licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.0
2d6ab091a1f4af72f40a76fe35b2c01982aa0bbf
docs
2425
# PersonalNameOriginedOut ## Properties Name | Type | Description | Notes ------------ | ------------- | ------------- | ------------- **script** | **String** | | [optional] [default to nothing] **id** | **String** | | [optional] [default to nothing] **explanation** | **String** | | [optional] [default to nothing] **name** | **String** | The input name. | [optional] [default to nothing] **countryOrigin** | **String** | Most likely country of Origin | [optional] [default to nothing] **countryOriginAlt** | **String** | Second best alternative : country of Origin | [optional] [default to nothing] **countriesOriginTop** | **Vector{String}** | List countries of Origin (top 10) | [optional] [default to nothing] **score** | **Float64** | Compatibility to NamSor_v1 Origin score value. Higher score is better, but score is not normalized. Use calibratedProbability if available. | [optional] [default to nothing] **regionOrigin** | **String** | Most likely region of Origin (based on countryOrigin ISO2 code) | [optional] [default to nothing] **topRegionOrigin** | **String** | Most likely top region of Origin (based on countryOrigin ISO2 code) | [optional] [default to nothing] **subRegionOrigin** | **String** | Most likely sub region of Origin (based on countryOrigin ISO2 code) | [optional] [default to nothing] **probabilityCalibrated** | **Float64** | The calibrated probability for countryOrigin to have been guessed correctly. -1 = still calibrating. | [optional] [default to nothing] **probabilityAltCalibrated** | **Float64** | The calibrated probability for countryOrigin OR countryOriginAlt to have been guessed correctly. -1 = still calibrating. | [optional] [default to nothing] **religionStats** | [**Vector{ReligionStatOut}**](ReligionStatOut.md) | Geographic religious statistics, assuming country of origin is correctly predicted. | [optional] [default to nothing] **religionStatsAlt** | [**Vector{ReligionStatOut}**](ReligionStatOut.md) | Geographic religious statistics, for country best alternative. | [optional] [default to nothing] **religionStatsSynthetic** | [**Vector{ReligionStatOut}**](ReligionStatOut.md) | Geographic religious statistics, assuming country of origin OR best alternative is correctly predicted. | [optional] [default to nothing] [[Back to Model list]](../README.md#models) [[Back to API list]](../README.md#api-endpoints) [[Back to README]](../README.md)
NamSor
https://github.com/NeroBlackstone/NamSor.jl.git
[ "MIT" ]
0.1.0
2d6ab091a1f4af72f40a76fe35b2c01982aa0bbf
docs
1171
# PersonalNameParsedOut ## Properties Name | Type | Description | Notes ------------ | ------------- | ------------- | ------------- **script** | **String** | | [optional] [default to nothing] **id** | **String** | | [optional] [default to nothing] **explanation** | **String** | | [optional] [default to nothing] **name** | **String** | The input name. | [optional] [default to nothing] **nameParserType** | **String** | Name parsing is addressed as a classification problem, for example FN1LN1 means a first then last name order. | [optional] [default to nothing] **nameParserTypeAlt** | **String** | Second best alternative parsing. Name parsing is addressed as a classification problem, for example FN1LN1 means a first then last name order. | [optional] [default to nothing] **firstLastName** | [***FirstLastNameOut**](FirstLastNameOut.md) | | [optional] [default to nothing] **score** | **Float64** | Higher score is better, but score is not normalized. Use calibratedProbability if available. | [optional] [default to nothing] [[Back to Model list]](../README.md#models) [[Back to API list]](../README.md#api-endpoints) [[Back to README]](../README.md)
NamSor
https://github.com/NeroBlackstone/NamSor.jl.git
[ "MIT" ]
0.1.0
2d6ab091a1f4af72f40a76fe35b2c01982aa0bbf
docs
1334
# PersonalNameReligionedOut ## Properties Name | Type | Description | Notes ------------ | ------------- | ------------- | ------------- **script** | **String** | | [optional] [default to nothing] **id** | **String** | | [optional] [default to nothing] **explanation** | **String** | | [optional] [default to nothing] **name** | **String** | The input name. | [optional] [default to nothing] **score** | **Float64** | Higher score is better, but score is not normalized. Use calibratedProbability if available. | [optional] [default to nothing] **religion** | **String** | Most likely religion | [optional] [default to nothing] **religionAlt** | **String** | Second best alternative : religion | [optional] [default to nothing] **religionsTop** | **Vector{String}** | List religions (top 10) | [optional] [default to nothing] **probabilityCalibrated** | **Float64** | The calibrated probability for country to have been guessed correctly. -1 = still calibrating. | [optional] [default to nothing] **probabilityAltCalibrated** | **Float64** | The calibrated probability for country OR countryAlt to have been guessed correctly. -1 = still calibrating. | [optional] [default to nothing] [[Back to Model list]](../README.md#models) [[Back to API list]](../README.md#api-endpoints) [[Back to README]](../README.md)
NamSor
https://github.com/NeroBlackstone/NamSor.jl.git
[ "MIT" ]
0.1.0
2d6ab091a1f4af72f40a76fe35b2c01982aa0bbf
docs
454
# PersonalNameSubdivisionIn ## Properties Name | Type | Description | Notes ------------ | ------------- | ------------- | ------------- **id** | **String** | | [optional] [default to nothing] **name** | **String** | | [optional] [default to nothing] **subdivisionIso** | **String** | | [optional] [default to nothing] [[Back to Model list]](../README.md#models) [[Back to API list]](../README.md#api-endpoints) [[Back to README]](../README.md)
NamSor
https://github.com/NeroBlackstone/NamSor.jl.git
[ "MIT" ]
0.1.0
2d6ab091a1f4af72f40a76fe35b2c01982aa0bbf
docs
1411
# PersonalNameUSRaceEthnicityOut ## Properties Name | Type | Description | Notes ------------ | ------------- | ------------- | ------------- **script** | **String** | | [optional] [default to nothing] **id** | **String** | | [optional] [default to nothing] **explanation** | **String** | | [optional] [default to nothing] **name** | **String** | The input name. | [optional] [default to nothing] **raceEthnicityAlt** | **String** | Second most likely US 'race'/ethnicity | [optional] [default to nothing] **raceEthnicity** | **String** | Most likely US 'race'/ethnicity | [optional] [default to nothing] **score** | **Float64** | Higher score is better, but score is not normalized. Use calibratedProbability if available. | [optional] [default to nothing] **raceEthnicitiesTop** | **Vector{String}** | List 'race'/ethnicities | [optional] [default to nothing] **probabilityCalibrated** | **Float64** | The calibrated probability for raceEthnicity to have been guessed correctly. -1 = still calibrating. | [optional] [default to nothing] **probabilityAltCalibrated** | **Float64** | The calibrated probability for raceEthnicity OR raceEthnicityAlt to have been guessed correctly. -1 = still calibrating. | [optional] [default to nothing] [[Back to Model list]](../README.md#models) [[Back to API list]](../README.md#api-endpoints) [[Back to README]](../README.md)
NamSor
https://github.com/NeroBlackstone/NamSor.jl.git
[ "MIT" ]
0.1.0
2d6ab091a1f4af72f40a76fe35b2c01982aa0bbf
docs
899
# ProperNounCategorizedOut ## Properties Name | Type | Description | Notes ------------ | ------------- | ------------- | ------------- **script** | **String** | | [optional] [default to nothing] **id** | **String** | | [optional] [default to nothing] **explanation** | **String** | | [optional] [default to nothing] **name** | **String** | The input name | [optional] [default to nothing] **commonType** | **String** | The most likely common name type | [optional] [default to nothing] **commonTypeAlt** | **String** | Best alternative for : The most likely common name type | [optional] [default to nothing] **score** | **Float64** | Higher score is better, but score is not normalized. Use calibratedProbability if available. | [optional] [default to nothing] [[Back to Model list]](../README.md#models) [[Back to API list]](../README.md#api-endpoints) [[Back to README]](../README.md)
NamSor
https://github.com/NeroBlackstone/NamSor.jl.git
[ "MIT" ]
0.1.0
2d6ab091a1f4af72f40a76fe35b2c01982aa0bbf
docs
775
# RegionISO ## Properties Name | Type | Description | Notes ------------ | ------------- | ------------- | ------------- **countryName** | **String** | | [optional] [default to nothing] **countryNumCode** | **String** | | [optional] [default to nothing] **countryISO2** | **String** | | [optional] [default to nothing] **countryISO3** | **String** | | [optional] [default to nothing] **countryFIPS** | **String** | | [optional] [default to nothing] **subregion** | **String** | | [optional] [default to nothing] **region** | **String** | | [optional] [default to nothing] **topregion** | **String** | | [optional] [default to nothing] [[Back to Model list]](../README.md#models) [[Back to API list]](../README.md#api-endpoints) [[Back to README]](../README.md)
NamSor
https://github.com/NeroBlackstone/NamSor.jl.git
[ "MIT" ]
0.1.0
2d6ab091a1f4af72f40a76fe35b2c01982aa0bbf
docs
383
# RegionOut ## Properties Name | Type | Description | Notes ------------ | ------------- | ------------- | ------------- **countriesAndRegions** | [**Vector{RegionISO}**](RegionISO.md) | List of countries and regions | [optional] [default to nothing] [[Back to Model list]](../README.md#models) [[Back to API list]](../README.md#api-endpoints) [[Back to README]](../README.md)
NamSor
https://github.com/NeroBlackstone/NamSor.jl.git
[ "MIT" ]
0.1.0
2d6ab091a1f4af72f40a76fe35b2c01982aa0bbf
docs
381
# ReligionStatOut ## Properties Name | Type | Description | Notes ------------ | ------------- | ------------- | ------------- **religion** | **String** | | [optional] [default to nothing] **pct** | **Float64** | | [optional] [default to nothing] [[Back to Model list]](../README.md#models) [[Back to API list]](../README.md#api-endpoints) [[Back to README]](../README.md)
NamSor
https://github.com/NeroBlackstone/NamSor.jl.git
[ "MIT" ]
0.1.0
2d6ab091a1f4af72f40a76fe35b2c01982aa0bbf
docs
8618
# SocialApi All URIs are relative to *https://v2.namsor.com/NamSorAPIv2* Method | HTTP request | Description ------------- | ------------- | ------------- [**phone_code**](SocialApi.md#phone_code) | **GET** /api2/json/phoneCode/{firstName}/{lastName}/{phoneNumber} | [USES 11 UNITS PER NAME] Infer the likely country and phone prefix, given a personal name and formatted / unformatted phone number. [**phone_code_batch**](SocialApi.md#phone_code_batch) | **POST** /api2/json/phoneCodeBatch | [USES 11 UNITS PER NAME] Infer the likely country and phone prefix, of up to 100 personal names, detecting automatically the local context given a name and formatted / unformatted phone number. [**phone_code_geo**](SocialApi.md#phone_code_geo) | **GET** /api2/json/phoneCodeGeo/{firstName}/{lastName}/{phoneNumber}/{countryIso2} | [USES 11 UNITS PER NAME] Infer the likely phone prefix, given a personal name and formatted / unformatted phone number, with a local context (ISO2 country of residence). [**phone_code_geo_batch**](SocialApi.md#phone_code_geo_batch) | **POST** /api2/json/phoneCodeGeoBatch | [USES 11 UNITS PER NAME] Infer the likely country and phone prefix, of up to 100 personal names, with a local context (ISO2 country of residence). [**phone_code_geo_feedback_loop**](SocialApi.md#phone_code_geo_feedback_loop) | **GET** /api2/json/phoneCodeGeoFeedbackLoop/{firstName}/{lastName}/{phoneNumber}/{phoneNumberE164}/{countryIso2} | [CREDITS 1 UNIT] Feedback loop to better infer the likely phone prefix, given a personal name and formatted / unformatted phone number, with a local context (ISO2 country of residence). # **phone_code** > phone_code(_api::SocialApi, first_name::String, last_name::String, phone_number::String; _mediaType=nothing) -> FirstLastNamePhoneCodedOut, OpenAPI.Clients.ApiResponse <br/> > phone_code(_api::SocialApi, response_stream::Channel, first_name::String, last_name::String, phone_number::String; _mediaType=nothing) -> Channel{ FirstLastNamePhoneCodedOut }, OpenAPI.Clients.ApiResponse [USES 11 UNITS PER NAME] Infer the likely country and phone prefix, given a personal name and formatted / unformatted phone number. ### Required Parameters Name | Type | Description | Notes ------------- | ------------- | ------------- | ------------- **_api** | **SocialApi** | API context | **first_name** | **String**| | [default to nothing] **last_name** | **String**| | [default to nothing] **phone_number** | **String**| | [default to nothing] ### Return type [**FirstLastNamePhoneCodedOut**](FirstLastNamePhoneCodedOut.md) ### Authorization [api_key](../README.md#api_key) ### HTTP request headers - **Content-Type**: Not defined - **Accept**: application/json [[Back to top]](#) [[Back to API list]](../README.md#api-endpoints) [[Back to Model list]](../README.md#models) [[Back to README]](../README.md) # **phone_code_batch** > phone_code_batch(_api::SocialApi; batch_first_last_name_phone_number_in=nothing, _mediaType=nothing) -> BatchFirstLastNamePhoneCodedOut, OpenAPI.Clients.ApiResponse <br/> > phone_code_batch(_api::SocialApi, response_stream::Channel; batch_first_last_name_phone_number_in=nothing, _mediaType=nothing) -> Channel{ BatchFirstLastNamePhoneCodedOut }, OpenAPI.Clients.ApiResponse [USES 11 UNITS PER NAME] Infer the likely country and phone prefix, of up to 100 personal names, detecting automatically the local context given a name and formatted / unformatted phone number. ### Required Parameters Name | Type | Description | Notes ------------- | ------------- | ------------- | ------------- **_api** | **SocialApi** | API context | ### Optional Parameters Name | Type | Description | Notes ------------- | ------------- | ------------- | ------------- **batch_first_last_name_phone_number_in** | [**BatchFirstLastNamePhoneNumberIn**](BatchFirstLastNamePhoneNumberIn.md)| A list of personal names | ### Return type [**BatchFirstLastNamePhoneCodedOut**](BatchFirstLastNamePhoneCodedOut.md) ### Authorization [api_key](../README.md#api_key) ### HTTP request headers - **Content-Type**: application/json - **Accept**: application/json [[Back to top]](#) [[Back to API list]](../README.md#api-endpoints) [[Back to Model list]](../README.md#models) [[Back to README]](../README.md) # **phone_code_geo** > phone_code_geo(_api::SocialApi, first_name::String, last_name::String, phone_number::String, country_iso2::String; _mediaType=nothing) -> FirstLastNamePhoneCodedOut, OpenAPI.Clients.ApiResponse <br/> > phone_code_geo(_api::SocialApi, response_stream::Channel, first_name::String, last_name::String, phone_number::String, country_iso2::String; _mediaType=nothing) -> Channel{ FirstLastNamePhoneCodedOut }, OpenAPI.Clients.ApiResponse [USES 11 UNITS PER NAME] Infer the likely phone prefix, given a personal name and formatted / unformatted phone number, with a local context (ISO2 country of residence). ### Required Parameters Name | Type | Description | Notes ------------- | ------------- | ------------- | ------------- **_api** | **SocialApi** | API context | **first_name** | **String**| | [default to nothing] **last_name** | **String**| | [default to nothing] **phone_number** | **String**| | [default to nothing] **country_iso2** | **String**| | [default to nothing] ### Return type [**FirstLastNamePhoneCodedOut**](FirstLastNamePhoneCodedOut.md) ### Authorization [api_key](../README.md#api_key) ### HTTP request headers - **Content-Type**: Not defined - **Accept**: application/json [[Back to top]](#) [[Back to API list]](../README.md#api-endpoints) [[Back to Model list]](../README.md#models) [[Back to README]](../README.md) # **phone_code_geo_batch** > phone_code_geo_batch(_api::SocialApi; batch_first_last_name_phone_number_geo_in=nothing, _mediaType=nothing) -> BatchFirstLastNamePhoneCodedOut, OpenAPI.Clients.ApiResponse <br/> > phone_code_geo_batch(_api::SocialApi, response_stream::Channel; batch_first_last_name_phone_number_geo_in=nothing, _mediaType=nothing) -> Channel{ BatchFirstLastNamePhoneCodedOut }, OpenAPI.Clients.ApiResponse [USES 11 UNITS PER NAME] Infer the likely country and phone prefix, of up to 100 personal names, with a local context (ISO2 country of residence). ### Required Parameters Name | Type | Description | Notes ------------- | ------------- | ------------- | ------------- **_api** | **SocialApi** | API context | ### Optional Parameters Name | Type | Description | Notes ------------- | ------------- | ------------- | ------------- **batch_first_last_name_phone_number_geo_in** | [**BatchFirstLastNamePhoneNumberGeoIn**](BatchFirstLastNamePhoneNumberGeoIn.md)| A list of personal names | ### Return type [**BatchFirstLastNamePhoneCodedOut**](BatchFirstLastNamePhoneCodedOut.md) ### Authorization [api_key](../README.md#api_key) ### HTTP request headers - **Content-Type**: application/json - **Accept**: application/json [[Back to top]](#) [[Back to API list]](../README.md#api-endpoints) [[Back to Model list]](../README.md#models) [[Back to README]](../README.md) # **phone_code_geo_feedback_loop** > phone_code_geo_feedback_loop(_api::SocialApi, first_name::String, last_name::String, phone_number::String, phone_number_e164::String, country_iso2::String; _mediaType=nothing) -> FirstLastNamePhoneCodedOut, OpenAPI.Clients.ApiResponse <br/> > phone_code_geo_feedback_loop(_api::SocialApi, response_stream::Channel, first_name::String, last_name::String, phone_number::String, phone_number_e164::String, country_iso2::String; _mediaType=nothing) -> Channel{ FirstLastNamePhoneCodedOut }, OpenAPI.Clients.ApiResponse [CREDITS 1 UNIT] Feedback loop to better infer the likely phone prefix, given a personal name and formatted / unformatted phone number, with a local context (ISO2 country of residence). ### Required Parameters Name | Type | Description | Notes ------------- | ------------- | ------------- | ------------- **_api** | **SocialApi** | API context | **first_name** | **String**| | [default to nothing] **last_name** | **String**| | [default to nothing] **phone_number** | **String**| | [default to nothing] **phone_number_e164** | **String**| | [default to nothing] **country_iso2** | **String**| | [default to nothing] ### Return type [**FirstLastNamePhoneCodedOut**](FirstLastNamePhoneCodedOut.md) ### Authorization [api_key](../README.md#api_key) ### HTTP request headers - **Content-Type**: Not defined - **Accept**: application/json [[Back to top]](#) [[Back to API list]](../README.md#api-endpoints) [[Back to Model list]](../README.md#models) [[Back to README]](../README.md)
NamSor
https://github.com/NeroBlackstone/NamSor.jl.git
[ "MIT" ]
0.1.0
2d6ab091a1f4af72f40a76fe35b2c01982aa0bbf
docs
474
# SoftwareVersionOut ## Properties Name | Type | Description | Notes ------------ | ------------- | ------------- | ------------- **softwareNameAndVersion** | **String** | The software version | [optional] [default to nothing] **softwareVersion** | **Vector{Int64}** | The software version major minor build | [optional] [default to nothing] [[Back to Model list]](../README.md#models) [[Back to API list]](../README.md#api-endpoints) [[Back to README]](../README.md)
NamSor
https://github.com/NeroBlackstone/NamSor.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
1467
using Documenter, DocumenterVitepress, DocumenterCitations, Boltz pages = [ "Boltz.jl" => "index.md", "Tutorials" => [ "Getting Started" => "tutorials/1_GettingStarted.md", "Symbolic Optimal Control" => "tutorials/2_SymbolicOptimalControl.md" ], "API Reference" => [ "Index" => "api/index.md", "Basis Functions" => "api/basis.md", "Layers API" => "api/layers.md", "Vision Models" => "api/vision.md", "Private API" => "api/private.md" ] ] bib = CitationBibliography( joinpath(@__DIR__, "ref.bib"); style=:authoryear ) doctestexpr = quote using Boltz, Random, Lux using DynamicExpressions, Zygote end DocMeta.setdocmeta!(Boltz, :DocTestSetup, doctestexpr; recursive=true) deploy_config = Documenter.auto_detect_deploy_system() deploy_decision = Documenter.deploy_folder(deploy_config; repo="github.com/LuxDL/Boltz.jl", devbranch="main", devurl="dev", push_preview=true) makedocs(; sitename="Boltz.jl Docs", authors="Avik Pal et al.", clean=true, modules=[Boltz], linkcheck=true, repo="https://github.com/LuxDL/Boltz.jl/blob/{commit}{path}#{line}", format=DocumenterVitepress.MarkdownVitepress(; repo="github.com/LuxDL/Boltz.jl", devbranch="main", devurl="dev", deploy_decision), draft=false, plugins=[bib], pages) deploydocs(; repo="github.com/LuxDL/Boltz.jl.git", push_preview=true, target="build", devbranch="main")
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
1398
using Pkg storage_dir = joinpath(@__DIR__, "..", "tutorial_deps") !isdir(storage_dir) && mkpath(storage_dir) # Run this as `run_single_tutorial.jl <tutorial_name> <output_dir> <path/to/script>` name = ARGS[1] pkg_log_path = joinpath(storage_dir, "$(name)_pkg.log") output_directory = ARGS[2] path = ARGS[3] io = open(pkg_log_path, "w") Pkg.develop(; path=joinpath(@__DIR__, ".."), io) Pkg.instantiate(; io) close(io) using Literate function preprocess(path, str) new_str = replace(str, "__DIR = @__DIR__" => "__DIR = \"$(dirname(path))\"") appendix_code = """ # ## Appendix using InteractiveUtils InteractiveUtils.versioninfo() if @isdefined(MLDataDevices) if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice) println() CUDA.versioninfo() end if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice) println() AMDGPU.versioninfo() end end nothing #hide """ return new_str * appendix_code end # For displaying generated Latex function postprocess(path, str) return replace( str, "````\n__REPLACEME__\$" => "\$\$", "\$__REPLACEME__\n````" => "\$\$") end Literate.markdown( path, output_directory; execute=true, name, flavor=Literate.DocumenterFlavor(), preprocess=Base.Fix1(preprocess, path), postprocess=Base.Fix1(postprocess, path))
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
1585
const ALL_TUTORIALS = [ "GettingStarted/main.jl", "SymbolicOptimalControl/main.jl" ] const TUTORIALS = collect(enumerate(ALL_TUTORIALS)) const BUILDKITE_PARALLEL_JOB_COUNT = parse( Int, get(ENV, "BUILDKITE_PARALLEL_JOB_COUNT", "-1")) const TUTORIALS_BUILDING = if BUILDKITE_PARALLEL_JOB_COUNT > 0 id = parse(Int, ENV["BUILDKITE_PARALLEL_JOB"]) + 1 # Index starts from 0 splits = collect(Iterators.partition( TUTORIALS, cld(length(TUTORIALS), BUILDKITE_PARALLEL_JOB_COUNT))) id > length(splits) ? [] : splits[id] else TUTORIALS end const NTASKS = min( parse(Int, get(ENV, "LUXLIB_DOCUMENTATION_NTASKS", "1")), length(TUTORIALS_BUILDING)) @info "Building Tutorials:" TUTORIALS_BUILDING @info "Starting Lux Tutorial Build with $(NTASKS) tasks." asyncmap(TUTORIALS_BUILDING; ntasks=NTASKS) do (i, p) @info "Running Tutorial $(i): $(p) on task $(current_task())" path = joinpath(@__DIR__, "..", "examples", p) name = "$(i)_$(first(rsplit(p, "/")))" output_directory = joinpath(@__DIR__, "src", "tutorials") tutorial_proj = dirname(path) file = joinpath(dirname(@__FILE__), "run_single_tutorial.jl") withenv("JULIA_NUM_THREADS" => "$(Threads.nthreads())", "JULIA_CUDA_HARD_MEMORY_LIMIT" => "$(100 ÷ NTASKS)%", "JULIA_PKG_PRECOMPILE_AUTO" => "0", "JULIA_DEBUG" => "Literate") do cmd = `$(Base.julia_cmd()) --color=yes --code-coverage=user --threads=$(Threads.nthreads()) --project=$(tutorial_proj) "$(file)" "$(name)" "$(output_directory)" "$(path)"` run(cmd) end return end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
1322
# # Getting Started # # !!! tip "Prerequisites" # # Here we assume that you are familiar with [`Lux.jl`](https://lux.csail.mit.edu/stable/). # If not please take a look at the # [Lux.jl tutoials](https://lux.csail.mit.edu/stable/tutorials/). # # `Boltz.jl` is just like `Lux.jl` but comes with more "batteries included". Let's start by # defining an MLP model. using Lux, Boltz, Random # ## Multi-Layer Perceptron # # If we were to do this in `Lux.jl` we would write the following: model = Chain( Dense(784, 256, relu), Dense(256, 10) ) # But in `Boltz.jl` we can do this: model = Layers.MLP(784, (256, 10), relu) # The `MLP` function is just a convenience wrapper around `Lux.Chain` that constructs a # multi-layer perceptron with the given number of layers and activation function. # ## How about VGG? # # Let's take a look at the `Vision` module. We can construct a VGG model with the # following code: Vision.VGG(13) # We can also load pretrained ImageNet weights using # !!! note "Load JLD2" # # You need to load `JLD2` before being able to load pretrained weights. using JLD2 Vision.VGG(13; pretrained=true) # ## Loading Models from Metalhead (Flux.jl) # We can load models from Metalhead (Flux.jl), just remember to load `Metalhead` before. using Metalhead Vision.ResNet(18)
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
8964
# # Solving Optimal Control Problems with Symbolic Universal Differential Equations # This tutorial is based on [SciMLSensitivity.jl tutorial](https://docs.sciml.ai/SciMLSensitivity/stable/examples/optimal_control/optimal_control/). # Instead of using a classical NN architecture, here we will combine the NN with a symbolic # expression from [DynamicExpressions.jl](https://symbolicml.org/DynamicExpressions.jl/) (the # symbolic engine behind [SymbolicRegression.jl](https://astroautomata.com/SymbolicRegression.jl/) # and [PySR](https://github.com/MilesCranmer/PySR/)). # Here we will solve a classic optimal control problem with a universal differential # equation. Let # $$x^{\prime\prime} = u^3(t)$$ # where we want to optimize our controller $u(t)$ such that the following is minimized: # $$\mathcal{L}(\theta) = \sum_i \left(\|4 - x(t_i)\|_2 + 2\|x\prime(t_i)\|_2 + \|u(t_i)\|_2\right)$$ # where $i$ is measured on $(0, 8)$ at $0.01$ intervals. To do this, we rewrite the ODE in # first order form: # $$x^\prime = v$$ # $$v^\prime = u^3(t)$$ # and thus # $$\mathcal{L}(\theta) = \sum_i \left(\|4 - x(t_i)\|_2 + 2\|v(t_i)\|_2 + \|u(t_i)\|_2\right)$$ # is our loss function on the first order system. We thus choose a neural network form for # $u$ and optimize the equation with respect to this loss. Note that we will first reduce # control cost (the last term) by 10x in order to bump the network out of a local minimum. # This looks like: # ## Package Imports using Lux, Boltz, ComponentArrays, OrdinaryDiffEqVerner, Optimization, OptimizationOptimJL, OptimizationOptimisers, SciMLSensitivity, Statistics, Printf, Random using DynamicExpressions, SymbolicRegression, MLJ, SymbolicUtils, Latexify using CairoMakie # ## Helper Functions function plot_dynamics(sol, us, ts) fig = Figure() ax = CairoMakie.Axis(fig[1, 1]; xlabel=L"t") ylims!(ax, (-6, 6)) lines!(ax, ts, sol[1, :]; label=L"u_1(t)", linewidth=3) lines!(ax, ts, sol[2, :]; label=L"u_2(t)", linewidth=3) lines!(ax, ts, vec(us); label=L"u(t)", linewidth=3) axislegend(ax; position=:rb) return fig end # ## Training a Neural Network based UDE # Let's setup the neural network. For the first part, we won't do any symbolic regression. # We will plain and simple train a neural network to solve the optimal control problem. rng = Xoshiro(0) tspan = (0.0, 8.0) mlp = Chain(Dense(1 => 4, gelu), Dense(4 => 4, gelu), Dense(4 => 1)) function construct_ude(mlp, solver; kwargs...) return @compact(; mlp, solver, kwargs...) do x_in, ps x, ts, ret_sol = x_in function dudt(du, u, p, t) u₁, u₂ = u du[1] = u₂ du[2] = mlp([t], p)[1]^3 return end prob = ODEProblem{true}(dudt, x, extrema(ts), ps.mlp) sol = solve(prob, solver; saveat=ts, sensealg=QuadratureAdjoint(; autojacvec=ReverseDiffVJP(true)), kwargs...) us = mlp(reshape(ts, 1, :), ps.mlp) ret_sol === Val(true) && @return sol, us @return Array(sol), us end end ude = construct_ude(mlp, Vern9(); abstol=1e-10, reltol=1e-10); # Here we are going to tuse the same configuration for testing, but this is to show that # we can setup them up with different ode solve configurations ude_test = construct_ude(mlp, Vern9(); abstol=1e-10, reltol=1e-10); function train_model_1(ude, rng, ts_) ps, st = Lux.setup(rng, ude) ps = ComponentArray{Float64}(ps) stateful_ude = StatefulLuxLayer{true}(ude, nothing, st) ts = collect(ts_) function loss_adjoint(θ) x, us = stateful_ude(([-4.0, 0.0], ts, Val(false)), θ) return mean(abs2, 4 .- x[1, :]) + 2 * mean(abs2, x[2, :]) + 0.1 * mean(abs2, us) end callback = function (state, l) state.iter % 50 == 1 && @printf "Iteration: %5d\tLoss: %10g\n" state.iter l return false end optf = OptimizationFunction((x, p) -> loss_adjoint(x), AutoZygote()) optprob = OptimizationProblem(optf, ps) res1 = solve(optprob, Optimisers.Adam(0.001); callback, maxiters=500) optprob = OptimizationProblem(optf, res1.u) res2 = solve(optprob, LBFGS(); callback, maxiters=100) return StatefulLuxLayer{true}(ude, res2.u, st) end trained_ude = train_model_1(ude, rng, 0.0:0.01:8.0) nothing #hide #- sol, us = ude_test(([-4.0, 0.0], 0.0:0.01:8.0, Val(true)), trained_ude.ps, trained_ude.st)[1]; plot_dynamics(sol, us, 0.0:0.01:8.0) # Now that the system is in a better behaved part of parameter space, we return to the # original loss function to finish the optimization: function train_model_2(stateful_ude::StatefulLuxLayer, ts_) ts = collect(ts_) function loss_adjoint(θ) x, us = stateful_ude(([-4.0, 0.0], ts, Val(false)), θ) return mean(abs2, 4 .- x[1, :]) .+ 2 * mean(abs2, x[2, :]) .+ mean(abs2, us) end callback = function (state, l) state.iter % 10 == 1 && @printf "Iteration: %5d\tLoss: %10g\n" state.iter l return false end optf = OptimizationFunction((x, p) -> loss_adjoint(x), AutoZygote()) optprob = OptimizationProblem(optf, stateful_ude.ps) res2 = solve(optprob, LBFGS(); callback, maxiters=100) return StatefulLuxLayer{true}(stateful_ude.model, res2.u, stateful_ude.st) end trained_ude = train_model_2(trained_ude, 0.0:0.01:8.0) nothing #hide #- sol, us = ude_test(([-4.0, 0.0], 0.0:0.01:8.0, Val(true)), trained_ude.ps, trained_ude.st)[1]; plot_dynamics(sol, us, 0.0:0.01:8.0) # ## Symbolic Regression # Ok so now we have a trained neural network that solves the optimal control problem. But # can we replace `Dense(4 => 4, gelu)` with a symbolic expression? Let's try! # ### Data Generation for Symbolic Regression # First, we need to generate data for the symbolic regression. ts = reshape(collect(0.0:0.1:8.0), 1, :) X_train = mlp[1](ts, trained_ude.ps.mlp.layer_1, trained_ude.st.mlp.layer_1)[1] # This is the training input data. Now we generate the targets Y_train = mlp[2](X_train, trained_ude.ps.mlp.layer_2, trained_ude.st.mlp.layer_2)[1] # ### Fitting the Symbolic Expression # We will follow the example from [SymbolicRegression.jl docs](https://astroautomata.com/SymbolicRegression.jl/dev/examples/) # to fit the symbolic expression. srmodel = MultitargetSRRegressor(; binary_operators=[+, -, *, /], niterations=100, save_to_file=false); # One important note here is to transpose the data because that is how MLJ expects the data # to be structured (this is in contrast to how Lux or SymbolicRegression expects the data) mach = machine(srmodel, X_train', Y_train') fit!(mach; verbosity=0) r = report(mach) best_eq = [r.equations[1][r.best_idx[1]], r.equations[2][r.best_idx[2]], r.equations[3][r.best_idx[3]], r.equations[4][r.best_idx[4]]] # Let's see the expressions that SymbolicRegression.jl found. In case you were wondering, # these expressions are not hardcoded, it is live updated from the output of the code above # using `Latexify.jl` and the integration of `SymbolicUtils.jl` with `DynamicExpressions.jl`. eqn1 = latexify(string(node_to_symbolic(best_eq[1], srmodel)); fmt=FancyNumberFormatter(5)) #hide print("__REPLACEME__$(eqn1.s)__REPLACEME__") #hide nothing #hide #- eqn2 = latexify(string(node_to_symbolic(best_eq[2], srmodel)); fmt=FancyNumberFormatter(5)) #hide print("__REPLACEME__$(eqn2.s)__REPLACEME__") #hide nothing #hide #- eqn1 = latexify(string(node_to_symbolic(best_eq[3], srmodel)); fmt=FancyNumberFormatter(5)) #hide print("__REPLACEME__$(eqn1.s)__REPLACEME__") #hide nothing #hide #- eqn2 = latexify(string(node_to_symbolic(best_eq[4], srmodel)); fmt=FancyNumberFormatter(5)) #hide print("__REPLACEME__$(eqn2.s)__REPLACEME__") #hide nothing #hide # ## Combining the Neural Network with the Symbolic Expression # Now that we have the symbolic expression, we can combine it with the neural network to # solve the optimal control problem. but we do need to perform some finetuning. hybrid_mlp = Chain(Dense(1 => 4, gelu), Layers.DynamicExpressionsLayer(OperatorEnum(; binary_operators=[+, -, *, /]), best_eq), Dense(4 => 1)) # There you have it! It is that easy to take the fitted Symbolic Expression and combine it # with a neural network. Let's see how it performs before fintetuning. hybrid_ude = construct_ude(hybrid_mlp, Vern9(); abstol=1e-10, reltol=1e-10); # We want to reuse the trained neural network parameters, so we will copy them over to the # new model st = Lux.initialstates(rng, hybrid_ude) ps = (; mlp=(; layer_1=trained_ude.ps.mlp.layer_1, layer_2=Lux.initialparameters(rng, hybrid_mlp[2]), layer_3=trained_ude.ps.mlp.layer_3)) ps = ComponentArray(ps) sol, us = hybrid_ude(([-4.0, 0.0], 0.0:0.01:8.0, Val(true)), ps, st)[1]; plot_dynamics(sol, us, 0.0:0.01:8.0) # Now that does perform well! But we could finetune this model very easily. We will skip # that part on CI, but you can do it by using the same training code as above.
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
1271
module BoltzDataInterpolationsExt using DataInterpolations: AbstractInterpolation using Boltz: Boltz, Layers, Utils for train_grid in (true, false), tType in (AbstractVector, Number) grid_expr = train_grid ? :(grid = ps.grid) : :(grid = st.grid) sol_expr = tType === Number ? :(sol = interp(t)) : :(sol = interp.(t)) @eval function (spl::Layers.SplineLayer{$(train_grid), Basis})( t::$(tType), ps, st) where {Basis <: AbstractInterpolation} $(grid_expr) interp = construct_basis(Basis, ps.saved_points, grid; extrapolate=true) $(sol_expr) spl.in_dims == () && return sol, st return Utils.mapreduce_stack(sol), st end end function construct_basis( ::Type{Basis}, saved_points::AbstractVector, grid; extrapolate=false) where {Basis} return Basis(saved_points, grid; extrapolate) end function construct_basis(::Type{Basis}, saved_points::AbstractArray{T, N}, grid; extrapolate=false) where {Basis, T, N} return construct_basis( # Unfortunately DataInterpolations.jl is not very robust to different array types # so we have to make a copy Basis, [copy(selectdim(saved_points, N, i)) for i in 1:size(saved_points, N)], grid; extrapolate) end end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
6953
module BoltzDynamicExpressionsExt using ChainRulesCore: NoTangent using DynamicExpressions: DynamicExpressions, Node, OperatorEnum, eval_grad_tree_array, eval_tree_array using ForwardDiff: ForwardDiff using Lux: Lux, Chain, Parallel, WrappedFunction using MLDataDevices: CPUDevice using Boltz: Layers, Utils @static if pkgversion(DynamicExpressions) ≥ v"0.19" using DynamicExpressions: EvalOptions const EvalOptionsTypes = Union{Missing, EvalOptions, NamedTuple} else const EvalOptionsTypes = Union{Missing, NamedTuple} end Utils.is_extension_loaded(::Val{:DynamicExpressions}) = true # TODO: Remove this once the minimum version of DynamicExpressions is 0.19. We need to # keep the older versions around for SymbolicRegression.jl compatibility which # currently uses DynamicExpressions.jl 0.16. construct_eval_options(::Missing, ::Missing) = (; turbo=Val(false), bumper=Val(false)) function construct_eval_options(turbo::Union{Bool, Val}, ::Missing) return construct_eval_options(turbo, Val(false)) end function construct_eval_options(::Missing, bumper::Union{Bool, Val}) return construct_eval_options(Val(false), bumper) end function construct_eval_options(turbo::Union{Bool, Val}, bumper::Union{Bool, Val}) Base.depwarn("`bumper` and `turbo` are deprecated. Use `eval_options` instead.", :DynamicExpressionsLayer) return (; turbo, bumper) end construct_eval_options(::Missing, eval_options::EvalOptionsTypes) = eval_options construct_eval_options(eval_options::EvalOptionsTypes, ::Missing) = eval_options function construct_eval_options(::EvalOptionsTypes, ::EvalOptionsTypes) throw(ArgumentError("`eval_options`, `turbo` and `bumper` are mutually exclusive. \ Don't specify `eval_options` if you are using `turbo` or \ `bumper`.")) end function Layers.DynamicExpressionsLayer( operator_enum::OperatorEnum, expressions::AbstractVector{<:Node}; kwargs...) return Layers.DynamicExpressionsLayer(operator_enum, expressions...; kwargs...) end function Layers.DynamicExpressionsLayer(operator_enum::OperatorEnum, expressions::Node...; eval_options::EvalOptionsTypes=missing, turbo::Union{Bool, Val, Missing}=missing, bumper::Union{Bool, Val, Missing}=missing) eval_options = construct_eval_options( eval_options, construct_eval_options(turbo, bumper)) internal_layer = if length(expressions) == 1 Layers.InternalDynamicExpressionWrapper( operator_enum, first(expressions), eval_options) else Chain( Parallel(nothing, ntuple( i -> Layers.InternalDynamicExpressionWrapper( operator_enum, expressions[i], eval_options), length(expressions))...), WrappedFunction(Lux.Utils.stack1)) end return Layers.DynamicExpressionsLayer(internal_layer) end function Layers.apply_dynamic_expression_internal( de::Layers.InternalDynamicExpressionWrapper, expr, operator_enum, x, ps) Layers.update_de_expression_constants!(expr, ps) @static if pkgversion(DynamicExpressions) ≥ v"0.19" eval_options = EvalOptions(; de.eval_options.turbo, de.eval_options.bumper) return first(eval_tree_array(expr, x, operator_enum; eval_options)) else return first(eval_tree_array( expr, x, operator_enum; de.eval_options.turbo, de.eval_options.bumper)) end end function Layers.∇apply_dynamic_expression( de::Layers.InternalDynamicExpressionWrapper, expr, operator_enum, x, ps) Layers.update_de_expression_constants!(expr, ps) _, Jₓ, _ = eval_grad_tree_array( expr, x, operator_enum; variable=Val(true), de.eval_options.turbo) y, Jₚ, _ = eval_grad_tree_array( expr, x, operator_enum; variable=Val(false), de.eval_options.turbo) ∇apply_dynamic_expression_internal = let Jₓ = Jₓ, Jₚ = Jₚ Δ -> begin ∂x = Jₓ .* reshape(Δ, 1, :) ∂ps = Jₚ * Δ return NoTangent(), NoTangent(), NoTangent(), NoTangent(), ∂x, ∂ps, NoTangent() end end return y, ∇apply_dynamic_expression_internal end # Forward Diff rules # TODO: https://github.com/SymbolicML/DynamicExpressions.jl/issues/74 fix this function Layers.apply_dynamic_expression( de::Layers.InternalDynamicExpressionWrapper, expr, operator_enum, x::AbstractMatrix{<:ForwardDiff.Dual{Tag, T, N}}, ps, ::CPUDevice) where {T, N, Tag} value_fn(x) = ForwardDiff.value(Tag, x) partials_fn(x, i) = ForwardDiff.partials(Tag, x, i) Layers.update_de_expression_constants!(expr, ps) y, Jₓ, _ = eval_grad_tree_array( expr, value_fn.(x), operator_enum; variable=Val(true), de.eval_options.turbo) partials = ntuple( i -> dropdims(sum(partials_fn.(x, i) .* Jₓ; dims=1); dims=1), N) fT = promote_type(eltype(y), T, eltype(Jₓ)) partials_y = ForwardDiff.Partials{N, fT}.(tuple.(partials...)) return ForwardDiff.Dual{Tag, fT, N}.(y, partials_y) end function Layers.apply_dynamic_expression( de::Layers.InternalDynamicExpressionWrapper, expr, operator_enum, x, ps::AbstractVector{<:ForwardDiff.Dual{Tag, T, N}}, ::CPUDevice) where {T, N, Tag} value_fn(x) = ForwardDiff.value(Tag, x) partials_fn(x, i) = ForwardDiff.partials(Tag, x, i) Layers.update_de_expression_constants!(expr, value_fn.(ps)) y, Jₚ, _ = eval_grad_tree_array( expr, x, operator_enum; variable=Val(false), de.eval_options.turbo) partials = ntuple( i -> dropdims(sum(partials_fn.(ps, i) .* Jₚ; dims=1); dims=1), N) fT = promote_type(eltype(y), T, eltype(Jₚ)) partials_y = ForwardDiff.Partials{N, fT}.(tuple.(partials...)) return ForwardDiff.Dual{Tag, fT, N}.(y, partials_y) end function Layers.apply_dynamic_expression( de::Layers.InternalDynamicExpressionWrapper, expr, operator_enum, x::AbstractMatrix{<:ForwardDiff.Dual{Tag, T1, N}}, ps::AbstractVector{<:ForwardDiff.Dual{Tag, T2, N}}, ::CPUDevice) where {T1, T2, N, Tag} value_fn(x) = ForwardDiff.value(Tag, x) partials_fn(x, i) = ForwardDiff.partials(Tag, x, i) ps_value = value_fn.(ps) x_value = value_fn.(x) Layers.update_de_expression_constants!(expr, ps_value) _, Jₓ, _ = eval_grad_tree_array( expr, x_value, operator_enum; variable=Val(true), de.eval_options.turbo) y, Jₚ, _ = eval_grad_tree_array( expr, x_value, operator_enum; variable=Val(false), de.eval_options.turbo) partials = ntuple( i -> dropdims(sum(partials_fn.(x, i) .* Jₓ; dims=1); dims=1) .+ dropdims(sum(partials_fn.(ps, i) .* Jₚ; dims=1); dims=1), N) fT = promote_type(eltype(y), T1, T2, eltype(Jₓ), eltype(Jₚ)) partials_y = ForwardDiff.Partials{N, fT}.(tuple.(partials...)) return ForwardDiff.Dual{Tag, fT, N}.(y, partials_y) end end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
246
module BoltzJLD2Ext using JLD2: JLD2 using Boltz: InitializeModels, Utils Utils.is_extension_loaded(::Val{:JLD2}) = true function InitializeModels.load_using_jld2_internal(args...; kwargs...) return JLD2.load(args...; kwargs...) end end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
2526
module BoltzMetalheadExt using ArgCheck: @argcheck using Metalhead: Metalhead using Lux: Lux, FromFluxAdaptor using Boltz: Boltz, Utils, Vision Utils.is_extension_loaded(::Val{:Metalhead}) = true function Vision.ResNetMetalhead(depth::Int; pretrained::Bool=false) @argcheck depth in (18, 34, 50, 101, 152) return FromFluxAdaptor(; preserve_ps_st=pretrained)(Metalhead.ResNet( depth; pretrain=pretrained).layers) end function Vision.ResNeXtMetalhead( depth::Int; cardinality=32, base_width=nothing, pretrained::Bool=false) @argcheck depth in (50, 101, 152) base_width = base_width === nothing ? (depth == 101 ? 8 : 4) : base_width return FromFluxAdaptor(; preserve_ps_st=pretrained)(Metalhead.ResNeXt( depth; pretrain=pretrained, cardinality, base_width).layers) end function Vision.GoogLeNetMetalhead(; pretrained::Bool=false) return FromFluxAdaptor(; preserve_ps_st=pretrained)(Metalhead.GoogLeNet(; pretrain=pretrained).layers) end function Vision.DenseNetMetalhead(depth::Int; pretrained::Bool=false) @argcheck depth in (121, 161, 169, 201) return FromFluxAdaptor(; preserve_ps_st=pretrained)(Metalhead.DenseNet( depth; pretrain=pretrained).layers) end function Vision.MobileNetMetalhead(name::Symbol; pretrained::Bool=false) @argcheck name in (:v1, :v2, :v3_small, :v3_large) adaptor = FromFluxAdaptor(; preserve_ps_st=pretrained) model = if name == :v1 adaptor(Metalhead.MobileNetv1(; pretrain=pretrained).layers) elseif name == :v2 adaptor(Metalhead.MobileNetv2(; pretrain=pretrained).layers) elseif name == :v3_small adaptor(Metalhead.MobileNetv3(:small; pretrain=pretrained).layers) elseif name == :v3_large adaptor(Metalhead.MobileNetv3(:large; pretrain=pretrained).layers) end return model end function Vision.ConvMixerMetalhead(name::Symbol; pretrained::Bool=false) @argcheck name in (:base, :large, :small) return FromFluxAdaptor(; preserve_ps_st=pretrained)(Metalhead.ConvMixer( name; pretrain=pretrained).layers) end function Vision.SqueezeNetMetalhead(; pretrained::Bool=false) return FromFluxAdaptor(; preserve_ps_st=pretrained)(Metalhead.SqueezeNet(; pretrain=pretrained).layers) end function Vision.WideResNetMetalhead(depth::Int; pretrained::Bool=false) @argcheck depth in (18, 34, 50, 101, 152) return FromFluxAdaptor(; preserve_ps_st=pretrained)(Metalhead.WideResNet( depth; pretrain=pretrained).layers) end end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
658
module BoltzReverseDiffExt using ReverseDiff: ReverseDiff, TrackedArray, @grad_from_chainrules using MLDataDevices: CPUDevice using Boltz: Layers @grad_from_chainrules Layers.apply_dynamic_expression( de::Layers.InternalDynamicExpressionWrapper, expr, operator_enum, x::TrackedArray, ps, ::CPUDevice) @grad_from_chainrules Layers.apply_dynamic_expression( de::Layers.InternalDynamicExpressionWrapper, expr, operator_enum, x, ps::TrackedArray, ::CPUDevice) @grad_from_chainrules Layers.apply_dynamic_expression( de::Layers.InternalDynamicExpressionWrapper, expr, operator_enum, x::TrackedArray, ps::TrackedArray, ::CPUDevice) end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
646
module BoltzTrackerExt using Tracker: Tracker, TrackedArray, @grad_from_chainrules using MLDataDevices: CPUDevice using Boltz: Layers @grad_from_chainrules Layers.apply_dynamic_expression( de::Layers.InternalDynamicExpressionWrapper, expr, operator_enum, x::TrackedArray, ps, ::CPUDevice) @grad_from_chainrules Layers.apply_dynamic_expression( de::Layers.InternalDynamicExpressionWrapper, expr, operator_enum, x, ps::TrackedArray, ::CPUDevice) @grad_from_chainrules Layers.apply_dynamic_expression( de::Layers.InternalDynamicExpressionWrapper, expr, operator_enum, x::TrackedArray, ps::TrackedArray, ::CPUDevice) end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
291
module BoltzZygoteExt using ADTypes: AutoZygote using Zygote: Zygote using Boltz: Boltz, Layers, Utils Utils.is_extension_loaded(::Val{:Zygote}) = true # Hamiltonian NN function Layers.hamiltonian_forward(::AutoZygote, model, x) return only(Zygote.gradient(sum ∘ model, x)) end end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
236
module Boltz # Utility Functions include("utils.jl") include("initialize.jl") # Basis Functions include("basis.jl") # Layers include("layers/Layers.jl") # Vision Models include("vision/Vision.jl") export Basis, Layers, Vision end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
5069
module Basis using ArgCheck: @argcheck using ChainRulesCore: ChainRulesCore using Compat: @compat using ConcreteStructs: @concrete using Markdown: @doc_str using MLDataDevices: get_device, CPUDevice using ..Utils: unsqueeze1 const CRC = ChainRulesCore const ∂∅ = CRC.NoTangent() # The rrules in this file are hardcoded to be used exclusively with GeneralBasisFunction @concrete struct GeneralBasisFunction{name} f n::Int dim::Int end function Base.show( io::IO, ::MIME"text/plain", basis::GeneralBasisFunction{name}) where {name} print(io, "Basis.$(name)(order=$(basis.n))") end function (basis::GeneralBasisFunction{name, F})(x::AbstractArray, grid::Union{AbstractRange, AbstractVector}=1:1:(basis.n)) where {name, F} @argcheck length(grid) == basis.n if basis.dim == 1 # Fast path where we don't need to materialize the range return basis.f.(grid, unsqueeze1(x)) end @argcheck ndims(x) + 1 ≥ basis.dim new_x_size = ntuple( i -> i == basis.dim ? 1 : (i < basis.dim ? size(x, i) : size(x, i - 1)), ndims(x) + 1) x_new = reshape(x, new_x_size) if grid isa AbstractRange dev = get_device(x) grid = dev isa CPUDevice ? collect(grid) : dev(grid) end grid_shape = ntuple(i -> i == basis.dim ? basis.n : 1, ndims(x) + 1) grid_new = reshape(grid, grid_shape) return basis.f.(grid_new, x_new) end @doc doc""" Chebyshev(n; dim::Int=1) Constructs a Chebyshev basis of the form $[T_{0}(x), T_{1}(x), \dots, T_{n-1}(x)]$ where $T_j(.)$ is the $j^{th}$ Chebyshev polynomial of the first kind. ## Arguments - `n`: number of terms in the polynomial expansion. ## Keyword Arguments - `dim::Int=1`: The dimension along which the basis functions are applied. """ Chebyshev(n; dim::Int=1) = GeneralBasisFunction{:Chebyshev}(chebyshev, n, dim) chebyshev(i, x) = @fastmath cos(i * acos(x)) @doc doc""" Sin(n; dim::Int=1) Constructs a sine basis of the form $[\sin(x), \sin(2x), \dots, \sin(nx)]$. ## Arguments - `n`: number of terms in the sine expansion. ## Keyword Arguments - `dim::Int=1`: The dimension along which the basis functions are applied. """ Sin(n; dim::Int=1) = GeneralBasisFunction{:Sin}(@fastmath(sin∘*), n, dim) @doc doc""" Cos(n; dim::Int=1) Constructs a cosine basis of the form $[\cos(x), \cos(2x), \dots, \cos(nx)]$. ## Arguments - `n`: number of terms in the cosine expansion. ## Keyword Arguments - `dim::Int=1`: The dimension along which the basis functions are applied. """ Cos(n; dim::Int=1) = GeneralBasisFunction{:Cos}(@fastmath(cos∘*), n, dim) @doc doc""" Fourier(n; dim=1) Constructs a Fourier basis of the form $$F_j(x) = \begin{cases} cos\left(\frac{j}{2}x\right) & \text{if } j \text{ is even} \\ sin\left(\frac{j}{2}x\right) & \text{if } j \text{ is odd} \end{cases}$$ ## Arguments - `n`: number of terms in the Fourier expansion. ## Keyword Arguments - `dim::Int=1`: The dimension along which the basis functions are applied. """ Fourier(n; dim::Int=1) = GeneralBasisFunction{:Fourier}(fourier, n, dim) function fourier(i, x) s, c = sincos(i * x / 2) return ifelse(iseven(i), c, s) end function CRC.rrule(::typeof(Broadcast.broadcasted), ::typeof(fourier), i, x) ix_by_2 = @. i * x / 2 s = @. sin(ix_by_2) c = @. cos(ix_by_2) y = @. ifelse(iseven(i), c, s) ∇fourier = let s = s, c = c, i = i Δ -> (∂∅, ∂∅, ∂∅, dropdims(sum((i / 2) .* ifelse.(iseven.(i), -s, c) .* Δ; dims=1); dims=1)) end return y, ∇fourier end @doc doc""" Legendre(n; dim::Int=1) Constructs a Legendre basis of the form $[P_{0}(x), P_{1}(x), \dots, P_{n-1}(x)]$ where $P_j(.)$ is the $j^{th}$ Legendre polynomial. ## Arguments - `n`: number of terms in the polynomial expansion. ## Keyword Arguments - `dim::Int=1`: The dimension along which the basis functions are applied. """ Legendre(n; dim::Int=1) = GeneralBasisFunction{:Legendre}(legendre_poly, n, dim) ## Source: https://github.com/ranocha/PolynomialBases.jl/blob/master/src/legendre.jl function legendre_poly(i, x) p = i - 1 a = one(x) b = x p ≤ 0 && return a p == 1 && return b for j in 2:p a, b = b, @fastmath(((2j - 1) * x * b - (j - 1) * a)/j) end return b end @doc doc""" Polynomial(n; dim::Int=1) Constructs a Polynomial basis of the form $[1, x, \dots, x^{(n-1)}]$. ## Arguments - `n`: number of terms in the polynomial expansion. ## Keyword Arguments - `dim::Int=1`: The dimension along which the basis functions are applied. """ Polynomial(n; dim::Int=1) = GeneralBasisFunction{:Polynomial}(polynomial, n, dim) polynomial(i, x) = x^(i - 1) function CRC.rrule(::typeof(Broadcast.broadcasted), ::typeof(polynomial), i, x) y_m1 = x .^ (i .- 2) y = y_m1 .* x ∇polynomial = let y_m1 = y_m1, i = i Δ -> (∂∅, ∂∅, ∂∅, dropdims(sum((i .- 1) .* y_m1 .* Δ; dims=1); dims=1)) end return y, ∇polynomial end @compat public Chebyshev, Sin, Cos, Fourier, Legendre, Polynomial end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
1228
module InitializeModels using ArgCheck: @argcheck using Artifacts: Artifacts, @artifact_str using Functors: fmap using LazyArtifacts: LazyArtifacts using Random: Random using LuxCore: LuxCore using ..Utils: is_extension_loaded get_pretrained_weights_path(name::Symbol) = get_pretrained_weights_path(string(name)) function get_pretrained_weights_path(name::String) try return @artifact_str(name) catch err err isa ErrorException && throw(ArgumentError("no pretrained weights available for `$name`")) rethrow(err) end end function load_using_jld2(args...; kwargs...) if !is_extension_loaded(Val(:JLD2)) error("`JLD2.jl` is not loaded. Please load it before trying to load pretrained \ weights.") end return load_using_jld2_internal(args...; kwargs...) end function load_using_jld2_internal end struct SerializedRNG end function remove_rng_from_structure(x) return fmap(x) do xᵢ xᵢ isa Random.AbstractRNG && return SerializedRNG() return xᵢ end end loadparameters(x) = x function loadstates(x) return fmap(x) do xᵢ xᵢ isa SerializedRNG && return Random.default_rng() return xᵢ end end end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
