licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
9469
#------------------------------------------------------------------------------------------------------------------------- """ SchmidtMatrix{Tm, Ta<:SubArray, Tb<:SubArray, Ti<:Integer} Struct that is used to construct the Schmidt matrix: `|Ψ⟩ = ∑ᵢⱼ Mᵢᵢ|ψᵢ⟩ ⊗ |ψⱼ⟩` Properties: ----------- - `M` : Schidt matrix. - `A` : View of region A. - `B` : View of region B. - `base`: Base. """ struct SchmidtMatrix{Tm <: Number, Ta <: SubArray, Tb <: SubArray, Ti <: Integer} M::Matrix{Tm} A::Ta B::Tb base::Ti end #------------------------------------------------------------------------------------------------------------------------- """ SchmidtMatrix(T, b::AbstractBasis, Ainds::AbstractVector) Construction of `SchmidtMatrix`. """ function SchmidtMatrix(T::DataType, b::AbstractBasis, Ainds::AbstractVector{Ta}) where Ta <: Integer L = length(b) B = b.B Binds = Vector{Ta}(undef, L-length(Ainds)) P = 1 for i in range(one(Ta), stop=convert(Ta, L)) if !in(i, Ainds) Binds[P] = i P += 1 end end M = zeros(T, B^length(Ainds), B^length(Binds)) SchmidtMatrix(M, view(b.dgt, Ainds), view(b.dgt, Binds), B) end #------------------------------------------------------------------------------------------------------------------------- function addto!(S::SchmidtMatrix, val::Number) ia = index(S.A, base=S.base) ib = index(S.B, base=S.base) S.M[ia, ib] += val end #------------------------------------------------------------------------------------------------------------------------- # Entanglement Entropy #------------------------------------------------------------------------------------------------------------------------- """ ent_spec(v::AbstractVector, Aind::AbstractVector{<:Integer}, b::AbstractBasis) Conpute the entanglement spectrum. """ ent_spec(v::AbstractVector, Aind::AbstractVector{<:Integer}, b::AbstractBasis) = svdvals(schmidt(v, Aind, b)) #------------------------------------------------------------------------------------------------------------------------- """ entropy(s::AbstractVector{<:Real}; α::Real=1, cutoff::Real=1e-20) Compute the entropy of Schmidt values. Inputs: ------- - `s` : Schmidt values. - `α` : Renyi index. - `cutoff`: Cutoff of the Schmidt values. Outputs: -------- - `S`: Entanglement entropy. """ function entropy(s::AbstractVector{<:Real}; α::Real=1, cutoff::Real=1e-20) if isone(α) shannon_entropy(s, cutoff=cutoff) elseif iszero(α) renyi_zero_entropy(s, cutoff=cutoff) else renyi_entropy(s, α) end end #------------------------------------------------------------------------------------------------------------------------- """ Compute Shannon entropy """ function shannon_entropy(s::AbstractVector{<:Real}; cutoff::Real=1e-20) ent = 0.0 for si in s si > cutoff || break ent -= si * log(si) end ent end #------------------------------------------------------------------------------------------------------------------------- """ Compute Renyi-0 entropy, which is thenumber of non-zero Schmidt values. """ function renyi_zero_entropy(s::AbstractVector{<:Real}; cutoff::Real=1e-20) N = 0 for si in s si > cutoff || break N += 1 end N end #------------------------------------------------------------------------------------------------------------------------- """ Compute general Renyi entropy """ renyi_entropy(s::AbstractVector{<:Real}, α::Real) = log(sum(s.^α)) / (1-α) #------------------------------------------------------------------------------------------------------------------------- export ent_S """ ent_S(v::AbstractVector, Aind::AbstractVector{<:Integer}, b::AbstractBasis; α::Real=1, cutoff::Real=1e-20) Conpute the entanglement entropy of a state. """ function ent_S(v::AbstractVector, Aind::AbstractVector{<:Integer}, b::AbstractBasis; α::Real=1, cutoff::Real=1e-20) s = ent_spec(v, Aind, b) .^ 2 entropy(s, α=α, cutoff=cutoff) end #------------------------------------------------------------------------------------------------------------------------- function ent_S(v::AbstractVector, Aind::AbstractVector{<:Integer}, L::Integer; α::Real=1, cutoff::Real=1e-20) b = TensorBasis(L, base=round(Int, length(v)^(1/L) ) ) s = ent_spec(v, Aind, b) .^ 2 entropy(s, α=α, cutoff=cutoff) end #------------------------------------------------------------------------------------------------------------------------- # Specific Bases #------------------------------------------------------------------------------------------------------------------------- """ schmidt(v::AbstractVector, Ainds::AbstractVector{<:Integer}, b::AbstractOnsiteBasis) Schmidt decomposition of state `v`, with respect to given lattice bipartition. Inputs: ------- - `v` : State represented by a (abstract) vector. - `Ainds`: List of indices in subsystem `A`, the remaining indices are regarded as subsystem `B`. - `b` : Basis. Outputs: -------- - `S`: Matrix S in the decomposition: |v⟩ = Sᵢⱼ |Aᵢ⟩|Bⱼ⟩. """ function schmidt(v::AbstractVector, Ainds::AbstractVector{<:Integer}, b::AbstractOnsiteBasis) S = SchmidtMatrix(eltype(v), b, Ainds) for i = 1:length(v) change!(b, i) addto!(S, v[i]) end S.M end #------------------------------------------------------------------------------------------------------------------------- """ Schmidt decomposition for `TranslationalBasis`. """ function schmidt(v::AbstractVector, Ainds::AbstractVector{<:Integer}, b::TranslationalBasis) dgt, R, phase = b.dgt, b.R, b.C[2] S = SchmidtMatrix(promote_type(eltype(v), eltype(b)), b, Ainds) for i = 1:length(v) change!(b, i) val = v[i] / R[i] for j in 1:length(dgt)÷b.A addto!(S, val) circshift!(dgt, b.A) val *= phase end end S.M end #------------------------------------------------------------------------------------------------------------------------- """ spinflip(v::AbstractVector{<:Integer}, base::Integer) Flip spins Sz on each site. """ function spinflip(v::AbstractVector{<:Integer}, base::Integer) vf = Vector{eltype(v)}(undef, length(v)) base -= 1 for i = 1:length(vf) vf[i] = base - v[i] end vf end function spinflip!(v::AbstractVector{<:Integer}, base::Integer) base -= 1 for i in eachindex(v) v[i] = base - v[i] end v end #------------------------------------------------------------------------------------------------------------------------- """ Helper function for `schmidt` on parity basis. """ function parity_schmidt(parity, v::AbstractVector, Ainds::AbstractVector{<:Integer}, b::AbstractTranslationalParityBasis) dgt, R, phase = b.dgt, b.R, b.C[2] S = SchmidtMatrix(promote_type(eltype(v), eltype(b)), b, Ainds) for i = 1:length(v) change!(b, i) val = v[i] / R[i] for j in 1:length(dgt)÷b.A addto!(S, val) circshift!(dgt, b.A) val *= phase end dgt .= parity(dgt) val *= b.P for j in 1:length(dgt)÷b.A addto!(S, val) circshift!(dgt, b.A) val *= phase end end S.M end #------------------------------------------------------------------------------------------------------------------------- schmidt(v, Ainds, b::TranslationParityBasis) = parity_schmidt(reverse, v, Ainds, b) schmidt(v, Ainds, b::TranslationFlipBasis) = parity_schmidt(x -> spinflip(x, b.B), v, Ainds, b) #------------------------------------------------------------------------------------------------------------------------- """ Schmidt decomposition for `FlipBasis`. """ function schmidt(v::AbstractVector, Ainds::AbstractVector{<:Integer}, b::FlipBasis) dgt, R, phase = b.dgt, b.R, b.P S = SchmidtMatrix(promote_type(eltype(v), eltype(b)), b, Ainds) for i = 1:length(v) change!(b, i) val = v[i] / R[i] addto!(S, val) dgt .= spinflip(dgt, b.B) addto!(S, phase * val) end S.M end #------------------------------------------------------------------------------------------------------------------------- """ Schmidt decomposition for `ParityBasis`. """ function schmidt(v::AbstractVector, Ainds::AbstractVector{<:Integer}, b::ParityBasis) dgt, R, phase = b.dgt, b.R, b.P S = SchmidtMatrix(promote_type(eltype(v), eltype(b)), b, Ainds) for i = 1:length(v) change!(b, i) val = v[i] / R[i] addto!(S, val) reverse!(dgt) addto!(S, phase * val) end S.M end #------------------------------------------------------------------------------------------------------------------------- """ Schmidt decomposition for `ParityBasis`. """ function schmidt(v::AbstractVector, Ainds::AbstractVector{<:Integer}, b::ParityFlipBasis) dgt, R, p1, p2 = b.dgt, b.R, b.P, b.Z S = SchmidtMatrix(promote_type(eltype(v), eltype(b)), b, Ainds) for i = 1:length(v) # (P,Z) = (0,0) change!(b, i) val = v[i] / R[i] addto!(S, val) # (P,Z) = (1,0) reverse!(dgt) val *= p1 addto!(S, val) # (P,Z) = (1,1) dgt .= spinflip(dgt, b.B) val *= p2 addto!(S, val) # (P,Z) = (0,1) reverse!(dgt) val *= p1 addto!(S, val) end S.M end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
2311
#------------------------------------------------------------------------------------------------------------------------- # Level statistics #------------------------------------------------------------------------------------------------------------------------- export gapratio, meangapratio function gapratio(E::AbstractVector{<:Real}) dE = diff(E) r = zeros(length(dE)-1) for i = 1:length(r) if dE[i] < dE[i+1] r[i] = dE[i]/dE[i+1] elseif dE[i] > dE[i+1] r[i] = dE[i+1]/dE[i] else r[i] = 1.0 end end r end meangapratio(E::AbstractVector{<:Real}) = sum(gapratio(E)) / (length(E) - 2) #------------------------------------------------------------------------------------------------------------------------- # LinearAlgebra #------------------------------------------------------------------------------------------------------------------------- """ expm(A, order::Integer=10) Matrix exponential using Taylor expansion. """ function expm(A; order::Integer=10) mat = I + A / order order -= 1 while order > 0 mat = A * mat mat ./= order mat += I order -= 1 end mat end #------------------------------------------------------------------------------------------------------------------------- """ expv(A, v::AbstractVecOrMat; order=10, λ=1) Compute exp(λA)*v using Taylor expansion """ function expv(A, v::AbstractVecOrMat; order::Integer=10, λ::Number=1) vec = v + λ * A * v / order order -= 1 while order > 0 vec = λ * A * vec vec ./= order vec += v order -= 1 end vec end #----------------------------------------------------------------------------------------------------- # State #----------------------------------------------------------------------------------------------------- export productstate """ productstate(v::AbstractVector{<:Integer}, B::AbstractBasis) Construction for product state. Inputs: ------- - `v`: Vector representing the product state. - `B`: Basis. Outputs: - `s`: Vector representing the many-body state. """ function productstate(v::AbstractVector{<:Integer}, B::AbstractBasis) s = zeros(size(B, 1)) B.dgt .= v I = index(B)[2] s[I] = 1 s end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
6844
#------------------------------------------------------------------------------------------------------------------------- # Abelian Operator #------------------------------------------------------------------------------------------------------------------------- struct AbelianOperator{Tp <: Number} s::Vector{Int} g::Vector{Int} c::Vector{Vector{Tp}} f::Vector end #------------------------------------------------------------------------------------------------------------------------- function AbelianOperator(g::Int, k::Integer, f) c = if iszero(k) ones(g) elseif 2k == g [iseven(j) ? 1 : -1 for j in 0:g-1] else phase = 1im * 2π * k / g [exp(phase * j) for j in 0:g-1] end AbelianOperator([1], [g], [c], [f]) end #------------------------------------------------------------------------------------------------------------------------- function +(g1::AbelianOperator, g2::AbelianOperator) AbelianOperator([g1.s; g2.s], [g1.g; g2.g], [g1.c; g2.c], [g1.f; g2.f]) end #------------------------------------------------------------------------------------------------------------------------- function order(g::AbelianOperator) prod(g.g) end #------------------------------------------------------------------------------------------------------------------------- function phase(g::AbelianOperator) prod(g.c[i][g.s[i]] for i in eachindex(g.c)) end #------------------------------------------------------------------------------------------------------------------------- function init!(g::AbelianOperator) for i in eachindex(g.s) g.s[i] = 1 end g end #------------------------------------------------------------------------------------------------------------------------- function (ag::AbelianOperator)(dgt::Vector) for i in eachindex(ag.s) ag.f[i](dgt) (ag.s[i] = ag.s[i] + 1) > ag.g[i] ? (ag.s[i] = 1) : break end dgt end #------------------------------------------------------------------------------------------------------------------------- function check_min(dgt, g::AbelianOperator; base=2) init!(g) I0 = index(dgt; base) N = 1 for _ in 2:order(g) g(dgt) In = index(dgt; base) if In < I0 return false, 0 elseif In == I0 abs(phase(g)-1) < 1e-14 || return false, 0 N += 1 end end true, N end #------------------------------------------------------------------------------------------------------------------------- function shift_canonical!(dgt, g::AbelianOperator; base=2) init!(g) Im = index(dgt; base) ms = g.s[:] for _ in 1:order(g) g(dgt) In = index(dgt; base) if In < Im Im = In ms .= g.s end end g.s .= ms Im, g end #------------------------------------------------------------------------------------------------------------------------- # Abelian Basis #------------------------------------------------------------------------------------------------------------------------- struct AbelianBasis{Ti <: Integer, Tg <: Number} <: AbstractPermuteBasis dgt::Vector{Ti} # Digits I::Vector{Ti} # Representing states R::Vector{Float64} # Normalization G::AbelianOperator{Tg} # Generator B::Ti # Base end #------------------------------------------------------------------------------------------------------------------------- function AbelianBasis( dtype::DataType=Int64; L::Integer, G::AbelianOperator, base::Integer=2, f=x->true, alloc=1000, threaded::Bool=true ) Ng = order(G) C = zeros(Ng) for i in eachindex(C) iszero(mod(Ng, i)) && (C[i] = sqrt(Ng * i)) end I, R = if threaded nt = Threads.nthreads() ni = dividerange(base^L, nt) nI = Vector{Vector{dtype}}(undef, nt) nR = Vector{Vector{Float64}}(undef, nt) Threads.@threads for ti in 1:nt nI[ti], nR[ti] = _abelian_select(f, deepcopy(G), L, ni[ti], C; base, alloc) end vcat(nI...), vcat(nR...) else _abelian_select(f, G, L, 1:base^L, C; base, alloc) end AbelianBasis(zeros(dtype, L), I, R, G, base) end function _abelian_select( f, G, L::Integer, rg::UnitRange{T}, C; base::Integer=2, alloc::Integer=1000 ) where T <: Integer dgt = zeros(T, L) Is = T[] Rs = Float64[] sizehint!(Is, alloc) sizehint!(Rs, alloc) for i in rg change!(dgt, i; base) f(dgt) || continue Q, n = check_min(dgt, G; base) Q || continue push!(Is, i) push!(Rs, C[n]) end Is, Rs end #------------------------------------------------------------------------------------------------------------------------- function index(B::AbelianBasis) Im, g = shift_canonical!(B.dgt, B.G; base=B.B) ind = binary_search(B.I, Im) if iszero(ind) return zero(eltype(B)), one(eltype(B.I)) else return phase(g) * B.R[ind], ind end end #------------------------------------------------------------------------------------------------------------------------- function schmidt(v::AbstractVector, Ainds::AbstractVector{<:Integer}, b::AbelianBasis) dgt, R, g = b.dgt, b.R, b.G S = SchmidtMatrix(promote_type(eltype(v), eltype(b)), b, Ainds) for i in eachindex(v) init!(g) change!(b, i) val = v[i] / R[i] addto!(S, val) for _ in 2:order(g) g(dgt) addto!(S, phase(g) * val) end end S.M end #------------------------------------------------------------------------------------------------------------------------- export basis function basis( dtype::DataType=Int64; L::Integer, f=nothing, base::Integer=2, N::Union{Nothing, Integer}=nothing, k::Union{Nothing, Integer}=nothing, a::Integer=1, p::Union{Nothing, Integer}=nothing, z::Union{Nothing, Integer}=nothing, threaded::Bool=base^L>3000 ) gs = AbelianOperator[] isnothing(k) || push!(gs, AbelianOperator(L, k, x -> circshift!(x, a))) isnothing(p) || push!(gs, AbelianOperator(2, isone(-p) ? 1 : 0, reverse!)) isnothing(z) || push!(gs, AbelianOperator(2, isone(-z) ? 1 : 0, x -> spinflip!(x, base))) if isempty(gs) isnothing(f) && isnothing(N) && return TensorBasis(;L, base) return ProjectedBasis(dtype; L, f, N, base, threaded) else g = if isnothing(N) isnothing(f) ? x -> true : f else num = L*(base-1)-N isnothing(f) ? x -> (sum(x) == num) : x -> (sum(x) == num && f(x)) end return AbelianBasis(dtype; L, G=sum(gs), base, f=g, threaded) end end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
6834
export AbstractBasis, content, base, index, change! """ AbstractBasis Abstract type for all concrete `Basis` types. The most important function for a `Basis` type is the index of a given digits and the digits representation of its ith content: - `index` : Return the norm and the index of the digits of the given basis. - `change!`: Change the digits to the target index, and return the new normalization. If we want to calculate the schmidt decomposition (in real space), we can use the `schmidt` function. """ abstract type AbstractBasis end abstract type AbstractOnsiteBasis <: AbstractBasis end abstract type AbstractPermuteBasis <: AbstractBasis end abstract type AbstractTranslationalParityBasis <: AbstractPermuteBasis end #------------------------------------------------------------------------------------------------------------------------- # Default function definitions #------------------------------------------------------------------------------------------------------------------------- """ content(b::AbstractBasis, i::Integer) Return index of ith vector in this basis. """ content(b::AbstractBasis, i::Integer) = b.I[i] #------------------------------------------------------------------------------------------------------------------------- """ norm(b::AbstractBasis, i::Integer) Return norm of ith vector in this basis. """ norm(b::AbstractBasis, i::Integer) = b.R[i] norm(::AbstractOnsiteBasis, ::Integer) = 1 #------------------------------------------------------------------------------------------------------------------------- """ eltype(b::AbstractBasis) Element data type of the basis. - Return `Int64` for onsite basis. - Return `ComplexF64` by default otherwise. Used for type promotion when constructing matrix representation of an `Operator`. """ eltype(::AbstractBasis) = ComplexF64 eltype(::AbstractOnsiteBasis) = Int64 #------------------------------------------------------------------------------------------------------------------------- """ length(b::AbstractBasis) Length of the digits. """ length(b::AbstractBasis) = length(b.dgt) #------------------------------------------------------------------------------------------------------------------------- """ size(b::AbstractBasis, [dim]) Dimension of the `Operator` object construct by the basis. """ function size(b::AbstractBasis, dim::Integer) isone(dim) && return length(b.I) isequal(dim, 2) ? length(b.I) : 1 end size(b::AbstractBasis) = (size(b, 1), size(b, 2)) #------------------------------------------------------------------------------------------------------------------------- """ change!(b::AbstractBasis, i::Integer) Change the digits to the target index, and return the new normalization. """ function change!(b::AbstractBasis, i::Integer) change!(b.dgt, content(b, i), base=b.B) norm(b, i) end #------------------------------------------------------------------------------------------------------------------------- """ int_type(b::AbstractBasis) Return index data type. This is for basis with large indices exceeding the upper bound of `Int64`. """ int_type(b::AbstractBasis) = eltype(b.I) #----------------------------------------------------------------------------------------------------- # TensorBasis #----------------------------------------------------------------------------------------------------- export TensorBasis """ TensorBasis Basis without any symmetries. The index is computed by: I(i₁, i₂, ⋯, iₙ) = i₁ B^(n-1) + i₂ B^(n-2) + ⋯ + iₙ In many bases this basis need not be constructed explicitly. """ struct TensorBasis <: AbstractOnsiteBasis dgt::Vector{Int64} B::Int64 end function TensorBasis(;L::Integer, base::Integer=2) dgt = zeros(Int64, L) B = Int64(base) TensorBasis(dgt, B) end #------------------------------------------------------------------------------------------------------------------------- content(::TensorBasis, i::Integer) = i norm(b::TensorBasis, ::Integer) = 1 eltype(::TensorBasis) = Int64 size(b::TensorBasis, i::Integer) = isone(i) || isequal(i, 2) ? b.B^length(b.dgt) : 1 size(b::TensorBasis) = (l=b.B^length(b.dgt); (l, l)) index(b::TensorBasis) = 1, index(b.dgt, base=b.B) int_type(::TensorBasis) = Int64 #------------------------------------------------------------------------------------------------------------------------- """ copy(b::TensorBasis) Copy basis with a deep copied `dgt`. """ function copy(b::TensorBasis) TensorBasis(deepcopy(b.dgt), b.B) end #------------------------------------------------------------------------------------------------------------------------- # Index functions #------------------------------------------------------------------------------------------------------------------------- """ index(dgt::AbstractVector{T}; base::Integer=2, dtype::DataType=T) where T <: Integer Convert a digits to the integer index using the relation: number = ∑ᵢ bits[i] * base^(L-i) + 1 The summaton is evaluate using the efficieint polynomial evaluation method. Inputs: ------- - `dgt` : Digits. - `base` : Base. """ @inline function index(dgt::AbstractVector{<:Integer}; base::T=2) where T <: Integer N = zero(T) for i = 1:length(dgt) N *= base N += dgt[i] end N + one(T) end #------------------------------------------------------------------------------------------------------------------------- """ index(dgt::AbstractVector{T}, sites::AbstractVector{<:Integer}; base::Integer=2) where T <: Integer Convert a sub-digits (subarray of `dgt`) to the integer index. """ @inline function index(dgt::AbstractVector{T}, sites::AbstractVector{<:Integer}; base::T=2) where T <: Integer N = zero(T) for i in sites N *= base N += dgt[i] end N + one(T) end #------------------------------------------------------------------------------------------------------------------------- """ change!(dgt::AbstractVector{<:Integer}, ind::Integer; base::Integer=2) Change the digits to that with the target index. This method is the inverse of `index`. """ @inline function change!(dgt::AbstractVector{T}, ind::T; base::T=2) where T N = ind - one(T) for i = length(dgt):-1:1 N, dgt[i] = divrem(N, base) end end #------------------------------------------------------------------------------------------------------------------------- """ change!(dgt::AbstractVector{<:Integer}, sites::AbstractVector{<:Integer}, ind::Integer; base::Integer=2) Change the sub-digits to that with the target index. This method is the inverse of `index`. """ @inline function change!(dgt::AbstractVector{T}, sites::AbstractVector{<:Integer}, ind::Integer; base::T=2) where T N = ind - one(T) for i = length(sites):-1:1 N, dgt[sites[i]] = divrem(N, base) end end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
3038
#------------------------------------------------------------------------------------------------------------------------- # Flip #------------------------------------------------------------------------------------------------------------------------- export FlipBasis """ FlipBasis Basis with translational and reflection symmetries. """ struct FlipBasis{Ti <: Integer} <: AbstractPermuteBasis dgt::Vector{Ti} # Digits I::Vector{Ti} # Representing states R::Vector{Float64} # Normalization P::Int # {±1}, parity M::Int # base^length + 1 B::Ti # Base end #------------------------------------------------------------------------------------------------------------------------- struct FlipJudge{T} F # Projective selection P::Int64 # Parity B::T # Base MAX::Int # base^length + 1 C::Float64 # Value sqrt(2) end #------------------------------------------------------------------------------------------------------------------------- function (judge::FlipJudge)(dgt::AbstractVector{<:Integer}, i::Integer) # If there is a projective selection function F, check `F(dgt)` first isnothing(judge.F) || judge.F(dgt) || return (false, 0.0) # Check parity In = judge.MAX - i In < i && return (false, 0.0) if isequal(In, i) isone(judge.P) || return (false, 0.0) true, 2.0 else true, judge.C end end #------------------------------------------------------------------------------------------------------------------------- function FlipBasis( dtype::DataType=Int64; L::Integer, f=nothing, p::Integer, N::Union{Nothing, Integer}=nothing, base::Integer=2, alloc::Integer=1000, threaded::Bool=true, small_N::Bool=true ) @assert isone(p) || isone(-p) "Invalid parity" @assert isnothing(N) || isequal(2N, L*(base-1)) "N = $N not compatible." base = convert(dtype, base) MAX = base ^ L + 1 I, R = begin judge = if small_N || isnothing(N) FlipJudge(f, p, base, MAX, sqrt(2)) else num = L*(base-1)-N g = isnothing(f) ? x -> (sum(x) == num) : x -> (sum(x) == num && f(x)) FlipJudge(g, p, base, MAX, sqrt(2)) end if small_N && !isnothing(N) selectindexnorm_N(judge, L, N, base=base) else threaded ? selectindexnorm_threaded(judge, L, base=base, alloc=alloc) : selectindexnorm(judge, L, 1:base^L, base=base, alloc=alloc) end end FlipBasis(zeros(dtype, L), I, R, p, MAX, base) end #------------------------------------------------------------------------------------------------------------------------- function index(b::FlipBasis) Ia = index(b.dgt, base=b.B) Ib = b.M - Ia i, n = if Ib < Ia binary_search(b.I, Ib), b.P else binary_search(b.I, Ia), 1 end iszero(i) && return (zero(eltype(b)), one(i)) n * b.R[i], i end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
3011
#------------------------------------------------------------------------------------------------------------------------- # Parity #------------------------------------------------------------------------------------------------------------------------- export ParityBasis """ ParityBasis Basis with translational and reflection symmetries. Properties: ----------- - dgt: Digits. - I : Representing states. - R : Normalization. - P : {±1}, parity. - B : Base. """ struct ParityBasis{Ti <: Integer} <: AbstractPermuteBasis dgt::Vector{Ti} # Digits I::Vector{Ti} # Representing states R::Vector{Float64} # Normalization P::Int # {±1}, parity B::Ti # Base end #------------------------------------------------------------------------------------------------------------------------- struct ParityJudge{T} F # Projective selection P::Int64 # Parity B::T # Base C::Float64 # Value sqrt(2). end #------------------------------------------------------------------------------------------------------------------------- function (judge::ParityJudge)(dgt::AbstractVector{<:Integer}, i::Integer) # If there is a projective selection function F, check `F(dgt)` first isnothing(judge.F) || judge.F(dgt) || return (false, 0.0) # Check parity In = rindex(dgt, base=judge.B) In < i && return (false, 0.0) if isequal(In, i) isone(judge.P) || return (false, 0.0) true, 2.0 else true, judge.C end end #------------------------------------------------------------------------------------------------------------------------- function ParityBasis( dtype::DataType=Int64; L::Integer, f=nothing, p::Integer, N::Union{Nothing, Integer}=nothing, base::Integer=2, alloc::Integer=1000, threaded::Bool=true, small_N::Bool=true ) @assert isone(p) || isone(-p) "Invalid parity" base = convert(dtype, base) I, R = begin judge = if small_N || isnothing(N) ParityJudge(f, p, base, sqrt(2)) else num = L*(base-1)-N g = isnothing(f) ? x -> (sum(x) == num) : x -> (sum(x) == num && f(x)) ParityJudge(g, p, base, sqrt(2)) end if small_N && !isnothing(N) selectindexnorm_N(judge, L, N, base=base) else threaded ? selectindexnorm_threaded(judge, L, base=base, alloc=alloc) : selectindexnorm(judge, L, 1:base^L, base=base, alloc=alloc) end end ParityBasis(zeros(dtype, L), I, R, p, base) end #------------------------------------------------------------------------------------------------------------------------- function index(b::ParityBasis) Ia = index(b.dgt, base=b.B) Ib = rindex(b.dgt, base=b.B) i, n = if Ib < Ia binary_search(b.I, Ib), b.P else binary_search(b.I, Ia), 1 end iszero(i) && return (zero(eltype(b)), one(i)) n * b.R[i], i end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
3939
#------------------------------------------------------------------------------------------------------------------------- # Parity + Flip #------------------------------------------------------------------------------------------------------------------------- export ParityFlipBasis """ FlipBasis Basis with translational and reflection symmetries. """ struct ParityFlipBasis{Ti <: Integer} <: AbstractPermuteBasis dgt::Vector{Ti} # Digits I::Vector{Ti} # Representing states R::Vector{Float64} # Normalization P::Int # {±1}, parity Z::Int # {±1}, spin-flip parity M::Int # base^length + 1 B::Ti # Base end #------------------------------------------------------------------------------------------------------------------------- struct ParityFlipJudge{T} F # Projective selection P::Int64 # Parity Z::Int64 # Spin-flip parity B::T # Base MAX::Int # base^length + 1 C::Vector{Float64} # [2, 2sqrt(2), 0, 4] end #------------------------------------------------------------------------------------------------------------------------- function double_parity_check(dgt, i, base, max, p, z) (Ip = rindex(dgt, base=base)) < i && return (false, 1) (Iz = max - i) < i && return (false, 3) (Ipz = max - Ip) < i && return (false, 3) N = 1 if isequal(Ip, i) isone(p) || return (false, 3) N += 1 end if isequal(Iz, i) isone(z) || return (false, 3) N += 1 end if isequal(Ipz, i) isone(p*z) || return (false, 3) N += 1 end true, N end #------------------------------------------------------------------------------------------------------------------------- function (judge::ParityFlipJudge)(dgt::AbstractVector{<:Integer}, i::Integer) # If there is a projective selection function F, check `F(dgt)` first isnothing(judge.F) || judge.F(dgt) || return (false, 0.0) Q, n = double_parity_check(dgt, i, judge.B, judge.MAX, judge.P, judge.Z) Q, judge.C[n] end #------------------------------------------------------------------------------------------------------------------------- function ParityFlipBasis( dtype::DataType=Int64; L::Integer, f=nothing, p::Integer, z::Integer, N::Union{Nothing, Integer}=nothing, base::Integer=2, alloc::Integer=1000, threaded::Bool=true, small_N::Bool=true ) @assert isone(p) || isone(-p) "Invalid parity" @assert isnothing(N) || isequal(2N, L*(base-1)) "N = $N not compatible." base = convert(dtype, base) MAX = base ^ L + 1 I, R = begin C = [2.0, 2*sqrt(2), 0.0, 4.0] judge = if small_N || isnothing(N) ParityFlipJudge(f, p, z, base, MAX, C) else num = L*(base-1)-N g = isnothing(f) ? x -> (sum(x) == num) : x -> (sum(x) == num && f(x)) ParityFlipJudge(g, p, z, base, MAX, C) end if small_N && !isnothing(N) selectindexnorm_N(judge, L, N, base=base) else threaded ? selectindexnorm_threaded(judge, L, base=base, alloc=alloc) : selectindexnorm(judge, L, 1:base^L, base=base, alloc=alloc) end end ParityFlipBasis(zeros(dtype, L), I, R, p, z, MAX, base) end #------------------------------------------------------------------------------------------------------------------------- function index(b::ParityFlipBasis) I0 = index(b.dgt, base=b.B) Ip = rindex(b.dgt, base=b.B) Iz = b.M - I0 Ipz = b.M - Ip Ir = min(I0, Iz, Ip, Ipz) i = binary_search(b.I, Ir) iszero(i) && return (0.0, one(b.B)) N = if isequal(Ir, I0) b.R[i] elseif isequal(Ir, Ip) b.P * b.R[i] elseif isequal(Ir, Iz) b.Z * b.R[i] else b.P * b.Z * b.R[i] end N, i end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
6465
export ProjectedBasis """ ProjectedBasis{Ti} Basis for subspace that is spanned only by product states. It is basically like the `TensorBasis`, but contains only a subset of all basis vectors, selected by a given function. Properties: ----------- - `dgt`: Digits. - `I` : List of indicies. - `B` : Base. """ struct ProjectedBasis{T <: Integer} <: AbstractOnsiteBasis dgt::Vector{T} I::Vector{T} B::T end #------------------------------------------------------------------------------------------------------------------------- """ Deep copy digits. """ copy(b::ProjectedBasis) = ProjectedBasis(deepcopy(b.dgt), b.I, b.B) #------------------------------------------------------------------------------------------------------------------------- function index(b::ProjectedBasis; check::Bool=true) i = index(b.dgt, base=b.B) ind = binary_search(b.I, i) ind > 0 && return 1, ind check ? error("No such symmetry.") : return zero(eltype(b)), one(ind) end #------------------------------------------------------------------------------------------------------------------------- # Select basis vectors #------------------------------------------------------------------------------------------------------------------------- """ binary_search(list::AbstractVector{<:Integer}, i<:Integer) Return the position of i in a sorted list using binary search algorithm. """ function binary_search(list::AbstractVector{<:Integer}, i::Integer) l::Int = 1 r::Int = length(list) c::Int = (l + r) ÷ 2 while true t = list[c] (i < t) ? (r = c - 1) : (i > t) ? (l = c + 1) : break (l > r) ? (c = 0; break) : (c = (l + r) ÷ 2) end c end #------------------------------------------------------------------------------------------------------------------------- # Construction #------------------------------------------------------------------------------------------------------------------------- """ dividerange(maxnum::Integer, nthreads::Integer) Divide the interation range equally according to the number of threads. Inputs: ------- - `maxnum` : Maximum number of range. - `nthreads`: Number of threads. Outputs: -------- - `list`: List of ranges. """ function dividerange(maxnum::T, nthreads::Integer) where T <: Integer list = Vector{UnitRange{T}}(undef, nthreads) eachthreads, left = divrem(maxnum, nthreads) start = 1 for i = 1:left stop = start + eachthreads list[i] = start:stop start = stop+1 end for i = left+1:nthreads-1 stop = start + eachthreads - 1 list[i] = start:stop start = stop+1 end list[nthreads] = start:maxnum list end #------------------------------------------------------------------------------------------------------------------------- """ selectindex(f, L, rg; base=2, alloc=1000) Select the legal indices for a basis. Inputs: ------- - `f` : Function for digits that tells whether a digits is valid. - `L` : Length of the system. - `rg` : Range of interation. - `base` : (Optional) Base, `base=2` by default. - `alloc`: (Optional) Pre-allocation memory for the list of indices, `alloc=1000` by default. Outputs: -------- - `I`: List of indices in a basis. """ function selectindex(f, L::Integer, rg::UnitRange{T}; base::Integer=2, alloc::Integer=1000) where T <: Integer dgt = zeros(T, L) I = T[] sizehint!(I, alloc) for i in rg change!(dgt, i, base=base) f(dgt) && append!(I, i) end I end #------------------------------------------------------------------------------------------------------------------------- """ selectindex_threaded(f, L, rg; base=2, alloc=1000) Select the legal indices with multi-threads. Inputs: ------- - `f` : Function for digits that tells whether a digits is valid as well as its normalization. - `L` : Length of the system. - `base` : (Optional) Base, `base=2` by default. - `alloc`: (Optional) Pre-allocation memory for the list of indices, `alloc=1000` by default. Outputs: -------- - `I`: List of indices in a basis. """ function selectindex_threaded(f, L::Integer; base::T=2, alloc::Integer=1000) where T <: Integer nt = Threads.nthreads() ni = dividerange(base^L, nt) nI = Vector{Vector{T}}(undef, nt) Threads.@threads for ti in 1:nt nI[ti] = selectindex(f, L, ni[ti], base=base, alloc=alloc) end I = vcat(nI...) I end #------------------------------------------------------------------------------------------------------------------------- function selectindex_N(f, L::Integer, N::Integer; base::T=2, alloc::Integer=1000, sorted::Bool=true) where T <: Integer I = T[] sizehint!(I, alloc) for fdgt in multiexponents(L, N) all(b < base for b in fdgt) || continue dgt = (base-1) .- fdgt isnothing(f) || f(dgt) || continue ind = index(dgt, base=base) append!(I, ind) end sorted ? sort(I) : I end #------------------------------------------------------------------------------------------------------------------------- """ ProjectedBasis(;L, N, base=2, alloc=1000, threaded=true) Construction method for `ProjectedBasis` with fixed particle number (or total U(1) charge). Inputs: ------- - `dtype` : Data type for indices. - `L` : Length of the system. - `N` : Quantum number of up spins / particle number / U(1) charge. - `base` : Base, default = 2. - `alloc` : Size of the prealloc memory for the basis content, used only in multithreading, default = 1000. - `threaded`: Whether use the multithreading, default = true. - `small_N` : Whether use the small-N algorithm. Outputs: -------- - `b` : ProjectedBasis. """ function ProjectedBasis(dtype::DataType=Int64; L::Integer, f=nothing, N::Union{Nothing, Integer}=nothing, base::Integer=2, alloc::Integer=1000, threaded::Bool=true, small_N::Bool=false ) base = convert(dtype, base) I = if isnothing(N) threaded ? selectindex_threaded(f, L, base=base, alloc=alloc) : selectindex(f, L, 1:base^L, base=base, alloc=alloc) elseif small_N selectindex_N(f, L, N, base=base) else num = L * (base-1) - N g = isnothing(f) ? x -> sum(x) == num : x -> (sum(x) == num && f(x)) threaded ? selectindex_threaded(g, L, base=base, alloc=alloc) : selectindex(g, L, 1:base^L, base=base, alloc=alloc) end ProjectedBasis(zeros(dtype, L), I, base) end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
9562
export TranslationalBasis """ TranslationalBasis Basis for subspace that is spanned by momentum states, which can also incorporate projected restriction. For each basis vector represented by `dgt`, the vector is |aₙ⟩ = ∑ᵢ Tⁱ |dgt⟩. The normalized basis is |n⟩ = Rₙ⁻¹ |aₙ⟩, where Rₙ is the normalization. Properties: ----------- - `dgt`: Digits. - `I` : List of indicies. - `R` : List of normalization. - `C` : Unit phase factor. - `B` : Base. """ struct TranslationalBasis{Ti <: Integer, T <: Number} <: AbstractPermuteBasis dgt::Vector{Ti} I::Vector{Ti} R::Vector{Float64} C::Vector{T} A::Int64 B::Ti end #------------------------------------------------------------------------------------------------------------------------- eltype(::TranslationalBasis{Ti, T}) where {Ti, T} = T copy(b::TranslationalBasis) = TranslationalBasis(deepcopy(b.dgt), b.I, b.R, b.C, b.A, b.B) ncycle(b) = length(b.dgt) ÷ b.A #------------------------------------------------------------------------------------------------------------------------- # Functions selecting the basis #------------------------------------------------------------------------------------------------------------------------- """ TranslationJudge Structure used for selecting the basis contents. Properties: ----------- - F: Projective selection - K: Momentum - A: Length of unit cell - B: Base - C: Normalization coefficient """ struct TranslationJudge{T} F # Projective selection K::Int # Momentum A::Int # Length of unit cell L::Int # Length of translation B::T # Base C::Vector{Float64} # Normalization coefficient end #------------------------------------------------------------------------------------------------------------------------- @inline check_momentum(n::Integer, k::Integer, L::Integer) = iszero(mod(n * k , L)) """ (::TranslationJudge)(dgt, i) Select basis and return normalization. """ function (judge::TranslationJudge)(dgt::AbstractVector{<:Integer}, i::Integer) # If there is a projective selection function F, check `F(dgt)` first isnothing(judge.F) || judge.F(dgt) || return (false, 0.0) # Check translation for n in 1:judge.L-1 circshift!(dgt, judge.A) In = index(dgt, base=judge.B) if In < i # Find smaller indices, return false. return (false, 0.0) elseif isequal(In, i) # Find periodicity; check if momentum is compatible check_momentum(n, judge.K, judge.L) || return (false, 0.0) return (true, judge.C[n]) end end # Finish a cycle true, judge.C[judge.L] end #------------------------------------------------------------------------------------------------------------------------- # Construction #------------------------------------------------------------------------------------------------------------------------- """ selectindexnorm(f, L, rg; base=2, alloc=1000) Select the legal indices and corresponding norm for a basis. Inputs: ------- - `f` : Function for digits that tells whether a digits is valid as well as its normalization. - `L` : Length of the system. - `rg` : Range of interation. - `base` : (Optional) Base, `base=2` by default. - `alloc`: (Optional) Pre-allocation memory for the list of indices, `alloc=1000` by default. Outputs: -------- - `I`: List of indices in a basis. - `R`: List of normalization for each states. """ function selectindexnorm(f, L::Integer, rg::UnitRange{T}; base::Integer=2, alloc::Integer=1000) where T <: Integer dgt = zeros(T, L) I, R = T[], Float64[] sizehint!(I, alloc) sizehint!(R, alloc) for i in rg change!(dgt, i, base=base) Q, N = f(dgt, i) Q || continue append!(I, i) append!(R, N) end I, R end #------------------------------------------------------------------------------------------------------------------------- function selectindexnorm_N(f, L::Integer, N::Integer; base::T=2, alloc::Integer=1000, sorted::Bool=true) where T <: Integer I, R = T[], Float64[] sizehint!(I, alloc) sizehint!(R, alloc) for fdgt in multiexponents(L, N) all(b < base for b in fdgt) || continue dgt = (base-1) .- fdgt i = index(dgt, base=base) Q, N = f(dgt, i) Q || continue append!(I, i) append!(R, N) end sorted || return I, R sperm = sortperm(I) I[sperm], R[sperm] end #------------------------------------------------------------------------------------------------------------------------- """ selectindexnorm_threaded(f, L, rg; base=2, alloc=1000) Select the legal indices and corresponding norm for a basis with multi-threads. Inputs: ------- - `f` : Function for digits that tells whether a digits is valid as well as its normalization. - `L` : Length of the system. - `base` : (Optional) Base, `base=2` by default. - `alloc`: (Optional) Pre-allocation memory for the list of indices, `alloc=1000` by default. Outputs: -------- - `I`: List of indices in a basis. - `R`: List of normalization for each states. """ function selectindexnorm_threaded(f, L::Integer; base::T=2, alloc::Integer=1000) where T <: Integer nt = Threads.nthreads() ni = dividerange(base^L, nt) nI = Vector{Vector{T}}(undef, nt) nR = Vector{Vector{Float64}}(undef, nt) Threads.@threads for ti in 1:nt nI[ti], nR[ti] = selectindexnorm(f, L, ni[ti], base=base, alloc=alloc) end I, R = vcat(nI...), vcat(nR...) I, R end #------------------------------------------------------------------------------------------------------------------------- """ TranslationalBasis(f, k, L; base=2, alloc=1000, threaded=true) Construction for `TranslationalBasis`. Inputs: ------- - `dtype` : Data type of index. - `L` : Length of the system. - `f` : Selection function for the basis contents. - `k` : Momentum number from 0 to L-1. - `N` : Particle number. - `a` : Length of unit cell. - `base` : Base, default = 2. - `alloc` : Size of the prealloc memory for the basis content, used only in multithreading, default = 1000. - `threaded`: Whether use the multithreading, default = true. Outputs: -------- - `b`: TranslationalBasis. """ function TranslationalBasis(dtype::DataType=Int64; L::Integer, f=nothing, k::Integer=0, N::Union{Nothing, Integer}=nothing, a::Integer=1, base::Integer=2, alloc::Integer=1000, threaded::Bool=true, small_N::Bool=false ) len, check_a = divrem(L, a) @assert iszero(check_a) "Length of unit-cell $a incompatible with L=$L" #= Change of definition: old: T|k⟩ = exp(+ik)|k⟩, new: T|k⟩ = exp(-ik)|k⟩. In the new definition, cₖ⁺|VAC⟩ = |k⟩. =# k = mod(-k, len) base = convert(dtype, base) I, R = begin norm = [len/sqrt(i) for i = 1:len] judge = if small_N || isnothing(N) TranslationJudge(f, k, a, len, base, norm) else num = L*(base-1)-N g = isnothing(f) ? x -> (sum(x) == num) : x -> (sum(x) == num && f(x)) TranslationJudge(g, k, a, len, base, norm) end if small_N && !isnothing(N) selectindexnorm_N(judge, L, N, base=base) else threaded ? selectindexnorm_threaded(judge, L, base=base, alloc=alloc) : selectindexnorm(judge, L, 1:base^L, base=base, alloc=alloc) end end C = phase_factor(k, len) TranslationalBasis(zeros(dtype, L), I, R, C, a, base) end #------------------------------------------------------------------------------------------------------------------------- function phase_factor(k::Integer, len::Integer) if iszero(k) fill(1.0, len) elseif isequal(2k, len) [iseven(i) ? 1.0 : -1.0 for i=0:len-1] else [exp(-1im * 2π/len * k*i) for i=0:len-1] end end #------------------------------------------------------------------------------------------------------------------------- # Indexing #------------------------------------------------------------------------------------------------------------------------- """ index(b::TranslationalBasis) Index of the state in `TranslationalBasis`, together with the normalization. Outputs: -------- - `N`: Normalization for the state `b.dgt`. - `i`: Index for the state `b.dgt`. Notes: ------ To calculate the index of a given digits, we first shift the digits to that of the minimum index, then search for the place in the basis. Because of the restriction from the momentum, some state with zero normalization (which is not included in the basis) will appear. To avoid exception in the matrix constructon of `Operation`, we allow the index to not in the basis content. When this happend, we return index 1, and normalization 0, so it has no effect on the matrix being filled. """ function index(b::TranslationalBasis) I0 = index(b.dgt, base=b.B) Im, M = I0, 0 # Cycle digits resetQ = true for i in 1:ncycle(b)-1 circshift!(b.dgt, b.A) In = index(b.dgt, base=b.B) if isequal(In, I0) resetQ = false break elseif In < Im Im, M = In, i end end resetQ && circshift!(b.dgt, b.A) # Search for minimal index i = binary_search(b.I, Im) iszero(i) && return (zero(eltype(b)), one(b.B)) # Find normalization and return result N = b.C[M+1] * b.R[i] N, i end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
6237
export TranslationFlipBasis """ TranslationFlipBasis Basis with translational and spin-flip symmetries. """ struct TranslationFlipBasis{Ti, T} <: AbstractTranslationalParityBasis dgt::Vector{Ti} # Digits I::Vector{Ti} # Representing states R::Vector{Float64} # Normalization C::Vector{T} # Momentum phase exp(-1im * 2π/L * K) P::Int # {±1}, parity A::Int # Length of unit cell M::Int # MAX = base^length + 1 B::Ti # Base end #------------------------------------------------------------------------------------------------------------------------- eltype(::TranslationFlipBasis{Ti, T}) where {Ti, T} = T copy(b::TranslationFlipBasis) = TranslationFlipBasis(deepcopy(b.dgt), b.I, b.R, b.C, b.P, b.A, b.B) #------------------------------------------------------------------------------------------------------------------------- # Functions selecting the basis #------------------------------------------------------------------------------------------------------------------------- struct TranslationFlipJudge{T <: Integer} F # Projective selection K::Int64 # Momentum A::Int64 # Length of unit cell P::Int64 # Parity eigenvalue {±1} L::Int64 # Length of translation B::T # Base C::Vector{Float64} # Normalization coefficients MAX::Int # Base^length + 1 end #------------------------------------------------------------------------------------------------------------------------- function (judge::TranslationFlipJudge)(dgt::AbstractVector{<:Integer}, i::Integer) # First check projective selection rule isnothing(judge.F) || judge.F(dgt) || return (false, 0.0) R = judge.L Qp = false # Check Flip In = judge.MAX - i if In < i return (false, 0.0) elseif isequal(In, i) Qp = true # Check parity isone(judge.P) || return (false, 0.0) end # Cycle digits for n in 1:judge.L-1 circshift!(dgt, judge.A) In1 = index(dgt, base=judge.B) In2 = judge.MAX - In1 # Check cycled index In1 < i && return (false, 0.0) In2 < i && return (false, 0.0) if isequal(In2, i) # Check flip parity isequal(isone(judge.P), iseven(div(n * judge.K, judge.L÷2))) || return (false, 0.0) Qp = true end if isequal(In1, i) # Find periodicity; check Momentum iszero(mod(n * judge.K , judge.L)) || return (false, 0.0) R = n break end end # Calculating norm N = Qp ? judge.C[judge.L+R] : judge.C[R] true, N end #------------------------------------------------------------------------------------------------------------------------- # Construction #------------------------------------------------------------------------------------------------------------------------- """ TranslationFlipBasis(f, k, p, L; base=2, alloc=1000, threaded=true) Construction for `TranslationFlipBasis`. Inputs: ------- - `f` : Selection function for the basis contents. - `k` : Momentum number from 0 to L-1. - `p` : Parity number (under spin flip) ±1. - `L` : Length of the system. - `base` : Base, default = 2. - `alloc` : Size of the prealloc memory for the basis content, used only in multithreading, default = 1000. - `threaded`: Whether use the multithreading, default = true. Outputs: -------- - `b`: TranslationFlipBasis. """ function TranslationFlipBasis( dtype::DataType=Int64; f=x->true, k::Integer=0, p::Integer=1, L::Integer, N::Union{Nothing, Integer}=nothing, a::Integer=1, base::Integer=2, alloc::Integer=1000, threaded::Bool=false, small_N::Bool=false ) len, check_a = divrem(L, a) @assert iszero(check_a) "Length of unit-cell $a incompatible with L=$L" @assert isone(p) || isone(-p) "Invalid parity" @assert isnothing(N) || isequal(2N, L*(base-1)) "N = $N not compatible." #= Change of definition: old: T|k⟩ = exp(+ik)|k⟩, new: T|k⟩ = exp(-ik)|k⟩. In the new definition, cₖ⁺|VAC⟩ = |k⟩. =# k = mod(-k, len) base = convert(dtype, base) MAX = base ^ L + 1 I, R = begin N2 = [2len/ sqrt(i) for i = 1:len] N1 = N2 ./ sqrt(2) judge = if small_N || isnothing(N) TranslationFlipJudge(f, k, a, p, len, base, vcat(N1, N2), MAX) else num = L*(base-1)÷2 g = isnothing(f) ? x -> (sum(x) == num) : x -> (sum(x) == num && f(x)) TranslationFlipJudge(g, k, a, p, len, base, vcat(N1, N2), MAX) end if small_N && !isnothing(N) selectindexnorm_N(judge, L, N, base=base) else threaded ? selectindexnorm_threaded(judge, L, base=base, alloc=alloc) : selectindexnorm(judge, L, 1:base^L, base=base, alloc=alloc) end end C = phase_factor(k, len) TranslationFlipBasis(zeros(dtype, L), I, R, C, p, a, MAX, base) end #------------------------------------------------------------------------------------------------------------------------- # Indexing #------------------------------------------------------------------------------------------------------------------------- """ Return normalization and index. """ function index(b::TranslationFlipBasis) Ia0 = index(b.dgt, base=b.B) Ib0 = b.M - Ia0 Iam, Ibm = Ia0, Ib0 R, M = 0, 0 # Cycling and find monimum resetQ = true for i in 1:ncycle(b)-1 circshift!(b.dgt, b.A) Ia1 = index(b.dgt, base=b.B) if isequal(Ia1, Ia0) resetQ = false break elseif Ia1 < Iam Iam, R = Ia1, i end Ib1 = b.M - Ia1 if Ib1 < Ibm Ibm, M = Ib1, i end end resetQ && circshift!(b.dgt, b.A) # Find index and normalization i, n = if Ibm < Iam binary_search(b.I, Ibm), b.P * b.C[M+1] else binary_search(b.I, Iam), b.C[R+1] end iszero(i) && return (zero(eltype(b)), one(eltype(b.I))) n * b.R[i], i end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
6876
#------------------------------------------------------------------------------------------------------------------------- # Translation + Parity #------------------------------------------------------------------------------------------------------------------------- export TranslationParityBasis """ TranslationParityBasis Basis with translational and reflection symmetries. Properties: ----------- - dgt: Digits. - I : Representing states. - R : Normalization. - C : {±1}, momentum phase. - P : {±1}, parity. - A : Length of unit cell. - B : Base. """ struct TranslationParityBasis{Ti <: Integer} <: AbstractTranslationalParityBasis dgt::Vector{Ti} # Digits I::Vector{Ti} # Representing states R::Vector{Float64} # Normalization C::Vector{Int} # Momentum phase exp(1im * 0/π) = {±1} P::Int # {±1}, parity A::Int # Length of unit cell B::Ti # Base end #------------------------------------------------------------------------------------------------------------------------- eltype(::TranslationParityBasis) = Float64 copy(b::TranslationParityBasis) = TranslationParityBasis(deepcopy(b.dgt), b.I, b.R, b.C, b.P, b.A, b.B) #------------------------------------------------------------------------------------------------------------------------- # Functions selecting the basis #------------------------------------------------------------------------------------------------------------------------- function rindex(dgt::AbstractVector{<:Integer}; base::T) where T <: Integer evalpoly(base, dgt) + one(T) end #------------------------------------------------------------------------------------------------------------------------- struct TranslationParityJudge{T <: Integer} F # Projective selection K::Int64 # Momentum phase exp(1im * 0/π) = {±1} A::Int64 # Length of unit cell P::Int64 # Parity eigenvalue {±1} L::Int64 # Length of translation B::T # Base C::Vector{Float64} # Normalization coefficients end #------------------------------------------------------------------------------------------------------------------------- function (judge::TranslationParityJudge)(dgt::AbstractVector{<:Integer}, i::Integer) # First check projective selection rule isnothing(judge.F) || judge.F(dgt) || return (false, 0.0) R = judge.L Qp = false # Check reflection In = rindex(dgt, base=judge.B) if In < i return (false, 0.0) elseif isequal(In, i) Qp = true # Check parity isone(judge.P) || return (false, 0.0) end # Cycle digits for n in 1:judge.L-1 circshift!(dgt, judge.A) In1 = index(dgt, base=judge.B) In2 = rindex(dgt, base=judge.B) # Check cycled index In1 < i && return (false, 0.0) In2 < i && return (false, 0.0) if isequal(In2, i) # Check Parity isone(judge.P * judge.K ^ n) || return (false, 0.0) Qp = true end if isequal(In1, i) # Find periodicity; check Momentum isone(judge.K) || iseven(n) || return (false, 0.0) R = n break end end # Calculating norm N = Qp ? judge.C[judge.L+R] : judge.C[R] true, N end #------------------------------------------------------------------------------------------------------------------------- # Construction #------------------------------------------------------------------------------------------------------------------------- """ TranslationParityBasis(f, k, p, L; base=2, alloc=1000, threaded=true) Construction for `TranslationParityBasis`. Inputs: ------- - `f` : Selection function for the basis contents. - `k` : Momentum number, 0 or L/2. - `p` : Parity number ±1. - `L` : Length of the system. - `N` : Particle numper. - `a` : Length of unit cell. - `base` : Base, default = 2. - `alloc` : Size of the prealloc memory for the basis content, used only in multithreading, default = 1000. - `threaded`: Whether use the multithreading, default = true. Outputs: -------- - `b`: TranslationParityBasis. """ function TranslationParityBasis( dtype::DataType=Int64; L::Integer, f=nothing, k::Integer=0, p::Integer=1, N::Union{Nothing, Integer}=nothing, a::Integer=1, base::Integer=2, alloc::Integer=1000, threaded::Bool=true, small_N::Bool=false ) len, check_a = divrem(L, a) @assert iszero(check_a) "Length of unit-cell $a incompatible with L=$L" k = if iszero(mod(k, len)) 1 elseif iszero(mod(2k, len)) -1 else error("Momentum $k incompatible with parity.") end @assert isone(p) || isone(-p) "Invalid parity" base = convert(dtype, base) I, R = begin N2 = [2len/ sqrt(i) for i = 1:len] N1 = N2 ./ sqrt(2) judge = if small_N || isnothing(N) TranslationParityJudge(f, k, a, p, len, base, vcat(N1, N2)) else num = L*(base-1)-N g = isnothing(f) ? x -> (sum(x) == num) : x -> (sum(x) == num && f(x)) TranslationParityJudge(g, k, a, p, len, base, vcat(N1, N2)) end if small_N && !isnothing(N) selectindexnorm_N(judge, L, N, base=base) else threaded ? selectindexnorm_threaded(judge, L, base=base, alloc=alloc) : selectindexnorm(judge, L, 1:base^L, base=base, alloc=alloc) end end C = isone(k) ? fill(1, len) : [iseven(i) ? 1 : -1 for i=0:len-1] TranslationParityBasis(zeros(dtype, L), I, R, C, p, a, base) end #------------------------------------------------------------------------------------------------------------------------- # Indexing #------------------------------------------------------------------------------------------------------------------------- """ index(b::TranslationParityBasis) Return normalization and index. """ function index(b::TranslationParityBasis) Ia0 = index(b.dgt, base=b.B) Ib0 = rindex(b.dgt, base=b.B) Iam, Ibm = Ia0, Ib0 R, M = 0, 0 # Cycling and find monimum resetQ = true for i in 1:ncycle(b)-1 circshift!(b.dgt, b.A) Ia1 = index(b.dgt, base=b.B) if isequal(Ia1, Ia0) resetQ = false break elseif Ia1 < Iam Iam, R = Ia1, i end Ib1 = rindex(b.dgt, base=b.B) if Ib1 < Ibm Ibm, M = Ib1, i end end resetQ && circshift!(b.dgt, b.A) # Find index and normalization i, n = if Ibm < Iam binary_search(b.I, Ibm), b.P * b.C[M+1] else binary_search(b.I, Iam), b.C[R+1] end iszero(i) && return (zero(eltype(b)), one(eltype(b.I))) n * b.R[i], i end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
6533
