licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.2.1
b66ec2223581d1c9bf99d7dd60ee0069a9a42d24
code
1000
export ace_high _ace_high = true function ace_high(bit::Bool)::Bool global _ace_high _ace_high = bit end """ ace_high(bit::Bool)::Bool Determine if aces are highest value cards in a deck. After `ace_high(true)` aces are greater than kings. After `ace_high(false)`, aces are lower than twos. This affects the result of `<` comparisons and sorting. ace_high()::Bool Return the current status of aces (`true` means aces are high, `false` means aces are low). """ function ace_high()::Bool global _ace_high return _ace_high end import Base: (<), isless function (<)(C::Card, D::Card)::Bool rC = rank(C) rD = rank(D) if ace_high() if rC == 1 rC += 13 end if rD == 1 rD += 13 end end if rC < rD return true end if rC > rD return false end # compare by suits sC = suit(C).s sD = suit(D).s return sC < sD end isless(C::Card, D::Card)::Bool = C < D
PlayingCards52
https://github.com/scheinerman/PlayingCards52.jl.git
[ "MIT" ]
0.2.1
b66ec2223581d1c9bf99d7dd60ee0069a9a42d24
code
2258
export riffle, riffle!, cut, cut! """ riffle!(list) Perform an in-place riffle shuffle permutation on `list` using the Gilbert–Shannon–Reeds model. """ function riffle!(list::Vector) n = length(list) if n < 2 return end t = _simple_binomial(n) A = list[1:t] B = list[t+1:end] na = length(A) nb = length(B) # pointers into A and B lists a = 1 b = 1 for j = 1:n top = na - a + 1 bot = (na - a + 1) + (nb - b + 1) p = top / bot # prob we choose from A if rand() <= p list[j] = A[a] a += 1 else list[j] = B[b] b += 1 end end list end """ riffle(list) Perform a riffle shuffle permutation on a copy of `list` using the Gilbert–Shannon–Reeds model. The original `list` is unchanged. """ function riffle(list::Vector) tmp = deepcopy(list) riffle!(tmp) end """ _simple_binomial(n::Int) Return a random B(n,0.5) random value. """ function _simple_binomial(n::Int) return sum(rand() > 0.5 for _ = 1:n) end """ cut!(list,idx) Cut the deck `list` by moving cards `1` through `idx` (inclusive) to the back of the deck so the first card now was formerly the one at position `idx+1`. cut!(list) Cut the deck at a random location. If the deck has `n` cards, then the cut location is given by the binomial random variable `B(n,1/2)`. """ function cut!(list::Vector, idx::Int) n = length(list) @assert 0 <= idx <= n "Cut index must be between 0 and $n [got $idx]" if idx == 0 || idx == n return end A = list[1:idx] B = list[idx+1:end] na = length(A) nb = length(B) for j = 1:nb list[j] = B[j] end for j = 1:na list[nb+j] = A[j] end return list end function cut!(list::Vector) idx = _simple_binomial(length(list)) cut!(list, idx) end """ cut(list,idx) cut(list) Use `cut!` to cut a copy of the deck `list` leaving the original `list` unchanged. """ function cut(list::Vector, idx::Int) tmp = deepcopy(list) cut!(tmp, idx) end function cut(list::Vector) tmp = deepcopy(list) cut!(tmp) end import Random: shuffle!, shuffle export shuffle!, shuffle
PlayingCards52
https://github.com/scheinerman/PlayingCards52.jl.git
[ "MIT" ]
0.2.1
b66ec2223581d1c9bf99d7dd60ee0069a9a42d24
code
669
const _club_base = 0x1F0D1 const _diamond_base = 0x1F0C1 const _heart_base = 0x1F0B1 const _spade_base = 0x1F0A1 function _make_chars(base::Integer) vals = collect(base:base+10) append!(vals, base + 12) append!(vals, base + 13) return Char.(vals) end _cards = _make_chars(_club_base) append!(_cards, _make_chars(_diamond_base)) append!(_cards, _make_chars(_heart_base)) append!(_cards, _make_chars(_spade_base)) import Base.Char """ Char(c::Card) Return the unicode character for that playing card. ``` julia> Char(4♣) '🃔': Unicode U+1F0D4 (category So: Symbol, other) ``` """ function Char(c::Card) return @inbounds _cards[index(c)] end
PlayingCards52
https://github.com/scheinerman/PlayingCards52.jl.git
[ "MIT" ]
0.2.1
b66ec2223581d1c9bf99d7dd60ee0069a9a42d24
code
801
using Test using PlayingCards52 @test true for k = 1:52 C = Card(k) kk = index(C) @test k == kk end ace_high(false) x = deck() sort!(x) @test index(x[1]) == 1 AC = Card(:clubs, 1) twoD = Card(:diamonds, 2) ace_high(true) @test twoD < AC ace_high(false) @test twoD > AC @test color(Card(:clubs, 5)) == color(Card(:spades, 2)) @test color(Card(:clubs, 5)) != color(Card(:diamonds, 2)) @test color(Suit(1)) == color(♠) @test Char(Card(:clubs, 5)) == '🃕' d = collect(1:10) cut!(d, 4) cut!(d, 6) @test d == collect(1:10) riffle!(d) @test sort(d) == collect(1:10) # test alternative notation @test A♣ == Card(:clubs, 1) @test K♣ == 13♣ @test 7♠ == Card(:spades, 7) @test 5♢ == 5♦ @test A♡ == A♥ @test Suit(:clubs) == ♣ @test ♡ == ♥ @test name(Card(:clubs, 13)) == "king of clubs"
PlayingCards52
https://github.com/scheinerman/PlayingCards52.jl.git
[ "MIT" ]
0.2.1
b66ec2223581d1c9bf99d7dd60ee0069a9a42d24
docs
6549
# PlayingCards52 Cards from a standard deck of fifty two. ## Pick a Card A `Card` is a standard playing card from a fifty-two card deck. The following functions return a `Card`: * `Card(suit,rank)` where `suit` is one of the symbols `:clubs`, `:diamonds`, `:hearts`, or `:spades` and `rank` is an integer from `1` (for Ace) to `13` (for King). * `Card(index)` where `index` is an integer from `1` (for the Ace of Clubs) to `52` (for the King of Spades). * `Card()` returns a random card. ```julia julia> using PlayingCards julia> Card(:diamonds,12) Q♢ julia> Card(49) T♠ julia> Card() Q♠ ``` The function `string` returns a two-character representation of the `Card`: ```julia julia> string(Card(22)) "9♢" ``` ### Alternative input Cards can be entered via their two-character representation. For example, the nine of diamonds can be entered as `9♢`. That is, type `9` then `\diamondsuit` and then TAB. One may also use `\:diamonds:`+TAB. Likewise for the other suits. Face cards, tens, and aces can also be entered in this way (using the capital letters T, J, Q, K, and A followed by the suit symbol): ```julia julia> c = K♠; julia> println(c) K♠ julia> T♡ == Card(:hearts,10) true ``` These cards can also be entered with a leading 1, 10, 11, 12, or 13: ```julia julia> 10♢ T♢ julia> 13♠ K♠ julia> 1♣ A♣ ``` Note that the four suit symbols are defined as objects of type `Suit`. ```julia julia> typeof(♠) Suit ``` A `Suit` be created either by typing (say) `\heartsuit`+TAB (giving ♡) or `Suit(:hearts)` ```julia julia> Suit(:hearts) == ♡ true ``` Cards can be created either using either a symbol `:spades` or suit `♠`: ```julia julia> a = Card(:spades,5) 5♠ julia> b = Card(♠,5) 5♠ julia> a==b true ``` ## Determine Properties The functions `suit` and `rank` return the suit (as a `Suit`) and the rank (as an `Int`) of the card. ```julia julia> c = Card() J♣ julia> suit(c) ♣ julia> rank(c) 11 ``` The function `index` returns a distinct integer value (from `1` to `52`) for the card. ```julia julia> c = Card(17) 4♢ julia> index(c) 17 ``` Use `color` to determine if the `Card` is red or black: ```julia julia> C = Card(:clubs,9) 9♣ julia> color(C) :black julia> color(Card(27)) # this is the Ace of Hearts :red ``` ## Ordering Two `Card`s can be compared with the usual ordering operators (such as `<`). The ordering of cards is determined first by rank and, if of the same rank, by suit (alphabetically, as in bridge). ```julia julia> Card(:diamonds,10) < Card(:hearts,10) true julia> Card(:diamonds,10) < Card(:clubs,10) false ``` The `ace_high` function is used to determine if an Ace is higher or lower than the other ranks. Use `ace_high(true)` or `ace_high(false)` to set your preference. A call to `ace_high()` returns the current setting. ```julia julia> ace_high() true julia> Card(:spades,1) < Card(:diamonds,5) false julia> ace_high(false) false julia> Card(:spades,1) < Card(:diamonds,5) true ``` ## Dealing The function `deck()` returns a 52-long array containing all possible cards in random order. Use `deck(false)` for them to be returned in a "new box" order. Use the function `print_deck()` to see all 52 cards in four lines of thirteen cards each. ```julia julia> d = deck(); print_deck(d) 2♠ J♢ K♠ 3♣ Q♢ 6♢ K♡ 9♣ A♠ 8♢ 7♡ J♣ 4♠ 8♣ T♢ T♣ 2♢ 4♣ 3♡ T♡ 6♡ Q♣ A♣ 4♢ 8♡ 8♠ 3♠ 3♢ 5♣ J♠ 5♢ 6♣ A♢ T♠ Q♡ 7♣ 9♠ 7♠ 6♠ Q♠ J♡ 7♢ 2♡ A♡ 9♢ 2♣ 4♡ 5♡ K♣ 9♡ 5♠ K♢ julia> d = deck(false); print_deck(d) A♣ 2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ T♣ J♣ Q♣ K♣ A♢ 2♢ 3♢ 4♢ 5♢ 6♢ 7♢ 8♢ 9♢ T♢ J♢ Q♢ K♢ A♡ 2♡ 3♡ 4♡ 5♡ 6♡ 7♡ 8♡ 9♡ T♡ J♡ Q♡ K♡ A♠ 2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ T♠ J♠ Q♠ K♠ ``` Deal a random poker hand like this: ```julia julia> using ShowSet julia> Set(deck()[1:5]) {2♠,6♢,6♡,T♠,K♣} ``` ## Long-Form Names The `name` function returns a long-form name of a card. ```julia julia> c = Card(:hearts,1) A♡ julia> name(c) "ace of hearts" ``` ## Shuffling The `deck()` function returns a randomly shuffled deck of cards with all 52! possible orderings equally likely. However, if one wishes to manually randomize the deck, or to randomize an ordered deck as returned by `deck(false)`, we provide the functions `shuffle`, `riffle`, and `cut`. These functions are typically applied to a full deck of 52 cards, but may be used on any list. ### Shuffle The functions `shuffle` and `shuffle!` from the `Random` module are imported and so may be applied to card decks. These functions apply a random permutation to the cards (all orders equally likely). The function `shuffle` returns a new deck, leaving the original deck unchanged. The function `shuffle!` overwrites the deck in the new order. ### Riffle The functions `riffle` and `riffle!` apply a random riffle shuffle to the deck using the [Gilbert–Shannon–Reeds model](https://en.wikipedia.org/wiki/Gilbert%E2%80%93Shannon%E2%80%93Reeds_model). The former leaves the original deck unchanged and the latter overwrites the deck. ```julia julia> d = deck(false); print_deck(d) A♣ 2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ T♣ J♣ Q♣ K♣ A♢ 2♢ 3♢ 4♢ 5♢ 6♢ 7♢ 8♢ 9♢ T♢ J♢ Q♢ K♢ A♡ 2♡ 3♡ 4♡ 5♡ 6♡ 7♡ 8♡ 9♡ T♡ J♡ Q♡ K♡ A♠ 2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ T♠ J♠ Q♠ K♠ julia> riffle!(d); print_deck(d) A♣ 4♡ 5♡ 6♡ 2♣ 3♣ 4♣ 7♡ 8♡ 9♡ T♡ J♡ Q♡ K♡ A♠ 2♠ 5♣ 6♣ 7♣ 8♣ 9♣ T♣ J♣ Q♣ K♣ A♢ 3♠ 4♠ 5♠ 6♠ 7♠ 2♢ 3♢ 8♠ 4♢ 5♢ 6♢ 7♢ 9♠ 8♢ 9♢ T♠ T♢ J♢ Q♢ J♠ K♢ Q♠ A♡ 2♡ K♠ 3♡ ``` Note that a single riffle shuffle does a poor job at randomizing the deck. ### Cut The functions `cut` and `cut!` are used to cut the deck. * `cut!(d,idx)` moves cards `1` through `idx` to the back of the deck; the new first card is the one formerly at position `idx+1`. * `cut!(d)` cuts the deck a random index. If the deck has `n` cards, then the cut location is given by the binomial random variable `B(n,1/2)`. ```julia julia> d = deck(false); julia> cut!(d) julia> print_deck(d) Q♢ K♢ A♡ 2♡ 3♡ 4♡ 5♡ 6♡ 7♡ 8♡ 9♡ T♡ J♡ Q♡ K♡ A♠ 2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ T♠ J♠ Q♠ K♠ A♣ 2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ T♣ J♣ Q♣ K♣ A♢ 2♢ 3♢ 4♢ 5♢ 6♢ 7♢ 8♢ 9♢ T♢ J♢ ``` ## Unicode Characters The standard playing cards have unicode character representations. Use `Char(c)` to return that character. ```julia julia> c = Card(:diamonds, 4); julia> Char(c) '🃄': Unicode U+1F0C4 (category So: Symbol, other) ``` The characters are unreadable at small font sizes (e.g., 12 point); they need to be enlarged to be visible. ![](./4D.png) ## Acknowledgement Developed with input from [@charleskawczynski](https://github.com/charleskawczynski) and in parallel with his [PlayingCards.jl](https://github.com/charleskawczynski/PlayingCards.jl).