2888
module Utils using ForwardDiff: ForwardDiff using GPUArraysCore: AnyGPUArray using Statistics: mean using MLDataDevices: get_device_type, get_device, CPUDevice, CUDADevice is_extension_loaded(::Val) = false """ fast_chunk(x::AbstractArray, ::Val{n}, ::Val{dim}) Type-stable and faster version of `MLUtils.chunk`. """ fast_chunk(h::Int, n::Int) = (1:h) .+ h * (n - 1) function fast_chunk(x::AbstractArray, h::Int, n::Int, ::Val{dim}) where {dim} return selectdim(x, dim, fast_chunk(h, n)) end function fast_chunk(x::AnyGPUArray, h::Int, n::Int, ::Val{dim}) where {dim} return copy(selectdim(x, dim, fast_chunk(h, n))) end function fast_chunk(x::AbstractArray, ::Val{N}, d::Val{D}) where {N, D} return fast_chunk.((x,), size(x, D) ÷ N, 1:N, d) end """ flatten_spatial(x::AbstractArray{T, 4}) Flattens the first 2 dimensions of `x`, and permutes the remaining dimensions to (2, 1, 3). """ function flatten_spatial(x::AbstractArray{T, 4}) where {T} # TODO: Should we do lazy permutedims for non-GPU arrays? return permutedims(reshape(x, (:, size(x, 3), size(x, 4))), (2, 1, 3)) end """ second_dim_mean(x) Computes the mean of `x` along dimension `2`. """ second_dim_mean(x) = dropdims(mean(x; dims=2); dims=2) """ should_type_assert(x) In certain cases, to ensure type-stability we want to add type-asserts. But this won't work for exotic types like `ForwardDiff.Dual`. We use this function to check if we should add a type-assert for `x`. """ should_type_assert(x::AbstractArray{T}) where {T} = isbitstype(T) && parent(x) === x should_type_assert(::AbstractArray{<:ForwardDiff.Dual}) = false should_type_assert(::ForwardDiff.Dual) = false should_type_assert(x) = true unsqueeze1(x::AbstractArray) = reshape(x, 1, size(x)...) unsqueezeN(x::AbstractArray) = reshape(x, size(x)..., 1) catN(x::AbstractArray{T, N}, y::AbstractArray{T, N}) where {T, N} = cat(x, y; dims=Val(N)) mapreduce_stack(xs) = mapreduce(unsqueezeN, catN, xs) unwrap_val(x) = x unwrap_val(::Val{T}) where {T} = T function safe_warning(msg::AbstractString) @warn msg maxlog=1 return end safe_kron(a, b) = map(safe_kron_internal, a, b) function safe_kron_internal(a::AbstractVector, b::AbstractVector) return safe_kron_internal(get_device_type((a, b)), a, b) end safe_kron_internal(::Type{CPUDevice}, a::AbstractVector, b::AbstractVector) = kron(a, b) function safe_kron_internal(::Type{CUDADevice}, a::AbstractVector, b::AbstractVector) return vec(kron(reshape(a, :, 1), reshape(b, 1, :))) end function safe_kron_internal(::Type{D}, a::AbstractVector, b::AbstractVector) where {D} safe_warning("`kron` is not supported on $(D). Falling back to `kron` on CPU.") a_cpu = a |> CPUDevice() b_cpu = b |> CPUDevice() return safe_kron_internal(CPUDevice, a_cpu, b_cpu) |> get_device((a, b)) end struct DataTransferBarrier{V} val::V end end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
1791
module Layers using ArgCheck: @argcheck using ADTypes: AutoForwardDiff, AutoZygote using Compat: @compat using ConcreteStructs: @concrete using ChainRulesCore: ChainRulesCore, @non_differentiable, @ignore_derivatives using Markdown: @doc_str using Random: AbstractRNG using Static: Static using ForwardDiff: ForwardDiff using Lux: Lux, LuxOps, StatefulLuxLayer using LuxCore: LuxCore, AbstractLuxLayer, AbstractLuxContainerLayer, AbstractLuxWrapperLayer using MLDataDevices: get_device, CPUDevice using NNlib: NNlib using WeightInitializers: zeros32, randn32 using ..Utils: DataTransferBarrier, fast_chunk, should_type_assert, mapreduce_stack, unwrap_val, safe_kron, is_extension_loaded, flatten_spatial const CRC = ChainRulesCore const NORM_LAYER_DOC = "Function with signature `f(i::Integer, dims::Integer, act::F; \ kwargs...)`. `i` is the location of the layer in the model, \ `dims` is the channel dimension of the input, and `act` is the \ activation function. `kwargs` are forwarded from the `norm_kwargs` \ input, The function should return a normalization layer. Defaults \ to `nothing`, which means no normalization layer is used" include("attention.jl") include("conv_norm_act.jl") include("dynamic_expressions.jl") include("encoder.jl") include("embeddings.jl") include("hamiltonian.jl") include("mlp.jl") include("spline.jl") include("tensor_product.jl") @compat(public, (ClassTokens, ConvBatchNormActivation, ConvNormActivation, DynamicExpressionsLayer, HamiltonianNN, MultiHeadSelfAttention, MLP, PatchEmbedding, PeriodicEmbedding, SplineLayer, TensorProductLayer, ViPosEmbedding, VisionTransformerEncoder)) end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
1727
""" MultiHeadSelfAttention(in_planes::Int, number_heads::Int; use_qkv_bias::Bool=false, attention_dropout_rate::T=0.0f0, projection_dropout_rate::T=0.0f0) Multi-head self-attention layer ## Arguments - `planes`: number of input channels - `nheads`: number of heads - `use_qkv_bias`: whether to use bias in the layer to get the query, key and value - `attn_dropout_prob`: dropout probability after the self-attention layer - `proj_dropout_prob`: dropout probability after the projection layer """ @concrete struct MultiHeadSelfAttention <: AbstractLuxContainerLayer{(:qkv_layer, :dropout, :projection)} qkv_layer dropout projection nheads::Int end function MultiHeadSelfAttention( in_planes::Int, number_heads::Int; use_qkv_bias::Bool=false, attention_dropout_rate::T=0.0f0, projection_dropout_rate::T=0.0f0) where {T} @argcheck in_planes % number_heads == 0 return MultiHeadSelfAttention( Lux.Dense(in_planes, in_planes * 3; use_bias=use_qkv_bias), Lux.Dropout(attention_dropout_rate), Lux.Chain(Lux.Dense(in_planes => in_planes), Lux.Dropout(projection_dropout_rate)), number_heads ) end function (mhsa::MultiHeadSelfAttention)(x::AbstractArray{T, 3}, ps, st) where {T} qkv, st_qkv = mhsa.qkv_layer(x, ps.qkv_layer, st.qkv_layer) q, k, v = fast_chunk(qkv, Val(3), Val(1)) attn_dropout = StatefulLuxLayer{true}(mhsa.dropout, ps.dropout, st.dropout) y, _ = NNlib.dot_product_attention(q, k, v; fdrop=attn_dropout, mhsa.nheads) z, st_proj = mhsa.projection(y, ps.projection, st.projection) return z, (; qkv_layer=st_qkv, dropout=attn_dropout.st, projection=st_proj) end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
3269
""" ConvNormActivation(kernel_size::Dims, in_chs::Integer, hidden_chs::Dims{N}, activation; norm_layer=nothing, conv_kwargs=(;), norm_kwargs=(;), last_layer_activation::Bool=false) where {N} Construct a Chain of convolutional layers with normalization and activation functions. ## Arguments - `kernel_size`: size of the convolutional kernel - `in_chs`: number of input channels - `hidden_chs`: dimensions of the hidden layers - `activation`: activation function ## Keyword Arguments - `norm_layer`: $(NORM_LAYER_DOC) - `conv_kwargs`: keyword arguments for the convolutional layers - `norm_kwargs`: keyword arguments for the normalization layers - `last_layer_activation`: set to `true` to apply the activation function to the last layer """ @concrete struct ConvNormActivation <: AbstractLuxWrapperLayer{:model} model <: Lux.Chain end function ConvNormActivation( kernel_size::Dims, in_chs::Integer, hidden_chs::Dims{N}, activation::F=NNlib.relu; norm_layer::NF=nothing, conv_kwargs=(;), norm_kwargs=(;), last_layer_activation::Bool=false) where {N, F, NF} layers = Vector{AbstractLuxLayer}(undef, N) for (i, out_chs) in enumerate(hidden_chs) act = i != N ? activation : (last_layer_activation ? activation : identity) layers[i] = conv_norm_act( i, kernel_size, in_chs => out_chs, act, norm_layer, conv_kwargs, norm_kwargs) in_chs = out_chs end inner_blocks = NamedTuple{ntuple(i -> Symbol(:block, i), N)}(layers) return ConvNormActivation(Lux.Chain(inner_blocks)) end @concrete struct ConvNormActivationBlock <: AbstractLuxWrapperLayer{:block} block <: Union{<:Lux.Conv, Lux.Chain} end function conv_norm_act( i::Integer, kernel_size::Dims, (in_chs, out_chs)::Pair{<:Integer, <:Integer}, activation::F, norm_layer::NF, conv_kwargs, norm_kwargs) where {F, NF} model = if norm_layer === nothing Lux.Conv(kernel_size, in_chs => out_chs, activation; conv_kwargs...) else Lux.Chain(; conv=Lux.Conv(kernel_size, in_chs => out_chs; conv_kwargs...), norm=norm_layer(i, out_chs, activation; norm_kwargs...)) end return ConvNormActivationBlock(model) end """ ConvBatchNormActivation(kernel_size::Dims, (in_filters, out_filters)::Pair{Int, Int}, depth::Int, act::F; use_norm::Bool=true, conv_kwargs=(;), last_layer_activation::Bool=true, norm_kwargs=(;)) where {F} This function is a convenience wrapper around [`ConvNormActivation`](@ref) that constructs a chain with `norm_layer` set to `Lux.BatchNorm` if `use_norm` is `true` and `nothing` otherwise. In most cases, users should use [`ConvNormActivation`](@ref) directly for a more flexible interface. """ function ConvBatchNormActivation( kernel_size::Dims, (in_filters, out_filters)::Pair{Int, Int}, depth::Int, act::F; use_norm::Bool=true, kwargs...) where {F} return ConvNormActivation(kernel_size, in_filters, ntuple(Returns(out_filters), depth), act; norm_layer=use_norm ? (i, chs, bn_act; kwargs...) -> Lux.BatchNorm(chs, bn_act; kwargs...) : nothing, last_layer_activation=true, kwargs...) end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
5189
""" DynamicExpressionsLayer(operator_enum::OperatorEnum, expressions::Node...; eval_options::EvalOptions=EvalOptions()) DynamicExpressionsLayer(operator_enum::OperatorEnum, expressions::AbstractVector{<:Node}; kwargs...) Wraps a `DynamicExpressions.jl` `Node` into a Lux layer and allows the constant nodes to be updated using any of the AD Backends. For details about these expressions, refer to the [`DynamicExpressions.jl` documentation](https://symbolicml.org/DynamicExpressions.jl/dev/types/). ## Arguments - `operator_enum`: `OperatorEnum` from `DynamicExpressions.jl` - `expressions`: `Node` from `DynamicExpressions.jl` or `AbstractVector{<:Node}` ## Keyword Arguments - `turbo`: Use `LoopVectorization.jl` for faster evaluation **(Deprecated)** - `bumper`: Use `Bumper.jl` for faster evaluation **(Deprecated)** - `eval_options`: EvalOptions from `DynamicExpressions.jl` These options are simply forwarded to `DynamicExpressions.jl`'s `eval_tree_array` and `eval_grad_tree_array` function. # Extended Help ## Example ```jldoctest julia> operators = OperatorEnum(; binary_operators=[+, -, *], unary_operators=[cos]); julia> x1 = Node(; feature=1); julia> x2 = Node(; feature=2); julia> expr_1 = x1 * cos(x2 - 3.2) x1 * cos(x2 - 3.2) julia> expr_2 = x2 - x1 * x2 + 2.5 - 1.0 * x1 ((x2 - (x1 * x2)) + 2.5) - (1.0 * x1) julia> layer = Layers.DynamicExpressionsLayer(operators, expr_1, expr_2); julia> ps, st = Lux.setup(Random.default_rng(), layer) ((layer_1 = (layer_1 = (params = Float32[3.2],), layer_2 = (params = Float32[2.5, 1.0],)), layer_2 = NamedTuple()), (layer_1 = (layer_1 = NamedTuple(), layer_2 = NamedTuple()), layer_2 = NamedTuple())) julia> x = [1.0f0 2.0f0 3.0f0 4.0f0 5.0f0 6.0f0] 2×3 Matrix{Float32}: 1.0 2.0 3.0 4.0 5.0 6.0 julia> layer(x, ps, st)[1] ≈ Float32[0.6967068 -0.4544041 -2.8266668; 1.5 -4.5 -12.5] true julia> ∂x, ∂ps, _ = Zygote.gradient(Base.Fix1(sum, abs2) ∘ first ∘ layer, x, ps, st); julia> ∂x ≈ Float32[-14.0292 54.206482 180.32669; -0.9995737 10.7700815 55.6814] true julia> ∂ps.layer_1.layer_1.params ≈ Float32[-6.451908] true julia> ∂ps.layer_1.layer_2.params ≈ Float32[-31.0, 90.0] true ``` """ @concrete struct DynamicExpressionsLayer <: AbstractLuxWrapperLayer{:chain} chain end @concrete struct InternalDynamicExpressionWrapper <: AbstractLuxLayer operator_enum expression eval_options end function Base.show(io::IO, l::InternalDynamicExpressionWrapper) print(io, "InternalDynamicExpressionWrapper($(l.operator_enum), $(l.expression); \ eval_options=$(l.eval_options))") end function LuxCore.initialparameters(::AbstractRNG, layer::InternalDynamicExpressionWrapper) params = map(Base.Fix2(getproperty, :val), filter(node -> node.degree == 0 && node.constant, layer.expression)) return (; params) end function update_de_expression_constants!(expression, ps) # Don't use `set_constant_refs!` here, since it requires the types to match. In our # case we just warn the user params = filter(node -> node.degree == 0 && node.constant, expression) foreach(enumerate(params)) do (i, node) (node.val isa typeof(ps[i])) || @warn lazy"node.val::$(typeof(node.val)) != ps[$i]::$(typeof(ps[i])). Type of node.val takes precedence. Fix the input expression if this is unintended." maxlog=1 return node.val = ps[i] end return end function (de::InternalDynamicExpressionWrapper)(x::AbstractVector, ps, st) y, stₙ = de(reshape(x, :, 1), ps, st) return vec(y), stₙ end # NOTE: Can't use `get_device_type` since it causes problems with ReverseDiff function (de::InternalDynamicExpressionWrapper)(x::AbstractMatrix, ps, st) y = apply_dynamic_expression(de, de.expression, de.operator_enum, Lux.match_eltype(de, ps, st, x), ps.params, get_device(x)) return y, st end function apply_dynamic_expression( de::InternalDynamicExpressionWrapper, expr, operator_enum, x, ps, ::CPUDevice) if !is_extension_loaded(Val(:DynamicExpressions)) error("`DynamicExpressions.jl` is not loaded. Please load it before using \ `DynamicExpressionsLayer`.") end return apply_dynamic_expression_internal(de, expr, operator_enum, x, ps) end function apply_dynamic_expression(de, expr, operator_enum, x, ps, dev) throw(ArgumentError("`DynamicExpressions.jl` only supports CPU operations. Current \ device detected as $(dev). CUDA.jl will be supported after \ https://github.com/SymbolicML/DynamicExpressions.jl/pull/65 is \ merged upstream.")) end function CRC.rrule( ::typeof(apply_dynamic_expression), de::InternalDynamicExpressionWrapper, expr, operator_enum, x, ps, ::CPUDevice) if !is_extension_loaded(Val(:DynamicExpressions)) error("`DynamicExpressions.jl` is not loaded. Please load it before using \ `DynamicExpressionsLayer`.") end return ∇apply_dynamic_expression(de, expr, operator_enum, x, ps) end function apply_dynamic_expression_internal end function ∇apply_dynamic_expression end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
5509
""" ClassTokens(dim; init=zeros32) Appends class tokens to an input with embedding dimension `dim` for use in many vision transformer models. """ @concrete struct ClassTokens <: AbstractLuxLayer dim::Int init end ClassTokens(dim::Int; init=zeros32) = ClassTokens(dim, init) LuxCore.initialparameters(rng::AbstractRNG, c::ClassTokens) = (; token=c.init(rng, c.dim)) function (m::ClassTokens)(x::AbstractArray{T, N}, ps, st) where {T, N} tokens = reshape(ps.token, :, ntuple(_ -> 1, N - 1)...) .* ones_batch_like(x) return cat(x, tokens; dims=Val(N - 1)), st end function ones_batch_like(x::AbstractArray{T, N}) where {T, N} return fill!(similar(x, ntuple(_ -> 1, N - 1)..., size(x, N)), one(T)) end @non_differentiable ones_batch_like(x::AbstractArray) """ ViPosEmbedding(embedding_size, number_patches; init = randn32) Positional embedding layer used by many vision transformer-like models. """ @concrete struct ViPosEmbedding <: AbstractLuxLayer embedding_size::Int number_patches::Int init end function ViPosEmbedding(embedding_size::Int, number_patches::Int; init=randn32) return ViPosEmbedding(embedding_size, number_patches, init) end function LuxCore.initialparameters(rng::AbstractRNG, v::ViPosEmbedding) return (; vectors=v.init(rng, v.embedding_size, v.number_patches)) end (v::ViPosEmbedding)(x, ps, st) = x .+ ps.vectors, st """ PeriodicEmbedding(idxs, periods) Create an embedding periodic in some inputs with specified periods. Input indices not in `idxs` are passed through unchanged, but inputs in `idxs` are moved to the end of the output and replaced with their sines, followed by their cosines (scaled appropriately to have the specified periods). This smooth embedding preserves phase information and enforces periodicity. For example, `layer = PeriodicEmbedding([2, 3], [3.0, 1.0])` will create a layer periodic in the second input with period 3.0 and periodic in the third input with period 1.0. In this case, `layer([a, b, c, d], st) == ([a, d, sinpi(2 / 3.0 * b), sinpi(2 / 1.0 * c), cospi(2 / 3.0 * b), cospi(2 / 1.0 * c)], st)`. ## Arguments - `idxs`: Indices of the periodic inputs - `periods`: Periods of the periodic inputs, in the same order as in `idxs` ## Inputs - `x` must be an `AbstractArray` with `issubset(idxs, axes(x, 1))` - `st` must be a `NamedTuple` where `st.k = 2 ./ periods`, but on the same device as `x` ## Returns - `AbstractArray` of size `(size(x, 1) + length(idxs), ...)` where `...` are the other dimensions of `x`. - `st`, unchanged ## Example ```jldoctest julia> layer = Layers.PeriodicEmbedding([2], [4.0]) PeriodicEmbedding([2], [4.0]) julia> ps, st = Lux.setup(Random.default_rng(), layer); julia> all(layer([1.1, 2.2, 3.3], ps, st)[1] .== [1.1, 3.3, sinpi(2 / 4.0 * 2.2), cospi(2 / 4.0 * 2.2)]) true ``` """ @concrete struct PeriodicEmbedding <: AbstractLuxLayer idxs periods end function LuxCore.initialstates(::AbstractRNG, pe::PeriodicEmbedding) return (; idxs=DataTransferBarrier(pe.idxs), k=2 ./ pe.periods) end function (pe::PeriodicEmbedding)(x::AbstractVector, ps, st::NamedTuple) return vec(first(pe(reshape(x, :, 1), ps, st))), st end function (p::PeriodicEmbedding)(x::AbstractMatrix, _, st::NamedTuple) idxs = st.idxs.val other_idxs = @ignore_derivatives setdiff(axes(x, 1), idxs) y = vcat(x[other_idxs, :], sinpi.(st.k .* x[idxs, :]), cospi.(st.k .* x[idxs, :])) return y, st end function (p::PeriodicEmbedding)(x::AbstractArray, ps, st::NamedTuple) return reshape(first(p(reshape(x, size(x, 1), :), ps, st)), :, size(x)[2:end]...), st end function Base.show(io::IO, ::MIME"text/plain", p::PeriodicEmbedding) return print(io, "PeriodicEmbedding(", p.idxs, ", ", p.periods, ")") end """ PatchEmbedding(image_size, patch_size, in_channels, embed_planes; norm_layer=Returns(Lux.NoOpLayer()), flatten=true) Constructs a patch embedding layer with the given image size, patch size, input channels, and embedding planes. The patch size must be a divisor of the image size. ## Arguments - `image_size`: image size as a tuple - `patch_size`: patch size as a tuple - `in_channels`: number of input channels - `embed_planes`: number of embedding planes ## Keyword Arguments - `norm_layer`: Takes the embedding planes as input and returns a layer that normalizes the embedding planes. Defaults to no normalization. - `flatten`: set to `true` to flatten the output of the convolutional layer """ @concrete struct PatchEmbedding <: AbstractLuxContainerLayer{(:patch, :flatten, :norm)} patch <: AbstractLuxLayer flatten <: AbstractLuxLayer norm <: AbstractLuxLayer end function (pe::PatchEmbedding)(x, ps, st) y₁, st₁ = pe.patch(x, ps.patch, st.patch) y₂, st₂ = pe.flatten(y₁, ps.flatten, st.flatten) y₃, st₃ = pe.norm(y₂, ps.norm, st.norm) return y₃, (; patch=st₁, flatten=st₂, norm=st₃) end function PatchEmbedding(image_size::Dims{N}, patch_size::Dims{N}, in_channels::Int, embed_planes::Int; norm_layer=Returns(Lux.NoOpLayer()), flatten::Bool=true) where {N} foreach(zip(image_size, patch_size)) do (i, p) @argcheck i % p==0 "Image size ($i) must be divisible by patch size ($p)" end return PatchEmbedding( Lux.Conv(patch_size, in_channels => embed_planes; stride=patch_size), ifelse(flatten, Lux.WrappedFunction(flatten_spatial), Lux.NoOpLayer()), norm_layer(embed_planes) ) end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
1619
""" VisionTransformerEncoder(in_planes, depth, number_heads; mlp_ratio = 4.0f0, dropout = 0.0f0) Transformer as used in the base ViT architecture [dosovitskiy2020image](@citep). ## Arguments - `in_planes`: number of input channels - `depth`: number of attention blocks - `number_heads`: number of attention heads ## Keyword Arguments - `mlp_ratio`: ratio of MLP layers to the number of input channels - `dropout_rate`: dropout rate """ @concrete struct VisionTransformerEncoder <: AbstractLuxWrapperLayer{:chain} chain <: Lux.Chain end function VisionTransformerEncoder( in_planes, depth, number_heads; mlp_ratio=4.0f0, dropout_rate=0.0f0) hidden_planes = floor(Int, mlp_ratio * in_planes) layers = [Lux.Chain( Lux.SkipConnection( Lux.Chain(Lux.LayerNorm((in_planes, 1); dims=1, affine=true), MultiHeadSelfAttention( in_planes, number_heads; attention_dropout_rate=dropout_rate, projection_dropout_rate=dropout_rate)), +), Lux.SkipConnection( Lux.Chain(Lux.LayerNorm((in_planes, 1); dims=1, affine=true), Lux.Chain(Lux.Dense(in_planes => hidden_planes, NNlib.gelu), Lux.Dropout(dropout_rate), Lux.Dense(hidden_planes => in_planes), Lux.Dropout(dropout_rate))), +)) for _ in 1:depth] return VisionTransformerEncoder(Lux.Chain(layers...)) end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
3913
""" HamiltonianNN{FST}(model; autodiff=nothing) where {FST} Constructs a Hamiltonian Neural Network [greydanus2019hamiltonian](@citep). This neural network is useful for learning symmetries and conservation laws by supervision on the gradients of the trajectories. It takes as input a concatenated vector of length `2n` containing the position (of size `n`) and momentum (of size `n`) of the particles. It then returns the time derivatives for position and momentum. ## Arguments - `FST`: If `true`, then the type of the state returned by the model must be same as the type of the input state. See the documentation on `StatefulLuxLayer` for more information. - `model`: A `Lux.AbstractLuxLayer` neural network that returns the Hamiltonian of the system. The `model` must return a "batched scalar", i.e. all the dimensions of the output except the last one must be equal to 1. The last dimension must be equal to the batchsize of the input. ## Keyword Arguments - `autodiff`: The autodiff framework to be used for the internal Hamiltonian computation. The default is `nothing`, which selects the best possible backend available. The available options are `AutoForwardDiff` and `AutoZygote`. ## Autodiff Backends | `autodiff` | Package Needed | Notes | |:----------------- |:-------------- |:---------------------------------------------------------------------------- | | `AutoZygote` | `Zygote.jl` | Preferred Backend. Chosen if `Zygote` is loaded and `autodiff` is `nothing`. | | `AutoForwardDiff` | | Chosen if `Zygote` is not loaded and `autodiff` is `nothing`. | !!! note This layer uses nested autodiff. Please refer to the manual entry on [Nested Autodiff](https://lux.csail.mit.edu/stable/manual/nested_autodiff) for more information and known limitations. """ @concrete struct HamiltonianNN <: AbstractLuxWrapperLayer{:model} fixed_state_type model autodiff end function HamiltonianNN{FST}(model; autodiff=nothing) where {FST} @argcheck autodiff isa Union{Nothing, AutoForwardDiff, AutoZygote} zygote_loaded = is_extension_loaded(Val(:Zygote)) if autodiff === nothing # Select best possible backend autodiff = ifelse(zygote_loaded, AutoZygote(), AutoForwardDiff()) else if autodiff isa AutoZygote && !zygote_loaded throw(ArgumentError("`autodiff` cannot be `AutoZygote` when `Zygote.jl` is not \ loaded.")) end end return HamiltonianNN(Static.static(FST), model, autodiff) end function LuxCore.initialstates(rng::AbstractRNG, hnn::HamiltonianNN) return (; model=LuxCore.initialstates(rng, hnn.model), first_call=true) end hamiltonian_forward(::AutoForwardDiff, model, x) = ForwardDiff.gradient(sum ∘ model, x) function (hnn::HamiltonianNN)(x::AbstractVector, ps, st) y, stₙ = hnn(reshape(x, :, 1), ps, st) return vec(y), stₙ end function (hnn::HamiltonianNN)(x::AbstractArray{T, N}, ps, st) where {T, N} model = StatefulLuxLayer{Static.known(hnn.fixed_state_type)}(hnn.model, ps, st.model) st.first_call && check_hamiltonian_layer(hnn.model, x, ps, st.model) if should_type_assert(x) && should_type_assert(ps) H = hamiltonian_forward(hnn.autodiff, model, x)::typeof(x) else H = hamiltonian_forward(hnn.autodiff, model, x) end n = size(H, N - 1) ÷ 2 return ( cat(selectdim(H, N - 1, (n + 1):(2n)), selectdim(H, N - 1, 1:n); dims=Val(N - 1)), (; model=model.st, first_call=false)) end function check_hamiltonian_layer(model, x::AbstractArray{T, N}, ps, st) where {T, N} y = first(model(x, ps, st)) @argcheck all(isone, size(y)[1:(end - 1)]) && size(y, ndims(y)) == size(x, N) end @non_differentiable check_hamiltonian_layer(::Any...)
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
2837
""" MLP(in_dims::Integer, hidden_dims::Dims{N}, activation=NNlib.relu; norm_layer=nothing, dropout_rate::Real=0.0f0, dense_kwargs=(;), norm_kwargs=(;), last_layer_activation=false) where {N} Construct a multi-layer perceptron (MLP) with dense layers, optional normalization layers, and dropout. ## Arguments - `in_dims`: number of input dimensions - `hidden_dims`: dimensions of the hidden layers - `activation`: activation function (stacked after the normalization layer, if present else after the dense layer) ## Keyword Arguments - `norm_layer`: $(NORM_LAYER_DOC) - `dropout_rate`: dropout rate (default: `0.0f0`) - `dense_kwargs`: keyword arguments for the dense layers - `norm_kwargs`: keyword arguments for the normalization layers - `last_layer_activation`: set to `true` to apply the activation function to the last layer """ @concrete struct MLP <: AbstractLuxWrapperLayer{:chain} chain <: Lux.Chain end function MLP(in_dims::Integer, hidden_dims::Dims{N}, activation::F=NNlib.relu; norm_layer::NF=nothing, dropout_rate::Real=0.0f0, last_layer_activation::Bool=false, dense_kwargs=(;), norm_kwargs=(;)) where {N, F, NF} @argcheck N > 0 layers = Vector{AbstractLuxLayer}(undef, N) for (i, out_dims) in enumerate(hidden_dims) act = i != N ? activation : (last_layer_activation ? activation : identity) layers[i] = dense_norm_act_dropout(i, in_dims => out_dims, act, norm_layer, dropout_rate, dense_kwargs, norm_kwargs) in_dims = out_dims end inner_blocks = NamedTuple{ntuple(i -> Symbol(:block, i), N)}(layers) return MLP(Lux.Chain(inner_blocks)) end @concrete struct DenseNormActDropoutBlock <: AbstractLuxWrapperLayer{:block} block end function dense_norm_act_dropout( i::Integer, (in_dims, out_dims)::Pair{<:Integer, <:Integer}, activation::F, norm_layer::NF, dropout_rate::Real, dense_kwargs, norm_kwargs) where {F, NF} if iszero(dropout_rate) if norm_layer === nothing return DenseNormActDropoutBlock(Lux.Chain(; dense=Lux.Dense(in_dims => out_dims, activation; dense_kwargs...))) end return DenseNormActDropoutBlock(Lux.Chain(; dense=Lux.Dense(in_dims => out_dims; dense_kwargs...), norm=norm_layer(i, out_dims, activation; norm_kwargs...))) end if norm_layer === nothing return DenseNormActDropoutBlock(Lux.Chain(; dense=Lux.Dense(in_dims => out_dims, activation; dense_kwargs...), dropout=Lux.Dropout(dropout_rate))) end return DenseNormActDropoutBlock(Lux.Chain(; dense=Lux.Dense(in_dims => out_dims; dense_kwargs...), norm=norm_layer(i, out_dims, activation; norm_kwargs...), dropout=Lux.Dropout(dropout_rate))) end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
2549
""" SplineLayer(in_dims, grid_min, grid_max, grid_step, basis::Type{Basis}; train_grid::Union{Val, Bool}=Val(false), init_saved_points=nothing) Constructs a spline layer with the given basis function. ## Arguments - `in_dims`: input dimensions of the layer. This must be a tuple of integers, to construct a flat vector of saved_points pass in `()`. - `grid_min`: minimum value of the grid. - `grid_max`: maximum value of the grid. - `grid_step`: step size of the grid. - `basis`: basis function to use for the interpolation. Currently only the basis functions from DataInterpolations.jl are supported: 1. `ConstantInterpolation` 2. `LinearInterpolation` 3. `QuadraticInterpolation` 4. `QuadraticSpline` 5. `CubicSpline` ## Keyword Arguments - `train_grid`: whether to train the grid or not. - `init_saved_points`: values of the function at multiples of the time step. Initialized by default to a random vector sampled from the unit normal. Alternatively, can take a function with the signature `init_saved_points(rng, in_dims, grid_min, grid_max, grid_step)`. !!! warning Currently this layer is limited since it relies on DataInterpolations.jl which doesn't work with GPU arrays. This will be fixed in the future by extending support to different basis functions. """ @concrete struct SplineLayer{TG, B, T} <: AbstractLuxLayer grid_min::T grid_max::T grid_step::T basis in_dims init_saved_points end function SplineLayer(in_dims::Dims, grid_min, grid_max, grid_step, basis::Type{Basis}; train_grid::Union{Val, Bool}=Val(false), init_saved_points=nothing) where {Basis} return SplineLayer{unwrap_val(train_grid), Basis}( grid_min, grid_max, grid_step, basis, in_dims, init_saved_points) end function LuxCore.initialparameters( rng::AbstractRNG, layer::SplineLayer{TG, B, T}) where {TG, B, T} if layer.init_saved_points === nothing saved_points = rand(rng, T, layer.in_dims..., length((layer.grid_min):(layer.grid_step):(layer.grid_max))) else saved_points = layer.init_saved_points( rng, in_dims, layer.grid_min, layer.grid_max, layer.grid_step) end TG || return (; saved_points) return (; saved_points, grid=collect((layer.grid_min):(layer.grid_step):(layer.grid_max))) end function LuxCore.initialstates(::AbstractRNG, layer::SplineLayer{false}) return (; grid=collect((layer.grid_min):(layer.grid_step):(layer.grid_max)),) end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
1914
@doc doc""" TensorProductLayer(basis_fns, out_dim::Int; init_weight = randn32) Constructs the Tensor Product Layer, which takes as input an array of n tensor product basis, $[B_1, B_2, \dots, B_n]$ a data point x, computes $$z_i = W_{i, :} \odot [B_1(x_1) \otimes B_2(x_2) \otimes \dots \otimes B_n(x_n)]$$ where $W$ is the layer's weight, and returns $[z_1, \dots, z_{out}]$. ## Arguments - `basis_fns`: Array of TensorProductBasis $[B_1(n_1), \dots, B_k(n_k)]$, where $k$ corresponds to the dimension of the input. - `out_dim`: Dimension of the output. ## Keyword Arguments - `init_weight`: Initializer for the weight matrix. Defaults to `randn32`. !!! warning "Limited Backend Support" Support for backends apart from CPU and CUDA is limited and slow due to limited support for `kron` in the backend. """ @concrete struct TensorProductLayer <: AbstractLuxWrapperLayer{:dense} basis_fns dense out_dim::Int end function TensorProductLayer(basis_fns, out_dim::Int; init_weight::F=randn32) where {F} dense = Lux.Dense( prod(Base.Fix2(getproperty, :n), basis_fns) => out_dim; use_bias=false, init_weight) return TensorProductLayer(Tuple(basis_fns), dense, out_dim) end function (tp::TensorProductLayer)(x::AbstractVector, ps, st) y, stₙ = tp(reshape(x, :, 1), ps, st) return vec(y), stₙ end function (tp::TensorProductLayer)(x::AbstractArray{T, N}, ps, st) where {T, N} x′ = LuxOps.eachslice(x, Val(N - 1)) # [I1, I2, ..., B] × T @argcheck length(x′) == length(tp.basis_fns) y = mapfoldl(safe_kron, zip(tp.basis_fns, x′)) do (fn, xᵢ) eachcol(reshape(fn(xᵢ), :, prod(size(xᵢ)))) end # [[D₁, ..., Dₙ] × (I1, I2, ..., B)] z, stₙ = tp.dense(mapreduce_stack(y), ps, st) return reshape(z, size(x)[1:(end - 2)]..., tp.out_dim, size(x)[end]), stₙ end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
1407
module Vision using ArgCheck: @argcheck using Compat: @compat using ConcreteStructs: @concrete using Random: Random, AbstractRNG using Lux: Lux using LuxCore: LuxCore, AbstractLuxLayer, AbstractLuxWrapperLayer using NNlib: relu using ..InitializeModels: InitializeModels using ..Layers: Layers, ConvBatchNormActivation, ClassTokens, PatchEmbedding, ViPosEmbedding, VisionTransformerEncoder using ..Utils: second_dim_mean, is_extension_loaded abstract type AbstractLuxVisionLayer <: AbstractLuxWrapperLayer{:layer} end for op in (:states, :parameters) fname = Symbol(:initial, op) fname_load = Symbol(:load, op) @eval function LuxCore.$(fname)(rng::AbstractRNG, model::AbstractLuxVisionLayer) if hasfield(typeof(model), :pretrained) && model.pretrained path = InitializeModels.get_pretrained_weights_path(model.pretrained_name) jld2_loaded_obj = InitializeModels.load_using_jld2( joinpath(path, "$(model.pretrained_name).jld2"), $(string(op))) return InitializeModels.$(fname_load)(jld2_loaded_obj) end return LuxCore.$(fname)(rng, model.layer) end end include("extensions.jl") include("alexnet.jl") include("vit.jl") include("vgg.jl") @compat(public, (AlexNet, ConvMixer, DenseNet, MobileNet, ResNet, ResNeXt, SqueezeNet, GoogLeNet, ViT, VisionTransformer, VGG, WideResNet)) end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
1212
""" AlexNet(; kwargs...) Create an AlexNet model [krizhevsky2012imagenet](@citep). ## Keyword Arguments - `pretrained::Bool=false`: If `true`, loads pretrained weights when `LuxCore.setup` is called. """ @concrete struct AlexNet <: AbstractLuxVisionLayer layer pretrained_name::Symbol pretrained::Bool end function AlexNet(; pretrained=false) alexnet = Lux.Chain(; backbone=Lux.Chain( Lux.Conv((11, 11), 3 => 64, relu; stride=4, pad=2), Lux.MaxPool((3, 3); stride=2), Lux.Conv((5, 5), 64 => 192, relu; pad=2), Lux.MaxPool((3, 3); stride=2), Lux.Conv((3, 3), 192 => 384, relu; pad=1), Lux.Conv((3, 3), 384 => 256, relu; pad=1), Lux.Conv((3, 3), 256 => 256, relu; pad=1), Lux.MaxPool((3, 3); stride=2) ), classifier=Lux.Chain( Lux.AdaptiveMeanPool((6, 6)), Lux.FlattenLayer(), Lux.Dropout(0.5f0), Lux.Dense(256 * 6 * 6 => 4096, relu), Lux.Dropout(0.5f0), Lux.Dense(4096 => 4096, relu), Lux.Dense(4096 => 1000) ) ) return AlexNet(alexnet, :alexnet, pretrained) end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
3776
""" ResNet(depth::Int; pretrained::Bool=false) Create a ResNet model [he2016deep](@citep). ## Arguments - `depth::Int`: The depth of the ResNet model. Must be one of 18, 34, 50, 101, or 152. ## Keyword Arguments - `pretrained::Bool=false`: If `true`, loads pretrained weights when `LuxCore.setup` is called. """ function ResNet end """ ResNeXt(depth::Int; cardinality=32, base_width=nothing, pretrained::Bool=false) Create a ResNeXt model [xie2017aggregated](@citep). ## Arguments - `depth::Int`: The depth of the ResNeXt model. Must be one of 50, 101, or 152. ## Keyword Arguments - `pretrained::Bool=false`: If `true`, loads pretrained weights when `LuxCore.setup` is called. - `cardinality`: The cardinality of the ResNeXt model. Defaults to 32. - `base_width`: The base width of the ResNeXt model. Defaults to 8 for depth 101 and 4 otherwise. """ function ResNeXt end """ GoogLeNet(; pretrained::Bool=false) Create a GoogLeNet model [szegedy2015going](@citep). ## Keyword Arguments - `pretrained::Bool=false`: If `true`, loads pretrained weights when `LuxCore.setup` is called. """ function GoogLeNet end """ DenseNet(depth::Int; pretrained::Bool=false) Create a DenseNet model [huang2017densely](@citep). ## Arguments - `depth::Int`: The depth of the DenseNet model. Must be one of 121, 161, 169, or 201. ## Keyword Arguments - `pretrained::Bool=false`: If `true`, loads pretrained weights when `LuxCore.setup` is called. """ function DenseNet end """ MobileNet(name::Symbol; pretrained::Bool=false) Create a MobileNet model [howard2017mobilenets, sandler2018mobilenetv2, howard2019searching](@citep). ## Arguments - `name::Symbol`: The name of the MobileNet model. Must be one of `:v1`, `:v2`, `:v3_small`, or `:v3_large`. ## Keyword Arguments - `pretrained::Bool=false`: If `true`, loads pretrained weights when `LuxCore.setup` is called. """ function MobileNet end """ ConvMixer(name::Symbol; pretrained::Bool=false) Create a ConvMixer model [trockman2022patches](@citep). ## Arguments - `name::Symbol`: The name of the ConvMixer model. Must be one of `:base`, `:small`, or `:large`. ## Keyword Arguments - `pretrained::Bool=false`: If `true`, loads pretrained weights when `LuxCore.setup` is called. """ function ConvMixer end """ SqueezeNet(; pretrained::Bool=false) Create a SqueezeNet model [iandola2016squeezenetalexnetlevelaccuracy50x](@citep). ## Keyword Arguments - `pretrained::Bool=false`: If `true`, loads pretrained weights when `LuxCore.setup` is called. """ function SqueezeNet end """ WideResNet(depth::Int; pretrained::Bool=false) Create a WideResNet model [zagoruyko2017wideresidualnetworks](@citep). ## Arguments - `depth::Int`: The depth of the WideResNet model. Must be one of 18, 34, 50, 101, or 152. ## Keyword Arguments - `pretrained::Bool=false`: If `true`, loads pretrained weights when `LuxCore.setup` is called. """ function WideResNet end @concrete struct MetalheadWrapperLayer <: AbstractLuxVisionLayer layer pretrained_name::Symbol pretrained::Bool end for f in [:ResNet, :ResNeXt, :GoogLeNet, :DenseNet, :MobileNet, :ConvMixer, :SqueezeNet, :WideResNet] f_metalhead = Symbol(f, :Metalhead) @eval begin function $(f_metalhead) end function $(f)(args...; pretrained::Bool=false, kwargs...) if !is_extension_loaded(Val(:Metalhead)) error("`Metalhead.jl` is not loaded. Please load `Metalhead.jl` to use \ this function.") end model = $(f_metalhead)(args...; pretrained, kwargs...) return MetalheadWrapperLayer(model, :metalhead, false) end end end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
3204
@concrete struct VGGFeatureExtractor <: AbstractLuxWrapperLayer{:model} model <: Lux.Chain end function VGGFeatureExtractor(config, batchnorm, inchannels) layers = Vector{AbstractLuxLayer}(undef, length(config) * 2) input_filters = inchannels for (i, (chs, depth)) in enumerate(config) layers[2i - 1] = ConvBatchNormActivation( (3, 3), input_filters => chs, depth, relu; last_layer_activation=true, conv_kwargs=(; pad=(1, 1)), use_norm=batchnorm) layers[2i] = Lux.MaxPool((2, 2)) input_filters = chs end return VGGFeatureExtractor(Lux.Chain(layers...)) end @concrete struct VGGClassifier <: AbstractLuxWrapperLayer{:model} model <: Lux.Chain end function VGGClassifier(imsize, nclasses, fcsize, dropout) return VGGClassifier(Lux.Chain( Lux.FlattenLayer(), Lux.Dense(Int(prod(imsize)) => fcsize, relu), Lux.Dropout(dropout), Lux.Dense(fcsize => fcsize, relu), Lux.Dropout(dropout), Lux.Dense(fcsize => nclasses))) end @concrete struct VGG <: AbstractLuxVisionLayer layer pretrained_name::Symbol pretrained::Bool end """ VGG(imsize; config, inchannels, batchnorm = false, nclasses, fcsize, dropout) Create a VGG model [simonyan2014very](@citep). ## Arguments - `imsize`: input image width and height as a tuple - `config`: the configuration for the convolution layers - `inchannels`: number of input channels - `batchnorm`: set to `true` to use batch normalization after each convolution - `nclasses`: number of output classes - `fcsize`: intermediate fully connected layer size - `dropout`: dropout level between fully connected layers """ function VGG(imsize; config, inchannels, batchnorm=false, nclasses, fcsize, dropout) feature_extractor = VGGFeatureExtractor(config, batchnorm, inchannels) nilarray = Lux.NilSizePropagation.NilArray((imsize..., inchannels, 2)) outsize = LuxCore.outputsize(feature_extractor, nilarray, Random.default_rng()) classifier = VGGClassifier(outsize, nclasses, fcsize, dropout) return Lux.Chain(; feature_extractor, classifier) end const VGG_CONFIG = Dict( 11 => [(64, 1), (128, 1), (256, 2), (512, 2), (512, 2)], 13 => [(64, 2), (128, 2), (256, 2), (512, 2), (512, 2)], 16 => [(64, 2), (128, 2), (256, 3), (512, 3), (512, 3)], 19 => [(64, 2), (128, 2), (256, 4), (512, 4), (512, 4)] ) """ VGG(depth::Int; batchnorm::Bool=false, pretrained::Bool=false) Create a VGG model [simonyan2014very](@citep) with ImageNet Configuration. ## Arguments - `depth::Int`: the depth of the VGG model. Choices: {`11`, `13`, `16`, `19`}. ## Keyword Arguments - `batchnorm = false`: set to `true` to use batch normalization after each convolution. - `pretrained::Bool=false`: If `true`, loads pretrained weights when `LuxCore.setup` is called. """ function VGG(depth::Int; batchnorm::Bool=false, pretrained::Bool=false) name = Symbol(:vgg, depth, ifelse(batchnorm, "_bn", "")) config, inchannels, nclasses, fcsize = VGG_CONFIG[depth], 3, 1000, 4096 model = VGG((224, 224); config, inchannels, batchnorm, nclasses, fcsize, dropout=0.5f0) return VGG(model, name, pretrained) end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
2411
@concrete struct VisionTransformer <: AbstractLuxVisionLayer layer pretrained_name::Symbol pretrained::Bool end function VisionTransformer(; imsize::Dims{2}=(256, 256), in_channels::Int=3, patch_size::Dims{2}=(16, 16), embed_planes::Int=768, depth::Int=6, number_heads=16, mlp_ratio=4.0f0, dropout_rate=0.1f0, embedding_dropout_rate=0.1f0, pool::Symbol=:class, num_classes::Int=1000) @argcheck pool in (:class, :mean) return Lux.Chain( Lux.Chain(PatchEmbedding(imsize, patch_size, in_channels, embed_planes), ClassTokens(embed_planes), ViPosEmbedding(embed_planes, prod(imsize .÷ patch_size) + 1), Lux.Dropout(embedding_dropout_rate), VisionTransformerEncoder( embed_planes, depth, number_heads; mlp_ratio, dropout_rate), Lux.WrappedFunction(ifelse(pool === :class, x -> x[:, 1, :], second_dim_mean))), Lux.Chain(Lux.LayerNorm((embed_planes,); affine=true), Lux.Dense(embed_planes, num_classes))) end #! format: off const VIT_CONFIGS = Dict( :tiny => (depth=12, embed_planes=0192, number_heads=3 ), :small => (depth=12, embed_planes=0384, number_heads=6 ), :base => (depth=12, embed_planes=0768, number_heads=12 ), :large => (depth=24, embed_planes=1024, number_heads=16 ), :huge => (depth=32, embed_planes=1280, number_heads=16 ), :giant => (depth=40, embed_planes=1408, number_heads=16, mlp_ratio=48 / 11), :gigantic => (depth=48, embed_planes=1664, number_heads=16, mlp_ratio=64 / 13) ) #! format: on """ VisionTransformer(name::Symbol; pretrained=false) Creates a Vision Transformer model with the specified configuration. ## Arguments - `name::Symbol`: name of the Vision Transformer model to create. The following models are available -- `:tiny`, `:small`, `:base`, `:large`, `:huge`, `:giant`, `:gigantic`. ## Keyword Arguments - `pretrained::Bool=false`: If `true`, loads pretrained weights when `LuxCore.setup` is called. """ function VisionTransformer(name::Symbol; pretrained=false, kwargs...) @argcheck name in keys(VIT_CONFIGS) return VisionTransformer( VisionTransformer(; VIT_CONFIGS[name]..., kwargs...), name, pretrained) end const ViT = VisionTransformer
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
10328
# Only tests that are not run via `vision` or other higher-level test suites are # included in this snippet. @testitem "MLP" setup=[SharedTestSetup] tags=[:layers] begin using NNlib @testset "$(mode)" for (mode, aType, dev, ongpu) in MODES @testset "$(act)" for act in (tanh, NNlib.gelu) @testset "$(nType)" for nType in (BatchNorm, GroupNorm, nothing) norm = if nType === nothing nType elseif nType === BatchNorm (i, ch, act; kwargs...) -> BatchNorm(ch, act; kwargs...) elseif nType === GroupNorm (i, ch, act; kwargs...) -> GroupNorm(ch, 2, act; kwargs...) end model = Layers.MLP(2, (4, 4, 2), act; norm_layer=norm) ps, st = Lux.setup(StableRNG(0), model) |> dev x = randn(Float32, 2, 2) |> aType @jet model(x, ps, st) __f = (x, ps) -> sum(abs2, first(model(x, ps, st))) test_gradients( __f, x, ps; atol=1e-3, rtol=1e-3, soft_fail=[AutoFiniteDiff()]) end end end end @testitem "Hamiltonian Neural Network" setup=[SharedTestSetup] tags=[:layers] begin using ComponentArrays, ForwardDiff, Zygote, MLDataDevices, NNlib _remove_nothing(xs) = map(x -> x === nothing ? 0 : x, xs) @testset "$(mode): $(autodiff)" for (mode, aType, dev, ongpu) in MODES, autodiff in (nothing, AutoZygote(), AutoForwardDiff()) ongpu && autodiff === AutoForwardDiff() && continue hnn = Layers.HamiltonianNN{true}(Layers.MLP(2, (4, 4, 2), NNlib.gelu); autodiff) ps, st = Lux.setup(StableRNG(0), hnn) |> dev x = randn(Float32, 2, 4) |> aType @test_throws ArgumentError hnn(x, ps, st) hnn = Layers.HamiltonianNN{true}(Layers.MLP(2, (4, 4, 1), NNlib.gelu); autodiff) ps, st = Lux.setup(StableRNG(0), hnn) |> dev ps_ca = ComponentArray(ps |> cpu_device()) |> dev @test st.first_call y, st = hnn(x, ps, st) @test !st.first_call ∂x_zyg, ∂ps_zyg = Zygote.gradient( (x, ps) -> sum(abs2, first(hnn(x, ps, st))), x, ps) @test ∂x_zyg !== nothing @test ∂ps_zyg !== nothing if !ongpu ∂ps_zyg = _remove_nothing(getdata(ComponentArray(∂ps_zyg |> cpu_device()) |> dev)) ∂x_fd = ForwardDiff.gradient(x -> sum(abs2, first(hnn(x, ps, st))), x) ∂ps_fd = getdata(ForwardDiff.gradient( ps -> sum(abs2, first(hnn(x, ps, st))), ps_ca)) @test ∂x_zyg≈∂x_fd atol=1e-3 rtol=1e-3 @test ∂ps_zyg≈∂ps_fd atol=1e-3 rtol=1e-3 end st = Lux.initialstates(StableRNG(0), hnn) |> dev @test st.first_call y, st = hnn(x, ps_ca, st) @test !st.first_call ∂x_zyg, ∂ps_zyg = Zygote.gradient( (x, ps) -> sum(abs2, first(hnn(x, ps, st))), x, ps_ca) @test ∂x_zyg !== nothing @test ∂ps_zyg !== nothing if !ongpu ∂ps_zyg = _remove_nothing(getdata(ComponentArray(∂ps_zyg |> cpu_device()) |> dev)) ∂x_fd = ForwardDiff.gradient(x -> sum(abs2, first(hnn(x, ps_ca, st))), x) ∂ps_fd = getdata(ForwardDiff.gradient( ps -> sum(abs2, first(hnn(x, ps, st))), ps_ca)) @test ∂x_zyg≈∂x_fd atol=1e-3 rtol=1e-3 @test ∂ps_zyg≈∂ps_fd atol=1e-3 rtol=1e-3 end end end @testitem "Tensor Product Layer" setup=[SharedTestSetup] tags=[:layers] begin @testset "$(mode)" for (mode, aType, dev, ongpu) in MODES @testset "$(basis)" for basis in (Basis.Chebyshev, Basis.Sin, Basis.Cos, Basis.Fourier, Basis.Legendre, Basis.Polynomial) tensor_project = Layers.TensorProductLayer([basis(n + 2) for n in 1:3], 4) ps, st = Lux.setup(StableRNG(0), tensor_project) |> dev x = tanh.(randn(Float32, 2, 4, 5)) |> aType @test_throws ArgumentError tensor_project(x, ps, st) x = tanh.(randn(Float32, 2, 3, 5)) |> aType y, st = tensor_project(x, ps, st) @test size(y) == (2, 4, 5) @jet tensor_project(x, ps, st) __f = (x, ps) -> sum(abs2, first(tensor_project(x, ps, st))) test_gradients(__f, x, ps; atol=1e-3, rtol=1e-3, skip_backends=[AutoTracker(), AutoEnzyme()]) end end end @testitem "Basis Functions" setup=[SharedTestSetup] tags=[:layers] begin @testset "$(mode)" for (mode, aType, dev, ongpu) in MODES @testset "$(basis)" for basis in (Basis.Chebyshev, Basis.Sin, Basis.Cos, Basis.Fourier, Basis.Legendre, Basis.Polynomial) x = tanh.(randn(Float32, 2, 4)) |> aType grid = collect(1:3) |> aType fn = basis(3) @test size(fn(x)) == (3, 2, 4) @jet fn(x) @test size(fn(x, grid)) == (3, 2, 4) @jet fn(x, grid) fn = basis(3; dim=2) @test size(fn(x)) == (2, 3, 4) @jet fn(x) @test size(fn(x, grid)) == (2, 3, 4) @jet fn(x, grid) fn = basis(3; dim=3) @test size(fn(x)) == (2, 4, 3) @jet fn(x) @test size(fn(x, grid)) == (2, 4, 3) @jet fn(x, grid) fn = basis(3; dim=4) @test_throws ArgumentError fn(x) grid = 1:5 |> aType @test_throws ArgumentError fn(x, grid) end end end @testitem "Spline Layer" setup=[SharedTestSetup] tags=[:layers] begin using ComponentArrays, DataInterpolations, ForwardDiff, Zygote, MLDataDevices @testset "$(mode)" for (mode, aType, dev, ongpu) in MODES ongpu && continue @testset "$(spl): train_grid $(train_grid), dims $(dims)" for spl in ( ConstantInterpolation, LinearInterpolation, QuadraticInterpolation, QuadraticSpline, CubicSpline), train_grid in (true, false), dims in ((), (8,)) spline = Layers.SplineLayer(dims, 0.0f0, 1.0f0, 0.1f0, spl; train_grid) ps, st = Lux.setup(StableRNG(0), spline) |> dev ps_ca = ComponentArray(ps |> cpu_device()) |> dev x = tanh.(randn(Float32, 4)) |> aType y, st = spline(x, ps, st) @test size(y) == (dims..., 4) @jet spline(x, ps, st) y, st = spline(x, ps_ca, st) @test size(y) == (dims..., 4) @jet spline(x, ps_ca, st) ∂x, ∂ps = Zygote.gradient((x, ps) -> sum(abs2, first(spline(x, ps, st))), x, ps) spl !== ConstantInterpolation && @test ∂x !== nothing @test ∂ps !== nothing ∂x_fd = ForwardDiff.gradient(x -> sum(abs2, first(spline(x, ps, st))), x) ∂ps_fd = ForwardDiff.gradient(ps -> sum(abs2, first(spline(x, ps, st))), ps_ca) spl !== ConstantInterpolation && @test ∂x≈∂x_fd atol=1e-3 rtol=1e-3 @test ∂ps.saved_points≈∂ps_fd.saved_points atol=1e-3 rtol=1e-3 if train_grid if ∂ps.grid === nothing @test_softfail all(Base.Fix1(isapprox, 0), ∂ps_fd.grid) else @test ∂ps.grid≈∂ps_fd.grid atol=1e-3 rtol=1e-3 end end end end end @testitem "Periodic Embedding" setup=[SharedTestSetup] tags=[:layers] begin @testset "$(mode)" for (mode, aType, dev, ongpu) in MODES layer = Layers.PeriodicEmbedding([2, 3], [4.0, π / 5]) ps, st = Lux.setup(StableRNG(0), layer) |> dev x = randn(StableRNG(0), 6, 4, 3, 2) |> aType Δx = [0.0, 12.0, -2π / 5, 0.0, 0.0, 0.0] |> aType val = layer(x, ps, st)[1] |> Array shifted_val = layer(x .+ Δx, ps, st)[1] |> Array @test all(val[1:4, :, :, :] .== shifted_val[1:4, :, :, :]) && all(isapprox.( val[5:8, :, :, :], shifted_val[5:8, :, :, :]; atol=5 * eps(Float32))) @jet layer(x, ps, st) __f = x -> sum(first(layer(x, ps, st))) test_gradients(__f, x; atol=1.0f-3, rtol=1.0f-3) end end @testitem "Dynamic Expressions Layer" setup=[SharedTestSetup] tags=[:layers] begin using DynamicExpressions, ForwardDiff, ComponentArrays, Bumper operators = OperatorEnum(; binary_operators=[+, -, *], unary_operators=[cos]) x1 = Node(; feature=1) x2 = Node(; feature=2) expr_1 = x1 * cos(x2 - 3.2) expr_2 = x2 - x1 * x2 + 2.5 - 1.0 * x1 for exprs in ((expr_1,), (expr_1, expr_2), ([expr_1, expr_2],)), turbo in (Val(false), Val(true)), bumper in (Val(false), Val(true)) layer = Layers.DynamicExpressionsLayer(operators, exprs...; turbo, bumper) ps, st = Lux.setup(StableRNG(0), layer) x = [1.0f0 2.0f0 3.0f0 4.0f0 5.0f0 6.0f0] y, st_ = layer(x, ps, st) @test eltype(y) == Float32 __f = (x, p) -> sum(abs2, first(layer(x, p, st))) test_gradients(__f, x, ps; atol=1.0f-3, rtol=1.0f-3, skip_backends=[AutoEnzyme()]) # Particular ForwardDiff dispatches ps_ca = ComponentArray(ps) dps_ca = ForwardDiff.gradient(ps_ca) do ps_ sum(abs2, first(layer(x, ps_, st))) end dx = ForwardDiff.gradient(x) do x_ sum(abs2, first(layer(x_, ps, st))) end dxps = ForwardDiff.gradient(ComponentArray(; x, ps)) do ca sum(abs2, first(layer(ca.x, ca.ps, st))) end @test dx≈dxps.x atol=1.0f-3 rtol=1.0f-3 @test dps_ca≈dxps.ps atol=1.0f-3 rtol=1.0f-3 x = Float64.(x) y, st_ = layer(x, ps, st) @test eltype(y) == Float64 __f = (x, p) -> sum(abs2, first(layer(x, p, st))) test_gradients(__f, x, ps; atol=1.0e-3, rtol=1.0e-3, skip_backends=[AutoEnzyme()]) end @testset "$(mode)" for (mode, aType, dev, ongpu) in MODES layer = Layers.DynamicExpressionsLayer(operators, expr_1) ps, st = Lux.setup(StableRNG(0), layer) |> dev x = [1.0f0 2.0f0 3.0f0 4.0f0 5.0f0 6.0f0] |> aType if ongpu @test_throws ArgumentError layer(x, ps, st) end end end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
869
@testitem "Aqua: Quality Assurance" tags=[:others] begin using Aqua Aqua.test_all(Boltz; ambiguities=false) Aqua.test_ambiguities(Boltz; recursive=false) end @testitem "Explicit Imports: Quality Assurance" tags=[:others] begin import Lux, Metalhead, Zygote # Load all trigger packages using ExplicitImports @test check_no_implicit_imports(Boltz; skip=(Base, Core, Lux)) === nothing @test check_no_stale_explicit_imports(Boltz) === nothing @test check_no_self_qualified_accesses(Boltz) === nothing @test check_all_explicit_imports_via_owners(Boltz) === nothing @test check_all_qualified_accesses_via_owners(Boltz) === nothing @test_broken check_all_explicit_imports_are_public(Boltz) === nothing # mostly upstream problems @test_broken check_all_qualified_accesses_are_public(Boltz) === nothing # mostly upstream end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