#=--------------------------------------------------------------------------------------------------- Conversion Due to julia's column major convention, the conversion between tensor and vector is not straight- forward. It is basically a reshape and permute indices. ---------------------------------------------------------------------------------------------------=# """ vec2tensor!(dest, v) Convert vector `v` to tensor, with row-major convention. Inputs: ------- - dest: Tensor to write - v : Vector """ function vec2tensor!(dest::Array, v::AbstractVector) T = reshape(v, size(dest)) permutedims!(dest, T, ndims(dest):-1:1) end #---------------------------------------------------------------------------------------------------- """ vec2tensor(v; base=2) Convert vector `v` to tensor, with row-major convention. """ function vec2tensor(v::AbstractVector; base::Integer=2) L = round(Int, log(base, length(v))) @assert base^L == length(v) "Dimension not right." T = Array{eltype(v), L}(undef, fill(base, L)...) vec2tensor!(T, v) end #---------------------------------------------------------------------------------------------------- export mps2vec """ mps2vec(psi::MPS) Convert MPS to a vector """ function mps2vec(psi::MPS) v = ITensor(1.0) for t in psi v *= t end T = Array(v, reverse(siteinds(psi))) reshape(T, :) end #---------------------------------------------------------------------------------------------------- """ mps2vec(psi::MPS, B::AbstractBasis) Convert MPS to a vector, with a given basis `B`. """ function mps2vec(psi::MPS, B::AbstractBasis) L = length(psi) s = siteinds(psi) v = Vector{eltype(psi[1])}(undef, size(B, 1)) for i in eachindex(v) R = change!(B, i) val = ITensor(1.0) for j in 1:L val *= psi[j] * state(s[j], B.dgt[j]+1) end v[i] = scalar(val) * L / R end v end #---------------------------------------------------------------------------------------------------- export vec2mps function vec2mps(v::AbstractVector, s::AbstractVector{<:Index}) T = vec2tensor(v; base=space(s[1])) MPS(T, s) end #---------------------------------------------------------------------------------------------------- export mat2op """ Convert a matrix to an ITensor operator """ function mat2op(mat::AbstractMatrix, s::Index...) L = length(s) d = space(s[1]) T = reshape(mat, fill(d, 2L)...) Tp = permutedims(T, [L:-1:1; 2L:-1:L+1]) op(Tp, s...) end #---------------------------------------------------------------------------------------------------- export op2mat """ Convert a ITensor operator to a matrix """ function op2mat(o::ITensor, s::Index...) rs = reverse(s) T = Array(o, adjoint.(rs), rs) N = space(s[1]) ^ length(s) reshape(T, N, N) end #=--------------------------------------------------------------------------------------------------- MPS constructions ---------------------------------------------------------------------------------------------------=# export pbcmps """ pbcmps(sites, tensors) Construct an MPS from a list of tensor. """ function pbcmps( sites::AbstractVector, tensors::AbstractVector{<:AbstractArray} ) L = length(sites) link = map(1:L-1) do i χ = size(tensors[i], 2) Index(χ, "Link,l=$i") end ltensor, rtensor = tensors[1], tensors[end] χ = size(ltensor, 1) ψ = MPS(L) for i in 2:L-1 ψ[i] = ITensor(tensors[i], link[i-1], link[i], sites[i]) end # Fix boundary |1⟩⟨1| ψ[1] = ITensor(ltensor[1, :, :], link[1], sites[1]) ψ[L] = ITensor(rtensor[:, 1, :], link[L-1], sites[L]) res = deepcopy(ψ) for n in 2:χ # Fix boundary |n⟩⟨n| ψ[1] = ITensor(ltensor[n, :, :], link[1], sites[1]) ψ[L] = ITensor(rtensor[:, n, :], link[L-1], sites[L]) res += ψ end orthogonalize!(res, 1) normalize!(res) end #---------------------------------------------------------------------------------------------------- export productstate ITensors.state(s::Index, v::AbstractVector) = ITensor(v, s) """ productstate(s, states) Return a product MPS Inputs: ------- - s : Vector of indices - states: Vector of vector representing local states """ function productstate(s::AbstractVector{<:Index}, states::AbstractVector{<:AbstractVector}) L, d = length(s), length(states[1]) link = [Index(1, "Link,l=$i") for i in 1:L-1] ψ = MPS(L) ψ[1] = ITensor(reshape(states[1], d, 1), s[1], link[1]) ψ[L] = ITensor(reshape(states[L], d, 1), s[L], link[L-1]) for i in 2:L-1 ψ[i] = ITensor(reshape(states[i], d, 1, 1), s[i], link[i-1], link[i]) end ψ end #=--------------------------------------------------------------------------------------------------- MPS properties ---------------------------------------------------------------------------------------------------=# export ent_spec, ent_specs!, ent_S! """ ent_specs(ψ::MPS, b::Integer) Return entanglement spectrum between site `b` and `b+1`. Inputs: ------- - ψ: MPS - b: Link index """ function ent_specs(ψ::MPS, b::Integer) ψ = orthogonalize(ψ, b) isone(b) && return svd(ψ[b], siteind(ψ, b)).spec.eigs svd(ψ[b], (linkind(ψ, b-1), siteind(ψ, b))).spec.eigs end #---------------------------------------------------------------------------------------------------- function ent_specs!(ψ::MPS, b::Integer) orthogonalize!(ψ, b) isone(b) && return svd(ψ[b], siteind(ψ, b)).spec.eigs svd(ψ[b], (linkind(ψ, b-1), siteind(ψ, b))).spec.eigs end #---------------------------------------------------------------------------------------------------- """ ent_S(ψ::MPS, b::Integer) Return entanglement entropy between site `b` and `b+1`. Inputs: ------- - ψ: MPS - b: Link index """ function ent_S(ψ::MPS, b::Integer) spec = ent_specs(ψ, b) entropy(spec) end #---------------------------------------------------------------------------------------------------- function ent_S!(ψ::MPS, b::Integer) spec = ent_specs!(ψ, b) entropy(spec) end #---------------------------------------------------------------------------------------------------- """ ent_specs(ψ::MPS) Return entanglement entropies. Inputs: ------- - ψ: MPS Outputs: -------- - S: Vector of entropy """ function ent_S(ψ::MPS) L = length(ψ) S = Vector{Float64}(undef, L) ψ = orthogonalize(ψ, 1) for i in 1:L S[i] = ent_S!(ψ, i) end S end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
10918
#--------------------------------------------------------------------------------------------------- const PAULI_CONVERSION = let T = zeros(ComplexF64, 4, 2, 2) for i in 1:4 T[i, :, :] += conj.(PAULI[i]) / 2 end T end #--------------------------------------------------------------------------------------------------- const PAULI_INV_CONV = let T = zeros(ComplexF64, 2, 2, 4) for i in 1:4 T[:, :, i] += PAULI[i] end T end #--------------------------------------------------------------------------------------------------- export pauli """ pauli(i, L=1) Return ith (size-L) Pauli matrices. """ function pauli(i::Integer, L::Integer=1) inds = digits(i-1, base=4, pad=L) |> reverse! σ(inds) end #--------------------------------------------------------------------------------------------------- """ pauli(Is::AbstractVector{<:Real}) Return a matrix from Pauli coefficients """ function pauli(Is::AbstractVector{<:Real}) L = round(Integer, log(4, length(Is))) @assert 4^L == length(Is) out = zeros(ComplexF64, 2^L, 2^L) for i in eachindex(Is) out += Is[i] * pauli(i, L) end out end #--------------------------------------------------------------------------------------------------- """ Compute tr(A * B), where A is a Pauli matrix. """ function pauli_mtr(A::SparseMatrixCSC, B::AbstractMatrix) rows, vals = rowvals(A), nonzeros(A) res = zero(promote_type(eltype(A), eltype(B))) for j in axes(A, 2) val, row = vals[j], rows[j] res += val * B[j, row] end #res = tr(A * B) res end #--------------------------------------------------------------------------------------------------- export pauli_list """ pauli_list(A) Return pauli components of a 2×2 matrix `A`. """ function pauli_list(A::AbstractMatrix, T::DataType=Float64) n = round(Integer, log(2, size(A, 1))) N = 2^n @assert N == size(A, 1) "dimension D = $(size(A, 1)) not right." list = Vector{T}(undef, N^2) for i in eachindex(list) c = pauli_mtr(pauli(i, n), A) / N list[i] = T <: Real ? real(c) : c end return list end #--------------------------------------------------------------------------------------------------- """ pauli_op_mat(f) Matrix representation for f(ρ). """ function pauli_op_mat(f, L::Integer=1) N = 4^L mat = Matrix{Float64}(undef, N, N) for i in axes(mat, 2) mat[:, i] = f(pauli(i, L)) |> pauli_list end return mat end #--------------------------------------------------------------------------------------------------- """ dissipation(L,ρ) Compute dissipation D[L]ρ = L⋅ρ⋅L⁺ - 1/2{L⁺L,ρ} """ function dissipation(L::AbstractMatrix, ρ::AbstractMatrix) Lρ = L * ρ Ld = L' LLρ = Ld * Lρ return Lρ * Ld - (LLρ + LLρ') / 2 end #--------------------------------------------------------------------------------------------------- """ commutation(L,ρ) Compute commutation -i[H, ρ] """ function commutation(H::AbstractMatrix, ρ::AbstractMatrix) Hρ = -1im * H * ρ Hρ + Hρ' end #--------------------------------------------------------------------------------------------------- export dissipation_mat """ dissipation_mat(L) Matrix representation for D[L]. """ function dissipation_mat(L::AbstractMatrix) n = round(Integer, log(2, size(L, 1))) @assert 2^n == size(L, 1) "dimension D = $(size(L, 1)) not right." f = ρ -> dissipation(L,ρ) pauli_op_mat(f, n) end #--------------------------------------------------------------------------------------------------- export commutation_mat """ commutation_mat(L) Matrix representation for -i[H,⋅]. """ function commutation_mat(H::AbstractMatrix) n = round(Integer, log(2, size(H, 1))) @assert 2^n == size(H, 1) "dimension D = $(size(H, 1)) not right." f = ρ -> commutation(H,ρ) pauli_op_mat(f, n) end #--------------------------------------------------------------------------------------------------- # Define Pauli basis #--------------------------------------------------------------------------------------------------- ITensors.space(::SiteType"Pauli") = 4 ITensors.state(::StateName"I", ::SiteType"Pauli") = [1, 0, 0, 0] ITensors.state(::StateName"X", ::SiteType"Pauli") = [0, 1, 0, 0] ITensors.state(::StateName"Y", ::SiteType"Pauli") = [0, 0, 1, 0] ITensors.state(::StateName"Z", ::SiteType"Pauli") = [0, 0, 0, 1] ITensors.state(::StateName"Up", ::SiteType"Pauli") = [1/2, 0, 0, 1/2] ITensors.state(::StateName"Dn", ::SiteType"Pauli") = [1/2, 0, 0, -1/2] #--------------------------------------------------------------------------------------------------- # MPS/MPO #--------------------------------------------------------------------------------------------------- function _umat(n::Int64) B1 = ParityBasis(L=2, p=1, base=n) B2 = ParityBasis(L=2, p=-1, base=n) n1, n2 = size(B1, 1), size(B2, 1) out = zeros(ComplexF64, n^2, n^2) for i in 1:n1 a = 1 / change!(B1, i) out[index(B1.dgt; base=n), i] += a reverse!(B1.dgt) out[index(B1.dgt; base=n), i] += a end for i in 1:n2 j = n1 + i b = 1im / change!(B2, i) out[index(B2.dgt; base=n), j] += b reverse!(B2.dgt) out[index(B2.dgt; base=n), j] -= b end out end const lru_umat = LRU{Int64, Matrix{ComplexF64}}(maxsize=30) function cached_umat(n::Int64) get!(lru_umat, n) do _umat(n) end end #--------------------------------------------------------------------------------------------------- export mps2pmps function mps2pmps(ψ::MPS, S::AbstractVector) s = siteinds(ψ) L = length(s) psi = MPS(L) psi[1] = begin l1 = linkind(ψ, 1) Cl = combiner(l1, l1') C = ITensor(PAULI_CONVERSION, S[1], s[1]', s[1]) ψ[1]' * conj(ψ[1]) * C * Cl end for i in 2:L-1 li = linkind(ψ, i) Cl2 = combiner(li, li') C = ITensor(PAULI_CONVERSION, S[i], s[i]', s[i]) psi[i] = ψ[i]' * conj(ψ[i]) * C * Cl * Cl2 Cl = Cl2 end psi[L] = begin C = ITensor(PAULI_CONVERSION, S[L], s[L]', s[L]) ψ[L]' * conj(ψ[L]) * C * Cl end for i in 1:L-1 n = linkdim(ψ, i) u = cached_umat(n) l0 = commonind(psi[i], psi[i+1]) l = Index(n^2, tags="Link,l=$i") U = ITensor(u, l0, l) Ud = ITensor(u', l, l0) psi[i] = psi[i] * U |> real psi[i+1] = Ud * psi[i+1] end psi[L] = real(psi[L]) psi end #--------------------------------------------------------------------------------------------------- export pmps2mpo """ pmps2mpo(ψ, s) Convert Pauli MPS to MPO. """ function pmps2mpo(ψ::MPS, s::AbstractVector) L = length(s) S = siteinds(ψ) @assert length(ψ) == L O = MPO(L) for i in eachindex(s) si = s[i] C = ITensor(PAULI_INV_CONV, si', si, S[i]) O[i] = C * ψ[i] end O end #--------------------------------------------------------------------------------------------------- # Function on Pauli basis #--------------------------------------------------------------------------------------------------- """ Return the operator norm (N = |⟨I|ρ⟩|). The renormed (ρ/N = I + ⋯) is the correct density matrix. """ function density_norm(ψ::MPS) s = siteinds(ψ) V = ITensor(1.0) for j in eachindex(s) V *= ψ[j] * state(s[j], 1) end scalar(V) |> abs end #--------------------------------------------------------------------------------------------------- function density_expect(ψ::MPS, o::Integer; normalize::Bool=true) s = siteinds(ψ) L = let V = ITensor(1.0) l = Vector{ITensor}(undef, length(s)); l[1] = V for j in 2:length(s) V *= ψ[j-1] * state(s[j-1], 1) l[j] = V end l end R = let V = ITensor(1.0) l = Vector{ITensor}(undef, length(s)); l[end] = V for j in length(s)-1:-1:1 V *= ψ[j+1] * state(s[j+1], 1) l[j] = V end l end out = Vector{Float64}(undef, length(s)) for j in eachindex(s) V = ψ[j] * state(s[j], o) out[j] = L[j] * V * R[j] |> scalar |> real end if normalize N = L[2]*R[1] |> scalar |> real out ./= N end out end #--------------------------------------------------------------------------------------------------- function density_expect(ψ::MPS, h::AbstractMatrix) n = round(Int, log(2, size(h, 1))) hl = pauli_list(h) s = siteinds(ψ) L = let V = ITensor(1.0) l = Vector{ITensor}(undef, length(s)); l[1] = V for j in 2:length(s) V *= ψ[j-1] * state(s[j-1], 1) l[j] = V end l end R = let V = ITensor(1.0) l = Vector{ITensor}(undef, length(s)); l[end] = V for j in length(s)-1:-1:1 V *= ψ[j+1] * state(s[j+1], 1) l[j] = V end l end out = Vector{Float64}(undef, length(s)-n+1) for j in eachindex(out) V = L[j] for k in j:j+n-1 V = V * ψ[k] end V = V * R[j+n-1] vec = Array(V, s[j+n-1:-1:j]...) list = reshape(vec, :) out[j] = dot(list, hl) end out end #--------------------------------------------------------------------------------------------------- # DAOE #--------------------------------------------------------------------------------------------------- function fdaoe(s::AbstractVector, l::Integer, γ::Real) L = length(s) κ = exp(-2γ) #=---------------------------------------------------------- Wᴵᴵ = I(l+1)⁺ ⊕ (∑|n⟩⟨n+1| + κ|l⟩⟨l|)⁻ Wᶻᶻ = (∑|n⟩⟨n+1| + κ|l+1⟩⟨l+1|)⁺ ⊕ I(l)⁻ Wˣˣ = Wʸʸ = [0 A; B 0], where A = I(l)⁺⁻ + κ|l+1⟩⁺⟨l|⁻ B = ∑|n⟩⁺⟨n+1|⁻ ----------------------------------------------------------=# Wi = zeros(2l+1, 2l+1, 4, 4) Wi[1:l+1, 1:l+1, 1, 1] = I(l+1) Wi[l+2:end, l+2:end, 1, 1] = diagm(1 => ones(l-1)) Wi[end, end, 1, 1] = κ Wi[1:l+1, 1:l+1, 4, 4] = diagm(1 => ones(l)) Wi[l+1, l+1, 4, 4] = κ Wi[l+2:end, l+2:end, 4, 4] = I(l) A = diagm(l+1, l, ones(l)) A[end, end] = κ B = diagm(l, l+1, 1 => ones(l)) Wi[1:l+1, l+2:end, 2, 2] = A Wi[1:l+1, l+2:end, 3, 3] = A Wi[l+2:end, 1:l+1, 2, 2] = B Wi[l+2:end, 1:l+1, 3, 3] = B #=---------------------------------------------------------- L = ⟨1| R = ∑ₙ|n⟩ ----------------------------------------------------------=# W1 = Wi[1,:,:,:] WL = sum(Wi[:,i,:,:] for i in axes(Wi, 2)) links = [Index(2l+1, "Link,l=$i") for i in 1:L-1] D = MPO(L) D[1] = ITensor(W1, links[1], s[1]', s[1]) for i in 2:L-1 D[i] = ITensor(Wi, links[i-1], links[i], s[i]', s[i]) end D[L] = ITensor(WL, links[L-1], s[L]', s[L]) D end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
2025
#---------------------------------------------------------------------------------------------------- # TEBD #---------------------------------------------------------------------------------------------------- export tebd_n! """ tebd_n!(ψ, G1, G2; cutoff=1e-14, maxdim=30) n-site TEBD. """ function tebd_n!(ψ::MPS, G1::Vector, G2::Vector; cutoff::Real=1e-14, maxdim::Integer=30) L = length(ψ) s = siteinds(ψ) n = length(inds(G1[1])) ÷ 2 orthogonalize!(ψ, 1) #------------------------------------------------------------ # First block block = ITensor(1.0) for i in 1:n block *= ψ[i] end wf = G1[1] * block |> noprime! U, S, V = svd(wf, s[1]; cutoff, maxdim) ψ[1], T = U, S * V link = commonind(ψ[1], T) #------------------------------------------------------------ # moving right for i in 2:L-n wf = G1[i] * (T * ψ[i+n-1]) |> noprime! U, S, V = svd(wf, link, s[i]; cutoff, maxdim) ψ[i], T = U, S * V link = commonind(ψ[i], T) end #------------------------------------------------------------ # dealing with the last block wf = apply(G2[1], G1[L-n+1]) * (T * ψ[L]) |> noprime! U, S, V = svd(wf, link, s[L-n+1:L-1]...; cutoff, maxdim) T, ψ[L] = U * S, V #------------------------------------------------------------ # moving left for j in 2:L-n i = L-j-n+2 wf = G2[j] * (ψ[i] * T) |> noprime! link = commonind(ψ[i-1], ψ[i]) U, S, V = svd(wf, commonind(ψ[i-1], ψ[i]), s[i:i+n-2]...; cutoff, maxdim) T, ψ[i+n-1] = U * S, V end #------------------------------------------------------------ # dealing with the first block wf = G2[L-n+1] * (ψ[1] * T) |> noprime! for i in n:-1:2 U, S, V = svd(wf, s[1:i-1]...; cutoff, maxdim) wf, ψ[i] = U * S, V end ψ[1] = wf #------------------------------------------------------------ # restore gauge ψ.llim = 0 ψ.rlim = 2 normalize!(ψ) end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
6646
#--------------------------------------------------------------------------------------------------- # Many-body Lindblad Form #--------------------------------------------------------------------------------------------------- export lindblad, densitymatrix, expectation """ Lindblad Equation: ∂ₜρ = -i[H, ρ] + ∑ᵢ LᵢρLᵢ⁺ - 1/2 ∑ᵢ {Lᵢ⁺Lᵢ, ρ} The object `Lindblad` store the information of the supper operator. """ struct Lindblad{T1, T2} H::Matrix{T1} L::Vector{Matrix{T2}} end """ Construction for `Lindblad`. """ lindblad(H, L) = Lindblad(Array(H), [Array(l) for l in L]) eltype(::Lindblad{T1, T2}) where {T1, T2} = promote_type(T1, T2) #--------------------------------------------------------------------------------------------------- # Density Matrix #--------------------------------------------------------------------------------------------------- """ Density Matrix under Many-body Basis """ struct DensityMatrix{T} ρ::Matrix{T} end #--------------------------------------------------------------------------------------------------- densitymatrix(ρ::AbstractArray) = DensityMatrix(ρ) densitymatrix(ψ::AbstractVector) = DensityMatrix(ψ * ψ') function densitymatrix(i::Integer, L::Integer; base::Integer=2) N = base ^ L ρ = zeros(N, N) ρ[i, i] = 1 DensityMatrix(ρ) end #--------------------------------------------------------------------------------------------------- Array(dm::DensityMatrix) = Hermitian(dm.ρ) """ Normalize the density operator so that tr[ρ]=1. """ function LinearAlgebra.normalize!(dm::DenseMatrix) dm.ρ ./= tr(dm.ρ) end #--------------------------------------------------------------------------------------------------- expectation(O::AbstractMatrix, dm::DensityMatrix) = tr(O * dm.ρ) expectation(O::Hermitian, dm::DensityMatrix) = real(tr(O * dm.ρ)) #--------------------------------------------------------------------------------------------------- function entropy(dm::DensityMatrix; α::Real=1, cutoff::Real=1e-20) λ = eigvals(Hermitian(dm.ρ)) entropy(λ, α=α, cutoff=cutoff) end #--------------------------------------------------------------------------------------------------- # Lindblad Evolution #--------------------------------------------------------------------------------------------------- function *(lb::Lindblad, ρ::Matrix) H, L = lb.H, lb.L out = -1im * (H * ρ - ρ * H) LdL = zeros(eltype(L[1]), size(L[1])) for l in L ld = l' out += l * ρ * ld LdL += ld * l end LdL ./= -2 out += LdL * ρ out += ρ * LdL out end #--------------------------------------------------------------------------------------------------- function (lb::Lindblad)(dm::DensityMatrix, dt::Real=0.05; order::Integer=5) ρ = dm.ρ mat = Array(ρ) dρ = dt * (lb * ρ) mat += dρ for i = 2:order dρ = (dt/i) * (lb * dρ) mat += dρ end DensityMatrix(mat) end #--------------------------------------------------------------------------------------------------- # Single-body Lindblad Form #--------------------------------------------------------------------------------------------------- export quadraticlindblad, covariancematrix,majoranaform, fermioncorrelation struct QuardraticLindblad{T1 <: Real, T2 <: Real, T3 <: Real} X::Matrix{T1} Y::Matrix{T2} Z::Vector{Matrix{T3}} end #--------------------------------------------------------------------------------------------------- function quadraticlindblad( H::AbstractMatrix, L::AbstractMatrix, M::AbstractVector{<:AbstractMatrix} ) B = L * L' X = H - 2 * real(B) + 8 * sum(Ms^2 for Ms in M) Y = 4 * imag(B) Z = [4 * Ms for Ms in M] QuardraticLindblad(X, Y, Z) end function quadraticlindblad( H::AbstractMatrix, L::AbstractMatrix ) B = L * L' X = H - 2 * real(B) Y = 4 * imag(B) Z = Matrix{Float64}[] QuardraticLindblad(X, Y, Z) end #--------------------------------------------------------------------------------------------------- # Majorana Covariant Matrix #--------------------------------------------------------------------------------------------------- struct CovarianceMatrix{T <: Real} Γ::Matrix{T} N::Integer end #--------------------------------------------------------------------------------------------------- function covariancematrix(Γ::AbstractMatrix{<:Real}) N = size(Γ, 1) ÷ 2 CovarianceMatrix(Γ, N) end function covariancematrix(n::AbstractVector{<:Integer}) N = length(n) D = diagm(-2 * n .+ 1) Z = zeros(N, N) CovarianceMatrix([Z D; -D Z], N) end #--------------------------------------------------------------------------------------------------- function fermioncorrelation(cm::CovarianceMatrix) Γ, n = cm.Γ, cm.N Γ11, Γ12, Γ21, Γ22 = Γ[1:n,1:n], Γ[1:n,n+1:2n], Γ[n+1:2n,1:n], Γ[n+1:2n,n+1:2n] A = (Γ21 - Γ12 + 1im * Γ11 + 1im * Γ22) / 4 + I / 2 B = (Γ21 + Γ12 + 1im * Γ11 - 1im * Γ22) / 4 A, B end function fermioncorrelation(cm::CovarianceMatrix, i::Integer) Γ, n = cm.Γ, cm.N Γ11, Γ12, Γ21, Γ22 = Γ[1:n,1:n], Γ[1:n,n+1:2n], Γ[n+1:2n,1:n], Γ[n+1:2n,n+1:2n] if i == 1 (Γ21 - Γ12 + 1im * Γ11 + 1im * Γ22) / 4 + I / 2 elseif i == 2 (Γ21 + Γ12 + 1im * Γ11 - 1im * Γ22) / 4 elseif i == 3 (-Γ21 - Γ12 + 1im * Γ11 - 1im * Γ22) / 4 else error("i should equals to 1, 2, or 3.") end end #--------------------------------------------------------------------------------------------------- # Evolution of Covariance Matrix #--------------------------------------------------------------------------------------------------- function *(ql::QuardraticLindblad, Γ::AbstractMatrix{<:Real}) transpose(ql.X) * Γ + Γ * ql.X + sum(transpose(Zs) * Γ * Zs for Zs in ql.Z) end #--------------------------------------------------------------------------------------------------- function (ql::QuardraticLindblad)(cm::CovarianceMatrix, dt::Real=0.05; order::Integer=5) Γ = cm.Γ mat = Array(Γ) dΓ = dt * (ql * Γ + ql.Y) mat += dΓ for i=2:order dΓ = (dt/i) * (ql * dΓ) mat += dΓ end CovarianceMatrix(mat, cm.N) end #--------------------------------------------------------------------------------------------------- """ majoranaform(A::AbstractMatrix, B::AbstractMatrix) Return the Majorana quadratic form Ĥ = -i/4 ∑ Hᵢⱼ ωᵢωⱼ from the fermion quadratic form Ĥ = 1/2 ∑(Aᵢⱼ cᵢ⁺cⱼ + Bᵢⱼcᵢ⁺cⱼ⁺ + h.c.). """ function majoranaform(A::AbstractMatrix, B::AbstractMatrix) AR, AI, BR, BI = real(A), imag(A), real(B), imag(B) [-AI-BI AR-BR; -AR-BR -AI+BI] end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
2339
#--------------------------------------------------------------------------------------------------- # Quantum Inverse Method # Calculate Hamiltonian from eigen state(s). #--------------------------------------------------------------------------------------------------- export covmat """ covmat(ol::AbstractVector, v::AbstractVecOrMat{<:Number}) Return the covariant matrix for a given list of operators: Cᵢⱼ = 1/2⟨v|{hᵢ,hⱼ}|v⟩ - ⟨v|hᵢ|v⟩⟨v|hⱼ|v⟩, or for a set of vector, Cᵢⱼ = 1/2Tr[ρ{hᵢ,hⱼ}] - Tr[ρhᵢ]Tr[ρhⱼ], where ρ = 1/N∑ₙ|vₙ⟩⟨vₙ|. Inputs: ------- - `ol`: List of operators, represented by matrices or `Operator`s. - `V` : Target state represented by a vector, or target states represented by a matrix. Outputs: -------- - cm: (Symmetric real) matrix. """ function covmat(ol::AbstractVector, v::AbstractVecOrMat{<:Number}) n = length(ol) vs = [oi * v for oi in ol] am = [real(inner_product(v, vsi)) for vsi in vs] cm = Matrix{Float64}(undef, n, n) for i=1:n, j=i:n cm[i, j] = real(inner_product(vs[i], vs[j])) - am[i] * am[j] end Symmetric(cm) end #--------------------------------------------------------------------------------------------------- export qimsolve function qimsolve(ol::AbstractVector, v::AbstractVecOrMat{<:Number}; tol::Real=1e-7) cm = covmat(ol, v) e, v = eigen(cm) i = findfirst(x -> x > tol, e) - 1 v[:, 1:i] |> simplify end #--------------------------------------------------------------------------------------------------- # Helper #--------------------------------------------------------------------------------------------------- """ Inner product ⟨v₁|v₂⟩. For two set of vector. """ function inner_product(v1::AbstractVecOrMat, v2::AbstractVecOrMat) dot(v1, v2) / size(v1, 2) end #--------------------------------------------------------------------------------------------------- """ Simplify the solutions. """ function simplify(h) n = size(h, 2) for i in 1:n j = findfirst(x -> abs(x) > 1e-7, h[:,i]) for k in 1:n isequal(k, i) && continue h[:,k] .-= h[j,k] / h[j,i] * h[:,i] end end for i in 1:n j = findfirst(x -> abs(x) > 1e-7, h[:,i]) h[:,i] ./= h[j,i] end for i in eachindex(h) abs(h[i]) < 1e-10 && (h[i] = 0.0) end h end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
7185
include("../src/EDKit.jl") using Main.EDKit, LinearAlgebra, Test, Profile a = 1.0 b = randn() c = randn() d = randn() e = randn() f = randn() mat = spin( (a, "xx11"), (a, "yy11"), (b, "x1x1"), (b, "y1y1"), (c, "x11x"), (c, "y11y"), (d, "zz11"), (e, "z1z1"), (f, "z11z") ) function add_value!(E, B) iszero(size(B, 1)) && return vals = trans_inv_operator(mat, 4, B) |> Hermitian |> eigvals append!(E, vals) end @testset "1-sym-vals" begin for L in 4:10 B = basis(;L) E = trans_inv_operator(mat, 4, B) |> Hermitian |> eigvals # N total Es = [] for N in 0:L B = basis(;L, N) add_value!(Es, B) end @test sort(Es) ≈ E # P Es = [] for p in [1, -1] B = basis(;L, p) add_value!(Es, B) end @test sort(Es) ≈ E # Z Es = [] for z in [1, -1] B = basis(;L, z) add_value!(Es, B) end @test sort(Es) ≈ E # k Es = [] for k in 0:L-1 B = basis(;L, k) add_value!(Es, B) end @test sort(Es) ≈ E end end @testset "2-sym-vals" begin for L in 4:10 E = trans_inv_operator(mat, 4, L) |> Hermitian |> eigvals # N + P Es = [] for N in 0:L, p in [1, -1] B = basis(;L, N, p) add_value!(Es, B) end @test sort(Es) ≈ E # N + k Es = [] for N in 0:L, k in 0:L-1 B = basis(;L, N, k) add_value!(Es, B) end @test sort(Es) ≈ E # N + Z # P + Z Es = [] for p in [1, -1], z in [1, -1] B = basis(;L, p, z) add_value!(Es, B) end @test sort(Es) ≈ E # k + Z Es = [] for k in 0:L-1, z in [1, -1] B = basis(;L, k, z) add_value!(Es, B) end @test sort(Es) ≈ E # k + P end end @testset "Half-k" begin for L in 4:2:10, k in [0, L÷2] B = basis(;L, k); iszero(size(B, 1)) && continue E = trans_inv_operator(mat, 4, B) |> Hermitian |> eigvals # k + P Es = [] for p in [1, -1] B = basis(;L, k, p) add_value!(Es, B) end @test sort(Es) ≈ E # k + P + Z Es = [] for p in [1, -1], z in [1, -1] B = basis(;L, k, p, z) add_value!(Es, B) end @test sort(Es) ≈ E # k + P + N Es = [] for N in 0:L, p in [1, -1] B = basis(;L, N, k, p) add_value!(Es, B) end @test sort(Es) ≈ E end end @testset "Half-filling" begin for L in 4:2:10 N = L÷2 B = basis(;L, N); iszero(size(B, 1)) && continue E = trans_inv_operator(mat, 4, B) |> Hermitian |> eigvals # N + Z Es = [] for z in [1, -1] B = basis(;L, N, z) add_value!(Es, B) end @test sort(Es) ≈ E # N + Z + P Es = [] for z in [1, -1], p in [1, -1] B = basis(;L, N, p, z) add_value!(Es, B) end @test sort(Es) ≈ E # N + Z + k Es = [] for k in 0:L-1, z in [1, -1] B = basis(;L, N, k, z) add_value!(Es, B) end @test sort(Es) ≈ E end end @testset "Symmetric" begin for L in 4:2:12, k in [0, L÷2] N = L÷2 B = basis(;L, N, k); iszero(size(B, 1)) && continue E = trans_inv_operator(mat, 4, B) |> Hermitian |> eigvals # N + k + P + Z Es = [] for p in [1, -1], z in [1, -1] B = basis(;L, N, k, p, z) add_value!(Es, B) end @test sort(Es) ≈ E end end function add_value!(M::AbstractMatrix, E, S, B) iszero(size(B, 1)) && return e, v = trans_inv_operator(M, round(Int, log(2, size(M, 1))), B) |> Hermitian |> eigen append!(E, e) inds = 1:length(B)÷2 s = [ent_S(v[:, i], inds, B) for i in axes(v, 2)] append!(S, s) end function add_value!(Ms::Vector, E, S, B) iszero(size(B, 1)) && return n = round(Int, log(2, size(Ms[1], 1))) L = length(B) inds = [mod.(i-1:i+n-2, L) .+ 1 for i in 1:L] e, v = operator(Ms, inds, B) |> Hermitian |> eigen append!(E, e) s = [ent_S(v[:, i], 1:L÷2, B) for i in axes(v, 2)] append!(S, s) end @testset "Relax k" begin for L in 4:8 M = randn(ComplexF64, 8, 8) |> Hermitian |> Array B = basis(;L); iszero(size(B, 1)) && continue E, V = trans_inv_operator(M, 3, B) |> Hermitian |> eigen S = [ent_S(V[:, i], 1:L÷2, B) for i in axes(V, 2)] |> sort Es, Ss = [], [] for k in 0:L-1 B = basis(;L, k) add_value!(M, Es, Ss, B) end @test sort(Es) ≈ E @test norm(sort(Ss) - S) < 1e-7 end end @testset "Relax N" begin a = 1.0 b = randn() c = randn() d = randn() e = randn() f = 5 mat = spin( (a, "xx11"), (a, "yy11"), (b, "x1x1"), (b, "y1y1"), (c, "x11x"), (c, "y11y"), (d, "zz11"), (e, "z1z1"), (f, "z111") ) for L in 4:8 mats = [randn()*mat for i in 1:L] inds = [mod.(i-1:i+2, L) .+ 1 for i in 1:L] B = basis(;L); iszero(size(B, 1)) && continue E, V = operator(mats, inds, B) |> Hermitian |> eigen S = [ent_S(V[:, i], 1:L÷2, B) for i in axes(V, 2)] |> sort Es, Ss = [], [] for N in 0:L B = basis(;L, N) add_value!(mats, Es, Ss, B) end @test sort(Es) ≈ E @test norm(sort(Ss) - S) < 1e-7 end end @testset "k -> N" begin a = 1.0 b = randn() c = randn() d = randn() e = randn() f = 5 mat = spin( (a, "xx11"), (a, "yy11"), (b, "x1x1"), (b, "y1y1"), (c, "x11x"), (c, "y11y"), (d, "zz11"), (e, "z1z1"), (f, "z111") ) for L in 4:8, k in 0:L-1 B = basis(;L, k); iszero(size(B, 1)) && continue E, V = trans_inv_operator(mat, 4, B) |> Hermitian |> eigen S = [ent_S(V[:, i], 1:L÷2, B) for i in axes(V, 2)] |> sort Es, Ss = [], [] for N in 0:L B = basis(;L, N, k) add_value!(mat, Es, Ss, B) end @test sort(Es) ≈ E @test norm(sort(Ss) - S) < 1e-7 end end @testset "N k -> P Z" begin for L in 4:2:12, k in [0, L÷2] N = L÷2 # N + k + P + Z B = basis(;L, N, k); iszero(size(B, 1)) && continue E, V = trans_inv_operator(mat, 4, B) |> Hermitian |> eigen S = [ent_S(V[:, i], 1:L÷2, B) for i in axes(V, 2)] |> sort Es, Ss = [], [] for p in [1, -1], z in [1, -1] B = basis(;L, N, k, p, z) add_value!(mat, Es, Ss, B) end @test sort(Es) ≈ E @test sort(Ss) ≈ S end end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
1616
using LinearAlgebra include("../src/EDKit.jl") using .EDKit using Test @testset "Basic" begin L = 10 b1 = TranslationalBasis(N=2, k=0, L=L) b2 = TranslationalBasis(N=0, k=1, L=L) b = DoubleBasis(b1, b2) mat = rand(2,2) |> Hermitian H = trans_inv_operator(mat, 1, b) |> Array @test size(H) == (5, 0) end @testset "Spin-1 Random" begin L = 6 Sp = begin p3 = [1] p2 = [2, 4, 10] p1 = [3, 5, 7, 11, 13, 19] z0 = [6, 8, 12, 14, 16, 20, 22] m1 = [9, 15, 17, 21, 23, 25] m2 = [18, 24, 26] m3 = [27] mat = zeros(ComplexF64, 27, 27) mat[m2, m3] .= rand(ComplexF64, 3, 1) mat[m1, m2] .= rand(ComplexF64, 6, 3) mat[z0, m1] .= rand(ComplexF64, 7, 6) mat[p1, z0] .= rand(ComplexF64, 6, 7) mat[p2, p1] .= rand(ComplexF64, 3, 6) mat[p3, p2] .= rand(ComplexF64, 1, 3) mat end XY = spin((1, "+-"), (1, "-+"), (1, "z1"), (1, "1z"), D=3) A = 0.0 for n = 1:2L b1 = ProjectedBasis(f=x -> sum(x)==(n-1), L=L, base=3) b2 = ProjectedBasis(f=x -> sum(x)==n, L=L, base=3) basis = DoubleBasis(b1, b2) e1, v1 = trans_inv_operator(XY, 2, b1) |> Array |> Hermitian |> eigen e2, v2 = trans_inv_operator(XY, 2, b2) |> Array |> Hermitian |> eigen op = trans_inv_operator(Sp, 3, basis) |> Array A += abs2.(v1' * op * v2) |> sum end e, v = trans_inv_operator(XY, 2, L) |> Array |> Hermitian |> eigen op = trans_inv_operator(Sp, 3, L) |> Array B = abs2.(v' * op * v) |> sum @test A ≈ B atol = 1e-7 end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
24658
include("../src/EDKit.jl") using .EDKit using LinearAlgebra using Test #------------------------------------------------------------------------------------------------------------------------- # Tesnsor Basis #------------------------------------------------------------------------------------------------------------------------- println("--------------------------------------------------") println(" Tensor Basis ") println("--------------------------------------------------") const X = [0 1; 1 0] const Y = [0 -1; 1 0] * 1im const Z = [1 0; 0 -1] directkron(mat, i, j, L, base=2) = kron(I(base^(i-1)), mat, I(base^(L-j))) boundarykron(m1, m2, i, j, base=2) = kron(m1, I(base^(j-i+1)), m2) #------------------------------------------------------------------------------------------------------------------------- @testset "Base-2 Random Kron" begin L = 10 for i=1:10 mats = [rand(2^i, 2^i) for j=1:L-i+1] inds = [j:j+i-1 for j=1:L-i+1] M_test = operator(mats, inds, L) |> Array M_targ = sum(directkron(mats[j], j, j+i-1, L) for j = 1:L-i+1) @test M_test ≈ M_targ end end #------------------------------------------------------------------------------------------------------------------------- @testset "Base-3 Random Kron" begin L = 6 for i=1:6 mats = [rand(3^i, 3^i) for j=1:L-i+1] inds = [j:j+i-1 for j=1:L-i+1] M_test = operator(mats, inds, L) |> Array M_targ = sum(directkron(mats[j], j, j+i-1, L, 3) for j = 1:L-i+1) @test M_test ≈ M_targ end end #------------------------------------------------------------------------------------------------------------------------- @testset "Base-3 Boundary Kron" begin L = 6 for i = 1:3, j = 1:3 m1, m2 = rand(3^i, 3^i), rand(3^j, 3^j) mats = kron(m1, m2) inds = vcat(Vector(1:i), Vector(L-j+1:L)) M_test = operator(mats, inds, L) |> Array M_targ = boundarykron(m1, m2, i+1, L-j, 3) @test M_test ≈ M_targ end end #------------------------------------------------------------------------------------------------------------------------- @testset "Operator Multiplication" begin L = 10 mat = kron(I(2), X, Y, Z) v = rand(2^L) opt = trans_inv_operator(mat, 4, L) v2 = opt * v optm = Array(opt) v3 = optm * v @test v2 ≈ v3 end #------------------------------------------------------------------------------------------------------------------------- # Projected Basis #------------------------------------------------------------------------------------------------------------------------- println("--------------------------------------------------") println(" Projected Basis ") println("--------------------------------------------------") #------------------------------------------------------------------------------------------------------------------------- @testset "Spin-1/2 XY" begin L = 8 mat = spin((1, "xx"), (1, "yy")) E = zeros(2^L) P = 0 for n = 0:L basis = ProjectedBasis(f=x->sum(x)==n, L=L) if (l = size(basis, 1)) > 0 vals = trans_inv_operator(mat, 2, basis) |> Array |> Hermitian |> eigvals E[P+1:P+l] = vals P += l end end @test P == 2^L vals = trans_inv_operator(mat, 2, L) |> Array |> Hermitian |> eigvals @test vals ≈ sort!(E) end #------------------------------------------------------------------------------------------------------------------------- @testset "Spin-1/2 Random" begin L = 8 mat = begin M = zeros(ComplexF64, 8, 8) M[1,1] = rand() M[8,8] = rand() M[[2,3,5], [2,3,5]] = rand(ComplexF64, 3, 3) |> Hermitian M[[4,6,7], [4,6,7]] = rand(ComplexF64, 3, 3) |> Hermitian M end E = zeros(2^L) P = 0 for n = 0:L basis = ProjectedBasis(f=x->sum(x)==n, L=L) if (l = size(basis, 1)) > 0 vals = trans_inv_operator(mat, 3, basis) |> Array |> Hermitian |> eigvals E[P+1:P+l] = vals P += l end end @test P == 2^L vals = trans_inv_operator(mat, 3, L) |> Array |> Hermitian |> eigvals @test vals ≈ sort!(E) end #------------------------------------------------------------------------------------------------------------------------- @testset "PXP_OBC" begin function fib(n::Integer) iszero(n) && return 1 isone(n) && return 2 a, b = 1, 2 for m = 2:n a, b = b, a+b end b end mat = begin P = Diagonal([1, 1, 1, 0, 1, 1, 0, 0]) P * kron(I(2), X, I(2)) * P end pxpf(v::Vector{<:Integer}) = all(v[i]==0 || v[i+1]==0 for i=1:length(v)-1) for L = 3:20 basis = ProjectedBasis(f=pxpf, L=L) @test size(basis, 1) == fib(L) end for L = 3:10 basis = ProjectedBasis(f=pxpf, L=L) mats = fill(mat, L-2) inds = [[i,i+1, i+2] for i=1:L-2] E = operator(mats, inds, basis) |> Array |> Hermitian |> eigvals H = operator(mats, inds, L) |> Array vals = H[basis.I, basis.I] |> Hermitian |> eigvals @test norm(vals - E) ≈ 0.0 end end #------------------------------------------------------------------------------------------------------------------------- @testset "PXP_PBC Projected Basis" begin mat = begin P = Diagonal([1, 1, 1, 0, 1, 1, 0, 0]) P * kron(I(2), X, I(2)) * P end pxpf(v::Vector{<:Integer}) = all(v[i]==0 || v[mod(i, length(v))+1]==0 for i=1:length(v)) for L = 3:14 basis = ProjectedBasis(f=pxpf, L=L) E = trans_inv_operator(mat, 3, basis) |> Array |> Hermitian |> eigvals H = trans_inv_operator(mat, 3, L) |> Array vals = H[basis.I, basis.I] |> Hermitian |> eigvals @test norm(vals - E) ≈ 0.0 end end #------------------------------------------------------------------------------------------------------------------------- @testset "Spin-1 Random" begin L = 6 R3 = begin m2 = [2, 4, 10] m1 = [3, 5, 7, 11, 13, 19] m0 = [6, 8, 12, 14, 16, 20, 22] p1 = [9, 15, 17, 21, 23, 25] p2 = [18, 24, 26] mat = zeros(ComplexF64, 27, 27) mat[1, 1] = rand() mat[27, 27] = rand() mat[m2, m2] .= rand(ComplexF64, 3, 3) |> Hermitian mat[m1, m1] .= rand(ComplexF64, 6, 6) |> Hermitian mat[m0, m0] .= rand(ComplexF64, 7, 7) |> Hermitian mat[p1, p1] .= rand(ComplexF64, 6, 6) |> Hermitian mat[p2, p2] .= rand(ComplexF64, 3, 3) |> Hermitian mat end E = zeros(3^L) P = 0 for n = 0:2L basis = ProjectedBasis(f=x->sum(x)==n, L=L, base=3) if (l = size(basis, 1)) > 0 vals = trans_inv_operator(mat, 3, basis) |> Array |> Hermitian |> eigvals E[P+1:P+l] = vals P += l end end @test P == 3^L vals = trans_inv_operator(mat, 3, L) |> Array |> Hermitian |> eigvals @test vals ≈ sort!(E) end #------------------------------------------------------------------------------------------------------------------------- @testset "BigInt" begin L = 10 mat = spin((1, "xx"), (1, "yy")) E = zeros(2^L) P = 0 for n = 0:L basis = ProjectedBasis(BigInt, f=x->sum(x)==n, L=L) if (l = size(basis, 1)) > 0 vals = trans_inv_operator(mat, 2, basis) |> Array |> Hermitian |> eigvals E[P+1:P+l] = vals P += l end end @test P == 2^L vals = trans_inv_operator(mat, 2, L) |> Array |> Hermitian |> eigvals @test vals ≈ sort!(E) end #------------------------------------------------------------------------------------------------------------------------- @testset "small_N off" begin L = 10 mat = spin((1, "xx"), (1, "yy")) E = zeros(2^L) P = 0 for n = 0:L basis = ProjectedBasis(f=x->sum(x)==n, L=L, small_N=false) if (l = size(basis, 1)) > 0 vals = trans_inv_operator(mat, 2, basis) |> Array |> Hermitian |> eigvals E[P+1:P+l] = vals P += l end end @test P == 2^L vals = trans_inv_operator(mat, 2, L) |> Array |> Hermitian |> eigvals @test vals ≈ sort!(E) end #------------------------------------------------------------------------------------------------------------------------- println("--------------------------------------------------") println(" Parity Basis ") println("--------------------------------------------------") #------------------------------------------------------------------------------------------------------------------------- @testset "PXP" begin mat = begin P = Diagonal([1, 1, 1, 0, 1, 1, 0, 0]) P * kron(I(2), X, I(2)) * P end pxpf(v::Vector{<:Integer}) = all(v[i]==0 || v[mod(i, length(v))+1]==0 for i=1:length(v)) for L = 3:12 ba = ProjectedBasis(f=pxpf, L=L) be = ParityBasis(f=pxpf, L=L, p=1) bo = ParityBasis(f=pxpf, L=L, p=-1) @test size(be, 1) + size(bo, 1) == size(ba, 1) Ea = trans_inv_operator(mat, 3, ba) |> Hermitian |> eigvals Ee = trans_inv_operator(mat, 3, be) |> Hermitian |> eigvals Eo = trans_inv_operator(mat, 3, bo) |> Hermitian |> eigvals Eeo = sort(vcat(Ee, Eo)) @test norm(Ea - Eeo) ≈ 0.0 atol = 1e-12 end end #------------------------------------------------------------------------------------------------------------------------- @testset "Spin-1/2 XY" begin mat = spin((1, "xx"), (1, "yy")) for L = 2:8, n = 0:L ba = ProjectedBasis(N=n, L=L) be = ParityBasis(N=n, L=L, p=1) bo = ParityBasis(N=n, L=L, p=-1) @test size(be, 1) + size(bo, 1) == size(ba, 1) Ea = trans_inv_operator(mat, 2, ba) |> Hermitian |> eigvals Ee = trans_inv_operator(mat, 2, be) |> Hermitian |> eigvals Eo = trans_inv_operator(mat, 2, bo) |> Hermitian |> eigvals Eeo = sort(vcat(Ee, Eo)) @test norm(Ea - Eeo) ≈ 0.0 atol = 1e-12 end end #------------------------------------------------------------------------------------------------------------------------- @testset "BigInt" begin L = 6 mat = spin((1, "xx"), (1, "yy")) for n = 0:L ba = ProjectedBasis(N=n, L=L) be = ParityBasis(BigInt, N=n, L=L, p=1) bo = ParityBasis(BigInt, N=n, L=L, p=-1) @test size(be, 1) + size(bo, 1) == size(ba, 1) Ea = trans_inv_operator(mat, 2, ba) |> Hermitian |> eigvals Ee = trans_inv_operator(mat, 2, be) |> Hermitian |> eigvals Eo = trans_inv_operator(mat, 2, bo) |> Hermitian |> eigvals Eeo = sort(vcat(Ee, Eo)) @test norm(Ea - Eeo) ≈ 0.0 atol = 1e-12 end end #------------------------------------------------------------------------------------------------------------------------- @testset "Spin-1 XY Spin-flip" begin for L = 2:4 N = L mat = spin((1, "xx"), (1, "yy"), D=3) ba = ProjectedBasis(N=N, L=L, base=3) be = FlipBasis(N=N, L=L, p=1, base=3) bo = FlipBasis(N=N, L=L, p=-1, base=3) @test size(be, 1) + size(bo, 1) == size(ba, 1) Ea = trans_inv_operator(mat, 2, ba) |> Hermitian |> eigvals Ee = trans_inv_operator(mat, 2, be) |> Hermitian |> eigvals Eo = trans_inv_operator(mat, 2, bo) |> Hermitian |> eigvals Eeo = sort(vcat(Ee, Eo)) @test norm(Ea - Eeo) ≈ 0.0 atol = 1e-12 end end #------------------------------------------------------------------------------------------------------------------------- println("--------------------------------------------------") println(" ParityFlip Basis ") println("--------------------------------------------------") #------------------------------------------------------------------------------------------------------------------------- @testset "Spin-1/2 XY" begin mat = spin((1, "xx"), (1, "yy"), (0.3, "zz")) for L = 2:6 b1 = ParityFlipBasis(L=L, p=+1, z=+1) b2 = ParityFlipBasis(L=L, p=+1, z=-1) b3 = ParityFlipBasis(L=L, p=-1, z=+1) b4 = ParityFlipBasis(L=L, p=-1, z=-1) @test size(b1, 1) + size(b2, 1) + size(b3, 1) + size(b4, 1) == 2^L Ea = trans_inv_operator(mat, 2, L) |> Hermitian |> eigvals E1 = trans_inv_operator(mat, 2, b1) |> Hermitian |> eigvals E2 = trans_inv_operator(mat, 2, b2) |> Hermitian |> eigvals E3 = trans_inv_operator(mat, 2, b3) |> Hermitian |> eigvals E4 = trans_inv_operator(mat, 2, b4) |> Hermitian |> eigvals E = sort(vcat(E1, E2, E3, E4)) @test norm(Ea - E) ≈ 0.0 atol = 1e-12 end end #------------------------------------------------------------------------------------------------------------------------- # Translation Basis #------------------------------------------------------------------------------------------------------------------------- println("--------------------------------------------------") println(" Translational Basis ") println("--------------------------------------------------") #------------------------------------------------------------------------------------------------------------------------- @testset "Spin-1/2 XY" begin L = 10 θ = 0.34 expθ = exp(-1im*θ) mat = spin((expθ, "+-"), (1/expθ, "-+"), (1, "z1"), (1, "1z")) E = zeros(2^L) P = 0 for n = 0:L, k = 0:L-1 basis = TranslationalBasis(N=n, k=k, L=L) #println(size(basis,1)) if (l = size(basis,1)) > 0 vals = trans_inv_operator(mat, 2, basis) |> Array |> Hermitian |> eigvals E[P+1:P+l] = vals P += l end end @test P == 2^L vals = trans_inv_operator(mat, 2, L) |> Array |> Hermitian |> eigvals @test vals ≈ sort!(E) end #------------------------------------------------------------------------------------------------------------------------- @testset "XY 2-site-cell" begin L = 10 θ = rand() expθ = exp(-1im*θ) mat = spin((expθ, "+-"), (1/expθ, "-+"), (1, "z1"), (1, "1z")) E = zeros(2^L) P = 0 for n = 0:L, k = 0:L÷2-1 basis = TranslationalBasis(N=n, k=k, L=L, a=2) #println(size(basis,1)) if (l = size(basis,1)) > 0 vals = trans_inv_operator(mat, 2, basis) |> Array |> Hermitian |> eigvals E[P+1:P+l] = vals P += l end end @test P == 2^L vals = trans_inv_operator(mat, 2, L) |> Array |> Hermitian |> eigvals @test vals ≈ sort!(E) end #------------------------------------------------------------------------------------------------------------------------- @testset "Spin-1/2 Random" begin L = 10 mat = begin M = zeros(ComplexF64, 8, 8) M[1,1] = rand() M[8,8] = rand() M[[2,3,5], [2,3,5]] = rand(ComplexF64, 3, 3) |> Hermitian M[[4,6,7], [4,6,7]] = rand(ComplexF64, 3, 3) |> Hermitian M end E = zeros(2^L) P = 0 for n = 0:L, k = 0:L-1 basis = TranslationalBasis(f=x->sum(x)==n, k=k, L=L) if (l = size(basis, 1)) > 0 vals = trans_inv_operator(mat, 3, basis) |> Array |> Hermitian |> eigvals E[P+1:P+l] = vals P += l end end @test P == 2^L vals = trans_inv_operator(mat, 3, L) |> Array |> Hermitian |> eigvals @test norm(vals - sort(E)) ≈ 0.0 atol = 1e-10 end #------------------------------------------------------------------------------------------------------------------------- @testset "Spin-1 XY" begin L = 6 h = 1 mat = spin((1, "xx"), (1, "yy"), (h/2, "1z"), (h/2, "z1"), D=3) E = zeros(3^L) P = 0 for n = 0:2L, k = 0:L-1 basis = TranslationalBasis(f=x->sum(x)==n, k=k, L=L, base=3) if (l = size(basis, 1)) > 0 vals = trans_inv_operator(mat, 2, basis) |> Array |> Hermitian |> eigvals E[P+1:P+l] = vals P += l end end @test P == 3^L vals = trans_inv_operator(mat, 2, L) |> Array |> Hermitian |> eigvals @test vals ≈ sort!(E) end #------------------------------------------------------------------------------------------------------------------------- @testset "AKLT" begin L = 6 mat = begin ss = spin((1, "xx"), (1, "yy"), (1, "zz"), D=3) 1/2 * ss + 1/6 * ss^2 + 1/3 * I end E = zeros(3^L) P = 0 for n = 0:2L, k = 0:L-1 basis = TranslationalBasis(f=x->sum(x)==n, k=k, L=L, base=3) if (l = size(basis, 1)) > 0 vals = trans_inv_operator(mat, 2, basis) |> Array |> Hermitian |> eigvals E[P+1:P+l] = vals P += l end end vals = trans_inv_operator(mat, 2, L) |> Array |> Hermitian |> eigvals @test vals ≈ sort!(E) end #------------------------------------------------------------------------------------------------------------------------- @testset "Spin-1 Random" begin L = 6 mat = begin m2 = [2, 4, 10] m1 = [3, 5, 7, 11, 13, 19] m0 = [6, 8, 12, 14, 16, 20, 22] p1 = [9, 15, 17, 21, 23, 25] p2 = [18, 24, 26] M = zeros(ComplexF64, 27, 27) M[1, 1] = rand() M[27, 27] = rand() M[m2, m2] .= rand(ComplexF64, 3, 3) |> Hermitian M[m1, m1] .= rand(ComplexF64, 6, 6) |> Hermitian M[m0, m0] .= rand(ComplexF64, 7, 7) |> Hermitian M[p1, p1] .= rand(ComplexF64, 6, 6) |> Hermitian M[p2, p2] .= rand(ComplexF64, 3, 3) |> Hermitian M end E = zeros(3^L) P = 0 for n = 0:2L, k = 0:L-1 basis = TranslationalBasis(f=x->sum(x)==n, k=k, L=L, base=3) if (l = size(basis, 1)) > 0 vals = trans_inv_operator(mat, 3, basis) |> Array |> Hermitian |> eigvals E[P+1:P+l] = vals P += l end end vals = trans_inv_operator(mat, 3, L) |> Array |> Hermitian |> eigvals @test vals ≈ sort!(E) end #------------------------------------------------------------------------------------------------------------------------- @testset "SO(3) qsymm" begin L = 6 h = rand() rh = begin vecs = zeros(ComplexF64, 9, 4) vecs[8,1] = 1 vecs[6,1] = -1 vecs[7,2] = 1 vecs[3,2] = -1 vecs[4,3] = 1 vecs[2,3] = -1 vecs[3,4] = 1 vecs[5,4] = -1 vecs[7,4] = 1 rm = rand(ComplexF64, 4,4) .- 0.5 |> Hermitian |> Array vecs * rm * vecs' end H = trans_inv_operator(rh, 2, L) H += trans_inv_operator(spin((h, "z"), D=3), 1, L) E = Array(H) |> Hermitian |> eigvals es = Float64[] for i = 0:L-1 tb = TranslationalBasis(k=i, L=L, base=3) H = trans_inv_operator(rh, 2, tb) H += trans_inv_operator(spin((h, "z"), D=3), 1, tb) e = Array(H) |> Hermitian |> eigvals append!(es, e) end @test norm(sort(E) - sort(es)) ≈ 0.0 atol = 1e-7 end #------------------------------------------------------------------------------------------------------------------------- # Translation + Parity #------------------------------------------------------------------------------------------------------------------------- println("--------------------------------------------------") println(" Translation Parity Basis ") println("--------------------------------------------------") #------------------------------------------------------------------------------------------------------------------------- @testset "Spin-1/2 XY" begin mat = spin((1, "+-"), (1, "-+"), (1, "z1"), (1, "1z")) for L = 2:2:10 for n = 0:L, k in [0, L ÷ 2] be = TranslationParityBasis(f=x->sum(x)==n, k=k, p=+1, L=L) bo = TranslationParityBasis(f=x->sum(x)==n, k=k, p=-1, L=L) ba = TranslationalBasis(f=x->sum(x)==n, k=k, L=L) ve = trans_inv_operator(mat, 2, be) |> Array |> Hermitian |> eigvals vo = trans_inv_operator(mat, 2, bo) |> Array |> Hermitian |> eigvals va = trans_inv_operator(mat, 2, ba) |> Array |> Hermitian |> eigvals E = sort(vcat(ve, vo)) @test norm(E-va) ≈ 0.0 atol = 1e-12 end end end #------------------------------------------------------------------------------------------------------------------------- @testset "Spin-1 XY" begin mat = spin((1, "+-"), (1, "-+"), (1, "z1"), (1, "1z"), D=3) for L = 2:2:6 for n = 0:2L, k in [0, L ÷ 2] be = TranslationParityBasis(f=x->sum(x)==n, k=k, p=+1, L=L, base=3) bo = TranslationParityBasis(f=x->sum(x)==n, k=k, p=-1, L=L, base=3) ba = TranslationalBasis(f=x->sum(x)==n, k=k, L=L, base=3) ve = trans_inv_operator(mat, 2, be) |> Array |> Hermitian |> eigvals vo = trans_inv_operator(mat, 2, bo) |> Array |> Hermitian |> eigvals va = trans_inv_operator(mat, 2, ba) |> Array |> Hermitian |> eigvals E = sort(vcat(ve, vo)) @test norm(E-va) ≈ 0.0 atol = 1e-12 end end end #------------------------------------------------------------------------------------------------------------------------- @testset "PXP" begin mat = begin P = Diagonal([1, 1, 1, 0, 1, 1, 0, 0]) P * kron(I(2), X, I(2)) * P end pxpf(v::Vector{<:Integer}) = all(v[i]==0 || v[mod(i, length(v))+1]==0 for i=1:length(v)) for L = 4:2:16 for k in [0, L ÷ 2] be = TranslationParityBasis(f=pxpf, k=k, p=1, L=L) bo = TranslationParityBasis(f=pxpf, k=k, p=-1, L=L) ba = TranslationalBasis(f=pxpf, k=k, L=L) ve = trans_inv_operator(mat, 2, be) |> Array |> Hermitian |> eigvals vo = trans_inv_operator(mat, 2, bo) |> Array |> Hermitian |> eigvals va = trans_inv_operator(mat, 2, ba) |> Array |> Hermitian |> eigvals E = sort(vcat(ve, vo)) @test norm(E-va) ≈ 0.0 atol = 1e-12 end end end #------------------------------------------------------------------------------------------------------------------------- @testset "Ising Spin-flip" begin zz = spin((1, "zz")) x = spin((0.3,"x")) for L = 4:2:10 E = zeros(2^L) for k in 0:L-1 ba = TranslationalBasis(k=k, L=L) be = TranslationFlipBasis(k=k, p=1, L=L) bo = TranslationFlipBasis(k=k, p=-1, L=L) va = trans_inv_operator(zz, 2, ba) + trans_inv_operator(x, 1, ba) |> Array |> Hermitian |> eigvals ve = trans_inv_operator(zz, 2, be) + trans_inv_operator(x, 1, be) |> Array |> Hermitian |> eigvals vo = trans_inv_operator(zz, 2, bo) + trans_inv_operator(x, 1, bo) |> Array |> Hermitian |> eigvals veo = sort(vcat(ve, vo)) @test norm(va-veo) ≈ 0.0 atol = 1e-12 end end end #------------------------------------------------------------------------------------------------------------------------- @testset "XY 2-site-cell" begin mat = spin((1, "+-"), (1, "-+"), (1, "z1"), (1, "1z")) L = 8 for n = 0:L, k in [0, L ÷ 4] be = TranslationParityBasis(N=n, k=k, p=+1, L=L, a=2) bo = TranslationParityBasis(N=n, k=k, p=-1, L=L, a=2) ba = TranslationalBasis(f=x->sum(x)==L-n, k=k, L=L, a=2) ve = trans_inv_operator(mat, 2, be) |> Array |> Hermitian |> eigvals vo = trans_inv_operator(mat, 2, bo) |> Array |> Hermitian |> eigvals va = trans_inv_operator(mat, 2, ba) |> Array |> Hermitian |> eigvals E = sort(vcat(ve, vo)) @test norm(E-va) ≈ 0.0 atol = 1e-12 end end #------------------------------------------------------------------------------------------------------------------------- @testset "Ising 3-site-cell" begin zz = spin((1, "zz")) x = spin((0.3,"x")) L = 9 E = zeros(2^L) for k in 0:L÷3-1 ba = TranslationalBasis(k=k, L=L, a=3) be = TranslationFlipBasis(k=k, p=1, L=L, a=3) bo = TranslationFlipBasis(k=k, p=-1, L=L, a=3) va = trans_inv_operator(zz, 2, ba) + trans_inv_operator(x, 1, ba) |> Array |> Hermitian |> eigvals ve = trans_inv_operator(zz, 2, be) + trans_inv_operator(x, 1, be) |> Array |> Hermitian |> eigvals vo = trans_inv_operator(zz, 2, bo) + trans_inv_operator(x, 1, bo) |> Array |> Hermitian |> eigvals veo = sort(vcat(ve, vo)) @test norm(va-veo) ≈ 0.0 atol = 1e-12 end end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
7418
include("../src/EDKit.jl") using .EDKit using LinearAlgebra, Test #------------------------------------------------------------------------------------------------------------------------- @testset "Random Hamiltonian" begin L = 6 rm = randn(ComplexF64, 9, 9) |> Hermitian |> Array # Tensor Basis: B0 = TensorBasis(L=L, base=3) H0 = trans_inv_operator(rm, 2, B0) E, V = Array(H0) |> Hermitian |> eigen S = [ent_S(V[:, i], 1:L÷2, B0) for i in axes(V, 2)] # Momentum Resolved Bases: E2 = Float64[] S2 = Float64[] for i = 0:L-1 B = TranslationalBasis(k=i, L=L, base=3) H = trans_inv_operator(rm, 2, B) e, v = Array(H) |> Hermitian |> eigen append!(E2, e) for j in axes(v, 2) push!(S2, ent_S(v[:, j], 1:L÷2, B)) end end perm = sortperm(E2) @test E ≈ E2[perm] @test S ≈ S2[perm] end #------------------------------------------------------------------------------------------------------------------------- @testset "Random: 2-site-cell" begin L = 6 rm = randn(ComplexF64, 9, 9) |> Hermitian |> Array # Tensor Basis: B0 = TensorBasis(L=L, base=3) H0 = trans_inv_operator(rm, 2, B0) E, V = Array(H0) |> Hermitian |> eigen S = [ent_S(V[:, i], 1:L÷2, B0) for i in axes(V, 2)] # Momentum Resolved Bases: E2 = Float64[] S2 = Float64[] for i = 0:L÷2-1 B = TranslationalBasis(k=i, L=L, base=3, a=2) H = trans_inv_operator(rm, 2, B) e, v = Array(H) |> Hermitian |> eigen append!(E2, e) for j in axes(v, 2) push!(S2, ent_S(v[:, j], 1:L÷2, B)) end end perm = sortperm(E2) @test E ≈ E2[perm] @test S ≈ S2[perm] end #------------------------------------------------------------------------------------------------------------------------- @testset "Qsymm: T+P" begin L = 6 h = rand() perm = [1, 4, 7, 2, 5, 8, 3, 6, 9] rh = begin vecs = zeros(ComplexF64, 9, 4) vecs[8,1] = 1 vecs[6,1] = -1 vecs[7,2] = 1 vecs[3,2] = -1 vecs[4,3] = 1 vecs[2,3] = -1 vecs[3,4] = 1 vecs[5,4] = -1 vecs[7,4] = 1 rm = rand(ComplexF64, 4,4) .- 0.5 |> Hermitian |> Array mat = vecs * rm * vecs' mat + mat[perm, perm] end function solve(basis) H = trans_inv_operator(rh, 2, basis) H += trans_inv_operator(spin((h, "z"), D=3), 1, basis) e, v = Array(H) |> Hermitian |> eigen v end EE(v, inds, basis) = [ent_S(v[:, i], inds, basis) for i in axes(v, 2)] # K = 0 ba = TranslationalBasis(k=0, L=L, base=3) be = TranslationParityBasis(k=0, p=+1, L=L, base=3) bo = TranslationParityBasis(k=0, p=-1, L=L, base=3) va, ve, vo = solve(ba), solve(be), solve(bo) for inds in Any[1:L÷2, [1,2], [3,5], [2,4,6]] eea = EE(va, inds, ba) eee = EE(ve, inds, be) eeo = EE(vo, inds, bo) @test norm(sort(eea) - sort(vcat(eee, eeo))) ≈ 0.0 atol = 1e-7 end # K = π ba = TranslationalBasis(k=L÷2, L=L, base=3) be = TranslationParityBasis(k=L÷2, p=+1, L=L, base=3) bo = TranslationParityBasis(k=L÷2, p=-1, L=L, base=3) va, ve, vo = solve(ba), solve(be), solve(bo) for inds in Any[1:L÷2, [1,2], [3,5], [2,4,6]] eea = EE(va, inds, ba) eee = EE(ve, inds, be) eeo = EE(vo, inds, bo) @test norm(sort(eea) - sort(vcat(eee, eeo))) ≈ 0.0 atol = 1e-7 end end #------------------------------------------------------------------------------------------------------------------------- @testset "Qsymm: T+P 2-cell" begin L = 4 h = rand() perm = [1, 4, 7, 2, 5, 8, 3, 6, 9] rh = begin vecs = zeros(ComplexF64, 9, 4) vecs[8,1] = 1 vecs[6,1] = -1 vecs[7,2] = 1 vecs[3,2] = -1 vecs[4,3] = 1 vecs[2,3] = -1 vecs[3,4] = 1 vecs[5,4] = -1 vecs[7,4] = 1 rm = rand(ComplexF64, 4,4) .- 0.5 |> Hermitian |> Array mat = vecs * rm * vecs' mat + mat[perm, perm] end function solve(basis) H = trans_inv_operator(rh, 2, basis) H += trans_inv_operator(spin((h, "z"), D=3), 1, basis) e, v = Array(H) |> Hermitian |> eigen v end EE(v, inds, basis) = [ent_S(v[:, i], inds, basis) for i in axes(v, 2)] # K = 0 ba = TranslationalBasis(k=0, L=L, base=3, a=2) be = TranslationParityBasis(k=0, p=+1, L=L, base=3, a=2) bo = TranslationParityBasis(k=0, p=-1, L=L, base=3, a=2) va, ve, vo = solve(ba), solve(be), solve(bo) for inds in Any[[1,2], [1,3], [1,4,2]] eea = EE(va, inds, ba) eee = EE(ve, inds, be) eeo = EE(vo, inds, bo) @test norm(sort(eea) - sort(vcat(eee, eeo))) ≈ 0.0 atol = 1e-7 end # K = π ba = TranslationalBasis(k=L÷2, L=L, base=3, a=2) be = TranslationParityBasis(k=L÷2, p=+1, L=L, base=3, a=2) bo = TranslationParityBasis(k=L÷2, p=-1, L=L, base=3, a=2) va, ve, vo = solve(ba), solve(be), solve(bo) for inds in Any[[1,4], [3,2], [2,4,3]] eea = EE(va, inds, ba) eee = EE(ve, inds, be) eeo = EE(vo, inds, bo) @test norm(sort(eea) - sort(vcat(eee, eeo))) ≈ 0.0 atol = 1e-7 end end #------------------------------------------------------------------------------------------------------------------------- # Random model with spin-flip symmetry #------------------------------------------------------------------------------------------------------------------------- @testset "Random spin-flip" begin L = 6 perm = [9,8,7,6,5,4,3,2,1] rh = begin mat = rand(ComplexF64, 9, 9) |> Hermitian |> Array mat + mat[perm, perm] end function solve(basis) H = trans_inv_operator(rh, 2, basis) e, v = Array(H) |> Hermitian |> eigen v end EE(v, inds, basis) = [ent_S(v[:, j], inds, basis) for j in axes(v, 2)] for i = 0:L-1 ba = TranslationalBasis(k=i, L=L, base=3) be = TranslationFlipBasis(k=i, p=+1, L=L, base=3) bo = TranslationFlipBasis(k=i, p=-1, L=L, base=3) va, ve, vo = solve(ba), solve(be), solve(bo) for inds in Any[1:L÷2, [1,2], [3,5], [2,4,6]] eea = EE(va, inds, ba) eee = EE(ve, inds, be) eeo = EE(vo, inds, bo) @test norm(sort(eea) - sort(vcat(eee, eeo))) ≈ 0.0 atol = 1e-7 end end end @testset "Random spin-flip 2-cell" begin L = 4 perm = [9,8,7,6,5,4,3,2,1] rh = begin mat = rand(ComplexF64, 9, 9) |> Hermitian |> Array mat + mat[perm, perm] end function solve(basis) H = trans_inv_operator(rh, 2, basis) e, v = Array(H) |> Hermitian |> eigen v end EE(v, inds, basis) = [ent_S(v[:, j], inds, basis) for j in axes(v, 2)] for i = 0:L÷2-1 ba = TranslationalBasis(k=i, L=L, base=3, a=2) be = TranslationFlipBasis(k=i, p=+1, L=L, base=3, a=2) bo = TranslationFlipBasis(k=i, p=-1, L=L, base=3, a=2) va, ve, vo = solve(ba), solve(be), solve(bo) for inds in Any[[1,2], [3,1], [2,4,1]] eea = EE(va, inds, ba) eee = EE(ve, inds, be) eeo = EE(vo, inds, bo) @test norm(sort(eea) - sort(vcat(eee, eeo))) ≈ 0.0 atol = 1e-7 end end end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