PlayingCards52
https://github.com/scheinerman/PlayingCards52.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
731
module Gaius import LinearAlgebra import LoopVectorization import StructArrays import UnsafeArrays import VectorizationBase import VectorizationBase: stridedpointer using LinearAlgebra: Adjoint, Transpose using LoopVectorization: @avx using StructArrays: StructArray using UnsafeArrays: @uviews, UnsafeArray using VectorizationBase: AbstractStridedPointer, gesp, vload, vstore! export t_blocked_mul export t_blocked_mul! include("global_constants.jl") include("types.jl") include("block_operations.jl") include("check_compatible_sizes.jl") include("choose_block_size.jl") include("kernels.jl") include("matmul.jl") include("public_mul.jl") include("init.jl") # `Gaius.__init__()` is defined in this file end # module Gaius
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
20575
@inline function block_mat_mat_mul!(multithreaded::Multithreaded, C, A, B) use_singlethread(multithreaded, C, A, B) && return block_mat_mat_mul!(multithreaded.singlethreaded, C, A, B) sz = get_block_size(multithreaded) mᵣ, nᵣ = LoopVectorization.matmul_params() mstep = mᵣ * LoopVectorization.pick_vector_width(eltype(A)) m1 = min(max(sz, mstep * div(size(A, 1), 2mstep, RoundNearest)), size(A, 1) - sz) n1 = min(max(sz, nᵣ * div(size(B, 2), 2nᵣ, RoundNearest)), size(B, 2) - sz) k1 = min(max(sz, div(size(A, 2), 2, RoundNearest)), size(A, 2) - sz) @inbounds @views begin C11 = C[1:m1, 1:n1]; C12 = C[1:m1, n1+1:end] C21 = C[m1+1:end, 1:n1]; C22 = C[m1+1:end, n1+1:end] A11 = A[1:m1, 1:k1]; A12 = A[1:m1, k1+1:end] A21 = A[m1+1:end, 1:k1]; A22 = A[m1+1:end, k1+1:end] B11 = B[1:k1, 1:n1]; B12 = B[1:k1, n1+1:end] B21 = B[k1+1:end, 1:n1]; B22 = B[k1+1:end, n1+1:end] end @sync begin Threads.@spawn begin _mul!(multithreaded, C11, A11, B11) _mul_add!(multithreaded, C11, A12, B21) end Threads.@spawn begin _mul!(multithreaded, C12, A11, B12) _mul_add!(multithreaded, C12, A12, B22) end Threads.@spawn begin _mul!(multithreaded, C21, A21, B11) _mul_add!(multithreaded, C21, A22, B21) end _mul!(multithreaded, C22, A21, B12) _mul_add!(multithreaded, C22, A22, B22) end end @inline function block_mat_mat_mul!(singlethreaded::Singlethreaded, C, A, B) sz = get_block_size(singlethreaded) @inbounds @views begin C11 = C[1:sz, 1:sz]; C12 = C[1:sz, sz+1:end] C21 = C[sz+1:end, 1:sz]; C22 = C[sz+1:end, sz+1:end] A11 = A[1:sz, 1:sz]; A12 = A[1:sz, sz+1:end] A21 = A[sz+1:end, 1:sz]; A22 = A[sz+1:end, sz+1:end] B11 = B[1:sz, 1:sz]; B12 = B[1:sz, sz+1:end] B21 = B[sz+1:end, 1:sz]; B22 = B[sz+1:end, sz+1:end] end #_mul!(singlethreaded, C11, A11, B11) gemm_kernel!(C11, A11, B11) _mul_add!(singlethreaded, C11, A12, B21) _mul!(singlethreaded, C12, A11, B12) _mul_add!(singlethreaded, C12, A12, B22) _mul!(singlethreaded, C21, A21, B11) _mul_add!(singlethreaded, C21, A22, B21) _mul!(singlethreaded, C22, A21, B12) _mul_add!(singlethreaded, C22, A22, B22) end function block_mat_vec_mul!(multithreaded::Multithreaded, C, A, B) use_singlethread(multithreaded, C, A, B) && return block_mat_vec_mul!(multithreaded.singlethreaded, C, A, B) sz = get_block_size(multithreaded) mstep = LoopVectorization.pick_vector_width(eltype(A)) m1 = min(max(sz, mstep * div(size(A, 1), 2mstep, RoundNearest)), size(A, 1) - sz) k1 = min(max(sz, div(size(A, 2), 2, RoundNearest)), size(A, 2) - sz) @inbounds @views begin C11 = C[1:m1, 1:end]; C21 = C[m1+1:end, 1:end]; A11 = A[1:m1, 1:k1]; A12 = A[1:m1, k1+1:end] A21 = A[m1+1:end, 1:k1]; A22 = A[m1+1:end, k1+1:end] B11 = B[1:k1, 1:end]; B21 = B[k1+1:end, 1:end]; end @sync begin Threads.@spawn begin _mul!(multithreaded, C11, A11, B11) _mul_add!(multithreaded, C11, A12, B21) end _mul!(multithreaded, C21, A21, B11) _mul_add!(multithreaded, C21, A22, B21) end end function block_mat_vec_mul!(singlethreaded::Singlethreaded, C, A, B) sz = get_block_size(singlethreaded) @inbounds @views begin C11 = C[1:sz, 1:end]; C21 = C[sz+1:end, 1:end]; A11 = A[1:sz, 1:sz]; A12 = A[1:sz, sz+1:end] A21 = A[sz+1:end, 1:sz]; A22 = A[sz+1:end, sz+1:end] B11 = B[1:sz, 1:end]; B21 = B[sz+1:end, 1:end]; end #_mul!(singlethreaded, C11, A11, B11) gemm_kernel!(C11, A11, B11) _mul_add!(singlethreaded, C11, A12, B21) _mul!(singlethreaded, C21, A21, B11) _mul_add!(singlethreaded, C21, A22, B21) end function block_mat_vec_mul!(multithreaded::Multithreaded, C::VecTypes, A, B::VecTypes) use_singlethread(multithreaded, C, A, B) && return block_mat_vec_mul!(multithreaded.singlethreaded, C, A, B) sz = get_block_size(multithreaded) mstep = LoopVectorization.pick_vector_width(eltype(A)) m1 = min(max(sz, mstep * div(size(A, 1), 2mstep, RoundNearest)), size(A, 1) - sz) k1 = min(max(sz, div(size(A, 2), 2, RoundNearest)), size(A, 2) - sz) @inbounds @views begin C11 = C[1:m1 ]; C21 = C[m1+1:end]; A11 = A[1:m1, 1:k1]; A12 = A[1:m1, k1+1:end] A21 = A[m1+1:end, 1:k1]; A22 = A[m1+1:end, k1+1:end] B11 = B[1:k1 ]; B21 = B[k1+1:end]; end @sync begin Threads.@spawn begin _mul!(multithreaded, C11, A11, B11) _mul_add!(multithreaded, C11, A12, B21) end _mul!(multithreaded, C21, A21, B11) _mul_add!(multithreaded, C21, A22, B21) end end function block_mat_vec_mul!(singlethreaded::Singlethreaded, C::VecTypes, A, B::VecTypes) sz = get_block_size(singlethreaded) @inbounds @views begin C11 = C[1:sz ]; C21 = C[sz+1:end]; A11 = A[1:sz, 1:sz]; A12 = A[1:sz, sz+1:end] A21 = A[sz+1:end, 1:sz]; A22 = A[sz+1:end, sz+1:end] B11 = B[1:sz ]; B21 = B[sz+1:end]; end gemm_kernel!(C11, A11, B11) _mul_add!(singlethreaded, C11, A12, B21) _mul!(singlethreaded, C21, A21, B11) _mul_add!(singlethreaded, C21, A22, B21) end function block_covec_mat_mul!(multithreaded::Multithreaded, C, A, B) use_singlethread(multithreaded, C, A, B) && return block_covec_mat_mul!(multithreaded.singlethreaded, C, A, B) sz = get_block_size(multithreaded) nstep = LoopVectorization.pick_vector_width(eltype(B)) n1 = min(max(sz, nstep * div(size(B, 2), 2nstep, RoundNearest)), size(B, 2) - sz) k1 = min(max(sz, div(size(A, 2), 2, RoundNearest)), size(A, 2) - sz) @inbounds @views begin C11 = C[1:end, 1:n1]; C12 = C[1:end, n1+1:end] A11 = A[1:end, 1:k1]; A12 = A[1:end, k1+1:end] B11 = B[1:k1, 1:n1]; B12 = B[1:k1, n1+1:end] B21 = B[k1+1:end, 1:n1]; B22 = B[k1+1:end, n1+1:end] end @sync begin Threads.@spawn begin _mul!(multithreaded, C11, A11, B11) _mul_add!(multithreaded, C11, A12, B21) end _mul!(multithreaded, C12, A11, B12) _mul_add!(multithreaded, C12, A12, B22) end end function block_covec_mat_mul!(singlethreaded::Singlethreaded, C, A, B) sz = get_block_size(singlethreaded) @inbounds @views begin C11 = C[1:end, 1:sz]; C12 = C[1:end, sz+1:end] A11 = A[1:end, 1:sz]; A12 = A[1:end, sz+1:end] B11 = B[1:sz, 1:sz]; B12 = B[1:sz, sz+1:end] B21 = B[sz+1:end, 1:sz]; B22 = B[sz+1:end, sz+1:end] end #_mul!(threading, C11, A11, B11) gemm_kernel!(C11, A11, B11) _mul_add!(singlethreaded, C11, A12, B21) _mul!(singlethreaded, C12, A11, B12) _mul_add!(singlethreaded, C12, A12, B22) end function block_vec_covec_mul!(multithreaded::Multithreaded, C, A, B) use_singlethread(multithreaded, C, A, B) && return block_vec_covec_mul!(multithreaded.singlethreaded, C, A, B) sz = get_block_size(multithreaded) mᵣ, nᵣ = LoopVectorization.matmul_params() mstep = mᵣ * LoopVectorization.pick_vector_width(eltype(A)) m1 = min(max(sz, mstep * div(size(A, 1), 2mstep, RoundNearest)), size(A, 1) - sz) n1 = min(max(sz, nᵣ * div(size(B, 2), 2nᵣ, RoundNearest)), size(B, 2) - sz) @inbounds @views begin C11 = C[1:m1, 1:n1]; C12 = C[1:m1, n1+1:end] C21 = C[m1+1:end, 1:n1]; C22 = C[m1+1:end, n1+1:end] A11 = A[1:m1, 1:end]; A21 = A[m1+1:end, 1:end]; B11 = B[1:end, 1:n1]; B12 = B[1:end, n1+1:end] end @sync begin Threads.@spawn begin _mul!(multithreaded, C11, A11, B11) end Threads.@spawn begin _mul!(multithreaded, C12, A11, B12) end Threads.@spawn begin _mul!(multithreaded, C21, A21, B11) end _mul!(multithreaded, C22, A21, B12) end end function block_vec_covec_mul!(singlethreaded::Singlethreaded, C, A, B) sz = get_block_size(singlethreaded) @inbounds @views begin C11 = C[1:sz, 1:sz]; C12 = C[1:sz, sz+1:end] C21 = C[sz+1:end, 1:sz]; C22 = C[sz+1:end, sz+1:end] A11 = A[1:sz, 1:end]; A21 = A[sz+1:end, 1:end]; B11 = B[1:end, 1:sz]; B12 = B[1:end, sz+1:end] end #_mul!(singlethreaded, C11, A11, B11) gemm_kernel!(C11, A11, B11) _mul!(singlethreaded, C12, A11, B12) _mul!(singlethreaded, C21, A21, B11) _mul!(singlethreaded, C22, A21, B12) end function block_covec_vec_mul!(threading::Threading, C, A, B) sz = get_block_size(threading) @inbounds @views begin A11 = A[1:end, 1:sz]; A12 = A[1:end, sz+1:end] B11 = B[1:sz, 1:end]; B21 = B[sz+1:end, 1:end]; end gemm_kernel!(C, A11, B11) #_mul!(threading, C, A11, B11) _mul_add!(threading, C, A12, B21) end function block_covec_vec_mul!(threading::Threading, C::VecTypes, A, B::VecTypes) sz = get_block_size(threading) @inbounds @views begin A11 = A[1:end, 1:sz]; A12 = A[1:end, sz+1:end] B11 = B[1:sz ]; B21 = B[sz+1:end]; end gemm_kernel!(C, A11, B11) _mul_add!(threading, C, A12, B21) end @inline function block_mat_mat_mul_add!(multithreaded::Multithreaded, C, A, B, ::Val{factor} = Val(1)) where {factor} use_singlethread(multithreaded, C, A, B) && return block_mat_mat_mul_add!(multithreaded.singlethreaded, C, A, B, Val(factor)) sz = get_block_size(multithreaded) mᵣ, nᵣ = LoopVectorization.matmul_params() mstep = mᵣ * LoopVectorization.pick_vector_width(eltype(A)) m1 = min(max(sz, mstep * div(size(A, 1), 2mstep, RoundNearest)), size(A, 1) - sz) n1 = min(max(sz, nᵣ * div(size(B, 2), 2nᵣ, RoundNearest)), size(B, 2) - sz) k1 = min(max(sz, div(size(A, 2), 2, RoundNearest)), size(A, 2) - sz) @inbounds @views begin C11 = C[1:m1, 1:n1]; C12 = C[1:m1, n1+1:end] C21 = C[m1+1:end, 1:n1]; C22 = C[m1+1:end, n1+1:end] A11 = A[1:m1, 1:k1]; A12 = A[1:m1, k1+1:end] A21 = A[m1+1:end, 1:k1]; A22 = A[m1+1:end, k1+1:end] B11 = B[1:k1, 1:n1]; B12 = B[1:k1, n1+1:end] B21 = B[k1+1:end, 1:n1]; B22 = B[k1+1:end, n1+1:end] end @sync begin Threads.@spawn begin _mul_add!(multithreaded, C11, A11, B11, Val(factor)) _mul_add!(multithreaded, C11, A12, B21, Val(factor)) end Threads.@spawn begin _mul_add!(multithreaded, C12, A11, B12, Val(factor)) _mul_add!(multithreaded, C12, A12, B22, Val(factor)) end Threads.@spawn begin _mul_add!(multithreaded, C21, A21, B11, Val(factor)) _mul_add!(multithreaded, C21, A22, B21, Val(factor)) end _mul_add!(multithreaded, C22, A21, B12, Val(factor)) _mul_add!(multithreaded, C22, A22, B22, Val(factor)) end end @inline function block_mat_mat_mul_add!(singlethreaded::Singlethreaded, C, A, B, ::Val{factor} = Val(1)) where {factor} sz = get_block_size(singlethreaded) @inbounds @views begin C11 = C[1:sz, 1:sz]; C12 = C[1:sz, sz+1:end] C21 = C[sz+1:end, 1:sz]; C22 = C[sz+1:end, sz+1:end] A11 = A[1:sz, 1:sz]; A12 = A[1:sz, sz+1:end] A21 = A[sz+1:end, 1:sz]; A22 = A[sz+1:end, sz+1:end] B11 = B[1:sz, 1:sz]; B12 = B[1:sz, sz+1:end] B21 = B[sz+1:end, 1:sz]; B22 = B[sz+1:end, sz+1:end] end add_gemm_kernel!(C11, A11, B11, Val(factor)) _mul_add!(singlethreaded, C11, A12, B21, Val(factor)) _mul_add!(singlethreaded, C12, A11, B12, Val(factor)) _mul_add!(singlethreaded, C12, A12, B22, Val(factor)) _mul_add!(singlethreaded, C21, A21, B11, Val(factor)) _mul_add!(singlethreaded, C21, A22, B21, Val(factor)) _mul_add!(singlethreaded, C22, A21, B12, Val(factor)) _mul_add!(singlethreaded, C22, A22, B22, Val(factor)) end function block_mat_vec_mul_add!(multithreaded::Multithreaded, C, A, B, ::Val{factor} = Val(1)) where {factor} use_singlethread(multithreaded, C, A, B) && return block_mat_vec_mul_add!(multithreaded.singlethreaded, C, A, B, Val(factor)) sz = get_block_size(multithreaded) mstep = LoopVectorization.pick_vector_width(eltype(A)) m1 = min(max(sz, mstep * div(size(A, 1), 2mstep, RoundNearest)), size(A, 1) - sz) k1 = min(max(sz, div(size(A, 2), 2, RoundNearest)), size(A, 2) - sz) @inbounds @views begin C11 = C[1:m1, 1:end]; C21 = C[m1+1:end, 1:end]; A11 = A[1:m1, 1:k1]; A12 = A[1:m1, k1+1:end] A21 = A[m1+1:end, 1:k1]; A22 = A[m1+1:end, k1+1:end] B11 = B[1:k1, 1:end]; B21 = B[k1+1:end, 1:end]; end @sync begin Threads.@spawn begin _mul_add!(multithreaded, C11, A11, B11, Val(factor)) _mul_add!(multithreaded, C11, A12, B21, Val(factor)) end _mul_add!(multithreaded, C21, A21, B11, Val(factor)) _mul_add!(multithreaded, C21, A22, B21, Val(factor)) end end function block_mat_vec_mul_add!(singlethreaded::Singlethreaded, C, A, B, ::Val{factor} = Val(1)) where {factor} sz = get_block_size(singlethreaded) @inbounds @views begin C11 = C[1:sz, 1:end]; C21 = C[sz+1:end, 1:end]; A11 = A[1:sz, 1:sz]; A12 = A[1:sz, sz+1:end] A21 = A[sz+1:end, 1:sz]; A22 = A[sz+1:end, sz+1:end] B11 = B[1:sz, 1:end]; B21 = B[sz+1:end, 1:end]; end add_gemm_kernel!(C11, A11, B11, Val(factor)) _mul_add!(singlethreaded, C11, A12, B21, Val(factor)) _mul_add!(singlethreaded, C21, A21, B11, Val(factor)) _mul_add!(singlethreaded, C21, A22, B21, Val(factor)) end function block_mat_vec_mul_add!(multithreaded::Multithreaded, C::VecTypes, A, B::VecTypes, ::Val{factor} = Val(1)) where {factor} use_singlethread(multithreaded, C, A, B) && return block_mat_vec_mul_add!(multithreaded.singlethreaded, C, A, B, Val(factor)) sz = get_block_size(multithreaded) mstep = LoopVectorization.pick_vector_width(eltype(A)) m1 = min(max(sz, mstep * div(size(A, 1), 2mstep, RoundNearest)), size(A, 1) - sz) k1 = min(max(sz, div(size(A, 2), 2, RoundNearest)), size(A, 2) - sz) @inbounds @views begin C11 = C[1:m1, ]; C21 = C[m1+1:end]; A11 = A[1:m1, 1:k1]; A12 = A[1:m1, k1+1:end] A21 = A[m1+1:end, 1:k1]; A22 = A[m1+1:end, k1+1:end] B11 = B[1:k1, ]; B21 = B[k1+1:end]; end @sync begin Threads.@spawn begin _mul_add!(multithreaded, C11, A11, B11, Val(factor)) _mul_add!(multithreaded, C11, A12, B21, Val(factor)) end _mul_add!(multithreaded, C21, A21, B11, Val(factor)) _mul_add!(multithreaded, C21, A22, B21, Val(factor)) end end function block_mat_vec_mul_add!(singlethreaded::Singlethreaded, C::VecTypes, A, B::VecTypes, ::Val{factor} = Val(1)) where {factor} sz = get_block_size(singlethreaded) @inbounds @views begin C11 = C[1:sz ]; C21 = C[sz+1:end]; A11 = A[1:sz, 1:sz]; A12 = A[1:sz, sz+1:end] A21 = A[sz+1:end, 1:sz]; A22 = A[sz+1:end, sz+1:end] B11 = B[1:sz ]; B21 = B[sz+1:end]; end add_gemm_kernel!(C11, A11, B11, Val(factor)) _mul_add!(singlethreaded, C11, A12, B21, Val(factor)) _mul_add!(singlethreaded, C21, A21, B11, Val(factor)) _mul_add!(singlethreaded, C21, A22, B21, Val(factor)) end function block_covec_mat_mul_add!(multithreaded::Multithreaded, C, A, B, ::Val{factor} = Val(1)) where {factor} use_singlethread(multithreaded, C, A, B) && return block_covec_mat_mul_add!(multithreaded.singlethreaded, C, A, B, Val(factor)) sz = get_block_size(multithreaded) nstep = LoopVectorization.pick_vector_width(eltype(B)) n1 = min(max(sz, nstep * div(size(B, 2), 2nstep, RoundNearest)), size(B, 2) - sz) k1 = min(max(sz, div(size(A, 2), 2, RoundNearest)), size(A, 2) - sz) @inbounds @views begin C11 = C[1:end, 1:n1]; C12 = C[1:end, n1+1:end] A11 = A[1:end, 1:k1]; A12 = A[1:end, k1+1:end] B11 = B[1:k1, 1:n1]; B12 = B[1:k1, n1+1:end] B21 = B[k1+1:end, 1:n1]; B22 = B[k1+1:end, n1+1:end] end @sync begin Threads.@spawn begin _mul_add!(multithreaded, C11, A11, B11, Val(factor)) _mul_add!(multithreaded, C11, A12, B21, Val(factor)) end _mul_add!(multithreaded, C12, A11, B12, Val(factor)) _mul_add!(multithreaded, C12, A12, B22, Val(factor)) end end function block_covec_mat_mul_add!(singlethreaded::Singlethreaded, C, A, B, ::Val{factor} = Val(1)) where {factor} sz = get_block_size(singlethreaded) @inbounds @views begin C11 = C[1:end, 1:sz]; C12 = C[1:end, sz+1:end] A11 = A[1:end, 1:sz]; A12 = A[1:end, sz+1:end] B11 = B[1:sz, 1:sz]; B12 = B[1:sz, sz+1:end] B21 = B[sz+1:end, 1:sz]; B22 = B[sz+1:end, sz+1:end] end add_gemm_kernel!