licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
4231
using FluxReconstruction, KitBase, Plots, OrdinaryDiffEq, LinearAlgebra using ProgressMeter: @showprogress cd(@__DIR__) ps = TriFRPSpace("../assets/square.msh", 2) γ = 5 / 3 u0 = zeros(size(ps.cellid, 1), ps.np, 4) for i in axes(u0, 1), j in axes(u0, 2) prim = [ max(exp(-300 * ((ps.xpg[i, j, 1] - 0.5)^2 + (ps.xpg[i, j, 2] - 0.5)^2)), 1e-2), 0.0, 0.0, 1.0, ] #prim = [1.0, 0.0, 0.0, 1.0] u0[i, j, :] .= prim_conserve(prim, γ) end function dudt!(du, u, p, t) J, lf, cell_normal, fpn, ∂l, ϕ, γ = p ncell = size(u, 1) nsp = size(u, 2) deg = size(fpn, 3) - 1 f = zeros(ncell, nsp, 4, 2) for i in axes(f, 1) for j in axes(f, 2) fg, gg = euler_flux(u[i, j, :], γ) for k in axes(f, 3) f[i, j, k, :] .= inv(J[i]) * [fg[k], gg[k]] end end end u_face = zeros(ncell, 3, deg + 1, 4) f_face = zeros(ncell, 3, deg + 1, 4, 2) for i = 1:ncell, j = 1:3, k = 1:deg+1, l = 1:4 u_face[i, j, k, l] = sum(u[i, :, l] .* lf[j, k, :]) f_face[i, j, k, l, 1] = sum(f[i, :, l, 1] .* lf[j, k, :]) f_face[i, j, k, l, 2] = sum(f[i, :, l, 2] .* lf[j, k, :]) end n = [[0.0, -1.0], [1 / √2, 1 / √2], [-1.0, 0.0]] fn_face = zeros(ncell, 3, deg + 1, 4) for i = 1:ncell, j = 1:3, k = 1:deg+1, l = 1:4 fn_face[i, j, k, l] = dot(f_face[i, j, k, l, :], n[j]) end fn_interaction = zeros(ncell, 3, deg + 1, 4) for i = 1:ncell, j = 1:3, k = 1:deg+1 uL = local_frame(u_face[i, j, k, :], cell_normal[i, j, 1], cell_normal[i, j, 2]) ni, nj, nk = fpn[i, j, k] fwn_local = zeros(4) if ni > 0 uR = local_frame( u_face[ni, nj, nk, :], cell_normal[i, j, 1], cell_normal[i, j, 2], ) flux_hll!(fwn_local, uL, uR, γ, 1.0) end fwn_global = global_frame(fwn_local, cell_normal[i, j, 1], cell_normal[i, j, 2]) fwn_xy = zeros(4, 2) for idx = 1:4 fwn_xy[idx, :] .= fwn_global[idx] .* cell_normal[i, j, :] end fws_rs = zeros(4, 2) for idx = 1:4 fws_rs[idx, :] .= inv(J[i]) * fwn_xy[idx, :] end fwns = [sum(fws_rs[idx, :] .* n[j]) for idx = 1:4] #fwns = [sum(fws_rs[idx, :]) for idx in 1:4] fn_interaction[i, j, k, :] .= fwns end #= for i = 1:ncell, j = 1:3, k = 1:deg+1 uL = local_frame(u_face[i, j, k, :], cell_normal[i, j, 1], cell_normal[i, j, 2]) ni, nj, nk = fpn[i, j, k] fwn_local = zeros(4) if ni > 0 uR = local_frame(u_face[ni, nj, nk, :], cell_normal[i, j, 1], cell_normal[i, j, 2]) flux_hll!(fwn_local, uL, uR, γ, 1.0) end fwn_global = global_frame(fwn_local, cell_normal[i, j, 1], cell_normal[i, j, 2]) fn_interaction[i, j, k, :] .= fwn_global ./ det(J[i]) end =# rhs1 = zeros(ncell, nsp, 4) for i in axes(rhs1, 1), j in axes(rhs1, 2), k = 1:4 if ps.cellType[i] == 0 rhs1[i, j, k] = -sum(f[i, :, k, 1] .* ∂l[j, :, 1]) - sum(f[i, :, k, 2] .* ∂l[j, :, 2]) end end rhs2 = zero(rhs1) for i = 1:ncell if ps.cellType[i] == 0 for j = 1:nsp, k = 1:4 rhs2[i, j, k] = -sum((fn_interaction[i, :, :, k] .- fn_face[i, :, :, k]) .* ϕ[:, :, j]) end end end for i = 1:ncell if ps.cellType[i] == 0 du[i, :, :] .= rhs1[i, :, :] .+ rhs2[i, :, :] end end return nothing end tspan = (0.0, 0.1) p = (ps.J, ps.lf, ps.cellNormals, ps.fpn, ps.∂l, ps.ϕ, γ) prob = ODEProblem(dudt!, u0, tspan, p) dt = 0.002 itg = init(prob, Euler(), save_everystep = false, adaptive = false, dt = dt) @showprogress for iter = 1:20 step!(itg) end begin prim = zero(itg.u) for i in axes(prim, 1), j in axes(prim, 2) prim[i, j, :] .= conserve_prim(itg.u[i, j, :], γ) prim[i, j, 4] = 1 / prim[i, j, 4] end write_vtk(ps.points, ps.cellid, prim[:, 2, :]) end du = zero(u0) dudt!(du, u0, p, 1.0)
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
4589
using FluxReconstruction, KitBase, Plots, OrdinaryDiffEq, LinearAlgebra using KitBase.ProgressMeter: @showprogress using Base.Threads: @threads cd(@__DIR__) ps = TriFRPSpace("../assets/naca0012.msh", 2) ps0 = deepcopy(ps) for i in eachindex(ps.cellType) if ps.cellType[i] != 0 && norm(ps.cellCenter[i, :]) > 2 ps.cellType[i] = 2 end end γ = 5 / 3 mach = 0.5 angle = (3 / 180) * π u0 = zeros(size(ps.cellid, 1), ps.np, 4) for i in axes(u0, 1), j in axes(u0, 2) c = mach * (γ / 2)^0.5 if true#ps.cellType[i] == 2 prim = [1.0, c * cos(angle), c * sin(angle), 1.0] else prim = [1.0, 0.0, 0.0, 1.0] end u0[i, j, :] .= prim_conserve(prim, γ) end function dudt!(du, u, p, t) J, lf, cell_normal, fpn, ∂l, ϕ, γ = p ncell = size(u, 1) nsp = size(u, 2) deg = size(fpn, 3) - 1 f = zeros(ncell, nsp, 4, 2) @inbounds @threads for i in axes(f, 1) for j in axes(f, 2) fg, gg = euler_flux(u[i, j, :], γ) for k in axes(f, 3) f[i, j, k, :] .= inv(J[i]) * [fg[k], gg[k]] end end end u_face = zeros(ncell, 3, deg + 1, 4) f_face = zeros(ncell, 3, deg + 1, 4, 2) @inbounds @threads for i = 1:ncell for j = 1:3, k = 1:deg+1, l = 1:4 u_face[i, j, k, l] = sum(u[i, :, l] .* lf[j, k, :]) f_face[i, j, k, l, 1] = sum(f[i, :, l, 1] .* lf[j, k, :]) f_face[i, j, k, l, 2] = sum(f[i, :, l, 2] .* lf[j, k, :]) end end n = [[0.0, -1.0], [1 / √2, 1 / √2], [-1.0, 0.0]] fn_face = zeros(ncell, 3, deg + 1, 4) @inbounds @threads for i = 1:ncell for j = 1:3, k = 1:deg+1, l = 1:4 fn_face[i, j, k, l] = dot(f_face[i, j, k, l, :], n[j]) end end fn_interaction = zeros(ncell, 3, deg + 1, 4) @inbounds for i = 1:ncell, j = 1:3, k = 1:deg+1 uL = local_frame(u_face[i, j, k, :], cell_normal[i, j, 1], cell_normal[i, j, 2]) ni, nj, nk = fpn[i, j, k] fwn_local = zeros(4) if ni > 0 uR = local_frame( u_face[ni, nj, nk, :], cell_normal[i, j, 1], cell_normal[i, j, 2], ) flux_hll!(fwn_local, uL, uR, γ, 1.0) elseif ps.cellType[i] == 1 prim = conserve_prim(u_face[i, j, k, :], γ) pn = zeros(4) pn[2] = -prim[2] pn[3] = -prim[3] pn[4] = 2.0 - prim[4] tmp = (prim[4] - 1.0) pn[1] = (1 - tmp) / (1 + tmp) * prim[1] un = prim_conserve(pn, γ) uR = local_frame(un, cell_normal[i, j, 1], cell_normal[i, j, 2]) flux_hll!(fwn_local, uL, uR, γ, 1.0) end fwn_global = global_frame(fwn_local, cell_normal[i, j, 1], cell_normal[i, j, 2]) fwn_xy = zeros(4, 2) for idx = 1:4 fwn_xy[idx, :] .= fwn_global[idx] .* cell_normal[i, j, :] end fws_rs = zeros(4, 2) for idx = 1:4 fws_rs[idx, :] .= inv(J[i]) * fwn_xy[idx, :] end fwns = [sum(fws_rs[idx, :] .* n[j]) for idx = 1:4] #fwns = [sum(fws_rs[idx, :]) for idx in 1:4] fn_interaction[i, j, k, :] .= fwns end rhs1 = zeros(ncell, nsp, 4) @inbounds for i in axes(rhs1, 1) for j in axes(rhs1, 2), k = 1:4 if ps.cellType[i] in [0, 1] rhs1[i, j, k] = -sum(f[i, :, k, 1] .* ∂l[j, :, 1]) - sum(f[i, :, k, 2] .* ∂l[j, :, 2]) end end end rhs2 = zero(rhs1) @inbounds for i = 1:ncell if ps.cellType[i] in [0, 1] for j = 1:nsp, k = 1:4 rhs2[i, j, k] = -sum((fn_interaction[i, :, :, k] .- fn_face[i, :, :, k]) .* ϕ[:, :, j]) end end end @inbounds for i = 1:ncell if ps.cellType[i] in [0, 1] du[i, :, :] .= rhs1[i, :, :] .+ rhs2[i, :, :] end end return nothing end tspan = (0.0, 0.1) p = (ps.J, ps.lf, ps.cellNormals, ps.fpn, ps.∂l, ps.ϕ, γ) prob = ODEProblem(dudt!, u0, tspan, p) dt = 0.0005 itg = init(prob, Euler(), save_everystep = false, adaptive = false, dt = dt) function output(ps, itg) prim = zero(itg.u) for i in axes(prim, 1), j in axes(prim, 2) prim[i, j, :] .= conserve_prim(itg.u[i, j, :], γ) prim[i, j, 4] = 1 / prim[i, j, 4] end write_vtk(ps.points, ps.cellid, prim[:, 2, :]) end @showprogress for iter = 1:500 step!(itg) if iter % 50 == 0 output(ps, itg) end end output(ps, itg)
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
2803
using FluxRC, KitBase, Plots, OrdinaryDiffEq, LinearAlgebra using ProgressMeter: @showprogress cd(@__DIR__) ps = UnstructPSpace("square.msh") ncell = size(ps.cellid, 1) nface = size(ps.faceType, 1) ax = -1.0 ay = -1.0 u = zeros(size(ps.cellid, 1)) for i in axes(u, 1) u[i] = max( exp(-300 * ((ps.cellCenter[i, 1] - 0.5)^2 + (ps.cellCenter[i, 2] - 0.5)^2)), 1e-4, ) end u0 = deepcopy(u) cell_normal = zeros(ncell, 3, 2) for i = 1:ncell pids = ps.cellid[i, :] cell_normal[i, 1, :] .= unit_normal(ps.points[pids[1], :], ps.points[pids[2], :]) cell_normal[i, 2, :] .= unit_normal(ps.points[pids[2], :], ps.points[pids[3], :]) cell_normal[i, 3, :] .= unit_normal(ps.points[pids[3], :], ps.points[pids[1], :]) p = [ ps.points[pids[1], :] .+ ps.points[pids[2], :], ps.points[pids[2], :] .+ ps.points[pids[3], :], ps.points[pids[3], :] .+ ps.points[pids[1], :], ] / 2 for j = 1:3 if dot(cell_normal[i, j, :], p[j][1:2] - ps.cellCenter[i, 1:2]) < 0 cell_normal[i, j, :] .= -cell_normal[i, j, :] end end end cell_length = zeros(ncell, 3) for i = 1:ncell pids = ps.cellid[i, :] cids = ps.cellNeighbors[i, :] for j = 1:3 if cids[j] > 0 nodes = intersect(pids, ps.cellid[cids[j], :]) cell_length[i, j] = norm(ps.points[nodes[1], 1:2] - ps.points[nodes[2], 1:2]) end end end function flux_ad(fL, fR, uL, uR) au = @. (fL - fR) / (uL - uR + 1e-6) return @. 0.5 * (fL + fR) #- 0.5 * abs(au) * (uL - uR) # 这个有问题 end function dudt!(du, u, p, t) ps, ax, ay = p du .= 0.0 f = zeros(ncell, 2) for i in axes(f, 1) if ps.cellType[i] == 0 f[i, :] .= [ax * u[i], ay * u[i]] u1 = u[ps.cellNeighbors[i, 1]] u2 = u[ps.cellNeighbors[i, 2]] u3 = u[ps.cellNeighbors[i, 3]] f1 = [ax * u1, ay * u1] f2 = [ax * u2, ay * u2] f3 = [ax * u3, ay * u3] fa1 = flux_ad(f[i, :], f1, u[i], u1) fa2 = flux_ad(f[i, :], f2, u[i], u2) fa3 = flux_ad(f[i, :], f3, u[i], u3) du[i] = -( dot(fa1, cell_normal[i, 1, :]) * cell_length[i, 1] + dot(fa2, cell_normal[i, 2, :]) * cell_length[i, 2] + dot(fa3, cell_normal[i, 3, :]) * cell_length[i, 3] ) du[i] /= ps.cellArea[i] end end return nothing end du = zero(u) p = (ps, ax, ay) dudt!(du, u, p, 0.0) tspan = (0.0, 1.0) #p = () prob = ODEProblem(dudt!, u, tspan, p) dt = 0.01 itg = init(prob, Euler(), save_everystep = false, adaptive = false, dt = dt) @showprogress for iter = 1:10 step!(itg) end write_vtk(ps.points, ps.cellid, itg.u)
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
7726
using FluxRC, KitBase, Plots, OrdinaryDiffEq, LinearAlgebra using ProgressMeter: @showprogress cd(@__DIR__) ps = UnstructPSpace("../assets/square.msh") N = deg = 2 Np = (N + 1) * (N + 2) ÷ 2 ncell = size(ps.cellid, 1) nface = size(ps.faceType, 1) J = rs_jacobi(ps.cellid, ps.points) spg = global_sp(ps.points, ps.cellid, N) fpg = global_fp(ps.points, ps.cellid, N) pl, wl = tri_quadrature(N) V = vandermonde_matrix(N, pl[:, 1], pl[:, 2]) Vr, Vs = ∂vandermonde_matrix(N, pl[:, 1], pl[:, 2]) ∂l = ∂lagrange(V, Vr, Vs) ϕ = correction_field(N, V) pf, wf = triface_quadrature(N) ψf = zeros(3, N + 1, Np) for i = 1:3 ψf[i, :, :] .= vandermonde_matrix(N, pf[i, :, 1], pf[i, :, 2]) end lf = zeros(3, N + 1, Np) for i = 1:3, j = 1:N+1 lf[i, j, :] .= V' \ ψf[i, j, :] end γ = 5 / 3 u0 = zeros(size(ps.cellid, 1), Np, 4) for i in axes(u0, 1), j in axes(u0, 2) prim = [ max(exp(-300 * ((spg[i, j, 1] - 0.5)^2 + (spg[i, j, 2] - 0.5)^2)), 1e-3), 0.0, 0.0, 1.0, ] #prim = [1., 0., 0., 1.] u0[i, j, :] .= prim_conserve(prim, γ) end cell_normal = zeros(ncell, 3, 2) for i = 1:ncell pids = ps.cellid[i, :] cell_normal[i, 1, :] .= unit_normal(ps.points[pids[1], :], ps.points[pids[2], :]) cell_normal[i, 2, :] .= unit_normal(ps.points[pids[2], :], ps.points[pids[3], :]) cell_normal[i, 3, :] .= unit_normal(ps.points[pids[3], :], ps.points[pids[1], :]) p = [ ps.points[pids[1], :] .+ ps.points[pids[2], :], ps.points[pids[2], :] .+ ps.points[pids[3], :], ps.points[pids[3], :] .+ ps.points[pids[1], :], ] / 2 for j = 1:3 if dot(cell_normal[i, j, :], p[j][1:2] - ps.cellCenter[i, 1:2]) < 0 cell_normal[i, j, :] .= -cell_normal[i, j, :] end end end function dudt!(du, u, p, t) du .= 0.0 deg, γ = p ncell = size(u, 1) nsp = size(u, 2) f = zeros(ncell, nsp, 4, 2) for i in axes(f, 1) for j in axes(f, 2) fg, gg = euler_flux(u[i, j, :], γ) for k in axes(f, 3) f[i, j, k, :] .= inv(J[i]) * [fg[k], gg[k]] end end end u_face = zeros(ncell, 3, deg + 1, 4) f_face = zeros(ncell, 3, deg + 1, 4, 2) for i = 1:ncell, j = 1:3, k = 1:deg+1, l = 1:4 u_face[i, j, k, l] = sum(u[i, :, l] .* lf[j, k, :]) f_face[i, j, k, l, 1] = sum(f[i, :, l, 1] .* lf[j, k, :]) f_face[i, j, k, l, 2] = sum(f[i, :, l, 2] .* lf[j, k, :]) end n = [[0.0, -1.0], [1 / √2, 1 / √2], [-1.0, 0.0]] fn_face = zeros(ncell, 3, deg + 1, 4) for i = 1:ncell, j = 1:3, k = 1:deg+1, l = 1:4 fn_face[i, j, k, l] = dot(f_face[i, j, k, l, :], n[j]) end fn_interaction = zeros(ncell, 3, deg + 1, 4) for i = 1:ncell, j = 1:3, k = 1:deg+1 uL = local_frame(u_face[i, j, k, :], cell_normal[i, j, 1], cell_normal[i, j, 2]) ni, nj, nk = neighbor_fpidx([i, j, k], ps, fpg) fwn_local = zeros(4) if ni > 0 uR = local_frame( u_face[ni, nj, nk, :], cell_normal[i, j, 1], cell_normal[i, j, 2], ) flux_hll!(fwn_local, uL, uR, γ, 1.0) end fwn_global = global_frame(fwn_local, cell_normal[i, j, 1], cell_normal[i, j, 2]) fwn_xy = zeros(4, 2) for idx = 1:4 fwn_xy[idx, :] .= fwn_global[idx] .* cell_normal[i, j, :] end fws_rs = zeros(4, 2) for idx = 1:4 fws_rs[idx, :] .= inv(J[i]) * fwn_xy[idx, :] end fwns = [sum(fws_rs[idx, :] .* n[j]) for idx = 1:4] #fwns = [sum(fws_rs[idx, :]) for idx in 1:4] fn_interaction[i, j, k, :] .= fwns end #= for i = 1:ncell, j = 1:3, k = 1:deg+1 uL = local_frame(u_face[i, j, k, :], 1., 0.) uD = local_frame(u_face[i, j, k, :], 0., 1.) ni, nj, nk = neighbor_fpidx([i, j, k], ps, fpg) fw1_local = zeros(4) fw2_local = zeros(4) if ni > 0 uR = local_frame(u_face[ni, nj, nk, :], 1., 0.) uU = local_frame(u_face[ni, nj, nk, :], 0., 1.) flux_hll!(fw1_local, uL, uR, γ, 1.0) flux_hll!(fw2_local, uD, uU, γ, 1.0) end fw1_global = global_frame(fw1_local, 1., 0.) fw2_global = global_frame(fw2_local, 0., 1.) fw_xy = hcat(fw1_global, fw2_global) fw_rs = zeros(4, 2) for idx in 1:4 fw_rs[idx, :] .= inv(J[i]) * fw_xy[idx, :] end fwns = [sum(fw_rs[idx, :] .* n[j]) for idx in 1:4] #fwns = [sum(fws_rs[idx, :]) for idx in 1:4] fn_interaction[i, j, k, :] .= fwns end=# #= for i = 1:ncell, j = 1:3, k = 1:deg+1 fw1 = zeros(4) fw2 = zeros(4) ni, nj, nk = neighbor_fpidx([i, j, k], ps, fpg) if ni > 0 flux_roe!(fw1, u_face[i, j, k, :], u_face[ni, nj, nk, :], γ, 1., [1., 0.]) flux_roe!(fw2, u_face[i, j, k, :], u_face[ni, nj, nk, :], γ, 1., [0., 1.]) end fi = zeros(4, 2) for id in 1:4 fi[id, :] .= inv(J[i]) * [fw1[id], fw2[id]] end for l = 1:4 fn_interaction[i, j, k, l] = sum(fi[l, :] .* n[j]) end end=# #= for i = 1:ncell, j = 1:3, k = 1:deg+1 ni, nj, nk = neighbor_fpidx([i, j, k], ps, fpg) if ni > 0 fR = f_face[ni, nj, nk, :, :] fRg = zeros(4, 2) for id = 1:4 fRg[id, :] .= J[ni] * f_face[ni, nj, nk, id, :] end fRl = zeros(4, 2) for id = 1:4 fRl[id, :] .= inv(J[i]) * fRg[id, :] end _f0 = (f_face[i, j, k, :, :] + fRl) ./ 2 _f1 = -det(J[i]) * 0.5 .* (u_face[i, j, k, :] + u_face[ni, nj, nk, :]) .* (ps.cellArea[i]^0.5 / 2) ./ dt _f = hcat(_f0[:, 1] + _f1, _f0[:, 2] + _f1) fn_interaction[i, j, k, :] .= [sum(_f[id, :] .* n[j]) for id = 1:4] end end=# rhs1 = zeros(ncell, nsp, 4) for i in axes(rhs1, 1), j in axes(rhs1, 2), k = 1:4 if ps.cellType[i] == 0 rhs1[i, j, k] = -sum(f[i, :, k, 1] .* ∂l[j, :, 1]) - sum(f[i, :, k, 2] .* ∂l[j, :, 2]) end end rhs2 = zero(rhs1) for i = 1:ncell if ps.cellType[i] == 0 for j = 1:nsp, k = 1:4 rhs2[i, j, k] = -sum((fn_interaction[i, :, :, k] .- fn_face[i, :, :, k]) .* ϕ[:, :, j]) #rhs2[i, j, k] = - sum((fn_interaction[i, :, :, k] .- fn_face[i, :, :, k])) / 3 end end end for i = 1:ncell if ps.cellType[i] == 0 du[i, :, :] .= rhs1[i, :, :] .+ rhs2[i, :, :] #du[i, :, :] .= rhs2[i, :, :] end end return nothing end tspan = (0.0, 0.1) p = (N, 5 / 3) prob = ODEProblem(dudt!, u0, tspan, p) dt = 0.002 itg = init(prob, Euler(), save_everystep = false, adaptive = false, dt = dt) @showprogress for iter = 1:20 step!(itg) end begin prim = zero(itg.u) for i in axes(prim, 1), j in axes(prim, 2) prim[i, j, :] .= conserve_prim(itg.u[i, j, :], γ) prim[i, j, 4] = 1 / prim[i, j, 4] end write_vtk(ps.points, ps.cellid, prim[:, 2, :]) end du = zero(u0) f1, f2 = dudt!(du, u0, p, 1.0) idx = 1211 f1[idx, 2, 2, :] f2[idx, 2, 2, :] fw = zeros(4) flux_roe!(fw, [1.0, 0.0, 0.0, 1.0], []fw::X, wL::Y, wR::Y, γ, dt, n = [1.0, 0.0])
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
5846
using FluxRC, KitBase, Plots cd(@__DIR__) ps = UnstructPSpace("square.msh") N = 2 Np = (N + 1) * (N + 2) ÷ 2 pl, wl = tri_quadrature(N) pf, wf = triface_quadrature(N) spg = zeros(size(ps.cellid, 1), Np, 2) for i in axes(spg, 1), j in axes(spg, 2) id1, id2, id3 = ps.cellid[i, :] spg[i, j, :] .= rs_xy(pl[j, :], ps.points[id1, 1:2], ps.points[id2, 1:2], ps.points[id3, 1:2]) end nface = size(ps.faceType, 1) fpg = zeros(size(ps.faceType, 1), N + 1, 2) for i in axes(fpg, 1), j in axes(fpg, 2) idc = ifelse(ps.faceCells[i, 1] != -1, ps.faceCells[i, 1], ps.faceCells[i, 2]) id1, id2, id3 = ps.cellid[idc, :] if !(id3 in ps.facePoints[i, :]) idf = 1 elseif !(id1 in ps.facePoints[i, :]) idf = 2 elseif !(id2 in ps.facePoints[i, :]) idf = 3 end fpg[i, j, :] .= rs_xy(pf[idf, j, :], ps.points[id1, 1:2], ps.points[id2, 1:2], ps.points[id3, 1:2]) end a = 1.0 u = zeros(size(ps.cellid, 1), Np) for i in axes(u, 1), j in axes(u, 2) u[i, j] = exp(-300 * ((spg[i, j, 1] - 0.5)^2 + (spg[i, j, 2] - 0.5)^2)) end f = zeros(size(ps.cellid, 1), Np, 2) for i in axes(f, 1) xr, yr = ps.points[ps.cellid[i, 2], 1:2] - ps.points[ps.cellid[i, 1], 1:2] xs, ys = ps.points[ps.cellid[i, 3], 1:2] - ps.points[ps.cellid[i, 1], 1:2] J = xr * ys - xs * yr for j in axes(f, 2) fg = a * u[i, j] gg = a * u[i, j] f[i, j, :] .= [ys * fg - xs * gg, -yr * fg + xr * gg] ./ J end end V = vandermonde_matrix(N, pl[:, 1], pl[:, 2]) Vr, Vs = ∂vandermonde_matrix(N, pl[:, 1], pl[:, 2]) ∂l = zeros(Np, Np, 2) for i = 1:Np ∂l[i, :, 1] .= V' \ Vr[i, :] ∂l[i, :, 2] .= V' \ Vs[i, :] end du = zeros(size(ps.cellid, 1), Np) for i in axes(du, 1), j in axes(du, 2) du[i, j] = -sum(f[i, :, 1] .* ∂l[j, :, 1]) - sum(f[i, :, 2] .* ∂l[j, :, 2]) end ψf = zeros(3, N + 1, Np) for i = 1:3 ψf[i, :, :] .= vandermonde_matrix(N, pf[i, :, 1], pf[i, :, 2]) end lf = zeros(3, N + 1, Np) for i = 1:3, j = 1:N+1 lf[i, j, :] .= V' \ ψf[i, j, :] end # correction field ϕ = zeros(3, N + 1, Np) σ = zeros(3, N + 1, Np) for k = 1:Np for j = 1:N+1 for i = 1:3 σ[i, j, k] = wf[i, j] * ψf[i, j, k] end end end for f = 1:3, j = 1:N+1, i = 1:Np ϕ[f, j, i] = sum(σ[f, j, :] .* V[i, :]) end function dudt!(du, u, p, t) du .= 0.0 a, deg, nface = p ncell = size(u, 1) nsp = size(u, 2) f = zeros(ncell, nsp, 2) for i in axes(f, 1) xr, yr = ps.points[ps.cellid[i, 2], 1:2] - ps.points[ps.cellid[i, 1], 1:2] xs, ys = ps.points[ps.cellid[i, 3], 1:2] - ps.points[ps.cellid[i, 1], 1:2] J = xr * ys - xs * yr for j in axes(f, 2) fg = a * u[i, j] gg = a * u[i, j] f[i, j, :] .= [ys * fg - xs * gg, -yr * fg + xr * gg] ./ J end end u_face = zeros(ncell, 3, deg + 1) f_face = zeros(ncell, 3, deg + 1, 2) for i = 1:ncell, j = 1:3, k = 1:deg+1 u_face[i, j, k] = sum(u[i, :] .* lf[j, k, :]) f_face[i, j, k, 1] = sum(f[i, :, 1] .* lf[j, k, :]) f_face[i, j, k, 2] = sum(f[i, :, 2] .* lf[j, k, :]) end n = [[0.0, -1.0], [1 / √2, 1 / √2], [-1.0, 0.0]] fn_face = zeros(ncell, 3, deg + 1) for i = 1:ncell, j = 1:3, k = 1:deg+1 fn_face[i, j, k] = sum(f_face[i, j, k, :] .* n[j]) end au = zeros(nface, deg + 1, 2) f_interaction = zeros(nface, deg + 1, 2) for i = 1:nface c1, c2 = ps.faceCells[i, :] if -1 in (c1, c2) continue end pids = ps.facePoints[i, :] if ps.cellid[c1, 1] ∉ pids fid1 = 2 elseif ps.cellid[c1, 2] ∉ pids fid1 = 3 elseif ps.cellid[c1, 3] ∉ pids fid1 = 1 end if ps.cellid[c2, 1] ∉ pids fid2 = 2 elseif ps.cellid[c2, 2] ∉ pids fid2 = 3 elseif ps.cellid[c2, 3] ∉ pids fid2 = 1 end for j = 1:deg+1, k = 1:2 au[i, j, k] = (f_face[c1, fid1, j, k] - f_face[c2, fid2, j, k]) / (u_face[c1, fid1, j] - u_face[c2, fid2, j] + 1e-6) f_interaction[i, j, k] = 0.5 * (f_face[c1, fid1, j, k] + f_face[c2, fid2, j, k]) - 0.5 * abs(au[i, j, k]) * (u_face[c1, fid1, j] - u_face[c2, fid2, j]) end end fn_interaction = zeros(ncell, 3, deg + 1) for i = 1:ncell for j = 1:3, k = 1:deg+1 fn_interaction[i, j, k] = sum(f_interaction[ps.cellFaces[i, j], k, :] .* n[j]) end end rhs1 = zeros(ncell, nsp) for i in axes(rhs1, 1), j in axes(rhs1, 2) rhs1[i, j] = -sum(f[i, :, 1] .* ∂l[j, :, 1]) - sum(f[i, :, 2] .* ∂l[j, :, 2]) end for i = 1:ncell if ps.cellType[i] != 1 for j = 1:nsp du[i, j] = rhs1[i, j] - sum(fn_interaction[i, :, :] .- fn_face[i, :, :] .* ϕ[:, :, j]) end end end end du = zero(u) dudt!(du, u, (a, N, nface), 0.0) setdiff([1, 2], [2]) ps.cellFaces[1, :] ps.cellid[1, :] ps.facePoints[3, :] u[idx, :] .* lf[1, 2, :] |> sum u[idx, :] .* lf[2, 2, :] |> sum u[idx, :] .* lf[3, 2, :] |> sum u[idx, :] .* ∂l[1, :, 2] |> sum u[idx, :] .* ∂l[2, :, 2] |> sum u[idx, :] .* ∂l[3, :, 2] |> sum u[idx, :] .* ∂l[4, :, 2] |> sum u[idx, :] .* ∂l[5, :, 2] |> sum u[idx, :] .* ∂l[6, :, 2] |> sum spg[idx, :, :] u[idx, 4] u[idx, 6] idx = 468 id1, id2, id3 = ps.cellFaces[idx, :] scatter(spg[idx, :, 1], spg[idx, :, 2], legend = :none) scatter!(fpg[id1, :, 1], fpg[id1, :, 2]) scatter!(fpg[id2, :, 1], fpg[id2, :, 2]) scatter!(fpg[id3, :, 1], fpg[id3, :, 2]) write_vtk(ps.points, ps.cellid, u[:, 1]) scatter(spg[1:10, :, 1], spg[1:10, :, 2], legend = :none, ratio = 1 / 3)
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
4982
using FluxRC, KitBase, Plots, OrdinaryDiffEq using ProgressMeter: @showprogress cd(@__DIR__) ps = KitBase.UnstructPSpace("../assets/linesource.msh") begin # quadrature quadratureorder = 8 points, weights = KitBase.legendre_quadrature(quadratureorder) #points, triangulation = KitBase.octa_quadrature(quadratureorder) #weights = KitBase.quadrature_weights(points, triangulation) nq = size(points, 1) vs = KitBase.UnstructVSpace(-1.0, 1.0, nq, points, weights) # IC s2 = 0.03^2 init_field(x, y) = max(1e-4, 1.0 / (4.0 * π * s2) * exp(-(x^2 + y^2) / 4.0 / s2)) # particle SigmaS = ones(size(ps.cellid, 1)) SigmaA = zeros(size(ps.cellid, 1)) SigmaT = SigmaS + SigmaA # time tspan = (0.0, 0.3) cfl = 0.7 end N = deg = 2 Np = (N + 1) * (N + 2) ÷ 2 ncell = size(ps.cellid, 1) nface = size(ps.faceType, 1) J = rs_jacobi(ps.cellid, ps.points) spg = global_sp(ps.points, ps.cellid, N) fpg = global_fp(ps.points, ps.cellid, N) pl, wl = tri_quadrature(N) V = vandermonde_matrix(N, pl[:, 1], pl[:, 2]) Vr, Vs = ∂vandermonde_matrix(N, pl[:, 1], pl[:, 2]) ∂l = ∂lagrange(V, Vr, Vs) ϕ = correction_field(N, V) pf, wf = triface_quadrature(N) ψf = zeros(3, N + 1, Np) for i = 1:3 ψf[i, :, :] .= vandermonde_matrix(N, pf[i, :, 1], pf[i, :, 2]) end lf = zeros(3, N + 1, Np) for i = 1:3, j = 1:N+1 lf[i, j, :] .= V' \ ψf[i, j, :] end u = zeros(size(ps.cellid, 1), Np, nq) for i in axes(u, 1), j in axes(u, 2) u[i, j, :] .= init_field(spg[i, j, 1], spg[i, j, 2]) end cell_normal = zeros(ncell, 3, 2) for i = 1:ncell pids = ps.cellid[i, :] cell_normal[i, 1, :] .= unit_normal(ps.points[pids[1], :], ps.points[pids[2], :]) cell_normal[i, 2, :] .= unit_normal(ps.points[pids[2], :], ps.points[pids[3], :]) cell_normal[i, 3, :] .= unit_normal(ps.points[pids[3], :], ps.points[pids[1], :]) p = [ ps.points[pids[1], :] .+ ps.points[pids[2], :], ps.points[pids[2], :] .+ ps.points[pids[3], :], ps.points[pids[3], :] .+ ps.points[pids[1], :], ] / 2 for j = 1:3 if dot(cell_normal[i, j, :], p[j][1:2] - ps.cellCenter[i, 1:2]) < 0 cell_normal[i, j, :] .= -cell_normal[i, j, :] end end end δu = heaviside.(vs.u[:, 1]) δv = heaviside.(vs.u[:, 2]) function dudt!(du, u, p, t) du .= 0.0 deg = p ncell = size(u, 1) nsp = size(u, 2) nq = size(u, 3) f = zeros(ncell, nsp, nq, 2) for i in axes(f, 1) for j in axes(f, 2), k in axes(f, 3) fg = vs.u[k, 1] * u[i, j, k] gg = vs.u[k, 2] * u[i, j, k] f[i, j, k, :] .= inv(J[i]) * [fg, gg] end end u_face = zeros(ncell, 3, deg + 1, nq) f_face = zeros(ncell, 3, deg + 1, nq, 2) for i = 1:ncell, j = 1:3, k = 1:deg+1, l = 1:nq u_face[i, j, k, l] = sum(u[i, :, l] .* lf[j, k, :]) f_face[i, j, k, l, 1] = sum(f[i, :, l, 1] .* lf[j, k, :]) f_face[i, j, k, l, 2] = sum(f[i, :, l, 2] .* lf[j, k, :]) end n = [[0.0, -1.0], [1 / √2, 1 / √2], [-1.0, 0.0]] fn_face = zeros(ncell, 3, deg + 1, nq) for i = 1:ncell, j = 1:3, k = 1:deg+1, l = 1:nq fn_face[i, j, k, l] = sum(f_face[i, j, k, l, :] .* n[j]) end fn_interaction = zeros(ncell, 3, deg + 1, nq) for i = 1:ncell for j = 1:3, k = 1:deg+1 ni, nj, nk = neighbor_fpidx([i, j, k], ps, fpg) if ni > 0 for l = 1:nq uL = u_face[i, j, k, l] uR = u_face[ni, nj, nk, l] fx = vs.u[l, 1] * (uL * δu[l] + uR * (1.0 - δu[l])) fy = vs.u[l, 2] * (uL * δv[l] + uR * (1.0 - δv[l])) _f = inv(J[i]) * [fx, fy] fn_interaction[i, j, k, l] = _f .* n[j] |> sum end else fn_interaction[i, j, k, :] .= 0.0 end end end rhs1 = zeros(ncell, nsp, nq) for i in axes(rhs1, 1), j in axes(rhs1, 2), k = 1:nq rhs1[i, j, nq] = -sum(f[i, :, nq, 1] .* ∂l[j, :, 1]) - sum(f[i, :, nq, 2] .* ∂l[j, :, 2]) end rhs2 = zero(rhs1) for i = 1:ncell, k = 1:nq if ps.cellType[i] != 1 for j = 1:nsp rhs2[i, j, k] = -sum((fn_interaction[i, :, :, k] .- fn_face[i, :, :, k]) .* ϕ[:, :, j]) end end end #du .= rhs1 .+ rhs2 for i = 1:ncell if ps.cellType[i] == 0 du[i, :, :] .= rhs1[i, :, :] .+ rhs2[i, :, :] end end return nothing end tspan = (0.0, 1.0) p = N prob = ODEProblem(dudt!, u, tspan, p) dt = 0.01 itg = init(prob, Euler(), save_everystep = false, adaptive = false, dt = dt) @showprogress for iter = 1:10 step!(itg) end sol = zeros(ncell) for i in eachindex(sol) sol[i] = (vs.weights .* itg.u[i, 2, :]) |> sum end write_vtk(ps.points, ps.cellid, sol) du = zero(u) dudt!(du, u, p, 0.0)
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
374
using OrdinaryDiffEq u0 = 1 / 2 tspan = (0.0, 1.0) f1(u, p, t) = u^1.01 f2(u, p, t) = 1.01 * u prob = SplitODEProblem(f1, f2, u0, tspan) sol = solve(prob, IMEXEuler(), dt = 0.01, reltol = 1e-8, abstol = 1e-8) f(u, p, t) = 1.01 * u + u^1.01 prob1 = ODEProblem(f, u0, tspan) sol1 = solve(prob1, RadauIIA3(), reltol = 1e-8, abstol = 1e-8) using Plots plot(sol) plot!(sol1)
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
7067
""" 2D traveling wave solution for the Euler equations in a parallelogram domain -------- / / / / / / -------- δx = 1, δy = 0.5, θ = π / 4 Instability is somehow detected for order larger than 2. """ using KitBase, FluxReconstruction, LinearAlgebra, OrdinaryDiffEq, Plots using KitBase.OffsetArrays using KitBase.ProgressMeter: @showprogress using Base.Threads: @threads cd(@__DIR__) pyplot() set = Setup( case = "dev", space = "2d0f", flux = "hll", collision = "nothing", interpOrder = 2, limiter = "positivity", boundary = "euler", cfl = 0.1, maxTime = 1.0, ) begin lx, ly = 1.0, 0.5 x0 = 0.0 x1 = x0 + lx nx = 30 Δx = lx / nx y0 = 0.0 y1 = y0 + ly ny = 15 Δy = ly / ny vertices = OffsetArray{Float64}(undef, 0:nx+1, 0:ny+1, 4, 2) for j in axes(vertices, 2), i in axes(vertices, 1) vertices[i, j, 1, 1] = x0 + 0.5 * (j - 1) / ny + (i - 1) * Δx vertices[i, j, 2, 1] = vertices[i, j, 1, 1] + Δx vertices[i, j, 3, 1] = vertices[i, j, 2, 1] + Δy vertices[i, j, 4, 1] = vertices[i, j, 3, 1] - Δx vertices[i, j, 1, 2] = y0 + 0.5 * (j - 1) * Δy vertices[i, j, 2, 2] = vertices[i, j, 1, 2] vertices[i, j, 3, 2] = vertices[i, j, 1, 2] + Δy vertices[i, j, 4, 2] = vertices[i, j, 3, 2] end x = OffsetArray{Float64}(undef, 0:nx+1, 0:ny+1) y = similar(x) dx = similar(x) dy = similar(y) for i = 0:nx+1, j = 0:ny+1 x[i, j] = (vertices[i, j, 1, 1] + vertices[i, j, 4, 1]) / 2 + Δx / 2 y[i, j] = vertices[i, j, 1, 2] + 0.5 * Δy dx[i, j] = Δx dy[i, j] = Δy end ps0 = PSpace2D(x0, x1, nx, y0, y1, ny, x, y, dx, dy, vertices) deg = set.interpOrder - 1 ps = FRPSpace2D(ps0, deg) end vs = nothing gas = Gas(Kn = 1e-6, Ma = 0.0, K = 1.0) ib = nothing ks = SolverSet(set, ps0, vs, gas, ib) function dudt!(du, u, p, t) iJ, ll, lr, dhl, dhr, lpdm, γ = p nx = size(u, 1) - 2 ny = size(u, 2) - 2 nsp = size(u, 3) f = OffsetArray{Float64}(undef, 0:nx+1, 0:ny+1, nsp, nsp, 4, 2) @inbounds @threads for i in axes(f, 1) for j in axes(f, 2), k = 1:nsp, l = 1:nsp fg, gg = euler_flux(u[i, j, k, l, :], γ) for m = 1:4 f[i, j, k, l, m, :] .= iJ[i, j][k, l] * [fg[m], gg[m]] end end end u_face = OffsetArray{Float64}(undef, 0:nx+1, 0:ny+1, 4, nsp, 4) f_face = OffsetArray{Float64}(undef, 0:nx+1, 0:ny+1, 4, nsp, 4, 2) @inbounds @threads for i in axes(u_face, 1) for j in axes(u_face, 2), l = 1:nsp, m = 1:4 u_face[i, j, 1, l, m] = dot(u[i, j, l, :, m], ll) u_face[i, j, 2, l, m] = dot(u[i, j, :, l, m], lr) u_face[i, j, 3, l, m] = dot(u[i, j, l, :, m], lr) u_face[i, j, 4, l, m] = dot(u[i, j, :, l, m], ll) for n = 1:2 f_face[i, j, 1, l, m, n] = dot(f[i, j, l, :, m, n], ll) f_face[i, j, 2, l, m, n] = dot(f[i, j, :, l, m, n], lr) f_face[i, j, 3, l, m, n] = dot(f[i, j, l, :, m, n], lr) f_face[i, j, 4, l, m, n] = dot(f[i, j, :, l, m, n], ll) end end end fx_interaction = zeros(nx + 1, ny, nsp, 4) @inbounds @threads for i = 1:nx+1 for j = 1:ny, k = 1:nsp fw = @view fx_interaction[i, j, k, :] uL = local_frame(u_face[i-1, j, 2, k, :], n1[i, j][1], n1[i, j][2]) uR = local_frame(u_face[i, j, 4, k, :], n1[i, j][1], n1[i, j][2]) flux_hll!(fw, uL, uR, γ, 1.0) fw .= global_frame(fw, n1[i, j][1], n1[i, j][2]) end end fy_interaction = zeros(nx, ny + 1, nsp, 4) @inbounds @threads for i = 1:nx for j = 1:ny+1, k = 1:nsp fw = @view fy_interaction[i, j, k, :] uL = local_frame(u_face[i, j-1, 3, k, :], n2[i, j][1], n2[i, j][2]) uR = local_frame(u_face[i, j, 1, k, :], n2[i, j][1], n2[i, j][2]) flux_hll!(fw, uL, uR, γ, 1.0) fw .= global_frame(fw, n2[i, j][1], n2[i, j][2]) end end rhs1 = zeros(nx, ny, nsp, nsp, 4) @inbounds @threads for i = 1:nx for j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 rhs1[i, j, k, l, m] = dot(f[i, j, :, l, m, 1], lpdm[k, :]) end end rhs2 = zeros(nx, ny, nsp, nsp, 4) @inbounds @threads for i = 1:nx for j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 rhs2[i, j, k, l, m] = dot(f[i, j, k, :, m, 2], lpdm[l, :]) end end @inbounds @threads for i = 1:nx for j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 fxL = (iJ[i, j][k, l]*n1[i, j])[1] * fx_interaction[i, j, l, m] fxR = (iJ[i, j][k, l]*n1[i+1, j])[1] * fx_interaction[i+1, j, l, m] fyL = (iJ[i, j][k, l]*n2[i, j])[2] * fy_interaction[i, j, l, m] fyR = (iJ[i, j][k, l]*n2[i, j+1])[2] * fy_interaction[i, j+1, l, m] du[i, j, k, l, m] = -( rhs1[i, j, k, l, m] + rhs2[i, j, k, l, m] + (fxL - f_face[i, j, 4, l, m, 1]) * dhl[k] + (fxR - f_face[i, j, 2, l, m, 1]) * dhr[k] + (fyL - f_face[i, j, 1, k, m, 2]) * dhl[l] + (fyR - f_face[i, j, 3, k, m, 2]) * dhr[l] ) end end return nothing end begin u0 = OffsetArray{Float64}(undef, 0:ps.nx+1, 0:ps.ny+1, deg + 1, deg + 1, 4) for i in axes(u0, 1), j in axes(u0, 2), k in axes(u0, 3), l in axes(u0, 4) ρ = 1.0 + 0.1 * sin(2π * i / ps.nx) prim = [ρ, 1.0, 0.0, ρ] u0[i, j, k, l, :] .= prim_conserve(prim, ks.gas.γ) end n1 = [[0.0, 0.0] for i = 1:ps.nx+1, j = 1:ps.ny] for i = 1:ps.nx+1, j = 1:ps.ny angle = -π / 4 n1[i, j] .= [cos(angle), sin(angle)] end n2 = [[0.0, 0.0] for i = 1:ps.nx, j = 1:ps.ny+1] for i = 1:ps.nx, j = 1:ps.ny+1 n2[i, j] .= [0.0, 1.0] end end tspan = (0.0, 1.0) p = (ps.iJ, ps.ll, ps.lr, ps.dhl, ps.dhr, ps.dl, ks.gas.γ) prob = ODEProblem(dudt!, u0, tspan, p) dt = 0.001 nt = tspan[2] ÷ dt |> Int itg = init(prob, Euler(), save_everystep = false, adaptive = false, dt = dt) sol0 = zeros(ps.nx, ps.ny, 4) for i = 1:ps.nx, j = 1:ps.ny sol0[i, j, :] .= conserve_prim(itg.u[i, j, 2, 2, :], ks.gas.γ) sol0[i, j, 4] = 1 / sol0[i, j, 4] end @showprogress for iter = 1:nt÷2 # bcs itg.u[0, :, :, :, :] .= itg.u[ps.nx, :, :, :, :] itg.u[ps.nx+1, :, :, :, :] .= itg.u[1, :, :, :, :] itg.u[:, 0, :, :, :] .= itg.u[:, ps.ny, :, :, :] itg.u[:, ps.ny+1, :, :, :] .= itg.u[:, 1, :, :, :] step!(itg) end begin sol = zeros(ps.nx, ps.ny, 4) for i = 1:ps.nx, j = 1:ps.ny sol[i, j, :] .= conserve_prim(itg.u[i, j, 2, 2, :], ks.gas.γ) sol[i, j, 4] = 1 / sol[i, j, 4] end idx = 1 plot(ps.x[1:ps.nx, 1], sol0[1:ps.nx, 10, idx]) plot!(ps.x[1:ps.nx, 1], sol[1:ps.nx, 10, idx]) end contourf(ps.x[1:ps.nx, 1:ps.ny], ps.y[1:ps.nx, 1:ps.ny], sol[1:ps.nx, 1:ps.ny, 4])
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
2907
""" 2D traveling wave solution for the Euler equations in a parallelogram domain -------- / / / / / / -------- δx = 1, δy = 0.5, θ = π / 4 """ using KitBase, FluxReconstruction, LinearAlgebra, OrdinaryDiffEq, Plots using KitBase.OffsetArrays using KitBase.ProgressMeter: @showprogress cd(@__DIR__) pyplot() set = Setup( case = "dev", space = "2d0f0v", flux = "hll", collision = "nothing", interpOrder = 3, limiter = "positivity", boundary = "euler", cfl = 0.1, maxTime = 1.0, ) begin lx, ly = 1.0, 0.5 x0 = 0.0 x1 = x0 + lx nx = 100 Δx = lx / nx y0 = 0.0 y1 = y0 + ly ny = 50 Δy = ly / ny vertices = OffsetArray{Float64}(undef, 0:nx+1, 0:ny+1, 4, 2) for j in axes(vertices, 2), i in axes(vertices, 1) vertices[i, j, 1, 1] = x0 + 0.5 * (j - 1) / ny + (i - 1) * Δx vertices[i, j, 2, 1] = vertices[i, j, 1, 1] + Δx vertices[i, j, 3, 1] = vertices[i, j, 2, 1] + Δy vertices[i, j, 4, 1] = vertices[i, j, 3, 1] - Δx vertices[i, j, 1, 2] = y0 + 0.5 * (j - 1) * Δy vertices[i, j, 2, 2] = vertices[i, j, 1, 2] vertices[i, j, 3, 2] = vertices[i, j, 1, 2] + Δy vertices[i, j, 4, 2] = vertices[i, j, 3, 2] end x = OffsetArray{Float64}(undef, 0:nx+1, 0:ny+1) y = similar(x) dx = similar(x) dy = similar(y) for i = 0:nx+1, j = 0:ny+1 x[i, j] = (vertices[i, j, 1, 1] + vertices[i, j, 4, 1]) / 2 + Δx / 2 y[i, j] = vertices[i, j, 1, 2] + 0.5 * Δy dx[i, j] = Δx dy[i, j] = Δy end ps = PSpace2D(x0, x1, nx, y0, y1, ny, x, y, dx, dy, vertices) end vs = nothing gas = Gas(Kn = 1e-6, Ma = 0.0, K = 1.0) fw = function (x...) zeros(4) end ib = IB(fw, gas) ks = SolverSet(set, ps, vs, gas, ib) ctr, a1face, a2face = init_fvm(ks) for i in axes(ctr, 1), j in axes(ctr, 2) ρ = 1.0 + 0.1 * sin(2π * i / ps.nx) ctr[i, j].prim .= [ρ, 1.0, 0.0, ρ] ctr[i, j].w .= prim_conserve(ctr[i, j].prim, ks.gas.γ) end function get_solution(ks, ctr) sol = zeros(ks.ps.nx, ks.ps.ny, 4) for i = 1:ks.ps.nx, j = 1:ks.ps.ny sol[i, j, :] .= conserve_prim(ctr[i, j].w, ks.gas.γ) sol[i, j, 4] = 1 / sol[i, j, 4] end return sol end sol0 = get_solution(ks, ctr) tspan = (0.0, 1.0) dt = 0.001 nt = tspan[2] ÷ dt |> Int t = 0.0 @showprogress for iter = 1:nt÷2 evolve!( ks, ctr, a1face, a2face, dt; mode = :hll, bc = [:period, :period, :extra, :extra], ) update!(ks, ctr, a1face, a2face, dt, zeros(4); bc = [:period, :period, :extra, :extra]) t += dt end sol = get_solution(ks, ctr) begin idx = 4 plot(ps.x[1:ps.nx, 1], sol0[1:ps.nx, 1, 1]) plot!(ps.x[1:ps.nx, 1], sol[1:ps.nx, 1, 1]) end contourf(ps.x[1:ps.nx, 1:ps.ny], ps.y[1:ps.nx, 1:ps.ny], sol[1:ps.nx, 1:ps.ny, 2])
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
1710
using PyCall py""" import numpy def get_phifj_solution_grad_tri(order, P1, Np, Nflux, elem_nfaces, V, Vf): correction_coeffs = numpy.zeros( shape=(Np, elem_nfaces*P1) ) phifj_solution_r = numpy.zeros( shape=(Np, Nflux) ) phifj_solution_s = numpy.zeros( shape=(Np, Nflux) ) tmp = 1./numpy.sqrt(2) nhat = numpy.zeros(shape=(Nflux,2)) nhat[0:P1, 0] = 0.0 nhat[0:P1, 1] = -1.0 nhat[P1:2*P1, :] = tmp nhat[2*P1:, 0] = -1 nhat[2*P1:, 1] = 0.0 #wgauss, rgauss = get_gauss_nodes(order) rgauss, wgauss = numpy.polynomial.legendre.leggauss(order+1) for m in range(Np): for face in range(3): modal_basis_along_face = Vf[ face*P1:(face+1)*P1, m ] correction_coeffs[m, face*P1:(face+1)*P1] = modal_basis_along_face*wgauss # correct the coefficients for face 2 with the Hypotenuse length correction_coeffs[:, P1:2*P1] *= numpy.sqrt(2) # Multiply the correction coefficients with the Dubiner basis # functions evaluated at the solution and flux points to get the # correction functions phifj_solution = V.dot(correction_coeffs) # multiply each row of the correction function with the # transformed element normals. These matrices will be used to # compute the gradients and flux divergence for m in range(Np): phifj_solution_r[m, :] = phifj_solution[m, :] * nhat[:, 0] phifj_solution_s[m, :] = phifj_solution[m, :] * nhat[:, 1] # stack the matrices phifj_grad = numpy.zeros( shape=(3*Np, Nflux) ) phifj_grad[:Np, :] = phifj_solution_r[:, :] phifj_grad[Np:2*Np, :] = phifj_solution_s[:, :] return correction_coeffs, phifj_solution, phifj_grad """
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
3421
using FluxReconstruction, OrdinaryDiffEq, Plots, LinearAlgebra, KitBase using KitBase.ProgressMeter: @showprogress ps0 = KitBase.PSpace2D(0.0, 1.0, 20, 0.0, 1.0, 20) deg = 2 ps = FRPSpace2D(ps0, deg) a = [0.1, 0.1] u0 = zeros(ps.nx, ps.ny, deg + 1, deg + 1) for i in axes(u0, 1), j in axes(u0, 2), k in axes(u0, 3), l in axes(u0, 4) u0[i, j, k, l] = max( exp(-300 * ((ps.xpg[i, j, k, l, 1] - 0.5)^2 + (ps.xpg[i, j, k, l, 2] - 0.5)^2)), 1e-2, ) end function dudt!(du, u, p, t) J, ll, lr, dhl, dhr, lpdm, ax, ay = p nx = size(u, 1) ny = size(u, 2) nsp = size(u, 3) f = zeros(nx, ny, nsp, nsp, 2) for i in axes(f, 1), j in axes(f, 2), k = 1:nsp, l = 1:nsp fg, gg = ax * u[i, j, k, l], ay * u[i, j, k, l] f[i, j, k, l, :] .= inv(J[i, j][k, l]) * [fg, gg] end u_face = zeros(nx, ny, 4, nsp) f_face = zeros(nx, ny, 4, nsp, 2) for i in axes(u_face, 1), j in axes(u_face, 2), l = 1:nsp u_face[i, j, 1, l] = dot(u[i, j, l, :], ll) u_face[i, j, 2, l] = dot(u[i, j, :, l], lr) u_face[i, j, 3, l] = dot(u[i, j, l, :], lr) u_face[i, j, 4, l] = dot(u[i, j, :, l], ll) for m = 1:2 f_face[i, j, 1, l, m] = dot(f[i, j, l, :, m], ll) f_face[i, j, 2, l, m] = dot(f[i, j, :, l, m], lr) f_face[i, j, 3, l, m] = dot(f[i, j, l, :, m], lr) f_face[i, j, 4, l, m] = dot(f[i, j, :, l, m], ll) end end fx_interaction = zeros(nx + 1, ny, nsp) for i = 2:nx, j = 1:ny, k = 1:nsp au = (f_face[i, j, 4, k, 1] - f_face[i-1, j, 2, k, 1]) / (u_face[i, j, 4, k] - u_face[i-1, j, 2, k] + 1e-6) fx_interaction[i, j, k] = ( 0.5 * (f_face[i, j, 4, k, 1] + f_face[i-1, j, 2, k, 1]) - 0.5 * abs(au) * (u_face[i, j, 4, k] - u_face[i-1, j, 2, k]) ) end fy_interaction = zeros(nx, ny + 1, nsp) for i = 1:nx, j = 2:ny, k = 1:nsp au = (f_face[i, j, 1, k, 2] - f_face[i, j-1, 3, k, 2]) / (u_face[i, j, 1, k] - u_face[i, j-1, 3, k] + 1e-6) fy_interaction[i, j, k] = ( 0.5 * (f_face[i, j, 1, k, 2] + f_face[i, j-1, 3, k, 2]) - 0.5 * abs(au) * (u_face[i, j, 1, k] - u_face[i, j-1, 3, k]) ) end rhs1 = zeros(nx, ny, nsp, nsp) for i = 1:nx, j = 1:ny, k = 1:nsp, l = 1:nsp rhs1[i, j, k, l] = dot(f[i, j, :, l, 1], lpdm[k, :]) end rhs2 = zeros(nx, ny, nsp, nsp) for i = 1:nx, j = 1:ny, k = 1:nsp, l = 1:nsp rhs2[i, j, k, l] = dot(f[i, j, k, :, 2], lpdm[l, :]) end for i = 2:nx-1, j = 2:ny-1, k = 1:nsp, l = 1:nsp du[i, j, k, l] = -( rhs1[i, j, k, l] + rhs2[i, j, k, l] + (fx_interaction[i, j, l] - f_face[i, j, 4, l, 1]) * dhl[k] + (fx_interaction[i+1, j, l] - f_face[i, j, 2, l, 1]) * dhr[k] + (fy_interaction[i, j, k] - f_face[i, j, 1, k, 2]) * dhl[l] + (fy_interaction[i, j+1, k] - f_face[i, j, 3, k, 2]) * dhr[l] ) end return nothing end tspan = (0.0, 1.0) p = (ps.J, ps.ll, ps.lr, ps.dhl, ps.dhr, ps.dl, a[1], a[2]) prob = ODEProblem(dudt!, u0, tspan, p) dt = 0.01 nt = tspan[2] ÷ dt |> Int itg = init(prob, Euler(), save_everystep = false, adaptive = false, dt = dt) @showprogress for iter = 1:nt step!(itg) end contourf(ps.x[:, 1], ps.y[1, :], itg.u[:, :, 2, 2])
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
4804
using KitBase, FluxReconstruction, LinearAlgebra, OrdinaryDiffEq, Plots using ProgressMeter: @showprogress begin set = Setup( "gas", "cylinder", "2d0f", "hll", "nothing", 1, # species 3, # order of accuracy "positivity", # limiter "euler", 0.1, # cfl 1.0, # time ) ps0 = KitBase.PSpace2D(0.0, 1.0, 20, 0.0, 1.0, 20) deg = set.interpOrder - 1 ps = FRPSpace2D(ps0, deg) vs = nothing gas = Gas( 1e-6, 2.0, # Mach 1.0, 1.0, # K 5 / 3, 0.81, 1.0, 0.5, ) ib = nothing ks = SolverSet(set, ps0, vs, gas, ib) end u0 = zeros(ps.nx, ps.ny, deg + 1, deg + 1) for i in axes(u0, 1), j in axes(u0, 2), k in axes(u0, 3), l in axes(u0, 4) u0[i, j, k, l] = max( exp(-300 * ((ps.xpg[i, j, k, l, 1] - 0.5)^2 + (ps.xpg[i, j, k, l, 2] - 0.5)^2)), 1e-2, ) end u0 = zeros(ps.nx, ps.ny, deg + 1, deg + 1, 4) for i in axes(u0, 1), j in axes(u0, 2), k in axes(u0, 3), l in axes(u0, 4) ρ = max( exp(-300 * ((ps.xpg[i, j, k, l, 1] - 0.5)^2 + (ps.xpg[i, j, k, l, 2] - 0.5)^2)), 1e-2, ) prim = [ρ, 0.0, 0.0, 1.0] u0[i, j, k, l, :] .= prim_conserve(prim, ks.gas.γ) end function dudt!(du, u, p, t) du .= 0.0 J, ll, lr, dhl, dhr, lpdm, γ = p nx = size(u, 1) - 2 ny = size(u, 2) - 2 nsp = size(u, 3) f = zeros(nx, ny, nsp, nsp, 4, 2) for i in axes(f, 1), j in axes(f, 2), k = 1:nsp, l = 1:nsp fg, gg = euler_flux(u[i, j, k, l, :], γ) for m = 1:4 f[i, j, k, l, m, :] .= inv(J[i, j][k, l]) * [fg[m], gg[m]] end end u_face = zeros(nx, ny, 4, nsp, 4) f_face = zeros(nx, ny, 4, nsp, 4, 2) for i in axes(u_face, 1), j in axes(u_face, 2), l = 1:nsp, m = 1:4 u_face[i, j, 1, l, m] = dot(u[i, j, l, :, m], ll) u_face[i, j, 2, l, m] = dot(u[i, j, :, l, m], lr) u_face[i, j, 3, l, m] = dot(u[i, j, l, :, m], lr) u_face[i, j, 4, l, m] = dot(u[i, j, :, l, m], ll) for n = 1:2 f_face[i, j, 1, l, m, n] = dot(f[i, j, l, :, m, n], ll) f_face[i, j, 2, l, m, n] = dot(f[i, j, :, l, m, n], lr) f_face[i, j, 3, l, m, n] = dot(f[i, j, l, :, m, n], lr) f_face[i, j, 4, l, m, n] = dot(f[i, j, :, l, m, n], ll) end end fx_interaction = zeros(nx + 1, ny, nsp, 4) for i = 2:nx, j = 1:ny, k = 1:nsp fw = @view fx_interaction[i, j, k, :] uL = @view u_face[i-1, j, 2, k, :] uR = @view u_face[i, j, 4, k, :] flux_hll!(fw, uL, uR, γ, 1.0) fw .*= 40 #fx_interaction[i, j, k, :] .= # 0.5 .* (f_face[i-1, j, 2, k, :, 1] .+ f_face[i, j, 4, k, :, 1]) .- # ps.dx[i, j] .* (u_face[i, j, 4, k, :] - u_face[i-1, j, 2, k, :]) end fy_interaction = zeros(nx, ny + 1, nsp, 4) for i = 1:nx, j = 2:ny, k = 1:nsp fw = @view fy_interaction[i, j, k, :] uL = local_frame(u_face[i, j-1, 3, k, :], 0.0, 1.0) uR = local_frame(u_face[i, j, 1, k, :], 0.0, 1.0) flux_hll!(fw, uL, uR, γ, 1.0) fw .= global_frame(fw, 0.0, 1.0) .* 40 #fy_interaction[i, j, k, :] .= # 0.5 .* (f_face[i, j-1, 3, k, :, 2] .+ f_face[i, j, 1, k, :, 2]) .- # ps.dy[i, j] .* (u_face[i, j, 1, k, :] - u_face[i, j-1, 3, k, :]) end rhs1 = zeros(nx, ny, nsp, nsp, 4) for i = 1:nx, j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 rhs1[i, j, k, l, m] = dot(f[i, j, :, l, m, 1], lpdm[k, :]) end rhs2 = zeros(nx, ny, nsp, nsp, 4) for i = 1:nx, j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 rhs2[i, j, k, l, m] = dot(f[i, j, k, :, m, 2], lpdm[l, :]) end for i = 2:nx-1, j = 2:ny-1, k = 1:nsp, l = 1:nsp, m = 1:4 du[i, j, k, l, m] = -( rhs1[i, j, k, l, m] + rhs2[i, j, k, l, m] + (fx_interaction[i, j, l, m] - f_face[i, j, 4, l, m, 1]) * dhl[k] + (fx_interaction[i+1, j, l, m] - f_face[i, j, 2, l, m, 1]) * dhr[k] + (fy_interaction[i, j, k, m] - f_face[i, j, 1, k, m, 2]) * dhl[l] + (fy_interaction[i, j+1, k, m] - f_face[i, j, 3, k, m, 2]) * dhr[l] ) end return nothing end tspan = (0.0, 1.0) p = (ps.J, ps.ll, ps.lr, ps.dhl, ps.dhr, ps.dl, ks.gas.γ) prob = ODEProblem(dudt!, u0, tspan, p) dt = 0.005 nt = tspan[2] ÷ dt |> Int itg = init(prob, Midpoint(), save_everystep = false, adaptive = false, dt = dt) @showprogress for iter = 1:10 step!(itg) end sol = zeros(ps.nx, ps.ny, 4) for i = 1:ps.nx, j = 1:ps.ny sol[i, j, :] .= conserve_prim(itg.u[i, j, 2, 2, :], ks.gas.γ) sol[i, j, 4] = 1 / sol[i, j, 4] end contourf(ps.x, ps.y, sol[:, :, 1], aspect_ratio = 1, legend = true)
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
4042
using FluxRC, KitBase, Plots, LinearAlgebra using ProgressMeter: @showprogress cd(@__DIR__) ps = TriFRPSpace("../assets/sod.msh", 2) eids = (419, 418, 420, 423) for i in eachindex(ps.cellType) if i ∉ eids if ps.cellType[i] == 1 if ps.cellCenter[i, 2] < 0.014 || ps.cellCenter[i, 2] > 0.0835 ps.cellType[i] = 2 end end end end γ = 5 / 3 u0 = zeros(size(ps.cellid, 1), ps.np, 4) for i in axes(u0, 1), j in axes(u0, 2) #if ps.xpg[i, j, 1] < 0.5 if ps.cellCenter[i, 1] < 0.5 prim = [1.0, 0.0, 0.0, 0.5] else prim = [0.3, 0.0, 0.0, 0.625] end u0[i, j, :] .= prim_conserve(prim, γ) end function dudt!(du, u, p, t) cellType, J, lf, cell_normal, fpn, ∂l, ϕ, γ = p ncell = size(u, 1) nsp = size(u, 2) deg = size(fpn, 3) - 1 f = zeros(ncell, nsp, 4, 2) for i in axes(f, 1) for j in axes(f, 2) fg, gg = euler_flux(u[i, j, :], γ) for k in axes(f, 3) f[i, j, k, :] .= inv(J[i]) * [fg[k], gg[k]] end end end u_face = zeros(ncell, 3, deg + 1, 4) f_face = zeros(ncell, 3, deg + 1, 4, 2) for i = 1:ncell, j = 1:3, k = 1:deg+1, l = 1:4 u_face[i, j, k, l] = sum(u[i, :, l] .* lf[j, k, :]) f_face[i, j, k, l, 1] = sum(f[i, :, l, 1] .* lf[j, k, :]) f_face[i, j, k, l, 2] = sum(f[i, :, l, 2] .* lf[j, k, :]) end n = [[0.0, -1.0], [1 / √2, 1 / √2], [-1.0, 0.0]] fn_face = zeros(ncell, 3, deg + 1, 4) for i = 1:ncell, j = 1:3, k = 1:deg+1, l = 1:4 fn_face[i, j, k, l] = dot(f_face[i, j, k, l, :], n[j]) end fn_interaction = zeros(ncell, 3, deg + 1, 4) for i = 1:ncell, j = 1:3, k = 1:deg+1 uL = local_frame(u_face[i, j, k, :], cell_normal[i, j, 1], cell_normal[i, j, 2]) ni, nj, nk = fpn[i, j, k] fwn_local = zeros(4) if ni > 0 uR = local_frame( u_face[ni, nj, nk, :], cell_normal[i, j, 1], cell_normal[i, j, 2], ) flux_hll!(fwn_local, uL, uR, γ, 1.0) elseif cellType[i] == 2 _uR = u_face[i, j, k, :] _uR[3] = -_uR[3] uR = local_frame(_uR, cell_normal[i, j, 1], cell_normal[i, j, 2]) flux_hll!(fwn_local, uL, uR, γ, 1.0) end fwn_global = global_frame(fwn_local, cell_normal[i, j, 1], cell_normal[i, j, 2]) fwn_xy = zeros(4, 2) for idx = 1:4 fwn_xy[idx, :] .= fwn_global[idx] .* cell_normal[i, j, :] end fws_rs = zeros(4, 2) for idx = 1:4 fws_rs[idx, :] .= inv(J[i]) * fwn_xy[idx, :] end fwns = [sum(fws_rs[idx, :] .* n[j]) for idx = 1:4] #fwns = [sum(fws_rs[idx, :]) for idx in 1:4] fn_interaction[i, j, k, :] .= fwns end rhs1 = zeros(ncell, nsp, 4) for i in axes(rhs1, 1), j in axes(rhs1, 2), k = 1:4 rhs1[i, j, k] = -sum(f[i, :, k, 1] .* ∂l[j, :, 1]) - sum(f[i, :, k, 2] .* ∂l[j, :, 2]) end rhs2 = zero(rhs1) for i = 1:ncell if ps.cellType[i] ∈ [0, 2] for j = 1:nsp, k = 1:4 rhs2[i, j, k] = -sum((fn_interaction[i, :, :, k] .- fn_face[i, :, :, k]) .* ϕ[:, :, j]) end end end for i = 1:ncell if ps.cellType[i] ∈ [0, 2] du[i, :, :] .= rhs1[i, :, :] .+ rhs2[i, :, :] end end return nothing end tspan = (0.0, 0.1) p = (ps.cellType, ps.J, ps.lf, ps.cellNormals, ps.fpn, ps.∂l, ps.ϕ, γ) prob = ODEProblem(dudt!, u0, tspan, p) dt = 0.0005 nt = tspan[end] ÷ dt |> Int itg = init(prob, Euler(), save_everystep = false, adaptive = false, dt = dt) @showprogress for iter = 1:nt step!(itg) end begin prim = zero(itg.u) for i in axes(prim, 1), j in axes(prim, 2) prim[i, j, :] .= conserve_prim(itg.u[i, j, :], γ) prim[i, j, 4] = 1 / prim[i, j, 4] end write_vtk(ps.points, ps.cellid, prim[:, 2, :]) end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
2079
using Plots, FluxRC using FastGaussQuadrature """ N polynomial degree -> Np solution points """ N = 2 Np = (N + 1) * (N + 2) ÷ 2 points, weights = tri_quadrature(N) scatter(points[:, 1], points[:, 2], ratio = 1) """ Vandermonde matrix bridges Lagrange polynomials and modal polynomials Vᵀℓ(r) = P(r) """ V = vandermonde_matrix(N, points[:, 1], points[:, 2]) Vr, Vs = ∂vandermonde_matrix(N, points[:, 1], points[:, 2]) # (r_i, ψ_j) # Lagrange polynomials ∂l = zeros(Np, Np, 2) for i = 1:Np ∂l[i, :, 1] .= V' \ Vr[i, :] ∂l[i, :, 2] .= V' \ Vs[i, :] end # test solution (derivatives at solution point) u = [3.0, 2.0, 3.0, 2.0, 1.0, 2.0] uhat = V \ u uhat .* Vr[1, :] |> sum u .* ∂l[1, :, 1] |> sum uhat .* Vs[1, :] |> sum u .* ∂l[1, :, 2] |> sum # interface interpolation function triface_quadrature(N) Δf = [1.0, √2, 1.0] pf = Array{Float64}(undef, 3, N + 1, 2) wf = Array{Float64}(undef, 3, N + 1) p0, w0 = gausslegendre(N + 1) pf[1, :, 1] .= p0 pf[2, :, 1] .= p0 pf[3, :, 1] .= -1.0 pf[1, :, 2] .= -1.0 pf[2, :, 2] .= -p0 pf[3, :, 2] .= p0 wf[1, :] .= w0 .* Δf[1] wf[2, :] .= w0 .* Δf[2] wf[3, :] .= w0 .* Δf[3] return pf, wf end pf, wf = triface_quadrature(N) ψf = zeros(3, N + 1, Np) for i = 1:3 ψf[i, :, :] .= vandermonde_matrix(N, pf[i, :, 1], pf[i, :, 2]) end ∂ψf = zeros(3, N + 1, Np, 2) for i = 1:3 ∂ψf[i, :, :, 1], ∂ψf[i, :, :, 2] = ∂vandermonde_matrix(N, pf[i, :, 1], pf[i, :, 2]) end lf = zeros(3, N + 1, Np) for i = 1:3, j = 1:N+1 lf[i, j, :] .= V' \ ψf[i, j, :] end u .* lf[2, 2, :] |> sum uhat .* ψf[2, 2, :] |> sum ∂lf = zeros(3, N + 1, Np, 2) for i = 1:3, j = 1:N+1, k = 1:2 ∂lf[i, j, :, k] .= V' \ ∂ψf[i, j, :, k] end uhat .* ∂ψf[1, 2, :, 1] |> sum u .* ∂lf[1, 2, :, 1] |> sum # correction field ϕ = zeros(3, N + 1) σ = zeros(3, N + 1, Np) for k = 1:Np for j = 1:N+1 for i = 1:3 σ[i, j, k] = wf[i, j] * ψf[i, j, k] * Δf[i] end end end for j = 1:N+1 for i = 1:3 ϕ[i, j] = sum(σ[i, j, :] .* ψf[i, j, :]) end end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
1158
using KitBase using KitBase.Plots using KitBase.SpecialFunctions using FluxRC cd(@__DIR__) ps = UnstructFRPSpace("naca0012.msh", 3) scatter(ps.rs[:, 1], ps.rs[:, 2], ratio = 1) i = 6; scatter(ps.xp[i, :, 1], ps.xp[i, :, 2], ratio = 1); using PyCall const itp = pyimport("scipy.interpolate") const np = pyimport("numpy") # Lagrange interpolation: hand-written vs. scipy ## value xGauss = legendre_point(2) yGauss = exp.(xGauss) ll = lagrange_point(xGauss, -1.0) yGauss .* ll |> sum poly = itp.lagrange(xGauss, yGauss) np.polyval(poly, -1.0) ## derivative lpdm = ∂lagrange(xGauss) yGauss[1] * lpdm[1, 1] + yGauss[2] * lpdm[1, 2] + yGauss[3] * lpdm[1, 3] p1 = np.polyder(poly, 1) np.polyval(p1, xGauss[1]) # 2D Lagrange interpolation x = legendre_point(2) y = [-0.9, -0.45, 0.0, 0.45, 0.9] lx = lagrange_point(x, 0.77) ly = lagrange_point(y, 0.9) coords = cat(meshgrid(x, y)[1] |> permutedims, meshgrid(x, y)[2] |> permutedims, dims = 3) val = exp.(coords[:, :, 1] + coords[:, :, 2] .^ 2) v = 0.0 for i in axes(weights, 1), j in axes(weights, 2) v += val[i, j] * lx[i] * ly[j] end lagrange_point([0, 0.5, 0.5, 1], 0.77) legendre_point(2) .- -1
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
3935
