licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1686 | import ..UncertainValues.TheoreticalDistributionScalarValue
import ..UncertainValues.UncertainScalarBinomialDistributed
import ..UncertainValues.UncertainScalarBetaBinomialDistributed
import ..UncertainValues: AbstractUncertainValue
import Distributions.pdf
import ..SamplingConstraints:
SamplingConstraint,
constrain
function get_density(uv::AbstractUncertainValue)
some_sample = resample(uv, 10000)
xmin = minimum(some_sample) * 0.97
xmax = maximum(some_sample) * 1.03
step = (xmax-xmin)/300
xvals = xmin:step:xmax+step
density = pdf.(uv.distribution, xvals)
xvals, density ./ sum(density)
end
function get_density(uv::UncertainScalarBinomialDistributed)
some_sample = resample(uv, 10000)
xmin = minimum(some_sample)
xmax = maximum(some_sample)
xvals = xmin:1:xmax
density = pdf.(uv.distribution, xvals)
xvals, density ./ sum(density)
end
function get_density(uv::UncertainScalarBetaBinomialDistributed)
some_sample = resample(uv, 10000)
xmin = minimum(some_sample)
xmax = maximum(some_sample)
xvals = xmin:1:xmax
density = pdf.(uv.distribution, xvals)
xvals, density ./ sum(density)
end
@recipe function plot_theoretical(uv::TheoreticalDistributionScalarValue,
density = true, n_samples = 1000)
if density
@series begin
get_density(uv)
end
else
@series begin
label --> ""
resample(uv, n_samples)
end
end
end
@recipe function plot_theoretical(uv::TheoreticalDistributionScalarValue,
constraint::SamplingConstraint, density = true, n_samples = 1000)
cuv = constrain(uv, constraint)
if density
@series begin
get_density(cuv)
end
else
@series begin
label --> ""
resample(cuv, n_samples)
end
end
end
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 633 | import ..UncertainDatasets:
AbstractUncertainValueDataset
import ..UncertainStatistics: mean, std, median, quantile
@recipe function f(udata::Vector{AbstractUncertainValue},
quants::Vector{Float64} = [0.33, 0.67])
n_points = length(udata)
for i = 1:n_points
med = median(udata[i], 10000)
lower = quantile(udata[i], minimum(quants), 10000)
upper = quantile(udata[i], maximum(quants), 10000)
@series begin
seriescolor --> :black
label --> ""
yerror --> ([med - lower], [upper - med])
[i], [med]
end
end
end | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 4703 | using Reexport
@reexport module Resampling
import Interpolations
import Interpolations: Linear, BoundaryCondition
import ..bin
import ..UVAL_COLLECTION_TYPES
import ..UncertainDatasets:
AbstractUncertainValueDataset,
UncertainIndexValueDataset,
AbstractUncertainDataset
import ..UncertainValues:
UncertainValue,
AbstractUncertainValue
function resample end
###################################
# Resampling schemes
###################################
include("resampling_schemes/AbstractUncertainDataResampling.jl")
include("resampling_schemes/BinnedResamplings.jl")
include("resampling_schemes/ConstrainedResampling.jl")
include("resampling_schemes/ConstrainedValueResampling.jl")
include("resampling_schemes/ConstrainedIndexValueResampling.jl")
include("resampling_schemes/SequentialResampling.jl")
include("resampling_schemes/SequentialInterpolatedResampling.jl")
include("resampling_schemes/binned_resamplings.jl")
include("resampling_schemes/InterpolateAndBin.jl")
include("resampling_schemes/RandomSequences.jl")
# Extend some methods to allow easier resampling.
include("resampling_with_schemes/constrain_with_schemes.jl")
###################################
# Resampling uncertain values
###################################
# Uncertain values based on distributions
include("uncertain_values/resample_uncertainvalues_distributions.jl")
# With constraints
include("uncertain_values/resample_uncertainvalues_theoretical.jl")
include("uncertain_values/resample_uncertainvalues_theoretical_withconstraints.jl")
include("uncertain_values/resample_uncertainvalues_kde.jl")
include("uncertain_values/resample_uncertainvalues_kde_withconstraints.jl")
include("uncertain_values/resample_certainvalues.jl")
include("uncertain_values/resample_uncertainvalues_populations.jl")
include("uncertain_values/resample_measurements.jl")
#########################################
# Resampling tuples of uncertain values
#########################################
include("uncertain_tuples/uncertain_tuples.jl")
#########################################
# Resampling vectors of uncertain values
#########################################
include("uncertain_values/resampling_vector_uncertainvalues.jl")
###################################
# Resampling uncertain datasets
###################################
# Element-wise resampling for all subtypes of AbstractUncertainValueDataset
include("uncertain_dataset/resample_abstractuncertainvaluedataset_elwise.jl")
# Specialized resampling for each type of dataset.
include("uncertain_dataset/resample_uncertaindataset_index.jl")
include("uncertain_dataset/resample_uncertaindataset_value.jl")
include("uncertain_dataset/resample_uncertaindataset_indexvalue.jl")
# Resampling vectors of uncertain values
include("uncertain_vectors/resample_uncertain_vectors.jl")
#########################################
# Ordered resampling
#########################################
include("ordered_resampling/resample_sequential.jl")
include("ordered_resampling/strictlyincreasing.jl")
include("ordered_resampling/strictlydecreasing.jl")
#########################################
# Resampling with interpolation
#########################################
include("resampling_with_interpolation/resample_linear_interpolation.jl")
################################
# Apply function with resampling
################################
include("apply_func.jl")
################################
# Resampling in-place
################################
include("resampling_inplace.jl")
################################
# Resampling with schemes
################################
include("resampling_with_schemes/resampling_schemes_binned.jl")
include("resampling_with_schemes/resampling_schemes_interpolated_binned.jl")
include("resampling_with_schemes/resampling_schemes_constrained.jl")
include("resampling_with_schemes/resampling_schemes_sequential.jl")
################################
# Interpolation
################################
include("binning/bin_BinnedResampling.jl")
include("binning/bin_BinnedWeightedResampling.jl")
export resample, resample!, resample_elwise, bin
end # module
"""
Resampling
A module defining resampling methods for uncertain values defined in the
`UncertainValues` module and uncertain datasets defined in the
`UncertainDatasets` module.
"""
Resampling
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 2788 | """
resample(f::Function, x::AbstractUncertainValue, n::Int, args...; kwargs...)
Draw an `n`-element sample from `x` according to its furnishing distribution, then
call `f(x_draw, args...; kwargs...)` on the length-`n` draws.
"""
function resample(f::Function, x::T, n::Int, args...; kwargs...) where T <: AbstractUncertainValue
draw = resample(x, n)
f(draw, args...; kwargs...)
end
"""
resample(f::Function,
x::AbstractUncertainValue, y::AbstractUncertainValue,
n::Int, args...; kwargs...)
Draw an `n`-element sample from `x` according to its furnishing distribution, and
draw an `n`-element sample from `y` according to its furnishing distribution. Then,
call `f(x_draw, y_draw, args...; kwargs...)` on the length-`n` draws.
"""
function resample(f::Function,
x::T1, y::T2,
n::Int, args...; kwargs...) where {T1 <: AbstractUncertainValue, T2 <: AbstractUncertainValue}
draw_x = float.(resample(x, n))
draw_y = float.(resample(y, n))
f(draw_x, draw_y, args...; kwargs...)
end
"""
resample(f::Function, x::UVAL_COLLECTION_TYPES, n::Int, args...; kwargs...)
Resample the elements of `x` according to their furnishing uncertain values, yielding
a length-`l` realisation of `x` if `length(x) = l`. The elements of `x` are resampled
independently, assuming no sequential dependence between the elements. Then, call
`f(x, args...; kwargs...)` on the length-`l` sample with the given `args` and `kwargs`.
This process is repeated `n` times, yielding a length-`n` distribution of evaluations
of `f`.
"""
function resample(f::Function, x::T, n::Int, args...; kwargs...) where {
T <: UVAL_COLLECTION_TYPES}
draws = resample(x, n)
[f(draw, args...; kwargs...) for draw in draws]
end
"""
resample(f::Function, x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int, args...; kwargs...)
Resample the elements of `x` according to their furnishing uncertain values, yielding
a length-`l` realisation of `x` if `length(x) = l`. Then, do the same for `y`.
The elements of `x` and `y` are resampled independently, assuming no sequential dependence
between the elements of neither `x` nor `y`.
Then, call `f(x_draw, y_draw, args..., kwargs...)` on the length-`l` samples
`x_draw` and `y_draw`. This process is repeated `n` times, yielding a length-`n`
distribution of evaluations of `f`.
"""
function resample(f::Function, x::TX, y::TY, n::Int, args...; kwargs...) where {
TX <: UVAL_COLLECTION_TYPES,
TY <: UVAL_COLLECTION_TYPES}
f_vals = zeros(Float64, n)
for i = 1:n
draw_x = float.(resample(x))
draw_y = float.(resample(y))
f_vals[i] = f(draw_x, draw_y, args...; kwargs...)
end
return f_vals
end
export resample | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 5823 | import StaticArrays: FieldVector, MVector
"""
resample!(v::AbstractArray{T, 1}, x::AbstractUncertainValue)
resample!(v::MVector{N, T}, x::AbstractUncertainValue) where {N, T}
resample!(v::FieldVector{N, T}, x::AbstractUncertainValue) where {N, T}
resample!(v::MVector{N, T}, x::Vararg{AbstractUncertainValue, N}) where {N, T}
resample!(v::FieldVector{N, T}, x::Vararg{AbstractUncertainValue, N}) where {N, T}
resample!(v::AbstractArray{T, 1}, x::UVAL_COLLECTION_TYPES) where T
resample!(v::AbstractArray{T, 2}, x::UVAL_COLLECTION_TYPES) where T
resample!(idxs::AbstractArray{T, 1}, vals::AbstractArray{T, 1},
x::AbstractUncertainIndexValueDataset) where T
resample!(idxs::AbstractArray{T, 2}, vals::AbstractArray{T, 2},
x::AbstractUncertainIndexValueDataset) where T
Resample a uncertain value `x`, or a collection of uncertain values `x`, into a
pre-allocated container `v`.
## Uncertain values
- If `x` is a single uncertain value, and `v` is vector-like, then fill
`v` with `N` draws of `x`. Works with vectors of length `N`,
`MVector{N, T}`s or `FieldVector{N, T}`s.
## Uncertain collections
Uncertain collections may be a `Vector{AbstractUncertainValue}` of length `N`,
an `AbstractUncertainValueDataset`, or an `NTuple{N, AbstractUncertainValue}`.
See also [`UVAL_COLLECTION_TYPES`](@ref).
- If `x` is a collection of uncertain values and `v` is vector-like, then
fill `v[i]` with a draw of `x[i]` for `i = 1:N`.
- If `x` is a collection of uncertain values and `v` is a 2D-array, then
fill the `i`-th column of `v` with `length(x)` draws of the `i`-th
uncertain value in `x`.
## Uncertain index-value collections
- If two mutable vector-like containers, `idxs` and `vals`, are provided along
with an uncertain index-value dataset `x`, then fill `idxs[i]` with a
random draw from `x.indices[i]` and fill `vals[i]` with a random draw
from `x.values[i]`.
- If two mutable matrix-like containers, `idxs` and `vals` are provided along
with an uncertain index-value dataset `x` (where the number of
columns in both `idxs` and `vals` matches `length(x)`), then fill the
`i`-th column of `idxs` with `size(idxs, 1)` draws from `x.indices[i]`,
and fill the `i`-th column of `vals` with `size(idxs, 1)` draws
from `x.values[i]`.
"""
function resample! end
function resample!(v, x::AbstractUncertainValue)
v[:] = rand(x, length(v))
return v
end
function resample!(v, x::UVAL_COLLECTION_TYPES) where T
for i in eachindex(v)
@inbounds v[i] = rand(x[i])
end
return v
end
function resample!(v::AbstractArray{T, 2}, x::UVAL_COLLECTION_TYPES) where T
# The i-th column is filled with random values from the ith uncertain
# value in the collection.
n_draws = size(v, 1)
n_vals = length(x)
for i in 1:n_vals
v[:, i] = rand(x[i], n_draws)
end
return v
end
function resample!(idxs::Vector{T}, vals::Vector{T},
x::AbstractUncertainIndexValueDataset) where T
if !(length(idxs) == length(vals) == length(x))
error("`length(idxs) == length(vals) == length(x)` evaluated to false")
end
for i in eachindex(idxs)
@inbounds idxs[i] = rand(x.indices[i])
@inbounds vals[i] = rand(x.values[i])
end
return idxs, vals
end
function resample!(idxs::AbstractArray{T, 2}, vals::AbstractArray{T, 2},
x::AbstractUncertainIndexValueDataset) where T
if !(size(idxs, 2) == size(vals, 2) == length(x))
error("`length(idxs) == length(vals) == length(x)` evaluated to false")
end
n_draws = size(idxs, 1)
n_uvals = length(x)
# The i-th column in `idxs` is filled with random values from the ith uncertain
# index in the collection, and vice versa for `vals`.
for i in 1:n_uvals
@inbounds idxs[:, i] = rand(x.indices[i], n_draws)
@inbounds vals[:, i] = rand(x.values[i], n_draws)
end
return idxs, vals
end
#################################################################################
# Multiple draws of a single uncertain value into mutable vector-like containers.
#################################################################################
function resample!(v::MVector{N, T}, x::AbstractUncertainValue) where {N, T}
v[:] = resample(x, N)
return v
end
function resample!(v::FieldVector{N, T}, x::AbstractUncertainValue) where {N, T}
v[:] = resample(x, N)
return v
end
##########################################################################################
# A single draw of `N` uncertain values into a length-`N` a mutable vector-like container.
##########################################################################################
function resample!(v::Vector{T}, x::NTuple{N, AbstractUncertainValue}) where {N, T}
if length(v) != N
throw(ArgumentError("length(v) == $(length(v)), has to match the number of uncertain values ($N)"))
end
for i = 1:N
@inbounds v[i] = resample(x[i])
end
return v
end
function resample!(v::MVector{N, T}, x::Vararg{AbstractUncertainValue, N}) where {N, T}
@inbounds for i = 1:N
v[i] = resample(x[i])
end
return v
end
function resample!(v::MVector{N, T}, x::NTuple{N, AbstractUncertainValue}) where {N, T}
for i = 1:N
@inbounds v[i] = resample(x[i])
end
return v
end
function resample!(v::FieldVector{N, T}, x::Vararg{AbstractUncertainValue, N}) where {N, T}
@inbounds for i = 1:N
v[i] = resample(x[i])
end
return v
end
function resample!(v::FieldVector{N, T}, x::NTuple{N, AbstractUncertainValue}) where {N, T}
for i = 1:N
@inbounds v[i] = resample(x[i])
end
return v
end
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 7178 | import KernelDensity: UnivariateKDE, default_bandwidth, kde
import Distributions: Distribution
"""
bin(x::AbstractUncertainIndexValueDataset, binning::BinnedResampling{UncertainScalarKDE}) -> UncertainIndexValueDataset
bin(x::AbstractUncertainIndexValueDataset, binning::BinnedResampling{UncertainScalarPopulation}) -> UncertainIndexValueDataset
Resample every element of `x` the number of times given by `binning.n`. After resampling,
distribute the values according to their indices, into the bins given by `binning.left_bin_edges`.
## Returns
Returns an `UncertainIndexValueDataset`. Indices are assumed to be uniformly distributed within each
bin, and are represented as `CertainValue`s at the bin centers. Values of the dataset have different
representations depending on what `binning` is:
- If `binning isa BinnedResampling{UncertainScalarKDE}`, then values in each bin are represented by a
kernel density estimate to the distribution of the resampled values whose resampled indices
fall in that bin.
- If `binning isa BinnedResampling{UncertainScalarPopulation}`, then values in each bin are
represented by equiprobable populations consisting of the resampled values whose resampled
indices fall in the bins.
"""
function bin(x::AbstractUncertainIndexValueDataset, binning::BinnedResampling); end
"""
bin(x::AbstractUncertainIndexValueDataset, binning::BinnedResampling{RawValues}) -> Tuple(Vector, Vector{Vector})
Resample every element of `x` the number of times given by `binning.n`. After resampling,
distribute the values according to their indices, into the `N` bins given by `binning.left_bin_edges`.
## Returns
Return a tuple containing the `N` different bin centers and a `N`-length vector of
resampled values whose resampled indices fall in the `N` different bins.
## Example
```julia
# Some example data with unevenly spaced time indices
npts = 300
time, vals = sort(rand(1:1000, npts)), rand(npts)
# Add uncertainties to indices and values, and represent as
# UncertainIndexValueDataset
utime = [UncertainValue(Normal, t, 10) for t in time]
uvals = [UncertainValue(Normal, v, 0.1) for v in vals]
udata = UncertainIndexValueDataset(utime, uvals)
# Bin data into fall in 25 time step wide time bins ranging
# from time indices 100 to 900 and return a vector of raw
# values for each bin. Do this by resampling each uncertain
# data point 10000 times and distributing those draws among
# the bins.
left_bin_edges = 100:25:900
n_draws = 10000
binning = BinnedResampling(RawValues, left_bin_edges, n_draws)
bin_centers, bin_draws = bin(udata, binning)
```
"""
function bin(x::AbstractUncertainIndexValueDataset, binning::BinnedResampling{RawValues};
nan_threshold = 0.0)
# Pre-allocate some arrays into which we resample the values of the
# index and value populations.
idxs = fill(NaN, binning.n)
vals = fill(NaN, binning.n)
perminds = zeros(Int, binning.n)
sorted_idxs = fill(NaN, binning.n)
sorted_vals = fill(NaN, binning.n)
bin_edges = binning.left_bin_edges
n_bins = length(bin_edges) - 1
# Used to compute the index of the bin into which a draw belongs
mini = minimum(binning.left_bin_edges)
s = step(binning.left_bin_edges)
# Empty vectors that will contain draws.
binvecs = [Vector{Float64}(undef, 0) for i = 1:n_bins]
#[sizehint!(bv, resampling.n*n_bins) for bv in binvecs]
@inbounds for (j, (idx, val)) in enumerate(zip(x.indices, x.values))
# Resample the j-th index and j-th value
resample!(idxs, idx)
resample!(vals, val)
# Get the vector that sorts the index vector, and use that to
# sort the draws.
sortperm!(perminds, idxs)
sorted_idxs .= idxs[perminds]
sorted_vals .= vals[perminds]
# The vectors above are sorted sorted, so this can be done faster
for i in 1:n_bins
inbin = findall(bin_edges[i] .<= sorted_idxs .<= bin_edges[i+1])
if length(inbin) > nan_threshold
append!(binvecs[i], sorted_vals[inbin])
end
end
end
bin_centers = bin_edges[1:end-1] .+ step(bin_edges)/2
return bin_centers, binvecs
end
function bin(x::AbstractUncertainIndexValueDataset, binning::BinnedResampling{UncertainScalarPopulation};
nan_threshold = 0)
# Get bin center and a vector for each bin containing the values falling in that bin.
left_bin_edges = binning.left_bin_edges
n = binning.n
n_bins = length(left_bin_edges) - 1
bin_centers, binvecs = bin(x, BinnedResampling(RawValues, left_bin_edges, n))
# Estimate distributions in each bin by kernel density estimation
estimated_value_dists = Vector{Union{CertainValue, UncertainScalarPopulation}}(undef, n_bins)
binvec_lengths = length.(binvecs)
for i in 1:n_bins
L = binvec_lengths[i]
# If bin contains enough values, represent as population. Otherwise,
# set to NaN.
if L > nan_threshold
probs = Weights(repeat([1/L], L))
estimated_value_dists[i] = UncertainScalarPopulation(binvecs[i], probs)
else
estimated_value_dists[i] = UncertainValue(NaN)
end
end
new_inds = UncertainIndexDataset(bin_centers)
new_vals = UncertainValueDataset(estimated_value_dists)
UncertainIndexValueDataset(new_inds, new_vals)
end
function bin(x::AbstractUncertainIndexValueDataset, binning::BinnedResampling{UncertainScalarKDE};
nan_threshold = 0,
kernel::Type{D} = Normal,
bw_factor = 4,
npoints::Int = 2048) where {K <: UnivariateKDE, D <: Distribution}
# Get bin center and a vector for each bin containing the values falling in that bin.
left_bin_edges = binning.left_bin_edges
n = binning.n
n_bins = length(left_bin_edges) - 1
bin_centers, binvecs = bin(x, BinnedResampling(RawValues, left_bin_edges, n))
# Estimate distributions in each bin by kernel density estimation
estimated_value_dists = Vector{Union{CertainValue, UncertainScalarKDE}}(undef, n_bins)
binvec_lengths = length.(binvecs)
for i in 1:n_bins
L = binvec_lengths[i]
# If bin contains enough values, represent as KDE estimate. Otherwise,
# set to NaN.
if L > nan_threshold
bw = default_bandwidth(binvecs[i]) / bw_factor
# Kernel density estimation
KDE = kde(binvecs[i], npoints = npoints, kernel = kernel, bandwidth = bw)
# Get the x value for which the density is estimated.
xrange = KDE.x
# Normalise estimated density
density = KDE.density ./ sum(KDE.density)
estimated_value_dists[i] = UncertainScalarKDE(KDE, binvecs[i], xrange, Weights(density))
else
estimated_value_dists[i] = UncertainValue(NaN)
end
end
new_inds = UncertainIndexDataset(bin_centers)
new_vals = UncertainValueDataset(estimated_value_dists)
UncertainIndexValueDataset(new_inds, new_vals)
end
export bin | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 7703 | import KernelDensity: UnivariateKDE, default_bandwidth, kde
import Distributions: Distribution
"""
bin(x::AbstractUncertainIndexValueDataset, binning::BinnedWeightedResampling{UncertainScalarKDE}) -> UncertainIndexValueDataset
bin(x::AbstractUncertainIndexValueDataset, binning::BinnedWeightedResampling{UncertainScalarPopulation}) -> UncertainIndexValueDataset
Resample every element of `x` a number of times. After resampling, distribute the
values according to their indices, into the `N` bins given by the `N-1`-element
grid defined by `binning.left_bin_edges`. In total, `length(x)*binning.n` draws
are distributed among the bins. The precise number of times `x[i]` is resampled is
given by `binning.weights[i]` (probability weights are always normalised to 1).
## Returns
Returns an `UncertainIndexValueDataset`. Indices are assumed to be uniformly distributed within each
bin, and are represented as `CertainValue`s at the bin centers. Values of the dataset have different
representations depending on what `binning` is:
- If `binning isa BinnedWeightedResampling{UncertainScalarKDE}`, then values in each bin are
represented by a kernel density estimate to the distribution of the resampled values whose
resampled indices fall in that bin.
- If `binning isa BinnedWeightedResampling{UncertainScalarPopulation}`, then values in each bin are
represented by equiprobable populations consisting of the resampled values whose resampled
indices fall in the bins.
"""
function bin(x::AbstractUncertainIndexValueDataset, binning::BinnedWeightedResampling); end
"""
bin(x::AbstractUncertainIndexValueDataset,
binning::BinnedWeightedResampling{RawValues}) -> Tuple(Vector, Vector{Vector})
Resample every element of `x` a number of times. After resampling, distribute the
values according to their indices, into the `N` bins given by the `N-1`-element
grid defined by `binning.left_bin_edges`. In total, `length(x)*binning.n` draws
are distributed among the bins. The precise number of times `x[i]` is resampled is
given by the `binning.weights[i]` (probability weights are always normalised to 1).
## Returns
Return a tuple containing the `N` different bin centers and a `N`-length vector of
resampled values whose resampled indices fall in the `N` different bins.
## Example
```julia
using Plots, UncertainData
# Some example data with unevenly spaced time indices
function ar1(n::Int, x0 = 0.5, p = 0.3)
vals = zeros(n)
[vals[i] = vals[i - 1]*p + rand()*0.5 for i = 2:n]
return vals
end
npts = 50
time, vals = sort(rand(1:1000, npts)), ar1(npts)
# Add uncertainties to indices and values, and represent as
# UncertainIndexValueDataset
utime = [UncertainValue(Normal, t, 5) for t in time]
uvals = [UncertainValue(Normal, v, 0.03) for v in vals]
udata = UncertainIndexValueDataset(utime, uvals)
# Bin data into fall in 25 time step wide time bins ranging
# from time indices 100 to 900 and return a vector of raw
# values for each bin. Do this by resampling each uncertain
# data point on average 10000 times and distributing those
# draws among the bins.
time_grid = 100:40:900
n_draws = 5000
# Let odd-indexed values be three times as likely to be
# sampled compared to even-indexed values.
wts = Weights([i % 2 == 0 ? 1 : 3 for i = 1:length(udata)])
binning = BinnedWeightedResampling(RawValues, time_grid, wts, n_draws)
bin_centers, bin_draws = bin(udata, binning);
```
"""
function bin(x::AbstractUncertainIndexValueDataset, binning::BinnedWeightedResampling{RawValues};
nan_threshold = 0.0)
# Determine how many times each element of `x` should be resampled
# based on the provided weights.
wts = binning.weights ./ sum(binning.weights)
n_total_draws = binning.n * length(x)
Ns = ceil.(Int, n_total_draws .* binning.weights)
# Separately convert indices and values to weighted populations
pop_inds = UncertainValue(x.indices.indices, wts)
pop_vals = UncertainValue(x.values.values, wts)
bin_edges = binning.left_bin_edges
n_bins = length(bin_edges) - 1
# Used to compute the index of the bin into which a draw belongs
mini = minimum(binning.left_bin_edges)
s = step(binning.left_bin_edges)
# Empty vectors that will contain draws.
binvecs = [Vector{Float64}(undef, 0) for i = 1:n_bins]
#[sizehint!(bv, n_total_draws) for bv in binvecs]
for (i, N) in enumerate(Ns)
# Pre-allocate some arrays into which we resample the values of the
# index and value populations.
idxs = fill(NaN, N)
vals = fill(NaN, N)
perminds = zeros(Int, N)
sorted_idxs = fill(NaN, N)
sorted_vals = fill(NaN, N)
# Resample the i-th index and i-th value
resample!(idxs, pop_inds[i])
resample!(vals, pop_vals[i])
# Get the vector that sorts the index vector, and use that to
# sort the draws.
sortperm!(perminds, idxs)
sorted_idxs .= idxs[perminds]
sorted_vals .= vals[perminds]
# The vectors above are sorted sorted, so this can be done faster
for i in 1:n_bins
inbin = findall(bin_edges[i] .<= sorted_idxs .<= bin_edges[i+1])
if length(inbin) > nan_threshold
append!(binvecs[i], sorted_vals[inbin])
end
end
end
bin_centers = bin_edges[1:end-1] .+ step(bin_edges)/2
return bin_centers, binvecs
end
function bin(x::AbstractUncertainIndexValueDataset, binning::BinnedWeightedResampling{UncertainScalarKDE};
nan_threshold = 0.0)
bin_edges = binning.left_bin_edges
n = binning.n
wts = binning.weights
binning = BinnedWeightedResampling(RawValues, bin_edges, wts, n)
bin_centers, binvecs = bin(x, binning)
# Estimate distributions in each bin by kernel density estimation
n_bins = length(binning.left_bin_edges) - 1
estimated_value_dists = Vector{Union{CertainValue, UncertainScalarKDE}}(undef, n_bins)
for i in 1:n_bins
if length(binvecs[i]) > nan_threshold
estimated_value_dists[i] = UncertainValue(binvecs[i])
else
estimated_value_dists[i] = UncertainValue(NaN)
end
end
new_inds = UncertainIndexDataset(UncertainValue.(bin_edges[1:end-1] .+ step(bin_edges)/2))
new_vals = UncertainValueDataset(estimated_value_dists)
UncertainIndexValueDataset(new_inds, new_vals)
end
function bin(x::AbstractUncertainIndexValueDataset, binning::BinnedWeightedResampling{UncertainScalarPopulation};
nan_threshold = 0.0)
bin_edges = binning.left_bin_edges
n = binning.n
wts = binning.weights
binning = BinnedWeightedResampling(RawValues, bin_edges, wts, n)
bin_centers, binvecs = bin(x, binning)
# Estimate distributions in each bin by kernel density estimation
n_bins = length(binning.left_bin_edges) - 1
estimated_value_dists = Vector{Union{CertainValue, UncertainScalarPopulation}}(undef, n_bins)
for i in 1:n_bins
if length(binvecs[i]) > nan_threshold
L = length(binvecs[i])
estimated_value_dists[i] = UncertainValue(binvecs[i], repeat([1 / L], L))
else
estimated_value_dists[i] = UncertainValue(NaN)
end
end
new_inds = UncertainIndexDataset(UncertainValue.(bin_edges[1:end-1] .+ step(bin_edges)/2))
new_vals = UncertainValueDataset(estimated_value_dists)
UncertainIndexValueDataset(new_inds, new_vals)
end
import KernelDensity: UnivariateKDE, default_bandwidth, kde
import Distributions: Distribution | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 3433 | import ..SamplingConstraints:
SequentialSamplingConstraint,
OrderedSamplingAlgorithm
const AUD = AbstractUncertainDataset
const SC = Union{SamplingConstraint, Vector{S}} where S <: SamplingConstraint
const SEQ = SequentialSamplingConstraint{O} where O <: OrderedSamplingAlgorithm
const XD = Union{AbstractUncertainDataset, Vector{<:AbstractUncertainValue}}
"""
resample(x, ssc::SequentialSamplingConstraint)
resample(x, ssc::SequentialSamplingConstraint, c)
resample(x::UncertainIndexValueDataset, ssc::SequentialSamplingConstraint, ic, vc)
Sample `x` element-wise such that the samples obey the sequential constraints given by `ssc`.
Alteratively, apply constrain(s) `c` to `x` *before* sequential sampling is performed.
A check is performed before sampling to ensure that such a sequence exists.
Before the check is performed, the distributions in `x` are truncated element-wise
to the quantiles provided by `c` to ensure they have finite supports.
If `x` is an uncertain index-value dataset, then the sequential constraint is only applied to
the indices. If one set of additional constraints are added to an uncertain index-value dataset,
then they are applied to both the indices and the values. It is also possible to give separate
index constraints `ic` and value constraints `vc`.
If constraints `c`, or `ic` and `vc`, are given, then `c`/`ic`/`vc` must be either a single constraint,
or a vector of constraints where constraints are applied element-wise to the distributions in `x`.
resample!(s, x, ssc::SequentialSamplingConstraint, lqs, uqs)
The same as above, but store the sampled values a pre-allocated vector `s`, where
`length(x) == length(s)`. This avoids excessive memory allocations during repeated
resampling. This requires pre-computing the element-wise lower and upper quantiles
`lqs` and `uqs` for the initial truncation step.
This method *does not* check for the existence of a strictly increasing sequence in `x`.
To check that, use [`sequence_exists`](@ref).
See also: [`sequence_exists`](@ref), [`StrictlyIncreasing`](@ref),
[`StrictlyDecreasing`](@ref), [`StartToEnd`](@ref).
## Examples
```julia
N = 100
t = [UncertainValue(Normal, i, 2) for i in 1:N];
resample(t, StrictlyIncreasing(StartToEnd()))
```
```julia
N = 100
t = [UncertainValue(Normal, i, 2) for i in 1:N];
# Verify that an increasing sequence through `t` exists
c = StrictlyIncreasing(StartToEnd())
exists, lqs, uqs = sequence_exists(t, c)
# Pre-allocate sample vector
s = zeros(Float64, N)
if exists
for i = 1:100
resample!(s, t, c)
# Do something with s
# ...
end
end
```
"""
function resample(x::XD, ssc::SEQ)
exists, lqs, uqs = sequence_exists(x, ssc)
exists || error("Sequence does not exist")
_draw(x, ssc, lqs, uqs)
end
function resample!(s, x::XD, ssc::SEQ, lqs, uqs)
_draw!(s, x, ssc, lqs, uqs)
end
resample(udata::XD, ssc::SEQ, c::Union{SC, AbstractVector{<:SC}}) =
resample(constrain(udata, c), ssc)
resample(udata::UncertainIndexValueDataset, ssc::SEQ) =
resample(udata.indices, ssc), resample(udata.values)
resample(udata::UncertainIndexValueDataset, ssc::SEQ, c::SC) =
resample(constrain(udata.indices, c), ssc), resample(constrain(udata.values, c))
resample(udata::UncertainIndexValueDataset, ssc::SEQ, ic::SC, vc::SC) =
resample(constrain(udata.indices, ic), ssc), resample(constrain(udata.values, vc))
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1695 | import ..SamplingConstraints:
StartToEnd,
StrictlyDecreasing,
sequence_exists,
constrain,
TruncateMaximum,
TruncateRange,
TruncateQuantiles
import IntervalArithmetic:
interval
function _draw!(s, x, c::StrictlyDecreasing{<:StartToEnd}, mins, maxs)
L = length(x)
# TODO: add slight margin?
for i = 1:L
if i == 1
lo = maximum(mins[2:end])
truncated_distribution = truncate(x[i], TruncateMinimum(lo))
s[1] = resample(truncated_distribution)
end
if 1 < i < L
hi = min(s[i - 1], maxs[i])
lo = max(mins[i], maximum(mins[i+1:end]))
lo <= hi || error("Truncation range invalid for point $i. Got lo < hi ($lo < $hi), which should be impossible.")
truncated_distribution = truncate(x[i], TruncateRange(lo, hi))
s[i] = resample(truncated_distribution)
end
if i == L
hi = min(s[i - 1], maxs[i])
truncated_distribution = truncate(x[i], TruncateMaximum(hi))
s[end] = resample(truncated_distribution)
end
end
return s
end
"""
_draw(x, c::StrictlyDecreasing{StartToEnd}, mins, maxs)
Sample `x` in a strictly decreasing manner, given pre-computed minimum and maximum
values for each distribution in `c`.
Implicitly assumes a strictly decreasing sequence exists, but does not check that condition.
"""
function _draw(x, c::StrictlyDecreasing{<:StartToEnd}, mins, maxs)
L = length(x)
samples = zeros(Float64, L) # a vector to hold the element-wise samples
_draw!(samples, x, c, mins, maxs)
end
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1798 | import ..SamplingConstraints:
SamplingConstraint,
SequentialSamplingConstraint,
OrderedSamplingAlgorithm,
StartToEnd,
StrictlyIncreasing,
sequence_exists,
TruncateMinimum,
TruncateRange,
TruncateQuantiles,
constrain
export resample
import IntervalArithmetic:
interval
function _draw!(s, x, c::StrictlyIncreasing{<:StartToEnd}, mins, maxs)
L = length(x)
# TODO: add slight margin?
for i = 1:L
if i == 1
hi = minimum(maxs[2:end])
truncated_distribution = truncate(x[i], TruncateMaximum(hi))
s[i] = resample(truncated_distribution)
end
if 1 < i < L
lo = max(s[i - 1], mins[i])
hi = min(maxs[i], minimum(maxs[i+1:end]))
lo <= hi || error("Truncation range invalid for point $i. Got lo < hi ($lo < $hi), which should be impossible.")
truncated_distribution = truncate(x[i], TruncateRange(lo, hi))
s[i] = resample(truncated_distribution)
end
if i == L
lo = max(s[i - 1], mins[i])
truncated_distribution = truncate(x[i], TruncateMinimum(lo))
s[i] = resample(truncated_distribution)
end
end
return s
end
"""
_draw(x, c::StrictlyIncreasing{StartToEnd}, mins, maxs)
Sample `x` in a strictly increasing manner, given pre-computed minimum and maximum
values for each distribution in `c`.
Implicitly assumes a strictly increasing sequence exists, but does not check that condition.
"""
function _draw(x, c::StrictlyIncreasing{<:StartToEnd}, mins, maxs)
L = length(x)
samples = zeros(Float64, L) # a vector to hold the element-wise samples
_draw!(samples, x, c, mins, maxs)
end
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 268 | # TODO: inherit from StatsBase.AbstractResampling when implemented there
"""
AbstractUncertainDataResampling
An abstract type for all resampling schemes in this package.
"""
abstract type AbstractUncertainDataResampling end
export AbstractUncertainDataResampling | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 832 | """
AbstractBinnedResampling
Resampling schemes where data are binned.
"""
abstract type AbstractBinnedResampling <: AbstractUncertainDataResampling end
"""
AbstractBinnedUncertainValueResampling <: AbstractUncertainDataResampling
Resampling schemes where data are binned and the data in each bin
are represented as an uncertain value.
"""
abstract type AbstractBinnedUncertainValueResampling <: AbstractBinnedResampling end
"""
AbstractBinnedSummarisedResampling <: AbstractUncertainDataResampling
Resampling schemes where data are binned and the data in each bin
are summarised to a single value (e.g. the mean).
"""
abstract type AbstractBinnedSummarisedResampling <: AbstractBinnedResampling end
export
AbstractBinnedResampling,
AbstractBinnedSummarisedResampling,
AbstractBinnedUncertainValueResampling | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 5689 | import ..UncertainDatasets:
AbstractUncertainIndexValueDataset
import ..SamplingConstraints: SamplingConstraint
"""
ConstrainedIndexValueResampling(constraints::NTuple{N_DATASETS, NTuple{N_VARIABLES, Union{SamplingConstraint, Vector{<:SamplingConstraint}}}}, n::Int)
Indicates that resampling should be performed with constraints on a set of uncertain index-value datasets.
See examples for usage.
## Fields
- `constraints`. The constraints for the datasets. The constraints are represented as a tuple of length
`N_DATASETS`, where the `i`-th tuple element is itself a `N_VARIABLES`-length tuple containing the
constraints for the `N_VARIABLES` different variables. See "Indexing" below for details.
Constraints for each individual variable must be supplied as either a single sampling constraint,
or as a vector of sampling constraints with length matching the length of the variable
(`Union{SamplingConstraint, Vector{<:SamplingConstraint}}}`). For example, if the `j`-th variable
for the `i`-th dataset contains 352 observations, then `constraints[i, j]` must be either a single
sampling constraint (e.g. `TruncateStd(1.1)`) or a vector of 352 different sampling constraints
(e.g. `[TruncateStd(1.0 + rand()) for i = 1:352]`).
- `n::Int`. The number of draws.
## Indexing
Assume `c` is an instance of `ConstrainedIndexValueResampling`. Then
- `c[i]` returns the `NTuple` of constraints for the `i`-th dataset, and
- `c[i, j]` returns the constraint(s) for the `j`-th variable of the `i`-th dataset.
## Example
### Defining `ConstrainedIndexValueResampling`s.
Assume we want to constraints three separate uncertain index-value datasets, with different
sampling constraints for the indices and the values for each of the datasets.
```julia
# (index constraints, value constraints) for the 1st, 2nd and 3rd datasets
c1 = (TruncateStd(1), TruncateStd(1.1))
c2 = (TruncateStd(0.5), TruncateQuantiles(0.1, 0.8))
c3 = (TruncateQuantiles(0.05, 0.95), TruncateQuantiles(0.33, 0.67))
c = ConstrainedIndexValueResampling(c1, c2, c3)
```
Now,
- `c[2]` returns the `NTuple` of constraints for the 2nd dataset, and
- `c[1, 2]` returns the constraint(s) for the 2nd variable of the 1st dataset.
### Controlling the number of draws
The number of draws defaults to 1 if not specified. To indicate that
more than one draw should be performed, just input the number of draws
before supplying the constraints to the constructor.
```
c1 = (TruncateStd(1), TruncateStd(1.1))
c2 = (TruncateStd(0.5), TruncateQuantiles(0.1, 0.8))
# A single draw
c_single = ConstrainedIndexValueResampling(c1, c2)
# Multiple (300) draws
c_multiple = ConstrainedIndexValueResampling(300, c1, c2)
```
### Detailed example
Let's say we have two uncertain index-value datasets `x` and `y`. We want to constrain
the furnishing distributions/population for both the time indices and values,
both for `x` and `y`. For `x`, truncate the indices at `0.8` times the standard
deviation around their mean, and for `y`, trucate the indices at `1.5` times the
standard deviation around their mean. Next, truncate `x`s values at roughly
(roughly) at their 20th percentile range, and truncate `y`s values at roughly
their 80th percentile range.
All this information can be combined in a `ConstrainedIndexValueResampling` instance.
This instance can be passed on to any function that accepts uncertain index-value datasets,
to indicate that resampling should be performed on truncated versions of the
distributions/populations furnishing the datasets.
```julia
# some noise, so we don't truncate all furnishing distributions/population at
# exactly the same quantiles.
r = Uniform(0, 0.01)
constraints_x_inds = TruncateStd(0.8)
constraints_y_inds = TruncateStd(1.5)
constraints_x_vals = [TruncateQuantiles(0.4 + rand(r), 0.6 + rand(r)) for i = 1:length(x)];
constraints_y_vals = [TruncateQuantiles(0.1 + rand(r), 0.9 + rand(r)) for i = 1:length(x)];
cs_x = (constraints_x_inds, constraints_x_vals)
cs_y = (constraints_y_inds, constraints_y_vals)
resampling = ConstrainedIndexValueResampling(cs_x, cs_y)
```
"""
struct ConstrainedIndexValueResampling{N_VARIABLES, N_DATASETS} <: AbstractUncertainDataResampling where {N_VARIABLES, N_DATASETS}
constraints::NTuple{N_DATASETS, NTuple{N_VARIABLES, Union{SamplingConstraint, Vector{<:SamplingConstraint}}}}
n::Int
end
ConstrainedIndexValueResampling(constraints::NTuple{N_VARIABLES, Union{SamplingConstraint, Vector{<:SamplingConstraint}}}...) where N_VARIABLES =
ConstrainedIndexValueResampling((constraints...,), 1)
ConstrainedIndexValueResampling(n::Int, constraints::NTuple{N_VARIABLES, Union{SamplingConstraint, Vector{<:SamplingConstraint}}}...) where N_VARIABLES =
ConstrainedIndexValueResampling((constraints...,), n)
function Base.show(io::IO, constraints::ConstrainedIndexValueResampling{N_VARIABLES, N_DATASETS}) where {N_VARIABLES, N_DATASETS}
s = "$(typeof(constraints)) for $N_DATASETS set(s) of index-value constraints (each a $N_VARIABLES-tuple) where n=$(constraints.n)"
println(io, s)
end
Base.eachindex(c::ConstrainedIndexValueResampling) = Base.OneTo(length(c.constraints))
Base.length(c::ConstrainedIndexValueResampling) = length(c.constraints)
Base.firstindex(c::ConstrainedIndexValueResampling) = 1
Base.lastindex(c::ConstrainedIndexValueResampling) = length(c.constraints)
Base.getindex(c::ConstrainedIndexValueResampling, i) = c.constraints[i]
Base.getindex(c::ConstrainedIndexValueResampling, i, j) = c.constraints[i][j]
Base.iterate(c::ConstrainedIndexValueResampling, state = 1) = iterate(c.constraints, state)
export ConstrainedIndexValueResampling | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1387 | import ..SamplingConstraints: SamplingConstraint
"""
ConstrainedResampling(constraint::NTuple{N, Union{SamplingConstraint, Vector{<:SamplingConstraint}}})
Indicates that resampling should be performed with constraints on the uncertain values.
"""
struct ConstrainedResampling{N} <: AbstractUncertainDataResampling where N
constraints::NTuple{N, Union{SamplingConstraint, Vector{<:SamplingConstraint}}}
end
ConstrainedResampling(constraints::Union{SamplingConstraint, Vector{<:SamplingConstraint}}...) =
ConstrainedResampling(constraints)
ConstrainedResampling(constraints::Vector{Union{SamplingConstraint, Vector{<:SamplingConstraint}}}) =
ConstrainedResampling((constraints...))
Base.length(resampling::ConstrainedResampling) = length(resampling.constraints)
Base.getindex(resampling::ConstrainedResampling, i) = resampling.constraints[i]
Base.firstindex(resampling::ConstrainedResampling) = 1
Base.lastindex(resampling::ConstrainedResampling) = length(resampling)
function summarise(resampling::ConstrainedResampling)
_type = typeof(resampling)
constraint_types = [typeof(c) for c in resampling.constraints]
strs = ["$constraint" for constraint in constraint_types]
return "$_type" * "(" * join(strs, ", ") * ")"
end
Base.show(io::IO, resampling::ConstrainedResampling) = print(io, summarise(resampling))
export ConstrainedResampling | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 3861 | CONSTRAINT_TYPES = Union{T, Vector{T}} where T <: SamplingConstraint
"""
ConstrainedValueResampling{N_DATASETS}
Indicates that resampling should be done with constraints on the furnishing distributions/populations.
## Fields
- `constraints`. The constraints for the datasets. The constraints are represented as a tuple of length
`N_DATASETS`, where the `i`-th tuple element contains the constraints for that dataset.
Constraints for each dataset must be supplied as either a single sampling constraint,
or as a vector of sampling constraints with length matching the length of the dataset
(`Union{SamplingConstraint, Vector{<:SamplingConstraint}}}`). For example, if the `i`-th dataset
contains 352 observations, then `constraints[i]` must be either a single
sampling constraint (e.g. `TruncateStd(1.1)`) or a vector of 352 different sampling constraints
(e.g. `[TruncateStd(1.0 + rand()) for i = 1:352]`).
- `n::Int`. The number of draws.
## Example
Assume we have three collections of uncertain values of, each of length `L = 50`. These should be
resampled `250` times. Before resampling, however, the distributions/populations furnishing
the uncertain values should be truncated:
- For the first collection, truncate each value at `1.5` times its standard deviation
around its mean. This could simulate measurement errors from an instrument
that yields stable measurements whose errors are normally distributed, but for
which we are not interested in outliers or values beyond `1.5` standard devations
for our analyses.
- For the second collection, truncate each value at the `80`th percentile range.