1250
using ReTestItems, Pkg, InteractiveUtils, Hwloc @info sprint(versioninfo) const BACKEND_GROUP = lowercase(get(ENV, "BACKEND_GROUP", "all")) const EXTRA_PKGS = String[] (BACKEND_GROUP == "all" || BACKEND_GROUP == "cuda") && push!(EXTRA_PKGS, "LuxCUDA") (BACKEND_GROUP == "all" || BACKEND_GROUP == "amdgpu") && push!(EXTRA_PKGS, "AMDGPU") if !isempty(EXTRA_PKGS) @info "Installing Extra Packages for testing" EXTRA_PKGS=EXTRA_PKGS Pkg.add(EXTRA_PKGS) Pkg.update() Base.retry_load_extensions() Pkg.instantiate() end using Boltz const BOLTZ_TEST_GROUP = get(ENV, "BOLTZ_TEST_GROUP", "all") const RETESTITEMS_NWORKERS = parse( Int, get(ENV, "RETESTITEMS_NWORKERS", string(min(Hwloc.num_physical_cores(), 16)))) const RETESTITEMS_NWORKER_THREADS = parse(Int, get(ENV, "RETESTITEMS_NWORKER_THREADS", string(max(Hwloc.num_virtual_cores() ÷ RETESTITEMS_NWORKERS, 1)))) @info "Running tests for group: $BOLTZ_TEST_GROUP with $RETESTITEMS_NWORKERS workers" ReTestItems.runtests( Boltz; tags=(BOLTZ_TEST_GROUP == "all" ? nothing : [Symbol(BOLTZ_TEST_GROUP)]), nworkers=ifelse(BACKEND_GROUP ∈ ("cuda", "amdgpu"), 0, RETESTITEMS_NWORKERS), nworker_threads=RETESTITEMS_NWORKER_THREADS, testitem_timeout=3600)
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
1218
@testsetup module SharedTestSetup using Enzyme Enzyme.API.runtimeActivity!(true) import Reexport: @reexport @reexport using Boltz, Lux, GPUArraysCore, LuxLib, LuxTestUtils, Random, StableRNGs using MLDataDevices, JLD2 import Metalhead LuxTestUtils.jet_target_modules!(["Boltz", "Lux", "LuxLib"]) const BACKEND_GROUP = lowercase(get(ENV, "BACKEND_GROUP", "all")) GPUArraysCore.allowscalar(false) if BACKEND_GROUP == "all" || BACKEND_GROUP == "cuda" using LuxCUDA end if BACKEND_GROUP == "all" || BACKEND_GROUP == "amdgpu" using AMDGPU end cpu_testing() = BACKEND_GROUP == "all" || BACKEND_GROUP == "cpu" function cuda_testing() return (BACKEND_GROUP == "all" || BACKEND_GROUP == "cuda") && MLDataDevices.functional(CUDADevice) end function amdgpu_testing() return (BACKEND_GROUP == "all" || BACKEND_GROUP == "amdgpu") && MLDataDevices.functional(AMDGPUDevice) end const MODES = begin modes = [] cpu_testing() && push!(modes, ("cpu", Array, CPUDevice(), false)) cuda_testing() && push!(modes, ("cuda", CuArray, CUDADevice(), true)) amdgpu_testing() && push!(modes, ("amdgpu", ROCArray, AMDGPUDevice(), true)) modes end export MODES, BACKEND_GROUP end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
code
7642
@testsetup module PretrainedWeightsTestSetup using Lux, Downloads, JLD2 function normalize_imagenet(data) cmean = reshape(Float32[0.485, 0.456, 0.406], (1, 1, 3, 1)) cstd = reshape(Float32[0.229, 0.224, 0.225], (1, 1, 3, 1)) return (data .- cmean) ./ cstd end # The images are normalized and saved @load joinpath(@__DIR__, "testimages", "monarch_color.jld2") monarch_color_224 monarch_color_256 const MONARCH_224 = monarch_color_224 const MONARCH_256 = monarch_color_256 const TEST_LBLS = readlines(Downloads.download( "https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt" )) function imagenet_acctest(model, ps, st, dev; size=224) ps = ps |> dev st = Lux.testmode(st) |> dev TEST_X = size == 224 ? MONARCH_224 : (size == 256 ? MONARCH_256 : error("size must be 224 or 256")) x = TEST_X |> dev ypred = first(model(x, ps, st)) |> collect |> vec top5 = TEST_LBLS[sortperm(ypred; rev=true)] return "monarch" in top5 end export imagenet_acctest end @testitem "AlexNet" setup=[SharedTestSetup, PretrainedWeightsTestSetup] tags=[:vision] begin for (mode, aType, dev, ongpu) in MODES @testset "pretrained: $(pretrained)" for pretrained in [true, false] model = Vision.AlexNet(; pretrained) ps, st = Lux.setup(Random.default_rng(), model) |> dev st = Lux.testmode(st) img = randn(Float32, 224, 224, 3, 2) |> aType @jet model(img, ps, st) @test size(first(model(img, ps, st))) == (1000, 2) if pretrained @test imagenet_acctest(model, ps, st, dev) end GC.gc(true) end end end @testitem "ConvMixer" setup=[SharedTestSetup] tags=[:vision] begin for (mode, aType, dev, ongpu) in MODES, name in [:small, :base, :large] model = Vision.ConvMixer(name; pretrained=false) ps, st = Lux.setup(Random.default_rng(), model) |> dev st = Lux.testmode(st) img = randn(Float32, 256, 256, 3, 2) |> aType @jet model(img, ps, st) @test size(first(model(img, ps, st))) == (1000, 2) GC.gc(true) end end @testitem "GoogLeNet" setup=[SharedTestSetup] tags=[:vision] begin for (mode, aType, dev, ongpu) in MODES model = Vision.GoogLeNet(; pretrained=false) ps, st = Lux.setup(Random.default_rng(), model) |> dev st = Lux.testmode(st) img = randn(Float32, 224, 224, 3, 2) |> aType @jet model(img, ps, st) @test size(first(model(img, ps, st))) == (1000, 2) GC.gc(true) end end @testitem "MobileNet" setup=[SharedTestSetup] tags=[:vision] begin for (mode, aType, dev, ongpu) in MODES, name in [:v1, :v2, :v3_small, :v3_large] model = Vision.MobileNet(name; pretrained=false) ps, st = Lux.setup(Random.default_rng(), model) |> dev st = Lux.testmode(st) img = randn(Float32, 224, 224, 3, 2) |> aType @jet model(img, ps, st) @test size(first(model(img, ps, st))) == (1000, 2) GC.gc(true) end end @testitem "ResNet" setup=[SharedTestSetup, PretrainedWeightsTestSetup] tags=[:vision] begin for (mode, aType, dev, ongpu) in MODES, depth in [18, 34, 50, 101, 152] @testset for pretrained in [false, true] model = Vision.ResNet(depth; pretrained) ps, st = Lux.setup(Random.default_rng(), model) |> dev st = Lux.testmode(st) img = randn(Float32, 224, 224, 3, 2) |> aType @jet model(img, ps, st) @test size(first(model(img, ps, st))) == (1000, 2) if pretrained @test imagenet_acctest(model, ps, st, dev) end GC.gc(true) end end end @testitem "ResNeXt" setup=[SharedTestSetup, PretrainedWeightsTestSetup] tags=[:vision] begin for (mode, aType, dev, ongpu) in MODES @testset for (depth, cardinality, base_width) in [ (50, 32, 4), (101, 32, 8), (101, 64, 4), (152, 64, 4)] @testset for pretrained in [false, true] depth == 152 && pretrained && continue model = Vision.ResNeXt(depth; pretrained, cardinality, base_width) ps, st = Lux.setup(Random.default_rng(), model) |> dev st = Lux.testmode(st) img = randn(Float32, 224, 224, 3, 2) |> aType @jet model(img, ps, st) @test size(first(model(img, ps, st))) == (1000, 2) if pretrained @test imagenet_acctest(model, ps, st, dev) end GC.gc(true) end end end end @testitem "WideResNet" setup=[SharedTestSetup, PretrainedWeightsTestSetup] tags=[:vision] begin for (mode, aType, dev, ongpu) in MODES, depth in [50, 101, 152] @testset for pretrained in [false, true] depth == 152 && pretrained && continue model = Vision.WideResNet(depth; pretrained) ps, st = Lux.setup(Random.default_rng(), model) |> dev st = Lux.testmode(st) img = randn(Float32, 224, 224, 3, 2) |> aType @jet model(img, ps, st) @test size(first(model(img, ps, st))) == (1000, 2) if pretrained @test imagenet_acctest(model, ps, st, dev) end GC.gc(true) end end end @testitem "SqueezeNet" setup=[SharedTestSetup, PretrainedWeightsTestSetup] tags=[:vision] begin for (mode, aType, dev, ongpu) in MODES @testset for pretrained in [false, true] model = Vision.SqueezeNet(; pretrained) ps, st = Lux.setup(Random.default_rng(), model) |> dev st = Lux.testmode(st) img = randn(Float32, 224, 224, 3, 2) |> aType @jet model(img, ps, st) @test size(first(model(img, ps, st))) == (1000, 2) if pretrained @test imagenet_acctest(model, ps, st, dev) end GC.gc(true) end end end @testitem "VGG" setup=[SharedTestSetup, PretrainedWeightsTestSetup] tags=[:vision] begin for (mode, aType, dev, ongpu) in MODES, depth in [11, 13, 16, 19] @testset for pretrained in [false, true], batchnorm in [false, true] model = Vision.VGG(depth; batchnorm, pretrained) ps, st = Lux.setup(Random.default_rng(), model) |> dev st = Lux.testmode(st) img = randn(Float32, 224, 224, 3, 2) |> aType @jet model(img, ps, st) @test size(first(model(img, ps, st))) == (1000, 2) if pretrained @test imagenet_acctest(model, ps, st, dev) end GC.gc(true) end end end @testitem "VisionTransformer" setup=[SharedTestSetup] tags=[:vision] begin for (mode, aType, dev, ongpu) in MODES, name in [:tiny, :small, :base] # :large, :huge, :giant, :gigantic --> too large for CI model = Vision.VisionTransformer(name; pretrained=false) ps, st = Lux.setup(Random.default_rng(), model) |> dev st = Lux.testmode(st) img = randn(Float32, 256, 256, 3, 2) |> aType @jet model(img, ps, st) @test size(first(model(img, ps, st))) == (1000, 2) model = Vision.VisionTransformer(name; pretrained=false) ps, st = Lux.setup(Random.default_rng(), model) |> dev st = Lux.testmode(st) img = randn(Float32, 256, 256, 3, 2) |> aType @jet model(img, ps, st) @test size(first(model(img, ps, st))) == (1000, 2) GC.gc(true) end end
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
docs
2118
# Boltz ⚡ [![GitHub Discussions](https://img.shields.io/github/discussions/LuxDL/Lux.jl?color=white&logo=github&label=Discussions)](https://github.com/LuxDL/Lux.jl/discussions) [![Latest Docs](https://img.shields.io/badge/docs-latest-blue.svg)](https://luxdl.github.io/Boltz.jl/dev/) [![Stable Docs](https://img.shields.io/badge/docs-stable-blue.svg)](https://luxdl.github.io/Boltz.jl/stable/) [![CI](https://github.com/LuxDL/Boltz.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/LuxDL/Boltz.jl/actions/workflows/CI.yml) [![Build status](https://badge.buildkite.com/33d66eb556ba88f60e733e97ff65c133fdb5f0ac683e823cfb.svg?branch=main)](https://buildkite.com/julialang/boltz-dot-jl) [![codecov](https://codecov.io/gh/LuxDL/Boltz.jl/branch/main/graph/badge.svg?token=YBImUxz5qO)](https://codecov.io/gh/LuxDL/Boltz.jl) [![Downloads](https://img.shields.io/badge/dynamic/json?url=http%3A%2F%2Fjuliapkgstats.com%2Fapi%2Fv1%2Fmonthly_downloads%2FBoltz&query=total_requests&suffix=%2Fmonth&label=Downloads)](https://juliapkgstats.com/pkg/Boltz) [![Downloads](https://img.shields.io/badge/dynamic/json?url=http%3A%2F%2Fjuliapkgstats.com%2Fapi%2Fv1%2Ftotal_downloads%2FBoltz&query=total_requests&&label=Total%20Downloads)](https://juliapkgstats.com/pkg/Boltz) [![JET Testing](https://img.shields.io/badge/%F0%9F%9B%A9%EF%B8%8F_tested_with-JET.jl-233f9a)](https://github.com/aviatesk/JET.jl) [![Aqua QA](https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg)](https://github.com/JuliaTesting/Aqua.jl) [![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet)](https://github.com/SciML/ColPrac) [![SciML Code Style](https://img.shields.io/static/v1?label=code%20style&message=SciML&color=9558b2&labelColor=389826)](https://github.com/SciML/SciMLStyle) Accelerate ⚡ your ML research using pre-built Deep Learning Models with Lux. ## Installation ```julia using Pkg Pkg.add("Boltz") ``` ## Getting Started ```julia using Boltz, Lux, Metalhead model, ps, st = Vision.AlexNet(; pretrained=true) ```
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
docs
2092
```@raw html --- # https://vitepress.dev/reference/default-theme-home-page layout: home hero: name: Boltz.jl ⚡ Docs text: Pre-built Deep Learning Models in Julia tagline: Accelerate ⚡ your ML research using pre-built Deep Learning Models with Lux actions: - theme: brand text: Lux.jl Docs link: https://lux.csail.mit.edu/ - theme: alt text: Tutorials 📚 link: /tutorials/1_GettingStarted - theme: alt text: Vision Models 👀 link: /api/vision - theme: alt text: Layers API 🧩 link: /api/layers - theme: alt text: View on GitHub link: https://github.com/LuxDL/Boltz.jl image: src: /lux-logo.svg alt: Lux.jl features: - icon: 🔥 title: Powered by Lux.jl details: Boltz.jl is built on top of Lux.jl, a pure Julia Deep Learning Framework designed for Scientific Machine Learning. link: https://lux.csail.mit.edu/ - icon: 🧩 title: Pre-built Models details: Boltz.jl provides pre-built models for common deep learning tasks, such as image classification. link: /api/vision - icon: 🧑‍🔬 title: SciML Primitives details: Common deep learning primitives needed for scientific machine learning. link: https://sciml.ai/ --- ``` ## How to Install Boltz.jl? Its easy to install Boltz.jl. Since Boltz.jl is registered in the Julia General registry, you can simply run the following command in the Julia REPL: ```julia julia> using Pkg julia> Pkg.add("Boltz") ``` If you want to use the latest unreleased version of Boltz.jl, you can run the following command: (in most cases the released version will be same as the version on github) ```julia julia> using Pkg julia> Pkg.add(url="https://github.com/LuxDL/Boltz.jl") ``` ## Want GPU Support? Install the following package(s): :::code-group ```julia [NVIDIA GPUs] using Pkg Pkg.add("LuxCUDA") # or Pkg.add(["CUDA", "cuDNN"]) ``` ```julia [AMD ROCm GPUs] using Pkg Pkg.add("AMDGPU") ``` ```julia [Metal M-Series GPUs] using Pkg Pkg.add("Metal") ``` ```julia [Intel GPUs] using Pkg Pkg.add("oneAPI") ``` :::
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
docs
341
# `Boltz.Basis` API Reference !!! warning The function calls for these basis functions should be considered experimental and are subject to change without deprecation. However, the functions themselves are stable and can be freely used in combination with the other Layers and Models. ```@autodocs Modules = [Boltz.Basis] ```
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
docs
166
# API Reference Accelerate ⚡ your ML research using pre-built Deep Learning Models with Lux. ## Index ```@index Pages = ["basis.md", "layers.md", "vision.md"] ```
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
docs
141
# `Boltz.Layers` API Reference --- ```@autodocs Modules = [Boltz.Layers] ``` ```@bibliography Pages = [@__FILE__] Style = :authoryear ```
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
docs
158
# Private API This is the private API reference for Boltz.jl. You know what this means. Don't use these functions! ```@autodocs Modules = [Boltz.Utils] ```
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
1.0.1
e258d56273ce56896f4269e8f9d402a09ff2200d
docs
3181
# Computer Vision Models (`Vision` API) ## Native Lux Models ```@docs Vision.AlexNet Vision.VGG Vision.VisionTransformer ``` ## Imported from Metalhead.jl !!! tip "Load Metalhead" You need to load `Metalhead` before using these models. ```@docs Vision.ConvMixer Vision.DenseNet Vision.GoogLeNet Vision.MobileNet Vision.ResNet Vision.ResNeXt Vision.SqueezeNet Vision.WideResNet ``` ## Pretrained Models !!! note "Load JLD2" You need to load `JLD2` before being able to load pretrained weights. !!! tip "Load Pretrained Weights" Pass `pretrained=true` to the model constructor to load the pretrained weights. | MODEL | TOP 1 ACCURACY (%) | TOP 5 ACCURACY (%) | | :------------------------------------------- | :----------------: | :----------------: | | `AlexNet()` | 54.48 | 77.72 | | `VGG(11)` | 67.35 | 87.91 | | `VGG(13)` | 68.40 | 88.48 | | `VGG(16)` | 70.24 | 89.80 | | `VGG(19)` | 71.09 | 90.27 | | `VGG(11; batchnorm=true)` | 69.09 | 88.94 | | `VGG(13; batchnorm=true)` | 69.66 | 89.49 | | `VGG(16; batchnorm=true)` | 72.11 | 91.02 | | `VGG(19; batchnorm=true)` | 72.95 | 91.32 | | `ResNet(18)` | - | - | | `ResNet(34)` | - | - | | `ResNet(50)` | - | - | | `ResNet(101)` | - | - | | `ResNet(152)` | - | - | | `ResNeXt(50; cardinality=32, base_width=4)` | - | - | | `ResNeXt(101; cardinality=32, base_width=8)` | - | - | | `ResNeXt(101; cardinality=64, base_width=4)` | - | - | | `SqueezeNet()` | - | - | | `WideResNet(50)` | - | - | | `WideResNet(101)` | - | - | !!! note "Pretrained Models from Metalhead" For Models imported from Metalhead, the pretrained weights can be loaded if they are available in Metalhead. Refer to the [Metalhead.jl docs](https://fluxml.ai/Metalhead.jl/stable/#Image-Classification) for a list of available pretrained models. ### Preprocessing All the pretrained models require that the images be normalized with the parameters `mean = [0.485f0, 0.456f0, 0.406f0]` and `std = [0.229f0, 0.224f0, 0.225f0]`. ```@bibliography Pages = [@__FILE__] Style = :authoryear ```
Boltz
https://github.com/LuxDL/Boltz.jl.git
[ "MIT" ]
0.1.0
33d35ddce841c93a0fd6662980b97100b5fdaf68
code
1822
module Shamir using Polynomials function l(x, j, k) """ Create a Lagrange basis polynomial Reference: https://wikimedia.org/api/rest_v1/media/math/render/svg/6e2c3a2ab16a8723c0446de6a30da839198fb04b """ polys = [] for m in 1:k if m != j d = x[j] - x[m] r = Poly([-1 * x[m], 1]) / d push!(polys, r) end end #println(polys) return prod(polys) end function L(x, y, k) """ Create a linear combination of Lagrange basis polynomials Reference: https://wikimedia.org/api/rest_v1/media/math/render/svg/d07f3378ff7718c345e5d3d4a57d3053190226a0 """ s = [] for j in 1:k r = y[j] * l(x, j, k) push!(s, r) end #println(sum(s)) return sum(s) end function construct_shares(n, production_poly) """ Create shares of the secret Parameters: n: Total number of shares production_poly : The Polynomial created with the secret to produce secret shares """ share = [] for i in 1:n push!(share, [i, production_poly(i)]) end return share end function recover_secret(shares, n, k, p) """ Recover the secret by finding the coefficient of x^0 i.e. when the x=0 in the polynomial. Parameters: shares : An array of shares of the individuals. n : total number of shares k: minimum number of shares required to unravel the secret p: Field number (to restrict the computation space) """ if length(shares) < k throw("Need more parties!") end x = [] y = [] for i in 1:n push!(x, shares[i][1]) push!(y, shares[i][2]) end f = L(x, y, k) f = mod(f(0), p) return f end export Shamir end
Shamir
https://github.com/r0cketr1kky/Shamir.jl.git
[ "MIT" ]
0.1.0
33d35ddce841c93a0fd6662980b97100b5fdaf68
code
576
using Shamir, Polynomials, Test @info "Testing creation of shares" prod_coeffs = [1234, 166, 94] n = 6 prod_poly = Poly(prod_coeffs) shares = Shamir.construct_shares(n, prod_poly) @test shares == [[1, 1494], [2, 1942], [3, 2578], [4, 3402], [5, 4414], [6, 5614]] @info "Testing Recover secret" prod_coeffs = [1234, 166, 94] n = 6 #total number of parties k = 3 #min num of shares p = 1613 #field prod_poly = Poly(prod_coeffs) shares = Shamir.construct_shares(n, prod_poly) secret = Shamir.recover_secret(shares, n, k, p) @test secret == 1234.0 @info "All tests completed"
Shamir
https://github.com/r0cketr1kky/Shamir.jl.git
[ "MIT" ]
0.1.0
33d35ddce841c93a0fd6662980b97100b5fdaf68
docs
673
# Shamir.jl An implementation of Shamir's Secret Sharing protocol in Julia [![Build Status](https://travis-ci.com/r0cketr1kky/Shamir.jl.svg?branch=master)](https://travis-ci.com/r0cketr1kky/Shamir.jl) This project aims to aid users in distributing random shares, without sharing the secret. <br/> For more details, [Shamir's Secret Sharing Scheme](https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Shamir.27s_secret-sharing_scheme)<br/> ## Installation ```julia Pkg.add("Shamir") ``` ## Usage In Julia ```julia using Shamir poly_production = Poly([1234, 166, 94]) shares = Shamir.construct_shares(poly_production) secret = Shamir.reconstruct_secret(shares) ```
Shamir
https://github.com/r0cketr1kky/Shamir.jl.git
[ "MIT" ]
1.1.1
f8652515b68572d3362ee38e32245249413fb2d7
code
239
using Documenter, ReadStat makedocs( modules = [ReadStat], sitename = "ReadStat.jl", analytics="UA-132838790-1", pages = [ "Introduction" => "index.md" ] ) deploydocs( repo = "github.com/queryverse/ReadStat.jl.git" )
ReadStat
https://github.com/queryverse/ReadStat.jl.git
[ "MIT" ]
1.1.1
f8652515b68572d3362ee38e32245249413fb2d7
code
3665
function readstat_get_file_label(metadata::Ptr{Nothing}) ptr = ccall((:readstat_get_file_label, libreadstat), Cstring, (Ptr{Nothing},), metadata) return ptr == C_NULL ? "" : unsafe_string(ptr) end function readstat_get_modified_time(metadata::Ptr{Nothing}) return ccall((:readstat_get_modified_time, libreadstat), UInt, (Ptr{Nothing},), metadata) end function readstat_get_file_format_version(metadata::Ptr{Nothing}) return ccall((:readstat_get_file_format_version, libreadstat), Cint, (Ptr{Nothing},), metadata) end function readstat_get_row_count(metadata::Ptr{Nothing}) return ccall((:readstat_get_row_count, libreadstat), Cint, (Ptr{Nothing},), metadata) end function readstat_get_var_count(metadata::Ptr{Nothing}) return ccall((:readstat_get_var_count, libreadstat), Cint, (Ptr{Nothing},), metadata) end function readstat_value_is_missing(value::ReadStatValue, variable::Ptr{Nothing}) return Bool(ccall((:readstat_value_is_missing, libreadstat), Cint, (ReadStatValue,Ptr{Nothing}), value, variable)) end function readstat_variable_get_index(variable::Ptr{Nothing}) return ccall((:readstat_variable_get_index, libreadstat), Cint, (Ptr{Nothing},), variable) end function readstat_variable_get_name(variable::Ptr{Nothing}) return unsafe_string(ccall((:readstat_variable_get_name, libreadstat), Cstring, (Ptr{Nothing},), variable)) end function readstat_variable_get_type(variable::Ptr{Nothing}) return ccall((:readstat_variable_get_type, libreadstat), Cint, (Ptr{Nothing},), variable) end function readstat_variable_get_storage_width(variable::Ptr{Nothing}) return ccall((:readstat_variable_get_storage_width, libreadstat), Csize_t, (Ptr{Nothing},), variable) end function readstat_variable_get_measure(variable::Ptr{Nothing}) return ccall((:readstat_variable_get_measure, libreadstat), Cint, (Ptr{Nothing},), variable) end function readstat_variable_get_alignment(variable::Ptr{Nothing}) return ccall((:readstat_variable_get_alignment, libreadstat), Cint, (Ptr{Nothing},), variable) end function readstat_parser_free(parser::Ptr{Nothing}) return ccall((:readstat_parser_free, libreadstat), Nothing, (Ptr{Nothing},), parser) end function readstat_value_type(val::Value) return ccall((:readstat_value_type, libreadstat), Cint, (Value,), val) end function readstat_parse(filename::String, type::Val{:dta}, parser::Ptr{Nothing}, ds::ReadStatDataFrame) return ccall((:readstat_parse_dta, libreadstat), Cint, (Ptr{Nothing}, Cstring, Any), parser, string(filename), ds) end function readstat_parse(filename::String, type::Val{:sav}, parser::Ptr{Nothing}, ds::ReadStatDataFrame) return ccall((:readstat_parse_sav, libreadstat), Cint, (Ptr{Nothing}, Cstring, Any), parser, string(filename), ds) end function readstat_parse(filename::String, type::Val{:por}, parser::Ptr{Nothing}, ds::ReadStatDataFrame) return ccall((:readstat_parse_por, libreadstat), Cint, (Ptr{Nothing}, Cstring, Any), parser, string(filename), ds) end function readstat_parse(filename::String, type::Val{:sas7bdat}, parser::Ptr{Nothing}, ds::ReadStatDataFrame) return ccall((:readstat_parse_sas7bdat, libreadstat), Cint, (Ptr{Nothing}, Cstring, Any), parser, string(filename), ds) end function readstat_parse(filename::String, type::Val{:xport}, parser::Ptr{Nothing}, ds::ReadStatDataFrame) return ccall((:readstat_parse_xport, libreadstat), Cint, (Ptr{Nothing}, Cstring, Any), parser, string(filename), ds) end function readstat_variable_get_missing_ranges_count(variable::Ptr{Nothing}) return ccall((:readstat_variable_get_missing_ranges_count, libreadstat), Cint, (Ptr{Nothing},), variable) end
ReadStat
https://github.com/queryverse/ReadStat.jl.git
[ "MIT" ]
1.1.1
f8652515b68572d3362ee38e32245249413fb2d7
code
10897
module ReadStat using ReadStat_jll ############################################################################## ## ## Import ## ############################################################################## using DataValues: DataValueVector import DataValues using Dates export ReadStatDataFrame, read_dta, read_sav, read_por, read_sas7bdat, read_xport ############################################################################## ## ## Julia types that mirror C types ## ############################################################################## const READSTAT_TYPE_STRING = Cint(0) const READSTAT_TYPE_CHAR = Cint(1) const READSTAT_TYPE_INT16 = Cint(2) const READSTAT_TYPE_INT32 = Cint(3) const READSTAT_TYPE_FLOAT = Cint(4) const READSTAT_TYPE_DOUBLE = Cint(5) const READSTAT_TYPE_LONG_STRING = Cint(6) const READSTAT_ERROR_OPEN = Cint(1) const READSTAT_ERROR_READ = Cint(2) const READSTAT_ERROR_MALLOC = Cint(3) const READSTAT_ERROR_USER_ABORT = Cint(4) const READSTAT_ERROR_PARSE = Cint(5) ############################################################################## ## ## Pure Julia types ## ############################################################################## struct ReadStatValue union::Int64 readstat_types_t::Cint tag::Cchar @static if Sys.iswindows() bits::Cuint else bits::UInt8 end end const Value = ReadStatValue mutable struct ReadStatDataFrame data::Vector{Any} headers::Vector{Symbol} types::Vector{DataType} labels::Vector{String} formats::Vector{String} storagewidths::Vector{Csize_t} measures::Vector{Cint} alignments::Vector{Cint} val_label_keys::Vector{String} val_label_dict::Dict{String, Dict{Any,String}} rows::Int columns::Int filelabel::String timestamp::DateTime format::Clong types_as_int::Vector{Cint} hasmissings::Vector{Bool} ReadStatDataFrame() = new(Any[], Symbol[], DataType[], String[], String[], Csize_t[], Cint[], Cint[], String[], Dict{String, Dict{Any,String}}(), 0, 0, "", Dates.unix2datetime(0), 0, Cint[], Bool[]) end include("C_interface.jl") ############################################################################## ## ## Julia functions ## ############################################################################## function handle_info!(obs_count::Cint, var_count::Cint, ds_ptr::Ptr{ReadStatDataFrame}) ds = unsafe_pointer_to_objref(ds_ptr) ds.rows = obs_count ds.columns = var_count return Cint(0) end function handle_metadata!(metadata::Ptr{Nothing}, ds_ptr::Ptr{ReadStatDataFrame}) ds = unsafe_pointer_to_objref(ds_ptr) ds.filelabel = readstat_get_file_label(metadata) ds.timestamp = Dates.unix2datetime(readstat_get_modified_time(metadata)) ds.format = readstat_get_file_format_version(metadata) ds.rows = readstat_get_row_count(metadata) ds.columns = readstat_get_var_count(metadata) return Cint(0) end get_name(variable::Ptr{Nothing}) = Symbol(readstat_variable_get_name(variable)) function get_label(var::Ptr{Nothing}) ptr = ccall((:readstat_variable_get_label, libreadstat), Cstring, (Ptr{Nothing},), var) ptr == C_NULL ? "" : unsafe_string(ptr) end function get_format(var::Ptr{Nothing}) ptr = ccall((:readstat_variable_get_format, libreadstat), Cstring, (Ptr{Nothing},), var) ptr == C_NULL ? "" : unsafe_string(ptr) end function get_type(data_type::Cint) if data_type == READSTAT_TYPE_STRING return String elseif data_type == READSTAT_TYPE_CHAR return Int8 elseif data_type == READSTAT_TYPE_INT16 return Int16 elseif data_type == READSTAT_TYPE_INT32 return Int32 elseif data_type == READSTAT_TYPE_FLOAT return Float32 elseif data_type == READSTAT_TYPE_DOUBLE return Float64 end return Nothing end get_type(variable::Ptr{Nothing}) = get_type(readstat_variable_get_type(variable)) get_storagewidth(variable::Ptr{Nothing}) = readstat_variable_get_storage_width(variable) get_measure(variable::Ptr{Nothing}) = readstat_variable_get_measure(variable) get_alignment(variable::Ptr{Nothing}) = readstat_variable_get_measure(variable) function handle_variable!(var_index::Cint, variable::Ptr{Nothing}, val_label::Cstring, ds_ptr::Ptr{ReadStatDataFrame}) col = var_index + 1 ds = unsafe_pointer_to_objref(ds_ptr)::ReadStatDataFrame missing_count = readstat_variable_get_missing_ranges_count(variable) push!(ds.val_label_keys, (val_label == C_NULL ? "" : unsafe_string(val_label))) push!(ds.headers, get_name(variable)) push!(ds.labels, get_label(variable)) push!(ds.formats, get_format(variable)) jtype = get_type(variable) push!(ds.types, jtype) push!(ds.types_as_int, readstat_variable_get_type(variable)) push!(ds.hasmissings, missing_count > 0) # SAS XPORT sets ds.rows == -1 if ds.rows >= 0 push!(ds.data, DataValueVector{jtype}(Vector{jtype}(undef, ds.rows), fill(false, ds.rows))) else push!(ds.data, DataValueVector{jtype}(Vector{jtype}(undef, 0), fill(false, 0))) end push!(ds.storagewidths, get_storagewidth(variable)) push!(ds.measures, get_measure(variable)) push!(ds.alignments, get_alignment(variable)) return Cint(0) end function get_type(val::Value) data_type = readstat_value_type(val) return [String, Int8, Int16, Int32, Float32, Float64, String][data_type + 1] end Base.convert(::Type{Int8}, val::Value) = ccall((:readstat_int8_value, libreadstat), Int8, (Value,), val) Base.convert(::Type{Int16}, val::Value) = ccall((:readstat_int16_value, libreadstat), Int16, (Value,), val) Base.convert(::Type{Int32}, val::Value) = ccall((:readstat_int32_value, libreadstat), Int32, (Value,), val) Base.convert(::Type{Float32}, val::Value) = ccall((:readstat_float_value, libreadstat), Float32, (Value,), val) Base.convert(::Type{Float64}, val::Value) = ccall((:readstat_double_value, libreadstat), Float64, (Value,), val) function Base.convert(::Type{String}, val::Value) ptr = ccall((:readstat_string_value, libreadstat), Cstring, (Value,), val) ptr ≠ C_NULL ? unsafe_string(ptr) : "" end as_native(val::Value) = convert(get_type(val), val) function handle_value!(obs_index::Cint, variable::Ptr{Nothing}, value::ReadStatValue, ds_ptr::Ptr{ReadStatDataFrame}) ds = unsafe_pointer_to_objref(ds_ptr)::ReadStatDataFrame var_index = readstat_variable_get_index(variable) + 1 data = ds.data @inbounds type_as_int = ds.types_as_int[var_index] ismissing = if @inbounds(ds.hasmissings[var_index]) readstat_value_is_missing(value, variable) else readstat_value_is_missing(value, C_NULL) end col = data[var_index] @assert eltype(eltype(col)) == get_type(type_as_int) if ismissing if obs_index < length(col) DataValues.unsafe_setindex_isna!(col, true, obs_index + 1) else push!(col, DataValues.NA) end else readfield!(col, obs_index + 1, value) end return Cint(0) end function readfield!(dest::DataValueVector{String}, row, val::ReadStatValue) ptr = ccall((:readstat_string_value, libreadstat), Cstring, (ReadStatValue,), val) if row <= length(dest) if ptr ≠ C_NULL @inbounds DataValues.unsafe_setindex_value!(dest, unsafe_string(ptr), row) end elseif row == length(dest) + 1 _val = ptr ≠ C_NULL ? unsafe_string(ptr) : "" DataValues.push!(dest, _val) else throw(ArgumentError("illegal row index: $row")) end end for (j_type, rs_name) in ( (Int8, :readstat_int8_value), (Int16, :readstat_int16_value), (Int32, :readstat_int32_value), (Float32, :readstat_float_value), (Float64, :readstat_double_value)) @eval function readfield!(dest::DataValueVector{$j_type}, row, val::ReadStatValue) _val = ccall(($(QuoteNode(rs_name)), libreadstat), $j_type, (ReadStatValue,), val) if row <= length(dest) @inbounds DataValues.unsafe_setindex_value!(dest, _val, row) elseif row == length(dest) + 1 DataValues.push!(dest, _val) else throw(ArgumentError("illegal row index: $row")) end end end function handle_value_label!(val_labels::Cstring, value::Value, label::Cstring, ds_ptr::Ptr{ReadStatDataFrame}) val_labels ≠ C_NULL || return Cint(0) ds = unsafe_pointer_to_objref(ds_ptr) dict = get!(ds.val_label_dict, unsafe_string(val_labels), Dict{Any,String}()) dict[as_native(value)] = unsafe_string(label) return Cint(0) end function read_data_file(filename::AbstractString, filetype::Val) # initialize ds ds = ReadStatDataFrame() # initialize parser parser = Parser() # parse parse_data_file!(ds, parser, filename, filetype) # return dataframe instead of ReadStatDataFrame return ds end function Parser() parser = ccall((:readstat_parser_init, libreadstat), Ptr{Nothing}, ()) info_fxn = @cfunction(handle_info!, Cint, (Cint, Cint, Ptr{ReadStatDataFrame})) meta_fxn = @cfunction(handle_metadata!, Cint, (Ptr{Nothing}, Ptr{ReadStatDataFrame})) var_fxn = @cfunction(handle_variable!, Cint, (Cint, Ptr{Nothing}, Cstring, Ptr{ReadStatDataFrame})) val_fxn = @cfunction(handle_value!, Cint, (Cint, Ptr{Nothing}, ReadStatValue, Ptr{ReadStatDataFrame})) label_fxn = @cfunction(handle_value_label!, Cint, (Cstring, Value, Cstring, Ptr{ReadStatDataFrame})) ccall((:readstat_set_metadata_handler, libreadstat), Int, (Ptr{Nothing}, Ptr{Nothing}), parser, meta_fxn) ccall((:readstat_set_variable_handler, libreadstat), Int, (Ptr{Nothing}, Ptr{Nothing}), parser, var_fxn) ccall((:readstat_set_value_handler, libreadstat), Int, (Ptr{Nothing}, Ptr{Nothing}), parser, val_fxn) ccall((:readstat_set_value_label_handler, libreadstat), Int, (Ptr{Nothing}, Ptr{Nothing}), parser, label_fxn) return parser end function error_message(retval::Integer) unsafe_string(ccall((:readstat_error_message, libreadstat), Ptr{Cchar}, (Cint,), retval)) end function parse_data_file!(ds::ReadStatDataFrame, parser::Ptr{Nothing}, filename::AbstractString, filetype::Val) retval = readstat_parse(filename, filetype, parser, ds) readstat_parser_free(parser) retval == 0 || error("Error parsing $filename: $(error_message(retval))") end read_dta(filename::AbstractString) = read_data_file(filename, Val(:dta)) read_sav(filename::AbstractString) = read_data_file(filename, Val(:sav)) read_por(filename::AbstractString) = read_data_file(filename, Val(:por)) read_sas7bdat(filename::AbstractString) = read_data_file(filename, Val(:sas7bdat)) read_xport(filename::AbstractString) = read_data_file(filename, Val(:xport)) end #module ReadStat
ReadStat
https://github.com/queryverse/ReadStat.jl.git
[ "MIT" ]
1.1.1
f8652515b68572d3362ee38e32245249413fb2d7
code
770
using ReadStat using DataValues using Test @testset "ReadStat: $ext files" for (reader, ext) in ((read_dta, "dta"), (read_sav, "sav"), (read_sas7bdat, "sas7bdat"), (read_xport, "xpt")) dtafile = joinpath(dirname(@__FILE__), "types.$ext") rsdf = reader(dtafile) data = rsdf.data @test length(data) == 6 @test rsdf.headers == [:vfloat, :vdouble, :vlong, :vint, :vbyte, :vstring] @test data[1] == DataValueArray{Float32}([3.14, 7., NA]) @test data[2] == DataValueArray{Float64}([3.14, 7., NA]) @test data[3] == DataValueArray{Int32}([2, 7, NA]) @test data[4] == DataValueArray{Int16}([2, 7, NA]) @test data[5] == DataValueArray{Int8}([2, 7., NA]) @test data[6] == DataValueArray{String}(["2", "7", ""]) end
ReadStat
https://github.com/queryverse/ReadStat.jl.git
[ "MIT" ]
1.1.1
f8652515b68572d3362ee38e32245249413fb2d7
docs
762
# ReadStat.jl v1.1.0 Release Notes * Add support for SAS XPORT # ReadStat.jl v1.0.2 Release Notes * Fix a type instability # ReadStat.jl v1.0.1 Release Notes * Bugfix release # ReadStat.jl v1.0.0 Release Notes * Drop support for all Julia pre 1.3 versions * Migrate to Project.toml * Migrate to artifacts # ReadStat.jl v0.4.1 Release Notes * Fix remaining julia 0.7/1.0 issues # ReadStat.jl v0.4.0 Release Notes * Drop julia 0.6 support, add julia 0.7 support * Use BinaryProvider.jl # ReadStat.jl v0.3.0 Release Notes * Change return type of API * Return more info # ReadStat.jl v0.2.0 Release Notes * Remove dependency on DataFrames and DataTables # ReadStat.jl v0.1.1 Release Notes * Bug fix release # ReadStat.jl v0.1.0 Release Notes * First release
ReadStat
https://github.com/queryverse/ReadStat.jl.git
[ "MIT" ]
1.1.1
f8652515b68572d3362ee38e32245249413fb2d7
docs
1467
# ReadStat [![Project Status: Active - The project has reached a stable, usable state and is being actively developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![Build Status](https://travis-ci.org/queryverse/ReadStat.jl.svg?branch=master)](https://travis-ci.org/queryverse/ReadStat.jl) [![Build status](https://ci.appveyor.com/api/projects/status/99xmebpmtcvv7gxw/branch/master?svg=true)](https://ci.appveyor.com/project/queryverse/readstat-jl/branch/master) [![codecov](https://codecov.io/gh/queryverse/ReadStat.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/queryverse/ReadStat.jl) ## Overview ReadStat.jl: Read files from Stata, SPSS, and SAS -- The ReadStat.jl Julia package uses the [ReadStat](https://github.com/WizardMac/ReadStat) C library to parse binary and transport files from Stata, SPSS and SAS. All functions return a tuple, with the first element an array of columns and the second element a vector of column names. For integration with packages like [DataFrames.jl](https://github.com/JuliaData/DataFrames.jl) you should use the [StatFiles.jl](https://github.com/queryverse/StatFiles.jl) package. ## Usage: ```julia using ReadStat read_dta("/path/to/something.dta") read_por("/path/to/something.por") read_sav("/path/to/something.sav") read_sas7bdat("/path/to/something.sas7bdat") ``` ## Installation To install the package, run the following: ```julia Pkg.add("ReadStat") ```
ReadStat
https://github.com/queryverse/ReadStat.jl.git
[ "MIT" ]
1.1.0
75d468e2b341d925beb1475a8ab42fde7ba72364
code
7466
module IPNets using Sockets: IPAddr, IPv4, IPv6 export IPNet, IPv4Net, IPv6Net, is_private, is_global abstract type IPNet end IPNet(str::AbstractString) = parse(IPNet, str) Base.parse(::Type{IPNet}, str::AbstractString) = ':' in str ? parse(IPv6Net, str) : parse(IPv4Net, str) ############################ ## Types and constructors ## ############################ """ IPv4Net(str::AbstractString) IPv4Net(ip::IPv4, netmask::Int) IPv4Net(ip::IPv4, netmask::IPv4) Type representing a IPv4 network. # Examples ```julia julia> IPv4Net("192.168.0.0/24") IPv4Net("192.168.0.0/24") julia> IPv4Net(ip"192.168.0.0", 24) IPv4Net("192.168.0.0/24") julia> IPv4Net(ip"192.168.0.0", ip"255.255.255.0") IPv4Net("192.168.0.0/24") ``` """ struct IPv4Net <: IPNet netaddr::UInt32 netmask::UInt32 function IPv4Net(netaddr::UInt32, netmask::UInt32) netaddr′ = netaddr & netmask if netaddr′ !== netaddr throw(ArgumentError("input $(IPv4(netaddr))/$(count_ones(netmask)) has host bits set")) end new(netaddr′, netmask) end end # "1.2.3.0/24" IPv4Net(str::AbstractString) = parse(IPv4Net, str) # ip"1.2.3.0", 24 IPv4Net(netaddr::IPv4, netmask::Integer=32) = IPv4Net(netaddr.host, to_mask(UInt32(netmask))) # ip"1.2.3.0", ip"255.255.255.0" function IPv4Net(netaddr::IPv4, netmask::IPv4) netmask′ = to_mask(UInt32(count_ones(netmask.host))) if netmask′ !== netmask.host throw(ArgumentError("non-contiguous IPv4 subnets not supported, got $(netmask)")) end return IPv4Net(netaddr.host, netmask′) end """ IPv6Net(str::AbstractString) IPv6Net(ip::IPv6, netmask::Int) Type representing a IPv6 network. # Examples ```julia julia> IPv6Net("1::2/64") IPv6Net("1::/64") julia> IPv6Net(ip"1::2", 64) IPv6Net("1::/64") ``` """ struct IPv6Net <: IPNet netaddr::UInt128 netmask::UInt128 function IPv6Net(netaddr::UInt128, netmask::UInt128) netaddr′ = netaddr & netmask if netaddr′ !== netaddr throw(ArgumentError("input $(IPv6(netaddr))/$(count_ones(netmask)) has host bits set")) end return new(netaddr′, netmask) end end # "2001::1/64" IPv6Net(str::AbstractString) = parse(IPv6Net, str) # ip"2001::1", 64 IPv6Net(netaddr::IPv6, prefix::Integer=128) = IPv6Net(netaddr.host, to_mask(UInt128(prefix))) ############# ## Parsing ## ############# Base.parse(::Type{T}, str::AbstractString) where T <:IPNet = parse(T, String(str)) Base.parse(::Type{IPv4Net}, str::String) = IPv4Net(_parsenet(str, UInt32, IPv4)...) Base.parse(::Type{IPv6Net}, str::String) = IPv6Net(_parsenet(str, UInt128, IPv6)...) function _parsenet(str::String, ::Type{IT}, ::Type{IPT}) where {IT, IPT} nbits = IT(8 * sizeof(IT)) parts = split(str, '/') if length(parts) == 1 netaddr, nmaskbits = parts[1], nbits elseif length(parts) == 2 netaddr, maskbits = parts nmaskbits = parse(IT, maskbits) else throw(ArgumentError("malformed IPNet input: $str")) end netaddr = parse(IPT, netaddr).host netmask = to_mask(nmaskbits) return netaddr, netmask end ############## ## Printing ## ############## Base.print(io::IO, net::IPNet) = print(io, eltype(net)(net.netaddr), "/", count_ones(net.netmask)) Base.show(io::IO, net::T) where T <: IPNet = print(io, T, "(\"", net, "\")") ########################### ## IPNets as collections ## ########################### Base.in(ip::IPv4, network::IPv4Net) = ip.host & network.netmask == network.netaddr Base.in(ip::IPv6, network::IPv6Net) = ip.host & network.netmask == network.netaddr # IP Networks are ordered first by starting network address # and then by network mask. That is, smaller IP nets (with higher # netmask values) are "less" than larger ones. This corresponds # to secondary reordering by ending address. Base.isless(a::T, b::T) where T <: IPNet = a.netaddr == b.netaddr ? isless(count_ones(a.netmask), count_ones(b.netmask)) : isless(a.netaddr, b.netaddr) Base.iterate(net::IPNet, state = inttype(net)(0)) = state >= length(net) ? nothing : (net[state], state + 0x1) Base.eltype(::Type{IPv4Net}) = IPv4 Base.eltype(::Type{IPv6Net}) = IPv6 Base.firstindex(net::IPNet) = inttype(net)(0) Base.lastindex(net::IPNet) = typemax(inttype(net)) >> (count_ones(net.netmask)) Base.length(net::IPv4Net)= Int64(lastindex(net) - firstindex(net)) + 1 Base.length(net::IPv6Net)= BigInt(lastindex(net) - firstindex(net)) + 1 function Base.getindex(net::IPNet, i::Integer) fi, li = firstindex(net), lastindex(net) fi <= i <= li || throw(BoundsError(net, i)) i = i % typeof(fi) r = eltype(net)(net.netaddr + i) return r end Base.getindex(net::IPNet, idxs::AbstractVector{<:Integer}) = [net[i] for i in idxs] ###################### ## Internal utility ## ###################### function to_mask(nmaskbits::IT) where IT nbits = IT(8 * sizeof(IT)) if !(0 <= nmaskbits <= nbits) throw(ArgumentError("network mask bits must be between 0 and $(nbits), got $(nmaskbits)")) end return typemax(IT) << (nbits - IT(nmaskbits)) & typemax(IT) end inttype(::IPv4Net) = UInt32 inttype(::IPv6Net) = UInt128 ############################### ## IP address classification ## ############################### # See https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml # and https://github.com/python/cpython/blob/67b3a9995368f89b7ce4a995920b2a83a81c599b/Lib/ipaddress.py#L1543-L1558 const _private_ipv4_nets = IPv4Net[ IPv4Net("0.0.0.0/8"), IPv4Net("10.0.0.0/8"), IPv4Net("127.0.0.0/8"), IPv4Net("169.254.0.0/16"), IPv4Net("172.16.0.0/12"), IPv4Net("192.0.0.0/29"), IPv4Net("192.0.0.170/31"), IPv4Net("192.0.2.0/24"), IPv4Net("192.168.0.0/16"), IPv4Net("198.18.0.0/15"), IPv4Net("198.51.100.0/24"), IPv4Net("203.0.113.0/24"), IPv4Net("240.0.0.0/4"), IPv4Net("255.255.255.255/32"), ] # See https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml # and https://github.com/python/cpython/blob/67b3a9995368f89b7ce4a995920b2a83a81c599b/Lib/ipaddress.py#L2258-L2269 const _private_ipv6_nets = IPv6Net[ IPv6Net("::1/128"), IPv6Net("::/128"), IPv6Net("::ffff:0:0/96"), IPv6Net("100::/64"), IPv6Net("2001::/23"), IPv6Net("2001:2::/48"), IPv6Net("2001:db8::/32"), IPv6Net("2001:10::/28"), IPv6Net("fc00::/7"), IPv6Net("fe80::/10"), ] """ is_private(ip::Union{IPv4,IPv6}) Return `true` if the IP adress is allocated for private networks. See [iana-ipv4-special-registry](https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml) (IPv4) and [iana-ipv6-special-registry](https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml) (IPv6). """ is_private(::Union{IPv4,IPv6}) is_private(ip::IPv4) = any(ip in net for net in _private_ipv4_nets) is_private(ip::IPv6) = any(ip in net for net in _private_ipv6_nets) """ is_global(ip::Union{IPv4,IPv6}) Return `true` if the IP adress is allocated for public networks. See [iana-ipv4-special-registry](https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml) (IPv4) and [iana-ipv6-special-registry](https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml) (IPv6). """ is_global(ip::Union{IPv4,IPv6}) = !is_private(ip) end # module
IPNets
https://github.com/JuliaWeb/IPNets.jl.git
[ "MIT" ]
1.1.0
75d468e2b341d925beb1475a8ab42fde7ba72364
code
5873
using IPNets, Test, Sockets @testset "IPNets" begin ############# ## IPv4Net ## ############# ## Constructors @test IPv4Net("1.2.3.4") == parse(IPv4Net, "1.2.3.4") == IPv4Net("1.2.3.4/32") == parse(IPv4Net, "1.2.3.4/32") == IPv4Net(ip"1.2.3.4") == IPv4Net(ip"1.2.3.4", 32) == IPv4Net(ip"1.2.3.4", ip"255.255.255.255") == IPNet("1.2.3.4") == IPNet("1.2.3.4/32") == parse(IPv4Net, SubString("1.2.3.4")) == parse(IPNet, "1.2.3.4") == parse(IPNet, "1.2.3.4/32") == IPv4Net(0x01020304, typemax(UInt32)) @test IPv4Net("1.2.3.0/24") == parse(IPv4Net, "1.2.3.0/24") == IPv4Net(ip"1.2.3.0", ip"255.255.255.0") == IPv4Net(ip"1.2.3.0", 24) == parse(IPNet, "1.2.3.0/24") == IPv4Net(0x01020300, typemax(UInt32) << 8) err = ArgumentError("network mask bits must be between 0 and 32, got 33") @test_throws err IPv4Net("1.2.3.4/33") @test_throws err IPv4Net(ip"1.2.3.4", 33) err = ArgumentError("non-contiguous IPv4 subnets not supported, got 255.240.255.0") @test_throws err IPv4Net(ip"1.2.3.0", ip"255.240.255.0") err = ArgumentError("input 1.2.3.4/24 has host bits set") @test_throws err IPv4Net("1.2.3.4/24") @test_throws err parse(IPv4Net, "1.2.3.4/24") @test_throws err IPv4Net(ip"1.2.3.4", 24) @test_throws err parse(IPNet, "1.2.3.4/24") err = ArgumentError("malformed IPNet input: 1.2.3.4/32/32") @test_throws err IPv4Net("1.2.3.4/32/32") ## Print ipnet = IPv4Net("1.2.3.0/24") @test sprint(print, ipnet) == "1.2.3.0/24" @test sprint(show, ipnet) == "IPv4Net(\"1.2.3.0/24\")" ## IPNet as collection ipnet = IPv4Net("1.2.3.0/24") @test ip"1.2.3.4" in ipnet @test ip"1.2.3.0" in ipnet @test ip"1.2.3.255" in ipnet @test !(ip"1.2.4.0" in ipnet) @test IPv4Net("1.2.3.4/32") == IPv4Net("1.2.3.4/32") @test IPv4Net("1.2.3.0/24") == IPv4Net("1.2.3.0/24") @test IPv4Net("1.2.3.4/32") != IPv4Net("1.2.3.4/31") @test IPv4Net("1.2.3.4/31") < IPv4Net("1.2.3.4/32") @test IPv4Net("1.2.3.4/32") > IPv4Net("1.2.3.4/31") @test IPv4Net("1.2.3.0/24") < IPv4Net("1.2.4.0/24") @test IPv4Net("1.2.4.0/24") > IPv4Net("1.2.3.0/24") nets = map(IPv4Net, ["1.2.3.0/24", "1.2.3.4/31", "1.2.3.4/32", "1.2.4.0/24"]) @test sort(nets) == nets @test length(ipnet) == length(collect(ipnet)) == 256 @test collect(ipnet) == [x for x in ipnet] @test length(IPv4Net("0.0.0.0/0"))::Int64 == Int64(1) << 32 @test ipnet[0] == #= ipnet[begin] == =# ip"1.2.3.0" # TODO: Requires Julia 1.4 @test ipnet[1] == ip"1.2.3.1" @test ipnet[255] == ipnet[end] == ip"1.2.3.255" @test ipnet[0:1] == ipnet[[0, 1]] == [ip"1.2.3.0", ip"1.2.3.1"] @test_throws BoundsError ipnet[-1] @test_throws BoundsError ipnet[256] @test_throws BoundsError ipnet[-1:2] @test is_private(ip"127.0.0.1") @test !is_global(ip"127.0.0.1") @test !is_private(ip"1.1.1.1") @test is_global(ip"1.1.1.1") ############# ## IPv6Net ## ############# ## Constructors @test IPv6Net("1:2::3:4") == parse(IPv6Net, "1:2::3:4") == IPv6Net("1:2::3:4/128") == parse(IPv6Net, "1:2::3:4/128") == IPv6Net(ip"1:2::3:4") == IPv6Net(ip"1:2::3:4", 128) == parse(IPv6Net, SubString("1:2::3:4")) == parse(IPNet, "1:2::3:4") == parse(IPNet, "1:2::3:4/128") == IPv6Net(0x00010002000000000000000000030004, typemax(UInt128)) @test IPv6Net("1:2::3:0/112") == parse(IPv6Net, "1:2::3:0/112") == IPv6Net(ip"1:2::3:0", 112) == parse(IPNet, "1:2::3:0/112") == IPv6Net(0x00010002000000000000000000030000, typemax(UInt128) << 16) err = ArgumentError("network mask bits must be between 0 and 128, got 129") @test_throws err IPv6Net("1:2::3:4/129") @test_throws err IPv6Net(ip"1:2::3:4", 129) err = ArgumentError("input 1:2::3:4/112 has host bits set") @test_throws err IPv6Net("1:2::3:4/112") @test_throws err parse(IPv6Net, "1:2::3:4/112") @test_throws err IPv6Net(ip"1:2::3:4", 112) @test_throws err parse(IPNet, "1:2::3:4/112") err = ArgumentError("malformed IPNet input: 1:2::3:4/32/32") @test_throws err IPv6Net("1:2::3:4/32/32") ## Print ipnet = IPv6Net("1:2::3:0/112") @test sprint(print, ipnet) == "1:2::3:0/112" @test sprint(show, ipnet) == "IPv6Net(\"1:2::3:0/112\")" ## IPNet as collection ipnet = IPv6Net("1:2::3:0/112") @test ip"1:2::3:4" in ipnet @test ip"1:2::3:0" in ipnet @test ip"1:2::3:ffff" in ipnet @test !(ip"1:2::4:0" in ipnet) @test IPv6Net("1:2::3:4/128") == IPv6Net("1:2::3:4/128") @test IPv6Net("1:2::3:0/112") == IPv6Net("1:2::3:0/112") @test IPv6Net("1:2::3:4/128") != IPv6Net("1:2::3:4/127") @test IPv6Net("1:2::3:4/127") < IPv6Net("1:2::3:4/128") @test IPv6Net("1:2::3:4/128") > IPv6Net("1:2::3:4/127") @test IPv6Net("1:2::3:0/112") < IPv6Net("1:2::4:0/112") @test IPv6Net("1:2::4:0/112") > IPv6Net("1:2::3:0/112") nets = map(IPv6Net, ["1:2::3:0/112", "1:2::3:4/127", "1:2::3:4/128", "1:2::4:0/112"]) @test sort(nets) == nets @test length(ipnet) == length(collect(ipnet)) == 65536 @test collect(ipnet)::Vector{IPv6} == [x for x in ipnet] @test length(IPv6Net("::/0"))::BigInt == BigInt(1) << 128 @test ipnet[0] == #= ipnet[begin] == =# ip"1:2::3:0" # TODO: Requires Julia 1.4 @test ipnet[1] == ip"1:2::3:1" @test ipnet[65535] == ipnet[end] == ip"1:2::3:ffff" @test ipnet[0:1] == ipnet[[0, 1]] == [ip"1:2::3:0", ip"1:2::3:1"] @test_throws BoundsError ipnet[-1] @test_throws BoundsError ipnet[65536] @test_throws BoundsError ipnet[-1:2] @test is_private(ip"::1") @test !is_global(ip"::1") @test !is_private(ip"2606:4700:4700::1111") @test is_global(ip"2606:4700:4700::1111") end
IPNets
https://github.com/JuliaWeb/IPNets.jl.git
[ "MIT" ]
1.1.0
75d468e2b341d925beb1475a8ab42fde7ba72364
docs
2752
## IPNets.jl [![CI](https://github.com/JuliaWeb/IPNets.jl/actions/workflows/ci.yml/badge.svg?branch=master)](https://github.com/JuliaWeb/IPNets.jl/actions/workflows/ci.yml) [![codecov.io](http://codecov.io/github/JuliaWeb/IPNets.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaWeb/IPNets.jl?branch=master) *IPNets.jl* is a Julia package that provides IP network types. Both IPv4 and IPv6 networks can be described with *IPNets.jl* using standard, intuitive syntax. ### Main Features An important aspect of *IPNets.jl* is the ability to treat IP networks as collections while not actually allocating the memory required to store a full range of addresses. Operations such as membership testing, indexing and iteration are supported with `IPNet` types. The following examples should help clarify. Constructors: ```julia julia> using IPNets, Sockets julia> IPv4Net("1.2.3.0/24") # string in CIDR notation IPv4Net("1.2.3.0/24") julia> parse(IPv4Net, "1.2.3.0/24") # same as above IPv4Net("1.2.3.0/24") julia> IPv4Net(ip"1.2.3.0", 24) # IPv4 and mask as number of bits IPv4Net("1.2.3.0/24") julia> IPv4Net(ip"1.2.3.0", ip"255.255.255.0") # IPv4 and mask as another IPv4 IPv4Net("1.2.3.0/24") julia> IPv4Net("1.2.3.4") # 32 bit mask default IPv4Net("1.2.3.4/32") ``` Membership test: ```julia julia> ip4net = IPv4Net("1.2.3.0/24"); julia> ip"1.2.3.4" in ip4net true julia> ip"1.2.4.1" in ip4net false ``` Length, indexing, and iteration: ```julia julia> ip4net = IPv4Net("1.2.3.0/24"); julia> length(ip4net) 256 julia> ip4net[0] # index from 0 (!) ip"1.2.3.0" julia> ip4net[0xff] ip"1.2.3.255" julia> ip4net[4:8] 5-element Vector{IPv4}: ip"1.2.3.4" ip"1.2.3.5" ip"1.2.3.6" ip"1.2.3.7" ip"1.2.3.8" julia> for ip in ip4net @show ip end ip = ip"1.2.3.0" ip = ip"1.2.3.1" [...] ip = ip"1.2.3.255" ``` Though these examples use the `IPv4Net` type, the `IPv6Net` type is also available with similar behavior: ```julia julia> IPv6Net("1:2::/64") # string in CIDR notation IPv6Net("1:2::/64") julia> parse(IPv6Net, "1:2::/64") # same as above IPv6Net("1:2::/64") julia> IPv6Net(ip"1:2::", 64) # IPv6 and prefix IPv6Net("1:2::/64") julia> IPv6Net("1:2::3:4") # 128 bit mask default IPv6Net("1:2::3:4/128") ``` For unknown (string) input use the `IPNet` supertype constructor (or `parse`): ```julia julia> IPNet("1.2.3.0/24") IPv4Net("1.2.3.0/24") julia> parse(IPNet, "1.2.3.4") IPv4Net("1.2.3.4/32") julia> IPNet("1:2::3:4") IPv6Net("1:2::3:4/128") julia> parse(IPNet, "1:2::/64") IPv6Net("1:2::/64") ``` ### Limitations - Non-contiguous subnetting for IPv4 addresses (e.g., a netmask of "255.240.255.0") is not supported. Subnets must be able to be represented as a series of contiguous mask bits.