using FluxRC, KitBase, Plots, OrdinaryDiffEq using ProgressMeter: @showprogress cd(@__DIR__) ps = UnstructPSpace("../assets/square.msh") N = deg = 2 Np = (N + 1) * (N + 2) ÷ 2 ncell = size(ps.cellid, 1) nface = size(ps.faceType, 1) J = rs_jacobi(ps.cellid, ps.points) spg = global_sp(ps.points, ps.cellid, N) fpg = global_fp(ps.points, ps.cellid, N) pl, wl = tri_quadrature(N) V = vandermonde_matrix(N, pl[:, 1], pl[:, 2]) Vr, Vs = ∂vandermonde_matrix(N, pl[:, 1], pl[:, 2]) ∂l = ∂lagrange(V, Vr, Vs) ϕ = correction_field(N, V) pf, wf = triface_quadrature(N) ψf = zeros(3, N + 1, Np) for i = 1:3 ψf[i, :, :] .= vandermonde_matrix(N, pf[i, :, 1], pf[i, :, 2]) end lf = zeros(3, N + 1, Np) for i = 1:3, j = 1:N+1 lf[i, j, :] .= V' \ ψf[i, j, :] end a = -1.0 u = zeros(size(ps.cellid, 1), Np) for i in axes(u, 1), j in axes(u, 2) u[i, j] = max(exp(-100 * ((spg[i, j, 1] - 0.5)^2 + (spg[i, j, 2] - 0.5)^2)), 1e-4) end function dudt!(du, u, p, t) du .= 0.0 a, deg, nface = p ncell = size(u, 1) nsp = size(u, 2) f = zeros(ncell, nsp, 2) for i in axes(f, 1) for j in axes(f, 2) fg = a * u[i, j] gg = a * u[i, j] f[i, j, :] .= inv(J[i]) * [fg, gg] end end u_face = zeros(ncell, 3, deg + 1) f_face = zeros(ncell, 3, deg + 1, 2) for i = 1:ncell, j = 1:3, k = 1:deg+1 u_face[i, j, k] = sum(u[i, :] .* lf[j, k, :]) f_face[i, j, k, 1] = sum(f[i, :, 1] .* lf[j, k, :]) f_face[i, j, k, 2] = sum(f[i, :, 2] .* lf[j, k, :]) end n = [[0.0, -1.0], [1 / √2, 1 / √2], [-1.0, 0.0]] fn_face = zeros(ncell, 3, deg + 1) for i = 1:ncell, j = 1:3, k = 1:deg+1 fn_face[i, j, k] = sum(f_face[i, j, k, :] .* n[j]) end f_interaction = zeros(ncell, 3, deg + 1, 2) au = zeros(2) for i = 1:ncell, j = 1:3, k = 1:deg+1 fL = J[i] * f_face[i, j, k, :] ni, nj, nk = neighbor_fpidx([i, j, k], ps, fpg) fR = zeros(2) if ni > 0 fR .= J[ni] * f_face[ni, nj, nk, :] @. au = (fL - fR) / (u_face[i, j, k] - u_face[ni, nj, nk] + 1e-6) @. f_interaction[i, j, k, :] = 0.5 * (fL + fR) - 0.5 * abs(au) * (u_face[i, j, k] - u_face[ni, nj, nk]) else @. f_interaction[i, j, k, :] = 0.0 end f_interaction[i, j, k, :] .= inv(J[i]) * f_interaction[i, j, k, :] end fn_interaction = zeros(ncell, 3, deg + 1) for i = 1:ncell for j = 1:3, k = 1:deg+1 fn_interaction[i, j, k] = sum(f_interaction[i, j, k, :] .* n[j]) end end rhs1 = zeros(ncell, nsp) for i in axes(rhs1, 1), j in axes(rhs1, 2) rhs1[i, j] = -sum(f[i, :, 1] .* ∂l[j, :, 1]) - sum(f[i, :, 2] .* ∂l[j, :, 2]) end rhs2 = zero(rhs1) for i = 1:ncell xr, yr = ps.points[ps.cellid[i, 2], 1:2] - ps.points[ps.cellid[i, 1], 1:2] xs, ys = ps.points[ps.cellid[i, 3], 1:2] - ps.points[ps.cellid[i, 1], 1:2] _J = xr * ys - xs * yr if ps.cellType[i] != 1 for j = 1:nsp #rhs2[i, j] = - sum((fn_interaction[i, :, :] .- fn_face[i, :, :]) .* ϕ[:, :, j]) / _J rhs2[i, j] = -sum((fn_interaction[i, :, :] .- fn_face[i, :, :]) .* ϕ[:, :, j]) #rhs2[i, j] = - sum((fn_interaction[i, :, :] .- fn_face[i, :, :])) end end end for i = 1:ncell if ps.cellType[i] == 0 du[i, :] .= rhs1[i, :] .+ rhs2[i, :] end end return nothing end tspan = (0.0, 1.0) p = (a, N, nface) prob = ODEProblem(dudt!, u, tspan, p) #sol = solve(prob, Midpoint(), reltol=1e-8, abstol=1e-8, progress=true) dt = 0.01 itg = init(prob, Euler(), save_everystep = false, adaptive = false, dt = dt) @showprogress for iter = 1:10 step!(itg) end write_vtk(ps.points, ps.cellid, itg.u[:, 2]) du = zero(u) dudt!(du, u, p, 1.0)
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
832
using KitBase, FluxReconstruction, OrdinaryDiffEq, CUDA, LinearAlgebra, Plots begin x0 = -1.0f0 x1 = 1.0f0 ncell = 100 dx = (x1 - x0) / ncell deg = 2 nsp = deg + 1 cfl = 0.1 dt = cfl * dx t = 0.0f0 a = 1.0f0 tspan = (0.0f0, 1.0f0) nt = tspan[2] / dt |> floor |> Int bc = :period end ps = FRPSpace1D(x0, x1, ncell, deg) u = zeros(Float32, ncell, nsp) for i = 1:ncell, ppp1 = 1:deg+1 u[i, ppp1] = exp(-20.0 * ps.xpg[i, ppp1]^2) end u = u |> CuArray prob = FR.FRAdvectionProblem(u, tspan, ps, a, bc) itg = init(prob, Midpoint(), saveat = tspan[2], adaptive = false, dt = dt) for iter = 1:nt step!(itg) end ut = CUDA.@allowscalar itg.u[:, 2] |> Array plot(ps.xpg[:, 2], ut, label = "t=2") plot!(ps.xpg[:, 2], exp.(-20 .* ps.xpg[:, 2] .^ 2), label = "t=0", line = :dash)
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
1128
using KitBase, FluxReconstruction, OrdinaryDiffEq, LinearAlgebra, Plots begin x0 = -1 x1 = 1 ncell = 16 dx = (x1 - x0) / ncell deg = 3 nsp = deg + 1 cfl = 0.1 dt = cfl * dx t = 0.0 a = 1.0 tspan = (0.0, 2.0) nt = tspan[2] / dt |> Int bc = :period end ps = FRPSpace1D(x0, x1, ncell, deg) u = zeros(ncell, deg + 1) for i = 1:ncell, j = 1:deg+1 u[i, j] = sin(π * ps.xpg[i, j]) end prob = FR.FRAdvectionProblem(u, tspan, ps, a, bc) itg = init(prob, Tsit5(), saveat = tspan[2], adaptive = false, dt = dt) for iter = 1:nt step!(itg) end begin x = zeros(ncell * nsp) sol = zeros(ncell * nsp) for i = 1:ncell idx0 = (i - 1) * nsp idx = idx0+1:idx0+nsp for j = 1:nsp idx = idx0 + j x[idx] = ps.xpg[i, j] sol[idx] = itg.u[i, j] end end ref = @. sin(π * x) end plot(x, sol, label = "t=1") plot!(x, ref, line = :dash, label = "t=0") begin dx |> println FR.L1_error(sol, ref, dx) |> println FR.L2_error(sol, ref, dx) |> println FR.L∞_error(sol, ref, dx) |> println end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
4011
using KitBase, FluxRC, OrdinaryDiffEq, Plots using Logging: global_logger using TerminalLoggers: TerminalLogger global_logger(TerminalLogger()) begin x0 = -1 x1 = 1 nx = 100 nface = nx + 1 dx = (x1 - x0) / nx deg = 2 # polynomial degree nsp = deg + 1 u0 = -5 u1 = 5 nu = 28 cfl = 0.1 dt = cfl * dx t = 0.0 a = 1.0 end pspace = FluxRC.FRPSpace1D(x0, x1, nx, deg) vspace = VSpace1D(u0, u1, nu) δ = heaviside.(vspace.u) begin xFace = collect(x0:dx:x1) xGauss = FluxRC.legendre_point(deg) xsp = FluxRC.global_sp(xFace, xGauss) ll = FluxRC.lagrange_point(xGauss, -1.0) lr = FluxRC.lagrange_point(xGauss, 1.0) lpdm = FluxRC.∂lagrange(xGauss) dgl, dgr = FluxRC.∂radau(deg, xGauss) end u = zeros(nx, nsp) f = zeros(nx, nu, nsp) for i = 1:nx, ppp1 = 1:nsp #u[i, ppp1] = exp(-20.0 * pspace.xp[i, ppp1]^2) u[i, ppp1] = 1.0 - sin(π * pspace.xp[i, ppp1]) prim = conserve_prim(u[i, ppp1], a) f[i, :, ppp1] .= maxwellian(vspace.u, prim) end e2f = zeros(Int, nx, 2) for i = 1:nx if i == 1 e2f[i, 2] = nface e2f[i, 1] = i + 1 elseif i == nx e2f[i, 2] = i e2f[i, 1] = 1 else e2f[i, 2] = i e2f[i, 1] = i + 1 end end f2e = zeros(Int, nface, 2) for i = 1:nface if i == 1 f2e[i, 1] = i f2e[i, 2] = nx elseif i == nface f2e[i, 1] = 1 f2e[i, 2] = i - 1 else f2e[i, 1] = i f2e[i, 2] = i - 1 end end function mol!(du, u, p, t) # method of lines dx, e2f, f2e, a, velo, weights, δ, deg, ll, lr, lpdm, dgl, dgr = p ncell = size(u, 1) nu = size(u, 2) nsp = size(u, 3) ρ = similar(u, ncell, nsp) M = similar(u, ncell, nu, nsp) for i = 1:ncell, k = 1:nsp #ρ[i, k] = discrete_moments(u[i, :, k], weights) ρ[i, k] = sum(u[i, :, k] .* weights) #prim = conserve_prim(ρ[i, k], a) prim = [ρ[i, k], a, 1.0] #M[i, :, k] .= maxwellian(velo, prim) @. M[i, :, k] = prim[1] * sqrt(prim[3] / π) * exp(-prim[3] * (velo - prim[2])^2) end τ = 2.0 * 0.001 f = similar(u) for i = 1:ncell, j = 1:nu, k = 1:nsp J = 0.5 * dx[i] f[i, j, k] = velo[j] * u[i, j, k] / J end u_face = zeros(eltype(u), ncell, nu, 2) f_face = zeros(eltype(u), ncell, nu, 2) for i = 1:ncell, j = 1:nu, k = 1:nsp # right face of element i u_face[i, j, 1] += u[i, j, k] * lr[k] f_face[i, j, 1] += f[i, j, k] * lr[k] # left face of element i u_face[i, j, 2] += u[i, j, k] * ll[k] f_face[i, j, 2] += f[i, j, k] * ll[k] end f_interaction = similar(u, nface, nu) for i = 1:nface @. f_interaction[i, :] = f_face[f2e[i, 1], :, 2] * (1.0 - δ) + f_face[f2e[i, 2], :, 1] * (δ) end rhs1 = zeros(eltype(u), ncell, nu, nsp) for i = 1:ncell, j = 1:nu, ppp1 = 1:nsp, k = 1:nsp rhs1[i, j, ppp1] += f[i, j, k] * lpdm[ppp1, k] end for i = 1:ncell, j = 1:nu, ppp1 = 1:nsp du[i, j, ppp1] = -( rhs1[i, j, ppp1] + (f_interaction[e2f[i, 2], j] - f_face[i, j, 2]) * dgl[ppp1] + (f_interaction[e2f[i, 1], j] - f_face[i, j, 1]) * dgr[ppp1] ) + (M[i, j, ppp1] - u[i, j, ppp1]) / τ end end tspan = (0.0, 0.5) p = (pspace.dx, e2f, f2e, a, vspace.u, vspace.weights, δ, deg, ll, lr, lpdm, dgl, dgr) prob = ODEProblem(mol!, f, tspan, p) sol = solve( prob, ROCK4(), saveat = tspan[2], #reltol = 1e-8, #abstol = 1e-8, adaptive = false, dt = 0.0005, progress = true, progress_steps = 10, progress_name = "frode", #autodiff = false, ) prob = remake(prob, u0 = sol.u[end], p = p, t = tspan) #--- post process ---# plot(xsp[:, 2], u[:, 2]) begin ρ = zeros(nx, nsp) for i = 1:nx, j = 1:nsp ρ[i, j] = moments_conserve(sol.u[end][i, :, j], vspace.u, vspace.weights)[1] end plot!(xsp[:, 2], ρ[:, 2]) end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
2407
using KitBase, FluxReconstruction, OrdinaryDiffEq using Base.Threads: @threads function rhs!(du, u, p, t) f, u_face, f_face, f_interaction, rhs1, J, ll, lr, lpdm, dgl, dgr, a = p ncell = size(u, 1) nsp = size(u, 2) @inbounds @threads for j = 1:nsp for i = 1:ncell f[i, j] = KitBase.advection_flux(u[i, j], a) / J[i] end end u_face[:, 1] .= u * ll f_face[:, 1] .= f * ll u_face[:, 2] .= u * lr f_face[:, 2] .= f * lr @inbounds @threads for i = 2:ncell au = (f_face[i, 1] - f_face[i-1, 2]) / (u_face[i, 1] - u_face[i-1, 2] + 1e-8) f_interaction[i] = ( 0.5 * (f_face[i, 1] + f_face[i-1, 2]) - 0.5 * abs(au) * (u_face[i, 1] - u_face[i-1, 2]) ) end au = (f_face[1, 1] - f_face[ncell, 2]) / (u_face[1, 1] - u_face[ncell, 2] + 1e-8) f_interaction[1] = ( 0.5 * (f_face[ncell, 2] + f_face[1, 1]) - 0.5 * abs(au) * (u_face[1, 1] - u_face[ncell, 2]) ) f_interaction[end] = f_interaction[1] rhs1 .= 0.0 @inbounds @threads for ppp1 = 1:nsp for i = 1:ncell for k = 1:nsp rhs1[i, ppp1] += f[i, k] * lpdm[ppp1, k] end end end @inbounds @threads for ppp1 = 1:nsp for i = 1:ncell du[i, ppp1] = -( rhs1[i, ppp1] + (f_interaction[i] - f_face[i, 1]) * dgl[ppp1] + (f_interaction[i+1] - f_face[i, 2]) * dgr[ppp1] ) end end end cfg = (x0 = -1, x1 = 1, nx = 100, deg = 2, cfl = 0.05, t = 0.0, a = 1.0) dx = (cfg.x1 - cfg.x0) / cfg.nx dt = cfg.cfl * dx ps = FRPSpace1D(; cfg...) u = zeros(ps.nx, ps.deg + 1) for i in axes(u, 1), j in axes(u, 2) u[i, j] = sin(π * ps.xpg[i, j]) end begin f = zero(u) rhs = zero(u) ncell = size(u, 1) u_face = zeros(eltype(u), ncell, 2) f_face = zeros(eltype(u), ncell, 2) f_interaction = zeros(eltype(u), ncell + 1) p = ( f, u_face, f_face, f_interaction, rhs, ps.J, ps.ll, ps.lr, ps.dl, ps.dhl, ps.dhr, cfg.a, ) end tspan = (0.0, 2.0) prob = ODEProblem(rhs!, u, tspan, p) sol = solve(prob, Tsit5(), progress = true) using Plots plot(ps.xpg[:, 2], sol.u[end][:, 2], label = "t=2") plot!(ps.xpg[:, 2], u[:, 2], label = "t=0", line = :dash)
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
4484
using OrdinaryDiffEq using KitBase, KitBase.Plots import FluxRC using Logging: global_logger using TerminalLoggers: TerminalLogger global_logger(TerminalLogger()) begin x0 = 0 x1 = 1 nx = 20 nface = nx + 1 dx = (x1 - x0) / nx deg = 2 # polynomial degree nsp = deg + 1 u0 = -5 u1 = 5 nu = 100 cfl = 0.1 dt = cfl * dx / u1 t = 0.0 end begin ps = FluxRC.FRPSpace1D(x0, x1, nx, deg) vs = VSpace1D(u0, u1, nu) δ = heaviside.(vs.u) xFace = collect(x0:dx:x1) xGauss = FluxRC.legendre_point(deg) xsp = FluxRC.global_sp(xFace, xGauss) ll, lr, lpdm = FluxRC.standard_lagrange(xGauss) dgl, dgr = FluxRC.∂radau(deg, xGauss) end f0 = zeros(nx, nu, nsp) for i = 1:nx, ppp1 = 1:nsp _ρ = 1.0 + 0.1 * sin(2.0 * π * ps.xp[i, ppp1]) _T = 2 * 0.5 / _ρ f0[i, :, ppp1] .= maxwellian(vs.u, [_ρ, 1.0, 1.0 / _T]) end e2f = zeros(Int, nx, 2) for i = 1:nx if i == 1 e2f[i, 2] = nface e2f[i, 1] = i + 1 elseif i == nx e2f[i, 2] = i e2f[i, 1] = 1 else e2f[i, 2] = i e2f[i, 1] = i + 1 end end f2e = zeros(Int, nface, 2) for i = 1:nface if i == 1 f2e[i, 1] = i f2e[i, 2] = nx elseif i == nface f2e[i, 1] = 1 f2e[i, 2] = i - 1 else f2e[i, 1] = i f2e[i, 2] = i - 1 end end function mol!(du, u, p, t) dx, e2f, f2e, velo, weights, δ, deg, ll, lr, lpdm, dgl, dgr = p ncell = size(u, 1) nu = size(u, 2) nsp = size(u, 3) M = similar(u, ncell, nu, nsp) for i = 1:ncell, k = 1:nsp w = moments_conserve(u[i, :, k], velo, weights) prim = conserve_prim(w, 3.0) M[i, :, k] .= maxwellian(velo, prim) end τ = 1e-2 f = similar(u) for i = 1:ncell, j = 1:nu, k = 1:nsp J = 0.5 * dx[i] f[i, j, k] = velo[j] * u[i, j, k] / J end f_face = zeros(eltype(u), ncell, nu, 2) #=for i = 1:ncell, j = 1:nu, k = 1:nsp # right face of element i f_face[i, j, 1] += f[i, j, k] * lr[k] # left face of element i f_face[i, j, 2] += f[i, j, k] * ll[k] end=# @views for i = 1:ncell, j = 1:nu FluxRC.interp_interface!(f_face[i, j, :], f[i, j, :], ll, lr) end f_interaction = similar(u, nface, nu) for i = 1:nface @. f_interaction[i, :] = f_face[f2e[i, 1], :, 1] * (1.0 - δ) + f_face[f2e[i, 2], :, 2] * δ end rhs1 = zeros(eltype(u), ncell, nu, nsp) #for i = 1:ncell, j = 1:nu, ppp1 = 1:nsp, k = 1:nsp # rhs1[i, j, ppp1] += f[i, j, k] * lpdm[ppp1, k] #end @views for i = 1:ncell, j = 1:nu FluxRC.poly_derivative!(rhs1[i, j, :], f[i, j, :], lpdm) end #@views for i = 1:ncell, j = 1:nu, k = 1:nsp # rhs1[i, j, k] = dot(f[i, j, :], lpdm[k, :]) #end for i = 1:ncell, j = 1:nu, ppp1 = 1:nsp du[i, j, ppp1] = -( rhs1[i, j, ppp1] + (f_interaction[e2f[i, 2], j] - f_face[i, j, 1]) * dgl[ppp1] + (f_interaction[e2f[i, 1], j] - f_face[i, j, 2]) * dgr[ppp1] ) + (M[i, j, ppp1] - u[i, j, ppp1]) / τ end end tspan = (0.0, 1.0) p = (ps.dx, e2f, f2e, vs.u, vs.weights, δ, deg, ll, lr, lpdm, dgl, dgr) prob = ODEProblem(mol!, f0, tspan, p) sol = solve( prob, Midpoint(), #ABDF2(), #TRBDF2(), #Kvaerno3(), #KenCarp3(), saveat = tspan[2], #reltol = 1e-8, #abstol = 1e-8, adaptive = false, dt = dt, progress = true, progress_steps = 10, progress_name = "frode", #autodiff = false, ) begin x = zeros(nx * nsp) w = zeros(nx * nsp, 3) prim = zeros(nx * nsp, 3) prim0 = zeros(nx * nsp, 3) for i = 1:nx idx0 = (i - 1) * nsp idx = idx0+1:idx0+nsp for j = 1:nsp idx = idx0 + j x[idx] = xsp[i, j] w[idx, :] .= moments_conserve(sol.u[end][i, :, j], vs.u, vs.weights) prim[idx, :] .= conserve_prim(w[idx, :], 3.0) prim0[idx, :] .= [ 1.0 + 0.1 * sin(2.0 * π * x[idx]), 1.0, 2 * 0.5 / (1.0 + 0.1 * sin(2.0 * π * x[idx])), ] end end end #FluxRC.L1_error(prim[:, 1], prim0[:, 1], dx) |> println #FluxRC.L2_error(prim[:, 1], prim0[:, 1], dx) |> println #FluxRC.L∞_error(prim[:, 1], prim0[:, 1], dx) |> println plot(x, prim0[:, 1], label = "t=0") plot!(x[1:end], prim[1:end, 1], label = "t=1")
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
4166
using KitBase, FluxReconstruction, OrdinaryDiffEq, LinearAlgebra, Plots using KitBase.ProgressMeter: @showprogress function extract_x(ps) x = zeros(ps.nx * (ps.deg + 1)) for i = 1:ps.nx idx0 = (i - 1) * (ps.deg + 1) for k = 1:ps.deg+1 idx = idx0 + k x[idx] = ps.xpg[i, k] end end return x end function extract_sol(itg, ps, γ) sol = zeros(ps.nx * (ps.deg + 1), 3) for i = 1:ps.nx idx0 = (i - 1) * (ps.deg + 1) for k = 1:ps.deg+1 idx = idx0 + k sol[idx, :] .= conserve_prim(itg.u[i, k, :], γ) sol[idx, end] = 1 / sol[idx, end] end end return sol end function extract_sol(itg::ODESolution, ps, γ) sol = zeros(ps.nx * (ps.deg + 1), 3) for i = 1:ps.nx idx0 = (i - 1) * (ps.deg + 1) for k = 1:ps.deg+1 idx = idx0 + k sol[idx, :] .= conserve_prim(itg.u[end][i, k, :], γ) sol[idx, end] = 1 / sol[idx, end] end end return sol end begin x0 = 0 x1 = 1 deg = 3 # polynomial degree nsp = deg + 1 γ = 5 / 3 cfl = 0.08 end ncells = [4, 8, 16, 32, 64, 128] @showprogress for ncell in ncells dx = (x1 - x0) / ncell dt = cfl * dx t = 0.0 ps = FRPSpace1D(x0, x1, ncell, deg) u = zeros(ncell, nsp, 3) for i = 1:ncell, ppp1 = 1:nsp ρ = 1 + 0.2 * sin(2π * ps.xpg[i, ppp1]) prim = [ρ, 1.0, ρ] u[i, ppp1, :] .= prim_conserve(prim, γ) end x = extract_x(ps) sol0 = zeros(ps.nx * nsp, 3) for i in axes(x, 1) ρ = 1 + 0.2 * sin(2π * x[i]) sol0[i, :] .= [ρ, 1.0, 1 / ρ] end function dudt!(du, u, p, t) du .= 0.0 nx, nsp, J, ll, lr, lpdm, dgl, dgr, γ = p ncell = size(u, 1) nsp = size(u, 2) f = zeros(ncell, nsp, 3) for i = 1:ncell, j = 1:nsp f[i, j, :] .= euler_flux(u[i, j, :], γ)[1] ./ J[i] end u_face = zeros(ncell, 3, 2) f_face = zeros(ncell, 3, 2) for i = 1:ncell, j = 1:3 # right face of element i u_face[i, j, 1] = dot(u[i, :, j], lr) f_face[i, j, 1] = dot(f[i, :, j], lr) # left face of element i u_face[i, j, 2] = dot(u[i, :, j], ll) f_face[i, j, 2] = dot(f[i, :, j], ll) end f_interaction = zeros(nx + 1, 3) for i = 2:nx fw = @view f_interaction[i, :] flux_hll!(fw, u_face[i-1, :, 1], u_face[i, :, 2], γ, 1.0) end # periodic boundary condition fw = @view f_interaction[1, :] flux_hll!(fw, u_face[nx, :, 1], u_face[1, :, 2], γ, 1.0) fw = @view f_interaction[nx+1, :] flux_hll!(fw, u_face[nx, :, 1], u_face[1, :, 2], γ, 1.0) rhs1 = zeros(ncell, nsp, 3) for i = 1:ncell, ppp1 = 1:nsp, k = 1:3 rhs1[i, ppp1, k] = dot(f[i, :, k], lpdm[ppp1, :]) end idx = 1:ncell for i in idx, ppp1 = 1:nsp, k = 1:3 du[i, ppp1, k] = -( rhs1[i, ppp1, k] + (f_interaction[i, k] / J[i] - f_face[i, k, 2]) * dgl[ppp1] + (f_interaction[i+1, k] / J[i] - f_face[i, k, 1]) * dgr[ppp1] ) end end tspan = (0.0, 2.0) p = (ps.nx, ps.deg + 1, ps.J, ps.ll, ps.lr, ps.dl, ps.dhl, ps.dhr, γ) prob = ODEProblem(dudt!, u, tspan, p) nt = tspan[2] / dt |> Int # Alignment is required here itg = solve(prob, Tsit5(), saveat = tspan[2], adaptive = false, dt = dt) #itg = init(prob, Tsit5(), saveat = tspan[2], adaptive = false, dt = dt) #for iter = 1:nt # step!(itg) #end sol = extract_sol(itg, ps, γ) Δx = (x1 - x0) / ncell dx = Δx / nsp @show l1 = FR.L1_error(sol[:, 1], sol0[:, 1], Δx) #l1f = FR.L1_error(sol[:, 1], sol0[:, 1], dx) @show l2 = FR.L2_error(sol[:, 1], sol0[:, 1], Δx) #l2f = FR.L2_error(sol[:, 1], sol0[:, 1], dx) #ll = FR.L∞_error(sol[:, 1], sol0[:, 1], Δx) #llf = FR.L1_error(sol[:, 1], sol0[:, 1], dx) end #x, sol = extract_sol(itg, ps, γ) #plot(x, sol[:, 1]) #plot!(x, sol0[:, 1])
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
5747
# ============================================================ # 2D traveling wave solution for the Euler equations # ============================================================ using KitBase, FluxReconstruction, LinearAlgebra, OrdinaryDiffEq, Plots using KitBase.OffsetArrays using KitBase.ProgressMeter: @showprogress cd(@__DIR__) begin set = Setup( "gas", "cylinder", "2d0f", "hll", "nothing", 1, # species 3, # order of accuracy "positivity", # limiter "euler", 0.1, # cfl 1.0, # time ) ps0 = KitBase.PSpace2D(0.0, 1.0, 20, 0.0, 1.0, 30, 1, 1) deg = set.interpOrder - 1 ps = FRPSpace2D(ps0, deg) vs = nothing gas = Gas(Kn = 1e-6, K = 1.0) ib = nothing ks = SolverSet(set, ps0, vs, gas, ib) end function dudt!(du, u, p, t) du .= 0.0 J, ll, lr, dhl, dhr, lpdm, γ = p nx = size(u, 1) - 2 ny = size(u, 2) - 2 nsp = size(u, 3) f = OffsetArray{Float64}(undef, 0:nx+1, 0:ny+1, nsp, nsp, 4, 2) for i in axes(f, 1), j in axes(f, 2), k = 1:nsp, l = 1:nsp fg, gg = euler_flux(u[i, j, k, l, :], γ) for m = 1:4 f[i, j, k, l, m, :] .= inv(J[i, j][k, l]) * [fg[m], gg[m]] end end u_face = OffsetArray{Float64}(undef, 0:nx+1, 0:ny+1, 4, nsp, 4) f_face = OffsetArray{Float64}(undef, 0:nx+1, 0:ny+1, 4, nsp, 4, 2) for i in axes(u_face, 1), j in axes(u_face, 2), l = 1:nsp, m = 1:4 u_face[i, j, 1, l, m] = dot(u[i, j, l, :, m], ll) u_face[i, j, 2, l, m] = dot(u[i, j, :, l, m], lr) u_face[i, j, 3, l, m] = dot(u[i, j, l, :, m], lr) u_face[i, j, 4, l, m] = dot(u[i, j, :, l, m], ll) for n = 1:2 f_face[i, j, 1, l, m, n] = dot(f[i, j, l, :, m, n], ll) f_face[i, j, 2, l, m, n] = dot(f[i, j, :, l, m, n], lr) f_face[i, j, 3, l, m, n] = dot(f[i, j, l, :, m, n], lr) f_face[i, j, 4, l, m, n] = dot(f[i, j, :, l, m, n], ll) end end fx_interaction = zeros(nx + 1, ny, nsp, 4) for i = 1:nx+1, j = 1:ny, k = 1:nsp fw = @view fx_interaction[i, j, k, :] uL = @view u_face[i-1, j, 2, k, :] uR = @view u_face[i, j, 4, k, :] flux_hll!(fw, uL, uR, γ, 1.0) end fy_interaction = zeros(nx, ny + 1, nsp, 4) for i = 1:nx, j = 1:ny+1, k = 1:nsp fw = @view fy_interaction[i, j, k, :] uL = local_frame(u_face[i, j-1, 3, k, :], 0.0, 1.0) uR = local_frame(u_face[i, j, 1, k, :], 0.0, 1.0) flux_hll!(fw, uL, uR, γ, 1.0) fw .= global_frame(fw, 0.0, 1.0) end rhs1 = zeros(nx, ny, nsp, nsp, 4) for i = 1:nx, j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 rhs1[i, j, k, l, m] = dot(f[i, j, :, l, m, 1], lpdm[k, :]) end rhs2 = zeros(nx, ny, nsp, nsp, 4) for i = 1:nx, j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 rhs2[i, j, k, l, m] = dot(f[i, j, k, :, m, 2], lpdm[l, :]) end for i = 1:nx, j = 1:ny, k = 1:nsp, l = 1:nsp, m = 1:4 du[i, j, k, l, m] = -( rhs1[i, j, k, l, m] + rhs2[i, j, k, l, m] + ( fx_interaction[i, j, l, m] * inv(J[i, j][k, l])[1, 1] - f_face[i, j, 4, l, m, 1] ) * dhl[k] + ( fx_interaction[i+1, j, l, m] * inv(J[i, j][k, l])[1, 1] - f_face[i, j, 2, l, m, 1] ) * dhr[k] + ( fy_interaction[i, j, k, m] * inv(J[i, j][k, l])[2, 2] - f_face[i, j, 1, k, m, 2] ) * dhl[l] + ( fy_interaction[i, j+1, k, m] * inv(J[i, j][k, l])[2, 2] - f_face[i, j, 3, k, m, 2] ) * dhr[l] ) end return nothing end tspan = (0.0, 0.5) p = (ps.J, ps.ll, ps.lr, ps.dhl, ps.dhr, ps.dl, ks.gas.γ) dt = 0.002 nt = tspan[2] ÷ dt |> Int # wave in x direction u0 = OffsetArray{Float64}(undef, 0:ps.nx+1, 0:ps.ny+1, deg + 1, deg + 1, 4) for i in axes(u0, 1), j in axes(u0, 2), k in axes(u0, 3), l in axes(u0, 4) ρ = 1.0 + 0.1 * sin(2π * ps.xpg[i, j, k, l, 1]) prim = [ρ, 1.0, 0.0, ρ] u0[i, j, k, l, :] .= prim_conserve(prim, ks.gas.γ) end prob = ODEProblem(dudt!, u0, tspan, p) itg = init(prob, Midpoint(), save_everystep = false, adaptive = false, dt = dt) @showprogress for iter = 1:nt # bcs for traveling wave in x direction itg.u[0, :, :, :, :] .= itg.u[ps.nx, :, :, :, :] itg.u[ps.nx+1, :, :, :, :] .= itg.u[1, :, :, :, :] itg.u[:, 0, :, :, :] .= itg.u[:, ps.ny, :, :, :] itg.u[:, 0, :, :, 3] .*= -1 itg.u[:, ps.ny+1, :, :, :] .= itg.u[:, 1, :, :, :] itg.u[:, ps.ny+1, :, :, 3] .*= -1 step!(itg) end u1 = deepcopy(itg.u) plot(ps.x[1:ps.nx, 1], u0[1:ps.nx, 1, 2, 2, 1]) plot!(ps.x[1:ps.nx, 1], itg.u[1:ps.nx, 1, 2, 2, 1]) # wave in y direction u0 = OffsetArray{Float64}(undef, 0:ps.nx+1, 0:ps.ny+1, deg + 1, deg + 1, 4) for i in axes(u0, 1), j in axes(u0, 2), k in axes(u0, 3), l in axes(u0, 4) ρ = 1.0 + 0.1 * sin(2π * ps.xpg[i, j, k, l, 2]) prim = [ρ, 0.0, 1.0, ρ] u0[i, j, k, l, :] .= prim_conserve(prim, ks.gas.γ) end prob = ODEProblem(dudt!, u0, tspan, p) itg = init(prob, Midpoint(), save_everystep = false, adaptive = false, dt = dt) @showprogress for iter = 1:nt # bcs for traveling wave in y direction itg.u[:, 0, :, :, :] .= itg.u[:, ps.ny, :, :, :] itg.u[:, ps.ny+1, :, :, :] .= itg.u[:, 1, :, :, :] itg.u[0, :, :, :, :] .= itg.u[ps.nx, :, :, :, :] itg.u[0, :, :, :, 2] .*= -1 itg.u[ps.nx+1, :, :, :, :] .= itg.u[1, :, :, :, :] itg.u[ps.nx+1, :, :, :, 2] .*= -1 step!(itg) end plot(ps.y[1, 1:ps.ny], u0[1, 1:ps.ny, 2, 2, 1]) plot!(ps.y[1, 1:ps.ny], itg.u[1, 1:ps.ny, 2, 2, 1])
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
2003
using KitBase, FluxReconstruction, OrdinaryDiffEq, LinearAlgebra, Plots using KitBase.ProgressMeter: @showprogress using Base.Threads: @threads begin x0 = 0 x1 = 1 ncell = 100 dx = (x1 - x0) / ncell deg = 7 # polynomial degree nsp = deg + 1 γ = 5 / 3 cfl = 0.01 dt = cfl * dx t = 0.0 end ps = FRPSpace1D(x0, x1, ncell, deg) ℓ = FR.basis_norm(ps.deg) u = zeros(ncell, nsp, 3) for i = 1:ncell, ppp1 = 1:nsp if ps.x[i] <= 0.5 prim = [1.0, 0.0, 0.5] else prim = [0.125, 0.0, 0.625] end u[i, ppp1, :] .= prim_conserve(prim, γ) end tspan = (0.0, 0.15) prob = FREulerProblem(u, tspan, ps, γ, :dirichlet) nt = tspan[2] ÷ dt |> Int itg = init(prob, Midpoint(), saveat = tspan[2], adaptive = false, dt = dt) @showprogress for iter = 1:nt @inbounds @threads for i = 1:ps.nx ũ = ps.iV * itg.u[i, :, 1] su = (ũ[end]^2) / (sum(ũ .^ 2) + 1e-6) isd = shock_detector(log10(su), ps.deg) λ = dt * exp(0.875 / 1 * (ps.deg)) * 0.15 if isd for s = 1:3 û = ps.iV * itg.u[i, :, s] KB.modal_filter!(û, λ; filter = :l2) #KB.modal_filter!(û, ℓ; filter = :lasso) #KB.modal_filter!(û, 4; filter = :exp) #KB.modal_filter!(û, 6; filter = :houli) itg.u[i, :, s] .= ps.V * û end end end step!(itg) end begin x = zeros(ncell * nsp) w = zeros(ncell * nsp, 3) for i = 1:ncell idx0 = (i - 1) * nsp for j = 1:nsp idx = idx0 + j x[idx] = ps.xpg[i, j] w[idx, :] .= itg.u[i, j, :] end end sol = zeros(ncell * nsp, 3) for i in axes(sol, 1) sol[i, :] .= conserve_prim(w[i, :], γ) sol[i, end] = 1 / sol[i, end] end plot(x, sol[:, 1], label = "ρ", xlabel = "x") plot!(x, sol[:, 2], label = "u", xlabel = "x") plot!(x, sol[:, 3], label = "T", xlabel = "x") end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
2503
using KitBase, FluxReconstruction, OrdinaryDiffEq, LinearAlgebra, Plots using KitBase.ProgressMeter: @showprogress begin x0 = 0 x1 = 1 ncell = 100 dx = (x1 - x0) / ncell deg = 2 # polynomial degree nsp = deg + 1 γ = 5 / 3 cfl = 0.05 dt = cfl * dx t = 0.0 end ps = FRPSpace1D(x0, x1, ncell, deg) u = zeros(ncell, nsp, 3) for i = 1:ncell, ppp1 = 1:nsp if ps.x[i] <= 0.5 prim = [1.0, 0.0, 0.5] else prim = [0.3, 0.0, 0.625] end #prim = [1 + 0.1*sin(2π * ps.xpg[i, ppp1]), 1.0, 1.0] u[i, ppp1, :] .= prim_conserve(prim, γ) end function dudt!(du, u, p, t) du .= 0.0 nx, nsp, J, ll, lr, lpdm, dgl, dgr, γ = p ncell = size(u, 1) nsp = size(u, 2) f = zeros(ncell, nsp, 3) for i = 1:ncell, j = 1:nsp f[i, j, :] .= euler_flux(u[i, j, :], γ)[1] ./ J[i] end u_face = zeros(ncell, 3, 2) f_face = zeros(ncell, 3, 2) for i = 1:ncell, j = 1:3 # right face of element i u_face[i, j, 1] = dot(u[i, :, j], lr) f_face[i, j, 1] = dot(f[i, :, j], lr) # left face of element i u_face[i, j, 2] = dot(u[i, :, j], ll) f_face[i, j, 2] = dot(f[i, :, j], ll) end f_interaction = zeros(nx + 1, 3) for i = 2:nx fw = @view f_interaction[i, :] flux_hll!(fw, u_face[i-1, :, 1], u_face[i, :, 2], γ, 1.0) end fw = @view f_interaction[1, :] flux_hll!(fw, u_face[nx, :, 1], u_face[1, :, 2], γ, 1.0) fw = @view f_interaction[nx+1, :] flux_hll!(fw, u_face[nx, :, 1], u_face[1, :, 2], γ, 1.0) rhs1 = zeros(ncell, nsp, 3) for i = 1:ncell, ppp1 = 1:nsp, k = 1:3 rhs1[i, ppp1, k] = dot(f[i, :, k], lpdm[ppp1, :]) end idx = 2:ncell-1 # ending points are Dirichlet for i in idx, ppp1 = 1:nsp, k = 1:3 du[i, ppp1, k] = -( rhs1[i, ppp1, k] + (f_interaction[i, k] / J[i] - f_face[i, k, 2]) * dgl[ppp1] + (f_interaction[i+1, k] / J[i] - f_face[i, k, 1]) * dgr[ppp1] ) end end tspan = (0.0, 0.15) p = (ps.nx, ps.deg + 1, ps.J, ps.ll, ps.lr, ps.dl, ps.dhl, ps.dhr, γ) prob = ODEProblem(dudt!, u, tspan, p) nt = tspan[2] ÷ dt |> Int itg = init(prob, Midpoint(), saveat = tspan[2], adaptive = false, dt = dt) @showprogress for iter = 1:nt step!(itg) end sol = zero(itg.u) for i in axes(sol, 1), j in axes(sol, 2) sol[i, j, :] .= conserve_prim(itg.u[i, j, :], γ) sol[i, j, end] = 1 / sol[i, j, end] end plot(ps.x, sol[:, 2, :])
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
13090
using KitBase, FluxReconstruction, OrdinaryDiffEq, LinearAlgebra, Plots, OffsetArrays using ProgressMeter: @showprogress using Base.Threads: @threads begin x0 = 0 x1 = 1 nx = 15 y0 = 0 y1 = 1 ny = 15 deg = 2 nsp = deg + 1 inK = 1 γ = 5 / 3 knudsen = 0.001 muref = ref_vhs_vis(knudsen, 1.0, 0.5) cfl = 0.1 dx = (x1 - x0) / nx dy = (y1 - y0) / ny dt = cfl * min(dx, dy) / (3.0) t = 0.0 tmax = 0.15 tspan = (0.0, tmax) nt = tmax ÷ dt |> Int end ps = FRPSpace2D(x0, x1, nx, y0, y1, ny, deg, 1, 1) μᵣ = ref_vhs_vis(knudsen, 1.0, 0.5) gas = Gas(knudsen, 0.0, 1.0, 1.0, γ, 0.81, 1.0, 0.5, μᵣ) u0 = OffsetArray{Float64}(undef, 4, nsp, nsp, 0:ny+1, 0:nx+1) #for i = 1:nsp, j = 1:nsp, k = 0:ny+1, l = 0:nx+1 for i = 0:nx+1, j = 0:ny+1, k = 1:nsp, l = 1:nsp u0[:, l, k, j, i] .= prim_conserve([1.0, 0.0, 0.0, 1.0], gas.γ) #ρ = max(exp(-50 * ((ps.xpg[l, k, j, i, 1] - 0.5)^2 + (ps.xpg[l, k, j, i, 2] - 0.5)^2)), 1e-2) #u0[:, i, j, k, l] .= prim_conserve([ρ, 0.0, 0.0, 1.0], gas.γ) #=if ps.x[i, j] < 0.5 prim = [1.0, 0.0, 0.0, 0.5] else prim = [0.3, 0.0, 0.0, 0.625] end u0[:, l, k, j, i] .= prim_conserve(prim, gas.γ)=# end function KitBase.flux_gks!( fw::AbstractVector{T1}, w::AbstractVector{T2}, inK::Real, γ::Real, μᵣ::Real, ω::Real, sw = zero(w)::AbstractVector{T2}, ) where {T1<:AbstractFloat,T2<:Real} prim = conserve_prim(w, γ) Mu, Mv, Mxi, MuL, MuR = gauss_moments(prim, inK) tau = vhs_collision_time(prim, μᵣ, ω) a = pdf_slope(prim, sw, inK) ∂ft = -prim[1] .* moments_conserve_slope(a, Mu, Mv, Mxi, 1, 0) A = pdf_slope(prim, ∂ft, inK) Muv = moments_conserve(Mu, Mv, Mxi, 1, 0, 0) Mau = moments_conserve_slope(a, Mu, Mv, Mxi, 2, 0) Mtu = moments_conserve_slope(A, Mu, Mv, Mxi, 1, 0) @. fw = prim[1] * (Muv - tau * Mau - tau * Mtu) return nothing end function KitBase.flux_gks!( fw::X, wL::Y, wR::Y, inK::Real, γ::Real, μᵣ::Real, ω::Real, dt::Real, swL = zero(wL)::Y, swR = zero(wR)::Y, ) where {X<:AbstractArray{<:AbstractFloat,1},Y<:AbstractArray{<:AbstractFloat,1}} primL = conserve_prim(wL, γ) primR = conserve_prim(wR, γ) Mu1, Mv1, Mxi1, MuL1, MuR1 = gauss_moments(primL, inK) Mu2, Mv2, Mxi2, MuL2, MuR2 = gauss_moments(primR, inK) w = primL[1] .* moments_conserve(MuL1, Mv1, Mxi1, 0, 0, 0) .+ primR[1] .* moments_conserve(MuR2, Mv2, Mxi2, 0, 0, 0) prim = conserve_prim(w, γ) tau = vhs_collision_time(prim, μᵣ, ω) + 2.0 * dt * abs(primL[1] / primL[end] - primR[1] / primR[end]) / (primL[1] / primL[end] + primR[1] / primR[end]) if minimum(swL .* swR) < 0 #swL .= 0.0 #swR .= 0.0 end faL = pdf_slope(primL, swL, inK) sw = -primL[1] .* moments_conserve_slope(faL, Mu1, Mv1, Mxi1, 1, 0) faTL = pdf_slope(primL, sw, inK) faR = pdf_slope(primR, swR, inK) sw = -primR[1] .* moments_conserve_slope(faR, Mu2, Mv1, Mxi2, 1, 0) faTR = pdf_slope(primR, sw, inK) Mu, Mv, Mxi, MuL, MuR = gauss_moments(prim, inK) # time-integration constants Mt = zeros(5) Mt[4] = dt#tau * (1.0 - exp(-dt / tau)) Mt[5] = -tau * dt * exp(-dt / tau) + tau * Mt[4] Mt[1] = dt - Mt[4] Mt[2] = -tau * Mt[1] + Mt[5] Mt[3] = 0.5 * dt^2 - tau * Mt[1] # flux related to central distribution Muv = moments_conserve(Mu, Mv, Mxi, 1, 0, 0) fw .= Mt[1] .* prim[1] .* Muv # flux related to upwind distribution MuvL = moments_conserve(MuL1, Mv1, Mxi1, 1, 0, 0) MauL = moments_conserve_slope(faL, MuL1, Mv1, Mxi1, 2, 0) MauLT = moments_conserve_slope(faTL, MuL1, Mv1, Mxi1, 1, 0) MuvR = moments_conserve(MuR2, Mv2, Mxi2, 1, 0, 0) MauR = moments_conserve_slope(faR, MuR2, Mv2, Mxi2, 2, 0) MauRT = moments_conserve_slope(faTR, MuR2, Mv2, Mxi2, 1, 0) @. fw += Mt[4] * primL[1] * MuvL - tau * Mt[4] * primL[1] * MauL - tau * Mt[4] * primL[1] * MauLT + Mt[4] * primR[1] * MuvR - tau * Mt[4] * primR[1] * MauR - tau * Mt[4] * primR[1] * MauRT fw ./= dt return nothing end function dudt!(du, u, p, t) boundary!(u, p, 1.0) fx, fy, ux_face, uy_face, fx_face, fy_face, fx_interaction, fy_interaction, rhs1, rhs2, ps, gas, dt = p nx = size(u, 5) - 2 ny = size(u, 4) - 2 nr = size(u, 3) ns = size(u, 2) @inbounds for i = 1:nx for j = 1:ny, k = 1:nr, l = 1:ns fw = @view fx[:, l, k, j, i] flux_gks!(fw, u[:, l, k, j, i], gas.K, gas.γ, gas.μᵣ, gas.ω, zeros(4)) fw ./= ps.J[i, j][1] #fx[:, l, k, j, i] .= euler_flux(u[:, l, k, j, i], gas.γ)[1] ./ ps.J[i, j][1] end end @inbounds @threads for i = 1:nx for j = 1:ny, k = 1:nr, l = 1:ns fw = @view fy[:, l, k, j, i] ul = local_frame(u[:, l, k, j, i], 0.0, 1.0) flux_gks!(fw, ul, gas.K, gas.γ, gas.μᵣ, gas.ω, zeros(4)) fy[:, l, k, j, i] .= global_frame(fw, 0.0, 1.0) ./ ps.J[i, j][2] #fy[:, l, k, j, i] .= euler_flux(u[:, l, k, j, i], gas.γ)[2] ./ ps.J[i, j][2] end end @inbounds for i = 0:nx+1 for j = 1:ny, l = 1:ns, m = 1:4 ux_face[m, 1, l, j, i] = dot(u[m, l, :, j, i], ps.ll) ux_face[m, 2, l, j, i] = dot(u[m, l, :, j, i], ps.lr) fx_face[m, 1, l, j, i] = dot(fx[m, l, :, j, i], ps.ll) fx_face[m, 2, l, j, i] = dot(fx[m, l, :, j, i], ps.lr) end end @inbounds for i = 1:nx for j = 0:ny+1, k = 1:nr, m = 1:4 uy_face[m, 1, k, j, i] = dot(u[m, :, k, j, i], ps.ll) uy_face[m, 2, k, j, i] = dot(u[m, :, k, j, i], ps.lr) fy_face[m, 1, k, j, i] = dot(fy[m, :, k, j, i], ps.ll) fy_face[m, 2, k, j, i] = dot(fy[m, :, k, j, i], ps.lr) end end @inbounds for i = 1:nx+1 for j = 1:ny, l = 1:ns swL = zeros(4) swR = zeros(4) for m in eachindex(swL) swL[m] = dot(u[m, l, :, j, i-1], ps.dll) / ps.J[i-1, j][1] swR[m] = dot(u[m, l, :, j, i], ps.dlr) / ps.J[i, j][1] end fw = @view fx_interaction[:, l, j, i] flux_gks!( fw, ux_face[:, 2, l, j, i-1], ux_face[:, 1, l, j, i], gas.K, gas.γ, gas.μᵣ, gas.ω, dt, swL, swR, ) #=flux_hll!( fw, ux_face[:, 2, l, j, i-1], ux_face[:, 1, l, j, i], gas.γ, 1.0, )=# end end @inbounds for i = 1:nx for j = 1:ny+1, k = 1:nr swL = zeros(4) swR = zeros(4) for m in eachindex(swL) swL[m] = dot(u[m, :, k, j-1, i], ps.dll) / ps.J[i, j-1][2] swR[m] = dot(u[m, :, k, j, i], ps.dlr) / ps.J[i, j][2] end fw = @view fy_interaction[:, k, j, i] uL = local_frame(uy_face[:, 2, k, j-1, i], 0.0, 1.0) uR = local_frame(uy_face[:, 1, k, j, i], 0.0, 1.0) flux_gks!(fw, uL, uR, gas.K, gas.γ, gas.μᵣ, gas.ω, dt, swL, swR) #=flux_hll!( fw, uL, uR, gas.γ, 1.0, )=# fy_interaction[:, k, j, i] .= global_frame(fy_interaction[:, k, j, i], 0.0, 1.0) end end @inbounds for i = 1:nx, j = 1:ny, k = 1:nr, l = 1:ns, m = 1:4 rhs1[m, l, k, j, i] = dot(fx[m, l, :, j, i], ps.dl[k, :]) rhs2[m, l, k, j, i] = dot(fy[m, :, k, j, i], ps.dl[l, :]) end @inbounds for i = 1:nx, j = 1:ny, k = 1:nr, l = 1:ns, m = 1:4 du[m, l, k, j, i] = -( rhs1[m, l, k, j, i] + rhs2[m, l, k, j, i] + (fx_interaction[m, l, j, i] / ps.J[i, j][1] - fx_face[m, 1, l, j, i]) * ps.dhl[k] + (fx_interaction[m, l, j, i+1] / ps.J[i, j][1] - fx_face[m, 2, l, j, i]) * ps.dhr[k] + (fy_interaction[m, k, j, i] / ps.J[i, j][2] - fy_face[m, 1, k, j, i]) * ps.dhl[l] + (fy_interaction[m, k, j+1, i] / ps.J[i, j][2] - fy_face[m, 2, k, j, i]) * ps.dhr[l] ) end du[:, :, :, :, 0] .= 0.0 du[:, :, :, :, nx+1] .= 0.0 du[:, :, :, 0, :] .= 0.0 du[:, :, :, ny+1, :] .= 0.0 return nothing end function boundary!(u, p, λ0) gas = p[end-1] nx = size(u, 5) - 2 ny = size(u, 4) - 2 nr = size(u, 3) ns = size(u, 2) pb = zeros(4) for j = 1:ny, k = 1:nr, l = 1:ns prim = conserve_prim(u[:, l, k, j, 1], gas.γ) pb[end] = 2 * λ0 - prim[end] tmp = (prim[end] - λ0) / λ0 pb[1] = (1.0 - tmp) / (1.0 + tmp) * prim[1] pb[2] = -prim[2] pb[3] = -prim[3] u[:, l, nr+1-k, j, 0] .= prim_conserve(pb, gas.γ) end for j = 1:ny, k = 1:nr, l = 1:ns prim = conserve_prim(u[:, l, k, j, nx], gas.γ) pb[end] = 2 * λ0 - prim[end] tmp = (prim[end] - λ0) / λ0 pb[1] = (1 - tmp) / (1 + tmp) * prim[1] pb[2] = -prim[2] pb[3] = -prim[3] u[:, l, nr+1-k, j, nx+1] .= prim_conserve(pb, gas.γ) end for i = 1:nx, k = 1:nr, l = 1:ns prim = conserve_prim(u[:, l, k, 1, i], gas.γ) pb[end] = 2 * λ0 - prim[end] tmp = (prim[end] - λ0) / λ0 pb[1] = (1 - tmp) / (1 + tmp) * prim[1] pb[2] = -prim[2] pb[3] = -prim[3] u[:, ns+1-l, k, 0, i] .= prim_conserve(pb, gas.γ) end for i = 1:nx, k = 1:nr, l = 1:ns prim = conserve_prim(u[:, l, k, ny, i], gas.γ) pb[end] = 2 * λ0 - prim[end] tmp = (prim[end] - λ0) / λ0 pb[1] = (1 - tmp) / (1 + tmp) * prim[1] pb[2] = 0.15#-prim[2] + 0.3 pb[3] = -prim[3] u[:, ns+1-l, k, ny+1, i] .= prim_conserve(pb, gas.γ) end return nothing end begin du = zero(u0) fx = zero(u0) fy = zero(u0) ux_face = OffsetArray{Float64}(undef, 4, 2, ps.deg + 1, ps.ny, 0:ps.nx+1) |> zero uy_face = OffsetArray{Float64}(undef, 4, 2, ps.deg + 1, 0:ps.ny+1, ps.nx) |> zero fx_face = zero(ux_face) fy_face = zero(uy_face) fx_interaction = zeros(4, ps.deg + 1, ps.ny, ps.nx + 1) fy_interaction = zeros(4, ps.deg + 1, ps.ny + 1, ps.nx) rhs1 = zero(u0) rhs2 = zero(u0) end p = ( fx, fy, ux_face, uy_face, fx_face, fy_face, fx_interaction, fy_interaction, rhs1, rhs2, ps, gas, dt, ) #u = deepcopy(u0) #dudt!(du, u, p, 0.0) prob = ODEProblem(dudt!, u0, tspan, p) itg = init(prob, Euler(), save_everystep = false, adaptive = false, dt = dt) @showprogress for iter = 1:100#nt step!(itg) end contourf(ps.xpg[1:nx, 1, 1, 1, 1], ps.xpg[1, 1:ny, 1, 1, 2], itg.u[1, 1, 1, 1:ny, 1:nx]) contourf(ps.xpg[1:nx, 1, 1, 1, 1], ps.xpg[1, 1:ny, 1, 1, 2], itg.u[2, 1, 1, 1:ny, 1:nx]) contourf(ps.xpg[1:nx, 1, 1, 1, 1], ps.xpg[1, 1:ny, 1, 1, 2], itg.u[4, 1, 1, 1:ny, 1:nx]) plot(ps.xpg[1:nx, 1, 1, 1, 1], itg.u[1, 1, 1, ny÷2, 1:nx]) plot(ps.xpg[1:nx, 1, 1, 1, 1], itg.u[2, 1, 1, ny÷2, 1:nx]) plot(ps.xpg[1, 1:ny, 1, 1, 2], itg.u[1, 1, 1, 1:ny, nx÷2]) plot(ps.xpg[1, 1:ny, 1, 1, 2], itg.u[3, 1, 1, 1:ny, nx÷2]) begin coord = zeros(nx * nsp, ny * nsp, 2) prim = zeros(nx * nsp, ny * nsp, 4) for i = 1:nx, j = 1:ny idx0 = (i - 1) * nsp idy0 = (j - 1) * nsp for k = 1:nsp, l = 1:nsp idx = idx0 + k idy = idy0 + l coord[idx, idy, 1] = ps.xpg[i, j, k, l, 1] coord[idx, idy, 2] = ps.xpg[i, j, k, l, 2] _w = itg.u[:, l, k, j, i] prim[idx, idy, :] .= conserve_prim(_w, γ) prim[idx, idy, 4] = 1 / prim[idx, idy, 4] end end end contourf(coord[:, 1, 1], coord[1, :, 2], prim[:, :, 2]') plot(coord[:, 1, 1], prim[:, 1, 1]) plot(coord[:, 1, 1], prim[:, 1, 4]) begin using PyCall itp = pyimport("scipy.interpolate") x_uni = coord[1, 1, 1]:(coord[end, 1, 1]-coord[1, 1, 1])/(nx*nsp-1):coord[end, 1, 1] |> collect y_uni = coord[1, 1, 2]:(coord[1, end, 2]-coord[1, 1, 2])/(ny*nsp-1):coord[1, end, 2] |> collect n_ref = itp.interp2d(coord[:, 1, 1], coord[1, :, 2], prim[:, :, 1], kind = "cubic") n_uni = n_ref(x_uni, y_uni) u_ref = itp.interp2d(coord[:, 1, 1], coord[1, :, 2], prim[:, :, 2], kind = "cubic") u_uni = u_ref(x_uni, y_uni) v_ref = itp.interp2d(coord[:, 1, 1], coord[1, :, 2], prim[:, :, 3], kind = "cubic") v_uni = v_ref(x_uni, y_uni) t_ref = itp.interp2d(coord[:, 1, 1], coord[1, :, 2], prim[:, :, 4], kind = "cubic") t_uni = t_ref(x_uni, y_uni) end contourf(x_uni, y_uni, n_uni') contourf(x_uni, y_uni, u_uni') contourf(x_uni, y_uni, t_uni') plot(x_uni[:, 1], n_uni[:, 1])
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
10725
using KitBase, FluxReconstruction, LinearAlgebra, OrdinaryDiffEq, Plots using KitBase.OffsetArrays using KitBase.ProgressMeter: @showprogress using Base.Threads: @threads begin set = Setup( case = "shockvortex", space = "2d0f0v", flux = "hll", collision = "nothing", interpOrder = 3, limiter = "positivity", boundary = "fix", cfl = 0.1, maxTime = 1.0, ) ps = FRPSpace2D(0.0, 2.0, 100, 0.0, 1.0, 50, set.interpOrder - 1, 1, 1) vs = nothing gas = Gas(Kn = 1e-6, Ma = 1.12, K = 1.0) ib = nothing ks = SolverSet(set, ps, vs, gas, ib) end function dudt!(du, u, p, t) du .= 0.0 f, u_face, f_face, fx_interaction, fy_interaction, rhs1, rhs2, iJ, ll, lr, dhl, dhr, lpdm, γ = p nx = size(u, 1) - 2 ny = size(u, 2) - 2 nsp = size(u, 3) @inbounds @threads for l = 1:nsp for k = 1:nsp, j in axes(f, 2), i in axes(f, 1) fg, gg = euler_flux(u[i, j, k, l, :], γ) for s = 1:4 f[i, j, k, l, s, :] .= iJ[i, j][k, l] * [fg[s], gg[s]] end end end @inbounds @threads for m = 1:4 for l = 1:nsp, j in axes(u_face, 2), i in axes(u_face, 1) u_face[i, j, 1, l, m] = dot(u[i, j, l, :, m], ll) u_face[i, j, 2, l, m] = dot(u[i, j, :, l, m], lr) u_face[i, j, 3, l, m] = dot(u[i, j, l, :, m], lr) u_face[i, j, 4, l, m] = dot(u[i, j, :, l, m], ll) for n = 1:2 f_face[i, j, 1, l, m, n] = dot(f[i, j, l, :, m, n], ll) f_face[i, j, 2, l, m, n] = dot(f[i, j, :, l, m, n], lr) f_face[i, j, 3, l, m, n] = dot(f[i, j, l, :, m, n], lr) f_face[i, j, 4, l, m, n] = dot(f[i, j, :, l, m, n], ll) end end end @inbounds @threads for k = 1:nsp for j = 1:ny, i = 1:nx+1 fw = @view fx_interaction[i, j, k, :] uL = @view u_face[i-1, j, 2, k, :] uR = @view u_face[i, j, 4, k, :] flux_hll!(fw, uL, uR, γ, 1.0) end end @inbounds @threads for k = 1:nsp for j = 1:ny+1, i = 1:nx fw = @view fy_interaction[i, j, k, :] uL = local_frame(u_face[i, j-1, 3, k, :], 0.0, 1.0) uR = local_frame(u_face[i, j, 1, k, :], 0.0, 1.0) flux_hll!(fw, uL, uR, γ, 1.0) fw .= global_frame(fw, 0.0, 1.0) end end @inbounds @threads for m = 1:4 for l = 1:nsp, k = 1:nsp, j = 1:ny, i = 1:nx rhs1[i, j, k, l, m] = dot(f[i, j, :, l, m, 1], lpdm[k, :]) end end @inbounds @threads for m = 1:4 for l = 1:nsp, k = 1:nsp, j = 1:ny, i = 1:nx rhs2[i, j, k, l, m] = dot(f[i, j, k, :, m, 2], lpdm[l, :]) end end @inbounds @threads for m = 1:4 for l = 1:nsp, k = 1:nsp, j = 1:ny, i = 1:nx du[i, j, k, l, m] = -( rhs1[i, j, k, l, m] + rhs2[i, j, k, l, m] + ( fx_interaction[i, j, l, m] * iJ[i, j][k, l][1, 1] - f_face[i, j, 4, l, m, 1] ) * dhl[k] + ( fx_interaction[i+1, j, l, m] * iJ[i, j][k, l][1, 1] - f_face[i, j, 2, l, m, 1] ) * dhr[k] + ( fy_interaction[i, j, k, m] * iJ[i, j][k, l][2, 2] - f_face[i, j, 1, k, m, 2] ) * dhl[l] + ( fy_interaction[i, j+1, k, m] * iJ[i, j][k, l][2, 2] - f_face[i, j, 3, k, m, 2] ) * dhr[l] ) end end return nothing end begin f = OffsetArray{Float64}( undef, 0:ks.ps.nx+1, 0:ks.ps.ny+1, ks.ps.deg + 1, ks.ps.deg + 1, 4, 2, ) u_face = OffsetArray{Float64}(undef, 0:ks.ps.nx+1, 0:ks.ps.ny+1, 4, ks.ps.deg + 1, 4) f_face = OffsetArray{Float64}(undef, 0:ks.ps.nx+1, 0:ks.ps.ny+1, 4, ks.ps.deg + 1, 4, 2) fx_interaction = zeros(ks.ps.nx + 1, ks.ps.ny, ks.ps.deg + 1, 4) fy_interaction = zeros(ks.ps.nx, ks.ps.ny + 1, ks.ps.deg + 1, 4) rhs1 = zeros(ks.ps.nx, ks.ps.ny, ks.ps.deg + 1, ks.ps.deg + 1, 4) rhs2 = zeros(ks.ps.nx, ks.ps.ny, ks.ps.deg + 1, ks.ps.deg + 1, 4) end p = ( f, u_face, f_face, fx_interaction, fy_interaction, rhs1, rhs2, ps.iJ, ps.ll, ps.lr, ps.dhl, ps.dhr, ps.dl, ks.gas.γ, ) tspan = (0.0, 0.5) dt = 0.001 nt = tspan[2] ÷ dt |> Int # initial condition u0 = OffsetArray{Float64}(undef, 0:ps.nx+1, 0:ps.ny+1, ps.deg + 1, ps.deg + 1, 4) for i in axes(u0, 1), j in axes(u0, 2), k in axes(u0, 3), l in axes(u0, 4) t1, t2 = ib_rh(ks.gas.Ma, ks.gas.γ) if ps.x[i, j] <= ps.x1 * 0.25 prim = [t2[1], t1[2] - t2[2], 0.0, t2[3]] else prim = [t1[1], 0.0, 0.0, t1[3]] s = prim[1]^(1 - ks.gas.γ) / (2 * prim[end]) κ = 0.2 μ = 0.204 rc = 0.05 x0 = 0.8 y0 = 0.5 r = sqrt((ps.xpg[i, j, k, l, 1] - x0)^2 + (ps.xpg[i, j, k, l, 2] - y0)^2) η = r / rc δu = κ * η * exp(μ * (1 - η^2)) * (ps.xpg[i, j, k, l, 2] - y0) / r δv = -κ * η * exp(μ * (1 - η^2)) * (ps.xpg[i, j, k, l, 1] - x0) / r δT = -(ks.gas.γ - 1) * κ^2 / (8 * μ * ks.gas.γ) * exp(2 * μ * (1 - η^2)) T0 = 1 / prim[end] ρ = prim[1]^(ks.gas.γ - 1) * (T0 + δT) / T0^(1 / (ks.gas.γ - 1)) prim1 = [ρ, prim[2] + δu, prim[3] + δv, 1 / (1 / prim[4] + δT)] if r <= rc * 8 prim .= prim1 end end u0[i, j, k, l, :] .= prim_conserve(prim, ks.gas.γ) end # alternative formulation from dsmc shock-vortex interaction paper #=for i in axes(u0, 1), j in axes(u0, 2), k in axes(u0, 3), l in axes(u0, 4) t1, t2 = ib_rh(ks.gas.Ma, ks.gas.γ) if ps.x[i, j] <= ps.x1 * 0.25 prim = [t2[1], t1[2] - t2[2], 0.0, t2[3]] else prim = [t1[1], 0.0, 0.0, t1[3]] s = prim[1]^(1 - ks.gas.γ) / (2 * prim[end]) x0 = 1.0 y0 = 0.5 r = sqrt((ps.xpg[i, j, k, l, 1] - x0)^2 + (ps.xpg[i, j, k, l, 2] - y0)^2) vm = 0.1 r1 = 0.07 r2 = 2 * r1 rset = r1 / (r1^2 - r2^2) gammaset = (ks.gas.γ - 1) / ks.gas.γ cst = 0.1#5 rho1 = ( (ks.gas.γ - 1) / cst / ks.gas.γ * vm^2 * rset^2 * ( (0.5 * r1^2 - 0.5 * r2^4 / r1^2 - 2 * r2^2 * log(r1)) - (0.5 * r2^2 - 0.5 * r2^4 / r2^2 - 2 * r2^2 * log(r2)) ) + 1^(ks.gas.γ - 1) )^(1 / (ks.gas.γ - 1)) T1 = 1.0 + 2 * gammaset * rset^2 * vm^2 * ( (0.5 * r1^2 - 0.5 * r2^4 / r1^2 - 2 * r2^2 * log(r1)) - (0.5 * r2^2 - 0.5 * r2^4 / r2^2 - 2 * r2^2 * log(r2)) ) if r <= r1 vθ = vm * r / r1 elseif r1 < r <= r2 vθ = vm * (r1) / (r1^2 - r2^2) * (r - r2^2 / r) else vθ = 0 end @assert vθ >= 0 cosθ = (ps.xpg[i, j, k, l, 1] - x0) / r sinθ = (ps.xpg[i, j, k, l, 2] - y0) / r δu = vθ * sinθ δv = -vθ * cosθ prim[2:3] .= [δu, δv] if r <= r1 prim[1] = ( ((ks.gas.γ - 1) / cst / ks.gas.γ * vm^2 / 2 / r1^2 * (r^2 - r1^2)) + rho1^(ks.gas.γ - 1) )^(1 / (ks.gas.γ - 1)) prim[4] = T1 + 2 * gammaset * vm^2 / r1^2 / 2 * (r^2 - r1^2) prim[4] = 1 / prim[4] elseif r1 < r <= r2 prim[1] = ( (ks.gas.γ - 1) / cst / ks.gas.γ * vm^2 * rset^2 * ( (0.5 * r^2 - 0.5 * r2^4 / r^2 - 2 * r2^2 * log(r)) - (0.5 * r2^2 - 0.5 * r2^4 / r2^2 - 2 * r2^2 * log(r2)) ) + 1^(ks.gas.γ - 1) )^(1 / (ks.gas.γ - 1)) prim[4] = 1.0 + 2 * gammaset * rset^2 * vm^2 * ( (0.5 * r^2 - 0.5 * r2^4 / r^2 - 2 * r2^2 * log(r)) - (0.5 * r2^2 - 0.5 * r2^4 / r2^2 - 2 * r2^2 * log(r2)) ) prim[4] = 1 / prim[4] end end u0[i, j, k, l, :] .= prim_conserve(prim, ks.gas.γ) end=# prob = ODEProblem(dudt!, u0, tspan, p) itg = init(prob, Midpoint(), save_everystep = false, adaptive = false, dt = dt) @showprogress for iter = 1:100#nt # limiter @inbounds @threads for j = 1:ps.ny for i = 1:ps.nx ũ = @view itg.u[i, j, :, :, :] positive_limiter(ũ, ks.gas.γ, ps.wp ./ 4, ps.ll, ps.lr) end end step!(itg) # filter for i in axes(itg.u, 1), j in axes(itg.u, 2) û = ps.iV * itg.u[i, j, 1:3, 1:3, 1][:] su = û[end]^2 / sum(û .^ 2) isShock = shock_detector(log10(su), ps.deg, -3.0 * log10(ps.deg), 9) if isShock for s = 1:4 û = ps.iV * itg.u[i, j, 1:3, 1:3, s][:] FR.modal_filter!(û, 5e-4; filter = :l2) uNode = reshape(ps.V * û, 3, 3) itg.u[i, j, :, :, s] .= uNode end end end # boundary itg.u[:, 0, :, :, :] .= itg.u[:, 1, :, :, :] itg.u[:, ps.ny+1, :, :, :] .= itg.u[:, ps.ny, :, :, :] itg.u[ps.nx+1, :, :, :, :] .= itg.u[ps.nx, :, :, :, :] #itg.u[:, 0, :, 1:end, :] .= itg.u[:, 1, :, end:-1:1, :] #itg.u[:, ps.ny+1, :, 1:end, :] .= itg.u[:, ps.ny, :, end:-1:1, :] #itg.u[:, 0, :, 1:end, 3] .*= -1 #itg.u[:, ps.ny+1, :, end:-1:1, 3] .*= -1 end begin x = zeros(ps.nx * (ps.deg + 1), ps.ny * (ps.deg + 1)) y = zeros(ps.nx * (ps.deg + 1), ps.ny * (ps.deg + 1)) sol = zeros(ps.nx * (ps.deg + 1), ps.ny * (ps.deg + 1), 4) for i = 1:ps.nx, j = 1:ps.ny idx0 = (i - 1) * (ps.deg + 1) idy0 = (j - 1) * (ps.deg + 1) for k = 1:ps.deg+1, l = 1:ps.deg+1 idx = idx0 + k idy = idy0 + l x[idx, idy] = ps.xpg[i, j, k, l, 1] y[idx, idy] = ps.xpg[i, j, k, l, 2] sol[idx, idy, :] .= conserve_prim(itg.u[i, j, k, l, :], ks.gas.γ) sol[idx, idy, 4] = 1 / sol[idx, idy, 4] end end end contourf(x[:, 1], y[1, :], sol[:, :, 1]', aspect_ratio = 1, legend = true) plot(x[:, 1], sol[:, end÷2+1, 1])
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
587
using FluxReconstruction, Test ps = FRPSpace1D(0, 1, 100, 2) #--- values ---# V = vandermonde_matrix(ps.deg, ps.xpl) ψf = vandermonde_matrix(ps.deg, [-1.0, 1.0]) lf = zeros(2, ps.deg + 1) for i in axes(lf, 1) lf[i, :] .= V' \ ψf[i, :] end @test lf[1, :] ≈ ps.ll @test lf[2, :] ≈ ps.lr #--- derivatives ---# Vr = ∂vandermonde_matrix(ps.deg, ps.xpl) ∂l = zeros(ps.deg + 1, ps.deg + 1) for i = 1:ps.deg+1 ∂l[i, :] .= V' \ Vr[i, :] end @test ∂l ≈ ps.dl dVf = ∂vandermonde_matrix(ps.deg, [-1.0, 1.0]) ∂lf = zeros(2, ps.deg + 1) for i = 1:2 ∂lf[i, :] .= V' \ dVf[i, :] end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
1502
module FluxReconstruction const FR = FluxReconstruction using Base.Threads: @threads using CUDA using GSL using LinearAlgebra using NonlinearSolve using OrdinaryDiffEq using PyCall using KitBase using KitBase: AV, AM, AA, advection_flux using KitBase.FastGaussQuadrature using KitBase.FiniteMesh.DocStringExtensions using KitBase.OffsetArrays using KitBase.SpecialFunctions export FR export AbstractElementShape, Line, Quad, Tri, Hex, Wed, Pyr, Tet export shock_detector, positive_limiter export legendre_point, lagrange_point, ∂legendre, ∂radau, ∂sd, ∂huynh, ∂lagrange, standard_lagrange, simplex_basis, ∂simplex_basis, vandermonde_matrix, ∂vandermonde_matrix, correction_field, JacobiP, ∂JacobiP export tri_quadrature, triface_quadrature export FRPSpace1D, FRPSpace2D, UnstructFRPSpace, TriFRPSpace, global_sp, global_fp, rs_ab, xy_rs, rs_xy, rs_jacobi, neighbor_fpidx export interp_face! export poly_derivative! export FREulerProblem include("data.jl") include("dissipation.jl") include("Polynomial/polynomial.jl") include("Transform/transform.jl") include("Quadrature/quadrature.jl") include("struct.jl") include("Geometry/geometry.jl") include("tools.jl") include("interpolate.jl") include("derivative.jl") include("Equation/equation.jl") include("integrator.jl") end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
407
const AbstractTensor3{T} = AbstractArray{T,3} const AbstractTensor5{T} = AbstractArray{T,5} abstract type AbstractElementShape end struct Line <: AbstractElementShape end struct Quad <: AbstractElementShape end struct Tri <: AbstractElementShape end struct Hex <: AbstractElementShape end struct Wed <: AbstractElementShape end struct Pyr <: AbstractElementShape end struct Tet <: AbstractElementShape end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
222
function poly_derivative!( df::T1, f::T1, pdm::T2, ) where {T1<:AbstractVector,T2<:AbstractMatrix} @assert length(f) == size(pdm, 1) for i in eachindex(df) df[i] = dot(f, pdm[i, :]) end end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
6349