3629
include("../src/EDKit.jl") using LinearAlgebra using .EDKit using Test #--------------------------------------------------------------------------------------------------- # Tested model: # H = ∑ᵢ rᵢ(XᵢXᵢ₊₁+YᵢYᵢ₊₁) ⟷ -i/4 ∑ᵢ 2rᵢ(ωᵢωᵢ₊ₙ₊₁ - ωᵢ₊ₙωᵢ₊₁ - ωᵢ₊ₙ₊₁ωᵢ + ωᵢ₊₁ωᵢ₊ₙ) # Lᵢ = aᵢKᵢXᵢ + bᵢKᵢYᵢ ⟷ aᵢωᵢ + bᵢωᵢ₊ₙ # Mᵢ = cᵢZᵢ ⟷ -i cᵢ/2 (ωᵢωᵢ₊ₙ - ωᵢ₊ₙωᵢ) # # Initial state: # |ψ₀⟩ = |↑↓⋯↑↓⟩ ⟷ |10⋯10⟩ #--------------------------------------------------------------------------------------------------- function singlebody(L, r, a, b, c) H1 = begin mat = zeros(2L, 2L) for i = 1:L-1 mat[i, i+1+L] = +2r[i] mat[i+1+L, i] = -2r[i] mat[i+1, i+L] = +2r[i] mat[i+L, i+1] = -2r[i] end mat end L1 = begin mat = zeros(ComplexF64, 2L, L) for i = 1:L mat[i, i] = a[i] mat[i+L, i] = b[i] end mat end M1 = begin mats = Vector{Matrix{Float64}}(undef, L) for i = 1:L mat = zeros(2L,2L) mat[i, i+L] = +c[i] / 2 mat[i+L, i] = -c[i] / 2 mats[i] = mat end mats end QL = quadraticlindblad(H1, L1, M1) Γ = begin Z2 = [mod(i,2) for i=1:L] covariancematrix(Z2) end QL, Γ end #--------------------------------------------------------------------------------------------------- function manybody(L, r, a, b, c) H2 = begin mats = [spin((r[i],"XX"), (r[i],"YY"), D=2) for i=1:L-1] inds = [[i,i+1] for i=1:L-1] operator(mats, inds, L) |> Array end L2 = begin mats = Vector{Matrix{ComplexF64}}(undef, 2L) for i = 1:L Ki = if i == 1 I(1) elseif i == 2 [-1 0; 0 1] else kron(fill([-1 0; 0 1], i-1)...) end mat = spin((a[i], "X"), (b[i], "Y"), D=2) Ir = I(2^(L-i)) mats[i] = kron(Ki, mat, Ir) end for i=1:L mats[L+i] = operator(c[i] * spin("Z"), [i], L) |> Array end mats end EL = lindblad(H2, L2) ρ = begin Z2 = [mod(i-1,2) for i=1:L] ind = index(Z2) densitymatrix(ind, L) end EL, ρ end #--------------------------------------------------------------------------------------------------- # Helper #--------------------------------------------------------------------------------------------------- function density(dm) L = round(Int, log(2, size(dm.ρ, 1))) n = zeros(L) Base.Threads.@threads for i=1:L ni = operator([1 0;0 0], [i], L) |> Hermitian n[i] = expectation(ni, dm) end n end #--------------------------------------------------------------------------------------------------- # main #--------------------------------------------------------------------------------------------------- function test(steps=30) L = 10 r, a, b, c = rand(L-1), rand(ComplexF64, L), rand(ComplexF64, L), rand(L) # r, a, b, c = rand(L-1), rand(L), rand(L), rand(L) QL, Γ = singlebody(L, r, a, b, c) EL, ρ = manybody(L, r, a, b, c) n1 = zeros(steps, L) for i=1:steps Γ = QL(Γ) n1[i, :] = fermioncorrelation(Γ, 1) |> diag |> real end n2 = zeros(steps, L) for i=1:steps ρ = EL(ρ) n2[i,:] = density(ρ) println("Finish $i/$steps, error = $(norm(n2[i,:]-n1[i,:])).") end println("Total error = $(norm(n2-n1)).") n1, n2 end n1, n2 = test()
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
1848
include("../src/EDKit.jl") using LinearAlgebra using .EDKit using Test #------------------------------------------------------------------------------------------------------------------------- # Test Translational PXP #------------------------------------------------------------------------------------------------------------------------- @testset "Multi-threads Translational PXP" begin L, k, p = 28, 0, 1 mat = begin P = Diagonal([1, 1, 1, 0, 1, 1, 0, 0]) X = [0 1; 1 0] P * kron(I(2), X, I(2)) * P end pxpf(v::Vector{<:Integer}) = all(v[i]==0 || v[mod(i, length(v))+1]==0 for i=1:length(v)) println("--------------------------------------") print("Single-threads:") @time bs = TranslationalBasis(f=pxpf, k=k, L=L, threaded=false) print("Multi-threads :") @time bm = TranslationalBasis(f=pxpf, k=k, L=L, threaded=true) @test bs.I == bm.I @test norm(bs.R-bm.R) ≈ 0.0 end #------------------------------------------------------------------------------------------------------------------------- # Test Translational Parity PXP #------------------------------------------------------------------------------------------------------------------------- @testset "Multi-threads Translational Parity PXP" begin L, k, p = 28, 0, 1 mat = begin P = Diagonal([1, 1, 1, 0, 1, 1, 0, 0]) X = [0 1; 1 0] P * kron(I(2), X, I(2)) * P end pxpf(v::Vector{<:Integer}) = all(v[i]==0 || v[mod(i, length(v))+1]==0 for i=1:length(v)) println("--------------------------------------") print("Single-threads:") @time bs = TranslationParityBasis(f=pxpf, k=k, p=p, L=L, threaded=false) print("Multi-threads :") @time bm = TranslationParityBasis(f=pxpf, k=k, p=p, L=L, threaded=true) @test bs.I == bm.I @test norm(bs.R-bm.R) ≈ 0.0 end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
code
7479
include("../src/EDKit.jl") using Main.EDKit using LinearAlgebra, ITensors, ITensorMPS using Test #---------------------------------------------------------------------------------------------------- # Basics #---------------------------------------------------------------------------------------------------- @testset "check tensor" begin for L in 2:5, d = 2:4 # random many-body state v = randn(ComplexF64, d^L) |> normalize T = EDKit.vec2tensor(v, base=d) for i in eachindex(v) ind = digits(i-1, base=d, pad=L) .+ 1 |> reverse @test v[i] ≈ T[ind...] end end end #---------------------------------------------------------------------------------------------------- @testset "MPS <--> vec" begin for L in 2:5, d = 2:4 v = randn(ComplexF64, d^L) |> normalize T = EDKit.vec2tensor(v, base=d) s = siteinds(d, L) ψ = MPS(T, s) vec = mps2vec(ψ) for i in eachindex(v) @test vec[i] ≈ v[i] end psi = vec2mps(v, s) @test norm(psi) ≈ norm(ψ) @test abs(inner(psi, ψ)) ≈ norm(ψ)^2 end end #---------------------------------------------------------------------------------------------------- @testset "op <--> mat" begin for L in 2:5, d = 2:4 v = randn(ComplexF64, d^L) |> normalize T = EDKit.vec2tensor(v, base=d) s = siteinds(d, L) ψ = MPS(T, s) mat = Matrix(qr(randn(ComplexF64, d^2, d^2)).Q) v2 = kron(mat, I(d^(L-2))) * v ψ2 = apply(mat2op(mat, s[1], s[2]), ψ) |> mps2vec @test v2 ≈ ψ2 @test op2mat(EDKit.mat2op(mat, s[1], s[2]), s[1], s[2]) ≈ mat end end #---------------------------------------------------------------------------------------------------- @testset "Product MPS" begin for L = 2:4, d=2:4 sites = siteinds(d, L) states = [normalize(rand(d)) for i in 1:L] v = kron(states...) ψ = productstate(sites, states) vec = mps2vec(ψ) for i in eachindex(v) @test vec[i] ≈ v[i] end end end #---------------------------------------------------------------------------------------------------- # AKLT Test #---------------------------------------------------------------------------------------------------- λ = EDKit.λ ITensors.op(::OpName"λ0",::SiteType"S=1") = λ(0) ITensors.op(::OpName"λ1",::SiteType"S=1") = λ(1) ITensors.op(::OpName"λ2",::SiteType"S=1") = λ(2) ITensors.op(::OpName"λ3",::SiteType"S=1") = λ(3) ITensors.op(::OpName"λ4",::SiteType"S=1") = λ(4) ITensors.op(::OpName"λ5",::SiteType"S=1") = λ(5) ITensors.op(::OpName"λ6",::SiteType"S=1") = λ(6) ITensors.op(::OpName"λ7",::SiteType"S=1") = λ(7) ITensors.op(::OpName"λ8",::SiteType"S=1") = λ(8) ITensors.op(::OpName"++",::SiteType"S=1") = [0 0 1; 0 0 0; 0 0 0] ITensors.op(::OpName"--",::SiteType"S=1") = [0 0 0; 0 0 0; 1 0 0] #---------------------------------------------------------------------------------------------------- const AKLT_H2 = let h = zeros(9, 9) h[1, 1] = h[9, 9] = 1 h[[2, 4], [2, 4]] .= 0.5 h[[6, 8], [6, 8]] .= 0.5 h[[3,5,7], [3,5,7]] .= [1; 2; 1] * [1 2 1] / 6 h end #---------------------------------------------------------------------------------------------------- const AKLT_TENSOR = let A = zeros(2, 2, 3) A[1, 1, 2] = -1 / sqrt(2) A[2, 2, 2] = 1 / sqrt(2) A[1, 2, 1] = 1 A[2, 1, 3] = -1 A end #---------------------------------------------------------------------------------------------------- function aklt_mps(sites::AbstractVector; l::Int=0, r::Int=0) tensors = if iszero(l) && iszero(r) fill(AKLT_TENSOR, length(sites)) else Tl = AKLT_TENSOR[[l], :, :] Tr = AKLT_TENSOR[:, [r], :] [Tl; fill(AKLT_TENSOR, length(sites)-2); Tr] end EDKit.pbcmps(sites, tensors) end #---------------------------------------------------------------------------------------------------- function aklt_tw(sites, k=length(sites)÷2) L = length(sites) os = OpSum() for i in 1:L os += exp(-1im * k * 2π/L * (i-1)), "++", i end MPO(os, sites) end #---------------------------------------------------------------------------------------------------- @testset "AKLT Ground State" begin for L in 2:10 B = TranslationalBasis(L=L, N=L, k=0, base=3) s = siteinds("S=1", L) psi = aklt_mps(s) ψ = mps2vec(psi, B) @test abs(norm(ψ)-1) < 1e-5 H = trans_inv_operator(AKLT_H2, 2, B) @test norm(H * ψ) < 1e-5 end end #---------------------------------------------------------------------------------------------------- @testset "AKLT Scar Tower" begin L = 8 s = siteinds("S=1", L) psi = aklt_mps(s) tw = aklt_tw(s) for j in 1:L÷2 psi = apply(tw, psi) |> normalize! B = TranslationalBasis(L=L, N=L+2j, k=mod(j*L÷2, L), base=3) H = trans_inv_operator(AKLT_H2, 2, B) ψ = mps2vec(psi, B) @test abs(norm(ψ)-1) < 1e-5 H = trans_inv_operator(AKLT_H2, 2, B) Hψ = H * ψ @test abs(norm(Hψ) - dot(ψ, Hψ) ) < 1e-5 end end #---------------------------------------------------------------------------------------------------- # Pauli Basis Test #---------------------------------------------------------------------------------------------------- σ = EDKit.σ @testset "Pauli Matrices" begin name = ["1", "X", "Y", "Z"] for L in 1:5 for i in 0:4^L-1 inds = digits(i, base=4, pad=L) @test σ(inds) ≈ spin(prod(name[j+1] for j in inds)) end end end #---------------------------------------------------------------------------------------------------- @testset "Pauli Coefficients" begin name = ["1", "X", "Y", "Z"] for L in 1:5 c = randn(4^L) mat = sum(c[i] * pauli(i, L) for i in eachindex(c)) plist = pauli_list(mat) @test plist ≈ c end end #---------------------------------------------------------------------------------------------------- @testset "Lindbladian" begin for i in 1:10 A = randn(ComplexF64, 8, 8) |> Hermitian Ac = commutation_mat(A) B = randn(ComplexF64, 8, 8) |> Hermitian Bl = pauli_list(B) C = randn(ComplexF64, 8, 8) Cd = dissipation_mat(C) @test pauli(Ac * Bl) ≈ -1im * (A * B - B* A) @test pauli(Cd * Bl) ≈ C * B * C' - (C' * C * B + B * C' * C) / 2 end end #---------------------------------------------------------------------------------------------------- # Pauli MPS #---------------------------------------------------------------------------------------------------- @testset "Fidelity" begin for L in 2:7 s = siteinds("S=1/2", L) ps = siteinds("Pauli", L) vec = rand(ComplexF64, 2^L) |> normalize! ρ = vec * vec' pmps = vec2mps(pauli_list(ρ), ps) mpo = pmps2mpo(pmps, s) ψ = vec2mps(vec, s) @test inner(ψ', mpo, ψ) ≈ 1.0 end end #---------------------------------------------------------------------------------------------------- @testset "MPS -> PMPS" begin for L in 2:7 s = siteinds("S=1/2", L) ps = siteinds("Pauli", L) vec = rand(ComplexF64, 2^L) |> normalize! ψ = vec2mps(vec, s) pmps = mps2pmps(ψ, ps) mpo = pmps2mpo(pmps, s) @test inner(ψ', mpo, ψ) ≈ 1.0 end end
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
docs
6708
# EDKit.jl Julia package for general many-body exact diagonalization calculation. The package provides a general Hamiltonian constructing routine for specific symmetry sectors. The functionalities can be extended with user-defined bases. ## Installation Run the following script in the Julia Pkg REPL environment: ```julia pkg> add EDKit ``` Alternatively, you can install `EDKit` directly from GitHub using the following script. ```julia pkg> add https://github.com/jayren3996/EDKit.jl ``` This is useful if you want to access the latest version of `EDKit`, which includes new features not yet registered in the Julia Pkg system but may also contain bugs. ## Examples Instead of providing documentation, I have chosen to introduce the functionality of this package through practical calculation examples. You can find a collection of Jupyter notebooks in the [examples](https://github.com/jayren3996/EDKit.jl/tree/main/examples) folder, each showcasing various computations. Here are a few basic examples: ### XXZ Model with Random Field Consider the Hamiltonian ```math H = \sum_i\left(\sigma_i^x \sigma^x_{i+1} + \sigma^y_i\sigma^y_{i+1} + h_i \sigma^z_i\sigma^z_{i+1}\right). ``` We choose the system size to be ``L=10``. The Hamiltonian needs 3 pieces of information: 1. Local operators represented by matrices; 2. Site indices where each local operator acts on; 3. Basis, if using the default tensor-product basis, only need to provide the system size. The following script generates the information we need to generate XXZ Hamiltonian: ```julia L = 10 mats = [ fill(spin("XX"), L); fill(spin("YY"), L); [randn() * spin("ZZ") for i=1:L] ] inds = [ [[i, mod(i, L)+1] for i=1:L]; [[i, mod(i, L)+1] for i=1:L]; [[i, mod(i, L)+1] for i=1:L] ] H = operator(mats, inds, L) ``` Then we can use the constructor `operator` to create Hamiltonian: ```julia julia> H = operator(mats, inds, L) Operator of size (1024, 1024) with 10 terms. ``` The constructor returns an Operator object, a linear operator that can act on vector/ matrix. For example, we can act `H` on a random state: ```julia ψ = normalize(rand(2^L)) ψ2 = H * ψ ``` If we need a matrix representation of the Hamitonian, we can convert `H` to julia array by: ```julia julia> Array(H) 1024×1024 Matrix{Float64}: -1.55617 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 4.18381 2.0 0.0 0.0 0.0 0.0 0.0 2.0 -1.42438 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.5901 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 … 0.0 0.0 0.0 ⋮ ⋱ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.42438 2.0 0.0 0.0 0.0 0.0 0.0 2.0 4.18381 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.55617 ``` Or use the function `sparse` to create the sparse matrix (requires the module `SparseArrays` being imported): ```julia julia> sparse(H) 1024×1024 SparseMatrixCSC{Float64, Int64} with 6144 stored entries: ⠻⣦⣄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⢹⡻⣮⡳⠄⢠⡀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠙⠎⢿⣷⡀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠲⣄⠈⠻⣦⣄⠙⠀⠀⠀⢦⡀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠈⠳⣄⠙⡻⣮⡳⡄⠀⠀⠙⢦⡀⠀⠀⠀⠈⠳⣄⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠙⠮⢻⣶⡄⠀⠀⠀⠙⢦⡀⠀⠀⠀⠈⠳⣄⠀ ⢤⡀⠀⠀⠀⠀⠠⣄⠀⠀⠀⠉⠛⣤⣀⠀⠀⠀⠙⠂⠀⠀⠀⠀⠈⠓ ⠀⠙⢦⡀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠘⠿⣧⡲⣄⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠙⢦⡀⠀⠀⠀⠈⠳⣄⠀⠀⠘⢮⡻⣮⣄⠙⢦⡀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠈⠳⠀⠀⠀⣄⠙⠻⣦⡀⠙⠦⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠈⢿⣷⡰⣄⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠈⠃⠐⢮⡻⣮⣇⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠙⠻⣦ ``` ### Solving AKLT Model Using Symmetries Consider the AKLT model ```math H = \sum_i\left[\vec S_i \cdot \vec S_{i+1} + \frac{1}{3}\left(\vec S_i \cdot \vec S_{i+1}\right)^2\right], ``` with the system size chosen to be ``L=8``. The Hamiltonian operator for this translational-invariant Hamiltonian can be constructed using the `trans_inv_operator` function: ```julia L = 8 SS = spin((1, "xx"), (1, "yy"), (1, "zz"), D=3) mat = SS + 1/3 * SS^2 H = trans_inv_operator(mat, 1:2, L) ``` The second input specifies the indices the operators act on. Because of the translational symmetry, we can simplify the problem by considering the symmetry. We construct a translational-symmetric basis by: ```julia B = TranslationalBasis(L=8, k=0, base=3) ``` Here, `L` is the length of the system, and `k` labels the momentum ``k = 0,...,L-1`` (integer multiplies of 2π/L). The function `TranslationalBasis` returns a basis object containing 834 states. We can obtain the Hamiltonian in this sector by: ```julia julia> H = trans_inv_operator(mat, 1:2, B) Operator of size (834, 834) with 8 terms. ``` In addition, we can take into account the total ``S^z`` conservation, by constructing the basis ```julia B = TranslationalBasis(L=8, N=8, k=0, base=3) ``` where the `N` is the filling number with respect to the all-spin-down state. N=L means we select those states whose total `Sz` equals 0 (note that we use 0,1,2 to label the `Sz=1,0,-1` states). This gives a further reduced Hamiltonian matrix: ```julia julia> H = trans_inv_operator(mat, 1:2, B) Operator of size (142, 142) with 8 terms. ``` We can go one step further by considering the spatial reflection symmetry. ```julia B = TranslationParityBasis(L=8, N=0, k=0, p=1, base=3) ``` where the `p` argument is the parity `p = ±1`. ```julia julia> H = trans_inv_operator(mat, 1:2, B) Operator of size (84, 84) with 8 terms. ``` ### PXP Model and Entanglement Entropy Consider the PXP model ```math H = \sum_i \left(P^0_{i-1} \sigma^x_i P^0_{i+1}\right). ``` Note that the model is defined on the Hilbert space where there is no local ``|↑↑⟩`` configuration. We can use the following function to check whether a product state is in the constraint subspace: ```julia function pxpf(v::Vector{<:Integer}) for i in eachindex(v) iszero(v[i]) && iszero(v[mod(i, length(v))+1]) && return false end return true end ``` For system size ``L=20`` and in sector ``k=0,p=+1``, the Hamiltonian is constructed by: ```julia mat = begin P = [0 0; 0 1] kron(P, spin("X"), P) end basis = TranslationParityBasis(L=20, f=pxpf, k=0, p=1) H = trans_inv_operator(mat, 3, basis) ``` where `f` argument is the selection function for the basis state that can be user-defined. We can then diagonalize the Hamiltonian. The bipartite entanglement entropy for each eigenstate can be computed by ```julia vals, vecs = Array(H) |> Hermitian |> eigen EE = [ent_S(vecs[:,i], 1:L÷2, basis) for i=1:size(basis,1)] ```
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
0.4.6
d4868b522f15a1c53ea255d8f6c97db38907674a
docs
6955
# Permute Basis Based on [https://doi.org/10.1063/1.3518900] | Basis | TrAnslation | Parity | Spin-Flip | | | :--------------------------: | :---------: | :----: | :-------: | :--: | | `ProjectedBasis` | ✗ | ✗ | ✗ | | | `TranslationalBasis` | ✓ | ✗ | ✗ | | | `ParityBasis` | ✗ | ✓ | ✗ | | | `FlipBasis` | ✗ | ✗ | ✓ | | | `TranslationParityBasis` | ✓ | ✓ | ✗ | | | `TranslationFlipBasis` | ✓ | ✗ | ✓ | | | `ParityFlipBasis` | ✗ | ✓ | ✓ | | | `TranslationParityFlipBasis` | ✓ | ✓ | ✓ | | ## Translational Symmetry For a periodic chain, we define the translation operator as moving the spins one step cyclically to the "right"; $$ T\left|S_1^z, \ldots, S_{L}^z\right\rangle=\left|S_{L}^z, S_1^z, \ldots, S_{L-1}^z\right\rangle $$ We can construct momentum states $|\Psi(k)\rangle$, which by definition are eigenstates of the translation operator, $$ T|\Psi(k)\rangle=\mathrm{e}^{i k}|\Psi(k)\rangle $$ Here the allowed momenta are $k=2 n \pi / L$, with $n=0, \ldots, L-1$, following from the fact that $T^L=1$. States with different $k$ form their own individually diagonalizable blocks of the Hamiltonian. ### Normalization A momentum state can be constructed using a reference state $|a\rangle$ (a single state in the $z$-component basis) and all its translations: $$ |a(k)\rangle=\frac{1}{R_a} \sum_{r=0}^{L-1} \mathrm{e}^{-i k r} T^r|a\rangle . $$ It can easily be verified that $T|a(k)\rangle=\mathrm{e}^{i k}|a(k)\rangle$, which is the definition of a momentum state. If all the translated states $T^r|a\rangle$ are distinct, the normalization constant is just $\sqrt{L}$. Some reference states have periodicities less than $L$, and this affects normalization. The periodicity of a state is defined as the smallest integer $N_a$ for which $$ T^{N_a}|a\rangle=|a\rangle, \quad N_a \in\{1, \ldots, L\} . $$ If $N_a < L$, then there are multiple copies of the same state in the sum, and the normalization constant must be modified accordingly. > **Claim:** For given $|a\rangle$, the allowed momenta are those for which $k N_a = 2\pi m$. For the allowed momenta, the normalization constant is $R_a = L/\sqrt{N_a}$. > > **Proof.** The periodicity of the representative has to be compatible with the momentum in order to be a viable state. The compatibility is related to normalizability. The sum of phase factors associated with the representative state $|a\rangle$ is > $$ > F\left(k, N_a\right)=\sum_{n=0}^{L/N_a-1} \mathrm{e}^{-i k n N_a} > = \begin{cases} > L / N_a, & k N_a = 2 \pi m \\ > 0, & \text { otherwise } > \end{cases}. > $$ > The normalization constant is then > $$ > R_a^2=\langle a(k) | a(k)\rangle=N_a\left|F\left(k, N_a\right)\right|^2. > $$ > Therefore, if $F\left(k, N_a\right)=0$, no state with momentum $k$ can be defined using the reference state $|a\rangle$. Thus, > $$ > k=\frac{2 \pi}{R_a} m, \quad > R_a = \frac{L}{\sqrt{N_a}}. > $$ We remark that the summation in the definition of $|a(k)\rangle$ can also be written as $$ |a(k)\rangle = \frac{1}{\sqrt{N_a}}\sum_{r=0}^{N_a-1} e^{-ikr}T^r|a\rangle. $$ The coefficient is related to normalization $N_a^{-1/2} = R_a/L$. ### Matrix elements Consider the translational invariant Hamiltonian $H=\sum_{j=1}^L h_j$. We need to find the state resulting when $H$ acts on the momentum states. Since $[H, T]=0$ we can write $$ H|a(k)\rangle = \frac{1}{R_a} \sum_{r=0}^{L-1} \mathrm{e}^{-i k r} T^r H|a\rangle = \frac{1}{R_a} \sum_{j=1}^L \sum_{r=0}^{L-1} \mathrm{e}^{-i k r} T^r h_j|a\rangle. $$ We need to operate with the Hamiltonian operators $h_j$ only on the reference state. We can write $h_j|a\rangle= \sum_{b'}h_j(b',a)\left|b^{\prime}\right\rangle$. The prime in $\left|b^{\prime}\right\rangle$ is there to indicate that this new state is not necessarily one of the reference states used to define the basis and, therefore, a momentum state should not be written directly based on it. Provided that $\left|b^{\prime}\right\rangle$ is compatible with the momentum, there must be a reference state $\left|b\right\rangle$ which is related to it by $$ \left|b\right\rangle=T^{l(b')}\left|b^{\prime}\right\rangle. $$ Using this relation we have $$ H|a(k)\rangle=\sum_{j,b'} \frac{h_j(b',a)}{R_a} \sum_{r=0}^{L-1} \mathrm{e}^{-i k r} T^{r-l(b')}\left|b_j\right\rangle =\sum_{j,b'} h_j(b',a) \mathrm{e}^{-i k l(b')} \frac{R_{b}}{R_a}\left|b(k)\right\rangle. $$ We thus obtain the matrix element $$ \langle a(k)|H|b(k)\rangle = \sum_{j=1}^L\sum_{b'} h_j(b',a) \mathrm{e}^{-i k l(b')} \frac{R_{b}}{R_a}. $$ ## Reflection and Spin-Flip Symmetry The spatial reflection operator is defined as $$ P\left|S_1^z, \ldots, S_{L}^z\right\rangle=\left|S_{L}^z, \ldots, S_1^z\right\rangle $$ For an eigenstate of $P|\Psi(p)\rangle=p|\Psi(p)\rangle$, where $p= \pm 1$ since $P^2=1$. We will use $T$ and $P$ for block-diagonalization, although they **cannot always be used simultaneously** because $[T, P]=0$ only in a sub-space of the Hilbert space. For a system with open boundaries, $T$ is not defined, but $P$ can be used. For the special (and most important) case $m_z=0$ (for even $N$ ), we can block-diagonalize using a discrete subset of all the possible rotations in spin-space; the spin-flip symmetry, i.e., invariance with respect to flipping all the spins. This is defined formally by an operator we call $Z$; $$ Z\left|S_1^z, \ldots, S_{L}^z\right\rangle=\left|-S_0^z,-S_1^z, \ldots,-S_{L}^z\right\rangle $$ For this operator we again have $Z^2=1$ and the eigenvalues $z= \pm 1$. Since $Z$ commutes with both $P$ and $T$, it can be used together with these operators to further block-diagonalize $H$. ### States with Parity Consider the following extension of the momentum state: $$ |a(k, p)\rangle=\frac{1}{R_a} \sum_{r=0}^{N-1}\sum_{s=0}^1 \mathrm{e}^{-i k r}p^s T^r P^s|a\rangle, $$ where $p= \pm 1$. Clearly, this is a state with momentum $k$, but is it also an eigenstate of $P$ with parity $p$. We can check this by explicit operation with $P$, using $P^2=1, p^2=1$, and the relationship $P T=T^{-1} P$ : $$ P|a(k, p)\rangle =\frac{1}{R_a} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{-r}(P+p)|a\rangle = \frac{p}{R_a} \sum_{r=0}^{N-1} \mathrm{e}^{i k r} T^r(1+p P)|a\rangle . $$ This is not exactly of the original form unless $k=0$ or $\pi$, for which $\mathrm{e}^{i k r}=\mathrm{e}^{-i k r}$. Thus, in these two special cases, parity and translational invariance can be used simultaneously for block-diagonalization and $|a(k, p)\rangle$ is indeed a momentum state with parity $p$ (or, in other words, $[T, P]=0$ in the sub-spaces with momenta $k=0$ and $\pi$ ). ### General Abelian Symmetry The Abelian symmetry $G=Z_L\times Z_2$
EDKit
https://github.com/jayren3996/EDKit.jl.git
[ "MIT" ]
2.2.5
3210de4d88af7ca5de9e26305758a59aabc48aac
code
7089
module PlotlyKaleido using JSON: JSON using Base64 using Kaleido_jll export savefig #-----------------------------------------------------------------------------# Kaleido Process mutable struct Pipes stdin::Pipe stdout::Pipe stderr::Pipe proc::Base.Process Pipes() = new() end const P = Pipes() const _mathjax_url_path = "https://cdnjs.cloudflare.com/ajax/libs/mathjax" const _mathjax_last_version = v"2.7.9" function warn_and_kill(s::String) @warn "$s" kill_kaleido() return nothing end kill_kaleido() = is_running() && (kill(P.proc); wait(P.proc)) is_running() = isdefined(P, :proc) && isopen(P.stdin) && process_running(P.proc) restart(; kwargs...) = (kill_kaleido(); start(; kwargs...)) # The content of this function is inspired from https://discourse.julialang.org/t/readline-with-default-value-if-no-input-after-timeout/100388/2?u=disberd function readline_noblock(io; timeout = 10) msg = Channel{String}(1) task = Task() do try put!(msg, readline(io)) catch put!(msg, "Stopped") end end interrupter = Task() do sleep(timeout) if !istaskdone(task) Base.throwto(task, InterruptException()) end end schedule(interrupter) schedule(task) wait(task) kaleido_version = read(joinpath(Kaleido_jll.artifact_dir, "version"), String) out = take!(msg) out === "Stopped" && warn_and_kill("It looks like the Kaleido process is not responding. The unresponsive process will be killed, but this means that you will not be able to save figures using `savefig`. If you are on Windows this might be caused by known problems with Kaleido v0.2 on Windows (you are using version $(kaleido_version)). You might want to try forcing a downgrade of the Kaleido_jll library to 0.1. Check the Package Readme at https://github.com/JuliaPlots/PlotlyKaleido.jl/tree/main#windows-note for more details. If you think this is not your case, you might try using a longer timeout to check if the process is not responding (defaults to 10 seconds) by passing the desired value in seconds using the `timeout` kwarg when calling `PlotlyKaleido.start` or `PlotlyKaleido.restart`") return out end function start(; plotly_version = missing, mathjax = missing, mathjax_version::VersionNumber = _mathjax_last_version, timeout = 10, kwargs..., ) is_running() && return # The kaleido executable must be ran from the artifact directory BIN = Cmd(kaleido(); dir = Kaleido_jll.artifact_dir) # We push the mandatory plotly flag push!(BIN.exec, "plotly") chromium_flags = ["--disable-gpu", Sys.isapple() ? "--single-process" : "--no-sandbox"] extra_flags = if plotly_version === missing (; kwargs...) else # We create a plotlyjs flag pointing at the specified plotly version (; plotlyjs = "https://cdn.plot.ly/plotly-$(plotly_version).min.js", kwargs...) end if !(mathjax === missing) if mathjax_version > _mathjax_last_version error( "The given mathjax version ($(mathjax_version)) is greater than the last supported version ($(_mathjax_last_version)) of Kaleido.", ) end if mathjax isa Bool && mathjax push!( chromium_flags, "--mathjax=$(_mathjax_url_path)/$(mathjax_version)/MathJax.js", ) elseif mathjax isa String # We expect the keyword argument to be a valid URL or similar, else error "Kaleido startup failed with code 1". push!(chromium_flags, "--mathjax=$(mathjax)") else @warn """The value of the provided argument mathjax=$(mathjax) is neither a Bool nor a String and has been ignored.""" end end # Taken inspiration from https://github.com/plotly/Kaleido/blob/3b590b563385567f257db8ff27adae1adf77821f/repos/kaleido/py/kaleido/scopes/base.py#L116-L141 user_flags = String[] for (k, v) in pairs(extra_flags) flag_name = replace(string(k), "_" => "-") if v isa Bool v && push!(user_flags, "--$flag_name") else push!(user_flags, "--$flag_name=$v") end end # We add the flags to the BIN append!(BIN.exec, chromium_flags, user_flags) kstdin = Pipe() kstdout = Pipe() kstderr = Pipe() kproc = run(pipeline(BIN, stdin = kstdin, stdout = kstdout, stderr = kstderr), wait = false) process_running(kproc) || error("There was a problem starting up kaleido.") close(kstdout.in) close(kstderr.in) close(kstdin.out) Base.start_reading(kstderr.out) global P P.stdin = kstdin P.stdout = kstdout P.stderr = kstderr P.proc = kproc res = readline_noblock(P.stdout; timeout) # {"code": 0, "message": "Success", "result": null, "version": "0.2.1"} length(res) == 0 && warn_and_kill("Kaleido startup failed.") if is_running() code = JSON.parse(res)["code"] code == 0 || warn_and_kill("Kaleido startup failed with code $code.") end return end #-----------------------------------------------------------------------------# save const ALL_FORMATS = ["png", "jpeg", "webp", "svg", "pdf", "eps", "json"] const TEXT_FORMATS = ["svg", "json", "eps"] function save_payload(io::IO, payload::AbstractString, format::AbstractString) is_running() || error("It looks like the Kaleido process is not running, so you can not save plotly figures. Remember to start the process before using `savefig` by calling `PlotlyKaleido.start()`. If the process was killed due to an error during initialization, you will receive a warning when the `PlotlyKaleido.start` function is executing") format in ALL_FORMATS || error("Unknown format $format. Expected one of $ALL_FORMATS") bytes = transcode(UInt8, payload) write(P.stdin, bytes) write(P.stdin, transcode(UInt8, "\n")) flush(P.stdin) res = readline(P.stdout) obj = JSON.parse(res) obj["code"] == 0 || error("Transform failed: $res") img = String(obj["result"]) # base64 decode if needed, otherwise transcode to vector of byte bytes = format in TEXT_FORMATS ? transcode(UInt8, img) : base64decode(img) write(io, bytes) end function savefig(io::IO, plot; height = 500, width = 700, scale = 1, format = "png") payload = JSON.json((; height, width, scale, format, data = plot)) save_payload(io, payload, format) end function savefig( io::IO, plot::AbstractString; height = 500, width = 700, scale = 1, format = "png", ) payload = "{\"width\":$width,\"height\":$height,\"scale\":$scale,\"data\": $plot}" save_payload(io, payload, format) end function savefig(filename::AbstractString, plot; kw...) format = get(kw, :format, split(filename, '.')[end]) open(io -> savefig(io, plot; format, kw...), filename, "w") filename end savefig(plot, filename::AbstractString; kw...) = savefig(filename, plot; kw...) end # module Kaleido
PlotlyKaleido
https://github.com/JuliaPlots/PlotlyKaleido.jl.git
[ "MIT" ]
2.2.5
3210de4d88af7ca5de9e26305758a59aabc48aac
code
1916
using Test import Pkg if Sys.iswindows() # Fix kaleido tests on windows due to [email protected] hanging Pkg.add(;name = "Kaleido_jll", version = "0.1") end @test_nowarn @eval using PlotlyKaleido @testset "Start" begin if Sys.iswindows() PlotlyKaleido.start() else @test_nowarn PlotlyKaleido.start() end @test PlotlyKaleido.is_running() end import PlotlyLight, EasyConfig, PlotlyJS @testset "Saving JSON String" begin plt = "{\"data\":{\"data\":[{\"y\":[1,2,3],\"type\":\"scatter\",\"x\":[0,1,2]}]}}" for ext in PlotlyKaleido.ALL_FORMATS file = tempname() * ".$ext" open(io -> PlotlyKaleido.save_payload(io, plt, ext), file, "w") @test isfile(file) @test filesize(file) > 0 rm(file) end end @testset "Saving Base structures" begin plt0 = Dict(:data => [Dict(:x => [0, 1, 2], :type => "scatter", :y => [1, 2, 3])]) for plt in (plt0, NamedTuple(plt0)) for ext in PlotlyKaleido.ALL_FORMATS ext == "eps" && continue # TODO" Why does this work above but not here? file = tempname() * ".$ext" PlotlyKaleido.savefig(file, plt) @test isfile(file) @test filesize(file) > 0 rm(file) end end end @testset "Saving PlotlyJS & PlotlyLight" begin for plt in [ PlotlyJS.plot(PlotlyJS.scatter(x = rand(10))), PlotlyLight.Plot(EasyConfig.Config(x = rand(10))), ] for ext in PlotlyKaleido.ALL_FORMATS ext == "eps" && continue # TODO" Why does this work above but not here? file = tempname() * ".$ext" @test PlotlyKaleido.savefig(plt, file) == file @test isfile(file) @test filesize(file) > 0 rm(file) end end end @testset "Shutdown" begin PlotlyKaleido.kill_kaleido() @test !PlotlyKaleido.is_running() end
PlotlyKaleido
https://github.com/JuliaPlots/PlotlyKaleido.jl.git
[ "MIT" ]
2.2.5
3210de4d88af7ca5de9e26305758a59aabc48aac
docs
2194
# PlotlyKaleido.jl **PlotlyKaleido.jl** is for saving [Plotly.js](https://plotly.com/javascript/) plots in a variety of formats using [Kaleido](https://github.com/plotly/Kaleido). ```julia julia> PlotlyKaleido.ALL_FORMATS 7-element Vector{String}: "png" "jpeg" "webp" "svg" "pdf" "eps" "json" ``` This code was originally part of [PlotlyJS.jl](https://github.com/JuliaPlots/PlotlyJS.jl). ## Usage ```julia using PlotlyKaleido import PlotlyLight, EasyConfig, PlotlyJS PlotlyKaleido.start() # start Kaleido server p1 = PlotlyLight.Plot(EasyConfig.Config(x = rand(10))) p2 = PlotlyJS.plot(PlotlyJS.scatter(x = rand(10))) # PlotlyKaleido is agnostic about which package you use to make Plotly plots! PlotlyKaleido.savefig(p1, "plot1.png") PlotlyKaleido.savefig(p2, "plot2.png") ``` If needed, you can restart the server: ```julia PlotlyKaleido.restart() ``` or simply kill it: ```julia PlotlyKaleido.kill_kaleido() ``` To enable LaTeX (using MathJax v2) in plots, use the keyword argument `mathjax`: ```julia PlotlyKaleido.start(mathjax=true) # start Kaleido server with MathJax enabled ``` ## Windows Note Many people on Windows have issues with the latest (0.2.1) version of the Kaleido library (see for example [discourse](https://discourse.julialang.org/t/plotlyjs-causes-errors-cant-figure-out-how-to-use-plotlylight-how-to-use-plotly-from-julia/108853/29), [this PR's comment](https://github.com/JuliaPlots/PlotlyKaleido.jl/pull/17#issuecomment-1969325440) and [this issue](https://github.com/plotly/Kaleido/issues/134) on the Kaleido repository). Many people have succesfully fixed this problem on windows by downgrading the kaleido library to version 0.1.0 (see [the previously mentioned issue](https://github.com/plotly/Kaleido/issues/134)). If you experience issues with `PlotlyKaleido.start()` hanging on windows, you may want try adding `[email protected]` explicitly to your project environment to fix this. You can do so by either doing: ```julia add [email protected] ``` inside the REPL package enviornment, or by calling the following code in the REPL directly: ```julia begin import Pkg Pkg.add(; name = "Kaleido_jll", version = "0.1") end ```
PlotlyKaleido
https://github.com/JuliaPlots/PlotlyKaleido.jl.git
[ "MIT" ]
0.4.0
b427a3f71e8dbc850927046e6a323aea46907469
code
948
using CirculatorySystemModels using Documenter DocMeta.setdocmeta!(CirculatorySystemModels, :DocTestSetup, :(using CirculatorySystemModels); recursive=true) makedocs(; modules=[CirculatorySystemModels], authors="TS-CUBED <[email protected]> and contributors", repo="https://github.com/TS-CUBED/CirculatorySystemModels.jl/blob/{commit}{path}#{line}", sitename="CirculatorySystemModels.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://TS-CUBED.github.io/CirculatorySystemModels.jl", edit_link="main", assets=String[] ), pages=[ "Home" => "index.md", "Examples" => [ "Bjørdalsbakke - Simple Single-Chamber CV-Circuit" => "examples/BjordalsbakkeModel.md" ], "Method Index" => "autodoc.md", ] ) deploydocs(; repo="github.com/TS-CUBED/CirculatorySystemModels.jl", devbranch="main" )
CirculatorySystemModels
https://github.com/TS-CUBED/CirculatorySystemModels.jl.git
[ "MIT" ]
0.4.0
b427a3f71e8dbc850927046e6a323aea46907469
code
7521
## # Importing the required packages using CirculatorySystemModels using ModelingToolkit using OrdinaryDiffEq using Plots using DisplayAs # # A simple single-chamber model # # ![Single chamber, closed-loop, lumped parameter model of the systemic circulation and the left ventricle. The circuit equivalent formulation of the model is depicted, with the pressures of each compartment, as well as most of the mechanical parameters. The model describes three compartments: the left ventricular, arterial and venous compartments. 𝑃𝑡ℎ is the intrathoracic pressure, 𝑃𝑙𝑣 is the left ventricular pressure and 𝐸𝑙𝑣(𝑡) indicates the left ventricular elastance function.](./BjordalsbakkeModelSketch.png) # # # This follows Bjørdalsbakke et al. # # Bjørdalsbakke, N.L., Sturdy, J.T., Hose, D.R., Hellevik, L.R., 2022. Parameter estimation for closed-loop lumped parameter models of the systemic circulation using synthetic data. Mathematical Biosciences 343, 108731. https://doi.org/10.1016/j.mbs.2021.108731 # # # Changes from the published version above: # # - Capacitors are replaced by compliances. These are identical to capacitors, but have an additional parameter, the unstrained volume $V_0$, which allows for realistic blood volume modelling. # Compliances have an inlet and an oulet in line with the flow, rather than the ground connector of the dangling capacitor. # - The aortic resistor is combined with the valve (diode) in the `ResistorDiode` element. # # [Jupyter Notebook](./BjordalsbakkeModel.ipynb) # ## Define the parameters # # All the parameters are taken from table 1 of [Bjørdalsbakke2022]. # # Cycle time in seconds ## τ = 0.85 # Double Hill parameters for the ventricle # Eₘᵢₙ = 0.03 Eₘₐₓ = 1.5 n1LV = 1.32; n2LV = 21.9; Tau1fLV = 0.303 * τ; Tau2fLV = 0.508 * τ ## # Resistances and Compliances # R_s = 1.11 C_sa = 1.13 C_sv = 11.0 # Valve parameters # # Aortic valve basic Zao = 0.033 # Mitral valve basic Rmv = 0.006 ## Inital Pressure (mean cardiac filling pressure) MCFP = 7.0 ### Calculating the additional `k` parameter # # The ventricle elastance is modelled as: # # $$E_{l v}(t)=\left(E_{\max }-E_{\min }\right) e(t)+E_{\min }$$ # # where $e$ is a double-Hill function, i.e., two Hill-functions, which are multiplied by each other: # # $$e(\tau)= k \times \frac{\left(\tau / \tau_1\right)^{n_1}}{1+\left(\tau / \tau_1\right)^{n_1}} \times \frac{1}{1+\left(\tau / \tau_2\right)^{n_2}}$$ # # and $k$ is a scaling factor to assure that $e(t)$ has a maximum of $e(t)_{max} = 1$: # # $$k = \max \left(\frac{\left(\tau / \tau_1\right)^{n_1}}{1+\left(\tau / \tau_1\right)^{n_1}} \times \frac{1}{1+\left(\tau / \tau_2\right)^{n_2}} \right)^{-1}$$ # nstep = 1000 t = LinRange(0, τ, nstep) kLV = 1 / maximum((t ./ Tau1fLV).^n1LV ./ (1 .+ (t ./ Tau1fLV).^n1LV) .* 1 ./ (1 .+ (t ./ Tau2fLV).^n2LV)) # ## Set up the model elements # # Set up time as a variable `t` # @variables t # Heart is modelled as a single chamber (we call it `LV` for "Left Ventricle" so the model can be extended later, if required): # @named LV = DHChamber(V₀ = 0.0, Eₘₐₓ=Eₘₐₓ, Eₘᵢₙ=Eₘᵢₙ, n₁=n1LV, n₂=n2LV, τ = τ, τ₁=Tau1fLV, τ₂=Tau2fLV, k = kLV, Eshift=0.0) # The two valves are simple diodes with a small resistance # (resistance is needed, since perfect diodes would connect two elastances/compliances, which will lead to unstable oscillations): # @named AV = ResistorDiode(R=Zao) @named MV = ResistorDiode(R=Rmv) # The main components of the circuit are 1 resistor `Rs` and two compliances for systemic arteries `Csa`, # and systemic veins `Csv` (names are arbitrary). # _Note: one of the compliances is defined in terms of $dV/dt$ using the option `inV = true`. The other # without that option is in $dp/dt$._ # @named Rs = Resistor(R=R_s) @named Csa = Compliance(C=C_sa) @named Csv = Compliance(C=C_sv, inP=true) # ## Build the system # # ### Connections # # The system is built using the `connect` function. `connect` sets up the Kirchhoff laws: # # - pressures are the same in all connected branches on a connector # - sum of all flow rates at a connector is zero # # The resulting set of Kirchhoff equations is stored in `circ_eqs`: # circ_eqs = [ connect(LV.out, AV.in) connect(AV.out, Csa.in) connect(Csa.out, Rs.in) connect(Rs.out, Csv.in) connect(Csv.out, MV.in) connect(MV.out, LV.in) ] # ### Add the component equations # # In a second step, the system of Kirchhoff equations is completed by the component equations (both ODEs and AEs), resulting in the full, overdefined ODE set `circ_model`. # # _Note: we do this in two steps._ # @named _circ_model = ODESystem(circ_eqs, t) @named circ_model = compose(_circ_model, [LV, AV, MV, Rs, Csa, Csv]) # ### Simplify the ODE system # # The crucial step in any acausal modelling is the sympification and reduction of the OD(A)E system to the minimal set of equations. ModelingToolkit.jl does this in the `structural_simplify` function. # circ_sys = structural_simplify(circ_model) # `circ_sys` is now the minimal system of equations. In this case it consists of 3 ODEs for the ventricular volume and the systemic and venous pressures. # # _Note: this reduces and optimises the ODE system. It is, therefore, not always obvious, which states it will use and which it will drop. We can use the `states` and `observed` function to check this. It is recommended to do this, since small changes can reorder states, observables, and parameters._ # # States in the system are now: unknowns(circ_sys) # Observed variables - the system will drop these from the ODE system that is solved, but it keeps all the algebraic equations needed to calculate them in the system object, as well as the `ODEProblem` and solution object - are: observed(circ_sys) # And the parameters (these could be reordered, so check these, too): parameters(circ_sys) # ### Define the ODE problem # # First defined initial conditions `u0` and the time span for simulation: # # _Note: the initial conditions are defined as a parameter map, rather than a vector, since the parameter map allows for changes in order. # This map can include non-existant states (like `LV.p` in this case), which allows for exchanging the compliances or the ventricle # for one that's defined in terms of $dp/dt$)._ u0 = [ LV.p => MCFP LV.V => MCFP/Eₘᵢₙ Csa.p => MCFP Csa.V => MCFP*C_sa Csv.p => MCFP Csv.V => MCFP*C_sv ] # tspan = (0, 20) # in this case we use the mean cardiac filling pressure as initial condition, and simulate 20 seconds. # # Then we can define the problem: # prob = ODEProblem(circ_sys, u0, tspan) # ## Simulate # # The ODE problem is now in the MTK/DifferentialEquations.jl format and we can use any DifferentialEquations.jl solver to solve it: # sol = solve(prob, Vern7(), reltol=1e-12, abstol=1e-12); # ## Results p1 = plot(sol, idxs=[LV.p, Csa.in.p], tspan=(16 * τ, 17 * τ), xlabel = "Time [s]", ylabel = "Pressure [mmHg]", hidexaxis = nothing) # Make a line plot p2 = plot(sol, idxs=[LV.V], tspan=(16 * τ, 17 * τ),xlabel = "Time [s]", ylabel = "Volume [ml]", linkaxes = :all) p3 = plot(sol, idxs=[Csa.in.q,Csv.in.q], tspan=(16 * τ, 17 * τ),xlabel = "Time [s]", ylabel = "Flow rate [ml/s]", linkaxes = :all) p4 = plot(sol, idxs=(LV.V, LV.p), tspan=(16 * τ, 17 * τ),xlabel = "Volume [ml]", ylabel = "Pressure [mmHg]", linkaxes = :all) img = plot(p1, p2, p3, p4; layout=@layout([a b; c d]), legend = true) img = DisplayAs.Text(DisplayAs.PNG(img)) img ##
CirculatorySystemModels
https://github.com/TS-CUBED/CirculatorySystemModels.jl.git
[ "MIT" ]
0.4.0
b427a3f71e8dbc850927046e6a323aea46907469
code
49704
module CirculatorySystemModels using ModelingToolkit export Pin, OnePort, Ground, Resistor, QResistor, PoiseuilleResistor, Capacitor, Inductance, Compliance, Elastance, VariableElastance, ConstantPressure, ConstantFlow, DrivenPressure, DrivenFlow, DHChamber, ShiChamber, ShiAtrium, ShiHeart, WK3, WK3E, CR, CRL, RRCR, ShiSystemicLoop, ShiPulmonaryLoop, ResistorDiode, OrificeValve, ShiValve, MynardValve_SemiLunar, MynardValve_Atrioventricular @parameters t D = Differential(t) @connector Pin begin p(t) q(t), [connect = Flow] end @mtkmodel Ground begin @components begin g = Pin() end @parameters begin P = 0.0 end @equations begin g.p ~ P end end @mtkmodel OnePort begin @components begin out = Pin() in = Pin() end @variables begin Δp(t) q(t) end @equations begin Δp ~ out.p - in.p 0 ~ in.q + out.q q ~ in.q end end @mtkmodel OnePortWithExtPressure begin @components begin out = Pin() in = Pin() ep = Pin() end @variables begin Δp(t) q(t) pg(t) end @equations begin Δp ~ out.p - in.p 0 ~ in.q + out.q 0 ~ ep.q q ~ in.q pg ~ p - ep.p end end """ `Resistor(;name, R=1.0)` Implements the resistor using Ohm's law to represent a vessels linear resistance to blood flow. Parameter is in the cm, g, s system. Pressure in mmHg. `Δp` is calculated in mmHg `q` calculated in cm^3/s (ml/s) Named parameters: `R`: Resistance of the vessel to the fluid in mmHg*s/ml """ @mtkmodel Resistor begin @extend OnePort() @parameters begin R = 1.0 end @equations begin Δp ~ -q * R end end """ `QResistor(;name, K=1.0)` Implements the quadratic resistor to represent a vessels non-linear resistance to blood flow. Parameters are in the cm, g, s system. Pressures in mmHg. `Δp` is calculated in mmHg, `q` is calculated in cm^3/s (ml/s). Named parameters: `K`: non-linear resistance of the vessel to the fluid in mmHg*s^2/ml^2 """ @mtkmodel QResistor begin @extend OnePort() @parameters begin K = 1.0 end @equations begin Δp ~ -q * abs(q) * K end end """ `Capacitor(;name, C=1.0)` Implements a capacitor to represent vessel capacitance. Parameters are in the cm, g, s system. Pressures in mmHg. `Δp` is calculated in mmHg, `q` is calculated in cm^3/s (ml/s). Named parameters: `C`: capacitance of the vessel in ml/mmHg """ @mtkmodel Capacitor begin @extend OnePort() @parameters begin C = 1.0 end @equations begin D(Δp) ~ -q / C end end """ `Inductance(;name, L=1.0)` Implements the inductance to represent blood inertance. Parameters are in the cm, g, s system. Pressures in mmHg. `Δp` is calculated in mmHg, `q` is calculated in cm^3/s (ml/s). Named parameters: `L`: Inertia of the fluid in mmHg*s^2/ml """ @mtkmodel Inductance begin @extend OnePort() @parameters begin L = 1.0 end @equations begin D(q) ~ -Δp / L end end """ `PoiseuilleResistor(;name, μ=3e-2, r=0.5, L=5)` Implements the resistance following the Poiseuille law. Parameters are in the cm, g, s system. Pressures in mmHg. `Δp` is calculated in mmHg, `q` is calculated in cm^3/s (ml/s). Named parameters: `μ`: viscosity of fluid in dyne s / cm^2 `r`: radius of vessel segmenty in cm `L`: length of vessel segment in cm """ @mtkmodel PoiseuilleResistor begin @extend OnePort() @parameters begin μ = 3e-2 r = 0.1 L = 1 end begin R = 8 * μ * L / (π * r^4) * (1 / 1333.2) end @equations begin Δp ~ -q * R end end """ `Compliance(; name, V₀=0.0, C=1.0, inP=false, has_ep=false, has_variable_ep=false, p₀=0.0)` Implements the compliance of a vessel. Parameters are in the cm, g, s system. Pressure in mmHg. `p` is calculated in mmHg, `q` is calculated in cm^3/s (ml/s). Named parameters: `V₀`: Unstressed volume ml `C`: Vessel compliance in ml/mmHg `inP`: (Bool) formulate in dp/dt (default: false) `has_ep`: (Bool) if true, add a parameter `p₀` for pressure offset e.g., for thoracic pressure (default: false) `p₀`: External pressure in mmHg (e.g., thorax pressure, default: 0.0) _Note: if this argument is set, it will be used, even if `has_ep` is `false`. `has_ep` only controls if `p₀` will be exposed as a parameter!_ has_variable_ep`: (Bool) expose pin for variable external pressure (default: false) This pin can be connected to another pin or function providing external pressure. _Note: if `has_variable_ep` is set to `true` this pin is created, independent of `has_ep`!_ """ @component function Compliance(; name, V₀=0.0, C=1.0, inP=false, has_ep=false, has_variable_ep=false, p₀=0.0) @named in = Pin() @named out = Pin() if has_variable_ep @named ep = Pin() end sts = @variables begin V(t) p(t) end ps = @parameters begin V₀ = V₀ C = C end # Add the thoracic pressure variant D = Differential(t) eqs = [ 0 ~ in.p - out.p p ~ in.p ] if has_variable_ep push!(sts, (@variables p_rel(t))[1] ) if has_ep push!(ps, (@parameters p₀ = p₀)[1] ) end push!(eqs, p_rel ~ ep.p + p₀, ep.q ~ 0 ) elseif has_ep push!(ps, (@parameters p₀ = p₀)[1] ) p_rel = p₀ else p_rel = p₀ end if inP push!(eqs, V ~ (p - p_rel) * C + V₀, D(p) ~ (in.q + out.q) * 1 / C ) else push!(eqs, p ~ (V - V₀) / C + p_rel, D(V) ~ in.q + out.q ) end if has_variable_ep compose(ODESystem(eqs, t, sts, ps; name=name), in, out, ep) else compose(ODESystem(eqs, t, sts, ps; name=name), in, out) end end """ `Elastance(; name, V₀=0.0, E=1.0, inP=false, has_ep=false, has_variable_ep=false, p₀=0.0)` Implements the elastance of a vessel. Elastance more commonly used to describe the heart. Parameters are in the cm, g, s system. Pressure in mmHg. `p` is calculated in mmHg, `q` is calculated in cm^3/s (ml/s). Named parameters: `V₀`: Unstressed volume ml `E`: Vessel elastance in ml/mmHg. Equivalent to compliance as E=1/C `inP`: (Bool) formulate in dp/dt (default: false) `has_ep`: (Bool) if true, add a parameter `p₀` for pressure offset e.g., for thoracic pressure (default: false) `p₀`: External pressure in mmHg (e.g., thorax pressure, default: 0.0) _Note: if this argument is set, it will be used, even if `has_ep` is `false`. `has_ep` only controls if `p₀` will be exposed as a parameter!_ has_variable_ep`: (Bool) expose pin for variable external pressure (default: false) This pin can be connected to another pin or function providing external pressure. _Note: if `has_variable_ep` is set to `true` this pin is created, independent of `has_ep`!_ """ @component function Elastance(; name, V₀=0.0, E=1.0, inP=false, has_ep=false, has_variable_ep=false, p₀=0.0) @named in = Pin() @named out = Pin() if has_variable_ep @named ep = Pin() end sts = @variables begin V(t) p(t) end ps = @parameters begin V₀ = V₀ E = E end D = Differential(t) eqs = [ 0 ~ in.p - out.p p ~ in.p ] if has_variable_ep push!(sts, (@variables p_rel(t))[1] ) if has_ep push!(ps, (@parameters p₀ = p₀)[1] ) end push!(eqs, p_rel ~ ep.p + p₀, ep.q ~ 0 ) elseif has_ep push!(ps, (@parameters p₀ = p₀)[1] ) p_rel = p₀ else p_rel = p₀ end if inP push!(eqs, V ~ (p - p_rel) / E + V₀, D(p) ~ (in.q + out.q) * E ) else push!(eqs, p ~ (V - V₀) * E + p_rel, D(V) ~ in.q + out.q ) end if has_variable_ep compose(ODESystem(eqs, t, sts, ps; name=name), in, out, ep) else compose(ODESystem(eqs, t, sts, ps; name=name), in, out) end end """ `VariableElastance(; name, V₀=0.0, C=1.0, Escale=1.0, fun, inP=false, has_ep=false, has_variable_ep=false, p₀=0.0)` `VariableElastance` is defined based on the `Elastance` element, but has a time varying elastance function modelling the contraction of muscle fibres. Named parameters: `V₀`: stress-free volume (zero pressure volume) `Escale`: scaling factor (elastance factor) `fun`: function object for elastance (must be `fun(t)`) `inP`: (Bool) formulate in dp/dt (default: false) `has_ep`: (Bool) if true, add a parameter `p₀` for pressure offset e.g., for thoracic pressure (default: false) `p₀`: External pressure in mmHg (e.g., thorax pressure, default: 0.0) _Note: if this argument is set, it will be used, even if `has_ep` is `false`. `has_ep` only controls if `p₀` will be exposed as a parameter!_ has_variable_ep`: (Bool) expose pin for variable external pressure (default: false) This pin can be connected to another pin or function providing external pressure. _Note: if `has_variable_ep` is set to `true` this pin is created, independent of `has_ep`!_ """ @component function VariableElastance(; name, V₀=0.0, C=1.0, Escale=1.0, fun, inP=false, has_ep=false, has_variable_ep=false, p₀=0.0) @named in = Pin() @named out = Pin() if has_variable_ep @named ep = Pin() end sts = @variables begin V(t) p(t) end ps = @parameters begin V₀ = V₀ C = C end D = Differential(t) E = Escale * fun(t) eqs = [ 0 ~ in.p - out.p p ~ in.p ] if has_variable_ep push!(sts, (@variables p_rel(t))[1] ) push!(eqs, p_rel ~ ep.p, ep.q ~ 0 ) elseif has_ep push!(ps, (@parameters p₀ = p₀)[1] ) p_rel = p₀ else p_rel = p₀ end if inP push!(eqs, V ~ (p - p_rel) / E + V₀, D(p) ~ (in.q + out.q) * E + V * D(E(t)) ) else push!(eqs, p ~ (V - V₀) * E + p_rel, D(V) ~ in.q + out.q ) end if has_variable_ep compose(ODESystem(eqs, t, sts, ps; name=name), in, out, ep) else compose(ODESystem(eqs, t, sts, ps; name=name), in, out) end end """ `ConstantPressure(;name, P=1.0)` Implements a constant pressure source to a system. Parameters are in the cm, g, s system. Pressure in mmHg. `Δp` is calculated in mmHg, `q` is calculated in cm^3/s (ml/s). Named parameters: `P`: Constant pressure in mmHg """ @mtkmodel ConstantPressure begin @extend OnePort() @parameters begin P = 1.0 end @equations begin Δp ~ P end end """ `ConstantFlow(;name, Q=1.0)` Implements a constant flow source to a system. Parameters are in the cm, g, s system. Pressure in mmHg. `Δp` is calculated in mmHg, `q` is calculated in cm^3/s (ml/s). Named parameters: `Q`: Constant flow in cm^3/s (ml/s) """ @mtkmodel ConstantFlow begin @extend OnePort() @parameters begin Q = 1.0 end @equations begin q ~ Q end end """ `DrivenPressure(; name, fun, P=1.0)` Implements a driven pressure source to a system modulated by a function provided. Parameters are in the cm, g, s system. Pressure in mmHg. `Δp` is calculated in mmHg, `q` is calculated in cm^3/s (ml/s). Named parameters: `P`: Constant pressure in mmHg `fun`: Function which modulates the input """ @mtkmodel DrivenPressure begin @extend OnePort() @structural_parameters begin fun = sin end @parameters begin P = 1.0 end @equations begin Δp ~ P * fun(t) end end """ `DrivenFlow(; name, fun, Q=1.0)` Implements a driven flow source to a system. Parameters are in the cm, g, s system. Pressure in mmHg. `Δp` is calculated in mmHg, `q` is calculated in cm^3/s (ml/s). Named parameters: `Q`: Constant flow in cm^3/s (ml/s). `τ` Length of cardiac cycle is s `fun`: Function which modulates the input """ @mtkmodel DrivenFlow begin @extend OnePort() @structural_parameters begin fun = sin end @parameters begin Q = 1.0 end @equations begin q ~ Q * fun(t) end end """ `DHChamber(;name, V₀, Eₘᵢₙ, n₁, n₂, τ, τ₁, τ₂, k, Eshift=0.0, inP=false)` The Double Hill chamber/ventricle model is defined based on the vessel element, but has a time varying elastance function modelling the contraction of muscle fibres The time varying elastance is calculated using the Double Hill model. This model uses external helper functions `elastance` and `delastance` which describe the elastance function and the first derivative of it. It calculates the elastance as: E(t) = (Eₘₐₓ - Eₘᵢₙ) * e(t) + Eₘᵢₙ where e(t) is the Double-Hill function. Named parameters: `V₀`: stress-free volume (zero pressure volume) `p₀` pressure offset (defaults to zero) this is present in some papers (e.g. Shi), so is provided here for conformity. Defaults to 0.0 `Eₘᵢₙ`: minimum elastance `Eₘₐₓ`: maximum elastance `n₁`: rise coefficient `n₂`: fall coefficient `τ`: pulse length [s] `τ₁`: rise timing parameter[s] `τ₂`: fall timimg paramter [s] `k`: elastance factor* `Eshift`: time shift of contraction (for atria) `inP`: (Bool) formulate in dp/dt (default: false) *Note: `k` is not an independent parameter, it is a scaling factor that corresponds to 1/max(e(t)), which ensures that e(t) varies between zero and 1.0, such that E(t) varies between Eₘᵢₙ and Eₘₐₓ. """ @mtkmodel DHChamber begin @components begin in = Pin() out = Pin() end @structural_parameters begin inP = false end @variables begin V(t) p(t) end @parameters begin V₀ p₀ = 0.0 Eₘᵢₙ Eₘₐₓ n₁ n₂ τ τ₁ τ₂ k Eshift = 0.0 end begin E = DHelastance(t, Eₘᵢₙ, Eₘₐₓ, n₁, n₂, τ, τ₁, τ₂, Eshift, k) DE = DHdelastance(t, Eₘᵢₙ, Eₘₐₓ, n₁, n₂, τ, τ₁, τ₂, Eshift, k) p_rel = p₀ end @equations begin 0 ~ in.p - out.p p ~ in.p if inP V ~ (p - p_rel) / E + V₀ D(p) ~ (in.q + out.q) * E + (p - p_rel) / E * DE else p ~ (V - V₀) * E + p_rel D(V) ~ in.q + out.q end end end """ `DHelastance(t, Eₘᵢₙ, Eₘₐₓ, n₁, n₂, τ, τ₁, τ₂, Eshift, k)` Helper function for `DHChamber` """ function DHelastance(t, Eₘᵢₙ, Eₘₐₓ, n₁, n₂, τ, τ₁, τ₂, Eshift, k) tᵢ = rem(t + (1 - Eshift) * τ, τ) return (Eₘₐₓ - Eₘᵢₙ) * k * ((tᵢ / τ₁)^n₁ / (1 + (tᵢ / τ₁)^n₁)) * (1 / (1 + (tᵢ / τ₂)^n₂)) + Eₘᵢₙ end """ `DHdelastance(t, Eₘᵢₙ, Eₘₐₓ, n₁, n₂, τ, τ₁, τ₂, Eshift, k)` Helper function for `DHChamber` """ function DHdelastance(t, Eₘᵢₙ, Eₘₐₓ, n₁, n₂, τ, τ₁, τ₂, Eshift, k) tᵢ = rem(t + (1 - Eshift) * τ, τ) de = ((Eₘₐₓ - Eₘᵢₙ) * k * (τ₂^n₂ * n₁ * tᵢ^(n₁ - 1) * (τ₁^n₁ * τ₂^n₂ + τ₁^n₁ * tᵢ^n₂ + τ₂^n₂ * tᵢ^n₁ + tᵢ^(n₁ + n₂)) - τ₂^n₂ * tᵢ^n₁ * (τ₁^n₁ * n₂ * tᵢ^(n₂ - 1) + τ₂^n₂ * n₁ * tᵢ^(n₁ - 1) + (n₁ + n₂) * tᵢ^(n₁ + n₂ - 1))) / (τ₁^n₁ * τ₂^n₂ + τ₁^n₁ * tᵢ^n₂ + τ₂^n₂ * tᵢ^n₁ + tᵢ^(n₁ + n₂))^2) return de end """ `ShiChamber(;name, V₀, p₀=0.0, Eₘᵢₙ, Eₘₐₓ, τ, τₑₛ, τₑₚ, Eshift=0.0)` Implemention of a ventricle following Shi/Korakianitis. This model uses external helper function `shiElastance` which describes the elastance function. Named parameters: `V₀` stress-free volume (zero pressure volume) `p₀` pressure offset (defaults to zero) this is present in the original paper, so is provided here for conformity. Defaults to 0.0 `Eₘᵢₙ` minimum elastance `τ` pulse length `τₑₛ` end systolic time (end of rising cosine) `τₑₚ` end pulse time (end of falling cosine) `Eshift`: time shift of contraction (for atria), set to `0` for ventricle `inP`: (Bool) formulate in dp/dt (default: false) """ @mtkmodel ShiChamber begin @structural_parameters begin inP = false end @variables begin V(t) p(t) end @parameters begin V₀ p₀ = 0.0 Eₘᵢₙ Eₘₐₓ τ τₑₛ τₑₚ Eshift end @components begin in = Pin() out = Pin() end begin E = ShiElastance(t, Eₘᵢₙ, Eₘₐₓ, τ, τₑₛ, τₑₚ, Eshift) DE = DShiElastance(t, Eₘᵢₙ, Eₘₐₓ, τ, τₑₛ, τₑₚ, Eshift) p_rel = p₀ end @equations begin 0 ~ in.p - out.p p ~ in.p if inP V ~ (p - p_rel) / E + V₀ D(p) ~ (in.q + out.q) * E + (p - p_rel) / E * DE else p ~ (V - V₀) * E + p_rel D(V) ~ in.q + out.q end end end """ `ShiElastance(t, Eₘᵢₙ, Eₘₐₓ, τ, τₑₛ, τₑₚ, Eshift)` Elastance function `E(t)` for ventricle simulation based on Shi's double cosine function. Parameters: `Eₘᵢₙ`: minimum elastance (diastole) `Eₘₐₓ`: maximum elastance (systole) `τₑₛ`: end systolic time (end of rising cosine) `τₑₚ`: end of pulse time (end of falling cosine) `Eshift`: time shift of contraction (for atria), set to `0` for ventricle """ function ShiElastance(t, Eₘᵢₙ, Eₘₐₓ, τ, τₑₛ, τₑₚ, Eshift) tᵢ = rem(t + (1 - Eshift) * τ, τ) Eₚ = (tᵢ <= τₑₛ) * (1 - cos(tᵢ / τₑₛ * pi)) / 2 + (tᵢ > τₑₛ) * (tᵢ <= τₑₚ) * (1 + cos((tᵢ - τₑₛ) / (τₑₚ - τₑₛ) * pi)) / 2 + (tᵢ <= τₑₚ) * 0 E = Eₘᵢₙ + (Eₘₐₓ - Eₘᵢₙ) * Eₚ return E end """ DShiElastance(t, Eₘᵢₙ, Eₘₐₓ, τ, τₑₛ, τₑₚ, Eshift) Helper function for `ShiChamber` Derivative of the elastance function `E(t)` for ventricle simulation based on Shi's double cosine function. Parameters: `Eₘᵢₙ`: minimum elastance (diastole) `Eₘₐₓ`: maximum elastance (systole) `τₑₛ`: end systolic time (end of rising cosine) `τₑₚ`: end of pulse time (end of falling cosine) `Eshift`: time shift of contraction (for atria), set to `0` for ventricle """ function DShiElastance(t, Eₘᵢₙ, Eₘₐₓ, τ, τₑₛ, τₑₚ, Eshift) tᵢ = rem(t + (1 - Eshift) * τ, τ) DEₚ = (tᵢ <= τₑₛ) * pi / τₑₛ * sin(tᵢ / τₑₛ * pi) / 2 + (tᵢ > τₑₛ) * (tᵢ <= τₑₚ) * pi / (τₑₚ - τₑₛ) * sin((τₑₛ - tᵢ) / (τₑₚ - τₑₛ) * pi) / 2 (tᵢ <= τₑₚ) * 0 DE = (Eₘₐₓ - Eₘᵢₙ) * DEₚ return DE end """ `ShiAtrium(;name, V₀, p₀, Eₘᵢₙ, Eₘₐₓ, τ, τpwb, τpww, inP = false)` Implementation of the Atrium following Shi/Korakianitis. Named parameters: name name of the element `V₀` Unstressed chamber volume in ml `p₀` Unstressed chamber pressure in mmHg `Eₘᵢₙ` Minimum elastance (diastole) in mmHg/ml `Eₘₐₓ` Maximum elastance (systole) in mmHg/ml `τ` Length of cardiac cycle in s `τpwb` Atrial contraction time in s `τpww` Atrial offset time in s """ @mtkmodel ShiAtrium begin @components begin in = Pin() out = Pin() end @variables begin V(t) p(t) end @structural_parameters begin inP = false end @parameters begin V₀ p₀ Eₘᵢₙ Eₘₐₓ τ τpwb τpww end begin # adjust timing parameters to fit the elastance functions for the ventricle # define elastance based on ventricle E function E = ShiElastance(t, Eₘᵢₙ, Eₘₐₓ, τ, 0.5 * τpww, τpww, τpwb) DE = DShiElastance(t, Eₘᵢₙ, Eₘₐₓ, τ, 0.5 * τpww, τpww, τpwb) p_rel = p₀ end @equations begin 0 ~ in.p - out.p p ~ in.p if inP V ~ (p - p_rel) / E + V₀ D(p) ~ (in.q + out.q) * E + (p - p_rel) / E * DE else p ~ (V - V₀) * E + p_rel D(V) ~ in.q + out.q end end end """ `ShiHeart(; name, τ, LV.V₀, LV.p0, LV.Emin, LV.Emax, LV.