(C11, A11, B11, Val(factor)) _mul_add!(singlethreaded, C11, A12, B21, Val(factor)) _mul_add!(singlethreaded, C12, A11, B12, Val(factor)) _mul_add!(singlethreaded, C12, A12, B22, Val(factor)) end function block_vec_covec_mul_add!(multithreaded::Multithreaded, C, A, B, ::Val{factor} = Val(1)) where {factor} use_singlethread(multithreaded, C, A, B) && return block_vec_covec_mul_add!(multithreaded.singlethreaded, C, A, B, Val(factor)) sz = get_block_size(multithreaded) mᵣ, nᵣ = LoopVectorization.matmul_params() mstep = mᵣ * LoopVectorization.pick_vector_width(eltype(A)) m1 = min(max(sz, mstep * div(size(A, 1), 2mstep, RoundNearest)), size(A, 1) - sz) n1 = min(max(sz, nᵣ * div(size(B, 2), 2nᵣ, RoundNearest)), size(B, 2) - sz) @inbounds @views begin C11 = C[1:m1, 1:n1]; C12 = C[1:m1, n1+1:end] C21 = C[m1+1:end, 1:n1]; C22 = C[m1+1:end, n1+1:end] A11 = A[1:m1, 1:end]; A21 = A[m1+1:end, 1:end]; B11 = B[1:end, 1:n1]; B12 = B[1:end, n1+1:end] end @sync begin Threads.@spawn begin _mul_add!(multithreaded, C11, A11, B11, Val(factor)) end Threads.@spawn begin _mul_add!(multithreaded, C12, A11, B12, Val(factor)) end Threads.@spawn begin _mul_add!(multithreaded, C21, A21, B11, Val(factor)) end _mul_add!(multithreaded, C22, A21, B12, Val(factor)) end end function block_vec_covec_mul_add!(singlethreaded::Singlethreaded, C, A, B, ::Val{factor} = Val(1)) where {factor} sz = get_block_size(singlethreaded) @inbounds @views begin C11 = C[1:sz, 1:sz]; C12 = C[1:sz, sz+1:end] C21 = C[sz+1:end, 1:sz]; C22 = C[sz+1:end, sz+1:end] A11 = A[1:sz, 1:end]; A21 = A[sz+1:end, 1:end]; B11 = B[1:end, 1:sz]; B12 = B[1:end, sz+1:end] end add_gemm_kernel!(C11, A11, B11, Val(factor)) _mul_add!(singlethreaded, C12, A11, B12, Val(factor)) _mul_add!(singlethreaded, C21, A21, B11, Val(factor)) _mul_add!(singlethreaded, C22, A21, B12, Val(factor)) end function block_covec_vec_mul_add!(threading::Threading, C, A, B, ::Val{factor} = Val(1)) where {factor} sz = get_block_size(threading) @inbounds @views begin A11 = A[1:end, 1:sz]; A12 = A[1:end, sz+1:end] B11 = B[1:sz, 1:end]; B21 = B[sz+1:end, 1:end]; end add_gemm_kernel!(C, A11, B11, Val(factor)) _mul_add!(threading, C, A12, B21, Val(factor)) end function block_covec_vec_mul_add!(threading::Threading, C::VecTypes, A, B::VecTypes, ::Val{factor} = Val(1)) where {factor} sz = get_block_size(threading) @inbounds @views begin A11 = A[1:end, 1:sz]; A12 = A[1:end, sz+1:end] B11 = B[1:sz ]; B21 = B[sz+1:end]; end add_gemm_kernel!(C, A11, B11, Val(factor)) _mul_add!(threading, C, A12, B21, Val(factor)) end
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
730
function check_compatible_sizes(C, A, B) n, m = size(C) a, k = size(A) b, c = size(B) @assert (n == a) && (m == c) && (k == b) "matrices of size $(size(C)), $(size(A)), $(size(B)) are incompatible" nothing end function check_compatible_sizes(C::VecTypes, A, B::VecTypes) n = length(C) a, k = size(A) b = length(B) @assert (n == a) && (k == b) "matrices of size $(size(C)), $(size(A)), $(size(B)) are incompatible" nothing end function check_compatible_sizes(C::CoVecTypes, A::CoVecTypes, B::MatTypes) m = length(C) n = length(A) a, b = size(B) @assert (n == a) && (m == b) "matrices of size $(size(C)), $(size(A)), $(size(B)) are incompatible" nothing end
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
1199
function choose_block_size(C, A, B, ::Nothing) if (*)(length(C) |> Int128, length(A) |> Int128, length(B) |> Int128) >= ((3default_block_size()) >>> 1)^6 default_block_size() else 32 end end choose_block_size(C, A, B, block_size::Integer) = block_size choose_singlethread_parameter(C, A, B, block_size) = Singlethreaded(choose_block_size(C, A, B, block_size)) function choose_multithread_parameter(C, A, B, ::Nothing, block_size) m = Int128(size(A, 1)) n = Int128(size(B, 1)) k = Int128(size(A, 2)) oversubscription_ratio = 8 # a magic constant that Works For Me singlethread_size = cld(m * n * k, oversubscription_ratio * Threads.nthreads()) return Multithreaded( singlethread_size, choose_singlethread_parameter(C, A, B, block_size), ) end choose_multithread_parameter(C, A, B, singlethread_size::Integer, block_size) = Multithreaded(singlethread_size, choose_singlethread_parameter(C, A, B, block_size)) function use_singlethread(multithreaded::Multithreaded, C, A, B) m = Int128(size(A, 1)) n = Int128(size(B, 1)) k = Int128(size(A, 2)) return m * n * k <= multithreaded.singlethread_size end
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
92
default_block_size() = Bool(VectorizationBase.has_feature(Val(:x86_64_avx512f))) ? 96 : 64
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
1580
function __init__() _print_num_threads_warning() return nothing end function _print_num_threads_warning() sys_nc = Int(VectorizationBase.num_cores())::Int jl_nt = Threads.nthreads() return _print_num_threads_warning(sys_nc, jl_nt) end function _print_num_threads_warning(sys_nc::Integer, jl_nt::Integer) if jl_nt < sys_nc if !_is_suppress_warning() msg = string( "The system has $(_pluralize_cores(sys_nc)). ", "However, Julia was started with $(_pluralize_threads(jl_nt)). ", "We recommend starting Julia with at least $(_pluralize_threads(sys_nc)) ", "to take advantage of Gaius's multithreading algorithms. ", "To suppress this warning, set the environment variable ", "SUPPRESS_GAIUS_WARNING=true", ) @warn(msg) end end return nothing end function _string_to_bool(s::AbstractString) b = tryparse(Bool, s) if b isa Nothing return false else return b::Bool end end function _is_suppress_warning() s = get(ENV, "SUPPRESS_GAIUS_WARNING", "") b = _string_to_bool(s)::Bool return b end function _pluralize(singular::S, plural::S, n::Integer) where {S <: AbstractString} if n == 1 return singular else return plural end end function _pluralize_threads(nt::Integer) return "$(nt) $(_pluralize("thread", "threads", nt))" end function _pluralize_cores(nc::Integer) return "$(nc) $(_pluralize("core", "cores", nc))" end
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
3097
function gemm_kernel!(C, A, B) @avx for n ∈ 1:size(A, 1), m ∈ 1:size(B, 2) Cₙₘ = zero(eltype(C)) for k ∈ 1:size(A, 2) Cₙₘ += A[n,k] * B[k,m] end C[n,m] = Cₙₘ end end function add_gemm_kernel!(C::MatTypes, A::MatTypes, B::MatTypes) @avx for n ∈ 1:size(A, 1), m ∈ 1:size(B, 2) Cₙₘ = zero(eltype(C)) for k ∈ 1:size(A, 2) Cₙₘ += A[n,k] * B[k,m] end C[n,m] += Cₙₘ end end add_gemm_kernel!(C::MatTypes, A::MatTypes, B::MatTypes, ::Val{1}) = add_gemm_kernel!(C, A, B) function add_gemm_kernel!(C::MatTypes, A::MatTypes, B::MatTypes, ::Val{-1}) @avx for n ∈ 1:size(A, 1), m ∈ 1:size(B, 2) Cₙₘ = zero(eltype(C)) for k ∈ 1:size(A, 2) Cₙₘ -= A[n,k] * B[k,m] end C[n,m] += Cₙₘ end end function add_gemm_kernel!(C::MatTypes, A::MatTypes, B::MatTypes, ::Val{factor}) where {factor} @avx for n ∈ 1:size(A, 1), m ∈ 1:size(B, 2) Cₙₘ = zero(eltype(C)) for k ∈ 1:size(A, 2) Cₙₘ += factor * A[n,k] * B[k,m] end C[n,m] += Cₙₘ end end #____________ function gemm_kernel!(u::VecTypes, A::MatTypes, v::VecTypes) @avx for n ∈ 1:size(A, 1) uₙ = zero(eltype(u)) for k ∈ 1:size(A, 2) uₙ += A[n,k] * v[k] end u[n] = uₙ end end function add_gemm_kernel!(u::VecTypes, A::MatTypes, v::VecTypes) @avx for n ∈ 1:size(A, 1) uₙ = zero(eltype(u)) for k ∈ 1:size(A, 2) uₙ += A[n,k] * v[k] end u[n] += uₙ end end function add_gemm_kernel!(u::VecTypes, A::MatTypes, v::VecTypes, ::Val{-1}) @avx for n ∈ 1:size(A, 1) uₙ = zero(eltype(u)) for k ∈ 1:size(A, 2) uₙ -= A[n,k] * v[k] end u[n] += uₙ end end function add_gemm_kernel!(u::VecTypes, A::MatTypes, v::VecTypes, ::Val{factor}) where {factor} @avx for n ∈ 1:size(A, 1) uₙ = zero(eltype(u)) for k ∈ 1:size(A, 2) uₙ += A[n,k] * v[k] end u[n] += factor * uₙ end end #____________ function gemm_kernel!(u::CoVecTypes, v::CoVecTypes, A::MatTypes) @avx for m ∈ 1:size(A, 2) uₘ = zero(eltype(u)) for k ∈ 1:size(A, 1) uₘ += v[k] * A[k, m] end u[m] = uₘ end end function add_gemm_kernel!(u::CoVecTypes, v::CoVecTypes, A::MatTypes) @avx for m ∈ 1:size(A, 2) uₘ = zero(eltype(u)) for k ∈ 1:size(A, 1) uₘ += v[k] * A[k, m] end u[m] += uₘ end end function add_gemm_kernel!(u::CoVecTypes, v::CoVecTypes, A::MatTypes, ::Val{-1}) @avx for m ∈ 1:size(A, 2) uₘ = zero(eltype(u)) for k ∈ 1:size(A, 1) uₘ -= v[k] * A[k, m] end u[m] += uₘ end end function add_gemm_kernel!(u::CoVecTypes, v::CoVecTypes, A::MatTypes, ::Val{factor}) where {factor} @avx for m ∈ 1:size(A, 2) uₘ = zero(eltype(u)) for k ∈ 1:size(A, 1) uₘ += v[k] * A[k, m] end u[m] += factor * uₘ end end
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
3166
function _mul!(threading::Threading, C, A, B) sz = get_block_size(threading) n, k, m = size(C, 1), size(A, 2), size(C, 2) if n >= sz+8 && m >= sz+8 && k >= sz+8 block_mat_mat_mul!(threading, C, A, B) elseif n >= sz+8 && k >= sz+8 && m < sz+8 block_mat_vec_mul!(threading, C, A, B) elseif n < sz+8 && k >= sz+8 && m >= sz+8 block_covec_mat_mul!(threading, C, A, B) elseif n >= sz+8 && k < sz+8 && m >= sz+8 block_vec_covec_mul!(threading, C, A, B) elseif n < sz+8 && k >= sz+8 && m < sz+8 block_covec_vec_mul!(threading, C, A, B) else gemm_kernel!(C, A, B) end end function _mul_add!(threading::Threading, C, A, B, ::Val{factor} = Val(1)) where {factor} sz = get_block_size(threading) n, k, m = size(C, 1), size(A, 2), size(C, 2) if n >= sz+8 && m >= sz+8 && k >= sz+8 block_mat_mat_mul_add!(threading, C, A, B, Val(factor)) elseif n >= sz+8 && k >= sz+8 && m < sz+8 block_mat_vec_mul_add!(threading, C, A, B, Val(factor)) elseif n < sz+8 && k >= sz+8 && m >= sz+8 block_covec_mat_mul_add!(threading, C, A, B, Val(factor)) elseif n >= sz+8 && k < sz+8 && m >= sz+8 block_vec_covec_mul_add!(threading, C, A, B, Val(factor)) elseif n < sz+8 && k >= sz+8 && m < sz+8 block_covec_vec_mul_add!(threading, C, A, B, Val(factor)) else add_gemm_kernel!(C, A, B, Val(factor)) end end function _mul!(threading::Threading, C::VecTypes{T}, A::MatTypes{T}, B::VecTypes{T}) where {T<:Eltypes} sz = get_block_size(threading) n, k = size(A) if n >= sz+8 && k >= sz+8 block_mat_vec_mul!(threading, C, A, B) elseif n < sz+8 && k >= sz+8 block_covec_vec_mul!(threading, C, A, B) else gemm_kernel!(C, A, B) end end function _mul_add!(threading::Threading, C::VecTypes{T}, A::MatTypes{T}, B::VecTypes{T}, ::Val{factor} = Val(1)) where {factor, T<:Eltypes} sz = get_block_size(threading) n, k = size(A) if n >= sz+8 && k >= sz+8 block_mat_vec_mul_add!(threading, C, A, B, Val(factor)) elseif n < sz+8 && k >= sz+8 block_covec_vec_mul_add!(threading, C, A, B, Val(factor)) else add_gemm_kernel!(C, A, B, Val(factor)) end end function _mul!(threading::Threading, C::CoVecTypes{T}, A::CoVecTypes{T}, B::MatTypes{T}) where {T<:Eltypes} sz = get_block_size(threading) n, k, m = 1, size(A, 1), length(C) if k >= sz+8 && m >= sz+8 block_covec_mat_mul!(threading, C, A, B) elseif k >= sz+8 && m < sz+8 block_covec_vec_mul!(threading, C, A, B) else gemm_kernel!(C, A, B) end end function _mul_add!(threading::Threading, C::CoVecTypes{T}, A::CoVecTypes{T}, B::MatTypes{T}, ::Val{factor} = Val(1)) where {factor, T<:Eltypes} sz = get_block_size(threading) n, k, m = 1, size(A, 1), length(C) if k >= sz+8 && m >= sz+8 block_covec_mat_mul!(threading, C, A, B, Val(factor)) elseif k >= sz+8 && m < sz+8 block_covec_vec_mul!(threading, C, A, B, Val(factor)) else add_gemm_kernel!(C, A, B, Val(factor)) end end
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
10968
""" mul!(C, A, B) mul!(C, A, B; kwargs...) Multiply A×B and store the result in C (overwriting the contents of C). This function uses multithreading. This function is part of the public API of Gaius. """ function mul! end """ mul(A, B) mul(A, B; kwargs...) Multiply A×B and return the result. This function uses multithreading. This function is part of the public API of Gaius. """ function mul end """ mul_serial(A, B) mul_serial(A, B; kwargs...) Multiply A×B and return the result. This function will run single-threaded. This function is part of the public API of Gaius. """ function mul_serial end """ mul_serial!(C, A, B) mul_serial!(C, A, B; kwargs...) Multiply A×B and store the result in C (overwriting the contents of C). This function will run single-threaded. This function is part of the public API of Gaius. """ function mul_serial! end function mul(A::MatTypes, B::MatTypes) T = promote_type(eltype(A), eltype(B)) C = Matrix{T}(undef, size(A,1), size(B,2)) mul!(C, A, B) C end function mul_serial(A::MatTypes, B::MatTypes) T = promote_type(eltype(A), eltype(B)) C = Matrix{T}(undef, size(A,1), size(B,2)) mul_serial!(C, A, B) C end function mul(A::StructArray{Complex{T}, 2}, B::StructArray{Complex{T}, 2}) where {T <: Eltypes} C = StructArray{Complex{T}}((Matrix{T}(undef, size(A, 1), size(B,2)), Matrix{T}(undef, size(A, 1), size(B,2)))) mul!(C, A, B) C end function mul_serial(A::StructArray{Complex{T}, 2}, B::StructArray{Complex{T}, 2}) where {T <: Eltypes} C = StructArray{Complex{T}}((Matrix{T}(undef, size(A, 1), size(B,2)), Matrix{T}(undef, size(A, 1), size(B,2)))) mul_serial!(C, A, B) C end function mul!(C::AbstractArray{T}, A::AbstractArray{T}, B::AbstractArray{T}; block_size = nothing, singlethread_size = nothing, sizecheck = true) where {T <: Eltypes} sizecheck && check_compatible_sizes(C, A, B) multithreaded = choose_multithread_parameter(C, A, B, singlethread_size, block_size) _mul!(multithreaded, C, A, B) C end function mul_serial!(C::AbstractArray{T}, A::AbstractArray{T}, B::AbstractArray{T}; block_size = nothing, sizecheck=true) where {T <: Eltypes} sizecheck && check_compatible_sizes(C, A, B) singlethreaded = choose_singlethread_parameter(C, A, B, block_size) _mul!(singlethreaded, C, A, B) C end function mul!(C::StructArray{Complex{T}}, A::StructArray{Complex{T}}, B::StructArray{Complex{T}}; block_size = default_block_size(), singlethread_size = nothing, sizecheck = true) where {T <: Eltypes} sizecheck && check_compatible_sizes(C.re, A.re, B.re) multithreaded = choose_multithread_parameter(C, A, B, singlethread_size, block_size) GC.@preserve C A B begin Cre, Cim = C.re, C.im Are, Aim = A.re, A.im Bre, Bim = B.re, B.im _mul!( multithreaded, Cre, Are, Bre) # C.re = A.re * B.re _mul_add!(multithreaded, Cre, Aim, Bim, Val(-1)) # C.re = C.re - A.im * B.im _mul!( multithreaded, Cim, Are, Bim) # C.im = A.re * B.im _mul_add!(multithreaded, Cim, Aim, Bre) # C.im = C.im + A.im * B.re end C end function mul_serial!(C::StructArray{Complex{T}}, A::StructArray{Complex{T}}, B::StructArray{Complex{T}}; block_size = default_block_size(), sizecheck=true) where {T <: Eltypes} sizecheck && check_compatible_sizes(C.re, A.re, B.re) singlethreaded = choose_singlethread_parameter(C, A, B, block_size) GC.@preserve C A B begin Cre, Cim = (C.re), (C.im) Are, Aim = (A.re), (A.im) Bre, Bim = (B.re), (B.im) _mul!( singlethreaded, Cre, Are, Bre) # C.re = A.re * B.re _mul_add!(singlethreaded, Cre, Aim, Bim, Val(-1)) # C.re = C.re - A.im * B.im _mul!( singlethreaded, Cim, Are, Bim) # C.im = A.re * B.im _mul_add!(singlethreaded, Cim, Aim, Bre) # C.im = C.im + A.im * B.re end C end function mul!(C::Adjoint{Complex{T}, <:StructArray{Complex{T}}}, A::Adjoint{Complex{T}, <:StructArray{Complex{T}}}, B::StructArray{Complex{T}}; block_size = default_block_size(), singlethread_size = nothing, sizecheck = true) where {T <: Eltypes} sizecheck && check_compatible_sizes(C.parent.re', A.parent.re', B.re) multithreaded = choose_multithread_parameter(C, A, B, singlethread_size, block_size) A.parent.im .= (-).(A.parent.im) #ugly hack GC.@preserve C A B begin Cre, Cim = (C.parent.re'), (C.parent.im') Are, Aim = (A.parent.re'), (A.parent.im') Bre, Bim = (B.re), (B.im) _mul!( multithreaded, Cre, Are, Bre) # C.re = A.re * B.re _mul_add!(multithreaded, Cre, Aim, Bim, Val(-1)) # C.re = C.re - A.im * B.im _mul!