, hp, projs) F = prep_syntax_filters(ucdl.F) return lambda_sparsity_warmup, lambda_sparsity, kappa_sparsity, lambda_stepsize_warmup, omega_stepsize_warmup, lambda_stepsize, omega_stepsize, kappa_stepsize, penalty_xyz, mu, D, F end function warmup_ZY(S, D, lambda_stepsize_warmup, lambda_sparsity_warmup, projs) DᵀS = convolution(S, D, pad=0, flipped=true) DS = convolution(S, D, pad=0) Z_update = (lambda_stepsize_warmup .* DᵀS) .- (lambda_sparsity_warmup * lambda_stepsize_warmup) Y_update = (lambda_stepsize_warmup .* DS) .- (lambda_sparsity_warmup * lambda_stepsize_warmup) Z = Flux.NNlib.relu.(projs.z_mask_n .* Z_update) Y = Flux.NNlib.relu.(projs.z_mask_n .* Y_update) return Z, Y end function generate_bitmat(X, hp) bitmat = CUDA.zeros(eltype(X), (size(X, 1), 1, hp.K, hp.batch_size)) X_reshape = reshape(X, (size(X, 1)*hp.K, hp.batch_size)) vals = reshape(partialsort.(eachcol(X_reshape), hp.q, rev=true) |> cu, (1,1,1, hp.batch_size)) bitmat[X .≥ vals] .= 1; return bitmat end function project_X(X, hp) bitmat = @ignore generate_bitmat(X, hp) return X .* bitmat end function create_ZY_mask(ZY) ZY_mask = CUDA.zeros(eltype(ZY), size(ZY)) Z_nz = ZY[ZY .> 0] if isempty(Z_nz) return nothing else Z_nz_median = median(Z_nz) ZY_mask[ZY .≥ Z_nz_median] .= 1 return ZY_mask end end function cat_ZY(Z, Y, hp, len) ZY = reshape(hcat(Z[1:4:end,:,:], Y[1:4:end,:,:]), (len.c, hp.twoM, 1, hp.batch_size)) ZY_mask = @ignore create_ZY_mask(ZY); return isnothing(ZY_mask) ? hp.magnifying_factor .* ZY : hp.magnifying_factor .* (ZY_mask .* ZY) end function warmup_X(F, Z, Y, omega_stepsize_warmup, hp, len) ZY = cat_ZY(Z, Y, hp, len) # (len.c, 2hp.M, 1, hp.batch_size X_updated = omega_stepsize_warmup .* convolution(ZY, F, pad=0, flipped=true) # (len.l, 1, hp.K, hp.batch_size) return project_X(X_updated, hp) end function return_left_right_FX(FX, hp, len, projs) left_FX = reshape(FX[:, 1:hp.M, :, :], (len.c, hp.M, hp.batch_size)) right_FX = reshape(FX[:, hp.M+1:end, :, :], (len.c, hp.M, hp.batch_size)) return left_FX, right_FX end function warmup_XYZ(S, D, F, lambda_stepsize_warmup, lambda_sparsity_warmup, omega_stepsize_warmup, hp, len, projs ) Z, Y = warmup_ZY(S, D, lambda_stepsize_warmup, lambda_sparsity_warmup, projs) X = warmup_X(F, Z, Y, omega_stepsize_warmup, hp, len) FX = sum(convolution(X, F, pad=(hp.h-1, hp.twoM-1), groups=hp.K), dims=3) left_FX, right_FX = return_left_right_FX(FX, hp, len, projs) return Z, Y, X, FX, left_FX, right_FX end #= eta, mu: scaled dual variables =# function update_ZY(S, Z, Y, D, left_FX, right_FX, alpha, beta, lambda_sparsity, lambda_stepsize, penalty_xyz, hp, projs, num_pass) ZD, YD = convolution(Z, D, pad=hp.f_len-1, groups=hp.M), convolution(Y, D, pad=hp.f_len-1, groups=hp.M, flipped=true) diff = sum(ZD + YD, dims=2) - S z_grad = convolution(diff, D, pad=0, flipped=true) + penalty_xyz[num_pass] .* (Z - batched_mul(projs.mapclarge, left_FX + alpha)) y_grad = convolution(diff, D, pad=0) + penalty_xyz[num_pass] .* (Y - batched_mul(projs.mapclarge, right_FX + beta)) Z_updated = Z - lambda_stepsize[num_pass] .* z_grad .- (lambda_sparsity[num_pass] .* lambda_stepsize[num_pass]) Y_updated = Y - lambda_stepsize[num_pass] .* y_grad .- (lambda_sparsity[num_pass] .* lambda_stepsize[num_pass]) return Flux.NNlib.relu.(projs.z_mask_n .* Z_updated), Flux.NNlib.relu.(projs.z_mask_n .* Y_updated) end function update_X(FX, Z, Y, X, F, alpha, beta, omega_stepsize, hp, len, num_pass) alpha_beta = reshape(hcat(alpha, beta), (len.c, hp.twoM, 1, hp.batch_size)) ZY = cat_ZY(Z, Y, hp, len) diff = sum(FX, dims=3) - (ZY - alpha_beta) x_grad = convolution(diff, F, pad=0, flipped=true) X_updated = X - omega_stepsize[num_pass] .* x_grad return project_X(X_updated, hp) end function one_forward_step_XYZ(S, Z, Y, D, X, F, left_FX, right_FX, FX, alpha, beta, lambda_sparsity, lambda_stepsize, omega_stepsize, penalty_xyz, hp, len, projs, num_pass ) Z, Y = update_ZY(S, Z, Y, D, left_FX, right_FX, alpha, beta, lambda_sparsity, lambda_stepsize, penalty_xyz, hp, projs, num_pass) X = update_X(FX, Z, Y, X, F, alpha, beta, omega_stepsize, hp, len, num_pass) FX = sum(convolution(X, F, pad=(hp.h-1, hp.twoM-1), groups=hp.K), dims=3) left_FX, right_FX = return_left_right_FX(FX, hp, len, projs) alpha = alpha + left_FX - (@view Z[1:4:end,:,:]) beta = beta + right_FX - (@view Y[1:4:end,:,:]) return Z, Y, X, FX, left_FX, right_FX, alpha, beta end conv_code_diff(code, diff, hp, len) = reshape( convolution(reshape(upsample_nearest(diff, (1,hp.M,1)), (len.L, len.MB, 1)), reshape(code, (len.C, 1, len.MB)) , pad=len.C-1, groups=len.MB, flipped=true), (len.CS_vlen, hp.M, hp.batch_size)); function update_D(S, Z, Y, D, mu, hp, len, projs, num_pass) sumZD = sum(convolution(Z, D, pad=hp.f_len-1, groups=hp.M), dims=2) sumYRD = sum(convolution(Y, D, pad=hp.f_len-1, groups=hp.M, flipped=true), dims=2) ZᵀsumZD = conv_code_diff(Z, sumZD, hp, len) YᵀsumZD = conv_code_diff(Y, sumZD, hp, len) ZᵀsumYRD = conv_code_diff(Z, sumYRD, hp, len) YᵀsumYRD = conv_code_diff(Y, sumYRD, hp, len) ZᵀS = conv_code_diff(Z, S, hp, len) YᵀS = conv_code_diff(Y, S, hp, len) D_grad = reshape( projs.mapdrange*reshape(sum(ZᵀsumZD + ZᵀsumYRD + ZᵀS + reverse(YᵀsumZD + YᵀsumYRD +YᵀS, dims=1), dims=3), (len.C+len.L-1, hp.M)), (hp.f_len, 1, hp.M)); Breg_num = reshape(D .* exp.(-mu[num_pass] .* D_grad), (4, hp.filter_len, 1, hp.M)); D_updated = reshape((Breg_num ./ sum(Breg_num,dims=1)), (hp.f_len, 1, hp.M)); return D_updated end function F_gradient(ZY, X, F, hp, len, theta) diff_X_upsampled = upsample_nearest(sum(convolution(X, F, pad=(hp.h-1, hp.twoM-1), groups=hp.K), dims=3) - (ZY + theta) , (1, 1, hp.K, 1)) diff_r = reshape(diff_X_upsampled, (len.c, hp.twoM, hp.K*hp.batch_size, 1)) X_r = reshape(X, (len.l, 1, 1, hp.K*hp.batch_size)) conv_diff_X = convolution(diff_r, X_r, pad=0, flipped=true, groups=len.KB) F_conv = reshape(conv_diff_X, (hp.h, hp.twoM, hp.K, hp.batch_size)) F_grad = reshape(sum(F_conv, dims=4), (hp.h, hp.twoM, 1, hp.K)) return F_grad end function update_F(ZY, X, F, hp, len, theta, kappa_stepsize, kappa_sparsity, num_pass) F_grad = F_gradient(ZY, X, F, hp, len, theta) F_updated = Flux.NNlib.relu.(F - kappa_stepsize[num_pass] * F_grad .-(kappa_stepsize[num_pass] * kappa_sparsity[num_pass])) return F_updated ./ (sqrt.(sum(F_updated.^2, dims=(1,2)))) end function loss(S, Z, Y, X, D, ZY, F, F_orig, hp) normalize_factor = (1.0f0/float_type(hp.batch_size)); DZ = sum(convolution(Z, D, pad=hp.f_len-1, groups=hp.M), dims=2) DY = sum(convolution(Y, D, pad=hp.f_len-1, groups=hp.M, flipped=true), dims=2) reconstruction_loss = normalize_factor*sum((DZ+DY-S).^2) FX = sum(convolution(X, F, pad=(hp.h-1, hp.twoM-1), groups=hp.K), dims=3) syntax_reconstruction_loss = normalize_factor*sum((FX - ZY).^2) # abs_F_orig = abs.(F_orig) # l1l2_loss_orig = (sum(abs_F_orig) + sum(sqrt.(sum(abs_F_orig.^2, dims=(1,2))))) # l1l2_loss_orig = sum(abs_F_orig) # println("reconstruction_loss: ", reconstruction_loss) # println("syntax_reconstruction_loss: ", syntax_reconstruction_loss) # println("l1l2_loss_orig: ", l1l2_loss_orig) return reconstruction_loss + syntax_reconstruction_loss end create_alpha_beta_as_zeros(S, hp, len) = CUDA.zeros(eltype(S), (len.c, hp.M, hp.batch_size)), CUDA.zeros(eltype(S), (len.c, hp.M, hp.batch_size)); function ADMM_XYZ(S, D, F, lambda_stepsize_warmup, lambda_stepsize, lambda_sparsity_warmup, lambda_sparsity, omega_stepsize_warmup, omega_stepsize, penalty_xyz, hp, len, projs ) # create initial scaled dual variables as zeros alpha, beta = @ignore create_alpha_beta_as_zeros(S, hp, len) # warm up Z, Y, X, FX, left_FX, right_FX = warmup_XYZ(S, D, F, lambda_stepsize_warmup, lambda_sparsity_warmup, omega_stepsize_warmup, hp, len, projs) # iterations for num_pass = 1:hp.num_pass_xyz Z, Y, X, FX, left_FX, right_FX, alpha, beta = one_forward_step_XYZ(S, Z, Y, D, X, F, left_FX, right_FX, FX, alpha, beta, lambda_sparsity, lambda_stepsize, omega_stepsize, penalty_xyz, hp, len, projs, num_pass) end return Z, Y, X end create_theta_as_zeros(S, hp, len) = CUDA.zeros(eltype(S), (len.c, hp.twoM, 1, hp.batch_size)); function ADMM_DF(S, Z, Y, X, D, F, mu, kappa_sparsity, kappa_stepsize, hp, len, projs) # create the initial scaled dual variable as zeros theta = @ignore create_theta_as_zeros(S, hp, len) ZY = cat_ZY(Z, Y, hp, len) for num_pass = 1:hp.num_pass_df D = update_D(S, Z, Y, D, mu, hp, len, projs, num_pass) F = update_F(ZY, X, F, hp, len, theta, kappa_stepsize, kappa_sparsity, num_pass) theta = theta + sum(convolution(X, F, pad=(hp.h-1, hp.twoM-1), groups=hp.K), dims=3) - ZY end return ZY, D, F end function forward_pass_return_loss(S, cdl, hp, len, projs) lambda_sparsity_warmup, lambda_sparsity, kappa_sparsity, lambda_stepsize_warmup, omega_stepsize_warmup, lambda_stepsize, omega_stepsize, kappa_stepsize, penalty_xyz, mu, D, F_orig = prep_params(cdl, hp, projs) Z, Y, X = ADMM_XYZ(S, D, F_orig, lambda_stepsize_warmup, lambda_stepsize, lambda_sparsity_warmup, lambda_sparsity, omega_stepsize_warmup, omega_stepsize, penalty_xyz, hp, len, projs ) ZY, D, F = ADMM_DF(S, Z, Y, X, D, F_orig, mu, kappa_sparsity, kappa_stepsize, hp, len, projs ) l = loss(S, Z, Y, X, D, ZY, F, F_orig, hp) println("loss $l") # return loss(S, Z, Y, X, D, ZY, F, F_orig, hp) return l end function retrieve_code(S, cdl, hp, len, projs) lambda_sparsity_warmup, lambda_sparsity, kappa_sparsity, lambda_stepsize_warmup, omega_stepsize_warmup, lambda_stepsize, omega_stepsize, kappa_stepsize, penalty_xyz, _, D, F_orig = prep_params(cdl, hp, projs) Z, Y, X = ADMM_XYZ(S, D, F_orig, lambda_stepsize_warmup, lambda_stepsize, lambda_sparsity_warmup, lambda_sparsity, omega_stepsize_warmup, omega_stepsize, penalty_xyz, hp, len, projs ) return F_orig, Z, Y, X end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
1941
function setup_num_epochs(number_training_samples) if number_training_samples < 1000 return 25 elseif number_training_samples < 10000 return 10 elseif number_training_samples < 100000 return 5 else return 3 end end function train_ucdl(data; num_epochs=nothing, # filter_len::Int = 8, # f_len::Int = filter_len*4, # M::Int = 45, # twoM::Int = 2*M, # h::Int = 12, # K::Int = 25, # q::Int = 20, # batch_size::Int = 16, # num_pass_xyz::Int = 6, # num_pass_df::Int = 3, # magnifying_factor::float_type = 10, # gamma::float_type = 0.1 l1_loss_thresh=float_type(95.0) ) hp = Hyperparam(); len = length_info(hp, data); projs = projectors(hp, len); cdl = ucdl(hp); data_load = Flux.DataLoader(data.data_matrix, batchsize=hp.batch_size, shuffle=true, partial=false); ps = Flux.params(cdl); opt = Flux.AdaBelief(); num_epochs = isnothing(num_epochs) ? setup_num_epochs(data.N) : num_epochs; break_condition = false; for i in 1:num_epochs for S in data_load S = S |> gpu; gs = gradient(ps) do forward_pass_return_loss(S, cdl, hp, len, projs) end Flux.Optimise.update!(opt, ps, gs) # update parameters l1_loss = sum(abs.(prep_syntax_filters(cdl.F))) # "l1 loss: $l1_loss" |> println if l1_loss < l1_loss_thresh break_condition = true break end end break_condition && break println("Epoch: $i completed") end return cdl, hp, len, projs end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
440
function discover_motifs(datapath, save_path; num_epochs=nothing) @info "load data" data = FASTA_DNA{float_type}(datapath) this_bg = get_data_bg(data) @info "training..." cdl, hp, len, projs = train_ucdl(data; num_epochs=num_epochs) @info "extract motifs..." ms = run_thru(data, cdl, hp, len, projs, this_bg) render_result!(save_path, ms, data, this_bg) end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
2823
const float_type_retrieval = Float16 const stored_code_component_t = NamedTuple{(:position, :fil, :seq, :mag), Tuple{UInt8, UInt8, UInt32, float_type_retrieval}} const composition_key_type = NamedTuple{(:f1,:f2,:f3,:d12,:d13,:len), Tuple{Int8, Int8, Int8, UInt8, UInt8, UInt8}} const value_type = NamedTuple{(:seq_num, :pos, :comp), Tuple{UInt32, UInt16, Bool}} # const se_type = # NamedTuple{(:start_, :end_), Tuple{Int16, Int16}} const unit_range_int_t = UInt32 const cover_more_than = 200 const cover_at_least = 10 const syntax_filter_thresh = 0.01 const max_pwm_length_Touzet = 15 # Touzet's threshold calulation pvalue_Touzet2 const _granularity_ = 1e-1; # initial granularity for score2pvalue and pval2score const _k_ = 100; # decreasing factor for finer granularity in each iteration const _bg_ = [.25,.25,.25,.25]; # default background const pvalue_Touzet = 0.0002 # for finding the best socre threshold const score_thresh_increment = float_type_retrieval(0.5) const background = float_type_retrieval.([0.25 for _ = 1:4]) const threads_1d = 512; const threads_2d = 32; const threads_3d = 10; const ker_1d = threads_1d; const ker_2d = (threads_2d, threads_2d); const ker_3d = (threads_3d, threads_3d, threads_3d); b_size_1d(X) = ceil.(Int, size(X) ./ threads_1d) b_size_2d(X) = ceil.(Int, size(X) ./ threads_2d) b_size_3d(X) = ceil.(Int, size(X) ./ threads_3d) const atcg2dummy = Dict{Char, Vector{Float32}}('a'=>[1,0,0,0], 'A'=>[1,0,0,0], 'c'=>[0,1,0,0], 'C'=>[0,1,0,0], 'g'=>[0,0,1,0], 'G'=>[0,0,1,0], 't'=>[0,0,0,1], 'T'=>[0,0,0,1], 'z'=>[0,0,0,0]) const atcg_comp = Dict{Char, Char}('a'=>'t', 'A'=>'T', 'c'=>'g', 'C'=>'G', 'g'=>'c', 'G'=>'C', 't'=>'a', 'T'=>'A') four_based_ind(ind) = (ind-1)*4+1 promote_i(x...) = Int.(x); const num_pfms2process = 500 const pvalue_fisher_thresh = 1e-10 # cannot use float16 since it's pvalue ( use log scale instead?) const _pseudocounts_ = float_type_retrieval(0.0001) const allr_thresh = float_type_retrieval(0.875) const ic_trim_thresh = float_type_retrieval(1.0) const ic_expand_thresh = float_type_retrieval(0.1) const max_pwm_length_Touzet2 = 15 const pvalue_Touzet_large = 0.0001 const pvalue_Touzet_mid = 0.0001 const pvalue_Touzet_small = 0.0003 const max_allowed_diff = 80 const indep_run = 13; const dep_run = 10; const merge_add_counts = true const code_percentile = 0.01 const effective_pos_ic_thresh = 0.5 const mv_avg_window = 3 const pfm_minimal_length = 8
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
2227
#= Couple things: 1. Get code components 2. Filter code components if necessary: a. filter out low magnitude components by setting the threshold to the median of the magnitude or the v percentile of the magnitude 3. Get the scanning range of the filtered code components 4. Enumerate the triplet (word combinations) of the filtered code components using both the scanning range and the filtered code components 5. Get the start and end range for each syntax filter =# get_code_component_this_batch(cartesian_ind, magnitude, i) = (position=cartesian_ind[1], fil=cartesian_ind[3], seq=cartesian_ind[4]+i-1, mag=magnitude) get_magnitude(x) = x.mag get_fils(cartesian_inds_sorted, i,j,k) = cartesian_inds_sorted[i][2], cartesian_inds_sorted[j][2], cartesian_inds_sorted[k][2] get_d12_d13(cartesian_inds_sorted, i,j,k) = cartesian_inds_sorted[j][1] - cartesian_inds_sorted[i][1], cartesian_inds_sorted[k][1] - cartesian_inds_sorted[i][1] get_f1_pos(cartesian_inds_sorted, i) = cartesian_inds_sorted[i][1] function append_code_component!(X, stored_code_components, i) cartesian_inds = findall(X .> 0); append!(stored_code_components, get_code_component_this_batch.(cartesian_inds |> cpu, float_type_retrieval.(X[cartesian_inds]) |> cpu, i)) end function code_retrieval(data, cdl, hp, len, projs) lambda_sparsity_warmup, lambda_sparsity, _, lambda_stepsize_warmup, omega_stepsize_warmup, lambda_stepsize, omega_stepsize, _, penalty_xyz, _, D, F_orig = prep_params(cdl, hp, projs) data_load = Flux.DataLoader(data.data_matrix, batchsize=hp.batch_size, shuffle=false, partial=false) stored_code_components = stored_code_component_t[] i = 1; @inbounds for S in data_load S = S |> gpu; _, _, X = ADMM_XYZ(S, D, F_orig, lambda_stepsize_warmup, lambda_stepsize, lambda_sparsity_warmup, lambda_sparsity, omega_stepsize_warmup, omega_stepsize, penalty_xyz, hp, len, projs ) append_code_component!(X, stored_code_components, i) i += hp.batch_size; end return stored_code_components end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
2605
create_key(c1,c2,c3,d12,d13,len) = (f1=c1, f2=c2, f3=c3, d12=d12, d13=d13, len=len) create_value(seq_num, pos) = (seq_num=UInt32(seq_num), pos=pos, comp=false) values_comp(v) = (seq_num=v.seq_num, pos=v.pos, comp=true) function filter_code_components_using_median!(stored_code_components) mag_median = median(get_magnitude.(stored_code_components)) filter!(x -> x.mag > mag_median, stored_code_components) end function filter_code_components_using_quantile!(stored_code_components; p=code_percentile) mag_percentile = quantile(get_magnitude.(stored_code_components), p) filter(x -> x.mag > mag_percentile, stored_code_components) end function filter_code_components(stored_code_components; filter_fcn=filter_code_components_using_quantile!, quantile_v=code_percentile) if filter_fcn != filter_code_components_using_quantile! return filter_fcn(stored_code_components) else return filter_fcn(stored_code_components; p=quantile_v) end end function get_scanning_range_of_filtered_code_components(stored_code_components) cur_seq = 1; cur_range_start = 1; ranges = UnitRange{unit_range_int_t}[]; @inbounds for i in eachindex(stored_code_components) if stored_code_components[i].seq != cur_seq push!(ranges, cur_range_start:i-1) cur_range_start = i cur_seq += 1 end end return ranges end function insert_H!(H::Dictionary{composition_key_type, Vector{value_type}}, cartesian_inds_sorted, i::Int, j::Int, k::Int, ind::Int, h) c1,c2,c3 = get_fils(cartesian_inds_sorted, i,j,k) c1_pos = get_f1_pos(cartesian_inds_sorted, i) d12,d13 = get_d12_d13(cartesian_inds_sorted, i,j,k) len = d13 + h key = create_key(c1,c2,c3,d12,d13,len) value = create_value(ind, c1_pos) haskey(H, key) ? push!(H[key], value) : insert!(H, key, [value]) end sort_by_x1(x) = x[1] function enumerate_triplets(stored_code_component_filtered, seq_ranges, hp) H = Dictionary{composition_key_type, Vector{value_type}}(); @inbounds for ind in eachindex(seq_ranges) whats_in_store = @view stored_code_component_filtered[seq_ranges[ind]] cartesian_inds_sorted = sort(whats_in_store, by=sort_by_x1) car_len = length(cartesian_inds_sorted) for i = 1:car_len-2 for j = i+1:car_len-1 for k = j+1:car_len insert_H!(H, cartesian_inds_sorted, i, j, k, ind, hp.h) end end end end return H end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
1896
##### From the word combinations H, obtain the count matrices from enriched keys ######## function get_words(H, enriched_keys, len_enriched_keys; max_word_combinations=num_pfms2process) q = getindices(H, enriched_keys); q_sorted = sort(length.(q), rev=true) if len_enriched_keys > max_word_combinations return Indices(collect(keys(q_sorted))[1:max_word_combinations]) else return Indices(collect(keys(q_sorted))[1:len_enriched_keys]) end end function get_enriched_keys(H; max_word_combinations = num_pfms2process, dec = -5, count_from = cover_more_than, count_to = cover_at_least ) enriched_keys = nothing for count = count_from:dec:count_to enriched_keys = findall(x->length(x)> count, H) len_enriched_keys = length(enriched_keys) len_enriched_keys > max_word_combinations && (return get_words(H, enriched_keys, len_enriched_keys; max_word_combinations=num_pfms2process)) end return enriched_keys end function obtain_count_matrices(data, H) enriched_keys = keys(H) count_matrices_lengths = Array{Int}(undef, length(enriched_keys)); @inbounds for (ind,k) in enumerate(enriched_keys) count_matrices_lengths[ind] = k.len end count_matrices = [zeros(float_type, (4, count_matrices_lengths[i])) for i = 1:length(enriched_keys)]; @inbounds for (ind,k) in enumerate(enriched_keys) for v in H[k] pos_start = four_based_ind(v.pos) pos_end = four_based_ind(v.pos+count_matrices_lengths[ind]-1)+3 onehot_code = reshape((@view data.data_matrix[pos_start:pos_end,1,v.seq_num]), (4, count_matrices_lengths[ind])) count_matrices[ind] .+= v.comp ? reverse(onehot_code) : onehot_code end end return count_matrices end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
10825
function obtain_filtered_stored_code_components(data, cdl, hp, len, projs; filter_fcn = filter_code_components_using_quantile!, quantile_v = code_percentile) @info "Retrieving the non-zero code components..." stored_code_component = code_retrieval(data, cdl, hp, len, projs) @info "Filtering out the low-magnitude non-zero code components..." stored_code_component_filtered = filter_code_components(stored_code_component; filter_fcn=filter_fcn, quantile_v=quantile_v) @info "Get the scanning ranges..." scanning_range = get_scanning_range_of_filtered_code_components(stored_code_component_filtered) return stored_code_component_filtered, scanning_range end function obtain_enriched_word_combinations(stored_code_component_filtered, scanning_range, hp) H = enumerate_triplets(stored_code_component_filtered, scanning_range, hp) @info "Obtaining the enriched patterns..." enriched_keys = get_enriched_keys(H); H_w_enriched_keys = getindices(H, enriched_keys) return H_w_enriched_keys end function obtain_H_w_enriched_keys(data, cdl, hp, len, projs) stored_code_component_filtered, scanning_range = obtain_filtered_stored_code_components(data, cdl, hp, len, projs) H_w_enriched_keys = obtain_enriched_word_combinations(stored_code_component_filtered, scanning_range, hp) return H_w_enriched_keys end function merge_trim_merge_H_w_enriched_keys(data, hp, H_w_enriched_keys, bg) H_w_enriched_keys_merged = merge_H(data, H_w_enriched_keys, hp, bg) H_w_enriched_keys_merged_and_trimmed = trim_H(data, H_w_enriched_keys_merged, bg) H_w_enriched_keys_merged_and_trimmed_and_merged = merge_H(data, H_w_enriched_keys_merged_and_trimmed, hp, bg) return H_w_enriched_keys_merged_and_trimmed_and_merged end function greedy_align(H_w_enriched_keys_mtm, data, bg) try ms = enriched_keys2motifs(H_w_enriched_keys_mtm, data, bg); ms = alignment_merge!(ms, data, bg); for i = 1:indep_run println("indep run $i") scan_w_gpu!(ms, data); scan_w_gpu!(ms, data; bg=true); filter_positions_scores_usecomp!(ms, data, bg); ms = filter_insignificant_motifs(ms, data, bg); expansions_ms!(ms, data, bg); ms = alignment_merge!(ms, data, bg); new_cmats = posdicts2countmats(ms, data.data_matrix); new_cmats = trim_cmats(new_cmats, bg); new_cmats = merge_count_matrices(new_cmats, bg); ms = countmats2motifs(new_cmats, bg); end for i = 1:2 println("indep run $i") scan_w_gpu!(ms, data); scan_w_gpu!(ms, data; bg=true); filter_positions_scores_usecomp!(ms, data, bg); ms = filter_insignificant_motifs(ms, data, bg); ms = alignment_merge!(ms, data, bg); new_cmats = posdicts2countmats(ms, data.data_matrix); new_cmats = trim_cmats(new_cmats, bg); new_cmats = merge_count_matrices(new_cmats, bg); ms = countmats2motifs(new_cmats, bg); end return ms catch e if isa(e, MethodError) @info "caught a method error" end end return nothing # for j = 1:dep_run # println("dep run $j") # scan_w_gpu!(ms, data); # scan_w_gpu!(ms, data; bg=true); # # filter_positions_scores_usecomp!(ms, data); # filter_positions_scores_usecomp!(ms, data); # # ms = non_overlap_scan!(ms, data.N); # ms = filter_insignificant_motifs(ms, data); # expansions_ms!(ms, data); # ms = alignment_merge!(ms, data); # new_cmats = posdicts2countmats(ms, data.data_matrix); # new_cmats = trim_cmats(new_cmats); # new_cmats = merge_count_matrices(new_cmats); # ms = countmats2motifs(new_cmats); # end end # function run_thru(cdl, data, hp, len, projs) # H_w_enriched_keys = obtain_H_w_enriched_keys(data, cdl, hp, len, projs) # H_w_enriched_keys_mtm = merge_trim_merge_H_w_enriched_keys(data, hp, H_w_enriched_keys) # ms = greedy_align(H_w_enriched_keys_mtm, data, hp) # return ms # end function get_H_w_enriched_keys_mtm_quantile(stored_code_component, data, this_bg, hp; quantile=0.35, get_how_many=500) @info "Filtering out the low-magnitude non-zero code components... ($quantile)" stored_code_component_filtered = filter_code_components(stored_code_component; filter_fcn=filter_code_components_using_quantile!, quantile_v=quantile) @info "Get the scanning ranges..." scanning_range = get_scanning_range_of_filtered_code_components(stored_code_component_filtered) H = enumerate_triplets(stored_code_component_filtered, scanning_range, hp) @info "Obtaining the enriched patterns..." enriched_keys = get_enriched_keys(H; max_word_combinations=get_how_many); H_w_enriched_keys = getindices(H, enriched_keys) H_w_enriched_keys_mtm = merge_trim_merge_H_w_enriched_keys(data, hp, H_w_enriched_keys, this_bg) return H_w_enriched_keys_mtm end function get_H_base(stored_code_component, hp; base_thresh=0.01, enriched_atleast=3) stored_code_component_filtered = filter_code_components(stored_code_component; filter_fcn=filter_code_components_using_quantile!, quantile_v=base_thresh) scanning_range = get_scanning_range_of_filtered_code_components(stored_code_component_filtered) H = enumerate_triplets(stored_code_component_filtered, scanning_range, hp) enriched_keys = findall(x->length(x)> enriched_atleast, H) @info "Got H_base" return getindices(H, enriched_keys) end get_backup_enriched_keys(H_base, data, hp, this_bg) = merge_trim_merge_H_w_enriched_keys(data, hp, H_base, this_bg) function run_thru(data, cdl, hp, len, projs, this_bg) @info "Retrieving the non-zero code components..." stored_code_component = code_retrieval(data, cdl, hp, len, projs) H_base = get_H_base(stored_code_component, hp) H_w_enriched_keys_mtm_p25 = get_H_w_enriched_keys_mtm_quantile(stored_code_component, data, this_bg, hp; quantile=0.25, get_how_many=1000) H_w_enriched_keys_mtm_p35 = get_H_w_enriched_keys_mtm_quantile(stored_code_component, data, this_bg, hp; quantile=0.35, get_how_many=1000) H_w_enriched_keys_mtm_p45 = get_H_w_enriched_keys_mtm_quantile(stored_code_component, data, this_bg, hp; quantile=0.45, get_how_many=1000) H_w_enriched_keys_mtm_p5 = get_H_w_enriched_keys_mtm_quantile(stored_code_component, data, this_bg, hp; quantile=0.5, get_how_many=1000) H_w_enriched_keys_mtm_p65 = get_H_w_enriched_keys_mtm_quantile(stored_code_component, data, this_bg, hp; quantile=0.65, get_how_many=1000) H_w_enriched_keys_mtm_p75 = get_H_w_enriched_keys_mtm_quantile(stored_code_component, data, this_bg, hp; quantile=0.75, get_how_many=1000) H_w_enriched_keys_mtm = merge(H_w_enriched_keys_mtm_p75, H_w_enriched_keys_mtm_p65) H_w_enriched_keys_mtm = merge(H_w_enriched_keys_mtm, H_w_enriched_keys_mtm_p5) H_w_enriched_keys_mtm = merge(H_w_enriched_keys_mtm, H_w_enriched_keys_mtm_p45) H_w_enriched_keys_mtm = merge(H_w_enriched_keys_mtm, H_w_enriched_keys_mtm_p35) H_w_enriched_keys_mtm = merge(H_w_enriched_keys_mtm, H_w_enriched_keys_mtm_p25) for k in keys(H_w_enriched_keys_mtm) if haskey(H_base, k) H_w_enriched_keys_mtm[k] = union(H_w_enriched_keys_mtm[k], H_base[k]) else H_w_enriched_keys_mtm[k] = union(H_w_enriched_keys_mtm[k]) end end length(H_w_enriched_keys_mtm) == 0 && (H_w_enriched_keys_mtm = get_backup_enriched_keys(H_base, data, hp, this_bg)) length(H_w_enriched_keys_mtm) == 0 && return nothing ms = enriched_keys2motifs(H_w_enriched_keys_mtm, data, this_bg); expansions_ms!(ms, data, this_bg); ms = alignment_merge!(ms, data, this_bg); ms = merge_to_remove_redundancy!(ms, data, this_bg) new_cmats = posdicts2countmats(ms, data.data_matrix); new_cmats = trim_cmats(new_cmats, this_bg); new_cmats = merge_count_matrices(new_cmats, this_bg); return countmats2motifs(new_cmats, this_bg); end function run_thru2(data, cdl, hp, len, projs, this_bg) @info "Retrieving the non-zero code components..." stored_code_component = code_retrieval(data, cdl, hp, len, projs) H_base = get_H_base(stored_code_component, hp) H_w_enriched_keys_mtm_p25 = get_H_w_enriched_keys_mtm_quantile(stored_code_component, data, this_bg, hp; quantile=0.25, get_how_many=1000) H_w_enriched_keys_mtm_p35 = get_H_w_enriched_keys_mtm_quantile(stored_code_component, data, this_bg, hp; quantile=0.35, get_how_many=1000) H_w_enriched_keys_mtm_p45 = get_H_w_enriched_keys_mtm_quantile(stored_code_component, data, this_bg, hp; quantile=0.45, get_how_many=1000) H_w_enriched_keys_mtm_p5 = get_H_w_enriched_keys_mtm_quantile(stored_code_component, data, this_bg, hp; quantile=0.5, get_how_many=1000) H_w_enriched_keys_mtm_p65 = get_H_w_enriched_keys_mtm_quantile(stored_code_component, data, this_bg, hp; quantile=0.65, get_how_many=1000) H_w_enriched_keys_mtm_p75 = get_H_w_enriched_keys_mtm_quantile(stored_code_component, data, this_bg, hp; quantile=0.75, get_how_many=1000) H_w_enriched_keys_mtm = merge(H_w_enriched_keys_mtm_p75, H_w_enriched_keys_mtm_p65) H_w_enriched_keys_mtm = merge(H_w_enriched_keys_mtm, H_w_enriched_keys_mtm_p5) H_w_enriched_keys_mtm = merge(H_w_enriched_keys_mtm, H_w_enriched_keys_mtm_p45) H_w_enriched_keys_mtm = merge(H_w_enriched_keys_mtm, H_w_enriched_keys_mtm_p35) H_w_enriched_keys_mtm = merge(H_w_enriched_keys_mtm, H_w_enriched_keys_mtm_p25) for k in keys(H_w_enriched_keys_mtm) if haskey(H_base, k) H_w_enriched_keys_mtm[k] = union(H_w_enriched_keys_mtm[k], H_base[k]) else H_w_enriched_keys_mtm[k] = union(H_w_enriched_keys_mtm[k]) end end length(H_w_enriched_keys_mtm) == 0 && (H_w_enriched_keys_mtm = get_backup_enriched_keys(H_base, data, hp, this_bg)) length(H_w_enriched_keys_mtm) == 0 && return nothing ms = enriched_keys2motifs(H_w_enriched_keys_mtm, data, this_bg); # expansions_ms!(ms, data, this_bg); return ms end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