This could simulate measurement errors from an instrument that yields stable measurements,
whose errors are not normally distributed, so that confidence intervals are better
to use than standard deviations. In this case, we're not interested in outliers,
and therefore exclude values smaller than the `10`th percentile and larger than the
`90`th percentile of the data.
- For the third collection, truncate the `i`-th value at an fraction of its standard
deviation around the mean slightly larger than at the `i-1`-th value, so that
the standard deviation ranges from `0.5` to `0.5 + L/100`. This could simulate,
for example, an instrument whose measurement error increases over time.
```julia
L = 50
constraints_d1 = TruncateStd(1.5)
constraints_d2 = TruncateQuantiles(0.1, 0.9)
constraints_d3 = [TruncateStd(0.5 + i/100) for i = 1:L]
```
"""
struct ConstrainedValueResampling{N} <: AbstractUncertainDataResampling
constraints::Tuple{Vararg{CONSTRAINT_TYPES, N}}
n::Int
end
# It's tedious for the user to always provide a tuple, so unpack a variable
# number of constraints into a tuple, then call the original constructor.
function ConstrainedValueResampling(constraints::CONSTRAINT_TYPES...) where N
ConstrainedValueResampling((constraints...,), 1)
end
function ConstrainedValueResampling(n::Int, constraints::CONSTRAINT_TYPES...) where N
ConstrainedValueResampling((constraints...,), n)
end
Broadcast.broadcastable(c::ConstrainedValueResampling) = Ref(c)
Base.length(c::ConstrainedValueResampling) = length(c.constraints)
Base.firstindex(c::ConstrainedValueResampling) = 1
Base.lastindex(c::ConstrainedValueResampling) = length(c)
Base.getindex(c::ConstrainedValueResampling, i) = c.constraints[i]
Base.iterate(c::ConstrainedValueResampling, state = 1) = iterate(c.constraints, state)
Base.eachindex(c::ConstrainedValueResampling) = Base.OneTo(length(c.constraints))
function Base.show(io::IO, constraints::ConstrainedValueResampling{N_DATASETS}) where {N_DATASETS}
s = "$(typeof(constraints)) for $N_DATASETS set(s) of value constraints, where n=$(constraints.n)"
println(io, s)
end
export ConstrainedValueResampling | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1414 |
"""
InterpolateAndBin{L}(f::Function, left_bin_edges, intp::L, intp_grid,
extrapolation_bc::Union{<:Real, Interpolations.BoundaryCondition})
Indicates that a dataset consisting of both indices and values should first
be interpolated to the `intp_grid` grid using the provided `intp` scheme
(e.g. `Linear()`). After interpolating, assign the interpolated values
to the bins defined by `left_bin_edges` and summarise the values falling
in each bin using the summary function `f` (e.g. `mean`).
## Example
```julia
using UncertainData, Interpolations, StatsBase
# Assume we have the following unevenly spaced data with some `NaN` values
T = 100
time = sample(1.0:T*5, T, ordered = true, replace = false)
y1 = rand(T)
time[rand(1:T, 10)] .= NaN
y1[rand(1:T, 10)] .= NaN
# We want to first intepolate the dataset linearly to a regular time grid
# with steps of `0.1` time units.
intp = Linear()
intp_grid = 0:0.1:1000
extrapolation_bc = Flat(OnGrid())
# Then, bin the dataset in time bins `50` time units wide, collect all
# values in each bin and summarise them using `f`.
f = mean
left_bin_edges = 0:50:1000
r = InterpolateAndBin(f, left_bin_edges, intp, intp_grid, extrapolation_bc)
```
"""
struct InterpolateAndBin{L}
f::Function
left_bin_edges
intp::L # Linear
intp_grid
extrapolation_bc::Union{<:Real, Interpolations.BoundaryCondition}
end
export InterpolateAndBin | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 458 | """
RandomSequences(n::Int, sequence_length)
Indicates that resampling should be performed on discrete,
continuous subsets of a dataset. The lengths of each of the
`n` subsets is indicated by `sequence_length`, which should
be an integer (fixed sequence length) or an iterable of
integers (sequences may have different lengths).
"""
struct RandomSequences <: AbstractUncertainDataResampling
n::Int
sequence_length
end
export RandomSequences | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1264 | import ..SamplingConstraints:
SequentialSamplingConstraint
import ..InterpolationAndGrids:
InterpolationGrid
"""
SequentialInterpolatedResampling{SequentialSamplingConstraint, InterpolationGrid}
Indicates that resampling should be done by first resampling sequentially, then
interpolating the sample to an interpolation grid.
## Fields
- `sequential_constraint::SequentialSamplingConstraint`. The sequential sampling constraint,
for example `StrictlyIncreasing()`.
- `grid::InterpolationGrid`. The grid onto which the resampled draw (generated according to
the sequential constraint) is interpolated, for example `RegularGrid(0, 100, 2.5)`.
## Examples
For example, `SequentialInterpolatedResampling(StrictlyIncreasing(), RegularGrid(0:2:100))`
indicates a sequential draw that is then interpolated to the grid 0:2:100.
"""
struct SequentialInterpolatedResampling{S, G} <: AbstractUncertainDataResampling where {
S <: SequentialSamplingConstraint, G <: InterpolationGrid}
sequential_constraint::S
grid::G
end
function Base.show(io::IO, resampling::SequentialInterpolatedResampling{S, G}) where {S, G}
print(io, "SequentialInterpolatedResampling{$S, $(resampling.grid)}")
end
export SequentialInterpolatedResampling | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 714 | import ..SamplingConstraints:
SequentialSamplingConstraint
"""
SequentialResampling{SequentialSamplingConstraint}
Indicates that resampling should be done by resampling sequentially.
## Fields
- `sequential_constraint::SequentialSamplingConstraint`. The sequential sampling constraint,
for example `StrictlyIncreasing()`.
## Examples
```julia
SequentialResampling(StrictlyIncreasing())
```
"""
struct SequentialResampling{S} <: AbstractUncertainDataResampling where {
S <: SequentialSamplingConstraint}
sequential_constraint::S
end
function Base.show(io::IO, resampling::SequentialResampling{S}) where {S}
print(io, "SequentialResampling{$S}")
end
export SequentialResampling | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 7357 | import ..UncertainValues: UncertainScalarPopulation, UncertainScalarKDE
"""
RawValues
Indicates that instead of summarising each bin, vectors of raw values should
be returned for a binned resampling.
"""
struct RawValues end
const BINREPR = Union{UncertainScalarKDE, UncertainScalarPopulation, RawValues}
"""
BinnedResampling(left_bin_edges, n::Int; bin_repr = UncertainScalarKDE)
BinnedResampling(UncertainScalarKDE, left_bin_edges, n::Int)
BinnedResampling(UncertainScalarPopulation, left_bin_edges, n::Int)
BinnedResampling(RawValues, left_bin_edges, n::Int)
Indicates that binned resampling should be performed.
## Fields
- `left_bin_edges`. The left edgepoints of the bins. Either a range or some
custom type which implements `minimum` and `step` methods.
- `n`. The number of draws. Each point in the dataset is sampled `n` times.
If there are `m` points in the dataset, then the total number of draws
is `n*m`.
- `bin_repr`. A type of uncertain value indicating how each bin should be
summarised (`UncertainScalarKDE` for kernel density estimated distributions
in each bin, `UncertainScalarPopulation` to represent values in each bin
as an equiprobable population) or not summarise but return raw values
falling in each bin (`RawValues`).
## Examples
```julia
using UncertainData
# Resample on a grid from 0 to 200 in steps of 20
grid = 0:20:200
# The number of samples per point in the dataset
n_draws = 10000
# Create the resampling scheme. Use kernel density estimates to distribution
# in each bin.
resampling = BinnedResampling(grid, n_draws, bin_repr = UncertainScalarKDE)
# Represent each bin as an equiprobably population
resampling = BinnedResampling(grid, n_draws, bin_repr = UncertainScalarPopulation)
# Keep raw values for each bin (essentially the same as UncertainScalarPopulation,
# but avoids storing an additional vector of weights for the population members).
resampling = BinnedResampling(grid, n_draws, bin_repr = RawValues)
```
"""
Base.@kwdef struct BinnedResampling{R, B} <: AbstractBinnedUncertainValueResampling where {R <: BINREPR, B}
bin_repr::Type{R} = UncertainScalarKDE
left_bin_edges::B
n::Int
end
BinnedResampling(left_bin_edges, n::Int; bin_repr = UncertainScalarKDE) =
BinnedResampling(bin_repr, left_bin_edges, n)
function Base.show(io::IO, b::BinnedResampling{R, B}) where {R, B}
T = typeof(b)
println(io, "$(T.name){bin_repr: $R, left_bin_edges: $B, n=$(b.n)}")
end
"""
BinnedWeightedResampling(left_bin_edges, weights, n::Int; bin_repr = UncertainScalarKDE)
BinnedWeightedResampling(UncertainScalarKDE, left_bin_edges, weights, n::Int)
BinnedWeightedResampling(UncertainScalarPopulation, left_bin_edges, weights, n::Int)
BinnedWeightedResampling(RawValues, left_bin_edges, weights, n::Int)
Indicates that binned resampling should be performed, but weighting each
point in the dataset differently.
## Fields
- `left_bin_edges`. The left edgepoints of the bins. Either a range or some
custom type which implements `minimum` and `step` methods.
- `weights`. The relative probability weights assigned to each point.
- `n`. The total number of draws. These are distributed among the
points of the dataset according to `weights`.
- `bin_repr`. A type of uncertain value indicating how each bin should be
summarised (`UncertainScalarKDE` for kernel density estimated distributions
in each bin, `UncertainScalarPopulation` to represent values in each bin
as an equiprobable population) or not summarise but return raw values
falling in each bin (`RawValues`).
## Examples
```julia
using UncertainData, StatsBase
# Resample on a grid from 0 to 200 in steps of 20
grid = 0:20:200
# Assume our dataset has 50 points. We'll assign random weights to them.
wts = Weights(rand(50))
# The total number of draws (on average 1000000/50 = 20000 draws per point
# if weights are equal)
n_draws = 10000000
# Create the resampling scheme. Use kernel density estimates to distribution
# in each bin.
resampling = BinnedWeightedResampling(grid, wts, n_draws, bin_repr = UncertainScalarKDE)
# Represent each bin as an equiprobably population
resampling = BinnedWeightedResampling(grid, wts, n_draws, bin_repr = UncertainScalarPopulation)
# Keep raw values for each bin (essentially the same as UncertainScalarPopulation,
# but avoids storing an additional vector of weights for the population members).
resampling = BinnedWeightedResampling(grid, wts n_draws, bin_repr = RawValues)
```
"""
Base.@kwdef struct BinnedWeightedResampling{R, B, W} <: AbstractBinnedUncertainValueResampling where {R <: BINREPR, B, W}
bin_repr::Type{R} = UncertainScalarKDE
left_bin_edges::B
weights::W
n::Int
end
BinnedWeightedResampling(left_bin_edges, weights, n::Int; bin_repr = UncertainScalarKDE) =
BinnedWeightedResampling(bin_repr, left_bin_edges, weights, n)
function Base.show(io::IO, b::BinnedWeightedResampling{R, B, W}) where {R, B, W}
T = typeof(b)
println(io, "$(T.name){bin_repr: $R, left_bin_edges: $B, weights: $W, n=$(b.n)}")
end
"""
BinnedMeanResampling
Binned resampling where each bin is summarised using
the mean of all draws falling in that bin.
## Fields
- `left_bin_edges`. The left edgepoints of the bins. Either a range or some
custom type which implements `minimum` and `step` methods.
- `n`. The number of draws. Each point in the dataset is sampled `n` times.
If there are `m` points in the dataset, then the total number of draws
is `n*m`.
## Examples
```julia
using UncertainData
# Resample on a grid from 0 to 200 in steps of 20
grid = 0:20:200
# The number of samples per point in the dataset
n_draws = 10000
# Create the resampling scheme
resampling = BinnedMeanResampling(grid, n_draws)
```
"""
struct BinnedMeanResampling{B} <: AbstractBinnedSummarisedResampling
left_bin_edges::B
n::Int
end
function Base.show(io::IO, b::BinnedMeanResampling{B}) where {B}
T = typeof(b)
println(io, "$(T.name){left_bin_edges=$(b.left_bin_edges), n=$(b.n)}")
end
"""
BinnedMeanWeightedResampling
Binned resampling where each bin is summarised using the mean of all draws
falling in that bin. Points in the dataset are sampled with probabilities
according to `weights`.
## Fields
- `left_bin_edges`. The left edgepoints of the bins. Either a range or some
custom type which implements `minimum` and `step` methods.
- `weights`. The relative probability weights assigned to each point.
- `n`. The total number of draws. These are distributed among the
points of the dataset according to `weights`.
## Examples
```julia
using UncertainData, StatsBase
# Resample on a grid from 0 to 200 in steps of 20
grid = 0:20:200
# Assume our dataset has 50 points. We'll assign random weights to them.
wts = Weights(rand(50))
# The total number of draws (on average 1000000/50 = 20000 draws per point
# if weights are equal)
n_draws = 10000000
# Create the resampling scheme
resampling = BinnedMeanWeightedResampling(grid, wts, n_draws)
```
"""
struct BinnedMeanWeightedResampling{B} <: AbstractBinnedSummarisedResampling
left_bin_edges::B
weights
n::Int
end
export
BinnedResampling,
BinnedWeightedResampling,
BinnedMeanResampling,
BinnedMeanWeightedResampling,
RawValues | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 3865 | import ..InterpolationAndGrids:
linear_interpolation,
InterpolationGrid
import ..UncertainDatasets:
UncertainIndexValueDataset,
AbstractUncertainValueDataset
import ..SamplingConstraints:
TruncateQuantiles
"""
resample(udata::UncertainIndexValueDataset,
grid::InterpolationGrid;
trunc::TruncateQuantiles = TruncateQuantiles(0.001, 0.999))
Draw a realization of `udata`, then interpolate the data values to `grid`.
To avoid very large spans of interpolation, the uncertain indices are truncated to some
large quantile range. Values are not truncated.
"""
function resample(udata::UncertainIndexValueDataset,
grid::InterpolationGrid;
trunc::TruncateQuantiles = TruncateQuantiles(0.001, 0.999))
# Constrain data so that all furnishing distributions for the indices have finite
# supports.
constrained_udata = UncertainIndexValueDataset(
constrain(udata.indices, trunc),
udata.values
)
# Resample the dataset
inds, vals = resample(constrained_udata)
# Interpolate to the provided grid
intp = linear_interpolation(inds, vals, extrapolation_bc = grid.extrapolation_bc)
# Return grid indices and the interpolated points.
range(grid), intp(grid.min:grid.step:grid.max)
end
"""
resample(udata::UncertainIndexValueDataset,
sequential_constraint::SequentialSamplingConstraint,
grid::InterpolationGrid;
trunc::TruncateQuantiles = TruncateQuantiles(0.001, 0.999))
Draw a realization of `udata`, enforcing a `sequential_constraint` on the indices. Then,
interpolate the values of the realization to the provided grid of indices (`grid`).
To avoid very large spans of interpolation, the uncertain indices are truncated to some
large quantile range. Values are not truncated.
"""
function resample(udata::UncertainIndexValueDataset,
sequential_constraint::SequentialSamplingConstraint,
grid::InterpolationGrid;
trunc::TruncateQuantiles = TruncateQuantiles(0.001, 0.999))
# Constrain data so that all furnishing distributions for the indices have finite
# supports.
constrained_udata = UncertainIndexValueDataset(
constrain(udata.indices, trunc),
udata.values
)
# Resample the dataset with the sequential constraint.
inds, vals = resample(constrained_udata, sequential_constraint)
# Interpolate to the desired grid.
intp = linear_interpolation(inds, vals, extrapolation_bc = grid.extrapolation_bc)
# Return grid indices and the interpolated points.
range(grid), intp(grid.min:grid.step:grid.max)
end
function resample(udata::UncertainIndexValueDataset,
sequential_constraint::SequentialSamplingConstraint,
grid::InterpolationGrid,
n::Int;
trunc::TruncateQuantiles = TruncateQuantiles(0.001, 0.999))
# Constrain data so that all furnishing distributions for the indices have finite
# supports.
constrained_udata = UncertainIndexValueDataset(
constrain(udata.indices, trunc),
udata.values
)
# Interpolate
grid = range(grid)
resampled_vals = zeros(Float64, length(grid), n)
for i = 1:n
# Resample using the sequential constraint, then interpolate
# the realization to the provided grid.
inds, vals = resample(constrained_udata, sequential_constraint)
intp = linear_interpolation(inds, vals,
extrapolation_bc = grid.extrapolation_bc)
# Each interpolated realization is a column in `resampled_vals`
resampled_vals[:, i] = intp(grid.min:grid.step:grid.max)
end
# Return grid indices and the interpolated points. The interpolated
# points now live in a matrix where each column is a realization.
grid, resampled_vals
end
export resample | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1572 | import ..SamplingConstraints: constrain
import ..UncertainDatasets:
UncertainIndexValueDataset,
UncertainIndexDataset,
ConstrainedUncertainIndexDataset,
ConstrainedUncertainValueDataset,
AbstractUncertainValueDataset,
AbstractUncertainIndexValueDataset
function constrain(x::UncertainIndexDataset,
resampling::ConstrainedValueResampling{1})
ConstrainedUncertainIndexDataset(constrain(x.indices, resampling.constraints[1]))
end
function constrain(x::AbstractUncertainValueDataset,
resampling::ConstrainedValueResampling{1})
ConstrainedUncertainValueDataset(constrain(x.values, resampling.constraints[1]))
end
function constrain(x::AbstractUncertainIndexValueDataset,
resampling_inds::ConstrainedValueResampling{N1},
resampling_vals::ConstrainedValueResampling{N2}) where {N1, N2}
inds = constrain(x.indices, resampling_inds)
vals = constrain(x.values, resampling_vals)
UncertainIndexValueDataset(inds, vals)
end
function constrain(x::AbstractUncertainIndexValueDataset, resampling::ConstrainedIndexValueResampling{2, 1})
inds = constrain(x.indices, resampling[1, 1])
vals = constrain(x.values, resampling[1, 2])
UncertainIndexValueDataset(inds, vals)
end
function constrain(x::AbstractUncertainIndexValueDataset,
constraints_inds::CONSTRAINT_TYPES,
constraints_vals::CONSTRAINT_TYPES)
inds = constrain(x.indices, constraints_inds)
vals = constrain(x.values, constraints_vals)
UncertainIndexValueDataset(inds, vals)
end
export constrain | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 18079 | import KernelDensity: UnivariateKDE
import ..UncertainValues: UncertainScalarKDE, UncertainScalarPopulation
"""
resample(x::AbstractUncertainIndexValueDataset, resampling::BinnedMeanWeightedResampling)
Transform index-irregularly spaced uncertain data onto a regular index-grid and
take the mean of the values in each bin. Resamples the data points in `x`
according to `resampling.weights`.
Distributions in each index bin are obtained by resampling all index values in `x`
`resampling.n` times, in proportions obeying `resampling.weights` and mapping those
index draws to the bins. Simultaneously, the values in `x` are resampled and placed
in the corresponding bins. Finally, the mean in each bin is calculated. In total,
`length(x)*resampling.n` draws are distributed among the bins to form the final mean
estimate.
Returns a vector of mean values, one for each bin.
Assumes that the points in `x` are independent.
## Example
```julia
vars = (1, 2)
npts, tstep = 100, 10
d_xind = Uniform(2.5, 15.5)
d_yind = Uniform(2.5, 15.5)
d_xval = Uniform(0.01, 0.2)
d_yval = Uniform(0.01, 0.2)
X, Y = example_uncertain_indexvalue_datasets(ar1_unidir(c_xy = 0.5), npts, vars, tstep = tstep,
d_xind = d_xind, d_yind = d_yind,
d_xval = d_xval, d_yval = d_yval);
n_draws = 10000 # draws per uncertain value
time_grid = 0:50:1000
wts = Weights(rand(length(X))) # some random weights
# Resample both X and Y so that they are both at the same time indices,
# and take the mean of each bin.
resampled_dataset = resample(X, BinnedMeanWeightedResampling(time_grid, wts, n_draws))
resampled_dataset = resample(Y, BinnedMeanWeightedResampling(time_grid, wts, n_draws))
```
"""
function resample(x::AbstractUncertainIndexValueDataset, resampling::BinnedMeanWeightedResampling)
# Represent entire dataset as a weighted population and sample from that
pop_inds = UncertainValue(x.indices.indices, resampling.weights)
pop_vals = UncertainValue(x.values.values, resampling.weights)
# Pre-allocate an array representing each bin, and an array keeping track
# of the values falling in that bin.
n_bins = length(resampling.left_bin_edges) - 1
bin_sums = fill(0.0, n_bins)
bin_sums_n_entries = fill(0.0, n_bins)
# Pre-allocate some arrays into which we resample the values of the
# index and value populations.
idxs = fill(NaN, resampling.n)
vals = fill(NaN, resampling.n)
# Used to compute the index of the bin into which a draw belongs
mini = minimum(resampling.left_bin_edges)
s = step(resampling.left_bin_edges)
for (j, (pop_idx, pop_val)) in enumerate(zip(pop_inds, pop_vals))
# Sample the j-th idx-value pair `resampling.n` times and
# accumulate the values in the correct bin sum. Also keep
# track of how many values there are in each bin.
resample!(idxs, pop_idx)
resample!(vals, pop_val)
@inbounds for i = 1:resampling.n
arr_idx = ceil(Int, (idxs[i] - mini) / s)
# Because the indices of `x` are uncertain values
# with potentially infinite support, we need to check
# that the value falls inside the grid
if 0 < arr_idx <= n_bins
bin_sums[arr_idx] += vals[i]
bin_sums_n_entries[arr_idx] += 1.0
end
end
end
# Return bin averages (entries with 0s are represented as NaNs)
bin_avgs = bin_sums ./ bin_sums_n_entries
bin_avgs[isapprox.(bin_avgs, 0.0)] .= NaN
return bin_avgs
end
"""
resample(x::AbstractUncertainIndexValueDataset, resampling::BinnedMeanResampling)
Transform index-irregularly spaced uncertain data onto a regular index-grid and
take the mean of the values in each bin.
Distributions in each index bin are obtained by resampling all index values in `x`
`resampling.n` times, and mapping those index draws to the bins. Simultaneously, the
values in `x` are resampled and placed in the corresponding bins. Finally, the mean
in each bin is calculated. In total, `length(x)*resampling.n` draws are distributed
among the bins to form the final mean estimate.
Returns a vector of mean values, one for each bin.
Assumes that the points in `x` are independent.
## Example
```julia
vars = (1, 2)
npts, tstep = 100, 10
d_xind = Uniform(2.5, 15.5)
d_yind = Uniform(2.5, 15.5)
d_xval = Uniform(0.01, 0.2)
d_yval = Uniform(0.01, 0.2)
X, Y = example_uncertain_indexvalue_datasets(ar1_unidir(c_xy = 0.5), npts, vars, tstep = tstep,
d_xind = d_xind, d_yind = d_yind,
d_xval = d_xval, d_yval = d_yval);
n_draws = 10000 # draws per uncertain value
time_grid = 0:50:1000
# Resample both X and Y so that they are both at the same time indices,
# and take the mean of each bin.
resampled_dataset = resample(X, BinnedMeanResampling(time_grid, n_draws))
resampled_dataset = resample(Y, BinnedMeanResampling(time_grid, n_draws))
```
"""
function resample(x::AbstractUncertainIndexValueDataset, resampling::BinnedMeanResampling)
# Constrain
# Represent entire dataset as an equally-weighted population and sample from that
pop_inds = UncertainValue(x.indices.indices, [1 for x in x.indices])
pop_vals = UncertainValue(x.values.values, [1 for x in x.values])
# Pre-allocate an array representing each bin, and an array keeping track
# of the values falling in that bin.
n_bins = length(resampling.left_bin_edges) - 1
bin_sums = fill(0.0, n_bins)
bin_sums_n_entries = fill(0.0, n_bins)
# Pre-allocate some arrays into which we resample the values of the
# index and value populations.
idxs = fill(NaN, resampling.n)
vals = fill(NaN, resampling.n)
# Used to compute the index of the bin into which a draw belongs
mini = minimum(resampling.left_bin_edges)
s = step(resampling.left_bin_edges)
for (j, (pop_idx, pop_val)) in enumerate(zip(pop_inds, pop_vals))
# Sample the j-th idx-value pair `resampling.n` times and
# accumulate the values in the correct bin sum. Also keep
# track of how many values there are in each bin.
resample!(idxs, pop_idx)
resample!(vals, pop_val)
@inbounds for i = 1:resampling.n
arr_idx = ceil(Int, (idxs[i] - mini) / s)
# Because the indices of `x` are uncertain values
# with potentially infinite support, we need to check
# that the value falls inside the grid
if 0 < arr_idx <= n_bins
bin_sums[arr_idx] += vals[i]
bin_sums_n_entries[arr_idx] += 1.0
end
end
end
# Return bin averages (entries with 0s are represented as NaNs)
bin_avgs = bin_sums ./ bin_sums_n_entries
bin_avgs[isapprox.(bin_avgs, 0.0)] .= NaN
return bin_avgs
end
"""
resample(x::AbstractUncertainIndexValueDataset, resampling::BinnedResampling{UncertainScalarKDE};
bin_repr::Symbol = :kde, nan_threshold = 0.0)
Transform index-irregularly spaced uncertain data onto a regular index-grid.
Distributions in each index bin are obtained by resampling all index values
in `x` `resampling.n` times, and mapping those index draws to the bins.
Simultaneously, the values in `x` are resampled and placed in the corresponding
bins. In total, `length(x)*resampling.n` draws are distributed among the bins to form
the final KDEs.
Returns an `UncertainIndexValueDataset`. The distribution of values in the `i`-th bin
is approximated by a kernel density estimate (KDE) over the draws falling in the
`i`-th bin.
Assumes that the points in `x` are independent.
## Example
```julia
vars = (1, 2)
npts, tstep = 100, 10
d_xind = Uniform(2.5, 15.5)
d_yind = Uniform(2.5, 15.5)
d_xval = Uniform(0.01, 0.2)
d_yval = Uniform(0.01, 0.2)
X, Y = example_uncertain_indexvalue_datasets(ar1_unidir(c_xy = 0.5), npts, vars, tstep = tstep,
d_xind = d_xind, d_yind = d_yind,
d_xval = d_xval, d_yval = d_yval);
n_draws = 10000 # draws per uncertain value
time_grid = 0:50:1000
resampling = BinnedResampling(time_grid, n_draws)
# Resample both X and Y so that they are both at the same time indices.
resampled_dataset = resample(X, resampling)
resampled_dataset = resample(Y, resampling)
```
"""
function resample(x::AbstractUncertainIndexValueDataset,
resampling::BinnedResampling{UncertainScalarKDE};
nan_threshold = 0.0)
# Pre-allocate some arrays into which we resample the values of the
# index and value populations.
idxs = fill(NaN, resampling.n)
vals = fill(NaN, resampling.n)
perminds = zeros(Int, resampling.n)
sorted_idxs = fill(NaN, resampling.n)
sorted_vals = fill(NaN, resampling.n)
bin_edges = resampling.left_bin_edges
n_bins = length(bin_edges) - 1
# Used to compute the index of the bin into which a draw belongs
mini = minimum(resampling.left_bin_edges)
s = step(resampling.left_bin_edges)
# Empty vectors that will contain draws.
binvecs = [Vector{Float64}(undef, 0) for i = 1:n_bins]
#[sizehint!(bv, resampling.n*n_bins) for bv in binvecs]
@inbounds for (j, (idx, val)) in enumerate(zip(x.indices, x.values))
# Resample the j-th index and j-th value
resample!(idxs, idx)
resample!(vals, val)
# Get the vector that sorts the index vector, and use that to
# sort the draws.
sortperm!(perminds, idxs)
sorted_idxs .= idxs[perminds]
sorted_vals .= vals[perminds]
# The vectors above are sorted sorted, so this can be done faster
for i in 1:n_bins
inbin = findall(bin_edges[i] .<= sorted_idxs .<= bin_edges[i+1])
if length(inbin) > nan_threshold
append!(binvecs[i], sorted_vals[inbin])
end
end
end
# Estimate distributions in each bin by kernel density estimation
estimated_value_dists = Vector{Union{CertainValue, UncertainScalarKDE}}(undef, n_bins)
for i in 1:n_bins
if length(binvecs[i]) > nan_threshold
estimated_value_dists[i] = UncertainValue(binvecs[i])
else
estimated_value_dists[i] = UncertainValue(NaN)
end
end
new_inds = UncertainIndexDataset(UncertainValue.(bin_edges[1:end-1] .+ step(bin_edges)/2))
new_vals = UncertainValueDataset(estimated_value_dists)
UncertainIndexValueDataset(new_inds, new_vals)
end
function resample(x::AbstractUncertainIndexValueDataset,
resampling::BinnedResampling{UncertainScalarPopulation};
nan_threshold = 0.0)
# Pre-allocate some arrays into which we resample the values of the
# index and value populations.
idxs = fill(NaN, resampling.n)
vals = fill(NaN, resampling.n)
perminds = zeros(Int, resampling.n)
sorted_idxs = fill(NaN, resampling.n)
sorted_vals = fill(NaN, resampling.n)
bin_edges = resampling.left_bin_edges
n_bins = length(bin_edges) - 1
# Used to compute the index of the bin into which a draw belongs
mini = minimum(resampling.left_bin_edges)
s = step(resampling.left_bin_edges)
# Empty vectors that will contain draws.
binvecs = [Vector{Float64}(undef, 0) for i = 1:n_bins]
#[sizehint!(bv, resampling.n*n_bins) for bv in binvecs]
@inbounds for (j, (idx, val)) in enumerate(zip(x.indices, x.values))
# Resample the j-th index and j-th value
resample!(idxs, idx)
resample!(vals, val)
# Get the vector that sorts the index vector, and use that to
# sort the draws.
sortperm!(perminds, idxs)
sorted_idxs .= idxs[perminds]
sorted_vals .= vals[perminds]
# The vectors above are sorted sorted, so this can be done faster
for i in 1:n_bins
inbin = findall(bin_edges[i] .<= sorted_idxs .<= bin_edges[i+1])
if length(inbin) > nan_threshold
append!(binvecs[i], sorted_vals[inbin])
end
end
end
# Estimate distributions in each bin by kernel density estimation
estimated_value_dists = Vector{Union{CertainValue, UncertainScalarPopulation}}(undef, n_bins)
for i in 1:n_bins
if length(binvecs[i]) > nan_threshold
L = length(binvecs[i])
estimated_value_dists[i] = UncertainValue(binvecs[i], repeat([1 / L], L))
else
estimated_value_dists[i] = UncertainValue(NaN)
end
end
new_inds = UncertainIndexDataset(UncertainValue.(bin_edges[1:end-1] .+ step(bin_edges)/2))
new_vals = UncertainValueDataset(estimated_value_dists)
UncertainIndexValueDataset(new_inds, new_vals)
end
function resample(x::AbstractUncertainIndexValueDataset,
resampling::BinnedResampling{RawValues};
nan_threshold = 0.0)
# Pre-allocate some arrays into which we resample the values of the
# index and value populations.
idxs = fill(NaN, resampling.n)
vals = fill(NaN, resampling.n)
perminds = zeros(Int, resampling.n)
sorted_idxs = fill(NaN, resampling.n)
sorted_vals = fill(NaN, resampling.n)
bin_edges = resampling.left_bin_edges
n_bins = length(bin_edges) - 1
# Used to compute the index of the bin into which a draw belongs
mini = minimum(resampling.left_bin_edges)
s = step(resampling.left_bin_edges)
# Empty vectors that will contain draws.
binvecs = [Vector{Float64}(undef, 0) for i = 1:n_bins]
#[sizehint!(bv, resampling.n*n_bins) for bv in binvecs]
@inbounds for (j, (idx, val)) in enumerate(zip(x.indices, x.values))
# Resample the j-th index and j-th value
resample!(idxs, idx)
resample!(vals, val)
# Get the vector that sorts the index vector, and use that to
# sort the draws.
sortperm!(perminds, idxs)
sorted_idxs .= idxs[perminds]
sorted_vals .= vals[perminds]
# The vectors above are sorted sorted, so this can be done faster
for i in 1:n_bins
inbin = findall(bin_edges[i] .<= sorted_idxs .<= bin_edges[i+1])
if length(inbin) > nan_threshold
append!(binvecs[i], sorted_vals[inbin])
end
end
end
bin_centers = bin_edges[1:end-1] .+ step(bin_edges)/2
return bin_centers, binvecs
end
"""
resample(x::AbstractUncertainIndexValueDataset, resampling::BinnedWeightedResampling;
nan_threshold = 0.0)
Transform index-irregularly spaced uncertain data onto a regular index-grid.
Distributions in each index bin are obtained by resampling all index values
in `x` `resampling.n` times, sampled according to probabilities `resampling.weights`,
and mapping those index draws to the bins. Simultaneously, the values in `x` are
resampled and placed in the corresponding bins. In total, `length(x)*resampling.n` draws
are distributed among the bins to form the final KDEs.
Returns an `UncertainIndexValueDataset`. The distribution of values in the `i`-th bin
is approximated by a kernel density estimate (KDE) over the draws falling in the
`i`-th bin.
Assumes that the points in `x` are independent.
## Example
```julia
vars = (1, 2)
npts, tstep = 100, 10
d_xind = Uniform(2.5, 15.5)
d_yind = Uniform(2.5, 15.5)
d_xval = Uniform(0.01, 0.2)
d_yval = Uniform(0.01, 0.2)
X, Y = example_uncertain_indexvalue_datasets(ar1_unidir(c_xy = 0.5), npts, vars, tstep = tstep,
d_xind = d_xind, d_yind = d_yind,
d_xval = d_xval, d_yval = d_yval);
left_bin_edges = 0:50:1000
n_draws = 10000
wts = Weights(rand(length(X)))
resampling = BinnedWeightedResampling(left_bin_edges, wts, 10)
resampled_dataset = resample(X, resampling)
```
"""
function resample(x::AbstractUncertainIndexValueDataset, resampling::BinnedWeightedResampling;
nan_threshold = 0.0)
pop_inds = UncertainValue(x.indices.indices, resampling.weights)
pop_vals = UncertainValue(x.values.values, resampling.weights)
# Pre-allocate some arrays into which we resample the values of the
# index and value populations.
idxs = fill(NaN, resampling.n)
vals = fill(NaN, resampling.n)
perminds = zeros(Int, resampling.n)
sorted_idxs = fill(NaN, resampling.n)
sorted_vals = fill(NaN, resampling.n)
bin_edges = resampling.left_bin_edges
n_bins = length(bin_edges) - 1
# Used to compute the index of the bin into which a draw belongs
mini = minimum(resampling.left_bin_edges)
s = step(resampling.left_bin_edges)
# Empty vectors that will contain draws.
binvecs = [Vector{Float64}(undef, 0) for i = 1:n_bins]
#[sizehint!(bv, resampling.n*n_bins) for bv in binvecs]
@inbounds for (j, (idx, val)) in enumerate(zip(pop_inds, pop_vals))
# Resample the j-th index and j-th value
resample!(idxs, idx)
resample!(vals, val)
# Get the vector that sorts the index vector, and use that to
# sort the draws.
sortperm!(perminds, idxs)
sorted_idxs .= idxs[perminds]
sorted_vals .= vals[perminds]
# The vectors above are sorted sorted, so this can be done faster
for i in 1:n_bins
inbin = findall(bin_edges[i] .<= sorted_idxs .<= bin_edges[i+1])
if length(inbin) > nan_threshold
append!(binvecs[i], sorted_vals[inbin])
end
end
end
# Estimate distributions in each bin by kernel density estimation
estimated_value_dists = Vector{AbstractUncertainValue}(undef, n_bins)
for i in 1:n_bins
if length(binvecs[i]) > nan_threshold
estimated_value_dists[i] = UncertainValue(binvecs[i])
else
estimated_value_dists[i] = UncertainValue(NaN)
end
end
new_inds = UncertainIndexDataset(UncertainValue.(bin_edges[1:end-1] .+ step(bin_edges)/2))
new_vals = UncertainValueDataset(estimated_value_dists)
UncertainIndexValueDataset(new_inds, new_vals)
end | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 3525 |
"""
resample(x::AbstractUncertainValueDataset, resampling::ConstrainedValueResampling)
Resample `x` by first constraining the supports of the distributions/populations
furnishing the uncertain values, then drawing samples from the limited supports.
Sampling is done without assuming any sequential dependence between the
elements of `x`, such no that no dependence is introduced in the draws beyond what
is potentially already present in the collection of values.
## Example
```julia
# Some example data
N = 50
x_uncertain = [UncertainValue(Normal, x, rand(Uniform(0.1, 0.8))) for x in rand(N)]
y_uncertain = [UncertainValue(Normal, y, rand(Uniform(0.1, 0.8))) for y in rand(N)]
x = UncertainValueDataset(x_uncertain)
y = UncertainValueDataset(y_uncertain)
# Resample with different constraints
resample(x, ConstrainedValueResampling(TruncateStd(1.5))
resample(y, ConstrainedValueResampling(TruncateStd(0.5))
resample(y, ConstrainedValueResampling(TruncateQuantiles(0.2, 0.8))
```
"""
function resample(x::AbstractUncertainValueDataset, resampling::ConstrainedValueResampling{1})
constrained_x = constrain(x, resampling.constraints[1])
resample(constrained_x, resampling.n)
end
"""
resample(x::AbstractUncertainIndexValueDataset, resampling::ConstrainedIndexValueResampling)
Resample `x` by first constraining the supports of the distributions/populations
furnishing the uncertain indices and values, then drawing samples from the limited supports.
Sampling is done without assuming any sequential dependence between the
elements of `x`, such no that no dependence is introduced in the draws beyond what
is potentially already present in the collection of values.
## Example
```julia
# Some example data
N = 50
x_uncertain = [UncertainValue(Normal, x, rand(Uniform(0.1, 0.8))) for x in rand(N)]
y_uncertain = [UncertainValue(Normal, y, rand(Uniform(0.1, 0.8))) for y in rand(N)]
x = UncertainValueDataset(x_uncertain)
y = UncertainValueDataset(y_uncertain)
time_uncertain = [UncertainValue(Normal, i, 1) for i = 1:length(x)];
time_certain = [CertainValue(i) for i = 1:length(x)];
timeinds_x = UncertainIndexDataset(time_uncertain)
timeinds_y = UncertainIndexDataset(time_certain)
X = UncertainIndexValueDataset(timeinds_x, x)
Y = UncertainIndexValueDataset(timeinds_y, y);
###########################
# Define resampling scheme
###########################
# Truncate each of the indices for x at 0.8 their standard deviation around the mean
constraints_x_inds = TruncateStd(0.8)
# Truncate each of the indices for y at 1.5 their standard deviation around the mean
constraints_y_inds = TruncateStd(1.5)
# Truncate each of the values of x at the 20th percentile range
constraints_x_vals = [TruncateQuantiles(0.4, 0.6) for i = 1:N];
# Truncate each of the values of x at the 80th percentile range
constraints_y_vals = [TruncateQuantiles(0.1, 0.9) for i = 1:N];
cs_x = (constraints_x_inds, constraints_x_vals)
cs_y = (constraints_y_inds, constraints_y_vals)
###########
# Resample
###########
resample(X, ConstrainedIndexValueResampling(cs_x))
resample(Y, ConstrainedIndexValueResampling(cs_y))
```
"""
function resample(x::AbstractUncertainIndexValueDataset, resampling::ConstrainedIndexValueResampling{2, 1})
constrained_inds = constrain(x.indices, resampling.constraints[1][1])
constrained_vals = constrain(x.values, resampling.constraints[1][2])
d = UncertainIndexValueDataset(constrained_inds, constrained_vals)
resample(d, resampling.n)
end
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 2365 | import ..InterpolationAndGrids: interpolate_and_bin
"""
resample(udata::AbstractUncertainIndexValueDataset, regularization_scheme::InterpolateAndBin{Linear})
Draw a single realisation of `udata` and interpolate-and-bin the data according to the
provided regularization scheme. Assumes points in `udata` are independent and sorts the draw
according to the index values before interpolating. See also [`InterpolateAndBin`](@ref).
## Example
```julia
npts = 50
y = rand(npts)
N = Normal(0, 1)
for t in 3:npts
y[t,1] = 0.7*y[t-1,1] - 0.35*y[t-2,1] + rand(N)
end
# Assume data are unevenly spaced
time = sample(1.0:npts*5, npts, ordered = true, replace = false)
# Assign some uncertainties to both time indices and values and gather
# in an UncertainIndexValueDataset
utime = UncertainValue.(Normal.(time, 2))
uy = UncertainValue.(Normal.(y, 0.1))
udata = UncertainIndexValueDataset(utime, uy)
# Interpolation-and-binning scheme. First interpolate to a very fine grid,
# then gather the points falling in each of the coarser bins and summarise
# each bin using the mean of the points in each bin.
left_bin_edges = 0:10:npts*5
r = InterpolateAndBin(mean, left_bin_edges, Linear(), 0:0.1:1000, Flat(OnGrid()))
# The binned time axis:
time_binned = left_bin_edges[1:end-1] .+ step(left_bin_edges)/2
# Get a set corresponding resampled (interpolated+binned) values
y_binned = resample(udata, r)
# Plot some interpolated+binned draws
time_binned = left_bin_edges[1:end-1] .+ step(left_bin_edges)/2
p = plot(xlabel = "time", ylabel = "value")
for i = 1:100
plot!(time_binned, resample(udata, r), lw = 0.3, α = 0.2, ms = 0.1, c = :red,
marker = stroke(0.1), label = "")
end
plot!(time, y, c = :black, lw = 1, ms = 2, marker = stroke(2.0, :black), label = "")
plot!(udata, c = :black, lw = 1, ms = 2, marker = stroke(0.1, :black), [0.05, 0.95], [0.05, 0.95])
vline!(left_bin_edges, c = :black, α = 0.3, lw = 0.3, label = "")
```
"""
function resample(udata::AbstractUncertainIndexValueDataset, regularization_scheme::InterpolateAndBin{Linear})
inds, vals = resample(udata)
sortidxs = sortperm(inds)
r = regularization_scheme
vals_binned = interpolate_and_bin(r.f, r.left_bin_edges, inds[sortidxs], vals[sortidxs],
r.intp, r.intp_grid, r.extrapolation_bc)
return vals_binned
end
export resample | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 2898 |
"""
resample(x::AbstractUncertainIndexValueDataset, resampling::SequentialResampling)
Resample `x` according to a sequential resampling constraint.
This way of resampling introduces some serial dependence between the elements of `x` -
*beyond* what might already be present in the dataset. This is because imposing a
sequential constraint (e.g. `StrictlyIncreasing`) to the `i`-th value of the dataset
imposes constraints on what is possible to sample from the `i+1`th value.
## Example
```julia
# Some example data
N = 50
x_uncertain = [UncertainValue(Normal, x, rand(Uniform(0.1, 0.8))) for x in rand(N)]
y_uncertain = [UncertainValue(Normal, y, rand(Uniform(0.1, 0.8))) for y in rand(N)]
x = UncertainValueDataset(x_uncertain)
y = UncertainValueDataset(y_uncertain)
time_uncertain = [UncertainValue(Normal, i, 1) for i = 1:length(x)];
time_certain = [CertainValue(i) for i = 1:length(x)];
timeinds_x = UncertainIndexDataset(time_uncertain)
timeinds_y = UncertainIndexDataset(time_certain)
X = UncertainIndexValueDataset(timeinds_x, x)
Y = UncertainIndexValueDataset(timeinds_y, y);
# Resample
seq_resampling = SequentialResampling(StrictlyIncreasing())
resample(X, seq_resampling)
```
"""
function resample(x::AbstractUncertainIndexValueDataset,
resampling::SequentialResampling{S}) where {S}
resample(x, resampling.sequential_constraint)
end
"""
resample(x::AbstractUncertainIndexValueDataset, resampling::SequentialInterpolatedResampling)
Resample `x` according to a sequential resampling constraint, then interpolate the draw(s) to
some specified grid.
This way of resampling introduces some serial dependence between the elements of `x` -
*beyond* what might already be present in the dataset. This is because imposing a
sequential constraint (e.g. `StrictlyIncreasing`) to the `i`-th value of the dataset
imposes constraints on what is possible to sample from the `i+1`th value.
## Example
```julia
# Some example data
N = 50
x_uncertain = [UncertainValue(Normal, x, rand(Uniform(0.1, 0.8))) for x in rand(N)]
y_uncertain = [UncertainValue(Normal, y, rand(Uniform(0.1, 0.8))) for y in rand(N)]
x = UncertainValueDataset(x_uncertain)
y = UncertainValueDataset(y_uncertain)
time_uncertain = [UncertainValue(Normal, i, 1) for i = 1:length(x)];
time_certain = [CertainValue(i) for i = 1:length(x)];
timeinds_x = UncertainIndexDataset(time_uncertain)
timeinds_y = UncertainIndexDataset(time_certain)
X = UncertainIndexValueDataset(timeinds_x, x)
Y = UncertainIndexValueDataset(timeinds_y, y);
# Resample
seqintp_resampling = SequentialInterpolatedResampling(StrictlyIncreasing(), RegularGrid(0:2:N))
resample(X, seqintp_resampling)
```
"""
function resample(x::AbstractUncertainIndexValueDataset,
resampling::SequentialInterpolatedResampling{S, G}) where {S, G}
resample(x, resampling.sequential_constraint, resampling.grid)
end
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1901 |
import ..UncertainDatasets:
UVAL_COLLECTION_TYPES
import ..SamplingConstraints:
SamplingConstraint
import ..UVAL_COLLECTION_TYPES
"""
resample_elwise(uvd::UVAL_COLLECTION_TYPES)
Resample each element in `uvals` once. The i-th entry in the returned
vector is a `1`-element vector containing one unique draw of `uvals[i]`.