( multithreaded, Cim, Are, Bim) # C.im = A.re * B.im _mul_add!(multithreaded, Cim, Aim, Bre) # C.im = C.im + A.im * B.re end A.parent.im .= (-).(A.parent.im) C.parent.im .= (-).(C.parent.im) # ugly hack C end function mul_serial!(C::Adjoint{Complex{T}, <:StructArray{Complex{T}}}, A::Adjoint{Complex{T}, <:StructArray{Complex{T}}}, B::StructArray{Complex{T}}; block_size = default_block_size(), sizecheck=true) where {T <: Eltypes} sizecheck && check_compatible_sizes(C.parent.re', A.parent.re', B.re) singlethreaded = choose_singlethread_parameter(C, A, B, block_size) A.parent.im .= (-).(A.parent.im) #ugly hack GC.@preserve C A B begin Cre, Cim = (C.parent.re'), (C.parent.im') Are, Aim = (A.parent.re'), (A.parent.im') Bre, Bim = (B.re), (B.im) _mul!( singlethreaded, Cre, Are, Bre) # C.re = A.re * B.re _mul_add!(singlethreaded, Cre, Aim, Bim, Val(-1)) # C.re = C.re - A.im * B.im _mul!( singlethreaded, Cim, Are, Bim) # C.im = A.re * B.im _mul_add!(singlethreaded, Cim, Aim, Bre) # C.im = C.im + A.im * B.re end A.parent.im .= (-).(A.parent.im) C.parent.im .= (-).(C.parent.im) # ugly hack C end function mul!(C::Transpose{Complex{T}, <:StructArray{Complex{T}}}, A::Transpose{Complex{T}, <:StructArray{Complex{T}}}, B::StructArray{Complex{T}}; block_size = default_block_size(), singlethread_size = nothing, sizecheck = true) where {T <: Eltypes} sizecheck && check_compatible_sizes(C.parent.re |> transpose, A.parent.re |> transpose, B.re) multithreaded = choose_multithread_parameter(C, A, B, singlethread_size, block_size) GC.@preserve C A B begin Cre, Cim = (C.parent.re |> transpose), (C.parent.im |> transpose) Are, Aim = (A.parent.re |> transpose), (A.parent.im |> transpose) Bre, Bim = (B.re), (B.im) _mul!( multithreaded, Cre, Are, Bre) # C.re = A.re * B.re _mul_add!(multithreaded, Cre, Aim, Bim, Val(-1)) # C.re = C.re - A.im * B.im _mul!( multithreaded, Cim, Are, Bim) # C.im = A.re * B.im _mul_add!(multithreaded, Cim, Aim, Bre) # C.im = C.im + A.im * B.re end C end function mul_serial!(C::Transpose{Complex{T}, <:StructArray{Complex{T}}}, A::Transpose{Complex{T}, <:StructArray{Complex{T}}}, B::StructArray{Complex{T}}; block_size = default_block_size(), sizecheck=true) where {T <: Eltypes} sizecheck && check_compatible_sizes(C.parent.re |> transpose, A.parent.re |> transpose, B.re) singlethreaded = choose_singlethread_parameter(C, A, B, block_size) GC.@preserve C A B begin Cre, Cim = (C.parent.re |> transpose), (C.parent.im |> transpose) Are, Aim = (A.parent.re |> transpose), (A.parent.im |> transpose) Bre, Bim = (B.re), (B.im) _mul!( singlethreaded, Cre, Are, Bre) # C.re = A.re * B.re _mul_add!(singlethreaded, Cre, Aim, Bim, Val(-1)) # C.re = C.re - A.im * B.im _mul!( singlethreaded, Cim, Are, Bim) # C.im = A.re * B.im _mul_add!(singlethreaded, Cim, Aim, Bre) # C.im = C.im + A.im * B.re end C end function mul(A::MatTypes, B::VecTypes) T = promote_type(eltype(A), eltype(B)) C = Vector{T}(undef, size(A,1)) mul!(C, A, B) C end function mul_serial(A::MatTypes, B::VecTypes) T = promote_type(eltype(A), eltype(B)) C = Vector{T}(undef, size(A,1)) mul_serial!(C, A, B) C end function mul(A::StructArray{Complex{T}, 2}, B::StructArray{Complex{T}, 1}) where {T <: Eltypes} C = StructArray{Complex{T}}((Vector{T}(undef, size(A, 1)), Vector{T}(undef, size(A, 1)))) mul!(C, A, B) C end function mul_serial(A::StructArray{Complex{T}, 2}, B::StructArray{Complex{T}, 1}) where {T <: Eltypes} C = StructArray{Complex{T}}((Vector{T}(undef, size(A, 1)), Vector{T}(undef, size(A, 1)))) mul_serial!(C, A, B) C end function mul(A::CoVecTypes, B::MatTypes) T = promote_type(eltype(A), eltype(B)) C = Vector{T}(undef, size(B,2))' mul!(C, A, B) C end function mul_serial(A::CoVecTypes, B::MatTypes) T = promote_type(eltype(A), eltype(B)) C = Vector{T}(undef, size(B,2))' mul_serial!(C, A, B) C end function mul(A::Adjoint{Complex{T}, <:StructArray{Complex{T}, 1}}, B::StructArray{Complex{T}, 2}) where {T <: Eltypes} C = StructArray{Complex{T}}((Vector{T}(undef, size(B, 2)), Vector{T}(undef, size(B, 2))))' mul!(C, A, B) C end function mul_serial(A::Adjoint{Complex{T}, <:StructArray{Complex{T}, 1}}, B::StructArray{Complex{T}, 2}) where {T <: Eltypes} C = StructArray{Complex{T}}((Vector{T}(undef, size(B, 2)), Vector{T}(undef, size(B, 2))))' mul_serial!(C, A, B) C end function mul(A::Transpose{Complex{T}, <:StructArray{Complex{T}, 1}}, B::StructArray{Complex{T}, 2}) where {T <: Eltypes} C = StructArray{Complex{T}}((Vector{T}(undef, size(B, 2)), Vector{T}(undef, size(B, 2)))) |> transpose mul!(C, A, B) C end function mul_serial(A::Transpose{Complex{T}, <:StructArray{Complex{T}, 1}}, B::StructArray{Complex{T}, 2}) where {T <: Eltypes} C = StructArray{Complex{T}}((Vector{T}(undef, size(B, 2)), Vector{T}(undef, size(B, 2)))) |> transpose mul_serial!(C, A, B) C end
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
962
const Eltypes = Union{Float64, Float32, Int64, Int32, Int16} const MatTypesC{T} = Union{Matrix{T}, SubArray{T, 2, <: AbstractArray}, UnsafeArray{T, 2}} # C for Column Major const MatTypesR{T} = Union{Adjoint{T,<:MatTypesC{T}}, Transpose{T,<:MatTypesC{T}}} # R for Row Major const MatTypes{T} = Union{MatTypesC{T}, MatTypesR{T}} const VecTypes{T} = Union{Vector{T}, SubArray{T, 1, <:Array}} const CoVecTypes{T} = Union{Adjoint{T, <:VecTypes{T}}, Transpose{T, <:VecTypes{T}}} abstract type Threading end struct Singlethreaded <: Threading block_size::Int64 end struct Multithreaded <: Threading singlethread_size::Int64 singlethreaded::Singlethreaded end get_block_size(singlethreaded::Singlethreaded) = singlethreaded.block_size get_block_size(multithreaded::Multithreaded) = get_block_size(multithreaded.singlethreaded)
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
2792
# The following variables need to be defined before `include`-ing this file: # `testset_name_suffix` # `sz_values` # `n_values` # `k_values` # `m_values` @time @testset "_mul!: C, A, B $(testset_name_suffix)" begin for sz in sz_values singlethreaded = Gaius.Singlethreaded(sz) multithreaded = Gaius.Multithreaded(2^24, singlethreaded) for threading in [singlethreaded, multithreaded] for n in n_values for k in k_values for m in m_values A = randn(Float64, n, k) B = randn(Float64, k, m) C1 = zeros(Float64, n, m) C2 = zeros(Float64, n, m) Gaius._mul!( threading, C1, A, B) Gaius._mul_add!(threading, C2, A, B, Val(1)) @test A * B ≈ C1 @test A * B ≈ C2 end end end end end end @time @testset "_mul!: C::VecTypes, A::MatTypes, B::VecTypes $(testset_name_suffix)" begin for sz in sz_values singlethreaded = Gaius.Singlethreaded(sz) multithreaded = Gaius.Multithreaded(2^24, singlethreaded) for threading in [singlethreaded, multithreaded] for n in n_values for k in k_values for m in m_values A = randn(Float64, n, k) B = randn(Float64, k) C1 = zeros(Float64, n) C2 = zeros(Float64, n) Gaius._mul!( threading, C1, A, B) Gaius._mul_add!(threading, C2, A, B, Val(1)) @test A * B ≈ C1 @test A * B ≈ C2 end end end end end end @time @testset "_mul!: C::CoVecTypes, A::CoVecTypes, B::MatTypes $(testset_name_suffix)" begin for sz in sz_values singlethreaded = Gaius.Singlethreaded(sz) multithreaded = Gaius.Multithreaded(2^24, singlethreaded) for threading in [singlethreaded, multithreaded] for n in n_values for k in k_values for m in m_values A = adjoint(randn(Float64, n)) B = randn(Float64, n, m) C1 = adjoint(zeros(Float64, m)) C2 = adjoint(zeros(Float64, m)) Gaius._mul!( threading, C1, A, B) Gaius._mul_add!(threading, C2, A, B, Val(1)) @test A * B ≈ C1 @test A * B ≈ C2 end end end end end end
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
12724
# The following variables need to be defined before `include`-ing this file: # `testset_name_suffix` # `n_values_1` # `n_values_2` # `m_values_1` # `m_values_2` # `sz_values` @time @testset "Float64 Matrix-Vector $(testset_name_suffix)" begin for n ∈ n_values_1 for m ∈ m_values_1 u1 = zeros(n) u2 = zeros(n) A = rand(n, m) v = rand(m) @test Gaius.mul!(u1, A, v) ≈ A * v @test Gaius.mul_serial!(u2, A, v) ≈ A * v @test u1 ≈ Gaius.mul(A, v) @test u2 ≈ Gaius.mul(A, v) @test u1 ≈ Gaius.mul_serial(A, v) @test u2 ≈ Gaius.mul_serial(A, v) end end end @time @testset "ComplexF64 Matrix-Vector $(testset_name_suffix)" begin for n ∈ n_values_2 for m ∈ m_values_2 u1 = zeros(ComplexF64, n) |> StructArray u2 = zeros(ComplexF64, n) |> StructArray A = rand(ComplexF64, n, m) |> StructArray v = rand(ComplexF64, m) |> StructArray @test Gaius.mul!(u1, A, v) ≈ collect(A) * collect(v) @test Gaius.mul_serial!(u2, A, v) ≈ collect(A) * collect(v) @test u1 ≈ Gaius.mul(A, v) @test u2 ≈ Gaius.mul(A, v) @test u1 ≈ Gaius.mul_serial(A, v) @test u2 ≈ Gaius.mul_serial(A, v) end end end @time @testset "Float32 Matrix-Vector $(testset_name_suffix)" begin for n ∈ n_values_2 for m ∈ m_values_2 u1 = zeros(Float32, n) u2 = zeros(Float32, n) A = rand(Float32, n, m) v = rand(Float32, m) @test Gaius.mul!(u1, A, v) ≈ A * v @test Gaius.mul_serial!(u2, A, v) ≈ A * v @test u1 ≈ Gaius.mul(A, v) @test u2 ≈ Gaius.mul(A, v) @test u1 ≈ Gaius.mul_serial(A, v) @test u2 ≈ Gaius.mul_serial(A, v) end end end @time @testset "Int64 Matrix-Vector $(testset_name_suffix)" begin for n ∈ n_values_2 for m ∈ m_values_2 u1 = zeros(Int, n) u2 = zeros(Int, n) A = rand(-20:20, n, m) v = rand(-20:20, m) @test Gaius.mul!(u1, A, v) == A * v @test Gaius.mul_serial!(u2, A, v) == A * v @test u1 == Gaius.mul(A, v) @test u2 == Gaius.mul(A, v) @test u1 == Gaius.mul_serial(A, v) @test u2 == Gaius.mul_serial(A, v) end end end @time @testset "ComplexInt32 Matrix-Vector $(testset_name_suffix)" begin for n ∈ n_values_2 for m ∈ m_values_2 u1 = zeros(Complex{Int32}, n) |> StructArray u2 = zeros(Complex{Int32}, n) |> StructArray A = StructArray{Complex{Int32}}((rand(Int32.(-10:10), n, m), rand(Int32.(-10:10), n, m))) v = StructArray{Complex{Int32}}((rand(Int32.(-10:10), m), rand(Int32.(-10:10), m))) @test Gaius.mul!(u1, A, v) == collect(A) * collect(v) @test Gaius.mul_serial!(u2, A, v) == collect(A) * collect(v) @test u1 == Gaius.mul(A, v) @test u2 == Gaius.mul(A, v) @test u1 == Gaius.mul_serial(A, v) @test u2 == Gaius.mul_serial(A, v) end end end @time @testset "Float64 CoVector-Matrix $(testset_name_suffix)" begin for n ∈ n_values_2 for m ∈ m_values_2 u1 = zeros(m) u2 = zeros(m) A = rand(n, m) v = rand(n) @test Gaius.mul!(u1', v', A) ≈ v' * A @test Gaius.mul_serial!(u2', v', A) ≈ v' * A @test u1' ≈ Gaius.mul(v', A) @test u2' ≈ Gaius.mul(v', A) @test u1' ≈ Gaius.mul_serial(v', A) @test u2' ≈ Gaius.mul_serial(v', A) @test Gaius.mul!(transpose(u1), transpose(v), A) ≈ transpose(v) * A @test Gaius.mul_serial!(transpose(u2), transpose(v), A) ≈ transpose(v) * A @test transpose(u1) ≈ Gaius.mul(transpose(v), A) @test transpose(u2) ≈ Gaius.mul(transpose(v), A) @test transpose(u1) ≈ Gaius.mul_serial(transpose(v), A) @test transpose(u2) ≈ Gaius.mul_serial(transpose(v), A) end end end @time @testset "ComplexF32 CoVector-Matrix $(testset_name_suffix)" begin for n ∈ n_values_2 for m ∈ m_values_2 u1 = zeros(Complex{Float32}, m) |> StructArray u2 = zeros(Complex{Float32}, m) |> StructArray A = rand(Complex{Float32}, n, m) |> StructArray v = rand(Complex{Float32}, n) |> StructArray @test Gaius.mul!(u1', v', A) ≈ v' * A @test Gaius.mul_serial!(u2', v', A) ≈ v' * A @test u1' ≈ Gaius.mul(v', A) @test u2' ≈ Gaius.mul(v', A) @test u1' ≈ Gaius.mul_serial(v', A) @test u2' ≈ Gaius.mul_serial(v', A) @test Gaius.mul!(transpose(u1), transpose(v), A) ≈ transpose(v) * A @test Gaius.mul_serial!(transpose(u2), transpose(v), A) ≈ transpose(v) * A @test transpose(u1) ≈ Gaius.mul(transpose(v), A) @test transpose(u2) ≈ Gaius.mul(transpose(v), A) @test transpose(u1) ≈ Gaius.mul_serial(transpose(v), A) @test transpose(u2) ≈ Gaius.mul_serial(transpose(v), A) end end end @time @testset "ComplexFloat64 Matrix-Matrix $(testset_name_suffix)" begin for sz ∈ sz_values n, k, m = (sz .+ rand(-5:5, 3)) @testset "($n × $k) × ($k × $m) $(testset_name_suffix)" begin C0 = StructArray{ComplexF64}((zeros(n, m), zeros(n, m))) C1 = StructArray{ComplexF64}((zeros(n, m), zeros(n, m))) C2 = StructArray{ComplexF64}((zeros(n, m), zeros(n, m))) A = StructArray{ComplexF64}((randn(n, k), randn(n, k))) B = StructArray{ComplexF64}((randn(k, m), randn(k, m))) LinearAlgebra.mul!(C0, A, B) Gaius.mul!(C1, A, B) Gaius.mul_serial!(C2, A, B) @test C0 ≈ C1 @test C0 ≈ C2 @test C1 ≈ C2 @test Gaius.mul_serial(A, B) ≈ C0 end end for sz ∈ sz_values n, k, m = shuffle([sz + rand(-5:5), sz + rand(-5:5), 10]) @testset "($n × $k) × ($k × $m) $(testset_name_suffix)" begin C0 = StructArray{ComplexF64}((zeros(n, m), zeros(n, m))) C1 = StructArray{ComplexF64}((zeros(n, m), zeros(n, m))) C2 = StructArray{ComplexF64}((zeros(n, m), zeros(n, m))) A = StructArray{ComplexF64}((randn(n, k), randn(n, k))) B = StructArray{ComplexF64}((randn(k, m), randn(k, m))) LinearAlgebra.mul!(C0, A, B) Gaius.mul!(C1, A, B) Gaius.mul_serial!(C2, A, B) @test C0 ≈ C1 @test C0 ≈ C2 @test C1 ≈ C2 @test Gaius.mul_serial(A, B) ≈ C0 @test Gaius.mul(A, B) ≈ C0 end end end @time @testset "Float64 Matrix-Matrix $(testset_name_suffix)" begin for sz ∈ sz_values n, k, m = (sz .+ rand(-5:5, 3)) @testset "($n × $k) × ($k × $m) $(testset_name_suffix)" begin C0 = zeros(n, m) C1 = zeros(n, m) C2 = zeros(n, m) A = randn(n, k) B = randn(k, m) At = copy(A') Bt = copy(B') LinearAlgebra.mul!(C0, A, B) Gaius.mul!(C1, A, B) Gaius.mul_serial!(C2, A, B) @test C0 ≈ C1 @test C0 ≈ C2 @test C1 ≈ C2 @test Gaius.mul_serial(A, B) ≈ C0 fill!(C1, NaN); @test Gaius.mul!(C1, At', B) ≈ C0 fill!(C1, NaN); @test Gaius.mul!(C1, A, Bt') ≈ C0 fill!(C1, NaN); @test Gaius.mul!(C1, At', Bt') ≈ C0 fill!(C2, NaN); @test Gaius.mul_serial!(C2, At', B) ≈ C0 fill!(C2, NaN); @test Gaius.mul_serial!(C2, A, Bt') ≈ C0 fill!(C2, NaN); @test Gaius.mul_serial!(C2, At', Bt') ≈ C0 end end for sz ∈ sz_values n, k, m = shuffle([sz + rand(-5:5), sz + rand(-5:5), 10]) @testset "($n × $k) × ($k × $m) $(testset_name_suffix)" begin C0 = zeros(n, m) C1 = zeros(n, m) C2 = zeros(n, m) A = randn(n, k) B = randn(k, m) At = copy(A') Bt = copy(B') LinearAlgebra.mul!(C0, A, B) Gaius.mul!(C1, A, B) Gaius.mul_serial!(C2, A, B) @test C0 ≈ C1 @test C0 ≈ C2 @test C1 ≈ C2 @test Gaius.mul_serial(A, B) ≈ C0 fill!(C1, NaN); @test Gaius.mul!(C1, At', B) ≈ C0 fill!(C1, NaN); @test Gaius.mul!(C1, A, Bt') ≈ C0 fill!(C1, NaN); @test Gaius.mul!(C1, At', Bt') ≈ C0 fill!(C2, NaN); @test Gaius.mul_serial!(C2, At', B) ≈ C0 fill!(C2, NaN); @test Gaius.mul_serial!(C2, A, Bt') ≈ C0 fill!(C2, NaN); @test Gaius.mul_serial!(C2, At', Bt') ≈ C0 end end end @time @testset "Float32 Matrix-Matrix $(testset_name_suffix)" begin for sz ∈ sz_values n, k, m = (sz .+ rand(-5:5, 3)) @testset "($n × $k) × ($k × $m) $(testset_name_suffix)" begin C0 = zeros(Float32, n, m) C1 = zeros(Float32, n, m) C2 = zeros(Float32, n, m) A = randn(Float32, n, k) B = randn(Float32, k, m) At = copy(A') Bt = copy(B') LinearAlgebra.mul!(C0, A, B) Gaius.mul!(C1, A, B) Gaius.mul_serial!(C2, A, B) @test C0 ≈ C1 @test C0 ≈ C2 @test C1 ≈ C2 @test Gaius.mul_serial(A, B) ≈ C0 fill!(C1, NaN32); @test Gaius.mul!(C1, At', B) ≈ C0 fill!(C1, NaN32); @test Gaius.mul!(C1, A, Bt') ≈ C0 fill!(C1, NaN32); @test Gaius.mul!(C1, At', Bt') ≈ C0 fill!(C2, NaN32); @test Gaius.mul_serial!(C2, At', B) ≈ C0 fill!(C2, NaN32); @test Gaius.mul_serial!(C2, A, Bt') ≈ C0 fill!(C2, NaN32); @test Gaius.mul_serial!(C2, At', Bt') ≈ C0 end end end @time @testset "Int64 Matrix-Matrix $(testset_name_suffix)" begin for sz ∈ sz_values n, k, m = (sz .+ rand(-5:5, 3)) @testset "($n × $k) × ($k × $m) $(testset_name_suffix)" begin C0 = zeros(Int64, n, m) C1 = zeros(Int64, n, m) C2 = zeros(Int64, n, m) A = rand(Int64.(-100:100), n, k) B = rand(Int64.(-100:100), k, m) At = copy(A') Bt = copy(B') LinearAlgebra.mul!(C0, A, B) Gaius.mul!(C1, A, B) Gaius.mul_serial!(C2, A, B) @test C0 == C1 @test C0 == C2 @test C1 == C2 @test Gaius.mul_serial(A, B) == C0 fill!(C1, typemax(Int64)); @test Gaius.mul!(C1, At', B) == C0 fill!(C1, typemax(Int64)); @test Gaius.mul!(C1, A, Bt') == C0 fill!(C1, typemax(Int64)); @test Gaius.mul!(C1, At', Bt') == C0 fill!(C2, typemax(Int64)); @test Gaius.mul_serial!(C2, At', B) == C0 fill!(C2, typemax(Int64)); @test Gaius.mul_serial!(C2, A, Bt') == C0 fill!(C2, typemax(Int64)); @test Gaius.mul_serial!(C2, At', Bt') == C0 @test Gaius.mul(A, B) == C0 @test Gaius.mul(At', B) == C0 @test Gaius.mul(A, Bt') == C0 @test Gaius.mul(At', Bt') == C0 end end end @time @testset "Int32 Matrix-Matrix $(testset_name_suffix)" begin for sz ∈ sz_values n, k, m = (sz .+ rand(-5:5, 3)) @testset "($n × $k) × ($k × $m) $(testset_name_suffix)" begin C0 = zeros(Int32, n, m) C1 = zeros(Int32, n, m) C2 = zeros(Int32, n, m) A = rand(Int32.(-100:100), n, k) B = rand(Int32.(-100:100), k, m) At = copy(A') Bt = copy(B') LinearAlgebra.mul!(C0, A, B) Gaius.mul!(C1, A, B) Gaius.mul_serial!(C2, A, B) @test C0 == C1 @test C0 == C2 @test C1 == C2 @test Gaius.mul_serial(A, B) == C0 fill!(C1, typemax(Int32)); @test Gaius.mul!(C1, At', B) == C0 fill!(C1, typemax(Int32)); @test Gaius.mul!(C1, A, Bt') == C0 fill!(C1, typemax(Int32)); @test Gaius.mul!(C1, At', Bt') == C0 fill!(C2, typemax(Int32)); @test Gaius.mul_serial!(C2, At', B) == C0 fill!(C2, typemax(Int32)); @test Gaius.mul_serial!(C2, A, Bt') == C0 fill!(C2, typemax(Int32)); @test Gaius.mul_serial!(C2, At', Bt') == C0 end end end
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