IPNets
https://github.com/JuliaWeb/IPNets.jl.git
[ "MIT" ]
0.3.5
7680a0e455ce44eb63301154a07412c9c75a0bd7
code
642
using SymArrays using Documenter DocMeta.setdocmeta!(SymArrays, :DocTestSetup, :(using SymArrays); recursive=true) makedocs(; modules=[SymArrays], authors="Johannes Feist <[email protected]> and contributors", repo="https://github.com/jfeist/SymArrays.jl/blob/{commit}{path}#{line}", sitename="SymArrays.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://jfeist.github.io/SymArrays.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/jfeist/SymArrays.jl", devbranch = "main", )
SymArrays
https://github.com/jfeist/SymArrays.jl.git
[ "MIT" ]
0.3.5
7680a0e455ce44eb63301154a07412c9c75a0bd7
code
237
module SymArrays export SymArray, contract, contract!, SymArr_ifsym, symgrp_size, symgrps, nsymgrps, storage_type include("helpers.jl") include("symarray.jl") include("contractions.jl") include("cuda_contractions.jl") end # module
SymArrays
https://github.com/jfeist/SymArrays.jl.git
[ "MIT" ]
0.3.5
7680a0e455ce44eb63301154a07412c9c75a0bd7
code
13126
# Functions for contracting two arrays, both for general StridedArrays as well as # for SymArrays. we only have a few specialized functions that we have needed up # to now, but carefully optimize each of them using TensorOperations using LinearAlgebra # Array[i]*SymArray[(i,j,k)] # indices 1, 2, and 3 are exchangeable here function contract(A::StridedVector{T},S::SymArray{(3,),U},n::Union{Val{1},Val{2},Val{3}}) where {T,U} TU = promote_type(T,U) @assert size(S,1) == length(A) res = SymArray{(2,),TU}(size(S,1),size(S,2)) contract!(res,A,S,n) end # We know that $j\leq k$ (because $R$ is itself exchange symmetric) # \begin{align} # R_{jk} &= \sum_{i=1}^N g_i S_{ijk} # \end{align} # Matrix elements represented by $S_{ijk}$: # \begin{equation} # \begin{cases} # S_{ijk}, S_{ikj}, S_{jik}, S_{jki}, S_{kij}, S_{kji} & i<j<k\\ # S_{ijk}, S_{jik}, S_{jki} & i<j=k\\ # S_{ijk}, S_{ikj}, S_{kij} & i=j<k\\ # S_{ijk} & i=j=k # \end{cases} # \end{equation} # We only need to take the contributions that show up for each $R_{jk}$ # Array[i]*SymArray[(i,j,k)] # indices 1, 2, and 3 are exchangeable here function contract!(res::SymArray{(2,),TU}, A::StridedVector{T}, S::SymArray{(3,),U}, n::Union{Val{1},Val{2},Val{3}}) where {T,U,TU} # only loop over S once, and put all the values where they should go # R[j,k] = sum_i A[i] B[i,j,k] # S[i,j,k] with i<=j<=k represents the 6 (not always distinct) terms: Bijk, Bikj, Bjik, Bjki, Bkij, Bkji # since R[j,k] is also exchange symmetric, we only need to calculate j<=k # this means we only have to check each adjacent pair of indices and include # their permutation if not equal, but keeping the result indices ordered @assert size(S,1) == length(A) @assert size(S,1) == size(res,1) res.data .= 0 @inbounds for (v,inds) in zip(S.data,CartesianIndices(S)) i,j,k = Tuple(inds) res[j,k] += v*A[i] # have to include i<->j if i<j res[i,k] += v*A[j] end # have to include i<->k, but keep indices of res sorted if j<k res[i,j] += v*A[k] end end res end # Array[k]*SymArray[(i,j),k] function contract(A::StridedVector{T},S::SymArray{(2,1),U},n::Val{3}) where {T,U} TU = promote_type(T,U) sumsize = length(A) @assert sumsize == size(S,3) res = SymArray{(2,),TU}(size(S,1),size(S,2)) contract!(res,A,S,n) end # Array[k]*SymArray[(i,j),k] function contract!(res::SymArray{(2,),TU},A::StridedVector{T},S::SymArray{(2,1),U},::Val{3}) where {T,U,TU} # use that S[(i,j),k] == S[I,k] (i.e., the two symmetric indices act like a "big" index) mul!(res.data,reshape(S.data,:,length(A)),A) res end # Array[i]*SymArray[(i,j),k)] # since indices 1 and 2 are exchangeable here, use this function contract(A::StridedVector{T},S::SymArray{(2,1),U},n::Union{Val{1},Val{2}}) where {T,U} TU = promote_type(T,U) @assert size(S,1) == length(A) # the result is a normal 2D array res = Array{TU,2}(undef,size(S,2),size(S,3)) contract!(res,A,S,n) end # Array[i]*SymArray[(i,j),k] # since indices 1 and 2 are exchangeable here, use this function contract!(res::StridedArray{TU,2},A::StridedVector{T},S::SymArray{(2,1),U},::Union{Val{1},Val{2}}) where {T,U,TU} # only loop over S once, and put all the values where they should go @assert size(A,1) == size(S,1) @assert size(res,1) == size(S,1) @assert size(res,2) == size(S,3) res .= zero(TU) @inbounds for (v,inds) in zip(S.data,CartesianIndices(S)) i1,i2,i3 = Tuple(inds) res[i2,i3] += v*A[i1] # if i1 != i2, we have to add the equal contribution from S[i2,i1,i3] if i1 != i2 res[i1,i3] += v*A[i2] end end res end # Array[i]*SymArray[(i,j)] # this is symmetric in i1 and i2 function contract(A::StridedVector{T},S::SymArray{(2,),U},n::Union{Val{1},Val{2}}) where {T,U} TU = promote_type(T,U) @assert size(S,1) == length(A) # the result is a normal 1D vector res = Vector{TU}(undef,size(S,2)) contract!(res,A,S,n) end # Array[i]*SymArray[(i,j)] # this is symmetric in i1 and i2 function contract!(res::StridedVector{TU},A::StridedVector{T},S::SymArray{(2,),U},::Union{Val{1},Val{2}}) where {T,U,TU} @assert size(A,1) == size(S,1) @assert size(res,1) == size(S,1) res .= zero(TU) # only loop over S once, and put all the values where they should go for (v,inds) in zip(S.data,CartesianIndices(S)) i1,i2 = Tuple(inds) res[i2] += v*A[i1] # if i1 != i2, we have to add the contribution from S[i2,i1] if i1 != i2 res[i1] += v*A[i2] end end res end # Array[i_n]*Array[i1,i2,i3,...,iN] function contract(A::StridedVector{T},B::StridedArray{U,N},::Val{n}) where {T,U,N,n} TU = promote_type(T,U) @assert 1 <= n <= N resdims = size(B)[1:N .!= n] res = similar(B,TU,resdims) A = convert(AbstractArray{TU},A) B = convert(AbstractArray{TU},B) contract!(res,A,B,Val{n}()) end mygemv!(args...) = BLAS.gemv!(args...) function _contract_middle!(res,A,B) @inbounds for k=1:size(B,3) mul!(@view(res[:,k]), @view(B[:,:,k]), A) end end # Array[i_n]*Array[i1,i2,i3,...,iN] function contract!(res::StridedArray{TU},A::StridedVector{TU},B::StridedArray{TU,N},::Val{n}) where {TU,N,n} nsum = length(A) @assert size(B,n) == nsum @assert ndims(res)+1 == ndims(B) ii = 0 for jj = 1:ndims(B) jj==n && continue ii += 1 @assert size(B,jj) == size(res,ii) end if n==1 # A[i]*B[i,...] mygemv!('T',one(TU),reshape(B,nsum,:),A,zero(TU),vec(res)) elseif n==N # B[...,i]*A[i] mygemv!('N',one(TU),reshape(B,:,nsum),A,zero(TU),vec(res)) else rightsize = prod(size(B,i) for i=n+1:N) Br = reshape(B,:,nsum,rightsize) resr = reshape(res,:,rightsize) _contract_middle!(resr,A,Br) end res end # Array[i_n]*Array[i1,i2,i3,...,iN] function contract!(res::StridedArray{TU,Nres},A::StridedArray{TU,NA},B::StridedArray{TU,NB},::Val{nA},::Val{nB}) where {TU,Nres,NA,NB,nA,nB} # use specialized code for 1D-arrays if possible if NA==1 @assert nA==1 return contract!(res,A,B,Val(nB)) elseif NB==1 @assert nB==1 return contract!(res,B,A,Val(nA)) end nsum = size(A,nA) @assert size(B,nB) == nsum @assert Nres == NA + NB - 2 ii = 0 for jj = 1:NA jj==nA && continue ii += 1 @assert size(A,jj) == size(res,ii) end for jj = 1:NB jj==nB && continue ii += 1 @assert size(B,jj) == size(res,ii) end if nA==NA && nB==1 # A[...,i]*B[i,...] resAsize = prod(ntuple(i->size(A,i),Val(NA-1))) mul!(reshape(res,resAsize,:),reshape(A,resAsize,nsum),reshape(B,nsum,:)) else packedsize(M,::Val{n}) where n = begin nM1 = prod(ntuple(i->size(M,i),Val(n-1))) nM2 = size(M,n) nM3 = prod(ntuple(i->size(M,n+i),Val(ndims(M)-n))) (nM1, nM2, nM3) end # just use @tensor after reshaping to pack together NAps = packedsize(A,Val(nA)) NBps = packedsize(B,Val(nB)) Nresps = (NAps[1],NAps[3],NBps[1],NBps[3]) Ap = reshape(A,NAps...) Bp = reshape(B,NBps...) resp = reshape(res,Nresps...) @tensor resp[iA1,iA3,iB1,iB3] = Ap[iA1,ii,iA3] * Bp[iB1,ii,iB3] end res end """return the symmetry group index and the number of symmetric indices in the group""" @inline which_symgrp(S::T,nS) where T<:SymArray = which_symgrp(T,nS) @inline @generated function which_symgrp(::Type{<:SymArray{Nsyms}},nS) where Nsyms grps = () for (ii,Nsym) in enumerate(Nsyms) grps = (grps...,ntuple(_->ii,Nsym)...) end quote ng = $grps[nS] ng, $Nsyms[ng] end end """Check if the arguments correspond to a valid contraction. Do all "static" checks at compile time.""" @generated function check_contraction_compatibility(res::SymArray{Nsymsres,TU}, A::StridedArray{T,NA}, S::SymArray{NsymsS,U}, ::Val{nA}, ::Val{nS}) where {T,U,TU,NsymsS,Nsymsres,NA,nA,nS} promote_type(T,U) <: TU || error("element types not compatible: T = $T, U = $U, TU = $TU") contracted_group, Nsym_ctrgrp = which_symgrp(S,nS) NsymsA_contracted = ntuple(_->1,NA-1) if Nsym_ctrgrp == 1 NsymsS_contracted = TupleTools.deleteat(NsymsS,contracted_group) else NsymsS_contracted = Base.setindex(NsymsS,Nsym_ctrgrp-1,contracted_group) end Nsymsres_check = (NsymsA_contracted...,NsymsS_contracted...) # assure that symmetry structure is compatible errmsg = "symmetry structure not compatible:" errmsg *= "\nNA = $NA, NsymsS = $NsymsS, nA = $nA, nS = $nS" errmsg *= "\nNsymsres = $Nsymsres, expected Nsymssres = $Nsymsres_check" Nsymsres == Nsymsres_check || error(errmsg) Sresinds = ((1:nS-1)...,(nS+1:sum(NsymsS))...) Aresinds = ((1:nA-1)...,(nA+1:NA)...) sizerescheck = ((i->:(sizeA[$i])).(Aresinds)..., (i->:(sizeS[$i])).(Sresinds)...) code = quote sizeA = size(A) sizeS = size(S) @assert sizeA[$nA] == sizeS[$nS] @assert size(res) == ($(sizerescheck...),) end #display(code) code end """ A[iAprev,icntrct,iApost] S[iSprev,Icntrct,ISpost] res[iAprev,iApost,iSprev,Icntrct-1,ISpost] """ @generated function contract_symindex!(res::Array{TU,5}, A::Array{T,3}, ::Val{sizeA13unit}, S::Array{U,3}, ::Val{sizeS13unit}, ::Val{Nsym}) where {T,U,TU,sizeA13unit,sizeS13unit,Nsym} # Nsym-dimensional index tuple iS2s = Tuple(Symbol.(:iS2_,1:Nsym)) # combined (Nsym-1)-dimensional index for the Nsym possible permutations iSm2s = Tuple(Symbol.(:iSm2_,1:Nsym)) iAsetters = Expr(:block) iAusers = Expr(:block) for n = 1:Nsym chk = n==1 ? true : :( $(iS2s[n-1])<$(iS2s[n]) ) syminds = TupleTools.deleteat(iS2s,n) push!(iAsetters.args, :( $chk && ($(iSm2s[n]) = symgrp_sortedsub2ind($(syminds...))) )) push!(iAusers.args, :( $chk && (res[iA1,iA3,iS1,$(iSm2s[n]),iS3] += v * A[iA1,$(iS2s[n]),iA3]) )) end iA1max = sizeA13unit[1] ? 1 : :(size(A,1)) iA3max = sizeA13unit[2] ? 1 : :(size(A,3)) iS1max = sizeS13unit[1] ? 1 : :(size(S,1)) iS3max = sizeS13unit[2] ? 1 : :(size(S,3)) code = quote # size of iterated index is middle index of A iterdimS = SymIndexIter($Nsym,size(A,2)) res .= zero(TU) @inbounds for iS3 = 1:$iS3max for (iS2,IS) = enumerate(iterdimS) ($(iS2s...),) = Tuple(IS) $iAsetters for iS1 = 1:$iS1max v = S[iS1,iS2,iS3] for iA3 = 1:$iA3max for iA1 = 1:$iA1max $iAusers end end end end end end code end function contract!(res::StridedArray{TU,Nres}, A::StridedArray{T,NA}, S::SymArray{NsymsS,U}, ::Val{nA}, ::Val{nS}) where {T,U,TU,NsymsS,Nres,NA,nA,nS} # StridedArray is equivalent to SymArray with all Nsyms equal to 1, provide this as overlay of that data ressym = SymArray{ntuple(i->1,Val(Nres))}(res,size(res)...) contract!(ressym,A,S,Val(nA),Val(nS)) res end @generated function contract!(res::SymArray{Nsymsres,TU}, A::StridedArray{T,NA}, S::SymArray{NsymsS,U}, ::Val{nA}, ::Val{nS}) where {T,U,TU,NsymsS,Nsymsres,NA,nA,nS} contracted_group, Nsym_ctrgrp = which_symgrp(S,nS) sizeA13unit = (nA==1,nA==NA) sizeS13unit = (contracted_group==1,contracted_group==length(NsymsS)) newsize_centered_expr(sizeA::Symbol,nA::Int,NA::Int) = begin sizeAs = [:( $sizeA[$ii] ) for ii=1:NA] t1 = nA > 1 ? :( *($(sizeAs[1:nA-1]...)) ) : 1 t3 = nA < NA ? :( *($(sizeAs[nA+1:NA]...)) ) : 1 :( ($t1, $sizeA[$nA], $t3) ) end code = quote # first check that all the sizes are compatible etc check_contraction_compatibility(res,A,S,Val($nA),Val($nS)) sizeA = size(A) sizeAp = $(newsize_centered_expr(:sizeA,nA,NA)) Apacked = reshape(A,sizeAp) grpsizeS = symgrp_size.(S.Nts,Val.(NsymsS)) sizeSp = $(newsize_centered_expr(:grpsizeS, contracted_group, length(NsymsS))) Spacked = reshape(S.data,sizeSp) if $Nsym_ctrgrp > 1 size_respS1 = symgrp_size(S.Nts[$contracted_group],Val($(Nsym_ctrgrp-1))) respacked = reshape(res.data,sizeAp[1],sizeAp[3],sizeSp[1],size_respS1,sizeSp[3]) contract_symindex!(respacked,Apacked,Val($sizeA13unit),Spacked,Val($sizeS13unit),Val($Nsym_ctrgrp)) else # iS2 is a single (not symmetric) dimension and it disappears after summing # we have res[iS1,iS3,iA1,iA3] = S_iS1,k,iS3 * A_iA1,k,iA3 respacked = reshape(res.data,sizeAp[1],sizeAp[3],sizeSp[1],sizeSp[3]) @tensor respacked[iA1,iA3,iS1,iS3] = Apacked[iA1,ii,iA3] * Spacked[iS1,ii,iS3] end end #display(code) code end
SymArrays
https://github.com/jfeist/SymArrays.jl.git
[ "MIT" ]
0.3.5
7680a0e455ce44eb63301154a07412c9c75a0bd7
code
2491
using CUDA ########################################################################### ## helper functions (originally from CuArrays, but since removed there) ## ########################################################################### function cudims(n::Integer) threads = min(n, 256) cld(n,threads), threads end cudims(a::AbstractArray) = cudims(length(a)) cudims(a::SymArray) = cudims(a.data) # COV_EXCL_START @inline ind2sub_(a::AbstractArray{T,0}, i) where T = () @inline ind2sub_(a, i) = Tuple(CartesianIndices(a)[i]) macro cuindex(A) quote A = $(esc(A)) i = (blockIdx().x-1) * blockDim().x + threadIdx().x i > length(A) && return ind2sub_(A, i) end end # COV_EXCL_STOP ########################################################################### mygemv!(tA,alpha,A::CuArray,args...) = CUDA.CUBLAS.gemv!(tA,alpha,A,args...) _contract_middle!(res::CuArray,A,B) = (@tensor res[i,k] = B[i,j,k] * A[j]) # for SymArrays on the GPU, collect should convert to a SymArray on the CPU # to convert to a "normal" Array, you then have to apply collect again Base.collect(S::SymArray{Nsyms,T,N,M,datType}) where {Nsyms,T,N,M,datType<:CuArray} = SymArray{Nsyms}(collect(S.data),S.size...) @generated function cuda_contraction_kernel(res, A, S, SI::SymIndexIter{Nsymres}) where {Nsymres} # calculate res[iA1,iA3,iS1,iSm2,iS3] = ∑_iA2 A[iA1,iA2,iA3] * S[iS1,iS2,iS3] # where iSm2 = (i1,i2,...,iNsymres) and iS2 = sorted(iA2,i1,i2,i3...,iNsymres) code = quote I = @cuindex(res) iA1,iA3,iS1,iSm2,iS3 = I ISm2 = ind2sub_symgrp(SI, iSm2) res[I...] = zero(eltype(res)) end for n = 0:Nsymres iAstart = n==0 ? 1 : :(ISm2[$n]+1) iAend = n<Nsymres ? :(ISm2[$(n+1)]) : :(size(A,2)) iprev = [:( ISm2[$i] ) for i=1:n] ipost = [:( ISm2[$i] ) for i=n+1:Nsymres] cc = :( for iA2 = $iAstart:$iAend iS2 = symgrp_sortedsub2ind($(iprev...),iA2,$(ipost...)) res[I...] += A[iA1,iA2,iA3]*S[iS1,iS2,iS3] end) push!(code.args,cc) end push!(code.args,:(return)) #display(code) :( @inbounds $code ) end function contract_symindex!(res::CuArray{TU,5}, A::CuArray{T,3}, ::Val{sizeA13unit}, S::CuArray{U,3}, ::Val{sizeS13unit}, ::Val{Nsym}) where {T,U,TU,sizeA13unit,sizeS13unit,Nsym} blk, thr = cudims(res) SI = SymIndexIter(Nsym-1,size(A,2)) @cuda blocks=blk threads=thr cuda_contraction_kernel(res,A,S,SI) end
SymArrays
https://github.com/jfeist/SymArrays.jl.git
[ "MIT" ]
0.3.5
7680a0e455ce44eb63301154a07412c9c75a0bd7
code
2188
"""based on Base.binomial, but without negative values for n and without overflow checks (index calculations here should not overflow if the array does not have more elements than an Int64 can represent)""" @inline function binomial_simple(n::T, k::T) where T<:Integer (k < 0 || k > n) && return zero(T) (k == 0 || k == n) && return one(T) if k > (n>>1) k = n - k end k == 1 && return n x::T = nn = n - k + 1 nn += 1 rr = 2 while rr <= k x = div(x*nn, rr) rr += 1 nn += 1 end x end @inline @generated function binomial_unrolled(n::T, ::Val{k}) where {k,T<:Integer} terms = [:(n - $(k-j)) for j=1:k] if k < 10 # for small k, just return the unrolled calculation directly # (n k) = prod(n+i-k, i=1:k)/k! # typemax(Int)/factorial(9) ~ 23*10^12 # so for k<10, this does not overflow for index calculation of up to ~100TB arrays. # so we do not worry about it # use the precomputed factorial binom = :( *($(terms...)) ÷ $(factorial(k)) ) else binom = terms[1] # j=1 for j=2:k # careful about operation order: # first multiply, the product is then always divisible by j binom = :( ($binom * $(terms[j])) ÷ $j ) end # (n k) == (n n-k) -> should be faster for n-k < k # but when we do this replacement, we cannot unroll the loop explicitly, # so heuristically use n-k < k/2 to ensure that it wins :( n < $(3k÷2) ? binomial_simple(n,n-$k) : $binom ) end end """calculate binomial(ii+n+offset,n) This shows up in size and index calculations for arrays with symmetric indices.""" #@inline symind_binomial(ii,::Val{n},::Val{offset}) where {n,offset} = binomial_unrolled(ii+(n+offset),Val(n)) # binary search for finding an integer m such that func(m) <= ind < func(m+1), with low <= m <= high function searchlast_func(x,func,low::T,high::T) where T<:Integer high += one(T) while low < high-one(T) mid = (low+high) >> 1 if x < func(mid) high = mid else low = mid end end return low end
SymArrays
https://github.com/jfeist/SymArrays.jl.git
[ "MIT" ]
0.3.5
7680a0e455ce44eb63301154a07412c9c75a0bd7
code
10001
import Base: size, length, ndims, eltype, first, last, ==, parent import Base: getindex, setindex!, iterate, eachindex, IndexStyle, CartesianIndices, tail, copyto!, fill! using LinearAlgebra using TupleTools using Adapt "size of a single symmetric group with Nsym dimensions and size Nt per dimension" symgrp_size(Nt,Nsym) = binomial_simple(Nt-1+Nsym, Nsym) symgrp_size(Nt,::Val{Nsym}) where Nsym = binomial_unrolled(Nt+(Nsym-1),Val(Nsym)) # calculates the length of a SymArray symarrlength(Nts,Nsyms) = prod(symgrp_size.(Nts,Nsyms)) @generated function _getNts(::Val{Nsyms},size::NTuple{N,Int}) where {Nsyms,N} @assert sum(Nsyms)==N symdims = cumsum(collect((1,Nsyms...))) Nts = [ :( size[$ii] ) for ii in symdims[1:end-1]] code = quote Nts = ($(Nts...),) end err = :( error("SymArray: sizes $size not compatible with symmetry numbers $Nsyms") ) for ii = 1:length(Nsyms) dd = [ :( size[$jj] ) for jj=symdims[ii]:symdims[ii+1]-1 ] push!(code.args,:( all(($(dd...),) .== Nts[$ii]) || $err )) end push!(code.args, :( Nts )) code end struct SymArray{Nsyms,T,N,M,datType<:AbstractArray} <: AbstractArray{T,N} data::datType size::NTuple{N,Int} Nts::NTuple{M,Int} function SymArray{Nsyms,T}(::Type{arrType},size::Vararg{Int,N}) where {Nsyms,T,N,arrType} Nts = _getNts(Val(Nsyms),size) M = length(Nsyms) data = arrType{T,M}(undef,symgrp_size.(Nts,Nsyms)...) new{Nsyms,T,N,M,typeof(data)}(data,size,Nts) end function SymArray{Nsyms,T}(size::Vararg{Int,N}) where {Nsyms,T,N} SymArray{Nsyms,T}(Array,size...) end # this creates a SymArray that serves as a view on an existing array function SymArray{Nsyms}(data::datType,size::Vararg{Int,N}) where {Nsyms,N,datType<:AbstractArray{T}} where T Nts = _getNts(Val(Nsyms),size) @assert Base.size(data) == symgrp_size.(Nts,Val.(Nsyms)) new{Nsyms,T,N,length(Nsyms),datType}(data,size,Nts) end end parent(A::SymArray) = A.data size(A::SymArray) = A.size length(A::SymArray) = length(A.data) # this is necessary for CUDAnative kernels, but also generally useful # e.g., adapt(CuArray,S) will return a copy of the SymArray with storage in a CuArray Adapt.adapt_structure(to, x::SymArray{Nsyms}) where Nsyms = SymArray{Nsyms}(adapt(to,x.data),x.size...) symgrp_size(S::SymArray{Nsyms}) where Nsyms = symgrp_size.(S.Nts,Nsyms) symgrp_size(S::SymArray{Nsyms},d::Integer) where Nsyms = symgrp_size(S.Nts[d],Nsyms[d]) symgrps(S) = symgrps(typeof(S)) symgrps(::Type{<:SymArray{Nsyms}}) where Nsyms = Nsyms nsymgrps(S) = nsymgrps(typeof(S)) nsymgrps(::Type{<:SymArray{Nsyms,T,N,M}}) where {Nsyms,T,N,M} = M """ storage_type(A) Return the type of the underlying storage array for array wrappers. """ storage_type(A) = storage_type(typeof(A)) storage_type(T::Type) = (P = parent_type(T); P===T ? T : storage_type(P)) parent_type(T::Type{<:AbstractArray}) = T parent_type(::Type{<:PermutedDimsArray{T,N,perm,iperm,AA}}) where {T,N,perm,iperm,AA} = AA parent_type(::Type{<:LinearAlgebra.Transpose{T,S}}) where {T,S} = S parent_type(::Type{<:LinearAlgebra.Adjoint{T,S}}) where {T,S} = S parent_type(::Type{<:SubArray{T,N,P}}) where {T,N,P} = P parent_type(::Type{<:SymArray{Nsyms,T,N,M,datType}}) where {Nsyms,T,N,M,datType} = datType copyto!(S::SymArray,A::AbstractArray) = begin Ainds, Sinds = LinearIndices(A), LinearIndices(S) isempty(Ainds) || (checkbounds(Bool, Sinds, first(Ainds)) && checkbounds(Bool, Sinds, last(Ainds))) || throw(BoundsError(S, Ainds)) @inbounds for (i,I) in zip(Ainds,eachindex(S)) S[i] = A[I] end S end copyto!(A::AbstractArray,S::SymArray) = begin Ainds, Sinds = LinearIndices(A), LinearIndices(S) isempty(Sinds) || (checkbounds(Bool, Ainds, first(Sinds)) && checkbounds(Bool, Ainds, last(Sinds))) || throw(BoundsError(A, Sinds)) @inbounds for (i,I) in zip(Ainds,CartesianIndices(A)) A[i] = S[I] end A end copyto!(S::SymArray,Ssrc::SymArray) = begin @assert symgrps(S) == symgrps(Ssrc) @assert size(S) == size(Ssrc) copyto!(S.data,Ssrc.data) S end Base.similar(src::SymArray{Nsyms}) where Nsyms = SymArray{Nsyms}(similar(parent(src)),size(src)...) Base.copy(src::SymArray{Nsyms}) where Nsyms = SymArray{Nsyms}(copy(parent(src)),size(src)...) fill!(S::SymArray,v) = fill!(S.data,v) ==(S1::SymArray,S2::SymArray) = (symgrps(S1),S1.data) == (symgrps(S2),S2.data) SymArray{Nsyms}(A::AbstractArray{T}) where {Nsyms,T} = (S = SymArray{Nsyms,T}(size(A)...); copyto!(S,A)) # to avoid ambiguity with Vararg "view" constructor above SymArray{(1,)}(A::AbstractVector{T}) where {T} = (S = SymArray{(1,),T}(size(A)...); copyto!(S,A)) "`SymArr_ifsym(A,Nsyms)` make a SymArray if there is some symmetry (i.e., any of the Nsyms are not 1)" SymArr_ifsym(A,Nsyms) = all(Nsyms.==1) ? A : SymArray{(Nsyms...,)}(A) "calculates the contribution of index idim in (i1,...,idim,...,iN) to the corresponding linear index for the group" symind2ind(i,::Val{dim}) where dim = binomial_unrolled(i+(dim-2),Val(dim)) "calculates the linear index corresponding to the symmetric index group (i1,...,iNsym)" @inline @generated function symgrp_sortedsub2ind(I::Vararg{T,Nsym})::T where {Nsym,T<:Integer} terms2toN = [ :( symind2ind(I[$dim],Val($dim)) ) for dim=2:Nsym ] :( +(I[1],$(terms2toN...)) ) end @generated _sub2grp(A::SymArray{Nsyms,T,N}, I::Vararg{Int,N}) where {Nsyms,T,N} = begin result = [] ii::Int = 0 for Nsym in Nsyms Ilocs = ( :( I[$(ii+=1)] ) for _=1:Nsym) push!(result, :( symgrp_sortedsub2ind(TupleTools.sort(($(Ilocs...),))...) ) ) end code = :( ($(result...),) ) code end IndexStyle(::Type{<:SymArray}) = IndexCartesian() getindex(A::SymArray, i::Int) = A.data[i] getindex(A::SymArray{Nsyms,T,N}, I::Vararg{Int,N}) where {Nsyms,T,N} = (@boundscheck checkbounds(A,I...); @inbounds A.data[_sub2grp(A,I...)...]) setindex!(A::SymArray, v, i::Int) = A.data[i] = v setindex!(A::SymArray{Nsyms,T,N}, v, I::Vararg{Int,N}) where {Nsyms,T,N} = (@boundscheck checkbounds(A,I...); @inbounds A.data[_sub2grp(A,I...)...] = v); eachindex(S::SymArray) = CartesianIndices(S) CartesianIndices(S::SymArray) = SymArrayIter(S) @generated function lessnexts(::SymArray{Nsyms}) where Nsyms lessnext = ones(Bool,sum(Nsyms)) istart = 1 for Nsym in Nsyms istart += Nsym lessnext[istart-1] = false end Tuple(lessnext) end struct SymArrayIter{N} lessnext::NTuple{N,Bool} sizes::NTuple{N,Int} "create an iterator that gives i1<=i2<=i3 etc for each index group" SymArrayIter(A::SymArray{Nsyms,T,N,M}) where {Nsyms,T,N,M} = new{N}(lessnexts(A),A.size) end ndims(::SymArrayIter{N}) where N = N eltype(::Type{SymArrayIter{N}}) where N = NTuple{N,Int} first(iter::SymArrayIter) = CartesianIndex(map(one, iter.sizes)) last(iter::SymArrayIter) = CartesianIndex(iter.sizes...) @inline function iterate(iter::SymArrayIter) iterfirst = first(iter) iterfirst, iterfirst end @inline function iterate(iter::SymArrayIter, state) valid, I = __inc(state.I, iter.sizes, iter.lessnext) valid || return nothing return CartesianIndex(I...), CartesianIndex(I...) end # increment post check to avoid integer overflow @inline __inc(::Tuple{}, ::Tuple{}, ::Tuple{}) = false, () @inline function __inc(state::Tuple{Int}, size::Tuple{Int}, lessnext::Tuple{Int}) valid = state[1] < size[1] return valid, (state[1]+1,) end @inline function __inc(state, sizes, lessnext) smax = lessnext[1] ? state[2] : sizes[1] if state[1] < smax return true, (state[1]+1, tail(state)...) end valid, I = __inc(tail(state), tail(sizes), tail(lessnext)) return valid, (1, I...) end struct SymIndexIter{Nsym} size::Int "create an iterator that gives i1<=i2<=i3 etc for one index group" SymIndexIter(Nsym,size) = new{Nsym}(size) end ndims(::SymIndexIter{Nsym}) where Nsym = Nsym eltype(::Type{SymIndexIter{Nsym}}) where Nsym = NTuple{Nsym,Int} length(iter::SymIndexIter{Nsym}) where Nsym = symgrp_size(iter.size,Nsym) first(iter::SymIndexIter{Nsym}) where Nsym = ntuple(one,Val(Nsym)) last(iter::SymIndexIter{Nsym}) where Nsym = ntuple(i->iter.size,Val(Nsym)) @inline function iterate(iter::SymIndexIter) I = first(iter) I, I end @inline function iterate(iter::SymIndexIter, state) valid, I = __inc(state, iter.size) ifelse(valid, (I, I), nothing) end # increment post check to avoid integer overflow @inline __inc(::Tuple{}, ::Tuple{}) = false, () @inline function __inc(state::Tuple{Int}, size::Int) valid = state[1] < size return valid, (state[1]+1,) end @inline function __inc(state::NTuple{N,Int}, size::Int) where N if state[1] < state[2] return true, (state[1]+1, tail(state)...) end valid, I = __inc(tail(state), size) return valid, (1, I...) end function _find_symind(ind::T, ::Val{dim}, high::T) where {dim,T<:Integer} dim==1 ? ind+one(T) : searchlast_func(ind, x->symind2ind(x,Val(dim)),one(T),high) end """convert a linear index for a symmetric index group into a group of subindices""" @generated function ind2sub_symgrp(SI::SymIndexIter{N},ind::T) where {N,T<:Integer} code = quote ind -= 1 end kis = Symbol.(:k,1:N) for dim=N:-1:2 push!(code.args,:( $(kis[dim]) = _find_symind(ind,Val($dim),T(SI.size)) )) push!(code.args,:( ind -= symind2ind($(kis[dim]),Val($dim)) )) end push!(code.args, :( k1 = ind + 1 )) push!(code.args, :( return ($(kis...),)) ) #display(code) code end @generated function _grp2sub(A::SymArray{Nsyms,T,N,M}, I::Vararg{Int,M}) where {Nsyms,T,N,M} exs = [:( ind2sub_symgrp(SymIndexIter($Nsym,A.Nts[$ii]),I[$ii]) ) for (ii,Nsym) in enumerate(Nsyms)] code = :( TupleTools.flatten($(exs...)) ) #display(code) code end @inline ind2sub(A, ii) = Tuple(CartesianIndices(A)[ii]) @inline ind2sub(A::SymArray,ii) = _grp2sub(A,ind2sub(A.data,ii)...)
SymArrays
https://github.com/jfeist/SymArrays.jl.git
[ "MIT" ]
0.3.5
7680a0e455ce44eb63301154a07412c9c75a0bd7
code
10700
using Test using SymArrays using SymArrays: symarrlength, _sub2grp, which_symgrp using TensorOperations using Random using CUDA using cuTENSOR CUDA.allowscalar(false) @testset "SymArrays.jl" begin @testset "SymArray" begin @test symarrlength((3,6,4,3),(3,2,1,3)) == 8400 S = SymArray{(2,),Float64}(5,5) @test nsymgrps(S) == 1 @test symgrps(S) == (2,) @test _sub2grp(S,2,5) == _sub2grp(S,5,2) @test _sub2grp(S,3,4) != _sub2grp(S,5,3) # _sub2grp has to have same number of arguments as size of N @test_throws MethodError _sub2grp(S,3,5,1) # indexing the array allows having additional 1s at the end @test S[3,5,1] == S[3,5] @test_throws BoundsError S[3,5,3] # this calculation gives an index for data that is within bounds, but should not be legal # make sure this is caught @test_throws BoundsError S[0,6] @test (S[1,5] = 2.; S[1,5] == 2.) @test_throws BoundsError S[0,6] = 2. S = SymArray{(3,1,2,2),Float64}(3,3,3,2,4,4,4,4) @test nsymgrps(S) == 4 @test symgrps(S) == (3,1,2,2) @test size(S) == (3,3,3,2,4,4,4,4) @test length(S) == 2000 # iterating over all indices should give only the distinct indices, # i.e., give the same number of terms as the array length @test sum(1 for s in S) == length(S) @test sum(1 for I in eachindex(S)) == length(S) # calculating the linear index when iterating over Cartesian indices should give sequential access to the array @test 1:length(S) == [(LinearIndices(S.data)[_sub2grp(S,Tuple(I)...)...] for I in eachindex(S))...] @testset "_sub2grp" begin # test that permuting exchangeable indices accesses the same array element i1 = _sub2grp(S,1,2,3,1,4,3,2,1) @test _sub2grp(S,2,3,1,1,4,3,2,1) == i1 @test _sub2grp(S,2,3,1,1,3,4,2,1) == i1 @test _sub2grp(S,2,3,1,1,3,4,1,2) == i1 @test _sub2grp(S,2,1,3,1,4,3,1,2) == i1 # make sure that swapping independent indices gives a different array element @test _sub2grp(S,2,1,3,1,4,1,3,2) != i1 @test _sub2grp(S,1,2,3,2,4,3,2,1) != i1 @test _sub2grp(S,1,2,3,1,1,3,2,4) != i1 SI = eachindex(S) @test first(SI) == CartesianIndex(1,1,1,1,1,1,1,1) NN = 4 maxNdim = 40 for Ndim = 1:maxNdim S = SymArray{(Ndim,),Float64}(ntuple(i->NN,Ndim)...) Is = ntuple(i->NN,Ndim) @test _sub2grp(S,Is...) == size(S.data) Is = ntuple(i->1,Ndim) @test _sub2grp(S,Is...) == (1,) end end A = rand(5,5) @test A' != A @test SymArray{(1,1)}(A) == A @test SymArray{(2,)}(A) != A A = A + A' # the standard equality test uses iteration over the arrays, (a,b) in zip(A,B), # which only accesses the actually different indices in SymArrays @test SymArray{(2,)}(A) != A # broadcasting goes over all indices @test all(SymArray{(2,)}(A) .== A) # views on existing vector-like types x = rand(3) S = SymArray{(2,)}(x,2,2) @test S.data === x fill!(S,8.) @test all(S .== 8.) S2 = SymArray{(2,)}(0*x,2,2) copyto!(S2,S) @test S == S2 x = 5:10 S = SymArray{(2,)}(x,3,3) @test S.data === x A = rand(10) S = SymArray{(1,)}(A,10) @test S.data === A # but if called without sizes, the copy constructor should be used S = SymArray{(1,)}(A) @test S.data !== A end @testset "which_symgrp" begin S = SymArray{(3,2),Float64}(5,5,5,3,3) @test which_symgrp(S,1) == (1,3) @test which_symgrp(S,3) == (1,3) @test which_symgrp(S,4) == (2,2) @test which_symgrp(S,5) == (2,2) end @testset "Contractions" begin @testset "Manual" begin N,M,O = 3, 5, 8 for T in (Float64,ComplexF64) A = rand(T,N) for U in (Float64,ComplexF64) for (n,dims) in enumerate([(N,M,O),(O,N,M),(M,O,N)]) B = rand(U,dims...) n==1 && (@tensor D1[j,k] := A[i]*B[i,j,k]) n==2 && (@tensor D1[j,k] := A[i]*B[j,i,k]) n==3 && (@tensor D1[j,k] := A[i]*B[j,k,i]) D2 = contract(A,B,Val(n)) @test D1 ≈ D2 if T==U contract!(D2,A,B,Val(n)) @test D1 ≈ D2 else @test_throws MethodError contract!(D2,A,B,Val(n)) end end S = SymArray{(3,),U}(N,N,N) rand!(S.data) B = collect(S) @test contract(A,S,Val(1)) == contract(A,S,Val(2)) @test contract(A,S,Val(1)) == contract(A,S,Val(3)) for n = 1:3 @test collect(contract(A,S,Val(n))) ≈ contract(A,B,Val(n)) end S = SymArray{(2,1),U}(N,N,N) rand!(S.data) B = collect(S) @test contract(A,S,Val(1)) == contract(A,S,Val(2)) for n = 1:3 @test collect(contract(A,S,Val(n))) ≈ contract(A,B,Val(n)) end @test !(collect(contract(A,S,Val(1))) ≈ collect(contract(A,S,Val(3)))) S = SymArray{(2,),U}(N,N) rand!(S.data) B = collect(S) @test contract(A,S,Val(1)) ≈ contract(A,S,Val(2)) for n = 1:2 @test collect(contract(A,S,Val(n))) ≈ contract(A,B,Val(n)) end end end end @testset "Generated" begin # use small dimension sizes here so the tests do not take too long N,M,O = 4, 5, 6 arrTypes = has_cuda_gpu() ? (Array,CuArray) : (Array,) for arrType in arrTypes for T in (Float64,ComplexF64) A = rand(T,N,M,O) |> arrType for U in (Float64,ComplexF64) S = SymArray{(2,3,1),U}(arrType,M,M,N,N,N,O) @test storage_type(S) <: arrType rand!(S.data) # first collect GPU->CPU, then SymArray -> Array B = collect(collect(S)) |> arrType @test storage_type(B) <: arrType TU = promote_type(U,T) res21 = SymArray{(1,1,1,3,1),TU}(arrType,N,O,M,N,N,N,O) contract!(res21,A,S,Val(2),Val(1)) @tensor res21_tst[i,k,l,m,n,o,p] := A[i,j,k] * B[j,l,m,n,o,p] @test collect(collect(res21)) ≈ collect(res21_tst) if T==U contract!(res21_tst,A,B,Val(2),Val(1)) @test collect(collect(res21)) ≈ collect(res21_tst) end res13 = SymArray{(1,1,2,2,1),TU}(arrType,M,O,M,M,N,N,O) contract!(res13,A,S,Val(1),Val(3)) @tensor res13_tst[j,k,l,m,n,o,p] := A[i,j,k] * B[l,m,i,n,o,p] @test collect(collect(res13)) ≈ collect(res13_tst) if T==U contract!(res13_tst,A,B,Val(1),Val(3)) @test collect(collect(res13)) ≈ collect(res13_tst) end # dimension 3, 4, and 5 should be equivalent contract!(res13,A,S,Val(1),Val(4)) @test collect(collect(res13)) ≈ collect(res13_tst) contract!(res13,A,S,Val(1),Val(5)) @test collect(collect(res13)) ≈ collect(res13_tst) end A = rand(T,N) |> arrType S = SymArray{(2,3,1),T}(arrType,N,N,N,N,N,N) rand!(S.data) # first collect GPU->CPU, then SymArray -> Array B = collect(collect(S)) |> arrType res11 = SymArray{(1,3,1),T}(arrType,N,N,N,N,N) contract!(res11,A,S,Val(1),Val(1)) @tensor res11_tst[j,k,l,m,n] := A[i] * B[i,j,k,l,m,n] @test collect(collect(res11)) ≈ collect(res11_tst) contract!(res11_tst,A,B,Val(1),Val(1)) @test collect(collect(res11)) ≈ collect(res11_tst) res13 = SymArray{(2,2,1),T}(arrType,N,N,N,N,N) contract!(res13,A,S,Val(1),Val(3)) @tensor res13_tst[j,k,l,m,n] := A[i] * B[j,k,i,l,m,n] @test collect(collect(res13)) ≈ collect(res13_tst) contract!(res13_tst,A,B,Val(1),Val(3)) @test collect(collect(res13)) ≈ collect(res13_tst) # dimension 3, 4, and 5 should be equivalent contract!(res13_tst,A,B,Val(1),Val(4)) @test collect(collect(res13)) ≈ collect(res13_tst) contract!(res13_tst,A,B,Val(1),Val(5)) @test collect(collect(res13)) ≈ collect(res13_tst) res16 = SymArray{(2,3),T}(arrType,N,N,N,N,N) contract!(res16,A,S,Val(1),Val(6)) @tensor res16_tst[j,k,l,m,n] := A[i] * B[j,k,l,m,n,i] @test collect(collect(res16)) ≈ collect(res16_tst) contract!(res16_tst,A,B,Val(1),Val(6)) @test collect(collect(res16)) ≈ collect(res16_tst) # check that contraction from SymArray to Array works A = rand(T,M,O) |> arrType S = SymArray{(1,2,1),T}(arrType,N,M,M,O) rand!(S.data) B = collect(collect(S)) |> arrType res12 = zeros(T,O,N,M,O) |> arrType res12_tst = zeros(T,O,N,M,O) |> arrType contract!(res12,A,S,Val(1),Val(2)) contract!(res12_tst,A,B,Val(1),Val(2)) @test collect(res12) ≈ collect(res12_tst) end end end end end
SymArrays
https://github.com/jfeist/SymArrays.jl.git
[ "MIT" ]
0.3.5
7680a0e455ce44eb63301154a07412c9c75a0bd7
docs
1621
# SymArrays.jl [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://jfeist.github.io/SymArrays.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://jfeist.github.io/SymArrays.jl/dev) [![Build Status](https://github.com/jfeist/SymArrays.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/jfeist/SymArrays.jl/actions/workflows/CI.yml) [![Codecov](https://codecov.io/gh/jfeist/SymArrays.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/jfeist/SymArrays.jl) This package provides some tools to efficiently store arrays with exchange symmetries, i.e., arrays where exchanging two indices leaves the value unchanged. It stores the underlying data in a flat vector and provides mappings that allow to address it as a "normal" `AbstractArray{T,N}`. To generate a new one with undefined data, use ```julia S = SymArray{Nsyms,T}(dims...) ``` where `NSyms` is a tuple that indicates the size of each group of exchangeable indices (which have to be adjacent for simplicity), `T` is the element type (e.g., `Float64` or `ComplexF64`), and `dims` are the dimensions of the array (which have to fulfill `length(dims)==sum(Nsyms)`. As an example ```julia S = SymArray{(3,1,2,1),Float64}(10,10,10,3,50,50,50) ``` declares an array `S[(i,j,k),l,(m,n),o]` where any permutation of `(i,j,k)` leaves the value unchanged, as does any permutation of `(m,n)`. Note that interchangeable indices obviously have to have the same size. ## TODO: - Allow specification and treatment of Hermitian indices, where any permutation conjugates the result (possibly only for 2 indices at a time?).