1862
function cmat2ic(cmat; bg=_bg_, ps = _pseudocounts_) # TODO change ps cmat_w_ps = cmat .+ ps freq_mat = cmat_w_ps ./ sum(cmat_w_ps, dims=1) reshape(sum(freq_mat .* log2.(freq_mat ./ bg), dims=1), size(cmat_w_ps,2)) end function ic_span(ic_vec; ic_thresh=ic_trim_thresh, length_thresh=pfm_minimal_length) ic_vec_len = length(ic_vec) span_start = 1; span_end = ic_vec_len for i = 1:ic_vec_len if ic_vec[i] < ic_thresh span_start += 1 else break end end for i = ic_vec_len:-1:1 if ic_vec[i] < ic_thresh span_end -= 1 else break end end keep = span_end-span_start+1 ≥ length_thresh return span_start, span_end, keep end function trim_cmats(cmats, bg) new_cmats = Vector{eltype(cmats)}() ic = cmat2ic.(cmats; bg=bg) trim_info = ic_span.(ic) for (i, (span_start, span_end, keep)) in enumerate(trim_info) keep && push!(new_cmats, cmats[i][:,span_start:span_end]) end return new_cmats end function trim_H(data, H, bg) count_matrices = obtain_count_matrices(data, H) ic = cmat2ic.(count_matrices; bg=bg) trim_info = ic_span.(ic) new_dict = Dictionary{composition_key_type, Vector{value_type}}(); for ((i, (span_start, span_end, keep)), k) in zip(enumerate(trim_info), keys(H)) if keep vs = Vector{value_type}(undef, length(H[k])) len = span_end - span_start + 1 new_k = (f1=k.f1, f2=k.f2, f3=k.f3, d12=k.d12, d13=k.d13, len=len) for (ind,v) in enumerate(H[k]) vs[ind] = (seq_num=v.seq_num, pos=v.pos+span_start-1, comp=v.comp) end insert!(new_dict, new_k, vs) end end println("dict length : $(length(new_dict))") return new_dict end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
1593
function get_matrices(countmat1, countmat2, pseudocount, bg) countmat1 = countmat1 .+ pseudocount countmat2 = countmat2 .+ pseudocount pfm1 = countmat1 ./ sum(countmat1, dims=1) pfm2 = countmat2 ./ sum(countmat2, dims=1) pwm1 = log2.(pfm1 ./ bg); pwm2 = log2.(pfm2 ./ bg); return countmat1, countmat2, pwm1, pwm2 end function avg_allr(countmat1, countmat2, bg; pseudocount=float_type(0.01)) countmat1, countmat2, pwm1, pwm2 = get_matrices(countmat1, countmat2, pseudocount, bg) allr_vec = sum(countmat2 .* pwm1 .+ countmat1 .* pwm2, dims=1) ./ sum(countmat1 + countmat2, dims=1) return sum(allr_vec)/length(allr_vec) end function obtain_uniq_len_and_len_indicator(count_matrices) count_matrices_lengths = size.(count_matrices, 2) uniq_lens = count_matrices_lengths |> unique |> sort; length_indicator = BitMatrix(undef, (length(count_matrices), length(uniq_lens))); @inbounds for (ind, uniq_len) in enumerate(uniq_lens) length_indicator[:, ind] = count_matrices_lengths .== uniq_len end return uniq_lens, length_indicator end function obtain_cmats_and_its_info(count_matrices, length_indicator, i) cmat_w_len_i = count_matrices[view(length_indicator,:, i)] cmat_w_len_i_c = reverse.(cmat_w_len_i) number_of_count_matrices_this_len = length(cmat_w_len_i) unmerged = fill(true, number_of_count_matrices_this_len) return cmat_w_len_i, cmat_w_len_i_c, number_of_count_matrices_this_len, unmerged end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
2644
function merging_h!(count_matrices, H_w_enriched_keys, enriched_keys_vec, bg) uniq_lens, length_indicator = obtain_uniq_len_and_len_indicator(count_matrices) @inbounds for i = 1:length(uniq_lens) cmat_w_len_i, cmat_w_len_i_c, num_of_cmats_this_len, unmerged = obtain_cmats_and_its_info(count_matrices, length_indicator, i) enriched_keys_here = enriched_keys_vec[view(length_indicator,:, i)] for j = 1:num_of_cmats_this_len, k=j+1:num_of_cmats_this_len if unmerged[j] && unmerged[k] allr = avg_allr(cmat_w_len_i[j], cmat_w_len_i[k], bg) > allr_thresh allr_c = avg_allr(cmat_w_len_i[j], cmat_w_len_i_c[k], bg) > allr_thresh if allr || allr_c unmerged[k] = false if merge_add_counts if allr > allr_c append!(H_w_enriched_keys[enriched_keys_here[j]], H_w_enriched_keys[enriched_keys_here[k]]) else append!(H_w_enriched_keys[enriched_keys_here[j]], values_comp.(H_w_enriched_keys[enriched_keys_here[k]])) end end H_w_enriched_keys[enriched_keys_here[k]] = Vector{value_type}() # make empty end end end end merged_into_keys = findall(x->length(x)>0, H_w_enriched_keys) enriched_keys_vec = collect(merged_into_keys) H_w_enriched_keys = getindices(H_w_enriched_keys, merged_into_keys) return H_w_enriched_keys, enriched_keys_vec end function merge_H(data, H_w_enriched_keys, hp, bg) count_matrices = obtain_count_matrices(data, H_w_enriched_keys) enriched_keys_vec = collect(keys(H_w_enriched_keys)) len_cmats = count_matrices |> length; H_w_enriched_keys, enriched_keys_vec = merging_h!(count_matrices, H_w_enriched_keys, enriched_keys_vec, bg) len_merged_cmats = keys(H_w_enriched_keys) |> length; while len_cmats > len_merged_cmats println("Removed $(len_cmats-len_merged_cmats) redundant count matrices; left with $(len_merged_cmats) count matrices.") count_matrices = obtain_count_matrices(data, H_w_enriched_keys) len_cmats = count_matrices |> length; H_w_enriched_keys, enriched_keys_vec = merging_h!(count_matrices, H_w_enriched_keys, enriched_keys_vec, bg) len_merged_cmats = keys(H_w_enriched_keys) |> length; end return H_w_enriched_keys end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
1785
function merging(count_matrices, bg) uniq_lens, length_indicator = obtain_uniq_len_and_len_indicator(count_matrices) # merge the count matrices merged_cmats = Vector{Vector{Matrix{float_type_retrieval}}}(); @inbounds for i = 1:length(uniq_lens) cmat_w_len_i, cmat_w_len_i_c, num_of_cmats_this_len, unmerged = obtain_cmats_and_its_info(count_matrices, length_indicator, i) for j = 1:num_of_cmats_this_len, k=j+1:num_of_cmats_this_len if unmerged[j] && unmerged[k] allr = avg_allr(cmat_w_len_i[j], cmat_w_len_i[k], bg) > allr_thresh allr_c = avg_allr(cmat_w_len_i[j], cmat_w_len_i_c[k], bg) > allr_thresh if allr || allr_c unmerged[k] = false if merge_add_counts if allr > allr_c cmat_w_len_i[j] .+= cmat_w_len_i[k] else cmat_w_len_i[j] .+= cmat_w_len_i_c[k] end end end end end push!(merged_cmats, cmat_w_len_i[unmerged]) end return Iterators.flatten(merged_cmats) |> collect end function merge_count_matrices(count_matrices, bg) len_cmats = count_matrices |> length; merged_cmats = merging(count_matrices, bg) len_merged_cmats = merged_cmats |> length; while len_cmats > len_merged_cmats println("Removed $(len_cmats-len_merged_cmats) redundant count matrices; left with $(len_merged_cmats) count matrices.") len_cmats = len_merged_cmats merged_cmats = merging(merged_cmats, bg) len_merged_cmats = merged_cmats |> length; end return merged_cmats end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
5585
#= Best possible score of a PWM # Input `pwm::Matrix{Real}`: a 4 x m matrix # Output the best possible score this matrix can get =# best_score(pwm::AbstractArray{T,2}) where {T <: Real} = @inbounds sum(maximum( view(pwm,:,i) ) for i in axes(pwm,2)); best_score(pwm_col::AbstractArray{T,1}) where {T<: Real} = maximum(pwm_col); #= Worst possible score of a PWM # Input `pwm::Matrix{Real}`: a 4 x m matrix # Output the worst possible score this matrix can get =# worst_score(pwm::AbstractArray{T,2}) where {T <: Real} = @inbounds sum(minimum(view(pwm,:,i)) for i in axes(pwm,2)); worst_score(pwm_col::AbstractArray{T,1}) where {T <: Real} = minimum(pwm_col); #= Return a column-permuted PWM that minimize the score range so that δ₁ ≥ δ₂ ≥ … ≥ δₘ where δᵢ = best_score(pwm[:,i])-worst_score(pwm[:,i]). # Input `pwm::Matrix{Real}`: a 4 x m matrix # Output a column-permuted pwm =# min_score_range(pwm) = @inbounds view(pwm,:,sortperm([best_score(view(pwm,:,i))-worst_score(view(pwm,:,i)) for i in axes(pwm,2)],rev=true)); #= "Round the PWM" # Input `pwm::Matrix{Real}`: a 4 x m matrix `granularity`: a small positive real number e.g. 0.01 or 0.001, etc. # Output a rounded pwm of the input pwm =# round_pwm(pwm, granularity) = floor.(pwm ./ granularity) * granularity; #= The maximum error induced by the rounded pwm M_ϵ (see definition 3 in https://almob.biomedcentral.com/articles/10.1186/1748-7188-2-15; this is the quantity E) # Input `pwm::Matrix{Real}`: a 4 x m matrix `granularity`: # Output A positve real number that's the maximum error induced by the rounded pwm M_ϵ =# calc_E(pwm, pwm_rounded) = @inbounds sum(maximum((view(pwm,:,i))-(@view pwm_rounded[:,i])) for i in axes(pwm,2)); #= Note: Use a nested dictionary to represent the distribution Q Since Q is used to reference the probability of (M[1…i],score), the keys in the first layer is i, and the value in the first layer are dictionaries with scores as keys and probability as values call create_Q(m) to initialize such a distribution Q where m is the "width" of the PWM =# create_Q(m) = Dict{Int16, SortedDict{Float64,Float64}}(i==0 ? i=>SortedDict(0=>1) : i=>SortedDict() for i=0:m); #= Input: pwm: a 4 x m matrix α, β: score interval [α, β] bg: 4 x 1 vector that specifies the multinomial genomic background; default to flat background. Output: Q: a probability mass table e.g. Q[m] shows all the weights of P[pwm_score = η] for α ≤ η ≤ β =# function most_inner_Q!(Q, i, t, score, bg, j) @inbounds if haskey(Q[i], t) Q[i][t] += Q[i-1][score]*bg[j]; else Q[i][t] = Q[i-1][score]*bg[j]; end end function modifyQ!(Q, score, pwm_, i, alpha, bs, β, ws, bg) @inbounds for j = 1:4 t = score + pwm_[j,i]; (alpha - bs ≤ t ≤ β - ws) && most_inner_Q!(Q, i, t, score, bg, j) end end function inner_Q!(Q, i, alpha, β, bg, pwm_, m) bs = i+1 > m ? 0 : best_score(@view pwm_[:,i+1:m]); ws = i+1 > m ? 0 : worst_score(@view pwm_[:,i+1:m]); @inbounds for score in keys(Q[i-1]) modifyQ!(Q, score, pwm_, i, alpha, bs, β, ws, bg) end end function score_distribution(pwm_::Matrix{T}, alpha::Real, β::Real, bg=_bg_ ) where T <: Real m = size(pwm_,2); Q = create_Q(m); @inbounds for i = 1:m inner_Q!(Q, i, alpha, β, bg, pwm_, m) end return Q end # return the sum of all the weights Q_sum(Q_m::SortedDict{Float64,Float64}) = sum(values(Q_m)); function find_largest_alpha(Q_m::SortedDict{T,T}, pval::T) where T <: Real q_sum = Q_sum(Q_m); largest_k = nothing; for (k,v) in Q_m if q_sum ≥ pval largest_k = k; else return k end q_sum -= v; end return largest_k end function pval_w_Qm(Qm::SortedDict{T,T}, alpha::Real) where T <: Real pval = 0.0; for (k,v) in Qm k ≥ alpha && (pval += v;) end return pval end function find_δ(Q_m::SortedDict{T,T}, pval_ϵ::Real, pval::Real) where T <: Real q_sum_plus_pval_ϵ = Q_sum(Q_m)+pval_ϵ; largest_δ = nothing; for (k,v) in Q_m if q_sum_plus_pval_ϵ ≥ pval largest_δ = k; else return k end q_sum_plus_pval_ϵ -= v; end return largest_δ end """ pval2score(pwm, pval, ϵ=1e-1, k=10, bg=[.25,.25,.25,.25]) Returns the highest score(M,pval) of a `pwm` such that p-value is greater or equal to `pval`. Input: * `pwm`: a 4 x m matrix * `pval`: a p-value; e.g. pval = 1e-3 * `ϵ`: initial granularity (optional) * `k`: Refinement parameter (optional) * `bg`: multinomial background (optional) Output * `alpha`: the highest score-threshold """ function pvalue2score(pwm::Matrix{T}, pval::Real, ϵ=_granularity_; bg=_bg_ ) where T <: Real @assert 0 ≤ pval ≤ 1 "pvalue must be in [0,1]" @assert size(pwm,1) == 4 "The input matrix must have only 4 rows" pwm_Float64 = Float64.(pwm); pval_Float64 = Float64(pval); bg_Float64 = Float64.(bg); mpwm = min_score_range(pwm_Float64); m = size(pwm, 2); pwm_ϵ = round_pwm(mpwm, ϵ); Q = create_Q(m); Q = score_distribution(pwm_ϵ, worst_score(pwm_ϵ), Inf, bg_Float64); @inbounds alpha = find_largest_alpha(Q[m], pval_Float64); return alpha; end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
7918
# function make_effective_pos_mat(ms) # len_max = maximum(ms.lens) # effective_positions_mat = fill(false, (ms.num_motifs, len_max)) # @inbounds for i = 1:ms.num_motifs # effective_positions_mat[i, 1:ms.lens[i]] = ms.effective_positions[i] # end # return cu(effective_positions_mat) # end const record_t = NTuple{3, UInt32} const found_record_t = Vector{record_t}; const batch_size_greedy = 5000; map_cartesian_n_increment(c, n)::record_t = c[1], c[2] + n -1, c[3] ############## greedy alignment ############### # greedy search kernel function greedy_search!(pwms, data_dat_gpu, lens, pos_scores) k = (blockIdx().x - 1) * blockDim().x + threadIdx().x; # kth pair n = (blockIdx().y - 1) * blockDim().y + threadIdx().y; # nth sequence l = (blockIdx().z - 1) * blockDim().z + threadIdx().z; # lth position L, N = size(data_dat_gpu); L_div_4 = CUDA.Int(L/4); K, _, _ = size(pwms); if k ≤ K && n ≤ N && l ≤ L_div_4-lens[k]+1 @inbounds for (ind,i) in enumerate(l:l+lens[k]-1) # if eff_pos_mat[k,ind] for a = 1:4 pos_scores[k,n,l] += pwms[k,a,ind]*data_dat_gpu[(i-1)*4+a,n]; end # end end pos_scores[k,n,l] = pos_scores[k,n,l] > 0f0 ? pos_scores[k,n,l] : 0f0; end return nothing end function modify_w_found!(found_record, score_record, positions, scores, use_comp; rc=false) comp = rc ? true : false; @inbounds for (f, s) in zip(found_record, score_record) m, n, l = f[1], f[2], f[3]; if haskey(positions[m], n) push!(positions[m][n], l) push!(scores[m][n], s) push!(use_comp[m][n], comp) else positions[m][n] = [l]; scores[m][n] = [s]; use_comp[m][n] = [comp]; end end end data_(data; test=false) = test ? data.data_matrix_test : data.data_matrix data_bg(data; test=false) = test ? data.data_matrix_bg_test : data.data_matrix_bg function get_pos_scores_arr(ms, data; rc=false, bg=false, test=false) data_matrix = bg ? data_bg(data; test=test) : data_(data; test=test); found_record = found_record_t() score_record = float_type_retrieval[] # TODO fix this ugly hack length(size(data_matrix)) == 2 && (data_matrix = reshape(data_matrix, (size(data_matrix,1), 1, size(data_matrix,2)))) L, _, N = size(data_matrix) maxlen = maximum(ms.lens); pwms = zeros(float_type_retrieval, ms.num_motifs, 4, maxlen); @inbounds for i = 1:ms.num_motifs pwms[i,:,1:ms.lens[i]] = rc ? reverse(ms.pwms[i]) : ms.pwms[i]; end for n = 1:batch_size_greedy:N nend = min(n+batch_size_greedy-1, N) this_batch_size = nend-n+1 data_matrix_gpu = reshape(cu(float_type_retrieval.(data_matrix[:,1,n:nend])), (L, this_batch_size)); pos_scores = CUDA.zeros(float_type_retrieval, ms.num_motifs, this_batch_size, L); @cuda threads=ker_3d blocks=b_size_3d(pos_scores) greedy_search!(cu(pwms), data_matrix_gpu, cu(ms.lens), pos_scores ); pos_scores_arr = Array(pos_scores); found = findall(pos_scores_arr .> 0f0); append!(found_record, map_cartesian_n_increment.(found, n)) append!(score_record, pos_scores_arr[found]) end return found_record, score_record end function gpu_scan(ms, data; bg=false, test=false) found_record, score_record = get_pos_scores_arr(ms, data; rc=false, bg=bg, test=test); found_record_rc, score_record_rc = get_pos_scores_arr(ms, data; rc=true, bg=bg, test=test); positions, scores, use_comp = motifs_prep(ms); modify_w_found!(found_record, score_record, positions, scores, use_comp; rc=false) modify_w_found!(found_record_rc, score_record_rc, positions, scores, use_comp; rc=true) return positions, scores, use_comp end function scan_w_gpu!(ms, data; bg=false) positions, scores, use_comp = gpu_scan(ms, data; bg=bg) if bg ms.positions_bg = positions; ms.scores_bg = scores; ms.use_comp_bg = use_comp; else ms.positions = positions; ms.scores = scores; ms.use_comp = use_comp; end end ############## greedy alignment with non-overlap ############### function max_score_ind(scores_n, scores_n_mask) max_score = -Inf; maxscore_ind = nothing; maxscore_ind_m = nothing; @inbounds for (ind_1,s) in enumerate(scores_n) for (ind_2, s_) in enumerate(s) if s_ > max_score && scores_n_mask[ind_1][ind_2] max_score = s_ maxscore_ind = ind_2; maxscore_ind_m = ind_1; end end end return maxscore_ind, maxscore_ind_m end max_pos_ind(positions_n, max_score_ind, max_score_m) = positions_n[max_score_m][max_score_ind] _intersect_(p, p_end, p_max, p_max_end) = (p ≤ p_max ≤ p_end) || (p ≤ p_max_end ≤ p_end) || (p_max ≤ p ≤ p_max_end) || (p_max ≤ p_end ≤ p_max_end) function __non_overlap_scan__!(positions, scores, use_comp, lens, N) @inbounds for n = 1:N spans_pos = Int[]; spans_len = Int[]; indices_to_keep_n = [ haskey(positions[i], n) ? fill(false, length(positions[i][n])) : Bool[] for i in eachindex(positions)]; scores_n = [haskey(scores[i], n) ? scores[i][n] : float_type_retrieval[] for i in eachindex(positions)]; scores_n_mask = [fill(true, length(s)) for s in scores_n]; # so entries in ms.scores aren't modified positions_n = [haskey(positions[i], n) ? positions[i][n] : Int[] for i in eachindex(positions)]; maxscore_ind, maxscore_ind_m = max_score_ind(scores_n, scores_n_mask) if !isnothing(maxscore_ind) while !isnothing(maxscore_ind) maxpos_ind = max_pos_ind(positions_n, maxscore_ind, maxscore_ind_m) intersect_ = false; for (p,l) in zip(spans_pos, spans_len) # check whether this "segment" intersect with any previous segments p_end = p+l-1; p_max = positions_n[maxscore_ind_m][maxscore_ind]; p_max_end = p_max+lens[maxscore_ind_m]-1; if _intersect_(p, p_end, p_max, p_max_end) intersect_ = true; break end end if !intersect_ indices_to_keep_n[maxscore_ind_m][maxscore_ind] = true; push!(spans_pos, maxpos_ind); push!(spans_len, lens[maxscore_ind_m]); end scores_n_mask[maxscore_ind_m][maxscore_ind]=false; maxscore_ind, maxscore_ind_m = max_score_ind(scores_n, scores_n_mask) end for j in eachindex(positions) if haskey(positions[j], n) positions[j][n] = positions[j][n][indices_to_keep_n[j]]; scores[j][n] = scores[j][n][indices_to_keep_n[j]]; use_comp[j][n] = use_comp[j][n][indices_to_keep_n[j]]; # so that the set of sequences covered by pwms are disjoint end end end end return positions, scores, use_comp end function non_overlap_scan!(ms::motifs{T,S}, N, bg) where {T <: Int, S <: Real} ms.positions, ms.scores, ms.use_comp = __non_overlap_scan__!(ms.positions, ms.scores, ms.use_comp, ms.lens, N) keep = get_activate_counts(ms) .> 0; return filter_motifs_w_filter_vec(ms, keep, bg); end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
5737
#################################### obtain the enlarged matrix #################################### function submat_comlement(data_matrix, start_, end_, k, len) piece = @view data_matrix[start_:end_,1,k]; reverse(reshape(piece,(4,len))) end function enlarged_mat_add!(enlarged_mat, data_matrix, _start_, _end_, seq_ind, use_comp) if use_comp enlarged_mat .+= submat_comlement(data_matrix, four_based_ind(_start_), four_based_ind(_end_)+3, seq_ind, size(enlarged_mat,2)) else enlarged_mat .+= reshape(view(data_matrix, four_based_ind(_start_):four_based_ind(_end_)+3,1,seq_ind), (4,size(enlarged_mat,2))) end end function enlarged_mat_increment!(ms, pfm_ind, seq_ind, ind_k, diff_front, diff_end, data_matrix, L, enlarged_mat, enlarged_dict, enlarged_dict_use_comp; comp_match=false) use_comp = ms.use_comp[pfm_ind][seq_ind][ind_k]; front_diff = use_comp ? diff_end : diff_front; end_diff = diff_front + diff_end _start_ = ms.positions[pfm_ind][seq_ind][ind_k] - front_diff; _end_ = _start_ + ms.lens[pfm_ind] + end_diff - 1; if (1 ≤ _start_) && (_end_ ≤ L) enlarged_mat_add!(enlarged_mat, data_matrix, _start_, _end_, seq_ind, ms.use_comp[pfm_ind][seq_ind][ind_k]) if !haskey(enlarged_dict, seq_ind) enlarged_dict[seq_ind] = [_start_] enlarged_dict_use_comp[seq_ind] = [ifelse(comp_match, !use_comp, use_comp)] else push!(enlarged_dict[seq_ind], _start_) push!(enlarged_dict_use_comp[seq_ind], comp_match) end end end function obtain_enlarged_matrix(ms::motifs{T,S}, pfm_ind, diff_front, diff_end, data_matrix, L; comp_match=false) where {T,S} enlarged_length = ms.lens[pfm_ind] + diff_front + diff_end; enlarged_mat = zeros(S, (4, enlarged_length)) enlarged_dict = Dict{T,Vector{T}}(i=>[] for i in keys(ms.positions[pfm_ind])) enlarged_dict_use_comp = Dict{T,Vector{Bool}}(i=>[] for i in keys(ms.positions[pfm_ind])) @inbounds for seq_ind in keys(ms.positions[pfm_ind]) for ind_k in 1:length(ms.positions[pfm_ind][seq_ind]) enlarged_mat_increment!(ms, pfm_ind, seq_ind, ind_k, diff_front, diff_end, data_matrix, L, enlarged_mat, enlarged_dict, enlarged_dict_use_comp; comp_match=comp_match) end end return ifelse(comp_match, reverse(enlarged_mat), enlarged_mat), enlarged_dict, enlarged_dict_use_comp end #################################################################################################### function this_cmat_pair_of_different_len_has_high_allr(cmat1, cmat2, i, j, bg; max_allowed_diff = max_allowed_diff, allr_thresh=allr_thresh) len_diff = size(cmat1,2)-size(cmat2,2) (abs(len_diff) > max_allowed_diff) && return nothing, nothing, nothing, nothing, nothing, false len_cond = len_diff < 0; smaller_mat = len_cond ? cmat1 : cmat2 larger_mat = len_cond ? cmat2 : cmat1 smaller_ind = len_cond ? i : j larger_ind = len_cond ? j : i smaller_mat_r = reverse(smaller_mat); # TODO later make it without a copy larger_mat_size = size(larger_mat,2) comp_match = false; diff_front = nothing; diff_end = nothing numcol_smaller_mat = size(smaller_mat,2); for i = 1:abs(len_diff)+1 allr = avg_allr(smaller_mat, view(larger_mat, :,i:i+numcol_smaller_mat-1), bg) if allr > allr_thresh diff_front = i-1 diff_end = larger_mat_size - (i+numcol_smaller_mat-1) break end allr_c = avg_allr(smaller_mat_r, view(larger_mat, :,i:i+numcol_smaller_mat-1), bg) if allr_c > allr_thresh comp_match = true diff_front = larger_mat_size - (i+numcol_smaller_mat-1) diff_end = i-1 break end end return diff_front, diff_end, smaller_ind, larger_ind, larger_mat, comp_match end function alignment_merge!(ms, data, bg; allr_thresh=allr_thresh) count_matrix_each = posdicts2countmats(ms, data.data_matrix); ms.cmats = count_matrix_each; merged = fill(false, ms.num_motifs) for i = 1:ms.num_motifs for j = i+1:ms.num_motifs merged[i] && continue merged[j] && continue diff_front, diff_end, smaller_ind, larger_ind, larger_mat, comp_match = this_cmat_pair_of_different_len_has_high_allr(ms.cmats[i], ms.cmats[j], i, j, bg) if !isnothing(diff_front) && !isnothing(diff_end) enlarged_matrix, enlarged_dict, enlarged_dict_use_comp = obtain_enlarged_matrix(ms, smaller_ind, diff_front, diff_end, data.data_matrix, data.L; comp_match=comp_match) if avg_allr(enlarged_matrix, larger_mat, bg) > allr_thresh merge_add_counts && (ms.cmats[larger_ind] .+= enlarged_matrix) # merge the positions ms.positions[larger_ind] = mergewith(vcat, ms.positions[larger_ind], enlarged_dict) # merge the use_comp ms.use_comp[larger_ind] = mergewith(vcat, ms.use_comp[larger_ind], enlarged_dict_use_comp ) merged[smaller_ind] = true; end end end end unmerged_cmats = ms.cmats[.!merged]; unmerged_positions = ms.positions[.!merged]; unmerged_use_comp = ms.use_comp[.!merged]; return countmats2motifs(unmerged_cmats, unmerged_positions, unmerged_use_comp, bg) end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
