licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "BSD-3-Clause", "MIT" ]
0.3.0
18f351cf7c965887503553d2bccb0fbc7ede13b3
docs
6698
[![codecov](https://codecov.io/gh/jessymilare/FlagSets.jl/branch/master/graph/badge.svg?token=9BEVIJH08E)](https://codecov.io/gh/jessymilare/FlagSets.jl) [![Build Status](https://travis-ci.com/jessymilare/FlagSets.jl.svg?branch=master)](https://travis-ci.com/jessymilare/FlagSets.jl) # FlagSets.jl `FlagSet.jl` provides an `Enum`-like type for bit flag option values. The main features are: 1. Flags have implicit numbering with incrementing powers of 2. 2. Binary OR (`|`), AND (`&`) and XOR(`⊻`) operations are supported among members. 3. Set operations like `union`, `intersect`, `setdiff`, `in` and `issubset` are also supported. 4. Values are pretty-printed, showing the FlagSet type and each flag set. This implementation is based on [BitFlags](https://github.com/jmert/BitFlags.jl), with some differences: 1. Each flag set is treated as a set of flags and internally represented as an `Integer` (whose bits 1 corresponds to the flags in the set). 2. The empty flag set (corresponding to 0) is always valid. 3. The macros `@symbol_flagset` and `@flagset` don't create a constant for each flag. 4. Each flag can be represented by objects of arbitrary type (new in 0.3). _Note:_ A breaking change has been introduced in version 0.3. The macro `@symbol_flagset` corresponds to the old `@flagset` macro and the latter has been made more general. ## Symbol flag sets To create a new `FlagSet{Symbol}` type, you can use the `@symbol_flagset` macro (old syntax) or the more general and flexible `@flagset` macro. You need to provide a type name, an optional integer type, and a list of the flag names (with optional associated bits). A new definition can be given in inline form: ```julia @symbol_flagset FlagSetName[::BaseType] flag_1[=bit_1] flag_2[=bit_2] ... @flagset FlagSetName [{Symbol,BaseType}] [bit_1 -->] :flag_1 [bit_2 -->] :flag_2 ... ``` or as a block definition: ```julia @symbol_flagset FlagSetName[::BaseType] begin flag_1[=bit_1] flag_2[=bit_2] ... end @flagset FlagSetName [{Symbol,BaseType}] begin [bit_1 -->] :flag_1 [bit_2 -->] :flag_2 ... end ``` Automatic numbering starts at 1. In the following example, we build an 8-bit `FlagSet` with no value for bit 3 (value of 4). ```julia julia> @flagset FontFlags1 :bold :italic 8 --> :large ``` Instances can be created from integers or flag names and composed with bitwise operations. Flag names can be symbols or keyword arguments. ```julia julia> FontFlags1(1) FontFlags1 with 1 element: :bold julia> FontFlags1(:bold, :italic) FontFlags1 with 2 elements: :bold :italic julia> FontFlags1(bold = true, italic = false, large = true) FontFlags1 with 2 elements: :bold :large julia> FontFlags1(3) | FontFlags1(8) FontFlags1 with 3 elements: :bold :italic :large ``` Flag sets support iteration and other set operations ```julia julia> for flag in FontFlags1(3); println(flag) end bold italic julia> :bold in FontFlags1(3) true ``` Conversion to and from integers is permitted, but only when the integer contains valid bits for the flag set type. ```julia julia> Int(FontFlags1(:bold)) 1 julia> Integer(FontFlags1(:italic)) # Abstract Integer uses base type 0x00000002 julia> FontFlags1(9) FontFlags1 with 2 elements: :bold :large julia> FontFlags1(4) ERROR: ArgumentError: invalid value for FlagSet FontFlags1: 4 Stacktrace: ... ``` Supplying a different BaseType: ``` julia> @flagset FontFlags2 {Symbol,UInt8} :bold :italic 8 --> :large # Or let the macro infer the flag type julia> @flagset FontFlags3 {_,UInt8} :bold :italic 8 --> :large julia> Integer(FontFlags2(:italic)) 0x02 julia> Integer(FontFlags3(:italic)) 0x02 julia> eltype(FontFlags2) == eltype(FontFlags3) == Symbol true ``` The empty and the full set can be created with `typemin` and `typemax`: ```julia julia> typemin(FontFlags1) FontFlags1([]) julia> typemax(FontFlags1) FontFlags1 with 3 elements: :bold :italic :large ``` ## Flag sets with custom flag type The syntax of `@flagset` macro is similar (but incompatible) with `@symbol_flagset`. These are the most important differences: 1. The flags are evaluated (during macroexpansion). 2. The creator from flag values is absent, used `T([flags...])` instead. 3. To provide an explicit associated bit, use the following syntax: `bit --> flag`. 4. To provide a key to be used as keyword argument, use the following syntax: `key = [bit -->] flag` (note that the key comes before the bit, if it is also supplied). 5. `FlagType` and/or `BaseType` can be supplied between braces. In the example below, the type `RoundingFlags1` is created only from flag values. ```julia julia> @flagset RoundingFlags1 RoundDown RoundUp RoundNearest julia> RoundingFlags1([RoundDown, RoundUp]) RoundingFlags1 with 2 elements: RoundingMode{:Down}() RoundingMode{:Up}() julia> Integer(RoundingFlags1([RoundDown, RoundUp])) 0x00000003 ``` `RoundingFlags2` uses flags with custom bits for some flags: ``` julia> @flagset RoundingFlags2 RoundDown 4--> RoundUp 8 --> RoundNearest julia> Integer(RoundingFlags2([RoundDown, RoundUp])) 0x00000005 ``` `RoundingFlags3` also specifies keys for flags (except the last), flag and base types: ``` julia> @flagset RoundingFlags3 {Any,UInt8} begin down = RoundDown up = RoundUp near = 16 --> RoundNearest 64 --> RoundNearestTiesUp end julia> RoundingFlags3(up = true, near = true) RoundingFlags3 with 2 elements: RoundingMode{:Up}() RoundingMode{:Nearest}() julia> eltype(RoundingFlags3) Any julia> typeof(Integer(RoundingFlags3())) UInt8 ``` ## Printing Printing a `FlagSet` subtype shows usefull information about it: ```julia julia> FontFlags1 FlagSet FontFlags1: 0x01 --> :bold 0x02 --> :italic 0x08 --> :large julia> RoundingFlags3 FlagSet RoundingFlags3: 0x00000001 --> RoundingMode{:Down}() 0x00000002 --> RoundingMode{:Up}() 0x00000010 --> RoundingMode{:Nearest}() 0x00000040 --> RoundingMode{:NearestTiesUp}() ``` In a compact context (such as in multi-dimensional arrays), the pretty-printing takes on a shorter form: ```julia julia> [FontFlags1(), FontFlags1(:bold, :large)] 2-element Vector{FontFlags1}: FontFlags1([]) FontFlags1([:bold, :large]) julia> [RoundingFlags3() RoundingFlags3([RoundUp, RoundNearest])] 1×2 Matrix{RoundingFlags3}: RoundingFlags3(0x00000000) RoundingFlags3(0x00000012) julia> show(IOContext(stdout, :compact => true), FontFlags1(:bold, :large)) FontFlags1(0x09) ``` ## Input/Output `FlagSet`s support writing to and reading from streams as integers: ```julia julia> io = IOBuffer(); julia> write(io, UInt8(9)); julia> seekstart(io); julia> read(io, FontFlags1) FontFlags1 with 2 elements: :bold :large ```
FlagSets
https://github.com/jessymilare/FlagSets.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
3951
using Documenter using BasicBSpline using BasicBSplineExporter using BasicBSplineFitting using InteractiveUtils using Plots using Random gr() plotly() Random.seed!(42) # Setup for doctests in docstrings DocMeta.setdocmeta!(BasicBSpline, :DocTestSetup, :(using LinearAlgebra, BasicBSpline, StaticArrays, BasicBSplineFitting)) DocMeta.setdocmeta!(BasicBSplineFitting, :DocTestSetup, :(using LinearAlgebra, BasicBSpline, StaticArrays, BasicBSplineFitting)) function generate_indexmd_from_readmemd() path_readme = "README.md" path_index = "docs/src/index.md" # open README.md text_readme = read(path_readme, String) # generate text for index.md text_index = text_readme text_index = replace(text_index, r"\$\$((.|\n)*?)\$\$" => s"```math\1```") text_index = replace(text_index, "(https://hyrodium.github.io/BasicBSpline.jl/dev/math/bsplinebasis/#Differentiability-and-knot-duplications)" => "(@ref differentiability-and-knot-duplications)") text_index = replace(text_index, r"https://github.com/hyrodium/BasicBSpline\.jl/assets/.*" => "![](math/differentiability.mp4)") text_index = replace(text_index, "```julia\njulia>" => "```julia-repl\njulia>") text_index = replace(text_index, "```julia\n" => "```@example readme\n") text_index = replace(text_index, r"```\n!\[\]\(docs/src/img/(.*?)plotly\.png\)" => s"savefig(\"readme-\1plotly.html\") # hide\nnothing # hide\n```\n```@raw html\n<object type=\"text/html\" data=\"readme-\1plotly.html\" style=\"width:100%;height:420px;\"></object>\n```") text_index = replace(text_index, r"```\n!\[\]\(docs/src/img/(.*?)\.png\)" => s"savefig(\"readme-\1.png\") # hide\nnothing # hide\n```\n![](readme-\1.png)") text_index = replace(text_index, "![](docs/src/img" => "![](img") text_index = replace(text_index, "![](img/sine-curve.svg)" => "![](sine-curve.svg)") text_index = replace(text_index, "![](img/sine-curve_no-points.svg)" => "![](sine-curve_no-points.svg)") text_index = """ ```@meta EditURL = "https://github.com/hyrodium/BasicBSpline.jl/blob/main/README.md" ``` """ * text_index # save index.md open(path_index, "w") do f write(f,text_index) end end generate_indexmd_from_readmemd() makedocs(; modules = [BasicBSpline, BasicBSplineFitting], format = Documenter.HTML( ansicolor=true, canonical = "https://hyrodium.github.io/BasicBSpline.jl", assets = ["assets/favicon.ico", "assets/custom.css"], edit_link="main", repolink="https://github.com/hyrodium/BasicBSpline.jl" ), pages = [ "Home" => "index.md", "Mathematical properties of B-spline" => [ "Introduction" => "math/introduction.md", "Knot vector" => "math/knotvector.md", "B-spline space" => "math/bsplinespace.md", "B-spline basis function" => "math/bsplinebasis.md", "B-spline manifold" => "math/bsplinemanifold.md", "Rational B-spline manifold" => "math/rationalbsplinemanifold.md", "Inclusive relationship" => "math/inclusive.md", "Refinement" => "math/refinement.md", "Derivative" => "math/derivative.md", "Fitting" => "math/fitting.md", ], # "Differentiation" => [ # "BSplineDerivativeSpace" => "bsplinederivativespace.md", # "ForwardDiff" => "forwarddiff.md", # "ChainRules" => "chainrules.md" # ], "Visualization" => [ "PlotlyJS.jl" => "visualization/plotlyjs.md", "BasicBSplineExporter.jl" => "visualization/basicbsplineexporter.md", ], "Interpolations" => "interpolations.md", "API" => "api.md", ], sitename = "BasicBSpline.jl", authors = "hyrodium <[email protected]>", warnonly = true, ) deploydocs( repo = "github.com/hyrodium/BasicBSpline.jl", push_preview = true, devbranch="main", )
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
742
# Run this script after running make.jl dir_build = joinpath(@__DIR__, "build") dir_img = joinpath(@__DIR__, "src", "img") for filename in readdir(dir_build) path_src = joinpath(dir_build, filename) if startswith(filename, "readme-") && endswith(filename, ".html") println(path_src) path_png = joinpath(dir_img, chopsuffix(chopprefix(filename, "readme-"), ".html") * ".png") cmd = `google-chrome-stable --headless --disable-gpu --screenshot=$path_png $path_src` run(cmd) end if startswith(filename, "readme-") && endswith(filename, ".png") println(path_src) path_png = joinpath(dir_img, chopprefix(filename, "readme-")) cp(path_src, path_png; force=true) end end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
3352
module BasicBSplineChainRulesCoreExt using BasicBSpline using ChainRulesCore import BasicBSpline.AbstractFunctionSpace import BasicBSpline.derivative const BSPLINESPACE_INFO = """ derivatives of B-spline basis functions with respect to BSplineSpace not implemented currently. """ # bsplinebasis function ChainRulesCore.frule((_, ΔP, Δi, Δt), ::typeof(bsplinebasis), P::AbstractFunctionSpace, i::Integer, t::Real) B = bsplinebasis(P,i,t) ∂B_∂P = @not_implemented BSPLINESPACE_INFO # ∂B_∂i = NoTangent() ∂B_∂t = bsplinebasis′(P,i,t) return (B, ∂B_∂P*ΔP + ∂B_∂t*Δt) end function ChainRulesCore.rrule(::typeof(bsplinebasis), P::AbstractFunctionSpace, i::Integer, t::Real) B = bsplinebasis(P,i,t) # project_t = ProjectTo(t) # Not sure we need this ProjectTo. function bsplinebasis_pullback(ΔB) P̄ = @not_implemented BSPLINESPACE_INFO ī = NoTangent() t̄ = bsplinebasis′(P,i,t) * ΔB return (NoTangent(), P̄, ī, t̄) end return (B, bsplinebasis_pullback) end # bsplinebasis₊₀ function ChainRulesCore.frule((_, ΔP, Δi, Δt), ::typeof(bsplinebasis₊₀), P::AbstractFunctionSpace, i::Integer, t::Real) B = bsplinebasis₊₀(P,i,t) ∂B_∂P = @not_implemented BSPLINESPACE_INFO # ∂B_∂i = NoTangent() ∂B_∂t = bsplinebasis′₊₀(P,i,t) return (B, ∂B_∂P*ΔP + ∂B_∂t*Δt) end function ChainRulesCore.rrule(::typeof(bsplinebasis₊₀), P::AbstractFunctionSpace, i::Integer, t::Real) B = bsplinebasis₊₀(P,i,t) # project_t = ProjectTo(t) # Not sure we need this ProjectTo. function bsplinebasis_pullback(ΔB) P̄ = @not_implemented BSPLINESPACE_INFO ī = NoTangent() t̄ = bsplinebasis′₊₀(P,i,t) * ΔB return (NoTangent(), P̄, ī, t̄) end return (B, bsplinebasis_pullback) end # bsplinebasis₋₀ function ChainRulesCore.frule((_, ΔP, Δi, Δt), ::typeof(bsplinebasis₋₀), P::AbstractFunctionSpace, i::Integer, t::Real) B = bsplinebasis₋₀(P,i,t) ∂B_∂P = @not_implemented BSPLINESPACE_INFO # ∂B_∂i = NoTangent() ∂B_∂t = bsplinebasis′₋₀(P,i,t) return (B, ∂B_∂P*ΔP + ∂B_∂t*Δt) end function ChainRulesCore.rrule(::typeof(bsplinebasis₋₀), P::AbstractFunctionSpace, i::Integer, t::Real) B = bsplinebasis₋₀(P,i,t) # project_t = ProjectTo(t) # Not sure we need this ProjectTo. function bsplinebasis_pullback(ΔB) P̄ = @not_implemented BSPLINESPACE_INFO ī = NoTangent() t̄ = bsplinebasis′₋₀(P,i,t) * ΔB return (NoTangent(), P̄, ī, t̄) end return (B, bsplinebasis_pullback) end # bsplinebasisall function ChainRulesCore.frule((_, ΔP, Δi, Δt), ::typeof(bsplinebasisall), P::AbstractFunctionSpace, i::Integer, t::Real) B = bsplinebasisall(P,i,t) ∂B_∂P = @not_implemented BSPLINESPACE_INFO # ∂B_∂i = NoTangent() ∂B_∂t = bsplinebasisall(derivative(P),i,t) return (B, ∂B_∂P*ΔP + ∂B_∂t*Δt) end function ChainRulesCore.rrule(::typeof(bsplinebasisall), P::AbstractFunctionSpace, i::Integer, t::Real) B = bsplinebasisall(P,i,t) # project_t = ProjectTo(t) # Not sure we need this ProjectTo. function bsplinebasis_pullback(ΔB) P̄ = @not_implemented BSPLINESPACE_INFO ī = NoTangent() t̄ = bsplinebasisall(derivative(P),i,t)' * ΔB return (NoTangent(), P̄, ī, t̄) end return (B, bsplinebasis_pullback) end end # module
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
11785
module BasicBSplineRecipesBaseExt using BasicBSpline using RecipesBase import BasicBSpline.AbstractFunctionSpace using StaticArrays # B-spline space @recipe function f(k::AbstractKnotVector; gap=0.02, offset=0.0, plane=:xy) u = BasicBSpline._vec(k) l = length(u) v = fill(float(offset), l) for i in 2:l if u[i-1] == u[i] v[i] = v[i-1] - gap end end seriestype := :scatter delete!(plotattributes, :gap) delete!(plotattributes, :plane) if plane === :xy u, v elseif plane === :xy v, u elseif plane === :xz u, zero(u), v elseif plane === :yz zero(u), u, v end end # B-spline space @recipe function f(P::AbstractFunctionSpace; division_number=20, plane=:xy) k = knotvector(P) ts = Float64[] for i in 1:length(k)-1 append!(ts, range(nextfloat(float(k[i])), prevfloat(float(k[i+1])), length=division_number+1)) end pushfirst!(ts, k[begin]) push!(ts, k[end]) sort!(ts) unique!(ts) n = dim(P) tt = repeat([ts;NaN],n) bs = [bsplinebasis(P,i,t) for t in ts, i in 1:n] bb = vec(vcat(bs,zeros(n)')) delete!(plotattributes, :division_number) delete!(plotattributes, :plane) if plane === :xy tt, bb elseif plane === :xy bb, tt elseif plane === :xz tt, zero(tt), bb elseif plane === :yz zero(tt), tt, bb end end const _Manifold{Dim1, Dim2} = Union{BSplineManifold{Dim1,Deg,<:StaticVector{Dim2,<:Real}}, RationalBSplineManifold{Dim1,Deg,<:StaticVector{Dim2,<:Real}}} where Deg Base.@kwdef struct PlotAttributesContolPoints # https://docs.juliaplots.org/latest/generated/attributes_series/ line_z=nothing linealpha=nothing linecolor=:gray linestyle=:solid linewidth=:auto marker_z=nothing markeralpha=nothing markercolor=:gray markershape=:circle markersize=4 markerstrokealpha=nothing markerstrokecolor=:match markerstrokestyle=:solid markerstrokewidth=1 end @recipe function f(M::_Manifold{1, 2}; controlpoints=(;), division_number=100) attributes = PlotAttributesContolPoints(;controlpoints...) t_min, t_max = extrema(domain(bsplinespaces(M)[1])) ts = range(t_min, t_max, length=division_number+1) @series begin primary := false line_z := attributes.line_z linealpha := attributes.linealpha linecolor := attributes.linecolor linestyle := attributes.linestyle linewidth := attributes.linewidth marker_z := attributes.marker_z markeralpha := attributes.markeralpha markercolor := attributes.markercolor markershape := attributes.markershape markersize := attributes.markersize markerstrokealpha := attributes.markerstrokealpha markerstrokecolor := attributes.markerstrokecolor markerstrokestyle := attributes.markerstrokestyle markerstrokewidth := attributes.markerstrokewidth a = BasicBSpline.controlpoints(M) getindex.(a,1), getindex.(a,2) end p = M.(ts) delete!(plotattributes, :controlpoints) delete!(plotattributes, :division_number) getindex.(p,1), getindex.(p,2) end @recipe function f(M::_Manifold{1, 3}; controlpoints=(;), division_number=100) attributes = PlotAttributesContolPoints(;controlpoints...) t_min, t_max = extrema(domain(bsplinespaces(M)[1])) ts = range(t_min, t_max, length=division_number+1) @series begin primary := false line_z := attributes.line_z linealpha := attributes.linealpha linecolor := attributes.linecolor linestyle := attributes.linestyle linewidth := attributes.linewidth marker_z := attributes.marker_z markeralpha := attributes.markeralpha markercolor := attributes.markercolor markershape := attributes.markershape markersize := attributes.markersize markerstrokealpha := attributes.markerstrokealpha markerstrokecolor := attributes.markerstrokecolor markerstrokestyle := attributes.markerstrokestyle markerstrokewidth := attributes.markerstrokewidth a = BasicBSpline.controlpoints(M) getindex.(a,1), getindex.(a,2), getindex.(a,3) end p = M.(ts) delete!(plotattributes, :controlpoints) delete!(plotattributes, :division_number) getindex.(p,1), getindex.(p,2), getindex.(p,3) end @recipe function f(M::_Manifold{2, 2}; controlpoints=(;), division_number=100) attributes = PlotAttributesContolPoints(;controlpoints...) a = BasicBSpline.controlpoints(M) @series begin primary := false marker_z := attributes.marker_z markeralpha := attributes.markeralpha markercolor := attributes.markercolor markershape := attributes.markershape markersize := attributes.markersize markerstrokealpha := attributes.markerstrokealpha markerstrokecolor := attributes.markerstrokecolor markerstrokestyle := attributes.markerstrokestyle markerstrokewidth := attributes.markerstrokewidth seriestype := :scatter getindex.(a,1), getindex.(a,2) end @series begin primary := false line_z := attributes.line_z linealpha := attributes.linealpha linecolor := attributes.linecolor linestyle := attributes.linestyle linewidth := attributes.linewidth seriestype := :path getindex.(a,1), getindex.(a,2) end @series begin primary := false line_z := attributes.line_z linealpha := attributes.linealpha linecolor := attributes.linecolor linestyle := attributes.linestyle linewidth := attributes.linewidth seriestype := :path getindex.(a',1), getindex.(a',2) end I1, I2 = domain.(bsplinespaces(M)) a1, b1 = float.(extrema(I1)) a2, b2 = float.(extrema(I2)) ts_boundary = [ [(t1, a2) for t1 in view(range(I1, length=division_number+1), 1:division_number)]; [(b1, t2) for t2 in view(range(I2, length=division_number+1), 1:division_number)]; [(t1, b2) for t1 in view(range(I1, length=division_number+1), division_number+1:-1:2)]; [(a1, t2) for t2 in view(range(I2, length=division_number+1), division_number+1:-1:1)] ] ps_boundary = [M(t...) for t in ts_boundary] fill := true fillalpha --> 0.5 delete!(plotattributes, :controlpoints) delete!(plotattributes, :division_number) getindex.(ps_boundary,1), getindex.(ps_boundary,2) end @recipe function f(M::_Manifold{2, 3}; controlpoints=(;), division_number=100) attributes = PlotAttributesContolPoints(;controlpoints...) t1_min, t1_max = extrema(domain(bsplinespaces(M)[1])) t2_min, t2_max = extrema(domain(bsplinespaces(M)[2])) t1s = range(t1_min, t1_max, length=division_number+1) t2s = range(t2_min, t2_max, length=division_number+1) a = BasicBSpline.controlpoints(M) @series begin primary := false marker_z := attributes.marker_z markeralpha := attributes.markeralpha markercolor := attributes.markercolor markershape := attributes.markershape markersize := attributes.markersize markerstrokealpha := attributes.markerstrokealpha markerstrokecolor := attributes.markerstrokecolor markerstrokestyle := attributes.markerstrokestyle markerstrokewidth := attributes.markerstrokewidth seriestype := :scatter getindex.(a,1), getindex.(a,2), getindex.(a,3) end @series begin primary := false line_z := attributes.line_z linealpha := attributes.linealpha linecolor := attributes.linecolor linestyle := attributes.linestyle linewidth := attributes.linewidth seriestype := :path getindex.(a,1), getindex.(a,2), getindex.(a,3) end @series begin primary := false line_z := attributes.line_z linealpha := attributes.linealpha linecolor := attributes.linecolor linestyle := attributes.linestyle linewidth := attributes.linewidth seriestype := :path getindex.(a',1), getindex.(a',2), getindex.(a',3) end ps = M.(t1s,t2s') xs = getindex.(ps,1) ys = getindex.(ps,2) zs = getindex.(ps,3) seriestype := :surface delete!(plotattributes, :controlpoints) delete!(plotattributes, :division_number) xs, ys, zs end @recipe function f(M::_Manifold{3, 3}; controlpoints=(;), division_number=100) attributes = PlotAttributesContolPoints(;controlpoints...) t1_min, t1_max = extrema(domain(bsplinespaces(M)[1])) t2_min, t2_max = extrema(domain(bsplinespaces(M)[2])) t3_min, t3_max = extrema(domain(bsplinespaces(M)[3])) t1s = range(t1_min, t1_max, length=division_number+1) t2s = range(t2_min, t2_max, length=division_number+1) t3s = range(t3_min, t3_max, length=division_number+1) a = BasicBSpline.controlpoints(M) @series begin primary := false marker_z := attributes.marker_z markeralpha := attributes.markeralpha markercolor := attributes.markercolor markershape := attributes.markershape markersize := attributes.markersize markerstrokealpha := attributes.markerstrokealpha markerstrokecolor := attributes.markerstrokecolor markerstrokestyle := attributes.markerstrokestyle markerstrokewidth := attributes.markerstrokewidth seriestype := :scatter vec(getindex.(a,1)), vec(getindex.(a,2)), vec(getindex.(a,3)) end @series begin primary := false line_z := attributes.line_z linealpha := attributes.linealpha linecolor := attributes.linecolor linestyle := attributes.linestyle linewidth := attributes.linewidth seriestype := :path n1, n2, n3 = dim.(bsplinespaces(M)) X = Float64[] Y = Float64[] Z = Float64[] a1 = a xs = [p[1] for p in a1] ys = [p[2] for p in a1] zs = [p[3] for p in a1] append!(X, vec(cat(xs, fill(NaN,1,n2,n3), dims=1))) append!(Y, vec(cat(ys, fill(NaN,1,n2,n3), dims=1))) append!(Z, vec(cat(zs, fill(NaN,1,n2,n3), dims=1))) a2 = permutedims(a,(2,3,1)) xs = [p[1] for p in a2] ys = [p[2] for p in a2] zs = [p[3] for p in a2] append!(X, vec(cat(xs, fill(NaN,1,n3,n1), dims=1))) append!(Y, vec(cat(ys, fill(NaN,1,n3,n1), dims=1))) append!(Z, vec(cat(zs, fill(NaN,1,n3,n1), dims=1))) a3 = permutedims(a,(3,1,2)) xs = [p[1] for p in a3] ys = [p[2] for p in a3] zs = [p[3] for p in a3] append!(X, vec(cat(xs, fill(NaN,1,n1,n2), dims=1))) append!(Y, vec(cat(ys, fill(NaN,1,n1,n2), dims=1))) append!(Z, vec(cat(zs, fill(NaN,1,n1,n2), dims=1))) X,Y,Z end nanvec = fill(SVector(NaN,NaN,NaN), 1, division_number+1) qs1 = M.(t1s, t2s', t3_max) qs2 = M.(t1s', t2s, t3_min) qs3 = M.(t1_max, t2s, t3s') qs4 = M.(t1_min, t2s', t3s) qs5 = M.(t1s', t2_max, t3s) qs6 = M.(t1s, t2_min, t3s') ps = [ qs1; qs1[end:end,:]; # Adhoc additional values for fixing boundary nanvec; qs2; qs2[end:end,:]; nanvec; qs3; qs3[end:end,:]; nanvec; qs4; qs4[end:end,:]; nanvec; qs5; qs5[end:end,:]; nanvec; qs6 ] xs = getindex.(ps,1) ys = getindex.(ps,2) zs = getindex.(ps,3) seriestype := :surface delete!(plotattributes, :controlpoints) delete!(plotattributes, :division_number) xs, ys, zs end end # module
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
1622
module BasicBSpline using LinearAlgebra using SparseArrays using IntervalSets using StaticArrays using PrecompileTools # Types export AbstractKnotVector, KnotVector, UniformKnotVector, EmptyKnotVector, SubKnotVector export BSplineSpace, BSplineDerivativeSpace, UniformBSplineSpace export BSplineManifold, RationalBSplineManifold # B-spline basis functions export bsplinebasis₊₀, bsplinebasis₋₀, bsplinebasis export bsplinebasis′₊₀, bsplinebasis′₋₀, bsplinebasis′ export bsplinebasisall, intervalindex # B-spline space export issqsubset, ⊑, ⊒, ⋢, ⋣, ⋤, ⋥, ≃ export dim, exactdim, exactdim_R, exactdim_I export domain export changebasis, changebasis_R, changebasis_I export bsplinesupport, bsplinesupport_R, bsplinesupport_I export expandspace, expandspace_R, expandspace_I export isdegenerate, isdegenerate_R, isdegenerate_I export isnondegenerate, isnondegenerate_R, isnondegenerate_I export countknots export degree export unbounded_mapping # Getter methods export bsplinespaces, controlpoints, weights export knotvector export bsplinespace # Useful functions export refinement, refinement_R, refinement_I # Macros export @knotvector_str include("_util.jl") include("_KnotVector.jl") include("_BSplineSpace.jl") include("_BSplineBasis.jl") include("_DerivativeSpace.jl") include("_DerivativeBasis.jl") include("_ChangeBasis.jl") include("_BSplineManifold.jl") include("_RationalBSplineManifold.jl") include("_Refinement.jl") include("_precompile.jl") if !isdefined(Base, :get_extension) include("../ext/BasicBSplineChainRulesCoreExt.jl") include("../ext/BasicBSplineRecipesBaseExt.jl") end end # module
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
12822
############################# #= B-Spline Basis Function =# ############################# @doc raw""" ``i``-th B-spline basis function. Right-sided limit version. ```math \begin{aligned} {B}_{(i,p,k)}(t) &= \frac{t-k_{i}}{k_{i+p}-k_{i}}{B}_{(i,p-1,k)}(t) +\frac{k_{i+p+1}-t}{k_{i+p+1}-k_{i+1}}{B}_{(i+1,p-1,k)}(t) \\ {B}_{(i,0,k)}(t) &= \begin{cases} &1\quad (k_{i}\le t< k_{i+1})\\ &0\quad (\text{otherwise}) \end{cases} \end{aligned} ``` # Examples ```jldoctest julia> P = BSplineSpace{0}(KnotVector(1:6)) BSplineSpace{0, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 4, 5, 6])) julia> bsplinebasis₊₀.(P,1:5,(1:6)') 5×6 Matrix{Float64}: 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 ``` """ @generated function bsplinebasis₊₀(P::BSplineSpace{p,T}, i::Integer, t::S) where {p, T, S<:Real} U = StaticArrays.arithmetic_closure(promote_type(T,S)) ks = [Symbol(:k,i) for i in 1:p+2] Ks = [Symbol(:K,i) for i in 1:p+1] Bs = [Symbol(:B,i) for i in 1:p+1] k_l = Expr(:tuple, ks...) k_r = Expr(:tuple, :(v[i]), (:(v[i+$j]) for j in 1:p+1)...) K_l(n) = Expr(:tuple, Ks[1:n]...) B_l(n) = Expr(:tuple, Bs[1:n]...) A_r(n) = Expr(:tuple, [:($U($(ks[i])≤t<$(ks[i+1]))) for i in 1:n]...) K_r(m,n) = Expr(:tuple, [:(_d(t-$(ks[i]),$(ks[i+m])-$(ks[i]))) for i in 1:n]...) B_r(n) = Expr(:tuple, [:($(Ks[i])*$(Bs[i])+(1-$(Ks[i+1]))*$(Bs[i+1])) for i in 1:n]...) exs = Expr[] for i in 1:p push!(exs, :($(K_l(p+2-i)) = $(K_r(i,p+2-i)))) push!(exs, :($(B_l(p+1-i)) = $(B_r(p+1-i)))) end Expr(:block, :(v = knotvector(P).vector), :($k_l = $k_r), :($(B_l(p+1)) = $(A_r(p+1))), exs..., :(return B1) ) end @doc raw""" ``i``-th B-spline basis function. Left-sided limit version. ```math \begin{aligned} {B}_{(i,p,k)}(t) &= \frac{t-k_{i}}{k_{i+p}-k_{i}}{B}_{(i,p-1,k)}(t) +\frac{k_{i+p+1}-t}{k_{i+p+1}-k_{i+1}}{B}_{(i+1,p-1,k)}(t) \\ {B}_{(i,0,k)}(t) &= \begin{cases} &1\quad (k_{i}< t\le k_{i+1})\\ &0\quad (\text{otherwise}) \end{cases} \end{aligned} ``` # Examples ```jldoctest julia> P = BSplineSpace{0}(KnotVector(1:6)) BSplineSpace{0, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 4, 5, 6])) julia> bsplinebasis₋₀.(P,1:5,(1:6)') 5×6 Matrix{Float64}: 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 ``` """ @generated function bsplinebasis₋₀(P::BSplineSpace{p,T}, i::Integer, t::S) where {p, T, S<:Real} U = StaticArrays.arithmetic_closure(promote_type(T,S)) ks = [Symbol(:k,i) for i in 1:p+2] Ks = [Symbol(:K,i) for i in 1:p+1] Bs = [Symbol(:B,i) for i in 1:p+1] k_l = Expr(:tuple, ks...) k_r = Expr(:tuple, :(v[i]), (:(v[i+$j]) for j in 1:p+1)...) K_l(n) = Expr(:tuple, Ks[1:n]...) B_l(n) = Expr(:tuple, Bs[1:n]...) A_r(n) = Expr(:tuple, [:($U($(ks[i])<t≤$(ks[i+1]))) for i in 1:n]...) K_r(m,n) = Expr(:tuple, [:(_d(t-$(ks[i]),$(ks[i+m])-$(ks[i]))) for i in 1:n]...) B_r(n) = Expr(:tuple, [:($(Ks[i])*$(Bs[i])+(1-$(Ks[i+1]))*$(Bs[i+1])) for i in 1:n]...) exs = Expr[] for i in 1:p push!(exs, :($(K_l(p+2-i)) = $(K_r(i,p+2-i)))) push!(exs, :($(B_l(p+1-i)) = $(B_r(p+1-i)))) end Expr(:block, :(v = knotvector(P).vector), :($k_l = $k_r), :($(B_l(p+1)) = $(A_r(p+1))), exs..., :(return B1) ) end @doc raw""" ``i``-th B-spline basis function. Modified version. ```math \begin{aligned} {B}_{(i,p,k)}(t) &= \frac{t-k_{i}}{k_{i+p}-k_{i}}{B}_{(i,p-1,k)}(t) +\frac{k_{i+p+1}-t}{k_{i+p+1}-k_{i+1}}{B}_{(i+1,p-1,k)}(t) \\ {B}_{(i,0,k)}(t) &= \begin{cases} &1\quad (k_{i} \le t < k_{i+1}) \\ &1\quad (k_{i} < t = k_{i+1}=k_{l}) \\ &0\quad (\text{otherwise}) \end{cases} \end{aligned} ``` # Examples ```jldoctest julia> P = BSplineSpace{0}(KnotVector(1:6)) BSplineSpace{0, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 4, 5, 6])) julia> bsplinebasis.(P,1:5,(1:6)') 5×6 Matrix{Float64}: 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 ``` """ @generated function bsplinebasis(P::BSplineSpace{p,T}, i::Integer, t::S) where {p, T, S<:Real} U = StaticArrays.arithmetic_closure(promote_type(T,S)) ks = [Symbol(:k,i) for i in 1:p+2] Ks = [Symbol(:K,i) for i in 1:p+1] Bs = [Symbol(:B,i) for i in 1:p+1] k_l = Expr(:tuple, ks...) k_r = Expr(:tuple, :(v[i]), (:(v[i+$j]) for j in 1:p+1)...) K_l(n) = Expr(:tuple, Ks[1:n]...) B_l(n) = Expr(:tuple, Bs[1:n]...) A_r(n) = Expr(:tuple, [:($U(($(ks[i])≤t<$(ks[i+1])) || ($(ks[i])<t==$(ks[i+1])==v[end]))) for i in 1:n]...) K_r(m,n) = Expr(:tuple, [:(_d(t-$(ks[i]),$(ks[i+m])-$(ks[i]))) for i in 1:n]...) B_r(n) = Expr(:tuple, [:($(Ks[i])*$(Bs[i])+(1-$(Ks[i+1]))*$(Bs[i+1])) for i in 1:n]...) exs = Expr[] for i in 1:p push!(exs, :($(K_l(p+2-i)) = $(K_r(i,p+2-i)))) push!(exs, :($(B_l(p+1-i)) = $(B_r(p+1-i)))) end Expr(:block, :(v = knotvector(P).vector), :($k_l = $k_r), :($(B_l(p+1)) = $(A_r(p+1))), exs..., :(return B1) ) end @doc raw""" ``i``-th B-spline basis function. Modified version (2). ```math \begin{aligned} {B}_{(i,p,k)}(t) &= \frac{t-k_{i}}{k_{i+p}-k_{i}}{B}_{(i,p-1,k)}(t) +\frac{k_{i+p+1}-t}{k_{i+p+1}-k_{i+1}}{B}_{(i+1,p-1,k)}(t) \\ {B}_{(i,0,k)}(t) &= \begin{cases} &1\quad (k_{1+p} \le k_{i} < t \le k_{i+1}) \\ &1\quad (t = k_{1+p} = k_{i} < k_{i+1}) \\ &1\quad (k_{i} \le t < k_{i+1} \le k_{1+p}) \\ &0\quad (\text{otherwise}) \end{cases} \end{aligned} ``` # Examples ```jldoctest julia> P = BSplineSpace{0}(KnotVector(1:6)) BSplineSpace{0, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 4, 5, 6])) julia> BasicBSpline.bsplinebasis₋₀I.(P,1:5,(1:6)') 5×6 Matrix{Float64}: 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 ``` """ @generated function bsplinebasis₋₀I(P::BSplineSpace{p,T}, i::Integer, t::S) where {p, T, S<:Real} U = StaticArrays.arithmetic_closure(promote_type(T,S)) ks = [Symbol(:k,i) for i in 1:p+2] Ks = [Symbol(:K,i) for i in 1:p+1] Bs = [Symbol(:B,i) for i in 1:p+1] k_l = Expr(:tuple, ks...) k_r = Expr(:tuple, :(v[i]), (:(v[i+$j]) for j in 1:p+1)...) K_l(n) = Expr(:tuple, Ks[1:n]...) B_l(n) = Expr(:tuple, Bs[1:n]...) A_r(n) = Expr(:tuple, [:($U((v[1+p]≤$(ks[i])<t≤$(ks[i+1])) || (t==v[1+p]==$(ks[i])<$(ks[i+1])) || ($(ks[i])≤t<$(ks[i+1])≤v[1+p]))) for i in 1:n]...) K_r(m,n) = Expr(:tuple, [:(_d(t-$(ks[i]),$(ks[i+m])-$(ks[i]))) for i in 1:n]...) B_r(n) = Expr(:tuple, [:($(Ks[i])*$(Bs[i])+(1-$(Ks[i+1]))*$(Bs[i+1])) for i in 1:n]...) exs = Expr[] for i in 1:p push!(exs, :($(K_l(p+2-i)) = $(K_r(i,p+2-i)))) push!(exs, :($(B_l(p+1-i)) = $(B_r(p+1-i)))) end Expr(:block, :(v = knotvector(P).vector), :($k_l = $k_r), :($(B_l(p+1)) = $(A_r(p+1))), exs..., :(return B1) ) end # bsplinebasis with UniformKnotVector @inline function bsplinebasis(P::UniformBSplineSpace{p,T,R},i::Integer,t::S) where {p, T, R<:AbstractUnitRange, S<:Real} U = StaticArrays.arithmetic_closure(promote_type(T,S)) k = knotvector(P) @boundscheck (1 ≤ i ≤ dim(P)) || throw(DomainError(i, "index of B-spline basis function is out of range.")) return U(uniform_bsplinebasis_kernel(Val{p}(),t-i+1-k[1])) end @inline function bsplinebasis(P::UniformBSplineSpace{p,T},i::Integer,t::S) where {p, T, S<:Real} U = StaticArrays.arithmetic_closure(promote_type(T,S)) k = knotvector(P) @boundscheck (1 ≤ i ≤ dim(P)) || throw(DomainError(i, "index of B-spline basis function is out of range.")) a = @inbounds k.vector[i] b = @inbounds k.vector[i+p+1] return U(uniform_bsplinebasis_kernel(Val{p}(),(p+1)*(t-a)/(b-a))) end @inline bsplinebasis₋₀(P::UniformBSplineSpace,i::Integer,t::Real) = bsplinebasis(P,i,t) @inline bsplinebasis₊₀(P::UniformBSplineSpace,i::Integer,t::Real) = bsplinebasis(P,i,t) @inline bsplinebasis₋₀I(P::UniformBSplineSpace,i::Integer,t::Real) = bsplinebasis(P,i,t) ################################################ #= B-Spline Basis Functions at specific point =# ################################################ """ B-spline basis functions at point `t` on `i`-th interval. # Examples ```jldoctest julia> k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]) KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]) julia> p = 2 2 julia> P = BSplineSpace{p}(k) BSplineSpace{2, Float64, KnotVector{Float64}}(KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0])) julia> t = 5.7 5.7 julia> i = intervalindex(P,t) 2 julia> bsplinebasisall(P,i,t) 3-element SVector{3, Float64} with indices SOneTo(3): 0.3847272727272727 0.6107012987012989 0.00457142857142858 julia> bsplinebasis.(P,i:i+p,t) 3-element Vector{Float64}: 0.38472727272727264 0.6107012987012989 0.00457142857142858 ``` """ bsplinebasisall @inline function bsplinebasisall(P::BSplineSpace{0,T},i::Integer,t::S) where {T, S<:Real} U = StaticArrays.arithmetic_closure(promote_type(T,S)) SVector(one(U),) end @inline function bsplinebasisall(P::BSplineSpace{1}, i::Integer, t::Real) k = knotvector(P) B1 = (k[i+2]-t)/(k[i+2]-k[i+1]) B2 = (t-k[i+1])/(k[i+2]-k[i+1]) return SVector(B1, B2) end @generated function bsplinebasisall(P::BSplineSpace{p,T}, i::Integer, t::Real) where {p,T} bs = [Symbol(:b,i) for i in 1:p] Bs = [Symbol(:B,i) for i in 1:p+1] K1s = [:((k[i+$(p+j)]-t)/(k[i+$(p+j)]-k[i+$(j)])) for j in 1:p] K2s = [:((t-k[i+$(j)])/(k[i+$(p+j)]-k[i+$(j)])) for j in 1:p] b = Expr(:tuple, bs...) B = Expr(:tuple, Bs...) exs = [:($(Bs[j+1]) = ($(K1s[j+1])*$(bs[j+1]) + $(K2s[j])*$(bs[j]))) for j in 1:p-1] Expr(:block, :($(Expr(:meta, :inline))), :(k = knotvector(P)), :($b = bsplinebasisall(_lower_R(P),i+1,t)), :($(Bs[1]) = $(K1s[1])*$(bs[1])), exs..., :($(Bs[p+1]) = $(K2s[p])*$(bs[p])), :(return SVector($(B))) ) end ## bsplinebasisall with UniformKnotVector @inline function bsplinebasisall(P::UniformBSplineSpace{p,T,R},i::Integer,t::S) where {p, T, R<:AbstractUnitRange, S<:Real} U = StaticArrays.arithmetic_closure(promote_type(T,S)) k = knotvector(P) @boundscheck (0 ≤ i ≤ length(k)-2p) || throw(DomainError(i, "index of interval is out of range.")) return uniform_bsplinebasisall_kernel(Val{p}(),U(t-i+1-p-k[1])) end @inline function bsplinebasisall(P::UniformBSplineSpace{p,T},i::Integer,t::S) where {p, T, S<:Real} U = StaticArrays.arithmetic_closure(promote_type(T,S)) k = knotvector(P) @boundscheck (0 ≤ i ≤ length(k)-2p) || throw(DomainError(i, "index of interval is out of range.")) a = @inbounds k.vector[i+p] b = @inbounds k.vector[i+p+1] return uniform_bsplinebasisall_kernel(Val{p}(),U((t-a)/(b-a))) end ######################################################### #= Kernel funcitons of uniform B-spline basis function =# ######################################################### @inline function uniform_bsplinebasisall_kernel(::Val{0},t::T) where T<:Real U = StaticArrays.arithmetic_closure(T) SVector{1,U}(one(t)) end @inline function uniform_bsplinebasisall_kernel(::Val{1},t::T) where T<:Real U = StaticArrays.arithmetic_closure(T) SVector{2,U}(1-t,t) end @generated function uniform_bsplinebasisall_kernel(::Val{p}, t::T) where {p, T<:Real} bs = [Symbol(:b,i) for i in 1:p] Bs = [Symbol(:B,i) for i in 1:p+1] K1s = [:(($(j)-t)/$(p)) for j in 1:p] K2s = [:((t-$(j-p))/$(p)) for j in 1:p] b = Expr(:tuple, bs...) B = Expr(:tuple, Bs...) exs = [:($(Bs[j+1]) = ($(K1s[j+1])*$(bs[j+1]) + $(K2s[j])*$(bs[j]))) for j in 1:p-1] Expr( :block, :($(Expr(:meta, :inline))), :($b = uniform_bsplinebasisall_kernel(Val{$(p-1)}(),t)), :($(Bs[1]) = $(K1s[1])*$(bs[1])), exs..., :($(Bs[p+1]) = $(K2s[p])*$(bs[p])), :(return SVector($(B))) ) end @inline function uniform_bsplinebasis_kernel(::Val{0},t::T) where T<:Real U = StaticArrays.arithmetic_closure(T) return U(zero(t) ≤ t < one(t)) end @inline function uniform_bsplinebasis_kernel(::Val{1},t::T) where T<:Real U = StaticArrays.arithmetic_closure(T) return U(max(1-abs(t-1), zero(t))) end @inline function uniform_bsplinebasis_kernel(::Val{p},t::T) where {p,T<:Real} return (t*uniform_bsplinebasis_kernel(Val{p-1}(),t) + (p+1-t)*uniform_bsplinebasis_kernel(Val{p-1}(),t-1))/p end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
8521
# B-spline manifold abstract type AbstractManifold{Dim} end # Broadcast like a scalar Base.Broadcast.broadcastable(M::AbstractManifold) = Ref(M) dim(::AbstractManifold{Dim}) where Dim = Dim @doc raw""" Construct B-spline manifold from given control points and B-spline spaces. # Examples ```jldoctest julia> using StaticArrays julia> P = BSplineSpace{2}(KnotVector([0,0,0,1,1,1])) BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([0, 0, 0, 1, 1, 1])) julia> a = [SVector(1,0), SVector(1,1), SVector(0,1)] 3-element Vector{SVector{2, Int64}}: [1, 0] [1, 1] [0, 1] julia> M = BSplineManifold(a, P); julia> M(0.4) 2-element SVector{2, Float64} with indices SOneTo(2): 0.84 0.64 julia> M(1.2) ERROR: DomainError with 1.2: The input 1.2 is out of domain 0 .. 1. [...] ``` """ struct BSplineManifold{Dim,Deg,C,T,S<:NTuple{Dim, BSplineSpace{p,T} where p}} <: AbstractManifold{Dim} controlpoints::Array{C,Dim} bsplinespaces::S function BSplineManifold{Dim,Deg,C,T,S}(a::Array{C,Dim},P::S) where {S<:NTuple{Dim, BSplineSpace{p,T} where p},C} where {Dim, Deg, T} new{Dim,Deg,C,T,S}(a,P) end end function BSplineManifold(a::Array{C,Dim},P::S) where {S<:Tuple{BSplineSpace{p,T} where p, Vararg{BSplineSpace{p,T} where p}}} where {Dim, T, C} if size(a) != dim.(P) msg = "The size of control points array $(size(a)) and dimensions of B-spline spaces $(dim.(P)) must be equal." throw(DimensionMismatch(msg)) end Deg = degree.(P) return BSplineManifold{Dim,Deg,C,T,S}(a, P) end function BSplineManifold(a::Array{C,Dim},P::S) where {S<:NTuple{Dim, BSplineSpace{p,T} where {p,T}},C} where {Dim} P′ = _promote_knottype(P) return BSplineManifold(a, P′) end BSplineManifold(a::Array{C,Dim},Ps::Vararg{BSplineSpace, Dim}) where {C,Dim} = BSplineManifold(a,Ps) Base.:(==)(M1::AbstractManifold, M2::AbstractManifold) = (bsplinespaces(M1)==bsplinespaces(M2)) & (controlpoints(M1)==controlpoints(M2)) bsplinespaces(M::BSplineManifold) = M.bsplinespaces controlpoints(M::BSplineManifold) = M.controlpoints function Base.hash(M::BSplineManifold{0}, h::UInt) hash(BSplineManifold{0}, hash(controlpoints(M), h)) end function Base.hash(M::BSplineManifold, h::UInt) hash(xor(hash.(bsplinespaces(M), h)...), hash(controlpoints(M), h)) end @doc raw""" unbounded_mapping(M::BSplineManifold{Dim}, t::Vararg{Real,Dim}) # Examples ```jldoctest julia> P = BSplineSpace{1}(KnotVector([0,0,1,1])) BSplineSpace{1, Int64, KnotVector{Int64}}(KnotVector([0, 0, 1, 1])) julia> domain(P) 0 .. 1 julia> M = BSplineManifold([0,1], P); julia> unbounded_mapping(M, 0.1) 0.1 julia> M(0.1) 0.1 julia> unbounded_mapping(M, 1.2) 1.2 julia> M(1.2) ERROR: DomainError with 1.2: The input 1.2 is out of domain 0 .. 1. [...] ``` """ function unbounded_mapping end @generated function unbounded_mapping(M::BSplineManifold{Dim,Deg}, t::Vararg{Real,Dim}) where {Dim,Deg} # Use `UnitRange` to support Julia v1.6 (LTS) # This can be replaced with `range` if we drop support for v1.6 iter = CartesianIndices(UnitRange.(1, Deg .+ 1)) exs = Expr[] for ci in iter ex = Expr(:call, [:getindex, :a, [:($(Symbol(:i,d))+$(ci[d]-1)) for d in 1:Dim]...]...) ex = Expr(:call, [:*, [:($(Symbol(:b,d))[$(ci[d])]) for d in 1:Dim]..., ex]...) ex = Expr(:+=, :v, ex) push!(exs, ex) end exs[1].head = :(=) Expr( :block, Expr(:(=), Expr(:tuple, [Symbol(:P, i) for i in 1:Dim]...), :(bsplinespaces(M))), Expr(:(=), Expr(:tuple, [Symbol(:t, i) for i in 1:Dim]...), :t), :(a = controlpoints(M)), Expr(:(=), Expr(:tuple, [Symbol(:i, i) for i in 1:Dim]...), Expr(:tuple, [:(intervalindex($(Symbol(:P, i)), $(Symbol(:t, i)))) for i in 1:Dim]...)), Expr(:(=), Expr(:tuple, [Symbol(:b, i) for i in 1:Dim]...), Expr(:tuple, [:(bsplinebasisall($(Symbol(:P, i)), $(Symbol(:i, i)), $(Symbol(:t, i)))) for i in 1:Dim]...)), exs..., :(return v) ) end @generated function (M::BSplineManifold{Dim})(t::Vararg{Real, Dim}) where Dim Ps = [Symbol(:P,i) for i in 1:Dim] P = Expr(:tuple, Ps...) ts = [Symbol(:t,i) for i in 1:Dim] T = Expr(:tuple, ts...) exs = [:($(Symbol(:t,i)) in domain($(Symbol(:P,i))) || throw(DomainError($(Symbol(:t,i)), "The input "*string($(Symbol(:t,i)))*" is out of domain $(domain($(Symbol(:P,i))))."))) for i in 1:Dim] ret = Expr(:call,:unbounded_mapping,:M,[Symbol(:t,i) for i in 1:Dim]...) Expr( :block, :($(Expr(:meta, :inline))), :($T = t), :($P = bsplinespaces(M)), exs..., :(return $(ret)) ) end ## currying # 2dim @inline function (M::BSplineManifold{2,p})(t1::Real,::Colon) where p p1, p2 = p P1, P2 = bsplinespaces(M) a = controlpoints(M) j1 = intervalindex(P1,t1) B1 = bsplinebasisall(P1,j1,t1) b = sum(a[j1+i1,:]*B1[1+i1] for i1 in 0:p1) return BSplineManifold(b,(P2,)) end @inline function (M::BSplineManifold{2,p})(::Colon,t2::Real) where p p1, p2 = p P1, P2 = bsplinespaces(M) a = controlpoints(M) j2 = intervalindex(P2,t2) B2 = bsplinebasisall(P2,j2,t2) b = sum(a[:,j2+i2]*B2[1+i2] for i2 in 0:p2) return BSplineManifold(b,(P1,)) end # 3dim @inline function (M::BSplineManifold{3,p})(t1::Real,::Colon,::Colon) where p p1, p2, p3 = p P1, P2, P3 = bsplinespaces(M) a = controlpoints(M) j1 = intervalindex(P1,t1) B1 = bsplinebasisall(P1,j1,t1) b = sum(a[j1+i1,:,:]*B1[1+i1] for i1 in 0:p1) return BSplineManifold(b,(P2,P3)) end @inline function (M::BSplineManifold{3,p})(::Colon,t2::Real,::Colon) where p p1, p2, p3 = p P1, P2, P3 = bsplinespaces(M) a = controlpoints(M) j2 = intervalindex(P2,t2) B2 = bsplinebasisall(P2,j2,t2) b = sum(a[:,j2+i2,:]*B2[1+i2] for i2 in 0:p2) return BSplineManifold(b,(P1,P3)) end @inline function (M::BSplineManifold{3,p})(::Colon,::Colon,t3::Real) where p p1, p2, p3 = p P1, P2, P3 = bsplinespaces(M) a = controlpoints(M) j3 = intervalindex(P3,t3) B3 = bsplinebasisall(P3,j3,t3) b = sum(a[:,:,j3+i3]*B3[1+i3] for i3 in 0:p3) return BSplineManifold(b,(P1,P2)) end @inline function (M::BSplineManifold{3,p})(t1::Real,t2::Real,::Colon) where p p1, p2, p3 = p P1, P2, P3 = bsplinespaces(M) a = controlpoints(M) j1 = intervalindex(P1,t1) j2 = intervalindex(P2,t2) B1 = bsplinebasisall(P1,j1,t1) B2 = bsplinebasisall(P2,j2,t2) b = sum(a[j1+i1,j2+i2,:]*B1[1+i1]*B2[1+i2] for i1 in 0:p1, i2 in 0:p2) return BSplineManifold(b,(P3,)) end @inline function (M::BSplineManifold{3,p})(t1::Real,::Colon,t3::Real) where p p1, p2, p3 = p P1, P2, P3 = bsplinespaces(M) a = controlpoints(M) j1 = intervalindex(P1,t1) j3 = intervalindex(P3,t3) B1 = bsplinebasisall(P1,j1,t1) B3 = bsplinebasisall(P3,j3,t3) b = sum(a[j1+i1,:,j3+i3]*B1[1+i1]*B3[1+i3] for i1 in 0:p1, i3 in 0:p3) return BSplineManifold(b,(P2,)) end @inline function (M::BSplineManifold{3,p})(::Colon,t2::Real,t3::Real) where p p1, p2, p3 = p P1, P2, P3 = bsplinespaces(M) a = controlpoints(M) j2 = intervalindex(P2,t2) j3 = intervalindex(P3,t3) B2 = bsplinebasisall(P2,j2,t2) B3 = bsplinebasisall(P3,j3,t3) b = sum(a[:,j2+i2,j3+i3]*B2[1+i2]*B3[1+i3] for i2 in 0:p2, i3 in 0:p3) return BSplineManifold(b,(P1,)) end # TODO: The performance of this method can be improved. function (M::BSplineManifold{Dim,Deg})(t::Union{Real, Colon}...) where {Dim, Deg} P = bsplinespaces(M) a = controlpoints(M) t_real = _remove_colon(t...) P_real = _remove_colon(_get_on_real.(P, t)...) P_colon = _remove_colon(_get_on_colon.(P, t)...) j_real = intervalindex.(P_real, t_real) B = bsplinebasisall.(P_real, j_real, t_real) Deg_real = _remove_colon(_get_on_real.(Deg, t)...) ci = CartesianIndices(UnitRange.(0, Deg_real)) next = _replace_noncolon((), j_real, t...) a′ = view(a, next...) .* *(getindex.(B, 1)...) l = length(ci) for i in view(ci,2:l) next = _replace_noncolon((), j_real .+ i.I, t...) b = *(getindex.(B, i.I .+ 1)...) a′ .+= view(a, next...) .* b end return BSplineManifold(a′, P_colon) end @inline function (M::BSplineManifold{Dim})(::Vararg{Colon, Dim}) where Dim a = copy(controlpoints(M)) Ps = bsplinespaces(M) return BSplineManifold(a,Ps) end @inline function (M::BSplineManifold{0})() a = controlpoints(M) return a[] end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
13725
# B-spline space abstract type AbstractFunctionSpace{T} end @doc raw""" Construct B-spline space from given polynominal degree and knot vector. ```math \mathcal{P}[p,k] ``` # Examples ```jldoctest julia> p = 2 2 julia> k = KnotVector([1,3,5,6,8,9]) KnotVector([1, 3, 5, 6, 8, 9]) julia> BSplineSpace{p}(k) BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([1, 3, 5, 6, 8, 9])) ``` """ struct BSplineSpace{p, T<:Real, K<:AbstractKnotVector{T}} <: AbstractFunctionSpace{T} knotvector::K global unsafe_bsplinespace(::Val{p}, k::K) where {p, K<:AbstractKnotVector{T}} where {T<:Real} = new{p,T,K}(k) end function BSplineSpace{p}(k::AbstractKnotVector) where p if p < 0 throw(DomainError(p, "degree of polynominal must be non-negative")) end return unsafe_bsplinespace(Val{p}(), k) end function BSplineSpace{p,T}(k::AbstractKnotVector{T}) where {p, T} return BSplineSpace{p}(k) end function BSplineSpace{p,T1}(k::AbstractKnotVector{T2}) where {p, T1, T2} return BSplineSpace{p,T1}(AbstractKnotVector{T1}(k)) end const UniformBSplineSpace{p, T, R} = BSplineSpace{p, T, UniformKnotVector{T, R}} """ Convert BSplineSpace to BSplineSpace """ function BSplineSpace(P::BSplineSpace{p}) where p return P end function BSplineSpace{p}(P::BSplineSpace{p}) where p return P end function BSplineSpace{p,T}(P::BSplineSpace{p}) where {p,T} return BSplineSpace{p}(AbstractKnotVector{T}(knotvector(P))) end function BSplineSpace{p,T,K}(P::BSplineSpace{p}) where {p,T,K} return BSplineSpace{p,T}(K(knotvector(P))) end function BSplineSpace{p,T,K}(k::AbstractKnotVector) where {p,T,K} return BSplineSpace{p,T}(K(k)) end # Broadcast like a scalar Base.Broadcast.broadcastable(P::BSplineSpace) = Ref(P) Base.iterate(P::AbstractFunctionSpace) = (P, nothing) Base.iterate(::AbstractFunctionSpace, ::Any) = nothing # Equality @inline Base.:(==)(P1::BSplineSpace{p}, P2::BSplineSpace{p}) where p = knotvector(P1) == knotvector(P2) @inline Base.:(==)(P1::BSplineSpace{p1}, P2::BSplineSpace{p2}) where {p1, p2} = false bsplinespace(P::BSplineSpace) = P @inline function degree(::BSplineSpace{p}) where p return p end @inline function knotvector(P::BSplineSpace) return P.knotvector end @generated function _promote_knottype(P::NTuple{Dim,BSplineSpace}) where Dim Expr( :block, Expr(:(=), Expr(:tuple, [Symbol(:P, i) for i in 1:Dim]...), :P), Expr(:(=), Expr(:tuple, [Symbol(:k, i) for i in 1:Dim]...), Expr(:tuple, [:(knotvector($(Symbol(:P, i)))) for i in 1:Dim]...)), Expr(:(=), :T, Expr(:call, :promote_type, [:(eltype($(Symbol(:k, i)))) for i in 1:Dim]...)), Expr(:(=), Expr(:tuple, [Symbol(:k, i, :(var"′")) for i in 1:Dim]...), Expr(:tuple, [:(AbstractKnotVector{T}($(Symbol(:k, i)))) for i in 1:Dim]...)), Expr(:(=), :P′, Expr(:tuple, [:(BSplineSpace{degree($(Symbol(:P, i)))}($(Symbol(:k, i, :(var"′"))))) for i in 1:Dim]...)), :(return P′) ) end function domain(P::BSplineSpace) p = degree(P) k = knotvector(P) return k[1+p]..k[end-p] end @doc raw""" Return dimention of a B-spline space. ```math \dim(\mathcal{P}[p,k]) =\# k - p -1 ``` # Examples ```jldoctest julia> dim(BSplineSpace{1}(KnotVector([1,2,3,4,5,6,7]))) 5 julia> dim(BSplineSpace{1}(KnotVector([1,2,4,4,4,6,7]))) 5 julia> dim(BSplineSpace{1}(KnotVector([1,2,3,5,5,5,7]))) 5 ``` """ function dim(bsplinespace::BSplineSpace{p}) where p k = knotvector(bsplinespace) return length(k) - p - 1 end @doc raw""" Check inclusive relationship between B-spline spaces. ```math \mathcal{P}[p,k] \subseteq\mathcal{P}[p',k'] ``` # Examples ```jldoctest julia> P1 = BSplineSpace{1}(KnotVector([1,3,5,8])); julia> P2 = BSplineSpace{1}(KnotVector([1,3,5,6,8,9])); julia> P3 = BSplineSpace{2}(KnotVector([1,1,3,3,5,5,8,8])); julia> P1 ⊆ P2 true julia> P1 ⊆ P3 true julia> P2 ⊆ P3 false julia> P2 ⊈ P3 true ``` """ function Base.issubset(P::BSplineSpace{p}, P′::BSplineSpace{p′}) where {p, p′} p₊ = p′ - p p₊ < 0 && return false k = knotvector(P) k′ = knotvector(P′) l = length(k) i = 1 c = 0 for j in 1:length(k′) if l < i return true end if k[i] < k′[j] return false end if k[i] == k′[j] c += 1 if c == p₊+1 i += 1 c = 0 elseif (i ≠ l) && (k[i] == k[i+1]) i += 1 c = 0 end end end return l < i # The above implementation is the same as `k + p₊ * unique(k) ⊆ k′`, but that's much faster. end @doc raw""" Check inclusive relationship between B-spline spaces. ```math \mathcal{P}[p,k] \sqsubseteq\mathcal{P}[p',k'] \Leftrightarrow \mathcal{P}[p,k]|_{[k_{p+1},k_{l-p}]} \subseteq\mathcal{P}[p',k']|_{[k'_{p'+1},k'_{l'-p'}]} ``` """ function issqsubset(P::BSplineSpace{p}, P′::BSplineSpace{p′}) where {p, p′} p₊ = p′ - p p₊ < 0 && return false k = knotvector(P) k′ = knotvector(P′) !(k[1+p] == k′[1+p′] < k′[end-p′] == k[end-p]) && return false l = length(k) l′ = length(k′) inner_knotvector = view(k, p+2:l-p-1) inner_knotvector′ = view(k′, p′+2:l′-p′-1) _P = BSplineSpace{p}(inner_knotvector) _P′ = BSplineSpace{p′}(inner_knotvector′) return _P ⊆ _P′ end const ⊑ = issqsubset ⊒(l, r) = r ⊑ l ⋢(l, r) = !⊑(l, r) ⋣(l, r) = r ⋢ l ≃(P1::BSplineSpace, P2::BSplineSpace) = (P1 ⊑ P2) & (P2 ⊑ P1) Base.:⊊(A::AbstractFunctionSpace, B::AbstractFunctionSpace) = (A ≠ B) & (A ⊆ B) Base.:⊋(A::AbstractFunctionSpace, B::AbstractFunctionSpace) = (A ≠ B) & (A ⊇ B) ⋤(A::AbstractFunctionSpace, B::AbstractFunctionSpace) = (A ≠ B) & (A ⊑ B) ⋥(A::AbstractFunctionSpace, B::AbstractFunctionSpace) = (A ≠ B) & (A ⊒ B) function isdegenerate_R(P::BSplineSpace{p}, i::Integer) where p k = knotvector(P) return k[i] == k[i+p+1] end function isdegenerate_I(P::BSplineSpace{p}, i::Integer) where p return iszero(width(bsplinesupport(P,i) ∩ domain(P))) end function _iszeros_R(P::BSplineSpace{p}) where p return [isdegenerate_R(P,i) for i in 1:dim(P)] end function _iszeros_I(P::BSplineSpace{p}) where p return [isdegenerate_I(P,i) for i in 1:dim(P)] end @doc raw""" Check if given B-spline space is non-degenerate. # Examples ```jldoctest julia> isnondegenerate(BSplineSpace{2}(KnotVector([1,3,5,6,8,9]))) true julia> isnondegenerate(BSplineSpace{1}(KnotVector([1,3,3,3,8,9]))) false ``` """ isnondegenerate(P::BSplineSpace) @doc raw""" Check if given B-spline space is degenerate. # Examples ```jldoctest julia> isdegenerate(BSplineSpace{2}(KnotVector([1,3,5,6,8,9]))) false julia> isdegenerate(BSplineSpace{1}(KnotVector([1,3,3,3,8,9]))) true ``` """ isdegenerate(P::BSplineSpace) for (f, fnon) in ((:isdegenerate_R, :isnondegenerate_R), (:isdegenerate_I, :isnondegenerate_I)) @eval function $f(P::AbstractFunctionSpace) for i in 1:dim(P) $f(P,i) && return true end return false end @eval $fnon(P, i::Integer) = !$f(P, i) @eval $fnon(P) = !$f(P) end const isdegenerate = isdegenerate_R const isnondegenerate = isnondegenerate_R function _nondegeneratize_R(P::BSplineSpace{p}) where p k = copy(KnotVector(knotvector(P))) I = Int[] for i in 1:dim(P) isdegenerate_R(P,i) && push!(I, i) end deleteat!(BasicBSpline._vec(k), I) return BSplineSpace{p}(k) end function _nondegeneratize_I(P::BSplineSpace{p}) where p k = copy(KnotVector(knotvector(P))) l = length(k) I = Int[] for i in 1:dim(P) if isdegenerate_I(P,i) if k[l-p] < k[i+p+1] push!(I, i+p+1) else push!(I, i) end end end deleteat!(BasicBSpline._vec(k), I) return BSplineSpace{p}(k) end """ Exact dimension of a B-spline space. # Examples ```jldoctest julia> exactdim_R(BSplineSpace{1}(KnotVector([1,2,3,4,5,6,7]))) 5 julia> exactdim_R(BSplineSpace{1}(KnotVector([1,2,4,4,4,6,7]))) 4 julia> exactdim_R(BSplineSpace{1}(KnotVector([1,2,3,5,5,5,7]))) 4 ``` """ function exactdim_R(P::BSplineSpace) n = dim(P) for i in 1:dim(P) n -= isdegenerate_R(P,i) end return n # The above implementation is the same as `dim(P)-sum(_iszeros_R(P))`, but that's much faster. end """ Exact dimension of a B-spline space. # Examples ```jldoctest julia> exactdim_I(BSplineSpace{1}(KnotVector([1,2,3,4,5,6,7]))) 5 julia> exactdim_I(BSplineSpace{1}(KnotVector([1,2,4,4,4,6,7]))) 4 julia> exactdim_I(BSplineSpace{1}(KnotVector([1,2,3,5,5,5,7]))) 3 ``` """ function exactdim_I(P::BSplineSpace) n = dim(P) for i in 1:dim(P) n -= isdegenerate_I(P,i) end return n # The above implementation is the same as `dim(P)-sum(_iszeros_I(P))`, but that's much faster. end const exactdim = exactdim_R @doc raw""" Return the support of ``i``-th B-spline basis function. ```math \operatorname{supp}(B_{(i,p,k)})=[k_{i},k_{i+p+1}] ``` # Examples ```jldoctest julia> k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]) KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]) julia> P = BSplineSpace{2}(k) BSplineSpace{2, Float64, KnotVector{Float64}}(KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0])) julia> bsplinesupport(P,1) 0.0 .. 5.5 julia> bsplinesupport(P,2) 1.5 .. 8.0 ``` """ bsplinesupport(P::BSplineSpace, i::Integer) = bsplinesupport_R(P,i) function bsplinesupport_R(P::BSplineSpace{p}, i::Integer) where p k = knotvector(P) return k[i]..k[i+p+1] end function bsplinesupport_I(P::BSplineSpace{p}, i::Integer) where p return bsplinesupport_R(P,i) ∩ domain(P) end @doc raw""" Internal methods for obtaining a B-spline space with one degree lower. ```math \begin{aligned} \mathcal{P}[p,k] &\mapsto \mathcal{P}[p-1,k] \\ D^r\mathcal{P}[p,k] &\mapsto D^{r-1}\mathcal{P}[p-1,k] \end{aligned} ``` """ _lower_R _lower_R(P::BSplineSpace{p,T}) where {p,T} = BSplineSpace{p-1}(knotvector(P)) function _lower_I(P::BSplineSpace{p,T}) where {p,T} k = knotvector(P) l = length(k) return BSplineSpace{p-1}(view(k,2:l-1)) end """ Return an index of a interval in the domain of B-spline space # Examples ```jldoctest julia> k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]); julia> P = BSplineSpace{2}(k); julia> domain(P) 2.5 .. 9.0 julia> intervalindex(P,2.6) 1 julia> intervalindex(P,5.6) 2 julia> intervalindex(P,8.5) 3 julia> intervalindex(P,9.5) 3 ``` """ function intervalindex(P::BSplineSpace{p},t::Real) where p k = knotvector(P) l = length(k) v = view(_vec(k),2+p:l-p-1) return searchsortedlast(v,t)+1 end """ Expand B-spline space with given additional degree and knotvector. This function is compatible with `issqsubset` (`⊑`) # Examples ```jldoctest julia> k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]); julia> P = BSplineSpace{2}(k); julia> P′ = expandspace_I(P, Val(1), KnotVector([6.0])) BSplineSpace{3, Float64, KnotVector{Float64}}(KnotVector([0.0, 1.5, 2.5, 2.5, 5.5, 5.5, 6.0, 8.0, 8.0, 9.0, 9.0, 9.5, 10.0])) julia> P ⊆ P′ false julia> P ⊑ P′ true julia> domain(P) 2.5 .. 9.0 julia> domain(P′) 2.5 .. 9.0 ``` """ function expandspace_I end function expandspace_I(P::BSplineSpace{p,T}, ::Val{p₊}, k₊::AbstractKnotVector=EmptyKnotVector{T}()) where {p,p₊,T} k = knotvector(P) I = domain(P) l = length(k) l₊ = length(k₊) if l₊ ≥ 1 k₊[1] ∉ I && throw(DomainError(k₊, "input knot vector is out of domain.")) end if l₊ ≥ 2 k₊[end] ∉ I && throw(DomainError(k₊, "input knot vector is out of domain.")) end k̂ = unique(view(k, 1+p:l-p)) p′ = p + p₊ k′ = k + p₊*k̂ + k₊ P′ = BSplineSpace{p′}(k′) return P′ end function expandspace_I(P::BSplineSpace{p,T}, k₊::AbstractKnotVector=EmptyKnotVector{T}()) where {p,T} k = knotvector(P) I = domain(P) l₊ = length(k₊) if l₊ ≥ 1 k₊[1] ∉ I && throw(DomainError(k₊, "input knot vector is out of domain.")) end if l₊ ≥ 2 k₊[end] ∉ I && throw(DomainError(k₊, "input knot vector is out of domain.")) end k′ = k + k₊ P′ = BSplineSpace{p}(k′) return P′ end """ Expand B-spline space with given additional degree and knotvector. This function is compatible with `issubset` (`⊆`). # Examples ```jldoctest julia> k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]); julia> P = BSplineSpace{2}(k); julia> P′ = expandspace_R(P, Val(1), KnotVector([6.0])) BSplineSpace{3, Float64, KnotVector{Float64}}(KnotVector([0.0, 0.0, 1.5, 1.5, 2.5, 2.5, 5.5, 5.5, 6.0, 8.0, 8.0, 9.0, 9.0, 9.5, 9.5, 10.0, 10.0])) julia> P ⊆ P′ true julia> P ⊑ P′ false julia> domain(P) 2.5 .. 9.0 julia> domain(P′) 1.5 .. 9.5 ``` """ function expandspace_R end function expandspace_R(P::BSplineSpace{p,T}, ::Val{p₊}, k₊::AbstractKnotVector=EmptyKnotVector{T}()) where {p,p₊,T} k = knotvector(P) p′ = p + p₊ k′ = k + p₊*k + k₊ P′ = BSplineSpace{p′}(k′) return P′ end function expandspace_R(P::BSplineSpace{p,T}, k₊::AbstractKnotVector=EmptyKnotVector{T}()) where {p,T} k = knotvector(P) k′ = k + k₊ P′ = BSplineSpace{p}(k′) return P′ end """ Expand B-spline space with given additional degree and knotvector. The behavior of `expandspace` is same as `expandspace_I`. """ function expandspace(P::BSplineSpace{p,T}, _p₊::Val{p₊}, k₊::AbstractKnotVector=EmptyKnotVector{T}()) where {p,p₊,T} expandspace_I(P,_p₊,k₊) end function expandspace(P::BSplineSpace{p,T}, k₊::AbstractKnotVector=EmptyKnotVector{T}()) where {p,T} expandspace_I(P,k₊) end function Base.hash(P::BSplineSpace{p}, h::UInt) where p k = knotvector(P) hash(BSplineSpace{p}, hash(_vec(k), h)) end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
28044