494
@time @testset "block_operations" begin multithreaded = Gaius.Multithreaded(0, Gaius.Singlethreaded(1)) @testset begin A = [1 2; 3 4] B = [5 6; 7 8] C = Matrix{Int}(undef, 2, 2) Gaius.block_covec_vec_mul!(multithreaded, C, A, B) @test C == A * B end @testset begin A = [1 2; 3 4] B = [5, 6] C = Vector{Int}(undef, 2) Gaius.block_covec_vec_mul!(multithreaded, C, A, B) @test C == A * B end end
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
2343
@testset "init" begin @testset "_print_num_threads_warning" begin withenv("SUPPRESS_GAIUS_WARNING" => "false") do @test_logs (:warn, "The system has 16 cores. However, Julia was started with 1 thread. We recommend starting Julia with at least 16 threads to take advantage of Gaius's multithreading algorithms. To suppress this warning, set the environment variable SUPPRESS_GAIUS_WARNING=true") match_mode=:any Gaius._print_num_threads_warning(16, 1) end end @testset "_string_to_bool" begin @test !Gaius._string_to_bool("") @test !Gaius._string_to_bool("foobarbaz") @test !Gaius._string_to_bool("false") @test !Gaius._string_to_bool("0") @test Gaius._string_to_bool("true") @test Gaius._string_to_bool("1") end @testset "_is_suppress_warning" begin withenv("SUPPRESS_GAIUS_WARNING" => nothing) do @test !Gaius._is_suppress_warning() end withenv("SUPPRESS_GAIUS_WARNING" => "") do @test !Gaius._is_suppress_warning() end withenv("SUPPRESS_GAIUS_WARNING" => "false") do @test !Gaius._is_suppress_warning() end withenv("SUPPRESS_GAIUS_WARNING" => "0") do @test !Gaius._is_suppress_warning() end withenv("SUPPRESS_GAIUS_WARNING" => "true") do @test Gaius._is_suppress_warning() end withenv("SUPPRESS_GAIUS_WARNING" => "1") do @test Gaius._is_suppress_warning() end end @testset "_pluralize" begin @test Gaius._pluralize("foo", "bar", 0) == "bar" @test Gaius._pluralize("foo", "bar", 1) == "foo" @test Gaius._pluralize("foo", "bar", 2) == "bar" @test Gaius._pluralize("foo", "bar", 3) == "bar" end @testset "_pluralize_threads" begin @test Gaius._pluralize_threads(0) == "0 threads" @test Gaius._pluralize_threads(1) == "1 thread" @test Gaius._pluralize_threads(2) == "2 threads" @test Gaius._pluralize_threads(3) == "3 threads" end @testset "_pluralize_cores" begin @test Gaius._pluralize_cores(0) == "0 cores" @test Gaius._pluralize_cores(1) == "1 core" @test Gaius._pluralize_cores(2) == "2 cores" @test Gaius._pluralize_cores(3) == "3 cores" end end
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
1111
@time @testset "kernels" begin @testset begin A = [1 2; 3 4] B = [5 6; 7 8] C1 = zeros(Int, 2, 2) C2 = zeros(Int, 2, 2) Gaius.add_gemm_kernel!(C1, A, B, Val(1)) LinearAlgebra.mul!(C2, A, B) @test C1 == C2 end @testset begin A = [1 2; 3 4] v = [5; 6] u1 = zeros(Int, 2) u2 = zeros(Int, 2) Gaius.add_gemm_kernel!(u1, A, v) LinearAlgebra.mul!(u2, A, v) @test u1 == u2 end @testset begin v = adjoint([5; 6]) A = [1 2; 3 4] u1 = adjoint(zeros(Int, 2)) u2 = adjoint(zeros(Int, 2)) Gaius.add_gemm_kernel!(u1, v, A) LinearAlgebra.mul!(u2, v, A) @test u1 == u2 end @testset begin A = [1 2; 3 4] B = [5 6; 7 8] C = zeros(Int, 2, 2) Gaius.add_gemm_kernel!(C, A, B, Val(1)) @test C == A * B end @testset begin A = [1 2; 3 4] B = [5 6; 7 8] C = zeros(Int, 2, 2) Gaius.add_gemm_kernel!(C, A, B, Val(3)) @test C == 3 * A * B end end
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
132
sz_values = [1] n_values = [1, 9] k_values = [1, 9] m_values = [1, 9] testset_name_suffix = "(coverage)" include("_matmul.jl")
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
128
sz_values = [1] n_values = [1, 9] k_values = [1, 9] m_values = [1, 9] testset_name_suffix = "(main)" include("_matmul.jl")
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
158
n_values_1 = [200] n_values_2 = [200] m_values_1 = [200] m_values_2 = [200] sz_values = [210] testset_name_suffix = "(coverage)" include("_public_mul.jl")
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
230
n_values_1 = [10, 100, 500, 10000] n_values_2 = [10, 100, 500, 2000] m_values_1 = [10, 100, 10000] m_values_2 = [10, 100, 2000] sz_values = [10, 50, 100, 200, 400, 1000] testset_name_suffix = "(main)" include("_public_mul.jl")
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
591
import Gaius import BenchmarkTools import InteractiveUtils import LinearAlgebra import Random import StructArrays import Test import VectorizationBase using Random: shuffle using StructArrays: StructArray using Test: @testset, @test, @test_logs, @test_throws include("test_suite_preamble.jl") @info("VectorizationBase.num_cores() is $(VectorizationBase.num_cores())") include("block_operations.jl") include("public_mul_coverage.jl") include("init.jl") include("kernels.jl") include("matmul_coverage.jl") if !coverage include("public_mul_main.jl") include("matmul_main.jl") end
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
code
285
using InteractiveUtils: versioninfo versioninfo() @info("Running tests with $(Threads.nthreads()) threads") function is_coverage() return !iszero(Base.JLOptions().code_coverage) end const coverage = is_coverage() @info("Code coverage is $(coverage ? "enabled" : "disabled")")
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
0.6.8
643b22c7e5461b89beee5a88bea666eddeae2585
docs
9196
# Gaius.jl *Because Caesar.jl was taken* [![Continuous Integration][ci-img]][ci-url] [![Continuous Integration (Julia nightly)][ci-julia-nightly-img]][ci-julia-nightly-url] [![Code Coverage][codecov-img]][codecov-url] [ci-url]: https://github.com/MasonProtter/Gaius.jl/actions?query=workflow%3ACI [ci-julia-nightly-url]: https://github.com/MasonProtter/Gaius.jl/actions?query=workflow%3A%22CI+%28Julia+nightly%29%22 [codecov-url]: https://codecov.io/gh/MasonProtter/Gaius.jl [ci-img]: https://github.com/MasonProtter/Gaius.jl/workflows/CI/badge.svg "Continuous Integration" [ci-julia-nightly-img]: https://github.com/MasonProtter/Gaius.jl/workflows/CI%20(Julia%20nightly)/badge.svg "Continuous Integration (Julia nightly)" [codecov-img]: https://codecov.io/gh/MasonProtter/Gaius.jl/branch/master/graph/badge.svg "Code Coverage" Gaius.jl is a multi-threaded BLAS-like library using a divide-and-conquer strategy to parallelism, and built on top of the **fantastic** [LoopVectorization.jl](https://github.com/chriselrod/LoopVectorization.jl). Gaius spawns threads using Julia's depth first parallel task runtime and so Gaius's routines may be fearlessly nested inside multi-threaded Julia programs. Gaius is *not* stable or well tested. Only use it if you're adventurous. Note: Gaius is not actively maintained and I do not anticipate doing further work on it. However, you may find it useful as a relatively simple playground for learning about the implementation of linear algebra routines. There are other, more promising projects that may result in a scalable, multi-threaded pure Julia BLAS library such as: 1. [Tullio.jl](https://github.com/mcabbott/Tullio.jl) 2. [Octavian.jl](https://github.com/JuliaLinearAlgebra/Octavian.jl) In general: - Octavian is the most performant. - Tullio is the most flexible. ## Quick Start ```julia julia> using Gaius julia> Gaius.mul!(C, A, B) # (multi-threaded) multiply A×B and store the result in C (overwriting the contents of C) julia> Gaius.mul(A, B) # (multi-threaded) multiply A×B and return the result julia> Gaius.mul_serial!(C, A, B) # (single-threaded) multiply A×B and store the result in C (overwriting the contents of C) julia> Gaius.mul_serial(A, B) # (single-threaded) multiply A×B and return the result ``` Remember to start Julia with multiple threads with e.g. one of the following: - `julia -t auto` - `julia -t 4` - Set the `JULIA_NUM_THREADS` environment variable to `4` **before** starting Julia The functions in this list are part of the public API of Gaius: - `Gaius.mul!` - `Gaius.mul` - `Gaius.mul_serial!` - `Gaius.mul_serial` All other functions are internal (private). ## Matrix Multiplication Currently, fast, native matrix-multiplication is only implemented between matrices of types `Matrix{<:Union{Float64, Float32, Int64, Int32, Int16}}`, and `StructArray{Complex}`. Support for other other commonly encountered numeric `struct` types such as `Rational` and `Dual` numbers is planned. ### Using Gaius <details> <summary>Click to expand:</summary> Gaius defines the public functions `Gaius.mul` and `Gaius.mul!`. `Gaius.mul` is to be used like the regular `*` operator between two matrices whereas `Gaius.mul!` takes in three matrices `C, A, B` and stores `A*B` in `C` overwriting the contents of `C`. The functions `Gaius.mul` and `Gaius.mul!` use multithreading. If you want to run the single-threaded variants, use `Gais.mul_serial` and `Gaius.mul_serial!` respectively. ```julia julia> using Gaius, BenchmarkTools, LinearAlgebra julia> A, B, C = rand(104, 104), rand(104, 104), zeros(104, 104); julia> @btime mul!($C, $A, $B); # from LinearAlgebra 68.529 μs (0 allocations: 0 bytes) julia> @btime mul!($C, $A, $B); #from Gaius 31.220 μs (80 allocations: 10.20 KiB) ``` ```julia julia> using Gaius, BenchmarkTools julia> A, B = rand(104, 104), rand(104, 104); julia> @btime $A * $B; 68.949 μs (2 allocations: 84.58 KiB) julia> @btime let * = Gaius.mul # Locally use Gaius.mul as * operator. $A * $B end; 32.950 μs (82 allocations: 94.78 KiB) julia> versioninfo() Julia Version 1.4.0-rc2.0 Commit b99ed72c95* (2020-02-24 16:51 UTC) Platform Info: OS: Linux (x86_64-pc-linux-gnu) CPU: AMD Ryzen 5 2600 Six-Core Processor WORD_SIZE: 64 LIBM: libopenlibm LLVM: libLLVM-8.0.1 (ORCJIT, znver1) Environment: JULIA_NUM_THREADS = 6 ``` Multi-threading in Gaius works by recursively splitting matrices into sub-blocks to operate on. You can change the matrix sub-block size by calling `mul!` with the `block_size` keyword argument. If left unspecified, Gaius will use a (very rough) heuristic to choose a good block size based on the size of the input matrices. The size heuristics I use are likely not yet optimal for everyone's machines. </details> ### Complex Numbers <details> <summary>Click to expand:</summary> Gaius supports the multiplication of matrices of complex numbers, but they must first by converted explicity to structs of arrays using StructArrays.jl (otherwise the multiplication will be done by OpenBLAS): ```julia julia> using Gaius, StructArrays julia> begin n = 150 A = randn(ComplexF64, n, n) B = randn(ComplexF64, n, n) C = zeros(ComplexF64, n, n) SA = StructArray(A) SB = StructArray(B) SC = StructArray(C) @btime mul!($SC, $SA, $SB) @btime mul!($C, $A, $B) SC ≈ C end 515.587 μs (80 allocations: 10.53 KiB) 546.481 μs (0 allocations: 0 bytes) true ``` </details> ### Benchmarks #### Floating Point Performance <details> <summary>Click to expand:</summary> The following benchmarks were run on this ```julia julia> versioninfo() Julia Version 1.4.0-rc2.0 Commit b99ed72c95* (2020-02-24 16:51 UTC) Platform Info: OS: Linux (x86_64-pc-linux-gnu) CPU: AMD Ryzen 5 2600 Six-Core Processor WORD_SIZE: 64 LIBM: libopenlibm LLVM: libLLVM-8.0.1 (ORCJIT, znver1) Environment: JULIA_NUM_THREADS = 6 ``` and compared to [OpenBLAS](https://github.com/xianyi/OpenBLAS) running with `6` threads (`BLAS.set_num_threads(6)`). I would be keenly interested in seeing analogous benchmarks on a machine with an AVX512 instruction set and/or [Intel's MKL](https://software.intel.com/en-us/mkl). ![Float64 Matrix Multiplication](assets/F64_mul.png "Float64 Matrix Multiplication") ![Float32 Matrix Multiplication](assets/F32_mul.png "Float32 Matrix Multiplication") *Note that these are log-log plots.* Gaius outperforms [OpenBLAS](https://github.com/xianyi/OpenBLAS) over a large range of matrix sizes, but does begin to appreciably fall behind around `800 x 800` matrices for `Float64` and `650 x 650` matrices for `Float32`. I believe there is a large amount of performance left on the table in Gaius and I look forward to beating OpenBLAS for more matrix sizes. </details> #### Complex Floating Point Performance <details> <summary>Click to expand:</summary> Here is Gaius operating on `Complex{Float64}` structs-of-arrays competeing relatively evenly against OpenBLAS operating on `Complex{Float64}` arrays-of-structs: ![Complex{Float64} Matrix Multiplication](assets/C64_mul.png "Complex{Float64} Matrix Multiplication") I think with some work, we can do much better. </details> #### Integer Performance <details> <summary>Click to expand:</summary> These benchmarks compare Gaius (on the same machine as above) and compare against Julia's generic matrix multiplication implementation (OpenBLAS does not provide integer mat-mul) which is not multi-threaded. ![Int64 Matrix Multiplication](assets/I64_mul.png "Int64 Matrix Multiplication") ![Int32 Matrix Multiplication](assets/I32_mul.png "Int32 Matrix Multiplication") *Note that these are log-log plots.* Benchmarks performed on a machine with the AVX512 instruction set show an [even greater performance gain](https://github.com/chriselrod/LoopVectorization.jl). If you find yourself in a high performance situation where you want to multiply matrices of integers, I think this provides a compelling use-case for Gaius since it will outperform it's competition at *any* matrix size and for large matrices will benefit from multi-threading. </details> ## Other BLAS Routines I have not yet worked on implementing other standard BLAS routines with this strategy, but doing so should be relatively straightforward. ## Safety *If you must break the law, do it to seize power; in all other cases observe it.* -Gaius Julius Caesar If you use only the functions `Gaius.mul!`, `Gaius.mul`, `Gaius.mul_serial!`, and `Gaius.mul_serial`, automatic array size-checking will occur before the matrix multiplication begins. This can be turned off in `mul!` by calling `Gaius.mul!(C, A, B; sizecheck=false)`, in which case no sizechecks will occur on the arrays before the matrix multiplication occurs and all sorts of bad, segfaulty things can happen. All other functions in this package are to be considered *internal* and should not be expected to check for safety or obey the law. The functions `Gaius.gemm_kernel!` and `Gaius.add_gemm_kernel!` may be of utility, but be warned that they do not check array sizes.