"""
function resample_elwise(uvd::UVAL_COLLECTION_TYPES)
[resample(uvd[i], 1) for i = 1:length(uvd)]
end
"""
resample_elwise(uvd::UVAL_COLLECTION_TYPES, n::Int)
Resample each element in `uvals` `n` times. The i-th entry in the returned
vector is a `n`-element vector consisting of `n` unique draws of `uvals[i]`.
"""
function resample_elwise(uvd::UVAL_COLLECTION_TYPES, n::Int)
[resample(uvd[i], n) for i = 1:length(uvd)]
end
"""
resample_elwise(uvd::UVAL_COLLECTION_TYPES,
constraint::Union{SamplingConstraint, Vector{SamplingConstraint}},
n::Int)
Resample each element in `uvals` `n` times. The i-th entry in the returned
vector is a `n`-element vector consisting of `n` unique draws of `uvals[i]`, drawn
after first truncating the support of `uvals[i]` according to the provided `constraint`(s).
"""
resample_elwise(uvd::UVAL_COLLECTION_TYPES,
constraint::Union{SamplingConstraint, Vector{SamplingConstraint}},
n::Int)
function resample_elwise(uvd::UVAL_COLLECTION_TYPES,
constraint::SamplingConstraint, n::Int)
[resample(uvd[i], constraint, n) for i = 1:length(uvd)]
end
function resample_elwise(uvd::UVAL_COLLECTION_TYPES,
constraint::Vector{<:SamplingConstraint},
n::Int)
Lc, Luv = length(constraint), length(uvd)
if Lc != Luv
error("""The number of constraints must match the number of uncertain values in the dataset. Got $Lc constraint but needed $Luv.""")
end
[resample(uvd[i], constraint[i], n) for i = 1:length(uvd)]
end | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 7590 | import ..UncertainDatasets.UncertainIndexDataset
import ..UncertainDatasets.AbstractUncertainIndexDataset
##############################
# Resample the entire dataset
##############################
"""
resample(uvd::AbstractUncertainIndexDataset)
Draw a realisation of an uncertain index dataset according to the distributions
of the uncertain values comprising it.
"""
function resample(uvd::DT) where {DT <: AbstractUncertainIndexDataset}
L = length(uvd)
[resample(uvd.indices[i]) for i in 1:L]
end
"""
resample(uv::AbstractUncertainIndexDataset, constraint::Vector{<:SamplingConstraint})
Draw a realisation of an uncertain index dataset according to the uncertain values
comprising it, while constraining the distributions furnishing the values in the dataset
according the provided sampling constraints.
"""
function resample(uv::DT, constraint::Vector{<:SamplingConstraint}) where {
DT <: AbstractUncertainIndexDataset}
[resample(uv.indices[i], constraint[i]) for i in 1:length(uv)]
end
function resample(uv::DT, constraint::SamplingConstraint) where {
DT <: AbstractUncertainIndexDataset}
[resample(uv.indices[i], constraint) for i in 1:length(uv)]
end
function resample(uv::DT, constraint::SamplingConstraint, n::Int) where {
DT <: AbstractUncertainIndexDataset}
[[resample(uv.indices[i], constraint) for i in 1:length(uv)] for k = 1:n]
end
function resample(uv::DT, constraint::Vector{<:SamplingConstraint}, n::Int) where {
DT <: AbstractUncertainIndexDataset}
[[resample(uv.indices[i], constraint[i]) for i in 1:length(uv)] for k = 1:n]
end
##############################
# Resample the entire dataset
##############################
"""
resample_elwise(uvd::UncertainIndexDataset, n::Int)
Resample each element in `uvals` `n` times. The i-th entry in the returned
vector is a `n`-element vector consisting of `n` unique draws of `uvals[i]`.
"""
function resample_elwise(uvd::DT, n::Int) where {DT <: AbstractUncertainIndexDataset}
[resample(uvd[i], n) for i = 1:length(uvd)]
end
"""
resample(uvd::UncertainIndexDataset, n::Int)
Draw `n` realisations of an `UncertainIndexDataset` according to the
distributions of the `UncertainValue`s comprising it.
"""
function resample(uvd::DT, n::Int) where {DT <: AbstractUncertainIndexDataset}
L = length(uvd)
[[resample(uvd.indices[i]) for i in 1:L] for k in 1:n]
end
# ##########################################################################
# # Draw realisations of the uncertain dataset according to the distributions
# # of the uncertain values comprising it, according to sampling constraints
# ##########################################################################
# """
# resample(uv::UncertainIndexDataset, constraint::NoConstraint) -> Vector{Float64}
# Draw a realisation of an `UncertainIndexDataset` where each uncertain value
# is truncated according to `constraint`. In the case of `NoConstraint`,
# no trucation is performed and the whole distribution is sampled.
# """
# function resample(uv::DT, constraint::NoConstraint) where {
# DT <: AbstractUncertainIndexDataset}
# L = length(uv)
# [resample(uv.indices[i], constraint) for i in 1:L]
# end
# """
# resample(uv::UncertainIndexDataset, n::NoConstraint,
# n::Int) -> Vector{Vector{Float64}}
# Draw `n` realisation of an `UncertainIndexDataset` where each uncertain value
# is truncated according to `constraint`. In the case of `NoConstraint`,
# no trucation is performed and the whole distribution is sampled.
# """
# function resample(uv::DT, constraint::NoConstraint, n::Int) where {
# DT <: AbstractUncertainIndexDataset}
# L = length(uv)
# [[resample(uv.indices[i], constraint) for i in 1:L] for k = 1:n]
# end
# """
# resample(uv::UncertainIndexDataset,
# constraint::TruncateLowerQuantile) -> Vector{Float64}
# Draw a realisation of an `UncertainIndexDataset` where each uncertain value
# is truncated according to `constraint`. In the case of `TruncateLowerQuantile`,
# the supports of the distributions are truncated below at some quantile.
# """
# function resample(uv::DT, constraint::TruncateLowerQuantile) where {
# DT <: AbstractUncertainIndexDataset}
# L = length(uv)
# [resample(uv.indices[i], constraint) for i in 1:L]
# end
# """
# resample(uv::UncertainIndexDataset, constraint::TruncateLowerQuantile,
# n::Int) -> Vector{Vector{Float64}}
# Draw `n` realisation of an `UncertainIndexDataset` where each uncertain value
# is truncated according to `constraint`. In the case of `TruncateLowerQuantile`,
# the supports of the distributions are truncated below at some quantile.
# """
# function resample(uv::DT, constraint::TruncateLowerQuantile, n::Int) where {
# DT <: AbstractUncertainIndexDataset}
# L = length(uv)
# [[resample(uv.indices[i], constraint) for i in 1:L] for k = 1:n]
# end
# """
# resample(uv::UncertainIndexDataset,
# constraint::TruncateUpperQuantile) -> Vector{Float64}
# Draw a realisation of an `UncertainIndexDataset` where each uncertain value
# is truncated according to `constraint`. In the case of `TruncateLowerQuantile`,
# the supports of the distributions are truncated above at some quantile.
# """
# function resample(uv::DT, constraint::TruncateUpperQuantile) where {
# DT <: AbstractUncertainIndexDataset}
# L = length(uv)
# [resample(uv.indices[i], constraint) for i in 1:L]
# end
# """
# resample(uv::UncertainIndexDataset, constraint::TruncateUpperQuantile,
# n::Int) -> Vector{Vector{Float64}}
# Draw `n` realisation of an `UncertainIndexDataset` where each uncertain value
# is truncated according to `constraint`. In the case of `TruncateUpperQuantile`,
# the supports of the distributions are truncated above at some quantile.
# """
# function resample(uv::DT, constraint::TruncateUpperQuantile, n::Int) where {
# DT <: AbstractUncertainIndexDataset}
# L = length(uv)
# [[resample(uv.indices[i], constraint) for i in 1:L] for k = 1:n]
# end
# """
# resample(uv::UncertainIndexDataset,
# constraint::TruncateQuantiles) -> Vector{Float64}
# Draw a realisation of an `UncertainIndexDataset` where each uncertain value
# is truncated according to `constraint`. In the case of `TruncateLowerQuantile`,
# the supports of the distributions are truncated at some quantile range.
# """
# function resample(uv::UncertainIndexDataset, constraint::TruncateQuantiles) where {
# DT <: AbstractUncertainIndexDataset}
# L = length(uv)
# [resample(uv.indices[i], constraint) for i in 1:L]
# end
# """
# resample(uv::UncertainIndexDataset, n::Int,
# constraint::TruncateUpperQuantile) -> Vector{Vector{Float64}}
# Draw `n` realisation of an `UncertainIndexDataset` where each uncertain value
# is truncated according to `constraint`. In the case of `TruncateUpperQuantile`,
# the supports of the distributions are truncated above at some quantile.
# """
# function resample(uv::DT, constraint::TruncateQuantiles, n::Int) where {
# DT <: AbstractUncertainIndexDataset}
# L = length(uv)
# [[resample(uv.indices[i], constraint) for i in 1:L] for k = 1:n]
# end
# """
# resample_elwise(uvd::UncertainIndexDataset, constraint::SamplingConstraint, n::Int)
# Resample each element in `uvals` `n` times. The i-th entry in the returned
# vector is a `n`-element vector consisting of `n` unique draws of `uvals[i]`, drawn
# after first truncating the support of `uvals[i]` according to the provided `constraint`.
# """
# function resample_elwise(uvd::DT, constraint::SamplingConstraint, n::Int) where {
# DT <: AbstractUncertainIndexDataset}
# [resample(uvd[i], constraint, n) for i = 1:length(uvd)]
# end | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 12555 | import ..UncertainDatasets: UncertainIndexValueDataset
import ..SamplingConstraints: SamplingConstraint
# Some summary documentaiton for the online documentation
"""
resample(udata::UncertainIndexValueDataset,
constraint::Union{SamplingConstraint, Vector{SamplingConstraint}}) -> Tuple{Vector{Float64}, Vector{Float64}}
Resample an uncertain index-value dataset in an element-wise manner.
Enforces the provided sampling `constraint` to all uncertain values in the dataset, both
indices and data values.
If a single constraint is provided, then that constraint will be applied to all values. If a
vector of constraints (as many as there are values) is provided, then the constraints are
applied element-wise to both the indices and the data values.
"""
resample(udata::UncertainIndexValueDataset,
constraint::Union{SamplingConstraint, Vector{SamplingConstraint}})
"""
resample(udata::UncertainIndexValueDataset,
constraint::Union{SamplingConstraint, Vector{SamplingConstraint}},
n::Int) -> Tuple{Vector{Float64}, Vector{Float64}}
Resample `n` realizations of an uncertain index-value dataset in an element-wise manner.
Enforces the provided sampling `constraint` to all uncertain values in the dataset, both
indices and data values.
If a single constraint is provided, that constraint will be applied to all values. If a
vector of constraints (as many as there are values) is provided, then the constraints are
applied element-wise to both the indices and the data values.
"""
resample(udata::UncertainIndexValueDataset,
constraint::Union{SamplingConstraint, Vector{SamplingConstraint}},
n::Int)
"""
resample(udata::UncertainIndexValueDataset,
constraint_idxs::Union{SamplingConstraint, Vector{SamplingConstraint}},
constraint_vals::Union{SamplingConstraint, Vector{SamplingConstraint}}) -> Tuple{Vector{Float64}, Vector{Float64}}
Resample an uncertain index-value dataset in an element-wise manner.
Enforces separate sampling constraints to the indices and to the data values.
If a single constraint is provided, that constraint will be applied to all values. If a
vector of constraints (as many as there are values) is provided, then the constraints are
applied element-wise.
"""
resample(udata::UncertainIndexValueDataset,
constraint_idxs::Union{SamplingConstraint, Vector{SamplingConstraint}},
constraint_vals::Union{SamplingConstraint, Vector{SamplingConstraint}})
"""
resample(udata::UncertainIndexValueDataset,
constraint_idxs::Union{SamplingConstraint, Vector{SamplingConstraint}},
constraint_vals::Union{SamplingConstraint, Vector{SamplingConstraint}},
n::Int) -> Vector{Tuple{Vector{Float64}, Vector{Float64}}}
Resample `n` realizations of an uncertain index-value dataset in an element-wise manner.
Enforces separate sampling constraints to the indices and to the data values.
If a single constraint is provided, that constraint will be applied to all values. If a
vector of constraints (as many as there are values) is provided, then the constraints are
applied element-wise.
"""
resample(udata::UncertainIndexValueDataset,
constraint_idxs::Union{SamplingConstraint, Vector{SamplingConstraint}},
constraint_vals::Union{SamplingConstraint, Vector{SamplingConstraint}},
n::Int)
###########################################
# The documentation for the actual methods
###########################################
"""
resample(udata::UncertainIndexValueDataset) -> Tuple{Vector{Float64}, Vector{Float64}}
Resample an uncertain index-value dataset in an element-wise manner.
"""
function resample(udata::UncertainIndexValueDataset)
n_vals = length(udata)
indices = zeros(Float64, n_vals)
values = zeros(Float64, n_vals)
for i = 1:n_vals
idx, val = udata[i]
indices[i] = resample(idx)
values[i] = resample(val)
end
indices, values
end
"""
resample(udata::UncertainIndexValueDataset,
constraint::SamplingConstraint) -> Tuple{Vector{Float64}, Vector{Float64}}
Resample an uncertain index-value dataset element-wise in an element-wise manner.
Enforces the provided sampling `constraint` to all uncertain values in the dataset, both
indices and data values.
"""
function resample(udata::UncertainIndexValueDataset, constraint::SamplingConstraint)
n_vals = length(udata)
indices = zeros(Float64, n_vals)
values = zeros(Float64, n_vals)
for i = 1:n_vals
idx, val = udata[i]
indices[i] = resample(idx, constraint)
values[i] = resample(val, constraint)
end
indices, values
end
"""
resample(udata::UncertainIndexValueDataset,
constraint_idxs::SamplingConstraint,
constraint_vals::SamplingConstraint) -> Tuple{Vector{Float64}, Vector{Float64}}
Resample an uncertain index-value dataset in an element-wise manner.
Enforces the same sampling constraint `constraint_idxs` to all index values, and the
`constraint_vals` sampling constraint to all data values.
"""
function resample(udata::UncertainIndexValueDataset,
constraint_idxs::SamplingConstraint,
constraint_vals::SamplingConstraint)
n_vals = length(udata)
indices = zeros(Float64, n_vals)
values = zeros(Float64, n_vals)
for i = 1:n_vals
idx, val = udata[i]
indices[i] = resample(idx, constraint_idxs)
values[i] = resample(val, constraint_vals)
end
indices, values
end
"""
resample(udata::UncertainIndexValueDataset,
constraint_idxs::Vector{SamplingConstraint},
constraint_vals::SamplingConstraint) -> Tuple{Vector{Float64}, Vector{Float64}}
Resample an uncertain index-value dataset in an element-wise manner.
Enforces a unique sampling constraint `constraint_idxs[i]` to the i-th index value,
while using the same sampling constraint `constraint_vals` on all data values.
"""
function resample(udata::UncertainIndexValueDataset,
constraint_idxs::Vector{<:SamplingConstraint},
constraint_vals::SamplingConstraint)
n_vals = length(udata)
indices = zeros(Float64, n_vals)
values = zeros(Float64, n_vals)
for i = 1:n_vals
idx, val = udata[i]
indices[i] = resample(idx, constraint_idxs[i])
values[i] = resample(val, constraint_vals)
end
indices, values
end
"""
resample(udata::UncertainIndexValueDataset,
constraint_idxs::Vector{SamplingConstraint},
constraint_vals::SamplingConstraint) -> Tuple{Vector{Float64}, Vector{Float64}}
Resample an uncertain index-value dataset in an element-wise manner.
Enforces a unique sampling constraint `constraint_idxs[i]` to both the i-th index value
and to the i-th data value.
"""
function resample(udata::UncertainIndexValueDataset,
constraint::Vector{<:SamplingConstraint})
n_vals = length(udata)
indices = zeros(Float64, n_vals)
values = zeros(Float64, n_vals)
for i = 1:n_vals
idx, val = udata[i]
indices[i] = resample(idx, constraint[i])
values[i] = resample(val, constraint[i])
end
indices, values
end
"""
resample(udata::UncertainIndexValueDataset,
constraint_idxs::Vector{SamplingConstraint},
constraint_vals::SamplingConstraint) -> Tuple{Vector{Float64}, Vector{Float64}}
Resample an uncertain index-value dataset in an element-wise manner.
Enforces a unique sampling constraint `constraint_idxs[i]` to the i-th index value.
Also enforces a unique sampling constraint `constraint_vals[i]` to the i-th data value.
"""
function resample(udata::UncertainIndexValueDataset,
constraint_idxs::Vector{<:SamplingConstraint},
constraint_vals::Vector{<:SamplingConstraint})
n_vals = length(udata)
indices = zeros(Float64, n_vals)
values = zeros(Float64, n_vals)
for i = 1:n_vals
idx, val = udata[i]
indices[i] = resample(idx, constraint_idxs[i])
values[i] = resample(val, constraint_vals[i])
end
indices, values
end
"""
resample(udata::UncertainIndexValueDataset,
constraint_idxs::Vector{SamplingConstraint},
constraint_vals::SamplingConstraint) -> Tuple{Vector{Float64}, Vector{Float64}}
Resample an uncertain index-value dataset in an element-wise manner.
Enforces the same sampling constraint `constraint_idxs` on all index values,
while using the sampling constraint `constraint_vals[i]` to the i-th data value.
"""
function resample(udata::UncertainIndexValueDataset,
constraint_idxs::SamplingConstraint,
constraint_vals::Vector{<:SamplingConstraint})
n_vals = length(udata)
indices = zeros(Float64, n_vals)
values = zeros(Float64, n_vals)
for i = 1:n_vals
idx, val = udata[i]
indices[i] = resample(idx, constraint_idxs)
values[i] = resample(val, constraint_vals[i])
end
indices, values
end
"""
resample(udata::UncertainIndexValueDataset,
n::Int) -> Vector{Tuple{Vector{Float64}, Vector{Float64}}}
Resample `n` realizations an uncertain index-value dataset in an element-wise manner.
"""
function resample(udata::UncertainIndexValueDataset, n::Int)
[resample(udata) for i = 1:n]
end
"""
resample(udata::UncertainIndexValueDataset,
n::Int) -> Vector{Tuple{Vector{Float64}, Vector{Float64}}}
Resample `n` realizations an uncertain index-value dataset in an element-wise manner.
Enforces the provided sampling `constraint` to all uncertain values in the dataset, both
indices and data values.
"""
function resample(udata::UncertainIndexValueDataset, constraint::SamplingConstraint, n::Int)
[resample(udata, constraint) for i = 1:n]
end
"""
resample(udata::UncertainIndexValueDataset,
constraint_idxs::SamplingConstraint,
constraint_vals::SamplingConstraint,
n::Int) -> Vector{Tuple{Vector{Float64}, Vector{Float64}}}
Resample `n` realizations of an uncertain index-value dataset in an element-wise manner.
Enforces the same sampling constraint `constraint_idxs` to all index values, and the
`constraint_vals` sampling constraint to all data values.
"""
function resample(udata::UncertainIndexValueDataset,
constraint_idxs::SamplingConstraint,
constraint_vals::SamplingConstraint,
n::Int)
[resample(udata, constraint_idxs, constraint_vals) for i = 1:n]
end
"""
resample(udata::UncertainIndexValueDataset,
constraint_idxs::Vector{SamplingConstraint},
constraint_vals::SamplingConstraint,
n::Int) -> Vector{Tuple{Vector{Float64}, Vector{Float64}}}
Resample `n` realizations of an uncertain index-value dataset in an element-wise manner.
Enforces a unique sampling constraint `constraint_idxs[i]` to both the i-th index value
and to the i-th data value.
"""
function resample(udata::UncertainIndexValueDataset,
constraint::Vector{<:SamplingConstraint},
n::Int)
[resample(udata, constraint) for i = 1:n]
end
"""
resample(udata::UncertainIndexValueDataset,
constraint_idxs::Vector{SamplingConstraint},
constraint_vals::SamplingConstraint,
n::Int) -> Vector{Tuple{Vector{Float64}, Vector{Float64}}}
Resample `n` realizations of an uncertain index-value dataset in an element-wise manner.
Enforces a unique sampling constraint `constraint_idxs[i]` to the i-th index value,
while using the same sampling constraint `constraint_vals` on all data values.
"""
function resample(udata::UncertainIndexValueDataset,
constraint_idxs::Vector{<:SamplingConstraint},
constraint_vals::SamplingConstraint,
n::Int)
[resample(udata, constraint_idxs, constraint_vals) for i = 1:n]
end
"""
resample(udata::UncertainIndexValueDataset,
constraint_idxs::Vector{SamplingConstraint},
constraint_vals::SamplingConstraint,
n::Int) -> Vector{Tuple{Vector{Float64}, Vector{Float64}}}
Resample `n` realizations of an uncertain index-value dataset in an element-wise manner.
Enforces the same sampling constraint `constraint_idxs` on all index values,
while using the sampling constraint `constraint_vals[i]` to the i-th data value.
"""
function resample(udata::UncertainIndexValueDataset,
constraint_idxs::SamplingConstraint,
constraint_vals::Vector{<:SamplingConstraint},
n::Int)
[resample(udata, constraint_idxs, constraint_vals) for i = 1:n]
end
"""
resample(udata::UncertainIndexValueDataset,
constraint_idxs::Vector{SamplingConstraint},
constraint_vals::SamplingConstraint,
n::Int) -> Vector{Tuple{Vector{Float64}, Vector{Float64}}}
Resample `n` realizations of an uncertain index-value dataset in an element-wise manner.
Enforces a unique sampling constraint `constraint_idxs[i]` to the i-th index value.
Also enforces a unique sampling constraint `constraint_vals[i]` to the i-th data value.
"""
function resample(udata::UncertainIndexValueDataset,
constraint_idxs::Vector{<:SamplingConstraint},
constraint_vals::Vector{<:SamplingConstraint},
n::Int)
[resample(udata, constraint_idxs, constraint_vals) for i = 1:n]
end
export resample
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 6214 |
import ..UncertainDatasets:
AbstractUncertainValueDataset,
UncertainValueDataset,
UVAL_COLLECTION_TYPES
import ..SamplingConstraints:
NoConstraint,
TruncateLowerQuantile,
TruncateUpperQuantile,
TruncateQuantiles
"""
resample(x::UVAL_COLLECTION_TYPES, constraint::SamplingConstraint) -> Vector{T} where T
Resample `x` (a collection of uncertain values) once, applying the provided sampling `constraint`.
Returns a `length(x)`-element vector. The `i`-th element of this vector is generated by
truncating the `i`-th uncertain value by the sampling `constraint`, then drawing a single random
number from the truncated value.
See also [`UVAL_COLLECTION_TYPES`](@ref).
## Example
```julia
# Generate some uncertain values where the `i`-th value is given by a normal
# distribution with mean `i` and a standard deviation drawn from a uniform
# distribution on `[0, 1]`.
uvals = [UncertainValue(Normal(i, rand())) for i = 1:100]
# Truncate each distribution at +- 0.5 standard deviations, then resample.
resample(uvals, TruncateStd(0.5))
```
"""
function resample(uv::UVAL_COLLECTION_TYPES, constraint::SamplingConstraint)
[resample(uv.values[i], constraint) for i in 1:length(uv)]
end
"""
resample(x::UVAL_COLLECTION_TYPES, constraint::Vector{<:SamplingConstraint}) -> Vector{T} where T
Resample `x` (a collection of uncertain values) once, applying the provided sampling `constraint`s.
The number of constraints must match the number of elements in `x`.
Returns a `length(x)`-element vector. The `i`-th element of this vector is generated by
truncating the `i`-th uncertain value by the `i`-th sampling `constraint`, then drawing a single random
number from the truncated value.
See also [`UVAL_COLLECTION_TYPES`](@ref).
## Example
```julia
# Generate some uncertain values where the `i`-th value is given by a normal
# distribution with mean `i` and a standard deviation drawn from a uniform
# distribution on `[0, 1]`.
uvals = [UncertainValue(Normal(i, rand())) for i = 1:100]
# Truncate each distribution at +- 0.5 standard deviations, then resample.
resample(uvals, TruncateStd(0.5))
```
"""
function resample(uv::UVAL_COLLECTION_TYPES, constraint::Vector{<:SamplingConstraint})
[resample(uv.values[i], constraint[i]) for i in 1:length(uv)]
end
"""
resample(x::UVAL_COLLECTION_TYPES, constraint::SamplingConstraint, n::Int) -> Vector{Vector{T}} where T
Resample `x` (a collection of uncertain values) `n` times, applying the provided sampling `constraint`.
Returns an `n`-element vector of `length(x)`-element vectors. Each of these vectors is an independent
draw from `x`. The `i`-th element of each draw is generated by truncating the `i`-th uncertain value by
the sampling `constraint`, then drawing a single random number from the truncated value.
See also [`UVAL_COLLECTION_TYPES`](@ref).
## Example
```julia
# Generate some uncertain values where the `i`-th value is given by a normal
# distribution with mean `i` and a standard deviation drawn from a uniform
# distribution on `[0, 1]`.
uvals = [UncertainValue(Normal(i, rand())) for i = 1:100]
# Truncate the first 50 elements at the 90th percentile range, and the
# last 50 elements at the 40th percentile range.
constraints = [i <= 50 ? TruncateQuantiles(0.05, 0.95) : TruncateQuantiles(0.3, 0.7) for i = 1:100]
# Truncate the distributions, then draw ten independent realisations of the collection subject
# to the provided constraints.
resample(uvals, constraints, 10)
```
"""
function resample(uv::UVAL_COLLECTION_TYPES, constraint::SamplingConstraint, n::Int)
[[resample(uv.values[i], constraint) for i in 1:length(uv)] for k = 1:n]
end
"""
resample(x::UVAL_COLLECTION_TYPES, constraint::Vector{<:SamplingConstraint}, n::Int) -> Vector{Vector{T}} where T
Resample `x` (a collection of uncertain values) `n` times, applying the provided sampling `constraint`s.
Returns an `n`-element vector of `length(x)`-element vectors. Each of these vectors is an independent
draw from `x`. The `i`-th element of each draw is generated by truncating the `i`-th uncertain value by
the `i`-th sampling `constraint`, then drawing a single random number from the truncated value.
See also [`UVAL_COLLECTION_TYPES`](@ref).
## Example
```julia
# Generate some uncertain values where the `i`-th value is given by a normal
# distribution with mean `i` and a standard deviation drawn from a uniform
# distribution on `[0, 1]`.
uvals = [UncertainValue(Normal(i, rand())) for i = 1:100]
# Truncate the first 50 elements at `± 0.5` standard deviations, and the
# last 50 elements at `± 1.2` standar deviations.
constraints = [i <= 50 ? TruncateStd(0.5) : TruncateStd(1.2) for i = 1:100]
# Apply the constraints element-wise, then draw ten independent realisations
# of the collection subject to those constraints.
resample(uvals, constraints, 10)
```
"""
function resample(uv::UVAL_COLLECTION_TYPES, constraint::Vector{<:SamplingConstraint}, n::Int)
[[resample(uv.values[i], constraint[i]) for i in 1:length(uv)] for k = 1:n]
end
"""
resample(x::UVAL_COLLECTION_TYPES, constraint::SamplingConstraint, n::Int) -> Vector{Vector{T}} where T
Resample `x` (a collection of uncertain values) once by drawing a single random number from
each of the uncertain values in `x`.
See also [`UVAL_COLLECTION_TYPES`](@ref).
## Example
```julia
# Generate some uncertain values represented by gamma distributions
uvals = [UncertainValue(Gamma(i, rand())) for i = 1:100]
# Resample the collection once
resample(uvals)
```
"""
function resample(uvd::UVAL_COLLECTION_TYPES)
L = length(uvd)
[resample(uvd.values[i]) for i in 1:L]
end
"""
resample(uvd::UVAL_COLLECTION_TYPES, n::Int) -> Vector{Vector{T}}
Draw `n` realisations of an uncertain value dataset according to the distributions
of the uncertain values comprising it.
See also [`UVAL_COLLECTION_TYPES`](@ref).
## Example
```julia
# Generate some uncertain values represented by gamma distributions
uvals = [UncertainValue(Gamma(i, rand())) for i = 1:100]
# Resample the collection once
resample(uvals)
```
"""
function resample(uvd::UVAL_COLLECTION_TYPES, n::Int)
L = length(uvd)
[[resample(uvd.values[i]) for i in 1:L] for k in 1:n]
end
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 567 | function resample(uvals::NTuple{N, Union{Real, AbstractUncertainValue}}) where N
Tuple(convert(AbstractFloat, resample(uval)) for uval in uvals)
end
function resample(uvals::NTuple{N, Union{Real, AbstractUncertainValue}}, n::Int) where N
[resample(uvals) for i = 1:n]
end
function resample_elwise(uvals::NTuple{N, Union{Real, AbstractUncertainValue}}) where N
[resample(uval) for uval in uvals]
end
function resample_elwise(uvals::NTuple{N, Union{Real, AbstractUncertainValue}}, n::Int) where N
[[resample(uval) for i = 1:n] for uval in uvals]
end | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 810 | import ..SamplingConstraints: SamplingConstraint
import ..UncertainValues: CertainValue
resample(x::Number) = x
resample(v::CertainValue) = v.value
resample(v::CertainValue, n::Int) = [v.value for i = 1:n]
resample(v::CertainValue, s::SamplingConstraint) = v.value
resample(v::CertainValue, s::SamplingConstraint, n::Int) = [v.value for i = 1:n]
constraints = [
:(NoConstraint),
:(TruncateLowerQuantile),
:(TruncateUpperQuantile),
:(TruncateQuantiles),
:(TruncateMaximum),
:(TruncateMinimum),
:(TruncateRange),
:(TruncateStd)
]
for constraint in constraints
funcs = quote
resample(x::CertainValue, constraint::$(constraint)) = x.value
resample(x::CertainValue, constraint::$(constraint), n::Int) = [x.value for i = 1:n]
end
eval(funcs)
end | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 329 |
import Measurements: Measurement
import ..UncertainValues: UncertainValue
import Distributions: Normal
resample(m::Measurement{T}) where T = resample(UncertainValue(Normal, m.val, m.err))
function resample(m::Measurement{T}, n::Int) where T
uval = UncertainValue(Normal, m.val, m.err)
[resample(uval) for i = 1:n]
end | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 2725 | import ..UncertainValues:
TheoreticalDistributionScalarValue,
AbstractUncertainTwoParameterScalarValue,
AbstractUncertainThreeParameterScalarValue,
UncertainScalarTheoreticalTwoParameter,
UncertainScalarTheoreticalThreeParameter,
UncertainScalarNormallyDistributed,
UncertainScalarUniformlyDistributed,
UncertainScalarBetaDistributed,
UncertainScalarBetaPrimeDistributed,
UncertainScalarBetaBinomialDistributed,
UncertainScalarBinomialDistributed,
UncertainScalarGammaDistributed,
UncertainScalarFrechetDistributed
import Distributions
# Resample for generic
resample(uv::TheoreticalDistributionScalarValue) = rand(uv.distribution)
resample(uv::TheoreticalDistributionScalarValue, n::Int) = rand(uv.distribution, n)
# Custom resample methods for each type of uncertain scalars based on
# distributions (in case we want to implement custom sampling for some of them)
resample(uv::UncertainScalarTheoreticalThreeParameter) = rand(uv.distribution)
resample(uv::UncertainScalarTheoreticalTwoParameter) = rand(uv.distribution)
resample(uv::UncertainScalarNormallyDistributed) = rand(uv.distribution)
resample(uv::UncertainScalarUniformlyDistributed) = rand(uv.distribution)
resample(uv::UncertainScalarBetaDistributed) = rand(uv.distribution)
resample(uv::UncertainScalarBetaPrimeDistributed) = rand(uv.distribution)
resample(uv::UncertainScalarBetaBinomialDistributed) = rand(uv.distribution)
resample(uv::UncertainScalarGammaDistributed) = rand(uv.distribution)
resample(uv::UncertainScalarFrechetDistributed) = rand(uv.distribution)
resample(uv::UncertainScalarBinomialDistributed) = rand(uv.distribution)
resample(uv::UncertainScalarTheoreticalThreeParameter, n::Int) = rand(uv.distribution, n)
resample(uv::UncertainScalarTheoreticalTwoParameter, n::Int) = rand(uv.distribution, n)
resample(uv::UncertainScalarNormallyDistributed, n::Int) = rand(uv.distribution, n)
resample(uv::UncertainScalarUniformlyDistributed, n::Int) = rand(uv.distribution, n)
resample(uv::UncertainScalarBetaDistributed, n::Int) = rand(uv.distribution, n)
resample(uv::UncertainScalarBetaPrimeDistributed, n::Int) = rand(uv.distribution, n)
resample(uv::UncertainScalarBetaBinomialDistributed, n::Int) = rand(uv.distribution, n)
resample(uv::UncertainScalarGammaDistributed, n::Int) = rand(uv.distribution, n)
resample(uv::UncertainScalarFrechetDistributed, n::Int) = rand(uv.distribution, n)
resample(uv::UncertainScalarBinomialDistributed, n::Int) = rand(uv.distribution, n)
resample(x::Distributions.Truncated) = rand(x)
resample(x::Distributions.Truncated, n::Int) = rand(x, n)
resample(x::Distributions.Distribution) = rand(x)
resample(x::Distributions.Distribution, n::Int) = rand(x, n) | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 476 | import ..UncertainValues.AbstractUncertainScalarKDE
"""
resample(uv::UncertainScalarKDE)
Resample an uncertain value whose distribution is approximated using a
kernel density estimate once.
"""
resample(uv::AbstractUncertainScalarKDE) = rand(uv)
"""
resample(uv::AbstractUncertainScalarKDE)
Resample an uncertain value whose distribution is approximated using a
kernel density estimate `n` times.
"""
resample(uv::AbstractUncertainScalarKDE, n::Int) = rand(uv, n)
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 18466 | import ..UncertainValues:
getquantileindex,
support,
AbstractUncertainScalarKDE
import StatsBase:
sample, sample!,
Weights
import Distributions:
Uniform
import ..SamplingConstraints:
NoConstraint,
TruncateLowerQuantile,
TruncateUpperQuantile,
TruncateQuantiles,
TruncateMinimum,
TruncateMaximum,
TruncateRange,
TruncateStd,
fallback
"""
resample(uv::AbstractUncertainScalarKDE, constraint::NoConstraint)
Resample without contraints (use the full distribution representing the value)
## Example
```julia
some_sample = rand(Normal(), 1000)
# Calling UncertainValue with a single vector of numbers triggers KDE estimation
uncertainval = UncertainValue(some_sample) # -> UncertainScalarKDE
# Resample the uncertain value by resampling the full distribution once.
resample(uncertainval, NoConstraint())
```
"""
resample(uv::AbstractUncertainScalarKDE, constraint::NoConstraint) = resample(uv)
"""
resample(uv::AbstractUncertainScalarKDE, constraint::NoConstraint, n::Int)
Resample without contraints (use the full distribution representing the value)
## Example
```julia
some_sample = rand(Normal(), 1000)
# Calling UncertainValue with a single vector of numbers triggers KDE estimation
uncertainval = UncertainValue(some_sample) # -> UncertainScalarKDE
# Resample the uncertain value by resampling the full distribution n times
resample(uncertainval, NoConstraint(), n)
```
"""
resample(uv::AbstractUncertainScalarKDE, constraint::NoConstraint, n::Int) = resample(uv, n)
"""
resample(uv::AbstractUncertainScalarKDE, constraint::TruncateLowerQuantile)
Resample `uv` by first truncating below the kernel density estimate of the
distribution furnishing the value at some lower quantile, then resampling
it once.
## Example
```julia
using UncertainData
some_sample = rand(Normal(), 1000)
# Calling UncertainValue with a single vector of numbers triggers KDE estimation
uncertainval = UncertainValue(some_sample) # -> UncertainScalarKDE
constraint = TruncateLowerQuantile(0.16)
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution once.
resample(uncertainval, constraint)
```
"""
function resample(uv::AbstractUncertainScalarKDE, constraint::TruncateLowerQuantile)
# Find the index of the kernel density estimated distribution
# corresponding to the lower quantile at which we want to truncate.
idx_lower_quantile = getquantileindex(uv, constraint.lower_quantile)
# Box width
δ = step(uv.range)
# Subset the values and weights (values of the pdf at those values)
range = uv.range[idx_lower_quantile:end] |> collect
wts = Weights(uv.pdf[idx_lower_quantile:end])
# Sample a box
sampled_val = sample(range, wts)
# Sample uniformly from within the box
rand(Uniform(sampled_val, sampled_val + δ))
end
"""
resample(uv::AbstractUncertainScalarKDE, constraint::TruncateLowerQuantile,
n::Int)
Resample `uv` by first truncating below the kernel density estimate of the
distribution furnishing the value at some lower quantile, then resampling
it `n` times.
## Example
```julia
using UncertainData
some_sample = rand(Normal(), 1000)
# Calling UncertainValue with a single vector of numbers triggers KDE estimation
uncertainval = UncertainValue(some_sample) # -> UncertainScalarKDE
constraint = TruncateLowerQuantile(0.16)
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution 500 times.
resample(uncertainval, constraint, 500)
```
"""
function resample(uv::AbstractUncertainScalarKDE, constraint::TruncateLowerQuantile,
n::Int)
# Find the index of the kernel density estimated distribution
# corresponding to the lower quantile at which we want to truncate.
idx_lower_quantile = getquantileindex(uv, constraint.lower_quantile)
# Box width
δ = step(uv.range)
# Subset the values and weights (values of the pdf at those values)
range = uv.range[idx_lower_quantile:end] |> collect
wts = Weights(uv.pdf[idx_lower_quantile:end])
# Sample n boxes according to estimated weights (pdf)
sampled_vals = Vector{Float64}(undef, n)
sample!(range, wts, sampled_vals)
# Sample uniformly from within each box
[rand(Uniform(sampled_vals[i], sampled_vals[i] + δ)) for i = 1:n]
end
"""
resample(uv::AbstractUncertainScalarKDE, constraint::TruncateUpperQuantile)
Resample `uv` by first truncating above the kernel density estimate of the
distribution furnishing the value at some upper quantile, then resampling
it once.
## Example
```julia
using UncertainData
some_sample = rand(Normal(), 1000)
# Calling UncertainValue with a single vector of numbers triggers KDE estimation
uncertainval = UncertainValue(some_sample) # -> UncertainScalarKDE
constraint = TruncateUpperQuantile(0.78)
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution once.
resample(uncertainval, constraint)
```
"""
function resample(uv::AbstractUncertainScalarKDE, constraint::TruncateUpperQuantile)
# Find the index of the kernel density estimated distribution
# corresponding to the lower quantile at which we want to truncate.
idx_upper_quantile = getquantileindex(uv, constraint.upper_quantile)
# Box width
δ = step(uv.range)
# Subset the values and weights (values of the pdf at those values)
range = uv.range[1:idx_upper_quantile] |> collect
wts = Weights(uv.pdf[1:idx_upper_quantile])
# Sample a box
sampled_val = sample(range, wts)
# Sample uniformly from within the box
rand(Uniform(sampled_val, sampled_val + δ))
end
"""
resample(uv::AbstractUncertainScalarKDE, constraint::TruncateUpperQuantile,
n::Int)
Resample `uv` by first truncating above the kernel density estimate of the
distribution furnishing the value at some upper quantile, then resampling
it `n` times.
## Example
```julia
using UncertainData
some_sample = rand(Normal(), 1000)
# Calling UncertainValue with a single vector of numbers triggers KDE estimation
uncertainval = UncertainValue(some_sample) # -> UncertainScalarKDE
constraint = TruncateLowerQuantile(0.16)
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution 500 times.
resample(uncertainval, constraint, 500)
```
"""
function resample(uv::AbstractUncertainScalarKDE, constraint::TruncateUpperQuantile,
n::Int)
# Find the index of the kernel density estimated distribution
# corresponding to the lower quantile at which we want to truncate.
idx_upper_quantile = getquantileindex(uv, constraint.upper_quantile)
# Box width
δ = step(uv.range)
# Subset the values and weights (values of the pdf at those values)
range = uv.range[1:idx_upper_quantile] |> collect
wts = Weights(uv.pdf[1:idx_upper_quantile])
# Sample n boxes according to estimated weights (pdf)
sampled_vals = Vector{Float64}(undef, n)
sample!(range, wts, sampled_vals)
# Sample uniformly from within each box
[rand(Uniform(sampled_vals[i], sampled_vals[i] + δ)) for i = 1:n]
end
"""
resample(uv::AbstractUncertainScalarKDE, constraint::TruncateUpperQuantile)
Resample `uv` by first truncating the kernel density estimate of the
distribution furnishing the value both above and below at some quantile range,
then resampling it once.
## Example
```julia
using UncertainData
some_sample = rand(Normal(), 1000)
# Calling UncertainValue with a single vector of numbers triggers KDE estimation
uncertainval = UncertainValue(some_sample) # -> UncertainScalarKDE
constraint = TruncateQuantiles(0.1, 0.9)
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution once.
resample(uncertainval, constraint)
```
"""
function resample(uv::AbstractUncertainScalarKDE, constraint::TruncateQuantiles)
# Find the index of the kernel density estimated distribution
# corresponding to the lower quantile at which we want to truncate.
idx_lower_quantile = getquantileindex(uv, constraint.lower_quantile)
idx_upper_quantile = getquantileindex(uv, constraint.upper_quantile)
# Box width
δ = step(uv.range)
# Subset the values and weights (values of the pdf at those values)
range = uv.range[idx_lower_quantile:idx_upper_quantile] |> collect
wts = Weights(uv.pdf[idx_lower_quantile:idx_upper_quantile])
# Sample a box
sampled_val = sample(range, wts)
# Sample uniformly from within the box
rand(Uniform(sampled_val, sampled_val + δ))
end
"""
resample(uv::AbstractUncertainScalarKDE, constraint::TruncateQuantiles,
n::Int)
Resample `uv` by first truncating the kernel density estimate of the
distribution furnishing the value both above and below at some quantile range,
then resampling it `n` times.
## Example
```julia
using UncertainData
some_sample = rand(Normal(), 1000)
# Calling UncertainValue with a single vector of numbers triggers KDE estimation
uncertainval = UncertainValue(some_sample) # -> UncertainScalarKDE
constraint = TruncateQuantiles(0.1, 0.9)
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution 500 times.
resample(uncertainval, constraint, 500)
```
"""
function resample(uv::AbstractUncertainScalarKDE, constraint::TruncateQuantiles,
n::Int)
# Find the index of the kernel density estimated distribution
# corresponding to the lower quantile at which we want to truncate.
idx_upper_quantile = getquantileindex(uv, constraint.upper_quantile)
idx_lower_quantile = getquantileindex(uv, constraint.lower_quantile)
# Box width
δ = step(uv.range)
# Subset the values and weights (values of the pdf at those values)
range = uv.range[idx_lower_quantile:idx_upper_quantile] |> collect
wts = Weights(uv.pdf[idx_lower_quantile:idx_upper_quantile])
# Sample n boxes according to estimated weights (pdf)
sampled_vals = Vector{Float64}(undef, n)
sample!(range, wts, sampled_vals)
# Sample uniformly from within each box
[rand(Uniform(sampled_vals[i], sampled_vals[i] + δ)) for i = 1:n]
end
"""
resample(uv::AbstractUncertainScalarKDE, constraint::TruncateMaximum)
Resample `uv` by first truncating the kernel density estimate of the
distribution furnishing the value at some maximum value,
then resampling it once.
## Example
```julia
# Uncertain value represented by a normal distribution with mean = 0 and
# standard deviation = 1.
uncertainval = UncertainValue(rand(Normal(0, 1), 1000))
constraint = TruncateMaximum(0.8) # accept no values larger than 1.1
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution 700 times.
resample(uncertainval, constraint, 700)
```
"""
function resample(uv::AbstractUncertainScalarKDE, constraint::TruncateMaximum)
# Box width
δ = step(uv.range)
upper_bound = constraint.max
lower_bound = minimum(uv.range)
idx_max = findlast(uv.range .<= upper_bound)
# Subset the values and weights (values of the pdf at those values)
range = uv.range[1:idx_max] |> collect
wts = Weights(uv.pdf[1:idx_max])
# Sample a box
sampled_val = sample(range, wts)
# Sample uniformly from within the box
rand(Uniform(sampled_val, sampled_val + δ))
end
"""
resample(uv::AbstractUncertainScalarKDE, constraint::TruncateMaximum, n::Int)
Resample `uv` by first truncating the kernel density estimate of the
distribution furnishing the value at some minimum value,
then resampling it `n` times.
## Example
```julia
# Uncertain value represented by a normal distribution with mean = 0 and
# standard deviation = 1.
uncertainval = UncertainValue(rand(Normal(0, 1), 1000))
constraint = TruncateMaximum(0.8) # accept no values larger than 1.1
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution 700 times.
resample(uncertainval, constraint, 700)
```
"""
function resample(uv::AbstractUncertainScalarKDE, constraint::TruncateMaximum, n::Int)
# Box width
δ = step(uv.range)
upper_bound = constraint.max
lower_bound = minimum(uv.range)
idx_max = findlast(uv.range .<= upper_bound)
# Subset the values and weights (values of the pdf at those values)
range = uv.range[1:idx_max] |> collect
wts = Weights(uv.pdf[1:idx_max])
# Sample n boxes according to estimated pdf
sampled_vals = Vector{Float64}(undef, n)
sample!(range, wts, sampled_vals)
# Sample uniformly from within each box
[rand(Uniform(sampled_vals[i], sampled_vals[i] + δ)) for i = 1:n]
end
"""
resample(uv::AbstractUncertainScalarKDE, constraint::TruncateMinimum)
Resample `uv` by first truncating the kernel density estimate of the
distribution furnishing the value at some minimum value,
then resampling it once.