""" $(SIGNATURES) Detect if the solution belongs to a strong discontinuity _P. O. Persson and J. Peraire. Sub-cell shock capturing for discontinuous Galerkin methods. 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006._ - @arg Se = log10(<(u - û)²>/<u²>), u is the solution based on orthogonal polynomials, and û is the same solution with one lower truncated order - @arg deg: polynomial degree of freedom - @arg S0: reference point of Se - @arg κ: empirical parameter that needs to be chosen sufficiently large so as to obtain a sharp but smooth shock profile """ function shock_detector(Se, deg, S0 = -3.0 * log10(deg), κ = 4.0) if Se < S0 - κ σ = 1.0 elseif S0 - κ <= Se < S0 + κ σ = 0.5 * (1.0 - sin(0.5 * π * (Se - S0) / κ)) else σ = 0.0 end return σ < 0.99 ? true : false end """ $(SIGNATURES) Slope limiter to preserve positivity _R. Vandenhoeck and A. Lani. Implicit high-order flux reconstruction solver for high-speed compressible flows. Computer Physics Communications 242: 1-24, 2019."_ - @arg u: conservative variables with solution points in dim1 and states in dim2 - @arg γ: specific heat ratio - @arg weights: quadrature weights for computing mean value - @arg ll&lr: Langrange polynomials at left/right edge - @arg t0=1.0: minimum limiting slope """ function positive_limiter( u::AbstractVector{T}, weights, ll, lr, t0 = 1.0, ) where {T<:AbstractFloat} um = sum(u .* weights) / sum(weights) ub = [dot(u, ll), dot(u, lr)] ϵ = min(1e-13, um) θ = min(minimum(ub), minimum(u)) t = min((um - ϵ) / (um - θ + 1e-8), 1.0) @assert 0 < t <= 1 "incorrect range of limiter parameter t" for i in axes(u, 1) u[i] = t * (u[i] - um) + um end return nothing end function positive_limiter( u::AbstractMatrix{T}, γ, weights, ll, lr, t0 = 1.0, ) where {T<:AbstractFloat} # mean values u_mean = [sum(u[:, j] .* weights) for j in axes(u, 2)] t_mean = 1.0 / conserve_prim(u_mean, γ)[end] p_mean = 0.5 * u_mean[1] * t_mean # boundary values ρb = [dot(u[:, 1], ll), dot(u[:, 1], lr)] mb = [dot(u[:, 2], ll), dot(u[:, 2], lr)] eb = [dot(u[:, 3], ll), dot(u[:, 3], lr)] # density corrector ϵ = min(1e-13, u_mean[1], p_mean) ρ_min = min(minimum(ρb), minimum(u[:, 1])) # density minumum can emerge at both solution and flux points t1 = min((u_mean[1] - ϵ) / (u_mean[1] - ρ_min + 1e-8), 1.0) @assert 0 < t1 <= 1 "incorrect range of limiter parameter t" for i in axes(u, 1) u[i, 1] = t1 * (u[i, 1] - u_mean[1]) + u_mean[1] end # energy corrector tj = Float64[] for i = 1:2 # flux points prim = conserve_prim([ρb[i], mb[i], eb[i]], γ) if prim[end] < ϵ prob = NonlinearProblem{false}( tj_equation, 1.0, ([ρb[i], mb[i], eb[i]], u_mean, γ, ϵ), ) sol = solve(prob, NewtonRaphson(), tol = 1e-9) push!(tj, sol.u) end end for i in axes(u, 1) # solution points prim = conserve_prim(u[i, :], γ) if prim[end] < ϵ prob = NonlinearProblem{false}(tj_equation, 1.0, (u[i, :], u_mean, γ, ϵ)) sol = solve(prob, NewtonRaphson(), tol = 1e-9) push!(tj, sol.u) end end if length(tj) > 0 t2 = minimum(tj, t0) for j in axes(u, 2), i in axes(u, 1) u[i, j] = t2 * (u[i, j] - u_mean[j]) + u_mean[j] end end return nothing end function positive_limiter( u::AbstractArray{T,3}, γ, weights, ll, lr, t0 = 1.0, ) where {T<:AbstractFloat} # mean values u_mean = [sum(u[:, :, j] .* weights) for j in axes(u, 2)] t_mean = 1.0 / conserve_prim(u_mean, γ)[end] p_mean = 0.5 * u_mean[1] * t_mean # boundary values ρb = zeros(4, length(ll)) mxb = zeros(4, length(ll)) myb = zeros(4, length(ll)) eb = zeros(4, length(ll)) for j in axes(ρb, 2) ρb[1, j] = dot(u[j, :, 1], ll) ρb[2, j] = dot(u[:, j, 1], lr) ρb[3, j] = dot(u[j, :, 1], lr) ρb[4, j] = dot(u[:, j, 1], ll) mxb[1, j] = dot(u[j, :, 2], ll) mxb[2, j] = dot(u[:, j, 2], lr) mxb[3, j] = dot(u[j, :, 2], lr) mxb[4, j] = dot(u[:, j, 2], ll) myb[1, j] = dot(u[j, :, 3], ll) myb[2, j] = dot(u[:, j, 3], lr) myb[3, j] = dot(u[j, :, 3], lr) myb[4, j] = dot(u[:, j, 3], ll) eb[1, j] = dot(u[j, :, 4], ll) eb[2, j] = dot(u[:, j, 4], lr) eb[3, j] = dot(u[j, :, 4], lr) eb[4, j] = dot(u[:, j, 4], ll) end # density corrector ϵ = min(1e-13, u_mean[1], p_mean) ρ_min = min(minimum(ρb), minimum(u[:, :, 1])) # density minumum can emerge at both solution and flux points t1 = min((u_mean[1] - ϵ) / (u_mean[1] - ρ_min + 1e-8), 1.0) @assert 0 < t1 <= 1 "incorrect range of limiter parameter t" for j in axes(u, 2), i in axes(u, 1) u[i, j, 1] = t1 * (u[i, j, 1] - u_mean[1]) + u_mean[1] end # energy corrector tj = Float64[] for j = 1:length(ll), i = 1:4 prim = conserve_prim([ρb[i, j], mxb[i, j], myb[i, j], eb[i, j]], γ) if prim[end] < ϵ prob = NonlinearProblem{false}( tj_equation, 1.0, ([ρb[i, j], mxb[i, j], myb[i, j], eb[i, j]], u_mean, γ, ϵ), ) sol = solve(prob, NewtonRaphson(), tol = 1e-9) push!(tj, sol.u) end end for j in axes(u, 2), i in axes(u, 1) # solution points prim = conserve_prim(u[i, j, :], γ) if prim[end] < ϵ prob = NonlinearProblem{false}(tj_equation, 1.0, (u[i, j, :], u_mean, γ, ϵ)) sol = solve(prob, NewtonRaphson(), tol = 1e-9) push!(tj, sol.u) end end if length(tj) > 0 t2 = minimum(tj, t0) for k in axes(u, 3), j in axes(u, 2), i in axes(u, 1) u[i, j, k] = t2 * (u[i, j, k] - u_mean[k]) + u_mean[k] end end return nothing end function tj_equation(t, p) ũ, u_mean, γ, ϵ = p u_temp = [t * (ũ[i] - u_mean[i]) + u_mean[i] for i in eachindex(u_mean)] prim_temp = conserve_prim(u_temp, γ) return 0.5 * prim_temp[1] / prim_temp[end] - ϵ end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
171
function integrator(dudt::Function, u0, tspan, p, solver, args...; kwargs...) prob = ODEProblem(dudt, u0, tspan, p) return init(prob, alg, args...; kwargs...) end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
328
function interp_face!(fδ, f::T, ll::T1, lr::T1) where {T<:AbstractVector,T1<:AbstractVector} fδ[1] = dot(f, ll) fδ[2] = dot(f, lr) end function interp_face!(fδ, f::T, ll::T1, lr::T1) where {T<:AbstractMatrix,T1<:AbstractVector} @views for i in axes(f, 1) interp_face!(fδ[i, :], f[i, :], ll, lr) end end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
7899
abstract type AbstractStructFRSpace <: KitBase.AbstractStructPhysicalSpace end abstract type AbstractUnstructFRSpace <: KitBase.AbstractUnstructPhysicalSpace end """ $(TYPEDEF) 1D physical space for flux reconstruction method # Fields $(FIELDS) """ struct FRPSpace1D{ A, I<:Integer, B<:AbstractVector{<:AbstractFloat}, C<:AbstractMatrix{<:AbstractFloat}, } <: AbstractStructFRSpace base::A deg::I J::B np::I xpl::B xpg::C wp::B dl::C ll::B lr::B dll::B dlr::B dhl::B dhr::B V::C iV::C end function FRPSpace1D(x0, x1, nx::Integer, deg::Integer, ng = 0::Integer, correction = :radau) ps = PSpace1D(x0, x1, nx, ng) J = [ps.dx[i] / 2 for i in eachindex(ps.dx)] r = legendre_point(deg) .|> eltype(ps.x) xi = push!(ps.x - 0.5 * ps.dx, ps.x[end] + 0.5 * ps.dx[end]) .|> eltype(ps.x) xp = global_sp(xi, r) wp = gausslegendre(deg + 1)[2] ll = lagrange_point(r, -1.0) lr = lagrange_point(r, 1.0) lpdm = ∂lagrange(r) V = vandermonde_matrix(deg, r) |> Array iV = inv(V) dVf = ∂vandermonde_matrix(deg, [-1.0, 1.0]) ∂lf = zeros(2, deg + 1) for i = 1:2 ∂lf[i, :] .= V' \ dVf[i, :] end dll = ∂lf[1, :] dlr = ∂lf[2, :] fc = eval(Symbol("∂" * String(correction))) dhl, dhr = fc(deg, r) #dhl, dhr = ∂radau(deg, r) return FRPSpace1D{typeof(ps),typeof(deg),typeof(J),typeof(xp)}( ps, deg, J, deg + 1, r, xp, wp, lpdm, ll, lr, dll, dlr, dhl, dhr, V, iV, ) end FRPSpace1D(; x0, x1, nx, deg, ng = 0, correction = :radau, kwargs...) = FRPSpace1D(x0, x1, nx, deg, ng, correction) """ $(TYPEDEF) 2D physical space for flux reconstruction method # Fields $(FIELDS) """ struct FRPSpace2D{ A, I<:Integer, B, C<:AbstractVector{<:AbstractFloat}, D<:AbstractArray{<:AbstractFloat,5}, E<:AbstractMatrix{<:AbstractFloat}, } <: AbstractStructFRSpace base::A deg::I J::B iJ::B Ji::B np::I xpl::C xpg::D wp::E dl::E ll::C lr::C dll::C dlr::C dhl::C dhr::C V::E iV::E end function FRPSpace2D(base::AbstractPhysicalSpace2D, deg::Integer) # solution points in 1D standard element r = legendre_point(deg) .|> eltype(base.x) # Jacobian and its inverse J = rs_jacobi(r, base.vertices) iJ = deepcopy(J) for i in axes(iJ, 1), j in axes(iJ, 2) for k = 1:deg+1, l = 1:deg+1 iJ[i, j][k, l] .= inv(J[i, j][k, l]) end end # interface flux points ri = zeros(eltype(base.x), 4, deg + 1) ri[1, :] .= r ri[2, :] .= 1.0 ri[3, :] .= r[end:-1:1] ri[4, :] .= 0.0 si = zeros(eltype(base.x), 4, deg + 1) si[1, :] .= 0.0 si[2, :] .= r si[3, :] .= 1.0 si[4, :] .= r[end:-1:1] # Jacobian of flux points Ji = rs_jacobi(ri, si, base.vertices) # solution points in global coordinates xpg = OffsetArray{eltype(base.x)}( undef, axes(base.x, 1), axes(base.y, 2), 1:deg+1, 1:deg+1, 1:2, ) for i in axes(xpg, 1), j in axes(xpg, 2), k = 1:deg+1, l = 1:deg+1 @. xpg[i, j, k, l, :] = (r[k] - 1.0) * (r[l] - 1.0) / 4 * base.vertices[i, j, 1, :] + (r[k] + 1.0) * (1.0 - r[l]) / 4 * base.vertices[i, j, 2, :] + (r[k] + 1.0) * (r[l] + 1.0) / 4 * base.vertices[i, j, 3, :] + (1.0 - r[k]) * (r[l] + 1.0) / 4 * base.vertices[i, j, 4, :] end # quadrature weights w = gausslegendre(deg + 1)[2] .|> eltype(base.x) wp = [w[i] * w[j] for i = 1:deg+1, j = 1:deg+1] # Lagrange polynomials ll, lr, lpdm = standard_lagrange(r) V = vandermonde_matrix(deg, r) dVf = ∂vandermonde_matrix(deg, [-1.0, 1.0]) ∂lf = zeros(eltype(base.x), 2, deg + 1) for i = 1:2 ∂lf[i, :] .= V' \ dVf[i, :] end dll = ∂lf[1, :] dlr = ∂lf[2, :] dhl, dhr = ∂radau(deg, r) # 2D Vandermonde matrix r2d = zeros(eltype(r), length(r), length(r)) for j in axes(r2d, 2) r2d[:, j] .= r end s2d = deepcopy(r2d) for i in axes(s2d, 1) s2d[i, :] .= r end V = vandermonde_matrix(Quad, deg, r2d[:], s2d[:]) iV = inv(V) return FRPSpace2D{typeof(base),typeof(deg),typeof(J),typeof(r),typeof(xpg),typeof(wp)}( base, deg, J, iJ, Ji, (deg + 1)^2, r, xpg, wp, lpdm, ll, lr, dll, dlr, dhl, dhr, V, iV, ) end function FRPSpace2D( x0::Real, x1::Real, nx::Integer, y0::Real, y1::Real, ny::Integer, deg::Integer, ngx = 0::Integer, ngy = 0::Integer, ) ps = PSpace2D(x0, x1, nx, y0, y1, ny, ngx, ngy) return FRPSpace2D(ps, deg) end FRPSpace2D(; x0, x1, nx, y0, y1, ny, deg, ngx = 0, ngy = 0, kwargs...) = FRPSpace2D(x0, x1, nx, y0, y1, ny, deg, ngx, ngy) """ $(TYPEDEF) Unstructued physical space for flux reconstruction method # Fields $(FIELDS) """ struct UnstructFRPSpace{ A, H, G<:Integer, B<:AbstractMatrix{<:AbstractFloat}, F<:AbstractArray{<:AbstractFloat,3}, E<:AbstractVector{<:AbstractFloat}, I<:AbstractArray{<:AbstractFloat,4}, J, } <: AbstractUnstructFRSpace #--- general ---# base::A # basic unstructured mesh info that contains: #= cells::A # all information: cell, line, vertex points::B # locations of vertex points cellid::C # node indices of elements cellType::D # inner/boundary cell cellNeighbors::C # neighboring cells id cellFaces::C # cell edges id cellCenter::B # cell center location cellArea::E # cell size cellNormals::F # cell unit normal vectors facePoints::C # ids of two points at edge faceCells::C # ids of two cells around edge faceCenter::B # edge center location faceType::D # inner/boundary face faceArea::E # face area =# #--- FR specific ---# J::H # Jacobi deg::G # polynomial degree np::G # number of solution points xpl::B # local coordinates of solution points xpg::F # global coordinates of solution points wp::E # weights of solution points xfl::F # local coordinates of flux points xfg::I # global coordinates of flux points wf::B # weights of flux points V::B # Vandermonde matrix ψf::F # Vandermonde matrix along faces Vr::B # ∂V/∂r Vs::B # ∂V/∂s ∂l::F # ∇l lf::F # Lagrange polynomials along faces ϕ::F # correction field fpn::J # adjacent flux points index in neighbor cell end function TriFRPSpace(file::T, deg::Integer) where {T<:AbstractString} ps = UnstructPSpace(file) J = rs_jacobi(ps.cellid, ps.points) np = (deg + 1) * (deg + 2) ÷ 2 xpl, wp = tri_quadrature(deg) V = vandermonde_matrix(Tri, deg, xpl[:, 1], xpl[:, 2]) Vr, Vs = ∂vandermonde_matrix(Tri, deg, xpl[:, 1], xpl[:, 2]) ∂l = ∂lagrange(V, Vr, Vs) ϕ = correction_field(deg, V) xfl, wf = triface_quadrature(deg) ψf = zeros(3, deg + 1, np) for i = 1:3 ψf[i, :, :] .= vandermonde_matrix(Tri, deg, xfl[i, :, 1], xfl[i, :, 2]) end lf = zeros(3, deg + 1, np) for i = 1:3, j = 1:deg+1 lf[i, j, :] .= V' \ ψf[i, j, :] end xpg = global_sp(ps.points, ps.cellid, deg) xfg = global_fp(ps.points, ps.cellid, deg) ncell = size(ps.cellid, 1) fpn = [neighbor_fpidx([i, j, k], ps, xfg) for i = 1:ncell, j = 1:3, k = 1:deg+1] return UnstructFRPSpace( ps, J, deg, np, xpl, xpg, wp, xfl, xfg, wf, V, ψf, Vr, Vs, ∂l, lf, ϕ, fpn, ) end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
1587
# ------------------------------------------------------------ # Mimic inheritance of common fields # ------------------------------------------------------------ function Base.getproperty(x::AbstractStructFRSpace, name::Symbol) options = union(fieldnames(PSpace1D), fieldnames(PSpace2D), fieldnames(KitBase.CSpace2D)) if name in options return getfield(x.base, name) else return getfield(x, name) end end function Base.getproperty(x::AbstractUnstructFRSpace, name::Symbol) if name in fieldnames(UnstructPSpace) return getfield(x.base, name) else return getfield(x, name) end end function Base.propertynames(x::AbstractStructFRSpace, private::Bool = false) public = fieldnames(typeof(x)) true ? ( ( public ∪ union(fieldnames(PSpace1D), fieldnames(PSpace2D), fieldnames(KitBase.CSpace2D)) )..., ) : public end function Base.propertynames(x::AbstractUnstructFRSpace, private::Bool = false) public = fieldnames(typeof(x)) true ? ((public ∪ fieldnames(UnstructPSpace))...,) : public end # ------------------------------------------------------------ # Accuracy analysis # ------------------------------------------------------------ function L1_error(u::T, ue::T, Δx) where {T<:AbstractArray} return sum(abs.(u .- ue) .* Δx) end function L2_error(u::T, ue::T, Δx) where {T<:AbstractArray} return sqrt(sum((abs.(u .- ue) .* Δx) .^ 2)) end function L∞_error(u::T, ue::T, Δx) where {T<:AbstractArray} return maximum(abs.(u .- ue) .* Δx) end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
4576
function FRAdvectionProblem(u::Matrix, tspan, ps::AbstractStructFRSpace, a, bc::Symbol) f = zero(u) rhs = zero(u) ncell = size(u, 1) u_face = zeros(eltype(u), ncell, 2) f_face = zeros(eltype(u), ncell, 2) f_interaction = zeros(eltype(u), ncell + 1) p = ( f, u_face, f_face, f_interaction, rhs, ps.J, ps.ll, ps.lr, ps.dl, ps.dhl, ps.dhr, a, bc, ) return ODEProblem(frode_advection!, u, tspan, p) end function FRAdvectionProblem(u::CuMatrix, tspan, ps::AbstractStructFRSpace, a, bc::Symbol) f = zero(u) rhs = zero(u) ncell = size(u, 1) u_face = zeros(eltype(u), ncell, 2) |> CuArray f_face = zeros(eltype(u), ncell, 2) |> CuArray f_interaction = zeros(eltype(u), ncell + 1) |> CuArray p = ( f, u_face, f_face, f_interaction, rhs, ps.J |> CuArray, ps.ll |> CuArray, ps.lr |> CuArray, ps.dl |> CuArray, ps.dhl |> CuArray, ps.dhr |> CuArray, a, bc, ) return ODEProblem(frode_advection!, u, tspan, p) end function frode_advection!(du::Matrix, u, p, t) f, u_face, f_face, f_interaction, rhs1, J, ll, lr, lpdm, dgl, dgr, a, bc = p ncell = size(u, 1) nsp = size(u, 2) advection_dflux!(f, u, a, J) u_face .= hcat(u * ll, u * lr) f_face .= hcat(f * ll, f * lr) advection_iflux!(f_interaction, f_face, u_face) rhs1 .= f * lpdm' scalar_rhs!(du, rhs1, f_face, f_interaction, dgl, dgr) bs = string(bc) * "_advection!" bf = Symbol(bs) |> eval bf(du, u, p) return nothing end function frode_advection!(du, u, p, t) f, u_face, f_face, f_interaction, rhs1, J, ll, lr, lpdm, dgl, dgr, a, bc = p ncell = size(u, 1) nsp = size(u, 2) @cuda advection_dflux!(f, u, a, J) u_face .= hcat(u * ll, u * lr) f_face .= hcat(f * ll, f * lr) @cuda advection_iflux!(f_interaction, f_face, u_face) rhs1 .= f * lpdm' @cuda scalar_rhs!(du, rhs1, f_face, f_interaction, dgl, dgr) bs = string(bc) * "_advection!" bf = Symbol(bs) |> eval CUDA.@allowscalar bf(du, u, p) return nothing end function advection_dflux!(f::Array, u, a, J) @threads for j in axes(f, 2) for i in axes(f, 1) @inbounds f[i, j] = advection_flux(u[i, j], a) / J[i] end end return nothing end function advection_dflux!(f, u, a, J) idx = (blockIdx().x - 1) * blockDim().x + threadIdx().x idy = (blockIdx().y - 1) * blockDim().y + threadIdx().y strx = blockDim().x * gridDim().x stry = blockDim().y * gridDim().y for j = idy:stry:size(u, 2) for i = idx:strx:size(u, 1) @inbounds f[i, j] = advection_flux(u[i, j], a) / J[i] end end return nothing end function advection_iflux!(f_interaction::Array, f_face, u_face) @inbounds @threads for i = 2:length(f_interaction)-1 au = (f_face[i, 1] - f_face[i-1, 2]) / (u_face[i, 1] - u_face[i-1, 2] + 1e-8) f_interaction[i] = ( 0.5 * (f_face[i, 1] + f_face[i-1, 2]) - 0.5 * abs(au) * (u_face[i, 1] - u_face[i-1, 2]) ) end return nothing end function advection_iflux!(f_interaction, f_face, u_face) idx = (blockIdx().x - 1) * blockDim().x + threadIdx().x strx = blockDim().x * gridDim().x @inbounds for i = idx+1:strx:length(f_interaction)-1 au = (f_face[i, 1] - f_face[i-1, 2]) / (u_face[i, 1] - u_face[i-1, 2] + 1e-8) f_interaction[i] = ( 0.5 * (f_face[i, 1] + f_face[i-1, 2]) - 0.5 * abs(au) * (u_face[i, 1] - u_face[i-1, 2]) ) end return nothing end function dirichlet_advection!(du::AbstractMatrix, u, p) du[1, :] .= 0.0 du[end, :] .= 0.0 end function period_advection!(du::AbstractMatrix, u, p) f, u_face, f_face, f_interaction, rhs1, J, ll, lr, lpdm, dgl, dgr, a = p ncell, nsp = size(u) au = (f_face[1, 1] - f_face[ncell, 2]) / (u_face[1, 1] - u_face[ncell, 2] + 1e-6) f_interaction[1] = ( 0.5 * (f_face[ncell, 2] + f_face[1, 1]) - 0.5 * abs(au) * (u_face[1, 1] - u_face[ncell, 2]) ) f_interaction[end] = f_interaction[1] for ppp1 = 1:nsp for i in [1, ncell] @inbounds du[i, ppp1] = -( rhs1[i, ppp1] + (f_interaction[i] - f_face[i, 1]) * dgl[ppp1] + (f_interaction[i+1] - f_face[i, 2]) * dgr[ppp1] ) end end end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
1807
function bgk!(du, u, p, t) dx, e2f, f2e, velo, weights, δ, deg, ll, lr, lpdm, dgl, dgr = p ncell = size(u, 1) nu = size(u, 2) nsp = size(u, 3) M = similar(u, ncell, nu, nsp) for i = 1:ncell, k = 1:nsp w = moments_conserve(u[i, :, k], velo, weights) prim = conserve_prim(w, 3.0) M[i, :, k] .= maxwellian(velo, prim) end τ = 1e-2 f = similar(u) for i = 1:ncell, j = 1:nu, k = 1:nsp J = 0.5 * dx[i] f[i, j, k] = velo[j] * u[i, j, k] / J end f_face = zeros(eltype(u), ncell, nu, 2) #=for i = 1:ncell, j = 1:nu, k = 1:nsp # right face of element i f_face[i, j, 1] += f[i, j, k] * lr[k] # left face of element i f_face[i, j, 2] += f[i, j, k] * ll[k] end=# @views for i = 1:ncell, j = 1:nu FluxRC.interp_interface!(f_face[i, j, :], f[i, j, :], ll, lr) end f_interaction = similar(u, nface, nu) for i = 1:nface @. f_interaction[i, :] = f_face[f2e[i, 1], :, 1] * (1.0 - δ) + f_face[f2e[i, 2], :, 2] * δ end rhs1 = zeros(eltype(u), ncell, nu, nsp) #for i = 1:ncell, j = 1:nu, ppp1 = 1:nsp, k = 1:nsp # rhs1[i, j, ppp1] += f[i, j, k] * lpdm[ppp1, k] #end @views for i = 1:ncell, j = 1:nu FluxRC.poly_derivative!(rhs1[i, j, :], f[i, j, :], lpdm) end #@views for i = 1:ncell, j = 1:nu, k = 1:nsp # rhs1[i, j, k] = dot(f[i, j, :], lpdm[k, :]) #end for i = 1:ncell, j = 1:nu, ppp1 = 1:nsp du[i, j, ppp1] = -( rhs1[i, j, ppp1] + (f_interaction[e2f[i, 2], j] - f_face[i, j, 1]) * dgl[ppp1] + (f_interaction[e2f[i, 1], j] - f_face[i, j, 2]) * dgr[ppp1] ) + (M[i, j, ppp1] - u[i, j, ppp1]) / τ end end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
2617
function FREulerProblem(u::AbstractTensor3, tspan, ps::AbstractStructFRSpace, γ, bc::Symbol) f = zero(u) rhs = zero(u) ncell = size(u, 1) u_face = zeros(ncell, 2, 3) f_face = zeros(ncell, 2, 3) f_interaction = zeros(ncell + 1, 3) p = ( f, u_face, f_face, f_interaction, rhs, ps.J, ps.ll, ps.lr, ps.dl, ps.dhl, ps.dhr, γ, bc, ) return ODEProblem(frode_euler!, u, tspan, p) end function frode_euler!(du::AbstractTensor3, u, p, t) f, u_face, f_face, f_interaction, rhs1, J, ll, lr, lpdm, dgl, dgr, γ, bc = p ncell = size(u, 1) nsp = size(u, 2) @inbounds @threads for j = 1:nsp for i = 1:ncell f[i, j, :] .= euler_flux(u[i, j, :], γ)[1] ./ J[i] end end @inbounds @threads for j = 1:3 # left face of element i u_face[:, 1, j] .= u[:, :, j] * ll f_face[:, 1, j] .= f[:, :, j] * ll # right face of element i u_face[:, 2, j] .= u[:, :, j] * lr f_face[:, 2, j] .= f[:, :, j] * lr end @inbounds @threads for i = 2:ncell fw = @view f_interaction[i, :] flux_hll!(fw, u_face[i-1, 2, :], u_face[i, 1, :], γ, 1.0) end @inbounds @threads for k = 1:3 rhs1[:, :, k] .= f[:, :, k] * lpdm' end @inbounds @threads for i = 2:ncell-1 for ppp1 = 1:nsp, k = 1:3 du[i, ppp1, k] = -( rhs1[i, ppp1, k] + (f_interaction[i, k] / J[i] - f_face[i, 1, k]) * dgl[ppp1] + (f_interaction[i+1, k] / J[i] - f_face[i, 2, k]) * dgr[ppp1] ) end end bs = string(bc) * "_euler!" bf = Symbol(bs) |> eval bf(du, u, p) return nothing end function dirichlet_euler!(du::AbstractTensor3, u, p) du[1, :, :] .= 0.0 du[end, :, :] .= 0.0 end function period_euler!(du::AbstractTensor3, u, p) f, u_face, f_face, f_interaction, rhs1, J, ll, lr, lpdm, dgl, dgr, γ, bc = p ncell = size(u, 1) nsp = size(u, 2) fw = @view f_interaction[1, :] flux_hll!(fw, u_face[ncell, 2, :], u_face[1, 1, :], γ, 1.0) fw = @view f_interaction[ncell+1, :] flux_hll!(fw, u_face[ncell, 2, :], u_face[1, 1, :], γ, 1.0) @inbounds for i in [1, ncell] for ppp1 = 1:nsp, k = 1:3 du[i, ppp1, k] = -( rhs1[i, ppp1, k] + (f_interaction[i, k] / J[i] - f_face[i, 1, k]) * dgl[ppp1] + (f_interaction[i+1, k] / J[i] - f_face[i, 2, k]) * dgr[ppp1] ) end end end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
1043
function scalar_rhs!(du::AbstractMatrix, rhs1, f_face, f_interaction, dgl, dgr) ncell, nsp = size(du) @threads for ppp1 = 1:nsp for i = 2:ncell-1 @inbounds du[i, ppp1] = -( rhs1[i, ppp1] + (f_interaction[i] - f_face[i, 1]) * dgl[ppp1] + (f_interaction[i+1] - f_face[i, 2]) * dgr[ppp1] ) end end return nothing end function scalar_rhs!(du::CuDeviceMatrix, rhs1, f_face, f_interaction, dgl, dgr) idx = (blockIdx().x - 1) * blockDim().x + threadIdx().x idy = (blockIdx().y - 1) * blockDim().y + threadIdx().y strx = blockDim().x * gridDim().x stry = blockDim().y * gridDim().y ncell, nsp = size(du) for ppp1 = idy:stry:nsp for i = idx+1:strx:ncell-1 @inbounds du[i, ppp1] = -( rhs1[i, ppp1] + (f_interaction[i] - f_face[i, 1]) * dgl[ppp1] + (f_interaction[i+1] - f_face[i, 2]) * dgr[ppp1] ) end end return nothing end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
244
# ============================================================ # Governing Equations # ============================================================ include("eq_scalar.jl") include("eq_advection.jl") include("eq_euler.jl") include("eq_bgk.jl")
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
2534
""" $(SIGNATURES) Calculate Jacobians for elements Isosceles right triangle element ``` 3 | | | |-------| 1 2 ``` X = [x, y] = λ¹V¹ + λ²V² + λ³V³ λs are linear: λ¹ = -(r+s)/2 λ² = (r+1)/2 λ³ = (s+1)/2 Jacobian: [xr xs yr ys] Xᵣ = -V¹/2 + V²/2 Xₛ = -V¹/2 + V³/2 """ function rs_jacobi(cells, points) ncell = size(cells, 1) J = [ begin xr, yr = (points[cells[i, 2], 1:2] - points[cells[i, 1], 1:2]) ./ 2 xs, ys = (points[cells[i, 3], 1:2] - points[cells[i, 1], 1:2]) ./ 2 [xr xs; yr ys] end for i = 1:ncell ] return J end """ $(SIGNATURES) Quadrilateral element ``` 4 3 |-------| | | | | |-------| 1 2 ``` X = λ¹V¹ + λ²V² + λ³V³ + λ⁴V⁴ λs are bilinear rectangle shape functions: (http://people.ucalgary.ca/~aknigh/fea/fea/rectangles/r1.html) λ¹ = (r-1)(s-1)/4 λ² = (r+1)(1-s)/4 λ³ = (r+1)(s+1)/4 λ⁴ = (1-r)(s+1)/4 Jacobian: Xᵣ = (s-1)V¹/4 + (1-s)V²/4 + (s+1)V³/4 - (s+1)V⁴/4 Xₛ = (r-1)V¹/4 - (r+1)V²/4 + (r+1)V³/4 + (1-r)V⁴/4 Unlike linear simplex elements, J varies from point to point within an element for a general linear quadrilateral. As a special case, the Jacobian matrix is a constant for each element in rectangular mesh. """ function rs_jacobi(r::T, s::T, vertices::AbstractMatrix) where {T<:Real} xr, yr = @. (s - 1.0) * vertices[1, :] / 4 + (1.0 - s) * vertices[2, :] / 4 + (s + 1.0) * vertices[3, :] / 4 - (s + 1.0) * vertices[4, :] / 4 xs, ys = @. (r - 1.0) * vertices[1, :] / 4 - (r + 1.0) * vertices[2, :] / 4 + (r + 1.0) * vertices[3, :] / 4 + (1.0 - r) * vertices[4, :] / 4 J = [xr xs; yr ys] return J end rs_jacobi(r::T, s::T, vertices::AbstractMatrix) where {T<:AbstractVector} = [rs_jacobi(r[i], s[i], vertices) for i in eachindex(r)] rs_jacobi(r::T, s::T, vertices::AbstractMatrix) where {T<:AbstractMatrix} = [rs_jacobi(r[i], s[i], vertices) for i in axes(r, 1), j in axes(s, 2)] rs_jacobi(r, s, vertices::AbstractArray{<:AbstractFloat,4}) = [ rs_jacobi(r, s, @view vertices[i, j, :, :]) for i in axes(vertices, 1), j in axes(vertices, 2) ] # syntax sugar for inner points with same samplings in x and y rs_jacobi(r::AbstractVector, vertices::AbstractMatrix) = [rs_jacobi(r[i], r[j], vertices) for i in eachindex(r), j in eachindex(r)] rs_jacobi(r, vertices::AbstractArray{<:AbstractFloat,4}) = [ rs_jacobi(r, @view vertices[i, j, :, :]) for i in axes(vertices, 1), j in axes(vertices, 2) ]
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
1569
""" $(SIGNATURES) global id local rank """ function neighbor_fpidx(IDs, ps, fpg) # id-th cell, fd-th face, jd-th point id, fd, jd = IDs # ending point ids of a face if fd == 1 pids = [ps.cellid[id, 1], ps.cellid[id, 2]] elseif fd == 2 pids = [ps.cellid[id, 2], ps.cellid[id, 3]] elseif fd == 3 pids = [ps.cellid[id, 3], ps.cellid[id, 1]] end # global face index faceids = ps.cellFaces[id, :] function get_faceid() for i in eachindex(faceids) if sort(pids) == sort(ps.facePoints[faceids[i], :]) return faceids[i] end end @warn "no face id found" end faceid = get_faceid() # neighbor cell id neighbor_cid = setdiff(ps.faceCells[faceid, :], id)[1] # in case of boundary cell if neighbor_cid <= 0 return neighbor_cid, -1, -1 end # face rank in neighbor cell if ps.cellid[neighbor_cid, 1] ∉ ps.facePoints[faceid, :] neighbor_frk = 2 elseif ps.cellid[neighbor_cid, 2] ∉ ps.facePoints[faceid, :] neighbor_frk = 3 elseif ps.cellid[neighbor_cid, 3] ∉ ps.facePoints[faceid, :] neighbor_frk = 1 end # point rank in neighbor cell neighbor_nrk1 = findall(x -> x == fpg[id, fd, jd, 1], fpg[neighbor_cid, neighbor_frk, :, 1]) neighbor_nrk2 = findall(x -> x == fpg[id, fd, jd, 2], fpg[neighbor_cid, neighbor_frk, :, 2]) neighbor_nrk = intersect(neighbor_nrk1, neighbor_nrk2)[1] return neighbor_cid, neighbor_frk, neighbor_nrk end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
3444
""" $(SIGNATURES) Calculate global coordinates of solution points Line elements """ function global_sp(xi::AbstractVector{T}, r::AbstractVector{T}) where {T<:Real} # line elements xsp = similar(xi, first(eachindex(xi)):last(eachindex(xi))-1, length(r)) for i in axes(xsp, 1), j in axes(r, 1) xsp[i, j] = r_x(r[j], xi[i], xi[i+1]) end return xsp end """ $(SIGNATURES) Quadrilateral elements """ function global_sp( xi::AbstractArray{<:Real,2}, yi::AbstractArray{<:Real,2}, r::AbstractArray{<:Real,1}, ) xp = similar( xi, first(axes(xi, 1)):last(axes(xi, 1))-1, first(axes(xi, 2)):last(axes(xi, 2)), length(r), length(r), ) yp = similar(xp) for i in axes(xp, 1), j in axes(xp, 2), k in axes(r, 1), l in axes(r, 1) xp[i, j, k, l] = r_x(r[k], xi[i, j], xi[i+1, j]) yp[i, j, k, l] = r_x(r[l], yi[i, j], yi[i, j+1]) end return xp, yp end """ $(SIGNATURES) Triangle elements - @arg points: vetices of elements - @arg cellid: point ids of elements - @arg N: polynomial degree The right triangle is used in the reference space - 1, 2: bottom points - 3: top point """ function global_sp( points::AbstractMatrix{T1}, cellid::AbstractMatrix{T2}, N::Integer, ) where {T1<:Real,T2<:Integer} pl, wl = tri_quadrature(N) Np = size(wl, 1) spg = zeros(eltype(points), size(cellid, 1), Np, 2) for i in axes(spg, 1), j in axes(spg, 2) id1, id2, id3 = cellid[i, :] spg[i, j, :] .= rs_xy(pl[j, :], points[id1, 1:2], points[id2, 1:2], points[id3, 1:2]) end return spg end #--- deprecated codes for equilateral triangle element ---# #=function global_sp( points::AbstractMatrix{T1}, cellid::AbstractMatrix{T2}, rs::AbstractMatrix{T3}, ) where {T1<:Real,T2<:Integer,T3<:Real} r = rs[:, 1] s = rs[:, 2] xsp = similar(points, size(cellid, 1), size(rs, 1), size(rs, 2)) for i in axes(xsp, 1), j in axes(xsp, 2) xsp[i, j, :] = (-3.0 * r[j] + 2.0 - √3 * s[j]) / 6.0 .* points[cellid[i, 1], 1:2] + (3.0 * r[j] + 2.0 - √3 * s[j]) / 6.0 .* points[cellid[i, 2], 1:2] + (2.0 + 2.0 * √3 * s[j]) / 6.0 .* points[cellid[i, 3], 1:2] end return xsp end=# """ $(SIGNATURES) Calculate global coordinates of flux points Triangle elements """ function global_fp(points, cellid, N) pf, wf = triface_quadrature(N) fpg = zeros(size(cellid, 1), 3, N + 1, 2) for i in axes(fpg, 1) id1, id2, id3 = cellid[i, :] for j in axes(fpg, 2), k in axes(fpg, 3) fpg[i, j, k, :] .= rs_xy(pf[j, k, :], points[id1, 1:2], points[id2, 1:2], points[id3, 1:2]) end end return fpg end #--- deprecated face-indexed codes ---# #=function global_fp(points, cellid, faceCells, facePoints, N) pf, wf = triface_quadrature(N) fpg = zeros(size(faceCells, 1), N+1, 2) for i in axes(fpg, 1), j in axes(fpg, 2) idc = ifelse(faceCells[i, 1] != -1, faceCells[i, 1], faceCells[i, 2]) id1, id2, id3 = cellid[idc, :] if !(id3 in facePoints[i, :]) idf = 1 elseif !(id1 in facePoints[i, :]) idf = 2 elseif !(id2 in facePoints[i, :]) idf = 3 end fpg[i, j, :] .= rs_xy(pf[idf, j, :], points[id1, 1:2], points[id2, 1:2], points[id3, 1:2]) end return fpg end=#
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
2355
""" $(SIGNATURES) Transfer coordinate r -> x from standard to real elements """ r_x(r, vl, vr) = ((1.0 - r) / 2.0) * vl + ((1.0 + r) / 2.0) * vr """ $(SIGNATURES) Transfer coordinate r -> x from standard to real elements Triangle element """ function rs_xy( r, s, v1::AbstractVector{T}, v2::AbstractVector{T}, v3::AbstractVector{T}, ) where {T<:Real} return @. -(r + s) / 2 * v1 + (r + 1) / 2 * v2 + (s + 1) / 2 * v3 end """ $(SIGNATURES) Triangle element """ function rs_xy( v::AbstractVector{T}, v1::AbstractVector{T}, v2::AbstractVector{T}, v3::AbstractVector{T}, ) where {T<:Real} r, s = v return rs_xy(r, s, v1, v2, v3) end """ $(SIGNATURES) Quadrilateral element """ function rs_xy( r, s, v1::AbstractVector{T}, v2::AbstractVector{T}, v3::AbstractVector{T}, v4::AbstractVector{T}, ) where {T<:Real} return @. (r - 1.0) * (s - 1.0) / 4.0 * v1 + (r + 1.0) * (1.0 - s) / 4.0 * v2 + (r + 1.0) * (s + 1.0) / 4.0 * v3 + (1.0 - r) * (s + 1.0) / 4.0 * v4 end """ $(SIGNATURES) Transfer coordinates (x, y) -> (r,s) from equilateral to right triangle """ function xy_rs(x::T, y::T) where {T} L1 = (sqrt(3.0) * y + 1.0) / 3.0 L2 = (-3.0 * x - sqrt(3.0) * y + 2.0) / 6.0 L3 = (3.0 * x - sqrt(3.0) * y + 2.0) / 6.0 r = -L2 + L3 - L1 s = -L2 - L3 + L1 return r, s end """ $(SIGNATURES) """ function xy_rs(x::AbstractVector{T}, y::AbstractVector{T}) where {T} Np = length(x) r = zeros(Np) s = zeros(Np) for n = 1:Np r[n], s[n] = xy_rs(x[n], y[n]) end return r, s end """ $(SIGNATURES) """ function xy_rs(coords::AbstractMatrix{T}) where {T<:Real} return xy_rs(coords[:, 1], coords[:, 2]) end """ $(SIGNATURES) Transfer coordinates (r,s) -> (a,b) in a triangle """ function rs_ab(r::T, s::T) where {T<:Real} a = ifelse(s != 1.0, 2.0 * (1.0 + r) / (1.0 - s) - 1.0, -1.0) b = 1.0 * s return a, b end """ $(SIGNATURES) """ function rs_ab(r::AbstractVector{T}, s::AbstractVector{T}) where {T<:Real} a = zero(r) b = zero(s) for n in eachindex(a) a[n], b[n] = rs_ab(r[n], s[n]) end return a, b end """ $(SIGNATURES) """ function rs_ab(coords::AbstractMatrix{T}) where {T<:Real} return rs_ab(coords[:, 1], coords[:, 2]) end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
252
# ============================================================ # Geometric Methods # ============================================================ include("geo_transform.jl") include("geo_points.jl") include("geo_jacobi.jl") include("geo_neighbor.jl")
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
1390
""" $(SIGNATURES) Construct exponential filter for nodal solution - @arg N: number of coefficients - @arg Nc: cutoff location - @arg s: order of filter (must be even) - @arg V: Vandermonde matrix """ function filter_exp(N, s, V, Nc = 0, invV = inv(V)) nv = size(V, 1) if nv == N + 1 filterdiag = KitBase.filter_exp1d(N, s, Nc) elseif nv == (N + 1) * (N + 2) ÷ 2 filterdiag = filter_exp2d(N, s, Nc) end F = V * diagm(filterdiag) * invV return F end """ $(SIGNATURES) Construct exponential filter for modal solution - @arg N: degree of polynomials - @arg s: order of filter (must be even) - @arg Nc: cutoff location """ function filter_exp2d(Norder, sp, Nc = 0) alpha = -log(eps()) filterdiag = ones((Norder + 1) * (Norder + 2) ÷ 2) sk = 1 for i = 0:Norder for j = 0:Norder-i if i + j >= Nc filterdiag[sk] = exp(-alpha * ((i + j - Nc) / (Norder - Nc))^sp) end sk += 1 end end return filterdiag end """ $(SIGNATURES) Calculate norm of polynomial basis """ function basis_norm(deg) NxHat = 100 xHat = range(-1, stop = 1, length = NxHat) |> collect dxHat = xHat[2] - xHat[1] nLocal = deg + 1 PhiL1 = zeros(nLocal) for i = 1:nLocal PhiL1[i] = dxHat * sum(abs.(JacobiP(xHat, 0, 0, i - 1))) end return PhiL1 end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
2871
""" $(SIGNATURES) Evaluate Jacobi polynomial P_n^(α,β)(x) Note that the order of arguments and return values are different from Jacobi.jl """ function JacobiP(x::T, alpha, beta, N) where {T<:Real} xp = x PL = zeros(N + 1) # P₀(x) and P₁(x) gamma0 = 2^(alpha + beta + 1) / (alpha + beta + 1) * gamma(alpha + 1) * gamma(beta + 1) / gamma(alpha + beta + 1) PL[1] = 1.0 / sqrt(gamma0) if N == 0 return PL[1] end gamma1 = (alpha + 1) * (beta + 1) / (alpha + beta + 3) * gamma0 PL[2] = ((alpha + beta + 2) * xp / 2 + (alpha - beta) / 2) / sqrt(gamma1) if N == 1 P = PL[2] return P end # forward recurrence using the symmetry of the recurrence aold = 2 / (2 + alpha + beta) * sqrt((alpha + 1) * (beta + 1) / (alpha + beta + 3)) for i = 1:N-1 h1 = 2 * i + alpha + beta anew = 2 / (h1 + 2) * sqrt( (i + 1) * (i + 1 + alpha + beta) * (i + 1 + alpha) * (i + 1 + beta) / (h1 + 1) / (h1 + 3), ) bnew = -(alpha^2 - beta^2) / h1 / (h1 + 2) PL[i+2] = 1 / anew * (-aold * PL[i] + (xp - bnew) * PL[i+1]) aold = anew end P = PL[N+1] return P end """ $(SIGNATURES) """ function JacobiP(x::AbstractArray, alpha, beta, N) xp = copy(x) PL = zeros(N + 1, length(xp)) # P₀(x) and P₁(x) gamma0 = 2^(alpha + beta + 1) / (alpha + beta + 1) * gamma(alpha + 1) * gamma(beta + 1) / gamma(alpha + beta + 1) PL[1, :] .= 1.0 / sqrt(gamma0) if N == 0 P = PL[:] return P end gamma1 = (alpha + 1) * (beta + 1) / (alpha + beta + 3) * gamma0 @. PL[2, :] = ((alpha + beta + 2) * xp / 2 + (alpha - beta) / 2) / sqrt(gamma1) if N == 1 P = PL[N+1, :] return P end # forward recurrence using the symmetry of the recurrence aold = 2 / (2 + alpha + beta) * sqrt((alpha + 1) * (beta + 1) / (alpha + beta + 3)) for i = 1:N-1 h1 = 2 * i + alpha + beta anew = 2 / (h1 + 2) * sqrt( (i + 1) * (i + 1 + alpha + beta) * (i + 1 + alpha) * (i + 1 + beta) / (h1 + 1) / (h1 + 3), ) bnew = -(alpha^2 - beta^2) / h1 / (h1 + 2) @. PL[i+2, :] = 1 / anew * (-aold * PL[i, :] + (xp - bnew) * PL[i+1, :]) aold = anew end P = PL[N+1, :] return P end """ $(SIGNATURES) """ function ∂JacobiP(r::T, alpha, beta, N) where {T<:Real} dP = 0.0 if N != 0 dP = sqrt(N * (N + alpha + beta + 1)) * JacobiP(r, alpha + 1, beta + 1, N - 1) end return dP end """ $(SIGNATURES) """ function ∂JacobiP(r::AbstractArray{T}, alpha, beta, N) where {T<:Real} dP = zero(r) if N != 0 dP .= sqrt(N * (N + alpha + beta + 1)) .* JacobiP(r, alpha + 1, beta + 1, N - 1) end return dP end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
2038
""" $(SIGNATURES) Calculate Legendre polynomials of solution points sp at location x """ function lagrange_point(sp::AbstractVector{T}, x::Real) where {T<:Real} l = similar(sp) nsp = length(sp) for k = 1:nsp tmp = 1.0 for j = 1:nsp if j != k tmp *= (x - sp[j]) / (sp[k] - sp[j]) end end l[k] = tmp end return l end function lagrange_point(sp, x::AbstractVector{T}) where {T<:Real} lp = zeros(eltype(sp), axes(x, 1), axes(sp, 1)) for i in axes(lp, 1) lp[i, :] .= lagrange_point(sp, x[i]) end return lp end """ $(SIGNATURES) Calculate derivatives of Lagrange polynomials dlⱼ(rᵢ) """ function ∂lagrange(sp::T) where {T<:AbstractVector{<:Real}} nsp = length(sp) lpdm = similar(sp, nsp, nsp) for k = 1:nsp, m = 1:nsp lsum = 0.0 for l = 1:nsp tmp = 1.0 for j = 1:nsp if j != k && j != l tmp *= (sp[m] - sp[j]) / (sp[k] - sp[j]) end end if l != k lsum += tmp / (sp[k] - sp[l]) end end lpdm[m, k] = lsum end return lpdm end # ------------------------------------------------------------ # Vandermonde matrix based evaluation # ------------------------------------------------------------ """ $(SIGNATURES) """ function ∂lagrange(V, Vr) Np = size(V, 1) ∂l = zeros(Np, Np) for i = 1:Np ∂l[i, :] .= V' \ Vr[i, :] end return ∂l end """ $(SIGNATURES) """ function ∂lagrange(V, Vr, Vs) Np = size(V, 1) ∂l = zeros(Np, Np, 2) for i = 1:Np ∂l[i, :, 1] .= V' \ Vr[i, :] ∂l[i, :, 2] .= V' \ Vs[i, :] end return ∂l end """ $(SIGNATURES) One-shot calculation of derivatives of Lagrange polynomials and the values at cell edge """ function standard_lagrange(x) ll = lagrange_point(x, -1.0) lr = lagrange_point(x, 1.0) lpdm = ∂lagrange(x) return ll, lr, lpdm end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
1557
""" $(SIGNATURES) Calculate Legendre points of polynomial degree p """ legendre_point(p::Integer) = gausslegendre(p + 1)[1] """ $(SIGNATURES) Calculate derivatives of Legendre polynomials of degree p at location x """ ∂legendre(p::Integer, x) = last(sf_legendre_Pl_deriv_array(p, x)[2]) function ∂legendre(p::Integer, x::AV) Δ = similar(x) for i in eachindex(Δ) Δ[i] = ∂legendre(p, x[i]) end return Δ end """ $(SIGNATURES) Calculate derivatives of Radau polynomials (correction functions for nodal DG) of degree p at location x """ function ∂radau(p::Integer, x::Union{Real,AV}) Δ = ∂legendre(p, x) Δ_plus = ∂legendre(p + 1, x) dgl = @. (-1.0)^p * 0.5 * (Δ - Δ_plus) dgr = @. 0.5 * (Δ + Δ_plus) return dgl, dgr end """ $(SIGNATURES) Calculate derivatives of spectral difference correction functions of degree p at location x """ function ∂sd(p::Integer, x::Union{Real,AV}) Δ_minus = ∂legendre(p - 1, x) Δ = ∂legendre(p, x) Δ_plus = ∂legendre(p + 1, x) y = (p * Δ_minus + (p + 1) * Δ_plus) / (2 * p + 1) dgl = @. (-1.0)^p * 0.5 * (Δ - y) dgr = @. 0.5 * (Δ + y) return dgl, dgr end """ $(SIGNATURES) Calculate derivatives of Huynh's correction functions of degree p at location x """ function ∂huynh(p::Integer, x::Union{Real,AV}) Δ_minus = ∂legendre(p - 1, x) Δ = ∂legendre(p, x) Δ_plus = ∂legendre(p + 1, x) y = ((p + 1) * Δ_minus + p * Δ_plus) / (2 * p + 1) dgl = @. (-1.0)^p * 0.5 * (Δ - y) dgr = @. 0.5 * (Δ + y) return dgl, dgr end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
635
function correction_field(N, V) pl, wl = tri_quadrature(N) pf, wf = triface_quadrature(N) Np = (N + 1) * (N + 2) ÷ 2 ψf = zeros(3, N + 1, Np) for i = 1:3 ψf[i, :, :] .= vandermonde_matrix(Tri, N, pf[i, :, 1], pf[i, :, 2]) end σ = zeros(3, N + 1, Np) for k = 1:Np for j = 1:N+1 for i = 1:3 σ[i, j, k] = wf[i, j] * ψf[i, j, k] end end end V = vandermonde_matrix(Tri, N, pl[:, 1], pl[:, 2]) ϕ = zeros(3, N + 1, Np) for f = 1:3, j = 1:N+1, i = 1:Np ϕ[f, j, i] = sum(σ[f, j, :] .* V[i, :]) end return ϕ end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
284
# ============================================================ # Polynomial Methods # ============================================================ include("poly_filter.jl") include("poly_legendre.jl") include("poly_jacobi.jl") include("poly_lagrange.jl") include("poly_triangle.jl")
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
2589
""" $(SIGNATURES) Calculate quadrature points in a triangle @arg deg: polynomial degree @arg vertices: vertex coordinates - for a equilateral triangle, the vertices are ([-1.0, -1 / √3], [1.0, -1 / √3], [0.0, 2 / √3]) - for a right triangle, the vertices take ([-1.0, -1.0], [1.0, -1.0], [-1.0, 1.0]) @arg if transform equals to true, then we transform the coordinates from x-y to r-s plane """ function tri_quadrature( deg; vertices = ([-1.0, -1 / √3], [1.0, -1 / √3], [0.0, 2 / √3]), transform = true, ) pushfirst!(pyimport("sys")."path", @__DIR__) py""" import qpmin def create_quadrature(n): if n == 1: scheme = qpmin.williams_shunn_jameson_1() elif n == 2: scheme = qpmin.williams_shunn_jameson_2() elif n == 3: scheme = qpmin.williams_shunn_jameson_3() elif n == 4: scheme = qpmin.williams_shunn_jameson_4() elif n == 5: scheme = qpmin.williams_shunn_jameson_5() elif n == 6: scheme = qpmin.williams_shunn_jameson_6() elif n == 7: scheme = qpmin.williams_shunn_jameson_7() elif n == 8: scheme = qpmin.williams_shunn_jameson_8() else: print("Not a valid polynomial degree") return scheme.points, scheme.weights """ # trilinear coordinates (三线坐标) points0, weights = py"create_quadrature"(deg + 1) # cartesian coordinates of vertices p1, p2, p3 = vertices a = norm(p2 .- p3) b = norm(p3 .- p1) c = norm(p2 .- p1) points = similar(points0, size(points0, 2), 2) for i in axes(points, 1) x, y, z = points0[:, i] # trilinear -> cartesian points[i, :] .= (a * x .* p1 + b * y .* p2 + c * z .* p3) / (a * x + b * y + c * z) end if transform == true r, s = xy_rs(points) points .= hcat(r, s) end return points, weights end """ $(SIGNATURES) Calculate quadrature points along a face of right triangle - face 1: 1 -> 2 - face 2: 2 -> 3 - face 3: 3 -> 1 Face 2 is assumed to be hypotenuse @arg N: polynomial degree """ function triface_quadrature(N) Δf = [1.0, √2, 1.0] pf = Array{Float64}(undef, 3, N + 1, 2) wf = Array{Float64}(undef, 3, N + 1) p0, w0 = gausslegendre(N + 1) pf[1, :, 1] .= p0 pf[2, :, 1] .= p0[end:-1:1] pf[3, :, 1] .= -1.0 pf[1, :, 2] .= -1.0 pf[2, :, 2] .= p0 pf[3, :, 2] .= p0[end:-1:1] wf[1, :] .= w0 .* Δf[1] wf[2, :] .= w0 .* Δf[2] wf[3, :] .= w0 .* Δf[3] return pf, wf end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
2539
# ============================================================ # Transformation Methods between nodal and modal formulations # ============================================================ include("transform_triangle.jl") """ $(SIGNATURES) Compute Vandermonde matrix for node-mode transform Vû = u - @arg N: polynomial degree - @arg r: local x axis - @arg s: local y axis """ function vandermonde_matrix(N, r) V1D = zeros(eltype(r), length(r), N + 1) for j = 1:N+1 V1D[:, j] .= JacobiP(r, 0, 0, j - 1) end return V1D end """ $(SIGNATURES) """ vandermonde_matrix(::Type{Line}, N, r) = vandermonde_matrix(N, r) """ $(SIGNATURES) """ function vandermonde_matrix(::Type{Tri}, N, r, s) Np = (N + 1) * (N + 2) ÷ 2 V2D = zeros(eltype(r), length(r), Np) a, b = rs_ab(r, s) sk = 1 for i = 0:N for j = 0:N-i V2D[:, sk] .= simplex_basis(a, b, i, j) sk += 1 end end return V2D end """ $(SIGNATURES) """ function vandermonde_matrix(::Type{Quad}, N, r, s) Np = (N + 1)^2 V = zeros(eltype(r), length(r), Np) sk = 1 for i = 0:N for j = 0:N V[:, sk] = JacobiP(r, 0, 0, i) .* JacobiP(s, 0, 0, j) sk += 1 end end return V end """ $(SIGNATURES) gradient of the modal basis (i,j) at (r,s) at order N """ function ∂vandermonde_matrix(N::T, r) where {T<:Integer} Vr = zeros(length(r), N + 1) for i = 0:N Vr[:, i+1] .= ∂JacobiP(r, 0, 0, i) end return Vr end """ $(SIGNATURES) """ ∂vandermonde_matrix(::Type{Line}, N, r) = ∂vandermonde_matrix(N, r) """ $(SIGNATURES) """ function ∂vandermonde_matrix(::Type{Tri}, N::T, r, s) where {T<:Integer} V2Dr = zeros(eltype(r), length(r), (N + 1) * (N + 2) ÷ 2) V2Ds = zeros(eltype(r), length(r), (N + 1) * (N + 2) ÷ 2) # tensor-product coordinates a, b = rs_ab(r, s) sk = 1 for i = 0:N for j = 0:N-i V2Dr[:, sk], V2Ds[:, sk] = ∂simplex_basis(a, b, i, j) sk += 1 end end return V2Dr, V2Ds end """ $(SIGNATURES) """ function ∂vandermonde_matrix(::Type{Quad}, N::T, r, s) where {T<:Integer} V2Dr = zeros(eltype(r), length(r), (N + 1)^2) V2Ds = zeros(eltype(r), length(r), (N + 1)^2) sk = 1 for i = 0:N for j = 0:N V2Dr[:, sk] .= ∂JacobiP(r, 0, 0, i) .* JacobiP(s, 0, 0, j) V2Ds[:, sk] .= JacobiP(r, 0, 0, i) .* ∂JacobiP(s, 0, 0, j) sk += 1 end end return V2Dr, V2Ds end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
1700
""" $(SIGNATURES) Evaluate 2D orthonormal polynomial at simplex (a, b) of order (i, j) Translated from Simplex2DP.m """ function simplex_basis(a::T, b::T, i, j) where {T<:Real} # x, a, b, n h1 = JacobiP(a, 0, 0, i) h2 = JacobiP(b, 2 * i + 1, 0, j) return sqrt(2.0) * h1 * h2 * (1 - b)^i end """ $(SIGNATURES) """ simplex_basis(a::AbstractVector{T}, b::AbstractVector{T}, i, j) where {T<:Real} = [simplex_basis(a[k], b[k], i, j) for k in eachindex(a)] function ∂simplex_basis(a::T, b::T, id, jd) where {T<:Real} #fa = jacobi(a, id, 0, 0) #dfa = djacobi(a, id, 0, 0) #gb = jacobi(b, jd, 2*id+1, 0) #dgb = djacobi(b, jd, 2*id+1, 0) fa = JacobiP(a, 0, 0, id) dfa = ∂JacobiP(a, 0, 0, id) gb = JacobiP(b, 2 * id + 1, 0, jd) dgb = ∂JacobiP(b, 2 * id + 1, 0, jd) # r-derivative # d/dr = da/dr d/da + db/dr d/db = (2/(1-s)) d/da = (2/(1-b)) d/da dmodedr = dfa * gb if id > 0 dmodedr *= (0.5 * (1.0 - b))^(id - 1) end # s-derivative # d/ds = ((1+a)/2)/((1-b)/2) d/da + d/db dmodeds = dfa * (gb * (0.5 * (1.0 + a))) if id > 0 dmodeds *= (0.5 * (1.0 - b))^(id - 1) end tmp = dgb * (0.5 * (1.0 - b))^id if id > 0 tmp -= 0.5 * id * gb * ((0.5 * (1.0 - b))^(id - 1)) end dmodeds += fa * tmp # normalization dmodedr *= 2^(id + 0.5) dmodeds *= 2^(id + 0.5) return dmodedr, dmodeds end function ∂simplex_basis(a::AbstractVector{T}, b::AbstractVector{T}, id, jd) where {T<:Real} dmodedr = zero(a) dmodeds = zero(b) for i in eachindex(a) dmodedr[i], dmodeds[i] = ∂simplex_basis(a[i], b[i], id, jd) end return dmodedr, dmodeds end
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
989
using Test, FluxReconstruction, KitBase cd(@__DIR__) include("test_triangle.jl") let u = rand(3), u0 = rand(3) FR.L1_error(u, u0, 0.1) FR.L2_error(u, u0, 0.1) FR.L∞_error(u, u0, 0.1) end shock_detector(-Inf, 3) shock_detector(log10(0.1), 3) shock_detector(log10(1e5), 3) deg = 5 ps2 = FRPSpace2D(0.0, 1.0, 20, 0.0, 1.0, 20, deg, 1, 1) rs_jacobi(ps2.xpl, [0 0; √3 -1; √3+1 √3-1; 1 √3]) rs_jacobi(ps2.xpl, rand(3, 3, 4, 2)) ps1 = TriFRPSpace("../assets/linesource.msh", 2) ps = FRPSpace1D(0.0, 1.0, 20, deg) positive_limiter(ones(6), 1 / 6, ps.ll, ps.lr) positive_limiter(ones(6, 3), 5 / 3, 1 / 6, ps.ll, ps.lr) let u = rand(deg + 1) ℓ = FR.basis_norm(deg) # 2D exponential filter FR.filter_exp(2, 10, Array(ps.V)) end let u = rand(deg + 1, deg + 1) modal_filter!(u, 1e-6, 1e-6; filter = :l2) modal_filter!(u, 1e-6, 1e-6; filter = :l2opt) end f = randn(5, deg + 1) fδ = randn(5, 2) FR.interp_face!(fδ, f, ps.ll, ps.lr) FR.standard_lagrange(ps.xpl)
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
code
506
deg = 3 pl, wl = tri_quadrature(deg) V = vandermonde_matrix(Tri, deg, pl[:, 1], pl[:, 2]) Vr, Vs = ∂vandermonde_matrix(Tri, deg, pl[:, 1], pl[:, 2]) ∂l = ∂lagrange(V, Vr, Vs) a, b = rs_ab(pl[:, 1], pl[:, 2]) p1 = [-1.0, -1 / √3] p2 = [1.0, -1 / √3] p3 = [0.0, 2 / √3] p = (p1, p2, p3) points, weights = tri_quadrature(3, vertices = p) @test points == pl @test weights == wl r, s = xy_rs(points) a, b = rs_ab(r, s) V = vandermonde_matrix(Tri, 3, r, s) #using Plots #scatter(points[:, 1], points[:, 2])
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.1.7
aecb840b8b6830d65d3ff520e8d517ab7f15b13d
docs
1428
# FluxReconstruction.jl ![CI](https://img.shields.io/github/actions/workflow/status/vavrines/FluxReconstruction.jl/ci.yml?branch=master&style=flat-square) [![codecov](https://img.shields.io/codecov/c/github/vavrines/FluxReconstruction.jl?style=flat-square)](https://codecov.io/gh/vavrines/FluxReconstruction.jl) **FluxReconstruction** is a lightweight [Julia](https://julialang.org) implementation of the [flux reconstruction](https://arc.aiaa.org/doi/10.2514/6.2007-4079) method proposed by Huynh. It is built in conjunction with the [SciML](https://github.com/SciML/DifferentialEquations.jl) and [Kinetic](https://github.com/vavrines/Kinetic.jl) ecosystems. ## Installation FluxReconstruction is a registered package in the official [Julia package registry](https://github.com/JuliaRegistries/General). We recommend installing it with the built-in Julia package manager, which automatically locates a stable release and all its dependencies. From the Julia REPL, you can get in the package manager (by pressing `]`) and add the package. ```julia julia> ] (v1.9) pkg> add FluxReconstruction ``` ## Physics FluxReconstruction focuses on numerical solutions of transport equations. Any advection-diffusion-type equation can be solved within the framework. A partial list of current supported models include - advection-diffusion equation - Burgers equation - Euler equations - Navier-Stokes equations - Boltzmann equation
FluxReconstruction
https://github.com/vavrines/FluxReconstruction.jl.git
[ "MIT" ]
0.4.1
5a8540e7601cbd07f583ef49e01fdaca32b9c171
code
2240
""" FITSHeaders A package implementing methods to store and parse FITS header cards. """ module FITSHeaders export # Quick FITS keyword: @Fits_str, FitsKey, # FITS cards and headers: FitsCard, FitsHeader, # Cards types: FitsCardType, FITS_LOGICAL, FITS_INTEGER, FITS_FLOAT, FITS_STRING, FITS_COMPLEX, FITS_COMMENT, FITS_UNDEFINED, FITS_END, # Sizes: FITS_CARD_SIZE, FITS_BLOCK_SIZE, FITS_SHORT_KEYWORD_SIZE using Requires # Enumeration of keyword value type identifiers. @enum FitsCardType::Cint begin FITS_LOGICAL = 0 FITS_INTEGER = 1 FITS_FLOAT = 2 FITS_STRING = 3 FITS_COMPLEX = 4 FITS_COMMENT = 5 FITS_UNDEFINED = 6 # no value given FITS_END = 7 # END card end # Julia types for card values. const FitsInteger = Int64 const FitsFloat = Float64 const FitsComplex = Complex{FitsFloat} # Types equivalent to undefined FITS card value. const Undef = typeof(undef) const Undefined = Union{Missing,Undef} # Allowed types for FITS card names. const CardName = Union{AbstractString,Symbol} # Allowed types for FITS card values (including commentary cards). const CardValue = Union{Real,AbstractString,Complex,Undefined,Nothing} # Allowed types for FITS card comments. const CardComment = Union{AbstractString,Nothing} # Signature of pairs that may possibly be converted into FITS cards. # #NOTE: The value type is purposely unspecific to allow for collections of card # pairs mixing different value types. const CardPair{K<:CardName,V} = Pair{K,V} include("parser.jl") import .Parser: @Fits_str, FITS_CARD_SIZE, FITS_BLOCK_SIZE, FITS_SHORT_KEYWORD_SIZE, FitsKey, check_short_keyword, check_keyword, try_parse_keyword, is_structural, is_comment, is_naxis, is_end, keyword include("cards.jl") import .Cards: FitsCard include("headers.jl") import .Headers: FitsHeader, FullName function __init__() @require MappedBuffers="010f96a2-bf57-4630-84b9-647e6f9999c4" begin FITSHeaders.Parser.PointerCapability(::Type{<:MappedBuffers.MappedBuffer}) = FITSHeaders.Parser.PointerFull() end end end # module
FITSHeaders
https://github.com/emmt/FITSHeaders.jl.git
[ "MIT" ]
0.4.1
5a8540e7601cbd07f583ef49e01fdaca32b9c171
code
22027