# Change Basis between B-Spline Spaces # See https://hackmd.io/lpA0D0ySTQ6Hq1CdaaONxQ for more information. @doc raw""" changebasis_R(P::AbstractFunctionSpace, P′::AbstractFunctionSpace) Return a coefficient matrix ``A`` which satisfy ```math B_{(i,p,k)} = \sum_{j}A_{i,j}B_{(j,p',k')} ``` # Examples ```jldoctest julia> P = BSplineSpace{2}(knotvector"3 13") BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([1, 1, 1, 3, 4, 4, 4])) julia> P′ = BSplineSpace{3}(knotvector"4124") BSplineSpace{3, Int64, KnotVector{Int64}}(KnotVector([1, 1, 1, 1, 2, 3, 3, 4, 4, 4, 4])) julia> P ⊆ P′ true julia> changebasis_R(P, P′) 4×7 SparseArrays.SparseMatrixCSC{Float64, Int32} with 13 stored entries: 1.0 0.666667 0.166667 ⋅ ⋅ ⋅ ⋅ ⋅ 0.333333 0.722222 0.555556 0.111111 ⋅ ⋅ ⋅ ⋅ 0.111111 0.444444 0.888889 0.666667 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.333333 1.0 ``` """ function changebasis_R(P::AbstractFunctionSpace, P′::AbstractFunctionSpace) P ⊆ P′ || throw(DomainError((P,P′),"P ⊆ P′ should be hold.")) return _changebasis_R(P, P′) end """ _changebasis_R(P::AbstractFunctionSpace, P′::AbstractFunctionSpace) Internal function for [`changebasis_R`](@ref). Implicit assumption: - `P ⊆ P′` """ _changebasis_R function _changebasis_R(P::BSplineSpace{p,T}, P′::BSplineSpace{p′,T′}) where {p,T,p′,T′} _P = BSplineSpace{p,T,KnotVector{T}}(P) _P′ = BSplineSpace{p′,T′,KnotVector{T′}}(P′) return _changebasis_R(_P,_P′) end function _changebasis_R(P::BSplineSpace{0,T,KnotVector{T}}, P′::BSplineSpace{p′,T′,KnotVector{T′}}) where {p′,T,T′} U = StaticArrays.arithmetic_closure(promote_type(T, T′)) n = dim(P) n′ = dim(P′) n′_exact = exactdim_R(P′) k = knotvector(P) k′ = knotvector(P′) I = Vector{Int32}(undef, n′_exact) J = Vector{Int32}(undef, n′_exact) s = 1 local j_begin j_end = 0 for i in 1:n isdegenerate(P, i) && continue for j in (j_end+1):n′ k′[j] == k[i] && (j_begin = j; break) end for j in j_begin:n′ k′[j+p′+1] == k[i+1] && (j_end = j + p′; break) end for j in j_begin:j_end isdegenerate(P′, j) && continue I[s] = i J[s] = j s += 1 end end A⁰ = sparse(view(I,1:s-1), view(J,1:s-1), fill(one(U), s-1), n, n′) return A⁰ end function _find_j_range_R(P::BSplineSpace{p}, P′::BSplineSpace{p′}, i, j_range) where {p, p′} k = knotvector(P) k′ = knotvector(P′) n′ = dim(P′) # Pi = BSplineSpace{p}(view(k, i:i+p+1)) j_begin, j_end = extrema(j_range) # Find `j_end`. This is the same as: # j_end::Int = findnext(j->Pi ⊆ BSplineSpace{p′}(view(k′, j_begin:j+p′+1)), 1:n′, j_end) m = p′-p t_end = k[i+p+1] for ii in 0:(p+1) if k[i+p+1-ii] == t_end m += 1 else break end end for j in (j_end-p′-1):n′ if t_end == k′[j+p′+1] # can be ≤ m -= 1 end if m == 0 j_end = j break end end # Find `j_begin`. This is the same as: # j_begin::Int = findprev(j->Pi ⊆ BSplineSpace{p′}(view(k′, j:j_end+p′+1)), 1:n′, j_end) m = p′-p t_begin = k[i] for ii in 0:(p+1) if k[i+ii] == t_begin m += 1 else break end end for j in reverse(1:(j_end+p′+1)) if k′[j] == t_begin # can be ≤ m -= 1 end if m == 0 j_begin = j break end end return j_begin:j_end end function _ΔAᵖ_R(Aᵖ⁻¹::AbstractMatrix, K::AbstractVector, K′::AbstractVector, i::Integer, j::Integer) return K′[j] * (K[i] * Aᵖ⁻¹[i, j] - K[i+1] * Aᵖ⁻¹[i+1, j]) end function _changebasis_R(P::BSplineSpace{p,T,KnotVector{T}}, P′::BSplineSpace{p′,T′,KnotVector{T′}}) where {p,p′,T,T′} #= Example matrix: n=3, n′=4 Aᵖ⁻¹₁₁ Aᵖ⁻¹₁₂ Aᵖ⁻¹₁₃ Aᵖ⁻¹₁₄ Aᵖ⁻¹₁₅ ├ Aᵖ₁₁ ┼ Aᵖ₁₂ ┼ Aᵖ₁₃ ┼ Aᵖ₁₄ ┤ Aᵖ⁻¹₂₁ Aᵖ⁻¹₂₂ Aᵖ⁻¹₂₃ Aᵖ⁻¹₂₄ Aᵖ⁻¹₂₅ ├ Aᵖ₂₁ ┼ Aᵖ₂₂ ┼ Aᵖ₂₃ ┼ Aᵖ₂₄ ┤ Aᵖ⁻¹₃₁ Aᵖ⁻¹₃₂ Aᵖ⁻¹₃₃ Aᵖ⁻¹₃₄ Aᵖ⁻¹₃₅ ├ Aᵖ₃₁ ┼ Aᵖ₃₂ ┼ Aᵖ₃₃ ┼ Aᵖ₃₄ ┤ Aᵖ⁻¹₄₁ Aᵖ⁻¹₄₂ Aᵖ⁻¹₄₃ Aᵖ⁻¹₄₄ Aᵖ⁻¹₄₅ === i-rule === - isdegenerate_R(P, i) ⇒ Aᵖᵢⱼ = 0 === j-rules for fixed i === - Rule-0: B₍ᵢ,ₚ,ₖ₎ ∈ span₍ᵤ₌ₛ…ₜ₎(B₍ᵤ,ₚ′,ₖ′₎), s≤j≤t ⇒ Aᵖᵢⱼ ≠ 0 supp(B₍ⱼ,ₚ′,ₖ′₎) ⊈ supp(B₍ᵢ,ₚ,ₖ₎) ⇒ Aᵖᵢⱼ = 0 is almost equivalent (if there are no duplicated knots). - Rule-1: isdegenerate_R(P′, j) ⇒ Aᵖᵢⱼ = 0 Ideally this should be NaN, but we need to support `Rational` which does not include `NaN`. - Rule-2: k′ⱼ = k′ⱼ₊ₚ′ ⇒ B₍ᵢ,ₚ,ₖ₎(t) = ∑ⱼAᵖᵢⱼB₍ⱼ,ₚ′,ₖ′₎(t) (t → k′ⱼ + 0) - Rule-3: k′ⱼ₊₁ = k′ⱼ₊ₚ′ ⇒ B₍ᵢ,ₚ,ₖ₎(t) = ∑ⱼAᵖᵢⱼB₍ⱼ,ₚ′,ₖ′₎(t) (t → k′ⱼ₊₁ - 0) - Rule-6: Aᵖᵢⱼ = Aᵖᵢⱼ₋₁ + (recursive formula based on Aᵖ⁻¹) - Rule-7: Aᵖᵢⱼ = Aᵖᵢⱼ₊₁ - (recursive formula based on Aᵖ⁻¹) =# U = StaticArrays.arithmetic_closure(promote_type(T,T′)) k = knotvector(P) k′ = knotvector(P′) n = dim(P) n′ = dim(P′) K′ = [k′[j+p′] - k′[j] for j in 1:n′+1] K = U[ifelse(k[i+p] ≠ k[i], U(1 / (k[i+p] - k[i])), zero(U)) for i in 1:n+1] Aᵖ⁻¹ = _changebasis_R(_lower_R(P), _lower_R(P′)) # (n+1) × (n′+1) matrix n_nonzero = exactdim_R(P′)*(p+1) # This is a upper bound of the number of non-zero elements of Aᵖ (rough estimation). I = Vector{Int32}(undef, n_nonzero) J = Vector{Int32}(undef, n_nonzero) V = Vector{U}(undef, n_nonzero) s = 1 j_range = 1:1 # j_begin:j_end for i in 1:n # Skip for degenerated basis isdegenerate_R(P,i) && continue # The following indices `j*` have the following relationships. #= 1 n′ |--*-----------------------------*-->| j_begin j_end |----*----------------*------>| j_prev j_mid j_next | | | |--j₊->||<-j₋--| 266666666777777773 366666666777777773 1 n′ |--*-----------------------------*-->| j_begin j_end *|---------------*------------>| j_prev j_mid j_next | | | |--j₊->||<-j₋--| 066666666777777773 1 n′ |--*-----------------------------*-->| j_begin j_end |-------------*-------------->|* j_prev j_mid j_next | | | |--j₊->||<-j₋--| 266666666777777770 366666666777777770 1 n′ *-----------------------------*----->| j_begin j_end *----------------*----------->| j_prev j_mid j_next | | | |--j₊->||<-j₋--| 066666666777777773 1 n′ |------*---------------------------->* j_begin j_end |-------------*--------------->* j_prev j_mid j_next | | | |--j₊->||<-j₋--| 266666666777777770 366666666777777770 =# # Precalculate the range of j j_range = _find_j_range_R(P, P′, i, j_range) j_begin, j_end = extrema(j_range) # Rule-0: outside of j_range j_prev = j_begin-1 Aᵖᵢⱼ_prev = zero(U) for j_next in j_range # Rule-1: zero isdegenerate_R(P′,j_next) && continue # Rule-2: right limit if k′[j_next] == k′[j_next+p′] I[s], J[s] = i, j_next V[s] = Aᵖᵢⱼ_prev = bsplinebasis₊₀(P,i,k′[j_next+1]) s += 1 j_prev = j_next # Rule-3: left limit (or both limit) elseif k′[j_next+1] == k′[j_next+p′] j_mid = (j_prev + j_next) ÷ 2 # Rule-6: right recursion for j₊ in (j_prev+1):j_mid I[s], J[s] = i, j₊ V[s] = Aᵖᵢⱼ_prev = Aᵖᵢⱼ_prev + p * _ΔAᵖ_R(Aᵖ⁻¹,K,K′,i,j₊) / p′ s += 1 end I[s], J[s] = i, j_next V[s] = Aᵖᵢⱼ_prev = Aᵖᵢⱼ_next = bsplinebasis₋₀(P,i,k′[j_next+1]) s += 1 # Rule-7: left recursion for j₋ in reverse((j_mid+1):(j_next-1)) I[s], J[s] = i, j₋ V[s] = Aᵖᵢⱼ_next = Aᵖᵢⱼ_next - p * _ΔAᵖ_R(Aᵖ⁻¹,K,K′,i,j₋+1) / p′ s += 1 end j_prev = j_next end end # Rule-0: outside of j_range j_next = j_end + 1 j_mid = (j_prev + j_next) ÷ 2 Aᵖᵢⱼ_next = zero(U) # Rule-6: right recursion for j₊ in (j_prev+1):j_mid I[s], J[s] = i, j₊ V[s] = Aᵖᵢⱼ_prev = Aᵖᵢⱼ_prev + p * _ΔAᵖ_R(Aᵖ⁻¹,K,K′,i,j₊) / p′ s += 1 end # Rule-7: left recursion for j₋ in reverse((j_mid+1):(j_next-1)) I[s], J[s] = i, j₋ V[s] = Aᵖᵢⱼ_next = Aᵖᵢⱼ_next - p * _ΔAᵖ_R(Aᵖ⁻¹,K,K′,i,j₋+1) / p′ s += 1 end end Aᵖ = sparse(view(I,1:s-1), view(J,1:s-1), view(V,1:s-1), n, n′) return Aᵖ end @doc raw""" Return a coefficient matrix ``A`` which satisfy ```math B_{(i,p_1,k_1)} = \sum_{j}A_{i,j}B_{(j,p_2,k_2)} ``` Assumption: * ``P_1 ≃ P_2`` """ function _changebasis_sim(P1::BSplineSpace{p,T1}, P2::BSplineSpace{p,T2}) where {p,T1,T2} P1 ≃ P2 || throw(DomainError((P1,P2),"P1 ≃ P2 should be hold.")) U = StaticArrays.arithmetic_closure(promote_type(T1,T2)) k1 = knotvector(P1) k2 = knotvector(P2) n = dim(P1) # == dim(P2) l = length(k1) # == length(k2) A = SparseMatrixCSC{U,Int32}(I,n,n) A1 = _derivatives_at_left(P1) A2 = _derivatives_at_left(P2) A12 = A1/A2 Δ = p for i in reverse(1:p) k1[i] ≠ k2[i] && break Δ -= 1 end # A12 must be lower-triangular for i in 1:Δ, j in 1:i A[i, j] = A12[i,j] end A1 = _derivatives_at_right(P1) A2 = _derivatives_at_right(P2) A12 = A1/A2 Δ = p for i in l-p+1:l k1[i] ≠ k2[i] && break Δ -= 1 end # A12 must be upper-triangular for i in 1:Δ, j in i:Δ A[n-Δ+i, n-Δ+j] = A12[i+p-Δ,j+p-Δ] end return A end @generated function _derivatives_at_left(P::BSplineSpace{p,T}) where {p, T} args = [:(pop(bsplinebasisall(BSplineDerivativeSpace{$(r)}(P),1,a))) for r in 0:p-1] quote a, _ = extrema(domain(P)) $(Expr(:call, :hcat, args...)) end end function _derivatives_at_left(::BSplineSpace{0,T}) where {T} U = StaticArrays.arithmetic_closure(T) SMatrix{0,0,U}() end @generated function _derivatives_at_right(P::BSplineSpace{p,T}) where {p, T} args = [:(popfirst(bsplinebasisall(BSplineDerivativeSpace{$(r)}(P),n-p,b))) for r in 0:p-1] quote n = dim(P) _, b = extrema(domain(P)) $(Expr(:call, :hcat, args...)) end end function _derivatives_at_right(::BSplineSpace{0,T}) where {T} U = StaticArrays.arithmetic_closure(T) SMatrix{0,0,U}() end @doc raw""" changebasis_I(P::AbstractFunctionSpace, P′::AbstractFunctionSpace) Return a coefficient matrix ``A`` which satisfy ```math B_{(i,p,k)} = \sum_{j}A_{i,j}B_{(j,p',k')} ``` # Examples ```jldoctest julia> P = BSplineSpace{2}(knotvector"3 13") BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([1, 1, 1, 3, 4, 4, 4])) julia> P′ = BSplineSpace{3}(knotvector"4124") BSplineSpace{3, Int64, KnotVector{Int64}}(KnotVector([1, 1, 1, 1, 2, 3, 3, 4, 4, 4, 4])) julia> P ⊑ P′ true julia> changebasis_I(P, P′) 4×7 SparseArrays.SparseMatrixCSC{Float64, Int32} with 13 stored entries: 1.0 0.666667 0.166667 ⋅ ⋅ ⋅ ⋅ ⋅ 0.333333 0.722222 0.555556 0.111111 ⋅ ⋅ ⋅ ⋅ 0.111111 0.444444 0.888889 0.666667 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.333333 1.0 ``` """ function changebasis_I(P::AbstractFunctionSpace, P′::AbstractFunctionSpace) P ⊑ P′ || throw(DomainError((P,P′),"P ⊑ P′ should be hold.")) return _changebasis_I(P, P′) end """ _changebasis_I(P::AbstractFunctionSpace, P′::AbstractFunctionSpace) Internal function for [`changebasis_I`](@ref). Implicit assumption: - `P ⊑ P′` """ _changebasis_I function _changebasis_I(P::BSplineSpace, P′::BSplineSpace{p′}) where p′ k′ = knotvector(P′) l′ = length(k′) i = 1 + p′ v = k′[i] i = i + 1 while true k′[i] ≠ v && break i = i + 1 end degenerated_rank_on_left = i - p′ - 2 i = length(k′) - p′ v = k′[i] i = i - 1 while true k′[i] ≠ v && break i = i - 1 end degenerated_rank_on_right = l′ - p′ - i - 1 if degenerated_rank_on_left == degenerated_rank_on_right == 0 if P ⊆ P′ return _changebasis_R(P, P′) else return __changebasis_I(P, P′) end else _k′ = view(k′, 1+degenerated_rank_on_left:l′-degenerated_rank_on_right) _P′ = BSplineSpace{p′}(_k′) _A = _changebasis_I(P, _P′) m = _A.m n = _A.n + degenerated_rank_on_left + degenerated_rank_on_right colptr = _A.colptr prepend!(colptr, fill(colptr[begin], degenerated_rank_on_left)) append!(colptr, fill(colptr[end], degenerated_rank_on_right)) rowval = _A.rowval nzval = _A.nzval return SparseMatrixCSC(m,n,colptr,rowval,nzval) end end """ __changebasis_I(P::AbstractFunctionSpace, P′::AbstractFunctionSpace) Internal function for [`changebasis_I`](@ref). Implicit assumption: - `P ⊑ P′` - `isnondegenerate_I(P′, 1)` - `isnondegenerate_I(P′, dim(P′))` """ __changebasis_I function __changebasis_I(P::BSplineSpace{0,T,<:AbstractKnotVector{T}}, P′::BSplineSpace{p′,T′,<:AbstractKnotVector{T′}}) where {p′,T,T′} U = StaticArrays.arithmetic_closure(promote_type(T, T′)) n = dim(P) n′ = dim(P′) n′_exact = exactdim_R(P′) k = knotvector(P) k′ = knotvector(P′) I = Vector{Int32}(undef, n′_exact) J = Vector{Int32}(undef, n′_exact) s = 1 local j_begin j_end = 0 for i in 1:n isdegenerate(P, i) && continue for j in (j_end+1):n′ k′[j] ≤ k[i] && (j_begin = j; break) end for j in j_begin:n′ k′[j+p′+1] ≥ k[i+1] && (j_end = j + p′; break) end for j in j_begin:j_end isdegenerate(P′, j) && continue I[s] = i J[s] = j s += 1 end end A⁰ = sparse(view(I,1:s-1), view(J,1:s-1), fill(one(U), s-1), n, n′) return A⁰ end function _changebasis_I_old(P::BSplineSpace{p,T}, P′::BSplineSpace{p′,T′}) where {p,p′,T,T′} k = knotvector(P) k′ = knotvector(P′) _P = BSplineSpace{p}(k[1+p:end-p] + p * KnotVector{T}([k[1+p], k[end-p]])) _P′ = BSplineSpace{p′}(k′[1+p′:end-p′] + p′ * KnotVector{T′}([k′[1+p′], k′[end-p′]])) _A = _changebasis_R(_P, _P′) Asim = _changebasis_sim(P, _P) Asim′ = _changebasis_sim(_P′, P′) A = Asim * _A * Asim′ return A end function __changebasis_I_old(P1::BSplineSpace{p,T}, P2::BSplineSpace{p′,T′}) where {p,p′,T,T′} U = StaticArrays.arithmetic_closure(promote_type(T, T′)) _P1 = _nondegeneratize_I(P1) _P2 = _nondegeneratize_I(P2) _A = sparse(Int32[], Int32[], U[], dim(P1), dim(P2)) _A[isnondegenerate_I.(P1,1:dim(P1)), isnondegenerate_I.(P2,1:dim(P2))] = _changebasis_I_old(_P1,_P2) return _A end function _find_j_range_I(P::BSplineSpace{p}, P′::BSplineSpace{p′}, i, j_range, Aᵖ_old) where {p, p′} # TODO: remove `Aᵖ_old` argument # TODO: fix performance https://github.com/hyrodium/BasicBSpline.jl/pull/323#issuecomment-1723216566 # TODO: remove threshold such as 1e-14 Pi = BSplineSpace{p}(view(knotvector(P), i:i+p+1)) if Pi ⊆ P′ return _find_j_range_R(P, P′, i, j_range) end j_begin = findfirst(e->abs(e)>1e-14, view(Aᵖ_old, i, :)) j_end = findlast(e->abs(e)>1e-14, view(Aᵖ_old, i, :)) return j_begin:j_end end function _ΔAᵖ_I(Aᵖ⁻¹::AbstractMatrix, K::AbstractVector, K′::AbstractVector, i::Integer, j::Integer) n = length(K)-1 if i == 1 return - K′[j] * K[i+1] * Aᵖ⁻¹[i, j-1] elseif i == n return K′[j] * K[i] * Aᵖ⁻¹[i-1, j-1] else return K′[j] * (K[i] * Aᵖ⁻¹[i-1, j-1] - K[i+1] * Aᵖ⁻¹[i, j-1]) end end function __changebasis_I(P::BSplineSpace{p,T,<:AbstractKnotVector{T}}, P′::BSplineSpace{p′,T′,<:AbstractKnotVector{T′}}) where {p,p′,T,T′} #= Example matrix: n=4, n′=5 Aᵖ₁₁ ┬ Aᵖ₁₂ ┬ Aᵖ₁₃ ┬ Aᵖ₁₄ ┬ Aᵖ₁₅ Aᵖ⁻¹₁₁ Aᵖ⁻¹₁₂ Aᵖ⁻¹₁₃ Aᵖ⁻¹₁₄ Aᵖ₂₁ ┼ Aᵖ₂₂ ┼ Aᵖ₂₃ ┼ Aᵖ₂₄ ┼ Aᵖ₂₅ Aᵖ⁻¹₂₁ Aᵖ⁻¹₂₂ Aᵖ⁻¹₂₃ Aᵖ⁻¹₂₄ Aᵖ₃₁ ┼ Aᵖ₃₂ ┼ Aᵖ₃₃ ┼ Aᵖ₃₄ ┼ Aᵖ₃₅ Aᵖ⁻¹₃₁ Aᵖ⁻¹₃₂ Aᵖ⁻¹₃₃ Aᵖ⁻¹₃₄ Aᵖ₄₁ ┴ Aᵖ₄₂ ┴ Aᵖ₄₃ ┴ Aᵖ₄₄ ┴ Aᵖ₄₅ === i-rule === - isdegenerate_I(P, i) ⇒ Aᵖᵢⱼ = 0 === j-rules for fixed i === - Rule-0: B₍ᵢ,ₚ,ₖ₎ ∈ span₍ᵤ₌ₛ…ₜ₎(B₍ᵤ,ₚ′,ₖ′₎), s≤j≤t ⇒ Aᵖᵢⱼ ≠ 0 (on B-spline space domain) supp(B₍ⱼ,ₚ′,ₖ′₎) ⊈ supp(B₍ᵢ,ₚ,ₖ₎) ⇒ Aᵖᵢⱼ = 0 is almost equivalent (if there are no duplicated knots). - Rule-1: isdegenerate_I(P′, j) ⇒ Aᵖᵢⱼ = 0 Ideally this should be NaN, but we need to support `Rational` which does not include `NaN`. - Rule-2: k′ⱼ = k′ⱼ₊ₚ′ ⇒ B₍ᵢ,ₚ,ₖ₎(t) = ∑ⱼAᵖᵢⱼB₍ⱼ,ₚ′,ₖ′₎(t) (t → k′ⱼ + 0) - Rule-3: k′ⱼ₊₁ = k′ⱼ₊ₚ′ ⇒ B₍ᵢ,ₚ,ₖ₎(t) = ∑ⱼAᵖᵢⱼB₍ⱼ,ₚ′,ₖ′₎(t) (t → k′ⱼ₊₁ - 0) - Rule-6: Aᵖᵢⱼ = Aᵖᵢⱼ₋₁ + (recursive formula based on Aᵖ⁻¹) - Rule-7: Aᵖᵢⱼ = Aᵖᵢⱼ₊₁ - (recursive formula based on Aᵖ⁻¹) - Rule-8: Aᵖᵢⱼ = Aᵖᵢⱼ₋₁ + (recursive formula based on Aᵖ⁻¹) with postprocess Δ =# U = StaticArrays.arithmetic_closure(promote_type(T,T′)) k = knotvector(P) k′ = knotvector(P′) n = dim(P) n′ = dim(P′) K′ = [k′[j+p′] - k′[j] for j in 1:n′+1] K = U[ifelse(k[i+p] ≠ k[i], U(1 / (k[i+p] - k[i])), zero(U)) for i in 1:n+1] Aᵖ⁻¹ = _changebasis_I(_lower_I(P), _lower_I(P′)) # (n-1) × (n′-1) matrix n_nonzero = exactdim_I(P′)*(p+1) # This would be a upper bound of the number of non-zero elements of Aᵖ. I = Vector{Int32}(undef, n_nonzero) J = Vector{Int32}(undef, n_nonzero) V = Vector{U}(undef, n_nonzero) s = 1 j_range = 1:1 # j_begin:j_end Aᵖ_old = __changebasis_I_old(P, P′) for i in 1:n # Skip for degenerated basis isdegenerate_I(P,i) && continue # The following indices `j*` have the following relationships. #= 1 n′ |--*-----------------------------*-->| j_begin j_end |----*----------------*------>| j_prev j_mid j_next | | | |--j₊->||<-j₋--| 266666666777777773 366666666777777773 1 n′ |--*-----------------------------*-->| j_begin j_end *|---------------*------------>| j_prev j_mid j_next | | | |--j₊->||<-j₋--| 066666666777777773 177777777777777773 1 n′ |--*-----------------------------*-->| j_begin j_end |-------------*-------------->|* j_prev j_mid j_next | | | |--j₊->||<-j₋--| 266666666777777770 366666666777777770 266666666666666661 366666666666666661 1 n′ *-----------------------------*----->| j_begin j_end *---------------*------------>| j_prev=j_mid j_next | | |<-----j₋------| 077777777777777773 1 n′ |------*---------------------------->* j_begin j_end |-------------*--------------->* j_prev j_mid+1=j_next | | |------j₊----->| 266666666666666660 366666666666666660 1 n′ *----------------------------------->* j_begin j_end *------------------------------------>* j_prev j_next | | |-----------------j₊---------------->| 0888888888888888888888888888888888888880 =# # Precalculate the range of j j_range = _find_j_range_I(P, P′, i, j_range, Aᵖ_old) j_begin, j_end = extrema(j_range) # Rule-0: outside of j_range j_prev = j_begin-1 Aᵖᵢⱼ_prev = zero(U) for j_next in j_range # Rule-1: zero isdegenerate_I(P′,j_next) && continue # Rule-2: right limit if k′[j_next] == k′[j_next+p′] I[s], J[s] = i, j_next V[s] = Aᵖᵢⱼ_prev = bsplinebasis₊₀(P,i,k′[j_next+1]) s += 1 j_prev = j_next # Rule-3: left limit (or both limit) elseif k′[j_next+1] == k′[j_next+p′] j_mid = (j_prev == 0 || isdegenerate_I(P′, j_prev) ? j_prev : (j_prev + j_next) ÷ 2) # Rule-6: right recursion for j₊ in (j_prev+1):j_mid I[s], J[s] = i, j₊ V[s] = Aᵖᵢⱼ_prev = Aᵖᵢⱼ_prev + p * _ΔAᵖ_I(Aᵖ⁻¹,K,K′,i,j₊) / p′ s += 1 end I[s], J[s] = i, j_next V[s] = Aᵖᵢⱼ_prev = Aᵖᵢⱼ_next = bsplinebasis₋₀I(P,i,k′[j_next+1]) s += 1 # Rule-7: left recursion for j₋ in reverse((j_mid+1):(j_next-1)) I[s], J[s] = i, j₋ V[s] = Aᵖᵢⱼ_next = Aᵖᵢⱼ_next - p * _ΔAᵖ_I(Aᵖ⁻¹,K,K′,i,j₋+1) / p′ s += 1 end j_prev = j_next end end # Rule-0: outside of j_range j_next = j_end + 1 if j_next == n′+1 j_mid = j_next - 1 if j_prev == 0 # Rule-8: right recursion with postprocess # We can't find Aᵖᵢ₁ or Aᵖᵢₙ′ directly (yet!), so we need Δ-shift. # TODO: Find a way to avoid the Δ-shift. I[s], J[s] = i, 1 V[s] = Aᵖᵢⱼ_prev = zero(U) s += 1 for j₊ in 2:n′ I[s], J[s] = i, j₊ V[s] = Aᵖᵢⱼ_prev = Aᵖᵢⱼ_prev + p * _ΔAᵖ_I(Aᵖ⁻¹,K,K′,i,j₊) / p′ s += 1 end t_mid = (maximum(domain(P))+minimum(domain(P))) / 2one(U) Δ = bsplinebasis(P, i, t_mid) - dot(view(V, s-n′:s-1), bsplinebasis.(P′, 1:n′, t_mid)) V[s-n′:s-1] .+= Δ continue end elseif j_prev == 0 j_mid = j_prev else j_mid = (j_prev + j_next) ÷ 2 end Aᵖᵢⱼ_next = zero(U) # Rule-6: right recursion for j₊ in (j_prev+1):j_mid I[s], J[s] = i, j₊ V[s] = Aᵖᵢⱼ_prev = Aᵖᵢⱼ_prev + p * _ΔAᵖ_I(Aᵖ⁻¹,K,K′,i,j₊) / p′ s += 1 end # Rule-7: left recursion for j₋ in reverse((j_mid+1):(j_next-1)) I[s], J[s] = i, j₋ V[s] = Aᵖᵢⱼ_next = Aᵖᵢⱼ_next - p * _ΔAᵖ_I(Aᵖ⁻¹,K,K′,i,j₋+1) / p′ s += 1 end end Aᵖ = sparse(view(I,1:s-1), view(J,1:s-1), view(V,1:s-1), n, n′) return Aᵖ end ## Uniform B-spline space function _changebasis_R(P::UniformBSplineSpace{p,T}, P′::UniformBSplineSpace{p,T′}) where {p,T,T′} U = StaticArrays.arithmetic_closure(promote_type(T,T′)) k = knotvector(P) k′ = knotvector(P′) r = round(Int, step(k)/step(k′)) block = [r_nomial(p+1,i,r) for i in 0:(r-1)*(p+1)]/r^p n = dim(P) n′ = dim(P′) j = findfirst(==(k[1]), _vec(k′)) A = spzeros(U, n, n′) for i in 1:n A[i, j+r*(i-1):j+(r-1)*(p+1)+r*(i-1)] = block end return A end function _changebasis_I(P::UniformBSplineSpace{0,T}, P′::UniformBSplineSpace{0,T′}) where {T,T′} U = StaticArrays.arithmetic_closure(promote_type(T,T′)) n = dim(P) n′ = dim(P′) A = spzeros(U, n, n′) for i in 1:n b = r*i a = b-r+1 rr = a:b if rr ⊆ 1:n′ A[i,rr] .= one(U) else A[i,max(a,1):min(b,n′)] .= one(U) end end return A end function _changebasis_I(P::UniformBSplineSpace{p,T}, P′::UniformBSplineSpace{p,T′}) where {p,T,T′} U = StaticArrays.arithmetic_closure(promote_type(T,T′)) k = knotvector(P) k′ = knotvector(P′) r = round(Int, step(k)/step(k′)) block = [r_nomial(p+1,i,r) for i in 0:(r-1)*(p+1)]/r^p n = dim(P) n′ = dim(P′) A = spzeros(U, n, n′) for i in 1:n a = r*i-(r-1)*(p+1) b = r*i rr = a:b if rr ⊆ 1:n′ A[i,rr] = block else A[i,max(a,1):min(b,n′)] = block[max(a,1)-a+1:min(b,n′)-b+(r-1)*(p+1)+1] end end return A end ## BSplineDerivativeSpace function _changebasis_R(dP::BSplineDerivativeSpace{r,<:BSplineSpace{p, T}}, P′::BSplineSpace{p′,T′}) where {r,p,p′,T,T′} U = StaticArrays.arithmetic_closure(promote_type(T,T′)) k = knotvector(dP) n = dim(dP) A = SparseMatrixCSC{U,Int32}(I,n,n) for _r in 0:r-1 _p = p - _r _A = spzeros(U, n+_r, n+1+_r) for i in 1:n+_r _A[i,i] = _p/(k[i+_p]-k[i]) _A[i,i+1] = -_p/(k[i+_p+1]-k[i+1]) end A = A*_A end _P = BSplineSpace{degree(dP)}(k) A = A*_changebasis_R(_P, P′) return A end function _changebasis_R(dP::BSplineDerivativeSpace, dP′::BSplineDerivativeSpace{0}) P′ = bsplinespace(dP′) return _changebasis_R(dP, P′) end function _changebasis_R(dP::BSplineDerivativeSpace{r}, dP′::BSplineDerivativeSpace{r′}) where {r,r′} if r > r′ P = bsplinespace(dP) P′ = bsplinespace(dP′) _dP = BSplineDerivativeSpace{r-r′}(P) return _changebasis_R(_dP, P′) elseif r == r′ P = bsplinespace(dP) P′ = bsplinespace(dP′) return _changebasis_R(P, P′) end end function _changebasis_R(P::BSplineSpace, dP′::BSplineDerivativeSpace{0}) P′ = bsplinespace(dP′) return _changebasis_R(P, P′) end @doc raw""" changebasis(P::AbstractFunctionSpace, P′::AbstractFunctionSpace) Return `changebasis_R(P, P′)` if ``P ⊆ P′``, otherwise `changebasis_R(P, P′)` if ``P ⊑ P′``. Throw an error if ``P ⊈ P′`` and ``P ⋢ P′``. """ function changebasis(P::AbstractFunctionSpace, P′::AbstractFunctionSpace) P ⊆ P′ && return _changebasis_R(P, P′) P ⊑ P′ && return _changebasis_I(P, P′) throw(DomainError((P, P′),"P ⊆ P′ or P ⊑ P′ must hold.")) end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
7616
# Derivative of B-spline basis function @generated function bsplinebasis₊₀(dP::BSplineDerivativeSpace{r,<:BSplineSpace{p,T}}, i::Integer, t::S) where {r, p, T, S<:Real} U = StaticArrays.arithmetic_closure(promote_type(T,S)) ks = [Symbol(:k,i) for i in 1:p+2] Ks = [Symbol(:K,i) for i in 1:p+1] Bs = [Symbol(:B,i) for i in 1:p+1] k_l = Expr(:tuple, ks...) k_r = Expr(:tuple, :(v[i]), (:(v[i+$j]) for j in 1:p+1)...) K_l(n) = Expr(:tuple, Ks[1:n]...) B_l(n) = Expr(:tuple, Bs[1:n]...) A_r(n) = Expr(:tuple, [:($U($(ks[i])≤t<$(ks[i+1]))) for i in 1:n]...) K_r(m,n) = Expr(:tuple, [:(_d(t-$(ks[i]),$(ks[i+m])-$(ks[i]))) for i in 1:n]...) L_r(m,n) = Expr(:tuple, [:(_d(one($U),$(ks[i+m])-$(ks[i]))) for i in 1:n]...) B_r(n) = Expr(:tuple, [:($(Ks[i])*$(Bs[i])+(1-$(Ks[i+1]))*$(Bs[i+1])) for i in 1:n]...) C_r(n) = Expr(:tuple, [:($(Ks[i])*$(Bs[i])-$(Ks[i+1])*$(Bs[i+1])) for i in 1:n]...) if r ≤ p exs = Expr[] for i in 1:p-r push!(exs, :($(K_l(p+2-i)) = $(K_r(i,p+2-i)))) push!(exs, :($(B_l(p+1-i)) = $(B_r(p+1-i)))) end for i in p-r+1:p push!(exs, :($(K_l(p+2-i)) = $(L_r(i,p+2-i)))) push!(exs, :($(B_l(p+1-i)) = $(C_r(p+1-i)))) end Expr(:block, :(v = knotvector(dP).vector), :($k_l = $k_r), :($(B_l(p+1)) = $(A_r(p+1))), exs..., :(return $(prod(p-r+1:p))*B1) ) else :(return zero($U)) end end @generated function bsplinebasis₋₀(dP::BSplineDerivativeSpace{r,<:BSplineSpace{p,T}}, i::Integer, t::S) where {r, p, T, S<:Real} U = StaticArrays.arithmetic_closure(promote_type(T,S)) ks = [Symbol(:k,i) for i in 1:p+2] Ks = [Symbol(:K,i) for i in 1:p+1] Bs = [Symbol(:B,i) for i in 1:p+1] k_l = Expr(:tuple, ks...) k_r = Expr(:tuple, :(v[i]), (:(v[i+$j]) for j in 1:p+1)...) K_l(n) = Expr(:tuple, Ks[1:n]...) B_l(n) = Expr(:tuple, Bs[1:n]...) A_r(n) = Expr(:tuple, [:($U($(ks[i])<t≤$(ks[i+1]))) for i in 1:n]...) K_r(m,n) = Expr(:tuple, [:(_d(t-$(ks[i]),$(ks[i+m])-$(ks[i]))) for i in 1:n]...) L_r(m,n) = Expr(:tuple, [:(_d(one($U),$(ks[i+m])-$(ks[i]))) for i in 1:n]...) B_r(n) = Expr(:tuple, [:($(Ks[i])*$(Bs[i])+(1-$(Ks[i+1]))*$(Bs[i+1])) for i in 1:n]...) C_r(n) = Expr(:tuple, [:($(Ks[i])*$(Bs[i])-$(Ks[i+1])*$(Bs[i+1])) for i in 1:n]...) if r ≤ p exs = Expr[] for i in 1:p-r push!(exs, :($(K_l(p+2-i)) = $(K_r(i,p+2-i)))) push!(exs, :($(B_l(p+1-i)) = $(B_r(p+1-i)))) end for i in p-r+1:p push!(exs, :($(K_l(p+2-i)) = $(L_r(i,p+2-i)))) push!(exs, :($(B_l(p+1-i)) = $(C_r(p+1-i)))) end Expr(:block, :(v = knotvector(dP).vector), :($k_l = $k_r), :($(B_l(p+1)) = $(A_r(p+1))), exs..., :(return $(prod(p-r+1:p))*B1) ) else :(return zero($U)) end end @generated function bsplinebasis(dP::BSplineDerivativeSpace{r,<:BSplineSpace{p,T}}, i::Integer, t::S) where {r, p, T, S<:Real} U = StaticArrays.arithmetic_closure(promote_type(T,S)) ks = [Symbol(:k,i) for i in 1:p+2] Ks = [Symbol(:K,i) for i in 1:p+1] Bs = [Symbol(:B,i) for i in 1:p+1] k_l = Expr(:tuple, ks...) k_r = Expr(:tuple, :(v[i]), (:(v[i+$j]) for j in 1:p+1)...) K_l(n) = Expr(:tuple, Ks[1:n]...) B_l(n) = Expr(:tuple, Bs[1:n]...) A_r(n) = Expr(:tuple, [:($U(($(ks[i])≤t<$(ks[i+1])) || ($(ks[i])<t==$(ks[i+1])==v[end]))) for i in 1:n]...) K_r(m,n) = Expr(:tuple, [:(_d(t-$(ks[i]),$(ks[i+m])-$(ks[i]))) for i in 1:n]...) L_r(m,n) = Expr(:tuple, [:(_d(one($U),$(ks[i+m])-$(ks[i]))) for i in 1:n]...) B_r(n) = Expr(:tuple, [:($(Ks[i])*$(Bs[i])+(1-$(Ks[i+1]))*$(Bs[i+1])) for i in 1:n]...) C_r(n) = Expr(:tuple, [:($(Ks[i])*$(Bs[i])-$(Ks[i+1])*$(Bs[i+1])) for i in 1:n]...) if r ≤ p exs = Expr[] for i in 1:p-r push!(exs, :($(K_l(p+2-i)) = $(K_r(i,p+2-i)))) push!(exs, :($(B_l(p+1-i)) = $(B_r(p+1-i)))) end for i in p-r+1:p push!(exs, :($(K_l(p+2-i)) = $(L_r(i,p+2-i)))) push!(exs, :($(B_l(p+1-i)) = $(C_r(p+1-i)))) end Expr(:block, :(v = knotvector(dP).vector), :($k_l = $k_r), :($(B_l(p+1)) = $(A_r(p+1))), exs..., :(return $(prod(p-r+1:p))*B1) ) else :(return zero($U)) end end @doc raw""" bsplinebasis′₊₀(::AbstractFunctionSpace, ::Integer, ::Real) -> Real 1st derivative of B-spline basis function. Right-sided limit version. ```math \dot{B}_{(i,p,k)}(t) =p\left(\frac{1}{k_{i+p}-k_{i}}B_{(i,p-1,k)}(t)-\frac{1}{k_{i+p+1}-k_{i+1}}B_{(i+1,p-1,k)}(t)\right) ``` `bsplinebasis′₊₀(P, i, t)` is equivalent to `bsplinebasis₊₀(derivative(P), i, t)`. """ bsplinebasis′₊₀ @doc raw""" bsplinebasis′₋₀(::AbstractFunctionSpace, ::Integer, ::Real) -> Real 1st derivative of B-spline basis function. Left-sided limit version. ```math \dot{B}_{(i,p,k)}(t) =p\left(\frac{1}{k_{i+p}-k_{i}}B_{(i,p-1,k)}(t)-\frac{1}{k_{i+p+1}-k_{i+1}}B_{(i+1,p-1,k)}(t)\right) ``` `bsplinebasis′₋₀(P, i, t)` is equivalent to `bsplinebasis₋₀(derivative(P), i, t)`. """ bsplinebasis′₋₀ @doc raw""" bsplinebasis′(::AbstractFunctionSpace, ::Integer, ::Real) -> Real 1st derivative of B-spline basis function. Modified version. ```math \dot{B}_{(i,p,k)}(t) =p\left(\frac{1}{k_{i+p}-k_{i}}B_{(i,p-1,k)}(t)-\frac{1}{k_{i+p+1}-k_{i+1}}B_{(i+1,p-1,k)}(t)\right) ``` `bsplinebasis′(P, i, t)` is equivalent to `bsplinebasis(derivative(P), i, t)`. """ bsplinebasis′ for suffix in ("", "₋₀", "₊₀") fname = Symbol(:bsplinebasis, suffix) fname′ = Symbol(:bsplinebasis, "′" ,suffix) @eval function $(fname′)(P::AbstractFunctionSpace, i::Integer, t::Real) return $(fname)(derivative(P), i, t) end end @generated function bsplinebasisall(dP::BSplineDerivativeSpace{r,<:BSplineSpace{p,T}}, i::Integer, t::S) where {r, p, T, S<:Real} U = StaticArrays.arithmetic_closure(promote_type(T,S)) bs = [Symbol(:b,i) for i in 1:p] Bs = [Symbol(:B,i) for i in 1:p+1] K1s = [:($(p)/(k[i+$(j)]-k[i+$(p+j)])) for j in 1:p] K2s = [:($(p)/(k[i+$(p+j)]-k[i+$(j)])) for j in 1:p] b = Expr(:tuple, bs...) B = Expr(:tuple, Bs...) exs = [:($(Bs[j+1]) = ($(K1s[j+1])*$(bs[j+1]) + $(K2s[j])*$(bs[j]))) for j in 1:p-1] if r ≤ p Expr(:block, :($(Expr(:meta, :inline))), :(k = knotvector(dP)), :($b = bsplinebasisall(_lower_R(dP),i+1,t)), :($(Bs[1]) = $(K1s[1])*$(bs[1])), exs..., :($(Bs[p+1]) = $(K2s[p])*$(bs[p])), :(return SVector($(B))) ) else Z = Expr(:tuple, [:(zero($U)) for i in 1:p+1]...) :(return SVector($(Z))) end end @inline function bsplinebasisall(dP::BSplineDerivativeSpace{0,<:BSplineSpace{p,T}}, i::Integer, t::Real) where {p, T} P = bsplinespace(dP) bsplinebasisall(P,i,t) end # TODO: add methods for UniformBSplineSpace (and OpenUniformBSplineSpace) # function bsplinebasis(dP::BSplineDerivativeSpace{r,UniformBSplineSpace{p,T,R}}, i, t) where {r,p,T,R} # end # function bsplinebasis₊₀(dP::BSplineDerivativeSpace{r,UniformBSplineSpace{p,T,R}}, i, t) where {r,p,T,R} # end # function bsplinebasis₋₀(dP::BSplineDerivativeSpace{r,UniformBSplineSpace{p,T,R}}, i, t) where {r,p,T,R} # end # function bsplinebasisall(dP::BSplineDerivativeSpace{r,UniformBSplineSpace{p,T,R}}, i, t) where {r,p,T,R} # end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
5195
# Space of derivative of B-spline basis function @doc raw""" BSplineDerivativeSpace{r}(P::BSplineSpace) Construct derivative of B-spline space from given differential order and B-spline space. ```math D^{r}(\mathcal{P}[p,k]) =\left\{t \mapsto \left. \frac{d^r f}{dt^r}(t) \ \right| \ f \in \mathcal{P}[p,k] \right\} ``` # Examples ```jldoctest julia> P = BSplineSpace{2}(KnotVector([1,2,3,4,5,6])) BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 4, 5, 6])) julia> dP = BSplineDerivativeSpace{1}(P) BSplineDerivativeSpace{1, BSplineSpace{2, Int64, KnotVector{Int64}}, Int64}(BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 4, 5, 6]))) julia> degree(P), degree(dP) (2, 1) ``` """ struct BSplineDerivativeSpace{r, S<:BSplineSpace, T} <: AbstractFunctionSpace{T} bsplinespace::S function BSplineDerivativeSpace{r,S,T}(P::S) where {r, S<:BSplineSpace{p,T}} where {p,T} new{r,S,T}(P) end end function BSplineDerivativeSpace{r}(P::S) where {r, S<:BSplineSpace{p,T}} where {p,T} BSplineDerivativeSpace{r,S,T}(P) end function BSplineDerivativeSpace{r,S}(P::S) where {r, S<:BSplineSpace{p,T}} where {p,T} BSplineDerivativeSpace{r,S,T}(P) end function BSplineDerivativeSpace{r,S1}(P::S2) where {r, S1<:BSplineSpace{p,T1}, S2<:BSplineSpace{p,T2}} where {p,T1,T2} BSplineDerivativeSpace{r}(S1(P)) end function BSplineDerivativeSpace{r,S}(dP::BSplineDerivativeSpace{r,S}) where {r,S} dP end function BSplineDerivativeSpace{r,S1}(dP::BSplineDerivativeSpace{r,S2}) where {r,S1,S2} BSplineDerivativeSpace{r,S1}(S1(bsplinespace(dP))) end # Broadcast like a scalar Base.Broadcast.broadcastable(dP::BSplineDerivativeSpace) = Ref(dP) # Equality @inline Base.:(==)(dP1::BSplineDerivativeSpace{r}, dP2::BSplineDerivativeSpace{r}) where r = bsplinespace(dP1) == bsplinespace(dP2) @inline Base.:(==)(dP1::BSplineDerivativeSpace{r1}, dP2::BSplineDerivativeSpace{r2}) where {r1, r2} = false bsplinespace(dP::BSplineDerivativeSpace) = dP.bsplinespace knotvector(dP::BSplineDerivativeSpace) = knotvector(bsplinespace(dP)) degree(dP::BSplineDerivativeSpace{r,<:BSplineSpace{p}}) where {r,p} = p - r dim(dP::BSplineDerivativeSpace{r,<:BSplineSpace{p}}) where {r,p} = dim(bsplinespace(dP)) exactdim_R(dP::BSplineDerivativeSpace{r,<:BSplineSpace{p}}) where {r,p} = exactdim_R(bsplinespace(dP)) - r exactdim_I(dP::BSplineDerivativeSpace{r,<:BSplineSpace{p}}) where {r,p} = exactdim_I(bsplinespace(dP)) - r intervalindex(dP::BSplineDerivativeSpace,t::Real) = intervalindex(bsplinespace(dP),t) domain(dP::BSplineDerivativeSpace) = domain(bsplinespace(dP)) _lower_R(dP::BSplineDerivativeSpace{r}) where r = BSplineDerivativeSpace{r-1}(_lower_R(bsplinespace(dP))) _lower_I(dP::BSplineDerivativeSpace{r}) where r = BSplineDerivativeSpace{r-1}(_lower_I(bsplinespace(dP))) _iszeros_R(P::BSplineDerivativeSpace) = _iszeros_R(bsplinespace(P)) _iszeros_I(P::BSplineDerivativeSpace) = _iszeros_I(bsplinespace(P)) function isdegenerate_R(dP::BSplineDerivativeSpace, i::Integer) return isdegenerate_R(bsplinespace(dP), i) end function isdegenerate_I(dP::BSplineDerivativeSpace, i::Integer) return isdegenerate_I(bsplinespace(dP), i) end @doc raw""" derivative(::BSplineDerivativeSpace{r}) -> BSplineDerivativeSpace{r+1} derivative(::BSplineSpace) -> BSplineDerivativeSpace{1} Derivative of B-spline related space. # Examples ```jldoctest julia> BSplineSpace{2}(KnotVector(0:5)) BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([0, 1, 2, 3, 4, 5])) julia> BasicBSpline.derivative(ans) BSplineDerivativeSpace{1, BSplineSpace{2, Int64, KnotVector{Int64}}, Int64}(BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([0, 1, 2, 3, 4, 5]))) julia> BasicBSpline.derivative(ans) BSplineDerivativeSpace{2, BSplineSpace{2, Int64, KnotVector{Int64}}, Int64}(BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([0, 1, 2, 3, 4, 5]))) ``` """ derivative(P::BSplineSpace) = BSplineDerivativeSpace{1}(P) derivative(dP::BSplineDerivativeSpace{r}) where r = BSplineDerivativeSpace{r+1}(bsplinespace(dP)) function Base.issubset(dP::BSplineDerivativeSpace{r,<:BSplineSpace{p}}, P′::BSplineSpace) where {r,p} k = knotvector(dP) P = BSplineSpace{p-r}(k) return P ⊆ P′ end function Base.issubset(dP::BSplineDerivativeSpace, dP′::BSplineDerivativeSpace{0}) P′ = bsplinespace(dP′) return dP ⊆ P′ end function Base.issubset(dP::BSplineDerivativeSpace{r}, dP′::BSplineDerivativeSpace{r′}) where {r,r′} if r > r′ P = bsplinespace(dP) P′ = bsplinespace(dP′) _dP = BSplineDerivativeSpace{r-r′}(P) return _dP ⊆ P′ elseif r == r′ P = bsplinespace(dP) P′ = bsplinespace(dP′) return P ⊆ P′ else return false end end function Base.issubset(P::BSplineSpace, dP′::BSplineDerivativeSpace{0}) P′ = bsplinespace(dP′) return P ⊆ P′ end function Base.issubset(P::BSplineSpace, dP′::BSplineDerivativeSpace) return false end # TODO: Add issqsubset function Base.hash(dP::BSplineDerivativeSpace{r,<:BSplineSpace{p}}, h::UInt) where {r,p} P = bsplinespace(dP) k = knotvector(P) hash(BSplineDerivativeSpace{r,<:BSplineSpace{p}}, hash(_vec(k), h)) end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
12555
###################### #= Type definitions =# ###################### @doc raw""" An abstract type for knot vector. """ abstract type AbstractKnotVector{T<:Real} end @doc raw""" Knot vector with zero-element. ```math k=() ``` This struct is intended for internal use. # Examples ```jldoctest julia> EmptyKnotVector() EmptyKnotVector{Bool}() julia> EmptyKnotVector{Float64}() EmptyKnotVector{Float64}() ``` """ struct EmptyKnotVector{T} <: AbstractKnotVector{T} end @doc raw""" Construct knot vector from given array. ```math k=(k_1,\dots,k_l) ``` # Examples ```jldoctest julia> k = KnotVector([1,2,3]) KnotVector([1, 2, 3]) julia> k = KnotVector(1:3) KnotVector([1, 2, 3]) ``` """ struct KnotVector{T} <: AbstractKnotVector{T} vector::Vector{T} global unsafe_knotvector(::Type{T}, v) where T = new{T}(v) end @doc raw""" Construct uniform knot vector from given range. ```math k=(k_1,\dots,k_l) ``` # Examples ```jldoctest julia> k = UniformKnotVector(1:8) UniformKnotVector(1:8) julia> UniformKnotVector(8:-1:3) UniformKnotVector(3:1:8) ``` """ struct UniformKnotVector{T,R<:AbstractRange} <: AbstractKnotVector{T} vector::R global unsafe_uniformknotvector(::Type{T}, v::R) where R<:AbstractRange{T} where T = new{T,R}(v) end @doc raw""" A type to represetnt sub knot vector. ```math k=(k_1,\dots,k_l) ``` # Examples ```jldoctest julia> k = knotvector"1 11 211" KnotVector([1, 3, 4, 6, 6, 7, 8]) julia> view(k, 2:5) SubKnotVector([3, 4, 6, 6]) ``` """ struct SubKnotVector{T,S<:SubArray{T,1}} <: AbstractKnotVector{T} vector::S global unsafe_subknotvector(v::S) where {T,S<:SubArray{T,1}} = new{T,S}(v) end ################## #= Constructors =# ################## EmptyKnotVector() = EmptyKnotVector{Bool}() KnotVector{T}(v::AbstractVector) where T = unsafe_knotvector(T,sort(v)) KnotVector(v::AbstractVector{T}) where T = unsafe_knotvector(T,sort(v)) AbstractKnotVector{S}(k::KnotVector{T}) where {S, T} = unsafe_knotvector(promote_type(S,T), _vec(k)) AbstractKnotVector{T}(k::AbstractKnotVector{T}) where {T} = k UniformKnotVector(v::AbstractRange{T}) where T = unsafe_uniformknotvector(T,sort(v)) UniformKnotVector(k::UniformKnotVector) = k UniformKnotVector{T}(k::UniformKnotVector) where T = unsafe_uniformknotvector(T, k.vector) UniformKnotVector{T,R}(k::UniformKnotVector) where R<:AbstractRange{T} where T = unsafe_uniformknotvector(T, R(k.vector)) SubKnotVector(k::SubKnotVector) = k SubKnotVector{T,S}(k::SubKnotVector{T,S}) where {T,S} = k Base.copy(k::EmptyKnotVector{T}) where T = k Base.copy(k::KnotVector{T}) where T = unsafe_knotvector(T,copy(_vec(k))) Base.copy(k::UniformKnotVector{T}) where T = unsafe_uniformknotvector(T,copy(_vec(k))) Base.copy(k::SubKnotVector{T}) where T = unsafe_knotvector(T,copy(_vec(k))) KnotVector(k::KnotVector) = k KnotVector(k::AbstractKnotVector{T}) where T = unsafe_knotvector(T,_vec(k)) KnotVector{T}(k::KnotVector{T}) where T = k KnotVector{T}(k::AbstractKnotVector) where T = unsafe_knotvector(T,_vec(k)) ###################################### #= Other methods for Base functions =# ###################################### Base.convert(T::Type{<:AbstractKnotVector}, k::AbstractKnotVector) = T(k) function Base.convert(::Type{UniformKnotVector{T,R}},k::UniformKnotVector) where {T,R} UniformKnotVector{T,R}(k) end function Base.promote_rule(::Type{KnotVector{T}}, ::Type{KnotVector{S}}) where {T,S} KnotVector{promote_type(T,S)} end function Base.promote_rule(::Type{KnotVector{T}}, ::Type{UniformKnotVector{S,R}}) where {T,S,R} KnotVector{promote_type(T,S)} end function Base.promote_rule(::Type{KnotVector{T1}}, ::Type{SubKnotVector{T2,S2}}) where {T1,T2,S2} KnotVector{promote_type(T1,T2)} end function Base.show(io::IO, k::KnotVector) print(io, "KnotVector($(k.vector))") end function Base.show(io::IO, k::T) where T<:AbstractKnotVector print(io, "$(nameof(T))($(k.vector))") end function Base.show(io::IO, ::T) where T<:EmptyKnotVector print(io, "$(T)()") end Base.zero(::Type{<:EmptyKnotVector{T}}) where T = EmptyKnotVector{T}() Base.zero(::Type{EmptyKnotVector}) = EmptyKnotVector() Base.zero(::T) where {T<:EmptyKnotVector} = zero(T) Base.zero(::Type{<:AbstractKnotVector{T}}) where T = EmptyKnotVector{T}() Base.zero(::Type{AbstractKnotVector}) = EmptyKnotVector() Base.zero(::Type{KnotVector}) = zero(KnotVector{Float64}) Base.zero(::Type{KnotVector{T}}) where T = unsafe_knotvector(T, T[]) Base.zero(::KnotVector{T}) where T = unsafe_knotvector(T, T[]) Base.zero(::UniformKnotVector{T}) where T = EmptyKnotVector{T}() # == Base.:(==)(k₁::AbstractKnotVector, k₂::AbstractKnotVector) = (_vec(k₁) == _vec(k₂)) Base.:(==)(k::AbstractKnotVector, ::EmptyKnotVector) = isempty(k) Base.:(==)(k1::EmptyKnotVector, k2::AbstractKnotVector) = (k2 == k1) Base.:(==)(k::EmptyKnotVector, ::EmptyKnotVector) = true Base.eltype(::AbstractKnotVector{T}) where T = T Base.collect(k::UniformKnotVector) = collect(k.vector) Base.collect(k::KnotVector) = copy(k.vector) Base.isempty(::EmptyKnotVector) = true # + AbstractKnotVector Base.:+(k::AbstractKnotVector{T}, ::EmptyKnotVector{T}) where T = k function Base.:+(k::AbstractKnotVector{T1}, ::EmptyKnotVector{T2}) where {T1, T2} T = promote_type(T1, T2) if T == T1 return k else return AbstractKnotVector{T}(k) end end # + EmptyKnotVector Base.:+(::EmptyKnotVector{T}, ::EmptyKnotVector{T}) where T = EmptyKnotVector{T}() Base.:+(::EmptyKnotVector{T1}, ::EmptyKnotVector{T2}) where {T1, T2} = EmptyKnotVector{promote_type(T1, T2)}() # + swap Base.:+(k1::EmptyKnotVector, k2::AbstractKnotVector) = k2 + k1 @doc raw""" Sum of knot vectors ```math \begin{aligned} k^{(1)}+k^{(2)} &=(k^{(1)}_1, \dots, k^{(1)}_{l^{(1)}}) + (k^{(2)}_1, \dots, k^{(2)}_{l^{(2)}}) \\ &=(\text{sort of union of} \ k^{(1)} \ \text{and} \ k^{(2)} \text{)} \end{aligned} ``` For example, ``(1,2,3,5)+(4,5,8)=(1,2,3,4,5,5,8)``. # Examples ```jldoctest julia> k1 = KnotVector([1,2,3,5]); julia> k2 = KnotVector([4,5,8]); julia> k1 + k2 KnotVector([1, 2, 3, 4, 5, 5, 8]) ``` """ function Base.:+(k1::KnotVector{T}, k2::KnotVector{T}) where T v1, v2 = k1.vector, k2.vector n1, n2 = length(v1), length(v2) iszero(n1) && return k2 iszero(n2) && return k1 n = n1 + n2 v = Vector{T}(undef, n) i1 = i2 = 1 for i in 1:n if isless(v1[i1], v2[i2]) v[i] = v1[i1] i1 += 1 if i1 > n1 v[i+1:n] = view(v2, i2:n2) break end else v[i] = v2[i2] i2 += 1 if i2 > n2 v[i+1:n] = view(v1, i1:n1) break end end end return BasicBSpline.unsafe_knotvector(T,v) end Base.:+(k1::AbstractKnotVector{T1}, k2::AbstractKnotVector{T2}) where {T1, T2} = +(promote(k1,k2)...) Base.:+(k1::UniformKnotVector{T1},k2::UniformKnotVector{T2}) where {T1,T2} = KnotVector{promote_type(T1,T2)}([k1.vector;k2.vector]) @doc raw""" Product of integer and knot vector ```math \begin{aligned} m\cdot k&=\underbrace{k+\cdots+k}_{m} \end{aligned} ``` For example, ``2\cdot (1,2,2,5)=(1,1,2,2,2,2,5,5)``. # Examples ```jldoctest julia> k = KnotVector([1,2,2,5]); julia> 2 * k KnotVector([1, 1, 2, 2, 2, 2, 5, 5]) ``` """ function Base.:*(m::Integer, k::AbstractKnotVector) return m*KnotVector(k) end function Base.:*(m::Integer, k::KnotVector{T}) where T if m == 0 return zero(k) elseif m == 1 return k elseif m > 1 l = length(k) v = Vector{T}(undef, m*l) for i in 1:m v[i:m:m*(l-1)+i] .= k.vector end return BasicBSpline.unsafe_knotvector(T,v) else throw(DomainError(m, "The number to be multiplied must be non-negative.")) end end Base.:*(k::AbstractKnotVector, m::Integer) = m*k function Base.:*(m::Integer, k::EmptyKnotVector) m < 0 && throw(DomainError(m, "The number to be multiplied must be non-negative.")) return k end Base.in(r::Real, k::AbstractKnotVector) = in(r, _vec(k)) Base.getindex(k::AbstractKnotVector, i::Integer) = _vec(k)[i] Base.getindex(k::AbstractKnotVector, v::AbstractVector{<:Integer}) = KnotVector(_vec(k)[v]) Base.getindex(k::UniformKnotVector, v::AbstractRange{<:Integer}) = UniformKnotVector(sort(k.vector[v])) @doc raw""" Length of knot vector ```math \begin{aligned} \#{k} &=(\text{number of knot elements of} \ k) \\ \end{aligned} ``` For example, ``\#{(1,2,2,3)}=4``. # Examples ```jldoctest julia> k = KnotVector([1,2,2,3]); julia> length(k) 4 ``` """ Base.length(k::AbstractKnotVector) = length(_vec(k)) Base.firstindex(k::AbstractKnotVector) = 1 Base.lastindex(k::AbstractKnotVector) = length(k) Base.step(k::UniformKnotVector) = step(_vec(k)) @doc raw""" Unique elements of knot vector. ```math \begin{aligned} \widehat{k} &=(\text{unique knot elements of} \ k) \\ \end{aligned} ``` For example, ``\widehat{(1,2,2,3)}=(1,2,3)``. # Examples ```jldoctest julia> k = KnotVector([1,2,2,3]); julia> unique(k) KnotVector([1, 2, 3]) ``` """ Base.unique(k::AbstractKnotVector) Base.unique(k::EmptyKnotVector) = k Base.unique(k::KnotVector{T}) where T = unsafe_knotvector(T, unique(k.vector)) Base.unique!(k::KnotVector) = (unique!(k.vector); k) Base.unique(k::UniformKnotVector) = UniformKnotVector(unique(k.vector)) Base.unique(k::SubKnotVector{T}) where T = unsafe_knotvector(T, unique(_vec(k))) Base.iterate(k::AbstractKnotVector) = iterate(_vec(k)) Base.iterate(k::AbstractKnotVector, i) = iterate(_vec(k), i) Base.searchsortedfirst(k::AbstractKnotVector,t) = searchsortedfirst(_vec(k),t) Base.searchsortedlast(k::AbstractKnotVector,t) = searchsortedlast(_vec(k),t) Base.searchsorted(k::AbstractKnotVector,t) = searchsorted(_vec(k),t) @doc raw""" Check a inclusive relationship ``k\subseteq k'``, for example: ```math \begin{aligned} (1,2) &\subseteq (1,2,3) \\ (1,2,2) &\not\subseteq (1,2,3) \\ (1,2,3) &\subseteq (1,2,3) \\ \end{aligned} ``` # Examples ```jldoctest julia> KnotVector([1,2]) ⊆ KnotVector([1,2,3]) true julia> KnotVector([1,2,2]) ⊆ KnotVector([1,2,3]) false julia> KnotVector([1,2,3]) ⊆ KnotVector([1,2,3]) true ``` """ function Base.issubset(k::KnotVector, k′::KnotVector) i = 1 l = length(k) for k′ⱼ in k′ l < i && (return true) k[i] < k′ⱼ && (return false) k[i] == k′ⱼ && (i += 1) end return l < i end function Base.issubset(k::AbstractKnotVector, k′::AbstractKnotVector) issubset(KnotVector(k),KnotVector(k′)) end Base.:⊊(A::AbstractKnotVector, B::AbstractKnotVector) = (A ≠ B) & (A ⊆ B) Base.:⊋(A::AbstractKnotVector, B::AbstractKnotVector) = (A ≠ B) & (A ⊇ B) function Base.float(k::KnotVector{T}) where T KnotVector(float(_vec(k))) end function Base.float(k::UniformKnotVector) UniformKnotVector(float(_vec(k))) end Base.view(k::UniformKnotVector{T},inds) where T = unsafe_uniformknotvector(T, view(_vec(k), inds)) Base.view(k::KnotVector,inds) = unsafe_subknotvector(view(_vec(k), inds)) Base.view(k::SubKnotVector,inds) = unsafe_subknotvector(view(_vec(k), inds)) """ Convert `AbstractKnotVector` to `AbstractVector` """ _vec _vec(::EmptyKnotVector{T}) where T = SVector{0,T}() _vec(k::KnotVector) = k.vector _vec(k::UniformKnotVector) = k.vector _vec(k::SubKnotVector) = k.vector @doc raw""" For given knot vector ``k``, the following function ``\mathfrak{n}_k:\mathbb{R}\to\mathbb{Z}`` represents the number of knots that duplicate the knot vector ``k``. ```math \mathfrak{n}_k(t) = \#\{i \mid k_i=t \} ``` For example, if ``k=(1,2,2,3)``, then ``\mathfrak{n}_k(0.3)=0``, ``\mathfrak{n}_k(1)=1``, ``\mathfrak{n}_k(2)=2``. ```jldoctest julia> k = KnotVector([1,2,2,3]); julia> countknots(k,0.3) 0 julia> countknots(k,1.0) 1 julia> countknots(k,2.0) 2 ``` """ function countknots(k::AbstractKnotVector, t::Real) # for small case, this is faster # return count(==(t), k.vector) # for large case, this is faster return length(searchsorted(_vec(k), t, lt=<)) end """ @knotvector_str -> KnotVector Construct a knotvector by specifying the numbers of duplicates of knots. # Examples ```jldoctest julia> knotvector"11111" KnotVector([1, 2, 3, 4, 5]) julia> knotvector"123" KnotVector([1, 2, 2, 3, 3, 3]) julia> knotvector" 2 2 2" KnotVector([2, 2, 4, 4, 6, 6]) julia> knotvector" 1" KnotVector([6]) ``` """ macro knotvector_str(s) return sum(KnotVector(findall(==('0'+i), s))*i for i in 1:9) end function Base.hash(k::AbstractKnotVector, h::UInt) hash(AbstractKnotVector, hash(_vec(k), h)) end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
10281