Gaius
https://github.com/MasonProtter/Gaius.jl.git
[ "MIT" ]
1.0.0
596e5adf3856e082d37f4a8ae8de8f56a3a3ce22
code
1430
__precompile__(true) """ Support for Character Sets, Encodings, and Character Set Encodings Copyright 2017-2018 Gandalf Software, Inc., Scott P. Jones Licensed under MIT License, see LICENSE.md """ module CharSetEncodings using ModuleInterfaceTools @api extend! StrAPI # Define symbols used for characters, codesets, codepoints const cse_info = ((:Binary, UInt8), # really, no character set at all, not text (:Text1, UInt8), # Unknown character set, 1 byte (:ASCII, UInt8), # (7-bit subset of Unicode) (:Latin, UInt8), # ISO-8859-1 (8-bit subset of Unicode) (:_Latin, UInt8), # Latin subset of Unicode (0-0xff) (:UTF8, UInt8, :UTF32), # Validated UTF-8 (:RawUTF8, UInt8, :UniPlus), # Unvalidated UTF-8 (:Text2, UInt16), # Unknown character set, 2 byte (:UCS2, UInt16), # BMP (16-bit subset of Unicode) (:_UCS2, UInt16), # UCS-2 Subset of Unicode (0-0xd7ff, 0xe000-0xffff) (:UTF16, UInt16, :UTF32), # Validated UTF-16 (:RawUTF16, UInt16, :UniPlus), # Unvalidated UTF-16 (:Text4, UInt32), # Unknown character set, 4 byte (:UTF32, UInt32), # corresponding to codepoints (0-0xd7ff, 0xe000-0x10fff) (:_UTF32, UInt32)) # Full validated UTF-32 @api develop cse_info include("charsets.jl") include("encodings.jl") include("cses.jl") include("traits.jl") @api freeze end # module CharSetEncodings
CharSetEncodings
https://github.com/JuliaString/CharSetEncodings.jl.git
[ "MIT" ]
1.0.0
596e5adf3856e082d37f4a8ae8de8f56a3a3ce22
code
1066
# Character Sets # # Copyright 2017-2018 Gandalf Software, Inc., Scott P. Jones # Licensed under MIT License, see LICENSE.md @api public CharSet, UniPlusCharSet @api develop charset_types struct CharSet{CS} end """List of installed character sets""" const charset_types = [] CharSet(s) = CharSet{Symbol(s)}() # List of basic character sets show(io::IO, ::Type{CharSet{S}}) where {S} = print(io, "CharSet{:$S}") const UniPlusCharSet = CharSet{:UniPlus} push!(charset_types, UniPlusCharSet) for lst in cse_info length(lst) > 2 && continue nam = lst[1] csnam = symstr(nam, "CharSet") @eval const $csnam = CharSet{$(quotesym(nam))} @eval show(io::IO, ::Type{$csnam}) = print(io, $(string(csnam))) @eval push!(charset_types, $csnam) @eval @api $(String(nam)[1] == '_' ? :develop : :public) $csnam end # Handle a few quirks charset(::Type{<:AbstractChar}) = UTF32CharSet charset(::Type{UInt8}) = BinaryCharSet # UInt8 instead of "BinaryChr" charset(::Type{Char}) = UniPlusCharSet # Char instead of "UniPlusChr"
CharSetEncodings
https://github.com/JuliaString/CharSetEncodings.jl.git
[ "MIT" ]
1.0.0
596e5adf3856e082d37f4a8ae8de8f56a3a3ce22
code
3775
# Character Set Encoding support # # Copyright 2017-2018 Gandalf Software, Inc., Scott P. Jones # Licensed under MIT License, see LICENSE.md @api public CSE, "@cse" @api public! basecse @api develop cse_types struct CSE{CS, ENC} end """List of installed character set encodings""" const cse_types = [] CSE(cs, e) = CSE{CharSet(cs), Encoding(e)}() macro cse(cs, e) :(CSE{CharSet{$(quotesym(cs)), $(quotesym(e))}()}) end const _CSE{U} = Union{CharSet{U}, Encoding{U}} where {U} print(io::IO, ::S) where {S<:_CSE{U}} where {U} = print(io, U) show(io::IO, ::Type{CSE{CS,E}}) where {S,T,CS<:CharSet{S},E<:Encoding{T}} = print(io, "CSE{", string(S), ", ", string(T), "}") print(io::IO, ::T) where {S,U,CS<:CharSet{S},E<:Encoding{U},T<:CSE{CS,E}} = (show(io, T); print(io, "()")) # Definition of built-in CSEs (Character Set Encodings) codeunit(::Type{<:CSE}) = UInt8 basecse(::Type{C}) where {C<:CSE} = C for lst in cse_info nam, cu = lst cse = symstr(nam, "CSE") if length(lst) > 2 csnam = symstr(lst[3], "CharSet") enc = cu === UInt8 ? :UTF8Encoding : :NativeUTF16 else csnam = symstr(nam, "CharSet") enc = cu === UInt8 ? :Native1Byte : cu === UInt16 ? :Native2Byte : :Native4Byte end @eval const $(symstr(nam, "CSE")) = CSE{$csnam, $enc} @eval show(io::IO, ::Type{$cse}) = print(io, $(String(cse))) cu === UInt8 || (@eval codeunit(::Type{$cse}) = $cu) @eval push!(cse_types, $cse) if String(nam)[1] == '_' @eval basecse(::Type{$cse}) = $(symstr(String(nam)[2:end], "CSE")) @eval @api develop $cse else @eval @api public $cse end end # Various useful groups of character set types # These should be done via traits const Binary_CSEs = Union{Text1CSE, BinaryCSE} const Latin_CSEs = Union{LatinCSE, _LatinCSE} const UTF8_CSEs = Union{UTF8CSE, RawUTF8CSE} const UCS2_CSEs = Union{UCS2CSE, _UCS2CSE} const UTF32_CSEs = Union{UTF32CSE, _UTF32CSE} const SubSet_CSEs = Union{_LatinCSE, _UCS2CSE, _UTF32CSE} const Byte_CSEs = Union{ASCIICSE, Binary_CSEs, Latin_CSEs, UTF8_CSEs} # 8-bit code units const Word_CSEs = Union{Text2CSE, UCS2CSE, _UCS2CSE, UTF16CSE} # 16-bit code units const Quad_CSEs = Union{Text4CSE, UTF32CSE, _UTF32CSE} # 32-bit code units @api develop Binary_CSEs, Latin_CSEs, UTF8_CSEs, UCS2_CSEs, UTF32_CSEs, SubSet_CSEs, Byte_CSEs, Word_CSEs, Quad_CSEs cse(::Type{<:AbstractString}) = RawUTF8CSE # allows invalid sequences cse(::Type{<:SubString{T}}) where {T} = basecse(T) cse(::T) where {T<:AbstractString} = cse(T) basecse(::Type{T}) where {T<:AbstractString} = basecse(cse(T)) basecse(::T) where {T<:AbstractString} = basecse(cse(T)) # Get charset based on CSE charset(::Type{<:CSE{CS}}) where {CS<:CharSet} = CS charset(::Type{T}) where {T<:AbstractString} = charset(cse(T)) charset(::T) where {T<:AbstractString} = charset(cse(T)) # Get encoding based on CSE encoding(::Type{<:CSE{CS,E}}) where {CS<:CharSet,E<:Encoding} = E # Promotion rules for character set encodings promote_rule(::Type{Text2CSE}, ::Type{Text1CSE}) = Text2CSE promote_rule(::Type{Text4CSE}, ::Type{Text1CSE}) = Text4CSE promote_rule(::Type{Text4CSE}, ::Type{Text2CSE}) = Text4CSE promote_rule(::Type{T}, ::Type{ASCIICSE}) where {T<:CSE} = T promote_rule(::Type{T}, ::Type{<:Latin_CSEs} ) where {T<:Union{UTF8CSE,UTF16CSE,UCS2_CSEs,UTF32_CSEs}} = T promote_rule(::Type{T}, ::Type{_LatinCSE}) where {T<:Union{ASCIICSE,LatinCSE}} = LatinCSE promote_rule(::Type{T}, ::Type{_UCS2CSE}) where {T<:Union{ASCIICSE,Latin_CSEs,UCS2CSE}} = UCS2CSE promote_rule(::Type{T}, ::Type{_UTF32CSE}) where {T<:CSE} = UTF32CSE promote_rule(::Type{T}, ::Type{UTF32CSE}) where {T<:UCS2_CSEs} = UTF32CSE
CharSetEncodings
https://github.com/JuliaString/CharSetEncodings.jl.git
[ "MIT" ]
1.0.0
596e5adf3856e082d37f4a8ae8de8f56a3a3ce22
code
1451
# Encoding support # # Copyright 2017-2018 Gandalf Software, Inc., Scott P. Jones # Licensed under MIT License, see LICENSE.md # # Encodings inspired from collaboration with @nalimilan (Milan Bouchet-Valat) on # [StringEncodings](https://github.com/nalimilan/StringEncodings.jl) @api public Encoding, Native1Byte, UTF8Encoding @api develop encoding_types struct Encoding{Enc} end """List of installed encodings""" const encoding_types = [] Encoding(s) = Encoding{Symbol(s)}() const Native1Byte = Encoding{:Byte} const UTF8Encoding = Encoding{:UTF8} push!(encoding_types, Native1Byte, UTF8Encoding) # Allow handling different endian encodings for (n, l, b, s) in (("2Byte", :LE2, :BE2, "16-bit"), ("4Byte", :LE4, :BE4, "32-bit"), ("UTF16", :UTF16LE, :UTF16BE, "UTF-16")) nat, swp = BIG_ENDIAN ? (b, l) : (l, b) natnam = symstr("Native", n) swpnam = symstr("Swapped", n) @eval const $natnam = Encoding{$(quotesym("N", n))} @eval const $swpnam = Encoding{$(quotesym("S", n))} @eval const $nat = $natnam @eval const $swp = $swpnam @eval push!(encoding_types, $natnam, $swpnam) @eval @api public $natnam, $swpnam end show(io::IO, ::Type{Encoding{S}}) where {S} = print(io, "Encoding{:", string(S), "}") encoding(::Type{T}) where {T<:AbstractString} = encoding(cse(T)) # Default unless overridden encoding(str::AbstractString) = encoding(cse(str))
CharSetEncodings
https://github.com/JuliaString/CharSetEncodings.jl.git
[ "MIT" ]
1.0.0
596e5adf3856e082d37f4a8ae8de8f56a3a3ce22
code
3182
# Copyright 2017-2018 Gandalf Software, Inc. (Scott Paul Jones) # Licensed under MIT License, see LICENSE.md EncodingStyle(::Type{<:Union{UTF8_CSEs,UTF16CSE}}) = MultiCodeUnitEncoding() EncodingStyle(::Type{<:CSE}) = SingleCodeUnitEncoding() EncodingStyle(v::AbstractString) = EncodingStyle(typeof(v)) EncodingStyle(::Type{T}) where {T<:AbstractString} = EncodingStyle(cse(T)) EncodingStyle(::Type{<:SubString{T}}) where {T<:AbstractString} = EncodingStyle(T) ################################################################################ CharSetStyle(::Type{<:CSE}) = CharSetUnicodePlus() CharSetStyle(::Type{<:Union{Text1CSE, Text2CSE, Text4CSE}}) = CharSetUnknown() CharSetStyle(::Type{BinaryCSE}) = CharSetBinary() CharSetStyle(::Type{ASCIICSE}) = CharSetASCIICompat() CharSetStyle(::Type{<:Latin_CSEs}) = CharSetISOCompat() CharSetStyle(::Type{<:UCS2_CSEs}) = CharSetBMPCompat() CharSetStyle(::Type{<:AbstractString}) = CharSetUnicodePlus() CharSetStyle(::Type{<:AbstractChar}) = CharSetUnicode() CharSetStyle(::Type{Char}) = CharSetUnicodePlus() # Encodes invalid characters also CharSetStyle(::Type{UInt8}) = CharSetBinary() CharSetStyle(::Type{UInt16}) = CharSetUnknown() CharSetStyle(::Type{UInt32}) = CharSetUnknown() CharSetStyle(::T) where {T<:AbstractString} = CharSetStyle(cse(T)) CharSetStyle(::T) where {T<:AbstractChar} = CharSetStyle(T) ################################################################################ CompareStyle(::Type{<:CSE}, ::Type{<:CSE}) = CodePointCompare() CompareStyle(::Type{C}, ::Type{C}) where {C<:CSE} = ByteCompare() CompareStyle(::Type{C}, ::Type{C}) where {C<:Union{Word_CSEs,Quad_CSEs}} = WordCompare() # This is important because of invalid sequences CompareStyle(::Type{C}, ::Type{C}) where {C<:RawUTF8CSE} = CodePointCompare() CompareStyle(::Type{UTF16CSE}, ::Type{UTF16CSE}) = UTF16Compare() CompareStyle(::Type{UTF16CSE}, ::Type{<:UCS2_CSEs}) = UTF16Compare() CompareStyle(::Type{<:UCS2_CSEs}, ::Type{UTF16CSE}) = UTF16Compare() CompareStyle(::Type{ASCIICSE}, ::Type{<:Union{Binary_CSEs,Latin_CSEs,UTF8_CSEs}}) = ByteCompare() CompareStyle(::Type{ASCIICSE}, ::Type{<:Union{Word_CSEs,Quad_CSEs}}) = WidenCompare() CompareStyle(::Type{<:Latin_CSEs}, ::Type{<:Latin_CSEs}) = ByteCompare() CompareStyle(::Type{<:Latin_CSEs}, ::Type{UTF8_CSEs}) = ASCIICompare() CompareStyle(::Type{<:Latin_CSEs}, ::Type{<:Union{Word_CSEs,Quad_CSEs}}) = WidenCompare() CompareStyle(::Type{<:UCS2_CSEs}, ::Type{<:Union{ASCIICSE,Binary_CSEs,Latin_CSEs,Quad_CSEs}}) = WidenCompare() CompareStyle(::Type{<:UCS2_CSEs}, ::Type{<:UCS2_CSEs}) = WordCompare() CompareStyle(::Type{<:UTF32_CSEs}, ::Type{<:Union{ASCIICSE,Binary_CSEs,Latin_CSEs,Text2CSE,UCS2_CSEs}}) = WidenCompare() CompareStyle(::Type{<:UTF32_CSEs}, ::Type{<:UTF32_CSEs}) = WordCompare() CompareStyle(::Type{S}, ::Type{T}) where {S<:AbstractString, T<:AbstractString} = CompareStyle(cse(S), cse(T)) CompareStyle(::Type{T}, ::Type{T}) where {T<:AbstractString} = ByteCompare() CompareStyle(A::AbstractString, B::AbstractString) = CompareStyle(typeof(A), typeof(B))
CharSetEncodings
https://github.com/JuliaString/CharSetEncodings.jl.git
[ "MIT" ]
1.0.0
596e5adf3856e082d37f4a8ae8de8f56a3a3ce22
code
627
# License is MIT: LICENSE.md using ModuleInterfaceTools @api test CharSetEncodings @testset "CharSet" begin for CS in charset_types @test CS <: CharSet nam = sprint(show, CS) @test endswith(nam, "CharSet") || startswith(nam, "CharSet{:") end end @testset "Encoding" begin for E in encoding_types @test E <: Encoding end end @testset "Character Set Encodings" begin for CS in cse_types @test CS <: CSE @test charset(CS) <: CharSet @test encoding(CS) <: Encoding end end @testset "show charsets" begin for CS in charset_types end end
CharSetEncodings
https://github.com/JuliaString/CharSetEncodings.jl.git
[ "MIT" ]
1.0.0
596e5adf3856e082d37f4a8ae8de8f56a3a3ce22
docs
5246
# CharSetEncodings | **Info** | **Windows** | **Linux & MacOS** | **Package Evaluator** | **CodeCov** | **Coveralls** | |:------------------:|:------------------:|:---------------------:|:-----------------:|:---------------------:|:-----------------:| | [![][license-img]][license-url] | [![][app-s-img]][app-s-url] | [![][travis-s-img]][travis-url] | [![][pkg-s-img]][pkg-url] | [![][codecov-img]][codecov-url] | [![][coverall-s-img]][coverall-s-url] | [![][gitter-img]][gitter-url] | [![][app-m-img]][app-m-url] | [![][travis-m-img]][travis-url] | [![][pkg-m-img]][pkg-url] | [![][codecov-img]][codecov-url] | [![][coverall-m-img]][coverall-m-url] [license-img]: http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat [license-url]: LICENSE.md [gitter-img]: https://badges.gitter.im/Join%20Chat.svg [gitter-url]: https://gitter.im/JuliaString/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge [travis-url]: https://travis-ci.org/JuliaString/CharSetEncodings.jl [travis-s-img]: https://travis-ci.org/JuliaString/CharSetEncodings.jl.svg [travis-m-img]: https://travis-ci.org/JuliaString/CharSetEncodings.jl.svg?branch=master [app-s-url]: https://ci.appveyor.com/project/ScottPJones/charsetencodings-jl [app-m-url]: https://ci.appveyor.com/project/ScottPJones/charsetencodings-jl/branch/master [app-s-img]: https://ci.appveyor.com/api/projects/status/08ylxl46exltiemd?svg=true [app-m-img]: https://ci.appveyor.com/api/projects/status/08ylxl46exltiemd/branch/master?svg=true [pkg-url]: http://pkg.julialang.org/?pkg=CharSetEncodings [pkg-s-img]: http://pkg.julialang.org/badges/CharSetEncodings_0.6.svg [pkg-m-img]: http://pkg.julialang.org/badges/CharSetEncodings_0.7.svg [codecov-url]: https://codecov.io/gh/JuliaString/CharSetEncodings.jl [codecov-img]: https://codecov.io/gh/JuliaString/CharSetEncodings.jl/branch/master/graph/badge.svg [coverall-s-url]: https://coveralls.io/github/JuliaString/CharSetEncodings.jl [coverall-m-url]: https://coveralls.io/github/JuliaString/CharSetEncodings.jl?branch=master [coverall-s-img]: https://coveralls.io/repos/github/JuliaString/CharSetEncodings.jl/badge.svg [coverall-m-img]: https://coveralls.io/repos/github/JuliaString/CharSetEncodings.jl/badge.svg?branch=master ## Architecture This provides the basic types and mode methods for dealing with character sets, encodings, and character set encodings. ## Types Currently, there are the following types: * `CodeUnitTypes` a Union of the 3 codeunit types (UInt8, UInt16, UInt32) for convenience * `CharSet` a struct type, which is parameterized by the name of the character set and the type needed to represent a code point * `Encoding` a struct type, parameterized by the name of the encoding ## Built-in Character Sets / Character Set Encodings * `Binary` For storing non-textual data as a sequence of bytes, 0-0xff * `ASCII` ASCII (Unicode subset, 0-0x7f) * `Latin` Latin-1 (ISO-8859-1) (Unicode subset, 0-0xff) * `UCS2` UCS-2 (Unicode subset, 0-0xd7ff, 0xe000-0xffff, BMP only, no surrogates) * `UTF32` UTF-32 (Full Unicode, 0-0xd7ff, 0xe000-0x10ffff) * `UniPlus` Unvalidated Unicode (i.e. like `String`, can contain invalid codepoints) * `Text1` Unknown 1-byte character set * `Text2` Unknown 2-byte character set * `Text4` Unknown 4-byte character set ## Built-in Encodings * `UTF8Encoding` * `Native1Byte` * `Native2Byte` * `Native4Byte` * `NativeUTF16` * `Swapped4Byte` * `Swapped2Byte` * `SwappedUTF16` * `LE2` * `BE2` * `LE4` * `BE4` * `UTF16LE` * `UTF16BE` * `2Byte` * `4Byte` * `UTF16` ## Built-in CSEs * `BinaryCSE`, `Text1CSE`, `ASCIICSE`, `LatinCSE` * `Text2CSE`, `UCS2CSE` * `Text4CSE`, `UTF32CSE` * `UTF8CSE` `UTF32CharSet`, all valid, using `UTF8Encoding`, conforming to the Unicode Organization's standard, i.e. no long encodings, surrogates, or invalid bytes. * `RawUTF8CSE` `UniPlusCharSet`, not validated, using `UTF8Encoding`, may have invalid sequences, long encodings, encode surrogates and characters up to `0x7fffffff` * `UTF16CSE` `UTF32CharSet`, all valid, using `UTF16` Encoding (native order), conforming to the Unicode standard, i.e. no out of order or isolated surrogates. ## Internal Unicode subset types * `_LatinCSE` Indicates has at least 1 character > 0x7f, all <= 0xff * `_UCS2CSE` Indicates has at least 1 character > 0xff, all <= 0xffff * `_UTF32CSE` Indicates has at least 1 non-BMP character ## API The `cse` function returns the character set encoding for a string type, string. Returns `RawUTF8CSE` as a fallback for `AbstractString` (i.e. same as `String`) The `charset` function returns the character set for a string type, string, character type, or character. The `encoding` function returns the encoding for a type or string. The `codeunit` function returns the code unit used for a character set encoding The `cs"..."` string macro creates a CharSet type with that name The `enc"..."` string macro creates an Encoding type with that name The `@cse(cs, enc)` macro creates a character set encoding with the given character set and encoding Also Exports the helpful constant `Bool` flags `BIG_ENDIAN` and `LITTLE_ENDIAN`
CharSetEncodings
https://github.com/JuliaString/CharSetEncodings.jl.git
[ "MIT" ]
2.0.1
9822f4fedd372686c1b1fc26403c92fc2f4c4e83
code
447
using Documenter push!(LOAD_PATH, "../../src") using GenieAuthorisation makedocs( sitename = "GenieAuthorisation - User Authorisation for Genie", format = Documenter.HTML(prettyurls = false), pages = [ "Home" => "index.md", "GenieAuthorisation API" => [ "GenieAuthorisation" => "API/genieauthorisation.md", ] ], ) deploydocs( repo = "github.com/GenieFramework/GenieAuthorisation.jl.git", )
GenieAuthorisation
https://github.com/GenieFramework/GenieAuthorisation.jl.git
[ "MIT" ]
2.0.1
9822f4fedd372686c1b1fc26403c92fc2f4c4e83
code
313