3574
unique_positions(positions_array) = unique(positions_array) #TODO speed this up function get_uniq_pos(positions_i) positions_copy = typeof(positions_i)() for k in keys(positions_i) positions_copy[k] = unique_positions(positions_i[k]) end return positions_copy end get_uniq_counts(ms) = active_counts_position(get_uniq_pos.(ms.positions)), active_counts_position(get_uniq_pos.(ms.positions_bg)) ########################################################################### function num_overlap(r1::UnitRange, r2::UnitRange) @assert r1[1] ≤ r1[end] && r2[1] ≤ r2[end] "range is not valid" @inbounds if r1[1] ≤ r2[1] ≤ r1[end] return min(r1[end],r2[end])-r2[1]+1; elseif r2[1] ≤ r1[1] ≤ r2[end] return min(r1[end],r2[end])-r1[1]+1; else return 0; end end function total_active_position(position) activate_count = 0 for key in keys(position) for r in position[key] activate_count += length(r) end end return activate_count end function push_ranges!(ranges, _ranges_, i) if _ranges_[end][end] ≥ ranges[i][1] _ranges_[end] = _ranges_[end][1]:ranges[i][end] else push!(_ranges_, ranges[i]) end end function union_ranges(ranges) length(ranges) == 0 && return eltype(ranges)[] ranges = sort(ranges, by = x->x[1]) _ranges_ = [ranges[1]] @inbounds for i in eachindex(@view ranges[2:end]) push_ranges!(ranges, _ranges_, i) end return _ranges_ end function union_pos(positions_arr_k, len) ranges = [positions_arr_k[i]:positions_arr_k[i]+len-1 for i in eachindex(positions_arr_k)] return union_ranges(ranges) end function get_union_ranges(positions_i, len_i) positions_copy = Dict{Int, Vector{UnitRange{Int}}}(k=>[] for k in keys(positions_i)); for k in keys(positions_copy) positions_copy[k] = union_pos(positions_i[k], len_i) end return positions_copy end function get_total_occupied_positions(position_ranges) total_positions = 0 for k in keys(position_ranges) for r in position_ranges[k] total_positions += length(r) end end return total_positions end # function overlap_inc!(pos_i, pos_j, overlap_ij, mutual_keys) # end function get_overlap_ratio(ms) # @info "Computing union ranges..." # union_poses = get_union_ranges.(ms.positions, ms.lens) union_poses = Vector{Dict{Int64, Vector{UnitRange{Int64}}}}(undef, ms.num_motifs) @floop for i = 1:ms.num_motifs union_poses[i] = get_union_ranges(ms.positions[i], ms.lens[i]) end # @info "Computing total active positions..." acs = total_active_position.(union_poses) olap_ratio_ij = zeros(Float32, (ms.num_motifs, ms.num_motifs)) # @info "Computing overlap ratio..." @floop for i = 1:ms.num_motifs # println(i) @inbounds for j = i+1:ms.num_motifs pos_i = union_poses[i] pos_j = union_poses[j] overlap_ij = 0f0 mutual_keys = intersect(keys(pos_i), keys(pos_j)) for k in mutual_keys length(pos_i[k]) == 0 || length(pos_j[k]) == 0 && continue for pos_i_range in pos_i[k] for pos_j_range in pos_j[k] overlap_ij += num_overlap(pos_i_range, pos_j_range) end end end olap_ratio_ij[i,j] = olap_ratio_ij[j,i] = overlap_ij / (acs[i]+acs[j]-overlap_ij) end end return olap_ratio_ij end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
6791
function countvec2ic(count_vec, pos_ki; ps=0.01) count_vec = count_vec .+ ps; count_vec_sum = sum(count_vec); freq_vec = count_vec ./ count_vec_sum count_vec_sum/length(pos_ki), 2 + sum(freq_vec .* log2.(freq_vec)) end get_char(data, p, char_ind, comp) = comp ? atcg2dummy[ atcg_comp[data.raw_data[p[2]][char_ind]] ] : atcg2dummy[ data.raw_data[p[2]][char_ind] ] # get_char(data, p, char_ind, comp) = # comp ? # atcg2dummy[ atcg_comp[data.raw_data[p[2]].str[char_ind]] ] : # atcg2dummy[ data.raw_data[p[2]].str[char_ind] ] count_vec_at_pos_ms(p, data, char_ind, comp) = char_ind < 1 || char_ind > data.L ? atcg2dummy['z'] : get_char(data, p, char_ind, comp) get_expand_ind_left(p, Δ, comp) = comp ? p[1][end]+Δ : p[1][1]-Δ; get_expand_ind_right(p, Δ, comp) = comp ? p[1][1]-Δ : p[1][end]+Δ; get_shrink_ind_left(p, Δ, comp) = comp ? p[1][end]-Δ : p[1][1]+Δ; get_shrink_ind_right(p, Δ, comp) = comp ? p[1][1]+Δ : p[1][end]-Δ; function left_expansion_ms(data, pos_ki, dec; ic_expand_thresh=0.5, pc=1.0, tol=0.975) count_vec = @SVector zeros(Float64, 4) for p in pos_ki count_vec += count_vec_at_pos_ms(p, data, get_expand_ind_left(p, dec, p[3]), p[3]) end percentage_used, ic = countvec2ic(count_vec .+ pc, pos_ki) return percentage_used > tol && ic > ic_expand_thresh end function right_expansion_ms(data, pos_ki, inc; ic_expand_thresh=0.5, pc=1.0, tol=0.975) count_vec = @SVector zeros(Float64, 4) for p in pos_ki count_vec += count_vec_at_pos_ms(p, data, get_expand_ind_right(p, inc, p[3]), p[3]) end percentage_used, ic = countvec2ic(count_vec .+ pc, pos_ki) return percentage_used > tol && ic > ic_expand_thresh end function left_shrinkage_ms(data, pos_ki, inc; ic_shrink_thresh=0.2, tol=0.975) count_vec = @SVector zeros(Float64, 4) for p in pos_ki count_vec += count_vec_at_pos_ms(p, data, get_shrink_ind_left(p, inc, p[3]), p[3]) end percentage_used, ic = countvec2ic(count_vec, pos_ki) return percentage_used > tol && ic < ic_shrink_thresh end function right_shrinkage_ms(data, pos_ki, dec; ic_shrink_thresh=0.2, tol=0.975) count_vec = @SVector zeros(Float64, 4) for p in pos_ki count_vec += count_vec_at_pos_ms(p, data, get_shrink_ind_right(p, dec, p[3]), p[3]) end percentage_used, ic = countvec2ic(count_vec, pos_ki) return percentage_used > tol && ic < ic_shrink_thresh end function expansion_left_right_ms(data, pos_ki, ic_expand_thresh) expand_left = true; expand_right = true; left_dec = 1; right_inc = 1; while expand_left expand_left = left_expansion_ms(data, pos_ki, left_dec; ic_expand_thresh=ic_expand_thresh) expand_left ? left_dec+=1 : left_dec-=1; end while expand_right expand_right = right_expansion_ms(data, pos_ki, right_inc; ic_expand_thresh=ic_expand_thresh) expand_right ? right_inc+=1 : right_inc-=1; end return left_dec, right_inc end function trimming_left_right_ms(expansion::Tuple{Int, Int}, data, pos_ki, ic_shrink_thresh) # returns how much increment (decrement) from the left (from the right) shrink_left_ = expansion[1] == 0 ? true : false; shrink_right_ = expansion[2] == 0 ? true : false; left_inc = shrink_left_ ? 1 : 0; right_dec = shrink_right_ ? 1 : 0; while shrink_left_ shrink_left_ = left_shrinkage_ms(data, pos_ki, left_inc-1; ic_shrink_thresh=ic_shrink_thresh) shrink_left_ ? left_inc+=1 : left_inc -= 1; end while shrink_right_ shrink_right_ = right_shrinkage_ms(data, pos_ki, right_dec-1; ic_shrink_thresh=ic_shrink_thresh) shrink_right_ ? right_dec+=1 : right_dec-=1; end return left_inc, right_dec end function msa_expansion_ms(pos, data, ic_expand_thresh, ic_shrink_thresh) expansions = Vector{Tuple{Int,Int}}(); shrinkage = Vector{Tuple{Int,Int}}(); pos_lens = length.(pos) for (ind, pos_ki) in enumerate(pos) if pos_lens[ind] > 0 push!(expansions, expansion_left_right_ms(data, pos_ki, ic_expand_thresh)) else push!(expansions, (0,0)) end end for (ind, expansion) in enumerate(expansions) if pos_lens[ind] > 0 push!(shrinkage, trimming_left_right_ms(expansion, data, pos[ind], ic_shrink_thresh)) else push!(shrinkage, (0,0)) end end return expansions, shrinkage end function posdict2pos(ms) pos = [Vector{Tuple{UnitRange{Int64}, Int64, Bool}}() for _ = 1:ms.num_motifs] for i = 1:ms.num_motifs for k in keys(ms.positions[i]) for (ind,w) in enumerate(ms.positions[i][k]) push!(pos[i], (w:w+ms.lens[i]-1, k, ms.use_comp[i][k][ind])) end end end return pos end function edit_posdict_i!(expand__left, expand__right, shrink__left, shrink__right, ms, i, L) @assert expand__left == 0 || shrink__left == 0 "one left shink/expand has to be 0" @assert expand__right == 0 || shrink__right == 0 "one right shink/expand has to be 0" left_Δ = -expand__left + shrink__left right_Δ = expand__right - shrink__right ms.lens[i] += -left_Δ + right_Δ # @info "motif: $i, Left-Δ: $left_Δ, right-Δ: $right_Δ" for k in keys(ms.positions[i]) indices_to_keep = fill(true, length(ms.positions[i][k])) for ind in 1:length(ms.positions[i][k]) Δ = ifelse(ms.use_comp[i][k][ind], ms.positions[i][k][ind] - right_Δ, ms.positions[i][k][ind] + left_Δ) if 1 ≤ Δ ≤ L && Δ + ms.lens[i] - 1 ≤ L ms.positions[i][k][ind] = Δ else indices_to_keep[ind] = false end end ms.positions[i][k] = ms.positions[i][k][indices_to_keep] ms.use_comp[i][k] = ms.use_comp[i][k][indices_to_keep] # TODO scores as well? end end function expansions_ms!(ms, data, bg; ic_expand_t=ic_expand_thresh, ic_shrink_t=ic_trim_thresh) use_next = fill(true, ms.num_motifs) ms_pos = posdict2pos(ms) expansions, shrinkage = msa_expansion_ms(ms_pos, data, ic_expand_t, ic_shrink_t) for (ind, ((el,er),(sl,sr))) in enumerate(zip(expansions, shrinkage)) if sl + sr > ms.lens[ind] use_next[ind] = false else edit_posdict_i!(el, er, sl, sr, ms, ind, data.L) end end ms = countmats2motifs(ms.cmats[use_next], ms.positions[use_next], ms.use_comp[use_next], bg) end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
2007
function get_start_end(positions, len4, i, k, ind_k) start_ = (positions[i][k][ind_k]-1)*4+1; end_ = start_+len4-1; return start_, end_ end function msa_add!(i, len4, positions, use_complement, lens, msa, data_matrix; ps=0.01, return_count_mat=false) @inbounds for k in keys(positions[i]) for ind_k in 1:length(positions[i][k]) # println("i: $i, k: $k, ind_k: $ind_k") start_, end_ = get_start_end(positions, len4, i, k, ind_k) if use_complement[i][k][ind_k] msa .+= reshape(submat_comlement(data_matrix,start_,end_,k, lens[i]),(4, lens[i])); else msa .+= reshape((@view data_matrix[start_:end_,1,k]), (4, lens[i])); end end end return return_count_mat ? msa .+ ps : countmat2pfm(msa .+ ps) end f_retrieval_t(x) = float_type_retrieval.(x) function posdicts2countmats(ms::motifs, data_matrix::Array{S,3}) where {S<:Real} count_mats = Vector{Matrix{S}}(undef, ms.num_motifs); @inbounds for i in 1:ms.num_motifs # println(i) msa = zeros(S, (4, ms.lens[i])); count_mat = msa_add!(i, 4*ms.lens[i], ms.positions, ms.use_comp, ms.lens, msa, data_matrix; return_count_mat=true) count_mats[i] = count_mat end return f_retrieval_t.(count_mats) end function posdicts2countmats(pos, use_comp, len, data_matrix::Array{S,3}) where {S<:Real} len4 = 4*len; count_mat = zeros(eltype(data_matrix), (4, len) ); for k in keys(pos) for ind_k in 1:length(pos[k]) start_ = (pos[k][ind_k]-1)*4+1; end_ = start_+len4-1; if use_comp[k][ind_k] count_mat .+= reshape(submat_comlement(data_matrix, start_, end_, k, len),(4, len)); else count_mat .+= reshape((@view data_matrix[start_:end_, 1, k]), (4, len)); end end end return Float16.(count_mat) end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
1941
function active_counts_position(positions) activate_count = Vector{Float64}(undef, length(positions)) @inbounds for i in eachindex(positions) sum_p = 0 for key in keys(positions[i]) sum_p += length(positions[i][key]) end activate_count[i] = sum_p end return activate_count end function get_activate_counts(ms::motifs; bg = false) positions = bg ? ms.positions_bg : ms.positions; return active_counts_position(positions) end get_both_activate_counts(ms::motifs) = get_activate_counts(ms), get_activate_counts(ms; bg=true) function fisher_pvec(activate_counts, activate_counts_bg, data; test=false) activate_sum = (test ? data.N_test : data.N) * data.L # total number of components that can be activated pvalues = fill(0.0, length(activate_counts)); for i in eachindex(activate_counts) a = activate_counts[i]; b = activate_counts_bg[i]; c = activate_sum - a; d = activate_sum - b; if a == 0 && b == 0 pvalues[i] = 1.0 # if there's no activation in both just throw it away else q = FisherExactTest(promote_i(a, c, b, d)...); pvalues[i] = HypothesisTests.pvalue(q, tail=:right); end end return pvalues end function get_fisher_p_values(ms::motifs, data; test=false) union_positions, union_positions_bg = get_union_ranges.(ms.positions, ms.lens), get_union_ranges.(ms.positions_bg, ms.lens) total_positions, total_positions_bg = get_total_occupied_positions.(union_positions), get_total_occupied_positions.(union_positions_bg) return fisher_pvec(total_positions, total_positions_bg, data; test=test) end function filter_insignificant_motifs(ms::motifs, data, this_bg; test=false) pvec = get_fisher_p_values(ms, data; test=test); keep = pvec .< pvalue_fisher_thresh return filter_motifs_w_filter_vec(ms, keep, this_bg) end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
16072
############# take out and merge procedure ############# pfm2pwm(pfm, bg) = log2.(pfm ./ bg); #= Delete the motifs that are indicated by the indicator vector =# function delete_indicated_motif!(ms, indicator_vec) !isnothing(ms.cmats) && (ms.cmats = ms.cmats[.!indicator_vec]) !isnothing(ms.pfms) && (ms.pfms = ms.pfms[.!indicator_vec]) !isnothing(ms.pwms) && (ms.pwms = ms.pwms[.!indicator_vec]) !isnothing(ms.effective_segments) && (ms.effective_segments = ms.effective_segments[.!indicator_vec]) !isnothing(ms.max_effective_lens) && (ms.max_effective_lens = ms.max_effective_lens[.!indicator_vec]) !isnothing(ms.max_scores) && (ms.max_scores = ms.max_scores[.!indicator_vec]) !isnothing(ms.min_scores) && (ms.min_scores = ms.min_scores[.!indicator_vec]) !isnothing(ms.score_thresh) && (ms.score_thresh = ms.score_thresh[.!indicator_vec]) !isnothing(ms.lens) && (ms.lens = ms.lens[.!indicator_vec]) !isnothing(ms.positions) && (ms.positions = ms.positions[.!indicator_vec]) !isnothing(ms.scores) && (ms.scores = ms.scores[.!indicator_vec]) !isnothing(ms.use_comp) && (ms.use_comp = ms.use_comp[.!indicator_vec]) !isnothing(ms.positions_bg) && (ms.positions_bg = ms.positions_bg[.!indicator_vec]) !isnothing(ms.scores_bg) && (ms.scores_bg = ms.scores_bg[.!indicator_vec]) !isnothing(ms.use_comp_bg) && (ms.use_comp_bg = ms.use_comp_bg[.!indicator_vec]) ms.num_motifs = length(ms.cmats) end function delete_by_indices!(ms, indices_vec) deleteat!(ms.cmats, indices_vec) deleteat!(ms.effective_segments, indices_vec) deleteat!(ms.positions, indices_vec) deleteat!(ms.use_comp, indices_vec) deleteat!(ms.lens, indices_vec) ms.num_motifs -= length(indices_vec) end #= take out the sub-motifs that are within the range of the length tuple two objectives: # modify the ms object so that it no longer contains the sub-motifs that are within the range of the length tuple # return the sub-motifs that are within the range of the length tuple =# function take_out_sub_ms_by_range_indicator!(ms, bg, range_low_bdd, range_uppper_bdd) len_this_range = range_low_bdd .≤ ms.lens .≤ range_uppper_bdd all(len_this_range .== false) && return this_len_range_cmats = ms.cmats[len_this_range] this_len_positions = ms.positions[len_this_range] this_len_use_comp = ms.use_comp[len_this_range] this_len_ms = countmats2motifs(this_len_range_cmats, this_len_positions, this_len_use_comp, bg) delete_indicated_motif!(ms, len_this_range) return this_len_ms end #= merge the two ms =# function merge_ms(ms1, ms2, bg) cat_cmats = vcat(ms1.cmats, ms2.cmats) cat_positions = vcat(ms1.positions, ms2.positions) cat_use_comp = vcat(ms1.use_comp, ms2.use_comp) return countmats2motifs(cat_cmats, cat_positions, cat_use_comp, bg) end ############# calculate jaccard similarity and BFS for connected components ############# # ms_this_range = take_out_sub_ms_by_range_indicator!(ms, bg, 30, 35) # # if !isnothing(ms_this_range) ... # olap_ratio = get_overlap_ratio(ms_this_range) function return_connected_components(olap_ratio, jaccard_thresh=0.8) A = olap_ratio .> jaccard_thresh; l = size(A, 1); marked = fill(false, l); trees = Vector{Int}[]; for i = 1:l start = i # if not discovered; add conditions later queue = Deque{Int}(); @inbounds if !marked[i] marked[i] = true; subtree = Int[]; push!(subtree, start) pushfirst!(queue, start) while length(queue) != 0 v = pop!(queue); for j in findall(A[v,:] .> 0) if !marked[j] marked[j] = true; push!(subtree, j); pushfirst!(queue, j); end end end # if size(subtree)[1] > 1 push!(trees, subtree) # end end end return trees end function allr(p, q, p_count, q_count, bg) allr_score = Float64[]; for i = 1:size(p,2) view_p_col = Base.view(p, :, i); view_q_col = Base.view(q, :, i); nb_p = p_count .* view_p_col; nb_q = q_count .* view_q_col; a1=sum(nb_p .* pfm2pwm(view_q_col, bg)); a2=sum(nb_q .* pfm2pwm(view_p_col, bg)); push!(allr_score, (a1+a2)/(sum(nb_p)+sum(nb_q))) end return sum(allr_score) end function convolve_allr(pfm_c2, pfm, counts_pfm_c2, counts_pfm, len_pfm_c2, len_pfm, bg; len_diff_tol=4 ) #= len_pfm_c2 will always be smaller since we've select the ones with minimal length =# min_col = len_pfm_c2 - len_diff_tol; allrs = Float64[]; # start and end indices for pwms # s1e2 for pfm_c2, s2e2 for pfm s1e1s = UnitRange{Int}[]; s2e2s = UnitRange{Int}[]; l_dec_1 = Int[]; l_dec_2 = Int[]; r_inc_1 = Int[]; r_inc_2 = Int[]; for i = 1:(len_pfm_c2+len_pfm-1) s1 = max(1, len_pfm_c2-i+1); e1 = min(len_pfm_c2, len_pfm_c2-(i-len_pfm)); s2 = max(1, i-len_pfm_c2+1); e2 = min(i, len_pfm); overlap_count = e1-s1+1; push!(s1e1s, s1:e1); push!(s2e2s, s2:e2); #= Note that: 1) no need to calculate if the number of columns of the pfm is less than min_col as specified 2) no need to calculate the placements for which maximal value of the score is below the threshold =# if overlap_count ≥ min_col push!(allrs, allr(Base.view(pfm_c2,:,s1:e1), Base.view(pfm,:,s2:e2), counts_pfm_c2, counts_pfm, bg)); else push!(allrs, -Inf); end push!(l_dec_1, max(s2-1,0)); push!(l_dec_2, max(s1-1,0)); push!(r_inc_1, max(0,len_pfm-i)); push!(r_inc_2, max(i-e2,0)); end argmax_ind = argmax(allrs); return allrs[argmax_ind], l_dec_1[argmax_ind], r_inc_1[argmax_ind], l_dec_2[argmax_ind], r_inc_2[argmax_ind] end reduce_merge_with_two_dict(d1, d2) = mergewith(vcat, d1, d2) # modify_subtree_positions_lens!(subtree_pos, subtree_lens, subtree_use_comb, subtree_num_ms, reverse_comp, # ld1_matches, ri1_matches, ld2_matches, ri2_matches, data.L) function modify_subtree_positions_lens!( subtree_pos, subtree_lens, subtree_use_comb, subtree_num_ms, reverse_comp, ld1_matches, ri1_matches, ld2_matches, ri2_matches, L) # modify the positions max_start_decrement_root = maximum(ld1_matches) max_start_decrement_root_c = maximum(ri1_matches) merged_len = subtree_lens[1] + max_start_decrement_root + max_start_decrement_root_c mark2delete = [Dict{Int, Vector{Int}}() for _ = 1:subtree_num_ms] # mark2delete = [Dict{Int, Vector{Int}}(k=>[] for k in keys(subtree_pos[i])) for i = 1:subtree_num_ms] # mark2delete = [Dict{Int, BitVector}(k=>trues(length(subtree_pos[i][k])) for k in keys(subtree_pos[i])) for i = 1:subtree_num_ms] println("reverse_comp: ", reverse_comp) for key in keys(subtree_pos[1]) for (ind, pos) in enumerate(subtree_pos[1][key]) modified_start = subtree_use_comb[1][key][ind] ? pos - max_start_decrement_root_c : pos - max_start_decrement_root; if modified_start > 0 && modified_start + merged_len -1 <= L subtree_pos[1][key][ind] = modified_start else # mark2delete[1][key][ind] = false if haskey(mark2delete[1], key) push!(mark2delete[1][key], ind) else mark2delete[1][key] = [ind] end end end end # modify the rest of the positions for i = 2:subtree_num_ms for key in keys(subtree_pos[i]) for (ind, pos) in enumerate(subtree_pos[i][key]) diff = ifelse(reverse_comp[i-1], subtree_use_comb[i][key][ind] ? ld2_matches[i-1]+max_start_decrement_root-ld1_matches[i-1] : ri2_matches[i-1]+max_start_decrement_root_c-ri1_matches[i-1] , subtree_use_comb[i][key][ind] ? ri2_matches[i-1]+max_start_decrement_root_c-ri1_matches[i-1] : ld2_matches[i-1]+max_start_decrement_root-ld1_matches[i-1] ) subtree_use_comb[i][key][ind] = ifelse(reverse_comp[i-1], !subtree_use_comb[i][key][ind], subtree_use_comb[i][key][ind]) modified_start = pos - diff if modified_start > 0 && modified_start + merged_len - 1 <= L subtree_pos[i][key][ind] = modified_start else # mark2delete[1][key][ind] = false if haskey(mark2delete[i], key) push!(mark2delete[i][key], ind) else mark2delete[i][key] = [ind] end end end end end # for i = 1:subtree_num_ms # for key in keys(mark2delete[i]) # println("=====================================") # println("i: ", i) # println("key: ", key) # println("mark2delete[i][key]: ", mark2delete[i][key]) # println("subtree_pos[i][key]: ", subtree_pos[i][key]) # println("subtree_use_comb[i][key]: ", subtree_use_comb[i][key]) # println("=====================================") # end # end # if haskey(subtree_pos[2], 3821) # println(subtree_pos[2][3821]); # println(subtree_use_comb[2][3821]); # println("=====================================") # end # println(mark2delete) for i = 1:subtree_num_ms println(i) for key in keys(mark2delete[i]) keep_indices= filter(x->!(x in mark2delete[i][key]), eachindex(subtree_pos[i][key])) # println(subtree_pos[i][key]) # println(keep_indices) subtree_pos[i][key] = subtree_pos[i][key][keep_indices] subtree_use_comb[i][key] = subtree_use_comb[i][key][keep_indices] # try # deleteat!(subtree_pos[i][key], mark2delete[i][key]) # deleteat!(subtree_use_comb[i][key], mark2delete[i][key]) # catch e # if isa(e, BoundsError) # println("i: ", i) # println("key: ", key) # println("mark2delete[i][key]: ", mark2delete[i][key]) # println("subtree_pos[i][key]: ", subtree_pos[i][key]) # println("subtree_use_comb[i][key]: ", subtree_use_comb[i][key]) # end # end end # println("i: ", i) # if haskey(subtree_pos[2], 3821) # println(subtree_pos[2][3821]); # println(subtree_use_comb[2][3821]); # end end merged_pos = reduce(reduce_merge_with_two_dict, subtree_pos) merged_use_comp = reduce(reduce_merge_with_two_dict, subtree_use_comb) return merged_pos, merged_use_comp, merged_len end function update_matches!(i, ld1, ri1, ld2, ri2, rc, ld1_matches, ri1_matches, ld2_matches, ri2_matches, reverse_comp) ld1_matches[i-1] = ld1 ri1_matches[i-1] = ri1 ld2_matches[i-1] = ld2 ri2_matches[i-1] = ri2 reverse_comp[i-1] = rc end function process_subtree(subtree, ms_this_range, data, bg) println("subtree: $subtree") # sort subtree by length sort_inds = subtree[sortperm(ms_this_range.lens[subtree])] println("sort_inds: $sort_inds") subtree_cmats = ms_this_range.cmats[sort_inds] subtree_pfms = ms_this_range.pfms[sort_inds] subtree_pos = ms_this_range.positions[sort_inds] subtree_use_comb = ms_this_range.use_comp[sort_inds] subtree_lens = ms_this_range.lens[sort_inds] subtree_counts = [sum((@view cmat[:,1])) for cmat in subtree_cmats] subtree_num_ms = length(subtree) ld1_matches = Vector{Int}(undef, subtree_num_ms-1); ri1_matches = Vector{Int}(undef, subtree_num_ms-1); ld2_matches = Vector{Int}(undef, subtree_num_ms-1); ri2_matches = Vector{Int}(undef, subtree_num_ms-1); reverse_comp = Vector{Bool}(undef, subtree_num_ms-1); for i in 2:subtree_num_ms allr_score, ld1, ri1, ld2, ri2 = convolve_allr( subtree_pfms[1], subtree_pfms[i], subtree_counts[1], subtree_counts[i], subtree_lens[1], subtree_lens[i], bg); allr_score_c, ld1_c, ri1_c, ld2_c, ri2_c = convolve_allr( subtree_pfms[1], reverse(subtree_pfms[i]), subtree_counts[1], subtree_counts[i], subtree_lens[1], subtree_lens[i], bg); if allr_score_c > allr_score update_matches!(i, ld1_c, ri1_c, ld2_c, ri2_c, true, ld1_matches, ri1_matches, ld2_matches, ri2_matches, reverse_comp) else update_matches!(i, ld1, ri1, ld2, ri2, false, ld1_matches, ri1_matches, ld2_matches, ri2_matches, reverse_comp) end end merged_pos, merged_use_comp, merged_len = modify_subtree_positions_lens!(subtree_pos, subtree_lens, subtree_use_comb, subtree_num_ms, reverse_comp, ld1_matches, ri1_matches, ld2_matches, ri2_matches, data.L) merged_cmat = posdicts2countmats(merged_pos, merged_use_comp, merged_len, data.data_matrix) return merged_cmat, merged_pos, merged_use_comp end function merge_to_remove_redundancy!(ms, data, bg; max_len_diff=5, olap_ratio_thresh=0.95) _ms_ = deepcopy(ms); while(true) total_num_ms = _ms_.num_motifs; min_len = minimum(_ms_.lens) max_len = maximum(_ms_.lens) for i = min_len:(max_len-max_len_diff+1) @info "merging motifs in range $i to $(i+max_len_diff-1)" ms_this_range = take_out_sub_ms_by_range_indicator!(_ms_, bg, i, i+max_len_diff-1); if !isnothing(ms_this_range) olap_ratio = get_overlap_ratio(ms_this_range) trees = return_connected_components(olap_ratio, olap_ratio_thresh) merged_cmats, merged_poses, merged_use_comps = Vector{eltype(ms_this_range.cmats)}(undef, length(trees)), Vector{eltype(ms_this_range.positions)}(undef, length(trees)), Vector{eltype(ms_this_range.use_comp)}(undef, length(trees)) for (j, subtree) in enumerate(trees) merged_cmat, merged_pos, merged_use_comp = nothing, nothing, nothing if length(subtree) == 1 merged_cmat, merged_pos, merged_use_comp = ms_this_range.cmats[j], ms_this_range.positions[j], ms_this_range.use_comp[j] else merged_cmat, merged_pos, merged_use_comp = process_subtree(subtree, ms_this_range, data, bg) end merged_cmats[j] = merged_cmat; merged_poses[j] = merged_pos; merged_use_comps[j] = merged_use_comp end ms_this_tree = countmats2motifs(merged_cmats, merged_poses, merged_use_comps, bg) _ms_ = merge_ms(_ms_, ms_this_tree, bg) end end @info "total number of motifs: $total_num_ms, after merging: $(_ms_.num_motifs)" total_num_ms == _ms_.num_motifs && break end return _ms_ end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
9587