SymArrays
https://github.com/jfeist/SymArrays.jl.git
[ "MIT" ]
0.3.5
7680a0e455ce44eb63301154a07412c9c75a0bd7
docs
70
# SymArrays.jl ```@index ``` ```@autodocs Modules = [SymArrays] ```
SymArrays
https://github.com/jfeist/SymArrays.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
code
7623
# Copyright (c) 2020: Tomás Gutierrez and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. push!(LOAD_PATH, "./src") using ParametricOptInterface using MathOptInterface using GLPK import Random #using SparseArrays using TimerOutputs const MOI = MathOptInterface const POI = ParametricOptInterface SOLVER = GLPK if SOLVER == GLPK MAX_ITER_PARAM = "it_lim" elseif SOLVER == Gurobi MAX_ITER_PARAM = "IterationLimit" elseif SOLVER == Xpress MAX_ITER_PARAM = "LPITERLIMIT" end struct PMedianData num_facilities::Int num_customers::Int num_locations::Int customer_locations::Vector{Float64} end # This is the LP relaxation. function generate_poi_problem(model, data::PMedianData, add_parameters::Bool) NL = data.num_locations NC = data.num_customers ### ### 0 <= facility_variables <= 1 ### facility_variables = MOI.add_variables(model, NL) for v in facility_variables MOI.add_constraint(model, v, MOI.Interval(0.0, 1.0)) end ### ### assignment_variables >= 0 ### assignment_variables = reshape(MOI.add_variables(model, NC * NL), NC, NL) for v in assignment_variables MOI.add_constraint(model, v, MOI.GreaterThan(0.0)) # "Less than 1.0" constraint is redundant. end ### ### Objective function ### MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), MOI.ScalarAffineFunction( [ MOI.ScalarAffineTerm( data.customer_locations[i] - j, assignment_variables[i, j], ) for i in 1:NC for j in 1:NL ], 0.0, ), ) MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE) ### ### assignment_variables[i, j] <= facility_variables[j] ### for i in 1:NC, j in 1:NL MOI.add_constraint( model, MOI.ScalarAffineFunction( [ MOI.ScalarAffineTerm(1.0, assignment_variables[i, j]), MOI.ScalarAffineTerm(-1.0, facility_variables[j]), ], 0.0, ), MOI.LessThan(0.0), ) end ### ### sum_j assignment_variables[i, j] = 1 ### for i in 1:NC MOI.add_constraint( model, MOI.ScalarAffineFunction( [ MOI.ScalarAffineTerm(1.0, assignment_variables[i, j]) for j in 1:NL ], 0.0, ), MOI.EqualTo(1.0), ) end ### ### sum_j facility_variables[j] == num_facilities ### if add_parameters d, cd = MOI.add_constrained_variable( model, MOI.Parameter(data.num_facilities), ) end if add_parameters MOI.add_constraint( model, MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.(1.0, vcat(facility_variables, d)), 0.0, ), MOI.EqualTo{Float64}(0), ) else MOI.add_constraint( model, MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.(1.0, facility_variables), 0.0, ), MOI.EqualTo{Float64}(data.num_facilities), ) end return assignment_variables, facility_variables end function solve_moi( data::PMedianData, optimizer; vector_version, params, add_parameters = false, ) model = optimizer() for (param, value) in params MOI.set(model, param, value) end @timeit "generate" x, y = if vector_version generate_poi_problem_vector(model, data, add_parameters) else generate_poi_problem(model, data, add_parameters) end @timeit "solve" MOI.optimize!(model) return MOI.get(model, MOI.ObjectiveValue()) end function POI_OPTIMIZER() return POI.Optimizer(SOLVER.Optimizer()) end function MOI_OPTIMIZER() return SOLVER.Optimizer() end function solve_moi_loop( data::PMedianData; vector_version, max_iters = Inf, time_limit_sec = Inf, loops, ) params = [] if isfinite(time_limit_sec) push!(params, (MOI.TimeLimitSec(), time_limit_sec)) end if isfinite(max_iters) push!(params, (MOI.RawOptimizerAttribute(MAX_ITER_PARAM), max_iters)) end push!(params, (MOI.Silent(), true)) s_type = vector_version ? "vector" : "scalar" @timeit( "$(SOLVER) MOI $(s_type)", for _ in 1:loops solve_moi( data, MOI_OPTIMIZER; vector_version = vector_version, params = params, ) end ) end function solve_poi_no_params_loop( data::PMedianData; vector_version, max_iters = Inf, time_limit_sec = Inf, loops, ) params = [] if isfinite(time_limit_sec) push!(params, (MOI.TimeLimitSec(), time_limit_sec)) end if isfinite(max_iters) push!(params, (MOI.RawOptimizerAttribute(MAX_ITER_PARAM), max_iters)) end push!(params, (MOI.Silent(), true)) s_type = vector_version ? "vector" : "scalar" @timeit( "$(SOLVER) POI NO PARAMS $(s_type)", for _ in 1:loops solve_moi( data, POI_OPTIMIZER; vector_version = vector_version, params = params, ) end ) end function solve_poi_loop( data::PMedianData; vector_version, max_iters = Inf, time_limit_sec = Inf, loops = 1, ) params = [] if isfinite(time_limit_sec) push!(params, (MOI.TimeLimitSec(), time_limit_sec)) end if isfinite(max_iters) push!(params, (MOI.RawOptimizerAttribute(MAX_ITER_PARAM), max_iters)) end push!(params, (MOI.Silent(), true)) s_type = vector_version ? "vector" : "scalar" @timeit( "$(SOLVER) POI $(s_type)", for _ in 1:loops solve_moi( data, POI_OPTIMIZER; vector_version = vector_version, params = params, add_parameters = true, ) end ) end function run_benchmark(; num_facilities, num_customers, num_locations, time_limit_sec, max_iters, loops, ) Random.seed!(10) reset_timer!() data = PMedianData( num_facilities, num_customers, num_locations, rand(num_customers) .* num_locations, ) GC.gc() solve_moi_loop( data, vector_version = false, max_iters = max_iters, time_limit_sec = time_limit_sec, loops = loops, ) GC.gc() solve_poi_no_params_loop( data, vector_version = false, max_iters = max_iters, time_limit_sec = time_limit_sec, loops = loops, ) GC.gc() solve_poi_loop( data, vector_version = false, max_iters = max_iters, time_limit_sec = time_limit_sec, loops = loops, ) GC.gc() print_timer() return println() end run_benchmark( num_facilities = 100, num_customers = 100, num_locations = 100, time_limit_sec = 0.0001, max_iters = 1, loops = 1, ) run_benchmark( num_facilities = 100, num_customers = 100, num_locations = 100, time_limit_sec = 0.0001, max_iters = 1, loops = 100, )
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
code
16978
# Copyright (c) 2020: Tomás Gutierrez and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. using MathOptInterface using ParametricOptInterface using BenchmarkTools const MOI = MathOptInterface const POI = ParametricOptInterface import Pkg function moi_add_variables(N::Int) model = MOI.Utilities.Model{Float64}() MOI.add_variables(model, N) return nothing end function poi_add_variables(N::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) MOI.add_variables(model, N) return nothing end function poi_add_parameters(N::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) MOI.add_constrained_variable.(model, MOI.Parameter.(ones(N))) return nothing end function poi_add_parameters_and_variables(N::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) MOI.add_variables(model, N / 2) MOI.add_constrained_variable.(model, MOI.Parameter.(ones(Int(N / 2)))) return nothing end function poi_add_parameters_and_variables_alternating(N::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) for i in 1:Int(N / 2) MOI.add_variable(model) MOI.add_constrained_variable(model, MOI.Parameter(1.0)) end return nothing end function moi_add_saf_ctr(N::Int, M::Int) model = MOI.Utilities.Model{Float64}() x = MOI.add_variables(model, N) for _ in 1:M MOI.add_constraint( model, MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(1.0, x), 0.0), MOI.GreaterThan(1.0), ) end return nothing end function poi_add_saf_ctr(N::Int, M::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) x = MOI.add_variables(model, N) for _ in 1:M MOI.add_constraint( model, MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(1.0, x), 0.0), MOI.GreaterThan(1.0), ) end return nothing end function poi_add_saf_variables_and_parameters_ctr(N::Int, M::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) x = MOI.add_variables(model, N / 2) y = first.( MOI.add_constrained_variable.( model, MOI.Parameter.(ones(Int(N / 2))), ) ) for _ in 1:M MOI.add_constraint( model, MOI.ScalarAffineFunction( [MOI.ScalarAffineTerm.(1.0, x); MOI.ScalarAffineTerm.(1.0, y)], 0.0, ), MOI.GreaterThan(1.0), ) end return nothing end function poi_add_saf_variables_and_parameters_ctr_parameter_update( N::Int, M::Int, ) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) x = MOI.add_variables(model, N / 2) y = first.( MOI.add_constrained_variable.( model, MOI.Parameter.(ones(Int(N / 2))), ) ) for _ in 1:M MOI.add_constraint( model, MOI.ScalarAffineFunction( [MOI.ScalarAffineTerm.(1.0, x); MOI.ScalarAffineTerm.(1.0, y)], 0.0, ), MOI.GreaterThan(1.0), ) end MOI.set.(model, POI.ParameterValue(), y, 0.5) POI.update_parameters!(model) return nothing end function moi_add_sqf_variables_ctr(N::Int, M::Int) model = MOI.Utilities.Model{Float64}() x = MOI.add_variables(model, N) for _ in 1:M MOI.add_constraint( model, MOI.ScalarQuadraticFunction( MOI.ScalarQuadraticTerm.(1.0, x, x), MOI.ScalarAffineTerm{Float64}[], 0.0, ), MOI.GreaterThan(1.0), ) end return nothing end function poi_add_sqf_variables_ctr(N::Int, M::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) x = MOI.add_variables(model, N) for _ in 1:M MOI.add_constraint( model, MOI.ScalarQuadraticFunction( MOI.ScalarQuadraticTerm.(1.0, x, x), MOI.ScalarAffineTerm{Float64}[], 0.0, ), MOI.GreaterThan(1.0), ) end return nothing end function poi_add_sqf_variables_parameters_ctr(N::Int, M::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) x = MOI.add_variables(model, N / 2) y = first.( MOI.add_constrained_variable.( model, MOI.Parameter.(ones(Int(N / 2))), ) ) for _ in 1:M MOI.add_constraint( model, MOI.ScalarQuadraticFunction( MOI.ScalarQuadraticTerm.(1.0, x, y), MOI.ScalarAffineTerm{Float64}[], 0.0, ), MOI.GreaterThan(1.0), ) end return nothing end function poi_add_sqf_variables_parameters_ctr_parameter_update(N::Int, M::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) x = MOI.add_variables(model, N / 2) y = first.( MOI.add_constrained_variable.( model, MOI.Parameter.(ones(Int(N / 2))), ) ) for _ in 1:M MOI.add_constraint( model, MOI.ScalarQuadraticFunction( MOI.ScalarQuadraticTerm.(1.0, x, y), MOI.ScalarAffineTerm{Float64}[], 0.0, ), MOI.GreaterThan(1.0), ) end MOI.set.(model, POI.ParameterValue(), y, 0.5) POI.update_parameters!(model) return nothing end function poi_add_sqf_parameters_parameters_ctr(N::Int, M::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) x = MOI.add_variables(model, N / 2) y = first.( MOI.add_constrained_variable.( model, MOI.Parameter.(ones(Int(N / 2))), ) ) for _ in 1:M MOI.add_constraint( model, MOI.ScalarQuadraticFunction( MOI.ScalarQuadraticTerm.(1.0, y, y), MOI.ScalarAffineTerm{Float64}[], 0.0, ), MOI.GreaterThan(1.0), ) end return nothing end function poi_add_sqf_parameters_parameters_ctr_parameter_update(N::Int, M::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) x = MOI.add_variables(model, N / 2) y = first.( MOI.add_constrained_variable.( model, MOI.Parameter.(ones(Int(N / 2))), ) ) for _ in 1:M MOI.add_constraint( model, MOI.ScalarQuadraticFunction( MOI.ScalarQuadraticTerm.(1.0, y, y), MOI.ScalarAffineTerm{Float64}[], 0.0, ), MOI.GreaterThan(1.0), ) end MOI.set.(model, POI.ParameterValue(), y, 0.5) POI.update_parameters!(model) return nothing end function moi_add_saf_obj(N::Int, M::Int) model = MOI.Utilities.Model{Float64}() x = MOI.add_variables(model, N) for _ in 1:M MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(1.0, x), 0.0), ) end return nothing end function poi_add_saf_obj(N::Int, M::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) x = MOI.add_variables(model, N) for _ in 1:M MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(1.0, x), 0.0), ) end return nothing end function poi_add_saf_variables_and_parameters_obj(N::Int, M::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) x = MOI.add_variables(model, N / 2) y = first.( MOI.add_constrained_variable.( model, MOI.Parameter.(ones(Int(N / 2))), ) ) for _ in 1:M MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), MOI.ScalarAffineFunction( [MOI.ScalarAffineTerm.(1.0, x); MOI.ScalarAffineTerm.(1.0, y)], 0.0, ), ) end return nothing end function poi_add_saf_variables_and_parameters_obj_parameter_update( N::Int, M::Int, ) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) x = MOI.add_variables(model, N / 2) y = first.( MOI.add_constrained_variable.( model, MOI.Parameter.(ones(Int(N / 2))), ) ) for _ in 1:M MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), MOI.ScalarAffineFunction( [MOI.ScalarAffineTerm.(1.0, x); MOI.ScalarAffineTerm.(1.0, y)], 0.0, ), ) end for _ in 1:M MOI.set.(model, POI.ParameterValue(), y, 0.5) POI.update_parameters!(model) end return nothing end function moi_add_sqf_variables_obj(N::Int, M::Int) model = MOI.Utilities.Model{Float64}() x = MOI.add_variables(model, N) for _ in 1:M MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}(), MOI.ScalarQuadraticFunction( MOI.ScalarQuadraticTerm.(1.0, x, x), MOI.ScalarAffineTerm{Float64}[], 0.0, ), ) end return nothing end function poi_add_sqf_variables_obj(N::Int, M::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) x = MOI.add_variables(model, N) for _ in 1:M MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}(), MOI.ScalarQuadraticFunction( MOI.ScalarQuadraticTerm.(1.0, x, x), MOI.ScalarAffineTerm{Float64}[], 0.0, ), ) end return nothing end function poi_add_sqf_variables_parameters_obj(N::Int, M::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) x = MOI.add_variables(model, N / 2) y = first.( MOI.add_constrained_variable.( model, MOI.Parameter.(ones(Int(N / 2))), ) ) for _ in 1:M MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}(), MOI.ScalarQuadraticFunction( MOI.ScalarQuadraticTerm.(1.0, x, y), MOI.ScalarAffineTerm{Float64}[], 0.0, ), ) end return nothing end function poi_add_sqf_variables_parameters_obj_parameter_update(N::Int, M::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) x = MOI.add_variables(model, N / 2) y = first.( MOI.add_constrained_variable.( model, MOI.Parameter.(ones(Int(N / 2))), ) ) for _ in 1:M MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}(), MOI.ScalarQuadraticFunction( MOI.ScalarQuadraticTerm.(1.0, x, y), MOI.ScalarAffineTerm{Float64}[], 0.0, ), ) end for _ in 1:M MOI.set.(model, POI.ParameterValue(), y, 0.5) POI.update_parameters!(model) end return nothing end function poi_add_sqf_parameters_parameters_obj(N::Int, M::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) x = MOI.add_variables(model, N / 2) y = first.( MOI.add_constrained_variable.( model, MOI.Parameter.(ones(Int(N / 2))), ) ) for _ in 1:M MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}(), MOI.ScalarQuadraticFunction( MOI.ScalarQuadraticTerm.(1.0, y, y), MOI.ScalarAffineTerm{Float64}[], 0.0, ), ) end return nothing end function poi_add_sqf_parameters_parameters_obj_parameter_update(N::Int, M::Int) model = POI.Optimizer(MOI.Utilities.Model{Float64}()) x = MOI.add_variables(model, N / 2) y = first.( MOI.add_constrained_variable.( model, MOI.Parameter.(ones(Int(N / 2))), ) ) for _ in 1:M MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}(), MOI.ScalarQuadraticFunction( MOI.ScalarQuadraticTerm.(1.0, y, y), MOI.ScalarAffineTerm{Float64}[], 0.0, ), ) end for _ in 1:M MOI.set.(model, POI.ParameterValue(), y, 0.5) POI.update_parameters!(model) end return nothing end function run_benchmarks(N::Int, M::Int) println("Pkg status:") Pkg.status() println("") GC.gc() println("variables on a MOIU.Model.") @btime moi_add_variables($N) GC.gc() println("variables on a POI.Optimizer.") @btime poi_add_variables($N) GC.gc() println("parameters on a POI.Optimizer.") @btime poi_add_parameters($N) GC.gc() println("parameters and variables on a POI.Optimizer.") @btime poi_add_parameters_and_variables($N) GC.gc() println("alternating parameters and variables on a POI.Optimizer.") @btime poi_add_parameters_and_variables_alternating($N) GC.gc() println("SAF constraint with variables on a MOIU.Model.") @btime moi_add_saf_ctr($N, $M) GC.gc() println("SAF constraint with variables on a POI.Optimizer.") @btime poi_add_saf_ctr($N, $M) GC.gc() println("SAF constraint with variables and parameters on a POI.Optimizer.") @btime poi_add_saf_variables_and_parameters_ctr($N, $M) GC.gc() println("SQF constraint with variables on a MOIU.Model{Float64}.") @btime moi_add_sqf_variables_ctr($N, $M) GC.gc() println("SQF constraint with variables on a POI.Optimizer.") @btime poi_add_sqf_variables_ctr($N, $M) GC.gc() println( "SQF constraint with product of variables and parameters on a POI.Optimizer.", ) @btime poi_add_sqf_variables_parameters_ctr($N, $M) GC.gc() println("SQF constraint with product of parameters on a POI.Optimizer.") @btime poi_add_sqf_parameters_parameters_ctr($N, $M) GC.gc() println("SAF objective with variables on a MOIU.Model.") @btime moi_add_saf_obj($N, $M) GC.gc() println("SAF objective with variables on a POI.Optimizer.") @btime poi_add_saf_obj($N, $M) GC.gc() println("SAF objective with variables and parameters on a POI.Optimizer.") @btime poi_add_saf_variables_and_parameters_obj($N, $M) GC.gc() println("SQF objective with variables on a MOIU.Model.") @btime moi_add_sqf_variables_obj($N, $M) GC.gc() println("SQF objective with variables on a POI.Optimizer.") @btime poi_add_sqf_variables_obj($N, $M) GC.gc() println( "SQF objective with product of variables and parameters on a POI.Optimizer.", ) @btime poi_add_sqf_variables_parameters_obj($N, $M) GC.gc() println("SQF objective with product of parameters on a POI.Optimizer.") @btime poi_add_sqf_parameters_parameters_obj($N, $M) GC.gc() println( "Update parameters in SAF constraint with variables and parameters on a POI.Optimizer.", ) @btime poi_add_saf_variables_and_parameters_ctr_parameter_update($N, $M) GC.gc() println( "Update parameters in SAF objective with variables and parameters on a POI.Optimizer.", ) @btime poi_add_saf_variables_and_parameters_obj_parameter_update($N, $M) GC.gc() println( "Update parameters in SQF constraint with product of variables and parameters on a POI.Optimizer.", ) @btime poi_add_sqf_variables_parameters_ctr_parameter_update($N, $M) GC.gc() println( "Update parameters in SQF constraint with product of parameters on a POI.Optimizer.", ) @btime poi_add_sqf_parameters_parameters_ctr_parameter_update($N, $M) GC.gc() println( "Update parameters in SQF objective with product of variables and parameters on a POI.Optimizer.", ) @btime poi_add_sqf_variables_parameters_obj_parameter_update($N, $M) GC.gc() println( "Update parameters in SQF objective with product of parameters on a POI.Optimizer.", ) @btime poi_add_sqf_parameters_parameters_obj_parameter_update($N, $M) return nothing end N = 10_000 M = 100 run_benchmarks(N, M)
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
code
15781
# Copyright (c) 2020: Tomás Gutierrez and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. using ParametricOptInterface using BenchmarkTools using JuMP using LinearAlgebra const POI = ParametricOptInterface import Pkg function moi_add_variables(N::Int) model = direct_model( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ) @variable(model, x[i = 1:N]) return nothing end function poi_add_variables(N::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:N]) return nothing end function poi_add_parameters(N::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:N] in MOI.Parameter(1.0)) return nothing end function poi_add_parameters_and_variables(N::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:N] in MOI.Parameter(1.0)) return nothing end function poi_add_parameters_and_variables_alternating(N::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) for i in 1:Int(N / 2) @variable(model) @variable(model, set = MOI.Parameter(1.0)) end return nothing end function moi_add_saf_ctr(N::Int, M::Int) model = direct_model( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ) @variable(model, x[i = 1:N]) @constraint(model, cons[i = 1:M], sum(x) >= 1) return nothing end function poi_add_saf_ctr(N::Int, M::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:N]) @constraint(model, cons[i = 1:M], sum(x) >= 1) return nothing end function poi_add_saf_variables_and_parameters_ctr(N::Int, M::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:Int(N / 2)]) @variable(model, p[i = 1:Int(N / 2)] in MOI.Parameter.(0)) @constraint(model, con[i = 1:M], sum(x) + sum(p) >= 1) return nothing end function poi_add_saf_variables_and_parameters_ctr_parameter_update( N::Int, M::Int, ) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:Int(N / 2)]) @variable(model, p[i = 1:Int(N / 2)] in MOI.Parameter.(0)) @constraint(model, con[i = 1:M], sum(x) + sum(p) >= 1) MOI.set.(model, POI.ParameterValue(), p, 0.5) POI.update_parameters!(backend(model)) return nothing end function moi_add_sqf_variables_ctr(N::Int, M::Int) model = direct_model( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ) @variable(model, x[i = 1:N]) @constraint(model, con[i = 1:M], dot(x, x) >= 1) return nothing end function poi_add_sqf_variables_ctr(N::Int, M::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:N]) @constraint(model, con[i = 1:M], dot(x, x) >= 1) return nothing end function poi_add_sqf_variables_parameters_ctr(N::Int, M::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:Int(N / 2)]) @variable(model, p[i = 1:Int(N / 2)] in MOI.Parameter.(1)) @constraint(model, con[i = 1:M], dot(x, p) >= 1) return nothing end function poi_add_sqf_variables_parameters_ctr_parameter_update(N::Int, M::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:Int(N / 2)]) @variable(model, p[i = 1:Int(N / 2)] in MOI.Parameter.(1)) @constraint(model, con[i = 1:M], dot(x, p) >= 1) MOI.set.(model, POI.ParameterValue(), p, 0.5) POI.update_parameters!(backend(model)) return nothing end function poi_add_sqf_parameters_parameters_ctr(N::Int, M::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:Int(N / 2)]) @variable(model, p[i = 1:Int(N / 2)] in MOI.Parameter.(1)) @constraint(model, con[i = 1:M], dot(p, p) >= 1) return nothing end function poi_add_sqf_parameters_parameters_ctr_parameter_update(N::Int, M::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:Int(N / 2)]) @variable(model, p[i = 1:Int(N / 2)] in MOI.Parameter.(1)) @constraint(model, con[i = 1:M], dot(p, p) >= 1) MOI.set.(model, POI.ParameterValue(), p, 0.5) POI.update_parameters!(backend(model)) return nothing end function moi_add_saf_obj(N::Int, M::Int) model = direct_model( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ) @variable(model, x[i = 1:N]) @objective(model, Min, sum(x)) return nothing end function poi_add_saf_obj(N::Int, M::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:N]) for _ in 1:M @objective(model, Min, sum(x)) end return nothing end function poi_add_saf_variables_and_parameters_obj(N::Int, M::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:Int(N / 2)]) @variable(model, p[i = 1:Int(N / 2)] in MOI.Parameter.(1)) for _ in 1:M @objective(model, Min, sum(x) + sum(p)) end return nothing end function poi_add_saf_variables_and_parameters_obj_parameter_update( N::Int, M::Int, ) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:Int(N / 2)]) @variable(model, p[i = 1:Int(N / 2)] in MOI.Parameter.(1)) for _ in 1:M @objective(model, Min, sum(x) + sum(p)) end for _ in 1:M MOI.set.(model, POI.ParameterValue(), p, 0.5) POI.update_parameters!(backend(model)) end return nothing end function moi_add_sqf_variables_obj(N::Int, M::Int) model = direct_model( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ) @variable(model, x[i = 1:N]) for _ in 1:M @objective(model, Min, dot(x, x)) end return nothing end function poi_add_sqf_variables_obj(N::Int, M::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:N]) for _ in 1:M @objective(model, Min, dot(x, x)) end return nothing end function poi_add_sqf_variables_parameters_obj(N::Int, M::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:Int(N / 2)]) @variable(model, p[i = 1:Int(N / 2)] in MOI.Parameter.(1)) for _ in 1:M @objective(model, Min, dot(x, p)) end return nothing end function poi_add_sqf_variables_parameters_obj_parameter_update(N::Int, M::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:Int(N / 2)]) @variable(model, p[i = 1:Int(N / 2)] in MOI.Parameter.(1)) for _ in 1:M @objective(model, Min, dot(x, p)) end for _ in 1:M MOI.set.(model, POI.ParameterValue(), p, 0.5) POI.update_parameters!(backend(model)) end return nothing end function poi_add_sqf_parameters_parameters_obj(N::Int, M::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:Int(N / 2)]) @variable(model, p[i = 1:Int(N / 2)] in MOI.Parameter.(1)) for _ in 1:M @objective(model, Min, dot(p, p)) end return nothing end function poi_add_sqf_parameters_parameters_obj_parameter_update(N::Int, M::Int) model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) @variable(model, x[i = 1:Int(N / 2)]) @variable(model, p[i = 1:Int(N / 2)] in MOI.Parameter.(1)) for _ in 1:M @objective(model, Min, dot(p, p)) end for _ in 1:M MOI.set.(model, POI.ParameterValue(), p, 0.5) POI.update_parameters!(backend(model)) end return nothing end function run_benchmarks(N::Int, M::Int) println("Pkg status:") Pkg.status() println("") GC.gc() println("variables on a MOIU.Model.") @btime moi_add_variables($N) GC.gc() println("variables on a POI.Optimizer.") @btime poi_add_variables($N) GC.gc() println("parameters on a POI.Optimizer.") @btime poi_add_parameters($N) GC.gc() println("parameters and variables on a POI.Optimizer.") @btime poi_add_parameters_and_variables($N) GC.gc() println("alternating parameters and variables on a POI.Optimizer.") @btime poi_add_parameters_and_variables_alternating($N) GC.gc() println("SAF constraint with variables on a MOIU.Model.") @btime moi_add_saf_ctr($N, $M) GC.gc() println("SAF constraint with variables on a POI.Optimizer.") @btime poi_add_saf_ctr($N, $M) GC.gc() println("SAF constraint with variables and parameters on a POI.Optimizer.") @btime poi_add_saf_variables_and_parameters_ctr($N, $M) GC.gc() println("SQF constraint with variables on a MOIU.Model{Float64}.") @btime moi_add_sqf_variables_ctr($N, $M) GC.gc() println("SQF constraint with variables on a POI.Optimizer.") @btime poi_add_sqf_variables_ctr($N, $M) GC.gc() println( "SQF constraint with product of variables and parameters on a POI.Optimizer.", ) @btime poi_add_sqf_variables_parameters_ctr($N, $M) GC.gc() println("SQF constraint with product of parameters on a POI.Optimizer.") @btime poi_add_sqf_parameters_parameters_ctr($N, $M) GC.gc() println("SAF objective with variables on a MOIU.Model.") @btime moi_add_saf_obj($N, $M) GC.gc() println("SAF objective with variables on a POI.Optimizer.") @btime poi_add_saf_obj($N, $M) GC.gc() println("SAF objective with variables and parameters on a POI.Optimizer.") @btime poi_add_saf_variables_and_parameters_obj($N, $M) GC.gc() println("SQF objective with variables on a MOIU.Model.") @btime moi_add_sqf_variables_obj($N, $M) GC.gc() println("SQF objective with variables on a POI.Optimizer.") @btime poi_add_sqf_variables_obj($N, $M) GC.gc() println( "SQF objective with product of variables and parameters on a POI.Optimizer.", ) @btime poi_add_sqf_variables_parameters_obj($N, $M) GC.gc() println("SQF objective with product of parameters on a POI.Optimizer.") @btime poi_add_sqf_parameters_parameters_obj($N, $M) GC.gc() println( "Update parameters in SAF constraint with variables and parameters on a POI.Optimizer.", ) @btime poi_add_saf_variables_and_parameters_ctr_parameter_update($N, $M) GC.gc() println( "Update parameters in SAF objective with variables and parameters on a POI.Optimizer.", ) @btime poi_add_saf_variables_and_parameters_obj_parameter_update($N, $M) GC.gc() println( "Update parameters in SQF constraint with product of variables and parameters on a POI.Optimizer.", ) @btime poi_add_sqf_variables_parameters_ctr_parameter_update($N, $M) GC.gc() println( "Update parameters in SQF constraint with product of parameters on a POI.Optimizer.", ) @btime poi_add_sqf_parameters_parameters_ctr_parameter_update($N, $M) GC.gc() println( "Update parameters in SQF objective with product of variables and parameters on a POI.Optimizer.", ) @btime poi_add_sqf_variables_parameters_obj_parameter_update($N, $M) GC.gc() println( "Update parameters in SQF objective with product of parameters on a POI.Optimizer.", ) @btime poi_add_sqf_parameters_parameters_obj_parameter_update($N, $M) return nothing end N = 10_000 M = 100 run_benchmarks(N, M)
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
code
10192
# Copyright (c) 2020: Tomás Gutierrez and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. import Pkg Pkg.activate(@__DIR__) Pkg.instantiate() using ParametricOptInterface using MathOptInterface const POI = ParametricOptInterface const MOI = MathOptInterface using ParameterJuMP using JuMP using GLPK const OPTIMIZER = GLPK.Optimizer using TimerOutputs using LinearAlgebra using Random const N_Candidates = 200 const N_Observations = 2000 const N_Nodes = 200 const Observations = 1:N_Observations const Candidates = 1:N_Candidates const Nodes = 1:N_Nodes; #' Initialize a random number generator to keep results deterministic rng = Random.MersenneTwister(123); #' Building regressors (explanatory) sinusoids const X = zeros(N_Candidates, N_Observations) const time = [obs / N_Observations * 1 for obs in Observations] for obs in Observations, cand in Candidates t = time[obs] f = cand X[cand, obs] = sin(2 * pi * f * t) end #' Define coefficients β = zeros(N_Candidates) for i in Candidates if rand(rng) <= (1 - i / N_Candidates)^2 && i <= 100 β[i] = 4 * rand(rng) / i end end # println("First coefs: $(β[1:min(10, N_Candidates)])") const y = X' * β .+ 0.1 * randn(rng, N_Observations) function full_model_regression() time_build = @elapsed begin # measure time to create a model # initialize a optimization model full_model = direct_model(OPTIMIZER) MOI.set(full_model, MOI.Silent(), true) # create optimization variables of the problem @variables(full_model, begin ɛ_up[Observations] >= 0 ɛ_dw[Observations] >= 0 β[1:N_Candidates] # 0 <= β[Candidates] <= 8 end) # define constraints of the model @constraints( full_model, begin ɛ_up_ctr[i in Observations], ɛ_up[i] >= +sum(X[j, i] * β[j] for j in Candidates) - y[i] ɛ_dw_ctr[i in Observations], ɛ_dw[i] >= -sum(X[j, i] * β[j] for j in Candidates) + y[i] end ) # construct the objective function to be minimized @objective( full_model, Min, sum(ɛ_up[i] + ɛ_dw[i] for i in Observations) ) end # solve the problem time_solve = @elapsed optimize!(full_model) println( "First coefficients in solution: $(value.(β)[1:min(10, N_Candidates)])", ) println("Objective value: $(objective_value(full_model))") println("Time in solve: $time_solve") println("Time in build: $time_build") return nothing end function ObsSet(K) obs_per_block = div(N_Observations, N_Nodes) return (1+(K-1)*obs_per_block):(K*obs_per_block) end function slave_model(PARAM, K) # initialize the JuMP model slave = if PARAM == 0 # special constructor exported by ParameterJuMP # to add the functionality to the model Model(OPTIMIZER) elseif PARAM == 1 # POI constructor direct_model(POI.Optimizer(OPTIMIZER())) # Model(() -> POI.ParametricOptimizer(OPTIMIZER())) else # regular JuMP constructor direct_model(OPTIMIZER()) end MOI.set(slave, MOI.Silent(), true) # Define local optimization variables for norm-1 error @variables(slave, begin ɛ_up[ObsSet(K)] >= 0 ɛ_dw[ObsSet(K)] >= 0 end) # create the regression coefficient representation if PARAM == 0 # here is the main constructor of the Parameter JuMP packages # It will create model *parameters* instead of variables # Variables are added to the optimization model, while parameters # are not. Parameters are merged with LP problem constants and do not # increase the model dimensions. @variable(slave, β[i = 1:N_Candidates] == 0, Param()) elseif PARAM == 1 # Create parameters @variable(slave, β[i = 1:N_Candidates] in MOI.Parameter.(0.0)) else # Create fixed variables @variables(slave, begin β[Candidates] β_fixed[1:N_Candidates] == 0 end) @constraint(slave, β_fix[i in Candidates], β[i] == β_fixed[i]) end # create local constraints # Note that *parameter* algebra is implemented just like variables # algebra. We can multiply parameters by constants, add parameters, # sum parameters and variables and so on. @constraints( slave, begin ɛ_up_ctr[i in ObsSet(K)], ɛ_up[i] >= +sum(X[j, i] * β[j] for j in Candidates) - y[i] ɛ_dw_ctr[i in ObsSet(K)], ɛ_dw[i] >= -sum(X[j, i] * β[j] for j in Candidates) + y[i] end ) # create local objective function @objective(slave, Min, sum(ɛ_up[i] + ɛ_dw[i] for i in ObsSet(K))) # return the correct group of parameters return (slave, β) end function master_model(PARAM) master = Model(OPTIMIZER) @variables(master, begin ɛ[Nodes] >= 0 β[1:N_Candidates] end) @objective(master, Min, sum(ɛ[i] for i in Nodes)) sol = zeros(N_Candidates) return (master, ɛ, β, sol) end function master_solve(PARAM, master_model) model = master_model[1] β = master_model[3] optimize!(model) return (value.(β), objective_value(model)) end function slave_solve(PARAM, model, master_solution) β0 = master_solution[1] slave = model[1] # The first step is to fix the values given by the master problem @timeit "fix" if PARAM == 0 # ParameterJuMP: *parameters* can be set to new values and the optimization # model will be automatically updated β = model[2] set_value.(β, β0) elseif PARAM == 1 # POI: assigning new values to *parameters* and the optimization # model will be automatically updated β = model[2] MOI.set.(slave, POI.ParameterValue(), β, β0) else # JuMP: it is also possible to fix variables to new values β_fixed = slave[:β_fixed] fix.(β_fixed, β0) end # here the slave problem is solved @timeit "opt" optimize!(slave) # query dual variables, which are sensitivities # They represent the subgradient (almost a derivative) # of the objective function for infinitesimal variations # of the constants in the linear constraints @timeit "dual" if PARAM == 0 # ParameterJuMP: we can query dual values of *parameters* π = dual.(β) elseif PARAM == 1 # POI: we can query dual values of *parameters* π = MOI.get.(slave, POI.ParameterDual(), β) else # or, in pure JuMP, we query the duals form # constraints that fix the values of our regression # coefficients π = dual.(slave[:β_fix]) end # π2 = shadow_price.(β_fix) # @show sum(π .- π2) obj = objective_value(slave) rhs = obj - dot(π, β0) return (rhs, π, obj) end function master_add_cut(PARAM, master_model, cut_info, node) master = master_model[1] ɛ = master_model[2] β = master_model[3] rhs = cut_info[1] π = cut_info[2] @constraint(master, ɛ[node] >= sum(π[j] * β[j] for j in Candidates) + rhs) end function decomposed_model(PARAM; print_timer_outputs::Bool = true) reset_timer!() # reset timer fo comparision time_init = @elapsed @timeit "Init" begin # println("Initialize decomposed model") # Create the master problem with no cuts # println("Build master problem") @timeit "Master" master = master_model(PARAM) # initialize solution for the regression coefficients in zero # println("Build initial solution") @timeit "Sol" solution = (zeros(N_Candidates), Inf) best_sol = deepcopy(solution) # Create the slave problems # println("Build slave problems") @timeit "Slaves" slaves = [slave_model(PARAM, i) for i in Candidates] # Save initial version of the slave problems and create # the first set of cuts # println("Build initial cuts") @timeit "Cuts" cuts = [slave_solve(PARAM, slaves[i], solution) for i in Candidates] end UB = +Inf LB = -Inf # println("Initialize Iterative step") time_loop = @elapsed @timeit "Loop" for k in 1:80 # Add cuts generated from each slave problem to the master problem @timeit "add cuts" for i in Candidates master_add_cut(PARAM, master, cuts[i], i) end # Solve the master problem with the new set of cuts # Obtain new solution candidate for the regression coefficients @timeit "solve master" solution = master_solve(PARAM, master) # Pass the new candidate solution to each of the slave problems # Solve the slave problems and obtain cutting planes # @show solution[2] @timeit "solve nodes" for i in Candidates cuts[i] = slave_solve(PARAM, slaves[i], solution) end LB = solution[2] new_UB = sum(cuts[i][3] for i in Candidates) if new_UB <= UB best_sol = deepcopy(solution) end UB = min(UB, new_UB) # println("Iter = $k, LB = $LB, UB = $UB") if abs(UB - LB) / (abs(UB) + abs(LB)) < 0.05 # println("Converged!") break end end # println( # "First coefficients in solution: $(solution[1][1:min(10, N_Candidates)])", # ) # println("Objective value: $(solution[2])") # println("Time in loop: $time_loop") # println("Time in init: $time_init") print_timer_outputs && print_timer() return best_sol[1] end println("ParameterJuMP") GC.gc() β1 = decomposed_model(0; print_timer_outputs = false); GC.gc() β1 = decomposed_model(0); println("POI, direct mode") GC.gc() β2 = decomposed_model(1; print_timer_outputs = false); GC.gc() β2 = decomposed_model(1); println("Pure JuMP, direct mode") GC.gc() β3 = decomposed_model(2; print_timer_outputs = false); GC.gc() β3 = decomposed_model(2);
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
code
1022
# Copyright (c) 2020: Tomás Gutierrez and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. using Documenter using ParametricOptInterface makedocs( modules = [ParametricOptInterface], doctest = false, clean = true, # See https://github.com/JuliaDocs/Documenter.jl/issues/868 format = Documenter.HTML( assets = ["assets/favicon.ico"], mathengine = Documenter.MathJax(), prettyurls = get(ENV, "CI", nothing) == "true", ), sitename = "ParametricOptInterface.jl", authors = "Tomás Gutierrez, and contributors", pages = [ "Home" => "index.md", "manual.md", "Examples" => [ "Examples/example.md", "Examples/benders.md", "Examples/markowitz.md", ], "reference.md", ], ) deploydocs( repo = "github.com/jump-dev/ParametricOptInterface.jl.git", push_preview = true, )
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
code
39843
# # Helpers # function _is_variable(v::MOI.VariableIndex) return v.value < PARAMETER_INDEX_THRESHOLD end function _is_parameter(v::MOI.VariableIndex) return v.value > PARAMETER_INDEX_THRESHOLD end function _has_parameters(f::MOI.ScalarAffineFunction{T}) where {T} for term in f.terms if _is_parameter(term.variable) return true end end return false end function _has_parameters(f::MOI.VectorOfVariables) for variable in f.variables if _is_parameter(variable) return true end end return false end function _has_parameters(f::MOI.VectorAffineFunction{T}) where {T} for term in f.terms if _is_parameter(term.scalar_term.variable) return true end end return false end function _has_parameters(f::MOI.ScalarQuadraticFunction{T}) where {T} for term_l in f.affine_terms if _is_parameter(term_l.variable) return true end end for term in f.quadratic_terms if _is_parameter(term.variable_1) || _is_parameter(term.variable_2) return true end end return false end function _cache_multiplicative_params!( model::Optimizer{T}, f::ParametricQuadraticFunction{T}, ) where {T} for term in f.pv push!(model.multiplicative_parameters, term.variable_1.value) end # TODO compute these duals might be feasible for term in f.pp push!(model.multiplicative_parameters, term.variable_1.value) push!(model.multiplicative_parameters, term.variable_2.value) end return end # # Empty # function MOI.is_empty(model::Optimizer) return MOI.is_empty(model.optimizer) && isempty(model.parameters) && isempty(model.parameters_name) && isempty(model.updated_parameters) && isempty(model.variables) && model.last_variable_index_added == 0 && model.last_parameter_index_added == PARAMETER_INDEX_THRESHOLD && isempty(model.constraint_outer_to_inner) && # affine ctr model.last_affine_added == 0 && isempty(model.affine_outer_to_inner) && isempty(model.affine_constraint_cache) && isempty(model.affine_constraint_cache_set) && # quad ctr model.last_quad_add_added == 0 && isempty(model.quadratic_outer_to_inner) && isempty(model.quadratic_constraint_cache) && isempty(model.quadratic_constraint_cache_set) && # obj model.affine_objective_cache === nothing && model.quadratic_objective_cache === nothing && MOI.is_empty(model.original_objective_cache) && isempty(model.quadratic_objective_cache_product) && # isempty(model.vector_affine_constraint_cache) && # isempty(model.multiplicative_parameters) && isempty(model.dual_value_of_parameters) && model.number_of_parameters_in_model == 0 end function MOI.empty!(model::Optimizer{T}) where {T} MOI.empty!(model.optimizer) empty!(model.parameters) empty!(model.parameters_name) empty!(model.updated_parameters) empty!(model.variables) model.last_variable_index_added = 0 model.last_parameter_index_added = PARAMETER_INDEX_THRESHOLD empty!(model.constraint_outer_to_inner) # affine ctr model.last_affine_added = 0 empty!(model.affine_outer_to_inner) empty!(model.affine_constraint_cache) empty!(model.affine_constraint_cache_set) # quad ctr model.last_quad_add_added = 0 empty!(model.quadratic_outer_to_inner) empty!(model.quadratic_constraint_cache) empty!(model.quadratic_constraint_cache_set) # obj model.affine_objective_cache = nothing model.quadratic_objective_cache = nothing MOI.empty!(model.original_objective_cache) empty!(model.quadratic_objective_cache_product) # empty!(model.vector_affine_constraint_cache) # empty!(model.multiplicative_parameters) empty!(model.dual_value_of_parameters) # model.number_of_parameters_in_model = 0 return end # # Variables # function MOI.is_valid(model::Optimizer, vi::MOI.VariableIndex) if haskey(model.variables, vi) return true elseif haskey(model.parameters, p_idx(vi)) return true end return false end function MOI.is_valid( model::Optimizer, ci::MOI.ConstraintIndex{MOI.VariableIndex,MOI.Parameter{T}}, ) where {T} vi = MOI.VariableIndex(ci.value) if haskey(model.parameters, p_idx(vi)) return true end return false end function MOI.supports( model::Optimizer, attr::MOI.VariableName, tp::Type{MOI.VariableIndex}, ) return MOI.supports(model.optimizer, attr, tp) end function MOI.set( model::Optimizer, attr::MOI.VariableName, v::MOI.VariableIndex, name::String, ) if _parameter_in_model(model, v) model.parameters_name[v] = name else MOI.set(model.optimizer, attr, v, name) end return end function MOI.get(model::Optimizer, attr::MOI.VariableName, v::MOI.VariableIndex) if _parameter_in_model(model, v) return get(model.parameters_name, v, "") else return MOI.get(model.optimizer, attr, v) end end function MOI.get(model::Optimizer, tp::Type{MOI.VariableIndex}, attr::String) return MOI.get(model.optimizer, tp, attr) end function MOI.add_variable(model::Optimizer) _next_variable_index!(model) return MOI.Utilities.CleverDicts.add_item( model.variables, MOI.add_variable(model.optimizer), ) end function MOI.supports_add_constrained_variable( ::Optimizer{T}, ::Type{MOI.Parameter{T}}, ) where {T} return true end function MOI.supports_add_constrained_variables( model::Optimizer, ::Type{MOI.Reals}, ) return MOI.supports_add_constrained_variables(model.optimizer, MOI.Reals) end function MOI.add_constrained_variable( model::Optimizer{T}, set::MOI.Parameter{T}, ) where {T} _next_parameter_index!(model) p = MOI.VariableIndex(model.last_parameter_index_added) MOI.Utilities.CleverDicts.add_item(model.parameters, set.value) cp = MOI.ConstraintIndex{MOI.VariableIndex,MOI.Parameter{T}}( model.last_parameter_index_added, ) _add_to_constraint_map!(model, cp) MOI.Utilities.CleverDicts.add_item(model.updated_parameters, NaN) _update_number_of_parameters!(model) return p, cp end function _add_to_constraint_map!(model::Optimizer, ci) model.constraint_outer_to_inner[ci] = ci return end function _add_to_constraint_map!( model::Optimizer, ci::MOI.ConstraintIndex{F,S}, ) where {F<:MOI.ScalarAffineFunction,S} model.last_affine_added += 1 model.constraint_outer_to_inner[ci] = ci return end function _add_to_constraint_map!( model::Optimizer, ci::MOI.ConstraintIndex{F,S}, ) where {F<:MOI.ScalarQuadraticFunction,S} model.last_quad_add_added += 1 model.constraint_outer_to_inner[ci] = ci return end function MOI.supports( model::Optimizer, attr::MOI.AbstractVariableAttribute, tp::Type{MOI.VariableIndex}, ) return MOI.supports(model.optimizer, attr, tp) end function MOI.set( model::Optimizer, attr::MOI.AbstractVariableAttribute, v::MOI.VariableIndex, val, ) if _variable_in_model(model, v) MOI.set(model.optimizer, attr, v, val) else error("$attr is not supported for parameters") end end function MOI.get( model::Optimizer, attr::MOI.AbstractVariableAttribute, v::MOI.VariableIndex, ) if _variable_in_model(model, v) return MOI.get(model.optimizer, attr, model.variables[v]) else error("$attr is not supported for parameters") end end function MOI.delete(model::Optimizer, v::MOI.VariableIndex) delete!(model.variables, v) MOI.delete(model.optimizer, v) MOI.delete(model.original_objective_cache, v) # TODO - what happens if the variable was in a SAF that was converted to bounds? # solution: do not allow if that is the case (requires going trhought the scalar affine cache) # TODO - deleting a variable also deletes constraints for (F, S) in MOI.Utilities.DoubleDicts.nonempty_outer_keys( model.constraint_outer_to_inner, ) _delete_variable_index_constraint( model.constraint_outer_to_inner, F, S, v.value, ) end return end function _delete_variable_index_constraint(d, F, S, v) return end function _delete_variable_index_constraint( d, F::Type{MOI.VariableIndex}, S, value, ) inner = d[F, S] key = MOI.ConstraintIndex{F,S}(value) delete!(inner, key) return end # # Constraints # function MOI.is_valid( model::Optimizer, c::MOI.ConstraintIndex{F,S}, ) where { F<:Union{MOI.VariableIndex,MOI.VectorOfVariables,MOI.VectorAffineFunction}, S<:MOI.AbstractSet, } return MOI.is_valid(model.optimizer, c) end function MOI.is_valid( model::Optimizer, c::MOI.ConstraintIndex{F,S}, ) where {F<:MOI.ScalarAffineFunction,S<:MOI.AbstractSet} return MOI.is_valid(model.optimizer, c) end function MOI.supports_constraint( model::Optimizer, F::Union{ Type{MOI.VariableIndex}, Type{MOI.ScalarAffineFunction{T}}, Type{MOI.VectorOfVariables}, Type{MOI.VectorAffineFunction{T}}, }, S::Type{<:MOI.AbstractSet}, ) where {T} return MOI.supports_constraint(model.optimizer, F, S) end function MOI.supports_constraint( model::Optimizer, ::Type{MOI.ScalarQuadraticFunction{T}}, S::Type{<:MOI.AbstractSet}, ) where {T} return MOI.supports_constraint( model.optimizer, MOI.ScalarAffineFunction{T}, S, ) end function MOI.supports_constraint( model::Optimizer, ::Type{MOI.VectorQuadraticFunction{T}}, S::Type{<:MOI.AbstractSet}, ) where {T} return MOI.supports_constraint( model.optimizer, MOI.VectorAffineFunction{T}, S, ) end function MOI.supports( model::Optimizer, attr::MOI.ConstraintName, tp::Type{<:MOI.ConstraintIndex}, ) return MOI.supports(model.optimizer, attr, tp) end function MOI.set( model::Optimizer, attr::MOI.ConstraintName, c::MOI.ConstraintIndex{MOI.ScalarQuadraticFunction{T},S}, name::String, ) where {T,S<:MOI.AbstractSet} if haskey(model.quadratic_outer_to_inner, c) MOI.set(model.optimizer, attr, model.quadratic_outer_to_inner[c], name) else MOI.set(model.optimizer, attr, c, name) end return end function MOI.set( model::Optimizer, attr::MOI.ConstraintName, c::MOI.ConstraintIndex{MOI.ScalarAffineFunction{T},S}, name::String, ) where {T,S<:MOI.AbstractSet} if haskey(model.affine_outer_to_inner, c) MOI.set(model.optimizer, attr, model.affine_outer_to_inner[c], name) else MOI.set(model.optimizer, attr, c, name) end return end function MOI.set( model::Optimizer, attr::MOI.ConstraintName, c::MOI.ConstraintIndex, name::String, ) MOI.set(model.optimizer, attr, c, name) return end function MOI.get( model::Optimizer, attr::MOI.ConstraintName, c::MOI.ConstraintIndex{MOI.ScalarQuadraticFunction{T},S}, ) where {T,S<:MOI.AbstractSet} if haskey(model.quadratic_outer_to_inner, c) return MOI.get(model.optimizer, attr, model.quadratic_outer_to_inner[c]) else return MOI.get(model.optimizer, attr, c) end end function MOI.get( model::Optimizer, attr::MOI.ConstraintName, c::MOI.ConstraintIndex, ) return MOI.get(model.optimizer, attr, c) end function MOI.get( model::Optimizer, attr::MOI.ConstraintName, c::MOI.ConstraintIndex{MOI.ScalarAffineFunction{T},S}, ) where {T,S} if haskey(model.affine_outer_to_inner, c) inner_ci = model.affine_outer_to_inner[c] # This SAF constraint was transformed into variable bound if typeof(inner_ci) === MOI.ConstraintIndex{MOI.VariableIndex,S} v = MOI.get(model.optimizer, MOI.ConstraintFunction(), inner_ci) variable_name = MOI.get(model.optimizer, MOI.VariableName(), v) return "ParametricBound_$(S)_$(variable_name)" end return MOI.get(model.optimizer, attr, inner_ci) else return MOI.get(model.optimizer, attr, c) end end function MOI.get( model::Optimizer, tp::Type{MOI.ConstraintIndex{F,S}}, name::String, ) where {F,S} return MOI.get(model.optimizer, tp, name) end function MOI.get(model::Optimizer, tp::Type{MOI.ConstraintIndex}, name::String) return MOI.get(model.optimizer, tp, name) end function MOI.set( model::Optimizer, ::MOI.ConstraintFunction, c::MOI.ConstraintIndex{F}, f::F, ) where {F} MOI.set(model.optimizer, MOI.ConstraintFunction(), c, f) return end function MOI.get( model::Optimizer, attr::MOI.ConstraintFunction, ci::MOI.ConstraintIndex, ) if haskey(model.quadratic_outer_to_inner, ci) inner_ci = model.quadratic_outer_to_inner[ci] return _original_function(model.quadratic_constraint_cache[inner_ci]) elseif haskey(model.affine_outer_to_inner, ci) inner_ci = model.affine_outer_to_inner[ci] return _original_function(model.affine_constraint_cache[inner_ci]) else MOI.throw_if_not_valid(model, ci) return MOI.get(model.optimizer, attr, ci) end end function MOI.get( model::Optimizer{T}, ::MOI.ConstraintFunction, cp::MOI.ConstraintIndex{MOI.VariableIndex,MOI.Parameter{T}}, ) where {T} p = MOI.VariableIndex(cp.value) if !_parameter_in_model(model, p) error("Parameter not in the model") end return p end function MOI.set( model::Optimizer, ::MOI.ConstraintSet, c::MOI.ConstraintIndex{F,S}, s::S, ) where {F,S} MOI.set(model.optimizer, MOI.ConstraintSet(), c, s) return end function MOI.get( model::Optimizer, attr::MOI.ConstraintSet, ci::MOI.ConstraintIndex, ) if haskey(model.quadratic_outer_to_inner, ci) inner_ci = model.quadratic_outer_to_inner[ci] return model.quadratic_constraint_cache_set[inner_ci] elseif haskey(model.affine_outer_to_inner, ci) inner_ci = model.affine_outer_to_inner[ci] return model.affine_constraint_cache_set[inner_ci] else MOI.throw_if_not_valid(model, ci) return MOI.get(model.optimizer, attr, ci) end end function MOI.set( model::Optimizer{T}, ::MOI.ConstraintSet, cp::MOI.ConstraintIndex{MOI.VariableIndex,MOI.Parameter{T}}, set::MOI.Parameter{T}, ) where {T} p = MOI.VariableIndex(cp.value) if !_parameter_in_model(model, p) error("Parameter not in the model") end return model.updated_parameters[p_idx(p)] = set.value end function MOI.get( model::Optimizer{T}, ::MOI.ConstraintSet, cp::MOI.ConstraintIndex{MOI.VariableIndex,MOI.Parameter{T}}, ) where {T} p = MOI.VariableIndex(cp.value) if !_parameter_in_model(model, p) error("Parameter not in the model") end val = model.updated_parameters[p_idx(p)] if isnan(val) return MOI.Parameter{T}(model.parameters[p_idx(p)]) end return MOI.Parameter{T}(val) end function MOI.modify( model::Optimizer, c::MOI.ConstraintIndex{F,S}, chg::MOI.ScalarCoefficientChange{T}, ) where {F,S,T} if haskey(model.quadratic_constraint_cache, c) || haskey(model.affine_constraint_cache, c) error("Parametric constraint cannot be modified") end MOI.modify(model.optimizer, c, chg) return end function _add_constraint_direct_and_cache_map!(model::Optimizer, f, set) ci = MOI.add_constraint(model.optimizer, f, set) _add_to_constraint_map!(model, ci) return ci end function MOI.add_constraint( model::Optimizer, f::MOI.VariableIndex, set::MOI.AbstractScalarSet, ) if !_is_variable(f) error("Cannot constrain a parameter") elseif !_variable_in_model(model, f) error("Variable not in the model") end return _add_constraint_direct_and_cache_map!(model, f, set) end function _add_constraint_with_parameters_on_function( model::Optimizer, f::MOI.ScalarAffineFunction{T}, set::S, ) where {T,S} pf = ParametricAffineFunction(f) if model.constraints_interpretation == ONLY_BOUNDS if length(pf.v) == 1 && isone(MOI.coefficient(pf.v[])) poi_ci = _add_vi_constraint(model, pf, set) else error( "It was not possible to interpret this constraint as a variable bound.", ) end elseif model.constraints_interpretation == ONLY_CONSTRAINTS poi_ci = MOI.add_constraint(model, pf, set) elseif model.constraints_interpretation == BOUNDS_AND_CONSTRAINTS if length(pf.v) == 1 && isone(MOI.coefficient(pf.v[])) poi_ci = _add_vi_constraint(model, pf, set) else poi_ci = MOI.add_constraint(model, pf, set) end end return poi_ci end function MOI.add_constraint( model::Optimizer, pf::ParametricAffineFunction{T}, set::S, ) where {T,S} _cache_set_constant!(pf, set) _update_cache!(pf, model) inner_ci = MOI.add_constraint( model.optimizer, MOI.ScalarAffineFunction{T}(pf.v, 0.0), _set_with_new_constant(set, pf.current_constant), ) model.last_affine_added += 1 outer_ci = MOI.ConstraintIndex{MOI.ScalarAffineFunction{T},S}( model.last_affine_added, ) model.affine_outer_to_inner[outer_ci] = inner_ci model.constraint_outer_to_inner[outer_ci] = inner_ci model.affine_constraint_cache[inner_ci] = pf model.affine_constraint_cache_set[inner_ci] = set return outer_ci end function _add_vi_constraint( model::Optimizer, pf::ParametricAffineFunction{T}, set::S, ) where {T,S} _cache_set_constant!(pf, set) _update_cache!(pf, model) inner_ci = MOI.add_constraint( model.optimizer, pf.v[].variable, _set_with_new_constant(set, pf.current_constant), ) model.last_affine_added += 1 outer_ci = MOI.ConstraintIndex{MOI.ScalarAffineFunction{T},S}( model.last_affine_added, ) model.affine_outer_to_inner[outer_ci] = inner_ci model.constraint_outer_to_inner[outer_ci] = inner_ci model.affine_constraint_cache[inner_ci] = pf model.affine_constraint_cache_set[inner_ci] = set return outer_ci end function MOI.add_constraint( model::Optimizer, f::MOI.ScalarAffineFunction{T}, set::MOI.AbstractScalarSet, ) where {T} if !_has_parameters(f) return _add_constraint_direct_and_cache_map!(model, f, set) else return _add_constraint_with_parameters_on_function(model, f, set) end end function MOI.add_constraint( model::Optimizer, f::MOI.VectorOfVariables, set::MOI.AbstractVectorSet, ) if _has_parameters(f) error("VectorOfVariables does not allow parameters") end return _add_constraint_direct_and_cache_map!(model, f, set) end function MOI.add_constraint( model::Optimizer, f::MOI.VectorAffineFunction{T}, set::MOI.AbstractVectorSet, ) where {T} if !_has_parameters(f) return _add_constraint_direct_and_cache_map!(model, f, set) else return _add_constraint_with_parameters_on_function(model, f, set) end end function _add_constraint_with_parameters_on_function( model::Optimizer, f::MOI.VectorAffineFunction{T}, set::MOI.AbstractVectorSet, ) where {T} pf = ParametricVectorAffineFunction(f) # _cache_set_constant!(pf, set) # there is no constant is vector sets _update_cache!(pf, model) inner_ci = MOI.add_constraint(model.optimizer, _current_function(pf), set) model.vector_affine_constraint_cache[inner_ci] = pf _add_to_constraint_map!(model, inner_ci) return inner_ci end function _add_constraint_with_parameters_on_function( model::Optimizer, f::MOI.ScalarQuadraticFunction{T}, s::S, ) where {T,S<:MOI.AbstractScalarSet} pf = ParametricQuadraticFunction(f) _cache_multiplicative_params!(model, pf) _cache_set_constant!(pf, s) _update_cache!(pf, model) func = _current_function(pf) if !_is_affine(func) fq = func inner_ci = MOI.Utilities.normalize_and_add_constraint(model.optimizer, fq, s) model.last_quad_add_added += 1 outer_ci = MOI.ConstraintIndex{MOI.ScalarQuadraticFunction{T},S}( model.last_quad_add_added, ) model.quadratic_outer_to_inner[outer_ci] = inner_ci model.constraint_outer_to_inner[outer_ci] = inner_ci else fa = MOI.ScalarAffineFunction(func.affine_terms, func.constant) inner_ci = MOI.Utilities.normalize_and_add_constraint(model.optimizer, fa, s) model.last_quad_add_added += 1 outer_ci = MOI.ConstraintIndex{MOI.ScalarQuadraticFunction{T},S}( model.last_quad_add_added, ) # This part is used to remember that ci came from a quadratic function # It is particularly useful because sometimes the constraint mutates model.quadratic_outer_to_inner[outer_ci] = inner_ci model.constraint_outer_to_inner[outer_ci] = inner_ci end model.quadratic_constraint_cache[inner_ci] = pf model.quadratic_constraint_cache_set[inner_ci] = s return outer_ci end function _is_affine(f::MOI.ScalarQuadraticFunction) if isempty(f.quadratic_terms) return true end return false end function MOI.add_constraint( model::Optimizer, f::MOI.ScalarQuadraticFunction{T}, set::MOI.AbstractScalarSet, ) where {T} if !_has_parameters(f) return _add_constraint_direct_and_cache_map!(model, f, set) else return _add_constraint_with_parameters_on_function(model, f, set) end end function MOI.delete( model::Optimizer, c::MOI.ConstraintIndex{F,S}, ) where {F<:MOI.ScalarQuadraticFunction,S<:MOI.AbstractSet} if haskey(model.quadratic_outer_to_inner, c) ci_inner = model.quadratic_outer_to_inner[c] deleteat!(model.quadratic_outer_to_inner, c) deleteat!(model.quadratic_constraint_cache, c) deleteat!(model.quadratic_constraint_cache_set, c) MOI.delete(model.optimizer, ci_inner) else MOI.delete(model.optimizer, c) end deleteat!(model.constraint_outer_to_inner, c) return end function MOI.delete( model::Optimizer, c::MOI.ConstraintIndex{F,S}, ) where {F<:MOI.ScalarAffineFunction,S<:MOI.AbstractSet} if haskey(model.affine_outer_to_inner, c) ci_inner = model.affine_outer_to_inner[c] delete!(model.affine_outer_to_inner, c) delete!(model.affine_constraint_cache, c) delete!(model.affine_constraint_cache_set, c) MOI.delete(model.optimizer, ci_inner) else MOI.delete(model.optimizer, c) end delete!(model.constraint_outer_to_inner, c) return end function MOI.delete( model::Optimizer, c::MOI.ConstraintIndex{F,S}, ) where {F<:Union{MOI.VariableIndex,MOI.VectorOfVariables},S<:MOI.AbstractSet} MOI.delete(model.optimizer, c) delete!(model.constraint_outer_to_inner, c) return end function MOI.delete( model::Optimizer, c::MOI.ConstraintIndex{F,S}, ) where {F<:MOI.VectorAffineFunction,S<:MOI.AbstractSet} MOI.delete(model.optimizer, c) delete!(model.constraint_outer_to_inner, c) deleteat!(model.vector_affine_constraint_cache, c) return end # # Objective # function MOI.supports( model::Optimizer, attr::Union{ MOI.ObjectiveSense, MOI.ObjectiveFunction{MOI.VariableIndex}, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{T}}, }, ) where {T} return MOI.supports(model.optimizer, attr) end function MOI.supports( model::Optimizer, ::MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{T}}, ) where {T} return MOI.supports( model.optimizer, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{T}}(), ) end function MOI.modify( model::Optimizer, c::MOI.ObjectiveFunction{F}, chg::Union{MOI.ScalarConstantChange{T},MOI.ScalarCoefficientChange{T}}, ) where {F<:MathOptInterface.AbstractScalarFunction,T} if model.quadratic_objective_cache !== nothing || model.affine_objective_cache !== nothing || !isempty(model.quadratic_objective_cache_product) error("Parametric objective cannot be modified") end MOI.modify(model.optimizer, c, chg) MOI.modify(model.original_objective_cache, c, chg) return end function MOI.get(model::Optimizer, attr::MOI.ObjectiveSense) return MOI.get(model.optimizer, attr) end function MOI.get(model::Optimizer, attr::MOI.ObjectiveFunctionType) return MOI.get(model.original_objective_cache, attr) end function MOI.get(model::Optimizer, attr::MOI.ObjectiveFunction) return MOI.get(model.original_objective_cache, attr) end function _empty_objective_function_caches!(model::Optimizer{T}) where {T} model.affine_objective_cache = nothing model.quadratic_objective_cache = nothing model.original_objective_cache = MOI.Utilities.ObjectiveContainer{T}() return end function MOI.set( model::Optimizer, attr::MOI.ObjectiveFunction, f::MOI.ScalarAffineFunction{T}, ) where {T} # clear previously defined objetive function cache _empty_objective_function_caches!(model) if !_has_parameters(f) MOI.set(model.optimizer, attr, f) else pf = ParametricAffineFunction(f) _update_cache!(pf, model) MOI.set(model.optimizer, attr, _current_function(pf)) model.affine_objective_cache = pf end MOI.set(model.original_objective_cache, attr, f) return end function MOI.set( model::Optimizer, attr::MOI.ObjectiveFunction{F}, f::F, ) where {F<:MOI.ScalarQuadraticFunction{T}} where {T} # clear previously defined objetive function cache _empty_objective_function_caches!(model) if !_has_parameters(f) MOI.set(model.optimizer, attr, f) else pf = ParametricQuadraticFunction(f) _cache_multiplicative_params!(model, pf) _update_cache!(pf, model) func = _current_function(pf) MOI.set( model.optimizer, MOI.ObjectiveFunction{( _is_affine(func) ? MOI.ScalarAffineFunction{T} : MOI.ScalarQuadraticFunction{T} )}(), # func, ( _is_affine(func) ? MOI.ScalarAffineFunction(func.affine_terms, func.constant) : func ), ) model.quadratic_objective_cache = pf end MOI.set(model.original_objective_cache, attr, f) return end function MOI.set( model::Optimizer, attr::MOI.ObjectiveFunction, v::MOI.VariableIndex, ) if _is_parameter(v) error("Cannot use a parameter as objective function alone") elseif !_variable_in_model(model, v) error("Variable not in the model") end MOI.set(model.optimizer, attr, model.variables[v]) MOI.set(model.original_objective_cache, attr, v) return end function MOI.set( model::Optimizer, attr::MOI.ObjectiveSense, sense::MOI.OptimizationSense, ) MOI.set(model.optimizer, attr, sense) return end # # Other # function MOI.supports_incremental_interface(model::Optimizer) return MOI.supports_incremental_interface(model.optimizer) end # # Attributes # function MOI.supports(model::Optimizer, ::MOI.Name) return MOI.supports(model.optimizer, MOI.Name()) end MOI.get(model::Optimizer, ::MOI.Name) = MOI.get(model.optimizer, MOI.Name()) function MOI.set(model::Optimizer, ::MOI.Name, name::String) return MOI.set(model.optimizer, MOI.Name(), name) end function MOI.get(model::Optimizer, ::MOI.ListOfModelAttributesSet) return MOI.get(model.optimizer, MOI.ListOfModelAttributesSet()) end function MOI.get(model::Optimizer, ::MOI.ListOfVariableAttributesSet) return MOI.get(model.optimizer, MOI.ListOfVariableAttributesSet()) end function MOI.get( model::Optimizer, ::MOI.ListOfConstraintAttributesSet{F,S}, ) where {F,S} if F === MOI.ScalarQuadraticFunction error( "MOI.ListOfConstraintAttributesSet is not implemented for ScalarQuadraticFunction.", ) end return MOI.get(model.optimizer, MOI.ListOfConstraintAttributesSet{F,S}()) end function MOI.get(model::Optimizer, ::MOI.NumberOfVariables) return MOI.get(model, NumberOfPureVariables()) + MOI.get(model, NumberOfParameters()) end function MOI.get(model::Optimizer, ::MOI.NumberOfConstraints{F,S}) where {S,F} return length(model.constraint_outer_to_inner[F, S]) end function MOI.get(model::Optimizer, ::MOI.ListOfVariableIndices) return vcat( MOI.get(model, ListOfPureVariableIndices()), v_idx.(MOI.get(model, ListOfParameterIndices())), ) end function MOI.get(model::Optimizer, ::MOI.ListOfConstraintTypesPresent) constraint_types = MOI.Utilities.DoubleDicts.nonempty_outer_keys( model.constraint_outer_to_inner, ) return collect(constraint_types) end function MOI.get( model::Optimizer, ::MOI.ListOfConstraintIndices{F,S}, ) where {S,F} list = collect(values(model.constraint_outer_to_inner[F, S])) sort!(list, lt = (x, y) -> (x.value < y.value)) return list end function MOI.supports(model::Optimizer, attr::MOI.AbstractOptimizerAttribute) return MOI.supports(model.optimizer, attr) end function MOI.get(model::Optimizer, attr::MOI.AbstractOptimizerAttribute) return MOI.get(model.optimizer, attr) end function MOI.set(model::Optimizer, attr::MOI.AbstractOptimizerAttribute, value) MOI.set(model.optimizer, attr, value) return end function MOI.set(model::Optimizer, attr::MOI.RawOptimizerAttribute, val::Any) MOI.set(model.optimizer, attr, val) return end function MOI.get(model::Optimizer, ::MOI.SolverName) name = MOI.get(model.optimizer, MOI.SolverName()) return "Parametric Optimizer with $(name) attached" end function MOI.get(model::Optimizer, ::MOI.SolverVersion) return MOI.get(model.optimizer, MOI.SolverVersion()) end # # Solutions Attributes # function MOI.get(model::Optimizer, attr::MOI.AbstractModelAttribute) return MOI.get(model.optimizer, attr) end function MOI.get( model::Optimizer, attr::MOI.VariablePrimal, v::MOI.VariableIndex, ) if _parameter_in_model(model, v) return model.parameters[p_idx(v)] elseif _variable_in_model(model, v) return MOI.get(model.optimizer, attr, model.variables[v]) else error("Variable not in the model") end end function MOI.get( model::Optimizer, attr::T, ) where { T<:Union{ MOI.TerminationStatus, MOI.ObjectiveValue, MOI.DualObjectiveValue, MOI.PrimalStatus, MOI.DualStatus, }, } return MOI.get(model.optimizer, attr) end function MOI.get( model::Optimizer, attr::MOI.AbstractConstraintAttribute, c::MOI.ConstraintIndex, ) optimizer_ci = get(model.constraint_outer_to_inner, c, c) return MOI.get(model.optimizer, attr, optimizer_ci) end # # Special Attributes # struct NumberOfPureVariables <: MOI.AbstractModelAttribute end function MOI.get(model::Optimizer, ::NumberOfPureVariables) return length(model.variables) end struct ListOfPureVariableIndices <: MOI.AbstractModelAttribute end function MOI.get(model::Optimizer, ::ListOfPureVariableIndices) return collect(keys(model.variables))::Vector{MOI.VariableIndex} end struct NumberOfParameters <: MOI.AbstractModelAttribute end function MOI.get(model::Optimizer, ::NumberOfParameters) return length(model.parameters) end struct ListOfParameterIndices <: MOI.AbstractModelAttribute end function MOI.get(model::Optimizer, ::ListOfParameterIndices) return collect(keys(model.parameters))::Vector{ParameterIndex} end """ ParameterValue <: MOI.AbstractVariableAttribute Attribute defined to set and get parameter values # Example ```julia MOI.set(model, POI.ParameterValue(), p, 2.0) MOI.get(model, POI.ParameterValue(), p) ``` """ struct ParameterValue <: MOI.AbstractVariableAttribute end # We need a CachingOptimizer fallback to # get ParameterValue working correctly on JuMP # TODO: Think of a better solution for this function MOI.set( opt::MOI.Utilities.CachingOptimizer, ::ParameterValue, var::MOI.VariableIndex, val::Float64, ) ci = MOI.ConstraintIndex{MOI.VariableIndex,MOI.Parameter{Float64}}(var.value) set = MOI.set(opt, MOI.ConstraintSet(), ci, MOI.Parameter(val)) return nothing end function MOI.set( model::Optimizer, ::ParameterValue, var::MOI.VariableIndex, val::Float64, ) ci = MOI.ConstraintIndex{MOI.VariableIndex,MOI.Parameter{Float64}}(var.value) set = MOI.set(model, MOI.ConstraintSet(), ci, MOI.Parameter(val)) return nothing end function MOI.set( opt::MOI.Utilities.CachingOptimizer, ::ParameterValue, vi::MOI.VariableIndex, val::Real, ) return MOI.set(opt, ParameterValue(), vi, convert(Float64, val)) end function MOI.set( model::Optimizer, ::ParameterValue, vi::MOI.VariableIndex, val::Real, ) return MOI.set(model, ParameterValue(), vi, convert(Float64, val)) end function MOI.get( opt::MOI.Utilities.CachingOptimizer, ::ParameterValue, var::MOI.VariableIndex, ) ci = MOI.ConstraintIndex{MOI.VariableIndex,MOI.Parameter{Float64}}(var.value) set = MOI.get(opt, MOI.ConstraintSet(), ci) return set.value end function MOI.get(model::Optimizer, ::ParameterValue, var::MOI.VariableIndex) return model.parameters[p_idx(var)] end """ ConstraintsInterpretation <: MOI.AbstractOptimizerAttribute Attribute to define how [`POI.Optimizer`](@ref) should interpret constraints. - `POI.ONLY_CONSTRAINTS`: Only interpret `ScalarAffineFunction` constraints as linear constraints If an expression such as `x >= p1 + p2` appears it will be trated like a new constraint. **This is the default behaviour of [`POI.Optimizer`](@ref)** - `POI.ONLY_BOUNDS`: Only interpret `ScalarAffineFunction` constraints as a variable bound. This is valid for constraints such as `x >= p` or `x >= p1 + p2`. If a constraint `x1 + x2 >= p` appears, which is not a valid variable bound it will throw an error. - `POI.BOUNDS_AND_CONSTRAINTS`: Interpret `ScalarAffineFunction` constraints as a variable bound if they are a valid variable bound, i.e., `x >= p` or `x >= p1 + p2` and interpret them as linear constraints otherwise. # Example ```julia MOI.set(model, POI.InterpretConstraintsAsBounds(), POI.ONLY_BOUNDS) MOI.set(model, POI.InterpretConstraintsAsBounds(), POI.ONLY_CONSTRAINTS) MOI.set(model, POI.InterpretConstraintsAsBounds(), POI.BOUNDS_AND_CONSTRAINTS) ``` """ struct ConstraintsInterpretation <: MOI.AbstractOptimizerAttribute end function MOI.set( model::Optimizer, ::ConstraintsInterpretation, value::ConstraintsInterpretationCode, ) return model.constraints_interpretation = value end struct QuadraticObjectiveCoef <: MOI.AbstractModelAttribute end function _set_quadratic_product_in_obj!(model::Optimizer{T}) where {T} n = length(model.quadratic_objective_cache_product) f = if model.affine_objective_cache !== nothing _current_function(model.affine_objective_cache) elseif model.quadratic_objective_cache !== nothing _current_function(model.quadratic_objective_cache) else F = MOI.get(model.original_objective_cache, MOI.ObjectiveFunctionType()) MOI.get(model.original_objective_cache, MOI.ObjectiveFunction{F}()) end F = typeof(f) quadratic_prods_vector = MOI.ScalarQuadraticTerm{T}[] sizehint!(quadratic_prods_vector, n) for ((x, y), fparam) in model.quadratic_objective_cache_product # x, y = prod_var evaluated_fparam = _evaluate_parametric_expression(model, fparam) push!( quadratic_prods_vector, MOI.ScalarQuadraticTerm(evaluated_fparam, x, y), ) end f_new = if F <: MOI.VariableIndex MOI.ScalarQuadraticFunction( quadratic_prods_vector, MOI.ScalarAffineTerm{T}[MOI.ScalarAffineTerm{T}(1.0, f)], 0.0, ) elseif F <: MOI.ScalarAffineFunction{T} MOI.ScalarQuadraticFunction(quadratic_prods_vector, f.terms, f.constant) elseif F <: MOI.ScalarQuadraticFunction{T} quadratic_terms = vcat(f.quadratic_terms, quadratic_prods_vector) MOI.ScalarQuadraticFunction(quadratic_terms, f.affine_terms, f.constant) end MOI.set( model.optimizer, MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{T}}(), f_new, ) return end function _evaluate_parametric_expression(model::Optimizer, p::MOI.VariableIndex) return model.parameters[p_idx(p)] end function _evaluate_parametric_expression( model::Optimizer, fparam::MOI.ScalarAffineFunction{T}, ) where {T} constant = fparam.constant terms = fparam.terms evaluated_parameter_expression = zero(T) for term in terms coef = term.coefficient p = term.variable evaluated_parameter_expression += coef * model.parameters[p_idx(p)] evaluated_parameter_expression += constant end return evaluated_parameter_expression end function MOI.set( model::Optimizer, ::QuadraticObjectiveCoef, (x1, x2)::Tuple{MOI.VariableIndex,MOI.VariableIndex}, ::Nothing, ) if x1.value > x2.value aux = x1 x1 = x2 x2 = aux end delete!(model.quadratic_objective_cache_product, (x1, x2)) model.quadratic_objective_cache_product_changed = true return end function MOI.set( model::Optimizer, ::QuadraticObjectiveCoef, (x1, x2)::Tuple{MOI.VariableIndex,MOI.VariableIndex}, f_param::Union{MOI.VariableIndex,MOI.ScalarAffineFunction{T}}, ) where {T} if x1.value > x2.value aux = x1 x1 = x2 x2 = aux end model.quadratic_objective_cache_product[(x1, x2)] = f_param model.quadratic_objective_cache_product_changed = true return end function MOI.get( model::Optimizer, ::QuadraticObjectiveCoef, (x1, x2)::Tuple{MOI.VariableIndex,MOI.VariableIndex}, ) if x1.value > x2.value aux = x1 x1 = x2 x2 = aux end if haskey(model.quadratic_objective_cache_product, (x1, x2)) return model.quadratic_objective_cache_product[(x1, x2)] else throw( ErrorException( "Parameter not set in product of variables ($x1,$x2)", ), ) end end # # Optimize # function MOI.optimize!(model::Optimizer) if !isempty(model.updated_parameters) update_parameters!(model) end if ( !isempty(model.quadratic_objective_cache_product) || model.quadratic_objective_cache_product_changed ) model.quadratic_objective_cache_product_changed = false _set_quadratic_product_in_obj!(model) end MOI.optimize!(model.optimizer) if MOI.get(model, MOI.DualStatus()) != MOI.NO_SOLUTION && model.evaluate_duals _compute_dual_of_parameters!(model) end return end # # compute_conflict! # function MOI.compute_conflict!(model::Optimizer) return MOI.compute_conflict!(model.optimizer) end function MOI.get( model::Optimizer, attr::MOI.ConstraintConflictStatus, ci::MOI.ConstraintIndex{MOI.VariableIndex,<:MOI.Parameter}, ) return MOI.MAYBE_IN_CONFLICT end
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
