licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
7949
struct AllConfigs{K} end largest_k(::AllConfigs{K}) where K = K struct SingleConfig end """ backward_tropical!(mode, ixs, xs, iy, y, ymask, size_dict) The backward rule for tropical einsum. * `mode` can be one of `:all` and `:single`, * `ixs` and `xs` are labels and tensor data for input tensors, * `iy` and `y` are labels and tensor data for the output tensor, * `ymask` is the boolean mask for gradients, * `size_dict` is a key-value map from tensor label to dimension size. """ function backward_tropical!(mode, ixs, @nospecialize(xs::Tuple), iy, @nospecialize(y), @nospecialize(ymask), size_dict) # remove float to improve the stability of the algorithm removeinf(x::CountingTropical{<:AbstractFloat}) = isinf(x.n) ? typeof(x)(prevfloat(x.n), x.c) : x removeinf(x::Tropical{<:AbstractFloat}) = isinf(x.n) ? typeof(x)(prevfloat(x.n)) : x removeinf(x) = x y .= removeinf.(inv.(y) .* ymask) masks = [] for i=1:length(ixs) nixs = OMEinsum._insertat(ixs, i, iy) nxs = OMEinsum._insertat( xs, i, y) niy = ixs[i] if mode isa AllConfigs mask = zeros(Bool, size(xs[i])) # here, we set a threshold `1e-12` to avoid round off errors. mask .= inv.(einsum(EinCode(nixs, niy), nxs, size_dict)) .<= xs[i] .* Tropical(largest_k(mode)-1+1e-12) push!(masks, mask) elseif mode isa SingleConfig A = einsum(EinCode(nixs, niy), nxs, size_dict) push!(masks, onehotmask!(A, xs[i])) else error("unkown mode: $mod") end end return masks end # one of the entry in `A` that equal to the corresponding entry in `X` is masked to true. function onehotmask!(A::AbstractArray{T}, X::AbstractArray{T}) where T @assert length(A) == length(X) mask = falses(size(A)...) found = false @inbounds for j=1:length(A) if X[j] ≈ inv(A[j]) && !found mask[j] = true found = true else X[j] = zero(T) end end return mask end # the data structure storing intermediate `NestedEinsum` contraction results. struct CacheTree{T} content::AbstractArray{T} siblings::Vector{CacheTree{T}} end function cached_einsum(se::SlicedEinsum, @nospecialize(xs), size_dict) if length(se.slicing) != 0 @warn "Slicing is not supported for caching, got nslices = $(length(se.slicing))! Fallback to `NestedEinsum`." end return cached_einsum(se.eins, xs, size_dict) end function cached_einsum(code::NestedEinsum, @nospecialize(xs), size_dict) if OMEinsum.isleaf(code) y = xs[OMEinsum.tensorindex(code)] return CacheTree(y, CacheTree{eltype(y)}[]) else caches = [cached_einsum(arg, xs, size_dict) for arg in OMEinsum.siblings(code)] y = einsum(OMEinsum.rootcode(code), ntuple(i->caches[i].content, length(caches)), size_dict) return CacheTree(y, caches) end end # computed mask tree by back propagation function generate_masktree(mode, se::SlicedEinsum, cache, mask, size_dict) if length(se.slicing) != 0 @warn "Slicing is not supported for generating masked tree! Fallback to `NestedEinsum`." end return generate_masktree(mode, se.eins, cache, mask, size_dict) end function generate_masktree(mode, code::NestedEinsum, cache, mask, size_dict) if OMEinsum.isleaf(code) return CacheTree(mask, CacheTree{Bool}[]) else eins = OMEinsum.rootcode(code) submasks = backward_tropical!(mode, getixs(eins), (getfield.(cache.siblings, :content)...,), OMEinsum.getiy(eins), cache.content, mask, size_dict) return CacheTree(mask, generate_masktree.(Ref(mode), OMEinsum.siblings(code), cache.siblings, submasks, Ref(size_dict))) end end # The masked einsum contraction function masked_einsum(se::SlicedEinsum, @nospecialize(xs), masks, size_dict) if length(se.slicing) != 0 @warn "Slicing is not supported for masked contraction! Fallback to `NestedEinsum`." end return masked_einsum(se.eins, xs, masks, size_dict) end function masked_einsum(code::NestedEinsum, @nospecialize(xs), masks, size_dict) if OMEinsum.isleaf(code) y = copy(xs[OMEinsum.tensorindex(code)]) y[OMEinsum.asarray(.!masks.content)] .= Ref(zero(eltype(y))) return y else xs = [masked_einsum(arg, xs, mask, size_dict) for (arg, mask) in zip(OMEinsum.siblings(code), masks.siblings)] y = einsum(OMEinsum.rootcode(code), (xs...,), size_dict) y[OMEinsum.asarray(.!masks.content)] .= Ref(zero(eltype(y))) return y end end """ bounding_contract(mode, code, xsa, ymask, xsb; size_info=nothing) Contraction method with bounding. * `mode` is a `AllConfigs{K}` instance, where `MIS-K+1` is the largest IS size that you care about. * `xsa` are input tensors for bounding, e.g. tropical tensors, * `xsb` are input tensors for computing, e.g. tensors elements are counting tropical with set algebra, * `ymask` is the initial gradient mask for the output tensor. """ function bounding_contract(mode::AllConfigs, code::EinCode, @nospecialize(xsa), ymask, @nospecialize(xsb); size_info=nothing) LT = OMEinsum.labeltype(code) bounding_contract(mode, DynamicNestedEinsum(DynamicNestedEinsum{LT}.(1:length(xsa)), code), xsa, ymask, xsb; size_info=size_info) end function bounding_contract(mode::AllConfigs, code::Union{NestedEinsum,SlicedEinsum}, @nospecialize(xsa), ymask, @nospecialize(xsb); size_info=nothing) size_dict = size_info===nothing ? Dict{OMEinsum.labeltype(code),Int}() : copy(size_info) OMEinsum.get_size_dict!(code, xsa, size_dict) # compute intermediate tensors @debug "caching einsum..." c = cached_einsum(code, xsa, size_dict) # compute masks from cached tensors @debug "generating masked tree..." mt = generate_masktree(mode, code, c, ymask, size_dict) # compute results with masks masked_einsum(code, xsb, mt, size_dict) end # get the optimal solution with automatic differentiation. function solution_ad(code::EinCode, @nospecialize(xsa), ymask; size_info=nothing) LT = OMEinsum.labeltype(code) solution_ad(DynamicNestedEinsum(DynamicNestedEinsum{LT}.(1:length(xsa)), code), xsa, ymask; size_info=size_info) end function solution_ad(code::Union{NestedEinsum,SlicedEinsum}, @nospecialize(xsa), ymask; size_info=nothing) size_dict = size_info===nothing ? Dict{OMEinsum.labeltype(code),Int}() : copy(size_info) OMEinsum.get_size_dict!(code, xsa, size_dict) # compute intermediate tensors @debug "caching einsum..." c = cached_einsum(code, xsa, size_dict) n = asscalar(c.content) # compute masks from cached tensors @debug "generating masked tree..." mt = generate_masktree(SingleConfig(), code, c, ymask, size_dict) config = read_config!(code, mt, Dict()) if length(config) !== length(labels(code)) # equal to the # of degree of freedoms error("configuration `$(config)` is not fully determined!") end n, config end # get the solution configuration from gradients. function read_config!(code::SlicedEinsum, mt, out) read_config!(code.eins, mt, out) end function read_config!(code::NestedEinsum, mt, out) for (arg, ix, sibling) in zip(OMEinsum.siblings(code), getixs(OMEinsum.rootcode(code)), mt.siblings) if OMEinsum.isleaf(arg) mask = convert(Array, sibling.content) # note: the content can be CuArray for ci in CartesianIndices(mask) if mask[ci] for k in 1:ndims(mask) if haskey(out, ix[k]) @assert out[ix[k]] == ci.I[k] - 1 else out[ix[k]] = ci.I[k] - 1 end end end end else # nested read_config!(arg, sibling, out) end end return out end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
5368
function config_type(::Type{T}, n, nflavor; all::Bool, tree_storage::Bool) where T if all if tree_storage return treeset_type(T, n, nflavor) else return set_type(T, n, nflavor) end else return sampler_type(T, n, nflavor) end end """ best_solutions(problem; all=false, usecuda=false, invert=false, tree_storage::Bool=false) Find optimal solutions with bounding. * When `all` is true, the program will use set for enumerate all possible solutions, otherwise, it will return one solution for each size. * `usecuda` can not be true if you want to use set to enumerate all possible solutions. * If `invert` is true, find the minimum. * If `tree_storage` is true, use [`SumProductTree`](@ref) as the storage of solutions. """ function best_solutions(gp::GenericTensorNetwork; all=false, usecuda=false, invert=false, tree_storage::Bool=false, T=Float64) if all && usecuda throw(ArgumentError("ConfigEnumerator can not be computed on GPU!")) end xst = generate_tensors(_x(Tropical{T}; invert), gp) ymask = trues(fill(nflavor(gp), length(getiyv(gp.code)))...) if usecuda xst = togpu.(xst) ymask = togpu(ymask) end if all # we use `Float64` as default because we want to support weighted graphs. T = config_type(CountingTropical{T,T}, length(labels(gp)), nflavor(gp); all, tree_storage) xs = generate_tensors(_x(T; invert), gp) ret = bounding_contract(AllConfigs{1}(), gp.code, xst, ymask, xs) return invert ? asarray(post_invert_exponent.(ret), ret) : ret else @assert ndims(ymask) == 0 t, res = solution_ad(gp.code, xst, ymask) ret = fill(CountingTropical(asscalar(t).n, ConfigSampler(StaticBitVector(map(l->res[l], 1:length(res)))))) return invert ? asarray(post_invert_exponent.(ret), ret) : ret end end """ solutions(problem, basetype; all, usecuda=false, invert=false, tree_storage::Bool=false) General routine to find solutions without bounding, * `basetype` can be a type with counting field, * `CountingTropical{Float64,Float64}` for finding optimal solutions, * `Polynomial{Float64, :x}` for enumerating all solutions, * `Max2Poly{Float64,Float64}` for optimal and suboptimal solutions. * When `all` is true, the program will use set for enumerate all possible solutions, otherwise, it will return one solution for each size. * `usecuda` can not be true if you want to use set to enumerate all possible solutions. * If `tree_storage` is true, use [`SumProductTree`](@ref) as the storage of solutions. """ function solutions(gp::GenericTensorNetwork, ::Type{BT}; all::Bool, usecuda::Bool=false, invert::Bool=false, tree_storage::Bool=false) where BT if all && usecuda throw(ArgumentError("ConfigEnumerator can not be computed on GPU!")) end T = config_type(BT, length(labels(gp)), nflavor(gp); all, tree_storage) ret = contractx(gp, _x(T; invert); usecuda=usecuda) return invert ? asarray(post_invert_exponent.(ret), ret) : ret end """ best2_solutions(problem; all=true, usecuda=false, invert=false, tree_storage::Bool=false) Finding optimal and suboptimal solutions. """ best2_solutions(gp::GenericTensorNetwork; all=true, usecuda=false, invert::Bool=false, T=Float64) = solutions(gp, Max2Poly{T,T}; all, usecuda, invert) function bestk_solutions(gp::GenericTensorNetwork, k::Int; invert::Bool=false, tree_storage::Bool=false, T=Float64) xst = generate_tensors(_x(Tropical{T}; invert), gp) ymask = trues(fill(2, length(getiyv(gp.code)))...) T = config_type(TruncatedPoly{k,T,T}, length(labels(gp)), nflavor(gp); all=true, tree_storage) xs = generate_tensors(_x(T; invert), gp) ret = bounding_contract(AllConfigs{k}(), gp.code, xst, ymask, xs) return invert ? asarray(post_invert_exponent.(ret), ret) : ret end """ all_solutions(problem) Finding all solutions grouped by size. e.g. when the problem is [`MaximalIS`](@ref), it computes all maximal independent sets, or the maximal cliques of it complement. """ all_solutions(gp::GenericTensorNetwork; T=Float64) = solutions(gp, Polynomial{T,:x}, all=true, usecuda=false, tree_storage=false) # NOTE: do we have more efficient way to compute it? # NOTE: doing pair-wise Hamming distance might be biased? """ hamming_distribution(S, T) Compute the distribution of pair-wise Hamming distances, which is defined as: ```math c(k) := \\sum_{\\sigma\\in S, \\tau\\in T} \\delta({\\rm dist}(\\sigma, \\tau), k) ``` where ``\\delta`` is a function that returns 1 if two arguments are equivalent, 0 otherwise, ``{\\rm dist}`` is the Hamming distance function. Returns the counting as a vector. """ function hamming_distribution(t1::ConfigEnumerator, t2::ConfigEnumerator) return hamming_distribution(t1.data, t2.data) end function hamming_distribution(s1::AbstractVector{StaticElementVector{N,S,C}}, s2::AbstractVector{StaticElementVector{N,S,C}}) where {N,S,C} return hamming_distribution!(zeros(Int, N+1), s1, s2) end function hamming_distribution!(out::AbstractVector, s1::AbstractVector{StaticElementVector{N,S,C}}, s2::AbstractVector{StaticElementVector{N,S,C}}) where {N,S,C} @assert length(out) == N+1 @inbounds for a in s1, b in s2 out[hamming_distance(a, b)+1] += 1 end return out end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
270
@deprecate Independence(args...; kwargs...) IndependentSet(args...; kwargs...) @deprecate MaximalIndependence(args...; kwargs...) MaximalIS(args...; kwargs...) @deprecate NoWeight() UnitWeight() @deprecate HyperSpinGlass(args...; kwargs...) SpinGlass(args...; kwargs...)
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
4146
""" save_configs(filename, data::ConfigEnumerator; format=:binary) Save configurations `data` to file `filename`. The format is `:binary` or `:text`. """ function save_configs(filename, data::ConfigEnumerator{N,S,C}; format::Symbol=:binary) where {N,S,C} if format == :binary write(filename, raw_matrix(data)) elseif format == :text writedlm(filename, plain_matrix(data)) else error("format must be `:binary` or `:text`, got `:$format`") end end """ load_configs(filename; format=:binary, bitlength=nothing, nflavors=2) Load configurations from file `filename`. The format is `:binary` or `:text`. If the format is `:binary`, the bitstring length `bitlength` must be specified, `nflavors` specifies the degree of freedom. """ function load_configs(filename; bitlength=nothing, format::Symbol=:binary, nflavors=2) if format == :binary bitlength === nothing && error("you need to specify `bitlength` for reading configurations from binary files.") S = ceil(Int, log2(nflavors)) C = _nints(bitlength, S) return _from_raw_matrix(StaticElementVector{bitlength,S,C}, reshape(reinterpret(UInt64, read(filename)),C,:)) elseif format == :text return from_plain_matrix(readdlm(filename); nflavors=nflavors) else error("format must be `:binary` or `:text`, got `:$format`") end end function raw_matrix(x::ConfigEnumerator{N,S,C}) where {N,S,C} m = zeros(UInt64, C, length(x)) @inbounds for i=1:length(x), j=1:C m[j,i] = x.data[i].data[j] end return m end function plain_matrix(x::ConfigEnumerator{N,S,C}) where {N,S,C} m = zeros(UInt8, N, length(x)) @inbounds for i=1:length(x), j=1:N m[j,i] = x.data[i][j] end return m end function from_raw_matrix(m; bitlength, nflavors=2) S = ceil(Int,log2(nflavors)) C = size(m, 1) T = StaticElementVector{bitlength,S,C} @assert bitlength*S <= C*64 _from_raw_matrix(T, m) end function _from_raw_matrix(::Type{StaticElementVector{N,S,C}}, m::AbstractMatrix) where {N,S,C} data = zeros(StaticElementVector{N,S,C}, size(m, 2)) @inbounds for i=1:size(m, 2) data[i] = StaticElementVector{N,S,C}(NTuple{C,UInt64}(view(m,:,i))) end return ConfigEnumerator(data) end function from_plain_matrix(m::Matrix; nflavors=2) S = ceil(Int,log2(nflavors)) N = size(m, 1) C = _nints(N, S) T = StaticElementVector{N,S,C} _from_plain_matrix(T, m) end function _from_plain_matrix(::Type{StaticElementVector{N,S,C}}, m::AbstractMatrix) where {N,S,C} data = zeros(StaticElementVector{N,S,C}, size(m, 2)) @inbounds for i=1:size(m, 2) data[i] = convert(StaticElementVector{N,S,C}, view(m, :, i)) end return ConfigEnumerator(data) end # convert to Matrix Base.Matrix(ce::ConfigEnumerator) = plain_matrix(ce) Base.Vector(ce::StaticElementVector) = collect(ce) ########## saving tree #################### """ save_sumproduct(filename, t::SumProductTree) Serialize a sum-product tree into a file. """ save_sumproduct(filename::String, t::SumProductTree) = serialize(filename, dict_serialize_tree!(t, Dict{UInt,Any}())) """ load_sumproduct(filename) Deserialize a sum-product tree from a file. """ load_sumproduct(filename::String) = dict_deserialize_tree(deserialize(filename)...) function dict_serialize_tree!(t::SumProductTree, d::Dict) id = objectid(t) if !haskey(d, id) if t.tag === GenericTensorNetworks.LEAF || t.tag === GenericTensorNetworks.ZERO || t.tag == GenericTensorNetworks.ONE d[id] = t else d[id] = (t.tag, objectid(t.left), objectid(t.right)) dict_serialize_tree!(t.left, d) dict_serialize_tree!(t.right, d) end end return id, d end function dict_deserialize_tree(id::UInt, d::Dict) @assert haskey(d, id) content = d[id] if content isa SumProductTree return content else (tag, left, right) = content t = SumProductTree(tag, dict_deserialize_tree(left, d), dict_deserialize_tree(right, d)) d[id] = t return t end end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
4358
""" graph_polynomial(problem, method; usecuda=false, T=Float64, kwargs...) Computing the graph polynomial for specific problem. Positional Arguments ---------------------------------- * `problem` can be one of the following instances, * `IndependentSet` for the independence polynomial, * `MaximalIS` for the maximal independence polynomial, * `Matching` for the matching polynomial, * `method` can be one of the following inputs, * `Val(:finitefield)`, compute exactly with the finite field method. It consumes additional kwargs [`max_iter`, `maxorder`], where `maxorder` is maximum order of polynomial and `max_iter` is the maximum number of primes numbers to use in the finitefield algebra. `max_iter` can be determined automatically in most cases. * `Val(:polynomial)`, compute directly with `Polynomial` number type, * `Val(:fft)`, compute with the fast fourier transformation approach, fast but needs to tune the hyperparameter `r`. It Consumes additional kwargs [`maxorder`, `r`]. The larger `r` is, the more accurate the factors of high order terms, and the less accurate the factors of low order terms. * `Val(:fitting)`, compute with the polynomial fitting approach, fast but inaccurate for large graphs. Keyword Arguments ---------------------------------- * `usecuda` is true if one wants to compute with CUDA arrays, * `T` is the base type """ function graph_polynomial end function graph_polynomial(gp::GenericTensorNetwork, ::Val{:fft}; usecuda=false, T=Float64, maxorder=max_size(gp; usecuda=usecuda), r=1.0) ω = exp(-2im*π/(maxorder+1)) xs = r .* collect(ω .^ (0:maxorder)) ys = [Array(contractx(gp, Complex{T}(x); usecuda=usecuda)) for x in xs] map(ci->Polynomial(ifft(getindex.(ys, Ref(ci))) ./ (r .^ (0:maxorder))), CartesianIndices(ys[1])) end function graph_polynomial(gp::GenericTensorNetwork, ::Val{:fitting}; usecuda=false, T=Float64, maxorder = max_size(gp; usecuda=usecuda)) xs = (0:maxorder) ys = [Array(contractx(gp, T(x); usecuda=usecuda)) for x in xs] map(ci->fit(xs, getindex.(ys, Ref(ci))), CartesianIndices(ys[1])) end function graph_polynomial(gp::GenericTensorNetwork, ::Val{:polynomial}; usecuda=false, T=Float64) @assert !usecuda "Polynomial type can not be computed on GPU!" contractx(gp::GenericTensorNetwork, Polynomial(T[0, 1])) end function graph_polynomial(gp::GenericTensorNetwork, ::Val{:laurent}; usecuda=false, T=Float64) @assert !usecuda "Polynomial type can not be computed on GPU!" contractx(gp::GenericTensorNetwork, LaurentPolynomial(T[1], 1)) end function _polynomial_fit(f, ::Type{T}; maxorder) where T xs = 0:maxorder ys = [f(T(x)) for x in xs] # download to CPU res = fill(T[], size(ys[1])) # contraction result can be a tensor for ci in 1:length(ys[1]) A = zeros(T, maxorder+1, maxorder+1) for j=1:maxorder+1, i=1:maxorder+1 A[j,i] = T(xs[j])^(i-1) end res[ci] = A \ T.(getindex.(ys, Ref(ci))) end return res end # T is not used in finitefield approach function graph_polynomial(gp::GenericTensorNetwork, ::Val{:finitefield}; usecuda=false, T=BigInt, maxorder=max_size(gp; usecuda), max_iter=100) f = T->_polynomial_fit(x->Array(contractx(gp, x; usecuda)), T; maxorder) return map(Polynomial, big_integer_solve(f, Int32, max_iter)) end function big_integer_solve(f, ::Type{TI}, max_iter::Int=100) where TI N = typemax(TI) local res, respre, YS for k = 1:max_iter N = prevprime(N-TI(1)) @debug "iteration $k, computing on GP($(N)) ..." T = Mods.Mod{N,TI} rk = f(T) if max_iter==1 return map(x->BigInt.(Mods.value.(x)), rk) # needs test end if k != 1 push!.(YS, rk) res = map(x->improved_counting(x...), YS) all(respre .== res) && return res respre = res else # k=1 YS = reshape([Any[] for i=1:length(rk)], size(rk)) push!.(YS, rk) respre = map(x->BigInt.(value.(x)), rk) end end @warn "result is potentially inconsistent." return res end function improved_counting(ys::AbstractArray...) map(yi->improved_counting(yi...), zip(ys...)) end improved_counting(ys::Mod...) = Mods.CRT(ys...)
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
2441
""" random_square_lattice_graph(m::Int, n::Int, ρ::Real) Create a random masked square lattice graph, with number of vertices fixed to ``\\lfloor mn\\rho \\rceil``. """ function random_square_lattice_graph(m::Int, n::Int, ρ::Real) @assert ρ >=0 && ρ <= 1 square_lattice_graph(generate_mask(m, n, round(Int,m*n*ρ))) end """ square_lattice_graph(mask::AbstractMatrix{Bool}) Create a masked square lattice graph. """ function square_lattice_graph(mask::AbstractMatrix{Bool}) locs = [(i, j) for i=1:size(mask, 1), j=1:size(mask, 2) if mask[i,j]] unit_disk_graph(locs, 1.1) end """ random_diagonal_coupled_graph(m::Int, n::Int, ρ::Real) Create a ``m\\times n`` random masked diagonal coupled square lattice graph, with number of vertices equal to ``\\lfloor m \\times n\\times \\rho \\rceil``. """ function random_diagonal_coupled_graph(m::Int, n::Int, ρ::Real) @assert ρ >=0 && ρ <= 1 diagonal_coupled_graph(generate_mask(m, n, round(Int,m*n*ρ))) end function generate_mask(Nx::Int, Ny::Int, natoms::Int) mask = zeros(Bool, Nx, Ny) mask[StatsBase.sample(1:Nx*Ny, natoms; replace=false)] .= true return mask end """ diagonal_coupled_graph(mask::AbstractMatrix{Bool}) Create a masked diagonal coupled square lattice graph from a specified `mask`. """ function diagonal_coupled_graph(mask::AbstractMatrix{Bool}) locs = [(i, j) for i=1:size(mask, 1), j=1:size(mask, 2) if mask[i,j]] unit_disk_graph(locs, 1.5) end """ unit_disk_graph(locs::AbstractVector, unit::Real) Create a unit disk graph with locations specified by `locs` and unit distance `unit`. """ function unit_disk_graph(locs::AbstractVector, unit::Real) n = length(locs) g = SimpleGraph(n) for i=1:n, j=i+1:n if sum(abs2, locs[i] .- locs[j]) < unit ^ 2 add_edge!(g, i, j) end end return g end """ line_graph(g::SimpleGraph) Returns the line graph of `g`. The line graph is generated by mapping an edge to a vertex and two edges sharing a common vertex will be connected. """ function line_graph(graph::SimpleGraph) edge_list = collect(edges(graph)) linegraph = SimpleGraph(length(edge_list)) for (i, ei) in enumerate(edge_list) for (j, ej) in enumerate(edge_list) if ei.src ∈ (ej.src, ej.dst) || ei.dst ∈ (ej.src, ej.dst) add_edge!(linegraph, i, j) end end end return linegraph end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
24425
abstract type AbstractProperty end struct Single end _asint(x::Integer) = x _asint(x::Type{Single}) = 1 """ SizeMax{K} <: AbstractProperty SizeMax(k::Int) The maximum-K set sizes. e.g. the largest size of the [`IndependentSet`](@ref) problem is also know as the independence number. * The corresponding tensor element type are max-plus tropical number [`Tropical`](@ref) if `K` is `Single` and [`ExtendedTropical`](@ref) if `K` is an integer. * It is compatible with weighted graph problems. * BLAS (on CPU) and GPU are supported only if `K` is `Single`, """ struct SizeMax{K} <: AbstractProperty end SizeMax(k::Union{Int,Type{Single}}=Single) = (@assert k == Single || k > 0; SizeMax{k}()) max_k(::SizeMax{K}) where K = K """ SizeMin{K} <: AbstractProperty SizeMin(k::Int) The minimum-K set sizes. e.g. the smallest size ofthe [`MaximalIS`](@ref) problem is also known as the independent domination number. * The corresponding tensor element type are inverted max-plus tropical number [`Tropical`](@ref) if `K` is `Single` and inverted [`ExtendedTropical`](@ref) `K` is an integer. The inverted Tropical number emulates the min-plus tropical number. * It is compatible with weighted graph problems. * BLAS (on CPU) and GPU are supported only if `K` is `Single`, """ struct SizeMin{K} <: AbstractProperty end SizeMin(k::Union{Int,Type{Single}}=Single) = (@assert k == Single || k > 0; SizeMin{k}()) max_k(::SizeMin{K}) where K = K """ CountingAll <: AbstractProperty CountingAll() Counting the total number of sets. e.g. for the [`IndependentSet`](@ref) problem, it counts the independent sets. * The corresponding tensor element type is `Base.Real`. * The weights on graph does not have effect. * BLAS (GPU and CPU) and GPU are supported, """ struct CountingAll <: AbstractProperty end """ $TYPEDEF $FIELDS Compute the partition function for the target problem. * The corresponding tensor element type is `T`. """ struct PartitionFunction{T} <: AbstractProperty beta::T end """ CountingMax{K} <: AbstractProperty CountingMax(K=Single) Counting the number of sets with largest-K size. e.g. for [`IndependentSet`](@ref) problem, it counts independent sets of size ``\\alpha(G), \\alpha(G)-1, \\ldots, \\alpha(G)-K+1``. * The corresponding tensor element type is [`CountingTropical`](@ref) if `K` is `Single`, and [`TruncatedPoly`](@ref)`{K}` if `K` is an integer. * Weighted graph problems is only supported if `K` is `Single`. * GPU is supported, """ struct CountingMax{K} <: AbstractProperty end CountingMax(k::Union{Int,Type{Single}}=Single) = (@assert k == Single || k > 0; CountingMax{k}()) max_k(::CountingMax{K}) where K = K """ CountingMin{K} <: AbstractProperty CountingMin(K=Single) Counting the number of sets with smallest-K size. * The corresponding tensor element type is inverted [`CountingTropical`](@ref) if `K` is `Single`, and [`TruncatedPoly`](@ref)`{K}` if `K` is an integer. * Weighted graph problems is only supported if `K` is `Single`. * GPU is supported, """ struct CountingMin{K} <: AbstractProperty end CountingMin(k::Union{Int,Type{Single}}=Single) = (@assert k == Single || k > 0; CountingMin{k}()) min_k(::CountingMin{K}) where K = K """ GraphPolynomial{METHOD} <: AbstractProperty GraphPolynomial(; method=:finitefield, kwargs...) Compute the graph polynomial, e.g. for [`IndependentSet`](@ref) problem, it is the independence polynomial. The `METHOD` type parameter can be one of the following symbols Method Argument --------------------------- * `:finitefield`, uses finite field algebra to fit the polynomial. * The corresponding tensor element type is [`Mods.Mod`](@ref), * It does not have round-off error, * GPU is supported, * It accepts keyword arguments `maxorder` (optional, e.g. the MIS size in the [`IndependentSet`](@ref) problem). * `:polynomial` and `:laurent`, use (Laurent) polynomial numbers to solve the polynomial directly. * The corresponding tensor element types are [`Polynomial`](https://juliamath.github.io/Polynomials.jl/stable/polynomials/polynomial/#Polynomial-2) and [`LaurentPolynomial`](https://juliamath.github.io/Polynomials.jl/stable/polynomials/polynomial/#Polynomials.LaurentPolynomial). * It might have small round-off error depending on the data type for storing the counting. * It has memory overhead that linear to the graph size. * `:fft`, use fast fourier transformation to fit the polynomial. * The corresponding tensor element type is `Base.Complex`. * It has (controllable) round-off error. * BLAS and GPU are supported. * It accepts keyword arguments `maxorder` (optional) and `r`, if `r > 1`, one has better precision for coefficients of large order, if `r < 1`, one has better precision for coefficients of small order. * `:fitting`, fit the polynomial directly. * The corresponding tensor element type is floating point numbers like `Base.Float64`. * It has round-off error. * BLAS and GPU are supported, it is the fastest among all methods. Graph polynomials are not defined for weighted graph problems. """ struct GraphPolynomial{METHOD} <: AbstractProperty kwargs end GraphPolynomial(; method::Symbol = :finitefield, kwargs...) = GraphPolynomial{method}(kwargs) graph_polynomial_method(::GraphPolynomial{METHOD}) where METHOD = METHOD """ SingleConfigMax{K, BOUNDED} <: AbstractProperty SingleConfigMax(k::Int; bounded=false) Finding single solution for largest-K sizes, e.g. for [`IndependentSet`](@ref) problem, it is one of the maximum independent sets. * The corresponding data type is [`CountingTropical{Float64,<:ConfigSampler}`](@ref) if `BOUNDED` is `false`, [`Tropical`](@ref) otherwise. * Weighted graph problems is supported. * GPU is supported, Keyword Arguments ---------------------------- * `bounded`, if it is true, use bounding trick (or boolean gradients) to reduce the working memory to store intermediate configurations. """ struct SingleConfigMax{K,BOUNDED} <:AbstractProperty end SingleConfigMax(k::Union{Int,Type{Single}}=Single; bounded::Bool=false) = (@assert k == Single || k > 0; SingleConfigMax{k, bounded}()) max_k(::SingleConfigMax{K}) where K = K """ SingleConfigMin{K, BOUNDED} <: AbstractProperty SingleConfigMin(k::Int; bounded=false) Finding single solution with smallest-K size. * The corresponding data type is inverted [`CountingTropical{Float64,<:ConfigSampler}`](@ref) if `BOUNDED` is `false`, inverted [`Tropical`](@ref) otherwise. * Weighted graph problems is supported. * GPU is supported, Keyword Arguments ---------------------------- * `bounded`, if it is true, use bounding trick (or boolean gradients) to reduce the working memory to store intermediate configurations. """ struct SingleConfigMin{K,BOUNDED} <:AbstractProperty end SingleConfigMin(k::Union{Int,Type{Single}}=Single; bounded::Bool=false) = (@assert k == Single || k > 0; SingleConfigMin{k,bounded}()) min_k(::SingleConfigMin{K}) where K = K """ ConfigsAll{TREESTORAGE} <:AbstractProperty ConfigsAll(; tree_storage=false) Find all valid configurations, e.g. for [`IndependentSet`](@ref) problem, it is finding all independent sets. * The corresponding data type is [`ConfigEnumerator`](@ref). * Weights do not take effect. Keyword Arguments ---------------------------- * `tree_storage`, if it is true, it uses more memory efficient tree-structure to store the configurations. """ struct ConfigsAll{TREESTORAGE} <:AbstractProperty end ConfigsAll(; tree_storage::Bool=false) = ConfigsAll{tree_storage}() tree_storage(::ConfigsAll{TREESTORAGE}) where {TREESTORAGE} = TREESTORAGE """ ConfigsMax{K, BOUNDED, TREESTORAGE} <:AbstractProperty ConfigsMax(K=Single; bounded=true, tree_storage=true) Find configurations with largest-K sizes, e.g. for [`IndependentSet`](@ref) problem, it is finding all independent sets of sizes ``\\alpha(G), \\alpha(G)-1, \\ldots, \\alpha(G)-K+1``. * The corresponding data type is [`CountingTropical`](@ref)`{Float64,<:ConfigEnumerator}` if `K` is `Single` and [`TruncatedPoly`](@ref)`{K,<:ConfigEnumerator}` if `K` is an integer. * Weighted graph problems is only supported if `K` is `Single`. Keyword Arguments ---------------------------- * `bounded`, if it is true, use bounding trick (or boolean gradients) to reduce the working memory to store intermediate configurations. * `tree_storage`, if it is true, it uses more memory efficient tree-structure to store the configurations. """ struct ConfigsMax{K, BOUNDED, TREESTORAGE} <:AbstractProperty end ConfigsMax(k::Union{Int,Type{Single}}=Single; bounded::Bool=true, tree_storage::Bool=false) = (@assert k == Single || k > 0; ConfigsMax{k,bounded,tree_storage}()) max_k(::ConfigsMax{K}) where K = K tree_storage(::ConfigsMax{K,BOUNDED,TREESTORAGE}) where {K,BOUNDED,TREESTORAGE} = TREESTORAGE """ ConfigsMin{K, BOUNDED, TREESTORAGE} <:AbstractProperty ConfigsMin(K=Single; bounded=true, tree_storage=false) Find configurations with smallest-K sizes. * The corresponding data type is inverted [`CountingTropical`](@ref)`{Float64,<:ConfigEnumerator}` if `K` is `Single` and inverted [`TruncatedPoly`](@ref)`{K,<:ConfigEnumerator}` if `K` is an integer. * Weighted graph problems is only supported if `K` is `Single`. Keyword Arguments ---------------------------- * `bounded`, if it is true, use bounding trick (or boolean gradients) to reduce the working memory to store intermediate configurations. * `tree_storage`, if it is true, it uses more memory efficient tree-structure to store the configurations. """ struct ConfigsMin{K, BOUNDED, TREESTORAGE} <:AbstractProperty end ConfigsMin(k::Union{Int,Type{Single}}=Single; bounded::Bool=true, tree_storage::Bool=false) = (@assert k == Single || k > 0; ConfigsMin{k,bounded, tree_storage}()) min_k(::ConfigsMin{K}) where K = K tree_storage(::ConfigsMin{K,BOUNDED,TREESTORAGE}) where {K,BOUNDED,TREESTORAGE} = TREESTORAGE """ solve(problem, property; usecuda=false, T=Float64) Solving a certain property of a graph problem. Positional Arguments --------------------------- * `problem` is the graph problem with tensor network information, * `property` is string specifying the task. Using the maximum independent set problem as an example, it can be one of * [`PartitionFunction`](@ref)`()` for computing the partition function, * [`SizeMax`](@ref)`(k=Single)` for finding maximum-``k`` set sizes, * [`SizeMin`](@ref)`(k=Single)` for finding minimum-``k`` set sizes, * [`CountingMax`](@ref)`(k=Single)` for counting configurations with maximum-``k`` sizes, * [`CountingMin`](@ref)`(k=Single)` for counting configurations with minimum-``k`` sizes, * [`CountingAll`](@ref)`()` for counting all configurations, * [`PartitionFunction`](@ref)`()` for counting all configurations, * [`GraphPolynomial`](@ref)`(; method=:finitefield, kwargs...)` for evaluating the graph polynomial, * [`SingleConfigMax`](@ref)`(k=Single; bounded=false)` for finding one maximum-``k`` configuration for each size, * [`SingleConfigMin`](@ref)`(k=Single; bounded=false)` for finding one minimum-``k`` configuration for each size, * [`ConfigsMax`](@ref)`(k=Single; bounded=true, tree_storage=false)` for enumerating configurations with maximum-``k`` sizes, * [`ConfigsMin`](@ref)`(k=Single; bounded=true, tree_storage=false)` for enumerating configurations with minimum-``k`` sizes, * [`ConfigsAll`](@ref)`(; tree_storage=false)` for enumerating all configurations, Keyword arguments ------------------------------------- * `usecuda` is a switch to use CUDA (if possible), user need to call statement `using CUDA` before turning on this switch. * `T` is the "base" element type, sometimes can be used to reduce the memory cost. """ function solve(gp::GenericTensorNetwork, property::AbstractProperty; T=Float64, usecuda=false) assert_solvable(gp, property) if property isa SizeMax{Single} return contractx(gp, _x(Tropical{T}; invert=false); usecuda=usecuda) elseif property isa SizeMin{Single} res = contractx(gp, _x(Tropical{T}; invert=true); usecuda=usecuda) return asarray(post_invert_exponent.(res), res) elseif property isa SizeMax return contractx(gp, _x(ExtendedTropical{max_k(property), Tropical{T}}; invert=false); usecuda=usecuda) elseif property isa SizeMin res = contractx(gp, _x(ExtendedTropical{max_k(property), Tropical{T}}; invert=true); usecuda=usecuda) return asarray(post_invert_exponent.(res), res) elseif property isa CountingAll return contractx(gp, one(T); usecuda=usecuda) elseif property isa PartitionFunction return contractx(gp, exp(property.beta); usecuda=usecuda) elseif property isa CountingMax{Single} return contractx(gp, _x(CountingTropical{T,T}; invert=false); usecuda=usecuda) elseif property isa CountingMin{Single} res = contractx(gp, _x(CountingTropical{T,T}; invert=true); usecuda=usecuda) return asarray(post_invert_exponent.(res), res) elseif property isa CountingMax return contractx(gp, TruncatedPoly(ntuple(i->i == max_k(property) ? one(T) : zero(T), max_k(property)), one(T)); usecuda=usecuda) elseif property isa CountingMin res = contractx(gp, pre_invert_exponent(TruncatedPoly(ntuple(i->i == min_k(property) ? one(T) : zero(T), min_k(property)), one(T))); usecuda=usecuda) return asarray(post_invert_exponent.(res), res) elseif property isa GraphPolynomial ws = get_weights(gp) if !(eltype(ws) <: Integer) @warn "Input weights are not Integer types, try casting to weights of `Int64` type..." gp = chweights(gp, Int.(ws)) ws = get_weights(gp) end n = length(energy_terms(gp)) if ws isa UnitWeight || ws isa ZeroWeight || all(i->all(>=(0), get_weights(gp, i)), 1:n) return graph_polynomial(gp, Val(graph_polynomial_method(property)); usecuda=usecuda, T=T, property.kwargs...) elseif all(i->all(<=(0), get_weights(gp, i)), 1:n) res = graph_polynomial(chweights(gp, -ws), Val(graph_polynomial_method(property)); usecuda=usecuda, T=T, property.kwargs...) return asarray(invert_polynomial.(res), res) else if graph_polynomial_method(property) != :laurent @warn "Weights are not all positive or all negative, switch to using laurent polynomial." end return graph_polynomial(gp, Val(:laurent); usecuda=usecuda, T=T, property.kwargs...) end elseif property isa SingleConfigMax{Single,false} return solutions(gp, CountingTropical{T,T}; all=false, usecuda=usecuda) elseif property isa (SingleConfigMax{K,false} where K) return solutions(gp, ExtendedTropical{max_k(property),CountingTropical{T,T}}; all=false, usecuda=usecuda) elseif property isa SingleConfigMin{Single,false} return solutions(gp, CountingTropical{T,T}; all=false, usecuda=usecuda, invert=true) elseif property isa (SingleConfigMin{K,false} where K) return solutions(gp, ExtendedTropical{min_k(property),CountingTropical{T,T}}; all=false, usecuda=usecuda, invert=true) elseif property isa ConfigsMax{Single,false} return solutions(gp, CountingTropical{T,T}; all=true, usecuda=usecuda, tree_storage=tree_storage(property)) elseif property isa ConfigsMin{Single,false} return solutions(gp, CountingTropical{T,T}; all=true, usecuda=usecuda, invert=true, tree_storage=tree_storage(property)) elseif property isa (ConfigsMax{K, false} where K) return solutions(gp, TruncatedPoly{max_k(property),T,T}; all=true, usecuda=usecuda, tree_storage=tree_storage(property)) elseif property isa (ConfigsMin{K, false} where K) return solutions(gp, TruncatedPoly{min_k(property),T,T}; all=true, usecuda=usecuda, invert=true) elseif property isa ConfigsAll return solutions(gp, Real; all=true, usecuda=usecuda, tree_storage=tree_storage(property)) elseif property isa SingleConfigMax{Single,true} return best_solutions(gp; all=false, usecuda=usecuda, T=T) elseif property isa (SingleConfigMax{K,true} where K) @warn "bounded `SingleConfigMax` property for `K != Single` is not implemented. Switching to the unbounded version." return solve(gp, SingleConfigMax{max_k(property),false}(); T, usecuda) elseif property isa SingleConfigMin{Single,true} return best_solutions(gp; all=false, usecuda=usecuda, invert=true, T=T) elseif property isa (SingleConfigMin{K,true} where K) @warn "bounded `SingleConfigMin` property for `K != Single` is not implemented. Switching to the unbounded version." return solve(gp, SingleConfigMin{min_k(property),false}(); T, usecuda) elseif property isa ConfigsMax{Single,true} return best_solutions(gp; all=true, usecuda=usecuda, tree_storage=tree_storage(property), T=T) elseif property isa ConfigsMin{Single,true} return best_solutions(gp; all=true, usecuda=usecuda, invert=true, tree_storage=tree_storage(property), T=T) elseif property isa (ConfigsMax{K,true} where K) return bestk_solutions(gp, max_k(property), tree_storage=tree_storage(property), T=T) elseif property isa (ConfigsMin{K,true} where K) return bestk_solutions(gp, min_k(property), invert=true, tree_storage=tree_storage(property), T=T) else error("unknown property: `$property`.") end end # raise an error if the property for problem can not be computed assert_solvable(::Any, ::Any) = nothing function assert_solvable(problem, property::GraphPolynomial) if has_noninteger_weights(problem) throw(ArgumentError("Graph property `$(typeof(property))` is not computable due to having non-integer weights.")) end end function assert_solvable(problem, property::ConfigsMax) if max_k(property) != Single && has_noninteger_weights(problem) throw(ArgumentError("Graph property `$(typeof(property))` is not computable due to having non-integer weights. Maybe you wanted `SingleConfigMax($(max_k(property)))`?")) end end function assert_solvable(problem, property::ConfigsMin) if min_k(property) != Single && has_noninteger_weights(problem) throw(ArgumentError("Graph property `$(typeof(property))` is not computable due to having non-integer weights. Maybe you wanted `SingleConfigMin($(min_k(property)))`?")) end end function assert_solvable(problem, property::CountingMax) if max_k(property) != Single && has_noninteger_weights(problem) throw(ArgumentError("Graph property `$(typeof(property))` is not computable due to having non-integer weights. Maybe you wanted `SizeMax($(max_k(property)))`?")) end end function assert_solvable(problem, property::CountingMin) if min_k(property) != Single && has_noninteger_weights(problem) throw(ArgumentError("Graph property `$(typeof(property))` is not computable due to having non-integer weights. Maybe you wanted `SizeMin($(min_k(property)))`?")) end end function has_noninteger_weights(problem::GenericTensorNetwork) for i in 1:length(energy_terms(problem)) if any(!isinteger, get_weights(problem, i)) return true end end return false end """ $TYPEDSIGNATURES Returns the maximum size of the graph problem. A shorthand of `solve(problem, SizeMax(); usecuda=false)`. """ max_size(m::GenericTensorNetwork; usecuda=false)::Int = Int(sum(solve(m, SizeMax(); usecuda=usecuda)).n) # floating point number is faster (BLAS) """ $TYPEDSIGNATURES Returns the maximum size and the counting of the graph problem. It is a shorthand of `solve(problem, CountingMax(); usecuda=false)`. """ max_size_count(m::GenericTensorNetwork; usecuda=false)::Tuple{Int,Int} = (r = sum(solve(m, CountingMax(); usecuda=usecuda)); (Int(r.n), Int(r.c))) ########## memory estimation ############### """ $TYPEDSIGNATURES Memory estimation in number of bytes to compute certain `property` of a `problem`. `T` is the base type. """ function estimate_memory(problem::GenericTensorNetwork, property::AbstractProperty; T=Float64)::Real _estimate_memory(tensor_element_type(T, length(labels(problem)), nflavor(problem), property), problem) end function estimate_memory(problem::GenericTensorNetwork, property::Union{SingleConfigMax{K,BOUNDED},SingleConfigMin{K,BOUNDED}}; T=Float64) where {K, BOUNDED} tc, sc, rw = contraction_complexity(problem.code, _size_dict(problem)) # caching all tensors is equivalent to counting the total number of writes if K === Single && BOUNDED return ceil(Int, exp2(rw - 1)) * sizeof(Tropical{T}) elseif K === Single && !BOUNDED n, nf = length(labels(problem)), nflavor(problem) return peak_memory(problem.code, _size_dict(problem)) * (sizeof(tensor_element_type(T, n, nf, property))) else # NOTE: the integer `K` case does not respect bounding n, nf = length(labels(problem)), nflavor(problem) TT = tensor_element_type(T, n, nf, property) return peak_memory(problem.code, _size_dict(problem)) * (sizeof(tensor_element_type(T, n, nf, SingleConfigMax{Single,BOUNDED}())) * K + sizeof(TT)) end end function estimate_memory(problem::GenericTensorNetwork, ::GraphPolynomial{:polynomial}; T=Float64) # this is the upper bound return peak_memory(problem.code, _size_dict(problem)) * (sizeof(T) * length(labels(problem))) end function estimate_memory(problem::GenericTensorNetwork, ::GraphPolynomial{:laurent}; T=Float64) # this is the upper bound return peak_memory(problem.code, _size_dict(problem)) * (sizeof(T) * length(labels(problem))) end function estimate_memory(problem::GenericTensorNetwork, ::Union{SizeMax{K},SizeMin{K}}; T=Float64) where K return peak_memory(problem.code, _size_dict(problem)) * (sizeof(T) * _asint(K)) end function _size_dict(problem) lbs = labels(problem) nf = nflavor(problem) return Dict([lb=>nf for lb in lbs]) end function _estimate_memory(::Type{ET}, problem::GenericTensorNetwork) where ET if !isbitstype(ET) && !(ET <: Mod) @warn "Target tensor element type `$ET` is not a bits type, the estimation of memory might be unreliable." end return peak_memory(problem.code, _size_dict(problem)) * sizeof(ET) end for (PROP, ET) in [ (:(PartitionFunction{T}), :(T)), (:(SizeMax{Single}), :(Tropical{T})), (:(SizeMin{Single}), :(Tropical{T})), (:(CountingAll), :T), (:(CountingMax{Single}), :(CountingTropical{T,T})), (:(CountingMin{Single}), :(CountingTropical{T,T})), (:(GraphPolynomial{:polynomial}), :(Polynomial{T, :x})), (:(GraphPolynomial{:fitting}), :T), (:(GraphPolynomial{:laurent}), :(LaurentPolynomial{T, :x})), (:(GraphPolynomial{:fft}), :(Complex{T})), (:(GraphPolynomial{:finitefield}), :(Mod{N,Int32} where N)) ] @eval tensor_element_type(::Type{T}, n::Int, nflavor::Int, ::$PROP) where {T} = $ET end for (PROP, ET) in [ (:(SizeMax{K}), :(ExtendedTropical{K,Tropical{T}})), (:(SizeMin{K}), :(ExtendedTropical{K,Tropical{T}})), (:(CountingMax{K}), :(TruncatedPoly{K,T,T})), (:(CountingMin{K}), :(TruncatedPoly{K,T,T})), ] @eval tensor_element_type(::Type{T}, n::Int, nflavor::Int, ::$PROP) where {T, K} = $ET end function tensor_element_type(::Type{T}, n::Int, nflavor::Int, ::PROP) where {T, K, BOUNDED, PROP<:Union{SingleConfigMax{K,BOUNDED},SingleConfigMin{K,BOUNDED}}} if K === Single && BOUNDED return Tropical{T} elseif K === Single && !BOUNDED return sampler_type(CountingTropical{T,T}, n, nflavor) else # NOTE: the integer `K` case does not respect bounding return sampler_type(ExtendedTropical{K,CountingTropical{T,T}}, n, nflavor) end end for (PROP, ET) in [ (:(ConfigsMax{Single}), :(CountingTropical{T,T})), (:(ConfigsMin{Single}), :(CountingTropical{T,T})), (:(ConfigsAll), :(Real)) ] @eval function tensor_element_type(::Type{T}, n::Int, nflavor::Int, ::$PROP) where {T} set_type($ET, n, nflavor) end end for (PROP, ET) in [ (:(ConfigsMax{K}), :(TruncatedPoly{K,T,T})), (:(ConfigsMin{K}), :(TruncatedPoly{K,T,T})), ] @eval function tensor_element_type(::Type{T}, n::Int, nflavor::Int, ::$PROP) where {T, K} set_type($ET, n, nflavor) end end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
1796
module SimpleMultiprocessing using Distributed export multiprocess_run function do_work(f, jobs, results) # define work function everywhere while true job = take!(jobs) @info "running argument $job on device $(Distributed.myid())" res = f(job) put!(results, res) end end """ multiprocess_run(func, inputs::AbstractVector) Execute function `func` on `inputs` with multiple processing. Example --------------------------- Suppose we have a file `run.jl` with the following contents ```julia using GenericTensorNetworks.SimpleMultiprocessing results = multiprocess_run(x->x^2, randn(8)) ``` In an terminal, you may run the script with 4 processes by typing ```bash \$ julia -p4 run.jl From worker 2: [ Info: running argument -0.17544008350172655 on device 2 From worker 5: [ Info: running argument 0.34578117779452555 on device 5 From worker 3: [ Info: running argument 2.0312551239727705 on device 3 From worker 4: [ Info: running argument -0.7319353419291961 on device 4 From worker 2: [ Info: running argument 0.013132180639054629 on device 2 From worker 3: [ Info: running argument 0.9960101782201602 on device 3 From worker 4: [ Info: running argument -0.5613942832743966 on device 4 From worker 5: [ Info: running argument 0.39460402723831134 on device 5 ``` """ function multiprocess_run(func, inputs::AbstractVector{T}) where T n = length(inputs) jobs = RemoteChannel(()->Channel{T}(n)); results = RemoteChannel(()->Channel{Any}(n)); for i in 1:n put!(jobs, inputs[i]) end for p in workers() # start tasks on the workers to process requests in parallel remote_do(do_work, p, func, jobs, results) end return Any[take!(results) for i=1:n] end end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
543
# Return a vector of unique labels in an Einsum token. function labels(code::AbstractEinsum) res = [] for ix in getixsv(code) for l in ix if l ∉ res push!(res, l) end end end return res end # a unified interface to optimize the contraction code _optimize_code(code, size_dict, optimizer::Nothing, simplifier) = code _optimize_code(code, size_dict, optimizer, simplifier) = optimize_code(code, size_dict, optimizer, simplifier) # upload tensors to GPU function togpu end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
6921
""" show_einsum(ein::AbstractEinsum; tensor_locs=nothing, label_locs=nothing, # dict spring::Bool=true, optimal_distance=25.0, tensor_size=15, tensor_color="black", tensor_text_color="white", annotate_tensors=false, label_size=7, label_color="black", open_label_color="black", annotate_labels=true, kwargs... ) Positional arguments ----------------------------- * `ein` is an Einsum contraction code (provided by package `OMEinsum`). Keyword arguments ----------------------------- * `locs` is a tuple of `tensor_locs` (vector) and `label_locs` (dict). * `spring` is switch to use spring method to optimize the location. * `optimal_distance` is a optimal distance parameter for `spring` optimizer. * `tensor_color` is a string to specify the color of tensor nodes. * `tensor_size` is a real number to specify the size of tensor nodes. * `tensor_text_color` is a color strings to specify tensor text color. * `annotate_tensors` is a boolean switch for annotate different tensors by integers. * `label_size` is a real number to specify label text node size. * `label_color` is a color strings to specify label text color. * `open_label_color` is a color strings to specify open label text color. * `annotate_labels` is a boolean switch for annotate different labels. * `format` is the output format, which can be `:svg`, `:png` or `:pdf`. * `filename` is a string as the output filename. $(LuxorGraphPlot.CONFIGHELP) """ function show_einsum(ein::AbstractEinsum; label_size=7, label_color="black", open_label_color="black", tensor_size=15, tensor_color="black", tensor_text_color="white", annotate_labels=true, annotate_tensors=false, layout = SpringLayout(), locs = nothing, # dict filename = nothing, format=:svg, padding_left=10.0, padding_right=10.0, padding_top=10.0, padding_bottom=10.0, config=LuxorGraphPlot.GraphDisplayConfig(; vertex_line_width=0.0), tensor_texts = nothing, ) layout = deepcopy(layout) ixs = getixsv(ein) iy = getiyv(ein) labels = uniquelabels(ein) m = length(labels) n = length(ixs) labelmap = Dict(zip(labels, 1:m)) colors = [["transparent" for l in labels]..., fill(tensor_color, n)...] sizes = [fill(label_size, m)..., fill(tensor_size, n)...] if tensor_texts === nothing tensor_texts = [annotate_tensors ? "$i" : "" for i=1:n] end texts = [[annotate_labels ? "$(labels[i])" : "" for i=1:m]..., tensor_texts...] vertex_text_colors = [[l ∈ iy ? open_label_color : label_color for l in labels]..., [tensor_text_color for ix in ixs]...] graph = SimpleGraph(m+n) for (j, ix) in enumerate(ixs) for l in ix add_edge!(graph, j+m, labelmap[l]) end end if locs === nothing locs = getfield.(LuxorGraphPlot.render_locs(graph, layout), :data) else tensor_locs, label_locs = locs @assert tensor_locs isa AbstractVector && label_locs isa AbstractDict "locs should be a tuple of `tensor_locs` (vector) and `label_locs` (dict)" @assert length(tensor_locs) == n "the length of tensor_locs should be $n" @assert length(label_locs) == m "the length of label_locs should be $m" locs = [[label_locs[l] for l in labels]..., tensor_locs...] end show_graph(GraphViz(; locs, edges=[(e.src, e.dst) for e in edges(graph)], texts, vertex_colors=colors, vertex_text_colors, vertex_sizes=sizes); filename, format, padding_left, padding_right, padding_top, padding_bottom, config ) end """ show_configs(gp::GraphProblem, locs, configs::AbstractMatrix; kwargs...) show_configs(graph::SimpleGraph, locs, configs::AbstractMatrix; nflavor=2, kwargs...) Show a gallery of configurations on a graph. """ function show_configs(gp::GraphProblem, locs, configs::AbstractMatrix; kwargs...) show_configs(gp.graph, locs, configs; nflavor=nflavor(gp), kwargs...) end function show_configs(graph::SimpleGraph, locs, configs::AbstractMatrix; nflavor::Int=2, kwargs...) cmap = range(colorant"white", stop=colorant"red", length=nflavor) graphs = map(configs) do cfg @assert all(0 .<= cfg .<= nflavor-1) GraphViz(graph, locs; vertex_colors=cmap[cfg .+ 1]) end show_gallery(graphs; kwargs...) end """ show_landscape(is_neighbor, configurations::TruncatedPoly; layer_distance=200, config=GraphDisplayConfig(; edge_color="gray", vertex_stroke_color="transparent", vertex_size=5), layout_method=:spring, optimal_distance=30.0, colors=fill("green", K), kwargs...) Show the energy landscape of configurations. ### Arguments - `is_neighbor`: a function to determine if two configurations are neighbors. - `configurations`: a TruncatedPoly object, which is the default output of the [`solve`](@ref) function with [`ConfigsMax`](@ref) property as the argument. ### Keyword arguments - `layer_distance`: the distance between layers. - `config`: a `LuxorGraphPlot.GraphDisplayConfig` object. - `layout_method`: the layout method, either `:spring`, `:stress` or `:spectral` - `optimal_distance`: the optimal distance for the layout. - `colors`: a vector of colors for each layer. - `kwargs...`: other keyword arguments passed to `show_graph`. """ function show_landscape(is_neighbor, configurations::TruncatedPoly{K}; layer_distance=200, config=GraphDisplayConfig(; edge_color="gray", vertex_stroke_color="transparent", vertex_size=5), layout_method = :spring, optimal_distance = 30.0, colors=fill("green", K), kwargs...) where K @assert length(colors) == K "colors should have length $K" nv = 0 kv = read_size_config(configurations) zlocs = Float64[] vertex_colors = String[] for (c, (k, v)) in zip(colors, kv) nv += length(v) append!(zlocs, fill(k*layer_distance, length(v))) append!(vertex_colors, fill(c, length(v))) end graph = SimpleGraph(nv) configs = vcat(getindex.(kv, 2)...) for (i, c) in enumerate(configs) for (j, d) in enumerate(configs) if is_neighbor(c, d) add_edge!(graph, i, j) end end end if layout_method == :spring layout=LayeredSpringLayout(; zlocs, optimal_distance) elseif layout_method == :stress layout=LayeredStressLayout(; zlocs, optimal_distance) elseif layout_method == :spectral layout=LuxorGraphPlot.Layered(SpectralLayout(), zlocs, 0.2) else error("layout_method should be :spring, :stress or :spectral") end show_graph(graph, layout; config, vertex_colors, kwargs...) end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
1604
import Base: mod, real, imag, reim, conj, promote_rule export GaussMod, AbstractMod # mod support for Gaussian integers until officially adopted into Base mod(z::Complex{<:Integer}, n::Integer) = Complex(mod(real(z), n), mod(imag(z), n)) """ `GaussMod{N,T}` is an alias of `Mod{N,Complex{T}}`. It is for computing Gaussian Modulus. """ const GaussMod{N,T} = Mod{N,Complex{T}} GaussMod{N}(x::T) where {N,T<:Integer} = Mod{N,Complex{T}}(x) GaussMod{N}(x::T) where {N,T<:Complex} = Mod{N,T}(x) Mod{N}(x::Complex{Rational{T}}) where {N,T} = Mod{N}(real(x)) + Mod{N}(imag(x)) * im Mod{N}(re::Integer, im::Integer) where {N} = Mod{N}(Complex(re, im)) reim(x::AbstractMod) = (real(x), imag(x)) real(x::Mod{N}) where {N} = Mod{N}(real(x.val)) imag(x::Mod{N}) where {N} = Mod{N}(imag(x.val)) conj(x::Mod{N}) where {N} = Mod{N}(conj(x.val)) # ARITHMETIC function (+)(x::GaussMod{N,T}, y::GaussMod{N,T}) where {N,T} xx = widen(x.val) yy = widen(y.val) zz = mod(xx + yy, N) return GaussMod{N,T}(zz) end (-)(x::GaussMod{N}) where {N} = Mod{N}(-x.val) function (*)(x::GaussMod{N,T}, y::GaussMod{N,T}) where {N,T} xx = widen(x.val) yy = widen(y.val) zz = mod(xx * yy, N) return GaussMod{N,T}(zz) end function inv(x::GaussMod{N}) where {N} try a, b = reim(x) bot = inv(a * a + b * b) aa = a * bot bb = -b * bot return aa + bb * im catch error("$x is not invertible") end end is_invertible(x::GaussMod) = is_invertible(real(x * x')) rand(::Type{GaussMod{N}}, args::Integer...) where {N} = rand(GaussMod{N,Int}, args...)