const ind2dna_str = Dict{Int, String}(1=>"A", 2=>"C", 3=>"G", 4=>"T") function get_relaxed_consensus_str(pfm; any_regex=".", prob_thresh=0.5) argmax_inds = reshape(argmax(pfm, dims=1), (size(pfm,2),)); char_array = [ind2dna_str[i[1]] for i in argmax_inds] char_array[findall((@view pfm[argmax_inds]) .< prob_thresh)] .= any_regex return join(char_array) end function unitranges_to_bitarray(uranges::Vector{UnitRange{Int}}, len::Int) bits = falses(len) for urange in uranges bits[urange] .= true end return bits end function apply_bitarray(s::AbstractString, b::BitArray) @assert length(s) == length(b) res = "" for i in eachindex(s) if b[i] res *= s[i] else res *= "-" end end return res end get_dashed_strings(consensus_str, str_bitarray) = apply_bitarray(consensus_str, str_bitarray) function get_dashed_strings(ms) consensus_strs = get_relaxed_consensus_str.(ms.pfms) str_bitarrays = unitranges_to_bitarray.(ms.effective_segments, ms.lens) return get_dashed_strings.(consensus_strs, str_bitarrays) end function clear_islands_of_len!(char_array, str, sep, len) for i = 1:length(str)-(len+2)+1 if char_array[i] == sep && char_array[i+len+1] == sep for j = 1:len char_array[i+j] = sep end end end end function clean_str(str; sep='-', islands2clear=[2,3]) char_array = Vector{Char}(undef, length(str)) char_array[1] = str[1]; char_array[end] = str[end]; for i = 2:length(str)-1 if str[i] == sep char_array[i] = sep elseif str[i-1] == sep && str[i+1] == sep char_array[i] = sep else char_array[i] = str[i] end end # clear out all the islands of length 2 for len in islands2clear clear_islands_of_len!(char_array, str, sep, len) end join(char_array) end # clear all the dashes in the beginning and end of the string given a vector of strings function clear_dash(str; sep1 = '-', sep2 = '.') strlen = length(str) front_break_ind = 0 for i = 1:strlen (str[i] != sep1 && str[i] != sep2) && break front_break_ind = i end back_break_ind = strlen+1 for i = strlen:-1:1 (str[i] != sep1 && str[i] != sep2) && break back_break_ind = i end front_break_ind > back_break_ind && return "" return str[front_break_ind+1:back_break_ind-1] end get_cleaned_dashed_strs(ms) = clear_dash.(clean_str.(get_dashed_strings(ms))) function edit_distance(s, t) s, t = (length(t) > length(s)) ? (s, t) : (t, s); slen = length(s); tlen = length(t); @inbounds while slen > 0 && s[slen] == t[tlen] slen -= 1; tlen -= 1; end start = 0; @inbounds if s[1]==t[1] || slen == 0 while start < slen && s[start+1] == t[start+1] start += 1; end slen -= start; tlen -= start; slen == 0 && return tlen; # t = t[start+1:start+tlen]; end v_0 = [i for i = 1:tlen]; # preallocate this later; needed for GPU kernel cur = 0 @inbounds for i = 1:slen schar = s[start+i]; # check this left = cur = i-1; for j = 1:tlen abv = cur; cur = left; left = v_0[j] if schar != t[start+j] cur += 1; insdel = abv + 1; cur = (insdel < cur) ? insdel : cur; insdel = left + 1; cur = (insdel < cur) ? insdel : cur; end v_0[j] = cur; end end return cur end function fill_pseudo_normalized_edit_similarity_matrix(dashed_strs) len_dashed_strs = length(dashed_strs) len_each_dashed_strs = length.(dashed_strs) str_similarity_mat = zeros(Float64, (len_dashed_strs, len_dashed_strs)) for i = 1:len_dashed_strs for j = i+1:len_dashed_strs str_similarity_mat[i,j] = str_similarity_mat[j,i] = min(len_each_dashed_strs[i], len_each_dashed_strs[j]) / edit_distance(dashed_strs[i], dashed_strs[j]) end end return str_similarity_mat end mean_length_of_connected_components(trees) = mean.(trees) # function obtain_groupings_for_display(ms; component_cut_off=2.75) # dashed_strs = get_cleaned_dashed_strs(ms) # str_similarity_mat = fill_pseudo_normalized_edit_similarity_matrix(dashed_strs) # trees = return_connected_components(str_similarity_mat, component_cut_off) # mean_lengths = mean_length_of_connected_components(trees) # # display the groups that have more than 1 member first # # within these groups, display the ones with the longest mean length first # groups_with_more_than_1_member = findall(length.(trees) .> 1) # groups_with_more_than_1_member_order = sortperm(mean_lengths[groups_with_more_than_1_member], rev=true) # groups_with_just_1_member = findall(length.(trees) .== 1) # groups_with_just_1_member_order = sortperm(mean_lengths[groups_with_just_1_member], rev=true) # order_for_display = Vector{Int}(undef, ms.num_motifs) # k = 1 # for i in groups_with_more_than_1_member_order # group_indices = # trees[groups_with_more_than_1_member[i]] # len_group_indices = length(group_indices) # order_for_display[k:k+len_group_indices-1] = group_indices # k += len_group_indices # end # for i in groups_with_just_1_member_order # group_index = trees[groups_with_just_1_member[i]][1] # order_for_display[k] = group_index # k += 1 # end # return order_for_display # end function get_length_tree(dashed_strs_here, tree) length_tree = Vector{Vector{Int}}(undef, length(tree)) for (i, l) in enumerate(tree) length_tree[i] = length.(dashed_strs_here[l]) end length_tree end function get_order_for_this_group(dash_strs_here, component_cut_off) str_similarity_mat_abv = fill_pseudo_normalized_edit_similarity_matrix(dash_strs_here) trees_here = return_connected_components(str_similarity_mat_abv, component_cut_off) mean_lengths_here = mean_length_of_connected_components(get_length_tree(dash_strs_here, trees_here)) groups_with_more_than_1_member = findall(length.(trees_here) .> 1) groups_with_more_than_1_member_order = sortperm(mean_lengths_here[groups_with_more_than_1_member], rev=true) groups_with_just_1_member = findall(length.(trees_here) .== 1) groups_with_just_1_member_order = sortperm(mean_lengths_here[groups_with_just_1_member], rev=true) order_for_display_here = Vector{Int}(undef, length(dash_strs_here)) k = 1 for i in groups_with_more_than_1_member_order group_indices = trees_here[groups_with_more_than_1_member[i]] len_group_indices = length(group_indices) order_for_display_here[k:k+len_group_indices-1] = group_indices k += len_group_indices end for i in groups_with_just_1_member_order group_index = trees_here[groups_with_just_1_member[i]][1] order_for_display_here[k] = group_index k += 1 end return order_for_display_here end # function obtain_groupings_for_display(ms, component_cut_off=2.75) # dashed_strs = get_cleaned_dashed_strs(ms) # more_than_one_island_indicator = length.(ms.effective_segments) .> 1 # one_island_indicator = .!more_than_one_island_indicator # # organize all the inds of the motifs with more than one island to be display first # inds_abv = findall(more_than_one_island_indicator) # inds_below = findall(one_island_indicator) # dashed_strs_abv = @view dashed_strs[more_than_one_island_indicator] # dashed_strs_below = @view dashed_strs[one_island_indicator] # # get the sort perm # inds_abv_sort_perm = get_order_for_this_group(dashed_strs_abv, component_cut_off) # inds_below_sort_perm = get_order_for_this_group(dashed_strs_below, component_cut_off) # display_order = vcat(inds_abv[inds_abv_sort_perm], inds_below[inds_below_sort_perm]) # return display_order # end function obtain_groupings_for_display1(ms; component_cut_off=2.75, big_pattern_thresh=80) dashed_strs = get_cleaned_dashed_strs(ms) big_pattern_indicator = length.(dashed_strs) .> big_pattern_thresh not_big_pattern_indicator = .!big_pattern_indicator more_than_one_island_indicator = (length.(ms.effective_segments) .> 1) .& not_big_pattern_indicator one_island_indicator = (.!more_than_one_island_indicator) .& not_big_pattern_indicator # organize all the inds of the motifs with more than one island to be display first inds_abv = findall(big_pattern_indicator) inds_middle = findall(more_than_one_island_indicator) inds_below = findall(one_island_indicator) dashed_strs_abv = @view dashed_strs[big_pattern_indicator] dashed_strs_middle = @view dashed_strs[more_than_one_island_indicator] dashed_strs_below = @view dashed_strs[one_island_indicator] # get the sort perm inds_abv_sort_perm = get_order_for_this_group(dashed_strs_abv, component_cut_off) inds_middle_sort_perm = get_order_for_this_group(dashed_strs_middle, component_cut_off) inds_below_sort_perm = get_order_for_this_group(dashed_strs_below, component_cut_off) display_order = vcat(inds_abv[inds_abv_sort_perm], inds_middle[inds_middle_sort_perm], inds_below[inds_below_sort_perm]) return display_order end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
9487
mutable struct motifs{T <: Integer, S <: Real} cmats::Vector{Matrix{S}} pfms::Vector{Matrix{S}} pwms::Union{Nothing,Vector{Matrix{S}}} effective_segments::Vector{Vector{UnitRange{Int}}} max_effective_lens::Vector{T} max_scores::Union{Nothing, Vector{S}} min_scores::Union{Nothing, Vector{S}} score_thresh::Union{Nothing, Vector{S}} # of the effective length lens::Vector{T} num_motifs::T positions::Union{Nothing, Vector{Dict{T, Vector{T}}}} scores::Union{Nothing, Vector{Dict{T, Vector{S}}}} use_comp::Union{Nothing, Vector{Dict{T, Vector{Bool}}}} positions_bg::Union{Nothing, Vector{Dict{T, Vector{T}}}} scores_bg::Union{Nothing, Vector{Dict{T, Vector{S}}}} use_comp_bg::Union{Nothing, Vector{Dict{T, Vector{Bool}}}} end ic(pfm,pwm) = reshape(sum(pfm .* pwm, dims=1), size(pfm,2)) pad_bit_ic_vec(q) = [false; q; false] function moving_average(A::AbstractArray, m::Int) out = similar(A) R = CartesianIndices(A) Ifirst, Ilast = first(R), last(R) I1 = m÷2 * oneunit(Ifirst) for I in R n, s = 0, zero(eltype(out)) for J in max(Ifirst, I-I1):min(Ilast, I+I1) s += A[J] n += 1 end out[I] = s/n end return out end function get_high_ic_segments(this_ic_vec; m=mv_avg_window, ic_threshold=effective_pos_ic_thresh) mv_this_ic_vec = pad_bit_ic_vec(moving_average(this_ic_vec, m) .> ic_threshold) diff_this_ic_vec = diff(push!(mv_this_ic_vec, false)) # append a false to the end starts = findall(diff_this_ic_vec .> 0) ends = findall(diff_this_ic_vec .< 0) # println("starts: ", starts) # println("ends: ", ends) return [start_:end_-1 for (start_, end_) in zip(starts, ends)] end filter_zero_eff_segs(eff_segs::Vector{Vector{UnitRange{Int}}}) = length.(eff_segs) .> 0 function get_filter_vec(cmats) # println(cmats) eff_segs = get_high_ic_segments.(cmat2ic.(cmats)) # println("this eff seg: ", eff_segs) filter_vec = filter_zero_eff_segs(eff_segs) return filter_vec end function return_effective_segments_and_filter_vec(cmats) eff_segs = get_high_ic_segments.(cmat2ic.(cmats)) filter_vec = filter_zero_eff_segs(eff_segs) return eff_segs, filter_vec end max_eff_len(range_vec) = maximum(length.(range_vec)) countmat2pfm(count_matrix, countmat_sum_col; ps=float_type_retrieval(0.01)) = float_type_retrieval.((count_matrix .+ ps) ./ (countmat_sum_col .+ (4*ps))); countmat2pfm(count_matrix; ps=float_type_retrieval(0.01)) = countmat2pfm(count_matrix, sum(count_matrix, dims=1); ps=ps) freq2pwm(pfm, bg) = log2.(pfm ./ bg) function return_pfm_pwm_lens_nummats(countmats, bg) pfms = countmat2pfm.(countmats) pwms = [freq2pwm(pfm, bg) for pfm in pfms] lens = size.(pwms,2) return pfms, pwms, lens, length(lens) end function return_ms_others(ms, filter_vec) max_scores = isnothing(ms.max_scores) ? nothing : ms.max_scores[filter_vec] min_scores = isnothing(ms.min_scores) ? nothing : ms.min_scores[filter_vec] score_thresh = isnothing(ms.score_thresh) ? nothing : ms.score_thresh[filter_vec] positions = isnothing(ms.positions) ? nothing : ms.positions[filter_vec] scores = isnothing(ms.scores) ? nothing : ms.scores[filter_vec] use_comp = isnothing(ms.use_comp) ? nothing : ms.use_comp[filter_vec] positions_bg = isnothing(ms.positions_bg) ? nothing : ms.positions_bg[filter_vec] scores_bg = isnothing(ms.scores_bg) ? nothing : ms.scores_bg[filter_vec] use_comp_bg = isnothing(ms.use_comp_bg) ? nothing : ms.use_comp_bg[filter_vec] return max_scores, min_scores, score_thresh, positions, scores, use_comp, positions_bg, scores_bg, use_comp_bg end function countmats2motifs(count_mats, bg) # pval_thresh = 0.00027 count_mats = count_mats[get_filter_vec(count_mats)] pfms, pwms, lens, num_pfms = return_pfm_pwm_lens_nummats(count_mats, bg) eff_segs = get_high_ic_segments.(cmat2ic.(count_mats)) max_eff_lens = max_eff_len.(eff_segs) return motifs{Int, float_type_retrieval}( count_mats, pfms, pwms, eff_segs, max_eff_lens, nothing, nothing, nothing, lens, num_pfms, nothing, nothing, nothing, nothing, nothing, nothing ); end function countmats2motifs(count_mats, positions, use_comp, bg) filter_vec = get_filter_vec(count_mats) count_mats = count_mats[filter_vec] pfms, pwms, lens, num_pfms = return_pfm_pwm_lens_nummats(count_mats, bg) eff_segs = get_high_ic_segments.(cmat2ic.(count_mats)) max_eff_lens = max_eff_len.(eff_segs) return motifs{Int, float_type_retrieval}( count_mats, pfms, pwms, eff_segs, max_eff_lens, nothing, nothing, nothing, lens, num_pfms, positions[filter_vec], nothing, use_comp[filter_vec], nothing, nothing, nothing ); end function filter_motifs_w_filter_vec(ms::motifs, filter_vec, bg) cmats = ms.cmats[filter_vec] eff_segs = get_high_ic_segments.(cmat2ic.(cmats)) max_eff_lens = max_eff_len.(eff_segs) pfms, pwms, lens, num_pfms = return_pfm_pwm_lens_nummats(cmats, bg) max_scores, min_scores, score_thresh, positions, scores, use_comp, positions_bg, scores_bg, use_comp_bg = return_ms_others(ms, filter_vec) return motifs{Int, float_type_retrieval}( cmats, pfms, pwms, eff_segs, max_eff_lens, max_scores, min_scores, score_thresh, lens, num_pfms, positions, scores, use_comp, positions_bg, scores_bg, use_comp_bg ); end function motifs_prep(ms::motifs{T,S}) where {T<:Integer,S<:Real} positions = [Dict{T,Vector{T}}() for _ = 1:ms.num_motifs]; scores = [Dict{T,Vector{S}}() for _ = 1:ms.num_motifs]; use_comp = [Dict{T,Vector{Bool}}() for _ = 1:ms.num_motifs]; return positions, scores, use_comp end function push_position!(positions_i, seq_num, pos) if haskey(positions_i, seq_num) push!(positions_i[seq_num], pos) else positions_i[seq_num] = [pos] end end function push_use_comp!(use_comp_i, seq_num, use_comp) if haskey(use_comp_i, seq_num) push!(use_comp_i[seq_num], use_comp) else use_comp_i[seq_num] = [use_comp] end end function obtain_count_mat_pos_use_comp(H, data) count_matrices_lengths = Array{Int}(undef, length(H)); enriched_keys = keys(H); @inbounds for (ind,k) in enumerate(enriched_keys) count_matrices_lengths[ind] = k.len end count_matrices = [zeros(Float32, (4, count_matrices_lengths[i])) for i in axes(count_matrices_lengths, 1)]; positions = [Dict{Int, Vector{Int}}() for _ in eachindex(count_matrices)] use_comp = [Dict{Int, Vector{Bool}}() for _ in eachindex(count_matrices)] for (ind, k) in enumerate(keys(H)) for v in H[k] push_position!(positions[ind], v.seq_num, v.pos) push_use_comp!(use_comp[ind], v.seq_num, v.comp) pos_start = four_based_ind(v.pos) pos_end = four_based_ind(v.pos+count_matrices_lengths[ind]-1)+3 onehot_code = reshape(data.data_matrix[pos_start:pos_end,1,v.seq_num], (4, count_matrices_lengths[ind])) count_matrices[ind] .+= v.comp ? reverse(onehot_code) : onehot_code end end return count_matrices, positions, use_comp end function enriched_keys2motifs(H, data, bg) count_matrices_lengths = Array{Int}(undef, length(H)); enriched_keys = keys(H); @inbounds for (ind,k) in enumerate(enriched_keys) count_matrices_lengths[ind] = k.len end count_matrices = [zeros(Float32, (4, count_matrices_lengths[i])) for i in axes(count_matrices_lengths, 1)]; positions = [Dict{Int, Vector{Int}}() for _ in eachindex(count_matrices)] use_comp = [Dict{Int, Vector{Bool}}() for _ in eachindex(count_matrices)] for (ind, k) in enumerate(keys(H)) for v in H[k] push_position!(positions[ind], v.seq_num, v.pos) push_use_comp!(use_comp[ind], v.seq_num, v.comp) pos_start = four_based_ind(v.pos) pos_end = four_based_ind(v.pos+count_matrices_lengths[ind]-1)+3 onehot_code = reshape(data.data_matrix[pos_start:pos_end,1,v.seq_num], (4, count_matrices_lengths[ind])) count_matrices[ind] .+= v.comp ? reverse(onehot_code) : onehot_code end end return countmats2motifs(count_matrices, positions, use_comp, bg) end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
5109
# filter position by best threshold function get_hits(scores, thresh) hits = 0 @inbounds for k in keys(scores) hits += sum(scores[k] .> thresh) end return hits end function get_max_score(scores, scores_bg) max_score = -float_type_retrieval(Inf) @inbounds for k in keys(scores) max_ik = maximum(scores[k]) max_score = max_ik > max_score ? max_ik : max_score; end @inbounds for k in keys(scores_bg) max_ik = maximum(scores_bg[k]) max_score = max_ik > max_score ? max_ik : max_score; end return max_score end function get_min_score(scores, scores_bg) min_score = float_type_retrieval(Inf) @inbounds for k in keys(scores) min_ik = minimum(scores[k]) min_score = min_ik < min_score ? min_ik : min_score; end @inbounds for k in keys(scores_bg) min_ik = minimum(scores_bg[k]) min_score = min_ik < min_score ? min_ik : min_score; end return min_score end function get_pvalue(pwm) size_pwm = size(pwm,2) 9 < size_pwm ≤ 11 && (return pvalue_Touzet_mid) size_pwm ≤ 9 && (return pvalue_Touzet_small) return pvalue_Touzet_large end function get_high_scoring_pwm_segments(pwm; seg=max_pwm_length_Touzet2) pwm_len = size(pwm,2); pwm_len % seg max_score_each = [maximum(view(pwm, :, i)) for i = 1:pwm_len] sort_perm_max_cols = sortperm(max_score_each, rev=true) pwm_seg_views = [view(sort_perm_max_cols, i:i+seg-1) for i = 1:seg:(pwm_len-pwm_len % seg)] return [pwm[:, pwm_seg_views[i]] for i in eachindex(pwm_seg_views)] end # function get_best_thresh(eff_pos, pwm) # best_thresh = 0f0 # for pos in eff_pos # length(pos) ≤ 1 && (continue) # if length(pos) > max_pwm_length_Touzet2 # pwm_segments = get_high_scoring_pwm_segments(pwm[:, pos]) # for pwm_seg in pwm_segments # best_thresh += pvalue2score(pwm_seg, get_pvalue(pwm_seg)) # end # else # this_pwm = pwm[:, pos]; # best_thresh += pvalue2score(this_pwm, get_pvalue(this_pwm)) # end # end # return best_thresh # end # function filter_position_by_best_thresh!(positions, scores, use_comp, best_thresh) # if !isnothing(positions) && !isnothing(scores) && !isnothing(use_comp) # @inbounds for k in keys(positions) # mask = scores[k] .> best_thresh # positions[k] = positions[k][mask] # scores[k] = scores[k][mask] # use_comp[k] = use_comp[k][mask] # end # end # end # function filter_positions_scores_usecomp!(ms) # ms.score_thresh = get_best_thresh.(ms.effective_segments, ms.pwms); # filter_position_by_best_thresh!.(ms.positions, ms.scores, ms.use_comp, ms.score_thresh); # filter_position_by_best_thresh!.(ms.positions_bg, ms.scores_bg, ms.use_comp_bg, ms.score_thresh); # end function get_best_thresh(scores, bg_scores, max_score, min_score, max_eff_len, eff_pos, pwm, asum, bg) if any(length.(eff_pos) .< max_pwm_length_Touzet2) best_thresh = 0f0 for pos in eff_pos (length(pos) > max_pwm_length_Touzet2 || length(pos) ≤ 1) && continue this_pwm = pwm[:, pos]; best_thresh += pvalue2score(this_pwm, get_pvalue(this_pwm); bg=bg) end return best_thresh end best_thresh = min_score score_thresh = min_score best_p = 1f0 while score_thresh < max_score a = get_hits(scores, score_thresh) b = get_hits(bg_scores, score_thresh) c = asum-a d = asum-b q = FisherExactTest(promote_i(a, c, b, d)...); p = HypothesisTests.pvalue(q, tail=:right) p < best_p && (best_p = p; best_thresh = score_thresh) score_thresh += score_thresh_increment end return best_thresh end function filter_position_by_best_thresh!(positions, scores, use_comp, best_thresh) if !isnothing(positions) && !isnothing(scores) && !isnothing(use_comp) @inbounds for k in keys(positions) mask = scores[k] .> best_thresh positions[k] = positions[k][mask] scores[k] = scores[k][mask] use_comp[k] = use_comp[k][mask] end end end function filter_positions_scores_usecomp!(ms, data, bg) @info "number of motifs: $(ms.num_motifs)" @info "filtering motifs positions..." ms.max_scores = get_max_score.(ms.scores, ms.scores_bg); ms.min_scores = get_min_score.(ms.scores, ms.scores_bg); ms.score_thresh = Vector{float_type_retrieval}(undef, ms.num_motifs) for i = 1:ms.num_motifs ms.score_thresh[i] = get_best_thresh(ms.scores[i], ms.scores_bg[i], ms.max_scores[i], ms.min_scores[i], ms.max_effective_lens[i], ms.effective_segments[i], ms.pwms[i], data.N*data.L, bg); end filter_position_by_best_thresh!.(ms.positions, ms.scores, ms.use_comp, ms.score_thresh); filter_position_by_best_thresh!.(ms.positions_bg, ms.scores_bg, ms.use_comp_bg, ms.score_thresh); @info "done filtering motifs positions..." end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
3993
const dna_meta_data = Vector{NamedTuple{(:str, :motif_where, :mode), Tuple{String, UnitRange{Int64}, Int64}}} mutable struct FASTA_DNA{S <: Real} N::Int L::Int acgt_freq::Vector{S} markov_bg_mat::Matrix{S} raw_data::Vector{String} raw_data_test::Vector{String} data_matrix::Union{Array{S,3}, Array{S,2}} data_matrix_gpu::Union{CuArray{S,3}, CuArray{S,2}, Nothing} data_matrix_bg::Union{Array{S,3}, Array{S,2}} data_matrix_bg_gpu::Union{CuArray{S,3}, CuArray{S,2}, Nothing} labels::Union{Nothing, Vector{String}, Vector{Int}} meta_data::Union{Nothing, dna_meta_data} acgt_freq_test::Union{Nothing, Vector{S}} markov_bg_mat_test::Union{Nothing, Matrix{S}} data_matrix_test::Union{Nothing, Array{S,3}, Array{S,2}} data_matrix_bg_test::Union{Nothing, Array{S,3}, Array{S,2}} N_test::Int function FASTA_DNA{S}(dna_read::Vector{String}; k_train=1, k_test=2, # kmer frequency in the test set train_test_split_ratio=0.9, shuffle=true) where {S <: Real} data_matrix, data_matrix_bg, _, acgt_freq, markov_bg_mat, data_matrix_test, data_matrix_bg_test, _, acgt_freq_test, markov_bg_mat_test, N_train, N_test, train_set_inds, test_set_inds = get_data_matrices(dna_read; k_train=k_train, k_test=k_test, train_test_split_ratio=train_test_split_ratio, shuffle=shuffle, FloatType=S); L = Int(size(data_matrix,1)/4); data_matrix = reshape(data_matrix, 4*L, 1, N_train); data_matrix_test = reshape(data_matrix_test, 4*L, 1, N_test) data_matrix_bg = reshape(data_matrix_bg, 4*L, 1, N_train) new( N_train, L, acgt_freq, markov_bg_mat, dna_read[train_set_inds], dna_read[test_set_inds], data_matrix, nothing, data_matrix_bg, nothing, nothing, nothing, acgt_freq_test, markov_bg_mat_test, data_matrix_test, data_matrix_bg_test, N_test ) end function FASTA_DNA{S}(fasta_location::String; max_entries=max_num_read_fasta, k_train=1, k_test=2, # kmer frequency in the test set train_test_split_ratio=0.9, shuffle=true ) where {S <: Real} dna_read = nothing; labels = nothing; dna_read = read_fasta(fasta_location; max_entries); # dna_read[1] |> println data_matrix, data_matrix_bg, _, acgt_freq, markov_bg_mat, data_matrix_test, data_matrix_bg_test, _, acgt_freq_test, markov_bg_mat_test, N_train, N_test, train_set_inds, test_set_inds = get_data_matrices(dna_read; k_train=k_train, k_test=k_test, train_test_split_ratio=train_test_split_ratio, shuffle=shuffle, FloatType=S); L = Int(size(data_matrix,1)/4); data_matrix = reshape(data_matrix, 4*L, 1, N_train); data_matrix_test = reshape(data_matrix_test, 4*L, 1, N_test) data_matrix_bg = reshape(data_matrix_bg, 4*L, 1, N_train) new( N_train, L, acgt_freq, markov_bg_mat, dna_read[train_set_inds], dna_read[test_set_inds], data_matrix, nothing, data_matrix_bg, nothing, labels, nothing, acgt_freq_test, markov_bg_mat_test, data_matrix_test, data_matrix_bg_test, N_test ) end end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
9675