τes, LV.τed, LV.Eshift, RV.V₀, RV.p0, RV.Eₘᵢₙ, RV.Eₘₐₓ, RV.τes, RV.τed, RV.Eshift, LA.V₀, LA_p0, LA.Emin, LA.Emax, LA.τes, LA.τed, LA.Eshift, RA.V₀, RA.p0, RA.Emin, RA.Emax, RA.τes, RA.τed, RA.Eshift, AV.CQ, AV.Kp, AV.Kf, AV.Kb, AV.Kv, AV.θmax, AV.θmin, PV.CQ, PV.Kp, PV.Kf, PV.Kb, PV.Kv, PV.θmax, PV.θmin, MV.CQ, MV.Kp, MV.Kf, MV.Kb, MV.Kv, MV.θmax, MV.θmin, TV.CQ, TV.Kp, TV.Kf, TV.Kb, TV.Kv, TV.θmax, TV.θmin)` Models a whole heart, made up of 2 ventricles (Left & Right Ventricle) and 2 atria (Left & Right atrium) created from the ShiChamber element. Includes the 4 corresponding valves (Aortic, Mitral, Pulmonary and Tricuspid valve) created using the ShiValve element. Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s). Maximum and Minimum angles given in rad, to convert from degrees multiply angle by pi/180. Named parameters: `τ` Length of the cardiac cycle in s `LV_V₀` Unstressed left ventricular volume in ml `LV_p0` Unstressed left ventricular pressure in mmHg `LV_Emin` Minimum left ventricular elastance (diastole) in mmHg/ml `LV_Emax` Maximum left ventricular elastance (systole) in mmHg/ml `LV_τes` Left ventricular end systolic time in s `LV_τed` Left ventricular end distolic time in s `LV_Eshift` Shift time of contraction - 0 for left ventricle `RV_V₀` Unstressed right ventricular volume in ml `RV_p0` Unstressed right ventricular pressure in mmHg `RV_Emin` Minimum right ventricular elastance (diastole) in mmHg/ml `RV_Emax` Maximum right ventricular elastance (systole) in mmHg/ml `RV_τes` Right ventricular end systolic time in s `RV_τed` Right ventricular end distolic time in s `RV_Eshift` Shift time of contraction - 0 for right ventricle `LA_V₀` Unstressed left atrial volume in ml `LA_p0` Unstressed left atrial pressure in mmHg `LA_Emin` Minimum left atrial elastance (diastole) in mmHg/ml `LA_Emax` Maximum left atrial elastance (systole) in mmHg/ml `LA_τes` Left atrial end systolic time in s `LA_τed` Left atrial end distolic time in s `LA_Eshift` Shift time of contraction in s `RA_V₀` Unstressed right atrial volume in ml `RA_p0` Unstressed right atrial pressure in mmHg `RA_Emin` Minimum right atrial elastance (diastole) in mmHg/ml `RA_Emax` Maximum right atrial elastance (systole) in mmHg/ml `RA_τes` Right atrial end systolic time in s `RA_τed` Right atrial end distolic time in s `RA_Eshift` Shift time of contraction in s `AV_CQ` Aortic valve flow coefficent in ml/(s*mmHg^0.5) `AV_Kp` Pressure effect on the aortic valve in rad/(s^2*mmHg) `AV_Kf` Frictional effect on the aortic valve in 1/s `AV_Kb` Fluid velocity effect on the aortic valve in rad/(s*m) `AV_Kv` Vortex effect on the aortic valve in rad/(s*m) `AV_θmax` Aortic valve maximum opening angle in rad `AV_θmin` Aortic valve minimum opening angle in rad `MV_CQ` Mitral valve flow coefficent in ml/(s*mmHg^0.5) `MV_Kp` Pressure effect on the mitral valve in rad/(s^2*mmHg) `MV_Kf` Frictional effect on the mitral valve in 1/s `MV_Kb` Fluid velocity effect on the mitral valve in rad/(s*m) `MV_Kv` Vortex effect on the mitral valve in rad/(s*m) `MV_θmax` Mitral valve maximum opening angle in rad `MV_θmin` Mitral valve minimum opening angle in rad `PV_CQ` Pulmonary valve flow coefficent in ml/(s*mmHg^0.5) `PV_Kp` Pressure effect on the pulmonary valve in rad/(s^2*mmHg) `PV_Kf` Frictional effect on the pulmonary valve in 1/s `PV_Kb` Fluid velocity effect on the pulmonary valve in rad/(s*m) `PV_Kv` Vortex effect on the pulmonary valve in rad/(s*m) `PV_θmax` Pulmonary valve maximum opening angle in rad `PV_θmin` Pulmonary valve minimum opening angle in rad `TV_CQ` Tricuspid valve flow coefficent in ml/(s*mmHg^0.5) `TV_Kp` Pressure effect on the tricuspid valve in rad/(s^2*mmHg) `TV_Kf` Frictional effect on the tricuspid valve in 1/s `TV_Kb` Fluid velocity effect on the tricuspid valve in rad/(s*m) `TV_Kv` Vortex effect on the pulmonary valve in rad/(s*m) `TV_θmax` Tricuspid valve maximum opening angle in rad `TV_θmin` Tricuspid valve minimum opening angle in rad """ @mtkmodel ShiHeart begin @structural_parameters begin τ end @components begin LHin = Pin() LHout = Pin() RHin = Pin() RHout = Pin() in = Pin() out = Pin() end @variables begin Δp(t) q(t) end # sts = [] # ps = @parameters Rc=Rc Rp=Rp C=C # No parameters in this function # Parameters are inherited from subcomponents @components begin # These are the components the subsystem is made of: # Ventricles and atria LV = ShiChamber(V₀, p₀, Eₘᵢₙ, Eₘₐₓ, τ, τₑₛ, τₑₚ, Eshift) RV = ShiChamber(V₀, p₀, Eₘᵢₙ, Eₘₐₓ, τ, τₑₛ, τₑₚ, Eshift) LA = ShiChamber(V₀, p₀, Eₘᵢₙ, Eₘₐₓ, τ, τₑₛ, τₑₚ, Eshift) RA = ShiChamber(V₀, p₀, Eₘᵢₙ, Eₘₐₓ, τ, τₑₛ, τₑₚ, Eshift) # Valves AV = ShiValve(CQ, Kp, Kf, Kb, Kv, θmax, θmin) MV = ShiValve(CQ, Kp, Kf, Kb, Kv, θmax, θmin) TV = ShiValve(CQ, Kp, Kf, Kb, Kv, θmax, θmin) PV = ShiValve(CQ, Kp, Kf, Kb, Kv, θmax, θmin) end @equations begin Δp ~ out.p - in.p q ~ in.q connect(LHin, LA.in) connect(LA.out, MV.in) connect(MV.out, LV.in) connect(LV.out, AV.in) connect(AV.out, LHout) connect(RHin, RA.in) connect(RA.out, TV.in) connect(TV.out, RV.in) connect(RV.out, PV.in) connect(PV.out, RHout) end end """ `ResistorDiode(;name, R=1e-3)` Implements the resistance across a valve following Ohm's law exhibiting diode like behaviour. Parameters are in the cm, g, s system. Pressure in mmHg. Flow in cm^3/s (ml/s) Named parameters: `R` Resistance across the valve in mmHg*s/ml """ @mtkmodel ResistorDiode begin @extend OnePort() @parameters begin R = 1e-3 end @equations begin q ~ -Δp / R * (Δp < 0) end end """ `OrificeValve(;name, CQ=1.0)` Implements the square-root pressure-flow relationship across a valve. Parameters are in the cm, g, s system. Pressure in mmHg. Flow in cm^3/s (ml/s) Named parameters: `CQ` Flow coefficent in ml/(s*mmHg^0.5) """ @mtkmodel OrificeValve begin @extend OnePort() @parameters begin CQ = 1.0 end @equations begin q ~ (Δp < 0) * CQ * sqrt(sign(Δp) * Δp) end end """ `ShiValve(; name, CQ, Kp, Kf, Kb, Kv, θmax, θmin)` Implements the Shi description for valve opening and closing, full description in [Shi]. Parameters are in the cm, g, s system. Pressure in mmHg. Flow in cm^3/s (ml/s) Maximum and Minimum angles given in rad, to convert from degrees multiply angle by pi/180. Named parameters: `CQ` Flow coefficent in ml/(s*mmHg^0.5) `Kp` Pressure effect on the valve in rad/(s^2*mmHg) `Kf` Frictional effect on the valve in 1/s `Kb` Fluid velocity effect on the valve in rad/(s*m) `Kv` Vortex effect on the valve in rad/(s*m) `θmax` Valve maximum opening angle in rad `θmin` Valve minimum opening angle in rad """ @component function ShiValve(; name, CQ, Kp, Kf, Kb, Kv, θmax, θmin) @named oneport = OnePort() @unpack Δp, q = oneport ps = @parameters CQ = CQ Kp = Kp Kf = Kf Kb = Kb Kv = Kv θmax = θmax θmin = θmin sts = @variables θ(t) ω(t) AR(t) Fp(t) Ff(t) Fb(t) Fv(t) F(t) D = Differential(t) limits = [ [(θ ~ θmax)] => [ω ~ 0] [(θ ~ θmin)] => [ω ~ 0] ] # make θmax the real opening angle and define a θmaxopen for a healthy valve # that means we can use θmax as a stenosis parameter θmaxopen = 75 * pi / 180 eqs = [ # Forces/Moments Fp ~ Kp * -Δp * cos(θ) # pressure Ff ~ -Kf * ω # friction Fb ~ Kb * q * cos(θ) # Fluid Velocity Fv ~ -Kv * q * (q > 0) * sin(2θ) # vortex behind leaflets F ~ Fp + Ff + Fb + Fv # total force/moment on leaflets #ODEs D(θ) ~ ω D(ω) ~ F * ((θ < θmax) * (F > 0) + (θ > θmin) * (F < 0)) # Opening ratio #AR ~ ((1 - cos(θ))^2) / ((1 - cos(θmax))^2) AR ~ ((1 - cos(θ))^2) / ((1 - cos(θmaxopen))^2) # Flow equation q ~ -sign(Δp) * CQ * AR * sqrt(abs(Δp)) ] # include the `continuous_events` definition `limits` in the ODE system # this is the MTK equivalent to callbacks extend(ODESystem(eqs, t, sts, ps; name=name, continuous_events=limits), oneport) end """ `MynardValve_SemiLunar(; name, ρ, Leff, Mrg, Mst, Ann, Kvc, Kvo)` Implements the Mynard description for flow across the semilunar valves, full description in [Mynard]. This valve description corresponds to the semilunar valves where interia is an effect we consider. Note: The minimum level of regurgitation has to be set to machine precision eps() Parameters are in the cm, g, s system. Pressure in mmHg. Flow in cm^3/s (ml/s) p is scaled to ensure units are consistent throughout. Named parameters: name name of the element `ρ` Blood density in g/cm^3 `Leff` An effective length in cm `Mrg` Level of regurgitation exhibited by a valve in DN `Mst` Level of stenosis exhibited by a valve in DN `Ann` Annulus area in cm^2 `Kvc` Valve closing rate coefficent in cm^2/(dynes*s) `Kvo` Valve opening rate coefficent in cm^2/(dynes*s) p is calculated in mmHg q is calculated in cm^3/s (ml/s) """ @mtkmodel MynardValve_SemiLunar begin @extend OnePort() @parameters begin ρ Leff Mrg Mst Ann Kvc Kvo end @variables begin Aeff(t) ζ(t) B(t) Aeff_min(t) Aeff_max(t) L(t) end begin Δp = -1333.22 * Δp end @equations begin # Opening ratio D(ζ) ~ (Δp > 0) * ((1 - ζ) * Kvo * Δp) + (Δp < 0) * (ζ * Kvc * Δp) Aeff_min ~ Mrg * Ann + eps() Aeff_max ~ Mst * Ann Aeff ~ (Aeff_max - Aeff_min) * ζ + Aeff_min # Flow equation B ~ ρ / (2 * Aeff^2) L ~ ρ * Leff / Aeff D(q) ~ (Δp - B * q * abs(q)) * 1 / L end end """ `MynardValve_Atrioventricular(; name, ρ, Mrg, Mst, Ann, Kvc, Kvo)` Implements the Mynard description for flow across the atrioventricular valves, full description in [Mynard]. This valve description corresponds to the atrioventricular valves where interia is not considered. Note: The minimum level of regurgitation has to be set to machine precision eps() Parameters are in the cm, g, s system. Pressure in mmHg. Flow in cm^3/s (ml/s) p is scaled to ensure units are consistent throughout. Named parameters: name name of the element `ρ` Blood density in g/cm^3 `Mrg` Level of regurgitation exhibited by a valve in DN `Mst` Level of stenosis exhibited by a valve in DN `Ann` Annulus area in cm^2 `Kvc` Valve closing rate coefficent in cm^2/(dynes*s) `Kvo` Valve opening rate coefficent in cm^2/(dynes*s) p is calculated in mmHg q is calculated in cm^3/s (ml/s) """ @mtkmodel MynardValve_Atrioventricular begin @extend OnePort() @parameters begin ρ Mrg Mst Ann Kvc Kvo end @variables begin Aeff(t) ζ(t) B(t) Aeff_min(t) Aeff_max(t) L(t) end begin p = -1333.22 * p end @equations begin # Opening ratio D(ζ) ~ (Δp > 0) * ((1 - ζ) * Kvo * Δp) + (Δp < 0) * (ζ * Kvc * Δp) Aeff_min ~ Mrg * Ann + eps() Aeff_max ~ Mst * Ann Aeff ~ (Aeff_max - Aeff_min) * ζ + Aeff_min # Flow equation B ~ ρ / (2 * Aeff^2) q ~ sqrt(1 / B * abs(Δp)) * sign(Δp) end end """ `WK3(;name, Rc=1.0, Rp=1.0, C=1.0)` Implements the 3 element windkessel model. Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s) Named parameters: `Rc`: Characteristic impedance in mmHg*s/ml `Rp`: Peripheral resistance in mmHg*s/ml `C`: Arterial compliance in ml/mmHg """ @mtkmodel WK3 begin @extend OnePort() @components begin Rc = Resistor(R=1.0) Rp = Resistor(R=1.0) C = Capacitor(C=1.0) ground = Ground() end @equations begin connect(in, Rc.in) connect(Rc.out, Rp.in, C.in) connect(Rp.out, C.out, out) end end """ `WK3E(;name, Rc=1.0, Rp=1.0, E=1.0)` Implements the 3 element windkessel model. With a vessel elastance instead of a capacitor. Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s) Named parameters: `Rc`: Characteristic impedance in mmHg*s/ml `Rp`: Peripheral resistance in mmHg*s/ml `E`: Arterial elastance in mmHg/ml """ @mtkmodel WK3E begin @extend OnePort() @components begin Rc = Resistor(R=1.0) Rp = Resistor(R=1.0) E = Elastance(E=1.0) ground = Ground() end @equations begin connect(in, Rc.in) connect(Rc.out, E.in) connect(E.out, Rp.in) connect(Rp.out, out) end end """ `WK4_S(;name, Rc=1.0, L=1.0, Rp=1.0, C=1.0)` Implements the 4 element windkessel model with serial inertance. Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s) Named parameters: `Rc`: Characteristic impedance in mmHg*s/ml `L`: Inertance/Inductance in mmHg*s^2*ml^-1 `Rp`: Peripheral resistance in mmHg*s/ml `C`: Arterial compliance in ml/mmHg """ @mtkmodel WK4_S begin @extend OnePort() @components begin # These are the components the subsystem is made of: Rc = Resistor(R) Rp = Resistor(R) C = Capacitor(C) L = Inductance(L) ground = Ground() end # The equations for the subsystem are created by # 'connect'-ing the components @equations begin connect(in, Rc.in) connect(Rc.out, L.in) connect(L.out, C.in, Rp.in) connect(Rp.out, C.out, out) end end """ `WK4_SE(;name, Rc=1.0, L=1.0, Rp=1.0, E=1.0)` Implements the 4 element windkessel model with serial inertance. With a vessel elastance instead of a capacitor. Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s) Named parameters: `Rc`: Characteristic impedance in mmHg*s/ml `L`: Inertance/Inductance in mmHg*s^2*ml^-1 `Rp`: Peripheral resistance in mmHg*s/ml `E`: Arterial elastance in mmHg/ml """ @mtkmodel WK4_SE begin @extend OnePort() @components begin # These are the components the subsystem is made of: Rc = Resistor(R) Rp = Resistor(R) E = Elastance(E) L = Inductance(L) ground = Ground() end # The equations for the subsystem are created by # 'connect'-ing the components @equations begin connect(in, Rc.in) connect(Rc.out, L.in) connect(L.out, E.in) connect(E.out, Rp.in) connect(Rp.out, out) end end """ `WK4_P(;name, Rc=1.0, L=1.0, Rp=1.0, C=1.0)` Implements the 4 element windkessel model with parallel inertance. Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s) Named parameters: `Rc`: Characteristic impedance in mmHg*s/ml `L`: Inertance/Inductance in mmHg*s^2*ml^-1 `Rp`: Peripheral resistance in mmHg*s/ml `C`: Arterial compliance in ml/mmHg """ @mtkmodel WK4_P begin @extend OnePort() @components begin Rc = Resistor(R=1.0) Rp = Resistor(R=1.0) C = Capacitor(C=1.0) L = Inductance(L=1.0) ground = Ground() end # The equations for the subsystem are created by # 'connect'-ing the components @equations begin connect(in, L.in, Rc.in) connect(L.out, Rc.out, C.in, Rp.in) connect(Rp.out, C.out, out) end end """ `WK4_PE(;name, Rc=1.0, L=1.0, Rp=1.0, E=1.0)` Implements the 4 element windkessel model with parallel inertance. With a vessel elastance instead of a capacitor. Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s) Named parameters: `Rc`: Characteristic impedance in mmHg*s/ml `L`: Inertance/Inductance in mmHg*s^2*ml^-1 `Rp`: Peripheral resistance in mmHg*s/ml `E`: Arterial elastance in mmHg/ml """ @mtkmodel WK4_PE begin @extend OnePort() @components begin Rc = Resistor(R=1.0) Rp = Resistor(R=1.0) E = Elastance(E=1.0) L = Inductance(L=1.0) ground = Ground() end @equations begin connect(in, L.in, Rc.in) connect(L.out, Rc.out, E.in) connect(E.out, Rp.in) connect(Rp.out, out) end end @mtkmodel WK5 begin @extend OnePort() @components begin R1 = Resistor(R=1.0) C1 = Capacitor(C=1.0) R2 = Resistor(R=1.0) C2 = Capacitor(C=1.0) R3 = Resistor(R=1.0) L = Inductance(L=1.0) ground = Ground() end @equations begin connect(in, R1.in) connect(R1.out, C1.in, R2.in) connect(R2.out, C2.in, R3.in) connect(R3.out, C1.out, C2.out, out) end end @mtkmodel WK5E begin @extend OnePort() @components begin R1 = Resistor(R=1.0) E1 = Elastance(E=1.0) R2 = Resistor(R=1.0) E2 = Elastance(E=1.0) R3 = Resistor(R=1.0) L = Inductance(L=1.0) ground = Ground() end @equations begin connect(in, R1.in) connect(R1.out, E1.in) connect(E1.out, R2.in) connect(R2.out, E2.in) connect(E2.out, R3.in) connect(R3.out, out) end end """ `CR(;name, R=1.0, C=1.0)` Implements the compliance, resistor subsystem. Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s). Named parameters: `R`: Component resistance in mmHg*s/ml `C`: Component compliance in ml/mmHg """ @mtkmodel CR begin @structural_parameters begin R=1.0 C=1.0 end @variables begin Δp(t) q(t) end @components begin in = Pin() out = Pin() R = Resistor(R=R) C = Compliance(C=C) end @equations begin Δp ~ out.p - in.p q ~ in.q connect(in, C.in) connect(C.out, R.in) connect(R.out, out) end end """ `CRL(;name, C=1.0, R=1.0, L=1.0)` Implements the compliance, resistor, inductance subsystem. Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s). Named parameters: `C`: Component compliance in ml/mmHg `R`: Component resistance in mmHg*s/ml `L`: Component blood inertia in mmHg*s^2/ml """ @mtkmodel CRL begin @structural_parameters begin C=1.0 R=1.0 L=1.0 end @variables begin Δp(t) q(t) end @components begin in = Pin() out = Pin() C = Compliance(C=C) R = Resistor(R=R) L = Inductance(L=L) end @equations begin Δp ~ out.p - in.p q ~ in.q connect(in, C.in) connect(C.out, R.in) connect(R.out, L.in) connect(L.out, out) end end """ `RRCR(;name, R1=1.0, R2=1.0, R3=1.0, C=1.0)` Implements the resistor, resistor, compliance, resistor subsystem. Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s). Named parameters: `R1`: Component resistance in mmHg*s/ml `R2`: Component resistance in mmHg*s/ml `C`: Component compliance in ml/mmHg `R3`: Component resistance in mmHg*s/ml """ @mtkmodel RRCR begin @variables begin p(t) q(t) end @components begin in = Pin() out = Pin() ep = Pin() R1 = Resistor(R) R2 = Resistor(R) C = Compliance_ep(C) R3 = Resistor(R) end @equations begin p ~ out.p - in.p q ~ in.q connect(in, R1.in) connect(R1.out, R2.in) connect(R2.out, C.in) connect(C.out, R3.in) connect(R3.out, out) connect(C.ep, ep) end end """ `ShiSystemicLoop(; name, SAS.C, SAS.R, SAS.L, SAT.C, SAT.R, SAT.L, SAR.R, SCP.R, SVN.C, SVN.R)` Implements systemic loop as written by Shi in [Shi]. Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s). Named parameters: `SAS_C`: Aortic sinus compliance in ml/mmHg `SAS_R`: Aortic sinus resistance in mmHg*s/ml `SAS_L`: Aortic sinus inductance in mmHg*s^2/ml `SAT_C`: Artery compliance in ml/mmHg `SAT_R`: Artery resistance in mmHg*s/ml `SAT_L`: Artery inductance in mmHg*s^2/ml `SAR_R`: Arteriole resistance in mmHg*s/ml `SCP_R`: Capillary resistance in mmHg*s/ml `SVN_C`: Vein compliance in ml/mmHg `SVN_R`: Vein resistance in mmHg*s/ml """ @mtkmodel ShiSystemicLoop begin @variables begin Δp(t) q(t) end @components begin in = Pin() out = Pin() # These are the components the subsystem is made of: ## Systemic Aortic Sinus ## SAS = CRL(C, R, L) ## Systemic Artery ## SAT = CRL(C, R, L) ## Systemic Arteriole ## SAR = Resistor(R) ## Systemic Capillary ## SCP = Resistor(R) ## Systemic Vein ## SVN = CR(C, R) end @equations begin Δp ~ out.p - in.p q ~ in.q connect(in, SAS.in) connect(SAS.out, SAT.in) connect(SAT.out, SAR.in) connect(SAR.out, SCP.in) connect(SCP.out, SVN.in) connect(SVN.out, out) end end """ `ShiPulmonaryLoop(; name, PAS.C, PAS.R, PAS.L, PAT.C, PAT.R, PAT.L, PAR.R, PCP.R, PVN.C, PVN.R)` Implements systemic loop as written by Shi in [Shi]. Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s). Named parameters: `PAS__C`: Artery sinus compliance in ml/mmHg `PAS__R`: Artery sinus resistance in mmHg*s/ml `PAS__L`: Artery sinus Inductance in mmHg*s^2/ml `PAT__C`: Artery compliance in ml/mmHg `PAT__R`: Artery resistance in mmHg*s/ml `PAT__L`: Artery Inductance in mmHg*s^2/ml `PAR__R`: Arteriole resistance in mmHg*s/ml `PCP__R`: Capillary resistance in mmHg*s/ml `PVN__C`: Vein compliance in ml/mmHg `PVN__R`: Vein resistance in mmHg*s/ml """ @mtkmodel ShiPulmonaryLoop begin @variables begin Δp(t) q(t) end @components begin in = Pin() out = Pin() # These are the components the subsystem is made of: ## Pulmonary Aortic Sinus ## PAS = CRL(C, R, L) ## Pulmonary Artery ## PAT = CRL(C, R, L) ## Pulmonary Arteriole ## PAR = Resistor(R) ## Pulmonary Capillary ## PCP = Resistor(R) ## Pulmonary Vein ## PVN = CR(C, R) end @equations begin Δp ~ out.p - in.p q ~ in.q connect(in, PAS.in) connect(PAS.out, PAT.in) connect(PAT.out, PAR.in) connect(PAR.out, PCP.in) connect(PCP.out, PVN.in) connect(PVN.out, out) end end end
CirculatorySystemModels
https://github.com/TS-CUBED/CirculatorySystemModels.jl.git
[ "MIT" ]
0.4.0
b427a3f71e8dbc850927046e6a323aea46907469
code
2639
τ = 1.0 Eshift=0.0 Ev=Inf #### LV chamber parameters #### Checked v0_lv = 5.0 p0_lv = 1.0 Emin_lv = 0.1 Emax_lv = 2.5 τes_lv = 0.3 τed_lv = 0.45 Eshift_lv = 0.0 #### RV Chamber parameters #### Checked v0_rv = 10.0 p0_rv = 1.0 Emin_rv = 0.1 Emax_rv = 1.15 τes_rv = 0.3 τed_rv = 0.45 Eshift_rv = 0.0 ### LA Atrium Parameters #### Checked v0_la = 4.0 p0_la = 1.0 Emin_la = 0.15 Emax_la = 0.25 τpwb_la = 0.92 τpww_la = 0.09 τes_la = τpww_la/2 τed_la = τpww_la Eshift_la = τpwb_la ### RA Atrium parameters #### Checked v0_ra = 4.0 p0_ra = 1.0 Emin_ra = 0.15 Emax_ra = 0.25 τpwb_ra = 0.92 τpww_ra = 0.09 τes_ra = τpww_ra/2 τed_ra = τpww_ra Eshift_ra = τpwb_ra #### Valve parameters #### Checked CQ_AV = 350.0 CQ_MV = 400.0 CQ_TV = 400.0 CQ_PV = 350.0 ## Systemic Aortic Sinus #### Checked Csas = 0.08 Rsas = 0.003 Lsas = 6.2e-5 pt0sas = 100.0 qt0sas = 0.0 ## Systemic Artery #### Checked Csat = 1.6 Rsat = 0.05 Lsat = 0.0017 pt0sat = 100.0 qt0sat = 0.0 ## Systemic Arteriole #### Checked Rsar = 0.5 ## Systemic Capillary #### Checked Rscp = 0.52 ## Systemic Vein #### Checked Csvn = 20.5 Rsvn = 0.075 pt0svn = 0.0 qt0svn = 0.0 ## Pulmonary Aortic Sinus #### Checked Cpas = 0.18 Rpas = 0.002 Lpas = 5.2e-5 pt0pas = 30.0 qt0pas = 0.0 ## Pulmonary Artery #### Checked Cpat = 3.8 Rpat = 0.01 Lpat = 0.0017 pt0pat = 30.0 qt0pat = 0.0 ## Pulmonary Arteriole #### Checked Rpar = 0.05 ## Pulmonary Capillary #### Checked Rpcp = 0.25 ## Pulmonary Vein #### Checked Cpvn = 20.5 Rpvn = 0.006 # this was 0.006 originally and in the paper, seems to be wrong in the paper! # CHANGED THIS IN THE CELLML MODEL AS WELL TO MATCH THE PAPER!!!!! pt0pvn = 0.0 qt0pvn = 0.0 ## KG diaphragm ## Not in cellML model # left heart # Kst_la = 2.5 Kst_lv = 20.0 Kf_sav = 0.0004 Ke_sav = 9000.0 M_sav = 0.0004 A_sav = 0.00047 # right heart # Kst_ra = 2.5 Kst_rv = 20.0 Kf_pav = 0.0004 Ke_pav = 9000.0 M_pav = 0.0004 A_pav = 0.00047 # #### Diff valve params #### not in cellML model Kp_av = 5500.0 # * 57.29578 # Shi Paper has values in radians! Kf_av = 50.0 Kf_mv = 50.0 Kp_mv = 5500.0 # * 57.29578 Kf_tv = 50.0 Kp_tv = 5500.0 # * 57.29578 Kf_pv = 50.0 Kp_pv = 5500.0 #* 57.29578 Kb_av = 2.0 Kv_av = 7.0 Kb_mv = 2.0 Kv_mv = 3.5 Kb_tv = 2.0 Kv_tv = 3.5 Kb_pv = 2.0 Kv_pv = 3.5 θmax_av = 75.0 * pi / 180 θmax_mv = 75.0 * pi / 180 θmin_av = 5.0 * pi / 180 θmin_mv = 5.0 * pi / 180 θmax_pv = 75.0 * pi / 180 θmax_tv = 75.0 * pi / 180 θmin_pv = 5.0 * pi / 180 θmin_tv = 5.0 * pi / 180 ## pressure force and frictional force is the same for all 4 valves # Initial conditions #### Checked against cellML model LV_Vt0 = 500 RV_Vt0 = 500 LA_Vt0 = 20 RA_Vt0 = 20
CirculatorySystemModels
https://github.com/TS-CUBED/CirculatorySystemModels.jl.git
[ "MIT" ]
0.4.0
b427a3f71e8dbc850927046e6a323aea46907469
code
21112
## using CirculatorySystemModels using ModelingToolkit using OrdinaryDiffEq using Test using CSV using DataFrames ## # @testset "WK5" begin # end @testset "Shi Model in V" begin ## include("ShiParam.jl") @independent_variables t ## Ventricles @named LV = ShiChamber(V₀=v0_lv, p₀=p0_lv, Eₘᵢₙ=Emin_lv, Eₘₐₓ=Emax_lv, τ=τ, τₑₛ=τes_lv, τₑₚ=τed_lv, Eshift=0.0) # The atrium can be defined either as a ShiChamber with changed timing parameters, or as defined in the paper @named LA = ShiChamber(V₀=v0_la, p₀=p0_la, Eₘᵢₙ=Emin_la, Eₘₐₓ=Emax_la, τ=τ, τₑₛ=τpww_la / 2, τₑₚ=τpww_la, Eshift=τpwb_la) @named RV = ShiChamber(V₀=v0_rv, p₀=p0_rv, Eₘᵢₙ=Emin_rv, Eₘₐₓ=Emax_rv, τ=τ, τₑₛ=τes_rv, τₑₚ=τed_rv, Eshift=0.0) # The atrium can be defined either as a ShiChamber with changed timing parameters, or as defined in the paper # @named RA = ShiChamber(V₀=v0_ra, p₀ = p0_ra, Eₘᵢₙ=Emin_ra, Eₘₐₓ=Emax_ra, τ=τ, τₑₛ=τpww_ra/2, τₑₚ =τpww_ra, Eshift=τpwb_ra) @named RA = ShiAtrium(V₀=v0_ra, p₀=1, Eₘᵢₙ=Emin_ra, Eₘₐₓ=Emax_ra, τ=τ, τpwb=τpwb_ra, τpww=τpww_ra) #, Ev=Inf) ## Valves as simple valves @named AV = OrificeValve(CQ=CQ_AV) @named MV = OrificeValve(CQ=CQ_MV) @named TV = OrificeValve(CQ=CQ_TV) @named PV = OrificeValve(CQ=CQ_PV) ####### Systemic Loop ####### # Systemic Aortic Sinus ## @named SAS = CRL(C=Csas, R=Rsas, L=Lsas) # Systemic Artery ## @named SAT = CRL(C=Csat, R=Rsat, L=Lsat) # Systemic Arteriole ## @named SAR = Resistor(R=Rsar) # Systemic Capillary ## @named SCP = Resistor(R=Rscp) # Systemic Vein ## @named SVN = CR(R=Rsvn, C=Csvn) ####### Pulmonary Loop ####### # Pulmonary Aortic Sinus ## @named PAS = CRL(C=Cpas, R=Rpas, L=Lpas) # Pulmonary Artery ## @named PAT = CRL(C=Cpat, R=Rpat, L=Lpat) # Pulmonary Arteriole ## @named PAR = Resistor(R=Rpar) # Pulmonary Capillary ## @named PCP = Resistor(R=Rpcp) # Pulmonary Vein ## @named PVN = CR(R=Rpvn, C=Cpvn) ## circ_eqs = [ connect(LV.out, AV.in) connect(AV.out, SAS.in) connect(SAS.out, SAT.in) connect(SAT.out, SAR.in) connect(SAR.out, SCP.in) connect(SCP.out, SVN.in) connect(SVN.out, RA.in) connect(RA.out, TV.in) connect(TV.out, RV.in) connect(RV.out, PV.in) connect(PV.out, PAS.in) connect(PAS.out, PAT.in) connect(PAT.out, PAR.in) connect(PAR.out, PCP.in) connect(PCP.out, PVN.in) connect(PVN.out, LA.in) connect(LA.out, MV.in) connect(MV.out, LV.in) ] ## Compose the whole ODE system @named _circ_model = ODESystem(circ_eqs, t) @named circ_model = compose(_circ_model, [LV, RV, LA, RA, AV, MV, PV, TV, SAS, SAT, SAR, SCP, SVN, PAS, PAT, PAR, PCP, PVN]) ## And simplify it circ_sys = structural_simplify(circ_model) ## Setup ODE # Initial Conditions for Shi Valve # u0 = [LV_Vt0, RV_Vt0, LA_Vt0, RA_Vt0, pt0sas, qt0sas , pt0sat, qt0sat, pt0svn, pt0pas, qt0pas, pt0pat, qt0pat, pt0pvn, 0, 0, 0, 0,0, 0, 0, 0] # and for OrificeValve --- Commment this next line to use ShiValves # u0 = [LV_Vt0, RV_Vt0, LA_Vt0, RA_Vt0, pt0sas, qt0sas, pt0sat, qt0sat, pt0svn, pt0pas, qt0pas, pt0pat, qt0pat, pt0pvn] u0 = [ LV.V => LV_Vt0 RV.V => RV_Vt0 LA.V => LA_Vt0 RA.V => RA_Vt0 SAS.C.p => pt0sas SAS.L.q => qt0sas SAT.C.p => pt0sat SAT.L.q => qt0sat SVN.C.p => pt0svn PAS.C.p => pt0pas PAS.L.q => qt0pas PAT.C.p => pt0pat PAT.L.q => qt0pat PVN.C.p => pt0pvn ] prob = ODEProblem(circ_sys, u0, (0.0, 20.0)) ## @time ShiSimpleSolV = solve(prob, Tsit5(), reltol=1e-9, abstol=1e-12, saveat=19:0.01:20) # ShiSimpleSolV = ShiSimpleSolV(19:0.01:20) ## Read benchmark data and compare ShiBench = CSV.read("ShiSimple.csv", DataFrame) @test SciMLBase.successful_retcode(ShiSimpleSolV) @test sum((ShiSimpleSolV[LV.V] .- ShiBench[!, :LV_V]) ./ ShiBench[!, :LV_V]) / length(ShiSimpleSolV.u) ≈ 0 atol = 1e-3 @test sum((ShiSimpleSolV[RV.V] .- ShiBench[!, :RV_V]) ./ ShiBench[!, :RV_V]) / length(ShiSimpleSolV.u) ≈ 0 atol = 1e-3 @test sum((ShiSimpleSolV[LA.V] .- ShiBench[!, :LA_V]) ./ ShiBench[!, :LA_V]) / length(ShiSimpleSolV.u) ≈ 0 atol = 1e-3 @test sum((ShiSimpleSolV[RA.V] .- ShiBench[!, :RA_V]) ./ ShiBench[!, :RA_V]) / length(ShiSimpleSolV.u) ≈ 0 atol = 1e-3 end ## @testset "Shi Model in P" begin include("ShiParam.jl") ## Start Modelling @independent_variables t ## Ventricles @named LV = ShiChamber(V₀=v0_lv, p₀=p0_lv, Eₘᵢₙ=Emin_lv, Eₘₐₓ=Emax_lv, τ=τ, τₑₛ=τes_lv, τₑₚ=τed_lv, Eshift=0.0, inP=true) # The atrium can be defined either as a ShiChamber with changed timing parameters, or as defined in the paper @named LA = ShiChamber(V₀=v0_la, p₀=p0_la, Eₘᵢₙ=Emin_la, Eₘₐₓ=Emax_la, τ=τ, τₑₛ=τpww_la / 2, τₑₚ=τpww_la, Eshift=τpwb_la, inP=true) @named RV = ShiChamber(V₀=v0_rv, p₀=p0_rv, Eₘᵢₙ=Emin_rv, Eₘₐₓ=Emax_rv, τ=τ, τₑₛ=τes_rv, τₑₚ=τed_rv, Eshift=0.0, inP=true) # The atrium can be defined either as a ShiChamber with changed timing parameters, or as defined in the paper # @named RA = ShiChamber(V₀=v0_ra, p₀ = p0_ra, Eₘᵢₙ=Emin_ra, Eₘₐₓ=Emax_ra, τ=τ, τₑₛ=τpww_ra/2, τₑₚ =τpww_ra, Eshift=τpwb_ra) @named RA = ShiAtrium(V₀=v0_ra, p₀=1, Eₘᵢₙ=Emin_ra, Eₘₐₓ=Emax_ra, τ=τ, τpwb=τpwb_ra, τpww=τpww_ra, inP=true) #, Ev=Inf) ## Valves as simple valves @named AV = OrificeValve(CQ=CQ_AV) @named MV = OrificeValve(CQ=CQ_MV) @named TV = OrificeValve(CQ=CQ_TV) @named PV = OrificeValve(CQ=CQ_PV) ####### Systemic Loop ####### # Systemic Aortic Sinus ## @named SAS = CRL(C=Csas, R=Rsas, L=Lsas) # Systemic Artery ## @named SAT = CRL(C=Csat, R=Rsat, L=Lsat) # Systemic Arteriole ## @named SAR = Resistor(R=Rsar) # Systemic Capillary ## @named SCP = Resistor(R=Rscp) # Systemic Vein ## @named SVN = CR(R=Rsvn, C=Csvn) ####### Pulmonary Loop ####### # Pulmonary Aortic Sinus ## @named PAS = CRL(C=Cpas, R=Rpas, L=Lpas) # Pulmonary Artery ## @named PAT = CRL(C=Cpat, R=Rpat, L=Lpat) # Pulmonary Arteriole ## @named PAR = Resistor(R=Rpar) # Pulmonary Capillary ## @named PCP = Resistor(R=Rpcp) # Pulmonary Vein ## @named PVN = CR(R=Rpvn, C=Cpvn) ## circ_eqs = [ connect(LV.out, AV.in) connect(AV.out, SAS.in) connect(SAS.out, SAT.in) connect(SAT.out, SAR.in) connect(SAR.out, SCP.in) connect(SCP.out, SVN.in) connect(SVN.out, RA.in) connect(RA.out, TV.in) connect(TV.out, RV.in) connect(RV.out, PV.in) connect(PV.out, PAS.in) connect(PAS.out, PAT.in) connect(PAT.out, PAR.in) connect(PAR.out, PCP.in) connect(PCP.out, PVN.in) connect(PVN.out, LA.in) connect(LA.out, MV.in) connect(MV.out, LV.in) ] ## Compose the whole ODE system @named _circ_model = ODESystem(circ_eqs, t) @named circ_model = compose(_circ_model, [LV, RV, LA, RA, AV, MV, PV, TV, SAS, SAT, SAR, SCP, SVN, PAS, PAT, PAR, PCP, PVN]) ## And simplify it circ_sys = structural_simplify(circ_model) ## Setup ODE # Initial Conditions for Shi Valve # u0 = [LV_Vt0, RV_Vt0, LA_Vt0, RA_Vt0, pt0sas, qt0sas , pt0sat, qt0sat, pt0svn, pt0pas, qt0pas, pt0pat, qt0pat, pt0pvn, 0, 0, 0, 0,0, 0, 0, 0] # and for OrificeValve --- Commment this next line to use ShiValves # u0 = [LV_Vt0, RV_Vt0, LA_Vt0, RA_Vt0, pt0sas, qt0sas, pt0sat, qt0sat, pt0svn, pt0pas, qt0pas, pt0pat, qt0pat, pt0pvn] u0 = [ LV.V => LV_Vt0 RV.V => RV_Vt0 LA.V => LA_Vt0 RA.V => RA_Vt0 SAS.C.p => pt0sas SAS.L.q => qt0sas SAT.C.p => pt0sat SAT.L.q => qt0sat SVN.C.p => pt0svn PAS.C.p => pt0pas PAS.L.q => qt0pas PAT.C.p => pt0pat PAT.L.q => qt0pat PVN.C.p => pt0pvn ] prob = ODEProblem(circ_sys, u0, (0.0, 20.0)) ## @time ShiSimpleSolP = solve(prob, Tsit5(), reltol=1e-9, abstol=1e-12, saveat=19:0.01:20) # ShiSimpleSolP = ShiSimpleSolP(19:0.01:20) ## Read benchmark data and compare ShiBench = CSV.read("ShiSimple.csv", DataFrame) @test SciMLBase.successful_retcode(ShiSimpleSolP) @test sum((ShiSimpleSolP[LV.V] .- ShiBench[!, :LV_V]) ./ ShiBench[!, :LV_V]) / length(ShiSimpleSolP.u) ≈ 0 atol = 2e-3 @test sum((ShiSimpleSolP[RV.V] .- ShiBench[!, :RV_V]) ./ ShiBench[!, :RV_V]) / length(ShiSimpleSolP.u) ≈ 0 atol = 2e-3 @test sum((ShiSimpleSolP[LA.V] .- ShiBench[!, :LA_V]) ./ ShiBench[!, :LA_V]) / length(ShiSimpleSolP.u) ≈ 0 atol = 2e-3 @test sum((ShiSimpleSolP[RA.V] .- ShiBench[!, :RA_V]) ./ ShiBench[!, :RA_V]) / length(ShiSimpleSolP.u) ≈ 0 atol = 2e-3 end ## @testset "Shi Model Complex" begin include("ShiParam.jl") ## Start Modelling @independent_variables t ## Shi Heart (with AV stenosis: max AV opening angle = 40 degrees!) @mtkmodel CirculatoryModel begin @components begin heart = ShiHeart(τ=τ, LV.V₀=v0_lv, LV.p₀=p0_lv, LV.Eₘᵢₙ=Emin_lv, LV.Eₘₐₓ=Emax_lv, LV.τ=τ, LV.τₑₛ=τes_lv, LV.τₑₚ=τed_lv, LV.Eshift=0.0, RV.V₀=v0_rv, RV.p₀=p0_rv, RV.Eₘᵢₙ=Emin_rv, RV.Eₘₐₓ=Emax_rv, RV.τ=τ, RV.τₑₛ=τes_rv, RV.τₑₚ=τed_rv, RV.Eshift=0.0, LA.V₀=v0_la, LA.p₀=p0_la, LA.Eₘᵢₙ=Emin_la, LA.Eₘₐₓ=Emax_la, LA.τ=τ, LA.τₑₛ=τpww_la / 2, LA.τₑₚ=τpww_la, LA.Eshift=τpwb_la, RA.V₀=v0_ra, RA.p₀=p0_ra, RA.Eₘᵢₙ=Emin_ra, RA.Eₘₐₓ=Emax_ra, RA.τ=τ, RA.τₑₛ=τpww_ra / 2, RA.τₑₚ=τpww_ra, RA.Eshift=τpwb_ra, AV.CQ=CQ_AV, AV.Kp=Kp_av, AV.Kf=Kf_av, AV.Kb=0.0, AV.Kv=3.5, AV.θmax=40.0 * pi / 180, AV.θmin=5.0 * pi / 180, MV.CQ=CQ_MV, MV.Kp=Kp_mv, MV.Kf=Kf_mv, MV.Kb=0.0, MV.Kv=3.5, MV.θmax=75.0 * pi / 180, MV.θmin=5.0 * pi / 180, TV.CQ=CQ_TV, TV.Kp=Kp_tv, TV.Kf=Kf_tv, TV.Kb=0.0, TV.Kv=3.5, TV.θmax=75.0 * pi / 180, TV.θmin=5.0 * pi / 180, PV.CQ=CQ_PV, PV.Kp=Kp_pv, PV.Kf=Kf_pv, PV.Kb=0.0, PV.Kv=3.5, PV.θmax=75.0 * pi / 180, PV.θmin=5.0 * pi / 180 ) syst_loop = ShiSystemicLoop(SAS.C=Csas, SAS.R=Rsas, SAS.L=Lsas, SAT.C=Csat, SAT.R=Rsat, SAT.L=Lsat, SAR.R=Rsar, SCP.R=Rscp, SVN.C=Csvn, SVN.R=Rsvn ) pulm_loop = ShiPulmonaryLoop(PAS.C=Cpas, PAS.R=Rpas, PAS.L=Lpas, PAT.C=Cpat, PAT.R=Rpat, PAT.L=Lpat, PAR.R=Rpar, PCP.R=Rpcp, PVN.C=Cpvn, PVN.R=Rpvn ) end @equations begin connect(heart.LHout, syst_loop.in) connect(syst_loop.out, heart.RHin) connect(heart.RHout, pulm_loop.in) connect(pulm_loop.out, heart.LHin) end end @mtkbuild circ_sys = CirculatoryModel() u0 = [ circ_sys.heart.LV.V => LV_Vt0 circ_sys.heart.RV.V => RV_Vt0 circ_sys.heart.LA.V => LA_Vt0 circ_sys.heart.RA.V => RA_Vt0 circ_sys.heart.AV.θ => 0 circ_sys.heart.AV.ω => 0 circ_sys.heart.MV.θ => 0 circ_sys.heart.MV.ω => 0 circ_sys.heart.TV.θ => 0 circ_sys.heart.TV.ω => 0 circ_sys.heart.PV.θ => 0 circ_sys.heart.PV.ω => 0 circ_sys.syst_loop.SAS.C.p => pt0sas circ_sys.syst_loop.SAS.L.q => qt0sas circ_sys.syst_loop.SAT.C.p => pt0sat circ_sys.syst_loop.SAT.L.q => qt0sat circ_sys.syst_loop.SVN.C.p => pt0svn circ_sys.pulm_loop.PAS.C.p => pt0pas circ_sys.pulm_loop.PAS.L.q => qt0pas circ_sys.pulm_loop.PAT.C.p => pt0pat circ_sys.pulm_loop.PAT.L.q => qt0pat circ_sys.pulm_loop.PVN.C.p => pt0pvn ] prob = ODEProblem(circ_sys, u0, (0.0, 20.0)) ## @time ShiComplexSol = solve(prob, Tsit5(); reltol=1e-6, abstol=1e-9, saveat=19:0.01:20) # The callbacks prevent saveat from working as intended! So I need to interpolate the results: ShiComplexSolInt = ShiComplexSol(19:0.01:20) ## ## Read benchmark data and compare ShiBench = CSV.read("ShiComplex.csv", DataFrame) @test SciMLBase.successful_retcode(ShiComplexSol) @test sum((ShiComplexSolInt[circ_sys.heart.LV.V] .- ShiBench[!, :LV_V]) ./ ShiBench[!, :LV_V]) / length(ShiComplexSolInt.u) ≈ 0 atol = 1e-3 @test sum((ShiComplexSolInt[circ_sys.heart.RV.V] .- ShiBench[!, :RV_V]) ./ ShiBench[!, :RV_V]) / length(ShiComplexSolInt.u) ≈ 0 atol = 1e-3 @test sum((ShiComplexSolInt[circ_sys.heart.LA.V] .- ShiBench[!, :LA_V]) ./ ShiBench[!, :LA_V]) / length(ShiComplexSolInt.u) ≈ 0 atol = 1e-3 @test sum((ShiComplexSolInt[circ_sys.heart.RA.V] .- ShiBench[!, :RA_V]) ./ ShiBench[!, :RA_V]) / length(ShiComplexSolInt.u) ≈ 0 atol = 1e-3 ## end ## @testset "Bjørdalsbakke" begin ## using ModelingToolkit using CirculatorySystemModels # # A simple single-chamber model # # ![Single chamber, closed-loop, lumped parameter model of the systemic circulation and the left ventricle. The circuit equivalent formulation of the model is depicted, with the pressures of each compartment, as well as most of the mechanical parameters. The model describes three compartments: the left ventricular, arterial and venous compartments. 𝑃𝑡ℎ is the intrathoracic pressure, 𝑃𝑙𝑣 is the left ventricular pressure and 𝐸𝑙𝑣(𝑡) indicates the left ventricular elastance function.](./BjordalsbakkeModelSk # # # This follows Bjørdalsbakke et al. # # Bjørdalsbakke, N.L., Sturdy, J.T., Hose, D.R., Hellevik, L.R., 2022. Parameter estimation for closed-loop lumped parameter models of the systemic circulation using synthetic data. Mathematical Biosciences 343, 108731. https://doi.org/10.1016/j.mbs.2021.108731 # # # Changes from the published version above: # # - Capacitors are replaced by compliances. These are identical to capacitors, but have an additional parameter, the unstrained volume $V_0$, which allows for realistic blood volume modelling. # Compliances have an inlet and an oulet in line with the flow, rather than the ground connector of the dangling capacitor. # - The aortic resistor is combined with the valve (diode) in the `ResistorDiode` element. # # [Jupyter Notebook](./BjordalsbakkeModel.ipynb) # ## Define the parameters # # All the parameters are taken from table 1 of [Bjørdalsbakke2022]. # # Cycle time in seconds # τ = 0.85 # Double Hill parameters for the ventricle # Eₘᵢₙ = 0.03 Eₘₐₓ = 1.5 n1LV = 1.32 n2LV = 21.9 Tau1fLV = 0.303 * τ Tau2fLV = 0.508 * τ # Resistances and Compliances # R_s = 1.11 C_sa = 1.13 C_sv = 11.0 # Valve parameters # # Aortic valve basic Zao = 0.033 # Mitral valve basic Rmv = 0.006 # Inital Pressure (mean cardiac filling pressure) MCFP = 7.0 # ## Calculating the additional `k` parameter # # The ventricle elastance is modelled as: # # $$E_{l v}(t)=\left(E_{\max }-E_{\min }\right) e(t)+E_{\min }$$ # # where $e$ is a double-Hill function, i.e., two Hill-functions, which are multiplied by each other: # # $$e(\tau)= k \times \frac{\left(\tau / \tau_1\right)^{n_1}}{1+\left(\tau / \tau_1\right)^{n_1}} \times \frac{1}{1+\left(\tau / \tau_2\right)^{n_2}}$$ # # $k$ is a scaling factor to assure that $e(t)$ has a maximum of $e(t)_{max} = 1$: # # $$k = \max \left(\frac{\left(\tau / \tau_1\right)^{n_1}}{1+\left(\tau / \tau_1\right)^{n_1}} \times \frac{1}{1+\left(\tau / \tau_2\right)^{n_2}} \right)^{-1}$$ . # nstep = 1000 t = LinRange(0, τ, nstep) kLV = 1 / maximum((t ./ Tau1fLV) .^ n1LV ./ (1 .+ (t ./ Tau1fLV) .^ n1LV) .* 1 ./ (1 .+ (t ./ Tau2fLV) .^ n2LV)) # ## Set up the model elements # # Set up time as a parameter `t` # @independent_variables t # Heart is modelled as a single chamber (we call it `LV` for "Left Ventricle" so the model can be extended later, if required): # @named LV = DHChamber(V₀=0.0, Eₘₐₓ=Eₘₐₓ, Eₘᵢₙ=Eₘᵢₙ, n₁=n1LV, n₂=n2LV, τ=τ, τ₁=Tau1fLV, τ₂=Tau2fLV, k=kLV, Eshift=0.0, inP=true) # The two valves are simple diodes with a small resistance # (resistance is needed, since perfect diodes would connect two elastances/compliances, which will lead to unstable oscillations): # @named AV = ResistorDiode(R=Zao) @named MV = ResistorDiode(R=Rmv) # The main components of the circuit are 1 resistor `Rs` and two compliances for systemic arteries `Csa`, # and systemic veins `Csv` (names are arbitrary). # @named Rs = Resistor(R=R_s) @named Csa = Compliance(C=C_sa, inP=true, has_ep=true, has_variable_ep=true) # @named Csv = Compliance(C=C_sv, inV=true, has_ep=true) @named Csv = Elastance(E=1/C_sv, inP=false) # _Note: testing different parameters and formulations here. May need to do all of them separately to really do a unit test. # # ## Build the system # # ### Connections # # The system is built using the `connect` function. `connect` sets up the Kirchhoff laws: # # - pressures are the same in all connected branches on a connector # - sum of all flow rates at a connector is zero # # The resulting set of Kirchhoff equations is stored in `circ_eqs`: # circ_eqs = [ connect(LV.out, AV.in) connect(AV.out, Csa.in) connect(Csa.out, Rs.in) connect(Rs.out, Csv.in) connect(Csv.out, MV.in) connect(MV.out, LV.in) Csa.ep.p ~ 0 ] # ### Add the component equations # # In a second step, the system of Kirchhoff equations is completed by the component equations (both ODEs and AEs), resulting in the full, overdefined ODE set `circ_model`. # # _Note: we do this in two steps._ # @named _circ_model = ODESystem(circ_eqs, t) @named circ_model = compose(_circ_model, [LV, AV, MV, Rs, Csa, Csv]) # ### Simplify the ODE system # # The crucial step in any acausal modelling is the sympification and reduction of the OD(A)E system to the minimal set of equations. ModelingToolkit.jl does this in the `structural_simplify` function. # circ_sys = structural_simplify(circ_model) # `circ_sys` is now the minimal system of equations. In this case it consists of 3 ODEs for the three pressures. # # _Note: `structural_simplify` reduces and optimises the ODE system. It is, therefore, not always obvious, which states it will use and which it will drop. We can use the `states` and `observed` function to check this. It is recommended to do this, since small changes can reorder states, observables, and parameters._ # # States in the system are now: #unknowns(circ_sys) # Observed parameters - the system will drop these from the ODE system that is solved, but it keeps all the algebraic equations needed to calculate them in the system object, as well as the `ODEProblem` and solution object - are: #observed(circ_sys) # And the parameters (these could be reordered, so check these, too): #parameters(circ_sys) # ### Define the ODE problem # # First defined initial conditions `u0` and the time span for simulation: # u0 = [ LV.p => MCFP Csa.p => MCFP Csv.p => MCFP ] tspan = (0, 20) # in this case we use the mean cardiac filling pressure as initial condition, and simulate 20 seconds. # # Then we can define the problem: # prob = ODEProblem(circ_sys, u0, tspan) # ## Simulate # # The ODE problem is now in the MTK/DifferentialEquations.jl format and we can use any DifferentialEquations.jl solver to solve it: # @time BBsol = solve(prob, Vern7(), reltol=1e-6, abstol=1e-9, saveat=(19:0.01:20)) # BBsol = sol(19:0.01:20) BBbench = CSV.read("BB.csv", DataFrame) @test SciMLBase.successful_retcode(BBsol) @test sum((BBsol[LV.V] .- BBbench[!, :LV_V]) ./ BBbench[!, :LV_V]) / length(BBsol.u) ≈ 0 atol = 1.5e-3 @test sum((BBsol[Csa.p] .- BBbench[!, :Csa_p]) ./ BBbench[!, :Csa_p]) / length(BBsol.u) ≈ 0 atol = 1.5e-3 @test sum((BBsol[Csv.p] .- BBbench[!, :Csv_p]) ./ BBbench[!, :Csv_p]) / length(BBsol.u) ≈ 0 atol = 1.5e-3 ## end # Helpers to set up the tests # df = DataFrame( # t=ShiSol.t, # LV_V=ShiSol[Heart.LV.V], # RV_V=ShiSol[Heart.RV.V], # LA_V=ShiSol[Heart.LA.V], # RA_V=ShiSol[Heart.RA.V], # SAS_S_p=ShiSol[SystLoop.SAS.C.p], # SAS_L_q=ShiSol[SystLoop.SAS.L.q], # SAT_S_p=ShiSol[SystLoop.SAT.C.p], # SAT_L_q=ShiSol[SystLoop.SAT.L.q] oj, # SVN_C_p=ShiSol[SystLoop.SVN.C.p], # PAS_S_p=ShiSol[PulmLoop.PAS.C.p], # PAS_L_q=ShiSol[PulmLoop.PAS.L.q], # PAT_S_p=ShiSol[PulmLoop.PAT.C.p], # PAT_L_q=ShiSol[PulmLoop.PAT.L.q], # PVN_C_p=ShiSol[PulmLoop.PVN.C.p] # ) # CSV.write("ShiComplex.csv", df) ##
CirculatorySystemModels
https://github.com/TS-CUBED/CirculatorySystemModels.jl.git
[ "MIT" ]
0.4.0
b427a3f71e8dbc850927046e6a323aea46907469
docs
1439
# CirculatorySystemModels CirculatorySystemModels.jl is a Julia modelling library, that builds on the ModelingToolkit.jl package, which is part of Julia's SciML framework. It allows efficient and quick implementation of lumped parameter models using an acausal modelling approach. Due to just-in-time compilation and multiple dispatch, models created using this framework achieve a speed-up of one to two orders of magnitude compared to Matlab and Python, and comparable speeds to native C implementations, while using a high-level approach. The library is modular and extensible. We believe this library will be useful (dare we say, could be a game changer?) for many colleagues working in this field. [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://TS-CUBED.github.io/CirculatorySystemModels.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://TS-CUBED.github.io/CirculatorySystemModels.jl/dev/) [![Build Status](https://github.com/TS-CUBED/CirculatorySystemModels.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/TS-CUBED/CirculatorySystemModels.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/TS-CUBED/CirculatorySystemModels.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/TS-CUBED/CirculatorySystemModels.jl) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.7497881.svg)](https://doi.org/10.5281/zenodo.7497881)
CirculatorySystemModels
https://github.com/TS-CUBED/CirculatorySystemModels.jl.git
[ "MIT" ]
0.4.0
b427a3f71e8dbc850927046e6a323aea46907469
docs
8316
--- title: CirculatorySystemModels.jl - A ModelingToolkit Library for 0D-Lumped-Parameter Models of the Cardiovascular Circulation tags: - Julia - ModelingToolkit - cardio-vascular - lumped parameter - circulation - acausal - patient-specific authors: - name: Torsten Schenkel orcid: 0000-0001-5560-1872 equal-contrib: true affiliation: "1, 2" # (Multiple affiliations must be quoted) - name: Harry Saxton orcid: 0000-0001-7433-6154 equal-contrib: true # (This is how you can denote equal contributions between multiple authors) affiliation: 2 affiliations: - name: Department of Engineering and Mathematics, Sheffield Hallam University, UK index: 1 - name: Materials and Engineering Research Institute MERI, Sheffield Hallam University, UK index: 2 bibliography: paper.bib --- # Summary Within the realm of circulatory mechanics, lumped parameter (0D) modelling [@shi2011review] offers the unique ability to examine both cardiac function and global hemodynamics within the context of a single model. Due to the interconnected nature of the cardiovascular system, being able to quantify both is crucial for the effective prediction and diagnosis of cardiovascular diseases. Lumped parameter modelling derives one of its main strengths from the minimal computation time required to solve ODEs and algebraic equations. Furthermore, the relatively simple structure of the model allows most personalized simulations to be automated. Meaning the ability to embed these lumped parameter models into a clinical workflow could one day become trivial [@bozkurt2022patient; @holmes2018clinical]. _CirculatorySystemModels.jl_ is a [Julia](https://www.julialang.org) [@bezanson2017julia] package, built on the acausal modelling framework provided by _ModelingToolkit.jl_ [@ma2021modelingtoolkit], containing all the common elements plus more needed for effective and realistic lumped parameter modelling. Currently _CirculatorySystemModels.jl_ supports common elements such as a capacitor, resistor, inductance and diodes [@westerhof2010snapshots], which act as simple valve functions. We also make extensions to the common elements to include constant compliance chambers, non-linear and Poiseuille resistances [@pfitzner1976poiseuille]. Plus the Double-Hill, and Shi activation functions which are used as the cardiac driving chamber elastance's [@stergiopulos1996determinants; @korakianitis2006numerical]. We also include non-linear valve functions from Shi, and Mynard [@korakianitis2006numerical; @mynard2012simple]. Alongisde individual components we also have created a collection of sub compartments including, full circulatory, systemic, pulmonary and heart models. We then also break down these full systems into collections of elements such as the famous Windkessel models [@westerhof2009arterial] to give the user full control over their modelling. Users can easily add new elements to _CirculatorySystemModels.jl_ using _ModelingToolkit.jl_ functions. # Statement of need Lumped parameter modelling has become an essential part of contributing strongly to our understanding of circulatory physiology. Lumped parameter models have been used in many different contexts across cardiovascular medicine such as aortic valve stenosis, neonatal physiology and detection of coronary artery disease [@laubscher2022dynamic; @sepulveda2022openmodelica; @dash2022non]. There already exists some popular packages within both Simulink and Modelica such as the "Cardiovascular library for lumped-parameter modeling" [@rosalia2021object] and "Physiolibary" [@matejak2014physiolibrary] respectively. These languages operate a block orientated "drag and drop" approach with Modelica been the common choice due to it's acausal modelling approach [@schweiger2020modeling]. Other languages, based on XML, exist for lumped parameter modelling such as CellML [@cuellar2003overview] and SBML [@hucka2003systems], while these are great for exchanging models they are often difficult to implement and model analysis is limited. A common theme within all current lumped parameter modelling software is the systems inability to deal with complex event handling and non-linear components. Being based on _ModelingToolkit.jl_, _CirculatorySystemModels.jl_ overcomes these limitations by leveraging the wider _SciML_ framework. _CirculatorySystemModels.jl_ provides the Julia community with a quick and effective way to perform lumped parameter modelling, being the first within the field to leverage both multiple dispatch and JIT compilation. As a result of Julia's architecture, as the complexity of the model increases the model analysis time does not become unreasonable. Other packages exist which allow users to import models from other frameworks, CellMLToolkit.jl [@CellMLToolKit] and OpenModelica.jl [@tinnerholm2022modular]. _CirculatorySystemModels.jl_ goes beyond these by providing a lumped parameter modelling library with seamless integration with the SciML framework [@Dixit2022; @rackauckas2020universal; @rackauckas2017differentialequations] which allows for extensive and efficient model analysis. Since both the modelling library and the framework it is built on are pure Julia, new components can be developed in a transparent and consistent manner. Using Julia, _CirculatorySystemModels.jl_ models compute significantly faster than models implemented in Matlab or Python, and at the same speed as specialised C-code (\autoref{tbl:benchmarks}). This allows the models to run in real-time, and opens the possibility of global parameter optimisation, global sensitivity analysis. The modular, acausal approach also allows quick and straightforward changes to the topology of the model, which can be automated using meta-programming techniques. # Example Validation and benchmarking was performed on a full, 4-chamber, model of the circulation system proposed by [@korakianitis2006numerical] (\autoref{fig-shi-diagram}). This model was previously implemented in CellML [@Shi2018], which makes it an ideal candidate for validation of the new modeling library^[Note that CellML does not allow the callbacks which are required for the extended valve model, so only the simplified model can be compared. The _CirculatorySystemModels.jl_ implementation of [@korakianitis2006numerical] includes the extended model as well.]. Model results from _CirculatorySystemModels.jl_ model (\autoref{fig:shi-results}) are a perfect match for the CellML model. The CellML model was run in three versions: (1) imported into _ModelingToolkit.jl_ using _CellMLToolKit.jl_, (2) Matlab code exported from CellML, (3) Python/SciPy code exported from CellML. Speedup against Matlab and Python is 2 and 3 orders of magnitude, respectively (\autoref{tbl:benchmarks}). ![4-chamber, full-circulationmodel from [@korakianitis2006numerical]. Groupings in dashed rectangles are implemented as compound subsystems, which in turn have been composed from individual resistor, compliance, and inertance elements. Ventricles and Atria implemented as time-variable elastances. Both simplified and dynamic, non-linear valve models are implemented. \label{fig-shi-diagram}](fig-shi-diagram.pdf){width=100%} | CirculatorySystemModels.jl | CellMLToolkit.jl | Matlab (ode45) | Python (scipy.solve) | |:--------------------:|:----------------:|:--------------:|:--------------------:| | 1x | 1.6x | 272x | 963x | : Simulation time comparison for a single run of [@korakianitis2006numerical]. CirculatorySystemModels.jl model was implemented from scratch. CellML model was imported into ModelingToolkit.jl using CellMLToolkit.jl, Matlab and Python models were created from the CellML code and downloaded from the [CellML Model Repository](http://models.cellml.org/exposure/c49d416ae3a5132882e6ea7479ba50f5/ModelMain.cellml/view). \label{tbl:benchmarks} ![(a-f) Results for simplified model [@korakianitis2006numerical] implemented in _CirculatorySystemModels.jl_. These results match the results from the CellML models (not shown). \label{fig:shi-results}](fig-shi-results.pdf){width=100%} # Acknowledgements Harry Saxton is supported by a Sheffield Hallam University Graduate Teaching Assistant PhD scholarship. # References {-}
CirculatorySystemModels
https://github.com/TS-CUBED/CirculatorySystemModels.jl.git
[ "MIT" ]
0.4.0
b427a3f71e8dbc850927046e6a323aea46907469
docs
149
```@meta CurrentModule = CirculatorySystemModels ``` ## Method Index (AutoDoc) ```@index ``` ```@autodocs Modules = [CirculatorySystemModels] ```
CirculatorySystemModels
https://github.com/TS-CUBED/CirculatorySystemModels.jl.git
[ "MIT" ]
0.4.0
b427a3f71e8dbc850927046e6a323aea46907469
docs
3247
```@meta - CurrentModule = CirculatorySystemModels ``` # CirculatorySystemModels Documentation for [CirculatorySystemModels](https://github.com/TS-CUBED/CirculatorySystemModels.jl). ## An acausal modelling library for Circulation Models CirculatorySystemModels.jl is an acausal modelling library for zero-dimensional, or _lumped parameter_ modelling of the circulatory system for [ModelingToolkit.jl (MTK)](https://github.com/SciML/ModelingToolkit.jl). Integration into MTK and the [SciML](https://docs.sciml.ai/Overview/stable/) environment enables efficient solver methods ([DifferentialEquations.jl](https://diffeq.sciml.ai/latest/)), local and global parameter optimisation ([Optimization.jl](https://optimization.sciml.ai/stable/)), Sensitivity Analysis ([GlobalSensitivity.jl](https://gsa.sciml.ai/stable/)), and many other features in the SciML framework. The acausal modelling approach in MTK was chosen to support a "if you can draw it you can model it" paradigm. The main model states that are modelled throughout these models are: - _volume flow rate_ (at nodes and through elements): $q\ [\mathrm{cm^{3}/s}]$ ($[\mathrm{ml/s}]$). Flow into an element is positive, flow out of an element is negative. - _pressure_ (at nodes): $p\ [\mathrm{mm_{{Hg}}}]$. - _pressure difference_ (over elements): $\Delta p\ [\mathrm{mm_{{Hg}}}]$. The pressure difference is following the usual fluid mechanical definition $\Delta p = p_{out} - p_{in}$. and is usually negative in flow direction! ### Units There are many unit systems that are used in circulation models. This modelling system uses the most common one, which uses $\mathrm{mm_{Hg}}$ for pressures and $\mathrm{ml/s}$ or $\mathrm{cm^3/s}$ for flow rates. This is a variation of the $\mathrm{[g, cm, s]}$ system, which could be called $\mathrm{[g, cm, s, mm_{Hg}]}$ system. Different model components are developed based on publications that use different unit systems. In those cases we attempted to keep the equations in the published system and do unit conversions transparently within the component function, while the outside API stays in the $\mathrm{[g, cm, s, mm_{Hg}]}$ system. All model parameters are to be given in the $\mathrm{[g, cm, s, mm_{Hg}]}$ system unless otherwise specified in the component documentation. ### Main variables The flow is modelled in terms of pressure $p$ and flow $q$. In many 0D models of the circulation system these are replaced by the electrical terms of voltage $v$ and current $i$. For this model we want to use the physiologically relevant parameters. This also avoids the confusion of using the same symbol $v$ to denote both, potential at a connection, and the difference in potential over a component, as is commonly done in electrical analogon models. To denote the pressure drop over a component, this model uses the symbol $\Delta p$. Time is the independent variable in all the symbolic operations, so needs to be defined as such (do not use `t` as a variable name elsewhere!). This can be set using the `@independent_variables` macro. ```julia @independent_variables t ``` ### Compatibility From version 0.4.0 CirculatorySystemModels is only compatible with Julia 1.10 and up, and with MTK 9 and higher.