## Example
```julia
# Uncertain value represented by a normal distribution with mean = 0 and
# standard deviation = 1.
uncertainval = UncertainValue(rand(Normal(0, 1), 1000))
constraint = TruncateMinimum(0.2) # accept no values smaller than 0.2
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution 700 times.
resample(uncertainval, constraint, 700)
```
"""
function resample(uv::AbstractUncertainScalarKDE, constraint::TruncateMinimum)
# Box width
δ = step(uv.range)
lower_bound = constraint.min
upper_bound = maximum(uv.range)
idx_min = findfirst(uv.range .>= lower_bound)
# Subset the values and weights (values of the pdf at those values)
range = uv.range[idx_min:end] |> collect
wts = Weights(uv.pdf[idx_min:end])
# Sample a box
sampled_val = sample(range, wts)
# Sample uniformly from within the box
rand(Uniform(sampled_val, sampled_val + δ))
end
"""
resample(uv::AbstractUncertainScalarKDE, constraint::TruncateMinimum, n::Int)
Resample `uv` by first truncating the kernel density estimate of the
distribution furnishing the value at some minimum value,
then resampling it `n` times.
## Example
```julia
# Uncertain value represented by a normal distribution with mean = 0 and
# standard deviation = 1.
uncertainval = UncertainValue(rand(Normal(0, 1), 1000))
constraint = TruncateMinimum(0.2) # accept no values smaller than 0.2
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution 700 times.
resample(uncertainval, constraint, 700)
```
"""
function resample(uv::AbstractUncertainScalarKDE, constraint::TruncateMinimum, n::Int)
# Box width
δ = step(uv.range)
lower_bound = constraint.min
upper_bound = maximum(uv.range)
idx_min = findfirst(uv.range .>= lower_bound)
# Subset the values and weights (values of the pdf at those values)
range = uv.range[idx_min:end] |> collect
wts = Weights(uv.pdf[idx_min:end])
# Sample n boxes according to estimated pdf
sampled_vals = Vector{Float64}(undef, n)
sample!(range, wts, sampled_vals)
# Sample uniformly from within each box
[rand(Uniform(sampled_vals[i], sampled_vals[i] + δ)) for i = 1:n]
end
"""
resample(uv::AbstractUncertainScalarKDE, constraint::TruncateRange)
Resample `uv` by first truncating the kernel density estimate of the
distribution furnishing the value at some minimum and maximum values,
then resampling it once.
## Example
```julia
# Uncertain value represented by a normal distribution with mean = 0 and
# standard deviation = 1.
uncertainval = UncertainValue(rand(Normal(0, 1), 1000))
# Only accept values in the range [-0.9, 1.2]
constraint = TruncateRange(-0.9, 1.2)
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution 300 times.
resample(uncertainval, constraint, 300)
```
"""
function resample(uv::AbstractUncertainScalarKDE, constraint::TruncateRange)
# Box width
δ = step(uv.range)
lower_bound = constraint.min
upper_bound = constraint.max
idx_min = findfirst(uv.range .>= lower_bound)
idx_max = findlast(uv.range .<= upper_bound)
# Subset the values and weights (values of the pdf at those values)
range = uv.range[idx_min:idx_max] |> collect
wts = Weights(uv.pdf[idx_min:idx_max])
# Sample a box
sampled_val = sample(range, wts)
# Sample uniformly from within the box
rand(Uniform(sampled_val, sampled_val + δ))
end
"""
resample(uv::AbstractUncertainScalarKDE, constraint::TruncateRange, n::Int)
Resample `uv` by first truncating the kernel density estimate of the
distribution furnishing the value at some minimum and maximum values,
then resampling it `n` times.
## Example
```julia
# Uncertain value represented by a normal distribution with mean = 0 and
# standard deviation = 1.
uncertainval = UncertainValue(rand(Normal(0, 1), 1000))
# Only accept values in the range [-0.9, 1.2]
constraint = TruncateRange(-0.9, 1.2)
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution 300 times.
resample(uncertainval, constraint, 300)
```
"""
function resample(uv::AbstractUncertainScalarKDE, constraint::TruncateRange, n::Int)
# Box width
δ = step(uv.range)
lower_bound = constraint.min
upper_bound = constraint.max
idx_min = findfirst(uv.range .>= lower_bound)
idx_max = findlast(uv.range .<= upper_bound)
# Subset the values and weights (values of the pdf at those values)
range = uv.range[idx_min:idx_max] |> collect
wts = Weights(uv.pdf[idx_min:idx_max])
# Sample n boxes according to estimated pdf
sampled_vals = Vector{Float64}(undef, n)
sample!(range, wts, sampled_vals)
# Sample uniformly from within each box
[rand(Uniform(sampled_vals[i], sampled_vals[i] + δ)) for i = 1:n]
end
# Resampling UncertainScalarKDE with TruncateStd is undefined, so fall back to quantiles
function resample(uv::AbstractUncertainScalarKDE, constraint::TruncateStd)
resample(uv, fallback(uv, constraint))
end
# Resampling UncertainScalarKDE with TruncateStd is undefined, so fall back to quantiles
function resample(uv::AbstractUncertainScalarKDE, constraint::TruncateStd, n::Int)
resample(uv, fallback(uv, constraint), n)
end
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 695 | import ..UncertainValues.AbstractUncertainValue
import ..UncertainValues.TheoreticalFittedUncertainScalar
import ..UncertainValues.UncertainScalarTheoreticalFit
import ..UncertainValues.FittedDistribution
########################################################################
# Resampling without constraints
########################################################################
resample(ue::UncertainScalarTheoreticalFit) =
rand(ue.distribution.distribution)
resample(ue::UncertainScalarTheoreticalFit, n::Int) =
rand(ue.distribution.distribution, n)
resample(fd::FittedDistribution) = rand(fd.distribution)
resample(fd::FittedDistribution, n::Int) = rand(fd.distribution, n)
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1133 | import ..UncertainValues:
AbstractScalarPopulation
import Base.rand
import StatsBase.sample
function resample(p::AbstractScalarPopulation)
rand(p)
end
function resample(p::AbstractScalarPopulation, n::Int)
rand(p, n)
end
function resample(p::AbstractScalarPopulation, constraint::SamplingConstraint)
rand(constrain(p, constraint))
end
function resample(p::AbstractScalarPopulation, constraint::SamplingConstraint, n::Int)
rand(constrain(p, constraint), n)
end
constraints = [
:(NoConstraint),
:(TruncateLowerQuantile),
:(TruncateUpperQuantile),
:(TruncateQuantiles),
:(TruncateMaximum),
:(TruncateMinimum),
:(TruncateRange),
:(TruncateStd)
]
for constraint in constraints
funcs = quote
function resample(p::AbstractScalarPopulation{T, PW}, constraint::$(constraint)) where {T, PW}
rand(constrain(p, constraint))
end
function resample(p::AbstractScalarPopulation{T, PW}, constraint::$(constraint), n::Int) where {T, PW}
rand(constrain(p, constraint), n)
end
end
eval(funcs)
end
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 2127 | import ..UncertainValues:
AbstractUncertainValue,
FittedDistribution,
TheoreticalFittedUncertainScalar,
UncertainScalarTheoreticalFit
import Distributions: Truncated
import StatsBase: quantile, std, mean
import Distributions: support
########################################################################
# Resampling without constraints
########################################################################
"""
resample(uv::AbstractUncertainValue)
Sample the uncertain value once, drawing values from the entire support of the probability
distribution furnishing it.
"""
resample(uv::AbstractUncertainValue) = rand(uv.distribution)
"""
resample(uv::AbstractUncertainValue, n::Int)
Sample the uncertain value `n` times, drawing values from the entire support of the
probability distribution furnishing it.
"""
resample(uv::AbstractUncertainValue, n::Int) =
rand(uv.distribution, n)
"""
resample(fd::FittedDistribution)
Resample a `FittedDistribution` instance once.
"""
resample(fd::FittedDistribution) = rand(fd.distribution)
"""
resample(fd::FittedDistribution, n::Int)
Resample a `FittedDistribution` instance `n` times.
"""
resample(fd::FittedDistribution, n::Int) = rand(fd.distribution, n)
"""
resample(ue::UncertainScalarTheoreticalFit)
Resample an `UncertainScalarTheoreticalFit` instance once.
"""
resample(ue::UncertainScalarTheoreticalFit) =
rand(ue.distribution.distribution)
"""
resample(ue::UncertainScalarTheoreticalFit, n::Int)
Resample an `UncertainScalarTheoreticalFit` instance `n` times.
"""
resample(ue::UncertainScalarTheoreticalFit, n::Int) =
rand(ue.distribution.distribution, n)
"""
resample(uv::TheoreticalFittedUncertainScalar, n::Int)
Resample an `TheoreticalFittedUncertainScalar` instance once.
"""
resample(uv::TheoreticalFittedUncertainScalar) =
rand(uv.distribution.distribution)
"""
resample(uv::TheoreticalFittedUncertainScalar, n::Int)
Resample an `TheoreticalFittedUncertainScalar` instance `n` times.
"""
resample(uv::TheoreticalFittedUncertainScalar, n::Int) =
rand(uv.distribution.distribution, n)
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 13488 | import ..UncertainValues.AbstractUncertainValue
import ..SamplingConstraints:
SamplingConstraint,
NoConstraint,
TruncateLowerQuantile,
TruncateUpperQuantile,
TruncateQuantiles,
TruncateMinimum,
TruncateMaximum,
TruncateRange,
TruncateStd
import Distributions: truncated
########################################################################
# Resampling with constraints
########################################################################
"""
Resample an uncertain value by first truncating its furnishing distribution with the
provided sampling `constraint`.
"""
function resample(uv::AbstractUncertainValue, constraint::SamplingConstraint) end
"""
resample(uv::AbstractUncertainValue, constraint::NoConstraint)
Resample an uncertain value without contraints (use the full furnishing distribution).
## Example
```julia
uncertainval = UncertainValue(0, 0.2, Normal)
# Resample the uncertain value by resampling the full distribution once.
resample(uncertainval, NoConstraint())
```
"""
resample(uv::AbstractUncertainValue, constraint::NoConstraint) = resample(uv)
"""
resample(uv::AbstractUncertainValue, constraint::NoConstraint, n::Int)
Resample an uncertain value without contraints (use the full furnishing distribution).
## Example
```julia
uncertainval = UncertainValue(0, 0.2, Normal)
# Resample the uncertain value by resampling the full distribution 1000 times.
resample(uncertainval, NoConstraint(), 1000)
```
"""
resample(uv::AbstractUncertainValue, constraint::NoConstraint, n::Int) = resample(uv, n)
"""
resample(uv::AbstractUncertainValue, constraint::TruncateUpperQuantile)
Resample by first truncating the distribution representing the value at a lower
quantile, then performing the resampling.
## Example
```julia
uncertainval = UncertainValue(0, 0.2, Normal)
constraint = TruncateLowerQuantile(0.16)
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution once.
resample(uncertainval, constraint)
```
"""
function resample(uv::AbstractUncertainValue, constraint::TruncateLowerQuantile)
# Apply (another level of) truncation, then sample
lower_bound = quantile(uv.distribution, constraint.lower_quantile)
upper_bound = maximum(uv)
rand(truncated(uv.distribution, lower_bound, upper_bound))
end
"""
resample(uv::AbstractUncertainValue, constraint::TruncateLowerQuantile, n::Int)
Resample by first truncating the distribution representing the value at a lower
quantile, then performing the resampling.
## Example
```julia
uncertainval = UncertainValue(0, 0.2, Normal)
constraint = TruncateLowerQuantile(0.16)
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution 1000 times.
resample(uncertainval, constraint, 1000)
```
"""
function resample(uv::AbstractUncertainValue, constraint::TruncateLowerQuantile, n::Int)
# Apply (another level of) truncation, then sample
lower_bound = quantile(uv.distribution, constraint.lower_quantile)
upper_bound = maximum(uv)
rand(truncated(uv.distribution, lower_bound, upper_bound), n)
end
"""
resample(uv::AbstractUncertainValue, constraint::TruncateUpperQuantile)
Resample by first truncating the distribution representing the value at an upper
quantile, then performing the resampling.
## Example
```julia
uncertainval = UncertainValue(0, 0.2, Normal)
constraint = TruncateUpperQuantile(0.8)
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution once.
resample(uncertainval, constraint)
```
"""
function resample(uv::AbstractUncertainValue, constraint::TruncateUpperQuantile)
# Apply (another level of) truncation, then sample
lower_bound = minimum(uv)
upper_bound = quantile(uv.distribution, constraint.upper_quantile)
rand(truncated(uv.distribution, lower_bound, upper_bound))
end
"""
resample(uv::AbstractUncertainValue, constraint::TruncateUpperQuantile, n::Int)
Resample by first truncating the distribution representing the value at an upper
quantile, then performing the resampling.
## Example
```julia
uncertainval = UncertainValue(0, 0.2, Normal)
constraint = TruncateUpperQuantile(0.8)
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution 1000 times.
resample(uncertainval, constraint, 1000)
```
"""
function resample(uv::AbstractUncertainValue, constraint::TruncateUpperQuantile, n::Int)
# Apply (another level of) truncation, then sample
lower_bound = minimum(uv)
upper_bound = quantile(uv.distribution, constraint.upper_quantile)
rand(truncated(uv.distribution, lower_bound, upper_bound), n)
end
"""
resample(uv::AbstractUncertainValue, constraint::TruncateQuantiles)
Resample by first truncating the distribution representing the value at a set of
qunatiles, then performing the resampling.
## Example
```julia
uncertainval = UncertainValue(0, 1, Uniform)
constraint = TruncateLowerQuantile(0.2)
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution once.
resample(uncertainval, constraint)
```
"""
function resample(uv::AbstractUncertainValue, constraint::TruncateQuantiles)
# Apply (another level of) truncation, then sample
lower_bound = quantile(uv.distribution, constraint.lower_quantile)
upper_bound = quantile(uv.distribution, constraint.upper_quantile)
rand(truncated(uv.distribution, lower_bound, upper_bound))
end
"""
resample(uv::AbstractUncertainValue, constraint::TruncateQuantiles, n::Int)
Resample by first truncating the distribution representing the value at a set of
qunatiles, then performing the resampling.
## Example
```julia
uncertainval = UncertainValue(0, 1, Uniform)
constraint = TruncateLowerQuantile(0.2)
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution 1000 times.
resample(uncertainval, constraint, 1000)
```
"""
function resample(uv::AbstractUncertainValue, constraint::TruncateQuantiles, n::Int)
# Apply (another level of) truncation, then sample
lower_bound = quantile(uv.distribution, constraint.lower_quantile)
upper_bound = quantile(uv.distribution, constraint.upper_quantile)
rand(truncated(uv.distribution, lower_bound, upper_bound), n)
end
"""
resample(uv::AbstractUncertainValue, constraint::TruncateStd, n::Int;
n_draws::Int = 10000)
Resample by first truncating the distribution representing the value to some multiple
of its standard deviation around the mean.
## Example
```julia
uncertainval = UncertainValue(0, 0.8, Normal)
constraint = TruncateStd(1.1) # accept values only in range 1.1*stdev around the mean
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution 1000 times.
resample(uncertainval, constraint, 1000)
```
"""
function resample(uv::AbstractUncertainValue, constraint::TruncateStd, n::Int;
n_draws::Int = 10000)
# Apply (another level of) truncation, then sample
stdev = std(resample(uv, n_draws))
m = mean(resample(uv, n_draws))
lower_bound = m - stdev
upper_bound = m + stdev
rand(truncated(uv.distribution, lower_bound, upper_bound), n)
end
"""
resample(uv::AbstractUncertainValue, constraint::TruncateMinimum)
Resample by first truncating the distribution representing the value at some
minimum value, then performing the resampling.
## Example
```julia
uncertainval = UncertainValue(0, 0.2, Normal)
constraint = TruncateMinimum(-0.5) # accept no values less than -0.5
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution once.
resample(uncertainval, constraint)
```
"""
function resample(uv::AbstractUncertainValue, constraint::TruncateMinimum)
# Apply (another level of) truncation, then sample
lower_bound = constraint.min
upper_bound = maximum(uv)
lower_bound > upper_bound ? error("lower bound > upper_bound") : nothing
rand(truncated(uv.distribution, lower_bound, upper_bound))
end
"""
resample(uv::AbstractUncertainValue, constraint::TruncateMinimum, n::Int)
Resample by first truncating the distribution representing the value at some
minimum value, then performing the resampling.
## Example
```julia
uncertainval = UncertainValue(0, 0.2, Normal)
constraint = TruncateMinimum(-0.5)
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution 1000 times.
resample(uncertainval, constraint, 1000)
```
"""
function resample(uv::AbstractUncertainValue, constraint::TruncateMinimum, n::Int)
# Apply (another level of) truncation, then sample
lower_bound = constraint.min
upper_bound = maximum(uv)
lower_bound > upper_bound ? error("lower bound > upper_bound") : nothing
rand(truncated(uv.distribution, lower_bound, upper_bound), n)
end
"""
resample(uv::AbstractUncertainValue, constraint::TruncateMaximum)
Resample by first truncating the distribution representing the value at some
minimum value, then performing the resampling.
## Example
```julia
uncertainval = UncertainValue(0, 0.8, Normal)
constraint = TruncateMaximum(1.1) # accept no values larger than 1.1
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution once.
resample(uncertainval, constraint)
```
"""
function resample(uv::AbstractUncertainValue, constraint::TruncateMaximum)
# Apply (another level of) truncation, then sample
upper_bound = constraint.max
lower_bound = minimum(uv)
lower_bound > upper_bound ? error("lower bound > upper_bound") : nothing
rand(truncated(uv.distribution, lower_bound, upper_bound))
end
"""
resample(uv::AbstractUncertainValue, constraint::TruncateMaximum, n::Int)
Resample by first truncating the distribution representing the value at some
minimum value, then performing the resampling.
## Example
```julia
uncertainval = UncertainValue(0, 0.8, Normal)
constraint = TruncateMaximum(1.1) # accept no values larger than 1.1
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution 1000 times.
resample(uncertainval, constraint, 1000)
```
"""
function resample(uv::AbstractUncertainValue, constraint::TruncateMaximum, n::Int)
# Apply (another level of) truncation, then sample
lower_bound = minimum(uv)
upper_bound = constraint.max
lower_bound > upper_bound ? error("lower bound > upper_bound") : nothing
rand(truncated(uv.distribution, lower_bound, upper_bound), n)
end
"""
resample(uv::AbstractUncertainValue, constraint::TruncateRange)
Resample by first truncating the distribution representing the value at some
minimum value, then performing the resampling.
## Example
```julia
uncertainval = UncertainValue(0, 0.8, Normal)
constraint = TruncateRange(-0.7, 1.1) # accept values only in range [-0.7, 1.1]
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution once.
resample(uncertainval, constraint)
```
"""
function resample(uv::AbstractUncertainValue, constraint::TruncateRange)
# Apply (another level of) truncation, then sample
lower_bound = constraint.min
upper_bound = constraint.max
lower_bound > upper_bound ? error("lower bound > upper_bound") : nothing
rand(truncated(uv.distribution, lower_bound, upper_bound))
end
"""
resample(uv::AbstractUncertainValue, constraint::TruncateRange, n::Int)
Resample by first truncating the distribution representing the value at some
minimum value, then performing the resampling.
## Example
```julia
uncertainval = UncertainValue(0, 0.8, Normal)
constraint = TruncateRange(-0.7, 1.1) # accept values only in range [-0.7, 1.1]
# Resample the uncertain value `1000` times by truncating the distribution furnishing it,
# then resampling the new distribution `1000` times
resample(uncertainval, constraint, 1000)
```
"""
function resample(uv::AbstractUncertainValue, constraint::TruncateRange, n::Int)
# Apply (another level of) truncation, then sample
lower_bound = constraint.min
upper_bound = constraint.max
lower_bound > upper_bound ? error("lower bound > upper_bound") : nothing
rand(truncated(uv.distribution, lower_bound, upper_bound), n)
end
"""
resample(uv::AbstractUncertainValue, constraint::TruncateStd; n_draws::Int = 10000)
Resample by first truncating the distribution representing the value to some multiple
of its standard deviation around the mean.
## Example
```julia
uncertainval = UncertainValue(0, 0.8, Normal)
constraint = TruncateStd(1.1) # accept values only in range 1.1*stdev around the mean
# Resample the uncertain value by truncating the distribution furnishing it,
# then resampling the new distribution 1000 times.
resample(uncertainval, constraint, 1000)
```
"""
function resample(uv::AbstractUncertainValue, constraint::TruncateStd; n_draws::Int = 10000)
# Apply (another level of) truncation, then sample
stdev = std(resample(uv, n_draws))
m = mean(resample(uv, n_draws))
lower_bound = m - stdev
upper_bound = m + stdev
lower_bound > upper_bound ? error("lower bound > upper_bound") : nothing
rand(truncated(uv.distribution, lower_bound, upper_bound))
end
export resample | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1040 |
"""
resample(uvals::Vector{AbstractUncertainValue}, c::SamplingConstrant)
Treat `uvals` as a dataset and resample each value of `uvals` once,
Returns an `length(uvals)`-element vector.
"""
resample(uvals::Vector{AbstractUncertainValue}, c::SamplingConstrant) = resample.(uvals, c)
"""
resample(uvals::Vector{AbstractUncertainValue}, n::Int)
Treat `uvals` as a dataset and resample it `n` times.
Returns `n` resampled draws of `uvals`, each being a `length(uvals)`-element vector.
For each returned vector, the i-th element is a unique draw of `uvals[i]`.
"""
function resample(uvals::Vector{AbstractUncertainValue}, n::Int)
[resample.(uvals) for i = 1:n]
end
"""
resample_elwise(uvals::Vector{AbstractUncertainValue}, n::Int)
Resample each element in `uvals` `n` times. The i-th entry in the returned
vector is a `n`-element vector consisting of `n` unique draws of `uvals[i]`.
"""
function resample_elwise(uvals::Vector{AbstractUncertainValue}, n::Int)
[resample(uvals[i], n) for i = 1:length(uvals)]
end | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 983 |
"""
resample(uvals::Vector{AbstractUncertainValue})
Treat `uvals` as a dataset and resample each value of `uvals` once.
Returns an `length(uvals)`-element vector.
"""
resample(uvals::Vector{AbstractUncertainValue}) = resample.(uvals)
"""
resample(uvals::Vector{AbstractUncertainValue}, n::Int)
Treat `uvals` as a dataset and resample it `n` times.
Returns `n` resampled draws of `uvals`, each being a `length(uvals)`-element vector.
For each returned vector, the i-th element is a unique draw of `uvals[i]`.
"""
function resample(uvals::Vector{AbstractUncertainValue}, n::Int)
[resample.(uvals) for i = 1:n]
end
"""
resample_elwise(uvals::Vector{AbstractUncertainValue}, n::Int)
Resample each element in `uvals` `n` times. The i-th entry in the returned
vector is a `n`-element vector consisting of `n` unique draws of `uvals[i]`.
"""
function resample_elwise(uvals::Vector{AbstractUncertainValue}, n::Int)
[resample(uvals[i], n) for i = 1:length(uvals)]
end | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1527 |
resample(uv::AbstractVector{<:Number}) = uv
# No constraints
function resample(uv::DT) where {DT <: AbstractVector{<:AbstractUncertainValue}}
resample.(uv)
end
function resample(uv::DT, n::Int) where {DT <: AbstractVector{<:AbstractUncertainValue}}
[resample.(uv) for i = 1:n]
end
# Vectors of sampling constraints mapped to unique sampling constraints
function resample(uv::DT, constraint::Vector{<:SamplingConstraint}) where {
DT <: AbstractVector{<:AbstractUncertainValue}}
[resample(uv[i], constraint[i]) for i in 1:length(uv)]
end
function resample(uv::DT, constraint::Vector{<:SamplingConstraint}, n::Int) where {
DT <: AbstractVector{<:AbstractUncertainValue}}
[[resample(uv[i], constraint[i]) for i in 1:length(uv)] for k = 1:n]
end
# Vectors of sampling constraints mapped to unique sampling constraints
function resample(uv::DT, constraint::SamplingConstraint) where {
DT <: AbstractVector{<:AbstractUncertainValue}}
[resample(uv[i], constraint) for i in 1:length(uv)]
end
function resample(uv::DT, constraint::SamplingConstraint, n::Int) where {
DT <: AbstractVector{<:AbstractUncertainValue}}
[[resample(uv[i], constraint) for i in 1:length(uv)] for k = 1:n]
end
function resample(uv::DT, constraint::NoConstraint) where {
DT <: AbstractVector{<:AbstractUncertainValue}}
return uv
end
function resample(uv::DT, constraint::NoConstraint, n::Int) where {
DT <: AbstractVector{<:AbstractUncertainValue}}
return [uv for i = 1:n]
end | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 960 | using Reexport
@reexport module SamplingConstraints
import Distributions
# Sampling constraints types
include("constraint_definitions.jl")
# Fallbacks when encountering incompatible sampling constraints
include("fallback_constraints.jl")
# Truncate values
include("truncation/truncate.jl")
# Constrain uncertain values
include("constrain_uncertainvalue.jl")
include("constrain_certain_value.jl")
include("constrain_population.jl")
# Constrain uncertain datasets
include("constrain_uncertaindataset.jl")
include("constrain_uncertainvaluedataset.jl")
include("constrain_uncertainindexdataset.jl")
include("ordered_sequences/ordered_sequences.jl")
end # module
"""
SamplingConstraints
A module defining:
1. Sampling constraints for the data types in the `UncertainValues` and
`UncertainDatasets` modules.
2. Functions for resampling those data types.
"""
SamplingConstraints
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 358 | import ..UncertainValues: CertainValue
constrain(v::CertainValue) = v
constrain(v::CertainValue, s::SamplingConstraint) = v
constrain(v::CertainValue, s::TruncateLowerQuantile) = v
constrain(v::CertainValue, s::TruncateUpperQuantile) = v
constrain(v::CertainValue, s::TruncateQuantiles) = v
constrain(v::CertainValue, s::TruncateStd) = v
export constrain | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 724 | import ..UncertainValues:
AbstractScalarPopulation,
ConstrainedUncertainScalarPopulation
import StatsBase
import StatsBase: AbstractWeights
"""
constrain(pop::UncertainScalarPopulation, constraint::SamplingConstraint, n::Int = 30000)
Constrain an `UncertainScalarPopulation` by the given sampling `constraint`. If the
sampling constraint requires resampling to compute, resample `n` times.
"""
function constrain(pop::AbstractScalarPopulation{T, PW}, constraint::SamplingConstraint, n::Int = 30000) where {T, PW}
# Get the population members and weights that fullfill the constraint and return them as a
# ConstrainedUncertainScalarPopulation
truncate(pop, constraint, n)
end
export constrain | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1972 | import ..UncertainDatasets:ConstrainedUncertainDataset
"""
constrain(udata::UncertainDataset,
s::SamplingConstraint) -> ConstrainedUncertainDataset
Return a uncertain dataset by applying the constraint `s` to each
uncertain value in `udata`.
"""
constrain(udata::UncertainDataset, constraint::SamplingConstraint) =
ConstrainedUncertainDataset([constrain(uval, constraint) for uval in udata])
"""
constrain(udata::UncertainDataset,
constraints::Vector{T}) where {T<:SamplingConstraint} -> ConstrainedUncertainDataset
Return a uncertain dataset by applying a different sampling constraint to each uncertain
value in `udata`.
"""
function constrain(udata::UncertainDataset, constraints::Vector{T}) where {T<:SamplingConstraint}
if length(udata) != length(constraints)
error("Number of sampling constraints must match length of dataset.")
end
n_vals = length(udata)
ConstrainedUncertainDataset([constrain(udata[i], constraints[i]) for i in 1:n_vals])
end
"""
constrain(udata::ConstrainedUncertainDataset,
constraint::SamplingConstraint) -> ConstrainedUncertainDataset
Return a uncertain dataset by applying the constraint `s` to each
uncertain value in `udata`.
"""
constrain(udata::ConstrainedUncertainDataset, constraint::SamplingConstraint) =
ConstrainedUncertainDataset([constrain(uval, constraint) for uval in udata])
"""
constrain(udata::ConstrainedUncertainDataset,
constraints::Vector{T}) where {T<:SamplingConstraint} -> ConstrainedUncertainDataset
Return a uncertain dataset by applying a different sampling constraint to each uncertain
value in `udata`.
"""
function constrain(udata::ConstrainedUncertainDataset,
constraints::Vector{T}) where {T<:SamplingConstraint}
if length(udata) != length(constraints)
error("Number of sampling constraints must match length of dataset.")
end
n_vals = length(udata)
ConstrainedUncertainDataset([constrain(udata[i], constraints[i]) for i in 1:n_vals])
end
export constrain | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 2206 | import ..UncertainDatasets:
AbstractUncertainIndexDataset,
UncertainIndexDataset
import ..UncertainDatasets:ConstrainedUncertainIndexDataset
"""
constrain(udata::UncertainIndexDataset,
s::SamplingConstraint) -> ConstrainedUncertainIndexDataset
Return a uncertain dataset by applying the constraint `s` to each
uncertain value in `udata`.
"""
constrain(udata::UncertainIndexDataset, constraint::SamplingConstraint) =
ConstrainedUncertainIndexDataset([constrain(uval, constraint) for uval in udata])
"""
constrain(udata::UncertainIndexDataset,
constraints::Vector{T}) where {T<:SamplingConstraint} -> ConstrainedUncertainIndexDataset
Return a uncertain dataset by applying a different sampling constraint to each uncertain
value in `udata`.
"""
function constrain(udata::UncertainIndexDataset, constraints::Vector{T}) where {T<:SamplingConstraint}
if length(udata) != length(constraints)
error("Number of sampling constraints must match length of dataset.")
end
n_vals = length(udata)
ConstrainedUncertainIndexDataset([constrain(udata[i], constraints[i]) for i in 1:n_vals])
end
"""
constrain(udata::UncertainIndexDataset,
constraint::SamplingConstraint) -> ConstrainedUncertainIndexDataset
Return a uncertain dataset by applying the `constraint` to each
uncertain value in `udata`.
"""
constrain(udata::ConstrainedUncertainIndexDataset, constraint::SamplingConstraint) =
ConstrainedUncertainIndexDataset([constrain(uval, constraint) for uval in udata])
"""
constrain(udata::UncertainIndexDataset,
constraints::Vector{T}) where {T<:SamplingConstraint} -> ConstrainedUncertainIndexDataset
Return a uncertain dataset by applying a different sampling constraint to each uncertain
value in `udata`.
"""
function constrain(udata::ConstrainedUncertainIndexDataset,
constraints::Vector{T}) where {T<:SamplingConstraint}
if length(udata) != length(constraints)
error("Number of sampling constraints must match length of dataset.")
end
n_vals = length(udata)
ConstrainedUncertainIndexDataset([constrain(udata[i], constraints[i]) for i in 1:n_vals])
end
export constrain, verify_constraints | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 5835 |
#############################################################
# Constraining values
############################################################
"""
constrain_kde_distribution(uv::AbstractUncertainScalarKDE,
constraint::SamplingConstraint)
Return the TruncatedUncertainScalarKDE resulting from applying `constraint`
to `uv`.
"""
function constrain_kde_distribution(uv::AbstractUncertainScalarKDE,
constraint::SamplingConstraint)
range_subset, pdf_subset, idx_min, idx_max = truncate(uv, constraint)
TruncatedUncertainScalarKDE(
UnivariateKDE(range_subset, pdf_subset),
uv.values,
range_subset,
Weights(pdf_subset)
)
end
constrain_kde_distribution(uv::AbstractUncertainScalarKDE, constraint::NoConstraint) = uv
#############################################################
# Uncertain values represented by theoretical distributions
# with parameters fitted to empirical data
############################################################
"""
constrain_theoretical_fitted_distribution(
uv::TheoreticalFittedUncertainScalar,
truncated_dist::Distribution)
Return a constrained (truncated) version of an uncertain value represented
by a theoretical distribution with parameters fitted to empirical data.
"""
function constrain_theoretical_fitted_distribution(
uv::TheoreticalFittedUncertainScalar,
truncated_dist::Distribution)
ConstrainedUncertainScalarTheoreticalFit(FittedDistribution(truncated_dist), uv.values)
end
#############################################################
# Uncertain values represented by theoretical distributions
############################################################
"""
constrain_theoretical_distribution(
uv::AbstractUncertainOneParameterScalarValue,
truncated_dist::Distribution)
Return a constrained (truncated) version of an uncertain value represented
by a one-parameter theoretical distribution.
"""
function constrain_theoretical_distribution(
uv::AbstractUncertainOneParameterScalarValue,
truncated_dist::Distribution)
# Get parameters of original distribution
p1 = fieldnames(typeof(uv))[2]
ConstrainedUncertainScalarValueOneParameter(
truncated_dist,
getfield(uv, p1)
)
end
"""
constrain_theoretical_distribution(
uv::AbstractUncertainTwoParameterScalarValue,
truncated_dist::Distribution)
Return a constrained (truncated) version of an uncertain value represented
by a two-parameter theoretical distribution.
"""
function constrain_theoretical_distribution(
uv::AbstractUncertainTwoParameterScalarValue,
truncated_dist::Distribution)
# Get parameters of original distribution
p1, p2 = (fieldnames(typeof(uv))[2:3]...,)
ConstrainedUncertainScalarValueTwoParameter(
truncated_dist,
getfield(uv, p1),
getfield(uv, p2)
)
end
"""
constrain_theoretical_distribution(
uv::AbstractUncertainTwoParameterScalarValue,
truncated_dist::Distribution)
Return a constrained (truncated) version of an uncertain value represented
by a two-parameter theoretical distribution.
"""
function constrain_theoretical_distribution(
uv::AbstractUncertainThreeParameterScalarValue,
truncated_dist::Distribution)
# Get parameters of original distribution
p1, p2, p3 = (fieldnames(typeof(uv))[2:4]...,)
ConstrainedUncertainScalarValueThreeParameter(
truncated_dist,
getfield(uv, p1),
getfield(uv, p2),
getfield(uv, p3)
)
end
#############################################################
# Truncate uncertain values
############################################################
"""
constrain(uv::AbstractUncertainValue, constraint::SamplingConstraint)
Apply the `constraint` and truncate the support of the distribution
furnishing the uncertain value `uv`. Returns a constrained uncertain value.
"""
constrain(uv::AbstractUncertainValue, constraint::SamplingConstraint)
"""
constrain(uv::TheoreticalDistributionScalarValue,
constraint::SamplingConstraint) -> TheoreticalDistributionScalarValue
Apply the `constraint` and truncate the support of an uncertain value `uv`
furnished by a theoretical distribution.
"""
function constrain(uv::TheoreticalDistributionScalarValue,
constraint::SamplingConstraint)
constrain_theoretical_distribution(uv, truncate(uv, constraint))
end
"""
constrain(uv::TheoreticalFittedUncertainScalar,
constraint::SamplingConstraint) -> ConstrainedUncertainScalarTheoreticalFit
Apply the `constraint` and truncate the support of an uncertain value `uv`
furnished by a theoretical distribution where parameters are fitted to empirical
data.
"""
function constrain(uv::TheoreticalFittedUncertainScalar,
constraint::SamplingConstraint)
truncated_dist = truncate(uv, constraint)
constrain_theoretical_fitted_distribution(uv, truncated_dist)
end
"""
constrain(uv::AbstractUncertainScalarKDE,
constraint::SamplingConstraint) -> TruncatedUncertainScalarKDE
Apply the `constraint` and truncate the support of an uncertain value `uv`
represented by a kernel density estimate.
"""
function constrain(uv::AbstractUncertainScalarKDE,
constraint::SamplingConstraint)
constrain_kde_distribution(uv, constraint)
end
constrain(uvals::Vector{AbstractUncertainValue}, constraint::SamplingConstraint) =
[constrain(uval, constraint) for uval in uvals]
function constrain(uvals::Vector{AbstractUncertainValue},
constraints::Vector{SamplingConstraint})
[constrain(uvals[i], constraints[i]) for i = 1:length(uvals)]
end
export
ConstrainedUncertainScalarValueTwoParameter,
ConstrainedUncertainScalarValueThreeParameter,
truncate,
constrain
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 3244 | import ..UncertainDatasets:
AbstractUncertainValueDataset,
UncertainValueDataset
import ..UncertainDatasets:ConstrainedUncertainValueDataset
"""
constrain(udata::Vector{<:AbstractUncertainValue},
s::SamplingConstraint) -> ConstrainedUncertainValueDataset
Return a vector of uncertain value by applying the constraint `s` to each
uncertain value in `udata`.
"""
function constrain(udata::Vector{<:AbstractUncertainValue}, constraint::SamplingConstraint)
[constrain(uval, constraint) for uval in udata]
end
"""
constrain(udata::Vector{<:AbstractUncertainValue},
constraints::Vector{T}) where {T<:SamplingConstraint} -> Vector{<:AbstractUncertainValue}
Return a vector of uncertain values by applying a different sampling constraint to each uncertain
value in `udata`.
"""
function constrain(udata::Vector{<:AbstractUncertainValue},
constraints::Vector{T}) where {T <: SamplingConstraint}
if length(udata) != length(constraints)
error("Number of sampling constraints must match length of dataset.")
end
return [constrain(udata[i], constraints[i]) for i in 1:length(udata)]
end
"""
constrain(udata::AbstractUncertainValueDataset,
s::SamplingConstraint) -> ConstrainedUncertainValueDataset
Return a uncertain dataset by applying the constraint `s` to each
uncertain value in `udata`.
"""
function constrain(udata::DT, constraint::SamplingConstraint) where {
DT <: AbstractUncertainValueDataset}
ConstrainedUncertainValueDataset([constrain(uval, constraint) for uval in udata])
end
"""
constrain(udata::AbstractUncertainValueDataset,
constraints::Vector{T}) where {T<:SamplingConstraint} -> ConstrainedUncertainValueDataset
Return a uncertain dataset by applying a different sampling constraint to each uncertain
value in `udata`.
"""
function constrain(udata::DT, constraints::Vector{T}) where {
T<:SamplingConstraint,
DT <: AbstractUncertainValueDataset}
if length(udata) != length(constraints)
error("Number of sampling constraints must match length of dataset.")
end
n_vals = length(udata)
ConstrainedUncertainValueDataset([constrain(udata[i], constraints[i]) for i in 1:n_vals])
end
# """
# constrain(udata::ConstrainedUncertainValueDataset,
# constraint::SamplingConstraint) -> ConstrainedUncertainValueDataset
# Return a uncertain dataset by applying the `constraint` to each
# uncertain value in `udata`.
# """
# constrain(udata::ConstrainedUncertainValueDataset, constraint::SamplingConstraint) =
# ConstrainedUncertainValueDataset([constrain(uval, constraint) for uval in udata])
# """
# constrain(udata::ConstrainedUncertainValueDataset,
# constraints::Vector{T}) where {T<:SamplingConstraint} -> ConstrainedUncertainValueDataset
# Return a uncertain dataset by applying a different sampling constraint to each uncertain
# value in `udata`.
# """
# function constrain(udata::ConstrainedUncertainValueDataset,
# constraints::Vector{T}) where {T<:SamplingConstraint}
# if length(udata) != length(constraints)
# error("Number of sampling constraints must match length of dataset.")
# end
# n_vals = length(udata)
# ConstrainedUncertainValueDataset([constrain(udata[i], constraints[i]) for i in 1:n_vals])
# end
export constrain, verify_constraints | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 8711 |
import ..UncertainDatasets.AbstractUncertainValueDataset
import ..UncertainDatasets.UncertainDataset
import ..UncertainValues.UncertainScalarKDE
abstract type SamplingConstraint end
"""
NoConstraint
A (non)constraint indicating that the distribution furnishing an uncertain value
should be sampled its entire support.
"""
struct NoConstraint <: SamplingConstraint end
#########################################################################
# Sampling constraints for regular data (i.e. not age/depth/time index...,
# but the values associated to those indices).
#########################################################################
abstract type ValueSamplingConstraint <: SamplingConstraint end
"""
TruncateLowerQuantile(lower_quantile::Float64)
A constraint indicating that the distribution furnishing an uncertain value
should be truncated below at some quantile.
"""
struct TruncateLowerQuantile <: ValueSamplingConstraint
lower_quantile::Float64
end
"""
TruncateUpperQuantile(upper_quantile::Float64)
A constraint indicating that the distribution furnishing an uncertain value
should be truncated above at some quantile.
"""
struct TruncateUpperQuantile <: ValueSamplingConstraint
upper_quantile::Float64
end
"""
TruncateQuantiles(lower_quantile::Float64, upper_quantile::Float64)
A constraint indicating that the distribution furnishing an uncertain value
should be truncated at some quantile quantile
`(lower_quantile, upper_quantile)`.
"""
struct TruncateQuantiles{T1<:Real, T2<:Real} <: ValueSamplingConstraint
lower_quantile::T1
upper_quantile::T2
function TruncateQuantiles(lower_quantile::T1, upper_quantile::T2) where {T1, T2}
err_msg = "Need 0 <= lower_quantile < upper_quantile <= 1"
if !(lower_quantile < upper_quantile && 0.0 <= lower_quantile < upper_quantile <= 1.0)
throw(DomainError(err_msg * " (got lo = $lower_quantile, hi = $upper_quantile)"))
else
new{T1, T2}(lower_quantile, upper_quantile)
end
end
end
"""
TruncateStd(nσ::Number)
A constraint indicating that the distribution furnishing an uncertain value
should be truncated at the mean ± `nσ` (`n` standard deviations).
## Notes
- Beware when you apply the `TruncateStd` constraint to a (usually a numeric)
population with a small value range. With `nσ` small, you might end up with
a population mean *between* the actual values, so that the range
`[mean(pop) - nσ*std(pop), mean(pop) + nσ*std(pop)]` returns `nothing`.
"""
struct TruncateStd{T<:Number} <: ValueSamplingConstraint
nσ::T
function TruncateStd(nσ::T) where T
if nσ <= 0
err_str = "TruncateStd must be initialised with nσ strictly positive"
throw(DomainError(err_str * " (got nσ = $nσ)"))
else
new{T}(nσ)
end
end
end
"""
TruncateMinimum(min::Number)
A constraint indicating that the distribution furnishing an uncertain value
should be truncated below at some specified minimum value.
"""
struct TruncateMinimum{T<:Number} <: ValueSamplingConstraint
min::T
end
"""
TruncateMaximum(max::Number)
A constraint indicating that the distribution furnishing an uncertain value
should be truncated above at some specified maximum value.
"""
struct TruncateMaximum{T<:Number} <: ValueSamplingConstraint
max::T
end
"""
TruncateRange(min::Number, max::Number)
A constraint indicating that the distribution furnishing an uncertain value
should be truncated at some range `[min, max]`.
"""
struct TruncateRange{T1, T2} <: ValueSamplingConstraint
min::T1
max::T2
function TruncateRange(min::T1, max::T2) where {T1, T2}
if min <= max # <= ties are allowed, because we may encounter CertainValue instances
return new{T1, T2}(min, max)
else
err_msg = "Cannot create TruncateRange instance. Need min < max"
throw(DomainError(err_msg * " (got min = $min, max = $max)"))
end
end
end
export
SamplingConstraint,
NoConstraint,
ValueSamplingConstraint,
TruncateLowerQuantile,
TruncateUpperQuantile,
TruncateQuantiles,
TruncateMinimum,
TruncateMaximum,
TruncateRange,
TruncateStd
#########################################################################
# Sampling constraints for sample indices (time index, age, depth, etc...)
# Often, these need to be sampled to obey some physical criteria (i.e.,
# observations are from physical samples lying above each other, so the order
# of the observations cannot be mixed).
#########################################################################
include("ordered_sequences/ordered_sequence_algorithms.jl")
"""
IndexSamplingConstraint
An abstract type for sampling constraints valid only for indices.
"""
abstract type IndexSamplingConstraint <: SamplingConstraint end
#########################################################################
# Sequential sampling constraints
#########################################################################
abstract type SequentialSamplingConstraint{OA} end
# Add the ordered sampling scheme to the seqential sampling constraints,
# because that's all they affect. Defaults to `StartToEnd`.
#(::Type{SSC})(args...; kwargs...) where SSC<:SequentialSamplingConstraint = SSC(StartToEnd(), args...; kwargs...)
"""
StrictlyIncreasing(algorithm::OrderedSamplingAlgorithm;
n::Int = 50000, lq = 0.05, uq = 0.95)
Sampling scheme indicating element-wise sampling such that the resulting values
are strictly increasing in magnitude.
Increasing sequential sampling is only guaranteed when distributions have finite support.
Therefore, distributions are element-wise truncated to the lower and upper quantiles
`lq` and `uq`. For each distribution, this is done by drawing `n` values from it, then
finding the quantiles for that sample, and finally truncating the distribution to the empirical
quantile range.
`algorithm` is an instance of some `OrderedSamplingAlgorithm` (e.g. `StartToEnd`).
`n` is the number of samples to draw when computing quantiles.
Typically used when there are known, physical constraints on the measurements.
For example, geochemical measurements of sediments at different depths of a sediment core
are taken at physically separate depths in the core. Thus, the order of the indices cannot
be flipped, and must be strictly decreasing/increasing.