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
5651
module Mods import Base: (==), (+), (-), (*), (inv), (/), (//), (^), hash, show import Base: rand, conj, iszero, rtoldefault, isapprox export Mod, modulus, value, AbstractMod export is_invertible export CRT abstract type AbstractMod <: Number end """ `Mod{m}(v)` creates a modular number in mod `m` with value `mod(v,m)`. """ struct Mod{N,T} <: AbstractMod val::T end # safe constructors (slower) function Mod{N}(x::T) where {T<:Integer,N} @assert N isa Integer && N > 1 "modulus must be an integer and at least 2" S = typeof(N) v = mod(x, N) Mod{N,S}(v) end function Mod{N}(x::T) where {T<:Complex{<:Integer},N} @assert N isa Integer && N > 1 "modulus must be an integer and at least 2" S = Complex{typeof(N)} v = mod(x, N) Mod{N,S}(v) end # type casting Mod{N,T}(x::Mod{N,T2}) where {T,N,T2} = Mod{N,T}(T(x.val)) Mod{N,T}(x::Mod{N,T}) where {T,N} = x show(io::IO, z::Mod{N}) where {N} = print(io, "Mod{$N}($(value(z)))") show(io::IO, ::MIME"text/plain", z::Mod{N}) where {N} = show(io, z) """ `modulus(a::Mod)` returns the modulus of this `Mod` number. ``` julia> a = Mod{13}(11); julia> modulus(a) 13 ``` """ modulus(a::Mod{N}) where {N} = N """ `value(a::Mod)` returns the value of this `Mod` number. ``` julia> a = Mod{13}(11); julia> value(a) 11 ``` """ value(a::Mod{N}) where {N} = a.val Base.abs(a::Mod{N,<:Real} where {N}) = abs(value(a)) function hash(x::Mod, h::UInt64 = UInt64(0)) v = value(x) m = modulus(x) return hash(v, hash(m, h)) end # Test for equality iszero(x::Mod{N}) where {N} = iszero(x.val) ==(x::Mod, y::Mod) = modulus(x) == modulus(y) && value(y) == value(y) # ==(x::Mod{N}, y::Mod{N}) where {N} = iszero(value(x - y)) # Apporximate equality rtoldefault(::Type{Mod{N,T}}) where {N,T} = rtoldefault(T) isapprox(x::Mod, y::Mod; kwargs...) = false isapprox(x::Mod{N}, y::Mod{N}; kwargs...) where {N} = isapprox(value(x), value(y); kwargs...) || isapprox(value(y), value(x); kwargs...) # Easy arithmetic @inline function +(x::Mod{N,T}, y::Mod{N,T}) where {N,T} s, flag = Base.add_with_overflow(x.val, y.val) if !flag return Mod{N,T}(s) end t = widen(x.val) + widen(y.val) # add with added precision return Mod{N,T}(mod(t, N)) end function -(x::Mod{M,T}) where {M,T<:Signed} if (x.val isa BigInt || x.val == typemin(T)) return Mod{M,T}(-mod(x.val, M)) else return Mod{M,T}(-x.val) end end function -(x::Mod{M,T}) where {M,T<:Unsigned} return Mod{M,T}(M - value(x)) end -(x::Mod, y::Mod) = x + (-y) @inline function *(x::Mod{N,T}, y::Mod{N,T}) where {N,T} p, flag = Base.mul_with_overflow(x.val, y.val) if !flag return Mod{N,T}(p) else q = widemul(x.val, y.val) # multipy with added precision return Mod{N,T}(mod(q, N)) # return with proper type end end # Division stuff """ `is_invertible(x::Mod)` determines if `x` is invertible. """ function is_invertible(x::Mod{M})::Bool where {M} return gcd(x.val, M) == 1 end """ `inv(x::Mod)` gives the multiplicative inverse of `x`. """ @inline function inv(x::Mod{M,T}) where {M,T} Mod{M,T}(_invmod(x.val, M)) end _invmod(x::Unsigned, m::Unsigned) = invmod(x, m) # faster version of `Base.invmod`, only works for for signed types @inline function _invmod(x::Signed, m::Signed) (g, v, _) = gcdx(x, m) if g != 1 error("$x (mod $m) is not invertible") end return v end function /(x::Mod{N,T}, y::Mod{N,T}) where {N,T} return x * inv(y) end (//)(x::Mod, y::Mod) = x / y (//)(x::Number, y::Mod{N}) where {N} = x / y (//)(x::Mod{N}, y::Number) where {N} = x / y Base.promote_rule(::Type{Mod{M,T1}}, ::Type{Mod{N,T2}}) where {M,N,T1,T2<:Number} = error("can not promote types `Mod{$M,$T1}`` and `Mod{$N,$T2}`") Base.promote_rule(::Type{Mod{M,T1}}, ::Type{Mod{M,T2}}) where {M,T1,T2<:Number} = Mod{M,promote_type(T1, T2)} Base.promote_rule(::Type{Mod{M,T1}}, ::Type{T2}) where {M,T1,T2<:Number} = Mod{M,promote_type(T1, T2)} Base.promote_rule(::Type{Mod{M,T1}}, ::Type{Rational{T2}}) where {M,T1,T2} = Mod{M,promote_type(T1, T2)} # Operations with rational numbers Mod{N}(k::Rational) where {N} = Mod{N}(numerator(k)) / Mod{N}(denominator(k)) Mod{N,T}(k::Rational{T2}) where {N,T,T2} = Mod{N,T}(numerator(k)) / Mod{N,T}(denominator(k)) # Random rand(::Type{Mod{N}}, args::Integer...) where {N} = rand(Mod{N,Int}, args...) rand(::Type{Mod{N,T}}) where {N,T} = Mod{N}(rand(T)) rand(::Type{Mod{N,T}}, dims::Integer...) where {N,T} = Mod{N}.(rand(T, dims...)) # Chinese remainder theorem functions """ `CRT([T=BigInt, ]m1, m2,...)` Chinese Remainder Theorem. ``` julia> CRT(Int, Mod{11}(4), Mod{14}(814)) 92 julia> 92%11 4 julia> 92%14 8 julia> CRT(Mod{9223372036854775783}(9223372036854775782), Mod{9223372036854775643}(9223372036854775642)) 85070591730234614113402964855534653468 ``` !!! note `CRT` uses `BigInt` by default to prevent potential integer overflow. If you are confident that numbers do not overflow in your application, please specify an optional type parameter as the first argument. """ function CRT(::Type{T}, remainders, primes) where {T} length(remainders) == length(primes) || error("size mismatch") isempty(remainders) && return zero(T) primes = convert.(T, primes) M = prod(primes) Ms = M .÷ primes ti = _invmod.(Ms, primes) mod(sum(convert.(T, remainders) .* ti .* Ms), M) end function CRT(::Type{T}, rs::Mod...) where {T} CRT(T, value.(rs), modulus.(rs)) end CRT(rs::Mod...) = CRT(BigInt, rs...) include("GaussMods.jl") include("iterate.jl") end # end of module Mods
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
1992
real(z::GaussMod{N}) where {N} = Mod{N}(real(value(z))) imag(z::GaussMod{N}) where {N} = Mod{N}(imag(value(z))) reim(z::GaussMod) = (real(z), imag(z)) conj(z::GaussMod{N}) where {N} = GaussMod{N}(real(z).val, -imag(z).val) ACZQ = Union{AbstractMod,CZQ} function (+)(x::GaussMod{N}, y::GaussMod{N}) where {N} z = widen(value(x)) + widen(value(y)) GaussMod{N}(z) end (+)(x::GaussMod{N}, y::T) where {N,T<:ACZQ} = x + GaussMod{N}(y) (+)(x::T, y::GaussMod{N}) where {N,T<:ACZQ} = y + GaussMod{N}(x) (+)(x::Mod, y::T) where {T<:Complex} = GaussMod(x) + y (+)(x::T, y::Mod) where {T<:Complex} = x + GaussMod(y) (-)(x::GaussMod{N}) where {N} = GaussMod{N}(-x.val) (-)(x::GaussMod{N}, y::GaussMod{N}) where {N} = x + (-y) (-)(x::GaussMod{N}, y::T) where {N,T<:Union{CZQ,Mod}} = x + (-y) (-)(x::Mod, y::Union{Complex,GaussMod}) = x + (-y) (-)(x::Union{Complex,GaussMod}, y::Mod) = x + (-y) function *(x::GaussMod{N}, y::GaussMod{N}) where {N} z = widemul(x.val, y.val) # multipy with added precision return GaussMod{N}(z) # return with proper type end (*)(x::GaussMod{N}, y::T) where {N,T<:ACZQ} = x * GaussMod{N}(y) (*)(x::T, y::GaussMod{N}) where {N,T<:ACZQ} = y * x # (*)(x::Mod{N}, y::Union{GaussMod,Complex}) where N = GaussMod{N}(x) * y # (*)(x::Union{GaussMod,Complex}, y::Mod) = y * x is_invertible(x::GaussMod) = is_invertible(real(x * x')) function inv(x::GaussMod{N}) where {N} if !is_invertible(x) error("$x is not invertible") end a = value(real(x * x')) return (1 // a) * conj(x) end function (/)(x::GaussMod{N}, y::GaussMod{N}) where {N} return x * inv(y) end (/)(x::GaussMod{N}, y::T) where {N,T<:ACZQ} = x / GaussMod{N}(y) (/)(x::T, y::GaussMod{N}) where {N,T<:ACZQ} = GaussMod{N}(x) / y (//)(x::GaussMod, y::GaussMod) = x/y (//)(x::GaussMod, y::ACZQ) = x/y (//)(x::ACZQ, y::GaussMod) = x/y function rand(::Type{GaussMod{N}}, dims::Integer...) where {N} return GaussMod{N}.(rand(Complex{Int}, dims...)) end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
722
function Base.iterate(::Type{Mod{m}}) where {m} return Mod{m}(0), 0 end function Base.iterate(::Type{Mod{m}}, s) where {m} if s == m - 1 return nothing end s += 1 return Mod{m}(s), s end Base.IteratorSize(::Type{Mod{m}}) where {m} = Base.HasLength() Base.length(::Type{Mod{m}}) where {m} = m function Base.iterate(::Type{GaussMod{m}}) where {m} return GaussMod{m}(0), 0 end function Base.iterate(::Type{GaussMod{m}}, s) where {m} if s == m * m - 1 return nothing end s += 1 a, b = divrem(s, m) return GaussMod{m}(a + b * im), s end Base.IteratorSize(::Type{GaussMod{m}}) where {m} = Base.HasLength() Base.length(::Type{GaussMod{m}}) where {m} = m * m
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
1730
@inline function (+)(x::Mod{N}, y::Mod{N}) where {N} t = widen(x.val) + widen(y.val) # add with added precision return Mod{N}(mod(t, N)) end (+)(x::Mod{N}, y::T) where {N,T<:QZ} = x + Mod{N}(y) (+)(y::T, x::Mod{N}) where {N,T<:QZ} = x + y @inline function (-)(x::Mod{M}) where {M} return Mod{M}(-x.val) end @inline (-)(x::Mod, y::Mod) = x + (-y) (-)(x::Mod, y::T) where {T<:QZ} = x + (-y) (-)(x::T, y::Mod) where {T<:QZ} = x + (-y) @inline function *(x::Mod{N}, y::Mod{N}) where {N} q = widemul(x.val, y.val) # multipy with added precision return Mod{N}(q) # return with proper type end (*)(x::Mod{N}, y::T) where {N,T<:QZ} = x * Mod{N}(y) (*)(x::T, y::Mod{N}) where {N,T<:QZ} = y * x # Division stuff """ `is_invertible(x::Mod)` determines if `x` is invertible. """ @inline function is_invertible(x::Mod{M})::Bool where {M} return gcd(x.val, M) == 1 end """ `inv(x::Mod)` gives the multiplicative inverse of `x`. """ @inline function inv(x::Mod{M}) where {M} Mod{M}(_invmod(x.val, M)) end _invmod(x::Unsigned, m::Unsigned) = invmod(x, m) # faster version of `Base.invmod`, only works for for signed types @inline function _invmod(x::Signed, m::Signed) (g, v, _) = gcdx(x, m) if g != 1 error("$x (mod $m) is not invertible") end return v end function (/)(x::Mod{N}, y::Mod{N}) where {N} return x * inv(y) end (/)(x::Mod{N}, y::T) where {N,T<:QZ} = x / Mod{N}(y) (/)(x::T, y::Mod{N}) where {N,T<:QZ} = Mod{N}(x) / y (//)(x::Mod{N}, y::Mod{N}) where {N} = x / y (//)(x::T, y::Mod{N}) where {N,T<:QZ} = x / y (//)(x::Mod{N}, y::T) where {N,T<:QZ} = x / y import Base: rand rand(::Type{Mod{N}}, dims::Integer...) where {N} = Mod{N}.(rand(Int, dims...))
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
5506
using Test using GenericTensorNetworks.Mods @testset "Constructors" begin @test one(Mod{17}) == Mod{17}(1) @test oneunit(Mod{17}) == Mod{17}(1) @test zero(Mod{17}) == 0 @test iszero(zero(Mod{17})) @test Mod{17}(1) == Mod{17}(1, 0) @test Mod{17}(1, 2) == 1 + 2im a = Mod{17}(3) @test typeof(a) == Mod{17,Int} a = Mod{17}(3, 2) @test typeof(a) == GaussMod{17,Int} a = zero(Mod{17}) @test typeof(a) == Mod{17,Int} a = Mod{17}(1 // 2 + (3 // 4)im) @test typeof(a) == GaussMod{17,Int} end @testset "Mod arithmetic" begin p = 23 a = Mod{p}(2) b = Mod{p}(25) @test a == b @test a == 2 @test a == -21 b = Mod{p}(20) @test a + b == 22 @test a - b == -18 @test a + a == 2a @test 0 - a == -a @test a * b == Mod{p}(17) @test (a / b) * b == a @test (b // a) * (2 // 1) == b @test a * (2 // 3) == (2a) * inv(Mod{p}(3)) @test is_invertible(a) @test !is_invertible(Mod{10}(4)) @test a^(p - 1) == 1 @test a^(-1) == inv(a) @test Mod{p}(3 // 7) == 3 // 7 @test isequal(3 // 7, Mod{p}(3 // 7)) @test -Mod{13,Int}(typemin(Int)) == -Mod{13}(mod(typemin(Int), 13)) end @testset "Mod arithmetic with UInt" begin p = UInt(23) a = Mod{p,UInt}(2) b = Mod{p,UInt}(25) @test a == b @test a == 2 @test a == 25 b = Mod{p,UInt}(20) @test a + b == 22 @test a - b == 28 @test a + a == 2a @test 0 - a == -a @test a * b == Mod{p,UInt}(17) @test (a / b) * b == a @test (b // a) * (2 // 1) == b @test a * (2 // 3) == (2a) * inv(Mod{p,UInt}(3)) @test is_invertible(a) @test !is_invertible(Mod{10}(4)) @test a^(p - 1) == 1 @test a^(-1) == inv(a) end @testset "GaussMod arithmetic" begin @test one(GaussMod{6}) == Mod{6}(1 + 0im) @test zero(GaussMod{6}) == Mod{6}(0 + 0im) @test GaussMod{6}(2 + 3im) == Mod{6}(2 + 3im) @test GaussMod{6,Int}(2 + 3im) == Mod{6}(2 + 3im) @test rand(GaussMod{6}) isa GaussMod @test eltype(rand(GaussMod{6}, 4, 4)) <: GaussMod p = 23 a = GaussMod{p}(3 - im) b = Mod{p}(5 + 5im) @test a + b == 8 + 4im @test a + Mod{p}(11) == Mod{p}(14, 22) @test -a == 20 + im @test a - b == Mod{p}(3 - im - 5 - 5im) @test a * b == Mod{p}((3 - im) * (5 + 5im)) @test a / b == Mod{p}((3 - im) // (5 + 5im)) @test a^(p * p - 1) == 1 @test is_invertible(a) @test a * inv(a) == 1 @test a / (1 + im) == a / Mod{p}(1 + im) @test imag(a * a') == 0 end @testset "Large Modulus" begin p = 9223372036854775783 # This is a large prime x = Mod{p}(-2) @test x * x == 4 @test x + x == -4 @test x / x == 1 @test x / 3 == x / Mod{p}(3) @test (x / 3) * (3 // x) == 1 @test x // x == value(x) / x @test x^4 == 16 @test x^(p - 1) == 1 # Fermat Little Theorem test @test 2x == x + x @test x - x == 0 y = inv(x) @test x * y == 1 @test x + p == x @test x * p == 0 @test p - x == x - 2x p = 9223372036854775783 # This is a large prime x = Mod{p}(-2 + 0im) @test x * x == 4 @test x + x == -4 @test x / x == 1 @test x / 3 == x / Mod{p}(3) @test (x / 3) * (3 // x) == 1 @test x // x == value(x) / x @test x^4 == 16 @test x^(p - 1) == 1 # Fermat Little Theorem test @test 2x == x + x @test x - x == 0 y = inv(x) @test x * y == 1 @test x + p == x @test x * p == 0 @test p - x == x - 2x @test 0 <= value(rand(Mod{p})) < p end @testset "CRT" begin p = 23 q = 91 a = Mod{p}(17) b = Mod{q}(32) @test CRT(Int32, [], []) === Int32(0) x = CRT(a, b) @test typeof(x) <: BigInt @test a == mod(x, p) @test b == mod(x, q) c = Mod{101}(86) x = CRT(Int, a, b, c) @test typeof(x) <: Int @test a == mod(x, p) @test b == mod(x, q) @test c == mod(x, 101) @test CRT( BigInt, Mod{9223372036854775783}(9223372036854775782), Mod{9223372036854775643}(9223372036854775642), ) == 85070591730234614113402964855534653468 end @testset "Matrices" begin M = zeros(Mod{11}, 3, 3) @test sum(M) == 0 M = ones(Mod{11}, 5, 5) @test sum(M) == 3 M = rand(Mod{11}, 5, 6) @test size(M) == (5, 6) A = rand(Mod{17}, 5, 5) X = values.(A) @test sum(X) == sum(Mod{17}.(A)) end @testset "Hashing/Iterating" begin x = Mod{17}(11) y = x + 0im @test x == y @test hash(x) == hash(y) @test typeof(x) !== typeof(y) A = Set([x, y]) @test length(A) == 1 v = [Mod{10}(t) for t = 1:15] w = [Mod{10}(t + 0im) for t = 1:15] S = Set(v) T = Set(w) @test length(S) == 10 @test S == T @test union(S, T) == intersect(S, T) end @testset "Iteration" begin @test sum(k for k in Mod{7}) == zero(Mod{7}) @test collect(Mod{7}) == Mod{7}.(0:6) @test prod(k for k in Mod{7} if k != 0) == -1 # Wilson's theorem @test sum(GaussMod{7}) == 0 @test length(GaussMod{5}) == 25 end @testset "Linear system solution" begin A = Mod{13}.([1 2; 3 -4]) b = Mod{13}.([3, 4]) x = A \ b @test A * x == b @test inv(A) * b == x end @testset "isapprox" begin @test Mod{7}(3) ≈ Mod{7}(3) @test Mod{7}(3) ≈ Mod{7}(10) @test Mod{7}(3) ≈ Mod{7}(10) atol=1 @test Mod{7}(3) ≈ Mod{7}(11) atol=1 @test !isapprox(Mod{7}(3), Mod{7}(11), atol=0) @test !(Mod{7}(3) ≈ Mod{7}(11)) @test Mod{7}(3) ≈ Mod{7}(11) atol=2 end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
1970
""" $(TYPEDEF) Coloring{K}(graph; weights=UnitWeight()) The [Vertex Coloring](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/Coloring/) problem. Positional arguments ------------------------------- * `graph` is the problem graph. * `weights` are associated with the edges of the `graph`, default to `UnitWeight()`. """ struct Coloring{K, WT<:Union{UnitWeight, Vector}} <: GraphProblem graph::SimpleGraph{Int} weights::WT function Coloring{K}(graph::SimpleGraph, weights::Union{UnitWeight, Vector}=UnitWeight()) where {K} @assert weights isa UnitWeight || length(weights) == ne(graph) new{K, typeof(weights)}(graph, weights) end end flavors(::Type{<:Coloring{K}}) where K = collect(0:K-1) energy_terms(gp::Coloring) = [[minmax(e.src,e.dst)...] for e in Graphs.edges(gp.graph)] energy_tensors(x::T, c::Coloring{K}) where {K, T} = [_pow.(coloringb(x, K), get_weights(c, i)) for i=1:ne(c.graph)] extra_terms(gp::Coloring) = [[i] for i in 1:nv(gp.graph)] extra_tensors(::Type{T}, c::Coloring{K}) where {K,T} = [coloringv(T, K) for i=1:nv(c.graph)] labels(gp::Coloring) = [1:nv(gp.graph)...] # weights interface get_weights(c::Coloring) = c.weights get_weights(c::Coloring{K}, i::Int) where K = fill(c.weights[i], K) chweights(c::Coloring{K}, weights) where K = Coloring{K}(c.graph, weights) # coloring bond tensor function coloringb(x::T, k::Int) where T x = fill(x, k, k) for i=1:k x[i,i] = one(T) end return x end # coloring vertex tensor coloringv(::Type{T}, k::Int) where T = fill(one(T), k) # utilities """ is_vertex_coloring(graph::SimpleGraph, config) Returns true if the coloring specified by config is a valid one, i.e. does not violate the contraints of vertices of an edges having different colors. """ function is_vertex_coloring(graph::SimpleGraph, config) for e in edges(graph) config[e.src] == config[e.dst] && return false end return true end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
1825
""" $TYPEDEF DominatingSet(graph; weights=UnitWeight()) The [dominating set](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/DominatingSet/) problem. Positional arguments ------------------------------- * `graph` is the problem graph. * `weights` are associated with the vertices of the `graph`, default to `UnitWeight()`. """ struct DominatingSet{WT<:Union{UnitWeight, Vector}} <: GraphProblem graph::SimpleGraph{Int} weights::WT function DominatingSet(g::SimpleGraph, weights::Union{UnitWeight, Vector}=UnitWeight()) @assert weights isa UnitWeight || length(weights) == nv(g) new{typeof(weights)}(g, weights) end end flavors(::Type{<:DominatingSet}) = [0, 1] energy_terms(gp::DominatingSet) = [[Graphs.neighbors(gp.graph, v)..., v] for v in Graphs.vertices(gp.graph)] energy_tensors(x::T, c::DominatingSet) where T = [dominating_set_tensor(_pow.(Ref(x), get_weights(c, i))..., degree(c.graph, i)+1) for i=1:nv(c.graph)] extra_terms(::DominatingSet) = Vector{Int}[] extra_tensors(::Type{T}, ::DominatingSet) where T = Array{T}[] labels(gp::DominatingSet) = [1:nv(gp.graph)...] # weights interface get_weights(c::DominatingSet) = c.weights get_weights(gp::DominatingSet, i::Int) = [0, gp.weights[i]] chweights(c::DominatingSet, weights) = DominatingSet(c.graph, weights) function dominating_set_tensor(a::T, b::T, d::Int) where T t = zeros(T, fill(2, d)...) for i = 2:1<<(d-1) t[i] = a end t[1<<(d-1)+1:end] .= Ref(b) return t end """ is_dominating_set(g::SimpleGraph, config) Return true if `config` (a vector of boolean numbers as the mask of vertices) is a dominating set of graph `g`. """ is_dominating_set(g::SimpleGraph, config) = all(w->config[w] == 1 || any(v->!iszero(config[v]), neighbors(g, w)), Graphs.vertices(g))
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
3637
""" $TYPEDEF The [independent set problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/IndependentSet/) in graph theory. Positional arguments ------------------------------- * `graph` is the problem graph. * `weights` are associated with the vertices of the `graph`, default to `UnitWeight()`. Examples ------------------------------- ```jldoctest; setup=:(using Random; Random.seed!(2)) julia> using GenericTensorNetworks, Graphs julia> problem = IndependentSet(smallgraph(:petersen)); julia> net = GenericTensorNetwork(problem); julia> solve(net, ConfigsMax()) 0-dimensional Array{CountingTropical{Float64, ConfigEnumerator{10, 1, 1}}, 0}: (4.0, {1010000011, 1001001100, 0100100110, 0101010001, 0010111000})ₜ ``` """ struct IndependentSet{WT} <: GraphProblem graph::SimpleGraph{Int} weights::WT function IndependentSet(graph::SimpleGraph{Int}, weights::WT=UnitWeight()) where WT @assert weights isa UnitWeight || length(weights) == nv(graph) "got unexpected weights for $(nv(graph))-vertex graph: $weights" new{WT}(graph, weights) end end flavors(::Type{<:IndependentSet}) = [0, 1] energy_terms(gp::IndependentSet) = [[i] for i in 1:nv(gp.graph)] energy_tensors(x::T, c::IndependentSet) where T = [misv(_pow.(Ref(x), get_weights(c, i))) for i=1:nv(c.graph)] extra_terms(gp::IndependentSet) = [[minmax(e.src,e.dst)...] for e in Graphs.edges(gp.graph)] extra_tensors(::Type{T}, gp::IndependentSet) where T = [misb(T) for i=1:ne(gp.graph)] labels(gp::IndependentSet) = [1:nv(gp.graph)...] # weights interface get_weights(c::IndependentSet) = c.weights get_weights(gp::IndependentSet, i::Int) = [0, gp.weights[i]] chweights(c::IndependentSet, weights) = IndependentSet(c.graph, weights) function misb(::Type{T}, n::Integer=2) where T res = zeros(T, fill(2, n)...) res[1] = one(T) for i=1:n res[1+1<<(i-1)] = one(T) end return res end misv(vals) = vals """ mis_compactify!(tropicaltensor; potential=nothing) Compactify tropical tensor for maximum independent set problem. It will eliminate some entries by setting them to zero, by the criteria that removing these entry does not change the MIS size of its parent graph (reference to be added). ### Arguments - `tropicaltensor::AbstractArray{T}`: the tropical tensor ### Keyword arguments - `potential=nothing`: the maximum possible MIS contribution from each open vertex """ function mis_compactify!(a::AbstractArray{T, N}; potential=nothing) where {T <: TropicalTypes, N} @assert potential === nothing || length(potential) == N "got unexpected potential length: $(length(potential)), expected $N" for (ind_a, val_a) in enumerate(a) for (ind_b, val_b) in enumerate(a) bs_a = ind_a - 1 bs_b = ind_b - 1 if worse_than(bs_a, bs_b, val_a.n, val_b.n, potential) @inbounds a[ind_a] = zero(T) end end end return a end function worse_than(bs_a::Integer, bs_b::Integer, val_a::T, val_b::T, potential::AbstractVector) where T bs_a != bs_b && val_a + sum(k->readbit(bs_a, k) < readbit(bs_b, k) ? potential[k] : zero(T), 1:length(potential)) <= val_b end function worse_than(bs_a::Integer, bs_b::Integer, val_a::T, val_b::T, ::Nothing) where T bs_a != bs_b && val_a <= val_b && (bs_b & bs_a) == bs_b end readbit(bs::Integer, k::Integer) = (bs >> (k-1)) & 1 """ is_independent_set(g::SimpleGraph, config) Return true if `config` (a vector of boolean numbers as the mask of vertices) is an independent set of graph `g`. """ is_independent_set(g::SimpleGraph, config) = !any(e->config[e.src] == 1 && config[e.dst] == 1, edges(g))
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
2299
""" $TYPEDEF The [Vertex matching](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/Matching/) problem. Positional arguments ------------------------------- * `graph` is the problem graph. * `weights` are associated with the edges of the `graph`. """ struct Matching{WT<:Union{UnitWeight,Vector}} <: GraphProblem graph::SimpleGraph{Int} weights::WT function Matching(g::SimpleGraph, weights::Union{UnitWeight, Vector}=UnitWeight()) @assert weights isa UnitWeight || length(weights) == ne(g) new{typeof(weights)}(g, weights) end end flavors(::Type{<:Matching}) = [0, 1] energy_terms(gp::Matching) = [[minmax(src(s), dst(s))] for s in edges(gp.graph)] # edge tensors energy_tensors(x::T, c::Matching) where T = [_pow.(Ref(x), get_weights(c, i)) for i=1:ne(c.graph)] extra_terms(gp::Matching) = [[minmax(i, j) for j in neighbors(gp.graph, i)] for i in Graphs.vertices(gp.graph)] extra_tensors(::Type{T}, gp::Matching) where T = [match_tensor(T, degree(gp.graph, i)) for i=1:nv(gp.graph)] labels(gp::Matching) = getindex.(energy_terms(gp)) # weights interface get_weights(c::Matching) = c.weights get_weights(m::Matching, i::Int) = [0, m.weights[i]] chweights(c::Matching, weights) = Matching(c.graph, weights) function match_tensor(::Type{T}, n::Int) where T t = zeros(T, fill(2, n)...) for ci in CartesianIndices(t) if sum(ci.I .- 1) <= 1 t[ci] = one(T) end end return t end """ is_matching(graph::SimpleGraph, config) Returns true if `config` is a valid matching on `graph`, and `false` if a vertex is double matched. `config` is a vector of boolean variables, which has one to one correspondence with `edges(graph)`. """ function is_matching(g::SimpleGraph, config) @assert ne(g) == length(config) edges_mask = zeros(Bool, nv(g)) for (e, c) in zip(edges(g), config) if !iszero(c) if edges_mask[e.src] @debug "Vertex $(e.src) is double matched!" return false end if edges_mask[e.dst] @debug "Vertex $(e.dst) is double matched!" return false end edges_mask[e.src] = true edges_mask[e.dst] = true end end return true end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
2550
""" $TYPEDEF The [cutting](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/MaxCut/) problem. Positional arguments ------------------------------- * `graph` is the problem graph. * `edge_weights` are associated with the edges of the `graph`. * `vertex_weights` are associated with the vertices of the `graph`. """ struct MaxCut{WT1<:Union{UnitWeight, Vector},WT2<:Union{ZeroWeight, Vector}} <: GraphProblem graph::SimpleGraph{Int} edge_weights::WT1 vertex_weights::WT2 function MaxCut(g::SimpleGraph, edge_weights::Union{UnitWeight, Vector}=UnitWeight(), vertex_weights::Union{ZeroWeight, Vector}=ZeroWeight()) @assert edge_weights isa UnitWeight || length(edge_weights) == ne(g) @assert vertex_weights isa ZeroWeight || length(vertex_weights) == nv(g) new{typeof(edge_weights), typeof(vertex_weights)}(g, edge_weights, vertex_weights) end end flavors(::Type{<:MaxCut}) = [0, 1] # first `ne` indices are for edge weights, last `nv` indices are for vertex weights. energy_terms(gp::MaxCut) = [[[minmax(e.src,e.dst)...] for e in Graphs.edges(gp.graph)]..., [[v] for v in Graphs.vertices(gp.graph)]...] energy_tensors(x::T, c::MaxCut) where T = [[maxcutb(_pow.(Ref(x), get_weights(c, i))...) for i=1:ne(c.graph)]..., [Ref(x) .^ get_weights(c, i+ne(c.graph)) for i=1:nv(c.graph)]...] extra_terms(::MaxCut) = Vector{Int}[] extra_tensors(::Type{T}, ::MaxCut) where T = Array{T}[] labels(gp::MaxCut) = [1:nv(gp.graph)...] # weights interface get_weights(c::MaxCut) = [[c.edge_weights[i] for i=1:ne(c.graph)]..., [c.vertex_weights[i] for i=1:nv(c.graph)]...] get_weights(gp::MaxCut, i::Int) = i <= ne(gp.graph) ? [0, gp.edge_weights[i]] : [0, gp.vertex_weights[i-ne(gp.graph)]] chweights(c::MaxCut, weights) = MaxCut(c.graph, weights[1:ne(c.graph)], weights[ne(c.graph)+1:end]) function maxcutb(a, b) return [a b; b a] end """ cut_size(g::SimpleGraph, config; edge_weights=UnitWeight(), vertex_weights=ZeroWeight()) Compute the cut size for the vertex configuration `config` (an iterator). """ function cut_size(g::SimpleGraph, config; edge_weights=UnitWeight(), vertex_weights=ZeroWeight()) size = zero(promote_type(eltype(vertex_weights), eltype(edge_weights))) for (i, e) in enumerate(edges(g)) size += (config[e.src] != config[e.dst]) * edge_weights[i] end for v in vertices(g) size += config[v] * vertex_weights[v] end return size end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
1861
""" $TYPEDEF The [maximal independent set](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/MaximalIS/) problem. In the constructor, `weights` are the weights of vertices. Positional arguments ------------------------------- * `graph` is the problem graph. * `weights` are associated with the vertices of the `graph`. """ struct MaximalIS{WT<:Union{UnitWeight, Vector}} <: GraphProblem graph::SimpleGraph weights::WT function MaximalIS(g::SimpleGraph, weights::Union{UnitWeight, Vector}=UnitWeight()) @assert weights isa UnitWeight || length(weights) == nv(g) new{typeof(weights)}(g, weights) end end flavors(::Type{<:MaximalIS}) = [0, 1] energy_terms(gp::MaximalIS) = [[Graphs.neighbors(gp.graph, v)..., v] for v in Graphs.vertices(gp.graph)] energy_tensors(x::T, c::MaximalIS) where T = [maximal_independent_set_tensor(_pow.(Ref(x), get_weights(c, i))..., degree(c.graph, i)+1) for i=1:nv(c.graph)] extra_terms(::MaximalIS) = Vector{Int}[] extra_tensors(::Type{T}, ::MaximalIS) where T = Array{T}[] labels(gp::MaximalIS) = [1:nv(gp.graph)...] # weights interface get_weights(c::MaximalIS) = c.weights get_weights(gp::MaximalIS, i::Int) = [0, gp.weights[i]] chweights(c::MaximalIS, weights) = MaximalIS(c.graph, weights) function maximal_independent_set_tensor(a::T, b::T, d::Int) where T t = zeros(T, fill(2, d)...) for i = 2:1<<(d-1) t[i] = a end t[1<<(d-1)+1] = b return t end """ is_maximal_independent_set(g::SimpleGraph, config) Return true if `config` (a vector of boolean numbers as the mask of vertices) is a maximal independent set of graph `g`. """ is_maximal_independent_set(g::SimpleGraph, config) = !any(e->config[e.src] == 1 && config[e.dst] == 1, edges(g)) && all(w->config[w] == 1 || any(v->!iszero(config[v]), neighbors(g, w)), Graphs.vertices(g))
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
6834
""" $TYPEDEF The open pit mining problem. This problem can be solved in polynomial time with the pseudoflow algorithm. Positional arguments ------------------------------- * `rewards` is a matrix of rewards. * `blocks` are the locations of the blocks. Example ----------------------------------- ```jldoctest; setup=:(using GenericTensorNetworks) julia> rewards = [-4 -7 -7 -17 -7 -26; 0 39 -7 -7 -4 0; 0 0 1 8 0 0; 0 0 0 0 0 0; 0 0 0 0 0 0; 0 0 0 0 0 0]; julia> gp = GenericTensorNetwork(OpenPitMining(rewards)); julia> res = solve(gp, SingleConfigMax())[] (21.0, ConfigSampler{12, 1, 1}(111000100000))ₜ julia> is_valid_mining(rewards, res.c.data) true julia> print_mining(rewards, res.c.data) -4 -7 -7 -17 -7 -26 ◼ 39 -7 -7 -4 ◼ ◼ ◼ 1 8 ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ``` You will the the mining is printed as green in an colored REPL. """ struct OpenPitMining{ET} <: GraphProblem rewards::Matrix{ET} blocks::Vector{Tuple{Int,Int}} # non-zero locations function OpenPitMining(rewards::Matrix{ET}, blocks::Vector{Tuple{Int,Int}}) where ET for (i, j) in blocks checkbounds(rewards, i, j) end new{ET}(rewards, blocks) end end function OpenPitMining(rewards::Matrix{ET}) where ET # compute block locations blocks = Tuple{Int,Int}[] for i=1:size(rewards, 1), j=i:size(rewards,2)-i+1 push!(blocks, (i,j)) end OpenPitMining(rewards, blocks) end function mining_tensor(::Type{T}) where T t = ones(T,2,2) t[2,1] = zero(T) # first one is mined, but the second one is not mined. return t end flavors(::Type{<:OpenPitMining}) = [0, 1] energy_terms(gp::OpenPitMining) = [[r] for r in gp.blocks] energy_tensors(x::T, c::OpenPitMining) where T = [_pow.(Ref(x), get_weights(c, i)) for i=1:length(c.blocks)] function extra_terms(gp::OpenPitMining) depends = Pair{Tuple{Int,Int},Tuple{Int,Int}}[] for i=1:size(gp.rewards, 1), j=i:size(gp.rewards,2)-i+1 if i!=1 push!(depends, (i,j)=>(i-1,j-1)) push!(depends, (i,j)=>(i-1,j)) push!(depends, (i,j)=>(i-1,j+1)) end end return [[dep.first, dep.second] for dep in depends] end extra_tensors(::Type{T}, gp::OpenPitMining) where T = [mining_tensor(T) for _ in extra_terms(gp)] labels(gp::OpenPitMining) = gp.blocks # weights interface get_weights(c::OpenPitMining) = [c.rewards[b...] for b in c.blocks] get_weights(gp::OpenPitMining, i::Int) = [0, gp.rewards[gp.blocks[i]...]] function chweights(c::OpenPitMining, weights) rewards = copy(c.rewards) for (w, b) in zip(weights, c.blocks) rewards[b...] = w end OpenPitMining(rewards, c.blocks) end """ is_valid_mining(rewards::AbstractMatrix, config) Return true if `config` (a boolean mask for the feasible region) is a valid mining of `rewards`. """ function is_valid_mining(rewards::AbstractMatrix, config) blocks = get_blocks(rewards) assign = Dict(zip(blocks, config)) for block in blocks if block[1] != 1 && !iszero(assign[block]) if iszero(assign[(block[1]-1, block[2]-1)]) || iszero(assign[(block[1]-1, block[2])]) || iszero(assign[(block[1]-1, block[2]+1)]) return false end end end return true end function get_blocks(rewards) blocks = Tuple{Int,Int}[] for i=1:size(rewards, 1), j=i:size(rewards,2)-i+1 push!(blocks, (i,j)) end return blocks end """ print_mining(rewards::AbstractMatrix, config) Printing the mining solution in a colored REPL. """ function print_mining(rewards::AbstractMatrix{T}, config) where T k = 0 for i=1:size(rewards, 1) for j=1:size(rewards, 2) if j >= i && j <= size(rewards,2)-i+1 k += 1 if T <: Integer str = @sprintf " %6i " rewards[i,j] else str = @sprintf " %6.2F " rewards[i,j] end if iszero(config[k]) printstyled(str; color = :red) else printstyled(str; color = :green) end else str = @sprintf " %6s " "◼" printstyled(str; color = :black) end end println() end end function _open_pit_mining_branching!(rewards::AbstractMatrix{T}, mask::AbstractMatrix{Bool}, setmask::AbstractMatrix{Bool}, idx::Int) where T # find next idx < 1 && return zero(T) i, j = divrem(idx-1, size(mask, 2)) .+ 1 # row-wise! while i > j || size(mask, 1)-i+1 < j || setmask[i, j] # skip not allowed or already decided idx -= 1 idx < 1 && return zero(T) i, j = divrem(idx-1, size(mask, 2)) .+ 1 # row-wise! end if rewards[i, j] < 0 # do not mine! setmask[i, j] = true return _open_pit_mining_branching!(rewards, mask, setmask, idx-1) else _mask = copy(mask) _setmask = copy(setmask) # CASE 1: try mine current block # set mask reward0 = set_recur!(mask, setmask, rewards, i, j) reward1 = _open_pit_mining_branching!(rewards, mask, setmask, idx-1) + reward0 # CASE 1: try do not mine current block # unset mask _setmask[i, j] = true reward2 = _open_pit_mining_branching!(rewards, _mask, _setmask, idx-1) # choose the right branch if reward2 > reward1 copyto!(mask, _mask) copyto!(setmask, _setmask) return reward2 else return reward1 end end end function set_recur!(mask, setmask, rewards::AbstractMatrix{T}, i, j) where T reward = zero(T) for k=1:i start = max(1, j-(i-k)) stop = min(size(mask, 2), j+(i-k)) @inbounds for l=start:stop if !setmask[k,l] mask[k,l] = true setmask[k,l] = true reward += rewards[k,l] end end end return reward end """ open_pit_mining_branching(rewards::AbstractMatrix) Solve the open pit mining problem with the naive branching algorithm. NOTE: open pit mining can be solved in polynomial time, but this one runs in exponential time. """ function open_pit_mining_branching(rewards::AbstractMatrix{T}) where T idx = length(rewards) mask = falses(size(rewards)) rewards = _open_pit_mining_branching!(rewards, mask, falses(size(rewards)), idx) return rewards, mask end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
3427
""" $TYPEDEF The [binary paint shop problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/PaintShop/). Positional arguments ------------------------------- * `sequence` is a vector of symbols, each symbol is associated with a color. * `isfirst` is a vector of boolean numbers, indicating whether the symbol is the first appearance in the sequence. Examples ------------------------------- One can encode the paint shop problem `abaccb` as the following ```jldoctest; setup=:(using GenericTensorNetworks) julia> syms = collect("abaccb"); julia> pb = GenericTensorNetwork(PaintShop(syms)); julia> solve(pb, SizeMin())[] 2.0ₜ julia> solve(pb, ConfigsMin())[].c.data 2-element Vector{StaticBitVector{3, 1}}: 100 011 ``` In our definition, we find the maximum number of unchanged color in this sequence, i.e. (n-1) - (minimum number of color changes) In the output of maximum configurations, the two configurations are defined on 5 bonds i.e. pairs of (i, i+1), `0` means color changed, while `1` means color not changed. If we denote two "colors" as `r` and `b`, then the optimal painting is `rbbbrr` or `brrrbb`, both change the colors twice. """ struct PaintShop{LT} <: GraphProblem sequence::Vector{LT} isfirst::Vector{Bool} function PaintShop(sequence::AbstractVector{T}) where T @assert all(l->count(==(l), sequence)==2, sequence) n = length(sequence) isfirst = [findfirst(==(sequence[i]), sequence) == i for i=1:n] new{eltype(sequence)}(sequence, isfirst) end end function paint_shop_from_pairs(pairs::AbstractVector{Tuple{Int,Int}}) n = length(pairs) @assert sort!(vcat(collect.(pairs)...)) == collect(1:2n) sequence = zeros(Int, 2*n) @inbounds for i=1:n sequence[pairs[i]] .= i end return PaintShop(sequence) end flavors(::Type{<:PaintShop}) = [0, 1] energy_terms(gp::PaintShop) = [[gp.sequence[i], gp.sequence[i+1]] for i in 1:length(gp.sequence)-1] energy_tensors(x::T, c::PaintShop) where T = [flip_labels(paintshop_bond_tensor(_pow.(Ref(x), get_weights(c, i))...), c.isfirst[i], c.isfirst[i+1]) for i=1:length(c.sequence)-1] extra_terms(::PaintShop{LT}) where LT = Vector{LT}[] extra_tensors(::Type{T}, ::PaintShop) where T = Array{T}[] labels(gp::PaintShop) = unique(gp.sequence) # weights interface get_weights(c::PaintShop) = UnitWeight() get_weights(::PaintShop, i::Int) = [0, 1] chweights(c::PaintShop, weights) = c function paintshop_bond_tensor(a::T, b::T) where T m = T[a b; b a] return m end function flip_labels(m, if1, if2) m = if1 ? m : m[[2,1],:] m = if2 ? m : m[:,[2,1]] return m end """ num_paint_shop_color_switch(sequence::AbstractVector, coloring) Returns the number of color switches. """ function num_paint_shop_color_switch(sequence::AbstractVector, coloring) return count(i->coloring[i] != coloring[i+1], 1:length(sequence)-1) end """ paint_shop_coloring_from_config(p::PaintShop, config) Returns a valid painting from the paint shop configuration (given by the configuration solvers). The `config` is a sequence of 0 and 1, where 0 means painting the first appearence of a car in blue, 1 otherwise. """ function paint_shop_coloring_from_config(p::PaintShop{LT}, config) where {LT} d = Dict{LT,Bool}(zip(labels(p), config)) return map(1:length(p.sequence)) do i p.isfirst[i] ? d[p.sequence[i]] : ~d[p.sequence[i]] end end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
5312
""" BoolVar{T} BoolVar(name, neg) Boolean variable for constructing CNF clauses. """ struct BoolVar{T} name::T neg::Bool end BoolVar(name) = BoolVar(name, false) function Base.show(io::IO, b::BoolVar) b.neg && print(io, "¬") print(io, b.name) end """ CNFClause{T} CNFClause(vars) A clause in [`CNF`](@ref), its value is the logical or of `vars`, where `vars` is a vector of [`BoolVar`](@ref). """ struct CNFClause{T} vars::Vector{BoolVar{T}} end function Base.show(io::IO, b::CNFClause) print(io, join(string.(b.vars), " ∨ ")) end Base.:(==)(x::CNFClause, y::CNFClause) = x.vars == y.vars """ CNF{T} CNF(clauses) Boolean expression in [conjunctive normal form](https://en.wikipedia.org/wiki/Conjunctive_normal_form). `clauses` is a vector of [`CNFClause`](@ref), if and only if all clauses are satisfied, this CNF is satisfied. Example ------------------------ ```jldoctest; setup=:(using GenericTensorNetworks) julia> @bools x y z julia> cnf = (x ∨ y) ∧ (¬y ∨ z) (x ∨ y) ∧ (¬y ∨ z) julia> satisfiable(cnf, Dict([:x=>true, :y=>false, :z=>true])) true julia> satisfiable(cnf, Dict([:x=>false, :y=>false, :z=>true])) false ``` """ struct CNF{T} clauses::Vector{CNFClause{T}} end function Base.show(io::IO, c::CNF) print(io, join(["($k)" for k in c.clauses], " ∧ ")) end Base.:(==)(x::CNF, y::CNF) = x.clauses == y.clauses Base.length(x::CNF) = length(x.clauses) """ ¬(var::BoolVar) Negation of a boolean variables of type [`BoolVar`](@ref). """ ¬(var::BoolVar{T}) where T = BoolVar(var.name, ~var.neg) """ ∨(vars...) Logical `or` applied on [`BoolVar`](@ref) and [`CNFClause`](@ref). Returns a [`CNFClause`](@ref). """ ∨(var::BoolVar{T}, vars::BoolVar{T}...) where T = CNFClause([var, vars...]) ∨(c::CNFClause{T}, var::BoolVar{T}) where T = CNFClause([c.vars..., var]) ∨(c::CNFClause{T}, d::CNFClause{T}) where T = CNFClause([c.vars..., d.vars...]) ∨(var::BoolVar{T}, c::CNFClause) where T = CNFClause([var, c.vars...]) """ ∧(vars...) Logical `and` applied on [`CNFClause`](@ref) and [`CNF`](@ref). Returns a new [`CNF`](@ref). """ ∧(c::CNFClause{T}, cs::CNFClause{T}...) where T = CNF([c, cs...]) ∧(c::CNFClause{T}, cs::CNF{T}) where T = CNF([c, cs.clauses...]) ∧(cs::CNF{T}, c::CNFClause{T}) where T = CNF([cs.clauses..., c]) ∧(cs::CNF{T}, ds::CNF{T}) where T = CNF([cs.clauses..., ds.clauses...]) """ @bools(syms::Symbol...) Create some boolean variables of type [`BoolVar`](@ref) in current scope that can be used in create a [`CNF`](@ref). Example ------------------------ ```jldoctest; setup=:(using GenericTensorNetworks) julia> @bools x y z julia> (x ∨ y) ∧ (¬y ∨ z) (x ∨ y) ∧ (¬y ∨ z) ``` """ macro bools(syms::Symbol...) esc(Expr(:block, [:($s = $BoolVar($(QuoteNode(s)))) for s in syms]..., nothing)) end """ $TYPEDEF The [satisfiability](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/Satisfiability/) problem. Positional arguments ------------------------------- * `cnf` is a conjunctive normal form ([`CNF`](@ref)) for specifying the satisfiability problems. * `weights` are associated with clauses. Examples ------------------------------- ```jldoctest; setup=:(using GenericTensorNetworks) julia> @bools x y z a b c julia> c1 = x ∨ ¬y x ∨ ¬y julia> c2 = c ∨ (¬a ∨ b) c ∨ ¬a ∨ b julia> c3 = (z ∨ ¬a) ∨ y z ∨ ¬a ∨ y julia> c4 = (c ∨ z) ∨ ¬b c ∨ z ∨ ¬b julia> cnf = (c1 ∧ c4) ∧ (c2 ∧ c3) (x ∨ ¬y) ∧ (c ∨ z ∨ ¬b) ∧ (c ∨ ¬a ∨ b) ∧ (z ∨ ¬a ∨ y) julia> gp = GenericTensorNetwork(Satisfiability(cnf)); julia> solve(gp, SizeMax())[] 4.0ₜ ``` """ struct Satisfiability{T,WT<:Union{UnitWeight, Vector}} <: GraphProblem cnf::CNF{T} weights::WT function Satisfiability(cnf::CNF{T}, weights::WT=UnitWeight()) where {T, WT} @assert weights isa UnitWeight || length(weights) == length(cnf) "weights size inconsistent! should be $(length(cnf)), got: $(length(weights))" new{T, typeof(weights)}(cnf, weights) end end flavors(::Type{<:Satisfiability}) = [0, 1] # false, true energy_terms(gp::Satisfiability) = [[getfield.(c.vars, :name)...] for c in gp.cnf.clauses] energy_tensors(x::T, c::Satisfiability) where T = [tensor_for_clause(c.cnf.clauses[i], _pow.(Ref(x), get_weights(c, i))...) for i=1:length(c.cnf.clauses)] extra_terms(::Satisfiability{T}) where T = Vector{T}[] extra_tensors(::Type{T}, c::Satisfiability) where T = Array{T}[] labels(gp::Satisfiability) = unique!(vcat(energy_terms(gp)...)) # weights interface get_weights(c::Satisfiability) = c.weights get_weights(s::Satisfiability, i::Int) = [0, s.weights[i]] chweights(c::Satisfiability, weights) = Satisfiability(c.cnf, weights) """ satisfiable(cnf::CNF, config::AbstractDict) Returns true if an assignment of variables satisfies a [`CNF`](@ref). """ function satisfiable(cnf::CNF{T}, config::AbstractDict{T}) where T all(x->satisfiable(x, config), cnf.clauses) end function satisfiable(c::CNFClause{T}, config::AbstractDict{T}) where T any(x->satisfiable(x, config), c.vars) end function satisfiable(v::BoolVar{T}, config::AbstractDict{T}) where T config[v.name] == ~v.neg end function tensor_for_clause(c::CNFClause{T}, a, b) where T n = length(c.vars) map(ci->any(i->~c.vars[i].neg == ci[i], 1:n) ? b : a, Iterators.product([[0, 1] for i=1:n]...)) end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
2516
""" $TYPEDEF The [set covering problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/SetCovering/). Positional arguments ------------------------------- * `sets` is a vector of vectors, each set is associated with a weight specified in `weights`. * `weights` are associated with sets. Examples ------------------------------- ```jldoctest; setup=:(using GenericTensorNetworks) julia> sets = [[1, 2, 5], [1, 3], [2, 4], [3, 6], [2, 3, 6]]; # each set is a vertex julia> gp = GenericTensorNetwork(SetCovering(sets)); julia> res = solve(gp, ConfigsMin())[] (3.0, {10110, 10101})ₜ ``` """ struct SetCovering{ET, WT<:Union{UnitWeight, Vector}} <: GraphProblem sets::Vector{Vector{ET}} weights::WT function SetCovering(sets::Vector{Vector{ET}}, weights::Union{UnitWeight, Vector}=UnitWeight()) where {ET} @assert weights isa UnitWeight || length(weights) == length(sets) new{ET, typeof(weights)}(sets, weights) end end flavors(::Type{<:SetCovering}) = [0, 1] energy_terms(gp::SetCovering) = [[i] for i=1:length(gp.sets)] energy_tensors(x::T, c::SetCovering) where T = [misv(_pow.(Ref(x), get_weights(c, i))) for i=1:length(c.sets)] function extra_terms(sc::SetCovering) elements, count = cover_count(sc.sets) return [count[e] for e in elements] end extra_tensors(::Type{T}, cfg::SetCovering) where T = [cover_tensor(T, ix) for ix in extra_terms(cfg)] labels(gp::SetCovering) = [1:length(gp.sets)...] # weights interface get_weights(c::SetCovering) = c.weights get_weights(gp::SetCovering, i::Int) = [0, gp.weights[i]] chweights(c::SetCovering, weights) = SetCovering(c.sets, weights) function cover_tensor(::Type{T}, set_indices::AbstractVector{Int}) where T n = length(set_indices) t = ones(T, fill(2, n)...) t[1] = zero(T) return t end function cover_count(sets) elements = vcat(sets...) count = Dict{eltype(elements), Vector{Int}}() for (iset, set) in enumerate(sets) for e in set if haskey(count, e) push!(count[e], iset) else count[e] = [iset] end end end return elements, count end """ is_set_covering(sets::AbstractVector, config) Return true if `config` (a vector of boolean numbers as the mask of sets) is a set covering of `sets`. """ function is_set_covering(sets::AbstractVector, config) insets = sets[(!iszero).(config)] return length(unique!(vcat(insets...))) == length(unique!(vcat(sets...))) end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
2185
""" $TYPEDEF The [set packing problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/SetPacking/), a generalization of independent set problem to hypergraphs. Positional arguments ------------------------------- * `sets` is a vector of vectors, each set is associated with a weight specified in `weights`. * `weights` are associated with sets. Examples ------------------------------- ```jldoctest; setup=:(using GenericTensorNetworks, Random; Random.seed!(2)) julia> sets = [[1, 2, 5], [1, 3], [2, 4], [3, 6], [2, 3, 6]]; # each set is a vertex julia> gp = GenericTensorNetwork(SetPacking(sets)); julia> res = solve(gp, ConfigsMax())[] (2.0, {00110, 10010, 01100})ₜ ``` """ struct SetPacking{ET,WT<:Union{UnitWeight, Vector}} <: GraphProblem sets::Vector{Vector{ET}} weights::WT function SetPacking(sets::Vector{Vector{ET}}, weights::Union{UnitWeight, Vector}=UnitWeight()) where {ET} @assert weights isa UnitWeight || length(weights) == length(sets) new{ET, typeof(weights)}(sets, weights) end end flavors(::Type{<:SetPacking}) = [0, 1] energy_terms(gp::SetPacking) = [[i] for i=1:length(gp.sets)] energy_tensors(x::T, c::SetPacking) where T = [misv(_pow.(Ref(x), get_weights(c, i))) for i=1:length(c.sets)] extra_terms(gp::SetPacking) = [[i,j] for i=1:length(gp.sets),j=1:length(gp.sets) if j>i && !isempty(gp.sets[i] ∩ gp.sets[j])] extra_tensors(::Type{T}, gp::SetPacking) where T = [misb(T, length(ix)) for ix in extra_terms(gp)] labels(gp::SetPacking) = [1:length(gp.sets)...] # weights interface get_weights(c::SetPacking) = c.weights get_weights(gp::SetPacking, i::Int) = [0, gp.weights[i]] chweights(c::SetPacking, weights) = SetPacking(c.sets, weights) """ is_set_packing(sets::AbstractVector, config) Return true if `config` (a vector of boolean numbers as the mask of sets) is a set packing of `sets`. """ function is_set_packing(sets::AbstractVector{ST}, config) where ST d = Dict{eltype(ST), Int}() for i=1:length(sets) if !iszero(config[i]) for e in sets[i] d[e] = get(d, e, 0) + 1 end end end return all(isone, values(d)) end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
4325