CirculatorySystemModels
https://github.com/TS-CUBED/CirculatorySystemModels.jl.git
[ "MIT" ]
0.4.0
b427a3f71e8dbc850927046e6a323aea46907469
docs
8351
```@meta EditURL = "BjordalsbakkeModel.jl" ``` # Importing the required packages ````@example BjordalsbakkeModel using CirculatorySystemModels using ModelingToolkit using OrdinaryDiffEq using Plots import DisplayAs ```` # A simple single-chamber model ![Single chamber, closed-loop, lumped parameter model of the systemic circulation and the left ventricle. The circuit equivalent formulation of the model is depicted, with the pressures of each compartment, as well as most of the mechanical parameters. The model describes three compartments: the left ventricular, arterial and venous compartments. 𝑃𝑡ℎ is the intrathoracic pressure, 𝑃𝑙𝑣 is the left ventricular pressure and 𝐸𝑙𝑣(𝑡) indicates the left ventricular elastance function.](./BjordalsbakkeModelSketch.png) This follows Bjørdalsbakke et al. Bjørdalsbakke, N.L., Sturdy, J.T., Hose, D.R., Hellevik, L.R., 2022. Parameter estimation for closed-loop lumped parameter models of the systemic circulation using synthetic data. Mathematical Biosciences 343, 108731. https://doi.org/10.1016/j.mbs.2021.108731 Changes from the published version above: - Capacitors are replaced by compliances. These are identical to capacitors, but have an additional parameter, the unstrained volume $V_0$, which allows for realistic blood volume modelling. Compliances have an inlet and an oulet in line with the flow, rather than the ground connector of the dangling capacitor. - The aortic resistor is combined with the valve (diode) in the `ResistorDiode` element. [Jupyter Notebook](./BjordalsbakkeModel.ipynb) ## Define the parameters All the parameters are taken from table 1 of [Bjørdalsbakke2022]. Cycle time in seconds ````@example BjordalsbakkeModel τ = 0.85 ```` Double Hill parameters for the ventricle ````@example BjordalsbakkeModel Eₘᵢₙ = 0.03 Eₘₐₓ = 1.5 n1LV = 1.32; n2LV = 21.9; Tau1fLV = 0.303 * τ; Tau2fLV = 0.508 * τ ```` Resistances and Compliances ````@example BjordalsbakkeModel R_s = 1.11 C_sa = 1.13 C_sv = 11.0 ```` Valve parameters Aortic valve basic ````@example BjordalsbakkeModel Zao = 0.033 ```` Mitral valve basic ````@example BjordalsbakkeModel Rmv = 0.006 ```` Inital Pressure (mean cardiac filling pressure) ````@example BjordalsbakkeModel MCFP = 7.0 ```` ## Calculating the additional `k` parameter The ventricle elastance is modelled as: $$E_{l v}(t)=\left(E_{\max }-E_{\min }\right) e(t)+E_{\min }$$ where $e$ is a double-Hill function, i.e., two Hill-functions, which are multiplied by each other: $$e(\tau)= k \times \frac{\left(\tau / \tau_1\right)^{n_1}}{1+\left(\tau / \tau_1\right)^{n_1}} \times \frac{1}{1+\left(\tau / \tau_2\right)^{n_2}}$$ and $k$ is a scaling factor to assure that $e(t)$ has a maximum of $e(t)_{max} = 1$: $$k = \max \left(\frac{\left(\tau / \tau_1\right)^{n_1}}{1+\left(\tau / \tau_1\right)^{n_1}} \times \frac{1}{1+\left(\tau / \tau_2\right)^{n_2}} \right)^{-1}$$ ````@example BjordalsbakkeModel nstep = 1000 t = LinRange(0, τ, nstep) kLV = 1 / maximum((t ./ Tau1fLV).^n1LV ./ (1 .+ (t ./ Tau1fLV).^n1LV) .* 1 ./ (1 .+ (t ./ Tau2fLV).^n2LV)) ```` ## Set up the model elements Set up time as a variable `t` ````@example BjordalsbakkeModel @variables t ```` Heart is modelled as a single chamber (we call it `LV` for "Left Ventricle" so the model can be extended later, if required): ````@example BjordalsbakkeModel @named LV = DHChamber(V₀ = 0.0, Eₘₐₓ=Eₘₐₓ, Eₘᵢₙ=Eₘᵢₙ, n₁=n1LV, n₂=n2LV, τ = τ, τ₁=Tau1fLV, τ₂=Tau2fLV, k = kLV, Eshift=0.0) ```` The two valves are simple diodes with a small resistance (resistance is needed, since perfect diodes would connect two elastances/compliances, which will lead to unstable oscillations): ````@example BjordalsbakkeModel @named AV = ResistorDiode(R=Zao) @named MV = ResistorDiode(R=Rmv) ```` The main components of the circuit are 1 resistor `Rs` and two compliances for systemic arteries `Csa`, and systemic veins `Csv` (names are arbitrary). _Note: one of the compliances is defined in terms of $dV/dt$ using the option `inV = true`. The other without that option is in $dp/dt$._ ````@example BjordalsbakkeModel @named Rs = Resistor(R=R_s) @named Csa = Compliance(C=C_sa) @named Csv = Compliance(C=C_sv, inP=true) ```` ## Build the system ### Connections The system is built using the `connect` function. `connect` sets up the Kirchhoff laws: - pressures are the same in all connected branches on a connector - sum of all flow rates at a connector is zero The resulting set of Kirchhoff equations is stored in `circ_eqs`: ````@example BjordalsbakkeModel circ_eqs = [ connect(LV.out, AV.in) connect(AV.out, Csa.in) connect(Csa.out, Rs.in) connect(Rs.out, Csv.in) connect(Csv.out, MV.in) connect(MV.out, LV.in) ] ```` ### Add the component equations In a second step, the system of Kirchhoff equations is completed by the component equations (both ODEs and AEs), resulting in the full, overdefined ODE set `circ_model`. _Note: we do this in two steps._ ````@example BjordalsbakkeModel @named _circ_model = ODESystem(circ_eqs, t) @named circ_model = compose(_circ_model, [LV, AV, MV, Rs, Csa, Csv]) ```` ### Simplify the ODE system The crucial step in any acausal modelling is the sympification and reduction of the OD(A)E system to the minimal set of equations. ModelingToolkit.jl does this in the `structural_simplify` function. ````@example BjordalsbakkeModel circ_sys = structural_simplify(circ_model) ```` `circ_sys` is now the minimal system of equations. In this case it consists of 3 ODEs for the ventricular volume and the systemic and venous pressures. _Note: this reduces and optimises the ODE system. It is, therefore, not always obvious, which states it will use and which it will drop. We can use the `states` and `observed` function to check this. It is recommended to do this, since small changes can reorder states, observables, and parameters._ States in the system are now: ````@example BjordalsbakkeModel unknowns(circ_sys) ```` Observed variables - the system will drop these from the ODE system that is solved, but it keeps all the algebraic equations needed to calculate them in the system object, as well as the `ODEProblem` and solution object - are: ````@example BjordalsbakkeModel observed(circ_sys) ```` And the parameters (these could be reordered, so check these, too): ````@example BjordalsbakkeModel parameters(circ_sys) ```` ### Define the ODE problem First defined initial conditions `u0` and the time span for simulation: _Note: the initial conditions are defined as a parameter map, rather than a vector, since the parameter map allows for changes in order. This map can include non-existant states (like `LV.p` in this case), which allows for exchanging the compliances or the ventricle for one that's defined in terms of $dp/dt$)._ ````@example BjordalsbakkeModel u0 = [ LV.p => MCFP LV.V => MCFP/Eₘᵢₙ Csa.p => MCFP Csa.V => MCFP*C_sa Csv.p => MCFP Csv.V => MCFP*C_sv ] ```` ````@example BjordalsbakkeModel tspan = (0, 20) ```` in this case we use the mean cardiac filling pressure as initial condition, and simulate 20 seconds. Then we can define the problem: ````@example BjordalsbakkeModel prob = ODEProblem(circ_sys, u0, tspan) ```` ## Simulate The ODE problem is now in the MTK/DifferentialEquations.jl format and we can use any DifferentialEquations.jl solver to solve it: ````@example BjordalsbakkeModel sol = solve(prob, Vern7(), reltol=1e-12, abstol=1e-12); nothing #hide ```` ## Results ````@example BjordalsbakkeModel p1 = plot(sol, idxs=[LV.p, Csa.in.p], tspan=(16 * τ, 17 * τ), xlabel = "Time [s]", ylabel = "Pressure [mmHg]", hidexaxis = nothing) # Make a line plot p2 = plot(sol, idxs=[LV.V], tspan=(16 * τ, 17 * τ),xlabel = "Time [s]", ylabel = "Volume [ml]", linkaxes = :all) p3 = plot(sol, idxs=[Csa.in.q,Csv.in.q], tspan=(16 * τ, 17 * τ),xlabel = "Time [s]", ylabel = "Flow rate [ml/s]", linkaxes = :all) p4 = plot(sol, idxs=(LV.V, LV.p), tspan=(16 * τ, 17 * τ),xlabel = "Volume [ml]", ylabel = "Pressure [mmHg]", linkaxes = :all) img = plot(p1, p2, p3, p4; layout=@layout([a b; c d]), legend = true) img = DisplayAs.Text(DisplayAs.PNG(img)) img ```` --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
CirculatorySystemModels
https://github.com/TS-CUBED/CirculatorySystemModels.jl.git
[ "MIT" ]
0.1.3
25cc3803f1030ab855e383129dcd3dc294e322cc
code
238
using Documenter using ContextVariablesX makedocs( sitename = "ContextVariablesX", format = Documenter.HTML(), modules = [ContextVariablesX], ) deploydocs(; repo = "github.com/tkf/ContextVariablesX.jl", push_preview = true)
ContextVariablesX
https://github.com/tkf/ContextVariablesX.jl.git
[ "MIT" ]
0.1.3
25cc3803f1030ab855e383129dcd3dc294e322cc
code
10572
module ContextVariablesX # Re-exporting `Base` functions so that Documenter knows what's public: export @contextvar, ContextVar, get, getindex, snapshot_context, with_context using Logging: AbstractLogger, Logging using UUIDs: UUID, UUIDs, uuid4 if isdefined(UUIDs, :uuid5) using UUIDs: uuid5 else using Compat: uuid5 end include("payloadlogger.jl") function _ContextVar end # `ContextVar` object itself does not hold any data (except the # default value). It is actually just a key into the task-local # context storage. """ ContextVar{T} Context variable type. This is the type of the object `var` created by [`@contextvar var`](@ref @contextvar). This acts as a reference to the value stored in a task-local context. The macro `@contextvar` is the only public API to construct this object. !!! warning It is unspecified if this type is concrete or not. It may be changed to an abstract type and/or include more type parameters in the future. """ struct ContextVar{T} name::Symbol _module::Module key::UUID has_default::Bool default::T global _ContextVar _ContextVar(name, _module, key, ::Type{T}, default) where {T} = new{T}(name, _module, key, true, default) _ContextVar(name, _module, key, ::Type{T}) where {T} = new{T}(name, _module, key, false) end _ContextVar(name, _module, key, ::Nothing, default) = _ContextVar(name, _module, key, typeof(default), default) _ContextVar(name, _module, key, ::Nothing) = _ContextVar(name, _module, key, Any) #= baremodule _EmptyModule end ContextVar{T}(name::Symbol, default) where {T} = _ContextVar(name, _EmptyModule, uuid4(), T, default) ContextVar{T}(name::Symbol) where {T} = _ContextVar(name, _EmptyModule, uuid4(), T) ContextVar(name::Symbol, default) = ContextVar{typeof(default)}(name, default) ContextVar(name::Symbol) = ContextVar{Any}(name) """ ContextVar{T}(name::Symbol [, default]) ContextVar(name::Symbol [, default]) Define *local* context variable. !!! warning Using this constructor to define context variable in the global name space (i.e., `const var = ContextVar(:var)`) is not recommended because this is not safe to be used with Distribute.jl. Use `@contextvar var` instead. """ ContextVar =# Base.eltype(::Type{ContextVar{T}}) where {T} = T function Base.show(io::IO, var::ContextVar) print(io, ContextVar) if eltype(var) !== Any && !(var.has_default && typeof(var.default) === eltype(var)) print(io, '{', eltype(var), '}') end print(io, '(', repr(var.name)) if var.has_default print(io, ", ") show(io, var.default) end print(io, ')') end function Base.show(io::IO, ::MIME"text/plain", var::ContextVar) print(io, var._module, '.', var.name, " :: ContextVar") if get(io, :compact, false) === false print(io, " [", var.key, ']') if get(var) === nothing print(io, " (not assigned)") else print(io, " => ") show(IOContext(io, :compact => true), MIME"text/plain"(), var[]) end end end # The primitives that can be monkey-patched to play with new context # variable storage types: """ merge_ctxvars(ctx::Union{Nothing,T}, kvs) -> ctx′:: Union{Nothing,T} !!! warning This is not a public API. This documentation is for making it easier to experiment with different implementations of the context variable storage backend, by monkey-patching it at run-time. When this function is monkey-patched, `ctxvars_type` should also be monkey-patched to return the type `T`. The first argument `ctx` is either `nothing` or a dict-like object of type `T` where its `keytype` is `UUID` and `valtype` is `Any`. The second argument `kvs` is an iterable of `Pair{UUID,<:Union{Some,Nothing}}` values. Iterable `kvs` must have length. If `ctx` is `nothing` and `kvs` is non-empty, `merge_ctxvars` creates a new instance of `T`. If `ctx` is not `nothing`, it returns a shallow-copy `ctx′` of `ctx` where `k => v` is inserted to `ctx′` for each `k => Some(v)` in `kvs` and `k` is deleted from `ctx′` for each `k => nothing` in `kvs`. """ function merge_ctxvars(ctx, kvs) # Assumption: eltype(kvs) <: Pair{UUID,<:Union{Some,Nothing}} if isempty(kvs) return ctx else # Copy-or-create-on-write: vars = ctx === nothing ? ctxvars_type()() : copy(ctx) for (k, v) in kvs if v === nothing delete!(vars, k) else vars[k] = something(v) end end isempty(vars) && return nothing # should we? return vars end end ctxvars_type() = Dict{UUID,Any} _ctxvars_type() = Union{Nothing,ctxvars_type()} get_task_ctxvars() = _get_task_ctxvars()::_ctxvars_type() new_merged_ctxvars(kvs) = merge_ctxvars( get_task_ctxvars(), ( k.key => v === nothing ? v : Some(convert(eltype(k), something(v))) for (k, v) in kvs ), )::_ctxvars_type() struct _NoValue end """ get(var::ContextVar{T}) -> Union{Some{T},Nothing} Return `Some(value)` if `value` is assigned to `var`. Return `nothing` if unassigned. """ function Base.get(var::ContextVar{T}) where {T} ctx = get_task_ctxvars() if ctx === nothing var.has_default && return Some(var.default) return nothing end if var.has_default return Some(get(ctx, var.key, var.default)::T) else y = get(ctx, var.key, _NoValue()) y isa _NoValue || return Some(ctx[var.key]::T) end return nothing end """ getindex(var::ContextVar{T}) -> value::T Return the `value` assigned to `var`. Throw a `KeyError` if unassigned. """ function Base.getindex(var::ContextVar{T}) where {T} maybe = get(var) maybe === nothing && throw(KeyError(var)) return something(maybe)::T end """ genkey(__module__::Module, varname::Symbol) -> Union{UUID,Nothing}. Generate a stable UUID for a context variable `__module__.\$varname`. """ function genkey(__module__::Module, varname::Symbol) fullpath = push!(collect(fullname(__module__)), varname) if any(x -> occursin(".", string(x)), fullpath) throw(ArgumentError( "Modules and variable names must not contain a dot:\n" * join(fullpath, "\n"), )) end pkgid = Base.PkgId(__module__) if pkgid.uuid === nothing return nothing end return uuid5(pkgid.uuid, join(fullpath, '.')) end """ @contextvar var[::T] [= default] Declare a context variable named `var`. The type constraint `::T` and the default value `= default` are optional. If the default value is given without the type constraint `::T`, its type `T = typeof(default)` is used. !!! warning Context variables defined outside a proper package does not work with `Distributed`. # Examples Top-level context variables needs to be declared in a package: ```julia module MyPackage @contextvar cvar1 @contextvar cvar2 = 1 @contextvar cvar3::Int end ``` """ macro contextvar(ex0) ex = ex0 if Meta.isexpr(ex, :(=)) length(ex.args) != 2 && throw(ArgumentError("Unsupported syntax:\n$ex0")) ex, default = ex.args args = Any[esc(default)] else args = [] end if Meta.isexpr(ex, :(::)) length(ex.args) != 2 && throw(ArgumentError("Malformed input:\n$ex0")) ex, vartype = ex.args pushfirst!(args, esc(vartype)) else pushfirst!(args, nothing) end if !(ex isa Symbol) if ex === ex0 throw(ArgumentError("Unsupported syntax:\n$ex0")) else throw(ArgumentError(""" Not a variable name: $ex Input: $ex0 """)) end end varname = QuoteNode(ex) key = genkey(__module__, ex) if key === nothing if isinteractive() && _WARN_DYNAMIC_KEY[] @warn ( "Using `@contextvar` outside a package is discouraged except" * " for interactive exploration or quick scripts. Context" * " variables created outside a proper package do not have " * " consistent ID and cannot be used with `Distributed`." ) maxlog=1 end # Creating a UUID at macro expansion time because: # * It would be a memory leak it were created at run-time because # context variable storage can be filled with UUIDs created at # run-time. # * Creating it at run-time is doable with function-based interface like # `ContextVar(:name, default)`. key = uuid4() end return Expr( :const, :($(esc(ex)) = _ContextVar($varname, $__module__, $key, $(args...))), ) end # A hack to make doctest easier const _WARN_DYNAMIC_KEY = Ref(true) """ with_context(f, var1 => value1, var2 => value2, ...) with_context(f, pairs) Run `f` in a context with given values set to the context variables. Variables specified in this form are rolled back to the original value when `with_context` returns. It act like a dynamically scoped `let`. If `nothing` is passed as a value, corresponding context variable is cleared; i.e., it is unassigned or takes the default value. Use `Some(value)` to set `value` if `value` can be `nothing`. with_context(f, nothing) Run `f` in a new empty context. All variables are rewind to the original values when `with_context` returns. Note that ```julia var2[] = value2 with_context(var1 => value1) do @show var2[] # shows value2 var3[] = value3 end @show var3[] # shows value3 ``` and ```julia var2[] = value2 with_context(nothing) do var1[] = value1 @show var2[] # shows default (or throws) var3[] = value3 end @show var3[] # does not show value3 ``` are not equivalent. """ with_context with_context(f, kvs::Pair{<:ContextVar}...) = with_task_ctxvars(f, new_merged_ctxvars(kvs)) with_context(f, ::Nothing) = with_task_ctxvars(f, nothing) struct ContextSnapshot{T} vars::T end # TODO: Do we need to implement `Dict{ContextVar}(::ContextSnapshot)`? # This requires storing UUID-to-ContextVar mapping somewhere. """ snapshot_context() -> snapshot::ContextSnapshot Get a snapshot of a context that can be passed to [`with_context`](@ref) to run a function inside the current context at later time. """ snapshot_context() = ContextSnapshot(get_task_ctxvars()) with_context(f, snapshot::ContextSnapshot) = with_task_ctxvars(f, snapshot.vars) end # module
ContextVariablesX
https://github.com/tkf/ContextVariablesX.jl.git
[ "MIT" ]
0.1.3
25cc3803f1030ab855e383129dcd3dc294e322cc
code
1661
struct ContextPayloadLogger <: AbstractLogger logger::AbstractLogger ctxvars::Any end function _get_task_ctxvars() logger = Logging.current_logger() if logger isa ContextPayloadLogger return logger.ctxvars end return nothing end function with_task_ctxvars(f, ctx) @nospecialize return Logging.with_logger(f, ContextPayloadLogger(current_logger(), ctx)) end # Forward actual logging interface: Logging.handle_message(payload::ContextPayloadLogger, args...; kwargs...) = Logging.handle_message(payload.logger, args...; kwargs...) Logging.shouldlog(payload::ContextPayloadLogger, args...) = Logging.shouldlog(payload.logger, args...) Logging.min_enabled_level(payload::ContextPayloadLogger, args...) = Logging.min_enabled_level(payload.logger, args...) Logging.catch_exceptions(payload::ContextPayloadLogger, args...) = Logging.catch_exceptions(payload.logger, args...) """ ContextVariablesX.with_logger(f, logger::AbstractLogger) Like `Logging.with_logger` but properly propagate the context variables. """ function with_logger(f, logger::AbstractLogger) @nospecialize cpl = Logging.current_logger() if cpl isa ContextPayloadLogger ctx = cpl.ctxvars else ctx = nothing end return Logging.with_logger(f, ContextPayloadLogger(logger, ctx)) end """ ContextVariablesX.current_logger() -> logger::AbstractLogger Like `Logging.current_logger` but unwraps `ContextPayloadLogger`. """ function current_logger() logger = Logging.current_logger() if logger isa ContextPayloadLogger return logger.logger else return logger end end
ContextVariablesX
https://github.com/tkf/ContextVariablesX.jl.git
[ "MIT" ]
0.1.3
25cc3803f1030ab855e383129dcd3dc294e322cc
code
2884
module TestContextVariablesX using Documenter: doctest using ContextVariablesX using Test @contextvar cvar1 = 42 @contextvar cvar2::Int @contextvar cvar3 @contextvar cvar4::Union{Missing,Int64} = 1 @testset "typed, w/ default" begin ok = Ref(0) @sync @async begin with_context() do @test cvar1[] == 42 with_context(cvar1 => 0) do @test cvar1[] == 0 ok[] += 1 @async begin @test cvar1[] == 0 ok[] += 1 end with_context(cvar1 => 1) do @test cvar1[] == 1 ok[] += 1 end @test cvar1[] == 0 ok[] += 1 end end end @test ok[] == 4 end @testset "typed, w/o default" begin with_context() do @test_throws InexactError with_context(cvar2 => 0.5) do end @test_throws KeyError cvar2[] with_context(cvar2 => 1.0) do @test cvar2[] === 1 end end end @testset "untyped, w/o default" begin with_context(cvar3 => 1) do @test cvar3[] === 1 with_context(cvar3 => 'a') do @test cvar3[] === 'a' end end end @testset "show" begin @test endswith(sprint(show, cvar1), "ContextVar(:cvar1, 42)") @test endswith(sprint(show, cvar2), "ContextVar{$Int}(:cvar2)") @test endswith(sprint(show, cvar3), "ContextVar(:cvar3)") @test endswith(sprint(show, cvar4), "ContextVar{Union{Missing, Int64}}(:cvar4, 1)") end @testset "invalid name" begin name = Symbol("name.with.dots") err = try @eval @contextvar $name nothing catch err_ err_ end @test err isa Exception @test occursin("Modules and variable names must not contain a dot", sprint(showerror, err)) end @testset "logging: keyword argument" begin logs, _ = Test.collect_test_logs() do @sync @async begin with_context() do try error(1) catch err @error "hello" exception = (err, catch_backtrace()) end end end end l, = logs @test l.message == "hello" @test haskey(l.kwargs, :exception) exception = l.kwargs[:exception] @test exception isa Tuple{Exception,typeof(catch_backtrace())} @test exception[1] == ErrorException("1") end @testset "with_logger" begin logger = Test.TestLogger() with_context(cvar1 => 111) do ContextVariablesX.with_logger(logger) do @test ContextVariablesX.current_logger() isa Test.TestLogger @test cvar1[] == 111 @info "hello" end end l, = logger.logs @test l.message == "hello" end @testset "doctest" begin doctest(ContextVariablesX) end end # module
ContextVariablesX
https://github.com/tkf/ContextVariablesX.jl.git
[ "MIT" ]
0.1.3
25cc3803f1030ab855e383129dcd3dc294e322cc
docs
567
# ContextVariablesX [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://tkf.github.io/ContextVariablesX.jl/dev) [![GitHub Actions](https://github.com/tkf/ContextVariablesX.jl/workflows/Run%20tests/badge.svg)](https://github.com/tkf/ContextVariablesX.jl/actions?query=workflow%3ARun+tests) ContextVariablesX.jl is a working proof-of-context framework for propagating context-dependent information to child tasks. See [RFC: Context variables by tkf · Pull Request #35833 · JuliaLang/julia](https://github.com/JuliaLang/julia/pull/35833) for discussion.
ContextVariablesX
https://github.com/tkf/ContextVariablesX.jl.git
[ "MIT" ]
0.1.3
25cc3803f1030ab855e383129dcd3dc294e322cc
docs
6474
# ContextVariablesX.jl ContextVariablesX.jl is heavily inspired by [`contextvars`](https://docs.python.org/3/library/contextvars.html) in Python (see also [PEP 567](https://www.python.org/dev/peps/pep-0567/)). ## Tutorial ### Basic usage Context variables can be used to manage task-local states that are inherited to child tasks. Context variables are created by [`@contextvar`](@ref): ```julia @contextvar cvar1 # untyped, without default @contextvar cvar2 = 1 # typed (Int), with default @contextvar cvar3::Int # typed, without default ``` Note that running above code in REPL will throw an error because this form work only within a package namespace. To play with `@contextvar` in REPL, you can prefix the variable name with `global`: ```@meta DocTestSetup = quote using ContextVariablesX ContextVariablesX._WARN_DYNAMIC_KEY[] = false function display(x) show(stdout, "text/plain", x) println() end end ``` ```jldoctest tutorial julia> @contextvar x::Any = 1; ``` !!! warning `@contextvar` outside a proper package should be used only for interactive exploration, quick scripting, and testing. Using `@contextvar` outside packages make it impossible to work with serialization-based libraries such as Distributed. You can be get a context variable with indexing syntax `[]` ```jldoctest tutorial julia> x[] 1 ``` It's not possible to set a context variable. But it's possible to run code inside a new context with new values bound to the context variables: ```jldoctest tutorial julia> with_context(x => 100) do x[] end 100 ``` ### Dynamic scoping [`with_context`](@ref) can be used to set multiple context variables at once, run a function in this context, and then rollback them to the original state: ```jldoctest tutorial julia> @contextvar y = 1; @contextvar z::Int; ``` ```jldoctest tutorial julia> function demo1() @show x[] @show y[] @show z[] end; julia> with_context(demo1, x => :a, z => 0); x[] = :a y[] = 1 z[] = 0 ``` Note that `with_context(f, x => nothing, ...)` clears the value of `x`, rather than setting the value of `x` to `nothing`. Use `Some(nothing)` to set `nothing`. Similar caution applies to `set_context` (see below). ```jldoctest tutorial julia> with_context(x => Some(nothing), y => nothing, z => nothing) do @show x[] @show y[] @show get(z) end; x[] = nothing y[] = 1 get(z) = nothing ``` Thus, ```julia with_context(x => Some(a), y => Some(b), z => nothing) do ... end ``` can be used considered as a dynamically scoped version of ```julia let x′ = a, y′ = b, z′ ... end ``` Use `with_context(f, nothing)` to create an empty context and rollback the entire context to the state just before calling it. ```jldoctest tutorial julia> with_context(y => 100) do @show y[] with_context(nothing) do @show y[] end end; y[] = 100 y[] = 1 ``` ### Snapshot A handle to the snapshot of the current context can be obtained with [`snapshot_context`](@ref). It can be later restored by [`with_context`](@ref). ```jldoctest tutorial julia> x[] 1 julia> snapshot = snapshot_context(); julia> with_context(x => 100) do with_context(snapshot) do @show x[] end end; x[] = 1 ``` ### Concurrent access The context is inherited to the child task when the task is created. Thus, changes made after `@async`/`@spawn` or changes made in other tasks are not observable: ```julia julia> function demo2() x0 = x[] with_context(x => x0 + 1) do (x0, x[]) end end julia> with_context(x => 1) do @sync begin t1 = @async demo2() t2 = @async demo2() result = demo2() [result, fetch(t1), fetch(t2)] end end 3-element Array{Tuple{Int64,Int64},1}: (1, 2) (1, 2) (1, 2) ``` In particular, manipulating context variables using the public API is always data-race-free. !!! warning If a context variable holds a mutable value, it is a data-race to mutate the _value_ when other threads are reading it. ```julia @contextvar local x = [1] # mutable value @sync begin @spawn begin value = x[] # not a data-race push!(value, 2) # data-race end @spawn begin value = x[] # not a data-race @show last(value) # data-race end end ``` ### Namespace Consider "packages" and modules with the same variable name: ```jldoctest tutorial julia> module PackageA using ContextVariablesX @contextvar x = 1 module SubModule using ContextVariablesX @contextvar x = 2 end end; julia> module PackageB using ContextVariablesX @contextvar x = 3 end; ``` These packages define are three _distinct_ context variables `PackageA.x`, `PackageA.SubModule.x`, and `PackageB.x` that can be manipulated independently. This is simply because `@contextvar` creates independent variable "instance" in each context. It can be demonstrated easily in the REPL: ```jldoctest tutorial; filter = r"(^(.*?\.)?x)|(\[.*?\])"m julia> PackageA.x Main.PackageA.x :: ContextVar [668bafe1-c075-48ae-a52d-13543cf06ddb] => 1 julia> PackageA.SubModule.x Main.PackageA.SubModule.x :: ContextVar [0549256b-1914-4fcd-ac8e-33f377be816e] => 2 julia> PackageB.x Main.PackageB.x :: ContextVar [ddd3358e-a77f-44c0-be28-e5dde929c6f5] => 3 julia> (PackageA.x[], PackageA.SubModule.x[], PackageB.x[]) (1, 2, 3) julia> with_context(PackageA.x => 10, PackageA.SubModule.x => 20, PackageB.x => 30) do display(PackageA.x) display(PackageA.SubModule.x) display(PackageB.x) (PackageA.x[], PackageA.SubModule.x[], PackageB.x[]) end Main.PackageA.x :: ContextVar [668bafe1-c075-48ae-a52d-13543cf06ddb] => 10 Main.PackageA.SubModule.x :: ContextVar [0549256b-1914-4fcd-ac8e-33f377be816e] => 20 Main.PackageB.x :: ContextVar [ddd3358e-a77f-44c0-be28-e5dde929c6f5] => 30 (10, 20, 30) ``` ```@meta DocTestSetup = nothing ``` ## Reference ```@autodocs Modules = [ContextVariablesX] Private = false ``` ```@docs ContextVariablesX.with_logger ContextVariablesX.current_logger ```
ContextVariablesX
https://github.com/tkf/ContextVariablesX.jl.git
[ "MIT" ]
0.1.3
25cc3803f1030ab855e383129dcd3dc294e322cc
docs
75
# Internals ```@autodocs Modules = [ContextVariablesX] Public = false ```
ContextVariablesX
https://github.com/tkf/ContextVariablesX.jl.git
[ "Apache-2.0" ]
1.0.0
5682158c5200c4568df03a58f17d2416c1c84486
code
3928
""" HDF5Logger Creates an object for logging frames of data to an HDF5 file. The frames are expected to have the same size, and the total number of frames to log is expected to be known in advance. It currently works with scalars, vectors, and matrices of basic types that the HDF5 package supports. # Example 1: Logging a Vector over Time ```julia log = Log("my_file.h5") # Create a logger. num_frames = 100 # Set the total number of frames to log. example_data = [1., 2., 3.] # Create an example of a frame of data. add!(log, "/a_vector", example_data, num_frames) # Create the stream. log!(log, "/a_vector", [4., 5., 6.]) # Log a single frame of data. log!(log, "/a_vector", [7., 8., 9.]) # Log the next frame. close!(log) # Always clean up when done. Use try-catch to make sure. # Read it back out using the regular HDF5 library. using HDF5 x = HDF5.h5open("my_file.h5", "r") do logs read(logs, "/a_vector") end ``` # Example 2: Logging a Scalar over Time The underlying HDF5 library (HDF5.jl) logs things as arrays, so passing in scalars will result in 1-by-n arrays in the HDF5 file, instead of an n-length Vector. One can retrieve the n-length Vector by using `squeeze`. E.g.: ```julia log = Log("my_file.h5") # Create a logger. add!(log, "/a_scalar", 0., 1000) # Create stream with space for 1000 samples. log!(log, "/a_scalar", 0.1) # Log a single frame of data. log!(log, "/a_scalar", 0.2) # Log the next frame. close!(log) # Always clean up when done. Use try-catch to make sure. # Read it back out using the regular HDF5 library. using HDF5 t = HDF5.h5open("my_file.h5", "r") do logs read(logs, "/a_scalar") end # t is now a 1-by-1000 Array. t = squeeze(t, 1) # Make an n-element Vector. ``` # Notes One often needs to `log!` immediately after an `add!`, so the `add!` function can also log its example data as the first frame for convenience. Just use: ```julia add!(log, "/group/name", data, num_frames, true) # Add stream; log data. ``` """ module HDF5Logger using HDF5 export Log, add!, log!, close! mutable struct Stream count::Int64 length::Int64 rank::Int64 dataset::HDF5Dataset end struct Log streams::Dict{String,Stream} file_id::HDF5File function Log(file_name::String) new(Dict{String,Stream}(), h5open(file_name, "w")) end end function prepare_group!(log::Log, slug::String) groups = filter(x->!isempty(x), split(slug, '/')) # Explode to group names group_id = g_open(log.file_id, "/") # Start at top group for k = 1:length(groups)-1 # For each group up to dataset if exists(group_id, String(groups[k])) group_id = g_open(group_id, String(groups[k])) else group_id = g_create(group_id, String(groups[k])) end end return (group_id, String(groups[end])) # Group ID and name of dataset end function add!(log::Log, slug::String, data, num_samples::Int64, keep::Bool = false) dims = isbits(data) ? 1 : size(data) group_id, group_name = prepare_group!(log, slug) dataset_id = d_create(group_id, group_name, datatype(eltype(data)), dataspace(dims..., num_samples)) log.streams[slug] = Stream(0, num_samples, length(dims), dataset_id) if keep log!(log, slug, data) end end function log!(log::Log, slug::String, data) @assert(haskey(log.streams, slug), "The logger doesn't have that key. Perhaps you need to `add` it?") @assert(log.streams[slug].count < log.streams[slug].length, "We've already used up all of the allocated space for this stream!") log.streams[slug].count += 1 colons = (Colon() for i in 1:log.streams[slug].rank) log.streams[slug].dataset[colons..., log.streams[slug].count] = data end function close!(log::Log) close(log.file_id) end end # module
HDF5Logger
https://github.com/tuckermcclure/HDF5Logger.jl.git
[ "Apache-2.0" ]
1.0.0
5682158c5200c4568df03a58f17d2416c1c84486
code
1900
using HDF5Logger using Test using HDF5 # For reading in wholesale time histories # Set up some data to work with. num_samples = 5 vector_data = [1., 2., 3.] matrix_data = transpose([1 2 3; 4 5 6]) scalar_data = 1. c = 2 # Create the log. file_name = "test_log.h5" log = Log(file_name) try # Test a vector add!(log, "/vector", vector_data, num_samples) log!(log, "/vector", vector_data) log!(log, "/vector", c * vector_data) # Test a matrix add!(log, "/group/matrix", matrix_data, num_samples, true) # Keep data. # log!(log, "/group/matrix", matrix_data) # First sample is kept this time! log!(log, "/group/matrix", c * matrix_data) # Test a scalar add!(log, "/group/scalar", scalar_data, num_samples) log!(log, "/group/scalar", scalar_data) log!(log, "/group/scalar", c * scalar_data) catch err close!(log) rethrow(err) end close!(log) # Now test that the right stuff happened. Use the regular HDF5 library to open # the files we created. With the `do` block, the file will be automatically # closed if anything goes wrong. h5open(file_name, "r") do file vector_result = read(file, "/vector") matrix_result = read(file, "/group/matrix") scalar_result = read(file, "/group/scalar") @test(vector_result[:,1] == vector_data) @test(matrix_result[:,:,1] == matrix_data) @test(scalar_result[1] == scalar_data) @test(vector_result[:,2] == c * vector_data) @test(matrix_result[:,:,2] == c * matrix_data) @test(scalar_result[2] == c * scalar_data) @test(size(vector_result) == (3, num_samples)) @test(size(matrix_result) == (3, 2, num_samples)) @test(size(scalar_result) == (1, num_samples)) @test(eltype(vector_result) == Float64) @test(eltype(matrix_result) == Int64) @test(eltype(scalar_result) == Float64) end # Clean up after ourselves. rm(file_name)
HDF5Logger
https://github.com/tuckermcclure/HDF5Logger.jl.git
[ "Apache-2.0" ]
1.0.0
5682158c5200c4568df03a58f17d2416c1c84486
docs
2441
# HDF5Logger [![Build Status](https://travis-ci.org/tuckermcclure/HDF5Logger.jl.svg?branch=master)](https://travis-ci.org/tuckermcclure/HDF5Logger.jl) [![Appveyor Build Status](https://ci.appveyor.com/api/projects/status/github/tuckermcclure/HDF5Logger.jl?svg=true)](https://ci.appveyor.com/project/tuckermcclure/hdf5logger-jl) [![codecov.io](http://codecov.io/github/tuckermcclure/HDF5Logger.jl/coverage.svg?branch=master)](http://codecov.io/github/tuckermcclure/HDF5Logger.jl?branch=master) <!-- [![Coverage Status](https://coveralls.io/repos/tuckermcclure/HDF5Logger.jl/badge.svg?branch=master&service=github)](https://coveralls.io/github/tuckermcclure/HDF5Logger.jl?branch=master) --> This package creates a logger for storing individual frames of data over time. The frames can be scalars or arrays of any dimension, and the size must be fixed from sample to sample. Further, the total number of samples to log for each source must be known in advance. This keeps the logging very fast. It's useful, for instance, when one is running a simulation, some value in the sim needs to be logged every X seconds, and the end time of the simulation is known, so the total number of samples that will be needed is also known. ## Simple Example Create a logger. This actually creates and opens the HDF5 file. ```julia using HDF5Logger log = Log("my_log.h5") ``` Add a couple of streams. Suppose we'll log a 3-element gyro reading and a 3-element accelerometer signal each a total of 100 times. ```julia num_samples = 100 example_gyro_reading = [0., 0., 0.] example_accel_reading = [0., 0., 0.] # Preallocate space for these signals. add!(log, "/sensors/gyro", example_gyro_reading, num_samples) add!(log, "/sensors/accel", example_accel_reading, num_samples) ``` Log the first sample of each. ```julia log!(log, "/sensors/gyro", [1., 2., 3.]) log!(log, "/sensors/accel", [4., 5., 6.]) # We can now log to each of these signals 99 more times. ``` Always clean up. ```julia close!(log); ``` Did that work? ```julia using HDF5 # Use the regular HDF5 package to load what we logged. h5open("my_log.h5", "r") do file gyro_data = read(file, "/sensors/gyro") accel_data = read(file, "/sensors/accel") display(gyro_data[:,1]) display(accel_data[:,1]) end ``` ``` 3-element Array{Float64,1}: 1.00 2.00 3.00 3-element Array{Float64,1}: 4.00 5.00 6.00 ``` Yep! The same process works with scalars, matrices, integers, etc.