See also: [`StartToEnd`](@ref)
"""
struct StrictlyIncreasing{OA <: OrderedSamplingAlgorithm} <: SequentialSamplingConstraint{OA}
ordered_sampling_algorithm::OA
n::Int # number of samples to draw from samples
lq::Float64 # lower quantile
uq::Float64 # upper quantile
function StrictlyIncreasing(algorithm::OA = StartToEnd(); n::Int = 10000, lq = 0.05, uq = 0.95) where OA
if lq >= uq
throw(ArgumentError("Need lq < uq. Got lq=$(lq) > uq=$(uq)."))
end
new{OA}(algorithm, n, lq, uq)
end
end
"""
StrictlyIncreasing(algorithm::OrderedSamplingAlgorithm; n::Int = 50000)
Sampling scheme indicating element-wise sampling such that the resulting values
are strictly decreasing in magnitude.
Decreasing sequential sampling is only guaranteed when distributions have finite support.
Therefore, distributions are element-wise truncated to the lower and upper quantiles
`lq` and `uq`. For each distribution, this is done by drawing `n` values from it, then
finding the quantiles for that sample, and finally truncating the distribution to the empirical
quantile range.
`algorithm` is an instance of some `OrderedSamplingAlgorithm` (e.g. `StartToEnd`).
`n` is the number of samples to draw when computing quantiles.
Typically used when there are known, physical constraints on the measurements.
For example, geochemical measurements of sediments at different depths of a sediment core
are taken at physically separate depths in the core. Thus, the order of the indices cannot
be flipped, and must be strictly decreasing/increasing.
See also: [`StartToEnd`](@ref)
"""
struct StrictlyDecreasing{OA <: OrderedSamplingAlgorithm} <: SequentialSamplingConstraint{OA}
ordered_sampling_algorithm::OA
n::Int # number of samples to draw from samples
lq::Float64 # lower quantile
uq::Float64 # upper quantile
function StrictlyDecreasing(algorithm::OA = StartToEnd(); n::Int = 10000, lq = 0.05, uq = 0.95) where OA
if lq >= uq
throw(ArgumentError("Need lq < uq. Got lq=$(lq) > uq=$(uq)."))
end
new{OA}(algorithm, n, lq, uq)
end
end
export
IndexSamplingConstraint,
SequentialSamplingConstraint,
StrictlyIncreasing,
StrictlyDecreasing
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 869 | import ..UncertainValues.AbstractUncertainValue
import ..UncertainValues.AbstractUncertainScalarKDE
"""
Fallback constraints. This is necessary when sampling constraints are not compatible. For example,
the `TruncatedStd` constraint is not implemented for `UncertainScalarKDE`, so we need a fallback.
The default is to fall back to `NoConstraint()``.
"""
function fallback(s::SamplingConstraint, v::AbstractUncertainValue)
NoConstraint()
end
"""
fallback(uv::UncertainScalarKDE, constraint::TruncateStd)
Fallback constraint for a `TruncateStd` constraint applied to an
`UncertainScalarKDE` instance.
"""
function fallback(uv::AbstractUncertainScalarKDE, constraint::TruncateStd)
@warn "TruncateStd constraint is incompatible with UncertainScalarKDE. Falling back to TruncateQuantiles(0.33, 0.67)."
TruncateQuantiles(0.33, 0.67)
end
export fallback
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1597 | """
OrderedSamplingAlgorithm
An abstract type for ordered sampling algorithms.
"""
abstract type OrderedSamplingAlgorithm end
"""
StartToEnd
An ordered sampling algorithm indicating that values should be
treated consecutively from start to finish of the dataset.
"""
struct StartToEnd <: OrderedSamplingAlgorithm end
"""
EndToStart
An ordered sampling algorithm indicating that the values should be
treated consecutively from the end to the start of the dataset.
"""
struct EndToStart <: OrderedSamplingAlgorithm end
"""
RandPtOutwards
An ordered sampling algorithm indicating that the values should be
divided into two groups, separating the values at some midpoint
of the dataset. The two groups of values are then treated separately.
"""
struct RandPtOutwards <: OrderedSamplingAlgorithm
midpoint_idx::Int
end
"""
ChuncksForwards
An ordered sampling algorithm indicating that the values should be
divided into multiple (`n_chunks`) groups. The groups of values
are then treated separately, treating values from the start to the end of
each group.
"""
struct ChunksForwards <: OrderedSamplingAlgorithm
n_chunks::Int
end
"""
ChuncksBackwards
An ordered sampling algorithm indicating that the values should be
divided into multiple (`n_chunks`) groups. The groups of values
are then treated separately, treating values from the end to the start of
each group.
"""
struct ChunksBackwards <: OrderedSamplingAlgorithm
n_chunks::Int
end
export
OrderedSamplingAlgorithm,
StartToEnd,
EndToStart,
RandPtOutwards,
ChunksForwards,
ChunksBackwards | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 2736 | using IntervalArithmetic
include("utils.jl")
import ..AbstractUncertainIndexValueDataset
export
sequence_exists,
sequence_exists!
"""
sequence_exists(x, c::SequentialSamplingConstraint)
Does a point-by-point sequence through the uncertain dataset `x` exist that satisfies the criteria `c`?
If `x` is an `UncertainIndexValueDataset`, then check for a sequence through the indices only.
Before the check is performed, the distributions in `x` are truncated to the quantiles provided
by `c` to ensure they have finite supports.
## Example
```julia
# Create a set of time indices
# We construct this is such a way that we *know* an increasing sequence exists.
t = [UncertainValue(Normal, i, 2) for i in 1:N];
sequence_exists(t, StrictlyIncreasing(StartToEnd()))
```
"""
function sequence_exists end
# If data has uncertainties both in indices and values, check only for indices.
sequence_exists(x::AbstractUncertainIndexValueDataset, c) = sequence_exists(x.indices, c)
function sequence_exists(x, c::SequentialSamplingConstraint)
lqs, uqs = get_quantiles(x, c)
return sequence_exists(lqs, uqs, c), lqs, uqs
end
function sequence_exists!(lqs, uqs, x::AbstractUncertainValueDataset, c)
get_quantiles!(lqs, uqs, x, c)
return sequence_exists(lqs, uqs, c)
end
sequence_exists(x::AbstractUncertainIndexValueDataset, c::StrictlyIncreasing{StartToEnd}) =
sequence_exists(x.indices, c)
###########################
# Concrete implementations
###########################
"""
sequence_exists(udata::AbstractUncertainValueDataset, c::StrictlyDecreasing{StartToEnd})
Does a strictly decreasing sequence through the dataset exist? I.e, check that a strictly
decreasing sequence can be found after first
constraining each distribution to the provided quantile range (this
is necessary because some distributions may have infinite support).
"""
function sequence_exists(lqs, uqs, c::StrictlyIncreasing{StartToEnd})
L = length(lqs)
if any(lqs .> uqs) # ties are allowed, because we have `CertainValue`s
error("Not all `lqs[i]` are lower than uqs[i]. Quantile calculations are not meaningful.")
return false
end
for i = 1:L-1
if lqs[i] >= minimum(uqs[i+1:end])
return false
end
end
return true
end
function sequence_exists(lqs, uqs, c::StrictlyDecreasing{StartToEnd})
L = length(lqs)
if any(lqs .> uqs) # ties are allowed, because we have `CertainValue`s
error("Not all `lqs[i]` are lower than uqs[i]. Quantile calculations are not meaningful.")
return false
end
for i = 1:L-1
if uqs[i] < maximum(lqs[i+1:end])
return false
end
end
return true
end | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 3249 |
"""
get_quantiles(x, c::SequentialSamplingConstraint{<:OrderedSamplingAlgorithm}) → Tuple{Vector{Float64}, Vector{Float64}}
get_quantiles!(lqs, uqs, x, c::SequentialSamplingConstraint{<:OrderedSamplingAlgorithm}) → Tuple{Vector{Float64}, Vector{Float64}}
Get the element-wise lower and upper quantiles for `x` respecting the quantiles given by the constraint `c`.
The in-place `get_quantiles!` writes the quantiles to pre-allocated vectors `lqs` and `uqs`.
"""
function get_quantiles end
"""
get_quantiles(x, c::SequentialSamplingConstraint{<:OrderedSamplingAlgorithm}) → Tuple{Vector{Float64}, Vector{Float64}}
get_quantiles!(lqs, uqs, x, c::SequentialSamplingConstraint{<:OrderedSamplingAlgorithm}) → Tuple{Vector{Float64}, Vector{Float64}}
Get the element-wise lower and upper quantiles for `x` respecting the quantiles given by the constraint `c`.
The in-place `get_quantiles!` writes the quantiles to pre-allocated vectors `lqs` and `uqs`.
"""
function get_quantiles! end
const SSC = SequentialSamplingConstraint{<:OrderedSamplingAlgorithm}
# Generic case takes care of vectors of uncertain values
function get_quantiles(x, c::SSC)
lqs = quantile.(x, c.lq, c.n)
uqs = quantile.(x, c.uq, c.n)
return lqs, uqs
end
function get_quantiles!(lqs, uqs, x, c::SSC)
length(lqs) == length(uqs) == length(x) || error("Lengths of `lqs`, `uqs` and `x` do not match.")
lqs .= quantile.(x, c.lq, c.n)
uqs .= quantile.(x, c.uq, c.n)
end
# Be specific when it comes to concrete types with differently named data fields.
function get_quantiles(x::UncertainIndexDataset, c::SSC)
lqs = quantile.(x.indices, c.lq, c.n)
uqs = quantile.(x.indices, c.uq, c.n)
return lqs, uqs
end
function get_quantiles!(lqs, uqs, x::UncertainIndexDataset, c::SSC)
length(lqs) == length(uqs) == length(x) || error("Lengths of `lqs`, `uqs` and `x` do not match.")
lqs .= quantile.(x.indices, c.lq, c.n)
uqs .= quantile.(x.indices, c.uq, c.n)
end
function get_quantiles(x::UncertainValueDataset, c::SSC)
lqs = quantile.(x.values, c.lq, c.n)
uqs = quantile.(x.values, c.uq, c.n)
return lqs, uqs
end
function get_quantiles!(x::UncertainValueDataset, c::SSC)
length(lqs) == length(uqs) == length(x) || error("Lengths of `lqs`, `uqs` and `x` do not match.")
lqs .= quantile.(x.values, c.lq, c.n)
uqs .= quantile.(x.values, c.uq, c.n)
end
"""
truncated_supports(udata::AbstractUncertainValueDataset; quantiles = [0.001, 0.999])
Truncate the furnishing distribution of each uncertain value in the dataset
to the provided `quantiles` range. Returns a vector of Interval{Float64}, one
for each value.
"""
function truncated_supports(udata::AbstractUncertainValueDataset;
quantiles = [0.001, 0.999])
n_vals = length(udata)
# Using the provided quantiles, find the parts of the supports of the furnishing
# distributions from which we're going to sample.
supports = Vector{Interval{Float64}}(undef, n_vals)
for i = 1:n_vals
lowerbound = quantile(udata[i], minimum(quantiles))
upperbound = quantile(udata[i], maximum(quantiles))
supports[i] = interval(lowerbound, upperbound)
end
return supports
end
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 597 | # mean, median, std etc.. functions don't work on Distribution.Truncated instances,
# so we'll define them using a resampling approach
import Distributions.Truncated
import StatsBase:
mean,
median,
middle,
std,
mode,
quantile
mean(d::Truncated; n::Int = 10000) = mean(rand(d, n))
median(d::Truncated; n::Int = 10000) = median(rand(d, n))
middle(d::Truncated; n::Int = 10000) = median(rand(d, n))
std(d::Truncated; n::Int = 10000) = std(rand(d, n))
mode(d::Truncated; n::Int = 10000) = mode(rand(d, n))
quantile(d::Truncated, q; n::Int = 10000) = quantile(rand(d, n), q) | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1317 | import ..UncertainValues.TheoreticalDistributionScalarValue
import ..UncertainValues.AbstractUncertainOneParameterScalarValue
import ..UncertainValues.AbstractUncertainTwoParameterScalarValue
import ..UncertainValues.AbstractUncertainThreeParameterScalarValue
import ..UncertainValues.ConstrainedUncertainScalarValueOneParameter
import ..UncertainValues.ConstrainedUncertainScalarValueTwoParameter
import ..UncertainValues.ConstrainedUncertainScalarValueThreeParameter
import ..UncertainValues.TruncatedUncertainScalarKDE
import ..UncertainValues.AbstractUncertainScalarKDE
import ..UncertainValues.TheoreticalFittedUncertainScalar
import ..UncertainValues.ConstrainedUncertainScalarTheoreticalFit
import ..UncertainValues.FittedDistribution
import ..UncertainValues.getquantileindex
import Distributions.ValueSupport
import Distributions.Univariate
import Distributions.Distribution
import Distributions.support
import Distributions.Truncated
import Distributions: mean, std
import KernelDensity.UnivariateKDE
import StatsBase: quantile, Weights, mean, std
import Base.truncate
include("stats_on_truncated_distributions.jl")
include("truncate_kde.jl")
include("truncate_theoreticalscalar.jl")
include("truncate_theoretical_fitted.jl")
include("truncate_CertainValue.jl")
include("truncate_population.jl")
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1421 | import ..UncertainValues.CertainValue
Base.truncate(v::CertainValue) = v
function Base.truncate(v::CertainValue, constraint::TruncateMaximum)
if v.value > constraint.max
msg = "Truncating $v with $constraint failed\n"
msg2 = "Need value < constraint.max, got $v < $(constraint.max)"
throw(ArgumentError(msg * msg2))
else
return v
end
end
function Base.truncate(v::CertainValue, constraint::TruncateMinimum)
if v.value < constraint.min
msg = "Truncating $v with $constraint failed\n"
msg2 = "Need value > constraint.min, got $v > $(constraint.min)"
throw(ArgumentError(msg * msg2))
else
return v
end
end
function Base.truncate(v::CertainValue, constraint::TruncateRange)
if v.value < constraint.min
msg = "Truncating $v with $constraint failed\n"
msg2 = "Need value > constraint.min, got $v > $(constraint.min)"
throw(ArgumentError(msg * msg2))
elseif v.value > constraint.max
msg = "Truncating $v with $constraint failed\n"
msg2 = "Need value < constraint.max, got $v < $(constraint.max)"
throw(ArgumentError(msg * msg2))
else
return v
end
end
truncate(v::CertainValue, s::TruncateLowerQuantile) = v
truncate(v::CertainValue, s::TruncateUpperQuantile) = v
truncate(v::CertainValue, s::TruncateQuantiles) = v
truncate(v::CertainValue, s::TruncateStd) = v
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 7957 | import Base.truncate
################################################################
# Verify that support is not empty after applying constraints
################################################################
"""
verify_nonempty_support(uv::AbstractUncertainScalarKDE,
constraint::SamplingConstraint)
Check if the support of the distribution furnishing the uncertain value
is empty after applying the sampling constraint.
"""
verify_nonempty_support(uv::AbstractUncertainScalarKDE,
constraint::SamplingConstraint)
function verify_nonempty_support(uv::AbstractUncertainScalarKDE,
constraint::TruncateMaximum)
if constraint.max < minimum(uv.range)
minrange = minimum(uv.range)
truncmax = constraint.max
e = "constraint.max = $truncmax < minimum(uv.range) = $minrange"
throw(ArgumentError(e))
end
end
function verify_nonempty_support(uv::AbstractUncertainScalarKDE,
constraint::TruncateMinimum)
if constraint.min > maximum(uv.range)
truncmin = constraint.min
maxrange = maximum(uv.range)
e = "maximum(uv.range) = $maxrange < constraint.min = $truncmin"
throw(ArgumentError(e))
end
end
function verify_nonempty_support(uv::AbstractUncertainScalarKDE,
constraint::TruncateRange)
truncmin = constraint.min
truncmax = constraint.max
minrange = minimum(uv.range)
maxrange = maximum(uv.range)
if maxrange < truncmin && minrange > truncmax
e1 = "maximum(uv.range) = $maxrange < TruncateMinimum.min = $truncmin and "
e2 = "TruncateMaximum.max = $truncmax < minimum(uv.range) = $minrange"
throw(ArgumentError(string(e1, e2)))
elseif maxrange < truncmin
e = "maximum(uv.range) = $maxrange < TruncateMinimum.min = $truncmin"
throw(ArgumentError(e))
elseif minrange > truncmax
e = "TruncateMaximum.max = $truncmax < minimum(uv.range) = $minrange"
throw(ArgumentError(e))
end
end
export verify_nonempty_support
################################################################
# Truncating uncertain values based on kernel density estimates
################################################################
"""
truncate(uv::AbstractUncertainScalarKDE, constraint::SamplingConstraint)
Truncate an uncertain value `uv` furnished by a kernel density estimated
distribution using the supplied `constraint`.
"""
truncate(uv::AbstractUncertainScalarKDE, constraint::SamplingConstraint)
truncate(uv::AbstractUncertainScalarKDE, constraint::NoConstraint) = uv
"""
truncate(uv::AbstractUncertainScalarKDE, constraint::TruncateLowerQuantile)
Truncate the kernel density estimate to `uv`s distribution using a
`TruncateLowerQuantile` sampling constraint.
"""
function truncate(uv::AbstractUncertainScalarKDE, constraint::TruncateLowerQuantile)
idx_lower_quantile = getquantileindex(uv, constraint.lower_quantile)
# Subset the values and weights (values of the pdf at those values)
idx_min = idx_lower_quantile
idx_max = length(uv.pdf)
range_subset = uv.range[idx_min:idx_max]
pdf_subset = uv.pdf[idx_min:idx_max]
# Return truncated KDE and the indices used to subset. We have to normalise the pdf
# here, so that we're still dealing with a probability distribution.
range_subset, pdf_subset ./ sum(pdf_subset), idx_min, idx_max
end
"""
truncate(uv::AbstractUncertainScalarKDE, constraint::TruncateUpperQuantile)
Truncate the kernel density estimate to `uv`s distribution using a
`TruncateUpperQuantile` sampling constraint.
"""
function truncate(uv::AbstractUncertainScalarKDE, constraint::TruncateUpperQuantile)
idx_upper_quantile = getquantileindex(uv, constraint.upper_quantile)
# Subset the values and weights (values of the pdf at those values)
idx_min = 1
idx_max = idx_upper_quantile
range_subset = uv.range[idx_min:idx_max]
pdf_subset = uv.pdf[idx_min:idx_max]
# Return truncated KDE and the indices used to subset. We have to normalise the pdf
# here, so that we're still dealing with a probability distribution.
range_subset, pdf_subset ./ sum(pdf_subset), idx_min, idx_max
end
"""
truncate(uv::AbstractUncertainScalarKDE, constraint::TruncateQuantiles)
Truncate the kernel density estimate to `uv`s distribution using a
`TruncateQuantiles` sampling constraint.
"""
function truncate(uv::AbstractUncertainScalarKDE, constraint::TruncateQuantiles)
idx_lower_quantile = getquantileindex(uv, constraint.lower_quantile)
idx_upper_quantile = getquantileindex(uv, constraint.upper_quantile)
# Subset the values and weights (values of the pdf at those values)
idx_min = idx_lower_quantile
idx_max = idx_upper_quantile
range_subset = uv.range[idx_min:idx_max]
pdf_subset = uv.pdf[idx_min:idx_max]
# Return truncated KDE and the indices used to subset. We have to normalise the pdf
# here, so that we're still dealing with a probability distribution.
range_subset, pdf_subset ./ sum(pdf_subset), idx_min, idx_max
end
"""
truncate(uv::AbstractUncertainScalarKDE, constraint::TruncateMinimum)
Truncate the kernel density estimate to `uv`s distribution using a
`TruncateMinimum` sampling constraint.
"""
function truncate(uv::AbstractUncertainScalarKDE, constraint::TruncateMinimum;
test_support = true)
# Is the support empty after applying the constraint? If so, throw error.
test_support ? verify_nonempty_support(uv, constraint) : nothing
# Subset the values and weights (values of the pdf at those values)
idx_min = findfirst(uv.range .>= constraint.min)
idx_max = length(uv.pdf)
range_subset = uv.range[idx_min:idx_max]
pdf_subset = uv.pdf[idx_min:idx_max]
# Return truncated KDE and the indices used to subset. We have to normalise the pdf
# here, so that we're still dealing with a probability distribution.
range_subset, pdf_subset ./ sum(pdf_subset), idx_min, idx_max
end
"""
truncate(uv::AbstractUncertainScalarKDE, constraint::TruncateMaximum)
Truncate the kernel density estimate to `uv`s distribution using a
`TruncateMaximum` sampling constraint.
"""
function truncate(uv::AbstractUncertainScalarKDE, constraint::TruncateMaximum;
test_support = true)
# Is the support empty after applying the constraint? If so, throw error.
test_support ? verify_nonempty_support(uv, constraint) : nothing
# Subset the values and weights (values of the pdf at those values)
idx_min = 1
idx_max = findlast(uv.range .<= constraint.max)
range_subset = uv.range[idx_min:idx_max]
pdf_subset = uv.pdf[idx_min:idx_max]
# Return truncated KDE and the indices used to subset. We have to normalise the pdf
# here, so that we're still dealing with a probability distribution.
range_subset, pdf_subset ./ sum(pdf_subset), idx_min, idx_max
end
"""
truncate(uv::AbstractUncertainScalarKDE, constraint::TruncateRange)
Truncate the kernel density estimate to `uv`s distribution using a
`TruncateRange` sampling constraint.
"""
function truncate(uv::AbstractUncertainScalarKDE, constraint::TruncateRange;
test_support = true)
# Is the support empty after applying the constraint? If so, throw error.
test_support ? verify_nonempty_support(uv, constraint) : nothing
# Subset the values and weights (values of the pdf at those values)
idx_min = findfirst(uv.range .>= constraint.min)
idx_max = findlast(uv.range .<= constraint.max)
range_subset = uv.range[idx_min:idx_max]
pdf_subset = uv.pdf[idx_min:idx_max]
# Return truncated KDE and the indices used to subset. We have to normalise the pdf
# here, so that we're still dealing with a probability distribution.
range_subset, pdf_subset ./ sum(pdf_subset), idx_min, idx_max
end
truncate(uv::AbstractUncertainScalarKDE, constraint::TruncateStd) =
truncate(uv, fallback(uv, constraint))
export truncate | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 13821 | import ..UncertainValues:
AbstractScalarPopulation,
UncertainScalarPopulation,
UncertainValue
import Distributions
UVAL_TYPES = Union{T1, T2} where {T1 <: AbstractUncertainValue, T2 <: Distributions.Distribution}
"""
truncate(population::AbstractScalarPopulation, constraint::NoConstraint)
Get the elements and the associated sampling weights of the `population` members
satisfying the sampling `constraint`.
- If `constraint` is a `NoConstraint` instance, then all members and weights are
returned unmodified.
"""
function Base.truncate(pop::AbstractScalarPopulation, constraint::NoConstraint, n::Int = 30000)
ConstrainedUncertainScalarPopulation(pop.values, pop.probs)
end
############################################################
# Populations whose members are strictly real-valued scalars
############################################################
function Base.truncate(pop::UncertainScalarPopulation{T, PW}, constraint::TruncateRange, n::Int = 30000) where {T <: Number, PW}
inds = findall(constraint.min .<= pop.values .<= constraint.max)
if length(inds) == 0
#throw(ArgumentError("$pop could not be truncated. No values left after truncation."))
return nothing
end
ConstrainedUncertainScalarPopulation(pop.values[inds], pop.probs[inds])
end
function Base.truncate(pop::UncertainScalarPopulation{T, PW}, constraint::TruncateMaximum, n::Int = 30000) where {T <: Number, PW}
inds = findall(pop.values .<= constraint.max)
if length(inds) == 0
#throw(ArgumentError("$pop could not be truncated. No values left after truncation."))
return nothing
end
ConstrainedUncertainScalarPopulation(pop.values[inds], pop.probs[inds])
end
function Base.truncate(pop::UncertainScalarPopulation{T, PW}, constraint::TruncateMinimum, n::Int = 30000) where {T <: Number, PW}
inds = findall(constraint.min .<= pop.values)
if length(inds) == 0
#throw(ArgumentError("$pop could not be truncated. No values left after truncation."))
return nothing
end
ConstrainedUncertainScalarPopulation(pop.values[inds], pop.probs[inds])
end
function Base.truncate(pop::UncertainScalarPopulation{T, PW}, constraint::TruncateLowerQuantile, n::Int = 30000) where {T <: Number, PW}
lower_bound = quantile(pop, constraint.lower_quantile)
inds = findall(lower_bound .<= pop.values)
if length(inds) == 0
#throw(ArgumentError("$pop could not be truncated. No values left after truncation."))
return nothing
end
ConstrainedUncertainScalarPopulation(pop.values[inds], pop.probs[inds])
end
function Base.truncate(pop::UncertainScalarPopulation{T, PW}, constraint::TruncateUpperQuantile, n::Int = 30000) where {T <: Number, PW}
upper_bound = quantile(pop, constraint.upper_quantile)
inds = findall(pop.values .<= upper_bound)
if length(inds) == 0
#throw(ArgumentError("$pop could not be truncated. No values left after truncation."))
return nothing
end
ConstrainedUncertainScalarPopulation(pop.values[inds], pop.probs[inds])
end
function Base.truncate(pop::UncertainScalarPopulation{T, PW}, constraint::TruncateQuantiles, n::Int = 30000) where {T <: Number, PW}
lower_bound = quantile(pop, constraint.lower_quantile)
upper_bound = quantile(pop, constraint.upper_quantile)
inds = findall(lower_bound .<= pop.values .<= upper_bound)
if length(inds) == 0
#throw(ArgumentError("$pop could not be truncated. No values left after truncation."))
return nothing
end
ConstrainedUncertainScalarPopulation(pop.values[inds], pop.probs[inds])
end
function Base.truncate(pop::UncertainScalarPopulation{T, PW}, constraint::TruncateStd, n::Int = 30000) where {T <: Number, PW}
# Draw a sample of size `n` of the member of `p` according to their weights.
s = rand(pop, n)
# Compute mean and standard deviation
p_mean = mean(s)
p_stdev = std(s)
nσ = constraint.nσ
inds = findall(p_mean - p_stdev*nσ .<= pop.values .<= p_mean + p_stdev*nσ)
if length(inds) == 0
throw(ArgumentError("$pop could not be truncated. No values left after truncation."))
return nothing
end
ConstrainedUncertainScalarPopulation(pop.values[inds], pop.probs[inds])
end
############################################################
# Populations whose members are some sort of uncertain value
############################################################
TRUNCVAL_TYPES = Union{T1, T2} where {
T1 <: AbstractUncertainValue,
T2 <: Distributions.Distribution}
export TRUNCVAL_TYPES
function Base.truncate(pop::UncertainScalarPopulation{T, PW}, constraint::TruncateMinimum) where {
T <: AbstractUncertainValue, PW}
maxs = [maximum(uv) for uv in pop]
# Find all distributions whose supports start *above or at* the minimum value imposed by the constraint.
inds = findall(constraint.min .<= maxs)
if length(inds) == 0
throw(ArgumentError("$pop could not be truncated. No values left after truncation."))
end
# Constrain those distributions and match them with their respective probabilities
truncated_vals = Vector{TRUNCVAL_TYPES}(undef, length(inds))
for (i, val) in enumerate(pop[inds])
truncated_vals[i] = constrain(val, constraint)
end
truncated_vals = Vector{TRUNCVAL_TYPES}(undef, 0)
inds = Vector{Int}(undef, 0)
for (i, val) in enumerate(pop.values)
if maximum(val) >= constraint.min
c = constrain(val, constraint)
if !(c isa Nothing)
push!(inds, i)
push!(truncated_vals, c)
end
end
end
if length(inds) > 0
ConstrainedUncertainScalarPopulation(truncated_vals, pop.probs[inds])
else
nothing
end
end
function Base.truncate(pop::UncertainScalarPopulation{T, PW}, constraint::TruncateMinimum,
n::Int) where {T <: AbstractUncertainValue, PW}
Base.truncate(pop, constraint)
end
function Base.truncate(pop::UncertainScalarPopulation{T, PW}, constraint::TruncateMaximum) where {
T <: AbstractUncertainValue, PW}
mins = [minimum(uv) for uv in pop]
# Find all distributions whose supports start *below or at* the maximum value imposed by the constraint.
inds = findall(mins .<= constraint.max)
if length(inds) == 0
#throw(ArgumentError("$pop could not be truncated. No values left after truncation."))
return nothing
end
# Constrain those distributions and match them with their respective probabilities
truncated_vals = Vector{TRUNCVAL_TYPES}(undef, 0)
inds = Vector{Int}(undef, 0)
for (i, val) in enumerate(pop.values)
if minimum(val) < constraint.max
c = constrain(val, constraint)
if !(c isa Nothing)
push!(inds, i)
push!(truncated_vals, c)
end
end
end
if length(inds) > 0
return ConstrainedUncertainScalarPopulation(truncated_vals, pop.probs[inds])
else
return nothing
end
end
function Base.truncate(pop::UncertainScalarPopulation{T, PW}, constraint::TruncateMaximum,
n::Int) where {T <: AbstractUncertainValue, PW}
Base.truncate(pop, constraint)
end
function Base.truncate(pop::UncertainScalarPopulation{T, PW}, constraint::TruncateRange) where {
T <: AbstractUncertainValue, PW}
mins = [minimum(uv) for uv in pop]
maxs = [maximum(uv) for uv in pop]
# Find all distributions whose supports start *above or at* the minimum value imposed by the constraint.
satisfies_minconstraint = constraint.min .<= maxs
# Find all distributions whose supports start *below or at* the maximum value imposed by the constraint.
satisfies_maxconstraint = mins .<= constraint.max
# Find all distributions that satisfy both the lower constraint and the upper constraint
inds = findall(satisfies_minconstraint .& satisfies_maxconstraint)
if length(inds) == 0
#throw(ArgumentError("$pop could not be truncated. No values left after truncation."))
return nothing
end
# Constrain those distributions and match them with their respective probabilities
truncated_vals = Vector{TRUNCVAL_TYPES}(undef, length(inds))
for (i, val) in enumerate(pop[inds])
truncated_vals[i] = constrain(val, constraint)
end
ConstrainedUncertainScalarPopulation(truncated_vals, pop.probs[inds])
end
function Base.truncate(pop::UncertainScalarPopulation{T, PW}, constraint::TruncateRange,
n::Int) where {T <: AbstractUncertainValue, PW}
Base.truncate(pop, constraint)
end
function Base.truncate(pop::UncertainScalarPopulation{T, PW},
constraint::TruncateLowerQuantile,
n::Int = 30000) where {T <: AbstractUncertainValue, PW}
# We want to truncate each of the population members so that their furnishing distributions
# cannot yield numbers smaller than the overall quantile of the population. First
# find the overall lower quantile
population_lower_quantile = quantile(pop, constraint.lower_quantile, n)
# Now, truncate each of the population members below at the overall population lower
# quantile. Probabilities are kept the same.
truncated_vals = Vector{TRUNCVAL_TYPES}(undef, 0)
inds = Vector{Int}(undef, 0)
for (i, val) in enumerate(pop.values)
if maximum(val) > population_lower_quantile
push!(inds, i)
push!(truncated_vals, truncate(val, TruncateMinimum(population_lower_quantile)))
end
end
#println("There were $(length(inds)) population members left after truncation")
if length(inds) > 0
return ConstrainedUncertainScalarPopulation(truncated_vals, pop.probs[inds])
else
return nothing
end
end
function Base.truncate(pop::UncertainScalarPopulation{T, PW},
constraint::TruncateUpperQuantile,
n::Int = 30000) where {T <: AbstractUncertainValue, PW}
# We want to truncate each of the population members so that their furnishing distributions
# cannot yield numbers larger than the overall quantile of the population. First
# find the overall lower quantile
population_upper_quantile = quantile(pop, constraint.upper_quantile, n)
#@show "Overall quantile", population_upper_quantile
# Now, truncate each of the population members above at the overall population upper
# quantile. Probabilities are kept the same. We initialise an empty array, because
# some values of the population may be dropped during the truncation process.
truncated_vals = Vector{TRUNCVAL_TYPES}(undef, 0)
inds = Vector{Int}(undef, 0)
for (i, val) in enumerate(pop.values)
if minimum(val) < population_upper_quantile
push!(inds, i)
push!(truncated_vals, truncate(val, TruncateMaximum(population_upper_quantile)))
end
end
#println("There were $(length(inds)) population members left after truncation")
if length(inds) > 0
return ConstrainedUncertainScalarPopulation(truncated_vals, pop.probs[inds])
else
return nothing
end
end
function Base.truncate(pop::UncertainScalarPopulation{T, PW},
constraint::TruncateQuantiles,
n::Int = 30000) where {T <: AbstractUncertainValue, PW}
# We want to truncate each of the population members so that their furnishing distributions
# cannot yield numbers larger than the overall upper quantile of the population, nor
# numbers smaller than the overall lower quantile of the population. Find these.
population_upper_quantile = quantile(pop, constraint.upper_quantile, n)
population_lower_quantile = quantile(pop, constraint.lower_quantile, n)
# Now, truncate each of the population members at the range given by the overall quantiles
# Probabilities are kept the same.
truncated_vals = Vector{TRUNCVAL_TYPES}(undef, 0)
inds = Vector{Int}(undef, 0)
for (i, val) in enumerate(pop.values)
if maximum(val) > population_lower_quantile && minimum(val) < population_upper_quantile
push!(inds, i)
push!(truncated_vals, truncate(val, TruncateRange(population_lower_quantile, population_upper_quantile)))
end
end
if length(inds) > 0
return ConstrainedUncertainScalarPopulation(truncated_vals, pop.probs[inds])
else
return nothing
end
end
function Base.truncate(pop::UncertainScalarPopulation{T, PW},
constraint::TruncateStd{TN},
n::Int = 30000) where {T <: AbstractUncertainValue, PW, TN <: Number}
# We want to truncate each of the population members so that their furnishing distributions
# cannot yield numbers outside +- constraint.nσ*population_std.
s = rand(pop, n)
population_std = std(s)
population_mean = mean(s)
upper_bound = population_mean + (constraint.nσ*population_std)
lower_bound = population_mean - (constraint.nσ*population_std)
# Now, truncate each of the population members at the range given by the overall quantiles
# Probabilities are kept the same.
truncated_vals = Vector{TRUNCVAL_TYPES}(undef, 0)
inds = Vector{Int}(undef, 0)
for (i, val) in enumerate(pop.values)
if maximum(val) > lower_bound && minimum(val) < upper_bound
push!(inds, i)
push!(truncated_vals, truncate(val, TruncateRange(lower_bound, upper_bound)))
end
end
if length(inds) > 0
return ConstrainedUncertainScalarPopulation(truncated_vals, pop.probs[inds])
else
return nothing
end
end
export truncate | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 308 |
function Base.truncate(uv::TheoreticalFittedUncertainScalar,
constraint::TruncateStd; n_draws::Int = 10000)
m = mean(uv.distribution.distribution)
s = std(uv.distribution.distribution)
lower_bound = m - s
upper_bound = m + s
truncated(uv.distribution, lower_bound, upper_bound)
end
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 5345 | import Distributions: truncated
function validate_bounds(lower, upper, uv, constraint)
if lower >= upper
msg = "lower_bound < upper_bound required, got $lower <= $upper"
msg2 = "cannot truncate $uv with $constraint\n"
throw(ArgumentError(msg2*msg))
end
end
################################################################
# Truncating uncertain values based on theoretical distributions
# Operating on the union of both TheoreticalFittedUncertainScalar
# and TheoreticalDistributionScalarValue as the type of the
# uncertain value is ok, because Truncated is defined for
# FittedDistribution, which is the .distribution fild for
# fitted scalars.
################################################################
"""
truncate(uv::TheoreticalDistributionScalarValue, constraint::SamplingConstraint)
Truncate an uncertain value `uv` represented by a theoretical distribution
according to the sampling `constraint`.
"""
Base.truncate(uv::TheoreticalDistributionScalarValue, constraint::SamplingConstraint)
"""
truncate(uv::TheoreticalDistributionScalarValue,
constraint::NoConstraint)
Truncate the theoretical distribution furnishing `uv` using a
`NoConstraint` sampling constraint.
"""
function Base.truncate(uv::TheoreticalDistributionScalarValue,
constraint::NoConstraint)
s = support(uv.distribution)
lower_bound, upper_bound = s.lb, s.ub
return truncated(uv.distribution, lower_bound, upper_bound)
end
"""
truncate(uv::TheoreticalDistributionScalarValue,
constraint::TruncateQuantiles)
Truncate the theoretical distribution furnishing `uv` using a
`TruncateQuantiles` sampling constraint.
"""
function Base.truncate(uv::TheoreticalDistributionScalarValue,
constraint::TruncateQuantiles)
lower_bound = quantile(uv.distribution, constraint.lower_quantile)
upper_bound = quantile(uv.distribution, constraint.upper_quantile)
validate_bounds(lower_bound, upper_bound, uv, constraint)
truncated(uv.distribution, lower_bound, upper_bound)
end
"""
truncate(uv::TheoreticalDistributionScalarValue,
constraint::TruncateLowerQuantile)
Truncate the theoretical distribution furnishing `uv` using a
`TruncateLowerQuantile` sampling constraint.
"""
function Base.truncate(uv::TheoreticalDistributionScalarValue,
constraint::TruncateLowerQuantile)
lower_bound = quantile(uv.distribution, constraint.lower_quantile)
upper_bound = maximum(uv)
validate_bounds(lower_bound, upper_bound, uv, constraint)
truncated(uv.distribution, lower_bound, upper_bound)
end
"""
truncate(uv::TheoreticalDistributionScalarValue,
constraint::TruncateUpperQuantile)
Truncate the theoretical distribution furnishing `uv` using a
`TruncateUpperQuantile` sampling constraint.
"""
function Base.truncate(uv::TheoreticalDistributionScalarValue,
constraint::TruncateUpperQuantile)
lower_bound = minimum(uv)
upper_bound = quantile(uv.distribution, constraint.upper_quantile)
validate_bounds(lower_bound, upper_bound, uv, constraint)
truncated(uv.distribution, lower_bound, upper_bound)
end
"""
truncate(uv::TheoreticalDistributionScalarValue,
constraint::TruncateMinumum)
Truncate the theoretical distribution furnishing `uv` using a
`TruncateMinimum` sampling constraint.
"""
function Base.truncate(uv::TheoreticalDistributionScalarValue,
constraint::TruncateMinimum)
lower_bound = constraint.min
upper_bound = maximum(uv)
validate_bounds(lower_bound, upper_bound, uv, constraint)
truncated(uv.distribution, lower_bound, upper_bound)
end
"""
truncate(uv::TheoreticalDistributionScalarValue,
constraint::TruncateMaximum)
Truncate the theoretical distribution furnishing `uv` using a
`TruncateMaximum` sampling constraint.
"""
function Base.truncate(uv::TheoreticalDistributionScalarValue,
constraint::TruncateMaximum)
lower_bound = minimum(uv)
upper_bound = constraint.max
validate_bounds(lower_bound, upper_bound, uv, constraint)
truncated(uv.distribution, lower_bound, upper_bound)
end
"""
truncate(uv::TheoreticalDistributionScalarValue,
constraint::TruncateRange)
Truncate the theoretical distribution furnishing `uv` using a
`TruncateRange` sampling constraint.
"""
function Base.truncate(uv::TheoreticalDistributionScalarValue,
constraint::TruncateRange)
lower_bound = constraint.min
upper_bound = constraint.max
validate_bounds(lower_bound, upper_bound, uv, constraint)
truncated(uv.distribution, lower_bound, upper_bound)
end
"""
truncate(uv::TheoreticalDistributionScalarValue,
constraint::TruncateStd, n::Int = 10000)
Truncate the theoretical distribution furnishing `uv` using a
`TruncateStd` sampling constraint.
This functions needs to compute the mean and standard deviation
of a truncated distribution, so takes an extra optional argument `n_draws` to allow
this.
"""
function Base.truncate(uv::TheoreticalDistributionScalarValue,
constraint::TruncateStd)
m = mean(uv.distribution)
s = std(uv.distribution)
lower_bound = m - s
upper_bound = m + s
validate_bounds(lower_bound, upper_bound, uv, constraint)
truncated(uv.distribution, lower_bound, upper_bound)
end
export truncate | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 256 |
@reexport module SensitivityTests
""" An abstract type indicating a sensitivity test. """
abstract type SensitivityTest end
export SensitivityTest
end
"""
SensitivityTests
A module defining sensitivity tests.
"""
SensitivityTests
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 2971 | import HypothesisTests.LjungBoxTest
import HypothesisTests.BoxPierceTest
#
#
# """
# LjungBoxTest(d::UncertainDataset; n::Int = 10000,
# lag::Int = 1, dof::Int = 0) -> LjungBoxTest
#
# Compute the Ljung-Box `Q` statistic to test the null hypothesis of
# independence in a data series represented by the uncertain dataset `d`.
#
# `lag` specifies the number of lags used in the construction of `Q`. When
# testing the residuals of an estimated model, `dof` has to be set to the number
# of estimated parameters. E.g., when testing the residuals of an ARIMA(p,0,q)
# model, set `dof=p+q`.
# """
# function LjungBoxTest(d::UncertainDataset; lag::Int = 1, dof::Int = 0)
# LjungBoxTest(resample(d, 1)[1], lag, dof)
# end
#
# """
# LjungBoxTest(d::UncertainDataset, n_tests::Int = 100; lag::Int = 1, dof::Int = 0) -> LjungBoxTest
#
# Compute the Ljung-Box `Q` statistic to test the null hypothesis of
# independence in a data series represented by the uncertain dataset `d`
# by performing the test on `n` independent draws of the dataset.
#
# `lag` specifies the number of lags used in the construction of `Q`. When
# testing the residuals of an estimated model, `dof` has to be set to the number
# of estimated parameters. E.g., when testing the residuals of an ARIMA(p,0,q)
# model, set `dof=p+q`.
# """
# function LjungBoxTest(d::UncertainDataset, n_tests::Int = 100; lag::Int = 1, dof::Int = 0)
# [LjungBoxTest(resample(d)[1], lag, dof) for i = 1:n_tests]
# end
#
# """
# BoxPierceTest(d::UncertainDataset;
# lag::Int = 1, dof::Int = 0) -> Vector{BoxPierceTest}
#
# Compute the Box-Pierce `Q` statistic to test the null hypothesis of
# independence in a data series represented by the uncertain dataset `d`.
#
# `lag` specifies the number of lags used in the construction of `Q`. When
# testing the residuals of an estimated model, `dof` has to be set to the number
# of estimated parameters. E.g., when testing the residuals of an ARIMA(p,0,q)
# model, set `dof=p+q`.
# """
# function BoxPierceTest(d::UncertainDataset; lag::Int = 1, dof::Int = 0)
# BoxPierceTest(resample(d, 1)[1], lag, dof)
# end
#
#
# """
# BoxPierceTest(d::UncertainDataset, n_tests::Int = 100;
# lag::Int = 1, dof::Int = 0) -> BoxPierceTest
#
# Compute the BoxPierceTest `Q` statistic to test the null hypothesis of
# independence in a data series represented by the uncertain dataset `d`
# by performing the test on `n` independent draws of the dataset.
#
# `lag` specifies the number of lags used in the construction of `Q`. When
# testing the residuals of an estimated model, `dof` has to be set to the number
# of estimated parameters. E.g., when testing the residuals of an ARIMA(p,0,q)
# model, set `dof=p+q`.
# """
# function BoxPierceTest(d::UncertainDataset, n_tests::Int = 100;
# lag::Int = 1, dof::Int = 0)
# [BoxPierceTest(resample(d, 1)[1], lag, dof) for i = 1:n_tests]
# end
#
#
# export
# LjungBoxTest,
# BoxPierceTest
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1468 | using Reexport
@reexport module UncertainStatistics
using StatsBase
using Distributions
# Uncertain values and datasets types
using ..UncertainValues
using ..UncertainDatasets
# Sampling constraints and resampling functions
using ..Resampling
import ..UVAL_COLLECTION_TYPES
# Definitions of statistical methods for UncertainDatasets
include("statsbase/uncertain_values/core_stats_point_estimates.jl")
include("statsbase/uncertain_values/core_stats_pair_estimates.jl")
include("statsbase/uncertain_datasets/core_stats_uncertaindatasets.jl")
include("statsbase/uncertain_datasets/core_stats_uncertaindatasets_single_estimates.jl")
include("statsbase/uncertain_datasets/core_stats_uncertaindatasets_pairwise_estimates.jl")
include("hypothesis_tests/mann_whitney.jl")
include("hypothesis_tests/t_tests.jl")
include("hypothesis_tests/anderson_darling.jl")
include("hypothesis_tests/kolmogorov_smirnov.jl")
include("hypothesis_tests/jarque_bera.jl")
include("hypothesis_tests/timeseries_tests.jl")
#include("StatsBase_meanfunctions.jl")
#include("StatsBase_scalarstatistics_moments.jl")
#include("StatsBase_variation.jl")
#include("StatsBase_zscores.jl")
#include("StatsBase_entropies.jl")
#include("StatsBase_quantiles.jl")
end
"""
UncertainStatistics
A module defining function to compute various statistics for uncertain values
and uncertain datasets.
"""
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1837 | import HypothesisTests.OneSampleADTest
"""
OneSampleADTest(uv::UncertainValue, d::UnivariateDistribution,
n::Int = 1000) -> OneSampleADTest
Perform a one-sample Anderson–Darling test of the null hypothesis that
a draw of `n` realisations of the uncertain value `uv` comes from the
distribution `d` against the alternative hypothesis that the sample is not
drawn from `d`.