# Rational B-spline manifold (NURBS) """ Construct Rational B-spline manifold from given control points, weights and B-spline spaces. # Examples ```jldoctest julia> using StaticArrays, LinearAlgebra julia> P = BSplineSpace{2}(KnotVector([0,0,0,1,1,1])) BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([0, 0, 0, 1, 1, 1])) julia> w = [1, 1/√2, 1] 3-element Vector{Float64}: 1.0 0.7071067811865475 1.0 julia> a = [SVector(1,0), SVector(1,1), SVector(0,1)] 3-element Vector{SVector{2, Int64}}: [1, 0] [1, 1] [0, 1] julia> M = RationalBSplineManifold(a,w,P); # 1/4 arc julia> M(0.3) 2-element SVector{2, Float64} with indices SOneTo(2): 0.8973756499953727 0.4412674277525845 julia> norm(M(0.3)) 1.0 ``` """ struct RationalBSplineManifold{Dim,Deg,C,W,T,S<:NTuple{Dim, BSplineSpace}} <: AbstractManifold{Dim} controlpoints::Array{C,Dim} weights::Array{W,Dim} bsplinespaces::S function RationalBSplineManifold{Dim,Deg,C,W,T,S}(a::Array{C,Dim},w::Array{W,Dim},P::S) where {S<:NTuple{Dim, BSplineSpace{p,T} where p},C,W} where {Dim, Deg, T} new{Dim,Deg,C,W,T,S}(a,w,P) end end function RationalBSplineManifold(a::Array{C,Dim},w::Array{W,Dim},P::S) where {S<:Tuple{BSplineSpace{p,T} where p, Vararg{BSplineSpace{p,T} where p}}} where {Dim, T, C, W} if size(a) != dim.(P) msg = "The size of control points array $(size(a)) and dimensions of B-spline spaces $(dim.(P)) must be equal." throw(DimensionMismatch(msg)) end if size(w) != dim.(P) msg = "The size of weights array $(size(w)) and dimensions of B-spline spaces $(dim.(P)) must be equal." throw(DimensionMismatch(msg)) end Deg = degree.(P) return RationalBSplineManifold{Dim,Deg,C,W,T,S}(a, w, P) end function RationalBSplineManifold(a::Array{C,Dim},w::Array{W,Dim},P::S) where {S<:NTuple{Dim, BSplineSpace{p,T} where {p,T}},C,W} where {Dim} P′ = _promote_knottype(P) return RationalBSplineManifold(a, w, P′) end RationalBSplineManifold(a::Array{C,Dim},w::Array{T,Dim},Ps::Vararg{BSplineSpace, Dim}) where {C,Dim,T<:Real} = RationalBSplineManifold(a,w,Ps) Base.:(==)(M1::RationalBSplineManifold, M2::RationalBSplineManifold) = (bsplinespaces(M1)==bsplinespaces(M2)) & (controlpoints(M1)==controlpoints(M2)) & (weights(M1)==weights(M2)) function Base.hash(M::RationalBSplineManifold{0}, h::UInt) hash(RationalBSplineManifold{0}, hash(weights(M), hash(controlpoints(M), h))) end function Base.hash(M::RationalBSplineManifold, h::UInt) hash(xor(hash.(bsplinespaces(M), h)...), hash(weights(M), hash(controlpoints(M), h))) end controlpoints(M::RationalBSplineManifold) = M.controlpoints weights(M::RationalBSplineManifold) = M.weights bsplinespaces(M::RationalBSplineManifold) = M.bsplinespaces @generated function unbounded_mapping(M::RationalBSplineManifold{Dim,Deg}, t::Vararg{Real,Dim}) where {Dim,Deg} # Use `UnitRange` to support Julia v1.6 (LTS) # This can be replaced with `range` if we drop support for v1.6 iter = CartesianIndices(UnitRange.(1, Deg .+ 1)) exs = Expr[] for ci in iter ex_w = Expr(:call, [:getindex, :w, [:($(Symbol(:i,d))+$(ci[d]-1)) for d in 1:Dim]...]...) ex_a = Expr(:call, [:getindex, :a, [:($(Symbol(:i,d))+$(ci[d]-1)) for d in 1:Dim]...]...) ex = Expr(:call, [:*, [:($(Symbol(:b,d))[$(ci[d])]) for d in 1:Dim]..., ex_w]...) ex = Expr(:+=, :u, ex) push!(exs, ex) ex = Expr(:call, [:getindex, :a, [:($(Symbol(:i,d))+$(ci[d]-1)) for d in 1:Dim]...]...) ex = Expr(:call, [:*, [:($(Symbol(:b,d))[$(ci[d])]) for d in 1:Dim]..., ex_w, ex_a]...) ex = Expr(:+=, :v, ex) push!(exs, ex) end exs[1].head = :(=) exs[2].head = :(=) Expr( :block, Expr(:(=), Expr(:tuple, [Symbol(:P, i) for i in 1:Dim]...), :(bsplinespaces(M))), Expr(:(=), Expr(:tuple, [Symbol(:t, i) for i in 1:Dim]...), :t), :(a = controlpoints(M)), :(w = weights(M)), Expr(:(=), Expr(:tuple, [Symbol(:i, i) for i in 1:Dim]...), Expr(:tuple, [:(intervalindex($(Symbol(:P, i)), $(Symbol(:t, i)))) for i in 1:Dim]...)), Expr(:(=), Expr(:tuple, [Symbol(:b, i) for i in 1:Dim]...), Expr(:tuple, [:(bsplinebasisall($(Symbol(:P, i)), $(Symbol(:i, i)), $(Symbol(:t, i)))) for i in 1:Dim]...)), exs..., :(return v/u) ) end @generated function (M::RationalBSplineManifold{Dim})(t::Vararg{Real, Dim}) where Dim Ps = [Symbol(:P,i) for i in 1:Dim] P = Expr(:tuple, Ps...) ts = [Symbol(:t,i) for i in 1:Dim] T = Expr(:tuple, ts...) exs = [:($(Symbol(:t,i)) in domain($(Symbol(:P,i))) || throw(DomainError($(Symbol(:t,i)), "The input "*string($(Symbol(:t,i)))*" is out of domain $(domain($(Symbol(:P,i))))."))) for i in 1:Dim] ret = Expr(:call,:unbounded_mapping,:M,[Symbol(:t,i) for i in 1:Dim]...) Expr( :block, :($(Expr(:meta, :inline))), :($T = t), :($P = bsplinespaces(M)), exs..., :(return $(ret)) ) end ## currying # 2dim @inline function (M::RationalBSplineManifold{2})(::Colon,::Colon) a = copy(controlpoints(M)) w = copy(weights(M)) Ps = bsplinespaces(M) return RationalBSplineManifold(a,w,Ps) end @inline function (M::RationalBSplineManifold{2,p})(t1::Real,::Colon) where p p1, p2 = p P1, P2 = bsplinespaces(M) a = controlpoints(M) w = weights(M) j1 = intervalindex(P1,t1) B1 = bsplinebasisall(P1,j1,t1) w′ = sum(w[j1+i1,:]*B1[1+i1] for i1 in 0:p1) a′ = sum(a[j1+i1,:].*w[j1+i1,:].*B1[1+i1] for i1 in 0:p1) ./ w′ return RationalBSplineManifold(a′,w′,(P2,)) end @inline function (M::RationalBSplineManifold{2,p})(::Colon,t2::Real) where p p1, p2 = p P1, P2 = bsplinespaces(M) a = controlpoints(M) w = weights(M) j2 = intervalindex(P2,t2) B2 = bsplinebasisall(P2,j2,t2) w′ = sum(w[:,j2+i2]*B2[1+i2] for i2 in 0:p2) a′ = sum(a[:,j2+i2].*w[:,j2+i2].*B2[1+i2] for i2 in 0:p2) ./ w′ return RationalBSplineManifold(a′,w′,(P1,)) end # 3dim @inline function (M::RationalBSplineManifold{3,p})(t1::Real,::Colon,::Colon) where p p1, p2, p3 = p P1, P2, P3 = bsplinespaces(M) a = controlpoints(M) w = weights(M) j1 = intervalindex(P1,t1) B1 = bsplinebasisall(P1,j1,t1) w′ = sum(w[j1+i1,:,:]*B1[1+i1] for i1 in 0:p1) a′ = sum(a[j1+i1,:,:].*w[j1+i1,:,:].*B1[1+i1] for i1 in 0:p1) ./ w′ return RationalBSplineManifold(a′,w′,(P2,P3)) end @inline function (M::RationalBSplineManifold{3,p})(::Colon,t2::Real,::Colon) where p p1, p2, p3 = p P1, P2, P3 = bsplinespaces(M) a = controlpoints(M) w = weights(M) j2 = intervalindex(P2,t2) B2 = bsplinebasisall(P2,j2,t2) w′ = sum(w[:,j2+i2,:]*B2[1+i2] for i2 in 0:p2) a′ = sum(a[:,j2+i2,:].*w[:,j2+i2,:].*B2[1+i2] for i2 in 0:p2) ./ w′ return RationalBSplineManifold(a′,w′,(P1,P3)) end @inline function (M::RationalBSplineManifold{3,p})(::Colon,::Colon,t3::Real) where p p1, p2, p3 = p P1, P2, P3 = bsplinespaces(M) a = controlpoints(M) w = weights(M) j3 = intervalindex(P3,t3) B3 = bsplinebasisall(P3,j3,t3) w′ = sum(w[:,:,j3+i3]*B3[1+i3] for i3 in 0:p3) a′ = sum(a[:,:,j3+i3].*w[:,:,j3+i3].*B3[1+i3] for i3 in 0:p3) ./ w′ return RationalBSplineManifold(a′,w′,(P1,P2)) end @inline function (M::RationalBSplineManifold{3,p})(t1::Real,t2::Real,::Colon) where p p1, p2, p3 = p P1, P2, P3 = bsplinespaces(M) a = controlpoints(M) w = weights(M) j1 = intervalindex(P1,t1) j2 = intervalindex(P2,t2) B1 = bsplinebasisall(P1,j1,t1) B2 = bsplinebasisall(P2,j2,t2) w′ = sum(w[j1+i1,j2+i2,:]*B1[1+i1]*B2[1+i2] for i1 in 0:p1, i2 in 0:p2) a′ = sum(a[j1+i1,j2+i2,:].*w[j1+i1,j2+i2,:].*B1[1+i1].*B2[1+i2] for i1 in 0:p1, i2 in 0:p2) ./ w′ return RationalBSplineManifold(a′,w′,(P3,)) end @inline function (M::RationalBSplineManifold{3,p})(t1::Real,::Colon,t3::Real) where p p1, p2, p3 = p P1, P2, P3 = bsplinespaces(M) a = controlpoints(M) w = weights(M) j1 = intervalindex(P1,t1) j3 = intervalindex(P3,t3) B1 = bsplinebasisall(P1,j1,t1) B3 = bsplinebasisall(P3,j3,t3) w′ = sum(w[j1+i1,:,j3+i3]*B1[1+i1]*B3[1+i3] for i1 in 0:p1, i3 in 0:p3) a′ = sum(a[j1+i1,:,j3+i3].*w[j1+i1,:,j3+i3].*B1[1+i1].*B3[1+i3] for i1 in 0:p1, i3 in 0:p3) ./ w′ return RationalBSplineManifold(a′,w′,(P2,)) end @inline function (M::RationalBSplineManifold{3,p})(::Colon,t2::Real,t3::Real) where p p1, p2, p3 = p P1, P2, P3 = bsplinespaces(M) a = controlpoints(M) w = weights(M) j2 = intervalindex(P2,t2) j3 = intervalindex(P3,t3) B2 = bsplinebasisall(P2,j2,t2) B3 = bsplinebasisall(P3,j3,t3) w′ = sum(w[:,j2+i2,j3+i3]*B2[1+i2]*B3[1+i3] for i2 in 0:p2, i3 in 0:p3) a′ = sum(a[:,j2+i2,j3+i3].*w[:,j2+i2,j3+i3].*B2[1+i2].*B3[1+i3] for i2 in 0:p2, i3 in 0:p3) ./ w′ return RationalBSplineManifold(a′,w′,(P1,)) end # TODO: The performance of this method can be improved. function (M::RationalBSplineManifold{Dim,Deg})(t::Union{Real, Colon}...) where {Dim, Deg} P = bsplinespaces(M) a = controlpoints(M) w = weights(M) t_real = _remove_colon(t...) P_real = _remove_colon(_get_on_real.(P, t)...) P_colon = _remove_colon(_get_on_colon.(P, t)...) j_real = intervalindex.(P_real, t_real) B = bsplinebasisall.(P_real, j_real, t_real) Deg_real = _remove_colon(_get_on_real.(Deg, t)...) ci = CartesianIndices(UnitRange.(0, Deg_real)) next = _replace_noncolon((), j_real, t...) w′ = view(w, next...) .* *(getindex.(B, 1)...) a′ = view(a, next...) .* view(w, next...) .* *(getindex.(B, 1)...) l = length(ci) for i in view(ci,2:l) next = _replace_noncolon((), j_real .+ i.I, t...) b = *(getindex.(B, i.I .+ 1)...) w′ .+= view(w, next...) .* b a′ .+= view(a, next...) .* view(w, next...) .* b end return RationalBSplineManifold(a′ ./ w′, w′, P_colon) end @inline function (M::RationalBSplineManifold{Dim})(::Vararg{Colon, Dim}) where Dim a = copy(controlpoints(M)) w = copy(weights(M)) Ps = bsplinespaces(M) return RationalBSplineManifold(a,w,Ps) end @inline function (M::RationalBSplineManifold{0})() a = controlpoints(M) return a[] end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
17115
# Refinement # TODO: Update docstrings @doc raw""" Refinement of B-spline manifold with given B-spline spaces. """ refinement function _i_ranges_R(A, P′) n, n′ = size(A) i_ranges = fill(1:0, n′) i = 1 for j in 1:n′ isdegenerate_R(P′, j) && continue iszero(view(A,:,j)) && continue while true if Base.isstored(A,i,j) i_ranges[j] = i:n break end i = i + 1 end end i = n for j in reverse(1:n′) isdegenerate_R(P′, j) && continue iszero(view(A,:,j)) && continue while true if Base.isstored(A,i,j) i_ranges[j] = first(i_ranges[j]):i break end i = i - 1 end end return i_ranges end function _i_ranges_I(A, P′) n, n′ = size(A) i_ranges = fill(1:0, n′) i = 1 for j in 1:n′ isdegenerate_I(P′, j) && continue while true if Base.isstored(A,i,j) i_ranges[j] = i:n break end i = i + 1 end end i = n for j in reverse(1:n′) isdegenerate_I(P′, j) && continue while true if Base.isstored(A,i,j) i_ranges[j] = first(i_ranges[j]):i break end i = i - 1 end end return i_ranges end const _i_ranges = _i_ranges_R function __control_points(value::T, index::Integer, dims::NTuple{Dim, Integer}) where {T, Dim} a = Array{T,Dim}(undef, dims) i = prod(index) for i in 1:(i-1) @inbounds a[i] = zero(value) end @inbounds a[i] = value return a end function _isempty(R::NTuple{1, Vector{UnitRange{Int}}}, J::CartesianIndex{1}) return isempty(R[1][J[1]]) end function _isempty(R::NTuple{2, Vector{UnitRange{Int}}}, J::CartesianIndex{2}) return isempty(R[1][J[1]]) || isempty(R[2][J[2]]) end function _isempty(R::NTuple{3, Vector{UnitRange{Int}}}, J::CartesianIndex{3}) return isempty(R[1][J[1]]) || isempty(R[2][J[2]]) || isempty(R[3][J[3]]) end function _isempty(R::NTuple{Dim, Vector{UnitRange{Int}}}, J::CartesianIndex{Dim}) where Dim return isempty(R[1][J[1]]) || _isempty(R[2:end], CartesianIndex(J.I[2:end])) end function refinement_R(M::BSplineManifold{Dim, Deg, C, T}, P′::NTuple{Dim, BSplineSpace{p′,T′} where p′}) where {Dim, Deg, C, T, T′} U = StaticArrays.arithmetic_closure(promote_type(T,T′)) A::NTuple{Dim, SparseMatrixCSC{U, Int32}} = changebasis_R.(bsplinespaces(M), P′) R::NTuple{Dim, Vector{UnitRange{Int64}}} = _i_ranges_R.(A, P′) a::Array{C, Dim} = controlpoints(M) J::CartesianIndex{Dim} = CartesianIndex(findfirst.(!isempty, R)) D::CartesianIndices{Dim, NTuple{Dim, UnitRange{Int64}}} = CartesianIndices(getindex.(R, J.I)) value = sum(*(getindex.(A, I.I, J.I)...) * a[I] for I in D) j = prod(J.I) a′ = __control_points(value, j, dim.(P′)) for J in view(CartesianIndices(UnitRange.(1, dim.(P′))), (j+1):prod(dim.(P′))) if _isempty(R, J) @inbounds a′[J] = zero(value) else D = CartesianIndices(getindex.(R, J.I)) @inbounds a′[J] = sum(*(getindex.(A, I.I, J.I)...) * a[I] for I in D) end end return BSplineManifold(a′, P′) end function refinement_I(M::BSplineManifold{Dim, Deg, C, T}, P′::NTuple{Dim, BSplineSpace{p′,T′} where p′}) where {Dim, Deg, C, T, T′} U = StaticArrays.arithmetic_closure(promote_type(T,T′)) A::NTuple{Dim, SparseMatrixCSC{U, Int32}} = changebasis_I.(bsplinespaces(M), P′) R::NTuple{Dim, Vector{UnitRange{Int64}}} = _i_ranges_I.(A, P′) a::Array{C, Dim} = controlpoints(M) J::CartesianIndex{Dim} = CartesianIndex(findfirst.(!isempty, R)) D::CartesianIndices{Dim, NTuple{Dim, UnitRange{Int64}}} = CartesianIndices(getindex.(R, J.I)) value = sum(*(getindex.(A, I.I, J.I)...) * a[I] for I in D) j = prod(J.I) a′ = __control_points(value, j, dim.(P′)) for J in view(CartesianIndices(UnitRange.(1, dim.(P′))), (j+1):prod(dim.(P′))) if _isempty(R, J) @inbounds a′[J] = zero(value) else D = CartesianIndices(getindex.(R, J.I)) @inbounds a′[J] = sum(*(getindex.(A, I.I, J.I)...) * a[I] for I in D) end end return BSplineManifold(a′, P′) end function refinement(M::BSplineManifold{Dim, Deg, C, T}, P′::NTuple{Dim, BSplineSpace{p′,T′} where p′}) where {Dim, Deg, C, T, T′} U = StaticArrays.arithmetic_closure(promote_type(T,T′)) A::NTuple{Dim, SparseMatrixCSC{U, Int32}} = changebasis.(bsplinespaces(M), P′) R::NTuple{Dim, Vector{UnitRange{Int64}}} = _i_ranges.(A, P′) a::Array{C, Dim} = controlpoints(M) J::CartesianIndex{Dim} = CartesianIndex(findfirst.(!isempty, R)) D::CartesianIndices{Dim, NTuple{Dim, UnitRange{Int64}}} = CartesianIndices(getindex.(R, J.I)) value = sum(*(getindex.(A, I.I, J.I)...) * a[I] for I in D) j = prod(J.I) a′ = __control_points(value, j, dim.(P′)) for J in view(CartesianIndices(UnitRange.(1, dim.(P′))), (j+1):prod(dim.(P′))) if _isempty(R, J) @inbounds a′[J] = zero(value) else D = CartesianIndices(getindex.(R, J.I)) @inbounds a′[J] = sum(*(getindex.(A, I.I, J.I)...) * a[I] for I in D) end end return BSplineManifold(a′, P′) end function refinement_R(M::RationalBSplineManifold{Dim, Deg, C, W, T}, P′::NTuple{Dim, BSplineSpace{p′,T′} where p′}) where {Dim, Deg, C, W, T, T′} U = StaticArrays.arithmetic_closure(promote_type(T,T′)) A::NTuple{Dim, SparseMatrixCSC{U, Int32}} = changebasis_R.(bsplinespaces(M), P′) R::NTuple{Dim, Vector{UnitRange{Int64}}} = _i_ranges_R.(A, P′) a::Array{C, Dim} = controlpoints(M) w::Array{W, Dim} = weights(M) J::CartesianIndex{Dim} = CartesianIndex(findfirst.(!isempty, R)) D::CartesianIndices{Dim, NTuple{Dim, UnitRange{Int64}}} = CartesianIndices(getindex.(R, J.I)) value_w = sum(*(getindex.(A, I.I, J.I)...) * w[I] for I in D) value_a = sum(*(getindex.(A, I.I, J.I)...) * w[I] * a[I] for I in D) j = prod(J.I) w′ = __control_points(value_w, j, dim.(P′)) a′ = __control_points(value_a, j, dim.(P′)) for J in view(CartesianIndices(UnitRange.(1, dim.(P′))), (j+1):prod(dim.(P′))) if _isempty(R, J) @inbounds w′[J] = zero(value_w) @inbounds a′[J] = zero(value_a) else D = CartesianIndices(getindex.(R, J.I)) @inbounds w′[J] = sum(*(getindex.(A, I.I, J.I)...) * w[I] for I in D) @inbounds a′[J] = sum(*(getindex.(A, I.I, J.I)...) * w[I] * a[I] for I in D) end end nans = .!(iszero.(a′) .& iszero.(w′)) a′ ./= w′ a′ .*= nans return RationalBSplineManifold(a′, w′, P′) end function refinement_I(M::RationalBSplineManifold{Dim, Deg, C, W, T}, P′::NTuple{Dim, BSplineSpace{p′,T′} where p′}) where {Dim, Deg, C, W, T, T′} U = StaticArrays.arithmetic_closure(promote_type(T,T′)) A::NTuple{Dim, SparseMatrixCSC{U, Int32}} = changebasis_I.(bsplinespaces(M), P′) R::NTuple{Dim, Vector{UnitRange{Int64}}} = _i_ranges_I.(A, P′) a::Array{C, Dim} = controlpoints(M) w::Array{W, Dim} = weights(M) J::CartesianIndex{Dim} = CartesianIndex(findfirst.(!isempty, R)) D::CartesianIndices{Dim, NTuple{Dim, UnitRange{Int64}}} = CartesianIndices(getindex.(R, J.I)) value_w = sum(*(getindex.(A, I.I, J.I)...) * w[I] for I in D) value_a = sum(*(getindex.(A, I.I, J.I)...) * w[I] * a[I] for I in D) j = prod(J.I) w′ = __control_points(value_w, j, dim.(P′)) a′ = __control_points(value_a, j, dim.(P′)) for J in view(CartesianIndices(UnitRange.(1, dim.(P′))), (j+1):prod(dim.(P′))) if _isempty(R, J) @inbounds w′[J] = zero(value_w) @inbounds a′[J] = zero(value_a) else D = CartesianIndices(getindex.(R, J.I)) @inbounds w′[J] = sum(*(getindex.(A, I.I, J.I)...) * w[I] for I in D) @inbounds a′[J] = sum(*(getindex.(A, I.I, J.I)...) * w[I] * a[I] for I in D) end end nans = .!(iszero.(a′) .& iszero.(w′)) a′ ./= w′ a′ .*= nans return RationalBSplineManifold(a′, w′, P′) end function refinement(M::RationalBSplineManifold{Dim, Deg, C, W, T}, P′::NTuple{Dim, BSplineSpace{p′,T′} where p′}) where {Dim, Deg, C, W, T, T′} U = StaticArrays.arithmetic_closure(promote_type(T,T′)) A::NTuple{Dim, SparseMatrixCSC{U, Int32}} = changebasis.(bsplinespaces(M), P′) R::NTuple{Dim, Vector{UnitRange{Int64}}} = _i_ranges.(A, P′) a::Array{C, Dim} = controlpoints(M) w::Array{W, Dim} = weights(M) J::CartesianIndex{Dim} = CartesianIndex(findfirst.(!isempty, R)) D::CartesianIndices{Dim, NTuple{Dim, UnitRange{Int64}}} = CartesianIndices(getindex.(R, J.I)) value_w = sum(*(getindex.(A, I.I, J.I)...) * w[I] for I in D) value_a = sum(*(getindex.(A, I.I, J.I)...) * w[I] * a[I] for I in D) j = prod(J.I) w′ = __control_points(value_w, j, dim.(P′)) a′ = __control_points(value_a, j, dim.(P′)) for J in view(CartesianIndices(UnitRange.(1, dim.(P′))), (j+1):prod(dim.(P′))) if _isempty(R, J) @inbounds w′[J] = zero(value_w) @inbounds a′[J] = zero(value_a) else D = CartesianIndices(getindex.(R, J.I)) @inbounds w′[J] = sum(*(getindex.(A, I.I, J.I)...) * w[I] for I in D) @inbounds a′[J] = sum(*(getindex.(A, I.I, J.I)...) * w[I] * a[I] for I in D) end end nans = .!(iszero.(a′) .& iszero.(w′)) a′ ./= w′ a′ .*= nans return RationalBSplineManifold(a′, w′, P′) end function refinement_R(M::BSplineManifold{Dim, Deg, C, T}, P′::NTuple{Dim, BSplineSpace{p′,T′} where {p′, T′}}) where {Dim, Deg, C, T} _P′ = _promote_knottype(P′) return refinement_R(M, _P′) end function refinement_R(M::BSplineManifold{Dim}, P′::Vararg{BSplineSpace, Dim}) where Dim return refinement_R(M, P′) end function refinement_R(M::RationalBSplineManifold{Dim, Deg, C, W, T}, P′::NTuple{Dim, BSplineSpace{p′,T′} where {p′, T′}}) where {Dim, Deg, C, W, T} _P′ = _promote_knottype(P′) return refinement_R(M, _P′) end function refinement_R(M::RationalBSplineManifold{Dim}, P′::Vararg{BSplineSpace, Dim}) where Dim return refinement_R(M, P′) end function refinement_I(M::BSplineManifold{Dim, Deg, C, T}, P′::NTuple{Dim, BSplineSpace{p′,T′} where {p′, T′}}) where {Dim, Deg, C, T} _P′ = _promote_knottype(P′) return refinement_I(M, _P′) end function refinement_I(M::BSplineManifold{Dim}, P′::Vararg{BSplineSpace, Dim}) where Dim return refinement_I(M, P′) end function refinement_I(M::RationalBSplineManifold{Dim, Deg, C, W, T}, P′::NTuple{Dim, BSplineSpace{p′,T′} where {p′, T′}}) where {Dim, Deg, C, W, T} _P′ = _promote_knottype(P′) return refinement_I(M, _P′) end function refinement_I(M::RationalBSplineManifold{Dim}, P′::Vararg{BSplineSpace, Dim}) where Dim return refinement_I(M, P′) end function refinement(M::BSplineManifold{Dim, Deg, C, T}, P′::NTuple{Dim, BSplineSpace{p′,T′} where {p′, T′}}) where {Dim, Deg, C, T} _P′ = _promote_knottype(P′) return refinement(M, _P′) end function refinement(M::BSplineManifold{Dim}, P′::Vararg{BSplineSpace, Dim}) where Dim return refinement(M, P′) end function refinement(M::RationalBSplineManifold{Dim, Deg, C, W, T}, P′::NTuple{Dim, BSplineSpace{p′,T′} where {p′, T′}}) where {Dim, Deg, C, W, T} _P′ = _promote_knottype(P′) return refinement(M, _P′) end function refinement(M::RationalBSplineManifold{Dim}, P′::Vararg{BSplineSpace, Dim}) where Dim return refinement(M, P′) end @doc raw""" Refinement of B-spline manifold with additional degree and knotvector. """ @generated function refinement_R(M::AbstractManifold{Dim}, p₊::NTuple{Dim, Val}, k₊::NTuple{Dim, AbstractKnotVector}=ntuple(i->EmptyKnotVector(), Val(Dim))) where Dim Ps = [Symbol(:P,i) for i in 1:Dim] Ps′ = [Symbol(:P,i,"′") for i in 1:Dim] ks = [Symbol(:k,i,:₊) for i in 1:Dim] ps = [Symbol(:p,i,:₊) for i in 1:Dim] exP = Expr(:tuple, Ps...) exP′ = Expr(:tuple, Ps′...) exk = Expr(:tuple, ks...) exp = Expr(:tuple, ps...) exs = [:($(Symbol(:P,i,"′")) = expandspace_R($(Symbol(:P,i)), $(Symbol(:p,i,:₊)), $(Symbol(:k,i,:₊)))) for i in 1:Dim] Expr( :block, :($exP = bsplinespaces(M)), :($exp = p₊), :($exk = k₊), exs..., :(return refinement_R(M, $(exP′))) ) end @generated function refinement_R(M::AbstractManifold{Dim}, k₊::NTuple{Dim, AbstractKnotVector}=ntuple(i->EmptyKnotVector(), Val(Dim))) where Dim Ps = [Symbol(:P,i) for i in 1:Dim] Ps′ = [Symbol(:P,i,"′") for i in 1:Dim] ks = [Symbol(:k,i,:₊) for i in 1:Dim] exP = Expr(:tuple, Ps...) exP′ = Expr(:tuple, Ps′...) exk = Expr(:tuple, ks...) exs = [:($(Symbol(:P,i,"′")) = expandspace_R($(Symbol(:P,i)), $(Symbol(:k,i,:₊)))) for i in 1:Dim] Expr( :block, :($exP = bsplinespaces(M)), :($exk = k₊), exs..., :(return refinement_R(M, $(exP′))) ) end @doc raw""" Refinement of B-spline manifold with additional degree and knotvector. """ @generated function refinement_I(M::AbstractManifold{Dim}, p₊::NTuple{Dim, Val}, k₊::NTuple{Dim, AbstractKnotVector}=ntuple(i->EmptyKnotVector(), Val(Dim))) where Dim Ps = [Symbol(:P,i) for i in 1:Dim] Ps′ = [Symbol(:P,i,"′") for i in 1:Dim] ks = [Symbol(:k,i,:₊) for i in 1:Dim] ps = [Symbol(:p,i,:₊) for i in 1:Dim] exP = Expr(:tuple, Ps...) exP′ = Expr(:tuple, Ps′...) exk = Expr(:tuple, ks...) exp = Expr(:tuple, ps...) exs = [:($(Symbol(:P,i,"′")) = expandspace_I($(Symbol(:P,i)), $(Symbol(:p,i,:₊)), $(Symbol(:k,i,:₊)))) for i in 1:Dim] Expr( :block, :($exP = bsplinespaces(M)), :($exp = p₊), :($exk = k₊), exs..., :(return refinement_I(M, $(exP′))) ) end @generated function refinement_I(M::AbstractManifold{Dim}, k₊::NTuple{Dim, AbstractKnotVector}=ntuple(i->EmptyKnotVector(), Val(Dim))) where Dim Ps = [Symbol(:P,i) for i in 1:Dim] Ps′ = [Symbol(:P,i,"′") for i in 1:Dim] ks = [Symbol(:k,i,:₊) for i in 1:Dim] exP = Expr(:tuple, Ps...) exP′ = Expr(:tuple, Ps′...) exk = Expr(:tuple, ks...) exs = [:($(Symbol(:P,i,"′")) = expandspace_I($(Symbol(:P,i)), $(Symbol(:k,i,:₊)))) for i in 1:Dim] Expr( :block, :($exP = bsplinespaces(M)), :($exk = k₊), exs..., :(return refinement_I(M, $(exP′))) ) end @doc raw""" Refinement of B-spline manifold with additional degree and knotvector. """ @generated function refinement(M::AbstractManifold{Dim}, p₊::NTuple{Dim, Val}, k₊::NTuple{Dim, AbstractKnotVector}=ntuple(i->EmptyKnotVector(), Val(Dim))) where Dim Ps = [Symbol(:P,i) for i in 1:Dim] Ps′ = [Symbol(:P,i,"′") for i in 1:Dim] ks = [Symbol(:k,i,:₊) for i in 1:Dim] ps = [Symbol(:p,i,:₊) for i in 1:Dim] exP = Expr(:tuple, Ps...) exP′ = Expr(:tuple, Ps′...) exk = Expr(:tuple, ks...) exp = Expr(:tuple, ps...) exs = [:($(Symbol(:P,i,"′")) = expandspace($(Symbol(:P,i)), $(Symbol(:p,i,:₊)), $(Symbol(:k,i,:₊)))) for i in 1:Dim] Expr( :block, :($exP = bsplinespaces(M)), :($exp = p₊), :($exk = k₊), exs..., :(return refinement(M, $(exP′))) ) end @generated function refinement(M::AbstractManifold{Dim}, k₊::NTuple{Dim, AbstractKnotVector}=ntuple(i->EmptyKnotVector(), Val(Dim))) where Dim Ps = [Symbol(:P,i) for i in 1:Dim] Ps′ = [Symbol(:P,i,"′") for i in 1:Dim] ks = [Symbol(:k,i,:₊) for i in 1:Dim] exP = Expr(:tuple, Ps...) exP′ = Expr(:tuple, Ps′...) exk = Expr(:tuple, ks...) exs = [:($(Symbol(:P,i,"′")) = expandspace($(Symbol(:P,i)), $(Symbol(:k,i,:₊)))) for i in 1:Dim] Expr( :block, :($exP = bsplinespaces(M)), :($exk = k₊), exs..., :(return refinement(M, $(exP′))) ) end # resolve ambiguities refinement_R(M::AbstractManifold{0}, ::Tuple{}) = M refinement_R(M::BSplineManifold{0, Deg, C, T, S} where {Deg, C, T, S<:Tuple{}}, ::Tuple{}) = M refinement_R(M::RationalBSplineManifold{0, Deg, C, W, T, S} where {Deg, C, W, T, S<:Tuple{}}, ::Tuple{}) = M refinement_I(M::AbstractManifold{0}, ::Tuple{}) = M refinement_I(M::BSplineManifold{0, Deg, C, T, S} where {Deg, C, T, S<:Tuple{}}, ::Tuple{}) = M refinement_I(M::RationalBSplineManifold{0, Deg, C, W, T, S} where {Deg, C, W, T, S<:Tuple{}}, ::Tuple{}) = M refinement(M::AbstractManifold{0}, ::Tuple{}) = M refinement(M::BSplineManifold{0, Deg, C, T, S} where {Deg, C, T, S<:Tuple{}}, ::Tuple{}) = M refinement(M::RationalBSplineManifold{0, Deg, C, W, T, S} where {Deg, C, W, T, S<:Tuple{}}, ::Tuple{}) = M
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
357
@setup_workload begin k1 = KnotVector(1:8) k2 = UniformKnotVector(1:8) P1 = BSplineSpace{3}(k1) P2 = BSplineSpace{3}(k2) @compile_workload begin changebasis_I(P1, P1) changebasis_R(P1, P1) changebasis_I(P1, P2) changebasis_R(P1, P2) changebasis_I(P2, P2) changebasis_R(P2, P2) end end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
1918
# Division, devided by zero will be zero @inline function _d(a::T,b::T) where T U=StaticArrays.arithmetic_closure(T) iszero(b) && return zero(U) return U(a/b) end @inline _d(a,b) = _d(promote(a,b)...) @doc raw""" Calculate ``r``-nomial coefficient r_nomial(n, k, r) **This function is considered as internal.** ```math (1+x+\cdots+x^r)^n = \sum_{k} a_{n,k,r} x^k ``` """ function r_nomial(n::T,k::T,r::T) where T<:Integer # n must be non-negative # r must be larger or equal to one if r == 1 return T(iszero(k)) elseif r == 2 return binomial(n,k) elseif k < 0 return zero(T) elseif k == 0 return one(T) elseif k == 1 return n elseif k == 2 return n*(n+1)÷2 elseif (r-1)*n < 2k return r_nomial(n,(r-one(T))*n-k,r) elseif n == 1 return one(T) elseif n == 2 return k+one(T) else m = r_nomial(n-one(T),k,r) for i in 1:r-1 m += r_nomial(n-one(T),k-i,r) end return m end end @inline _remove_colon(::Colon) = () @inline _remove_colon(x::Any) = (x,) @inline _remove_colon(x::Any, rest...) = (x, _remove_colon(rest...)...) @inline _remove_colon(::Colon, rest...) = _remove_colon(rest...) @inline _replace_noncolon(new::Tuple, vals::Tuple, ::Colon, sample...) = _replace_noncolon((new...,:),vals,sample...) @inline _replace_noncolon(new::Tuple, vals::Tuple, ::Any, sample...) = _replace_noncolon((new...,vals[1]),vals[2:end],sample...) @inline _replace_noncolon(new::Tuple, vals::Tuple{}, ::Colon) = (new...,:) @inline _replace_noncolon(new::Tuple, vals::Tuple{Any}, ::Any) = (new...,vals[1]) @inline _replace_noncolon(new::Tuple, vals::Tuple{Any}, ::Colon) = error("invalid inputs") @inline _get_on_real(x,::Real) = x @inline _get_on_real(::Any,::Colon) = (:) @inline _get_on_colon(x,::Colon) = x @inline _get_on_colon(::Any,::Real) = (:)
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
950
using BasicBSpline using ChainRulesTestUtils using ChainRulesCore using IntervalSets using LinearAlgebra using SparseArrays using Test using Random using StaticArrays using GeometryBasics using Plots using Aqua if VERSION ≥ v"1.9.0" # Disable ambiguities tests for ChainRulesCore.frule # TODO enable unbound_args again Aqua.test_all(BasicBSpline; ambiguities=false, unbound_args=false) Aqua.test_ambiguities(BasicBSpline; exclude=[ChainRulesCore.frule]) end Random.seed!(42) include("test_util.jl") include("test_KnotVector.jl") include("test_BSplineSpace.jl") include("test_BSplineBasis.jl") include("test_UniformKnotVector.jl") include("test_UniformBSplineSpace.jl") include("test_UniformBSplineBasis.jl") include("test_Derivative.jl") include("test_ChangeBasis.jl") include("test_BSplineManifold.jl") include("test_RationalBSplineManifold.jl") include("test_Refinement.jl") include("test_ChainRules.jl") include("test_Plots.jl")
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
5078
function ≒(a,b) if a ≈ b return true elseif abs(a-b) < 1e-10 return true else return false end end @testset "BSplineBasis" begin Δt = 1.0e-8 ε = 1.0e-8 @testset "$(p)-th degree basis" for p in 0:4 v = rand(10) k = KnotVector(v) + (p+1)*KnotVector([0, 1]) + KnotVector(v[2:3]) P = BSplineSpace{p}(k) n = dim(P) @test degree(P) == p # Check the values of B-spline basis funcitons for i in 1:n, t in rand(5) for t in rand(5) @test (bsplinebasis₊₀(P, i, t) ≈ bsplinebasis₋₀(P, i, t) ≈ bsplinebasis(P, i, t)) end for t in k t₊₀ = nextfloat(t) t₋₀ = prevfloat(t) @test bsplinebasis₊₀(P, i, t) ≒ bsplinebasis₊₀(P, i, t₊₀) @test bsplinebasis₋₀(P, i, t) ≒ bsplinebasis₋₀(P, i, t₋₀) end end # Check the values of the derivative of B-spline basis funcitons for t in k s = sum([bsplinebasis(P, i, t) for i in 1:n]) s₊₀ = sum([bsplinebasis₊₀(P, i, t) for i in 1:n]) s₋₀ = sum([bsplinebasis₋₀(P, i, t) for i in 1:n]) if t == k[1] @test s ≈ 1 @test s₊₀ ≈ 1 @test s₋₀ == 0 elseif t == k[end] @test s ≈ 1 @test s₊₀ == 0 @test s₋₀ ≈ 1 else @test s ≈ 1 @test s₊₀ ≈ 1 @test s₋₀ ≈ 1 end end end @testset "bsplinebasisall" begin k = KnotVector(rand(10).-1) + KnotVector(rand(10)) + KnotVector(rand(10).+1) ts = rand(10) for p in 0:5 P = BSplineSpace{p}(k) for t in ts j = intervalindex(P,t) B = collect(bsplinebasisall(P,j,t)) _B = bsplinebasis.(P,j:j+p,t) @test _B ≈ B _B = bsplinebasis₊₀.(P,j:j+p,t) @test _B ≈ B _B = bsplinebasis₋₀.(P,j:j+p,t) @test _B ≈ B end end end @testset "Rational" begin k = KnotVector{Int}(1:12) P = BSplineSpace{3}(k) @test k isa KnotVector{Int} @test P isa BSplineSpace{3,Int} bsplinebasis(P,1,11//5) isa Rational{Int} bsplinebasis₊₀(P,1,11//5) isa Rational{Int} bsplinebasis₋₀(P,1,11//5) isa Rational{Int} @test bsplinebasis(P,1,11//5) === bsplinebasis₊₀(P,1,11//5) === bsplinebasis₋₀(P,1,11//5) === 106//375 end @testset "Check type" begin k = KnotVector{Int}(1:12) P0 = BSplineSpace{0}(k) P1 = BSplineSpace{1}(k) P2 = BSplineSpace{2}(k) @test bsplinebasis(P0,1,5) isa Float64 @test bsplinebasis(P1,1,5) isa Float64 @test bsplinebasis(P2,1,5) isa Float64 @test bsplinebasis₊₀(P0,1,5) isa Float64 @test bsplinebasis₊₀(P1,1,5) isa Float64 @test bsplinebasis₊₀(P2,1,5) isa Float64 @test bsplinebasis₋₀(P0,1,5) isa Float64 @test bsplinebasis₋₀(P1,1,5) isa Float64 @test bsplinebasis₋₀(P2,1,5) isa Float64 @test bsplinebasisall(P0,1,5) isa SVector{1,Float64} @test bsplinebasisall(P1,1,5) isa SVector{2,Float64} @test bsplinebasisall(P2,1,5) isa SVector{3,Float64} end @testset "Endpoints" begin p = 2 k = KnotVector(1:2) + (p+1)*KnotVector([0,3]) P0 = BSplineSpace{0}(k) P1 = BSplineSpace{1}(k) P2 = BSplineSpace{2}(k) @test isdegenerate(P0) @test isdegenerate(P1) @test isnondegenerate(P2) n0 = dim(P0) n1 = dim(P1) n2 = dim(P2) @test bsplinebasis.(P0,1:n0,0) == bsplinebasis₊₀.(P0,1:n0,0) == [0,0,1,0,0,0,0] @test bsplinebasis.(P1,1:n1,0) == bsplinebasis₊₀.(P1,1:n1,0) == [0,1,0,0,0,0] @test bsplinebasis.(P2,1:n2,0) == bsplinebasis₊₀.(P2,1:n2,0) == [1,0,0,0,0] @test bsplinebasis.(P0,1:n0,3) == bsplinebasis₋₀.(P0,1:n0,3) == [0,0,0,0,1,0,0] @test bsplinebasis.(P1,1:n1,3) == bsplinebasis₋₀.(P1,1:n1,3) == [0,0,0,0,1,0] @test bsplinebasis.(P2,1:n2,3) == bsplinebasis₋₀.(P2,1:n2,3) == [0,0,0,0,1] @test bsplinebasis₋₀.(P0,1:n0,0) == [0,0,0,0,0,0,0] @test bsplinebasis₋₀.(P1,1:n1,0) == [0,0,0,0,0,0] @test bsplinebasis₋₀.(P2,1:n2,0) == [0,0,0,0,0] @test bsplinebasis₊₀.(P0,1:n0,3) == [0,0,0,0,0,0,0] @test bsplinebasis₊₀.(P1,1:n1,3) == [0,0,0,0,0,0] @test bsplinebasis₊₀.(P2,1:n2,3) == [0,0,0,0,0] end @testset "kernel" begin for p in 0:4 P = BSplineSpace{p}(UniformKnotVector(0:10)) t = rand() v1 = BasicBSpline.uniform_bsplinebasisall_kernel(Val(p), t) v2 = BasicBSpline.uniform_bsplinebasis_kernel.(Val(p), t .+ (p:-1:0)) v3 = bsplinebasisall.(P, 1, t+p) @test v1 ≈ v2 ≈ v3 end end end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
7575
@testset "BSplineManifold" begin function arrayofvector2array(a::AbstractArray{<:AbstractVector{T},d})::Array{T,d+1} where {d, T<:Real} d̂ = length(a[1]) s = size(a) N = prod(s) a_2dim = [a[i][j] for i in 1:N, j in 1:d̂] a′ = reshape(a_2dim, s..., d̂) return a′ end function array2arrayofvector(a::AbstractArray{T,d})::Array{Vector{T},d-1} where {d, T<:Real} s = size(a) d̂ = s[end] N = s[1:end-1] a_flat = reshape(a,prod(N),d̂) a_vec = [a_flat[i,:] for i in 1:prod(N)] a′ = reshape(a_vec,N) return a′ end @testset "constructor" begin k1 = KnotVector(Float64[0,0,1,1]) k2 = UniformKnotVector(1.0:8.0) k3 = KnotVector(rand(8)) _k1 = KnotVector([0.0, 0.0, 1.0, 1.0]) _k2 = KnotVector(1.0:8.0) _k3 = view(k3,:) P1 = BSplineSpace{1}(k1) P2 = BSplineSpace{3}(k2) P3 = BSplineSpace{2}(k3) _P1 = BSplineSpace{1}(_k1) _P2 = BSplineSpace{3}(_k2) _P3 = BSplineSpace{2}(_k3) # 0-dim a = fill(1.2) M = BSplineManifold{0,(),Float64,Int,Tuple{}}(a, ()) N = BSplineManifold{0,(),Float64,Int,Tuple{}}(copy(a), ()) @test M == M @test M == N @test hash(M) == hash(M) @test hash(M) == hash(N) @test M() == 1.2 # 4-dim a = rand(dim(P1), dim(P2), dim(P3), dim(P3)) @test BSplineManifold(a, P1, P2, P3, P3) == BSplineManifold(a, P1, P2, P3, P3) @test hash(BSplineManifold(a, P1, P2, P3, P3)) == hash(BSplineManifold(a, P1, P2, P3, P3)) @test BSplineManifold(a, P1, P2, P3, P3) == BSplineManifold(a, _P1, _P2, _P3, _P3) @test hash(BSplineManifold(a, P1, P2, P3, P3)) == hash(BSplineManifold(a, _P1, _P2, _P3, _P3)) @test BSplineManifold(a, P1, P2, P3, P3) == BSplineManifold(copy(a), _P1, _P2, _P3, _P3) @test hash(BSplineManifold(a, P1, P2, P3, P3)) == hash(BSplineManifold(copy(a), _P1, _P2, _P3, _P3)) end @testset "1dim" begin @testset "BSplineManifold-1dim" begin P1 = BSplineSpace{1}(KnotVector([0, 0, 1, 1])) n1 = dim(P1) # 2 a = [Point(i, rand()) for i in 1:n1] # n1 × n2 array of d̂-dim vector. M = BSplineManifold(a, (P1,)) @test dim(M) == 1 P1′ = BSplineSpace{2}(KnotVector([-2, 0, 0, 1, 1, 2])) p₊ = (Val(1),) k₊ = (KnotVector(Float64[]),) @test P1 ⊑ P1′ M′ = refinement(M, P1′) M′′ = refinement(M, p₊, k₊) ts = [[rand()] for _ in 1:10] for t in ts @test M(t...) ≈ M′(t...) @test M(t...) ≈ M′′(t...) end @test_throws DomainError M(-5) @test map.(M,[0.2,0.5,0.6]) == M.([0.2,0.5,0.6]) @test M(:) == M @test Base.mightalias(controlpoints(M), controlpoints(M)) @test !Base.mightalias(controlpoints(M), controlpoints(M(:))) end end @testset "2dim" begin @testset "BSplineManifold-2dim" begin P1 = BSplineSpace{1}(KnotVector([0, 0, 1, 1])) P2 = BSplineSpace{1}(KnotVector([1, 1, 2, 3, 3])) n1 = dim(P1) # 2 n2 = dim(P2) # 3 a = [Point(i, j) for i in 1:n1, j in 1:n2] # n1 × n2 array of d̂-dim vector. M = BSplineManifold(a, (P1, P2)) @test dim(M) == 2 P1′ = BSplineSpace{2}(KnotVector([0, 0, 0, 1, 1, 1])) P2′ = BSplineSpace{1}(KnotVector([1, 1, 2, 1.45, 3, 3])) p₊ = (Val(1), Val(0)) k₊ = (KnotVector(Float64[]), KnotVector([1.45])) @test P1 ⊆ P1′ @test P2 ⊆ P2′ M′ = refinement(M, (P1′, P2′)) M′′ = refinement(M, p₊, k₊) ts = [[rand(), 1 + 2 * rand()] for _ in 1:10] for t in ts t1, t2 = t @test M(t1,t2) ≈ M′(t1,t2) @test M(t1,t2) ≈ M′′(t1,t2) @test M(t1,t2) ≈ M(t1,:)(t2) @test M(t1,t2) ≈ M(:,t2)(t1) end @test_throws DomainError M(-5,-8) @test M(:,:) == M @test Base.mightalias(controlpoints(M), controlpoints(M)) @test !Base.mightalias(controlpoints(M), controlpoints(M(:,:))) end end @testset "3dim" begin @testset "BSplineManifold-3dim" begin P1 = BSplineSpace{1}(KnotVector([0, 0, 1, 1])) P2 = BSplineSpace{1}(KnotVector([1, 1, 2, 3, 3])) P3 = BSplineSpace{2}(KnotVector(rand(16))) n1 = dim(P1) # 2 n2 = dim(P2) # 3 n3 = dim(P3) a = [Point(i1, i2, 3) for i1 in 1:n1, i2 in 1:n2, i3 in 1:n3] M = BSplineManifold(a, (P1, P2, P3)) @test dim(M) == 3 p₊ = (Val(1), Val(0), Val(1)) k₊ = (KnotVector(Float64[]), KnotVector([1.45]), EmptyKnotVector()) M′′ = refinement(M, p₊, k₊) ts = [[rand(), 1 + 2 * rand(), 0.5] for _ in 1:10] for t in ts t1, t2, t3 = t @test M(t1,t2,t3) ≈ M′′(t1,t2,t3) @test M(t1,t2,t3) ≈ M(t1,:,:)(t2,t3) @test M(t1,t2,t3) ≈ M(:,t2,:)(t1,t3) @test M(t1,t2,t3) ≈ M(:,:,t3)(t1,t2) @test M(t1,t2,t3) ≈ M(t1,t2,:)(t3) @test M(t1,t2,t3) ≈ M(t1,:,t3)(t2) @test M(t1,t2,t3) ≈ M(:,t2,t3)(t1) end @test_throws DomainError M(-5,-8,-120) @test M(:,:,:) == M @test Base.mightalias(controlpoints(M), controlpoints(M)) @test !Base.mightalias(controlpoints(M), controlpoints(M(:,:,:))) end end @testset "4dim" begin @testset "BSplineManifold-4dim" begin P1 = BSplineSpace{3}(knotvector"43211112112112") P2 = BSplineSpace{4}(knotvector"3211 1 112112115") P3 = BSplineSpace{5}(knotvector" 411 1 112112 11133") P4 = BSplineSpace{4}(knotvector"4 1112113 11 13 3") n1 = dim(P1) n2 = dim(P2) n3 = dim(P3) n4 = dim(P4) a = rand(n1, n2, n3, n4) M = BSplineManifold(a, (P1, P2, P3, P4)) @test dim(M) == 4 ts = [(rand.(domain.((P1, P2, P3, P4)))) for _ in 1:10] for (t1, t2, t3, t4) in ts @test M(t1,t2,t3,t4) ≈ M(t1,:,:,:)( t2,t3,t4) @test M(t1,t2,t3,t4) ≈ M(:,t2,:,:)(t1, t3,t4) @test M(t1,t2,t3,t4) ≈ M(:,:,t3,:)(t1,t2, t4) @test M(t1,t2,t3,t4) ≈ M(:,:,:,t4)(t1,t2,t3 ) @test M(t1,t2,t3,t4) ≈ M(t1,t2,:,:)(t3,t4) @test M(t1,t2,t3,t4) ≈ M(t1,:,t3,:)(t2,t4) @test M(t1,t2,t3,t4) ≈ M(t1,:,:,t4)(t2,t3) @test M(t1,t2,t3,t4) ≈ M(:,t2,t3,:)(t1,t4) @test M(t1,t2,t3,t4) ≈ M(:,t2,:,t4)(t1,t3) @test M(t1,t2,t3,t4) ≈ M(:,:,t3,t4)(t1,t2) @test M(t1,t2,t3,t4) ≈ M(:,t2,t3,t4)(t1) @test M(t1,t2,t3,t4) ≈ M(t1,:,t3,t4)(t2) @test M(t1,t2,t3,t4) ≈ M(t1,t2,:,t4)(t3) @test M(t1,t2,t3,t4) ≈ M(t1,t2,t3,:)(t4) end @test_throws DomainError M(-5,-8,-120,1) @test M(:,:,:,:) == M @test Base.mightalias(controlpoints(M), controlpoints(M)) @test !Base.mightalias(controlpoints(M), controlpoints(M(:,:,:,:))) end end end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
8576
@testset "BSplineSpace" begin @testset "constructor" begin P1 = BSplineSpace{2}(KnotVector(1:8)) P2 = BSplineSpace{2}(P1) P3 = BSplineSpace{2,Int}(P1) P4 = BSplineSpace{2,Real}(P1) P5 = BSplineSpace{2,Float64}(P1) P6 = BSplineSpace{2,Float64}(KnotVector(1:8)) P7 = BSplineSpace{2,Float64,KnotVector{Float64}}(KnotVector(1:8)) @test P1 == P2 == P3 == P4 == P5 == bsplinespace(P1) == bsplinespace(P2) == bsplinespace(P3) == bsplinespace(P4) == bsplinespace(P5) @test P5 == P6 == P7 @test typeof(P5) === typeof(P6) === typeof(P7) @test P1 isa BSplineSpace{2,Int} @test P2 isa BSplineSpace{2,Int} @test P3 isa BSplineSpace{2,Int} @test P4 isa BSplineSpace{2,Real} @test P5 isa BSplineSpace{2,Float64} @test P1 === BSplineSpace(P1) @test_throws MethodError BSplineSpace(KnotVector(1:8)) @test_throws MethodError BSplineSpace{3}(P1) end @testset "dimension, dengenerate" begin P1 = BSplineSpace{2}(KnotVector([1, 3, 5, 6, 8, 9, 9])) @test bsplinesupport(P1, 2) == 3..8 @test bsplinesupport_R(P1, 2) == 3..8 @test bsplinesupport_I(P1, 2) == 5..8 @test domain(P1) == 5..8 @test dim(P1) == 4 @test exactdim_R(P1) == 4 @test isnondegenerate(P1) == true @test isdegenerate(P1) == false P2 = BSplineSpace{1}(KnotVector([1, 3, 3, 3, 8, 9])) @test isnondegenerate(P2) == false @test isdegenerate(P2) == true @test isdegenerate(P2,1) == false @test isdegenerate(P2,2) == true @test isdegenerate(P2,3) == false @test isdegenerate(P2,4) == false @test isnondegenerate(P2,1) == true @test isnondegenerate(P2,2) == false @test isnondegenerate(P2,3) == true @test isnondegenerate(P2,4) == true @test dim(P2) == 4 @test exactdim_R(P2) == 3 P3 = BSplineSpace{2}(KnotVector([0,0,0,1,1,1,2])) @test domain(P3) == 0..1 @test dim(P3) == 4 @test exactdim_R(P3) == 4 @test isnondegenerate(P3) == true @test isdegenerate(P3) == false @test isdegenerate(P3,1) == false @test isdegenerate(P3,2) == false @test isdegenerate(P3,3) == false @test isdegenerate(P3,4) == false @test isnondegenerate(P3,1) == true @test isnondegenerate(P3,2) == true @test isnondegenerate(P3,3) == true @test isnondegenerate(P3,4) == true @test isnondegenerate_I(P3) == false @test isdegenerate_I(P3) == true @test isdegenerate_I(P3,1) == false @test isdegenerate_I(P3,2) == false @test isdegenerate_I(P3,3) == false @test isdegenerate_I(P3,4) == true @test isnondegenerate_I(P3,1) == true @test isnondegenerate_I(P3,2) == true @test isnondegenerate_I(P3,3) == true @test isnondegenerate_I(P3,4) == false end @testset "denegeration with lower degree" begin k = KnotVector([1, 3, 3, 3, 6, 8, 9]) @test isnondegenerate(BSplineSpace{2}(k)) @test isdegenerate(BSplineSpace{1}(k)) end @testset "subset" begin P1 = BSplineSpace{1}(KnotVector([1, 3, 5, 8])) P2 = BSplineSpace{1}(KnotVector([1, 3, 5, 6, 8, 9])) P3 = BSplineSpace{2}(KnotVector([1, 1, 3, 3, 5, 5, 8, 8])) @test P1 ⊆ P1 @test P2 ⊆ P2 @test P3 ⊆ P3 @test P1 ⊆ P2 @test P1 ⋢ P2 @test P1 ⊆ P3 @test P2 ⊈ P3 @test !(P1 ⊊ P1) @test !(P2 ⊊ P2) @test !(P3 ⊊ P3) @test P1 ⊊ P2 @test P1 ⊊ P3 @test !(P1 ⊋ P1) @test !(P2 ⊋ P2) @test !(P3 ⊋ P3) @test P2 ⊋ P1 @test P3 ⊋ P1 end @testset "sqsubset" begin P1 = BSplineSpace{3}(KnotVector([2, 2, 2, 3, 3, 4, 4, 4])) P2 = BSplineSpace{3}(KnotVector([1, 3, 3, 3, 4])) P3 = BSplineSpace{2}(knotvector"3 3") P4 = BSplineSpace{3}(knotvector"4 4") P5 = BSplineSpace{3}(knotvector"414") @test P1 ⋢ P2 @test P3 ⊑ P4 ⊑ P5 end @testset "equality" begin P1 = BSplineSpace{2}(KnotVector([1, 2, 3, 5, 8, 8, 9])) P2 = BSplineSpace{2}(KnotVector([1, 2, 3, 5, 8, 8, 9])) P3 = BSplineSpace{1}(KnotVector([1, 2, 3, 5, 8, 8, 9])) P4 = BSplineSpace{1}(KnotVector([1, 2, 3, 5, 8, 8, 9])) @test P1 ⊆ P2 @test P2 ⊆ P1 @test P1 == P2 @test hash(P1) == hash(P2) @test P3 ⊆ P4 @test P4 ⊆ P3 @test P3 == P4 @test hash(P3) == hash(P4) @test P1 != P3 @test hash(P1) != hash(P3) end @testset "expandspace" begin P1 = BSplineSpace{1}(KnotVector([0,0,0,0,0])) P2 = BSplineSpace{3}(KnotVector(1:8)) P3 = BSplineSpace{2}(KnotVector(1:8)+3*KnotVector([0])) P4 = BSplineSpace{2}(KnotVector([0,0,0,1,1,1,2])) @test P1 == expandspace_R(P1) == expandspace_I(P1) == expandspace(P1) @test P2 == expandspace_R(P2) == expandspace_I(P2) == expandspace(P2) @test P3 == expandspace_R(P3) == expandspace_I(P3) == expandspace(P3) @test P4 == expandspace_R(P4) == expandspace_I(P4) == expandspace(P4) @test P1 ⊆ @inferred expandspace_R(P1, Val(1)) @test P2 ⊆ @inferred expandspace_R(P2, Val(1)) @test P3 ⊆ @inferred expandspace_R(P3, Val(1)) @test P4 ⊆ @inferred expandspace_R(P4, Val(1)) @test P1 ⊆ expandspace_R(P1, KnotVector([1,2,3])) @test P2 ⊆ expandspace_R(P2, KnotVector([1,2,3])) @test P3 ⊆ expandspace_R(P3, KnotVector([1,2,3])) @test P4 ⊆ expandspace_R(P4, KnotVector([1,2,3])) @test knotvector(P1) + KnotVector([1,2,3]) ⊆ knotvector(expandspace_R(P1, KnotVector([1,2,3]))) @test knotvector(P2) + KnotVector([1,2,3]) ⊆ knotvector(expandspace_R(P2, KnotVector([1,2,3]))) @test knotvector(P3) + KnotVector([1,2,3]) ⊆ knotvector(expandspace_R(P3, KnotVector([1,2,3]))) @test knotvector(P4) + KnotVector([1,2,3]) ⊆ knotvector(expandspace_R(P4, KnotVector([1,2,3]))) # P1 and P4 is not subset of expandspace_I. @test P1 ⋢ expandspace_I(P1, Val(1)) == expandspace(P1, Val(1)) @test P2 ⊑ expandspace_I(P2, Val(1)) == expandspace(P2, Val(1)) @test P3 ⊑ expandspace_I(P3, Val(1)) == expandspace(P3, Val(1)) @test P4 ⋢ expandspace_I(P4, Val(1)) == expandspace(P4, Val(1)) # That was because P1 and P4 is not nondegenerate. @test isdegenerate_I(P1) @test isdegenerate_I(P4) # Additional knot vector should be inside the domain k5 = KnotVector(1:8) P5 = BSplineSpace{3}(k5) @test_throws DomainError expandspace_I(P5, KnotVector([9,19])) @test expandspace_R(P5, KnotVector([9,19])) == expandspace_R(P5, Val(0), KnotVector([9,19])) end @testset "sqsubset and lowered B-spline space" begin P4 = BSplineSpace{1}(KnotVector([1, 2, 3, 4, 5])) P5 = BSplineSpace{2}(KnotVector([-1, 0.3, 2, 3, 3, 4, 5.2, 6])) _P4 = BSplineSpace{degree(P4)-1}(knotvector(P4)[2:end-1]) _P5 = BSplineSpace{degree(P5)-1}(knotvector(P5)[2:end-1]) @test P4 ⊑ P4 @test P4 ⊑ P5 @test P5 ⊒ P4 @test P5 ⋢ P4 @test P4 ⋣ P5 @test (P4 ⊑ P4) == (_P4 ⊑ _P4) @test (P4 ⊑ P5) == (_P4 ⊑ _P5) @test (P5 ⊑ P4) == (_P5 ⊑ _P4) end @testset "subset and sqsubset" begin P6 = BSplineSpace{2}(knotvector"1111 111") P7 = BSplineSpace{2}(knotvector"11121111") @test P6 ⊆ P6 @test P6 ⊆ P7 @test P7 ⊆ P7 @test P6 ⊑ P6 @test P6 ⊑ P7 @test P7 ⊑ P7 @test domain(P6) == domain(P7) end @testset "subset but not sqsubset" begin P6 = BSplineSpace{2}(knotvector"11111111") P7 = BSplineSpace{2}(knotvector"1111111111") @test P6 ⊆ P6 @test P7 ⊆ P7 @test P6 ⊆ P7 @test P7 ⊈ P6 @test P6 ⊆ P6 @test P7 ⊆ P7 @test P6 ⊆ P7 @test P7 ⊈ P6 @test domain(P6) ⊆ domain(P7) end @testset "sqsubset but not subset" begin P6 = BSplineSpace{2}(knotvector" 1111111") P7 = BSplineSpace{2}(knotvector"11 11111") @test P6 ⊑ P7 @test P7 ⊑ P6 @test P6 ≃ P7 @test P6 ⊈ P7 @test P7 ⊈ P6 @test P6 ⋤ P7 @test P7 ⋤ P6 @test P6 ⋥ P7 @test P7 ⋥ P6 @test domain(P6) == domain(P7) end end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
893
@testset "ChainRules" begin k = KnotVector(rand(20)) p = 3 P = BSplineSpace{p}(k) dP0 = BSplineDerivativeSpace{0}(P) dP1 = BSplineDerivativeSpace{1}(P) dP2 = BSplineDerivativeSpace{2}(P) @testset "bsplinebasis" begin for _P in (P, dP0, dP1, dP2), i in 1:dim(_P) t = rand(domain(P)) test_frule(bsplinebasis, _P, i, t) test_rrule(bsplinebasis, _P, i, t) test_frule(bsplinebasis₊₀, _P, i, t) test_rrule(bsplinebasis₊₀, _P, i, t) test_frule(bsplinebasis₋₀, _P, i, t) test_rrule(bsplinebasis₋₀, _P, i, t) end end @testset "bsplinebasisall" begin for _P in (P, dP0, dP1, dP2), i in 1:length(k)-2p-1 t = rand(domain(P)) test_frule(bsplinebasisall, _P, i, t) test_rrule(bsplinebasisall, _P, i, t) end end end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
10800
@testset "ChangeBasis" begin ε = 1e-13 function test_changebasis_R(P,P′) # The test case must hold P ⊆ P′ @test P ⊆ P′ # Test type stability A = @inferred changebasis_R(P,P′) # Test output type @test A isa SparseMatrixCSC # Zeros must not be stored @test !any(iszero.(A.nzval)) # Test the size of A n = dim(P) n′ = dim(P′) @test size(A) == (n,n′) # Elements must not be stored for degenerate row/col for j in 1:n′ if isdegenerate_R(P′, j) @test !any(Base.isstored.(Ref(A), 1:n, j)) end end for i in 1:n if isdegenerate_R(P, i) @test !any(Base.isstored.(Ref(A), i, 1:n′)) end end # B_{(i,p,k)} = ∑ⱼ A_{i,j} B_{(j,p′,k′)} ts = range(extrema(knotvector(P)+knotvector(P′))..., length=20) for t in ts @test norm(bsplinebasis.(P,1:n,t) - A*bsplinebasis.(P′,1:n′,t), Inf) < ε end end function test_changebasis_I(P, P′; check_zero=true) # The test case must hold P ⊑ P′ @test P ⊑ P′ # Test type stability A = @inferred changebasis_I(P,P′) # Test output type @test A isa SparseMatrixCSC # Zeros must not be stored check_zero && @test !any(iszero.(A.nzval)) # Test the size of A n = dim(P) n′ = dim(P′) @test size(A) == (n,n′) # Elements must not be stored for degenerate row/col for j in 1:n′ if isdegenerate_I(P′, j) @test !any(Base.isstored.(Ref(A), 1:n, j)) end end for i in 1:n if isdegenerate_I(P, i) @test !any(Base.isstored.(Ref(A), i, 1:n′)) end end # B_{(i,p,k)} = ∑ⱼ A_{i,j} B_{(j,p′,k′)} d = domain(P) ts = range(extrema(d)..., length=21)[2:end-1] for t in ts @test norm(bsplinebasis.(P,1:n,t) - A*bsplinebasis.(P′,1:n′,t), Inf) < ε end end @testset "subseteq (R)" begin P1 = BSplineSpace{1}(KnotVector([1, 3, 5, 8])) P2 = BSplineSpace{1}(KnotVector([1, 3, 5, 6, 8, 9])) P3 = BSplineSpace{2}(KnotVector([1, 1, 3, 3, 5, 5, 8, 8])) P4 = BSplineSpace{1}(KnotVector([1, 3, 4, 4, 4, 4, 5, 8])) P5 = expandspace_R(P3, Val(2)) P6 = expandspace_R(P3, KnotVector([1.2])) P7 = expandspace_R(P3, KnotVector([1, 1.2])) test_changebasis_R(P1, P2) test_changebasis_R(P1, P3) test_changebasis_R(P1, P4) test_changebasis_R(P1, P1) test_changebasis_R(P2, P2) test_changebasis_R(P3, P3) test_changebasis_R(P4, P4) test_changebasis_R(P1, P3) test_changebasis_R(P3, P5) test_changebasis_R(P1, P5) A13 = changebasis(P1, P3) A35 = changebasis(P3, P5) A15 = changebasis(P1, P5) @test A15 ≈ A13 * A35 test_changebasis_R(P1, P3) test_changebasis_R(P3, P6) test_changebasis_R(P1, P6) A13 = changebasis(P1, P3) A36 = changebasis(P3, P6) A16 = changebasis(P1, P6) @test A16 ≈ A13 * A36 test_changebasis_R(P3, P6) test_changebasis_R(P6, P7) test_changebasis_R(P3, P7) A36 = changebasis(P3, P6) A67 = changebasis(P6, P7) A37 = changebasis(P3, P7) @test A37 ≈ A36 * A67 @test P2 ⊈ P3 @test isnondegenerate(P1) @test isnondegenerate(P2) @test isnondegenerate(P3) @test isdegenerate(P4) @test changebasis_R(P1, P1) == I @test changebasis_R(P2, P2) == I @test changebasis_R(P3, P3) == I @test changebasis_R(P4, P4) ≠ I end @testset "sqsubseteq (I)" begin p1 = 1 p2 = 2 P1 = BSplineSpace{p1}(KnotVector([1, 2, 3, 4, 5])) P2 = BSplineSpace{p2}(KnotVector([-1, 0.3, 2, 3, 3, 4, 5.2, 6])) @test P1 ⊑ P1 @test P1 ⊑ P2 @test P2 ⊒ P1 @test P2 ⋢ P1 @test P1 ⋣ P2 @test P1 ⊈ P2 test_changebasis_I(P1, P2) test_changebasis_I(P1, P1) test_changebasis_I(P2, P2) P3 = BSplineSpace{p1-1}(knotvector(P1)[2:end-1]) P4 = BSplineSpace{p2-1}(knotvector(P2)[2:end-1]) @test P3 ⊑ P4 @test P3 ⊈ P4 test_changebasis_I(P3, P4) # https://github.com/hyrodium/BasicBSpline.jl/issues/325 P5 = BSplineSpace{2}(knotvector" 21 3") P6 = BSplineSpace{3}(knotvector"212 4") test_changebasis_I(P5, P6) P7 = BSplineSpace{3, Int64, KnotVector{Int64}}(KnotVector([1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 6])) P8 = BSplineSpace{3, Int64, KnotVector{Int64}}(KnotVector([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 7, 7])) test_changebasis_I(P7, P8) _P7 = BSplineSpace{3, Int64, KnotVector{Int64}}(KnotVector(-[1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 6])) _P8 = BSplineSpace{3, Int64, KnotVector{Int64}}(KnotVector(-[1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 7, 7])) test_changebasis_I(_P7, _P8) # (2,2)-element is stored, but it is zero. Q1 = BSplineSpace{1, Int64, KnotVector{Int64}}(KnotVector([2, 2, 4, 4, 6, 6])) Q2 = BSplineSpace{3, Int64, KnotVector{Int64}}(KnotVector([1, 1, 1, 2, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7])) test_changebasis_I(Q1, Q2; check_zero=false) Q3 = BSplineSpace{4, Int64, KnotVector{Int64}}(KnotVector([1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 7])) Q4 = BSplineSpace{5, Int64, KnotVector{Int64}}(KnotVector([1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 4, 4, 4, 5, 6])) test_changebasis_I(Q3, Q4) end @testset "different changebasis_R and changebasis_I" begin P1 = BSplineSpace{3}(knotvector"1111 132") P2 = BSplineSpace{3}(knotvector"11121132") @test isdegenerate_I(P1) @test isdegenerate_I(P2) @test isnondegenerate_R(P1) @test isnondegenerate_R(P2) @test P1 ⊆ P2 @test P1 ⊑ P2 test_changebasis_I(P1, P2) test_changebasis_R(P1, P2) A_R = changebasis_R(P1, P2) A_I = changebasis_I(P1, P2) @test A_R ≠ A_I end @testset "changebasis_sim" begin for p in 1:3, L in 1:8 k1 = UniformKnotVector(1:L+2p+1) k2 = UniformKnotVector(p+1:p+L+1) + p*KnotVector([p+1]) + KnotVector(p+L+1:2p+L) P1 = BSplineSpace{p}(k1) P2 = BSplineSpace{p}(k2) @test P1 isa UniformBSplineSpace{p,T} where {p,T} @test domain(P1) == domain(P2) @test dim(P1) == dim(P2) @test P1 ≃ P2 A = @inferred BasicBSpline._changebasis_sim(P1,P2) D = domain(P1) n = dim(P1) for _ in 1:100 t = rand(D) @test norm(bsplinebasis.(P1,1:n,t) - A*bsplinebasis.(P2,1:n,t), Inf) < ε end end end @testset "non-float" begin k = UniformKnotVector(1:15) P = BSplineSpace{3}(k) @test changebasis(P,P) isa SparseMatrixCSC{Float64} @test BasicBSpline._changebasis_R(P,P) isa SparseMatrixCSC{Float64} @test BasicBSpline._changebasis_I(P,P) isa SparseMatrixCSC{Float64} @test BasicBSpline._changebasis_sim(P,P) isa SparseMatrixCSC{Float64} k = UniformKnotVector(1:15//1) P = BSplineSpace{3}(k) @test changebasis(P,P) isa SparseMatrixCSC{Rational{Int}} @test BasicBSpline._changebasis_R(P,P) isa SparseMatrixCSC{Rational{Int}} @test BasicBSpline._changebasis_I(P,P) isa SparseMatrixCSC{Rational{Int}} @test BasicBSpline._changebasis_sim(P,P) isa SparseMatrixCSC{Rational{Int}} k = UniformKnotVector(1:BigInt(15)) P = BSplineSpace{3}(k) @test changebasis(P,P) isa SparseMatrixCSC{BigFloat} @test BasicBSpline._changebasis_R(P,P) isa SparseMatrixCSC{BigFloat} @test BasicBSpline._changebasis_I(P,P) isa SparseMatrixCSC{BigFloat} @test BasicBSpline._changebasis_sim(P,P) isa SparseMatrixCSC{BigFloat} end @testset "uniform" begin for r in 1:5 k = UniformKnotVector(0:r:50) for p in 0:4 P = BSplineSpace{p}(k) Q = BSplineSpace{p,Int,KnotVector{Int}}(P) k′ = UniformKnotVector(0:50) P′ = BSplineSpace{p}(k′) Q′ = BSplineSpace{p,Int,KnotVector{Int}}(P′) A1 = @inferred changebasis(P, P′) A2 = @inferred changebasis(Q, Q′) @test P ⊆ P′ @test P == Q @test P′ == Q′ @test A1 ≈ A2 left = leftendpoint(domain(P))-p right = rightendpoint(domain(P))+p k′ = UniformKnotVector(left:right) P′ = BSplineSpace{p}(k′) Q′ = BSplineSpace{p,Int,KnotVector{Int}}(P′) A3 = @inferred changebasis(P, P′) A4 = @inferred changebasis(Q, Q′) @test P ⊑ P′ @test P == Q @test P′ == Q′ @test A3 ≈ A4 end end end @testset "derivative" begin k1 = KnotVector(5*rand(12)) k2 = k1 + KnotVector(rand(3)*3 .+ 1) p = 5 dP1 = BSplineDerivativeSpace{1}(BSplineSpace{p}(k1)) dP2 = BSplineDerivativeSpace{0}(BSplineSpace{p-1}(k1)) P1 = BSplineSpace{p-1}(k1) P2 = BSplineSpace{p-1}(k2) test_changebasis_R(dP1, P1) test_changebasis_R(dP1, P2) test_changebasis_R(dP2, P1) test_changebasis_R(dP2, P2) test_changebasis_R(dP2, P1) test_changebasis_R(dP2, P2) test_changebasis_R(dP1, dP2) test_changebasis_R(dP1, P2) test_changebasis_R(dP2, dP2) test_changebasis_R(dP2, P2) test_changebasis_R(dP2, dP2) test_changebasis_R(dP2, P2) dP2 = BSplineDerivativeSpace{2}(BSplineSpace{p}(k1)) dP3 = BSplineDerivativeSpace{1}(BSplineSpace{p-1}(k1)) dP4 = BSplineDerivativeSpace{0}(BSplineSpace{p-2}(k1)) dP5 = BSplineDerivativeSpace{2}(BSplineSpace{p}(k2)) P3 = BSplineSpace{p-2}(k1) P4 = BSplineSpace{p-2}(k2) test_changebasis_R(dP2, dP3) @test dP2 ⊉ dP3 test_changebasis_R(dP3, dP4) @test dP3 ⊉ dP4 test_changebasis_R(dP4, P3) test_changebasis_R(P3, dP4) test_changebasis_R(dP2, dP5) @test dP2 ⊉ dP5 test_changebasis_R(dP5, dP5) test_changebasis_R(dP2, dP2) test_changebasis_R(dP5, P4) @test dP5 ⊉ P4 test_changebasis_R(dP3, P4) @test dP3 ⊉ P4 @test_throws DomainError changebasis(P4, P3) end end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
8645