HDF5Logger
https://github.com/tuckermcclure/HDF5Logger.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
72
# this file is only used for testing - do not remove Pair{String,Any}[]
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
148
Dict( "T1" => "T1 - empty", "T2" => "T2 - empty", "T3" => "T3 - empty", "T4" => "T4 - empty", "T5" => "T5 - empty", )
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
148
Dict( "T1" => "T1 - empty", "T2" => "T2 - empty", "T3" => "T3 - empty", "T4" => "T4 - empty", "T5" => "T5 - empty", )
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
37
Dict( "hello" => "Hallo Latn de")
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
72
# this file is only used for testing - do not remove Pair{String,Any}[]
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
47
# wrong key type of dictionary Dict( 1 => 2 )
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
25
"wrong type of object"
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
44
# error to envoke warning message Dict(1)
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
109
Dict( "T2" => "T2 - en", "T3" => "T3 - en", "T4" => "T4 - en", "T5" => "T5 - en", )
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
92
[ "T4" => "T4 - en_Latn", "T5" => "T5 - en_Latn", "T6" => "T6 - en_Latn", ]
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
45
Dict( "T5" => "T5 - en_Latn_US", )
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
595
( "" => "Plural-Forms: nplurals=3; plural = n == 1 ? 0 : n == 0 ? 1 : 2", "T3" => "T3 - en_US", "T5" => "T5 - en_US", "T6" => "T6 - en_US", "T7" => "T7 - en_US", raw"original $(1)($(2)) : $(3)" => raw"US version $(3) / $(2) $(1)", raw"These are $(1) houses" => [raw"""This is a house""", raw"""This is not a house""", raw"""These are at least $(1) houses""",], "error1" => ["error1 $(1)"], raw"error2 $(1)" => ["error2a", "error2b"], raw"missing argument value $(1)" => String[], )
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
246
Dict( "" => "Plural-Forms: nplurals=2; plural = n > 1", "hello" => "c'a va t'il - fr", raw"These are $(1) houses" => [ raw"C'est $(1) maison", raw"Ce sont beaucoup($(1)) de maisons",] )
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
36
Dict( "hello" => "cava FR" )
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
40
Dict( "hello" => "c'a va latn" )
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
47
Dict( "hello" => "cava Latt" )
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
47
# wrong key type of dictionary Dict( 1 => 2 )
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
25
"wrong type of object"
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
44
# error to envoke warning message Dict(1)
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
109
Dict( "T2" => "T2 - en", "T3" => "T3 - en", "T4" => "T4 - en", "T5" => "T5 - en", )
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
92
[ "T4" => "T4 - en_Latn", "T5" => "T5 - en_Latn", "T6" => "T6 - en_Latn", ]
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
45
Dict( "T5" => "T5 - en_Latn_US", )
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
109
( "T3" => "T3 - en_US", "T5" => "T5 - en_US", "T6" => "T6 - en_US", "T7" => "T7 - en_US", )
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
36
Dict( "hello" => "cava FR" )
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
40
Dict( "hello" => "c'a va latn" )
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
47
Dict( "hello" => "cava Latt" )
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
404
module ResourceBundles export ResourceBundles export ResourceBundle, resource_bundle, @resource_bundle export LocaleId, LC export @tr_str, string_to_key include("types.jl") include("constants.jl") include("locale_iso_data.jl") include("resource_bundle.jl") include("localetrans.jl") include("locale.jl") include("string.jl") include("poreader.jl") include("clocale.jl") end # module ResourceBundles
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
9823
module CLocales using ResourceBundles using ResourceBundles.LocaleIdTranslations using ResourceBundles.LC import ResourceBundles: LocaleId, S0, locale, CLocaleType export current_locale, newlocale, duplocale, freelocale, nl_langinfo, clocale_id export NlItem, category, offset, typ export strcoll, localize_isless export LC_GLOBAL_LOCALE """ newlocale(cat::LC.CategorySet, loc::LocaleId[, base::CLocaleType])::CLocaleType Return a pointer to an opaque locale-object of glibc. Modifies and invalidate the previously returned `base`. `categories` may be on or a tuple of symbols `:CTYPE, :NUMERIC, :TIME, :COLLATE, :MONETARY, :MESSAGES, :ALL, :PAPER, :NAME, :ADDRESS, :TELEPHONE, :MEASUREMENT, :IDENTIFICATION`. The locale id is converted to a string of a locale name in POSIX-form. This name must exist in the output of `locale -a` on a system using glibc. If no such object exists, return `Ptr{Nothing}(0)`. """ newlocale(cat::CategorySet, loc::LocaleId) = newlocale(cat, loc, CL0) function newlocale(cat::CategorySet, loc::LocaleId, base::CLocaleType) cloc = loc_to_cloc(loc) newlocale_c(LC.mask(cat), cloc, base) end """ current_clocale() Return the task-specific current glibc-locale. Any call to `set_locale!` or `newlocale` invalidates the returned pointer. """ function current_clocale() locale().cloc end """ strcoll(a::AbstractString, b::AbstractString[, loc::LocaleId]) -> -1, 0, 1 Compare two strings a and b using the locale specified by `loc` or the default-locale for category `:MESSAGES`. Return `a < b ? -1 : a > b ? 1 : 0`. """ strcoll(a::AbstractString, b::AbstractString) = strcoll_c(a, b, current_clocale()) function strcoll(a::AbstractString, b::AbstractString, loc::LocaleId) ploc = newlocale(LC.ALL, loc) if ploc != CL0 res = strcoll_c(a, b, ploc) freelocale(ploc) res else error("no posix locale found for $loc") end end """ localized_isless([loc::LocaleId]) Return isless function comparing two strings accoding to locale specific collation rules. If loc is not specified, use category `COLLATE` of current locale. """ localized_isless() = (a::AbstractString, b::AbstractString) -> strcoll(a, b) < 0 localized_isless(loc::LocaleId) = (a::AbstractString, b::AbstractString) -> strcoll(a, b, loc) < 0 """ Mask composed of output-type, category, and offset """ struct NlItem mask::Cint end """ nl_item(cat, offset, typ=0) -> NlItem(::Cint) Create an NlItem object, which wraps Cint mask. Result is: typ == 0: char* typ == 1: int of same size as pointer typ == 2: *uint8 """ function nl_item(cat::Category, offset::Integer, typ::Integer=0) NlItem(Cint(cat.id & 0x00fff)<<16 + Cint(offset) & 0xffff + Cint(typ)<<28) end category(nli::NlItem) = LC.ALL_CATS[((nli.mask>>16) & 0x0fff)+1] offset(nli::NlItem) = Int(nli.mask & 0xffff) typ(nli::NlItem) = Int((nli.mask>>>28) & 0xffff) nl_cmask(cat::NlItem) = cat.mask & Cint(0x0ffffff) nl_ctype(cat::NlItem) = Int(cat.mask>>>28) """ nl_langinfo(cat::NlItem[, loc::CLocaleType] ) -> string value | integer value Provide information about the locale as stored in the glibc implementation. """ function nl_langinfo(cat::NlItem, loc::CLocaleType=current_clocale()) res = nl_langinfo_c(nl_cmask(cat), loc) nl_convert(Val(nl_ctype(cat)), res) end const PTYPE = sizeof(Ptr) == 8 ? Int64 : Int32 const PU0 = Ptr{UInt8}(0) nl_convert(::Val{0}, res::Ptr{UInt8}) = res === PU0 ? "" : unsafe_string(res) nl_convert(::Val{1}, res::Ptr{UInt8}) = Int(Base.bitcast(PTYPE, res)) nl_convert(::Val{2}, res::Ptr{UInt8}) = res === PU0 ? 0 : Int(unsafe_wrap(Array, res, 1)[1]) err_day(i::Integer) = throw(ArgumentError("day of week ($i) not between 1 and 7")) err_month(i::Integer) = throw(ArgumentError("month number ($i) not between 1 and 12")) """ clocale_id(category[, cloc::CLocaleType]) Return the name string of a clocale or current clocale. """ clocale_id(cat::Category, loc::CLocaleType) = nl_langinfo(nl_item(cat, -1), loc) clocale_id(cat::Category) = nl_langinfo(nl_item(cat, -1), current_clocale()) include("libc.jl") ## Interface constants derived from /usr/include/langinfo.h const CTYPE_CODESET = nl_item(LC.CTYPE, 14) const NUM_LC_CTYPE = 86 const RADIXCHAR = nl_item(LC.NUMERIC, 0) const THOUSEP = nl_item(LC.NUMERIC, 1) const THOUSANDS_SEP = nl_item(LC.NUMERIC, 1) const GROUPING = nl_item(LC.NUMERIC, 2, 2) const NUMERIC_CODESET = nl_item(LC.NUMERIC, 5) const NUM_LC_NUMERIC = 6 ABDAY(i::Integer) = 1 <= i <= 7 ? nl_item(LC.TIME, i-1) : err_day(i) DAY(i::Integer) = 1 <= i <= 7 ? nl_item(LC.TIME, i+6) : err_day(i) ABMON(i::Integer) = 1 <= i <= 12 ? nl_item(LC.TIME, 13+i) : err_month(i) MON(i::Integer) = 1 <= i <= 12 ? nl_item(LC.TIME, 25+i) : err_month(i) const AM_STR = nl_item(LC.TIME, 38) const PM_STR = nl_item(LC.TIME, 39) const D_T_FMT = nl_item(LC.TIME, 40) const D_FMT = nl_item(LC.TIME, 41) const T_FMT = nl_item(LC.TIME, 42) const T_FMT_AMPM = nl_item(LC.TIME, 43) const ERA = nl_item(LC.TIME, 44) const ERA_YEAR = nl_item(LC.TIME, 45) const ERA_D_FMT = nl_item(LC.TIME, 46) const ALT_DIGITS = nl_item(LC.TIME, 47) const ERA_D_T_FMT = nl_item(LC.TIME, 48) const ERA_T_FMT = nl_item(LC.TIME, 49) const NUM_ERA_ENTRIES = nl_item(LC.TIME, 50, 1) const WEEK_NDAYS = nl_item(LC.TIME, 101, 2) const WEEK_1STDAY = nl_item(LC.TIME, 102, 1) const WEEK_1STWEEK = nl_item(LC.TIME, 103, 2) const FIRST_WEEKDAY = nl_item(LC.TIME, 104, 2) const FIRST_WORKDAY = nl_item(LC.TIME, 105, 2) const CAL_DIRECTION = nl_item(LC.TIME, 106, 2) const TIMEZONE = nl_item(LC.TIME, 107) const DATE_FMT = nl_item(LC.TIME, 108) const TIME_CODESET = nl_item(LC.TIME, 110) const NUM_LC_TIME = 111 const COLLATE_CODESET = nl_item(LC.COLLATE, 18) const NUM_LC_COLLATE = 19 const YESEXPR = nl_item(LC.MESSAGES, 0) const NOEXPR = nl_item(LC.MESSAGES, 1) const YESSTR = nl_item(LC.MESSAGES, 2) const NOSTR = nl_item(LC.MESSAGES, 3) const MESSAGES_CODESET = nl_item(LC.MESSAGES, 4) const NUM_LC_MESSAGES = 5 const INT_CURR_SYMBOL = nl_item(LC.MONETARY, 0) const CURRENCY_SYMBOL = nl_item(LC.MONETARY, 1) const MON_DECIMAL_POINT = nl_item(LC.MONETARY, 2) const MON_THOUSANDS_SEP = nl_item(LC.MONETARY, 3) const MON_GROUPING = nl_item(LC.MONETARY, 4, 2) const POSITIVE_SIGN = nl_item(LC.MONETARY, 5) const NEGATIVE_SIGN = nl_item(LC.MONETARY, 6) const INT_FRAC_DIGITS = nl_item(LC.MONETARY, 7, 2) const FRAC_DIGITS = nl_item(LC.MONETARY, 8, 2) const P_CS_PRECEDES = nl_item(LC.MONETARY, 9, 2) const P_SEP_BY_SPACE = nl_item(LC.MONETARY, 10, 2) const N_CS_PRECEDES = nl_item(LC.MONETARY, 11, 2) const N_SEP_BY_SPACE = nl_item(LC.MONETARY, 12, 2) const P_SIGN_POSN = nl_item(LC.MONETARY, 13, 2) const N_SIGN_POSN = nl_item(LC.MONETARY, 14, 2) const CRNCYSTR = nl_item(LC.MONETARY, 15) const INT_P_CS_PRECEDES = nl_item(LC.MONETARY, 16, 2) const INT_P_SEP_BY_SPACE = nl_item(LC.MONETARY, 17, 2) const INT_N_CS_PRECEDES = nl_item(LC.MONETARY, 18, 2) const INT_N_SEP_BY_SPACE = nl_item(LC.MONETARY, 19, 2) const INT_P_SIGN_POSN = nl_item(LC.MONETARY, 20, 2) const INT_N_SIGN_POSN = nl_item(LC.MONETARY, 21, 2) const MONETARY_CODESET = nl_item(LC.MONETARY, 45) const NUM_LC_MONETARY = 46 const PAPER_HEIGHT = nl_item(LC.PAPER, 0, 1) const PAPER_WIDTH = nl_item(LC.PAPER, 1, 1) const PAPER_CODESET = nl_item(LC.PAPER, 2) const NUM_LC_PAPER = 3 const NAME_FMT = nl_item(LC.NAME, 0) const NAME_GEN = nl_item(LC.NAME, 1) const NAME_MR = nl_item(LC.NAME, 2) const NAME_MRS = nl_item(LC.NAME, 3) const NAME_MISS = nl_item(LC.NAME, 4) const NAME_MS = nl_item(LC.NAME, 5) const NAME_CODESET = nl_item(LC.NAME, 6) const NUM_LC_NAME = 7 const ADDRESS_POSTAL_FMT = nl_item(LC.ADDRESS, 0) const ADDRESS_COUNTRY_NAME = nl_item(LC.ADDRESS, 1) const ADDRESS_COUNTRY_POST = nl_item(LC.ADDRESS, 2) const ADDRESS_COUNTRY_AB2 = nl_item(LC.ADDRESS, 3) const ADDRESS_COUNTRY_AB3 = nl_item(LC.ADDRESS, 4) const ADDRESS_COUNTRY_CAR = nl_item(LC.ADDRESS, 5) const ADDRESS_COUNTRY_NUM = nl_item(LC.ADDRESS, 6, 1) const ADDRESS_COUNTRY_ISBN = nl_item(LC.ADDRESS, 7) const ADDRESS_LANG_NAME = nl_item(LC.ADDRESS, 8) const ADDRESS_LANG_AB = nl_item(LC.ADDRESS, 9) const ADDRESS_LANG_LIB = nl_item(LC.ADDRESS, 10) const ADDRESS_LANG_TERM = nl_item(LC.ADDRESS, 11) const ADDRESS_CODESET = nl_item(LC.ADDRESS, 12) const NUM_LC_ADDRESS = 13 const TELEPHONE_TEL_INT_FMT = nl_item(LC.TELEPHONE, 0) const TELEPHONE_TEL_DOM_FMT = nl_item(LC.TELEPHONE, 1) const TELEPHONE_INT_SELECT = nl_item(LC.TELEPHONE, 2) const TELEPHONE_INT_PREFIX = nl_item(LC.TELEPHONE, 3) const TELEPHONE_CODESET = nl_item(LC.TELEPHONE, 4) const NUM_LC_TELEPHONE = 5 const MEASUREMENT = nl_item(LC.MEASUREMENT, 0, 2) const MEASUREMENT_CODESET = nl_item(LC.MEASUREMENT, 1) const NUM_LC_MEASUREMENT = 2 const IDENTIFICATION_TITLE = nl_item(LC.IDENTIFICATION, 0) const IDENTIFICATION_SOURCE = nl_item(LC.IDENTIFICATION, 1) const IDENTIFICATION_ADDRESS = nl_item(LC.IDENTIFICATION, 2) const IDENTIFICATION_CONTACT = nl_item(LC.IDENTIFICATION, 3) const IDENTIFICATION_EMAIL = nl_item(LC.IDENTIFICATION, 4) const IDENTIFICATION_TEL = nl_item(LC.IDENTIFICATION, 5) const IDENTIFICATION_FAX = nl_item(LC.IDENTIFICATION, 6) const IDENTIFICATION_LANGUAGE = nl_item(LC.IDENTIFICATION, 7) const IDENTIFICATION_TERRITORY = nl_item(LC.IDENTIFICATION, 8) const IDENTIFICATION_AUDIENCE = nl_item(LC.IDENTIFICATION, 9) const IDENTIFICATION_APPLICATION = nl_item(LC.IDENTIFICATION, 10) const IDENTIFICATION_ABBREVIATION = nl_item(LC.IDENTIFICATION, 11) const IDENTIFICATION_REVISION = nl_item(LC.IDENTIFICATION, 12) const IDENTIFICATION_DATE = nl_item(LC.IDENTIFICATION, 13) const IDENTIFICATION_CATEGORY = nl_item(LC.IDENTIFICATION, 14) const IDENTIFICATION_CODESET = nl_item(LC.IDENTIFICATION, 15) const NUM_LC_IDENTIFICATION = 16 LC_GLOBAL_LOCALE = CLocaleType(-1) CL0 = CLocaleType(0) end # module
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
406
module Constants export EMPTYV, EMPTYD, EMPTY_VECTOR, S0 export ALL_CATEGORIES import ResourceBundles: ExtensionDict const EMPTYV = String[] const EMPTYD = ExtensionDict() const S0 = Symbol("") const EMPTY_VECTOR = Symbol[] const ALL_CATEGORIES = [ :CTYPE, :NUMERIC, :TIME, :COLLATE, :MONETARY, :MESSAGES, :PAPER, :NAME, :ADDRESS, :TELEPHONE, :MEASUREMENT, :IDENTIFICATION ] end
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
1716
### accessing libc functions (XOPEN_SOURCE >= 700, POSIX_C_SOURCE >= 200809L glibc>=2.24) if Sys.isunix() && get(Base.ENV, "NO_CLOCALE", "") != "1" function newlocale_c(mask::Cint, clocale::AbstractString, base::CLocaleType) ccall(:newlocale, CLocaleType, (Cint, Cstring, CLocaleType), mask, clocale, base) end function duplocale(ploc::CLocaleType) ccall(:duplocale, CLocaleType, (CLocaleType,), ploc) end function freelocale(ploc::CLocaleType) ccall(:freelocale, Nothing, (CLocaleType,), ploc) end function uselocale(newloc::CLocaleType) ccall(:uselocale, CLocaleType, (CLocaleType,), newloc) end function strcoll_c(s1::AbstractString, s2::AbstractString, ploc::CLocaleType) res = 0 if ploc == CL0 ploc = current_clocale() res = ccall(:strcoll_l, Cint, (Cstring, Cstring, CLocaleType), s1, s2, ploc) freelocale(ploc) else res = ccall(:strcoll_l, Cint, (Cstring, Cstring, CLocaleType), s1, s2, ploc) end Int(res) end function nl_langinfo_c(nlitem::Cint, ploc::CLocaleType) ccall(:nl_langinfo_l, Ptr{UInt8}, (Cint, CLocaleType), nlitem, ploc) end else # for the non case provide dummy methods newlocale_c(mask::Cint, clocale::AbstractString, base::CLocaleType) = CL0 duplocale(ploc::CLocaleType) = CL0 freelocale(ploc::CLocaleType) = nothing uselocale(newloc::CLocaleType) = CL0 function strcoll_c(s1::AbstractString, s2::AbstractString, ploc::CLocaleType) s1 == s2 ? 0 : s1 < s2 ? -1 : 1 end nl_langinfo_c(nlitem::Cint, ploc::CLocaleType) = Ptr{UInt8}(0) end #################################
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
13562
using .Constants using .LocaleIdTranslations using .LC export LocaleId, Locales, default_locale, locale_id, locale, set_locale! import Base: ==, hash """ LocaleId(languagetag::String)) LocaleId(lang, region) LocaleId(lang, script, region) LocaleId(lang, script, region, variant) LocaleId("") -> DEFAULT LocaleId() -> BOTTOM Return `LocaleId` object from cache or create new one and register in cache. """ LocaleId() = BOTTOM LocaleId(langtag::AS) = langtag == "" ? DEFAULT : create_locid(splitlangtag(langtag)...) LocaleId(lang::AS, region::AS) = create_locid(lang, EMPTYV, "", region, EMPTYV, nothing) LocaleId(lang::AS, script::AS, region::AS) = create_locid(lang, EMPTYV, script, region, EMPTYV, nothing) LocaleId(lang::AS, script::AS, region::AS, variant::AS) = create_locid(lang, EMPTYV, script, region, [variant], nothing) # utilities # create instance and register in global cache. function create_locid(language::AS, extlang::Vector{String}, script::AS, region::AS, variant::Vector{String}, extension::Union{ExtensionDict,Nothing}) lang = check_language(language, extlang) scri = check_script(titlecase(script)) regi = check_region(uppercase(region)) vari = check_variant(variant) if lang == S0 lex = extension == nothing ? 0 : length(extension) if !(scri == S0 && regi == S0 && length(vari) == 0 && (lex == 1 && first(keys(extension)) == 'x' || lex == 0 ) ) throw(ArgumentError("missing language prefix")) end end key = tuple(lang, scri, regi, vari, extension) try lock(CACHE_LOCK) get!(CACHE, key) do LocaleId(key...) end finally unlock(CACHE_LOCK) end end function check_language(x::AS, extlang::Vector{String}) is_language(x) || length(x) == 0 || throw(ArgumentError("no language prefix '$x'")) x = get(OLD_TO_NEW_LANG, x, x) len = length(extlang) if length(x) <= 3 len <= 1 || throw(ArgumentError("only one language extension allowed '$x$SEP2$(join(extlang, SEP2))'")) if len >= 1 x = extlang[1] end if length(x) == 3 x = LANGUAGE3_DICT[x] # replace 3-char code by preferred 2-char code end else len == 0 || throw(ArgumentError("no language exensions allowed '$x$SEP2$(join(extlang, SEP2))'")) end Symbol(x) end function is_language(x::AS) len = length(x) (2 <= len <= 8 && is_alpha(x)) || len == 1 && x == "C" end function is_langext(x::AS) len = length(x) len == 3 && is_alpha(x) end function check_script(x::AS) is_script(x) || length(x) == 0 || throw(ArgumentError("no script '$x'")) Symbol(x) end function is_script(x::AS) len = length(x) len == 4 && is_alpha(x) end function check_region(x::AS) is_region(x) || length(x) == 0 || throw(ArgumentError("no region '$x'")) Symbol(x) end function is_region(x::AS) len = length(x) ( len == 2 && is_alpha(x) ) || ( len == 3 && is_digit(x) ) end function check_variant(x::Vector{String}) all(is_variant, x) || throw(ArgumentError("no variants '$(join(x, SEP2))'")) Symbol.(x) end function is_variant(x::AS) len = length(x) is_alnum(x) && ( ( 4 <= len <= 8 && isdigit(x[1]) ) || ( 5 <= len <= 8 )) end function is_single(x::AS) length(x) == 1 && is_alpha(x) end """ Parse language tag and convert to Symbols and collections of Symbols. """ function splitlangtag(x::AS) is_alnumsep(x) || throw(ArgumentError("language tag contains invalid characters: '$x'")) x = cloc_to_loc(x) # handle and replace '.' and '@'. x = replace(x, SEP => SEP2) # normalize input x = get(GRANDFATHERED, x, x) # replace some old-fashioned language tags token = split(x, SEP2, keepempty=true) lang = "" langex = String[] scri = "" regi = "" vari = String[] exte = nothing langlen = 0 k = 1 n = length(token) if k <= n && is_language(token[k]) lang = token[k] langlen = length(lang) k += 1 end while k <= n && 2 <= langlen <= 3 && is_langext(token[k]) push!(langex, token[k]) k += 1 end if k <= n && is_script(token[k]) scri = token[k] k += 1 end while k <= n && is_region(token[k]) regi = token[k] k += 1 end while k <= n && is_variant(token[k]) push!(vari, token[k]) k += 1 end while k <= n && is_single(token[k]) sing = token[k][1] if exte == nothing exte = ExtensionDict() end if haskey(exte, sing) throw(ArgumentError("multiple occurrence of singleton '$sing'")) end m = sing == 'x' ? 1 : 2 k += 1 ext = Symbol[] while k <= n && m <= length(token[k]) <= 8 push!(ext, Symbol(token[k])) k += 1 end exte[sing] = ext end k > n || x == "" || throw(ArgumentError("no language tag: '$x' after $(k-1)")) length(langex) <= 3 || throw(ArgumentError("too many language extensions '$x'")) lang, langex, scri, regi, vari, exte end # character properties for all characters in string is_alpha(x::AS) = all(isletter, x) is_digit(x::AS) = all(isdigit, x) is_alnum(x::AS) = all(is_alnum, x) is_alnumsep(x::AS) = all(c->isascii(c) && ( is_alnum(c) || c in "-_.@" ), x) # equality function ==(x::LocaleId, y::LocaleId) x === y && return true x.language == y.language && x.script == y.script && x.region == y.region && x.variants == y.variants && x.extensions == y.extensions end flat(lang::Symbol) = lang == :C ? S0 : lang function hash(x::LocaleId, h::UInt) hash(x.extensions, hash(x.variants, hash(x.region, hash(x.script, hash(x.language, h))))) end function Base.issubset(x::LocaleId, y::LocaleId) ( x == y || x == BOTTOM || y == ROOT ) && return true y == BOTTOM && return false issublang(x.language, y.language) && issubscript(x.script, y.script) && issubregion(x.region, y.region) && issubvar(x.variants, y.variants) && issubext(x.extensions, y.extensions) end issublang(x::Symbol, y::Symbol) = startswith(string(x), string(y)) issubscript(x::Symbol, y::Symbol) = startswith(string(x), string(y)) issubregion(x::Symbol, y::Symbol) = startswith(string(x), string(y)) issubvar(x::Vector{Symbol}, y::Vector{Symbol}) = issubset(y, x) function issubext(x::ExtensionDict, y::ExtensionDict) ky = keys(y) issubset(ky, keys(x)) && all(k-> issubset(y[k], x[k]), ky) end issubext(x::Nothing, y::ExtensionDict) = false issubext(x, y::Nothing) = true Base.isless(x::LocaleId, y::LocaleId) = issubset(x, y) || (!issubset(y,x) && islexless(x, y)) islexless(x::LocaleId, y::LocaleId) = string(x) < string(y) """ less_specific(loc::LocaleId) Give the next less specific locale id. If loc = ROOT, return ROOT. """ function less_specific(loc::LocaleId) loc == ROOT && return ROOT if loc.extensions != nothing && !isempty(loc.extensions) > 0 LocaleId(loc.language, loc.script, loc.region, loc.variants, nothing) elseif length(loc.variants) != 0 LocaleId(loc.language, loc.script, loc.region, Symbol[], nothing) elseif loc.region != S0 LocaleId(loc.language, loc.script, S0, Symbol[], nothing) elseif loc.script != S0 LocaleId(loc.language, S0, S0, Symbol[], nothing) else ROOT end end function Base.show(io2::IO, x::LocaleId) ES = Symbol("") sep = "" io = IOBuffer() x.language !== ES && ( print(io, x.language); sep = SEP2 ) x.script != ES && ( print(io, sep, x.script); sep = SEP2 ) x.region != ES && ( print(io, sep, x.region); sep = SEP2 ) for v in x.variants v != ES && ( print(io, sep, v); sep = SEP2 ) end ltx(a::Char, b::Char) = ( a != 'x' && a < b ) || b == 'x' if x.extensions != nothing for k in sort(collect(keys(x.extensions)), lt=ltx) print(io, sep, k); sep = SEP2 for v in x.extensions[k] print(io, sep, v) end end end out = String(take!(io)) print(io2, out) end const CACHE = Dict{Key, LocaleId}() const CACHE_LOCK = ReentrantLock() """ locale_id([gloc::Locale, ]category) Determine current locale id for given category as stored in locale variable. If gloc is not given, use task specific locale variable. Throw exception, if no valid category name. Valid categories are :CTYPE, :COLLATE, :MESSAGES, :MONETARY, :NUMERIC, :TIME """ locale_id(cat::Category) = locale().locids[cat.id+1] locale_id(gloc::Locale, cat::Category) = gloc.locids[cat.id+1] """ set_locale!([gloc::Locale, ]locale::LocaleId[, category::CategorySet]) Set contents of locale in selected categories. Missing category or :ALL sets all defined categories to the same locale. If `gloc` is not given, the current task-specific locale is used. Throw exception if category is not :ALL or one of the supported categories of `locale`. """ set_locale!(loc::LocaleId, cats::CategorySet = LC.ALL) = set_locale!(locale(), loc, cats) function set_locale!(gloc::Locale, loc::LocaleId, cats::CategorySet = LC.ALL) cld = gloc.locids cloc = _newlocale(cats, loc, gloc.cloc) if cloc != CLocales.CL0 || gloc.cloc == CLocales.CL0 gloc.cloc = cloc for cat in cats lloc = loc == DEFAULT ? default_locale(cat) : loc cld[cat.id+1] = lloc end end cloc != CLocales.CL0 || gloc.cloc == CLocales.CL0 end function _newlocale(cats::CategorySet, loc::LocaleId, base::CLocaleType) cloc = CLocales.newlocale(cats, loc, base) (cloc != CLocales.CL0 || loc == ResourceBundles.ROOT) && return cloc _newlocale(cats, less_specific(loc), base) end """ default_locale(category) Determine default locale from posix environment variables: LANG default if specific category not defined LC_* specific category LC_ALL overides all other settings * may be one of MESSAGES message catalogs NUMERIC number formats MONETARY format of monetary values TIME date/time formats """ function default_locale(category::Category) LocaleId(localeid_from_env(category)) end """ localeid_from_env(category) Read posix environment variable for category. """ function localeid_from_env(category) s = uppercase(string(category)) if !startswith(s, "LC_") s = s == "LANG" ? s : "LC_" * s end if s == "LC_ALL" get(ENV, s, "") else get2("LC_ALL") do get2(s) do get(ENV, "LANG", "C") end end end end # treat empty value function get2(f::Function, k::Any) v = get(ENV, k, "") v == "" ? f() : v end """ Locale() Create and initialize a new `Locale` object. """ function Locale() gloc = Locale(Ptr{Nothing}(0)) for cat in LC.ALL_CATS set_locale!(gloc, default_locale(cat), cat) end gloc end """ locale() Return task specific locale object. Create and initialize from environment at first access within a task. """ function locale() tld = task_local_storage() if !haskey(tld, :CURRENT_LOCALES) gloc = Locale() # create and fill with default values from ENV finalizer(finalize_gloc, gloc) task_local_storage(:CURRENT_LOCALES, gloc) else task_local_storage(:CURRENT_LOCALES) end end # finalizer required to free the associated clib object. function finalize_gloc(gloc::Locale) if gloc.cloc != Ptr{Nothing}(0) CLocales.freelocale(gloc.cloc) end end """ DEFAULT Useful constant for the default locale identifier. It is used to indicate, that the actual value for concrete locale category (different form :ALL) has to be determined from the global environment variables `LC_...` and `LANG`. """ const DEFAULT = LocaleId("", "") """ ROOT Useful constant for the root locale. The root locale is the locale whose language is "C", country, and variant are empty ("") strings. This is regarded as the base locale of all locales, and is used as the language/country neutral locale for the locale sensitive operations. """ const ROOT = LocaleId("C", "") const BOTTOM = LocaleId(:Bot, S0, S0, EMPTY_VECTOR, nothing) """ Provide a set of commonly used LocaleId with language- and country names in uppercase. e.g. `FRENCH`, `UK`. See also `names(Locales)`. """ module Locales import ResourceBundles: LocaleId, ROOT, DEFAULT, BOTTOM export ROOT, DEFAULT, BOTTOM export ENGLISH, FRENCH, GERMAN, ITALIAN, JAPANESE, KOREAN, CHINESE, SIMPLIFIED_CHINESE, TRADITIONAL_CHINESE export FRANCE, GERMANY, ITALY, JAPAN, KOREA, CHINA, TAIWAN, PRC, UK, US, CANADA # Languages const ENGLISH = LocaleId("en", "") const FRENCH = LocaleId("fr", "") const GERMAN = LocaleId("de", "") const ITALIAN = LocaleId("it", "") const JAPANESE = LocaleId("ja", "") const KOREAN = LocaleId("ko", "") const CHINESE = LocaleId("zh", "") const SIMPLIFIED_CHINESE = LocaleId("zh", "CN") const TRADITIONAL_CHINESE = LocaleId("zh", "TW") # Countries const FRANCE = LocaleId("fr", "FR") const GERMANY = LocaleId("de", "DE") const ITALY = LocaleId("it", "IT") const JAPAN = LocaleId("ja", "JP") const KOREA = LocaleId("ko", "KR") const PRC = SIMPLIFIED_CHINESE const CHINA = PRC const TAIWAN = TRADITIONAL_CHINESE const UK = LocaleId("en", "GB") const US = LocaleId("en", "US") const CANADA = LocaleId("en", "CA") end # module LocaleTag
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
37772
""" The 2- and 3-letter ISO 639 language codes. """ const IsoLanguageTable = "aa" * "aar" * # Afar "ab" * "abk" * # Abkhazian "ae" * "ave" * # Avestan "af" * "afr" * # Afrikaans "ak" * "aka" * # Akan "am" * "amh" * # Amharic "an" * "arg" * # Aragonese "ar" * "ara" * # Arabic "as" * "asm" * # Assamese "av" * "ava" * # Avaric "ay" * "aym" * # Aymara "az" * "aze" * # Azerbaijani "ba" * "bak" * # Bashkir "be" * "bel" * # Belarusian "bg" * "bul" * # Bulgarian "bh" * "bih" * # Bihari "bi" * "bis" * # Bislama "bm" * "bam" * # Bambara "bn" * "ben" * # Bengali "bo" * "bod" * # Tibetan "br" * "bre" * # Breton "bs" * "bos" * # Bosnian "ca" * "cat" * # Catalan "ce" * "che" * # Chechen "ch" * "cha" * # Chamorro "co" * "cos" * # Corsican "cr" * "cre" * # Cree "cs" * "ces" * # Czech "cu" * "chu" * # Church Slavic "cv" * "chv" * # Chuvash "cy" * "cym" * # Welsh "da" * "dan" * # Danish "de" * "deu" * # German "dv" * "div" * # Divehi "dz" * "dzo" * # Dzongkha "ee" * "ewe" * # Ewe "el" * "ell" * # Greek "en" * "eng" * # English "eo" * "epo" * # Esperanto "es" * "spa" * # Spanish "et" * "est" * # Estonian "eu" * "eus" * # Basque "fa" * "fas" * # Persian "ff" * "ful" * # Fulah "fi" * "fin" * # Finnish "fj" * "fij" * # Fijian "fo" * "fao" * # Faroese "fr" * "fra" * # French "fy" * "fry" * # Frisian "ga" * "gle" * # Irish "gd" * "gla" * # Scottish Gaelic "gl" * "glg" * # Gallegan "gn" * "grn" * # Guarani "gu" * "guj" * # Gujarati "gv" * "glv" * # Manx "ha" * "hau" * # Hausa "he" * "heb" * # Hebrew "hi" * "hin" * # Hindi "ho" * "hmo" * # Hiri Motu "hr" * "hrv" * # Croatian "ht" * "hat" * # Haitian "hu" * "hun" * # Hungarian "hy" * "hye" * # Armenian "hz" * "her" * # Herero "ia" * "ina" * # Interlingua "id" * "ind" * # Indonesian "ie" * "ile" * # Interlingue "ig" * "ibo" * # Igbo "ii" * "iii" * # Sichuan Yi "ik" * "ipk" * # Inupiaq "id" * "ind" * # Indonesian (new) "io" * "ido" * # Ido "is" * "isl" * # Icelandic "it" * "ita" * # Italian "iu" * "iku" * # Inuktitut "ne" * "heb" * # Hebrew (new) "ja" * "jpn" * # Japanese "yi" * "yid" * # Yiddish (new) "jv" * "jav" * # Javanese "ka" * "kat" * # Georgian "kg" * "kon" * # Kongo "ki" * "kik" * # Kikuyu "kj" * "kua" * # Kwanyama "kk" * "kaz" * # Kazakh "kl" * "kal" * # Greenlandic "km" * "khm" * # Khmer "kn" * "kan" * # Kannada "ko" * "kor" * # Korean "kr" * "kau" * # Kanuri "ks" * "kas" * # Kashmiri "ku" * "kur" * # Kurdish "kv" * "kom" * # Komi "kw" * "cor" * # Cornish "ky" * "kir" * # Kirghiz "la" * "lat" * # Latin "lb" * "ltz" * # Luxembourgish "lg" * "lug" * # Ganda "li" * "lim" * # Limburgish "ln" * "lin" * # Lingala "lo" * "lao" * # Lao "lt" * "lit" * # Lithuanian "lu" * "lub" * # Luba-Katanga "lv" * "lav" * # Latvian "mg" * "mlg" * # Malagasy "mh" * "mah" * # Marshallese "mi" * "mri" * # Maori "mk" * "mkd" * # Macedonian "ml" * "mal" * # Malayalam "mn" * "mon" * # Mongolian "mo" * "mol" * # Moldavian "mr" * "mar" * # Marathi "ms" * "msa" * # Malay "mt" * "mlt" * # Maltese "my" * "mya" * # Burmese "na" * "nau" * # Nauru "nb" * "nob" * # Norwegian Bokmål "nd" * "nde" * # North Ndebele "ne" * "nep" * # Nepali "ng" * "ndo" * # Ndonga "nl" * "nld" * # Dutch "nn" * "nno" * # Norwegian Nynorsk "no" * "nor" * # Norwegian "nr" * "nbl" * # South Ndebele "nv" * "nav" * # Navajo "ny" * "nya" * # Nyanja "oc" * "oci" * # Occitan "oj" * "oji" * # Ojibwa "om" * "orm" * # Oromo "or" * "ori" * # Oriya "os" * "oss" * # Ossetian "pa" * "pan" * # Panjabi "pi" * "pli" * # Pali "pl" * "pol" * # Polish "ps" * "pus" * # Pushto "pt" * "por" * # Portuguese "qu" * "que" * # Quechua "rm" * "roh" * # Raeto-Romance "rn" * "run" * # Rundi "ro" * "ron" * # Romanian "ru" * "rus" * # Russian "rw" * "kin" * # Kinyarwanda "sa" * "san" * # Sanskrit "sc" * "srd" * # Sardinian "sd" * "snd" * # Sindhi "se" * "sme" * # Northern Sami "sg" * "sag" * # Sango "si" * "sin" * # Sinhalese "sk" * "slk" * # Slovak "sl" * "slv" * # Slovenian "sm" * "smo" * # Samoan "sn" * "sna" * # Shona "so" * "som" * # Somali "sq" * "sqi" * # Albanian "sr" * "srp" * # Serbian "ss" * "ssw" * # Swati "st" * "sot" * # Southern Sotho "su" * "sun" * # Sundanese "sv" * "swe" * # Swedish "sw" * "swa" * # Swahili "ta" * "tam" * # Tamil "te" * "tel" * # Telugu "tg" * "tgk" * # Tajik "th" * "tha" * # Thai "ti" * "tir" * # Tigrinya "tk" * "tuk" * # Turkmen "tl" * "tgl" * # Tagalog "tn" * "tsn" * # Tswana "to" * "ton" * # Tonga "tr" * "tur" * # Turkish "ts" * "tso" * # Tsonga "tt" * "tat" * # Tatar "tw" * "twi" * # Twi "ty" * "tah" * # Tahitian "ug" * "uig" * # Uighur "uk" * "ukr" * # Ukrainian "ur" * "urd" * # Urdu "uz" * "uzb" * # Uzbek "ve" * "ven" * # Venda "vi" * "vie" * # Vietnamese "vo" * "vol" * # Volapük "wa" * "wln" * # Walloon "wo" * "wol" * # Wolof "xh" * "xho" * # Xhosa "yi" * "yid" * # Yiddish "yo" * "yor" * # Yoruba "za" * "zha" * # Zhuang "zh" * "zho" * # Chinese "zu" * "zul" # Zulu """ The 2- and 3-letter ISO 3166 country codes. """ const IsoCountryTable = "AD" * "AND" * # Andorra, Principality of "AE" * "ARE" * # United Arab Emirates "AF" * "AFG" * # Afghanistan "AG" * "ATG" * # Antigua and Barbuda "AI" * "AIA" * # Anguilla "AL" * "ALB" * # Albania, People's Socialist Republic of "AM" * "ARM" * # Armenia "AN" * "ANT" * # Netherlands Antilles "AO" * "AGO" * # Angola, Republic of "AQ" * "ATA" * # Antarctica (the territory South of 60 deg S) "AR" * "ARG" * # Argentina, Argentine Republic "AS" * "ASM" * # American Samoa "AT" * "AUT" * # Austria, Republic of "AU" * "AUS" * # Australia, Commonwealth of "AW" * "ABW" * # Aruba "AX" * "ALA" * # Åland Islands "AZ" * "AZE" * # Azerbaijan, Republic of "BA" * "BIH" * # Bosnia and Herzegovina "BB" * "BRB" * # Barbados "BD" * "BGD" * # Bangladesh, People's Republic of "BE" * "BEL" * # Belgium, Kingdom of "BF" * "BFA" * # Burkina Faso "BG" * "BGR" * # Bulgaria, People's Republic of "BH" * "BHR" * # Bahrain, Kingdom of "BI" * "BDI" * # Burundi, Republic of "BJ" * "BEN" * # Benin, People's Republic of "BL" * "BLM" * # Saint Barthélemy "BM" * "BMU" * # Bermuda "BN" * "BRN" * # Brunei Darussalam "BO" * "BOL" * # Bolivia, Republic of "BQ" * "BES" * # Bonaire, Sint Eustatius and Saba "BR" * "BRA" * # Brazil, Federative Republic of "BS" * "BHS" * # Bahamas, Commonwealth of the "BT" * "BTN" * # Bhutan, Kingdom of "BV" * "BVT" * # Bouvet Island (Bouvetoya) "BW" * "BWA" * # Botswana, Republic of "BY" * "BLR" * # Belarus "BZ" * "BLZ" * # Belize "CA" * "CAN" * # Canada "CC" * "CCK" * # Cocos (Keeling) Islands "CD" * "COD" * # Congo, Democratic Republic of "CF" * "CAF" * # Central African Republic "CG" * "COG" * # Congo, People's Republic of "CH" * "CHE" * # Switzerland, Swiss Confederation "CI" * "CIV" * # Cote D'Ivoire, Ivory Coast, Republic of the "CK" * "COK" * # Cook Islands "CL" * "CHL" * # Chile, Republic of "CM" * "CMR" * # Cameroon, United Republic of "CN" * "CHN" * # China, People's Republic of "CO" * "COL" * # Colombia, Republic of "CR" * "CRI" * # Costa Rica, Republic of "CS" * "SCG" * # Serbia and Montenegro "CU" * "CUB" * # Cuba, Republic of "CV" * "CPV" * # Cape Verde, Republic of "CW" * "CUW" * # Cura\u00e7ao "CX" * "CXR" * # Christmas Island "CY" * "CYP" * # Cyprus, Republic of "CZ" * "CZE" * # Czech Republic "DE" * "DEU" * # Germany "DJ" * "DJI" * # Djibouti, Republic of "DK" * "DNK" * # Denmark, Kingdom of "DM" * "DMA" * # Dominica, Commonwealth of "DO" * "DOM" * # Dominican Republic "DZ" * "DZA" * # Algeria, People's Democratic Republic of "EC" * "ECU" * # Ecuador, Republic of "EE" * "EST" * # Estonia "EG" * "EGY" * # Egypt, Arab Republic of "EH" * "ESH" * # Western Sahara "ER" * "ERI" * # Eritrea "ES" * "ESP" * # Spain, Spanish State "ET" * "ETH" * # Ethiopia "FI" * "FIN" * # Finland, Republic of "FJ" * "FJI" * # Fiji, Republic of the Fiji Islands "FK" * "FLK" * # Falkland Islands (Malvinas) "FM" * "FSM" * # Micronesia, Federated States of "FO" * "FRO" * # Faeroe Islands "FR" * "FRA" * # France, French Republic "GA" * "GAB" * # Gabon, Gabonese Republic "GB" * "GBR" * # United Kingdom of Great Britain & N. Ireland "GD" * "GRD" * # Grenada "GE" * "GEO" * # Georgia "GF" * "GUF" * # French Guiana "GG" * "GGY" * # Guernsey "GH" * "GHA" * # Ghana, Republic of "GI" * "GIB" * # Gibraltar "GL" * "GRL" * # Greenland "GM" * "GMB" * # Gambia, Republic of the "GN" * "GIN" * # Guinea, Revolutionary People's Rep'c of "GP" * "GLP" * # Guadaloupe "GQ" * "GNQ" * # Equatorial Guinea, Republic of "GR" * "GRC" * # Greece, Hellenic Republic "GS" * "SGS" * # South Georgia and the South Sandwich Islands "GT" * "GTM" * # Guatemala, Republic of "GU" * "GUM" * # Guam "GW" * "GNB" * # Guinea-Bissau, Republic of "GY" * "GUY" * # Guyana, Republic of "HK" * "HKG" * # Hong Kong, Special Administrative Region of China "HM" * "HMD" * # Heard and McDonald Islands "HN" * "HND" * # Honduras, Republic of "HR" * "HRV" * # Hrvatska (Croatia) "HT" * "HTI" * # Haiti, Republic of "HU" * "HUN" * # Hungary, Hungarian People's Republic "ID" * "IDN" * # Indonesia, Republic of "IE" * "IRL" * # Ireland "IL" * "ISR" * # Israel, State of "IM" * "IMN" * # Isle of Man "IN" * "IND" * # India, Republic of "IO" * "IOT" * # British Indian Ocean Territory (Chagos Archipelago) "IQ" * "IRQ" * # Iraq, Republic of "IR" * "IRN" * # Iran, Islamic Republic of "IS" * "ISL" * # Iceland, Republic of "IT" * "ITA" * # Italy, Italian Republic "JE" * "JEY" * # Jersey "JM" * "JAM" * # Jamaica "JO" * "JOR" * # Jordan, Hashemite Kingdom of "JP" * "JPN" * # Japan "KE" * "KEN" * # Kenya, Republic of "KG" * "KGZ" * # Kyrgyz Republic "KH" * "KHM" * # Cambodia, Kingdom of "KI" * "KIR" * # Kiribati, Republic of "KM" * "COM" * # Comoros, Union of the "KN" * "KNA" * # St. Kitts and Nevis "KP" * "PRK" * # Korea, Democratic People's Republic of "KR" * "KOR" * # Korea, Republic of "KW" * "KWT" * # Kuwait, State of "KY" * "CYM" * # Cayman Islands "KZ" * "KAZ" * # Kazakhstan, Republic of "LA" * "LAO" * # Lao People's Democratic Republic "LB" * "LBN" * # Lebanon, Lebanese Republic "LC" * "LCA" * # St. Lucia "LI" * "LIE" * # Liechtenstein, Principality of "LK" * "LKA" * # Sri Lanka, Democratic Socialist Republic of "LR" * "LBR" * # Liberia, Republic of "LS" * "LSO" * # Lesotho, Kingdom of "LT" * "LTU" * # Lithuania "LU" * "LUX" * # Luxembourg, Grand Duchy of "LV" * "LVA" * # Latvia "LY" * "LBY" * # Libyan Arab Jamahiriya "MA" * "MAR" * # Morocco, Kingdom of "MC" * "MCO" * # Monaco, Principality of "MD" * "MDA" * # Moldova, Republic of "ME" * "MNE" * # Montenegro, Republic of "MF" * "MAF" * # Saint Martin "MG" * "MDG" * # Madagascar, Republic of "MH" * "MHL" * # Marshall Islands "MK" * "MKD" * # Macedonia, the former Yugoslav Republic of "ML" * "MLI" * # Mali, Republic of "MM" * "MMR" * # Myanmar "MN" * "MNG" * # Mongolia, Mongolian People's Republic "MO" * "MAC" * # Macao, Special Administrative Region of China "MP" * "MNP" * # Northern Mariana Islands "MQ" * "MTQ" * # Martinique "MR" * "MRT" * # Mauritania, Islamic Republic of "MS" * "MSR" * # Montserrat "MT" * "MLT" * # Malta, Republic of "MU" * "MUS" * # Mauritius "MV" * "MDV" * # Maldives, Republic of "MW" * "MWI" * # Malawi, Republic of "MX" * "MEX" * # Mexico, United Mexican States "MY" * "MYS" * # Malaysia "MZ" * "MOZ" * # Mozambique, People's Republic of "NA" * "NAM" * # Namibia "NC" * "NCL" * # New Caledonia "NE" * "NER" * # Niger, Republic of the "NF" * "NFK" * # Norfolk Island "NG" * "NGA" * # Nigeria, Federal Republic of "NI" * "NIC" * # Nicaragua, Republic of "NL" * "NLD" * # Netherlands, Kingdom of the "NO" * "NOR" * # Norway, Kingdom of "NP" * "NPL" * # Nepal, Kingdom of "NR" * "NRU" * # Nauru, Republic of "NU" * "NIU" * # Niue, Republic of "NZ" * "NZL" * # New Zealand "OM" * "OMN" * # Oman, Sultanate of "PA" * "PAN" * # Panama, Republic of "PE" * "PER" * # Peru, Republic of "PF" * "PYF" * # French Polynesia "PG" * "PNG" * # Papua New Guinea "PH" * "PHL" * # Philippines, Republic of the "PK" * "PAK" * # Pakistan, Islamic Republic of "PL" * "POL" * # Poland, Republic of Poland "PM" * "SPM" * # St. Pierre and Miquelon "PN" * "PCN" * # Pitcairn Island "PR" * "PRI" * # Puerto Rico "PS" * "PSE" * # Palestinian Territory, Occupied "PT" * "PRT" * # Portugal, Portuguese Republic "PW" * "PLW" * # Palau "PY" * "PRY" * # Paraguay, Republic of "QA" * "QAT" * # Qatar, State of "RE" * "REU" * # Reunion "RO" * "ROU" * # Romania, Socialist Republic of "RS" * "SRB" * # Serbia, Republic of "RU" * "RUS" * # Russian Federation "RW" * "RWA" * # Rwanda, Rwandese Republic "SA" * "SAU" * # Saudi Arabia, Kingdom of "SB" * "SLB" * # Solomon Islands "SC" * "SYC" * # Seychelles, Republic of "SD" * "SDN" * # Sudan, Democratic Republic of the "SE" * "SWE" * # Sweden, Kingdom of "SG" * "SGP" * # Singapore, Republic of "SH" * "SHN" * # St. Helena "SI" * "SVN" * # Slovenia "SJ" * "SJM" * # Svalbard & Jan Mayen Islands "SK" * "SVK" * # Slovakia (Slovak Republic) "SL" * "SLE" * # Sierra Leone, Republic of "SM" * "SMR" * # San Marino, Republic of "SN" * "SEN" * # Senegal, Republic of "SO" * "SOM" * # Somalia, Somali Republic "SR" * "SUR" * # Suriname, Republic of "SS" * "SSD" * # South Sudan "ST" * "STP" * # Sao Tome and Principe, Democratic Republic of "SV" * "SLV" * # El Salvador, Republic of "SX" * "SXM" * # Sint Maarten (Dutch part) "SY" * "SYR" * # Syrian Arab Republic "SZ" * "SWZ" * # Swaziland, Kingdom of "TC" * "TCA" * # Turks and Caicos Islands "TD" * "TCD" * # Chad, Republic of "TF" * "ATF" * # French Southern Territories "TG" * "TGO" * # Togo, Togolese Republic "TH" * "THA" * # Thailand, Kingdom of "TJ" * "TJK" * # Tajikistan "TK" * "TKL" * # Tokelau (Tokelau Islands) "TL" * "TLS" * # Timor-Leste, Democratic Republic of "TM" * "TKM" * # Turkmenistan "TN" * "TUN" * # Tunisia, Republic of "TO" * "TON" * # Tonga, Kingdom of "TR" * "TUR" * # Turkey, Republic of "TT" * "TTO" * # Trinidad and Tobago, Republic of "TV" * "TUV" * # Tuvalu "TW" * "TWN" * # Taiwan, Province of China "TZ" * "TZA" * # Tanzania, United Republic of "UA" * "UKR" * # Ukraine "UG" * "UGA" * # Uganda, Republic of "UM" * "UMI" * # United States Minor Outlying Islands "US" * "USA" * # United States of America "UY" * "URY" * # Uruguay, Eastern Republic of "UZ" * "UZB" * # Uzbekistan "VA" * "VAT" * # Holy See (Vatican City State) "VC" * "VCT" * # St. Vincent and the Grenadines "VE" * "VEN" * # Venezuela, Bolivarian Republic of "VG" * "VGB" * # British Virgin Islands "VI" * "VIR" * # US Virgin Islands "VN" * "VNM" * # Viet Nam, Socialist Republic of "VU" * "VUT" * # Vanuatu "WF" * "WLF" * # Wallis and Futuna Islands "WS" * "WSM" * # Samoa, Independent State of "YE" * "YEM" * # Yemen "YT" * "MYT" * # Mayotte "ZA" * "ZAF" * # South Africa, Republic of "ZM" * "ZMB" * # Zambia, Republic of "ZW" * "ZWE" # Zimbabwe """ ISO 15924 - Codes for the representation of names of scripts """ const IsoScriptTable = "Adlm" * # Adlam "Afak" * # Afaka "Aghb" * # Caucasian Albanian "Ahom" * # Ahom, Tai Ahom "Arab" * # Arabic "Aran" * # Arabic (Nastaliq variant) "Armi" * # Imperial Aramaic "Armn" * # Armenian "Avst" * # Avestan "Bali" * # Balinese "Bamu" * # Bamum "Bass" * # Bassa Vah "Batk" * # Batak "Beng" * # Bengali (Bangla) "Bhks" * # Bhaiksuki "Blis" * # Blissymbols "Bopo" * # Bopomofo "Brah" * # Brahmi "Brai" * # Braille "Bugi" * # Buginese "Buhd" * # Buhid "Cakm" * # Chakma "Cans" * # Unified Canadian Aboriginal Syllabics "Cari" * # Carian "Cham" * # Cham "Cher" * # Cherokee "Cirt" * # Cirth "Copt" * # Coptic "Cpmn" * # Cypro-Minoan "Cprt" * # Cypriot syllabary "Cyrl" * # Cyrillic "Cyrs" * # Cyrillic (Old Church Slavonic variant) "Deva" * # Devanagari (Nagari) "Dogr" * # Dogra "Dsrt" * # Deseret (Mormon) "Dupl" * # Duployan shorthand, Duployan stenography "Egyd" * # Egyptian demotic "Egyh" * # Egyptian hieratic "Egyp" * # Egyptian hieroglyphs "Elba" * # Elbasan "Ethi" * # Ethiopic (Geʻez) "Geok" * # Khutsuri (Asomtavruli and Nuskhuri) "Geor" * # Georgian (Mkhedruli and Mtavruli) "Glag" * # Glagolitic "Gong" * # Gunjala Gondi "Gonm" * # Masaram Gondi "Goth" * # Gothic "Gran" * # Grantha "Grek" * # Greek "Gujr" * # Gujarati "Guru" * # Gurmukhi "Hanb" * # Han with Bopomofo (alias for Han + Bopomofo) "Hang" * # Hangul (Hangŭl, Hangeul) "Hani" * # Han (Hanzi, Kanji, Hanja) "Hano" * # Hanunoo (Hanunóo) "Hans" * # Han (Simplified variant) "Hant" * # Han (Traditional variant) "Hatr" * # Hatran "Hebr" * # Hebrew "Hira" * # Hiragana "Hluw" * # Anatolian Hieroglyphs (Luwian Hieroglyphs, Hittite Hieroglyphs) "Hmng" * # Pahawh Hmong "Hmnp" * # Nyiakeng Puachue Hmong "Hrkt" * # Japanese syllabaries (alias for Hiragana + Katakana) "Hung" * # Old Hungarian (Hungarian Runic) "Inds" * # Indus (Harappan) "Ital" * # Old Italic (Etruscan, Oscan, etc.) "Jamo" * # Jamo (alias for Jamo subset of Hangul) "Java" * # Javanese "Jpan" * # Japanese (alias for Han + Hiragana + Katakana) "Jurc" * # Jurchen "Kali" * # Kayah Li "Kana" * # Katakana "Khar" * # Kharoshthi "Khmr" * # Khmer "Khoj" * # Khojki "Kitl" * # Khitan large script "Kits" * # Khitan small script "Knda" * # Kannada "Kore" * # Korean (alias for Hangul + Han) "Kpel" * # Kpelle "Kthi" * # Kaithi "Lana" * # Tai Tham (Lanna) "Laoo" * # Lao "Latf" * # Latin (Fraktur variant) "Latg" * # Latin (Gaelic variant) "Latn" * # Latin "Leke" * # Leke "Lepc" * # Lepcha (Róng) "Limb" * # Limbu "Lina" * # Linear A "Linb" * # Linear B "Lisu" * # Lisu (Fraser) "Loma" * # Loma "Lyci" * # Lycian "Lydi" * # Lydian "Mahj" * # Mahajani "Maka" * # Makasar "Mand" * # Mandaic, Mandaean "Mani" * # Manichaean "Marc" * # Marchen "Maya" * # Mayan hieroglyphs "Medf" * # Medefaidrin (Oberi Okaime, Oberi Ɔkaimɛ) "Mend" * # Mende Kikakui "Merc" * # Meroitic Cursive "Mero" * # Meroitic Hieroglyphs "Mlym" * # Malayalam "Modi" * # Modi, Moḍī "Mong" * # Mongolian "Moon" * # Moon (Moon code, Moon script, Moon type) "Mroo" * # Mro, Mru "Mtei" * # Meitei Mayek (Meithei, Meetei) "Mult" * # Multani "Mymr" * # Myanmar (Burmese) "Narb" * # Old North Arabian (Ancient North Arabian) "Nbat" * # Nabataean "Newa" * # Newa, Newar, Newari, Nepāla lipi "Nkdb" * # Naxi Dongba (na²¹ɕi³³ to³³ba²¹, Nakhi Tomba) "Nkgb" * # Naxi Geba (na²¹ɕi³³ gʌ²¹ba²¹, 'Na-'Khi ²Ggŏ-¹baw, Nakhi Geba) "Nkoo" * # N’Ko "Nshu" * # Nüshu "Ogam" * # Ogham "Olck" * # Ol Chiki (Ol Cemet’, Ol, Santali) "Orkh" * # Old Turkic, Orkhon Runic "Orya" * # Oriya (Odia) "Osge" * # Osage "Osma" * # Osmanya "Palm" * # Palmyrene "Pauc" * # Pau Cin Hau "Perm" * # Old Permic "Phag" * # Phags-pa "Phli" * # Inscriptional Pahlavi "Phlp" * # Psalter Pahlavi "Phlv" * # Book Pahlavi "Phnx" * # Phoenician "Plrd" * # Miao (Pollard) "Piqd" * # Klingon (KLI pIqaD) "Prti" * # Inscriptional Parthian "Qaaa" * # Reserved for private use (start) "Qabx" * # Reserved for private use (end) "Rjng" * # Rejang (Redjang, Kaganga) "Roro" * # Rongorongo "Runr" * # Runic "Samr" * # Samaritan "Sara" * # Sarati "Sarb" * # Old South Arabian "Saur" * # Saurashtra "Sgnw" * # SignWriting "Shaw" * # Shavian (Shaw) "Shrd" * # Sharada, Śāradā "Shui" * # Shuishu "Sidd" * # Siddham, Siddhaṃ, Siddhamātṛkā "Sind" * # Khudawadi, Sindhi "Sinh" * # Sinhala "Sora" * # Sora Sompeng "Soyo" * # Soyombo "Sund" * # Sundanese "Sylo" * # Syloti Nagri "Syrc" * # Syriac "Syre" * # Syriac (Estrangelo variant) "Syrj" * # Syriac (Western variant) "Syrn" * # Syriac (Eastern variant) "Tagb" * # Tagbanwa "Takr" * # Takri, Ṭākrī, Ṭāṅkrī "Tale" * # Tai Le "Talu" * # New Tai Lue "Taml" * # Tamil "Tang" * # Tangut "Tavt" * # Tai Viet "Telu" * # Telugu "Teng" * # Tengwar "Tfng" * # Tifinagh (Berber) "Tglg" * # Tagalog (Baybayin, Alibata) "Thaa" * # Thaana "Thai" * # Thai "Tibt" * # Tibetan "Tirh" * # Tirhuta "Ugar" * # Ugaritic "Vaii" * # Vai "Visp" * # Visible Speech "Wara" * # Warang Citi (Varang Kshiti) "Wcho" * # Wancho "Wole" * # Woleai "Xpeo" * # Old Persian "Xsux" * # Cuneiform, Sumero-Akkadian "Yiii" * # Yi "Zanb" * # Zanabazar Square "Zinh" * # Code for inherited script "Zmth" * # Mathematical notation "Zsye" * # Symbols (Emoji variant) "Zsym" * # Symbols "Zxxx" * # Code for unwritten documents "Zyyy" * # Code for undetermined script "Zzzz" # Code for uncoded script # convert old registered language tags to replacements GRANDFATHERED = Dict{String,String}( # "tag" => "preferred", "art-lojban" => "jbo", "cel-gaulish" => "xtg-x-cel-gaulish", # fallback "en-gb-oed" => "en-gb-x-oed", # fallback "i-ami" => "ami", "i-bnn" => "bnn", "i-default" => "en-x-i-default", # fallback "i-enochian" => "und-x-i-enochian", # fallback "i-hak" => "hak", "i-klingon" => "tlh", "i-lux" => "lb", "i-mingo" => "see-x-i-mingo", # fallback "i-navajo" => "nv", "i-pwn" => "pwn", "i-tao" => "tao", "i-tay" => "tay", "i-tsu" => "tsu", "no-bok" => "nb", "no-nyn" => "nn", "sgn-be-fr" => "sfb", "sgn-be-nl" => "vgt", "sgn-ch-de" => "sgg", "zh-guoyu" => "cmn", "zh-hakka" => "hak", "zh-min" => "nan-x-zh-min", # fallback "zh-min-nan" => "nan", "zh-xiang" => "hsn", ) # convert old language codes to new codes OLD_TO_NEW_LANG = Dict{String,String}( # "old"=> "new", "iw" => "he", "ji" => "yi", "in" => "id") abstract type StringDict{K,L,M} end struct StringDict32 <: StringDict{2,3,5} data::String end struct StringDict50 <: StringDict{0,4,4} data::String end const LANGUAGE3_DICT = StringDict32(IsoLanguageTable) const COUNTRY3_DICT = StringDict32(IsoCountryTable) const SCRIPT_SET = StringDict50(IsoScriptTable) function Base.getindex(d::StringDict{K,L,M}, x3::Union{T,Symbol}) where {K,L,M,T<:AbstractString} x = string(x3) length(x) != L && return isa(x3, Symbol) ? x3 : Symbol(x3) ix = K while ix >= 0 && ix % M != K+1 fx = findnext(x, d.data, ix+1) ix = fx == nothing ? -1 : first(fx) end ix > 0 ? Symbol(d.data[ix-K:ix-1]) : isa(x3, Symbol) ? x3 : Symbol(x) end Base.keys(d::StringDict{K,L,M}) where {K,L,M} = StringKeyIterator{K,L,M}(d.data) struct StringKeyIterator{K,L,M} data::String end Base.iterate(d::StringDict{K,L,M}) where {K,L,M} = iterate(d, 0) function Base.iterate(d::StringDict{K,L,M}, s) where {K,L,M} s >= length(d.data) && return nothing K == 0 ? Symbol(d.data[s+1:s+L]) : Symbol(d.data[s+K+1:s+K+L]) => Symbol(d.data[s+1:s+K]), s + M end Base.length(d::StringDict{K,L,M}) where {K,L,M} = length(d.data) ÷ M Base.iterate(it::StringKeyIterator{K,L,M}) where {K,L,M} = iterate(it, 1 + K) function Base.iterate(it::StringKeyIterator{K,L,M}, s) where {K,L,M} s > length(it.data) && return nothing Symbol(it.data[s:s+L-1]), s + M end Base.length(it::StringKeyIterator{K,L,M}) where {K,L,M} = length(it.data) ÷ M Base.in(x, d::StringDict{0,L,M}) where {L,M} = d[x] == Symbol("") """ The following translation dictionary was created essentially using the following code snippet: ``` julia julia> dict = Dict{String,String}() Dict{String,String} with 0 entries julia> function normal(s::AbstractString) a = split(s, "@") b = split(a[1], ".") length(a) <= 1 || a[2] == "euro" ? b[1] : b[1] * "@" * a[2] end normal (generic function with 1 method) julia> for line in eachline("/usr/share/X11/locale/locale.alias") a = split(lowercase(line), r"[[:space]]+", keep=false) if length(a) == 2 && !startswith(a[1], "#") endswith(a[1], ":") && (a[1] = a[1][1:end-1]) a1 = normal(a[1]) a2 = normal(a[2]) if a1 != a2 if !haskey(dict, a1) dict[a1] = a2 println('"', a1, '"', " => ", '"', a2, '"', ",") end end end end ``` The codeset specifiers have been removed from the input data. It is assumed, that the codesset has not been used to encode relevant data. """ const POSIX_OLD_TO_NEW = Dict( "posix" => "c", "posix-utf2" => "c", "c_c" => "c", "c" => "en_us", "cextend" => "en_us", "english_united-states" => "c", "a3" => "az_az", "a3_az" => "az_az", "af" => "af_za", "am" => "am_et", "ar" => "ar_aa", "as" => "as_in", "az" => "az_az", "be" => "be_by", "be@latin" => "be_by@latin", "bg" => "bg_bg", "be_bg" => "bg_bg", "br" => "br_fr", "bs" => "bs_ba", "ca" => "ca_es", "cs" => "cs_cz", "cs_cs" => "cs_cz", "cz" => "cs_cz", "cz_cz" => "cs_cz", "cy" => "cy_gb", "da" => "da_dk", "de" => "de_de", "ger_de" => "de_de", "ee" => "ee_ee", "el" => "el_gr", "en" => "en_us", "en_uk" => "en_gb", "eng_gb" => "en_gb", "en_zw" => "en_zs", "eo" => "eo_xx", "es" => "es_es", "et" => "et_ee", "eu" => "eu_es", "fa" => "fa_ir", "fi" => "fi_fi", "fo" => "fo_fo", "fr" => "fr_fr", "fre_fr" => "fr_fr", "ga" => "ga_ie", "gd" => "gd_gb", "gl" => "gl_es", "gv" => "gv_gb", "he" => "he_il", "hi" => "hi_in", "hne" => "hne_in", "hr" => "hr_hr", "hu" => "hu_hu", "in" => "id_id", "in_id" => "id_id", "is" => "is_is", "it" => "it_it", "iu" => "iu_ca", "iw" => "he_il", "iw_il" => "he_il", "ja" => "ja_jp", "jp_jp" => "ja_jp", "ka" => "ka_ge", "kl" => "kl_gl", "kn" => "kn_in", "ko" => "ko_kr", "ks" => "ks_in", "kw" => "kw_gb", "ky" => "ky_kg", "lo" => "lo_la", "lt" => "lt_lt", "lv" => "lv_lv", "mai" => "mai_in", "mi" => "mi_nz", "mk" => "mk_mk", "ml" => "ml_in", "mr" => "mr_in", "ms" => "ms_my", "mt" => "mt_mt", "nb" => "nb_no", "nl" => "nl_nl", "nn" => "nn_no", "no" => "no_no", "no_no@bokmal" => "no_no", "no_no@nynorsk" => "no_no", "nr" => "nr_za", "nso" => "nso_za", "ny" => "ny_no", "no@nynorsk" => "ny_no", "nynorsk" => "nn_no", "oc" => "oc_fr", "or" => "or_in", "pa" => "pa_in", "pd" => "pd_us", "ph" => "ph_ph", "pl" => "pl_pl", "pp" => "pp_an", "pt" => "pt_pt", "ro" => "ro_ro", "ru" => "ru_ru", "rw" => "rw_rw", "sd" => "sd_in", "sd@devanagari" => "sd_in@devanagari", "sh" => "sr_rs@latin", "sh_ba@bosnia" => "sr_cs", "sh_hr" => "hr_hr", "sh_yu" => "sr_rs@latin", "si" => "si_lk", "sk" => "sk_sk", "sl" => "sl_si", "sq" => "sq_al", "sr" => "sr_rs", "sr_yu" => "sr_rs@latin", "sr@cyrillic" => "sr_rs", "sr_yu@cyrillic" => "sr_rs", "sr@latn" => "sr_cs@latin", "sr_cs@latn" => "sr_cs@latin", "sr@latin" => "sr_rs@latin", "sr_rs@latn" => "sr_rs@latin", "ss" => "ss_za", "st" => "st_za", "sv" => "sv_se", "ta" => "ta_in", "te" => "te_in", "tg" => "tg_tj", "th" => "th_th", "tl" => "tl_ph", "tn" => "tn_za", "tr" => "tr_tr", "ts" => "ts_za", "tt" => "tt_ru", "uk" => "uk_ua", "ur" => "ur_in", "uz" => "uz_uz", "uz_uz@cyrillic" => "uz_uz", "ve" => "ve_za", "vi" => "vi_vn", "wa" => "wa_be", "xh" => "xh_za", "yi" => "yi_us", "zh_cn" => "zh_tw", "zu" => "zu_za", "english_uk" => "en_gb", "english_us" => "en_us", "french_france" => "fr_fr", "german_germany" => "de_de", "portuguese_brazil" => "pt_br", "spanish_spain" => "es_es", "american" => "en_us", "arabic" => "ar_aa", "bokmal" => "nb_no", "bokmål" => "nb_no", "bulgarian" => "bg_bg", "c-french" => "fr_ca", "catalan" => "ca_es", "chinese-s" => "zh_cn", "chinese-t" => "zh_tw", "croatian" => "hr_hr", "czech" => "cs_cz", "danish" => "da_dk", "dansk" => "da_dk", "deutsch" => "de_de", "dutch" => "nl_nl", "eesti" => "et_ee", "english" => "en_en", "estonian" => "et_ee", "finnish" => "fi_fi", "français" => "fr_fr", "french" => "fr_fr", "galego" => "gl_es", "galician" => "gl_es", "german" => "de_de", "greek" => "el_gr", "hebrew" => "he_il", "hrvatski" => "hr_hr", "hungarian" => "hu_hu", "icelandic" => "is_is", "italian" => "it_it", "japanese" => "ja_jp", "korean" => "ko_kr", "lithuanian" => "lt_lt", "norwegian" => "no_no", "polish" => "pl_pl", "portuguese" => "pt_pt", "romanian" => "ro_ro", "rumanian" => "ro_ro", "russian" => "ru_ru", "serbocroatian" => "sr_rs@latin", "sinhala" => "si_lk", "slovak" => "sk_sk", "slovene" => "sl_si", "slovenian" => "sl_si", "spanish" => "es_es", "swedish" => "sv_se", "turkish" => "tr_tr", "thai" => "th_th", "univ" => "en_us", "universal@ucs4" => "en_us", "iso_8859_1" => "en_us", "iso_8859_15" => "en_us", "iso8859-1" => "en_us", "iso-8859-1" => "en_us", "japan" => "ja_jp", "japanese-euc" => "ja_jp", ) """ Extracted from cldr_32.0.1/tools/java/org/unicode/cldr/util/data/Script_Metadata.csv """ const SCRIPT_OLD_NEW = Dict( "Common" => "Zyyy", "Latin" => "Latn", "Han" => "Hani", "Cyrillic" => "Cyrl", "Hiragana" => "Hira", "Katakana" => "Kana", "Thai" => "Thai", "Arabic" => "Arab", "Hangul" => "Hang", "Devanagari" => "Deva", "Greek" => "Grek", "Hebrew" => "Hebr", "Tamil" => "Taml", "Kannada" => "Knda", "Georgian" => "Geor", "Malayalam" => "Mlym", "Telugu" => "Telu", "Armenian" => "Armn", "Myanmar" => "Mymr", "Gujarati" => "Gujr", "Bengali" => "Beng", "Gurmukhi" => "Guru", "Lao" => "Laoo", "Inherited" => "Zinh", "Khmer" => "Khmr", "Tibetan" => "Tibt", "Sinhala" => "Sinh", "Ethiopic" => "Ethi", "Thaana" => "Thaa", "Oriya" => "Orya", "Unknown" => "Zzzz", "Canadian_Aboriginal" => "Cans", "Syriac" => "Syrc", "Bopomofo" => "Bopo", "Nko" => "Nkoo", "Cherokee" => "Cher", "Yi" => "Yiii", "Samaritan" => "Samr", "Coptic" => "Copt", "Mongolian" => "Mong", "Glagolitic" => "Glag", "Vai" => "Vaii", "Balinese" => "Bali", "Tifinagh" => "Tfng", "Bamum" => "Bamu", "Batak" => "Batk", "Cham" => "Cham", "Javanese" => "Java", "Kayah_Li" => "Kali", "Lepcha" => "Lepc", "Limbu" => "Limb", "Lisu" => "Lisu", "Mandaic" => "Mand", "Meetei_Mayek" => "Mtei", "New_Tai_Lue" => "Talu", "Ol_Chiki" => "Olck", "Saurashtra" => "Saur", "Sundanese" => "Sund", "Syloti_Nagri" => "Sylo", "Tai_Le" => "Tale", "Tai_Tham" => "Lana", "Tai_Viet" => "Tavt", "Avestan" => "Avst", "Brahmi" => "Brah", "Buginese" => "Bugi", "Buhid" => "Buhd", "Carian" => "Cari", "Cuneiform" => "Xsux", "Cypriot" => "Cprt", "Deseret" => "Dsrt", "Egyptian_Hieroglyphs" => "Egyp", "Gothic" => "Goth", "Hanunoo" => "Hano", "Imperial_Aramaic" => "Armi", "Inscriptional_Pahlavi" => "Phli", "Inscriptional_Parthian" => "Prti", "Kaithi" => "Kthi", "Kharoshthi" => "Khar", "Linear_B" => "Linb", "Lycian" => "Lyci", "Lydian" => "Lydi", "Ogham" => "Ogam", "Old_Italic" => "Ital", "Old_Persian" => "Xpeo", "Old_South_Arabian" => "Sarb", "Old_Turkic" => "Orkh", "Osmanya" => "Osma", "Phags_Pa" => "Phag", "Phoenician" => "Phnx", "Rejang" => "Rjng", "Runic" => "Runr", "Shavian" => "Shaw", "Tagalog" => "Tglg", "Tagbanwa" => "Tagb", "Ugaritic" => "Ugar", "Chakma" => "Cakm", "Meroitic_Cursive" => "Merc", "Meroitic_Hieroglyphs" => "Mero", "Miao" => "Plrd", "Sharada" => "Shrd", "Sora_Sompeng" => "Sora", "Takri" => "Takr", "Braille" => "Brai", "Caucasian_Albanian" => "Aghb", "Bassa_Vah" => "Bass", "Duployan" => "Dupl", "Elbasan" => "Elba", "Grantha" => "Gran", "Pahawh_Hmong" => "Hmng", "Khojki" => "Khoj", "Linear_A" => "Lina", "Mahajani" => "Mahj", "Manichaean" => "Mani", "Mende_Kikakui" => "Mend", "Modi" => "Modi", "Mro" => "Mroo", "Old_North_Arabian" => "Narb", "Nabataean" => "Nbat", "Palmyrene" => "Palm", "Pau_Cin_Hau" => "Pauc", "Old_Permic" => "Perm", "Psalter_Pahlavi" => "Phlp", "Siddham" => "Sidd", "Khudawadi" => "Sind", "Tirhuta" => "Tirh", "Warang_Citi" => "Wara", "Ahom" => "Ahom", "Anatolian_Hieroglyphs" => "Hluw", "Hatran" => "Hatr", "Multani" => "Mult", "Old_Hungarian" => "Hung", "SignWriting" => "Sgnw", "Adlam" => "Adlm", "Bhaiksuki" => "Bhks", "Marchen" => "Marc", "Osage" => "Osge", "Tangut" => "Tang", "Newa" => "Newa", "Masaram Gondi" => "Gonm", "Nushu" => "Nshu", "Soyombo" => "Soyo", "Zanabazar Square" => "Zanb", ) """ Registered variants as found in cldr32.0.1/common/validity/variant.xml """ const VARIANTS = Set([ "1606nict", "1694acad", "1901", "1959acad", "1994", "1996", "abl1943", "akuapem", "alalc97", "aluku", "ao1990", "arevela", "arevmda", "asant", "baku1926", "balanka", "barla", "basiceng", "bauddha", "biscayan", "biske", "bohoric", "boont", "colb1945", "cornu", "dajnko", "ekavsk", "emodeng", "fonipa", "fonnapa", "fonupa", "fonxsamp", "hepburn", "heploc", "hognorsk", "hsistemo", "ijekavsk", "itihasa", "jauer", "jyutping", "kkcor", "kociewie", "kscor", "laukika", "lipaw", "luna1918", "metelko", "monoton", "ndyuka", "nedis", "newfound", "njiva", "nulik", "osojs", "oxendict", "pahawh2", "pahawh3", "pahawh4", "pamaka", "petr1708", "pinyin", "polyton", "puter", "rigik", "rozaj", "rumgr", "scotland", "scouse", "simple", "solba", "sotav", "spanglis", "surmiran", "sursilv", "sutsilv", "tarask", "uccor", "ucrcor", "ulster", "unifon", "vaidika", "valencia", "vallader", "wadegile", "xsistemo", ])
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
5032
""" transformation between locale identifiers in differnet forms 1. form used by POSIX: <lang>_<region>[.<charset>][@<cextension>] 2. form used by BCP47: <lang>[_<script>][_<region>][-<variant>][-lextensions] """ module LocaleIdTranslations using ResourceBundles using Unicode import ResourceBundles: SEP export cloc_to_loc, loc_to_cloc, all_locales """ cloc_to_loc(posix::String) -> unicode-locale-id-string Posix string has the general form `<lang>[_<country>][.<charset>][@<extension>]`. We transform this to the following string: `<lang[_<script>][_country>][_<variant>][-x-posix-<extension>]`. The `@extension` may be transformed to a <script>, a variant, or a private extension. The charset is ignored. The extension is optional in input and output. """ function cloc_to_loc(cloc::String) cloc == "" && return cloc if cloc == "C" || uppercase(cloc) == "POSIX" return "C" end cloc = lowercase(cloc) m = match(REG_POSIX, cloc) if m == nothing return cloc end mc = m.captures lang = mc[1] reg = nostring(mc[3]) charset = nostring(mc[5]) ext = nostring(mc[7]) script = "" var = "" if !isempty(ext) langext = string(lang, mc[6]) if haskey(EXTENSION_TO_SCRIPT, ext) script = EXTENSION_TO_SCRIPT[ext] ext = "" elseif haskey(LANGEXT_TO_VAR, langext) var = LANGEXT_TO_VAR[langext] ext = "" elseif haskey(LANGEXT_TO_NEW, langext) lang = LANGEXT_TO_NEW[key] ext = "" elseif ext in EXTENSIONS_IGNORE ext = "" end end io = IOBuffer() write(io, lang) isempty(script) || write(io, SEP, script) isempty(reg) || write(io, SEP, reg) isempty(var) || write(io, SEP, var) isempty(ext) || write(io, "-x-posix-", ext) String(take!(io)) end nostring(s::AbstractString) = s nostring(::Nothing) = "" const REG_POSIX = r"(^[[:alpha:]]+)([_-]([[:alpha:]]+))?(\.([[:alnum:]_-]+))?(@([[:alnum:]]+))?$" const EXTENSION_TO_SCRIPT = Dict( "cyrillic" => "Cyrl", "latin" => "Latn", "devanagari" => "Deva") const LANGEXT_TO_VAR = Dict( "es@valencia" => "valencia" ) const LANGEXT_TO_NEW = Dict( "aa@saaho" => "ssy", "gez@abegede" => "aa") const EXTENSIONS_IGNORE = ["euro"] const S0 = Symbol("") """ loc_to_cloc(loc::LocaleId) -> POSIX string Translate from LocaleId to String in POSIX Format. Comparable with cloc_to_loc. """ function loc_to_cloc(loc::LocaleId) s = string(loc) ( s == "C" || uppercase(s) == "POSIX" ) && return "C" s == "" && return s lang = loc.language reg = loc.region script = loc.script # only interested in extensions of the form "-x-posix-<ext>" extd = loc.extensions === nothing ? Symbol[] : get(loc.extensions, 'x', Symbol[]) ext = length(extd) == 2 && extd[1] == :posix ? extd[2] : S0 pext = get(LANG_TO_EXT, string(lang), "") allo = all_locales() # in the operating system storage (locale -a) if reg != S0 # all posix locales have a region if script != S0 key = string(script) if haskey(SCRIPT_TO_EXT, key) pext = SCRIPT_TO_EXT[key] end end if ext != S0 && isempty(pext) pext = string(ext) end su = locale_name(lang, reg, pext) if findfirst(x -> x == su, allo) != 0 return su end su = locale_name(loc.language, reg) if findfirst(x -> x == su, allo) != 0 return su else s = loc.language end else s = loc.language end s = string(s) su = locale_name(s, uppercase(s)) # check the case, when lang and reg are the same if findfirst( x ->x == su, allo) != 0 return su end reg = get(PROBABLE_SUBTAGS, s, "") if reg != "" su = locale_name(s, reg) if findfirst( x ->x == su, allo) != 0 return su end end ix = findfirst(x -> x == s || startswith(x, s * '_'), allo) return ix != 0 ? allo[ix] : "C" end locale_name(lang, reg) = string(lang, '_', reg, UTF8) locale_name(lang, reg, ext) = isempty(ext) ? locale_name(lang, reg) : string(lang, '_', reg, UTF8, '@', ext) const PROBABLE_SUBTAGS = Dict("en" => "US", "zh" => "CN", "sv" => "SE") const SCRIPT_TO_EXT = Dict("Deva" => "devanagari", "Latn" => "latin", "Cyrl" => "cyrillic") const LANG_TO_EXT = Dict("ssy" => "saaho") allloc = String[] function all_locales() global allloc if isempty(allloc) list = String[] push!(list, "C", "POSIX") for loc in eachline(`locale -a`) loca, ext = splitext(loc) simple = ext == "" && '_' ∉ loca standard = loca == "C" || loca == "POSIX" if ( simple || ext == UTF8 ) && !standard push!(list, loc) end end allloc = list end allloc end const UTF8 = ".utf8" end # module