"""
function OneSampleADTest(uv::AbstractUncertainValue, d::UnivariateDistribution, n::Int = 1000)
x = resample(uv, n)
OneSampleADTest(x, d)
end
"""
OneSampleADTestPooled(ud::UncertainDataset, d::UnivariateDistribution,
n::Int = 1000)) -> OneSampleADTest
First, draw `n` realisations of each uncertain value in `ud` and pool them
together. Then perform a one-sample Anderson–Darling test of the null
hypothesis that the pooled values comes from the distribution `d` against the
alternative hypothesis that the sample is not drawn from `d`.
"""
function OneSampleADTestPooled(ud::UncertainDataset, d::UnivariateDistribution, n::Int = 1000)
x = vcat(resample(ud, n)...,)
OneSampleADTest(x, d)
end
"""
OneSampleADTestElementWise(ud::UncertainDataset, d::UnivariateDistribution,
n::Int = 1000)) -> Vector{OneSampleADTest}
First, draw `n` realisations of each uncertain value in `ud`, keeping one
pool of values for each uncertain value.
Then, perform an element-wise (pool-wise) one-sample Anderson–Darling test of
the null hypothesis that each value pool comes from the distribution `d`
against the alternative hypothesis that the sample is not drawn from `d`.
"""
function OneSampleADTestElementWise(ud::UncertainDataset, d::UnivariateDistribution, n::Int = 1000)
[OneSampleADTest(resample(ud[i], n), d) for i = 1:length(ud)]
end
export
OneSampleADTest,
OneSampleADTestPooled,
OneSampleADTestElementWise
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 2654 | # The original license on the t-tests from HypothesisTests.jl
# is as follows. We're including it here because we're mostly copying the
# documentation of the functions.
#
# jarque_bera.jl
# Jarque-Bera goodness-of-fit test
#
# Copyright (C) 2017 Benjamin Born
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import HypothesisTests.JarqueBeraTest
"""
JarqueBeraTest(d::AbstractUncertainValue, n::Int = 1000) -> JarqueBeraTest
Compute the Jarque-Bera statistic to test the null hypothesis that an uncertain
value is normally distributed.
"""
function JarqueBeraTest(d::AbstractUncertainValue, n::Int = 1000)
x = resample(d, n)
JarqueBeraTest(x)
end
"""
JarqueBeraTestPooled(ud::UncertainDataset, n::Int = 1000) -> JarqueBeraTest
First, draw `n` realisations of each uncertain value in `ud` and pool them
together. Then, compute the Jarque-Bera statistic to test the null hypothesis
that the values of the pool are normally distributed.
"""
function JarqueBeraTestPooled(ud::UncertainDataset, n::Int = 1000)
x = vcat(resample(ud, n)...,)
JarqueBeraTest(x)
end
"""
OneSampleADTestElementWise(ud::UncertainDataset,
n::Int = 1000) -> Vector{JarqueBeraTest}
First, draw `n` realisations of each uncertain value in `ud`, keeping one
pool of values for each uncertain value.
Then, compute the Jarque-Bera statistic to test the null hypothesis that each
value pool is normally distributed.
"""
function JarqueBeraTestElementWise(ud::UncertainDataset, n::Int = 1000)
[JarqueBeraTest(resample(ud[i], n)) for i = 1:length(ud)]
end
export
JarqueBeraTest,
JarqueBeraTestPooled,
JarqueBeraTestElementWise
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 6257 | # The original license on the t-tests from HypothesisTests.jl
# is as follows. We're including it here because we're mostly copying the
# documentation of the functions.
#
# kolmogorov_smirnov.jl
# Kolmogorov–Smirnov
#
# Copyright (C) 2014 Christoph Sawade
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import HypothesisTests.ExactOneSampleKSTest
import HypothesisTests.ApproximateTwoSampleKSTest
"""
ExactOneSampleKSTest(uv::AbstractUncertainValue,
d::UnivariateDistribution, n::Int = 1000) -> ExactOneSampleKSTest
Perform a one-sample exact Kolmogorov–Smirnov test of the null hypothesis that
a draw of `n` realisations of the uncertain value `uv` comes from the
distribution `d` against the alternative hypothesis that the sample is not
drawn from `d`.
"""
function ExactOneSampleKSTest(uv::AbstractUncertainValue,
d::UnivariateDistribution, n::Int = 1000)
x = resample(uv, n)
ExactOneSampleKSTest(x, d)
end
"""
ExactOneSampleKSTestPooled(ud::UncertainDataset,
d::UnivariateDistribution, n::Int = 1000) -> ExactOneSampleKSTest
First, draw `n` realisations of each uncertain value in `ud` and pool them
together. Then perform a one-sample exact Kolmogorov–Smirnov test of the null
hypothesis that the pooled values comes from the distribution `d` against the
alternative hypothesis that the sample is not drawn from `d`.
"""
function ExactOneSampleKSTestPooled(ud::UncertainDataset,
d::UnivariateDistribution, n::Int = 1000)
x = vcat(resample(ud, n)...,)
ExactOneSampleKSTest(x, d)
end
"""
ExactOneSampleKSTestElementWise(ud::UncertainDataset,
d::UnivariateDistribution, n::Int = 1000) -> Vector{ExactOneSampleKSTest}
First, draw `n` realisations of each uncertain value in `ud`, keeping one
pool of values for each uncertain value.
Then, perform an element-wise (pool-wise) one-sample exact Kolmogorov–Smirnov
test of the null hypothesis that each value pool comes from the distribution `d`
against the alternative hypothesis that the sample is not drawn from `d`.
"""
function ExactOneSampleKSTestElementWise(ud::UncertainDataset,
d::UnivariateDistribution, n::Int = 1000)
[ExactOneSampleKSTest(resample(ud[i], n), d) for i = 1:length(ud)]
end
"""
ApproximateTwoSampleKSTest(d1::AbstractUncertainValue,
d2::AbstractUncertainValue, n::Int = 1000) -> ApproximateTwoSampleKSTest
Perform an asymptotic two-sample Kolmogorov–Smirnov-test of the null hypothesis
that the distribution furnishing the uncertain value `d1` represent the same
distribution as the distribution furnishing the uncertain value `d2`
against the alternative hypothesis that the furnishing distributions are
different.
"""
function ApproximateTwoSampleKSTest(d1::AbstractUncertainValue,
d2::AbstractUncertainValue,
n::Int = 1000)
x = resample(d1, n)
y = resample(d2, n)
ApproximateTwoSampleKSTest(x, y)
end
"""
ApproximateTwoSampleKSTestPooled(d1::UncertainDataset,
d2::UncertainDataset, n::Int = 1000) -> ApproximateTwoSampleKSTest
First, draw `n` realisations of each uncertain value in `d1`, then separately
draw `n` realisations of each uncertain value in `d2`. Then, pool all
realisations for `d1` together and all realisations of `d2` together.
On the pooled realisations, perform an asymptotic two-sample
Kolmogorov–Smirnov-test of the null hypothesis that the distribution furnishing
the `d1` value pool represents the same distribution as the distribution
furnishing the `d2` value pool, against the alternative hypothesis that the
furnishing distributions are different.
"""
function ApproximateTwoSampleKSTestPooled(d1::UncertainDataset,
d2::UncertainDataset,
n::Int = 1000)
x = vcat(resample(d1, n)...,)
y = vcat(resample(d2, n)...,)
ApproximateTwoSampleKSTest(x, y)
end
"""
ApproximateTwoSampleKSTestElementWise(d1::UncertainDataset,
d2::UncertainDataset, n::Int = 1000) -> Vector{ApproximateTwoSampleKSTest}
Assuming `d1` and `d2` contain the same number of uncertain observations,
draw `n` realisations of each uncertain value in `d1`, then separately and
separately draw `n` realisations of each uncertain value in `d2`.
Then, perform an asymptotic two-sample Kolmogorov–Smirnov-test of
the null hypothesis that the uncertain values in `d1` and `d2` come from
the same distribution against the alternative hypothesis that the (element-wise)
values in `d1` and `d2` come from different distributions.
The test is performed pairwise, i.e. ApproximateTwoSampleKSTest(d1[i], d2[i])
with `n` draws for the ``i``-ith pair of uncertain values.
"""
function ApproximateTwoSampleKSTestElementWise(d1::UncertainDataset,
d2::UncertainDataset,
n::Int = 1000)
N = length(d1)
[ApproximateTwoSampleKSTest(resample(d1[i], n), resample(d2[i], n)) for i = 1:N]
end
export
ExactOneSampleKSTest,
ExactOneSampleKSTestPooled,
ExactOneSampleKSTestElementWise,
ApproximateTwoSampleKSTest,
ApproximateTwoSampleKSTestPooled,
ApproximateTwoSampleKSTestElementWise
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 5549 | # The original license on the Mann-Whitney tests from HypothesisTests.jl
# is as follows (the filename is wrong, though). We're including it here
# because we're mostly copying the documentation of the functions.
#
# Wilcoxon.jl
# Wilcoxon rank sum (Mann-Whitney U) tests
#
# Copyright (C) 2012 Simon Kornblith
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import HypothesisTests.MannWhitneyUTest
"""
MannWhitneyUTest(d1::AbstractUncertainValue, d2::AbstractUncertainValue,
n::Int = 1000) -> MannWhitneyUTest
Let `s1` and `s2` be samples of `n` realisations from the distributions
furnishing the uncertain values `d1` and `d2`.
Perform a Mann-Whitney U test of the null hypothesis that the probability that
an observation drawn from the same population as `s1` is greater than an
observation drawn from the same population as `s2` is equal to the probability
that an observation drawn from the same population as `s2` is greater than an
observation drawn from the same population as `s1` against the alternative
hypothesis that these probabilities are not equal.
The Mann-Whitney U test is sometimes known as the Wilcoxon rank-sum test.
When there are no tied ranks and ≤50 samples, or tied ranks and ≤10 samples,
`MannWhitneyUTest` performs an exact Mann-Whitney U test. In all other cases,
`MannWhitneyUTest` performs an approximate Mann-Whitney U test.
"""
function MannWhitneyUTest(d1::AbstractUncertainValue, d2::AbstractUncertainValue,
n::Int = 1000)
x = resample(d1, n)
y = resample(d2, n)
MannWhitneyUTest(x, y)
end
"""
MannWhitneyUTest(d1::UncertainDataset, d2::UncertainDataset,
n::Int = 1000) -> MannWhitneyUTest
Let ``s_{1_{i}}`` be a sample of `n` realisations of the distribution
furnishing the uncertain value `d1[i]`, where ``i \\in [1, 2, \\ldots, N]``
and ``N`` is the number of uncertain values in `d1`. Next, gather the
samples for all ``s_{1_{i}}`` in a pooled sample ``S_1``. Do the same
for the second uncertain dataset `d2`, yielding the pooled sample ``S_2``.
Perform a Mann-Whitney U test of the null hypothesis that the probability that
an observation drawn from the same population as ``S_1`` is greater than an
observation drawn from the same population as ``S_2`` is equal to the probability
that an observation drawn from the same population as ``S_2`` is greater than an
observation drawn from the same population as ``S_1`` against the alternative
hypothesis that these probabilities are not equal.
The Mann-Whitney U test is sometimes known as the Wilcoxon rank-sum test.
When there are no tied ranks and ≤50 samples, or tied ranks and ≤10 samples,
`MannWhitneyUTest` performs an exact Mann-Whitney U test. In all other cases,
`MannWhitneyUTest` performs an approximate Mann-Whitney U test.
"""
function MannWhitneyUTestPooled(d1::UncertainDataset,
d2::UncertainDataset,
n::Int = 1000)
x = vcat(resample(d1, n)...,)
y = vcat(resample(d2, n)...,)
MannWhitneyUTest(x, y)
end
"""
MannWhitneyUTest(d1::UncertainDataset, d2::UncertainDataset,
n::Int = 1000) -> Vector{MannWhitneyUTest}
Assume `d1` and `d2` consist of the same number of uncertain values.
Let ``s_{1_{i}}`` be a sample of `n` realisations of the distribution
furnishing the uncertain value `d1[i]`, where ``i \\in [1, 2, \\ldots, N]``
and ``N`` is the number of uncertain values in `d1`. Let ``s_{2_{i}}`` be
the corresponding sample for `d2[i]`. This function
Perform an element-wise Mann-Whitney U test of the null hypothesis that the
probability that an observation drawn from the same population as ``s_{1_{i}}``
is greater than an observation drawn from the same population as ``s_{2_{i}}``
is equal to the probability that an observation drawn from the same population
as ``s_{2_{i}}`` is greater than an observation drawn from the same population
as ``s_{1_{i}}`` against the alternative hypothesis that these probabilities
are not equal.
The Mann-Whitney U test is sometimes known as the Wilcoxon rank-sum test.
When there are no tied ranks and ≤50 samples, or tied ranks and ≤10 samples,
`MannWhitneyUTest` performs an exact Mann-Whitney U test. In all other cases,
`MannWhitneyUTest` performs an approximate Mann-Whitney U test.
"""
function MannWhitneyUTestElementWise(d1::UncertainDataset,
d2::UncertainDataset,
n::Int = 1000)
N = length(d1)
[MannWhitneyUTest(resample(d1[i], n), resample(d2[i], n)) for i = 1:N]
end
export
MannWhitneyUTest,
MannWhitneyUTestPooled,
MannWhitneyUTestElementWise
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 10969 | # The original license on the t-tests from HypothesisTests.jl
# is as follows. We're including it here because we're mostly copying the
# documentation of the functions.
#
# t.jl
# Various forms of t-tests
#
# Copyright (C) 2012 Simon Kornblith
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import HypothesisTests.OneSampleTTest
import HypothesisTests.EqualVarianceTTest
import HypothesisTests.UnequalVarianceTTest
"""
EqualVarianceTTest(d1::AbstractUncertainValue, d2::AbstractUncertainValue,
n::Int = 1000; μ0::Real = 0) -> EqualVarianceTTest
Consider two samples `s1` and `s2`, each consisting of `n` random draws from the
distributions furnishing `d1` and `d2`, respectively.
This function performs a two-sample t-test of the null hypothesis that `s1` and
`s2` come from distributions with equal means and variances against the
alternative hypothesis that the distributions have different means but equal
variances.
"""
function EqualVarianceTTest(d1::AbstractUncertainValue,
d2::AbstractUncertainValue,
n::Int = 1000;
μ0::Real = 0)
x = resample(d1, n)
y = resample(d2, n)
EqualVarianceTTest(x, y, μ0)
end
"""
EqualVarianceTTestPooled(d1::UncertainDataset, d2::UncertainDataset,
n::Int = 1000; μ0::Real = 0) -> EqualVarianceTTest
Consider two samples `s1[i]` and `s2[i]`, each consisting of `n` random draws
from the distributions furnishing the uncertain values `d1[i]` and `d2[i]`,
respectively. Gather all `s1[i]` in a pooled sample `S1`, and all `s2[i]` in
a pooled sample `S2`.
Perform a two-sample t-test of the null hypothesis that `S1` and `S2` come from
distributions with equal means and variances against the alternative hypothesis
that the distributions have different means but equal variances.
"""
function EqualVarianceTTestPooled(d1::UncertainDataset,
d2::UncertainDataset,
n::Int = 1000;
μ0::Real = 0)
x = vcat(resample(d1, n)...,)
y = vcat(resample(d2, n)...,)
EqualVarianceTTest(x, y, μ0)
end
"""
EqualVarianceTTestElementWise(d1::UncertainDataset, d2::UncertainDataset,
n::Int = 1000; μ0::Real = 0) -> Vector{EqualVarianceTTest}
Consider two samples `s1[i]` and `s2[i]`, each consisting of `n` random draws
from the distributions furnishing the uncertain values `d1[i]` and `d2[i]`,
respectively. This function performs an elementwise `EqualVarianceTTest`
on the pairs `(s1[i], s2[i])`. Specifically:
Performs an pairwise two-sample t-test of the null hypothesis that `s1[i]` and
`s2[i]` come from distributions with equal means and variances against the
alternative hypothesis that the distributions have different means but equal
variances.
"""
function EqualVarianceTTestElementWise(d1::UncertainDataset,
d2::UncertainDataset,
n::Int = 1000;
μ0::Real = 0)
N = length(d1)
[EqualVarianceTTest(resample(d1[i], n), resample(d2[i], n), μ0) for i = 1:N]
end
"""
UnequalVarianceTTest(d1::AbstractUncertainValue, d2::AbstractUncertainValue,
n::Int = 1000; μ0::Real = 0) -> UnequalVarianceTTest
Consider two samples `s1` and `s2`, each consisting of `n` random draws from the
distributions furnishing `d1` and `d2`, respectively.
Perform an unequal variance two-sample t-test of the null hypothesis that `s1`
and `s2` come from distributions with equal means against the alternative
hypothesis that the distributions have different means.
"""
function UnequalVarianceTTest(d1::AbstractUncertainValue,
d2::AbstractUncertainValue,
n::Int = 1000;
μ0::Real = 0)
x = resample(d1, n)
y = resample(d2, n)
UnequalVarianceTTest(x, y, μ0)
end
"""
UnequalVarianceTTestPooled(d1::UncertainDataset, d2::UncertainDataset,
n::Int = 1000; μ0::Real = 0) -> UnequalVarianceTTest
Consider two samples `s1[i]` and `s2[i]`, each consisting of `n` random draws
from the distributions furnishing the uncertain values `d1[i]` and `d2[i]`,
respectively. Gather all `s1[i]` in a pooled sample `S1`, and all `s2[i]` in
a pooled sample `S2`.
This function performs an unequal variance two-sample t-test of the null
hypothesis that `S1` and `S2` come from distributions with equal means against
the alternative hypothesis that the distributions have different means.
"""
function UnequalVarianceTTestPooled(d1::UncertainDataset,
d2::UncertainDataset,
n::Int = 1000;
μ0::Real = 0)
x = vcat(resample(d1, n)...,)
y = vcat(resample(d2, n)...,)
UnequalVarianceTTest(x, y, μ0)
end
"""
UnequalVarianceTTestElementWise(d1::UncertainDataset, d2::UncertainDataset,
n::Int = 1000; μ0::Real = 0) -> Vector{UnequalVarianceTTest}
Consider two samples `s1[i]` and `s2[i]`, each consisting of `n` random draws
from the distributions furnishing the uncertain values `d1[i]` and `d2[i]`,
respectively. This function performs an elementwise `EqualVarianceTTest`
on the pairs `(s1[i], s2[i])`. Specifically:
Performs an pairwise unequal variance two-sample t-test of the null hypothesis
that `s1[i]` and `s2[i]` come from distributions with equal means against the
alternative hypothesis that the distributions have different means.
This test is sometimes known as Welch's t-test. It differs from the equal
variance t-test in that it computes the number of degrees of freedom of the
test using the Welch-Satterthwaite equation:
```math
ν_{χ'} ≈ \\frac{\\left(\\sum_{i=1}^n k_i s_i^2\\right)^2}{\\sum_{i=1}^n
\\frac{(k_i s_i^2)^2}{ν_i}}
```
"""
function UnequalVarianceTTestElementWise(d1::UncertainDataset,
d2::UncertainDataset,
n::Int = 1000;
μ0::Real = 0)
N = length(d1)
[UnequalVarianceTTest(resample(d1[i], n), resample(d2[i], n), μ0) for i = 1:N]
end
"""
OneSampleTTest(d::AbstractUncertainValue, n::Int = 1000;
μ0::Real = 0) -> OneSampleTTest
Perform a one sample t-test of the null hypothesis that the uncertain value has
a distribution with mean `μ0` against the alternative hypothesis that its
distribution does not have mean `μ0`. `n` indicates the number of draws during
resampling.
"""
function OneSampleTTest(d::AbstractUncertainValue, n::Int = 1000; μ0::Real = 0)
x = resample(d, n)
OneSampleTTest(x, μ0)
end
"""
OneSampleTTest(d1::AbstractUncertainValue,
d2::AbstractUncertainValue,
n::Int = 1000; μ0::Real=0) -> OneSampleTTest
Perform a paired sample t-test of the null hypothesis that the differences
between pairs of uncertain values in `d1` and `d2` come from a distribution
with mean `μ0` against the alternative hypothesis that the distribution does
not have mean `μ0`.
"""
function OneSampleTTest(d1::AbstractUncertainValue,
d2::AbstractUncertainValue,
n::Int = 1000; μ0::Real = 0)
x = resample(d1, n)
y = resample(d2, n)
OneSampleTTest(x, y, μ0)
end
"""
OneSampleTTestPooled(d::UncertainDataset, n::Int = 1000;
μ0::Real=0) -> OneSampleTTest
First, sample `n` draws of each uncertain value in `d1`, then pooling the draws
together. Then, perform a one sample t-test of the null hypothesis that the
uncertain values have a pooled distribution with mean `μ0` against the
alternative hypothesis that its pooled distribution does not have mean `μ0`.
`n` indicates the number of draws during resampling.
"""
function OneSampleTTestPooled(d::UncertainDataset, n::Int = 1000; μ0::Real = 0)
x = vcat([resample(uncertainval, n) for uncertainval in d]...,)
OneSampleTTest(x, μ0)
end
"""
OneSampleTTestElementWise(d::UncertainDataset, n::Int = 1000;
μ0::Real = 0) -> Vector{OneSampleTTest}
First, sample `n` draws of each uncertain value in `d`, then pooling the draws
together. Then, perform a one sample t-test of the null hypothesis that the
uncertain values have a pooled distribution with mean `μ0` against the
alternative hypothesis that its pooled distribution
does not have mean `μ0`. `n` indicates the number of draws during resampling.
"""
function OneSampleTTestElementWise(d::UncertainDataset, n::Int = 1000; μ0::Real = 0)
[OneSampleTTest(resample(uncertainval, n), μ0) for uncertainval in d]
end
"""
OneSampleTTestPooled(d1::UncertainDataset,
d2::UncertainDataset,
n::Int = 1000; μ0::Real = 0) -> OneSampleTTest
First, sample `n` draws of each uncertain value in each dataset, pooling the
draws from the elements of `d1` and the draws from the elements of `d2` separately.
Then, perform a paired sample t-test of the null hypothesis that the differences
between pairs of uncertain values in `d1` and `d2` come from a distribution
with mean `μ0` against the alternative hypothesis that the distribution does
not have mean `μ0`.
"""
function OneSampleTTestPooled(d1::UncertainDataset,
d2::UncertainDataset,
n::Int = 1000; μ0::Real = 0)
x = vcat(resample(d1, n)...,)
y = vcat(resample(d2, n)...,)
OneSampleTTest(x, y, μ0)
end
"""
OneSampleTTestElementWise(d1::UncertainDataset,
d2::UncertainDataset,
n::Int = 1000; μ0::Real = 0) -> Vector{OneSampleTTest}
Perform a one sample t-test of the null hypothesis that the uncertain value has
a distribution with mean `μ0` against the alternative hypothesis that its
distribution does not have mean `μ0` for uncertain value in `d`.
`n` indicates the number of draws during resampling.
"""
function OneSampleTTestElementWise(d1::UncertainDataset,
d2::UncertainDataset,
n::Int = 1000; μ0::Real = 0)
N = length(d1)
[OneSampleTTest(resample(d1[i], n), resample(d2[i], n), μ0) for i in 1:N]
end
export
EqualVarianceTTest,
EqualVarianceTTestPooled,
EqualVarianceTTestElementWise,
UnequalVarianceTTest,
UnequalVarianceTTestPooled,
UnequalVarianceTTestElementWise,
OneSampleTTest,
OneSampleTTestPooled,
OneSampleTTestElementWise
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 2971 | import HypothesisTests.LjungBoxTest
import HypothesisTests.BoxPierceTest
#
#
# """
# LjungBoxTest(d::UncertainDataset; n::Int = 10000,
# lag::Int = 1, dof::Int = 0) -> LjungBoxTest
#
# Compute the Ljung-Box `Q` statistic to test the null hypothesis of
# independence in a data series represented by the uncertain dataset `d`.
#
# `lag` specifies the number of lags used in the construction of `Q`. When
# testing the residuals of an estimated model, `dof` has to be set to the number
# of estimated parameters. E.g., when testing the residuals of an ARIMA(p,0,q)
# model, set `dof=p+q`.
# """
# function LjungBoxTest(d::UncertainDataset; lag::Int = 1, dof::Int = 0)
# LjungBoxTest(resample(d, 1)[1], lag, dof)
# end
#
# """
# LjungBoxTest(d::UncertainDataset, n_tests::Int = 100; lag::Int = 1, dof::Int = 0) -> LjungBoxTest
#
# Compute the Ljung-Box `Q` statistic to test the null hypothesis of
# independence in a data series represented by the uncertain dataset `d`
# by performing the test on `n` independent draws of the dataset.
#
# `lag` specifies the number of lags used in the construction of `Q`. When
# testing the residuals of an estimated model, `dof` has to be set to the number
# of estimated parameters. E.g., when testing the residuals of an ARIMA(p,0,q)
# model, set `dof=p+q`.
# """
# function LjungBoxTest(d::UncertainDataset, n_tests::Int = 100; lag::Int = 1, dof::Int = 0)
# [LjungBoxTest(resample(d)[1], lag, dof) for i = 1:n_tests]
# end
#
# """
# BoxPierceTest(d::UncertainDataset;
# lag::Int = 1, dof::Int = 0) -> Vector{BoxPierceTest}
#
# Compute the Box-Pierce `Q` statistic to test the null hypothesis of
# independence in a data series represented by the uncertain dataset `d`.
#
# `lag` specifies the number of lags used in the construction of `Q`. When
# testing the residuals of an estimated model, `dof` has to be set to the number
# of estimated parameters. E.g., when testing the residuals of an ARIMA(p,0,q)
# model, set `dof=p+q`.
# """
# function BoxPierceTest(d::UncertainDataset; lag::Int = 1, dof::Int = 0)
# BoxPierceTest(resample(d, 1)[1], lag, dof)
# end
#
#
# """
# BoxPierceTest(d::UncertainDataset, n_tests::Int = 100;
# lag::Int = 1, dof::Int = 0) -> BoxPierceTest
#
# Compute the BoxPierceTest `Q` statistic to test the null hypothesis of
# independence in a data series represented by the uncertain dataset `d`
# by performing the test on `n` independent draws of the dataset.
#
# `lag` specifies the number of lags used in the construction of `Q`. When
# testing the residuals of an estimated model, `dof` has to be set to the number
# of estimated parameters. E.g., when testing the residuals of an ARIMA(p,0,q)
# model, set `dof=p+q`.
# """
# function BoxPierceTest(d::UncertainDataset, n_tests::Int = 100;
# lag::Int = 1, dof::Int = 0)
# [BoxPierceTest(resample(d, 1)[1], lag, dof) for i = 1:n_tests]
# end
#
#
# export
# LjungBoxTest,
# BoxPierceTest
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1548 |
##########################################################################################
# Uncertain values represented by theoretical distributions.
# Base stats can be estimated directly from the distributions, so no need for resampling.
# These methods definitions are just for compatibility with other uncertain values, which
# may not have analytically determined statistics associated with them.
##########################################################################################
StatsBase.mode(uv::TheoreticalDistributionScalarValue, n::Int) = mode(uv)
Statistics.mean(uv::TheoreticalDistributionScalarValue, n::Int) = mean(uv)
Statistics.median(uv::TheoreticalDistributionScalarValue, n::Int) = median(uv)
Statistics.middle(uv::TheoreticalDistributionScalarValue, n::Int) = middle(uv)
Statistics.quantile(uv::TheoreticalDistributionScalarValue, q, n::Int) = quantile(uv, q)
Statistics.std(uv::TheoreticalDistributionScalarValue, n::Int) = std(uv)
Statistics.var(uv::TheoreticalDistributionScalarValue, n::Int) = var(uv)
StatsBase.mode(uv::UncertainScalarTheoreticalFit, n::Int) = mode(uv)
Statistics.mean(uv::UncertainScalarTheoreticalFit, n::Int) = mean(uv)
Statistics.median(uv::UncertainScalarTheoreticalFit, n::Int) = median(uv)
Statistics.middle(uv::UncertainScalarTheoreticalFit, n::Int) = middle(uv)
Statistics.quantile(uv::UncertainScalarTheoreticalFit, q, n::Int) = quantile(uv, q)
Statistics.std(uv::UncertainScalarTheoreticalFit, n::Int) = std(uv)
Statistics.var(uv::UncertainScalarTheoreticalFit, n::Int) = var(uv)
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 3289 | import ..UncertainValues:
AbstractUncertainScalarKDE,
TheoreticalDistributionScalarValue,
UncertainScalarTheoreticalFit
import Statistics
# The general strategy is to resample
"""
mean(uv::AbstractUncertainValue, n::Int)
Compute the mean of an uncertain value over an `n`-draw sample of it.
"""
Statistics.mean(uv::AbstractUncertainValue, n::Int) = mean(resample(uv, n))
"""
mode(uv::AbstractUncertainValue, n::Int)
Compute the mode of an uncertain value over an `n`-draw sample of it.
"""
StatsBase.mode(uv::AbstractUncertainValue, n::Int) = mode(resample(uv, n))
"""
median(uv::AbstractUncertainValue, n::Int)
Compute the median of an uncertain value over an `n`-draw sample of it.
"""
Statistics.median(uv::AbstractUncertainValue, n::Int) = median(resample(uv, n))
"""
middle(uv::AbstractUncertainValue, n::Int)
Compute the middle of an uncertain value over an `n`-draw sample of it.
"""
Statistics.middle(uv::AbstractUncertainValue, n::Int) = middle(resample(uv, n))
"""
quantile(uv::AbstractUncertainValue, q, n::Int)
Compute the quantile(s) `q` of an uncertain value over an `n`-draw sample of it.
"""
Statistics.quantile(uv::AbstractUncertainValue, q, n::Int) = quantile(resample(uv, n), q)
"""
std(uv::AbstractUncertainValue, n::Int)
Compute the standard deviation of an uncertain value over an `n`-draw sample of it.
"""
Statistics.std(uv::AbstractUncertainValue, n::Int) = std(resample(uv, n))
"""
variance(uv::AbstractUncertainValue, n::Int)
Compute the variance of an uncertain value over an `n`-draw sample of it.
"""
Statistics.var(uv::AbstractUncertainValue, n::Int) = var(resample(uv, n))
# But for theoretical distributions, we may directly access properties of the furnishing
# distributions
##########################################################################################
# Uncertain values represented by theoretical distributions.
# Base stats can be estimated directly from the distributions, so no need for resampling.
# These methods definitions are just for compatibility with other uncertain values, which
# may not have analytically determined statistics associated with them.
##########################################################################################
StatsBase.mode(uv::TheoreticalDistributionScalarValue, n::Int) = mode(uv)
Statistics.mean(uv::TheoreticalDistributionScalarValue, n::Int) = mean(uv)
Statistics.median(uv::TheoreticalDistributionScalarValue, n::Int) = median(uv)
Statistics.middle(uv::TheoreticalDistributionScalarValue, n::Int) = middle(uv)
Statistics.quantile(uv::TheoreticalDistributionScalarValue, q, n::Int) = quantile(uv, q)
Statistics.std(uv::TheoreticalDistributionScalarValue, n::Int) = std(uv)
Statistics.var(uv::TheoreticalDistributionScalarValue, n::Int) = var(uv)
StatsBase.mode(uv::UncertainScalarTheoreticalFit, n::Int) = mode(uv)
Statistics.mean(uv::UncertainScalarTheoreticalFit, n::Int) = mean(uv)
Statistics.median(uv::UncertainScalarTheoreticalFit, n::Int) = median(uv)
Statistics.middle(uv::UncertainScalarTheoreticalFit, n::Int) = middle(uv)
Statistics.quantile(uv::UncertainScalarTheoreticalFit, q, n::Int) = quantile(uv, q)
Statistics.std(uv::UncertainScalarTheoreticalFit, n::Int) = std(uv)
Statistics.var(uv::UncertainScalarTheoreticalFit, n::Int) = var(uv)
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 5955 | import ..Resampling.resample
import ..UncertainValues.AbstractUncertainScalarKDE
import Statistics
#########################################
# Statistics on `AbstractUncertainValueDataset`s
#########################################
"""
mean(d::AbstractUncertainValueDataset, n::Int)
Computes the element-wise mean of a dataset of uncertain values. Takes
the mean of an `n`-draw sample for each element.
"""
Statistics.mean(d::AbstractUncertainValueDataset, n::Int; kwargs...) =
[mean(resample(d[i], n), kwargs...) for i = 1:length(d)]
"""
median(d::AbstractUncertainValueDataset, n::Int)
Computes the element-wise median of a dataset of uncertain values. Takes
the median of an `n`-draw sample for each element.
"""
Statistics.median(d::AbstractUncertainValueDataset, n::Int; kwargs...) =
[median(resample(d[i], n), kwargs...) for i = 1:length(d)]
"""
middle(d::AbstractUncertainValueDataset, n::Int)
Compute the middle of `n` realisations of an `AbstractUncertainValueDataset`.
"""
Statistics.middle(d::AbstractUncertainValueDataset, n::Int; kwargs...) =
[middle(resample(d[i], n), kwargs...) for i = 1:length(d)]
"""
quantile(d::AbstractUncertainValueDataset, p, n::Int; kwargs...)
Compute element-wise quantile(s) `p `of a dataset consisting of uncertain
values. Takes the quantiles of an `n`-draw sample for each element.
"""
Statistics.quantile(d::AbstractUncertainValueDataset, p, n::Int; kwargs...) =
[quantile(resample(d[i], n), p, kwargs...) for i = 1:length(d)]
"""
std(d::AbstractUncertainValueDataset, n::Int; kwargs...)
Computes the element-wise standard deviation of a dataset of uncertain values.
Takes the standard deviation of an `n`-draw sample for each element.
"""
Statistics.std(d::AbstractUncertainValueDataset, n::Int; kwargs...) =
[std(resample(d[i], n), kwargs...) for i = 1:length(d)]
"""
var(d::AbstractUncertainValueDataset, n::Int; kwargs...)
Computes the element-wise sample variance of a dataset of uncertain values.
Takes the sample variance of an `n`-draw sample for each element.
"""
Statistics.var(d::AbstractUncertainValueDataset, n::Int; kwargs...) =
[var(resample(d[i], n), kwargs...) for i = 1:length(d)]
"""
cor(d1::AbstractUncertainValueDataset, d2::AbstractUncertainValueDataset, n::Int; kwargs...)
Obtain a distribution for the Pearson correlation between two uncertain datasets `d1` and `d2`.
This is done by resampling both datasets multiple times and compute the correlation between
those draws. This yields a distribution of correlation estimates.
The procedure is as follows.
1. First, draw a realisation of `d1` according to the distributions furnishing its uncertain values.
2. Then, draw a realisation `d2` according to its furnishing distributions.
3. Compute the correlation between those two draws/realisations, both of which are vectors of
length `L = length(d1) = length(d2)`.
4. Repeat the procedure `n` times, drawing `n` separate pairs of realisations of `d1` and `d2`.
This yields `n` estimates of the correlation between `d1` and `d2`, which is returned as
a vector.
"""
Statistics.cor(d1::DT, d2::DT, n::Int; kwargs...) where {DT <: AbstractUncertainValueDataset} =
[cor(resample(d1), resample(d2), kwargs...) for i = 1:n]
"""
cor(d1::AbstractUncertainValueDataset, d2::AbstractUncertainValueDataset; kwargs...)
Obtain a single estimate of the Pearson correlation between two uncertain datasets `d1` and `d2`.
This is done by resampling both datasets independently, that is: First draw a realisation of
`d1` according to the distributions furnishing its uncertain values. Then, draw a realisation
`d2` according to its furnishing distributions. These those two draws/realisations are now
both vectors of length `L = length(d1) = length(d2)`. Finally, compute the correlation between
those draws. This yields a single estimates of the correlation between `d1` and `d2`.
"""
Statistics.cor(d1::DT, d2::DT, kwargs...) where {DT <: AbstractUncertainValueDataset} =
cor(resample(d1), resample(d2), kwargs...)
"""
cov(d1::AbstractUncertainValueDataset, d2::AbstractUncertainValueDataset, n::Int; kwargs...)
Obtain a distribution for the covariance between two uncertain datasets `d1` and `d2`.
This is done by resampling both datasets multiple times and compute the covariance between
those draws. This yields a distribution of covariance estimates.
The procedure is as follows.
1. First, draw a realisation of `d1` according to the distributions furnishing its uncertain values.
2. Then, draw a realisation `d2` according to its furnishing distributions.
3. Compute the covariance between those two draws/realisations, both of which are vectors of
length `L = length(d1) = length(d2)`.
4. Repeat the procedure `n` times, drawing `n` separate pairs of realisations of `d1` and `d2`.
This yields `n` estimates of the covariance between `d1` and `d2`, which is returned as
a vector.
"""
Statistics.cov(d1::DT, d2::DT, n::Int; kwargs...) where DT <: AbstractUncertainValueDataset =
[cov(resample(d1), resample(d2), kwargs...) for i = 1:n]
"""
cov(d1::AbstractUncertainValueDataset, d2::AbstractUncertainValueDataset; kwargs...)
Obtain a single estimate for the covariance between two uncertain datasets `d1` and `d2`.
This is done by resampling both datasets independently, that is: First draw a realisation of
`d1` according to the distributions furnishing its uncertain values. Then, draw a realisation
`d2` according to its furnishing distributions. These those two draws/realisations are now
both vectors of length `L = length(d1) = length(d2)`. Finally, compute the covariance between
those draws. This yields a single estimates of the covariance between `d1` and `d2`.
"""
Statistics.cov(d1::DT, d2::DT, kwargs...) where {DT <: AbstractUncertainValueDataset} =
cov(resample(d1), resample(d2), kwargs...)
export cor, cov, var, std, quantile, mean, median
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 19895 | """
countne(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int)
Estimate a `n`-member distribution on the number of indices at which the elements of
two collections of uncertain values are not equal.
This is done by repeating the following procedure `n` times:
1. Draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Draw a length-`L` realisation of `y` in the same manner.
3. Count the number of indices at which the elements of the two length-`L`
draws are not equal.
This yields `n` counts of non-equal values between `n` pairs of independent
realisations of `x` and `y`. The `n`-member distribution of nonequal-value counts
is returned as a vector.
"""
StatsBase.countne(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int) =
resample(StatsBase.countne, x, y, n)
"""
counteq(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int)
Estimate a `n`-member distribution on the number of indices at which the elements of
two collections of uncertain values are equal.
This is done by repeating the following procedure `n` times:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Second, draw a length-`L` realisation of `y` in the same manner.
3. Count the number of indices at which the elements of the two length-`L`
draws are equal.
This yields `n` counts of non-equal values between `n` pairs of independent
realisations of `x` and `y`. The `n`-member distribution of equal-value counts
is returned as a vector.
"""
StatsBase.counteq(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int) =
resample(StatsBase.counteq, x, y, n)
"""
corkendall(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int)
Estimate a `n`-member distribution on Kendalls's rank correlation
coefficient between two collections of uncertain values.
This is done by repeating the following procedure `n` times:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Second, draw a length-`L` realisation of `y` in the same manner.
3. Compute Kendall's rank correlation coefficient between the two length-`L`
draws.
This yields `n` computations of Kendall's rank correlation coefficient
between `n` independent pairs of realisations of `x` and `y`. The
`n`-member distribution of correlation estimates is returned as a vector.
"""
StatsBase.corkendall(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int) =
resample(StatsBase.corspearman, x, y, n)
"""
corspearman(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int)
Estimate a `n`-member distribution on Spearman's rank correlation
coefficient between two collections of uncertain values.
This is done by repeating the following procedure `n` times:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Second, draw a length-`L` realisation of `y` in the same manner.
3. Compute Spearman's rank correlation coefficient between the two length-`L`
draws.
This yields `n` estimates of Spearman's rank correlation coefficient
between `n` independent pairs of realisations of `x` and `y`. The
`n`-member distribution of correlation estimates is returned as a vector.
"""
StatsBase.corspearman(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int) =
resample(StatsBase.corspearman, x, y, n)
"""
cor(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int)
Estimate a distribution on Pearson's rank correlation coefficient between
two collections of uncertain values.
This is done by repeating the following procedure `n` times:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Second, draw a length-`L` realisation of `y` in the same manner.
3. Compute Pearson's rank correlation coefficient between the two length-`L`
draws.
This yields `n` estimates of Pearson's rank correlation coefficient
between `n` independent pairs of realisations of `x` and `y`. The
`n`-member distribution of correlation estimates is returned as a vector.
"""
StatsBase.cor(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int) =
resample(StatsBase.cor, x, y, n)
"""
cov(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int; corrected::Bool = true)
Obtain a distribution on the covariance between two collections of
uncertain values.
This is done by repeating the following procedure `n` times:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Second, draw a length-`L` realisation of `y` in the same manner.
3. Compute the covariance between the two length-`L` draws.
This yields `n` estimates of the covariance between `n` independent pairs
of realisations of `x` and `y`. The `n`-member distribution of covariance
estimates is returned as a vector.
If `corrected` is `true` (the default) then the sum is scaled with `n - 1` for
each pair of draws, whereas the sum is scaled with `n` if `corrected` is `false`
where `n = length(x)`.
"""
StatsBase.cov(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int; corrected::Bool = true) =
resample(StatsBase.cov, x, y, n; corrected = corrected)
"""
crosscor(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, [lags], n::Int; demean = true)
Obtain a distribution over the cross correlation between two collections of
uncertain values.
This is done by repeating the following procedure `n` times:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Second, draw a length-`L` realisation of `y` in the same manner.
3. Compute the cross correlation between the two length-`L` draws.
This yields `n` estimates of the cross correlation between `n` independent pairs
of realisations of `x` and `y`. The `n`-member distribution of cross correlation
estimates is returned as a vector.
`demean` specifies whether, at each iteration, the respective means of the draws
should be subtracted from them before computing their cross correlation.
When left unspecified, the `lags` used are `-min(n-1, 10*log10(n))` to `min(n, 10*log10(n))`.
The output is normalized by `sqrt(var(x_draw)*var(y_draw))`. See `crosscov` for the unnormalized form.
"""
function StatsBase.crosscor(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int;
demean = true)
crosscor_estimates = Vector{Vector{Float64}}(undef, n)
for i = 1:n
draw_x = float.(resample(x))
draw_y = float.(resample(y))
crosscor_estimates[i] = StatsBase.crosscor(draw_x, draw_y, demean = demean)
end
return crosscor_estimates
end
function StatsBase.crosscor(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, lags, n::Int;
demean = true)
crosscor_estimates = Vector{Vector{Float64}}(undef, n)
for i = 1:n
draw_x = float.(resample(x))
draw_y = float.(resample(y))
crosscor_estimates[i] = StatsBase.crosscor(draw_x, draw_y, lags, demean = demean)
end
return crosscor_estimates
end
"""
crosscov(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, [lags], n::Int; demean = true)
Obtain a distribution over the cross covariance function (CCF) between two
collections of uncertain values.
This is done by repeating the following procedure `n` times:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Second, draw a length-`L` realisation of `y` in the same manner.
3. Compute the CCF between the two length-`L` draws.
This yields `n` estimates of the CCF between `n` independent pairs
of realisations of `x` and `y`. The `n`-member distribution of CCF estimates
is returned as a vector.
`demean` specifies whether, at each iteration, the respective means of the draws
should be subtracted from them before computing their CCF.
When left unspecified, the `lags` used are `-min(n-1, 10*log10(n))` to `min(n, 10*log10(n))`.
The output is not normalized. See `crosscor` for a function with normalization.
"""
function StatsBase.crosscov(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int;
demean = true)
crosscov_estimates = Vector{Vector{Float64}}(undef, n)
for i = 1:n
draw_x = float.(resample(x))
draw_y = float.(resample(y))
crosscov_estimates[i] = StatsBase.crosscov(draw_x, draw_y, demean = demean)
end
return crosscov_estimates
end
function StatsBase.crosscov(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, lags, n::Int;
demean = true)
crosscov_estimates = Vector{Vector{Float64}}(undef, n)
for i = 1:n
draw_x = float.(resample(x))
draw_y = float.(resample(y))
crosscov_estimates[i] = StatsBase.crosscov(draw_x, draw_y, lags, demean = demean)
end
return crosscov_estimates
end
"""
gkldiv(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution over the generalized Kullback-Leibler divergence between two
collections of uncertain values.
This is done by repeating the following procedure `n` times:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Second, draw a length-`L` realisation of `y` in the same manner.
3. Compute the generalized Kullback-Leibler divergence between the two
length-`L` draws.
This yields `n` estimates of the generalized Kullback-Leibler divergence
between `n` independent pairs of realisations of `x` and `y`. The `n`-member
distribution of generalized Kullback-Leibler divergence estimates is
returned as a vector.
"""
StatsBase.gkldiv(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int) =
resample(StatsBase.gkldiv, x, y, n)
"""
kldivergence(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, [b], n::Int)
Obtain a distribution over the Kullback-Leibler divergence between two
collections of uncertain values.
This is done by repeating the following procedure `n` times:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Second, draw a length-`L` realisation of `y` in the same manner.
3. Compute the Kullback-Leibler divergence between the two
length-`L` draws.
This yields `n` estimates of the Kullback-Leibler divergence
between `n` independent pairs of realisations of `x` and `y`. The `n`-member
distribution of Kullback-Leibler divergence estimates is
returned as a vector.
Optionally a real number `b` can be specified such that the divergence is
scaled by `1/log(b)`.
"""
StatsBase.kldivergence(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int) =
resample(StatsBase.kldivergence, x, y, n)
StatsBase.kldivergence(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, b, n::Int) =
resample(StatsBase.kldivergence, x, y, n, b)
"""
maxad(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution over the maximum absolute deviation between two
collections of uncertain values.
This is done by repeating the following procedure `n` times:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Second, draw a length-`L` realisation of `y` in the same manner.