""" $(TYPEDEF) SpinGlass(n, cliques; weights=UnitWeight()) SpinGlass(graph::SimpleGraph, J=UnitWeight(), h=ZeroWeight()) The [spin-glass](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/SpinGlass/) problem. Positional arguments ------------------------------- * `n` is the number of spins. * `cliques` is a vector of cliques, each being a vector of vertices (integers). For simple graph, it is a vector of edges. * `weights` are associated with the cliques. """ struct SpinGlass{WT<:Union{UnitWeight, Vector}} <: GraphProblem n::Int cliques::Vector{Vector{Int}} weights::WT function SpinGlass(n::Int, cliques::AbstractVector, weights::Union{UnitWeight, Vector}=UnitWeight()) clqs = collect(collect.(cliques)) @assert weights isa UnitWeight || length(weights) == length(clqs) @assert all(c->all(b->1<=b<=n, c), cliques) "vertex index out of bound 1-$n, got: $cliques" return new{typeof(weights)}(n, clqs, weights) end end function SpinGlass(graph::SimpleGraph, J::Union{UnitWeight, Vector}, h::Union{ZeroWeight, Vector}=ZeroWeight()) J_ = J isa UnitWeight ? fill(1, ne(graph)) : J h_ = h isa ZeroWeight ? fill(0, nv(graph)) : h @assert length(J_) == ne(graph) "length of J must be equal to the number of edges $(ne(graph)), got: $(length(J_))" @assert length(h_) == nv(graph) "length of h must be equal to the number of vertices $(nv(graph)), got: $(length(h_))" SpinGlass(nv(graph), [[[src(e), dst(e)] for e in edges(graph)]..., [[i] for i in 1:nv(graph)]...], [J_..., h_...]) end function spin_glass_from_matrix(M::AbstractMatrix, h::AbstractVector) g = SimpleGraph((!iszero).(M)) J = [M[e.src, e.dst] for e in edges(g)] return SpinGlass(g, J, h) end flavors(::Type{<:SpinGlass}) = [0, 1] # first `ne` indices are for edge weights, last `n` indices are for vertex weights. energy_terms(gp::SpinGlass) = gp.cliques energy_tensors(x::T, c::SpinGlass) where T = [clique_tensor(length(c.cliques[i]), _pow.(Ref(x), get_weights(c, i))...) for i=1:length(c.cliques)] extra_terms(sg::SpinGlass) = [[i] for i=1:sg.n] extra_tensors(::Type{T}, c::SpinGlass) where T = [[one(T), one(T)] for i=1:c.n] labels(gp::SpinGlass) = collect(1:gp.n) # weights interface get_weights(c::SpinGlass) = c.weights get_weights(gp::SpinGlass, i::Int) = [-gp.weights[i], gp.weights[i]] chweights(c::SpinGlass, weights) = SpinGlass(c.n, c.cliques, weights) function clique_tensor(rank, a::T, b::T) where T res = zeros(T, fill(2, rank)...) for i=0:(1<<rank-1) res[i+1] = (count_ones(i) % 2) == 1 ? a : b end return res end """ spinglass_energy(g::SimpleGraph, config; J, h=ZeroWeight()) spinglass_energy(cliques::AbstractVector{Vector{Int}}, config; weights=UnitWeight()) spinglass_energy(sg::SpinGlass, config) Compute the spin glass state energy for the vertex configuration `config`. In the configuration, the spin ↑ is mapped to configuration 0, while spin ↓ is mapped to configuration 1. Let ``G=(V,E)`` be the input graph, the hamiltonian is ```math H = \\sum_{ij \\in E} J_{ij} s_i s_j + \\sum_{i \\in V} h_i s_i, ``` where ``s_i \\in \\{-1, 1\\}`` stands for spin ↓ and spin ↑. In the hypergraph case, the hamiltonian is ```math H = \\sum_{c \\in C} w_c \\prod_{i \\in c} s_i, ``` where ``C`` is the set of cliques, and ``w_c`` is the weight of the clique ``c``. """ function spinglass_energy(cliques::AbstractVector{Vector{Int}}, config; weights=UnitWeight())::Real size = zero(eltype(weights)) @assert all(x->x == 0 || x == 1, config) s = 1 .- 2 .* Int.(config) # 0 -> spin 1, 1 -> spin -1 for (i, spins) in enumerate(cliques) size += prod(s[spins]) * weights[i] end return size end function spinglass_energy(g::SimpleGraph, config; J, h=ZeroWeight()) eng = zero(promote_type(eltype(J), eltype(h))) # NOTE: cast to Int to avoid using unsigned :nt s = 1 .- 2 .* Int.(config) # 0 -> spin 1, 1 -> spin -1 # coupling terms for (i, e) in enumerate(edges(g)) eng += (s[e.src] * s[e.dst]) * J[i] end # onsite terms for (i, v) in enumerate(vertices(g)) eng += s[v] * h[i] end return eng end function spinglass_energy(sg::SpinGlass, config) spinglass_energy(sg.cliques, config; weights=sg.weights) end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
8903
""" GraphProblem The abstract base type of graph problems. """ abstract type GraphProblem end function generate_tensors(x::T, m::GraphProblem) where T tensors = [energy_tensors(x, m)..., extra_tensors(T, m)...] ixs = [energy_terms(m)..., extra_terms(m)...] return add_labels!(tensors, ixs, labels(m)) end function rawcode(problem::GraphProblem; openvertices=()) ixs = [energy_terms(problem)..., extra_terms(problem)...] LT = eltype(eltype(ixs)) return DynamicEinCode(ixs, collect(LT, openvertices)) # labels for edge tensors end struct UnitWeight end Base.getindex(::UnitWeight, i) = 1 Base.eltype(::UnitWeight) = Int struct ZeroWeight end Base.getindex(::ZeroWeight, i) = 0 Base.eltype(::ZeroWeight) = Int """ $TYPEDEF GenericTensorNetwork(problem::GraphProblem; openvertices=(), fixedvertices=Dict(), optimizer=GreedyMethod()) The generic tensor network that generated from a [`GraphProblem`](@ref). Positional arguments ------------------------------- * `problem` is the graph problem. * `code` is the tensor network contraction code. * `fixedvertices` is a dictionary specifying the fixed dimensions. """ struct GenericTensorNetwork{CFG, CT, LT} problem::CFG code::CT fixedvertices::Dict{LT,Int} end function GenericTensorNetwork(problem::GraphProblem; openvertices=(), fixedvertices=Dict(), optimizer=GreedyMethod()) rcode = rawcode(problem; openvertices) code = _optimize_code(rcode, uniformsize_fix(rcode, nflavor(problem), fixedvertices), optimizer, MergeVectors()) return GenericTensorNetwork(problem, code, Dict{labeltype(code),Int}(fixedvertices)) end function generate_tensors(x::T, tn::GenericTensorNetwork) where {T} ixs = getixsv(tn.code) isempty(ixs) && return Array{T}[] tensors = generate_tensors(x, tn.problem) return select_dims(tensors, ixs, fixedvertices(tn)) end ######## Interfaces for graph problems ########## """ get_weights(problem::GraphProblem[, i::Int]) -> Vector get_weights(problem::GenericTensorNetwork[, i::Int]) -> Vector The weights for the `problem` or the weights for the degree of freedom specified by the `i`-th term if a second argument is provided. Weights are associated with [`energy_terms`](@ref) in the graph problem. In graph polynomial, integer weights can be the exponents. """ function get_weights end get_weights(gp::GenericTensorNetwork) = get_weights(gp.problem) get_weights(gp::GenericTensorNetwork, i::Int) = get_weights(gp.problem, i) """ chweights(problem::GraphProblem, weights) -> GraphProblem chweights(problem::GenericTensorNetwork, weights) -> GenericTensorNetwork Change the weights for the `problem` and return a new problem instance. Weights are associated with [`energy_terms`](@ref) in the graph problem. In graph polynomial, integer weights can be the exponents. """ function chweights end chweights(gp::GenericTensorNetwork, weights) = GenericTensorNetwork(chweights(gp.problem, weights), gp.code, gp.fixedvertices) """ labels(problem::GraphProblem) -> Vector labels(problem::GenericTensorNetwork) -> Vector The labels of a graph problem is defined as the degrees of freedoms in the graph problem. e.g. for the maximum independent set problems, they are the indices of vertices: 1, 2, 3..., while for the max cut problem, they are the edges. """ labels(gp::GenericTensorNetwork) = labels(gp.problem) """ energy_terms(problem::GraphProblem) -> Vector energy_terms(problem::GenericTensorNetwork) -> Vector The energy terms of a graph problem is defined as the tensor labels that carrying local energies (or weights) in the graph problem. """ function energy_terms end energy_terms(gp::GenericTensorNetwork) = energy_terms(gp.problem) """ extra_terms(problem::GraphProblem) -> Vector extra_terms(problem::GenericTensorNetwork) -> Vector The extra terms of a graph problem is defined as the tensor labels that not carrying local energies (or weights) in the graph problem. """ function extra_terms end extra_terms(gp::GenericTensorNetwork) = extra_terms(gp.problem) """ fixedvertices(tnet::GenericTensorNetwork) -> Dict Returns the fixed vertices in the graph problem, which is a dictionary specifying the fixed dimensions. """ fixedvertices(gtn::GenericTensorNetwork) = gtn.fixedvertices """ flavors(::Type{<:GraphProblem}) -> Vector flavors(::Type{<:GenericTensorNetwork}) -> Vector It returns a vector of integers as the flavors of a degree of freedom. Its size is the same as the degree of freedom on a single vertex/edge. """ flavors(::GT) where GT<:GraphProblem = flavors(GT) flavors(::GenericTensorNetwork{GT}) where GT<:GraphProblem = flavors(GT) """ nflavor(::Type{<:GraphProblem}) -> Int nflavor(::Type{<:GenericTensorNetwork}) -> Int nflavor(::GT) where GT<:GraphProblem -> Int nflavor(::GenericTensorNetwork{GT}) where GT<:GraphProblem -> Int Bond size is equal to the number of flavors. """ nflavor(::Type{GT}) where GT = length(flavors(GT)) nflavor(::Type{GenericTensorNetwork{GT}}) where GT = nflavor(GT) nflavor(::GT) where GT<:GraphProblem = nflavor(GT) nflavor(::GenericTensorNetwork{GT}) where GT<:GraphProblem = nflavor(GT) """ generate_tensors(func, problem::GenericTensorNetwork) Generate a vector of tensors as the inputs of the tensor network contraction code `problem.code`. `func` is a function to customize the tensors. `func(symbol)` returns a vector of elements, the length of which is same as the number of flavors. Example -------------------------- The following code gives your the maximum independent set size ```jldoctest julia> using Graphs, GenericTensorNetworks julia> gp = GenericTensorNetwork(IndependentSet(smallgraph(:petersen))); julia> getixsv(gp.code) 25-element Vector{Vector{Int64}}: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] ⋮ [3, 8] [4, 5] [4, 9] [5, 10] [6, 8] [6, 9] [7, 9] [7, 10] [8, 10] julia> gp.code(GenericTensorNetworks.generate_tensors(Tropical(1.0), gp)...) 0-dimensional Array{Tropical{Float64}, 0}: 4.0ₜ ``` """ function generate_tensors end # requires field `code` include("IndependentSet.jl") include("MaximalIS.jl") include("MaxCut.jl") include("Matching.jl") include("Coloring.jl") include("PaintShop.jl") include("Satisfiability.jl") include("DominatingSet.jl") include("SetPacking.jl") include("SetCovering.jl") include("OpenPitMining.jl") include("SpinGlass.jl") # forward the time, space and readwrite complexity OMEinsum.contraction_complexity(gp::GenericTensorNetwork) = contraction_complexity(gp.code, uniformsize(gp.code, nflavor(gp))) # the following two interfaces will be deprecated OMEinsum.timespace_complexity(gp::GenericTensorNetwork) = timespace_complexity(gp.code, uniformsize(gp.code, nflavor(gp))) OMEinsum.timespacereadwrite_complexity(gp::GenericTensorNetwork) = timespacereadwrite_complexity(gp.code, uniformsize(gp.code, nflavor(gp))) # contract the graph tensor network function contractx(gp::GenericTensorNetwork, x; usecuda=false) @debug "generating tensors for x = `$x` ..." xs = generate_tensors(x, gp) @debug "contracting tensors ..." if usecuda gp.code([togpu(x) for x in xs]...) else gp.code(xs...) end end function uniformsize_fix(code, dim, fixedvertices) size_dict = uniformsize(code, dim) for key in keys(fixedvertices) size_dict[key] = 1 end return size_dict end # multiply labels vectors to the generate tensor. add_labels!(tensors::AbstractVector{<:AbstractArray}, ixs, labels) = tensors const SetPolyNumbers{T} = Union{Polynomial{T}, TruncatedPoly{K,T} where K, CountingTropical{TV,T} where TV} where T<:AbstractSetNumber function add_labels!(tensors::AbstractVector{<:AbstractArray{T}}, ixs, labels) where T <: Union{AbstractSetNumber, SetPolyNumbers, ExtendedTropical{K,T} where {K,T<:SetPolyNumbers}} for (t, ix) in zip(tensors, ixs) for (dim, l) in enumerate(ix) index = findfirst(==(l), labels) v = [_onehotv(T, index, k-1) for k=1:size(t, dim)] t .*= reshape(v, ntuple(j->dim==j ? length(v) : 1, ndims(t))) end end return tensors end # select dimensions from tensors # `tensors` is a vector of tensors, # `ixs` is the tensor labels for `tensors`. # `fixedvertices` is a dictionary specifying the fixed dimensions, check [`fixedvertices`](@ref) function select_dims(tensors::AbstractVector{<:AbstractArray{T}}, ixs, fixedvertices::AbstractDict) where T isempty(fixedvertices) && return tensors map(tensors, ixs) do t, ix dims = map(ixi->ixi ∉ keys(fixedvertices) ? Colon() : (fixedvertices[ixi]+1:fixedvertices[ixi]+1), ix) t[dims...] end end _pow(x, i) = x^i function _pow(x::LaurentPolynomial{BS,X}, i) where {BS,X} if i >= 0 return x^i else @assert length(x.coeffs) == 1 return LaurentPolynomial(x.coeffs .^ i, x.order[]*i) end end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
9337
using GenericTensorNetworks, Test, OMEinsum using GenericTensorNetworks.Mods, Polynomials, TropicalNumbers using Graphs, Random using GenericTensorNetworks: StaticBitVector using LinearAlgebra @testset "truncated poly" begin p1 = TruncatedPoly((2,2,1), 2.0) p2 = TruncatedPoly((2,3,9), 4.0) x = Polynomial([2, 2, 1]) @test Polynomial(p1) == x @test LaurentPolynomial(p1) == x y = Polynomial([0, 0, 2, 3, 9]) r1 = p1 + p2 r2 = p2 + p1 r3 = x + y @test r1.coeffs == r2.coeffs == (r3.coeffs[end-2:end]...,) q1 = p1 * p2 q2 = p2 * p1 q3 = x * y @test q1.coeffs == q2.coeffs == (q3.coeffs[end-2:end]...,) r1 = p1 + p1 r3 = x + x @test r1.coeffs == (r3.coeffs[end-2:end]...,) r1 = p1 * p1 r3 = x * x @test r1.coeffs == (r3.coeffs[end-2:end]...,) end @testset "arithematics" begin Random.seed!(2) for (a, b, c) in [ (TropicalF64(2), TropicalF64(8), TropicalF64(9)), (CountingTropicalF64(2, 8), CountingTropicalF64(8, 9), CountingTropicalF64(9, 2)), (Mod{17}(2), Mod{17}(8), Mod{17}(9)), (Polynomial([0,1,2,3.0]), Polynomial([3,2.0]), Polynomial([1,7.0])), (Max2Poly(1,2,3.0), Max2Poly(3,2,2.0), Max2Poly(4,7,1.0)), (TruncatedPoly((1,2,3),3.0), TruncatedPoly((7,3,2),2.0), TruncatedPoly((1,4,7),1.0)), (TropicalF64(5), TropicalF64(3), TropicalF64(-9)), (ExtendedTropical{2}(Tropical.([2.2,3.1])), ExtendedTropical{2}(Tropical.([-1.0, 4.0])), ExtendedTropical{2}(Tropical.([-Inf, 0.6]))), (CountingTropicalF64(5, 3), CountingTropicalF64(3, 9), CountingTropicalF64(-3, 2)), (CountingTropical(5.0, ConfigSampler(StaticBitVector(rand(Bool, 10)))), CountingTropical(3.0, ConfigSampler(StaticBitVector(rand(Bool, 10)))), CountingTropical(-3.0, ConfigSampler(StaticBitVector(rand(Bool, 10))))), (CountingTropical(5.0, ConfigEnumerator([StaticBitVector(rand(Bool, 10)) for j=1:3])), CountingTropical(3.0, ConfigEnumerator([StaticBitVector(rand(Bool, 10)) for j=1:4])), CountingTropical(-3.0, ConfigEnumerator([StaticBitVector(rand(Bool, 10)) for j=1:5]))), (ConfigEnumerator([StaticBitVector(rand(Bool, 10)) for j=1:3]), ConfigEnumerator([StaticBitVector(rand(Bool, 10)) for j=1:4]), ConfigEnumerator([StaticBitVector(rand(Bool, 10)) for j=1:5])), (SumProductTree(GenericTensorNetworks.SUM, [SumProductTree(StaticBitVector(rand(Bool, 10))) for j=1:2]...), SumProductTree(GenericTensorNetworks.SUM, [SumProductTree(StaticBitVector(rand(Bool, 10))) for j=1:2]...), SumProductTree(GenericTensorNetworks.SUM, [SumProductTree(StaticBitVector(rand(Bool, 10))) for j=1:2]...) ), (SumProductTree(GenericTensorNetworks.PROD, [SumProductTree(StaticBitVector(rand(Bool, 10))) for j=1:2]...), SumProductTree(GenericTensorNetworks.PROD, [SumProductTree(StaticBitVector(rand(Bool, 10))) for j=1:2]...), SumProductTree(GenericTensorNetworks.PROD, [SumProductTree(StaticBitVector(rand(Bool, 10))) for j=1:2]...) ), (SumProductTree(GenericTensorNetworks.PROD, [SumProductTree(OnehotVec{10, 2}(rand(1:10), 1)) for j=1:2]...), SumProductTree(GenericTensorNetworks.PROD, [SumProductTree(OnehotVec{10, 2}(rand(1:10), 1)) for j=1:2]...), SumProductTree(GenericTensorNetworks.PROD, [SumProductTree(OnehotVec{10, 2}(rand(1:10), 1)) for j=1:2]...) ), (SumProductTree(StaticBitVector(rand(Bool, 10))), SumProductTree(StaticBitVector(rand(Bool, 10))), SumProductTree(StaticBitVector(rand(Bool, 10))), ), ] @test is_commutative_semiring(a, b, c) @test false * a == zero(a) @test true * a == a @test a * false == zero(a) @test a * true == a end # the following tests are for Polynomial + ConfigEnumerator a = ConfigEnumerator([StaticBitVector(trues(10)) for j=1:3]) @test 1 * a == a @test 0 * a == zero(a) @test a[1] == StaticBitVector(trues(10)) @test copy(a) == a @test length.(a) == [10, 10, 10] @test map(x->length(x), a) == [10, 10, 10] # the following tests are for Polynomial + ConfigEnumerator a = SumProductTree(StaticBitVector(trues(10))) @test 1 * a == a @test 0 * a == zero(a) @test copy(a) == a @test length(a) == 1 @test length(a + a) == 2 @test length(a * a) == 1 print((a+a) * a) b = a + a @test GenericTensorNetworks.num_nodes(b * b) == 3 a = ConfigSampler(StaticBitVector(rand(Bool, 10))) @test 1 * a == a @test 0 * a == zero(a) println(Max2Poly{Float64,Float64}(1, 1, 1)) @test abs(Mod{5}(2)) == Mod{5}(2) @test Mod{5}(12) < Mod{5}(8) end @testset "powers" begin x = ConfigEnumerator([bv"00111"]) y = 2.0 @test x ^ 0 == one(x) @test Base.literal_pow(^, x, Val(2.0)) == x @test x ^ y == x x = SumProductTree(bv"00111") @test x ^ 0 == one(x) @test Base.literal_pow(^, x, Val(2.0)) == x @test x ^ y == x x = ConfigSampler(bv"00111") @test x ^ 0 == one(x) @test Base.literal_pow(^, x, Val(2.0)) == x @test x ^ y == x x = ExtendedTropical{3}(Tropical.([1.0, 2.0, 3.0])) @test x ^ 1 == x @test x ^ 0 == one(x) @test x ^ 1.0 == x @test x ^ 0.0 == one(x) @test x ^ 2 == ExtendedTropical{3}(Tropical.([2.0, 4.0, 6.0])) @test Base.literal_pow(^, x, Val(2.0)) == ExtendedTropical{3}(Tropical.([2.0, 4.0, 6.0])) @test Base.literal_pow(^, x, Val(2.0)) == x ^ y # truncated poly x = TruncatedPoly((2,3), 5) @test x ^ 2 == TruncatedPoly((12,9), 10) @test_throws ErrorException x ^ -2 x = TruncatedPoly((0.0,3.0), 5) @test x ^ 2 == TruncatedPoly((0,9), 10) @test x ^ -2 == TruncatedPoly((0.0,3^-2), -10) end @testset "push coverage" begin @test abs(Mod{5}(2)) == Mod{5}(2) @test one(ConfigSampler(bv"11100")) == ConfigSampler(bv"00000") T = SumProductTree{OnehotVec{5,2}} @test collect(one(T(GenericTensorNetworks.ZERO))) == collect(SumProductTree(bv"00000")) @test iszero(copy(T(GenericTensorNetworks.ZERO))) x = SumProductTree(bv"00111") @test copy(x) == x @test copy(x) !== x @test !iszero(x) y = x + x @test copy(y) == y @test copy(y) !== y @test !iszero(y) println((x * x) * zero(x)) end @testset "Truncated Tropical" begin # + a = ExtendedTropical{3}(Tropical.([1,2,3])) b = ExtendedTropical{3}(Tropical.([4,5,6])) c = ExtendedTropical{3}(Tropical.([0,1,2])) @test a + b == ExtendedTropical{3}(Tropical.([4,5,6])) @test b + a == ExtendedTropical{3}(Tropical.([4,5,6])) @test c + a == ExtendedTropical{3}(Tropical.([2,2,3])) @test a + c == ExtendedTropical{3}(Tropical.([2,2,3])) # * function naive_mul(a, b) K = length(a) return sort!(vec([x*y for x in a, y in b]))[end-K+1:end] end d = ExtendedTropical{3}(Tropical.([0,1,20])) @test naive_mul(a.orders, b.orders) == (a * b).orders @test naive_mul(b.orders, a.orders) == (b * a).orders @test naive_mul(a.orders, d.orders) == (a * d).orders @test naive_mul(d.orders, a.orders) == (d * a).orders @test naive_mul(d.orders, d.orders) == (d * d).orders for i=1:20 a = ExtendedTropical{100}(Tropical.(sort!(randn(100)))) b = ExtendedTropical{100}(Tropical.(sort!(randn(100)))) @test naive_mul(a.orders, b.orders) == (a * b).orders end end @testset "count geq" begin A = collect(1:10) B = collect(2:2:20) low = 20 c, _ = GenericTensorNetworks.count_geq(A, B, 1, low, false) @test c == count(x->x>=low, vec([a*b for a in A, b in B])) res = similar(A, c) @test sort!(GenericTensorNetworks.collect_geq!(res, A, B, 1, low)) == sort!(filter(x->x>=low, vec([a*b for a in A, b in B]))) end # check the correctness of sampling @testset "generate samples" begin Random.seed!(2) g = smallgraph(:petersen) gp = GenericTensorNetwork(IndependentSet(g)) t = solve(gp, ConfigsAll(tree_storage=true))[] cs = solve(gp, ConfigsAll())[] @test length(t) == 76 samples = generate_samples(t, 10000) counts = zeros(5) for sample in samples counts[count_ones(sample)+1] += 1 end @test isapprox(counts, [1,10,30,30,5] .* 10000 ./ 76, rtol=0.05) hd1 = hamming_distribution(samples, samples) |> normalize hd2 = hamming_distribution(cs, cs) |> normalize @test isapprox(hd1, hd2, atol=0.01) end @testset "LaurentPolynomial" begin @test GenericTensorNetworks._x(LaurentPolynomial{Float64, :x}; invert=false) == GenericTensorNetworks._x(Polynomial{Float64, :x}; invert=false) end @testset "readers" begin x = TruncatedPoly((2,3), 5) @test read_size_count(x) == [4=>2, 5=>3] s4 = [StaticBitVector(trues(10)) for j=1:3] s5 = [StaticBitVector(trues(10)) for j=1:4] x = TruncatedPoly((ConfigEnumerator(s4), ConfigEnumerator(s5)), 5) @test read_size_config(x) == [4=>s4, 5=>s5] end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
1025
using Test, GenericTensorNetworks using GenericTensorNetworks: statictrues, staticfalses, StaticBitVector, onehotv @testset "static bit vector" begin @test statictrues(StaticBitVector{3,1}) == trues(3) @test staticfalses(StaticBitVector{3,1}) == falses(3) @test_throws BoundsError statictrues(StaticBitVector{3,1})[4] #@test (@inbounds statictrues(StaticBitVector{3,1})[4]) == 0 x = rand(Bool, 131) y = rand(Bool, 131) a = StaticBitVector(x) b = StaticBitVector(y) a2 = BitVector(x) b2 = BitVector(y) for op in [|, &, ⊻] @test op(a, b) == op.(a2, b2) end @test onehotv(StaticBitVector{133,3}, 5) == (x = falses(133); x[5]=true; x) @test [StaticElementVector(3, [2,1,0,1])...] == [2,1,0,1] bl = rand(0:2,100) @test [StaticElementVector(3, bl)...] == bl bl = rand(1:15,100) xl = StaticElementVector(16, bl) @test typeof(xl) == StaticElementVector{100,4,7} @test [xl...] == bl @test bv"110_111" == StaticBitVector([1,1,0,1,1,1]) end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
1703
using Test, OMEinsum, GenericTensorNetworks, TropicalNumbers, Random using GenericTensorNetworks: cached_einsum, generate_masktree, masked_einsum, CacheTree, uniformsize, bounding_contract @testset "cached einsum" begin xs = map(x->Tropical.(x), [randn(2,2), randn(2), randn(2,2), randn(2,2), randn(2,2)]) code = ein"((ij,j),jk, kl), ii->kli" size_dict = uniformsize(code, 2) c = cached_einsum(code, xs, size_dict) @test c.content == code(xs...) mt = generate_masktree(AllConfigs{1}(), code, c, rand(Bool,2,2,2), size_dict) @test mt isa CacheTree{Bool} y = masked_einsum(code, xs, mt, size_dict) @test y isa AbstractArray end @testset "bounding contract" begin for seed in 1:100 Random.seed!(seed) xs = map(x->TropicalF64.(x), [rand(1:5,2,2), rand(1:5,2), rand(1:5,2,2), rand(1:5,2,2), rand(1:5,2,2)]) code = ein"((ij,j),jk, kl), ii->kli" y1 = code(xs...) y2 = bounding_contract(AllConfigs{1}(), code, xs, BitArray(ones(Bool,2,2,2)), xs) @test y1 ≈ y2 end rawcode = GenericTensorNetwork(IndependentSet(random_regular_graph(10, 3)); optimizer=nothing).code optcode = GenericTensorNetwork(IndependentSet(random_regular_graph(10, 3)); optimizer=GreedyMethod()).code xs = map(OMEinsum.getixs(rawcode)) do ix length(ix)==1 ? GenericTensorNetworks.misv([one(TropicalF64), TropicalF64(1.0)]) : GenericTensorNetworks.misb(TropicalF64) end y1 = rawcode(xs...) y2 = bounding_contract(AllConfigs{1}(), rawcode, xs, BitArray(fill(true)), xs) @test y1 ≈ y2 y1 = optcode(xs...) y2 = bounding_contract(AllConfigs{1}(), optcode, xs, BitArray(fill(true)), xs) @test y1 ≈ y2 end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
3235
using GenericTensorNetworks, Test, Graphs using OMEinsum using TropicalNumbers: CountingTropicalF64 using GenericTensorNetworks: _onehotv, _x, sampler_type, set_type, best_solutions, best2_solutions, solutions, all_solutions, bestk_solutions, AllConfigs, SingleConfig, max_size, max_size_count @testset "Config types" begin T = sampler_type(CountingTropical{Float32}, 5, 2) x = one(T) @test x.n === 0f0 @test x.c.data == falses(5) x = zero(T) @test x.n === Float32(-Inf) @test x.c.data == trues(5) x = _onehotv(T, 2, 1) @test x.n === 0f0 @test x.c.data == Bool[0,1,0,0,0] T = set_type(CountingTropical{Float32}, 5, 2) x = one(T) @test x.n === 0f0 @test length(x.c.data) == 1 && x.c.data[1] == falses(5) x = zero(T) @test x.n === Float32(-Inf) @test length(x.c.data) == 0 x = _onehotv(T, 2, 1) @test x.n === 0f0 @test length(x.c.data) == 1 && x.c.data[1] == Bool[0,1,0,0,0] x = _onehotv(T, 2, 0) @test x.c.data[1].data[1] == 0 end @testset "enumerating" begin problem = IndependentSet(smallgraph(:petersen)) rawcode = GenericTensorNetwork(problem, optimizer=nothing) @test rawcode.code isa DynamicEinCode optcode = GenericTensorNetwork(problem, optimizer=GreedyMethod()) for code in [rawcode, optcode] res0 = max_size(code) _, res1 = max_size_count(code) res2 = best_solutions(code; all=true)[] res3 = solutions(code, CountingTropical{Float64}; all=false)[] res4 = solutions(code, CountingTropical{Float64}; all=true)[] @test res0 == res2.n == res3.n == res4.n @test res1 == length(res2.c) == length(res4.c) @test res3.c.data ∈ res2.c.data @test res3.c.data ∈ res4.c.data res5 = best_solutions(code; all=false)[] @test res5.n == res0 @test res5.c.data ∈ res2.c.data res6 = best2_solutions(code; all=true)[] res6_ = bestk_solutions(code, 2)[] res7 = all_solutions(code)[] idp = graph_polynomial(code, Val(:finitefield))[] @test all(x->x ∈ res7.coeffs[end-1].data, res6.coeffs[1].data) @test all(x->x ∈ res7.coeffs[end].data, res6.coeffs[2].data) @test all(x->x ∈ res7.coeffs[end-1].data, res6_.coeffs[1].data) @test all(x->x ∈ res7.coeffs[end].data, res6_.coeffs[2].data) for (i, (s, c)) in enumerate(zip(res7.coeffs, idp.coeffs)) @test length(s) == c @test all(x->count_ones(x)==(i-1), s.data) end end end @testset "configs bug fix" begin subgraph = let g = SimpleGraph(5) vertices = "cdefg" for (w, v) in ["cd", "ce", "cf", "de", "ef", "fg"] add_edge!(g, findfirst(==(w), vertices), findfirst(==(v), vertices)) end g end problem = GenericTensorNetwork(IndependentSet(subgraph), openvertices=[1,4,5]) res1 = solve(problem, SizeMax(), T=Float64) @test res1 == Tropical.(reshape([1, 1, 2, -Inf, 2, 2, -Inf, -Inf], 2, 2, 2)) res2 = solve(problem, CountingMax(); T=Float64) res3 = solve(problem, ConfigsMax(; bounded=true); T=Float64) @test getfield.(res2, :n) == getfield.(res1, :n) @test getfield.(res3, :n) == getfield.(res1, :n) end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
2687
using CUDA, Random using LinearAlgebra: mul! using GenericTensorNetworks, Test using Graphs CUDA.allowscalar(false) @testset "cuda patch" begin for T in [Tropical{Float64}, CountingTropical{Float64,Float64}] a = T.(CUDA.randn(4, 4)) b = T.(CUDA.randn(4)) for A in [transpose(a), a, transpose(b)] for B in [transpose(a), a, b] if !(size(A) == (1,4) && size(B) == (4,)) res0 = Array(A) * Array(B) res1 = A * B res2 = mul!(CUDA.zeros(T, size(res0)...), A, B, true, false) @test Array(res1) ≈ res0 @test Array(res2) ≈ res0 end end end end end @testset "cuda functions" begin g = Graphs.smallgraph("petersen") item(x::AbstractArray) = Array(x)[] #optimizer = TreeSA(ntrials=1) optimizer = GreedyMethod() gp = GenericTensorNetwork(IndependentSet(g); optimizer=optimizer) @test contraction_complexity(gp).sc == 4 @test timespacereadwrite_complexity(gp)[2] == 4 @test timespace_complexity(gp)[2] == 4 res1 = solve(gp, SizeMax(); usecuda=true) |> item res2 = solve(gp, CountingAll(); usecuda=true) |> item res3 = solve(gp, CountingMax(Single); usecuda=true) |> item res4 = solve(gp, CountingMax(2); usecuda=true) |> item res5 = solve(gp, GraphPolynomial(; method = :polynomial))[] res6 = solve(gp, SingleConfigMax(); usecuda=true) |> item res7 = solve(gp, ConfigsMax(;bounded=false))[] res10 = solve(gp, GraphPolynomial(method=:fft); usecuda=true) |> item res11 = solve(gp, GraphPolynomial(method=:finitefield); usecuda=true) |> item res12 = solve(gp, SingleConfigMax(; bounded=true); usecuda=true) |> item res13 = solve(gp, ConfigsMax(;bounded=true))[] res14 = solve(gp, CountingMax(3); usecuda=true) |> item res18 = solve(gp, PartitionFunction(0.0); usecuda=true) |> item @test res1.n == 4 @test res2 == 76 @test res3.n == 4 && res3.c == 5 @test res4.maxorder == 4 && res4.coeffs[1] == 30 && res4.coeffs[2]==5 @test res6.c.data ∈ res7.c.data @test res10 ≈ res5 @test res11 == res5 @test res12.c.data ∈ res13.c.data @test res14.maxorder == 4 && res14.coeffs[1]==30 && res14.coeffs[2] == 30 && res14.coeffs[3]==5 @test res18 ≈ res2 end @testset "spinglass" begin g = Graphs.smallgraph("petersen") gp = GenericTensorNetwork(SpinGlass(g, UnitWeight())) usecuda=true @test solve(gp, CountingMax(); usecuda) isa CuArray gp2 = GenericTensorNetwork(SpinGlass(g, UnitWeight()); openvertices=(2,)) @test solve(gp2, CountingMax(); usecuda) isa CuArray end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
1843
using GenericTensorNetworks, Graphs, Test @testset "save load" begin M = 10 fname = tempname() m = ConfigEnumerator([StaticBitVector(rand(Bool, 300)) for i=1:M]) bm = GenericTensorNetworks.plain_matrix(m) rm = GenericTensorNetworks.raw_matrix(m) m1 = GenericTensorNetworks.from_raw_matrix(rm; bitlength=300, nflavors=2) m2 = GenericTensorNetworks.from_plain_matrix(bm; nflavors=2) @test m1 == m @test m2 == m save_configs(fname, m; format=:binary) @test_throws ErrorException load_configs("_test.bin"; format=:binary) ma = load_configs(fname; format=:binary, bitlength=300, nflavors=2) @test ma == m fname = tempname() save_configs(fname, m; format=:text) mb = load_configs(fname; format=:text, nflavors=2) @test mb == m M = 10 m = ConfigEnumerator([StaticElementVector(3, rand(0:2, 300)) for i=1:M]) bm = GenericTensorNetworks.plain_matrix(m) rm = GenericTensorNetworks.raw_matrix(m) m1 = GenericTensorNetworks.from_raw_matrix(rm; bitlength=300, nflavors=3) m2 = GenericTensorNetworks.from_plain_matrix(bm; nflavors=3) @test m1 == m @test m2 == m @test Matrix(m) == bm @test Vector(m.data[1]) == bm[:,1] fname = tempname() save_configs(fname, m; format=:binary) @test_throws ErrorException load_configs(fname; format=:binary) ma = load_configs(fname; format=:binary, bitlength=300, nflavors=3) @test ma == m fname = tempname() save_configs(fname, m; format=:text) mb = load_configs(fname; format=:text, nflavors=3) @test mb == m end @testset "save load tree" begin fname = tempname() tree = solve(GenericTensorNetwork(IndependentSet(smallgraph(:petersen))), ConfigsAll(; tree_storage=true))[] save_sumproduct(fname, tree) ma = load_sumproduct(fname) @test ma == tree end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
2242
using GenericTensorNetworks, Test, OMEinsum using GenericTensorNetworks.Mods, Polynomials, TropicalNumbers using Graphs, Random using GenericTensorNetworks: StaticBitVector, graph_polynomial @testset "bond and vertex tensor" begin @test GenericTensorNetworks.misb(TropicalF64) == [TropicalF64(0) TropicalF64(0); TropicalF64(0) TropicalF64(-Inf)] @test GenericTensorNetworks.misv([one(TropicalF64), TropicalF64(2.0)]) == [TropicalF64(0), TropicalF64(2.0)] end @testset "graph generator" begin g = diagonal_coupled_graph(trues(3, 3)) @test ne(g) == 20 g = diagonal_coupled_graph((x = trues(3, 3); x[2,2]=0; x)) @test ne(g) == 12 @test length(GenericTensorNetworks.labels(GenericTensorNetwork(IndependentSet(g)).code)) == 8 end @testset "independence_polynomial" begin Random.seed!(2) g = random_regular_graph(10, 3) tn = GenericTensorNetwork(IndependentSet(g)) p1 = graph_polynomial(tn, Val(:fitting))[] p2 = graph_polynomial(tn, Val(:polynomial))[] p3 = graph_polynomial(tn, Val(:fft))[] p4 = graph_polynomial(tn, Val(:finitefield))[] p5 = graph_polynomial(tn, Val(:finitefield); max_iter=1)[] p8 = solve(tn, GraphPolynomial(; method=:laurent))[] tn9 = GenericTensorNetwork(IndependentSet(g, fill(-1, 10))) p9 = solve(tn9, GraphPolynomial(; method=:polynomial))[] tn10 = GenericTensorNetwork(IndependentSet(g, rand([1,-1], 10))) p10 = solve(tn10, GraphPolynomial(; method=:laurent))[] @test p1 ≈ p2 @test p1 ≈ p3 @test p1 ≈ p4 @test p1 ≈ p5 @test p1 ≈ p8 @test p1 ≈ GenericTensorNetworks.invert_polynomial(p9) @test sum(p10.coeffs) == sum(p1.coeffs) # test overflow g = random_regular_graph(120, 3) gp = GenericTensorNetwork(IndependentSet(g), optimizer=TreeSA(; ntrials=1)) p6 = graph_polynomial(gp, Val(:polynomial))[] p7 = graph_polynomial(gp, Val(:finitefield))[] @test p6.coeffs ≈ p7.coeffs end @testset "open indices" begin g = SimpleGraph(3) for (i,j) in [(1,2), (2,3)] add_edge!(g, i, j) end tn = GenericTensorNetwork(IndependentSet(g); openvertices=(1,3)) m1 = solve(tn, GraphPolynomial()) m2 = solve(tn, GraphPolynomial(;method=:polynomial)) @test m1 == m2 end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
463
using GenericTensorNetworks, Test, Graphs @testset "special graphs" begin g = random_square_lattice_graph(10, 10, 0.5) @test nv(g) == 50 g = random_diagonal_coupled_graph(10, 10, 0.5) @test nv(g) == 50 g = unit_disk_graph([(0.1, 0.2), (0.2, 0.3), (1.2, 1.4)], 1.0) @test ne(g) == 1 @test nv(g) == 3 end @testset "line graph" begin g = smallgraph(:petersen) lg = line_graph(g) @test nv(lg) == 15 @test ne(lg) == 45 end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
13648
using GenericTensorNetworks using Graphs, Test, Random @testset "independent set problem" begin g = Graphs.smallgraph("petersen") for optimizer in (GreedyMethod(), TreeSA(ntrials=1)) Random.seed!(3) gp = GenericTensorNetwork(IndependentSet(g); optimizer=optimizer) @test contraction_complexity(gp).sc == 4 @test timespacereadwrite_complexity(gp)[2] == 4 @test timespace_complexity(gp)[2] == 4 res1 = solve(gp, SizeMax())[] res2 = solve(gp, CountingAll())[] res3 = solve(gp, CountingMax(Single))[] res4 = solve(gp, CountingMax(2))[] res5 = solve(gp, GraphPolynomial(; method = :polynomial))[] res5b = solve(gp, GraphPolynomial(; method = :laurent))[] res6 = solve(gp, SingleConfigMax())[] res7 = solve(gp, ConfigsMax(;bounded=false))[] res8 = solve(gp, ConfigsMax(2; bounded=false))[] res9 = solve(gp, ConfigsAll())[] res10 = solve(gp, GraphPolynomial(method=:fft))[] res11 = solve(gp, GraphPolynomial(method=:finitefield))[] res12 = solve(gp, SingleConfigMax(; bounded=true))[] res13 = solve(gp, ConfigsMax(;bounded=true))[] res14 = solve(gp, CountingMax(3))[] res15 = solve(gp, ConfigsMax(3))[] res16 = solve(gp, ConfigsMax(2; bounded=true))[] res17 = solve(gp, ConfigsMax(3; bounded=true))[] res18 = solve(gp, PartitionFunction(0.0))[] @test res1.n == 4 == read_size(res1) @test res2 == 76 res3n, res3c = read_size_count(res3) @test read_count(res3) == res3c @test read_size(res3) == res3n @test res3.n == 4 == res3n && res3.c == 5 == res3c res4nc = read_size_count(res4) @test read_size(res4) == getfield.(res4nc, :first) @test read_count(res4) == getfield.(res4nc, :second) @test res4.maxorder == 4 == res4nc[end].first && res4.coeffs[1] == 30 == res4nc[1].second && res4.coeffs[2]==5 == res4nc[2].second @test read_size_count(res5) == [0=>1.0, 1=>10.0, 2=>30.0, 3=>30.0, 4=>5.0] @test res5 == Polynomial([1.0, 10.0, 30, 30, 5]) @test read_size_count(res5b) == [0=>1.0, 1=>10.0, 2=>30.0, 3=>30.0, 4=>5.0] @test read_size(res5b) == getfield.(read_size_count(res5), :first) @test read_count(res5b) == getfield.(read_size_count(res5), :second) @test res5b == LaurentPolynomial([1.0, 10.0, 30, 30, 5]) res6n, res6c = read_size_config(res6) @test read_size(res6) == res6n @test read_config(res6) == res6c res7n, res7c = read_size_config(res7) @test read_size(res7) == res7n @test read_config(res7) == res7c @test res6.c.data ∈ res7.c.data @test res6n == res6n @test res6c ∈ res7c @test all(x->sum(x) == 4, res7.c.data) res8nc = read_size_config(res8) @test read_size(res8) == getfield.(res8nc, :first) @test read_config(res8) == getfield.(res8nc, :second) res8p = Polynomial(res8) order = length(res8p.coeffs) @test read_size(res8p)[order-1:order] == getfield.(res8nc, :first) @test read_config(res8p)[order-1:order] == getfield.(res8nc, :second) @test res8nc[1].second == res8.coeffs[1].data @test all(x->sum(x) == 3, res8.coeffs[1].data) && all(x->sum(x) == 4, res8.coeffs[2].data) && length(res8.coeffs[1].data) == 30 && length(res8.coeffs[2].data) == 5 res9c = read_config(res9) @test res9c == res9.data @test length(unique(res9.data)) == 76 && all(c->is_independent_set(g, c), res9.data) @test res10 ≈ res5 @test res11 == res5 res12n, res12c = read_size_config(res12) @test res12n == res12.n @test res12c == res12.c.data @test res12.c.data ∈ res13.c.data @test res13.c == res7.c @test res14.maxorder == 4 && res14.coeffs[1]==30 && res14.coeffs[2] == 30 && res14.coeffs[3]==5 @test all(x->sum(x) == 2, res15.coeffs[1].data) && all(x->sum(x) == 3, res15.coeffs[2].data) && all(x->sum(x) == 4, res15.coeffs[3].data) && length(res15.coeffs[1].data) == 30 && length(res15.coeffs[2].data) == 30 && length(res15.coeffs[3].data) == 5 @test all(x->sum(x) == 3, res16.coeffs[1].data) && all(x->sum(x) == 4, res16.coeffs[2].data) && length(res16.coeffs[1].data) == 30 && length(res16.coeffs[2].data) == 5 @test all(x->sum(x) == 2, res17.coeffs[1].data) && all(x->sum(x) == 3, res17.coeffs[2].data) && all(x->sum(x) == 4, res17.coeffs[3].data) && length(res17.coeffs[1].data) == 30 && length(res17.coeffs[2].data) == 30 && length(res17.coeffs[3].data) == 5 @test res18 ≈ res2 end end @testset "slicing" begin g = Graphs.smallgraph("petersen") gp = GenericTensorNetwork(IndependentSet(g), optimizer=TreeSA(nslices=5, ntrials=1)) res1 = solve(gp, SizeMax())[] res2 = solve(gp, CountingAll())[] res3 = solve(gp, CountingMax(Single))[] res4 = solve(gp, CountingMax(2))[] res5 = solve(gp, GraphPolynomial(; method = :polynomial))[] res6 = solve(gp, SingleConfigMax())[] res7 = solve(gp, ConfigsMax(;bounded=false))[] res8 = solve(gp, ConfigsMax(2; bounded=false))[] res9 = solve(gp, ConfigsAll())[] res10 = solve(gp, GraphPolynomial(method=:fft))[] res11 = solve(gp, GraphPolynomial(method=:finitefield))[] res12 = solve(gp, SingleConfigMax(; bounded=true))[] res13 = solve(gp, ConfigsMax(;bounded=true))[] res14 = solve(gp, CountingMax(3))[] res15 = solve(gp, ConfigsMax(3))[] res16 = solve(gp, ConfigsMax(2; bounded=true))[] res17 = solve(gp, ConfigsMax(3; bounded=true))[] @test res1.n == 4 @test res2 == 76 @test res3.n == 4 && res3.c == 5 @test res4.maxorder == 4 && res4.coeffs[1] == 30 && res4.coeffs[2]==5 @test res5 == Polynomial([1.0, 10.0, 30, 30, 5]) @test res6.c.data ∈ res7.c.data @test all(x->sum(x) == 4, res7.c.data) @test all(x->sum(x) == 3, res8.coeffs[1].data) && all(x->sum(x) == 4, res8.coeffs[2].data) && length(res8.coeffs[1].data) == 30 && length(res8.coeffs[2].data) == 5 @test length(unique(res9.data)) == 76 && all(c->is_independent_set(g, c), res9.data) @test res10 ≈ res5 @test res11 == res5 @test res12.c.data ∈ res13.c.data @test res13.c == res7.c @test res14.maxorder == 4 && res14.coeffs[1]==30 && res14.coeffs[2] == 30 && res14.coeffs[3]==5 @test all(x->sum(x) == 2, res15.coeffs[1].data) && all(x->sum(x) == 3, res15.coeffs[2].data) && all(x->sum(x) == 4, res15.coeffs[3].data) && length(res15.coeffs[1].data) == 30 && length(res15.coeffs[2].data) == 30 && length(res15.coeffs[3].data) == 5 @test all(x->sum(x) == 3, res16.coeffs[1].data) && all(x->sum(x) == 4, res16.coeffs[2].data) && length(res16.coeffs[1].data) == 30 && length(res16.coeffs[2].data) == 5 @test all(x->sum(x) == 2, res17.coeffs[1].data) && all(x->sum(x) == 3, res17.coeffs[2].data) && all(x->sum(x) == 4, res17.coeffs[3].data) && length(res17.coeffs[1].data) == 30 && length(res17.coeffs[2].data) == 30 && length(res17.coeffs[3].data) == 5 end @testset "Weighted" begin g = Graphs.smallgraph("petersen") gp = IndependentSet(g, collect(1:10)) |> GenericTensorNetwork res1 = solve(gp, SizeMax())[] @test res1 == Tropical(24.0) res2 = solve(gp, CountingMax(Single))[] @test res2 == CountingTropical(24.0, 1.0) res2b = solve(gp, CountingMax(2))[] @test res2b == Max2Poly(1.0, 1.0, 24.0) res3 = solve(gp, SingleConfigMax(; bounded=false))[] res3b = solve(gp, SingleConfigMax(; bounded=true))[] @test res3 == res3b @test sum(collect(res3.c.data) .* (1:10)) == 24.0 res4 = solve(gp, ConfigsMax(Single; bounded=false))[] res4b = solve(gp, ConfigsMax(Single; bounded=true))[] @test res4 == res4b @test res4.c.data[] == res3.c.data g = Graphs.smallgraph("petersen") gp = IndependentSet(g, fill(0.5, 10)) |> GenericTensorNetwork res5 = solve(gp, SizeMax(6))[] @test res5.orders == Tropical.([3.0,4,4,4,4,4] ./ 2) res6 = solve(gp, SingleConfigMax(6))[] res6c = read_config(res6) @test res6c == getfield.(getfield.(res6.orders, :c), :data) @test all(enumerate(res6.orders)) do r i, o = r is_independent_set(g, o.c.data) && count_ones(o.c.data) == (i==1 ? 3 : 4) end end @testset "tree storage" begin g = smallgraph(:petersen) gp = IndependentSet(g) |> GenericTensorNetwork res1 = solve(gp, ConfigsAll(; tree_storage=true))[] res2 = solve(gp, ConfigsAll(; tree_storage=false))[] @test res1 isa SumProductTree && res2 isa ConfigEnumerator @test length(res1) == length(res2) @test Set(res2 |> collect) == Set(res1 |> collect) res1 = solve(gp, ConfigsMax(; tree_storage=true))[] res2 = solve(gp, ConfigsMax(; tree_storage=false))[].c res1n, res1c = read_size_config(res1) @test read_size(res1) == res1n @test read_config(res1) == res1c @test res1c == collect(res1.c) @test res1.c isa SumProductTree && res2 isa ConfigEnumerator @test length(res1.c) == length(res2) @test Set(res2 |> collect) == Set(res1.c |> collect) res1s = solve(gp, ConfigsMax(2; tree_storage=true))[] res2s = solve(gp, ConfigsMax(2; tree_storage=false))[].coeffs res1ncs = read_size_config(res1s) @test length(res1ncs) == 2 @test res1ncs[1].second == collect(res1s.coeffs[1]) for (res1, res2) in zip(res1s.coeffs, res2s) @test res1 isa SumProductTree && res2 isa ConfigEnumerator @test length(res1) == length(res2) @test Set(res2 |> collect) == Set(res1 |> collect) end res1 = solve(gp, ConfigsMin(; tree_storage=true))[] res2 = solve(gp, ConfigsMin(; tree_storage=false))[].c @test res1.c isa SumProductTree && res2 isa ConfigEnumerator @test length(res1.c) == length(res2) @test Set(res2 |> collect) == Set(res1.c |> collect) res1s = solve(gp, ConfigsMin(2; tree_storage=true))[].coeffs res2s = solve(gp, ConfigsMin(2; tree_storage=false))[].coeffs for (res1, res2) in zip(res1s, res2s) @test res1 isa SumProductTree && res2 isa ConfigEnumerator @test length(res1) == length(res2) @test Set(res2 |> collect) == Set(res1 |> collect) end end @testset "memory estimation" begin gp = IndependentSet(smallgraph(:petersen)) |> GenericTensorNetwork for property in [ SizeMax(), SizeMin(), SizeMax(3), SizeMin(3), CountingMax(), CountingMin(), CountingMax(2), CountingMin(2), ConfigsMax(;bounded=true), ConfigsMin(;bounded=true), ConfigsMax(2;bounded=true), ConfigsMin(2;bounded=true), ConfigsMax(;bounded=false), ConfigsMin(;bounded=false), ConfigsMax(2;bounded=false), ConfigsMin(2;bounded=false), SingleConfigMax(;bounded=false), SingleConfigMin(;bounded=false), CountingAll(), ConfigsAll(), SingleConfigMax(2), SingleConfigMin(2), SingleConfigMax(2; bounded=true), SingleConfigMin(2,bounded=true), ] @show property ET = GenericTensorNetworks.tensor_element_type(Float32, 10, 2, property) @test eltype(solve(gp, property, T=Float32)) <: ET @test estimate_memory(gp, property) isa Integer end @test GenericTensorNetworks.tensor_element_type(Float32, 10, 2, GraphPolynomial(method=:polynomial)) == Polynomial{Float32, :x} @test GenericTensorNetworks.tensor_element_type(Float32, 10, 2, GraphPolynomial(method=:laurent)) == LaurentPolynomial{Float32, :x} @test sizeof(GenericTensorNetworks.tensor_element_type(Float32, 10, 2, GraphPolynomial(method=:fitting))) == 4 @test sizeof(GenericTensorNetworks.tensor_element_type(Float32, 10, 2, GraphPolynomial(method=:fft))) == 8 @test sizeof(GenericTensorNetworks.tensor_element_type(Float64, 10, 2, GraphPolynomial(method=:finitefield))) == 4 @test GenericTensorNetworks.tensor_element_type(Float32, 10, 2, SingleConfigMax(;bounded=true)) == Tropical{Float32} @test GenericTensorNetworks.tensor_element_type(Float32, 10, 2, SingleConfigMin(;bounded=true)) == Tropical{Float32} @test estimate_memory(gp, SizeMax()) * 2 == estimate_memory(gp, CountingMax()) @test estimate_memory(gp, SizeMax()) == estimate_memory(gp, PartitionFunction(1.0)) @test estimate_memory(gp, SingleConfigMax(bounded=true)) > estimate_memory(gp, SingleConfigMax(bounded=false)) @test estimate_memory(gp, ConfigsMax(bounded=true)) == estimate_memory(gp, SingleConfigMax(bounded=false)) @test estimate_memory(gp, GraphPolynomial(method=:fitting); T=Float32) * 4 == estimate_memory(gp, GraphPolynomial(method=:fft)) @test estimate_memory(gp, GraphPolynomial(method=:finitefield)) * 10 == estimate_memory(gp, GraphPolynomial(method=:polynomial); T=Float32) end @testset "error on not solvable problems" begin gp = GenericTensorNetwork(IndependentSet(smallgraph(:petersen), rand(1:3, 10))) @test !GenericTensorNetworks.has_noninteger_weights(gp) gp = GenericTensorNetwork(IndependentSet(smallgraph(:petersen), rand(10))) @test GenericTensorNetworks.has_noninteger_weights(gp) @test_throws ArgumentError solve(gp, GraphPolynomial()) @test_throws ArgumentError solve(gp, CountingMax(2)) @test solve(gp, CountingMax(Single)) isa Array @test_throws ArgumentError solve(gp, ConfigsMax(2)) @test solve(gp, CountingMin(Single)) isa Array @test_throws ArgumentError solve(gp, ConfigsMin(2)) @test solve(gp, ConfigsMax(Single)) isa Array @test_throws ArgumentError solve(gp, ConfigsMin(2)) @test solve(gp, ConfigsMin(Single)) isa Array @test_throws AssertionError ConfigsMin(0) end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
188
using GenericTensorNetworks.SimpleMultiprocessing, Test @testset "multiprocessing" begin results = multiprocess_run(x->x^2, collect(1:5)) @test results == [1, 2, 3, 4, 5] .^ 2 end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
1045
using GenericTensorNetworks using Test, Documenter @testset "mods.jl" begin include(pkgdir(GenericTensorNetworks, "src", "Mods.jl", "test", "runtests.jl")) end @testset "bitvector" begin include("bitvector.jl") end @testset "arithematics" begin include("arithematics.jl") end @testset "independence polynomial" begin include("graph_polynomials.jl") end @testset "configurations" begin include("configurations.jl") end @testset "bounding" begin include("bounding.jl") end @testset "interfaces" begin include("interfaces.jl") end @testset "networks" begin include("networks/networks.jl") end @testset "graphs" begin include("graphs.jl") end @testset "visualize" begin include("visualize.jl") end @testset "fileio" begin include("fileio.jl") end @testset "multiprocessing" begin include("multiprocessing.jl") end using CUDA if CUDA.functional() @testset "cuda" begin include("cuda.jl") end end # -------------- # doctests # -------------- doctest(GenericTensorNetworks)
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
1219
using GenericTensorNetworks, Test, Graphs using LuxorGraphPlot: StressLayout, SpringLayout, Luxor @testset "visualize" begin graph = smallgraph(:petersen) @test show_graph(graph) isa Any configs = [rand(Bool, 10) for i=1:5, j=1:3] @test show_configs(graph, StressLayout(), configs) isa Luxor.Drawing end @testset "einsum" begin graph = smallgraph(:petersen) pb = GenericTensorNetwork(IndependentSet(graph)) @test show_einsum(pb.code; layout=SpringLayout(; optimal_distance=25), annotate_tensors=true) isa Luxor.Drawing @test show_einsum(pb.code; layout=SpringLayout(; optimal_distance=25), locs=([(randn(), randn()) .* 40 for i=1:25], Dict(i=>(randn(), randn()) .* 40 for i=1:10))) isa Luxor.Drawing end @testset "landscape" begin graph = smallgraph(:petersen) pb = GenericTensorNetwork(IndependentSet(graph)) res = solve(pb, ConfigsMax(2))[] @test show_landscape((x, y)->hamming_distance(x, y) <= 2, res; layout_method=:spring) isa Luxor.Drawing @test show_landscape((x, y)->hamming_distance(x, y) <= 2, res; layout_method=:stress) isa Luxor.Drawing @test show_landscape((x, y)->hamming_distance(x, y) <= 2, res; layout_method=:spectral) isa Luxor.Drawing end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