""" FITSHeaders.Cards A sub-module of the `FITSHeaders` package implementing the methods and properties for FITS header cards. """ module Cards export FitsCard using ..FITSHeaders using ..FITSHeaders: CardName, CardValue, CardComment, FitsInteger, FitsFloat, FitsComplex, Undef, Undefined import ..FITSHeaders: FitsCardType using ..FITSHeaders.Parser: EMPTY_STRING, ByteBuffer, check_keyword, get_units_part, get_unitless_part, make_string, parse_complex_value, parse_float_value, parse_integer_value, parse_logical_value, parse_string_value, scan_card import ..FITSHeaders.Parser: is_structural, is_comment, is_naxis, is_end using Dates, TypeUtils # Extended union of possible card values. Any of these shall extend the # `to_value` method. const CardValueExt = Union{CardValue,DateTime} const END_STRING = "END" const UNDEF_INTEGER = zero(FitsInteger) const UNDEF_COMPLEX = FitsComplex(NaN,NaN) const UNDEF_FLOAT = FitsComplex(NaN,0.0) const UNDEF_STRING = EMPTY_STRING """ card = FitsCard(key => (val, com)) builds a FITS header card associating keyword `key` with value `val` and comment string `com`. The value `val` may be: - a boolean to yield a card of type `FITS_LOGICAL`; - an integer to yield a card of type `FITS_INTEGER`; - a real to yield a card of type `FITS_FLOAT`; - a complex to yield a card of type `FITS_COMPLEX`; - a string to yield a card of type `FITS_STRING`; - `nothing` to yield a card of type `FITS_COMMENT`; - `undef` or `missing` to yield a card of type `FITS_UNDEFINED`. The comment may be omitted for a normal FITS card and the value may be omitted for a commentary FITS card: card = FitsCard(key => val::Number) card = FitsCard(key => str::AbstractString) In the 1st case, the comment is assumed to be empty. In the 2nd case, the string `str` is assumed to be the card comment if `key` is `"COMMENT"` or `"HISTORY"` and the card value otherwise. FITS cards have properties: card.type # type of card: FITS_LOGICAL, FITS_INTEGER, etc. card.key # quick key of card: Fits"BITPIX", Fits"HIERARCH", etc. card.name # name of card card.value # callable object representing the card value card.comment # comment of card card.units # units of card value card.unitless # comment of card without the units part if any As the values of FITS keywords have different types, `card.value` does not yield a Julia value but a callable object. Called without any argument, this object yields the actual card value: card.value() -> val::Union{Bool,$FitsInteger,$FitsFloat,$FitsComplex,String,Nothing,$Undef} but such a call is not *type-stable* as indicated by the type assertion with an `Union{...}` above. For a type-stable result, the card value can be converted to a given data type `T`: card.value(T) convert(T, card.value) both yield the value of `card` converted to type `T`. For readability, `T` may be an abstract type: `card.value(Integer)` yields the same result as `card.value($FitsInteger)`, `card.value(Real)` or `card.value(AbstractFloat)` yield the same result as `card.value($FitsFloat)`, `card.value(Complex)` yields the same result as `card.value($FitsComplex)`, and `card.value(AbstractString)` yields the same result as `card.value(String)`. To make things easier, a few properties are aliases that yield the card value converted to a specific type: card.logical :: Bool # alias for card.value(Bool) card.integer :: $FitsInteger # alias for card.value(Integer) card.float :: $FitsFloat # alias for card.value(Real) card.complex :: $FitsComplex # alias for card.value(Complex) card.string :: String # alias for card.value(String) Conversion is automatically attempted if the actual card value is of a different type, throwing an error if the conversion is not possible or inexact. `valtype(card)` yields the type of the value of `card`. `isassigned(card)` yields whether `card` has a value (that is whether it is neither a commentary card nor a card with an undefined value). """ struct FitsCard key::FitsKey type::FitsCardType value_integer::FitsInteger value_complex::FitsComplex value_string::String name::String comment::String FitsCard(key::FitsKey, name::AbstractString, val::Bool, com::AbstractString) = new(key, FITS_LOGICAL, val, UNDEF_COMPLEX, UNDEF_STRING, name, com) FitsCard(key::FitsKey, name::AbstractString, val::Integer, com::AbstractString) = new(key, FITS_INTEGER, val, UNDEF_COMPLEX, UNDEF_STRING, name, com) FitsCard(key::FitsKey, name::AbstractString, val::Real, com::AbstractString) = new(key, FITS_FLOAT, UNDEF_INTEGER, val, UNDEF_STRING, name, com) FitsCard(key::FitsKey, name::AbstractString, val::Complex, com::AbstractString) = new(key, FITS_COMPLEX, UNDEF_INTEGER, val, UNDEF_STRING, name, com) FitsCard(key::FitsKey, name::AbstractString, val::AbstractString, com::AbstractString) = new(key, FITS_STRING, UNDEF_INTEGER, UNDEF_COMPLEX, val, name, com) FitsCard(key::FitsKey, name::AbstractString, ::Undefined, com::AbstractString) = new(key, FITS_UNDEFINED, UNDEF_INTEGER, UNDEF_COMPLEX, UNDEF_STRING, name, com) FitsCard(key::FitsKey, name::AbstractString, ::Nothing, com::AbstractString) = new(key, key === Fits"END" ? FITS_END : FITS_COMMENT, UNDEF_INTEGER, UNDEF_COMPLEX, UNDEF_STRING, name, com) end # Constructor for imutable type does not need to return a new object. FitsCard(A::FitsCard) = A Base.convert(::Type{T}, A::FitsCard) where {T<:FitsCard} = A """ FitsCard(buf; offset=0) yields a `FitsCard` object built by parsing the FITS header card stored in the string or vector of bytes `buf`. Keyword `offset` can be used to specify the number of bytes to skip at the beginning of `buf`, so that it is possible to extract a specific FITS header card, not just the first one. At most, the $FITS_CARD_SIZE first bytes after the offset are scanned to build the `FitsCard` object. The next FITS card to parse is then at `offset + $FITS_CARD_SIZE` and so on. The considered card may be shorter than $FITS_CARD_SIZE bytes, the result being exactly the same as if the missing bytes were spaces. If there are no bytes left, a `FitsCard` object equivalent to the final `END` card of a FITS header is returned. """ function FitsCard(buf::ByteBuffer; offset::Int = 0) type, key, name_rng, val_rng, com_rng = scan_card(buf, offset) name = type == FITS_END ? END_STRING : make_string(buf, name_rng) com = make_string(buf, com_rng) if type == FITS_LOGICAL return FitsCard(key, name, parse_logical_value(buf, val_rng), com) elseif type == FITS_INTEGER return FitsCard(key, name, parse_integer_value(buf, val_rng), com) elseif type == FITS_FLOAT return FitsCard(key, name, parse_float_value(buf, val_rng), com) elseif type == FITS_STRING return FitsCard(key, name, parse_string_value(buf, val_rng), com) elseif type == FITS_COMPLEX return FitsCard(key, name, parse_complex_value(buf, val_rng), com) elseif type == FITS_UNDEFINED return FitsCard(key, name, undef, com) else # must be commentary or END card return FitsCard(key, name, nothing, com) end end is_structural(card::FitsCard) = is_structural(card.key) is_comment(card::FitsCard) = is_comment(card.type) is_naxis(card::FitsCard) = is_naxis(card.key) is_end(card::FitsCard) = is_end(card.type) # This version shall print something equivalent to Julia code to produce the # same object. We try to use the most concise syntax. function Base.show(io::IO, A::FitsCard) print(io, "FitsCard(\"") print(io, A.name, "\"") if A.type != FITS_END if A.type == FITS_COMMENT if A.key === Fits"COMMENT" || A.key === Fits"HISTORY" print(io, " => ") show(io, A.comment) else print(io, " => (nothing, ") show(io, A.comment) print(io, "=> (nothing, ") end else commented = !isempty(A.comment) if commented print(io, " => (") else print(io, " => ") end if A.type == FITS_LOGICAL print(io, A.logical ? "true" : "false") elseif A.type == FITS_INTEGER show(io, A.integer) elseif A.type == FITS_FLOAT show(io, A.float) elseif A.type == FITS_COMPLEX show(io, A.complex) elseif A.type == FITS_STRING show(io, A.string) elseif A.type == FITS_UNDEFINED print(io, "undef") end if commented print(io, ", ") show(io, A.comment) print(io, ")") end end end print(io, ")") end # This version is for the REPL. We try to approximate FITS syntax. function Base.show(io::IO, mime::MIME"text/plain", A::FitsCard) print(io, "FitsCard: ") print(io, A.name) if A.type != FITS_END if A.key === Fits"HIERARCH" print(io, ' ') else n = ncodeunits(A.name) while n < FITS_SHORT_KEYWORD_SIZE print(io, ' ') n += 1 end end end if A.type == FITS_COMMENT print(io, A.comment) elseif A.type != FITS_END print(io, "= ") if A.type == FITS_LOGICAL print(io, A.logical ? 'T' : 'F') elseif A.type == FITS_INTEGER show(io, A.integer) elseif A.type == FITS_FLOAT show(io, A.float) elseif A.type == FITS_COMPLEX print(io, "(") show(io, real(A.complex)) print(io, ", ") show(io, imag(A.complex)) print(io, ")") elseif A.type == FITS_STRING q = '\'' print(io, q) for c in A.string if c == q print(io, q, q) else print(io, c) end end print(io, q) elseif A.type == FITS_UNDEFINED print(io, "<undefined>") end if !isempty(A.comment) print(io, " / ", A.comment) end end end # Callable object representing a FITS card value. struct FitsCardValue parent::FitsCard end Base.parent(A::FitsCardValue) = getfield(A, :parent) (A::FitsCardValue)() = get_value(parent(A)) (A::FitsCardValue)(::Type{T}) where {T} = get_value(T, parent(A)) Base.show(io::IO, A::FitsCardValue) = show(io, A()) Base.show(io::IO, mime::MIME"text/plain", A::FitsCardValue) = show(io, mime, A()) # General conversion rules. Base.convert(::Type{T}, A::FitsCardValue) where {T<:FitsCardValue} = A Base.convert(::Type{T}, A::FitsCardValue) where {T} = A(T) # Explict conversion rules are to avoid ambiguities. Base.convert(::Type{T}, A::FitsCardValue) where {T<:Number} = A(T) for T in (Integer, Real, AbstractFloat, Complex, AbstractString, String, Nothing, Undef) @eval Base.convert(::Type{$T}, A::FitsCardValue) = A($T) end # `apply(f, A, B)` apply binary operator `f` to `A` and `B` at least one being # a card value. function apply(f, A::FitsCardValue, B::FitsCardValue) A = parent(A) type = get_type(A) type == FITS_LOGICAL ? apply(f, get_value_logical( A), B) : type == FITS_INTEGER ? apply(f, get_value_integer( A), B) : type == FITS_FLOAT ? apply(f, get_value_float( A), B) : type == FITS_STRING ? apply(f, get_value_string( A), B) : type == FITS_COMPLEX ? apply(f, get_value_complex( A), B) : type == FITS_UNDEFINED ? apply(f, undef, B) : apply(f, nothing, B) end function apply(f, A::FitsCardValue, B::Any) A = parent(A) type = get_type(A) type == FITS_LOGICAL ? f(get_value_logical( A), B) : type == FITS_INTEGER ? f(get_value_integer( A), B) : type == FITS_FLOAT ? f(get_value_float( A), B) : type == FITS_STRING ? f(get_value_string( A), B) : type == FITS_COMPLEX ? f(get_value_complex( A), B) : type == FITS_UNDEFINED ? f(undef, B) : f(nothing, B) end function apply(f, A::Any, B::FitsCardValue) B = parent(B) type = get_type(B) type == FITS_LOGICAL ? f(A, get_value_logical(B)) : type == FITS_INTEGER ? f(A, get_value_integer(B)) : type == FITS_FLOAT ? f(A, get_value_float( B)) : type == FITS_STRING ? f(A, get_value_string( B)) : type == FITS_COMPLEX ? f(A, get_value_complex(B)) : type == FITS_UNDEFINED ? f(A, undef) : f(A, nothing) end for op in (:(==), :(<)) @eval begin Base.$op(A::FitsCardValue, B::FitsCardValue) = apply($op, A, B) Base.$op(A::FitsCardValue, B::Any) = apply($op, A, B) Base.$op(A::Any, B::FitsCardValue) = apply($op, A, B) end end # Conversion rules for a date. The FITS standard imposes ISO-8601 formatting # for a date and time. (A::FitsCardValue)(::Type{DateTime}) = parse(DateTime, A(String), ISODateTimeFormat) Base.convert(::Type{DateTime}, A::FitsCardValue) = A(DateTime) Dates.DateTime(A::FitsCardValue) = A(DateTime) # If the FitsCard structure changes, it should be almost sufficient to change # the following simple accessors. get_type( A::FitsCard) = getfield(A, :type) get_key( A::FitsCard) = getfield(A, :key) get_name( A::FitsCard) = getfield(A, :name) get_comment( A::FitsCard) = getfield(A, :comment) get_value_logical(A::FitsCard) = !iszero(getfield(A, :value_integer)) get_value_integer(A::FitsCard) = getfield(A, :value_integer) get_value_complex(A::FitsCard) = getfield(A, :value_complex) get_value_float( A::FitsCard) = real(get_value_complex(A)) get_value_string( A::FitsCard) = getfield(A, :value_string) get_value( A::FitsCard) = begin type = get_type(A) type == FITS_LOGICAL ? get_value_logical(A) : type == FITS_INTEGER ? get_value_integer(A) : type == FITS_FLOAT ? get_value_float( A) : type == FITS_STRING ? get_value_string( A) : type == FITS_COMPLEX ? get_value_complex(A) : type == FITS_UNDEFINED ? undef : nothing # FITS_COMMENT or FITS_END end get_value(::Type{Undef}, A::FitsCard) = get_type(A) == FITS_UNDEFINED ? undef : conversion_error(Undef, A) get_value(::Type{Nothing}, A::FitsCard) = ((get_type(A) == FITS_COMMENT)|(get_type(A) == FITS_END)) ? nothing : conversion_error(Nothing, A) get_value(::Type{String}, A::FitsCard) = get_type(A) == FITS_STRING ? get_value_string(A) : conversion_error(String, A) get_value(::Type{Bool}, A::FitsCard) = begin type = get_type(A) type == FITS_LOGICAL ? get_value_logical(A) : type == FITS_INTEGER ? convert(Bool, get_value_integer(A)) : type == FITS_FLOAT ? convert(Bool, get_value_float( A)) : type == FITS_COMPLEX ? convert(Bool, get_value_complex(A)) : conversion_error(Bool, A) end get_value(::Type{FitsInteger}, A::FitsCard) = begin type = get_type(A) type == FITS_INTEGER ? get_value_integer(A) : type == FITS_LOGICAL ? convert(FitsInteger, get_value_logical(A)) : type == FITS_FLOAT ? convert(FitsInteger, get_value_float( A)) : type == FITS_COMPLEX ? convert(FitsInteger, get_value_complex(A)) : conversion_error(FitsInteger, A) end get_value(::Type{FitsFloat}, A::FitsCard) = begin type = get_type(A) type == FITS_FLOAT ? get_value_float( A) : type == FITS_LOGICAL ? convert(FitsFloat, get_value_logical(A)) : type == FITS_INTEGER ? convert(FitsFloat, get_value_integer(A)) : type == FITS_COMPLEX ? convert(FitsFloat, get_value_complex(A)) : conversion_error(FitsFloat, A) end get_value(::Type{FitsComplex}, A::FitsCard) = begin type = get_type(A) type == FITS_COMPLEX ? get_value_complex(A) : type == FITS_FLOAT ? convert(FitsComplex, get_value_float( A)) : type == FITS_LOGICAL ? convert(FitsComplex, get_value_logical(A)) : type == FITS_INTEGER ? convert(FitsComplex, get_value_integer(A)) : conversion_error(FitsComplex, A) end get_value(::Type{Integer}, A::FitsCard) = get_value(FitsInteger, A) get_value(::Type{Real}, A::FitsCard) = get_value(FitsFloat, A) get_value(::Type{AbstractFloat}, A::FitsCard) = get_value(FitsFloat, A) get_value(::Type{Complex}, A::FitsCard) = get_value(FitsComplex, A) get_value(::Type{AbstractString}, A::FitsCard) = get_value(String, A) get_value(::Type{T}, A::FitsCard) where {T<:Number} = begin type = get_type(A) type == FITS_LOGICAL ? convert(T, get_value_logical(A)) : type == FITS_INTEGER ? convert(T, get_value_integer(A)) : type == FITS_FLOAT ? convert(T, get_value_float( A)) : type == FITS_COMPLEX ? convert(T, get_value_complex(A)) : conversion_error(T, A) end get_value(::Type{T}, A::FitsCard) where {T} = conversion_error(T, A) # catch errors @noinline conversion_error(::Type{T}, A::FitsCard) where {T} = error("value of FITS keyword \"$(get_name(A))\" cannot be converted to `$T`") # Properties. Base.propertynames(A::FitsCard) = (:type, :key, :name, :value, :comment, :logical, :integer, :float, :complex, :string, :units, :unitless) Base.getproperty(A::FitsCard, sym::Symbol) = getproperty(A, Val(sym)) Base.getproperty(A::FitsCard, ::Val{:type }) = get_type(A) Base.getproperty(A::FitsCard, ::Val{:key }) = get_key(A) Base.getproperty(A::FitsCard, ::Val{:name }) = get_name(A) Base.getproperty(A::FitsCard, ::Val{:value }) = FitsCardValue(A) Base.getproperty(A::FitsCard, ::Val{:comment }) = get_comment(A) Base.getproperty(A::FitsCard, ::Val{:logical }) = get_value(Bool, A) Base.getproperty(A::FitsCard, ::Val{:integer }) = get_value(FitsInteger, A) Base.getproperty(A::FitsCard, ::Val{:float }) = get_value(FitsFloat, A) Base.getproperty(A::FitsCard, ::Val{:string }) = get_value(String, A) Base.getproperty(A::FitsCard, ::Val{:complex }) = get_value(FitsComplex, A) Base.getproperty(A::FitsCard, ::Val{:units }) = get_units_part(get_comment(A)) Base.getproperty(A::FitsCard, ::Val{:unitless}) = get_unitless_part(get_comment(A)) @noinline Base.setproperty!(A::FitsCard, sym::Symbol, x) = error("attempt to set read-only property of FITS card") """ FitsCardType(T) yields the FITS header card type code corresponding to Julia type `T`, one of: `FITS_LOGICAL`, `FITS_INTEGER`, `FITS_FLOAT`, `FITS_COMPLEX`, `FITS_STRING`, `FITS_COMMENT`, or `FITS_UNDEFINED`. """ FitsCardType(::Type{<:Bool}) = FITS_LOGICAL FitsCardType(::Type{<:Integer}) = FITS_INTEGER FitsCardType(::Type{<:AbstractFloat}) = FITS_FLOAT FitsCardType(::Type{<:Complex}) = FITS_COMPLEX FitsCardType(::Type{<:AbstractString}) = FITS_STRING FitsCardType(::Type{<:Nothing}) = FITS_COMMENT FitsCardType(::Type{<:Undefined}) = FITS_UNDEFINED """ FitsCardType(card::FitsCard) card.type yield the type code of the FITS header card `card`, one of: `FITS_LOGICAL`, `FITS_INTEGER`, `FITS_FLOAT`, `FITS_COMPLEX`, `FITS_STRING`, `FITS_COMMENT`, or `FITS_UNDEFINED`. """ FitsCardType(A::FitsCard) = get_type(A) Base.isassigned(A::FitsCard) = (A.type != FITS_COMMENT) & (A.type != FITS_UNDEFINED) & (A.type != FITS_END) Base.isinteger(A::FitsCard) = (A.type == FITS_INTEGER) | (A.type == FITS_LOGICAL) Base.isreal(A::FitsCard) = (A.type == FITS_FLOAT) | (A.type == FITS_INTEGER) | (A.type == FITS_LOGICAL) | (A.type == FITS_COMPLEX && iszero(imag(get_value_complex(A)))) """ valtype(x::Union{FitsCard,FitsCardType}) -> T yields the Julia type `T` corresponding to a given FITS card or card type. """ @inline Base.valtype(A::FitsCard) = valtype(A.type) Base.valtype(t::FitsCardType) = t === FITS_LOGICAL ? Bool : t === FITS_INTEGER ? FitsInteger : t === FITS_FLOAT ? FitsFloat : t === FITS_STRING ? String : t === FITS_COMPLEX ? FitsComplex : t === FITS_COMMENT ? Nothing : t === FITS_UNDEFINED ? Undef : t === FITS_END ? Nothing : throw(ArgumentError("unexpected FITS card type")) # FITS cards can be specified as pairs and conversely. Base.convert(::Type{T}, A::FitsCard) where {T<:Pair} = T(A) Base.convert(::Type{T}, pair::Pair) where {T<:FitsCard} = T(pair) Base.Pair(A::FitsCard) = Pair(A.name, (A.value(), A.comment)) Base.Pair{K}(A::FitsCard) where {K} = Pair(as(K, A.name), (A.value(), A.comment)) Base.Pair{K,V}(A::FitsCard) where {K,V} = Pair(as(K, A.name), as(V, (A.value(), A.comment))) FitsCard(pair::Pair{<:CardName, <:Any}) = build_card(pair...) # Private helper function to build a FitsCard instance. build_card(name::CardName, x) = build_card(check_keyword(name)..., x) build_card(key::FitsKey, name::AbstractString, x::Tuple{CardValueExt,CardComment}) = FitsCard(key, name, to_value(x[1]), to_comment(x[2])) build_card(key::FitsKey, name::AbstractString, x::Tuple{CardValueExt}) = FitsCard(key, name, to_value(x[1]), to_comment()) build_card(key::FitsKey, name::AbstractString, x::CardValueExt) = FitsCard(key, name, to_value(x), to_comment()) build_card(key::FitsKey, name::AbstractString, x::AbstractString) = is_comment(key) ? FitsCard(key, name, nothing, x) : FitsCard(key, name, x, to_comment()) @noinline build_card(key::FitsKey, name::AbstractString, x::X) where {X} = throw(ArgumentError("invalid value and/or comment of type `$X` for FITS keyword `$name`")) # Yield a bare card value. See alias `CardValueExt`. to_value(val::CardValue) = val to_value(val::DateTime) = Dates.format(val, ISODateTimeFormat) # Yield a string from any instance of CardComment. to_comment() = to_comment(nothing) to_comment(com::AbstractString) = com to_comment(com::Nothing) = EMPTY_STRING end # module
FITSHeaders
https://github.com/emmt/FITSHeaders.jl.git
[ "MIT" ]
0.4.1
5a8540e7601cbd07f583ef49e01fdaca32b9c171
code
18957
module Headers export FitsHeader using ..FITSHeaders using ..FITSHeaders: try_parse_keyword, is_comment using ..FITSHeaders.Parser: full_name using TypeUtils using Base: @propagate_inbounds using Base.Order: Ordering, Forward, Reverse """ FitsHeader(args...) -> hdr yields a FITS header object initialized with records `args..`. A FITS header object behaves as a vector of [`FitsCard`](@ref) elements with integer or keyword (string) indices. When indexed by keywords, a FITS header object is similar to a dictionary except that the order of records is preserved and that commentary and continuation records (with keywords `"COMMENT"`, `"HISTORY"`, `""`, or `"CONTINUE"`) may appear more than once. To update or append a record to the FITS header `hdr`, call one of: hdr[key] = x push!(hdr, key => x) where `x` is the value and/or comment of the record. If the keyword `key` already exists in `hdr`, the record is updated, otherwise a new record is appended. Commentary and continuation records are however always appended. More generally, the `push!` method can be called as: push!(hdr, rec) where `rec` is a [`FitsCard`](@ref) object or anything, such as `key => x`, that can be converted into an instance of this type. To modify any existing record including commentary and continuation ones, use the syntax: hdr[i] = rec where `i` is a linear (integer) index whule `rec` is a above. Searching for the index `i` of an existing record in FITS header object `hdr` can be done by the usual methods: findfirst(what, hdr) findlast(what, hdr) findnext(what, hdr, start) findprev(what, hdr, start) which all return a valid integer index if a record matching `what` is found and `nothing` otherwise. The matching pattern `what` can be a keyword (string), a FITS card (an instance of [`FitsCard`](@ref) whose name is used as a matching pattern), or a predicate function which takes a FITS card argument and returns whether it matches. The find methods just yield `nothing` for any unsupported kind of pattern. """ struct FitsHeader <: AbstractVector{FitsCard} cards::Vector{FitsCard} index::Dict{String,Int} # index to first (and unique for non-commentary and # non-continuation keywords) entry with given # keyword # Build empty header or filled by keywords. FitsHeader(; kwds...) = merge!(new(FitsCard[], Dict{String,Int}()), values(kwds)) # Copy constructor. FitsHeader(hdr::FitsHeader) = new(copy(hdr.cards), copy(hdr.index)) end FitsHeader(args...) = merge!(FitsHeader(), args...) FitsHeader(rec::Union{FitsCard,Pair}) = push!(FitsHeader(), FitsCard(rec)) Base.copy(hdr::FitsHeader) = FitsHeader(hdr) Base.convert(::Type{<:FitsHeader}, hdr::FitsHeader) = hdr Base.convert(::Type{<:FitsHeader}, iter) = FitsHeader(iter) function Base.sizehint!(hdr::FitsHeader, n::Integer) sizehint!(hdr.cards, n) sizehint!(hdr.index, n) return hdr end function Base.empty!(hdr::FitsHeader) if length(hdr) > 0 empty!(hdr.cards) empty!(hdr.index) end return hdr end Base.merge(hdr::FitsHeader, args...) = merge!(copy(hdr), args...) Base.merge!(dest::FitsHeader) = dest Base.merge!(dest::FitsHeader, A, B...) = merge!(merge!(dest, A), B...) Base.merge!(dest::FitsHeader, other::Union{Pair,FitsCard}) = push!(dest, other) function Base.merge!(dest::FitsHeader, other::FitsHeader) if (len = length(other)) > 0 sizehint!(dest, length(dest) + len) for card in other push!(dest, card) end end return dest end function Base.merge!(dest::FitsHeader, other::NamedTuple) if (len = length(other)) > 0 sizehint!(dest, length(dest) + len) for key in keys(other) push!(dest, FitsCard(key => other[key])) end end return dest end # By default, assume an iterable object. function Base.merge!(dest::FitsHeader, other) if has_length(other) (len = length(other)) > 0 || return dest sizehint!(dest, length(dest) + len) end for item ∈ other push!(dest, FitsCard(item)) end return dest end # Implement part of the abstract dictionary API. Base.keys(hdr::FitsHeader) = keys(hdr.index) function Base.getkey(hdr::FitsHeader, name::AbstractString, def) c = try_parse_keyword(name) c isa Char && return def # illegal FITS keyword key, pfx = c return getkey(hdr.index, full_name(pfx, name), def) end # Implement abstract array API. Base.IndexStyle(::Type{<:FitsHeader}) = IndexLinear() for func in (:length, :size, :axes) @eval Base.$func(hdr::FitsHeader) = $func(hdr.cards) end Base.firstindex(hdr::FitsHeader) = 1 Base.lastindex(hdr::FitsHeader) = length(hdr) @inline function Base.getindex(hdr::FitsHeader, i::Int) @boundscheck checkbounds(hdr, i) @inbounds getindex(hdr.cards, i) end @inline function Base.setindex!(hdr::FitsHeader, rec, i::Int) @boundscheck checkbounds(hdr, i) unsafe_setindex!(hdr, as(FitsCard, rec), i) return hdr end # This unsafe method assumes that index i is valid. function unsafe_setindex!(hdr::FitsHeader, new_card::FitsCard, i::Int) @inbounds old_card = hdr.cards[i] if !have_same_name(new_card, old_card) # The name of the i-th card will change. We have to update the index # accordingly. # # We first determine whether the index has to be updated for the name # of the new card without touching the structure until the index has # been updated for the name of the old card. update_index_at_new_name = false j = findfirst(new_card, hdr) if j == nothing # No other card exists in the header with this name. update_index_at_new_name = true elseif i != j # The card name must be unique. Throwing an error here is painless # because the structure has not yet been modified. is_unique(new_card) && throw(ArgumentError( "FITS keyword \"$(new_card.name)\" already exists at index $j")) # Index must be updated for the new card name if new card will be # the first one occurring in the header with this name. update_index_at_new_name = i < j end # Now, do update index for the name of the old card. if is_unique(old_card) # There should be no other cards with the same name as the old # card. Remove this name from the index. delete!(hdr.index, old_card.name) elseif findfirst(old_card, hdr) == i # More than one card with the same name as the old card are allowed # and the old card is the first with this name. Update the index # with the next card with this name if one such exists in the # index; otherwise, delete the name from the index. k = findnext(old_card, hdr, i+1) if k === nothing delete!(hdr.index, old_card.name) else hdr.index[old_card.name] = k end end if update_index_at_new_name hdr.index[new_card.name] = i end end # Remplace the old card by the new one. @inbounds hdr.cards[i] = new_card end Base.setindex!(hdr::FitsHeader, val, name::AbstractString) = push!(hdr, name => val) function Base.getindex(hdr::FitsHeader, name::AbstractString) card = get(hdr, name, nothing) card === nothing ? throw(KeyError(name)) : card end function Base.get(hdr::FitsHeader, i::Integer, def) i = as(Int, i) checkbounds(Bool, hdr, i) ? (@inbounds hdr[i]) : def end function Base.get(hdr::FitsHeader, name::AbstractString, def) # NOTE: Call findfirst() to deal with HIERARCH convention. i = findfirst(name, hdr) i === nothing ? def : (@inbounds hdr[i]) end Base.get(hdr::FitsHeader, key, def) = def Base.haskey(hdr::FitsHeader, i::Integer) = checkbounds(Bool, hdr, i) Base.haskey(hdr::FitsHeader, key::AbstractString) = findfirst(key, hdr) !== nothing Base.haskey(hdr::FitsHeader, key) = false """ push!(hdr::FitsHeader, rec) -> hdr appends a new record `rec` into the FITS header `hdr` or, if the keyword of the card must be unique and a record with the same name already exists in `hdr`, replaces the existing record. This is strictly equivalent to: hdr[key] = x with `key` the name of the record, and `x` its associated value and/or comment. Note that commentary and continuation records (with keywords `"COMMENT"`, `"HISTORY"`, `""`, or `"CONTINUE"`) are always appended. """ function Base.push!(hdr::FitsHeader, card::FitsCard) # Replace existing card with the same keyword if it must be unique. # Otherwise, push a new card. i = findfirst(card, hdr) if i == nothing # No card exists with this name, push a new one and index it. hdr.index[card.name] = lastindex(push!(hdr.cards, card)) elseif is_unique(card) # A card with this name must be unique, replace existing card. @inbounds hdr.cards[i] = card else # Append the commentary or continuation card to the header. push!(hdr.cards, card) end return hdr end Base.push!(hdr::FitsHeader, rec) = push!(hdr, as(FitsCard, rec)) """ FITSHeaders.FullName(str) -> obj yields the full name of a FITS header record given the, possibly shortened, name `str`. The returned object has 2 properties: `obj.name` is the full name and `obj.key` is the quick key uniquely representing the 8 first characters of the full name. The `"HIERARCH "` prefix being optional to match a FITS keyword, and the quick key being useful to accelerate comparisons. `FullName` is a guarantee to have the full name and the quick key built from a, possibly shortened, keyword name. """ struct FullName key::FitsKey # quick key name::String # full name end function FullName(str::AbstractString) c = try_parse_keyword(str) if c isa Char # When parsing fails, return an instance that is unmatchable by any # valid FITS card. return FullName(zero(FitsKey), as(String, str)) else key, pfx = c return FullName(key, full_name(pfx, str)) end end # Yield whether name is a unique FITS keyword. is_unique(obj::Union{FitsCard,FullName}) = is_unique(obj.key) is_unique(key::FitsKey) = (key !== Fits"COMMENT") & (key !== Fits"HISTORY") & (key !== Fits"CONTINUE") & (key !== Fits"") # Generic matcher to implement matching by regular expressions for example. struct Matches{T} <: Function pattern::T end (obj::Matches{Regex})(card::FitsCard) = match(obj.pattern, card.name) !== nothing """ findfirst(what, hdr::FitsHeader) -> i :: Union{Int,Nothing} finds the first occurence of a record in FITS header `hdr` matching the pattern `what`. """ Base.findfirst(what, hdr::FitsHeader) = nothing """ findlast(what, hdr::FitsHeader) -> i :: Union{Int,Nothing} find the last occurence of a record in FITS header `hdr` matching the pattern `what`. """ Base.findlast(what, hdr::FitsHeader) = nothing """ findnext(what, hdr::FitsHeader, start) -> i :: Union{Int,Nothing} find the next occurence of a record in FITS header `hdr` matching the pattern `what` at or after index `start`. """ Base.findnext """ findprev(what, hdr::FitsHeader, start) -> i :: Union{Int,Nothing} find the previous occurence of a record in FITS header `hdr` matching the pattern `what` at or before index `start`. """ Base.findprev Base.findfirst(pat::Union{FitsCard,FullName}, hdr::FitsHeader) = get(hdr.index, pat.name, nothing) function Base.findlast(pat::Union{FitsCard,FullName}, hdr::FitsHeader) first = findfirst(pat, hdr) first === nothing && return nothing is_unique(pat) && return first # Enter slow part... @inbounds for i ∈ lastindex(hdr):-1:first+1 have_same_name(pat, hdr.cards[i]) && return i end return first end # String and card patterns are treated specifically because the dictionary # storing the header index can be directly used. Other patterns are converted # to predicate functions. Base.findfirst(func::Function, hdr::FitsHeader) = unsafe_findnext(func, hdr, firstindex(hdr)) Base.findlast(func::Function, hdr::FitsHeader) = unsafe_findprev(func, hdr, lastindex(hdr)) for func in (:findfirst, :findlast) @eval begin function Base.$func(str::AbstractString, hdr::FitsHeader) pat = FullName(str) return iszero(pat.key) ? nothing : $func(pat, hdr) end function Base.$func(pat::Regex, hdr::FitsHeader) return $func(Matches(pat), hdr) end end end # NOTE: First stage of `findnext` and `findprev` avoids costly conversion if # result can be decided without actually searching. Need to specify type of # `what` in function signature to avoid ambiguities. for T in (Any, AbstractString, FullName, FitsCard, Function) @eval begin function Base.findnext(what::$T, hdr::FitsHeader, start::Integer) start = as(Int, start) start > lastindex(hdr) && return nothing start < firstindex(hdr) && throw(BoundsError(hdr, start)) return unsafe_findnext(what, hdr, start) end function Base.findprev(what::$T, hdr::FitsHeader, start::Integer) start = as(Int, start) start < firstindex(hdr) && return nothing start > lastindex(hdr) && throw(BoundsError(hdr, start)) return unsafe_findprev(what, hdr, start) end end end for func in (:unsafe_findnext, :unsafe_findprev) @eval begin function $func(str::AbstractString, hdr::FitsHeader, start::Int) pat = FullName(str) return iszero(pat.key) ? nothing : $func(pat, hdr, start) end function $func(pat::Regex, hdr::FitsHeader, start::Int) return $func(Matches(pat), hdr, start) end end end # By default, find nothing. unsafe_findnext(pat, hdr::FitsHeader, start::Int) = nothing unsafe_findprev(pat, hdr::FitsHeader, start::Int) = nothing function unsafe_findnext(pat::Union{FitsCard,FullName}, hdr::FitsHeader, start::Int) first = findfirst(pat, hdr) first === nothing && return nothing start ≤ first && return first is_unique(pat) && return nothing # Enter slow part... @inbounds for i ∈ start:lastindex(hdr) have_same_name(pat, hdr.cards[i]) && return i end return nothing end function unsafe_findprev(pat::Union{FitsCard,FullName}, hdr::FitsHeader, start::Int) first = findfirst(pat, hdr) first === nothing && return nothing start < first && return nothing is_unique(pat) && return first # Enter slow part... @inbounds for i ∈ start:-1:first+1 have_same_name(pat, hdr.cards[i]) && return i end return first end function unsafe_findnext(func::Function, hdr::FitsHeader, start::Int) @inbounds for i ∈ start:lastindex(hdr) func(hdr.cards[i]) && return i end return nothing end function unsafe_findprev(func::Function, hdr::FitsHeader, start::Int) @inbounds for i ∈ start:-1:firstindex(hdr) func(hdr.cards[i]) && return i end return nothing end function have_same_name(A::Union{FitsCard,FullName}, B::FitsCard) A.key === B.key || return false A.key === Fits"HIERARCH" || return true A.name === B.name || isequal(A.name, B.name) end """ eachmatch(what, hdr::FitsHeader) yields an iterator over the records of `hdr` matching `what`. For example: @inbounds for rec in eachmatch(what, hdr) ... # do something end is equivalent to: i = findfirst(what, hdr) @inbounds while i !== nothing rec = hdr[i] ... # do something i = findnext(what, hdr, i+1) end while: @inbounds for rec in reverse(eachmatch(what, hdr)) ... # do something end is equivalent to: i = findlast(what, hdr) @inbounds while i !== nothing rec = hdr[i] ... # do something i = findprev(what, hdr, i-1) end """ Base.eachmatch(what, hdr::FitsHeader) = HeaderIterator(what, hdr) struct HeaderIterator{O<:Ordering,P} pattern::P header::FitsHeader HeaderIterator(ord::O, pat::P, hdr::FitsHeader) where {O,P} = new{O,P}(pat, hdr) end HeaderIterator(pat, hdr::FitsHeader) = HeaderIterator(Forward, pat, hdr) HeaderIterator(ord::Ordering, pat::AbstractString, hdr::FitsHeader) = HeaderIterator(ord, FullName(pat), hdr) HeaderIterator(ord::Ordering, pat::Regex, hdr::FitsHeader) = HeaderIterator(ord, Matches(pat), hdr) Base.IteratorEltype(::Type{<:HeaderIterator}) = Base.HasEltype() Base.eltype(::Type{<:HeaderIterator}) = FitsCard # Extend length for HeaderIterator but pretend its size is unknown because the # implementation of the length method is rather inefficient. Base.IteratorSize(::Type{<:HeaderIterator}) = Base.SizeUnknown() function Base.length(iter::HeaderIterator) n = 0 for rec in iter n += 1 end return n end Base.reverse(iter::HeaderIterator{typeof(Forward)}) = HeaderIterator(Reverse, iter.pattern, iter.header) Base.reverse(iter::HeaderIterator{typeof(Reverse)}) = HeaderIterator(Forward, iter.pattern, iter.header) # Iterate over entries in forward order. function Base.iterate(iter::HeaderIterator{typeof(Forward)}) j = findfirst(iter.pattern, iter.header) j === nothing ? nothing : ((@inbounds iter.header[j]), j+1) end function Base.iterate(iter::HeaderIterator{typeof(Forward)}, i::Int) j = findnext(iter.pattern, iter.header, i) j === nothing ? nothing : ((@inbounds iter.header[j]), j+1) end # Iterate over entries in reverse order. function Base.iterate(iter::HeaderIterator{typeof(Reverse)}) j = findlast(iter.pattern, iter.header) j === nothing ? nothing : ((@inbounds iter.header[j]), j-1) end function Base.iterate(iter::HeaderIterator{typeof(Reverse)}, i::Int) j = findprev(iter.pattern, iter.header, i) j === nothing ? nothing : ((@inbounds iter.header[j]), j-1) end """ collect(what, hdr::FitsHeader; order::Ordering = Forward) yields a vector of the records of `hdr` matching `what` and sorted according to `order` (`Base.Order.Forward` or `Base.Order.Reverse`). """ function Base.collect(what, hdr::FitsHeader; order::Ordering = Forward) iter = HeaderIterator(order, what, hdr) dest = FitsCard[] has_length(iter) && sizehint!(dest, length(iter)) for rec in iter push!(dest, rec) end return dest end function Base.filter(what, hdr::FitsHeader; order::Ordering = Forward) iter = HeaderIterator(order, what, hdr) dest = FitsHeader() has_length(iter) && sizehint!(dest, length(iter)) for rec in iter push!(dest, rec) end return dest end has_length(iter) = Base.IteratorSize(iter) isa Union{Base.HasShape,Base.HasLength} end # module
FITSHeaders
https://github.com/emmt/FITSHeaders.jl.git
[ "MIT" ]
0.4.1
5a8540e7601cbd07f583ef49e01fdaca32b9c171
code
51378
""" FITSHeaders.Parser A sub-module of the `FITSHeaders` package implementing methods for parsing FITS header cards. """ module Parser using ..FITSHeaders using ..FITSHeaders: FitsInteger, FitsFloat, FitsComplex using Compat using Base: @propagate_inbounds # To create a byte buffer to be converted to a string, it is faster to call # StringVector(n) rather than Vector{UInt8}(undef,n). using Base: StringVector const EMPTY_STRING = "" @inline is_little_endian() = (ENDIAN_BOM === 0x04030201) @inline is_big_endian() = (ENDIAN_BOM === 0x01020304) is_little_endian() || is_big_endian() || error("unsupported byte order") """ FITS_CARD_SIZE is the number of bytes per FITS header card. """ const FITS_CARD_SIZE = 80 """ FITS_BLOCK_SIZE is the number of bytes per FITS header/data block. """ const FITS_BLOCK_SIZE = 36*FITS_CARD_SIZE # 2880 """ FITS_SHORT_KEYWORD_SIZE is the number of bytes in a short FITS keyword, that is all FITS keyword but the `HIERARCH` ones. If a FITS keyword is shorther than this, it is equivalent to pad it with ASCII spaces (hexadecimal code 0x20). """ const FITS_SHORT_KEYWORD_SIZE = 8 """ FITSHeaders.Parser.PointerCapability(T) -> Union{PointerNone,PointerFull} yields whether `Base.unsafe_convert(Ptr{UInt8},obj)` and `Base.cconvert(Ptr{UInt8},obj)` are fully implemented for an object `obj` of type `T`. This also means that the object is stored in memory for some contiguous range of addresses. """ abstract type PointerCapability end struct PointerNone <: PointerCapability end struct PointerFull <: PointerCapability end PointerCapability(A::Any) = PointerCapability(typeof(A)) PointerCapability(::Type{<:Union{Array,String,SubString{String}}}) = PointerFull() PointerCapability(::Type) = PointerNone() """ FITSHeaders.Parser.ByteString is the union of types of strings that can be considered as vectors of bytes to implement fast parsing methods (see [`FITSHeaders.Parser.ByteBuffer`](@ref)). FITS header cards consist in character from the restricted set of ASCII characters from `' '` to `'~'` (hexadecimal codes 0x20 to 0x7E). Hence Julia strings (encoded in ASCII or in UTF8) can be treated as vectors of bytes. """ const ByteString = Union{String,SubString{String}} """ FITSHeaders.Parser.ByteVector is an alias for types that can be considered as vectors of bytes to implement fast parsing methods (see [`FITSHeaders.Parser.ByteBuffer`](@ref)). """ const ByteVector = AbstractVector{UInt8} """ FITSHeaders.Parser.ByteBuffer is the union of types that can be considered as buffers of bytes and that can treated as vectors of bytes to parse FITS header cards using the following helper functions (assuming `A isa ByteBuffer` holds): first_byte_index(A) # yields the index of the first byte in A last_byte_index(A) # yields the index of the last byte in A byte_index_range(A) # yields the range of byte indices in A get_byte(A,i) # yields the i-th byte from A See [`FITSHeaders.Parser.ByteString`](@ref) and [`FITSHeaders.Parser.ByteVector`](@ref). """ const ByteBuffer = Union{ByteString,ByteVector} """ FITSHeaders.Parser.get_byte(T = UInt8, A, i) yields the `i`-th byte of `A` which may be a vector of bytes or a string. Optional first argument `T` is to specify the data type of the returned value. When parsing a FITS header or keyword, it is possible to specify the index `n` of the last available byte in `A` and call: FITSHeaders.Parser.get_byte(T = UInt8, A, i, n) which yields the `i`-th byte of `A` if `i ≤ n` and `0x20` (an ASCII space) otherwise. This function propagates the `@inbounds` macro. """ @inline @propagate_inbounds get_byte(A::ByteVector, i::Int) = getindex(A, i) @inline @propagate_inbounds get_byte(A::ByteString, i::Int) = codeunit(A, i)::UInt8 @inline @propagate_inbounds get_byte(A, i::Int, n::Int) = (i ≤ n ? get_byte(A, i) : 0x20) @inline @propagate_inbounds get_byte(::Type{T}, args...) where {T<:Unsigned} = get_byte(args...) % T """ FITSHeaders.Parser.first_byte_index(A) yields the index of the first byte in `A`. """ @inline first_byte_index(A::ByteString) = firstindex(A) @inline first_byte_index(A::ByteVector) = firstindex(A) """ FITSHeaders.Parser.last_byte_index(A) yields the index of the last byte in `A`. """ @inline last_byte_index(A::ByteString) = ncodeunits(A) + (firstindex(A) - 1) @inline last_byte_index(A::ByteVector) = lastindex(A) """ FITSHeaders.Parser.byte_index_range(A) yields the range of byte indices in `A`. """ @inline byte_index_range(buf::ByteBuffer) = first_byte_index(buf):last_byte_index(buf) # Yields an empty index range starting at given index. empty_range(i::Int = 1) = i:i-1 @inline function check_byte_index(buf::ByteBuffer, i::Int) i_first, i_last = first_byte_index(buf), last_byte_index(buf) (i_first ≤ i ≤ i_last) || throw(BoundsError(buf, i)) end @inline function check_byte_index(buf::ByteBuffer, rng::AbstractUnitRange{Int}, n::Int = last_byte_index(buf)) check_byte_index(buf, first(rng), last(rng), n) end @inline function check_byte_index(buf::ByteBuffer, i::Int, j::Int, n::Int = last_byte_index(buf)) ((i > j) | ((i ≥ first_byte_index(buf)) & (j ≤ n))) || throw(BoundsError(buf, i:j)) end """ FitsKey(buf, off=0, i_last=last_byte_index(buf)) encodes the, at most, first $FITS_SHORT_KEYWORD_SIZE bytes (or ASCII characters) of `buf`, starting at offset `off`, in a 64-bit integer value which is exactly equal to the first $FITS_SHORT_KEYWORD_SIZE bytes of a FITS keyword as stored in a FITS header. Argument `buf` may be a string or a vector of bytes. Optional argument `i_last` is the index of the last byte available in `buf`. If fewer than $FITS_SHORT_KEYWORD_SIZE bytes are available (that is, if `off + $FITS_SHORT_KEYWORD_SIZE > i_last`), the result is as if `buf` has been padded with ASCII spaces (hexadecimal code 0x20). The only operation that makes sense with an instance of `FitsKey` is comparison for equality for fast searching of keywords in a FITS header. The caller may use `@inbounds` macro if it is certain that bytes in the range `off+1:i_last` are in bounds for `buf`. For the fastest, but unsafe, computations call: FitsKey(Val(:full), buf, off) FitsKey(Val(:pad), buf, off, i_last) where first argument should be `Val(:full)` if there are at least $FITS_SHORT_KEYWORD_SIZE bytes available after `off`, and `Val(:pad)` otherwise. These variants do not perfom bounds checking, it is the caller's responsibility to insure that the arguments are consistent. """ struct FitsKey val::UInt64 end @assert sizeof(FitsKey) == FITS_SHORT_KEYWORD_SIZE Base.convert(::Type{FitsKey}, x::FitsKey) = x Base.convert(::Type{FitsKey}, x::Integer) = FitsKey(x) """ FitsKey() zero(FitsKey) yield a null FITS key, that is whose bytes are all 0. This can be asserted by calling `issero` on the returned key. Since any valid FITS key cannot contain null bytes, a null FITS key may be useful for searching keys. """ FitsKey() = FitsKey(zero(UInt64)) # NOTE: Other constructors are implemented in parser.jl Base.iszero(key::FitsKey) = iszero(key.val) Base.zero(::Union{FitsKey,Type{FitsKey}}) = FitsKey() Base.:(==)(a::FitsKey, b::FitsKey) = a.val === b.val Base.convert(::Type{T}, key::FitsKey) where {T<:Integer} = convert(T, key.val) Base.UInt64(key::FitsKey) = key.val function Base.String(key::FitsKey) buf = StringVector(FITS_SHORT_KEYWORD_SIZE) len = @inbounds decode!(buf, key; offset = 0) return String(resize!(buf, len)) end Base.show(io::IO, mime::MIME"text/plain", key::FitsKey) = show(io, key) function Base.show(io::IO, key::FitsKey) # FIXME: Improve the following test. flag = true for i in 0:sizeof(FitsKey)-1 flag &= is_restricted_ascii((key.val >> (i<<3)) % UInt8) end if flag # Can be printed as a regular FITS keyword. buf = Vector{UInt8}(undef, FITS_SHORT_KEYWORD_SIZE + 6) buf[1] = 'F' buf[2] = 'i' buf[3] = 't' buf[4] = 's' buf[5] = '"' len = @inbounds decode!(buf, key; offset = 5) + 1 buf[len] = '"' if len < length(buf) write(io, view(buf, Base.OneTo(len))) else write(io, buf) end else # Certainly not a regular FITS keyword. write(io, "FitsKey(", repr(key.val), ")") end return nothing # do not return the number of bytes written end # Decode FITS quick key. Returns index of last non-space character which is # also the length if the buffer has 1-based indices. @inline function decode!(buf::AbstractVector{UInt8}, key::FitsKey; offset::Int = 0) i_first = (offset + firstindex(buf))::Int i_last = (i_first + (FITS_SHORT_KEYWORD_SIZE - 1))::Int I = i_first:i_last @boundscheck ((offset ≥ 0) & (i_last ≤ lastindex(buf))) || throw(BoundsError(buf, I)) val = key.val shft = is_little_endian() ? 0 : 8*(FITS_SHORT_KEYWORD_SIZE-1) incr = is_little_endian() ? +8 : -8 i_last = offset @inbounds for i in I byte = (val >> shft) % UInt8 shft += incr if byte != 0x20 i_last = i end buf[i] = byte end return i_last end """ @Fits_str A macro to construct a 64-bit quick key equivalent to the FITS keyword given in argument and as it is stored in the header of a FITS file. The argument must be a short FITS keyword (e.g., not a `HIERARCH` one) specified as a literal string of, at most, $FITS_SHORT_KEYWORD_SIZE ASCII characters with no trailing spaces. For example `Fits"SIMPLE"` or `Fits"NAXIS2"`. The result is the same as that computed by `FitsKey` but since the quick key is given by a string macro, it is like a constant computed at compile time with no runtime penalty. """ macro Fits_str(str::String) FitsKey(check_short_keyword(str)) end """ FITSHeaders.check_short_keyword(str) -> str returns the string `str` throwing an exception if `str` is not a short FITS keyword consisting in, at most, $FITS_SHORT_KEYWORD_SIZE ASCII characters from the restricted set of upper case letters (bytes 0x41 to 0x5A), decimal digits (hexadecimal codes 0x30 to 0x39), hyphen (hexadecimal code 0x2D), or underscore (hexadecimal code 0x5F). """ function check_short_keyword(str::ByteString) rng = byte_index_range(str) @inbounds for i in rng is_keyword(get_byte(str, i)) || error("invalid character in short FITS keyword \"$str\"") end length(rng) ≤ FITS_SHORT_KEYWORD_SIZE || error("too many characters in FITS keyword \"$str\"") return str end equal(b::UInt8, c::Char) = equal(b, UInt8(c)) equal(b::T, c::T) where {T} = b === c between(x::UInt8, lo::Char, hi::Char) = between(x, UInt8(lo), UInt8(hi)) between(x::T, lo::T, hi::T) where {T} = (lo ≤ x) & (x ≤ hi) const C_RESTRICTED_ASCII = 0x01 << 0 const C_KEYWORD = 0x01 << 1 const C_DIGIT = 0x01 << 2 const C_UPPERCASE = 0x01 << 3 const C_LOWERCASE = 0x01 << 4 const C_STARTS_LOGICAL = 0x01 << 5 const C_STARTS_NUMBER = 0x01 << 6 function build_ctype() code = zeros(UInt8, 256) firstindex(code) === 1 || throw(AssertionError("firstindex(code) === 1")) typemin(UInt8) === 0x00 || throw(AssertionError("typemin(UInt8) === 0x00")) typemax(UInt8) === 0xFF || throw(AssertionError("typemax(UInt8) === 0xFF")) typemin(Char) == Char(0) || throw(AssertionError("typemin(Char) == Char(0)")) promote_type(UInt8, Int) === Int || throw(AssertionError("promote_type(UInt8, Int) === Int")) for c in ' ':'~' code[c%UInt8 + 1] |= C_RESTRICTED_ASCII end for c in '0':'9' code[c%UInt8 + 1] |= C_DIGIT|C_KEYWORD|C_STARTS_NUMBER end for c in 'A':'Z' code[c%UInt8 + 1] |= C_UPPERCASE|C_KEYWORD end for c in 'a':'z' code[c%UInt8 + 1] |= C_LOWERCASE end code['T'%UInt8 + 1] |= C_STARTS_LOGICAL code['F'%UInt8 + 1] |= C_STARTS_LOGICAL code['.'%UInt8 + 1] |= C_STARTS_NUMBER code['+'%UInt8 + 1] |= C_STARTS_NUMBER code['-'%UInt8 + 1] |= C_KEYWORD|C_STARTS_NUMBER code['_'%UInt8 + 1] |= C_KEYWORD return code end const C_TYPE = build_ctype() c_type(c::UInt8) = @inbounds C_TYPE[c + 1] c_type(c::Char) = ifelse(c%UInt < length(C_TYPE), c_type(c%UInt8), zero(eltype(C_TYPE))) is_digit(c::Union{Char,UInt8}) = between(c, '0', '9') is_uppercase(c::Union{Char,UInt8}) = between(c, 'A', 'Z') is_lowercase(c::Union{Char,UInt8}) = between(c, 'a', 'z') is_space(c::Union{Char,UInt8}) = equal(c, ' ') is_space(c1::T, c2::T) where {T<:Union{Char,UInt8}} = is_space(c1) & is_space(c2) @inline is_space(c1::T, c2::T, c3::T...) where {T<:Union{Char,UInt8}} = is_space(c1, c2) & is_space(c3...) is_quote(c::Union{Char,UInt8}) = equal(c, '\'') is_equals_sign(c::Union{Char,UInt8}) = equal(c, '=') is_hyphen(c::Union{Char,UInt8}) = equal(c, '-') is_underscore(c::Union{Char,UInt8}) = equal(c, '_') is_comment_separator(c::Union{Char,UInt8}) = equal(c, '/') is_opening_parenthesis(c::Union{Char,UInt8}) = equal(c, '(') is_closing_parenthesis(c::Union{Char,UInt8}) = equal(c, ')') is_restricted_ascii(c::Union{Char,UInt8}) = between(c, ' ', '~') is_keyword(c::Union{Char,UInt8}) = (c_type(c) & C_KEYWORD) == C_KEYWORD starts_logical(c::Union{Char,UInt8}) = (c_type(c) & C_STARTS_LOGICAL) == C_STARTS_LOGICAL starts_number(c::Union{Char,UInt8}) = (c_type(c) & C_STARTS_NUMBER) == C_STARTS_NUMBER @inline function FitsKey(buf::ByteBuffer, off::Int = 0) i_last = last_byte_index(buf) @boundscheck check_byte_index(buf, off+1, min(off+FITS_SHORT_KEYWORD_SIZE, i_last), i_last) off + FITS_SHORT_KEYWORD_SIZE ≤ i_last ? FitsKey(Val(:full), buf, off) : FitsKey(Val(:pad), buf, off, i_last) end @inline function FitsKey(buf::ByteBuffer, off::Int, i_last::Int) @boundscheck check_byte_index(buf, off+1, min(off+FITS_SHORT_KEYWORD_SIZE, i_last)) off + FITS_SHORT_KEYWORD_SIZE ≤ i_last ? FitsKey(Val(:full), buf, off) : FitsKey(Val(:pad), buf, off, i_last) end @inline FitsKey(val::Val{:full}, buf::ByteBuffer, off::Int) = FitsKey(PointerCapability(buf), val, buf, off) @inline FitsKey(::PointerFull, ::Val{:full}, buf::Vector{UInt8}, off::Int) = GC.