3. Compute the maximum absolute deviation between the two
length-`L` draws.
This yields `n` estimates of the maximum absolute deviation
between `n` independent pairs of realisations of `x` and `y`. The `n`-member
distribution of maximum absolute deviation estimates is
returned as a vector.
"""
StatsBase.maxad(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int) =
resample(StatsBase.maxad, x, y, n)
"""
meanad(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution over the mean absolute deviation between two
collections of uncertain values.
This is done by repeating the following procedure `n` times:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Second, draw a length-`L` realisation of `y` in the same manner.
3. Compute the mean absolute deviation between the two
length-`L` draws.
This yields `n` estimates of the mean absolute deviation
between `n` independent pairs of realisations of `x` and `y`. The `n`-member
distribution of mean absolute deviation estimates is
returned as a vector.
"""
StatsBase.meanad(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int) =
resample(StatsBase.meanad, x, y, n)
"""
msd(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution over the mean squared deviation between two
collections of uncertain values.
This is done by repeating the following procedure `n` times:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Second, draw a length-`L` realisation of `y` in the same manner.
3. Compute the mean squared deviation between the two
length-`L` draws.
This yields `n` estimates of the mean squared deviation
between `n` independent pairs of realisations of `x` and `y`. The `n`-member
distribution of mean squared deviation estimates is
returned as a vector.
"""
StatsBase.msd(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int) =
resample(StatsBase.msd, x, y, n)
"""
psnr(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, maxv, n::Int)
Obtain a distribution over the peak signal-to-noise ratio (PSNR) between two
collections of uncertain values.
This is done by repeating the following procedure `n` times:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Second, draw a length-`L` realisation of `y` in the same manner.
3. Compute the PSNR between the two length-`L` draws.
This yields `n` estimates of the peak signal-to-noise ratio
between `n` independent pairs of realisations of `x` and `y`. The `n`-member
distribution of PSNR estimates is returned as a vector.
The PSNR is computed as `10 * log10(maxv^2 / msd(x_draw, y_draw))`, where `maxv` is
the maximum possible value `x` or `y` can take
"""
StatsBase.psnr(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, maxv, n::Int) =
resample(StatsBase.psnr, x, y, n, maxv)
"""
rmsd(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int, normalize = false)
Obtain a distribution over the root mean squared deviation between two
collections of uncertain values.
This is done by repeating the following procedure `n` times:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Second, draw a length-`L` realisation of `y` in the same manner.
3. Compute the root mean squared deviation between the two
length-`L` draws.
This yields `n` estimates of the root mean squared deviation
between `n` independent pairs of realisations of `x` and `y`. The `n`-member
distribution of root mean squared deviation estimates is
returned as a vector.
The root mean squared deviation is computed as `sqrt(msd(x_draw, y_draw))`
at each iteration. Optionally, `x_draw` and `y_draw` may be normalised.
"""
StatsBase.rmsd(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int; normalize = false) =
resample(StatsBase.rmsd, x, y, n; normalize = normalize)
"""
sqL2dist(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution over the squared L2 distance between two
collections of uncertain values.
This is done by repeating the following procedure `n` times:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Second, draw a length-`L` realisation of `y` in the same manner.
3. Compute the squared L2 distance between the two
length-`L` draws.
This yields `n` estimates of the squared L2 distance
between `n` independent pairs of realisations of `x` and `y`. The `n`-member
distribution of squared L2 distance estimates is returned as a vector.
The squared L2 distance is computed as ``\\sum_{i=1}^n |x_i - y_i|^2``.
"""
StatsBase.sqL2dist(x::UVAL_COLLECTION_TYPES, y::UVAL_COLLECTION_TYPES, n::Int) =
resample(StatsBase.sqL2dist, x, y, n) | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 24436 | import StatsBase
"""
median(x::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution for the median of a collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the median is computed for each of those length-`L`
realisations, yielding a distribution of median estimates.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the median for the realisation.
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the median of `x`, which is returned as
a vector.
"""
function StatsBase.median(x::UVAL_COLLECTION_TYPES, n::Int)
resample(StatsBase.median, x, n)
end
"""
mean(x::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution for the mean of a collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the mean is computed for each of those length-`L`
realisations, yielding a distribution of mean estimates.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the mean for the realisation.
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the mean of `x`, which is returned as
a vector.
"""
function StatsBase.mean(x::UVAL_COLLECTION_TYPES, n::Int)
resample(StatsBase.mean, x, n)
end
"""
mode(x::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution for the mode of a collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the mode is computed for each of those length-`L`
realisations, yielding a distribution of mode estimates.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the mode for the realisation, which is a vector of length `L`
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the mode of `x`, which is returned as
a vector.
"""
function StatsBase.mode(x::UVAL_COLLECTION_TYPES, n::Int)
resample(StatsBase.mode, x, n)
end
"""
quantile(x::UVAL_COLLECTION_TYPES, q, n::Int)
Obtain a distribution for the quantile(s) `q` of a collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the quantile is computed for each of those length-`L`
realisations, yielding a distribution of quantile estimates.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the quantile for the realisation, which is a vector of length `L`
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the quantile of `x`, which is returned as
a vector.
"""
function StatsBase.quantile(x::UVAL_COLLECTION_TYPES, q, n::Int)
resample(StatsBase.quantile, x, n, q)
end
"""
iqr(x::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution for the interquartile range (IQR), i.e. the 75th
percentile minus the 25th percentile, of a collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the IQR is computed for each of those length-`L`
realisations, yielding a distribution of IQR estimates.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the IQR for the realisation, which is a vector of length `L`
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the IQR of `x`, which is returned as
a vector.
"""
function StatsBase.iqr(x::UVAL_COLLECTION_TYPES, n::Int)
resample(StatsBase.iqr, x, n)
end
"""
middle(x::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution for the middle of a collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the middle is computed for each of those length-`L`
realisations, yielding a distribution of middle estimates.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the middle for the realisation, which is a vector of length `L`
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the middle of `x`, which is returned as
a vector.
"""
function StatsBase.middle(x::UVAL_COLLECTION_TYPES, n::Int)
resample(StatsBase.middle, x, n)
end
"""
std(x::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution for the standard deviation of a collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the standard deviation is computed for each of those length-`L`
realisations, yielding a distribution of standard deviation estimates.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the std for the realisation, which is a vector of length `L`
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the standard deviation of `x`, which is returned as
a vector.
"""
function StatsBase.std(x::UVAL_COLLECTION_TYPES, n::Int)
resample(StatsBase.std, x, n)
end
"""
var(x::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution for the variance of a collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the variance is computed for each of those length-`L`
realisations, yielding a distribution of variance estimates.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the variance for the realisation, which is a vector of length `L`
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the variance of `x`, which is returned as
a vector.
"""
function StatsBase.var(x::UVAL_COLLECTION_TYPES, n::Int)
resample(StatsBase.var, x, n)
end
"""
genmean(x::UVAL_COLLECTION_TYPES, p, n::Int)
Obtain a distribution for the generalized/power mean with exponent `p` of a
collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the generalized mean is computed for each of those length-`L`
realisations, yielding a distribution of generalized mean estimates.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the generalized mean for the realisation, which is a vector of length `L`
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the generalized mean of `x`, which is returned as
a vector.
"""
function StatsBase.genmean(x::UVAL_COLLECTION_TYPES, p, n::Int)
resample(StatsBase.genmean, x, n, p)
end
"""
genvar(x::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution for the generalized sample variance of a collection of
uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the generalized sample variance is computed for each of
those length-`L`
realisations, yielding a distribution of generalized sample variance estimates.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the generalized sample variance for the realisation, which is a
vector of length `L`.
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the generalized sample variance of `x`,
which is returned as a vector.
"""
function StatsBase.genvar(x::UVAL_COLLECTION_TYPES, n::Int)
resample(StatsBase.genvar, x, n)
end
"""
harmmean(x::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution for the harmonic mean of a collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the harmonic mean is computed for each of those length-`L`
realisations, yielding a distribution of harmonic mean estimates.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the harmonic mean for the realisation.
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the harmonic mean of `x`, which is returned as
a vector.
"""
function StatsBase.harmmean(x::UVAL_COLLECTION_TYPES, n::Int)
resample(StatsBase.harmmean, x, n)
end
"""
geomean(x::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution for the geometric mean of a collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the geometric mean is computed for each of those length-`L`
realisations, yielding a distribution of geometric mean estimates.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the geometric mean for the realisation.
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the geometric mean of `x`, which is returned as
a vector.
"""
function StatsBase.geomean(x::UVAL_COLLECTION_TYPES, n::Int)
resample(StatsBase.geomean, x, n)
end
"""
kurtosis(x::UVAL_COLLECTION_TYPES, n::Int, f = StatsBase.mean)
Obtain a distribution for the kurtosis of a collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the kurtosis is computed for each of those length-`L`
realisations, yielding a distribution of kurtosis estimates.
Optionally, a center function `f` can be specified. This function is used
to compute the center of each draw, i.e. for the i-th draw, call
`StatsBase.kurtosis(draw_i, f(draw_i))`.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the kurtosis for the realisation.
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the kurtosis of `x`, which is returned as a vector.
"""
function StatsBase.kurtosis(x::UVAL_COLLECTION_TYPES, n::Int, f = StatsBase.mean)
kurtosis_estimates = zeros(Float64, n)
for i = 1:n
draw = resample(x)
kurtosis_estimates[i] = StatsBase.kurtosis(draw, f(draw))
end
return kurtosis_estimates
end
"""
moment(x::UVAL_COLLECTION_TYPES, k, n::Int)
Obtain a distribution for the `k`-th order central moment of a collection
of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the `k`-th order central moment is computed for each
of those length-`L`realisations, yielding a distribution of `k`-th
order central moment estimates.
The procedure is as follows.
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the `k`-th order central moment for the realisation.
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the `k`-th order central moment of `x`,
which is returned as a vector.
"""
function StatsBase.moment(x::UVAL_COLLECTION_TYPES, k, n::Int)
resample(StatsBase.moment, x, n, k)
end
"""
percentile(x::UVAL_COLLECTION_TYPES, p, n::Int)
Obtain a distribution for the percentile(s) `p` of a collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the percentile is computed for each of those length-`L`
realisations, yielding a distribution of percentile estimates.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the percentile for the realisation, which is a vector of length `L`
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the percentile of `x`, which is returned as
a vector.
"""
function StatsBase.percentile(x::UVAL_COLLECTION_TYPES, p, n::Int)
resample(StatsBase.percentile, x, n, p)
end
"""
renyientropy(x::UVAL_COLLECTION_TYPES, α, n::Int)
Obtain a distribution for the Rényi (generalized) entropy of
order `α` of a collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the generalized entropy is computed for each
of those length-`L`realisations, yielding a distribution of
generalized entropy estimates.
The procedure is as follows.
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the Rényi (generalized) entropy of order `α` for the realisation.
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the Rényi (generalized) entropy of
order `α` of `x`, which is returned as a vector.
"""
function StatsBase.renyientropy(x::UVAL_COLLECTION_TYPES, α, n::Int)
resample(StatsBase.renyientropy, x, n, α)
end
"""
rle(x::UVAL_COLLECTION_TYPES, α, n::Int)
Obtain a distribution for the run-length encoding of a
collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the run-length encoding is computed for each
of those length-`L`realisations, yielding a distribution of
run-length encoding estimates.
Returns a vector of tuples of run-length encodings.
The procedure is as follows.
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the run-length encoding for the realisation. This gives a
tuple, where the first element of the tuple is a vector of
values of the input and the second is the number of consecutive occurrences of
each element.
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the run-length encoding of `x`,
which is returned as a vector of the run-length encoding tuples.
"""
function StatsBase.rle(x::UVAL_COLLECTION_TYPES, n::Int)
resample(StatsBase.rle, x, n)
end
"""
sem(x::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution for the standard error of the mean of a
collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the standard error of the mean is computed for
each of those length-`L`
realisations, yielding a distribution of standard error of the
mean estimates.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the standard error of the mean for the realisation, which is
a vector of length `L`.
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the standard error of the mean of `x`,
which is returned as a vector.
"""
function StatsBase.sem(x::UVAL_COLLECTION_TYPES, n::Int)
resample(StatsBase.sem, x, n)
end
"""
skewness(x::UVAL_COLLECTION_TYPES, n::Int, f = StatsBase.mean)
Obtain a distribution for the skewness of a collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the skewness is computed for each of those length-`L`
realisations, yielding a distribution of skewness estimates.
Optionally, a center function `f` can be specified. This function is used
to compute the center of each draw, i.e. for the i-th draw, call
`StatsBase.skewness(draw_i, f(draw_i))`.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the skewness for the realisation.
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the skewness of `x`,
which is returned as a vector.
"""
function StatsBase.skewness(x::UVAL_COLLECTION_TYPES, n::Int, f = StatsBase.mean)
skewness_estimates = zeros(Float64, n)
for i = 1:n
draw = resample(x)
skewness_estimates[i] = StatsBase.skewness(draw, f(draw))
end
return skewness_estimates
end
"""
span(x::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution for the span of a collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the span is computed for each of those length-`L`
realisations, yielding a distribution of span estimates.
Returns a length-`L` vector of `span`s, where the i-th span is the range
`minimum(draw_x_i):maximum(draw_x_i)`.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the span for the realisation, which is a vector of length `L`
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the span of `x`, which is returned as
a vector.
"""
function StatsBase.span(x::UVAL_COLLECTION_TYPES, n::Int)
resample(StatsBase.span, x, n)
end
"""
totalvar(x::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution for the total variance of a collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the total variance is computed for each of those length-`L`
realisations, yielding a distribution of total variance estimates.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the total variance for the realisation, which is a vector of length `L`
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the total variance of `x`, which is returned as
a vector.
"""
function StatsBase.totalvar(x::UVAL_COLLECTION_TYPES, n::Int)
resample(StatsBase.totalvar, x, n)
end
"""
summarystats(x::UVAL_COLLECTION_TYPES, n::Int)
Obtain a distribution for the summary statistics of a collection of uncertain values.
This is done by first drawing `n` length-`L` realisations of `x`, where
`L = length(x)`. Then, the summary statistics is computed for each of those length-`L`
realisations, yielding a distribution of summary statistics estimates.
Returns a length-`L` vector of `SummaryStats` objects containing the mean, minimum,
25th percentile, median, 75th percentile, and maximum for each draw of `x`.
Detailed steps:
1. First, draw a length-`L` realisation of `x` by drawing one random
number from each uncertain value furnishing the dataset. The draws are
independent, so that no element-wise dependencies (e.g. sequential
correlations) that are not already present in the data are introduced in
the realisation.
2. Compute the summary statistics for the realisation, which is a vector of length `L`
3. Repeat the procedure `n` times, drawing `n` independent realisations of `x`.
This yields `n` estimates of the summary statistics of `x`, which is returned as
a vector.
"""
function StatsBase.summarystats(x::UVAL_COLLECTION_TYPES, n::Int)
resample(StatsBase.summarystats, x, n)
end | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 8535 | """
countne(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int)
Count the number of indices at which the elements of two independent length-`n`
draws of `x` and for `y` are not equal.
"""
StatsBase.countne(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int) =
resample(StatsBase.countne, x, y, n)
"""
counteq(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int)
Count the number of indices at which the elements of two independent length-`n`
draws of `x` and for `y` are equal.
"""
StatsBase.counteq(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int) =
resample(StatsBase.counteq, x, y, n)
"""
corkendall(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int)
Compute Kendalls's rank correlation coefficient between two uncertain values by
independently drawing `n` samples from `x` and `n` samples from `y`, then computing
Kendalls's rank correlation coefficient between those length-`n` draws.
"""
StatsBase.corkendall(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int) =
resample(StatsBase.corspearman, x, y, n)
"""
corspearman(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int)
Compute Spearman's rank correlation coefficient between two uncertain values by
independently drawing `n` samples from `x` and `n` samples from `y`, then computing
the Spearman's rank correlation coefficient between those length-`n` draws.
"""
StatsBase.corspearman(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int) =
resample(StatsBase.corspearman, x, y, n)
"""
cor(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int)
Compute the Pearson correlation between two uncertain values by independently
drawing `n` samples from `x` and `n` samples from `y`, then computing
the Pearson correlation between those length-`n` draws.
"""
StatsBase.cor(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int) =
resample(StatsBase.cor, x, y, n)
"""
cov(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int;
corrected::Bool = true)
Compute the covariance between two uncertain values by independently
drawing `n` samples from `x` and `n` samples from `y` , then computing
the covariance between those length-`n` draws.
"""
StatsBase.cov(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int; corrected::Bool = true) =
resample(StatsBase.cov, x, y, n; corrected = corrected)
"""
crosscor(x::AbstractUncertainValue, y::AbstractUncertainValue, [lags],
n::Int; demean = true)
Compute the cross correlation between two uncertain values by independently
drawing `n` samples from `x` and `n` samples from `y`, `x_draw` and `y_draw`, then computing
the cross correlation between those length-`n` draws. `demean` specifies whether the respective
means of the `x_draw` and `y_draw` should be subtracted from them before computing
their cross correlation.
When left unspecified, the `lags` used are `-min(n-1, 10*log10(n))` to `min(n, 10*log10(n))`.
The output is normalized by `sqrt(var(x_draw)*var(y_draw))`. See `crosscov` for the unnormalized form.
"""
StatsBase.crosscor(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int; demean = true) =
resample(StatsBase.crosscor, x, y, n; demean = demean)
StatsBase.crosscor(x::AbstractUncertainValue, y::AbstractUncertainValue, lags, n::Int; demean = true) =
resample(StatsBase.crosscor, x, y, n, lags; demean = demean)
"""
crosscov(x::AbstractUncertainValue, y::AbstractUncertainValue, [lags],
n::Int; demean = true)
Compute the cross covariance function (CCF) between two uncertain values by independently
drawing `n` samples from `x` and `n` samples from `y`, `x_draw` and `y_draw`, then computing
the cross correlation between those length-`n` draws. `demean` specifies whether the respective
means of the `x_draw` and `y_draw` should be subtracted from them before computing
their CCF.
When left unspecified, the `lags` used are `-min(n-1, 10*log10(n))` to `min(n, 10*log10(n))`.
The output is not normalized. See `crosscor` for a function with normalization.
"""
StatsBase.crosscov(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int; demean = true) =
resample(StatsBase.crosscov, x, y, n; demean = demean)
StatsBase.crosscov(x::AbstractUncertainValue, y::AbstractUncertainValue, lags, n::Int; demean = true) =
resample(StatsBase.crosscov, x, y, n, lags; demean = demean)
"""
gkldiv(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int)
Compute the generalized Kullback-Leibler divergence between two uncertain
values by independently drawing `n` samples from `x` and `n` samples from `y`,
then computing the generalized Kullback-Leibler divergence between those
length-`n` draws.
"""
StatsBase.gkldiv(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int) =
resample(StatsBase.gkldiv, x, y, n)
"""
kldivergence(x::AbstractUncertainValue, y::AbstractUncertainValue, [b],
n::Int)
Compute the Kullback-Leibler divergence between two uncertain values by independently
drawing `n` samples from `x` and `n` samples from `y`, then computing the
Kullback-Leibler divergence between those length-`n` draws. Optionally a real number
`b` can be specified such that the divergence is scaled by `1/log(b)`.
"""
StatsBase.kldivergence(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int) =
resample(StatsBase.kldivergence, x, y, n)
StatsBase.kldivergence(x::AbstractUncertainValue, y::AbstractUncertainValue, b, n::Int) =
resample(StatsBase.kldivergence, x, y, n, b)
"""
maxad(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int)
Compute the maximum absolute deviation between two uncertain values by independently
drawing `n` samples from `x` and `n` samples from `y`, then computing the
maximum absolute deviation between those length-`n` draws.
"""
StatsBase.maxad(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int) =
resample(StatsBase.maxad, x, y, n)
"""
meanad(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int)
Compute the mean absolute deviation between two uncertain values by independently
drawing `n` samples from `x` and `n` samples from `y`, then computing the
mean absolute deviation between those length-`n` draws.
"""
StatsBase.meanad(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int) =
resample(StatsBase.meanad, x, y, n)
"""
msd(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int)
Compute the mean squared deviation between two uncertain values by independently
drawing `n` samples from `x` and `n` samples from `y`, then computing the
mean squared deviation between those length-`n` draws.
"""
StatsBase.msd(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int) =
resample(StatsBase.msd, x, y, n)
"""
psnr(x::AbstractUncertainValue, y::AbstractUncertainValue, maxv, n::Int)
Compute the peak signal-to-noise ratio between two uncertain values by independently
drawing `n` samples from `x` and from `y`, yielding `x_draw` and `y_draw`, then
computing the peak signal-to-noise ratio between those length-`n` draws.
The PSNR is computed as `10 * log10(maxv^2 / msd(x_draw, y_draw))`, where `maxv` is
the maximum possible value `x` or `y` can take
"""
StatsBase.psnr(x::AbstractUncertainValue, y::AbstractUncertainValue, maxv, n::Int) =
resample(StatsBase.psnr, x, y, n, maxv)
"""
rmsd(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int,
normalize = false)
Compute the root mean squared deviation between two uncertain values by independently
drawing `n` samples from `x` and from `y`, yielding `x_draw` and `y_draw`, then
computing the the root mean squared deviation between those length-`n` draws.
The root mean squared deviation is computed as `sqrt(msd(x_draw, y_draw))`.
Optionally, `x_draw` and `y_draw` may be normalised.
"""
StatsBase.rmsd(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int; normalize = false) =
resample(StatsBase.rmsd, x, y, n; normalize = normalize)
"""
sqL2dist(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int)
Compute the squared L2 distance between two uncertain values by independently
drawing `n` samples from `x` and from `y`, then computing the
squared L2 distance between those length-`n` draws: ``\\sum_{i=1}^n |x_i - y_i|^2``.
"""
StatsBase.sqL2dist(x::AbstractUncertainValue, y::AbstractUncertainValue, n::Int) =
resample(StatsBase.sqL2dist, x, y, n) | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 5875 | import StatsBase
"""
mean(uv::AbstractUncertainValue, n::Int)
Compute the mean of an uncertain value over an `n`-draw sample of it.
"""
StatsBase.mean(x::AbstractUncertainValue, n::Int) = resample(StatsBase.mean, x, n)
"""
mode(uv::AbstractUncertainValue, n::Int)
Compute the mode of an uncertain value over an `n`-draw sample of it.
"""
StatsBase.mode(x::AbstractUncertainValue, n::Int) = resample(StatsBase.mode, x, n)
"""
quantile(uv::AbstractUncertainValue, q, n::Int)
Compute the quantile(s) `q` of an uncertain value over an `n`-draw sample of it.
"""
StatsBase.quantile(x::AbstractUncertainValue, q, n::Int) = resample(StatsBase.quantile, x, n, q)
"""
iqr(uv::AbstractUncertainValue, n::Int)
Compute the interquartile range (IQR), i.e. the 75th percentile minus the 25th percentile,
over an `n`-draw sample of an uncertain value.
"""
StatsBase.iqr(x::AbstractUncertainValue, n::Int) = resample(StatsBase.iqr, x, n, q)
"""
median(uv::AbstractUncertainValue, n::Int)
Compute the median of an uncertain value over an `n`-draw sample of it.
"""
StatsBase.median(x::AbstractUncertainValue, n::Int) = resample(StatsBase.median, x, n)
"""
middle(uv::AbstractUncertainValue, n::Int)
Compute the middle of an uncertain value over an `n`-draw sample of it.
"""
StatsBase.middle(x::AbstractUncertainValue, n::Int) = resample(StatsBase.middle, x, n)
"""
std(uv::AbstractUncertainValue, n::Int)
Compute the standard deviation of an uncertain value over an `n`-draw sample of it.
"""
StatsBase.std(x::AbstractUncertainValue, n::Int) = resample(StatsBase.std, x, n)
"""
variance(uv::AbstractUncertainValue, n::Int)
Compute the variance of an uncertain value over an `n`-draw sample of it.
"""
StatsBase.var(x::AbstractUncertainValue, n::Int) = resample(StatsBase.var, x, n)
"""
genmean(uv::AbstractUncertainValue, p, n::Int)
Compute the generalized/power mean with exponent `p` of an uncertain value over an
`n`-draw sample of it.
"""
StatsBase.genmean(x::AbstractUncertainValue, p, n::Int) = resample(StatsBase.genmean, x, n, p)
"""
genvar(uv::AbstractUncertainValue, n::Int)
Compute the generalized sample variance of an uncertain value over an
`n`-draw sample of it.
"""
StatsBase.genvar(x::AbstractUncertainValue, n::Int) = resample(StatsBase.genvar, x, n)
"""
harmmean(uv::AbstractUncertainValue, n::Int)
Compute the harmonic mean of an uncertain value over an `n`-draw sample of it.
"""
StatsBase.harmmean(x::AbstractUncertainValue, n::Int) = resample(StatsBase.harmmean, x, n)
"""
geomean(uv::AbstractUncertainValue, n::Int)
Compute the geometric mean of an uncertain value over an `n`-draw sample of it.
"""
StatsBase.geomean(x::AbstractUncertainValue, n::Int) = resample(StatsBase.geomean, x, n)
"""
kurtosis(uv::AbstractUncertainValue, n::Int, m = mean(uv, n))
Compute the excess kurtosis of an uncertain value over an `n`-draw sample of it,
optionally specifying a center `m`).
"""
StatsBase.kurtosis(x::AbstractUncertainValue, n::Int, m = mean(x, n)) = resample(StatsBase.kurtosis, x, n, m)
"""
moment(x::AbstractUncertainValue, k, n::Int, m = mean(x, n))
Compute the `k`-th order central moment of an uncertain value over an
`n`-draw sample of it, optionally specifying a center `m`.
"""
StatsBase.moment(x::AbstractUncertainValue, k, n::Int, m = mean(x, n)) = resample(StatsBase.moment, x, n, k, m)
"""
percentile(x::AbstractUncertainValue, p, n::Int)
Compute the percentile(s) `p` of an uncertain value over an `n`-draw sample of it.
"""
StatsBase.percentile(x::AbstractUncertainValue, p, n::Int) = resample(StatsBase.percentile, x, n, p)
"""
renyientropy(uv::AbstractUncertainValue, α, n::Int)
Compute the Rényi (generalized) entropy of order `α` of an uncertain value over an
`n`-draw sample of it.
"""
StatsBase.renyientropy(x::AbstractUncertainValue, α, n::Int) = resample(StatsBase.quantile, x, n, α)
"""
rle(x::AbstractUncertainValue, n::Int)
Compute the run-length encoding of an uncertain value over a `n`-draw
sample of it as a tuple. The first element of the tuple is a vector of
values of the input and the second is the number of consecutive occurrences of
each element.
"""
StatsBase.rle(x::AbstractUncertainValue, n::Int) = resample(StatsBase.rle, x, n)
"""
sem(x::AbstractUncertainValue, n::Int)
Compute the standard error of the mean of an uncertain value over a `n`-draw
sample of it, optionally specifying a center `m`, i.e.
`sqrt(var(x_draw, corrected = true) / length(x_draw))`.
"""
StatsBase.sem(x::AbstractUncertainValue, n::Int) = resample(StatsBase.sem, x, n)
"""
skewness(x::AbstractUncertainValue, n::Int, m = mean(x, n))
Compute the standardized skewness of an uncertain value over an `n`-draw sample of
it, optionally specifying a center `m`.
"""
StatsBase.skewness(x::AbstractUncertainValue, n::Int; m = mean(x, n)) = resample(StatsBase.skewness, x, n, m)
"""
span(x::AbstractUncertainValue, n::Int)
Compute the span of a collection, i.e. the range `minimum(x):maximum(x)`, of an
uncertain value over an `n`-draw sample of it. The minimum and
maximum of the draws of `x` are computed in one pass using extrema.
"""
StatsBase.span(x::AbstractUncertainValue, n::Int) = resample(StatsBase.span, x, n)
"""
summarystats(uv::AbstractUncertainValue, n::Int)
Compute summary statistics of an uncertain value over an `n`-draw sample of it. Returns
a `SummaryStats` object containing the mean, minimum, 25th percentile, median,
75th percentile, and maximum.
"""
StatsBase.summarystats(x::AbstractUncertainValue, n::Int) = resample(StatsBase.summarystats, x, n)
"""
totalvar(uv::AbstractUncertainValue, n::Int)
Compute the total sample variance of an uncertain value over an
`n`-draw sample of it. For a single uncertain value, this is
equivalent to the sample variance.
"""
StatsBase.totalvar(x::AbstractUncertainValue, n::Int) = resample(StatsBase.totalvar, x, n)
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 274 | abstract type AbstractUncertainDataset end
function summarise(ud::AbstractUncertainDataset)
_type = typeof(ud)
summary = "$_type"
return summary
end
Base.show(io::IO, ud::AbstractUncertainDataset) = println(io, summarise(ud))
export AbstractUncertainDataset
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1229 | abstract type AbstractUncertainIndexDataset <: AbstractUncertainValueDataset end
##########################
# Indexing and iteration
#########################
Base.getindex(uvd::AbstractUncertainIndexDataset, i) = uvd.indices[i]
Base.length(uvd::AbstractUncertainIndexDataset) = length(uvd.indices)
Base.size(uvd::AbstractUncertainIndexDataset) = length(uvd)
Base.firstindex(uvd::AbstractUncertainIndexDataset) = 1
Base.lastindex(uvd::AbstractUncertainIndexDataset) = length(uvd.indices)
Base.eachindex(ud::AbstractUncertainIndexDataset) = Base.OneTo(length(ud.indices))
Base.iterate(ud::AbstractUncertainIndexDataset, state = 1) = iterate(ud.indices, state)
Base.minimum(udata::AbstractUncertainIndexDataset) = minimum([minimum(uval) for uval in udata])
Base.maximum(udata::AbstractUncertainIndexDataset) = maximum([maximum(uval) for uval in udata])
###################
# Pretty printing
###################
function summarise(uvd::AbstractUncertainIndexDataset)
_type = typeof(uvd)
n_values = length(uvd.indices)
summary = "$_type with $n_values values"
return summary
end
Base.show(io::IO, uvd::AbstractUncertainIndexDataset) =
println(io, summarise(uvd))
export
AbstractUncertainIndexDataset | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1661 | """
AbstractUncertainIndexValueDataset
A dataset of uncertain value (`UncertainValue` instances), with indices (time,
depth, etc..) that are also uncertain values (`UncertainValue` instances).
Concrete types must as a minimum implement the following fields:
- **`indices::UncertainDataset`**: The (uncertain) indices of the dataset.
- **`values::UncertainDataset`**: The (uncertain) values of the dataset.
"""
abstract type AbstractUncertainIndexValueDataset <: AbstractUncertainDataset end
function summarise(uid::AbstractUncertainIndexValueDataset)
_type = typeof(uid)
n_values = length(uid.values)
n_indices = length(uid.indices)
summary = "$_type containing $n_values uncertain values coupled with $n_indices uncertain indices"
return summary
end
Base.show(io::IO, uid::AbstractUncertainIndexValueDataset) =
println(io, summarise(uid))
Base.getindex(uvd::AbstractUncertainIndexValueDataset, i) = uvd.indices[i], uvd.values[i]
Base.length(uvd::AbstractUncertainIndexValueDataset) = length(uvd.values)
Base.size(uvd::AbstractUncertainIndexValueDataset) = length(uvd.values)
Base.firstindex(uvd::AbstractUncertainIndexValueDataset) = 1
Base.lastindex(uvd::AbstractUncertainIndexValueDataset) = length(uvd.values)
import ..UncertainValues: minimum, maximum
function Base.minimum(udata::AbstractUncertainIndexValueDataset)
[minimum(uval) for uval in udata.indices],
[minimum(uval) for uval in udata.values]
end
function Base.maximum(udata::AbstractUncertainIndexValueDataset)
[maximum(uval) for uval in udata.indices],
[maximum(uval) for uval in udata.values]
end
export AbstractUncertainIndexValueDataset
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 1791 | import ..UncertainValues: minimum, maximum
"""
AbstractUncertainValueDataset
A dataset of uncertain values, with fixed indices. Concrete implementations
must as a minimum implement the following fields:
- **`values::UncertainDataset`**: The (uncertain) values of the dataset.
"""
abstract type AbstractUncertainValueDataset <: AbstractUncertainDataset end
##########################
# Indexing and iteration
#########################
Base.getindex(uvd::AbstractUncertainValueDataset, i) = uvd.values[i]
Base.length(uvd::AbstractUncertainValueDataset) = length(uvd.values)
Base.size(uvd::AbstractUncertainValueDataset) = length(uvd)
Base.firstindex(uvd::AbstractUncertainValueDataset) = 1
Base.lastindex(uvd::AbstractUncertainValueDataset) = length(uvd.values)
Base.eachindex(ud::AbstractUncertainValueDataset) = Base.OneTo(length(ud.values))
Base.iterate(ud::AbstractUncertainValueDataset, state = 1) = iterate(ud.values, state)
Base.minimum(udata::AbstractUncertainValueDataset) = minimum([minimum(uval) for uval in udata])
Base.maximum(udata::AbstractUncertainValueDataset) = maximum([maximum(uval) for uval in udata])
###################
# Pretty printing
###################
function summarise(ud::AbstractUncertainValueDataset)
_type = typeof(ud)
n_values = length(ud.values)
summary = "$_type with $n_values values"
return summary
end
Base.show(io::IO, ud::AbstractUncertainValueDataset) = print(io, summarise(ud))
###################
# Various useful functions
###################
"""
distributions(ud::UncertainDataset)
Returns the distributions for all the uncertain values of the dataset.
"""
distributions(ud::AbstractUncertainValueDataset) = [ud[i].distribution for i = 1:length(ud)]
export
AbstractUncertainValueDataset,
distributions | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 914 | """
UncertainDataset
Generic dataset containing uncertain values.
## Fields
- **`values::AbstractVector{<:AbstractUncertainValue}`**: The uncertain values.
"""
struct UncertainDataset <: AbstractUncertainValueDataset
values::AbstractVector{<:AbstractUncertainValue}
end
"""
ConstrainedUncertainDataset
Generic constrained dataset containing uncertain values.
## Fields
- **`values::AbstractVector{<:AbstractUncertainValue}`**: The uncertain values.
"""
struct ConstrainedUncertainDataset <: AbstractUncertainValueDataset
values::AbstractVector{<:AbstractUncertainValue}
end
UncertainDataset(uv::T) where {T <:AbstractUncertainValue} =
UncertainDataset([uv])
ConstrainedUncertainDataset(uv::T) where {T<:AbstractUncertainValue} =
ConstrainedUncertainDataset([uv])
##########################
# Sorting
#########################
export
UncertainDataset,
ConstrainedUncertainDataset | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 2087 | using Reexport
@reexport module UncertainDatasets
using ..UncertainValues
using Distributions
using IntervalArithmetic
using RecipesBase
using StatsBase
using StaticArrays
using Statistics
# The abstract type for all types of dataset holding uncertain values
include("AbstractUncertainDataset.jl")
# An abstract type for uncertain datasets containing uncertain values yielding scalar
# values when resampled.
include("AbstractUncertainValueDataset.jl")
include("AbstractUncertainIndexDataset.jl")
# One composite type for indices, another one for values. This distinction allows more
# flexibility when applying sampling constraints (some constraints may be meaningful
# only for indices, for example).
include("UncertainValueDataset.jl")
include("UncertainIndexDataset.jl")
# A generic type with all the functionality of `AbstractUncertainValueDataset`, if you
# can't be bothered with specifying
include("UncertainDataset.jl")
# An abstract type for datasets containing both indices and data values.
include("AbstractUncertainIndexValueDataset.jl")
# A composite type with two fields: `indices` and `values`. Both fields may be
# any subtype of AbstractUncertainValueDataset.
include("UncertainIndexValueDataset.jl")
# Conversion and promotion
include("conversions.jl")
"""
UVAL_COLLECTION_TYPES = Union{UD, UV} where {
UD <: AbstractUncertainValueDataset,
UV <: AbstractVector{T} where {
T <: AbstractUncertainValue}}
A type union used to represent types of uncertain values.
"""
const UVAL_COLLECTION_TYPES = Union{UD, UV} where {
UD <: AbstractUncertainValueDataset,
UV <: AbstractVector{T} where {
T <: AbstractUncertainValue}}
export UVAL_COLLECTION_TYPES
end # module
"""
UncertainDatasets
A module defining uncertain datasets, which are collections of uncertain values
defined in the `UncertainValues` module.
"""
UncertainDatasets
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 804 | """
UncertainIndexDataset
Generic dataset containing uncertain indices.
## Fields
- **`indices::AbstractVector{AbstractUncertainValue}`**: The uncertain values.
"""
struct UncertainIndexDataset <: AbstractUncertainIndexDataset
indices::AbstractVector{<:AbstractUncertainValue}
end
"""
ConstrainedUncertainIndexDataset
Constrained dataset containing uncertain indices.
## Fields
- **`indices::AbstractVector{AbstractUncertainValue}`**: The uncertain indices.
"""
struct ConstrainedUncertainIndexDataset <: AbstractUncertainIndexDataset
indices::AbstractVector{<:AbstractUncertainValue}
end
function UncertainIndexDataset(x::AbstractArray{T, 1}) where T
UncertainIndexDataset(CertainValue.(x))
end
export
UncertainIndexDataset,
ConstrainedUncertainIndexDataset,
distributions
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 5704 | """
UncertainIndexValueDataset{
IDXTYP<:AbstractUncertainIndexDataset,
VALSTYP<:AbstractUncertainValueDataset}
A generic dataset type consisting of a set of uncertain `indices` (e.g. time,
depth, order, etc...) and a set of uncertain `values`.
The i-th index is assumed to correspond to the i-th value. For example, if
`data` is an instance of a `UncertainIndexValueDataset`, then
- `data.indices[2]` is the index for the value `data.values[2]`
- `data.values[7]` is the value for the index `data.indices[7]`.
- `data[3]` is an index-value tuple `(data.indices[3], data.values[3])`.
## Fields
- **`indices::T where {T <: AbstractUncertainIndexDataset}`**: The uncertain indices,
represented by some type of uncertain index dataset.
- **`values::T where {T <: AbstractUncertainValueDataset}`**: The uncertain values,
represented by some type of uncertain index dataset.
## Example
```julia
# Simulate some data values measured a specific times.
times = 1:100
values = sin.(0.0:0.1:100.0)
# Assume the data were measured by a device with normally distributed
# measurement uncertainties with fluctuating standard deviations
σ_range = (0.1, 0.7)
uncertain_values = [UncertainValue(Normal, val, rand(Uniform(σ_range...)))
for val in values]
# Assume the clock used to record the times is uncertain, but with uniformly
# distributed noise that doesn't change through time.
uncertain_times = [UncertainValue(Uniform, t-0.1, t+0.1) for t in times]
# Pair the time-value data. If vectors are provided to the constructor,
# the first will be interpreted as the indices and the second as the values.
data = UncertainIndexValueDataset(uncertain_times, uncertain_values)
# A safer option is to first convert to UncertainIndexDataset and
# UncertainValueDataset, so you don't accidentally mix the indices
# and the values.
uidxs = UncertainIndexDataset(uncertain_times)
uvals = UncertainValueDataset(uncertain_values)
data = UncertainIndexValueDataset(uidxs, uvals)
```
"""
struct UncertainIndexValueDataset{IDXTYP <: AbstractUncertainIndexDataset, VALSTYP <: AbstractUncertainValueDataset} <: AbstractUncertainIndexValueDataset
""" The indices of the uncertain index-value dataset. """
indices::IDXTYP
""" The values of the uncertain index-value dataset. """
values::VALSTYP
function UncertainIndexValueDataset(
indices::UncertainIndexDataset,
values::UncertainValueDataset)
IDXTYP = UncertainIndexDataset
VALSTYP = UncertainValueDataset
new{IDXTYP, VALSTYP}(
UncertainIndexDataset(indices),
UncertainValueDataset(values)
)
end
function UncertainIndexValueDataset(
indices::ConstrainedUncertainIndexDataset,
values::UncertainValueDataset)
IDXTYP = ConstrainedUncertainIndexDataset
VALSTYP = UncertainValueDataset
new{IDXTYP, VALSTYP}(indices, values)
end
function UncertainIndexValueDataset(
indices::UncertainIndexDataset,
values::ConstrainedUncertainValueDataset)
IDXTYP = UncertainIndexDataset
VALSTYP = ConstrainedUncertainValueDataset
new{IDXTYP, VALSTYP}(indices, values)
end
function UncertainIndexValueDataset(
indices::ConstrainedUncertainIndexDataset,
values::ConstrainedUncertainValueDataset)
IDXTYP = ConstrainedUncertainIndexDataset
VALSTYP = ConstrainedUncertainValueDataset
new{IDXTYP, VALSTYP}(indices, values)
end
function UncertainIndexValueDataset(
indices::Vector{<:AbstractUncertainValue},
values::Vector{<:AbstractUncertainValue})
IDXTYP = UncertainIndexDataset
VALSTYP = UncertainValueDataset
new{IDXTYP, VALSTYP}(
UncertainIndexDataset(indices),
UncertainValueDataset(values)
)
end
function UncertainIndexValueDataset(
indices::DT,
values::Vector{<:AbstractUncertainValue}) where {DT <: AbstractUncertainIndexDataset}
IDXTYP = DT
VALSTYP = UncertainValueDataset
new{IDXTYP, VALSTYP}(indices, UncertainValueDataset(values))
end
function UncertainIndexValueDataset(
indices::Vector{<:AbstractUncertainValue},
values::DT) where {DT <: AbstractUncertainValueDataset}
IDXTYP = UncertainIndexDataset
VALSTYP = DT
new{IDXTYP, VALSTYP}(UncertainIndexDataset(indices), values)
end
end
function UncertainIndexValueDataset(x::AbstractArray{T, 1}, y::AbstractArray{T, 1}) where T
idxs = UncertainIndexDataset(x)
vals = UncertainValueDataset(y)
UncertainIndexValueDataset(idxs, vals)
end
Base.length(u::UncertainIndexValueDataset) = length(u.values)
Base.size(u::UncertainIndexValueDataset) = length(u.values)
Base.getindex(u::UncertainIndexValueDataset, i) = (u.indices[i], u.values[i])
Base.getindex(u::UncertainIndexValueDataset, i::AbstractVector) =
[(u.indices[i], u.values[i]) for i in 1:length(u)]
Base.getindex(u::UncertainIndexValueDataset, i::Colon) =
[(u.indices[i], u.values[i]) for i in 1:length(u)]
Base.firstindex(u::UncertainIndexValueDataset) = 1
Base.lastindex(u::UncertainIndexValueDataset) = length(u.values)
Base.eachindex(u::UncertainIndexValueDataset) = Base.OneTo(length(u))
Base.iterate(u::UncertainIndexValueDataset, state = 1) = iterate((u.indices, u.values), state)
index(u::UncertainIndexValueDataset, i) = u.indices[i]
value(u::UncertainIndexValueDataset, i) = u.values[i]
export
UncertainIndexValueDataset,
index, value
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 840 |
"""
UncertainValueDataset
A dataset of uncertain values.
## Fields
- **`values::AbstractVector{<:AbstractUncertainValue}`**: The uncertain values. Each value is
represented by an `AbstractUncertainValue`.
"""
struct UncertainValueDataset <: AbstractUncertainValueDataset
values::AbstractVector{<:AbstractUncertainValue}
end
"""
ConstrainedUncertainValueDataset
Generic constrained dataset containing uncertain values.
## Fields
- **`values::AbstractVector{<:AbstractUncertainValue}`**: The uncertain values.
"""
struct ConstrainedUncertainValueDataset <: AbstractUncertainValueDataset
values::AbstractVector{<:AbstractUncertainValue}
end
function UncertainValueDataset(x::AbstractArray{T, 1}) where T
UncertainValueDataset(CertainValue.(x))
end
export
UncertainValueDataset,
ConstrainedUncertainValueDataset | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 2365 | promote_rule(::Type{UncertainDataset}, ::Type{UncertainValueDataset}) = UncertainValueDataset
promote_rule(::Type{UncertainValueDataset}, ::Type{UncertainDataset}) = UncertainValueDataset
promote_rule(::Type{UncertainDataset}, ::Type{UncertainIndexDataset}) = UncertainValueDataset
promote_rule(::Type{UncertainIndexDataset}, ::Type{UncertainDataset}) = UncertainValueDataset
promote_rule(::Type{UncertainValueDataset}, ::Type{UncertainIndexDataset}) = UncertainValueDataset
promote_rule(::Type{UncertainIndexDataset}, ::Type{UncertainValueDataset}) = UncertainValueDataset
convert(::Type{UncertainValueDataset}, udata::T) where {T <: AbstractUncertainValueDataset} =
UncertainValueDataset(udata.values)
convert(::Type{UncertainValueDataset}, udata::UncertainIndexDataset) =
UncertainValueDataset(udata.indices)
convert(::Type{UncertainIndexDataset}, udata::T) where {T <: AbstractUncertainValueDataset} =
UncertainIndexDataset(udata.values)
convert(::Type{UncertainIndexDataset}, udata::UncertainIndexDataset) =
UncertainIndexDataset(udata.indices)
convert(::Type{UncertainDataset}, udata::T) where {T <: AbstractUncertainValueDataset} =
UncertainDataset(udata.values)
convert(::Type{UncertainDataset}, udata::UncertainIndexDataset) =
UncertainDataset(udata.indices)
# Converting vectors of any input to uncertain datasets
function convert(::Type{UncertainValueDataset}, uvec::AbstractVector)
uvals = [UncertainValue(x) for x in uvec]
UncertainValueDataset(uvals)
end
function convert(::Type{UncertainValueDataset},
uvec::AbstractVector{T}) where {T<:AbstractUncertainValue}
UncertainValueDataset(uvec)
end
UncertainValueDataset(udata::UncertainDataset) = convert(UncertainValueDataset, udata)
UncertainValueDataset(udata::UncertainIndexDataset) = convert(UncertainValueDataset, udata)
UncertainValueDataset(udata::UncertainValueDataset) = udata
UncertainIndexDataset(udata::UncertainDataset) = convert(UncertainIndexDataset, udata)
UncertainIndexDataset(udata::UncertainIndexDataset) = udata
UncertainIndexDataset(udata::UncertainValueDataset) = convert(UncertainIndexDataset, udata)
UncertainDataset(udata::UncertainDataset) = udata
UncertainDataset(udata::UncertainIndexDataset) = convert(UncertainDataset, udata)
UncertainDataset(udata::UncertainValueDataset) = convert(UncertainDataset, udata)
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 188 |
struct UncertainAgeValueDataset <: UncertainIndexValueDataset
indices::Vector{AbstractUncertainValue}
values::Vector{AbstractUncertainValue}
end
export UncertainAgeValueDataset
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 192 |
struct UncertainDepthValueDataset <: UncertainIndexValueDataset
indices::Vector{AbstractUncertainValue}
values::Vector{AbstractUncertainValue}
end
export UncertainDepthValueDataset
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 2529 | """
CertainValue
A simple wrapper type for values with no uncertainty (i.e. represented by a scalar).