2190
using Test, GenericTensorNetworks, Graphs @testset "enumerating - coloring" begin g = SimpleGraph(5) for (i,j) in [(1,2),(2,3),(3,4),(4,1),(1,5),(2,4)] add_edge!(g, i, j) end code = GenericTensorNetwork(Coloring{3}(g); optimizer=GreedyMethod()) res = GenericTensorNetworks.best_solutions(code; all=true)[] @test length(res.c.data) == 12 g = smallgraph(:petersen) code = GenericTensorNetwork(Coloring{3}(g); optimizer=GreedyMethod()) res = GenericTensorNetworks.best_solutions(code; all=true)[] @test length(res.c.data) == 120 c = solve(code, SingleConfigMax())[] @test c.c.data ∈ res.c.data @test is_vertex_coloring(g, c.c.data) end @testset "weighted coloring" begin g = smallgraph(:petersen) problem = GenericTensorNetwork(Coloring{3}(g, fill(2, 15))) @test get_weights(problem) == fill(2, 15) @test get_weights(chweights(problem, fill(3, 15))) == fill(3, 15) @test solve(problem, SizeMax())[].n == 30 res = solve(problem, SingleConfigMax())[].c.data @test is_vertex_coloring(g, res) end @testset "empty graph" begin g = SimpleGraph(4) pb = GenericTensorNetwork(Coloring{3}(g)) @test solve(pb, SizeMax()) !== 4 end @testset "planar gadget checking" begin function graph_crossing_gadget() edges = [ (1,2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 1), (9, 10), (10, 11), (11, 12), (12, 9), (1, 9), (3, 10), (5, 11), (7, 12), (2, 10), (4, 11), (6, 12), (8, 9), (13, 9), (13, 10), (13, 11), (13, 12), ] g = SimpleGraph(13) for (i, j) in edges add_edge!(g, i, j) end return g end g = graph_crossing_gadget() problem = GenericTensorNetwork(Coloring{3}(g); openvertices=[3, 5]) res = solve(problem, ConfigsMax()) for i=1:3 for ci in res[i,i].c @test ci[1] === ci[3] === ci[5] === ci[7] == i-1 end end for (i, j) in [(1, 2), (1, 3), (2, 3), (2,1), (3, 1), (3, 2)] for ci in res[i,j].c @test ci[1] === ci[5] == j-1 @test ci[3] === ci[7] == i-1 end end end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
1212
using GenericTensorNetworks, Test, Graphs @testset "dominating set basic" begin g = smallgraph(:petersen) mask = trues(10) mask[neighbors(g, 1)] .= false @test is_dominating_set(g, mask) mask[1] = false @test !is_dominating_set(g, mask) @test GenericTensorNetworks.dominating_set_tensor(TropicalF64(0), TropicalF64(1), 3)[:,:,1] == TropicalF64[-Inf 0.0; 0 0] @test GenericTensorNetworks.dominating_set_tensor(TropicalF64(0), TropicalF64(1), 3)[:,:,2] == TropicalF64[1.0 1.0; 1.0 1.0] end @testset "dominating set v.s. maximal IS" begin g = smallgraph(:petersen) gp1 = GenericTensorNetwork(DominatingSet(g)) @test get_weights(gp1) == UnitWeight() @test get_weights(chweights(gp1, fill(3, 10))) == fill(3, 10) @test solve(gp1, SizeMax())[].n == 10 res1 = solve(gp1, ConfigsMin())[].c gp2 = GenericTensorNetwork(MaximalIS(g)) res2 = solve(gp2, ConfigsMin())[].c @test res1 == res2 configs = solve(gp2, ConfigsAll())[] for config in configs @test is_dominating_set(g, config) end end @testset "empty graph" begin g = SimpleGraph(4) pb = GenericTensorNetwork(DominatingSet(g)) @test solve(pb, SizeMax()) !== 4 end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
794
using GenericTensorNetworks, Test, Graphs @testset "mis compactify" begin g = SimpleGraph(6) for (i,j) in [(1,2), (2,3), (4,5), (5,6), (1,6)] add_edge!(g, i, j) end g = GenericTensorNetwork(IndependentSet(g); openvertices=[1,4,6,3]) m = solve(g, SizeMax()) @test m isa Array{Tropical{Float64}, 4} @test count(!iszero, m) == 12 m1 = mis_compactify!(copy(m)) @test count(!iszero, m1) == 3 potential = zeros(Float64, 4) m2 = mis_compactify!(copy(m); potential) @test count(!iszero, m2) == 1 @test get_weights(g) == UnitWeight() @test get_weights(chweights(g, fill(3, 6))) == fill(3, 6) end @testset "empty graph" begin g = SimpleGraph(4) pb = GenericTensorNetwork(IndependentSet(g)) @test solve(pb, SizeMax()) !== 4 end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
1501
using Test, GenericTensorNetworks, Graphs using GenericTensorNetworks: solutions @testset "enumerating - matching" begin g = smallgraph(:petersen) code = GenericTensorNetwork(Matching(g); optimizer=GreedyMethod(), fixedvertices=Dict()) res = solutions(code, CountingTropicalF64; all=true)[] @test res.n == 5 @test length(res.c.data) == 6 code = GenericTensorNetwork(Matching(g); optimizer=GreedyMethod(), fixedvertices=Dict((1,2)=>1)) @test get_weights(code) == UnitWeight() @test get_weights(chweights(code, fill(3, 15))) == fill(3, 15) res = solutions(code, CountingTropicalF64; all=true)[] @test res.n == 5 k = findfirst(x->x==(1,2), labels(code)) @test length(res.c.data) == 2 && res.c.data[1][k] == 1 && res.c.data[2][k] == 1 end @testset "match polynomial" begin g = SimpleGraph(7) for (i,j) in [(1,2),(2,3),(3,4),(4,5),(5,6),(6,1),(1,7)] add_edge!(g, i, j) end @test graph_polynomial(GenericTensorNetwork(Matching(g)), Val(:polynomial))[] == Polynomial([1,7,13,5]) g = smallgraph(:petersen) @test graph_polynomial(GenericTensorNetwork(Matching(g)), Val(:polynomial))[].coeffs == [6, 90, 145, 75, 15, 1][end:-1:1] end @testset "weighted matching" begin g = smallgraph(:petersen) problem = GenericTensorNetwork(Matching(g, fill(2, 15))) @test solve(problem, SizeMax())[].n == 10 res = solve(problem, SingleConfigMax())[].c.data @test is_matching(g, res) @test count_ones(res) * 2 == 10 end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
2365
using GenericTensorNetworks, Test, Graphs using GenericTensorNetworks: max_size, graph_polynomial @testset "graph utils" begin g2 = SimpleGraph(3) add_edge!(g2, 1,2) for g in [smallgraph(:petersen), g2] gp = GenericTensorNetwork(MaxCut(g)) mc = max_size(gp) config = solve(gp, SingleConfigMax())[].c.data @test cut_size(g, config) == mc end g = smallgraph(:petersen) # weighted ws = collect(1:ne(g)) gp = GenericTensorNetwork(MaxCut(g, ws)) @test get_weights(gp) == [ws..., zeros(10)...] @test get_weights(chweights(gp, fill(3, 25))) == fill(3, 25) mc = max_size(gp) config = solve(gp, SingleConfigMax())[].c.data @test solve(gp, CountingMax())[].c == 2 @test cut_size(g, config; edge_weights=ws) == mc end @testset "MaxCut" begin g = SimpleGraph(5) for (i,j) in [(1,2),(2,3),(3,4),(4,1),(1,5),(2,4)] add_edge!(g, i, j) end @test graph_polynomial(GenericTensorNetwork(MaxCut(g)), Val(:polynomial))[] == Polynomial([2,2,4,12,10,2]) @test graph_polynomial(GenericTensorNetwork(MaxCut(g)), Val(:finitefield))[] == Polynomial([2,2,4,12,10,2]) end @testset "enumerating - max cut" begin g = SimpleGraph(5) for (i,j) in [(1,2),(2,3),(3,4),(4,1),(1,5),(2,4)] add_edge!(g, i, j) end code = GenericTensorNetwork(MaxCut(g); optimizer=GreedyMethod()) res = GenericTensorNetworks.best_solutions(code; all=true)[] @test length(res.c.data) == 2 @test cut_size(g, res.c.data[1]) == 5 end @testset "fix vertices - max cut" begin g = SimpleGraph(5) for (i,j) in [(1,2),(2,3),(3,4),(4,1),(1,5),(2,4)] add_edge!(g, i, j) end fixedvertices = Dict(1=>1, 4=>0) problem = GenericTensorNetwork(MaxCut(g), fixedvertices=fixedvertices) optimal_config = solve(problem, ConfigsMax())[].c @test length(optimal_config) == 1 @test optimal_config[1] == StaticBitVector(Array{Bool, 1}([1, 0, 1, 0, 0])) end @testset "vertex weights" begin g = smallgraph(:petersen) edge_weights = collect(1:ne(g)) vertex_weights = collect(1:nv(g)) gp = GenericTensorNetwork(MaxCut(g, edge_weights, vertex_weights)) mc = max_size(gp) config = solve(gp, SingleConfigMax())[].c.data @test solve(gp, CountingMax())[].c == 1 @test cut_size(g, config; edge_weights, vertex_weights) == mc end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
2432
using GenericTensorNetworks, Test, Graphs using GenericTensorNetworks: graph_polynomial @testset "counting maximal IS" begin g = random_regular_graph(20, 3) gp = GenericTensorNetwork(MaximalIS(g), optimizer=KaHyParBipartite(sc_target=20)) @test get_weights(gp) == UnitWeight() @test get_weights(chweights(gp, fill(3, 20))) == fill(3, 20) cs = graph_polynomial(gp, Val(:fft); r=1.0)[] gp = GenericTensorNetwork(MaximalIS(g), optimizer=SABipartite(sc_target=20)) cs2 = graph_polynomial(gp, Val(:polynomial))[] gp = GenericTensorNetwork(MaximalIS(g), optimizer=GreedyMethod()) cs3 = graph_polynomial(gp, Val(:finitefield))[] cg = complement(g) cliques = maximal_cliques(cg) for i=1:20 c = count(x->length(x)==i, cliques) if c > 0 @test cs2.coeffs[i+1] == c @test cs3.coeffs[i+1] == c @test cs.coeffs[i+1] ≈ c end end end @testset "counting minimum maximal IS" begin g = smallgraph(:tutte) net = GenericTensorNetwork(MaximalIS(g)) res = solve(net, SizeMin())[] res2 = solve(net, SizeMin(10))[] res3 = solve(net, SingleConfigMin(10))[] poly = solve(net, GraphPolynomial())[] @test poly == Polynomial([fill(0.0, 13)..., 2, 150, 7510, 71669, 66252, 14925, 571]) @test res.n == 13 @test res2.orders == Tropical.([13, 13, fill(14, 8)...]) @test all(r->is_maximal_independent_set(g, r[2].c.data) && count_ones(r[2].c.data)==r[1].n, zip(res2.orders, res3.orders)) @test solve(net, CountingMin())[].c == 2 min2 = solve(net, CountingMin(3))[] @test min2.maxorder == 15 @test min2.coeffs == (2, 150, 7510) for bounded in [false, true] @info("bounded = ", bounded, ", configs max1") @test length(solve(net, ConfigsMin(; bounded=bounded))[].c) == 2 println("bounded = ", bounded, ", configs max3") cmin2 = solve(net, ConfigsMin(3; bounded=bounded))[] @test cmin2.maxorder == 15 @test length.(cmin2.coeffs) == (2, 150, 7510) println("bounded = ", bounded, ", single config min") c = solve(net, SingleConfigMin(; bounded=bounded), T=Int64)[].c.data @test c ∈ cmin2.coeffs[1].data @test is_maximal_independent_set(g, c) @test count(!iszero, c) == 13 end end @testset "empty graph" begin g = SimpleGraph(4) @test solve(GenericTensorNetwork(MaximalIS(g)), SizeMax()) !== 4 end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
780
using GenericTensorNetworks, Test, Graphs @testset "open pit mining" begin rewards = zeros(Int,6,6) rewards[1,:] .= [-4,-7,-7,-17,-7,-26] rewards[2,2:end-1] .= [39, -7, -7, -4] rewards[3,3:end-2] .= [1, 8] problem = GenericTensorNetwork(OpenPitMining(rewards)) @test get_weights(problem) == [-4,-7,-7,-17,-7,-26, 39, -7, -7, -4, 1, 8] @test get_weights(chweights(problem, fill(3, 20))) == fill(3, 12) res = solve(problem, SingleConfigMax())[] @test is_valid_mining(rewards, res.c.data) @test res.n == 21 print_mining(rewards, res.c.data) val, mask = GenericTensorNetworks.open_pit_mining_branching(rewards) @test val == res.n res_b = map(block->mask[block...], problem.problem.blocks) @test res_b == [res.c.data...] end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
530
using GenericTensorNetworks, Test @testset "paint shop" begin syms = collect("abaccb") pb = GenericTensorNetwork(PaintShop(syms)) @test get_weights(pb) == UnitWeight() @test get_weights(chweights(pb, fill(3, 15))) == UnitWeight() @test solve(pb, SizeMin())[] == Tropical(2.0) config = solve(pb, SingleConfigMin())[].c.data coloring = paint_shop_coloring_from_config(pb.problem, config) @test num_paint_shop_color_switch(syms, coloring) == 2 @test bv"100" ∈ solve(pb, ConfigsMin())[].c.data end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
2227
using Test using GenericTensorNetworks @testset "CNF" begin @bools x y z a b c println(x) @test x == BoolVar(:x, false) @test ¬x == BoolVar(:x, true) @test x ∨ ¬y ∨ (z ∨ (¬a ∨ b)) == CNFClause([x, ¬y, z, ¬a, b]) c1 = x ∨ ¬y c2 = c ∨ (¬a ∨ b) c3 = (z ∨ ¬a) ∨ y c4 = (c ∨ z) ∨ ¬b println(c4) @test c1 ∧ c2 == CNF([c1, c2]) @test (c1 ∧ c2) ∧ c3 == CNF([c1, c2, c3]) @test c1 ∧ (c2 ∧ c3) == CNF([c1, c2, c3]) @test (c1 ∧ c4) ∧ (c2 ∧ c3) == CNF([c1, c4, c2, c3]) cnf = (c1 ∧ c4) ∧ (c2 ∧ c3) println(cnf) gp = GenericTensorNetwork(Satisfiability(cnf)) @test satisfiable(cnf, Dict(:x=>true, :y=>true, :z=>true, :a=>false, :b=>false, :c=>true)) @test !satisfiable(cnf, Dict(:x=>false, :y=>true, :z=>true, :a=>false, :b=>false, :c=>true)) @test get_weights(gp) == UnitWeight() @test get_weights(chweights(gp, fill(3, 4))) == fill(3,4) @test_throws AssertionError Satisfiability(cnf, fill(3, 9)) end @testset "enumeration - sat" begin @bools x y z a b c c1 = x ∨ ¬y c2 = c ∨ (¬a ∨ b) c3 = (z ∨ ¬a) ∨ y c4 = (c ∨ z) ∨ ¬b cnf = (c1 ∧ c4) ∧ (c2 ∧ c3) gp = GenericTensorNetwork(Satisfiability(cnf)) @test solve(gp, SizeMax())[].n == 4.0 res = GenericTensorNetworks.best_solutions(gp; all=true)[].c.data for i=0:1<<6-1 v = StaticBitVector(Bool[i>>(k-1) & 1 for k=1:6]) if v ∈ res @test satisfiable(gp.problem.cnf, Dict(zip(labels(gp), v))) else @test !satisfiable(gp.problem.cnf, Dict(zip(labels(gp), v))) end end end @testset "weighted cnf" begin @bools x y z a b c c1 = x ∨ ¬y c2 = c ∨ (¬a ∨ b) c3 = (z ∨ ¬a) ∨ y c4 = (c ∨ z) ∨ ¬b cnf = (c1 ∧ c4) ∧ (c2 ∧ c3) gp = GenericTensorNetwork(Satisfiability(cnf, fill(2, length(cnf)))) @test solve(gp, SizeMax())[].n == 8.0 res = GenericTensorNetworks.best_solutions(gp; all=true)[].c.data for i=0:1<<6-1 v = StaticBitVector(Bool[i>>(k-1) & 1 for k=1:6]) if v ∈ res @test satisfiable(gp.problem.cnf, Dict(zip(labels(gp), v))) else @test !satisfiable(gp.problem.cnf, Dict(zip(labels(gp), v))) end end end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
543
using GenericTensorNetworks, Test, Graphs @testset "set covering" begin sets = [[1, 2, 5], [1, 3], [2, 4], [3, 6], [2, 3, 6]] # each set is a vertex gp = GenericTensorNetwork(SetCovering(sets); optimizer=GreedyMethod()) @test get_weights(gp) == UnitWeight() @test get_weights(chweights(gp, fill(3, 5))) == fill(3,5) res = solve(gp, ConfigsMin())[] @test res.n == 3 @test BitVector(Bool[1,0,1,1,0]) ∈ res.c.data @test BitVector(Bool[1,0,1,0,1]) ∈ res.c.data @test all(x->is_set_covering(sets, x),res.c) end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
617
using GenericTensorNetworks, Test, Graphs @testset "set packing" begin sets = [[1, 2, 5], [1, 3], [2, 4], [3, 6], [2, 3, 6]] # each set is a vertex gp = GenericTensorNetwork(SetPacking(sets); optimizer=GreedyMethod()) @test get_weights(gp) == UnitWeight() @test get_weights(chweights(gp, fill(3, 5))) == fill(3,5) res = GenericTensorNetworks.best_solutions(gp; all=true)[] @test res.n == 2 @test BitVector(Bool[0,0,1,1,0]) ∈ res.c.data @test BitVector(Bool[1,0,0,1,0]) ∈ res.c.data @test BitVector(Bool[0,1,1,0,0]) ∈ res.c.data @test all(x->is_set_packing(sets, x),res.c) end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
4568
using GenericTensorNetworks, Test, Graphs @testset "memory estimation" begin g = smallgraph(:petersen) ecliques = [[e.src, e.dst] for e in edges(g)] cliques = [ecliques..., [[v] for v in vertices(g)]...] J = rand(15) h = randn(10) .* 0.5 weights = [J..., h...] gp = GenericTensorNetwork(SpinGlass(10, cliques, weights)) cfg(x) = [(x>>i & 1) for i=0:9] energies = [spinglass_energy(cliques, cfg(b); weights) for b=0:1<<nv(g)-1] energies2 = [spinglass_energy(g, cfg(b); J, h) for b=0:1<<nv(g)-1] @test energies ≈ energies2 sorted_energies = sort(energies) @test solve(gp, SizeMax())[].n ≈ sorted_energies[end] @test solve(gp, SizeMin())[].n ≈ sorted_energies[1] @test getfield.(solve(gp, SizeMax(2))[].orders |> collect, :n) ≈ sorted_energies[end-1:end] res = solve(gp, SingleConfigMax(2))[].orders |> collect @test getfield.(res, :n) ≈ sorted_energies[end-1:end] @test spinglass_energy(cliques, res[1].c.data; weights) ≈ res[end-1].n @test spinglass_energy(cliques, res[2].c.data; weights) ≈ res[end].n val, ind = findmax(energies) # integer weights weights = UnitWeight() gp = GenericTensorNetwork(SpinGlass(10, ecliques, weights)) energies = [spinglass_energy(ecliques, cfg(b); weights) for b=0:1<<nv(g)-1] sorted_energies = sort(energies) @test solve(gp, CountingMax(2))[].maxorder ≈ sorted_energies[end] @test solve(gp, CountingMin())[].n ≈ sorted_energies[1] @test solve(gp, ConfigsMax(2))[].maxorder ≈ sorted_energies[end] @test solve(gp, ConfigsMin())[].n ≈ sorted_energies[1] @test solve(gp, CountingAll())[] ≈ 1024 poly = solve(gp, GraphPolynomial(; method=:laurent))[] @test poly.order[] == sorted_energies[1] @test poly.order[] + length(poly.coeffs) - 1 == sorted_energies[end] end @testset "auto laurent" begin hyperDim = 2 blockDim = 3 graph = [[2, 12], [3, 11], [1, 5], [2, 4], [4, 5], [4, 8], [5, 7], [1, 9], [3, 7], [5, 9], [6, 8], [4, 9], [6, 7], [7, 12], [9, 10], [10, 12], [4, 6], [5, 6], [10, 11], [1, 2, 12], [1, 3, 11], [1, 11, 12], [2, 3, 10], [2, 10, 12], [3, 10, 11], [4, 8, 12], [4, 9, 11], [5, 7, 12], [7, 8, 12], [6, 7, 11], [7, 9, 11], [7, 11, 12], [5, 9, 10], [6, 8, 10], [8, 9, 10], [8, 10, 12], [9, 10, 11], [1, 2, 9], [1, 3, 8], [1, 8, 9], [2, 3, 7], [2, 7, 9], [3, 7, 8], [1, 2, 3], [4, 5, 6], [7, 8, 9]] num_vertices = blockDim* 2^hyperDim weights = ones(Int, length(graph)); problem = GenericTensorNetwork(SpinGlass(num_vertices, graph, weights)); poly = solve(problem, GraphPolynomial())[] @test poly isa LaurentPolynomial weights = ones(length(graph)); problem = GenericTensorNetwork(SpinGlass(num_vertices, graph, weights)) poly = solve(problem, GraphPolynomial())[] @test poly isa LaurentPolynomial end @testset "memory estimation" begin g = smallgraph(:petersen) J = rand(15) h = randn(10) .* 0.5 gp = GenericTensorNetwork(SpinGlass(g, J, h)) @test contraction_complexity(gp).sc <= 5 M = zeros(10, 10) for (e,j) in zip(edges(g), J) M[e.src, e.dst] = j end; M += M' gp2 = GenericTensorNetwork(spin_glass_from_matrix(M, h)) @test gp2.problem.weights ≈ gp.problem.weights cfg(x) = [(x>>i & 1) for i=0:9] energies = [spinglass_energy(g, cfg(b); J=J, h) for b=0:1<<nv(g)-1] sorted_energies = sort(energies) @test solve(gp, SizeMax())[].n ≈ sorted_energies[end] @test solve(gp, SizeMin())[].n ≈ sorted_energies[1] @test getfield.(solve(gp, SizeMax(2))[].orders |> collect, :n) ≈ sorted_energies[end-1:end] res = solve(gp, SingleConfigMax(2))[].orders |> collect @test getfield.(res, :n) ≈ sorted_energies[end-1:end] @test spinglass_energy(g, res[1].c.data; J, h) ≈ res[end-1].n @test spinglass_energy(g, res[2].c.data; J, h) ≈ res[end].n val, ind = findmax(energies) # integer weights J = UnitWeight() h = ZeroWeight() gp = GenericTensorNetwork(SpinGlass(g, J, h)) energies = [spinglass_energy(g, cfg(b); J=J, h) for b=0:1<<nv(g)-1] sorted_energies = sort(energies) @test solve(gp, CountingMax(2))[].maxorder ≈ sorted_energies[end] @test solve(gp, CountingMin())[].n ≈ sorted_energies[1] @test solve(gp, ConfigsMax(2))[].maxorder ≈ sorted_energies[end] @test solve(gp, ConfigsMin())[].n ≈ sorted_energies[1] @test solve(gp, CountingAll())[] ≈ 1024 poly = solve(gp, GraphPolynomial())[] @test poly.order[] == sorted_energies[1] @test poly.order[] + length(poly.coeffs) - 1 == sorted_energies[end] end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
754
using GenericTensorNetworks: select_dims using Test @testset "select dims" begin a, b, c = randn(2), randn(2, 2), randn(2,2,2) a_, b_, c_ = select_dims([a, b, c], [[1], [1,2], [1,2,3]], Dict(1=>1, 3=>0)) @test a_ == a[2:2] @test b_ == b[2:2, :] @test c_ == c[2:2, :, 1:1] a, b = randn(3), randn(3,3,3) a_, b_ = select_dims([a, b], [[1], [2,3,1]], Dict(1=>1, 3=>2)) @test a_ == a[2:2] @test b_ == b[:,3:3,2:2] end include("IndependentSet.jl") include("MaximalIS.jl") include("MaxCut.jl") include("SpinGlass.jl") include("PaintShop.jl") include("Coloring.jl") include("Matching.jl") include("Satisfiability.jl") include("DominatingSet.jl") include("SetPacking.jl") include("SetCovering.jl") include("OpenPitMining.jl")
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
docs
4445
# GenericTensorNetworks [![CI](https://github.com/QuEraComputing/GenericTensorNetworks.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/QuEraComputing/GenericTensorNetworks.jl/actions/workflows/CI.yml) [![codecov](https://codecov.io/gh/QuEraComputing/GenericTensorNetworks.jl/branch/master/graph/badge.svg?token=vwWQntOxvG)](https://codecov.io/gh/QuEraComputing/GenericTensorNetworks.jl) [![Docs](https://img.shields.io/badge/docs-dev-blue.svg)](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/) This package implements generic tensor networks to compute *solution space properties* of a class of hard combinatorial optimization problems. The *solution space properties* include * The maximum/minimum solution sizes, * The number of solutions at certain sizes, * The enumeration/sampling of solutions at certain sizes. The types of problems that can be solved using this package include [Independent set problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/IndependentSet/), [Maximal independent set problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/MaximalIS/), [Spin-glass problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/SpinGlass/), [Cutting problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/MaxCut/), [Vertex matching problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/Matching/), [Binary paint shop problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/PaintShop/), [Coloring problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/Coloring/), [Dominating set problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/DominatingSet/), [Set packing problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/SetPacking/), [Satisfiability problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/Satisfiability/) and [Set covering problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/SetCovering/). ## Installation <p> GenericTensorNetworks is a &nbsp; <a href="https://julialang.org"> <img src="https://raw.githubusercontent.com/JuliaLang/julia-logo-graphics/master/images/julia.ico" width="16em"> Julia Language </a> &nbsp; package. To install GenericTensorNetworks, please <a href="https://docs.julialang.org/en/v1/manual/getting-started/">open Julia's interactive session (known as REPL)</a> and press the <kbd>]</kbd> key in the REPL to use the package mode, and then type: </p> ```julia pkg> add GenericTensorNetworks ``` To update, just type `up` in the package mode. We recommend that you use **Julia version >= 1.7**; otherwise, your program may suffer from significant (exponential in the tensor dimension) overheads when permuting the dimensions of a large tensor. If you have to use an older version of Julia, you can overwrite the `LinearAlgebra.permutedims!` by adding the following patch to your own project. ```julia # only required when your Julia version is < 1.7 using TensorOperations, LinearAlgebra function LinearAlgebra.permutedims!(C::Array{T,N}, A::StridedArray{T,N}, perm) where {T,N} if isbitstype(T) TensorOperations.tensorcopy!(A, ntuple(identity,N), C, perm) else invoke(permutedims!, Tuple{Any,AbstractArray,Any}, C, A, perm) end end ``` ## Supporting and Citing Much of the software in this ecosystem was developed as a part of an academic research project. If you would like to help support it, please star the repository. If you use our software as part of your research, teaching, or other activities, we would like to request you to cite our [work](https://arxiv.org/abs/2205.03718). The [CITATION.bib](https://github.com/QuEraComputing/GenericTensorNetworks.jl/blob/master/CITATION.bib) file in the root of this repository lists the relevant papers. ## Questions and Contributions You can * Post a question on [Julia Discourse forum](https://discourse.julialang.org/) and ping the package maintainer with `@1115`. * Discuss in the `#graphs` channel of the [Julia Slack](https://julialang.org/community/) and ping the package maintainer with `@JinGuo Liu`. * Open an [issue](https://github.com/QuEraComputing/GenericTensorNetworks.jl/issues) if you encounter any problems, or have any feature request.
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
docs
6597
# Gist of implementation The code we will show below is a gist of how this package is implemented for pedagogical purpose, which covers many functionalities of the main repo without caring much about performance. This project depends on multiple open source packages in the Julia ecosystem: * [OMEinsum](https://github.com/under-Peter/OMEinsum.jl) and [OMEinsumContractionOrders](https://github.com/TensorBFS/OMEinsumContractionOrders.jl) are packages providing the support for Einstein's (or tensor network) notation and state-of-the-art algorithms for contraction order optimization, which includes multiple state of the art algorithms. * [TropicalNumbers](https://github.com/TensorBFS/TropicalNumbers.jl) and [TropicalGEMM](https://github.com/TensorBFS/TropicalGEMM.jl) are packages providing tropical number and efficient tropical matrix multiplication. * [Graphs](https://github.com/JuliaGraphs/Graphs.jl) is a foundational package for graph manipulation in the Julia community. * [Polynomials](https://github.com/JuliaMath/Polynomials.jl) is a package providing polynomial algebra and polynomial fitting. * [Mods](https://github.com/scheinerman/Mods.jl) and the [Primes](https://github.com/JuliaMath/Primes.jl) package providing finite field algebra and prime number manipulation. They can be installed in a similar way to `GenericTensorNetworks`. After installing the required packages, one can open a Julia REPL, and copy-paste the following code snippet into it. ```julia using OMEinsum using Graphs using Random # generate a random regular graph of size 50, degree 3 graph = (Random.seed!(2); Graphs.random_regular_graph(50, 3)) # generate einsum code, i.e. the labels of tensors code = EinCode(([minmax(e.src,e.dst) for e in Graphs.edges(graph)]..., # labels for edge tensors [(i,) for i in Graphs.vertices(graph)]...), ()) # labels for vertex tensors # an einsum contraction without a contraction order specified is called `EinCode`, # an einsum contraction having a contraction order (specified as a tree structure) is called `NestedEinsum`. # assign each label a dimension-2, it will be used in the contraction order optimization # `uniquelabels` function extracts the tensor labels into a vector. size_dict = Dict([s=>2 for s in uniquelabels(code)]) # optimize the contraction order using the `TreeSA` method; the target space complexity is 2^17 optimized_code = optimize_code(code, size_dict, TreeSA()) println("time/space complexity is $(OMEinsum.timespace_complexity(optimized_code, size_dict))") # a function for computing the independence polynomial function independence_polynomial(x::T, code) where {T} xs = map(getixsv(code)) do ix # if the tensor rank is 1, create a vertex tensor. # otherwise the tensor rank must be 2, create a bond tensor. length(ix)==1 ? [one(T), x] : [one(T) one(T); one(T) zero(T)] end # both `EinCode` and `NestedEinsum` are callable, inputs are tensors. code(xs...) end ########## COMPUTING THE MAXIMUM INDEPENDENT SET SIZE AND ITS COUNTING/DEGENERACY ########### # using Tropical numbers to compute the MIS size and the MIS degeneracy. using TropicalNumbers mis_size(code) = independence_polynomial(TropicalF64(1.0), code)[] println("the maximum independent set size is $(mis_size(optimized_code).n)") # A `CountingTropical` object has two fields, tropical field `n` and counting field `c`. mis_count(code) = independence_polynomial(CountingTropical{Float64,Float64}(1.0, 1.0), code)[] println("the degeneracy of maximum independent sets is $(mis_count(optimized_code).c)") ########## COMPUTING THE INDEPENDENCE POLYNOMIAL ########### # using Polynomial numbers to compute the polynomial directly using Polynomials println("the independence polynomial is $(independence_polynomial(Polynomial([0.0, 1.0]), optimized_code)[])") ########## FINDING MIS CONFIGURATIONS ########### # define the set algebra struct ConfigEnumerator{N} # NOTE: BitVector is dynamic and it can be very slow; check our repo for the static version data::Vector{BitVector} end function Base.:+(x::ConfigEnumerator{N}, y::ConfigEnumerator{N}) where {N} res = ConfigEnumerator{N}(vcat(x.data, y.data)) return res end function Base.:*(x::ConfigEnumerator{L}, y::ConfigEnumerator{L}) where {L} M, N = length(x.data), length(y.data) z = Vector{BitVector}(undef, M*N) for j=1:N, i=1:M z[(j-1)*M+i] = x.data[i] .| y.data[j] end return ConfigEnumerator{L}(z) end Base.zero(::Type{ConfigEnumerator{N}}) where {N} = ConfigEnumerator{N}(BitVector[]) Base.one(::Type{ConfigEnumerator{N}}) where {N} = ConfigEnumerator{N}([falses(N)]) # the algebra sampling one of the configurations struct ConfigSampler{N} data::BitVector end function Base.:+(x::ConfigSampler{N}, y::ConfigSampler{N}) where {N} # biased sampling: return `x` return x # randomly pick one end function Base.:*(x::ConfigSampler{L}, y::ConfigSampler{L}) where {L} ConfigSampler{L}(x.data .| y.data) end Base.zero(::Type{ConfigSampler{N}}) where {N} = ConfigSampler{N}(trues(N)) Base.one(::Type{ConfigSampler{N}}) where {N} = ConfigSampler{N}(falses(N)) # enumerate all configurations if `all` is true; compute one otherwise. # a configuration is stored in the data type of `StaticBitVector`; it uses integers to represent bit strings. # `ConfigTropical` is defined in `TropicalNumbers`. It has two fields: tropical number `n` and optimal configuration `config`. # `CountingTropical{T,<:ConfigEnumerator}` stores configurations instead of simple counting. function mis_config(code; all=false) # map a vertex label to an integer vertex_index = Dict([s=>i for (i, s) in enumerate(uniquelabels(code))]) N = length(vertex_index) # number of vertices xs = map(getixsv(code)) do ix T = all ? CountingTropical{Float64, ConfigEnumerator{N}} : CountingTropical{Float64, ConfigSampler{N}} if length(ix) == 2 return [one(T) one(T); one(T) zero(T)] else s = falses(N) s[vertex_index[ix[1]]] = true # one hot vector if all [one(T), T(1.0, ConfigEnumerator{N}([s]))] else [one(T), T(1.0, ConfigSampler{N}(s))] end end end return code(xs...) end println("one of the optimal configurations is $(mis_config(optimized_code; all=false)[].c.data)") # direct enumeration of configurations can be very slow; please check the bounding version in our Github repo. println("all optimal configurations are $(mis_config(optimized_code; all=true)[].c)") ```
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
docs
3863
```@meta CurrentModule = GenericTensorNetworks ``` # GenericTensorNetworks This package implements generic tensor networks to compute *solution space properties* of a class of hard combinatorial problems. The *solution space properties* include * The maximum/minimum solution sizes, * The number of solutions at certain sizes, * The enumeration of solutions at certain sizes. * The direct sampling of solutions at certain sizes. The solvable problems include [Independent set problem](@ref), [Maximal independent set problem](@ref), [Spin-glass problem](@ref), [Cutting problem](@ref), [Vertex matching problem](@ref), [Binary paint shop problem](@ref), [Coloring problem](@ref), [Dominating set problem](@ref), [Satisfiability problem](@ref), [Set packing problem](@ref) and [Set covering problem](@ref). ## Background knowledge Please check our paper ["Computing properties of independent sets by generic programming tensor networks"](https://arxiv.org/abs/2205.03718). If you find our paper or software useful in your work, we would be grateful if you could cite our work. The [CITATION.bib](https://github.com/QuEraComputing/GenericTensorNetworks.jl/blob/master/CITATION.bib) file in the root of this repository lists the relevant papers. ## Quick start You can find a set up guide in our [README](https://github.com/QuEraComputing/GenericTensorNetworks.jl). To get started, open a Julia REPL and type the following code. ```@repl using GenericTensorNetworks, Graphs#, CUDA solve( GenericTensorNetwork(IndependentSet( Graphs.random_regular_graph(20, 3), UnitWeight()); # default: uniform weight 1 optimizer = TreeSA(), openvertices = (), # default: no open vertices fixedvertices = Dict() # default: no fixed vertices ), GraphPolynomial(); usecuda=false # the default value ) ``` Here the main function [`solve`](@ref) takes three input arguments, the problem instance of type [`IndependentSet`](@ref), the property instance of type [`GraphPolynomial`](@ref) and an optional key word argument `usecuda` to decide use GPU or not. If one wants to use GPU to accelerate the computation, the `, CUDA` should be uncommented. An [`IndependentSet`](@ref) instance takes two positional arguments to initialize, the graph instance that one wants to solve and the weights for each vertex. Here, we use a random regular graph with 20 vertices and degree 3, and the default uniform weight 1. The [`GenericTensorNetwork`](@ref) function is a constructor for the problem instance, which takes the problem instance as the first argument and optional key word arguments. The key word argument `optimizer` is for specifying the tensor network optimization algorithm. The keyword argument `openvertices` is a tuple of labels for specifying the degrees of freedom not summed over, and `fixedvertices` is a label-value dictionary for specifying the fixed values of the degree of freedoms. Here, we use [`TreeSA`](@ref) method as the tensor network optimizer, and leave `openvertices` the default values. The [`TreeSA`](@ref) method finds the best contraction order in most of our applications, while the default [`GreedyMethod`](@ref) runs the fastest. The first execution of this function will be a bit slow due to Julia's just in time compiling. The subsequent runs will be fast. The following diagram lists possible combinations of input arguments, where functions in the `Graph` are mainly defined in the package [Graphs](https://github.com/JuliaGraphs/Graphs.jl), and the rest can be found in this package. ```@raw html <div align=center> <img src="assets/fig7.svg" width="75%"/> </div> ```⠀ You can find many examples in this documentation, a good one to start with is [Independent set problem](@ref).
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
docs
13303
# Performance Tips ## Optimize contraction orders Let us use the independent set problem on 3-regular graphs as an example. ```@repl performancetips using GenericTensorNetworks, Graphs, Random graph = random_regular_graph(120, 3) iset = IndependentSet(graph) problem = GenericTensorNetwork(iset; optimizer=TreeSA( sc_target=20, sc_weight=1.0, rw_weight=3.0, ntrials=10, βs=0.01:0.1:15.0, niters=20)); ``` The [`GenericTensorNetwork`](@ref) constructor maps an independent set problem to a tensor network with optimized contraction order. The key word argument `optimizer` specifies the contraction order optimizer of the tensor network. Here, we choose the local search based [`TreeSA`](@ref) algorithm, which often finds the smallest time/space complexity and supports slicing. One can type `?TreeSA` in a Julia REPL for more information about how to configure the hyper-parameters of the [`TreeSA`](@ref) method, while the detailed algorithm explanation is in [arXiv: 2108.05665](https://arxiv.org/abs/2108.05665). Alternative tensor network contraction order optimizers include * [`GreedyMethod`](@ref) (default, fastest in searching speed but worst in contraction complexity) * [`KaHyParBipartite`](@ref) * [`SABipartite`](@ref) For example, the `MergeGreedy()` here "contracts" tensors greedily whenever the contraction result has a smaller space complexity. It can remove all vertex tensors (vectors) before entering the contraction order optimization algorithm. The returned object `problem` contains a field `code` that specifies the tensor network with optimized contraction order. For an independent set problem, the optimal contraction time/space complexity is ``\sim 2^{{\rm tw}(G)}``, where ``{\rm tw(G)}`` is the [tree-width](https://en.wikipedia.org/wiki/Treewidth) of ``G``. One can check the time, space and read-write complexity with the [`contraction_complexity`](@ref) function. ```@repl performancetips contraction_complexity(problem) ``` The return values are `log2` values of the number of multiplications, the number elements in the largest tensor during contraction and the number of read-write operations to tensor elements. In this example, the number `*` operations is ``\sim 2^{21.9}``, the number of read-write operations are ``\sim 2^{20}``, and the largest tensor size is ``2^{17}``. One can check the element size by typing ```@repl performancetips sizeof(TropicalF64) sizeof(TropicalF32) sizeof(StaticBitVector{200,4}) sizeof(TruncatedPoly{5,Float64,Float64}) ``` One can use [`estimate_memory`](@ref) to get a good estimation of peak memory in bytes. For example, to compute the graph polynomial, the peak memory can be estimated as follows. ```@repl performancetips estimate_memory(problem, GraphPolynomial(; method=:finitefield)) estimate_memory(problem, GraphPolynomial(; method=:polynomial)) ``` The finite field approach only requires 298 KB memory, while using the [`Polynomial`](https://juliamath.github.io/Polynomials.jl/stable/polynomials/polynomial/#Polynomial-2) number type requires 71 MB memory. !!! note * The actual run time memory can be several times larger than the size of the maximum tensor, so the [`estimate_memory`](@ref) is more accurate in estimating the peak memory. * For mutable element types like [`ConfigEnumerator`](@ref), none of memory estimation functions measure the actual memory usage correctly. ## Slicing technique For large scale applications, it is also possible to slice over certain degrees of freedom to reduce the space complexity, i.e. loop and accumulate over certain degrees of freedom so that one can have a smaller tensor network inside the loop due to the removal of these degrees of freedom. In the [`TreeSA`](@ref) optimizer, one can set `nslices` to a value larger than zero to turn on this feature. ```@repl performancetips problem = GenericTensorNetwork(iset; optimizer=TreeSA(βs=0.01:0.1:25.0, ntrials=10, niters=10)); contraction_complexity(problem) problem = GenericTensorNetwork(iset; optimizer=TreeSA(βs=0.01:0.1:25.0, ntrials=10, niters=10, nslices=5)); contraction_complexity(problem) ``` In the second `IndependentSet` constructor, we slice over 5 degrees of freedom, which can reduce the space complexity by at most 5. In this application, the slicing achieves the largest possible space complexity reduction 5, while the time and read-write complexity are only increased by less than 1, i.e. the peak memory usage is reduced by a factor ``32``, while the (theoretical) computing time is increased by at a factor ``< 2``. ## GEMM for Tropical numbers One can speed up the Tropical number matrix multiplication when computing the solution space property [`SizeMax`](@ref)`()` by using the Tropical GEMM routines implemented in package [`TropicalGEMM`](https://github.com/TensorBFS/TropicalGEMM.jl/). ```julia-repl julia> using BenchmarkTools julia> @btime solve(problem, SizeMax()) 91.630 ms (19203 allocations: 23.72 MiB) 0-dimensional Array{TropicalF64, 0}: 53.0ₜ julia> using TropicalGEMM julia> @btime solve(problem, SizeMax()) 8.960 ms (18532 allocations: 17.01 MiB) 0-dimensional Array{TropicalF64, 0}: 53.0ₜ ``` The `TropicalGEMM` package pirates the `LinearAlgebra.mul!` interface, hence it takes effect upon using. The above example shows more than 10x speed up on a single thread CPU, which can be even faster if [the Julia multi-threading](https://docs.julialang.org/en/v1/manual/multi-threading/) if turned on. The benchmark in the `TropicalGEMM` repo shows this performance is close to the theoretical optimal value. ## Multiprocessing Submodule `GenericTensorNetworks.SimpleMutiprocessing` provides one function [`GenericTensorNetworks.SimpleMultiprocessing.multiprocess_run`](@ref) function for simple multi-processing jobs. It is not directly related to `GenericTensorNetworks`, but is very convenient to have one. Suppose we want to find the independence polynomial for multiple graphs with 4 processes. We can create a file, e.g. named `run.jl` with the following content ```julia using Distributed, GenericTensorNetworks.SimpleMultiprocessing using Random, GenericTensorNetworks # to avoid multi-precompilation @everywhere using Random, GenericTensorNetworks results = multiprocess_run(collect(1:10)) do seed Random.seed!(seed) n = 10 @info "Graph size $n x $n, seed= $seed" g = random_diagonal_coupled_graph(n, n, 0.8) gp = GenericTensorNetwork(IndependentSet(g); optimizer=TreeSA()) res = solve(gp, GraphPolynomial())[] return res end println(results) ``` One can run this script file with the following command ```bash $ julia -p4 run.jl From worker 3: [ Info: running argument 4 on device 3 From worker 4: [ Info: running argument 2 on device 4 From worker 5: [ Info: running argument 3 on device 5 From worker 2: [ Info: running argument 1 on device 2 From worker 3: [ Info: Graph size 10 x 10, seed= 4 From worker 4: [ Info: Graph size 10 x 10, seed= 2 From worker 5: [ Info: Graph size 10 x 10, seed= 3 From worker 2: [ Info: Graph size 10 x 10, seed= 1 From worker 4: [ Info: running argument 5 on device ... ``` You will see a vector of polynomials printed out. ## Make use of GPUs To upload the computation to GPU, you just add `using CUDA` before calling the `solve` function, and set the keyword argument `usecuda` to `true`. ```julia-repl julia> using CUDA [ Info: OMEinsum loaded the CUDA module successfully julia> solve(problem, SizeMax(), usecuda=true) 0-dimensional CuArray{TropicalF64, 0, CUDA.Mem.DeviceBuffer}: 53.0ₜ ``` Solution space properties computable on GPU includes * [`SizeMax`](@ref) and [`SizeMin`](@ref) * [`CountingAll`](@ref) * [`CountingMax`](@ref) and [`CountingMin`](@ref) * [`GraphPolynomial`](@ref) * [`SingleConfigMax`](@ref) and [`SingleConfigMin`](@ref) ## Benchmarks We run a single thread benchmark on central processing units (CPU) Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz, and its CUDA version on a GPU Tesla V100-SXM2 16G. The results are summarized in the following plot. The benchmark code can be found in [our paper repository](https://github.com/GiggleLiu/NoteOnTropicalMIS/tree/master/benchmarks). ![benchmark-independent-set](assets/fig1.png) This benchmark results is for computing different solution space properties of independent sets of random three-regular graphs with different tensor element types. The time in these plots only includes tensor network contraction, without taking into account the contraction order finding and just-in-time compilation time. Legends are properties, algebra, and devices that we used in the computation; one can find the corresponding computed solution space property in Table 1 in the [paper](https://arxiv.org/abs/2205.03718). * (a) time and space complexity versus the number of vertices for the benchmarked graphs. * (b) The computation time for calculating the MIS size and for counting the number of all independent sets (ISs), the number of MISs, the number of independent sets having size ``\alpha(G)`` and ``\alpha(G)-1``, and finding 100 largest set sizes. * (c) The computation time for calculating the independence polynomials with different approaches. * (d) The computation time for configuration enumeration, including single MIS configuration, the enumeration of all independent set configurations, all MIS configurations, all independent sets, and all independent set configurations having size ``\alpha(G)`` and ``\alpha(G)-1``. The graphs in all benchmarks are random three-regular graphs, which have treewidth that is asymptotically smaller than ``|V|/6``. In this benchmark, we do not include traditional algorithms for finding the MIS sizes such as branching or dynamic programming. To the best of our knowledge, these algorithms are not suitable for computing most of the solution space properties mentioned in this paper. The main goal of this section is to show the relative computation time for calculating different solution space properties. Panel (a) shows the time and space complexity of tensor network contraction for different graph sizes. The contraction order is obtained using the `TreeSA` algorithm that implemented in [OMEinsumContractionOrders](https://github.com/TensorBFS/OMEinsumContractionOrders.jl). If we assume our contraction-order finding program has found the optimal treewidth, which is very likely to be true, the space complexity is the same as the treewidth of the problem graph. Slicing technique has been used for graphs with space complexity greater than ``2^{27}`` (above the yellow dashed line) to fit the computation into a 16GB memory. One can see that all the computation times in panels (b), (c), and (d) have a strong correlation with the predicted time and space complexity. While in panel (d), the computation time of configuration enumeration also strongly correlates with other factors such as the configuration space size. Among these benchmarks, computational tasks with data types real numbers, complex numbers, or [`Tropical`](@ref) numbers (CPU only) can utilize fast basic linear algebra subprograms (BLAS) functions. These tasks usually compute much faster than ones with other element types in the same category. Immutable data types with no reference to other values can be compiled to GPU devices that run much faster than CPUs in all cases when the problem scale is big enough. These data types do not include those defined in [`Polynomial`](https://juliamath.github.io/Polynomials.jl/stable/polynomials/polynomial/#Polynomial-2), [`ConfigEnumerator`](@ref), [`ExtendedTropical`](@ref) and [`SumProductTree`](@ref) or a data type containing them as a part. In panel (c), one can see the Fourier transformation-based method is the fastest in computing the independence polynomial, but it may suffer from round-off errors. The finite field (GF(p)) approach is the only method that does not have round-off errors and can be run on a GPU. In panel (d), one can see the technique to bound the enumeration space (see paper) improves the performance for more than one order of magnitude in enumerating the MISs. The bounding technique can also reduce the memory usage significantly, without which the largest computable graph size is only ``\sim150`` on a device with 32GB main memory. We show the benchmark of computing the maximal independent set properties on 3-regular graphs in the following plot, including a comparison to the Bron-Kerbosch algorithm from Julia package [Graphs](https://github.com/JuliaGraphs/Graphs.jl) ![benchmark-maximal-independent-set](assets/fig2.png) In this plot, benchmarks of computing different solution space properties of the maximal independent sets (ISs) problem on random three regular graphs at different sizes. * (a) time and space complexity of tensor network contraction. * (b) The wall clock time for counting and enumeration of maximal ISs. Panel (a) shows the space and time complexities of tensor contraction, which are typically larger than those for the independent set problem. In panel (b), one can see counting maximal independent sets are much more efficient than enumerating them, while our generic tensor network approach runs slightly faster than the Bron-Kerbosch approach in enumerating all maximal independent sets.