@preserve buf unsafe_load(Base.unsafe_convert(Ptr{FitsKey}, buf) + off) @inline function FitsKey(::PointerCapability, ::Val{:full}, buf::ByteBuffer, off::Int) @inbounds begin @static if is_little_endian() # Little-endian byte order. k = (get_byte(UInt64, buf, off + 1) << 0) | (get_byte(UInt64, buf, off + 2) << 8) | (get_byte(UInt64, buf, off + 3) << 16) | (get_byte(UInt64, buf, off + 4) << 24) | (get_byte(UInt64, buf, off + 5) << 32) | (get_byte(UInt64, buf, off + 6) << 40) | (get_byte(UInt64, buf, off + 7) << 48) | (get_byte(UInt64, buf, off + 8) << 56) else # Big-endian byte order. k = (get_byte(UInt64, buf, off + 1) << 56) | (get_byte(UInt64, buf, off + 2) << 48) | (get_byte(UInt64, buf, off + 3) << 40) | (get_byte(UInt64, buf, off + 4) << 32) | (get_byte(UInt64, buf, off + 5) << 24) | (get_byte(UInt64, buf, off + 6) << 16) | (get_byte(UInt64, buf, off + 7) << 8) | (get_byte(UInt64, buf, off + 8) << 0) end end return FitsKey(k) end @inline function FitsKey(::Val{:pad}, buf::ByteBuffer, off::Int, i_last::Int) @inbounds begin @static if is_little_endian() # Little-endian byte order. k = (get_byte(UInt64, buf, off + 1, i_last) << 0) | (get_byte(UInt64, buf, off + 2, i_last) << 8) | (get_byte(UInt64, buf, off + 3, i_last) << 16) | (get_byte(UInt64, buf, off + 4, i_last) << 24) | (get_byte(UInt64, buf, off + 5, i_last) << 32) | (get_byte(UInt64, buf, off + 6, i_last) << 40) | (get_byte(UInt64, buf, off + 7, i_last) << 48) | (get_byte(UInt64, buf, off + 8, i_last) << 56) else # Big-endian byte order. k = (get_byte(UInt64, buf, off + 1, i_last) << 56) | (get_byte(UInt64, buf, off + 2, i_last) << 48) | (get_byte(UInt64, buf, off + 3, i_last) << 40) | (get_byte(UInt64, buf, off + 4, i_last) << 32) | (get_byte(UInt64, buf, off + 5, i_last) << 24) | (get_byte(UInt64, buf, off + 6, i_last) << 16) | (get_byte(UInt64, buf, off + 7, i_last) << 8) | (get_byte(UInt64, buf, off + 8, i_last) << 0) end end return FitsKey(k) end """ FITSHeaders.is_structural(A::Union{FitsKey,FitsCard}) yields whether `A` is a structural FITS keyword or card. """ function is_structural(key::FitsKey) # NOTE This version takes 4.5ns to 7.2ns compared to 30ns with a set of all # such keys. b = (is_little_endian() ? key.val : (key.val >> 56)) % UInt8 b == UInt8('N') ? is_structural_N(key) : b == UInt8('B') ? is_structural_B(key) : b == UInt8('S') ? is_structural_S(key) : b == UInt8('X') ? is_structural_X(key) : b == UInt8('T') ? is_structural_T(key) : b == UInt8('E') ? is_structural_E(key) : b == UInt8('P') ? is_structural_P(key) : b == UInt8('G') ? is_structural_G(key) : false end # Yeild whether key is a structural key starting with a `T`, a `E`, etc. is_structural_B(key::FitsKey) = (key === Fits"BITPIX") is_structural_S(key::FitsKey) = (key === Fits"SIMPLE") is_structural_E(key::FitsKey) = (key === Fits"EXTEND") | (key === Fits"END") is_structural_X(key::FitsKey) = (key === Fits"XTENSION") is_structural_P(key::FitsKey) = (key === Fits"PCOUNT") is_structural_G(key::FitsKey) = (key === Fits"GCOUNT") is_structural_N(key::FitsKey) = is_naxis(key) is_structural_T(key::FitsKey) = begin key === Fits"TFIELDS" && return true mask = (is_little_endian() ? 0x000000FFFFFFFFFF : 0xFFFFFFFFFF000000) root = (key.val & mask) if (root == (Fits"TFORM".val & mask)) | (root == (Fits"TTYPE".val & mask)) # Get the 3 trailing bytes. b1, b2, b3 = if is_little_endian() (key.val >> 40) % UInt8, (key.val >> 48) % UInt8, (key.val >> 56) % UInt8 else (key.val >> 16) % UInt8, (key.val >> 8) % UInt8, (key.val ) % UInt8 end return is_indexed(b1, b2, b3) end mask = (is_little_endian() ? 0x00000000FFFFFFFF : 0xFFFFFFFF00000000) if (key.val & mask) == (Fits"TDIM".val & mask) # Get the 4 trailing bytes. b1, b2, b3, b4 = if is_little_endian() (key.val >> 32) % UInt8, (key.val >> 40) % UInt8, (key.val >> 48) % UInt8, (key.val >> 56) % UInt8 else (key.val >> 24) % UInt8, (key.val >> 16) % UInt8, (key.val >> 8) % UInt8, (key.val ) % UInt8 end # NOTE: Last byte must be a space because the maximum number of columns # is 999. return is_space(b4) && is_indexed(b1, b2, b3) end return false end """ FITSHeaders.Parser.is_indexed(b...) yields whether trailing bytes `b...` of a FITS keyword indicate an indexed keyword. """ is_indexed() = false is_indexed(b1::UInt8) = is_digit(b1) @inline is_indexed(b1::UInt8, b2::UInt8...) = is_indexed(b1) & (is_space(b2...) | is_indexed(b2...)) """ FITSHeaders.is_comment(A::Union{FitsCardType,FitsCard}) yields whether `A` indicates a, possibly non-standard, commentary FITS keyword. FITSHeaders.is_comment(key::FitsKey) yields whether `key` is `Fits"COMMENT"` or `Fits"HISTORY"` which corresponds to a standard commentary FITS keyword. """ is_comment(key::FitsKey) = (key == Fits"COMMENT") | (key == Fits"HISTORY") is_comment(type::FitsCardType) = type === FITS_COMMENT """ FITSHeaders.is_naxis(A::Union{FitsKey,FitsCard}) yields whether `A` is a FITS "NAXIS" or "NAXIS#" keyword or card with`#` denoting a decimal number. """ function is_naxis(key::FitsKey) mask = (is_little_endian() ? 0x000000FFFFFFFFFF : 0xFFFFFFFFFF000000) if (key.val & mask) == (Fits"NAXIS".val & mask) # Get the 3 trailing bytes. b1, b2, b3 = if is_little_endian() (key.val >> 40) % UInt8, (key.val >> 48) % UInt8, (key.val >> 56) % UInt8 else (key.val >> 16) % UInt8, (key.val >> 8) % UInt8, (key.val ) % UInt8 end return is_space(b1) ? is_space(b2, b3) : is_indexed(b1, b2, b3) end return false end """ FITSHeaders.is_end(A::Union{FitsKey,FitsCardType,FitsCard}) yields whether `A` indicates the END FITS keyword. """ is_end(key::FitsKey) = (key == Fits"END") is_end(type::FitsCardType) = type === FITS_END for sym in (:logical, :integer, :float, :string, :complex) parse_func = Symbol("parse_$(sym)_value") try_parse_func = Symbol("try_parse_$(sym)_value") mesg = "failed to parse value of $sym FITS card" @eval begin @inline function $parse_func(buf::ByteBuffer, rng::AbstractUnitRange{Int}) val = $try_parse_func(buf, rng) isnothing(val) && throw(ArgumentError($mesg)) return val end $try_parse_func(buf::ByteBuffer) = @inbounds $try_parse_func(buf, byte_index_range(buf)) end end function try_parse_logical_value(buf::ByteBuffer, rng::AbstractUnitRange{Int}) i = first(rng) last(rng) == i || return nothing @boundscheck check_byte_index(buf, i) @inbounds b = get_byte(buf, i) return equal(b, 'T') ? true : equal(b, 'F') ? false : nothing end function try_parse_integer_value(buf::ByteBuffer, rng::AbstractUnitRange{Int}) len = length(rng) len > 0 || return nothing @boundscheck check_byte_index(buf, rng) @inbounds begin # Proceed as if the value was negative to avoid overflows, because # abs(typemin(Int)) > typemax(Int). i_first, i_last = first(rng), last(rng) b = get_byte(buf, i_first) negate = true if equal(b, '-') negate = false i_first += 1 elseif equal(b, '+') i_first += 1 end i_first ≤ i_last || return nothing # no digits val = zero(FitsInteger) off = oftype(val, '0') ten = oftype(val, 10) for i in i_first:i_last b = get_byte(buf, i) is_digit(b) || return nothing val = ten*val - (oftype(val, b) - off) val ≤ zero(val) || return nothing # integer overflow end return negate ? -val : val end end # Replace 'd' or 'D' by 'e' and leave other characters unchanged. filter_character_in_float_value(c::Union{UInt8,Char}) = ifelse(equal(c, 'D')|equal(c, 'd'), oftype(c, 'e'), c) function try_parse_float_value(buf::ByteBuffer, rng::AbstractUnitRange{Int}) len = length(rng) len > 0 || return nothing @boundscheck check_byte_index(buf, rng) # Use a temporary array to copy the range of bytes replacing 'd' and 'D' by 'e'. wrk = StringVector(len) off = first(rng) - firstindex(wrk) @inbounds for i in eachindex(wrk) wrk[i] = filter_character_in_float_value(get_byte(buf, off + i)) end return tryparse(FitsFloat, String(wrk)) end function try_parse_string_value(buf::ByteBuffer, rng::AbstractUnitRange{Int}) len = length(rng) len > 0 || return nothing @boundscheck check_byte_index(buf, rng) @inbounds begin # Check whether we do have a quoted string. i_first, i_last = first(rng), last(rng) (len ≥ 2 && is_quote(get_byte(buf, i_first)) && is_quote(get_byte(buf, i_last))) || return nothing i_first += 1 # remove opening quote i_last -= 1 # remove closing quote # Get rid of trailing spaces. while i_last ≥ i_first && is_space(get_byte(buf, i_last)) i_last -= 1 end i_last ≥ i_first || return EMPTY_STRING # Copy the string into a temporary buffer taking care of escaped # quotes. Trailing spaces have already been stripped, so it is not # necessary to treat spaces specially. # # NOTE: We cannot use a simple for-loop because indices may have to be # incremented inside the loop. wrk = StringVector(i_last - i_first + 1) i = i_first - 1 j = firstindex(wrk) - 1 while i < i_last b = get_byte(buf, i += 1) if is_quote(b) # Next character must aslo be a quote. i < i_last || return nothing # error b = get_byte(buf, i += 1) is_quote(b) || return nothing # error end wrk[j += 1] = b end len = j - firstindex(wrk) + 1 len > 0 || return EMPTY_STRING return String(resize!(wrk, len)) end end function try_parse_complex_value(buf::ByteBuffer, rng::AbstractUnitRange{Int}) len = length(rng) len > 0 || return nothing @boundscheck check_byte_index(buf, rng) @inbounds begin # Check whether we do have a string like "(re,im)", hence with at least # 5 characters, starting with '(' and ending with ')'. i_first, i_last = first(rng), last(rng) (len ≥ 5 && is_opening_parenthesis(get_byte(buf, i_first)) && is_closing_parenthesis(get_byte(buf, i_last))) || return nothing i_first += 1 # remove opening parenthesis i_last -= 1 # remove closing parenthesis # Search for the ',' separator and parse the real and imaginary parts. for i ∈ i_first:i_last if equal(get_byte(buf, i += 1), ',') re = @inbounds try_parse_float_value(buf, i_first : i - 1) re === nothing && break im = @inbounds try_parse_float_value(buf, i + 1 : i_last) im === nothing && break return FitsComplex(re, im) end end return nothing end end """ FITSHeaders.Parser.make_string(buf, rng) -> str::String yields a string from the bytes of `buf` in the range of indices `rng`. """ @inline function make_string(buf::ByteBuffer, rng::AbstractUnitRange{Int}) len = length(rng) iszero(len) && return EMPTY_STRING @boundscheck check_byte_index(buf, rng) return unsafe_make_string(PointerCapability(buf), buf, rng) end function unsafe_make_string(::PointerFull, buf::ByteBuffer, rng::AbstractUnitRange{Int}) # Directly build a string from the buffer. len = length(rng) off = first(rng) - 1 obj = Base.cconvert(Ptr{UInt8}, buf) # object to be preserved ptr = Base.unsafe_convert(Ptr{UInt8}, obj) + off return GC.@preserve obj unsafe_string(ptr, len) end function unsafe_make_string(::PointerCapability, buf::ByteBuffer, rng::AbstractUnitRange{Int}) # Use a temporary workspace to copy the range of bytes. len = length(rng) wrk = StringVector(len) off = first(rng) - firstindex(wrk) @inbounds for i in eachindex(wrk) wrk[i] = get_byte(buf, off + i) end return String(wrk) end """ FITSHeaders.Parser.scan_card(A, off=0) -> type, key, name_rng, val_rng, com_rng parses a FITS header card `A` as it is written in a FITS file. `A` may be a string or a vector of bytes. Optional argument `off` is an offset in bytes where to start the parsing. At most, $FITS_CARD_SIZE bytes after `off` are considered in `A` which may thus belong to a larger piece of data (e.g., a FITS header). The result is a 5-tuple: - `type::FitsCardType` is the type of the card value. - `key::FitsKey` is the quick key corresponding to the short keyword of the card. - `name_rng` is the range of bytes containing the keyword name without trailing spaces. - `val_rng` is the range of bytes containing the unparsed value part, without leading and trailing spaces but with parenthesis or quote delimiters for a complex or a string card. This range is empty for a commentary card, the `END` card, or if the card has an undefined value. - `com_rng` is the range of bytes containing the comment part without non-significant spaces. """ function scan_card(buf::ByteBuffer, off::Int = 0) off ≥ 0 || throw(ArgumentError("offset must be nonnegative")) i_first = off + first_byte_index(buf) i_last = min(last_byte_index(buf), i_first - 1 + FITS_CARD_SIZE) if i_first > i_last # Empty range, return the parameters of an END card to reflect that # except that the name range is empty. rng = empty_range(i_first) return FITS_END, Fits"END", rng, rng, rng end @inbounds begin # NOTE: above settings warrant that key, name_rng, i_next = scan_keyword_part(buf, i_first:i_last) if !is_comment(key) # May be a non-commentary FITS card. if key == Fits"END" # Remaining part shall contains only spaces com_rng = trim_leading_spaces(buf, i_next:i_last) isempty(com_rng) || nonspace_in_end_card(get_byte(buf, first(com_rng))) val_rng = empty_range(i_last) return FITS_END, key, name_rng, val_rng, com_rng elseif i_first ≤ i_next ≤ i_last - 1 && is_equals_sign(get_byte(buf, i_next)) && is_space(get_byte(buf, i_next + 1)) # Value marker found, scan for the value and comment parts. type, val_rng, com_rng = scan_value_comment_parts(buf, i_next+2:i_last) return type, key, name_rng, val_rng, com_rng end end # Commentary card: no value and a comment in bytes 9-80. val_rng = empty_range(i_next) com_rng = trim_trailing_spaces(buf, i_next:i_last) return FITS_COMMENT, key, name_rng, val_rng, com_rng end end """ FITSHeaders.Parser.scan_short_keyword_part(A, rng) -> name_rng scans the first bytes of `A` in the index range `rng` for a valid short FITS keyword and returns the index range to this keyword. A short FITS keyword consists in, at most, $FITS_SHORT_KEYWORD_SIZE ASCII characters from the restricted set of upper case letters (bytes 0x41 to 0x5A), decimal digits (hexadecimal codes 0x30 to 0x39), hyphen (hexadecimal code 0x2D), or underscore (hexadecimal code 0x5F). Trailing spaces are ignored. The following relations hold: first(name_rng) == first(rng) length(name_rng) ≤ min(length(rng), $FITS_SHORT_KEYWORD_SIZE) In case scanning shall be pursued, the next token to scan starts at or after index: i_next = first(name_rng) + $FITS_SHORT_KEYWORD_SIZE """ @inline function scan_short_keyword_part(buf::ByteBuffer, rng::AbstractUnitRange{Int}) @boundscheck check_byte_index(buf, rng) @inbounds begin i_first = first(rng) i_last = min(i_first + (FITS_SHORT_KEYWORD_SIZE - 1), last(rng)) nspaces = 0 for i in i_first:i_last b = get_byte(buf, i) if is_space(b) nspaces += 1 elseif is_keyword(b) iszero(nspaces) || bad_character_in_keyword(' ') else bad_character_in_keyword(b) end end return i_first : i_last - nspaces end end """ FITSHeaders.Parser.scan_keyword_part(A, rng) -> key, name_rng, i_next parses a the keyword part of FITS header card stored in bytes `rng` of `A`. Returns `key` the keyword quick key, `name_rng` the byte index range for the keyword name (with leading "HIERARCH "` and trailing spaces removed), and `i_next` the index of the first byte where next token (value marker of comment) may start. """ function scan_keyword_part(buf::ByteBuffer, rng::AbstractUnitRange{Int}) # Scan for the short FITS keyword part. name_rng = scan_short_keyword_part(buf, rng) # Retrieve limits for byte indices and index of next token assuming a short # FITS keyword for now. i_first, i_last = first(rng), last(rng) i_next = i_first + FITS_SHORT_KEYWORD_SIZE # NOTE: scan_short_keyword_part() has already checked the range for us. @inbounds begin # Compute fast code equivalent to the short FITS keyword. off = i_first - 1 key = off + FITS_SHORT_KEYWORD_SIZE ≤ i_last ? FitsKey(Val(:full), buf, off) : FitsKey(Val(:pad), buf, off, i_last) if key == Fits"HIERARCH" && i_first ≤ i_next ≤ i_last - 2 && is_space(get_byte(buf, i_next)) # Parse HIERARCH keyword. Errors are deferred until the value # marker "= " is eventually found. i_error = i_first - 1 # index of first bad character nspaces = 1 # to count consecutive spaces i_mark = i_first - 1 # index where long FITS keyword may end for i in i_next+1:i_last b = get_byte(buf, i) if is_space(b) nspaces += 1 elseif is_keyword(b) # Update last index of long keyword to that of the last non-space. i_mark = i if (nspaces > 1) & (i_error < i_first) # Having more than one consecutive space is forbidden. i_error = i end nspaces = 0 elseif is_equals_sign(b) if i_mark ≥ i_first && i < i_last && is_space(get_byte(buf, i+1)) # Value marker found. The index for the next token is # that of the = sign. if i_error ≥ i_first # Some illegal character was found. bad_character_in_keyword(get_byte(buf, i_error)) end return key, i_first:i_mark, i else # This is not a long keyword, it will result in a # commentary HIERARCH card. break end elseif i_error < i_first i_error = i end end end end # Short FITS keyword. return key, name_rng, i_next end """ FITSHeaders.Parser.full_name(pfx, name::AbstractString) yields `"HIERARCH "*name` if `pfx` is true, `name` otherwise. The result is a `String`. """ full_name(pfx::Bool, name::AbstractString)::String = pfx ? "HIERARCH "*name : String(name) """ FITSHeaders.keyword(name) -> full_name yields the full FITS keyword corresponding to `name`, throwing an exception if `name` is not a valid FITS keyword. The result is equal to either `name` or to `"HIERARCH "*name`. Examples: ``` jldoctest julia> FITSHeaders.keyword("GIZMO") "GIZMO" julia> FITSHeaders.keyword("HIERARCH GIZMO") "HIERARCH GIZMO" julia> FITSHeaders.keyword("GIZ MO") "HIERARCH GIZ MO" julia> FITSHeaders.keyword("VERYLONGNAME") "HIERARCH VERYLONGNAME" ``` where the 1st one is a short FITS keyword (with less than $FITS_SHORT_KEYWORD_SIZE characters), the 3rd one is explictely a `HIERARCH` keyword, while the 3rd and 4th ones are automatically turned into `HIERARCH` keywords because the 3rd one contains a space and because the 4th one is longer than $FITS_SHORT_KEYWORD_SIZE characters. See also [`FITSHeaders.check_keyword`](@ref) and [`FITSHeaders.Parser.full_name`](@ref). """ keyword(name::Symbol) = keyword(String(name)) function keyword(name::AbstractString) c = try_parse_keyword(name) c isa Char && bad_character_in_keyword(c) key, pfx = c return full_name(pfx, name) end """ FITSHeaders.check_keyword(name) -> key, full_name checks the FITS keyword `name` and returns the corresponding quick key and full keyword name throwing an exception if `name` is not a valid FITS keyword. The full keyword name is a `string` instance either equal to `name` or to `"HIERARCH "*name`. See also [`FITSHeaders.keyword`](@ref), [`FITSHeaders.parse_keyword`](@ref), and [`FITSHeaders.Parser.full_name`](@ref). """ check_keyword(name::Symbol) = check_keyword(String(name)) function check_keyword(name::AbstractString) c = try_parse_keyword(name) c isa Char && bad_character_in_keyword(c) key, pfx = c return key, full_name(pfx, name) end """ FITSHeaders.try_parse_keyword(str) parses the FITS keyword given by string `str`. In case of parsing error, the result is the first illegal character encountered in `str`. Otherwise, the result is the 2-tuple `(key,pfx)` with `key` the quick key of the keyword and `pfx` a boolean indicating whether the `"HIERARCH "` prefix should be prepended to `str` to form the full keyword name. If the string has more than $FITS_SHORT_KEYWORD_SIZE characters or if any single space separator occurs in the string, a `HIERARCH` keyword is assumed even though the string does not start with `"HIERARCH "`. Leading and trailing spaces are not allowed. The returned `key` is `Fits"HIERARCH"` in 4 cases: - The string starts with `"HIERARCH "` followed by a name, possibly split in several words and possibly longer than $FITS_SHORT_KEYWORD_SIZE characters, `pfx` is `false`. - The string does not starts with `"HIERARCH "` but consists in at least two space-separated words, `pfx` is true. - The string does not starts with `"HIERARCH "` but is longer than $FITS_SHORT_KEYWORD_SIZE characters, `pfx` is true. - The string is `"HIERARCH"`, `pfx` is `false`. """ function try_parse_keyword(str::Union{String,SubString{String}}) # NOTE: `str` is encoded in UTF-8 with codeunits that are bytes. Since FITS # keywords must only consist in restricted ASCII characters (bytes less or # equal that 0x7F), we can access the string as a vector of bytes. # Moreover, if an illegal codeunit is encountered, its index is also the # correct index of the offending ASCII (byte less or equal that 0x7F) or # UTF8 character (byte greater that 0x7F). @inbounds begin # Compute quick key of the short FITS keyword, this is a cheap way to # figure out whether the sequence of bytes starts with "HIERARCH". This # does not check for the validity of the leading bytes, unless the key # is Fits"HIERARCH". len = ncodeunits(str) key = len ≥ FITS_SHORT_KEYWORD_SIZE ? FitsKey(Val(:full), str, 0) : FitsKey(Val(:pad), str, 0, len) any_space = false # any space found so far? pfx = false # must add "HIERARCH " prefix? i = 1 # starting index if key == Fits"HIERARCH" # String starts with "HIERARCH". There are 3 possibilities: # # 1. The string is exactly "HIERARCH". # # 2. The string starts with "HIERARCH " and is thus a regular # HIERARCH keyword. # # 2. The string starts with "HIERARCHx" where x is any valid # non-space character. The string is thus too long to be a # simple FITS keyword and the HIERARCH convention must be used. # The prefix "HIERARCH " must be prepended for that. # # Which of these apply requires to look at next character. In any # case, the leading FITS_SHORT_KEYWORD_SIZE bytes are valid, so we # increment index i to not re-check this part. i += FITS_SHORT_KEYWORD_SIZE # If at least one more byte is available, we are in cases 2 or 3; in # case 1 otherwise. if i ≤ len b = get_byte(str, i) if is_space(b) # Case 2: the sequence starts with "HIERARCH ". any_space = true elseif is_keyword(b) # Case 3: the keyword is too long and a "HIERARCH " prefix # must be prepended. pfx = true else return str[i] # illegal character end i += 1 end elseif len ≥ 1 # We must verify that the first byte is valid (not a space). b = get_byte(str, i) is_keyword(b) || return str[i] # illegal character i += 1 # A long keyword implies using the HIERARCH convention. if len > FITS_SHORT_KEYWORD_SIZE key = Fits"HIERARCH" pfx = true end end # Check remaining bytes. while i ≤ len b = get_byte(str, i) if is_space(b) # It is an error to have 2 or more consecutive spaces. any_space && return str[i] # illegal character any_space = true # Keyword must be a HIERARCH one because it has at least one # space separator. If this was not already detected, the # "HIERARCH " is missing. if key != Fits"HIERARCH" key = Fits"HIERARCH" pfx = true end elseif is_keyword(b) # Not a space. any_space = false else return str[i] # illegal character end i += 1 end any_space && return ' ' # illegal character return key, pfx end end """ FITSHeaders.Parser.scan_value_comment_parts(buf, rng) -> type, val_rng, com_rng scans the range `rng` of bytes to find the value and comment of a FITS card stored in `buf`. If `rng` is not empty, `first(rng)` shall be the index of the first byte where the value may be found, that is right after the value indicator `"= "`, and `last(rng)` shall be the index of the last byte to scan. For speed, these are not checked. The result is a tuple with `type` the type of the FITS card value, `val_rng` the index range for the unparsed value part, and `com_rng` the index range of the comment part without leading spaces. """ function scan_value_comment_parts(buf::ByteBuffer, rng::AbstractUnitRange{Int}) # Skip leading spaces. i, k = first(rng), last(rng) @inbounds while i ≤ k && is_space(get_byte(buf, i)) i += 1 end if i > k # There were only spaces: the value is undefined and the comment is # empty. return FITS_UNDEFINED, i:k, i:k end # Guess card type based on first non-space byte. b = get_byte(buf, i) if starts_number(b) # Integer or float value. type = equal(b, '.') ? FITS_FLOAT : FITS_INTEGER for j in i+1:k b = get_byte(buf, j) if is_digit(b) continue elseif is_space(b) | is_comment_separator(b) return type, i:j-1, scan_comment_part(buf, j:k) else type = FITS_FLOAT end end # Value with no comment. return type, i:k, k+1:k elseif is_quote(b) # Quoted string value. Find the closing quote. NOTE: The search loop # cannot be a for-loop because running index j has to be incremented # twice when an escaped quote is encountered. j = i while j < k j += 1 if is_quote(get_byte(buf, j)) j += 1 if j > k || !is_quote(get_byte(buf, j)) # Closing quote found. return FITS_STRING, i:j-1, scan_comment_part(buf, j:k) end end end error("no closing quote in string value of FITS header card") elseif equal(b, 'F') | equal(b, 'T') return FITS_LOGICAL, i:i, scan_comment_part(buf, i+1:k) elseif is_opening_parenthesis(b) # Complex value. for j in i+1:k if is_closing_parenthesis(get_byte(buf, j)) return FITS_COMPLEX, i:j, scan_comment_part(buf, j+1:k) end end error("no closing parenthesis in complex value of FITS header card") elseif is_comment_separator(b) # Comment marker found before value, the value is undefined. return FITS_UNDEFINED, i:i-1, scan_comment_part(buf, i:k) else error("unexpected character in FITS header card") end end """ FITSHeaders.Parser.scan_comment_part(buf, rng) -> com_rng scans the range `rng` of bytes to find the comment part of a FITS card stored in `buf`. If `rng` is not empty, `first(rng)` shall be the index of the first byte where the comment separator may be found, that is right after the last byte of the value part, and `last(rng)` shall be the index of the last byte to scan. For speed, these are not checked. The result is the index range for the comment part. This method honors the bound-checking state. """ @inline function scan_comment_part(buf::ByteBuffer, rng::AbstractUnitRange{Int}) @boundscheck check_byte_index(buf, rng) @inbounds begin # Find beginning of comment skipping all spaces before and after the # comment separator. i_first, i_last = first(rng), last(rng) while i_first ≤ i_last b = get_byte(buf, i_first) i_first += 1 if is_comment_separator(b) # Skip spaces after the comment separator. while i_first ≤ i_last && is_space(get_byte(buf, i_first)) i_first += 1 end # Skip trailing spaces. while i_last ≥ i_first && is_space(get_byte(buf, i_last)) i_last -= 1 end return i_first:i_last elseif !is_space(b) error("non-space before comment separator in FITS header card") end end return empty_range(i_first) end end # Units in comments. function scan_units_marks(str::Union{String,SubString{String}}) @inbounds begin # It is assumed that leading spaces have been trimmed. i_first, i_last = first_byte_index(str), last_byte_index(str) if i_first ≤ i_last && get_byte(str, i_first) == UInt8('[') i = i_first while i < i_last i += 1 if get_byte(str, i) == UInt8(']') return i_first:i end end end return empty_range(i_first) # yields i_first:i_first-1 end end # Yields the units part of a parsed comment. function get_units_part(str::Union{String,SubString{String}}) @inbounds begin rng = scan_units_marks(str) i_first, i_last = first(rng), last(rng) if i_first < i_last # is there at least 2 bytes (ASCII characters)? i_first += 1 # skip opening [ i_last -= 1 # skip closing ] # Trim leading spaces. while i_first ≤ i_last && is_space(get_byte(str, i_first)) i_first += 1 end # Trim trailing spaces. while i_first ≤ i_last && is_space(get_byte(str, i_last)) i_last -= 1 end if i_first ≤ i_last return SubString(str, i_first, i_last) end end return SubString(str, empty_range(first(rng))) end end # Yields the unitless part of a parsed comment. function get_unitless_part(str::Union{String,SubString{String}}) @inbounds begin rng = scan_units_marks(str) i_first, i_last = first(rng), last(rng) if i_first > i_last # No units. return SubString(str, first_byte_index(str), last_byte_index(str)) else # There are units. # # NOTE: In fact, scan_units_marks() warrants that last(rng)+1 is # always the first byte of the unitless part whether there # are units or not, so the code could be simplified. i_first = i_last + 1 i_last = last_byte_index(str) # Trim leading spaces. while i_first ≤ i_last && is_space(get_byte(str, i_first)) i_first += 1 end if i_first > i_last # Empty unitless part. i_first = first_byte_index(str) i_last = i_first - 1 end return SubString(str, i_first, i_last) end end end """ FITSHeaders.Parser.trim_leading_spaces(buf[, rng]) -> sub_rng yields the range `sub_rng` of byte indices in `buf` (a string or a vector of bytes) without the leading spaces in `buf`. Optional argument `rng` is to specify the range of byte indices to consider in `buf`. If `rng` is not provided, all the bytes of `buf` are considered. If `rng` is provided, `sub_rng` is such that: first(sub_rng) ≥ first(rng) last(sub_rng) == last(rng) """ trim_leading_spaces @inline function unsafe_trim_leading_spaces(buf::ByteBuffer, rng::AbstractUnitRange{Int}) i_first, i_last = first(rng), last(rng) @inbounds while i_first ≤ i_last && is_space(get_byte(buf, i_first)) i_first += 1 end return i_first:i_last end """ FITSHeaders.Parser.trim_trailing_spaces(buf[, rng]) -> sub_rng yields the range `sub_rng` of byte indices in `buf` (a string or a vector of bytes) without the trailing spaces in `buf`. Optional argument `rng` is to specify the range of byte indices to consider in `buf`. If `rng` is not provided, all the bytes of `buf` are considered. If `rng` is provided, `sub_rng` is such that: first(sub_rng) == first(rng) last(sub_rng) ≤ last(rng) """ trim_trailing_spaces @inline function unsafe_trim_trailing_spaces(buf::ByteBuffer, rng::AbstractUnitRange{Int}) i_first, i_last = first(rng), last(rng) @inbounds while i_last ≥ i_first && is_space(get_byte(buf, i_last)) i_last -= 1 end return i_first:i_last end # Implement higher level "safe" methods. for func in (:trim_leading_spaces, :trim_trailing_spaces) unsafe_func = Symbol("unsafe_$func") @eval begin $func(buf::ByteBuffer) = $unsafe_func(buf, byte_index_range(buf)) function $func(buf::ByteBuffer, rng::AbstractUnitRange{Int}) @boundscheck check_byte_index(buf, rng) return $unsafe_func(buf, rng) end end end # Human readable Representation of a character. repr_char(b::UInt8) = is_restricted_ascii(b) ? repr(Char(b)) : repr(b) repr_char(c::Char) = (is_restricted_ascii(c) || ! isascii(c)) ? repr(c) : repr(UInt8(c)) @noinline nonspace_in_end_card(c::Union{Char,UInt8}) = error("invalid non-space character $(repr_char(c)) in FITS END card") @noinline bad_character_in_keyword(c::Union{Char,UInt8}) = is_space(c) ? error("extra space character in FITS keyword") : error("invalid character $(repr_char(c)) in FITS keyword") end # module
FITSHeaders
https://github.com/emmt/FITSHeaders.jl.git
[ "MIT" ]
0.4.1
5a8540e7601cbd07f583ef49e01fdaca32b9c171
code
1867
module BenchmarkingFITSHeaders using FITSHeaders using BenchmarkTools let s = "SIMPLE = T / this is a FITS file " print("- parsing logical FITS card: ") @btime FitsCard($s) end let s = "BITPIX = -32 / number of bits per data pixel " print("- parsing integer FITS card: ") @btime FitsCard($s) end let s = "HIERARCH ESO OBS EXECTIME = +2919 / Expected execution time " print("- parsing HIERARCH FITS card:") @btime FitsCard($s) end let s = "CRVAL3 = 0.96 / CRVAL along 3rd axis " print("- parsing float FITS card: ") @btime FitsCard($s) end let s = "COMPLEX = (-2.7,+3.1d5) / some other complex value " print("- parsing complex FITS card: ") @btime FitsCard($s) end let s = "EXTNAME = 'SCIDATA ' / a simple string " print("- parsing string FITS card: ") @btime FitsCard($s) end let s = "REMARK = 'Joe''s taxi' / a string with an embedded quote " print("- parsing string with quotes:") @btime FitsCard($s) end let s = "COMMENT Some comments (with leading spaces that should not be removed) " print("- parsing COMMENT FITS card: ") @btime FitsCard($s) end let s = "HISTORY A new history starts here... " print("- parsing HISTORY FITS card: ") @btime FitsCard($s) end let s = " " print("- parsing blank FITS card: ") @btime FitsCard($s) end let s = "END " print("- parsing END FITS card: ") @btime FitsCard($s) end end # module
FITSHeaders
https://github.com/emmt/FITSHeaders.jl.git
[ "MIT" ]
0.4.1
5a8540e7601cbd07f583ef49e01fdaca32b9c171
code
62294
module TestingFITSHeaders using TypeUtils using Dates using Test using FITSHeaders using FITSHeaders: FitsInteger, FitsFloat, FitsComplex, is_structural, is_comment, is_naxis, is_end @static if ENDIAN_BOM == 0x04030201 const BYTE_ORDER = :little_endian order_bytes(x) = bswap(x) elseif ENDIAN_BOM == 0x01020304 const BYTE_ORDER = :big_endian order_bytes(x) = x else error("unsupported byte order") end # Returns is only defined for Julia ≥ 1.7 struct Returns{V} <: Function; val::V; end (obj::Returns)(args...; kwds...) = obj.val make_FitsKey(str::AbstractString) = FitsKey(reinterpret(UInt64,UInt8[c for c in str])[1]) function make_byte_vector(str::AbstractString) @assert codeunit(str) === UInt8 vec = Array{UInt8}(undef, ncodeunits(str)) I, = axes(vec) k = firstindex(str) - first(I) for i in I vec[i] = codeunit(str, i + k) end return vec end function make_discontinuous_byte_vector(str::AbstractString) @assert codeunit(str) === UInt8 arr = Array{UInt8}(undef, 2, ncodeunits(str)) I, J = axes(arr) i = last(I) k = firstindex(str) - first(J) for j in J arr[i,j] = codeunit(str, j + k) end return view(arr, i, :) end _load(::Type{T}, buf::Vector{UInt8}, off::Integer = 0) where {T} = GC.@preserve buf unsafe_load(Base.unsafe_convert(Ptr{T}, buf) + off) _store!(::Type{T}, buf::Vector{UInt8}, x, off::Integer = 0) where {T} = GC.@preserve buf unsafe_store!(Base.unsafe_convert(Ptr{T}, buf) + off, as(T, x)) @testset "FITSHeaders.jl" begin @testset "Assertions" begin # Check that `unsafe_load` and `unsafe_store!` are unaligned operations # and that in `pointer + offset` expression the offset is in bytes (not # in number of elements). let buf = UInt8[b for b in 0x00:0xFF], ptr = Base.unsafe_convert(Ptr{UInt64}, buf) @test _load(UInt64, buf, 0) === order_bytes(0x0001020304050607) @test _load(UInt64, buf, 1) === order_bytes(0x0102030405060708) @test _load(UInt64, buf, 2) === order_bytes(0x0203040506070809) @test _load(UInt64, buf, 3) === order_bytes(0x030405060708090A) @test _load(UInt64, buf, 4) === order_bytes(0x0405060708090A0B) @test _load(UInt64, buf, 5) === order_bytes(0x05060708090A0B0C) @test _load(UInt64, buf, 6) === order_bytes(0x060708090A0B0C0D) @test _load(UInt64, buf, 7) === order_bytes(0x0708090A0B0C0D0E) val = order_bytes(0x0102030405060708) for i in 0:7 _store!(UInt64, fill!(buf, 0x00), val, i) for j in 0:7 @test _load(UInt64, buf, j) === (val >> (8*(j - i))) end end end @test sizeof(FitsKey) == 8 @test FITS_SHORT_KEYWORD_SIZE == 8 @test FITS_CARD_SIZE == 80 @test FITS_BLOCK_SIZE == 2880 end @testset "FitsCardType" begin @test FitsCardType(Bool) === FITS_LOGICAL @test FitsCardType(Int16) === FITS_INTEGER @test FitsCardType(Float32) === FITS_FLOAT @test FitsCardType(ComplexF64) === FITS_COMPLEX @test FitsCardType(String) === FITS_STRING @test FitsCardType(Nothing) === FITS_COMMENT @test FitsCardType(UndefInitializer) === FITS_UNDEFINED @test FitsCardType(Missing) === FITS_UNDEFINED end @testset "Keywords" begin @test iszero(FitsKey()) @test zero(FitsKey()) === FitsKey() @test zero(FitsKey) === FitsKey() @test convert(Integer, FitsKey()) === zero(UInt64) @test convert(FitsKey, 1234) === FitsKey(1234) @test convert(FitsKey, FitsKey(1234)) === FitsKey(1234) @test UInt64(FitsKey()) === zero(UInt64) @test Fits"SIMPLE" == make_FitsKey("SIMPLE ") @test Fits"SIMPLE" === make_FitsKey("SIMPLE ") @test Fits"BITPIX" === make_FitsKey("BITPIX ") @test Fits"NAXIS" === make_FitsKey("NAXIS ") @test Fits"COMMENT" === make_FitsKey("COMMENT ") @test Fits"HISTORY" === make_FitsKey("HISTORY ") @test Fits"HIERARCH" === make_FitsKey("HIERARCH") @test Fits"" === make_FitsKey(" ") @test Fits"END" === make_FitsKey("END ") @test String(Fits"") == "" @test String(Fits"SIMPLE") == "SIMPLE" @test String(Fits"HIERARCH") == "HIERARCH" @test repr(Fits"") == "Fits\"\"" @test repr(Fits"SIMPLE") == "Fits\"SIMPLE\"" @test repr(Fits"HIERARCH") == "Fits\"HIERARCH\"" @test repr("text/plain", Fits"") == "Fits\"\"" @test repr("text/plain", Fits"SIMPLE") == "Fits\"SIMPLE\"" @test repr("text/plain", Fits"HIERARCH") == "Fits\"HIERARCH\"" @test string(FitsKey()) == "FitsKey(0x0000000000000000)" @test string(Fits"SIMPLE") == "Fits\"SIMPLE\"" @test string(Fits"HISTORY") == "Fits\"HISTORY\"" @test_throws Exception FITSHeaders.keyword("SIMPLE#") @test_throws Exception FITSHeaders.keyword(" SIMPLE") @test_throws Exception FITSHeaders.keyword("SIMPLE ") @test_throws Exception FITSHeaders.keyword("SImPLE") @test_throws Exception FITSHeaders.keyword("TOO MANY SPACES") @test_throws Exception FITSHeaders.keyword("HIERARCH A") # more than one space @test_throws Exception FITSHeaders.keyword("HIERARCH+ A") # invalid character # Short FITS keywords. @test FITSHeaders.try_parse_keyword("SIMPLE") == (Fits"SIMPLE", false) @test FITSHeaders.keyword("SIMPLE") == "SIMPLE" @test FITSHeaders.keyword(:SIMPLE) == "SIMPLE" @test FITSHeaders.try_parse_keyword("HISTORY") == (Fits"HISTORY", false) @test FITSHeaders.keyword("HISTORY") == "HISTORY" # Keywords longer than 8-characters are HIERARCH ones. @test FITSHeaders.try_parse_keyword("LONG-NAME") == (Fits"HIERARCH", true) @test FITSHeaders.keyword("LONG-NAME") == "HIERARCH LONG-NAME" @test FITSHeaders.try_parse_keyword("HIERARCHY") == (Fits"HIERARCH", true) @test FITSHeaders.keyword("HIERARCHY") == "HIERARCH HIERARCHY" # Keywords starting by "HIERARCH " are HIERARCH ones. for key in ("HIERARCH GIZMO", "HIERARCH MY GIZMO", "HIERARCH MY BIG GIZMO") @test FITSHeaders.try_parse_keyword(key) == (Fits"HIERARCH", false) @test FITSHeaders.keyword(key) === key # should return the same object end # Keywords with multiple words are HIERARCH ones whatever their lengths. for key in ("A B", "A B C", "SOME KEY", "TEST CASE") @test FITSHeaders.try_parse_keyword(key) == (Fits"HIERARCH", true) @test FITSHeaders.keyword(key) == "HIERARCH "*key end # The following cases are consequences of the implemented scanner. @test FITSHeaders.try_parse_keyword("HIERARCH") == (Fits"HIERARCH", false) @test FITSHeaders.keyword("HIERARCH") == "HIERARCH" @test FITSHeaders.try_parse_keyword("HIERARCH SIMPLE") == (Fits"HIERARCH", false) @test FITSHeaders.keyword("HIERARCH SIMPLE") == "HIERARCH SIMPLE" @test is_structural(Fits"SIMPLE") @test is_structural(Fits"BITPIX") @test is_structural(Fits"NAXIS") @test is_structural(Fits"NAXIS1") @test is_structural(Fits"NAXIS999") @test is_structural(Fits"XTENSION") @test is_structural(Fits"TFIELDS") @test !is_structural(Fits"TTYPE") @test is_structural(Fits"TTYPE1") @test is_structural(Fits"TTYPE999") @test !is_structural(Fits"TFORM") @test is_structural(Fits"TFORM1") @test is_structural(Fits"TFORM999") @test !is_structural(Fits"TDIM") @test is_structural(Fits"TDIM1") @test is_structural(Fits"TDIM999") @test is_structural(Fits"PCOUNT") @test is_structural(Fits"GCOUNT") @test is_structural(Fits"END") @test !is_structural(Fits"COMMENT") @test !is_structural(Fits"HISTORY") @test !is_structural(Fits"HIERARCH") @test !is_comment(Fits"SIMPLE") @test !is_comment(Fits"BITPIX") @test !is_comment(Fits"NAXIS") @test !is_comment(Fits"NAXIS1") @test !is_comment(Fits"NAXIS999") @test !is_comment(Fits"XTENSION") @test !is_comment(Fits"TFIELDS") @test !is_comment(Fits"TTYPE") @test !is_comment(Fits"TTYPE1") @test !is_comment(Fits"TTYPE999") @test !is_comment(Fits"TFORM") @test !is_comment(Fits"TFORM1") @test !is_comment(Fits"TFORM999") @test !is_comment(Fits"TDIM") @test !is_comment(Fits"TDIM1") @test !is_comment(Fits"TDIM999") @test !is_comment(Fits"PCOUNT") @test !is_comment(Fits"GCOUNT") @test !is_comment(Fits"END") @test is_comment(Fits"COMMENT") @test is_comment(Fits"HISTORY") @test !is_comment(Fits"HIERARCH") @test !is_naxis(Fits"SIMPLE") @test !is_naxis(Fits"BITPIX") @test is_naxis(Fits"NAXIS") @test is_naxis(Fits"NAXIS1") @test is_naxis(Fits"NAXIS999") @test !is_naxis(Fits"XTENSION") @test !is_naxis(Fits"TFIELDS") @test !is_naxis(Fits"TTYPE") @test !is_naxis(Fits"TTYPE1") @test !is_naxis(Fits"TTYPE999") @test !is_naxis(Fits"TFORM") @test !is_naxis(Fits"TFORM1") @test !is_naxis(Fits"TFORM999") @test !is_naxis(Fits"TDIM") @test !is_naxis(Fits"TDIM1") @test !is_naxis(Fits"TDIM999") @test !is_naxis(Fits"PCOUNT") @test !is_naxis(Fits"GCOUNT") @test !is_naxis(Fits"END") @test !is_naxis(Fits"COMMENT") @test !is_naxis(Fits"HISTORY") @test !is_naxis(Fits"HIERARCH") @test !is_end(Fits"SIMPLE") @test !is_end(Fits"BITPIX") @test !is_end(Fits"NAXIS") @test !is_end(Fits"NAXIS1") @test !is_end(Fits"NAXIS999") @test !is_end(Fits"XTENSION") @test !is_end(Fits"TFIELDS") @test !is_end(Fits"TTYPE") @test !is_end(Fits"TTYPE1") @test !is_end(Fits"TTYPE999") @test !is_end(Fits"TFORM") @test !is_end(Fits"TFORM1") @test !is_end(Fits"TFORM999") @test !is_end(Fits"TDIM") @test !is_end(Fits"TDIM1") @test !is_end(Fits"TDIM999") @test !is_end(Fits"PCOUNT") @test !is_end(Fits"GCOUNT") @test is_end(Fits"END") @test !is_end(Fits"COMMENT") @test !is_end(Fits"HISTORY") @test !is_end(Fits"HIERARCH") end @testset "Parser" begin # Byte order. @test FITSHeaders.Parser.is_big_endian() === (BYTE_ORDER === :big_endian) @test FITSHeaders.Parser.is_little_endian() === (BYTE_ORDER === :little_endian) # Character classes according to FITS standard. for b in 0x00:0xFF c = Char(b) @test FITSHeaders.Parser.is_digit(c) === ('0' ≤ c ≤ '9') @test FITSHeaders.Parser.is_uppercase(c) === ('A' ≤ c ≤ 'Z') @test FITSHeaders.Parser.is_lowercase(c) === ('a' ≤ c ≤ 'z') @test FITSHeaders.Parser.is_space(c) === (c == ' ') @test FITSHeaders.Parser.is_quote(c) === (c == '\'') @test FITSHeaders.Parser.is_equals_sign(c) === (c == '=') @test FITSHeaders.Parser.is_hyphen(c) === (c == '-') @test FITSHeaders.Parser.is_underscore(c) === (c == '_') @test FITSHeaders.Parser.is_comment_separator(c) === (c == '/') @test FITSHeaders.Parser.is_opening_parenthesis(c) === (c == '(') @test FITSHeaders.Parser.is_closing_parenthesis(c) === (c == ')') @test FITSHeaders.Parser.is_restricted_ascii(c) === (' ' ≤ c ≤ '~') @test FITSHeaders.Parser.is_keyword(c) === (('0' ≤ c ≤ '9') | ('A' ≤ c ≤ 'Z') | (c == '-') | (c == '_')) end # Trimming of spaces. for str in ("", " a string ", "another string", " yet another string ") @test SubString(str, FITSHeaders.Parser.trim_leading_spaces(str)) == lstrip(str) @test SubString(str, FITSHeaders.Parser.trim_trailing_spaces(str)) == rstrip(str) rng = firstindex(str):ncodeunits(str) @test SubString(str, FITSHeaders.Parser.trim_leading_spaces(str, rng)) == lstrip(str) @test SubString(str, FITSHeaders.Parser.trim_trailing_spaces(str, rng)) == rstrip(str) end # Representation of a character. @test FITSHeaders.Parser.repr_char(' ') == repr(' ') @test FITSHeaders.Parser.repr_char(0x20) == repr(' ') @test FITSHeaders.Parser.repr_char('\0') == repr(0x00) @test FITSHeaders.Parser.repr_char(0x00) == repr(0x00) @test FITSHeaders.Parser.repr_char('i') == repr('i') @test FITSHeaders.Parser.repr_char(0x69) == repr('i') # FITS logical value. @test FITSHeaders.Parser.try_parse_logical_value("T") === true @test FITSHeaders.Parser.try_parse_logical_value("F") === false @test FITSHeaders.Parser.try_parse_logical_value("t") === nothing @test FITSHeaders.Parser.try_parse_logical_value("f") === nothing @test FITSHeaders.Parser.try_parse_logical_value("true") === nothing @test FITSHeaders.Parser.try_parse_logical_value("false") === nothing # FITS integer value. for val in (zero(Int64), typemin(Int64), typemax(Int64)) str = "$val" @test FITSHeaders.Parser.try_parse_integer_value(str) == val if val > 0 # Add a few leading zeros. str = "000$val" @test FITSHeaders.Parser.try_parse_integer_value(str) == val end @test FITSHeaders.Parser.try_parse_integer_value(" "*str) === nothing @test FITSHeaders.Parser.try_parse_integer_value(str*" ") === nothing end # FITS float value; for val in (0.0, 1.0, -1.0, float(π)) str = "$val" @test FITSHeaders.Parser.try_parse_float_value(str) ≈ val @test FITSHeaders.Parser.try_parse_integer_value(" "*str) === nothing @test FITSHeaders.Parser.try_parse_integer_value(str*" ") === nothing end # FITS complex value; @test FITSHeaders.Parser.try_parse_float_value("2.3d4") ≈ 2.3e4 @test FITSHeaders.Parser.try_parse_float_value("-1.09D3") ≈ -1.09e3 @test FITSHeaders.Parser.try_parse_complex_value("(2.3d4,-1.8)") ≈ complex(2.3e4,-1.8) @test FITSHeaders.Parser.try_parse_complex_value("(-1.09e5,7.6D2)") ≈ complex(-1.09e5,7.6e2) # FITS string value; @test FITSHeaders.Parser.try_parse_string_value("''") == "" @test FITSHeaders.Parser.try_parse_string_value("'''") === nothing @test FITSHeaders.Parser.try_parse_string_value("''''") == "'" @test FITSHeaders.Parser.try_parse_string_value("'Hello!'") == "Hello!" @test FITSHeaders.Parser.try_parse_string_value("'Hello! '") == "Hello!" @test FITSHeaders.Parser.try_parse_string_value("' Hello!'") == " Hello!" @test FITSHeaders.Parser.try_parse_string_value("' Hello! '") == " Hello!" @test FITSHeaders.Parser.try_parse_string_value("' Hello! '") == " Hello!" @test FITSHeaders.Parser.try_parse_string_value("'Joe''s taxi'") == "Joe's taxi" @test FITSHeaders.Parser.try_parse_string_value("'Joe's taxi'") === nothing @test FITSHeaders.Parser.try_parse_string_value("'Joe'''s taxi'") === nothing # Units. let com = "" @test FITSHeaders.Parser.get_units_part(com) == "" @test FITSHeaders.Parser.get_unitless_part(com) == "" end let com = "some comment" @test FITSHeaders.Parser.get_units_part(com) == "" @test FITSHeaders.Parser.get_unitless_part(com) == "some comment" end let com = "[]some comment" @test FITSHeaders.Parser.get_units_part(com) == "" @test FITSHeaders.Parser.get_unitless_part(com) == "some comment" end let com = "[] some comment" @test FITSHeaders.Parser.get_units_part(com) == "" @test FITSHeaders.Parser.get_unitless_part(com) == "some comment" end let com = "[some units]some comment" @test FITSHeaders.Parser.get_units_part(com) == "some units" @test FITSHeaders.Parser.get_unitless_part(com) == "some comment" end let com = "[ some units ] some comment" @test FITSHeaders.Parser.get_units_part(com) == "some units" @test FITSHeaders.Parser.get_unitless_part(com) == "some comment" end let com = "[some comment" @test FITSHeaders.Parser.get_units_part(com) == "" @test FITSHeaders.Parser.get_unitless_part(com) == "[some comment" end end @testset "Cards from strings" begin # Errors... @test_throws Exception FitsCard("END nothing allowed here") @test_throws Exception FitsCard("VALUE = # / invalid character") @test_throws Exception FitsCard("VALUE = .