code
8511
# Copyright (c) 2020: Tomás Gutierrez and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. module ParametricOptInterface using MathOptInterface const MOI = MathOptInterface @enum ConstraintsInterpretationCode ONLY_CONSTRAINTS ONLY_BOUNDS BOUNDS_AND_CONSTRAINTS # # Parameter Index # const SIMPLE_SCALAR_SETS{T} = Union{MOI.LessThan{T},MOI.GreaterThan{T},MOI.EqualTo{T}} const PARAMETER_INDEX_THRESHOLD = Int64(4_611_686_018_427_387_904) # div(typemax(Int64),2)+1 struct ParameterIndex index::Int64 end function p_idx(vi::MOI.VariableIndex)::ParameterIndex return ParameterIndex(vi.value - PARAMETER_INDEX_THRESHOLD) end function v_idx(pi::ParameterIndex)::MOI.VariableIndex return MOI.VariableIndex(pi.index + PARAMETER_INDEX_THRESHOLD) end function p_val(vi::MOI.VariableIndex)::Int64 return vi.value - PARAMETER_INDEX_THRESHOLD end function p_val(ci::MOI.ConstraintIndex)::Int64 return ci.value - PARAMETER_INDEX_THRESHOLD end # # MOI Special structure helpers # # Utilities for using a CleverDict in Parameters function MOI.Utilities.CleverDicts.index_to_key( ::Type{ParameterIndex}, index::Int64, ) return ParameterIndex(index) end function MOI.Utilities.CleverDicts.key_to_index(key::ParameterIndex) return key.index end const ParamTo{T} = MOI.Utilities.CleverDicts.CleverDict{ ParameterIndex, T, typeof(MOI.Utilities.CleverDicts.key_to_index), typeof(MOI.Utilities.CleverDicts.index_to_key), } const VariableMap = MOI.Utilities.CleverDicts.CleverDict{ MOI.VariableIndex, MOI.VariableIndex, typeof(MOI.Utilities.CleverDicts.key_to_index), typeof(MOI.Utilities.CleverDicts.index_to_key), } const DoubleDict{T} = MOI.Utilities.DoubleDicts.DoubleDict{T} const DoubleDictInner{F,S,T} = MOI.Utilities.DoubleDicts.DoubleDictInner{F,S,T} # # parametric functions # include("parametric_functions.jl") """ Optimizer{T, OT <: MOI.ModelLike} <: MOI.AbstractOptimizer Declares a `Optimizer`, which allows the handling of parameters in a optimization model. ## Keyword arguments - `evaluate_duals::Bool`: If `true`, evaluates the dual of parameters. Users might want to set it to `false` to increase performance when the duals of parameters are not necessary. Defaults to `true`. - `save_original_objective_and_constraints`: If `true` saves the orginal function and set of the constraints as well as the original objective function inside [`POI.Optimizer`](@ref). This is useful for printing the model but greatly increases the memory footprint. Users might want to set it to `false` to increase performance in applications where you don't need to query the original expressions provided to the model in constraints or in the objective. Note that this might break printing or queries such as `MOI.get(model, MOI.ConstraintFunction(), c)`. Defaults to `true`. ## Example ```julia-repl julia> ParametricOptInterface.Optimizer(GLPK.Optimizer()) ParametricOptInterface.Optimizer{Float64,GLPK.Optimizer} ``` """ mutable struct Optimizer{T,OT<:MOI.ModelLike} <: MOI.AbstractOptimizer optimizer::OT parameters::ParamTo{T} parameters_name::Dict{MOI.VariableIndex,String} # The updated_parameters dictionary has the same dimension of the # parameters dictionary and if the value stored is a NaN is means # that the parameter has not been updated. updated_parameters::ParamTo{T} variables::VariableMap last_variable_index_added::Int64 last_parameter_index_added::Int64 # mapping of all constraints: necessary for getters constraint_outer_to_inner::DoubleDict{MOI.ConstraintIndex} # affine constraint data last_affine_added::Int64 # Store the map for SAFs (some might be transformed into VI) affine_outer_to_inner::DoubleDict{MOI.ConstraintIndex} # Clever cache of data (inner key) affine_constraint_cache::DoubleDict{ParametricAffineFunction{T}} # Store original constraint set (inner key) affine_constraint_cache_set::DoubleDict{MOI.AbstractScalarSet} # quadratic constraitn data last_quad_add_added::Int64 # Store the map for SQFs (some might be transformed into SAF) # for instance p*p + var -> ScalarAffine(var) quadratic_outer_to_inner::DoubleDict{MOI.ConstraintIndex} # Clever cache of data (inner key) quadratic_constraint_cache::DoubleDict{ParametricQuadraticFunction{T}} # Store original constraint set (inner key) quadratic_constraint_cache_set::DoubleDict{MOI.AbstractScalarSet} # objective function data # Clever cache of data (at most one can be !== nothing) affine_objective_cache::Union{Nothing,ParametricAffineFunction{T}} quadratic_objective_cache::Union{Nothing,ParametricQuadraticFunction{T}} original_objective_cache::MOI.Utilities.ObjectiveContainer{T} # Store parametric expressions for product of variables quadratic_objective_cache_product::Dict{ Tuple{MOI.VariableIndex,MOI.VariableIndex}, MOI.AbstractFunction, } quadratic_objective_cache_product_changed::Bool # vector affine function data # vector_constraint_cache::DoubleDict{Vector{MOI.VectorAffineTerm{T}}} # Clever cache of data (inner key) vector_affine_constraint_cache::DoubleDict{ ParametricVectorAffineFunction{T}, } # multiplicative_parameters::Set{Int64} dual_value_of_parameters::Vector{T} # params evaluate_duals::Bool number_of_parameters_in_model::Int64 constraints_interpretation::ConstraintsInterpretationCode save_original_objective_and_constraints::Bool function Optimizer( optimizer::OT; evaluate_duals::Bool = true, save_original_objective_and_constraints::Bool = true, ) where {OT} T = Float64 return new{T,OT}( optimizer, MOI.Utilities.CleverDicts.CleverDict{ParameterIndex,T}( MOI.Utilities.CleverDicts.key_to_index, MOI.Utilities.CleverDicts.index_to_key, ), Dict{MOI.VariableIndex,String}(), MOI.Utilities.CleverDicts.CleverDict{ParameterIndex,T}( MOI.Utilities.CleverDicts.key_to_index, MOI.Utilities.CleverDicts.index_to_key, ), MOI.Utilities.CleverDicts.CleverDict{ MOI.VariableIndex, MOI.VariableIndex, }( MOI.Utilities.CleverDicts.key_to_index, MOI.Utilities.CleverDicts.index_to_key, ), 0, PARAMETER_INDEX_THRESHOLD, DoubleDict{MOI.ConstraintIndex}(), # affine constraint 0, DoubleDict{MOI.ConstraintIndex}(), DoubleDict{ParametricAffineFunction{T}}(), DoubleDict{MOI.AbstractScalarSet}(), # quadratic constraint 0, DoubleDict{MOI.ConstraintIndex}(), DoubleDict{ParametricQuadraticFunction{T}}(), DoubleDict{MOI.AbstractScalarSet}(), # objective nothing, nothing, # nothing, MOI.Utilities.ObjectiveContainer{T}(), Dict{ Tuple{MOI.VariableIndex,MOI.VariableIndex}, MOI.AbstractFunction, }(), false, # vec affine # DoubleDict{Vector{MOI.VectorAffineTerm{T}}}(), DoubleDict{ParametricVectorAffineFunction{T}}(), # other Set{Int64}(), Vector{T}(), evaluate_duals, 0, ONLY_CONSTRAINTS, save_original_objective_and_constraints, ) end end function _next_variable_index!(model::Optimizer) return model.last_variable_index_added += 1 end function _next_parameter_index!(model::Optimizer) return model.last_parameter_index_added += 1 end function _update_number_of_parameters!(model::Optimizer) return model.number_of_parameters_in_model += 1 end function _parameter_in_model(model::Optimizer, v::MOI.VariableIndex) return PARAMETER_INDEX_THRESHOLD < v.value <= model.last_parameter_index_added end function _variable_in_model(model::Optimizer, v::MOI.VariableIndex) return 0 < v.value <= model.last_variable_index_added end include("duals.jl") include("update_parameters.jl") include("MOI_wrapper.jl") end # module
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
code
4815
# Copyright (c) 2020: Tomás Gutierrez and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. function _compute_dual_of_parameters!(model::Optimizer{T}) where {T} model.dual_value_of_parameters = zeros(T, model.number_of_parameters_in_model) _update_duals_from_affine_constraints!(model) _update_duals_from_vector_affine_constraints!(model) _update_duals_from_quadratic_constraints!(model) if model.affine_objective_cache !== nothing _update_duals_from_objective!(model, model.affine_objective_cache) end if model.quadratic_objective_cache !== nothing _update_duals_from_objective!(model, model.quadratic_objective_cache) end return end function _update_duals_from_affine_constraints!(model::Optimizer) for (F, S) in keys(model.affine_constraint_cache.dict) affine_constraint_cache_inner = model.affine_constraint_cache[F, S] # barrier for type instability _compute_parameters_in_ci!(model, affine_constraint_cache_inner) end return end function _update_duals_from_vector_affine_constraints!(model::Optimizer) for (F, S) in keys(model.vector_affine_constraint_cache.dict) vector_affine_constraint_cache_inner = model.vector_affine_constraint_cache[F, S] # barrier for type instability _compute_parameters_in_ci!(model, vector_affine_constraint_cache_inner) end return end function _update_duals_from_quadratic_constraints!(model::Optimizer) for (F, S) in keys(model.quadratic_constraint_cache.dict) quadratic_constraint_cache_inner = model.quadratic_constraint_cache[F, S] # barrier for type instability _compute_parameters_in_ci!(model, quadratic_constraint_cache_inner) end return end function _compute_parameters_in_ci!( model::OT, constraint_cache_inner::DoubleDictInner{F,S,V}, ) where {OT,F,S,V} for (inner_ci, pf) in constraint_cache_inner _compute_parameters_in_ci!(model, pf, inner_ci) end return end function _compute_parameters_in_ci!( model::Optimizer{T}, pf, ci::MOI.ConstraintIndex{F,S}, ) where {F,S} where {T} cons_dual = MOI.get(model.optimizer, MOI.ConstraintDual(), ci) for term in pf.p model.dual_value_of_parameters[p_val(term.variable)] -= cons_dual * term.coefficient end return end function _compute_parameters_in_ci!( model::Optimizer{T}, pf::ParametricVectorAffineFunction{T}, ci::MOI.ConstraintIndex{F,S}, ) where {F<:MOI.VectorAffineFunction{T},S} where {T} cons_dual = MOI.get(model.optimizer, MOI.ConstraintDual(), ci) for term in pf.p model.dual_value_of_parameters[p_val(term.scalar_term.variable)] -= cons_dual[term.output_index] * term.scalar_term.coefficient end return end function _update_duals_from_objective!(model::Optimizer{T}, pf) where {T} is_min = MOI.get(model.optimizer, MOI.ObjectiveSense()) == MOI.MIN_SENSE for param in pf.p model.dual_value_of_parameters[p_val(param.variable)] += ifelse(is_min, 1, -1) * param.coefficient end return end """ ParameterDual <: MOI.AbstractVariableAttribute Attribute defined to get the dual values associated to parameters # Example ```julia MOI.get(model, POI.ParameterValue(), p) ``` """ struct ParameterDual <: MOI.AbstractVariableAttribute end MOI.is_set_by_optimize(::ParametricOptInterface.ParameterDual) = true function MOI.get( model::Optimizer{T}, ::ParameterDual, v::MOI.VariableIndex, ) where {T} if !_is_additive( model, MOI.ConstraintIndex{MOI.VariableIndex,MOI.Parameter{T}}(v.value), ) error("Cannot compute the dual of a multiplicative parameter") end return model.dual_value_of_parameters[p_val(v)] end function MOI.get( model::Optimizer{T}, ::MOI.ConstraintDual, cp::MOI.ConstraintIndex{MOI.VariableIndex,MOI.Parameter{T}}, ) where {T} if !model.evaluate_duals throw( MOI.GetAttributeNotAllowed( MOI.ConstraintDual(), "$(MOI.ConstraintDual()) not available when " * "evaluate_duals is set to false. " * "Create an optimizer such as POI.Optimizer(HiGHS.Optimizer(); evaluate_duals = true) to enable this feature.", ), ) end if !_is_additive(model, cp) error("Cannot compute the dual of a multiplicative parameter") end return model.dual_value_of_parameters[p_val(cp)] end function _is_additive(model::Optimizer, cp::MOI.ConstraintIndex) if cp.value in model.multiplicative_parameters return false end return true end
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
code
13584
abstract type ParametricFunction{T} end function _cache_set_constant!( f::ParametricFunction{T}, s::Union{MOI.LessThan{T},MOI.GreaterThan{T},MOI.EqualTo{T}}, ) where {T} f.set_constant = MOI.constant(s) return end function _cache_set_constant!( ::ParametricFunction{T}, ::MOI.AbstractScalarSet, ) where {T} return end mutable struct ParametricQuadraticFunction{T} <: ParametricFunction{T} # helper to efficiently update affine terms affine_data::Dict{MOI.VariableIndex,T} affine_data_np::Dict{MOI.VariableIndex,T} # constant * parameter * variable (in this order) pv::Vector{MOI.ScalarQuadraticTerm{T}} # constant * parameter * parameter pp::Vector{MOI.ScalarQuadraticTerm{T}} # constant * variable * variable vv::Vector{MOI.ScalarQuadraticTerm{T}} # constant * parameter p::Vector{MOI.ScalarAffineTerm{T}} # constant * variable v::Vector{MOI.ScalarAffineTerm{T}} # constant (does not include the set constant) c::T # to avoid unnecessary lookups in updates set_constant::T # cache data that is inside the solver to avoid slow getters current_terms_with_p::Dict{MOI.VariableIndex,T} current_constant::T # computed on runtime # updated_terms_with_p::Dict{MOI.VariableIndex,T} # updated_constant::T end function ParametricQuadraticFunction( f::MOI.ScalarQuadraticFunction{T}, ) where {T} v, p = _split_affine_terms(f.affine_terms) pv, pp, vv = _split_quadratic_terms(f.quadratic_terms) # find variables related to parameters # so that we only cache the important part of the v (affine part) v_in_pv = Set{MOI.VariableIndex}() sizehint!(v_in_pv, length(pv)) for term in pv push!(v_in_pv, term.variable_2) end affine_data = Dict{MOI.VariableIndex,T}() sizehint!(affine_data, length(v_in_pv)) affine_data_np = Dict{MOI.VariableIndex,T}() sizehint!(affine_data, length(v)) for term in v if term.variable in v_in_pv base = get(affine_data, term.variable, zero(T)) affine_data[term.variable] = term.coefficient + base else base = get(affine_data_np, term.variable, zero(T)) affine_data_np[term.variable] = term.coefficient + base end end return ParametricQuadraticFunction{T}( affine_data, affine_data_np, pv, pp, vv, p, v, f.constant, zero(T), Dict{MOI.VariableIndex,T}(), zero(T), ) end function _split_quadratic_terms( terms::Vector{MOI.ScalarQuadraticTerm{T}}, ) where {T} num_vv, num_pp, num_pv = _count_scalar_quadratic_terms_types(terms) pp = Vector{MOI.ScalarQuadraticTerm{T}}(undef, num_pp) # parameter x parameter pv = Vector{MOI.ScalarQuadraticTerm{T}}(undef, num_pv) # parameter (as a variable) x variable vv = Vector{MOI.ScalarQuadraticTerm{T}}(undef, num_vv) # variable x variable i_vv = 1 i_pp = 1 i_pv = 1 for term in terms if _is_variable(term.variable_1) if _is_variable(term.variable_2) vv[i_vv] = term i_vv += 1 else pv[i_pv] = MOI.ScalarQuadraticTerm( term.coefficient, term.variable_2, term.variable_1, ) i_pv += 1 end else if _is_variable(term.variable_2) pv[i_pv] = term i_pv += 1 else pp[i_pp] = term i_pp += 1 end end end return pv, pp, vv end function _count_scalar_quadratic_terms_types( terms::Vector{MOI.ScalarQuadraticTerm{T}}, ) where {T} num_vv = 0 num_pp = 0 num_pv = 0 for term in terms if _is_variable(term.variable_1) if _is_variable(term.variable_2) num_vv += 1 else num_pv += 1 end else if _is_variable(term.variable_2) num_pv += 1 else num_pp += 1 end end end return num_vv, num_pp, num_pv end function _original_function(f::ParametricQuadraticFunction{T}) where {T} return MOI.ScalarQuadraticFunction{T}( vcat(f.pv, f.pp, f.vv), vcat(f.p, f.v), f.c, ) end function _current_function(f::ParametricQuadraticFunction{T}) where {T} affine = MOI.ScalarAffineTerm{T}[] sizehint!(affine, length(f.current_terms_with_p) + length(f.affine_data_np)) for (v, c) in f.current_terms_with_p push!(affine, MOI.ScalarAffineTerm{T}(c, v)) end for (v, c) in f.affine_data_np push!(affine, MOI.ScalarAffineTerm{T}(c, v)) end return MOI.ScalarQuadraticFunction{T}(f.vv, affine, f.current_constant) end function _parametric_constant( model, f::ParametricQuadraticFunction{T}, ) where {T} # do not add set_function here param_constant = f.c for term in f.p param_constant += term.coefficient * model.parameters[p_idx(term.variable)] end for term in f.pp param_constant += term.coefficient * model.parameters[p_idx(term.variable_1)] * model.parameters[p_idx(term.variable_2)] end return param_constant end function _delta_parametric_constant( model, f::ParametricQuadraticFunction{T}, ) where {T} delta_constant = zero(T) for term in f.p p = p_idx(term.variable) if !isnan(model.updated_parameters[p]) delta_constant += term.coefficient * (model.updated_parameters[p] - model.parameters[p]) end end for term in f.pp p1 = p_idx(term.variable_1) p2 = p_idx(term.variable_2) isnan_1 = isnan(model.updated_parameters[p1]) isnan_2 = isnan(model.updated_parameters[p2]) if !isnan_1 || !isnan_2 new_1 = ifelse( isnan_1, model.parameters[p1], model.updated_parameters[p1], ) new_2 = ifelse( isnan_2, model.parameters[p2], model.updated_parameters[p2], ) delta_constant += term.coefficient * (new_1 * new_2 - model.parameters[p1] * model.parameters[p2]) end end return delta_constant end function _parametric_affine_terms( model, f::ParametricQuadraticFunction{T}, ) where {T} param_terms_dict = Dict{MOI.VariableIndex,T}() sizehint!(param_terms_dict, length(f.pv)) # remember a variable may appear more than once in pv for term in f.pv base = get(param_terms_dict, term.variable_2, zero(T)) param_terms_dict[term.variable_2] = base + term.coefficient * model.parameters[p_idx(term.variable_1)] end # by definition affine data only contains variables that appear in pv for (var, coef) in f.affine_data param_terms_dict[var] += coef end return param_terms_dict end function _delta_parametric_affine_terms( model, f::ParametricQuadraticFunction{T}, ) where {T} delta_terms_dict = Dict{MOI.VariableIndex,T}() sizehint!(delta_terms_dict, length(f.pv)) # remember a variable may appear more than once in pv for term in f.pv p = p_idx(term.variable_1) if !isnan(model.updated_parameters[p]) base = get(delta_terms_dict, term.variable_2, zero(T)) delta_terms_dict[term.variable_2] = base + term.coefficient * (model.updated_parameters[p] - model.parameters[p]) end end return delta_terms_dict end function _update_cache!(f::ParametricQuadraticFunction{T}, model) where {T} f.current_constant = _parametric_constant(model, f) f.current_terms_with_p = _parametric_affine_terms(model, f) return nothing end mutable struct ParametricAffineFunction{T} <: ParametricFunction{T} # constant * parameter p::Vector{MOI.ScalarAffineTerm{T}} # constant * variable v::Vector{MOI.ScalarAffineTerm{T}} # constant c::T # to avoid unnecessary lookups in updates set_constant::T # cache to avoid slow getters current_constant::T end function ParametricAffineFunction(f::MOI.ScalarAffineFunction{T}) where {T} v, p = _split_affine_terms(f.terms) return ParametricAffineFunction(p, v, f.constant) end function ParametricAffineFunction( terms_p::Vector{MOI.ScalarAffineTerm{T}}, terms_v::Vector{MOI.ScalarAffineTerm{T}}, constant::T, ) where {T} return ParametricAffineFunction{T}( terms_p, terms_v, constant, zero(T), zero(T), ) end function _split_affine_terms(terms::Vector{MOI.ScalarAffineTerm{T}}) where {T} num_v, num_p = _count_scalar_affine_terms_types(terms) v = Vector{MOI.ScalarAffineTerm{T}}(undef, num_v) p = Vector{MOI.ScalarAffineTerm{T}}(undef, num_p) i_v = 1 i_p = 1 for term in terms if _is_variable(term.variable) v[i_v] = term i_v += 1 else p[i_p] = term i_p += 1 end end return v, p end function _count_scalar_affine_terms_types( terms::Vector{MOI.ScalarAffineTerm{T}}, ) where {T} num_vars = 0 num_params = 0 for term in terms if _is_variable(term.variable) num_vars += 1 else num_params += 1 end end return num_vars, num_params end function _original_function(f::ParametricAffineFunction{T}) where {T} return MOI.ScalarAffineFunction{T}(vcat(f.p, f.v), f.c) end function _current_function(f::ParametricAffineFunction{T}) where {T} return MOI.ScalarAffineFunction{T}(f.v, f.current_constant) end function _parametric_constant(model, f::ParametricAffineFunction{T}) where {T} # do not add set_function here param_constant = f.c for term in f.p param_constant += term.coefficient * model.parameters[p_idx(term.variable)] end return param_constant end function _delta_parametric_constant( model, f::ParametricAffineFunction{T}, ) where {T} delta_constant = zero(T) for term in f.p p = p_idx(term.variable) if !isnan(model.updated_parameters[p]) delta_constant += term.coefficient * (model.updated_parameters[p] - model.parameters[p]) end end return delta_constant end function _update_cache!(f::ParametricAffineFunction{T}, model) where {T} f.current_constant = _parametric_constant(model, f) return nothing end mutable struct ParametricVectorAffineFunction{T} # constant * parameter p::Vector{MOI.VectorAffineTerm{T}} # constant * variable v::Vector{MOI.VectorAffineTerm{T}} # constant c::Vector{T} # to avoid unnecessary lookups in updates set_constant::Vector{T} # cache to avoid slow getters current_constant::Vector{T} end function ParametricVectorAffineFunction( f::MOI.VectorAffineFunction{T}, ) where {T} v, p = _split_vector_affine_terms(f.terms) return ParametricVectorAffineFunction{T}( p, v, copy(f.constants), zeros(T, length(f.constants)), zeros(T, length(f.constants)), ) end function _split_vector_affine_terms( terms::Vector{MOI.VectorAffineTerm{T}}, ) where {T} num_v, num_p = _count_vector_affine_terms_types(terms) v = Vector{MOI.VectorAffineTerm{T}}(undef, num_v) p = Vector{MOI.VectorAffineTerm{T}}(undef, num_p) i_v = 1 i_p = 1 for term in terms if _is_variable(term.scalar_term.variable) v[i_v] = term i_v += 1 else p[i_p] = term i_p += 1 end end return v, p end function _count_vector_affine_terms_types( terms::Vector{MOI.VectorAffineTerm{T}}, ) where {T} num_vars = 0 num_params = 0 for term in terms if _is_variable(term.scalar_term.variable) num_vars += 1 else num_params += 1 end end return num_vars, num_params end function _original_function(f::ParametricVectorAffineFunction{T}) where {T} return MOI.VectorAffineFunction{T}(vcat(f.p, f.v), f.c) end function _current_function(f::ParametricVectorAffineFunction{T}) where {T} return MOI.VectorAffineFunction{T}(f.v, f.current_constant) end function _parametric_constant( model, f::ParametricVectorAffineFunction{T}, ) where {T} # do not add set_function here param_constant = copy(f.c) for term in f.p param_constant[term.output_index] += term.scalar_term.coefficient * model.parameters[p_idx(term.scalar_term.variable)] end return param_constant end function _delta_parametric_constant( model, f::ParametricVectorAffineFunction{T}, ) where {T} delta_constant = zeros(T, length(f.c)) for term in f.p p = p_idx(term.scalar_term.variable) if !isnan(model.updated_parameters[p]) delta_constant[term.output_index] += term.scalar_term.coefficient * (model.updated_parameters[p] - model.parameters[p]) end end return delta_constant end function _update_cache!(f::ParametricVectorAffineFunction{T}, model) where {T} f.current_constant = _parametric_constant(model, f) return nothing end
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
code
10180
# Copyright (c) 2020: Tomás Gutierrez and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. function _set_with_new_constant(s::MOI.LessThan{T}, val::T) where {T} return MOI.LessThan{T}(s.upper - val) end function _set_with_new_constant(s::MOI.GreaterThan{T}, val::T) where {T} return MOI.GreaterThan{T}(s.lower - val) end function _set_with_new_constant(s::MOI.EqualTo{T}, val::T) where {T} return MOI.EqualTo{T}(s.value - val) end function _set_with_new_constant(s::MOI.Interval{T}, val::T) where {T} return MOI.Interval{T}(s.lower - val, s.upper - val) end # Affine # change to use only inner_ci all around so tha tupdates are faster # modifications should not be used any ways, afterall we have param all around function _update_affine_constraints!(model::Optimizer) for (F, S) in keys(model.affine_constraint_cache.dict) affine_constraint_cache_inner = model.affine_constraint_cache[F, S] affine_constraint_cache_set_inner = model.affine_constraint_cache_set[F, S] if !isempty(affine_constraint_cache_inner) # barrier to avoid type instability of inner dicts _update_affine_constraints!( model, affine_constraint_cache_inner, affine_constraint_cache_set_inner, ) end end return end # TODO: cache changes and then batch them instead function _update_affine_constraints!( model::Optimizer, affine_constraint_cache_inner::DoubleDictInner{F,S,V}, affine_constraint_cache_set_inner::DoubleDictInner{ F, S, MOI.AbstractScalarSet, }, ) where {F,S<:SIMPLE_SCALAR_SETS{T},V} where {T} # cis = MOI.ConstraintIndex{F,S}[] # sets = S[] # sizehint!(cis, length(affine_constraint_cache_inner)) # sizehint!(sets, length(affine_constraint_cache_inner)) for (inner_ci, pf) in affine_constraint_cache_inner delta_constant = _delta_parametric_constant(model, pf) if !iszero(delta_constant) pf.current_constant += delta_constant new_set = S(pf.set_constant - pf.current_constant) # new_set = _set_with_new_constant(set, param_constant) MOI.set(model.optimizer, MOI.ConstraintSet(), inner_ci, new_set) # push!(cis, inner_ci) # push!(sets, new_set) end end # if !isempty(cis) # MOI.set(model.optimizer, MOI.ConstraintSet(), cis, sets) # end return end function _update_affine_constraints!( model::Optimizer, affine_constraint_cache_inner::DoubleDictInner{F,S,V}, affine_constraint_cache_set_inner::DoubleDictInner{ F, S, MOI.AbstractScalarSet, }, ) where {F,S<:MOI.Interval{T},V} where {T} for (inner_ci, pf) in affine_constraint_cache_inner delta_constant = _delta_parametric_constant(model, pf) if !iszero(delta_constant) pf.current_constant += delta_constant # new_set = S(pf.set_constant - pf.current_constant) set = affine_constraint_cache_set_inner[inner_ci]::S new_set = _set_with_new_constant(set, pf.current_constant)::S MOI.set(model.optimizer, MOI.ConstraintSet(), inner_ci, new_set) end end return end function _update_vector_affine_constraints!(model::Optimizer) for (F, S) in keys(model.vector_affine_constraint_cache.dict) vector_affine_constraint_cache_inner = model.vector_affine_constraint_cache[F, S] if !isempty(vector_affine_constraint_cache_inner) # barrier to avoid type instability of inner dicts _update_vector_affine_constraints!( model, vector_affine_constraint_cache_inner, ) end end return end function _update_vector_affine_constraints!( model::Optimizer, vector_affine_constraint_cache_inner::DoubleDictInner{F,S,V}, ) where {F<:MOI.VectorAffineFunction{T},S,V} where {T} for (inner_ci, pf) in vector_affine_constraint_cache_inner delta_constant = _delta_parametric_constant(model, pf) if !iszero(delta_constant) pf.current_constant .+= delta_constant MOI.modify( model.optimizer, inner_ci, MOI.VectorConstantChange(pf.current_constant), ) end end return end function _update_quadratic_constraints!(model::Optimizer) for (F, S) in keys(model.quadratic_constraint_cache.dict) quadratic_constraint_cache_inner = model.quadratic_constraint_cache[F, S] quadratic_constraint_cache_set_inner = model.quadratic_constraint_cache_set[F, S] if !isempty(quadratic_constraint_cache_inner) # barrier to avoid type instability of inner dicts _update_quadratic_constraints!( model, quadratic_constraint_cache_inner, quadratic_constraint_cache_set_inner, ) end end return end function _affine_build_change_and_up_param_func( pf::ParametricQuadraticFunction{T}, delta_terms, ) where {T} changes = Vector{MOI.ScalarCoefficientChange}(undef, length(delta_terms)) i = 1 for (var, coef) in delta_terms base_coef = pf.current_terms_with_p[var] new_coef = base_coef + coef pf.current_terms_with_p[var] = new_coef changes[i] = MOI.ScalarCoefficientChange(var, new_coef) i += 1 end return changes end function _update_quadratic_constraints!( model::Optimizer, quadratic_constraint_cache_inner::DoubleDictInner{F,S,V}, quadratic_constraint_cache_set_inner::DoubleDictInner{ F, S, MOI.AbstractScalarSet, }, ) where {F,S<:SIMPLE_SCALAR_SETS{T},V} where {T} # cis = MOI.ConstraintIndex{F,S}[] # sets = S[] # sizehint!(cis, length(quadratic_constraint_cache_inner)) # sizehint!(sets, length(quadratic_constraint_cache_inner)) for (inner_ci, pf) in quadratic_constraint_cache_inner delta_constant = _delta_parametric_constant(model, pf) if !iszero(delta_constant) pf.current_constant += delta_constant new_set = S(pf.set_constant - pf.current_constant) # new_set = _set_with_new_constant(set, param_constant) MOI.set(model.optimizer, MOI.ConstraintSet(), inner_ci, new_set) # push!(cis, inner_ci) # push!(sets, new_set) end delta_terms = _delta_parametric_affine_terms(model, pf) if !isempty(delta_terms) changes = _affine_build_change_and_up_param_func(pf, delta_terms) cis = fill(inner_ci, length(changes)) MOI.modify(model.optimizer, cis, changes) end end # if !isempty(cis) # MOI.set(model.optimizer, MOI.ConstraintSet(), cis, sets) # end return end function _update_quadratic_constraints!( model::Optimizer, quadratic_constraint_cache_inner::DoubleDictInner{F,S,V}, quadratic_constraint_cache_set_inner::DoubleDictInner{ F, S, MOI.AbstractScalarSet, }, ) where {F,S<:MOI.Interval{T},V} where {T} for (inner_ci, pf) in quadratic_constraint_cache_inner delta_constant = _delta_parametric_constant(model, pf) if !iszero(delta_constant) pf.current_constant += delta_constant # new_set = S(pf.set_constant - pf.current_constant) set = quadratic_constraint_cache_set_inner[inner_ci]::S new_set = _set_with_new_constant(set, pf.current_constant)::S MOI.set(model.optimizer, MOI.ConstraintSet(), inner_ci, new_set) end delta_terms = _delta_parametric_affine_terms(model, pf) if !isempty(delta_terms) changes = _affine_build_change_and_up_param_func(pf, delta_terms) cis = fill(inner_ci, length(changes)) MOI.modify(model.optimizer, cis, changes) end end return end function _update_affine_objective!(model::Optimizer{T}) where {T} if model.affine_objective_cache === nothing return end pf = model.affine_objective_cache delta_constant = _delta_parametric_constant(model, pf) if !iszero(delta_constant) pf.current_constant += delta_constant # F = MOI.get(model.optimizer, MOI.ObjectiveFunctionType()) MOI.modify( model.optimizer, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{T}}(), MOI.ScalarConstantChange(pf.current_constant), ) end return end function _update_quadratic_objective!(model::Optimizer{T}) where {T} if model.quadratic_objective_cache === nothing return end pf = model.quadratic_objective_cache delta_constant = _delta_parametric_constant(model, pf) if !iszero(delta_constant) pf.current_constant += delta_constant F = MOI.get(model.optimizer, MOI.ObjectiveFunctionType()) MOI.modify( model.optimizer, MOI.ObjectiveFunction{F}(), MOI.ScalarConstantChange(pf.current_constant), ) end delta_terms = _delta_parametric_affine_terms(model, pf) if !isempty(delta_terms) F = MOI.get(model.optimizer, MOI.ObjectiveFunctionType()) changes = _affine_build_change_and_up_param_func(pf, delta_terms) MOI.modify(model.optimizer, MOI.ObjectiveFunction{F}(), changes) end return end function update_parameters!(model::Optimizer) _update_affine_constraints!(model) _update_vector_affine_constraints!(model) _update_quadratic_constraints!(model) _update_affine_objective!(model) _update_quadratic_objective!(model) # Update parameters and put NaN to indicate that the parameter has been # updated for (parameter_index, val) in model.updated_parameters if !isnan(val) model.parameters[parameter_index] = val model.updated_parameters[parameter_index] = NaN end end return end
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
code
37821
# Copyright (c) 2020: Tomás Gutierrez and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. function test_jump_direct_affine_parameters() optimizer = POI.Optimizer(GLPK.Optimizer()) model = direct_model(optimizer) @variable(model, x[i = 1:2] >= 0) @variable(model, y in MOI.Parameter(0.0)) @variable(model, w in MOI.Parameter(0.0)) @variable(model, z in MOI.Parameter(0.0)) @constraint(model, 2 * x[1] + x[2] + y <= 4) @constraint(model, 1 * x[1] + 2 * x[2] + z <= 4) @objective(model, Max, 4 * x[1] + 3 * x[2] + w) optimize!(model) @test isapprox.(value(x[1]), 4.0 / 3.0, atol = ATOL) @test isapprox.(value(x[2]), 4.0 / 3.0, atol = ATOL) @test isapprox.(value(y), 0, atol = ATOL) # ===== Set parameter value ===== MOI.set(model, POI.ParameterValue(), y, 2.0) optimize!(model) @test isapprox.(value(x[1]), 0.0, atol = ATOL) @test isapprox.(value(x[2]), 2.0, atol = ATOL) @test isapprox.(value(y), 2.0, atol = ATOL) return end function test_jump_direct_parameter_times_variable() optimizer = POI.Optimizer(GLPK.Optimizer()) model = direct_model(optimizer) @variable(model, x[i = 1:2] >= 0) @variable(model, y in MOI.Parameter(0.0)) @variable(model, w in MOI.Parameter(0.0)) @variable(model, z in MOI.Parameter(0.0)) @constraint(model, 2 * x[1] + x[2] + y <= 4) @constraint(model, (1 + y) * x[1] + 2 * x[2] + z <= 4) @objective(model, Max, 4 * x[1] + 3 * x[2] + w) optimize!(model) @test isapprox.(value(x[1]), 4.0 / 3.0, atol = ATOL) @test isapprox.(value(x[2]), 4.0 / 3.0, atol = ATOL) @test isapprox.(value(y), 0, atol = ATOL) # ===== Set parameter value ===== MOI.set(model, POI.ParameterValue(), y, 2.0) optimize!(model) @test isapprox.(value(x[1]), 0.0, atol = ATOL) @test isapprox.(value(x[2]), 2.0, atol = ATOL) @test isapprox.(value(y), 2.0, atol = ATOL) return end function test_jump_affine_parameters() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, x[i = 1:2] >= 0) @variable(model, y in MOI.Parameter(0.0)) @variable(model, w in MOI.Parameter(0.0)) @variable(model, z in MOI.Parameter(0.0)) @constraint(model, 2 * x[1] + x[2] + y <= 4) @constraint(model, 1 * x[1] + 2 * x[2] + z <= 4) @objective(model, Max, 4 * x[1] + 3 * x[2] + w) optimize!(model) @test isapprox.(value(x[1]), 4.0 / 3.0, atol = ATOL) @test isapprox.(value(x[2]), 4.0 / 3.0, atol = ATOL) @test isapprox.(value(y), 0, atol = ATOL) # ===== Set parameter value ===== MOI.set(model, POI.ParameterValue(), y, 2.0) optimize!(model) @test isapprox.(value(x[1]), 0.0, atol = ATOL) @test isapprox.(value(x[2]), 2.0, atol = ATOL) @test isapprox.(value(y), 2.0, atol = ATOL) return end function test_jump_parameter_times_variable() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, x[i = 1:2] >= 0) @variable(model, y in MOI.Parameter(0.0)) @variable(model, w in MOI.Parameter(0.0)) @variable(model, z in MOI.Parameter(0.0)) @test MOI.get(model, POI.ParameterValue(), y) == 0 @constraint(model, 2 * x[1] + x[2] + y <= 4) @constraint(model, (1 + y) * x[1] + 2 * x[2] + z <= 4) @objective(model, Max, 4 * x[1] + 3 * x[2] + w) optimize!(model) @test isapprox.(value(x[1]), 4.0 / 3.0, atol = ATOL) @test isapprox.(value(x[2]), 4.0 / 3.0, atol = ATOL) @test isapprox.(value(y), 0, atol = ATOL) # ===== Set parameter value ===== MOI.set(model, POI.ParameterValue(), y, 2.0) optimize!(model) @test isapprox.(value(x[1]), 0.0, atol = ATOL) @test isapprox.(value(x[2]), 2.0, atol = ATOL) @test isapprox.(value(y), 2.0, atol = ATOL) return end function test_jump_constraintfunction_getter() model = direct_model( POI.Optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Utilities.AUTOMATIC, ), ), ) vx = @variable(model, x[i = 1:2]) vp = @variable(model, p[i = 1:2] in MOI.Parameter.(-1.0)) c1 = @constraint(model, con, sum(x) + sum(p) >= 1) c2 = @constraint(model, conq, sum(x .* p) >= 1) c3 = @constraint(model, conqa, sum(x .* p) + x[1]^2 + x[1] + p[1] >= 1) @test MOI.Utilities.canonical( MOI.get(model, MOI.ConstraintFunction(), c1), ) ≈ MOI.Utilities.canonical( MOI.ScalarAffineFunction{Float64}( [ MOI.ScalarAffineTerm{Float64}(1.0, MOI.VariableIndex(1)), MOI.ScalarAffineTerm{Float64}(1.0, MOI.VariableIndex(2)), MOI.ScalarAffineTerm{Float64}( 1.0, MOI.VariableIndex(POI.PARAMETER_INDEX_THRESHOLD + 1), ), MOI.ScalarAffineTerm{Float64}( 1.0, MOI.VariableIndex(POI.PARAMETER_INDEX_THRESHOLD + 2), ), ], 0.0, ), ) @test canonical_compare( MOI.get(model, MOI.ConstraintFunction(), c2), MOI.ScalarQuadraticFunction{Float64}( [ MOI.ScalarQuadraticTerm{Float64}( 1.0, MOI.VariableIndex(1), MOI.VariableIndex(POI.PARAMETER_INDEX_THRESHOLD + 1), ), MOI.ScalarQuadraticTerm{Float64}( 1.0, MOI.VariableIndex(2), MOI.VariableIndex(POI.PARAMETER_INDEX_THRESHOLD + 2), ), ], [], 0.0, ), ) @test canonical_compare( MOI.get(model, MOI.ConstraintFunction(), c3), MOI.ScalarQuadraticFunction{Float64}( [ MOI.ScalarQuadraticTerm{Float64}( 1.0, MOI.VariableIndex(1), MOI.VariableIndex(POI.PARAMETER_INDEX_THRESHOLD + 1), ), MOI.ScalarQuadraticTerm{Float64}( 1.0, MOI.VariableIndex(2), MOI.VariableIndex(POI.PARAMETER_INDEX_THRESHOLD + 2), ), MOI.ScalarQuadraticTerm{Float64}( 2.0, MOI.VariableIndex(1), MOI.VariableIndex(1), ), ], [ MOI.ScalarAffineTerm{Float64}(1.0, MOI.VariableIndex(1)), MOI.ScalarAffineTerm{Float64}( 1.0, MOI.VariableIndex(POI.PARAMETER_INDEX_THRESHOLD + 1), ), ], 0.0, ), ) o1 = @objective(model, Min, sum(x) + sum(p)) F = MOI.get(model, MOI.ObjectiveFunctionType()) @test canonical_compare( MOI.get(model, MOI.ObjectiveFunction{F}()), MOI.ScalarAffineFunction{Float64}( [ MOI.ScalarAffineTerm{Float64}(1.0, MOI.VariableIndex(1)), MOI.ScalarAffineTerm{Float64}(1.0, MOI.VariableIndex(2)), MOI.ScalarAffineTerm{Float64}( 1.0, MOI.VariableIndex(POI.PARAMETER_INDEX_THRESHOLD + 1), ), MOI.ScalarAffineTerm{Float64}( 1.0, MOI.VariableIndex(POI.PARAMETER_INDEX_THRESHOLD + 2), ), ], 0.0, ), ) o2 = @objective(model, Min, sum(x .* p) + 2) F = MOI.get(model, MOI.ObjectiveFunctionType()) f = MOI.get(model, MOI.ObjectiveFunction{F}()) f_ref = MOI.ScalarQuadraticFunction{Float64}( [ MOI.ScalarQuadraticTerm{Float64}( 1.0, MOI.VariableIndex(1), MOI.VariableIndex(POI.PARAMETER_INDEX_THRESHOLD + 1), ), MOI.ScalarQuadraticTerm{Float64}( 1.0, MOI.VariableIndex(2), MOI.VariableIndex(POI.PARAMETER_INDEX_THRESHOLD + 2), ), ], [], 2.0, ) @test canonical_compare(f, f_ref) o3 = @objective(model, Min, sum(x .* p) + x[1]^2 + x[1] + p[1]) F = MOI.get(model, MOI.ObjectiveFunctionType()) @test canonical_compare( MOI.get(model, MOI.ObjectiveFunction{F}()), MOI.ScalarQuadraticFunction{Float64}( [ MOI.ScalarQuadraticTerm{Float64}( 1.0, MOI.VariableIndex(1), MOI.VariableIndex(POI.PARAMETER_INDEX_THRESHOLD + 1), ), MOI.ScalarQuadraticTerm{Float64}( 1.0, MOI.VariableIndex(2), MOI.VariableIndex(POI.PARAMETER_INDEX_THRESHOLD + 2), ), MOI.ScalarQuadraticTerm{Float64}( 2.0, MOI.VariableIndex(1), MOI.VariableIndex(1), ), ], [ MOI.ScalarAffineTerm{Float64}(1.0, MOI.VariableIndex(1)), MOI.ScalarAffineTerm{Float64}( 1.0, MOI.VariableIndex(POI.PARAMETER_INDEX_THRESHOLD + 1), ), ], 0.0, ), ) return end function test_jump_interpret_parameteric_bounds() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) MOI.set(model, POI.ConstraintsInterpretation(), POI.ONLY_BOUNDS) @variable(model, x[i = 1:2]) @variable(model, p[i = 1:2] in MOI.Parameter.(-1.0)) @constraint(model, [i in 1:2], x[i] >= p[i]) @objective(model, Min, sum(x)) optimize!(model) expected = Tuple{Type,Type}[ (MOI.ScalarAffineFunction{Float64}, MOI.GreaterThan{Float64}), (MOI.VariableIndex, MOI.Parameter{Float64}), ] result = MOI.get(model, MOI.ListOfConstraintTypesPresent()) @test Set(result) == Set(expected) @test length(result) == length(expected) expected = Tuple{Type,Type}[(MOI.VariableIndex, MOI.GreaterThan{Float64})] result = MOI.get( backend(model).optimizer.model.optimizer, MOI.ListOfConstraintTypesPresent(), ) @test Set(result) == Set(expected) @test length(result) == length(expected) @test objective_value(model) == -2 MOI.set(model, POI.ParameterValue(), p[1], 4.0) optimize!(model) @test objective_value(model) == 3 return end function test_jump_interpret_parameteric_bounds_expression() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) MOI.set(model, POI.ConstraintsInterpretation(), POI.ONLY_BOUNDS) @variable(model, x[i = 1:2]) @variable(model, p[i = 1:2] in MOI.Parameter.(-1.0)) @constraint(model, [i in 1:2], x[i] >= p[i] + p[1]) @objective(model, Min, sum(x)) optimize!(model) expected = Tuple{Type,Type}[ (MOI.ScalarAffineFunction{Float64}, MOI.GreaterThan{Float64}), (MOI.VariableIndex, MOI.Parameter{Float64}), ] result = MOI.get(model, MOI.ListOfConstraintTypesPresent()) @test Set(result) == Set(expected) @test length(result) == length(expected) expected = Tuple{Type,Type}[(MOI.VariableIndex, MOI.GreaterThan{Float64})] result = MOI.get( backend(model).optimizer.model.optimizer, MOI.ListOfConstraintTypesPresent(), ) @test Set(result) == Set(expected) @test length(result) == length(expected) @test objective_value(model) == -4 MOI.set(model, POI.ParameterValue(), p[1], 4.0) optimize!(model) @test objective_value(model) == 11.0 return end function test_jump_direct_interpret_parameteric_bounds() model = direct_model(POI.Optimizer(GLPK.Optimizer())) MOI.set(model, POI.ConstraintsInterpretation(), POI.ONLY_BOUNDS) @variable(model, x[i = 1:2]) @variable(model, p[i = 1:2] in MOI.Parameter.(-1.0)) @constraint(model, [i in 1:2], x[i] >= p[i]) @objective(model, Min, sum(x)) optimize!(model) expected = Tuple{Type,Type}[ (MOI.ScalarAffineFunction{Float64}, MOI.GreaterThan{Float64}), (MOI.VariableIndex, MOI.Parameter{Float64}), ] result = MOI.get(model, MOI.ListOfConstraintTypesPresent()) @test Set(result) == Set(expected) @test length(result) == length(expected) expected = Tuple{Type,Type}[(MOI.VariableIndex, MOI.GreaterThan{Float64})] result = MOI.get(backend(model).optimizer, MOI.ListOfConstraintTypesPresent()) @test Set(result) == Set(expected) @test length(result) == length(expected) @test objective_value(model) == -2 MOI.set(model, POI.ParameterValue(), p[1], 4.0) optimize!(model) @test objective_value(model) == 3 return end function test_jump_direct_interpret_parameteric_bounds_no_interpretation() model = direct_model(POI.Optimizer(GLPK.Optimizer())) MOI.set(model, POI.ConstraintsInterpretation(), POI.ONLY_CONSTRAINTS) @variable(model, x[i = 1:2]) @variable(model, p[i = 1:2] in MOI.Parameter.(-1.0)) @constraint(model, [i in 1:2], x[i] >= p[i]) @objective(model, Min, sum(x)) optimize!(model) expected = Tuple{Type,Type}[ (MOI.ScalarAffineFunction{Float64}, MOI.GreaterThan{Float64}), (MOI.VariableIndex, MOI.Parameter{Float64}), ] result = MOI.get(model, MOI.ListOfConstraintTypesPresent()) @test Set(result) == Set(expected) @test length(result) == length(expected) expected = Tuple{Type,Type}[( MOI.ScalarAffineFunction{Float64}, MOI.GreaterThan{Float64}, ),] result = MOI.get(backend(model).optimizer, MOI.ListOfConstraintTypesPresent()) @test Set(result) == Set(expected) @test length(result) == length(expected) @test objective_value(model) == -2 MOI.set(model, POI.ParameterValue(), p[1], 4.0) optimize!(model) @test objective_value(model) == 3 return end function test_jump_direct_interpret_parameteric_bounds_change() model = direct_model(POI.Optimizer(GLPK.Optimizer())) MOI.set(model, POI.ConstraintsInterpretation(), POI.ONLY_BOUNDS) @variable(model, x[i = 1:2]) @variable(model, p[i = 1:2] in MOI.Parameter.(-1.0)) @constraint(model, [i in 1:2], x[i] >= p[i]) @test_throws ErrorException @constraint(model, [i in 1:2], 2x[i] >= p[i]) MOI.set(model, POI.ConstraintsInterpretation(), POI.ONLY_CONSTRAINTS) @constraint(model, [i in 1:2], 2x[i] >= p[i]) @objective(model, Min, sum(x)) optimize!(model) @test objective_value(model) == -1 MOI.set(model, POI.ParameterValue(), p[1], 4.0) optimize!(model) @test objective_value(model) == 3.5 return end function test_jump_direct_interpret_parameteric_bounds_both() model = direct_model(POI.Optimizer(GLPK.Optimizer())) MOI.set(model, POI.ConstraintsInterpretation(), POI.BOUNDS_AND_CONSTRAINTS) @variable(model, x[i = 1:2]) @variable(model, p[i = 1:2] in MOI.Parameter.(-1.0)) @constraint(model, [i in 1:2], x[i] >= p[i]) @constraint(model, [i in 1:2], 2x[i] >= p[i]) @objective(model, Min, sum(x)) optimize!(model) @test objective_value(model) == -1 MOI.set(model, POI.ParameterValue(), p[1], 4.0) optimize!(model) @test objective_value(model) == 3.5 return end function test_jump_direct_interpret_parameteric_bounds_invalid() model = direct_model(POI.Optimizer(GLPK.Optimizer())) MOI.set(model, POI.ConstraintsInterpretation(), POI.ONLY_BOUNDS) @variable(model, x[i = 1:2]) @variable(model, p[i = 1:2] in MOI.Parameter.(-1.0)) @test_throws ErrorException @constraint( model, [i in 1:2], 2x[i] >= p[i] + p[1] ) return end function test_jump_set_variable_start_value() cached = MOI.Bridges.full_bridge_optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), GLPK.Optimizer(), ), Float64, ) optimizer = POI.Optimizer(cached) model = direct_model(optimizer) @variable(model, x >= 0) @variable(model, p in MOI.Parameter(0.0)) set_start_value(x, 1.0) @test start_value(x) == 1 err = ErrorException( "MathOptInterface.VariablePrimalStart() is not supported for parameters", ) @test_throws err set_start_value(p, 1.0) @test_throws err start_value(p) return end function test_jump_direct_get_parameter_value() model = direct_model(POI.Optimizer(GLPK.Optimizer())) @variable(model, x, lower_bound = 0.0, upper_bound = 10.0) @variable(model, y, binary = true) @variable(model, z, set = MOI.Parameter(10.0)) c = @constraint(model, 19.0 * x - z + 22.0 * y <= 1.0) @objective(model, Min, x + y) @test MOI.get(model, POI.ParameterValue(), z) == 10 return end function test_jump_get_parameter_value() model = Model(() -> ParametricOptInterface.Optimizer(GLPK.Optimizer())) @variable(model, x, lower_bound = 0.0, upper_bound = 10.0) @variable(model, y, binary = true) @variable(model, z, set = MOI.Parameter(10)) c = @constraint(model, 19.0 * x - z + 22.0 * y <= 1.0) @objective(model, Min, x + y) @test MOI.get(model, POI.ParameterValue(), z) == 10 return end function test_jump_sdp_scalar_parameter() cached = MOI.Bridges.full_bridge_optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), SCS.Optimizer(), ), Float64, ) optimizer = POI.Optimizer(cached) m = direct_model(optimizer) set_silent(m) @variable(m, p in MOI.Parameter(0.0)) @variable(m, x[1:2, 1:2], Symmetric) @objective(m, Min, x[1, 1] + x[2, 2]) @constraint(m, LinearAlgebra.Symmetric(x .- [1+p 0; 0 1+p]) in PSDCone()) optimize!(m) @test all(isapprox.(value.(x), [1 0; 0 1], atol = ATOL)) MOI.set(m, POI.ParameterValue(), p, 1) optimize!(m) @test all(isapprox.(value.(x), [2 0; 0 2], atol = ATOL)) return end function test_jump_sdp_matrix_parameter() cached = MOI.Bridges.full_bridge_optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), SCS.Optimizer(), ), Float64, ) optimizer = POI.Optimizer(cached) m = direct_model(optimizer) set_silent(m) P1 = [1 2; 2 3] @variable(m, p[1:2, 1:2] in MOI.Parameter.(P1)) @variable(m, x[1:2, 1:2], Symmetric) @objective(m, Min, x[1, 1] + x[2, 2]) @constraint(m, LinearAlgebra.Symmetric(x - p) in PSDCone()) optimize!(m) @test all(isapprox.(value.(x), P1, atol = ATOL)) P2 = [1 2; 2 1] MOI.set.(m, POI.ParameterValue(), p, P2) optimize!(m) @test all(isapprox.(value.(x), P2, atol = ATOL)) return end function test_jump_dual_basic() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, x[1:2] in MOI.Parameter.(ones(2) .* 4.0)) @variable(model, y[1:6]) @constraint(model, ctr1, 3 * y[1] >= 2 - 7 * x[1]) @objective(model, Min, 5 * y[1]) JuMP.optimize!(model) @test 5 / 3 ≈ JuMP.dual(ctr1) atol = 1e-3 @test [-35 / 3, 0.0] ≈ MOI.get.(model, POI.ParameterDual(), x) atol = 1e-3 @test [-26 / 3, 0.0, 0.0, 0.0, 0.0, 0.0] ≈ JuMP.value.(y) atol = 1e-3 @test -130 / 3 ≈ JuMP.objective_value(model) atol = 1e-3 return end function test_jump_dual_multiplicative_fail() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, x) @variable(model, p in MOI.Parameter(1.0)) @constraint(model, cons, x * p >= 3) @objective(model, Min, 2x) optimize!(model) @test_throws ErrorException( "Cannot compute the dual of a multiplicative parameter", ) MOI.get(model, POI.ParameterDual(), p) return end function test_jump_dual_objective_min() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, x) @variable(model, p in MOI.Parameter(1.0)) @constraint(model, cons, x >= 3 * p) @objective(model, Min, 2x + p) optimize!(model) @test MOI.get(model, POI.ParameterDual(), p) == 7 return end function test_jump_dual_objective_max() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, x) @variable(model, p in MOI.Parameter(1.0)) @constraint(model, cons, x >= 3 * p) @objective(model, Max, -2x + p) optimize!(model) @test MOI.get(model, POI.ParameterDual(), p) == 5 return end function test_jump_dual_multiple_parameters_1() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, x[1:6] in MOI.Parameter.(ones(6) .* 4.0)) @variable(model, y[1:6]) @constraint(model, ctr1, 3 * y[1] >= 2 - 7 * x[3]) @constraint(model, ctr2, 3 * y[1] >= 2 - 7 * x[3]) @constraint(model, ctr3, 3 * y[1] >= 2 - 7 * x[3]) @constraint(model, ctr4, 3 * y[1] >= 2 - 7 * x[3]) @constraint(model, ctr5, 3 * y[1] >= 2 - 7 * x[3]) @constraint(model, ctr6, 3 * y[1] >= 2 - 7 * x[3]) @constraint(model, ctr7, sum(3 * y[i] + x[i] for i in 2:4) >= 2 - 7 * x[3]) @constraint( model, ctr8, sum(3 * y[i] + 7.0 * x[i] - x[i] for i in 2:4) >= 2 - 7 * x[3] ) @objective(model, Min, 5 * y[1]) JuMP.optimize!(model) @test 5 / 3 ≈ JuMP.dual(ctr1) + JuMP.dual(ctr2) + JuMP.dual(ctr3) + JuMP.dual(ctr4) + JuMP.dual(ctr5) + JuMP.dual(ctr6) atol = 1e-3 @test 0.0 ≈ JuMP.dual(ctr7) atol = 1e-3 @test 0.0 ≈ JuMP.dual(ctr8) atol = 1e-3 @test [0.0, 0.0, -35 / 3, 0.0, 0.0, 0.0] ≈ MOI.get.(model, POI.ParameterDual(), x) atol = 1e-3 @test [-26 / 3, 0.0, 0.0, 0.0, 0.0, 0.0] ≈ JuMP.value.(y) atol = 1e-3 @test -130 / 3 ≈ JuMP.objective_value(model) atol = 1e-3 return end function test_jump_duals_LessThan() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, α in MOI.Parameter(-1.0)) @variable(model, x) cref = @constraint(model, x ≤ α) @objective(model, Max, x) JuMP.optimize!(model) @test JuMP.value(x) == -1.0 @test JuMP.dual(cref) == -1.0 @test MOI.get(model, POI.ParameterDual(), α) == -1.0 MOI.set(model, POI.ParameterValue(), α, 2.0) JuMP.optimize!(model) @test JuMP.value(x) == 2.0 @test JuMP.dual(cref) == -1.0 @test MOI.get(model, POI.ParameterDual(), α) == -1.0 return end function test_jump_duals_EqualTo() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, α in MOI.Parameter(-1.0)) @variable(model, x) cref = @constraint(model, x == α) @objective(model, Max, x) JuMP.optimize!(model) @test JuMP.value(x) == -1.0 @test JuMP.dual(cref) == -1.0 @test MOI.get(model, POI.ParameterDual(), α) == -1.0 MOI.set(model, POI.ParameterValue(), α, 2.0) JuMP.optimize!(model) @test JuMP.value(x) == 2.0 @test JuMP.dual(cref) == -1.0 @test MOI.get(model, POI.ParameterDual(), α) == -1.0 return end function test_jump_duals_GreaterThan() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, α in MOI.Parameter(1.0)) MOI.set(model, POI.ParameterValue(), α, -1.0) @variable(model, x) cref = @constraint(model, x >= α) @objective(model, Min, x) JuMP.optimize!(model) @test JuMP.value(x) == -1.0 @test JuMP.dual(cref) == 1.0 @test MOI.get(model, POI.ParameterDual(), α) == 1.0 MOI.set(model, POI.ParameterValue(), α, 2.0) JuMP.optimize!(model) @test JuMP.value(x) == 2.0 @test JuMP.dual(cref) == 1.0 @test MOI.get(model, POI.ParameterDual(), α) == 1.0 return end function test_jump_dual_multiple_parameters_2() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, α[1:10] in MOI.Parameter.(ones(10))) @variable(model, x) cref = @constraint(model, x == sum(2 * α[i] for i in 1:10)) @objective(model, Min, x) JuMP.optimize!(model) @test JuMP.value(x) == 20.0 @test JuMP.dual(cref) == 1.0 @test MOI.get(model, POI.ParameterDual(), α[3]) == 2.0 return end function test_jump_dual_mixing_params_and_vars_1() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, α[1:5] in MOI.Parameter.(ones(5))) @variable(model, x) cref = @constraint(model, sum(x for i in 1:5) == sum(2 * α[i] for i in 1:5)) @objective(model, Min, x) JuMP.optimize!(model) @test JuMP.value(x) == 2.0 @test JuMP.dual(cref) == 1 / 5 @test MOI.get(model, POI.ParameterDual(), α[3]) == 2 / 5 return end function test_jump_dual_mixing_params_and_vars_2() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, α[1:5] in MOI.Parameter.(ones(5))) @variable(model, x) cref = @constraint(model, 0.0 == sum(-x + 2 * α[i] for i in 1:5)) @objective(model, Min, x) JuMP.optimize!(model) @test JuMP.value(x) == 2.0 @test JuMP.dual(cref) == 1 / 5 @test MOI.get(model, POI.ParameterDual(), α[3]) == 2 / 5 return end function test_jump_dual_mixing_params_and_vars_3() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, α[1:5] in MOI.Parameter.(ones(5))) @variable(model, x) cref = @constraint(model, 0.0 == sum(-x + 2.0 + 2 * α[i] for i in 1:5)) @objective(model, Min, x) JuMP.optimize!(model) @test JuMP.value(x) == 4.0 @test JuMP.dual(cref) == 1 / 5 @test MOI.get(model, POI.ParameterDual(), α[3]) == 2 / 5 return end function test_jump_dual_add_after_solve() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, α in MOI.Parameter(1.0)) MOI.set(model, POI.ParameterValue(), α, -1.0) @variable(model, x) cref = @constraint(model, x <= α) @objective(model, Max, x) JuMP.optimize!(model) @test JuMP.value(x) == -1.0 @test JuMP.dual(cref) == -1.0 @test MOI.get(model, POI.ParameterDual(), α) == -1.0 @variable(model, b in MOI.Parameter(-2.0)) cref = @constraint(model, x <= b) JuMP.optimize!(model) @test JuMP.value(x) == -2.0 @test JuMP.dual(cref) == -1.0 @test MOI.get(model, POI.ParameterDual(), α) == 0.0 @test MOI.get(model, POI.ParameterDual(), b) == -1.0 return end function test_jump_dual_add_ctr_alaternative() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, α in MOI.Parameter(-1.0)) @variable(model, x) exp = x - α cref = @constraint(model, exp ≤ 0) @objective(model, Max, x) JuMP.optimize!(model) @test JuMP.value(x) == -1.0 @test JuMP.dual(cref) == -1.0 @test MOI.get(model, POI.ParameterDual(), α) == -1.0 return end function test_jump_dual_delete_constraint() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, α in MOI.Parameter(-1.0)) @variable(model, x) cref1 = @constraint(model, x ≤ α / 2) cref2 = @constraint(model, x ≤ α) cref3 = @constraint(model, x ≤ 2α) @objective(model, Max, x) JuMP.delete(model, cref3) JuMP.optimize!(model) @test JuMP.value(x) == -1.0 @test JuMP.dual(cref1) == 0.0 @test JuMP.dual(cref2) == -1.0 @test MOI.get(model, POI.ParameterDual(), α) == -1.0 JuMP.delete(model, cref2) JuMP.optimize!(model) @test JuMP.value(x) == -0.5 @test JuMP.dual(cref1) == -1.0 @test MOI.get(model, POI.ParameterDual(), α) == -0.5 return end function test_jump_nlp() model = Model(() -> ParametricOptInterface.Optimizer(Ipopt.Optimizer())) @variable(model, x) @variable(model, z in MOI.Parameter(10.0)) @constraint(model, x >= z) @NLobjective(model, Min, x^2) @test_throws ErrorException optimize!(model) return end function test_jump_direct_vector_parameter_affine_nonnegatives() """ min x + y x - t + 1 >= 0 y - t + 2 >= 0 opt x* = t-1 y* = t-2 obj = 2*t-3 """ cached = MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), SCS.Optimizer(), ) optimizer = POI.Optimizer(cached) model = direct_model(optimizer) set_silent(model) @variable(model, x) @variable(model, y) @variable(model, t in MOI.Parameter(5.0)) @constraint(model, [(x - t + 1), (y - t + 2)...] in MOI.Nonnegatives(2)) @objective(model, Min, x + y) optimize!(model) @test isapprox.(value(x), 4.0, atol = ATOL) @test isapprox.(value(y), 3.0, atol = ATOL) MOI.set(model, POI.ParameterValue(), t, 6) optimize!(model) @test isapprox.(value(x), 5.0, atol = ATOL) @test isapprox.(value(y), 4.0, atol = ATOL) return end function test_jump_direct_vector_parameter_affine_nonpositives() """ min x + y - x + t - 1 ≤ 0 - y + t - 2 ≤ 0 opt x* = t-1 y* = t-2 obj = 2*t-3 """ cached = MOI.Bridges.full_bridge_optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), SCS.Optimizer(), ), Float64, ) optimizer = POI.Optimizer(cached) model = direct_model(optimizer) set_silent(model) @variable(model, x) @variable(model, y) @variable(model, t in MOI.Parameter(5.0)) @constraint(model, [(-x + t - 1), (-y + t - 2)...] in MOI.Nonpositives(2)) @objective(model, Min, x + y) optimize!(model) @test isapprox.(value(x), 4.0, atol = ATOL) @test isapprox.(value(y), 3.0, atol = ATOL) MOI.set(model, POI.ParameterValue(), t, 6) optimize!(model) @test isapprox.(value(x), 5.0, atol = ATOL) @test isapprox.(value(y), 4.0, atol = ATOL) return end function test_jump_direct_soc_parameters() """ Problem SOC2 from MOI min x s.t. y ≥ 1/√2 (x-p)² + y² ≤ 1 in conic form: min x s.t. -1/√2 + y ∈ R₊ 1 - t ∈ {0} (t, x-p ,y) ∈ SOC₃ opt x* = p - 1/√2 y* = 1/√2 """ cached = MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), SCS.Optimizer(), ) optimizer = POI.Optimizer(cached) model = direct_model(optimizer) set_silent(model) @variable(model, x) @variable(model, y) @variable(model, t) @variable(model, p in MOI.Parameter(0.0)) @constraint(model, [y - 1 / √2] in MOI.Nonnegatives(1)) @constraint(model, [t - 1] in MOI.Zeros(1)) @constraint(model, [t, (x - p), y...] in SecondOrderCone()) @objective(model, Min, 1.0 * x) optimize!(model) @test objective_value(model) ≈ -1 / √2 atol = ATOL @test value(x) ≈ -1 / √2 atol = ATOL @test value(y) ≈ 1 / √2 atol = ATOL @test value(t) ≈ 1 atol = ATOL MOI.set(model, POI.ParameterValue(), p, 1) optimize!(model) @test objective_value(model) ≈ 1 - 1 / √2 atol = ATOL @test value(x) ≈ 1 - 1 / √2 atol = ATOL return end function test_jump_direct_qp_objective() optimizer = POI.Optimizer(Ipopt.Optimizer()) model = direct_model(optimizer) MOI.set(model, MOI.Silent(), true) @variable(model, x >= 0) @variable(model, y >= 0) @variable(model, p in MOI.Parameter(1.0)) @constraint(model, 2x + y <= 4) @constraint(model, x + 2y <= 4) @objective(model, Max, (x^2 + y^2) / 2) optimize!(model) @test objective_value(model) ≈ 16 / 9 atol = ATOL @test value(x) ≈ 4 / 3 atol = ATOL @test value(y) ≈ 4 / 3 atol = ATOL MOI.set( backend(model), POI.QuadraticObjectiveCoef(), (index(x), index(y)), 2index(p) + 3, ) optimize!(model) @test canonical_compare( MOI.get( backend(model), POI.QuadraticObjectiveCoef(), (index(x), index(y)), ), MOI.ScalarAffineFunction{Int64}( MOI.ScalarAffineTerm{Int64}[MOI.ScalarAffineTerm{Int64}( 2, MOI.VariableIndex(POI.PARAMETER_INDEX_THRESHOLD + 1), )], 3, ), ) @test objective_value(model) ≈ 32 / 3 atol = ATOL @test value(x) ≈ 4 / 3 atol = ATOL @test value(y) ≈ 4 / 3 atol = ATOL MOI.set(model, POI.ParameterValue(), p, 2.0) optimize!(model) @test objective_value(model) ≈ 128 / 9 atol = ATOL @test value(x) ≈ 4 / 3 atol = ATOL @test value(y) ≈ 4 / 3 atol = ATOL MOI.set( backend(model), POI.QuadraticObjectiveCoef(), (index(x), index(y)), nothing, ) optimize!(model) @test objective_value(model) ≈ 16 / 9 atol = ATOL @test value(x) ≈ 4 / 3 atol = ATOL @test value(y) ≈ 4 / 3 atol = ATOL # now in reverse order MOI.set( backend(model), POI.QuadraticObjectiveCoef(), (index(y), index(x)), 2index(p) + 3, ) optimize!(model) @test objective_value(model) ≈ 128 / 9 atol = ATOL @test value(x) ≈ 4 / 3 atol = ATOL @test value(y) ≈ 4 / 3 atol = ATOL MOI.set( backend(model), POI.QuadraticObjectiveCoef(), (index(y), index(x)), nothing, ) optimize!(model) @test objective_value(model) ≈ 16 / 9 atol = ATOL @test value(x) ≈ 4 / 3 atol = ATOL @test value(y) ≈ 4 / 3 atol = ATOL return end function test_jump_direct_rsoc_constraints() """ Problem RSOC min x s.t. y ≥ 1/√2 x² + (y-p)² ≤ 1 in conic form: min x s.t. -1/√2 + y ∈ R₊ 1 - t ∈ {0} (t, x ,y-p) ∈ RSOC opt x* = 1/2*(max{1/√2,p}-p)^2 y* = max{1/√2,p} """ cached = MOI.Bridges.full_bridge_optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), SCS.Optimizer(), ), Float64, ) optimizer = POI.Optimizer(cached) model = direct_model(optimizer) MOI.set(model, MOI.Silent(), true) @variable(model, x) @variable(model, y) @variable(model, t) @variable(model, p in MOI.Parameter(0.0)) @constraint(model, [y - 1 / √2] in MOI.Nonnegatives(1)) @constraint(model, [t - 1] in MOI.Zeros(1)) @constraint(model, [t, x, y - p] in RotatedSecondOrderCone()) @objective(model, Min, 1.0 * x) optimize!(model) @test objective_value(model) ≈ 1 / 4 atol = ATOL @test value(x) ≈ 1 / 4 atol = ATOL @test value(y) ≈ 1 / √2 atol = ATOL @test value(t) ≈ 1 atol = ATOL MOI.set(model, POI.ParameterValue(), p, 2) optimize!(model) @test objective_value(model) ≈ 0.0 atol = ATOL @test value(x) ≈ 0.0 atol = ATOL @test value(y) ≈ 2 atol = ATOL return end function test_jump_quadratic_interval() optimizer = POI.Optimizer(GLPK.Optimizer()) # model = direct_model(optimizer) model = Model(() -> optimizer) MOI.set(model, MOI.Silent(), true) @variable(model, x >= 0) @variable(model, y >= 0) @variable(model, p in MOI.Parameter(10.0)) @variable(model, q in MOI.Parameter(4.0)) @constraint(model, 0 <= x - p * y + q <= 0) @objective(model, Min, x + y) optimize!(model) @test value(x) ≈ 0 atol = ATOL @test value(y) ≈ 0.4 atol = ATOL MOI.set(model, POI.ParameterValue(), p, 20.0) optimize!(model) @test value(x) ≈ 0 atol = ATOL @test value(y) ≈ 0.2 atol = ATOL MOI.set(model, POI.ParameterValue(), q, 6.0) optimize!(model) @test value(x) ≈ 0 atol = ATOL @test value(y) ≈ 0.3 atol = ATOL return end function test_jump_quadratic_interval_cached() cached = MOI.Bridges.full_bridge_optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), GLPK.Optimizer(), ), Float64, ) optimizer = POI.Optimizer(cached) model = direct_model(optimizer) # optimizer = POI.Optimizer(GLPK.Optimizer()) # model = direct_model(optimizer) # model = Model(() -> optimizer) # MOI.set(model, MOI.Silent(), true) @variable(model, x >= 0) @variable(model, y >= 0) @variable(model, p in MOI.Parameter(10.0)) @variable(model, q in MOI.Parameter(4.0)) @constraint(model, 0 <= x - p * y + q <= 0) @objective(model, Min, x + y) optimize!(model) @test value(x) ≈ 0 atol = ATOL @test value(y) ≈ 0.4 atol = ATOL MOI.set(model, POI.ParameterValue(), p, 20.0) optimize!(model) @test value(x) ≈ 0 atol = ATOL @test value(y) ≈ 0.2 atol = ATOL MOI.set(model, POI.ParameterValue(), q, 6.0) optimize!(model) @test value(x) ≈ 0 atol = ATOL @test value(y) ≈ 0.3 atol = ATOL return end function test_affine_parametric_objective() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, p in MOI.Parameter(1.0)) @variable(model, 0 <= x <= 1) @objective(model, Max, (p + 0.5) * x) optimize!(model) @test value(x) ≈ 1.0 @test objective_value(model) ≈ 1.5 @test value(objective_function(model)) ≈ 1.5 end function test_abstract_optimizer_attributes() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) set_attribute(model, "tm_lim", 60 * 1000) attr = MOI.RawOptimizerAttribute("tm_lim") @test MOI.supports(unsafe_backend(model), attr) @test get_attribute(model, "tm_lim") ≈ 60 * 1000 return end function test_get_quadratic_constraint() model = Model(() -> POI.Optimizer(GLPK.Optimizer())) @variable(model, x) @variable(model, p in Parameter(2.0)) @constraint(model, c, p * x <= 10) optimize!(model) @test value(c) ≈ 2.0 * value(x) return end
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