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
docs
2940
# References ## Graph problems ```@docs solve GenericTensorNetwork GraphProblem IndependentSet MaximalIS Matching Coloring DominatingSet SpinGlass MaxCut PaintShop Satisfiability SetCovering SetPacking OpenPitMining ``` #### Graph Problem Interfaces To subtype [`GraphProblem`](@ref), a new type must contain a `code` field to represent the (optimized) tensor network. Interfaces [`GenericTensorNetworks.generate_tensors`](@ref), [`labels`](@ref), [`flavors`](@ref) and [`get_weights`](@ref) are required. [`nflavor`](@ref) is optional. ```@docs GenericTensorNetworks.generate_tensors labels energy_terms flavors get_weights chweights nflavor fixedvertices ``` #### Graph Problem Utilities ```@docs is_independent_set is_maximal_independent_set is_dominating_set is_vertex_coloring is_matching is_set_covering is_set_packing cut_size spinglass_energy num_paint_shop_color_switch paint_shop_coloring_from_config mis_compactify! CNF CNFClause BoolVar satisfiable @bools ∨ ¬ ∧ is_valid_mining print_mining ``` ## Properties ```@docs PartitionFunction SizeMax SizeMin CountingAll CountingMax CountingMin GraphPolynomial SingleConfigMax SingleConfigMin ConfigsAll ConfigsMax ConfigsMin ``` ## Element Algebras ```@docs is_commutative_semiring ``` ```@docs TropicalNumbers.Tropical TropicalNumbers.CountingTropical ExtendedTropical GenericTensorNetworks.Mods.Mod TruncatedPoly Max2Poly ConfigEnumerator SumProductTree ConfigSampler ``` `GenericTensorNetworks` also exports the [`Polynomial`](https://juliamath.github.io/Polynomials.jl/stable/polynomials/polynomial/#Polynomial-2) and [`LaurentPolynomial`](https://juliamath.github.io/Polynomials.jl/stable/polynomials/polynomial/#Polynomials.LaurentPolynomial) types defined in package `Polynomials`. For reading the properties from the above element types, one can use the following functions. ```@docs read_size read_count read_config read_size_count read_size_config ``` The following functions are for saving and loading configurations. ```@docs StaticBitVector StaticElementVector OnehotVec save_configs load_configs save_sumproduct load_sumproduct @bv_str onehotv generate_samples hamming_distribution ``` ## Tensor Network ```@docs optimize_code getixsv getiyv contraction_complexity estimate_memory @ein_str GreedyMethod TreeSA SABipartite KaHyParBipartite MergeVectors MergeGreedy ``` ## Others #### Graph ```@docs show_graph show_configs show_einsum show_landscape GraphDisplayConfig AbstractLayout SpringLayout StressLayout SpectralLayout Layered LayeredSpringLayout LayeredStressLayout render_locs diagonal_coupled_graph square_lattice_graph unit_disk_graph line_graph random_diagonal_coupled_graph random_square_lattice_graph ``` One can also use `random_regular_graph` and `smallgraph` in [Graphs](https://github.com/JuliaGraphs/Graphs.jl) to build special graphs. #### Multiprocessing ```@docs GenericTensorNetworks.SimpleMultiprocessing.multiprocess_run ```
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
docs
1609
# Sum product representation for configurations [`SumProductTree`](@ref) can use polynomial memory to store exponential number of configurations. It is a sum-product expression tree to store [`ConfigEnumerator`](@ref) in a lazy style, where configurations can be extracted by depth first searching the tree with the `Base.collect` method. Although it is space efficient, it is in general not easy to extract information from it due to the exponential large configuration space. Directed sampling is one of its most important operations, with which one can get some statistic properties from it with an intermediate effort. For example, if we want to check some property of an intermediate scale graph, one can type ```@repl sumproduct using GenericTensorNetworks graph = random_regular_graph(70, 3) problem = GenericTensorNetwork(IndependentSet(graph); optimizer=TreeSA()); tree = solve(problem, ConfigsAll(; tree_storage=true))[] ``` If one wants to store these configurations, he will need a hard disk of size 256 TB! However, this sum-product binary tree structure supports efficient and unbiased direct sampling. ```@repl sumproduct samples = generate_samples(tree, 1000) ``` With these samples, one can already compute useful properties like Hamming distance (see [`hamming_distribution`](@ref)) distribution. The following code visualizes this distribution with `CairoMakie`. ```@example sumproduct using CairoMakie dist = hamming_distribution(samples, samples) # bar plot fig = Figure() ax = Axis(fig[1, 1]; xlabel="Hamming distance", ylabel="Frequency") barplot!(ax, 0:length(dist)-1, dist) fig ```
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
docs
285
# Mods Modular arithmetic for Julia. This folder is a copy of v1.3.4 of the package `Mods.jl` by Ed Scheinerman, which is available at: https://github.com/scheinerman/Mods.jl We will switch back to the Github repo when the package becomes compatible with `GenericTensorNetworks.jl`.
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "MIT" ]
0.1.1
39f992e4bb21d84030248d4bf68187dbbda402f7
code
2411
module FixYourWorkaround using Pkg using Pkg.Types: VersionSpec, semver_spec using Test export package_compatible export CompatNotFound, PackageNotInCompat, VersionNotCompatible struct CompatNotFound <: Exception message::String end Base.showerror(io::IO, e::CompatNotFound) = println(io, e.message) struct PackageNotInCompat <: Exception message::String end Base.showerror(io::IO, e::PackageNotInCompat) = println(io, e.message) struct VersionNotCompatible <: Exception message::String end Base.showerror(io::IO, e::VersionNotCompatible) = println(io, e.message) """ package_compatible(package_name::String, version::String) Check to see if package_name@version is inbounds with the compat section in your Project.toml # Arguments - `package_name::String`: Name of the package - `version::String`: Package version to check being inbounds # Keywords - `toml_path::String`: Path to the Project.toml file # Returns - `Bool`: If the version is in the compat versions # Throws - `PackageNotInCompat`: package_name was not found in the compat section - `CompatNotFound`: Compat section not found in the Project.toml - `VersionOutsideSpec`: Version is no longer inbounds of the compat versions """ function package_compatible(package_name::String, version::String; toml_path=joinpath(@__DIR__, "..", "Project.toml")) version = VersionSpec(version) toml = Pkg.TOML.parsefile(toml_path) if haskey(toml, "compat") if haskey(toml["compat"], package_name) compat_version = semver_spec(toml["compat"][package_name]) if !isempty(intersect(version, compat_version)) return true else throw(VersionNotCompatible("$package_name@$version is not support")) end else throw(PackageNotInCompat("$package_name not found in compat section")) end else throw(CompatNotFound("Compat section not found in Project.toml")) end return false end package_compatible(package_name::String, version::Int64; kwargs...) = package_compatible(package_name, string(version); kwargs...) package_compatible(package_name::String, version::Float64; kwargs...) = package_compatible(package_name, string(version); kwargs...) package_compatible(package_name::String, version::VersionNumber; kwargs...) = package_compatible(package_name, string(version); kwargs...) end # module
FixYourWorkaround
https://github.com/mattBrzezinski/FixYourWorkaround.jl.git
[ "MIT" ]
0.1.1
39f992e4bb21d84030248d4bf68187dbbda402f7
code
1633
using FixYourWorkaround using Test package_name = "package" dir = mktempdir() toml_path = joinpath(dir, "Project.toml") @testset "Exceptions" begin @testset "CompatNotFound" begin write(toml_path, "") @test_throws CompatNotFound package_compatible(package_name, "0.0"; toml_path=toml_path) end @testset "PackageNotInCompat" begin write(toml_path, "[compat]") @test_throws PackageNotInCompat package_compatible(package_name, "0.0"; toml_path=toml_path) end end @testset "Package outside of Versions" begin write( toml_path, """ [compat] $package_name = "1" """ ) @test_throws VersionNotCompatible package_compatible(package_name, "0.0"; toml_path=toml_path) end @testset "Package in Versions" begin write( toml_path, """ [compat] $package_name = "1" """ ) @test package_compatible(package_name, "1.1"; toml_path=toml_path) end @testset "Version::Int64" begin write( toml_path, """ [compat] $package_name = "1" """ ) @test package_compatible(package_name, 1; toml_path=toml_path) end @testset "Version::Float64" begin write( toml_path, """ [compat] $package_name = "1" """ ) @test package_compatible(package_name, 1.0; toml_path=toml_path) end @testset "Version::VersionNumber" begin write( toml_path, """ [compat] $package_name = "1" """ ) @test package_compatible(package_name, v"1"; toml_path=toml_path) end
FixYourWorkaround
https://github.com/mattBrzezinski/FixYourWorkaround.jl.git
[ "MIT" ]
0.1.1
39f992e4bb21d84030248d4bf68187dbbda402f7
docs
1097
## Fix Your Workaround.jl [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) [![Coverage Status](https://coveralls.io/repos/github/mattBrzezinski/FixYourWorkaround.jl/badge.svg?branch=MB/travis)](https://coveralls.io/github/mattBrzezinski/FixYourWorkaround.jl?branch=MB/travis) [![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet)](https://github.com/SciML/ColPrac) Have you ever created a work around because of a specific dependency version? This package is a test utility to ensure you remember to fix your workaround after support for it has been dropped. Whenever you create a workaround and plan to remove it after you drop version support for a package create a new test like so: ```julia using FixYourWorkaround @test package_compatible("Package", "Version") ``` In the future when you remove the version from the `compat` section of your Project.toml this test will fail and remind you to remove your workaround.
FixYourWorkaround
https://github.com/mattBrzezinski/FixYourWorkaround.jl.git
[ "MIT" ]
0.1.1
a1f3ac34b66e34553f1e0961b8eeef572d6c4525
code
6876
module SwapLiterals @static if isdefined(Base, :Experimental) && isdefined(Base.Experimental, Symbol("@optlevel")) Base.Experimental.@optlevel 0 end export @swapliterals const FLOATS_USE_RATIONALIZE = Ref(false) makedict(@nospecialize(pairs)) = foldl(Base.ImmutableDict, pairs; init=Base.ImmutableDict{Any,Any}()) makedict(@nospecialize(pairs::AbstractDict)) = pairs const defaultswaps = let swaps = Any[Float64 => "@big_str", Int => :big, Int128 => :big] if Int === Int32 push!(swaps, Int64 => :big) end makedict(swaps) end """ floats_use_rationalize!(yesno::Bool=true) If `true`, a `Float64` input is first converted to `Rational{Int}` via `rationalize` before being further transformed. """ floats_use_rationalize!(yesno::Bool=true) = FLOATS_USE_RATIONALIZE[] = yesno # swaps is a collection of pairs function literals_swapper(swaps) @nospecialize swaps = makedict(swaps) # Base.Callable might be overly restrictive for callables, this check should # probably be removed eventually all(kv -> kv[2] isa Union{String,Symbol,Nothing,Base.Callable}, swaps) || throw(ArgumentError("unsupported type for swapper")) foreach(swaps) do kv kv[1] ∈ Any[Float32,Float64,Int32,Int64,String,Char, Base.BitUnsigned64_types...,Int128,UInt128,BigInt, :braces, :bracescat, :tuple, :vect, :(:=)] || throw(ArgumentError("type $(kv[1]) cannot be replaced")) end function swapper(@nospecialize(ex::Union{Float32,Float64,Int32,Int64,String,Char, Base.BitUnsigned64}), quoted=false) swap = get(swaps, typeof(ex), nothing) if swap === nothing requote(ex, quoted) elseif quoted ex elseif swap isa String Expr(:macrocall, Symbol(swap), nothing, string(ex)) elseif ex isa AbstractFloat && FLOATS_USE_RATIONALIZE[] if swap == :big # big(1//2) doesn't return BigFloat swap = :BigFloat end :($swap(rationalize($ex))) elseif swap isa Symbol :($swap($ex)) else swap(ex) end end function swapper(@nospecialize(ex::Expr), quoted=false) h = ex.head if h == :macrocall && ex.args[1] isa GlobalRef && ex.args[1].name ∈ (Symbol("@int128_str"), Symbol("@uint128_str"), Symbol("@big_str")) swap = get(swaps, ex.args[1].name == Symbol("@big_str") ? BigInt : ex.args[1].name == Symbol("@int128_str") ? Int128 : UInt128, nothing) if swap === nothing requote(ex, quoted) elseif quoted ex else if swap == :big swap = "@big_str" end if swap isa String ex.args[1] = Symbol(swap) ex elseif swap isa Symbol :($swap($ex)) else swap(ex) end end elseif h ∈ (:braces, :bracescat, :tuple, :vect, :(:=)) ex = recswap(ex) swap = get(swaps, h, nothing) if swap === nothing requote(ex, quoted) elseif quoted ex elseif swap isa Symbol :($swap($ex)) else swap(ex) end else ex = recswap(ex) if quoted Expr(:$, ex) else ex end end end function recswap(@nospecialize(ex)) h = ex.head # copied from REPL.softscope if h in (:meta, :import, :using, :export, :module, :error, :incomplete, :thunk) ex elseif Meta.isexpr(ex, :$, 1) swapper(ex.args[1], true) else ex′ = Expr(h) map!(swapper, resize!(ex′.args, length(ex.args)), ex.args) ex′ end end requote(@nospecialize(ex), quoted) = quoted ? Expr(:$, ex) : ex swapper(@nospecialize(ex), quoted=false) = requote(ex, quoted) swapper end # to save time loading SafeREPL const default_literals_swapper = literals_swapper(defaultswaps) ## macro transform_arg(mod, @nospecialize(x)) = if x isa QuoteNode x.value elseif x == :nothing nothing elseif x isa String x elseif x isa Symbol getfield(mod, x) elseif x isa Expr swap = mod.eval(x) ex -> Base.invokelatest(swap, ex) else throw(ArgumentError("invalid swapper type: $(typeof(x))")) end macro swapliterals(swaps...) length(swaps) == 1 && return literals_swapper(defaultswaps)(esc(swaps[1])) if length(swaps) == 2 && swaps[1] isa Expr && swaps[1].head == :vect swaps = Any[swaps[1].args..., swaps[2]] end # either there are pairs/keyword arguments (handled first), # or positional arguments (handled second), but not both if swaps[1] isa Expr ex = esc(swaps[end]) swaps = swaps[1:end-1] transform_src(x::Symbol) = getfield(Base, x) transform_src(x::QuoteNode) = x.value # for `:braces`, etc. if Meta.isexpr(swaps[1], :call, 3) # pairs swaps = map(swaps) do sw Meta.isexpr(sw, :call, 3) && sw.args[1] == :(=>) || throw(ArgumentError("invalid pair argument")) transform_src(sw.args[2]) => sw.args[3] end else swaps = map(swaps) do sw # keyword arguments Meta.isexpr(sw, :(=), 2) || throw(ArgumentError("invalid keyword argument")) transform_src(sw.args[1]) => sw.args[2] end end else for a in swaps[1:end-1] a isa Union{QuoteNode,String} || a == :nothing || throw(ArgumentError("invalid argument: $a")) end ex = esc(swaps[end]) if length(swaps) == 4 swaps = Any[Float64=>swaps[1], Int=>swaps[2], Int128=>swaps[3]] elseif length(swaps) == 5 swaps = Any[Float64=>swaps[1], Int=>swaps[2], Int128=>swaps[3], BigInt=>swaps[4]] else throw(ArgumentError("wrong number of arguments")) end if Int !== Int64 # transform Int64 in the same way we transform Int == Int32 push!(swaps, Int64 => last(swaps[2])) end end swaps = Any[k => transform_arg(__module__, v) for (k, v) in swaps] literals_swapper(swaps)(ex) end end # module
SafeREPL
https://github.com/rfourquet/SafeREPL.jl.git
[ "MIT" ]
0.1.1
a1f3ac34b66e34553f1e0961b8eeef572d6c4525
code
11712
using Test using SwapLiterals using SwapLiterals: floats_use_rationalize! using BitIntegers, SaferIntegers literalswapper(sw::Pair...) = SwapLiterals.literals_swapper(sw) literalswapper(F, I, I128, B=nothing) = literalswapper(Float64=>F, Int=>I, Int128=>I128, BigInt=>B) makeset(ex) = Expr(:call, :Set, Expr(:vect, ex.args...)) # just a random function, which transform `a := x` into `A := x` makecoloneq(ex) = Expr(:(=), Symbol(uppercase(String(ex.args[1]))), ex.args[2:end]...) @testset "swapliterals" begin swapbig = literalswapper(:BigFloat, :big, "@big_str") @test swapbig(1) == :(big(1)) @test swapbig(1.2) == :(BigFloat(1.2)) @swapliterals :BigFloat :big "@big_str" begin @test 1 == Int(1) @test 1 isa BigInt @test 10000000000 isa BigInt # Int64 literals are transformed like Int literals @test 1.2 isa BigFloat @test 1.2 == big"1.1999999999999999555910790149937383830547332763671875" @test 1.0 == Float64(1.0) @test $1 isa Int @test $10000000000 isa Int64 # even on 32-bits systems @test $1.2 isa Float64 end # next three blocs should be equivalent @swapliterals begin @test 1.2 isa BigFloat @test 1.2 == big"1.2" @test 1 isa BigInt @test 10000000000 isa BigInt # Int64 literals are transformed like Int literals @test 11111111111111111111 isa BigInt end @swapliterals "@big_str" :big :big begin @test 1.2 isa BigFloat @test 1.2 == big"1.2" @test 1 isa BigInt @test 11111111111111111111 isa BigInt end @swapliterals Float64=>"@big_str" Int=>:big Int128=>:big begin @test 1.2 isa BigFloat @test 1.2 == big"1.2" @test 1 isa BigInt if Int === Int64 @test 10000000000 isa BigInt else @test 10000000000 isa Int64 # Int64 literals are *not* transformed like Int literals end @test 11111111111111111111 isa BigInt end @swapliterals Int64 => :big begin if Int === Int64 @test 1 isa BigInt else @test 1 isa Int end @test 10000000000 isa BigInt end # TODO: these tests in loop are dubious for T in Base.BitUnsigned_types @test typeof(swapbig(T(1))) == T end for T in [Float32, Float16] @test typeof(swapbig(T(1))) == T end x = eval(swapbig(1.0)) @test x isa BigFloat && x == 1.0 x = eval(swapbig(1)) @test x == 1 && x isa BigInt x = eval(swapbig(:11111111111111111111)) @test x == 11111111111111111111 && x isa BigInt x = eval(swapbig(:1111111111111111111111111111111111111111)) @test x isa BigInt @swapliterals :BigFloat :big "@big_str" begin x = 1.0 @test x isa BigFloat && x == Float64(1.0) x = 1 @test x == Int(1) && x isa BigInt x = 11111111111111111111 @test x == big"11111111111111111111" && x isa BigInt x = 1111111111111111111111111111111111111111 @test x isa BigInt @test $1.0 isa Float64 @test $11111111111111111111 isa Int128 # throws as un-handled quote # @test $1111111111111111111111111111111111111111 isa BigInt end swap128 = literalswapper(:Float64, :Int128, "@int128_str") x = eval(swap128(1)) @test x == 1 && x isa Int128 x = eval(swap128(:11111111111111111111)) @test x == 11111111111111111111 && x isa Int128 x = eval(swap128(:1111111111111111111111111111111111111111)) @test x isa BigInt @swapliterals :Float64 :Int128 "@int128_str" begin x = 1 @test x == Int(1) && x isa Int128 x = 10000000000 @test x == big"10000000000" @test x isa Int128 # Int64 literals are transformed like Int literals x = 11111111111111111111 @test x == Int128(11111111111111111111) && x isa Int128 x = 1111111111111111111111111111111111111111 @test x isa BigInt end swapnothing = literalswapper(nothing, nothing, nothing) x = eval(swapnothing(1.0)) @test x isa Float64 x = eval(swapnothing(:11111111111111111111)) @test x isa Int128 x = eval(swapnothing(:1111111111111111111111111111111111111111)) @test x isa BigInt @swapliterals nothing nothing nothing begin x = 1.0 @test x isa Float64 @test 1 isa Int @test 10000000000 isa Int64 x = 11111111111111111111 @test x isa Int128 x = 1111111111111111111111111111111111111111 @test x isa BigInt end # pass :big instead of a string macro swaponly128 = literalswapper(nothing, nothing, :big) x = eval(swaponly128(:11111111111111111111)) @test x isa BigInt @swapliterals nothing nothing :big begin x = 11111111111111111111 @test x isa BigInt end # pass symbol for Int128 swapBitIntegers = literalswapper(nothing, :Int256, :Int256) x = eval(swapBitIntegers(123)) @test x isa Int256 x = eval(swapBitIntegers(:11111111111111111111)) @test x isa Int256 swapSaferIntegers = literalswapper(nothing, :SafeInt, :SafeInt128) x = eval(swapSaferIntegers(123)) @test x isa SafeInt x = eval(swapSaferIntegers(:11111111111111111111)) @test x isa SafeInt128 @swapliterals nothing :Int256 :Int256 begin x = 123 @test x isa Int256 x = 11111111111111111111 @test x isa Int256 end @swapliterals nothing :SafeInt :SafeInt128 begin x = 123 @test x isa SafeInt x = 11111111111111111111 @test x isa SafeInt128 end # pass symbol for BigInt swapbig = literalswapper(nothing, nothing, :Int1024, :Int1024) x = eval(swapbig(:11111111111111111111)) @test x isa Int1024 x = eval(swapbig(:1111111111111111111111111111111111111111)) @test x isa Int1024 @swapliterals nothing nothing :Int1024 :Int1024 begin @test 11111111111111111111 isa Int1024 @test 1111111111111111111111111111111111111111 isa Int1024 @test $11111111111111111111 isa Int128 @test $1111111111111111111111111111111111111111 isa BigInt end swapbig = literalswapper(nothing, nothing, :big, :big) x = eval(swapbig(:11111111111111111111)) @test x isa BigInt x = eval(swapbig(:1111111111111111111111111111111111111111)) @test x isa BigInt @swapliterals nothing nothing :big :big begin x = 11111111111111111111 @test x isa BigInt x = 1111111111111111111111111111111111111111 @test x isa BigInt end # kwargs kwswapper = literalswapper(Int=>:big) @test eval(kwswapper(1.2)) isa Float64 @test eval(kwswapper(1)) isa BigInt @test eval(kwswapper(:11111111111111111111)) isa Int128 @test eval(kwswapper(:1111111111111111111111111111111111111111)) isa BigInt # Float32 @swapliterals Float32 => :big begin @test 1.2f0 == big"1.2000000476837158203125" end @swapliterals Float32 => "@big_str" begin @test 1.2f0 == big"1.2" end # string swappers @swapliterals Int => "@big_str" UInt8 => "@raw_str" begin @test 1 isa BigInt @test 0x01 === "1" end # Int & UInt @swapliterals Int => :UInt8 UInt => :Int8 begin @test 1 isa UInt8 if UInt === UInt64 @test 0x0000000000000001 isa Int8 @test 0x00000001 isa UInt32 else @test 0x00000001 isa Int8 @test 0x0000000000000001 isa UInt64 end end @swapliterals Int32=>:UInt8 Int64=>:UInt8 UInt64=>:Int8 begin @test 1 isa UInt8 @test 0x0000000000000001 isa Int8 end # unsigned @swapliterals UInt8=>:Int UInt16=>:Int UInt32=>:Int UInt64=>:Int UInt128=>:Int128 begin @test 0x1 isa Int @test 0x0001 isa Int @test $0x0001 isa UInt16 @test 0x00000001 isa Int @test $0x00000001 isa UInt32 @test :0x00000001 isa UInt32 @test 0x0000000000000001 isa Int @test :0x0000000000000001 isa UInt64 @test 0x00000000000000000000000000000001 isa Int128 @test $0x00000000000000000000000000000001 isa UInt128 end @swapliterals UInt128=>"@int128_str" begin @test 0x00000000000000000000000000000001 isa Int128 @test $0x00000000000000000000000000000001 isa UInt128 end # strings & chars @swapliterals Char=>:string String => "@r_str" begin @test "123" isa Regex @test 'a' isa String end @swapliterals Char => :UInt64 String => :Symbol begin @test "123" isa Symbol @test 'a' === 0x0000000000000061 end @test_throws ArgumentError literalswapper(Array=>:Int) # quoted expressions which are not handled by a swapper remain quoted swapper = literalswapper(Char=>UInt) @test 'a' !== swapper('a') == 0x61 @test swapper(Expr(:$, 'a')) === 'a' @test_throws ErrorException eval(swapper(Expr(:$, 1))) @test_throws ErrorException eval(swapper(Expr(:$, :11111111111111111111))) @test_throws ErrorException eval(swapper(Expr(:$, :1111111111111111111111111111111111111111))) # function swappers @swapliterals UInt8 => (x -> x+1) Int => UInt8 Int128 => (ex -> ex.args[3]) begin @test 0x01 == 2.0 @test 1 isa UInt8 @test 11111111111111111111 == "11111111111111111111" end # :braces, :tuple, :vect @swapliterals [:braces => makeset, :bracescat => makeset, :tuple => makeset, :vect => makeset ] begin r = push!(Set{Int}(), 1, 2, 3) s = {1, 2, 3} @test s isa Set{Int} @test s == r s = [1, 2, 3] @test s isa Set{Int} @test s == r s = (1, 2, 3) @test s isa Set{Int} @test s == r s = { 1 2 3 } @test s isa Set{Int} @test s == r end @swapliterals :tuple => :collect begin v = (1, 2, 3) @test v isa Vector{Int} @test v == [1, 2, 3] end # :(:=) @swapliterals :(:=) => makecoloneq begin a := 2 @test A == 2 @test !@isdefined(a) bcd := 1, 2, 3 @test BCD == (1, 2, 3) @test !@isdefined(bcd) end # test that swapper is applied recursively @swapliterals :tuple => makeset Int => :big begin @test (1, 2) isa Set{BigInt} end @swapliterals Int => :big begin @test (1, 2) isa Tuple{BigInt,BigInt} end end # test name resolution for functions module TestModule using SwapLiterals, Test uint8(x) = UInt8(x) @swapliterals Int => uint8 Char => (x -> uint8(x)+1) begin @test 1 isa UInt8 @test 'a' == 0x62 end end ## playing with floats_use_rationalize!() # can't be in a @testset apparently, probably because the parsing # in @testset is done before floats_use_rationalize!() takes effect @swapliterals Float32="@big_str" Float64="@big_str" begin @test 1.2 == big"1.2" @test 1.2f0 == big"1.2" end floats_use_rationalize!() @swapliterals Float32="@big_str" Float64="@big_str" begin @test 1.2 == big"1.2" @test 1.2f0 == big"1.2" end # try again, with explicit `true` arg, and with :BigFloat instead of :big floats_use_rationalize!(true) @swapliterals Float32=:BigFloat Float64=:BigFloat begin @test 1.2 == big"1.2" @test 1.2f0 == big"1.2" end floats_use_rationalize!(false) @swapliterals Float32=:BigFloat Float64=:BigFloat begin @test 1.2 == big"1.1999999999999999555910790149937383830547332763671875" @test 1.2f0 == big"1.2000000476837158203125" end
SafeREPL
https://github.com/rfourquet/SafeREPL.jl.git
[ "MIT" ]
0.1.1
a1f3ac34b66e34553f1e0961b8eeef572d6c4525
code
2623
module SafeREPL Base.Experimental.@optlevel 0 export swapliterals! using SwapLiterals: SwapLiterals, makedict, floats_use_rationalize!, literals_swapper, default_literals_swapper, defaultswaps using REPL function __init__() # condensed equivalent version of `swapliterals!()`, for faster loading push!(get_transforms(), default_literals_swapper) end const LAST_SWAPPER = Ref{Function}(default_literals_swapper) function get_transforms() if isdefined(Base, :active_repl_backend) && isdefined(Base.active_repl_backend, :ast_transforms) Base.active_repl_backend.ast_transforms::Vector{Any} else REPL.repl_ast_transforms::Vector{Any} end end """ SafeREPL.swapliterals!(Float64, Int, Int128, BigInt=nothing) Specify transformations for literals: argument `Float64` corresponds to literals of type `Float64`, etcetera. !!! note On 32-bits systems, the transformation for `Int` is also applied on `Int64` literals. A transformation can be * a `Symbol`, to refer to a function, e.g. `:big`; * `nothing` to not transform literals of this type; * a `String` specifying the name of a string macro, e.g. `"@big_str"`, which will be applied to the input. Available only for `Int128` and `BigInt`, and experimentally for `Float64`. """ function swapliterals!(Float64, Int, Int128, BigInt=nothing) @nospecialize if Base.Int === Base.Int64 swapliterals!(; Float64, Int, Int128, BigInt) else swapliterals!(; Float64, Int, Int64=Int, Int128, BigInt) end end function swapliterals!(@nospecialize(swaps::AbstractDict)) swapliterals!(false) # remove previous settings LAST_SWAPPER[] = swaps === defaultswaps ? default_literals_swapper : literals_swapper(swaps) push!(get_transforms(), LAST_SWAPPER[]) nothing end # called only when !isempty(swaps) swapliterals!(swaps::Pair...) = swapliterals!(makedict(swaps)) # non-public API when !isempty(kwswaps) function swapliterals!(; kwswaps...) swapliterals!( isempty(kwswaps) ? defaultswaps : makedict(Any[getfield(Base, first(sw)) => last(sw) for sw in kwswaps])) end function swapliterals!(activate::Bool) transforms = get_transforms() # first always de-activate filter!(f -> parentmodule(f) != SwapLiterals, transforms) if activate push!(transforms, LAST_SWAPPER[]) end nothing end isactive() = any(==(SwapLiterals) ∘ parentmodule, get_transforms()) end # module
SafeREPL
https://github.com/rfourquet/SafeREPL.jl.git
[ "MIT" ]
0.1.1
a1f3ac34b66e34553f1e0961b8eeef572d6c4525
code
101
using Pkg if VERSION >= v"1.5" Pkg.develop(path="../SwapLiterals") end Pkg.test("SwapLiterals")
SafeREPL
https://github.com/rfourquet/SafeREPL.jl.git
[ "MIT" ]
0.1.1
a1f3ac34b66e34553f1e0961b8eeef572d6c4525
docs
15714
[![Build Status](https://travis-ci.org/rfourquet/SafeREPL.jl.svg?branch=master)](https://travis-ci.org/rfourquet/SafeREPL.jl) ## SafeREPL The `SafeREPL` package allows to swap, in the REPL, the meaning of Julia's literals (in particular numbers). Upon loading, the default is to replace `Float64` literals with `BigFloat`, and `Int`, `Int64` and `Int128` literals with `BigInt`. A literal prefixed with `$` is left unchanged. ```julia julia> using SafeREPL julia> 2^200 1606938044258990275541962092341162602522202993782792835301376 julia> sqrt(2.0) 1.414213562373095048801688724209698078569671875376948073176679737990732478462102 julia> typeof($2) Int64 ``` ### Installation This package requires Julia version at least 1.5. It depends on a sub-package, `SwapLiterals`, described below, which requires only Julia 1.1. Both packages are registered and can be installed via ```julia using Pkg pkg"add SafeREPL" pkg"add SwapLiterals" ``` ### Custom types What literals mean is specified via `SafeREPL.swapliterals!`. The four arguments of this function correspond to `Float64`, `Int`, `Int128`, `BigInt`. Passing `nothing` means not transforming literals of this type, and a symbol is interpreted as the name of a function to be applied to the value. The last argument defaults to `nothing`. On 32-bits systems, `Int64` literals are transformed in the same way as `Int` literals. A single boolean value can also be passed: `swapliterals!(false)` deactivates `SafeREPL` and `swapliterals!(true)` re-activates it with the previous setting. Finally, `swapliterals!()` activates the default setting (what is enabled with `using SafeREPL`, which is equivalent to `swapliterals!("@big_str", :big, :big)`, see [below](#string-macros) for the meaning of `"@big_str"`). #### Examples ```julia julia> using BitIntegers, BitFloats julia> swapliterals!(:Float128, :Int256, :Int256) julia> log2(factorial(60)) 254.8391546883338 julia> sqrt(2.0) 1.41421356237309504880168872420969798 julia> using SaferIntegers, DoubleFloats julia> swapliterals!(:DoubleFloat, :SafeInt, :SafeInt128) julia> typeof(2.0) Double64 julia> 2^64 ERROR: OverflowError: 2^64 Stacktrace: [...] julia> 10000000000000000000^3 ERROR: OverflowError: 10000000000000000000 * 100000000000000000000000000000000000000 overflowed for type Int128 Stacktrace: [...] julia> using Nemo; swapliterals!(nothing, :fmpz, :fmpz, :fmpz) julia> factorial(100) 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000 julia> typeof(ans), typeof(1.2) (fmpz, Float64) julia> [1, 2, 3][1] # fmpz is currently not <: Integer ... ERROR: ArgumentError: invalid index: 1 of type fmpz [...] julia> [1, 2, 3][$1] # ... so quote array indices 1 julia> swapliterals!(false); typeof(1), typeof(1.0) # this swapliterals! doesn't act on this line! (fmpz, Float64) julia> typeof(1), typeof(1.0) (Int64, Float64) julia> swapliterals!(true) julia> typeof(1), typeof(1.0) (fmpz, Float64) julia> swapliterals!() # activate defaults julia> typeof(1), typeof(1.0) (BigInt, BigFloat) ``` ### How to substitute other literals? The more general API of `swapliterals!` is to pass a list of pairs `SourceType => converter`, where `SourceType` is the type on which `converter` should be applied. For example: ```julia julia> swapliterals!(Char => :string, Float32 => :Float64, UInt8 => :UInt) julia> 'a', 1.2f0, 0x12 ("a", 1.2000000476837158, 0x0000000000000012) julia> using Strs; swapliterals!(String => :Str) julia> typeof("a") ASCIIStr ``` Notable exceptions are `Symbol` and `Bool` literals, which currently can't be converted with `swapliterals!` (open an issue if you really need this feature). ### String macros For `Int128`, `UInt128` and `BigInt`, it's possible to pass the name of a string macro (as a `String`) instead of a symbol. In this case, the macro is used to directly interpret the number. For example: ```julia julia> swapliterals!(Int128 => "@int1024_str", BigInt => "@int1024_str") julia> typeof(111111111111111111111111111111111) Int1024 julia> 1234...(many digits).....789 # of course very big numbers can't be input anymore! ERROR: LoadError: OverflowError: overflow parsing "1234..." [...] ``` As an experimental feature, when a string macro is passed to interpret `Float64`, the input is then first converted to a `String` which is passed to the macro: ```julia julia> swapliterals!() julia> 2.6 - 0.7 - 1.9 2.220446049250313e-16 julia> swapliterals!(Float64 => "@big_str") julia> 1.2 1.200000000000000000000000000000000000000000000000000000000000000000000000000007 julia> 1.2 == big"1.2" true julia> 1.1999999999999999 == big"1.1999999999999999" false julia> 2.6 - 0.7 - 1.9 -1.727233711018888925077270372560079914223200072887256277004740694033718360632485e-77 julia> using DecFP; swapliterals!(Float64 => "@d64_str") julia> 2.6 - 0.7 - 1.9 0.0 ``` ### For the adventurous <details> <summary>Are you sure?</summary> Few more literals can be substituted: arrays and tuples, and the `{}` vector syntax, which are specified respectively as `:vect`, `:tuple`, `:braces`. Vectors entered with `{}` delimiters but with elements separated with a newline instead of `,` can be specified as `:bracescat`. For example: ```julia julia> swapliterals!(:vect => :Set) julia> [1, 2] Set{Int64} with 2 elements: 2 1 julia> :[1, 2] :(Set([1, 2])) julia> $[1, 2] 2-element Array{Int64,1}: 1 2 ``` The next question is: how to use the `:braces` syntax, given that it is not valid normal-Julia syntax? In addition to the previously mentioned converter types (`Symbol` and `String`), it's possible to pass a function which is used to transform the Julia AST: ```julia julia> makeset(ex) = Expr(:call, :Set, Expr(:vect, ex.args...)); julia> swapliterals!(:braces => makeset, :bracescat => makeset) julia> {1, 2, 3} Set{Int64} with 3 elements: 2 3 1 julia> { 1 2 } Set{Int64} with 2 elements: 2 1 ``` For types which are stored directly in the AST, using a symbol or a function is roughly equivalent (and using `$`-quoting or `:`-quoting is similarly equivalent), for example: ```julia julia> swapliterals!(Int => Float64) julia> (1, :1, $1) 1.0, 1, 1 julia> :(1 + 2) :(1.0 + 2.0) julia> swapliterals!(Int => :Float64) julia> (1, :1, $1) 1.0, 1, 1 julia> :(1 + 2) :(Float64(1) + Float64(2)) ``` Note that using functions is a rather experimental feature. A natural question arising pretty quickly is how `$`-quoting interacts with other `$`-quoting contexts, in particular with `BenchmarkTools`. With scalar-substitutions, this is mostly a non-issue, as we usually do not `$`-quote literal numbers while benchmarking, but this is a bit more subtle when substituting container literals: ```julia julia> swapliterals!(false) julia> @btime sum([1, 2]); 31.520 ns (1 allocation: 96 bytes) julia> @btime sum($[1, 2]); 3.129 ns (0 allocations: 0 bytes) julia> @btime sum($(Set([1, 2]))); 20.090 ns (0 allocations: 0 bytes) julia> swapliterals!(:vect => makeset) julia> @btime sum($[1, 2]); # $[1, 2] is really a vector 31.459 ns (1 allocation: 96 bytes) julia> @btime sum($$[1, 2]); # BenchmarkTools-$-quoting for real [1, 2] 3.480 ns (0 allocations: 0 bytes) julia> @btime sum($(begin [1, 2] end)); # BenchmarkTools-$-quoting for real Set([1, 2]) 19.786 ns (0 allocations: 0 bytes) julia> @btime sum($:[1, 2]) # ??? 20.077 ns (0 allocations: 0 bytes) ``` Using a symbol versus a function can also have a subtle impact on benchmarking: ```julia julia> swapliterals!(false) julia> @btime big(1) + big(2); 176.467 ns (6 allocations: 128 bytes) julia> @btime $(big(1)) + $(big(2)); 71.681 ns (2 allocations: 48 bytes) julia> swapliterals!(Int => :big) julia> :(1 + 2) :(big(1) + big(2)) julia> @btime 1 + 2 176.982 ns (6 allocations: 128 bytes) julia> swapliterals!(Int => big) julia> :(1 + 2) :(1 + 2) julia> dump(:(1 + 2)) Expr head: Symbol call args: Array{Any}((3,)) 1: Symbol + 2: BigInt alloc: Int32 1 size: Int32 1 d: Ptr{UInt64} @0x0000000004662760 3: BigInt alloc: Int32 1 size: Int32 1 d: Ptr{UInt64} @0x000000000356d4a0 julia> @btime 1 + 2 63.765 ns (2 allocations: 48 bytes) ``` Finally, as an experimental feature, expressions involving `:=` can also be transformed, with the same mechanism, for example: ```julia julia> swapliterals!(:(:=) => ex -> Expr(:(=), Symbol(uppercase(String(ex.args[1]))), ex.args[2:end]...)) julia> a := 1; A # equivalent to `A = 1` 1 ``` </details> ### How to use in source code? Via the `@swapliterals` macro from the `SwapLiterals` package, which has roughly the same API as the `swapliterals!` function: ```julia using SwapLiterals x = @swapliterals :big :big :big begin 1.0, 2^123 end typeof(x) # Tuple{BigFloat,BigInt} x = @swapliterals (1.0, 2^123) # shorter version, uses :big as defaults ``` Note: if you try the above at the REPL while `SafeREPL` is also active, `typeof(x)` might be `Tuple{BigFloat,BigInt}`. Try first `swapliterals!(false)` to deactivate `SafeREPL`. The pair API is also available, as well as the possibility to pass converters in a (literal) array for more clarity: ```julia @swapliterals Int => :big 1 x = @swapliterals [Int => :big, Int128 => :big, Float64 => big ] begin 1.0, 1, 111111111111111111111 end typeof(x) # Tuple{BigFloat,BigInt,BigInt} ``` Note that passing a non-global function as the converter (to transform the AST, cf. [previous section](#for-the-adventurous)) is likely to fail. ### Visual indicator that SafeREPL is active The following can be put in the "startup.jl" file to modify the color of the prompt, or to modify the text in the prompt. Tweak as necessary. ```julia using REPL atreplinit() do repl repl.interface = REPL.setup_interface(repl) julia_mode = repl.interface.modes[1] old_prefix = julia_mode.prompt_prefix julia_mode.prompt_prefix = function() if isdefined(Main, :SafeREPL) && SafeREPL.isactive() Base.text_colors[:yellow] else old_prefix end end old_prompt = julia_mode.prompt julia_mode.prompt = function() if isdefined(Main, :SafeREPL) && SafeREPL.isactive() "safejulia> " # ;-) else old_prompt end end end ``` ### Switching easily back and forth You can set up a keybinding to activate or de-activate `SafeREPL`, e.g. `Ctrl-x` followed by `Ctrl-s`, by putting the following in "startup.jl": ```julia using REPL const mykeys = Dict( "^x^s" => function (s, o...) swapliterals!(!SafeREPL.isactive()) REPL.LineEdit.refresh_line(s) end ) atreplinit() do repl repl.interface = REPL.setup_interface(repl; extra_repl_keymap = mykeys) end ``` Cf. the [manual](https://docs.julialang.org/en/v1.4/stdlib/REPL/#Customizing-keybindings-1) for details. Note that `REPL.setup_interface` should be called only once, so to set up a keybinding together with a custom prompt as shown in last section, both `atreplinit` calls must be combined, e.g. ```julia atreplinit() do repl repl.interface = REPL.setup_interface(repl; extra_repl_keymap = mykeys) julia_mode = repl.interface.modes[1] # ... modify julia_mode end ``` ### Caveats * This package was not tested on 32-bits architectures, so use it at your own risks. By the way, there is no guarantee even on 64-bits architectures... * Using new number types by default in the REPL might reveal many missing methods for these types and render the REPL less usable than ideal. Good opportunity for opening ticket/issues in the corresponding projects :) In the meantime, this can be mitigated by the use of `$`. * It should be clear that using `BigInt` and `BigFloat` for literals instead of `Int` and `Float64` can make some function calls quite more expensive, time-wise and memory-wise. So `SafeREPL` just offers a different trade-off than the default Julia REPL, it's not a panacea. * float literals are stored as `Float64` in the Julia AST, meaning that information can be lost: ```julia julia> using SafeREPL; swapliterals!(Float64 => :big) julia> :(print(1.2)) :(print(big(1.2))) julia> 1.2 # this is equivalent to `big(1.2)` 1.1999999999999999555910790149937383830547332763671875 julia> big"1.2" 1.200000000000000000000000000000000000000000000000000000000000000000000000000007 ``` As said earlier, one can pass `"@big_str"` for the `Float64` converter to try to mitigate this problem: this is currently the default. Another alternative (which does _not_ always produce the same results as with `"@big_str"`) is to call `rationalize` before converting to a float. There is an experimental option to have `SafeREPL` implicitly insert calls to `rationalize`, which is enabled by calling `floats_use_rationalize!(true)`: ```julia julia> bigfloat(x) = BigFloat(rationalize(x)); julia> swapliterals!(Float64 => :bigfloat) julia> 1.2 1.200000000000000000000000000000000000000000000000000000000000000000000000000007 julia> swapliterals!(Float64 => :big); SafeREPL.floats_use_rationalize!(true); julia> 1.2 1.200000000000000000000000000000000000000000000000000000000000000000000000000007 julia> 1.20000000000001 1.200000000000010169642905566151645987816694259698096594761182517957654980952429 julia> swapliterals!(Float64 => "@big_str") # rationalize not used julia> 1.20000000000001 1.200000000000010000000000000000000000000000000000000000000000000000000000000006 ``` ### How "safe" is it? This is totally up to the user. Some Julia users get disappointed when they encounter some "unsafe" arithmetic operations (due to integer overflow for example). "Safe" in `SafeREPL` must be understood tongue-in-cheek, and applies to the default setting where some overflows will disappear. This package can make Julia quite more unsafe; here is a "soft" example: ```julia julia> swapliterals!(Int => x -> x % Int8) julia> 1234 -46 ``` ### Alternatives Before Julia 1.5, the easiest alternative was probably to use a custom REPL mode, and [ReplMaker.jl](https://github.com/MasonProtter/ReplMaker.jl#example-3-big-mode) even has an example to set this up in few lines. Here is a way to use `SwapLiterals` as a backend for a `ReplMaker` mode, which uses the `valid_julia` function defined in its [README](https://github.com/MasonProtter/ReplMaker.jl#example-1-expr-mode): ```julia julia> literals_swapper = SwapLiterals.literals_swapper([Int=>:big, Int128=>:big, Float64=>"@big_str"]); julia> function Big_parse(s) expr = Meta.parse(s) literals_swapper(expr) end julia> initrepl(Big_parse, prompt_text="BigJulia> ", prompt_color = :red, start_key='>', mode_name="Big-Mode", valid_input_checker=valid_julia) ``` The `SwapLiterals.literals_swapper` function takes a list of pairs which have the same meaning as in `swapliterals!`. Note that it's currently not part of the public API of `SwapLiterals`. At least a couple of packages have a macro similar to `@swapliterals`: * [ChangePrecision.jl](https://github.com/stevengj/ChangePrecision.jl), with the `@changeprecision` macro which reinterprets floating-point literals but also some floats-producing functions like `rand()`. * [SaferIntegers.jl](https://github.com/JeffreySarnoff/SaferIntegers.jl), with the `@saferintegers` macro which wraps integers using `SaferIntegers` types.