######## fasta load settings: ################## const max_num_read_fasta = 100000; const int_t = Int32; # integer type #= each label must associated with at least 200 sequences for classification =# const label_count_thresh = 250; const DNA_complement = Dict('A'=>'T','C'=>'G','G'=>'C','T'=>'A'); reverse_complement(s::String) = join(islowercase(s[si]) ? s[si] : DNA_complement[s[si]] for si = length(s):-1:1) get_count_map(v) = countmap(v) """ Assume all dna strings are of the same length and contains no masked strings """ function reading_for_DNA_regression(filepath::String; parse_float_type=Float32) reads = read(filepath, String); splits = split(reads, '>'); dna_reads = Vector{String}(); labels = Vector{parse_float_type}(); for i in splits if !isempty(i) splits_i = split(i, "\n"); if !occursin("N", splits_i[2]) && !occursin("n", splits_i[2]) push!(labels, parse(parse_float_type, splits_i[1])); push!(dna_reads, splits_i[2]); end end end return labels, dna_reads end function permute_dataset(labels, seqs; train_test_ratio=0.8) shuffled_indices = randperm(labels |> length) n_rows = length(shuffled_indices); n_train = round(Int, n_rows*train_test_ratio) n_test = n_rows - n_train; labels_train = @view labels[shuffled_indices][1:n_train] seqs_train = @view seqs[shuffled_indices][1:n_train] labels_test = @view labels[shuffled_indices][n_train+1:end] seqs_test = @view seqs[shuffled_indices][n_train+1:end] return n_train, n_test, labels_train, seqs_train, labels_test, seqs_test end function read_and_permute(filepath::String; train_test_ratio=0.8, parse_float_type=Float32) labels, seqs = reading_for_DNA_regression(filepath; parse_float_type=parse_float_type) return permute_dataset(labels, seqs; train_test_ratio=train_test_ratio) end """ Read the strings from the datasets provided by https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks and processed by https://github.com/kchu25/genomic_benchmark_datasets Assume all dna strings are of the same length and contains no masked strings """ function reading_for_DNA_classification(filepath::String) reads = read(filepath, String); splits = split(reads, '>'); dna_reads = Vector{String}(); labels = Vector{Int}(); for i in splits if !isempty(i) splits_i = split(i, "\n"); if !occursin("N", splits_i[2]) && !occursin("n", splits_i[2]) push!(labels, parse(Int, splits_i[1])); push!(dna_reads, splits_i[2]); end end end uniq_labels = unique(labels) labels = reduce(hcat, [uniq_labels .== v for v in labels]); # bitarrays for class indicates return labels, dna_reads end function reading(filepath::String; max_entries=max_num_read_fasta) # read the file; process the fasta file to get the DNA part; # rid of sequences that contains "n" reads = read(filepath, String); dna_reads = Vector{String}(); for i in split(reads, '>') if !isempty(i) splits = split(i, "\n"); this_read = join(splits[2:end]); !occursin("N", this_read) && !occursin("n", this_read) && (push!(dna_reads, this_read);) end end dna_reads = length(dna_reads) > max_entries ? dna_reads[1:max_entries] : dna_reads; # rid of all dna sequences that's not the same length as sequence 1 # o/w markov mat assignment may report error dna_reads = [s for s in dna_reads if length(s) == length(dna_reads[1])]; return dna_reads end function read_fasta(filepath::String; max_entries=max_num_read_fasta )::Vector{String} #= read a fasta file =# dna_reads = reading(filepath; max_entries); return [uppercase(i) for i in dna_reads] end function dna2dummy(dna_string::String, dummy::Dict; F=Float32) v = Array{F,1}(undef, 4*length(dna_string)); for (index, alphabet) in enumerate(dna_string) start = (index-1)*4+1; v[start:start+3] = dummy[uppercase(alphabet)]; end return v end #= get the set of dummy-vectors from a set of dna-strings the dummy-vectors are all of same length (for now) =# function data_2_dummy(dna_strings; F=Float32) dummy = Dict('A'=>Array{F}([1, 0, 0, 0]), 'C'=>Array{F}([0, 1, 0, 0]), 'G'=>Array{F}([0, 0, 1, 0]), 'T'=>Array{F}([0, 0, 0, 1])); how_many_strings = length(dna_strings); @assert how_many_strings != 0 "There aren't DNA strings found in the input"; how_many_strings == 0 && return nothing; _len_ = length(dna_strings[1]); # length of each dna string in data _S_ = Array{F, 2}(undef, (4*_len_, how_many_strings)); for i = 1:how_many_strings length(dna_strings[i]) == _len_ && (@inbounds _S_[:, i] = dna2dummy(dna_strings[i], dummy)) end return _S_ end function get_train_test_inds(dna_read, train_test_split_ratio, shuffle) # println(shuffle) len_dna_read = length(dna_read) how_may_entries_in_test = Int(floor((1-train_test_split_ratio)*len_dna_read)); test_set_inds = nothing; shuffled_inds = randperm(len_dna_read) # inds was 1:len_dna_read if shuffle test_set_inds = sample(shuffled_inds, how_may_entries_in_test, replace=false) else test_set_inds = collect(len_dna_read-how_may_entries_in_test+1:len_dna_read) end # println("test_set_inds: ", test_set_inds) train_set_inds = setdiff(shuffled_inds, test_set_inds) return train_set_inds, test_set_inds end function get_data_matrices2(dna_read, labels; k_train=1, k_test=2, FloatType=float_type, train_test_split_ratio=0.85, shuffle=true) # set train_test_split_ratio = 1.0 if no test set is needed train_set_inds, test_set_inds = get_train_test_inds(dna_read, train_test_split_ratio, shuffle) # println(train_set_inds) dna_read_train = @view dna_read[train_set_inds] dna_read_test = @view dna_read[test_set_inds] labels_train = labels[train_set_inds] labels_test = labels[test_set_inds] shuffled_dna_read_train = seq_shuffle.(dna_read_train; k=k_train); data_matrix_train = data_2_dummy(dna_read_train; F=FloatType); data_matrix_bg_train = data_2_dummy(shuffled_dna_read_train; F=FloatType); shuffled_dna_read_test = seq_shuffle.(dna_read_test; k=k_test); data_matrix_test = data_2_dummy(dna_read_test; F=FloatType); data_matrix_bg_test = data_2_dummy(shuffled_dna_read_test; F=FloatType); # estimate the Markov background (order 1) acgt_freq_train, markov_mat_train = est_1st_order_markov_bg(shuffled_dna_read_train; F=FloatType); acgt_freq_test, markov_mat_test = est_1st_order_markov_bg(shuffled_dna_read_test; F=FloatType); data_bg_prob_train = SeqShuffle.assign_bg_prob(shuffled_dna_read_train, markov_mat_train, acgt_freq_train); data_bg_prob_test = SeqShuffle.assign_bg_prob(shuffled_dna_read_test, markov_mat_test, acgt_freq_test); return data_matrix_train, data_matrix_bg_train, data_bg_prob_train, acgt_freq_train, markov_mat_train, data_matrix_test, data_matrix_bg_test, data_bg_prob_test, acgt_freq_test, markov_mat_test, length(dna_read_train), length(dna_read_test), train_set_inds, test_set_inds, labels_train, labels_test end function get_data_matrices(dna_read; k_train=1, k_test=2, FloatType=float_type, train_test_split_ratio=0.85, shuffle=true) # set train_test_split_ratio = 1.0 if no test set is needed train_set_inds, test_set_inds = get_train_test_inds(dna_read, train_test_split_ratio, shuffle) # println(train_set_inds) dna_read_train = @view dna_read[train_set_inds] dna_read_test = @view dna_read[test_set_inds] shuffled_dna_read_train = seq_shuffle.(dna_read_train; k=k_train); data_matrix_train = data_2_dummy(dna_read_train; F=FloatType); data_matrix_bg_train = data_2_dummy(shuffled_dna_read_train; F=FloatType); shuffled_dna_read_test = seq_shuffle.(dna_read_test; k=k_test); data_matrix_test = data_2_dummy(dna_read_test; F=FloatType); data_matrix_bg_test = data_2_dummy(shuffled_dna_read_test; F=FloatType); # estimate the Markov background (order 1) acgt_freq_train, markov_mat_train = est_1st_order_markov_bg(shuffled_dna_read_train; F=FloatType); acgt_freq_test, markov_mat_test = est_1st_order_markov_bg(shuffled_dna_read_test; F=FloatType); data_bg_prob_train = SeqShuffle.assign_bg_prob(shuffled_dna_read_train, markov_mat_train, acgt_freq_train); data_bg_prob_test = SeqShuffle.assign_bg_prob(shuffled_dna_read_test, markov_mat_test, acgt_freq_test); return data_matrix_train, data_matrix_bg_train, data_bg_prob_train, acgt_freq_train, markov_mat_train, data_matrix_test, data_matrix_bg_test, data_bg_prob_test, acgt_freq_test, markov_mat_test, length(dna_read_train), length(dna_read_test), train_set_inds, test_set_inds end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
261
const grey_tag_front = "<p style=\"color:grey\">" const grey_tag_back = "</p>" const logo_olap_folder_name = "logos_olap" const logo_no_olap_folder_name = "logos_no_olap" const pics_olap_folder_name = "pics_olap" const pics_no_olap_folder_name = "pics_no_olap"
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
2595
make_grey(s::String) = grey_tag_front*s*grey_tag_back get_folder_names(target_folder::String) = target_folder*"/"*logo_olap_folder_name, target_folder*"/"*logo_no_olap_folder_name, target_folder*"/"*pics_olap_folder_name, target_folder*"/"*pics_no_olap_folder_name function make_folder_paths(folders::Vector{String}) for folder in folders !isdir(folder) && mkpath(folder) end end function get_rounded_pval(pval::Real, low_pval) str = "$pval"; s = nothing; if !occursin("e-", str) s = string(round(pval, sigdigits=3)); else q = split(str, "e-"); q1len = length(q[1]); s = join([q[1][1:min(q1len, 4)], q[2]], "e-"); end return !low_pval ? make_grey(s) : s; end function save_pfms_as_transfac(logo_folder::String, cmats, sort_perm::Vector{Int}, numbers) pfms = countmat2pfm.(cmats) @floop for (i,ind) in zip(numbers, sort_perm) this_pwm_size = "medium" io = open(logo_folder*"/d$i.transfac", "w") println(io, "ID\t") println(io, "XX\t") println(io, "BF\t") println(io, "XX\t") println(io, "P0\tA\tC\tG\tT") q = Int.(floor.(pfms[ind] .* 100)); # make it a count matrix for j = 1:size(pfms[ind],2) cur_rows = j < 10 ? string(Int(floor(j/10)))*"$j" : string(j); println(io, cur_rows*"\t$(q[1,j])\t$(q[2,j])\t$(q[3,j])\t$(q[4,j])") end println(io, "XX\t") close(io) Base.run(`weblogo -D transfac -f $(logo_folder)/d$(i).transfac -n 150 --number-fontsize 17 --errorbars NO -F png --fineprint " " --resolution 96 -s $this_pwm_size --fontsize 24 --small-fontsize 18 --color-scheme classic -o $(logo_folder)/d$(i).png`); # do it for the reverse complement as well io = open(logo_folder*"/d$(i)_c.transfac", "w") println(io, "ID\t") println(io, "XX\t") println(io, "BF\t") println(io, "XX\t") println(io, "P0\tA\tC\tG\tT") q = Int.(floor.(reverse(pfms[ind]) .* 100)); for j = 1:size(pfms[ind],2) cur_rows = j < 10 ? string(Int(floor(j/10)))*"$j" : string(j); println(io, cur_rows*"\t$(q[1,j])\t$(q[2,j])\t$(q[3,j])\t$(q[4,j])") end println(io, "XX\t") close(io) Base.run(`weblogo -D transfac -f $(logo_folder)/d$(i)_c.transfac -n 150 --number-fontsize 17 --errorbars NO -F png --fineprint " " --resolution 96 -s $this_pwm_size --fontsize 24 --small-fontsize 18 --color-scheme classic -o $(logo_folder)/d$(i)_c.png`); end end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
3854
const html_template_no_olap=mt"""<!DOCTYPE html> <html> <meta charset="utf-8"> <head> <title></title> <style> abbr[title] { text-decoration: none; } table, td { border-collapse: collapse; margin: 15px 15px; padding: 5px 5px; table-layout: fixed; min-width: 85px; } .top_row { font-weight: bold; color: #808080; } thead,tfoot { font-weight: bold; background-color: #333; color:white; } .info { background-color: #E2E2E2; margin:5px; padding:5px; } </style> <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/[email protected]/es5/tex-mml-chtml.js"> </script> </head> <body> <a href="summary.html">soft cluster representation</a> | hard cluster representation <div style="display:flex;"> <div style="float:left; margin:25px; border:1px solid black; max-width:3500px; padding:10px;" > Number of sequences: {{:num_seq}} <br> <table> <thead> <tr> <th colspan="100%"> Discovered motifs </th> </tr> </thead> <tbody> <tr class="top_row"> <td style="text-align: center"><abbr title="A label assigned to each discovered motif">Label</abbr></td> <td style="text-align: center"><abbr title="Significance of the enrichment of each motif. Done via fisher exact test."> P-value</abbr></td> <td style="text-align: center"><abbr title="An estimate of the number of instances in the dataset"># instances</abbr></td> <td style="text-align: center"><abbr title="Position weight matrix">Logo</abbr></td> </tr> {{#:DF}} <tr> <td style="text-align:center"><a href="{{{:logo_folder}}}/{{:logo}}.transfac">{{:label}}</a></td> <td>{{{:eval}}}</td> <td style="text-align:center">{{{:counts}}}</td> <td><img id="d_logo_{{:label}}" height=65 src="{{{:logo_folder}}}/{{:logo}}.png"><br> <div id="d_orientation_{{:label}}"></div><br> <button type="button" onclick="discovered_{{:label}}_changeToRC()">Reverse complement</button> </td> <td style="text-align:center">{{{:counts}}}</td> <script type="text/javascript"> function discovered_{{:label}}_changeToRC() { var image = document.getElementById("d_logo_{{:label}}"); if (image.src.match("_c")) { image.src = "{{{:logo_folder}}}/{{:logo}}.png"; } else { image.src = "{{{:logo_folder}}}/{{:logo}}_c.png"; } var orientation = document.getElementById("d_orientation_{{:label}}"); if (orientation.innerHTML === ""){ orientation.innerHTML = "reverse-complement"; } else { orientation.innerHTML = ""; } } </script> </tr> {{/:DF}} </tbody> </table> <br><br> </div> </div> </body> </html> """
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
3817
const html_template_olap=mt"""<!DOCTYPE html> <html> <meta charset="utf-8"> <head> <title></title> <style> abbr[title] { text-decoration: none; } table, td { border-collapse: collapse; margin: 15px 15px; padding: 5px 5px; table-layout: fixed; min-width: 85px; } .top_row { font-weight: bold; color: #808080; } thead,tfoot { font-weight: bold; background-color: #333; color:white; } .info { background-color: #E2E2E2; margin:5px; padding:5px; } </style> <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/[email protected]/es5/tex-mml-chtml.js"> </script> </head> <body> soft cluster representation <div style="display:flex;"> <div style="float:left; margin:25px; border:1px solid black; max-width:3500px; padding:10px;" > Number of sequences: {{:num_seq}} <br> <table> <thead> <tr> <th colspan="100%"> Discovered motifs </th> </tr> </thead> <tbody> <tr class="top_row"> <td style="text-align: center"><abbr title="A label assigned to each discovered motif">Label</abbr></td> <td style="text-align: center"><abbr title="Significance of the enrichment of each motif. Done via fisher exact test."> P-value</abbr></td> <td style="text-align: center"><abbr title="An estimate of the number of instances in the dataset"># instances</abbr></td> <td style="text-align: center"><abbr title="Position weight matrix">Logo</abbr></td> </tr> {{#:DF}} <tr> <td style="text-align:center"><a href="{{{:logo_folder}}}/{{:logo}}.transfac">{{:label}}</a></td> <td>{{{:eval}}}</td> <td style="text-align:center">{{{:counts}}}</td> <td><img id="d_logo_{{:label}}" height=65 src="{{{:logo_folder}}}/{{:logo}}.png"><br> <div id="d_orientation_{{:label}}"></div><br> <button type="button" onclick="discovered_{{:label}}_changeToRC()">Reverse complement</button> </td> <script type="text/javascript"> function discovered_{{:label}}_changeToRC() { var image = document.getElementById("d_logo_{{:label}}"); if (image.src.match("_c")) { image.src = "{{{:logo_folder}}}/{{:logo}}.png"; } else { image.src = "{{{:logo_folder}}}/{{:logo}}_c.png"; } var orientation = document.getElementById("d_orientation_{{:label}}"); if (orientation.innerHTML === ""){ orientation.innerHTML = "reverse-complement"; } else { orientation.innerHTML = ""; } } </script> </tr> {{/:DF}} </tbody> </table> <br><br> </div> </div> </body> </html> """
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
2121
function plot_position_overlap(ms, sort_perm, pics_olap_folder; width_factor=33) olap_ratio_ij = get_overlap_ratio(ms) olap_ratio_ij = olap_ratio_ij[sort_perm, sort_perm] x_ticks_1 = [i for i in 1:(ms.num_motifs)]; x_ticks_2 = ["D$i" for i in 1:ms.num_motifs] for i = 1:ms.num_motifs mask = (1:ms.num_motifs .!= i); x = collect(1:ms.num_motifs)[mask] y = @view olap_ratio_ij[i,:][mask] width = max(width_factor*ms.num_motifs, 400) fig = Figure(resolution = (width, 400), fonts = (; regular= "sans")); ax = Axis(fig[1, 1]; xticklabelrotation = pi/4, ylabel = "Jaccard index"); ax.xticks = (x_ticks_1[mask], x_ticks_2[mask]) ax.xticklabelsize = 18; ax.xlabelsize = 25; ax.yticklabelsize = 18; ax.ylabelsize = 25; ax.yticks = ([0.0, 0.25, 0.5, 0.75, 1.0], ["0.0", "0.25", "0.5", "0.75", "1.0"]) ylims!(ax, high=1.0) barplot!(ax, x, y; strokewidth = 1, strokecolor = :black) save(joinpath(pics_olap_folder, "olap_d$i.png"), fig, px_per_unit = 0.6) end end function print_cmat_at_folder(cmats, folder; gt=false) char_ = gt ? "g" : "d" println("printing $(length(cmats)) count matrices at $folder") pfms = [cmats[i] ./ sum(cmats[i], dims=1) for i in 1:length(cmats)]; logo_folder = folder for i in eachindex(pfms) io = open(logo_folder*"/d$i.transfac", "w") println(io, "ID\t") println(io, "XX\t") println(io, "BF\t") println(io, "XX\t") println(io, "P0\tA\tC\tG\tT") g = Int.(floor.(pfms[i] .* 1000)); # make it a count matrix for j = 1:size(pfms[i],2) cur_rows = j < 10 ? string(Int(floor(j/10)))*"$j" : string(j); println(io, cur_rows*"\t$(g[1,j])\t$(g[2,j])\t$(g[3,j])\t$(g[4,j])") end println(io, "XX\t") close(io) Base.run(`weblogo -D transfac -f $(logo_folder)/d$(i).transfac -n 40 --errorbars NO -F png --fineprint " " --resolution 72 -s large --fontsize 16 --color-scheme classic -o $(logo_folder)/$(char_)$(i).png`); end end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
3441
function pvec_from_test_data(ms, data; no_olap=false) positions_test, scores_test, use_comp_test = gpu_scan(ms, data; bg=false, test=true) positions_test_bg, scores_test_bg, use_comp_bg_test = gpu_scan(ms, data; bg=true, test=true) filter_position_by_best_thresh!.(positions_test, scores_test, use_comp_test, ms.score_thresh) filter_position_by_best_thresh!.(positions_test_bg, scores_test_bg, use_comp_bg_test, ms.score_thresh) # make it non-overlap if no_olap positions_test, scores_test, use_comp_test = __non_overlap_scan__!(positions_test, scores_test, use_comp_test, ms.lens, data.N_test) end union_test_pos = get_union_ranges.(positions_test, ms.lens) union_test_pos_bg = get_union_ranges.(positions_test_bg, ms.lens) total_test_pos = get_total_occupied_positions.(union_test_pos) total_test_pos_bg = get_total_occupied_positions.(union_test_pos_bg) pvec = fisher_pvec(total_test_pos, total_test_pos_bg, data; test=true) uniq_active_counts_test = active_counts_position(get_uniq_pos.(positions_test)) return pvec, uniq_active_counts_test end function modified_sort_perm(pvec, ms, alpha_fisher) #= 1. partition the motifs into significant and non-significant 2. sort the significant motifs by length and pvalue 3. sort the non-significant motifs by length and pvalue 4. combine the two sorted lists =# len_p = [(l,p) for (l,p) in zip(ms.lens, pvec)] len_p_significant_inds = findall(x->x[2] < alpha_fisher, len_p) len_p_non_significant_inds = findall(x->x[2] >= alpha_fisher, len_p) len_p_significant = len_p[len_p_significant_inds] len_p_non_significant = len_p[len_p_non_significant_inds] len_p_significant_sorted_inds = reverse!(sortperm(len_p_significant, by=x->(x[1], 1.0-x[2]))) len_p_non_significant_sorted_inds = reverse!(sortperm(len_p_non_significant, by=x->(x[1], 1.0-x[2]))) return vcat(len_p_significant_inds[len_p_significant_sorted_inds], len_p_non_significant_inds[len_p_non_significant_sorted_inds]) end function get_pvec_and_related_info(ms, data, alpha_fisher; no_olap=false) pvec, uniq_active_counts_test = pvec_from_test_data(ms, data; no_olap=no_olap) use_vec = pvec .< alpha_fisher # sort_perm = sortperm(pvec); # sort it according to pvalues (small to big) sort_perm = modified_sort_perm(pvec, ms, alpha_fisher) p_vec_sort_perm, use_vec_sort_perm = pvec[sort_perm], use_vec[sort_perm] pvalues = get_rounded_pval.(p_vec_sort_perm, use_vec_sort_perm); return pvalues, sort_perm, uniq_active_counts_test end function get_pvec_and_related_info2(ms, data, alpha_fisher, order_for_display::Vector{Int}; no_olap=false) pvec, uniq_active_counts_test = pvec_from_test_data(ms, data; no_olap=no_olap) pvec_order_for_display = pvec[order_for_display] indices_of_significant_motifs_to_display_ontop = @view order_for_display[pvec_order_for_display .< alpha_fisher] indices_of_insignificant_motifs_to_display_onbot = @view order_for_display[pvec_order_for_display .≥ alpha_fisher] indices2display = vcat(indices_of_significant_motifs_to_display_ontop, indices_of_insignificant_motifs_to_display_onbot) pvec2display = pvec[indices2display] use_vec = pvec2display .< alpha_fisher pvalues = get_rounded_pval.(pvec2display, use_vec); return pvalues, indices2display, uniq_active_counts_test end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
4502
function render_main_summary_page_olap(labels, pvalues, logos, target_folder, target_folder_olap_pwms, target_folder_pics, valid_alphas, activate_counts, num_seqs ) df = DataFrame(label=labels, eval=pvalues, logo=logos, counts=activate_counts); if length(valid_alphas) > 0 out = Mustache.render(html_template_olap, target_folder=target_folder, target_folder_pics=target_folder_pics, valid_alphas="$valid_alphas", num_alphas="$(length(valid_alphas)-1)", min_alpha="$(valid_alphas[1])", num_seq=num_seqs, pic_folder=target_folder_pics, logo_folder=target_folder_olap_pwms, DF=df); else out = Mustache.render(html_template_olap, target_folder=target_folder, num_seq=num_seqs, pic_folder=target_folder_pics, logo_folder=target_folder_olap_pwms, DF=df); end io = open(target_folder*"/summary.html", "w") print(io, out); close(io) end function render_main_summary_page_no_olap(labels, pvalues, logos, target_folder, target_folder_no_olap_pwms, valid_alphas, activate_counts, num_seqs ) df = DataFrame(label=labels, eval=pvalues, logo=logos, counts=activate_counts); if length(valid_alphas) > 0 out = Mustache.render(html_template_no_olap, target_folder=target_folder, valid_alphas="$valid_alphas", num_alphas="$(length(valid_alphas)-1)", min_alpha="$(valid_alphas[1])", num_seq=num_seqs, logo_folder=logo_folder_name, DF=df); else out = Mustache.render(html_template_no_olap, target_folder=target_folder, num_seq=num_seqs, logo_folder=target_folder_no_olap_pwms, DF=df); end io = open(target_folder*"/summary_no_olap.html", "w") print(io, out); close(io) end function render_result!(target_folder::String, ms, data, bg; alpha_fisher = 1e-5) logo_olap_folder, logo_no_olap_folder, pics_olap_folder, pics_no_olap_folder = get_folder_names(target_folder); make_folder_paths([target_folder, logo_olap_folder, logo_no_olap_folder, pics_olap_folder, pics_no_olap_folder]); order_for_display = obtain_groupings_for_display1(ms); ############## overlap version render ############## @info "Scanning the foreground..." scan_w_gpu!(ms, data); @info "Scanning the shuffled background..." scan_w_gpu!(ms, data; bg=true); @time filter_positions_scores_usecomp!(ms, data, bg); active_counts, _ = get_uniq_counts(ms) @info "Calculating p-values..." pvalues, sort_perm_1, uniq_active_counts_test = get_pvec_and_related_info2(ms, data, alpha_fisher, order_for_display) labels = ["D$j" for j = 1:ms.num_motifs]; logo_names = ["d$(j)" for j = 1:ms.num_motifs]; # @info "plot the overlap..." @info "save the PWMs..." save_pfms_as_transfac(logo_olap_folder, ms.cmats, sort_perm_1, collect(1:ms.num_motifs)); activate_counts_total = (Int.(active_counts .+ uniq_active_counts_test))[sort_perm_1] valid_alphas = Int[]; # TODO: verify the purpose of this and remove it if necessary render_main_summary_page_olap(labels, pvalues, logo_names, target_folder, logo_olap_folder_name, pics_olap_folder_name, valid_alphas, activate_counts_total, data.N+data.N_test ); end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
code
85
using MOTIFs using Test @testset "MOTIFs.jl" begin # Write your tests here. end
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
docs
7783
## Finding Motifs Using DNA Images Derived From Sparse Representations <!-- [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://kchu25.github.io/MOTIFs.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://kchu25.github.io/MOTIFs.jl/dev/) [![Build Status](https://github.com/kchu25/MOTIFs.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/kchu25/MOTIFs.jl/actions/workflows/CI.yml?query=branch%3Amain) --> General purpose motif discovery package that includes the discovery of flexible (long or gapped) motifs. This code repository corresponds to the paper [Finding Motifs Using DNA Images Derived From Sparse Representations](https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btad378/7192989?utm_source=advanceaccess&utm_campaign=bioinformatics&utm_medium=email), which has been published in Oxford Bioinformatics. ## Table of contents - [Motivation](#Motivation) - [Installation](#Installation) - [Usage](#Usage) - [Software requirements](#Software-requirements) - [Hardware requirements](#Hardware-requirements) - [Adjustable Hyperparameters](#Adjustable-Hyperparameters) - [Interpret the results](#Interpret-the-results) - [Cite this work](#Cite-this-work) - [Contact](#Contact) ## Motivation Traditional methods such as [STREME](https://meme-suite.org/meme/doc/streme.html) and [HOMER](http://homer.ucsd.edu/homer/motif/) excel at efficiently finding the primary motifs of a transcription factor. This raises the question: why do we require an additional motif discovery method? Because there may be more patterns in the datasets that aren't fully captured. This is especially evident for context-dependent binding sites, such as C2H2 zinc finger, and cooperative binding patterns observed in in-vivo datasets from ChIP-Seq. Our work reveals that over half of the ChIP-Seq datasets selected from the [JASPAR 2022](https://jaspar.genereg.net/) database contain transposable elements that overlap the primary binding sites. For instance, see [NFE2L2](https://en.wikipedia.org/wiki/NFE2L2), [YY1](https://en.wikipedia.org/wiki/YY1), [STAT1](https://en.wikipedia.org/wiki/STAT1), [SRF](https://en.wikipedia.org/wiki/Serum_response_factor), [AR](https://en.wikipedia.org/wiki/Androgen_receptor) ([Manuscript Figure 4](https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btad378/7192989?utm_source=advanceaccess&utm_campaign=bioinformatics&utm_medium=email)): ![image info](./imgs/long_1.png) These long patterns present challenges for traditional k-mer-based methods due to their exponential space complexity. Furthermore, many datasets exhibit a large presence of gapped motifs. For example, we found that ChIP-Seq datasets from both [JASPAR](https://jaspar.genereg.net/) and [Factorbook](https://www.factorbook.org/) often contains gapped motifs ([Manuscript Figure 6](https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btad378/7192989?utm_source=advanceaccess&utm_campaign=bioinformatics&utm_medium=email)): ![image info](./imgs/gapped.png) and the spacers that characterized the gapped motifs [can be widely varied (Supplementary Material Figure 2)](./imgs/gaps.png). Last, there are cooperative binding patterns, e.g., ([Manuscript Figure 5](https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btad378/7192989?utm_source=advanceaccess&utm_campaign=bioinformatics&utm_medium=email)): ![image info](./imgs/avsec3.png) for which we see consecutive occurrences of [Oct4](https://en.wikipedia.org/wiki/Oct-4) and cooccurrence of [Oct4](https://en.wikipedia.org/wiki/Oct-4) and [Zic3](https://en.wikipedia.org/wiki/ZIC3), in addition to the Oct4-Sox2 motif. The presence of gapped motifs and cooperative binding patterns presents challenges for k-mer-based methods as well, as these methods are primarily designed to detect ungapped motifs. ## Installation To install MOTIFs.jl use Julia's package manager: ``` pkg> add MOTIFs ``` ## Usage In Julia: ````julia using MOTIFs # Do motif discovery on a set of DNA sequences in a fasta file, # where the `<fasta-path>` and `<output-folder-path>` are the # absolute filepaths as strings. discover_motifs(<fasta-path>, <output-folder-path>) # for example discover_motifs("home/shane/mydata/fasta.fa", "home/shane/mydata/out/") ```` ## Software requirements This package currectly requires [Weblogo](http://weblogo.threeplusone.com/manual.html#download) for PWM plotting. Install Weblogo by running the following command with python3 and pip3: ```bash pip3 install weblogo ``` ## Hardware requirements Currently, a GPU is required for this package as it utilizes [CUDA.jl](https://github.com/JuliaGPU/CUDA.jl) to accelerate certain computations. However, I plan to implement a CPU extension in the future. ## Adjustable Hyperparameters ````julia # The user can adjust the number of epochs for training the network. discover_motifs(<fasta-path>, <output-folder-path>; num_epochs=10) ```` ## Interpret the results ### Summary page Once the motif discovery process is complete, a summary.html page is generated in the output folder, providing a comprehensive overview of the results. For instance, here is an example result page showcasing data from the [SP1 transcription factor from JASPAR](https://jaspar.genereg.net/matrix/MA0079.3/): > ![image info](./imgs/re_top.png) The top of the result page has - **Number of sequences**: The total number of DNA sequences in the dataset. - **Label**: A label assigned for each discovered motifs. * Each label is hyperlinked to a text file in TRANSFAC format that can be parsed. - **P-value**: The satistical significance of the discovered motif using Fisher exact test ([Manuscript section 2.7.2](https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btad378/7192989?utm_source=advanceaccess&utm_campaign=bioinformatics&utm_medium=email)). - **\# instances**: An estimate of the number of occurrences in the dataset ([Manuscript section 2.7.3](https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btad378/7192989?utm_source=advanceaccess&utm_campaign=bioinformatics&utm_medium=email)). - **Logo**: Position weight matricies. * Press the *reverse complement* button to view the logo in alternative orientation. Note that in in-vivo datasets, especially for zinc-finger proteins, a large number of motifs can be observed, often characterized by variable spacings in their binding sites. > ![image info](./imgs/re_gap.png) ### Statistically insignificant motifs Some of the motifs shown here have their p-values in grey, indicating that they have a relatively high p-value (p > 0.01, Fisher exact test). This statistical result simply suggests that these motifs are not significantly enriched relative to the shuffled DNA strings ([Manuscript section 2.7.2](https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btad378/7192989?utm_source=advanceaccess&utm_campaign=bioinformatics&utm_medium=email)); it does not imply that these motifs do not exist in the dataset. > ![image info](./imgs/re_high_pval.png) ## Cite this work You can cite this work using the following BibTex entry: ``` @article{chu2023finding, title={Finding Motifs Using DNA Images Derived From Sparse Representations}, author={Chu, Shane K and Stormo, Gary D}, journal={Bioinformatics}, pages={btad378}, year={2023}, publisher={Oxford University Press} } ``` ## Contact If you have any questions or suggestions regarding the usage or source code, please feel free to reach out to me at <[email protected]>.
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.2