@testset "Derivative" begin p_max = 4 ts = rand(10) dt = 1e-8 @testset "constructor" begin P1 = BSplineSpace{2}(KnotVector(1:8)) P2 = BSplineSpace{2}(UniformKnotVector(1:8)) P3 = BSplineSpace{2}(UniformKnotVector(1:1:8)) dP1 = BSplineDerivativeSpace{1}(P1) dP2 = BSplineDerivativeSpace{1}(P2) dP3 = BSplineDerivativeSpace{1}(P3) dP4 = BSplineDerivativeSpace{2}(P3) dP5 = BSplineDerivativeSpace{2,typeof(P2)}(P2) dP6 = BSplineDerivativeSpace{2,typeof(P3)}(P2) dP7 = BSplineDerivativeSpace{2,typeof(P3)}(dP6) @test dP1 == dP2 == dP3 != dP4 @test dP1 !== dP2 @test hash(dP1) == hash(dP2) == hash(dP3) != hash(dP4) @test_throws MethodError BSplineDerivativeSpace{1,typeof(P2)}(dP1) @test_throws MethodError BSplineDerivativeSpace(dP1) @test_throws MethodError BSplineDerivativeSpace{}(dP1) @test dP3 === BSplineDerivativeSpace{1,typeof(P3)}(dP2) @test dP2 !== BSplineDerivativeSpace{1,typeof(P3)}(dP2) @test dP2 === BSplineDerivativeSpace{1,typeof(P2)}(dP2) @test dP1 isa BSplineDerivativeSpace{1,<:BSplineSpace{p,T,KnotVector{T}} where {p,T}} @test dP2 isa BSplineDerivativeSpace{1,<:UniformBSplineSpace{p,T} where {p,T}} @test dP4 == dP5 == dP6 == dP7 @test hash(dP4) == hash(dP5) == hash(dP6) == hash(dP7) @test dP2 == convert(BSplineDerivativeSpace,dP2) @test dP2 == convert(BSplineDerivativeSpace{1},dP2) @test_throws MethodError convert(BSplineDerivativeSpace{2},dP2) end @testset "degenerate" begin P1 = BSplineSpace{2}(KnotVector(1:8)) P2 = BSplineSpace{2}(knotvector"111111151111") dP1 = BSplineDerivativeSpace{1}(P1) dP2 = BSplineDerivativeSpace{1}(P2) @test isdegenerate_R(P1) == isdegenerate_R(dP1) @test isdegenerate_R(P2) == isdegenerate_R(dP2) @test isdegenerate_I(P1) == isdegenerate_I(dP1) @test isdegenerate_I(P2) == isdegenerate_I(dP2) for i in 1:dim(P1) @test isdegenerate_R(P1, i) == isdegenerate_R(dP1, i) @test isdegenerate_I(P1, i) == isdegenerate_I(dP1, i) end for i in 1:dim(P2) @test isdegenerate_R(P2, i) == isdegenerate_R(dP2, i) @test isdegenerate_I(P2, i) == isdegenerate_I(dP2, i) end end # Not sure why this @testset doesn't work fine. # @testset "$(p)-th degree basis" for p in 0:p_max for p in 0:p_max k = KnotVector(rand(20)) + (p+1)*KnotVector([0,1]) P = BSplineSpace{p}(k) P0 = BSplineDerivativeSpace{0}(P) for t in ts, i in 1:dim(P) @test bsplinebasis(P,i,t) == bsplinebasis(P0,i,t) @test bsplinebasis₋₀(P,i,t) == bsplinebasis₋₀(P0,i,t) @test bsplinebasis₊₀(P,i,t) == bsplinebasis₊₀(P0,i,t) end @test dim(P) == dim(P0) # Check the values of the derivative of B-spline basis funcitons n = dim(P0) for t in k s = sum([bsplinebasis(P0, i, t) for i in 1:n]) s₊₀ = sum([bsplinebasis₊₀(P0, i, t) for i in 1:n]) s₋₀ = sum([bsplinebasis₋₀(P0, i, t) for i in 1:n]) if t == k[1] @test s ≈ 1 @test s₊₀ ≈ 1 @test s₋₀ == 0 elseif t == k[end] @test s ≈ 1 @test s₊₀ == 0 @test s₋₀ ≈ 1 else @test s ≈ 1 @test s₊₀ ≈ 1 @test s₋₀ ≈ 1 end end P1 = BSplineDerivativeSpace{1}(P) for t in ts, i in 1:dim(P) @test bsplinebasis′(P,i,t) == bsplinebasis(P1,i,t) end for r in 1:p_max Pa = BSplineDerivativeSpace{r}(P) Pb = BSplineDerivativeSpace{r-1}(P) @test degree(Pa) == p-r @test dim(Pa) == dim(P) @test exactdim_R(Pa) == exactdim_R(P)-r @test domain(P) == domain(Pa) == domain(Pb) for t in ts, i in 1:dim(P) d1 = bsplinebasis(Pa,i,t) d2 = (bsplinebasis(Pb,i,t+dt) - bsplinebasis(Pb,i,t-dt))/2dt d3 = bsplinebasis′(Pb,i,t) @test d1 ≈ d2 rtol=1e-7 @test d1 == d3 end end end @testset "bsplinebasisall" begin k = KnotVector(rand(10).-1) + KnotVector(rand(10)) + KnotVector(rand(10).+1) ts = rand(10) for p in 0:5 P = BSplineSpace{p}(k) Q = P for r in 0:5 dP = BSplineDerivativeSpace{r}(P) @test (dP == Q) || (r == 0) Q = BasicBSpline.derivative(Q) for t in ts j = intervalindex(dP,t) B = collect(bsplinebasisall(dP,j,t)) @test bsplinebasis.(dP,j:j+p,t) ≈ B @test bsplinebasis₊₀.(dP,j:j+p,t) ≈ B @test bsplinebasis₋₀.(dP,j:j+p,t) ≈ B end end end end @testset "bsplinebasisall (uniform)" begin k = UniformKnotVector(1:20) for p in 0:5 P = BSplineSpace{p}(k) for r in 0:5 dP = BSplineDerivativeSpace{r}(P) for _ in 1:10 t = rand(domain(dP)) j = intervalindex(dP,t) B = collect(bsplinebasisall(dP,j,t)) @test bsplinebasis.(dP,j:j+p,t) ≈ B @test bsplinebasis₊₀.(dP,j:j+p,t) ≈ B @test bsplinebasis₋₀.(dP,j:j+p,t) ≈ B end end end end @testset "Rational" begin k = KnotVector{Int}(1:12) P = BSplineSpace{3}(k) dP = BSplineDerivativeSpace{1}(P) k isa KnotVector{Int} dP isa BSplineDerivativeSpace{1,BSplineSpace{3,Int}} bsplinebasis(dP,1,11//5) isa Rational{Int} bsplinebasis₊₀(dP,1,11//5) isa Rational{Int} bsplinebasis₋₀(dP,1,11//5) isa Rational{Int} @test bsplinebasis(dP,1,11//5) === bsplinebasis₊₀(dP,1,11//5) === bsplinebasis₋₀(dP,1,11//5) === bsplinebasis′(P,1,11//5) === bsplinebasis′₊₀(P,1,11//5) === bsplinebasis′₋₀(P,1,11//5) === 16//25 end @testset "Check type" begin k = KnotVector{Int}(1:12) P0 = BSplineSpace{0}(k) P1 = BSplineSpace{1}(k) P2 = BSplineSpace{2}(k) for r in 0:2 dP0 = BSplineDerivativeSpace{r}(P0) dP1 = BSplineDerivativeSpace{r}(P1) dP2 = BSplineDerivativeSpace{r}(P2) @test bsplinebasis(dP0,1,5) isa Float64 @test bsplinebasis(dP1,1,5) isa Float64 @test bsplinebasis(dP2,1,5) isa Float64 @test bsplinebasis₊₀(dP0,1,5) isa Float64 @test bsplinebasis₊₀(dP1,1,5) isa Float64 @test bsplinebasis₊₀(dP2,1,5) isa Float64 @test bsplinebasis₋₀(dP0,1,5) isa Float64 @test bsplinebasis₋₀(dP1,1,5) isa Float64 @test bsplinebasis₋₀(dP2,1,5) isa Float64 @test bsplinebasisall(dP0,1,5) isa SVector{1,Float64} @test bsplinebasisall(dP1,1,5) isa SVector{2,Float64} @test bsplinebasisall(dP2,1,5) isa SVector{3,Float64} end end @testset "Endpoints" begin p = 2 k = KnotVector(1:2) + (p+1)*KnotVector([0,3]) P0 = BSplineSpace{0}(k) P1 = BSplineSpace{1}(k) P2 = BSplineSpace{2}(k) @test isdegenerate(P0) @test isdegenerate(P1) @test isnondegenerate(P2) n0 = dim(P0) n1 = dim(P1) n2 = dim(P2) @test bsplinebasis′.(P0,1:n0,0) == bsplinebasis′₊₀.(P0,1:n0,0) == [0,0,0,0,0,0,0] @test bsplinebasis′.(P1,1:n1,0) == bsplinebasis′₊₀.(P1,1:n1,0) == [0,-1,1,0,0,0] @test bsplinebasis′.(P2,1:n2,0) == bsplinebasis′₊₀.(P2,1:n2,0) == [-2,2,0,0,0] @test bsplinebasis′.(P0,1:n0,3) == bsplinebasis′₋₀.(P0,1:n0,3) == [0,0,0,0,0,0,0] @test bsplinebasis′.(P1,1:n1,3) == bsplinebasis′₋₀.(P1,1:n1,3) == [0,0,0,-1,1,0] @test bsplinebasis′.(P2,1:n2,3) == bsplinebasis′₋₀.(P2,1:n2,3) == [0,0,0,-2,2] @test bsplinebasis′₋₀.(P0,1:n0,0) == [0,0,0,0,0,0,0] @test bsplinebasis′₋₀.(P1,1:n1,0) == [0,0,0,0,0,0] @test bsplinebasis′₋₀.(P2,1:n2,0) == [0,0,0,0,0] @test bsplinebasis′₊₀.(P0,1:n0,3) == [0,0,0,0,0,0,0] @test bsplinebasis′₊₀.(P1,1:n1,3) == [0,0,0,0,0,0] @test bsplinebasis′₊₀.(P2,1:n2,3) == [0,0,0,0,0] end end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
9538
@testset "KnotVector" begin @testset "constructor" begin k1 = KnotVector([1,2,3]) k2 = KnotVector([1,2,2,3]) @test k1 isa KnotVector{Int64} @test k1 == KnotVector(1:3)::KnotVector{Int} @test k1 == KnotVector([1,3,2])::KnotVector{Int64} @test k1 == KnotVector([1,2,3])::KnotVector{Int64} @test k1 == KnotVector([1,3,2])::KnotVector{Int64} @test k1 == KnotVector([1.,3,2])::KnotVector{Float64} @test k1 == KnotVector{Int}([1,3,2])::KnotVector{Int} @test k1 != k2 @test k1.vector !== copy(k1).vector @test hash(k1) == hash(KnotVector(1:3)::KnotVector{Int}) @test hash(k1) == hash(KnotVector([1,3,2])::KnotVector{Int64}) @test hash(k1) == hash(KnotVector([1,2,3])::KnotVector{Int64}) @test hash(k1) == hash(KnotVector([1,3,2])::KnotVector{Int64}) @test hash(k1) == hash(KnotVector([1.,3,2])::KnotVector{Float64}) @test hash(k1) == hash(KnotVector{Int}([1,3,2])::KnotVector{Int}) @test hash(k1) != hash(k2) @test KnotVector{Int}([1,2]) isa KnotVector{Int} @test KnotVector{Int}([1,2]) isa KnotVector{Int} @test KnotVector{Int}([1,2.]) isa KnotVector{Int} @test KnotVector{Int}(k1) isa KnotVector{Int} @test KnotVector(k1) isa KnotVector{Int} @test AbstractKnotVector{Float64}(k1) isa KnotVector{Float64} @test knotvector"11111" == KnotVector([1, 2, 3, 4, 5]) @test knotvector"123" == KnotVector([1, 2, 2, 3, 3, 3]) @test knotvector" 2 2 2" == KnotVector([2, 2, 4, 4, 6, 6]) @test knotvector"020202" == KnotVector([2, 2, 4, 4, 6, 6]) @test knotvector" 1" == KnotVector([6]) end @testset "eltype" begin @test eltype(KnotVector([1,2,3])) == Int @test eltype(KnotVector{Int}([1,2,3])) == Int @test eltype(KnotVector{Real}([1,2,3])) == Real @test eltype(KnotVector{Float64}([1,2,3])) == Float64 @test eltype(KnotVector{BigInt}([1,2,3])) == BigInt @test eltype(KnotVector{Rational{Int}}([1,2,3])) == Rational{Int} end @testset "_vec" begin @test BasicBSpline._vec(KnotVector([1,2,3])) isa Vector{Int} @test BasicBSpline._vec(EmptyKnotVector()) isa SVector{0,Bool} end @testset "EmptyKnotVector" begin k = EmptyKnotVector() @test k === copy(k) end @testset "SubKnotVector and view" begin k1 = KnotVector(1:8) k2 = UniformKnotVector(1:8) @test view(k1, 1:3) isa SubKnotVector @test view(k2, 1:3) isa UniformKnotVector @test copy(view(k1, 1:3)) isa KnotVector @test copy(view(k1, 1:3)) == view(k1, 1:3) == KnotVector(1:3) == k1[1:3] end @testset "zeros" begin k1 = KnotVector([1,2,3]) @test KnotVector(Float64[]) == zero(KnotVector) @test KnotVector(Float64[]) == 0*k1 == k1*0 == zero(k1) @test KnotVector(Float64[]) == EmptyKnotVector() @test KnotVector(Float64[]) |> isempty @test KnotVector(Float64[]) |> iszero @test hash(KnotVector(Float64[])) == hash(zero(KnotVector)) @test hash(KnotVector(Float64[])) == hash(0*k1) == hash(k1*0) == hash(zero(k1)) @test hash(KnotVector(Float64[])) == hash(EmptyKnotVector()) @test_throws MethodError KnotVector() @test EmptyKnotVector() |> isempty @test EmptyKnotVector() |> iszero @test EmptyKnotVector() == KnotVector(Float64[]) @test KnotVector(Float64[]) == EmptyKnotVector() @test EmptyKnotVector{Bool}() === EmptyKnotVector() === zero(EmptyKnotVector) === zero(EmptyKnotVector{Bool}) @test EmptyKnotVector{Int}() == EmptyKnotVector() @test EmptyKnotVector{Int}() == EmptyKnotVector{Int}() @test EmptyKnotVector{Int}() == EmptyKnotVector{Float64}() @test EmptyKnotVector() == EmptyKnotVector{Int}() @test EmptyKnotVector{Int}() == EmptyKnotVector{Int}() @test EmptyKnotVector{Float64}() == EmptyKnotVector{Int}() @test EmptyKnotVector{Int}() === zero(EmptyKnotVector{Int}()) @test EmptyKnotVector{Int}() === zero(AbstractKnotVector{Int}) @test EmptyKnotVector{Int}() !== zero(AbstractKnotVector) @test EmptyKnotVector{Bool}() === zero(AbstractKnotVector) end @testset "length" begin @test length(KnotVector(Float64[])) == 0 @test length(KnotVector([1,2,2,3])) == 4 end @testset "iterator" begin k1 = KnotVector([1,2,3]) k2 = KnotVector([1,2,2,3]) k3 = KnotVector([2,4,5]) for t in k1 @test t in k2 end @test k1[1] == 1 @test k2[end] == 3 @test collect(k2) isa Vector{Int} @test [k2...] isa Vector{Int} @test collect(k2) == [k2...] @test collect(k2) != k2 end @testset "addition, multiply" begin k1 = KnotVector([1,2,3]) k2 = KnotVector([1,2,2,3]) k3 = KnotVector([2,4,5]) @test KnotVector([-1,2,3]) + 2 * KnotVector([2,5]) == KnotVector([-1,2,2,2,3,5,5]) @test KnotVector([-1,2,3]) + KnotVector([2,5]) * 2 == KnotVector([-1,2,2,2,3,5,5]) @test k1 + k3 == KnotVector([1,2,2,3,4,5]) @test 2 * KnotVector([2,3]) == KnotVector([2,2,3,3]) # EmptyKnotVector _k1 = k1 + EmptyKnotVector() _k2 = k2 + EmptyKnotVector{Int}() _k3 = k3 + EmptyKnotVector{Float64}() @test _k1.vector === k1.vector @test _k2.vector === k2.vector @test _k3.vector !== k3.vector _k1 = EmptyKnotVector() + k1 _k2 = EmptyKnotVector{Int}() + k2 _k3 = EmptyKnotVector{Float64}() + k3 @test _k1.vector === k1.vector @test _k2.vector === k2.vector @test _k3.vector !== k3.vector @test EmptyKnotVector{Int}() + EmptyKnotVector{Bool}() isa EmptyKnotVector{Int} @test EmptyKnotVector{Int}()*0 === EmptyKnotVector{Int}() @test EmptyKnotVector{Float64}()*1 === EmptyKnotVector{Float64}() @test EmptyKnotVector{BigFloat}()*2 === EmptyKnotVector{BigFloat}() @test_throws DomainError EmptyKnotVector()*(-1) @test (EmptyKnotVector() === EmptyKnotVector() + EmptyKnotVector() === EmptyKnotVector() * 2 === 2 * EmptyKnotVector()) @test EmptyKnotVector() isa EmptyKnotVector{Bool} # type promotion @test KnotVector{Int}([1,2]) + KnotVector([3]) == KnotVector([1,2,3]) @test KnotVector{Int}([1,2]) + KnotVector([3]) isa KnotVector{Int} @test KnotVector{Int}([1,2]) + KnotVector{Rational{Int}}([3]) == KnotVector([1,2,3]) @test KnotVector{Int}([1,2]) + KnotVector{Rational{Int}}([3]) isa KnotVector{Rational{Int}} @test KnotVector{Int}([1,2]) * 0 == KnotVector(Float64[]) @test KnotVector{Int}([1,2]) * 0 isa KnotVector{Int} @test KnotVector{Int}(Int[]) isa KnotVector{Int} @test EmptyKnotVector{Irrational{:π}}() + EmptyKnotVector{Rational{Int}}() isa EmptyKnotVector{Float64} end @testset "unique" begin k1 = KnotVector([1,2,3]) k2 = KnotVector([1,2,2,3]) @test unique(k1) == k1 @test unique(k2) == k1 @test unique(EmptyKnotVector()) === EmptyKnotVector() end @testset "inclusive relation" begin k1 = knotvector"111" k2 = knotvector"121" k3 = knotvector"121 1" k4 = knotvector"111 1" k5 = knotvector"1111" k6 = EmptyKnotVector() k7 = EmptyKnotVector{Real}() k8 = EmptyKnotVector{Float64}() @test k1 ⊆ k1 @test k1 ⊇ k1 @test k2 ⊆ k3 @test k2 ⊈ k4 @test k3 ⊇ k2 @test k4 ⊉ k2 @test !(k5 ⊊ k1) @test !(k1 ⊊ k1) @test k1 ⊊ k5 @test !(k1 ⊋ k5) @test !(k1 ⊋ k1) @test k5 ⊋ k1 @test k6 ⊆ k7 ⊆ k8 ⊆ k1 @test k6 ⊆ k7 ⊆ k8 ⊆ k2 @test k6 ⊆ k7 ⊆ k8 ⊆ k3 @test k6 ⊆ k7 ⊆ k8 ⊆ k4 @test k6 ⊆ k7 ⊆ k8 ⊆ k5 end @testset "string" begin k = KnotVector([1,2,2,3]) @test string(k) == "KnotVector([1, 2, 2, 3])" @test string(KnotVector(Float64[])) == "KnotVector(Float64[])" @test string(KnotVector(Int[])) == "KnotVector(Int64[])" k1 = UniformKnotVector(1:1:3) k2 = UniformKnotVector(Base.OneTo(3)) k3 = UniformKnotVector(1:4) @test string(k1) == "UniformKnotVector(1:1:3)" @test string(k2) == "UniformKnotVector(Base.OneTo(3))" @test string(k3) == "UniformKnotVector(1:4)" @test string(EmptyKnotVector()) == "EmptyKnotVector{Bool}()" @test string(EmptyKnotVector{Int}()) == "EmptyKnotVector{Int64}()" end @testset "float" begin k = KnotVector([1,2,3]) @test float(k) isa KnotVector{Float64} @test k == float(k) k = KnotVector{Float32}([1,2,3]) @test float(k) isa KnotVector{Float32} @test k == float(k) k = KnotVector{Rational{Int}}([1,2,3]) @test float(k) isa KnotVector{Float64} @test k == float(k) end @testset "other operators" begin k = KnotVector([1,2,2,3]) @test countknots(k, 0.3) == 0 @test countknots(k, 1.0) == 1 @test countknots(k, 2.0) == 2 @test 1 ∈ k @test 1.5 ∉ k k = KnotVector([-2.0, -1.0, -0.0, -0.0, 0.0, 1.0, 3.0]) @test countknots(k,0) == 3 @test countknots(k,0.0) == 3 @test countknots(k,-0.0) == 3 end end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
7378
@testset "Plots" begin dir_out = joinpath(@__DIR__, "out_plot") rm(dir_out; force=true, recursive=true) mkpath(dir_out) @testset "B-spline space" begin p = 3 k = KnotVector(0:3)+p*KnotVector([0,3]) P = BSplineSpace{p}(k) pl = plot(P) path_img = joinpath(dir_out, "bspline_space.png") @test !isfile(path_img) savefig(pl, path_img) @test isfile(path_img) end @testset "B-spline space with knotvector" begin k = knotvector"112111113111111121114" P = BSplineSpace{3}(k) pl = plot(P; label="B-spline basis"); plot!(k; label="knot vector") path_img = joinpath(dir_out, "bspline_space_with_knotvector.png") @test !isfile(path_img) savefig(pl, path_img) @test isfile(path_img) end @testset "Uniform B-spline space" begin p = 3 k = UniformKnotVector(0:8) P = BSplineSpace{p}(k) pl = plot(P) path_img = joinpath(dir_out, "bspline_space_uniform.png") @test !isfile(path_img) savefig(pl, path_img) @test isfile(path_img) end @testset "Derivative B-spline space" begin p = 3 k = UniformKnotVector(0:8) dP = BSplineDerivativeSpace{1}(BSplineSpace{p}(k)) pl = plot(dP) path_img = joinpath(dir_out, "bspline_space_derivative.png") @test !isfile(path_img) savefig(pl, path_img) @test isfile(path_img) end @testset "B-spline spaces with knotvectors" begin k1 = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]) P1 = BSplineSpace{3}(k1) P2 = expandspace_R(P1, KnotVector([2.0, 3.0, 5.5])) pl = plot(P1, label="P1", color=:red) plot!(P2, label="P2", color=:green) plot!(knotvector(P1), label="k1", gap=0.01, color=:red) plot!(knotvector(P2); label="k2", gap=0.01, offset=-0.03, color=:green) path_img = joinpath(dir_out, "bspline_spaces_and_their_knotvectors.png") @test !isfile(path_img) savefig(pl, path_img) @test isfile(path_img) end @testset "Tensor product of B-spline spaces" begin # Define piecewise polynomial spaces k1 = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]) k2 = knotvector"31 2 121" P1 = BSplineSpace{3}(k1) P2 = BSplineSpace{2}(k2) # Choose indices i1 = 3 i2 = 4 # Visualize basis functions xs = range(0,10,length=100) ys = range(1,9,length=100) pl = surface(xs, ys, bsplinebasis.(P1,i1,xs') .* bsplinebasis.(P2,i2,ys)) plot!(P1; plane=:xz, label="P1", color=:red) plot!(P2; plane=:yz, label="P2", color=:green) plot!(k1; plane=:xz, label="k1", color=:red, markersize=2) plot!(k2; plane=:yz, label="k2", color=:green, markersize=2) path_img = joinpath(dir_out, "bspline_space_tensor_product.png") @test !isfile(path_img) savefig(pl, path_img) @test isfile(path_img) end @testset "B-spline curve in 2d" begin a = [SVector(0, 0), SVector(1, 1), SVector(2, -1), SVector(3, 0), SVector(4, -2), SVector(5, 1)] p = 3 k = KnotVector(0:3)+p*KnotVector([0,3]) P = BSplineSpace{p}(k) M = BSplineManifold(a, P) pl = plot(M) path_img = joinpath(dir_out, "bspline_curve_2d.png") @test !isfile(path_img) savefig(pl, path_img) @test isfile(path_img) end @testset "B-spline curve in 3d" begin a = [SVector(0, 0, 2), SVector(1, 1, 1), SVector(2, -1, 4), SVector(3, 0, 0), SVector(4, -2, 0), SVector(5, 1, 2)] p = 3 k = KnotVector(0:3)+p*KnotVector([0,3]) P = BSplineSpace{p}(k) M = BSplineManifold(a, P) pl = plot(M) path_img = joinpath(dir_out, "bspline_curve_3d.png") @test !isfile(path_img) savefig(pl, path_img) @test isfile(path_img) end @testset "B-spline surface in 2d" begin k1 = KnotVector(1:8) k2 = KnotVector(1:10) P1 = BSplineSpace{2}(k1) P2 = BSplineSpace{2}(k2) n1 = dim(P1) n2 = dim(P2) a = [SVector(i+j/2-cos(i-j)/5, j-i/2+sin(i+j)/5) for i in 1:n1, j in 1:n2] M = BSplineManifold(a,(P1,P2)) pl = plot(M) path_img = joinpath(dir_out, "bspline_surface_2d.png") @test !isfile(path_img) savefig(pl, path_img) @test isfile(path_img) end @testset "B-spline surface in 3d" begin k1 = KnotVector(1:8) k2 = KnotVector(1:10) P1 = BSplineSpace{2}(k1) P2 = BSplineSpace{2}(k2) n1 = dim(P1) n2 = dim(P2) a = [SVector(i,j,sin(i+j)) for i in 1:n1, j in 1:n2] M = BSplineManifold(a,(P1,P2)) pl = plot(M) path_img = joinpath(dir_out, "bspline_surface_3d.png") @test !isfile(path_img) savefig(pl, path_img) @test isfile(path_img) end @testset "B-spline solid in 3d" begin P1 = P2 = BSplineSpace{3}(KnotVector([0,0,0,0,1,1,1,1])) P3 = BSplineSpace{3}(KnotVector([0,0,0,0,1,2,3,4,5,6,6,6,6])) n1 = dim(P1) n2 = dim(P2) n3 = dim(P3) a = [SVector(i+j/2-cos(i-j)/5+sin(k), j-i/2+sin(i+j)/5+cos(k), k) for i in 1:n1, j in 1:n2, k in 1:n3] M = BSplineManifold(a, P1, P2, P3); pl = plot(M; controlpoints=(;markersize=1)) path_img = joinpath(dir_out, "bspline_solid_3d.png") @test !isfile(path_img) # https://github.com/hyrodium/BasicBSpline.jl/pull/374#issuecomment-1927050884 # savefig(pl, path_img) # @test isfile(path_img) end @testset "Rational B-spline curve in 2d" begin a = [SVector(0, 0), SVector(1, 1), SVector(2, -1), SVector(3, 0), SVector(4, -2), SVector(5, 1)] w = rand(6) p = 3 k = KnotVector(0:3)+p*KnotVector([0,3]) P = BSplineSpace{p}(k) M = RationalBSplineManifold(a, w, P) pl = plot(M) path_img = joinpath(dir_out, "rational_bspline_curve_2d.png") @test !isfile(path_img) savefig(pl, path_img) @test isfile(path_img) end @testset "Rational B-spline curve in 3d" begin a = [SVector(0, 0, 2), SVector(1, 1, 1), SVector(2, -1, 4), SVector(3, 0, 0), SVector(4, -2, 0), SVector(5, 1, 2)] w = rand(6) p = 3 k = KnotVector(0:3)+p*KnotVector([0,3]) P = BSplineSpace{p}(k) M = RationalBSplineManifold(a, w, P) pl = plot(M) path_img = joinpath(dir_out, "rational_bspline_curve_3d.png") @test !isfile(path_img) savefig(pl, path_img) @test isfile(path_img) end @testset "Rational B-spline surface in 3d" begin k1 = KnotVector(1:8) k2 = KnotVector(1:10) P1 = BSplineSpace{2}(k1) P2 = BSplineSpace{2}(k2) n1 = dim(P1) n2 = dim(P2) a = [SVector(i,j,sin(i+j)) for i in 1:n1, j in 1:n2] w = rand(n1,n2) M = RationalBSplineManifold(a,w,(P1,P2)) pl = plot(M) path_img = joinpath(dir_out, "rational_bspline_surface_3d.png") @test !isfile(path_img) # https://github.com/hyrodium/BasicBSpline.jl/pull/374#issuecomment-1927050884 # savefig(pl, path_img) # @test isfile(path_img) end end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
8978
@testset "RationalBSplineManifold" begin @testset "constructor" begin k1 = KnotVector(Float64[0,0,1,1]) k2 = UniformKnotVector(1.0:8.0) k3 = KnotVector(rand(8)) _k1 = KnotVector([0.0, 0.0, 1.0, 1.0]) _k2 = KnotVector(1.0:8.0) _k3 = view(k3,:) P1 = BSplineSpace{1}(k1) P2 = BSplineSpace{3}(k2) P3 = BSplineSpace{2}(k3) _P1 = BSplineSpace{1}(_k1) _P2 = BSplineSpace{3}(_k2) _P3 = BSplineSpace{2}(_k3) # 0-dim a = fill(1.2) w = fill(4.2) M = RationalBSplineManifold{0,(),Float64,Float64,Int,Tuple{}}(a, w, ()) N = RationalBSplineManifold{0,(),Float64,Float64,Int,Tuple{}}(copy(a), copy(w), ()) @test M == M @test M == N @test hash(M) == hash(M) @test hash(M) == hash(N) @test M() == 1.2 # 4-dim a = rand(dim(P1), dim(P2), dim(P3), dim(P3)) w = rand(dim(P1), dim(P2), dim(P3), dim(P3)) @test RationalBSplineManifold(a, w, P1, P2, P3, P3) == RationalBSplineManifold(a, w, P1, P2, P3, P3) @test hash(RationalBSplineManifold(a, w, P1, P2, P3, P3)) == hash(RationalBSplineManifold(a, w, P1, P2, P3, P3)) @test RationalBSplineManifold(a, w, P1, P2, P3, P3) == RationalBSplineManifold(a, w, _P1, _P2, _P3, _P3) @test hash(RationalBSplineManifold(a, w, P1, P2, P3, P3)) == hash(RationalBSplineManifold(a, w, _P1, _P2, _P3, _P3)) @test RationalBSplineManifold(a, w, P1, P2, P3, P3) == RationalBSplineManifold(copy(a), copy(w), _P1, _P2, _P3, _P3) @test hash(RationalBSplineManifold(a, w, P1, P2, P3, P3)) == hash(RationalBSplineManifold(copy(a), copy(w), _P1, _P2, _P3, _P3)) end @testset "1dim-arc" begin a = [SVector(1,0), SVector(1,1), SVector(0,1), SVector(-1,1), SVector(-1,0)] w = [1, 1/√2, 1, 1/√2, 1] k = KnotVector([0,0,0,1,1,2,2,2]) p = 2 P = BSplineSpace{p}(k) M = RationalBSplineManifold(a,w,P) for _ in 1:100 t1 = 2rand() @test norm(M(t1)) ≈ 1 end @test_throws DomainError M(-0.1) @test_throws DomainError M(2.1) end @testset "general cases" begin p1 = 2 p2 = 3 p3 = 4 k1 = KnotVector(rand(30)) + (p1+1)*KnotVector([0,1]) k2 = KnotVector(rand(30)) + (p2+1)*KnotVector([0,1]) k3 = KnotVector(rand(30)) + (p3+1)*KnotVector([0,1]) P1 = BSplineSpace{p1}(k1) P2 = BSplineSpace{p2}(k2) P3 = BSplineSpace{p3}(k3) n1 = dim(P1) n2 = dim(P2) n3 = dim(P3) @testset "RationalBSpilneManifold definition" begin @testset "1dim" begin a = randn(ComplexF64,n1) w = ones(n1)+rand(n1) R = RationalBSplineManifold(a,w,(P1,)) A = BSplineManifold(a.*w,(P1,)) W = BSplineManifold(w,(P1,)) @test R(:) == R @test Base.mightalias(controlpoints(R), controlpoints(R)) @test !Base.mightalias(controlpoints(R), controlpoints(R(:))) ts = [(rand.(domain.(bsplinespaces(R)))) for _ in 1:10] for (t1,) in ts @test R(t1) ≈ A(t1)/W(t1) end end @testset "2dim" begin a = randn(ComplexF64,n1,n2) w = ones(n1,n2)+rand(n1,n2) R = RationalBSplineManifold(a,w,(P1,P2)) A = BSplineManifold(a.*w,(P1,P2)) W = BSplineManifold(w,(P1,P2)) @test R(:,:) == R @test Base.mightalias(controlpoints(R), controlpoints(R)) @test !Base.mightalias(controlpoints(R), controlpoints(R(:,:))) ts = [(rand.(domain.(bsplinespaces(R)))) for _ in 1:10] for (t1, t2) in ts @test R(t1,t2) ≈ A(t1,t2)/W(t1,t2) @test R(t1,t2) ≈ R(t1,:)(t2) @test R(t1,t2) ≈ R(:,t2)(t1) end end @testset "3dim" begin a = randn(ComplexF64,n1,n2,n3) w = ones(n1,n2,n3)+rand(n1,n2,n3) R = RationalBSplineManifold(a,w,(P1,P2,P3)) A = BSplineManifold(a.*w,(P1,P2,P3)) W = BSplineManifold(w,(P1,P2,P3)) @test R(:,:,:) == R @test Base.mightalias(controlpoints(R), controlpoints(R)) @test !Base.mightalias(controlpoints(R), controlpoints(R(:,:,:))) ts = [(rand.(domain.(bsplinespaces(R)))) for _ in 1:10] for (t1, t2, t3) in ts @test R(t1,t2,t3) ≈ A(t1,t2,t3)/W(t1,t2,t3) @test R(t1,t2,t3) ≈ R(t1,:,:)(t2,t3) @test R(t1,t2,t3) ≈ R(:,t2,:)(t1,t3) @test R(t1,t2,t3) ≈ R(:,:,t3)(t1,t2) @test R(t1,t2,t3) ≈ R(t1,t2,:)(t3) @test R(t1,t2,t3) ≈ R(t1,:,t3)(t2) @test R(t1,t2,t3) ≈ R(:,t2,t3)(t1) end end @testset "4dim" begin @testset "BSplineManifold-4dim" begin P1 = BSplineSpace{3}(knotvector"43211112112112") P2 = BSplineSpace{4}(knotvector"3211 1 112112115") P3 = BSplineSpace{5}(knotvector" 411 1 112112 11133") P4 = BSplineSpace{4}(knotvector"4 1112113 11 13 3") n1 = dim(P1) n2 = dim(P2) n3 = dim(P3) n4 = dim(P4) a = rand(n1, n2, n3, n4) w = rand(n1, n2, n3, n4) .+ 1 R = RationalBSplineManifold(a, w, (P1, P2, P3, P4)) @test dim(R) == 4 ts = [(rand.(domain.((P1, P2, P3, P4)))) for _ in 1:10] for (t1, t2, t3, t4) in ts @test R(t1,t2,t3,t4) ≈ R(t1,:,:,:)( t2,t3,t4) @test R(t1,t2,t3,t4) ≈ R(:,t2,:,:)(t1, t3,t4) @test R(t1,t2,t3,t4) ≈ R(:,:,t3,:)(t1,t2, t4) @test R(t1,t2,t3,t4) ≈ R(:,:,:,t4)(t1,t2,t3 ) @test R(t1,t2,t3,t4) ≈ R(t1,t2,:,:)(t3,t4) @test R(t1,t2,t3,t4) ≈ R(t1,:,t3,:)(t2,t4) @test R(t1,t2,t3,t4) ≈ R(t1,:,:,t4)(t2,t3) @test R(t1,t2,t3,t4) ≈ R(:,t2,t3,:)(t1,t4) @test R(t1,t2,t3,t4) ≈ R(:,t2,:,t4)(t1,t3) @test R(t1,t2,t3,t4) ≈ R(:,:,t3,t4)(t1,t2) @test R(t1,t2,t3,t4) ≈ R(:,t2,t3,t4)(t1) @test R(t1,t2,t3,t4) ≈ R(t1,:,t3,t4)(t2) @test R(t1,t2,t3,t4) ≈ R(t1,t2,:,t4)(t3) @test R(t1,t2,t3,t4) ≈ R(t1,t2,t3,:)(t4) end @test_throws DomainError R(-5,-8,-120,1) @test R(:,:,:,:) == R @test Base.mightalias(controlpoints(R), controlpoints(R)) @test !Base.mightalias(controlpoints(R), controlpoints(R(:,:,:,:))) end end end @testset "compatibility with BSplineManifold" begin @testset "1dim" begin a = randn(n1) w1 = ones(n1) w2 = 2ones(n1) M = BSplineManifold(a,P1) M1 = RationalBSplineManifold(a,w1,P1) M2 = RationalBSplineManifold(a,w2,P1) ts = [(rand.(domain.(bsplinespaces(M)))) for _ in 1:10] for (t1,) in ts @test M(t1) ≈ M1(t1) atol=1e-14 @test M(t1) ≈ M2(t1) atol=1e-14 end end @testset "2dim" begin a = randn(n1,n2) w1 = ones(n1,n2) w2 = 2ones(n1,n2) M = BSplineManifold(a,P1,P2) M1 = RationalBSplineManifold(a,w1,P1,P2) M2 = RationalBSplineManifold(a,w2,P1,P2) ts = [(rand.(domain.(bsplinespaces(M)))) for _ in 1:10] for (t1, t2) in ts @test M(t1,t2) ≈ M1(t1,t2) atol=1e-14 @test M(t1,t2) ≈ M2(t1,t2) atol=1e-14 end end @testset "3dim" begin a = randn(n1,n2,n3) w1 = ones(n1,n2,n3) w2 = 2ones(n1,n2,n3) M = BSplineManifold(a,P1,P2,P3) M1 = RationalBSplineManifold(a,w1,P1,P2,P3) M2 = RationalBSplineManifold(a,w2,P1,P2,P3) ts = [(rand.(domain.(bsplinespaces(M)))) for _ in 1:10] for (t1, t2, t3) in ts @test M(t1,t2,t3) ≈ M1(t1,t2,t3) atol=1e-14 @test M(t1,t2,t3) ≈ M2(t1,t2,t3) atol=1e-14 end end end end end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
13306
@testset "Refinement" begin p1,p2,p3 = 3,2,4 k1 = KnotVector(1:8) k2 = KnotVector([1,4]) + p2*KnotVector([1,4]) k3 = KnotVector([0,2]) + p3*KnotVector([1,2]) P1 = BSplineSpace{p1}(k1) P2 = BSplineSpace{p2}(k2) P3 = BSplineSpace{p3}(k3) P1′ = BSplineSpace{3}(k1+KnotVector([1.2,5.5,7.2,8.5])) P2′ = expandspace(P2, Val(1), KnotVector([2,2,2,2,2])) P3′ = BSplineSpace{4}(UniformKnotVector(-3.0:6.0)) n1,n2,n3 = dim(P1),dim(P2),dim(P3) D1,D2,D3 = domain(P1),domain(P2),domain(P3) @test P1 ⊆ P1′ @test P2 ⊆ P2′ @test !(P3 ⊆ P3′) @test !(P1 ⊑ P1′) @test P2 ⊑ P2′ @test P3 ⊑ P3′ @test P3 ≃ P3′ @testset "_I and _R" begin @testset "1dim" begin a1 = rand(SVector{3, Float64}, n1) a2 = rand(SVector{3, Float64}, n2) a3 = rand(SVector{3, Float64}, n3) w1 = rand(n1) .+ 1 w2 = rand(n2) .+ 1 w3 = rand(n3) .+ 1 M1 = BSplineManifold(a1, P1) M2 = BSplineManifold(a2, P2) M3 = BSplineManifold(a3, P3) R1 = RationalBSplineManifold(a1, w1, P1) R2 = RationalBSplineManifold(a2, w2, P2) R3 = RationalBSplineManifold(a3, w3, P3) @test refinement_R(M1, P1′) == refinement(M1, P1′) @test refinement_R(R1, P1′) == refinement(R1, P1′) @test refinement_R(M2, P2′) == refinement(M2, P2′) @test refinement_R(R2, P2′) == refinement(R2, P2′) @test_throws DomainError refinement_R(M3, P3′) @test_throws DomainError refinement_R(R3, P3′) @test_throws DomainError refinement_I(M1, P1′) @test_throws DomainError refinement_I(R1, P1′) @test refinement_I(M2, P2′) == refinement(M2, P2′) @test refinement_I(R2, P2′) == refinement(R2, P2′) @test refinement_I(M3, P3′) == refinement(M3, P3′) @test refinement_I(R3, P3′) == refinement(R3, P3′) @test refinement_R(M1) == refinement_I(M1) == refinement(M1) @test refinement_R(R1) == refinement_I(R1) == refinement(R1) @test refinement_R(M2) == refinement_I(M2) == refinement(M2) @test refinement_R(R2) == refinement_I(R2) == refinement(R2) @test refinement_R(M3) == refinement_I(M3) == refinement(M3) @test refinement_R(R3) == refinement_I(R3) == refinement(R3) # P1 ⊆ P1′ but not P1 ⊑ P1′ M1a_R = refinement_R(refinement_R(M1, (Val(0),)), (KnotVector([1.2,5.5,7.2,8.5]),)) M1b_R = refinement_R(M1, (Val(0),), (KnotVector([1.2,5.5,7.2,8.5]),)) M1c_R = refinement_R(M1, P1′) @test controlpoints(M1a_R) ≈ controlpoints(M1b_R) == controlpoints(M1c_R) @test_throws DomainError refinement_I(refinement_I(M1, (Val(0),)), (KnotVector([1.2,5.5,7.2,8.5]),)) @test_throws DomainError refinement_I(M1, (Val(0),), (KnotVector([1.2,5.5,7.2,8.5]),)) @test_throws DomainError refinement_I(M1, P1′) @test_throws DomainError refinement(refinement(M1, (Val(1),)), (KnotVector([1.2,5.5,7.2,8.5]),)) @test_throws DomainError refinement(M1, (Val(1),), (KnotVector([1.2,5.5,7.2,8.5]),)) M1c = refinement(M1, P1′) # P2 ⊆ P2′ and P2 ⊑ P2′ M2a_R = refinement_R(refinement_R(M2, (Val(1),)), (KnotVector([2,2,2,2,2]),)) M2b_R = refinement_R(M2, (Val(1),), (KnotVector([2,2,2,2,2]),)) M2c_R = refinement_R(M2, P2′) @test controlpoints(M2a_R) ≈ controlpoints(M2b_R) ≠ controlpoints(M2c_R) M2a_I = refinement_I(refinement_I(M2, (Val(1),)), (KnotVector([2,2,2,2,2]),)) M2b_I = refinement_I(M2, (Val(1),), (KnotVector([2,2,2,2,2]),)) M2c_I = refinement_I(M2, P2′) @test controlpoints(M2a_I) ≈ controlpoints(M2b_I) == controlpoints(M2c_I) M2a = refinement(refinement(M2, (Val(1),)), (KnotVector([2,2,2,2,2]),)) M2b = refinement(M2, (Val(1),), (KnotVector([2,2,2,2,2]),)) M2c = refinement(M2, P2′) @test controlpoints(M2a) ≈ controlpoints(M2b) == controlpoints(M2c) # P3 ⊑ P3′ but not P3 ⊆ P3′ M3a_R = refinement_R(refinement_R(M3, (Val(0),)), (EmptyKnotVector(),)) M3b_R = refinement_R(M3, (Val(0),), (EmptyKnotVector(),)) @test_throws DomainError refinement_R(M3, P3′) @test controlpoints(M3a_R) ≈ controlpoints(M3b_R) M3a_I = refinement_I(refinement_I(M3, (Val(0),)), (EmptyKnotVector(),)) M3b_I = refinement_I(M3, (Val(0),), (EmptyKnotVector(),)) M3c_I = refinement_I(M3, P3′) @test controlpoints(M3a_I) ≈ controlpoints(M3b_I) ≉ controlpoints(M3c_I) M3a = refinement(refinement(M3, (Val(0),)), (EmptyKnotVector(),)) M3b = refinement(M3, (Val(0),), (EmptyKnotVector(),)) M3c = refinement(M3, P3′) @test controlpoints(M3a) ≈ controlpoints(M3b) ≉ controlpoints(M3c) end @testset "2dim" begin a12 = rand(SVector{3, Float64}, n1, n2) a23 = rand(SVector{3, Float64}, n2, n3) w12 = rand(n1, n2) .+ 1 w23 = rand(n2, n3) .+ 1 M12 = BSplineManifold(a12, P1, P2) M23 = BSplineManifold(a23, P2, P3) R12 = RationalBSplineManifold(a12, w12, P1, P2) R23 = RationalBSplineManifold(a23, w23, P2, P3) @test refinement_R(M12, P1′, P2′) == refinement(M12, P1′, P2′) @test refinement_R(R12, P1′, P2′) == refinement(R12, P1′, P2′) @test_throws DomainError refinement_R(M23, P2′, P3′) == refinement(M23, P2′, P3′) @test_throws DomainError refinement_R(R23, P2′, P3′) == refinement(R23, P2′, P3′) @test_throws DomainError refinement_I(M12, P1′, P2′) == refinement(M12, P1′, P2′) @test_throws DomainError refinement_I(R12, P1′, P2′) == refinement(R12, P1′, P2′) @test refinement_I(M23, P2′, P3′) == refinement(M23, P2′, P3′) @test refinement_I(R23, P2′, P3′) == refinement(R23, P2′, P3′) @test refinement_R(M12) == refinement_I(M12) == refinement(M12) @test refinement_R(R12) == refinement_I(R12) == refinement(R12) @test refinement_R(M23) == refinement_I(M23) == refinement(M23) @test refinement_R(R23) == refinement_I(R23) == refinement(R23) end @testset "4dim" begin a1122 = rand(SVector{3, Float64}, n1, n1, n2, n2) a2233 = rand(SVector{3, Float64}, n2, n2, n3, n3) w1122 = rand(n1, n1, n2, n2) .+ 1 w2233 = rand(n2, n2, n3, n3) .+ 1 M1122 = BSplineManifold(a1122, P1, P1, P2, P2) M2233 = BSplineManifold(a2233, P2, P2, P3, P3) R1122 = RationalBSplineManifold(a1122, w1122, P1, P1, P2, P2) R2233 = RationalBSplineManifold(a2233, w2233, P2, P2, P3, P3) @test refinement_R(M1122, P1′, P1′, P2′, P2′) == refinement(M1122, P1′, P1′, P2′, P2′) @test refinement_R(R1122, P1′, P1′, P2′, P2′) == refinement(R1122, P1′, P1′, P2′, P2′) @test_throws DomainError refinement_R(M2233, P2′, P2′, P3′, P3′) == refinement(M2233, P2′, P2′, P3′, P3′) @test_throws DomainError refinement_R(R2233, P2′, P2′, P3′, P3′) == refinement(R2233, P2′, P2′, P3′, P3′) @test_throws DomainError refinement_I(M1122, P1′, P1′, P2′, P2′) == refinement(M12, P1′, P1′, P2′, P2′) @test_throws DomainError refinement_I(R1122, P1′, P1′, P2′, P2′) == refinement(R12, P1′, P1′, P2′, P2′) @test refinement_I(M2233, P2′, P2′, P3′, P3′) == refinement(M2233, P2′, P2′, P3′, P3′) @test refinement_I(R2233, P2′, P2′, P3′, P3′) == refinement(R2233, P2′, P2′, P3′, P3′) @test refinement_R(M1122) == refinement_I(M1122) == refinement(M1122) @test refinement_R(R1122) == refinement_I(R1122) == refinement(R1122) @test refinement_R(M2233) == refinement_I(M2233) == refinement(M2233) @test refinement_R(R2233) == refinement_I(R2233) == refinement(R2233) end end @testset "1dim" begin a = [Point(i, rand()) for i in 1:n1] p₊ = (Val(1),) k₊ = (KnotVector([4.5]),) # k₊ = (KnotVector([4.5,4.95]),) @testset "BSplineManifold" begin M = BSplineManifold(a, (P1,)) M0 = @inferred refinement(M) M1 = @inferred refinement(M, k₊) M2 = @inferred refinement(M, p₊) M3 = @inferred refinement(M, p₊, k₊) M4 = @inferred refinement(M, (P1′,)) for _ in 1:100 t1 = rand(D1) @test M(t1) ≈ M1(t1) @test M(t1) ≈ M2(t1) @test M(t1) ≈ M3(t1) @test M(t1) ≈ M4(t1) end end @testset "RationalBSplineManifold" begin w = rand(n1) .+ 1 R = RationalBSplineManifold(a, w, (P1,)) R0 = @inferred refinement(R) R1 = @inferred refinement(R, k₊) R2 = @inferred refinement(R, p₊) R3 = @inferred refinement(R, p₊, k₊) R4 = @inferred refinement(R, (P1′,)) for _ in 1:100 t1 = rand(D1) @test R(t1) ≈ R1(t1) @test R(t1) ≈ R2(t1) @test R(t1) ≈ R3(t1) @test R(t1) ≈ R4(t1) end end end @testset "2dim" begin a = [Point(i, rand()) for i in 1:n1, j in 1:n2] p₊ = (Val(1), Val(2)) k₊ = (KnotVector([4.5,4.7]),KnotVector(Float64[])) @testset "BSplineManifold" begin M = BSplineManifold(a, (P1,P2)) M0 = @inferred refinement(M) M1 = @inferred refinement(M, k₊) M2 = @inferred refinement(M, p₊) M3 = @inferred refinement(M, p₊, k₊) M4 = @inferred refinement(M, (P1′,P2′)) for _ in 1:100 t1 = rand(D1) t2 = rand(D2) @test M(t1,t2) ≈ M1(t1,t2) @test M(t1,t2) ≈ M2(t1,t2) @test M(t1,t2) ≈ M3(t1,t2) @test M(t1,t2) ≈ M4(t1,t2) end end @testset "RationalBSplineManifold" begin w = rand(n1,n2) .+ 1 R = RationalBSplineManifold(a, w, (P1,P2)) R0 = @inferred refinement(R) R1 = @inferred refinement(R, k₊) R2 = @inferred refinement(R, p₊) R3 = @inferred refinement(R, p₊, k₊) R4 = @inferred refinement(R, (P1′,P2′)) for _ in 1:100 t1 = rand(D1) t2 = rand(D2) @test R(t1,t2) ≈ R1(t1,t2) @test R(t1,t2) ≈ R2(t1,t2) @test R(t1,t2) ≈ R3(t1,t2) @test R(t1,t2) ≈ R4(t1,t2) end end end @testset "3dim" begin a = [Point(i, rand()) for i in 1:n1, j in 1:n2, k in 1:n3] p₊ = (Val(1), Val(2), Val(0)) k₊ = (KnotVector([4.4,4.7]),KnotVector(Float64[]),KnotVector([1.8])) @testset "BSplineManifold" begin M = BSplineManifold(a, (P1,P2,P3)) # On Julia v1.6, the following script seems not type-stable. if VERSION ≥ v"1.8" M0 = @inferred refinement(M) M1 = @inferred refinement(M, k₊) M2 = @inferred refinement(M, p₊) M3 = @inferred refinement(M, p₊, k₊) M4 = @inferred refinement(M, (P1′,P2′,P3′)) else M0 = refinement(M) M1 = refinement(M, k₊) M2 = refinement(M, p₊) M3 = refinement(M, p₊, k₊) M4 = refinement(M, (P1′,P2′,P3′)) end for _ in 1:100 t1 = rand(D1) t2 = rand(D2) t3 = rand(D3) @test M(t1,t2,t3) ≈ M1(t1,t2,t3) @test M(t1,t2,t3) ≈ M2(t1,t2,t3) @test M(t1,t2,t3) ≈ M3(t1,t2,t3) @test M(t1,t2,t3) ≈ M4(t1,t2,t3) end end @testset "RationalBSplineManifold" begin w = rand(n1,n2,n3) .+ 1 R = RationalBSplineManifold(a, w, (P1,P2,P3)) # On Julia v1.6, the following script seems not type-stable. if VERSION ≥ v"1.8" R0 = @inferred refinement(R) R1 = @inferred refinement(R, k₊) R2 = @inferred refinement(R, p₊) R3 = @inferred refinement(R, p₊, k₊) R4 = @inferred refinement(R, (P1′,P2′,P3′)) else R0 = refinement(R) R1 = refinement(R, k₊) R2 = refinement(R, p₊) R3 = refinement(R, p₊, k₊) R4 = refinement(R, (P1′,P2′,P3′)) end for _ in 1:100 t1 = rand(D1) t2 = rand(D2) t3 = rand(D3) @test R(t1,t2,t3) ≈ R1(t1,t2,t3) @test R(t1,t2,t3) ≈ R2(t1,t2,t3) @test R(t1,t2,t3) ≈ R3(t1,t2,t3) @test R(t1,t2,t3) ≈ R4(t1,t2,t3) end end end end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
3179
@testset "UniformBSplineBasis" begin @testset "bsplinebasis" begin v = 2:10 k = KnotVector(v) k1 = UniformKnotVector(v) k2 = UniformKnotVector(v/2) k3 = UniformKnotVector(v*2) @test eltype(k1) == Int @test eltype(k2) == Float64 @test eltype(k3) == Int for p in 0:3 P = BSplineSpace{p}(k) P1 = BSplineSpace{p}(k1) P2 = BSplineSpace{p}(k2) P3 = BSplineSpace{p}(k3) @test dim(P) == dim(P1) @test dim(P) == dim(P2) @test dim(P) == dim(P3) n = dim(P) @test bsplinebasis(P1,n÷2,6//1) isa Rational{Int} @test bsplinebasis(P2,n÷2,6//1) isa Float64 @test bsplinebasis(P3,n÷2,6//1) isa Rational{Int} for _ in 1:20 t = 10*rand() for i in 1:n @test bsplinebasis(P1,i,t) ≈ bsplinebasis(P,i,t) @test bsplinebasis(P2,i,t/2) ≈ bsplinebasis(P,i,t) @test bsplinebasis(P3,i,t*2) ≈ bsplinebasis(P,i,t) @test (t ∈ bsplinesupport(P1,i)) == (bsplinebasis(P1,i,t) != 0) @test (t/2 ∈ bsplinesupport(P2,i)) == (bsplinebasis(P2,i,t/2) != 0) @test (t*2 ∈ bsplinesupport(P3,i)) == (bsplinebasis(P3,i,t*2) != 0) @test bsplinebasis(P1,i,t) isa Float64 @test bsplinebasis(P2,i,t) isa Float64 @test bsplinebasis(P3,i,t) isa Float64 @test bsplinebasis(P1,i,t) == bsplinebasis₊₀(P1,i,t) == bsplinebasis₋₀(P1,i,t) @test bsplinebasis(P2,i,t) == bsplinebasis₊₀(P2,i,t) == bsplinebasis₋₀(P2,i,t) @test bsplinebasis(P3,i,t) == bsplinebasis₊₀(P3,i,t) == bsplinebasis₋₀(P3,i,t) end end end end @testset "bsplinebasisall" begin v = 2:10 k = KnotVector(v) l = length(k) k1 = UniformKnotVector(v) k2 = UniformKnotVector(v/2) k3 = UniformKnotVector(v*2) for p in 0:3 P = BSplineSpace{p}(k) P1 = BSplineSpace{p}(k1) P2 = BSplineSpace{p}(k2) P3 = BSplineSpace{p}(k3) @test bsplinebasisall(P1,(l-2p)÷2,6//1) isa SVector{p+1,Rational{Int}} @test bsplinebasisall(P2,(l-2p)÷2,6//1) isa SVector{p+1,Float64} @test bsplinebasisall(P3,(l-2p)÷2,6//1) isa SVector{p+1,Rational{Int}} for _ in 1:20 t = 10*rand() for i in 1:l-2p-1 # FIXME: This can be 0:l-2p, but don't know why the test doesn't pass. @test bsplinebasisall(P1,i,t) ≈ bsplinebasisall(P,i,t) @test bsplinebasisall(P2,i,t/2) ≈ bsplinebasisall(P,i,t) @test bsplinebasisall(P3,i,t*2) ≈ bsplinebasisall(P,i,t) @test bsplinebasisall(P1,i,t) isa SVector{p+1,Float64} @test bsplinebasisall(P2,i,t) isa SVector{p+1,Float64} @test bsplinebasisall(P3,i,t) isa SVector{p+1,Float64} end end end end end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
3736
@testset "BSplineSpace with uniform knot vector" begin @testset "constructor, subset" begin k1 = UniformKnotVector(1:8) P1 = BSplineSpace{2}(KnotVector(k1)) P1′ = BSplineSpace{2}(k1) # @test P1 === BSplineSpace{2}(P1) # @test P1 === BSplineSpace{2,Int}(P1) @test P1 === BSplineSpace{2,Int}(P1) @test bsplinesupport(P1, 2) == bsplinesupport(P1′, 2) == 2..5 @test dim(P1) == dim(P1′) == 5 @test exactdim_R(P1) == exactdim_R(P1′) == 5 @test isnondegenerate(P1) == true @test isdegenerate(P1) == false @test P1 == P1′ k2 = UniformKnotVector(range(1,1,length=8)) P2 = BSplineSpace{2}(k2) P2′ = BSplineSpace{2}(k2) @test bsplinesupport(P2, 2) == bsplinesupport(P2′, 2) == 1..1 @test dim(P2) == dim(P2′) == 5 @test exactdim_R(P2) == exactdim_R(P2′) == 0 @test isnondegenerate(P2) == false @test isdegenerate(P2) == true @test P2 === P2′ k3 = UniformKnotVector(1.0:0.5:12.0) P3 = BSplineSpace{2}(k3) @test P1 ⊆ P3 @test P2 ⋢ P3 @test P1 ⋢ P3 @test P2 ⋢ P3 k4 = UniformKnotVector(1.0:0.5:12.0) P3 = BSplineSpace{2}(k3) @test P1 ⊆ P3 @test P2 ⋢ P3 @test P1 ⋢ P3 @test P2 ⋢ P3 end @testset "dimension, dengenerate" begin P1 = BSplineSpace{2}(UniformKnotVector(1:8)) @test bsplinesupport(P1, 2) == 2..5 @test dim(P1) == 5 @test exactdim_R(P1) == 5 @test isnondegenerate(P1) == true @test isdegenerate(P1) == false P2 = BSplineSpace{2}(UniformKnotVector(range(1,1,length=8))) @test isnondegenerate(P2) == false @test isdegenerate(P2) == true @test isdegenerate(P2,1) == true @test isdegenerate(P2,2) == true @test isdegenerate(P2,3) == true @test isdegenerate(P2,4) == true @test isnondegenerate(P2,1) == false @test isnondegenerate(P2,2) == false @test isnondegenerate(P2,3) == false @test isnondegenerate(P2,4) == false @test dim(P2) == 5 @test exactdim_R(P2) == 0 end @testset "support" begin k = UniformKnotVector(0:9) P = BSplineSpace{2}(k) @test bsplinesupport(P,1) == 0..3 @test bsplinesupport(P,2) == 1..4 end @testset "equality" begin P1 = BSplineSpace{2}(UniformKnotVector(Base.OneTo(8))) P2 = BSplineSpace{2}(UniformKnotVector(1:8)) P3 = BSplineSpace{2}(UniformKnotVector(1:1:8)) P4 = BSplineSpace{2}(UniformKnotVector(1.0:1.0:8.0)) P5 = BSplineSpace{1}(UniformKnotVector(1.0:1.0:8.0)) P6 = BSplineSpace{2}(UniformKnotVector(1.0:2.0:8.0)) @test P1 == P2 == P3 == P4 @test P1 != P5 @test P1 != P6 @test hash(P1) == hash(P2) == hash(P3) == hash(P4) @test hash(P1) != hash(P5) @test hash(P1) != hash(P6) end @testset "subset but not sqsubset" begin P1 = BSplineSpace{2}(UniformKnotVector(0:1:8)) P2 = BSplineSpace{2}(UniformKnotVector(0.0:0.5:12.0)) @test P1 ⊆ P1 @test P2 ⊆ P2 @test P1 ⊆ P2 @test P2 ⊈ P1 @test P1 ⊑ P1 @test P2 ⊑ P2 @test P1 ⋢ P2 @test P2 ⋢ P1 end @testset "sqsubset but not subset" begin P1 = BSplineSpace{2}(UniformKnotVector(0:1:8)) P2 = BSplineSpace{2}(UniformKnotVector(1.0:0.5:7.0)) @test domain(P1) == domain(P2) @test P1 ⊆ P1 @test P2 ⊆ P2 @test P1 ⊈ P2 @test P2 ⊈ P1 @test P1 ⊑ P1 @test P2 ⊑ P2 @test P1 ⊑ P2 @test P2 ⋢ P1 end end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
4617
@testset "UniformKnotVector" begin k1 = UniformKnotVector(1:1:3) k2 = UniformKnotVector(Base.OneTo(3)) k3 = UniformKnotVector(1:4) k4 = UniformKnotVector(2:4) k5 = UniformKnotVector(2.0:4.0) k6 = UniformKnotVector(2.0:2.0:12.0) @testset "equality" begin @test k1 == k1 @test k1 == k2 @test k2 != k3 @test k4 != k3 @test k4 != k2 @test k2 == KnotVector(1:3) @test k2 != 1:3 @test k1.vector === copy(k1).vector @test k1 === copy(k1) @test hash(k1) == hash(k1) @test hash(k1) == hash(k2) @test hash(k2) != hash(k3) @test hash(k4) != hash(k3) @test hash(k4) != hash(k2) @test hash(k2) == hash(KnotVector(1:3)) @test hash(k2) != hash(1:3) end @testset "constructor, conversion" begin @test k1 isa UniformKnotVector{Int,StepRange{Int,Int}} @test k2 isa UniformKnotVector{Int,Base.OneTo{Int}} @test k3 isa UniformKnotVector{Int,UnitRange{Int}} @test UniformKnotVector(k2) isa UniformKnotVector{Int,Base.OneTo{Int}} @test_throws MethodError UniformKnotVector{Float64}(k3) T1 = UniformKnotVector{Float64,typeof(1.0:1.0)} T2 = UniformKnotVector{Int,typeof(1:1:1)} T3 = UniformKnotVector{Float64,typeof(1:1:1)} @test T1 != T2 @test T1(k3) isa T1 @test T2(k3) isa T2 @test_throws MethodError T3(k3) @test convert(T1,k3) isa T1 @test convert(T2,k3) isa T2 @test_throws MethodError convert(T3,k3) @test KnotVector(k1) isa KnotVector{Int} @test KnotVector(k2) isa KnotVector{Int} @test KnotVector(k5) isa KnotVector{Float64} end @testset "eltype" begin @test eltype(UniformKnotVector(1:3)) == Int @test eltype(UniformKnotVector(1:1:3)) == Int @test eltype(UniformKnotVector(1:1:BigInt(3))) == BigInt @test eltype(UniformKnotVector(1.0:1.0:3.0)) == Float64 @test eltype(UniformKnotVector(1//1:1//5:3//1)) == Rational{Int} end @testset "length" begin @test length(k2) == 3 @test length(k3) == 4 @test length(k4) == 3 end @testset "step" begin step(k1) == 1 step(k2) == 1 step(k3) == 1 step(k4) == 1 step(k5) == 1 step(k6) == 2 end @testset "iterator, getindex" begin for t in k2 @test t in k3 end @test k1[1] == 1 @test k2[end] == 3 @test k4[2] == 3 @test k4[[1,2]] == KnotVector([2,3]) @test k3[2:4] == k4 @test collect(k2) isa Vector{Int} @test [k2...] isa Vector{Int} @test collect(k5) isa Vector{Float64} @test [k5...] isa Vector{Float64} @test collect(k2) == [k2...] @test collect(k2) != k2 end @testset "addition, multiply" begin @test k2 + k3 == KnotVector(k2) + KnotVector(k3) @test k2 + k4 == KnotVector(k2) + KnotVector(k4) @test 2 * k2 == k2 * 2 == k2 + k2 end @testset "zeros" begin @test_throws MethodError zero(UniformKnotVector) @test_throws MethodError zeros(UniformKnotVector,3) @test zero(k1) isa EmptyKnotVector{Int} @test zero(k5) isa EmptyKnotVector{Float64} @test k1 * 0 == zero(k1) @test k1 + zero(k1) == k1 @test zero(k1) |> isempty @test zero(k1) |> iszero end @testset "unique" begin @test unique(k2) == k2 @test unique(k3) == k3 @test unique(k4) == k4 end @testset "inclusive relation" begin @test k1 == k2 @test k1 ⊆ k2 @test k2 ⊆ k1 @test k2 ⊆ k3 @test k4 ⊆ k3 @test k2 ⊈ k4 @test KnotVector(k2) ⊆ k3 @test KnotVector(k4) ⊆ k3 @test KnotVector(k2) ⊈ k4 @test k2 ⊆ KnotVector(k3) @test k4 ⊆ KnotVector(k3) @test k2 ⊈ KnotVector(k4) end @testset "float" begin k = UniformKnotVector(1:3) @test float(k) isa UniformKnotVector{Float64} @test k == float(k) k = UniformKnotVector(1f0:3f0) @test float(k) isa UniformKnotVector{Float32} @test k == float(k) k = UniformKnotVector(1//1:3//1) @test float(k) isa UniformKnotVector{Float64} @test k == float(k) end @testset "other operators" begin @test countknots(k2, 0.3) == 0 @test countknots(k2, 1) == 1 @test countknots(k2, 1.0) == 1 @test countknots(k2, 2.0) == 1 @test 1 ∈ k2 @test 1.5 ∉ k2 end end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
code
3166
@testset "util" begin @testset "r-nomial" begin A1 = [BasicBSpline.r_nomial(n,k,1) for n in 0:5, k in -1:10] A2 = [BasicBSpline.r_nomial(n,k,2) for n in 0:5, k in -1:10] A3 = [BasicBSpline.r_nomial(n,k,3) for n in 0:5, k in -1:10] A4 = [BasicBSpline.r_nomial(n,k,4) for n in 0:5, k in -1:10] A5 = [BasicBSpline.r_nomial(n,k,5) for n in 0:5, k in -1:10] A6 = [BasicBSpline.r_nomial(n,k,6) for n in 0:5, k in -1:10] A7 = [BasicBSpline.r_nomial(n,k,7) for n in 0:5, k in -1:10] @test A1 == [ 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 ] @test A2 == [ 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 1 3 3 1 0 0 0 0 0 0 0 0 1 4 6 4 1 0 0 0 0 0 0 0 1 5 10 10 5 1 0 0 0 0 0 ] @test A3 == [ 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 2 3 2 1 0 0 0 0 0 0 0 1 3 6 7 6 3 1 0 0 0 0 0 1 4 10 16 19 16 10 4 1 0 0 0 1 5 15 30 45 51 45 30 15 5 1 ] @test A4 == [ 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 2 3 4 3 2 1 0 0 0 0 0 1 3 6 10 12 12 10 6 3 1 0 0 1 4 10 20 31 40 44 40 31 20 10 0 1 5 15 35 65 101 135 155 155 135 101 ] @test A5 == [ 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 2 3 4 5 4 3 2 1 0 0 0 1 3 6 10 15 18 19 18 15 10 6 0 1 4 10 20 35 52 68 80 85 80 68 0 1 5 15 35 70 121 185 255 320 365 381 ] @test A6 == [ 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 2 3 4 5 6 5 4 3 2 1 0 1 3 6 10 15 21 25 27 27 25 21 0 1 4 10 20 35 56 80 104 125 140 146 0 1 5 15 35 70 126 205 305 420 540 651 ] @test A7 == [ 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 2 3 4 5 6 7 6 5 4 3 0 1 3 6 10 15 21 28 33 36 37 36 0 1 4 10 20 35 56 84 116 149 180 206 0 1 5 15 35 70 126 210 325 470 640 826 ] end end
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
docs
7980
# BasicBSpline.jl Basic (mathematical) operations for B-spline functions and related things with Julia. [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://hyrodium.github.io/BasicBSpline.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://hyrodium.github.io/BasicBSpline.jl/dev) [![Build Status](https://github.com/hyrodium/BasicBSpline.jl/workflows/CI/badge.svg)](https://github.com/hyrodium/BasicBSpline.jl/actions) [![Coverage](https://codecov.io/gh/hyrodium/BasicBSpline.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/hyrodium/BasicBSpline.jl) [![Aqua QA](https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg)](https://github.com/JuliaTesting/Aqua.jl) [![DOI](https://zenodo.org/badge/258791290.svg)](https://zenodo.org/badge/latestdoi/258791290) [![BasicBSpline Downloads](https://shields.io/endpoint?url=https://pkgs.genieframework.com/api/v1/badge/BasicBSpline)](https://pkgs.genieframework.com?packages=BasicBSpline) ![](docs/src/img/BasicBSplineLogo.png) ## Summary This package provides basic mathematical operations for [B-spline](https://en.wikipedia.org/wiki/B-spline). * B-spline basis function * Some operations for knot vector * Some operations for B-spline space (piecewise polynomial space) * B-spline manifold (includes curve, surface and solid) * Refinement algorithm for B-spline manifold * Fitting control points for a given function ## Comparison to other B-spline packages There are several Julia packages for B-spline, and this package distinguishes itself with the following key benefits: * Supports all degrees of polynomials. * Includes a refinement algorithm for B-spline manifolds. * Delivers high-speed performance. * Is mathematically oriented. * Provides a fitting algorithm using least squares. (via [BasicBSplineFitting.jl](https://github.com/hyrodium/BasicBSplineFitting.jl)) * Offers exact SVG export feature. (via [BasicBSplineExporter.jl](https://github.com/hyrodium/BasicBSplineExporter.jl)) If you have any thoughts, please comment in: * [Discourse post about BasicBSpline.jl](https://discourse.julialang.org/t//96323) * [JuliaPackageComparisons](https://juliapackagecomparisons.github.io/pages/bspline/) ## Installation Install this package via Julia REPL's package mode. ``` ]add BasicBSpline ``` ## Quick start ### B-spline basis function The value of B-spline basis function $B_{(i,p,k)}$ can be obtained with `bsplinebasis₊₀`. $$ \begin{aligned} {B}_{(i,p,k)}(t) &= \frac{t-k_{i}}{k_{i+p}-k_{i}}{B}_{(i,p-1,k)}(t) +\frac{k_{i+p+1}-t}{k_{i+p+1}-k_{i+1}}{B}_{(i+1,p-1,k)}(t) \\ {B}_{(i,0,k)}(t) &= \begin{cases} &1\quad (k_{i}\le t< k_{i+1})\\ &0\quad (\text{otherwise}) \end{cases} \end{aligned} $$ ```julia julia> using BasicBSpline julia> P3 = BSplineSpace{3}(KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0])) BSplineSpace{3, Float64, KnotVector{Float64}}(KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0])) julia> bsplinebasis₊₀(P3, 2, 7.5) 0.13786213786213783 ``` BasicBSpline.jl has many recipes based on [RecipesBase.jl](https://docs.juliaplots.org/dev/RecipesBase/), and `BSplineSpace` object can be visualized with its basis functions. ([Try B-spline basis functions in Desmos](https://www.desmos.com/calculator/ql6jqgdabs)) ```julia using BasicBSpline using Plots k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]) P0 = BSplineSpace{0}(k) # 0th degree piecewise polynomial space P1 = BSplineSpace{1}(k) # 1st degree piecewise polynomial space P2 = BSplineSpace{2}(k) # 2nd degree piecewise polynomial space P3 = BSplineSpace{3}(k) # 3rd degree piecewise polynomial space gr() plot( plot(P0; ylims=(0,1), label="P0"), plot(P1; ylims=(0,1), label="P1"), plot(P2; ylims=(0,1), label="P2"), plot(P3; ylims=(0,1), label="P3"), layout=(2,2), ) ``` ![](docs/src/img/cover.png) You can visualize the differentiability of B-spline basis function. See [Differentiability and knot duplications](https://hyrodium.github.io/BasicBSpline.jl/dev/math/bsplinebasis/#Differentiability-and-knot-duplications) for details. https://github.com/hyrodium/BasicBSpline.jl/assets/7488140/034cf6d0-62ea-44e0-a00f-d307e6aad0fe ### B-spline manifold ```julia using BasicBSpline using StaticArrays using Plots ## 1-dim B-spline manifold p = 2 # degree of polynomial k = KnotVector(1:12) # knot vector P = BSplineSpace{p}(k) # B-spline space a = [SVector(i-5, 3*sin(i^2)) for i in 1:dim(P)] # control points M = BSplineManifold(a, P) # Define B-spline manifold gr(); plot(M) ``` ![](docs/src/img/bspline_curve.png) ### Rational B-spline manifold (NURBS) ```julia using BasicBSpline using LinearAlgebra using StaticArrays using Plots plotly() R1 = 3 # major radius of torus R2 = 1 # minor radius of torus p = 2 k = KnotVector([0,0,0,1,1,2,2,3,3,4,4,4]) P = BSplineSpace{p}(k) a = [normalize(SVector(cosd(t), sind(t)), Inf) for t in 0:45:360] w = [ifelse(isodd(i), √2, 1) for i in 1:9] a0 = push.(a, 0) a1 = (R1+R2)*a0 a5 = (R1-R2)*a0 a2 = [p+R2*SVector(0,0,1) for p in a1] a3 = [p+R2*SVector(0,0,1) for p in R1*a0] a4 = [p+R2*SVector(0,0,1) for p in a5] a6 = [p-R2*SVector(0,0,1) for p in a5] a7 = [p-R2*SVector(0,0,1) for p in R1*a0] a8 = [p-R2*SVector(0,0,1) for p in a1] M = RationalBSplineManifold(hcat(a1,a2,a3,a4,a5,a6,a7,a8,a1), w*w', P, P) plot(M; controlpoints=(markersize=2,)) ``` ![](docs/src/img/rational_bspline_surface_plotly.png) ### Refinement #### h-refinement ```julia k₊ = (KnotVector([3.1, 3.2, 3.3]), KnotVector([0.5, 0.8, 0.9])) # additional knot vectors M_h = refinement(M, k₊) # refinement of B-spline manifold plot(M_h; controlpoints=(markersize=2,)) ``` ![](docs/src/img/rational_bspline_surface_href_plotly.png) Note that this shape and the last shape are equivalent. #### p-refinement ```julia p₊ = (Val(1), Val(2)) # additional degrees M_p = refinement(M, p₊) # refinement of B-spline manifold plot(M_p; controlpoints=(markersize=2,)) ``` ![](docs/src/img/rational_bspline_surface_pref_plotly.png) Note that this shape and the last shape are equivalent. ### Fitting B-spline manifold The next example shows the fitting for [the following graph on Desmos graphing calculator](https://www.desmos.com/calculator/2hm3b1fbdf)! ![](docs/src/img/fitting_desmos.png) ```julia using BasicBSplineFitting p1 = 2 p2 = 2 k1 = KnotVector(-10:10)+p1*KnotVector([-10,10]) k2 = KnotVector(-10:10)+p2*KnotVector([-10,10]) P1 = BSplineSpace{p1}(k1) P2 = BSplineSpace{p2}(k2) f(u1, u2) = SVector(2u1 + sin(u1) + cos(u2) + u2 / 2, 3u2 + sin(u2) + sin(u1) / 2 + u1^2 / 6) / 5 a = fittingcontrolpoints(f, (P1, P2)) M = BSplineManifold(a, (P1, P2)) gr() plot(M; aspectratio=1) ``` ![](docs/src/img/fitting.png) If the knot vector span is too coarse, the approximation will be coarse. ```julia p1 = 2 p2 = 2 k1 = KnotVector(-10:5:10)+p1*KnotVector([-10,10]) k2 = KnotVector(-10:5:10)+p2*KnotVector([-10,10]) P1 = BSplineSpace{p1}(k1) P2 = BSplineSpace{p2}(k2) f(u1, u2) = SVector(2u1 + sin(u1) + cos(u2) + u2 / 2, 3u2 + sin(u2) + sin(u1) / 2 + u1^2 / 6) / 5 a = fittingcontrolpoints(f, (P1, P2)) M = BSplineManifold(a, (P1, P2)) plot(M; aspectratio=1) ``` ![](docs/src/img/fitting_coarse.png) ### Draw smooth vector graphics ```julia using BasicBSpline using BasicBSplineFitting using BasicBSplineExporter p = 3 k = KnotVector(range(-2π,2π,length=8))+p*KnotVector([-2π,2π]) P = BSplineSpace{p}(k) f(u) = SVector(u,sin(u)) a = fittingcontrolpoints(f, P) M = BSplineManifold(a, P) save_svg("sine-curve.svg", M, unitlength=50, xlims=(-8,8), ylims=(-2,2)) save_svg("sine-curve_no-points.svg", M, unitlength=50, xlims=(-8,8), ylims=(-2,2), points=false) ``` ![](docs/src/img/sine-curve.svg) ![](docs/src/img/sine-curve_no-points.svg) This is useful when you edit graphs (or curves) with your favorite vector graphics editor. ![](docs/src/img/inkscape.png) See [Plotting smooth graphs with Julia](https://forem.julialang.org/hyrodium/plotting-smooth-graphs-with-julia-6mj) for more tutorials.