SafeREPL
https://github.com/rfourquet/SafeREPL.jl.git
[ "MIT" ]
0.4.0
5d154e25b3813c038711b0005617990ea28eb4bd
code
23653
# LibFTD2XX.jl - High Level Module # # By Reuben Hill 2019, Gowerlabs Ltd, [email protected] # # Copyright (c) Gowerlabs Ltd. # # This module contains methods and functions for interacting with D2XX devices. # It calls functions from the submodule `Wrapper` which in turn call Functions # from the FT D2XX library. See D2XX Programmer's Guide (FT_000071) for more # information on that library. module LibFTD2XX # Enums export FTOpenBy, OPEN_BY_SERIAL_NUMBER, OPEN_BY_DESCRIPTION export FTWordLength, BITS_8, BITS_7 export FTStopBits, STOP_BITS_1, STOP_BITS_2 export FTParity, PARITY_NONE, PARITY_ODD, PARITY_EVEN, PARITY_MARK, PARITY_SPACE export FTBitMode, MODE_RESET, MODE_ASYNC_BITBANG, MODE_MPSSE, MODE_SYNC_BITBANG, MODE_MCU_EMULATION, MODE_FAST_OPTO, MODE_CBUS_BITBANG, MODE_SCS_FIFO # Types and Constructors export FT_HANDLE # Exported by .Wrapper export D2XXException export D2XXDevice, D2XXDevices # Port communication functions export baudrate, datacharacteristics, timeouts, status, driverversion # Library Functions export libversion # D2XXDevice Accessor Functions export deviceidx, deviceflags, devicetype, deviceid, locationid, serialnumber, description, fthandle include("util.jl") include("wrapper.jl") using .Wrapper """ @enum( FTOpenBy, OPEN_BY_SERIAL_NUMBER = FT_OPEN_BY_SERIAL_NUMBER, OPEN_BY_DESCRIPTION = FT_OPEN_BY_DESCRIPTION) For use with [`open`](@ref). """ @enum( FTOpenBy, OPEN_BY_SERIAL_NUMBER = FT_OPEN_BY_SERIAL_NUMBER, OPEN_BY_DESCRIPTION = FT_OPEN_BY_DESCRIPTION) """ @enum( FTWordLength, BITS_8 = FT_BITS_8, BITS_7 = FT_BITS_7) For use with [`datacharacteristics`](@ref). """ @enum( FTWordLength, BITS_8 = FT_BITS_8, BITS_7 = FT_BITS_7) """ @enum( FTStopBits, STOP_BITS_1 = FT_STOP_BITS_1, STOP_BITS_2 = FT_STOP_BITS_2) For use with [`datacharacteristics`](@ref). """ @enum( FTStopBits, STOP_BITS_1 = FT_STOP_BITS_1, STOP_BITS_2 = FT_STOP_BITS_2) """ @enum( FTParity, PARITY_NONE = FT_PARITY_NONE, PARITY_ODD = FT_PARITY_ODD, PARITY_EVEN = FT_PARITY_EVEN, PARITY_MARK = FT_PARITY_MARK, PARITY_SPACE = FT_PARITY_SPACE) For use with [`datacharacteristics`](@ref). """ @enum( FTParity, PARITY_NONE = FT_PARITY_NONE, PARITY_ODD = FT_PARITY_ODD, PARITY_EVEN = FT_PARITY_EVEN, PARITY_MARK = FT_PARITY_MARK, PARITY_SPACE = FT_PARITY_SPACE) """ @enum( FTBitMode, MODE_RESET = FT_MODE_RESET, MODE_ASYNC_BITBANG = FT_MODE_ASYNC_BITBANG, MODE_MPSSE = FT_MODE_MPSSE, MODE_SYNC_BITBANG = FT_MODE_SYNC_BITBANG, MODE_MCU_EMULATION = FT_MODE_MCU_EMULATION, MODE_FAST_OPTO = FT_MODE_FAST_OPTO, MODE_CBUS_BITBANG = FT_MODE_CBUS_BITBANG, MODE_SCS_FIFO = FT_MODE_SCS_FIFO) For use with [`bitmode`](@ref). """ @enum( FTBitMode, MODE_RESET = FT_MODE_RESET, MODE_ASYNC_BITBANG = FT_MODE_ASYNC_BITBANG, MODE_MPSSE = FT_MODE_MPSSE, MODE_SYNC_BITBANG = FT_MODE_SYNC_BITBANG, MODE_MCU_EMULATION = FT_MODE_MCU_EMULATION, MODE_FAST_OPTO = FT_MODE_FAST_OPTO, MODE_CBUS_BITBANG = FT_MODE_CBUS_BITBANG, MODE_SCS_FIFO = FT_MODE_SCS_FIFO) """ D2XXException <: Exception LibFTD2XX High-Level Library Error Type. """ struct D2XXException <: Exception str::String end """ struct D2XXDevice <: IO Device identifier for a D2XX device. See also: [`D2XXDevices`](@ref), [`deviceidx`](@ref), [`deviceflags`](@ref), [`devicetype`](@ref), [`deviceid`](@ref), [`locationid`](@ref), [`serialnumber`](@ref), [`description`](@ref), [`fthandle`](@ref). """ struct D2XXDevice <: IO idx::Int flags::Int typ::Int id::Int locid::Int serialnumber::String description::String fthandle::Ref{FT_HANDLE} end # D2XXDevice Constructors # """ D2XXDevice(deviceidx::Integer) Construct a `D2XXDevice` without opening it. D2XX hardware must pre present to work. """ D2XXDevice(deviceidx::Integer) = D2XXDevice(getdeviceinfodetail(deviceidx)...) """ D2XXDevices() Returns an array of available D2XX devices of type `D2XXDevice`. Their state is not modified - if they are already open/closed they remain open/closed. See also: [`D2XXDevice`](@ref), [`open`](@ref) """ function D2XXDevices() numdevs = createdeviceinfolist() # NB numdevs is DWORD = Cuint devices = D2XXDevice[] for devidx = 0:(Int(numdevs)-1) # Int conversion to avoid devidx = 0x00000000:0xffffffff on Win32 push!(devices, D2XXDevice(devidx)) end devices end # Port communication functions # """ isopen(d::D2XXDevice) -> Bool See also: [`D2XXDevice`](@ref) """ Base.isopen(d::D2XXDevice) = isopen(fthandle(d)) """ isopen(handle::FT_HANDLE) -> Bool See also: [`FT_HANDLE`](@ref) """ function Base.isopen(handle::FT_HANDLE) open = true if Wrapper._ptr(handle) == C_NULL open = false else try FT_GetModemStatus(handle) catch ex if ex == FT_INVALID_HANDLE open = false else rethrow(ex) end end end open end """ Base.open(d::D2XXDevice) Open a [`D2XXDevice`](@ref) for reading and writing using [`FT_OpenEx`](@ref). Cannot be used to open the same device twice. See also: [`isopen`](@ref), [`close`](@ref) """ function Base.open(d::D2XXDevice) isopen(d) && throw(D2XXException("Device already open.")) fthandle(d, FT_Open(deviceidx(d))) return end """ open(str::AbstractString, openby::FTOpenBy) -> FT_HANDLE Create an open [`FT_HANDLE`](@ref) for reading and writing using [`FT_OpenEx`](@ref). Cannot be used to open the same device twice. # Arguments - `str::AbstractString` : Device identifier. Type depends on `openby` - `openby::FTOpenBy` : Indicator of device identifier `str` type. See also: [`isopen`](@ref), [`close`](@ref) """ Base.open(str::AbstractString, openby::FTOpenBy) = FT_OpenEx(str, DWORD(openby)) """ close(d::D2XXDevice) Close a [`D2XXDevice`](@ref) using [`FT_Close`](@ref). Does not perform a [`flush`](@ref) first. """ Base.close(d::D2XXDevice) = close(fthandle(d)) """ close(handle::FT_HANDLE) Close an [`FT_HANDLE`](@ref) using [`FT_Close`](@ref). Does not perform a [`flush`](@ref) first. """ function Base.close(handle::FT_HANDLE) if isopen(handle) FT_Close(handle) end return end """ bytesavailable(d::D2XXDevice) See also: [`D2XXDevice`](@ref), [`isopen`](@ref), [`open`](@ref), [`readavailable`](@ref), [`read`](@ref) """ Base.bytesavailable(d::D2XXDevice) = bytesavailable(fthandle(d)) """ bytesavailable(handle::FT_HANDLE) See also: [`FT_HANDLE`](@ref), [`isopen`](@ref), [`open`](@ref), [`readavailable`](@ref), [`read`](@ref) """ function Base.bytesavailable(handle::FT_HANDLE) isopen(handle) || throw(D2XXException("Device must be open to check bytes available.")) FT_GetQueueStatus(handle) end """ eof(d::D2XXDevice) -> Bool Indicates if any bytes are available to be read from an open [`D2XXDevice`](@ref). Non-blocking. See also: [`isopen`](@ref), [`open`](@ref), [`readavailable`](@ref), [`read`](@ref) """ Base.eof(d::D2XXDevice) = eof(fthandle(d)) """ eof(d::D2XXDevice) -> Bool Indicates if any bytes are available to be read from an open [`FT_HANDLE`](@ref). Non-blocking. See also: [`isopen`](@ref), [`open`](@ref), [`readavailable`](@ref), [`read`](@ref) """ Base.eof(handle::FT_HANDLE) = (bytesavailable(handle) == 0) """ readbytes!(d::D2XXDevice, b::AbstractVector{UInt8}, nb=length(b)) See description for [`readbytes!(stream::IO, b::AbstractVector{UInt8}, nb=length(b))`](@ref). `d` must be open. Uses [`FTRead`](@ref). See also: [`D2XXDevice`](@ref). """ Base.readbytes!(d::D2XXDevice, b::AbstractVector{UInt8}, nb=length(b)) = readbytes!(fthandle(d), b, nb) """ readbytes!(handle::FT_HANDLE, b::AbstractVector{UInt8}, nb=length(b)) See description for [`readbytes!(stream::IO, b::AbstractVector{UInt8}, nb=length(b))`](@ref). `handle` must be open. Uses [`FTRead`](@ref). See also: [`FT_HANDLE`](@ref) """ function Base.readbytes!(handle::FT_HANDLE, b::AbstractVector{UInt8}, nb=length(b)) isopen(handle) || throw(D2XXException("Device must be open to read.")) if length(b) < nb resize!(b, nb) end nbrx = FT_Read(handle, b, nb) end """ readavailable(d::D2XXDevice) Read all available data from an open [`D2XXDevice`](@ref). Does not block if nothing is available. """ Base.readavailable(d::D2XXDevice) = readavailable(fthandle(d)) """ readavailable(handle::FT_HANDLE) Read all available data from an open [`FT_HANDLE`](@ref). Does not block if nothing is available. See also: [`readbytes`](@ref) [`isopen`](@ref), [`open`](@ref) """ function Base.readavailable(handle::FT_HANDLE) b = Vector{UInt8}(undef, bytesavailable(handle)) readbytes!(handle, b) b end """ write(d::D2XXDevice, buffer::Vector{UInt8}) Write `buffer` to an open [`D2XXDevice`](@ref) using [`FT_Write`](@ref). """ Base.write(d::D2XXDevice, buffer::Vector{UInt8}) = write(fthandle(d), buffer) """ write(handle::FT_HANDLE, buffer::Vector{UInt8}) Write `buffer` to an open [`FT_HANDLE`](@ref) using [`FT_Write`](@ref). See also: [`isopen`](@ref), [`open`](@ref) """ function Base.write(handle::FT_HANDLE, buffer::Vector{UInt8}) isopen(handle) || throw(D2XXException("Device must be open to write.")) FT_Write(handle, buffer, length(buffer)) end """ baudrate(d::D2XXDevice, baud) Set the baudrate of an open [`D2XXDevice`](@ref) using [`FT_SetBaudRate`](@ref). """ baudrate(d::D2XXDevice, baud) = baudrate(fthandle(d), baud) """ baudrate(handle::FT_HANDLE, baud) Set the baudrate of an open [`FT_HANDLE`](@ref) to `baud` using [`FT_SetBaudRate`](@ref). See also: [`isopen`](@ref), [`open`](@ref) """ function baudrate(handle::FT_HANDLE, baud) 0 < baud || throw(DomainError("0 <= baud")) isopen(handle) || throw(D2XXException("Device must be open to set baudrate.")) FT_SetBaudRate(handle, baud) end """ datacharacteristics(d::D2XXDevice; wordlength::FTWordLength = BITS_8, stopbits::FTStopBits = STOP_BITS_1, parity::FTParity = PARITY_NONE) Set the transmission and reception data characteristics for an open [`D2XXDevice`](@ref) using [`FT_SetDataCharacteristics`](@ref). # Arguments - `wordlength::FTWordLength` : Either BITS_7 or BITS_8 - `stopbits::FTStopBits` : Either STOP_BITS_1 or STOP_BITS_2 - `parity::FTParity` : PARITY_NONE, PARITY_ODD, PARITY_EVEN, PARITY_MARK, or PARITY_SPACE """ datacharacteristics(d::D2XXDevice; wordlength::FTWordLength = BITS_8, stopbits::FTStopBits = STOP_BITS_1, parity::FTParity = PARITY_NONE) = datacharacteristics(fthandle(d), wordlength=wordlength, stopbits=stopbits, parity=parity) """ datacharacteristics(handle::FT_HANDLE; wordlength::FTWordLength = BITS_8, stopbits::FTStopBits = STOP_BITS_1, parity::FTParity = PARITY_NONE) Set the transmission and reception data characteristics for an open [`FT_HANDLE`](@ref) using [`FT_SetDataCharacteristics`](@ref). See also: [`isopen`](@ref), [`open`](@ref) """ function datacharacteristics(handle::FT_HANDLE; wordlength::FTWordLength = BITS_8, stopbits::FTStopBits = STOP_BITS_1, parity::FTParity = PARITY_NONE) isopen(handle) || throw(D2XXException("Device must be open to set data characteristics.")) FT_SetDataCharacteristics(handle, DWORD(wordlength), DWORD(stopbits), DWORD(parity)) end """ timeouts(d::D2XXDevice, timeout_rd, timeout_wr) Set the timeouts of an open [`D2XXDevice`](@ref) using [`FT_SetTimeouts`](@ref). """ timeouts(d::D2XXDevice, timeout_rd, timeout_wr) = timeouts(fthandle(d) , timeout_rd, timeout_wr) """ timeouts(handle::FT_HANDLE, timeout_rd, timeout_wr) Set the timeouts of an open [`FT_HANDLE`](@ref) using [`FT_SetTimeouts`](@ref). Behaviour is undefined for `timeout_rd` = 0 and `timeout_wr` = 0. `timeout_rd` = 0 appears to cause [`read`](@ref) and [`readavailable`](@ref) to block. See also: [`isopen`](@ref), [`open`](@ref) """ function timeouts(handle::FT_HANDLE, timeout_rd, timeout_wr) 0 <= timeout_rd || throw(DomainError("0 <= timeout_rd")) 0 <= timeout_wr || throw(DomainError("0 <= timeout_wr")) isopen(handle) || throw(D2XXException("Device must be open to set timeouts.")) FT_SetTimeouts(handle, timeout_rd, timeout_wr) end """ reset(d::D2XXDevice) Reset an [`D2XXDevice`](@ref) using [`FT_ResetDevice`](@ref). """ resetdevice(d::D2XXDevice) = resetdevice(fthandle(d)) """ reset(handle::FT_HANDLE) Reset an [`FT_HANDLE`](@ref) using [`FT_ResetDevice`](@ref). """ function resetdevice(handle::FT_HANDLE) if isopen(handle) FT_ResetDevice(handle) end return end """ usbparameters(d::D2XXDevice, transfersize_in, transfersize_out) Set the USB input and output transfer buffer sizes in bytes, of an open [`D2XXDevice`](@ref). Transfer sizes must be set to a multiple of 64 bytes between 64 bytes and 64k bytes. `transfersize_in` and `transfersize_out` will be automatically rounded to the nearest valid value. When usbparameters is called, the change comes into effect immediately and any data that was held in the driver at the time of the change is lost. Note that, at present, only transfersize_in is supported. """ usbparameters(d::D2XXDevice, transfersize_in, transfersize_out) = usbparameters(fthandle(d), transfersize_in, transfersize_out) """ usbparameters(handle::FT_HANDLE, transfersize_in, transfersize_out) Set the USB input and output transfer buffer sizes in bytes, of an open [`FT_HANDLE`](@ref). Transfer sizes must be set to a multiple of 64 bytes between 64 bytes and 64k bytes. `transfersize_in` and `transfersize_out` will be automatically rounded to the nearest valid value. When `usbparameters` is called, the change comes into effect immediately and any data that was held in the driver at the time of the change is lost. Note that, at present, only transfersize_in is supported. """ function usbparameters(handle::FT_HANDLE, transfersize_in, transfersize_out) isopen(handle) || throw(D2XXException("Device must be open to set USB parameters.")) transfersize_in = round(transfersize_in/64)*64 transfersize_out = round(transfersize_out/64)*64 64 <= transfersize_in || throw(DomainError("transfersize_in < 64")) 64 <= transfersize_out || throw(DomainError("transfersize_out < 64")) 65536 >= transfersize_in || throw(DomainError("transfersize_in > 65536")) 65536 >= transfersize_out || throw(DomainError("transfersize_out > 65536")) FT_SetUSBParameters(handle, transfersize_in, transfersize_out) end """ characters(d::D2XXDevice, transfersize_in, transfersize_out) Set the event- and error characters of an open [`D2XXDevice`](@ref) using [`FT_SetChars`](@ref). This function allows for inserting specified characters in the data stream to represent events firing or errors occurring. """ characters(d::D2XXDevice, event_char, event_enable, error_char, error_enable) = characters(fthandle(d), event_char, event_enable, error_char, error_enable) """ characters(handle::FT_HANDLE, transfersize_in, transfersize_out) Set the event- and error characters of an open [`FT_HANDLE`](@ref) using [`FT_SetChars`](@ref). This function allows for inserting specified characters in the data stream to represent events firing or errors occurring. """ function characters(handle::FT_HANDLE, event_char, event_enable, error_char, error_enable) isopen(handle) || throw(D2XXException("Device must be open to set event- and error characters.")) FT_SetChars(handle, UInt8(event_char), UInt8(event_enable), UInt8(error_char), UInt8(error_enable)) end """ latencytimer(d::D2XXDevice, timer_val) Set the latency timer in milliseconds of an open [`D2XXDevice`](@ref) using [`FT_SetLatencyTimer`](@ref). In the FT8U232AM and FT8U245AM devices, the receive buffer timeout that is used to flush remaining data from the receive buffer was fixed at 16 ms. In all other FTDI devices, this timeout is programmable and can be set in 1 ms intervals between 2ms and 255 ms. This allows the device to be better optimized for protocols requiring faster response times for short data packets. """ latencytimer(d::D2XXDevice, timer_val) = latencytimer(fthandle(d), timer_val) """ latencytimer(handle::FT_HANDLE, timer_val) Set the latency timer in milliseconds of an open [`FT_HANDLE`](@ref) using [`FT_SetLatencyTimer`](@ref). In the FT8U232AM and FT8U245AM devices, the receive buffer timeout that is used to flush remaining data from the receive buffer was fixed at 16 ms. In all other FTDI devices, this timeout is programmable and can be set in 1 ms intervals between 2ms and 255 ms. This allows the device to be better optimized for protocols requiring faster response times for short data packets. """ function latencytimer(handle::FT_HANDLE, timer_val) isopen(handle) || throw(D2XXException("Device must be open to set latency timer.")) isinteger(timer_val) || throw(DomainError("latency timer value not an integer")) 2 <= timer_val || throw(DomainError("latency timer < 2")) 255 >= timer_val || throw(DomainError("latency timer > 255")) FT_SetLatencyTimer(handle, UInt8(timer_val)) end """ latencytimer(d::D2XXDevice) Return the latency timer in milliseconds of an open [`D2XXDevice`](@ref) using [`FT_GetLatencyTimer`](@ref). """ latencytimer(d::D2XXDevice) = latencytimer(fthandle(d)) """ latencytimer(handle::FT_HANDLE) Return the latency timer in milliseconds of an open [`FT_HANDLE`](@ref) using [`FT_GetLatencyTimer`](@ref). """ function latencytimer(handle::FT_HANDLE) isopen(handle) || throw(D2XXException("Device must be open to get latency timer.")) return FT_GetLatencyTimer(handle) end """ status(d::D2XXDevice) -> mflaglist::Dict{String, Bool}, lflaglist::Dict{String, Bool} Return `Bool` dictionaries of flags for the modem status (`mflaglist`) and line status (`lflaglist`) for an open [`D2XXDevice`](@ref) using [`FT_GetModemStatus`](@ref). """ status(d::D2XXDevice) = status(fthandle(d)) """ status(d::D2XXDevice) -> mflaglist::Dict{String, Bool}, lflaglist::Dict{String, Bool} Return `Bool` dictionaries of flags for the modem status (`mflaglist`) and line status (`lflaglist`) for an open [`FT_HANDLE`](@ref) using [`FT_GetModemStatus`](@ref). See also: [`isopen`](@ref), [`open`](@ref) """ function status(handle::FT_HANDLE) isopen(handle) || throw(D2XXException("Device must be open to check status.")) flags = FT_GetModemStatus(handle) modemstatus = flags & 0xFF linestatus = (flags >> 8) & 0xFF mflaglist = Dict{String, Bool}() lflaglist = Dict{String, Bool}() mflaglist["CTS"] = (modemstatus & 0x10) == 0x10 mflaglist["DSR"] = (modemstatus & 0x20) == 0x20 mflaglist["RI"] = (modemstatus & 0x40) == 0x40 mflaglist["DCD"] = (modemstatus & 0x80) == 0x89 # Below is only non-zero for windows lflaglist["OE"] = (linestatus & 0x02) == 0x02 lflaglist["PE"] = (linestatus & 0x04) == 0x04 lflaglist["FE"] = (linestatus & 0x08) == 0x08 lflaglist["BI"] = (linestatus & 0x10) == 0x10 mflaglist, lflaglist end if Sys.iswindows() """ driverversion(d::D2XXDevice) Get the driver version for an open [`D2XXDevice`](@ref) using [`FT_GetDriverVersion`](@ref). Windows only. """ driverversion(d::D2XXDevice) = driverversion(fthandle(d)) """ driverversion(handle::FT_HANDLE) Get the driver version for an open [`FT_HANDLE`](@ref) using [`FT_GetDriverVersion`](@ref). Windows only. See also: [`isopen`](@ref), [`open`](@ref) """ function driverversion(handle::FT_HANDLE) isopen(handle) || throw(D2XXException("Device must be open to check driver version")) version = FT_GetDriverVersion(handle) @assert (version >> 24) & 0xFF == 0x00 # 4th byte should be 0 according to docs Util.versionnumber(version) end end # Sys.iswindows() """ bitmode(d::D2XXDevice, direction, mode::FTBitMode) Set the initial pin direction and bit [`FTBitMode`](@ref) for an open [`D2XXDevice`](@ref). """ bitmode(d::D2XXDevice, direction, mode::FTBitMode) = bitmode(fthandle(d), direction, mode) """ bitmode(handle::FT_HANDLE, direction, mode::FTBitMode) Set the initial pin direction and bit [`FTBitMode`](@ref) for an open [`D2XXDevice`](@ref). """ function bitmode(handle::FT_HANDLE, direction, mode::FTBitMode) isopen(handle) || throw(D2XXException("Device must be open to set bit mode.")) FT_SetBitMode(handle, UInt8(direction), UInt8(mode)) return end """ flush(d::D2XXDevice) Clear the transmit and receive buffers for an open [`D2XXDevice`](@ref). """ Base.flush(d::D2XXDevice) = flush(fthandle(d)) """ flush(handle::FT_HANDLE) Clear the transmit and receive buffers for an open [`FT_HANDLE`](@ref). See also: [`isopen`](@ref), [`open`](@ref), [`bytesavailable`](@ref) """ function Base.flush(handle::FT_HANDLE) isopen(handle) || throw(D2XXException("Device must be open to flush.")) FT_StopInTask(handle) FT_Purge(handle, FT_PURGE_TX|FT_PURGE_RX) readavailable(handle) FT_RestartInTask(handle) end # Other Functions # function createdeviceinfolist() numdevs = FT_CreateDeviceInfoList() end function getdeviceinfodetail(deviceidx) 0 <= deviceidx || throw(DomainError("0 <= deviceidx")) deviceidx < createdeviceinfolist() || throw(D2XXException("Device index $deviceidx not in range.")) idx, flags, typ, id, locid, serialnumber, description, fthandle = FT_GetDeviceInfoDetail(deviceidx) end # Library Functions # if Sys.iswindows() """ libversion() Get a version number from a call to [`FT_GetLibraryVersion`](@ref). Windows only. """ function libversion() version = FT_GetLibraryVersion() @assert (version >> 24) & 0xFF == 0x00 # 4th byte should be 0 according to docs Util.versionnumber(version) end end # Sys.iswindows() # D2XXDevice Accessor Functions # """ deviceidx(d::D2XXDevice) Get D2XXDevice index. See also: [`D2XXDevice`](@ref) """ deviceidx(d::D2XXDevice) = d.idx """ deviceflags(d::D2XXDevice) Get the D2XXDevice flags list. See also: [`D2XXDevice`](@ref) """ deviceflags(d::D2XXDevice) = d.flags """ devicetype(d::D2XXDevice) Get the D2XXDevice device type. See also: [`D2XXDevice`](@ref) """ devicetype(d::D2XXDevice) = d.typ """ deviceid(d::D2XXDevice) Get the D2XXDevice device id. See also: [`D2XXDevice`](@ref) """ deviceid(d::D2XXDevice) = d.id """ locationid(d::D2XXDevice) Get the D2XXDevice location id. This is zero for windows devices. See also: [`D2XXDevice`](@ref) """ locationid(d::D2XXDevice) = d.locid """ serialnumber(d::D2XXDevice) Get the D2XXDevice device serial number. See also: [`D2XXDevice`](@ref) """ serialnumber(d::D2XXDevice) = d.serialnumber """ description(d::D2XXDevice) Get the D2XXDevice device description. See also: [`D2XXDevice`](@ref) """ description(d::D2XXDevice) = d.description """ fthandle(d::D2XXDevice) Get the D2XXDevice device D2XX handle of type ::FT_HANDLE`. See also: [`D2XXDevice`](@ref) """ fthandle(d::D2XXDevice) = d.fthandle[] """ fthandle(d::D2XXDevice, fthandle::FT_HANDLE) Set the D2XXDevice device D2XX handle of type ::FT_HANDLE`. See also: [`D2XXDevice`](@ref) """ fthandle(d::D2XXDevice, fthandle::FT_HANDLE) = (d.fthandle[] = fthandle) end # module LibFTD2XX
LibFTD2XX
https://github.com/Gowerlabs/LibFTD2XX.jl.git
[ "MIT" ]
0.4.0
5d154e25b3813c038711b0005617990ea28eb4bd
code
1530
# LibFTD2XX.jl - Utility Module # # By Reuben Hill 2019, Gowerlabs Ltd, [email protected] # # Copyright (c) Gowerlabs Ltd. module Util export ntuple2string, versionnumber """ function ntuple2string(input::NTuple{N, Cchar}) where N Convert an NTuple of Cchars (optionally null terminated) to a julia string. # Example ```jldoctest julia> ntuple2string(Cchar.(('h','e','l','l','o'))) "hello" julia> ntuple2string(Cchar.(('h','e','l','l','o', '\0', 'x'))) # null terminated "hello" ``` """ function ntuple2string(input::NTuple{N, Cchar}) where N if any(input .== 0) endidx = findall(input .== 0)[1]-1 elseif all(input .> 0) endidx = N else throw(ArgumentError("No terminator or negative values!")) end String(UInt8.([char for char in input[1:endidx]])) end function versionnumber(hex) hex <= 0x999999 || throw(DomainError("Input must be less than 0x999999")) patchhex = UInt8( (hex & 0x0000FF) >> 0 ) patchhex <= 0x99 || throw(DomainError("Patch field must be less than or equal to 0x99")) minorhex = UInt8( (hex & 0x00FF00) >> 8 ) minorhex <= 0x99 || throw(DomainError("Minor field must be less than or equal to 0x99")) majorhex = UInt8( (hex & 0xFF0000) >> 16 ) majorhex <= 0x99 || throw(DomainError("Minor field must be less than or equal to 0x99")) patchdec = 10(patchhex >> 4) + (patchhex & 0x0F) minordec = 10(minorhex >> 4) + (minorhex & 0x0F) majordec = 10(majorhex >> 4) + (majorhex & 0x0F) VersionNumber(majordec,minordec,patchdec) end end # module Util
LibFTD2XX
https://github.com/Gowerlabs/LibFTD2XX.jl.git
[ "MIT" ]
0.4.0
5d154e25b3813c038711b0005617990ea28eb4bd
code
33659
# LibFTD2XX.jl - C Library Wrapper # # By Reuben Hill 2019, Gowerlabs Ltd, [email protected] # # Copyright (c) Gowerlabs Ltd. # # This module contains wrappers for D2XX devices. See D2XX Programmer's Guide # (FT_000071) for more information. Function names match those in the library. # # Only recommended for advanced users. Note that there is minimal argument # checking in these wrapper methods. module Wrapper # Type Aliases export DWORD, ULONG, UCHAR # Library Constants export FT_OPEN_BY_SERIAL_NUMBER, FT_OPEN_BY_DESCRIPTION, FT_OPEN_BY_LOCATION export FT_DEVICE export FT_LIST_NUMBER_ONLY, FT_LIST_BY_INDEX, FT_LIST_ALL export FT_BITS_8, FT_BITS_7 export FT_STOP_BITS_1, FT_STOP_BITS_2 export FT_PARITY_NONE, FT_PARITY_ODD, FT_PARITY_EVEN, FT_PARITY_MARK, FT_PARITY_SPACE export FT_FLOW_NONE, FT_FLOW_RTS_CTS, FT_FLOW_DTR_DSR, FT_FLOW_XON_XOFF export FT_EVENT_RXCHAR, FT_EVENT_MODEM_STATUS, FT_EVENT_LINE_STATUS export FT_PURGE_RX, FT_PURGE_TX export FT_MODE_RESET, FT_MODE_ASYNC_BITBANG, FT_MODE_MPSSE, FT_MODE_SYNC_BITBANG, FT_MODE_MCU_EMULATION, FT_MODE_FAST_OPTO, FT_MODE_CBUS_BITBANG, FT_MODE_SCS_FIFO export FT_STATUS_ENUM, FT_OK, FT_INVALID_HANDLE, FT_DEVICE_NOT_FOUND, FT_DEVICE_NOT_OPENED, FT_IO_ERROR, FT_INSUFFICIENT_RESOURCES, FT_INVALID_PARAMETER, FT_INVALID_BAUD_RATE, FT_DEVICE_NOT_OPENED_FOR_ERASE, FT_DEVICE_NOT_OPENED_FOR_WRITE, FT_FAILED_TO_WRITE_DEVICE, FT_EEPROM_READ_FAILED, FT_EEPROM_WRITE_FAILED, FT_EEPROM_ERASE_FAILED, FT_EEPROM_NOT_PRESENT, FT_EEPROM_NOT_PROGRAMMED, FT_INVALID_ARGS, FT_NOT_SUPPORTED, FT_OTHER_ERROR, FT_DEVICE_LIST_NOT_READY # Types export FT_HANDLE # Functions export FT_CreateDeviceInfoList, FT_GetDeviceInfoList, FT_GetDeviceInfoDetail, FT_ListDevices, FT_Open, FT_OpenEx, FT_Close, FT_Read, FT_Write, FT_SetBaudRate, FT_SetDataCharacteristics, FT_SetTimeouts, FT_SetFlowControl, FT_SetDtr, FT_ClrDtr, FT_SetRts, FT_ClrRts, FT_GetModemStatus, FT_GetQueueStatus, FT_GetDeviceInfo, FT_GetDriverVersion, FT_GetLibraryVersion, FT_GetStatus, FT_SetEventNotification, FT_SetChars, FT_SetBreakOn, FT_SetBreakOff, FT_Purge, FT_ResetDevice, FT_StopInTask, FT_RestartInTask, FT_GetLatencyTimer, FT_SetLatencyTimer, FT_SetBitMode, FT_GetBitMode, FT_SetUSBParameters using Libdl using libftd2xx_jll # Type Aliases # const DWORD = UInt32 const ULONG = UInt64 const USHORT = UInt16 const UCHAR = UInt8 const FT_STATUS = DWORD # Library Constants # # FT_OpenEx Flags const FT_OPEN_BY_SERIAL_NUMBER = 1 const FT_OPEN_BY_DESCRIPTION = 2 const FT_OPEN_BY_LOCATION = 4 # FT_GetDeviceInfo FT_DEVICE Type Enum @enum( FT_DEVICE, FT_DEVICE_232BM = DWORD(0), FT_DEVICE_232AM = DWORD(1), FT_DEVICE_100AX = DWORD(2), FT_DEVICE_UNKNOWN = DWORD(3), FT_DEVICE_2232C = DWORD(4), FT_DEVICE_232R = DWORD(5), FT_DEVICE_2232H = DWORD(6), FT_DEVICE_4232H = DWORD(7), FT_DEVICE_232H = DWORD(8), FT_DEVICE_X_SERIES = DWORD(9) ) # FT_ListDevices Flags (used in conjunction with FT_OpenEx Flags) const FT_LIST_NUMBER_ONLY = 0x80000000 const FT_LIST_BY_INDEX = 0x40000000 const FT_LIST_ALL = 0x20000000 # Word Lengths const FT_BITS_8 = 8 const FT_BITS_7 = 7 # Stop Bits const FT_STOP_BITS_1 = 0 const FT_STOP_BITS_2 = 2 # Parity const FT_PARITY_NONE = 0 const FT_PARITY_ODD = 1 const FT_PARITY_EVEN = 2 const FT_PARITY_MARK = 3 const FT_PARITY_SPACE = 4 # FT_SetFlowControl Flow Control Flags const FT_FLOW_NONE = 0x0000 const FT_FLOW_RTS_CTS = 0x0100 const FT_FLOW_DTR_DSR = 0x0200 const FT_FLOW_XON_XOFF = 0x0400 # FT_SetEventNotification Event Flags (not yet implemented) const FT_EVENT_RXCHAR = 1 const FT_EVENT_MODEM_STATUS = 2 const FT_EVENT_LINE_STATUS = 4 # FT_Purge Flags const FT_PURGE_RX = 1 const FT_PURGE_TX = 2 # Mode Flags const FT_MODE_RESET = 0x00 const FT_MODE_ASYNC_BITBANG = 0x01 const FT_MODE_MPSSE = 0x02 const FT_MODE_SYNC_BITBANG = 0x04 const FT_MODE_MCU_EMULATION = 0x08 const FT_MODE_FAST_OPTO = 0x10 const FT_MODE_CBUS_BITBANG = 0x20 const FT_MODE_SCS_FIFO = 0x40 # FT_STATUS Return Values @enum( FT_STATUS_ENUM, FT_OK, FT_INVALID_HANDLE, FT_DEVICE_NOT_FOUND, FT_DEVICE_NOT_OPENED, FT_IO_ERROR, FT_INSUFFICIENT_RESOURCES, FT_INVALID_PARAMETER, FT_INVALID_BAUD_RATE, FT_DEVICE_NOT_OPENED_FOR_ERASE, FT_DEVICE_NOT_OPENED_FOR_WRITE, FT_FAILED_TO_WRITE_DEVICE, FT_EEPROM_READ_FAILED, FT_EEPROM_WRITE_FAILED, FT_EEPROM_ERASE_FAILED, FT_EEPROM_NOT_PRESENT, FT_EEPROM_NOT_PROGRAMMED, FT_INVALID_ARGS, FT_NOT_SUPPORTED, FT_OTHER_ERROR, FT_DEVICE_LIST_NOT_READY) # Types # """ struct FT_DEVICE_LIST_INFO_NODE Julia language representation of the `FT_DEVICE_LIST_INFO_NODE` structure which is passed to `FT_GetDeviceInfoList`. Pre-allocated arrays of `Cchar` (in julia, represented as `NTuple{L, Cchar}`) are filled by `FT_GetDeviceInfoList` with null terminated strings. They can be converted to julia strings using [`ntuple2string`](@ref). """ struct FT_DEVICE_LIST_INFO_NODE flags::DWORD typ::DWORD id::DWORD locid::DWORD serialnumber::NTuple{16, Cchar} description::NTuple{64, Cchar} fthandle_ptr::Ptr{Cvoid} end """ mutable struct FT_HANDLE <: IO Holds a handle to an FT D2XX device. """ mutable struct FT_HANDLE <: IO p::Ptr{Cvoid} end """ FT_HANDLE() Constructs a handle to an FT D2XX device that points to `C_NULL`. Initialsed with a finalizer that calls [`destroy!`](@ref). """ function FT_HANDLE() handle = FT_HANDLE(C_NULL) finalizer(destroy!, handle) handle end """ destroy!(handle::FT_HANDLE) Destructor for the [`FT_HANDLE`](@ref) type. """ function destroy!(handle::FT_HANDLE) if _ptr(handle) != C_NULL FT_Close(handle) end end ## Type Accessors # """ _ptr(handle::FT_HANDLE) Get the raw pointer for an [`FT_HANDLE`](@ref). """ _ptr(handle::FT_HANDLE) = handle.p """ _ptr(handle::FT_HANDLE, fthandle_ptr::Ptr{Cvoid}) Set the raw pointer for an [`FT_HANDLE`](@ref). """ _ptr(handle::FT_HANDLE, fthandle_ptr::Ptr{Cvoid}) = (handle.p = fthandle_ptr) # Utility functions # # Internal use only function check(status::FT_STATUS) FT_STATUS_ENUM(status) == FT_OK || throw(FT_STATUS_ENUM(status)) end # wrapper functions # """ FT_CreateDeviceInfoList() # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> "Number of devices is \$numdevs" "Number of devices is 4" ``` """ function FT_CreateDeviceInfoList() lpdwNumDevs = Ref{DWORD}(0) status = ccall((:FT_CreateDeviceInfoList, libftd2xx), cdecl, FT_STATUS, (Ref{DWORD},), lpdwNumDevs) check(status) lpdwNumDevs[] end """ FT_GetDeviceInfoList(lpdwNumDevs) # Arguments - `lpdwNumDevs`: The number of devices. # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> devinfolist, numdevs = FT_GetDeviceInfoList(numdevs); julia> numdevs 0x00000004 julia> using LibFTD2XX.Util # for ntuple2string julia> ntuple2string(devinfolist[1].description) "USB <-> Serial Converter D" julia> devinfolist[1].fthandle_ptr Ptr{Nothing} @0x0000000000000000 julia> devinfolist[1].locid 0x00000000 julia> devinfolist[1].typ 0x00000007 julia> devinfolist[1].flags 0x00000002 julia> devinfolist[1].id 0x04036011 julia> ntuple2string(devinfolist[1].serialnumber) "FT3AD2HCD" ``` """ function FT_GetDeviceInfoList(lpdwNumDevs) pDest = Vector{FT_DEVICE_LIST_INFO_NODE}(undef, lpdwNumDevs) status = ccall((:FT_GetDeviceInfoList, libftd2xx), cdecl, FT_STATUS, (Ref{FT_DEVICE_LIST_INFO_NODE}, Ref{DWORD}), pDest, Ref{DWORD}(lpdwNumDevs)) check(status) pDest, lpdwNumDevs end """ FT_GetDeviceInfoDetail(dwIndex) # Arguments - `dwIndex`: Index of entry in the device info list. # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> idx, flags, typ, id, locid, serialnumber, description, fthandle = FT_GetDeviceInfoDetail(0) # zero indexed (0, 0x00000002, 0x00000007, 0x04036011, 0x00000000, "FT3AD2HCD", "USB <-> Serial Converter D", FT_HANDLE(Ptr{Nothing} @0x0000000000000000)) ``` """ function FT_GetDeviceInfoDetail(dwIndex) lpdwFlags, lpdwType = Ref{DWORD}(), Ref{DWORD}() lpdwID, lpdwLocId = Ref{DWORD}(), Ref{DWORD}() pcSerialNumber = pointer(Vector{Cchar}(undef, 16)) pcDescription = pointer(Vector{Cchar}(undef, 64)) ftHandle = FT_HANDLE() status = ccall((:FT_GetDeviceInfoDetail, libftd2xx), cdecl, FT_STATUS, (DWORD, Ref{DWORD}, Ref{DWORD}, Ref{DWORD}, Ref{DWORD}, Cstring, Cstring, Ref{FT_HANDLE}), dwIndex, lpdwFlags, lpdwType, lpdwID, lpdwLocId, pcSerialNumber, pcDescription, ftHandle) check(status) dwIndex[], lpdwFlags[], lpdwType[], lpdwID[], lpdwLocId[], unsafe_string(pcSerialNumber), unsafe_string(pcDescription), ftHandle end """ FT_ListDevices(pvArg1, pvArg2, dwFlags) **NOT FULLY FUNCTIONAL: NOT RECOMMENDED FOR USE**. # Arguments - `pvArg1`: Depends on dwFlags. - `pvArg2`: Depends on dwFlags. - `dwFlags`: Flag which determines format of returned information. E.g. call with `pvArg1 = Ref{UInt32}()` and/or `pvArg2 = Ref{UInt32}()` for cases where `pvArg1` and/or `pvArg2` return or are given DWORD information. # Examples 1. Get number of devices... ```julia-repl julia> numdevs = Ref{UInt32}(); julia> FT_ListDevices(numdevs, Ref{UInt32}(), FT_LIST_NUMBER_ONLY) julia> numdevs[] 0x00000004 ``` 2. Get serial number of first device... *NOT CURRENTLY WORKING* ```julia-repl julia> devidx = Ref{UInt32}(0) Base.RefValue{UInt32}(0x00000000) julia> buffer = pointer(Vector{Cchar}(undef, 64)) Ptr{Int8} @0x0000000004f2e530 julia> FT_ListDevices(devidx, buffer, FT_LIST_BY_INDEX|FT_OPEN_BY_SERIAL_NUMBER) ERROR: FT_ListDevices wrapper does not yet flags other than FT_LIST_NUMBER_ONLY. Stacktrace: ... ``` """ function FT_ListDevices(pvArg1, pvArg2, dwFlags) dwFlags == FT_LIST_NUMBER_ONLY || throw(ErrorException("FT_ListDevices wrapper does not yet flags other than FT_LIST_NUMBER_ONLY.")) flagsarg = DWORD(dwFlags) status = ccall((:FT_ListDevices, libftd2xx), cdecl, FT_STATUS, (Ptr{Cvoid}, Ptr{Cvoid}, DWORD), pvArg1, pvArg2, dwFlags) check(status) return end """ FT_Open(iDevice) # Arguments - `iDevice`: Zero-base index of device to open # Example ```julia-repl julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000000c4970) ``` """ function FT_Open(iDevice) ftHandle = FT_HANDLE() status = ccall((:FT_Open, libftd2xx), cdecl, FT_STATUS, (Int, Ref{FT_HANDLE}), iDevice, ftHandle) if FT_STATUS_ENUM(status) != FT_OK _ptr(ftHandle, C_NULL) throw(FT_STATUS_ENUM(status)) end ftHandle end """ FT_OpenEx(pvArg1::AbstractString, dwFlags::Integer) # Arguments - `pvArg1::AbstractString` : Either description or serial number depending on `dwFlags`. - `dwFlags::Integer` : FT_OPEN_BY_DESCRIPTION or FT_OPEN_BY_SERIAL_NUMBER. Note that FT_OPEN_BY_LOCATION is not currently supported. # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> idx, flags, typ, id, locid, serialnumber, description, fthandle = FT_GetDeviceInfoDetail(0) (0, 0x00000002, 0x00000007, 0x04036011, 0x00000000, "FT3AD2HCD", "USB <-> Serial Converter D", FT_HANDLE(Ptr{Nothing} @0x0000000000000000)) julia> handle = FT_OpenEx(description, FT_OPEN_BY_DESCRIPTION) FT_HANDLE(Ptr{Nothing} @0x0000000000dfe740) julia> isopen(handle) true julia> close(handle) julia> handle = FT_OpenEx(serialnumber, FT_OPEN_BY_SERIAL_NUMBER) FT_HANDLE(Ptr{Nothing} @0x0000000005448ea0) julia> isopen(handle) true julia> close(handle) ``` """ function FT_OpenEx(pvArg1::AbstractString, dwFlags::Integer) @assert (dwFlags == FT_OPEN_BY_DESCRIPTION) | (dwFlags == FT_OPEN_BY_SERIAL_NUMBER) flagsarg = DWORD(dwFlags) handle = FT_HANDLE() status = ccall((:FT_OpenEx, libftd2xx), cdecl, FT_STATUS, (Cstring , DWORD, Ref{FT_HANDLE}), pvArg1, flagsarg, handle) if FT_STATUS_ENUM(status) != FT_OK _ptr(handle, C_NULL) throw(FT_STATUS_ENUM(status)) end handle end """ FT_Close(ftHandle::FT_HANDLE) Closes an open device and sets the pointer to C_NULL. # Example ```julia-repl julia> julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x000000000010a870) julia> FT_Close(handle) ``` """ function FT_Close(ftHandle::FT_HANDLE) status = ccall((:FT_Close, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, ), ftHandle) check(status) _ptr(ftHandle, C_NULL) return end """ FT_Read(ftHandle::FT_HANDLE, lpBuffer::AbstractVector{UInt8}, dwBytesToRead::Integer) Returns number of bytes read. # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000051e56c0) julia> buffer = zeros(UInt8, 2) 2-element Array{UInt8,1}: 0x00 0x00 julia> nread = FT_Read(handle, buffer, 0) # read 0 bytes. Returns number read... 0x00000000 julia> buffer # should be unmodified... 2-element Array{UInt8,1}: 0x00 0x00 julia> FT_Close(handle) ``` """ function FT_Read(ftHandle::FT_HANDLE, lpBuffer::AbstractVector{UInt8}, dwBytesToRead::Integer) @assert 0 <= dwBytesToRead <= length(lpBuffer) lpdwBytesReturned = Ref{DWORD}() status = ccall((:FT_Read, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, Ref{UInt8}, DWORD, Ref{DWORD}), ftHandle, lpBuffer, dwBytesToRead, lpdwBytesReturned) check(status) lpdwBytesReturned[] end """ FT_Write(ftHandle::FT_HANDLE, lpBuffer::Vector{UInt8}, dwBytesToWrite::Integer) Returns number of bytes written. # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000051e56c0) julia> buffer = ones(UInt8, 2) 2-element Array{UInt8,1}: 0x01 0x01 julia> nwr = FT_Write(handle, buffer, 0) # Write 0 bytes... 0x00000000 julia> buffer # should be unmodified... 2-element Array{UInt8,1}: 0x01 0x01 julia> nwr = FT_Write(handle, buffer, 2) # Write 2 bytes... 0x00000002 julia> buffer # should be unmodified... 2-element Array{UInt8,1}: 0x01 0x01 julia> FT_Close(handle) ``` """ function FT_Write(ftHandle::FT_HANDLE, lpBuffer::AbstractVector{UInt8}, dwBytesToWrite::Integer) @assert 0 <= dwBytesToWrite <= length(lpBuffer) lpdwBytesWritten = Ref{DWORD}() status = ccall((:FT_Write, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, Ref{UInt8}, DWORD, Ref{DWORD}), ftHandle, lpBuffer, dwBytesToWrite, lpdwBytesWritten) check(status) lpdwBytesWritten[] end """ FT_SetBaudRate(ftHandle::FT_HANDLE, dwBaudRate::Integer) # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000051e56c0) julia> FT_SetBaudRate(handle, 115200) # Set baud rate to 115200 julia> FT_Close(handle) ``` """ function FT_SetBaudRate(ftHandle::FT_HANDLE, dwBaudRate::Integer) @assert 0 < dwBaudRate <= typemax(DWORD) status = ccall((:FT_SetBaudRate, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, DWORD), ftHandle, dwBaudRate) check(status) return end """ FT_SetDataCharacteristics(ftHandle::FT_HANDLE, uWordLength, uStopBits, uParity) # Arguments - `ftHandle` : device handle - `uWordLength` : Bits per word - either FT_BITS_8 or FT_BITS_7 - `uStopBits` : Stop bits - either FT_STOP_BITS_1 or FT_STOP_BITS_2 - `uParity` : Parity - either FT_PARITY_EVEN, FT_PARITY_ODD, FT_PARITY_MARK, FT_PARITY_SPACE, or FT_PARITY_NONE. # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000051e56c0) julia> FT_SetDataCharacteristics(handle, FT_BITS_8, FT_STOP_BITS_1, FT_PARITY_NONE) julia> FT_Close(handle) ``` """ function FT_SetDataCharacteristics(ftHandle::FT_HANDLE, uWordLength, uStopBits, uParity) @assert (uWordLength == FT_BITS_8) || (uWordLength == FT_BITS_7) @assert (uStopBits == FT_STOP_BITS_1) || (uStopBits == FT_STOP_BITS_2) @assert (uParity == FT_PARITY_EVEN) || (uParity == FT_PARITY_ODD) || (uParity == FT_PARITY_MARK) || (uParity == FT_PARITY_SPACE) || (uParity == FT_PARITY_NONE) status = ccall((:FT_SetDataCharacteristics, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, UCHAR, UCHAR, UCHAR), ftHandle, uWordLength, uStopBits, uParity) check(status) return end """ FT_SetTimeouts(ftHandle::FT_HANDLE, dwReadTimeout, dwWriteTimeout) # Arguments - `ftHandle` : device handle - `dwReadTimeout` : Read timeout (milliseconds) - `dwWriteTimeout` : Write timeout (milliseconds) # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000051e56c0) julia> FT_SetBaudRate(handle, 9600) julia> FT_SetTimeouts(handle, 50, 10) # 50ms read timeout, 10 ms write timeout julia> buffer = zeros(UInt8, 5000); julia> @time nwr = FT_Write(handle, buffer, 5000) # writes nothing if timesout 0.014323 seconds (4 allocations: 160 bytes) 0x00000000 julia> @time nread = FT_Read(handle, buffer, 5000) 0.049545 seconds (4 allocations: 160 bytes) 0x00000000 julia> FT_Close(handle) ``` """ function FT_SetTimeouts(ftHandle::FT_HANDLE, dwReadTimeout, dwWriteTimeout) status = ccall((:FT_SetTimeouts, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, DWORD, DWORD,), ftHandle, dwReadTimeout, dwWriteTimeout) check(status) return end """ FT_SetFlowControl(ftHandle::FT_HANDLE, usFlowControl, uXon, uXoff) # Arguments - `ftHandle` : device handle - `usFlowControl` : - `uXon` : - `uXoff` : # Example """ function FT_SetFlowControl(ftHandle::FT_HANDLE, usFlowControl, uXon, uXoff) @assert usFlowControl in (FT_FLOW_NONE,FT_FLOW_RTS_CTS,FT_FLOW_DTR_DSR,FT_FLOW_XON_XOFF) status = ccall((:FT_SetFlowControl, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, USHORT, UCHAR, UCHAR,), ftHandle, usFlowControl, uXon, uXoff) check(status) return end """ FT_SetDtr(ftHandle::FT_HANDLE) # Example """ function FT_SetDtr(ftHandle::FT_HANDLE) status = ccall((:FT_SetDtr, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE,), ftHandle,) check(status) return end """ FT_ClrDtr(ftHandle::FT_HANDLE) # Example """ function FT_ClrDtr(ftHandle::FT_HANDLE) status = ccall((:FT_ClrDtr, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE,), ftHandle,) check(status) return end """ FT_SetRts(ftHandle::FT_HANDLE) # Example """ function FT_SetRts(ftHandle::FT_HANDLE) status = ccall((:FT_SetRts, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE,), ftHandle,) check(status) return end """ FT_ClrRts(ftHandle::FT_HANDLE) # Example """ function FT_ClrRts(ftHandle::FT_HANDLE) status = ccall((:FT_ClrRts, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE,), ftHandle,) check(status) return end """ FT_GetModemStatus(ftHandle::FT_HANDLE) # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000051e56c0) julia> flags = FT_GetModemStatus(handle) 0x00006400 julia> FT_Close(handle) ``` """ function FT_GetModemStatus(ftHandle::FT_HANDLE) lpdwModemStatus = Ref{DWORD}() status = ccall((:FT_GetModemStatus, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, Ref{DWORD}), ftHandle, lpdwModemStatus) check(status) lpdwModemStatus[] end """ FT_GetQueueStatus(ftHandle::FT_HANDLE) # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000051e56c0) julia> nbrx = FT_GetQueueStatus(handle) # get number of items in recieve queue 0x00000000 julia> FT_Close(handle) ``` """ function FT_GetQueueStatus(ftHandle::FT_HANDLE) lpdwAmountInRxQueue = Ref{DWORD}() status = ccall((:FT_GetQueueStatus, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, Ref{DWORD}), ftHandle, lpdwAmountInRxQueue) check(status) lpdwAmountInRxQueue[] end """ FT_GetDeviceInfo(ftHandle::FT_HANDLE) # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000051e56c0) julia> typ, id, serialnumber, description = FT_GetDeviceInfo(handle); julia> FT_Close(handle) ``` """ function FT_GetDeviceInfo(ftHandle::FT_HANDLE) pftType = Ref{FT_DEVICE}() lpdwID = Ref{DWORD}() pcSerialNumber = pointer(Vector{Cchar}(undef, 16)) pcDescription = pointer(Vector{Cchar}(undef, 64)) pvDummy = C_NULL status = ccall((:FT_GetDeviceInfo, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, Ref{FT_DEVICE}, Ref{DWORD}, Cstring, Cstring, Ptr{Cvoid}), ftHandle, pftType, lpdwID, pcSerialNumber, pcDescription, pvDummy) check(status) pftType[], lpdwID[], unsafe_string(pcSerialNumber), unsafe_string(pcDescription) end if Sys.iswindows() """ FT_GetDriverVersion(ftHandle::FT_HANDLE) # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000051e56c0) julia> version = FT_GetDriverVersion(handle) 0x00021212 julia> patch = version & 0xFF 0x00000012 julia> minor = (version >> 8) & 0xFF 0x00000012 julia> major = (version >> 16) & 0xFF 0x00000002 julia> VersionNumber(major,minor,patch) v"2.18.18" julia> FT_Close(handle) ``` """ function FT_GetDriverVersion(ftHandle::FT_HANDLE) lpdwDriverVersion = Ref{DWORD}() status = ccall((:FT_GetDriverVersion, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, Ref{DWORD}), ftHandle, lpdwDriverVersion) check(status) lpdwDriverVersion[] end """ FT_GetLibraryVersion() # Example ```julia-repl julia> version = FT_GetLibraryVersion() 0x00021212 julia> patch = version & 0xFF 0x00000012 julia> minor = (version >> 8) & 0xFF 0x00000012 julia> major = (version >> 16) & 0xFF 0x00000002 julia> VersionNumber(major,minor,patch) v"2.18.18" ``` """ function FT_GetLibraryVersion() lpdwDLLVersion = Ref{DWORD}() status = ccall((:FT_GetLibraryVersion, libftd2xx), cdecl, FT_STATUS, (Ref{DWORD},), lpdwDLLVersion) check(status) version = lpdwDLLVersion[] end end # Sys.iswindows() """ FT_GetStatus(ftHandle::FT_HANDLE) # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000051e56c0) julia> nbrx, nbtx, eventstatus = FT_GetStatus(handle) (0x00000000, 0x00000000, 0x00000000) julia> FT_Close(handle) ``` """ function FT_GetStatus(ftHandle::FT_HANDLE) lpdwAmountInRxQueue, lpdwAmountInTxQueue = Ref{DWORD}(), Ref{DWORD}() lpdwEventStatus = Ref{DWORD}() status = ccall((:FT_GetStatus, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, Ref{DWORD}, Ref{DWORD}, Ref{DWORD}), ftHandle, lpdwAmountInRxQueue, lpdwAmountInTxQueue, lpdwEventStatus) check(status) lpdwAmountInRxQueue[], lpdwAmountInTxQueue[], lpdwEventStatus[] end """ FT_SetEventNotification(ftHandle::FT_HANDLE, dwEventMask, pvArg) Sets conditions for event notification. An application can use this function to setup conditions which allow a thread to block until one of the conditions is met. Typically, an application will create an event, call this function, then block on the event. When the conditions are met, the event is set, and the application thread unblocked. `dwEventMask` is a bit-map that describes the events the application is interested in. `pvArg` is interpreted as the handle of an event which has been created by the application. If one of the event conditions is met, the event is set. If `dwEventMask=FT_EVENT_RXCHAR`, the event will be set when a character has been received by the device. If `dwEventMask=FT_EVENT_MODEM_STATUS`, the event will be set when a change in the modem signals has been detected by the device. If `dwEventMask=FT_EVENT_LINE_STATUS`, the event will be set when a change in the line status has been detected by the device. """ function FT_SetEventNotification(ftHandle::FT_HANDLE, dwEventMask, pvArg) @assert dwEventMask in (FT_EVENT_RXCHAR,FT_EVENT_MODEM_STATUS,FT_EVENT_LINE_STATUS) status = ccall((:FT_SetEventNotification, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, DWORD, Ptr{Cvoid}), ftHandle, dwEventMask, pvArg) check(status) return end """ FT_SetChars(ftHandle::FT_HANDLE, uEventCh, uEventChEn, uErrorCh, uErrorChEn) This function sets the special characters for the device. This function allows for inserting specified characters in the data stream to represent events firing or errors occurring. """ function FT_SetChars(ftHandle::FT_HANDLE, uEventCh, uEventChEn, uErrorCh, uErrorChEn) status = ccall((:FT_SetChars, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, UCHAR, UCHAR, UCHAR, UCHAR,), ftHandle, uEventCh, uEventChEn, uErrorCh, uErrorChEn) check(status) return end """ FT_SetBreakOn(ftHandle::FT_HANDLE) # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000051e56c0) julia> FT_SetBreakOn(handle) # break now on... julia> FT_Close(handle) ``` """ function FT_SetBreakOn(ftHandle::FT_HANDLE) status = ccall((:FT_SetBreakOn, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE,), ftHandle) check(status) return end """ FT_SetBreakOff(ftHandle::FT_HANDLE) # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000051e56c0) julia> FT_SetBreakOff(handle) # break now off... julia> FT_Close(handle) ``` """ function FT_SetBreakOff(ftHandle::FT_HANDLE) status = ccall((:FT_SetBreakOff, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE,), ftHandle) check(status) return end """ FT_Purge(ftHandle::FT_HANDLE, dwMask) # Arguments - `ftHandle::FT_HANDLE` : handle to open device - `dwMask` : must be `FT_PURGE_RX`, `FT_PURGE_TX` or `FT_PURGE_TX | FT_PURGE_RX`. # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000051e56c0) julia> FT_Purge(handle, FT_PURGE_RX|FT_PURGE_TX) julia> nbrx, nbtx, eventstatus = FT_GetStatus(handle) # All queues empty! (0x00000000, 0x00000000, 0x00000000) julia> FT_Close(handle) ``` """ function FT_Purge(ftHandle::FT_HANDLE, dwMask) @assert (dwMask == FT_PURGE_RX) || (dwMask == FT_PURGE_TX) || (dwMask == FT_PURGE_RX|FT_PURGE_TX) status = ccall((:FT_SetBreakOff, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, DWORD), ftHandle, dwMask) check(status) return end """ FT_ResetDevice(ftHandle::FT_HANDLE) Send a reset command to the device. # Example """ function FT_ResetDevice(ftHandle::FT_HANDLE) status = ccall((:FT_ResetDevice, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE,), ftHandle) check(status) return end """ FT_StopInTask(ftHandle::FT_HANDLE) # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000051e56c0) julia> FT_StopInTask(handle) # The driver's IN task is now stopped. julia> FT_RestartInTask(handle) # The driver's IN task is now restarted. julia> FT_Close(handle) ``` """ function FT_StopInTask(ftHandle::FT_HANDLE) status = ccall((:FT_StopInTask, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE,), ftHandle) check(status) return end """ FT_RestartInTask(ftHandle::FT_HANDLE) # Example See `FT_StopInTask`. """ function FT_RestartInTask(ftHandle::FT_HANDLE) status = ccall((:FT_RestartInTask, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE,), ftHandle) check(status) return end """ FT_GetLatencyTimer(ftHandle::FT_HANDLE) Get the current latency timer in milliseconds. # Example See `FT_GetLatencyTimer`. """ function FT_GetLatencyTimer(ftHandle::FT_HANDLE) pucTimer = Ref{UCHAR}() status = ccall((:FT_GetLatencyTimer, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, Ref{UCHAR}), ftHandle, pucTimer) check(status) pucTimer[] end """ FT_SetLatencyTimer(ftHandle::FT_HANDLE, ucTimer) Get the current latency timer value in milliseconds. # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000051e56c0) julia> FT_SetLatencyTimer(handle, 0x0A) julia> FT_GetLatencyTimer(handle) 0x0a See `FT_GetLatencyTimer`. """ function FT_SetLatencyTimer(ftHandle::FT_HANDLE, ucTimer) status = ccall((:FT_SetLatencyTimer, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, UCHAR), ftHandle, ucTimer) check(status) return end """ FT_GetBitMode(ftHandle::FT_HANDLE) Get the current bit mode. # Example See `FT_SetBitMode`. """ function FT_GetBitMode(ftHandle::FT_HANDLE) pucMode = Ref{UCHAR}() status = ccall((:FT_GetBitMode, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, Ref{UCHAR}), ftHandle, pucMode) check(status) pucMode[] end """ FT_SetBitMode(ftHandle::FT_HANDLE, ucMask, ucMode) Enables different chip modes. `ucMask` sets up which bits are inputs and outputs. A bit value of 0 sets the corresponding pin to an input, a bit value of 1 sets the corresponding pin to an output. In the case of CBUS Bit Bang, the upper nibble of this value controls which pins are inputs and outputs, while the lower nibble controls which of the outputs are high and low. `ucModeMode` sets the chip mode, and must be one of the following: 0x0 = Reset 0x1 = Asynchronous Bit Bang 0x2 = MPSSE (FT2232, FT2232H, FT4232H and FT232H devices only) 0x4 = Synchronous Bit Bang (FT232R, FT245R,FT2232, FT2232H, FT4232H and FT232H devices only) 0x8 = MCU Host Bus Emulation Mode (FT2232, FT2232H, FT4232H and FT232H devices only) 0x10 = FastOpto-Isolated Serial Mode (FT2232, FT2232H, FT4232H and FT232H devices only) 0x20 = CBUS Bit Bang Mode (FT232Rand FT232H devices only) 0x40 = Single Channel Synchronous 245 FIFO Mode (FT2232H and FT232H devices only) # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000051e56c0) julia> FT_SetBitMode(handle, 0x0F, FT_MODE_ASYNC_BITBANG) julia> FT_GetBitMode(handle) 0x01 See [`FT_GetBitMode`](@ref). """ function FT_SetBitMode(ftHandle::FT_HANDLE, ucMask, ucMode) @assert ucMode in (FT_MODE_RESET,FT_MODE_ASYNC_BITBANG,FT_MODE_MPSSE,FT_MODE_SYNC_BITBANG,FT_MODE_MCU_EMULATION,FT_MODE_FAST_OPTO,FT_MODE_CBUS_BITBANG,FT_MODE_SCS_FIFO) status = ccall((:FT_SetBitMode, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, UCHAR, UCHAR), ftHandle, ucMask, ucMode) check(status) return end """ FT_SetUSBParameters(ftHandle::FT_HANDLE, dwInTransferSize, dwOutTransferSize) Set the USB request transfer size. This function can be used to change the transfer sizes from the default transfer size of 4096 bytes to better suit the application requirements. Transfer sizes must be set to a multiple of 64 bytes between 64 bytes and 64k bytes. When FT_SetUSBParameters is called, the change comes into effect immediately and any data that was held in the driver at the time of the change is lost. Note that, at present, only dwInTransferSize is supported. # Example ```julia-repl julia> numdevs = FT_CreateDeviceInfoList() 0x00000004 julia> handle = FT_Open(0) FT_HANDLE(Ptr{Nothing} @0x00000000051e56c0) julia> FT_SetUSBParameters(handle, 16384, 8192) """ function FT_SetUSBParameters(ftHandle::FT_HANDLE, dwInTransferSize, dwOutTransferSize) @assert 64 <= dwInTransferSize <= 65536 @assert 64 <= dwOutTransferSize <= 65536 status = ccall((:FT_SetUSBParameters, libftd2xx), cdecl, FT_STATUS, (FT_HANDLE, DWORD, DWORD), ftHandle, dwInTransferSize, dwOutTransferSize) check(status) return end end # module Wrapper
LibFTD2XX