f73e0d7e0a3bc5099bf62383e699916bc39ec773
docs
164
```@meta CurrentModule = MOTIFs ``` # MOTIFs Documentation for [MOTIFs](https://github.com/kchu25/MOTIFs.jl). ```@index ``` ```@autodocs Modules = [MOTIFs] ```
MOTIFs
https://github.com/kchu25/MOTIFs.jl.git
[ "MIT" ]
0.1.0
60426076ff7a89beb4dff7bf0e16e221f1696727
code
2434
using SimulatedAnnealing using Random """ Tour Struct representing a tour visiting cities. Fields ------ `order::Vector{Int}` order in which each city is visited. `D::Matrix` Matrix of distances between each pair of cities. This is stored to be able to pass it down to new candidates without the need of recomputing it. """ struct Tour order::Vector{Int} D::Matrix{Float64} end """ Tour(D::Matrix) Create a tour with random ordering of the cities. """ Tour(D::Matrix) = Tour(randcycle(size(D, 1)), D) """ energy(tour::Tour) Compute the energy of a `Tour` by summing the distances of successive cities in the tour. """ function energy(tour::Tour) s = 0.0 for (k, c1) in enumerate(tour.order) c2 = tour.order[mod1(k + 1, length(tour.order))] s += tour.D[c1, c2] end return s end """ propose_candidate(tour::Tour) Propose a new candidate `Tour` by reversing the order of cities between two random indices. """ function propose_candidate(tour::Tour) n = length(tour.order) order = copy(tour.order) # Order will be reversed between i1 and i2 included i1 = rand(1:n) i2 = mod1(rand(1:n-1) + i1, n) # Make sure i1 != i2 # Make sure that i1 < i2 if i1 > i2 i1, i2 = i2, i1 end if i1 == 1 && i2 == n return Tour(order, tour.D), 0.0 end city_a1 = order[i1] city_a2 = order[i2] city_b1 = order[mod1(i1 - 1, n)] # Index following i1 city_b2 = order[mod1(i2 + 1, n)] # Index preceding i2 dE = (tour.D[city_a1, city_b2] + tour.D[city_a2, city_b1] - tour.D[city_a1, city_b1] - tour.D[city_a2, city_b2]) order[i1:i2] = reverse(order[i1:i2]) dE = energy(Tour(order, tour.D)) - energy(tour) return Tour(order, tour.D), dE end cities = [ [0.0 1.0 2.0 3.0 3.0 3.0 3.0 2.0 1.0 0.0 0.0 0.0] ; [0.0 0.0 0.0 0.0 1.0 2.0 3.0 3.0 3.0 3.0 2.0 1.0] ] # Distance matrix, common for all Tour objects D = sqrt.((cities[1, :] .- cities[1, :]').^2 + (cities[2, :] .- cities[2, :]').^2) n = size(D, 1) # Initial sampling of the configuration space samples = [Tour(D) for _ in 1:1000] # Run the algorithm with default parameters prob = AnnealingOptimization(energy, propose_candidate, samples, n*(n - 1)) best_tour, tour_length = simulated_annealing(prob)
SimulatedAnnealing
https://github.com/Kolaru/SimulatedAnnealing.jl.git
[ "MIT" ]
0.1.0
60426076ff7a89beb4dff7bf0e16e221f1696727
code
5534
module SimulatedAnnealing using Parameters using Statistics export AnnealingOptimization, AnnealingState, OVGCriterion, SSVCriterion, ConstantDecrementRule, AVLDecrementRule, simulated_annealing """ AnnealingOptimization Object representing an optimization done using a Simulated Annealing algorithm. Implement single stage homogeneous Simulated Annealing as (very well) described in Varanelli, 1996, *On the acceleration of simulated annealing*, Chapter 2. Notation and naming convention is consistent with that work. A configuration of the system being optimized is represented by the parametric type `C`. The configurations to optimize can be of any type. The object is iterable to allow access to the internal state during the optimization process. Parameters ========== energy: callable(::C)::T Callable returning the energy of a configuration. propose_candiate: callable(::C)::Tuple{::C, ::T} Callable returning a new configuration together based on an existing one togetehr with the energy difference between the two. stop_criterion: callable(::AnnealingState)::Bool Callable returning whether the annealing must stop. Default is Otten-van Ginneken adaptive stop criterion. decrement_rule: callable(::AneealingState)::T Callable returning the new temperature to use at the end of a Markov step. Default is Aarts and van Laarhoven decrement rule. initial_temperature: Real initial_configuration: C neighborhood_size: integer Number of states that can be accessed from a given one. """ struct AnnealingOptimization{T, C, EFUNC, PFUNC, SFUNC, TFUNC} energy::EFUNC propose_candidate::PFUNC stop_criterion::SFUNC decrement_rule::TFUNC initial_temperature::T initial_configuration::C neighborhood_size::Int end function AnnealingOptimization( energy, propose_candidate, initial_configuration, initial_temperature::Real, neighborhood_size::Integer) return AnnealingOptimization( energy, propose_candidate, SSVCriterion(), AVLDecrementRule(), initial_temperature, initial_configuration, neighborhood_size) end """ AnnealingOptimization(energy, propose_candidate, samples, neighborhood_size) Given samples of the configuration space, determine the initial temperature. The first sample is used as initial configuration. Initial temperature is the standard deviation of the energy in the sample, according to White criterion (see eq. 2.36 in Varanelli). """ function AnnealingOptimization(energy, propose_candidate, samples::Vector, neighborhood_size::Integer) energies = energy.(samples) return AnnealingOptimization( energy, propose_candidate, samples[1], std(energies), neighborhood_size) end """ AnnealingState Struct representing the sate of the Simulated Annealing algorithm at the end of a Markov chain step. Fields ====== temperature current_configuration current_energy bsf_configuration Best configuration found so far. bsf_energy Energy of the best configuratin found so far. energies Array of all energies encountered during the last Markov chain step. """ struct AnnealingState{T, C} temperature::T current_configuration::C current_energy::T bsf_configuration::C bsf_energy::T energies::Vector{T} end function initial_state(search::AnnealingOptimization{T}) where T config = search.initial_configuration E = search.energy(config) return AnnealingState(search.initial_temperature, config, E, config, E, zeros(T, 0)) end include("decrement_rule.jl") include("stop_criterion.jl") Base.eltype(::Type{A}) where {T, C, A <: AnnealingOptimization{T, C}} = AnnealingState{T, C} Base.IteratorSize(::Type{A}) where {A <: AnnealingOptimization} = Base.SizeUnknown() function Base.iterate( search::AnnealingOptimization{T}, state=initial_state(search)) where T length(state.energies) > 0 && search.stop_criterion(state) && return nothing # Initialize all internal loop variables configuration = state.current_configuration E = state.current_energy bsf = state.bsf_configuration bsf_energy = state.bsf_energy energies = zeros(T, search.neighborhood_size) # Markov chain at constant temperature for k in 1:search.neighborhood_size candidate, dE = search.propose_candidate(configuration) if dE < 0 || rand() < exp(-dE/state.temperature) configuration = candidate E += dE if E < state.bsf_energy bsf = configuration bsf_energy = E end end energies[k] = E end new_state = AnnealingState(search.decrement_rule(state), configuration, E, bsf, bsf_energy, energies) return new_state, new_state end function simulated_annealing(search::AnnealingOptimization) local state = nothing # Avoid being shadowed inside the loop for s in search # Go to the end of the search state = s end return state.bsf_configuration, state.bsf_energy end end
SimulatedAnnealing
https://github.com/Kolaru/SimulatedAnnealing.jl.git
[ "MIT" ]
0.1.0
60426076ff7a89beb4dff7bf0e16e221f1696727
code
863
""" ConstantDecrementRule Fixed temperature decrement rule. The temperature is decrease by a constant factor after each Markov chain. Parameters ========== factor: the constant factor multiplying the temperature. """ @with_kw struct ConstantDecrementRule{T} factor::T = 0.9 end function (decrement_rule::ConstantDecrementRule)(state::AnnealingState) return decrement_rule.factor * state.temperature end """ AVLDecrementRule Aarts and van Laarhoven temperature decrement rule. Parameters ========== distance_parameter Reference ========= Varanelli, eq. 2.42. """ @with_kw struct AVLDecrementRule{T} distance_parameter::T = 0.085 end function (decrement_rule::AVLDecrementRule)(state::AnnealingState) T = state.temperature σ = std(state.energies) δ = decrement_rule.distance_parameter return T/(1 + T*log(1 + δ)/3σ) end
SimulatedAnnealing
https://github.com/Kolaru/SimulatedAnnealing.jl.git
[ "MIT" ]
0.1.0
60426076ff7a89beb4dff7bf0e16e221f1696727
code
1303
""" OVGCriterion Otten-van Ginneken adaptive stop criterion. Parameters ========== threshold Reference ========= Varanelli, eq. 2.47. """ @with_kw struct OVGCriterion{T} energy_reference::T threshold::T = 0.001 end function (criterion::OVGCriterion)(state::AnnealingState) σ = std(state.energies) dμ = criterion.energy_reference - mean(state.energies) σ == 0 && return true if dμ >= 0 stop_measure = σ^2/(state.temperature*dμ) else stop_measure = Inf end return stop_measure < criterion.threshold end """ SSVCriterion Sechen and Sangiovanni-Vincentelli stop criterion. Stops if the same energy appears a given amount of time at the end of Markov chains. Parameters ========== maximum_repeat: maximum number of time the same BSF energy can be repeated. Reference ========= Varanelli, p. 26. """ @with_kw mutable struct SSVCriterion{T} maximum_repeat::Int = 3 last_energy::T = Inf repeat_count::Int = 1 end function (criterion::SSVCriterion)(state::AnnealingState) if state.bsf_energy == criterion.last_energy criterion.repeat_count += 1 else criterion.last_energy = state.bsf_energy criterion.repeat_count = 1 end return criterion.repeat_count == criterion.maximum_repeat end
SimulatedAnnealing
https://github.com/Kolaru/SimulatedAnnealing.jl.git
[ "MIT" ]
0.1.0
60426076ff7a89beb4dff7bf0e16e221f1696727
code
1013
using SimulatedAnnealing using Statistics using Test @testset "Travelling salesman" begin include("../example/travelling_salesman.jl") energies = energy.(samples) decrement_rules = Dict( "constant" => ConstantDecrementRule, "AVL" => AVLDecrementRule) stop_criteria = Dict( "OVG" => () -> OVGCriterion(energy_reference=mean(energies)), "SSV" => SSVCriterion) for (rulename, rule) in decrement_rules for (critname, criterion) in stop_criteria @testset "Decrement: $rulename, Stop: $critname" begin sa_prob = AnnealingOptimization( energy, propose_candidate, criterion(), rule(), std(energies), samples[1], n*(n - 1)) best_tour, tour_length = simulated_annealing(sa_prob) @test tour_length == 12 end end end end
SimulatedAnnealing
https://github.com/Kolaru/SimulatedAnnealing.jl.git
[ "MIT" ]
0.1.0
60426076ff7a89beb4dff7bf0e16e221f1696727
docs
2535
# SimulatedAnnealing.jl This package aims is to provide a simple and flexible implementation of the simulated annealing algorithm in Julia. The implementation is fully based on the following PhD thesis: > Varanelli, 1996, *On the acceleration of simulated annealing* Currently, nothing fancy is done and only the basic homogenous algorithm as describe in Chapter 2 of this work is implemented (in particular the whole part about accelerating simulated annealing is ignored). ## Basics Simulated annealing try to minimize the energy of a configuration by successively probing neighboring configurations. In this package, no restriction is imposed on the type of configuration being optimize. Before starting the algorithm we need several things: - An `energy` function, that takes a configuration as an argument and return its energy, the quantity that the algorithm minimizes. - A `propose_candidate` function that takes a configuration and return a candidate configuration and the energy difference between the two. This is the main function used in the algorithm and the performance mostly depends on it. Returning the energy difference is required as it is often possible to make this computation very efficient compared to explicitly computing the energy of the two configurations and taking their difference. In fact if there is no efficient way of computing this difference, it may indicate simulated annealing is not the correct algorithm to use for the problem. - An unifrom sampling of the space of configuration. This is used to determine the initial temperature as well as an energy reference for the stop criterion. Around 1000 samples should be enough. - The size of the neighborhood of a configuration. This is needed to have sufficient sampling and thus ensure (in probability) convergence. When all that is set, an optimization problem can be created and the algorithm can be run on it, yielding the best configuration and its energy. ```julia sa_problem = AnnealingOptimization(energy, propose_candidate, samples, neighborhood_size) best_configuration, best_energy = simulated_annealing(sa_problem) ``` Please refer to the example folder for a complete example. ## Customization Various temperature decrement rules and stop criterion can be chosen. New ones can also be created. Please refer to the docstrings for more information, or open an issue if something is not clear (I am too lazy to write a full documentation before seeing if there is interest for the package ^^).
SimulatedAnnealing
https://github.com/Kolaru/SimulatedAnnealing.jl.git
[ "MIT" ]
0.7.4
47cee2085962dad41ca9ec811e37694d7445531f
code
358
module CodecXz export XzCompressor, XzCompressorStream, XzDecompressor, XzDecompressorStream import TranscodingStreams: TranscodingStreams, TranscodingStream, Memory, Error, initialize, finalize, splitkwargs using XZ_jll include("liblzma.jl") include("compression.jl") include("decompression.jl") end # module
CodecXz
https://github.com/JuliaIO/CodecXz.jl.git
[ "MIT" ]
0.7.4
47cee2085962dad41ca9ec811e37694d7445531f
code
2600
# Compressor Codec # ================ struct XzCompressor <: TranscodingStreams.Codec stream::LZMAStream preset::UInt32 check::Cint end function Base.show(io::IO, codec::XzCompressor) print(io, summary(codec), "(level=$(codec.preset), check=$(codec.check))") end const DEFAULT_COMPRESSION_LEVEL = 6 const DEFAULT_CHECK = LZMA_CHECK_CRC64 """ XzCompressor(;level=$(DEFAULT_COMPRESSION_LEVEL), check=LZMA_CHECK_CRC64) Create an xz compression codec. Arguments --------- - `level`: compression level (0..9) - `check`: integrity check type (`LZMA_CHECK_{NONE,CRC32,CRC64,SHA256}`) """ function XzCompressor(;level::Integer=DEFAULT_COMPRESSION_LEVEL, check::Cint=DEFAULT_CHECK) if !(0 ≤ level ≤ 9) throw(ArgumentError("compression level must be within 0..9")) elseif check ∉ (LZMA_CHECK_NONE, LZMA_CHECK_CRC32, LZMA_CHECK_CRC64, LZMA_CHECK_SHA256) throw(ArgumentError("invalid integrity check")) end return XzCompressor(LZMAStream(), level, check) end const XzCompressorStream{S} = TranscodingStream{XzCompressor,S} where S<:IO """ XzCompressorStream(stream::IO; kwargs...) Create an xz compression stream (see `XzCompressor` for `kwargs`). """ function XzCompressorStream(stream::IO; kwargs...) x, y = splitkwargs(kwargs, (:level, :check)) return TranscodingStream(XzCompressor(;x...), stream; y...) end # Methods # ------- function TranscodingStreams.initialize(codec::XzCompressor) ret = easy_encoder(codec.stream, codec.preset, codec.check) if ret != LZMA_OK lzmaerror(codec.stream, ret) end return end function TranscodingStreams.finalize(codec::XzCompressor) free(codec.stream) end function TranscodingStreams.startproc(codec::XzCompressor, mode::Symbol, error::Error) ret = easy_encoder(codec.stream, codec.preset, codec.check) if ret != LZMA_OK error[] = ErrorException("xz error") return :error end return :ok end function TranscodingStreams.process(codec::XzCompressor, input::Memory, output::Memory, error::Error) stream = codec.stream stream.next_in = input.ptr stream.avail_in = input.size stream.next_out = output.ptr stream.avail_out = output.size ret = code(stream, input.size > 0 ? LZMA_RUN : LZMA_FINISH) Δin = Int(input.size - stream.avail_in) Δout = Int(output.size - stream.avail_out) if ret == LZMA_OK return Δin, Δout, :ok elseif ret == LZMA_STREAM_END return Δin, Δout, :end else error[] = ErrorException(lzma_error_string(ret)) return Δin, Δout, :error end end
CodecXz
https://github.com/JuliaIO/CodecXz.jl.git
[ "MIT" ]
0.7.4
47cee2085962dad41ca9ec811e37694d7445531f
code
2577
# Decompressor Codec # ================== struct XzDecompressor <: TranscodingStreams.Codec stream::LZMAStream memlimit::Integer flags::UInt32 end function Base.show(io::IO, codec::XzDecompressor) print(io, summary(codec), "(memlimit=$(codec.memlimit), flags=$(codec.flags))") end const DEFAULT_MEM_LIMIT = typemax(UInt64) """ XzDecompressor(;memlimit=$(DEFAULT_MEM_LIMIT), flags=LZMA_CONCATENATED) Create an xz decompression codec. Arguments --------- - `memlimit`: memory usage limit as bytes - `flags`: decoder flags """ function XzDecompressor(;memlimit::Integer=DEFAULT_MEM_LIMIT, flags::UInt32=LZMA_CONCATENATED) if memlimit ≤ 0 throw(ArgumentError("memlimit must be positive")) end # NOTE: flags are checked in liblzma return XzDecompressor(LZMAStream(), memlimit, flags) end const XzDecompressorStream{S} = TranscodingStream{XzDecompressor,S} where S<:IO """ XzDecompressorStream(stream::IO; kwargs...) Create an xz decompression stream (see `XzDecompressor` for `kwargs`). """ function XzDecompressorStream(stream::IO; kwargs...) x, y = splitkwargs(kwargs, (:memlimit, :flags)) return TranscodingStream(XzDecompressor(;x...), stream; y...) end # Methods # ------- function TranscodingStreams.initialize(codec::XzDecompressor) ret = stream_decoder(codec.stream, codec.memlimit, codec.flags) if ret != LZMA_OK lzmaerror(codec.stream, ret) end return end function TranscodingStreams.finalize(codec::XzDecompressor) free(codec.stream) end function TranscodingStreams.startproc(codec::XzDecompressor, mode::Symbol, error::Error) ret = stream_decoder(codec.stream, codec.memlimit, codec.flags) if ret != LZMA_OK error[] = ErrorException("xz error") return :error end return :ok end function TranscodingStreams.process(codec::XzDecompressor, input::Memory, output::Memory, error::Error) stream = codec.stream stream.next_in = input.ptr stream.avail_in = input.size stream.next_out = output.ptr stream.avail_out = output.size if codec.flags & LZMA_CONCATENATED != 0 action = stream.avail_in > 0 ? LZMA_RUN : LZMA_FINISH else action = LZMA_RUN end ret = code(stream, action) Δin = Int(input.size - stream.avail_in) Δout = Int(output.size - stream.avail_out) if ret == LZMA_OK return Δin, Δout, :ok elseif ret == LZMA_STREAM_END return Δin, Δout, :end else error[] = ErrorException(lzma_error_string(ret)) return Δin, Δout, :error end end
CodecXz
https://github.com/JuliaIO/CodecXz.jl.git
[ "MIT" ]
0.7.4
47cee2085962dad41ca9ec811e37694d7445531f
code
2617
# The liblzma Interfaces # ====================== # Return code const LZMA_OK = Cint(0) const LZMA_STREAM_END = Cint(1) const LZMA_NO_CHECK = Cint(2) const LZMA_UNSUPPORTED_CHECK = Cint(3) const LZMA_GET_CHECK = Cint(4) const LZMA_MEM_ERROR = Cint(5) const LZMA_MEMLIMIT_ERROR = Cint(6) const LZMA_FORMAT_ERROR = Cint(7) const LZMA_OPTIONS_ERROR = Cint(8) const LZMA_DATA_ERROR = Cint(9) const LZMA_BUF_ERROR = Cint(10) const LZMA_PROG_ERROR = Cint(11) # Action code const LZMA_RUN = Cint(0) const LZMA_SYNC_FLUSH = Cint(1) const LZMA_FULL_FLUSH = Cint(2) const LZMA_FULL_BARRIER = Cint(4) const LZMA_FINISH = Cint(3) # Flag const LZMA_TELL_NO_CHECK = UInt32(0x01) const LZMA_TELL_UNSUPPORTED_CHECK = UInt32(0x02) const LZMA_TELL_ANY_CHECK = UInt32(0x04) const LZMA_IGNORE_CHECK = UInt32(0x10) const LZMA_CONCATENATED = UInt32(0x08) # Check const LZMA_CHECK_NONE = Cint(0) const LZMA_CHECK_CRC32 = Cint(1) const LZMA_CHECK_CRC64 = Cint(4) const LZMA_CHECK_SHA256 = Cint(10) mutable struct LZMAStream next_in::Ptr{UInt8} avail_in::Csize_t total_in::UInt64 next_out::Ptr{UInt8} avail_out::Csize_t total_out::UInt64 allocator::Ptr{Cvoid} internal::Ptr{Cvoid} reserved_ptr::NTuple{4,Ptr{Cvoid}} reserved_uint::NTuple{2,UInt64} reserved_size::NTuple{2,Csize_t} reserved_enum::NTuple{2,Cint} end function LZMAStream() return LZMAStream( C_NULL, 0, 0, C_NULL, 0, 0, C_NULL, C_NULL, (C_NULL, C_NULL, C_NULL, C_NULL), (0, 0), (0, 0), (0, 0)) end function lzmaerror(stream::LZMAStream, code::Cint) error(lzma_error_string(code)) end function lzma_error_string(code::Cint) return "lzma error: code = $(code)" end function easy_encoder(stream::LZMAStream, preset::Integer, check::Integer) return ccall( (:lzma_easy_encoder, liblzma), Cint, (Ref{LZMAStream}, UInt32, Cint), stream, preset, check) end function stream_decoder(stream::LZMAStream, memlimit::Integer, flags::Integer) return ccall( (:lzma_stream_decoder, liblzma), Cint, (Ref{LZMAStream}, UInt64, UInt32), stream, memlimit, flags) end function code(stream::LZMAStream, action::Integer) return ccall( (:lzma_code, liblzma), Cint, (Ref{LZMAStream}, Cint), stream, action) end function free(stream::LZMAStream) ccall((:lzma_end, liblzma), Cvoid, (Ref{LZMAStream},), stream) end
CodecXz
https://github.com/JuliaIO/CodecXz.jl.git
[ "MIT" ]
0.7.4
47cee2085962dad41ca9ec811e37694d7445531f
code
1751
using CodecXz using TranscodingStreams: TranscodingStreams using TestsForCodecPackages using Test @testset "Xz Codec" begin codec = XzCompressor() @test codec isa XzCompressor @test occursin(r"^(CodecXz\.)?XzCompressor\(level=\d, check=\d+\)$", sprint(show, codec)) @test CodecXz.initialize(codec) === nothing @test CodecXz.finalize(codec) === nothing codec = XzDecompressor() @test codec isa XzDecompressor @test occursin(r"^(CodecXz\.)?XzDecompressor\(memlimit=\d+, flags=\d+\)$", sprint(show, codec)) @test CodecXz.initialize(codec) === nothing @test CodecXz.finalize(codec) === nothing # Generated by `lzma.compress(b"foo")` on CPython 3.5.2. data = Vector(b"\xfd7zXZ\x00\x00\x04\xe6\xd6\xb4F\x02\x00!\x01\x16\x00\x00\x00t/\xe5\xa3\x01\x00\x02foo\x00\x00X\x15\xa9{,\xe6,\x98\x00\x01\x1b\x03\x0b/\xb9\x10\x1f\xb6\xf3}\x01\x00\x00\x00\x00\x04YZ") @test read(XzDecompressorStream(IOBuffer(data))) == b"foo" @test read(XzDecompressorStream(IOBuffer(vcat(data, data)))) == b"foofoo" # corrupt data data[[1,3,5]] = b"bug" @test_throws ErrorException read(XzDecompressorStream(IOBuffer(data))) @test XzCompressorStream <: TranscodingStreams.TranscodingStream @test XzDecompressorStream <: TranscodingStreams.TranscodingStream test_roundtrip_read(XzCompressorStream, XzDecompressorStream) test_roundtrip_write(XzCompressorStream, XzDecompressorStream) test_roundtrip_lines(XzCompressorStream, XzDecompressorStream) test_roundtrip_seekstart(XzCompressorStream, XzDecompressorStream) test_roundtrip_transcode(XzCompressor, XzDecompressor) @test_throws ArgumentError XzCompressor(level=10) @test_throws ArgumentError XzDecompressor(memlimit=0) end
CodecXz
https://github.com/JuliaIO/CodecXz.jl.git
[ "MIT" ]
0.7.4
47cee2085962dad41ca9ec811e37694d7445531f
docs
1248
CodecXz.jl ========== ## Installation ```julia Pkg.add("CodecXz") ``` ## Usage ```julia using CodecXz # Some text. text = """ Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean sollicitudin mauris non nisi consectetur, a dapibus urna pretium. Vestibulum non posuere erat. Donec luctus a turpis eget aliquet. Cras tristique iaculis ex, eu malesuada sem interdum sed. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Etiam volutpat, risus nec gravida ultricies, erat ex bibendum ipsum, sed varius ipsum ipsum vitae dui. """ # Streaming API. stream = XzCompressorStream(IOBuffer(text)) for line in eachline(XzDecompressorStream(stream)) println(line) end close(stream) # Array API. compressed = transcode(XzCompressor, text) @assert sizeof(compressed) < sizeof(text) @assert transcode(XzDecompressor, compressed) == Vector{UInt8}(text) ``` This package exports following codecs and streams: | Codec | Stream | | ---------------- | ---------------------- | | `XzCompressor` | `XzCompressorStream` | | `XzDecompressor` | `XzDecompressorStream` | See docstrings and [TranscodingStreams.jl](https://github.com/bicycle1885/TranscodingStreams.jl) for details.