-123 / invalid number") @test_throws Exception FitsCard("VALUE = -12x3 / invalid number") @test_throws Exception FitsCard("VALUE = (1,3.0 / unclosed complex") @test_throws Exception FitsCard("VALUE = (1,) / bad complex") @test_throws Exception FitsCard("VALUE = (,1) / bad complex") @test_throws Exception FitsCard("VALUE = 'hello / unclosed string") @test_throws Exception FitsCard("VALUE = 'Joe's taxi' / unescaped quote") # Logical FITS cards. let card = FitsCard("SIMPLE = T / this is a FITS file ") @test :type ∈ propertynames(card) @test :name ∈ propertynames(card) @test :key ∈ propertynames(card) @test :value ∈ propertynames(card) @test :comment ∈ propertynames(card) @test :units ∈ propertynames(card) @test :unitless ∈ propertynames(card) @test :logical ∈ propertynames(card) @test :integer ∈ propertynames(card) @test :float ∈ propertynames(card) @test :complex ∈ propertynames(card) @test :string ∈ propertynames(card) @test card.type === FITS_LOGICAL @test FitsCardType(card) === FITS_LOGICAL @test card.key == Fits"SIMPLE" @test card.name == "SIMPLE" @test card.comment == "this is a FITS file" @test card.value() isa Bool @test card.value() == true @test card.value() === card.logical @test valtype(card) === typeof(card.value()) @test card.value(valtype(card)) === card.value() @test isassigned(card) === true @test isinteger(card) === true @test isreal(card) === true @test_throws Exception card.key = Fits"HISTORY" # Convert callable value object by calling the object itself. @test card.value(valtype(card)) === card.value() @test card.value(Bool) === convert(Bool, card.value()) @test card.value(Int16) === convert(Int16, card.value()) @test card.value(Integer) === convert(FitsInteger, card.value()) @test card.value(Real) === convert(FitsFloat, card.value()) @test card.value(AbstractFloat) === convert(FitsFloat, card.value()) @test card.value(Complex) === convert(FitsComplex, card.value()) @test_throws Exception card.value(String) @test_throws Exception card.value(AbstractString) # Convert callable value object by calling `convert`. @test convert(typeof(card.value), card.value) === card.value @test convert(valtype(card), card.value) === card.value() @test convert(Bool, card.value) === card.value(Bool) @test convert(Int16, card.value) === card.value(Int16) @test convert(Integer, card.value) === card.value(Integer) @test convert(Real, card.value) === card.value(Real) @test convert(AbstractFloat, card.value) === card.value(AbstractFloat) @test convert(Complex, card.value) === card.value(Complex) @test_throws Exception convert(String, card.value) @test_throws Exception convert(AbstractString, card.value) # Various string representations. @test repr(card) isa String @test repr("text/plain", card) isa String @test repr(card.value) isa String @test repr("text/plain", card.value) isa String end # Integer valued cards. let card = FitsCard("BITPIX = -32 / number of bits per data pixel ") @test card.type == FITS_INTEGER @test card.key == Fits"BITPIX" @test card.name == "BITPIX" @test card.comment == "number of bits per data pixel" @test card.value() isa FitsInteger @test card.value() == -32 @test card.value() === card.integer @test valtype(card) === typeof(card.value()) @test card.value(valtype(card)) === card.value() @test isassigned(card) === true @test isinteger(card) === true @test isreal(card) === true # Convert callable value object by calling the object itself. @test card.value(valtype(card)) === card.value() @test card.value(Int16) === convert(Int16, card.value()) @test card.value(Integer) === convert(FitsInteger, card.value()) @test card.value(Real) === convert(FitsFloat, card.value()) @test card.value(AbstractFloat) === convert(FitsFloat, card.value()) @test card.value(Complex) === convert(FitsComplex, card.value()) @test_throws InexactError card.value(Bool) @test_throws Exception card.value(String) @test_throws Exception card.value(AbstractString) # Convert callable value object by calling `convert`. @test convert(valtype(card), card.value) === card.value() @test convert(Int16, card.value) === card.value(Int16) @test convert(Integer, card.value) === card.value(Integer) @test convert(Real, card.value) === card.value(Real) @test convert(AbstractFloat, card.value) === card.value(AbstractFloat) @test convert(Complex, card.value) === card.value(Complex) @test_throws InexactError convert(Bool, card.value) @test_throws Exception convert(String, card.value) @test_throws Exception convert(AbstractString, card.value) # Various string representations. @test repr(card) isa String @test repr("text/plain", card) isa String @test repr(card.value) isa String @test repr("text/plain", card.value) isa String end let card = FitsCard("NAXIS = 3 / number of axes ") @test card.type == FITS_INTEGER @test card.key == Fits"NAXIS" @test card.name == "NAXIS" @test card.comment == "number of axes" @test card.units == "" @test card.unitless == "number of axes" @test card.value() isa FitsInteger @test card.value() == 3 @test card.value() === card.integer @test valtype(card) === typeof(card.value()) @test card.value(valtype(card)) === card.value() @test isassigned(card) === true @test isinteger(card) === true @test isreal(card) === true # Convert callable value object by calling the object itself. @test card.value(valtype(card)) === card.value() @test card.value(Int16) === convert(Int16, card.value()) @test card.value(Integer) === convert(FitsInteger, card.value()) @test card.value(Real) === convert(FitsFloat, card.value()) @test card.value(AbstractFloat) === convert(FitsFloat, card.value()) @test card.value(Complex) === convert(FitsComplex, card.value()) @test_throws InexactError card.value(Bool) @test_throws Exception card.value(String) @test_throws Exception card.value(AbstractString) # Convert callable value object by calling `convert`. @test convert(valtype(card), card.value) === card.value() @test convert(Int16, card.value) === card.value(Int16) @test convert(Integer, card.value) === card.value(Integer) @test convert(Real, card.value) === card.value(Real) @test convert(AbstractFloat, card.value) === card.value(AbstractFloat) @test convert(Complex, card.value) === card.value(Complex) @test_throws InexactError convert(Bool, card.value) @test_throws Exception convert(String, card.value) @test_throws Exception convert(AbstractString, card.value) # Various string representations. @test repr(card) isa String @test repr("text/plain", card) isa String @test repr(card.value) isa String @test repr("text/plain", card.value) isa String end # COMMENT and HISTORY. let card = FitsCard("COMMENT Some comments (with leading spaces that should not be removed) ") @test card.type == FITS_COMMENT @test card.key == Fits"COMMENT" @test card.name == "COMMENT" @test card.comment == " Some comments (with leading spaces that should not be removed)" @test card.value() isa Nothing @test card.value() === nothing @test valtype(card) === typeof(card.value()) @test card.value(valtype(card)) === card.value() @test isassigned(card) === false @test isinteger(card) === false @test isreal(card) === false # Convert callable value object by calling the object itself. @test card.value(valtype(card)) === card.value() @test_throws Exception card.value(Bool) @test_throws Exception card.value(Int16) @test_throws Exception card.value(Integer) @test_throws Exception card.value(Real) @test_throws Exception card.value(AbstractFloat) @test_throws Exception card.value(Complex) @test_throws Exception card.value(String) @test_throws Exception card.value(AbstractString) # Convert callable value object by calling `convert`. @test convert(valtype(card), card.value) === card.value() @test_throws Exception convert(Bool, card.value) @test_throws Exception convert(Int16, card.value) @test_throws Exception convert(Integer, card.value) @test_throws Exception convert(Real, card.value) @test_throws Exception convert(AbstractFloat, card.value) @test_throws Exception convert(Complex, card.value) @test_throws Exception convert(String, card.value) @test_throws Exception convert(AbstractString, card.value) # Various string representations. @test repr(card) isa String @test repr("text/plain", card) isa String @test repr(card.value) isa String @test repr("text/plain", card.value) isa String # is_comment(), is_end(), ... @test is_comment(card) === true @test is_comment(card.type) === true @test is_comment(card.key) === true # standard comment @test is_end(card) === false @test is_end(card.type) === false @test is_end(card.key) === false @test is_structural(card) == false @test is_naxis(card) == false end let card = FitsCard("HISTORY A new history starts here... ") @test card.type == FITS_COMMENT @test card.key == Fits"HISTORY" @test card.name == "HISTORY" @test card.comment == "A new history starts here..." @test card.value() isa Nothing @test card.value() === nothing @test valtype(card) === typeof(card.value()) @test card.value(valtype(card)) === card.value() @test isassigned(card) === false @test isinteger(card) === false @test isreal(card) === false # Convert callable value object by calling the object itself. @test card.value(valtype(card)) === card.value() @test_throws Exception card.value(Bool) @test_throws Exception card.value(Int16) @test_throws Exception card.value(Integer) @test_throws Exception card.value(Real) @test_throws Exception card.value(AbstractFloat) @test_throws Exception card.value(Complex) @test_throws Exception card.value(String) @test_throws Exception card.value(AbstractString) # Convert callable value object by calling `convert`. @test convert(valtype(card), card.value) === card.value() @test_throws Exception convert(Bool, card.value) @test_throws Exception convert(Int16, card.value) @test_throws Exception convert(Integer, card.value) @test_throws Exception convert(Real, card.value) @test_throws Exception convert(AbstractFloat, card.value) @test_throws Exception convert(Complex, card.value) @test_throws Exception convert(String, card.value) @test_throws Exception convert(AbstractString, card.value) # Various string representations. @test repr(card) isa String @test repr("text/plain", card) isa String @test repr(card.value) isa String @test repr("text/plain", card.value) isa String # is_comment(), is_end(), ... @test is_comment(card) === true @test is_comment(card.type) === true @test is_comment(card.key) === true # standard comment @test is_end(card) === false @test is_end(card.type) === false @test is_end(card.key) === false @test is_structural(card) == false @test is_naxis(card) == false end # Non standard commentary card. let card = FitsCard("NON-STANDARD COMMENT" => (nothing, "some comment")) @test card.type == FITS_COMMENT @test card.key == Fits"HIERARCH" @test card.name == "HIERARCH NON-STANDARD COMMENT" @test card.comment == "some comment" @test card.value() isa Nothing @test card.value() === nothing @test valtype(card) === typeof(card.value()) @test card.value(valtype(card)) === card.value() @test isassigned(card) === false @test isinteger(card) === false @test isreal(card) === false # Convert callable value object by calling the object itself. @test card.value(valtype(card)) === card.value() @test_throws Exception card.value(Bool) @test_throws Exception card.value(Int16) @test_throws Exception card.value(Integer) @test_throws Exception card.value(Real) @test_throws Exception card.value(AbstractFloat) @test_throws Exception card.value(Complex) @test_throws Exception card.value(String) @test_throws Exception card.value(AbstractString) # Convert callable value object by calling `convert`. @test convert(valtype(card), card.value) === card.value() @test_throws Exception convert(Bool, card.value) @test_throws Exception convert(Int16, card.value) @test_throws Exception convert(Integer, card.value) @test_throws Exception convert(Real, card.value) @test_throws Exception convert(AbstractFloat, card.value) @test_throws Exception convert(Complex, card.value) @test_throws Exception convert(String, card.value) @test_throws Exception convert(AbstractString, card.value) # Various string representations. @test repr(card) isa String @test repr("text/plain", card) isa String @test repr(card.value) isa String @test repr("text/plain", card.value) isa String # is_comment(), is_end(), ... @test is_comment(card) === true @test is_comment(card.type) === true @test is_comment(card.key) === false # non-standard comment @test is_end(card) === false @test is_end(card.type) === false @test is_end(card.key) === false @test is_structural(card) == false @test is_naxis(card) == false end # String valued card. let card = FitsCard("REMARK = 'Joe''s taxi' / a string with an embedded quote ") @test card.type == FITS_STRING @test card.key == Fits"REMARK" @test card.name == "REMARK" @test card.comment == "a string with an embedded quote" @test card.value() isa String @test card.value() == "Joe's taxi" @test card.value() === card.string @test valtype(card) === typeof(card.value()) @test card.value(valtype(card)) === card.value() @test repr(card) isa String @test repr("text/plain", card) isa String @test repr(card.value) isa String @test repr("text/plain", card.value) isa String @test isassigned(card) === true @test isinteger(card) === false @test isreal(card) === false # Convert callable value object by calling the object itself. @test card.value(valtype(card)) === card.value() @test_throws Exception card.value(Bool) @test_throws Exception card.value(Int16) @test_throws Exception card.value(Integer) @test_throws Exception card.value(Real) @test_throws Exception card.value(AbstractFloat) @test_throws Exception card.value(Complex) @test card.value(String) === convert(String, card.value()) @test card.value(AbstractString) === convert(AbstractString, card.value()) # Convert callable value object by calling `convert`. @test convert(valtype(card), card.value) === card.value() @test_throws Exception convert(Bool, card.value) @test_throws Exception convert(Int16, card.value) @test_throws Exception convert(Integer, card.value) @test_throws Exception convert(Real, card.value) @test_throws Exception convert(AbstractFloat, card.value) @test_throws Exception convert(Complex, card.value) @test convert(String, card.value) === card.value(String) @test convert(AbstractString, card.value) === card.value(AbstractString) # Various string representations. @test repr(card) isa String @test repr("text/plain", card) isa String @test repr(card.value) isa String @test repr("text/plain", card.value) isa String # is_comment(), is_end(), ... @test is_comment(card) == false @test is_comment(card.type) == false @test is_comment(card.key) == false @test is_end(card) == false @test is_end(card.type) == false @test is_end(card.key) == false @test is_structural(card) == false @test is_naxis(card) == false end # let card = FitsCard("EXTNAME = 'SCIDATA ' ") @test card.type == FITS_STRING @test card.key == Fits"EXTNAME" @test card.name == "EXTNAME" @test card.comment == "" @test isinteger(card) === false @test isassigned(card) === true @test card.value() isa String @test card.value() == "SCIDATA" @test card.value() === card.string @test valtype(card) === typeof(card.value()) @test card.value(valtype(card)) === card.value() @test repr(card) isa String @test repr("text/plain", card) isa String @test repr(card.value) isa String @test repr("text/plain", card.value) isa String @test isassigned(card) === true @test isinteger(card) === false @test isreal(card) === false end # let card = FitsCard("CRPIX1 = 1. ") @test card.type == FITS_FLOAT @test card.key == Fits"CRPIX1" @test card.name == "CRPIX1" @test card.comment == "" @test card.value() isa FitsFloat @test card.value() ≈ 1.0 @test card.value() === card.float @test valtype(card) === typeof(card.value()) @test card.value(valtype(card)) === card.value() @test repr(card) isa String @test repr("text/plain", card) isa String @test repr(card.value) isa String @test repr("text/plain", card.value) isa String @test isassigned(card) === true @test isinteger(card) === false @test isreal(card) === true end # let card = FitsCard("CRVAL3 = 0.96 / CRVAL along 3rd axis ") @test card.type == FITS_FLOAT @test card.key == Fits"CRVAL3" @test card.name == "CRVAL3" @test card.comment == "CRVAL along 3rd axis" @test card.value() isa FitsFloat @test card.value() ≈ 0.96 @test card.value() === card.float @test valtype(card) === typeof(card.value()) @test card.value(valtype(card)) === card.value() @test repr(card) isa String @test repr("text/plain", card) isa String @test repr(card.value) isa String @test repr("text/plain", card.value) isa String @test isassigned(card) === true @test isinteger(card) === false @test isreal(card) === true end # let card = FitsCard("HIERARCH ESO OBS EXECTIME = +2919 / Expected execution time ") @test card.type == FITS_INTEGER @test card.key == Fits"HIERARCH" @test card.name == "HIERARCH ESO OBS EXECTIME" @test card.comment == "Expected execution time" @test card.value() isa FitsInteger @test card.value() == +2919 @test card.value() === card.integer @test valtype(card) === typeof(card.value()) @test card.value(valtype(card)) === card.value() @test repr(card) isa String @test repr("text/plain", card) isa String @test repr(card.value) isa String @test repr("text/plain", card.value) isa String @test isassigned(card) === true @test isinteger(card) === true @test isreal(card) === true end # FITS cards with undefined value. let card = FitsCard("DUMMY = / no value given ") @test card.type == FITS_UNDEFINED @test card.key == Fits"DUMMY" @test card.name == "DUMMY" @test card.comment == "no value given" @test card.value() === undef @test valtype(card) === typeof(card.value()) @test card.value(valtype(card)) === card.value() @test repr(card) isa String @test repr("text/plain", card) isa String @test repr(card.value) isa String @test repr("text/plain", card.value) isa String @test isassigned(card) === false @test isinteger(card) === false @test isreal(card) === false end let card = FitsCard("HIERARCH DUMMY = / no value given ") @test card.type == FITS_UNDEFINED @test card.key == Fits"HIERARCH" @test card.name == "HIERARCH DUMMY" @test card.comment == "no value given" @test card.value() === undef @test valtype(card) === typeof(card.value()) @test card.value(valtype(card)) === card.value() @test repr(card) isa String @test repr("text/plain", card) isa String @test repr(card.value) isa String @test repr("text/plain", card.value) isa String @test isassigned(card) === false @test isinteger(card) === false @test isreal(card) === false end # Complex valued cards. let card = FitsCard("COMPLEX = (1,0) / [km/s] some complex value ") @test card.type == FITS_COMPLEX @test card.key == Fits"COMPLEX" @test card.name == "COMPLEX" @test card.comment == "[km/s] some complex value" @test card.units == "km/s" @test card.unitless == "some complex value" @test card.value() isa FitsComplex @test card.value() ≈ complex(1,0) @test valtype(card) === typeof(card.value()) @test card.value(valtype(card)) === card.value() @test repr(card) isa String @test repr("text/plain", card) isa String @test repr(card.value) isa String @test repr("text/plain", card.value) isa String @test isassigned(card) === true @test isinteger(card) === false @test isreal(card) === iszero(imag(card.value())) end let card = FitsCard("COMPLEX = (-2.7,+3.1d5) / some other complex value ") @test card.type == FITS_COMPLEX @test card.key == Fits"COMPLEX" @test card.name == "COMPLEX" @test card.comment == "some other complex value" @test card.value() isa FitsComplex @test card.value() ≈ complex(-2.7,+3.1e5) @test valtype(card) === typeof(card.value()) @test card.value(valtype(card)) === card.value() @test repr(card) isa String @test repr("text/plain", card) isa String @test repr(card.value) isa String @test repr("text/plain", card.value) isa String @test card.value(Complex{Float32}) === Complex{Float32}(card.value()) @test convert(Complex{Float32}, card.value) === Complex{Float32}(card.value()) @test_throws InexactError card.value(Float64) @test_throws InexactError convert(Float32, card.value) @test isassigned(card) === true @test isinteger(card) === false @test isreal(card) === iszero(imag(card.value())) end # END card. let card = FitsCard("END ") @test card.type == FITS_END @test card.key == Fits"END" @test card.name == "END" @test card.comment == "" @test card.value() isa Nothing @test card.value() === nothing @test valtype(card) === typeof(card.value()) @test card.value(valtype(card)) === card.value() @test repr(card) isa String @test repr("text/plain", card) isa String @test repr(card.value) isa String @test repr("text/plain", card.value) isa String @test isassigned(card) === false @test isinteger(card) === false @test isreal(card) === false @test is_comment(card) == false @test is_comment(card.type) == false @test is_comment(card.key) == false @test is_end(card) == true @test is_end(card.type) == true @test is_end(card.key) == true @test is_structural(card) == true @test is_naxis(card) == false end end @testset "Cards from bytes" begin # Logical FITS cards. str = "SIMPLE = T / this is a FITS file " for buf in (make_byte_vector(str), make_discontinuous_byte_vector(str)) card = FitsCard(buf) @test card.type == FITS_LOGICAL @test card.key == Fits"SIMPLE" @test card.name == "SIMPLE" @test card.comment == "this is a FITS file" @test card.value() isa Bool @test card.value() == true @test card.value() === card.logical @test valtype(card) === typeof(card.value()) end # "END", empty string "" or out of range offset yield an END card. let card = FitsCard("END") @test card.type === FITS_END @test card.key === Fits"END" end let card = FitsCard("") @test card.type === FITS_END @test card.key === Fits"END" end let card = FitsCard("xEND"; offset=1) @test card.type === FITS_END @test card.key === Fits"END" end let card = FitsCard("SOMETHING"; offset=250) @test card.type === FITS_END @test card.key === Fits"END" end end @testset "Cards from pairs" begin # Badly formed cards. @test_throws ArgumentError FitsCard(:GIZMO => []) @test_throws ArgumentError FitsCard("GIZMO" => ("comment",2)) @test_throws Exception FitsCard(:Gizmo => 1) @test_throws Exception FitsCard("Gizmo" => 1) # Well formed cards and invariants. @test FitsCard(:GIZMO => 1) isa FitsCard @test FitsCard(:GIZMO => 1).type === FITS_INTEGER @test FitsCard(:GIZMO => 1) === FitsCard("GIZMO" => 1) @test FitsCard(:GIZMO => 1) === FitsCard("GIZMO" => (1,)) @test FitsCard(:GIZMO => 1) === FitsCard("GIZMO" => (1,nothing)) @test FitsCard(:GIZMO => 1) === FitsCard("GIZMO" => (1,"")) @test FitsCard(:COMMENT => "Hello world!") isa FitsCard @test FitsCard(:COMMENT => "Hello world!").type === FITS_COMMENT @test FitsCard(:COMMENT => "Hello world!") === FitsCard("COMMENT" => "Hello world!") @test FitsCard(:COMMENT => "Hello world!") === FitsCard("COMMENT" => (nothing, "Hello world!")) # Logical FITS cards. com = "some comment" pair = "SIMPLE" => (true, com) card = FitsCard(pair) @test FitsCard(card) === card @test convert(FitsCard, card) === card @test convert(FitsCard, pair) == card @test convert(Pair, card) == pair @test Pair(card) == pair @test Pair{String}(card) === pair @test Pair{String,Tuple{Bool,String}}(card) === pair @test Pair{String,Tuple{Int,String}}(card) === (card.name => (card.value(Int), card.comment)) @test card.type === FITS_LOGICAL @test card.key === Fits"SIMPLE" @test card.name === "SIMPLE" @test card.value() === true @test card.comment == com @test_throws ErrorException card.value(FitsCard) card = FitsCard("TWO KEYS" => (π, com)) @test card.type === FITS_FLOAT @test card.key === Fits"HIERARCH" @test card.name == "HIERARCH TWO KEYS" @test card.value() ≈ π @test card.comment == com card = convert(FitsCard, "HIERARCH NAME" => ("some name", com)) @test card.type === FITS_STRING @test card.key === Fits"HIERARCH" @test card.name == "HIERARCH NAME" @test card.value() == "some name" @test card.comment == com card = convert(FitsCard, "HIERARCH COMMENT" => (nothing, com)) @test card.type === FITS_COMMENT @test card.key === Fits"HIERARCH" @test card.name == "HIERARCH COMMENT" @test card.value() === nothing @test card.comment == com card = convert(FitsCard, "COMMENT" => com) @test card.type === FITS_COMMENT @test card.key === Fits"COMMENT" @test card.name == "COMMENT" @test card.value() === nothing @test card.comment == com card = convert(FitsCard, "REASON" => undef) @test card.type === FITS_UNDEFINED @test card.key === Fits"REASON" @test card.name == "REASON" @test card.value() === undef @test card.comment == "" card = convert(FitsCard, "REASON" => (missing, com)) @test card.type === FITS_UNDEFINED @test card.key === Fits"REASON" @test card.name == "REASON" @test card.value() === undef @test card.comment == com # Dates. date = now() card = FitsCard("DATE-OBS" => date) @test card.type === FITS_STRING @test card.key === Fits"DATE-OBS" @test card.name == "DATE-OBS" @test card.value() == Dates.format(date, ISODateTimeFormat) @test card.value(DateTime) === date @test convert(DateTime, card.value) === date @test DateTime(card.value) === date @test card.comment == "" card = FitsCard("DATE-OBS" => (date)) @test card.type === FITS_STRING @test card.key === Fits"DATE-OBS" @test card.name == "DATE-OBS" @test card.value() == Dates.format(date, ISODateTimeFormat) @test card.value(DateTime) === date @test convert(DateTime, card.value) === date @test DateTime(card.value) === date @test card.comment == "" card = FitsCard("DATE-OBS" => (date, com)) @test card.type === FITS_STRING @test card.key === Fits"DATE-OBS" @test card.name == "DATE-OBS" @test card.value() == Dates.format(date, ISODateTimeFormat) @test card.value(DateTime) === date @test convert(DateTime, card.value) === date @test DateTime(card.value) === date @test card.comment == com end @testset "Operations on card values" begin A = FitsCard("KEY_A" => true).value B = FitsCard("KEY_B" => 42).value C = FitsCard("KEY_C" => 24.0).value D = FitsCard("KEY_D" => "hello").value @test A == A() @test A() == A @test A == true @test A != false @test A > false @test A ≥ true @test A ≤ true @test B == B() @test B() == B @test B == 42 @test B != 41 @test B > Int16(41) @test B ≥ Int16(42) @test B ≤ Int16(42) @test C == C() @test C() == C @test C == C @test C == 24 @test C != 25 @test C > 23 @test C ≥ 24 @test C ≤ 24 @test D == D() @test D() == D @test D == "hello" @test D != "Hello" @test A == A @test A != B @test A != C @test A != D @test B != A @test B == B @test B != C @test B != D @test C != A @test C != B @test C == C @test C != D @test D != A @test D != B @test D != C @test D == D @test B > A @test B ≥ A @test B > C @test B ≥ C end @testset "Headers" begin dims = (4,5,6,7) h = FitsHeader("SIMPLE" => (true, "FITS file"), "BITPIX" => (-32, "bits per pixels"), "NAXIS" => (length(dims), "number of dimensions")) @test length(h) == 3 @test sort(collect(keys(h))) == ["BITPIX", "NAXIS", "SIMPLE"] # Same object: @test convert(FitsHeader, h) === h # Same contents but different objects: hp = convert(FitsHeader, h.cards); @test hp !== h && hp == h hp = FitsHeader(h); @test hp !== h && hp == h hp = copy(h); @test hp !== h && hp == h @test length(empty!(hp)) == 0 @test haskey(h, "NAXIS") @test !haskey(h, "NO-SUCH-KEY") @test haskey(h, firstindex(h)) @test !haskey(h, lastindex(h) + 1) @test get(h, "NAXIS", π) isa FitsCard @test get(h, "illegal keyword!", π) === π @test get(h, +, π) === π @test getkey(h, "illegal keyword!", π) === π @test getkey(h, "NAXIS", π) == "NAXIS" @test IndexStyle(h) === IndexLinear() @test h["SIMPLE"] === h[1] @test h[1].key === Fits"SIMPLE" @test h[1].value() == true @test h["BITPIX"] === h[2] @test h[2].key === Fits"BITPIX" @test h[2].value() == -32 @test h["NAXIS"] === h[3] @test h[3].key === Fits"NAXIS" @test h[3].value() == length(dims) # Build 2 another headers, one with just the dimensions, the other with # some other records, then merge these headers. h1 = FitsHeader(h["NAXIS"]) for i in eachindex(dims) push!(h1, "NAXIS$i" => (dims[i], "length of dimension # $i")) end h2 = FitsHeader(COMMENT = "Some comment.", BSCALE = (1.0, "Scaling factor."), BZERO = (0.0, "Bias offset.")) h2["CCD GAIN"] = (3.2, "[ADU/e-] detector gain") h2["HIERARCH CCD BIAS"] = -15 h2["COMMENT"] = "Another comment." h2["COMMENT"] = "Yet another comment." @test merge!(h) === h hp = merge(h, h1, h2) @test merge!(h, h1, h2) === h @test hp == h && hp !== h @test merge!(hp, h1) == h # re-merging existing unique cards does not change anything empty!(h1) empty!(h2) empty!(hp) @test length(eachmatch("COMMENT", h)) == 3 @test count(Returns(true), eachmatch("COMMENT", h)) == 3 coms = collect("COMMENT", h) @test length(coms) == 3 @test coms isa Vector{FitsCard} @test coms[1].comment == "Some comment." @test coms[2].comment == "Another comment." @test coms[3].comment == "Yet another comment." iter = eachmatch("COMMENT", h) @test reverse(reverse(iter)) === iter @test collect(iter) == coms @test collect(reverse(iter)) == reverse(coms) # Test indexing by integer/name. i = findfirst("BITPIX", h) @test i isa Integer && h[i].name == "BITPIX" @test h["BITPIX"] === h[i] @test h["BSCALE"].value(Real) ≈ 1 @test h["BSCALE"].comment == "Scaling factor." # Test HIERARCH records. @test get(h, 0, nothing) === nothing @test get(h, 1, nothing) === h[1] card = get(h, "HIERARCH CCD GAIN", nothing) @test card isa FitsCard if card !== Nothing @test card.key === Fits"HIERARCH" @test card.name == "HIERARCH CCD GAIN" @test card.value() ≈ 3.2 @test card.units == "ADU/e-" @test card.unitless == "detector gain" end card = get(h, "CCD BIAS", nothing) @test card isa FitsCard if card !== Nothing @test card.key === Fits"HIERARCH" @test card.name == "HIERARCH CCD BIAS" @test card.value() == -15 end # Change existing record, by name and by index for a short and for a # HIERARCH keyword. n = length(h) h["BSCALE"] = (1.1, "better value") @test length(h) == n @test h["BSCALE"].value(Real) ≈ 1.1 @test h["BSCALE"].comment == "better value" i = findfirst("BITPIX", h) @test i isa Integer h[i] = (h[i].name => (-64, h[i].comment)) @test h["BITPIX"].value() == -64 i = findfirst("CCD BIAS", h) h[i] = ("CCD LOW BIAS" => (h[i].value(), h[i].comment)) @test h[i].name == "HIERARCH CCD LOW BIAS" # It is forbidden to have more than one non-unique keyword. i = findfirst("BITPIX", h) @test_throws ArgumentError h[i+1] = h[i] # Replace a card by comment appering earlier than any other comment. Do # this in a temporary copy to avoid corrupting the header. let hp = copy(h) n = length(eachmatch("COMMENT", hp)) i = findfirst("COMMENT", hp) hp[i-1] = ("COMMENT" => (nothing, "Some early comment.")) @test findfirst("COMMENT", hp) == i - 1 @test length(eachmatch("COMMENT", hp)) == n + 1 @test hp[i-1].type == FITS_COMMENT end # Replace existing card by another one with another name. Peek the # first of a non-unique record to check that the index is correctly # updated. for i in 1:3 # we need a number of commentary records h["HISTORY"] = "History record number $i." h["OTHER$i"] = (i, "Something else.") if i == 1 # Check findlast/findfirst on a commentary keyword that has a # single occurence. @test findlast("HISTORY", h) == length(h) - 1 @test findfirst("HISTORY", h) == length(h) - 1 end end n = length(eachmatch("HISTORY", h)) @test n ≥ 3 while n > 0 i = findfirst("HISTORY", h) @test i isa Integer h[i] = ("SOME$i" => (42, h[i].comment)) n -= 1 @test length(eachmatch("HISTORY", h)) == n end @test findfirst("HISTORY", h) === nothing # Append non-existing record. n = length(h) h["GIZMO"] = ("Joe's taxi", "what?") @test length(h) == n+1 @test h["GIZMO"].value() == "Joe's taxi" @test h["GIZMO"].comment == "what?" # Test search failure when: (i) keyword is valid but does not exists, # (ii) keyword is invalid, and (iii) pattern is unsupported. @test findfirst("NON-EXISTING KEYWORD", h) === nothing @test findfirst("Invalid keyword", h) === nothing @test findfirst(π, h) === nothing @test findfirst(π, h) === nothing @test findlast(π, h) === nothing @test findnext(π, h, firstindex(h)) === nothing @test findprev(π, h, lastindex(h)) === nothing @test_throws BoundsError findnext(π, h, firstindex(h) - 1) @test_throws BoundsError findprev(π, h, lastindex(h) + 1) @test_throws BoundsError findnext("SIMPLE", h, firstindex(h) - 1) @test_throws BoundsError findprev("SIMPLE", h, lastindex(h) + 1) @test findnext(π, h, lastindex(h) + 1) === nothing @test findprev(π, h, firstindex(h) - 1) === nothing @test findnext("SIMPLE", h, lastindex(h) + 1) === nothing @test findprev("SIMPLE", h, firstindex(h) - 1) === nothing # Forward search. i = findfirst("COMMENT", h) @test i isa Integer @test h[i].type === FITS_COMMENT @test h[i].comment == "Some comment." i = findnext(h[i], h, i + 1) @test i isa Integer @test h[i].type === FITS_COMMENT @test h[i].comment == "Another comment." i = findnext(h[i], h, i + 1) @test i isa Integer @test h[i].type === FITS_COMMENT @test h[i].comment == "Yet another comment." @test findnext(h[i], h, i + 1) isa Nothing # Backward search. i = findlast("COMMENT", h) @test i isa Integer @test h[i].type === FITS_COMMENT @test h[i].comment == "Yet another comment." i = findprev("COMMENT", h, i - 1) @test i isa Integer @test h[i].type === FITS_COMMENT @test h[i].comment == "Another comment." i = findprev(h[i], h, i - 1) @test i isa Integer @test h[i].type === FITS_COMMENT @test h[i].comment == "Some comment." @test findprev(h[i], h, i - 1) isa Nothing # Check that non-commentary records are unique. for i in eachindex(h) card = h[i] card.type === FITS_COMMENT && continue @test findnext(card, h, i + 1) isa Nothing end # Search with a predicate. @test findfirst(card -> card.type === FITS_END, h) === nothing @test findlast(card -> card.name == "BITPIX", h) === 2 # Apply a filter. hp = filter(card -> match(r"^NAXIS[0-9]*$", card.name) !== nothing, h) @test hp isa FitsHeader @test startswith(first(hp).name, "NAXIS") @test startswith(last(hp).name, "NAXIS") # Search by regular expressions. n = length(dims) pat = r"^NAXIS[0-9]*$" i = findfirst(pat, h) @test h[i].name == "NAXIS" i = findnext(pat, h, i+1) @test h[i].name == "NAXIS1" i = findnext(pat, h, i+1) @test h[i].name == "NAXIS2" i = findlast(pat, h) @test h[i].name == "NAXIS$(n)" i = findprev(pat, h, i-1) @test h[i].name == "NAXIS$(n - 1)" i = findnext(pat, h, i-1) @test h[i].name == "NAXIS$(n - 2)" let hp = filter(pat, h) @test hp isa FitsHeader @test startswith(first(hp).name, "NAXIS") @test startswith(last(hp).name, "NAXIS") end let v = collect(pat, h) @test v isa Vector{FitsCard} @test startswith(first(v).name, "NAXIS") @test startswith(last(v).name, "NAXIS") end end end end # module
FITSHeaders
https://github.com/emmt/FITSHeaders.jl.git
[ "MIT" ]
0.4.1
5a8540e7601cbd07f583ef49e01fdaca32b9c171
docs
2993
# User visible changes in `FITSHeaders` package # Version 0.4.1 - Update compatibility for `TypeUtils`. # Version 0.4.0 - Package renamed as `FITSHeaders`. - Undefined FITS card value is `undef` (was `missing`). When creating a FITS card, `missing` is considered as `undef`. - Comparison operators (`==`, `!=`, `<`, `>`, `≤`, and `≥`) can be applied to FITS card values. The other operand may also be a card value. - Logical value stored as an integer in `FitsCard`. This is an internal change. # Version 0.3.11 - Update doc. - Submitted as an official Julia package. ## Version 0.3.10 - Extend `haskey` for `FitsHeader` objects. ## Version 0.3.9 - `"TFIELDS"`, `"TFORM#"`, `"TTYPE#"`, and `"TDIM#"` are also structural keywords. ## Version 0.3.8 - New non-exported methods: `BaseFITS.is_structural` and `BaseFITS.is_naxis` to respectively check whether a FITS card or keyword is a structural or axis one. ## Version 0.3.7 - Package `AsType` is now [`TypeUtils`](https://github.com/emmt/TypeUtils.jl). ## Version 0.3.6 - Package is compatible with Julia 1.0. - Avoid returning number of bytes written in `show`. - Date-time format is ISO-8601 as specified by FITS standard. ## Version 0.3.5 - Fix creating FITS cards from pairs of type `Pair{<:CardName,<:Any}` which may be the type of the objects in some collections, such as vectors, used to represent FITS header. Non-exported `BaseFITS.CardPair{K<:CardName,V}` is an alias for such pair types. ## Version 0.3.4 - *Provide support for dates:* Card values of type `Dates.DateTime` are automatically converted into string values and, conversely, calling `card.value(DateTime)`, `convert(DataTime,card.value)`, and `DateTime(card.value)` attempts to convert the string value of `card` into a date. ## Version 0.3.3 - Use `AsType` package. - Remove `CompatHelper`. ## Version 0.3.2 - Fix silly bug in keyword comparison. ## Version 0.3.1 - Use quick table for character class. ## Version 0.3.0 - Package renamed `BaseFITS.jl`. - `FitsHeader` can be built from list of header cards, list of pairs, and named tuples. Here "list" means any iterable producing items of a given type. The same types are allowed for `merge` and `merge!` applied to a FITS header. - Non-exported constants `CarName`, `CardValue`, `CardComment`, and `Undefined` to help converting a pair into a FITS header card. - `BaseFITS.keyword` and `BaseFITS.check_keyword` can take a symbolic name as argument. ## Version 0.2.1 - Can search cards in FITS header by regular expressions. - Implement merging of headers with `merge` and `merge!`. - `length(eachmatch(pat,hdr::FitsHeader))` yields number of matches. - Some bug fixes. ## Version 0.2.0 - Package renamed `FITSBase.jl`. - To avoid collisions with `FITSIO.jl` types are prefixed by `Fits` instead of `FITS`. ## Version 0.1.1 - Package name `FITSCards.jl`. - Add `FITSHeader` structure. - New card properties: `card.units` and `card.unitless`.
FITSHeaders
https://github.com/emmt/FITSHeaders.jl.git
[ "MIT" ]
0.4.1
5a8540e7601cbd07f583ef49e01fdaca32b9c171
docs
17274
# FITSHeaders [![Build Status](https://github.com/emmt/FITSHeaders.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/emmt/FITSHeaders.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/emmt/FITSHeaders.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/emmt/FITSHeaders.jl) `FITSHeaders` is a pure [Julia](https://julialang.org/) package for managing basic FITS structures such as FITS headers. [FITS (for *Flexible Image Transport System*)](https://fits.gsfc.nasa.gov/fits_standard.html) is a data file format widely used in astronomy. A FITS file is a concatenation of *Header Data Units* (HDUs) that consist in a header part and a data part. The header of a HDU is a collection of so-called *FITS cards*. Each such card is stored in textual form and associates a keyword with a value and/or a comment. The `FITSHeaders` package is intended to provide: - Methods for fast parsing of a FITS header or of a piece of a FITS header (that is a single FITS header card). - An expressive API for creating FITS cards and accessing their components (keyword, value, and comment), possibly, in a *type-stable* way. - Methods for easy and efficient access to the records of a FITS header. ## Building FITS cards A FITS header card associates a keyword (or a name) with a value and a comment (both optional). A FITS header card can be efficiently stored as an instance of `FitsCard` built by: ``` julia card = FitsCard(key => (val, com)) ``` with `key` the card name, `val` its value, and `com` its comment. The value `val` may be: - a boolean to yield a card of type `FITS_LOGICAL`; - an integer to yield a card of type `FITS_INTEGER`; - a non-integer real to yield a card of type `FITS_FLOAT`; - a complex to yield a card of type `FITS_COMPLEX`; - a string to yield a card of type `FITS_STRING`; - `nothing` to yield a card of type `FITS_COMMENT`; - `undef` or `missing` to yield a card of type `FITS_UNDEFINED`. The comment may be omitted for a normal FITS card and the value may be omitted for a commentary FITS card: ``` julia card = FitsCard(key => val::Number) card = FitsCard(key => str::AbstractString) ``` In the 1st case, the comment is assumed to be empty. In the 2nd case, the string `str` is assumed to be the card comment if `key` is `"COMMENT"` or `"HISTORY"` and the card value otherwise. Conversely, `Pair(card)` yields the pair `key => (val, com)`. The `convert` method is extended by the `FITSHeaders` package to perform these conversions. If the string value of a FITS card is too long, it shall be split across several consecutive `CONTINUE` cards when writing a FITS file. Likewise, if the comment of a commentary keyword (`"COMMENT"` or `"HISTORY"`) is too long, it shall be split across several consecutive cards with the same keyword when writing a FITS file. ## FITS cards properties FITS cards have the following properties (among others): ``` julia card.type # type of card: FITS_LOGICAL, FITS_INTEGER, etc. card.key # quick key of card: Fits"BITPIX", Fits"HIERARCH", etc. card.name # name of card card.value # callable object representing the card value card.comment # comment of card card.units # units of card value card.unitless # comment of card without the units part if any ``` As the values of FITS keywords have different types, `card.value` does not yield a Julia value but a callable object. Called without any argument, this object yields the actual card value: ``` julia card.value() -> val::Union{Bool,Int64,Float64,ComplexF64,String,Nothing,UndefInitializer} ``` but such a call is not *type-stable* as indicated by the union `Union{...}` in the above type assertion. For a type-stable result, the card value can be converted to a given data type `T`: ``` julia card.value(T) convert(T, card.value) ``` both yield the value of `card` converted to type `T`. For readability, `T` may be an abstract type: `card.value(Integer)` yields the same result as `card.value(Int64)`, `card.value(Real)` or `card.value(AbstractFloat)` yield the same result as `card.value(Float64)`, `card.value(Complex)` yields the same result as `card.value(ComplexF64)`, and `card.value(AbstractString)` yields the same result as `card.value(String)`. To make things easier, a few additional properties are aliases that yield the card value converted to a specific type: ``` julia card.logical :: Bool # alias for card.value(Bool) card.integer :: Int64 # alias for card.value(Integer) card.float :: Float64 # alias for card.value(Real) card.complex :: ComplexF64 # alias for card.value(Complex) card.string :: String # alias for card.value(String) ``` When the actual card value is of a different type than the one requested, an error is thrown if the conversion is not possible or inexact. `valtype(card)` yields the Julia type of the value of `card` while `isassigned(card)` yields whether `card` has a value (that is whether it is neither a commentary card nor a card with an undefined value). ## FITS keywords There are two kinds of FITS keywords: - Short FITS keywords are words with at most 8 ASCII characters from the restricted set of upper case letters (bytes 0x41 to 0x5A), decimal digits (hexadecimal codes 0x30 to 0x39), hyphen (hexadecimal code 0x2D), or underscore (hexadecimal code 0x5F). In a FITS file, keywords shorter than 8 characters are right-padded with ordinary spaces (hexadecimal code 0x20). - `HIERARCH` FITS keywords start with the string `"HIERARCH "` (with a single trailing space) followed by one or more words composed from the same restricted set of ASCII characters as short keywords and separated by a single space. Keywords longer than 8 characters or composed of several words can only be represented as `HIERARCH` FITS keywords. To simplify the representation of FITS cards as pairs, the `FitsCard` constructor automatically converts long keywords or multi-word keywords into a `HIERARCH` FITS keyword by prefixing the keyword with the string `"HIERARCH "` for example: ``` julia julia> card = FitsCard("VERY-LONG-NAME" => (2, "keyword is longer than 8 characters")) FitsCard: HIERARCH VERY-LONG-NAME = 2 / keyword is longer than 8 characters julia> card.name "HIERARCH VERY-LONG-NAME" julia> FitsCard("SOME KEY" => (3, "keyword has 8 characters but 2 words")) FitsCard: HIERARCH SOME KEY = 3 / keyword has 8 characters but 2 words julia> card.name "HIERARCH SOME KEY" ``` This rule is only applied to the construction of FITS cards from pairs. When parsing a FITS header card from a file, the `"HIERARCH "` prefix must be present. The non-exported method `FITSHeaders.keyword` may be used to apply this rule: ``` julia julia> FITSHeaders.keyword("VERY-LONG-NAME") "HIERARCH VERY-LONG-NAME" julia> FITSHeaders.keyword("SOME KEY") "HIERARCH SOME KEY" julia> FITSHeaders.keyword("NAME") "NAME" julia> FITSHeaders.keyword("HIERARCH NAME") "HIERARCH NAME" ``` ## Quick FITS keys In `FITSHeaders`, a key of type `FitsKey` is a 64-bit value computed from a FITS keyword. The key of a short FITS keyword is unique and exactly matches the first 8 bytes of the keyword as it is stored in a FITS file. Thus quick keys provide fast means to compare and search FITS keywords. The constructor `FitsKey(name)` yields the quick key of the string `name`. A quick key may be literally expressed by using the `@Fits_str` macro in Julia code. For example: ``` julia card.key == Fits"NAXIS" ``` is faster than, say `card.name == "NAXIS"`, to check whether the name of the FITS header card `card` is `"NAXIS"`. This is because, the comparison is performed on a single integer (not on several characters) and expression `Fits"...."` is a constant computed at compile time with no run-time penalty. Compared to `FitsKey(name)`, `Fits"...."` checks the validity of the characters composing the literal short keyword (again this is done at compile time so without run-time penalty) and, for readability, does not allow for trailing spaces. For a `HIERARCH` keyword, the quick key is equal to the constant `Fits"HIERARCH"` whatever the other part of the keyword. ## Parsing of FITS header cards Each FITS header card is stored in a FITS file as 80 consecutive bytes from the restricted set of ASCII characters from `' '` to `'~'` (hexadecimal codes 0x20 to 0x7E). Hence Julia strings (whether they are encoded in ASCII or in UTF8) can be treated as vectors of bytes. The parsing methods provided by the `FITSHeaders` package exploit this to deal with FITS headers and cards stored as either vectors of bytes (of type `AbstractVector{UInt8}`) or as Julia strings (of type `String` or `SubString{String}`). A `FitsCard` object can be built by parsing a FITS header card as it is stored in a FITS file: ``` julia card = FitsCard(buf; offset=0) ``` where `buf` is either a string or a vector of bytes. Keyword `offset` can be used to specify the number of bytes to skip at the beginning of `buf`, so that it is possible to extract a specific FITS header card, not just the first one. At most, the 80 first bytes after the offset are scanned to build the `FitsCard` object. The next FITS card to parse is then at `offset + 80` and so on. The considered card may be shorter than 80 bytes, the result being exactly the same as if the missing bytes were spaces. If there are no bytes left, a `FitsCard` object equivalent to the final `END` card of a FITS header is returned. ## FITS headers The `FITSHeaders` package provides objects of type `FitsHeader` to store, possibly partial, FITS headers. ### Building a FITS header To build a FITS header initialized with records `args..`, call: ``` julia hdr = FitsHeader(args...) ``` where `args...` is a variable number of records in any form allowed by the `FitsCard` constructor, it can also be a vector or a tuple of records. For example: ``` julia dims = (384, 288) hdr = FitsHeader("SIMPLE" => true, "BITPIX" => (-32, "32-bit floats"), "NAXIS" => (length(dims), "number of dimensions"), ntuple(i -> "NAXIS$i" => dims[i], length(dims))..., "COMMENT" => "A comment.", "COMMENT" => "Another comment.", "DATE" => ("2023-02-01", "1st of February, 2023"), "COMMENT" => "Yet another comment.") ``` Method `keys` can be applied to get the list of keywords in a FITS header: ``` julia julia> keys(hdr) KeySet for a Dict{String, Int64} with 7 entries. Keys: "COMMENT" "BITPIX" "SIMPLE" "NAXIS2" "NAXIS1" "NAXIS" "DATE" ``` ### Retrieving records from a FITS header A FITS header object behaves as a vector of `FitsCard` elements with integer or keyword (string) indices. When indexed by keywords, a FITS header object is similar to a dictionary except that the order of records is preserved and that commentary and continuation records (with keywords `"COMMENT"`, `"HISTORY"`, `""`, or `"CONTINUE"`) may appear more than once. An integer (linear) index `i` or a string index `key` can be used to retrieve a given record: ``` julia hdr[i] # i-th record hdr[key] # first record whose name matches `key` ``` For example (with `hdr` as built above): ``` julia julia> hdr[2] FitsCard: BITPIX = -32 / 32-bit floats julia> hdr["NAXIS"] FitsCard: NAXIS = 2 / number of dimensions julia> hdr["COMMENT"] FitsCard: COMMENT A comment. ``` Note that, when indexing by name, the first matching record is returned. This may be a concern for non-unique keywords as in the last above example. All matching records can be collected into a vector of `FitsCard` elements by: ``` julia collect(key, hdr) # all records whose name matches `key` ``` For example: ``` julia julia> collect("COMMENT", hdr) 3-element Vector{FitsCard}: FitsCard: COMMENT A comment. FitsCard: COMMENT Another comment. FitsCard: COMMENT Yet another comment. julia> collect(rec -> startswith(rec.name, "NAXIS"), hdr) 3-element Vector{FitsCard}: FitsCard: NAXIS = 2 / number of dimensions FitsCard: NAXIS1 = 384 FitsCard: NAXIS2 = 288 julia> collect(r"^NAXIS[0-9]+$", hdr) 2-element Array{FitsCard,1}: FitsCard("NAXIS1" => 384) FitsCard("NAXIS2" => 288) ``` This behavior is different from that of `filter` which yields another FITS header instance: ``` julia julia> filter(rec -> startswith(rec.name, "NAXIS"), hdr) 3-element FitsHeader: FitsCard: NAXIS = 2 / number of dimensions FitsCard: NAXIS1 = 384 FitsCard: NAXIS2 = 288 ``` For more control, searching for the index `i` of an existing record in FITS header object `hdr` can be done by the usual methods: ``` julia findfirst(what, hdr) findlast(what, hdr) findnext(what, hdr, start) findprev(what, hdr, start) ``` which all return a valid integer index if a record matching `what` is found and `nothing` otherwise. The matching pattern `what` can be a keyword (string), a FITS card (an instance of `FitsCard` whose name is used as a matching pattern), a regular expression, or a predicate function which takes a FITS card argument and shall return whether it matches. The find methods just yield `nothing` for any unsupported kind of pattern. The `eachmatch` method is a simple mean to iterate over matching records: ``` julia eachmatch(what, hdr) ``` yields an iterator over the records of `hdr` matching `what`. For example: ``` julia @inbounds for rec in eachmatch(what, hdr) ... # do something end ``` is a shortcut for: ``` julia i = findfirst(what, hdr) @inbounds while i !== nothing rec = hdr[i] ... # do something i = findnext(what, hdr, i+1) end ``` while: ``` julia @inbounds for rec in reverse(eachmatch(what, hdr)) ... # do something end ``` is equivalent to: ``` julia i = findlast(what, hdr) @inbounds while i !== nothing rec = hdr[i] ... # do something i = findprev(what, hdr, i-1) end ``` If it is not certain that a record exists or to avoid throwing a `KeyError` exception, use the `get` method. For example: ``` julia julia> get(hdr, "BITPIX", nothing) FitsCard: BITPIX = -32 / 32-bit floats julia> get(hdr, "GIZMO", missing) missing ``` ### Modifying a FITS header A record `rec` may be pushed to a FITS header `hdr` to modify the header: ``` julia push!(hdr, rec) ``` where `rec` may have any form allowed by the `FitsCard` constructor. If the keyword is `"COMMENT"`, `"HISTORY"`, `""`, or `"CONTINUE"`, `rec` is appended to the end of the list of records stored by `hdr`. For other keywords which must be unique, if a record of the same name exists in `hdr`, it is replaced by `rec`; otherwise, it is appended to the end of the list of records stored by `hdr`. The `setindex!` method may be used with a keyword (string) index. For example, the two following statements are equivalent: ``` julia hdr[key] = (val, com) push!(hdr, key => (val, com)) ``` The `setindex!` method may also be used with a linear (integer) index.. For example: ``` julia hdr[i] = rec ``` replaces the `i`-th record in `hdr` by `rec`. With an integer index, the rule for unique / non-unique keywords is not applied, so this indexing should be restricted to editing the value and/or comment of an existing entry. The following example illustrates how this can be used to modify the comment of the BITPIX record: ``` julia julia> if (i = findfirst("BITPIX", hdr)) != nothing hdr[i] = ("BITPIX" => (hdr[i].value(), "A better comment.")) end "BITPIX" => (-32, "A better comment.") ``` ## Timings `FITSHeaders` is ought to be fast. Below are times and memory allocations for parsing 80-byte FITS cards measured with Julia 1.8.5 on a Linux laptop with an Intel Core i7-5500U CPU: - parsing logical FITS card: 114.588 ns (2 allocations: 64 bytes) - parsing integer FITS card: 118.519 ns (2 allocations: 72 bytes) - parsing HIERARCH FITS card: 142.462 ns (2 allocations: 88 bytes) - parsing float FITS card: 274.119 ns (4 allocations: 152 bytes) - parsing complex FITS card: 424.060 ns (6 allocations: 248 bytes) - parsing string FITS card: 155.694 ns (4 allocations: 144 bytes) - parsing string with quotes: 169.223 ns (4 allocations: 168 bytes) - parsing COMMENT FITS card: 90.615 ns (2 allocations: 112 bytes) - parsing HISTORY FITS card: 100.591 ns (2 allocations: 72 bytes) - parsing blank FITS card: 78.261 ns (0 allocations: 0 bytes) - parsing END FITS card: 82.286 ns (0 allocations: 0 bytes) The benchmark code is in file [`test/benchmarks.jl`](test/benchmarks.jl). The HIERARCH card has an integer value. The float and complex valued cards take more time to parse because parsing a floating-point value is more complex than parsing, say, an integer and because the string storing the floating-point value must be copied to replace letters `d` and `D`, allowed in FITS standard to indicate the exponent, by an `e`. For comparison, just extracting the keyword, value, and comment parts from a 80-characters FITS card by calling the functions `fits_get_keyname` and `fits_parse_value` of CFITSIO library takes about 150 ns on the same machine. This does not includes the allocation of the buffers to store these 3 parts (about 120 ns for this) and the parsing of the value which are all included in the timings of the `FISCard` constructor above.