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
docs
218
# API ## BasicBSpline.jl ```@autodocs Modules = [BasicBSpline] Order = [:type, :function, :macro] ``` ## BasicBSplineFitting.jl ```@autodocs Modules = [BasicBSplineFitting] Order = [:type, :function, :macro] ```
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
docs
4094
# Interpolations Currently, BasicBSpline.jl doesn't have APIs for interpolations, but it is not hard to implement some basic interpolation algorithms with this package. ## Setup ```@example interpolation using BasicBSpline using IntervalSets using Random; Random.seed!(42) using Plots ``` ## Interpolation with cubic B-spline ```@example interpolation function interpolate(xs::AbstractVector, fs::AbstractVector{T}) where T # Cubic open B-spline space p = 3 k = KnotVector(xs) + KnotVector([xs[1],xs[end]]) * p P = BSplineSpace{p}(k) # dimensions m = length(xs) n = dim(P) # The interpolant function has a f''=0 property at bounds. ddP = BSplineDerivativeSpace{2}(P) dda = [bsplinebasis(ddP,j,xs[1]) for j in 1:n] ddb = [bsplinebasis(ddP,j,xs[m]) for j in 1:n] # Compute the interpolant function (1-dim B-spline manifold) M = [bsplinebasis(P,j,xs[i]) for i in 1:m, j in 1:n] M = vcat(dda', M, ddb') y = vcat(zero(T), fs, zero(T)) return BSplineManifold(M\y, P) end # Example inputs xs = [1, 2, 3, 4, 6, 7] fs = [1.3, 1.5, 2, 2.1, 1.9, 1.3] f = interpolate(xs,fs) # Plot plotly() scatter(xs, fs) plot!(t->f(t)) savefig("interpolation_cubic.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../interpolation_cubic.html" style="width:100%;height:420px;"></object> ``` ## Interpolation with linear B-spline ```@example interpolation function interpolate_linear(xs::AbstractVector, fs::AbstractVector{T}) where T # Linear open B-spline space p = 1 k = KnotVector(xs) + KnotVector([xs[1],xs[end]]) P = BSplineSpace{p}(k) # dimensions m = length(xs) n = dim(P) # Compute the interpolant function (1-dim B-spline manifold) return BSplineManifold(fs, P) end # Example inputs xs = [1, 2, 3, 4, 6, 7] fs = [1.3, 1.5, 2, 2.1, 1.9, 1.3] f = interpolate_linear(xs,fs) # Plot scatter(xs, fs) plot!(t->f(t)) savefig("interpolation_linear.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../interpolation_linear.html" style="width:100%;height:420px;"></object> ``` ## Interpolation with periodic B-spline ```@example interpolation function interpolate_periodic(xs::AbstractVector, fs::AbstractVector, ::Val{p}) where p # Closed B-spline space, any polynomial degrees can be accepted n = length(xs) - 1 period = xs[end]-xs[begin] k = KnotVector(vcat( xs[end-p:end-1] .- period, xs, xs[begin+1:begin+p] .+ period )) P = BSplineSpace{p}(k) A = [bsplinebasis(P,j,xs[i]) for i in 1:n, j in 1:n] for i in 1:p-1, j in 1:i A[n+i-p+1,j] += bsplinebasis(P,j+n,xs[i+n-p+1]) end b = A \ fs[begin:end-1] # Compute the interpolant function (1-dim B-spline manifold) return BSplineManifold(vcat(b,b[1:p]), P) end # Example inputs xs = [1, 2, 3, 4, 6, 7] fs = [1.3, 1.5, 2, 2.1, 1.9, 1.3] # fs[1] == fs[end] f = interpolate_periodic(xs,fs,Val(2)) # Plot scatter(xs, fs) plot!(t->f(mod(t-1,6)+1),1,14) plot!(t->f(t)) savefig("interpolation_periodic.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../interpolation_periodic.html" style="width:100%;height:420px;"></object> ``` Note that the periodic interpolation supports any degree of polynomial. ```@example interpolation xs = 2π*rand(10) sort!(push!(xs, 0, 2π)) fs = sin.(xs) f1 = interpolate_periodic(xs,fs,Val(1)) f2 = interpolate_periodic(xs,fs,Val(2)) f3 = interpolate_periodic(xs,fs,Val(3)) f4 = interpolate_periodic(xs,fs,Val(4)) f5 = interpolate_periodic(xs,fs,Val(5)) scatter(xs, fs, label="sampling points") plot!(sin, label="sine curve", color=:black) plot!(t->f1(t), label="polynomial degree 1") plot!(t->f2(t), label="polynomial degree 2") plot!(t->f3(t), label="polynomial degree 3") plot!(t->f4(t), label="polynomial degree 4") plot!(t->f5(t), label="polynomial degree 5") savefig("interpolation_periodic_sin.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../interpolation_periodic_sin.html" style="width:100%;height:420px;"></object> ```
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
docs
9819
# B-spline basis function ## Setup ```@example math_bsplinebasis using BasicBSpline using Random using Plots ``` ## Basic properties of B-spline basis function !!! tip "Def. B-spline space" B-spline basis function is defined by [Cox–de Boor recursion formula](https://en.wikipedia.org/wiki/De_Boor%27s_algorithm). ```math \begin{aligned} {B}_{(i,p,k)}(t) &= \frac{t-k_{i}}{k_{i+p}-k_{i}}{B}_{(i,p-1,k)}(t) +\frac{k_{i+p+1}-t}{k_{i+p+1}-k_{i+1}}{B}_{(i+1,p-1,k)}(t) \\ {B}_{(i,0,k)}(t) &= \begin{cases} &1\quad (k_{i}\le t< k_{i+1})\\ &0\quad (\text{otherwise}) \end{cases} \end{aligned} ``` If the denominator is zero, then the term is assumed to be zero. The next figure shows the plot of B-spline basis functions. You can manipulate these plots on [desmos graphing calculator](https://www.desmos.com/calculator/ql6jqgdabs)! ![](../img/bsplinebasis.png) !!! info "Thm. Basis of B-spline space" The set of functions ``\{B_{(i,p,k)}\}_i`` is a basis of B-spline space ``\mathcal{P}[p,k]``. These B-spline basis functions can be calculated with [`bsplinebasis₊₀`](@ref). ```@example math_bsplinebasis p = 2 k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]) P = BSplineSpace{p}(k) gr() plot([t->bsplinebasis₊₀(P,i,t) for i in 1:dim(P)], 0, 10, ylims=(0,1), label=false) savefig("bsplinebasisplot.png") # hide nothing # hide ``` ![](bsplinebasisplot.png) The first terms can be defined in different ways ([`bsplinebasis₋₀`](@ref)). ```math \begin{aligned} {B}_{(i,0,k)}(t) &= \begin{cases} &1\quad (k_{i} < t \le k_{i+1}) \\ &0\quad (\text{otherwise}) \end{cases} \end{aligned} ``` ```@example math_bsplinebasis p = 2 k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]) P = BSplineSpace{p}(k) plot([t->bsplinebasis₋₀(P,i,t) for i in 1:dim(P)], 0, 10, ylims=(0,1), label=false) savefig("bsplinebasisplot2.png") # hide nothing # hide ``` ![](bsplinebasisplot2.png) In these cases, each B-spline basis function ``B_{(i,2,k)}`` is coninuous, so [`bsplinebasis₊₀`](@ref) and [`bsplinebasis₋₀`](@ref) are equal. ## Support of B-spline basis function !!! info "Thm. Support of B-spline basis function" If a B-spline space``\mathcal{P}[p,k]`` is non-degenerate, the support of its basis function is calculated as follows: ```math \operatorname{supp}(B_{(i,p,k)})=[k_{i},k_{i+p+1}] ``` [TODO: fig] ## Partition of unity !!! info "Thm. Partition of unity" Let ``B_{(i,p,k)}`` be a B-spline basis function, then the following equation is satisfied. ```math \begin{aligned} \sum_{i}B_{(i,p,k)}(t) &= 1 & (k_{p+1} \le t < k_{l-p}) \\ 0 \le B_{(i,p,k)}(t) &\le 1 \end{aligned} ``` ```@example math_bsplinebasis p = 2 k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]) P = BSplineSpace{p}(k) plot(t->sum(bsplinebasis₊₀(P,i,t) for i in 1:dim(P)), 0, 10, ylims=(-0.1, 1.1), label="sum of bspline basis functions") plot!(k, label="knot vector", legend=:inside) savefig("sumofbsplineplot.png") # hide nothing # hide ``` ![](sumofbsplineplot.png) To satisfy the partition of unity on whole interval ``[0,10]``, sometimes more knots will be inserted to the endpoints of the interval. ```@example math_bsplinebasis p = 2 k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]) + p * KnotVector([0,10]) P = BSplineSpace{p}(k) plot(t->sum(bsplinebasis₊₀(P,i,t) for i in 1:dim(P)), 0, 10, ylims=(-0.1, 1.1), label="sum of bspline basis functions") plot!(k, label="knot vector", legend=:inside) savefig("sumofbsplineplot2.png") # hide nothing # hide ``` ![](sumofbsplineplot2.png) But, the sum ``\sum_{i} B_{(i,p,k)}(t)`` is not equal to ``1`` at ``t=8``. Therefore, to satisfy partition of unity on closed interval ``[k_{p+1}, k_{l-p}]``, the definition of first terms of B-spline basis functions are sometimes replaced: ```math \begin{aligned} {B}_{(i,0,k)}(t) &= \begin{cases} &1\quad (k_{i} \le t<k_{i+1})\\ &1\quad (k_{i} < t = k_{i+1}=k_{l})\\ &0\quad (\text{otherwise}) \end{cases} \end{aligned} ``` ```@example math_bsplinebasis p = 2 k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]) + p * KnotVector([0,10]) P = BSplineSpace{p}(k) plot(t->sum(bsplinebasis(P,i,t) for i in 1:dim(P)), 0, 10, ylims=(-0.1, 1.1), label="sum of bspline basis functions") plot!(k, label="knot vector", legend=:inside) savefig("sumofbsplineplot3.png") # hide nothing # hide ``` ![](sumofbsplineplot3.png) Here are all of valiations of the B-spline basis function. * [`bsplinebasis₊₀`](@ref) * [`bsplinebasis₋₀`](@ref) * [`bsplinebasis`](@ref) * [`BasicBSpline.bsplinebasis₋₀I`](@ref) ## [Differentiability and knot duplications](@id differentiability-and-knot-duplications) The differentiability of the B-spline basis function depends on the duplications on the knot vector. The following animation shows this property. ```@example math_bsplinebasis # Initialize gr() Random.seed!(42) N = 10 # Easing functions c=2/√3 f(t) = ifelse(t>0, exp(-1/t), 0.0) g(t) = 1 - f(c*t) / (f(c*t) + f(c-c*t)) h(t) = clamp(1 - f((1-t)/2) / f(1/2), 0, 1) # Default knot vector v = 10*(1:N-1)/N + randn(N-1)*0.5 pushfirst!(v, 0) push!(v, 10) # Generate animation anim = @animate for t in 0:0.05:5 w = copy(v) w[5] = v[4] + (g(t-0.0) + h(t-3.9)) * (v[5]-v[4]) w[6] = v[4] + (g(t-1.0) + h(t-3.6)) * (v[6]-v[4]) w[7] = v[4] + (g(t-2.0) + h(t-3.3)) * (v[7]-v[4]) k = KnotVector(w) P0 = BSplineSpace{0}(k) P1 = BSplineSpace{1}(k) P2 = BSplineSpace{2}(k) P3 = BSplineSpace{3}(k) plot( plot(P0; label="P0", ylims=(0,1), color=palette(:cool,4)[1]), plot(P1; label="P1", ylims=(0,1), color=palette(:cool,4)[2]), plot(P2; label="P2", ylims=(0,1), color=palette(:cool,4)[3]), plot(P3; label="P3", ylims=(0,1), color=palette(:cool,4)[4]), plot(k; label="knot vector", ylims=(-0.1,0.02), color=:white, yticks=nothing); layout=grid(5, 1, heights=[0.23 ,0.23, 0.23, 0.23, 0.08]), size=(501,800) ) end # Run ffmepg to generate mp4 file # cmd = `ffmpeg -y -framerate 24 -i $(anim.dir)/%06d.png -c:v libx264 -pix_fmt yuv420p differentiability.mp4` cmd = `ffmpeg -y -framerate 24 -i $(anim.dir)/%06d.png -c:v libx264 -pix_fmt yuv420p differentiability.mp4` # hide out = Pipe() # hide err = Pipe() # hide run(pipeline(ignorestatus(cmd), stdout=out, stderr=err)) # hide nothing # hide ``` ![](differentiability.mp4) ## B-spline basis functions at specific point Sometimes, you may need the non-zero values of B-spline basis functions at specific point. The [`bsplinebasisall`](@ref) function is much more efficient than evaluating B-spline functions one by one with [`bsplinebasis`](@ref) function. ```@example math_bsplinebasis P = BSplineSpace{2}(KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0])) t = 6.3 plot(P; label="P", ylims=(0,1)) scatter!(fill(t,3), [bsplinebasis(P,2,t), bsplinebasis(P,3,t), bsplinebasis(P,4,t)]; markershape=:circle, markersize=10, label="bsplinebasis") scatter!(fill(t,3), bsplinebasisall(P, 2, t); markershape=:star7, markersize=10, label="bsplinebasisall") savefig("bsplinebasis_vs_bsplinebasisall.png") # hide nothing # hide ``` ![](bsplinebasis_vs_bsplinebasisall.png) Benchmark: ```@repl using BenchmarkTools, BasicBSpline P = BSplineSpace{2}(KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0])) t = 6.3 (bsplinebasis(P, 2, t), bsplinebasis(P, 3, t), bsplinebasis(P, 4, t)) bsplinebasisall(P, 2, t) @benchmark (bsplinebasis($P, 2, $t), bsplinebasis($P, 3, $t), bsplinebasis($P, 4, $t)) @benchmark bsplinebasisall($P, 2, $t) ``` The next figures illustlates the relation between `domain(P)`, `intervalindex(P,t)` and `bsplinebasisall(P,i,t)`. ```@example math_bsplinebasis plotly() k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]) for p in 1:3 local P P = BSplineSpace{p}(k) plot(P, legend=:topleft, label="B-spline basis (p=1)") plot!(t->intervalindex(P,t),0,10, label="Interval index") plot!(t->sum(bsplinebasis(P,i,t) for i in 1:dim(P)),0,10, label="Sum of B-spline basis") plot!(k, label="knot vector") plot!([t->bsplinebasisall(P,1,t)[i] for i in 1:p+1],0,10, color=:black, label="bsplinebasisall (i=1)", ylim=(-1,8-2p)) savefig("bsplinebasisall-$(p).html") # hide nothing # hide end ``` ```@raw html <object type="text/html" data="../bsplinebasisall-1.html" style="width:100%;height:420px;"></object> ``` ```@raw html <object type="text/html" data="../bsplinebasisall-2.html" style="width:100%;height:420px;"></object> ``` ```@raw html <object type="text/html" data="../bsplinebasisall-3.html" style="width:100%;height:420px;"></object> ``` ## Uniform B-spline basis and uniform distribution Let ``X_1, \dots, X_n`` be i.i.d. random variables with ``X_i \sim U(0,1)``, then the probability density function of ``X_1+\cdots+X_n`` can be obtained via `BasicBSpline.uniform_bsplinebasis_kernel(Val(n-1),t)`. ```@example math_bsplinebasis gr() N = 100000 # polynomial degree 0 plot1 = histogram([rand() for _ in 1:N], normalize=true, label=false) plot!(t->BasicBSpline.uniform_bsplinebasis_kernel(Val(0),t), label=false) # polynomial degree 1 plot2 = histogram([rand()+rand() for _ in 1:N], normalize=true, label=false) plot!(t->BasicBSpline.uniform_bsplinebasis_kernel(Val(1),t), label=false) # polynomial degree 2 plot3 = histogram([rand()+rand()+rand() for _ in 1:N], normalize=true, label=false) plot!(t->BasicBSpline.uniform_bsplinebasis_kernel(Val(2),t), label=false) # polynomial degree 3 plot4 = histogram([rand()+rand()+rand()+rand() for _ in 1:N], normalize=true, label=false) plot!(t->BasicBSpline.uniform_bsplinebasis_kernel(Val(3),t), label=false) # plot all plot(plot1,plot2,plot3,plot4) savefig("histogram-uniform.png") # hide nothing # hide ``` ![](histogram-uniform.png)
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
docs
6659
# B-spline manifold ## Setup ```@example math_bsplinemanifold using BasicBSpline using StaticArrays using StaticArrays using Plots ``` ## Multi-dimensional B-spline !!! info "Thm. Basis of tensor product of B-spline spaces" The tensor product of B-spline spaces ``\mathcal{P}[p^1,k^1]\otimes\mathcal{P}[p^2,k^2]`` is a linear space with the following basis. ```math \mathcal{P}[p^1,k^1]\otimes\mathcal{P}[p^2,k^2] = \operatorname*{span}_{i,j} (B_{(i,p^1,k^1)} \otimes B_{(j,p^2,k^2)}) ``` where the basis are defined as ```math (B_{(i,p^1,k^1)} \otimes B_{(j,p^2,k^2)})(t^1, t^2) = B_{(i,p^1,k^1)}(t^1) \cdot B_{(j,p^2,k^2)}(t^2) ``` The next plot shows ``B_{(3,p^1,k^1)} \otimes B_{(4,p^2,k^2)}`` basis function. ```@example math_bsplinemanifold # Define shape k1 = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]) k2 = knotvector"31 2 121" P1 = BSplineSpace{3}(k1) P2 = BSplineSpace{2}(k2) # Choose indices i1 = 3 i2 = 4 # Visualize basis functions plotly() plot(P1; plane=:xz, label="P1", color=:red) plot!(P2; plane=:yz, label="P2", color=:green) plot!(k1; plane=:xz, label="k1", color=:red, markersize=2) plot!(k2; plane=:yz, label="k2", color=:green, markersize=2) xs = range(0,10,length=100) ys = range(1,9,length=100) surface!(xs, ys, bsplinebasis.(P1,i1,xs') .* bsplinebasis.(P2,i2,ys)) savefig("2dim-tensor-product-bspline.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../2dim-tensor-product-bspline.html" style="width:100%;height:420px;"></object> ``` Higher dimensional tensor products ``\mathcal{P}[p^1,k^1]\otimes\cdots\otimes\mathcal{P}[p^d,k^d]`` are defined similarly. ## Definition B-spline manifold is a parametric representation of a shape. !!! tip "Def. B-spline manifold" For given ``d``-dimensional B-spline basis functions ``B_{(i^1,p^1,k^1)} \otimes \cdots \otimes B_{(i^d,p^d,k^d)}`` and given points ``\bm{a}_{i^1 \dots i^d} \in V``, B-spline manifold is defined by the following parametrization: ```math \bm{p}(t^1,\dots,t^d;\bm{a}_{i^1 \dots i^d}) =\sum_{i^1,\dots,i^d}(B_{(i^1,p^1,k^1)} \otimes \cdots \otimes B_{(i^d,p^d,k^d)})(t^1,\dots,t^d) \bm{a}_{i^1 \dots i^d} ``` Where ``\bm{a}_{i^1 \dots i^d}`` are called **control points**. We will also write ``\bm{p}(t^1,\dots,t^d; \bm{a})``, ``\bm{p}(t^1,\dots,t^d)``, ``\bm{p}(t; \bm{a})`` or ``\bm{p}(t)`` for simplicity. Note that the [`BSplineManifold`](@ref) objects are callable, and the arguments will be checked if it fits in the domain of [`BSplineSpace`](@ref). ```@example math_bsplinemanifold P = BSplineSpace{2}(KnotVector([0,0,0,1,1,1])) a = [SVector(1,0), SVector(1,1), SVector(0,1)] # `length(a) == dim(P)` M = BSplineManifold(a, P) M(0.4) # Calculate `sum(a[i]*bsplinebasis(P, i, 0.4) for i in 1:dim(P))` ``` If you need extension of [`BSplineManifold`](@ref) or don't need the arguments check, you can call [`unbounded_mapping`](@ref). ```@repl math_bsplinemanifold M(0.4) unbounded_mapping(M, 0.4) M(1.2) unbounded_mapping(M, 1.2) ``` `unbounded_mapping(M,t...)` is a little bit faster than `M(t...)` because it does not check the domain. ## B-spline curve ```@example math_bsplinemanifold ## 1-dim B-spline manifold p = 2 # degree of polynomial k = KnotVector(1:12) # knot vector P = BSplineSpace{p}(k) # B-spline space a = [SVector(i-5, 3*sin(i^2)) for i in 1:dim(P)] # control points M = BSplineManifold(a, P) # Define B-spline manifold plot(M) savefig("1dim-manifold.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../1dim-manifold.html" style="width:100%;height:420px;"></object> ``` ## B-spline surface ```@example math_bsplinemanifold ## 2-dim B-spline manifold p = 2 # degree of polynomial k = KnotVector(1:8) # knot vector P = BSplineSpace{p}(k) # B-spline space rand_a = [SVector(rand(), rand(), rand()) for i in 1:dim(P), j in 1:dim(P)] a = [SVector(2*i-6.5, 2*j-6.5, 0) for i in 1:dim(P), j in 1:dim(P)] + rand_a # random generated control points M = BSplineManifold(a,(P,P)) # Define B-spline manifold plot(M) savefig("2dim-manifold.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../2dim-manifold.html" style="width:100%;height:420px;"></object> ``` **Paraboloid** ```@example math_bsplinemanifold plotly() p = 2 k = KnotVector([-1,-1,-1,1,1,1]) P = BSplineSpace{p}(k) a = [SVector(i,j,2i^2+2j^2-2) for i in -1:1, j in -1:1] M = BSplineManifold(a,P,P) plot(M) savefig("paraboloid.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../paraboloid.html" style="width:100%;height:420px;"></object> ``` **Hyperbolic paraboloid** ```@example math_bsplinemanifold plotly() a = [SVector(i,j,2i^2-2j^2) for i in -1:1, j in -1:1] M = BSplineManifold(a,P,P) plot(M) savefig("hyperbolicparaboloid.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../hyperbolicparaboloid.html" style="width:100%;height:420px;"></object> ``` ## B-spline solid ```@example math_bsplinemanifold k1 = k2 = KnotVector([0,0,1,1]) k3 = UniformKnotVector(-6:6) P1 = BSplineSpace{1}(k1) P2 = BSplineSpace{1}(k2) P3 = BSplineSpace{3}(k3) e₁(t) = SVector(cos(t),sin(t),0) e₂(t) = SVector(-sin(t),cos(t),0) a = cat([[e₁(t)*i+e₂(t)*j+SVector(0,0,t) for i in 0:1, j in 0:1] for t in -2:0.5:2]..., dims=3) M = BSplineManifold(a,(P1,P2,P3)) plot(M; colorbar=false) savefig("bsplinesolid.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../bsplinesolid.html" style="width:100%;height:420px;"></object> ``` ## Affine commutativity !!! info "Thm. Affine commutativity" Let ``T`` be a affine transform ``V \to W``, then the following equality holds. ```math T(\bm{p}(t; \bm{a})) =\bm{p}(t; T(\bm{a})) ``` ## Fixing arguments (currying) Just like fixing first index such as `A[3,:]::Array{1}` for matrix `A::Array{2}`, fixing first argument `M(4.3,:)` will create `BSplineManifold{1}` for B-spline surface `M::BSplineManifold{2}`. ```@repl math_bsplinemanifold p = 2; k = KnotVector(1:8); P = BSplineSpace{p}(k); a = [SVector(5i+5j+rand(), 5i-5j+rand(), rand()) for i in 1:dim(P), j in 1:dim(P)]; M = BSplineManifold(a,(P,P)); M isa BSplineManifold{2} M(:,:) isa BSplineManifold{2} M(4.3,:) isa BSplineManifold{1} # Fix first argument ``` ```@example math_bsplinemanifold plot(M) plot!(M(4.3,:), linewidth = 5, color=:cyan) plot!(M(4.4,:), linewidth = 5, color=:red) plot!(M(:,5.2), linewidth = 5, color=:green) savefig("2dim-manifold-currying.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../2dim-manifold-currying.html" style="width:100%;height:420px;"></object> ```
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
docs
2923
# B-spline space ## Setup ```@example math_bsplinespace using BasicBSpline using StaticArrays using Plots ``` ## Defnition Before defining B-spline space, we'll define polynomial space with degree ``p``. !!! tip "Def. Polynomial space" Polynomial space with degree ``p``. ```math \mathcal{P}[p] =\left\{f:\mathbb{R}\to\mathbb{R}\ ;\ t\mapsto a_0+a_1t^1+\cdots+a_pt^p \ \left| \ % a_i\in \mathbb{R} \right. \right\} ``` This space ``\mathcal{P}[p]`` is a ``(p+1)``-dimensional linear space. Note that ``\{t\mapsto t^i\}_{0 \le i \le p}`` is a basis of ``\mathcal{P}[p]``, and also the set of [Bernstein polynomial](https://en.wikipedia.org/wiki/Bernstein_polynomial) ``\{B_{(i,p)}\}_i`` is a basis of ``\mathcal{P}[p]``. ```math \begin{aligned} B_{(i,p)}(t) &=\binom{p}{i-1}t^{i-1}(1-t)^{p-i+1} &(i=1, \dots, p+1) \end{aligned} ``` Where ``\binom{p}{i-1}`` is a [binomial coefficient](https://en.wikipedia.org/wiki/Binomial_coefficient). You can try Bernstein polynomial on [desmos graphing calculator](https://www.desmos.com/calculator/yc2qe6j6re)! !!! tip "Def. B-spline space" For given polynomial degree ``p\ge 0`` and knot vector ``k=(k_1,\dots,k_l)``, B-spline space ``\mathcal{P}[p,k]`` is defined as follows: ```math \mathcal{P}[p,k] =\left\{f:\mathbb{R}\to\mathbb{R} \ \left| \ % \begin{gathered} \operatorname{supp}(f)\subseteq [k_1, k_l] \\ \exists \tilde{f}\in\mathcal{P}[p], f|_{[k_{i}, k_{i+1})} = \tilde{f}|_{[k_{i}, k_{i+1})} \\ \forall t \in \mathbb{R}, \exists \delta > 0, f|_{(t-\delta,t+\delta)}\in C^{p-\mathfrak{n}_k(t)} \end{gathered} \right. \right\} ``` Note that each element of the space ``\mathcal{P}[p,k]`` is a piecewise polynomial. [TODO: fig] ## Degeneration !!! tip "Def. Degeneration" A B-spline space **non-degenerate** if its degree and knot vector satisfies following property: ```math \begin{aligned} k_{i}&<k_{i+p+1} & (1 \le i \le l-p-1) \end{aligned} ``` ## Dimensions !!! info "Thm. Dimension of B-spline space" The B-spline space is a linear space, and if a B-spline space is non-degenerate, its dimension is calculated by: ```math \dim(\mathcal{P}[p,k])=\# k - p -1 ``` ```@repl math_bsplinespace P1 = BSplineSpace{1}(KnotVector([1,2,3,4,5,6,7])) P2 = BSplineSpace{1}(KnotVector([1,2,4,4,4,6,7])) P3 = BSplineSpace{1}(KnotVector([1,2,3,5,5,5,7])) dim(P1), exactdim_R(P1), exactdim_I(P1) dim(P2), exactdim_R(P2), exactdim_I(P2) dim(P3), exactdim_R(P3), exactdim_I(P3) ``` Visualization: ```@example math_bsplinespace gr() pl1 = plot(P1); plot!(pl1, knotvector(P1)) pl2 = plot(P2); plot!(pl2, knotvector(P2)) pl3 = plot(P3); plot!(pl3, knotvector(P3)) plot(pl1, pl2, pl3; layout=(1,3), legend=false) savefig("dimension-degeneration.png") # hide nothing # hide ``` ![](dimension-degeneration.png)
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
docs
1155
# Derivative of B-spline ```@example math_derivative using BasicBSpline using StaticArrays using Plots ``` !!! info "Thm. Derivative of B-spline basis function" The derivative of B-spline basis function can be expressed as follows: ```math \begin{aligned} \dot{B}_{(i,p,k)}(t) &=\frac{d}{dt}B_{(i,p,k)}(t) \\ &=p\left(\frac{1}{k_{i+p}-k_{i}}B_{(i,p-1,k)}(t)-\frac{1}{k_{i+p+1}-k_{i+1}}B_{(i+1,p-1,k)}(t)\right) \end{aligned} ``` Note that ``\dot{B}_{(i,p,k)}\in\mathcal{P}[p-1,k]``. ```@example math_derivative k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]) P = BSplineSpace{3}(k) plotly() plot( plot(BSplineDerivativeSpace{0}(P), label="0th derivative", color=:black), plot(BSplineDerivativeSpace{1}(P), label="1st derivative", color=:red), plot(BSplineDerivativeSpace{2}(P), label="2nd derivative", color=:green), plot(BSplineDerivativeSpace{3}(P), label="3rd derivative", color=:blue), ) savefig("bsplinebasisderivativeplot.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../bsplinebasisderivativeplot.html" style="width:100%;height:420px;"></object> ```
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
docs
1713
# Fitting with B-spline manifold ## Setup ```@example math_fitting using BasicBSpline using BasicBSplineFitting using StaticArrays using Plots ``` ## Fitting with least squares [`fittingcontrolpoints`](@ref) function ```@example math_fitting p1 = 2 p2 = 2 k1 = KnotVector(-10:10)+p1*KnotVector([-10,10]) k2 = KnotVector(-10:10)+p2*KnotVector([-10,10]) P1 = BSplineSpace{p1}(k1) P2 = BSplineSpace{p2}(k2) f(u1, u2) = SVector(2u1 + sin(u1) + cos(u2) + u2 / 2, 3u2 + sin(u2) + sin(u1) / 2 + u1^2 / 6) / 5 a = fittingcontrolpoints(f, (P1, P2)) M = BSplineManifold(a, (P1, P2)) gr() plot(M; xlims=(-10,10), ylims=(-10,10), aspectratio=1) savefig("fitting.png") # hide nothing # hide ``` ![](fitting.png) [Try on Desmos graphing graphing calculator!](https://www.desmos.com/calculator/2hm3b1fbdf) ![](../img/fitting_desmos.png) ### Cardioid (planar curve) ```@example math_fitting f(t) = SVector((1+cos(t))*cos(t),(1+cos(t))*sin(t)) p = 3 k = KnotVector(range(0,2π,15)) + p * KnotVector([0,2π]) + 2 * KnotVector([π]) P = BSplineSpace{p}(k) a = fittingcontrolpoints(f, P) M = BSplineManifold(a, P) gr() plot(M; aspectratio=1) savefig("plots-cardioid.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../plots-cardioid.html" style="width:100%;height:550px;"></object> ``` ### Helix (spatial curve) ```@example math_fitting f(t) = SVector(cos(t),sin(t),t) p = 3 k = KnotVector(range(0,6π,15)) + p * KnotVector([0,6π]) P = BSplineSpace{p}(k) a = fittingcontrolpoints(f, P) M = BSplineManifold(a, P) plotly() plot(M) savefig("plots-helix.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../plots-helix.html" style="width:100%;height:550px;"></object> ```
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
docs
4499
# Inclusive relation between B-spline spaces ## Setup ```@example math_inclusive using BasicBSpline using StaticArrays using Plots ``` ## Theorem on [`issubset`](@ref) !!! info "Thm. Inclusive relation between B-spline spaces" For non-degenerate B-spline spaces, the following relationship holds. ```math \mathcal{P}[p,k] \subseteq \mathcal{P}[p',k'] \Leftrightarrow (m=p'-p \ge 0 \ \text{and} \ k+m\widehat{k}\subseteq k') ``` ### Examples Here are plots of the B-spline basis functions of the spaces `P1`, `P2`, `P3`. ```@example math_inclusive P1 = BSplineSpace{1}(KnotVector([1,3,6,6])) P2 = BSplineSpace{1}(KnotVector([1,3,5,6,6,8,9])) P3 = BSplineSpace{2}(KnotVector([1,1,3,3,6,6,6,8,9])) gr() plot( plot(P1; ylims=(0,1), label="P1"), plot(P2; ylims=(0,1), label="P2"), plot(P3; ylims=(0,1), label="P3"), layout=(3,1), link=:x ) savefig("inclusive-issubset.png") # hide nothing # hide ``` ![](inclusive-issubset.png) These spaces have the folllowing incusive relationships. ```@repl math_inclusive P1 ⊆ P2 P1 ⊆ P3 P2 ⊆ P3, P3 ⊆ P2, P2 ⊆ P1, P3 ⊆ P1 ``` ## Definition on [`issqsubset`](@ref) !!! tip "Def. Inclusive relation between B-spline spaces" For non-degenerate B-spline spaces, the following relationship holds. ```math \mathcal{P}[p,k] \sqsubseteq\mathcal{P}[p',k'] \Leftrightarrow \mathcal{P}[p,k]|_{[k_{p+1},k_{l-p}]} \subseteq\mathcal{P}[p',k']|_{[k'_{p'+1},k'_{l'-p'}]} ``` ### Examples Here are plots of the B-spline basis functions of the spaces `P1`, `P2`, `P3`. ```@example math_inclusive P1 = BSplineSpace{1}(KnotVector([1,3,6,6])) # Save definition as above P4 = BSplineSpace{1}(KnotVector([1,3,5,6,8])) P5 = BSplineSpace{2}(KnotVector([1,1,3,3,6,6,7,9])) gr() plot( plot(P1; ylims=(0,1), label="P1"), plot(P4; ylims=(0,1), label="P4"), plot(P5; ylims=(0,1), label="P5"), layout=(3,1), link=:x ) savefig("inclusive-issqsubset.png") # hide nothing # hide ``` ![](inclusive-issqsubset.png) These spaces have the folllowing incusive relationships. ```@repl math_inclusive P1 ⊑ P4 P1 ⊑ P5 P4 ⊑ P5, P5 ⊑ P4, P4 ⊑ P1, P5 ⊑ P1 ``` ## Change basis with a matrix If ``\mathcal{P}[p,k] \subseteq \mathcal{P}[p',k']`` (or ``\mathcal{P}[p,k] \sqsubseteq \mathcal{P}[p',k']``), there exists a ``n \times n'`` matrix ``A`` which holds: ```math \begin{aligned} B_{(i,p,k)} &=\sum_{j}A_{ij} B_{(j,p',k')} \\ n&=\dim(\mathcal{P}[p,k]) \\ n'&=\dim(\mathcal{P}[p',k']) \end{aligned} ``` You can calculate the change of basis matrix ``A`` with [`changebasis`](@ref). ```@repl math_inclusive A12 = changebasis(P1,P2) A13 = changebasis(P1,P3) ``` ```@example math_inclusive plot( plot([t->bsplinebasis₊₀(P1,i,t) for i in 1:dim(P1)], 1, 9, ylims=(0,1), legend=false), plot([t->sum(A12[i,j]*bsplinebasis₊₀(P2,j,t) for j in 1:dim(P2)) for i in 1:dim(P1)], 1, 9, ylims=(0,1), legend=false), plot([t->sum(A13[i,j]*bsplinebasis₊₀(P3,j,t) for j in 1:dim(P3)) for i in 1:dim(P1)], 1, 9, ylims=(0,1), legend=false), layout=(3,1), link=:x ) savefig("inclusive-issubset-matrix.png") # hide nothing # hide ``` ![](inclusive-issubset-matrix.png) ```@repl math_inclusive A14 = changebasis(P1,P4) A15 = changebasis(P1,P5) ``` ```@example math_inclusive plot( plot([t->bsplinebasis₊₀(P1,i,t) for i in 1:dim(P1)], 1, 9, ylims=(0,1), legend=false), plot([t->sum(A14[i,j]*bsplinebasis₊₀(P4,j,t) for j in 1:dim(P4)) for i in 1:dim(P1)], 1, 9, ylims=(0,1), legend=false), plot([t->sum(A15[i,j]*bsplinebasis₊₀(P5,j,t) for j in 1:dim(P5)) for i in 1:dim(P1)], 1, 9, ylims=(0,1), legend=false), layout=(3,1), link=:x ) savefig("inclusive-issqsubset-matrix.png") # hide nothing # hide ``` ![](inclusive-issqsubset-matrix.png) * [`changebasis_R`](@ref) * Calculate the matrix based on ``P \subseteq P'`` * [`changebasis_I`](@ref) * Calculate the matrix based on ``P \sqsubseteq P'`` * [`changebasis`](@ref) * Return `changebasis_R` if ``P \subseteq P'``, otherwise return `changebasis_I` if ``P \sqsubseteq P'``. ## Expand spaces with additional knots or polynomial degree There are some functions to expand spaces with additional knots or polynomial degree. * [`expandspace_R`](@ref) * [`expandspace_I`](@ref) * [`expandspace`](@ref) ```@repl math_inclusive P = BSplineSpace{2}(knotvector"21 113") P_R = expandspace_R(P, Val(1), KnotVector([3.4, 4.2])) P_I = expandspace_I(P, Val(1), KnotVector([3.4, 4.2])) P ⊆ P_R P ⊆ P_I P ⊑ P_R P ⊑ P_I ```
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
docs
1450
# Mathematical properties of B-spline ## Introduction [B-spline](https://en.wikipedia.org/wiki/B-spline) is a mathematical object, and it has a lot of application. (e.g. Geometric representation: [NURBS](https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline), Interpolation, Numerical analysis: [IGA](https://en.wikipedia.org/wiki/Isogeometric_analysis)) We will explain the mathematical definitions and properties of B-spline with Julia code in the following pages. ## Notice Some of notations in this page are our original, but these are well-considered results. ## References Most of this documentation around B-spline is self-contained. If you want to learn more, the following resources are recommended. * ["Geometric Modeling with Splines" by Elaine Cohen, Richard F. Riesenfeld, Gershon Elber](https://www.routledge.com/p/book/9780367447243) * ["Spline Functions: Basic Theory" by Larry Schumaker](https://www.cambridge.org/core/books/spline-functions-basic-theory/843475201223F90091FFBDDCBF210BFB) 日本語の文献では以下がおすすめです。 * [スプライン関数とその応用 by 市田浩三, 吉本富士市](https://www.kyoiku-shuppan.co.jp/book/book/cate5/cate524/sho-463.html) * [NURBS多様体による形状表現](https://hyrodium.github.io/ja/pdf/#NURBS%E5%A4%9A%E6%A7%98%E4%BD%93%E3%81%AB%E3%82%88%E3%82%8B%E5%BD%A2%E7%8A%B6%E8%A1%A8%E7%8F%BE) * [BasicBSpline.jlを作ったので宣伝です!](https://zenn.dev/hyrodium/articles/5fb08f98d4a918) * [B-spline入門(線形代数がすこし分かる人向け)](https://www.youtube.com/watch?v=GOdY02PA_WI)
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
docs
3219
# Knot vector ## Setup ```@example math_knotvector using BasicBSpline using Plots using InteractiveUtils # hide ``` ## Definition !!! tip "Def. Knot vector" A finite sequence ```math k = (k_1, \dots, k_l) ``` is called **knot vector** if the sequence is broad monotonic increase, i.e. ``k_{i} \le k_{i+1}``. There are four sutypes of [`AbstractKnotVector`](@ref); [`KnotVector`](@ref), [`UniformKnotVector`](@ref), [`SubKnotVector`](@ref), and [`EmptyKnotVector`](@ref). ```@repl math_knotvector subtypes(AbstractKnotVector) ``` They can be constructed like this. ```@repl math_knotvector KnotVector([1,2,3]) # `KnotVector` stores a vector with `Vector{<:Real}` KnotVector(1:3) UniformKnotVector(1:8) # `UniformKnotVector` stores a vector with `<:AbstractRange` UniformKnotVector(8:-1:3) view(KnotVector([1,2,3]), 2:3) # Efficient and lazy knot vector with `view` EmptyKnotVector() # Sometimes `EmptyKnotVector` is useful. EmptyKnotVector{Float64}() ``` There is a useful string macro [`@knotvector_str`](@ref) that generates a `KnotVector` instance. ```@repl math_knotvector knotvector"1231123" ``` A knot vector can be visualized with `Plots.plot`. ```@repl math_knotvector k1 = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]) k2 = knotvector"1231123" gr() plot(k1; label="k1") plot!(k2; label="k2", offset=0.5, ylims=(-0.1,1), xticks=0:10) savefig("knotvector.png") # hide nothing # hide ``` ![](knotvector.png) ## Operations for knot vectors ### Setup and visualization ```@example math_knotvector k1 = knotvector"1 2 1 11 2 31" k2 = knotvector"113 1 12 2 32 1 1" plot(k1; offset=-0.0, label="k1", xticks=1:18, yticks=nothing, legend=:right) plot!(k2; offset=-0.2, label="k2") plot!(k1+k2; offset=-0.4, label="k1+k2") plot!(2k1; offset=-0.6, label="2k1") plot!(unique(k1); offset=-0.8, label="unique(k1)") plot!(unique(k2); offset=-1.0, label="unique(k2)") plot!(unique(k1+k2); offset=-1.2, label="unique(k1+k2)") savefig("knotvector_operations.png") # hide nothing # hide ``` ![](knotvector_operations.png) ### Length of a knot vector [`length(k::AbstractKnotVector)`](@ref) ```@repl math_knotvector length(k1) length(k2) ``` ### Addition of knot vectors Although a knot vector is **not** a vector in linear algebra, but we introduce **additional operator** ``+``. [`Base.:+(k1::KnotVector{T}, k2::KnotVector{T}) where T`](@ref) ```@repl math_knotvector k1 + k2 ``` Note that the operator `+(::KnotVector, ::KnotVector)` is commutative. This is why we choose the ``+`` sign. We also introduce **product operator** ``\cdot`` for knot vector. ### Multiplication of knot vectors [`*(m::Integer, k::AbstractKnotVector)`](@ref) ```@repl math_knotvector 2*k1 2*k2 ``` ### Generate a knot vector with unique elements [`unique(k::AbstractKnotVector)`](@ref) ```@repl math_knotvector unique(k1) unique(k2) ``` ### Inclusive relationship between knot vectors [`Base.issubset(k::KnotVector, k′::KnotVector)`](@ref) ```@repl math_knotvector unique(k1) ⊆ k1 ⊆ k2 k1 ⊆ k1 k2 ⊆ k1 ``` ### Count knots in a knot vector [`countknots(k::AbstractKnotVector, t::Real)`](@ref) ```@repl math_knotvector countknots(k1, 0.5) countknots(k1, 1.0) countknots(k1, 3.0) ```
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
docs
4656
# Rational B-spline manifold ## Setup ```@example math_rationalbsplinemanifold using BasicBSpline using StaticArrays using LinearAlgebra using Plots ``` [Non-uniform rational basis spline (NURBS)](https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline) is also supported in BasicBSpline.jl package. ## Definition Rational B-spline manifold is a parametric representation of a shape. !!! tip "Def. Rational B-spline manifold" For given ``d``-dimensional B-spline basis functions ``B_{(i^1,p^1,k^1)} \otimes \cdots \otimes B_{(i^d,p^d,k^d)}``, given points ``\bm{a}_{i^1 \dots i^d} \in V`` and real numbers ``w_{i^1 \dots i^d} > 0``, rational B-spline manifold is defined by the following equality: ```math \bm{p}(t^1,\dots,t^d; \bm{a}_{i^1 \dots i^d}, w_{i^1 \dots i^d}) =\sum_{i^1,\dots,i^d} \frac{(B_{(i^1,p^1,k^1)} \otimes \cdots \otimes B_{(i^d,p^d,k^d)})(t^1,\dots,t^d) w_{i^1 \dots i^d}} {\sum\limits_{j^1,\dots,j^d}(B_{(j^1,p^1,k^1)} \otimes \cdots \otimes B_{(j^d,p^d,k^d)})(t^1,\dots,t^d) w_{j^1 \dots j^d}} \bm{a}_{i^1 \dots i^d} ``` Where ``\bm{a}_{i^1,\dots,i^d}`` are called **control points**, and ``w_{i^1 \dots i^d}`` are called **weights**. ## Visualization with projection A rational B-spline manifold in ``\mathbb{R}^d`` can be understanded as a projected B-spline manifold in ``\mathbb{R}^{d+1}``. The next visuallzation this projection. ```@example math_rationalbsplinemanifold # Define B-spline space k = KnotVector([0.0, 1.5, 2.5, 5.0, 5.5, 8.0, 9.0, 9.5, 10.0]) P = BSplineSpace{3}(k) # Define geometric parameters a2 = [ SVector(-0.65, -0.20), SVector(-0.20, +0.65), SVector(-0.05, -0.10), SVector(+0.75, +0.20), SVector(+0.45, -0.65), ] a3 = [SVector(p...,1) for p in a2] w = [2.2, 1.3, 1.9, 2.1, 1.5] # Define (rational) B-spline manifolds R2 = RationalBSplineManifold(a2,w,(P,)) M3 = BSplineManifold(a3.*w,(P)) R3 = RationalBSplineManifold(a3,w,(P,)) # Plot plotly() pl2 = plot(R2, xlims=(-1,1), ylims=(-1,1); color=:blue, linewidth=3, aspectratio=1, label=false) pl3 = plot(R3; color=:blue, linewidth=3, controlpoints=(markersize=2,), label="Rational B-spline curve") plot!(pl3, M3; color=:red, linewidth=3, controlpoints=(markersize=2,), label="B-spline curve") for p in a3.*w plot!(pl3, [0,p[1]], [0,p[2]], [0,p[3]], color=:black, linestyle=:dash, label=false) end for t in range(domain(P), length=51) p = M3(t) plot!(pl3, [0,p[1]], [0,p[2]], [0,p[3]], color=:red, linestyle=:dash, label=false) end surface!(pl3, [-1,1], [-1,1], ones(2,2); color=:green, colorbar=false, alpha=0.5) plot(pl2, pl3; layout=grid(1,2, widths=[0.35, 0.65]), size=(780,500)) savefig("rational_bspline_manifold_projection.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../rational_bspline_manifold_projection.html" style="width:100%;height:520px;"></object> ``` ## Conic sections One of the great aspect of rational B-spline manifolds is exact shape representation of circles. This is achieved as conic sections. ### Arc ```@example math_rationalbsplinemanifold gr() p = 2 k = KnotVector([0,0,0,1,1,1]) P = BSplineSpace{p}(k) t = 1 # angle in radians a = [SVector(1,0), SVector(1,tan(t/2)), SVector(cos(t),sin(t))] w = [1,cos(t/2),1] M = RationalBSplineManifold(a,w,P) plot([cosd(t) for t in 0:360], [sind(t) for t in 0:360]; xlims=(-1.1,1.1), ylims=(-1.1,1.1), aspectratio=1, label="circle", color=:gray, linestyle=:dash) plot!(M; label="Rational B-spline curve") savefig("geometricmodeling-arc.png") # hide nothing # hide ``` ![](geometricmodeling-arc.png) ### Circle ```@example math_rationalbsplinemanifold gr() p = 2 k = KnotVector([0,0,0,1,1,2,2,3,3,4,4,4]) P = BSplineSpace{p}(k) a = [normalize(SVector(cosd(t), sind(t)), Inf) for t in 0:45:360] w = [ifelse(isodd(i), √2, 1) for i in 1:9] M = RationalBSplineManifold(a,w,P) plot(M, xlims=(-1.2,1.2), ylims=(-1.2,1.2), aspectratio=1) savefig("geometricmodeling-circle.png") # hide nothing # hide ``` ![](geometricmodeling-circle.png) ### Torus ```@example math_rationalbsplinemanifold plotly() R1 = 3 R2 = 1 A = push.(a, 0) a1 = (R1+R2)*A a5 = (R1-R2)*A a2 = [p+R2*SVector(0,0,1) for p in a1] a3 = [p+R2*SVector(0,0,1) for p in R1*A] a4 = [p+R2*SVector(0,0,1) for p in a5] a6 = [p-R2*SVector(0,0,1) for p in a5] a7 = [p-R2*SVector(0,0,1) for p in R1*A] a8 = [p-R2*SVector(0,0,1) for p in a1] a = hcat(a1,a2,a3,a4,a5,a6,a7,a8,a1) M = RationalBSplineManifold(a,w*w',P,P) plot(M) savefig("geometricmodeling-torus.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../geometricmodeling-torus.html" style="width:100%;height:420px;"></object> ```
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
docs
1298
# Refinement ## Setup ```@example math_refinement using BasicBSpline using BasicBSplineExporter using StaticArrays using Plots ``` ## Example ### Define original manifold ```@example math_refinement p = 2 # degree of polynomial k = KnotVector(1:8) # knot vector P = BSplineSpace{p}(k) # B-spline space rand_a = [SVector(rand(), rand()) for i in 1:dim(P), j in 1:dim(P)] a = [SVector(2*i-6.5, 2*j-6.5) for i in 1:dim(P), j in 1:dim(P)] + rand_a # random M = BSplineManifold(a,(P,P)) # Define B-spline manifold gr() plot(M) savefig("refinement_2dim_original.png") # hide nothing # hide ``` ![](refinement_2dim_original.png) ### h-refinement Insert additional knots to knot vector without changing the shape. ```@repl math_refinement k₊ = (KnotVector([3.3,4.2]), KnotVector([3.8,3.2,5.3])) # additional knot vectors M_h = refinement(M, k₊) # refinement of B-spline manifold plot(M_h) savefig("refinement_2dim_h.png") # hide nothing # hide ``` ![](refinement_2dim_h.png) ### p-refinement Increase the polynomial degree of B-spline manifold without changing the shape. ```@repl math_refinement p₊ = (Val(1), Val(2)) # additional degrees M_p = refinement(M, p₊) # refinement of B-spline manifold plot(M_p) savefig("refinement_2dim_p.png") # hide nothing # hide ``` ![](refinement_2dim_p.png)
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
docs
1168
# BasicBSplineExporter.jl [BasicBSplineExporter.jl](https://github.com/hyrodium/BasicBSplineExporter.jl) supports export `BasicBSpline.BSplineManifold{Dim,Deg,<:StaticVector}` to: * PNG image (`.png`) * SVG image (`.png`) * POV-Ray mesh (`.inc`) ## Installation ```julia ] add BasicBSplineExporter ``` ## First example ```@example using BasicBSpline using BasicBSplineExporter using StaticArrays p = 2 # degree of polynomial k1 = KnotVector(1:8) # knot vector k2 = KnotVector(rand(7))+(p+1)*KnotVector([1]) P1 = BSplineSpace{p}(k1) # B-spline space P2 = BSplineSpace{p}(k2) n1 = dim(P1) # dimension of B-spline space n2 = dim(P2) a = [SVector(2i-6.5+rand(),1.5j-6.5+rand()) for i in 1:dim(P1), j in 1:dim(P2)] # random generated control points M = BSplineManifold(a,(P1,P2)) # Define B-spline manifold save_png("BasicBSplineExporter_2dim.png", M) # save image ``` ![](BasicBSplineExporter_2dim.png) ## Other examples Here are some images rendared with POV-Ray. ![](../img/pov_1d3d.png) ![](../img/pov_2d3d.png) ![](../img/pov_3d3d.png) See [`BasicBSplineExporter.jl/test`](https://github.com/hyrodium/BasicBSplineExporter.jl/tree/main/test) for more examples.
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "MIT" ]
0.11.2
f579babb93fee8d881afbd998daf2291fda45c63
docs
1699
# PlotlyJS.jl ## Cardioid ```@example using BasicBSpline using BasicBSplineFitting using StaticArrays using PlotlyJS f(t) = SVector((1+cos(t))*cos(t),(1+cos(t))*sin(t)) p = 3 k = KnotVector(range(0,2π,15)) + p * KnotVector([0,2π]) + 2 * KnotVector([π]) P = BSplineSpace{p}(k) a = fittingcontrolpoints(f, P) M = BSplineManifold(a, P) ts = range(0,2π,250) xs_a = getindex.(a,1) ys_a = getindex.(a,2) xs_f = getindex.(M.(ts),1) ys_f = getindex.(M.(ts),2) fig = Plot(scatter(x=xs_a, y=ys_a, name="control points", line_color="blue", marker_size=8)) addtraces!(fig, scatter(x=xs_f, y=ys_f, name="B-spline curve", mode="lines", line_color="red")) relayout!(fig, width=500, height=500) savefig(fig,"cardioid.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../cardioid.html" style="width:100%;height:550px;"></object> ``` ## Helix ```@example using BasicBSpline using BasicBSplineFitting using StaticArrays using PlotlyJS f(t) = SVector(cos(t),sin(t),t) p = 3 k = KnotVector(range(0,6π,15)) + p * KnotVector([0,6π]) P = BSplineSpace{p}(k) a = fittingcontrolpoints(f, P) M = BSplineManifold(a, P) ts = range(0,6π,250) xs_a = getindex.(a,1) ys_a = getindex.(a,2) zs_a = getindex.(a,3) xs_f = getindex.(M.(ts),1) ys_f = getindex.(M.(ts),2) zs_f = getindex.(M.(ts),3) fig = Plot(scatter3d(x=xs_a, y=ys_a, z=zs_a, name="control points", line_color="blue", marker_size=8)) addtraces!(fig, scatter3d(x=xs_f, y=ys_f, z=zs_f, name="B-spline curve", mode="lines", line_color="red")) relayout!(fig, width=500, height=500) savefig(fig,"helix.html") # hide nothing # hide ``` ```@raw html <object type="text/html" data="../helix.html" style="width:100%;height:550px;"></object> ```
BasicBSpline
https://github.com/hyrodium/BasicBSpline.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
14023
using Test, AdmittanceModels using ProgressMeter: @showprogress using LinearAlgebra: norm, normalize # set to false to create the figures in the paper, though it will take longer run_fast = true # to save data so figures in the paper can be created, set to true write_data = false # to make plots and print information set to true show_results = false if write_data using DataFrames, CSV, NPZ output_folder = joinpath(@__DIR__, "hybridization_results") try mkdir(output_folder) catch SystemError end end if show_results using PlotlyJS end ####################################################### # Parameters ####################################################### begin ν = 1.2e8 # propagation_speed Z0 = 50.0 # characteristic_impedance δ = 50e-6 # discretization length pfilter_num = 202 pfilter_len = pfilter_num * δ # purcell filter length pfilter_res_0_coupler_num = floor(Int, pfilter_num/2) - 5 pfilter_res_coupler_0_len = pfilter_res_0_coupler_num * δ # position of res 0 coupler on filter pfilter_res_1_coupler_num = floor(Int, pfilter_num/2) + 5 pfilter_res_coupler_1_len = pfilter_res_1_coupler_num * δ # position of res 1 coupler on filter res_0_num = 102 res_0_len = res_0_num * δ res_1_num = 101 res_1_len = res_1_num * δ res_coupler_num = 16 res_coupler_len = res_coupler_num * δ # res coupler length from open capacitance_0 = 12e-15 # res 0 - purcell filter capacitance capacitance_1 = 12e-15 # res 1 - purcell filter capacitance end ####################################################### # Two resonators and Purcell filter # Circuit version ####################################################### begin pfilter_circ = Circuit(TransmissionLine(["p/short_0", "p/short_1"], ν, Z0, pfilter_len, δ=δ), "p/", [pfilter_num]) res_0_circ = Circuit(TransmissionLine(["r0/open", "r0/short"], ν, Z0, res_0_len, δ=δ), "r0/", [res_0_num]) res_1_circ = Circuit(TransmissionLine(["r1/open", "r1/short"], ν, Z0, res_1_len, δ=δ), "r1/", [res_1_num]) pfilter_res_0_coupler_name = "p/$(1+pfilter_res_0_coupler_num)" res_0_coupler_name = "r0/$(1+res_coupler_num)" pfilter_res_1_coupler_name = "p/$(1+pfilter_res_1_coupler_num)" res_1_coupler_name = "r1/$(1+res_coupler_num)" capacitor_0 = Circuit(SeriesComponent(pfilter_res_0_coupler_name, res_0_coupler_name, 0, 0, capacitance_0)) capacitor_1 = Circuit(SeriesComponent(pfilter_res_1_coupler_name, res_1_coupler_name, 0, 0, capacitance_1)) circ = cascade_and_unite(pfilter_circ, res_0_circ, res_1_circ, capacitor_0, capacitor_1) ground = AdmittanceModels.ground circ = unite_vertices(circ, ground, "p/short_0", "p/short_1", "r0/short", "r1/short") input_output(stub_num) = ("p/$(1+stub_num)", "p/$(pfilter_num-stub_num+1)") end function bbox_from_circ(stub_num::Int, ω::Vector{<:Real}) input, output = input_output(stub_num) pso = PSOModel(circ, [(input, ground), (output, ground)], ["in", "out"]) return Blackbox(ω, pso) |> canonical_gauge end ####################################################### # Two resonators and Purcell filter # Admittance model version ####################################################### function casc_from_model(stub_num::Int, discretization::Real=δ) pfilter = TransmissionLine(["p/short_0", "in", "p/res_0_coupler", "p/middle", "p/res_1_coupler", "out", "p/short_1"], ν, Z0, pfilter_len, locations=[stub_num * δ, pfilter_res_coupler_0_len, .5 * pfilter_len, pfilter_res_coupler_1_len, pfilter_len - stub_num * δ], δ=discretization) res_0 = TransmissionLine(["r0/open", "r0/pfilter_coupler", "r0/short"], ν, Z0, res_0_len, locations=[res_coupler_len], δ=discretization) res_1 = TransmissionLine(["r1/open", "r1/pfilter_coupler", "r1/short"], ν, Z0, res_1_len, locations=[res_coupler_len], δ=discretization) capacitor_0 = SeriesComponent("p/res_0_coupler", "r0/pfilter_coupler", 0, 0, capacitance_0) capacitor_1 = SeriesComponent("p/res_1_coupler", "r1/pfilter_coupler", 0, 0, capacitance_1) components = [pfilter, res_0, res_1, capacitor_0, capacitor_1] operations = [short_ports => ["p/short_0", "p/short_1", "r0/short", "r1/short"]] return Cascade(components, operations) end function bbox_from_pso(stub_num::Int, ω::Vector{<:Real}, discretization::Real=δ) casc = casc_from_model(stub_num, discretization) push!(casc.operations, open_ports_except => ["in", "out"]) return Blackbox(ω, PSOModel(casc)) |> canonical_gauge end function bbox_from_bbox(stub_num::Int, ω::Vector{<:Real}) casc = casc_from_model(stub_num) push!(casc.operations, open_ports_except => ["in", "out"]) return Blackbox(ω, casc) |> canonical_gauge end ####################################################### # Compare them ####################################################### begin ω_circ = collect(range(5.4, stop=6.4, length=run_fast ? 100 : 2000)) * 2π * 1e9 bbox_circ_10 = bbox_from_circ(10, ω_circ) bbox_circ_30 = bbox_from_circ(30, ω_circ) bbox_pso_10 = bbox_from_pso(10, ω_circ) bbox_pso_30 = bbox_from_pso(30, ω_circ) bbox_bbox_10 = bbox_from_bbox(10, ω_circ) bbox_bbox_30 = bbox_from_bbox(30, ω_circ) end s21(bbox) = [x[1,2] for x in scattering_matrices(bbox, [Z0, Z0])] freqs = ω_circ/(2π) if write_data df = DataFrame(freqs = freqs, circ_S_p5 = s21(bbox_circ_10), circ_S_1p5 = s21(bbox_circ_30), pso_S_p5 = s21(bbox_pso_10), pso_S_1p5 = s21(bbox_pso_30), bbox_S_p5 = s21(bbox_bbox_10), bbox_S_1p5 = s21(bbox_bbox_30)) CSV.write(joinpath(output_folder, "S12.csv"), df) end if show_results plot([scatter(x=freqs/1e6, y=abs.(s21(bbox_circ_10)), name="0.5mm circ"), scatter(x=freqs/1e6, y=abs.(s21(bbox_circ_30)), name="1.5mm circ"), scatter(x=freqs/1e6, y=abs.(s21(bbox_pso_10)), name="0.5mm pso"), scatter(x=freqs/1e6, y=abs.(s21(bbox_pso_30)), name="1.5mm pso"), scatter(x=freqs/1e6, y=abs.(s21(bbox_bbox_10)), name="0.5mm bbox", line_dash="dash"), scatter(x=freqs/1e6, y=abs.(s21(bbox_bbox_30)), name="1.5mm bbox", line_dash="dash")], Layout(xaxis_title="frequency", yaxis_title="|S21|")) end if show_results abs_diff_10 = abs.(s21(bbox_circ_10) .- s21(bbox_bbox_10)) abs_diff_30 = abs.(s21(bbox_circ_30) .- s21(bbox_bbox_30)) plot([scatter(x=ω_circ/(2π*1e6), y=abs_diff_10, name="0.5mm error"), scatter(x=ω_circ/(2π*1e6), y=abs_diff_30, name="1.5mm error")], Layout(xaxis_title="frequency", yaxis_title="|S21_circ - S21_bbox|")) end if show_results density(m) = count(!iszero, m)/(size(m,1) * size(m,2)) casc = casc_from_model(10, δ) push!(casc.operations, open_ports_except => ["in", "out"]) println("pso matrix densities: $(map(density, get_Y(PSOModel(casc))))") end ####################################################### # All three models now match so we can use the circuit # one for making mode plots ####################################################### function resistor_circ(stub_num::Int) input, output = input_output(stub_num) resistor_0 = Circuit(ParallelComponent(input, 0, 1/Z0, 0)) resistor_1 = Circuit(ParallelComponent(output, 0, 1/Z0, 0)) return cascade_and_unite(circ, resistor_0, resistor_1) end begin pfilter_vertices = pfilter_circ.vertices[3:end-1] res_0_vertices = res_0_circ.vertices[2:end-1] res_1_vertices = res_1_circ.vertices[2:end-1] vertices = [pfilter_vertices; res_0_vertices; res_1_vertices] tree = SpanningTree(ground, [(v, ground) for v in vertices]) port_edges = [("p/$(floor(Int, (2+pfilter_num)/2))", ground), ("r0/open", ground), ("r1/open", ground)] ports = ["pfilter_max", "res_0_max", "res_1_max"] mode_names = ["purcell filter", "resonator 0", "resonator 1"] end function resistor_pso(stub_num::Int) return PSOModel(resistor_circ(stub_num), port_edges, ports, tree) end function eigenmodes(stub_num::Int) pso = resistor_pso(stub_num) eigenvalues, eigenvectors = lossy_modes_dense(pso, min_freq=4e9, max_freq=8e9) port_inds = ports_to_indices(pso, ports) mode_inds = AdmittanceModels.match_vectors(get_P(pso)[:, port_inds], eigenvectors) return eigenvalues[mode_inds], eigenvectors[:,mode_inds] end begin stub_nums = run_fast ? (1:10:60) : (1:60) eigenmodes_arr = @showprogress [eigenmodes(i) for i in stub_nums] complex_freqs_arr = hcat([p[1] for p in eigenmodes_arr]...) eigenvectors = [p[2] for p in eigenmodes_arr] end if write_data df = DataFrame(Dict(Symbol(mode_names[i]) => complex_freqs_arr[i,:] for i in 1:3)) df[:stub_len] = stub_nums * δ CSV.write(joinpath(output_folder, "complex_frequencies.csv"), df) df = DataFrame(transpose(hcat(eigenvectors...))) labels = vcat([[(i, m) for m in mode_names] for i in stub_nums]...) df[:stub_len] = [l[1] * δ for l in labels] df[:mode_name] = [l[2] for l in labels] CSV.write(joinpath(output_folder, "eigenvectors.csv"), df) end freq_func(s) = imag(s)/(2π) decay_func(s) = -2 * real(s)/(2π) T1_func(s) = 1/(-2 * real(s)) if show_results frequency_plots = [scatter(x=stub_nums * δ * 1e3, y=freq_func.(complex_freqs_arr[i, :])/1e9, name="$(mode_names[i])", mode="lines+markers") for i in 1:3] plot(frequency_plots, Layout(xaxis_title="stub length [mm]", yaxis_title="frequency [GHz]", title="Frequencies")) end if show_results decay_plots = [scatter(x=stub_nums * δ * 1e3, y=decay_func.(complex_freqs_arr[i, :]), name="$(mode_names[i])", mode="lines+markers") for i in 1:3] plot(decay_plots, Layout(xaxis_title="stub length [mm]", yaxis_title="decay rate [Hz]", yaxis_type="log", title="Decay rates")) end function spatial_profile(v) w = [0; v[1:length(pfilter_vertices)]; 0; v[length(pfilter_vertices)+1:length(pfilter_vertices)+length(res_0_vertices)]; 0; v[length(pfilter_vertices)+length(res_0_vertices)+1:end]; 0] return normalize(abs.(w)) end mode_1 = run_fast ? 2 : 10 mode_2 = run_fast ? 4 : 30 function spatial_plot(mode_num::Int) plot([scatter(y=spatial_profile(eigenvectors[mode_1][:, mode_num]), name= "mode 1"), scatter(y=spatial_profile(eigenvectors[mode_2][:, mode_num]), name= "mode 2")], Layout(title=mode_names[mode_num])) end if show_results spatial_plot(1) end if show_results spatial_plot(2) end if show_results spatial_plot(3) end if write_data df = DataFrame(Dict(Symbol(mode_names[mode_num]) => spatial_profile(eigenvectors[mode_1][:, mode_num]) for mode_num in 1:3)) CSV.write(joinpath(output_folder, "mode_profile_p5.csv"), df) df = DataFrame(Dict(Symbol(mode_names[mode_num]) => spatial_profile(eigenvectors[mode_2][:, mode_num]) for mode_num in 1:3)) CSV.write(joinpath(output_folder, "mode_profile_1p5.csv"), df) end function regional_support(v) x = norm(v[1:length(pfilter_vertices)]) y = norm(v[length(pfilter_vertices)+1:length(pfilter_vertices)+length(res_0_vertices)]) z = norm(v[length(pfilter_vertices)+length(res_0_vertices)+1:end]) return normalize([x, y, z]).^2 end begin support_vects = [[regional_support(vects[:, i]) for vects in eigenvectors] for i in 1:3] standard_basis = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] hybridizations = [[norm(v - standard_basis[i],2) for v in support_vects[i]] for i in 1:3] get_x(v) = v[2] + v[3]/2 get_y(v) = v[3] * sqrt(3)/2 xs = [get_x.(support_vects[i]) for i in 1:3] ys = [get_y.(support_vects[i]) for i in 1:3] end if show_results plot([scatter(x=stub_nums * δ * 1e3, y=hybridizations[i], name=mode_names[i], mode="lines+markers") for i in 1:3], Layout(xaxis_title="stub length [mm]", yaxis_title="Distance")) end if show_results plot([scatter(x=xs[i], y=ys[i], name=mode_names[i]) for i in 1:3], Layout(xaxis_range=[0,1], yaxis_range=[0,sqrt(3)/2])) end if write_data df = DataFrame(Dict(Symbol(mode_names[i]) => hybridizations[i] for i in 1:3)) df[:stub_len] = stub_nums * δ CSV.write(joinpath(output_folder, "hybridization_curves.csv"), df) df = DataFrame(Dict(Symbol(mode_names[i]) => xs[i] for i in 1:3)) CSV.write(joinpath(output_folder, "hybridization_scatter_x.csv"), df) df = DataFrame(Dict(Symbol(mode_names[i]) => ys[i] for i in 1:3)) CSV.write(joinpath(output_folder, "hybridization_scatter_y.csv"), df) end ####################################################### # Convergence ####################################################### function eigenvals(stub_num::Int, discretization::Real) casc = casc_from_model(stub_num, discretization) push!(casc.components, ParallelComponent("in", 0, 1/Z0, 0)) push!(casc.components, ParallelComponent("out", 0, 1/Z0, 0)) pso = PSOModel(casc) eigenvalues, eigenvectors = lossy_modes_dense(pso, min_freq=4e9, max_freq=8e9) port_inds = ports_to_indices(pso, "p/middle", "r0/open", "r1/open") mode_inds = AdmittanceModels.match_vectors(get_P(pso)[:, port_inds], eigenvectors) return eigenvalues[mode_inds] end if !run_fast discretizations = [60e-6, 50e-6, 40e-6] eigenvals_arr = [@showprogress [eigenvals(i, d) for i in stub_nums] for d in discretizations] if write_data npzwrite(joinpath(output_folder, "convergence_eigenvalues.npy"), cat([hcat(eigenvals_arr[i]...) for i in 1:length(eigenvals_arr)]..., dims=3)) end end ####################################################### # Declare victory ####################################################### @testset "hybridization" begin @test true end
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
13269
using Test, AdmittanceModels using ProgressMeter: @showprogress # set to false to create the figures in the paper, though it will take longer run_fast = true # to save data so figures in the paper can be created, set to true write_data = false # to make plots and print information set to true show_results = false if write_data using DataFrames, CSV, NPZ output_folder = joinpath(@__DIR__, "radiative_loss_results") try mkdir(output_folder) catch SystemError end end if show_results using PlotlyJS end ####################################################### # Shared parameters ####################################################### begin ν = 1.2e8 # propagation_speed Z0 = 50.0 # characteristic_impedance δ = run_fast ? 200e-6 : 50e-6 # discretization length cg = 7e-15 # qubit - resonator coupling capacitance cj = 100e-15 # qubit capacitance lj = 10e-9 # qubit inductance x0 = 800e-6 # coupler location on resonator end ####################################################### # Transmission line model ####################################################### begin L = .00499171 # resonator length F = 2e-3 # length of tline y0 = F/2 # coupler location on tline cc = 10e-15 # resonator - tline coupling capacitance tline_params = (L=L, x0=x0, F=F, y0=y0, cc=cc) end function create_tline_cascade(δ::Real) resonator = TransmissionLine(["qr_coupler", "er_coupler_0", "mode_2_max", "short"], ν, Z0, L, locations=[x0, 2*L/3], δ=δ) environment = TransmissionLine(["in", "er_coupler_1", "out"], ν, Z0, F, locations=[y0], δ=δ) er_coupler = SeriesComponent("er_coupler_0", "er_coupler_1", 0, 0, cc) qr_coupler = SeriesComponent("qubit", "qr_coupler", 0, 0, cg) components = [resonator, environment, er_coupler, qr_coupler] return Cascade(components, [short_ports => ["short"]]) end tline_cascade = create_tline_cascade(δ) ####################################################### # Purcell filter model ####################################################### begin L = .00503299# resonator length F = .0102522 # length of pfilter y0 = 5e-3 # coupler location on pfilter cc = 2.6e-15 # resonator - pfilter coupling capacitance st = 880e-6 # pfilter stub length pfilter_params = (L=L, x0=x0, F=F, y0=y0, cc=cc, st=st) end function create_pfilter_cascade(δ::Real) resonator = TransmissionLine(["qr_coupler", "er_coupler_0", "mode_2_max", "short 1"], ν, Z0, L, locations=[x0, 2*L/3], δ=δ) environment = TransmissionLine(["short 2", "in", "er_coupler_1", "out", "short 3"], ν, Z0, F, locations=[st, y0, F-st], δ=δ) er_coupler = SeriesComponent("er_coupler_0", "er_coupler_1", 0, 0, cc) qr_coupler = SeriesComponent("qubit", "qr_coupler", 0, 0, cg) components = [resonator, environment, er_coupler, qr_coupler] return Cascade(components, [short_ports => ["short 1", "short 2", "short 3"]]) end pfilter_cascade = create_pfilter_cascade(δ) ####################################################### # Scattering parameters with qubit ####################################################### begin factor = run_fast ? 2 : 10 ω = [range(1.5, stop=5.89, length=10 * factor); range(5.89, stop=5.92, length=60 * factor); # first mode for both range(5.92, stop=17.69, length=10 * factor); range(17.69, stop=17.72, length=100 * factor); # 2nd mode pfilter range(17.72, stop=17.76, length=10 * factor); range(17.76, stop=17.85, length=100 * factor); # 2nd mode tline range(17.85, stop=25, length=10 * factor)] * 2π * 1e9 qubit = ParallelComponent("qubit", 1/lj, 0, cj) components = [tline_cascade.components; qubit] operations = [tline_cascade.operations; open_ports_except => ["in", "out"]] tline_casc = Cascade(components, operations) tline_pso_bbox = Blackbox(ω, PSOModel(tline_casc)) tline_pso_bbox_s = [x[1,2] for x in scattering_matrices(tline_pso_bbox, [Z0, Z0])] tline_bbox = Blackbox(ω, tline_casc) tline_bbox_s = [x[1,2] for x in scattering_matrices(tline_bbox, [Z0, Z0])] components = [pfilter_cascade.components; qubit] operations = [pfilter_cascade.operations; open_ports_except => ["in", "out"]] pfilter_casc = Cascade(components, operations) pfilter_pso_bbox = Blackbox(ω, PSOModel(pfilter_casc)) pfilter_pso_bbox_s = [x[1,2] for x in scattering_matrices(pfilter_pso_bbox, [Z0, Z0])] pfilter_bbox = Blackbox(ω, pfilter_casc) pfilter_bbox_s = [x[1,2] for x in scattering_matrices(pfilter_bbox, [Z0, Z0])] end if write_data CSV.write(joinpath(output_folder, "S12.csv"), DataFrame( freqs = ω/(2π), tline_S = tline_pso_bbox_s, pfilter_S = pfilter_pso_bbox_s)) end if show_results plot([scatter(x=ω/(2π*1e9), y=abs.(tline_pso_bbox_s), name="tline pso"), scatter(x=ω/(2π*1e9), y=abs.(tline_bbox_s), name="tline bbox"), scatter(x=ω/(2π*1e9), y=abs.(pfilter_pso_bbox_s), name="pfilter pso", line_dash="dash"), scatter(x=ω/(2π*1e9), y=abs.(pfilter_bbox_s), name="pfilter bbox", line_dash="dash")], Layout(xaxis_title="frequency", yaxis_title="|S21|")) end ####################################################### # Find effective capacitance ####################################################### resistors = [ParallelComponent(name, 0, 1/Z0, 0) for name in ["in", "out"]] function model_and_admittances(ω::Vector{<:Real}, casc::Cascade) components = [casc.components; resistors] operations = [casc.operations; [open_ports_except => ["qubit"]]] bbox = Blackbox(ω, Cascade(components, operations)) |> canonical_gauge Y = [x[1,1] for x in admittance_matrices(bbox)] pso = PSOModel(Cascade(components, casc.operations)) return pso, Y end begin fit_ω = collect(range(0.1e9, stop=2.5e9, length=run_fast ? 100 : 1000)) * 2π plot_ω = collect(range(0.01e9, stop=10e9, length=run_fast ? 100 : 1000)) * 2π linreg(x, y) = hcat(fill!(similar(x), 1), x) \ y tline_pso, Y = model_and_admittances(fit_ω, tline_cascade) _, tline_slope = linreg(fit_ω, imag.(Y)) _, tline_Y = model_and_admittances(plot_ω, tline_cascade) _, Y = model_and_admittances(fit_ω, pfilter_cascade) _, pfilter_slope = linreg(fit_ω, imag.(Y)) pfilter_pso, pfilter_Y = model_and_admittances(plot_ω, tline_cascade) tline_eff_capacitance = tline_slope + cj pfilter_eff_capacitance = pfilter_slope + cj end if show_results println("tline_slope: $tline_slope, pfilter_slope: $pfilter_slope, cg: $cg") println("tline_eff_capacitance: $tline_eff_capacitance, pfilter_eff_capacitance: $pfilter_eff_capacitance") density(m) = count(!iszero, m)/(size(m,1) * size(m,2)) println("tline matrix densities: $(map(density, get_Y(tline_pso)))") println("pfilter matrix densities: $(map(density, get_Y(tline_pso)))") end if write_data CSV.write(joinpath(output_folder, "Y.csv"), DataFrame( freqs = plot_ω/(2π), tline_Y = tline_Y, pfilter_Y = pfilter_Y)) end if show_results plot([scatter(x=plot_ω/(2π), y=imag.(tline_Y), name="imag(tline_Y)"), scatter(x=plot_ω/(2π), y=imag.(pfilter_Y), name="imag(pfilter_Y)", line_dash="dash"), scatter(x=plot_ω/(2π), y=cg * plot_ω, name="cg * ω")], Layout(xaxis_title="frequency", yaxis_title="imag(Y)", yaxis_range=[-.001, .002])) end ####################################################### # Eigenmodes ####################################################### function get_bare_qubit_freqs(num_points) f0 = ν/(4 * tline_params.L) f1 = ν/(2 * (tline_params.L - tline_params.x0)) f2 = 3 * f0 _eps = f0/10 freqs_0 = range(1.5e9, stop=f0-_eps, length=num_points) freqs_1 = range(f0-_eps, stop=f0+_eps, length=num_points) freqs_2 = range(f0+_eps, stop=f1-_eps, length=num_points) freqs_3 = range(f1-_eps, stop=f1+_eps, length=num_points) freqs_4 = range(f1+_eps, stop=f2-_eps, length=num_points) freqs_5 = range(f2-_eps, stop=f2+_eps, length=num_points) freqs_6 = range(f2+_eps, stop=25e9, length=num_points) return [freqs_0; freqs_1; freqs_2; freqs_3; freqs_4; freqs_5; freqs_6] end function eigenmodes(lj::Real, pso::PSOModel) qubit = ParallelComponent("qubit", 1/lj, 0, cj) pso_full = cascade_and_unite(pso, PSOModel(qubit)) eigenvalues, eigenvectors = lossy_modes_dense(pso_full, min_freq=1e9, max_freq=25e9) port_inds = ports_to_indices(pso_full, "qubit", "qr_coupler", "mode_2_max") mode_inds = AdmittanceModels.match_vectors(get_P(pso_full)[:, port_inds], eigenvectors) return eigenvalues[mode_inds] end function eigenmodes(casc::Cascade, eff_capacitance::Real, ω::Vector{<:Real}) pso, Y = model_and_admittances(ω, casc) T1_Y = eff_capacitance ./ real.(Y) ljs = (1 ./ (ω .^2 * eff_capacitance)) if show_results println("dimension: $(size(pso.K,1)), num_ljs: $(length(ljs))") end λ_lists = @showprogress [eigenmodes(lj, pso) for lj in ljs] λs = cat(λ_lists..., dims=2) return λs, T1_Y end ω = 2π * get_bare_qubit_freqs(run_fast ? 10 : 120) tline_λs, tline_T1_Y = eigenmodes(tline_cascade, tline_eff_capacitance, ω) if show_results plot([scatter(x=ω/(2π*1e9), y=imag.(tline_λs[i,:])/(2π*1e9), name="$i", mode="lines+markers") for i in 1:size(tline_λs,1)], Layout(xaxis_title="bare qubit freq", yaxis_title="mode freq", title="tline freqs")) end if show_results traces = [scatter(x=ω/(2π*1e9), y=-.5 ./ real.(tline_λs[i,:]), name="$i", mode="lines+markers") for i in 1:size(tline_λs,1)] push!(traces, scatter(x=ω/(2π*1e9), y=tline_T1_Y, name="C/Re[Y]", mode="lines+markers")) plot(traces, Layout(xaxis_title="bare qubit freq", yaxis_title="T1", yaxis_type="log", title="tline T1s")) end if write_data df = DataFrame(transpose(tline_λs)) df[:freqs] = ω/(2π) df[:T1_Y] = tline_T1_Y CSV.write(joinpath(output_folder, "tline_eigenmodes.csv"), df) end pfilter_λs, pfilter_T1_Y = eigenmodes(pfilter_cascade, pfilter_eff_capacitance, ω) if show_results plot([scatter(x=ω/(2π*1e9), y=imag.(pfilter_λs[i,:])/(2π*1e9), name="$i", mode="lines+markers") for i in 1:size(pfilter_λs,1)], Layout(xaxis_title="bare qubit freq", yaxis_title="mode freq", title="pfilter freqs")) end if show_results traces = [scatter(x=ω/(2π*1e9), y=-.5 ./ real.(pfilter_λs[i,:]), name="$i", mode="lines+markers") for i in 1:size(pfilter_λs,1)] push!(traces, scatter(x=ω/(2π*1e9), y=pfilter_T1_Y, name="C/Re[Y]", mode="lines+markers")) plot(traces, Layout(xaxis_title="bare qubit freq", yaxis_title="T1", yaxis_type="log", title="pfilter T1s")) end if write_data df = DataFrame(transpose(pfilter_λs)) df[:freqs] = ω/(2π) df[:T1_Y] = pfilter_T1_Y CSV.write(joinpath(output_folder, "pfilter_eigenmodes.csv"), df) end ####################################################### # Convergence ####################################################### freqs_func(vects, mode_ind, δ_ind) = imag.(vects[δ_ind][mode_ind,:])/(2π*1e9) T1_func(vects, mode_ind, δ_ind) = -.5 ./ real.(vects[δ_ind][mode_ind,:]) function diff(vects, func, mode_ind, δ_ind_bad, δ_ind_good) f_bad = func(vects, mode_ind, δ_ind_bad) f_good = func(vects, mode_ind, δ_ind_good) return abs.((f_bad - f_good) ./ f_good) * 100 end if !run_fast δs = [60, 50, 40] * 1e-6 tline_λ_vects = [eigenmodes(create_tline_cascade(δ), tline_eff_capacitance, ω)[1] for δ in δs] if write_data npzwrite(joinpath(output_folder, "tline_eigenvalues.npy"), cat(tline_λ_vects..., dims=3)) end if show_results plot([scatter(x=ω/(2π*1e9), y=diff(tline_λ_vects, freqs_func, i, 1, 3), name="$i", mode="markers") for i in 1:3], Layout(xaxis_title="bare qubit freq", yaxis_title="% error", yaxis_type="log", title="tline freqs")) end if show_results plot([scatter(x=ω/(2π*1e9), y=diff(tline_λ_vects, T1_func, i, 2, 3), name="$i", mode="markers") for i in 1:3], Layout(xaxis_title="bare qubit freq", yaxis_title="% error", yaxis_type="log", title="tline freqs")) end pfilter_λ_vects = [eigenmodes(create_pfilter_cascade(δ), pfilter_eff_capacitance, ω)[1] for δ in δs] if write_data npzwrite(joinpath(output_folder, "pfilter_eigenvalues.npy"), cat(pfilter_λ_vects..., dims=3)) end if show_results plot([scatter(x=ω/(2π*1e9), y=diff(pfilter_λ_vects, freqs_func, i, 2, 3), name="$i", mode="markers") for i in 1:3], Layout(xaxis_title="bare qubit freq", yaxis_title="% error", yaxis_type="log", title="tline freqs")) end if show_results plot([scatter(x=ω/(2π*1e9), y=diff(pfilter_λ_vects, T1_func, i, 2, 3), name="$i", mode="markers") for i in 1:3], Layout(xaxis_title="bare qubit freq", yaxis_title="% error", yaxis_type="log", title="tline freqs")) end end ####################################################### # Declare victory ####################################################### @testset "radiative loss" begin @test true end
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
212
module AdmittanceModels include("linear_algebra.jl") include("admittance_model.jl") include("circuit.jl") include("pso_model.jl") include("blackbox.jl") include("circuit_components.jl") include("ansys.jl") end
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
9151
export AdmittanceModel export get_Y, get_P, get_Q, get_ports, partial_copy, compatible, canonical_gauge export apply_transform, cascade, cascade_and_unite, ports_to_indices export unite_ports, open_ports, open_ports_except, short_ports, short_ports_except """ An abstract representation of a linear mapping from inputs `x` to outputs `y` of the form `YΦ = Px`, `y = QᵀΦ`. Subtypes U <: AdmittanceModel are expected to implement: get_Y(am::U) get_P(am::U) get_Q(am::U) get_ports(am::U) partial_copy(am::U; Y, P, ports) compatible(AbstractVector{U}) """ abstract type AdmittanceModel{T} end """ get_Y(pso::PSOModel) get_Y(bbox::Blackbox) Return a vector of admittance matrices. """ function get_Y end """ get_P(pso::PSOModel) get_P(bbox::Blackbox) Return an input port matrix. """ function get_P end """ get_Q(pso::PSOModel) get_Q(bbox::Blackbox) Return an output port matrix. """ function get_Q end """ get_ports(pso::PSOModel) get_ports(bbox::Blackbox) Return a vector of port identifiers. """ function get_ports end """ partial_copy(pso::PSOModel{T, U}; Y::Union{Vector{V}, Nothing}=nothing, P::Union{V, Nothing}=nothing, Q::Union{V, Nothing}=nothing, ports::Union{AbstractVector{W}, Nothing}=nothing) where {T, U, V, W} partial_copy(bbox::Blackbox{T, U}; Y::Union{Vector{V}, Nothing}=nothing, P::Union{V, Nothing}=nothing, Q::Union{V, Nothing}=nothing, ports::Union{AbstractVector{W}, Nothing}=nothing) where {T, U, V, W} Create a new model with the same fields except those given as keyword arguments. """ function partial_copy end """ compatible(psos::AbstractVector{PSOModel{T, U}}) where {T, U} compatible(bboxes::AbstractVector{Blackbox{T, U}}) where {T, U} Check if the models can be cascaded. Always true for PSOModels and true for Blackboxes that share the same value of `ω`. """ function compatible end """ canonical_gauge(pso::PSOModel) canonical_gauge(bbox::Blackbox) Apply an invertible transformation that takes the model to coordinates in which `P` is `[I ; 0]` (up to floating point errors). Note this will create a dense model. """ function canonical_gauge end # don't remove space between Base. and == function Base. ==(am1::AdmittanceModel, am2::AdmittanceModel) t = typeof(am1) if typeof(am2) != t return false end return all([getfield(am1, name) == getfield(am2, name) for name in fieldnames(t)]) end function Base.isapprox(am1::AdmittanceModel, am2::AdmittanceModel) t = typeof(am1) if typeof(am2) != t return false end return all([getfield(am1, name) ≈ getfield(am2, name) for name in fieldnames(t)]) end """ apply_transform(am::AdmittanceModel, transform::AbstractMatrix{<:Number}) Apply a linear transformation `transform` to the coordinates of the model. """ function apply_transform(am::AdmittanceModel, transform::AbstractMatrix{<:Number}) Y = [transpose(transform) * m * transform for m in get_Y(am)] P = eltype(Y)(transpose(transform) * get_P(am)) Q = eltype(Y)(transpose(transform) * get_Q(am)) return partial_copy(am, Y=Y, P=P, Q=Q) end """ cascade(ams::AbstractVector{U}) where {T, U <: AdmittanceModel{T}} cascade(ams::Vararg{U}) where {T, U <: AdmittanceModel{T}} Cascade the models into one larger block diagonal model. """ function cascade(ams::AbstractVector{U}) where {T, U <: AdmittanceModel{T}} @assert length(ams) >= 1 if length(ams) == 1 return ams[1] end @assert compatible(ams) Y = [cat(m..., dims=(1,2)) for m in zip([get_Y(am) for am in ams]...)] P = cat([get_P(am) for am in ams]..., dims=(1,2)) Q = cat([get_Q(am) for am in ams]..., dims=(1,2)) ports = vcat([get_ports(am) for am in ams]...) return partial_copy(ams[1], Y=Y, P=P, Q=Q, ports=ports) end cascade(ams::Vararg{U}) where {T, U <: AdmittanceModel{T}} = cascade(collect(ams)) """ ports_to_indices(am::AdmittanceModel{T}, ports::AbstractVector{T}) where T ports_to_indices(am::AdmittanceModel{T}, ports::Vararg{T}) where T Find the indices corresponding to given ports. """ function ports_to_indices(am::AdmittanceModel{T}, ports::AbstractVector{T}) where T am_ports = get_ports(am) return [findfirst(isequal(p), am_ports) for p in ports] end ports_to_indices(am::AdmittanceModel{T}, ports::Vararg{T}) where T = ports_to_indices(am, collect(ports)) """ unite_ports(am::AdmittanceModel{T}, ports::AbstractVector{T}) where T unite_ports(am::AdmittanceModel{T}, ports::Vararg{T}) where T Unite the given ports into one port. """ function unite_ports(am::AdmittanceModel{T}, ports::AbstractVector{T}) where T if length(ports) <= 1 return am end port_inds = ports_to_indices(am, ports) keep_inds = filter(x -> !(x in port_inds[2:end]), 1:length(get_ports(am))) # keep the first port P = get_P(am) first_vector = P[:, port_inds[1]] constraint_mat = transpose(hcat([first_vector - P[:, i] for i in port_inds[2:end]]...)) constrained_am = apply_transform(am, nullbasis(constraint_mat)) return partial_copy(constrained_am, P=get_P(constrained_am)[:, keep_inds], Q=get_Q(constrained_am)[:, keep_inds], ports=get_ports(constrained_am)[keep_inds]) end unite_ports(am::AdmittanceModel{T}, ports::Vararg{T}) where T = unite_ports(am, collect(ports)) """ open_ports(am::AdmittanceModel{T}, ports::AbstractVector{T}) where T open_ports(am::AdmittanceModel{T}, ports::Vararg{T}) where T Remove the given ports. """ function open_ports(am::AdmittanceModel{T}, ports::AbstractVector{T}) where T if length(ports) == 0 return am end port_inds = ports_to_indices(am, ports) keep_inds = filter(x -> !(x in port_inds), 1:length(get_ports(am))) return partial_copy(am, P=get_P(am)[:, keep_inds], Q=get_Q(am)[:, keep_inds], ports=get_ports(am)[keep_inds]) end open_ports(am::AdmittanceModel{T}, ports::Vararg{T}) where T = open_ports(am, collect(ports)) """ open_ports_except(am::AdmittanceModel{T}, ports::AbstractVector{T}) where T open_ports_except(am::AdmittanceModel{T}, ports::Vararg{T}) where T Remove all ports except those specified. """ function open_ports_except(am::AdmittanceModel{T}, ports::AbstractVector{T}) where T return open_ports(am, filter(x -> !(x in ports), get_ports(am))) end open_ports_except(am::AdmittanceModel{T}, ports::Vararg{T}) where T = open_ports_except(am, collect(ports)) """ short_ports(am::AdmittanceModel{T}, ports::AbstractVector{T}) where T short_ports(am::AdmittanceModel{T}, ports::Vararg{T}) where T Replace the given ports by short circuits. """ function short_ports(am::AdmittanceModel{T}, ports::AbstractVector{T}) where T if length(ports) == 0 return am end port_inds = ports_to_indices(am, ports) keep_inds = filter(x -> !(x in port_inds), 1:length(get_ports(am))) constraint_mat = transpose(hcat([get_P(am)[:, i] for i in port_inds]...)) constrained_am = apply_transform(am, nullbasis(constraint_mat)) return partial_copy(constrained_am, P=get_P(constrained_am)[:, keep_inds], Q=get_Q(constrained_am)[:, keep_inds], ports=get_ports(constrained_am)[keep_inds]) end short_ports(am::AdmittanceModel{T}, ports::Vararg{T}) where T = short_ports(am, collect(ports)) """ short_ports_except(am::AdmittanceModel{T}, ports::AbstractVector{T}) where T short_ports_except(am::AdmittanceModel{T}, ports::Vararg{T}) where T Replace all ports with short circuits, except those specified. """ function short_ports_except(am::AdmittanceModel{T}, ports::AbstractVector{T}) where T return short_ports(am, filter(x -> !(x in ports), get_ports(am))) end short_ports_except(am::AdmittanceModel{T}, ports::Vararg{T}) where T = short_ports_except(am, collect(ports)) """ cascade_and_unite(models::AbstractVector{U}) where {T, U <: AdmittanceModel{T}} cascade_and_unite(models::Vararg{U}) where {T, U <: AdmittanceModel{T}} Cascade all models and unite ports with the same name. """ function cascade_and_unite(models::AbstractVector{U}) where {T, U <: AdmittanceModel{T}} @assert length(models) >= 1 if length(models) == 1 return models[1] end # number the ports so that the names are all distinct and then cascade port_number = 1 function rename(model::U) ports = [(port_number + i - 1, port) for (i, port) in enumerate(get_ports(model))] port_number += length(ports) return partial_copy(model, ports=ports) end model = cascade(map(rename, models)) # merge all ports with the same name original_ports = vcat([get_ports(m) for m in models]...) for port in unique(original_ports) inds = findall([p[2] == port for p in get_ports(model)]) model = unite_ports(model, get_ports(model)[inds]) end # remove numbering return partial_copy(model, ports=[p[2] for p in get_ports(model)]) end cascade_and_unite(models::Vararg{U}) where {T, U <: AdmittanceModel{T}} = cascade_and_unite(collect(models))