## Examples
The two following ways of constructing values without uncertainty are equivalent.
```julia
u1, u2 = CertainValue(2.2), CertainValue(6)
w1, w2 = UncertainValue(2.2), UncertainValue(6)
```
"""
struct CertainValue{T} <: AbstractUncertainValue
value::T
end
Broadcast.broadcastable(x::CertainValue) = Ref(x.value)
function summarise(uval::CertainValue)
_type = typeof(uval)
val = uval.value
"$_type($val)"
end
Base.show(io::IO, uval::CertainValue) = print(io, summarise(uval))
eltype(v::CertainValue{T}) where {T} = T
Base.size(x::CertainValue) = ()
Base.size(x::CertainValue,d) = convert(Int,d)<1 ? throw(BoundsError()) : 1
Base.axes(x::CertainValue) = ()
Base.axes(x::CertainValue,d) = convert(Int,d)<1 ? throw(BoundsError()) : Base.OneTo(1)
Base.ndims(x::CertainValue) = 0
Base.ndims(::Type{<:CertainValue}) = 0
Base.length(x::CertainValue) = 1
Base.firstindex(x::CertainValue) = 1
Base.lastindex(x::CertainValue) = 1
Base.IteratorSize(::Type{<:CertainValue}) = Base.HasShape{0}()
Base.keys(::CertainValue) = Base.OneTo(1)
Base.getindex(x::CertainValue) = x
function Base.getindex(x::CertainValue, i::Integer)
Base.@_inline_meta
@boundscheck i == 1 || throw(BoundsError())
x
end
function Base.getindex(x::CertainValue, I::Integer...)
Base.@_inline_meta
@boundscheck all([i == 1 for i in I]) || throw(BoundsError())
x
end
Base.first(x::CertainValue) = x
Base.last(x::CertainValue) = x
Base.copy(x::CertainValue) = x
Base.minimum(v::CertainValue) = v.value
Base.maximum(v::CertainValue) = v.value
Base.isnan(x::CertainValue) = Base.isnan(x.value)
Base.abs2(x::CertainValue) = Base.abs2(x.value)
StatsBase.mean(v::CertainValue) = v.value
StatsBase.median(v::CertainValue) = v.value
StatsBase.middle(v::CertainValue) = v.value
StatsBase.quantile(v::CertainValue, q) = v.value
StatsBase.quantile(v::CertainValue, q, n::Int) = v.value
StatsBase.std(v::CertainValue{T}) where {T} = zero(T)
Base.rand(v::CertainValue) = v.value
Base.rand(v::CertainValue{T}, n::Int) where T = repeat([v.value], n)
Base.float(v::CertainValue) = float(v.value)
function Base.:<(x::CertainValue{T1}, y::CertainValue{T2}) where {
T1 <: Real, T2 <: Real}
x.value < y.value
end
function IntervalArithmetic.interval(x::CertainValue{T1}, y::CertainValue{T2}) where {
T1 <: Real, T2 <: Real}
interval(x.value, y.value)
end
export
CertainValue,
UncertainValue | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 5295 |
import IntervalArithmetic: interval
import Distributions
import StatsBase
const POTENTIAL_UVAL_TYPES = Union{T1, T2} where {T1<:Number, T2} where T2 <: AbstractUncertainValue
"""
UncertainScalarPopulation(values, probs)
UncertainScalarPopulation(values, probs::Vector{Number})
UncertainScalarPopulation(values, probs::Statsbase.AbstractWeights)
An `UncertainScalarPopulation`, which consists of some population members (`values`)
and some weights (`probs`) that indicate the relative importance of the
population members (for example during resampling).
## Fields
- **`values`**: The members of the population. Can be either numerical values, any
type of uncertain value defined in this package (including populations), and
`Measurement` instances from Measurements.jl.
- **`probs`**: The probabilities of sampling each member of the population.
## Constructors
- If `values` contains only scalar numeric values, then the `values` field
will be of type `Vector{Number}`.
- If `values` contains one or more uncertain values, then the `values` field
will be of type `Vector{AbstractUncertainValue}`
## Example
```julia
# Uncertain population consisting of CertainValues (scalars get promoted to
# CertainValue), theoretical distributions and KDE distributions
pop1 = UncertainScalarPopulation(
[3.0, UncertainValue(Normal, 0, 1), UncertainValue(Gamma, 2, 3),
UncertainValue(Uniform, rand(1000))], [0.5, 0.5, 0.5, 0.5])
# Uncertain population consisting of scalar values
pop2 = UncertainScalarPopulation([1, 2, 3], rand(3))
pop3 = UncertainScalarPopulation([1, 2, 3], Weights(rand(3)))
# Uncertain population consisting of uncertain populations
pop4 = UncertainScalarPopulation([pop1, pop2], [0.1, 0.5])
# Uncertain population consisting of uncertain populations, a scalar and
# a normal distribution. Assign random weights.
vals = [pop1, pop2, 2, UncertainValue(Normal, 0.3, 0.014)]
pop5 = UncertainScalarPopulation(vals, Weights(rand(4)))
```
"""
struct UncertainScalarPopulation{T, PW <: StatsBase.AbstractWeights} <: AbstractScalarPopulation{T, PW}
values::Vector{T}
probs::PW
end
"""
UncertainScalarPopulation(values::Vector, probabilities::Vector{Float64})
Construct a population from a vector of values and a vector of probabilities associated
to those values."""
function UncertainScalarPopulation(values::Vector{T1}, probabilities::Vector{T2}) where {T1 <: Number, T2 <: Number}
if length(values) != length(probabilities)
throw(ArgumentError("Lengths of values and probability vectors do not match."))
end
UncertainScalarPopulation(values, StatsBase.weights(probabilities))
end
function UncertainScalarPopulation(values::VT, probabilities) where VT <: Vector{ELTYPE} where {ELTYPE<:POTENTIAL_UVAL_TYPES}
if length(values) != length(probabilities)
throw(ArgumentError("Lengths of values and probability vectors do not match."))
end
UncertainScalarPopulation(UncertainValue.(values), StatsBase.weights(probabilities))
end
"""
ConstrainedUncertainScalarPopulation(values, probs)
ConstrainedUncertainScalarPopulation(values, probs::Vector{Number})
ConstrainedUncertainScalarPopulation(values, probs::Statsbase.AbstractWeights)
A `ConstrainedUncertainScalarPopulation`, which consists of some population
members (`values`)and some weights (`probs`) that indicate the relative importance of
the population members (for example during resampling). The uncertain values
for this type is meant to consist of constrained uncertain values
(generated by calling `constrain(uval, sampling_constraint`) on them.
This is just a convenience type to indicate that the population has been
constrained. It behaves identically to `UncertainScalarPopulation`.
There are different constructors for different types of `values`:
- If `values` contains only scalar numeric values, then the `values` field
will be of type `Vector{Number}`.
- If `values` contains one or more uncertain values, then the `values` field
will be of type `Vector{AbstractUncertainValue}`
"""
struct ConstrainedUncertainScalarPopulation{T, PW <: StatsBase.AbstractWeights} <: AbstractScalarPopulation{T, PW}
values::Vector{T}
probs::PW
end
"""
ConstrainedUncertainScalarPopulation(values::Vector, probabilities::Vector{Float64})
Construct a constrained population from a vector of values and a vector of
probabilities associated to those values.
"""
function ConstrainedUncertainScalarPopulation(values::Vector{T1}, probabilities::Vector{T2}) where {T1 <: Number, T2 <: Number}
if length(values) != length(probabilities)
throw(ArgumentError("Lengths of values and probability vectors do not match."))
end
ConstrainedUncertainScalarPopulation(float.(values), StatsBase.weights(probabilities))
end
function ConstrainedUncertainScalarPopulation(values::VT, probabilities) where VT <: Vector{ELTYPE} where {ELTYPE<:POTENTIAL_UVAL_TYPES}
if length(values) != length(probabilities)
throw(ArgumentError("Lengths of values and probability vectors do not match."))
end
ConstrainedUncertainScalarPopulation(UncertainValue.(values), StatsBase.weights(probabilities))
end
export
UncertainScalarPopulation,
ConstrainedUncertainScalarPopulation | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 3911 | import Base.rand
import StatsBase.quantile
import StatsBase.median
import Distributions.support
import Distributions.ecdf
import Base:
minimum, maximum,
max, min
"""
UncertainScalarKDE(d::KernelDensity.UnivariateKDE, values::AbstractVector{T}, range, pdf)
An empirical value represented by a distribution estimated from actual data.
## Fields
- **`distribution`**: The `UnivariateKDE` estimate for the distribution of `values`.
- **`values`**: The values from which `distribution` is estimated.
- **`range`**: The values for which the pdf is estimated.
- **`pdf`**: The values of the pdf at each point in `range`.
"""
struct UncertainScalarKDE{T} <: AbstractUncertainScalarKDE{T}
distribution::KernelDensity.UnivariateKDE
values::AbstractVector{T}
range
pdf::StatsBase.Weights
end
"""
TruncatedUncertainScalarKDE
A truncated [`UncertainScalarKDE`](@ref).
"""
struct TruncatedUncertainScalarKDE{T} <: AbstractUncertainScalarKDE{T}
distribution::KernelDensity.UnivariateKDE
values::AbstractVector{T}
range
pdf::StatsBase.Weights
end
function summarise(uv::AbstractUncertainScalarKDE{T}) where {T}
dist = uv.distribution
range = uv.range
dist = typeof(uv.distribution)
_type = typeof(uv)
"$_type($dist, range = $range)"
end
Base.show(io::IO, uv::AbstractUncertainScalarKDE{T}) where {T} = print(io, summarise(uv))
"""
rand(uv::AbstractUncertainScalarKDE)
Sample a random number from an uncertain value represented by a kernel
density estimate.
"""
function rand(uv::AbstractUncertainScalarKDE)
# Box width
δ = step(uv.range)
# Sample a box
sampled_val = sample(uv.range, uv.pdf)
# Sample uniformly from within the box
rand(Uniform(sampled_val, sampled_val + δ))
end
"""
rand(uv::AbstractUncertainScalarKDE, n::Int)
Sample a random number from an uncertain value represented by a kernel
density estimate.
"""
function rand(uv::AbstractUncertainScalarKDE, n::Int)
# Box width
δ = step(uv.range)
# Sample n boxes according to estimated pdf
sampled_vals = Vector{Float64}(undef, n)
sample!(uv.range, uv.pdf, sampled_vals)
# Sample uniformly from within each box
[rand(Uniform(sampled_vals[i], sampled_vals[i] + δ)) for i = 1:n]
end
"""
ecdf(uv::AbstractUncertainScalarKDE)
Empirical cumulative distribution function for an uncertain value approximated
by kernel density estimation.
"""
ecdf(uv::AbstractUncertainScalarKDE) = cumsum(uv.pdf)
"""
The mode (most likely value) of an uncertain value represented by a
kernel density estimate.
"""
mode(uv::AbstractUncertainScalarKDE) = uv.range(findmax(uv.distribution.density)[2])
"""
quantile(uv::UncertainScalarKDE, q)
Return the `q`-th quantile of the distribution furnishing the uncertain value.
"""
function quantile(uv::AbstractUncertainScalarKDE{T}, q) where T
uv.range[findfirst(ecdf(uv) .> q)]
end
median(uv::AbstractUncertainScalarKDE{T}) where T = quantile(uv, 0.5)
"""
support(uv::UncertainScalarKDE)
Return the support of an uncertain value furnished by a kernel density
estimate.
"""
support(uv::AbstractUncertainScalarKDE{T}) where T =
interval(minimum(uv.range), maximum(uv.range))
"""
getquantileindex(uv::AbstractUncertainScalarKDE, q::Float64)
Return the index of the range/density value corresponding to the `q`-th quantile
of an uncertain value furnished by a kernel density estimate.
"""
function getquantileindex(uv::AbstractUncertainScalarKDE{T}, q::Float64) where T
findfirst(ecdf(uv) .> q)
end
minimum(uv::AbstractUncertainScalarKDE) = minimum(uv.range)
maximum(uv::AbstractUncertainScalarKDE) = maximum(uv.range)
min(uv::AbstractUncertainScalarKDE) = minimum(uv.range)
max(uv::AbstractUncertainScalarKDE) = maximum(uv.range)
export
AbstractUncertainScalarKDE,
UncertainScalarKDE
ecdf,
support,
getquantileindex,
UnivariateKDE,
minimum,
maximum | UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 9413 |
"""
struct ConstrainedUncertainScalarValueOneParameter{S, T1 <: Number}
distribution::Distribution{Univariate, S}
a::T1
end
A constrained uncertain value represented by a one-parameter distribution,
where the original distribution has been truncated.
## Fields:
- **`distribution`**: The truncated version of the original distribution.
- **`a`**: The original value of the parameter of the original distribution.
"""
struct ConstrainedUncertainScalarValueOneParameter{S,
T1 <: Number} <: AbstractUncertainOneParameterScalarValue{S, T1}
distribution::Distribution{Univariate, S}
a::T1
end
"""
struct ConstrainedUncertainScalarValueTwoParameter{S, T1 <: Number, T2 <: Number}
distribution::Distribution{Univariate, S}
a::T1
b::T2
end
A constrained uncertain value represented by a two-parameter distribution,
where the original distribution has been truncated.
## Fields:
- **`distribution`**: The truncated version of the original distribution.
- **`a`**: The original value of the first parameter of the original distribution.
- **`b`**: The original value of the second parameter of the original distribution.
"""
struct ConstrainedUncertainScalarValueTwoParameter{S, T1 <: Number,
T2 <: Number} <: AbstractUncertainTwoParameterScalarValue{S, T1, T2}
distribution::Distribution{Univariate, S}
a::T1
b::T2
end
"""
struct ConstrainedUncertainScalarValueThreeParameter{S, T1 <: Number, T2 <: Number, T3 <: Number}
distribution::Distribution{Univariate, S}
a::T1
b::T2
c::T3
end
A constrained uncertain value represented by a two-parameter distribution,
where the original distribution has been truncated.
## Fields:
- **`distribution`**: The truncated version of the original distribution.
- **`a`**: The original value of the first parameter of the original distribution.
- **`b`**: The original value of the second parameter of the original distribution.
- **`c`**: The original value of the third parameter of the original distribution.
"""
struct ConstrainedUncertainScalarValueThreeParameter{S, T1 <: Number, T2 <: Number, T3 <: Number} <: AbstractUncertainThreeParameterScalarValue{S, T1, T2, T3}
distribution::Distribution{Univariate, S}
a::T1
b::T2
c::T3
end
import Distributions.Normal
import Distributions.Uniform
import Distributions.Beta
import Distributions.BetaPrime
import Distributions.BetaBinomial
import Distributions.Gamma
import Distributions.Frechet
"""
Uncertain value represented by a generic three-parameter distribution.
"""
struct UncertainScalarTheoreticalThreeParameter{S<:ValueSupport, T1<:Number, T2<:Number, T3<:Number} <: AbstractUncertainThreeParameterScalarValue{S, T1, T2, T3}
distribution::Distribution{Univariate, S}
a::T1
b::T2
c::T3
end
"""
Uncertain value represented by a generic two-parameter distribution.
"""
struct UncertainScalarTheoreticalTwoParameter{S<:ValueSupport, T1<:Number, T2<:Number} <: AbstractUncertainTwoParameterScalarValue{S, T1, T2}
distribution::Distribution{Univariate, S}
a::T1
b::T2
end
"""
Uncertain value represented by a generic one-parameter distribution.
"""
struct UncertainScalarGenericOneParameter{S<:ValueSupport, T1<:Number} <: AbstractUncertainOneParameterScalarValue{S, T1}
distribution::Distribution{Univariate, S}
a::T1
end
"""
Uncertain value represented by a normal distribution.
"""
struct UncertainScalarNormallyDistributed{S<:ValueSupport, T1<:Number, T2<:Number} <: AbstractUncertainTwoParameterScalarValue{S, T1, T2}
distribution::Distribution{Univariate, S}
μ::T1
σ::T2
end
"""
Uncertain value represented by a uniform distribution.
"""
struct UncertainScalarUniformlyDistributed{S<:ValueSupport, T1<:Number, T2<:Number} <: AbstractUncertainTwoParameterScalarValue{S, T1, T2}
distribution::Distribution{Univariate, S}
lower::T1
upper::T2
end
"""
Uncertain value represented by a beta distribution.
"""
struct UncertainScalarBetaDistributed{S<:ValueSupport, T1<:Number, T2<:Number} <: AbstractUncertainTwoParameterScalarValue{S, T1, T2}
distribution::Distribution{Univariate, S}
α::T1
β::T2
end
"""
Uncertain value represented by a beta prime distribution.
"""
struct UncertainScalarBetaPrimeDistributed{S<:ValueSupport, T1<:Number, T2<:Number} <: AbstractUncertainTwoParameterScalarValue{S, T1, T2}
distribution::Distribution{Univariate, S}
α::T1
β::T2
end
"""
Uncertain value represented by a beta binomial distribution.
"""
struct UncertainScalarBetaBinomialDistributed{S<:ValueSupport, T1<:Number, T2<:Number, T3<:Number} <: AbstractUncertainThreeParameterScalarValue{S, T1, T2, T3}
distribution::Distribution{Univariate, S}
n::T1
α::T2
β::T3
end
"""
Uncertain value represented by a gamma distribution.
"""
struct UncertainScalarGammaDistributed{S<:ValueSupport, T1<:Number, T2<:Number} <: AbstractUncertainTwoParameterScalarValue{S, T1, T2}
distribution::Distribution{Univariate, S}
α::T1
θ::T2
end
"""
Uncertain value represented by a Fréchet distribution.
"""
struct UncertainScalarFrechetDistributed{S<:ValueSupport, T1<:Number, T2<:Number} <: AbstractUncertainTwoParameterScalarValue{S, T1, T2}
distribution::Distribution{Univariate, S}
α::T1
θ::T2
end
"""
Uncertain value represented by a binomial distribution.
"""
struct UncertainScalarBinomialDistributed{S<:ValueSupport, T1<:Number, T2<:Number} <: AbstractUncertainTwoParameterScalarValue{S, T1, T2}
distribution::Distribution{Univariate, S}
n::T1
p::T2
end
###################
# Pretty printing
###################
function summarise(o::AbstractUncertainTwoParameterScalarValue)
a = @sprintf "%.3f" o.a
b = @sprintf "%.3f" o.b
dist = o.distribution
_type = typeof(o)
"$_type($a, $b, $dist)"
end
Base.show(io::IO, q::AbstractUncertainTwoParameterScalarValue) = print(io, summarise(q))
function summarise(o::AbstractUncertainThreeParameterScalarValue)
a = @sprintf "%.3f" o.a
b = @sprintf "%.3f" o.b
c = @sprintf "%.3f" o.c
dist = o.distribution
_type = typeof(o)
"$_type($a, $b, $c, $dist)"
end
Base.show(io::IO, q::AbstractUncertainThreeParameterScalarValue) = print(io, summarise(q))
function summarise(o::UncertainScalarNormallyDistributed)
μ = @sprintf "%.3f" o.μ
σ = @sprintf "%.3f" o.σ
dist = o.distribution
_type = typeof(o)
"$_type(μ = $μ, σ = $σ)"
end
Base.show(io::IO, q::UncertainScalarNormallyDistributed) = print(io, summarise(q))
function summarise(o::UncertainScalarUniformlyDistributed)
lower = @sprintf "%.3f" o.lower
upper = @sprintf "%.3f" o.upper
dist = o.distribution
_type = typeof(o)
"$_type(lower = $lower, upper = $upper)"
end
Base.show(io::IO, q::UncertainScalarUniformlyDistributed) = print(io, summarise(q))
function summarise(o::UncertainScalarBetaDistributed)
α = @sprintf "%.3f" o.α
β = @sprintf "%.3f" o.β
dist = o.distribution
_type = typeof(o)
"$_type(α = $α, β = $β)"
end
Base.show(io::IO, q::UncertainScalarBetaDistributed) = print(io, summarise(q))
function summarise(o::UncertainScalarBetaPrimeDistributed)
α = @sprintf "%.3f" o.α
β = @sprintf "%.3f" o.β
dist = o.distribution
_type = typeof(o)
"$_type(α = $α, β = $β)"
end
Base.show(io::IO, q::UncertainScalarBetaPrimeDistributed) = print(io, summarise(q))
function summarise(o::UncertainScalarBetaBinomialDistributed)
n = @sprintf "%.3f" o.n
α = @sprintf "%.3f" o.α
β = @sprintf "%.3f" o.β
dist = o.distribution
_type = typeof(o)
"$_type(n = $n, α = $α, β = $β)"
end
Base.show(io::IO, q::UncertainScalarBetaBinomialDistributed) = print(io, summarise(q))
function summarise(o::UncertainScalarGammaDistributed)
α = @sprintf "%.3f" o.α
θ = @sprintf "%.3f" o.θ
dist = o.distribution
_type = typeof(o)
"$_type(α = $α, θ = $θ)"
end
Base.show(io::IO, q::UncertainScalarGammaDistributed) = print(io, summarise(q))
function summarise(o::UncertainScalarFrechetDistributed)
α = @sprintf "%.3f" o.α
θ = @sprintf "%.3f" o.θ
dist = o.distribution
_type = typeof(o)
"$_type(α = $α, θ = $θ)"
end
Base.show(io::IO, q::UncertainScalarFrechetDistributed) = print(io, summarise(q))
function summarise(o::UncertainScalarBinomialDistributed)
n = @sprintf "%.3f" o.n
p = @sprintf "%.3f" o.p
dist = o.distribution
_type = typeof(o)
"$_type(n = $n, p = $p)"
end
Base.show(io::IO, q::UncertainScalarBinomialDistributed) = print(io, summarise(q))
export
TheoreticalDistributionScalarValue,
AbstractUncertainOneParameterScalarValue,
AbstractUncertainTwoParameterScalarValue,
AbstractUncertainThreeParameterScalarValue,
ConstrainedUncertainScalarValueOneParameter,
ConstrainedUncertainScalarValueTwoParameter,
ConstrainedUncertainScalarValueThreeParameter,
UncertainScalarGenericOneParameter,
UncertainScalarTheoreticalTwoParameter,
UncertainScalarTheoreticalThreeParameter,
UncertainScalarNormallyDistributed,
UncertainScalarUniformlyDistributed,
UncertainScalarBetaDistributed,
UncertainScalarBetaPrimeDistributed,
UncertainScalarBetaBinomialDistributed,
UncertainScalarBinomialDistributed,
UncertainScalarGammaDistributed,
UncertainScalarFrechetDistributed,
Normal,
Uniform,
Beta,
BetaPrime,
BetaBinomial,
Gamma,
Frechet,
Binomial
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 2381 | import Distributions
import Statistics
abstract type TheoreticalFittedUncertainScalar <: TheoreticalDistributionScalarValue end
Broadcast.broadcastable(uv::TheoreticalFittedUncertainScalar) = Ref(uv.distribution)
"""
UncertainScalarTheoreticalFit
An empirical value represented by a distribution estimated from actual data.
## Fields
- **`distribution`** The distribution describing the value.
- **`values`**: The values from which `distribution` is estimated.
"""
struct UncertainScalarTheoreticalFit{D <: Distribution, T} <: TheoreticalFittedUncertainScalar
distribution::FittedDistribution{D} # S may be Continuous or Discrete
values::AbstractVector{T}
end
"""
ConstrainedUncertainScalarTheoreticalFit
An empirical value represented by a distribution estimated from actual data.
## Fields
- **`distribution`** The truncated version of the distribution describing the
value.
- **`values`**: The values from which the original distribution was estimated.
"""
struct ConstrainedUncertainScalarTheoreticalFit{D <: Distribution, T} <: TheoreticalFittedUncertainScalar
distribution::FittedDistribution{D} # S may be Continuous or Discrete
values::AbstractVector{T}
end
""" Truncate a fitted distribution. """
Distributions.truncated(fd::FittedDistribution, lower, upper) =
Distributions.truncated(fd.distribution, lower, upper)
Base.rand(fd::UncertainScalarTheoreticalFit) = rand(fd.distribution.distribution)
Base.rand(fd::UncertainScalarTheoreticalFit, n::Int) = rand(fd.distribution.distribution, n)
# For the fitted distributions, we need to access the fitted distribution's distribution
Distributions.pdf(fd::UncertainScalarTheoreticalFit, x) = pdf(fd.distribution.distribution, x)
StatsBase.mode(uv::UncertainScalarTheoreticalFit) = mode(uv.distribution.distribution)
Statistics.mean(uv::UncertainScalarTheoreticalFit) = mean(uv.distribution.distribution)
Statistics.median(uv::UncertainScalarTheoreticalFit) = median(uv.distribution.distribution)
Statistics.quantile(uv::UncertainScalarTheoreticalFit, q) = quantile(uv.distribution.distribution, q)
Statistics.std(uv::UncertainScalarTheoreticalFit) = std(uv.distribution.distribution)
Statistics.var(uv::UncertainScalarTheoreticalFit) = var(uv.distribution.distribution)
export
TheoreticalFittedUncertainScalar,
UncertainScalarTheoreticalFit,
ConstrainedUncertainScalarTheoreticalFit
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 16000 | import KernelDensity.UnivariateKDE
import Distributions.Distribution
import StatsBase: AbstractWeights, Weights
import Distributions
"""
UncertainValue(x::T) where T <: Real
Create a `CertainValue` instance from a scalar with no uncertainty.
"""
UncertainValue(x::T) where T <: Real = CertainValue(x)
# Identity constructor
UncertainValue(uval::AbstractUncertainValue) = uval
# From Measurements.jl
UncertainValue(m::Measurement{T}) where T = UncertainValue(Normal, m.val, m.err)
"""
UncertainValue(values::Vector{<:Number}, probs::Vector{<:Number})
From a numeric vector, construct an `UncertainPopulation` whose
members are scalar values.
"""
function UncertainValue(values::Vector{<:Number}, probs::Vector{<:Number})
UncertainScalarPopulation(float.(values), probs)
end
"""
UncertainValue(values::Vector{<:Number}, probs::Vector{<:Number})
From a numeric vector, construct an `UncertainPopulation` whose
members are scalar values.
"""
function UncertainValue(values::Vector{<:Number}, probs::W) where {W <: AbstractWeights}
UncertainScalarPopulation(float.(values), probs)
end
"""
UncertainValue(values::Vector, probs::Union{Vector, AbstractWeights})
Construct a population whose members are given by `values` and whose sampling
probabilities are given by `probs`. The elements of `values` can be either
numeric or uncertain values of any type.
"""
function UncertainValue(values::VT, probs) where VT <: Vector{ELTYPE} where {ELTYPE<:POTENTIAL_UVAL_TYPES}
UncertainScalarPopulation(UncertainValue.(values), probs)
end
function UncertainValue(values::VT, probs::Vector{Number}) where VT <: Vector{ELTYPE} where {ELTYPE<:POTENTIAL_UVAL_TYPES}
UncertainScalarPopulation(UncertainValue.(values), probs)
end
"""
UncertainValue(data::Vector{T};
kernel::Type{D} = Normal,
npoints::Int=2048) where {D <: Distributions.Distribution, T}
Construct an uncertain value by a kernel density estimate to `data`.
Fast Fourier transforms are used in the kernel density estimation, so the
number of points should be a power of 2 (default = 2048).
"""
function UncertainValue(data::Vector{T};
kernel::Type{D} = Normal,
bandwidth = KernelDensity.default_bandwidth(data),
npoints::Int = 2048) where {D <: Distributions.Distribution, T}
# Kernel density estimation
KDE = kde(data, npoints = npoints, kernel = kernel, bandwidth = bandwidth)
# Get the x value for which the density is estimated.
xrange = KDE.x
# Normalise estimated density
density = KDE.density ./ sum(KDE.density)
# Create an uncertain value
UncertainScalarKDE(KDE, data, xrange, Weights(density))
end
"""
UncertainValue(kerneldensity::Type{K}, data::Vector{T};
kernel::Type{D} = Normal,
npoints::Int=2048) where {K <: UnivariateKDE, D <: Distribution, T}
Construct an uncertain value by a kernel density estimate to `data`.
Fast Fourier transforms are used in the kernel density estimation, so the
number of points should be a power of 2 (default = 2048).
"""
function UncertainValue(kerneldensity::Type{K}, data::Vector{T};
kernel::Type{D} = Normal,
bandwidth = KernelDensity.default_bandwidth(data)/4,
npoints::Int = 2048) where {K <: UnivariateKDE, D <: Distribution, T}
# Kernel density estimation
KDE = kde(data, npoints = npoints, kernel = kernel, bandwidth = bandwidth)
# Get the x value for which the density is estimated.
xrange = KDE.x
# Normalise estimated density
density = KDE.density ./ sum(KDE.density)
# Create an uncertain value
UncertainScalarKDE(KDE, data, xrange, Weights(density))
end
# For vectors of zero-dimensional arrays.
UncertainValue(x::Vector{Array{<:Real, 0}}) = UncertainValue([el[] for el in x])
"""
UncertainValue(empiricaldata::AbstractVector{T},
d::Type{D}) where {D <: Distribution}
# Constructor for empirical distributions.
Fit a distribution of type `d` to the data and use that as the
representation of the empirical distribution. Calls `Distributions.fit` behind
the scenes.
## Arguments
- **`empiricaldata`**: The data for which to fit the `distribution`.
- **`distribution`**: A valid univariate distribution from `Distributions.jl`.
"""
function UncertainValue(d::Type{D},
empiricaldata::Vector{T}) where {D<:Distribution, T}
distribution = FittedDistribution(Distributions.fit(d, empiricaldata))
UncertainScalarTheoreticalFit(distribution, empiricaldata)
end
"""
UncertainValue(distribution::Type{D}, a::T1, b::T2;
kwargs...) where {T1<:Number, T2 <: Number, D<:Distribution}
# Constructor for two-parameter distributions
`UncertainValue`s are currently implemented for the following two-parameter
distributions: `Uniform`, `Normal`, `Binomial`, `Beta`, `BetaPrime`, `Gamma`,
and `Frechet`.
### Arguments
- **`a`, `b`**: Generic parameters whose meaning varies depending
on what `distribution` is provided. See the list below.
- **`distribution`**: A valid univariate distribution from `Distributions.jl`.
Precisely what `a` and `b` are depends on which distribution is provided.
- `UncertainValue(Normal, μ, σ)` returns an `UncertainScalarNormallyDistributed` instance.
- `UncertainValue(Uniform, lower, upper)` returns an `UncertainScalarUniformlyDistributed` instance.
- `UncertainValue(Beta, α, β)` returns an `UncertainScalarBetaDistributed` instance.
- `UncertainValue(BetaPrime, α, β)` returns an `UncertainScalarBetaPrimeDistributed` instance.
- `UncertainValue(Gamma, α, θ)` returns an `UncertainScalarGammaDistributed` instance.
- `UncertainValue(Frechet, α, θ)` returns an `UncertainScalarFrechetDistributed` instance.
- `UncertainValue(Binomial, n, p)` returns an `UncertainScalarBinomialDistributed` instance.
### Keyword arguments
- **`nσ`**: If `distribution <: Distributions.Normal`, then how many standard
deviations away from `μ` does `lower` and `upper` (i.e. both, because
they are the same distance away from `μ`) represent?
- **`tolerance`**: A threshold determining how symmetric the uncertainties
must be in order to allow the construction of Normal distribution
(`upper - lower > threshold` is required).
- **`trunc_lower`**: Lower truncation bound for distributions with infinite
support. Defaults to `-Inf`.
- **`trunc_upper`**: Upper truncation bound for distributions with infinite
support. Defaults to `Inf`.
## Examples
### Normal distribution
Normal distributions are formed by using the constructor
`UncertainValue(μ, σ, Normal; kwargs...)`. This gives a normal distribution with
mean μ and standard deviation σ/nσ (nσ must be given as a keyword argument).
```julia
# A normal distribution with mean = 2.3 and standard deviation 0.3.
UncertainValue(2.3, 0.3, Normal)
# A normal distribution with mean 2.3 and standard deviation 0.3/2.
UncertainValue(2.3, 0.3, Normal, nσ = 2)
# A normal distribution with mean 2.3 and standard deviation = 0.3,
truncated to the interval `[1, 3]`.
UncertainValue(2.3, 0.3, Normal, trunc_lower = 1.0, trunc_upper = 3.0)
```
### Uniform distribution
Uniform distributions are formed using the
`UncertainValue(lower, upper, Uniform)` constructor.
```julia
# A uniform distribution on `[2, 3]`
UncertainValue(-2, 3, Uniform)
```
"""
function UncertainValue(distribution::Type{D}, a::T1, b::T2;
kwargs...) where {T1<:Number, T2 <: Number, D<:Distribution}
if distribution == Uniform
dist = assigndist_uniform(a, b)
UncertainScalarUniformlyDistributed(dist, a, b)
elseif distribution == Binomial
dist = assigndist_binomial(a, b)
UncertainScalarBinomialDistributed(dist, a, b)
elseif distribution == Normal
dist = assigndist_normal(a, b; kwargs...)
UncertainScalarNormallyDistributed(dist, a, b)
elseif distribution == Beta
dist = assigndist_beta(a, b; kwargs...)
UncertainScalarBetaDistributed(dist, a, b)
elseif distribution == BetaPrime
dist = assigndist_betaprime(a, b; kwargs...)
UncertainScalarBetaPrimeDistributed(dist, a, b)
elseif distribution == Gamma
if !((a > 0) & (b > 0))
error("α and θ must both be > 0")
end
dist = assigndist_gamma(a, b; kwargs...)
UncertainScalarGammaDistributed(dist, a, b)
elseif distribution == Frechet
dist = assigndist_frechet(a, b; kwargs...)
UncertainScalarFrechetDistributed(dist, a, b)
else
throw(DomainError("Two-parameter $dist is not implemented."))
end
end
"""
UncertainValue(distribution::Type{D}, a::T1, b::T2, c::T3;
kwargs...) where {T1<:Number, T2<:Number, T3<:Number, D<:Distribution}
## Constructor for three-parameter distributions
Currently implemented distributions are `BetaBinomial`.
### Arguments
- **`a`, `b`, `c`**: Generic parameters whose meaning varies depending
on what `distribution` is provided. See the list below.
- **`distribution`**: A valid univariate distribution from `Distributions.jl`.
Precisely what `a`, `b` and `c` are depends on which distribution is provided.
- `UncertainValue(BetaBinomial, n, α, β)` returns an `UncertainScalarBetaBinomialDistributed` instance.
### Keyword arguments
- **`nσ`**: If `distribution <: Distributions.Normal`, then how many standard
deviations away from `μ` does `lower` and `upper` (i.e. both, because
they are the same distance away from `μ`) represent?
- **`tolerance`**: A threshold determining how symmetric the uncertainties
must be in order to allow the construction of Normal distribution
(`upper - lower > threshold` is required).
- **`trunc_lower`**: Lower truncation bound for distributions with infinite
support. Defaults to `-Inf`.
- **`trunc_upper`**: Upper truncation bound for distributions with infinite
support. Defaults to `Inf`.
## Examples
### BetaBinomial distribution
Normal distributions are formed by using the constructor
`UncertainValue(μ, σ, Normal; kwargs...)`. This gives a normal distribution with
mean μ and standard deviation σ/nσ (nσ must be given as a keyword argument).
```julia
# A beta binomial distribution with n = 100 trials and parameters α = 2.3 and
# β = 5
UncertainValue(100, 2.3, 5, BetaBinomial)
```
"""
function UncertainValue(distribution::Type{D}, a::T1, b::T2, c::T3;
kwargs...) where {T1<:Number, T2<:Number, T3<:Number, D<:Distribution}
if distribution == BetaBinomial
dist = assigndist_betabinomial(a, b, c; kwargs...)
UncertainScalarBetaBinomialDistributed(dist, a, b, c)
else
throw(DomainError("Three-parameter $dist is not implemented."))
end
end
"""
nested_disttype(t::Distributions.Truncated)
Get the type of the untruncated distribution for a potentially nested
truncated distribution.
"""
function untruncated_dist(t::Distributions.Truncated)
t_untrunc = t
while typeof(t_untrunc) <: Distributions.Truncated
t_untrunc = t_untrunc.untruncated
end
return t_untrunc
end
"""
untruncated_disttype(t::Distributions.Truncated)
Get the type of the untruncated distribution for a potentially nested
truncated distribution.
"""
function untruncated_disttype(t::Distributions.Truncated)
t_untrunc = t
while typeof(t_untrunc) <: Distributions.Truncated
t_untrunc = t_untrunc.untruncated
end
return typeof(t_untrunc)
end
"""
UncertainValue(t::Distributions.Truncated)
Construct an uncertain value from an instance of a distribution. If a specific
uncertain value type has not been implemented, the number of parameters is
determined from the distribution and an instance of one of the following types
is returned:
- `ConstrainedUncertainScalarValueOneParameter`
- `ConstrainedUncertainScalarValueTwoParameter`
- `ConstrainedUncertainScalarValueThreeParameter`
## Examples
```julia
# Normal distribution truncated to the interval [0.5, 0.7]
t = truncated(Normal(0, 1), 0.5, 0.7)
UncertainValue(t)
# Gamma distribution truncated to the interval [0.5, 3.5]
t = Truncate(Gamma(4, 5.1), 0.5, 3.5)
UncertainValue(t)
# Binomial distribution truncated to the interval [2, 7]
t = Truncate(Binomial(10, 0.4), 2, 7)
UncertainValue(t)
```
"""
function UncertainValue(t::Distributions.Truncated)
dist_type = untruncated_disttype(t)
original_dist = untruncated_dist(t)
params = fieldnames(dist_type)
param_values = [getfield(original_dist, p) for p in params]
n_params = length(params)
if n_params == 1
return ConstrainedUncertainScalarValueOneParameter(t, param_values...)
elseif n_params == 2
return ConstrainedUncertainScalarValueTwoParameter(t, param_values...)
elseif n_params == 3
return ConstrainedUncertainScalarValueThreeParameter(t, param_values...)
end
end
"""
UncertainValue(d::Distributions.Distribution)
Construct an uncertain value from an instance of a distribution. If a specific
uncertain value type has not been implemented, the number of parameters is
determined from the distribution and an instance of one of the following types
is returned:
- `UncertainScalarTheoreticalOneParameter`
- `UncertainScalarTheoreticalTwoParameter`
- `UncertainScalarTheoreticalThreeParameter`
## Examples
```julia
UncertainValue(Normal(0, 1))
UncertainValue(Gamma(4, 5.1))
UncertainValue(Binomial, 8, 0.2)
```
"""
function UncertainValue(d::Distributions.Distribution)
params = fieldnames(typeof(d))
n_params = length(params)
param_values = [getfield(d, p) for p in params]
if d isa Uniform
UncertainScalarUniformlyDistributed(d, param_values...)
elseif d isa Binomial
UncertainScalarBinomialDistributed(d, param_values...)
elseif d isa Normal
UncertainScalarNormallyDistributed(d, param_values...)
elseif d isa Beta
UncertainScalarBetaDistributed(d, param_values...)
elseif d isa BetaPrime
UncertainScalarBetaPrimeDistributed(d, param_values...)
elseif d isa Gamma
UncertainScalarGammaDistributed(d, param_values...)
elseif d isa Frechet
UncertainScalarFrechetDistributed(d, param_values...)
# if no specific type is implemented for this distribution, just create
# a generic one
else
if n_params == 1
return UncertainScalarTheoreticalOneParameter(d, param_values...)
elseif n_params == 2
return UncertainScalarTheoreticalTwoParameter(d, param_values...)
elseif n_params == 3
return UncertainScalarTheoreticalThreeParameter(d, param_values...)
else
msg = "uncertain value type for $n_params-parameter $d not implemented."
throw(DomainError(msg))
end
end
end
##############################
# Macro constructors
##############################
# macro uncertainvalue(μ, lower, upper, d,
# nσ = 2, trunc_lower = -Inf, trunc_upper = Inf, tolerance = 1e-3)
# return :(UncertainValue($μ, $lower, $upper, $d,
# nσ = $nσ,
# trunc_lower = $trunc_lower,
# trunc_upper = $trunc_upper,
# tolerance = $tolerance))
# end
#
#macro uncertainvalue(empiricaldata, dist)
# return :(UncertainValue($empiricaldata, $dist))
#end
#
# """
# A macro for the construction of uncertain values. Calls
# [`UncertainValue`](@ref) with the provided arguments.
#
# - **`@uncertainvalue(μ, lower, upper, dist, kwargs...)`**:
# Fit a distribution of type `dist` to `μ` and `lower`/`upper` uncertainty
# bounds.
# - **`@uncertainvalue(empiricaldata, dist)`**:
# Fit a distribution of type `dist` to a vector of empirical data.
# """
#:(@uncertainvalue)
#
#
# """
# @evalue(values, d)
#
# Construct an uncertain value from an empirical distribution.
# """
#macro uncertain(values::AbstractVector, d)
# :(UncertainScalarTheoreticalFit($values, $d))
#end
#uncertain, @uncertain
export
UncertainValue
#uncertainvalue,
#@uncertainvalue
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 2797 | using Reexport
@reexport module UncertainValues
using IntervalArithmetic
import IntervalArithmetic: interval
using Distributions
using RecipesBase
using StaticArrays
using Measurements
import KernelDensity: KernelDensity, UnivariateKDE, default_bandwidth, kde
import StatsBase: StatsBase,
ProbabilityWeights, pweights,
FrequencyWeights, fweights,
Weights, weights,
AnalyticWeights, aweights
##########################################
# Abstract types
##########################################
include("abstract_types/AbstractUncertainValue.jl")
include("abstract_types/AbstractTheoreticalDistributionScalarValue.jl")
include("abstract_types/AbstractPopulation.jl")
include("abstract_types/AbstractScalarPopulation.jl")
include("abstract_types/AbstractEmpirical.jl")
include("abstract_types/AbstractUncertainScalarKDE.jl")
##########################################
# Distributions
##########################################
include("distributions/assign_dist.jl")
##########################################
# Fitted distribution type
##########################################
include("distributions/fitted_distribution.jl")
##########################################
# Composite uncertain scalar types
##########################################
# Theoretical distributions with known parameters
include("UncertainScalarsTheoretical.jl")
# Theoretical distributions with fitted parameters
include("UncertainScalarsTheoreticalFitted.jl")
# Kernel density estimated distributions
include("UncertainScalarsKDE.jl")
# Populations with weighted probabilities
include("UncertainScalarPopulation.jl")
# Certain values (i.e. values without uncertainty)
include("CertainValue.jl")
##########################################
# Composite uncertain vector types
##########################################
include("UncertainVectorsTheoretical.jl")
include("UncertainVectorsTheoreticalFitted.jl")
include("UncertainVectorsKDE.jl")
# Define common constructor, so a similar syntax may be used to construct
# all types of uncertain values.
include("UncertainValue.jl")
##########################################
# Comparisons
##########################################
include("operations/comparisons.jl")
# Conversions
include("convert.jl")
export KernelDensity, UnivariateKDE, default_bandwidth, kde
ProbabilityWeights, pweights,
FrequencyWeights, fweights,
Weights, weights,
AnalyticWeights, aweights
end #module
"""
UncertainValues
A module defining uncertain value types.
"""
UncertainValues
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 347 | struct UncertainVectorValue{T1<:Number, T2<:Number, T3<:Number,
S<:ValueSupport} <: AbstractUncertainValue
distribution::Distribution{Multivariate, S}
value::AbstractVector{T1}
lower::AbstractVector{T2}
upper::AbstractVector{T3}
end
dimension(usv::UncertainVectorValue) = length(distribution)
export UncertainVectorValue
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 413 | """
UncertainEmpiricalVectorValue
An empirical value represented by a distribution estimated from actual data.
## Fields
- **`distribution`** The distribution describing the value.
- **`values`**: The values from which `distribution` is estimated.
"""
struct UncertainEmpiricalVectorValue{D <: Distribution, T} <: AbstractEmpiricalValue
distribution::D
values::AbstractVector{AbstractVector{T}}
end
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
|
[
"MIT"
] | 0.16.0 | df107bbf91afba419309adb9daa486b0457c693c | code | 170 | convert(::Type{CertainValue}, x::T) where {T <: Number} = CertainValue(x)
convert(::Type{T1}, x::T2) where {T1 <: AbstractUncertainValue, T2 <: Number} = CertainValue(x)
| UncertainData | https://github.com/kahaaga/UncertainData.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.