https://github.com/Gowerlabs/LibFTD2XX.jl.git
[ "MIT" ]
0.4.0
5d154e25b3813c038711b0005617990ea28eb4bd
code
477
# LibFTD2XX.jl # # By Reuben Hill 2019, Gowerlabs Ltd, [email protected] # # Copyright (c) Gowerlabs Ltd. using LibFTD2XX include("util.jl") numdevs = LibFTD2XX.createdeviceinfolist() if numdevs > 0 @info "found $numdevs devices. Running hardware tests..." include("hardware/wrapper.jl") include("hardware/LibFTD2XX.jl") else @info "found $numdevs devices. Running nohardware tests..." include("nohardware/wrapper.jl") include("nohardware/LibFTD2XX.jl") end
LibFTD2XX
https://github.com/Gowerlabs/LibFTD2XX.jl.git
[ "MIT" ]
0.4.0
5d154e25b3813c038711b0005617990ea28eb4bd
code
663
# By Reuben Hill 2019, Gowerlabs Ltd, [email protected] # # Copyright (c) Gowerlabs Ltd. module TestUtil using Test using LibFTD2XX.Util @testset "util" begin @test "hello" == ntuple2string(Cchar.(('h','e','l','l','o'))) @test "hello" == ntuple2string(Cchar.(('h','e','l','l','o','\0','x'))) @test v"0.0.0" == versionnumber(0) @test v"99.99.99" == versionnumber(0x00999999) @test v"2.12.28" == versionnumber(0x00021228) @test_throws DomainError versionnumber(0x00999999 + 1) @test_throws DomainError versionnumber(0x000000AA) @test_throws DomainError versionnumber(0x0000AA00) @test_throws DomainError versionnumber(0x00AA0000) end end
LibFTD2XX
https://github.com/Gowerlabs/LibFTD2XX.jl.git
[ "MIT" ]
0.4.0
5d154e25b3813c038711b0005617990ea28eb4bd
code
10998
# These tests require an FT device which supports D2XX to be connected # # By Reuben Hill 2019, Gowerlabs Ltd, [email protected] # # Copyright (c) Gowerlabs Ltd. module TestLibFTD2XX using Test using LibFTD2XX import LibFTD2XX.Wrapper @testset "high level" begin # libversion if Sys.iswindows() ver = libversion() @test ver isa VersionNumber else @test_throws UndefVarError libversion() end # createdeviceinfolist numdevs = LibFTD2XX.createdeviceinfolist() @test numdevs > 0 # LibFTD2XX.getdeviceinfodetail @test_throws D2XXException LibFTD2XX.getdeviceinfodetail(numdevs) for deviceidx = 0:(numdevs-1) idx, flgs, typ, devid, locid, serialn, descr, fthand = LibFTD2XX.getdeviceinfodetail(deviceidx) @test idx == deviceidx if Sys.iswindows() # should not have a locid on windows @test locid == 0 end @test serialn isa String @test descr isa String @test fthand isa FT_HANDLE end idx, flgs, typ, devid, locid, serialn, descr, fthand = LibFTD2XX.getdeviceinfodetail(0) @test_throws DomainError LibFTD2XX.getdeviceinfodetail(-1) # FT_HANDLE functions... @testset "FT_HANDLE" begin # open by description if !isempty(descr) handle = open(descr, OPEN_BY_DESCRIPTION) @test handle isa FT_HANDLE @test isopen(handle) @test_throws Wrapper.FT_DEVICE_NOT_FOUND open(descr, OPEN_BY_DESCRIPTION) # can't open twice close(handle) @test !isopen(handle) end # open by serialnumber if !isempty(serialn) handle = open(serialn, OPEN_BY_SERIAL_NUMBER) @test handle isa FT_HANDLE @test isopen(handle) @test_throws Wrapper.FT_DEVICE_NOT_FOUND open(serialn, OPEN_BY_SERIAL_NUMBER) # can't open twice close(handle) @test !isopen(handle) end # bytesavailable handle = open(descr, OPEN_BY_DESCRIPTION) nb = bytesavailable(handle) @test nb >= 0 close(handle) # can't use on closed device @test_throws D2XXException bytesavailable(handle) # read handle = open(descr, OPEN_BY_DESCRIPTION) rxbuf = read(handle, nb) @test length(rxbuf) == nb @test_throws ArgumentError read(handle, -1) # exception type set by Base/io.jl close(handle) # can't use on closed device @test_throws D2XXException read(handle, nb) # write handle = open(descr, OPEN_BY_DESCRIPTION) txbuf = ones(UInt8, 10) nwr = write(handle, txbuf) @test nwr == length(txbuf) @test txbuf == ones(UInt8, 10) @test_throws ErrorException write(handle, Int.(txbuf)) # No byte I/O... close(handle) # can't use on closed device @test_throws D2XXException read(handle, nb) # readavailable handle = open(descr, OPEN_BY_DESCRIPTION) rxbuf = readavailable(handle) @test rxbuf isa AbstractVector{UInt8} close(handle) # can't use on closed device @test_throws D2XXException readavailable(handle) # baudrate handle = open(descr, OPEN_BY_DESCRIPTION) retval = baudrate(handle, 2000000) @test retval == nothing txbuf = ones(UInt8, 10) nwr = write(handle, txbuf) @test nwr == length(txbuf) @test txbuf == ones(UInt8, 10) @test_throws DomainError baudrate(handle, 0) @test_throws DomainError baudrate(handle, -1) close(handle) # can't use on closed device @test_throws D2XXException baudrate(handle, 2000000) # flush and eof handle = open(descr, OPEN_BY_DESCRIPTION) retval = flush(handle) @test eof(handle) @test retval == nothing @test isopen(handle) close(handle) # can't use on closed device @test_throws D2XXException flush(handle) @test_throws D2XXException eof(handle) # driverversion if Sys.iswindows() handle = open(descr, OPEN_BY_DESCRIPTION) ver = driverversion(handle) @test ver isa VersionNumber close(handle) # can't use on closed device @test_throws D2XXException driverversion(handle) else handle = open(descr, OPEN_BY_DESCRIPTION) @test_throws UndefVarError driverversion(handle) close(handle) # can't use on closed device end # datacharacteristics handle = open(descr, OPEN_BY_DESCRIPTION) retval = datacharacteristics(handle, wordlength = BITS_8, stopbits = STOP_BITS_1, parity = PARITY_NONE) @test retval == nothing close(handle) # can't use on closed device @test_throws D2XXException datacharacteristics(handle, wordlength = BITS_8, stopbits = STOP_BITS_1, parity = PARITY_NONE) # timeouts tests... handle = open(descr, OPEN_BY_DESCRIPTION) baudrate(handle, 9600) timeout_read, timeout_wr = 200, 100 # milliseconds timeouts(handle, timeout_read, timeout_wr) tread = 1000 * @elapsed read(handle, 5000) buffer = zeros(UInt8, 5000); twr = 1000 * @elapsed write(handle, buffer) @test timeout_read < 1.5*tread @test timeout_wr < 1.5*twr @test_throws DomainError timeouts(handle, timeout_read, -1) @test_throws DomainError timeouts(handle, -1, timeout_wr) close(handle) # can't use on closed device @test_throws D2XXException timeouts(handle, timeout_read, timeout_wr) # status handle = open(descr, OPEN_BY_DESCRIPTION) mflaglist, lflaglist = status(handle) @test mflaglist isa Dict{String, Bool} @test lflaglist isa Dict{String, Bool} @test haskey(mflaglist, "CTS") @test haskey(mflaglist, "DSR") @test haskey(mflaglist, "RI") @test haskey(mflaglist, "DCD") @test haskey(lflaglist, "OE") @test haskey(lflaglist, "PE") @test haskey(lflaglist, "FE") @test haskey(lflaglist, "BI") close(handle) # can't use on closed device @test_throws D2XXException status(handle) # close and isopen handle = open(descr, OPEN_BY_DESCRIPTION) retval = close(handle) @test retval == nothing @test !isopen(handle) @test LibFTD2XX.Wrapper._ptr(handle) == C_NULL retval = close(handle) # check can close more than once without issue... @test !isopen(handle) end # D2XXDevice @testset "D2XXDevice" begin # Constructor @test_throws DomainError D2XXDevice(-1) for i = 0:(numdevs-1) idx, flgs, typ, devid, locid, serialn, descr, fthand = LibFTD2XX.getdeviceinfodetail(i) dev = D2XXDevice(i) @test deviceidx(dev) == idx == i @test deviceflags(dev) == flgs @test devicetype(dev) == typ @test deviceid(dev) == devid if Sys.iswindows() @test locationid(dev) == locid == 0 else @test locationid(dev) == locid end @test serialnumber(dev) == serialn @test description(dev) == descr @test LibFTD2XX.Wrapper._ptr(fthandle(dev)) == LibFTD2XX.Wrapper._ptr(fthand) @test !isopen(fthandle(dev)) end # D2XXDevices devices = D2XXDevices() @test length(devices) == numdevs @test all(deviceidx(devices[d]) == deviceidx(D2XXDevice(d-1)) for d = 1:numdevs) # isopen @test all(.!isopen.(devices)) # open retval = open.(devices) @test all(retval .== nothing) @test all(isopen.(devices)) @test_throws D2XXException open.(devices) # can't open twice # bytesavailable nbs = bytesavailable.(devices) @test all(nbs .>= 0) close.(devices) # can't use on closed device @test_throws D2XXException bytesavailable.(devices) device = devices[1] # choose device 1... nb = nbs[1] # read open(device) rxbuf = read(device, nb) @test length(rxbuf) == nb @test_throws ArgumentError read(device, -1) # exception type set by Base/io.jl close(device) # can't use on closed device @test_throws D2XXException read(device, nb) # write open(device) txbuf = ones(UInt8, 10) nwr = write(device, txbuf) @test nwr == length(txbuf) @test txbuf == ones(UInt8, 10) @test_throws ErrorException write(device, Int.(txbuf)) # No byte I/O... close(device) # can't use on closed device @test_throws D2XXException write(device, txbuf) # readavailable open(device) rxbuf = readavailable(device) @test rxbuf isa AbstractVector{UInt8} close(device) # can't use on closed device @test_throws D2XXException readavailable(device) # baudrate open(device) retval = baudrate(device, 2000000) @test retval == nothing txbuf = ones(UInt8, 10) nwr = write(device, txbuf) @test nwr == length(txbuf) @test txbuf == ones(UInt8, 10) @test_throws DomainError baudrate(device, 0) @test_throws DomainError baudrate(device, -1) close(device) # can't use on closed device @test_throws D2XXException baudrate(device, 2000000) # flush and eof open(device) retval = flush(device) @test eof(device) @test retval == nothing @test isopen(device) close(device) # can't use on closed device @test_throws D2XXException flush(device) # driverversion if Sys.iswindows() open(device) ver = driverversion(device) @test ver isa VersionNumber close(device) # can't use on closed device @test_throws D2XXException driverversion(device) else @test_throws UndefVarError driverversion(device) end # datacharacteristics open(device) retval = datacharacteristics(device, wordlength = BITS_8, stopbits = STOP_BITS_1, parity = PARITY_NONE) @test retval == nothing close(device) # can't use on closed device @test_throws D2XXException datacharacteristics(device, wordlength = BITS_8, stopbits = STOP_BITS_1, parity = PARITY_NONE) # timeouts tests... open(device) baudrate(device, 9600) timeout_read, timeout_wr = 200, 100 # milliseconds timeouts(device, timeout_read, timeout_wr) tread = 1000 * @elapsed read(device, 5000) buffer = zeros(UInt8, 5000); twr = 1000 * @elapsed write(device, buffer) @test timeout_read < 1.5*tread @test timeout_wr < 1.5*twr @test_throws DomainError timeouts(device, timeout_read, -1) @test_throws DomainError timeouts(device, -1, timeout_wr) close(device) # can't use on closed device @test_throws D2XXException timeouts(device, timeout_read, timeout_wr) # status open(device) mflaglist, lflaglist = status(device) @test mflaglist isa Dict{String, Bool} @test lflaglist isa Dict{String, Bool} @test haskey(mflaglist, "CTS") @test haskey(mflaglist, "DSR") @test haskey(mflaglist, "RI") @test haskey(mflaglist, "DCD") @test haskey(lflaglist, "OE") @test haskey(lflaglist, "PE") @test haskey(lflaglist, "FE") @test haskey(lflaglist, "BI") close(device) # can't use on closed device @test_throws D2XXException status(device) # close and isopen (all devices) retval = close.(devices) @test all(retval .== nothing) @test all(.!isopen.(devices)) @test all(LibFTD2XX.Wrapper._ptr.(fthandle.(devices)) .== C_NULL) close.(devices) # check can close more than once without issue... @test all(.!isopen.(devices)) end end end # module TestLibFTD2XX
LibFTD2XX
https://github.com/Gowerlabs/LibFTD2XX.jl.git
[ "MIT" ]
0.4.0
5d154e25b3813c038711b0005617990ea28eb4bd
code
9954
# These tests require an FT device which supports D2XX to be connected # # By Reuben Hill 2019, Gowerlabs Ltd, [email protected] # # Copyright (c) Gowerlabs Ltd. module TestWrapper using Test using LibFTD2XX.Wrapper using LibFTD2XX.Util @testset "wrapper" begin # FT_CreateDeviceInfoList tests... numdevs = FT_CreateDeviceInfoList() @test numdevs > 0 # FT_GetDeviceInfoList tests... devinfolist, numdevs2 = FT_GetDeviceInfoList(numdevs) @test numdevs2 == numdevs @test length(devinfolist) == numdevs description = ntuple2string(devinfolist[1].description) if Sys.iswindows() # should not have a locid on windows @test devinfolist[1].locid == 0 end # FT_GetDeviceInfoDetail tests... idx, flags, typ, id, locid, serialnumber, description, fthandle = FT_GetDeviceInfoDetail(0) @test idx == 0 @test flags == devinfolist[1].flags @test typ == devinfolist[1].typ @test id == devinfolist[1].id @test locid == devinfolist[1].locid @test serialnumber == ntuple2string(devinfolist[1].serialnumber) @test description == ntuple2string(devinfolist[1].description) @test Wrapper._ptr(fthandle) == devinfolist[1].fthandle_ptr # FT_ListDevices tests... numdevs2 = Ref{UInt32}() retval = FT_ListDevices(numdevs2, Ref{UInt32}(), FT_LIST_NUMBER_ONLY) @test retval == nothing @test numdevs2[] == numdevs devidx = Ref{UInt32}(0) buffer = pointer(Vector{Cchar}(undef, 64)) @test_throws ErrorException FT_ListDevices(devidx, buffer, FT_LIST_BY_INDEX|FT_OPEN_BY_SERIAL_NUMBER) @test description != unsafe_string(buffer) # FT_Open tests... handle = FT_Open(0) @test handle isa FT_HANDLE @test Wrapper._ptr(handle) != C_NULL FT_Close(handle) # FT_OpenEx tests... # by description if !isempty(description) handle = FT_OpenEx(description, FT_OPEN_BY_DESCRIPTION) @test handle isa FT_HANDLE @test Wrapper._ptr(handle) != C_NULL FT_Close(handle) end # by serialnumber if !isempty(serialnumber) handle = FT_OpenEx(serialnumber, FT_OPEN_BY_SERIAL_NUMBER) @test handle isa FT_HANDLE @test Wrapper._ptr(handle) != C_NULL FT_Close(handle) end # FT_Close tests... handle = FT_Open(0) retval = FT_Close(handle) @test retval == nothing @test_throws FT_STATUS_ENUM FT_Close(handle) # can't close twice... # FT_Read tests... handle = FT_Open(0) buffer = zeros(UInt8, 5) nread = FT_Read(handle, buffer, 0) # read 0 bytes @test nread == 0 @test buffer == zeros(UInt8, 5) @test_throws AssertionError FT_Read(handle, buffer, 6) # read 5 bytes @test_throws AssertionError FT_Read(handle, buffer, -1) # read -1 bytes FT_Close(handle) @test_throws FT_STATUS_ENUM FT_Read(handle, buffer, 0) # FT_Write tests... handle = FT_Open(0) buffer = ones(UInt8, 5) nwr = FT_Write(handle, buffer, 0) # write 0 bytes @test nwr == 0 @test buffer == ones(UInt8, 5) nwr = FT_Write(handle, buffer, 2) # write 2 bytes @test nwr == 2 @test buffer == ones(UInt8, 5) @test_throws AssertionError FT_Write(handle, buffer, 6) # write 6 bytes @test_throws AssertionError FT_Write(handle, buffer, -1) # write -1 bytes FT_Close(handle) @test_throws FT_STATUS_ENUM FT_Write(handle, buffer, 0) # FT_SetDataCharacteristics tests... handle = FT_Open(0) retval = FT_SetDataCharacteristics(handle, FT_BITS_8, FT_STOP_BITS_1, FT_PARITY_NONE) @test retval == nothing # other combinations... FT_SetDataCharacteristics(handle, FT_BITS_7, FT_STOP_BITS_1, FT_PARITY_NONE) FT_SetDataCharacteristics(handle, FT_BITS_8, FT_STOP_BITS_2, FT_PARITY_NONE) FT_SetDataCharacteristics(handle, FT_BITS_8, FT_STOP_BITS_1, FT_PARITY_EVEN) FT_SetDataCharacteristics(handle, FT_BITS_8, FT_STOP_BITS_1, FT_PARITY_ODD) FT_SetDataCharacteristics(handle, FT_BITS_8, FT_STOP_BITS_1, FT_PARITY_MARK) FT_SetDataCharacteristics(handle, FT_BITS_8, FT_STOP_BITS_1, FT_PARITY_SPACE) # Bad values @test_throws AssertionError FT_SetDataCharacteristics(handle, ~(FT_BITS_8 | FT_BITS_7), FT_STOP_BITS_1, FT_PARITY_NONE) @test_throws AssertionError FT_SetDataCharacteristics(handle, FT_BITS_8, ~(FT_STOP_BITS_1 | FT_STOP_BITS_2), FT_PARITY_NONE) @test_throws AssertionError FT_SetDataCharacteristics(handle, FT_BITS_8, FT_STOP_BITS_1, ~(FT_PARITY_NONE | FT_PARITY_EVEN)) # closed handle FT_Close(handle) @test_throws FT_STATUS_ENUM FT_SetDataCharacteristics(handle, FT_BITS_8, FT_STOP_BITS_1, FT_PARITY_NONE) # FT_SetTimeouts tests... handle = FT_Open(0) FT_SetBaudRate(handle, 9600) timeout_read, timeout_wr = 200, 100 # milliseconds FT_SetTimeouts(handle, timeout_read, timeout_wr) buffer = zeros(UInt8, 5000); tread = 1000 * @elapsed nread = FT_Read(handle, buffer, 5000) twr = 1000 * @elapsed nwr = FT_Write(handle, buffer, 5000) @test timeout_read < 1.5*tread @test timeout_wr < 1.5*twr @test_throws InexactError FT_SetTimeouts(handle, timeout_read, -1) @test_throws InexactError FT_SetTimeouts(handle, -1, timeout_wr) FT_Close(handle) @test_throws FT_STATUS_ENUM FT_SetTimeouts(handle, timeout_read, timeout_wr) # FT_GetModemStatus tests handle = FT_Open(0) flags = FT_GetModemStatus(handle) @test flags isa DWORD FT_Close(handle) @test_throws FT_STATUS_ENUM FT_GetModemStatus(handle) # FT_GetQueueStatus tests handle = FT_Open(0) nbrx = FT_GetQueueStatus(handle) @test nbrx isa DWORD FT_Close(handle) @test_throws FT_STATUS_ENUM FT_GetQueueStatus(handle) # FT_GetDeviceInfo tests id_buf = id serialnumber_buf = serialnumber description_buf = description handle = FT_Open(0) typ, id, serialnumber, description = FT_GetDeviceInfo(handle) @test typ isa FT_DEVICE @test serialnumber == serialnumber_buf @test description == description_buf FT_Close(handle) @test_throws FT_STATUS_ENUM FT_GetDeviceInfo(handle) # FT_GetDriverVersion tests if Sys.iswindows() handle = FT_Open(0) version = FT_GetDriverVersion(handle) @test version isa DWORD @test version > 0 @test (version >> 24) & 0xFF == 0x00 # 4th byte should be 0 according to docs FT_Close(handle) @test_throws FT_STATUS_ENUM FT_GetDriverVersion(handle) else handle = FT_Open(0) @test_throws UndefVarError FT_GetDriverVersion(handle) FT_Close(handle) end # FT_GetLibraryVersion tests if Sys.iswindows() version = FT_GetLibraryVersion() @test version isa DWORD @test version > 0 @test (version >> 24) & 0xFF == 0x00 # 4th byte should be 0 according to docs else @test_throws UndefVarError FT_GetLibraryVersion() end # FT_GetStatus tests handle = FT_Open(0) nbrx, nbtx, eventstatus = FT_GetStatus(handle) @test nbrx isa DWORD @test nbtx isa DWORD @test eventstatus isa DWORD FT_Close(handle) @test_throws FT_STATUS_ENUM FT_GetStatus(handle) # FT_SetBreakOn tests handle = FT_Open(0) retval = FT_SetBreakOn(handle) @test retval == nothing FT_Close(handle) @test_throws FT_STATUS_ENUM FT_SetBreakOn(handle) # FT_SetBreakOff tests handle = FT_Open(0) retval = FT_SetBreakOff(handle) @test retval == nothing FT_Close(handle) @test_throws FT_STATUS_ENUM FT_SetBreakOff(handle) # FT_Purge tests handle = FT_Open(0) retval = FT_Purge(handle, FT_PURGE_RX|FT_PURGE_TX) @test retval == nothing nbrx, nbtx, eventstatus = FT_GetStatus(handle) nbrx_2 = FT_GetQueueStatus(handle) @test nbrx == nbtx == nbrx_2 == 0 FT_Purge(handle, FT_PURGE_RX) FT_Purge(handle, FT_PURGE_TX) @test_throws AssertionError FT_Purge(handle, ~(FT_PURGE_RX)) @test_throws AssertionError FT_Purge(handle, ~(FT_PURGE_TX)) @test_throws AssertionError FT_Purge(handle, ~(FT_PURGE_RX | FT_PURGE_TX)) FT_Close(handle) @test_throws FT_STATUS_ENUM FT_Purge(handle, FT_PURGE_RX|FT_PURGE_TX) # FT_StopInTask and FT_RestartInTask tests handle = FT_Open(0) retval = FT_StopInTask(handle) @test retval == nothing nbrx, nbtx, eventstatus = FT_GetStatus(handle) sleep(0.1) nbrx_2, nbtx, eventstatus = FT_GetStatus(handle) @test nbrx == nbrx_2 retval = FT_RestartInTask(handle) @test retval == nothing FT_Close(handle) @test_throws FT_STATUS_ENUM FT_StopInTask(handle) @test_throws FT_STATUS_ENUM FT_RestartInTask(handle) # FT_FlowControl tests handle = FT_Open(0) @test_throws AssertionError FT_SetFlowControl(handle, 0xFF, 0x00, 0x01) @test_throws InexactError FT_SetFlowControl(handle, FT_FLOW_NONE, 0x00, -1) FT_Close(handle) @test_throws FT_STATUS_ENUM FT_SetFlowControl(handle, FT_FLOW_NONE, 0x00, 0x00) # FT_SetDtr, FT_ClrDtr, FT_SetRts and FT_ClrRts tests handle = FT_Open(0) retval = FT_SetDtr(handle) @test retval == nothing retval = FT_ClrDtr(handle) @test retval == nothing retval = FT_SetRts(handle) @test retval == nothing retval = FT_ClrRts(handle) @test retval == nothing FT_Close(handle) @test_throws FT_STATUS_ENUM FT_SetDtr(handle) @test_throws FT_STATUS_ENUM FT_ClrDtr(handle) @test_throws FT_STATUS_ENUM FT_SetRts(handle) @test_throws FT_STATUS_ENUM FT_ClrRts(handle) # FT_EventNotification tests # FT_SetChars tests handle = FT_Open(0) @test_throws InexactError FT_SetChars(handle, 0x00, 0x00, 0x00, -1) FT_Close(handle) @test_throws FT_STATUS_ENUM FT_SetChars(handle, 0x00, 0x00, 0x00, 0x00) # FT_SetLatencyTimer and FT_GetLatencyTimer tests handle = FT_Open(0) FT_SetLatencyTimer(handle, 0xAC) retval = FT_GetLatencyTimer(handle) @test retval==0xAC @test_throws InexactError FT_SetLatencyTimer(handle, 300) FT_Close(handle) @test_throws FT_STATUS_ENUM FT_SetLatencyTimer(handle, 128) # FT_SetBitMode tests handle = FT_Open(0) @test_throws AssertionError FT_SetBitMode(handle, 0x00, 0xFF) @test_throws InexactError FT_SetBitMode(handle, -1, FT_MODE_RESET) FT_Close(handle) @test_throws FT_STATUS_ENUM FT_SetBitMode(handle, 0x00, FT_MODE_RESET) # FT_GetBitMode doesn't return the bit mode, but the pin status. So we can't check against that. end end # module TestWrapper
LibFTD2XX
https://github.com/Gowerlabs/LibFTD2XX.jl.git
[ "MIT" ]
0.4.0
5d154e25b3813c038711b0005617990ea28eb4bd
code
5195
# These tests do not require an FT device which supports D2XX to be connected # # By Reuben Hill 2019, Gowerlabs Ltd, [email protected] # # Copyright (c) Gowerlabs Ltd. module TestLibFTD2XX using Test using LibFTD2XX import LibFTD2XX.Wrapper @testset "high level" begin # libversion if Sys.iswindows() ver = libversion() @test ver isa VersionNumber else @test_throws UndefVarError libversion() end # createdeviceinfolist numdevs = LibFTD2XX.createdeviceinfolist() @test numdevs == 0 # LibFTD2XX.getdeviceinfodetail @test_throws D2XXException LibFTD2XX.getdeviceinfodetail(0) # FT_HANDLE functions... @testset "FT_HANDLE" begin # open by description @test_throws Wrapper.FT_DEVICE_NOT_FOUND open("", OPEN_BY_DESCRIPTION) # open by serialnumber @test_throws Wrapper.FT_DEVICE_NOT_FOUND open("", OPEN_BY_SERIAL_NUMBER) handle = FT_HANDLE() # create invalid handle... # bytesavailable @test_throws D2XXException bytesavailable(handle) # read @test_throws D2XXException read(handle, 0) @test_throws D2XXException read(handle, 1) if VERSION < v"1.3.0" @test_throws ErrorException read(handle, -1) # exception type set by Base/io.jl else @test_throws ArgumentError read(handle, -1) # exception type set by Base/io.jl end # write txbuf = ones(UInt8, 10) @test_throws D2XXException write(handle, txbuf) @test txbuf == ones(UInt8, 10) @test_throws ErrorException write(handle, Int.(txbuf)) # No byte I/O... # readavailable @test_throws D2XXException readavailable(handle) # baudrate @test_throws D2XXException baudrate(handle, 9600) @test_throws DomainError baudrate(handle, 0) @test_throws DomainError baudrate(handle, -1) # flush and eof @test_throws D2XXException flush(handle) @test_throws D2XXException eof(handle) # driverversion if Sys.iswindows() @test_throws D2XXException driverversion(handle) else @test_throws UndefVarError driverversion(handle) end # datacharacteristics @test_throws D2XXException datacharacteristics(handle, wordlength = BITS_8, stopbits = STOP_BITS_1, parity = PARITY_NONE) # timeouts tests... timeout_read, timeout_wr = 200, 100 # milliseconds @test_throws D2XXException timeouts(handle, timeout_read, timeout_wr) @test_throws DomainError timeouts(handle, timeout_read, -1) @test_throws DomainError timeouts(handle, -1, timeout_wr) # status @test_throws D2XXException status(handle) # close and isopen retval = close(handle) @test retval == nothing @test !isopen(handle) @test LibFTD2XX.Wrapper._ptr(handle) == C_NULL retval = close(handle) # check can close more than once without issue... @test !isopen(handle) end # D2XXDevice @testset "D2XXDevice" begin # Constructor @test_throws DomainError D2XXDevice(-1) @test_throws D2XXException D2XXDevice(0) # D2XXDevices devices = D2XXDevices() @test length(devices) == numdevs == 0 device = D2XXDevice(0, 0, 0, 0, 0, "", "", FT_HANDLE()) # blank device... # isopen @test !isopen(device) # open @test_throws Wrapper.FT_DEVICE_NOT_FOUND open(device) # bytesavailable @test_throws D2XXException bytesavailable(device) nb = 1 # read @test_throws D2XXException read(device, nb) if VERSION < v"1.3.0" @test_throws ErrorException read(device, -1) # exception type set by Base/io.jl else @test_throws ArgumentError read(device, -1) # exception type set by Base/io.jl end # write txbuf = ones(UInt8, 10) @test_throws D2XXException write(device, txbuf) @test txbuf == ones(UInt8, 10) @test_throws ErrorException write(device, Int.(txbuf)) # No byte I/O... # readavailable @test_throws D2XXException readavailable(device) # baudrate @test_throws D2XXException baudrate(device, 9600) @test_throws DomainError baudrate(device, 0) @test_throws DomainError baudrate(device, -1) # flush and eof @test_throws D2XXException flush(device) @test_throws D2XXException eof(device) # driverversion if Sys.iswindows() @test_throws D2XXException driverversion(device) else @test_throws UndefVarError driverversion(device) end # datacharacteristics @test_throws D2XXException datacharacteristics(device, wordlength = BITS_8, stopbits = STOP_BITS_1, parity = PARITY_NONE) # timeouts tests... timeout_read, timeout_wr = 200, 100 # milliseconds @test_throws D2XXException timeouts(device, timeout_read, timeout_wr) @test_throws DomainError timeouts(device, timeout_read, -1) @test_throws DomainError timeouts(device, -1, timeout_wr) # status @test_throws D2XXException status(device) # close and isopen (all devices) retval = close.(devices) @test all(retval .== nothing) @test all(.!isopen.(devices)) @test all(LibFTD2XX.Wrapper._ptr.(fthandle.(devices)) .== C_NULL) close.(devices) # check can close more than once without issue... @test all(.!isopen.(devices)) end end end # module TestLibFTD2XX
LibFTD2XX
https://github.com/Gowerlabs/LibFTD2XX.jl.git
[ "MIT" ]
0.4.0
5d154e25b3813c038711b0005617990ea28eb4bd
code
5744
# These tests do not require an FT device which supports D2XX to be connected # # By Reuben Hill 2019, Gowerlabs Ltd, [email protected] # # Copyright (c) Gowerlabs Ltd. module TestWrapper using Test using LibFTD2XX.Wrapper using LibFTD2XX.Util @testset "wrapper" begin # FT_CreateDeviceInfoList tests... numdevs = FT_CreateDeviceInfoList() @test numdevs == 0 # FT_GetDeviceInfoList tests... devinfolist, numdevs2 = FT_GetDeviceInfoList(numdevs) @test numdevs2 == numdevs == 0 @test length(devinfolist) == numdevs == 0 # FT_GetDeviceInfoDetail tests... @test_throws FT_STATUS_ENUM FT_GetDeviceInfoDetail(0) # FT_ListDevices tests... numdevs2 = Ref{UInt32}() retval = FT_ListDevices(numdevs2, Ref{UInt32}(), FT_LIST_NUMBER_ONLY) @test retval == nothing @test numdevs2[] == numdevs devidx = Ref{UInt32}(0) buffer = pointer(Vector{Cchar}(undef, 64)) @test_throws ErrorException FT_ListDevices(devidx, buffer, FT_LIST_BY_INDEX|FT_OPEN_BY_SERIAL_NUMBER) # FT_Open tests... @test_throws FT_STATUS_ENUM FT_Open(0) # FT_OpenEx tests... # by description @test_throws FT_STATUS_ENUM FT_OpenEx("", FT_OPEN_BY_DESCRIPTION) # by serialnumber @test_throws FT_STATUS_ENUM FT_OpenEx("", FT_OPEN_BY_SERIAL_NUMBER) # FT_Close tests... handle = FT_HANDLE() # create with invalid handle... @test_throws FT_INVALID_HANDLE FT_Close(handle) # FT_Read tests... buffer = zeros(UInt8, 5) @test_throws FT_INVALID_HANDLE FT_Read(handle, buffer, 0) # read 0 bytes @test buffer == zeros(UInt8, 5) @test_throws AssertionError FT_Read(handle, buffer, 6) # read 5 bytes @test_throws AssertionError FT_Read(handle, buffer, -1) # read -1 bytes # FT_Write tests... buffer = ones(UInt8, 5) @test_throws FT_INVALID_HANDLE FT_Write(handle, buffer, 0) # write 0 bytes @test buffer == ones(UInt8, 5) @test_throws AssertionError FT_Write(handle, buffer, 6) # write 6 bytes @test_throws AssertionError FT_Write(handle, buffer, -1) # write -1 bytes # FT_SetDataCharacteristics tests... @test_throws FT_INVALID_HANDLE FT_SetDataCharacteristics(handle, FT_BITS_8, FT_STOP_BITS_1, FT_PARITY_NONE) # Bad values @test_throws AssertionError FT_SetDataCharacteristics(handle, ~(FT_BITS_8 | FT_BITS_7), FT_STOP_BITS_1, FT_PARITY_NONE) @test_throws AssertionError FT_SetDataCharacteristics(handle, FT_BITS_8, ~(FT_STOP_BITS_1 | FT_STOP_BITS_2), FT_PARITY_NONE) @test_throws AssertionError FT_SetDataCharacteristics(handle, FT_BITS_8, FT_STOP_BITS_1, ~(FT_PARITY_NONE | FT_PARITY_EVEN)) # closed handle # FT_SetTimeouts tests... timeout_read, timeout_wr = 200, 100 # milliseconds @test_throws FT_INVALID_HANDLE FT_SetTimeouts(handle, timeout_read, timeout_wr) @test_throws InexactError FT_SetTimeouts(handle, timeout_read, -1) @test_throws InexactError FT_SetTimeouts(handle, -1, timeout_wr) # FT_GetModemStatus tests @test_throws FT_INVALID_HANDLE FT_GetModemStatus(handle) # FT_GetQueueStatus tests @test_throws FT_INVALID_HANDLE FT_GetQueueStatus(handle) # FT_GetDeviceInfo tests @test_throws FT_INVALID_HANDLE FT_GetDeviceInfo(handle) # FT_GetDriverVersion tests if Sys.iswindows() @test_throws FT_INVALID_HANDLE FT_GetDriverVersion(handle) else @test_throws UndefVarError FT_GetDriverVersion(handle) end # FT_GetLibraryVersion tests if Sys.iswindows() version = FT_GetLibraryVersion() @test version isa DWORD @test version > 0 @test (version >> 24) & 0xFF == 0x00 # 4th byte should be 0 according to docs else @test_throws UndefVarError FT_GetLibraryVersion() end # FT_GetStatus tests @test_throws FT_INVALID_HANDLE FT_GetStatus(handle) # FT_SetBreakOn tests @test_throws FT_INVALID_HANDLE FT_SetBreakOn(handle) # FT_SetBreakOff tests @test_throws FT_INVALID_HANDLE FT_SetBreakOff(handle) # FT_Purge tests @test_throws FT_INVALID_HANDLE FT_Purge(handle, FT_PURGE_RX|FT_PURGE_TX) @test_throws AssertionError FT_Purge(handle, ~(FT_PURGE_RX)) @test_throws AssertionError FT_Purge(handle, ~(FT_PURGE_TX)) @test_throws AssertionError FT_Purge(handle, ~(FT_PURGE_RX | FT_PURGE_TX)) # FT_StopInTask and FT_RestartInTask tests @test_throws FT_INVALID_HANDLE FT_StopInTask(handle) @test_throws FT_INVALID_HANDLE FT_RestartInTask(handle) # FT_SetFlowControl tests @test_throws FT_INVALID_HANDLE FT_SetFlowControl(handle, FT_FLOW_NONE, 0x00, 0x01) @test_throws AssertionError FT_SetFlowControl(handle, 0xFF, 0x00, 0x01) @test_throws InexactError FT_SetFlowControl(handle, FT_FLOW_NONE, 0x00, -1) # FT_SetDtr and FT_ClrDtr tests @test_throws FT_INVALID_HANDLE FT_SetDtr(handle) @test_throws FT_INVALID_HANDLE FT_ClrDtr(handle) # FT_SetRts and FT_ClrRts tests @test_throws FT_INVALID_HANDLE FT_SetRts(handle) @test_throws FT_INVALID_HANDLE FT_SetRts(handle) # FT_EventNotification tests # FT_SetChars tests @test_throws InexactError FT_SetChars(handle, 0x00, 0x00, 0x00, -1) @test_throws FT_INVALID_HANDLE FT_SetChars(handle, 0x00, 0x00, 0x00, 0x00) # FT_SetLatencyTimer and FT_GetLatencyTimer tests @test_throws InexactError FT_SetLatencyTimer(handle, 300) @test_throws FT_INVALID_HANDLE FT_SetLatencyTimer(handle, 0x00) @test_throws FT_INVALID_HANDLE FT_GetLatencyTimer(handle) # FT_SetBitMode and FT_GetBitMode tests @test_throws AssertionError FT_SetBitMode(handle, 0x00, 0xFF) @test_throws InexactError FT_SetBitMode(handle, -1, FT_MODE_RESET) @test_throws FT_INVALID_HANDLE FT_SetBitMode(handle, 0x00, FT_MODE_RESET) @test_throws FT_INVALID_HANDLE FT_GetBitMode(handle) # FT_SetUSBParameters tests @test_throws FT_INVALID_HANDLE FT_SetUSBParameters(handle, 32768, 32768) end end # module TestWrapper
LibFTD2XX
https://github.com/Gowerlabs/LibFTD2XX.jl.git
[ "MIT" ]
0.4.0
5d154e25b3813c038711b0005617990ea28eb4bd
docs
5617
# LibFTD2XX [![Coverage Status](https://coveralls.io/repos/github/Gowerlabs/LibFTD2XX.jl/badge.svg?branch=master)](https://coveralls.io/github/Gowerlabs/LibFTD2XX.jl?branch=master) [![codecov](https://codecov.io/gh/Gowerlabs/LibFTD2XX.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/Gowerlabs/LibFTD2XX.jl) [![Build Status](https://travis-ci.org/Gowerlabs/LibFTD2XX.jl.svg?branch=master)](https://travis-ci.org/Gowerlabs/LibFTD2XX.jl) [![Build status](https://ci.appveyor.com/api/projects/status/ui8plnih785lw4jg/branch/master?svg=true)](https://ci.appveyor.com/project/samuelpowell/libftd2xx-jl/branch/master) Julia wrapper for the FTDIchip FTD2XX driver. # Installation & Platforms Install LibFTD2XX using the package manager: ```julia ]add LibFTD2XX ``` | Platform | Architecture | Notes | | ------------- | ----------------------------- | --------------------------------------- | | Linux (x86) | 32-bit and 64-bit | 64-bit tested locally ([No CI](https://github.com/Gowerlabs/LibFTD2XX.jl/issues/35)) | | Linux (ARM) | ARMv7 HF and AArch64 (ARMv8) | Tested locally (No CI) | | MacOS | 64-bit | CI active (without hardware) | | Windows | 64-bit | CI active (without hardware) | ## Linux driver details It is likely that the kernel will automatically load VCP drivers when running on linux, which will prevent the D2XX drivers from accessing the device. Follow the guidance in the FTDI Linux driver [README](https://www.ftdichip.com/Drivers/D2XX/Linux/ReadMe-linux.txt) to unload the `ftdio_sio` and `usbserial` kernel modules before use. These can optionally be blacklisted if appropriate. If your device has an alternate product name you may prefer to use an alternative approach detailed [here](https://www.elektormagazine.de/news/ftdi-d2xx-and-linux-overcoming-the-big-problem-). The D2XX drivers use raw USB access through `libusb` which may not be available to non-root users. A udev file is required to enable access to a specified group. A script to create the appropriate file and user group is available, e.g., [here](https://stackoverflow.com/questions/13419691/accessing-a-usb-device-with-libusb-1-0-as-a-non-root-user). # Usage LibFTD2XX provides a high-level wrapper of the underlying library functionality, detailed below. To access the library directly, the submodule `Wrapper` provides access to the functions detailed in the [D2XX Programmer's Guide (FT_000071)](http://www.ftdichip.com/Support/Documents/ProgramGuides/D2XX_Programmer's_Guide(FT_000071).pdf). The demonstration considers a port running at 2MBaud which echos what it receives. ## Finding and configuring devices ```Julia julia> using LibFTD2XX julia> devices = D2XXDevices() 4-element Array{D2XXDevice,1}: D2XXDevice(0, 2, 7, 67330065, 0, "FT3V1RFFA", "USB <-> Serial Converter A", Base.RefValue{FT_HANDLE}(FT_HANDLE(Ptr{Nothing} @0x0000000000000000))) D2XXDevice(1, 2, 7, 67330065, 0, "FT3V1RFFB", "USB <-> Serial Converter B", Base.RefValue{FT_HANDLE}(FT_HANDLE(Ptr{Nothing} @0x0000000000000000))) D2XXDevice(2, 2, 7, 67330065, 0, "FT3V1RFFC", "USB <-> Serial Converter C", Base.RefValue{FT_HANDLE}(FT_HANDLE(Ptr{Nothing} @0x0000000000000000))) D2XXDevice(3, 2, 7, 67330065, 0, "FT3V1RFFD", "USB <-> Serial Converter D", Base.RefValue{FT_HANDLE}(FT_HANDLE(Ptr{Nothing} @0x0000000000000000))) julia> isopen.(devices) 4-element BitArray{1}: false false false false julia> device = devices[1] D2XXDevice(0, 2, 7, 67330065, 0, "FT3V1RFFA", "USB <-> Serial Converter A", Base.RefValue{FT_HANDLE}(FT_HANDLE(Ptr{Nothing} @0x0000000000000000))) julia> open(device) julia> isopen(device) true julia> datacharacteristics(device, wordlength = BITS_8, stopbits = STOP_BITS_1, parity = PARITY_NONE) julia> baudrate(device,2000000) julia> timeout_read, timeout_wr = 200, 10; # milliseconds julia> timeouts(device, timeout_read, timeout_wr) ``` ## Basic IO ```julia julia> supertype(typeof(device)) IO julia> write(device, Vector{UInt8}(codeunits("Hello"))) 0x00000005 julia> bytesavailable(device) 0x00000005 julia> String(read(device, 5)) # read 5 bytes "Hello" julia> write(device, Vector{UInt8}(codeunits("World"))) 0x00000005 julia> String(readavailable(device)) # read all available bytes "World" julia> write(device, Vector{UInt8}(codeunits("I will be deleted."))) 0x00000012 julia> bytesavailable(device) 0x00000012 julia> flush(device) julia> bytesavailable(device) 0x00000000 julia> # Read Timeout behaviour julia> tread = 1000 * @elapsed read(device, 5000) # nothing to read! Will timeout... 203.20976900000002 julia> timeout_read < 1.5*tread # 1.5*tread to allow for extra compile/run time. true ``` ## Timeouts (only tested on Windows) ``` julia> buffer = zeros(UInt8, 5000); julia> twr = 1000 * @elapsed nb = write(device, buffer) # Will timeout before finishing write! 22.997304 julia> timeout_wr < 1.5*twr true julia> nb # doesn't correctly report number written 0x00000000 julia> Int(bytesavailable(device)) 3584 julia> timeout_wr < 1.5*twr true julia> flush(device) julia> timeout_wr = 1000; # increase write timeout julia> timeouts(device, timeout_read, timeout_wr) julia> twr = 1000 * @elapsed nb = write(device, buffer) # Won't timeout before finishing write! 15.960230999999999 julia> nb # correctly reports number written 0x00001388 julia> Int(bytesavailable(device)) 5000 julia> timeout_wr < 1.5*twr false julia> close(device) julia> isopen(device) false ```
LibFTD2XX
https://github.com/Gowerlabs/LibFTD2XX.jl.git
[ "MIT" ]
0.1.0
1810c9e306efc739cfd6fbf597301024ce583a8d
code
608
using Bosonic using Documenter DocMeta.setdocmeta!(Bosonic, :DocTestSetup, :(using Bosonic); recursive=true) makedocs(; modules=[Bosonic], authors="Marco Di Tullio", repo="https://github.com/Marco-Di-Tullio/Bosonic.jl/blob/{commit}{path}#{line}", sitename="Bosonic.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://Marco-Di-Tullio.github.io/Bosonic.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/Marco-Di-Tullio/Bosonic.jl", devbranch="main", )
Bosonic
https://github.com/Marco-Di-Tullio/Bosonic.jl.git
[ "MIT" ]
0.1.0
1810c9e306efc739cfd6fbf597301024ce583a8d
code
278
module Bosonic using SparseArrays using LinearAlgebra include("operators_fixed.jl") include("states_fixed.jl") include("correlations.jl") export basis_m, bdb, bbd, Op_fixed, dim, nume, le, basis, b, bd, state_form export State_fixed, st, ope, nume, dim, basis, typ, rhosp end
Bosonic
https://github.com/Marco-Di-Tullio/Bosonic.jl.git
[ "MIT" ]
0.1.0
1810c9e306efc739cfd6fbf597301024ce583a8d
code
4348
function basis_m(n::Int64,m::Int64) len = binomial(n+m-1,m) base = spzeros(len,n) counter = 1 index = Int64[] for i in 1:((m+1)^n-1) bin_vec = splitter(string(i,base=(m+1)),n) if sum(bin_vec) == m base[counter,:] = bin_vec append!(index,i) counter += 1 end end return base, index end function splitter(x,n) vectorized = zeros(Int64,0) while length(x) < n x = "0"*x end for i in x str_to_int = parse(Int, i) append!(vectorized, str_to_int) end return vectorized end function myfind(c,j) a = similar(c, Int) count = 1 @inbounds for i in eachindex(c) a[count] = i count += (c[i] == j) end return a[1:(count-1)] end function bdb(n::Int64, m::Int64, i::Int64, j::Int64) base, ind = basis_m(n,m) l = binomial(n+m-1,m) op = spzeros(l,l) if i==j for k in 1:l if base[k,:][j] != 0 op[k,k] = base[k,:][j] end end else for k in 1:l if base[k,:][j] != 0 ill = Int(ind[k]-(m+1)^(n-j)+(m+1)^(n-i)) ill2 = myfind(ind, ill)[1] op[ill2,k] = 1 end end end return op end function bbd(n::Int64, m::Int64, i::Int64, j::Int64) return bdb(n, m, j, i) end function bdb(base::SparseMatrixCSC{Float64,Int64}, ind::Array{Int64,1}, m::Int64, i::Int64, j::Int64) l = size(base)[1] n = size(base)[2] op = spzeros(l,l) if i==j for k in 1:l if base[k,:][j] != 0 op[k,k] = base[k,:][j] end end else for k in 1:l if base[k,:][j] != 0 ill = Int(ind[k]-(m+1)^(n-j)+(m+1)^(n-i)) ill2 = myfind(ind, ill)[1] op[ill2,k] = 1 end end end return op end function bbd(base::SparseMatrixCSC{Float64,Int64}, ind::Array{Int64,1}, m::Int64, i::Int64, j::Int64) return bdb(base, ind, m, j, i) end struct Op_fixed dim::Int nume::Int bdbtot::SparseMatrixCSC{Float64,Int64} le::Int basis::SparseMatrixCSC{Float64,Int64} Op_fixed(dim,nume) = new(dim, nume, operators_fixed(dim,nume)...) end dim(o::Op_fixed) = o.dim nume(o::Op_fixed) = o.nume bdbtot(o::Op_fixed) = o.bdbtot le(o::Op_fixed) = o.le basis(o::Op_fixed) = o.basis bdb(o::Op_fixed,i,j) = bdbtot(o)[(1+(i-1)*le(o)):i*le(o),(1+(j-1)*le(o)):j*le(o)] bbd(o::Op_fixed,i,j) = bdb(o,j,i) # Here we create the full matrix with all # fixed particle operators definitions function operators_fixed(n::Int,m::Int) l1 = binomial(n+m-1,m) l2 = n*l1 bas,ind = basis_m(n,m) z = spzeros(l2,l2) for i in 1:n for j in i:n if i==j z[(1+(i-1)*l1):i*l1,(1+(j-1)*l1):j*l1] = 1/2*bdb(bas,ind, m, i,j) else z[(1+(i-1)*l1):i*l1,(1+(j-1)*l1):j*l1] = bdb(bas,ind, m, i,j) end end end op_general = z+z' return op_general, l1, bas end function bd(n::Int64, m::Int64, i::Int64) base1, ind1 = basis_m(n,m) l2 = binomial(n+m-1,m) base2, ind2 = basis_m(n,m+1) l1 = binomial(n+m,m+1) op = spzeros(l1,l2) s2 = sparse([(m+2)^l for l in 0:(n-1)]) for k in 1:l2 j = myfind(ind2, (s2[end:-1:1]'*base1[k,:])+(m+2)^(n-i))[1] op[j,k] = 1 end if m==0 return op end return op end function b(n::Int64, m::Int64, i::Int64) op = bd(n, m-1, i) return op' end # This serves for applying several creations op # at once. Modes will be a vector with the chosen # modes function bd(n::Int64, m::Int64, modes::Array{Int64,1}) l = length(modes) op = bd(n,m,modes[1]) for k in 2:l op = bd(n,m+k-1,modes[k])*op end return op end function b(n::Int64, m::Int64, modes::Array{Int64,1}) l = length(modes) op = b(n,m,modes[1]) for k in 2:l op = b(n,m-k+1,modes[k])*op end return op end function state_form(v::SparseMatrixCSC{Float64, Int64}) i, j, w = findnz(v) l = size(v)[1] return sparsevec(i,w,l) end