module CreateTableRoles import SearchLight.Migrations: create_table, column, primary_key, add_index, drop_table function up() create_table(:roles) do [ primary_key() column(:name, :string, limit = 100) ] end add_index(:roles, :name) end function down() drop_table(:roles) end end
GenieAuthorisation
https://github.com/GenieFramework/GenieAuthorisation.jl.git
[ "MIT" ]
2.0.1
9822f4fedd372686c1b1fc26403c92fc2f4c4e83
code
337
module CreateTablePermissions import SearchLight.Migrations: create_table, column, primary_key, add_index, drop_table function up() create_table(:permissions) do [ primary_key() column(:name, :string, limit = 100) ] end add_index(:permissions, :name) end function down() drop_table(:permissions) end end
GenieAuthorisation
https://github.com/GenieFramework/GenieAuthorisation.jl.git
[ "MIT" ]
2.0.1
9822f4fedd372686c1b1fc26403c92fc2f4c4e83
code
391
module CreateTableRolesUsers import SearchLight.Migrations: create_table, column, primary_key, add_index, drop_table function up() create_table(:rolesusers) do [ primary_key() column(:roles_id, :int) column(:users_id, :int) ] end add_index(:rolesusers, :roles_id) add_index(:rolesusers, :users_id) end function down() drop_table(:rolesusers) end end
GenieAuthorisation
https://github.com/GenieFramework/GenieAuthorisation.jl.git
[ "MIT" ]
2.0.1
9822f4fedd372686c1b1fc26403c92fc2f4c4e83
code
391
module CreateTablePermissionsRoles import SearchLight.Migrations: create_table, column, primary_key, add_index, drop_table function up() create_table(:permissionsroles) do [ primary_key() column(:permissions_id, :int) column(:roles_id, :int) ] end add_index(:permissionsroles, :permissions_id) end function down() drop_table(:permissionsroles) end end
GenieAuthorisation
https://github.com/GenieFramework/GenieAuthorisation.jl.git
[ "MIT" ]
2.0.1
9822f4fedd372686c1b1fc26403c92fc2f4c4e83
code
3079
module GenieAuthorisation using Reexport using Genie using SearchLight, SearchLight.Relationships import GeniePlugins @reexport using GenieAuthentication export Role, Permission export assign_role, assign_permission export has_role, has_permission, @authorised! struct UnexpectedTypeException <: Exception expected_type::String received_type::String end struct UndefinedPermissionException <: Exception permission::String end Base.@kwdef mutable struct Role <: AbstractModel id::DbId = DbId() name::String = "" end Role(name::Union{String,Symbol}) = Role(name = string(name)) Base.@kwdef mutable struct Permission <: AbstractModel id::DbId = DbId() name::String = "" end Permission(name::Union{String,Symbol}) = Permission(name = string(name)) function assign_role(user::U, role::Role)::Bool where {U<:AbstractModel} Relationship!(user, role) true end function assign_permission(role::Role, permission::Permission) :: Bool Relationship!(role, permission) true end function has_role(user::U, role::Role)::Bool where {U<:AbstractModel} isrelated(user, role) end function has_role(user::U, role::Union{String,Symbol})::Bool where {U<:AbstractModel} has_role(user, findone(Role, name = string(role))) end function fetch_permission(permission::Union{Permission,String,Symbol}) :: Union{Permission,Nothing} isa(permission, Permission) || (permission = findone(Permission, name = string(permission))) permission end function has_permission(role::Role, permission::Union{Permission,String,Symbol})::Bool permission = fetch_permission(permission) permission === nothing && return false isrelated(role, permission) end function has_permission(user::U, permission::Union{Permission,String,Symbol})::Bool where {U<:AbstractModel} permission = fetch_permission(permission) permission === nothing && return false isrelated(user, permission, through = [Role]) end function has_permission(u::Nothing, permission)::Bool false end macro authorised!(permission, exception = Genie.Exceptions.NotFoundException("Page")) :(has_permission($(esc( :( Main.UserApp.current_user() ) )), $(esc(permission))) || throw($exception)) end """ install(dest::String; force = false, debug = false) :: Nothing Copies the plugin's files into the host Genie application. """ function install(dest::String; force = false, debug = false) :: Nothing # automatically install the GenieAuthentication plugin -- however, do not force the install GenieAuthentication.install(dest; force = false, debug = debug) src = abspath(normpath(joinpath(pathof(@__MODULE__) |> dirname, "..", GeniePlugins.FILES_FOLDER))) debug && @info "Preparing to install from $src into $dest" debug && @info "Found these to install $(readdir(src))" for f in readdir(src) debug && @info "Processing $(joinpath(src, f))" debug && @info "$(isdir(joinpath(src, f)))" isdir(joinpath(src, f)) || continue debug && "Installing from $(joinpath(src, f))" GeniePlugins.install(joinpath(src, f), dest, force = force) end nothing end end
GenieAuthorisation
https://github.com/GenieFramework/GenieAuthorisation.jl.git
[ "MIT" ]
2.0.1
9822f4fedd372686c1b1fc26403c92fc2f4c4e83
code
109
using GenieAuthorisation using Test @testset "GenieAuthorisation.jl" begin # Write your tests here. end
GenieAuthorisation
https://github.com/GenieFramework/GenieAuthorisation.jl.git
[ "MIT" ]
2.0.1
9822f4fedd372686c1b1fc26403c92fc2f4c4e83
docs
7932
# GenieAuthorisation Role Based Authorisation (RBA) plugin for `Genie.jl` ## Installation The `GenieAuthorisation.jl` package is a role based authorisation plugin for `Genie.jl`, the highly productive Julia web framework. As such, it requires installation within the environment of a `Genie.jl` MVC application, allowing the plugin to install its files. ### Configuring authentication before using authorisation `GenieAuthorisation.jl` works in tandem with `GenieAuthentication.jl`, the authentication plugin for `Genie.jl` apps. In fact, `GenieAuthorisation.jl` adds an authorisation layer on top of the authentication features provided by `GenieAuthentication.jl`. As such, first, please make sure that `GenieAuthentication.jl` is configured for your `Genie.jl` application, following the instructions at: <https://github.com/GenieFramework/GenieAuthentication.jl> With the `GenieAuthentication.jl` plugin installed, make sure you configure authenticated access to the areas you want to further protect with role based authorisation. So the first step is to add user authentication to the app. Then refine access via authorisation. ### Add the plugin Now that your application supports user authentication, it's time to add user authorisation. First, add the plugin (make sure you are in the environment of the `Genie.jl` app you want to protect with autorisation): ```julia julia> ] (MyGenieApp) pkg> add GenieAuthorisation ``` Once added, we can use its `install` function to add its files to the `Genie.jl` app (required only upon installation): ```julia julia> using GenieAuthorisation julia> GenieAuthorisation.install(@__DIR__) ``` The above command will set up the plugin's files within your `Genie.jl` app (will potentially add new views, controllers, models, migrations, initializers, etc). ## Usage The bulk of the authorisation features are provided by the package itself together with a series of database migrations which set up the database tables needed to configure the RBA system. ### Set up the database The plugin needs DB support to store its configuration (roles, permissions and various relations). You will find 4 new migration files within the `db/migrations/` folder. We need to run then, either by running all the migrations: ```julia julia> using SearchLight julia> SearchLight.Migration.all_up!!() ``` Or by individually running the 4 migrations: ```julia julia> using SearchLight julia> SearchLight.Migration.up("CreateTableRoles") julia> SearchLight.Migration.up("CreateTablePermissions") julia> SearchLight.Migration.up("CreateTableRolesUsers") julia> SearchLight.Migration.up("CreateTablePermissionsRoles") ``` This will create all the necessary table. ### Users, roles, and permissions A role based authorisation system implements access control through permissions. That is, certain features are accessible only for users that have the necessary permission. For instance, this is how we require authorisation for a `user_admin` permission at route level: ```julia route("/admin/users") do; @authorised!("users_admin") # code can be accessed only by users with the `users_admin` permission end ``` Permissions, however, are not assigned directly to users, but to roles. As such, a role can have multiple permissions - like for example an `admin` role would have all the possible permissions. Finally, the users are assigned roles - getting access to the role's respective permissions. A role can have any number of permissions and a user can have any number of roles. `GenieAuthorisation.jl` exposes an API which makes checking users permissions straightforward, without needing to handle the actual roles. However, the roles make permission assignment manageable: we bundle permissions into roles and then assign the roles to the users. This way, when we need to remove permissions from a user, we just remove the role and eliminate the risk of failing to remove all the forbidden permissions. #### Creating permissions and roles Given that permissions and roles are stored in the database, we use `SearchLight.jl` to manage the data: ```julia using GenieAuthorisation # Create two roles, "user" and "admin" for r in ["user", "admin"] findone_or_create(Role, name = r) |> save! end # Create some permissions for p in ["create", "read", "update", "delete"] findone_or_create(Permission, name = p) |> save! end ``` Now that the roles and the permissions are created, we need to assign permissions to roles: ```julia using GenieAuthorisation assign_permission(findone(Role, name = "admin"), findone(Permission, name = "create")) assign_permission(findone(Role, name = "admin"), findone(Permission, name = "read")) assign_permission(findone(Role, name = "admin"), findone(Permission, name = "update")) assign_permission(findone(Role, name = "admin"), findone(Permission, name = "delete")) assign_permission(findone(Role, name = "user"), findone(Permission, name = "read")) ``` We have assigned "create", "read", "update" and "delete" permissions to the `admin` role, and "read" permissions to the `user` role. Now we need to assign roles to our users -- for example making the user with the username `essenciary` an "admin": ```julia using GenieAuthorisation, GenieAuthentication, Users assign_role(findone(User, username = "essenciary"), findone(Role, name = "admin")) ``` --- **HEADS UP** Users must be explicitly assigned roles in order to have any permissions. Permissions are made available only through roles and this means that users without a role do not have any kind of permissions. It makes sense to automate role assignment, for example by assigning a default basic role upon user registration. --- ### Autorising access Once we have permissions, roles, and users, and we have defined the relationships between them, we can enforce user authorisation within the app. #### `@authorised!(<permission>)` The `@authorised!` macro checks that the current user has the `<permission>` permission - if not, an exception is automatically thrown, stopping the current thread of execution: ```julia using GenieAuthorisation route("/admin/users/delete/:user_id") do; @authorised!("delete") # code can be accessed only by users with the `users_admin` permission end ``` #### `has_permission(<user>, <permission>) We can also use the `has_permission` function to check if a user has the necessary permissions. The function returns a `boolean` allowing us to implement conditional logic based on the status of the authorisation: ```julia <% if has_permission(current_user(), "update") || has_permission(current_user(), "delete") %> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" data-toggle="dropdown">User management</a> <div class="dropdown-menu"> <% if has_permission(current_user(), "update") %> <a class="dropdown-item" href="/admin/users/edit/:user_id">Edit user</a> <% end %> <% if has_permission(current_user(), "delete") %> <a class="dropdown-item" href="/admin/users/delete/:user_id">Delete user</a> <% end %> </div> </li> <% end %> ``` ### Deleting authorisation Deleting authorisation is done by removing the relationships stored in the database, using the `SearchLight.jl` API. For example, to remove a permission from a role: ```julia using SearchLight, GenieAuthorisation Relationship!(findone(Role, name = "admin"), findone(Permission, name = "delete")) |> delete ``` Or a role from a user: ```julia using SearchLight, GenieAuthorisation, GenieAuthentication, Users Relationship!(findone(User, username = "essenciary"), findone(Role, name = "admin")) |> delete ``` Finally, to remove roles or permissions, we delete the respective entities: ```julia using SearchLight, GenieAuthorisation # remove the `delete` permission delete(findone(Permission, name = "delete")) # remove the `admin` role delete(findone(Role, name = "admin")) ```
GenieAuthorisation
https://github.com/GenieFramework/GenieAuthorisation.jl.git
[ "MIT" ]
2.0.1
9822f4fedd372686c1b1fc26403c92fc2f4c4e83
docs
53
# GenieAuthorisation User Authorisation for Genie.jl
GenieAuthorisation
https://github.com/GenieFramework/GenieAuthorisation.jl.git
[ "MIT" ]
2.0.1
9822f4fedd372686c1b1fc26403c92fc2f4c4e83
docs
96
```@meta CurrentModule = GenieAuthorisation ``` ```@autodocs Modules = [GenieAuthorisation] ```
GenieAuthorisation
https://github.com/GenieFramework/GenieAuthorisation.jl.git
[ "MIT" ]
0.1.3
da9adb5a5f7826e63999c55458ccf73ae2de44ac
code
261
using Documenter, CurlHTTP makedocs( sitename="CurlHTTP.jl Documentation", format=Documenter.HTML( prettyurls = false, edit_link="main", ), modules=[CurlHTTP], ) deploydocs( repo = "github.com/bluesmoon/CurlHTTP.jl.git", )
CurlHTTP
https://github.com/bluesmoon/CurlHTTP.jl.git
[ "MIT" ]
0.1.3
da9adb5a5f7826e63999c55458ccf73ae2de44ac
code
29972
""" Wrapper around [`LibCURL`](https://github.com/JuliaWeb/LibCURL.jl) to make it more Julia like. This module reexports `LibCURL` so everything available in `LibCURL` will be available when this module is used. See https://curl.se/libcurl/c/libcurl-tutorial.html for a tutorial on using libcurl in C. The Julia interface should be similar. # Examples ## GET a URL and read the response from the internal buffer ```julia using CurlHTTP curl = CurlEasy( url="https://postman-echo.com/get?foo=bar", method=CurlHTTP.GET, verbose=true ) res, http_status, errormessage = curl_execute(curl) # curl.userdata[:databuffer] is a Vector{UInt8} containing the bytes of the response responseBody = String(curl.userdata[:databuffer]) # curl.userdata[:responseHeaders] is a Vector{String} containing the response headers responseHeaders = curl.userdata[:responseHeaders] ``` ## POST to a URL and read the response with your own callback ```julia using CurlHTTP curl = CurlEasy( url="https://postman-echo.com/post", method=CurlHTTP.POST, verbose=true ) requestBody = "{\"testName\":\"test_writeCB\"}" headers = ["Content-Type: application/json"] databuffer = UInt8[] res, http_status, errormessage = curl_execute(curl, requestBody, headers) do d if isa(d, Array{UInt8}) append!(databuffer, d) end end responseBody = String(databuffer) ``` ## Multiple concurrent requests using CurlMulti ```julia using CurlHTTP curl = CurlMulti() for i in 1:3 local easy = CurlEasy( url="https://postman-echo.com/post?val=\$i", method=CurlHTTP.POST, verbose=true, ) requestBody = "{\"testName\":\"test_multi_writeCB\",\"value\":\$i}" headers = ["Content-Type: application/json", "X-App-Value: \$(i*5)"] CurlHTTP.curl_setup_request_response( easy, requestBody, headers ) curl_multi_add_handle(curl, easy) end res = curl_execute(curl) responses = [p.userdata for p in curl.pool] # userdata contains response data, status code and error message ``` """ module CurlHTTP using Reexport using UUIDs @reexport using LibCURL export curl_url_escape, curl_add_headers, curl_setup_request, curl_execute, curl_cleanup, curl_perform, curl_response_status, curl_error_to_string, CurlHandle, CurlEasy, CurlMulti function __init__() curl_global_init(CURL_GLOBAL_ALL) end """ HTTP Methods recognized by `CurlHTTP`. Current values are: * _GET_: Make a GET request * _POST_: Upload data using POST * _HEAD_: Make a HEAD request and specify no response body * _DELETE_: Make a DELETE request * _PUT_: Currently not supported * _OPTIONS_: Make an OPTIONS request """ @enum HTTPMethod GET=1 POST=2 HEAD=3 DELETE=4 PUT=5 OPTIONS=6 """ Internal markers for the data channel """ @enum ChannelMarkers EOF=-1 const CRLF = UInt8.