CodecXz
https://github.com/JuliaIO/CodecXz.jl.git
[ "MIT" ]
1.0.0
8add6e24b5c2f363f9f3564bb11f42dcb197f4f8
code
392
using Documenter, NumberTheoreticTransforms makedocs(modules = [NumberTheoreticTransforms], sitename = "NumberTheoreticTransforms.jl", pages = Any[ "Home" => "index.md", "Functions" => "api.md", "Examples" => "examples.md" ]) deploydocs( repo = "github.com/jakubwro/NumberTheoreticTransforms.jl.git", target = "build" )
NumberTheoreticTransforms
https://github.com/jakubwro/NumberTheoreticTransforms.jl.git
[ "MIT" ]
1.0.0
8add6e24b5c2f363f9f3564bb11f42dcb197f4f8
code
1267
using Images, TestImages, Colors, ZernikePolynomials, FFTW using NumberTheoreticTransforms image_float = channelview(testimage("cameraman")) image_int = map(x -> x.:i, image_float) .|> Int64 blur_float = evaluateZernike(LinRange(-41,41,512), [12, 4, 0], [1.0, -1.0, 2.0], index=:OSA) blur_float ./= (sum(blur_float)) blur_float = blur_float blur_int = blur_float .|> Normed{UInt8, 8} .|> x -> x.:i .|> Int64 blur_int = fftshift(blur_int) @assert sum(blur_int) == 256 # to not change brightness blurred_image_float = ifft(fft(image_float) .* fft(fftshift(blur_float))) |> real t = 4 (g, q) = (314, 2^2^t+1) X = fnt(image_int, g, q) @assert ifnt(X, g, q) == image_int H = fnt(blur_int, g, q) @assert ifnt(H, g, q) == blur_int Y = mod.((X .* H), q) y = ifnt(Y, g, q) blurred_image_int = y / 2^16 using Statistics @show maximum(abs.(blurred_image_float .- blurred_image_int)) @show mean(abs.(blurred_image_float .- blurred_image_int)) @show var(abs.(blurred_image_float .- blurred_image_int)) save("doc/src/fnt/original.jpg", Images.clamp01nan.(image_float)) save("doc/src/fnt/blurred_fft.jpg", Images.clamp01nan.(Gray.(Normed{UInt8, 8}.(blurred_image_float)))) save("doc/src/fnt/blurred_fnt.jpg", Images.clamp01nan.(Gray.(Normed{UInt8, 8}.(blurred_image_int))))
NumberTheoreticTransforms
https://github.com/jakubwro/NumberTheoreticTransforms.jl.git
[ "MIT" ]
1.0.0
8add6e24b5c2f363f9f3564bb11f42dcb197f4f8
code
1407
using Images, TestImages using Deconvolution using FFTW using Colors using ZernikePolynomials using FFTW using NumberTheoreticTransforms trim = 225:288 # need to limit size due to O(N^4) complexity image_float = channelview(testimage("cameraman"))[trim.-110, trim.+40] image_int = map(x -> x.:i, image_float) .|> Int64 blur_float = evaluateZernike(LinRange(-41,41,512), [12, 4, 0], [1.0, -1.0, 2.0], index=:OSA) blur_float ./= (sum(blur_float)) blur_float = blur_float[trim, trim] blur_int = blur_float .|> Normed{UInt8, 8} .|> x -> x.:i .|> Int64 blur_int = fftshift(blur_int) @assert sum(blur_int) == 256 # to not change brightness blurred_image_float = ifft(fft(image_float) .* fft(fftshift(blur_float))) |> real (g, q, n) = (4, 274177, 64) X = ntt(image_int, g, q) @assert intt(X, g, q) == image_int H = ntt( blur_int, g, q) @assert intt(H, g, q) == blur_int Y = mod.((X .* H), q) y = intt(Y, g, q) blurred_image_int = y / 2^16 using Statistics @show maximum(abs.(blurred_image_float .- blurred_image_int)) @show mean(abs.(blurred_image_float .- blurred_image_int)) @show var(abs.(blurred_image_float .- blurred_image_int)) save("doc/src/ntt/original.jpg", Images.clamp01nan.(image_float)) save("doc/src/ntt/blurred_fft.jpg", Images.clamp01nan.(Gray.(Normed{UInt8, 8}.(blurred_image_float)))) save("doc/src/ntt/blurred_ntt.jpg", Images.clamp01nan.(Gray.(Normed{UInt8, 8}.(blurred_image_int))))
NumberTheoreticTransforms
https://github.com/jakubwro/NumberTheoreticTransforms.jl.git
[ "MIT" ]
1.0.0
8add6e24b5c2f363f9f3564bb11f42dcb197f4f8
code
1445
Maybe{T} = Union{T, Nothing} struct FindNTT{G<:Maybe{BigInt}, Q<:Maybe{BigInt}, N<:Maybe{Int}} g::G q::Q n::N end function (params::FindNTT{Nothing, Nothing, Int})() n = params.n for q in primes(n, 1000000n) for g in 2:min(q, 100) if mod(q - 1, n) == 0 && powermod(g, n, q) == 1 && !(1 in powermod.(g, 2:n - 1, q)) println("(g, q, n) = ($g, $q, $n)") end end end end function (params::FindNTT{Nothing, BigInt, Nothing})() q = params.q for g in 2:q for n in 1:q if powermod(g, n, q) == 1 println("(g, q, n) = ($g, $q, $n)") break end end end end function (params::FindNTT{BigInt, BigInt, Nothing})() (g, q) = (params.g, params.q) @assert g >= 0 @assert g < q for n in 1:q if powermod(g, n, q) == 1 println("(g, q, n) = ($g, $q, $n)") break end end end function (params::FindNTT{Nothing, BigInt, Int})() (q, n) = (params.q, params.n) for g in 2:q if powermod(g, n, q) == 1 println("(g, q, n) = ($g, $q, $n)") break end end end function (params::FindNTT{BigInt, BigInt, Int})() g, q, n = params.g, params.q, params.n if mod(q - 1, n) == 0 && powermod(g, n, q) == 1 && !(1 in powermod.(g, 2:n - 1, q)) println("(g, q, n) = ($g, $q, $n)") end end
NumberTheoreticTransforms
https://github.com/jakubwro/NumberTheoreticTransforms.jl.git
[ "MIT" ]
1.0.0
8add6e24b5c2f363f9f3564bb11f42dcb197f4f8
code
636
doc = """NTT parameter finder. Usage: ntt-params.jl --modulus <q> [ --base <g> ] ntt-params.jl --length <n> [ --modulus <q> ] [ --base <g> ] ntt-params.jl -h | --help Options: -h --help Show this screen. -n --length Length of input vector. -q --modulus Modulo arithmetic. -g --base Transform exponential base. """ using DocOpt, Primes args = docopt(doc, version=v"2.0.0") args_parse(T, key) = args[key] === nothing ? nothing : parse(T, args[key]) (g, q, n) = args_parse(BigInt, "<g>"), args_parse(BigInt, "<q>"), args_parse(Int64, "<n>") include("find-ntt-methods.jl") findntt = FindNTT(g, q, n) findntt()
NumberTheoreticTransforms
https://github.com/jakubwro/NumberTheoreticTransforms.jl.git
[ "MIT" ]
1.0.0
8add6e24b5c2f363f9f3564bb11f42dcb197f4f8
code
84
module NumberTheoreticTransforms include("ntt.jl") include("fnt.jl") end # module
NumberTheoreticTransforms
https://github.com/jakubwro/NumberTheoreticTransforms.jl.git
[ "MIT" ]
1.0.0
8add6e24b5c2f363f9f3564bb11f42dcb197f4f8
code
4108
### fnt.jl # # Copyright (C) 2020 Andrey Oskin. # Copyright (C) 2020 Jakub Wronowski. # # Maintainer: Jakub Wronowski <[email protected]> # Keywords: number theoretic transform, fermat number transform # # This file is a part of NumberTheoreticTransforms.jl. # # License is MIT. # ### Commentary: # # This file contains implementation of Fermat Number Transform. # ### Code: export fnt, fnt!, ifnt, ifnt!, modfermat, isfermat """ isfermat(n) Checks if a given number is a Fermat number \$ 2^{2^t}+1 \$. """ function isfermat(number::T) where {T<:Integer} if !ispow2(number - one(T)) return false end return ispow2(trailing_zeros(number - one(T))) end """ modfermat(n, q) Equivalent of mod(n, q) but uses faster algorithm. Constraints: - `q` must be a Fermat number \$ 2^{2^t}+1 \$ - `n` must be smaller or equal to \$ (q-1)^2 \$ - `n` must be grater or equal to \$ 0 \$ If above constraints are not met, the result is undefined. """ function modfermat(n::T, q::T) where T <: Integer x = n & (q - T(2)) - n >>> trailing_zeros(q - T(1)) + q x = x >= q ? x - q : x end """ Order input to perform radix-2 structured calculation. It sorts array by bit-reversed 0-based sample index. """ function radix2sort!(data::Array{T, 1}) where {T<:Integer} N = length(data) @assert ispow2(N) l = 1 for k in 1:N if l > k data[l], data[k] = data[k], data[l] end l = l - 1 m = N while l & (m >>= 1) != 0 l &= ~m end l = (l | m) + 1 end return data end function fnt!(x::Array{T, 1}, g::T, q::T) where {T<:Integer} N = length(x) @assert ispow2(N) @assert isfermat(q) @assert all(v -> 0 <= v < q, x) radix2sort!(x) logN = trailing_zeros(N) for l in 1:logN M = 1 << (l-1) # [1,2,4,8,...,N/2] interval = 1 << l # [2,4,8,...,N] p = 1 << (logN - l) # [N/2,...,4,2,1] gp = powermod(g, p, q) W = 1 for m in 1:M for i in m:interval:N j = i + M xi, xj = x[i], x[j] Wxj = modfermat(W * xj, q) xi, xj = xi + Wxj, xi - Wxj + q xi = xi >= q ? xi - q : xi # mod q xj = xj >= q ? xj - q : xj # mod q x[i], x[j] = xi, xj end W = modfermat(W * gp, q) end end return x end """ fnt!(x, g, q) In-place version of `fnt`. That means it will store result in the `x` array. """ function fnt!(x::Array{T,2}, g::T, q::T) where {T<:Integer} N, M = size(x) @assert N == M #TODO: make it work for N != M (need different g for each dim) for n in 1:N x[n, :] = fnt!(x[n, :], g, q) end for m in 1:M x[:, m] = fnt!(x[:, m], g, q) end return x end """ fnt(x, g, q) The Fermat Number Transform returns the same result as `ntt` function using more performant algorithm. When `q` has \$ 2^{2^t}+1 \$ form the calculation can be performed with O(N*log(N)) operation instead of O(N^2) for `ntt`. """ function fnt(x::Array{T}, g::T, q::T) where {T<:Integer} return fnt!(copy(x), g, q) end """ ifnt!(y, g, q) In-place version of `ifnt`. That means it will store result in the `y` array. """ function ifnt!(y::Array{T,1}, g::T, q::T) where {T<:Integer} N = length(y) inv_N = invmod(N, q) inv_g = invmod(g, q) x = fnt!(y, inv_g, q) for i in eachindex(x) x[i] = mod(inv_N * x[i], q) end return x end function ifnt!(y::Array{T,2}, g::T, q::T) where {T<:Integer} N, M = size(y) for m in 1:M y[:, m] = ifnt!(y[:, m], g, q) end for n in 1:N y[n, :] = ifnt!(y[n, :], g, q) end return y end """ ifnt(y, g, q) Calculates inverse of Fermat Number Transform for array `y` using mod \$ 2^{2^t}+1 \$ arithmetic. The input must be array of integers calculated by `fnt` function with the same `g` and `q` params. """ function ifnt(y::Array{T}, g::T, q::T) where {T<:Integer} return ifnt!(copy(y), g, q) end
NumberTheoreticTransforms
https://github.com/jakubwro/NumberTheoreticTransforms.jl.git
[ "MIT" ]
1.0.0
8add6e24b5c2f363f9f3564bb11f42dcb197f4f8
code
3882
### ntt.jl # # Copyright (C) 2019 Jakub Wronowski. # # Maintainer: Jakub Wronowski <[email protected]> # Keywords: number theoretic transform # # This file is a part of NumberTheoreticTransforms.jl. # # License is MIT. # ### Commentary: # # This file contains implementation of general Number Theoretic Transform. # ### Code: export ntt, intt """ Constraints on NTT params to ensure that inverse can be computed """ function validate(N, g, q) @assert mod(q - 1, N) == 0 @assert powermod(g, N, q) == 1 @assert !(1 in powermod.(g, 2:N-1, q)) # this may be redundant @assert gcd(N, q) == 1 end """ ntt(x::Array{T,1}, g, q) -> Array{T,1} The [Number Theoretic Transform](https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general)#Number-theoretic_transform) transforms data in a similar fashion to DFT, but instead complex roots of unity it uses integer roots with all operation defined in a finite field (modulo an integer number). `ntt` function implements Number Theoretic Transform directly from the formula, so it is flexible about choosing transformation params but lacks performance. ``\\bar{x}_k = \\sum_{n=1}^N{x_n g^{(n-1)(k-1)} } \\mod q`` There is also a few constraints on choosing parameters and input length to ensure that inverse exists and equals to the original input: - ``g`` must ``N``-th root of one in modulo ``q`` arithmetic - ``q-1`` mod ``N`` must be equal zero - ``q`` must be grater than maximum element present in transformed array To find parameter set you may use fint-ntt script. The arguments of `ntt` function are - `x`: input data, its elements must be smaller than q - `g`: transform power base, must have inversion modulo q - `q`: defines modulo arithmetic """ function ntt(x::Array{T,1}, g::T, q::T) where {T<:Integer} N = length(x) #TODO: more validation of p,q, decompose it to struct #TODO: create transform object that validates input in the constructor validate(N, g, q) (lo, hi) = extrema(x) @assert lo >= 0 @assert hi <= q-1 t = [powermod(g, n * k, q) for n in 0:N-1, k in 0:N-1] #TODO: make result of ntt a struct that will hold infrmation about g return mod.(t * x, q) end # TODO: change implementation to handle any number of dimensions # it can be done calling N-1 dimensional transform in a loop function ntt(x::Array{T,2}, g::T, q::T) where {T<:Integer} N, M = size(x) @assert N == M #TODO: make it work for N != M (need different g for each dim) y = zeros(T, size(x)) for n in 1:N y[n, :] = ntt(x[n, :], g, q) end for m in 1:M y[:, m] = ntt(y[:, m], g, q) end return y end """ intt(y::Array{T,1}, g, q) -> Array{T,1} Inverse Number Theoretic Transform implementation directly from the formula. ``x_k = N^{-1} \\sum_{n=1}^N{\\bar{x}_n g^{-(n-1)(k-1)} } \\mod q`` The same input parameters constraints as for `ntt` function must be applied """ function intt(y::Array{T,1}, g::T, q::T) where {T<:Integer} N = length(y) validate(N, g, q) inv_g = invmod(g, q) inv_N = invmod(N, q) t = [powermod(inv_g, l * k, q) for k in 0:N-1, l in 0:N-1] return mod.(inv_N * t * y, q) end function intt(y::Array{T,2}, g::T, q::T) where {T<:Integer} N, M = size(y) x = zeros(T, size(y)) for m in 1:M x[:, m] = intt(y[:, m], g, q) end for n in 1:N x[n, :] = intt(x[n, :], g, q) end return x end # those implementations are incorrect but transform results were interesing anyway # TODO: check if those calculations are useful # function ntt(g::T, q::T, x::Array{T,N}) where {T <: Integer,N} # return reshape(ntt(g, q, reshape(x, length(x))), size(x)) # end # function intt(g::T, q::T, y::Array{T,N}) where {T <: Integer,N} # return reshape(intt(g, q, reshape(y, length(y))), size(y)) # end
NumberTheoreticTransforms
https://github.com/jakubwro/NumberTheoreticTransforms.jl.git
[ "MIT" ]
1.0.0
8add6e24b5c2f363f9f3564bb11f42dcb197f4f8
code
236
using BenchmarkTools using NumberTheoreticTransforms, FFTW const x = mod.(rand(Int, 4096), 65537); @btime fnt($x, $169, $65537); @btime fft($x); const x2 = mod.(rand(Int, 8192), 65537); @btime fnt($x2, $225, $65537); @btime fft($x2);
NumberTheoreticTransforms
https://github.com/jakubwro/NumberTheoreticTransforms.jl.git
[ "MIT" ]
1.0.0
8add6e24b5c2f363f9f3564bb11f42dcb197f4f8
code
2597
@testset "FNT 1D" begin for t in BigInt.(1:13) @show t x = [1:2^(t+1);] .|> BigInt @show length(x) g = 2 |> BigInt q = 2^2^t + 1 |> BigInt @time @test ifnt(fnt(x, g, q), g, q) == x end end @testset "FNT and NTT coherence" begin # FNT is special case with faster implementation of general NTT and should # give the same results t = 2 F_t = 2^2^t + 1 #a Fermat number x = [1:8;] @test fnt(x, 2, F_t) == ntt(x, 2, F_t) end @testset "FNT 1D convolution" begin using DSP t = 3 q = 2^2^t + 1 g = 2 # padding inputs with zeros to get non circular convolution x = [1:8; zeros(Int, 8);] h = [1:8; zeros(Int, 8);] X = fnt(x, g, q) H = fnt(h, g, q) Y = mod.(X .* H, q) y = ifnt(Y, g, q) @test y[1:15] == DSP.conv(1:8, 1:8) end @testset "FNT 2D" begin t = 2 q = 2^2^t + 1 g = 2 x = mod.(rand(Int, 8, 8), q) @test ifnt(fnt(x, g, q), g, q) == x t = 4 q = 2^2^t + 1 g = 314 x = mod.(rand(Int, 512, 512), q) @test ifnt(fnt(x, g, q), g, q) == x end @testset "FNT 2D convolution" begin using DSP t = 3 q = 2^2^t + 1 g = 2 x = mod.(rand(Int, 8, 8), 5) x_padded = zeros(Int64, 16, 16) x_padded[1:8, 1:8] = x h = mod.(rand(Int, 8, 8), 3) h_padded = zeros(Int64, 16, 16) h_padded[1:8, 1:8] = h X = fnt(x_padded, g, q) H = fnt(h_padded, g, q) Y = mod.(X .* H, q) y = ifnt(Y, g, q) @test y[1:15, 1:15] == DSP.conv(x, h) end @testset "FNT in-place" begin t = 2 q = 2^2^t + 1 g = 2 x = mod.(rand(Int, 8), q) y = fnt(x, g, q) @test x != y fnt!(x, g, q) @test x == y x = mod.(rand(Int, 8, 8), q) y = fnt(x, g, q) @test x != y fnt!(x, g, q) @test x == y end @testset "FNT fails for non fermat modulus" begin (g, q, n) = (2, 31, 5) x = [1:n;] @test_throws AssertionError fnt(x, g, q) (g, q, n) = (2, 33, 10) x = [1:n;] @test_throws AssertionError fnt(x, g, q) end @testset "isfermat() tests" begin known = map(n->2^2^n+1, [0:4;]) expected = map(v -> v in known, [1:maximum(known);]) actual = isfermat.([1:maximum(known);]) @test expected == actual end @testset "modfermat() tests" begin for t in 0:3 q = 2^2^t+1 x = 0:(q-1)^2 @test mod.(x, q) == modfermat.(x, q) end for t in 0:10 q = BigInt(2)^2^t+1 limit = (q-1)^2 x = mod.(rand(0:limit, 1000), (q-1)^2) @test mod.(x, q) == modfermat.(x, q) end end
NumberTheoreticTransforms
https://github.com/jakubwro/NumberTheoreticTransforms.jl.git
[ "MIT" ]
1.0.0
8add6e24b5c2f363f9f3564bb11f42dcb197f4f8
code
1344
@testset "NTT 1D" begin g = 2 q = 31 x = [1:5;] @test intt(ntt(x, g, q), g, q) == x g = 3 q = 257 x = [1:256;] @test intt(ntt(x, g, q), g, q) == x end @testset "NTT 1D convolution" begin using DSP g = 9 q = 271 # padding inputs with zeros to get non circular convolution x = [1:8; zeros(Int64, 7);] h = [1:8; zeros(Int64, 7);] X = ntt(x, g, q) H = ntt(h, g, q) Y = X .* H y = intt(Y, g, q) @test y == DSP.conv(1:8, 1:8) end @testset "NTT 2D" begin g = 16 q = 257 x = reshape([1:16;] , (4,4)) y = ntt(x, g, q) @test intt(y, g, q) == x g = 4 q = 17 x = reshape([1:16;] , (4,4)) y = ntt(x, g, q) @test intt(y, g, q) == x g = 7 q = 19 x = reshape([1:9;] , (3,3)) y = ntt(x, g, q) @test intt(y, g, q) == x end @testset "NTT 2D convolution" begin using DSP (g, q, n) = (7, 4733, 7) #zero padding to get non circular convolution x = reshape([1:16;] , (4,4)) x_padded = zeros(Int64, 7, 7) x_padded[1:4, 1:4] = x h = reshape([4 3 2 0; 4 1 0 0; 0 0 1 2; 0 0 2 3] , (4,4)) h_padded = zeros(Int64, 7, 7) h_padded[1:4, 1:4] = h X = ntt(x_padded, g, q) H = ntt(h_padded, g, q) Y = X .* H y = intt(Y, g, q) @test y == DSP.conv(x, h) end
NumberTheoreticTransforms
https://github.com/jakubwro/NumberTheoreticTransforms.jl.git
[ "MIT" ]
1.0.0
8add6e24b5c2f363f9f3564bb11f42dcb197f4f8
code
101
using Test, NumberTheoreticTransforms, Random Random.seed!(42) include("ntt.jl") include("fnt.jl")
NumberTheoreticTransforms
https://github.com/jakubwro/NumberTheoreticTransforms.jl.git
[ "MIT" ]
1.0.0
8add6e24b5c2f363f9f3564bb11f42dcb197f4f8
docs
1802
# NumberTheoreticTransforms.jl [![Build Status](https://travis-ci.org/jakubwro/NumberTheoreticTransforms.jl.svg?branch=master)](https://travis-ci.org/jakubwro/NumberTheoreticTransforms.jl) [![Coverage Status](https://coveralls.io/repos/github/jakubwro/NumberTheoreticTransforms.jl/badge.svg)](https://coveralls.io/github/jakubwro/NumberTheoreticTransforms.jl) [![](https://img.shields.io/badge/docs-latest-blue.svg)](https://jakubwro.github.io/NumberTheoreticTransforms.jl/dev) This package provides implementations of general Number Theoretic Transform and Fermat Number Transform which is a special case of NTT. The latter is computed with a FFT-like radix-2 DIT algorithm, although the goal of this package is not to outperform FFT but rather yield more accurate results solving inverse problems like [deconvolution](https://github.com/JuliaDSP/Deconvolution.jl). ## Installation The package is available for Julia versions 1.0 and up. To install it, run ```julia using Pkg Pkg.add("NumberTheoreticTransforms") ``` from the Julia REPL. ## Documentation The complete manual of `NumberTheoreticTransforms.jl` is available at https://jakubwro.github.io/NumberTheoreticTransforms.jl/dev. ## Development The package is developed at https://github.com/jakubwro/NumberTheoreticTransforms.jl. There you can submit bug reports, propose new calculation algorithms with pull requests, and make suggestions. ## Credits Amazing performance improvements for Fermat Number Transform implementation were suggested by Andrey Oskin in [this thread](https://discourse.julialang.org/t/performance-advice-needed/33467/11). ## License The `NumberTheoreticTransforms.jl` package is licensed under the MIT License. The original author is Jakub Wronowski. Significant contributions were done by Andrey Oskin.