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
9121
""" Represent one text item consisting of original text, translated texts """ mutable struct TranslationItem id::String plural::String context::String strings::Dict{Int,String} TranslationItem() = new("", "", "", Dict{Int,String}()) end function init_ti!(ti::TranslationItem) ti.id = "" ti.plural = "" ti.context = "" empty!(ti.strings) end """ read_po_file'('f::AbstractString')' Read a file, which contains text data according to the PO format of gettext ref: //https://www.gnu.org/software/gettext/manual/html_node/PO-Files.html Format is strictly line separated. A line staring with '#' is a comment line and ignored. A line starting with a keyword '(msg.*)' has to be followed by a string, enclosed in '"' in the same line, optionally followed by string continuations in the following lines. Those strings are concatenated. Characters '"' and '\\' have to be escaped by a preceding '\\'. The usual C-escape sequences are honored. Only keywords 'msgid', 'msgid_plural', 'msgstr', and 'msgstr[.*]' are supported. The "msgid_plural" is used synonymous to the "msgid". If both entries are present, two separate key-value pairs are generated, with identical '('typical array')' value. """ function read_po_file(file::Union{AbstractString,IO}) in_sequence = false in_keyword = false dict = Vector{Pair{String,Union{String,Vector{String}}}}() buffer = IOBuffer() keyword = "" index = 0 ti = TranslationItem() in_ti = 0 function begin_sequence(str::AbstractString) truncate(buffer, 0) write(buffer, str) in_sequence = true end function continue_sequence(str::AbstractString) in_sequence || error("no continuation string expected") write(buffer, str) end function end_sequence() str = unescape_string(String(take!(buffer))) in_sequence = false in_keyword && end_keyword(str) end function begin_keyword(key::AbstractString, ix::Any, str::AbstractString) in_keyword = true keyword = key index = ix != nothing ? Meta.parse(ix) : -1 begin_sequence(str) end function end_keyword(line::AbstractString) in_keyword = false process_keyword(keyword, index, line) end function process_keyword( key::AbstractString, index::Int, text::AbstractString, ) index == -1 || key == "msgstr" || error("not allowed $key[$index]") if key == "msgid" in_ti == 3 && process_translation_item(ti) in_ti <= 1 || error("unexpected $key '$text'") in_ti = 2 isempty(ti.id) || error("several msgids in line ('$ti.id', '$text')") ti.id = text elseif key == "msgstr" in_ti != 0 || error("unexpected $key '$text'") in_ti = 3 ti.strings[max(index, 0)] = text elseif key == "msgid_plural" in_ti == 2 || error("unexpected $key '$text'") isempty(ti.plural) || error("several msgid_plural in line ('$ti.plural', '$text')") ti.plural = text elseif key == "msgctxt" in_ti == 3 && process_translation_item(ti) in_ti == 0 || error("unexpected $key '$text'") in_ti = 1 isempty(ti.context) || error("several msgctx in line ('$ti.context', '$text')") ti.context = text end end function process_translation_item(ti::TranslationItem) add_translation_item!(dict, ti) init_ti!(ti) in_ti = 0 end for line in eachline(file) if (m = match(REG_KEYWORD, line)) != nothing in_sequence && end_sequence() begin_keyword(m.captures[1], m.captures[3], m.captures[4]) elseif (m = match(REG_STRING, line)) != nothing continue_sequence(m.captures[1]) end end in_sequence && end_sequence() in_ti == 3 && process_translation_item(ti) dict end """ read_mo_file(f::AbstractString) Read a file, which contains text data according to the MO format of gettext. two separate key-value pairs are generated, with identical '('typical array')' value. """ function read_mo_file(f::AbstractString) MAGIC = 0x950412de # little-endian form NUL = '\x00' # separates different elements of msgid and msgstr (plural forms) EOT = '\x04' # separates msgctxt from msgid dict = Vector{Pair{String,Union{String,Vector{String}}}}() ti = TranslationItem() data = open(f, "r") do fp read(fp) end datal = sizeof(data) datal >= 28 || error("file too short - no MO file format") d = reinterpret(UInt32, data[1:28]) le_machine = ENDIAN_BOM == 0x04030201 le_file = d[1] == MAGIC le_file || ntoh(d[1]) == MAGIC || error("wrong magic number - no MO-file format") conv = le_file ? ltoh : ntoh le_machine != le_file && (d = conv.(d)) magic, rev, n, origp, tranp, hsize, hashp = d[1:7] revma, revmi = rev >> 16, rev & 0xffff origp, tranp, hashp = origp ÷ 4, tranp ÷ 4, hashp ÷ 4 revma == 0 || error("revision id ($revma,$revmi) in MO-file - only supported: (0, x)") datal >= (tranp + 2n) * 4 || error("file too short - no MO file format") d = reinterpret(Int32, data[5:(tranp+2n)*4]) le_machine != le_file && (d = conv.(d)) for i = 0:2:2n-1 leno = d[origp+i] ptro = d[origp+i+1] lent = d[tranp+i] ptrt = d[tranp+i+1] stro = String(data[ptro+1:ptro+leno]) strt = String(data[ptrt+1:ptrt+lent]) ix = firstnn(findfirst(isequal(EOT), stro), 0) if ix > 0 ti.context = stro[1:prevind(stro, ix)] stro = stro[nextind(stro, ix):end] end ix = firstnn(findfirst(isequal(NUL), stro), 0) if ix > 0 ti.plural = stro[nextind(stro, ix):end] stro = stro[1:prevind(stro, ix)] end ti.id = stro strtlist = string.(split(strt, NUL)) ti.strings = Dict(enumerate(strtlist)) add_translation_item!(dict, ti) init_ti!(ti) end dict end firstnn(a::Any) = a firstnn(a::Nothing, b::Any...) = firstnn(b...) firstnn(a::Any, b::Any...) = a # add translation item to output vector function add_translation_item!(dict::Vector, ti::TranslationItem) val = map(p -> p.second, sort(collect(ti.strings))) if length(val) == 1 && isempty(ti.plural) val = val[1] end !isempty(ti.id) && push!(dict, skey(ti) => val) !isempty(ti.plural) && ti.plural != ti.id && push!(dict, pkey(ti) => val) isempty(ti.id) && isempty(ti.plural) && push!(dict, "" => val) ti end # Format strings with and without context information key(ctx, id) = isempty(id) || isempty(ctx) ? id : string(SCONTEXT, ctx, SCONTEXT, id) skey(ti::TranslationItem) = key(ti.context, ti.id) pkey(ti::TranslationItem) = key(ti.context, ti.plural) """ read_header(string) Extract plural data (nplurals and function plural(n)) from string. """ function read_header(str::AbstractString) io = IOBuffer(str) for line in eachline(io) if (m = match(REG_PLURAL, line)) != nothing return translate_plural_data(m.captures[1]) end end translate_plural_data("") end module Sandbox end # clip output of eval(ex(n)) to interval [0, m) create_plural(ex::Expr, m) = n -> max(min(Base.invokelatest(Sandbox.eval(ex), n), m - 1), 0) # avoid the following error when calling f by invokelatest: # "MethodError: no method matching (::getfield(ResourceBundles, Symbol("...")))(::Int64) # The applicable method may be too new: running in world age ~3, while current world is ~4." # This is maybe an undesirable hack - looking for more elegant work around. """ translate_plural_data(string) Parses a string of form `"nplurals = expr1; plural = expr(n)"`. `expr1` must be a constant integer expression. `expr(n) must be an integer arthmetic expression with a variable `n`. Outputs the evaluation of `Int(expr1)` and of `n::Int -> expr(n)`. """ function translate_plural_data(str::AbstractString) nplurals = 2 plural = n -> n != 0 str = replace(str, ':' => " : ") # surround : by blanks str = replace(str, '?' => " ? ") # surround ? by blanks str = replace(str, "/" => "÷") # use Julia integer division for / top = Meta.parse(str) isa(top, Expr) || return nplurals, plural for a in top.args if isa(a, Expr) && a.head == :(=) var, ex = a.args if var == :nplurals nplurals = Int(Sandbox.eval(ex)) # evaluate right hand side elseif var == :plural ex2 = Expr(:(->), :n, ex) plural = create_plural(ex2, nplurals) @assert plural(1) == 0 string(ex, " not 0 for n == 1") end end end nplurals, plural end const REG_KEYWORD = r"""^\s*([a-zA-Z_]+)(\[(\d+)\])?\s+"(.*)"\s*$""" const REG_STRING = r"""^\s*"(.*)"\s*$""" const REG_COMMENT = r"""^\s*#""" const REG_PLURAL = r"""^\s*Plural-Forms:(.*)$"""
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
13978
using Base.Filesystem using Unicode using .LC const LocalePattern = LocaleId const Pathname = String struct Resource file::String locale::LocaleId nplurals::Int plural::Function dict::Dict{String,<:Any} end mutable struct Cache list::Vector{Pair{LocalePattern,Pathname}} dict::Dict{LocalePattern,Resource} end #function Resource(f::AbstractString, res::Dict{String,T}) where T # Resource(f, BOTTOM, 1, (n)->0, res) #end is_alnum(x::Char) = isletter(x) || isnumeric(x) struct ResourceBundle path::Pathname name::String cache::Dict{LocaleId,Cache} lock::ReentrantLock function ResourceBundle(path::Pathname, name::AbstractString) ( !isempty(name) && all(is_alnum, name) ) || throw(ArgumentError("resource names require alphanumeric but is `$name`")) new(path, string(name), Dict{LocaleId,Cache}(), ReentrantLock()) end end function ResourceBundle(mod::Module, name::AbstractString) ResourceBundle(resource_path(mod, name), name) end const Empty = ResourceBundle("", "empty") const SEP = '-' const SEP2 = '_' const JEND = ".jl" # extension of Julia resource file const PEND = ".po" # extension of PO resource file const MEND = ".mo" # extension of MO resource file const RESOURCES = "resources" # name of subdirectory const JRB = "JULIA_RESOURCE_BASE" # enviroment variable """ resource_path(module, name) -> String Return path name of resource directory for a module containing data for `name`. If top module is `Main` the path is derived from enviroment `JULIA_RESOURCE_BASE`. If `Sys.BINDIR/../../stdlib/<module>/resources` is a directory, we assume the resources of a module in the standard library. Otherwise the directory `pathof(<module>)/../../resources` is selected; that is the usual case for user defined modules. Submodules may have specific resource files. They are located in subdirectories of the `resources` directory with path names corresponding to submodule name. example: Module `MyModule.X.Y` can store specific resource files in `.../MyModule/resources/X/Y`. If for a given name, no resources are found in the deepest directory, fallback to previous directory happens. In the example, the resources are searched first in `resources/X/Y`, then in `resources/X`, then in `resources`. Nevertheless the resources for one name are always taken from only one subdirectory. """ function resource_path(mod::Module, name::AbstractString) mp = module_path(mod) if mp === nothing base = get(ENV, JRB, pwd()) else base = joinpath(mp, "..", "..") end path = "." prefix = normpath(base, RESOURCES) ms = module_split(mod) if is_resourcepath(prefix, name) n = length(ms) path = prefix for i = 2:n prefix = joinpath(prefix, mod2file(ms[i])) if is_resourcepath(prefix, name) path = prefix end end end path end function module_path(mod::Module) mod === nothing && return nothing pmod = parentmodule(mod) pmod === mod ? pathof(mod) : module_path(pmod) end """ package_path(mod) Return installation directory for module `mod`. """ function package_path(name) name = string(name) path1 = normpath(Sys.BINDIR, "..", "..", "stdlib", name) path2 = Pkg.dir(name) is1 = isdir(path1) is2 = isdir(path2) is1 && is2 && @warn("module '$name' has same name as stdlib module") splitdir(is2 ? path2 : is1 ? path1 : name)[1] end """ is_resourcepath(path, name) Check if directory `path` contains subdirectory `name` or a file `name_*` or `name.jl`. Path may be relative or absolute. Name may be string or symbol. """ function is_resourcepath(path::AbstractString, name::AbstractString) isdir(path) || return false isdir(joinpath(path, string(name))) && return true stp = name * string(SEP2) function resind(f::AbstractString) fname, fext = splitext(f) startswith(f, stp) || ( fname == name && ( fext == JEND || fext == PEND || fext == MEND ) ) end any(resind, readdir(path)) end """ module_split(mod::Module) Return the list of module names of a module hierarchy. Example: `Base.Iterators -> [:Main,:Base,:Iterators]`. """ function module_split(mod::Module) fullname(mod) end """ findfiles(bundle, locale) -> Cache Produce cache object, which contains list of pairs of locale patterns and pathnames of potential resource file, restricted to the given locale. The file names are all of the form `absfilename(path, name) * locstring * ".jl"` where `locstring` is in the form of a locale-pattern, with locale-separators replaced by characters `_` or `/`. The list is sorted with most specific locale-pattern first. The list needs not be totally ordered (with respect to `⊆`, which allows ambiguous Example: for `LocaleId("de-DE")`, the resource files could be `name_de_DE.jl` or `name_de/DE.jl` or `name/de_DE.jl` or `name/de/DE.jl`. If more than one of those files exist, only the first one (in topdown-order of `walkdir`) is used. """ function findfiles(bundle::ResourceBundle, loc::LocaleId) dir = normpath(bundle.path) name = bundle.name flist = Dict{LocalePattern,Pathname}() # prefix = joinpath(dir, name) np = sizeof(prefix) if dir != "." for (root, dirs, files) in walkdir(dir) for f in files file = joinpath(root, f) if startswith(file, prefix) locpa = locale_pattern(file[nextind(file,np):end]) if locpa != nothing && !haskey(flist, locpa) && loc ⊆ locpa push!(flist, locpa => file) end end end end end locs = sort(collect(keys(flist))) Cache(collect(loc => flist[loc] for loc in locs), Dict{LocalePattern,Resource}()) end # derive locale pattern from file path function locale_pattern(f::AbstractString) d, f = splitdir(f) f, fext = splitext(f) if isempty(fext) && startswith(f, ".") f, fext = "", f end ( fext == JEND || fext == PEND || fext == MEND ) || return nothing f = isempty(f) ? d : joinpath(d, f) f = replace(f, Filesystem.path_separator => SEP) f = replace(f, SEP2 => SEP) if isempty(f) LocaleId("C") elseif f[1] == SEP LocaleId(f[nextind(f, 1):end]) else nothing end end """ load_file(path) Load file and create an object of type Resource. The loaded file must contain valid julia code returning a dictionary object of the requested type, or an array of pairs, which can be used to construct one. Alternatively, if the value type is `String`, in the case of message resource files, The file content may be formattet as a gettext po file. In case of errors, a warning is printed to logging device and `nothing` is returned. """ function load_file(f::AbstractString, locpa::LocaleId=BOTTOM) d = nothing dict = nothing _, fext = splitext(f) if fext == JEND d = load_file_jl(f) elseif fext == MEND d = load_file_mo(f) elseif fext == PEND d = load_file_po(f) else @warn("invalid extension of file name '$f'") end if isa(d, Union{Vector{T},NTuple{N,Pair},T} where {T<:Pair,N}) d = Dict(d) end if isa(d, Dict) el = eltype(d).parameters if el[1] <: String dict = d else @warn("Wrong type 'Dict{$(el[1]),$(el[2])}' loaded from '$f'") end else @warn("Wrong type '$(typeof(d))' loaded from '$f' is not a dictionary") end if dict != nothing hdr = get(dict, "", "") nplurals, plural = read_header(hdr) return Resource(f, locpa, nplurals, plural, dict) end nothing end function load_file_typed(f::AbstractString, readf::Function) d = nothing try d = readf(f) @debug("loaded resource file $f") catch ex @warn("loading resource file '$f': $ex") end d end load_file_jl(f::AbstractString) = load_file_typed(f, include) load_file_po(f::AbstractString) = load_file_typed(f, read_po_file) load_file_mo(f::AbstractString) = load_file_typed(f, read_mo_file) import Base.get """ get(bundle::ResourceBundle[, locale], key::String [,default]) -> Any Return value associated with the locale and key. If the locale is not given, use the ResourceBundles current locale for messages. If no default value is given, return `nothing`. """ function get(bundle::ResourceBundle, loc::LocaleId, key::AbstractString, default=nothing) resource = get_resource_by_key(bundle, loc, key) resource != nothing ? get(resource.dict, key, default) : default end """ get_resource_by_key(bundle[, locale], key) -> Resource Get resource object which contains key. It also provides multiplicity information. If the key is not found in any resource file, return `nothing`. """ function get_resource_by_key(bundle::ResourceBundle, loc::LocaleId, key::AbstractString) try lock(bundle.lock) cache = initcache!(bundle, loc) flist = cache.list rlist = Vector() xloc = LocaleId("") val = nothing for (locpa, path) in flist resource = ensure_resource!(bundle, cache, locpa, path, rlist) if resource != nothing && haskey(resource.dict, key) if val == nothing xloc = locpa val = resource else if xloc ⊆ locpa break else @warn string("Ambiguous key '", key, "' for ", loc, " in patterns ", xloc, " and ", locpa) end end end end clean_cache_list(cache, rlist) val finally unlock(bundle.lock) end end # variants using default locale for messages msg_loc() = locale_id(LC.MESSAGES) get(bundle::ResourceBundle, key::String, default=nothing) = get(bundle, msg_loc(), key, default) get_resource_by_key(bundle::ResourceBundle, key::String) = get_resource_by_key(bundle, msg_loc(), key) import Base.keys """ keys(bundle, locale) keys(bundle) Return array of all defined keys for a specific locale or all possible locales. """ function Base.keys(bundle::ResourceBundle, loc::LocaleId) try lock(bundle.lock) cache = initcache!(bundle, loc) flist = cache.list dlist = Vector() rlist = Vector() val = nothing for (locpa, path) in flist resource = ensure_resource!(bundle, cache, locpa, path, rlist) if resource != nothing push!(dlist, keys(resource.dict)) end end clean_cache_list(cache, rlist) if isempty(dlist) String[] else sort!(unique(Iterators.flatten(dlist))) end finally unlock(bundle.lock) end end Base.keys(bundle::ResourceBundle) = keys(bundle, BOTTOM) #remove unused files from cache list function clean_cache_list(cache::Cache, rlist::Vector) if !isempty(rlist) cache.list = setdiff(cache.list, rlist) end end # select all potential source dictionaries for given locale. function initcache!(bundle::ResourceBundle, loc::LocaleId) get!(bundle.cache, loc) do findfiles(bundle, loc) end end # load all entries from one dictionary file. function ensure_resource!(bundle::ResourceBundle, cache::Cache, locpa::LocalePattern, path::String, rlist::Vector) if haskey(cache.dict, locpa) resource = cache.dict[locpa] else resource = get_resource_by_pattern(bundle, locpa) if resource == nothing resource = load_file(path, locpa) end if resource != nothing cache.dict[locpa] = resource else push!(rlist, locpa) end end resource end """ get_resource_by_pattern(bundle, locale_pattern) Obtain resource object of a bundle, which is identified by a locale pattern. That is commonly constructed of the contents of one resource file, that has the locale pattern as part of its name. """ function get_resource_by_pattern(bundle::ResourceBundle, locpa::LocalePattern) for cache in values(bundle.cache) if haskey(cache.dict, locpa) return cache.dict[locpa] end end nothing end mod2file(name::Symbol) = string("M-", name) is_module_specific(mod::Module, path) = is_module_specific(module_split(mod), path) function is_module_specific(mp::NTuple{N,Symbol}, path::AbstractString) where N dir, file = splitdir(path) isrootmod = length(mp) <= 1 isabspath(dir) && (( isrootmod && file == RESOURCES ) || (!isrootmod && file == mod2file(mp[end]) && is_module_specific(mp[1:end-1], dir) )) end const LOCK = ReentrantLock() function define_resource_variable(mod::Module, varname::Symbol, bundlename::AbstractString) try lock(LOCK) if !isdefined(mod, varname) path = resource_path(mod, bundlename) if is_module_specific(mod, path) mod.eval(:(const $varname = ResourceBundle($mod, $bundlename))) elseif isabspath(path) parent = parentmodule(mod) prev = define_resource_variable(parent, varname, bundlename) mod.eval(:(const $varname = $parent.$varname)) else mod.eval(:(const $varname = ResourceBundles.Empty)) end else mod.eval(varname) end finally unlock(LOCK) end end """ resource_bundle(module, name) @resource_bundle name Create global variable named `RB_<name>` in module `mod`, which contains corresponding resource bundle. If the variable preexists, just return it. The macro envocation is equivalent to calling `resource_bundle(@__MODULE__, name)`. """ function resource_bundle(mod::Module, name::AbstractString) define_resource_variable(mod, Symbol("RB_", name), name) end macro resource_bundle(name::AbstractString) :(resource_bundle($__module__, $name)) end
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
4258
""" Name of resource bundle used for string messages. """ const MESSAGES = "messages" """ tr"string_with_interpolation" Return translated string accoring to string database and a default locale. The interpolated values are embedded into the translated string. Multiple plural forms are supported. The multiplicity is determined by the primary interpolation value, which must be an integer. """ macro tr_str(p) src, mod = VERSION < v"0.7-DEV" ? (LineNumberNode(0), current_module()) : (__source__, __module__) tr_macro_impl(src, mod, p) end """ string_to_key(text::AbstractString) Convert text to key. Replace interpolation syntax with standardized interpoleated integers. Example without explicit primarity: `string_to_key("text\$var \$(expr) \$(77)") == "text$(1) $(2) $(3)"` Example with explicit primarity: `string_to_key("text\$var \$(!(expr)) \$(77)") == "text$(2) $(1) $(3)"` (The first interpolation annotated with '`!`' gets number 1). The interpolation must not be a literal string. """ string_to_key(p::AbstractString) = _string2ex1(p)[3] function tr_macro_impl(::LineNumberNode, mod::Module, p::Any) ex1, arg, s1 = _string2ex1(p) arg = Expr(:tuple, arg...) :(eval(translate($s1, $mod, $ex1, $(esc(arg))))) end # function translate(s1::AbstractString, mod::Module, ex1, arg) mb = resource_bundle(mod, MESSAGES) resource = get_resource_by_key(mb, s1) s2 = resource != nothing ? get(resource.dict, s1, s1) : s1 _translate(s1, s2, resource, ex1, arg) end # translate in case of single translation text function _translate(s1::AbstractString, s2::AbstractString, resource, ex1::Any, arg) ex2, ind2 = _string2ex(s2, arg) if length(ind2) > 0 m1, m2 = extrema(ind2) m1 >= 1 && m2 <= length(arg) || return ex1 end ex2 end #translate in case of multiple translation texts (plural forms) function _translate(s1::AbstractString, s2::Vector{S}, resource, ex1::Any, arg) where S<:AbstractString length(arg) >= 1 || throw(ArgumentError("tr needs at least one argument: '$s1'")) mp = arg[1] n = isinteger(mp) ? abs(Int(mp)) : 999 # if arg not integer numerically use plural form ix = resource != nothing ? resource.plural(n) + 1 : 1 m = length(s2) ix = ifelse(ix <= m, ix, m) str = ix > 0 ? s2[ix] : s1 # fall back to key if vector is empty _translate(s1, str, resource, ex1, arg) end # produce modified Expr, list of interpolation arguments, and key string function _string2ex1(p::AbstractString) ex = Meta.parse(string(TQ, p, TQ)) # parsing text argument of str_tr args = isa(ex, Expr) ? ex.args : [ex] ea = [] i = 1 multi = false for j in 1:length(args) a = args[j] if ! ( a isa String ) if !multi && a isa Expr && a.head == :call && a.args[1] == SPRIME multi = true pushfirst!(ea, a.args[2]) # this argument goes to index 1 args[j] = 1 for k = 1:j-1 if args[k] isa Int # previous arguments shift index args[k] += 1 end end i += 1 else args[j] = i push!(ea, a) i += 1 end end end io = IOBuffer() for j in 1:length(args) a = args[j] if a isa String print(io, a) else print(io, "\$(", a, ")") end end ex, ea, String(take!(io)) end # produce Expr with interpolation arguments replaced, and original list of positions function _string2ex(p::AbstractString, oldargs) ex = Meta.parse(string(TQ, p, TQ)) # parsing translated text args = isa(ex, Expr) ? ex.args : [ex] i = 0 ea = Int[] n = oldargs == nothing ? 0 : length(oldargs) for j in 1:length(args) a = args[j] if a isa Int i += 1 args[j] = 0 < a <= n ? oldargs[a] : a push!(ea, a) end end ex, ea end TQ = "\"\"\"" # three quote characters in a string SPRIME = :! # multiplicity indicator in tr-string tr"... $(!count) ..." SCONTEXT = "§" # context separator in tr-string tr"§ctxname§..."
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
3680
module LC export Category, CategorySet import Base: show, issubset, |, iterate, length """ Locale category. Constants for each of the LC_xxxxxx categories of the GNU locale definition are provided. The implementation class shall not be visible. """ abstract type CategorySet end abstract type Category <: CategorySet end struct _CategoryImplementation <: Category name::Symbol id::Int8 mask::Cint _CategoryImplementation(n::Symbol, nr::Integer) = new(n, nr, 1<<nr) end const CTYPE = _CategoryImplementation(:CTYPE, 0) const NUMERIC = _CategoryImplementation(:NUMERIC, 1) const TIME = _CategoryImplementation(:TIME, 2) const COLLATE = _CategoryImplementation(:COLLATE, 3) const MONETARY = _CategoryImplementation(:MONETARY, 4) const MESSAGES = _CategoryImplementation(:MESSAGES, 5) const ALL = _CategoryImplementation(:ALL, 6) const PAPER = _CategoryImplementation(:PAPER, 7) const NAME = _CategoryImplementation(:NAME, 8) const ADDRESS = _CategoryImplementation(:ADDRESS, 9) const TELEPHONE = _CategoryImplementation(:TELEPHONE, 10) const MEASUREMENT = _CategoryImplementation(:MEASUREMENT, 11) const IDENTIFICATION = _CategoryImplementation(:IDENTIFICATION, 12) const ALL_CATS = [CTYPE, NUMERIC, TIME, COLLATE, MONETARY, MESSAGES, ALL, PAPER, NAME, ADDRESS, TELEPHONE, MEASUREMENT, IDENTIFICATION] const NUM_CATS = 13 const _MASK_ALL = Cint(1<<6) const _MASK_SUM = Cint(((1<<NUM_CATS)-1) & ~_MASK_ALL) # bits of all valid categories struct _CategorySetImplementation <: CategorySet mask::Cint _CategorySetImplementation(m::Cint) = new(m & _MASK_ALL == 0 ? m : _MASK_ALL) end mask(cat::CategorySet) = cat.mask show(io::IO, cat::Category) = print(io, string(cat.name)) function show(io::IO, cs::CategorySet) mcs = mask(cs) suc = false for cat in ALL_CATS if mcs & mask(cat) != 0 suc && print(io, '|') show(io, cat) suc = true end end end function issubset(a::CategorySet,b::CategorySet) ma, mb = mask(a), mask(b) ( ma | mb == mb ) || (mb & _MASK_ALL != 0) end function |(a::CategorySet, b::CategorySet) ma, mb = mask(a), mask(b) mab = ma | mb mab & _MASK_ALL != 0 ? ALL : mab == ma ? a : mab == mb ? b : _CategorySetImplementation(mab) end iterate(cat::CategorySet) = iterate(cat, cat === ALL ? _MASK_SUM : cat.mask) function iterate(cat::CategorySet, s) s == 0 && return nothing ix = trailing_zeros(s) + 1 cat = ALL_CATS[ix] cat, s & ~mask(cat) end length(cat::Category) = cat == ALL ? count_ones(_MASK_SUM) : 1 length(cat::CategorySet) = count_ones(mask(cat)) end # module LC """ struct LocaleId Represent a Languange Tag, also known as Locale Identifier as defined by BCP47. See: https://tools.ietf.org/html/bcp47 """ struct LocaleId language::Symbol script::Symbol region::Symbol variants::Vector{Symbol} extensions::Union{Dict{Char,Vector{Symbol}},Nothing} end """ mutable struct Locale Keeps a locale identifier for each locale category. The locale categories are defined like in GNU (see `man 7 locale`). Parallel to that the libc implementation of locale is kept as a cache. The latter is maintained by the libc functions `newlocale` / `freelocale`. """ mutable struct Locale locids::Vector{LocaleId} cloc::Ptr{Nothing} Locale(ptr::Ptr{Nothing}) = new(fill(LocaleId(""), LC.NUM_CATS), ptr) end ### unexported types const CLocaleType = Ptr{Nothing} const AS = AbstractString const VariantVector = Vector{Symbol} const ExtensionDict = Dict{Char,VariantVector} const Key = Tuple{Symbol, Symbol, Symbol, VariantVector, Union{ExtensionDict,Nothing}}
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
5858
using .CLocales using .LC set_locale!(LocaleId("C"), LC.ALL) const cl = locale() const ALLCAT = collect(LC.ALL) @test cl != Ptr{Nothing}(0) @testset "clocale identifiers C for $sym" for sym in ALLCAT @test clocale_id(sym) == "C" end for cat in ALLCAT ENV[string("LC_", cat)] = "" end clocid = "fr_FR.utf8" ENV["LANG"] = clocid ENV["LC_ALL"] = "" set_locale!(LocaleId(""), LC.ALL) @testset "clocale identifiers from envionment for $sym" for sym in ALLCAT @test clocale_id(sym) == clocid end @testset "clocale codesets from environment for $sym" for sym in ALLCAT try nli = eval(CLocales, Meta.parse(string(sym, "_CODESET"))) @test nl_langinfo(nli) == "UTF-8" end end @testset "setting and querying clocalesi prog" begin @test clocale_id(LC.NUMERIC) == "fr_FR.utf8" set_locale!(LocaleId("C")) set_locale!(LocaleId("tr_TR"), LC.MESSAGES) set_locale!(LocaleId("en-us"), LC.MONETARY) @test clocale_id(LC.CTYPE) == "C" @test clocale_id(LC.NUMERIC) == "C" @test clocale_id(LC.MESSAGES) == "tr_TR.utf8" @test clocale_id(LC.MONETARY) == "en_US.utf8" end ENV["LC_ALL"] = "de_DE.utf8" set_locale!(LocaleId(""), LC.MESSAGES | LC.NAME) @testset "setting and querying clocales ENV" begin @test clocale_id(LC.NUMERIC) == "C" @test clocale_id(LC.MESSAGES) == "de_DE.utf8" @test clocale_id(LC.NAME) == "de_DE.utf8" @test clocale_id(LC.MONETARY) == "en_US.utf8" end import .CLocales: CTYPE_CODESET, RADIXCHAR, THOUSEP, THOUSANDS_SEP, GROUPING, NUMERIC_CODESET, ABDAY, DAY, ABMON, MON, AM_STR, PM_STR, D_T_FMT, D_FMT, T_FMT, T_FMT_AMPM, ERA, ERA_YEAR, ERA_D_FMT, ALT_DIGITS, ERA_D_T_FMT, ERA_T_FMT, TIME_CODESET, COLLATE_CODESET, YESEXPR, NOEXPR, YESSTR, NOSTR, MESSAGES_CODESET, INT_CURR_SYMBOL, CURRENCY_SYMBOL, MON_DECIMAL_POINT, MON_THOUSANDS_SEP, MON_GROUPING, POSITIVE_SIGN, NEGATIVE_SIGN, INT_FRAC_DIGITS, FRAC_DIGITS, P_CS_PRECEDES, P_SEP_BY_SPACE, N_CS_PRECEDES, N_SEP_BY_SPACE, P_SIGN_POSN, N_SIGN_POSN, CRNCYSTR, INT_P_CS_PRECEDES, INT_P_SEP_BY_SPACE, INT_N_CS_PRECEDES, INT_N_SEP_BY_SPACE, INT_P_SIGN_POSN, INT_N_SIGN_POSN, MONETARY_CODESET, PAPER_HEIGHT, PAPER_WIDTH, PAPER_CODESET, NAME_FMT, NAME_GEN, NAME_MR, NAME_MRS, NAME_MISS, NAME_MS, NAME_CODESET, ADDRESS_POSTAL_FMT, ADDRESS_COUNTRY_NAME, ADDRESS_COUNTRY_POST, ADDRESS_COUNTRY_AB2, ADDRESS_COUNTRY_AB3, ADDRESS_COUNTRY_CAR, ADDRESS_COUNTRY_NUM, ADDRESS_COUNTRY_ISBN, ADDRESS_LANG_NAME, ADDRESS_LANG_AB, ADDRESS_LANG_LIB, ADDRESS_LANG_TERM, ADDRESS_CODESET, TELEPHONE_TEL_INT_FMT, TELEPHONE_TEL_DOM_FMT, TELEPHONE_INT_SELECT, TELEPHONE_INT_PREFIX, TELEPHONE_CODESET, MEASUREMENT, MEASUREMENT_CODESET, IDENTIFICATION_TITLE, IDENTIFICATION_SOURCE, IDENTIFICATION_ADDRESS, IDENTIFICATION_CONTACT, IDENTIFICATION_EMAIL, IDENTIFICATION_TEL, IDENTIFICATION_FAX, IDENTIFICATION_LANGUAGE, IDENTIFICATION_TERRITORY, IDENTIFICATION_AUDIENCE, IDENTIFICATION_APPLICATION, IDENTIFICATION_ABBREVIATION, IDENTIFICATION_REVISION, IDENTIFICATION_DATE, IDENTIFICATION_CATEGORY, IDENTIFICATION_CODESET const DE_ITEMS = [ RADIXCHAR => ",", THOUSEP => ".", THOUSANDS_SEP => ".", GROUPING => 3, ABDAY(2) => "Mo", DAY(1) => "Sonntag", DAY(7) => "Samstag", ABMON(6) => "Jun", MON(6) => "Juni", AM_STR => "", PM_STR => "", D_T_FMT => "%a %d %b %Y %T %Z", D_FMT => "%d.%m.%Y", T_FMT => "%T", T_FMT_AMPM => "", ERA => "", ERA_YEAR => "", ERA_D_FMT => "", ALT_DIGITS => "", ERA_D_T_FMT => "", ERA_T_FMT => "", YESEXPR => "^[jJyY].*", NOEXPR => "^[nN].*", INT_CURR_SYMBOL => "EUR ", CURRENCY_SYMBOL => "€" , MON_DECIMAL_POINT => ",", MON_THOUSANDS_SEP => ".", MON_GROUPING => 3, POSITIVE_SIGN => "", NEGATIVE_SIGN => "-", INT_FRAC_DIGITS => 2, FRAC_DIGITS => 2, P_CS_PRECEDES => 0, P_SEP_BY_SPACE => 1, N_CS_PRECEDES => 0, N_SEP_BY_SPACE => 1, P_SIGN_POSN => 1 , N_SIGN_POSN => 1, CRNCYSTR => "+€", INT_P_CS_PRECEDES => 0, INT_P_SEP_BY_SPACE => 1, INT_N_CS_PRECEDES => 0, INT_N_SEP_BY_SPACE => 1, INT_P_SIGN_POSN => 1, INT_N_SIGN_POSN => 1, PAPER_HEIGHT => 297, PAPER_WIDTH => 210, NAME_FMT => "%d%t%g%t%m%t%f", NAME_GEN => "", NAME_MR => "Herr", NAME_MRS => "Frau", NAME_MISS => "Fräulein", NAME_MS => "Frau", ADDRESS_POSTAL_FMT => "%f%N%a%N%d%N%b%N%s %h %e %r%N%z %T%N%c%N", ADDRESS_COUNTRY_NAME => "Deutschland", ADDRESS_COUNTRY_POST => "D", ADDRESS_COUNTRY_AB2 => "DE", ADDRESS_COUNTRY_AB3 => "DEU", ADDRESS_COUNTRY_CAR => "D", ADDRESS_COUNTRY_NUM => 276, ADDRESS_COUNTRY_ISBN => "3", ADDRESS_LANG_NAME => "Deutsch", ADDRESS_LANG_AB => "de", ADDRESS_LANG_LIB => "deu", ADDRESS_LANG_TERM => "ger", TELEPHONE_TEL_INT_FMT => "+%c %a %l", TELEPHONE_TEL_DOM_FMT => "%A %l", TELEPHONE_INT_SELECT => "00", TELEPHONE_INT_PREFIX => "49", MEASUREMENT => 1, IDENTIFICATION_TITLE => "German locale for Germany", IDENTIFICATION_SOURCE => "Free Software Foundation, Inc.", IDENTIFICATION_ADDRESS => "http://www.gnu.org/software/libc/", IDENTIFICATION_CONTACT => "", IDENTIFICATION_EMAIL => "[email protected]", IDENTIFICATION_TEL => "", IDENTIFICATION_FAX => "", IDENTIFICATION_LANGUAGE => "German", IDENTIFICATION_TERRITORY => "Germany", IDENTIFICATION_AUDIENCE => "", IDENTIFICATION_APPLICATION => "", IDENTIFICATION_ABBREVIATION => "", IDENTIFICATION_REVISION => "1.0", IDENTIFICATION_DATE => "2000-06-24", IDENTIFICATION_CATEGORY => "de_DE:2000", ] set_locale!(LocaleId("de-de")) # set all categories @testset "nl_langinfo queries $(category(p.first))-$(offset(p.first)) => '$(p.second)'" for p in DE_ITEMS item, res = p @test nl_langinfo(item) == res end
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
208
using Test using ResourceBundles using ResourceBundles.CLocales function localized_isless(loc::LocaleId) function lt(a::AbstractString, b::AbstractString) strcollate(a, b, loc) < 0 end end
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
1008
### accessing libc functions (XOPEN_SOURCE >= 700, POSIX_C_SOURCE >= 200809L glibc>=2.24) using ResourceBundles.CLocales using .LC import .CLocales: newlocale_c, strcoll_c, nl_langinfo_c const P0 = Ptr{Nothing}(0) @test newlocale_c(LC._MASK_ALL, "invalidxxx", P0) == P0 COLL_C = [ ("a", "b", -1), ("A", "b", -1), ("a", "B", +1), ] COLL_en = [ ("a", "b", -1), ("A", "b", -1), ("a", "B", -1), ] @testset "C-locale for $loc" for (loc, COLL) in (("C", COLL_C), ("en_US.utf8", COLL_en)) test_locale = newlocale_c(LC._MASK_ALL, loc, P0) if test_locale != P0 @test duplocale(test_locale) != P0 @test unsafe_string(nl_langinfo_c(Cint(0xffff), test_locale)) == loc @testset "string comparisons '$a' ~ '$b'" for (a, b, r) in COLL @test sign(strcoll_c(a, b, test_locale)) == r end @test freelocale(test_locale) === nothing else @info "no C-locale defined for '$loc'" end end #################################
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
6026
using .Locales using .LC # Construct LocaleId from language tags @test LocaleId("") === DEFAULT @test LocaleId("C") === ROOT @test LocaleId("en") === ENGLISH @test LocaleId("en-US") === US @test_throws ArgumentError("missing language prefix") LocaleId("c") @test string(LocaleId("de")) == "de" @test string(LocaleId("de_latn")) == "de_Latn" @test string(LocaleId("de-de")) == "de_DE" @test string(LocaleId("de-111")) == "de_111" @test string(LocaleId("de-variAnt1")) == "de_variant1" @test string(LocaleId("de-variAnt1_varia2")) == "de_variant1_varia2" @test string(LocaleId("de-1erw-varia2")) == "de_1erw_varia2" @test string(LocaleId("de-a_aB")) == "de_a_ab" @test string(LocaleId("DE_X_1_UZ_A_B")) == "de_x_1_uz_a_b" @test string(LocaleId("DE_latn_de")) == "de_Latn_DE" @test string(LocaleId("DE_latn_de-variant1")) == "de_Latn_DE_variant1" @test string(LocaleId("DE_latn_de_a-uu-11")) == "de_Latn_DE_a_uu_11" @test string(LocaleId("DE_latn_de-varia-a-uu-11")) == "de_Latn_DE_varia_a_uu_11" @test string(LocaleId("DE_latn_de-varia-a-uu-11")) == "de_Latn_DE_varia_a_uu_11" @test string(LocaleId("DE_latn_de-1var-a-uu-11")) == "de_Latn_DE_1var_a_uu_11" @test string(LocaleId("DE_latn_de-1va2-a-uu-11")) == "de_Latn_DE_1va2_a_uu_11" @test string(LocaleId("DE_latn_de-x-11-a-uu-11")) == "de_Latn_DE_x_11_a_uu_11" @test string(LocaleId("DE_latn_de-b-22-a-uu-11")) == "de_Latn_DE_a_uu_11_b_22" @test string(LocaleId("DE_latn_de-z-22-a-uu-11")) == "de_Latn_DE_a_uu_11_z_22" @test string(LocaleId("zh-han")) == "han" @test string(LocaleId("deu")) == "de" @test LocaleId("en") ⊆ LocaleId("C") @test BOTTOM ⊆ LocaleId("en-Latn-ab-valencia-a-bc-x-1-2") @test LocaleId("en-a-aa-b-bb") ⊆ LocaleId("en-b-bb") @test hash(LocaleId("is-a-aa-b-bb")) == hash(LocaleId("is-b-bb-a-aa")) @test LocaleId("is-a-aa-b-bb") === LocaleId("is-b-bb-a-aa") @test LocaleId("C") != LocaleId("") # exceptions create2(l="", lex=String[], s="", r="", v=String[], d=Dict{Char,Vector{Symbol}}()) = create_locid(l, lex, s, r, v, d) @test_throws ArgumentError("missing language prefix") LocaleId("a-ab") @test_throws ArgumentError("no language prefix 'a'") LocaleId("a", "") @test_throws ArgumentError("only one language extension allowed 'de_abc_def'") LocaleId("de-abc-def") @test_throws ArgumentError("no language exensions allowed 'abcd_def'") create2("abcd", ["def"]) @test_throws ArgumentError("no script 'Abc'") LocaleId("ab", "abc", "de") @test_throws ArgumentError("no region 'DEF'") LocaleId("ab", "abcd", "def") @test_throws ArgumentError("no variants 'vari'") create2("ab", String[], "", "", ["vari"]) @test_throws ArgumentError("no variants '1va'") create2("ab", String[], "", "", ["1va"]) @test_throws ArgumentError("no variants 'asdfghjkl'") create2("ab", String[], "", "", ["asdfghjkl"]) @test_throws ArgumentError("no variants '1990_asdfghjkl'") create2("ab", String[], "", "", ["1990", "asdfghjkl"]) @test_throws ArgumentError("language tag contains invalid characters: 'Ä'") LocaleId("Ä") @test_throws ArgumentError("multiple occurrence of singleton 'u'") LocaleId("en-u-u1-u-u2") @test_throws ArgumentError("no language tag: 'en_asdfghjkl' after 1") LocaleId("en_asdfghjkl") @test_throws ArgumentError("no language tag: 'asdfghjkl' after 0") LocaleId("asdfghjkl") @test_throws ArgumentError("no language tag: 'x_asdfghjkl' after 1") LocaleId("x-asdfghjkl") @test_throws ArgumentError("too many language extensions 'en_abc_def_ghi_jkl'") LocaleId("en-abc-def-ghi-jkl") #various constructors @test LocaleId("") === DEFAULT @test LocaleId("C") === ROOT @test LocaleId() === BOTTOM @test LocaleId("de", "de") == LocaleId("de-de") @test LocaleId("de", "latn", "de") == LocaleId("de-Latn-de") @test LocaleId("de", "latn", "de", "bavarian") == LocaleId("de-Latn-de-bavarian") @test LocaleId("de", "de") == LocaleId("de-de") @test LocaleId("de", "de") == LocaleId("de-de") @test LocaleId("de", "de") == LocaleId("de-de") @test LocaleId("de", "de") == LocaleId("de-de") # predefined locales @test ENGLISH === LocaleId("en") @test FRENCH === LocaleId("fr") @test GERMAN === LocaleId("de") @test ITALIAN === LocaleId("it") @test JAPANESE === LocaleId("ja") @test KOREAN === LocaleId("ko") @test CHINESE === LocaleId("zh") @test SIMPLIFIED_CHINESE === LocaleId("zh_CN") @test TRADITIONAL_CHINESE === LocaleId("zh_TW") @test FRANCE === LocaleId("fr_FR") @test GERMANY === LocaleId("de_DE") @test ITALY === LocaleId("it_IT") @test JAPAN === LocaleId("ja_JP") @test KOREA === LocaleId("ko_KR") @test CHINA === LocaleId("zh_CN") @test PRC === LocaleId("zh_CN") @test TAIWAN === LocaleId("zh_TW") @test UK === LocaleId("en_GB") @test US === LocaleId("en_US") @test CANADA === LocaleId("en_CA") # inclusion and ordering @test LocaleId() ⊆ LocaleId("en-Latf-gb-variant-variant2-a-123-26-x-1-2-23a-bv") @test LocaleId("en-Latf-gb-variant-variant2-a-123-26-x-1-2-23a-bv") ⊆ LocaleId("") @test !(LocaleId("fr-Latn") ⊆ LocaleId("fr-CA")) @test !(LocaleId("fr-CA") ⊆ LocaleId("fr-Latn")) @test !(LocaleId("fr-Latn") < LocaleId("fr-CA")) @test LocaleId("fr-Latn") ≥ LocaleId("fr-CA") # loading initial values from environment variables delete!(ENV, "LANG") delete!(ENV, "LC_MESSAGES") delete!(ENV, "LC_COLLATE") delete!(ENV, "LC_TIME") delete!(ENV, "LC_NUMERIC") delete!(ENV, "LC_MONETARY") ENV["LC_ALL"] = "en_GB" @test default_locale(LC.MESSAGES) === LocaleId("en-GB") ENV["LC_ALL"] = "en_GB.utf8" @test default_locale(LC.COLLATE) === LocaleId("en-GB") ENV["LC_ALL"] = "en_GB.utf8@oed" @test default_locale(LC.TIME) === LocaleId("en-GB-x-posix-oed") ENV["LC_ALL"] = "en_GB@oed" @test default_locale(LC.NUMERIC) === LocaleId("en-GB-x-posix-oed") delete!(ENV, "LC_ALL") ENV["LC_MONETARY"] = "en_US.UTF-8" @test default_locale(LC.MONETARY) === LocaleId("en-US") ENV["LC_TIME"] = "en_CA" @test default_locale(LC.TIME) === LocaleId("en-ca") ENV["LC_TIME"] = "" delete!(ENV, "LC_MONETARY") ENV["LANG"] = "fr_FR@guadelo" @test default_locale(LC.TIME) === LocaleId("fr-FR-x-posix-guadelo") ENV["LANG"] = "C" @test default_locale(LC.TIME) === LocaleId("C")
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
5891
using Logging bundle = ResourceBundle(@__MODULE__, "messages2") @test bundle.path == abspath("resources") bundle2 = ResourceBundle(ResourceBundles, "bundle") @test realpath(bundle2.path) == realpath(normpath(pwd(), "resources")) bundle3 = ResourceBundle(ResourceBundles, "does1not2exist") @test bundle3.path == "." bundle4 = ResourceBundle(Test, "XXX") @test bundle4.path == "." @test_throws ArgumentError ResourceBundle(Main, "") @test_throws ArgumentError ResourceBundle(Main, "d_n_e") const results = Dict( (LocaleId("C"), "T0") => "T0", (LocaleId("C"), "T1") => "T1 - empty", (LocaleId("C"), "T2") => "T2 - empty", (LocaleId("C"), "T3") => "T3 - empty", (LocaleId("C"), "T4") => "T4 - empty", (LocaleId("C"), "T5") => "T5 - empty", (LocaleId("C"), "T6") => "T6", (LocaleId("C"), "T7") => "T7", (LocaleId("en"), "T0") => "T0", (LocaleId("en"), "T1") => "T1 - empty", (LocaleId("en"), "T2") => "T2 - en", (LocaleId("en"), "T3") => "T3 - en", (LocaleId("en"), "T4") => "T4 - en", (LocaleId("en"), "T5") => "T5 - en", (LocaleId("en"), "T6") => "T6", (LocaleId("en"), "T7") => "T7", (LocaleId("en-US"), "T0") => "T0", (LocaleId("en-US"), "T1") => "T1 - empty", (LocaleId("en-US"), "T2") => "T2 - en", (LocaleId("en-US"), "T3") => "T3 - en_US", (LocaleId("en-US"), "T4") => "T4 - en", (LocaleId("en-US"), "T5") => "T5 - en_US", (LocaleId("en-US"), "T6") => "T6 - en_US", (LocaleId("en-US"), "T7") => "T7 - en_US", (LocaleId("en-Latn"), "T0") => "T0", (LocaleId("en-Latn"), "T1") => "T1 - empty", (LocaleId("en-Latn"), "T2") => "T2 - en", (LocaleId("en-Latn"), "T3") => "T3 - en", (LocaleId("en-Latn"), "T4") => "T4 - en_Latn", (LocaleId("en-Latn"), "T5") => "T5 - en_Latn", (LocaleId("en-Latn"), "T6") => "T6 - en_Latn", (LocaleId("en-Latn"), "T7") => "T7", (LocaleId("en-Latn-US"), "T0") => "T0", (LocaleId("en-Latn-US"), "T1") => "T1 - empty", (LocaleId("en-Latn-US"), "T2") => "T2 - en", (LocaleId("en-Latn-US"), "T3") => "T3 - en_US", (LocaleId("en-Latn-US"), "T4") => "T4 - en_Latn", (LocaleId("en-Latn-US"), "T5") => "T5 - en_Latn_US", (LocaleId("en-Latn-US"), "T6") => ("T6 - en_Latn", "Ambiguous"), (LocaleId("en-Latn-US"), "T7") => "T7 - en_US", (LocaleId("en-x-1"), "T0") => "T0", (LocaleId("en-x-1"), "T1") => "T1 - empty", (LocaleId("en-x-1"), "T2") => "T2 - en", (LocaleId("en-x-1"), "T3") => "T3 - en", (LocaleId("en-x-1"), "T4") => "T4 - en", (LocaleId("en-x-1"), "T5") => "T5 - en", (LocaleId("en-x-1"), "T6") => "T6", (LocaleId("en-x-1"), "T7") => "T7", ) locs = LocaleId.(("C", "en", "en-US", "en-Latn", "en-Latn-US", "en-x-1")) keya = ((x->"T" * string(x)).(0:7)) log = Test.TestLogger(min_level=Logging.Warn) locm = locale_id(LC.MESSAGES) @testset "message lookup for locale $loc and key $key" for loc in locs, key in keya res = results[loc, key] if isa(res, Tuple) r, w = res else r, w = res, "" end with_logger(log) do @test get(bundle, loc, key, key) == r @test test_log(log, w) set_locale!(loc, LC.MESSAGES) @test get(bundle, key, key) == r test_log(log, w) end end set_locale!(locm, LC.MESSAGES) with_logger(log) do @test keys(bundle, LocaleId("")) == ["T1", "T2", "T3", "T4", "T5"] @test keys(bundle, LocaleId("de")) == ["T1", "T2", "T3", "T4", "T5"] @test keys(bundle2) == [] @test test_log(log) @test keys(bundle, LocaleId("de-us")) == ["T1", "T2", "T3", "T4", "T5"] @test test_log(log, "Wrong type 'Dict{Int64,Int64}'") @test keys(bundle, LocaleId("de-us-america")) == ["T1", "T2", "T3", "T4", "T5"] @test test_log(log, "Wrong type 'String'") @test keys(bundle, LocaleId("de-us-america-x-1")) == ["T1", "T2", "T3", "T4", "T5"] @test test_log(log, "Wrong type 'Nothing'") @test keys(bundle3, LocaleId("")) == String[] @test keys(bundle) == ["T1", "T2", "T3", "T4", "T5", "T6", "T7", "hello"] end @test resource_bundle(@__MODULE__, "messages2") === RB_messages2 @test resource_bundle(@__MODULE__, "bundle") === RB_bundle @test @resource_bundle("d1n2e").path == "" bundlea = @resource_bundle("bundle") @test bundlea === RB_bundle # Test in submodule Main.XXX module XXX using ResourceBundles, Test @test @resource_bundle("messages2") === RB_messages2 @test Main.XXX.RB_messages2 === Main.RB_messages2 @test @resource_bundle("bundle") === RB_bundle @test Main.XXX.RB_bundle !== Main.RB_bundle # Test in submodule Main.XXX.YYY module YYY using ResourceBundles, Test @test @resource_bundle("bundle") === RB_bundle @test Main.XXX.YYY.RB_bundle === Main.XXX.RB_bundle end end @test resource_bundle(ResourceBundles, "messages2") === ResourceBundles.RB_messages2 @test resource_bundle(ResourceBundles, "bundle") === ResourceBundles.RB_bundle bundlea = ResourceBundles.eval(:(@resource_bundle("bundle"))) @test bundlea === ResourceBundles.RB_bundle # test in submodule ResourceBundles.XXX ResourceBundles.eval(:(module XXX using ResourceBundles, Test @test string(@__MODULE__) == "ResourceBundles.XXX" @test @resource_bundle("messages2") === RB_messages2 @test ResourceBundles.XXX.RB_messages2 === ResourceBundles.RB_messages2 @test @resource_bundle("bundle") === RB_bundle @test ResourceBundles.XXX.RB_bundle !== ResourceBundles.RB_bundle end ) ) lpa = ResourceBundles.locale_pattern sep = Base.Filesystem.path_separator @test lpa(".jl") == LocaleId("C") @test lpa("-en.jl") == LocaleId("en") @test lpa("_en.jl") == LocaleId("en") @test lpa(sep*"en.jl") == LocaleId("en") @test lpa("-en"*sep*".jl") == LocaleId("en") @test lpa(sep*"en"*sep*".jl") == LocaleId("en") @test lpa(sep*"en."*sep*"jl") == nothing
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
1162
test = VERSION >= v"0.7-DEV" ? :(using Test) : :(using Base.Test) eval(test) using Logging using ResourceBundles import ResourceBundles: ROOT, BOTTOM, create_locid import ResourceBundles: set_locale!, load_file cd(abspath(pathof(ResourceBundles), "..", "..")) # test if logger contains text in a message; finally with:clear logger. function test_log(log::Test.TestLogger, text::AbstractString) try isempty(text) && return test_log(log) conmess(x::Test.LogRecord) = occursin(text, x.message) any(conmess.(test_log_filter(log))) finally empty!(log.logs) end end test_log(log::Test.TestLogger) = isempty(test_log_filter(log)) # ignore messages from Core module test_log_filter(log::Test.TestLogger) = filter(lr->lr._module != Core, log.logs) @testset "types" begin include("types.jl") end @testset "locale" begin include("locale.jl") end @testset "resource_bundle" begin include("resource_bundle.jl") end @testset "string" begin include("string.jl") end @testset "libc" begin include("libc.jl") end # @testset "clocale" begin include("clocale.jl") end # @testset "localetrans" begin include("localetrans.jl") end
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
3756
using Logging using .LC const a1 = "arg1" const a2 = "arg2" const a3 = 4711 const h0 = 0 const h1 = 1 const hmany = 13 city = "Frankfurt" temp = 29.0 ndhi = 15 set_locale!(LocaleId("en-us"), LC.MESSAGES) @test tr"T3" == "T3 - en_US" @test tr"original $a1($a2) : $(a3*2)" == "US version $(a3*2) / $a2 $a1" # test with invalid plural forms @test_throws ArgumentError tr"error1" @test tr"error2 $h1" == "error2a" # attention: en-US defines a non-standard plurals rule @test tr"missing argument value $(99)" == "missing argument value 99" @test tr"These are $h1 houses" == "This is a house" @test tr"These are $hmany houses" == "These are at least $(hmany) houses" @test tr"These are $(0) houses" == "This is not a house" @test tr"These are $(hmany-hmany) houses" == "This is not a house" set_locale!(LocaleId("fr"), LC.MESSAGES) @test tr"original $a1($a2) : $(a3*2)" == "original $a1($a2) : $(a3*2)" @test tr"These are $(1) houses" == "C'est 1 maison" @test tr"These are $(hmany*3+3) houses" == "Ce sont beaucoup(42) de maisons" @test tr"These are $(10) houses" == "Ce sont beaucoup(10) de maisons" @test tr"These are $h0 houses" == "C'est 0 maison" # data for this locale are stored in po-file set_locale!(LocaleId("de-AT"), LC.MESSAGES) @test tr"These are $(1) houses" == "Das ist ein Haus" @test tr"These are $(hmany*3+3) houses" == "Das sind 42 Häuser" @test tr"These are $(10) houses" == "Das sind 10 Häuser" @test tr"These are $h0 houses" == "Das sind 0 Häuser" @test tr"In $(city) the temperature was above $(temp) °C" == "Die Temperatur von $(temp) °C wurde in $(city) überschritten" @test tr"In $(city) the temperature was above $(temp) °C at $(!ndhi) days" == "In $(city) war die Temperatur an $(ndhi) Tagen über $(temp) °C" @test tr"In $(city) the temperature was above $(temp) °C at $(!h1) days" == "In $(city) war die Temperatur an einem \"Tag\" über $(temp) °C" # Permutations @test tr"123 $(1) $(2) $(3)" == "123 1 2 3" @test tr"132 $(1) $(2) $(3)" == "132 1 3 2" @test tr"213 $(1) $(2) $(3)" == "213 2 1 3" @test tr"213 $(1) $(2) $(3)" == "213 2 1 3" @test tr"312 $(1) $(2) $(3)" == "312 3 1 2" @test tr"321 $(1) $(2) $(3)" == "321 3 2 1" # Primary Forms @test tr"123 $(1) $(!2) $(3)" == "123 1 2 3" @test tr"132 $(1) $(!2) $(3)" == "132 1 3 2" # @test tr"213 $(1) $(!2) $(3)" == "213 2 1 3" @test tr"213 $(1) $(!2) $(3)" == "213 2 1 3" @test tr"312 $(1) $(!2) $(3)" == "312 3 1 2" # @test tr"321 $(1) $(!2) $(3)" == "321 3 2 1" # @test tr"123 $(1) $(2) $(!3)" == "123 1 2 3" # @test tr"132 $(1) $(2) $(!3)" == "132 1 3 2" # @test tr"213 $(1) $(2) $(!3)" == "213 2 1 3" # @test tr"213 $(1) $(2) $(!3)" == "213 2 1 3" # @test tr"312 $(1) $(2) $(!3)" == "312 3 1 2" # @test tr"321 $(1) $(2) $(!3)" == "321 3 2 1" # # Context @test tr"§testctx§original" == "O r i g i n a l" # evoke warnings when reading files log = Test.TestLogger(min_level=Logging.Info) with_logger(log) do load_file(joinpath("resources", "messages.pox")) end mess = isempty(log.logs) ? "" : log.logs[1].message @test occursin("invalid extension of file name", mess) empty!(log.logs) with_logger(log) do load_file(joinpath("resources", "messages_tv.po")) end mess = isempty(log.logs) ? "" : log.logs[1].message @test occursin("unexpected msgid", mess) @test string_to_key("simple") == "simple" @test string_to_key(raw"with $v1 and $(expr+2)") == raw"with $(1) and $(2)" @test string_to_key(raw"with $v1 and $(!(expr+2))") == raw"with $(2) and $(1)" # data for this locale are stored in little-endian mo-file set_locale!(LocaleId("de-LU"), LC.MESSAGES) @test tr"§testctx§original" == "O r i g i n a l" # data for this locale are stored in big-endian mo-file set_locale!(LocaleId("de-CH"), LC.MESSAGES) @test tr"§testctx§original" == "O r i g i n a l"
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
code
463
using ResourceBundles.LC lca = LC.ALL lct = LC.TIME lci = LC.IDENTIFICATION lcc = LC.CTYPE @test lca ⊆ lca @test lct ⊆ lca @test !(lca ⊆ lct) @test lct ⊆ lct @test lci ⊆ lct | lci @test lca | lct === lca @test lci | lci === lci @test lci | lct === lct | lci @test lci | lct ⊆ lct | lci @test lci | lct ⊆ lca @test lcc | lci | lct | lci === lci | lct | lcc @test collect(lci) == [lci] @test collect(lci | lct) == [lct, lci] @test length(collect(lca )) == 12
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "MIT" ]
0.2.0
9d3e825b839eaab818af0df94f7fc9b3ead3fc90
docs
12300
# ResourceBundles [![Build Status](https://travis-ci.org/KlausC/ResourceBundles.jl.svg?branch=master)](https://travis-ci.org/KlausC/ResourceBundles.jl) [![codecov.io](http://codecov.io/github/KlausC/ResourceBundles.jl/coverage.svg?branch=master)](http://codecov.io/github/KlausC/ResourceBundles.jl?branch=master) ## ResourceBundles is a package to support Internationalization (I18n). Main features: ### Locale * create Locale from string formed according to standards Unicode Locale Identifier (BCP47 (tags for Identifying languages), RFC5646, RFC4647) * set/get default locale for different purposes * startup-locale derived form environment settings (LANG, LC_MESSAGES, ..., LC_ALL) * Locale patterns imply a canonical partial ordering by set inclusion ### ResourceBundle * Database of objects (e.g. text strings), identified by locale and individual text key * select most specific available object according to canonical ordering of locales * detect ambiguities for individual keys * storage in package module directory * database uses files witten in Julia source code * database files containing translated texts using gettext-PO format is supported #### Message text localization (LC_MESSAGES) * a string macro providing translation of standard language according to default locale * support string interpolation and control ordering of interpolated substrings * includes mechanism for multiple plural forms for translations * fall back to text provided as key within the source text * Define global default Resource bundle for each module * Support features of Posix `gettext` #### NumberFormat and DateTimeFormat (LC_NUMERIC, LC_TIME) (TODO) * If an object is formatted in the interpolation context of a translated string, instead of the usual `show` method, a locale sensitive replacement is called. * those methods default to the standard methods, if not explicitly defined. * For real numbers and date or time objects, methods can be provided as locale dependent resources. #### String comparison (LC_COLLATE) (TODO) * Strings containing natural language texts are sorted locale-sensitive according to "Unicode Collation Algorithm". Implementation makes use of `ICU` if possible. In order to treat a string as natural text, it is wrapped by a `NlsString` object. #### Character Classes (LC_CTYPE) (TODO) * Character classification (`isdigit`, `isspace` ...) and character or string transformations (`uppercase`, `titlecase`, ...) are performed locale-sensitive for wrapped types. ### Installation ``` # assuming a unix shell cd ~/.julia/dev git clone http://github.com/KlausC/ResourceBundles.jl ResourceBundles ]add ResourceBundles ``` ### Usage ``` using ResourceBundles # The following code is to make the test resources of ResourceBundles itself available # to the Main module. Typically the resources are accessible within their module. rdir = abspath(pathof(ResourceBundles), "..", "..", "resources") ;ln -s $rdir . # show current locale (inherited from env LC_ALL, LC_MESSAGES, LANG) locale() # change locale for messages programmatically: set_locale!(LocaleId("de"), LC.MESSAGES) # use string translation feature println(tr"original text") for n = (2,3) println(tr"$n dogs have $(4n) legs") end for lines in [1,2,3] println(tr"$lines lines of code") end # access the posix locale definitions ResourceBundles.CLocales.nl_langinfo(ResourceBundles.CLocales.CURRENCY_SYMBOL) ``` sample configuration files in directory `pathof(MyModule)/../../resources` ``` cat messages_de.po # # Comments # # Empty msgid containing options - only Plural-Forms is used msgid "" msgstr "other options\n" "Plural-Forms: nplurals = 3; plural = n == 1 ? 0 : n == 2 ? 1 : 3\n" "other options: \n" #: main.jl:6 (used as a comment) msgid "original text" msgstr "Originaltext" #: main.jl:7 msgid "$(1) dogs have $(2) legs" msgstr "$(2) Beine gehören zu $(1) Hunden" #: main.jl:9 msgid "$(1) lines of code" msgstr[0] "eine Zeile" msgstr[1] "Zeilenpaar" msgstr[2] "$(1) Zeilen" ``` or alternatively, with same effect ``` cat messages_de.jl ( "" => "Plural-Forms: nplurals = 3; plural = n == 1 ? 0 : n == 2 ? 1 : 3" "original text" => "Originaltext", raw"$(1) dogs have $(2) legs" => raw"$(2) Beine gehören zu $(1) Hunden", raw"$(1) lines of code" => ["eine Zeile", """Zeilenpaar""", raw"$(1) Zeilen"],) ``` expected output: ``` Originaltext 12 Beine gehören zu 3 Hunden 0 Zeilen 1 Zeile ein Zeilenpaar 3 Zeilen ``` ## User Guide #### Locale Identifiers and Locales Locale Identifiers are converted from Strings, which are formatted according to Unicode Locale Identifier. Examples: "en", "en_Latn", "en_US", "en_Latn_GB_london", "en_US_x_private". Additionally the syntax for Posix environment variables `LANG` and `LC_...` are supported. Examples: "C", "en_US", "en_us.utf8", "en_US@posext". All those formats are converted to a canonical form and stored in objects of type `LocaleID`: `LocaleID("en_US")`. The `_` may be replaced by `-` in input. `LocaleId` implements the `equals` and the `issubset` (`⊆`) relations. Here `LocaleId("en_US") ⊆ LocaleId("en") ⊆ LocaleId("C") == LocaleId("")`. The `Locale` is a set of locale-properties for several categories. The categories are taken from the GNU implementation. Each locale-property is identified by a `LocaleId`. Each category corresponds to one of the `LC_` environment variables and there is a related constant in module 'LC'. Here is the complete list: category | remark ------------------------------- CTYPE | character classifications (letter, digit, ...) NUMERIC | number formating (decimal separator, ...) TIME | time and date formats COLLATE | text comparison MONETARY | currency symbol MESSAGES | translation of message texts ALL | not a category - used to override all other settings PAPER | paper formats NAME | person names ADDRESS | address formating TELEPHONE | formating of phone numbers MEASUREMENT | measurement system (1 for metric, 2 for imperial) IDENTIFICATION | name of the locale identifier For all of those terms there is an environment variable `"LC_category"` and a Julia constant `LC.category`. The categories up to `ALL` are defined in POSIX(), which the others are GNU extensions. The special variable `"LC_ALL"` overrides all other variables `"LC_category"` if set. The additional environment variable `"LANG"` is used as a fallback, if neither `"LC_category"` nor `"LC_ALL"` is set. Each task owns a task specific current locale. It is obtained by `locale()`. For each category the valid locale identifier is accessed by `locale_id(LC.category)`. For example the locale `locale_id(LC.MESSAGES)` is used as the default locale for message text look-up in the current task. The locale-ids of the current locale may be changed by `set_locale!(localeid, category)`. For example `set_locale!(LocaleID("de_DE"), LC.MESSAGES)` modifies the current locale to use German message translations. All locale categories except for `LC.MESSAGES` are implemented by the GNU installation, which contains the shared library glibc, a set of predefined locale properties, and a tool `locales`, which delivers a list of all locale identifiers installed on the system. In Julia, the values of all locale dependent variable of those categories may be obtained like `ResourceBundles.CLocales.nl_langinfo.(ResourceBundles.CLocales.DAY.(1:7))` or `ResourceBundles.CLocales.nl_langinfo(ResourceBundles.CLocales.IDENTIFICATION_TITLE)`. These are only available on GNU based systems (including Linux and OSX). #### Resource Bundles A resource bundle is an association of string values with arbitrary objects, where the actual mapping depends on a locale. Conceptually it behaves like a `Dict{Tuple{String,Locale},Any}`. Each resource bundle is bound to a package. The corresponding data are stored in the subdirectory `resources` of the package directory. `bundle = @resource_bundle("pictures")` creates a resource bundle, which is bound to the current module. The resource is populated by the content found in the resource files, which are associated with the current module. The resources are looked for the resources subdirectory of a package module or, if the base module is `Main`, in the current working directory. The object stored in reousource bundles are not restricted to strings, but may have any Julia type. For example, it could make sense to store locale-dependent pictures (containing natural language texts) in resource bundles. Also locale dependent information or algorithms are possible. The actual data of all resource bundles of a package stored in the package directory in an extra subdirectory named `resources` (`resource-dir>`. An individual resource bundle with name `<name>` consists of a collection of files with path names `<resource-dir>/<name><intermediate>.[jl|po|mo]`. Here `<intermediate>`may be empty or a canonicalized locale tag, whith separator characters replaced by `'_'` or `'/'`. That means, all files have the standard `Julia`extension (and they actually contain `Julia`code) or a `po` extension indicating message resources in PO format. The files may be spread in a subdirectory hierarchy according to the structure of the languange tags. Fallback strategy following structure of language tags. #### String Translations String translations make use of a current locale `(locale_id(LC.MESSAGES))` and a standard resource bundle `(@__MODULE__).RB_messages`, which is created on demand. The macro `tr_str` allows the user to write texts in a standard locale and it is translated at runtime to a corresponding text in the current locale. It has the following features. * translate plain text * support string interpolation, allowing re-ordering of variables * support multiple plural forms for exactly one interpolation variable * support context specifiers The interpolation expressions are embedded in the text of the string-macro `tr` in the usual form, e.g. `tr" ... $var ... $(expr) ..."`. If the programmer wants the text to be translated into one of several grammatical plural forms, he has to formulate the text in the program in the plural form of the standard language and embed at least one interpolation expression. One of those expressions has to be flagged by the unary negation operator ( `tr" ... $(!expr) ... "`). The flagged expression must provide an integer value. The negation operation is not executed, but indicates to the implementation, which of several plural options has to be selected. For this purpose the translation text database defines a "plural-formula", which maps the integer expression `n` to a zero-based index. This index peeks the proper translation from a vector of strings. Some typical formulas in the PO-file format: msgid "" msgstr "" "Plural-Forms: nplurals=1; plural=0;\n" # Chinese "Plural-Forms: nplurals=1; plural=n > 1 ? 1 : 0;\n" # English (default) "Plural-Forms: nplurals=1; plural=n == 1 ? 0 : 1;\n" # French "Plural-Forms: nplurals=1; plural=n%10==1&&n%100!=11 ? 0 : n%10>=2&&n%10<=4&&(n%100<10||n%100>=20) ? 1 : 2;\n" # Russian For details see: [PO-Files](https://www.gnu.org/software/gettext/manual/gettext.html#PO-Files). Message contexts are included in the tr string like `tr"§mood§blue"` or `tr"§color§blue"`. In the PO file it is defined for example like: msgctx "mood" msgid "blue" msgstr "melancholisch" msgctx "color" msgid "blue" msgstr "blau" The `tr_str` macro includes the functionality of the gnu library calls `gettext`and `ngettext`. The database supports the file formats and infrastructure defined by [gettext](https://www.gnu.org/software/gettext/manual). Also binary files with extension `.mo` are be processed, which can be compiled from `.po` files by the gettext-utility [`msgfmt`](https://www.gnu.org/software/gettext/manual/gettext.html#msgfmt-Invocation). #### Limitations The items labeled with `TODO` are not yet supported. Windows is only supported for the LC_MESSAGES mechanisms, not the other locale categories.