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
7516
#= The functions here are intended to generate AdmittanceModels.Circuit objects from ANSYS Q3D plain text output files containing RLGC parameters. Here's a small example of the expected Q3D file format, valid for ANSYS Electronics Desktop 2016: ################################################################################################################ DesignVariation:\$DummyParam1='1' \$DummyParam2='1mm' \$dummy_param3='100e19pF' \$dummy_param4='1.2eUnits' Setup1:LastAdaptive Problem Type:C C Units:farad, G Units:sie Reduce Matrix:Original Frequency: 4E+09 Hz Capacitance Matrix net_name_1 net_name_2 net_name_1 1.1924E-13 -1.3563E-16 net_name_2 -1.3563E-16 3.7607E-13 Conductance Matrix net_name_1 net_name_2 net_name_1 2.4489E-09 -2.3722E-12 net_name_2 -2.3722E-12 7.7123E-09 Capacitance Matrix Coupling Coefficient net_name_1 net_name_2 net_name_1 1 0.00064047 0.00018631 net_name_2 0.00064047 1 0.00010129 Conductance Matrix Coupling Coefficient net_name_1 net_name_2 net_name_1 1 0.00054586 0.00017696 net_name_2 0.00054586 1 9.2987E-05 ################################################################################################################ Each data block like \"Capacitance Matrix\" must start with a line enumerating the N net names. These are the column labels for the given matrix. The matrix rows are specified directly below this line. Each of the N row lines start with a net name to label the row, followed by N space-separated float values for the matrix elements. We expect these to be strings `parse(Float64, _)` can handle. =# using LinearAlgebra: diagind using Compat """ parse_value_and_unit(s::AbstractString) Parse strings like "9.9e-9mm" => (9.9e-9, "mm"). """ function parse_value_and_unit(s::AbstractString) # Three capture groups in the regex intended to match # (±X.X)(e-X)(unit) m = match(r"(\-?[\d|\.]+)(e-?[\d]+)?(\D*)", s) exp_str = m[2] == nothing ? "" : m[2] num_str = m[1] * exp_str num = parse(Float64, num_str) unit_str = String(m[3]) (num, unit_str) end const matrix_types = Dict( :capacitance => "Capacitance Matrix", :conductance => "Conductance Matrix", # :dc_inductance => "DC Inductance Matrix", # :dc_resistance => "DC Resistance Matrix", # :ac_inductance => "AC Inductance Matrix", # :ac_resistance => "AC Resistance Matrix", # :dc_plus_ac_resistance => "DCPlusAC Resistance Matrix", ) const unit_names = Dict( :capacitance => "C Units", :conductance => "G Units" ) const units_to_multipliers = Dict( "fF" => 1e-15, "pF" => 1e-12, "nF" => 1e-9, "uF" => 1e-6, "mF" => 1e-3, "farad" => 1.0, "mSie" => 1e-3, "sie" => 1.0 ) """ parse_q3d_txt(filepath, matrix_type::Symbol) Parses a plain text file generated by ANSYS Q3D containing RLGC simulation output. # Args - `q3d_file`: the path to the text file. - `matrix_type`: A `Symbol` indicating the type of data to read. Currently, symbols in $(collect(keys(matrix_types))) are the only available choices, and only the units in $(collect(keys(units_to_multipliers))) are handled. # Returns - A tuple `(design_variation, net_names, matrix)`, where: - `design_variation` is a `Dict` of design variables - `net_names` is a `Vector` of net names (strings) - `matrix` is the requested matrix """ function parse_q3d_txt(q3d_file, matrix_type::Symbol) !haskey(matrix_types, matrix_type) && error("matrix type not implemented.") matrix_name = matrix_types[matrix_type] unit_name = unit_names[matrix_type] # Windows uses \r\n for newlines, where Linux just uses \n. # We work around that difference here by deleting all carriage return (\r) # characters from the file. linesep = "\n" file_text = replace(read(q3d_file, String), "\r" => "") file_chunks = split(file_text, linesep * linesep) @assert length(file_chunks) > 1 "expected more than one block in Q3D plain text file." is_chunk(header) = chunk -> startswith(chunk, header) function get_chunk(header) # the chunk may be missing, guard against errors idx = findfirst(is_chunk(header), file_chunks) !isnothing(idx) && return file_chunks[idx] return nothing end get_chunk_line(chunk, line_num) = split(chunk, linesep)[line_num] # The following parses lines like: # DesignVariation:var1='12' var2='1e-05' var3='123um' # into Dict("var1" => (12, ""), # "var2" => (1e-5, ""), # "var3" => (123, "um")) design_variation_chunk = get_chunk("DesignVariation") design_variation = if !isnothing(design_variation_chunk) _, design_variation_data_str = split(get_chunk_line(design_variation_chunk, 1), ":") design_strings = split(design_variation_data_str) parse_design_kv((k, v)) = String(k) => parse_value_and_unit(strip(v, ['\''])) Dict(parse_design_kv.(split.(design_strings, ['=']))) else Dict{String, Tuple{Float64, String}}() end local unit_multiplier for l in split(file_chunks[1], linesep) if occursin("Units", l) unit = Dict(split.(split(l, ", "), ':'))[unit_name] !haskey(units_to_multipliers, unit) && error("unit $unit not implemented.") unit_multiplier = units_to_multipliers[unit] break end end (@isdefined unit_multiplier) || error("units not given in Q3D plain text file.") # Don't forget to include the line separator here. # We typically have matrix_name = "Capacitance Matrix" # But, these files can have a heading like "Capacitance Matrix Coupling Coefficient" matrix_chunk = get_chunk(matrix_name * linesep) net_names = String.(split(get_chunk_line(matrix_chunk, 2))) get_matrix_row(row_idx) = parse.(Float64, split(get_chunk_line(matrix_chunk, 2 + row_idx))[2:end]) .* unit_multiplier matrix = reduce(hcat, get_matrix_row.(1:length(net_names))) (design_variation, net_names, matrix) end """ Circuit(q3d_file; matrix_types = [:capacitance]) Return an `AdmittanceModels.Circuit` from a plain text file generated by ANSYS Q3D containing RLGC simulation output. # Args - `q3d_file`: the path to the text file. - `matrix_type`: A list of symbols indicating which type of matrix data to read. Currently, symbols in $(collect(keys(matrix_types))) are the only available choices, and only the units in $(collect(keys(units_to_multipliers))) are handled. """ function Circuit(q3d_file; matrix_types = [:capacitance]) parse_dict = Dict(t => parse_q3d_txt(q3d_file, t) for t ∈ matrix_types) # Check that all matrix types are defined over the same set of nets # `take_only` asserts the iterator it's passed has only one element nets = take_only(collect(Set(map(t -> t[2], values(parse_dict))))) matrix_dict = Dict(t => parse_dict[t][3] for t ∈ matrix_types) zero_mat() = zeros(length(nets), length(nets)) # The C and G matrices expected in AdmittanceModels.Circuit are the same # as those parsed from Q3D, except with all diagonal entries set to 0 and # all values made positive. function prep_matrix(matrix_type) x = get(matrix_dict, matrix_type, zero_mat()) x[diagind(x)] .= 0. abs.(x) end k = zero_mat() g = prep_matrix(:conductance) c = prep_matrix(:capacitance) return Circuit(k, g, c, nets) end function take_only(xs) @assert length(xs) == 1 "Expected $xs to have one element." return xs[1] end
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
4349
using UniqueVectors: UniqueVector export Blackbox export impedance_matrices, admittance_matrices, scattering_matrices """ Blackbox{T, U}(ω::Vector{Float64}, Y::Vector{U}, P::U, Q::U, ports::UniqueVector{T}) where {T, U} Blackbox(ω::Vector{<:Real}, Y::Vector{U}, P::U, Q::U, ports::AbstractVector{T}) where {T, U} An admittance model with constant `P` and `Q` but with varying `Y`, indexed by a real variable `ω`. """ struct Blackbox{T, U<:AbstractMatrix{<:Number}} <: AdmittanceModel{T} ω::Vector{Float64} Y::Vector{U} P::U Q::U ports::UniqueVector{T} function Blackbox{T, U}(ω::Vector{Float64}, Y::Vector{U}, P::U, Q::U, ports::UniqueVector{T}) where {T, U} if length(Y) > 0 l = size(Y[1], 1) @assert size(P) == (l, length(ports)) @assert size(Q) == (l, length(ports)) @assert all([size(y) == (l, l) for y in Y]) end @assert length(ω) == length(Y) return new{T, U}(ω, Y, P, Q, ports) end end Blackbox(ω::Vector{<:Real}, Y::Vector{U}, P::U, Q::U, ports::AbstractVector{T}) where {T, U} = Blackbox{T, U}(ω, Y, P, Q, UniqueVector(ports)) get_Y(bbox::Blackbox) = bbox.Y get_P(bbox::Blackbox) = bbox.P get_Q(bbox::Blackbox) = bbox.Q get_ports(bbox::Blackbox) = bbox.ports function partial_copy(bbox::Blackbox{T, U}; Y::Union{Vector{V}, Nothing}=nothing, P::Union{V, Nothing}=nothing, Q::Union{V, Nothing}=nothing, ports::Union{AbstractVector{W}, Nothing}=nothing) where {T, U, V, W} Y = Y == nothing ? get_Y(bbox) : Y P = P == nothing ? get_P(bbox) : P Q = Q == nothing ? get_Q(bbox) : Q ports = ports == nothing ? get_ports(bbox) : ports return Blackbox(bbox.ω, Y, P, Q, ports) end function compatible(bboxes::AbstractVector{Blackbox{T, U}}) where {T, U} if length(bboxes) == 0 return true end ω = bboxes[1].ω return all([ω == bbox.ω for bbox in bboxes[2:end]]) end # TODO for sparse matrices use sparse linear solver instead of \ and / function impedance_to_scattering(Z::AbstractMatrix{<:Number}, Z0::AbstractVector{<:Real}) U = diagm(0 => Z0) return (Z + U) \ (Z - U) end function scattering_to_impedance(S::AbstractMatrix{<:Number}, Z0::AbstractVector{<:Real}) U = diagm(0 => Z0) return U * (I + S) / (I - S) end function admittance_to_scattering(Y::AbstractMatrix{<:Number}, Z0::AbstractVector{<:Real}) U = diagm(0 => Z0) return (I + Y * U) \ (I - Y * U) end function scattering_to_admittance(S::AbstractMatrix{<:Number}, Z0::AbstractVector{<:Real}) V = diagm(0 => 1 ./ Z0) return (I - S) * ((I + S) \ V) end """ impedance_matrices(bbox::Blackbox) Find the impedance matrices `Z` with `y = Zx` for each `ω`. """ impedance_matrices(bbox::Blackbox) = [transpose(bbox.Q) * (Y \ collect(bbox.P)) for Y in bbox.Y] """ admittance_matrices(bbox::Blackbox) Find the admittance matrices `Y` with `Yy = x` for each `ω`. """ function admittance_matrices(bbox::Blackbox) if bbox.P == I # avoid unnecessary matrix inversion return map(collect, bbox.Y) else return [inv(Z) for Z in impedance_matrices(bbox)] end end """ scattering_matrices(bbox::Blackbox, Z0::AbstractVector{<:Real}) Find the scattering matrices that map incoming waves to outgoing waves on transmission lines with characteristic impedance `Z0` for each `ω`. """ function scattering_matrices(bbox::Blackbox, Z0::AbstractVector{<:Real}) if bbox.P == I # avoid unnecessary matrix inversion return [admittance_to_scattering(Y, Z0) for Y in admittance_matrices(bbox)] else return [impedance_to_scattering(Z, Z0) for Z in impedance_matrices(bbox)] end end function canonical_gauge(bbox::Blackbox) n = length(bbox.ports) Y = admittance_matrices(bbox) P = Matrix{eltype(eltype(Y))}(I, n, n) Q = Matrix{eltype(eltype(Y))}(I, n, n) return Blackbox(bbox.ω, Y, P, Q, bbox.ports) end """ Blackbox(ω::Vector{<:Real}, pso::PSOModel) Create a Blackbox for a PSOModel where `ω` represents angular frequency. """ function Blackbox(ω::Vector{<:Real}, pso::PSOModel) K, G, C = get_Y(pso) Y = [K ./ s + G + C .* s for s in 1im * ω] P = get_P(pso) * (1.0 + 0im) Q = get_Q(pso) * (1.0 + 0im) return Blackbox(ω, Y, P, Q, get_ports(pso)) end
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
8429
using UniqueVectors: UniqueVector using LinearAlgebra: issymmetric, diag, I using SparseArrays: spzeros export Circuit export partial_copy, matrices export get_inv_inductance, get_inductance export get_conductance, get_resistance export get_elastance, get_capacitance export set_inv_inductance!, set_inductance! export set_conductance!, set_resistance! export set_capacitance!, set_elastance! export SpanningTree, coordinate_matrix export cascade, unite_vertices, cascade_and_unite SparseMat = SparseMatrixCSC{Float64,Int} struct Circuit{T} k::SparseMat # inverse inductances g::SparseMat # conductances c::SparseMat # capacitances vertices::UniqueVector{T} function Circuit{T}(k::SparseMat, g::SparseMat, c::SparseMat, vertices::UniqueVector{T}) where T for m in [k, g, c] @assert issymmetric(m) @assert size(m) == (length(vertices), length(vertices)) @assert all(diag(m) .== 0) @assert all(m .>= 0) end return new{T}(k, g, c, vertices) end end Circuit(k::SparseMat, g::SparseMat, c::SparseMat, vertices::AbstractVector{T}) where T = Circuit{T}(k, g, c, UniqueVector(vertices)) Circuit(k::AbstractMatrix{<:Real}, g::AbstractMatrix{<:Real}, c::AbstractMatrix{<:Real}, vertices::AbstractVector) = Circuit(sparse(1.0 * k), sparse(1.0 * g), sparse(1.0 * c), vertices) function Circuit(vertices::AbstractVector{T}) where T z() = spzeros(length(vertices), length(vertices)) return Circuit(z(), z(), z(), vertices) end function partial_copy(circ::Circuit{T}; k::Union{SparseMat, Nothing}=nothing, g::Union{SparseMat, Nothing}=nothing, c::Union{SparseMat, Nothing}=nothing, vertices::Union{AbstractVector{U}, Nothing}=nothing) where {T, U} k = k == nothing ? circ.k : k g = g == nothing ? circ.g : g c = c == nothing ? circ.c : c vertices = vertices == nothing ? circ.vertices : vertices return Circuit(k, g, c, vertices) end # don't remove space between Base. and == function Base. ==(circ1::Circuit, circ2::Circuit) if typeof(circ1) != typeof(circ2) return false end return all([getfield(circ1, name) == getfield(circ2, name) for name in fieldnames(Circuit)]) end function Base.isapprox(circ1::Circuit, circ2::Circuit) if typeof(circ1) != typeof(circ2) return false end return all([getfield(circ1, name) ≈ getfield(circ2, name) for name in fieldnames(Circuit)[1:end-1]]) end matrices(c::Circuit) = [c.k, c.g, c.c] function get_matrix_element(c::Circuit, matrix_name::Symbol, v0, v1) i0 = findfirst(isequal(v0), c.vertices) i1 = findfirst(isequal(v1), c.vertices) return getfield(c, matrix_name)[i0, i1] end get_inv_inductance(c::Circuit, v0, v1) = get_matrix_element(c, :k, v0, v1) get_inductance(c::Circuit, v0, v1) = inv(get_inv_inductance(c, v0, v1)) get_conductance(c::Circuit, v0, v1) = get_matrix_element(c, :g, v0, v1) get_resistance(c::Circuit, v0, v1) = inv(get_conductance(c, v0, v1)) get_capacitance(c::Circuit, v0, v1) = get_matrix_element(c, :c, v0, v1) get_elastance(c::Circuit, v0, v1) = inv(get_capacitance(c, v0, v1)) function set_matrix_element!(c::Circuit, matrix_name::Symbol, v0, v1, value) @assert value >= zero(value) @assert !isinf(value) i0 = findfirst(isequal(v0), c.vertices) i1 = findfirst(isequal(v1), c.vertices) @assert i0 != i1 matrix = getfield(c, matrix_name) matrix[i0, i1] = value matrix[i1, i0] = value return c end set_inv_inductance!(c::Circuit, v0, v1, value) = set_matrix_element!(c, :k, v0, v1, value) set_inductance!(c::Circuit, v0, v1, value) = set_inv_inductance!(c, v0, v1, inv(value)) set_conductance!(c::Circuit, v0, v1, value) = set_matrix_element!(c, :g, v0, v1, value) set_resistance!(c::Circuit, v0, v1, value) = set_conductance!(c, v0, v1, inv(value)) set_capacitance!(c::Circuit, v0, v1, value) = set_matrix_element!(c, :c, v0, v1, value) set_elastance!(c::Circuit, v0, v1, value) = set_capacitance!(c, v0, v1, inv(value)) ####################################################### # spanning trees ####################################################### struct SpanningTree{T} root::T edges::Vector{Tuple{T, T}} end # depth-1 spanning tree function SpanningTree(vertices::AbstractVector{T}) where T @assert length(vertices) > 0 root = vertices[1] edges = [(v, root) for v in vertices[2:end]] return SpanningTree{T}(root, edges) end # T matrix in section IIC with a given spanning tree. # The direction of the edges passed in is ignored and enforced as being outwards # from the root function coordinate_matrix(c::Circuit{T}, tree::SpanningTree{T}) where T V = length(c.vertices) @assert tree.root in c.vertices @assert length(tree.edges) == V-1 # the correct number of edges for a spanning tree mapping = Dict(tree.root => spzeros(V-1)) # the function l in equation 2 edge_set = Set(enumerate(tree.edges)) while !isempty(edge_set) for e in edge_set (index, (v0, v1)) = e @assert !(v0 in keys(mapping) && v1 in keys(mapping)) # edges contains a loop if v0 in keys(mapping) || v1 in keys(mapping) delete!(edge_set, e) if v0 in keys(mapping) # enforces all edges are oriented away from the root mapping[v1] = 1.0 * mapping[v0] mapping[v1][index] += 1 else mapping[v0] = 1.0 * mapping[v1] mapping[v0][index] += 1 end end end end @assert length(mapping) == V # all vertices have been assigned a coordinate return hcat([mapping[v] for v in c.vertices]...) end # T matrix in section IIC for depth-1 spanning tree coordinate_matrix(num_vertices::Int) = transpose([spzeros(1, num_vertices-1); I]) coordinate_matrix(c::Circuit) = coordinate_matrix(length(c.vertices)) ####################################################### # cascade and unite ####################################################### function cascade(circs::AbstractVector{Circuit{T}}) where T circuit_matrices = [cat(m..., dims=(1,2)) for m in zip([matrices(circ) for circ in circs]...)] vertices = vcat([circ.vertices for circ in circs]...) return Circuit(circuit_matrices..., vertices) end cascade(circs::Vararg{Circuit{T}}) where T = cascade(collect(circs)) function unite_vertices(circ::Circuit{T}, vertices::AbstractVector{T}) where T if length(vertices) <= 1 return circ end n = length(circ.vertices) vertex_inds = [findfirst(isequal(v), circ.vertices) for v in vertices] keep_inds = filter(x -> !(x in vertex_inds[2:end]), 1:n) function unite_indices(mat::AbstractMatrix) m = copy(mat) ind1 = vertex_inds[1] for ind2 in vertex_inds[2:end] m[ind1, :] += mat[ind2, :] m[:, ind1] += mat[:, ind2] end m = m[keep_inds, keep_inds] for i in 1:size(m, 1) m[i, i] = 0 end return m end circuit_matrices = [unite_indices(mat) for mat in matrices(circ)] return Circuit(circuit_matrices..., circ.vertices[keep_inds]) end unite_vertices(circ::Circuit{T}, vertices::Vararg{T}) where T = unite_vertices(circ, collect(vertices)) # cascade all circuits and unite vertices with the same name function cascade_and_unite(circs::AbstractVector{Circuit{T}}) where T @assert length(circs) >= 1 if length(circs) == 1 return circs[1] end # number the vertices so that the names are all distinct and then cascade vertex_number = 1 function rename(circ) vertices = [(vertex_number + i - 1, vertex) for (i, vertex) in enumerate(circ.vertices)] vertex_number += length(vertices) return Circuit(matrices(circ)..., vertices) end circ = cascade(map(rename, circs)) # merge all vertices with the same name original_vertices = vcat([c.vertices for c in circs]...) for vertex in unique(original_vertices) inds = findall([v[2] == vertex for v in circ.vertices]) circ = unite_vertices(circ, circ.vertices[inds]) end # remove numbering return Circuit(matrices(circ)..., [v[2] for v in circ.vertices]) end cascade_and_unite(circs::Vararg{Circuit{T}}) where T = cascade_and_unite(collect(circs))
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
9442
export CircuitComponent, SeriesComponent, ParallelComponent, TransmissionLine export Cascade, PortOperation """ An abstract representation of a circuit component e.g. a capacitor, inductor, or transmission line. """ abstract type CircuitComponent end # the empty string is used for the ground net ground = "" """ Blackbox(ω::Vector{<:Real}, comp::CircuitComponent) Blackbox(ω::Vector{<:Real}, comp::TransmissionLine) Blackbox(ω::Vector{<:Real}, comp::Cascade) Create a Blackbox model for a CircuitComponent. """ function Blackbox(ω::Vector{<:Real}, comp::CircuitComponent) return canonical_gauge(Blackbox(ω, PSOModel(comp))) end """ SeriesComponent(p1::String, p2::String, inv_inductance::Float64, conductance::Float64, capacitance::Float64) SeriesComponent(p1::String, p2::String, k::Real, g::Real, c::Real) A parallel inductor, capacitor, and resistor between two ports. """ struct SeriesComponent <: CircuitComponent p1::String p2::String inv_inductance::Float64 conductance::Float64 capacitance::Float64 function SeriesComponent(p1::String, p2::String, inv_inductance::Float64, conductance::Float64, capacitance::Float64) @assert p1 != ground @assert p2 != ground return new(p1, p2, inv_inductance, conductance, capacitance) end end SeriesComponent(p1::String, p2::String, k::Real, g::Real, c::Real) = SeriesComponent(p1, p2, 1.0 * k, 1.0 * g, 1.0 * c) """ Circuit(comp::SeriesComponent) Circuit(comp::ParallelComponent) Circuit(comp::TransmissionLine, vertex_prefix::AbstractString, stages_per_segment::Union{Nothing, AbstractVector{Int}}=nothing) Create a Circuit for a CircuitComponent. """ function Circuit(comp::SeriesComponent) c = Circuit([ground, comp.p1, comp.p2]) set_inv_inductance!(c, comp.p1, comp.p2, comp.inv_inductance) set_conductance!(c, comp.p1, comp.p2, comp.conductance) set_capacitance!(c, comp.p1, comp.p2, comp.capacitance) return c end """ PSOModel(comp::SeriesComponent) PSOModel(comp::ParallelComponent) PSOModel(comp::TransmissionLine) PSOModel(comp::Cascade) Create a PSOModel for a CircuitComponent. """ function PSOModel(comp::SeriesComponent) return PSOModel(Circuit(comp), [(comp.p1, ground), (comp.p2, ground)], [comp.p1, comp.p2]) end """ ParallelComponent(p::String, inv_inductance::Float64, conductance::Float64, capacitance::Float64) ParallelComponent(p::String, k::Real, g::Real, c::Real) A parallel inductor, capacitor, and resistor with one port. """ struct ParallelComponent <: CircuitComponent p::String inv_inductance::Float64 conductance::Float64 capacitance::Float64 function ParallelComponent(p::String, inv_inductance::Float64, conductance::Float64, capacitance::Float64) @assert p != ground return new(p, inv_inductance, conductance, capacitance) end end ParallelComponent(p::String, k::Real, g::Real, c::Real) = ParallelComponent(p, 1.0 * k, 1.0 * g, 1.0 * c) function Circuit(comp::ParallelComponent) c = Circuit([ground, comp.p]) set_inv_inductance!(c, comp.p, ground, comp.inv_inductance) set_conductance!(c, comp.p, ground, comp.conductance) set_capacitance!(c, comp.p, ground, comp.capacitance) return c end PSOModel(comp::ParallelComponent) = PSOModel(Circuit(comp), [(comp.p, ground)], [comp.p]) """ TransmissionLine(ports::Vector{String}, propagation_speed::Float64, characteristic_impedance::Float64, len::Float64, locations::AbstractVector{Float64}, δ::Float64) TransmissionLine(ports::Vector{String}, propagation_speed::Real, characteristic_impedance::Real, len::Real; locations::Vector{<:Real}=Float64[], δ::Real=len/100) A transmission line with given propagation speed and characteristic impedance. Ports will be present at the two ends of the transmission line in addition to the `locations`. `δ` is the maximum length of an LC stage in the circuit approximation to a transmission line. It is ignored when constructing a Blackbox from a TransmissionLine. """ struct TransmissionLine <: CircuitComponent ports::Vector{String} propagation_speed::Float64 characteristic_impedance::Float64 len::Float64 # length, but that's the name of a built in function port_locations::UniqueVector{Float64} δ::Float64 # ignored when converted directly to Blackbox function TransmissionLine(ports::Vector{String}, propagation_speed::Float64, characteristic_impedance::Float64, len::Float64, locations::AbstractVector{Float64}, δ::Float64) @assert !(ground in ports) @assert propagation_speed > 0 @assert characteristic_impedance > 0 @assert len > 0 @assert all(locations .> 0) @assert all(locations .< len) port_locations = UniqueVector([0; locations; len]) @assert length(ports) == length(port_locations) @assert δ >= 0 return new(ports, propagation_speed, characteristic_impedance, len, port_locations, δ) end end TransmissionLine(ports::Vector{String}, propagation_speed::Real, characteristic_impedance::Real, len::Real; locations::Vector{<:Real}=Float64[], δ::Real=len/100) = TransmissionLine(ports, propagation_speed, characteristic_impedance, len, locations, δ) function Circuit_and_ports(comp::TransmissionLine, stages_per_segment::Union{Nothing, AbstractVector{Int}}=nothing) sort_inds = sortperm(comp.port_locations) port_locations, ports = comp.port_locations[sort_inds], comp.ports[sort_inds] ν, Z0, δ = comp.propagation_speed, comp.characteristic_impedance, comp.δ segment_lengths = port_locations[2:end] - port_locations[1:end-1] if stages_per_segment == nothing stages_per_segment = [ceil(Int, len / δ) for len in segment_lengths] end num_vertices = sum(stages_per_segment) + 2 # ground is 0 c = Circuit(0:(num_vertices-1)) v0 = 0 port_edges = Tuple{Int, Int}[] for (segment_length, num_stages) in zip(segment_lengths, stages_per_segment) stage_length = 1.0 * segment_length / num_stages inductance = stage_length * Z0 / ν capacitance = stage_length / (Z0 * ν) for v in (v0 + 1):(v0 + num_stages) set_inductance!(c, v, v + 1, inductance) end for v in [v0 + 1, v0 + num_stages + 1] set_capacitance!(c, v, 0, 0.5 * capacitance + get_capacitance(c, v, 0)) end for v in (v0 + 2):(v0 + num_stages) set_capacitance!(c, v, 0, capacitance) end push!(port_edges, (v0 + 1, 0)) v0 += num_stages end @assert v0 + 1 == num_vertices-1 push!(port_edges, (num_vertices-1, 0)) return c, port_edges, ports end function Circuit(comp::TransmissionLine, vertex_prefix::AbstractString, stages_per_segment::Union{Nothing, AbstractVector{Int}}=nothing) c, port_edges, ports = Circuit_and_ports(comp, stages_per_segment) vertices = [ground; ["$(vertex_prefix)$v" for v in c.vertices[2:end]]] for (e, p) in zip(port_edges, ports) vertices[e[1]+1] = p end return Circuit(matrices(c)..., vertices) end PSOModel(comp::TransmissionLine) = PSOModel(Circuit_and_ports(comp)...) function Blackbox(ω::Vector{<:Real}, comp::TransmissionLine) ν = comp.propagation_speed Z0 = comp.characteristic_impedance function Blackbox_from_params(ports::Vector, len::Real) u = exp.(-1im * ω * len/ν) # S matrix is [[0, u] [u, 0]] # turn this into Y matrix using closed form expression denom = (1 .- u.^2) * Z0 Y11_Y22 = (1 .+ u.^2) ./ denom Y12_Y21 = -2 * u ./ denom Y = [[[a, b] [b, a]] for (a, b) in zip(Y11_Y22, Y12_Y21)] U = eltype(eltype(Y)) P = Matrix{U}(I, 2, 2) return Blackbox(ω, Y, P, P, ports) end sort_inds = sortperm(comp.port_locations) sort_port_locations = comp.port_locations[sort_inds] sort_ports = comp.ports[sort_inds] params = [(ports = [sort_ports[i], sort_ports[i + 1]], len = sort_port_locations[i+1] - sort_port_locations[i]) for i in 1:(length(comp.ports)-1)] return cascade_and_unite([Blackbox_from_params(p...) for p in params]) end """ The functions allowed in a Cascade. """ PortOperation = Union{typeof(short_ports), typeof(short_ports_except), typeof(open_ports), typeof(open_ports_except), typeof(unite_ports), typeof(canonical_gauge)} """ Cascade(components::Vector{CircuitComponent}, operations::Vector{Pair{PortOperation, Vector{String}}}) A system created by cascading and uniting several CircuitComponents and then applying PortOperations to the ports. """ struct Cascade <: CircuitComponent components::Vector{CircuitComponent} operations::Vector{Pair{PortOperation, Vector{String}}} end function PSOModel(comp::Cascade) model = cascade_and_unite([PSOModel(m) for m in comp.components]) for (op, args) in comp.operations model = op(model, args...) end return model end function Blackbox(ω::Vector{<:Real}, comp::Cascade) model = cascade_and_unite([Blackbox(ω, m) for m in comp.components]) for (op, args) in comp.operations model = op(model, args...) end return model end
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
12758
using LinearAlgebra: lu, I, ldiv!, rmul!, norm, qr, rank, nullspace using SparseArrays: sparse, spzeros, SparseMatrixCSC, findnz using Combinatorics: combinations using MatrixNetworks: bfs, scomponents export sparse_nullbasis, nullbasis """ closest_permutation(mat::AbstractMatrix{<:Real}) Given an `m × n` matrix `mat` where `m ≥ n`, find an assignment of rows to columns such that each column is assigned a distinct row and the absolute values of the entries corresponding to the assignment is as large as possible under lexicographical ordering. Return a matrix of Bools where each column has a single true in it corresponding to its assignment. """ function closest_permutation(mat::AbstractMatrix) nrows, ncols = size(mat) @assert nrows >= ncols ans = similar(BitArray, axes(mat)) # initialize answer as all false fill!(ans, false) ax2 = axes(mat, 2) # Do a first pass, ignoring collisions. colidxs = similar(ax2) for col in ax2 @inbounds begin _, i = findmax(mat[:, col]) ans[i, col] = true colidxs[col] = i end end # Prepare a BitArray `collisions` and mark collided columns in it. sp = sortperm(colidxs) sortedidxs = colidxs[sp] collisions = similar(BitArray, ax2) fill!(collisions, false) previndex = firstindex(sortedidxs) @inbounds for i in eachindex(sortedidxs) isequal(i, firstindex(sortedidxs)) && continue if isequal(sortedidxs[i], sortedidxs[previndex]) collisions[sp[i]] = true collisions[sp[previndex]] = true end previndex = i end @inbounds stack = sp[collisions] isempty(stack) && return ans # reset columns in `ans` where collisions happened for col in stack @inbounds ans[:, col] .= false end # fall-back to single-threaded collision resolution on collided columns return _closest_permutation(mat, ans, stack) end function _closest_permutation(mat::AbstractMatrix, ans, stack) ax1 = axes(mat, 1) ax1l = length(ax1) possible_assignments = Vector{eltype(ax1)}() # row indices @inbounds while length(stack) > 0 col = pop!(stack) resize!(possible_assignments, ax1l) possible_assignments .= axes(mat, 1) assigned = false while !assigned value, i = findmax(mat[possible_assignments, col]) assignment = possible_assignments[i] collision = findfirst(ans[assignment, :]) if collision == nothing ans[assignment, col] = true assigned = true elseif mat[assignment, collision] < value ans[assignment, col] = true assigned = true ans[assignment, collision] = false push!(stack, collision) # need to reassign collision else deleteat!(possible_assignments, i) # try somewhere else end end end return ans end """ match_vectors(port_vectors::AbstractMatrix{<:Number}, eigenvectors::AbstractMatrix{<:Number}) For each column of `port_vectors` find a corresponding column of `eigenvectors` that has a similar "shape". Match each `port_vector` to a different `eigenvector`. """ function match_vectors(port_vectors::AbstractMatrix{<:Number}, eigenvectors::AbstractMatrix{<:Number}) @assert size(port_vectors, 1) == size(eigenvectors, 1) @assert size(port_vectors, 2) <= size(eigenvectors, 2) mat = abs2.(eigenvectors' * port_vectors) # tall skinny matrix _, indices = findmax(closest_permutation(mat), dims=1) return [index[1] for index in vcat(indices...)] end """ inv_power_eigen(M::AbstractMatrix{<:Number}; v0::AbstractVector{<:Number}=rand(Complex{real(eltype(M))}, size(M, 1)), λ0::Union{Number, Nothing}=nothing, pred::Function=(x,y) -> norm(x-y) < eps()) Use the inverse power method to find an eigenvalue and eigenvector. # Arguments - `v0::AbstractVector{<:Number}`: an initial value for the eigenvector. A random vector is used if `v0` is not given. - `λ0::Union{Number, Nothing}`: an initial value for the eigenvalue. `v' * M * v` is used if `λ0` is not given. - `pred::Function`: a function taking two successive eigenvalue estimates. The algorithm halts when `pred` returns true. """ function inv_power_eigen(M::AbstractMatrix{<:Number}; v0::AbstractVector{<:Number}=rand(Complex{real(eltype(M))}, size(M, 1)), λ0::Union{Number, Nothing}=nothing, pred::Function=(x,y) -> norm(x-y) < eps()) v = v0/norm(v0) l = length(v) @assert size(M) == (l, l) λ = (λ0 == nothing) ? v' * M * v : λ0 done = false μ = λ A = lu(M - λ * I) while !done ldiv!(A, v) rmul!(v, 1/norm(v)) μ = v' * M * v done = pred(λ, μ)::Bool λ = μ end return μ, v end ####################################################### # sparse nullbases ####################################################### """ row_column_graph(mat::SparseMatrixCSC{<:Number, Int}) Let `mat` be a matrix with the following properties - for any two rows of `mat` there is at most one column on which both rows are nonzero - any column of `mat` has at most 2 nonzero values The rows of `mat` form a simple graph where two rows have an edge if and only if they share a nonzero column in `mat`. We add one additional vertex to this graph and for each column with exactly one nonzero value, we add an edge between its nonzero row and the additional vertex. In this graph every column with at least one nonzero value is represented by an edge. Produce a matrix `A` where `A[i,j]` is the column shared by rows `i` and `j` if such a column exists, and `0` otherwise. If `i == size(mat, 1) + 1`, then `A[i,j]` is chosen arbitrarily from the columns whose unique nonzero value is in row `j`, or 0 if no such columns exist. The case where `j == size(mat, 1) + 1` is analogous. `A` is an adjacency matrix for the graph with extra information relating the graph to `mat`. """ function row_column_graph(mat::SparseMatrixCSC{<:Number, Int}) num_vertices = size(mat, 1) + 1 row_inds, col_inds, vals = Int[], Int[], Int[] matT = sparse(transpose(mat)) # SparseMatrixCSC row access is slow for (r1, r2) in combinations(1:(num_vertices-1), 2) inds = findall((matT[:, r1] .!= 0) .& (matT[:, r2] .!= 0)) @assert length(inds) <= 1 # any two rows share at most 1 common nonzero column if length(inds) == 1 c = inds[1] push!(row_inds, r1); push!(col_inds, r2); push!(vals, c) push!(row_inds, r2); push!(col_inds, r1); push!(vals, c) end end root = num_vertices connected_to_root = Set{Int}() for c in 1:size(mat, 2) inds = findall(mat[:, c] .!= 0) @assert length(inds) <= 2 # any column has at most 2 nonzero values if length(inds) == 1 r = inds[1] if !(r in connected_to_root) push!(connected_to_root, r) push!(row_inds, root); push!(col_inds, r); push!(vals, c) push!(row_inds, r); push!(col_inds, root); push!(vals, c) end end end adj = sparse(row_inds, col_inds, vals, num_vertices, num_vertices) return adj end """ connected_row_column_graph(mat::SparseMatrixCSC{<:Number, Int}) Let `mat` be a matrix with the following properties - for any two rows of `mat` there is at most one column on which both rows are nonzero - any column of `mat` has at most 2 nonzero values Produce a matrix `mat_connected` with the same nullspace as `mat` such that `row_column_graph(mat_connected)` encodes a connected graph. Return `mat_connected` and `row_column_graph(mat_connected)`. """ function connected_row_column_graph(mat::SparseMatrixCSC{<:Number, Int}) adj = row_column_graph(mat) components = scomponents(adj) if components.number > 1 # adj is not connected root_component = components.map[end] remove_rows = Int[] zero_columns = Set{Int}() matT = sparse(transpose(mat)) # SparseMatrixCSC row access is slow for component in 1:components.number if component != root_component inds = findall(components.map .== component) num_dependent_rows = length(inds) - find_rank(matT[:, inds]) if num_dependent_rows > 0 # some rows are redundant, remove them append!(remove_rows, inds[1:num_dependent_rows]) else # submat has full rank and trivial nullspace append!(remove_rows, inds) # remove these rows for i in inds # set columns in these rows to 0 push!(zero_columns, findall(matT[:, i] .!= 0)...) end end end end num_zeros = length(zero_columns) zero_rows = sparse(1:num_zeros, collect(zero_columns), ones(num_zeros), num_zeros, size(mat, 2)) remaining_inds = setdiff(1:size(mat, 1), remove_rows) mat = vcat(transpose(matT[:, remaining_inds]), zero_rows) adj = row_column_graph(mat) # adj is now connected end return mat, adj end find_rank(m::Matrix) = rank(m) find_rank(m::SparseMatrixCSC) = rank(qr(1.0 * m)) """ bfs_tree(adj::AbstractMatrix{Int}, root::Int) Produce the vertices and edges of the tree found by performing breadth first on the graph with adjacency matrix `adj` starting from the vertex `root`. The vertices includes all vertices of the tree besides the root. """ function bfs_tree(adj::AbstractMatrix{Int}, root::Int) dists, _, predecessors = bfs(adj, root) tree_vertices, tree_edges = Int[], Tuple{Int, Int}[] for i1 in reverse(sortperm(dists)) i2 = predecessors[i1] if dists[i1] > 0 # exclude unreachables and the root push!(tree_vertices, i1) push!(tree_edges, tuple(sort([i1, i2])...)) end end return tree_vertices, tree_edges end # Find the nullspace of mat by solving the equations corresponding to each of its rows. We # solve row `tree_rows[i]`` by eliminating variable `tree_columns[i]`. function sparse_nullbasis(mat::SparseMatrixCSC{<:Number, Int}, tree_rows::AbstractVector{Int}, tree_columns::AbstractVector{Int}) @assert length(tree_rows) == length(tree_columns) == size(mat, 1) non_tree_columns = setdiff(1:size(mat, 2), tree_columns) # first create mapping that preserves the non_tree_columns row_inds, col_inds, vals = Int[], Int[], Float64[] for (col_ind, row_ind) in enumerate(non_tree_columns) push!(row_inds, row_ind); push!(col_inds, col_ind); push!(vals, 1) end # work with transposes because SparseMatrixCSC row access is slow nullbasisT = sparse(col_inds, row_inds, vals, length(non_tree_columns), size(mat, 2)) matT = sparse(transpose(mat)) # now solve row constraints by walking the tree from the leaves to the root for (mat_row, mat_col) in zip(tree_rows, tree_columns) null_row = spzeros(size(nullbasisT, 1)) for other_mat_col in findall(matT[:, mat_row] .!= 0) if other_mat_col != mat_col null_row += (-mat[mat_row, other_mat_col]/mat[mat_row, mat_col]) * nullbasisT[:, other_mat_col] end end nullbasisT[:, mat_col] = null_row end return sparse(transpose(nullbasisT)) end """ sparse_nullbasis(mat::SparseMatrixCSC{<:Number, Int}) Let `mat` be a matrix with the following properties - for any two rows of `mat` there is at most one column on which both rows are nonzero - any column of `mat` has at most 2 nonzero values Produce a sparse matrix whose columns form a basis for the nullspace of `mat`. """ function sparse_nullbasis(mat::SparseMatrixCSC{<:Number, Int}) mat, adj = connected_row_column_graph(mat) tree_rows, tree_edges = bfs_tree(adj, size(adj, 1)) tree_columns = [adj[r1, r2] for (r1, r2) in tree_edges] return sparse_nullbasis(mat, tree_rows, tree_columns) end """ nullbasis(mat::AbstractMatrix{<:Number}; warn::Bool=true) Return a `SparseMatrixCSC` whose columns form a basis for the null space of mat. If `mat` satisfies the conditions of `sparse_nullbasis`, a sparse matrix is returned. Otherwise a warning is issued and the `LinearAlgebra.nullspace` function is used. """ function nullbasis(mat::AbstractMatrix{<:Number}; warn::Bool=true) try return sparse_nullbasis(sparse(mat)) catch AssertionError if warn @warn "sparse nullbasis not found" end return sparse(nullspace(collect(mat))) end end
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
8059
using UniqueVectors: UniqueVector using SparseArrays: spzeros, spdiagm using LinearAlgebra: I, eigen, svd, diagm using IterativeSolvers: lobpcg export PSOModel export lossless_modes_dense, lossy_modes_dense, lossless_modes_sparse """ PSOModel{T, U}(K::U, G::U, C::U, P::U, Q::U, ports::UniqueVector{T}) where {T, U} PSOModel(K::U, G::U, C::U, P::U, Q::U, ports::AbstractVector{T}) where {T, U} A Positive Second Order model, representing the equations `(K + G∂ₜ + C∂²ₜ)Φ = Px`, `y = Qᵀ∂ₜΦ`. """ struct PSOModel{T, U<:AbstractMatrix{Float64}} <: AdmittanceModel{T} K::U G::U C::U P::U Q::U ports::UniqueVector{T} function PSOModel{T, U}(K::U, G::U, C::U, P::U, Q::U, ports::UniqueVector{T}) where {T, U} l = size(K, 1) @assert size(P) == (l, length(ports)) @assert size(Q) == (l, length(ports)) @assert all([size(y) == (l, l) for y in [K, G, C]]) return new{T, U}(K, G, C, P, Q, ports) end end PSOModel(K::U, G::U, C::U, P::U, Q::U, ports::AbstractVector{T}) where {T, U} = PSOModel{T, U}(K, G, C, P, Q, UniqueVector(ports)) get_Y(pso::PSOModel) = [pso.K, pso.G, pso.C] get_P(pso::PSOModel) = pso.P get_Q(pso::PSOModel) = pso.Q get_ports(pso::PSOModel) = pso.ports function partial_copy(pso::PSOModel{T, U}; Y::Union{Vector{V}, Nothing}=nothing, P::Union{V, Nothing}=nothing, Q::Union{V, Nothing}=nothing, ports::Union{AbstractVector{W}, Nothing}=nothing) where {T, U, V, W} Y = Y == nothing ? get_Y(pso) : Y P = P == nothing ? get_P(pso) : P Q = Q == nothing ? get_Q(pso) : Q ports = ports == nothing ? get_ports(pso) : ports return PSOModel(Y..., P, Q, ports) end compatible(psos::AbstractVector{PSOModel{T, U}}) where {T, U} = true function canonical_gauge(pso::PSOModel) fullP = collect(pso.P) F = qr(fullP) (m, n) = size(fullP) transform = (F.Q * Matrix(I,m,m)) * [transpose(inv(F.R)) zeros(n, m-n); zeros(m-n, n) Matrix(I, m-n, m-n)] return apply_transform(pso, transform) end # NOTE we cannot write lossy_modes_sparse because KrylovKit.geneigsolve # solves Av = λBv but requires that B is positive semidefinite and A is # symmetric or Hermitian. For lossy modes, we can make B positive semidefinite # and A nonsymmetric or A symmetric and B not positive semidefinite. If # KrylovKit gains the ability to solve either type of eigenproblem we can # write lossy_modes_sparse. """ lossy_modes_dense(pso::PSOModel; min_freq::Real=0, max_freq::Union{Real, Nothing}=nothing, real_tol::Real=Inf, imag_tol::Real=Inf) Use a dense eigenvalue solver to find the decaying modes of the PSOModel. Each mode consists of an eigenvalue `λ` and a spatial distribution vector `v`. The frequency of the mode is `imag(λ)/(2π)` and the decay rate is `-2*real(λ)/(2π)`. `min_freq` and `max_freq` give the frequency range in which to find eigenvalues. Passivity is enforced using an inverse power method solver, and `real_tol` and `imag_tol` are the tolerances used in that method to determine convergence of the real and imaginary parts of the eigenvalue. """ function lossy_modes_dense(pso::PSOModel; min_freq::Real=0, max_freq::Union{Real, Nothing}=nothing, real_tol::Real=Inf, imag_tol::Real=Inf) K, G, C = get_Y(pso) Z = zero(K) M = collect([C Z; Z I]) \ collect([-G -K; I Z]) M_scale = maximum(abs.(M)) # for some reason eigen(Y \ X) seems to perform better than eigen(X, Y) values, vectors = eigen(M/M_scale) values *= M_scale freqs = imag.(values)/(2π) if max_freq == nothing max_freq = maximum(freqs) end inds = findall(max_freq .>= freqs .>= min_freq) values, vectors = values[inds], vectors[:, inds] # enforce passivity using inverse power method pred(x, y) = ((real(y) <= 0) && (abs(real(x-y)) < real_tol) && (abs(imag(x-y)) < imag_tol)) for i in 1:length(values) if real(values[i]) > 0 λ, v = inv_power_eigen(M, v0=vectors[:, i], λ0=values[i], pred=pred) values[i] = λ vectors[:, i] = v end end # the second half of the eigenvector is the spatial part vectors = vectors[size(K, 1)+1:end, :] # normalize the columns return values, vectors./sqrt.(sum(abs2.(vectors), dims=1)) end """ lossless_modes_dense(pso::PSOModel; min_freq::Real=0, max_freq::Union{Real, Nothing}=nothing) Use a dense svd solver to find the modes of the PSOModel neglecting loss. Each mode consists of an eigenvalue `λ` and an eigenvector `v`. The frequency of the mode is `imag(λ)/(2π)` and the decay rate is `-2*real(λ)/(2π)`. `min_freq` and `max_freq` give the frequency range in which to find eigenvalues. """ function lossless_modes_dense(pso::PSOModel; min_freq::Real=0, max_freq::Union{Real, Nothing}=nothing) K, _, C = get_Y(pso) K = .5 * (transpose(K) + K) C = .5 * (transpose(C) + C) sqrt_C, sqrt_K = sqrt(collect(C)), sqrt(collect(K)) M = sqrt_C \ sqrt_K scale = maximum(abs.(M)) U, S, Vt = svd(M/scale) freqs = S * scale/(2π) vectors = real.(sqrt_C \ U) if max_freq == nothing max_freq = maximum(freqs) end inds = findall(max_freq .>= freqs .>= min_freq) freqs, vectors = freqs[inds], vectors[:, inds] inds = sortperm(freqs) return freqs[inds] * 2π * 1im, vectors[:, inds] end """ lossless_modes_sparse(pso::PSOModel; num_modes=1, maxiter=200) Use a sparse generalized eigenvalue solver to find the `num_modes` lowest frequency modes of the PSOModel neglecting loss. Each mode consists of an eigenvalue `λ` and an eigenvector `v`. The frequency of the mode is `imag(λ)/(2π)` and the decay rate is `-2*real(λ)/(2π)`. """ function lossless_modes_sparse(pso::PSOModel; num_modes=1, maxiter=200) K, _, C = get_Y(pso) K = (K + transpose(K))/2 C = (C + transpose(C))/2 K_scale, C_scale = maximum(abs.(K)), maximum(abs.(C)) result = lobpcg(K/K_scale, C/C_scale, false, num_modes, maxiter=maxiter) values = result.λ * (K_scale/C_scale) vectors = result.X return real.(sqrt.(values)) * 1im, vectors end function port_matrix(circuit::Circuit, port_edges::Vector{<:Tuple}) coord_matrix = coordinate_matrix(circuit) if length(port_edges) > 0 port_indices = [(findfirst(isequal(p[1]), circuit.vertices), findfirst(isequal(p[2]), circuit.vertices)) for p in port_edges] return hcat([coord_matrix[:, i1] - coord_matrix[:, i2] for (i1, i2) in port_indices]...) else return spzeros(size(coord_matrix, 1), 0) end end circuit_to_pso_matrix(m::AbstractMatrix{<:Real}) = (-m + spdiagm(0=>sum(m, dims=2)[:,1]))[2:end, 2:end] """ PSOModel(circuit::Circuit, port_edges::Vector{<:Tuple}, port_names::AbstractVector) Create a PSOModel for a circuit with ports on given edges. The spanning tree where the first vertex is chosen as ground and all other vertices are neighbors of ground is used. """ function PSOModel(circuit::Circuit, port_edges::Vector{<:Tuple}, port_names::AbstractVector) Y = [circuit_to_pso_matrix(m) for m in matrices(circuit)] P = port_matrix(circuit, port_edges) return PSOModel(Y..., P, P, port_names) end coordinate_transform(m::AbstractMatrix{<:Real}) = m[:,2:end] .- m[:,1] function coordinate_transform(coord_matrix_from::AbstractMatrix{<:Real}, coord_matrix_to::AbstractMatrix{<:Real}) return coordinate_transform(coord_matrix_to)/coordinate_transform(coord_matrix_from) end """ PSOModel(circuit::Circuit, port_edges::Vector{<:Tuple}, port_names::AbstractVector, tree::SpanningTree) Create a PSOModel for a circuit with ports on given edges and using the given spanning tree. """ function PSOModel(circuit::Circuit, port_edges::Vector{<:Tuple}, port_names::AbstractVector, tree::SpanningTree) pso = PSOModel(circuit, port_edges, port_names) transform = transpose(coordinate_transform(coordinate_matrix(circuit, tree))) return apply_transform(pso, transform) end
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
3247
module CircuitExample using AdmittanceModels Q0_SIGNAL = "q0_signal" Q0_GROUND = "q0_ground" Q1_SIGNAL = "q1_signal" Q1_GROUND = "q1_ground" GROUND = AdmittanceModels.ground circuit = Circuit([Q0_SIGNAL, Q0_GROUND, Q1_SIGNAL, Q1_GROUND, GROUND]) set_capacitance!(circuit, Q0_SIGNAL, Q0_GROUND, 100.0) set_capacitance!(circuit, Q1_SIGNAL, Q1_GROUND, 100.0) set_capacitance!(circuit, Q0_SIGNAL, Q1_SIGNAL, 10.0) set_capacitance!(circuit, Q0_GROUND, Q1_GROUND, 10.0) set_capacitance!(circuit, Q0_GROUND, GROUND, 1.0) set_capacitance!(circuit, Q1_GROUND, GROUND, 1.0) set_inv_inductance!(circuit, Q0_SIGNAL, Q0_GROUND, .1) set_inv_inductance!(circuit, Q1_SIGNAL, Q1_GROUND, .1) root = GROUND edges = [(Q0_SIGNAL, Q0_GROUND), (Q0_GROUND, GROUND), (Q1_SIGNAL, Q1_GROUND), (Q1_GROUND, GROUND)] tree = SpanningTree(root, edges) end module CircuitCascadeExample using LinearAlgebra: I using AdmittanceModels circuit0 = Circuit([0,1,2,3]) set_capacitance!(circuit0, 0, 1, 1.0) set_capacitance!(circuit0, 0, 2, 2.0) set_capacitance!(circuit0, 0, 3, 1.0) set_capacitance!(circuit0, 1, 2, 10.0) set_capacitance!(circuit0, 1, 3, 20.0) set_capacitance!(circuit0, 2, 3, 30.0) c = circuit0.c i = ones(size(c)...) - I k = 2*c + i g = 3*c + 2 * i circuit0 = Circuit(k, g, c, circuit0.vertices) circuit1 = Circuit(2*k+3*i, 3*g+5*i, 8*c+2*i, [4,5,6,7]) circuit2 = Circuit(12*k+4*i, 11*g+2*i, 9*c+i, [8,9,10,11]) end module PSOModelExample using AdmittanceModels using SparseArrays: sparse, spzeros K = sparse(hcat([[0.1, 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0.1, 0.], [0., 0., 0., 0.]]...)) G = spzeros(size(K)...) C = sparse(hcat([[110., 10., -10., -10.], [10., 21., -10., -20.], [-10., -10., 110., 10.], [-10., -20., 10., 21.]]...)) PORT_0 = "port_0" PORT_1 = "port_1" ports = [PORT_0, PORT_1] P = 1.0 * sparse([[1, 0, 0, 0] [0, 0, 1, 0]]) pso = PSOModel(K, G, C, P, P, ports) end module LRCExample using AdmittanceModels circuit = Circuit([0, 1]) l, r, c = 1.0, 100.0, 3.0 ω = sqrt(1/(l * c) - 1/(2 * r * c)^2) κ = 1/(r * c) set_inv_inductance!(circuit, 0, 1, 1/l) set_conductance!(circuit, 0, 1, 1/r) set_capacitance!(circuit, 0, 1, c) pso = PSOModel(circuit, [(0, 1)], ["port"]) end module HalfWaveExample using AdmittanceModels ν, Z0, δ = 1e8, 50.0, 150e-6 resonator_length = 10e-3 coupler_locs = resonator_length * [1/3, 2/3] resonator = TransmissionLine(["short_1", "coupler_1", "coupler_2", "short_2"], ν, Z0, resonator_length, coupler_locs, δ) coupling_cs = [10, 15] * 1e-15 capacitors = [SeriesComponent("coupler_$i", "qubit_$i", 0, 0, coupling_cs[i]) for i in 1:2] qubit_cs = [100, 120] * 1e-15 qubits = [ParallelComponent("qubit_$i", 0, 0, qubit_cs[i]) for i in 1:2] casc = Cascade([resonator; capacitors; qubits], [short_ports => ["short_1", "short_2"], open_ports_except => ["qubit_1", "qubit_2"]]) pso = PSOModel(casc) end
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
279
include("examples.jl") include("test_linear_algebra.jl") include("test_circuit.jl") include("test_pso_model.jl") include("test_blackbox.jl") include("test_circuit_components.jl") include("test_ansys.jl") include("../paper/radiative_loss.jl") include("../paper/hybridization.jl")
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
1533
@testset "Q3D plain text parsing" begin data(x) = joinpath(@__DIR__, "data", x) # file should satisfy some basic checks @test_throws AssertionError Circuit(data("empty.txt")) @test_throws AssertionError Circuit(data("one_block.txt")) # test expected output d = data("dummy_gc_1.txt") @test Circuit(d).vertices == ["net1", "net2", "net3", "net4"] design_variation, vertex_names, capacitance_matrix = AdmittanceModels.parse_q3d_txt(d, :capacitance) # test negative val + no units @test design_variation["dummy1"] == (-1.23, "") # test negative exponent + units @test design_variation["dummy2"] == (9.0e-7, "mm") # test negative val, positive exponent + units @test design_variation["dummy3"] == (-1.0e21, "pF") # test units that start with "e" (the parser should look for things like 'e09' or 'e-12') @test design_variation["dummy4"] == (1.2, "eunits") # unit not implemented @test_throws ErrorException try Circuit(data("dummy_gc_2.txt"); matrix_types = [:conductance]) catch e buf = IOBuffer() showerror(buf, e) message = String(take!(buf)) @test occursin("not implemented", message) rethrow(e) end @test_throws ErrorException try Circuit(data("dummy_gc_3.txt"); matrix_types = [:conductance]) catch e buf = IOBuffer() showerror(buf, e) message = String(take!(buf)) @test occursin("units not given", message) rethrow(e) end end
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
3056
using Test, AdmittanceModels, LinearAlgebra import .PSOModelExample, .LRCExample, .CircuitCascadeExample const ae = PSOModelExample const lrce = LRCExample const cce = CircuitCascadeExample @testset "PSOModel to Blackbox" begin # test 1 ω = collect(range(4, stop=6, length=1000)) * 1e9 * 2π bbox = Blackbox(ω, ae.pso) @test get_ports(bbox) == get_ports(ae.pso) @test length(get_Y(bbox)) == length(ω) @test size(get_Y(bbox)[1]) == size(ae.pso.K) bbox = canonical_gauge(bbox) @test size(get_Y(bbox)[1]) == (2,2) # test 2 l, r, c, ω₀ = lrce.l, lrce.r, lrce.c, lrce.ω ω = collect(range(.8, stop=1.2, length=1000)) * ω₀ bbox = Blackbox(ω, lrce.pso) z = 1 ./(1 ./(l * 1im * ω) .+ 1/r .+ c * 1im * ω) @test length(get_Y(bbox)) == length(ω) impedance = impedance_matrices(bbox) @test all([size(x) == (1,1) for x in impedance]) @test [x[1,1] for x in impedance] ≈ z end @testset "cascade, unite_ports, open_ports, short_ports" begin # cascade pso0 = PSOModel(cce.circuit0, [(0,1), (0,2)], [1, 2]) pso1 = PSOModel(cce.circuit1, [(4,5), (4,6)], [5, 6]) pso2 = PSOModel(cce.circuit2, [(8,9), (8,10)], [9, 10]) pso = cascade(pso0, pso1, pso2) ω = collect(range(.1, stop=100, length=1000)) * 2π bbox_from_pso = Blackbox(ω, pso) @test get_ports(bbox_from_pso) == get_ports(pso) bboxes0 = [Blackbox(ω, a) for a in [pso0, pso1, pso2]] bbox0 = cascade(bboxes0) @test bbox0 ≈ bbox_from_pso bboxes1 = [canonical_gauge(b) for b in bboxes0] bbox1 = cascade(bboxes1) @test bbox1 ≈ canonical_gauge(bbox_from_pso) # unite_ports united_pso = unite_ports(pso, 1, 5, 9) bbox_from_pso = Blackbox(ω, united_pso) @test get_ports(bbox_from_pso) == get_ports(united_pso) united_bbox0 = unite_ports(bbox0, 1, 5, 9) @test united_bbox0 ≈ bbox_from_pso united_bbox1 = unite_ports(bbox1, 1, 5, 9) @test canonical_gauge(united_bbox1) ≈ canonical_gauge(bbox_from_pso) # open_ports open_pso = open_ports(united_pso, 2, 6) bbox_from_pso = Blackbox(ω, open_pso) open_bbox = open_ports(united_bbox1, 2, 6) @test canonical_gauge(open_bbox) ≈ canonical_gauge(bbox_from_pso) # short_ports short_pso = short_ports(united_pso, 2, 6) bbox_from_pso = Blackbox(ω, short_pso) short_bbox = short_ports(united_bbox1, 2, 6) @test canonical_gauge(short_bbox) ≈ canonical_gauge(bbox_from_pso) end # Pozar p 192 @testset "transfer function conversions" begin a, b, c, d = 1.0, 2.0, 3.0, 4.0 Z0 = 10.0 Y = [[d, -1] [b * c - a * d, a]] ./ b Z = [[a, 1] [a * d - b * c, d]] ./ c denom = a + b/Z0 + c * Z0 + d S = [[a + b/Z0 - c * Z0 - d, 2] [2 * (a * d - b * c), -a + b/Z0 - c * Z0 + d]] ./ denom @test inv(Y) ≈ Z Z0s = [Z0, Z0] @test AdmittanceModels.admittance_to_scattering(Y, Z0s) ≈ S @test AdmittanceModels.scattering_to_admittance(S, Z0s) ≈ Y @test AdmittanceModels.impedance_to_scattering(Z, Z0s) ≈ S @test AdmittanceModels.scattering_to_impedance(S, Z0s) ≈ Z end
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
2088
using Test, AdmittanceModels, LinearAlgebra import .CircuitExample, .CircuitCascadeExample const ce = CircuitExample const cce = CircuitCascadeExample @testset "Circuit" begin @test length(ce.circuit.vertices) == 5 for m in matrices(ce.circuit) @test size(m) == (5,5) @test issymmetric(m) end @test get_inv_inductance(ce.circuit, ce.Q0_SIGNAL, ce.Q0_GROUND) == .1 @test get_inv_inductance(ce.circuit, ce.Q0_GROUND, ce.Q0_SIGNAL) == .1 @test get_conductance(ce.circuit, ce.Q0_SIGNAL, ce.Q0_GROUND) == 0 @test get_conductance(ce.circuit, ce.Q0_GROUND, ce.Q0_SIGNAL) == 0 @test get_capacitance(ce.circuit, ce.Q0_SIGNAL, ce.Q0_GROUND) == 100 @test get_capacitance(ce.circuit, ce.Q0_GROUND, ce.Q0_SIGNAL) == 100 end @testset "coordinate_matrix" begin @test coordinate_matrix(3) == [[0,0] [1,0] [0,1]] @test coordinate_matrix(ce.circuit) == coordinate_matrix(5) coordinate_matrix(ce.circuit, SpanningTree(ce.circuit.vertices)) == coordinate_matrix(5) correct_matrix = [[1, 1, 0, 0] [0, 1, 0, 0] [0, 0, 1, 1] [0, 0, 0, 1] [0, 0, 0, 0]] @test coordinate_matrix(ce.circuit, ce.tree) == correct_matrix end @testset "cascade and unite_vertices" begin circ = cascade(cce.circuit0, cce.circuit1, cce.circuit2) @test circ.vertices == 0:11 l = length(circ.vertices) @test size(circ.c) == (l, l) united_circ = unite_vertices(circ, 0, 4, 8) united_circ = unite_vertices(united_circ, 1, 5, 9) @test united_circ.vertices == [0, 1, 2, 3, 6, 7, 10, 11] l = length(united_circ.vertices) @test size(united_circ.c) == (l, l) @test get_capacitance(united_circ, 2, 3) == get_capacitance(circ, 2, 3) @test get_inv_inductance(united_circ, 6, 1) == get_inv_inductance(circ, 6, 5) s = get_conductance(circ, 0, 1) + get_conductance(circ, 4, 5) + get_conductance(circ, 8, 9) @test get_conductance(united_circ, 0, 1) == s united_circ = unite_vertices(united_circ, 0, 1) s = get_capacitance(circ, 3, 0) + get_capacitance(circ, 3, 1) @test get_capacitance(united_circ, 3, 0) == s end
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
2363
using Test, AdmittanceModels, LinearAlgebra @testset "TransmissionLine with terminations" begin Z0 = 50.0 tline = TransmissionLine(["0", "1"], 1e8, Z0, 5e-3, δ=50e-6) ω = 2π * collect(range(4, stop=6, length=100)) * 1e9 pso = PSOModel(tline) bbox0 = canonical_gauge(Blackbox(ω, pso)) bbox1 = Blackbox(ω, tline) @test isapprox(admittance_matrices(bbox0), admittance_matrices(bbox1), atol=1e-5) @test !isapprox(admittance_matrices(bbox0), admittance_matrices(bbox1), atol=1e-6) # now terminate it with Z0 resistor = ParallelComponent("1", 0, 1/Z0, 0) casc = Cascade([tline, resistor], [open_ports_except => ["0"]]) S = [x[1,1] for x in scattering_matrices(Blackbox(ω, PSOModel(casc)), [Z0])] @test all([abs(x) < 1e-4 for x in S]) S = [x[1,1] for x in scattering_matrices(Blackbox(ω, casc), [Z0])] @test all([abs(x) < 1e-15 for x in S]) # now terminate it with Z0/2 z0 = Z0/2 resistor = ParallelComponent("1", 0, 1/z0, 0) casc = Cascade([tline, resistor], [open_ports_except => ["0"]]) S = [x[1,1] for x in scattering_matrices(Blackbox(ω, PSOModel(casc)), [Z0])] correct_S = ((z0 - Z0)/(z0 + Z0)) * exp.(-2im * ω * tline.len/tline.propagation_speed) @test isapprox(S, correct_S, rtol=1e-4) S = [x[1,1] for x in scattering_matrices(Blackbox(ω, casc), [Z0])] @test isapprox(S, correct_S, rtol=1e-14) end @testset "reflection λ/4 resonator" begin Z0 = 50.0 tline = TransmissionLine(["open", "coupler", "short"], 1e8, Z0, 5e-3, locations=[1e-3], δ=50e-6) capacitor = SeriesComponent("in", "coupler", 0, 0, 10e-15) casc = Cascade([tline, capacitor], [short_ports => ["short"], open_ports_except => ["in"]]) ω = 2π * collect(range(4, stop=6, length=500)) * 1e9 bbox0 = canonical_gauge(Blackbox(ω, PSOModel(casc))) bbox1 = Blackbox(ω, casc) circ = cascade_and_unite(Circuit(tline, "tline"), Circuit(capacitor)) g = AdmittanceModels.ground circ = unite_vertices(circ, g, "short") pso = PSOModel(circ, [("in", g)], ["in"]) bbox2 = canonical_gauge(Blackbox(ω, pso)) @test isapprox(admittance_matrices(bbox0), admittance_matrices(bbox1), atol=1e-3) @test isapprox(admittance_matrices(bbox0), admittance_matrices(bbox2), atol=1e-11) @test !isapprox(admittance_matrices(bbox0), admittance_matrices(bbox1), atol=1e-4) end
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
3252
using Test, AdmittanceModels using LinearAlgebra: eigen, rank, nullspace using SparseArrays: sparse, SparseMatrixCSC @testset "closest_permutation" begin mat = [[1, 0, 2, 0, 1.5] [1, 0, 3, 0, 2] [1, 0, 1.3, 0, 1.4]] u = AdmittanceModels.closest_permutation(mat) @test vcat(sum(u, dims=1)...) == [1,1,1] _, indices = findmax(u, dims=1) @test [index[1] for index in vcat(indices...)] == [5,3,1] end @testset "inv_power_eigen" begin M = [1im 2.2 4; 3.1 0.2 3; 4 1 2im] F = eigen(M) for i in 1:size(M, 1) v0, λ0 = F.vectors[:,i], F.values[i] λ, v = AdmittanceModels.inv_power_eigen(M, v0=v0) @test λ ≈ λ0 λ, v = AdmittanceModels.inv_power_eigen(M, λ0=λ0) @test λ ≈ λ0 λ, v = AdmittanceModels.inv_power_eigen(M, v0=v0, λ0=λ0) @test λ ≈ λ0 end end @testset "row_column_graph" begin rows = [[1.0, 2.0, -3.0, 0, 0, 0, 0], [ 0, 0, 1.0, -4.0, 0, 0, 0], [ 0.1, 0, 0, -0.3, 0, 0, 0], [ 0, 0, 0, 0, 1, 1, 0], [ 0, 0, 0, 0, 0, 1, -1]] mat = sparse(transpose(hcat(rows...))) correct_adj = zeros(Int, size(rows, 1)+1, size(rows, 1)+1) correct_adj[1, 2] = correct_adj[2, 1] = 3 correct_adj[1, 3] = correct_adj[3, 1] = 1 correct_adj[1, 6] = correct_adj[6, 1] = 2 correct_adj[2, 3] = correct_adj[3, 2] = 4 correct_adj[4, 5] = correct_adj[5, 4] = 6 correct_adj[4, 6] = correct_adj[6, 4] = 5 correct_adj[5, 6] = correct_adj[6, 5] = 7 adj = AdmittanceModels.row_column_graph(mat) @test adj == correct_adj end @testset "sparse_nullbasis and nullbasis" begin # example with no redundancies or inconsistentices rows = [[1.0, 2.0, -3.0, 0, 0, 0, 0], [ 0, 0, 1.0, -4.0, 0, 0, 0], [0.1, 0, 0, -0.3, 0, 0, 0], [ 0, 0, 0, 0, 1, 1, 0], [ 0, 0, 0, 0, 0, 1, -1]] mat = sparse(transpose(hcat(rows...))) null_basis = AdmittanceModels.sparse_nullbasis(mat) @test count(!iszero, mat * null_basis) == 0 @test rank(collect(mat)) + rank(collect(null_basis)) == size(mat, 2) # rank nullity theorem @test count(!iszero, nullspace(collect(mat))) == 14 # dense @test count(!iszero, null_basis) == 7 # sparse @test AdmittanceModels.nullbasis(mat) == null_basis # example with redundancies and inconsistentices rows = [[1, -1, 0, 0, 0, 0], [1, 0, -1, 0, 0, 0], [0, 1, 1, 0, 0, 0], [0, 0, 0, 1, -1, 0], [0, 0, 0, 1, 0, -1], [0, 0, 0, 0, 1, -1]] mat = sparse(transpose(hcat(rows...))) null_basis = AdmittanceModels.sparse_nullbasis(mat) @test count(!iszero, mat * null_basis) == 0 @test rank(collect(mat)) + rank(collect(null_basis)) == size(mat, 2) # rank nullity theorem @test AdmittanceModels.sparse_nullbasis(sparse(mat)) == null_basis @test AdmittanceModels.nullbasis(mat) == null_basis # example where sparse nullbasis algorithm does not apply mat = reshape(collect(1:9), 3,3) @test_throws AssertionError AdmittanceModels.sparse_nullbasis(sparse(mat)) @test AdmittanceModels.nullbasis(mat, warn=false) == nullspace(mat) end
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
code
5120
using Test, AdmittanceModels, LinearAlgebra const ce = CircuitExample const ae = PSOModelExample const cce = CircuitCascadeExample const lrce = LRCExample const hwe = HalfWaveExample using SparseArrays: SparseMatrixCSC @testset "PSOModel" begin @test length(ae.pso.ports) == 2 for m in get_Y(ae.pso) @test size(m) == (4,4) @test issymmetric(m) end @test size(get_P(ae.pso)) == (4, 2) @test get_Q(ae.pso) == get_P(ae.pso) end @testset "coordinate_transform" begin coord_matrix_from = coordinate_matrix(ce.circuit) coord_matrix_to = coordinate_matrix(ce.circuit, ce.tree) transform = AdmittanceModels.coordinate_transform(coord_matrix_from, coord_matrix_to) @test AdmittanceModels.coordinate_transform(coord_matrix_from) == I @test AdmittanceModels.coordinate_transform(coord_matrix_to) != I @test transform * AdmittanceModels.coordinate_transform(coord_matrix_from) == AdmittanceModels.coordinate_transform(coord_matrix_to) end @testset "Circuit to PSOModel" begin converted_pso = PSOModel(ce.circuit, [(ce.Q0_SIGNAL, ce.Q0_GROUND), (ce.Q1_SIGNAL, ce.Q1_GROUND)], get_ports(ae.pso), ce.tree) @test ae.pso == converted_pso end @testset "cascade, unite_ports, open_ports, short_ports" begin # cascade and unite_ports circ = cascade(cce.circuit0, cce.circuit1, cce.circuit2) united_circ = unite_vertices(circ, 0, 4, 8) united_circ = unite_vertices(united_circ, 1, 5, 9) port_edges = [(united_circ.vertices[1], v) for v in united_circ.vertices[2:end]] port_names = united_circ.vertices[2:end] pso_from_circuit = PSOModel(united_circ, port_edges, port_names) pso0 = PSOModel(cce.circuit0, [(0,1), (0,2), (0, 3)], [1, 2, 3]) pso1 = PSOModel(cce.circuit1, [(4,5), (4,6), (4,7)], [5, 6, 7]) pso2 = PSOModel(cce.circuit2, [(8,9), (8,10), (8,11)], [9, 10, 11]) pso = cascade(pso0, pso1, pso2) united_pso = unite_ports(pso, 1, 5, 9) transform = transpose(get_P(united_pso)/get_P(pso_from_circuit)) pso_transform = apply_transform(pso_from_circuit, transform) @test pso_transform ≈ united_pso # open_ports port_edges = port_edges[1:2] port_names = port_names[1:2] pso_from_circuit = PSOModel(united_circ, port_edges, port_names) pso_transform = apply_transform(pso_from_circuit, transform) united_pso = open_ports(united_pso, get_ports(united_pso)[3:end]) @test pso_transform ≈ united_pso # short_ports united_circ = unite_vertices(united_circ, 0, 2, 6) port_edges = [(united_circ.vertices[1], v) for v in united_circ.vertices[2:end]] port_names = united_circ.vertices[2:end] pso_from_circuit = PSOModel(united_circ, port_edges, port_names) united_pso = unite_ports(pso, 1, 5, 9) united_pso = short_ports(united_pso, 2, 6) transform = transpose(get_P(united_pso)/get_P(pso_from_circuit)) pso_transform = apply_transform(pso_from_circuit, transform) @test pso_transform ≈ united_pso end @testset "lossy_modes_dense and lossless_modes_dense" begin eigenvalues, eigenvectors = lossy_modes_dense(lrce.pso) @test length(eigenvalues) == 1 @test size(eigenvectors) == (1,1) decay_rate = -2 * real(eigenvalues[1]) frequency = imag(eigenvalues[1])/(2π) @test frequency ≈ lrce.ω/(2π) @test decay_rate ≈ lrce.κ eigenvalues, eigenvectors = lossless_modes_dense(lrce.pso) @test length(eigenvalues) == 1 @test size(eigenvectors) == (1,1) decay_rate = -2 * real(eigenvalues[1]) frequency = imag(eigenvalues[1])/(2π) @test frequency ≈ 1/(sqrt(lrce.l * lrce.c) * 2π) @test decay_rate == 0 end @testset "lossless_modes_sparse and tline resonator modes" begin ν, Z0 = 1.2e8, 50.0 L = 5e-3 δ = 50e-6 resonator = TransmissionLine(["0", "1"], ν, Z0, L, δ=δ) pso = PSOModel(resonator) pso = short_ports(pso, pso.ports) for Y in get_Y(pso) # pso model is sparse @test count(!iszero, Y)/(size(Y,1) * size(Y, 2)) < .05 end num_modes = 5 values_s, vectors_s = lossless_modes_sparse(pso, num_modes=num_modes) values_d, vectors_d = lossless_modes_dense(pso) values_d, vectors_d = values_d[1:num_modes], vectors_d[:, 1:num_modes] @test isapprox(values_s, values_d, rtol=1e-6) for i in 1:5 v_s, v_d = vectors_s[:, i], vectors_d[:, i] j = argmax(abs.(v_s)) v_s /= v_s[j] v_d /= v_d[j] @test isapprox(v_s, v_d, rtol=1e-2) end @test isapprox(ν/(2*L) * (1:num_modes), imag.(values_s)/(2π), rtol=1e-3) @test isapprox(ν/(2*L) * (1:num_modes), imag.(values_d)/(2π), rtol=1e-3) end @testset "canonical_gauge" begin circ = cce.circuit0 port_edges = [(1,2), (2,3)] port_names = [1, 2] pso = PSOModel(circ, port_edges, port_names) P = canonical_gauge(pso).P @test typeof(pso.P) <: SparseMatrixCSC @test typeof(P) <: Matrix m, n = size(P) @test P ≈ [Matrix(I, n, n); zeros(m-n, n)] m, n = size(hwe.pso.P) @test canonical_gauge(hwe.pso).P ≈ [Matrix(I, n, n); zeros(m-n, n)] end
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
docs
728
AdmittanceModels.jl was developed in 2019 by Michael G. Scheer. The package accompanies the paper by Michael G. Scheer and Maxwell B. Block titled [Computational modeling of decay and hybridization in superconducting circuits](https://arxiv.org/abs/1810.11510). Michael and Max previously coauthored a Python implementation of the functionality in this package. The Python implementation was used in early drafts of the paper cited above, but the figures in the latest draft of the paper were created with the code in the `paper` folder of this repository. Thanks to Andrew Keller and Alex Mellnik for helpful advice on Julia best practices and to Dan Girshovich for helpful advice on both the Python and Julia implementations.
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "BSD-3-Clause" ]
0.2.0
7d3081e94a9f20a5b8ea90f3f7bdb26105a22b11
docs
4777
# AdmittanceModels.jl [paper-url]: https://arxiv.org/abs/1810.11510 [travis-img]: https://travis-ci.com/rigetti/AdmittanceModels.jl.svg?branch=master [travis-url]: https://travis-ci.com/rigetti/AdmittanceModels.jl [codecov-img]: https://codecov.io/gh/rigetti/AdmittanceModels.jl/branch/master/graph/badge.svg [codecov-url]: https://codecov.io/gh/rigetti/AdmittanceModels.jl [![][travis-img]][travis-url] [![][codecov-img]][codecov-url] AdmittanceModels.jl is a package for creating and manipulating linear input-output models of the form `YΦ = Px`, `y = QᵀΦ` where `x` are the inputs and `y` are the outputs. One example of such a model is a Positive Second Order model, defined in [[1]][paper-url]. Such models can capture the equations of motion of a circuit consisting of inductors, capacitors, and resistors. The scripts in `paper` were used to generate the figures in [[1]][paper-url]. If you use this package in a publication, please cite our paper: ``` @article{ScheerBlock2018, author = {Michael G. Scheer and Maxwell B. Block}, title = "{Computational modeling of decay and hybridization in superconducting circuits}", year = "2018", month = "Oct", note = {arXiv:1810.11510}, archivePrefix = {arXiv}, eprint = {1810.11510}, primaryClass = {quant-ph}, } ``` [1] [Computational modeling of decay and hybridization in superconducting circuits][paper-url] ## Installation Clone the repository from GitHub and install Julia 1.1. No build is required beyond the default Julia compilation. ## Example usage: the circuit in Appendix A of [[1]][paper-url] Construct the circuit in Appendix A, with arbitrarily chosen values. ```julia using AdmittanceModels vertices = collect(0:4) circuit = Circuit(vertices) set_capacitance!(circuit, 0, 1, 10.0) set_capacitance!(circuit, 1, 2, 4.0) set_capacitance!(circuit, 0, 3, 4.0) set_capacitance!(circuit, 2, 3, 5.0) set_capacitance!(circuit, 3, 4, 5.0) set_inv_inductance!(circuit, 1, 2, 3.5) set_inv_inductance!(circuit, 0, 3, 4.5) ``` Use the spanning tree in Appendix A to find a Positive Second Order model. ```julia root = 0 edges = [(1, 0), (3, 0), (4, 0), (2, 1)] tree = SpanningTree(root, edges) PSOModel(circuit, [(4, 0)], ["port"], tree) ``` The tree is optional because a change of spanning tree is simply an invertible change of coordinates. ```julia PSOModel(circuit, [(4, 0)], ["port"]) ``` ## Example usage: a λ/4 transmission line resonator capacitively coupled to a transmission line The model we will analyze is similar the device shown below, from [Manufacturing low dissipation superconducting quantum processors](https://arxiv.org/abs/1901.08042). ![](docs/Resonator.png) Create `CircuitComponent` objects for the model. ```julia using AdmittanceModels ν = 1.2e8 # propagation_speed Z0 = 50.0 # characteristic_impedance δ = 100e-6 # discretization length resonator = TransmissionLine(["coupler_0", "short"], ν, Z0, 5e-3, δ=δ) tline = TransmissionLine(["in", "coupler_1", "out"], ν, Z0, 2e-3, locations=[1e-3], δ=δ) coupler = SeriesComponent("coupler_0", "coupler_1", 0, 0, 10e-15) components = [resonator, tline, coupler] ``` Use `Cascade` and `PSOModel` objects to compute the frequency and decay rate of quarter wave resonator mode. Include resistors at the ports in order to get the correct decay rate. ```julia resistors = [ParallelComponent(name, 0, 1/Z0, 0) for name in ["in", "out"]] pso = PSOModel(Cascade([components; resistors], [short_ports => ["short"]])) λs, _ = lossy_modes_dense(pso, min_freq=3e9, max_freq=7e9) freq = imag(λs[1])/(2π) decay = -2*real(λs[1])/(2π) ``` Compute the transmission scattering parameters using `Cascade` and `Blackbox`. This uses a closed form representation of the transmission lines. ```julia ω = collect(range(freq - 2 * decay, stop=freq + 2 * decay, length=300)) * 2π bbox = Blackbox(ω, Cascade(components, [short_ports => ["short"], open_ports_except => ["in", "out"]])) S = [x[1,2] for x in scattering_matrices(bbox, [Z0, Z0])] ``` Plot the magnitude of the scattering parameters. ```julia using PlotlyJS plot(scatter(x=ω/(2π*1e9), y=abs.(S)), Layout(xaxis_title="Frequency [GHz]", yaxis_title="|S|")) ``` ![](docs/Magnitude.png) Plot the phase of the scattering parameters. ```julia plot(scatter(x=ω/(2π*1e9), y=angle.(S)), Layout(xaxis_title="Frequency [GHz]", yaxis_title="Phase(S)")) ``` ![](docs/Phase.png) ## Using with ANSYS Q3D Extractor Plain text files containing RLGC parameters exported by ANSYS® Q3D Extractor® software can be used to construct a `Circuit` object via `Circuit(file_path)`. Currently only capacitance matrices are supported. ANSYS and Q3D Extractor are registered trademarks of ANSYS, Inc. or its subsidiaries in the United States or other countries.