code
64564
# Copyright (c) 2020: Tomás Gutierrez and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. function test_basic_tests() """ min x₁ + y x₁ + y = 2 x₁,x₂ ≥ 0 opt x* = {2-y,0} obj = 2 """ optimizer = POI.Optimizer(GLPK.Optimizer()) MOI.set(optimizer, MOI.Silent(), true) x = MOI.add_variables(optimizer, 2) y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) @test MOI.is_valid(optimizer, x[1]) @test MOI.is_valid(optimizer, y) @test MOI.is_valid(optimizer, cy) @test MOI.get(optimizer, POI.ListOfPureVariableIndices()) == x @test MOI.get(optimizer, MOI.ListOfVariableIndices()) == [x[1], x[2], y] z = MOI.VariableIndex(4) cz = MOI.ConstraintIndex{MOI.VariableIndex,MOI.Parameter{Float64}}(4) @test !MOI.is_valid(optimizer, z) for x_i in x MOI.add_constraint(optimizer, x_i, MOI.GreaterThan(0.0)) end @test_throws ErrorException("Cannot constrain a parameter") MOI.add_constraint( optimizer, y, MOI.EqualTo(0.0), ) @test_throws ErrorException("Variable not in the model") MOI.add_constraint( optimizer, z, MOI.GreaterThan(0.0), ) cons1 = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.([1.0, 1.0], [x[1], y]), 0.0, ) c1 = MOI.add_constraint(optimizer, cons1, MOI.EqualTo(2.0)) obj_func = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.([1.0, 1.0], [x[1], y]), 0.0, ) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), obj_func, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MIN_SENSE) MOI.optimize!(optimizer) @test MOI.get(optimizer, MOI.ObjectiveValue()) == 2 @test MOI.get(optimizer, MOI.VariablePrimal(), x[1]) == 2 @test_throws ErrorException("Variable not in the model") MOI.get( optimizer, MOI.VariablePrimal(), z, ) @test MOI.get(optimizer, POI.ListOfPureVariableIndices()) == MOI.VariableIndex[MOI.VariableIndex(1), MOI.VariableIndex(2)] @test MOI.get(optimizer, POI.ListOfParameterIndices()) == POI.ParameterIndex[POI.ParameterIndex(1)] MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(1.0)) @test_throws ErrorException("Parameter not in the model") MOI.set( optimizer, MOI.ConstraintSet(), cz, MOI.Parameter(1.0), ) MOI.optimize!(optimizer) @test MOI.get(optimizer, MOI.ObjectiveValue()) == 2 @test MOI.get(optimizer, MOI.VariablePrimal(), x[1]) == 1 """ min x₁ + x₂ x₁ + y = 2 x₁,x₂ ≥ 0 opt x* = {2-y,0} obj = 2-y """ new_obj_func = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.([1.0, 1.0], [x[1], x[2]]), 0.0, ) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), new_obj_func, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MIN_SENSE) MOI.optimize!(optimizer) @test MOI.get(optimizer, MOI.ObjectiveValue()) == 1 @test MOI.supports(optimizer, MOI.VariableName(), MOI.VariableIndex) @test MOI.get(optimizer, MOI.ObjectiveSense()) == MOI.MIN_SENSE @test MOI.get(optimizer, MOI.VariableName(), x[1]) == "" @test MOI.get(optimizer, MOI.ConstraintName(), c1) == "" MOI.set(optimizer, MOI.ConstraintName(), c1, "ctr123") @test MOI.get(optimizer, MOI.ConstraintName(), c1) == "ctr123" return end function test_basic_special_cases_of_getters() ipopt = Ipopt.Optimizer() MOI.set(ipopt, MOI.RawOptimizerAttribute("print_level"), 0) opt_in = MOI.Utilities.CachingOptimizer(MOI.Utilities.Model{Float64}(), ipopt) optimizer = POI.Optimizer(opt_in) A = [2.0 1.0; 1.0 2.0] a = [1.0, 1.0] c = [2.0, 1.0] x = MOI.add_variables(optimizer, 2) for x_i in x MOI.add_constraint(optimizer, x_i, MOI.GreaterThan(0.0)) end y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) quad_terms = MOI.ScalarQuadraticTerm{Float64}[] push!(quad_terms, MOI.ScalarQuadraticTerm(A[1, 1], x[1], y)) push!(quad_terms, MOI.ScalarQuadraticTerm(A[1, 2], x[1], y)) push!(quad_terms, MOI.ScalarQuadraticTerm(A[2, 2], x[2], y)) constraint_function = MOI.ScalarQuadraticFunction( quad_terms, MOI.ScalarAffineTerm.(a, [x[1], y]), 0.0, ) cons_index = MOI.add_constraint(optimizer, constraint_function, MOI.LessThan(25.0)) obj_func = MOI.ScalarQuadraticFunction( [MOI.ScalarQuadraticTerm(A[2, 2], x[2], y)], MOI.ScalarAffineTerm.(c, [x[1], x[2]]), 0.0, ) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}(), obj_func, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE) @test MOI.get(optimizer, MOI.ObjectiveFunctionType()) == MOI.ScalarQuadraticFunction{Float64} @test MOI.get(optimizer, MOI.NumberOfVariables()) == 3 return end function test_modification_multiple() model = POI.Optimizer(MOI.Utilities.Model{Float64}()) x = MOI.add_variables(model, 3) saf = MOI.ScalarAffineFunction( [ MOI.ScalarAffineTerm(1.0, x[1]), MOI.ScalarAffineTerm(1.0, x[2]), MOI.ScalarAffineTerm(1.0, x[3]), ], 0.0, ) ci1 = MOI.add_constraint(model, saf, MOI.LessThan(1.0)) ci2 = MOI.add_constraint(model, saf, MOI.LessThan(2.0)) MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), saf, ) fc1 = MOI.get(model, MOI.ConstraintFunction(), ci1) @test MOI.coefficient.(fc1.terms) == [1.0, 1.0, 1.0] fc2 = MOI.get(model, MOI.ConstraintFunction(), ci2) @test MOI.coefficient.(fc2.terms) == [1.0, 1.0, 1.0] obj = MOI.get( model, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), ) @test MOI.coefficient.(obj.terms) == [1.0, 1.0, 1.0] changes_cis = [ MOI.ScalarCoefficientChange(MOI.VariableIndex(1), 4.0) MOI.ScalarCoefficientChange(MOI.VariableIndex(1), 0.5) MOI.ScalarCoefficientChange(MOI.VariableIndex(3), 2.0) ] MOI.modify(model, [ci1, ci2, ci2], changes_cis) fc1 = MOI.get(model, MOI.ConstraintFunction(), ci1) @test MOI.coefficient.(fc1.terms) == [4.0, 1.0, 1.0] fc2 = MOI.get(model, MOI.ConstraintFunction(), ci2) @test MOI.coefficient.(fc2.terms) == [0.5, 1.0, 2.0] changes_obj = [ MOI.ScalarCoefficientChange(MOI.VariableIndex(1), 4.0) MOI.ScalarCoefficientChange(MOI.VariableIndex(2), 10.0) MOI.ScalarCoefficientChange(MOI.VariableIndex(3), 2.0) ] MOI.modify( model, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), changes_obj, ) obj = MOI.get( model, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), ) @test MOI.coefficient.(obj.terms) == [4.0, 10.0, 2.0] return end function test_moi_glpk() # TODO see why tests error or fail MOI.Test.runtests( MOI.Bridges.full_bridge_optimizer( POI.Optimizer(GLPK.Optimizer()), Float64, ), MOI.Test.Config(); exclude = [ # GLPK returns INVALID_MODEL instead of INFEASIBLE "test_constraint_ZeroOne_bounds_3", ], ) return end function test_moi_ipopt() model = MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Bridges.full_bridge_optimizer( POI.Optimizer(Ipopt.Optimizer()), Float64, ), ) MOI.set(model, MOI.Silent(), true) # Without fixed_variable_treatment set, duals are not computed for variables # that have lower_bound == upper_bound. MOI.set( model, MOI.RawOptimizerAttribute("fixed_variable_treatment"), "make_constraint", ) MOI.Test.runtests( model, MOI.Test.Config( atol = 1e-4, rtol = 1e-4, optimal_status = MOI.LOCALLY_SOLVED, exclude = Any[ MOI.ConstraintBasisStatus, MOI.DualObjectiveValue, MOI.ObjectiveBound, ], ); exclude = String[ # Tests purposefully excluded: # - Upstream: ZeroBridge does not support ConstraintDual "test_conic_linear_VectorOfVariables_2", # - Excluded because this test is optional "test_model_ScalarFunctionConstantNotZero", # - Excluded because Ipopt returns NORM_LIMIT instead of # DUAL_INFEASIBLE "test_solve_TerminationStatus_DUAL_INFEASIBLE", # - Excluded because Ipopt returns INVALID_MODEL instead of # LOCALLY_SOLVED "test_linear_VectorAffineFunction_empty_row", # - Excluded because Ipopt returns LOCALLY_INFEASIBLE instead of # INFEASIBLE "INFEASIBLE", "test_solve_DualStatus_INFEASIBILITY_CERTIFICATE_", ], ) return end function test_moi_ListOfConstraintTypesPresent() N = 10 ipopt = Ipopt.Optimizer() model = POI.Optimizer(ipopt) MOI.set(model, MOI.Silent(), true) x = MOI.add_variables(model, N / 2) y = first.( MOI.add_constrained_variable.( model, MOI.Parameter.(ones(Int(N / 2))), ), ) MOI.add_constraint( model, MOI.ScalarQuadraticFunction( MOI.ScalarQuadraticTerm.(1.0, x, y), MOI.ScalarAffineTerm{Float64}[], 0.0, ), MOI.GreaterThan(1.0), ) result = MOI.get(model, MOI.ListOfConstraintTypesPresent()) expected = [ (MOI.ScalarQuadraticFunction{Float64}, MOI.GreaterThan{Float64}), (MOI.VariableIndex, MOI.Parameter{Float64}), ] @test Set(result) == Set(expected) @test length(result) == length(expected) return end function test_production_problem_example() optimizer = POI.Optimizer(GLPK.Optimizer()) c = [4.0, 3.0] A1 = [2.0, 1.0, 1.0] A2 = [1.0, 2.0, 1.0] b1 = 4.0 b2 = 4.0 x = MOI.add_variables(optimizer, length(c)) @test typeof(x[1]) == MOI.VariableIndex w, cw = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) z, cz = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) @test MOI.get(optimizer, MOI.VariablePrimal(), w) == 0 for x_i in x MOI.add_constraint(optimizer, x_i, MOI.GreaterThan(0.0)) end cons1 = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.(A1, [x[1], x[2], y]), 0.0, ) MOI.add_constraint(optimizer, cons1, MOI.LessThan(b1)) cons2 = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.(A2, [x[1], x[2], z]), 0.0, ) MOI.add_constraint(optimizer, cons2, MOI.LessThan(b2)) @test cons1.terms[1].coefficient == 2 @test POI._parameter_in_model(optimizer, cons2.terms[3].variable) obj_func = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.([c[1], c[2], 3.0], [x[1], x[2], w]), 0.0, ) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), obj_func, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE) MOI.optimize!(optimizer) MOI.get(optimizer, MOI.TerminationStatus()) MOI.get(optimizer, MOI.PrimalStatus()) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 28 / 3, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 4 / 3, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[2]), 4 / 3, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cy), 5 / 3, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cz), 2 / 3, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cw), -3.0, atol = ATOL) MOI.get(optimizer, MOI.VariablePrimal(), w) MOI.get(optimizer, MOI.VariablePrimal(), y) MOI.get(optimizer, MOI.VariablePrimal(), z) MOI.set(optimizer, MOI.ConstraintSet(), cw, MOI.Parameter(2.0)) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(1.0)) MOI.set(optimizer, MOI.ConstraintSet(), cz, MOI.Parameter(1.0)) MOI.optimize!(optimizer) @test MOI.get(optimizer, MOI.VariablePrimal(), w) == 2.0 @test MOI.get(optimizer, MOI.VariablePrimal(), y) == 1.0 @test MOI.get(optimizer, MOI.VariablePrimal(), z) == 1.0 @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 13.0, atol = ATOL) @test MOI.get.(optimizer, MOI.VariablePrimal(), x) == [1.0, 1.0] @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cy), 5 / 3, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cz), 2 / 3, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cw), -3.0, atol = ATOL) MOI.set(optimizer, MOI.ConstraintSet(), cw, MOI.Parameter(0.0)) MOI.optimize!(optimizer) @test MOI.get(optimizer, MOI.VariablePrimal(), w) == 0.0 @test MOI.get(optimizer, MOI.VariablePrimal(), y) == 1.0 @test MOI.get(optimizer, MOI.VariablePrimal(), z) == 1.0 @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 7, atol = ATOL) @test MOI.get.(optimizer, MOI.VariablePrimal(), x) == [1.0, 1.0] MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(-5.0)) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 12.0, atol = ATOL) @test MOI.get.(optimizer, MOI.VariablePrimal(), x) == [3.0, 0.0] @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cy), 0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cz), 4, atol = ATOL) return end function test_production_problem_example_duals() optimizer = POI.Optimizer(GLPK.Optimizer()) c = [4.0, 3.0] A1 = [2.0, 1.0, 3.0] A2 = [1.0, 2.0, 0.5] b1 = 4.0 b2 = 4.0 x = MOI.add_variables(optimizer, length(c)) @test typeof(x[1]) == MOI.VariableIndex w, cw = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) z, cz = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) @test MOI.get(optimizer, MOI.VariablePrimal(), w) == 0 for x_i in x MOI.add_constraint(optimizer, x_i, MOI.GreaterThan(0.0)) end cons1 = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.(A1, [x[1], x[2], y]), 0.0, ) ci1 = MOI.add_constraint(optimizer, cons1, MOI.LessThan(b1)) cons2 = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.(A2, [x[1], x[2], z]), 0.0, ) ci2 = MOI.add_constraint(optimizer, cons2, MOI.LessThan(b2)) @test cons1.terms[1].coefficient == 2 @test POI._parameter_in_model(optimizer, cons2.terms[3].variable) obj_func = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.([c[1], c[2], 2.0], [x[1], x[2], w]), 0.0, ) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), obj_func, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE) MOI.optimize!(optimizer) MOI.get(optimizer, MOI.TerminationStatus()) MOI.get(optimizer, MOI.PrimalStatus()) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 28 / 3, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 4 / 3, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[2]), 4 / 3, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cy), 5, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cz), 2 / 6, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cw), -2.0, atol = ATOL) @test ≈( MOI.get(optimizer, MOI.ConstraintDual(), cy), -3 * MOI.get(optimizer, MOI.ConstraintDual(), ci1), atol = 1e-4, ) @test ≈( MOI.get(optimizer, MOI.ConstraintDual(), cz), -0.5 * MOI.get(optimizer, MOI.ConstraintDual(), ci2), atol = 1e-4, ) MOI.set(optimizer, MOI.ConstraintSet(), cw, MOI.Parameter(2.0)) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(1.0)) MOI.set(optimizer, MOI.ConstraintSet(), cz, MOI.Parameter(1.0)) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 7.0, atol = ATOL) @test MOI.get.(optimizer, MOI.VariablePrimal(), x) == [0.0, 1.0] @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cy), 9.0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cz), 0.0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cw), -2.0, atol = ATOL) MOI.set(optimizer, MOI.ConstraintSet(), cw, MOI.Parameter(0.0)) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 3.0, atol = ATOL) @test MOI.get.(optimizer, MOI.VariablePrimal(), x) == [0.0, 1.0] @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cy), 9.0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cz), 0.0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cw), -2.0, atol = ATOL) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(-5.0)) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 14.0, atol = ATOL) @test ≈( MOI.get.(optimizer, MOI.VariablePrimal(), x), [3.5, 0.0], atol = ATOL, ) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cy), 0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cz), 2, atol = ATOL) return end function test_production_problem_example_parameters_for_duals_and_intervals() cached = MOI.Bridges.full_bridge_optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), GLPK.Optimizer(), ), Float64, ) optimizer = POI.Optimizer(cached) c = [4.0, 3.0] A1 = [2.0, 1.0, 3.0] A2 = [1.0, 2.0, 0.5] b1 = 4.0 b2 = 4.0 x = MOI.add_variables(optimizer, length(c)) @test typeof(x[1]) == MOI.VariableIndex w, cw = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) z, cz = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) @test MOI.get(optimizer, MOI.VariablePrimal(), w) == 0 for x_i in x MOI.add_constraint(optimizer, x_i, MOI.GreaterThan(0.0)) end cons1 = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.(A1, [x[1], x[2], y]), 0.0, ) ci1 = MOI.add_constraint(optimizer, cons1, MOI.Interval(-Inf, b1)) cons2 = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.(A2, [x[1], x[2], z]), 0.0, ) ci2 = MOI.add_constraint(optimizer, cons2, MOI.LessThan(b2)) @test cons1.terms[1].coefficient == 2 @test POI._parameter_in_model(optimizer, cons2.terms[3].variable) obj_func = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.([c[1], c[2], 2.0], [x[1], x[2], w]), 0.0, ) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), obj_func, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE) MOI.optimize!(optimizer) MOI.get(optimizer, MOI.TerminationStatus()) MOI.get(optimizer, MOI.PrimalStatus()) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 28 / 3, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 4 / 3, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[2]), 4 / 3, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cy), 5, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cz), 2 / 6, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cw), -2.0, atol = ATOL) @test ≈( MOI.get(optimizer, MOI.ConstraintDual(), cy), -3 * MOI.get(optimizer, MOI.ConstraintDual(), ci1), atol = 1e-4, ) @test ≈( MOI.get(optimizer, MOI.ConstraintDual(), cz), -0.5 * MOI.get(optimizer, MOI.ConstraintDual(), ci2), atol = 1e-4, ) MOI.set(optimizer, MOI.ConstraintSet(), cw, MOI.Parameter(2.0)) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(1.0)) MOI.set(optimizer, MOI.ConstraintSet(), cz, MOI.Parameter(1.0)) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 7.0, atol = ATOL) @test MOI.get.(optimizer, MOI.VariablePrimal(), x) == [0.0, 1.0] @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cy), 9.0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cz), 0.0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cw), -2.0, atol = ATOL) MOI.set(optimizer, MOI.ConstraintSet(), cw, MOI.Parameter(0.0)) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 3.0, atol = ATOL) @test MOI.get.(optimizer, MOI.VariablePrimal(), x) == [0.0, 1.0] @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cy), 9.0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cz), 0.0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cw), -2.0, atol = ATOL) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(-5.0)) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 14.0, atol = ATOL) @test ≈( MOI.get.(optimizer, MOI.VariablePrimal(), x), [3.5, 0.0], atol = ATOL, ) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cy), 0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), cz), 2, atol = ATOL) return end function test_vector_parameter_affine_nonnegatives() """ min x + y x - t + 1 >= 0 y - t + 2 >= 0 opt x* = t-1 y* = t-2 obj = 2*t-3 """ cached = MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), SCS.Optimizer(), ) model = POI.Optimizer(cached) MOI.set(model, MOI.Silent(), true) x = MOI.add_variable(model) y = MOI.add_variable(model) t, ct = MOI.add_constrained_variable(model, MOI.Parameter(5.0)) A = [1.0 0 -1; 0 1 -1] b = [1.0; 2] terms = MOI.VectorAffineTerm.( 1:2, MOI.ScalarAffineTerm.(A, reshape([x, y, t], 1, 3)), ) f = MOI.VectorAffineFunction(vec(terms), b) set = MOI.Nonnegatives(2) cnn = MOI.add_constraint(model, f, MOI.Nonnegatives(2)) MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.([1.0, 1.0], [y, x]), 0.0, ), ) MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE) MOI.optimize!(model) @test MOI.get(model, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT @test MOI.get(model, MOI.DualStatus()) == MOI.FEASIBLE_POINT @test MOI.get(model, MOI.VariablePrimal(), x) ≈ 4 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), y) ≈ 3 atol = ATOL @test MOI.get(model, MOI.ConstraintPrimal(), cnn) ≈ [0.0, 0.0] atol = ATOL @test MOI.get(model, MOI.ObjectiveValue()) ≈ 7 atol = ATOL @test MOI.get(model, MOI.DualObjectiveValue()) ≈ 7 atol = ATOL @test MOI.get(model, MOI.ConstraintDual(), cnn) ≈ [1.0, 1.0] atol = ATOL MOI.set(model, POI.ParameterValue(), t, 6) MOI.optimize!(model) @test MOI.get(model, MOI.VariablePrimal(), x) ≈ 5 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), y) ≈ 4 atol = ATOL @test MOI.get(model, MOI.ObjectiveValue()) ≈ 9 atol = ATOL return end function test_vector_parameter_affine_nonpositives() """ min x + y - x + t - 1 ≤ 0 - y + t - 2 ≤ 0 opt x* = t-1 y* = t-2 obj = 2*t-3 """ cached = MOI.Bridges.full_bridge_optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), SCS.Optimizer(), ), Float64, ) model = POI.Optimizer(cached) MOI.set(model, MOI.Silent(), true) x = MOI.add_variable(model) y = MOI.add_variable(model) t, ct = MOI.add_constrained_variable(model, MOI.Parameter(5.0)) A = [-1.0 0 1; 0 -1 1] b = [-1.0; -2] terms = MOI.VectorAffineTerm.( 1:2, MOI.ScalarAffineTerm.(A, reshape([x, y, t], 1, 3)), ) f = MOI.VectorAffineFunction(vec(terms), b) set = MOI.Nonnegatives(2) cnn = MOI.add_constraint(model, f, MOI.Nonpositives(2)) MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.([1.0, 1.0], [y, x]), 0.0, ), ) MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE) MOI.optimize!(model) @test MOI.get(model, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT @test MOI.get(model, MOI.DualStatus()) == MOI.FEASIBLE_POINT @test MOI.get(model, MOI.VariablePrimal(), x) ≈ 4 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), y) ≈ 3 atol = ATOL @test MOI.get(model, MOI.ConstraintPrimal(), cnn) ≈ [0.0, 0.0] atol = ATOL @test MOI.get(model, MOI.ObjectiveValue()) ≈ 7 atol = ATOL @test MOI.get(model, MOI.DualObjectiveValue()) ≈ 7 atol = ATOL @test MOI.get(model, MOI.ConstraintDual(), cnn) ≈ [-1.0, -1.0] atol = ATOL MOI.set(model, POI.ParameterValue(), t, 6) MOI.optimize!(model) @test MOI.get(model, MOI.VariablePrimal(), x) ≈ 5 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), y) ≈ 4 atol = ATOL @test MOI.get(model, MOI.ObjectiveValue()) ≈ 9 atol = ATOL return end function test_vector_soc_parameters() """ Problem SOC2 from MOI min x s.t. y ≥ 1/√2 (x-p)² + y² ≤ 1 in conic form: min x s.t. -1/√2 + y ∈ R₊ 1 - t ∈ {0} (t, x-p ,y) ∈ SOC₃ opt x* = p - 1/√2 y* = 1/√2 """ cached = MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), SCS.Optimizer(), ) model = POI.Optimizer(cached) MOI.set(model, MOI.Silent(), true) x, y, t = MOI.add_variables(model, 3) p, cp = MOI.add_constrained_variable(model, MOI.Parameter(0.0)) MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), MOI.ScalarAffineFunction([MOI.ScalarAffineTerm(1.0, x)], 0.0), ) MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE) cnon = MOI.add_constraint( model, MOI.VectorAffineFunction( [MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(1.0, y))], [-1 / √2], ), MOI.Nonnegatives(1), ) ceq = MOI.add_constraint( model, MOI.VectorAffineFunction( [MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(-1.0, t))], [1.0], ), MOI.Zeros(1), ) A = [ 1.0 0.0 0.0 0.0 0.0 1.0 0.0 -1 0.0 0.0 1.0 0.0 ] f = MOI.VectorAffineFunction( vec( MOI.VectorAffineTerm.( 1:3, MOI.ScalarAffineTerm.(A, reshape([t, x, y, p], 1, 4)), ), ), zeros(3), ) csoc = MOI.add_constraint(model, f, MOI.SecondOrderCone(3)) f_error = MOI.VectorOfVariables([t, p, y]) @test_throws ErrorException MOI.add_constraint( model, f_error, MOI.SecondOrderCone(3), ) MOI.optimize!(model) @test MOI.get(model, MOI.ObjectiveValue()) ≈ -1 / √2 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), x) ≈ -1 / √2 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), y) ≈ 1 / √2 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), t) ≈ 1 atol = ATOL MOI.set(model, POI.ParameterValue(), p, 1) MOI.optimize!(model) @test MOI.get(model, MOI.ObjectiveValue()) ≈ 1 - 1 / √2 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), x) ≈ 1 - 1 / √2 atol = ATOL return end # TODO(odow): What is this doing here!!! function test_vector_soc_no_parameters() """ Problem SOC2 from MOI min x s.t. y ≥ 1/√2 x² + y² ≤ 1 in conic form: min x s.t. -1/√2 + y ∈ R₊ 1 - t ∈ {0} (t, x ,y) ∈ SOC₃ opt x* = 1/√2 y* = 1/√2 """ cached = MOI.Bridges.full_bridge_optimizer( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), SCS.Optimizer(), ), Float64, ) model = POI.Optimizer(cached) MOI.set(model, MOI.Silent(), true) x, y, t = MOI.add_variables(model, 3) MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), MOI.ScalarAffineFunction([MOI.ScalarAffineTerm(1.0, x)], 0.0), ) MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE) cnon = MOI.add_constraint( model, MOI.VectorAffineFunction( [MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(1.0, y))], [-1 / √2], ), MOI.Nonnegatives(1), ) ceq = MOI.add_constraint( model, MOI.VectorAffineFunction( [MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(-1.0, t))], [1.0], ), MOI.Zeros(1), ) f = MOI.VectorOfVariables([t, x, y]) csoc = MOI.add_constraint(model, f, MOI.SecondOrderCone(3)) MOI.optimize!(model) @test MOI.get(model, MOI.ObjectiveValue()) ≈ -1 / √2 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), x) ≈ -1 / √2 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), y) ≈ 1 / √2 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), t) ≈ 1 atol = ATOL return end function test_qp_no_parameters_1() ipopt = Ipopt.Optimizer() MOI.set(ipopt, MOI.RawOptimizerAttribute("print_level"), 0) opt_in = MOI.Utilities.CachingOptimizer(MOI.Utilities.Model{Float64}(), ipopt) optimizer = POI.Optimizer(opt_in) Q = [4.0 1.0; 1.0 2.0] q = [1.0; 1.0] G = [1.0 1.0; 1.0 0.0; 0.0 1.0; -1.0 -1.0; -1.0 0.0; 0.0 -1.0] h = [1.0; 0.7; 0.7; -1.0; 0.0; 0.0] x = MOI.add_variables(optimizer, 2) quad_terms = MOI.ScalarQuadraticTerm{Float64}[] for i in 1:2 for j in i:2 # indexes (i,j), (j,i) will be mirrored. specify only one kind push!(quad_terms, MOI.ScalarQuadraticTerm(Q[i, j], x[i], x[j])) end end objective_function = MOI.ScalarQuadraticFunction( quad_terms, MOI.ScalarAffineTerm.(q, x), 0.0, ) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}(), objective_function, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MIN_SENSE) for i in 1:6 MOI.add_constraint( optimizer, MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(G[i, :], x), 0.0), MOI.LessThan(h[i]), ) end MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 1.88, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 0.3, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[2]), 0.7, atol = ATOL) return end function test_qp_no_parameters_2() ipopt = Ipopt.Optimizer() MOI.set(ipopt, MOI.RawOptimizerAttribute("print_level"), 0) opt_in = MOI.Utilities.CachingOptimizer(MOI.Utilities.Model{Float64}(), ipopt) optimizer = POI.Optimizer(opt_in) A = [0.0 1.0; 1.0 0.0] a = [0.0, 0.0] c = [2.0, 1.0] x = MOI.add_variables(optimizer, 2) for x_i in x MOI.add_constraint(optimizer, x_i, MOI.GreaterThan(1.0)) MOI.add_constraint(optimizer, x_i, MOI.LessThan(5.0)) end quad_terms = MOI.ScalarQuadraticTerm{Float64}[] push!(quad_terms, MOI.ScalarQuadraticTerm(A[1, 2], x[1], x[2])) constraint_function = MOI.ScalarQuadraticFunction( [MOI.ScalarQuadraticTerm(A[1, 2], x[1], x[2])], MOI.ScalarAffineTerm.(a, x), 0.0, ) MOI.add_constraint(optimizer, constraint_function, MOI.LessThan(9.0)) obj_func = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(c, [x[1], x[2]]), 0.0) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), obj_func, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 11.8, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 5.0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[2]), 1.8, atol = ATOL) return end function test_qp_parameter_in_affine_constraint() ipopt = Ipopt.Optimizer() MOI.set(ipopt, MOI.RawOptimizerAttribute("print_level"), 0) opt_in = MOI.Utilities.CachingOptimizer(MOI.Utilities.Model{Float64}(), ipopt) optimizer = POI.Optimizer(opt_in) Q = [3.0 2.0; 2.0 1.0] q = [1.0, 6.0] G = [2.0 3.0 1.0; 1.0 1.0 1.0] h = [4.0; 3.0] x = MOI.add_variables(optimizer, 2) y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) quad_terms = MOI.ScalarQuadraticTerm{Float64}[] for i in 1:2 for j in i:2 # indexes (i,j), (j,i) will be mirrored. specify only one kind push!(quad_terms, MOI.ScalarQuadraticTerm(Q[i, j], x[i], x[j])) end end objective_function = MOI.ScalarQuadraticFunction( quad_terms, MOI.ScalarAffineTerm.(q, x), 0.0, ) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}(), objective_function, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MIN_SENSE) for i in 1:2 MOI.add_constraint( optimizer, MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.(G[i, :], [x[1], x[2], y]), 0.0, ), MOI.GreaterThan(h[i]), ) end MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 12.5, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 5.0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[2]), -2.0, atol = ATOL) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(1.0)) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 5.0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 3.0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[2]), -1.0, atol = ATOL) return end function test_qp_parameter_in_quadratic_constraint() ipopt = Ipopt.Optimizer() MOI.set(ipopt, MOI.RawOptimizerAttribute("print_level"), 0) opt_in = MOI.Utilities.CachingOptimizer(MOI.Utilities.Model{Float64}(), ipopt) optimizer = POI.Optimizer(opt_in) Q = [3.0 2.0; 2.0 1.0] q = [1.0, 6.0, 1.0] G = [2.0 3.0 1.0 0.0; 1.0 1.0 0.0 1.0] h = [4.0; 3.0] x = MOI.add_variables(optimizer, 2) y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) w, cw = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) quad_terms = MOI.ScalarQuadraticTerm{Float64}[] for i in 1:2 for j in i:2 # indexes (i,j), (j,i) will be mirrored. specify only one kind push!(quad_terms, MOI.ScalarQuadraticTerm(Q[i, j], x[i], x[j])) end end objective_function = MOI.ScalarQuadraticFunction( quad_terms, MOI.ScalarAffineTerm.(q, [x[1], x[2], y]), 0.0, ) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}(), objective_function, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MIN_SENSE) MOI.add_constraint( optimizer, MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.(G[1, :], [x[1], x[2], y, w]), 0.0, ), MOI.GreaterThan(h[1]), ) MOI.add_constraint( optimizer, MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.(G[2, :], [x[1], x[2], y, w]), 0.0, ), MOI.GreaterThan(h[2]), ) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 12.5, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 5.0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[2]), -2.0, atol = ATOL) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(1.0)) MOI.set(optimizer, MOI.ConstraintSet(), cw, MOI.Parameter(2.0)) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 5.7142, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 2.1428, atol = ATOL) @test ≈( MOI.get(optimizer, MOI.VariablePrimal(), x[2]), -0.4285, atol = ATOL, ) return end function test_qp_variable_times_variable_plus_parameter() ipopt = Ipopt.Optimizer() MOI.set(ipopt, MOI.RawOptimizerAttribute("print_level"), 0) opt_in = MOI.Utilities.CachingOptimizer(MOI.Utilities.Model{Float64}(), ipopt) optimizer = POI.Optimizer(opt_in) A = [2.0 1.0; 1.0 2.0] a = [1.0, 1.0] c = [2.0, 1.0] x = MOI.add_variables(optimizer, 2) for x_i in x MOI.add_constraint(optimizer, x_i, MOI.GreaterThan(0.0)) end y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) quad_terms = MOI.ScalarQuadraticTerm{Float64}[] push!(quad_terms, MOI.ScalarQuadraticTerm(A[1, 1], x[1], x[1])) push!(quad_terms, MOI.ScalarQuadraticTerm(A[1, 2], x[1], x[2])) push!(quad_terms, MOI.ScalarQuadraticTerm(A[2, 2], x[2], x[2])) constraint_function = MOI.ScalarQuadraticFunction( quad_terms, MOI.ScalarAffineTerm.(a, [x[1], y]), 0.0, ) cons_index = MOI.add_constraint(optimizer, constraint_function, MOI.LessThan(25.0)) obj_func = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(c, [x[1], x[2]]), 0.0) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), obj_func, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 9.0664, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 4.3665, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[2]), 1 / 3, atol = ATOL) @test ≈( MOI.get(optimizer, MOI.ConstraintDual(), cy), -MOI.get(optimizer, MOI.ConstraintDual(), cons_index), atol = ATOL, ) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(2.0)) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 8.6609, atol = ATOL) return end function test_qp_variable_times_variable_plus_parameter_duals() ipopt = Ipopt.Optimizer() MOI.set(ipopt, MOI.RawOptimizerAttribute("print_level"), 0) opt_in = MOI.Utilities.CachingOptimizer(MOI.Utilities.Model{Float64}(), ipopt) optimizer = POI.Optimizer(opt_in) A = [2.0 1.0; 1.0 2.0] a = [1.0, 2.0] c = [2.0, 1.0] x = MOI.add_variables(optimizer, 2) for x_i in x MOI.add_constraint(optimizer, x_i, MOI.GreaterThan(0.0)) end y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) quad_terms = MOI.ScalarQuadraticTerm{Float64}[] push!(quad_terms, MOI.ScalarQuadraticTerm(A[1, 1], x[1], x[1])) push!(quad_terms, MOI.ScalarQuadraticTerm(A[1, 2], x[1], x[2])) push!(quad_terms, MOI.ScalarQuadraticTerm(A[2, 2], x[2], x[2])) constraint_function = MOI.ScalarQuadraticFunction( quad_terms, MOI.ScalarAffineTerm.(a, [x[1], y]), 0.0, ) cons_index = MOI.add_constraint(optimizer, constraint_function, MOI.LessThan(25.0)) obj_func = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(c, [x[1], x[2]]), 0.0) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), obj_func, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 9.0664, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 4.3665, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[2]), 1 / 3, atol = ATOL) @test ≈( MOI.get(optimizer, MOI.ConstraintDual(), cy), -2 * MOI.get(optimizer, MOI.ConstraintDual(), cons_index), atol = ATOL, ) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(2.0)) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 8.2376, atol = ATOL) return end function test_qp_parameter_times_variable() ipopt = Ipopt.Optimizer() MOI.set(ipopt, MOI.RawOptimizerAttribute("print_level"), 0) opt_in = MOI.Utilities.CachingOptimizer(MOI.Utilities.Model{Float64}(), ipopt) optimizer = POI.Optimizer(opt_in) A = [2.0 1.0; 1.0 2.0] a = [1.0, 1.0] c = [2.0, 1.0] x = MOI.add_variables(optimizer, 2) for x_i in x MOI.add_constraint(optimizer, x_i, MOI.GreaterThan(0.0)) end MOI.add_constraint(optimizer, x[1], MOI.LessThan(20.0)) y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) quad_terms = MOI.ScalarQuadraticTerm{Float64}[] push!(quad_terms, MOI.ScalarQuadraticTerm(A[1, 1], x[1], x[1])) push!(quad_terms, MOI.ScalarQuadraticTerm(A[1, 2], x[1], y)) push!(quad_terms, MOI.ScalarQuadraticTerm(A[2, 2], y, y)) constraint_function = MOI.ScalarQuadraticFunction( quad_terms, MOI.ScalarAffineTerm.(a, x), 0.0, ) MOI.add_constraint(optimizer, constraint_function, MOI.LessThan(30.0)) obj_func = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(c, [x[1], x[2]]), 0.0) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), obj_func, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 30.25, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 0.5, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[2]), 29.25, atol = ATOL) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(2.0)) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 22.0, atol = ATOL) return end function test_qp_variable_times_parameter() ipopt = Ipopt.Optimizer() MOI.set(ipopt, MOI.RawOptimizerAttribute("print_level"), 0) opt_in = MOI.Utilities.CachingOptimizer(MOI.Utilities.Model{Float64}(), ipopt) optimizer = POI.Optimizer(opt_in) A = [2.0 1.0; 1.0 2.0] a = [1.0, 1.0] c = [2.0, 1.0] x = MOI.add_variables(optimizer, 2) for x_i in x MOI.add_constraint(optimizer, x_i, MOI.GreaterThan(0.0)) end MOI.add_constraint(optimizer, x[1], MOI.LessThan(20.0)) y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) quad_terms = MOI.ScalarQuadraticTerm{Float64}[] push!(quad_terms, MOI.ScalarQuadraticTerm(A[2, 2], y, y)) push!(quad_terms, MOI.ScalarQuadraticTerm(A[1, 2], y, x[1])) push!(quad_terms, MOI.ScalarQuadraticTerm(A[1, 1], x[1], x[1])) constraint_function = MOI.ScalarQuadraticFunction( quad_terms, MOI.ScalarAffineTerm.(a, x), 0.0, ) MOI.add_constraint(optimizer, constraint_function, MOI.LessThan(30.0)) obj_func = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(c, [x[1], x[2]]), 0.0) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), obj_func, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 30.25, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 0.5, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.VariablePrimal(), x[2]), 29.25, atol = ATOL) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(2.0)) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ObjectiveValue()), 22.0, atol = ATOL) return end function test_qp_parameter_times_parameter() ipopt = Ipopt.Optimizer() MOI.set(ipopt, MOI.RawOptimizerAttribute("print_level"), 0) opt_in = MOI.Utilities.CachingOptimizer(MOI.Utilities.Model{Float64}(), ipopt) optimizer = POI.Optimizer(opt_in) A = [2.0 1.0; 1.0 2.0] a = [1.0, 1.0] c = [2.0, 1.0] x = MOI.add_variables(optimizer, 2) for x_i in x MOI.add_constraint(optimizer, x_i, MOI.GreaterThan(0.0)) end MOI.add_constraint(optimizer, x[1], MOI.LessThan(20.0)) y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) z, cz = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) quad_terms = MOI.ScalarQuadraticTerm{Float64}[] push!(quad_terms, MOI.ScalarQuadraticTerm(A[1, 1], y, y)) push!(quad_terms, MOI.ScalarQuadraticTerm(A[1, 2], y, z)) push!(quad_terms, MOI.ScalarQuadraticTerm(A[2, 2], z, z)) constraint_function = MOI.ScalarQuadraticFunction( quad_terms, MOI.ScalarAffineTerm.(a, x), 0.0, ) MOI.add_constraint(optimizer, constraint_function, MOI.LessThan(30.0)) obj_func = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(c, [x[1], x[2]]), 0.0) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), obj_func, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE) MOI.optimize!(optimizer) @test isapprox(MOI.get(optimizer, MOI.ObjectiveValue()), 50.0, atol = ATOL) @test isapprox( MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 20.0, atol = ATOL, ) @test isapprox( MOI.get(optimizer, MOI.VariablePrimal(), x[2]), 10.0, atol = ATOL, ) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(2.0)) MOI.optimize!(optimizer) @test isapprox(MOI.get(optimizer, MOI.ObjectiveValue()), 42.0, atol = ATOL) MOI.set(optimizer, MOI.ConstraintSet(), cz, MOI.Parameter(1.0)) MOI.optimize!(optimizer) @test isapprox(MOI.get(optimizer, MOI.ObjectiveValue()), 36.0, atol = ATOL) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(-1.0)) MOI.set(optimizer, MOI.ConstraintSet(), cz, MOI.Parameter(-1.0)) MOI.optimize!(optimizer) @test isapprox(MOI.get(optimizer, MOI.ObjectiveValue()), 45.0, atol = ATOL) return end function test_qp_quadratic_constant() ipopt = Ipopt.Optimizer() MOI.set(ipopt, MOI.RawOptimizerAttribute("print_level"), 0) opt_in = MOI.Utilities.CachingOptimizer(MOI.Utilities.Model{Float64}(), ipopt) optimizer = POI.Optimizer(opt_in) Q = [3.0 2.0 0.0; 2.0 1.0 0.0; 0.0 0.0 1.0] q = [1.0, 6.0, 0.0] G = [2.0 3.0; 1.0 1.0] h = [4.0; 3.0] x = MOI.add_variables(optimizer, 2) y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) quad_terms = MOI.ScalarQuadraticTerm{Float64}[] for i in 1:2 for j in i:2 # indexes (i,j), (j,i) will be mirrored. specify only one kind push!(quad_terms, MOI.ScalarQuadraticTerm(Q[i, j], x[i], x[j])) end end push!(quad_terms, MOI.ScalarQuadraticTerm(Q[1, 3], x[1], y)) push!(quad_terms, MOI.ScalarQuadraticTerm(Q[2, 3], x[2], y)) push!(quad_terms, MOI.ScalarQuadraticTerm(Q[3, 3], y, y)) objective_function = MOI.ScalarQuadraticFunction( quad_terms, MOI.ScalarAffineTerm.(q, [x[1], x[2], y]), 0.0, ) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}(), objective_function, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MIN_SENSE) MOI.add_constraint( optimizer, MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(G[1, :], x), 0.0), MOI.GreaterThan(h[1]), ) MOI.add_constraint( optimizer, MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(G[2, :], x), 0.0), MOI.GreaterThan(h[2]), ) MOI.optimize!(optimizer) @test isapprox(MOI.get(optimizer, MOI.ObjectiveValue()), 12.5, atol = ATOL) @test isapprox.( MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 5.0, atol = ATOL, ) @test isapprox.( MOI.get(optimizer, MOI.VariablePrimal(), x[2]), -2.0, atol = ATOL, ) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(1.0)) MOI.optimize!(optimizer) # @test isapprox(MOI.get(optimizer, MOI.ObjectiveValue()), 5.7142, atol = ATOL) # @test isapprox.(MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 2.1428, atol = ATOL) # @test isapprox.(MOI.get(optimizer, MOI.VariablePrimal(), x[2]), -0.4285, atol = ATOL) return end function test_qp_objective_parameter_times_parameter() ipopt = Ipopt.Optimizer() MOI.set(ipopt, MOI.RawOptimizerAttribute("print_level"), 0) opt_in = MOI.Utilities.CachingOptimizer(MOI.Utilities.Model{Float64}(), ipopt) optimizer = POI.Optimizer(opt_in) a = [1.0, 1.0] x = MOI.add_variables(optimizer, 2) for x_i in x MOI.add_constraint(optimizer, x_i, MOI.GreaterThan(0.0)) end y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(1.0)) z, cz = MOI.add_constrained_variable(optimizer, MOI.Parameter(1.0)) quad_terms = MOI.ScalarQuadraticTerm{Float64}[] push!(quad_terms, MOI.ScalarQuadraticTerm(1.0, y, z)) objective_function = MOI.ScalarQuadraticFunction( quad_terms, MOI.ScalarAffineTerm.(a, x), 0.0, ) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}(), objective_function, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MIN_SENSE) MOI.optimize!(optimizer) @test isapprox(MOI.get(optimizer, MOI.ObjectiveValue()), 1.0, atol = ATOL) @test isapprox( MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 0.0, atol = ATOL, ) err = ErrorException("Cannot compute the dual of a multiplicative parameter") @test_throws err MOI.get(optimizer, MOI.ConstraintDual(), cy) @test_throws err MOI.get(optimizer, MOI.ConstraintDual(), cz) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(2.0)) MOI.optimize!(optimizer) @test isapprox(MOI.get(optimizer, MOI.ObjectiveValue()), 2.0, atol = ATOL) MOI.set(optimizer, MOI.ConstraintSet(), cz, MOI.Parameter(3.0)) MOI.optimize!(optimizer) @test isapprox(MOI.get(optimizer, MOI.ObjectiveValue()), 6.0, atol = ATOL) MOI.set(optimizer, POI.ParameterValue(), y, 5) MOI.set(optimizer, POI.ParameterValue(), z, 5.0) @test_throws ErrorException MOI.set( optimizer, POI.ParameterValue(), MOI.VariableIndex(10872368175), 5.0, ) MOI.optimize!(optimizer) @test isapprox(MOI.get(optimizer, MOI.ObjectiveValue()), 25.0, atol = ATOL) end function test_qp_objective_affine_parameter() ipopt = Ipopt.Optimizer() MOI.set(ipopt, MOI.RawOptimizerAttribute("print_level"), 0) opt_in = MOI.Utilities.CachingOptimizer(MOI.Utilities.Model{Float64}(), ipopt) optimizer = POI.Optimizer(opt_in) A = [0.0 1.0; 1.0 0.0] a = [2.0, 1.0] x = MOI.add_variables(optimizer, 2) for x_i in x MOI.add_constraint(optimizer, x_i, MOI.GreaterThan(0.0)) end y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(1.0)) z, cz = MOI.add_constrained_variable(optimizer, MOI.Parameter(1.0)) quad_terms = MOI.ScalarQuadraticTerm{Float64}[] push!(quad_terms, MOI.ScalarQuadraticTerm(A[1, 1], x[1], x[1])) push!(quad_terms, MOI.ScalarQuadraticTerm(A[1, 2], x[1], x[2])) push!(quad_terms, MOI.ScalarQuadraticTerm(A[2, 2], x[2], x[2])) objective_function = MOI.ScalarQuadraticFunction( quad_terms, MOI.ScalarAffineTerm.(a, [y, z]), 0.0, ) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}(), objective_function, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MIN_SENSE) MOI.optimize!(optimizer) @test isapprox(MOI.get(optimizer, MOI.ObjectiveValue()), 3.0, atol = ATOL) @test isapprox( MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 0, atol = ATOL, ) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(2.0)) MOI.optimize!(optimizer) @test isapprox(MOI.get(optimizer, MOI.ObjectiveValue()), 5.0, atol = ATOL) MOI.set(optimizer, MOI.ConstraintSet(), cz, MOI.Parameter(3.0)) MOI.optimize!(optimizer) @test isapprox(MOI.get(optimizer, MOI.ObjectiveValue()), 7.0, atol = ATOL) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(5.0)) MOI.set(optimizer, MOI.ConstraintSet(), cz, MOI.Parameter(5.0)) MOI.optimize!(optimizer) @test isapprox(MOI.get(optimizer, MOI.ObjectiveValue()), 15.0, atol = ATOL) return end function test_qp_objective_parameter_in_quadratic_part() model = POI.Optimizer(Ipopt.Optimizer()) MOI.set(model, MOI.Silent(), true) x = MOI.add_variable(model) y = MOI.add_variable(model) z = MOI.add_variable(model) p = first(MOI.add_constrained_variable.(model, MOI.Parameter(1.0))) MOI.add_constraint(model, x, MOI.GreaterThan(0.0)) MOI.add_constraint(model, y, MOI.GreaterThan(0.0)) cons1 = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.([2.0, 1.0], [x, y]), 0.0) ci1 = MOI.add_constraint(model, cons1, MOI.LessThan(4.0)) cons2 = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.([1.0, 2.0], [x, y]), 0.0) ci2 = MOI.add_constraint(model, cons2, MOI.LessThan(4.0)) MOI.set(model, MOI.ObjectiveSense(), MOI.MAX_SENSE) obj_func = MOI.ScalarQuadraticFunction( [ MOI.ScalarQuadraticTerm(1.0, x, x) MOI.ScalarQuadraticTerm(1.0, y, y) ], MOI.ScalarAffineTerm{Float64}[], 0.0, ) MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}(), obj_func, ) MOI.set(model, POI.QuadraticObjectiveCoef(), (x, y), 2p + 3) @test MOI.get(model, POI.QuadraticObjectiveCoef(), (x, y)) ≈ MOI.ScalarAffineFunction{Int64}( MOI.ScalarAffineTerm{Int64}[MOI.ScalarAffineTerm{Int64}( 2, MOI.VariableIndex(POI.PARAMETER_INDEX_THRESHOLD + 1), )], 3, ) @test_throws ErrorException MOI.get( model, POI.QuadraticObjectiveCoef(), (x, z), ) MOI.optimize!(model) @test MOI.get(model, MOI.ObjectiveValue()) ≈ 32 / 3 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), x) ≈ 4 / 3 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), y) ≈ 4 / 3 atol = ATOL MOI.set(model, POI.ParameterValue(), p, 2.0) MOI.optimize!(model) @test MOI.get(model, MOI.ObjectiveValue()) ≈ 128 / 9 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), x) ≈ 4 / 3 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), y) ≈ 4 / 3 atol = ATOL model = POI.Optimizer(Ipopt.Optimizer()) MOI.set(model, MOI.Silent(), true) x = MOI.add_variable(model) y = MOI.add_variable(model) p = first(MOI.add_constrained_variable.(model, MOI.Parameter(1.0))) MOI.add_constraint(model, x, MOI.GreaterThan(0.0)) MOI.add_constraint(model, y, MOI.GreaterThan(0.0)) cons1 = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.([2.0, 1.0], [x, y]), 0.0) ci1 = MOI.add_constraint(model, cons1, MOI.LessThan(4.0)) cons2 = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.([1.0, 2.0], [x, y]), 0.0) ci2 = MOI.add_constraint(model, cons2, MOI.LessThan(4.0)) MOI.set(model, MOI.ObjectiveSense(), MOI.MAX_SENSE) obj_func = MOI.ScalarAffineFunction( [ MOI.ScalarAffineTerm(1.0, x) MOI.ScalarAffineTerm(2.0, y) ], 1.0, ) MOI.set( model, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), obj_func, ) MOI.set(model, POI.QuadraticObjectiveCoef(), (x, y), p) MOI.optimize!(model) @test MOI.get(model, MOI.ObjectiveValue()) ≈ 61 / 9 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), x) ≈ 4 / 3 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), y) ≈ 4 / 3 atol = ATOL @test MOI.get(model, POI.QuadraticObjectiveCoef(), (x, y)) ≈ MOI.VariableIndex(POI.PARAMETER_INDEX_THRESHOLD + 1) MOI.set(model, POI.ParameterValue(), p, 2.0) MOI.optimize!(model) @test MOI.get(model, MOI.ObjectiveValue()) ≈ 77 / 9 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), x) ≈ 4 / 3 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), y) ≈ 4 / 3 atol = ATOL model = POI.Optimizer(Ipopt.Optimizer()) MOI.set(model, MOI.Silent(), true) x = MOI.add_variable(model) y = MOI.add_variable(model) p = first(MOI.add_constrained_variable.(model, MOI.Parameter(1.0))) MOI.add_constraint(model, x, MOI.GreaterThan(0.0)) MOI.add_constraint(model, y, MOI.GreaterThan(0.0)) cons1 = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.([2.0, 1.0], [x, y]), 0.0) ci1 = MOI.add_constraint(model, cons1, MOI.LessThan(4.0)) cons2 = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.([1.0, 2.0], [x, y]), 0.0) ci2 = MOI.add_constraint(model, cons2, MOI.LessThan(4.0)) MOI.set(model, MOI.ObjectiveSense(), MOI.MAX_SENSE) obj_func = x MOI.set(model, MOI.ObjectiveFunction{MOI.VariableIndex}(), obj_func) MOI.set(model, POI.QuadraticObjectiveCoef(), (x, y), p) MOI.optimize!(model) @test MOI.get(model, MOI.ObjectiveValue()) ≈ 28 / 9 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), x) ≈ 4 / 3 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), y) ≈ 4 / 3 atol = ATOL MOI.set(model, POI.ParameterValue(), p, 2.0) MOI.optimize!(model) @test MOI.get(model, MOI.ObjectiveValue()) ≈ 44 / 9 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), x) ≈ 4 / 3 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), y) ≈ 4 / 3 atol = ATOL model = POI.Optimizer(Ipopt.Optimizer()) MOI.set(model, MOI.Silent(), true) x = MOI.add_variable(model) y = MOI.add_variable(model) p = first(MOI.add_constrained_variable.(model, MOI.Parameter(1.0))) MOI.add_constraint(model, x, MOI.GreaterThan(0.0)) MOI.add_constraint(model, y, MOI.GreaterThan(0.0)) cons1 = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.([2.0, 1.0], [x, y]), 0.0) ci1 = MOI.add_constraint(model, cons1, MOI.LessThan(4.0)) cons2 = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.([1.0, 2.0], [x, y]), 0.0) ci2 = MOI.add_constraint(model, cons2, MOI.LessThan(4.0)) MOI.set(model, MOI.ObjectiveSense(), MOI.MAX_SENSE) MOI.set(model, POI.QuadraticObjectiveCoef(), (x, y), p) MOI.optimize!(model) @test MOI.get(model, MOI.ObjectiveValue()) ≈ 16 / 9 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), x) ≈ 4 / 3 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), y) ≈ 4 / 3 atol = ATOL MOI.set(model, POI.ParameterValue(), p, 2.0) MOI.optimize!(model) @test MOI.get(model, MOI.ObjectiveValue()) ≈ 32 / 9 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), x) ≈ 4 / 3 atol = ATOL @test MOI.get(model, MOI.VariablePrimal(), y) ≈ 4 / 3 atol = ATOL return end function test_compute_conflict!() T = Float64 mock = MOI.Utilities.MockOptimizer(MOI.Utilities.Model{T}()) MOI.set(mock, MOI.ConflictStatus(), MOI.COMPUTE_CONFLICT_NOT_CALLED) model = POI.Optimizer( MOI.Utilities.CachingOptimizer(MOI.Utilities.Model{T}(), mock), ) x, x_ci = MOI.add_constrained_variable(model, MOI.GreaterThan(1.0)) p, p_ci = MOI.add_constrained_variable(model, MOI.Parameter(2.0)) ci = MOI.add_constraint(model, 2.0 * x + 3.0 * p, MOI.LessThan(0.0)) @test MOI.get(model, MOI.ConflictStatus()) == MOI.COMPUTE_CONFLICT_NOT_CALLED MOI.Utilities.set_mock_optimize!( mock, mock::MOI.Utilities.MockOptimizer -> begin MOI.Utilities.mock_optimize!( mock, MOI.INFEASIBLE, MOI.NO_SOLUTION, MOI.NO_SOLUTION; constraint_conflict_status = [ (MOI.VariableIndex, MOI.Parameter{T}) => [MOI.MAYBE_IN_CONFLICT], (MOI.VariableIndex, MOI.GreaterThan{T}) => [MOI.IN_CONFLICT], (MOI.ScalarAffineFunction{T}, MOI.LessThan{T}) => [MOI.IN_CONFLICT], ], ) MOI.set(mock, MOI.ConflictStatus(), MOI.CONFLICT_FOUND) end, ) MOI.optimize!(model) @test MOI.get(model, MOI.TerminationStatus()) == MOI.INFEASIBLE MOI.compute_conflict!(model) @test MOI.get(model, MOI.ConflictStatus()) == MOI.CONFLICT_FOUND @test MOI.get(model, MOI.ConstraintConflictStatus(), x_ci) == MOI.IN_CONFLICT @test MOI.get(model, MOI.ConstraintConflictStatus(), p_ci) == MOI.MAYBE_IN_CONFLICT @test MOI.get(model, MOI.ConstraintConflictStatus(), ci) == MOI.IN_CONFLICT return end function test_duals_not_available() optimizer = POI.Optimizer(GLPK.Optimizer(); evaluate_duals = false) MOI.set(optimizer, MOI.Silent(), true) x = MOI.add_variables(optimizer, 2) y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) z = MOI.VariableIndex(4) cz = MOI.ConstraintIndex{MOI.VariableIndex,MOI.Parameter{Float64}}(4) for x_i in x MOI.add_constraint(optimizer, x_i, MOI.GreaterThan(0.0)) end cons1 = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.([1.0, 1.0], [x[1], y]), 0.0, ) c1 = MOI.add_constraint(optimizer, cons1, MOI.EqualTo(2.0)) obj_func = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.([1.0, 1.0], [x[1], y]), 0.0, ) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), obj_func, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MIN_SENSE) MOI.optimize!(optimizer) @test_throws MOI.GetAttributeNotAllowed MOI.get( optimizer, MOI.ConstraintDual(), cy, ) return end function test_duals_without_parameters() optimizer = POI.Optimizer(GLPK.Optimizer()) MOI.set(optimizer, MOI.Silent(), true) x = MOI.add_variables(optimizer, 3) y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) z, cz = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) cons1 = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.([1.0, -1.0], [x[1], y]), 0.0, ) c1 = MOI.add_constraint(optimizer, cons1, MOI.LessThan(0.0)) cons2 = MOI.ScalarAffineFunction([MOI.ScalarAffineTerm(1.0, x[2])], 0.0) c2 = MOI.add_constraint(optimizer, cons2, MOI.LessThan(1.0)) cons3 = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.([1.0, -1.0], [x[3], z]), 0.0, ) c3 = MOI.add_constraint(optimizer, cons3, MOI.LessThan(0.0)) obj_func = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.([1.0, 2.0, 3.0], [x[1], x[2], x[3]]), 0.0, ) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), obj_func, ) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE) MOI.set(optimizer, MOI.ConstraintSet(), cy, MOI.Parameter(1.0)) MOI.set(optimizer, MOI.ConstraintSet(), cz, MOI.Parameter(1.0)) MOI.optimize!(optimizer) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), c1), -1.0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), c2), -2.0, atol = ATOL) @test ≈(MOI.get(optimizer, MOI.ConstraintDual(), c3), -3.0, atol = ATOL) return end
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
code
710
# Copyright (c) 2020: Tomás Gutierrez and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. using JuMP using Test import GLPK import Ipopt import SCS import LinearAlgebra import ParametricOptInterface const POI = ParametricOptInterface const ATOL = 1e-4 function canonical_compare(f1, f2) return MOI.Utilities.canonical(f1) ≈ MOI.Utilities.canonical(f2) end include("moi_tests.jl") include("jump_tests.jl") for name in names(@__MODULE__; all = true) if startswith("$name", "test_") @testset "$(name)" begin getfield(@__MODULE__, name)() end end end
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
docs
1899
# ParametricOptInterface.jl [![stable docs](https://img.shields.io/badge/docs-stable-blue.svg)](https://jump.dev/ParametricOptInterface.jl/stable) [![development docs](https://img.shields.io/badge/docs-dev-blue.svg)](https://jump.dev/ParametricOptInterface.jl/dev) [![Build Status](https://github.com/jump-dev/ParametricOptInterface.jl/workflows/CI/badge.svg?branch=master)](https://github.com/jump-dev/ParametricOptInterface.jl/actions?query=workflow%3ACI) [![Coverage](https://codecov.io/gh/jump-dev/ParametricOptInterface.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/jump-dev/ParametricOptInterface.jl) [ParametricOptInterface.jl](https://github.com/jump-dev/ParametricOptInterface.jl) is a package that adds parameters to models in JuMP and MathOptInterface. ## License `ParametricOptInterface.jl` is licensed under the [MIT License](https://github.com/jump-dev/ParametricOptInterface.jl/blob/master/LICENSE.md). ## Installation Install ParametricOptInterface using `Pkg.add`: ```julia import Pkg Pkg.add("ParametricOptInterface") ``` ## Documentation The [documentation for ParametricOptInterface.jl](https://jump.dev/ParametricOptInterface.jl/stable/) includes a detailed description of the theory behind the package, along with examples, tutorials, and an API reference. ## Use with JuMP Use ParametricOptInterface with JuMP by following this brief example: ```julia using JuMP, HiGHS import ParametricOptInterface as POI model = Model(() -> POI.Optimizer(HiGHS.Optimizer())) @variable(model, x) @variable(model, p in MOI.Parameter(1.0)) @constraint(model, cons, x + p >= 3) @objective(model, Min, 2x) optimize!(model) MOI.set(model, POI.ParameterValue(), p, 2.0) optimize!(model) ``` ## GSOC2020 ParametricOptInterface began as a [NumFOCUS sponsored Google Summer of Code (2020) project](https://summerofcode.withgoogle.com/archive/2020/projects/4959861055422464).