FITSHeaders
https://github.com/emmt/FITSHeaders.jl.git
[ "MIT" ]
2.0.0
cdf3c2ce48c06a2106c0196d9814d9630a991d12
code
719
using CountDownLatches using Documenter DocMeta.setdocmeta!( CountDownLatches, :DocTestSetup, :(using CountDownLatches); recursive = true, ) makedocs(; modules = [CountDownLatches], authors = "Octogonapus <[email protected]> and contributors", repo = "https://github.com/Octogonapus/CountDownLatches.jl/blob/{commit}{path}#{line}", sitename = "CountDownLatches.jl", format = Documenter.HTML(; prettyurls = get(ENV, "CI", "false") == "true", canonical = "https://Octogonapus.github.io/CountDownLatches.jl", assets = String[], ), pages = ["Home" => "index.md"], ) deploydocs(; repo = "github.com/Octogonapus/CountDownLatches.jl", devbranch = "main")
CountDownLatches
https://github.com/Octogonapus/CountDownLatches.jl.git
[ "MIT" ]
2.0.0
cdf3c2ce48c06a2106c0196d9814d9630a991d12
code
1600
module CountDownLatches export CountDownLatch, await, count_down, get_count """ CountDownLatch(count::I) where {I<:Integer} A `CountDownLatch` that starts at some initial non-negative `count`. This latch can be counted down and waited on. """ mutable struct CountDownLatch{I<:Integer} count::Threads.Atomic{I} condition::Threads.Condition function CountDownLatch(count::I) where {I<:Integer} if count < 0 throw(ArgumentError("Count ($count) must not be negative.")) end new{I}(Threads.Atomic{I}(I(count)), Threads.Condition(ReentrantLock())) end end """ await(latch::CountDownLatch) Waits until the `latch` has counted down to `<= 0`. """ function await(latch::CountDownLatch) # Check the count early to possibly avoid a call to lock if get_count(latch) <= 0 return end lock(latch.condition) do while get_count(latch) > 0 wait(latch.condition) end end end """ count_down(latch::CountDownLatch) Counts down the `latch` once. This may cause the count to become negative. Any tasks that were blocked in `await` will be woken if the count becomes `<= 0`. """ function count_down(latch::CountDownLatch{I}) where {I<:Integer} Threads.atomic_sub!(latch.count, I(1)) lock(latch.condition) do notify(latch.condition, nothing; all = true, error = false) end nothing end """ get_count(latch::CountDownLatch) Returns the current count of the `latch`. This count may be negative. """ function get_count(latch::CountDownLatch) latch.count[] end end
CountDownLatches
https://github.com/Octogonapus/CountDownLatches.jl.git
[ "MIT" ]
2.0.0
cdf3c2ce48c06a2106c0196d9814d9630a991d12
code
1832
using CountDownLatches using Test using ThreadPools @testset "create a latch with a negative count" begin @test_throws ArgumentError CountDownLatch(-1) end @testset "count down from 1" begin latch = CountDownLatch(1) count_down(latch) await(latch) @test get_count(latch) == 0 end @testset "count down from 1 two times" begin latch = CountDownLatch(1) count_down(latch) count_down(latch) await(latch) @test get_count(latch) == -1 end @testset "wait for another thread to count down from 1" begin latch = CountDownLatch(1) t = Threads.@spawn begin count_down(latch) end await(latch) @test get_count(latch) == 0 @test istaskdone(t) end @testset "mutual count down" begin latch1 = CountDownLatch(1) latch2 = CountDownLatch(1) latch3 = CountDownLatch(1) t = Threads.@spawn begin count_down(latch2) await(latch1) count_down(latch3) end await(latch2) count_down(latch1) await(latch3) @test get_count(latch1) == 0 @test get_count(latch2) == 0 @test get_count(latch3) == 0 @test istaskdone(t) end @testset "wait for another thread to count down from 2" begin latch = CountDownLatch(2) t = Threads.@spawn begin count_down(latch) count_down(latch) end await(latch) @test get_count(latch) == 0 @test istaskdone(t) end @testset "wait for this thread to count down from 2 using ThreadPools" begin latch = CountDownLatch(2) this_thread_id = Threads.threadid() @tspawnat this_thread_id begin # I would like to assert that await() was called but this is the best I can come up with @test get_count(latch) == 1 count_down(latch) end count_down(latch) await(latch) @test get_count(latch) == 0 end
CountDownLatches
https://github.com/Octogonapus/CountDownLatches.jl.git
[ "MIT" ]
2.0.0
cdf3c2ce48c06a2106c0196d9814d9630a991d12
docs
1343
# CountDownLatches [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://Octogonapus.github.io/CountDownLatches.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://Octogonapus.github.io/CountDownLatches.jl/dev) [![Build Status](https://github.com/Octogonapus/CountDownLatches.jl/workflows/CI/badge.svg)](https://github.com/Octogonapus/CountDownLatches.jl/actions) [![Coverage](https://codecov.io/gh/Octogonapus/CountDownLatches.jl/branch/main/graph/badge.svg?token=MJVL5EVXTP)](https://codecov.io/gh/Octogonapus/CountDownLatches.jl) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) This package implements a multithreading primitive called a `CountDownLatch` that holds an internal count. The latch's count can be decremented by multiple threads. Threads may also wait on the latch's count to become zero. ## Example In this example, the main thread will be blocked by `await` until the spawned thread counts the latch down. This is clearly a contrived example, but imagine that there is much more code before `count_down` and before `await`. ```julia latch = CountDownLatch(1) Threads.@spawn begin # Decrease the latch's count by one count_down(latch) end # Wait until the latch's count become zero await(latch) ```
CountDownLatches
https://github.com/Octogonapus/CountDownLatches.jl.git
[ "MIT" ]
2.0.0
cdf3c2ce48c06a2106c0196d9814d9630a991d12
docs
128
```@meta CurrentModule = CountDownLatches ``` # CountDownLatches ```@index ``` ```@autodocs Modules = [CountDownLatches] ```
CountDownLatches
https://github.com/Octogonapus/CountDownLatches.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
1506
using Comrade using Distributions using BenchmarkTools using Pyehtim # To download the data visit https://doi.org/10.25739/g85n-f134 obs = ehtim.obsdata.load_uvfits(joinpath(@__DIR__, "..", "examples", "Data", "SR1_M87_2017_096_hi_hops_netcal_StokesI.uvfits")) obsavg = scan_average(obs) amp = extract_table(obsavg, VisibilityAmplitudes()) function model(θ, p) (;rad, wid, a, b, f, sig, asy, pa, x, y) = θ ring = f*smoothed(stretched(MRing((a,), (b,)), μas2rad(rad), μas2rad(rad)), μas2rad(wid)) g = (1-f)*shifted(rotated(stretched(Gaussian(), μas2rad(sig)*asy, μas2rad(sig)), pa), μas2rad(x), μas2rad(y)) return ring + g end prior = ( rad = Uniform(10.0, 30.0), wid = Uniform(1.0, 10.0), a = Uniform(-0.5, 0.5), b = Uniform(-0.5, 0.5), f = Uniform(0.0, 1.0), sig = Uniform((1.0), (60.0)), asy = Uniform(0.0, 0.9), pa = Uniform(0.0, 1π), x = Uniform(-(80.0), (80.0)), y = Uniform(-(80.0), (80.0)) ) # Now form the posterior skym = SkyModel(model, prior, imagepixels(μas2rad(150.0), μas2rad(150.0), 128, 128)) θ = (rad= 22.0, wid= 3.0, a = 0.0, b = 0.15, f=0.8, sig = 20.0, asy=0.2, pa=π/2, x=20.0, y=20.0) m = model(θ, nothing) post = VLBIPosterior(skym, amp) tpost = asflat(post) x0 = prior_sample(tpost) ℓ = logdensityof(tpost) @benchmark ℓ($x0) # 38.1 μs using Enzyme @benchmark Enzyme.gradient(Enzyme.Reverse, $(Const(tpost)), $x0) #107.3 μs # Now we do the eht-imaging benchmarks
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
1964
# THis is because we are on a headless system # see https://github.com/jheinen/GR.jl/issues/510 # ENV["GKS_WSTYPE"]="nul" using Documenter, Pkg using DocumenterVitepress using Comrade, ComradeBase, AdvancedHMC, Dynesty, Optimization, PolarizedTypes using Pyehtim, VLBISkyModels, InteractiveUtils using AbstractMCMC, Random, HypercubeTransform deployconfig = Documenter.auto_detect_deploy_system() Documenter.post_status(deployconfig; type="pending", repo="github.com/ptiede/Comrade.jl.git") TUTORIALS = [ "Overview" => "tutorials/index.md", "Beginner" =>[ "tutorials/beginner/LoadingData.md", "tutorials/beginner/GeometricModeling.md" ], "Intermediate" => [ "tutorials/intermediate/ClosureImaging.md", "tutorials/intermediate/StokesIImaging.md", "tutorials/intermediate/PolarizedImaging.md" ], "Advanced" => [ "tutorials/advanced/HybridImaging.md", ] ] makedocs(; modules=[ComradeBase, Comrade], repo="https://github.com/ptiede/Comrade.jl/blob/{commit}{path}#{line}", sitename="Comrade.jl", format = MarkdownVitepress( repo="https://github.com/ptiede/Comrade.jl", devurl = "dev", devbranch = "main", ), pages=Any[ "Home" => "index.md", "introduction.md", "benchmarks.md", "vlbi_imaging_problem.md", "conventions.md", "Tutorials" => TUTORIALS, "Extensions" => [ "ext/optimization.md", "ext/ahmc.md", "ext/dynesty.md", "ext/pigeons.md" ], "base_api.md", "api.md" ], draft = false, source = "src", build = "build", clean = true ) deploydocs(; repo="github.com/ptiede/Comrade.jl", push_preview=true, devbranch = "main", target = "build" )
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
1270
using Pkg; Pkg.activate(@__DIR__) using Literate preprocess(path, str) = replace(str, "__DIR = @__DIR__" => "__DIR = \"$(dirname(path))\"") get_example_path(p) = joinpath(@__DIR__, "..", "examples", p) OUTPUT = joinpath(@__DIR__, "src", "tutorials") TUTORIALS = [ "beginner/LoadingData/main.jl", "beginner/GeometricModeling/main.jl", "intermediate/ClosureImaging/main.jl", "intermediate/StokesIImaging/main.jl", "intermediate/PolarizedImaging/main.jl", "advanced/HybridImaging/main.jl", ] withenv("JULIA_DEBUG"=>"Literate") do for (d, paths) in (("", TUTORIALS),), (i,p) in enumerate(paths) name = "$((rsplit(p, "/")[2]))" d = "$((rsplit(p, "/")[1]))" p_ = get_example_path(p) @info p_ jl_expr = "using Literate;"* "preprocess(path, str) = replace(str, \"__DIR = @__DIR__\" => \"__DIR = \\\"\$(dirname(path))\\\"\");"* "Literate.markdown(\"$(p_)\", \"$(joinpath(OUTPUT, d))\";"* "name=\"$name\", execute=false, flavor=Literate.DocumenterFlavor(),"* "preprocess=Base.Fix1(preprocess, \"$(p_)\"))" cm = `julia --project=$(@__DIR__) -e $(jl_expr)` run(cm) end end
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
11337
# # Hybrid Imaging of a Black Hole # In this tutorial, we will use **hybrid imaging** to analyze the 2017 EHT data. # By hybrid imaging, we mean decomposing the model into simple geometric models, e.g., rings # and such, plus a rasterized image model to soak up the additional structure. # This approach was first developed in [`BB20`](https://iopscience.iop.org/article/10.3847/1538-4357/ab9c1f) # and applied to EHT 2017 data. We will use a similar model in this tutorial. # ## Introduction to Hybrid modeling and imaging # The benefit of using a hybrid-based modeling approach is the effective compression of # information/parameters when fitting the data. Hybrid modeling requires the user to # incorporate specific knowledge of how you expect the source to look like. For instance # for M87, we expect the image to be dominated by a ring-like structure. Therefore, instead # of using a high-dimensional raster to recover the ring, we can use a ring model plus # a raster to soak up the additional degrees of freedom. # This is the approach we will take in this tutorial to analyze the April 6 2017 EHT data # of M87. import Pkg #hide __DIR = @__DIR__ #hide pkg_io = open(joinpath(__DIR, "pkg.log"), "w") #hide Pkg.activate(__DIR; io=pkg_io) #hide Pkg.develop(; path=joinpath(__DIR, "..", "..", ".."), io=pkg_io) #hide Pkg.instantiate(; io=pkg_io) #hide Pkg.precompile(; io=pkg_io) #hide close(pkg_io) #hide ENV["GKSwstype"] = "nul" #hide # ## Loading the Data # To get started we will load Comrade using Comrade # ## Load the Data using Pyehtim # For reproducibility we use a stable random number genreator using StableRNGs rng = StableRNG(11) # To download the data visit https://doi.org/10.25739/g85n-f134 # To load the eht-imaging obsdata object we do: obs = ehtim.obsdata.load_uvfits(joinpath(__DIR, "..", "..", "Data", "SR1_M87_2017_096_lo_hops_netcal_StokesI.uvfits")) # Now we do some minor preprocessing: # - Scan average the data since the data have been preprocessed so that the gain phases # coherent. obs = scan_average(obs).add_fractional_noise(0.02) # For this tutorial we will once again fit complex visibilities since they # provide the most information once the telescope/instrument model are taken # into account. dvis = extract_table(obs, Visibilities()) # ## Building the Model/Posterior # Now we build our intensity/visibility model. That is, the model that takes in a # named tuple of parameters and perhaps some metadata required to construct the model. # For our model, we will use a raster or `ContinuousImage` model, an `m-ring` model, # and a large asymmetric Gaussian component to model the unresolved short-baseline flux. function sky(θ, metadata) (;c, σimg, f, r, σ, ma, mp, fg) = θ (;ftot, grid) = metadata ## Form the image model ## First transform to simplex space first applying the non-centered transform rast = (ftot*f*(1-fg)).*to_simplex(CenteredLR(), σimg.*c) mimg = ContinuousImage(rast, grid, BSplinePulse{3}()) ## Form the ring model α = ma.*cos.(mp) β = ma.*sin.(mp) ring = smoothed(modify(MRing(α, β), Stretch(r), Renormalize((ftot*(1-f)*(1-fg)))), σ) gauss = modify(Gaussian(), Stretch(μas2rad(250.0)), Renormalize(ftot*f*fg)) ## We group the geometric models together for improved efficiency. This will be ## automated in future versions. return mimg + (ring + gauss) end # Unlike other imaging examples # (e.g., [Imaging a Black Hole using only Closure Quantities](@ref)) we also need to include # a model for the instrument, i.e., gains as well. The gains will be broken into two components # - Gain amplitudes which are typically known to 10-20%, except for LMT, which has amplitudes closer to 50-100%. # - Gain phases which are more difficult to constrain and can shift rapidly. using VLBIImagePriors using Distributions fgain(x) = exp(x.lg + 1im*x.gp) G = SingleStokesGain(fgain) intpr = ( lg= ArrayPrior(IIDSitePrior(ScanSeg(), Normal(0.0, 0.2)); LM = IIDSitePrior(ScanSeg(), Normal(0.0, 1.0))), gp= ArrayPrior(IIDSitePrior(ScanSeg(), DiagonalVonMises(0.0, inv(π^2))); refant=SEFDReference(0.0)) ) intmodel = InstrumentModel(G, intpr) # Before we move on, let's go into the `model` function a bit. This function takes two arguments # `θ` and `metadata`. The `θ` argument is a named tuple of parameters that are fit # to the data. The `metadata` argument is all the ancillary information we need to construct the model. # For our hybrid model, we will need two variables for the metadata, a `grid` that specifies # the locations of the image pixels and a `cache` that defines the algorithm used to calculate # the visibilities given the image model. This is required since `ContinuousImage` is most easily # computed using number Fourier transforms like the [`NFFT`](https://github.com/JuliaMath/NFFT.jl) # or [FFT](https://github.com/JuliaMath/FFTW.jl). # To combine the models, we use `Comrade`'s overloaded `+` operators, which will combine the # images such that their intensities and visibilities are added pointwise. # Now let's define our metadata. First we will define the cache for the image. This is # required to compute the numerical Fourier transform. fovxy = μas2rad(200.0) npix = 32 g = imagepixels(fovxy, fovxy, npix, npix) # Part of hybrid imaging is to force a scale separation between # the different model components to make them identifiable. # To enforce this we will set the raster component to have a # correlation length of 5 times the beam size. beam = beamsize(dvis) rat = (beam/(step(g.X))) cprior = GaussMarkovRandomField(5*rat, size(g)) # For the other parameters we use a uniform priors for the ring fractional flux `f` # ring radius `r`, ring width `σ`, and the flux fraction of the Gaussian component `fg` # and the amplitude for the ring brightness modes. For the angular variables `ξτ` and `ξ` # we use the von Mises prior with concentration parameter `inv(π^2)` which is essentially # a uniform prior on the circle. Finally for the standard deviation of the MRF we use a # half-normal distribution. This is to ensure that the MRF has small differences from the # mean image. skyprior = ( c = cprior, σimg = truncated(Normal(0.0, 0.1); lower=0.01), f = Uniform(0.0, 1.0), r = Uniform(μas2rad(10.0), μas2rad(30.0)), σ = Uniform(μas2rad(0.1), μas2rad(10.0)), ma = ntuple(_->Uniform(0.0, 0.5), 2), mp = ntuple(_->DiagonalVonMises(0.0, inv(π^2)), 2), fg = Uniform(0.0, 1.0), ) # Now we form the metadata skymetadata = (;ftot=1.1, grid = g) skym = SkyModel(sky, skyprior, g; metadata=skymetadata) # This is everything we need to specify our posterior distribution, which our is the main # object of interest in image reconstructions when using Bayesian inference. using Enzyme post = VLBIPosterior(skym, intmodel, dvis; admode=set_runtime_activity(Enzyme.Reverse)) # To sample from our prior we can do xrand = prior_sample(rng, post) # and then plot the results using DisplayAs #hide import CairoMakie as CM CM.activate!(type = "png", px_per_unit=1) #hide gpl = imagepixels(μas2rad(200.0), μas2rad(200.0), 128, 128) fig = imageviz(intensitymap(skymodel(post, xrand), gpl)); fig |> DisplayAs.PNG |> DisplayAs.Text #hide # ## Reconstructing the Image # To find the image we will demonstrate two methods: # - Optimization to find the MAP (fast but often a poor estimator) # - Sampling to find the posterior (slow but provides a substantially better estimator) # For optimization we will use the `Optimization.jl` package and the LBFGS optimizer. # To use this we use the [`comrade_opt`](@ref) function using Optimization using OptimizationOptimJL xopt, sol = comrade_opt(post, LBFGS(); initial_params=xrand, maxiters=2000, g_tol=1e0) # First we will evaluate our fit by plotting the residuals using Plots fig = residual(post, xopt); fig |> DisplayAs.PNG |> DisplayAs.Text #hide # These residuals suggest that we are substantially overfitting the data. This is a common # side effect of MAP imaging. As a result if we plot the image we see that there # is substantial high-frequency structure in the image that isn't supported by the data. imageviz(intensitymap(skymodel(post, xopt), gpl), figure=(;resolution=(500, 400),)) # To improve our results we will now move to Posterior sampling. This is the main method # we recommend for all inference problems in `Comrade`. While it is slower the results are # often substantially better. To sample we will use the `AdvancedHMC` package. using AdvancedHMC chain = sample(rng, post, NUTS(0.8), 700; n_adapts=500, progress=false, initial_params=xopt); # We then remove the adaptation/warmup phase from our chain chain = chain[501:end] # !!! warning # This should be run for 4-5x more steps to properly estimate expectations of the posterior #- # Now lets plot the mean image and standard deviation images. # To do this we first clip the first 250 MCMC steps since that is during tuning and # so the posterior is not sampling from the correct sitesary distribution. using StatsBase msamples = skymodel.(Ref(post), chain[begin:2:end]); # The mean image is then given by imgs = intensitymap.(msamples, Ref(gpl)) fig = imageviz(mean(imgs), colormap=:afmhot, size=(400, 300)); fig |> DisplayAs.PNG |> DisplayAs.Text #hide #- fig = imageviz(std(imgs), colormap=:batlow, size=(400, 300)); fig |> DisplayAs.PNG |> DisplayAs.Text #hide #- # # We can also split up the model into its components and analyze each separately comp = Comrade.components.(msamples) ring_samples = getindex.(comp, 2) rast_samples = first.(comp) ring_imgs = intensitymap.(ring_samples, Ref(gpl)); rast_imgs = intensitymap.(rast_samples, Ref(gpl)); ring_mean, ring_std = mean_and_std(ring_imgs); rast_mean, rast_std = mean_and_std(rast_imgs); fig = CM.Figure(; resolution=(400, 400)); axes = [CM.Axis(fig[i, j], xreversed=true, aspect=CM.DataAspect()) for i in 1:2, j in 1:2] CM.image!(axes[1,1], ring_mean, colormap=:afmhot); axes[1,1].title = "Ring Mean" CM.image!(axes[1,2], ring_std, colormap=:afmhot); axes[1,2].title = "Ring Std. Dev." CM.image!(axes[2,1], rast_mean, colormap=:afmhot); axes[2,1].title = "Rast Mean" CM.image!(axes[2,2], rast_std./rast_mean, colormap=:afmhot); axes[2,2].title = "Rast std/mean" CM.hidedecorations!.(axes) fig |> DisplayAs.PNG |> DisplayAs.Text # Finally, let's take a look at some of the ring parameters figd = CM.Figure(;resolution=(650, 400)); p1 = CM.density(figd[1,1], rad2μas(chain.sky.r)*2, axis=(xlabel="Ring Diameter (μas)",)) p2 = CM.density(figd[1,2], rad2μas(chain.sky.σ)*2*sqrt(2*log(2)), axis=(xlabel="Ring FWHM (μas)",)) p3 = CM.density(figd[1,3], -rad2deg.(chain.sky.mp.:1) .+ 360.0, axis=(xlabel = "Ring PA (deg) E of N",)) p4 = CM.density(figd[2,1], 2*chain.sky.ma.:2, axis=(xlabel="Brightness asymmetry",)) p5 = CM.density(figd[2,2], 1 .- chain.sky.f, axis=(xlabel="Ring flux fraction",)) figd |> DisplayAs.PNG |> DisplayAs.Text #hide # Now let's check the residuals using draws from the posterior p = Plots.plot(); for s in sample(chain, 10) residual!(p, post, s, legend=false) end p |> DisplayAs.PNG |> DisplayAs.Text #hide # And everything looks pretty good! Now comes the hard part: interpreting the results...
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
10565
# # Geometric Modeling of EHT Data # `Comrade` has been designed to work with the EHT and ngEHT. # In this tutorial, we will show how to reproduce some of the results # from [EHTC VI 2019](https://iopscience.iop.org/article/10.3847/2041-8213/ab1141). # In EHTC VI, they considered fitting simple geometric models to the data # to estimate the black hole's image size, shape, brightness profile, etc. # In this tutorial, we will construct a similar model and fit it to the data in under # 50 lines of code (sans comments). To start, we load Comrade and some other packages we need. import Pkg #hide __DIR = @__DIR__ #hide pkg_io = open(joinpath(__DIR, "pkg.log"), "w") #hide Pkg.activate(__DIR; io=pkg_io) #hide Pkg.develop(; path=joinpath(__DIR, "..", "..", ".."), io=pkg_io) #hide Pkg.instantiate(; io=pkg_io) #hide Pkg.precompile(; io=pkg_io) #hide close(pkg_io) #hide ENV["GKSwstype"] = "nul" #hide using Comrade using Pyehtim # For reproducibility we use a stable random number genreator using StableRNGs rng = StableRNG(42) #- # The next step is to load the data. We will use the publically # available M 87 data which can be downloaded # from [cyverse](https://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/EHTC_FirstM87Results_Apr2019). # For an introduction to data loading, see [Loading Data into Comrade](@ref). obs = ehtim.obsdata.load_uvfits(joinpath(__DIR, "..", "..", "Data", "SR1_M87_2017_096_lo_hops_netcal_StokesI.uvfits")) # Now we will kill 0-baselines since we don't care about large-scale flux and # since we know that the gains in this dataset are coherent across a scan, we make scan-average data obs = Pyehtim.scan_average(obs.flag_uvdist(uv_min=0.1e9)).add_fractional_noise(0.02) # Now we extract the data products we want to fit dlcamp, dcphase = extract_table(obs, LogClosureAmplitudes(;snrcut=3.0), ClosurePhases(;snrcut=3.0)) # !!!warn # We remove the low-snr closures since they are very non-gaussian. This can create rather # large biases in the model fitting since the likelihood has much heavier tails that the # usual Gaussian approximation. #- # For the image model, we will use a modified `MRing`, a # infinitely thin delta ring with an azimuthal structure given by a Fourier expansion. # To give the MRing some width, we will convolve the ring with a Gaussian and add an # additional gaussian to the image to model any non-ring flux. # Comrade expects that any model function must accept a named tuple and returns must always # return an object that implements the [VLBISkyModels Interface](https://ehtjulia.github.io/VLBISkyModels.jl/stable/interface/) #- function sky(θ, p) (;radius, width, ma, mp, τ, ξτ, f, σG, τG, ξG, xG, yG) = θ α = ma.*cos.(mp .- ξτ) β = ma.*sin.(mp .- ξτ) ring = f*smoothed(modify(MRing(α, β), Stretch(radius, radius*(1+τ)), Rotate(ξτ)), width) g = (1-f)*shifted(rotated(stretched(Gaussian(), σG, σG*(1+τG)), ξG), xG, yG) return ring + g end # To construct our likelihood `p(V|M)` where `V` is our data and `M` is our model, we use the `RadioLikelihood` function. # The first argument of `RadioLikelihood` is always a function that constructs our Comrade # model from the set of parameters `θ`. # We now need to specify the priors for our model. The easiest way to do this is to # specify a NamedTuple of distributions: using Distributions, VLBIImagePriors prior = ( radius = Uniform(μas2rad(10.0), μas2rad(30.0)), width = Uniform(μas2rad(1.0), μas2rad(10.0)), ma = (Uniform(0.0, 0.5), Uniform(0.0, 0.5)), mp = (Uniform(0, 2π), Uniform(0, 2π)), τ = Uniform(0.0, 1.0), ξτ= Uniform(0.0, π), f = Uniform(0.0, 1.0), σG = Uniform(μas2rad(1.0), μas2rad(100.0)), τG = Uniform(0.0, 1.0), ξG = Uniform(0.0, 1π), xG = Uniform(-μas2rad(80.0), μas2rad(80.0)), yG = Uniform(-μas2rad(80.0), μas2rad(80.0)) ) # Note that for `α` and `β` we use a product distribution to signify that we want to use a # multivariate uniform for the mring components `α` and `β`. In general the structure of the # variables is specified by the prior. Note that this structure must be compatible with the # model definition `model(θ)`. # We can now construct our Sky model, which typically takes a model, prior and the # on sky grid. Note that since our model is analytic the grid is not directly used when # computing visibilities. skym = SkyModel(sky, prior, imagepixels(μas2rad(200.0), μas2rad(200.0), 128, 128)) # In this tutorial we will be using closure products as our data. As such we do not need to specify a # instrument model, since for stokes I imaging, the likelihood is approximately invariant to the instrument # model. post = VLBIPosterior(skym, dlcamp, dcphase) # !!! note # When fitting visibilities a instrument is required, and a reader can refer to # [Stokes I Simultaneous Image and Instrument Modeling](@ref). # This constructs a posterior density that can be evaluated by calling `logdensityof`. # For example, logdensityof(post, (sky = (radius = μas2rad(20.0), width = μas2rad(10.0), ma = (0.3, 0.3), mp = (π/2, π), τ = 0.1, ξτ= π/2, f = 0.6, σG = μas2rad(50.0), τG = 0.1, ξG = 0.5, xG = 0.0, yG = 0.0),)) # ## Reconstruction # Now that we have fully specified our model, we now will try to find the optimal reconstruction # of our model given our observed data. # Currently, `post` is in **parameter** space. Often optimization and sampling algorithms # want it in some modified space. For example, nested sampling algorithms want the # parameters in the unit hypercube. To transform the posterior to the unit hypercube, we # can use the `ascube` function cpost = ascube(post) # If we want to flatten the parameter space and move from constrained parameters to (-∞, ∞) # support we can use the `asflat` function fpost = asflat(post) # These transformed posterior expect a vector of parameters. For example, we can draw from the # prior in our usual parameter space p = prior_sample(rng, post) # and then transform it to transformed space using T logdensityof(cpost, Comrade.TV.inverse(cpost, p)) logdensityof(fpost, Comrade.TV.inverse(fpost, p)) # note that the log densit is not the same since the transformation has causes a jacobian to ensure volume is preserved. # ### Finding the Optimal Image # Typically, most VLBI modeling codes only care about finding the optimal or best guess # image of our posterior `post` To do this, we will use [`Optimization.jl`](https://docs.sciml.ai/Optimization/stable/) and # specifically the [`BlackBoxOptim.jl`](https://github.com/robertfeldt/BlackBoxOptim.jl) package. For Comrade, this workflow is # we use the [`comrade_opt`](@ref) function. using Optimization using OptimizationBBO xopt, sol = comrade_opt(post, BBO_adaptive_de_rand_1_bin_radiuslimited(); maxiters=50_000); # Given this we can now plot the optimal image or the *maximum a posteriori* (MAP) image. using DisplayAs import CairoMakie as CM CM.activate!(type = "png", px_per_unit=1) #hide g = imagepixels(μas2rad(200.0), μas2rad(200.0), 256, 256) fig = imageviz(intensitymap(skymodel(post, xopt), g), colormap=:afmhot, size=(500, 400)); DisplayAs.Text(DisplayAs.PNG(fig)) # ### Quantifying the Uncertainty of the Reconstruction # While finding the optimal image is often helpful, in science, the most important thing is to # quantify the certainty of our inferences. This is the goal of Comrade. In the language # of Bayesian statistics, we want to find a representation of the posterior of possible image # reconstructions given our choice of model and the data. # # Comrade provides several sampling and other posterior approximation tools. To see the # list, please see the Libraries section of the docs. For this example, we will be using # [Pigeons.jl](https://github.com/Julia-Tempering/Pigeons.jl) which is a state-of-the-art # parallel tempering sampler that enables global exploration of the posterior. For smaller dimension # problems (< 100) we recommend using this sampler, especially if you have access to > 1 core. using Pigeons pt = pigeons(target=cpost, explorer=SliceSampler(), record=[traces, round_trip, log_sum_ratio], n_chains=16, n_rounds=8) # That's it! To finish it up we can then plot some simple visual fit diagnostics. # First we extract the MCMC chain for our posterior. chain = sample_array(cpost, pt) # First to plot the image we call using DisplayAs #hide imgs = intensitymap.(skymodel.(Ref(post), sample(chain, 100)), Ref(g)) fig = imageviz(imgs[end], colormap=:afmhot) DisplayAs.Text(DisplayAs.PNG(fig)) # What about the mean image? Well let's grab 100 images from the chain, where we first remove the # adaptation steps since they don't sample from the correct posterior distribution meanimg = mean(imgs) fig = imageviz(meanimg, colormap=:afmhot); DisplayAs.Text(DisplayAs.PNG(fig)) # That looks similar to the EHTC VI, and it took us no time at all!. To see how well the # model is fitting the data we can plot the model and data products using Plots p1 = Plots.plot(simulate_observation(post, xopt; add_thermal_noise=false)[1], label="MAP") Plots.plot!(p1, dlcamp) p2 = Plots.plot(simulate_observation(post, xopt; add_thermal_noise=false)[2], label="MAP") Plots.plot!(p2, dcphase) DisplayAs.Text(DisplayAs.PNG(Plots.plot(p1, p2, layout=(2,1)))) # We can also plot random draws from the posterior predictive distribution. # The posterior predictive distribution create a number of synthetic observations that # are marginalized over the posterior. p1 = Plots.plot(dlcamp); p2 = Plots.plot(dcphase); uva = uvdist.(datatable(dlcamp)) uvp = uvdist.(datatable(dcphase)) for i in 1:10 mobs = simulate_observation(post, sample(chain, 1)[1]) mlca = mobs[1] mcp = mobs[2] Plots.scatter!(p1, uva, mlca[:measurement], color=:grey, label=:none, alpha=0.2) Plots.scatter!(p2, uvp, atan.(sin.(mcp[:measurement]), cos.(mcp[:measurement])), color=:grey, label=:none, alpha=0.2) end p = Plots.plot(p1, p2, layout=(2,1)); DisplayAs.Text(DisplayAs.PNG(p)) # Finally, we can also put everything onto a common scale and plot the normalized residuals. # The normalied residuals are the difference between the data # and the model, divided by the data's error: p = residual(post, chain[end]); DisplayAs.Text(DisplayAs.PNG(p))
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
3251
# # Loading Data into Comrade # The VLBI field does not have a standardized data format, and the EHT uses a # particular uvfits format similar to the optical interferometry oifits format. # As a result, we reuse the excellent `eht-imaging` package to load data into `Comrade`. # Once the data is loaded, we then convert the data into the tabular format `Comrade` # expects. Note that this may change to a Julia package as the Julia radio # astronomy group grows. # To get started, we will load `Comrade` and `Plots` to enable visualizations of the data import Pkg #hide __DIR = @__DIR__ #hide pkg_io = open(joinpath(__DIR, "pkg.log"), "w") #hide Pkg.activate(__DIR; io=pkg_io) #hide Pkg.develop(; path=joinpath(__DIR, "..", "..", ".."), io=pkg_io) #hide Pkg.instantiate(; io=pkg_io) #hide Pkg.precompile(; io=pkg_io) #hide close(pkg_io) #hide ENV["GKSwstype"] = "nul" #hide using Comrade using Plots # We also load Pyehtim since it loads eht-imaging into Julia using PythonCall and exports # the variable ehtim using Pyehtim # To load the data we will use `eht-imaging`. We will use the 2017 public M87 data which can be downloaded from # [cyverse](https://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/EHTC_FirstM87Results_Apr2019) obseht = ehtim.obsdata.load_uvfits(joinpath(__DIR, "..", "..", "Data", "SR1_M87_2017_096_lo_hops_netcal_StokesI.uvfits")) # Now we will average the data over telescope scans. Note that the EHT data has been pre-calibrated so this averaging # doesn't induce large coherence losses. obs = Pyehtim.scan_average(obseht) # !!! warning # We use a custom scan-averaging function to ensure that the scan-times are homogenized. #- # We can now extract data products that `Comrade` can use vis = extract_table(obs, Visibilities()) ## complex visibilites amp = extract_table(obs, VisibilityAmplitudes()) ## visibility amplitudes cphase = extract_table(obs, ClosurePhases(; snrcut=3.0)) ## extract minimal set of closure phases lcamp = extract_table(obs, LogClosureAmplitudes(; snrcut=3.0)) ## extract minimal set of log-closure amplitudes # For polarization we first load the data in the cirular polarization basis # Additionally, we load the array table at the same time to load the telescope mounts. obseht = Pyehtim.load_uvfits_and_array( joinpath(__DIR, "..", "..", "Data", "polarized_gaussian_all_corruptions.uvfits"), joinpath(__DIR, "..", "..", "Data", "array.txt"), polrep="circ" ) obs = Pyehtim.scan_average(obseht) coh = extract_table(obs, Coherencies()) # !!! warning # Always use our `extract_cphase` and `extract_lcamp` functions to find the closures # eht-imaging will sometimes incorrectly calculate a non-redundant set of closures. #- # We can also recover the array used in the observation using using DisplayAs ac = arrayconfig(vis) plot(ac) |> DisplayAs.PNG |> DisplayAs.Text # Plot the baseline coverage # To plot the data we just call l = @layout [a b; c d] pv = plot(vis); pa = plot(amp); pcp = plot(cphase); plc = plot(lcamp); plot(pv, pa, pcp, plc; layout=l) |> DisplayAs.PNG |> DisplayAs.Text # And also the coherency matrices plot(coh) |> DisplayAs.PNG |> DisplayAs.Text
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
10373
# # Imaging a Black Hole using only Closure Quantities # In this tutorial, we will create a preliminary reconstruction of the 2017 M87 data on April 6 # using closure-only imaging. This tutorial is a general introduction to closure-only imaging in Comrade. # For an introduction to simultaneous # image and instrument modeling, see [Stokes I Simultaneous Image and Instrument Modeling](@ref) # ## Introduction to Closure Imaging # The EHT is one of the highest-resolution telescope ever created. Its resolution is equivalent # to roughly tracking a hockey puck on the moon when viewing it from the earth. However, # the EHT is also a unique interferometer. First, EHT data is incredibly sparse, the # array is formed from only eight geographic locations around the planet. Second, the obseving # frequency is much higher than traditional VLBI. Lastly, each site in the array is unique. # They have different dishes, recievers, feeds, and electronics. # Putting this all together implies that many of the common imaging techniques struggle to # fit the EHT data and explore the uncertainty in both the image and instrument. One way to # deal with some of these uncertainties is to not directly fit the data but instead fit # closure quantities, which are independent of many of the instrumental effects that plague the # data. The types of closure quantities are briefly described in [Introduction to the VLBI Imaging Problem](@ref). # # In this tutorial, we will do closure-only modeling of M87 to produce a posterior of images of M87. import Pkg #hide __DIR = @__DIR__ #hide pkg_io = open(joinpath(__DIR, "pkg.log"), "w") #hide Pkg.activate(__DIR; io=pkg_io) #hide Pkg.develop(; path=joinpath(__DIR, "..", "..", ".."), io=pkg_io) #hide Pkg.instantiate(; io=pkg_io) #hide Pkg.precompile(; io=pkg_io) #hide close(pkg_io) #hide ENV["GKSwstype"] = "nul"; #hide # To get started, we will load Comrade using Comrade # Pyehtim loads eht-imaging using PythonCall this is necessary to load uvfits files # currently. using Pyehtim # For reproducibility we use a stable random number genreator using StableRNGs rng = StableRNG(123) # ## Load the Data # To download the data visit https://doi.org/10.25739/g85n-f134 # To load the eht-imaging obsdata object we do: obs = ehtim.obsdata.load_uvfits(joinpath(__DIR, "..", "..", "Data", "SR1_M87_2017_096_lo_hops_netcal_StokesI.uvfits")) # Now we do some minor preprocessing: # - Scan average the data since the data have been preprocessed so that the gain phases # are coherent. # - Add 2% systematic noise to deal with calibration issues such as leakage. obs = scan_average(obs).add_fractional_noise(0.02) # Now, we extract our closure quantities from the EHT data set. We flag now SNR points since # the closure likelihood we use is only applicable to high SNR data. dlcamp, dcphase = extract_table(obs, LogClosureAmplitudes(;snrcut=3), ClosurePhases(;snrcut=3)) # !!! note # Fitting low SNR closure data is complicated and requires a more sophisticated likelihood. # If low-SNR data is very important we recommend fitting visibilties with a instrumental model. # ## Build the Model/Posterior # For our model, we will be using an image model that consists of a raster of point sources, # convolved with some pulse or kernel to make a `ContinuousImage`. # To define this model we define the standard two argument function `sky` that defines the # sky model we want to fit. The first argument are the model parameters, and are typically # a NamedTuple. The second argument defines the metadata # for the model that is typically constant. For our model the constant `metdata` will just # by the mean or prior image. function sky(θ, metadata) (;fg, c, σimg) = θ (;mimg) = metadata ## Apply the GMRF fluctuations to the image rast = apply_fluctuations(CenteredLR(), mimg, σimg.*c.params) m = ContinuousImage(((1-fg)).*rast, BSplinePulse{3}()) ## Force the image centroid to be at the origin x0, y0 = centroid(m) ## Add a large-scale gaussian to deal with the over-resolved mas flux g = modify(Gaussian(), Stretch(μas2rad(250.0), μas2rad(250.0)), Renormalize(fg)) return shifted(m, -x0, -y0) + g end # Now, let's set up our image model. The EHT's nominal resolution is 20-25 μas. Additionally, # the EHT is not very sensitive to a larger field of views; typically, 60-80 μas is enough to # describe the compact flux of M87. Given this, we only need to use a small number of pixels # to describe our image. npix = 32 fovxy = μas2rad(150.0) # To define the image model we need to specify both the grid we will be using and the # FT algorithm we will use, in this case the NFFT which is the most efficient. grid = imagepixels(fovxy, fovxy, npix, npix) # Now we need to specify our image prior. For this work we will use a Gaussian Markov # Random field prior using VLBIImagePriors, Distributions # Since we are using a Gaussian Markov random field prior we need to first specify our `mean` # image. For this work we will use a symmetric Gaussian with a FWHM of 50 μas fwhmfac = 2*sqrt(2*log(2)) mpr = modify(Gaussian(), Stretch(μas2rad(50.0)./fwhmfac)) imgpr = intensitymap(mpr, grid) skymeta = (;mimg = imgpr./flux(imgpr)); # Now we can finally form our image prior. For this we use a heirarchical prior where the # direct log-ratio image prior is a Gaussian Markov Random Field. The correlation length # of the GMRF is a hyperparameter that is fit during imaging. We pass the data to the prior # to estimate what the maximumal resolutoin of the array is and prevent the prior from allowing # correlation lengths that are much small than the telescope beam size. Note that this GMRF prior # has unit variance. For more information on the GMRF prior see the [`corr_image_prior`](@ref) doc string. cprior = corr_image_prior(grid, dlcamp) # Putting everything together the total prior is then our image prior, a prior on the # standard deviation of the MRF, and a prior on the fractional flux of the Gaussian component. prior = (c = cprior, σimg = Exponential(0.1), fg=Uniform(0.0, 1.0)) # We can then define our sky model. skym = SkyModel(sky, prior, grid; metadata=skymeta) # Since we are fitting closures we do not need to include an instrument model, since # the closure likelihood is approximately independent of gains in the high SNR limit. using Enzyme post = VLBIPosterior(skym, dlcamp, dcphase; admode=set_runtime_activity(Enzyme.Reverse)) # ## Reconstructing the Image # To reconstruct the image we will first use the MAP estimate. This is approach is basically # a re-implentation of regularized maximum likelihood (RML) imaging. However, unlike traditional # RML imaging we also fit the regularizer hyperparameters, thanks to our interpretation of # as our imaging prior as a hierarchical model. # To optimize our posterior `Comrade` provides the `comrade_opt` function. To use this # functionality a user first needs to import `Optimization.jl` and the optimizer of choice. # In this tutorial we will use Optim.jl's L-BFGS optimizer, which is defined in the sub-package # OptimizationOptimJL. We also need to import Enzyme to allow for automatic differentiation. using Optimization using OptimizationOptimJL xopt, sol = comrade_opt(post, LBFGS(); maxiters=1000, initial_params=prior_sample(rng, post)) # First we will evaluate our fit by plotting the residuals using DisplayAs #hide using Plots p = residual(post, xopt) DisplayAs.Text(DisplayAs.PNG(p)) #hide # Now let's plot the MAP estimate. import CairoMakie as CM CM.activate!(type = "png", px_per_unit=1) #hide g = imagepixels(μas2rad(150.0), μas2rad(150.0), 100, 100) img = intensitymap(skymodel(post, xopt), g) fig = imageviz(img, size=(600, 500)); DisplayAs.Text(DisplayAs.PNG(fig)) #hide # That doesn't look great. This is pretty common for the sparse EHT data. In this case the # MAP often drastically overfits the data, producing a image filled with artifacts. In addition, # we note that the MAP itself is not invariant to the model parameterization. Namely, if we # changed our prior to use a fully centered parameterization we would get a very different image. # Fortunately, these issues go away when we sample from the posterior, and construct expectations # of the posterior, like the mean image. # To sample from the posterior we will use HMC and more specifically the NUTS algorithm. For information about NUTS # see Michael Betancourt's [notes](https://arxiv.org/abs/1701.02434). # !!! note # For our `metric` we use a diagonal matrix due to easier tuning. #- using AdvancedHMC chain = sample(rng, post, NUTS(0.8), 700; n_adapts=500, progress=false, initial_params=xopt); # !!! warning # This should be run for longer! #- # Now that we have our posterior, we can assess which parts of the image are strongly inferred by the # data. This is rather unique to `Comrade` where more traditional imaging algorithms like CLEAN and RML are inherently # unable to assess uncertainty in their reconstructions. # # To explore our posterior let's first create images from a bunch of draws from the posterior msamples = skymodel.(Ref(post), chain[501:2:end]); # The mean image is then given by using StatsBase imgs = intensitymap.(msamples, Ref(g)) mimg = mean(imgs) simg = std(imgs) fig = CM.Figure(;resolution=(700, 700)); axs = [CM.Axis(fig[i, j], xreversed=true, aspect=1) for i in 1:2, j in 1:2] CM.image!(axs[1,1], mimg, colormap=:afmhot); axs[1, 1].title="Mean" CM.image!(axs[1,2], simg./(max.(mimg, 1e-8)), colorrange=(0.0, 2.0), colormap=:afmhot);axs[1,2].title = "Std" CM.image!(axs[2,1], imgs[1], colormap=:afmhot); CM.image!(axs[2,2], imgs[end], colormap=:afmhot); CM.hidedecorations!.(axs) fig |> DisplayAs.PNG |> DisplayAs.Text # Now let's see whether our residuals look better. p = Plots.plot(layout=(2,1)); for s in sample(chain[501:end], 10) residual!(post, s) end p |> DisplayAs.PNG |> DisplayAs.Text # And viola, you have a quick and preliminary image of M87 fitting only closure products. # For a publication-level version we would recommend # 1. Running the chain longer and multiple times to properly assess things like ESS and R̂ (see [Geometric Modeling of EHT Data](@ref)) # 2. Fitting gains. Typically gain amplitudes are good to 10-20% for the EHT not the infinite uncertainty closures implicitly assume
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
19079
# # Polarized Image and Instrumental Modeling # In this tutorial, we will analyze a simulated simple polarized dataset to demonstrate # Comrade's polarized imaging capabilities. # ## Introduction to Polarized Imaging # The EHT is a polarized interferometer. However, like all VLBI interferometers, it does not # directly measure the Stokes parameters (I, Q, U, V). Instead, it measures components # related to the electric field at the telescope along two *directions* using feeds. # There are two types of feeds at telescopes: circular, which measure $R/L$ components of the # electric field, and linear feeds, which measure $X/Y$ components of the electric field. # Most sites in the EHT use circular feeds, meaning they measure the right (R) and left # electric field (L) at each telescope. Although note that ALMA actually uses linear feeds. # Currently Comrade has the ability to fit natively mixed polarization data however, the # publically released EHT data has been converted to circular polarization. # For a VLBI array whose feeds are purely circluar the **coherency matrices** are given by, # # ```math # C_{ij} = \begin{pmatrix} # RR^* & RL^*\\ # LR^* & LL^* # \end{pmatrix}. # ``` # # These coherency matrices are the fundamental object in interferometry and what # the telescope observes. For a perfect interferometer, these circular coherency matrices # are related to the usual Fourier transform of the stokes parameters by # # ```math # \begin{pmatrix} # \tilde{I}\\ \tilde{Q} \\ \tilde{U} \\ \tilde{V} # \end{pmatrix} # =\frac{1}{2} # \begin{pmatrix} # RR^* + LL^* \\ # RL^* + LR^* \\ # i(LR^* - RL^*)\\ # RR^* - LL^* # \end{pmatrix}. # ``` #- # !!! note # In this tutorial, we stick to circular feeds but Comrade has the capabilities # to model linear (XX,XY, ...) and mixed basis coherencies (e.g., RX, RY, ...). #- # # In reality, the measure coherencies are corrupted by both the atmosphere and the # telescope itself. In `Comrade` we use the RIME formalism [^1] to represent these corruptions, # namely our measured coherency matrices $V_{ij}$ are given by # ```math # V_{ij} = J_iC_{ij}J_j^\dagger # ``` # where $J$ is known as a *Jones matrix* and $ij$ denotes the baseline $ij$ with sites $i$ and $j$. #- # `Comrade` is highly flexible with how the Jones matrices are formed and provides several # convenience functions that parameterize standard Jones matrices. These matrices include: # - [`JonesG`](@ref) which builds the set of complex gain Jones matrices # ```math # G = \begin{pmatrix} # g_a &0\\ # 0 &g_b\\ # \end{pmatrix} # ``` # - [`JonesD`](@ref) which builds the set of complex d-terms Jones matrices # ```math # D = \begin{pmatrix} # 1 & d_a\\ # d_b &1\\ # \end{pmatrix} # ``` # - [`JonesR`](@ref) is the basis transform matrix $T$. This transformation is special and # combines two things using the decomposition $T=FB$. The first, $B$, is the transformation from # some reference basis to the observed coherency basis (this allows for mixed basis measurements). # The second is the feed rotation, $F$, that transforms from some reference axis to the axis of the # telescope as the source moves in the sky. The feed rotation matrix `F` for circular feeds # in terms of the per station feed rotation angle $\varphi$ is # ```math # F = \begin{pmatrix} # e^{-i\varphi} & 0\\ # 0 & e^{i\varphi}\\ # \end{pmatrix} # ``` #- # # In the rest of the tutorial, we are going to solve for all of these instrument model terms in # while re-creating the polarized image from the first [`EHT results on M87`](https://iopscience.iop.org/article/10.3847/2041-8213/abe71d). import Pkg #hide __DIR = @__DIR__ #hide pkg_io = open(joinpath(__DIR, "pkg.log"), "w") #hide Pkg.activate(__DIR; io=pkg_io) #hide Pkg.develop(; path=joinpath(__DIR, "..", "..", ".."), io=pkg_io) #hide Pkg.instantiate(; io=pkg_io) #hide Pkg.precompile(; io=pkg_io) #hide close(pkg_io) #hide # ## Load the Data # To get started we will load Comrade ENV["GKSwstype"] = "nul" #hide using Comrade # ## Load the Data using Pyehtim # For reproducibility we use a stable random number genreator using StableRNGs rng = StableRNG(42) # Now we will load some synthetic polarized data. fname = Base.download("https://de.cyverse.org/anon-files/iplant/home/shared/commons_repo/curated/EHTC_M87pol2017_Nov2023/hops_data/April11/SR2_M87_2017_101_lo_hops_ALMArot.uvfits", joinpath(__DIR, "m87polarized.uvfits") ) obs = Pyehtim.load_uvfits_and_array( fname, joinpath(__DIR, "..", "..", "Data", "array.txt"), polrep="circ") # Notice that, unlike other non-polarized tutorials, we need to include a second argument. # This is the **array file** of the observation and is required to determine the feed rotation # of the array. # Now we scan average the data since the data to boost the SNR and reduce the total data volume. obs = scan_average(obs).add_fractional_noise(0.01).flag_uvdist(uv_min=0.1e9) #- # Now we extract our observed/corrupted coherency matrices. dvis = extract_table(obs, Coherencies()) # ##Building the Model/Posterior # To build the model, we first break it down into two parts: # 1. **The image or sky model**. In Comrade, all polarized image models are written in terms of the Stokes parameters. # In this tutorial, we will use a polarized image model based on Pesce (2021)[^2], and # parameterizes each pixel in terms of the [`Poincare sphere`](https://en.wikipedia.org/wiki/Unpolarized_light#Poincar%C3%A9_sphere). # This parameterization ensures that we have all the physical properties of stokes parameters. # Note that we also have a parameterization in terms of hyperbolic trig functions `VLBISkyModels.PolExp2Map` # 2. **The instrument model**. The instrument model specifies the model that describes the impact of instrumental and atmospheric effects. # We will be using the $J = GDR$ decomposition we described above. However, to parameterize the # R/L complex gains, we will be using a gain product and ratio decomposition. The reason for this decomposition # is that in realistic measurements, the gain ratios and products have different temporal characteristics. # Namely, many of the EHT observations tend to demonstrate constant R/L gain ratios across an # nights observations, compared to the gain products, which vary every scan. Additionally, # the gain ratios tend to be smaller (i.e., closer to unity) than the gain products. # Using this apriori knowledge, we can build this into our model and reduce # the total number of parameters we need to model. # First we specify our sky model. As always `Comrade` requires this to be a two argument # function where the first argument is typically a NamedTuple of parameters we will fit # and the second are additional metadata required to build the model. using StatsFuns: logistic function sky(θ, metadata) (;c, σ, p, p0, pσ, angparams) = θ (;mimg, ftot) = metadata ## Build the stokes I model rast = apply_fluctuations(CenteredLR(), mimg, σ.*c.params) brast = baseimage(rast) brast .= ftot.*brast ## The total polarization fraction is modeled in logit space so we transform it back pim = logistic.(p0 .+ pσ.*p.params) ## Build our IntensityMap pmap = PoincareSphere2Map(rast, pim, angparams) ## Construct the actual image model which uses a third order B-spline pulse m = ContinuousImage(pmap, BSplinePulse{3}()) ## Finally find the image centroid and shift it to be at the center x0, y0 = centroid(pmap) ms = shifted(m, -x0, -y0) return ms end # Now, we define the model metadata required to build the model. # We specify our image grid and cache model needed to define the polarimetric # image model. Our image will be a 10x10 raster with a 60μas FOV. using Distributions using VLBIImagePriors fovx = μas2rad(200.0) fovy = μas2rad(200.0) nx = ny = 32 grid = imagepixels(fovx, fovy, nx, ny) fwhmfac = 2*sqrt(2*log(2)) mpr = modify(Gaussian(), Stretch(μas2rad(50.0)./fwhmfac)) mimg = intensitymap(mpr, grid) # For the image metadata we specify the grid and the total flux of the image, which is 1.0. # Note that we specify the total flux out front since it is degenerate with an overall shift # in the gain amplitudes. skymeta = (; mimg=mimg./flux(mimg), ftot=0.6) # We use again use a GMRF prior similar to the [Imaging a Black Hole using only Closure Quantities](@ref) tutorial # for the log-ratio transformed image. We use the same correlated image prior for the inverse-logit transformed # total polarization. The mean total polarization fraction `p0` is centered at -2.0 with a standard deviation of 2.0 # which logit transformed puts most of the prior mass < 0.8 fractional polarization. The standard deviation of the # total polarization fraction `pσ` again uses a Half-normal process. The angular parameters of the polarizaton are # given by a uniform prior on the sphere. cprior = corr_image_prior(grid, dvis) skyprior = ( c = cprior, σ = Exponential(0.1), p = cprior, p0 = Normal(-2.0, 2.0), pσ = truncated(Normal(0.0, 1.0); lower=0.01), angparams = ImageSphericalUniform(nx, ny), ) skym = SkyModel(sky, skyprior, grid; metadata=skymeta) # Now we build the instrument model. Due to the complexity of VLBI the instrument model is critical # to the success of imaging and getting reliable results. For this example we will use the standard # instrument model used in polarized EHT analyses expressed in the RIME formalism. Our Jones # decomposition will be given by `GDR`, where `G` are the complex gains, `D` are the d-terms, and `R` # is what we call the *ideal instrument response*, which is how an ideal interferometer using the # feed basis we observe relative to some reference basis. # # Given the possible flexibility in different parameterizations of the individual Jones matrices # each Jones matrix requires the user to specify a function that converts from parameters # to specific parameterization f the jones matrices. # For the complex gain matrix, we used the `JonesG` jones matrix. The first argument is now # a function that converts from the parameters to the complex gain matrix. In this case, we # will use a amplitude and phase decomposition of the complex gain matrix. Note that since # the gain matrix is a diagonal 2x2 matrix the function must return a 2-element tuple. # The first element of the tuple is the gain for the first polarization feed (R) and the # second is the gain for the second polarization feed (L). function fgain(x) gR = exp(x.lgR + 1im*x.gpR) gL = gR*exp(x.lgrat + 1im*x.gprat) return gR, gL end G = JonesG(fgain) # Similarly we provide a `JonesD` function for the leakage terms. Since we assume that we # are in the small leakage limit, we will use the decomposition # 1 d1 # d2 1 # Therefore, there are 2 free parameters for the JonesD our parameterization function # must return a 2-element tuple. For d-terms we will use a re-im parameterization. function fdterms(x) dR = complex(x.dRx, x.dRy) dL = complex(x.dLx, x.dLy) return dR, dL end D = JonesD(fdterms) # Finally we define our response Jones matrix. This matrix is a basis transform matrix # plus the feed rotation angle for each station. These are typically set by the telescope # so there are no free parameters, so no parameterization is necessary. R = JonesR(;add_fr=true) # Finally, we build our total Jones matrix by using the `JonesSandwich` function. The # first argument is a function that specifies how to combine each Jones matrix. In this case # we will use the standard decomposition J = adjoint(R)*G*D*R, where we need to apply the adjoint # of the feed rotaion matrix `R` because the data has feed rotation calibration. js(g,d,r) = adjoint(r)*g*d*r J = JonesSandwich(js, G, D, R) # !!! note # This is a general note that for arrays with non-zero leakage, feed rotation calibration # does not remove the impact of feed rotations on the instrument model. That is, # when modeling feed rotation must be taken into account. This is because # the R and D matrices are not commutative. Therefore, to recover the correct instrumental # terms we must include the feed rotation calibration in the instrument model. This is not # ideal when doing polarized modeling, especially for interferometers using a mixture of linear # and circular feeds. For linear feeds R does not commute with G or D and applying feed rotation # calibration before solving for gains can mix gains and leakage with feed rotation calibration terms # breaking many of the typical assumptions about the stabilty of different instrument effects. # For the instrument prior, we will use a simple IID prior for the complex gains and d-terms. # The `IIDSitePrior` function specifies that each site has the same prior and each value is independent # on some time segment. The current time segments are # - `ScanSeg()` which specifies each scan has an independent value # - `TrackSeg()` which says that the value is constant over the track. # - `IntegSeg()` which says that the value changes each integration time # For the released EHT data, the calibration procedure makes gains stable over each scan # so we use `ScanSeg` for those quantities. The d-terms are typically stable over the track # so we use `TrackSeg` for those. intprior = ( lgR = ArrayPrior(IIDSitePrior(ScanSeg(), Normal(0.0, 0.2))), lgrat= ArrayPrior(IIDSitePrior(ScanSeg(), Normal(0.0, 0.01))), gpR = ArrayPrior(IIDSitePrior(ScanSeg(), DiagonalVonMises(0.0, inv(π^2))); refant=SEFDReference(0.0), phase=true), gprat= ArrayPrior(IIDSitePrior(ScanSeg(), DiagonalVonMises(0.0, inv(0.1^2))); refant = SingleReference(:AA, 0.0), phase=false), dRx = ArrayPrior(IIDSitePrior(TrackSeg(), Normal(0.0, 0.2))), dRy = ArrayPrior(IIDSitePrior(TrackSeg(), Normal(0.0, 0.2))), dLx = ArrayPrior(IIDSitePrior(TrackSeg(), Normal(0.0, 0.2))), dLy = ArrayPrior(IIDSitePrior(TrackSeg(), Normal(0.0, 0.2))), ) # Finally, we can build our instrument model which takes a model for the Jones matrix `J` # and priors for each term in the Jones matrix. intmodel = InstrumentModel(J, intprior) # intmodel = InstrumentModel(JonesR(;add_fr=true)) # Putting it all together, we form our likelihood and posterior objects for optimization and # sampling, and specifying to use Enzyme.Reverse with runtime activity for AD. using Enzyme post = VLBIPosterior(skym, intmodel, dvis; admode=set_runtime_activity(Enzyme.Reverse)) # ## Reconstructing the Image and Instrument Effects # To sample from this posterior, it is convenient to move from our constrained parameter space # to an unconstrained one (i.e., the support of the transformed posterior is (-∞, ∞)). This transformation is # done using the `asflat` function. tpost = asflat(post) # We can also query the dimension of our posterior or the number of parameters we will sample. # !!! warning # This can often be different from what you would expect. This difference is especially true when using # angular variables, where we often artificially increase the dimension # of the parameter space to make sampling easier. #- # Now we optimize. Unlike other imaging examples, we move straight to gradient optimizers # due to the higher dimension of the space. In addition the only AD package that can currently # work with the polarized Comrade posterior is Enzyme. using Optimization using OptimizationOptimisers xopt, sol = comrade_opt(post, Optimisers.Adam(); initial_params=prior_sample(rng, post), maxiters=25_000) # Now let's evaluate our fits by plotting the residuals using Plots residual(post, xopt) # These look reasonable, although there may be some minor overfitting. # Let's compare our results to the ground truth values we know in this example. # First, we will load the polarized truth imgtrue = load_fits(joinpath(__DIR, "..", "..", "Data", "polarized_gaussian.fits"), IntensityMap{StokesParams}) # Select a reasonable zoom in of the image. imgtruesub = regrid(imgtrue, imagepixels(fovx, fovy, nx*4, ny*4)) img = intensitymap(Comrade.skymodel(post, xopt), axisdims(imgtruesub)) #Plotting the results gives import CairoMakie as CM using DisplayAs #hide fig = imageviz(img, adjust_length=true, colormap=:bone, pcolormap=:RdBu) fig |> DisplayAs.PNG |> DisplayAs.Text #- # !!! note # The image looks a little noisy. This is an artifact of the MAP image. To get a publication quality image # we recommend sampling from the posterior and averaging the samples. The results will be essentially # identical to the results from [EHTC VII](https://iopscience.iop.org/article/10.3847/2041-8213/abe71d). # We can also analyze the instrument model. For example, we can look at the gain ratios and products. # To grab the ratios and products we can use the `caltable` function which will return analyze the gprat array # and convert it to a uniform table. We can then plot the gain phases and amplitudes. gphase_ratio = caltable(xopt.instrument.gprat) gamp_ratio = caltable(exp.(xopt.instrument.lgrat)) #- # Plotting the phases first, we see large trends in the righ circular polarization phase. This is expected # due to a lack of image centroid and the absense of absolute phase information in VLBI. However, the gain # phase difference between the left and right circular polarization is stable and close to zero. This is # expected since gain ratios are typically stable over the course of an observation and the constant # offset was removed in the EHT calibration process. gphaseR = caltable(xopt.instrument.gpR) p = Plots.plot(gphaseR, layout=(3,3), size=(650,500)); Plots.plot!(p, gphase_ratio, layout=(3,3), size=(650,500)); p |> DisplayAs.PNG |> DisplayAs.Text #- # Moving to the amplitudes we see largely stable gain amplitudes on the right circular polarization except for LMT which is # known and due to pointing issues during the 2017 observation. Again the gain ratios are stable and close to unity. Typically # we expect that apriori calibration should make the gain ratios close to unity. gampr = caltable(exp.(xopt.instrument.lgR)) p = Plots.plot(gampr, layout=(3,3), size=(650,500)) Plots.plot!(p, gamp_ratio, layout=(3,3), size=(650,500)) p |> DisplayAs.PNG |> DisplayAs.Text #- # To sample from the posterior, you can then just use the `sample` function from AdvancedHMC like in the # other imaging examples. For example # ```julia # using AdvancedHMC # chain = sample(rng, post, NUTS(0.8), 10_000, n_adapts=5000, progress=true, initial_params=xopt) # ``` # [^1]: Hamaker J.P, Bregman J.D., Sault R.J. (1996) [https://articles.adsabs.harvard.edu/pdf/1996A%26AS..117..137H] # [^2]: Pesce D. (2021) [https://ui.adsabs.harvard.edu/abs/2021AJ....161..178P/abstract] #-
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
11877
# # Stokes I Simultaneous Image and Instrument Modeling # In this tutorial, we will create a preliminary reconstruction of the 2017 M87 data on April 6 # by simultaneously creating an image and model for the instrument. By instrument model, we # mean something akin to self-calibration in traditional VLBI imaging terminology. However, # unlike traditional self-cal, we will solve for the gains each time we update the image # self-consistently. This allows us to model the correlations between gains and the image. # To get started we load Comrade. import Pkg #hide __DIR = @__DIR__ #hide pkg_io = open(joinpath(__DIR, "pkg.log"), "w") #hide Pkg.activate(__DIR; io=pkg_io) #hide Pkg.develop(; path=joinpath(__DIR, "..", "..", ".."), io=pkg_io) #hide Pkg.instantiate(; io=pkg_io) #hide Pkg.precompile(; io=pkg_io) #hide close(pkg_io) #hide using Comrade using Pyehtim using LinearAlgebra # For reproducibility we use a stable random number genreator using StableRNGs rng = StableRNG(12) # ## Load the Data # To download the data visit https://doi.org/10.25739/g85n-f134 # First we will load our data: obs = ehtim.obsdata.load_uvfits(joinpath(__DIR, "..", "..", "Data", "SR1_M87_2017_096_lo_hops_netcal_StokesI.uvfits")) # obs = ehtim.obsdata.load_uvfits("~/Dropbox (Smithsonian External)/M872021Project/Data/2021/CASA/e21e18/V4/M87_calibrated_b3.uvf+EVPA_rotation+netcal_10savg+flag.uvfits") # Now we do some minor preprocessing: # - Scan average the data since the data have been preprocessed so that the gain phases # coherent. # - Add 1% systematic noise to deal with calibration issues that cause 1% non-closing errors. obs = scan_average(obs).add_fractional_noise(0.02) # Now we extract our complex visibilities. dvis = extract_table(obs, Visibilities()) # ##Building the Model/Posterior # Now, we must build our intensity/visibility model. That is, the model that takes in a # named tuple of parameters and perhaps some metadata required to construct the model. # For our model, we will use a raster or `ContinuousImage` for our image model. # The model is given below: # The model construction is very similar to [Imaging a Black Hole using only Closure Quantities](@ref), # except we include a large scale gaussian since we want to model the zero baselines. # For more information about the image model please read the closure-only example. function sky(θ, metadata) (;fg, c, σimg) = θ (;ftot, mimg) = metadata ## Apply the GMRF fluctuations to the image rast = apply_fluctuations(CenteredLR(), mimg, σimg.*c.params) pimg = parent(rast) @. pimg = (ftot*(1-fg))*pimg m = ContinuousImage(rast, BSplinePulse{3}()) x0, y0 = centroid(m) ## Add a large-scale gaussian to deal with the over-resolved mas flux g = modify(Gaussian(), Stretch(μas2rad(500.0), μas2rad(500.0)), Renormalize(ftot*fg)) return shifted(m, -x0, -y0) + g end # Now, let's set up our image model. The EHT's nominal resolution is 20-25 μas. Additionally, # the EHT is not very sensitive to a larger field of view. Typically 60-80 μas is enough to # describe the compact flux of M87. Given this, we only need to use a small number of pixels # to describe our image. npix = 32 fovx = μas2rad(200.0) fovy = μas2rad(200.0) # Now let's form our cache's. First, we have our usual image cache which is needed to numerically # compute the visibilities. grid = imagepixels(fovx, fovy, npix, npix) # Now we need to specify our image prior. For this work we will use a Gaussian Markov # Random field prior # Since we are using a Gaussian Markov random field prior we need to first specify our `mean` # image. This behaves somewhat similary to a entropy regularizer in that it will # start with an initial guess for the image structure. For this tutorial we will use a # a symmetric Gaussian with a FWHM of 50 μas using VLBIImagePriors using Distributions fwhmfac = 2*sqrt(2*log(2)) mpr = modify(Gaussian(), Stretch(μas2rad(50.0)./fwhmfac)) mimg = intensitymap(mpr, grid) # Now we can form our metadata we need to fully define our model. # We will also fix the total flux to be the observed value 1.1. This is because # total flux is degenerate with a global shift in the gain amplitudes making the problem # degenerate. To fix this we use the observed total flux as our value. skymeta = (;ftot = 1.1, mimg = mimg./flux(mimg)) # To make the Gaussian Markov random field efficient we first precompute a bunch of quantities # that allow us to scale things linearly with the number of image pixels. The returns a # functional that accepts a single argument related to the correlation length of the field. # The second argument defines the underlying random field of the Markov process. Here # we are using a zero mean and unit variance Gaussian Markov random field. # For this tutorial we will use the first order random field cprior = corr_image_prior(grid, dvis) # Putting everything together the total prior is then our image prior, a prior on the # standard deviation of the MRF, and a prior on the fractional flux of the Gaussian component. prior = ( c = cprior, σimg = truncated(Normal(0.0, 0.5); lower=0.0), fg = Uniform(0.0, 1.0), ) # Now we can construct our sky model. skym = SkyModel(sky, prior, grid; metadata=skymeta) # Unlike other imaging examples # (e.g., [Imaging a Black Hole using only Closure Quantities](@ref)) we also need to include # a model for the instrument, i.e., gains. The gains will be broken into two components # - Gain amplitudes which are typically known to 10-20%, except for LMT, which has amplitudes closer to 50-100%. # - Gain phases which are more difficult to constrain and can shift rapidly. G = SingleStokesGain() do x lg = x.lgμ + x.lgσ*x.lgz gp = x.gp return exp(lg + 1im*gp) end intpr = ( lgμ = ArrayPrior(IIDSitePrior(TrackSeg(), Normal(0.0, 0.2)); LM = IIDSitePrior(TrackSeg(), Normal(0.0, 1.0))), lgσ = ArrayPrior(IIDSitePrior(TrackSeg(), Exponential(0.1))), lgz = ArrayPrior(IIDSitePrior(ScanSeg(), Normal(0.0, 1.0))), gp= ArrayPrior(IIDSitePrior(ScanSeg(), DiagonalVonMises(0.0, inv(π^2))); refant=SEFDReference(0.0), phase=true) ) intmodel = InstrumentModel(G, intpr) # To form the posterior we just combine the skymodel, instrument model and the data. Additionally, # since we want to use gradients we need to specify the AD mode. Essentially for all modes we recommend # using `Enzyme.set_runtime_activity(Enzyme.Reverse)`. Eventually as Comrade and Enzyme matures we will # no need `set_runtime_activity`. using Enzyme post = VLBIPosterior(skym, intmodel, dvis; admode=set_runtime_activity(Enzyme.Reverse)) # done using the `asflat` function. tpost = asflat(post) ndim = dimension(tpost) # We can now also find the dimension of our posterior or the number of parameters we are going to sample. # !!! warning # This can often be different from what you would expect. This is especially true when using # angular variables where we often artificially increase the dimension # of the parameter space to make sampling easier. #- # To initialize our sampler we will use optimize using Adam using Optimization using OptimizationOptimisers xopt, sol = comrade_opt(post, Optimisers.Adam(); initial_params=prior_sample(rng, post), maxiters=20_000, g_tol=1e-1) # !!! warning # Fitting gains tends to be very difficult, meaning that optimization can take a lot longer. # The upside is that we usually get nicer images. #- # First we will evaluate our fit by plotting the residuals using Plots using DisplayAs residual(post, xopt) |> DisplayAs.PNG |> DisplayAs.Text # These look reasonable, although there may be some minor overfitting. This could be # improved in a few ways, but that is beyond the goal of this quick tutorial. # Plotting the image, we see that we have a much cleaner version of the closure-only image from # [Imaging a Black Hole using only Closure Quantities](@ref). import CairoMakie as CM CM.activate!(type = "png", px_per_unit=3) #hide g = imagepixels(fovx, fovy, 128, 128) img = intensitymap(skymodel(post, xopt), g) imageviz(img, size=(500, 400))|> DisplayAs.PNG |> DisplayAs.Text # Because we also fit the instrument model, we can inspect their parameters. # To do this, `Comrade` provides a `caltable` function that converts the flattened gain parameters # to a tabular format based on the time and its segmentation. intopt = instrumentmodel(post, xopt) gt = Comrade.caltable(angle.(intopt)) plot(gt, layout=(3,3), size=(600,500)) |> DisplayAs.PNG |> DisplayAs.Text # The gain phases are pretty random, although much of this is due to us picking a random # reference sites for each scan. # Moving onto the gain amplitudes, we see that most of the gain variation is within 10% as expected # except LMT, which has massive variations. gt = Comrade.caltable(abs.(intopt)) plot(gt, layout=(3,3), size=(600,500)) |> DisplayAs.PNG |> DisplayAs.Text # To sample from the posterior, we will use HMC, specifically the NUTS algorithm. For # information about NUTS, # see Michael Betancourt's [notes](https://arxiv.org/abs/1701.02434). # However, due to the need to sample a large number of gain parameters, constructing the posterior # is rather time-consuming. Therefore, for this tutorial, we will only do a quick preliminary # run #- using AdvancedHMC chain = sample(rng, post, NUTS(0.8), 1_000; n_adapts=500, progress=false, initial_params=xopt) #- # !!! note # The above sampler will store the samples in memory, i.e. RAM. For large models this # can lead to out-of-memory issues. To fix that you can include the keyword argument # `saveto = DiskStore()` which periodically saves the samples to disk limiting memory # useage. You can load the chain using `load_samples(diskout)` where `diskout` is # the object returned from sample. #- # Now we prune the adaptation phase chain = chain[501:end] #- # !!! warning # This should be run for likely an order of magnitude more steps to properly estimate expectations of the posterior #- # Now that we have our posterior, we can put error bars on all of our plots above. # Let's start by finding the mean and standard deviation of the gain phases mchain = Comrade.rmap(mean, chain) schain = Comrade.rmap(std, chain) # Now we can use the measurements package to automatically plot everything with error bars. # First we create a `caltable` the same way but making sure all of our variables have errors # attached to them. using Measurements gmeas = instrumentmodel(post, (;instrument= map((x,y)->Measurements.measurement.(x,y), mchain.instrument, schain.instrument))) ctable_am = caltable(abs.(gmeas)) ctable_ph = caltable(angle.(gmeas)) # Now let's plot the phase curves plot(ctable_ph, layout=(4,3), size=(600,500)) |> DisplayAs.PNG |> DisplayAs.Text #- # and now the amplitude curves plot(ctable_am, layout=(4,3), size=(600,500)) |> DisplayAs.PNG |> DisplayAs.Text # Finally let's construct some representative image reconstructions. samples = skymodel.(Ref(post), chain[begin:5:end]) imgs = intensitymap.(samples, Ref(g)) mimg = mean(imgs) simg = std(imgs) fig = CM.Figure(;resolution=(700, 700)); axs = [CM.Axis(fig[i, j], xreversed=true, aspect=1) for i in 1:2, j in 1:2] CM.image!(axs[1,1], mimg, colormap=:afmhot); axs[1, 1].title="Mean" CM.image!(axs[1,2], simg./(max.(mimg, 1e-8)), colorrange=(0.0, 2.0), colormap=:afmhot);axs[1,2].title = "Std" CM.image!(axs[2,1], imgs[1], colormap=:afmhot); CM.image!(axs[2,2], imgs[end], colormap=:afmhot); CM.hidedecorations!.(axs) fig |> DisplayAs.PNG |> DisplayAs.Text # And viola, you have just finished making a preliminary image and instrument model reconstruction. # In reality, you should run the `sample` step for many more MCMC steps to get a reliable estimate # for the reconstructed image and instrument model parameters.