NumberTheoreticTransforms
https://github.com/jakubwro/NumberTheoreticTransforms.jl.git
[ "MIT" ]
1.0.0
8add6e24b5c2f363f9f3564bb11f42dcb197f4f8
docs
437
```@meta DocTestSetup = :(using NumberTheoreticTransforms) ``` # Number Theoretic Transforms ## Number Theoretic Transform ```@docs NumberTheoreticTransforms.ntt NumberTheoreticTransforms.intt ``` ## Fermat Number Transform ```@docs NumberTheoreticTransforms.fnt NumberTheoreticTransforms.fnt! NumberTheoreticTransforms.ifnt NumberTheoreticTransforms.ifnt! NumberTheoreticTransforms.isfermat NumberTheoreticTransforms.modfermat ```
NumberTheoreticTransforms
https://github.com/jakubwro/NumberTheoreticTransforms.jl.git
[ "MIT" ]
1.0.0
8add6e24b5c2f363f9f3564bb11f42dcb197f4f8
docs
2157
# Examples ## Image blurring Here is an example of use of Fermat Number Transform to perform image blurring by 2D convolution with a point spread function that models optical aberration. ``` {.sourceCode .julia} using Images, TestImages, Colors, ImageView using ZernikePolynomials, NumberTheoreticTransforms image_float = channelview(testimage("cameraman")) image = map(x -> x.:i, image_float) .|> Int64 # lens abberation blur model blur_float = evaluateZernike(LinRange(-41,41,512), [12, 4, 0], [1.0, -1.0, 2.0], index=:OSA) blur_float ./= (sum(blur_float)) blur = blur_float .|> Normed{UInt8, 8} .|> x -> x.:i .|> Int64 blur = circshift(blur, (256, 256)) # 2D convolution with FNT t = 4 (g, q) = (314, 2^2^t+1) # g for N = 512 found with scripts/find-ntt.jl X = fnt(image, g, q) H = fnt(blur, g, q) Y = X .* H y = ifnt(Y, g, q) blurred_image = y .>> 8 imshow(image) imshow(blurred_image) ``` | Original image | Blurred image | | :--------------------------------- | :------------------------------- | | ![](fnt/original.jpg) | ![](fnt/blurred_fnt.jpg) | ## Finding transformation parameters Input vector length, modulo arithmetic used and exponential base of the transform are tightly coupled. For finding them there is a script prepared. ### Finding parameters for given input length Let's say we need to convolve vectors of integers in range 0-10000 of length N=1024. ``` {.sourceCode .bash} $ julia find-ntt.jl -n 512 (g, q, n) = (62, 7681, 512) (g, q, n) = (10, 10753, 512) (g, q, n) = (24, 11777, 512) (g, q, n) = (3, 12289, 512) (g, q, n) = (27, 12289, 512) (g, q, n) = (15, 13313, 512) ``` One of tuples printed is (g, q, n) = (3, 12289, 512), that means for arithmetic modulo 12289 and base 3 vectors of length 512 can be transformed. ### Finding parameters for given finite field To list all possible vector lengths for predefined modulo, parameter -q can be used. ``` {.sourceCode .bash} $ julia find-ntt.jl -q 17 (g, q, n) = (2, 17, 8) (g, q, n) = (3, 17, 16) (g, q, n) = (4, 17, 4) (g, q, n) = (16, 17, 2) ``` This shows that possible lengths are 2, 4, 8 and 16.
NumberTheoreticTransforms
https://github.com/jakubwro/NumberTheoreticTransforms.jl.git
[ "MIT" ]
1.0.0
8add6e24b5c2f363f9f3564bb11f42dcb197f4f8
docs
1345
# NumberTheoreticTransforms.jl --- This package provides implementations of general Number Theoretic Transform and its special case: Fermat Number Transform. The latter is computed with a FFT-like radix-2 DIT algorithm, although the goal of this package is not to outperform FFT but rather yield more accurate results solving inverse problems like [deconvolution](https://github.com/JuliaDSP/Deconvolution.jl). ## Installation The package is available for Julia versions 1.0 and up. To install it, run ```julia using Pkg Pkg.add("NumberTheoreticTransforms") ``` from the Julia REPL. ## Documentation The complete manual of `NumberTheoreticTransforms.jl` is available at https://jakubwro.github.io/NumberTheoreticTransforms.jl/dev. ## Development The package is developed at https://github.com/jakubwro/NumberTheoreticTransforms.jl. There you can submit bug reports, propose new calculation algorithms with pull requests, and make suggestions. ## Credits Amazing performance improvements for Fermat Number Transform implementation were suggested by Andrey Oskin in [this thread](https://discourse.julialang.org/t/performance-advice-needed/33467/11). ## License The `NumberTheoreticTransforms.jl` package is licensed under the MIT License. The original author is Jakub Wronowski. Significant contributions were done by Andrey Oskin.
NumberTheoreticTransforms
https://github.com/jakubwro/NumberTheoreticTransforms.jl.git
[ "MIT" ]
1.0.0
6035ba56fb2e69e3d6562e3518ba5e58d92ed013
code
262
module BatchAssign export @all macro all(args...) vars = args[1:end-1] last = args[end] ex = Expr(:block) for var in vars push!(ex.args, Expr(last.head, var, last.args[end])) end push!(ex.args, last) return esc(ex) end end
BatchAssign
https://github.com/akjake616/BatchAssign.jl.git
[ "MIT" ]
1.0.0
6035ba56fb2e69e3d6562e3518ba5e58d92ed013
code
1990
using BatchAssign using Test @testset "BatchAssign.jl" begin # Test simple assignment @testset "Simple Assignment" begin @all a b c = 5 @test a == 5 @test b == 5 @test c == 5 end # Test addition assignment @testset "Addition Assignment" begin a, b, c = 1, 2, 3 @all a b c += 2 @test a == 3 @test b == 4 @test c == 5 end # Test subtraction assignment @testset "Subtraction Assignment" begin a, b, c = 5, 6, 7 @all a b c -= 2 @test a == 3 @test b == 4 @test c == 5 end # Test multiplication assignment @testset "Multiplication Assignment" begin a, b, c = 1, 2, 3 @all a b c *= 2 @test a == 2 @test b == 4 @test c == 6 end # Test division assignment @testset "Division Assignment" begin a, b, c = 10, 20, 30 @all a b c /= 2 @test a == 5 @test b == 10 @test c == 15 end # Test modulo assignment @testset "Modulo Assignment" begin a, b, c = 10, 20, 30 @all a b c %= 3 @test a == 1 @test b == 2 @test c == 0 end # Test simple matrix assignment @testset "Matrix Assignment" begin M = [1 2; 3 4] @all A B C = M @test A == M @test B == M @test C == M end # Test element-wise matrix addition @testset "Element-wise Matrix Addition" begin A = [1 2; 3 4] B = [1 2; 3 4] C = [1 2; 3 4] @all A B C .+= 1 @test A == [2 3; 4 5] @test B == [2 3; 4 5] @test C == [2 3; 4 5] end # Test element-wise matrix multiplication @testset "Element-wise Matrix Multiplication" begin A = [1 2; 3 4] B = [1 2; 3 4] C = [1 2; 3 4] @all A B C .*= 2 @test A == [2 4; 6 8] @test B == [2 4; 6 8] @test C == [2 4; 6 8] end end
BatchAssign
https://github.com/akjake616/BatchAssign.jl.git
[ "MIT" ]
1.0.0
6035ba56fb2e69e3d6562e3518ba5e58d92ed013
docs
1602
# BatchAssign.jl The `BatchAssign.jl` module provides a convenient way to perform batch assignments in Julia using the macro `@all`. By leveraging metaprogramming techniques in Julia, this macro can assign a single value to multiple variables in one line, making your code cleaner and more concise. ## Installation To install the `BatchAssign` module, simply download it with the package manager: ```julia using Pkg Pkg.add("BatchAssign") ``` ## Usage First, include the module in your script: ```julia using BatchAssign ``` Then, you can use the `@all` macro for batch assignments: ```julia @all a b c = 1 ``` This line will assign the value `1` to variables `a`, `b`, and `c` simultaneously, and is equivalent to the following: ```julia a, b, c, = 1, 1, 1 # or, a = b = c = 1 ``` The macro can also be used to assign arrays to variables: ```julia @all A B C = zeros(2, 3) ``` It is noted that calling the following got disctinct random values for the vaairables: ```julia @all a b c = rand() ``` The `@all` macro also supports compound assignments such as +=, -=, *=, and /=. This allows you to update multiple variables simultaneously: ```julia @all a b c += 1 ``` For more examples, please refer to [`runtest.jl`](./test/runtests.jl) in the test folder. ## Benefits - **Conciseness:** Reduce multiple lines of assignments to a single line. - **Readability:** Enhance code readability by minimizing repetitive assignment lines. - **Efficiency:** Simplify the process of initializing multiple variables to the same value. Enjoy the simplicity of batch assignments with `@all`!
BatchAssign
https://github.com/akjake616/BatchAssign.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
936
module EDKit using LinearAlgebra, SparseArrays, Random, Combinatorics using ITensors, ITensorMPS, LRUCache import Base: +, -, *, /, Array, Vector, Matrix, size, length, eltype, digits, copy import LinearAlgebra: norm, mul! include("Basis/AbstractBasis.jl") include("Basis/ProjectedBasis.jl") include("Basis/TranslationalBasis.jl") include("Basis/TranslationalParityBasis.jl") include("Basis/TranslationalFlipBasis.jl") include("Basis/ParityBasis.jl") include("Basis/FlipBasis.jl") include("Basis/ParityFlipBasis.jl") include("Basis/AbelianBasis.jl") include("LinearMap.jl") include("Schmidt.jl") include("Operator.jl") include("ToolKit.jl") for file in readdir("$(@__DIR__)/algorithms/") if file[end-2:end] == ".jl" include("$(@__DIR__)/algorithms/$file") end end for file in readdir("$(@__DIR__)/ITensors/") if file[end-2:end] == ".jl" include("$(@__DIR__)/ITensors/$file") end end end # module
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
4018
#----------------------------------------------------------------------------------------------------- # Helpers #----------------------------------------------------------------------------------------------------- index_nocheck(b::AbstractBasis) = index(b) index_nocheck(b::ProjectedBasis) = index(b, check=false) cyclelength(b::TranslationalBasis) = length(b) cyclelength(b::AbstractTranslationalParityBasis) = 2 * length(b) #----------------------------------------------------------------------------------------------------- # DoubleBasis #----------------------------------------------------------------------------------------------------- export DoubleBasis """ DoubleBasis{Tb1<:AbstractBasis, Tb2<:AbstractBasis} Basis for constructing transition matrix from one symmetry sector to another. Note that DoubleBasis can be used as the projector, meaning that it will ignore the symmetry violation. Therefore, extra care is needed when working with this basis. Properties: ----------- - `dgt`: Digits. - `B1` : Basis of the target symmetry sector. - `B2` : Basis of the starting symmetry sector. - `B` : Base. """ struct DoubleBasis{Tb1<:AbstractBasis, Tb2<:AbstractBasis} <: AbstractBasis dgt::Vector{Int64} B1::Tb1 B2::Tb2 B::Int64 end DoubleBasis(B1::AbstractBasis, B2::AbstractBasis) = DoubleBasis(B1.dgt, B1, B2, B2.B) eltype(b::DoubleBasis) = promote_type(eltype(b.B1), eltype(b.B2)) function change!(b::DoubleBasis, i::Integer) N = change!(b.B2, i) b.dgt .= b.B2.dgt N end index(b::DoubleBasis; check::Bool=false) = check ? index(b.B1) : index_nocheck(b.B1) size(b::DoubleBasis) = size(b.B1, 1), size(b.B2, 2) size(b::DoubleBasis, i::Integer) = isone(i) ? size(b.B1, 1) : isequal(i, 2) ? size(b.B2, 2) : 1 copy(b::DoubleBasis) = DoubleBasis(copy(b.B1), copy(b.B2)) #--------------------------------------------------------------------------------------------------- # Transform a vector from basis `B1` to basis `B2`. #--------------------------------------------------------------------------------------------------- function (B::DoubleBasis{<:AbstractOnsiteBasis, <:AbstractOnsiteBasis})(v::AbstractVecOrMat) dtype = promote_type(eltype(B), eltype(v)) out = isa(v, AbstractVector) ? zeros(dtype, size(B, 1)) : zeros(dtype, size(B, 1), size(v, 2)) for i in axes(v, 1) change!(B, i) N, j = index(B) isa(v, AbstractVector) ? out[j] = N * v[i] : out[j, :] = N * v[i, :] end out end function (B::DoubleBasis{<:AbstractOnsiteBasis, <:AbstractPermuteBasis})(v::AbstractVecOrMat) dtype = promote_type(eltype(B), eltype(v)) out = isa(v, AbstractVector) ? zeros(dtype, size(B, 1)) : zeros(dtype, size(B, 1), size(v, 2)) B1, B2 = B.B1, B.B2 L = cyclelength(B2) for i in 1:size(B,1) change!(B1, i) B2.dgt .= B1.dgt N, j = index(B2) iszero(N) && continue isa(v, AbstractVector) ? out[i] = conj(N) * v[j] / L : out[i, :] = conj(N) * v[j, :] / L end out end function (B::DoubleBasis{<:AbstractPermuteBasis, <:AbstractOnsiteBasis})(v::AbstractVecOrMat) dtype = promote_type(eltype(B), eltype(v)) out = isa(v, AbstractVector) ? zeros(dtype, size(B, 1)) : zeros(dtype, size(B, 1), size(v, 2)) L = cyclelength(B.B1) for i in axes(v, 1) change!(B, i) N, j = index(B) iszero(N) && continue isa(v, AbstractVector) ? out[j] = L * v[i] / N : out[j, :] = L * v[i, :] / N end out end function (B::DoubleBasis{<:TranslationalBasis, <:AbstractTranslationalParityBasis})(v::AbstractVecOrMat) dtype = promote_type(eltype(B), eltype(v)) out = isa(v, AbstractVector) ? zeros(dtype, size(B, 1)) : zeros(dtype, size(B, 1), size(v, 2)) B1, B2 = B.B1, B.B2 L = 2 for i in 1:size(B,1) R1 = change!(B1, i) B2.dgt .= B1.dgt N, j = index(B2) iszero(N) && continue isa(v, AbstractVector) ? out[i] = N * v[j] / R1 / L : out[i, :] = N * v[j, :] / R1 / L end out end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
13573
""" Operator Construction of `Operator` object. """ #--------------------------------------------------------------------------------------------------- export operator, trans_inv_operator """ Operator{Tv} Object that store the local operator. Properties: ----------- - M : Vector{SparseMatrixCSC{Tv, Int}}, local operators represented by CSC sparse matrices. - I : Vector{Vector{Int}}, indices of sites that the operators act on. - B : Basis. """ struct Operator{Tv<:Number, Tb<:AbstractBasis} M::Vector{SparseMatrixCSC{Tv, Int}} I::Vector{Vector{Int}} B::Tb end #--------------------------------------------------------------------------------------------------- eltype(opt::Operator{Tv, Tb}) where Tv where Tb = promote_type(Tv, eltype(opt.B)) length(opt::Operator) = length(opt.M) size(opt::Operator) = size(opt.B) size(opt::Operator, i::Integer) = size(opt.B, i) function Base.display(opt::Operator) println("Operator of size $(size(opt)) with $(length(opt)) terms.") end #--------------------------------------------------------------------------------------------------- """ operator(mats::AbstractVector{<:AbstractMatrix}, inds::AbstractVector{<:AbstractVector}, B::AbstractBasis) Constructor for `Operator`. Inputs: ------- - `mats`: List of matrices for local operators. - `inds`: List of sites on which local operators act. - `B` : Basis. Outputs: -------- - `O` : Operator. """ function operator(mats::AbstractVector{<:AbstractMatrix}, inds::AbstractVector{<:AbstractVector}, B::AbstractBasis) num = length(mats) @assert num == length(inds) "Numbers mismatch: $num matrices and $(length(inds)) indices." dtype = promote_type(eltype.(mats)...) M = Vector{SparseMatrixCSC{dtype, Int64}}(undef, num) I = Vector{Vector{Int64}}(undef, num) N = 0 for i = 1:num iszero(mats[i]) && continue ind = inds[i] pos = findfirst(x -> isequal(x, ind), view(I, 1:N)) if isnothing(pos) N += 1 I[N] = ind M[N] = sparse(mats[i]) else M[pos] += mats[i] end end deleteat!(M, N+1:num) deleteat!(I, N+1:num) Operator(M, I, B) end function operator(mats::AbstractVector{<:AbstractMatrix}, inds::AbstractVector{<:AbstractVector}, L::Integer) base = find_base(size(mats[1], 1), length(inds[1])) basis = TensorBasis(L=L, base=base) operator(mats, inds, basis) end operator(mats::AbstractVector{<:AbstractMatrix}, inds::AbstractVector{<:Integer}, C) = operator(mats, [[i] for i in inds], C) operator(mats::AbstractVector{<:AbstractMatrix}, L::Integer) = operator(mats, [[i] for i in 1:L], L) operator(mats::AbstractVector{<:AbstractMatrix}, B::AbstractBasis) = operator(mats, [[i] for i in 1:length(B.dgt)], B) operator(mat::AbstractMatrix, ind::AbstractVector{<:Integer}, C) = operator([mat], [ind], C) #--------------------------------------------------------------------------------------------------- function trans_inv_operator(mat::AbstractMatrix, ind::AbstractVector{<:Integer}, B::AbstractBasis) L = length(B.dgt) smat = sparse(mat) mats = fill(smat, L) inds = [mod.(ind .+ i, L) .+ 1 for i = -1:L-2] operator(mats, inds, B) end function trans_inv_operator(mat::AbstractMatrix, ind::AbstractVector{<:Integer}, L::Integer) base = find_base(size(mat, 1), length(ind)) B = TensorBasis(L=L, base=base) trans_inv_operator(mat, ind, B) end trans_inv_operator(mat::AbstractMatrix, M::Integer, C) = trans_inv_operator(mat, 1:M, C) #--------------------------------------------------------------------------------------------------- *(c::Number, opt::Operator) = operator(c .* opt.M, opt.I, opt.B) *(opt::Operator, c::Number) = c * opt /(opt::Operator, c::Number) = operator(opt.M ./ c, opt.I, opt.B) function +(opt1::Operator, opt2::Operator) mats = vcat(opt1.M, opt2.M) inds = vcat(opt1.I, opt2.I) operator(mats, inds, opt1.B) end +(opt1::Operator, ::Nothing) = opt1 +(::Nothing, opt1::Operator) = opt1 -(opt::Operator) = Operator(-opt.M, opt.I, opt.B) -(opt1::Operator, opt2::Operator) = opt1 + (-opt2) #--------------------------------------------------------------------------------------------------- function LinearAlgebra.adjoint(opt::Operator) M = adjoint.(opt.M) operator(M, opt.I, opt.B) end #--------------------------------------------------------------------------------------------------- function find_base(a::Integer, b::Integer) isone(b) && return a for i in 2:a i^b == a && return i end error("Incompatible dimension: ($a, $b).") end #--------------------------------------------------------------------------------------------------- # Operator to matrices #--------------------------------------------------------------------------------------------------- export addto! function addto!(M::AbstractMatrix, opt::Operator) for j = 1:size(opt.B, 2) colmn!(view(M, :, j), opt, j) end M end #--------------------------------------------------------------------------------------------------- function Array(opt::Operator) M = zeros(eltype(opt), size(opt)) if size(M, 1) > 0 && size(M, 2) > 0 addto!(M, opt) end M end #--------------------------------------------------------------------------------------------------- function SparseArrays.sparse(opt::Operator) M = spzeros(eltype(opt), size(opt)...) if size(M, 1) > 0 && size(M, 2) > 0 addto!(M, opt) end M end #--------------------------------------------------------------------------------------------------- LinearAlgebra.Hermitian(opt::Operator) = Array(opt) |> Hermitian LinearAlgebra.Symmetric(opt::Operator) = Array(opt) |> Symmetric LinearAlgebra.eigen(opt::Operator) = Array(opt) |> eigen LinearAlgebra.eigvals(opt::Operator) = Array(opt) |>eigvals LinearAlgebra.svd(opt::Operator) = Array(opt) |> svd LinearAlgebra.svdvals(opt::Operator) = Array(opt) |> svdvals #--------------------------------------------------------------------------------------------------- function mul!(target::AbstractVector, opt::Operator, v::AbstractVector) for j = 1:length(v) colmn!(target, opt, j, v[j]) end target end function mul!(target::AbstractMatrix, opt::Operator, m::AbstractMatrix) for j = 1:size(m, 1) colmn!(target, opt, j, view(m, j, :)) end target end export mul """ Multi-threaded operator multiplication. """ function mul(opt::Operator, v::AbstractVector) ctype = promote_type(eltype(opt), eltype(v)) nt = Threads.nthreads() ni = dividerange(length(v), nt) Ms = [zeros(ctype, size(opt, 1)) for i in 1:nt] Threads.@threads for i in 1:nt opt_c = Operator(opt.M, opt.I, copy(opt.B)) for j in ni[i] colmn!(Ms[i], opt_c, j, v[j]) end end sum(m for m in Ms) end function mul(opt::Operator, m::AbstractMatrix) ctype = promote_type(eltype(opt), eltype(m)) nt = Threads.nthreads() ni = dividerange(size(m,1), nt) Ms = [zeros(ctype, size(opt, 1), size(m, 2)) for i in 1:nt] Threads.@threads for i in 1:nt opt_c = Operator(opt.M, opt.I, copy(opt.B)) for j in ni[i] colmn!(Ms[i], opt_c, j, view(m, j, :)) end end sum(m for m in Ms) end function *(opt::Operator, v::AbstractVector) ctype = promote_type(eltype(opt), eltype(v)) M = zeros(ctype, size(opt, 1)) mul!(M, opt, v) end function *(opt::Operator, m::AbstractMatrix) ctype = promote_type(eltype(opt), eltype(m)) M = zeros(ctype, size(opt, 1), size(m, 2)) mul!(M, opt, m) end #--------------------------------------------------------------------------------------------------- # Helper functions #--------------------------------------------------------------------------------------------------- """ colmn!(target::AbstractVecOrMat, M::SparseMatrixCSC, I::Vector{Int}, b::AbstractBasis, coeff=1) Central helper function for operator multiplication. For a local matrix `M` acting on indices `I`, `colmn!` return the j-th colume (given by `b.dgt`) in the many-body basis. The result is writen inplace on the vector `target`. """ function colmn!(target::AbstractVecOrMat, M::SparseMatrixCSC, I::Vector{Int}, b::AbstractBasis, coeff=1) rows, vals = rowvals(M), nonzeros(M) j = index(b.dgt, I, base=b.B) change = false for i in nzrange(M, j) row, val = rows[i], vals[i] change!(b.dgt, I, row, base=b.B) C, pos = index(b) isa(target, AbstractVector) ? (target[pos] += coeff * C * val) : (target[pos, :] .+= (C * val) .* coeff) change = true end change && change!(b.dgt, I, j, base=b.B) nothing end #--------------------------------------------------------------------------------------------------- function colmn!(target::AbstractVecOrMat, opt::Operator, j::Integer, coeff=1) b, M, I = opt.B, opt.M, opt.I r = change!(b, j) C = isone(r) ? coeff : coeff / r for i = 1:length(M) colmn!(target, M[i], I[i], b, C) end end #--------------------------------------------------------------------------------------------------- # Spin Matrices #--------------------------------------------------------------------------------------------------- const PAULI = sparse.( [ I(2), [0 1; 1 0], [0 -1im; 1im 0], [1 0; 0 -1] ] ) const GELLMANN = sparse.([ I(3), [0 1 0; 1 0 0; 0 0 0], [0 -1im 0; 1im 0 0; 0 0 0], [1 0 0; 0 -1 0; 0 0 0], [0 0 1; 0 0 0; 1 0 0], [0 0 -1im; 0 0 0; 1im 0 0], [0 0 0; 0 0 1; 0 1 0], [0 0 0; 0 0 -1im; 0 1im 0], [1 0 0; 0 1 0; 0 0 -2] / sqrt(3), [1 0 0; 0 1 0; 0 0 1] ]) σ(i::Integer) = PAULI[i+1] σ(Is::Integer...) = kron((σ(i) for i in Is)...) σ(Is::Union{<:Tuple, <:AbstractVector}) = σ(Is...) λ(i::Integer) = GELLMANN[i+1] λ(Is::Integer...) = kron((λ(i) for i in Is)...) λ(Is::Union{<:Tuple, <:AbstractVector}) = λ(Is...) #--------------------------------------------------------------------------------------------------- export spin spin_coeff(D::Integer) = [sqrt(i*(D-i)) for i = 1:D-1] spin_Sp(D::Integer) = sparse(1:D-1, 2:D, spin_coeff(D), D, D) spin_Sm(D::Integer) = sparse(2:D, 1:D-1, spin_coeff(D), D, D) function spin_Sx(D::Integer) coeff = spin_coeff(D) / 2 sp = sparse(1:D-1, 2:D, coeff, D, D) sp + sp' end function spin_iSy(D::Integer) coeff = spin_coeff(D) / 2 sp = sparse(1:D-1, 2:D, coeff, D, D) sp - sp' end function spin_Sz(D::Integer) J = (D-1) / 2 sparse(1:D, 1:D, J:-1:-J) end #--------------------------------------------------------------------------------------------------- function spin_dict(c::Char, D::Integer) isequal(c, '+') && return spin_Sp(D) isequal(c, '-') && return spin_Sm(D) isequal(c, 'x') && return spin_Sx(D) isequal(c, 'y') && return spin_iSy(D) isequal(c, 'z') && return spin_Sz(D) isequal(c, '1') && return spdiagm(ones(D)) isequal(c, 'I') && return spdiagm(ones(D)) @assert isequal(D, 2) "Invalid spin symbol: $c." isequal(c, 'X') && return sparse([0 1; 1 0]) isequal(c, 'Y') && return sparse([0 1;-1 0]) isequal(c, 'Z') && return sparse([1 0; 0 -1]) error("Invalid spin symbol: $c.") end #--------------------------------------------------------------------------------------------------- """ spin(s::String; D::Integer=2) Return matrix for spin operators. """ function spin(s::String; D::Integer=2) ny = if isequal(D, 2) sum(isequal(si, 'y')||isequal(si, 'Y') for si in s) else sum(isequal(si, 'y') for si in s) end mat = isone(length(s)) ? spin_dict(s[1], D) : kron([spin_dict(si, D) for si in s]...) sign = iszero(mod(ny, 2)) ? (-1)^(ny÷2) : (-1im)^ny sign * mat end spin(c::Number, s::String; D::Integer=2) = c * spin(s, D=D) #--------------------------------------------------------------------------------------------------- """ spin(spins::Tuple{<:Number, String}...; D::Integer=2) Return matrix for spin operators. The spins should be an iterable onject, each item is of the form (::Number, ::String). """ function spin(spins::Tuple{<:Number, String}...; D::Integer=2) sum(ci * spin(si, D=D) for (ci, si) in spins) end spin(spins::AbstractVector{<:Tuple{<:Number, String}}; D::Integer=2) = spin(spins..., D=D) #--------------------------------------------------------------------------------------------------- function operator(s::String, inds::AbstractVector{<:Integer}, basis::AbstractBasis) mat = spin(s, D=basis.B) operator(mat, inds, basis) end #--------------------------------------------------------------------------------------------------- function operator(s::String, inds::AbstractVector{<:Integer}, L::Integer; base::Integer=2) basis = TensorBasis(L=L, base=base) operator(s, inds, basis) end #--------------------------------------------------------------------------------------------------- function trans_inv_operator(s::String, inds::AbstractVector{<:Integer}, basis::AbstractBasis) mat = spin(s, D=basis.B) trans_inv_operator(mat, inds, basis) end #--------------------------------------------------------------------------------------------------- function trans_inv_operator(s::String, basis::AbstractBasis) mat = spin(s, D=basis.B) trans_inv_operator(mat, length(s), basis) end #--------------------------------------------------------------------------------------------------- function trans_inv_operator(s::String, L::Integer; base::Integer=2) basis = TensorBasis(L=L, base=base) trans_inv_operator(s, basis) end
EDKit
https://github.com/jayren3996/EDKit.jl.git