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
docs
254
In this folder we have a collection of cases that use either BenchmarkTools or TimerOutputs to help developers keep track of possible performance regressions. A good way to run the benchmarks is to start a julia session and include("run_benchmarks.jl")
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
docs
474
# ParametricOptInterface.jl Documentation ParametricOptInterface.jl (POI for short) is a package written on top of MathOptInterface.jl that allows users to add parameters to a MOI/JuMP problem explicitly. ## Installation To install the package you can use `Pkg.add` as follows: ```julia pkg> add ParametricOptInterface ``` ## Contributing When contributing please note that the package follows the [JuMP style guide](https://jump.dev/JuMP.jl/stable/developers/style/).
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
docs
3715
# Manual ## Why use parameters? A typical optimization model built using `MathOptInterface.jl` (`MOI`for short) has two main components: 1. Variables 2. Constants Using these basic elements, one can create functions and sets that, together, form the desired optimization model. The goal of `POI` is the implementation of a third type, parameters, which * are declared similar to a variable, and inherits some functionalities (e.g. dual calculation) * acts like a constant, in the sense that it has a fixed value that will remain the same unless explicitely changed by the user A main concern is to efficiently implement this new type, as one typical usage is to change its value to analyze the model behavior, without the need to build a new one from scratch. ## How it works The main idea applied in POI is that the interaction between the solver, e.g. `GLPK`, and the optimization model will be handled by `MOI` as usual. Because of that, `POI` is a higher level wrapper around `MOI`, responsible for receiving variables, constants and parameters, and forwarding to the lower level model only variables and constants. As `POI` receives parameters, it must analyze and decide how they should be handled on the lower level optimization model (the `MOI` model). ## Usage In this manual we describe how to interact with the optimization model at the MOI level. In the [Examples](@ref) section you can find some tutorials with the JuMP usage. ### Supported constraints This is a list of supported `MOI` constraint functions that can handle parameters. If you try to add a parameter to a function that is not listed here, it will return an unsupported error. | MOI Function | |:-------| | `ScalarAffineFunction` | | `ScalarQuadraticFunction` | | `VectorAffineFunction` | ### Supported objective functions | MOI Function | |:-------| | `ScalarAffineFunction` | | `ScalarQuadraticFunction` | ### Declare a Optimizer In order to use parameters, the user needs to declare a [`ParametricOptInterface.Optimizer`](@ref) on top of a `MOI` optimizer, such as `HiGHS.Optimizer()`. ```julia using ParametricOptInterface, MathOptInterface, HiGHS # Rename ParametricOptInterface and MathOptInterface to simplify the code const POI = ParametricOptInterface const MOI = MathOptInterface # Define a Optimizer on top of the MOI optimizer optimizer = POI.Optimizer(HiGHS.Optimizer()) ``` ### Parameters A `MOI.Parameter` is a set used to define a variable with a fixed value that can be changed by the user. It is analogous to `MOI.EqualTo`, but can be used by special methods like the ones in this package to remove the fixed variable from the optimization problem. This permits the usage of multiplicative parameters in lienar models and might speedup solves since the number of variables is reduced. ### Adding a new parameter to a model To add a parameter to a model, we must use the `MOI.add_constrained_variable()` function, passing as its arguments the model and a `MOI.Parameter` with its given value: ```julia y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) ``` ### Changing the parameter value To change a given parameter's value, access its `VariableIndex` and set it to the new value using the `MOI.Parameter` structure. ```julia MOI.set(optimizer, POI.ParameterValue(), y, MOI.Parameter(2.0)) ``` ### Retrieving the dual of a parameter Given an optimized model, one can compute the dual associated to a parameter, **as long as it is an additive term in the constraints or objective**. One can do so by getting the `MOI.ConstraintDual` attribute of the parameter's `MOI.ConstraintIndex`: ```julia MOI.get(optimizer, POI.ParameterDual(), y) ```
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
docs
182
# Reference ```@docs ParametricOptInterface.ConstraintsInterpretation ParametricOptInterface.Optimizer ParametricOptInterface.ParameterDual ParametricOptInterface.ParameterValue ```
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
docs
13490
# Benders Quantile Regression We will apply Norm-1 regression to the [Linear Regression](https://en.wikipedia.org/wiki/Linear_regression) problem. Linear regression is a statistical tool to obtain the relation between one **dependent variable** and other **explanatory variables**. In other words, given a set of $n$ explanatory variables $X = \{ X_1, \dots, X_n \}$ we would like to obtain the best possible estimate for $Y$. In order to accomplish such a task we make the hypothesis that $Y$ is approximately linear function of $X$: $$Y = \sum_{j =1}^n \beta_j X_j + \varepsilon$$ where $\varepsilon$ is some random error. The estimation of the $\beta$ values relies on observations of the variables: $\{y^i, x_1^i, \dots, x_n^i\}_i$. In this example we will solve a problem where the explanatory variables are sinusoids of differents frequencies. First, we define the number of explanatory variables and observations ```julia using ParametricOptInterface,MathOptInterface,JuMP,HiGHS using TimerOutputs,LinearAlgebra,Random const POI = ParametricOptInterface const MOI = MathOptInterface const OPTIMIZER = HiGHS.Optimizer; const N_Candidates = 200 const N_Observations = 2000 const N_Nodes = 200 const Observations = 1:N_Observations const Candidates = 1:N_Candidates const Nodes = 1:N_Nodes; ``` Initialize a random number generator to keep results deterministic ```julia rng = Random.MersenneTwister(123); ``` Building regressors (explanatory) sinusoids ```julia const X = zeros(N_Candidates, N_Observations) const time = [obs / N_Observations * 1 for obs in Observations] for obs in Observations, cand in Candidates t = time[obs] f = cand X[cand, obs] = sin(2 * pi * f * t) end ``` Define coefficients ```julia β = zeros(N_Candidates) for i in Candidates if rand(rng) <= (1 - i / N_Candidates)^2 && i <= 100 β[i] = 4 * rand(rng) / i end end ``` Create noisy observations ```julia const y = X' * β .+ 0.1 * randn(rng, N_Observations) ``` ### Benders Decomposition Benders decomposition is used to solve large optimization problems with some special characteristics. LP's can be solved with classical linear optimization methods such as the Simplex method or Interior point methods provided by solvers like HiGHS. However, these methods do not scale linearly with the problem size. In the Benders decomposition framework we break the problem in two pieces: A outer and a inner problem. Of course some variables will belong to both problems, this is where the cleverness of Benders kicks in: The outer problem is solved and passes the shared variables to the inner. The inner problem is solved with the shared variables FIXED to the values given by the outer problem. The solution of the inner problem can be used to generate a constraint to the outer problem to describe the linear approximation of the cost function of the shared variables. In many cases, like stochastic programming, the inner problems have a interesting structure and might be broken in smaller problem to be solved in parallel. We will descibe the decomposition similarly to what is done in: Introduction to Linear Optimization, Bertsimas & Tsitsiklis (Chapter 6.5): Where the problem in question has the form $$\begin{align} & \min_{x, y_k} && c^T x && + f_1^T y_1 && + \dots && + f_n^T y_n && \notag \\ & \text{subject to} && Ax && && && && = b \notag \\ & && B_1 x && + D_1 y_1 && && && = d_1 \notag \\ & && \dots && && \dots && && \notag \\ & && B_n x && && && + D_n y_n && = d_n \notag \\ & && x, && y_1, && && y_n && \geq 0 \notag \\ \end{align}$$ ### Inner Problem Given a solution for the $x$ variables we can define the inner problem as $$\begin{align} z_k(x) \ = \ & \min_{y_k} && f_k^T y_k && \notag \\ & \text{subject to} && D_k y_k && = d_k - B_k x \notag \\ & && y_k && \geq 0 \notag \\ \end{align}$$ The $z_k(x)$ function represents the cost of the subproblem given a solution for $x$. This function is a convex function because $x$ affects only the right hand side of the problem (this is a standard results in LP theory). For the special case of the Norm-1 reggression the problem is written as: $$\begin{align} z_k(\beta) \ = \ & \min_{\varepsilon^{up}, \varepsilon^{dw}} && \sum_{i \in ObsSet(k)} {\varepsilon^{up}}_i + {\varepsilon^{dw}}_i && \notag \\ & \text{subject to} && {\varepsilon^{up}}_i \geq + y_i - \sum_{j \in Candidates} \beta_j x_{i,j} && \forall i \in ObsSet(k) \notag \\ & && {\varepsilon^{dw}}_i \geq - y_i + \sum_{j \in Candidates} \beta_j x_{i,j} && \forall i \in ObsSet(k) \notag \\ & && {\varepsilon^{up}}_i, {\varepsilon^{dw}}_i \geq 0 && \forall i \in ObsSet(k) \notag \\ \end{align}$$ The collection $ObsSet(k)$ is a sub-set of the `N_Observations`. Any partition of the `N_Observations` collection is valid. In this example we will partition with the function: ```julia function ObsSet(K) obs_per_block = div(N_Observations, N_Nodes) return (1+(K-1)*obs_per_block):(K*obs_per_block) end ``` Which can be written in POI as follows: ```julia function inner_model(K) # initialize the POI model inner = direct_model(POI.Optimizer(OPTIMIZER())) # Define local optimization variables for norm-1 error @variables(inner, begin ɛ_up[ObsSet(K)] >= 0 ɛ_dw[ObsSet(K)] >= 0 end) # create the regression coefficient representation # Create parameters β = [@variable(inner, set = MOI.Parameter(0.0)) for i in 1:N_Candidates] for (i, βi) in enumerate(β) set_name(βi, "β[$i]") end # create local constraints # Note that *parameter* algebra is implemented just like variables # algebra. We can multiply parameters by constants, add parameters, # sum parameters and variables and so on. @constraints( inner, begin ɛ_up_ctr[i in ObsSet(K)], ɛ_up[i] >= +sum(X[j, i] * β[j] for j in Candidates) - y[i] ɛ_dw_ctr[i in ObsSet(K)], ɛ_dw[i] >= -sum(X[j, i] * β[j] for j in Candidates) + y[i] end ) # create local objective function @objective(inner, Min, sum(ɛ_up[i] + ɛ_dw[i] for i in ObsSet(K))) # return the correct group of parameters return (inner, β) end ``` ### Outer Problem Now that all pieces of the original problem can be representad by the convex $z_k(x)$ functions we can recast the problem in the the equivalent form: $$\begin{align} & \min_{x} && c^T x + z_1(x) + \dots + z_n(x) && \notag \\ & \text{subject to} && Ax = b && \notag \\ & && x \geq 0 && \notag \\ \end{align}$$ However we cannot pass a problem in this form to a linear programming solver (it could be passed to other kinds of solvers). Another standart result of optimization theory is that a convex function can be represented by its supporting hyper-planes: $$\begin{align} z_k(x) \ = \ & \min_{z, x} && z && \notag \\ & \text{subject to} && z \geq \pi_k(\hat{x}) (x - \hat{x}) + z_k(\hat{x}), \ \forall \hat{x} \in dom(z_k) && \notag \\ \end{align}$$ Then we can re-write (again) the outer problem as $$\begin{align} & \min_{x, z_k} && c^T x + z_1 + \dots + z_n \notag \\ & \text{subject to} && z_i \geq \pi_i(\hat{x}) (x - \hat{x}) + z_i(\hat{x}), \ \forall \hat{x} \in dom(z_i), i \in \{1, \dots, n\} \notag \\ & && Ax = b \notag \\ & && x \geq 0 \notag \\ \end{align}$$ Which is a linear program! However, it has infinitely many constraints !! We can relax the infinite constraints and write: $$\begin{align} & \min_{x, z_k} && c^T x + z_1 + \dots + z_n \notag \\ & \text{subject to} && Ax = b \notag \\ & && x \geq 0 \notag \\ \end{align}$$ But now its only an underestimated problem. In the case of our problem it can be written as: $$\begin{align} & \min_{\varepsilon, \beta} && \sum_{i \in Nodes} \varepsilon_i \notag \\ & \text{subject to} && \varepsilon_i \geq 0 \notag \\ \end{align}$$ This model can be written in JuMP: ```julia function outer_model() outer = Model(OPTIMIZER) @variables(outer, begin ɛ[Nodes] >= 0 β[1:N_Candidates] end) @objective(outer, Min, sum(ɛ[i] for i in Nodes)) sol = zeros(N_Candidates) return (outer, ɛ, β, sol) end ``` The method to solve the outer problem and query its solution is given here: ```julia function outer_solve(outer_model) model = outer_model[1] β = outer_model[3] optimize!(model) return (value.(β), objective_value(model)) end ``` ### Supporting Hyperplanes With these building blocks in hand, we can start building the algorithm. So far we know how to: - Solve the relaxed outer problem - Obtain the solution for the $\hat{x}$ (or $\beta$ in our case) Now we can: - Fix the values of $\hat{x}$ in the inner problems - Solve the inner problems - query the solution of the inner problems to obtain the supporting hyperplane the value of $z_k(\hat{x})$, which is the objective value of the inner problem and the derivative $\pi_k(\hat{x}) = \frac{d z_k(x)}{d x} \Big|_{x = \hat{x}}$ The derivative is the dual variable associated to the variable $\hat{x}$, which results by applying the chain rule on the constraints duals. These new steps are executed by the function: ```julia function inner_solve(model, outer_solution) β0 = outer_solution[1] inner = model[1] # The first step is to fix the values given by the outer problem @timeit "fix" begin β = model[2] MOI.set.(inner, POI.ParameterValue(), β, β0) end # here the inner problem is solved @timeit "opt" optimize!(inner) # query dual variables, which are sensitivities # They represent the subgradient (almost a derivative) # of the objective function for infinitesimal variations # of the constants in the linear constraints # POI: we can query dual values of *parameters* π = MOI.get.(inner, POI.ParameterDual(), β) # π2 = shadow_price.(β_fix) obj = objective_value(inner) rhs = obj - dot(π, β0) return (rhs, π, obj) end ``` Now that we have cutting plane in hand we can add them to the outer problem ```julia function outer_add_cut(outer_model, cut_info, node) outer = outer_model[1] ɛ = outer_model[2] β = outer_model[3] rhs = cut_info[1] π = cut_info[2] @constraint(outer, ɛ[node] >= sum(π[j] * β[j] for j in Candidates) + rhs) end ``` ### Algorithm wrap up The complete algorithm is - Solve the relaxed master problem - Obtain the solution for the $\hat{x}$ (or $\beta$ in our case) - Fix the values of $\hat{x}$ in the slave problems - Solve the slave problem - query the solution of the slave problem to obtain the supporting hyperplane - add hyperplane to master problem - repeat Now we grab all the pieces that we built and we write the benders algorithm by calling the above function in a proper order. The macros `@timeit` are use to time each step of the algorithm. ```julia function decomposed_model(;print_timer_outputs::Bool = true) reset_timer!() # reset timer fo comparision time_init = @elapsed @timeit "Init" begin # Create the outer problem with no cuts @timeit "outer" outer = outer_model() # initialize solution for the regression coefficients in zero @timeit "Sol" solution = (zeros(N_Candidates), Inf) best_sol = deepcopy(solution) # Create the inner problems @timeit "inners" inners = [inner_model(i) for i in Candidates] # Save initial version of the inner problems and create # the first set of cuts @timeit "Cuts" cuts = [inner_solve(inners[i], solution) for i in Candidates] end UB = +Inf LB = -Inf # println("Initialize Iterative step") time_loop = @elapsed @timeit "Loop" for k in 1:80 # Add cuts generated from each inner problem to the outer problem @timeit "add cuts" for i in Candidates outer_add_cut(outer, cuts[i], i) end # Solve the outer problem with the new set of cuts # Obtain new solution candidate for the regression coefficients @timeit "solve outer" solution = outer_solve( outer) # Pass the new candidate solution to each of the inner problems # Solve the inner problems and obtain cutting planes @timeit "solve nodes" for i in Candidates cuts[i] = inner_solve( inners[i], solution) end LB = solution[2] new_UB = sum(cuts[i][3] for i in Candidates) if new_UB <= UB best_sol = deepcopy(solution) end UB = min(UB, new_UB) if abs(UB - LB) / (abs(UB) + abs(LB)) < 0.05 break end end print_timer_outputs && print_timer() return best_sol[1] end ``` Run benders decomposition with POI ```julia β2 = decomposed_model(; print_timer_outputs = false); GC.gc() β2 = decomposed_model(); ```
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
docs
16510
# Basic Examples ## MOI example - step by step usage Let's write a step-by-step example of `POI` usage at the MOI level. First, we declare a [`ParametricOptInterface.Optimizer`](@ref) on top of a `MOI` optimizer. In the example, we consider `HiGHS` as the underlying solver: ```@example moi1 using HiGHS using MathOptInterface using ParametricOptInterface const MOI = MathOptInterface const POI = ParametricOptInterface optimizer = POI.Optimizer(HiGHS.Optimizer()) ``` We declare the variable `x` as in a typical `MOI` model, and we add a non-negativity constraint: ```@example moi1 x = MOI.add_variables(optimizer, 2) for x_i in x MOI.add_constraint(optimizer, x_i, MOI.GreaterThan(0.0)) end ``` Now, let's consider 3 `MOI.Parameter`. Two of them, `y`, `z`, will be placed in the constraints and one, `w`, in the objective function. We'll start all three of them with a value equal to `0`: ```@example moi1 w, cw = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) y, cy = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) z, cz = MOI.add_constrained_variable(optimizer, MOI.Parameter(0.0)) ``` Let's add the constraints. Notice that we treat parameters and variables in the same way when building the functions that will be placed in some set to create a constraint (`Function-in-Set`): ```@example moi1 cons1 = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.([2.0, 1.0, 3.0], [x[1], x[2], y]), 0.0) ci1 = MOI.add_constraint(optimizer, cons1, MOI.LessThan(4.0)) cons2 = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.([1.0, 2.0, 0.5], [x[1], x[2], z]), 0.0) ci2 = MOI.add_constraint(optimizer, cons2, MOI.LessThan(4.0)) ``` Finally, we declare and add the objective function, with its respective sense: ```@example moi1 obj_func = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.([4.0, 3.0, 2.0], [x[1], x[2], w]), 0.0) MOI.set(optimizer, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), obj_func) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE) ``` Now we can optimize the model and assess its termination and primal status: ```@example moi1 MOI.optimize!(optimizer) MOI.get(optimizer, MOI.TerminationStatus()) MOI.get(optimizer, MOI.PrimalStatus()) ``` Given the optimized solution, we check that its value is, as expected, equal to `28/3`, and the solution vector `x` is `[4/3, 4/3]`: ```@example moi1 isapprox(MOI.get(optimizer, MOI.ObjectiveValue()), 28/3, atol = 1e-4) isapprox(MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 4/3, atol = 1e-4) isapprox(MOI.get(optimizer, MOI.VariablePrimal(), x[2]), 4/3, atol = 1e-4) ``` We can also retrieve the dual values associated to each parameter, **as they are all additive**: ```@example moi1 MOI.get(optimizer, MOI.ConstraintDual(), cy) MOI.get(optimizer, MOI.ConstraintDual(), cz) MOI.get(optimizer, MOI.ConstraintDual(), cw) ``` Notice the direct relationship in this case between the parameters' duals and the associated constraints' duals. The `y` parameter, for example, only appears in the `cons1`. If we compare their duals, we can check that the dual of `y` is equal to its coefficient in `cons1` multiplied by the constraint's dual itself, as expected: ```@example moi1 isapprox(MOI.get(optimizer, MOI.ConstraintDual(), cy), 3*MOI.get(optimizer, MOI.ConstraintDual(), ci1), atol = 1e-4) ``` The same is valid for the remaining parameters. In case a parameter appears in more than one constraint, or both some constraints and in the objective function, its dual will be equal to the linear combination of the functions' duals multiplied by the respective coefficients. So far, we only added some parameters that had no influence at first in solving the model. Let's change the values associated to each parameter to assess its implications. First, we set the value of parameters `y` and `z` to `1.0`. Notice that we are changing the feasible set of the decision variables: ```@example moi1 MOI.set(optimizer, POI.ParameterValue(), y, 1.0) MOI.set(optimizer, POI.ParameterValue(), z, 1.0) ``` However, if we check the optimized model now, there will be no changes in the objective function value or the in the optimized decision variables: ```@example moi1 isapprox.(MOI.get(optimizer, MOI.ObjectiveValue()), 28/3, atol = 1e-4) isapprox.(MOI.get(optimizer, MOI.VariablePrimal(), x[1]), 4/3, atol = 1e-4) isapprox.(MOI.get(optimizer, MOI.VariablePrimal(), x[2]), 4/3, atol = 1e-4) ``` Although we changed the parameter values, we didn't optimize the model yet. Thus, **to apply the parameters' changes, the model must be optimized again**: ```@example moi1 MOI.optimize!(optimizer) ``` The `MOI.optimize!()` function handles the necessary updates, properly fowarding the new outer model (`POI` model) additions to the inner model (`MOI` model) which will be handled by the solver. Now we can assess the updated optimized information: ```@example moi1 isapprox.(MOI.get(optimizer, MOI.ObjectiveValue()), 3.0, atol = 1e-4) MOI.get.(optimizer, MOI.VariablePrimal(), x) == [0.0, 1.0] ``` If we update the parameter `w`, associated to the objective function, we are simply adding a constant to it. Notice how the new objective function is precisely equal to the previous one plus the new value of `w`. In addition, as we didn't update the feasible set, the optimized decision variables remain the same. ```@example moi1 MOI.set(optimizer, POI.ParameterValue(), w, 2.0) # Once again, the model must be optimized to incorporate the changes MOI.optimize!(optimizer) # Only the objective function value changes isapprox.(MOI.get(optimizer, MOI.ObjectiveValue()), 7.0, atol = 1e-4) MOI.get.(optimizer, MOI.VariablePrimal(), x) == [0.0, 1.0] ``` ## JuMP Example - step by step usage Let's write a step-by-step example of `POI` usage at the JuMP level. First, we declare a `Model` on top of a `Optimizer` of an underlying solver. In the example, we consider `HiGHS` as the underlying solver: ```@example jump1 using HiGHS using JuMP using ParametricOptInterface const POI = ParametricOptInterface model = Model(() -> ParametricOptInterface.Optimizer(HiGHS.Optimizer())) ``` We declare the variable `x` as in a typical `JuMP` model: ```@example jump1 @variable(model, x[i = 1:2] >= 0) ``` Now, let's consider 3 `MOI.Parameter`. Two of them, `y`, `z`, will be placed in the constraints and one, `w`, in the objective function. We'll start all three of them with a value equal to `0`: ```@example jump1 @variable(model, y in MOI.Parameter(0.0)) @variable(model, z in MOI.Parameter(0.0)) @variable(model, w in MOI.Parameter(0.0)) ``` Let's add the constraints. Notice that we treat parameters the same way we treat variables when writing the model: ```@example jump1 @constraint(model, c1, 2x[1] + x[2] + 3y <= 4) @constraint(model, c2, x[1] + 2x[2] + 0.5z <= 4) ``` Finally, we declare and add the objective function, with its respective sense: ```@example jump1 @objective(model, Max, 4x[1] + 3x[2] + 2w) ``` We can optimize the model and assess its termination and primal status: ```@example jump1 optimize!(model) termination_status(model) primal_status(model) ``` Given the optimized solution, we check that its value is, as expected, equal to `28/3`, and the solution vector `x` is `[4/3, 4/3]`: ```@example jump1 isapprox(objective_value(model), 28/3) isapprox(value.(x), [4/3, 4/3]) ``` We can also retrieve the dual values associated to each parameter, **as they are all additive**: ```@example jump1 MOI.get(model, POI.ParameterDual(), y) MOI.get(model, POI.ParameterDual(), z) MOI.get(model, POI.ParameterDual(), w) ``` Notice the direct relationship in this case between the parameters' duals and the associated constraints' duals. The `y` parameter, for example, only appears in the `c1`. If we compare their duals, we can check that the dual of `y` is equal to its coefficient in `c1` multiplied by the constraint's dual itself, as expected: ```@example jump1 dual_of_y = MOI.get(model, POI.ParameterDual(), y) isapprox(dual_of_y, 3 * dual(c1)) ``` The same is valid for the remaining parameters. In case a parameter appears in more than one constraint, or both some constraints and in the objective function, its dual will be equal to the linear combination of the functions' duals multiplied by the respective coefficients. So far, we only added some parameters that had no influence at first in solving the model. Let's change the values associated to each parameter to assess its implications. First, we set the value of parameters `y` and `z` to `1.0`. Notice that we are changing the feasible set of the decision variables: ```@example jump1 MOI.set(model, POI.ParameterValue(), y, 1) MOI.set(model, POI.ParameterValue(), z, 1) # We can also query the value in the parameters MOI.get(model, POI.ParameterValue(), y) MOI.get(model, POI.ParameterValue(), z) ``` To apply the parameters' changes, the model must be optimized again: ```@example jump1 optimize!(model) ``` The `optimize!` function handles the necessary updates, properly fowarding the new outer model (`POI` model) additions to the inner model (`MOI` model) which will be handled by the solver. Now we can assess the updated optimized information: ```@example jump1 isapprox(objective_value(model), 3) isapprox(value.(x), [0, 1]) ``` If we update the parameter `w`, associated to the objective function, we are simply adding a constant to it. Notice how the new objective function is precisely equal to the previous one plus the new value of `w`. In addition, as we didn't update the feasible set, the optimized decision variables remain the same. ```@example jump1 MOI.set(model, POI.ParameterValue(), w, 2) # Once again, the model must be optimized to incorporate the changes optimize!(model) # Only the objective function value changes isapprox(objective_value(model), 7) isapprox(value.(x), [0, 1]) ``` ## JuMP Example - Declaring vectors of parameters Many times it is useful to declare a vector of parameters just like we declare a vector of variables, the JuMP syntax for variables works with parameters too: ```@example jump2 using HiGHS using JuMP using ParametricOptInterface const POI = ParametricOptInterface model = Model(() -> ParametricOptInterface.Optimizer(HiGHS.Optimizer())) @variable(model, x[i = 1:3] >= 0) @variable(model, p1[i = 1:3] in MOI.Parameter(0.0)) @variable(model, p2[i = 1:3] in MOI.Parameter.([1, 10, 45])) @variable(model, p3[i = 1:3] in MOI.Parameter.(ones(3))) ``` ## JuMP Example - Dealing with parametric expressions as variable bounds A very common pattern that appears when using ParametricOptInterface is to add variable and later add some expression with parameters that represent the variable bound. The following code illustrates the pattern: ```@example jump3 using HiGHS using JuMP using ParametricOptInterface const POI = ParametricOptInterface model = direct_model(POI.Optimizer(HiGHS.Optimizer())) @variable(model, x) @variable(model, p in MOI.Parameter(0.0)) @constraint(model, x >= p) ``` Since parameters are treated like variables JuMP lowers this to MOI as `x - p >= 0` which is not a variable bound but a linear constraint.This means that the current representation of this problem at the solver level is: ```math \begin{align} & \min_{x} & 0 \\ & \;\;\text{s.t.} & x & \in \mathbb{R} \\ & & x - p & \geq 0 \end{align} ``` This behaviour might be undesirable because it creates extra rows in your problem. Users can set the [`ParametricOptInterface.ConstraintsInterpretation`](@ref) to control how the linear constraints should be interpreted. The pattern advised for users seeking the most performance out of ParametricOptInterface should use the followig pattern: ```@example jump3 using HiGHS using JuMP using ParametricOptInterface const POI = ParametricOptInterface model = direct_model(POI.Optimizer(HiGHS.Optimizer())) @variable(model, x) @variable(model, p in MOI.Parameter(0.0)) # Indicate that all the new constraints will be valid variable bounds MOI.set(model, POI.ConstraintsInterpretation(), POI.ONLY_BOUNDS) @constraint(model, x >= p) # The name of this constraint was different to inform users that this is a # variable bound. # Indicate that all the new constraints will not be variable bounds MOI.set(model, POI.ConstraintsInterpretation(), POI.ONLY_CONSTRAINTS) # @constraint(model, ...) ``` This way the mathematical representation of the problem will be: ```math \begin{align} & \min_{x} & 0 \\ & \;\;\text{s.t.} & x & \geq p \end{align} ``` which might lead to faster solves. Users that just want everything to work can use the default value `POI.ONLY_CONSTRAINTS` or try to use `POI.BOUNDS_AND_CONSTRAINTS` and leave it to ParametricOptInterface to interpret the constraints as bounds when applicable and linear constraints otherwise. ## MOI Example - Parameters multiplying Quadratic terms Let's start with a simple quadratic problem ```@example moi2 using Ipopt using MathOptInterface using ParametricOptInterface const MOI = MathOptInterface const POI = ParametricOptInterface optimizer = POI.Optimizer(Ipopt.Optimizer()) x = MOI.add_variable(optimizer) y = MOI.add_variable(optimizer) MOI.add_constraint(optimizer, x, MOI.GreaterThan(0.0)) MOI.add_constraint(optimizer, y, MOI.GreaterThan(0.0)) cons1 = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.([2.0, 1.0], [x, y]), 0.0) ci1 = MOI.add_constraint(optimizer, cons1, MOI.LessThan(4.0)) cons2 = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.([1.0, 2.0], [x, y]), 0.0) ci2 = MOI.add_constraint(optimizer, cons2, MOI.LessThan(4.0)) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE) obj_func = MOI.ScalarQuadraticFunction( [MOI.ScalarQuadraticTerm(1.0, x, x) MOI.ScalarQuadraticTerm(1.0, y, y)], MOI.ScalarAffineTerm{Float64}[], 0.0, ) MOI.set( optimizer, MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}(), obj_func, ) ``` To multiply a parameter in a quadratic term, the user will need to use the `POI.QuadraticObjectiveCoef` model attribute. ```@example moi2 p = first(MOI.add_constrained_variable.(optimizer, MOI.Parameter(1.0))) MOI.set(optimizer, POI.QuadraticObjectiveCoef(), (x,y), p) ``` This function will add the term `p*xy` to the objective function. It's also possible to multiply a scalar affine function to the quadratic term. ```@example moi2 MOI.set(optimizer, POI.QuadraticObjectiveCoef(), (x,y), 2p+3) ``` This will set the term `(2p+3)*xy` to the objective function (it overwrites the last set). Then, just optimize the model. ```@example moi2 MOI.optimize!(model) isapprox(MOI.get(model, MOI.ObjectiveValue()), 32/3, atol=1e-4) isapprox(MOI.get(model, MOI.VariablePrimal(), x), 4/3, atol=1e-4) isapprox(MOI.get(model, MOI.VariablePrimal(), y), 4/3, atol=1e-4) ``` To change the parameter just set `POI.ParameterValue` and optimize again. ```@example moi2 MOI.set(model, POI.ParameterValue(), p, 2.0) MOI.optimize!(model) isapprox(MOI.get(model, MOI.ObjectiveValue()), 128/9, atol=1e-4) isapprox(MOI.get(model, MOI.VariablePrimal(), x), 4/3, atol=1e-4) isapprox(MOI.get(model, MOI.VariablePrimal(), y), 4/3, atol=1e-4) ``` ## JuMP Example - Parameters multiplying Quadratic terms Let's get the same MOI example ```@example jump4 using Ipopt using JuMP using ParametricOptInterface const POI = ParametricOptInterface optimizer = POI.Optimizer(Ipopt.Optimizer()) model = direct_model(optimizer) @variable(model, x >= 0) @variable(model, y >= 0) @variable(model, p in MOI.Parameter(1.0)) @constraint(model, 2x + y <= 4) @constraint(model, x + 2y <= 4) @objective(model, Max, (x^2 + y^2)/2) ``` We use the same MOI function to add the parameter multiplied to the quadratic term. ```@example jump4 MOI.set(backend(model), POI.QuadraticObjectiveCoef(), (index(x),index(y)), 2index(p)+3) ``` If the user print the `model`, the term `(2p+3)*xy` won't show. It's possible to retrieve the parametric function multiplying the term `xy` with `MOI.get`. ```@example jump4 MOI.get(backend(model), POI.QuadraticObjectiveCoef(), (index(x),index(y))) ``` Then, just optimize the model ```@example jump4 optimize!(model) isapprox(objective_value(model), 32/3, atol=1e-4) isapprox(value(x), 4/3, atol=1e-4) isapprox(value(y), 4/3, atol=1e-4) ``` To change the parameter just set `POI.ParameterValue` and optimize again. ```@example jump4 MOI.set(model, POI.ParameterValue(), p, 2.0) optimize!(model) isapprox(objective_value(model), 128/9, atol=1e-4) isapprox(value(x), 4/3, atol=1e-4) isapprox(value(y), 4/3, atol=1e-4) ```
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.8.2
1b93d5117b620c44f2241d77496b270634a4180d
docs
3065
# Markowitz Efficient Frontier In this example, we solve the classical portfolio problem where we introduce the weight parameter $\gamma$ and maximize $\gamma \text{ risk} - \text{expected return}$. By updating the values of $\gamma$ we trace the efficient frontier. Given the prices changes with mean $\mu$ and covariance $\Sigma$, we can construct the classical portfolio problem: $$\begin{array}{ll} \text{maximize} & \gamma* x^T \mu - x^T \Sigma x \\ \text{subject to} & \| x \|_1 = 1 \\ & x \succeq 0 \end{array}$$ The problem data was gotten from the example [portfolio optimization](https://jump.dev/Convex.jl/dev/examples/portfolio_optimization/portfolio_optimization2/) ```julia using ParametricOptInterface, MathOptInterface, JuMP, Ipopt using LinearAlgebra, Plots const POI = ParametricOptInterface const MOI = MathOptInterface # generate problem data μ = [11.5; 9.5; 6] / 100 #expected returns Σ = [ 166 34 58 #covariance matrix 34 64 4 58 4 100 ] / 100^2 ``` We first build the model with $\gamma$ as parameter in POI ```julia function first_model(μ,Σ) cached = MOI.Bridges.full_bridge_optimizer( MOIU.CachingOptimizer( MOIU.UniversalFallback(MOIU.Model{Float64}()), Ipopt.Optimizer(), ), Float64, ) optimizer = POI.Optimizer(cached) portfolio = direct_model(optimizer) set_silent(portfolio) N = length(μ) @variable(portfolio, x[1:N] >= 0) @variable(portfolio, γ in MOI.Parameter(0.0)) @objective(portfolio, Max, γ*dot(μ,x) - x' * Σ * x) @constraint(portfolio, sum(x) == 1) optimize!(portfolio) return portfolio end ``` Then, we update the $\gamma$ value in the model ```julia function update_model!(portfolio,γ_value) γ = portfolio[:γ] MOI.set(portfolio, POI.ParameterValue(), γ, γ_value) optimize!(portfolio) return portfolio end ``` Collecting all the return and risk resuls for each $\gamma$ ```julia function add_to_dict(portfolios_values,portfolio,μ,Σ) γ = portfolio[:γ] γ_value = value(γ) x = portfolio[:x] x_value = value.(x) portfolio_return = dot(μ,x_value) portfolio_deviation = x_value' * Σ * x_value portfolios_values[γ_value] = (portfolio_return,portfolio_deviation) end ``` Run the portfolio optimization for different values of $\gamma$ ```julia portfolio = first_model(μ,Σ) portfolios_values = Dict() # Create a reference to the model to change it later portfolio_ref = [portfolio] add_to_dict(portfolios_values,portfolio,μ,Σ) for γ_value in 0.02:0.02:1.0 portfolio_ref[] = update_model!(portfolio_ref[],γ_value) add_to_dict(portfolios_values,portfolio_ref[],μ,Σ) end ``` Plot the efficient frontier ```julia portfolios_values = sort(portfolios_values,by=x->x[1]) portfolios_values_matrix = hcat([[v[1],v[2]] for v in values(portfolios_values)]...)' plot(portfolios_values_matrix[:,2],portfolios_values_matrix[:,1],legend=false, xlabel="Standard Deviation", ylabel = "Return", title = "Efficient Frontier") ```
ParametricOptInterface
https://github.com/jump-dev/ParametricOptInterface.jl.git
[ "MIT" ]
0.1.1
92573689d59edeb259f16715a716e7932f94c261
code
149
import Literate foreach(["par_ldiv.jl", "iternz.jl"]) do i Literate.markdown(joinpath("lit", i), "src/"; execute=true, repo_root_path="../") end
SparseExtra
https://github.com/SobhanMP/SparseExtra.jl.git
[ "MIT" ]
0.1.1
92573689d59edeb259f16715a716e7932f94c261
code
995
# shamlessly ~~stolen from~~ inspired by Krotov.jl using SparseExtra, Documenter import Pkg DocMeta.setdocmeta!(SparseExtra, :DocTestSetup, :(using SparseExtra); recursive=true) PROJECT_TOML = Pkg.TOML.parsefile(joinpath(@__DIR__, "..", "Project.toml")) VERSION = PROJECT_TOML["version"] NAME = PROJECT_TOML["name"] AUTHORS = join(PROJECT_TOML["authors"], ", ") * " and contributors" GITHUB = "https://github.com/SobhanMP/SparseExtra.jl" println("Starting makedocs") makedocs(; authors=AUTHORS, sitename="SparseExtra.jl", modules=[SparseExtra], format=Documenter.HTML(; prettyurls=true, canonical="https://SobhanMP.github.io/SparseExtra.jl", assets=String[], footer="[$NAME.jl]($GITHUB) v$VERSION docs powered by [Documenter.jl](https://github.com/JuliaDocs/Documenter.jl).", mathengine=KaTeX() ), pages=[ "Home" => "index.md", "`iternz`" => "iternz.md", "Parallel `ldiv`" => "par_ldiv.md", ] )
SparseExtra
https://github.com/SobhanMP/SparseExtra.jl.git
[ "MIT" ]
0.1.1
92573689d59edeb259f16715a716e7932f94c261
code
4136
# # The `iternz` API # This returns an iterator over the structural non-zero elements of the array (elements that aren't zero due to the structure not zero elements) i.e. # ```julia # all(iternz(x)) do (v, k...) # x[k...] == v # end # ``` # The big idea is to abstract away all of the speciall loops needed to iterate over sparse containers. These include special Linear Algebra matrices like `Diagonal`, and `UpperTriangular` or `SparseMatrixCSC`. Furethemore it's possible to use this recursively i.e. An iteration over a `Diagonal{SparseVector}` will skip the zero elements (if they are not stored) of the SparseVector. # For an example let's take the sum of the elements in a matrix such that `(i + j) % 7 == 0`. The most general way of writing it is using BenchmarkTools, SparseArrays const n = 10_000 const A = sprandn(n, n, 5 / n); function general(x::AbstractMatrix) s = zero(eltype(x)) @inbounds for j in axes(x, 2), i in axes(x, 1) if (i + j) % 7 == 0 s += x[i, j] end end return s end @benchmark general($A) # Now this is pretty bad, we can improve the performance by using the sparse structure of the problem using SparseArrays: getcolptr, nonzeros, rowvals function sparse_only(x::SparseMatrixCSC) s = zero(eltype(x)) @inbounds for j in axes(x, 2), ind in getcolptr(x)[j]:getcolptr(x)[j + 1] - 1 i = rowvals(x)[ind] if (i + j) % 7 == 0 s += nonzeros(x)[ind] end end return s end # We can test for correctness sparse_only(A) == general(A) # and benchmark the function @benchmark sparse_only($A) # we can see that while writing the function requires understanding how CSC matrices are stored, the code is 600x faster. The thing is that this pattern gets repeated everywhere so we might try and abstract it away. My proposition is the iternz api. using SparseExtra function iternz_only(x::AbstractMatrix) s = zero(eltype(x)) for (v, i, j) in iternz(x) if (i + j) % 7 == 0 s += v end end return s end iternz_only(A) == general(A) # @benchmark sparse_only($A) # The speed is the same as the specialized version but there is no `@inbounds`, no need for ugly loops etc. As a bonus point it works on all of the specialized matrices using LinearAlgebra all(iternz_only(i(A)) ≈ general(i(A)) for i in [Transpose, UpperTriangular, LowerTriangular, Diagonal, Symmetric]) # symmetric changes the order of exection. # Since these interfaces are written using the iternz interface themselves, the codes generalize to the cases where these special matrices are combined, removing the need to do these tedious specialization. # For instance the 3 argument dot can be written as function iternz_dot(x::AbstractVector, A::AbstractMatrix, y::AbstractVector) (length(x), length(y)) == size(A) || throw(ArgumentError("bad shape")) acc = zero(promote_type(eltype(x), eltype(A), eltype(y))) @inbounds for (v, i, j) in iternz(A) acc += x[i] * v * y[j] end acc end const (x, y) = randn(n), randn(n); const SA = Symmetric(A); # Correctness tests dot(x, A, y) ≈ iternz_dot(x, A, y) && dot(x, SA, y) ≈ iternz_dot(x, SA, y) # Benchmarks @benchmark dot($x, $A, $y) # @benchmark iternz_dot($x, $A, $y) # @benchmark dot($x, $SA, $y) # @benchmark iternz_dot($x, $SA, $y) # ## API: # The Api is pretty simple, the `iternz(A)` should return an iteratable such that # ```julia # all(A[ind...] == v for (v, ind...) in iternz(A)) # ``` # # If the matrix is a container for a different type, the inner iteration should be done via iternz. This repo provides the `IterateNZ` container whose sole pupose is to hold the array to overload `Base.iterate`. Additionally matrices have the `skip_col` and `skip_row_to` functions defined. The idea that if meaningful, this should return a state such that iterating on that state will give the first element of the next column or in the case of `skip_row_to(cont, state, i)`, iterate should return `(i, j)` where j is the current column. # ## TODO # - test with non-one based indexing
SparseExtra
https://github.com/SobhanMP/SparseExtra.jl.git
[ "MIT" ]
0.1.1
92573689d59edeb259f16715a716e7932f94c261
code
381
# # parallel ldiv! using SparseExtra, LinearAlgebra, SparseArrays, BenchmarkTools const n = 10_000 const A = sprandn(n, n, 5 / n); const C = A + I const B = Matrix(sprandn(n, n, 1 / n)); const F = lu(C); const X = similar(B); # Standard: @benchmark ldiv!($X, $F, $B) # With FLoops.jl: @benchmark par_solve!($X, $F, $B) # with manual loops @benchmark par_ldiv!_t($X, $F, $B)
SparseExtra
https://github.com/SobhanMP/SparseExtra.jl.git