ResourceBundles
https://github.com/KlausC/ResourceBundles.jl.git
[ "BSD-3-Clause", "MIT" ]
0.3.0
18f351cf7c965887503553d2bccb0fbc7ede13b3
code
837
# This file is part of FlagSets.jl project, which is licensed under BDS-3-Clause. # See file LICENSE.md for more information. module FlagSets #import Core.Intrinsics.bitcast export FlagSet, flags, @flagset, @symbol_flagset """ FlagSet{FlagType,BaseType<:Integer} <: AbstractSet{FlagType} Supertype of sets which are subsets of a finite universe of objects (flags), where each set is encoded as an integer of type `BaseType`. Flag sets are implemented similarly to `BitSet`s. If `T <: FlagSet{B,F}`, then `typemax(T)` is a finite set of flags of type `F`. If `set isa T`, then `set` is a subset of `typemax(T)`. See [`@flagset`](@ref) and [`@flagset_type`](@ref) for more information. """ abstract type FlagSet{FlagType,BaseType<:Integer} <: AbstractSet{FlagType} end include("interface.jl") include("macros.jl") end # module
FlagSets
https://github.com/jessymilare/FlagSets.jl.git
[ "BSD-3-Clause", "MIT" ]
0.3.0
18f351cf7c965887503553d2bccb0fbc7ede13b3
code
5664
# This file is part of FlagSets.jl project, which is licensed under BDS-3-Clause. # See file LICENSE.md for more information. function flagset_flags end function flag_bit_map end function flags end function flagkeys end """ BitMask(bitmask::Integer) Structure used internally by `FlagSets` for default constructor of subtypes of `FlagSet`. """ struct BitMask{T<:Integer} bitmask::T end basetype(::Type{<:FlagSet{F,B}}) where {F,B<:Integer} = B Base.isvalid(::Type{T}, x::Integer) where {T<:FlagSet} = (x & basetype(T)(typemax(T)) == x) Base.isvalid(::Type{T}, x::BitMask) where {T<:FlagSet} = (x.bitmask & basetype(T)(typemax(T)) == x.bitmask) Base.isvalid(::Type{T}, x::T) where {T<:FlagSet} = true Base.isvalid(x::T) where {T<:FlagSet} = true function Base.isvalid(::Type{T}, x::S) where {S,T<:FlagSet} Base.isiterable(S) && all(elt ∈ flags(T) for elt ∈ x) end function Base.isvalid(::Type{T}, x::Symbol) where {T<:FlagSet{Symbol}} x ∈ flags(T) end (::Type{I})(x::FlagSet) where {I<:Integer} = I(x.bitflags)::I Base.cconvert(::Type{I}, x::FlagSet) where {I<:Integer} = I(x.bitflags) Base.write(io::IO, x::T) where {T<:FlagSet} = write(io, x.bitflags) Base.read(io::IO, ::Type{T}) where {T<:FlagSet} = T(BitMask(read(io, basetype(T)))) #Base.isless(x::FlagSet{T}, y::FlagSet{T}) where {T<:Integer} = isless(T(x), T(y)) Base.:|(x::T, y::T) where {T<:FlagSet} = T(BitMask(x.bitflags | y.bitflags)) Base.:&(x::T, y::T) where {T<:FlagSet} = T(BitMask(x.bitflags & y.bitflags)) Base.:⊻(x::T, y::T) where {T<:FlagSet} = T(BitMask(x.bitflags ⊻ y.bitflags)) Base.:~(x::T) where {T<:FlagSet} = setdiff(typemax(T), x) Base.iszero(x::FlagSet) = isempty(x) # Iterator interface function Base.iterate(x::T, xi::Integer = x.bitflags) where {T<:FlagSet} iszero(xi) && (return nothing) fs = flagset_flags(T) nbit = trailing_zeros(xi) xi ⊻= typeof(xi)(1) << nbit return (fs[nbit+1], xi) end Base.length(x::FlagSet) = count_ones(x.bitflags) Base.isempty(x::FlagSet) = iszero(x.bitflags) """ flags(x::FlagSet) Return the set of flags in `x` as a `Tuple`. # Examples ```julia julia> @symbol_flagset FontFlags bold=1 italic=2 large=4 julia> flags(FontFlags(3)) (:bold, :italic) ``` """ flags(x::T) where {T<:FlagSet} = NTuple{length(x),eltype(T)}(x) """ flags(T) Return the set of flags of type `T` as a `Tuple`. # Examples ```julia julia> @flagset RoundingFlags RoundDown RoundUp RoundNearest julia> flags(RoundingFlags) (RoundingMode{:Down}(), RoundingMode{:Up}(), RoundingMode{:Nearest}()) ``` """ flags(::Type{<:FlagSet}) # Set manipulation Base.union(x::T, y::T) where {T<:FlagSet} = T(BitMask(x.bitflags | y.bitflags)) Base.intersect(x::T, y::T) where {T<:FlagSet} = T(BitMask(x.bitflags & y.bitflags)) Base.setdiff(x::T, y::T) where {T<:FlagSet} = T(BitMask(x.bitflags & ~y.bitflags)) Base.issubset(x::T, y::T) where {T<:FlagSet} = (x.bitflags & y.bitflags) == x.bitflags Base.in(elt, x::T) where {T<:FlagSet} = !iszero(get_flag_bit(T, elt, zero(basetype(T))) & x.bitflags) Base.:⊊(x::T, y::T) where {T<:FlagSet} = x != y && (x.bitflags & y.bitflags) == x.bitflags Base.empty(s::FlagSet{B,F}, ::Type{F}) where {B,F} = typeof(s)() Base.empty(s::FlagSet) = typeof(s)() # Printing function Base.show(io::IO, x::T) where {T<:FlagSet} compact = get(io, :compact, false)::Bool type_p = (get(io, :typeinfo, false) == T)::Bool malformed = !isvalid(x) if compact || malformed xi = Integer(x) type_p &= malformed type_p || show(io, T) type_p || print(io, "(") show(io, xi) type_p || print(io, malformed ? " #= Invalid code =#)" : ")") else show(io, T) print(io, "([") join(io, repr.(x), ", ") print(io, "])") end end function Base.show(io::IO, mime::MIME"text/plain", x::FlagSet) if get(io, :compact, false) show(io, x) else invoke(show, Tuple{typeof(io),typeof(mime),AbstractSet}, io, mime, x) end end # Printing FlagSet type function Base.show(io::IO, mime::MIME"text/plain", type::Type{<:FlagSet}) if isconcretetype(type) && !(get(io, :compact, false)) print(io, "FlagSet ") Base.show_datatype(io, type) print(io, ":") keys = map(key -> isnothing(key) ? "" : String(key), flagkeys(type)) if !all(isempty, keys) klen = maximum(length, keys) keys = map(k -> isempty(k) ? ' '^(klen+2) : k * ' '^(klen-length(k)) * " = ", keys) end for (flag, key) ∈ zip(flags(type), keys) bit = get_flag_bit(type, flag) print(io, "\n ", key, repr(bit), " --> ", repr(flag)) end else invoke(show, Tuple{typeof(io),typeof(mime),Type}, io, mime, type) end end function flagset_argument_error(typename, x) throw(ArgumentError(string("invalid value for FlagSet $(typename): ", repr(x)))) end function get_flag_bit(::Type{T}, flag, default) where {T<:FlagSet} get(flag_bit_map(T), flag, default) end function get_flag_bit(::Type{T}, flag) where {T<:FlagSet} not_found = basetype(T)(0x7f) val = get(flag_bit_map(T), flag, not_found) val == not_found && flagset_argument_error(T, flag) val end # Default constructors function (::Type{T})(flag::Symbol, flags::Symbol...) where {T<:FlagSet{Symbol}} T((flag, flags...)) end function (::Type{T})(itr) where {T<:FlagSet} Base.isiterable(typeof(itr)) || flagset_argument_error(T, itr) bitmask::basetype(T) = 0 for flag ∈ itr bitmask |= get_flag_bit(T, flag) end T(BitMask(bitmask)) end function (::Type{T})(bitmask::Integer) where {T<:FlagSet} T(BitMask(bitmask)) end
FlagSets
https://github.com/jessymilare/FlagSets.jl.git
[ "BSD-3-Clause", "MIT" ]
0.3.0
18f351cf7c965887503553d2bccb0fbc7ede13b3
code
16416
# This file is part of FlagSets.jl project, which is licensed under BDS-3-Clause. # See file LICENSE.md for more information. """ @symbol_flagset T[::BaseType] flag_1[=bit_1] flag_2[=bit_2] ... Create a `FlagSet{Symbol,BaseType}` subtype with name `T` and the flags supplied. Each instance of `T` represents a subset of `{:flag1, :flag2, ...}`. The associated `bit_1`,`bit_2`, etc, if provided, must be distinct positive powers of 2. The following constructors are provided: - `T(itr)`: construct a set of the symbols from the given iterable object. Each symbol must be one of :`flag_1`, :`flag_2`, etc; - `T()`: construct an empty set; - `T(sym1::Symbol, syms::Symbol...)`: equivalent to `T([sym1, syms...])` - `T(bitmask::Integer)`: construct a set of flags associated with each bit in `mask`; - `T(; kwargs...)`: each `flag_i` can be supplied as a boolean value (`flag_i = true` includes `:flag_i`, `flag_i = false` excludes it). It should be safe to new constructor methods and/or overriding the methods provided (except the default using an internal struct, i.e., `T(::FlagSets.BitMask)`). To construct sets of non-`Symbol` constants, use the macro [`@flagset`](@ref). # Examples ```julia julia> @symbol_flagset FontFlags bold=1 italic=2 large=4 julia> FontFlags(1) FontFlags with 1 element: :bold julia> FontFlags(:bold, :italic) FontFlags with 2 elements: :bold :italic julia> FontFlags(bold=true, italic=false) FontFlags with 1 element: :bold julia> for flag in FontFlags(3); println(flag) end bold italic julia> FontFlags(3) | FontFlags(4) FontFlags with 3 elements: :bold :italic :large julia> eltype(FontFlags) Symbol julia> typemax(FontFlags) FontFlags with 3 elements: :bold :italic :large julia> typemin(FontFlags) FontFlags([]) ``` Values can also be specified inside a `begin` block, e.g. ```julia @symbol_flagset T begin flag_1 [= x] flag_2 [= y] end ``` If `BaseType` is provided, it must be an `Integer` type big enough to represent each `bit_i`. Otherwise, some convenient integer type is inferred (`UInt32` is used if possible, to guarantee compatibility with C code). Each instance of `T` can be converted to `BaseType`, where each bit set in the converted `BaseType` corresponds to a flag in the flag set. `read` and `write` perform these conversions automatically. In case the flagset is created with a non-default `BaseType`, `Integer(flagset)` will return the integer `flagset` with the type `BaseType`. ```julia julia> convert(Int, FontFlags(bold=true, italic=false)) 1 julia> convert(Integer, FontFlags(bold=true, italic=false)) 0x00000001 ``` To list flags of a flag set type or instance, use `flags`, e.g. ```julia julia> flags(FontFlags) (:bold, :italic, :large) julia> flags(FontFlags(3)) (:bold, :italic) ``` """ macro symbol_flagset(typespec::Union{Symbol,Expr}, flagspecs...) expand_flagset(typespec, flagspecs, true, __module__) end """ @flagset T [key_1 =] [bit_1 -->] flag_1 [key_2 =] [bit_2 -->] flag_2... Create a [`FlagSet`](@ref) subtype with name `T` and the flags supplied (evaluated). Each instance of the created type represents a subset of `{flag_1, flag_2, ...}`. The associated `bit_1`,`bit_2`, etc, if provided, must be distinct positive powers of 2. The following constructors are provided: - `T(itr)`: construct a set of the flags from the given iterable object. Each flag must be one of `flag_1`, `flag_2`, etc; - `T()`: construct an empty set; - `T(bitmask::Integer)`: construct a set of flags associated with each bit in `mask`; - `T(; kwargs...)`: each `key_i` can be given as a keyword with boolean value (`key_i = true` includes `flag_i`, `key_i = false` excludes it). It should be safe to new constructor methods and/or overriding the methods provided (except the default which is defined for the internal struct `FlagSets.BitMask`). # Examples ```julia julia> @flagset RoundingFlags begin down = RoundDown up = RoundUp near = 16 --> RoundNearest 64 --> RoundNearestTiesUp # No key end julia> RoundingFlags([RoundDown,RoundUp]) RoundingFlags with 2 elements: RoundingMode{:Down}() RoundingMode{:Up}() julia> RoundingFlags(near = true, up = false, RoundNearestTiesUp = true) RoundingFlags with 2 elements: RoundingMode{:Nearest}() RoundingMode{:NearestTiesUp}() julia> RoundingFlags(1) RoundingFlags with 1 element: RoundingMode{:Down}() julia> for flag in RoundingFlags(3); println(flag) end RoundingMode{:Down}() RoundingMode{:Up}() julia> RoundingFlags(3) | RoundingFlags(16) RoundingFlags with 3 elements: RoundingMode{:Down}() RoundingMode{:Up}() RoundingMode{:Nearest}() julia> eltype(RoundingFlags) RoundingMode julia> typemax(RoundingFlags) RoundingFlags with 4 elements: RoundingMode{:Down}() RoundingMode{:Up}() RoundingMode{:Nearest}() RoundingMode{:NearestTiesUp}() julia> typemin(RoundingFlags) RoundingFlags([]) ``` If some `flag_i` is a `Symbol` and `key_i` is not explicitly given, `key_i` is set to `flag_i`. Therefore, both macros below are equivalent: ``` @flagset FontFlags :bold :italic 8 --> :large @flagset FontFlags begin bold = :bold italic = :italic large = 8 --> :large end ``` The following syntaxes can be used to provide `FlagType` and/or `BaseType`: ```julia @flagset T {FlagType,BaseType} ... # Use supplied types @flagset T {FlagType} ... # Detect BaseType @flagset T {FlagType,_} ... # Detect BaseType too @flagset T {_,BaseType} ... # Detect FlagType @flagset T {} ... # Braces are ignored ``` If `FlagType` is not provided or is `_`, it is inferred from the flag values (like array constructors do). Otherwise, `flag_1`, `flag_2`, etc, must be of type `FlagType`. If `BaseType` is not provided or is `_`, some convenient integer type is inferred (`UInt32` is used if possible, for maximum compatibility with C code). Otherwise, it must be an `Integer` type big enough to represent each `bit_i`. Each instance of `T` can be converted to `BaseType`, where each bit set in the converted `BaseType` corresponds to a flag in the flag set. `read` and `write` perform these conversions automatically. In case the flagset is created with a non-default `BaseType`, `Integer(flagset)` will return the integer `flagset` with the type `BaseType`. ```julia julia> convert(Int, RoundingFlags(up = true, near = true)) 6 julia> convert(Integer, RoundingFlags(up = true, near = true)) 0x00000006 ``` To list flags of a flag set type or instance, use `flags`, e.g. ```julia julia> flags(RoundingFlags) (RoundingMode{:Down}(), RoundingMode{:Up}(), RoundingMode{:Nearest}()) julia> flags(RoundingFlags(3)) (RoundingMode{:Down}(), RoundingMode{:Up}()) ``` !!! note For backward compatibility, the syntax `@flagset T::BaseType ...` is equivalent to `@symbol_flagset T::BaseType ...`, but the former syntax deprecated (use [`symbol_flagset`](@ref) instead). """ macro flagset(typespec::Union{Symbol,Expr}, flagspecs...) try return expand_flagset(typespec, flagspecs, false, __module__) catch ex throw(ex isa UndefVarError ? undef_var_error_hint(ex) : ex) end end ## Error creation function undef_var_error_hint(ex) ErrorException( "An $ex has been caught during macroexpansion of @flagset. If you are using " * "the old syntax (before version 0.3), use @symbol_flagset or the following syntax:" * "\n @flagset T [bit_1 -->] :flag_1 [bit_2 -->] :flag_2 ..." ) end function deprecated_syntax_message(typename, BaseType) ArgumentError( "Deprecated syntax for macro @flagset. Use @symbol_flagset or use the syntax:" * "\n @flagset $typename {Symbol,$BaseType)} [bit_1 -->] :flag_1 [bit_2 -->] :flag_2 ..." ) end function invalid_bit_error(typename, flagspec) ArgumentError("invalid bit for FlagSet $typename: $flagspec; should be an integer positive power of 2") end function invalid_flagspec_error(typename, flagspec) ArgumentError("invalid flag argument for FlagSet $typename: $flagspec") end function overflow_error(typename, flagspec) ArgumentError("overflow in bit of flag $flagspec for FlagSet $typename") end function not_unique_error(field::Symbol, typename, value) ArgumentError("$field for FlagSet $typename is not unique: $value") end function invalid_type_error(kind::Symbol, typename, type) ArgumentError("invalid $kind type for FlagSet $typename: $type") end function check_flag_type(typename, FlagType) (isnothing(FlagType) || FlagType isa Type) || throw(invalid_type_error(:flag, typename, FlagType)) end function check_base_type(typename, BaseType) (isnothing(BaseType) || BaseType isa Type && BaseType <: Integer) || throw(invalid_type_error(:base, typename, BaseType)) end ## Helper functions function _to_nothing(expr, __module__) expr == :_ ? nothing : Core.eval(__module__, expr) end function parse_flag_set_type(typespec, of_type, symflags::Bool, __module__) BaseType = nothing FlagType = symflags ? Symbol : nothing typename = nothing if !isnothing(of_type) if typespec isa Symbol && 0 ≤ length(of_type.args) ≤ 2 typename = typespec length(of_type.args) ≥ 1 && (FlagType = _to_nothing(of_type.args[1], __module__)) length(of_type.args) ≥ 2 && (BaseType = _to_nothing(of_type.args[2], __module__)) # else typename = nothing # indicate error end elseif ( isa(typespec, Expr) && typespec.head === :(::) && length(typespec.args) == 2 && isa(typespec.args[1], Symbol) ) symflags || @warn(deprecated_syntax_message(typespec.args[1], typespec.args[2]), maxlog = 1) FlagType = Symbol typename = typespec.args[1] BaseType = Core.eval(__module__, typespec.args[2]) elseif isa(typespec, Symbol) typename = typespec # else typename = nothing end if isnothing(typename) throw(ArgumentError("invalid type expression for FlagSet: $typespec")) end check_flag_type(typename, FlagType) check_base_type(typename, BaseType) (typename, FlagType, BaseType, symflags) end function parse_flag_spec(typename, FlagType, flagspec, symflags::Bool, __module__) key, flag, bit = nothing, nothing, nothing if ( isa(flagspec, Expr) && (flagspec.head === :(=) || flagspec.head === :kw) && length(flagspec.args) == 2 ) key = flagspec.args[1] flag_value = flagspec.args[2] elseif FlagType == Symbol && flagspec isa Symbol key = flag = flagspec return (key, flag, nothing) elseif symflags flag_value = nothing # indicates an error else flag_value = flagspec end if (isa(flag_value, Expr) && (flag_value.head === :-->) && length(flag_value.args) == 2) bit = Core.eval(__module__, flag_value.args[1]) # allow consts and exprs, e.g. uint128"1" flag_expr = flag_value.args[2] flag = Core.eval(__module__, flag_expr) else flag_expr = flag_value val = Core.eval(__module__, flag_value) flag, bit = FlagType == Symbol && !(val isa Symbol) ? (key, val) : (val, nothing) end if isnothing(key) key = flag isa Symbol && Base.isidentifier(flag) && flag != :missing ? flag : nothing end if isnothing(flag_value) || !(key isa Union{Symbol,Nothing}) throw(invalid_flagspec_error(typename, flagspec)) end if !isnothing(bit) (bit isa Real && bit >= 1 && ispow2(bit)) || throw(invalid_bit_error(typename, flagspec)) end (key, flag, bit) end function parse_flag_specs(typename, FlagType, BaseType, flagspecs, symflags::Bool, __module__) if length(flagspecs) == 1 && flagspecs[1] isa Expr && flagspecs[1].head === :block flagspecs = flagspecs[1].args end result = Any[] bit = one(BaseType) mask = zero(BaseType) flags = Set([]) keys = Set([]) for flagspec in flagspecs flagspec isa LineNumberNode && continue (key, flag, next_bit) = parse_flag_spec(typename, FlagType, flagspec, symflags, __module__) bit::BaseType = something(next_bit, bit) bit <= zero(BaseType) && throw(overflow_error(typename, flagspec)) flag::FlagType = flag (bit & mask) != 0 && throw(not_unique_error(:bit, typename, bit)) flag in flags && throw(not_unique_error(:flag, typename, flag)) key in keys && throw(not_unique_error(:key, typename, key)) push!(flags, flag) isnothing(key) || push!(keys, key) mask |= bit index = trailing_zeros(bit) + 1 push!(result, (key, flag, bit, index)) bit <<= 1 end (sort!(result, by = t -> t[4]), mask) end function infer_types(FlagType, BaseType, parsed, mask) if isnothing(FlagType) # Construct an array from flags and let Julia tell us what is the best flag type FlagType = eltype(collect(p[2] for p ∈ parsed)) end if isnothing(BaseType) BaseType = if mask ≤ typemax(UInt32) UInt32 elseif mask ≤ typemax(UInt64) UInt64 elseif mask ≤ typemax(UInt128) UInt128 else BigInt end end (FlagType, BaseType) end function expand_flagset(typespec, flagspecs, symflags::Bool, __module__) of_type = nothing if !isempty(flagspecs) && first(flagspecs) isa Expr && first(flagspecs).head == :braces of_type = first(flagspecs) flagspecs = flagspecs[2:end] end if isempty(flagspecs) throw(ArgumentError("no arguments given for FlagSet $typespec")) end (typename, FlagType, BaseType, symflags) = parse_flag_set_type(typespec, of_type, symflags, __module__) FT = something(FlagType, Any) BT = something(BaseType, BigInt) parsed, mask = parse_flag_specs(typename, FT, BT, flagspecs, symflags, __module__) (FlagType, BaseType) = infer_types(FlagType, BaseType, parsed, mask) len = last(parsed)[4] # last index key_vector = Vector{Union{Symbol,Nothing}}(undef, len) fill!(key_vector, nothing) # Avoid undefined reference errors flag_vector = Vector{Union{FlagType,Nothing}}(undef, len) fill!(flag_vector, nothing) # Avoid undefined reference errors indices = BaseType[] flag_bit_map = Base.ImmutableDict{FlagType,BaseType}() for (key, flag, bit, index) ∈ parsed key::Union{Symbol,Nothing} = key flag::FlagType = flag bit::BaseType = bit key_vector[index] = key flag_vector[index] = flag flag_bit_map = Base.ImmutableDict(flag_bit_map, flag => bit) push!(indices, index) end flagset_flags = Tuple(flag_vector) flags = Tuple(flag_vector[idx] for idx in indices) keys = Tuple(key_vector[idx] for idx in indices) keys_flags = ((key, flag) for (key, flag) ∈ zip(keys, flags) if !isnothing(key)) blk = quote # flagset definition Base.@__doc__(struct $(esc(typename)) <: FlagSet{$FlagType,$BaseType} bitflags::$BaseType function $(esc(typename))(bitmask::FlagSets.BitMask) bitmask = bitmask.bitmask bitmask & $(mask) == bitmask || flagset_argument_error($(esc(typename)), bitmask) return new(convert($BaseType, bitmask)) end end) function $(esc(typename))(; $((Expr(:kw, :($key::Bool), false) for (key, _) ∈ keys_flags)...)) bitmask::$BaseType = zero($BaseType) $((:($key && (bitmask |= $(flag_bit_map[flag]))) for (key, flag) ∈ keys_flags)...) $(esc(typename))(FlagSets.BitMask(bitmask)) end FlagSets.flagset_flags(::Type{$(esc(typename))}) = $(esc(flagset_flags)) FlagSets.flags(::Type{$(esc(typename))}) = $(esc(flags)) FlagSets.flag_bit_map(::Type{$(esc(typename))}) = $(esc(flag_bit_map)) FlagSets.flagkeys(::Type{$(esc(typename))}) = $(keys === flags ? :(FlagSets.flags($(esc(typename)))) : esc(keys)) Base.typemin(x::Type{$(esc(typename))}) = $(esc(typename))(FlagSets.BitMask($(zero(BaseType)))) Base.typemax(x::Type{$(esc(typename))}) = $(esc(typename))(FlagSets.BitMask($mask)) end push!(blk.args, :nothing) blk.head = :toplevel return blk end
FlagSets
https://github.com/jessymilare/FlagSets.jl.git
[ "BSD-3-Clause", "MIT" ]
0.3.0
18f351cf7c965887503553d2bccb0fbc7ede13b3
code
11944
# This file is part of FlagSets.jl project, which is licensed under BDS-3-Clause. # See file LICENSE.md for more information. @enum MyFlagType Foo Bar Baz Quux @testset "Basic operation" begin # Inline definition @flagset TFlag1 RoundDown RoundUp RoundNearest @test Int(TFlag1([RoundDown])) == 1 @test Int(TFlag1([RoundUp])) == 2 @test Int(TFlag1([RoundNearest])) == 4 @test TFlag1(1) == TFlag1([RoundDown]) @test TFlag1(2) == TFlag1([RoundUp]) @test TFlag1(4) == TFlag1([RoundNearest]) @test flags(TFlag1) == (RoundDown, RoundUp, RoundNearest) @test length(TFlag1([RoundDown, RoundUp])) == 2 @test !iszero(TFlag1([RoundUp, RoundNearest])) @test iszero(TFlag1()) @test eltype(TFlag1) == RoundingMode # Block definition @flagset TFlag2 begin down = RoundDown up = RoundUp near = RoundNearest end @test Int(TFlag2(down = true)) == 1 @test Int(TFlag2(up = true)) == 2 @test Int(TFlag2(near = true)) == 4 @test TFlag2(down = true, up = false, near = true) == TFlag2([RoundDown, RoundNearest]) @test length(TFlag2([RoundNearest])) == 1 @test !iszero(TFlag2([RoundNearest])) @test iszero(TFlag2()) @test eltype(TFlag2) == RoundingMode # Explicit numbering, inline @flagset TFlag3 {_,_} down = 2 --> RoundDown RoundUp near = 16 --> RoundNearest @test Int(TFlag3(down = true)) == 2 @test Int(TFlag3([RoundUp])) == 4 @test Int(TFlag3(near = true)) == 16 @test isempty(typemin(TFlag3)) @test Int(typemax(TFlag3)) == 22 @test length(typemax(TFlag3)) == 3 @test TFlag3(down = false, near = true) == TFlag3([RoundNearest]) @test flags(TFlag3) == (RoundDown, RoundUp, RoundNearest) @test eltype(TFlag3) == RoundingMode # Construct from enums @flagset TFlag4 {} begin foo = 2 --> Foo bar = Bar 16 --> Baz quux = 64 --> Quux end @test Int(TFlag4(foo = true)) == 2 @test Int(TFlag4([Bar])) == 4 @test Int(TFlag4([Baz])) == 16 @test isempty(typemin(TFlag4)) @test Int(typemax(TFlag4)) == 86 @test length(typemax(TFlag4)) == 4 @test TFlag4(foo = false, quux = true) == TFlag4([Quux]) @test flags(TFlag4) == (Foo, Bar, Baz, Quux) @test eltype(TFlag4) == MyFlagType # UInt128 @flagset TFlag4a a = UInt128(1) << 96 --> Foo b = UInt128(1) << 120 --> Bar @test length([TFlag4a([Foo, Bar])...]) == 2 @test flags(TFlag4a([Foo, Bar])) === (Foo, Bar) @test all(s1 === s2 for (s1, s2) ∈ zip(TFlag4a([Foo, Bar]), [Foo, Bar])) # BigInt @flagset TFlag4b a = big(1) << 160 --> Int b = big(1) << 192 --> Inf @test length([TFlag4b([Int, Inf])...]) == 2 @test flags(TFlag4b([Int, Inf])) === (Int, Inf) @test all(s1 === s2 for (s1, s2) ∈ zip(TFlag4b([Int, Inf]), [Int, Inf])) end @testset "Mask and set operations" begin # Mask operations @test TFlag1([RoundDown]) | TFlag1([RoundUp]) | TFlag1([RoundNearest]) == TFlag1([RoundDown, RoundUp, RoundNearest]) @test Int(TFlag1(7)) == 7 @test TFlag1(7) == TFlag1([RoundDown]) | TFlag1([RoundUp]) | TFlag1([RoundNearest]) @test TFlag1(7) & TFlag1([RoundDown]) == TFlag1([RoundDown]) @test TFlag1(7) ⊻ TFlag1([RoundDown]) == TFlag1([RoundUp, RoundNearest]) @test ~TFlag1([RoundDown]) == TFlag1([RoundUp, RoundNearest]) @test Int(TFlag1([RoundDown])) < Int(TFlag1([RoundUp])) < Int(TFlag1([RoundNearest])) @test Int(TFlag1([RoundDown]) | TFlag1([RoundUp])) < Int(TFlag1([RoundNearest])) # Set operations @test TFlag1([RoundDown]) ∪ TFlag1([RoundUp]) ∪ TFlag1([RoundNearest]) == TFlag1([RoundDown, RoundUp, RoundNearest]) @test TFlag1(7) == TFlag1([RoundDown]) ∪ TFlag1([RoundUp]) ∪ TFlag1([RoundNearest]) @test TFlag1(7) ∩ TFlag1([RoundDown]) == TFlag1([RoundDown]) @test TFlag1(7) ⊻ TFlag1([RoundDown]) == TFlag1([RoundUp, RoundNearest]) @test setdiff(typemax(TFlag1), TFlag1([RoundDown])) == TFlag1([RoundUp, RoundNearest]) @test RoundDown ∈ TFlag1([RoundDown]) @test RoundDown ∉ TFlag1([RoundUp, RoundNearest]) @test TFlag1([RoundUp]) ⊊ TFlag1([RoundUp, RoundNearest]) @test TFlag1([RoundNearest]) ⊊ TFlag1([RoundUp, RoundNearest]) @test !(TFlag1([RoundUp, RoundNearest]) ⊊ TFlag1([RoundUp, RoundNearest])) @test !(TFlag1([RoundDown, RoundUp]) ⊊ TFlag1([RoundUp, RoundNearest])) end # testset @testset "Type properties" begin # Default integer typing and compatibility with @symbol_flagset @flagset TFlag5 :flag5a :flag5b @test eltype(TFlag5) == Symbol @test TFlag5(flag5a = true) == TFlag5(:flag5a) @test typeof(Integer(TFlag5(:flag5a))) == UInt32 @test typeof(TFlag5) == DataType @test typeof(TFlag5(:flag5a)) <: TFlag5 <: FlagSet <: AbstractSet @test isbitstype(Flag5) @test isbits(TFlag5(:flag5a)) # Construct non-default and infer type @flagset TFlag6 {_, UInt16} begin foo = 2 --> Foo bar = Bar 16 --> Baz quux = 64 --> Quux end @test typeof(Integer(TFlag6(foo = true))) == UInt16 @test UInt8(TFlag6(foo = true)) === 0x02 @test UInt16(TFlag6([Bar])) === 0x0004 @test UInt128(TFlag6([Baz])) === 0x00000000000000000000000000000010 @test typeof(TFlag6()) <: TFlag6 <: FlagSet <: AbstractSet # Explicit bits of non-default types @flagset TFlag7 {Int128, UInt8} sixty_four = big"1" --> 64 one_hundred = UInt8(2) --> 100 @test Integer(TFlag7(sixty_four = true)) === UInt8(1) @test Integer(TFlag7(one_hundred = true)) === UInt8(2) @test eltype(TFlag7) == Int128 @test TFlag7([64]) == TFlag7(sixty_four = true) @test TFlag7([100]) == TFlag7(one_hundred = true) @test 1 ∉ TFlag7([64]) @test 64 ∈ TFlag7([64]) # Correctly detect base type @flagset TFlag8 {} missing (Int64(1) << 60) --> nothing @test eltype(TFlag8) == Union{Missing,Nothing} @test typeof(Integer(TFlag8())) == UInt64 @test typeof(Int(TFlag8())) == Int @flagset TFlag9 {Any,_} missing (Int128(1) << 120) --> nothing @test eltype(TFlag9) == Any @test typeof(Integer(TFlag9())) == UInt128 @test typeof(Int(TFlag9())) == Int # UInt128 and BigInt @test typeof(Integer(TFlag4a())) == UInt128 @test typeof(Integer(TFlag4b())) == BigInt end # testset @testset "Validate type" begin @test isvalid(TFlag1([RoundDown])) @test isvalid(TFlag1([RoundUp])) @test isvalid(TFlag1(0x0000_0003)) @test !isvalid(TFlag1, UInt32(1 << 3)) @test !isvalid(TFlag1, UInt32(1 << 4)) @test !isvalid(TFlag1, UInt32(1 << 5 | 1)) @test !isvalid(TFlag1, UInt32(1 << 29 | 1 << 3)) @test isvalid(TFlag6(foo = true)) @test isvalid(TFlag6([Baz])) @test isvalid(TFlag6(0x06)) @test !isvalid(TFlag6, UInt8(1 << 3)) @test !isvalid(TFlag6, UInt8(1 << 5)) @test !isvalid(TFlag6, UInt8(1 << 4 | 1)) @test !isvalid(TFlag6, UInt8(1 << 7 | 1 << 2)) @test isvalid(TFlag1, [RoundDown]) @test !isvalid(TFlag1, [RoundNearestTiesAway]) @test isvalid(TFlag1, [RoundDown, RoundUp]) @test isvalid(TFlag1, ([RoundDown, RoundUp])) @test isvalid(TFlag1, Set([RoundDown, RoundUp])) @test TFlag1(Set([RoundDown, RoundUp])) == TFlag1([RoundDown, RoundUp]) @test !isvalid(TFlag1, [:foo, :bar]) end @testset "Error conditions" begin @test_throws( ArgumentError("no arguments given for FlagSet Foo"), @macrocall(@flagset Foo), ) @test_throws( invalid_type_error(:base, :Foo, :Float64), @macrocall(@flagset Foo {_, Float64} x = 1.0), ) @test_throws( invalid_type_error(:flag, :Foo, 1234), @macrocall(@flagset Foo {1234} x = 1.0), ) # Require uniqueness @test_throws( not_unique_error(:bit, :Foo, 1), @macrocall(@flagset Foo x = 1 --> :x y = 1 --> :y), ) @test_throws( not_unique_error(:bit, :Foo, 2), @macrocall(@flagset Foo x = 2 --> :x y = 2 --> :y), ) # Explicit bits must be powers of two @test_throws( invalid_bit_error(:Foo, :(_three = 3 --> nothing)), @macrocall(@flagset Foo _three = 3 --> nothing), ) # Values must be integers @test_throws( invalid_bit_error(:Foo, :(_zero = "zero" --> nothing)), @macrocall(@flagset Foo _zero = "zero" --> nothing), ) @test_throws( invalid_bit_error(:Foo, :('0' --> nothing)), @macrocall(@flagset Foo '0' --> nothing), ) @test_throws( invalid_bit_error(:Foo, :(0.5 --> nothing)), @macrocall(@flagset Foo 0.5 --> nothing), ) # Names must be valid identifiers @test_throws( invalid_flagspec_error(:Foo, :(1 = 2)), @macrocall(@flagset Foo 1 = 2), ) # Disallow bit overflow @test_throws( overflow_error(:Foo, :(y = nothing)), @macrocall(@flagset Foo {nothing, UInt32} x = UInt32(1) << 31 --> missing y = nothing), ) end # testset @testset "Input/Output" begin @flagset TFlag10 {nothing, UInt64} foo = 1 --> Foo bar = 256 --> Bar @flagset TFlag11 {nothing, UInt8} foo = 128 --> Foo bar = 2 --> Bar let io = IOBuffer() write(io, TFlag11([Foo, Bar])) write(io, TFlag10(bar = true)) write(io, TFlag11([Foo])) seekstart(io) @test read(io, TFlag11) == TFlag11([Foo, Bar]) @test read(io, TFlag10) == TFlag10(bar = true) @test read(io, TFlag11) == TFlag10([Foo]) end let io = IOBuffer() serialize(io, TFlag10([Foo])) seekstart(io) @test deserialize(io) === TFlag10([Foo]) end end # testset # In submodule and not imported to test prefix printing module TSubModule using ..FlagSets @flagset TBits {Int, UInt8} 1 2 3 4 end @testset "String representations" begin @flagset TFilePerms {String, UInt8} 4 --> "READ" 2 --> "WRITE" 1 --> "EXEC" @test string(TFilePerms) == "TFilePerms" @test string(TSubModule.TBits) == "Main.TSubModule.TBits" @test string(TFilePerms()) == "TFilePerms([])" @test string(TSubModule.TBits([1])) == "Main.TSubModule.TBits([1])" @test repr("text/plain", TFilePerms) == "FlagSet $(string(TFilePerms)):\n" * " 0x01 --> \"EXEC\"\n" * " 0x02 --> \"WRITE\"\n" * " 0x04 --> \"READ\"" @test repr("text/plain", TSubModule.TBits) == "FlagSet Main.TSubModule.TBits:\n" * " 0x01 --> 1\n" * " 0x02 --> 2\n" * " 0x04 --> 3\n" * " 0x08 --> 4" @test repr(TFilePerms(["EXEC"])) == "TFilePerms([\"EXEC\"])" @test repr(TSubModule.TBits([1])) == "Main.TSubModule.TBits([1])" @test repr(TFilePerms(["EXEC", "READ"])) == "TFilePerms([\"EXEC\", \"READ\"])" @test repr(TSubModule.TBits([1, 4])) == "Main.TSubModule.TBits([1, 4])" @test repr(TFilePerms() | TFilePerms(["READ"])) == "TFilePerms([\"READ\"])" let io = IOBuffer(), ioc = IOContext(io, :compact => true, :module => Main) show(io, MIME"text/plain"(), FlagSet) @test String(take!(io)) == "FlagSet" show(ioc, MIME"text/plain"(), FlagSet) @test String(take!(io)) == "FlagSet" # Explicit :compact --> false required for consistency across Julia versions iof = IOContext(io, :compact => false, :module => Main) show(iof, MIME"text/plain"(), Union{TFilePerms,TSubModule.TBits}) @test String(take!(io)) == "Union{TFilePerms, Main.TSubModule.TBits}" show(ioc, MIME"text/plain"(), Union{TFilePerms,TSubModule.TBits}) @test String(take!(io)) == "Union{TFilePerms, TBits}" show(ioc, TFilePerms()) @test String(take!(io)) == "TFilePerms(0x00)" show(ioc, TSubModule.TBits([1])) @test String(take!(io)) == "TBits(0x01)" show(ioc, TFilePerms(["EXEC", "READ"])) @test String(take!(io)) == "TFilePerms(0x05)" show(ioc, TSubModule.TBits([1, 4])) @test String(take!(io)) == "TBits(0x09)" end end # testset
FlagSets
https://github.com/jessymilare/FlagSets.jl.git
[ "BSD-3-Clause", "MIT" ]
0.3.0
18f351cf7c965887503553d2bccb0fbc7ede13b3
code
1015
# This file is part of FlagSets.jl project, which is licensed under BDS-3-Clause. # See file LICENSE.md for more information. using FlagSets using Test, Serialization using FlagSets: deprecated_syntax_message, undef_var_error_hint using FlagSets: invalid_bit_error, invalid_flagspec_error, invalid_type_error using FlagSets: overflow_error, not_unique_error using FlagSets: BitMask macro macrocall(ex) @assert Meta.isexpr(ex, :macrocall) ex.head = :call for i = 2:length(ex.args) ex.args[i] = QuoteNode(ex.args[i]) end insert!(ex.args, 3, __module__) return esc(ex) end if VERSION >= v"1.6" @testset "FlagSets of symbols" verbose=true begin include("symbol_flagsets.jl") end @testset "FlagSets of other types" verbose=true begin include("flagset_type.jl") end else @testset "FlagSets of symbols" begin include("symbol_flagsets.jl") end @testset "FlagSets of other types" begin include("flagset_type.jl") end end
FlagSets
https://github.com/jessymilare/FlagSets.jl.git
[ "BSD-3-Clause", "MIT" ]
0.3.0
18f351cf7c965887503553d2bccb0fbc7ede13b3
code
11223
# This file is part of FlagSets.jl project, which is licensed under BDS-3-Clause. # See file LICENSE.md for more information. @testset "Basic operation" begin # Inline definition @symbol_flagset Flag1 flag1a flag1b flag1c @test Int(Flag1(:flag1a)) == 1 @test Int(Flag1(:flag1b)) == 2 @test Int(Flag1(:flag1c)) == 4 @test Flag1(1) == Flag1(:flag1a) @test Flag1(2) == Flag1(:flag1b) @test Flag1(4) == Flag1(:flag1c) @test flags(Flag1) == (:flag1a, :flag1b, :flag1c) @test Flag1(flag1a = true, flag1b = false, flag1c = true) == Flag1(:flag1a, :flag1c) @test length(Flag1(:flag1a, :flag1c)) == 2 @test !iszero(Flag1(:flag1a, :flag1c)) @test iszero(Flag1()) # Block definition @symbol_flagset Flag2 begin flag2a flag2b flag2c end @test Int(Flag2(:flag2a)) == 1 @test Int(Flag2(:flag2b)) == 2 @test Int(Flag2(:flag2c)) == 4 @test Flag2(flag2a = true, flag2b = false, flag2c = true) == Flag2(:flag2a, :flag2c) @test length(Flag2(:flag2b)) == 1 @test !iszero(Flag2(:flag2b)) @test iszero(Flag2()) # Explicit numbering, inline @symbol_flagset Flag3 flag3a = 1 flag3b flag3c = 8 @test Int(Flag3(:flag3a)) == 1 @test Int(Flag3(:flag3b)) == 2 @test Int(Flag3(:flag3c)) == 8 @test isempty(typemin(Flag3)) @test Int(typemax(Flag3)) == 11 @test length(typemax(Flag3)) == 3 @test Flag3(flag3a = true, flag3b = false, flag3c = true) == Flag3(:flag3a, :flag3c) @test flags(Flag3) == (:flag3a, :flag3b, :flag3c) # UInt128 @symbol_flagset Flag4a::UInt128 a = UInt128(1) << 96 b = UInt128(1) << 120 @test length([Flag4a(:a, :b)...]) == 2 @test flags(Flag4a(:a, :b)) === (:a, :b) @test all(s1 === s2 for (s1, s2) ∈ zip(Flag4a(:a, :b), [:a, :b])) # BigInt @symbol_flagset Flag4b::BigInt a = big(1) << 160 b = big(1) << 192 @test length([Flag4b(:a, :b)...]) == 2 @test flags(Flag4b(:a, :b)) === (:a, :b) @test all(s1 === s2 for (s1, s2) ∈ zip(Flag4b(:a, :b), [:a, :b])) end @testset "Mask and set operations" begin # Mask operations @test Flag1(:flag1a) | Flag1(:flag1b) | Flag1(:flag1c) == Flag1(:flag1a, :flag1b, :flag1c) @test Int(Flag1(7)) == 7 @test Flag1(7) == Flag1(:flag1a) | Flag1(:flag1b) | Flag1(:flag1c) @test Flag1(7) & Flag1(:flag1a) == Flag1(:flag1a) @test Flag1(7) ⊻ Flag1(:flag1a) == Flag1(:flag1b, :flag1c) @test ~Flag1(:flag1a) == Flag1(:flag1b, :flag1c) @test Int(Flag1(:flag1a)) < Int(Flag1(:flag1b)) < Int(Flag1(:flag1c)) @test Int(Flag1(:flag1a) | Flag1(:flag1b)) < Int(Flag1(:flag1c)) # Set operations @test Flag1(:flag1a) ∪ Flag1(:flag1b) ∪ Flag1(:flag1c) == Flag1(:flag1a, :flag1b, :flag1c) @test Flag1(7) == Flag1(:flag1a) ∪ Flag1(:flag1b) ∪ Flag1(:flag1c) @test Flag1(7) ∩ Flag1(:flag1a) == Flag1(:flag1a) @test Flag1(7) ⊻ Flag1(:flag1a) == Flag1(:flag1b, :flag1c) @test setdiff(typemax(Flag1), Flag1(:flag1a)) == Flag1(:flag1b, :flag1c) @test :flag1a ∈ Flag1(:flag1a) @test :flag1a ∉ Flag1(:flag1b, :flag1c) @test Flag1(:flag1b) ⊊ Flag1(:flag1b, :flag1c) @test Flag1(:flag1c) ⊊ Flag1(:flag1b, :flag1c) @test !(Flag1(:flag1b, :flag1c) ⊊ Flag1(:flag1b, :flag1c)) @test !(Flag1(:flag1a, :flag1b) ⊊ Flag1(:flag1b, :flag1c)) end # testset # Julia errors when defining methods whithin nested testsets @symbol_flagset Flag5 flag5a flag5b @symbol_flagset Flag6::UInt8 flag6a flag6b flag6c @symbol_flagset Flag7::UInt8 flag7a = big"1" flag7b = UInt8(2) Flag5(::Integer) = typemax(Flag5) Flag6(::Integer) = typemax(Flag6) Flag7(::Integer) = typemax(Flag7) @testset "Type properties" begin # Default integer typing @test typeof(Integer(Flag5(:flag5a))) == UInt32 @test typeof(Flag5) == DataType @test typeof(Flag5(:flag5a)) <: Flag5 <: FlagSet <: AbstractSet @test isbitstype(Flag5) @test isbits(Flag5(:flag5a)) # Construct non-default @test typeof(Integer(Flag6(:flag6a))) == UInt8 @test UInt8(Flag6(:flag6a)) === 0x01 @test UInt16(Flag6(:flag6b)) === 0x0002 @test UInt16(Flag6(BitMask(0x02))) === 0x0002 @test UInt16(Flag6([:flag6a, :flag6b])) === 0x0003 @test UInt128(Flag6(:flag6c)) === 0x00000000000000000000000000000004 # Explicit bits of non-default types @test Integer(Flag7(:flag7a)) === UInt8(1) @test Integer(Flag7(BitMask(1))) == UInt8(1) @test Integer(Flag7(:flag7b)) === UInt8(2) @test Integer(Flag7(BitMask(0x0000_0002))) === UInt8(2) @test Integer(Flag7([:flag7a, :flag7b])) === UInt8(3) @test Flag7(BitMask(0)) == typemin(Flag7) # UInt128 and BigInt @test typeof(Integer(Flag4a())) == UInt128 @test typeof(Integer(Flag4b())) == BigInt end # testset @testset "Validate type" begin @test isvalid(Flag1(:flag1a)) @test isvalid(Flag1, Flag1(:flag1a)) @test isvalid(Flag1, :flag1a) @test isvalid(Flag1(:flag1b)) @test isvalid(Flag1, :flag1b) @test isvalid(Flag1, 0x0000_0003) @test isvalid(Flag1, BitMask(0x0000_0003)) @test !isvalid(Flag1, UInt32(1 << 3)) @test !isvalid(Flag1, UInt32(1 << 4)) @test !isvalid(Flag1, UInt32(1 << 5 | 1)) @test !isvalid(Flag1, UInt32(1 << 29 | 1 << 3)) @test isvalid(Flag6, :flag6a) @test isvalid(Flag6, :flag6b) @test isvalid(Flag6, BitMask(0x03)) @test !isvalid(Flag6, UInt8(1 << 3)) @test !isvalid(Flag6, UInt8(1 << 4)) @test !isvalid(Flag6, UInt8(1 << 5 | 1)) @test !isvalid(Flag6, UInt8(1 << 7 | 1 << 3)) @test isvalid(Flag1, :flag1a) @test !isvalid(Flag1, :foo) @test isvalid(Flag1, [:flag1a, :flag1b]) @test isvalid(Flag1, (:flag1a, :flag1b)) @test isvalid(Flag1, Set([:flag1a, :flag1b])) @test Flag1([:flag1a, :flag1b]) == Flag1(:flag1a, :flag1b) @test Flag1((:flag1a, :flag1b)) == Flag1(:flag1a, :flag1b) @test Flag1(Set([:flag1a, :flag1b])) == Flag1(:flag1a, :flag1b) @test !isvalid(Flag1, [:foo, :bar]) end @testset "Error conditions" begin @test_throws( ArgumentError("no arguments given for FlagSet Foo"), @macrocall(@symbol_flagset Foo), ) @test_throws( invalid_type_error(:base, :Foo, :Float64), @macrocall(@symbol_flagset Foo::Float64 x = 1.0), ) @test_throws( ArgumentError("invalid type expression for FlagSet: 1234 + 1"), @macrocall(@symbol_flagset 1234 + 1 x = 1 y = 2), ) @test_throws( ArgumentError("invalid type expression for FlagSet: 1234::UInt"), @macrocall(@symbol_flagset 1234::UInt x = 1 y = 2), ) # Require uniqueness @test_throws( not_unique_error(:bit, :Foo, 1), @macrocall(@symbol_flagset Foo x = 1 y = 1), ) @test_throws( not_unique_error(:bit, :Foo, 2), @macrocall(@symbol_flagset Foo x = 2 y = 2), ) # Explicit bits must be powers of two @test_throws( invalid_bit_error(:Foo, :(_three = 3)), @macrocall(@symbol_flagset Foo _three = 3), ) # Values must be integers @test_throws( invalid_bit_error(:Foo, :(_zero = "zero")), @macrocall(@symbol_flagset Foo _zero = "zero"), ) @test_throws( invalid_bit_error(:Foo, :(_zero = '0')), @macrocall(@symbol_flagset Foo _zero = '0'), ) @test_throws( invalid_bit_error(:Foo, :(_zero = 0.5)), @macrocall(@symbol_flagset Foo _zero = 0.5), ) # Names must be valid identifiers @test_throws( invalid_flagspec_error(:Foo, :(x ? 1 : 2)), @macrocall(@symbol_flagset Foo x ? 1 : 2), ) @test_throws( invalid_flagspec_error(:Foo, :(1 = 2)), @macrocall(@symbol_flagset Foo 1 = 2), ) # Disallow bit overflow @test_throws( overflow_error(:Foo, :y), @macrocall(@symbol_flagset Foo::UInt32 x = (UInt32(1) << 31) y), ) # Deprecated messages @test_logs( (:warn, deprecated_syntax_message(:MyFlags,:UInt32)), @macrocall(@flagset MyFlags::UInt32 x = 1 y = 2), ) @test_throws( undef_var_error_hint(UndefVarError(:x)), @macrocall(@flagset MyFlags2 x) ) end # testset @testset "Input/Output" begin @symbol_flagset Flag9::UInt64 flag9a = 1 flag9b = 256 @symbol_flagset Flag10::UInt8 flag10a = 128 flag10b = 2 let io = IOBuffer() write(io, Flag10(:flag10a, :flag10b)) write(io, Flag9(:flag9b)) write(io, Flag10(:flag10a)) write(io, Flag6(BitMask(2))) seekstart(io) @test read(io, Flag10) == Flag10(:flag10a, :flag10b) @test read(io, Flag9) == Flag9(:flag9b) @test read(io, Flag10) == Flag10(:flag10a) @test read(io, Flag6) == Flag6(BitMask(2)) end let io = IOBuffer() serialize(io, Flag9(:flag9a)) seekstart(io) @test deserialize(io) === Flag9(:flag9a) end end # testset # In submodule and not imported to test prefix printing module SubModule using ..FlagSets @symbol_flagset Bits::UInt8 one two four eight end @testset "String representations" begin @symbol_flagset FilePerms::UInt8 READ = 4 WRITE = 2 EXEC = 1 @test string(FilePerms) == "FilePerms" @test string(SubModule.Bits) == "Main.SubModule.Bits" @test string(FilePerms()) == "FilePerms([])" @test string(SubModule.Bits(:one)) == "Main.SubModule.Bits([:one])" @test repr("text/plain", FilePerms) == "FlagSet $(string(FilePerms)):\n" * " EXEC = 0x01 --> :EXEC\n" * " WRITE = 0x02 --> :WRITE\n" * " READ = 0x04 --> :READ" @test repr("text/plain", SubModule.Bits) == "FlagSet Main.SubModule.Bits:\n" * " one = 0x01 --> :one\n" * " two = 0x02 --> :two\n" * " four = 0x04 --> :four\n" * " eight = 0x08 --> :eight" @test repr(FilePerms(:EXEC)) == "FilePerms([:EXEC])" @test repr(SubModule.Bits(:one)) == "Main.SubModule.Bits([:one])" @test repr(FilePerms(:EXEC, :READ)) == "FilePerms([:EXEC, :READ])" @test repr(SubModule.Bits(:one, :eight)) == "Main.SubModule.Bits([:one, :eight])" @test repr(FilePerms() | FilePerms(:READ)) == "FilePerms([:READ])" let io = IOBuffer(), ioc = IOContext(io, :compact => true, :module => Main) show(io, MIME"text/plain"(), FlagSet) @test String(take!(io)) == "FlagSet" show(ioc, MIME"text/plain"(), FlagSet) @test String(take!(io)) == "FlagSet" # Explicit :compact => false required for consistency across Julia versions iof = IOContext(io, :compact => false, :module => Main) show(iof, MIME"text/plain"(), Union{FilePerms,SubModule.Bits}) @test String(take!(io)) == "Union{FilePerms, Main.SubModule.Bits}" show(ioc, MIME"text/plain"(), Union{FilePerms,SubModule.Bits}) @test String(take!(io)) == "Union{FilePerms, Bits}" show(ioc, FilePerms()) @test String(take!(io)) == "FilePerms(0x00)" show(ioc, SubModule.Bits(:one)) @test String(take!(io)) == "Bits(0x01)" show(ioc, FilePerms(:EXEC, :READ)) @test String(take!(io)) == "FilePerms(0x05)" show(ioc, SubModule.Bits(:one, :eight)) @test String(take!(io)) == "Bits(0x09)" end end # testset
FlagSets
https://github.com/jessymilare/FlagSets.jl.git