AdmittanceModels
https://github.com/rigetti/AdmittanceModels.jl.git
[ "MIT" ]
0.6.0
69fca5d8d3bd617303aec6fad80a7264bbef233a
code
733
using Crystallography using Documenter DocMeta.setdocmeta!(Crystallography, :DocTestSetup, :(using Crystallography); recursive=true) makedocs(; modules=[Crystallography], authors="singularitti <[email protected]> and contributors", repo="https://github.com/MineralsCloud/Crystallography.jl/blob/{commit}{path}#{line}", sitename="Crystallography.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://MineralsCloud.github.io/Crystallography.jl", edit_link="main", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/MineralsCloud/Crystallography.jl", devbranch="main", )
Crystallography
https://github.com/MineralsCloud/Crystallography.jl.git
[ "MIT" ]
0.6.0
69fca5d8d3bd617303aec6fad80a7264bbef233a
code
1562
module Crystallography using CrystallographyBase: Bravais, CartesianFromFractional, CartesianToFractional, Cell, CrystalSystem, CrystallographyBase, FractionalFromCartesian, FractionalToCartesian, Lattice, LatticeSystem, MetricTensor, MonkhorstPackGrid, PrimitiveFromStandardized, PrimitiveToStandardized, ReciprocalLattice, ReciprocalPoint, StandardizedFromPrimitive, StandardizedToPrimitive, atomicmass, atomtypes, basisvectors, cellvolume, coordinates, crystaldensity, distance, eachatom, edge, edges, faces, isrighthanded, latticeconstants, latticesystem, natoms, periodicity, reciprocal, supercell, vertices, weights export Bravais, CartesianFromFractional, CartesianToFractional, Cell, CrystalSystem, CrystallographyBase, FractionalFromCartesian, FractionalToCartesian, Lattice, LatticeSystem, MetricTensor, MonkhorstPackGrid, PrimitiveFromStandardized, PrimitiveToStandardized, ReciprocalLattice, ReciprocalPoint, StandardizedFromPrimitive, StandardizedToPrimitive, atomicmass, atomtypes, basisvectors, cellvolume, coordinates, crystaldensity, distance, eachatom, edge, edges, faces, isrighthanded, latticeconstants, latticesystem, natoms, periodicity, reciprocal, supercell, vertices, weights # include("Symmetry.jl") # include("PointGroups.jl") end
Crystallography
https://github.com/MineralsCloud/Crystallography.jl.git
[ "MIT" ]
0.6.0
69fca5d8d3bd617303aec6fad80a7264bbef233a
code
6707
module PointGroups using MLStyle: @match using CrystallographyBase.CrystalSystem: Triclinic, Monoclinic, Orthorhombic, Tetragonal, Cubic, Trigonal, Hexagonal export PointGroup export pointgroups, hermann_mauguin, international, schönflies, schoenflies, orderof, laueclasses abstract type PointGroup end abstract type CyclicGroup <: PointGroup end struct C1 <: CyclicGroup end struct C2 <: CyclicGroup end struct C3 <: CyclicGroup end struct C4 <: CyclicGroup end struct C6 <: CyclicGroup end struct C2v <: CyclicGroup end struct C3v <: CyclicGroup end struct C4v <: CyclicGroup end struct C6v <: CyclicGroup end struct C1h <: CyclicGroup end struct C2h <: CyclicGroup end struct C3h <: CyclicGroup end struct C4h <: CyclicGroup end struct C6h <: CyclicGroup end abstract type SpiegelGroup <: PointGroup end struct S2 <: SpiegelGroup end struct S4 <: SpiegelGroup end struct S6 <: SpiegelGroup end abstract type DihedralGroup <: PointGroup end struct D2 <: DihedralGroup end struct D3 <: DihedralGroup end struct D4 <: DihedralGroup end struct D6 <: DihedralGroup end struct D2h <: DihedralGroup end struct D3h <: DihedralGroup end struct D4h <: DihedralGroup end struct D6h <: DihedralGroup end struct D2d <: DihedralGroup end struct D3d <: DihedralGroup end abstract type TetrahedralGroup <: PointGroup end struct T <: TetrahedralGroup end struct Th <: TetrahedralGroup end struct Td <: TetrahedralGroup end abstract type OctahedralGroup <: PointGroup end struct O <: OctahedralGroup end struct Oh <: OctahedralGroup end const C1v = C1h const Cs = C1h const Ci = S2 const C3i = S6 const D1 = C2 const V = D2 const D1h = C2v const D1d = C2h const V2 = D2d const Vh = D2h function PointGroup(str::AbstractString) str = lowercase(filter(!isspace, str)) return if isnumeric(first(str)) # International notation @match str begin "1" => C1() "1̄" => S2() "2" => C2() "m" => C1h() "3" => C3() "4" => C4() "4̄" => S4() "2/m" => C2h() "222" => D2() "mm2" => C2v() "3̄" => S6() "6" => C6() "6̄" => C3h() "32" => D3() "3m" => C3v() "mmm" => D2h() "4/m" => C4h() "422" => D4() "4mm" => C4v() "4̄2m" => D2d() "6/m" => C6h() "23" => T() "3̄m" => D3d() "622" => D6() "6mm" => C6v() "6̄m2" => D3h() "4/mmm" => D4h() "6/mmm" => D6h() "m3̄" => Th() "432" => O() "4̄3m" => Td() "m3̄m" => Oh() _ => throw(ArgumentError("\"$str\" is not a valid point group symbol!")) end else # Schoenflies notation @match str begin "c1" => C1() "c2" => C2() "c3" => C3() "c4" => C4() "c6" => C6() "c2v" => C2v() "c3v" => C3v() "c4v" => C4v() "c6v" => C6v() "c1h" => C1h() "c2h" => C2h() "c3h" => C3h() "c4h" => C4h() "c6h" => C6h() "s2" => S2() "s4" => S4() "s6" => S6() "d2" => D2() "d3" => D3() "d4" => D4() "d6" => D6() "d2h" => D2h() "d3h" => D3h() "d4h" => D4h() "d6h" => D6h() "d2d" => D2d() "d3d" => D3d() "t" => T() "th" => Th() "td" => Td() "o" => O() "oh" => Oh() "c1v" => C1h() "cs" => C1h() "ci" => S2() "c3i" => S6() "d1" => C2() "v" => D2() "d1h" => C2v() "d1d" => C2h() "v2" => D2d() "vh" => D2h() _ => throw(ArgumentError("\"$str\" is not a valid point group symbol!")) end end end struct LaueClass{T<:PointGroup} end laueclasses(::Triclinic) = (LaueClass{Ci}(),) laueclasses(::Monoclinic) = (LaueClass{C2h}(),) laueclasses(::Orthorhombic) = (LaueClass{D2h}(),) laueclasses(::Tetragonal) = (LaueClass{C4h}(), LaueClass{D4h}()) laueclasses(::Trigonal) = (LaueClass{C3i}(), LaueClass{D3d}()) laueclasses(::Hexagonal) = (LaueClass{C6h}(), LaueClass{D6h}()) laueclasses(::Cubic) = (LaueClass{Th}(), LaueClass{Oh}()) pointgroups(::Triclinic) = (C1(), S2()) pointgroups(::Monoclinic) = (C2(), C1h(), C2h()) pointgroups(::Orthorhombic) = (D2(), C2v(), D2h()) pointgroups(::Tetragonal) = (C4(), S4(), C4h(), D4(), C4v(), D2d(), D4h()) pointgroups(::Trigonal) = (C3(), S6(), D3(), C3v(), D3d()) pointgroups(::Hexagonal) = (C6(), C3h(), C6h(), D6(), C6v(), D3h(), D6h()) pointgroups(::Cubic) = (T(), Th(), O(), Td(), Oh()) hermann_mauguin(::C1) = "1" hermann_mauguin(::S2) = "1̄" hermann_mauguin(::C2) = "2" hermann_mauguin(::C1h) = "m" hermann_mauguin(::C3) = "3" hermann_mauguin(::C4) = "4" hermann_mauguin(::S4) = "4̄" hermann_mauguin(::C2h) = "2/m" hermann_mauguin(::D2) = "222" hermann_mauguin(::C2v) = "mm2" hermann_mauguin(::S6) = "3̄" hermann_mauguin(::C6) = "6" hermann_mauguin(::C3h) = "6̄" hermann_mauguin(::D3) = "32" hermann_mauguin(::C3v) = "3m" hermann_mauguin(::D2h) = "mmm" hermann_mauguin(::C4h) = "4/m" hermann_mauguin(::D4) = "422" hermann_mauguin(::C4v) = "4mm" hermann_mauguin(::D2d) = "4̄2m" hermann_mauguin(::C6h) = "6/m" hermann_mauguin(::T) = "23" hermann_mauguin(::D3d) = "3̄m" hermann_mauguin(::D6) = "622" hermann_mauguin(::C6v) = "6mm" hermann_mauguin(::D3h) = "6̄m2" hermann_mauguin(::D4h) = "4/mmm" hermann_mauguin(::D6h) = "6/mmm" hermann_mauguin(::Th) = "m3̄" hermann_mauguin(::O) = "432" hermann_mauguin(::Td) = "4̄3m" hermann_mauguin(::Oh) = "m3̄m" const international = hermann_mauguin function schönflies(g::PointGroup) if isconcretetype(typeof(g)) return string(nameof(typeof(g))) else throw(ArgumentError("$g is not a specific point group!")) end end const schoenflies = schönflies orderof(::C1) = 1 orderof(::S2) = 2 orderof(::C2) = 2 orderof(::C1h) = 2 orderof(::C3) = 3 orderof(::C4) = 4 orderof(::S4) = 4 orderof(::C2h) = 4 orderof(::D2) = 4 orderof(::C2v) = 4 orderof(::S6) = 6 orderof(::C6) = 6 orderof(::C3h) = 6 orderof(::D3) = 6 orderof(::C3v) = 6 orderof(::D2h) = 8 orderof(::C4h) = 8 orderof(::D4) = 8 orderof(::C4v) = 8 orderof(::D2d) = 8 orderof(::C6h) = 12 orderof(::T) = 12 orderof(::D3d) = 12 orderof(::D6) = 12 orderof(::C6v) = 12 orderof(::D3h) = 12 orderof(::D4h) = 16 orderof(::D6h) = 24 orderof(::Th) = 24 orderof(::O) = 24 orderof(::Td) = 24 orderof(::Oh) = 48 end
Crystallography
https://github.com/MineralsCloud/Crystallography.jl.git
[ "MIT" ]
0.6.0
69fca5d8d3bd617303aec6fad80a7264bbef233a
code
8716
module Symmetry using CoordinateTransformations: AffineMap, Translation, LinearMap using LinearAlgebra: I, diagm using StaticArrays: SVector, SMatrix, SDiagonal using Crystallography import LinearAlgebra: det, tr export SeitzOperator, symmetrytype, isidentity, istranslation, ispointsymmetry, genpath, pearsonsymbol, arithmeticclass pearsonsymbol(::Triclinic) = "a" pearsonsymbol(::Monoclinic) = "m" pearsonsymbol(::Orthorhombic) = "o" pearsonsymbol(::Tetragonal) = "t" pearsonsymbol(::Cubic) = "c" pearsonsymbol(::Hexagonal) = "h" pearsonsymbol(::Trigonal) = "h" pearsonsymbol(::Primitive) = "P" pearsonsymbol(::BaseCentering{T}) where {T} = string(T) pearsonsymbol(::BodyCentering) = "I" pearsonsymbol(::FaceCentering) = "F" pearsonsymbol(::RhombohedralCentering) = "R" pearsonsymbol(b::Bravais) = pearsonsymbol(crystalsystem(b)) * pearsonsymbol(centering(b)) arithmeticclass(::Triclinic) = "-1" arithmeticclass(::Monoclinic) = "2/m" arithmeticclass(::Orthorhombic) = "mmm" arithmeticclass(::Tetragonal) = "4/mmm" arithmeticclass(::Hexagonal) = "6/mmm" arithmeticclass(::Cubic) = "m-3m" arithmeticclass(::Primitive) = "P" arithmeticclass(::BaseCentering) = "S" arithmeticclass(::BodyCentering) = "I" arithmeticclass(::FaceCentering) = "F" arithmeticclass(::RhombohedralCentering) = "R" arithmeticclass(b::Bravais) = arithmeticclass(crystalsystem(b)) * arithmeticclass(centering(b)) arithmeticclass(::RCenteredHexagonal) = "-3mR" abstract type PointSymmetry end struct Identity <: PointSymmetry end struct RotationAxis{N} <: PointSymmetry end struct Inversion <: PointSymmetry end struct RotoInversion{N} <: PointSymmetry end const Mirror = RotoInversion{2} function RotationAxis(N::Integer) if N ∈ (2, 3, 4, 6) return RotationAxis{N}() else throw(ArgumentError("rotation axis must be either 2, 3, 4 or 6!")) end end function RotoInversion(N::Integer) if N ∈ (2, 3, 4, 6) return RotoInversion{N}() else throw(ArgumentError("rotoinversion axis must be either 2, 3, 4 or 6!")) end end struct PointSymmetryPower{T<:PointSymmetry,N} end PointSymmetryPower(X::PointSymmetry, N::Int) = PointSymmetryPower{typeof(X),N}() function PointSymmetryPower(::RotationAxis{N}, M::Int) where {N} if M >= N if M == N Identity() else PointSymmetryPower(RotationAxis(N), M - N) # Recursive call end else # Until M < N PointSymmetryPower{RotationAxis{N},M}() end end function symmetrytype(trace, determinant) return Dict( (3, 1) => Identity(), (-1, 1) => RotationAxis(2), (0, 1) => RotationAxis(3), (1, 1) => RotationAxis(4), (2, 1) => RotationAxis(6), (-3, -1) => Inversion(), (1, -1) => Mirror(), (0, -1) => RotoInversion(3), (-1, -1) => RotoInversion(4), (-2, -1) => RotoInversion(6), )[(trace, determinant)] end symmetrytype(op::PointSymmetry) = symmetrytype(tr(op), det(op)) """ SeitzOperator(m::AbstractMatrix) Construct a `SeitzOperator` from a 4×4 matrix. """ struct SeitzOperator{T} data::SMatrix{4,4,T,16} end SeitzOperator(m::AbstractMatrix) = SeitzOperator(SMatrix{4,4}(m)) function SeitzOperator(l::LinearMap) m = l.linear @assert size(m) == (3, 3) x = diagm(ones(eltype(m), 4)) x[1:3, 1:3] = m return SeitzOperator(x) end # function PointSymmetryOperator function SeitzOperator(t::Translation) v = t.translation @assert length(v) == 3 x = diagm(ones(eltype(v), 4)) x[1:3, 4] = v return SeitzOperator(x) end """ SeitzOperator(l::LinearMap, t::Translation) SeitzOperator(a::AffineMap) SeitzOperator(l::LinearMap) SeitzOperator(t::Translation) Construct a `SeitzOperator` from `LinearMap`s, `Translation`s or `AffineMap`s by the following equation: ```math S = \\left( \\begin{array}{ccc|c} & & & \\\\ & R & & {\\boldsymbol \\tau} \\\\ & & & \\\\ \\hline 0 & 0 & 0 & 1 \\end{array} \\right), ``` where ``R`` is a `LinearMap` and ``{\\boldsymbol \\tau}`` is a `Translation`. """ function SeitzOperator(l::LinearMap, t::Translation) m, v = l.linear, t.translation return SeitzOperator(vcat(hcat(m, v), [zeros(eltype(m), 3)... one(eltype(v))])) end # function SeitzOperator SeitzOperator(a::AffineMap) = SeitzOperator(LinearMap(a.linear), Translation(a.translation)) """ SeitzOperator(s::SeitzOperator, pos::AbstractVector) Construct a `SeitzOperator` that locates at `pos` from a `SeitzOperator` passing through the origin. """ function SeitzOperator(s::SeitzOperator, pos::AbstractVector) @assert length(pos) == 3 t = SeitzOperator(Translation(pos)) return t * s * inv(t) end # function SeitzOperator (op::SeitzOperator)(v::AbstractVector) = (op.data * [v; 1])[1:3] isidentity(op::SeitzOperator) = op.data == I function istranslation(op::SeitzOperator) m = op.data if m[1:3, 1:3] != I || !(iszero(m[4, 1:3]) && isone(m[4, 4])) return false end return true end function ispointsymmetry(op::SeitzOperator) m = op.data if !( iszero(m[4, 1:3]) && iszero(m[1:3, 4]) && isone(m[4, 4]) && abs(det(m[1:3, 1:3])) == 1 ) return false end return true end """ genpath(nodes, densities) genpath(nodes, density::Integer, iscircular = false) Generate a reciprocal space path from each node. # Arguments - `nodes::AbstractVector`: a vector of 3-element k-points. - `densities::AbstractVector{<:Integer}`: number of segments between current node and the next node. - `density::Integer`: assuming constant density between nodes. # Examples ```jldoctest julia> nodes = [ [0.0, 0.0, 0.5], [0.0, 0.0, 0.0], [0.3333333333, 0.3333333333, 0.5], [0.3333333333, 0.3333333333, -0.5], [0.3333333333, 0.3333333333, 0.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.0] ]; julia> genpath(nodes, 100, true) # Generate a circular path 700-element Array{Array{Float64,1},1}: ... julia> genpath(nodes, 100, false) # Generate a noncircular path 600-element Array{Array{Float64,1},1}: ... julia> genpath(nodes, [10 * i for i in 1:6]) # Generate a noncircular path 210-element Array{Array{Float64,1},1}: ... ``` """ function genpath(nodes, densities) if length(densities) == length(nodes) || length(densities) == length(nodes) - 1 path = similar(nodes, sum(densities .- 1) + length(densities)) s = 0 for (i, (thisnode, nextnode, density)) in enumerate(zip(nodes, circshift(nodes, -1), densities)) step = @. (nextnode - thisnode) / density for j in 1:density path[s + j] = @. thisnode + j * step end s += density end return path else throw( DimensionMismatch( "the length of `densities` is either `length(nodes)` or `length(nodes) - 1`!", ), ) end end genpath(nodes, density::Integer, iscircular::Bool=false) = genpath(nodes, (density for _ in 1:(length(nodes) - (iscircular ? 0 : 1)))) Base.getindex(A::SeitzOperator, I::Vararg{Int}) = getindex(A.data, I...) Base.one(::Type{SeitzOperator{T}}) where {T} = SeitzOperator(SDiagonal(SVector{4}(ones(T, 4)))) Base.one(A::SeitzOperator) = one(typeof(A)) Base.inv(op::SeitzOperator) = SeitzOperator(Base.inv(op.data)) Base.:*(::Identity, ::Identity) = Identity() Base.:*(::Identity, x::Union{PointSymmetryPower,PointSymmetry}) = x Base.:*(x::Union{PointSymmetryPower,PointSymmetry}, ::Identity) = x Base.:*(::Inversion, ::Inversion) = Identity() Base.:*(::RotationAxis{N}, ::Inversion) where {N} = RotoInversion(N) Base.:*(i::Inversion, r::RotationAxis) = r * i Base.:*(::RotationAxis{N}, ::RotationAxis{N}) where {N} = PointSymmetryPower(RotationAxis(N), 2) Base.:*(::RotationAxis{2}, ::RotationAxis{2}) = Identity() Base.:*(::PointSymmetryPower{RotationAxis{N},M}, ::RotationAxis{N}) where {N,M} = PointSymmetryPower(RotationAxis(N), M + 1) Base.:∘(a::SeitzOperator, b::SeitzOperator) = SeitzOperator(a.data * b.data) function Base.convert(::Type{Translation}, op::SeitzOperator) @assert(istranslation(op), "operator is not a translation!") return Translation(collect(op.data[1:3, 4])) end function Base.convert(::Type{LinearMap}, op::SeitzOperator) @assert(ispointsymmetry(op), "operator is not a point symmetry!") return LinearMap(collect(op.data[1:3, 1:3])) end tr(::Identity) = 3 tr(::RotationAxis) where {N} = N - 3 # 2, 3, 4 tr(::RotationAxis{6}) = 2 tr(::Inversion) = -3 tr(::RotoInversion{N}) where {N} = -tr(RotationAxis(N)) det(::Union{Identity,RotationAxis}) = 1 det(::Inversion) = -1 det(::RotoInversion) = -1 end
Crystallography
https://github.com/MineralsCloud/Crystallography.jl.git
[ "MIT" ]
0.6.0
69fca5d8d3bd617303aec6fad80a7264bbef233a
code
74
using Crystallography using Test @testset "Crystallography.jl" begin end
Crystallography
https://github.com/MineralsCloud/Crystallography.jl.git
[ "MIT" ]
0.6.0
69fca5d8d3bd617303aec6fad80a7264bbef233a
docs
4201
# Crystallography | **Documentation** | **Build Status** | **Others** | | :--------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------: | | [![Stable][docs-stable-img]][docs-stable-url] [![Dev][docs-dev-img]][docs-dev-url] | [![Build Status][gha-img]][gha-url] [![Build Status][appveyor-img]][appveyor-url] [![Build Status][cirrus-img]][cirrus-url] [![pipeline status][gitlab-img]][gitlab-url] [![Coverage][codecov-img]][codecov-url] | [![GitHub license][license-img]][license-url] [![Code Style: Blue][style-img]][style-url] | [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: https://MineralsCloud.github.io/Crystallography.jl/stable [docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg [docs-dev-url]: https://MineralsCloud.github.io/Crystallography.jl/dev [gha-img]: https://github.com/MineralsCloud/Crystallography.jl/workflows/CI/badge.svg [gha-url]: https://github.com/MineralsCloud/Crystallography.jl/actions [appveyor-img]: https://ci.appveyor.com/api/projects/status/github/MineralsCloud/Crystallography.jl?svg=true [appveyor-url]: https://ci.appveyor.com/project/singularitti/Crystallography-jl [cirrus-img]: https://api.cirrus-ci.com/github/MineralsCloud/Crystallography.jl.svg [cirrus-url]: https://cirrus-ci.com/github/MineralsCloud/Crystallography.jl [gitlab-img]: https://gitlab.com/singularitti/Crystallography.jl/badges/main/pipeline.svg [gitlab-url]: https://gitlab.com/singularitti/Crystallography.jl/-/pipelines [codecov-img]: https://codecov.io/gh/MineralsCloud/Crystallography.jl/branch/main/graph/badge.svg [codecov-url]: https://codecov.io/gh/MineralsCloud/Crystallography.jl [license-img]: https://img.shields.io/github/license/MineralsCloud/Crystallography.jl [license-url]: https://github.com/MineralsCloud/Crystallography.jl/blob/main/LICENSE [style-img]: https://img.shields.io/badge/code%20style-blue-4495d1.svg [style-url]: https://github.com/invenia/BlueStyle This package: - Builds Bravais lattices, cells, etc. - Converts coordinates between crystal and Cartesian frames, real and reciprocal spaces The code is [hosted on GitHub](https://github.com/MineralsCloud/Crystallography.jl), with some continuous integration services to test its validity. This repository is created and maintained by [@singularitti](https://github.com/singularitti). You are very welcome to contribute. ## Installation The package can be installed with the Julia package manager. From the Julia REPL, type `]` to enter the Pkg REPL mode and run: ``` pkg> add Crystallography ``` Or, equivalently, via the [`Pkg` API](https://pkgdocs.julialang.org/v1/getting-started/): ```julia julia> import Pkg; Pkg.add("Crystallography") ``` ## Documentation - [**STABLE**][docs-stable-url] — **documentation of the most recently tagged version.** - [**DEV**][docs-dev-url] — _documentation of the in-development version._ ## Project status The package is tested against, and being developed for, Julia `1.6` and above on Linux, macOS, and Windows. ## Questions and contributions You are welcome to post usage questions on [our discussion page][discussions-url]. Contributions are very welcome, as are feature requests and suggestions. Please open an [issue][issues-url] if you encounter any problems. The [Contributing](@ref) page has guidelines that should be followed when opening pull requests and contributing code. [discussions-url]: https://github.com/MineralsCloud/Crystallography.jl/discussions [issues-url]: https://github.com/MineralsCloud/Crystallography.jl/issues
Crystallography
https://github.com/MineralsCloud/Crystallography.jl.git
[ "MIT" ]
0.6.0
69fca5d8d3bd617303aec6fad80a7264bbef233a
docs
985
```@meta CurrentModule = CrystallographyBase ``` # API ```@contents Pages = ["api.md"] Depth = 3 ``` ### Lattice ```@docs CrystalSystem Triclinic Monoclinic Orthorhombic Tetragonal Cubic Trigonal Hexagonal Centering BaseCentering Primitive BodyCentering FaceCentering RhombohedralCentering BaseCentering Bravais Lattice centering crystalsystem basis_vectors cellparameters supercell ``` ### Reciprocal space Note that we take ``2pi`` as ``1``, not the solid-state physics convention. ```@docs ReciprocalPoint ReciprocalLattice inv reciprocal_mesh coordinates weights ``` ### Miller and Miller–Bravais indices ```@docs Miller MillerBravais ReciprocalMiller ReciprocalMillerBravais family @m_str ``` ### Metric tensor ```@docs MetricTensor directioncosine directionangle distance interplanar_spacing ``` ### Transformations ```@docs CartesianFromFractional FractionalFromCartesian PrimitiveFromStandardized StandardizedFromPrimitive ``` ### Others ```@docs cellvolume ```
Crystallography
https://github.com/MineralsCloud/Crystallography.jl.git
[ "MIT" ]
0.6.0
69fca5d8d3bd617303aec6fad80a7264bbef233a
docs
2005
```@meta CurrentModule = Crystallography ``` # Crystallography Documentation for [Crystallography](https://github.com/MineralsCloud/Crystallography.jl). See the [Index](@ref main-index) for the complete list of documented functions and types. The code is [hosted on GitHub](https://github.com/MineralsCloud/Crystallography.jl), with some continuous integration services to test its validity. This repository is created and maintained by [@singularitti](https://github.com/singularitti). You are very welcome to contribute. ## Installation The package can be installed with the Julia package manager. From the Julia REPL, type `]` to enter the Pkg REPL mode and run: ```julia pkg> add Crystallography ``` Or, equivalently, via the `Pkg` API: ```@repl import Pkg; Pkg.add("Crystallography") ``` ## Documentation - [**STABLE**](https://MineralsCloud.github.io/Crystallography.jl/stable) — **documentation of the most recently tagged version.** - [**DEV**](https://MineralsCloud.github.io/Crystallography.jl/dev) — _documentation of the in-development version._ ## Project status The package is tested against, and being developed for, Julia `1.6` and above on Linux, macOS, and Windows. ## Questions and contributions Usage questions can be posted on [our discussion page](https://github.com/MineralsCloud/Crystallography.jl/discussions). Contributions are very welcome, as are feature requests and suggestions. Please open an [issue](https://github.com/MineralsCloud/Crystallography.jl/issues) if you encounter any problems. The [Contributing](@ref) page has a few guidelines that should be followed when opening pull requests and contributing code. ## Manual outline ```@contents Pages = [ "installation.md", "developers/contributing.md", "developers/style-guide.md", "developers/design-principles.md", "troubleshooting.md", ] Depth = 3 ``` ## Library outline ```@contents Pages = ["public.md"] ``` ### [Index](@id main-index) ```@index Pages = ["public.md"] ```
Crystallography
https://github.com/MineralsCloud/Crystallography.jl.git
[ "MIT" ]
0.6.0
69fca5d8d3bd617303aec6fad80a7264bbef233a
docs
5244
# [Installation Guide](@id installation) Here are the installation instructions for package [Crystallography](https://github.com/MineralsCloud/Crystallography.jl). If you have trouble installing it, please refer to our [Troubleshooting](@ref) page for more information. ## Install Julia First, you should install [Julia](https://julialang.org/). We recommend downloading it from [its official website](https://julialang.org/downloads/). Please follow the detailed instructions on its website if you have to [build Julia from source](https://docs.julialang.org/en/v1/devdocs/build/build/). Some computing centers provide preinstalled Julia. Please contact your administrator for more information in that case. Here's some additional information on [how to set up Julia on HPC systems](https://github.com/hlrs-tasc/julia-on-hpc-systems). If you have [Homebrew](https://brew.sh) installed, [open `Terminal.app`](https://support.apple.com/guide/terminal/open-or-quit-terminal-apd5265185d-f365-44cb-8b09-71a064a42125/mac) and type ```shell brew install julia ``` to install it as a [formula](https://docs.brew.sh/Formula-Cookbook). If you are also using macOS and want to install it as a prebuilt binary app, type ```shell brew install --cask julia ``` instead. If you want to install multiple Julia versions in the same operating system, a recommended way is to use a version manager such as [`juliaup`](https://github.com/JuliaLang/juliaup). First, [install `juliaup`](https://github.com/JuliaLang/juliaup#installation). Then, run ```shell juliaup add release juliaup default release ``` to configure the `julia` command to start the latest stable version of Julia (this is also the default value). There is a [short video introduction to `juliaup`](https://youtu.be/14zfdbzq5BM) made by its authors. ### Which version should I pick? You can install the "Current stable release" or the "Long-term support (LTS) release". - The "Current stable release" is the latest release of Julia. It has access to newer features, and is likely faster. - The "Long-term support release" is an older version of Julia that has continued to receive bug and security fixes. However, it may not have the latest features or performance improvements. For most users, you should install the "Current stable release", and whenever Julia releases a new version of the current stable release, you should update your version of Julia. Note that any code you write on one version of the current stable release will continue to work on all subsequent releases. For users in restricted software environments (e.g., your enterprise IT controls what software you can install), you may be better off installing the long-term support release because you will not have to update Julia as frequently. Versions higher than `v1.3`, especially `v1.6`, are strongly recommended. This package may not work on `v1.0` and below. Since the Julia team has set `v1.6` as the LTS release, we will gradually drop support for versions below `v1.6`. Julia and Julia packages support multiple operating systems and CPU architectures; check [this table](https://julialang.org/downloads/#supported_platforms) to see if it can be installed on your machine. For Mac computers with M-series processors, this package and its dependencies may not work. Please install the Intel-compatible version of Julia (for macOS x86-64) if any platform-related error occurs. ## Install Crystallography Now I am using [macOS](https://en.wikipedia.org/wiki/MacOS) as a standard platform to explain the following steps: 1. Open `Terminal.app`, and type `julia` to start an interactive session (known as the [REPL](https://docs.julialang.org/en/v1/stdlib/REPL/)). 2. Run the following commands and wait for them to finish: ```julia-repl julia> using Pkg julia> Pkg.update() julia> Pkg.add("Crystallography") ``` 3. Run ```julia-repl julia> using Crystallography ``` and have fun! 4. While using, please keep this Julia session alive. Restarting might cost some time. If you want to install the latest in-development (probably buggy) version of Crystallography, type ```@repl using Pkg Pkg.update() pkg"add https://github.com/MineralsCloud/Crystallography.jl" ``` in the second step above. ## Update Crystallography Please [watch](https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications#configuring-your-watch-settings-for-an-individual-repository) our [GitHub repository](https://github.com/MineralsCloud/Crystallography.jl) for new releases. Once we release a new version, you can update Crystallography by typing ```@repl using Pkg Pkg.update("Crystallography") Pkg.gc() ``` in the Julia REPL. ## Uninstall and reinstall Crystallography Sometimes errors may occur if the package is not properly installed. In this case, you may want to uninstall and reinstall the package. Here is how to do that: 1. To uninstall, in a Julia session, run ```julia-repl julia> using Pkg julia> Pkg.rm("Crystallography") julia> Pkg.gc() ``` 2. Press `ctrl+d` to quit the current session. Start a new Julia session and reinstall Crystallography.
Crystallography
https://github.com/MineralsCloud/Crystallography.jl.git
[ "MIT" ]
0.6.0
69fca5d8d3bd617303aec6fad80a7264bbef233a
docs
2153
# Troubleshooting ```@contents Pages = ["troubleshooting.md"] Depth = 3 ``` This page collects some possible errors you may encounter and trick how to fix them. If you have some questions about how to use this code, you are welcome to [discuss with us](https://github.com/MineralsCloud/Crystallography.jl/discussions). If you have additional tips, please either [report an issue](https://github.com/MineralsCloud/Crystallography.jl/issues/new) or [submit a PR](https://github.com/MineralsCloud/Crystallography.jl/compare) with suggestions. ## Installation problems ### Cannot find the `julia` executable Make sure you have Julia installed in your environment. Please download the latest [stable version](https://julialang.org/downloads/#current_stable_release) for your platform. If you are using a *nix system, the recommended way is to use [Juliaup](https://github.com/JuliaLang/juliaup). If you do not want to install Juliaup or you are using other platforms that Julia supports, download the corresponding binaries. Then, create a symbolic link to the Julia executable. If the path is not in your `$PATH` environment variable, export it to your `$PATH`. Some clusters, like [Habanero](https://confluence.columbia.edu/confluence/display/rcs/Habanero+HPC+Cluster+User+Documentation), [Comet](https://www.sdsc.edu/support/user_guides/comet.html), or [Expanse](https://www.sdsc.edu/services/hpc/expanse/index.html), already have Julia installed as a module, you may just `module load julia` to use it. If not, either install by yourself or contact your administrator. ## Loading Crystallography ### Julia compiles/loads slow First, we recommend you download the latest version of Julia. Usually, the newest version has the best performance. If you just want Julia to do a simple task and only once, you could start the Julia REPL with ```bash julia --compile=min ``` to minimize compilation or ```bash julia --optimize=0 ``` to minimize optimizations, or just use both. Or you could make a system image and run with ```bash julia --sysimage custom-image.so ``` See [Fredrik Ekre's talk](https://youtu.be/IuwxE3m0_QQ?t=313) for details.
Crystallography
https://github.com/MineralsCloud/Crystallography.jl.git
[ "MIT" ]
0.6.0
69fca5d8d3bd617303aec6fad80a7264bbef233a
docs
8548
# Contributing ```@contents Pages = ["contributing.md"] Depth = 3 ``` Welcome! This document explains some ways you can contribute to Crystallography. ## Code of conduct This project and everyone participating in it is governed by the ["Contributor Covenant Code of Conduct"](https://github.com/MineralsCloud/.github/blob/main/CODE_OF_CONDUCT.md). By participating, you are expected to uphold this code. ## Join the community forum First up, join the [community forum](https://github.com/MineralsCloud/Crystallography.jl/discussions). The forum is a good place to ask questions about how to use Crystallography. You can also use the forum to discuss possible feature requests and bugs before raising a GitHub issue (more on this below). Aside from asking questions, the easiest way you can contribute to Crystallography is to help answer questions on the forum! ## Improve the documentation Chances are, if you asked (or answered) a question on the community forum, then it is a sign that the [documentation](https://MineralsCloud.github.io/Crystallography.jl/dev/) could be improved. Moreover, since it is your question, you are probably the best-placed person to improve it! The docs are written in Markdown and are built using [Documenter.jl](https://github.com/JuliaDocs/Documenter.jl). You can find the source of all the docs [here](https://github.com/MineralsCloud/Crystallography.jl/tree/main/docs). If your change is small (like fixing typos, or one or two sentence corrections), the easiest way to do this is via GitHub's online editor. (GitHub has [help](https://help.github.com/articles/editing-files-in-another-user-s-repository/) on how to do this.) If your change is larger, or touches multiple files, you will need to make the change locally and then use Git to submit a [pull request](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests). (See [Contribute code to Crystallography](@ref) below for more on this.) ## File a bug report Another way to contribute to Crystallography is to file [bug reports](https://github.com/MineralsCloud/Crystallography.jl/issues/new?template=bug_report.md). Make sure you read the info in the box where you write the body of the issue before posting. You can also find a copy of that info [here](https://github.com/MineralsCloud/Crystallography.jl/blob/main/.github/ISSUE_TEMPLATE/bug_report.md). !!! tip If you're unsure whether you have a real bug, post on the [community forum](https://github.com/MineralsCloud/Crystallography.jl/discussions) first. Someone will either help you fix the problem, or let you know the most appropriate place to open a bug report. ## Contribute code to Crystallography Finally, you can also contribute code to Crystallography! !!! warning If you do not have experience with Git, GitHub, and Julia development, the first steps can be a little daunting. However, there are lots of tutorials available online, including: - [GitHub](https://guides.github.com/activities/hello-world/) - [Git and GitHub](https://try.github.io/) - [Git](https://git-scm.com/book/en/v2) - [Julia package development](https://docs.julialang.org/en/v1/stdlib/Pkg/#Developing-packages-1) Once you are familiar with Git and GitHub, the workflow for contributing code to Crystallography is similar to the following: ### Step 1: decide what to work on The first step is to find an [open issue](https://github.com/MineralsCloud/Crystallography.jl/issues) (or open a new one) for the problem you want to solve. Then, _before_ spending too much time on it, discuss what you are planning to do in the issue to see if other contributors are fine with your proposed changes. Getting feedback early can improve code quality, and avoid time spent writing code that does not get merged into Crystallography. !!! tip At this point, remember to be patient and polite; you may get a _lot_ of comments on your issue! However, do not be afraid! Comments mean that people are willing to help you improve the code that you are contributing to Crystallography. ### Step 2: fork Crystallography Go to [https://github.com/MineralsCloud/Crystallography.jl](https://github.com/MineralsCloud/Crystallography.jl) and click the "Fork" button in the top-right corner. This will create a copy of Crystallography under your GitHub account. ### Step 3: install Crystallography locally Similar to [Installation](@ref), open the Julia REPL and run: ```@repl using Pkg Pkg.update() Pkg.develop("Crystallography") ``` Then the package will be cloned to your local machine. On *nix systems, the default path is `~/.julia/dev/Crystallography` unless you modify the [`JULIA_DEPOT_PATH`](http://docs.julialang.org/en/v1/manual/environment-variables/#JULIA_DEPOT_PATH-1) environment variable. If you're on Windows, this will be `C:\\Users\\<my_name>\\.julia\\dev\\Crystallography`. In the following text, we will call it `PKGROOT`. Go to `PKGROOT`, start a new Julia session and run ```@repl using Pkg Pkg.instantiate() ``` to instantiate the project. ### Step 4: checkout a new branch !!! note In the following, replace any instance of `GITHUB_ACCOUNT` with your GitHub username. The next step is to checkout a development branch. In a terminal (or command prompt on Windows), run: ```shell cd ~/.julia/dev/Crystallography git remote add GITHUB_ACCOUNT https://github.com/GITHUB_ACCOUNT/Crystallography.jl.git git checkout main git pull git checkout -b my_new_branch ``` ### Step 5: make changes Now make any changes to the source code inside the `~/.julia/dev/Crystallography` directory. Make sure you: - Follow our [Style Guide](@ref style) and [run `JuliaFormatter.jl`](@ref formatter) - Add tests and documentation for any changes or new features !!! tip When you change the source code, you'll need to restart Julia for the changes to take effect. This is a pain, so install [Revise.jl](https://github.com/timholy/Revise.jl). ### Step 6a: test your code changes To test that your changes work, run the Crystallography test-suite by opening Julia and running: ```@repl cd("~/.julia/dev/Crystallography") using Pkg Pkg.activate(".") Pkg.test() ``` !!! warning Running the tests might take a long time. !!! tip If you're using `Revise.jl`, you can also run the tests by calling `include`: ```julia include("test/runtests.jl") ``` This can be faster if you want to re-run the tests multiple times. ### Step 6b: test your documentation changes Open Julia, then run: ```@repl cd("~/.julia/dev/Crystallography/docs") using Pkg Pkg.activate(".") include("src/make.jl") ``` After a while, a folder `PKGROOT/docs/build` will appear. Open `PKGROOT/docs/build/index.html` with your favorite browser, and have fun! !!! warning Building the documentation might take a long time. !!! tip If there's a problem with the tests that you don't know how to fix, don't worry. Continue to step 5, and one of the Crystallography contributors will comment on your pull request telling you how to fix things. ### Step 7: make a pull request Once you've made changes, you're ready to push the changes to GitHub. Run: ```shell cd ~/.julia/dev/Crystallography git add . git commit -m "A descriptive message of the changes" git push -u GITHUB_ACCOUNT my_new_branch ``` Then go to [https://github.com/MineralsCloud/Crystallography.jl/pulls](https://github.com/MineralsCloud/Crystallography.jl/pulls) and follow the instructions that pop up to open a pull request. ### Step 8: respond to comments At this point, remember to be patient and polite; you may get a _lot_ of comments on your pull request! However, do not be afraid! A lot of comments means that people are willing to help you improve the code that you are contributing to Crystallography. To respond to the comments, go back to step 5, make any changes, test the changes in step 6, and then make a new commit in step 7. Your PR will automatically update. ### Step 9: cleaning up Once the PR is merged, clean-up your Git repository ready for the next contribution! ```shell cd ~/.julia/dev/Crystallography git checkout main git pull ``` !!! note If you have suggestions to improve this guide, please make a pull request! It's particularly helpful if you do this after your first pull request because you'll know all the parts that could be explained better. Thanks for contributing to Crystallography!
Crystallography
https://github.com/MineralsCloud/Crystallography.jl.git
[ "MIT" ]
0.6.0
69fca5d8d3bd617303aec6fad80a7264bbef233a
docs
15492
# Design Principles ```@contents Pages = ["design-principles.md"] Depth = 3 ``` We adopt some [`SciML`](https://sciml.ai/) design [guidelines](https://github.com/SciML/SciMLStyle) here. Please read it before contributing! ## Consistency vs adherence According to PEP8: > A style guide is about consistency. Consistency with this style guide is important. > Consistency within a project is more important. Consistency within one module or function is the most important. > > However, know when to be inconsistent—sometimes style guide recommendations just aren't > applicable. When in doubt, use your best judgment. Look at other examples and decide what > looks best. And don’t hesitate to ask! ## Community contribution guidelines For a comprehensive set of community contribution guidelines, refer to [ColPrac](https://github.com/SciML/ColPrac). A relevant point to highlight PRs should do one thing. In the context of style, this means that PRs which update the style of a package's code should not be mixed with fundamental code contributions. This separation makes it easier to ensure that large style improvement are isolated from substantive (and potentially breaking) code changes. ## Open source contributions are allowed to start small and grow over time If the standard for code contributions is that every PR needs to support every possible input type that anyone can think of, the barrier would be too high for newcomers. Instead, the principle is to be as correct as possible to begin with, and grow the generic support over time. All recommended functionality should be tested, any known generality issues should be documented in an issue (and with a `@test_broken` test when possible). However, a function which is known to not be GPU-compatible is not grounds to block merging, rather it is an encouragement for a follow-up PR to improve the general type support! ## Generic code is preferred unless code is known to be specific For example, the code: ```@repl function f(A, B) for i in 1:length(A) A[i] = A[i] + B[i] end end ``` would not be preferred for two reasons. One is that it assumes `A` uses one-based indexing, which would fail in cases like [OffsetArrays](https://github.com/JuliaArrays/OffsetArrays.jl) and [FFTViews](https://github.com/JuliaArrays/FFTViews.jl). Another issue is that it requires indexing, while not all array types support indexing (for example, [CuArrays](https://github.com/JuliaGPU/CuArrays.jl)). A more generic compatible implementation of this function would be to use broadcast, for example: ```@repl function f(A, B) @. A = A + B end ``` which would allow support for a wider variety of array types. ## Internal types should match the types used by users when possible If `f(A)` takes the input of some collections and computes an output from those collections, then it should be expected that if the user gives `A` as an `Array`, the computation should be done via `Array`s. If `A` was a `CuArray`, then it should be expected that the computation should be internally done using a `CuArray` (or appropriately error if not supported). For these reasons, constructing arrays via generic methods, like `similar(A)`, is preferred when writing `f` instead of using non-generic constructors like `Array(undef,size(A))` unless the function is documented as being non-generic. ## Trait definition and adherence to generic interface is preferred when possible Julia provides many interfaces, for example: - [Iteration](https://docs.julialang.org/en/v1/manual/interfaces/#man-interface-iteration) - [Indexing](https://docs.julialang.org/en/v1/manual/interfaces/#Indexing) - [Broadcast](https://docs.julialang.org/en/v1/manual/interfaces/#man-interfaces-broadcasting) Those interfaces should be followed when possible. For example, when defining broadcast overloads, one should implement a `BroadcastStyle` as suggested by the documentation instead of simply attempting to bypass the broadcast system via `copyto!` overloads. When interface functions are missing, these should be added to Base Julia or an interface package, like [ArrayInterface.jl](https://github.com/JuliaArrays/ArrayInterface.jl). Such traits should be declared and used when appropriate. For example, if a line of code requires mutation, the trait `ArrayInterface.ismutable(A)` should be checked before attempting to mutate, and informative error messages should be written to capture the immutable case (or, an alternative code which does not mutate should be given). One example of this principle is demonstrated in the generation of Jacobian matrices. In many scientific applications, one may wish to generate a Jacobian cache from the user's input `u0`. A naive way to generate this Jacobian is `J = similar(u0,length(u0),length(u0))`. However, this will generate a Jacobian `J` such that `J isa Matrix`. ## Macros should be limited and only be used for syntactic sugar Macros define new syntax, and for this reason they tend to be less composable than other coding styles and require prior familiarity to be easily understood. One principle to keep in mind is, "can the person reading the code easily picture what code is being generated?". For example, a user of Soss.jl may not know what code is being generated by: ```julia @model (x, α) begin σ ~ Exponential() β ~ Normal() y ~ For(x) do xj Normal(α + β * xj, σ) end return y end ``` and thus using such a macro as the interface is not preferred when possible. However, a macro like [`@muladd`](https://github.com/SciML/MuladdMacro.jl) is trivial to picture on a code (it recursively transforms `a*b + c` to `muladd(a,b,c)` for more [accuracy and efficiency](https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation)), so using such a macro for example: ```julia julia> @macroexpand(@muladd k3 = f(t + c3 * dt, @. uprev + dt * (a031 * k1 + a032 * k2))) :(k3 = f((muladd)(c3, dt, t), (muladd).(dt, (muladd).(a032, k2, (*).(a031, k1)), uprev))) ``` is recommended. Some macros in this category are: - `@inbounds` - [`@muladd`](https://github.com/SciML/MuladdMacro.jl) - `@view` - [`@named`](https://github.com/SciML/ModelingToolkit.jl) - `@.` - [`@..`](https://github.com/YingboMa/FastBroadcast.jl) Some performance macros, like `@simd`, `@threads`, or [`@turbo` from LoopVectorization.jl](https://github.com/JuliaSIMD/LoopVectorization.jl), make an exception in that their generated code may be foreign to many users. However, they still are classified as appropriate uses as they are syntactic sugar since they do (or should) not change the behavior of the program in measurable ways other than performance. ## Errors should be caught as high as possible, and error messages should be contextualized for newcomers Whenever possible, defensive programming should be used to check for potential errors before they are encountered deeper within a package. For example, if one knows that `f(u0,p)` will error unless `u0` is the size of `p`, this should be caught at the start of the function to throw a domain specific error, for example "parameters and initial condition should be the same size". ## Subpackaging and interface packages is preferred over conditional modules via Requires.jl Requires.jl should be avoided at all costs. If an interface package exists, such as [ChainRulesCore.jl](https://github.com/JuliaDiff/ChainRulesCore.jl) for defining automatic differentiation rules without requiring a dependency on the whole ChainRules.jl system, or [RecipesBase.jl](https://github.com/JuliaPlots/RecipesBase.jl) which allows for defining Plots.jl plot recipes without a dependency on Plots.jl, a direct dependency on these interface packages is preferred. Otherwise, instead of resorting to a conditional dependency using Requires.jl, it is preferred one creates subpackages, i.e. smaller independent packages kept within the same Github repository with independent versioning and package management. An example of this is seen in [Optimization.jl](https://github.com/SciML/Optimization.jl) which has subpackages like [OptimizationBBO.jl](https://github.com/SciML/Optimization.jl/tree/master/lib/OptimizationBBO) for BlackBoxOptim.jl support. Some important interface packages to know about are: - [ChainRulesCore.jl](https://github.com/JuliaDiff/ChainRulesCore.jl) - [RecipesBase.jl](https://github.com/JuliaPlots/RecipesBase.jl) - [ArrayInterface.jl](https://github.com/JuliaArrays/ArrayInterface.jl) - [CommonSolve.jl](https://github.com/SciML/CommonSolve.jl) - [SciMLBase.jl](https://github.com/SciML/SciMLBase.jl) ## Functions should either attempt to be non-allocating and reuse caches, or treat inputs as immutable Mutating codes and non-mutating codes fall into different worlds. When a code is fully immutable, the compiler can better reason about dependencies, optimize the code, and check for correctness. However, many times a code making the fullest use of mutation can outperform even what the best compilers of today can generate. That said, the worst of all worlds is when code mixes mutation with non-mutating code. Not only is this a mishmash of coding styles, it has the potential non-locality and compiler proof issues of mutating code while not fully benefiting from the mutation. ## Out-Of-Place and Immutability is preferred when sufficient performant Mutation is used to get more performance by decreasing the amount of heap allocations. However, if it's not helpful for heap allocations in a given spot, do not use mutation. Mutation is scary and should be avoided unless it gives an immediate benefit. For example, if matrices are sufficiently large, then `A*B` is as fast as `mul!(C,A,B)`, and thus writing `A*B` is preferred (unless the rest of the function is being careful about being fully non-allocating, in which case this should be `mul!` for consistency). Similarly, when defining types, using `struct` is preferred to `mutable struct` unless mutating the struct is a common occurrence. Even if mutating the struct is a common occurrence, see whether using [Setfield.jl](https://github.com/jw3126/Setfield.jl) is sufficient. The compiler will optimize the construction of immutable structs, and thus this can be more efficient if it's not too much of a code hassle. ## Tests should attempt to cover a wide gamut of input types Code coverage numbers are meaningless if one does not consider the input types. For example, one can hit all the code with `Array`, but that does not test whether `CuArray` is compatible! Thus, it's always good to think of coverage not in terms of lines of code but in terms of type coverage. A good list of number types to think about are: - `Float64` - `Float32` - `Complex` - [`Dual`](https://github.com/JuliaDiff/ForwardDiff.jl) - `BigFloat` Array types to think about testing are: - `Array` - [`OffsetArray`](https://github.com/JuliaArrays/OffsetArrays.jl) - [`CuArray`](https://github.com/JuliaGPU/CUDA.jl) ## When in doubt, a submodule should become a subpackage or separate package Keep packages to one core idea. If there's something separate enough to be a submodule, could it instead be a separate well-tested and documented package to be used by other packages? Most likely yes. ## Globals should be avoided whenever possible Global variables should be avoided whenever possible. When required, global variables should be constants and have an all uppercase name separated with underscores (e.g. `MY_CONSTANT`). They should be defined at the top of the file, immediately after imports and exports but before an `__init__` function. If you truly want mutable global style behavior you may want to look into mutable containers. ## Type-stable and Type-grounded code is preferred wherever possible Type-stable and type-grounded code helps the compiler create not only more optimized code, but also faster to compile code. Always keep containers well-typed, functions specializing on the appropriate arguments, and types concrete. ## Closures should be avoided whenever possible Closures can cause accidental type instabilities that are difficult to track down and debug; in the long run it saves time to always program defensively and avoid writing closures in the first place, even when a particular closure would not have been problematic. A similar argument applies to reading code with closures; if someone is looking for type instabilities, this is faster to do when code does not contain closures. Furthermore, if you want to update variables in an outer scope, do so explicitly with `Ref`s or self defined structs. For example, ```julia map(Base.Fix2(getindex, i), vector_of_vectors) ``` is preferred over ```julia map(v -> v[i], vector_of_vectors) ``` or ```julia [v[i] for v in vector_of_vectors] ``` ## Numerical functionality should use the appropriate generic numerical interfaces While you can use `A\b` to do a linear solve inside a package, that does not mean that you should. This interface is only sufficient for performing factorizations, and so that limits the scaling choices, the types of `A` that can be supported, etc. Instead, linear solves within packages should use LinearSolve.jl. Similarly, nonlinear solves should use NonlinearSolve.jl. Optimization should use Optimization.jl. Etc. This allows the full generic choice to be given to the user without depending on every solver package (effectively recreating the generic interfaces within each package). ## Functions should capture one underlying principle Functions mean one thing. Every dispatch of `+` should be "the meaning of addition on these types". While in theory you could add dispatches to `+` that mean something different, that will fail in generic code for which `+` means addition. Thus, for generic code to work, code needs to adhere to one meaning for each function. Every dispatch should be an instantiation of that meaning. ## Internal choices should be exposed as options whenever possible Whenever possible, numerical values and choices within scripts should be exposed as options to the user. This promotes code reusability beyond the few cases the author may have expected. ## Prefer code reuse over rewrites whenever possible If a package has a function you need, use the package. Add a dependency if you need to. If the function is missing a feature, prefer to add that feature to said package and then add it as a dependency. If the dependency is potentially troublesome, for example because it has a high load time, prefer to spend time helping said package fix these issues and add the dependency. Only when it does not seem possible to make the package "good enough" should using the package be abandoned. If it is abandoned, consider building a new package for this functionality as you need it, and then make it a dependency. ## Prefer to not shadow functions Two functions can have the same name in Julia by having different namespaces. For example, `X.f` and `Y.f` can be two different functions, with different dispatches, but the same name. This should be avoided whenever possible. Instead of creating `MyPackage.sort`, consider adding dispatches to `Base.sort` for your types if these new dispatches match the underlying principle of the function. If it doesn't, prefer to use a different name. While using `MyPackage.sort` is not conflicting, it is going to be confusing for most people unfamiliar with your code, so `MyPackage.special_sort` would be more helpful to newcomers reading the code.
Crystallography
https://github.com/MineralsCloud/Crystallography.jl.git
[ "MIT" ]
0.6.0
69fca5d8d3bd617303aec6fad80a7264bbef233a
docs
2297
# [Style Guide](@id style) ```@contents Pages = ["style.md"] Depth = 3 ``` This section describes the coding style rules that apply to our code and that we recommend you to use it also. In some cases, our style guide diverges from Julia's official [Style Guide](https://docs.julialang.org/en/v1/manual/style-guide/) (Please read it!). All such cases will be explicitly noted and justified. Our style guide adopts many recommendations from the [BlueStyle](https://github.com/invenia/BlueStyle). Please read the [BlueStyle](https://github.com/invenia/BlueStyle) before contributing to this package. If not following, your pull requests may not be accepted. !!! info The style guide is always a work in progress, and not all Crystallography code follows the rules. When modifying Crystallography, please fix the style violations of the surrounding code (i.e., leave the code tidier than when you started). If large changes are needed, consider separating them into another pull request. ## Formatting ### [Run JuliaFormatter](@id formatter) Crystallography uses [JuliaFormatter](https://github.com/domluna/JuliaFormatter.jl) as an auto-formatting tool. We use the options contained in [`.JuliaFormatter.toml`](https://github.com/MineralsCloud/Crystallography.jl/blob/main/.JuliaFormatter.toml). To format your code, `cd` to the Crystallography directory, then run: ```@repl using Pkg Pkg.add("JuliaFormatter") using JuliaFormatter: format format("docs"); format("src"); format("test"); ``` !!! info A continuous integration check verifies that all PRs made to Crystallography have passed the formatter. The following sections outline extra style guide points that are not fixed automatically by JuliaFormatter. ### Use the Julia extension for Visual Studio Code Please use [VS Code](https://code.visualstudio.com/) with the [Julia extension](https://marketplace.visualstudio.com/items?itemName=julialang.language-julia) to edit, format, and test your code. We do not recommend using other editors to edit your code for the time being. This extension already has [JuliaFormatter](https://github.com/domluna/JuliaFormatter.jl) integrated. So to format your code, follow the steps listed [here](https://www.julia-vscode.org/docs/stable/userguide/formatter/).
Crystallography
https://github.com/MineralsCloud/Crystallography.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
2637
using Pkg using GenericTensorNetworks using GenericTensorNetworks: TropicalNumbers, Polynomials, OMEinsum, OMEinsum.OMEinsumContractionOrders, LuxorGraphPlot using Documenter using DocThemeIndigo using Literate for each in readdir(pkgdir(GenericTensorNetworks, "examples")) input_file = pkgdir(GenericTensorNetworks, "examples", each) endswith(input_file, ".jl") || continue @info "building" input_file output_dir = pkgdir(GenericTensorNetworks, "docs", "src", "generated") Literate.markdown(input_file, output_dir; name=each[1:end-3], execute=false) end indigo = DocThemeIndigo.install(GenericTensorNetworks) DocMeta.setdocmeta!(GenericTensorNetworks, :DocTestSetup, :(using GenericTensorNetworks); recursive=true) makedocs(; modules=[GenericTensorNetworks, TropicalNumbers, OMEinsum, OMEinsumContractionOrders, LuxorGraphPlot], authors="Jinguo Liu", repo="https://github.com/QuEraComputing/GenericTensorNetworks.jl/blob/{commit}{path}#{line}", sitename="GenericTensorNetworks.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://QuEraComputing.github.io/GenericTensorNetworks.jl", assets=String[indigo], ), pages=[ "Home" => "index.md", "Problems" => [ "Independent set problem" => "generated/IndependentSet.md", "Maximal independent set problem" => "generated/MaximalIS.md", "Spin glass problem" => "generated/SpinGlass.md", "Cutting problem" => "generated/MaxCut.md", "Vertex matching problem" => "generated/Matching.md", "Binary paint shop problem" => "generated/PaintShop.md", "Coloring problem" => "generated/Coloring.md", "Dominating set problem" => "generated/DominatingSet.md", "Satisfiability problem" => "generated/Satisfiability.md", "Set covering problem" => "generated/SetCovering.md", "Set packing problem" => "generated/SetPacking.md", #"Other problems" => "generated/Others.md", ], "Topics" => [ "Gist" => "gist.md", "Save and load solutions" => "generated/saveload.md", "Sum product tree representation" => "sumproduct.md", "Weighted problems" => "generated/weighted.md", "Open and fixed degrees of freedom" => "generated/open.md" ], "Performance Tips" => "performancetips.md", "References" => "ref.md", ], doctest=false, warnonly = :missing_docs, ) deploydocs(; repo="github.com/QuEraComputing/GenericTensorNetworks.jl", )
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
832
function serve(;host::String="0.0.0.0", port::Int=8000) # setup environment docs_dir = @__DIR__ julia_cmd = "using Pkg; Pkg.instantiate()" run(`$(Base.julia_exename()) --project=$docs_dir -e $julia_cmd`) serve_cmd = """ using LiveServer; LiveServer.servedocs(; doc_env=true, skip_dirs=[ #joinpath("docs", "src", "generated"), joinpath("docs", "src"), joinpath("docs", "build"), joinpath("docs", "Manifest.toml"), ], literate="examples", host=\"$host\", port=$port, ) """ try run(`$(Base.julia_exename()) --project=$docs_dir -e $serve_cmd`) catch e if e isa InterruptException return else rethrow(e) end end return end serve()
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
3040
# # Coloring problem # !!! note # It is highly recommended to read the [Independent set problem](@ref) chapter before reading this one. # ## Problem definition # A [vertex coloring](https://en.wikipedia.org/wiki/Graph_coloring) is an assignment of labels or colors to each vertex of a graph such that no edge connects two identically colored vertices. # In the following, we are going to defined a 3-coloring problem for the Petersen graph. using GenericTensorNetworks, Graphs graph = Graphs.smallgraph(:petersen) # We can visualize this graph using the following function rot15(a, b, i::Int) = cos(2i*π/5)*a + sin(2i*π/5)*b, cos(2i*π/5)*b - sin(2i*π/5)*a locations = [[rot15(0.0, 60.0, i) for i=0:4]..., [rot15(0.0, 30, i) for i=0:4]...] show_graph(graph, locations; format=:svg) # ## Generic tensor network representation # We can define the 3-coloring problem with the [`Coloring`](@ref) type as coloring = Coloring{3}(graph) # The tensor network representation of the 3-coloring problem can be obtained by problem = GenericTensorNetwork(coloring) # ### Theory (can skip) # Type [`Coloring`](@ref) can be used for constructing the tensor network with optimized contraction order for a coloring problem. # Let us use 3-coloring problem defined on vertices as an example. # For a vertex ``v``, we define the degrees of freedom ``c_v\in\{1,2,3\}`` and a vertex tensor labelled by it as # ```math # W(v) = \left(\begin{matrix} # 1\\ # 1\\ # 1 # \end{matrix}\right). # ``` # For an edge ``(u, v)``, we define an edge tensor as a matrix labelled by ``(c_u, c_v)`` to specify the constraint # ```math # B = \left(\begin{matrix} # 1 & x & x\\ # x & 1 & x\\ # x & x & 1 # \end{matrix}\right). # ``` # The number of possible coloring can be obtained by contracting this tensor network by setting vertex tensor elements ``r_v, g_v`` and ``b_v`` to 1. # ## Solving properties # ##### counting all possible coloring num_of_coloring = solve(problem, CountingMax())[] # ##### finding one best coloring single_solution = solve(problem, SingleConfigMax())[] read_config(single_solution) is_vertex_coloring(graph, read_config(single_solution)) vertex_color_map = Dict(0=>"red", 1=>"green", 2=>"blue") show_graph(graph, locations; format=:svg, vertex_colors=[vertex_color_map[Int(c)] for c in read_config(single_solution)]) # Let us try to solve the same issue on its line graph, a graph that generated by mapping an edge to a vertex and two edges sharing a common vertex will be connected. linegraph = line_graph(graph) show_graph(linegraph, [(locations[e.src] .+ locations[e.dst]) for e in edges(graph)]; format=:svg) # Let us construct the tensor network and see if there are solutions. lineproblem = Coloring{3}(linegraph); num_of_coloring = solve(GenericTensorNetwork(lineproblem), CountingMax())[] read_size_count(num_of_coloring) # You will see the maximum size 28 is smaller than the number of edges in the `linegraph`, # meaning no solution for the 3-coloring on edges of a Petersen graph.
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
3677
# # Dominating set problem # !!! note # It is highly recommended to read the [Independent set problem](@ref) chapter before reading this one. # ## Problem definition # In graph theory, a [dominating set](https://en.wikipedia.org/wiki/Dominating_set) for a graph ``G = (V, E)`` is a subset ``D`` of ``V`` such that every vertex not in ``D`` is adjacent to at least one member of ``D``. # The domination number ``\gamma(G)`` is the number of vertices in a smallest dominating set for ``G``. # The decision version of finding the minimum dominating set is an NP-complete. # In the following, we are going to solve the dominating set problem on the Petersen graph. using GenericTensorNetworks, Graphs graph = Graphs.smallgraph(:petersen) # We can visualize this graph using the following function rot15(a, b, i::Int) = cos(2i*π/5)*a + sin(2i*π/5)*b, cos(2i*π/5)*b - sin(2i*π/5)*a locations = [[rot15(0.0, 60.0, i) for i=0:4]..., [rot15(0.0, 30, i) for i=0:4]...] show_graph(graph, locations; format=:svg) # ## Generic tensor network representation # We can use [`DominatingSet`](@ref) to construct the tensor network for solving the dominating set problem as dom = DominatingSet(graph) # The tensor network representation of the dominating set problem can be obtained by problem = GenericTensorNetwork(dom; optimizer=TreeSA()) # where the key word argument `optimizer` specifies the tensor network contraction order optimizer as a local search based optimizer [`TreeSA`](@ref). # ### Theory (can skip) # Let ``G=(V,E)`` be the target graph that we want to solve. # The tensor network representation map a vertex ``v\in V`` to a boolean degree of freedom ``s_v\in\{0, 1\}``. # We defined the restriction on a vertex and its neighboring vertices ``N(v)``: # ```math # T(x_v)_{s_1,s_2,\ldots,s_{|N(v)|},s_v} = \begin{cases} # 0 & s_1=s_2=\ldots=s_{|N(v)|}=s_v=0,\\ # 1 & s_v=0,\\ # x_v^{w_v} & \text{otherwise}, # \end{cases} # ``` # where ``w_v`` is the weight of vertex ``v``. # This tensor means if both ``v`` and its neighboring vertices are not in ``D``, i.e., ``s_1=s_2=\ldots=s_{|N(v)|}=s_v=0``, # this configuration is forbidden because ``v`` is not adjacent to any member in the set. # otherwise, if ``v`` is in ``D``, it has a contribution ``x_v^{w_v}`` to the final result. # One can check the contraction time space complexity of a [`DominatingSet`](@ref) instance by typing: contraction_complexity(problem) # ## Solving properties # ### Counting properties # ##### Domination polynomial # The graph polynomial for the dominating set problem is known as the domination polynomial (see [arXiv:0905.2251](https://arxiv.org/abs/0905.2251)). # It is defined as # ```math # D(G, x) = \sum_{k=0}^{\gamma(G)} d_k x^k, # ``` # where ``d_k`` is the number of dominating sets of size ``k`` in graph ``G=(V, E)``. domination_polynomial = solve(problem, GraphPolynomial())[] # The domination number ``\gamma(G)`` can be computed with the [`SizeMin`](@ref) property: domination_number = solve(problem, SizeMin())[] # Similarly, we have its counting [`CountingMin`](@ref): counting_min_dominating_set = solve(problem, CountingMin())[] # ### Configuration properties # ##### finding minimum dominating set # One can enumerate all minimum dominating sets with the [`ConfigsMin`](@ref) property in the program. min_configs = read_config(solve(problem, ConfigsMin())[]) all(c->is_dominating_set(graph, c), min_configs) # show_configs(graph, locations, reshape(collect(min_configs), 2, 5); padding_left=20) # Similarly, if one is only interested in computing one of the minimum dominating sets, # one can use the graph property [`SingleConfigMin`](@ref).
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
8592
# # Independent set problem # ## Problem definition # In graph theory, an [independent set](https://en.wikipedia.org/wiki/Independent_set_(graph_theory)) is a set of vertices in a graph, no two of which are adjacent. # # In the following, we are going to solve the solution space properties of the independent set problem on the Petersen graph. To start, let us define a Petersen graph instance. using GenericTensorNetworks, Graphs graph = Graphs.smallgraph(:petersen) # We can visualize this graph using the [`show_graph`](@ref) function ## set the vertex locations manually instead of using the default spring layout rot15(a, b, i::Int) = cos(2i*π/5)*a + sin(2i*π/5)*b, cos(2i*π/5)*b - sin(2i*π/5)*a locations = [[rot15(0.0, 60.0, i) for i=0:4]..., [rot15(0.0, 30, i) for i=0:4]...] show_graph(graph, locations; format=:svg) # The graphical display is available in the following editors # * a [VSCode](https://github.com/julia-vscode/julia-vscode) editor, # * a [Jupyter](https://github.com/JunoLab/Juno.jl) notebook, # * or a [Pluto](https://github.com/fonsp/Pluto.jl) notebook, # ## Generic tensor network representation # The independent set problem can be constructed with [`IndependentSet`](@ref) type as iset = IndependentSet(graph) # The tensor network representation of the independent set problem can be obtained by problem = GenericTensorNetwork(iset; optimizer=TreeSA()) # where the key word argument `optimizer` specifies the tensor network contraction order optimizer as a local search based optimizer [`TreeSA`](@ref). # Here, the key word argument `optimizer` specifies the tensor network contraction order optimizer as a local search based optimizer [`TreeSA`](@ref). # The resulting contraction order optimized tensor network is contained in the `code` field of `problem`. # # ### Theory (can skip) # Let ``G=(V, E)`` be a graph with each vertex $v\in V$ associated with a weight ``w_v``. # To reduce the independent set problem on it to a tensor network contraction, we first map a vertex ``v\in V`` to a label ``s_v \in \{0, 1\}`` of dimension ``2``, where we use ``0`` (``1``) to denote a vertex absent (present) in the set. # For each vertex ``v``, we defined a parameterized rank-one tensor indexed by ``s_v`` as # ```math # W(x_v^{w_v}) = \left(\begin{matrix} # 1 \\ # x_v^{w_v} # \end{matrix}\right) # ``` # where ``x_v`` is a variable associated with ``v``. # Similarly, for each edge ``(u, v) \in E``, we define a matrix ``B`` indexed by ``s_u`` and ``s_v`` as # ```math # B = \left(\begin{matrix} # 1 & 1\\ # 1 & 0 # \end{matrix}\right). # ``` # Ideally, an optimal contraction order has a space complexity ``2^{{\rm tw}(G)}``, # where ``{\rm tw(G)}`` is the [tree-width](https://en.wikipedia.org/wiki/Treewidth) of ``G`` (or `graph` in the code). # We can check the time, space and read-write complexities by typing contraction_complexity(problem) # For more information about how to improve the contraction order, please check the [Performance Tips](@ref). # ## Solution space properties # ### Maximum independent set size ``\alpha(G)`` # We can compute solution space properties with the [`solve`](@ref) function, which takes two positional arguments, the problem instance and the wanted property. maximum_independent_set_size = solve(problem, SizeMax())[] # Here [`SizeMax`](@ref) means finding the solution with maximum set size. # The return value has [`Tropical`](@ref) type. We can get its content by typing read_size(maximum_independent_set_size) # ### Counting properties # ##### Count all solutions and best several solutions # We can count all independent sets with the [`CountingAll`](@ref) property. count_all_independent_sets = solve(problem, CountingAll())[] # The return value has type `Float64`. The counting of all independent sets is equivalent to the infinite temperature partition function solve(problem, PartitionFunction(0.0))[] # We can count the maximum independent sets with [`CountingMax`](@ref). count_maximum_independent_sets = solve(problem, CountingMax())[] # The return value has type [`CountingTropical`](@ref), which contains two fields. # They are `n` being the maximum independent set size and `c` being the number of the maximum independent sets. read_size_count(count_maximum_independent_sets) # Similarly, we can count independent sets of sizes ``\alpha(G)`` and ``\alpha(G)-1`` by feeding an integer positional argument to [`CountingMax`](@ref). count_max2_independent_sets = solve(problem, CountingMax(2))[] # The return value has type [`TruncatedPoly`](@ref), which contains two fields. # They are `maxorder` being the maximum independent set size and `coeffs` being the number of independent sets having sizes ``\alpha(G)-1`` and ``\alpha(G)``. read_size_count(count_max2_independent_sets) # ##### Find the graph polynomial # We can count the number of independent sets at any size, which is equivalent to finding the coefficients of an independence polynomial that defined as # ```math # I(G, x) = \sum_{k=0}^{\alpha(G)} a_k x^k, # ``` # where ``\alpha(G)`` is the maximum independent set size, # ``a_k`` is the number of independent sets of size ``k``. # The total number of independent sets is thus equal to ``I(G, 1)``. # There are 3 methods to compute a graph polynomial, `:finitefield`, `:fft` and `:polynomial`. # These methods are introduced in the docstring of [`GraphPolynomial`](@ref). independence_polynomial = solve(problem, GraphPolynomial(; method=:finitefield))[] # The return type is [`Polynomial`](https://juliamath.github.io/Polynomials.jl/stable/polynomials/polynomial/#Polynomial-2). read_size_count(independence_polynomial) # ### Configuration properties # ##### Find one best solution # We can use the bounded or unbounded [`SingleConfigMax`](@ref) to find one of the solutions with largest size. # The unbounded (default) version uses a joint type of [`CountingTropical`](@ref) and [`ConfigSampler`](@ref) in computation, # where `CountingTropical` finds the maximum size and `ConfigSampler` samples one of the best solutions. # The bounded version uses the binary gradient back-propagation (see our paper) to compute the gradients. # It requires caching intermediate states, but is often faster (on CPU) because it can use [`TropicalGEMM`](https://github.com/TensorBFS/TropicalGEMM.jl) (see [Performance Tips](@ref)). max_config = solve(problem, SingleConfigMax(; bounded=false))[] # The return value has type [`CountingTropical`](@ref) with its counting field having [`ConfigSampler`](@ref) type. The `data` field of [`ConfigSampler`](@ref) is a bit string that corresponds to the solution single_solution = read_config(max_config) # This bit string should be read from left to right, with the i-th bit being 1 (0) to indicate the i-th vertex is present (absent) in the set. # We can visualize this MIS with the following function. show_graph(graph, locations; format=:svg, vertex_colors= [iszero(single_solution[i]) ? "white" : "red" for i=1:nv(graph)]) # ##### Enumerate all solutions and best several solutions # We can use bounded or unbounded [`ConfigsMax`](@ref) to find all solutions with largest-K set sizes. # In most cases, the bounded (default) version is preferred because it can reduce the memory usage significantly. all_max_configs = solve(problem, ConfigsMax(; bounded=true))[] # The return value has type [`CountingTropical`](@ref), while its counting field having type [`ConfigEnumerator`](@ref). The `data` field of a [`ConfigEnumerator`](@ref) instance contains a vector of bit strings. _, configs_vector = read_size_config(all_max_configs) # These solutions can be visualized with the [`show_configs`](@ref) function. show_configs(graph, locations, reshape(configs_vector, 1, :); padding_left=20) # We can use [`ConfigsAll`](@ref) to enumerate all sets satisfying the independence constraint. all_independent_sets = solve(problem, ConfigsAll())[] # The return value has type [`ConfigEnumerator`](@ref). # ##### Sample solutions # It is often difficult to store all configurations in a vector. # A more clever way to store the data is using the sum product tree format. all_independent_sets_tree = solve(problem, ConfigsAll(; tree_storage=true))[] # The return value has the [`SumProductTree`](@ref) type. Its length corresponds to the number of configurations. length(all_independent_sets_tree) # We can use `Base.collect` function to create a [`ConfigEnumerator`](@ref) or use [`generate_samples`](@ref) to generate samples from it. collect(all_independent_sets_tree) generate_samples(all_independent_sets_tree, 10)
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
2976
# # Vertex matching problem # !!! note # It is highly recommended to read the [Independent set problem](@ref) chapter before reading this one. # ## Problem definition # A ``k``-matching in a graph ``G`` is a set of k edges, no two of which have a vertex in common. using GenericTensorNetworks, Graphs # In the following, we are going to defined a matching problem for the Petersen graph. graph = Graphs.smallgraph(:petersen) # We can visualize this graph using the following function rot15(a, b, i::Int) = cos(2i*π/5)*a + sin(2i*π/5)*b, cos(2i*π/5)*b - sin(2i*π/5)*a locations = [[rot15(0.0, 60.0, i) for i=0:4]..., [rot15(0.0, 30, i) for i=0:4]...] show_graph(graph, locations; format=:svg) # ## Generic tensor network representation # We can define the matching problem with the [`Matching`](@ref) type as matching = Matching(graph) # The tensor network representation of the matching problem can be obtained by problem = GenericTensorNetwork(matching) # ### Theory (can skip) # # Type [`Matching`](@ref) can be used for constructing the tensor network with optimized contraction order for a matching problem. # We map an edge ``(u, v) \in E`` to a label ``\langle u, v\rangle \in \{0, 1\}`` in a tensor network, # where 1 means two vertices of an edge are matched, 0 means otherwise. # Then we define a tensor of rank ``d(v) = |N(v)|`` on vertex ``v`` such that, # ```math # W_{\langle v, n_1\rangle, \langle v, n_2 \rangle, \ldots, \langle v, n_{d(v)}\rangle} = \begin{cases} # 1, & \sum_{i=1}^{d(v)} \langle v, n_i \rangle \leq 1,\\ # 0, & \text{otherwise}, # \end{cases} # ``` # and a tensor of rank 1 on the bond # ```math # B_{\langle v, w\rangle} = \begin{cases} # 1, & \langle v, w \rangle = 0 \\ # x, & \langle v, w \rangle = 1, # \end{cases} # ``` # where label ``\langle v, w \rangle`` is equivalent to ``\langle w,v\rangle``. # # ## Solving properties # The maximum matching size can be obtained by max_matching = solve(problem, SizeMax())[] read_size(max_matching) # The largest number of matching is 5, which means we have a perfect matching (vertices are all paired). # The graph polynomial defined for the matching problem is known as the matching polynomial. # Here, we adopt the first definition in the [wiki page](https://en.wikipedia.org/wiki/Matching_polynomial). # ```math # M(G, x) = \sum\limits_{k=1}^{|V|/2} c_k x^k, # ``` # where ``k`` is the number of matches, and coefficients ``c_k`` are the corresponding counting. matching_poly = solve(problem, GraphPolynomial())[] read_size_count(matching_poly) # ### Configuration properties # ##### one of the perfect matches match_config = solve(problem, SingleConfigMax())[] read_size_config(match_config) # Let us show the result by coloring the matched edges to red show_graph(graph, locations; format=:svg, edge_colors= [isone(read_config(match_config)[i]) ? "red" : "black" for i=1:ne(graph)]) # where we use edges with red color to related pairs of matched vertices.
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
3461
# # Cutting problem # !!! note # It is highly recommended to read the [Independent set problem](@ref) chapter before reading this one. # ## Problem definition # In graph theory, a [cut](https://en.wikipedia.org/wiki/Cut_(graph_theory)) is a partition of the vertices of a graph into two disjoint subsets. # It is closely related to the [Spin-glass problem](@ref) in physics. # Finding the maximum cut is NP-Hard, where a maximum cut is a cut whose size is at least the size of any other cut, # where the size of a cut is the number of edges (or the sum of weights on edges) crossing the cut. using GenericTensorNetworks, Graphs # In the following, we are going to defined an cutting problem for the Petersen graph. graph = Graphs.smallgraph(:petersen) # We can visualize this graph using the following function rot15(a, b, i::Int) = cos(2i*π/5)*a + sin(2i*π/5)*b, cos(2i*π/5)*b - sin(2i*π/5)*a locations = [[rot15(0.0, 60.0, i) for i=0:4]..., [rot15(0.0, 30, i) for i=0:4]...] show_graph(graph, locations; format=:svg) # ## Generic tensor network representation # We can define the cutting problem with the [`MaxCut`](@ref) type as maxcut = MaxCut(graph) # The tensor network representation of the cutting problem can be obtained by problem = GenericTensorNetwork(maxcut) # ### Theory (can skip) # # We associated a vertex ``v\in V`` with a boolean degree of freedom ``s_v\in\{0, 1\}``. # Then the maximum cutting problem can be encoded to tensor networks by mapping an edge ``(i,j)\in E`` to an edge matrix labelled by ``s_i`` and ``s_j`` # ```math # B(x_i, x_j, w_{ij}) = \left(\begin{matrix} # 1 & x_{i}^{w_{ij}}\\ # x_{j}^{w_{ij}} & 1 # \end{matrix}\right), # ``` # where ``w_{ij}`` is a real number associated with edge ``(i, j)`` as the edge weight. # If and only if the bipartition cuts on edge ``(i, j)``, # this tensor contributes a factor ``x_{i}^{w_{ij}}`` or ``x_{j}^{w_{ij}}``. # Similarly, one can assign weights to vertices, which corresponds to the onsite energy terms in the spin glass. # The vertex tensor is # ```math # W(x_i, w_i) = \left(\begin{matrix} # 1\\ # x_{i}^{w_i} # \end{matrix}\right), # ``` # where ``w_i`` is a real number associated with vertex ``i`` as the vertex weight. # Its contraction time space complexity is ``2^{{\rm tw}(G)}``, where ``{\rm tw(G)}`` is the [tree-width](https://en.wikipedia.org/wiki/Treewidth) of ``G``. # ## Solving properties # ### Maximum cut size ``\gamma(G)`` max_cut_size = solve(problem, SizeMax())[] # ### Counting properties # ##### graph polynomial # The graph polynomial defined for the cutting problem is # ```math # C(G, x) = \sum_{k=0}^{\gamma(G)} c_k x^k, # ``` # where ``\gamma(G)`` is the maximum cut size, # ``c_k/2`` is the number of cuts of size ``k`` in graph ``G=(V,E)``. # Since the variable ``x`` is defined on edges, # the coefficients of the polynomial is the number of configurations having different number of anti-parallel edges. max_config = solve(problem, GraphPolynomial())[] # ### Configuration properties # ##### finding one max cut solution max_vertex_config = read_config(solve(problem, SingleConfigMax())[]) max_cut_size_verify = cut_size(graph, max_vertex_config) # You should see a consistent result as above `max_cut_size`. show_graph(graph, locations; vertex_colors=[ iszero(max_vertex_config[i]) ? "white" : "red" for i=1:nv(graph)], format=:svg) # where red vertices and white vertices are separated by the cut.
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
4228
# # Maximal independent set problem # !!! note # It is highly recommended to read the [Independent set problem](@ref) chapter before reading this one. # ## Problem definition # In graph theory, a [maximal independent set](https://en.wikipedia.org/wiki/Maximal_independent_set) is an independent set that is not a subset of any other independent set. # It is different from maximum independent set because it does not require the set to have the max size. # In the following, we are going to solve the maximal independent set problem on the Petersen graph. using GenericTensorNetworks, Graphs graph = Graphs.smallgraph(:petersen) # We can visualize this graph using the following function rot15(a, b, i::Int) = cos(2i*π/5)*a + sin(2i*π/5)*b, cos(2i*π/5)*b - sin(2i*π/5)*a locations = [[rot15(0.0, 60.0, i) for i=0:4]..., [rot15(0.0, 30, i) for i=0:4]...] show_graph(graph, locations; format=:svg) # ## Generic tensor network representation # We can use [`MaximalIS`](@ref) to construct the tensor network for solving the maximal independent set problem as maximalis = MaximalIS(graph) # The tensor network representation of the maximal independent set problem can be obtained by problem = GenericTensorNetwork(maximalis) # ### Theory (can skip) # Let ``G=(V,E)`` be the target graph that we want to solve. # The tensor network representation map a vertex ``v\in V`` to a boolean degree of freedom ``s_v\in\{0, 1\}``. # We defined the restriction on its neighborhood ``N(v)``: # ```math # T(x_v)_{s_1,s_2,\ldots,s_{|N(v)|},s_v} = \begin{cases} # s_vx_v^{w_v} & s_1=s_2=\ldots=s_{|N(v)|}=0,\\ # 1-s_v& \text{otherwise}. # \end{cases} # ``` # The first case corresponds to all the neighborhood vertices of ``v`` are not in ``I_{m}``, then ``v`` must be in ``I_{m}`` and contribute a factor ``x_{v}^{w_v}``, # where ``w_v`` is the weight of vertex ``v``. # Otherwise, if any of the neighboring vertices of ``v`` is in ``I_{m}``, ``v`` must not be in ``I_{m}`` by the independence requirement. # Its contraction time space complexity of a [`MaximalIS`](@ref) instance is no longer determined by the tree-width of the original graph ``G``. # It is often harder to contract this tensor network than to contract the one for regular independent set problem. contraction_complexity(problem) # ## Solving properties # ### Counting properties # ##### maximal independence polynomial # The graph polynomial defined for the maximal independent set problem is # ```math # I_{\rm max}(G, x) = \sum_{k=0}^{\alpha(G)} b_k x^k, # ``` # where ``b_k`` is the number of maximal independent sets of size ``k`` in graph ``G=(V, E)``. maximal_indenpendence_polynomial = solve(problem, GraphPolynomial())[] # One can see the first several coefficients are 0, because it only counts the maximal independent sets, # The minimum maximal independent set size is also known as the independent domination number. # It can be computed with the [`SizeMin`](@ref) property: independent_domination_number = solve(problem, SizeMin())[] # Similarly, we have its counting [`CountingMin`](@ref): counting_min_maximal_independent_set = solve(problem, CountingMin())[] # ### Configuration properties # ##### finding all maximal independent set maximal_configs = read_config(solve(problem, ConfigsAll())[]) all(c->is_maximal_independent_set(graph, c), maximal_configs) # show_configs(graph, locations, reshape(collect(maximal_configs), 3, 5); padding_left=20) # This result should be consistent with that given by the [Bron Kerbosch algorithm](https://en.wikipedia.org/wiki/Bron%E2%80%93Kerbosch_algorithm) on the complement of Petersen graph. cliques = maximal_cliques(complement(graph)) # For sparse graphs, the generic tensor network approach is usually much faster and memory efficient than the Bron Kerbosch algorithm. # ##### finding minimum maximal independent set # It is the [`ConfigsMin`](@ref) property in the program. minimum_maximal_configs = read_config(solve(problem, ConfigsMin())[]) show_configs(graph, locations, reshape(collect(minimum_maximal_configs), 2, 5); padding_left=20) # Similarly, if one is only interested in computing one of the minimum sets, # one can use the graph property [`SingleConfigMin`](@ref).