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
7725
module ComradeAdvancedHMCExt using Comrade using AdvancedHMC using AdvancedHMC: AbstractHMCSampler using AbstractMCMC using AbstractMCMC: Sample using Accessors using ArgCheck using DocStringExtensions using HypercubeTransform using LogDensityProblems using Printf using Random using StatsBase using Serialization function initialize_params(tpost, initial_params) isnothing(initial_params) && return prior_sample(tpost) return HypercubeTransform.inverse(tpost, initial_params) end # internal method that makes the HMCSampler function make_sampler(rng, ∇ℓ, sampler::AdvancedHMC.AbstractHMCSampler, θ0) metric = AdvancedHMC.make_metric(sampler, ∇ℓ) hamil = AdvancedHMC.Hamiltonian(metric, ∇ℓ) ϵ = AdvancedHMC.make_step_size(rng, sampler, hamil, θ0) integr = AdvancedHMC.make_integrator(sampler, ϵ) κ = AdvancedHMC.make_kernel(sampler, integr) adaptor= AdvancedHMC.make_adaptor(sampler, metric, integr) return AdvancedHMC.LogDensityModel(∇ℓ), HMCSampler(κ, metric, adaptor) end function AbstractMCMC.Sample( rng::Random.AbstractRNG, tpost::Comrade.TransformedVLBIPosterior, sampler::AbstractHMCSampler; initial_params=nothiing, kwargs...) θ0 = initialize_params(tpost, initial_params) model, smplr = make_sampler(rng, tpost, sampler, θ0) return AbstractMCMC.Sample(rng, model, smplr; initial_params=θ0, kwargs...) end """ sample(rng, post::VLBIPosterior, sampler::AbstractHMCSampler, nsamples, args...;saveto=MemoryStore(), initial_params=nothing, kwargs...) Sample from the posterior `post` using the sampler `sampler` for `nsamples` samples. Additional arguments are forwarded to AbstractMCMC.sample. If `saveto` is a DiskStore, the samples will be saved to disk. If `initial_params` is not `nothing` then the sampler will start from that point. ## Arguments - rng: The random number generator to use - post: The posterior to sample from - nsamples: The total number of samples ## Keyword Arguments - `saveto`: If a DiskStore, the samples will be saved to disk, if [`MemoryStore`](@ref) the samples will be stored in memory/ram. - `initial_params`: The initial parameters to start the sampler from. If `nothing` then the sampler will start from a random point in the prior. - `kwargs`: Additional keyword arguments to pass to the sampler. Examples include `n_adapts` which is the total number of samples to use for adaptation. To see the others see the AdvancedHMC documentation. """ function AbstractMCMC.sample( rng::Random.AbstractRNG, post::Comrade.VLBIPosterior, sampler::AbstractHMCSampler, nsamples, args...; saveto=MemoryStore(), initial_params=nothing, kwargs...) saveto isa DiskStore && return sample_to_disk(rng, post, sampler, nsamples, args...; outdir=saveto.name, output_stride=min(saveto.stride, nsamples), initial_params, kwargs...) if isnothing(Comrade.admode(post)) throw(ArgumentError("You must specify an automatic differentiation type in VLBIPosterior with admode kwarg")) else tpost = asflat(post) end tpost = asflat(post) θ0 = initialize_params(tpost, initial_params) model, smplr = make_sampler(rng, tpost, sampler, θ0) res = sample(rng, model, smplr, nsamples, args...; initial_params=θ0, saveto=saveto, chain_type=Array, kwargs...) stats = getproperty.(res, :stat) samples = getproperty.(getproperty.(res, :z), :θ) chain = transform.(Ref(tpost), samples) return PosteriorSamples(chain, stats; metadata=Dict(:sampler=>:AHMC, :sampler_kwargs=>kwargs, :post=>tpost)) end # Disk sampling stuff goes here function initialize(rng::Random.AbstractRNG, tpost::Comrade.TransformedVLBIPosterior, sampler::AbstractHMCSampler, nsamples, outbase, args...; n_adapts = min(nsamples÷2, 1000), initial_params=nothing, outdir = "Results", output_stride=min(100, nsamples), restart = false, kwargs...) if restart @assert isfile(joinpath(outdir, "checkpoint.jls")) "Checkpoint file does not exist in $(outdir)" tmp = deserialize(joinpath(outdir, "checkpoint.jls")) (;pt, state, out, iter) = tmp if iter*output_stride >= nsamples @warn("Not sampling because the current number of samples is greater than the number you requested") return pt, state, out, iter end if pt.c.coll.stop != nsamples @warn("The number of samples wanted in the stored checkpoint does not match the number of samples requested."* "Changing to the number you requested") pt = @set pt.c.coll.stop = nsamples end @info "Resuming from checkpoint on iteration $iter" return pt, state, out, iter end mkpath(joinpath(outdir, "samples")) θ0 = initial_params if isnothing(initial_params) @warn "No starting location chosen, picking start from prior" θ0 = prior_sample(rng, tpost) end t = Sample(rng, tpost, sampler; initial_params=θ0, n_adapts, kwargs...)(1:nsamples) pt = Iterators.partition(t, output_stride) nscans = nsamples÷output_stride + (nsamples%output_stride!=0 ? 1 : 0) # Now save the output out = Comrade.DiskOutput(abspath(outdir), nscans, output_stride, nsamples) serialize(joinpath(outdir, "parameters.jls"), (;params=out)) tmp = @timed iterate(pt) state, iter = _process_samples(pt, tpost, tmp.value, tmp.time, nscans, out, outbase, outdir, 1) return pt, state, out, iter end function _process_samples(pt, tpost, next, time, nscans, out, outbase, outdir, iter) (chain, state) = next stats = getproperty.(chain, :stat) samples = transform.(Ref(tpost), getproperty.(getproperty.(chain, :z), :θ)) s = PosteriorSamples(samples, stats; metadata=Dict(:sampler=>:AHMC)) @info("Scan $(iter)/$nscans statistics:\n"* " Total time: $(time) seconds\n"* " Mean tree depth: $(round(mean(samplerstats(s).tree_depth); digits=1))\n"* " Mode tree depth: $(round(StatsBase.mode(samplerstats(s).tree_depth); digits=1))\n"* " n-divergences: $(sum(samplerstats(s).numerical_error))/$(length(stats))\n"* " Avg log-post: $(mean(samplerstats(s).log_density))\n") serialize(outbase*(@sprintf "%05d.jls" iter), (samples=Comrade.postsamples(s), stats=Comrade.samplerstats(s))) chain = nothing samples = nothing stats = nothing GC.gc(true) iter += 1 serialize(joinpath(outdir, "checkpoint.jls"), (;pt, state, out, iter)) return state, iter end function sample_to_disk(rng::Random.AbstractRNG, post::Comrade.VLBIPosterior, sampler::AbstractHMCSampler, nsamples, args...; n_adapts = min(nsamples÷2, 1000), initial_params=nothing, outdir = "Results", restart=false, output_stride=min(100, nsamples), kwargs...) tpost = asflat(post) nscans = nsamples÷output_stride + (nsamples%output_stride!=0 ? 1 : 0) outbase = joinpath(outdir, "samples", "output_scan_") pt, state, out, i = initialize( rng, tpost, sampler, nsamples, outbase, args...; n_adapts, initial_params, restart, outdir, output_stride, kwargs... ) tmp = @timed iterate(pt, state) t = tmp.time next = tmp.value while !isnothing(next) t = @elapsed begin state, i = _process_samples(pt, tpost, next, t, nscans, out, outbase, outdir, i) next = iterate(pt, state) end end return out end end
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
1983
module ComradeDynestyExt using AbstractMCMC using Comrade using Dynesty using Random """ dysample(post::Comrade.VLBIPosterior, smplr::Dynesty.NestedSampler, args...; kwargs...) dysample(post::Comrade.VLBIPosterior, smplr::Dynesty.DynamicNestedSampler, args...; kwargs...) Sample the posterior `post` using `Dynesty.jl` `NestedSampler/DynamicNestedSampler` sampler. The `args/kwargs` are forwarded to `Dynesty` for more information see its [docs](https://github.com/ptiede/Dynesty.jl) This returns a PosteriorSamples object. The `samplerstats` includes additional information about the samples, like the log-likelihood, evidence, evidence error, and the sample weights. The final element of the tuple is the original dynesty output file. To create equally weighted samples the user can use ```julia using StatsBase chain = sample(post, NestedSampler(dimension(post), 1000)) equal_weighted_chain = sample(chain, Weights(stats.weights), 10_000) ``` """ function Dynesty.dysample(post::Comrade.VLBIPosterior, sampler::Union{Dynesty.NestedSampler, DynamicNestedSampler}; kwargs...) tpost = ascube(post) ℓ = logdensityof(tpost) res = dysample(ℓ, identity, Comrade.dimension(tpost), sampler; kwargs...) # Make sure that res["sample"] is an array and use transpose samples, weights = transpose(Dynesty.PythonCall.pyconvert(Array, res["samples"])), exp.(Dynesty.PythonCall.pyconvert(Vector, res["logwt"] - res["logz"][-1])) chain = transform.(Ref(tpost), eachcol(samples)) stats = (logl = Dynesty.PythonCall.pyconvert(Vector, res["logl"]), weights = weights, ) logz = Dynesty.PythonCall.pyconvert(Float64, res["logz"][-1]) logzerr = Dynesty.PythonCall.pyconvert(Float64, res["logzerr"][-1]) return PosteriorSamples(chain, stats; metadata=Dict(:sampler => :dynesty, :dynesty_output => res, :logz => logz, :logzerr => logzerr)) end end
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
576
module ComradeEnzymeExt using Enzyme using Comrade using LogDensityProblems LogDensityProblems.dimension(d::Comrade.TransformedVLBIPosterior) = dimension(d) LogDensityProblems.capabilities(::Type{<:Comrade.TransformedVLBIPosterior}) = LogDensityProblems.LogDensityOrder{1}() function LogDensityProblems.logdensity_and_gradient(d::Comrade.TransformedVLBIPosterior, x::AbstractArray) mode = Enzyme.EnzymeCore.WithPrimal(Comrade.admode(d)) dx = zero(x) (_, y) = autodiff(mode, Comrade.logdensityof, Active, Const(d), Duplicated(x, dx)) return y, dx end end
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
3317
module ComradeOptimizationExt using Comrade using Optimization using Distributions using LinearAlgebra using HypercubeTransform using LogDensityProblems function Optimization.OptimizationFunction(post::Comrade.TransformedVLBIPosterior, args...; kwargs...) ℓ(x,p=post) = -logdensityof(p, x) if isnothing(Comrade.admode(post)) return SciMLBase.OptimizationFunction(ℓ, args...; kwargs...) else function grad(G, x, p) (_, dx) = LogDensityProblems.logdensity_and_gradient(post, x) dx .*= -1 G .= dx return G end return SciMLBase.OptimizationFunction(ℓ, args...; grad=grad, kwargs...) end end # """ # comrade_laplace(prob, opt, args...; kwargs...) # Compute the Laplace or Quadratic approximation to the prob or posterior. # The `args` and `kwargs` are passed the the SciMLBase.solve function. # This will return a `Distributions.MvNormal` object that approximates # the posterior in the transformed space. # Note the quadratic approximation is in the space of the transformed posterior # not the usual parameter space. This is better for constrained problems where # we may run up against a boundary. # """ # function Comrade.comrade_laplace(post::VLBIPosterior, opt, adtype=Val(:ForwardDiff)) # sol = solve(prob, opt, args...; kwargs...) # f = Base.Fix2(prob.f, nothing) # J = ForwardDiff.hessian(f, sol) # @. J += 1e-5 # add offset to help with positive definitness # h = J*sol # return MvNormalCanon(h, Symmetric(J)) # end """ comrade_opt(post::VLBIPosterior, opt, args...; initial_params=nothing, kwargs...) Optimize the posterior `post` using the `opt` optimizer. !!! warning To use use a gradient optimizer with AD, `VLBIPosterior` must be created with a specific `admode` specified. The `admode` can be a union of `Nothing` and `<:EnzymeCore.Mode` types. We recommend using `Enzyme.set_runtime_activity(Enzyme.Reverse)`. ## Arguments - `post` : The posterior to optimize. - `opt` : The optimizer to use. This can be any optimizer from `Optimization.jl`. - `args` : Additional arguments passed to the `Optimization`, `solve` method ## Keyword Arguments - `initial_params` : The initial parameters to start the optimization. If `nothing` then the initial parameters are sampled from the prior. If not `nothing` then the initial parameters are transformed to the transformed space. - `kwargs` : Additional keyword arguments passed `Optimization.jl` `solve` method. """ function Comrade.comrade_opt(post::VLBIPosterior, opt, args...; initial_params=nothing, lb=nothing, ub=nothing, cube=false, kwargs...) if isnothing(Comrade.admode(post)) || cube tpost = ascube(post) else tpost = asflat(post) end f = OptimizationFunction(tpost) if isnothing(initial_params) initial_params = prior_sample(tpost) else initial_params = Comrade.inverse(tpost, initial_params) end if tpost.transform isa HypercubeTransform.AbstractHypercubeTransform lb=fill(0.0001, dimension(tpost)) ub=fill(0.9999, dimension(tpost)) end prob = OptimizationProblem(f, initial_params, tpost; lb, ub) sol = solve(prob, opt, args...; kwargs...) return transform(tpost, sol), sol end end
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
2444
module ComradePigeonsExt using Comrade using Pigeons using AbstractMCMC using LogDensityProblems using HypercubeTransform using TransformVariables using Random Pigeons.initialization(tpost::Comrade.TransformedVLBIPosterior, rng::Random.AbstractRNG, ::Int) = prior_sample(rng, tpost) struct PriorRef{P,T} model::P transform::T end function (p::PriorRef{P,<:TransformVariables.AbstractTransform})(x) where {P} y, lj = TransformVariables.transform_and_logjac(p.transform, x) logdensityof(p.model, y) + lj end function (p::PriorRef{P,<:HypercubeTransform.AbstractHypercubeTransform})(x) where {P} for xx in x (xx > 1 || xx < 0) && return convert(eltype(x), -Inf) end return zero(eltype(x)) end Pigeons.default_explorer(::Comrade.TransformedVLBIPosterior{P,<:HypercubeTransform.AbstractHypercubeTransform}) where {P} = SliceSampler() Pigeons.default_explorer(::Comrade.TransformedVLBIPosterior{P,<:TransformVariables.AbstractTransform}) where {P} = Pigeons.AutoMALA(;default_autodiff_backend = :Enzyme) function Pigeons.default_reference(tpost::Comrade.TransformedVLBIPosterior) t = tpost.transform p = tpost.lpost.prior return PriorRef(p, t) end function Pigeons.sample_iid!(target::Comrade.TransformedVLBIPosterior, replica, shared) replica.state = Pigeons.initialization(target, replica.rng, replica.replica_index) end function Pigeons.sample_iid!(target::PriorRef{P, <:TransformVariables.AbstractTransform}, replica, shared) where {P} replica.state .= Comrade.inverse(target.transform, rand(replica.rng, target.model)) end function Pigeons.sample_iid!(::PriorRef{P,<:HypercubeTransform.AbstractHypercubeTransform}, replica, shared) where {P} rand!(replica.rng, replica.state) end function Pigeons.sample_array(tpost::Comrade.TransformedVLBIPosterior, pt::Pigeons.PT) samples = sample_array(pt) tbl = mapreduce(hcat, eachslice(samples, dims=(3,), drop=true)) do arr s = map(x->Comrade.transform(tpost, @view(x[begin:end-1])), eachrow(arr)) return s end sts = (logdensity= samples[:, end, :] |> vec,) return Comrade.PosteriorSamples(tbl, sts; metadata=Dict(:sampler=>:Pigeons, :post=>tpost)) end LogDensityProblems.dimension(t::PriorRef) = Comrade.dimension(t.transform) LogDensityProblems.logdensity(t::PriorRef, x) = t(x) LogDensityProblems.capabilities(::Type{<:PriorRef}) = LogDensityProblems.LogDensityOrder{0}() end
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
18462
module ComradePyehtimExt using Comrade using Pyehtim using StructArrays: StructVector, StructArray, append!! using LinearAlgebra using StaticArraysCore function build_arrayconfig(obs) obsd = obs.data obsc = obs.copy() ra, dec = get_radec(obsc) mjd = get_mjd(obsc) source = get_source(obsc) bw = get_bw(obsc) angles = get_fr_angles(obsc) tarr = Pyehtim.get_arraytable(obsc) scans = get_scantable(obsc) bw = get_bw(obsc) elevation = StructArray(angles[1]) parallactic = StructArray(angles[2]) U = pyconvert(Vector, obsd["u"]) V = pyconvert(Vector, obsd["v"]) t1 = pyconvert(Vector{Symbol}, obsd["t1"]) t2 = pyconvert(Vector{Symbol}, obsd["t2"]) Ti= pyconvert(Vector, obsd["time"]) Fr= fill(pyconvert(eltype(U), obsc.rf), length(U)) sites = tuple.(t1, t2) single_polbasis = (CirBasis(), CirBasis()) polbasis = fill(single_polbasis,length(U)) data = StructArray{Comrade.EHTArrayBaselineDatum{eltype(U), eltype(polbasis), eltype(elevation[1][1])}}( (;U, V, Ti, Fr, sites, polbasis, elevation, parallactic) ) return Comrade.EHTArrayConfiguration(bw, tarr, scans, mjd, ra, dec, source, :UTC, data) end function getvisfield(obs) obsd = obs.data vis = pyconvert(Vector{ComplexF64}, obsd["vis"]) err = pyconvert(Vector{Float64}, obsd["sigma"]) return vis, err end function getampfield(obs) obsamps = obs.amp erramp = pyconvert(Vector, obsamps["sigma"]) amps = pyconvert(Vector, obsamps["amp"]) return amps, erramp end function getcoherency(obs) # check if the obs is in circular basis otherwise noise out @assert((pyconvert(String, obs.polrep) == "circ"), "obs is not in circular polarization.\n"* "To fix read in the data using\n"* " Pyehtim.load_uvfits_and_array(obsname, arrayname, polrep=\"circ\")\n"* "Do not use\n obs.switch_polrep(\"circ\")\nsince missing hands will not be handled correctly." ) c11 = pyconvert(Vector, obs.data["rrvis"]) c12 = pyconvert(Vector, obs.data["rlvis"]) c21 = pyconvert(Vector, obs.data["lrvis"]) c22 = pyconvert(Vector, obs.data["llvis"]) cohmat = StructArray{SMatrix{2,2,eltype(c11), 4}}((c11, c21, c12, c22)) # get uncertainties e11 = copy(pyconvert(Vector, obs.data["rrsigma"])) e12 = copy(pyconvert(Vector, obs.data["rlsigma"])) e21 = copy(pyconvert(Vector, obs.data["lrsigma"])) e22 = copy(pyconvert(Vector, obs.data["llsigma"])) errmat = StructArray{SMatrix{2,2,eltype(e11), 4}}((e11, e21, e12, e22)) return cohmat, errmat end function getcpfield(obs) # Here we just return the information needed to form # the closure configuration obscp = obs.cphase time = pyconvert(Vector, obscp["time"]) freq = fill(get_rf(obs), length(time)) t1 = pyconvert(Vector{Symbol}, obscp["t1"]) t2 = pyconvert(Vector{Symbol}, obscp["t2"]) t3 = pyconvert(Vector{Symbol}, obscp["t3"]) noise = pyconvert(Vector, obscp["sigmacp"]) baseline = tuple.(t1, t2, t3) return StructArray((;T=time, F=freq, noise, baseline)) end function getlcampfield(obs) # Here we just return the information needed to form # the closure configuration obslcamp = obs.logcamp t1 = pyconvert(Vector{Symbol}, obslcamp["t1"]) t2 = pyconvert(Vector{Symbol}, obslcamp["t2"]) t3 = pyconvert(Vector{Symbol}, obslcamp["t3"]) time = pyconvert(Vector, obslcamp["time"]) t4 = pyconvert(Vector{Symbol}, obslcamp["t4"]) baseline = tuple.(t1, t2, t3, t4) noise = pyconvert(Vector, obslcamp["sigmaca"]) freq = fill(get_rf(obs), length(time)) return StructArray((;T=time, F=freq, baseline, noise)) end function get_arraytable(obs) return StructArray( sites = pyconvert(Vector{Symbol}, obs.tarr["site"]), X = pyconvert(Vector, obs.tarr["x"]), Y = pyconvert(Vector, obs.tarr["y"]), Z = pyconvert(Vector, obs.tarr["z"]), SEFD1 = pyconvert(Vector, obs.tarr["sefdr"]), SEFD2 = pyconvert(Vector, obs.tarr["sefdl"]), fr_parallactic = pyconvert(Vector, obs.tarr["fr_par"]), fr_elevation = pyconvert(Vector, obs.tarr["fr_elev"]), fr_offset = deg2rad.(pyconvert(Vector, obs.tarr["fr_off"])), ) end """ extract_amp(obs) Extracts the visibility amplitudes from an ehtim observation object. Any valid keyword arguments to `add_amp` in ehtim can be passed through extract_amp. Returns an EHTObservationTable with visibility amplitude data """ function Comrade.extract_amp(obsc; pol=:I, debias=false, kwargs...) obs = obsc.copy() obs.add_scans() obs.reorder_tarr_snr() obs.add_amp(;debias, kwargs...) config = build_arrayconfig(obs) amp, amperr = getampfield(obs) T = Comrade.EHTVisibilityAmplitudeDatum{pol, eltype(amp), typeof(config[1])} return Comrade.EHTObservationTable{T}(amp, amperr, config) end """ extract_vis(obs; kwargs...) Extracts the complex visibilities from an ehtim observation object This grabs the raw `data` object from the obs object. Any keyword arguments are ignored. Returns an EHTObservationTable with complex visibility data """ function Comrade.extract_vis(obsc; pol=:I, kwargs...) obs = obsc.copy() obs.add_scans() obs.reorder_tarr_snr() config = build_arrayconfig(obs) vis, viserr = getvisfield(obs) T = Comrade.EHTVisibilityDatum{pol, eltype(viserr), typeof(config[1])} return Comrade.EHTObservationTable{T}(vis, viserr, config) end """ extract_coherency(obs; kwargs...) Extracts the coherency matrix from an ehtim observation object This grabs the raw `data` object from the obs object. Any keyword arguments are ignored. Returns an EHTObservationTable with coherency matrices """ function Comrade.extract_coherency(obsc; kwargs...) obs = obsc.copy() obs.add_scans() obs.reorder_tarr_snr() config = build_arrayconfig(obs) vis, viserr = getcoherency(obs) T = Comrade.EHTCoherencyDatum{eltype(real(vis[1])), typeof(config[1]), eltype(vis), eltype(viserr)} return Comrade.EHTObservationTable{T}(vis, viserr, config) end function closure_designmat(type, closures, scanvis) if type == :cphase design_mat = closurephase_designmat(closures, scanvis) elseif type == :lcamp design_mat = closureamp_designmat(closures, scanvis) else throw(ArgumentError("Not a valid type of closure")) end end function closurephase_designmat(cphase, scanvis) antvis1, antvis2 = baseline(scanvis) design_mat = zeros(length(cphase), length(scanvis)) #throw("here") # fill in each row of the design matrix for i in axes(design_mat, 2), j in axes(design_mat,1) a1, a2, a3 = cphase[j].baseline # check leg 1 ((antvis1[i] == a1) & (antvis2[i] == a2)) && (design_mat[j,i] = 1.0) ((antvis1[i] == a2) & (antvis2[i] == a1)) && (design_mat[j,i] = -1.0) #check leg 2 ((antvis1[i] == a2) & (antvis2[i] == a3)) && (design_mat[j,i] = 1.0) ((antvis1[i] == a3) & (antvis2[i] == a2)) && (design_mat[j,i] = -1.0) #check leg 3 ((antvis1[i] == a3) & (antvis2[i] == a1)) && (design_mat[j,i] = 1.0) ((antvis1[i] == a1) & (antvis2[i] == a3)) && (design_mat[j,i] = -1.0) end return design_mat end function closureamp_designmat(lcamp, scanvis) antvis1, antvis2 = baseline(scanvis) design_mat = zeros(length(lcamp), length(scanvis)) # fill in each row of the design matrix for i in axes(design_mat, 2), j in axes(design_mat,1) a1, a2, a3, a4 = lcamp[j].baseline av1 = antvis1[i] av2 = antvis2[i] # check leg 1 (((av1 == a1)&(av2 == a2)) || (av1 == a2)&(av2 == a1))&& (design_mat[j,i] = 1.0) #check leg 2 (((av1 == a3)&(av2 == a4)) || (av1 == a4)&(av2 == a3))&& (design_mat[j,i] = 1.0) #check leg 3 (((av1 == a1)&(av2 == a4)) || (av1 == a4)&(av2 == a1))&& (design_mat[j,i] = -1.0) #check leg 4 (((av1 == a2)&(av2 == a3)) || (av1 == a3)&(av2 == a2))&& (design_mat[j,i] = -1.0) end return design_mat end function build_dmats(type::Symbol, closure, st) S = eltype(closure.time) dmat = Matrix{S}[] for i in 1:length(st) scanvis = st[i] inds = findall(==(scanvis.time), closure.times) if isnothing(inds) inow = length(dmat) # I want to construct block diagonal matrices for efficienty but we need # to be careful with scan that can't form closures. This hack moves these # scans into the preceding scan but fills it with zeros if i > 1 dmat[inow] = hcat(dmat[inow], zeros(S, size(dmat[inow],1), length(scanvis.scan))) else push!(dmat, zeros(S, 1, length(scanvis.scan))) end continue end scancl = closures[inds] if type == :cphase dmatscan = closurephase_designmat(scancl, scanvis) elseif type == :lcamp dmatscan = closureamp_designmat(scancl, scanvis) else throw(ArgumentError("Not a valid type of closure")) end push!(dmat, dmatscan) end if iszero(dmat[1]) dmat[2] = hcat(zeros(S, size(dmat[2],1), size(dmat[1],2)), dmat[2]) dmat = dmat[2:end] end return dmat end function _ehtim_cphase(obsc; count="max", cut_trivial=false, uvmin=0.1e9, kwargs...) obs = obsc.copy() # cut 0 baselines since these are trivial triangles if cut_trivial obs = obs.flag_uvdist(uv_min=uvmin) end obs.reorder_tarr_snr() obs.add_cphase(;count=count, kwargs...) cphase = getcpfield(obs) return cphase, Comrade.extract_vis(obs) end function _make_lcamp(obsc, count="max"; kwargs...) obs = obsc.copy() obs.reorder_tarr_snr() obs.add_logcamp(;count=count, kwargs...) data = getlcampfield(obs) ra, dec = get_radec(obs) mjd = get_mjd(obs) source = get_source(obs) bw = get_bw(obs) return Comrade.EHTObservation(data = data, mjd = mjd, config=nothing, ra = ra, dec= dec, bandwidth=bw, source = source, ) end function _ehtim_lcamp(obsc; count="max", kwargs...) obs = obsc.copy() obs.reorder_tarr_snr() obs.add_logcamp(;count=count, kwargs...) lcamp = getlcampfield(obs) return lcamp, Comrade.extract_vis(obs) end function _minimal_closure(type, closures, st) # Determine the number of timestamps containing a closure triangle S = eltype(closures.T) # loop over all timestamps dmat = Matrix{S}[] for i in 1:length(st) scanvis = st[i] inds = findall(==(scanvis.time), closures.T) if length(inds) == 0 inow = length(dmat) # I want to construct block diagonal matrices for efficienty but we need # to be careful with scan that can't form closures. This hack moves these # scans into the preceding scan but fills it with zeros if i > 1 dmat[inow] = hcat(dmat[inow], zeros(S, size(dmat[inow],1), length(scanvis.scan))) else push!(dmat, zeros(S, 1, length(scanvis.scan))) end continue end # Get our cphase scan scancl = closures[inds] # @info scancl # sort by closure noise so we form a nice minimal set snr = inv.(scancl.noise) ind_snr = sortperm(snr) scancl = scancl[ind_snr] # initialize the design matrix design_mat = closure_designmat(type, scancl, scanvis) # determine the expected size of the minimal set # this is needed to make sure we aren't killing too many triangles nmin = rank(design_mat) # print some info # println("For timestamp $(scanvis.time):") # get the current sites # println("Observing sites are $(scancl.baseline)") # println("scanvis sites ", sites(scanvis)) # println("Size of maximal set of closure products = $(length(scancl))") # println("Size of minimal set of closure products = $(nmin)") # println("...") ########################################################## # start of loop to recover minimal set ########################################################## dmat_min = minimal_closure_scan(type, scancl, scanvis, nmin) push!(dmat, dmat_min) end # Now if the first scan can't form a closure we will have an extra row of zeros # kill this if iszero(dmat[1]) dmat[2] = hcat(zeros(S, size(dmat[2],1), size(dmat[1],2)), dmat[2]) dmat = dmat[2:end] end return dmat end function minimal_closure_scan(type, closures, scanvis, nmin::Int) # make a mask to keep track of which clhases will stick around scancl = deepcopy(closures) keep = fill(true, length(closures)) # remember the original minimal set size nmin0 = nmin # perform the loop count = 1 keep = fill(true, length(closures)) good = true while good # recreate the mask each time closurekeep = closures[keep] design_mat = closure_designmat(type, closurekeep, scanvis) # determine the size of the minimal set nmin = rank(design_mat) #println(nmin0, " ", nmin, " ", size(design_mat, 1)) # Now decide whether to continue pruning if (sum(keep) == nmin0) && (nmin == nmin0) good = false else if nmin == nmin0 keep[count] = false else keep[count-1] = true count -= 1 end #(nmin == nmin0) && (keep[count] = false) end count += 1 count+1 > length(scancl) && break end # print out the size of the recovered set for double-checking closurekeep = closures[keep] dmat = closure_designmat(type, closurekeep, scanvis) if length(closurekeep) != nmin @error "minimal set not found $(length(closurekeep)) $(nmin)" throw("No minimal set found at time $(scanvis.time)") end return dmat end """ extract_cphase(obs) Extracts the closure phases from an ehtim observation object Any valid keyword arguments to `add_cphase` in ehtim can be passed through extract_cphase. Returns an EHTObservation with closure phases datums # Special Keyword arguments: - count: How the closures are formed, the available options are "min-correct", "min", "max" - cut_trivial: Cut the trivial triangles from the closures - uvmin: The flag to decide what are trivial triangles. Any baseline with ||(u,v)|| < uvmin are removed. - kwargs...: Other arguments are forwarded to eht-imaging. # Warning The `count` keyword argument is treated specially in `Comrade`. The default option is "min-correct" and should almost always be used. This option construct a minimal set of closure phases that is valid even when the array isn't fully connected. For testing and legacy reasons we `ehtim` other count options are also included. However, the current `ehtim` count="min" option is broken and does construct proper minimal sets of closure quantities if the array isn't fully connected. """ function Comrade.extract_cphase(obs; pol=:I, count="min", kwargs...) # compute a maximum set of closure phases obsc = obs.copy() # reorder to maximize the snr obsc.reorder_tarr_snr() cphase, dvis = _ehtim_cphase(obsc; count="max", kwargs...) #Now make the vis obs st = timetable(dvis) if count == "min" dmat = _minimal_closure(:cphase, cphase, st) elseif count == "max" dmat = build_dmats(:cphase, cphase, st) else throw(ArgumentError("$(count) is not valid use 'min' or 'max'")) end clac = Comrade.ClosureConfig(arrayconfig(dvis), dmat, measurement(dvis), noise(dvis)) T = Comrade.EHTClosurePhaseDatum{pol, eltype(cphase.T), typeof(arrayconfig(dvis)[1])} cp = Comrade.closure_phases(measurement(dvis), Comrade.designmat(clac)) cp_sig = abs2.(Comrade.noise(dvis)./Comrade.measurement(dvis)) cp_cov = Comrade.designmat(clac)*Diagonal(cp_sig)*transpose(Comrade.designmat(clac)) return Comrade.EHTObservationTable{T}(cp, cp_cov, clac) end """ extract_lcamp(obs; kwargs...) Extracts the log-closure amp. from an ehtim observation object Any valid keyword arguments to `add_logcamp` in ehtim can be passed through extract_lcamp. # Special Keyword arguments: - count: How the closures are formed, the available options are "min-correct", "min", "max" - kwargs...: Other arguments are forwarded to eht-imaging. Returns an EHTObservation with log-closure amp. datums # Warning The `count` keyword argument is treated specially in `Comrade`. The default option is "min-correct" and should almost always be used. This option construct a minimal set of closure phases that is valid even when the array isn't fully connected. For testing and legacy reasons we `ehtim` other count options are also included. However, the current `ehtim` count="min" option is broken and does construct proper minimal sets of closure quantities if the array isn't fully connected. """ function Comrade.extract_lcamp(obs; pol=:I, count="min", kwargs...) # compute a maximum set of closure phases obsc = obs.copy() # reorder to maximize the snr obsc.reorder_tarr_snr() lcamp, dvis = _ehtim_lcamp(obsc; count="max", kwargs...) #Now make the vis obs st = timetable(dvis) if count == "min" dmat = _minimal_closure(:lcamp, lcamp, st) elseif count == "max" dmat = build_dmats(:lcamp, lcamp, st) else throw(ArgumentError("$(count) is not valid use 'min' or 'max'")) end clac = Comrade.ClosureConfig(arrayconfig(dvis), dmat, measurement(dvis), noise(dvis)) cldmat = Comrade.designmat(clac) T = Comrade.EHTLogClosureAmplitudeDatum{pol, eltype(lcamp.T), typeof(arrayconfig(dvis)[1])} lcamp = Comrade.logclosure_amplitudes(measurement(dvis), Comrade.designmat(clac)) lcamp_sig = abs2.(Comrade.noise(dvis)./Comrade.measurement(dvis)) lcamp_cov = cldmat*Diagonal(lcamp_sig)*transpose(cldmat) return Comrade.EHTObservationTable{T}(lcamp, lcamp_cov, clac) end end
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
414
module ComradeAHMC using AbstractMCMC using Reexport @reexport using AdvancedHMC using Comrade using DocStringExtensions using LogDensityProblems, LogDensityProblemsAD using ArgCheck: @argcheck using Random using Accessors using Printf using StatsBase using AbstractMCMC: Sample using Serialization function __init__() @warn "ComradeDynesty is deprecated, AdvancedHMC.jl is now an extension." end end
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
1836
using Pyehtim, Comrade, ComradeAHMC, Distributions, VLBIImagePriors using Enzyme using Test include(joinpath(@__DIR__, "../../../test/test_util.jl")) @testset "ComradeAHMC.jl" begin _, _, _, lcamp, cphase = load_data() g = imagepixels(μas2rad(150.0), μas2rad(150.0), 256, 256) skym = SkyModel(test_model, test_prior(), g) post = VLBIPosterior(skym, lcamp, cphase) x0 = (sky = (f1 = 1.0916271439905998, σ1 = 8.230088139590025e-11, τ1 = 0.49840994275315254, ξ1 = -1.0489388962890198, f2 = 0.553944311447593, σ2 = 4.1283218512580634e-11, τ2 = 0.5076731020106428, ξ2 = -0.5376269092893298, x = 1.451956089157719e-10, y = 1.455983181049137e-10),) s1 = AHMC(autodiff=Val(:Enzyme)) s2 = AHMC(autodiff=Val(:Enzyme)) s3 = AHMC() hchain = sample(post, s1, 1_000; n_adapts=500, progress=false) hchain = sample(post, s1, 1_000; n_adapts=500, progress=false, initial_params=x0) hchain = sample(post, s2, 1_000; n_adapts=500, progress=false, initial_params=x0) out = sample(post, s2, 1_000; n_adapts=500, saveto=ComradeAHMC.DiskStore(name=joinpath(@__DIR__, "Test")), initial_params=x0) out = sample(post, s2, 1_200; n_adapts=500, saveto=ComradeAHMC.DiskStore(name=joinpath(@__DIR__, "Test")), initial_params=x0, restart=true) c1 = load_table(out) @test c1[201:451] == load_table(out, 201:451) c1 = load_table(out; table="stats") @test c1[1:451] == load_table(out, 1:451; table="stats") c1 = load_table(joinpath(@__DIR__, "Test")) sample(post, s2, 1_000; n_adapts=500, saveto=ComradeAHMC.DiskStore(name=joinpath(@__DIR__, "Test")), initial_params=x0, restart=true) @test c1[201:451] == load_table(joinpath(@__DIR__, "Test"), 201:451) rm("Test", recursive=true) end
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
187
module ComradeAdaptMCMC using AdaptiveMCMC using Comrade using AbstractMCMC using Random function __init__() @warn "ComradeAdaptMCMC is deprecated, use Pigeons insteads." end end
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
143
using Pyehtim, Comrade, ComradeAdaptMCMC, Distributions, VLBIImagePriors using Test include(joinpath(@__DIR__, "../../../test/test_util.jl"))
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
204
module ComradeDynesty using Comrade using Dynesty using AbstractMCMC using Reexport using Random function __init__() @warn "ComradeDynesty is deprecated. Dynesty.jl is now an extension." end end
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
141
using Pyehtim, Comrade, ComradeDynesty, Distributions, VLBIImagePriors using Test include(joinpath(@__DIR__, "../../../test/test_util.jl"))
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
209
module ComradeNested using Comrade using AbstractMCMC using Reexport using Random export resample_equal function __init__() @warn "ComradeNested is deprecated. Dynesty.jl is now an extension." end end
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
1133
using Pyehtim, Comrade, ComradeNested, Distributions, VLBIImagePriors using Test include(joinpath(@__DIR__, "../../../test/test_util.jl")) @testset "ComradeNested.jl" begin _, _, _, lcamp, cphase = load_data() g = imagepixels(μas2rad(150.0), μas2rad(150.0), 256, 256) skym = SkyModel(test_model, test_prior(), g) post = VLBIPosterior(skym, lcamp, cphase) a1 = Nested(dimension(ascube(post)), 1000) chain = sample(post, a1; dlogz=0.01, progress=false) echain = resample_equal(chain, 1000) #cpost = ascube(post) #xopt = chain[end] #@test isapprox(xopt.f1/xopt.f2, 2.0, atol=1e-2) #@test isapprox(xopt.σ1*2*sqrt(2*log(2)), μas2rad(40.0), rtol=1e-3) #@test isapprox(xopt.σ1*xopt.τ1*2*sqrt(2*log(2)), μas2rad(20.0), rtol=1e-3) #@test isapprox(-xopt.ξ1, π/3, atol=1e-2) #@test isapprox(xopt.σ2*2*sqrt(2*log(2)), μas2rad(20.0), atol=1e-2) #@test isapprox(xopt.σ2*xopt.τ2*2*sqrt(2*log(2)), μas2rad(10.0), rtol=1e-2) #@test isapprox(-xopt.ξ2, π/6, atol=1e-2) #@test isapprox(xopt.x, μas2rad(30.0), rtol=1e-2) #@test isapprox(xopt.y, μas2rad(30.0), rtol=1e-2) end
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
288
module ComradeOptimization using Comrade: VLBIPosterior, asflat, ascube, transform using Reexport using Distributions using ForwardDiff using LinearAlgebra import SciMLBase function __init__() @warn "ComradeOptimization is deprecated. Optimization.jl is now an extension." end end
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
1221
export fishermatrix """ $(SIGNATURES) Compute the Fisher information matrix of a `model` transformed by `t` using the array configuration `ac`. You can also optionally pass the `ad_type` as the last argument which is which backend to `AbstractDifferentiation` you want to use to compute derivatives. `model` is assumed to be a function that takes the `NamedTuple`, `θ` and returns a `<:Comrade.AbstractModel` that coincides with the visibility model you want to consider. This returns a `Tuple` where the first entry is Fisher information metric and the second is distribution assuming that the mean is the transformed `θ` and the covariance matrix is the inverse of the Fisher information. """ function fishermatrix(model, t, θ::NamedTuple, ac::ArrayConfiguration) v = Base.Fix2(visibilitymap, ac) tr = Base.Fix1(transform, t) # split into real and imaginary since ForwardDiff struggles with complex functions fr = real∘v∘model∘tr fi = imag∘v∘model∘tr x0 = inverse(t, θ) vr = first(AD.jacobian(ad_type, fr, x0)) vi = first(AD.jacobian(ad_type, fi, x0)) v1 = complex.(vr, vi) M = Symmetric(real.(v1'*v1) .+ eps()) h = M*x0 return M, Dists.MvNormalCanon(h, M) end
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
3140
using Pkg;Pkg.activate(@__DIR__) using Comrade using Plots using ComradeAHMC using ComradeOptimization using OptimizationBBO using Distributions using DistributionsAD # To download the data visit https://doi.org/10.25739/g85n-f134 obs = ehtim.obsdata.load_uvfits(joinpath(@__DIR__, "SR1_M87_2017_096_hi_hops_netcal_StokesI.uvfits")) obs.add_scans() obsavg = obs.avg_coherent(0.0, scan_avg=true) # Lets make a gaussian image img = ehtim.image.make_empty(512, μas2rad(250.0), obs.ra, obs.dec, obs.rf, obs.source) img = img.add_gauss(1.0, [μas2rad(40.0), μas2rad(30.0), π/3, 0.0, 0.0]) # Set the gain priors gainoff = 0.0 gainp = Dict("AA"=> 0.01, "AP" => 0.1, "AZ" => 0.1, "JC" => 0.1, "LM" => 0.2, "PV" => 0.1, "SM" => 0.1, "SP" => 0.1) obsim = img.observe_same(obsavg, ttype="fast", gainp=gainp, gain_offset=gainoff, ampcal=false, phasecal=false, stabilize_scan_phase=true, stabilize_scan_amp=true) # now get cal table ctable = ehtim.calibrating.self_cal.self_cal(obsim, img, caltable=true) #ehtim.caltable.save_caltable(ctable, obsim, datadir=joinpath(@__DIR__ ,"CaltableTest")) dcphase = extract_cphase(obsim) damp = extract_amp(obsim) st = timetable(damp) gcache = Comrade.GainCache(st) # Now create the Comrade Gain model struct Model{G} gcache::G end function Model(st::Comrade.TimeTable) gcache = Comrade.GainCache(st) return Model{typeof(gcache)}(gcache) end function (mod::Model)(θ) (;f, σ, τ, ξ, gamp) = θ g = exp.(gamp) m = f*rotated(stretched(Gaussian(), σ*τ, σ), ξ) return GainModel(mod.gcache, g, m) end # define the priors distamp = (AA = Normal(0.0, 0.01), AP = Normal(0.0, 0.1), LM = Normal(0.0, 0.2), AZ = Normal(0.0, 0.1), JC = Normal(0.0, 0.1), PV = Normal(0.0, 0.1), SM = Normal(0.0, 0.1) ) prior = ( f = Uniform(0.9, 1.1), σ = Uniform(μas2rad(10.0), μas2rad(30.0)), τ = Uniform(0.1, 1.0), ξ = Uniform(-π/2, π/2), gamp = Comrade.GainPrior(distamp, st), ) # Now form the posterior mms = Model(st) lklhd = RadioLikelihood(mms, damp, dcphase) post = Posterior(lklhd, prior) tpost = asflat(post) # We will use HMC to sample the posterior. # First to reduce burn in we use pathfinder ndim = dimension(tpost) f = OptimizationFunction(tpost, Optimization.AutoForwardDiff()) x0 = Comrade.HypercubeTransform.inverse(tpost, rand(post.prior)) using OptimizationOptimJL prob = OptimizationProblem(f, rand(ndim) .- 0.5, nothing) sol = solve(prob, LBFGS(); g_tol=1e-5, maxiters=2_000) @info sol.minimum xopt = Comrade.transform(tpost, sol) residual(mms(xopt), damp) plot(caltable(mms(xopt)), layout=(3,3), size=(600,500)) # Compare the results for LMT ctab = caltable(mms(xopt)) scatter(ctab[:time], inv.(ctab[:LM]), label="Comrade", size=(400,300), xlabel="Time (hr)", ylabel="LMT Gain Amp.", ) scatter!(pyconvert(Vector, ctable.data["LM"]["time"]), abs.(pyconvert(Vector, ctable.data["LM"]["rscale"])), label="eht-imaging")
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
3763
# # Self-calibrating data with Comrade # Here we will self-cal the data with Comrade. This means we take the results of a # Comrade run, and the use eht-imaging to self-calibrate the fitted data and save the # new observation object. # This script assumes that you have the eht-imaging Obsdata object, the # Comrade MCMC chain, and the model you fit to the data. using Pkg;Pkg.activate(@__DIR__) using Comrade using Tables using DataFrames using CSV using PyCall using Printf using Serialization @pyimport numpy as np """ selfcal(obs, model::GainModel) Takes in a `eht-imaging` observation object that you fit the data to, and a `Comrade` gain model and returns the `self-calibrated` data and the calibration table object from eht-imaging. """ function selfcal(obs::PyCall.PyObject, model::GainModel) obscpy = obs.copy() ctable = caltable(model) # Now make the caltable for eht-imaging sites = sites(ctable) time = ctable.time ctabcol = map(sites) do s mask = Base.:!.(ismissing.(getproperty(ctable, s))) tmask = time[mask] gmask = ctable[:,s][mask] # make the ndarray that eht-imaging expects arr = np.array(PyObject(tmask), dtype = ehtim.DTCAL) set!(arr, "time", tmask) set!(arr, "rscale", inv.(gmask)) set!(arr, "lscale", inv.(gmask)) return Pair(s, arr) end datatable = PyDict(Dict(ctabcol)) ctab_eh = ehtim.caltable.Caltable( obs.ra, obs.dec, obs.rf, obs.bw, datatable, obs.tarr, source=obs.source, mjd=obs.mjd) o2 = ctab_eh.applycal(obscpy) return o2, ctab_eh end """ selfcal_submission(results, obsfile, outdir, nsamples, nburn) Creates a directory with the selfcalibrated data sets and their corresponding images. # Arguments - `results::String`: The .jls serialized file from a run - `obs`: The eht-imaging obsdata object for the data you fit - `outdir::String`: The directory you wish to save the images and uvfits files to - `nsamples::Int`: The number of samples from the posterior you want to create self-cal data sets for - `nburn::Int`: The number of adaptation steps used in the sample. This is required because you need to remove these # Warning We have assumed a number of things about how the data was processed, i.e. we cut zero baselines. If this is not the case then this function will need to be modified. """ function selfcal_submission(results::String, obs, outdir::String, nsamples::Int, nburn::Int) res = deserialize(results) # obs = ehtim.obsdata.load_uvfits(obsfile) # obs.add_scans() # # make scan-average data #.flag_uvdist(uv_min=0.1e9) # obs = scan_average(obs.flag_uvdist(uv_min=0.1e9).add_fractional_noise(0.01)) # extract amplitudes and closure phases damp = extract_amp(obs) mms = GModel(damp, res[:fovx], res[:fovy], res[:npixx], res[:npixy]) mkpath(outdir) fov = max(res[:fovx], res[:fovy])*1.1 chain = sample(res[:chain][nburn:end], nsamples) for i in 1:nsamples model = mms(chain[i]) img = intensitymap(model, fov, fov, 256, 256) obscal, _ = selfcal(obs, model) outim = @sprintf "image_%04d.fits" i save_fits(joinpath(outdir, outim), img, damp) outcal = @sprintf "selfcal_data_comrade_%04d.uvfits" i obscal.save_uvfits(joinpath(outdir, outcal)) end return nothing end function selfcal_2018(results, obsfile, outdir, nsamples, nburn) obs = ehtim.obsdata.load_uvfits(obsfile) obs.add_scans() # make scan-average data #.flag_uvdist(uv_min=0.1e9) obs = scan_average(obs.flag_uvdist(uv_min=0.1e9).add_fractional_noise(0.01)) return selfcal_submission(results, obs, outdir, nsamples, nburn) end
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
2428
""" Comrade Composable Modeling of Radio Emission """ module Comrade using AbstractMCMC using Accessors: @set using ArgCheck: @argcheck using DensityInterface import Distributions as Dists using DocStringExtensions using ChainRulesCore using EnzymeCore using EnzymeCore: EnzymeRules using FillArrays: Fill using ForwardDiff using IntervalSets using LogDensityProblems using LinearAlgebra import HypercubeTransform: ascube, asflat, NamedDist, NamedDist, transform, inverse using HypercubeTransform #using MappedArrays: mappedarray using NamedTupleTools using Printf using Random using RecipesBase using Reexport using SparseArrays using StaticArraysCore using StructArrays: StructVector, StructArray, append!! import StructArrays using Tables import TransformVariables as TV using ComradeBase: AbstractDomain, AbstractSingleDomain, AbstractRectiGrid using VLBISkyModels: FourierTransform, FourierDualDomain # Reexport the core libraries for Comrade @reexport using VLBISkyModels @reexport using ComradeBase @reexport using PolarizedTypes @reexport using VLBIImagePriors export linearpol, mbreve, evpa using ComradeBase: AbstractRectiGrid, AbstractDomain, UnstructuredDomain, AbstractModel, AbstractPolarizedModel, AbstractHeader export rad2μas, μas2rad, logdensity_def, logdensityof import ComradeBase: flux, radialextent, intensitymap, intensitymap!, intensitymap_analytic, intensitymap_analytic!, intensitymap_numeric, intensitymap_numeric!, visibilitymap, visibilitymap!, _visibilitymap, _visibilitymap!, visibilitymap_analytic, visibilitymap_analytic!, visibilitymap_numeric, visibilitymap_numeric!, visanalytic, imanalytic, ispolarized, NotAnalytic, IsAnalytic, NotPolarized, IsPolarized, visibility_point, intensity_point, closure_phase, closure_phasemap, logclosure_amplitude, logclosure_amplitudemap, visibility, amplitude, amplitudemap include("observations/observations.jl") include("instrument/instrument.jl") include("skymodels/models.jl") include("posterior/abstract.jl") include("inference/inference.jl") include("visualizations/visualizations.jl") include("dirty_image.jl") include("mrf_image.jl") include("rules.jl") end
Comrade
https://github.com/ptiede/Comrade.jl.git
[ "MIT" ]
0.11.0
b35d823d152a6a3f401ed956314df4a0a5540b92
code
2251
export dirty_image, dirty_beam function reflect_vis(obs::EHTObservationTable{<:EHTVisibilityDatum}) ac = arrayconfig(obs) con = datatable(arrayconfig(obs)) conn = copy(con) conn.U .= -con.U conn.V .= -con.V con2 = vcat(con, conn) meas = measurement(obs) noise = Comrade.noise(obs) measn = conj.(copy(meas)) meas2 = vcat(meas, measn) noise2= vcat(noise, noise) conf2 = EHTArrayConfiguration( ac.bandwidth, ac.tarr, ac.scans, ac.mjd, ac.ra, ac.dec, ac.source, ac.timetype, con2) return EHTObservationTable{datumtype(obs)}(meas2, noise2, conf2) end """ dirty_image(fov::Real, npix::Int, obs::EHTObservation{<:EHTVisibilityDatum}) where T Computes the dirty image of the complex visibilities assuming a field of view of `fov` and number of pixels `npix` using the complex visibilities found in the observation `obs`. The `dirty image` is the inverse Fourier transform of the measured visibilties assuming every other visibility is zero. """ function dirty_image(fov::Real, npix::Int, obs::EHTObservationTable{D}) where {D<:EHTVisibilityDatum} # First we double the baselines, i.e. we reflect them and conjugate the measurements # This ensures a real NFFT img = IntensityMap(zeros(npix, npix), imagepixels(fov, fov, npix, npix)) vis2 = reflect_vis(obs) # Get the number of pixels gfour = FourierDualDomain(axisdims(img), arrayconfig(vis2), NFFTAlg()) plr = VLBISkyModels.reverse_plan(gfour) m = plr.plan*(conj.(vis2[:measurement]).*plr.phases) return IntensityMap(real.(m)./npix^2, axisdims(img)) end """ dirty_beam(fov::Real, npix::Int, obs::EHTObservation{<:EHTVisibilityDatum}) Computes the dirty beam of the complex visibilities assuming a field of view of `fov` and number of pixels `npix` using baseline coverage found in `obs`. The `dirty beam` is the inverse Fourier transform of the (u,v) coverage assuming every visibility is unity and everywhere else is zero. """ function dirty_beam(fov, npix, obs::EHTObservationTable{D}) where {D<:EHTVisibilityDatum} vis2 = reflect_vis(obs) vis2.measurement .= complex(oneunit(fov), zero(fov)) return dirty_image(fov, npix, vis2) end
Comrade
https://github.com/ptiede/Comrade.jl.git