Bosonic
https://github.com/Marco-Di-Tullio/Bosonic.jl.git
[ "MIT" ]
0.1.0
1810c9e306efc739cfd6fbf597301024ce583a8d
code
789
struct State_fixed{T<:AbstractVector} st::T ope::Op_fixed State_fixed(st,ope) = length(st) != binomial(dim(ope)+nume(ope)-1,nume(ope)) ? error("lenght of vector does not match dimension") : new{typeof(st)}(st/sqrt(st'*st),ope) end st(s::State_fixed) = s.st ope(s::State_fixed) = s.ope nume(s::State_fixed) = nume(s.ope) dim(s::State_fixed) = dim(s.ope) basis(s::State_fixed) = basis(s.ope) typ(s::State_fixed) = eltype(s.st) function rhosp(sta::State_fixed, precis=15) n = dim(sta) num = nume(sta) rhospv = spzeros(typ(sta),n,n) estate = st(sta) o = ope(sta) for i in 1:n for j in 1:n rhospv[i,j] = round(estate'*bdb(o, i, j)*estate, digits = precis) end end return rhospv end
Bosonic
https://github.com/Marco-Di-Tullio/Bosonic.jl.git
[ "MIT" ]
0.1.0
1810c9e306efc739cfd6fbf597301024ce583a8d
code
769
using Bosonic using Test @testset "Bosonic.jl" begin @test basis_m(4,2)[1][1,:][4] == 2 @test basis_m(4,3)[2][4] == 12 @test bdb(4,2,1,2)[7,4] == 1 @test bbd(4,3,2,2)[10,10] == 3 @test bdb(basis_m(4,2)[1],basis_m(4,2)[2],2,1,2)[9,6] == 1 @test bbd(basis_m(4,2)[1],basis_m(4,2)[2],2,1,2)[6,9] == 1 @test bdb(Op_fixed(4,2),1,2)[9,6] == 1 @test bbd(Op_fixed(4,2),1,2)[9,10] == 1 @test dim(Op_fixed(5,1)) == 5 @test nume(Op_fixed(4,3)) == 3 @test le(Op_fixed(4,3)) == binomial(4+3-1,3) @test basis(Op_fixed(4,2))[2,4] == 1 @test bd(4,1,1)[8,2] == 1 @test b(4,2,1)[1,7] == 1 @test bd(4,1,[1,2])[15,2] == 1 @test b(4,3,[1,2])[1,14] == 1 @test state_form(bd(4,0,[1,3,2,3]))[22] == 1 end
Bosonic
https://github.com/Marco-Di-Tullio/Bosonic.jl.git
[ "MIT" ]
0.1.0
1810c9e306efc739cfd6fbf597301024ce583a8d
code
281
#SafeTestsets makes every test run in a separate enviromment #so that errors can be found independently using SafeTestsets @safetestset "Operators fixed tests" begin include("operators_fixed_test.jl") end @safetestset "States fixed tests" begin include("states_fixed_test.jl") end
Bosonic
https://github.com/Marco-Di-Tullio/Bosonic.jl.git
[ "MIT" ]
0.1.0
1810c9e306efc739cfd6fbf597301024ce583a8d
code
365
using Bosonic using Test @testset "Bosonic.jl" begin @test round(st(State_fixed(ones(10),Op_fixed(4,2)))'*st(State_fixed(ones(10),Op_fixed(4,2))),digits=4) == 1 @test nume(State_fixed(ones(10),Op_fixed(4,2))) == 2 @test basis(State_fixed(ones(10),Op_fixed(4,2)))[1,:][4] == 2 @test rhosp(State_fixed(ones(10),Op_fixed(4,2)))[3,1] == 0.4 end
Bosonic
https://github.com/Marco-Di-Tullio/Bosonic.jl.git
[ "MIT" ]
0.1.0
1810c9e306efc739cfd6fbf597301024ce583a8d
docs
2298
# Bosonic <!---[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://Marco-Di-Tullio.github.io/Bosonic.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://Marco-Di-Tullio.github.io/Bosonic.jl/dev) [![Build Status](https://github.com/Marco-Di-Tullio/Bosonic.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/Marco-Di-Tullio/Bosonic.jl/actions/workflows/CI.yml?query=branch%3Amain)--> <!--[![Build Status](https://travis-ci.com/Marco-Di-Tullio/Bosonic.jl.svg?branch=main)](https://travis-ci.com/Marco-Di-Tullio/Bosonic.jl)--> [![Build Status](https://ci.appveyor.com/api/projects/status/github/Marco-Di-Tullio/Bosonic.jl?svg=true)](https://ci.appveyor.com/project/Marco-Di-Tullio/Bosonic-jl) [![codecov](https://codecov.io/gh/Marco-Di-Tullio/Bosonic.jl/branch/main/graph/badge.svg?token=yVWSggChX4)](https://codecov.io/gh/Marco-Di-Tullio/Bosonic.jl) <!--[![Coverage Status](https://coveralls.io/repos/github/Marco-Di-Tullio/Bosonic.jl/badge.svg?branch=main)](https://coveralls.io/github/Marco-Di-Tullio/Bosonic.jl?branch=main)--> Bosonic is a Julia toolkit for implementing bosonic simulations and exploring its quantum information properties. Everything relating to bosons can be expressed in terms of annihilation and creation operators. The full Fock space is infinite-dimensional, so this package focuses on the fixed particle number subspace. It numerically constructs bosonic operators in this reduced system, which _the secret weapon_ of this library. Then you can define states in the corresponding base and calculate several properties. Many interesting quantities can be obtained from states in Bosonic, such as one body matrices entropy, partially traced systems, m-bodies density matrices, one body entropies, majorization relations, average particle number and more. ## Installation For installing this package, you must first access the pkg REPL (by typing ']' in your command line) and then execute ```add Bosonic``` The pkg manager will automatically download the package. Then you can initialize it by typing ```using Bosonic``` Alternatively, you can install the package from an editor/Jupyter notebook by typing ```import Pkg``` ```Pkg.add("Bosonic")``` ```using Bosonic``` ![](/images/quantuminfo.png)
Bosonic
https://github.com/Marco-Di-Tullio/Bosonic.jl.git
[ "MIT" ]
0.1.0
1810c9e306efc739cfd6fbf597301024ce583a8d
docs
178
```@meta CurrentModule = Bosonic ``` # Bosonic Documentation for [Bosonic](https://github.com/Marco-Di-Tullio/Bosonic.jl). ```@index ``` ```@autodocs Modules = [Bosonic] ```
Bosonic
https://github.com/Marco-Di-Tullio/Bosonic.jl.git
[ "MIT" ]
0.0.1
f196bb8032090867283e585876984290060a9230
code
6598
module Internals using TOML using ReadableRegex using Pkg using Base: UUID, SHA1 using Chain import Pkg.Versions: VersionRange import Pkg.Registry: VersionInfo using DataFrames using DataFrameMacros using ShiftedArrays using Term using Scratch download_cache = "" function __init__() global download_cache = @get_scratch!("downloaded_files") end # Downloads a resource, stores it within a scratchspace function download_dataset(url) fname = joinpath(download_cache, basename(url)) if !isfile(fname) download(url, fname) end return fname end function download_registry() if !("General" in readdir(download_cache)) read(`git clone https://github.com/JuliaRegistries/General.git $(joinpath(download_cache, "General"))`, String) end end function crawl_general_registry() if !("General" in readdir(download_cache)) download_registry() end deps_toml_regex = "General/" * exactly(1, LETTER) * "/" * one_or_more(char_not_in("/")) * "/Deps.toml" dep_files = [] for (root, dirs, files) in walkdir("$download_cache/General") for file in files full_path = joinpath(root, file) if match(deps_toml_regex, full_path) != nothing push!(dep_files, full_path) end end end return dep_files end function parse_deps_toml(dep_path) deps_data_toml= TOML.parsefile(dep_path) # Borrowed from here: https://github.com/JuliaLang/Pkg.jl/blob/503f31f64bcda5a60f0b3676730b689ff1f91aa9/src/Registry/registry_instance.jl#L172 deps_data_toml = convert(Dict{String, Dict{String, String}}, deps_data_toml) deps = Dict{VersionRange, Dict{String, UUID}}() for (v, data) in deps_data_toml vr = VersionRange(v) d = Dict{String, UUID}(dep => UUID(uuid) for (dep, uuid) in data) deps[vr] = d end return deps end function parse_vers_toml(dep_path) # Borrowed from here: https://github.com/JuliaLang/Pkg.jl/blob/503f31f64bcda5a60f0b3676730b689ff1f91aa9/src/Registry/registry_instance.jl#L154 dep_path = dirname(dep_path) * "/Versions.toml" d_v= TOML.parsefile(dep_path) version_info = Dict{VersionNumber, VersionInfo}(VersionNumber(k) => VersionInfo(SHA1(v["git-tree-sha1"]::String), get(v, "yanked", false)::Bool) for (k, v) in d_v) return version_info end pkg_name_from_path = x -> split(x, '/')[end-1] function build_pkg_info(ver_dict, dep_dict) pkg_info = [] for pkg in keys(ver_dict) for ver in ver_dict[pkg] for dep in dep_dict[pkg] if ver[1] in dep[1] push!(pkg_info, (pkg, ver[1], collect(keys(dep[2]))[1])) end end end end pkg_info_df = DataFrame(pkg_info) rename!(pkg_info_df, ["package", "version", "dependency"]) return pkg_info_df end function generate_pkg_analysis(pkg_info_df, deps_list) pkg_analysis = @chain pkg_info_df begin @groupby(:package, :version) @combine(:dependencies = join(:dependency, ",")) @transform(:dependencies = split.(:dependencies, ",")) @sort(:package, :version) @groupby(:package) @transform(:dropped_dependencies = @c lag(:dependencies, 1)) @transform(:new_dependencies = @m sort(setdiff(:dependencies, :dropped_dependencies))) @transform(:dropped_dependencies = @m sort(setdiff(:dropped_dependencies, :dependencies))) @transform!(@subset((:new_dependencies == []) | (:new_dependencies === missing)), :new_dependencies = nothing) @transform!(@subset((:dropped_dependencies == []) | (:dropped_dependencies === missing)), :dropped_dependencies = nothing) @groupby(:new_dependencies, :dropped_dependencies) @combine(:pkg_count = length(:package), :packages = join(:package, ",")) @sort(-:pkg_count) # Block list of packages not to be shown in the analysis @subset((:new_dependencies != nothing) & (:dropped_dependencies != nothing) & (:new_dependencies != ["Test"]) & (!(:dropped_dependencies ∈ [["Test"], ["Pkg"]])) ) @transform(:difflist = sort([:new_dependencies; :dropped_dependencies])) end dupes = pkg_analysis[!, :difflist] .∈ (pkg_analysis[nonunique(pkg_analysis, :difflist), :difflist], ) pkg_swaps = sort(unique(vcat(pkg_analysis[!, :new_dependencies]..., pkg_analysis[!, :dropped_dependencies]...))) return pkg_swaps, pkg_analysis end function pull_pkg_links(dep_files) pkg_toml_regex = "General/" * exactly(1, LETTER) * "/" * one_or_more(char_not_in("/")) * "/Package.toml" pkg_files = [] for (root, dirs, files) in walkdir("$download_cache/General") for file in files full_path = joinpath(root, file) if match(pkg_toml_regex, full_path) != nothing push!(pkg_files, full_path) end end end pkg_files end function parse_pkg_toml(pkg_path) # Borrowed from here: https://github.com/JuliaLang/Pkg.jl/blob/503f31f64bcda5a60f0b3676730b689ff1f91aa9/src/Registry/registry_instance.jl#L154 d_v = TOML.parsefile(pkg_path) return d_v end function print_pkg_swap_output(pkg_files, sample_output) df_pkg = @chain pkg_files begin parse_pkg_toml.() hcat DataFrame(:auto) @select(:pkg = :x1["name"], :repo = :x1["repo"]) end if nrow(sample_output) == 0 println("✨✨ No package swaps found.") return end println( @bold("Suggested Package Swaps:") ) println() dep_out = "" for r in eachrow(sample_output) if dep_out != r[:dropped_dependencies][1] if dep_out != "" println() end end dep_out = r[:dropped_dependencies][1] dep_in = r[:new_dependencies][1] dep_out_link = @chain df_pkg @subset(:pkg == dep_out) @select(:repo) dep_out_link = nrow(dep_out_link) > 0 ? dep_out_link[!, 1][1] : "" dep_in_link = @chain df_pkg @subset(:pkg == dep_in) @select(:repo) dep_in_link = nrow(dep_in_link) > 0 ? dep_in_link[!, 1][1] : "" dep_out_fmt = Term.creat_link(dep_out_link, String(dep_out)) dep_in_fmt = Term.creat_link(dep_in_link, String(dep_in)) println( @italic(@red(dep_out_fmt)) * " ↗️ " * @bold(@green(dep_in_fmt)) * @bold(" ($(r[:pkg_count])) ") ) end end end # Internals
PkgSwaps
https://github.com/jeremiahpslewis/PkgSwaps.jl.git
[ "MIT" ]
0.0.1
f196bb8032090867283e585876984290060a9230
code
1192
module PkgSwaps using TOML using Pkg using Chain using DataFrames using DataFrameMacros using Scratch include("Internals.jl") function recommend(; project_toml_path = "Project.toml") deps_data_toml = TOML.parsefile(project_toml_path) deps_list = collect(keys(deps_data_toml["deps"])) deps_list = [[i] for i in deps_list] dep_files = Internals.crawl_general_registry() dep_dict = Dict(zip(Internals.pkg_name_from_path.(dep_files), Internals.parse_deps_toml.(dep_files))) ver_dict = Dict(zip(Internals.pkg_name_from_path.(dep_files), Internals.parse_vers_toml.(dep_files))) # TODO: Handle multiple dependency case (where two packages swapped in or out) pkg_info = Internals.build_pkg_info(ver_dict, dep_dict) pkg_swaps, pkg_analysis = Internals.generate_pkg_analysis(pkg_info, deps_list) sample_output = @chain pkg_analysis begin @subset( (:dropped_dependencies ∈ deps_list) ) @subset(:pkg_count > 1) @select(:dropped_dependencies, :new_dependencies, :pkg_count) end pkg_files = Internals.pull_pkg_links(dep_files) Internals.print_pkg_swap_output(pkg_files, sample_output) end end
PkgSwaps
https://github.com/jeremiahpslewis/PkgSwaps.jl.git
[ "MIT" ]
0.0.1
f196bb8032090867283e585876984290060a9230
code
146
using PkgSwaps using Test @testset "PkgSwaps.jl" begin PkgSwaps.recommend(; project_toml_path=joinpath(@__DIR__, "../", "Project.toml")) end
PkgSwaps
https://github.com/jeremiahpslewis/PkgSwaps.jl.git
[ "MIT" ]
0.0.1
f196bb8032090867283e585876984290060a9230
docs
914
# PkgSwaps.jl ``PkgSwaps`` makes recommendations for switching out Julia packages you are using for 'superior' packages, where 'superior' is defined as other packages in the Julia package registry having made the same swap. For example, if package ``A`` depends on package ``B`` and then in a subsequent version drops package ``B`` and adds package ``C``, ``PkgSwaps`` records this as a choice for ``C`` over ``B``. If your environment currently has package ``B``, ``PkgSwaps`` will then suggest you consider using package ``C`` in place of package ``B``. ``PkgSwaps`` assumes that the ``General`` package registry accurately reflects the decisions of engaged package maintainers in their aim of developing the best packages possible. ``PkgSwaps`` takes advantage of these publicly available decisions in order to nudge use of 'Pareto optimal' dependency sets. ```julia using PkgSwaps PkgSwaps.recommend() ```
PkgSwaps
https://github.com/jeremiahpslewis/PkgSwaps.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
169
using PyCall, Conda Conda.add_channel("conda-forge") Conda.add("meshio") Conda.add("scipy") Conda.add("sympy") cmd = `pip3 install meshio scipy sympy --user` run(cmd)
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
4937
using FluxRC, Test # Kou's benchmark results """ r [-0.81684757, 0.63369515, -0.81684757, -0.10810302, -0.78379396, -0.10810302] s [0.63369515, -0.81684757, -0.81684757, -0.78379396, -0.10810302, -0.10810302] rf [-0.77459667, 0., 0.77459667, 0.77459667, 0., -0.77459667, -1., -1., -1.] sf [-1., -1., -1., -0.77459667, 0., 0.77459667, 0.77459667, 0., -0.77459667] V [[ 0.70710678, 1.45054272, 1.39329302, 0. , 0. , -0.04593312], [ 0.70710678, -0.72527136, 0.43019448, 1.25620684, -0.83406781, 1.03084378], [ 0.70710678, -0.72527136, 0.43019448, -1.25620684, 0.83406781, 1.03084378], [ 0.70710678, -0.67569095, 0.30868284, 0. , -0. , -1.08925616], [ 0.70710678, 0.33784547, -0.70898933, -0.58516552, -0.88132995, 0.04853591], [ 0.70710678, 0.33784547, -0.70898933, 0.58516552, 0.88132995, 0.04853591]] correction_coeffs [[ 0.3928371 0.62853936 0.3928371 0.55555556 0.88888889 0.55555556 0.3928371 0.62853936 0.3928371 ] [-0.55555556 -0.88888889 -0.55555556 -0.52003383 0.62853936 1.30570803 0.923275 0.44444444 -0.36771945] [ 0.68041382 1.08866211 0.68041382 0.21689446 -0.76980036 1.70760644 1.20746009 -0.54433105 0.15336754] [-0.74535599 0. 0.74535599 1.20746009 1.08866211 0.15336754 -0.10844723 -0.76980036 -0.85380322] [ 0.91287093 -0. -0.91287093 -0.64549722 2. 0.64549722 -0.45643546 -1.41421356 0.45643546] [ 0.60858062 -1.21716124 0.60858062 1.6939963 0.86066297 0.02732963 0.01932497 0.60858062 1.19783627]] phifj_solution [[ 0.39198253 0.72780648 0.39198253 -0.13710719 0.42817214 4.66476318 3.29848568 0.30276343 -0.09694943] [-0.09694943 0.30276343 3.29848568 4.66476318 0.42817214 -0.13710719 0.39198253 0.72780648 0.39198253] [ 3.29848568 0.30276343 -0.09694943 0.55434701 1.02927379 0.55434701 -0.09694943 0.30276343 3.29848568] [ 0.20029351 2.7069103 0.20029351 -1.03402506 -0.97126559 0.00792184 0.00560158 -0.68678848 -0.73116613] [-0.73116613 -0.68678848 0.00560158 0.00792184 -0.97126559 -1.03402506 0.20029351 2.7069103 0.20029351] [ 0.00560158 -0.68678848 -0.73116613 0.2832578 3.82814926 0.2832578 -0.73116613 -0.68678848 0.00560158]] """ py_V = [ 0.70710678 1.45054272 1.39329302 0.0 0.0 -0.04593312 0.70710678 -0.72527136 0.43019448 1.25620684 -0.83406781 1.03084378 0.70710678 -0.72527136 0.43019448 -1.25620684 0.83406781 1.03084378 0.70710678 -0.67569095 0.30868284 0.0 -0.0 -1.08925616 0.70710678 0.33784547 -0.70898933 -0.58516552 -0.88132995 0.04853591 0.70710678 0.33784547 -0.70898933 0.58516552 0.88132995 0.04853591 ] py_Vf = [ 0.70710678 -1.0 1.22474487 -1.34164079 1.64316767 1.09544512 0.70710678 -1.0 1.22474487 0.0 -0.0 -1.36930639 0.70710678 -1.0 1.22474487 1.34164079 -1.64316767 1.09544512 0.70710678 -0.661895 0.27606157 1.5368458 -0.82158384 2.15610529 0.70710678 0.5 -0.61237244 0.8660254 1.59099026 0.6846532 0.70710678 1.661895 2.17342817 0.19520501 0.82158384 0.03478494 0.70710678 1.661895 2.17342817 -0.19520501 -0.82158384 0.03478494 0.70710678 0.5 -0.61237244 -0.8660254 -1.59099026 0.6846532 0.70710678 -0.661895 0.27606157 -1.5368458 0.82158384 2.15610529 ] phifj_ref = [ 0.39198253 0.72780648 0.39198253 -0.13710719 0.42817214 4.66476318 3.29848568 0.30276343 -0.09694943 -0.09694943 0.30276343 3.29848568 4.66476318 0.42817214 -0.13710719 0.39198253 0.72780648 0.39198253 3.29848568 0.30276343 -0.09694943 0.55434701 1.02927379 0.55434701 -0.09694943 0.30276343 3.29848568 0.20029351 2.7069103 0.20029351 -1.03402506 -0.97126559 0.00792184 0.00560158 -0.68678848 -0.73116613 -0.73116613 -0.68678848 0.00560158 0.00792184 -0.97126559 -1.03402506 0.20029351 2.7069103 0.20029351 0.00560158 -0.68678848 -0.73116613 0.2832578 3.82814926 0.2832578 -0.73116613 -0.68678848 0.00560158 ] # my workflow N = deg = 2 Np = (N + 1) * (N + 2) ÷ 2 pl, wl = tri_quadrature(N) V = vandermonde_matrix(N, pl[:, 1], pl[:, 2]) Vr, Vs = ∂vandermonde_matrix(N, pl[:, 1], pl[:, 2]) ∂l = ∂lagrange(V, Vr, Vs) ϕ = correction_field(N, V) pf, wf = triface_quadrature(N) ψf = zeros(3, N + 1, Np) for i = 1:3 ψf[i, :, :] .= vandermonde_matrix(N, pf[i, :, 1], pf[i, :, 2]) end # Vandermonde -> solution points V1 = hcat(V[1, :], V[3, :], V[5, :], V[2, :], V[4, :], V[6, :]) |> permutedims @test V1 ≈ py_V # Vandermonde -> flux points Vf = zeros(9, 6) for i = 1:3, j = 1:3 Vf[(i-1)*3+j, :] .= ψf[i, j, :] end @test Vf ≈ py_Vf # coefficients ϕ1 = zeros(6, 9) for i = 1:3, j = 1:3 ϕ1[:, (i-1)*3+j] .= ϕ[i, j, :] end ϕ2 = hcat(ϕ1[1, :], ϕ1[3, :], ϕ1[5, :], ϕ1[2, :], ϕ1[4, :], ϕ1[6, :]) |> permutedims @test ϕ2 ≈ phifj_ref # reproduce from python script cd(@__DIR__) include("python_phi.jl") py_sigma, py_fi, py_figrad = py"get_phifj_solution_grad_tri"(N, N + 1, 6, 3 * (N + 1), N + 1, py_V, py_Vf) @test ϕ2 ≈ py_fi
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
5814
using KitBase, FluxReconstruction, LinearAlgebra, OrdinaryDiffEq, OffsetArrays using ProgressMeter: @showprogress using Plots pyplot() cd(@__DIR__) begin set = Setup( "gas", "cylinder", "2d0f", "hll", "nothing", 1, # species 3, # order of accuracy "positivity", # limiter "euler", 0.1, # cfl 1.0, # time ) ps0 = KitBase.CSpace2D(1.0, 6.0, 60, 0.0, π, 50, 0, 0) deg = set.interpOrder - 1 ps = FRPSpace2D(ps0, deg) vs = nothing gas = Gas( 1e-6, 2.0, # Mach 1.0, 1.0, # K 5 / 3, 0.81, 1.0, 0.5, ) ib = nothing ks = SolverSet(set, ps0, vs, gas, ib) end u0 = zeros(ps.nr, ps.nθ, deg + 1, deg + 1, 4) for i in axes(u0, 1), j in axes(u0, 2), k in axes(u0, 3), l in axes(u0, 4) ρ = max(exp(-10 * ((ps.xpg[i, j, k, l, 1])^2 + (ps.xpg[i, j, k, l, 2] - 3.0)^2)), 1e-2) prim = [ρ, 0.0, 0.0, 1.0] u0[i, j, k, l, :] .= prim_conserve(prim, ks.gas.γ) end n1 = [[0.0, 0.0] for i = 1:ps.nr+1, j = 1:ps.nθ] for i = 1:ps.nr+1, j = 1:ps.nθ angle = sum(ps.dθ[1, 1:j-1]) + 0.5 * ps.dθ[1, j] n1[i, j] .= [cos(angle), sin(angle)] end n2 = [[0.0, 0.0] for i = 1:ps.nr, j = 1:ps.nθ+1] for i = 1:ps.nr, j = 1:ps.nθ+1 angle = π / 2 + sum(ps.dθ[1, 1:j-1]) n2[i, j] .= [cos(angle), sin(angle)] end function dudt!(du, u, p, t) du .= 0.0 J, ll, lr, dhl, dhr, lpdm, γ = p nx = size(u, 1) - 2 ny = size(u, 2) - 2 nsp = size(u, 3) f = zeros(nx, ny, nsp, nsp, 4, 2) for i in axes(f, 1), j in axes(f, 2), k = 1:nsp, l = 1:nsp fg, gg = euler_flux(u[i, j, k, l, :], γ) for m = 1:4 f[i, j, k, l, m, :] .= inv(J[i, j][k, l]) * [fg[m], gg[m]] end end u_face = zeros(nx, ny, 4, nsp, 4) f_face = zeros(nx, ny, 4, nsp, 4, 2) for i in axes(u_face, 1), j in axes(u_face, 2), l = 1:nsp, m = 1:4 u_face[i, j, 1, l, m] = dot(u[i, j, l, :, m], ll) u_face[i, j, 2, l, m] = dot(u[i, j, :, l, m], lr) u_face[i, j, 3, l, m] = dot(u[i, j, l, :, m], lr) u_face[i, j, 4, l, m] = dot(u[i, j, :, l, m], ll) for n = 1:2 f_face[i, j, 1, l, m, n] = dot(f[i, j, l, :, m, n], ll) f_face[i, j, 2, l, m, n] = dot(f[i, j, :, l, m, n], lr) f_face[i, j, 3, l, m, n] = dot(f[i, j, l, :, m, n], lr) f_face[i, j, 4, l, m, n] = dot(f[i, j, :, l, m, n], ll) end end fx_interaction = zeros(nx + 1, ny, nsp, 4) for i = 2:nx, j = 1:ny, k = 1:nsp #=fw = @view fx_interaction[i, j, k, :] uL = local_frame(u_face[i-1, j, 2, k, :], n1[i, j][1], n1[i, j][2]) uR = local_frame(u_face[i, j, 4, k, :], n1[i, j][1], n1[i, j][2]) flux_hll!(fw, uL, uR, γ, 1.0) fw .= global_frame(fw, n1[i, j][1], n1[i, j][2])=# fx_interaction[i, j, k, :] .= 0.5 .* (f_face[i-1, j, 2, k, :, 1] .+ f_face[i, j, 4, k, :, 1]) .- 40dt .* (u_face[i, j, 4, k, :] - u_face[i-1, j, 2, k, :]) end fy_interaction = zeros(nx, ny + 1, nsp, 4) for i = 1:nx, j = 2:ny, k = 1:nsp #=fw = @view fy_interaction[i, j, k, :] uL = local_frame(u_face[i, j-1, 3, k, :], n2[i, j][1], n2[i, j][2]) uR = local_frame(u_face[i, j, 1, k, :], n2[i, j][1], n2[i, j][2]) flux_hll!(fw, uL, uR, γ, 1.0) fw .= global_frame(fw, n2[i, j][1], n2[i, j][2])=# fy_interaction[i, j, k, :] .= 0.5 .* (f_face[i, j-1, 3, k, :, 2] .+ f_face[i, j, 1, k, :, 2]) .- 40dt .* (u_face[i, j, 1, k, :] - u_face[i, j-1, 3, k, :]) end rhs1 = zeros(nx, ny, nsp, nsp, 4) for i = 1:nx, j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 rhs1[i, j, k, l, m] = dot(f[i, j, :, l, m, 1], lpdm[k, :]) end rhs2 = zeros(nx, ny, nsp, nsp, 4) for i = 1:nx, j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 rhs2[i, j, k, l, m] = dot(f[i, j, k, :, m, 2], lpdm[l, :]) end for i = 2:nx-1, j = 2:ny-1, k = 1:nsp, l = 1:nsp, m = 1:4 #=fxL = (inv(ps.Ji[i, j][4, l]) * n1[i, j])[1] * fx_interaction[i, j, l, m] fxR = (inv(ps.Ji[i, j][2, l]) * n1[i+1, j])[1] * fx_interaction[i+1, j, l, m] fyL = (inv(ps.Ji[i, j][1, k]) * n2[i, j])[2] * fy_interaction[i, j, l, m] fyR = (inv(ps.Ji[i, j][3, k]) * n2[i, j+1])[2] * fy_interaction[i, j+1, l, m] du[i, j, k, l, m] = -( rhs1[i, j, k, l, m] + rhs2[i, j, k, l, m] + (fxL - f_face[i, j, 4, l, m, 1]) * dhl[k] + (fxR - f_face[i, j, 2, l, m, 1]) * dhr[k] + (fyL - f_face[i, j, 1, k, m, 2]) * dhl[l] + (fyR - f_face[i, j, 3, k, m, 2]) * dhr[l] )=# du[i, j, k, l, m] = -( rhs1[i, j, k, l, m] + rhs2[i, j, k, l, m] + (fx_interaction[i, j, l, m] - f_face[i, j, 4, l, m, 1]) * dhl[k] + (fx_interaction[i+1, j, l, m] - f_face[i, j, 2, l, m, 1]) * dhr[k] + (fy_interaction[i, j, k, m] - f_face[i, j, 1, k, m, 2]) * dhl[l] + (fy_interaction[i, j+1, k, m] - f_face[i, j, 3, k, m, 2]) * dhr[l] ) end return nothing end tspan = (0.0, 1.0) p = (ps.J, ps.ll, ps.lr, ps.dhl, ps.dhr, ps.dl, ks.gas.γ) prob = ODEProblem(dudt!, u0, tspan, p) dt = 0.002 nt = tspan[2] ÷ dt |> Int itg = init(prob, Midpoint(), save_everystep = false, adaptive = false, dt = dt) @showprogress for iter = 1:50 step!(itg) end contourf(ps.x, ps.y, itg.u[:, :, 2, 2, 1], aspect_ratio = 1, legend = true) sol = zeros(ps.nr, ps.nθ, 4) for i = 1:ps.nr, j = 1:ps.nθ sol[i, j, :] .= conserve_prim(itg.u[i, j, 2, 2, :], ks.gas.γ) sol[i, j, 4] = 1 / sol[i, j, 4] end contourf(ps.x, ps.y, sol[:, :, 2], aspect_ratio = 1, legend = true)
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
5644
using KitBase, FluxReconstruction, LinearAlgebra, OrdinaryDiffEq, Plots using KitBase.OffsetArrays using KitBase.ProgressMeter: @showprogress using Base.Threads: @threads pyplot() cd(@__DIR__) begin set = Setup( case = "cylinder", space = "2d0f", flux = "hll", collision = "nothing", interpOrder = 3, limiter = "positivity", boundary = "euler", cfl = 0.1, maxTime = 1.0, ) ps = begin ps0 = KitBase.CSpace2D(1.0, 6.0, 30, 0.0, π, 40, 0, 1) deg = set.interpOrder - 1 FRPSpace2D(ps0, deg) end vs = nothing gas = Gas(Kn = 1e-6, Ma = 1.2, K = 1.0) ib = nothing ks = SolverSet(set, ps0, vs, gas, ib) end u0 = OffsetArray{Float64}(undef, 1:ps.nr, 0:ps.nθ+1, deg + 1, deg + 1, 4) for i in axes(u0, 1), j in axes(u0, 2), k in axes(u0, 3), l in axes(u0, 4) prim = [1.0, ks.gas.Ma, 0.0, 1.0] u0[i, j, k, l, :] .= prim_conserve(prim, ks.gas.γ) end n1 = [[0.0, 0.0] for i = 1:ps.nr+1, j = 1:ps.nθ] for i = 1:ps.nr+1, j = 1:ps.nθ angle = sum(ps.dθ[1, 1:j-1]) + 0.5 * ps.dθ[1, j] n1[i, j] .= [cos(angle), sin(angle)] end n2 = [[0.0, 0.0] for i = 1:ps.nr, j = 1:ps.nθ+1] for i = 1:ps.nr, j = 1:ps.nθ+1 angle = π / 2 + sum(ps.dθ[1, 1:j-1]) n2[i, j] .= [cos(angle), sin(angle)] end function dudt!(du, u, p, t) du .= 0.0 J, ll, lr, dhl, dhr, lpdm, γ = p nx = size(u, 1) ny = size(u, 2) - 2 nsp = size(u, 3) f = OffsetArray{Float64}(undef, 1:nx, 0:ny+1, nsp, nsp, 4, 2) for i in axes(f, 1), j in axes(f, 2), k = 1:nsp, l = 1:nsp fg, gg = euler_flux(u[i, j, k, l, :], γ) for m = 1:4 f[i, j, k, l, m, :] .= inv(J[i, j][k, l]) * [fg[m], gg[m]] end end u_face = OffsetArray{Float64}(undef, 1:nx, 0:ny+1, 4, nsp, 4) f_face = OffsetArray{Float64}(undef, 1:nx, 0:ny+1, 4, nsp, 4, 2) for i in axes(u_face, 1), j in axes(u_face, 2), l = 1:nsp, m = 1:4 u_face[i, j, 1, l, m] = dot(u[i, j, l, :, m], ll) u_face[i, j, 2, l, m] = dot(u[i, j, :, l, m], lr) u_face[i, j, 3, l, m] = dot(u[i, j, l, :, m], lr) u_face[i, j, 4, l, m] = dot(u[i, j, :, l, m], ll) for n = 1:2 f_face[i, j, 1, l, m, n] = dot(f[i, j, l, :, m, n], ll) f_face[i, j, 2, l, m, n] = dot(f[i, j, :, l, m, n], lr) f_face[i, j, 3, l, m, n] = dot(f[i, j, l, :, m, n], lr) f_face[i, j, 4, l, m, n] = dot(f[i, j, :, l, m, n], ll) end end fx_interaction = zeros(nx + 1, ny, nsp, 4) for i = 2:nx, j = 1:ny, k = 1:nsp fx_interaction[i, j, k, :] .= 0.5 .* (f_face[i-1, j, 2, k, :, 1] .+ f_face[i, j, 4, k, :, 1]) .- dt .* (u_face[i, j, 4, k, :] - u_face[i-1, j, 2, k, :]) end for j = 1:ny, k = 1:nsp ul = local_frame(u_face[1, j, 4, k, :], n1[1, j][1], n1[1, j][2]) prim = conserve_prim(ul, γ) pn = zeros(4) pn[2] = -prim[2] pn[3] = -prim[3] pn[4] = 2.0 - prim[4] tmp = (prim[4] - 1.0) pn[1] = (1 - tmp) / (1 + tmp) * prim[1] ub = global_frame(prim_conserve(pn, γ), n1[1, j][1], n1[1, j][2]) fg, gg = euler_flux(ub, γ) fb = zeros(4) for m = 1:4 fb[m] = (inv(ps.Ji[1, j][4, k])*[fg[m], gg[m]])[1] end fx_interaction[1, j, k, :] .= 0.5 .* (fb .+ f_face[1, j, 4, k, :, 1]) .- dt .* (u_face[1, j, 4, k, :] - ub) end fy_interaction = zeros(nx, ny + 1, nsp, 4) for i = 1:nx, j = 1:ny+1, k = 1:nsp fy_interaction[i, j, k, :] .= 0.5 .* (f_face[i, j-1, 3, k, :, 2] .+ f_face[i, j, 1, k, :, 2]) .- dt .* (u_face[i, j, 1, k, :] - u_face[i, j-1, 3, k, :]) end rhs1 = zeros(nx, ny, nsp, nsp, 4) for i = 1:nx, j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 rhs1[i, j, k, l, m] = dot(f[i, j, :, l, m, 1], lpdm[k, :]) end rhs2 = zeros(nx, ny, nsp, nsp, 4) for i = 1:nx, j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 rhs2[i, j, k, l, m] = dot(f[i, j, k, :, m, 2], lpdm[l, :]) end for i = 1:nx-1, j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 du[i, j, k, l, m] = -( rhs1[i, j, k, l, m] + rhs2[i, j, k, l, m] + (fx_interaction[i, j, l, m] - f_face[i, j, 4, l, m, 1]) * dhl[k] + (fx_interaction[i+1, j, l, m] - f_face[i, j, 2, l, m, 1]) * dhr[k] + (fy_interaction[i, j, k, m] - f_face[i, j, 1, k, m, 2]) * dhl[l] + (fy_interaction[i, j+1, k, m] - f_face[i, j, 3, k, m, 2]) * dhr[l] ) end return nothing end tspan = (0.0, 1.0) p = (ps.J, ps.ll, ps.lr, ps.dhl, ps.dhr, ps.dl, ks.gas.γ) prob = ODEProblem(dudt!, u0, tspan, p) dt = 0.0002 nt = tspan[2] ÷ dt |> Int itg = init(prob, Midpoint(), save_everystep = false, adaptive = false, dt = dt) @showprogress for iter = 1:50#nt for i = 1:ps.nr, k = 1:ps.deg+1, l = 1:ps.deg+1 u1 = itg.u[i, 1, 4-k, 4-l, :] ug1 = [u1[1], u1[2], -u1[3], u1[4]] itg.u[i, 0, k, l, :] .= ug1 u2 = itg.u[i, ps.nθ, 4-k, 4-l, :] ug2 = [u2[1], u2[2], -u2[3], u2[4]] itg.u[i, ps.nθ+1, k, l, :] .= ug2 end @inbounds for j = 1:ps.nθ÷2, k = 1:ps.deg+1, l = 1:ps.deg+1 itg.u[ps.nr, j, k, l, :] .= itg.u[ps.nr-1, j, k, l, :] end step!(itg) end sol = zeros(ps.nr, ps.nθ, 4) for i = 1:ps.nr, j = 1:ps.nθ sol[i, j, :] .= conserve_prim(itg.u[i, j, 1, 1, :], ks.gas.γ) sol[i, j, 4] = 1 / sol[i, j, 4] end contourf( ps.x[1:ps.nr, 1:ps.nθ], ps.y[1:ps.nr, 1:ps.nθ], sol[:, :, 1], aspect_ratio = 1, legend = true, )
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
6541
using KitBase, FluxReconstruction, LinearAlgebra, OrdinaryDiffEq, Plots using KitBase.OffsetArrays using KitBase.ProgressMeter: @showprogress using Base.Threads: @threads pyplot() cd(@__DIR__) begin set = Setup( case = "cylinder", space = "2d0f", flux = "hll", collision = "nothing", interpOrder = 3, limiter = "positivity", boundary = "euler", cfl = 0.1, maxTime = 1.0, ) ps = begin ps0 = KitBase.CSpace2D(1.0, 6.0, 30, 0.0, π, 40, 0, 1) deg = set.interpOrder - 1 FRPSpace2D(ps0, deg) end vs = nothing gas = Gas(Kn = 1e-6, Ma = 0.5, K = 1.0) ib = nothing ks = SolverSet(set, ps0, vs, gas, ib) end u0 = OffsetArray{Float64}(undef, 1:ps.nr, 0:ps.nθ+1, deg + 1, deg + 1, 4) for i in axes(u0, 1), j in axes(u0, 2), k in axes(u0, 3), l in axes(u0, 4) prim = [1.0, 1.0, 0.0, 1.0] u0[i, j, k, l, :] .= prim_conserve(prim, ks.gas.γ) end n1 = [[0.0, 0.0] for i = 1:ps.nr+1, j = 1:ps.nθ] for i = 1:ps.nr+1, j = 1:ps.nθ angle = sum(ps.dθ[1, 1:j-1]) + 0.5 * ps.dθ[1, j] n1[i, j] .= [cos(angle), sin(angle)] end n2 = [[0.0, 0.0] for i = 1:ps.nr, j = 1:ps.nθ+1] for i = 1:ps.nr, j = 1:ps.nθ+1 angle = π / 2 + sum(ps.dθ[1, 1:j-1]) n2[i, j] .= [cos(angle), sin(angle)] end function dudt!(du, u, p, t) du .= 0.0 iJ, ll, lr, dhl, dhr, lpdm, γ = p nx = size(u, 1) ny = size(u, 2) - 2 nsp = size(u, 3) f = OffsetArray{Float64}(undef, 1:nx, 0:ny+1, nsp, nsp, 4, 2) @inbounds for i in axes(f, 1) for j in axes(f, 2), k = 1:nsp, l = 1:nsp fg, gg = euler_flux(u[i, j, k, l, :], γ) for m = 1:4 #f[i, j, k, l, m, :] .= inv(J[i, j][k, l]) * [fg[m], gg[m]] f[i, j, k, l, m, :] .= iJ[i, j][k, l] * [fg[m], gg[m]] end end end u_face = OffsetArray{Float64}(undef, 1:nx, 0:ny+1, 4, nsp, 4) f_face = OffsetArray{Float64}(undef, 1:nx, 0:ny+1, 4, nsp, 4, 2) @inbounds for i in axes(u_face, 1) for j in axes(u_face, 2), l = 1:nsp, m = 1:4 u_face[i, j, 1, l, m] = dot(u[i, j, l, :, m], ll) u_face[i, j, 2, l, m] = dot(u[i, j, :, l, m], lr) u_face[i, j, 3, l, m] = dot(u[i, j, l, :, m], lr) u_face[i, j, 4, l, m] = dot(u[i, j, :, l, m], ll) for n = 1:2 f_face[i, j, 1, l, m, n] = dot(f[i, j, l, :, m, n], ll) f_face[i, j, 2, l, m, n] = dot(f[i, j, :, l, m, n], lr) f_face[i, j, 3, l, m, n] = dot(f[i, j, l, :, m, n], lr) f_face[i, j, 4, l, m, n] = dot(f[i, j, :, l, m, n], ll) end end end fx_interaction = zeros(nx + 1, ny, nsp, 4) @inbounds for i = 2:nx for j = 1:ny, k = 1:nsp fw = @view fx_interaction[i, j, k, :] uL = local_frame(u_face[i-1, j, 2, k, :], n1[i, j][1], n1[i, j][2]) uR = local_frame(u_face[i, j, 4, k, :], n1[i, j][1], n1[i, j][2]) flux_hll!(fw, uL, uR, γ, 1.0) fw .= global_frame(fw, n1[i, j][1], n1[i, j][2]) end end @inbounds for j = 1:ny for k = 1:nsp ul = local_frame(u_face[1, j, 4, k, :], n1[1, j][1], n1[1, j][2]) prim = conserve_prim(ul, γ) pn = zeros(4) pn[2] = -prim[2] pn[3] = prim[3] pn[4] = 2.0 - prim[4] tmp = (prim[4] - 1.0) pn[1] = (1 - tmp) / (1 + tmp) * prim[1] ub = prim_conserve(pn, γ) #ub = global_frame(prim_conserve(pn, γ), n1[1, j][1], n1[1, j][2]) fw = @view fx_interaction[1, j, k, :] flux_hll!(fw, ub, Array(ul), γ, 1.0) fw .= global_frame(fw, n1[1, j][1], n1[1, j][2]) end end fy_interaction = zeros(nx, ny + 1, nsp, 4) @inbounds for i = 1:nx for j = 1:ny+1, k = 1:nsp fw = @view fy_interaction[i, j, k, :] uL = local_frame(u_face[i, j-1, 3, k, :], n2[i, j][1], n2[i, j][2]) uR = local_frame(u_face[i, j, 1, k, :], n2[i, j][1], n2[i, j][2]) flux_hll!(fw, uL, uR, γ, 1.0) fw .= global_frame(fw, n2[i, j][1], n2[i, j][2]) end end rhs1 = zeros(nx, ny, nsp, nsp, 4) @inbounds for i = 1:nx for j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 rhs1[i, j, k, l, m] = dot(f[i, j, :, l, m, 1], lpdm[k, :]) end end rhs2 = zeros(nx, ny, nsp, nsp, 4) @inbounds for i = 1:nx for j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 rhs2[i, j, k, l, m] = dot(f[i, j, k, :, m, 2], lpdm[l, :]) end end @inbounds @threads for i = 1:nx-1 for j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 fxL = (inv(ps.Ji[i, j][4, l])*n1[i, j])[1] * fx_interaction[i, j, l, m] fxR = (inv(ps.Ji[i, j][2, l])*n1[i+1, j])[1] * fx_interaction[i+1, j, l, m] fyL = (inv(ps.Ji[i, j][1, k])*n2[i, j])[2] * fy_interaction[i, j, l, m] fyR = (inv(ps.Ji[i, j][3, k])*n2[i, j+1])[2] * fy_interaction[i, j+1, l, m] du[i, j, k, l, m] = -( rhs1[i, j, k, l, m] + rhs2[i, j, k, l, m] + (fxL - f_face[i, j, 4, l, m, 1]) * dhl[k] + (fxR - f_face[i, j, 2, l, m, 1]) * dhr[k] + (fyL - f_face[i, j, 1, k, m, 2]) * dhl[l] + (fyR - f_face[i, j, 3, k, m, 2]) * dhr[l] ) end end return nothing end tspan = (0.0, 1.0) p = (ps.iJ, ps.ll, ps.lr, ps.dhl, ps.dhr, ps.dl, ks.gas.γ) prob = ODEProblem(dudt!, u0, tspan, p) dt = 0.0005 nt = tspan[2] ÷ dt |> Int itg = init(prob, Euler(), save_everystep = false, adaptive = false, dt = dt) @showprogress for iter = 1:20#nt @inbounds for i = 1:ps.nr, k = 1:ps.deg+1, l = 1:ps.deg+1 u1 = itg.u[i, 1, 4-k, 4-l, :] ug1 = [u1[1], u1[2], -u1[3], u1[4]] itg.u[i, 0, k, l, :] .= ug1 u2 = itg.u[i, ps.nθ, 4-k, 4-l, :] ug2 = [u2[1], u2[2], -u2[3], u2[4]] itg.u[i, ps.nθ+1, k, l, :] .= ug2 end @inbounds for j = 1:ps.nθ÷2, k = 1:ps.deg+1, l = 1:ps.deg+1 itg.u[ps.nr, j, k, l, :] .= itg.u[ps.nr-1, j, k, l, :] end step!(itg) end sol = zeros(ps.nr, ps.nθ, 4) for i = 1:ps.nr, j = 1:ps.nθ sol[i, j, :] .= conserve_prim(itg.u[i, j, 2, 2, :], ks.gas.γ) sol[i, j, 4] = 1 / sol[i, j, 4] end contourf( ps.x[1:ps.nr, 1:ps.nθ], ps.y[1:ps.nr, 1:ps.nθ], sol[:, :, 3], aspect_ratio = 1, legend = true, )
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
6545
""" As the cylinder flow blows up somehow, here is the code which uses the split boundary under a lower Mach number. The initial still gas is driven by the far-field flow. """ using KitBase, FluxReconstruction, LinearAlgebra, OrdinaryDiffEq, Plots using KitBase.OffsetArrays using KitBase.ProgressMeter: @showprogress using Base.Threads: @threads pyplot() cd(@__DIR__) begin set = Setup( case = "cylinder", space = "2d0f", flux = "hll", collision = "nothing", interpOrder = 3, limiter = "positivity", boundary = "euler", cfl = 0.1, maxTime = 1.0, ) ps = begin ps0 = KitBase.CSpace2D(1.0, 6.0, 10, 0.0, π, 30, 0, 1) deg = set.interpOrder - 1 FRPSpace2D(ps0, deg) end vs = nothing gas = Gas(Kn = 1e-6, Ma = 0.5, K = 1.0) ib = nothing ks = SolverSet(set, ps0, vs, gas, ib) end u0 = OffsetArray{Float64}(undef, 1:ps.nr, 0:ps.nθ+1, deg + 1, deg + 1, 4) for i in axes(u0, 1), j in axes(u0, 2), k in axes(u0, 3), l in axes(u0, 4) sos = sound_speed(1.0, ks.gas.γ) prim = begin if i == ps.nr [1.0, ks.gas.Ma * sos, 0.0, 1.0] else [1.0, 0.0, 0.0, 1.0] end end u0[i, j, k, l, :] .= prim_conserve(prim, ks.gas.γ) end n1 = [[0.0, 0.0] for i = 1:ps.nr+1, j = 1:ps.nθ] for i = 1:ps.nr+1, j = 1:ps.nθ angle = sum(ps.dθ[1, 1:j-1]) + 0.5 * ps.dθ[1, j] n1[i, j] .= [cos(angle), sin(angle)] end n2 = [[0.0, 0.0] for i = 1:ps.nr, j = 1:ps.nθ+1] for i = 1:ps.nr, j = 1:ps.nθ+1 angle = π / 2 + sum(ps.dθ[1, 1:j-1]) n2[i, j] .= [cos(angle), sin(angle)] end function dudt!(du, u, p, t) du .= 0.0 iJ, ll, lr, dhl, dhr, lpdm, γ = p nx = size(u, 1) ny = size(u, 2) - 2 nsp = size(u, 3) f = OffsetArray{Float64}(undef, 1:nx, 0:ny+1, nsp, nsp, 4, 2) @inbounds @threads for i in axes(f, 1) for j in axes(f, 2), k = 1:nsp, l = 1:nsp fg, gg = euler_flux(u[i, j, k, l, :], γ) for m = 1:4 f[i, j, k, l, m, :] .= iJ[i, j][k, l] * [fg[m], gg[m]] end end end u_face = OffsetArray{Float64}(undef, 1:nx, 0:ny+1, 4, nsp, 4) f_face = OffsetArray{Float64}(undef, 1:nx, 0:ny+1, 4, nsp, 4, 2) @inbounds @threads for i in axes(u_face, 1) for j in axes(u_face, 2), l = 1:nsp, m = 1:4 u_face[i, j, 1, l, m] = dot(u[i, j, l, :, m], ll) u_face[i, j, 2, l, m] = dot(u[i, j, :, l, m], lr) u_face[i, j, 3, l, m] = dot(u[i, j, l, :, m], lr) u_face[i, j, 4, l, m] = dot(u[i, j, :, l, m], ll) for n = 1:2 f_face[i, j, 1, l, m, n] = dot(f[i, j, l, :, m, n], ll) f_face[i, j, 2, l, m, n] = dot(f[i, j, :, l, m, n], lr) f_face[i, j, 3, l, m, n] = dot(f[i, j, l, :, m, n], lr) f_face[i, j, 4, l, m, n] = dot(f[i, j, :, l, m, n], ll) end end end fx_interaction = zeros(nx + 1, ny, nsp, 4) @inbounds @threads for i = 2:nx for j = 1:ny, k = 1:nsp fw = @view fx_interaction[i, j, k, :] uL = local_frame(u_face[i-1, j, 2, k, :], n1[i, j][1], n1[i, j][2]) uR = local_frame(u_face[i, j, 4, k, :], n1[i, j][1], n1[i, j][2]) flux_hll!(fw, uL, uR, γ, 1.0) fw .= global_frame(fw, n1[i, j][1], n1[i, j][2]) end end @inbounds @threads for j = 1:ny for k = 1:nsp ul = local_frame(u_face[1, j, 4, k, :], n1[1, j][1], n1[1, j][2]) fw = @view fx_interaction[1, j, k, :] flux_boundary_maxwell!(fw, [1.0, 0.0, 0.0, 1.0], ul, 1, γ, 1.0, 1.0, 1) fw .= global_frame(fw, n1[1, j][1], n1[1, j][2]) end end fy_interaction = zeros(nx, ny + 1, nsp, 4) @inbounds @threads for i = 1:nx for j = 1:ny+1, k = 1:nsp fw = @view fy_interaction[i, j, k, :] uL = local_frame(u_face[i, j-1, 3, k, :], n2[i, j][1], n2[i, j][2]) uR = local_frame(u_face[i, j, 1, k, :], n2[i, j][1], n2[i, j][2]) flux_hll!(fw, uL, uR, γ, 1.0) fw .= global_frame(fw, n2[i, j][1], n2[i, j][2]) end end rhs1 = zeros(nx, ny, nsp, nsp, 4) @inbounds @threads for i = 1:nx for j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 rhs1[i, j, k, l, m] = dot(f[i, j, :, l, m, 1], lpdm[k, :]) end end rhs2 = zeros(nx, ny, nsp, nsp, 4) @inbounds @threads for i = 1:nx for j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 rhs2[i, j, k, l, m] = dot(f[i, j, k, :, m, 2], lpdm[l, :]) end end @inbounds @threads for i = 2:nx-1 for j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 fxL = (inv(ps.Ji[i, j][4, l])*n1[i, j])[1] * fx_interaction[i, j, l, m] fxR = (inv(ps.Ji[i, j][2, l])*n1[i+1, j])[1] * fx_interaction[i+1, j, l, m] fyL = (inv(ps.Ji[i, j][1, k])*n2[i, j])[2] * fy_interaction[i, j, l, m] fyR = (inv(ps.Ji[i, j][3, k])*n2[i, j+1])[2] * fy_interaction[i, j+1, l, m] du[i, j, k, l, m] = -( rhs1[i, j, k, l, m] + rhs2[i, j, k, l, m] + (fxL - f_face[i, j, 4, l, m, 1]) * dhl[k] + (fxR - f_face[i, j, 2, l, m, 1]) * dhr[k] + (fyL - f_face[i, j, 1, k, m, 2]) * dhl[l] + (fyR - f_face[i, j, 3, k, m, 2]) * dhr[l] ) end end return nothing end tspan = (0.0, 1.0) p = (ps.iJ, ps.ll, ps.lr, ps.dhl, ps.dhr, ps.dl, ks.gas.γ) prob = ODEProblem(dudt!, u0, tspan, p) dt = 0.0005 nt = tspan[2] ÷ dt |> Int itg = init(prob, Euler(), save_everystep = false, adaptive = false, dt = dt) @showprogress for iter = 1:20#nt @inbounds for i = 1:ps.nr, k = 1:ps.deg+1, l = 1:ps.deg+1 u1 = itg.u[i, 1, 4-k, 4-l, :] ug1 = [u1[1], u1[2], -u1[3], u1[4]] itg.u[i, 0, k, l, :] .= ug1 u2 = itg.u[i, ps.nθ, 4-k, 4-l, :] ug2 = [u2[1], u2[2], -u2[3], u2[4]] itg.u[i, ps.nθ+1, k, l, :] .= ug2 end @inbounds for j = 1:ps.nθ÷2, k = 1:ps.deg+1, l = 1:ps.deg+1 itg.u[ps.nr, j, k, l, :] .= itg.u[ps.nr-1, j, k, l, :] end step!(itg) end sol = zeros(ps.nr, ps.nθ, 4) for i = 1:ps.nr, j = 1:ps.nθ sol[i, j, :] .= conserve_prim(itg.u[i, j, 1, 1, :], ks.gas.γ) sol[i, j, 4] = 1 / sol[i, j, 4] end contourf( ps.x[1:ps.nr-1, 1:ps.nθ], ps.y[1:ps.nr-1, 1:ps.nθ], sol[1:ps.nr-1, :, 2], aspect_ratio = 1, legend = true, )
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
4295
using KitBase, FluxReconstruction, LinearAlgebra, OrdinaryDiffEq using ProgressMeter: @showprogress using Plots pyplot() cd(@__DIR__) begin set = Setup( "gas", "cylinder", "2d0f", "hll", "nothing", 1, # species 3, # order of accuracy "positivity", # limiter "euler", 0.1, # cfl 1.0, # time ) ps0 = KitBase.CSpace2D(1.0, 6.0, 60, 0.0, π, 50) deg = set.interpOrder - 1 ps = FRPSpace2D(ps0, deg) vs = nothing gas = Gas( 1e-6, 2.0, # Mach 1.0, 1.0, # K 5 / 3, 0.81, 1.0, 0.5, ) ib = nothing ks = SolverSet(set, ps0, vs, gas, ib) end n1 = [[0.0, 0.0] for i = 1:ps.nr+1, j = 1:ps.nθ] for i = 1:ps.nr+1, j = 1:ps.nθ angle = sum(ps.dθ[1, 1:j-1]) + 0.5 * ps.dθ[1, j] n1[i, j] .= [cos(angle), sin(angle)] end n2 = [[0.0, 0.0] for i = 1:ps.nr, j = 1:ps.nθ+1] for i = 1:ps.nr, j = 1:ps.nθ+1 angle = π / 2 + sum(ps.dθ[1, 1:j-1]) n2[i, j] .= [cos(angle), sin(angle)] end u0 = zeros(ps.nr, ps.nθ, deg + 1, deg + 1) for i in axes(u0, 1), j in axes(u0, 2), k in axes(u0, 3), l in axes(u0, 4) u0[i, j, k, l] = max(exp(-3 * ((ps.xpg[i, j, k, l, 1] - 2)^2 + (ps.xpg[i, j, k, l, 2] - 2)^2)), 1e-2) end function dudt!(du, u, p, t) J, ll, lr, dhl, dhr, lpdm, ax, ay = p nx = size(u, 1) ny = size(u, 2) nsp = size(u, 3) f = zeros(nx, ny, nsp, nsp, 2) for i in axes(f, 1), j in axes(f, 2), k = 1:nsp, l = 1:nsp fg, gg = ax * u[i, j, k, l], ay * u[i, j, k, l] f[i, j, k, l, :] .= inv(J[i, j][k, l]) * [fg, gg] end u_face = zeros(nx, ny, 4, nsp) f_face = zeros(nx, ny, 4, nsp, 2) for i in axes(u_face, 1), j in axes(u_face, 2), l = 1:nsp u_face[i, j, 1, l] = dot(u[i, j, l, :], ll) u_face[i, j, 2, l] = dot(u[i, j, :, l], lr) u_face[i, j, 3, l] = dot(u[i, j, l, :], lr) u_face[i, j, 4, l] = dot(u[i, j, :, l], ll) for n = 1:2 f_face[i, j, 1, l, n] = dot(f[i, j, l, :, n], ll) f_face[i, j, 2, l, n] = dot(f[i, j, :, l, n], lr) f_face[i, j, 3, l, n] = dot(f[i, j, l, :, n], lr) f_face[i, j, 4, l, n] = dot(f[i, j, :, l, n], ll) end end fx_interaction = zeros(nx + 1, ny, nsp) for i = 2:nx, j = 1:ny, k = 1:nsp au = (f_face[i, j, 4, k, 1] - f_face[i-1, j, 2, k, 1]) / (u_face[i, j, 4, k] - u_face[i-1, j, 2, k] + 1e-6) fx_interaction[i, j, k] = ( 0.5 * (f_face[i, j, 4, k, 1] + f_face[i-1, j, 2, k, 1]) - 0.5 * abs(au) * (u_face[i, j, 4, k] - u_face[i-1, j, 2, k]) ) end fy_interaction = zeros(nx, ny + 1, nsp) for i = 1:nx, j = 2:ny, k = 1:nsp au = (f_face[i, j, 1, k, 2] - f_face[i, j-1, 3, k, 2]) / (u_face[i, j, 1, k] - u_face[i, j-1, 3, k] + 1e-6) fy_interaction[i, j, k] = ( 0.5 * (f_face[i, j, 1, k, 2] + f_face[i, j-1, 3, k, 2]) - 0.5 * abs(au) * (u_face[i, j, 1, k] - u_face[i, j-1, 3, k]) ) end rhs1 = zeros(nx, ny, nsp, nsp) for i = 1:nx, j = 1:ny, k = 1:nsp, l = 1:nsp rhs1[i, j, k, l] = dot(f[i, j, :, l, 1], lpdm[k, :]) end rhs2 = zeros(nx, ny, nsp, nsp) for i = 1:nx, j = 1:ny, k = 1:nsp, l = 1:nsp rhs2[i, j, k, l] = dot(f[i, j, k, :, 2], lpdm[l, :]) end for i = 2:nx-1, j = 2:ny-1, k = 1:nsp, l = 1:nsp du[i, j, k, l] = -( rhs1[i, j, k, l] + rhs2[i, j, k, l] + (fx_interaction[i, j, l] - f_face[i, j, 4, l, 1]) * dhl[k] + (fx_interaction[i+1, j, l] - f_face[i, j, 2, l, 1]) * dhr[k] + (fy_interaction[i, j, k] - f_face[i, j, 1, k, 2]) * dhl[l] + (fy_interaction[i, j+1, k] - f_face[i, j, 3, k, 2]) * dhr[l] ) end return nothing end tspan = (0.0, 1.0) a = [1.0, 1.0] p = (ps.J, ps.ll, ps.lr, ps.dhl, ps.dhr, ps.dl, a[1], a[2]) prob = ODEProblem(dudt!, u0, tspan, p) dt = 0.01 nt = tspan[2] ÷ dt |> Int itg = init(prob, Tsit5(), save_everystep = false, adaptive = false, dt = dt) @showprogress for iter = 1:10#nt step!(itg) end contourf(ps.x, ps.y, itg.u[:, :, 2, 2], aspect_ratio = 1, legend = true)
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
3168
nx = 30 ny = 40 nsp = 3 u = u0 f = OffsetArray{Float64}(undef, 1:nx, 0:ny+1, nsp, nsp, 4, 2) for i in axes(f, 1), j in axes(f, 2), k = 1:nsp, l = 1:nsp fg, gg = euler_flux(u[i, j, k, l, :], ks.gas.γ) for m = 1:4 f[i, j, k, l, m, :] .= inv(ps.J[i, j][k, l]) * [fg[m], gg[m]] end end u_face = OffsetArray{Float64}(undef, 1:nx, 0:ny+1, 4, nsp, 4) f_face = OffsetArray{Float64}(undef, 1:nx, 0:ny+1, 4, nsp, 4, 2) for i in axes(u_face, 1), j in axes(u_face, 2), l = 1:nsp, m = 1:4 u_face[i, j, 1, l, m] = dot(u[i, j, l, :, m], ps.ll) u_face[i, j, 2, l, m] = dot(u[i, j, :, l, m], ps.lr) u_face[i, j, 3, l, m] = dot(u[i, j, l, :, m], ps.lr) u_face[i, j, 4, l, m] = dot(u[i, j, :, l, m], ps.ll) for n = 1:2 f_face[i, j, 1, l, m, n] = dot(f[i, j, l, :, m, n], ps.ll) f_face[i, j, 2, l, m, n] = dot(f[i, j, :, l, m, n], ps.lr) f_face[i, j, 3, l, m, n] = dot(f[i, j, l, :, m, n], ps.lr) f_face[i, j, 4, l, m, n] = dot(f[i, j, :, l, m, n], ps.ll) end end fx_interaction = zeros(nx + 1, ny, nsp, 4) for i = 2:nx, j = 1:ny, k = 1:nsp fx_interaction[i, j, k, :] .= 0.5 .* (f_face[i-1, j, 2, k, :, 1] .+ f_face[i, j, 4, k, :, 1]) .- dt .* (u_face[i, j, 4, k, :] - u_face[i-1, j, 2, k, :]) end for j = 1:ny, k = 1:nsp ul = local_frame(u_face[1, j, 4, k, :], n1[1, j][1], n1[1, j][2]) prim = conserve_prim(ul, ks.gas.γ) pn = zeros(4) pn[2] = -prim[2] pn[3] = -prim[3] pn[4] = 2.0 - prim[4] tmp = (prim[4] - 1.0) pn[1] = (1 - tmp) / (1 + tmp) * prim[1] ub = global_frame(prim_conserve(pn, ks.gas.γ), n1[1, j][1], n1[1, j][2]) fg, gg = euler_flux(ub, ks.gas.γ) fb = zeros(4) for m = 1:4 fb[m] = (inv(ps.Ji[1, j][4, k])*[fg[m], gg[m]])[1] end fx_interaction[1, j, k, :] .= 0.5 .* (fb .+ f_face[1, j, 4, k, :, 1]) .- dt .* (u_face[1, j, 4, k, :] - ub) end fy_interaction = zeros(nx, ny + 1, nsp, 4) for i = 1:nx, j = 1:ny+1, k = 1:nsp fy_interaction[i, j, k, :] .= 0.5 .* (f_face[i, j-1, 3, k, :, 2] .+ f_face[i, j, 1, k, :, 2]) .- dt .* (u_face[i, j, 1, k, :] - u_face[i, j-1, 3, k, :]) end rhs1 = zeros(nx, ny, nsp, nsp, 4) for i = 1:nx, j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 rhs1[i, j, k, l, m] = dot(f[i, j, :, l, m, 1], ps.dl[k, :]) end rhs2 = zeros(nx, ny, nsp, nsp, 4) for i = 1:nx, j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 rhs2[i, j, k, l, m] = dot(f[i, j, k, :, m, 2], ps.dl[l, :]) end du = zero(u) for i = 1:nx-1, j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 du[i, j, k, l, m] = -( #rhs1[i, j, k, l, m] + #rhs2[i, j, k, l, m] + (fx_interaction[i, j, l, m] - f_face[i, j, 4, l, m, 1]) * ps.dhl[k] + (fx_interaction[i+1, j, l, m] - f_face[i, j, 2, l, m, 1]) * ps.dhr[k] #+ #(fy_interaction[i, j, k, m] - f_face[i, j, 1, k, m, 2]) * ps.dhl[l] + #(fy_interaction[i, j+1, k, m] - f_face[i, j, 3, k, m, 2]) * ps.dhr[l] ) end rhs1[1, j, 2, 2, 1] rhs2[1, j, 2, 2, 1] fx_interaction[1, j, 1, 1] - f_face[1, j, 4, 1, 1, 1] fx_interaction[2, j, 2, 1] - f_face[1, j, 2, 2, 1, 1] ps.dhl[2] ps.dhr[2] du[1, j, 2, 2, 1]
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git