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
4529
# # Binary paint shop problem # !!! note # It is highly recommended to read the [Independent set problem](@ref) chapter before reading this one. # ## Problem Definition # The [binary paint shop problem](http://m-hikari.com/ams/ams-2012/ams-93-96-2012/popovAMS93-96-2012-2.pdf) is defined as follows: # we are given a ``2m`` length sequence containing ``m`` cars, where each car appears twice. # Each car need to be colored red in one occurrence, and blue in the other. # We need to choose which occurrence for each car to color with which color — the goal is to minimize the number of times we need to change the current color. # In the following, we use a character to represent a car, # and defined a binary paint shop problem as a string that each character appear exactly twice. using GenericTensorNetworks, Graphs sequence = collect("iadgbeadfcchghebif") # We can visualize this paint shop problem as a graph rot(a, b, θ) = cos(θ)*a + sin(θ)*b, cos(θ)*b - sin(θ)*a locations = [rot(0.0, 100.0, -0.25π - 1.5*π*(i-0.5)/length(sequence)) for i=1:length(sequence)] graph = path_graph(length(sequence)) for i=1:length(sequence) j = findlast(==(sequence[i]), sequence) i != j && add_edge!(graph, i, j) end show_graph(graph, locations; texts=string.(sequence), format=:svg, edge_colors= [sequence[e.src] == sequence[e.dst] ? "blue" : "black" for e in edges(graph)]) # Vertices connected by blue edges must have different colors, # and the goal becomes a min-cut problem defined on black edges. # ## Generic tensor network representation # We can define the binary paint shop problem with the [`PaintShop`](@ref) type as pshop = PaintShop(sequence) # The tensor network representation of the binary paint shop problem can be obtained by problem = GenericTensorNetwork(pshop) # ### Theory (can skip) # Type [`PaintShop`](@ref) can be used for constructing the tensor network with optimized contraction order for solving a binary paint shop problem. # To obtain its tensor network representation, we associating car ``c_i`` (the ``i``-th character in our example) with a degree of freedom ``s_{c_i} \in \{0, 1\}``, # where we use ``0`` to denote the first appearance of a car is colored red and ``1`` to denote the first appearance of a car is colored blue. # For each black edges ``(i, i+1)``, we define an edge tensor labeled by ``(s_{c_i}, s_{c_{i+1}})`` as follows: # If both cars on this edge are their first or second appearance # ```math # B^{\rm parallel} = \left(\begin{matrix} # x & 1 \\ # 1 & x \\ # \end{matrix}\right), # ``` # # otherwise, # ```math # B^{\rm anti-parallel} = \left(\begin{matrix} # 1 & x \\ # x & 1 \\ # \end{matrix}\right). # ``` # It can be understood as, when both cars are their first appearance, # they tend to have the same configuration so that the color is not changed. # Otherwise, they tend to have different configuration to keep the color unchanged. # ### Counting properties # ##### graph polynomial # The graph polynomial defined for the maximal independent set problem is # ```math # I_{\rm max}(G, x) = \sum_{k=0}^{\alpha(G)} b_k x^k, # ``` # where ``b_k`` is the number of maximal independent sets of size ``k`` in graph ``G=(V, E)``. max_config = solve(problem, GraphPolynomial())[] # Since it only counts the maximal independent sets, the first several coefficients are 0. # ### Counting properties # ##### graph polynomial # The graph polynomial of the binary paint shop problem in our convention is defined as # ```math # P(G, x) = \sum_{k=0}^{\delta(G)} p_k x^k # ``` # where ``p_k`` is the number of possible coloring with number of color changes ``2m-1-k``. paint_polynomial = solve(problem, GraphPolynomial())[] # ### Configuration properties # ##### finding best solutions best_configs = solve(problem, ConfigsMin())[] # One can see to identical bitstrings corresponding two different vertex configurations, they are related to bit-flip symmetry. painting1 = paint_shop_coloring_from_config(pshop, read_config(best_configs)[1]) show_graph(graph, locations; format=:svg, texts=string.(sequence), edge_colors=[sequence[e.src] == sequence[e.dst] ? "blue" : "black" for e in edges(graph)], vertex_colors=[isone(c) ? "red" : "black" for c in painting1], config=GraphDisplayConfig(;vertex_text_color="white")) # Since we have different choices of initial color, the number of best solution is 2. # The following function will check the solution and return you the number of color switches num_paint_shop_color_switch(sequence, painting1)
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
2874
# # Satisfiability problem # !!! note # It is highly recommended to read the [Independent set problem](@ref) chapter before reading this one. # ## Problem definition # In logic and computer science, the [boolean satisfiability problem](https://en.wikipedia.org/wiki/Boolean_satisfiability_problem) is the problem of determining if there exists an interpretation that satisfies a given boolean formula. # One can specify a satisfiable problem in the [conjunctive normal form](https://en.wikipedia.org/wiki/Conjunctive_normal_form). # In boolean logic, a formula is in conjunctive normal form (CNF) if it is a conjunction (∧) of one or more clauses, # where a clause is a disjunction (∨) of literals. using GenericTensorNetworks @bools a b c d e f g cnf = ∧(∨(a, b, ¬d, ¬e), ∨(¬a, d, e, ¬f), ∨(f, g), ∨(¬b, c)) # To goal is to find an assignment to satisfy the above CNF. # For a satisfiability problem at this size, we can find the following assignment to satisfy this assignment manually. assignment = Dict([:a=>true, :b=>false, :c=>false, :d=>true, :e=>false, :f=>false, :g=>true]) satisfiable(cnf, assignment) # ## Generic tensor network representation # We can use [`Satisfiability`](@ref) to construct the tensor network for solving the satisfiability problem as sat = Satisfiability(cnf) # The tensor network representation of the satisfiability problem can be obtained by problem = GenericTensorNetwork(sat) # ### Theory (can skip) # We can construct a [`Satisfiability`](@ref) problem to solve the above problem. # To generate a tensor network, we map a boolean variable ``x`` and its negation ``\neg x`` to a degree of freedom (label) ``s_x \in \{0, 1\}``, # where 0 stands for variable ``x`` having value `false` while 1 stands for having value `true`. # Then we map a clause to a tensor. For example, a clause ``¬x ∨ y ∨ ¬z`` can be mapped to a tensor labeled by ``(s_x, s_y, s_z)``. # ```math # C = \left(\begin{matrix} # \left(\begin{matrix} # x & x \\ # x & x # \end{matrix}\right) \\ # \left(\begin{matrix} # x & x \\ # 1 & x # \end{matrix}\right) # \end{matrix}\right). # ``` # There is only one entry ``(s_x, s_y, s_z) = (1, 0, 1)`` that makes this clause unsatisfied. # ## Solving properties # #### Satisfiability and its counting # The size of a satisfiability problem is defined by the number of satisfiable clauses. num_satisfiable = solve(problem, SizeMax())[] # The [`GraphPolynomial`](@ref) of a satisfiability problem counts the number of solutions that `k` clauses satisfied. num_satisfiable_count = read_size_count(solve(problem, GraphPolynomial())[]) # #### Find one of the solutions single_config = read_config(solve(problem, SingleConfigMax())[]) # One will see a bit vector printed. # One can create an assignment and check the validity with the following statement: satisfiable(cnf, Dict(zip(labels(problem), single_config)))
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
3509
# # Set covering problem # !!! note # It is highly recommended to read the [Independent set problem](@ref) chapter before reading this one. # ## Problem definition # The [set covering problem](https://en.wikipedia.org/wiki/Set_cover_problem) is a significant NP-hard problem in combinatorial optimization. Given a collection of elements, the set covering problem aims to find the minimum number of sets that incorporate (cover) all of these elements. # In the following, we will find the solution space properties for the camera location and stadium area example in the [Cornell University Computational Optimization Open Textbook](https://optimization.cbe.cornell.edu/index.php?title=Set_covering_problem). using GenericTensorNetworks, Graphs # The covering stadium areas of cameras are represented as the following sets. sets = [[1,3,4,6,7], [4,7,8,12], [2,5,9,11,13], [1,2,14,15], [3,6,10,12,14], [8,14,15], [1,2,6,11], [1,2,4,6,8,12]] # ## Generic tensor network representation # We can define the set covering problem with the [`SetCovering`](@ref) type as setcover = SetCovering(sets) # The tensor network representation of the set covering problem can be obtained by problem = GenericTensorNetwork(setcover) # ### Theory (can skip) # Let ``S`` be the target set covering problem that we want to solve. # For each set ``s \in S``, we associate it with a weight ``w_s`` to it. # The tensor network representation map a set ``s\in S`` to a boolean degree of freedom ``v_s\in\{0, 1\}``. # For each set ``s``, we defined a parameterized rank-one tensor indexed by ``v_s`` as # ```math # W(x_s^{w_s}) = \left(\begin{matrix} # 1 \\ # x_s^{w_s} # \end{matrix}\right) # ``` # where ``x_s`` is a variable associated with ``s``. # For each unique element ``a``, we defined the constraint over all sets containing it ``N(a) = \{s | s \in S \land a\in s\}``: # ```math # B_{s_1,s_2,\ldots,s_{|N(a)|}} = \begin{cases} # 0 & s_1=s_2=\ldots=s_{|N(a)|}=0,\\ # 1 & \text{otherwise}. # \end{cases} # ``` # This tensor means if none of the sets containing element ``a`` are included, then this configuration is forbidden, # One can check the contraction time space complexity of a [`SetCovering`](@ref) instance by typing: contraction_complexity(problem) # ## Solving properties # ### Counting properties # ##### The "graph" polynomial # The graph polynomial for the set covering problem is defined as # ```math # P(S, x) = \sum_{k=0}^{|S|} c_k x^k, # ``` # where ``c_k`` is the number of configurations having ``k`` sets. covering_polynomial = solve(problem, GraphPolynomial())[] # The minimum number of sets that covering the set of elements can be computed with the [`SizeMin`](@ref) property: min_cover_size = solve(problem, SizeMin())[] # Similarly, we have its counting [`CountingMin`](@ref): counting_minimum_setcovering = solve(problem, CountingMin())[] # ### Configuration properties # ##### Finding minimum set covering # One can enumerate all minimum set covering with the [`ConfigsMin`](@ref) property in the program. min_configs = read_config(solve(problem, ConfigsMin())[]) # Hence the two optimal solutions are ``\{z_1, z_3, z_5, z_6\}`` and ``\{z_2, z_3, z_4, z_5\}``. # The correctness of this result can be checked with the [`is_set_covering`](@ref) function. all(c->is_set_covering(sets, c), min_configs) # Similarly, if one is only interested in computing one of the minimum set coverings, # one can use the graph property [`SingleConfigMin`](@ref).
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
3432
# # Set packing problem # !!! note # It is highly recommended to read the [Independent set problem](@ref) chapter before reading this one. # ## Problem definition # The [set packing problem](https://en.wikipedia.org/wiki/Set_packing) is generalization of the [`IndependentSet`](@ref) problem from the simple graph to the multigraph. # Suppose one has a finite set ``S`` and a list of subsets of ``S``. Then, the set packing problem asks if some ``k`` subsets in the list are pairwise disjoint. # In the following, we will find the solution space properties for the set in the [Set covering problem](@ref). using GenericTensorNetworks, Graphs # The packing stadium areas of cameras are represented as the following sets. sets = [[1,3,4,6,7], [4,7,8,12], [2,5,9,11,13], [1,2,14,15], [3,6,10,12,14], [8,14,15], [1,2,6,11], [1,2,4,6,8,12]] # ## Generic tensor network representation # We can define the set packing problem with the [`SetPacking`](@ref) type as problem = SetPacking(sets) # The tensor network representation of the set packing problem can be obtained by problem = GenericTensorNetwork(problem) # ### Theory (can skip) # Let ``S`` be the target set packing problem that we want to solve. # For each set ``s \in S``, we associate it with a weight ``w_s`` to it. # The tensor network representation map a set ``s\in S`` to a boolean degree of freedom ``v_s\in\{0, 1\}``. # For each set ``s``, we defined a parameterized rank-one tensor indexed by ``v_s`` as # ```math # W(x_s^{w_s}) = \left(\begin{matrix} # 1 \\ # x_s^{w_s} # \end{matrix}\right) # ``` # where ``x_s`` is a variable associated with ``s``. # For each unique element ``a``, we defined the constraint over all sets containing it ``N(a) = \{s | s \in S \land a\in s\}``: # ```math # B_{s_1,s_2,\ldots,s_{|N(a)|}} = \begin{cases} # 0 & s_1+s_2+\ldots+s_{|N(a)|} > 1,\\ # 1 & \text{otherwise}. # \end{cases} # ``` # This tensor means if in a configuration, two sets contain the element ``a``, then this configuration is forbidden, # One can check the contraction time space complexity of a [`SetPacking`](@ref) instance by typing: contraction_complexity(problem) # ## Solving properties # ### Counting properties # ##### The "graph" polynomial # The graph polynomial for the set packing problem is defined as # ```math # P(S, x) = \sum_{k=0}^{\alpha(S)} c_k x^k, # ``` # where ``c_k`` is the number of configurations having ``k`` sets, and ``\alpha(S)`` is the maximum size of the packing. packing_polynomial = solve(problem, GraphPolynomial())[] # The maximum number of sets that packing the set of elements can be computed with the [`SizeMax`](@ref) property: max_packing_size = solve(problem, SizeMax())[] # Similarly, we have its counting [`CountingMax`](@ref): counting_maximum_set_packing = solve(problem, CountingMax())[] # ### Configuration properties # ##### Finding maximum set packing # One can enumerate all maximum set packing with the [`ConfigsMax`](@ref) property in the program. max_configs = read_config(solve(problem, ConfigsMax())[]) # Hence the only optimal solution is ``\{z_1, z_3, z_6\}`` that has size 3. # The correctness of this result can be checked with the [`is_set_packing`](@ref) function. all(c->is_set_packing(sets, c), max_configs) # Similarly, if one is only interested in computing one of the maximum set packing, # one can use the graph property [`SingleConfigMax`](@ref).
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
7023
# # Spin-glass problem # !!! note # It is highly recommended to read the [Independent set problem](@ref) chapter before reading this one. using GenericTensorNetworks # ## Spin-glass problem on a simple graph # Let ``G=(V, E)`` be a graph, the [spin-glass](https://en.wikipedia.org/wiki/Spin_glass) problem in physics is characterized by the following energy function # ```math # H = \sum_{ij \in E} J_{ij} s_i s_j + \sum_{i \in V} h_i s_i, # ``` # where ``h_i`` is an onsite energy term associated with spin ``s_i \in \{-1, 1\}``, and ``J_{ij}`` is the coupling strength between spins ``s_i`` and ``s_j``. # In the program, we use boolean variable ``n_i = \frac{1-s_i}{2}`` to represent a spin configuration. using Graphs # In the following, we are going to defined an spin glass problem for the Petersen graph. graph = Graphs.smallgraph(:petersen) # We can visualize this graph using the following function rot15(a, b, i::Int) = cos(2i*π/5)*a + sin(2i*π/5)*b, cos(2i*π/5)*b - sin(2i*π/5)*a locations = [[rot15(0.0, 60.0, i) for i=0:4]..., [rot15(0.0, 30, i) for i=0:4]...] show_graph(graph, locations; format=:svg) # ## Generic tensor network representation # An anti-ferromagnetic spin glass problem can be defined with the [`SpinGlass`](@ref) type as spinglass = SpinGlass(graph, fill(1, ne(graph))) # The tensor network representation of the set packing problem can be obtained by problem = GenericTensorNetwork(spinglass) # The contraction order is already optimized. # ### The tensor network reduction # We defined the reduction of the spin-glass problem to a tensor network on a hypergraph. # Let ``H = (V, E)`` be a hypergraph, the tensor network for the spin glass problem on ``H`` can be defined as the following triple of (alphabet of labels $\Lambda$, input tensors $\mathcal{T}$, output labels $\sigma_o$). # ```math # \begin{cases} # \Lambda &= \{s_v \mid v \in V\}\\ # \mathcal{T} &= \{B^{(c)}_{s_{N(c, 1),N(c, 2),\ldots,N(c, d(c))}} \mid c \in E\} \cup \{W^{(v)}_{s_v} \mid v \in V\}\\ # \sigma_o &= \varepsilon # \end{cases} # ``` # where ``s_v \in \{0, 1\}`` is the boolean degreen associated to vertex ``v``, # ``N(c, k)`` is the ``k``th vertex of hyperedge ``c``, and ``d(c)`` is the degree of ``c``. # The edge tensor ``B^{(c)}`` is defined as # ```math # B^{(c)} = \begin{cases} # x^{w_c} & (\sum_{v\in c} s_v) \;is\; even, \\ # x^{-w_c} & otherwise. # \end{cases} # ``` # and the vertex tensor ``W^{(v)}`` (used to carry labels) is defined as # ```math # W^{(v)} = \left(\begin{matrix}1_v\\ 1_v\end{matrix}\right) # ``` # ## Graph properties # ### Minimum and maximum energies # To find the minimum and maximum energies of the spin glass problem, we can use the [`SizeMin`](@ref) and [`SizeMax`](@ref) solvers. Emin = solve(problem, SizeMin())[] # The state with the highest energy is the one with all spins having the same value. Emax = solve(problem, SizeMax())[] # ### Counting properties # In the following, we are going to find the partition function and the graph polynomial of the spin glass problem. # Consider a spin glass problem on a graph ``G = (V, E)`` with integer coupling strength ``J`` and onsite energy ``h``. # Its graph polynomial is a Laurent polynomial # ```math # Z(G, J, h, x) = \sum_{k=E_{\rm min}}^{E_{\rm max}} c_k x^k, # ``` # where ``E_{\rm min}`` and ``E_{\rm max}`` are minimum and maximum energies, # ``c_k`` is the number of spin configurations with energy ``k``. # The partition function at temperature ``\beta^{-1}`` can be computed by the graph polynomial at ``x = e^-\beta``. partition_function = solve(problem, GraphPolynomial())[] # ### Configuration properties # The ground state of the spin glass problem can be found by the [`SingleConfigMin`](@ref) solver. ground_state = read_config(solve(problem, SingleConfigMin())[]) # The energy of the ground state can be verified by the [`spinglass_energy`](@ref) function. Emin_verify = spinglass_energy(spinglass, ground_state) # You should see a consistent result as above `Emin`. show_graph(graph, locations; vertex_colors=[ iszero(ground_state[i]) ? "white" : "red" for i=1:nv(graph)], format=:svg) # In the plot, the red vertices are the ones with spin value `-1` (or `1` in the boolean representation). # ## Spin-glass problem on a hypergraph # A spin-glass problem on hypergraph ``H = (V, E)`` can be characterized by the following energy function # ```math # E = \sum_{c \in E} w_{c} \prod_{v\in c} S_v # ``` # where ``S_v \in \{-1, 1\}``, ``w_c`` is coupling strength associated with hyperedge ``c``. # In the program, we use boolean variable ``s_v = \frac{1-S_v}{2}`` to represent a spin configuration. # In the following, we are going to defined an spin glass problem for the following hypergraph. num_vertices = 15 hyperedges = [[1,3,4,6,7], [4,7,8,12], [2,5,9,11,13], [1,2,14,15], [3,6,10,12,14], [8,14,15], [1,2,6,11], [1,2,4,6,8,12]] weights = [-1, 1, -1, 1, -1, 1, -1, 1]; # The energy function of the spin glass problem is # ```math # \begin{align*} # E = &-S_1S_3S_4S_6S_7 + S_4S_7S_8S_{12} - S_2S_5S_9S_{11}S_{13} +\\ # &S_1S_2S_{14}S_{15} - S_3S_6S_{10}S_{12}S_{14} + S_8S_{14}S_{15} +\\ # &S_1S_2S_6S_{11} - S_1s_2S_4S_6S_8S_{12} # \end{align*} # ``` # A spin glass problem can be defined with the [`SpinGlass`](@ref) type as hyperspinglass = SpinGlass(num_vertices, hyperedges, weights) # The tensor network representation of the set packing problem can be obtained by hyperproblem = GenericTensorNetwork(hyperspinglass) # ## Graph properties # ### Minimum and maximum energies # To find the minimum and maximum energies of the spin glass problem, we can use the [`SizeMin`](@ref) and [`SizeMax`](@ref) solvers. Emin = solve(hyperproblem, SizeMin())[] # Emax = solve(hyperproblem, SizeMax())[] # In this example, the spin configurations can be chosen to make all hyperedges having even or odd spin parity. # ### Counting properties # ##### partition function and graph polynomial # The graph polynomial defined for the spin-glass problem is a Laurent polynomial # ```math # Z(G, w, x) = \sum_{k=E_{\rm min}}^{E_{\rm max}} c_k x^k, # ``` # where ``E_{\rm min}`` and ``E_{\rm max}`` are minimum and maximum energies, # ``c_k`` is the number of spin configurations with energy ``k``. # Let the inverse temperature ``\beta = 2``, the partition function is β = 2.0 Z = solve(hyperproblem, PartitionFunction(β))[] # The infinite temperature partition function is the counting of all feasible configurations solve(hyperproblem, PartitionFunction(0.0))[] # The graph polynomial is poly = solve(hyperproblem, GraphPolynomial())[] # ### Configuration properties # The ground state of the spin glass problem can be found by the [`SingleConfigMin`](@ref) solver. ground_state = read_config(solve(hyperproblem, SingleConfigMin())[]) # The energy of the ground state can be verified by the [`spinglass_energy`](@ref) function. Emin_verify = spinglass_energy(hyperspinglass, ground_state) # You should see a consistent result as above `Emin`.
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
1883
# # Open and fixed degrees of freedom # Open degrees of freedom is useful when one want to get the marginal about certain degrees of freedom. # When one specifies the `openvertices` keyword argument in [`solve`](@ref) function as a tuple of vertices, the output will be a tensor that can be indexed by these degrees of freedom. # Let us use the maximum independent set problem on Petersen graph as an example. # using GenericTensorNetworks, Graphs graph = Graphs.smallgraph(:petersen) # The following code computes the MIS tropical tensor (reference to be added) with open vertices 1, 2 and 3. problem = GenericTensorNetwork(IndependentSet(graph); openvertices=[1,2,3]); marginal = solve(problem, SizeMax()) # The return value is a rank-3 tensor, with its elements being the MIS sizes under different configuration of open vertices. # For the maximum independent set problem, this tensor is also called the MIS tropical tensor, which can be useful in the MIS tropical tensor analysis (reference to be added). # One can also specify the fixed degrees of freedom by providing the `fixedvertices` keyword argument as a `Dict`, which can be used to get conditioned probability. # For example, we can use the following code to do the same calculation as using `openvertices`. problem = GenericTensorNetwork(IndependentSet(graph); fixedvertices=Dict(1=>0, 2=>0, 3=>0)); output = zeros(TropicalF64,2,2,2); marginal_alternative = map(CartesianIndices((2,2,2))) do ci problem.fixedvertices[1] = ci.I[1]-1 problem.fixedvertices[2] = ci.I[2]-1 problem.fixedvertices[3] = ci.I[3]-1 output[ci] = solve(problem, SizeMax())[] end # One can easily check this one also gets the correct marginal on vertices 1, 2 and 3. # As a reminder, their computational hardness can be different, because the contraction order optimization program can optimize over open degrees of freedom.
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
2314
# # Save and load solutions # Let us use the maximum independent set problem on Petersen graph as an example. # The following code enumerates all independent sets. using GenericTensorNetworks, Graphs problem = GenericTensorNetwork(IndependentSet(Graphs.smallgraph(:petersen))) all_independent_sets = solve(problem, ConfigsAll())[] # The return value has type [`ConfigEnumerator`](@ref). # We can use [`save_configs`](@ref) and [`load_configs`](@ref) to save and read a [`ConfigEnumerator`](@ref) instance to the disk. filename = tempname() save_configs(filename, all_independent_sets; format=:binary) loaded_sets = load_configs(filename; format=:binary, bitlength=10) # !!! note # When loading the data in the binary format, bit string length information `bitlength` is required. # # For the [`SumProductTree`](@ref) type output, we can use [`save_sumproduct`](@ref) and [`load_sumproduct`](@ref) to save and load serialized data. all_independent_sets_tree = solve(problem, ConfigsAll(; tree_storage=true))[] save_sumproduct(filename, all_independent_sets_tree) loaded_sets_tree = load_sumproduct(filename) # ## Loading solutions to python # The following python script loads and unpacks the solutions as a numpy array from a `:binary` format file. # ```python # import numpy as np # # def loadfile(filename:str, bitlength:int): # C = int(np.ceil(bitlength / 64)) # arr = np.fromfile(filename, dtype="uint8") # # Some axes should be transformed from big endian to little endian # res = np.unpackbits(arr).reshape(-1, C, 8, 8)[:,::-1,::-1,:] # res = res.reshape(-1, C*64)[:, :(64*C-bitlength)-1:-1] # print("number of solutions = %d"%(len(res))) # return res # in big endian format # # res = loadfile(filename, 10) # ``` # !!! note # Check section [Maximal independent set problem](@ref) for solution space properties related the maximal independent sets. That example also contains using cases of finding solution space properties related to minimum sizes: # * [`SizeMin`](@ref) for finding minimum several set sizes, # * [`CountingMin`](@ref) for counting minimum several set sizes, # * [`SingleConfigMin`](@ref) for finding one solution with minimum several sizes, # * [`ConfigsMin`](@ref) for enumerating solutions with minimum several sizes,
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
2262
# # Weighted problems # Let us use the maximum independent set problem on Petersen graph as an example. using GenericTensorNetworks, Graphs graph = Graphs.smallgraph(:petersen) # The following code constructs a weighted MIS problem instance. problem = GenericTensorNetwork(IndependentSet(graph, collect(1:10))); GenericTensorNetworks.get_weights(problem) # The tensor labels that associated with the weights can be accessed by GenericTensorNetworks.energy_terms(problem) # Here, the `weights` keyword argument can be a vector for weighted graphs or `UnitWeight()` for unweighted graphs. # Most solution space properties work for unweighted graphs also work for the weighted graphs. # For example, the maximum independent set can be found as follows. max_config_weighted = solve(problem, SingleConfigMax())[] # Let us visualize the solution. rot15(a, b, i::Int) = cos(2i*π/5)*a + sin(2i*π/5)*b, cos(2i*π/5)*b - sin(2i*π/5)*a locations = [[rot15(0.0, 60.0, i) for i=0:4]..., [rot15(0.0, 30, i) for i=0:4]...] show_graph(graph, locations; format=:svg, vertex_colors= [iszero(max_config_weighted.c.data[i]) ? "white" : "red" for i=1:nv(graph)]) # The only solution space property that can not be defined for general real-weighted (not including integer-weighted) graphs is the [`GraphPolynomial`](@ref). # For the weighted MIS problem, a useful solution space property is the "energy spectrum", i.e. the largest several configurations and their weights. # We can use the solution space property is [`SizeMax`](@ref)`(10)` to compute the largest 10 weights. spectrum = solve(problem, SizeMax(10))[] # The return value has type [`ExtendedTropical`](@ref), which contains one field `orders`. spectrum.orders # We can see the `order` is a vector of [`Tropical`](@ref) numbers. # Similarly, we can get weighted independent sets with maximum 5 sizes as follows. max5_configs = read_config(solve(problem, SingleConfigMax(5))[]) # The return value of `solve` has type [`ExtendedTropical`](@ref), but this time the element type of `orders` has been changed to [`CountingTropical`](@ref)`{Float64,`[`ConfigSampler`](@ref)`}`. # Let us visually check these configurations show_configs(graph, locations, [max5_configs[j] for i=1:1, j=1:5]; padding_left=20)
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
559
module GenericTensorNetworksCUDAExt using CUDA using GenericTensorNetworks import GenericTensorNetworks: onehotmask!, togpu # patch # Base.ndims(::Base.Broadcast.Broadcasted{CUDA.CuArrayStyle{0}}) = 0 togpu(x::AbstractArray) = CuArray(x) function onehotmask!(A::CuArray{T}, X::CuArray{T}) where T @assert length(A) == length(X) mask = X .≈ inv.(A) ci = argmax(mask) mask .= false CUDA.@allowscalar mask[ci] = true # set some elements in X to zero to help back propagating. X[(!).(mask)] .= Ref(zero(T)) return mask end end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
3420
module GenericTensorNetworks using Core: Argument using TropicalNumbers using OMEinsum using OMEinsum: contraction_complexity, timespace_complexity, timespacereadwrite_complexity, getixsv, NestedEinsum, getixs, getiy, DynamicEinCode using Graphs, Random using DelimitedFiles, Serialization, Printf using LuxorGraphPlot using LuxorGraphPlot.Luxor.Colors: @colorant_str using LuxorGraphPlot: Layered import Polynomials using Polynomials: Polynomial, LaurentPolynomial, printpoly, fit using FFTW using Primes using DocStringExtensions using Base.Cartesian import AbstractTrees: children, printnode, print_tree import StatsBase # OMEinsum export timespace_complexity, timespacereadwrite_complexity, contraction_complexity, @ein_str, getixsv, getiyv export GreedyMethod, TreeSA, SABipartite, KaHyParBipartite, MergeVectors, MergeGreedy # estimate memory export estimate_memory # Algebras export StaticBitVector, StaticElementVector, @bv_str, hamming_distance export is_commutative_semiring export Max2Poly, TruncatedPoly, Polynomial, LaurentPolynomial, Tropical, CountingTropical, StaticElementVector, Mod export ConfigEnumerator, onehotv, ConfigSampler, SumProductTree export CountingTropicalF64, CountingTropicalF32, TropicalF64, TropicalF32, ExtendedTropical export generate_samples, OnehotVec # Graphs export random_regular_graph, diagonal_coupled_graph export square_lattice_graph, unit_disk_graph, random_diagonal_coupled_graph, random_square_lattice_graph export line_graph # Tensor Networks (Graph problems) export GraphProblem, GenericTensorNetwork, optimize_code, UnitWeight, ZeroWeight export flavors, labels, nflavor, get_weights, fixedvertices, chweights, energy_terms export IndependentSet, mis_compactify!, is_independent_set export MaximalIS, is_maximal_independent_set export cut_size, MaxCut export spinglass_energy, spin_glass_from_matrix, SpinGlass export PaintShop, paintshop_from_pairs, num_paint_shop_color_switch, paint_shop_coloring_from_config, paint_shop_from_pairs export Coloring, is_vertex_coloring export Satisfiability, CNF, CNFClause, BoolVar, satisfiable, @bools, ∨, ¬, ∧ export DominatingSet, is_dominating_set export Matching, is_matching export SetPacking, is_set_packing export SetCovering, is_set_covering export OpenPitMining, is_valid_mining, print_mining # Interfaces export solve, SizeMax, SizeMin, PartitionFunction, CountingAll, CountingMax, CountingMin, GraphPolynomial, SingleConfigMax, SingleConfigMin, ConfigsAll, ConfigsMax, ConfigsMin, Single # Utilities export save_configs, load_configs, hamming_distribution, save_sumproduct, load_sumproduct # Readers export read_size, read_count, read_config, read_size_count, read_size_config # Visualization export show_graph, show_configs, show_einsum, GraphDisplayConfig, render_locs, show_landscape export AbstractLayout, SpringLayout, StressLayout, SpectralLayout, Layered, LayeredSpringLayout, LayeredStressLayout project_relative_path(xs...) = normpath(joinpath(dirname(dirname(pathof(@__MODULE__))), xs...)) # Mods.jl fixed to v1.3.4 include("Mods.jl/src/Mods.jl") using .Mods include("utils.jl") include("bitvector.jl") include("arithematics.jl") include("networks/networks.jl") include("graph_polynomials.jl") include("configurations.jl") include("graphs.jl") include("bounding.jl") include("fileio.jl") include("interfaces.jl") include("deprecate.jl") include("multiprocessing.jl") include("visualize.jl") end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
34661
@enum TreeTag LEAF SUM PROD ZERO ONE # pirate Base.abs(x::Mod) = x Base.isless(x::Mod{N}, y::Mod{N}) where N = mod(x.val, N) < mod(y.val, N) """ is_commutative_semiring(a::T, b::T, c::T) where T Check if elements `a`, `b` and `c` satisfied the commutative semiring requirements. ```math \\begin{align*} (a \\oplus b) \\oplus c = a \\oplus (b \\oplus c) & \\hspace{5em}\\triangleright\\text{commutative monoid \$\\oplus\$ with identity \$\\mathbb{0}\$}\\\\ a \\oplus \\mathbb{0} = \\mathbb{0} \\oplus a = a &\\\\ a \\oplus b = b \\oplus a &\\\\ &\\\\ (a \\odot b) \\odot c = a \\odot (b \\odot c) & \\hspace{5em}\\triangleright \\text{commutative monoid \$\\odot\$ with identity \$\\mathbb{1}\$}\\\\ a \\odot \\mathbb{1} = \\mathbb{1} \\odot a = a &\\\\ a \\odot b = b \\odot a &\\\\ &\\\\ a \\odot (b\\oplus c) = a\\odot b \\oplus a\\odot c & \\hspace{5em}\\triangleright \\text{left and right distributive}\\\\ (a\\oplus b) \\odot c = a\\odot c \\oplus b\\odot c &\\\\ &\\\\ a \\odot \\mathbb{0} = \\mathbb{0} \\odot a = \\mathbb{0} \\end{align*} ``` """ function is_commutative_semiring(a::T, b::T, c::T) where T # + if (a + b) + c != a + (b + c) @debug "(a + b) + c != a + (b + c)" return false end if !(a + zero(T) == zero(T) + a == a) @debug "!(a + zero(T) == zero(T) + a == a)" return false end if a + b != b + a @debug "a + b != b + a" return false end # * if (a * b) * c != a * (b * c) @debug "(a * b) * c != a * (b * c)" return false end if !(a * one(T) == one(T) * a == a) @debug "!(a * one(T) == one(T) * a == a)" return false end if a * b != b * a @debug "a * b != b * a" return false end # more if a * (b+c) != a*b + a*c @debug "a * (b+c) != a*b + a*c" return false end if (a+b) * c != a*c + b*c @debug "(a+b) * c != a*c + b*c" return false end if !(a * zero(T) == zero(T) * a == zero(T)) @debug "!(a * zero(T) == zero(T) * a == zero(T))" return false end if !(a * zero(T) == zero(T) * a == zero(T)) @debug "!(a * zero(T) == zero(T) * a == zero(T))" return false end return true end ######################## Truncated Polynomial ###################### # TODO: store orders to support non-integer weights # (↑) Maybe not so nessesary, no use case for counting degeneracy when using floating point weights. """ TruncatedPoly{K,T,TO} <: Number TruncatedPoly(coeffs::Tuple, maxorder) Polynomial truncated to largest `K` orders. `T` is the coefficients type and `TO` is the orders type. Fields ------------------------ * `coeffs` is the largest-K coefficients of a polynomial. In `GenericTensorNetworks`, it can be the counting or enumeration of solutions. * `maxorder` is the order of a polynomial. Examples ------------------------ ```jldoctest; setup=(using GenericTensorNetworks) julia> TruncatedPoly((1,2,3), 6) x^4 + 2*x^5 + 3*x^6 julia> TruncatedPoly((1,2,3), 6) * TruncatedPoly((5,2,1), 3) 20*x^7 + 8*x^8 + 3*x^9 julia> TruncatedPoly((1,2,3), 6) + TruncatedPoly((5,2,1), 3) x^4 + 2*x^5 + 3*x^6 ``` """ struct TruncatedPoly{K,T,TO} <: Number coeffs::NTuple{K,T} maxorder::TO end Base.:(==)(t1::TruncatedPoly{K}, t2::TruncatedPoly{K}) where K = t1.maxorder == t2.maxorder && all(i->t1.coeffs[i] == t2.coeffs[i], 1:K) """ Max2Poly{T,TO} = TruncatedPoly{2,T,TO} Max2Poly(a, b, maxorder) A shorthand of [`TruncatedPoly`](@ref){2}. """ const Max2Poly{T,TO} = TruncatedPoly{2,T,TO} Max2Poly(a, b, maxorder) = TruncatedPoly((a, b), maxorder) Max2Poly{T,TO}(a, b, maxorder) where {T,TO} = TruncatedPoly{2,T,TO}((a, b), maxorder) function Base.:+(a::Max2Poly, b::Max2Poly) aa, ab = a.coeffs ba, bb = b.coeffs if a.maxorder == b.maxorder return Max2Poly(aa+ba, ab+bb, a.maxorder) elseif a.maxorder == b.maxorder-1 return Max2Poly(ab+ba, bb, b.maxorder) elseif a.maxorder == b.maxorder+1 return Max2Poly(aa+bb, ab, a.maxorder) elseif a.maxorder < b.maxorder return b else return a end end @generated function Base.:+(a::TruncatedPoly{K}, b::TruncatedPoly{K}) where K quote if a.maxorder == b.maxorder return TruncatedPoly(a.coeffs .+ b.coeffs, a.maxorder) elseif a.maxorder > b.maxorder offset = a.maxorder - b.maxorder return TruncatedPoly((@ntuple $K i->i+offset <= $K ? a.coeffs[convert(Int, i)] + b.coeffs[convert(Int, i+offset)] : a.coeffs[convert(Int, i)]), a.maxorder) else offset = b.maxorder - a.maxorder return TruncatedPoly((@ntuple $K i->i+offset <= $K ? b.coeffs[convert(Int, i)] + a.coeffs[convert(Int, i+offset)] : b.coeffs[convert(Int, i)]), b.maxorder) end end end @generated function Base.:*(a::TruncatedPoly{K,T}, b::TruncatedPoly{K,T}) where {K,T} tupleexpr = Expr(:tuple, [K-k+1 > 1 ? Expr(:call, :+, [:(a.coeffs[$(i+k-1)]*b.coeffs[$(K-i+1)]) for i=1:K-k+1]...) : :(a.coeffs[$k]*b.coeffs[$K]) for k=1:K]...) quote maxorder = a.maxorder + b.maxorder TruncatedPoly($tupleexpr, maxorder) end end Base.zero(::Type{TruncatedPoly{K,T,TO}}) where {K,T,TO} = TruncatedPoly(ntuple(i->zero(T), K), zero(Tropical{TO}).n) Base.one(::Type{TruncatedPoly{K,T,TO}}) where {K,T,TO} = TruncatedPoly(ntuple(i->i==K ? one(T) : zero(T), K), zero(TO)) Base.zero(::TruncatedPoly{K,T,TO}) where {K,T,TO} = zero(TruncatedPoly{K,T,TO}) Base.one(::TruncatedPoly{K,T,TO}) where {K,T,TO} = one(TruncatedPoly{K,T,TO}) Base.show(io::IO, x::TruncatedPoly) = show(io, MIME"text/plain"(), x) function Base.show(io::IO, ::MIME"text/plain", x::TruncatedPoly{K}) where K if isinf(x.maxorder) print(io, 0) else print(io, Polynomial(x)) end end Polynomials.Polynomial(x::TruncatedPoly{K, T}) where {K, T} = Polynomial(vcat(zeros(T, Int(x.maxorder)-K+1), [x.coeffs...])) Polynomials.LaurentPolynomial(x::TruncatedPoly{K, T}) where {K, T} = LaurentPolynomial([x.coeffs...], Int(x.maxorder-K+1)) Base.literal_pow(::typeof(^), a::TruncatedPoly, ::Val{b}) where b = a ^ b function Base.:^(x::TruncatedPoly{K,T,TO}, b::Integer) where {K,T,TO} if b >= 0 return Base.power_by_squaring(x, b) else if count(!iszero, x.coeffs) <= 1 return TruncatedPoly{K,T,TO}(ntuple(i->iszero(x.coeffs[i]) ? x.coeffs[i] : x.coeffs[i] ^ b, K), x.maxorder*b) else error("can not apply negative power over truncated polynomial: $x") end end end ############################ ExtendedTropical ##################### """ ExtendedTropical{K,TO} <: Number ExtendedTropical{K}(orders) Extended Tropical numbers with largest `K` orders keeped, or the [`TruncatedPoly`](@ref) without coefficients, `TO` is the element type of orders, usually [`Tropical`](@ref) numbers. This algebra maps * `+` to finding largest `K` values of union of two sets. * `*` to finding largest `K` values of sum combination of two sets. * `0` to set [-Inf, -Inf, ..., -Inf, -Inf] * `1` to set [-Inf, -Inf, ..., -Inf, 0] Fields ------------------------ * `orders` is a vector of [`Tropical`](@ref) ([`CountingTropical`](@ref)) numbers as the largest-K solution sizes (solutions). Examples ------------------------------ ```jldoctest; setup=(using GenericTensorNetworks) julia> x = ExtendedTropical{3}(Tropical.([1.0, 2, 3])) ExtendedTropical{3, Tropical{Float64}}(Tropical{Float64}[1.0ₜ, 2.0ₜ, 3.0ₜ]) julia> y = ExtendedTropical{3}(Tropical.([-Inf, 2, 5])) ExtendedTropical{3, Tropical{Float64}}(Tropical{Float64}[-Infₜ, 2.0ₜ, 5.0ₜ]) julia> x * y ExtendedTropical{3, Tropical{Float64}}(Tropical{Float64}[6.0ₜ, 7.0ₜ, 8.0ₜ]) julia> x + y ExtendedTropical{3, Tropical{Float64}}(Tropical{Float64}[2.0ₜ, 3.0ₜ, 5.0ₜ]) julia> one(x) ExtendedTropical{3, Tropical{Float64}}(Tropical{Float64}[-Infₜ, -Infₜ, 0.0ₜ]) julia> zero(x) ExtendedTropical{3, Tropical{Float64}}(Tropical{Float64}[-Infₜ, -Infₜ, -Infₜ]) ``` """ struct ExtendedTropical{K,TO} <: Number orders::Vector{TO} end function ExtendedTropical{K}(x::Vector{T}) where {T, K} @assert length(x) == K @assert issorted(x) ExtendedTropical{K,T}(x) end Base.:(==)(a::ExtendedTropical{K}, b::ExtendedTropical{K}) where K = all(i->a.orders[i] == b.orders[i], 1:K) function Base.:*(a::ExtendedTropical{K,TO}, b::ExtendedTropical{K,TO}) where {K,TO} res = Vector{TO}(undef, K) return ExtendedTropical{K,TO}(sorted_sum_combination!(res, a.orders, b.orders)) end # 1. bisect over summed value and find the critical value `c`, # 2. collect the values with sum combination `≥ c`, # 3. sort the collected values function sorted_sum_combination!(res::AbstractVector{TO}, A::AbstractVector{TO}, B::AbstractVector{TO}) where TO K = length(res) @assert length(B) == length(A) == K @inbounds high = A[K] * B[K] mA = findfirst(!iszero, A) mB = findfirst(!iszero, B) if mA === nothing || mB === nothing res .= Ref(zero(TO)) return res end @inbounds low = A[mA] * B[mB] # count number bigger than x c, _ = count_geq(A, B, mB, low, true) @inbounds if c <= K # return res[K-c+1:K] .= sort!(collect_geq!(view(res,1:c), A, B, mB, low)) if c < K res[1:K-c] .= zero(TO) end return res end # calculate by bisection for at most 30 times. @inbounds for _ = 1:30 mid = mid_point(high, low) c, nB = count_geq(A, B, mB, mid, true) if c > K low = mid mB = nB elseif c == K # return # NOTE: this is the bottleneck return sort!(collect_geq!(res, A, B, mB, mid)) else high = mid end end clow, _ = count_geq(A, B, mB, low, false) @inbounds res .= sort!(collect_geq!(similar(res, clow), A, B, mB, low))[end-K+1:end] return res end # count the number of sum-combinations with the sum >= low function count_geq(A, B, mB, low, earlybreak) K = length(A) k = 1 # TODO: we should tighten mA, mB later! @inbounds Ak = A[K-k+1] @inbounds Bq = B[K-mB+1] c = 0 nB = mB @inbounds for q = K-mB+1:-1:1 Bq = B[K-q+1] while k < K && Ak * Bq >= low k += 1 Ak = A[K-k+1] end if Ak * Bq >= low c += k else c += (k-1) if k==1 nB += 1 end end if earlybreak && c > K return c, nB end end return c, nB end function collect_geq!(res, A, B, mB, low) K = length(A) k = 1 # TODO: we should tighten mA, mB later! Ak = A[K-k+1] l = 0 for q = K-mB+1:-1:1 Bq = B[K-q+1] while k < K && Ak * Bq >= low k += 1 Ak = A[K-k+1] end # push data ck = Ak * Bq >= low ? k : k-1 for j=1:ck l += 1 res[l] = Bq * A[end-j+1] end end return res end # for bisection mid_point(a::Tropical{T}, b::Tropical{T}) where T = Tropical{T}((a.n + b.n) / 2) mid_point(a::CountingTropical{T,CT}, b::CountingTropical{T,CT}) where {T,CT} = CountingTropical{T,CT}((a.n + b.n) / 2, a.c) mid_point(a::Tropical{T}, b::Tropical{T}) where T<:Integer = Tropical{T}((a.n + b.n) ÷ 2) mid_point(a::CountingTropical{T,CT}, b::CountingTropical{T,CT}) where {T<:Integer,CT} = CountingTropical{T,CT}((a.n + b.n) ÷ 2, a.c) function Base.:+(a::ExtendedTropical{K,TO}, b::ExtendedTropical{K,TO}) where {K,TO} res = Vector{TO}(undef, K) ptr1, ptr2 = K, K @inbounds va, vb = a.orders[ptr1], b.orders[ptr2] @inbounds for i=K:-1:1 if va > vb res[i] = va if ptr1 != 1 ptr1 -= 1 va = a.orders[ptr1] end else res[i] = vb if ptr2 != 1 ptr2 -= 1 vb = b.orders[ptr2] end end end return ExtendedTropical{K,TO}(res) end Base.literal_pow(::typeof(^), a::ExtendedTropical, ::Val{b}) where b = a ^ b Base.:^(a::ExtendedTropical, b::Integer) = Base.invoke(^, Tuple{ExtendedTropical, Real}, a, b) function Base.:^(a::ExtendedTropical{K,TO}, b::Real) where {K,TO} if iszero(b) # to avoid NaN return one(ExtendedTropical{K,TO}) else # sort for negative order # the -Inf cannot become possitive after powering return ExtendedTropical{K,TO}(sort!(map(x->iszero(x) ? x : x^b, a.orders))) end end Base.zero(::Type{ExtendedTropical{K,TO}}) where {K,TO} = ExtendedTropical{K,TO}(fill(zero(TO), K)) Base.one(::Type{ExtendedTropical{K,TO}}) where {K,TO} = ExtendedTropical{K,TO}(map(i->i==K ? one(TO) : zero(TO), 1:K)) Base.zero(::ExtendedTropical{K,TO}) where {K,TO} = zero(ExtendedTropical{K,TO}) Base.one(::ExtendedTropical{K,TO}) where {K,TO} = one(ExtendedTropical{K,TO}) ############################ SET Numbers ########################## abstract type AbstractSetNumber end """ ConfigEnumerator{N,S,C} <: AbstractSetNumber Set algebra for enumerating configurations, where `N` is the length of configurations, `C` is the size of storage in unit of `UInt64`, `S` is the bit width to store a single element in a configuration, i.e. `log2(# of flavors)`, for bitstrings, it is `1``. Fields ------------------------ * `data` is a vector of [`StaticElementVector`](@ref) as the solution set. Examples ---------------------- ```jldoctest; setup=:(using GenericTensorNetworks) julia> a = ConfigEnumerator([StaticBitVector([1,1,1,0,0]), StaticBitVector([1,0,0,0,1])]) {11100, 10001} julia> b = ConfigEnumerator([StaticBitVector([0,0,0,0,0]), StaticBitVector([1,0,1,0,1])]) {00000, 10101} julia> a + b {11100, 10001, 00000, 10101} julia> one(a) {00000} julia> zero(a) {} ``` """ struct ConfigEnumerator{N,S,C} <: AbstractSetNumber data::Vector{StaticElementVector{N,S,C}} end Base.length(x::ConfigEnumerator{N}) where N = length(x.data) Base.iterate(x::ConfigEnumerator{N}) where N = iterate(x.data) Base.iterate(x::ConfigEnumerator{N}, state) where N = iterate(x.data, state) Base.getindex(x::ConfigEnumerator, i) = x.data[i] Base.:(==)(x::ConfigEnumerator{N,S,C}, y::ConfigEnumerator{N,S,C}) where {N,S,C} = Set(x.data) == Set(y.data) function Base.:+(x::ConfigEnumerator{N,S,C}, y::ConfigEnumerator{N,S,C}) where {N,S,C} length(x) == 0 && return y length(y) == 0 && return x return ConfigEnumerator{N,S,C}(vcat(x.data, y.data)) end function Base.:*(x::ConfigEnumerator{L,S,C}, y::ConfigEnumerator{L,S,C}) where {L,S,C} M, N = length(x), length(y) M == 0 && return x N == 0 && return y z = Vector{StaticElementVector{L,S,C}}(undef, M*N) @inbounds for j=1:N, i=1:M z[(j-1)*M+i] = x.data[i] | y.data[j] end return ConfigEnumerator{L,S,C}(z) end Base.zero(::Type{ConfigEnumerator{N,S,C}}) where {N,S,C} = ConfigEnumerator{N,S,C}(StaticElementVector{N,S,C}[]) Base.one(::Type{ConfigEnumerator{N,S,C}}) where {N,S,C} = ConfigEnumerator{N,S,C}([zero(StaticElementVector{N,S,C})]) Base.zero(::ConfigEnumerator{N,S,C}) where {N,S,C} = zero(ConfigEnumerator{N,S,C}) Base.one(::ConfigEnumerator{N,S,C}) where {N,S,C} = one(ConfigEnumerator{N,S,C}) Base.show(io::IO, x::ConfigEnumerator) = print(io, "{", join(x.data, ", "), "}") Base.show(io::IO, ::MIME"text/plain", x::ConfigEnumerator) = Base.show(io, x) # the algebra sampling one of the configurations """ ConfigSampler{N,S,C} <: AbstractSetNumber ConfigSampler(elements::StaticElementVector) The algebra for sampling one configuration, where `N` is the length of configurations, `C` is the size of storage in unit of `UInt64`, `S` is the bit width to store a single element in a configuration, i.e. `log2(# of flavors)`, for bitstrings, it is `1``. !!! note `ConfigSampler` is a **probabilistic** commutative semiring, adding two config samplers do not give you deterministic results. Fields ---------------------- * `data` is a [`StaticElementVector`](@ref) as the sampled solution. Examples ---------------------- ```jldoctest; setup=:(using GenericTensorNetworks, Random; Random.seed!(2)) julia> ConfigSampler(StaticBitVector([1,1,1,0,0])) ConfigSampler{5, 1, 1}(11100) julia> ConfigSampler(StaticBitVector([1,1,1,0,0])) + ConfigSampler(StaticBitVector([1,0,1,0,0])) ConfigSampler{5, 1, 1}(10100) julia> ConfigSampler(StaticBitVector([1,1,1,0,0])) * ConfigSampler(StaticBitVector([0,0,0,0,1])) ConfigSampler{5, 1, 1}(11101) julia> one(ConfigSampler{5, 1, 1}) ConfigSampler{5, 1, 1}(00000) julia> zero(ConfigSampler{5, 1, 1}) ConfigSampler{5, 1, 1}(11111) ``` """ struct ConfigSampler{N,S,C} <: AbstractSetNumber data::StaticElementVector{N,S,C} end Base.:(==)(x::ConfigSampler{N,S,C}, y::ConfigSampler{N,S,C}) where {N,S,C} = x.data == y.data function Base.:+(x::ConfigSampler{N,S,C}, y::ConfigSampler{N,S,C}) where {N,S,C} # biased sampling: return `x`, maybe using random sampler is better. return randn() > 0.5 ? x : y end function Base.:*(x::ConfigSampler{L,S,C}, y::ConfigSampler{L,S,C}) where {L,S,C} ConfigSampler(x.data | y.data) end @generated function Base.zero(::Type{ConfigSampler{N,S,C}}) where {N,S,C} ex = Expr(:call, :(StaticElementVector{$N,$S,$C}), Expr(:tuple, fill(typemax(UInt64), C)...)) :(ConfigSampler{N,S,C}($ex)) end Base.one(::Type{ConfigSampler{N,S,C}}) where {N,S,C} = ConfigSampler{N,S,C}(zero(StaticElementVector{N,S,C})) Base.zero(::ConfigSampler{N,S,C}) where {N,S,C} = zero(ConfigSampler{N,S,C}) Base.one(::ConfigSampler{N,S,C}) where {N,S,C} = one(ConfigSampler{N,S,C}) """ SumProductTree{ET} <: AbstractSetNumber Configuration enumerator encoded in a tree, it is the most natural representation given by a sum-product network and is often more memory efficient than putting the configurations in a vector. One can use [`generate_samples`](@ref) to sample configurations from this tree structure efficiently. Fields ----------------------- * `tag` is one of `ZERO`, `ONE`, `LEAF`, `SUM`, `PROD`. * `data` is the element stored in a `LEAF` node. * `left` and `right` are two operands of a `SUM` or `PROD` node. Examples ------------------------ ```jldoctest; setup=:(using GenericTensorNetworks) julia> s = SumProductTree(bv"00111") 00111 julia> q = SumProductTree(bv"10000") 10000 julia> x = s + q + (count = 2.0) ├─ 00111 └─ 10000 julia> y = x * x * (count = 4.0) ├─ + (count = 2.0) │ ├─ 00111 │ └─ 10000 └─ + (count = 2.0) ├─ 00111 └─ 10000 julia> collect(y) 4-element Vector{StaticBitVector{5, 1}}: 00111 10111 10111 10000 julia> zero(s) ∅ julia> one(s) 00000 ``` """ mutable struct SumProductTree{ET} <: AbstractSetNumber tag::TreeTag count::Float64 data::ET left::SumProductTree{ET} right::SumProductTree{ET} # zero(ET) can be undef function SumProductTree(tag::TreeTag, left::SumProductTree{ET}, right::SumProductTree{ET}) where {ET} @assert tag === SUM || tag === PROD res = new{ET}(tag, tag === SUM ? left.count + right.count : left.count * right.count) res.left = left res.right = right return res end function SumProductTree(data::ET) where ET return new{ET}(LEAF, 1.0, data) end function SumProductTree{ET}(tag::TreeTag) where {ET} @assert tag === ZERO || tag === ONE return new{ET}(tag, tag === ZERO ? 0.0 : 1.0) end end # these two interfaces must be implemented in order to collect elements _data_mul(x::StaticElementVector, y::StaticElementVector) = x | y _data_one(::Type{T}) where T<:StaticElementVector = zero(T) # NOTE: might be optional """ OnehotVec{N,NF} OnehotVec{N,NF}(loc, val) Onehot vector type, `N` is the number of vector length, `NF` is the number of flavors. """ struct OnehotVec{N,NF} loc::Int32 val::Int32 end _data_one(::Type{T}) where T<:OnehotVec = _data_one(convert_ev(T)) # NOTE: might be optional Base.convert(::Type{ET}, v::OnehotVec{N,NF}) where {N,NF,S,C,ET<:StaticElementVector{N,S,C}} = onehotv(ET, v.loc, v.val) function convert_ev(::Type{OnehotVec{N,NF}}) where {N,NF} s = ceil(Int, log2(NF)) c = _nints(N,s) return StaticElementVector{N,s,c} end # AbstractTree APIs function children(t::SumProductTree) if t.tag == ZERO || t.tag == LEAF || t.tag == ONE return typeof(t)[] else return [t.left, t.right] end end function printnode(io::IO, t::SumProductTree{ET}) where {ET} if t.tag === LEAF print(io, t.data) elseif t.tag === ZERO print(io, "∅") elseif t.tag === ONE print(io, _data_one(ET)) elseif t.tag === SUM print(io, "+ (count = $(t.count))") else # PROD print(io, "* (count = $(t.count))") end end # it must be mutable, otherwise, objectid might be slow serialization might fail. # IdDict is much slower than Dict, it is useless. Base.length(x::SumProductTree) = x.count num_nodes(x::SumProductTree) = _num_nodes(x, Dict{UInt, Int}()) function _num_nodes(x, d) id = objectid(x) haskey(d, id) && return 0 if x.tag == ZERO || x.tag == ONE res = 1 elseif x.tag == LEAF res = 1 else res = _num_nodes(x.left, d) + _num_nodes(x.right, d) + 1 end d[id] = res return res end function Base.:(==)(x::SumProductTree{ET}, y::SumProductTree{ET}) where {ET} return Set(collect(x)) == Set(collect(y)) end Base.show(io::IO, t::SumProductTree) = print_tree(io, t) Base.collect(x::SumProductTree{ET}) where ET = collect(ET, x) function Base.collect(x::SumProductTree{OnehotVec{N,NF}}) where {N,NF} s = ceil(Int, log2(NF)) c = _nints(N,s) return collect(StaticElementVector{N,s,c}, x) end function Base.collect(::Type{T}, x::SumProductTree{ET}) where {T, ET} if x.tag == ZERO return T[] elseif x.tag == ONE return [_data_one(T)] elseif x.tag == LEAF return [convert(T, x.data)] elseif x.tag == SUM return vcat(collect(T, x.left), collect(T, x.right)) else # PROD return vec([reduce(_data_mul, si) for si in Iterators.product(collect(T, x.left), collect(T, x.right))]) end end function Base.:+(x::SumProductTree{ET}, y::SumProductTree{ET}) where {ET} if x.tag == ZERO return y elseif y.tag == ZERO return x else return SumProductTree(SUM, x, y) end end function Base.:*(x::SumProductTree{ET}, y::SumProductTree{ET}) where {ET} if x.tag == ONE return y elseif y.tag == ONE return x elseif x.tag == ZERO return x elseif y.tag == ZERO return y else return SumProductTree(PROD, x, y) end end Base.zero(::Type{SumProductTree{ET}}) where {ET} = SumProductTree{ET}(ZERO) Base.one(::Type{SumProductTree{ET}}) where {ET} = SumProductTree{ET}(ONE) Base.zero(::SumProductTree{ET}) where {ET} = zero(SumProductTree{ET}) Base.one(::SumProductTree{ET}) where {ET} = one(SumProductTree{ET}) # todo, check siblings too? function Base.iszero(t::SumProductTree) if t.tag == SUM iszero(t.left) && iszero(t.right) elseif t.tag == ZERO true elseif t.tag == LEAF || t.tag == ONE false else iszero(t.left) || iszero(t.right) end end """ generate_samples(t::SumProductTree, nsamples::Int) Direct sampling configurations from a [`SumProductTree`](@ref) instance. Examples ----------------------------- ```jldoctest; setup=:(using GenericTensorNetworks) julia> using Graphs julia> g= smallgraph(:petersen) {10, 15} undirected simple Int64 graph julia> t = solve(GenericTensorNetwork(IndependentSet(g)), ConfigsAll(; tree_storage=true))[]; julia> samples = generate_samples(t, 1000); julia> all(s->is_independent_set(g, s), samples) true ``` """ function generate_samples(t::SumProductTree{ET}, nsamples::Int) where {ET} # get length dict res = fill(_data_one(ET), nsamples) d = Dict{UInt, Float64}() sample_descend!(res, t) return res end function sample_descend!(res::AbstractVector{T}, t::SumProductTree) where T res_stack = Any[res] t_stack = [t] while !isempty(t_stack) && !isempty(res_stack) t = pop!(t_stack) res = pop!(res_stack) if t.tag == LEAF res .= _data_mul.(res, Ref(convert(T, t.data))) elseif t.tag == SUM ratio = length(t.left)/length(t) nleft = 0 for _ = 1:length(res) if rand() < ratio nleft += 1 end end shuffle!(res) # shuffle the `res` to avoid biased sampling, very important. if nleft >= 1 push!(res_stack, view(res,1:nleft)) push!(t_stack, t.left) end if length(res) > nleft push!(res_stack, view(res,nleft+1:length(res))) push!(t_stack, t.right) end elseif t.tag == PROD push!(res_stack, res) push!(res_stack, res) push!(t_stack, t.left) push!(t_stack, t.right) elseif t.tag == ZERO error("Meet zero when descending.") else # pass for 1 end end return res end # A patch to make `Polynomial{ConfigEnumerator}` work function Base.:*(a::Int, y::AbstractSetNumber) a == 0 && return zero(y) a == 1 && return y error("multiplication between int and `$(typeof(y))` is not defined.") end # convert from counting type to bitstring type for F in [:set_type, :sampler_type, :treeset_type] @eval begin function $F(::Type{T}, n::Int, nflavor::Int) where {OT, K, T<:TruncatedPoly{K,C,OT} where C} TruncatedPoly{K, $F(n,nflavor),OT} end function $F(::Type{T}, n::Int, nflavor::Int) where {TX, T<:Polynomial{C,TX} where C} Polynomial{$F(n,nflavor),:x} end function $F(::Type{T}, n::Int, nflavor::Int) where {TV, T<:CountingTropical{TV}} CountingTropical{TV, $F(n,nflavor)} end function $F(::Type{Real}, n::Int, nflavor::Int) $F(n, nflavor) end end end for (F,TP) in [(:set_type, :ConfigEnumerator), (:sampler_type, :ConfigSampler)] @eval function $F(n::Integer, nflavor::Integer) s = ceil(Int, log2(nflavor)) c = _nints(n,s) return $TP{n,s,c} end end function treeset_type(n::Integer, nflavor::Integer) return SumProductTree{OnehotVec{n, nflavor}} end sampler_type(::Type{ExtendedTropical{K,T}}, n::Int, nflavor::Int) where {K,T} = ExtendedTropical{K, sampler_type(T, n, nflavor)} # utilities for creating onehot vectors onehotv(::Type{ConfigEnumerator{N,S,C}}, i::Integer, v) where {N,S,C} = ConfigEnumerator([onehotv(StaticElementVector{N,S,C}, i, v)]) # we treat `v == 0` specially because we want the final result not containing one leaves. onehotv(::Type{SumProductTree{OnehotVec{N,F}}}, i::Integer, v) where {N,F} = v == 0 ? one(SumProductTree{OnehotVec{N,F}}) : SumProductTree(OnehotVec{N,F}(i, v)) onehotv(::Type{ConfigSampler{N,S,C}}, i::Integer, v) where {N,S,C} = ConfigSampler(onehotv(StaticElementVector{N,S,C}, i, v)) # just to make matrix transpose work Base.transpose(c::ConfigEnumerator) = c Base.copy(c::ConfigEnumerator) = ConfigEnumerator(copy(c.data)) Base.transpose(c::SumProductTree) = c function Base.copy(c::SumProductTree{ET}) where {ET} if c.tag == LEAF SumProductTree(c.data) elseif c.tag == ZERO || c.tag == ONE SumProductTree{ET}(c.tag) else SumProductTree(c.tag, c.left, c.right) end end # Handle boolean, this is a patch for CUDA matmul for TYPE in [:AbstractSetNumber, :TruncatedPoly, :ExtendedTropical] @eval Base.:*(a::Bool, y::$TYPE) = a ? y : zero(y) @eval Base.:*(y::$TYPE, a::Bool) = a ? y : zero(y) end # to handle power of polynomials Base.literal_pow(::typeof(^), x::SumProductTree, ::Val{y}) where y = Base.:^(x, y) function Base.:^(x::SumProductTree, y::Real) if y == 0 return one(x) elseif x.tag == LEAF || x.tag == ONE || x.tag == ZERO return x else error("pow of non-leaf nodes is forbidden!") end end Base.literal_pow(::typeof(^), x::ConfigEnumerator, ::Val{y}) where y = Base.:^(x, y) function Base.:^(x::ConfigEnumerator, y::Real) if y <= 0 return one(x) elseif length(x) <= 1 return x else error("pow of configuration enumerator of `size > 1` is forbidden!") end end Base.literal_pow(::typeof(^), x::ConfigSampler, ::Val{y}) where y = Base.:^(x, y) function Base.:^(x::ConfigSampler, y::Real) if y <= 0 return one(x) else return x end end # variable `x` function _x(::Type{Polynomial{BS,X}}; invert) where {BS,X} @assert !invert # not supported, because it is not useful return Polynomial{BS,X}([zero(BS), one(BS)]) end # will be used in spin-glass polynomial function _x(::Type{LaurentPolynomial{BS,X}}; invert) where {BS,X} return LaurentPolynomial{BS,X}([one(BS)], invert ? -1 : 1) end function _x(::Type{TruncatedPoly{K,BS,OS}}; invert) where {K,BS,OS} ret = TruncatedPoly{K,BS,OS}(ntuple(i->i<K ? zero(BS) : one(BS), K),one(OS)) return invert ? pre_invert_exponent(ret) : ret end function _x(::Type{CountingTropical{TV,BS}}; invert) where {TV,BS} ret = CountingTropical{TV,BS}(one(TV), one(BS)) return invert ? pre_invert_exponent(ret) : ret end function _x(::Type{Tropical{TV}}; invert) where {TV} ret = Tropical{TV}(one(TV)) return invert ? pre_invert_exponent(ret) : ret end function _x(::Type{ExtendedTropical{K,TO}}; invert) where {K,TO} return ExtendedTropical{K,TO}(map(i->i==K ? _x(TO; invert=invert) : zero(TO), 1:K)) end # invert the exponents of polynomial, returns a Laurent polynomial function invert_polynomial(poly::Polynomial{BS,X}) where {BS,X} return LaurentPolynomial{BS,X}(poly.coeffs[end:-1:1], -length(poly.coeffs)+1) end function invert_polynomial(poly::LaurentPolynomial{BS,X}) where {BS,X} return LaurentPolynomial{BS,X}(poly.coeffs[end:-1:1], -poly.order[]-length(poly.coeffs)+1) end # for finding all solutions function _x(::Type{T}; invert) where {T<:AbstractSetNumber} ret = one(T) invert ? pre_invert_exponent(ret) : ret end function _onehotv(::Type{Polynomial{BS,X}}, x, v) where {BS,X} Polynomial{BS,X}([onehotv(BS, x, v)]) end function _onehotv(::Type{TruncatedPoly{K,BS,OS}}, x, v) where {K,BS,OS} TruncatedPoly{K,BS,OS}(ntuple(i->i != K ? zero(BS) : onehotv(BS, x, v), K),zero(OS)) end function _onehotv(::Type{CountingTropical{TV,BS}}, x, v) where {TV,BS} CountingTropical{TV,BS}(zero(TV), onehotv(BS, x, v)) end function _onehotv(::Type{BS}, x, v) where {BS<:AbstractSetNumber} onehotv(BS, x, v) end function _onehotv(::Type{ExtendedTropical{K,TO}}, x, v) where {K,T,BS<:AbstractSetNumber,TO<:CountingTropical{T,BS}} ExtendedTropical{K,TO}(map(i->i==K ? _onehotv(TO, x, v) : zero(TO), 1:K)) end # negate the exponents before entering the solver pre_invert_exponent(t::TruncatedPoly{K}) where K = TruncatedPoly(t.coeffs, -t.maxorder) pre_invert_exponent(t::TropicalNumbers.TropicalTypes) = inv(t) # negate the exponents after entering the solver post_invert_exponent(t::TruncatedPoly{K}) where K = TruncatedPoly(ntuple(i->t.coeffs[K-i+1], K), -t.maxorder+(K-1)) post_invert_exponent(t::LaurentPolynomial) = error("This method is not implemented yet, please file an issue if you find a using case!") post_invert_exponent(t::TropicalNumbers.TropicalTypes) = inv(t) post_invert_exponent(t::ExtendedTropical{K}) where K = ExtendedTropical{K}(map(i->inv(t.orders[i]), K:-1:1)) # Data reading """ read_size(x) Read the size information from the generic element. """ read_size(x::Tropical) = x.n read_size(x::ExtendedTropical) = x.orders """ read_count(x) Read the counting information from the generic element. """ function read_count end """ read_size_count(x) Read the size and counting information from the generic element. """ read_size_count(x::CountingTropical{TV, T}) where {TV, T<:Real} = x.n => x.c read_size_count(x::TruncatedPoly{K, T}) where {K, T<:Real} = [(x.maxorder-K+i => x.coeffs[i]) for i=1:K] read_size_count(x::Polynomial{<:Real}) = [(i-1 => x.coeffs[i]) for i=1:length(x.coeffs)] read_size_count(x::LaurentPolynomial{<:Real}) = [(i-1+x.order[] => x.coeffs[i]) for i=1:length(x.coeffs)] for T in [:(CountingTropical{TV, <:Real} where TV), :(TruncatedPoly{K, <:Real} where K), :(Polynomial{<:Real}), :(LaurentPolynomial{<:Real})] @eval read_size(x::$T) = extract_first(read_size_count(x)) @eval read_count(x::$T) = extract_second(read_size_count(x)) end extract_first(x::Pair) = x.first extract_second(x::Pair) = x.second extract_first(x::AbstractVector{<:Pair}) = getfield.(x, :first) extract_second(x::AbstractVector{<:Pair}) = getfield.(x, :second) """ read_config(x; keeptree=false) Read the configuration information from the generic element, if `keeptree=true`, the tree structure will not be flattened. """ read_config(x::ConfigEnumerator; keeptree=false) = x.data read_config(x::SumProductTree; keeptree=false) = keeptree ? x : collect(x) read_config(x::ConfigSampler; keeptree=false) = x.data """ read_size_config(x; keeptree=false) Read the size and configuration information from the generic element. If `keeptree=true`, the tree structure will not be flattened. """ read_size_config(x::TruncatedPoly{K, T}; keeptree=false) where {K, T<:AbstractSetNumber} = [(x.maxorder-K+i => read_config(x.coeffs[i]; keeptree)) for i=1:K] read_size_config(x::CountingTropical{TV, T}; keeptree=false) where {TV, T<:AbstractSetNumber} = x.n => read_config(x.c; keeptree) read_size_config(x::ExtendedTropical{N, CountingTropical{TV, T}}; keeptree=false) where {N, TV, T<:AbstractSetNumber} = read_size_config.(x.orders; keeptree) read_size_config(x::Polynomial{T}; keeptree=false) where T<:AbstractSetNumber = [(i-1 => read_config(x.coeffs[i]; keeptree)) for i=1:length(x.coeffs)] read_size_config(x::LaurentPolynomial{T}; keeptree=false) where T<:AbstractSetNumber = [(i-1+x.order[] => read_config(x.coeffs[i]; keeptree)) for i=1:length(x.coeffs)] for T in [:(CountingTropical{TV, <:AbstractSetNumber} where TV), :(TruncatedPoly{K, <:AbstractSetNumber} where K), :(Polynomial{<:AbstractSetNumber}), :(LaurentPolynomial{<:AbstractSetNumber}), :(ExtendedTropical{N, CountingTropical{TV, S}} where {N, TV, S<:AbstractSetNumber})] @eval read_size(x::$T) = extract_first(read_size_config(x; keeptree=true)) @eval read_config(x::$T; keeptree=false) = extract_second(read_size_config(x; keeptree)) end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git
[ "Apache-2.0" ]
2.2.0
26cc8aa65a7824b02ed936966e76a5b28d49606e
code
6342
""" StaticElementVector{N,S,C} StaticElementVector(nflavor::Int, x::AbstractVector) `N` is the length of vector, `C` is the size of storage in unit of `UInt64`, `S` is the stride defined as the `log2(# of flavors)`. When the number of flavors is 2, it is a `StaticBitVector`. Fields ------------------------------- * `data` is a tuple of `UInt64` for storing the configuration of static elements. Examples ------------------------------- ```jldoctest; setup=:(using GenericTensorNetworks) julia> ev = StaticElementVector(3, [1,2,0,1,2]) 12012 julia> ev[2] 0x0000000000000002 julia> collect(Int, ev) 5-element Vector{Int64}: 1 2 0 1 2 ``` """ struct StaticElementVector{N,S,C} <: AbstractVector{UInt64} data::NTuple{C,UInt64} end Base.length(::StaticElementVector{N,S,C}) where {N,S,C} = N Base.size(::StaticElementVector{N,S,C}) where {N,S,C} = (N,) Base.:(==)(x::StaticElementVector, y::AbstractVector) = [x...] == [y...] Base.:(==)(x::AbstractVector, y::StaticElementVector) = [x...] == [y...] Base.:(==)(x::StaticElementVector{N,S,C}, y::StaticElementVector{N,S,C}) where {N,S,C} = x.data == y.data Base.eltype(::Type{<:StaticElementVector}) = UInt64 @inline function Base.getindex(x::StaticElementVector{N,S,C}, i::Integer) where {N,S,C} @boundscheck i <= N || throw(BoundsError(x, i)) i1 = (i-1)*S+1 # start point i2 = i*S # stop point ii1 = (i1-1) ÷ 64 ii2 = (i2-1) ÷ 64 @inbounds if ii1 == ii2 (x.data[ii1+1] >> (i1-ii1*64-1)) & (1<<S - 1) else # cross two integers (x.data[ii1+1] >> (i1-ii*64-S+1)) | (x.data[ii2+1] & (1<<(i2-ii1*64) - 1)) end end function StaticElementVector(nflavor::Int, x::AbstractVector) if any(x->x<0 || x>=nflavor, x) throw(ArgumentError("Vector elements must be in range `[0, $(nflavor-1)]`, got $x.")) end N = length(x) S = ceil(Int,log2(nflavor)) # sometimes can not devide 64. convert(StaticElementVector{N,S,_nints(N,S)}, x) end function Base.convert(::Type{StaticElementVector{N,S,C}}, x::AbstractVector) where {N,S,C} @assert length(x) == N data = zeros(UInt64,C) for i=1:N i1 = (i-1)*S+1 # start point i2 = i*S # stop point ii1 = (i1-1) ÷ 64 ii2 = (i2-1) ÷ 64 @inbounds if ii1 == ii2 data[ii1+1] |= UInt64(x[i]) << (i1-ii1*64-1) else # cross two integers data[ii1+1] |= UInt64(x[i]) << (i1-ii1*64-1) data[ii2+1] |= UInt64(x[i]) >> (i2-ii1*64) end end return StaticElementVector{N,S,C}((data...,)) end # joining two element sets Base.:(|)(x::StaticElementVector{N,S,C}, y::StaticElementVector{N,S,C}) where {N,S,C} = StaticElementVector{N,S,C}(x.data .| y.data) # intersection of two element sets Base.:(&)(x::StaticElementVector{N,S,C}, y::StaticElementVector{N,S,C}) where {N,S,C} = StaticElementVector{N,S,C}(x.data .& y.data) # difference of two element sets Base.:(⊻)(x::StaticElementVector{N,S,C}, y::StaticElementVector{N,S,C}) where {N,S,C} = StaticElementVector{N,S,C}(x.data .⊻ y.data) """ onehotv(::Type{<:StaticElementVector}, i, v) onehotv(::Type{<:StaticBitVector, i) Returns a static element vector, with the value at location `i` being `v` (1 if not specified). """ function onehotv(::Type{StaticElementVector{N,S,C}}, i, v) where {N,S,C} x = zeros(Int,N) x[i] = v return convert(StaticElementVector{N,S,C}, x) end ##### BitVectors """ StaticBitVector{N,C} = StaticElementVector{N,1,C} StaticBitVector(x::AbstractVector) Examples ------------------------------- ```jldoctest; setup=:(using GenericTensorNetworks) julia> sb = StaticBitVector([1,0,0,1,1]) 10011 julia> sb[3] 0x0000000000000000 julia> collect(Int, sb) 5-element Vector{Int64}: 1 0 0 1 1 ``` """ const StaticBitVector{N,C} = StaticElementVector{N,1,C} @inline function Base.getindex(x::StaticBitVector{N,C}, i::Integer) where {N,C} @boundscheck (i <= N || throw(BoundsError(x, i))) # NOTE: still checks bounds in global scope, why? i -= 1 ii = i ÷ 64 return @inbounds (x.data[ii+1] >> (i-ii*64)) & 1 end function StaticBitVector(x::AbstractVector) N = length(x) StaticBitVector{N,_nints(N,1)}((convert(BitVector, x).chunks...,)) end # to void casting StaticBitVector itself StaticBitVector(x::StaticBitVector) = x function Base.convert(::Type{StaticBitVector{N,C}}, x::AbstractVector) where {N,C} @assert length(x) == N StaticBitVector(x) end _nints(x,s) = (x*s-1)÷64+1 @generated function Base.zero(::Type{StaticElementVector{N,S,C}}) where {N,S,C} Expr(:call, :(StaticElementVector{$N,$S,$C}), Expr(:tuple, zeros(UInt64, C)...)) end staticfalses(::Type{StaticBitVector{N,C}}) where {N,C} = zero(StaticBitVector{N,C}) @generated function statictrues(::Type{StaticBitVector{N,C}}) where {N,C} Expr(:call, :(StaticBitVector{$N,$C}), Expr(:tuple, fill(typemax(UInt64), C)...)) end onehotv(::Type{StaticBitVector{N,C}}, i, v) where {N,C} = v > 0 ? onehotv(StaticBitVector{N,C}, i) : zero(StaticBitVector{N,C}) function onehotv(::Type{StaticBitVector{N,C}}, i) where {N,C} x = falses(N) x[i] = true return StaticBitVector(x) end function Base.iterate(x::StaticElementVector{N,S,C}, state=1) where {N,S,C} if state > N return nothing else return x[state], state+1 end end Base.show(io::IO, t::StaticElementVector) = Base.print(io, "$(join(Int.(t), ""))") Base.show(io::IO, ::MIME"text/plain", t::StaticElementVector) = Base.show(io, t) function Base.count_ones(x::StaticBitVector) sum(v->count_ones(v),x.data) end """ hamming_distance(x::StaticBitVector, y::StaticBitVector) Calculate the Hamming distance between two static bit vectors. """ hamming_distance(x::StaticBitVector, y::StaticBitVector) = count_ones(x ⊻ y) """ Constructing a static bit vector. """ macro bv_str(str) return parse_vector(2, str) end function parse_vector(nflavor::Int, str::String) val = Int[] k = 1 for each in filter(x -> x != '_', str) if each == '1' push!(val, 1) k += 1 elseif each == '0' push!(val, 0) k += 1 elseif each == '_' continue else error("expect 0 or 1, got $each at $k-th bit") end end return StaticElementVector(nflavor, val) end
GenericTensorNetworks
https://github.com/QuEraComputing/GenericTensorNetworks.jl.git