(['\r', '\n']) const VERBOSE_INFO = [CURLINFO_TEXT, CURLINFO_HEADER_IN, CURLINFO_HEADER_OUT, CURLINFO_SSL_DATA_IN, CURLINFO_SSL_DATA_OUT] """ Default user agent to use if not otherwise specified. This allows an application to set the user agent string at __init__ time rather than at constructor time. Use [`CurlHTTP.setDefaultUserAgent()`](@ref) to set it. Set it to `nothing` to unset it. """ DEFAULT_USER_AGENT = nothing """ Set the default user agent string to use for all requests. Set this to `nothing` to disable setting the user agent string. """ setDefaultUserAgent(ua::Union{AbstractString, Nothing}) = global DEFAULT_USER_AGENT = ua """ Abstract type representing all types of Curl Handles. Currently `CurlEasy` and `CurlMulti`. """ abstract type CurlHandle end """ Wrapper around a `curl_easy` handle. This is what we get from calling `curl_easy_init`. Most `curl_easy_*` functions will work on a `CurlEasy` object without any other changes. ## Summary `struct CurlEasy <:` [`CurlHandle`](@ref) ## Fields `handle::Ptr` : A C pointer to the curl_easy handle `headers::Ptr` : A C pointer to the list of headers passed on to curl. We hold onto this to make sure we can free allocated memory when required. `uuid::UUID` : A unique identifier for this curl handle. Used internally to identify a handle within a pool. `userdata::Dict` : A dictionary of user specified data. You may add anything you want to this and it will be passed along with the curl handle to all functions. This dictionary will also be populated by several convenience functions to add the `:http_status`, `:errormessage`, and response header (`:databuffer`). All data added by internal code will use `Symbol` keys. ## Constructors `CurlEasy(curl::Ptr)` : Create a `CurlEasy` wrapper around an existing `LibCURL` `curl` handle. `CurlEasy(; url::String, method::`[`HTTPMethod`](@ref)`, verbose::Bool, certpath::String, keypath::String, cacertpath::String, useragent::String|Nothing)` : Create a new `curl` object with default settings and wrap it. The default settings are: * FOLLOWLOCATION * SSL_VERIFYPEER * SSL_VERIFYHOST * SSL_VERSION (highest possible up to TLS 1.3) * HTTP_VERSION (H2 over TLS or HTTP/1.1) * TCP_FASTOPEN disabled * TCP_KEEPALIVE * ACCEPT_ENCODING best supported * TRANSFER_ENCODING * DNS_CACHE_TIMEOUT disabled Additionally the following options are set based on passed in parameters: * POST if `method` is POST * HTTPGET if `method` is GET * NOBODY if `method` is HEAD * CUSTOMREQUEST if `method` is HEAD, DELETE, or OPTIONS * VERBOSE if `verbose` is true * SSLCERT if `certpath` is set * SSLKEY if `certpath` and `keypath` are set * CAINFO defaults to `LibCURL.cacert` but can be overridden with `cacertpath` * URL if `url` is set * USERAGENT if `useragent` is set to something other than `nothing`. """ mutable struct CurlEasy <: CurlHandle handle::Ptr headers::Ptr uuid::UUID userdata::Dict CurlEasy(curl::Ptr) = finalizer(curl_cleanup, new(curl, C_NULL, UUIDs.uuid1(), Dict())) function CurlEasy(; url::AbstractString = "", method::HTTPMethod = GET, verbose::Bool = false, certpath::AbstractString = "", keypath::AbstractString = "", cacertpath::AbstractString = "", useragent::Union{AbstractString, Nothing} = DEFAULT_USER_AGENT ) curl = curl_easy_init() if method == GET curl_easy_setopt(curl, CURLOPT_HTTPGET, 1) # Use HTTP Get elseif method == POST curl_easy_setopt(curl, CURLOPT_POST, 1) # Use HTTP Post elseif method == HEAD curl_easy_setopt(curl, CURLOPT_NOBODY, 1) # Use HTTP Head elseif method == DELETE curl_easy_setopt(curl, CURLOPT_HTTPGET, 1) # Use HTTP Delete curl_easy_setopt(curl, CURLOPT_CUSTOMREQUEST, "DELETE") elseif method == OPTIONS curl_easy_setopt(curl, CURLOPT_HTTPGET, 1) # Use HTTP Options curl_easy_setopt(curl, CURLOPT_CUSTOMREQUEST, "OPTIONS") else throw(ArgumentError("Method `$method' is not currently supported")) end curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1) # Follow HTTP redirects curl_easy_setopt(curl, CURLOPT_SSL_VERIFYPEER, 1) # Verify the peer's SSL cert curl_easy_setopt(curl, CURLOPT_SSL_VERIFYHOST, 2) # Verify the server's Common Name curl_easy_setopt(curl, CURLOPT_SSLVERSION, 7<<16) # Try highest version up to TLS 1.3 curl_easy_setopt(curl, CURLOPT_HTTP_VERSION, 4) # Use H2 over SSL or HTTP/1.1 otherwise curl_easy_setopt(curl, CURLOPT_TCP_FASTOPEN, 0) # Do not use TCP Fastopen since it prevents connection reuse curl_easy_setopt(curl, CURLOPT_TCP_KEEPALIVE, 1) # Use TCP Keepalive curl_easy_setopt(curl, CURLOPT_ACCEPT_ENCODING, "") # Use best supported encoding (compression) method. gzip or deflate curl_easy_setopt(curl, CURLOPT_TRANSFER_ENCODING, 1) # Use transfer encoding curl_easy_setopt(curl, CURLOPT_DNS_CACHE_TIMEOUT, 0) # Do not cache DNS in curl if !isnothing(useragent) curl_easy_setopt(curl, CURLOPT_USERAGENT, useragent) end # Do we want verbose logging to stderr curl_easy_setopt(curl, CURLOPT_VERBOSE, verbose ? 1 : 0) # If config has a client cert, use it if !isempty(certpath) if !isfile(certpath) throw(ArgumentError("Could not find the certpath `$certpath'")) end curl_easy_setopt(curl, CURLOPT_SSLCERT, certpath) # Client certs will need cert private key if !isempty(keypath) if !isfile(keypath) throw(ArgumentError("Could not find the keypath `$keypath'")) end curl_easy_setopt(curl, CURLOPT_SSLKEY, keypath) end end # If config has a cacert (for self-signed servers), use it if !isempty(cacertpath) if !isfile(cacertpath) throw(ArgumentError("Could not find the cacertpath `$cacertpath'")) end curl_easy_setopt(curl, CURLOPT_CAINFO, cacertpath) else curl_easy_setopt(curl, CURLOPT_CAINFO, LibCURL.cacert) end if !isempty(url) curl_easy_setopt(curl, CURLOPT_URL, url) end return CurlEasy(curl) end end """ Wrapper around a `curl_multi` handle. This is what we get from calling `curl_multi_init` ## Summary `struct CurlMulti <:` [`CurlHandle`](@ref) ## Fields `handle::Ptr` : A C pointer to the curl_multi handle `pool::`[`CurlEasy`](@ref)`[]` : An array of [`CurlEasy`](@ref) handles that are added to this `CurlMulti` handle. These can be added via the constructor or via a call to `curl_multi_add_handle`, and may be removed via a call to `curl_multi_remove_handle`. ## Constructors `CurlMulti()` : Default constructor that calls `curl_multi_init` and sets up an empty pool `CurlMulti(::`[`CurlEasy`](@ref)`[])` : Constructor that accepts a Vector of [`CurlEasy`](@ref) objects, creates a `curl_multi` handle, and adds the easy handles to it. """ mutable struct CurlMulti <: CurlHandle handle::Ptr pool::Vector{CurlEasy} CurlMulti() = finalizer(curl_cleanup, new(curl_multi_init(), CurlEasy[])) function CurlMulti(pool::Vector{CurlEasy}) multi = CurlMulti() for easy in pool curl_multi_add_handle(multi.handle, easy.handle) push!(multi.pool, easy) end multi end end """ Cleanup everything created by the [`CurlEasy`](@ref) constructor. See the [upstream docs](https://curl.se/libcurl/c/curl_easy_cleanup.html) for more details. """ LibCURL.curl_easy_cleanup(curl::CurlEasy) = (if curl.headers != C_NULL curl_slist_free_all(curl.headers); curl.headers = C_NULL; end; st=curl_easy_cleanup(curl.handle); curl.handle=C_NULL; st) """ Cleanup everything created by the [`CurlMulti`](@ref) constructor. See the [upstream docs](https://curl.se/libcurl/c/curl_multi_cleanup.html) for more details. """ LibCURL.curl_multi_cleanup(curl::CurlMulti) = (for easy in curl.pool curl_multi_remove_handle(curl.handle, easy.handle); curl_easy_cleanup(easy); end; empty!(curl.pool); curl_multi_cleanup(curl.handle)) """ Perform a [`CurlEasy`](@ref) transfer synchronously. See the [upstream docs](https://curl.se/libcurl/c/curl_easy_perform.html) for more details. """ LibCURL.curl_easy_perform(curl::CurlEasy) = (res = curl_easy_perform(curl.handle); if !isnothing(get(curl.userdata, :data_channel, nothing)) put!(curl.userdata[:data_channel], EOF); end; res) """ Set options for the [`CurlEasy`](@ref) handle. See the [upstream docs](https://curl.se/libcurl/c/curl_easy_setopt.html) for all possible options, and links to documentation for each option. """ LibCURL.curl_easy_setopt(curl::CurlEasy, opt::Any, ptrval::Integer) = curl_easy_setopt(curl.handle, opt, ptrval) LibCURL.curl_easy_setopt(curl::CurlEasy, opt::Any, ptrval::Array{T,N} where N) where T = curl_easy_setopt(curl.handle, opt, ptrval) LibCURL.curl_easy_setopt(curl::CurlEasy, opt::Any, ptrval::Ptr) = curl_easy_setopt(curl.handle, opt, ptrval) LibCURL.curl_easy_setopt(curl::CurlEasy, opt::Any, ptrval::AbstractString) = curl_easy_setopt(curl.handle, opt, ptrval) LibCURL.curl_easy_setopt(curl::CurlEasy, opt::Any, param::Any) = curl_easy_setopt(curl.handle, opt, param) """ Clone a [`CurlEasy`](@ref) handle. See the [upstream docs](https://curl.se/libcurl/c/curl_easy_duphandle.html) for more details. """ LibCURL.curl_easy_duphandle(curl::CurlEasy) = CurlEasy(curl_easy_duphandle(curl.handle)) """ URL escape a Julia string using a [`CurlEasy`](@ref) handle to make it safe for use as a URL. See the [upstream docs](https://curl.se/libcurl/c/curl_easy_escape.html) The return value is a Julia string with memory owned by Julia, so there's no risk of leaking memory. """ function LibCURL.curl_easy_escape(curl::CurlEasy, s, l) s_esc = curl_easy_escape(curl.handle, s, l) s_len = ccall(:strlen, Csize_t, (Ptr{Cvoid}, ), s_esc) s_ret = Array{UInt8}(undef, s_len) unsafe_copyto!(pointer(s_ret), s_esc, s_len) curl_free(s_esc) String(s_ret) end """ curl_url_escape(::CurlEasy, ::String) → String curl_url_escape(::String) → String Use curl to do URL escaping """ curl_url_escape(curl::CurlEasy, s::AbstractString) = curl_easy_escape(curl, s, 0) curl_url_escape(s::AbstractString) = curl_url_escape(CurlEasy(curl_easy_init()), s) """ Cleanup the [`CurlHandle`](@ref) automatically determining what needs to be done for `curl_easy` vs `curl_multi` handles. In general, this will be called automatically when the [`CurlHandle`](@ref) gets garbage collected. """ curl_cleanup(curl::CurlEasy) = curl_easy_cleanup(curl) curl_cleanup(curl::CurlMulti) = curl_multi_cleanup(curl) """ Perform all [`CurlEasy`](@ref) transfers attached to a [`CurlMulti`](@ref) handle asynchronously. See the [upstream docs](https://curl.se/libcurl/c/curl_multi_perform.html) for more details. """ LibCURL.curl_multi_perform(curl::CurlMulti, still_running::Ref{Cint}) = curl_multi_perform(curl.handle, still_running) function LibCURL.curl_multi_perform(curl::CurlMulti) still_running = Ref{Cint}(1) numfds = Ref{Cint}() while still_running[] > 0 mc = curl_multi_perform(curl, still_running) if mc == CURLM_OK mc = curl_multi_wait(curl.handle, C_NULL, 0, 1000, numfds) end if mc != CURLM_OK # COV_EXCL_START @error "curl_multi failed, code $(mc)." return mc # COV_EXCL_STOP end end CURLM_OK end """ Run either `curl_easy_perform` or `curl_multi_perform` depending on the type of handle passed in. """ curl_perform(curl::CurlEasy) = curl_easy_perform(curl) curl_perform(curl::CurlMulti) = curl_multi_perform(curl) """ Adds a [`CurlEasy`](@ref) handle to the [`CurlMulti`](@ref) pool. See the [upstream docs](https://curl.se/libcurl/c/curl_multi_add_handle.html) """ function LibCURL.curl_multi_add_handle(multi::CurlMulti, easy::CurlEasy) push!(multi.pool, easy) curl_multi_add_handle(multi.handle, easy.handle) end """ Remove a [`CurlEasy`](@ref) handle from the [`CurlMulti`](@ref) pool. See the [upstream docs](https://curl.se/libcurl/c/curl_multi_remove_handle.html). Pass in either the [`CurlEasy`](@ref) handle or its `CurlHandle.uuid`. """ function LibCURL.curl_multi_remove_handle(multi::CurlMulti, easy::CurlEasy) filter!(pool_entry -> pool_entry.uuid != easy.uuid, multi.pool) curl_multi_remove_handle(multi.handle, easy.handle) end LibCURL.curl_multi_remove_handle(multi::CurlMulti, easy_uuid::AbstractString) = curl_multi_remove_handle(multi, Base.UUID(easy_uuid)) function LibCURL.curl_multi_remove_handle(multi::CurlMulti, easy_uuid::Base.UUID) easy = findfirst(pool_entry -> pool_entry.uuid == easy_uuid, multi.pool) if isnothing(easy) return nothing end easy = multi.pool[easy] curl_multi_remove_handle(multi, easy) end """ Run common housekeeping tasks required by a curl callback function. This function should be called from a curl WRITE or HEADER callback function. It does the following: 1. Calculate the number of bytes read 2. Copy bytes into a Vector{UInt8} 3. Convert any non-null userdata parameter to a julia type It then returns a tuple of these three values. """ function curl_cb_preamble(curlbuf::Ptr{Cvoid}, s::Csize_t, n::Csize_t, p_ctxt::Ptr{Cvoid}) sz = s * n data = Array{UInt8}(undef, sz) ccall(:memcpy, Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}, UInt64), data, curlbuf, sz) if p_ctxt == C_NULL j_ctxt = nothing else j_ctxt = unsafe_pointer_to_objref(p_ctxt) end (sz, data, j_ctxt) end """ Default write callback that puts the data stream as a `Vector{UInt8}` onto a `Channel` passed in via `curl_easy_setopt(CURLOPT_WRITEDATA)`. This callback is called by curl when data is available to be read and is set up in [`curl_setup_request`](@ref) """ function curl_write_cb(curlbuf::Ptr{Cvoid}, s::Csize_t, n::Csize_t, p_ctxt::Ptr{Cvoid})::Csize_t (sz, data, ch) = curl_cb_preamble(curlbuf, s, n, p_ctxt) @debug "Body sending $sz bytes" put!(ch, data) sz::Csize_t end """ Default header callback that puts the current header as a `crlf` terminate `String` onto a `Channel` passed in via `curl_easy_setopt(CURLOPT_HEADERDATA)`. This callback is called by curl when header data is available to be read and is set up in [`curl_setup_request`](@ref) """ function curl_header_cb(curlbuf::Ptr{Cvoid}, s::Csize_t, n::Csize_t, p_ctxt::Ptr{Cvoid})::Csize_t (sz, data, ch) = curl_cb_preamble(curlbuf, s, n, p_ctxt) headerline = String(data) @debug "Header sending $(sz) bytes" put!(ch, headerline == "\r\n" ? EOF : headerline) sz::Csize_t end """ [Internal] curl debug callback to log informational text, header data, and SSL data transferred over the network. This will only run if curl is configured in verbose mode. """ function curl_debug_cb(curl::Ptr{Cvoid}, type::Cint, curlbuf::Ptr{Cvoid}, sz::Csize_t, p_ctxt::Ptr{Cvoid})::Csize_t if type ∉ VERBOSE_INFO return Culong(0) end data = Array{UInt8}(undef, sz) ccall(:memcpy, Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}, UInt64), data, curlbuf, sz) @info String(data) Culong(0) end function _create_default_buffer_handler(curl::CurlEasy, buffername::Symbol, buffertype::DataType=UInt8) buffer = curl.userdata[buffername] = buffertype[] if isbitstype(buffertype) (mtd, expectedtype) = (append!, typeof(buffer)) else (mtd, expectedtype) = (push!, buffertype) end return data -> if isa(data, expectedtype) mtd(buffer, data) else @warn "$buffername got data of type $(typeof(data)) expected $(expectedtype)" end end """ Add a vector of headers to the curl object """ function curl_add_headers(curl::CurlEasy, headers::Vector{String}; append::Bool=false) if !append && curl.headers != C_NULL curl_slist_free_all(curl.headers) curl.headers = C_NULL end for header in headers curl.headers = curl_slist_append(curl.headers, header) end curl_easy_setopt(curl, CURLOPT_HTTPHEADER, curl.headers) return curl end """ Prepare a [`CurlEasy`](@ref) object for making a request. * Adds the `requestBody` and a corresponding `Content-Length` * Adds headers * If `data_channel` or `header_channel` are set, then sets up a default WRITE/HEADER callback that writes to that Channel * If `url` is set, sets the request URL """ function curl_setup_request( curl::CurlEasy, requestBody::String, headers::Vector{String} = String[]; data_channel::Union{Channel,Nothing} = nothing, header_channel::Union{Channel,Nothing} = nothing, url::AbstractString = "" ) if !isempty(url) curl_easy_setopt(curl, CURLOPT_URL, url) end curl_add_headers(curl, headers) curl.userdata[:headers] = headers if !isempty(requestBody) curl_easy_setopt(curl, CURLOPT_POSTFIELDSIZE, ncodeunits(requestBody)) curl_easy_setopt(curl, CURLOPT_POSTFIELDS, requestBody) curl.userdata[:requestBody] = requestBody curl_add_headers(curl, ["Content-Length: $(ncodeunits(requestBody))"]; append=true) end if !isnothing(data_channel) curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, @cfunction(curl_write_cb, Csize_t, (Ptr{Cvoid}, Csize_t, Csize_t, Ptr{Cvoid}))) curl_easy_setopt(curl, CURLOPT_WRITEDATA, Base.unsafe_convert(Ptr{Cvoid}, Base.cconvert(Ptr{Cvoid}, Ref(data_channel)))) curl.userdata[:data_channel] = data_channel end if !isnothing(header_channel) curl_easy_setopt(curl, CURLOPT_HEADERFUNCTION, @cfunction(curl_header_cb, Csize_t, (Ptr{Cvoid}, Csize_t, Csize_t, Ptr{Cvoid}))) curl_easy_setopt(curl, CURLOPT_HEADERDATA, Base.unsafe_convert(Ptr{Cvoid}, Base.cconvert(Ptr{Cvoid}, Ref(header_channel)))) curl.userdata[:header_channel] = header_channel end # Add a debug handler to log wire transfer data curl_easy_setopt(curl, CURLOPT_DEBUGFUNCTION, @cfunction(curl_debug_cb, Csize_t, (Ptr{Cvoid}, Cint, Ptr{Cvoid}, Csize_t, Ptr{Cvoid}))) errorbuffer = Array{UInt8}(undef, CURL_ERROR_SIZE) curl_easy_setopt(curl, CURLOPT_ERRORBUFFER, errorbuffer) curl.userdata[:errorbuffer] = errorbuffer return curl end """ Setup a Channel for the default response handlers to write to. """ function setup_response_handler(data_handler::Function, uuid::UUID) @debug "Creating channel for $uuid" return Channel() do chnl @debug "Starting channel handler for $uuid" @debug "Going to read from channel for $uuid" for d in chnl if d == EOF @debug "Removing channel for $uuid" close(chnl) break else @debug "Received $(length(d)) bytes" data_handler(d) end end @debug "Finished channel handler for $uuid" end end setup_response_handler(::Nothing, ::Any) = nothing """ Setup the request object and response handlers in preparation to execute a request. When using the [`CurlEasy`](@ref) interface, this method is called internally by [`curl_execute`](@ref), however when using the [`CurlMulti`](@ref) interface, it is necessary to call this on every [`CurlEasy`](@ref) handle added to the [`CurlMulti`](@ref) handle. This method allows you to set up your own response data and header handlers that receive streamed data. If you do not pass in a handler, default handlers will be set up that write binary data as bytes (`Vector{UInt8}`) to `curl.userdata[:databuffer]` and an array of String response headers (`Vector{String}`) to `curl.userdata[:responseHeaders]`. ## Arguments `curl::`[`CurlEasy`](@ref) : The [`CurlEasy`](@ref) handle to operate on `requestBody::String` : Any request body text that should be passed on to the server. Typically used for `POST` requests. Leave this as an empty String to skip. This is passed as-is to `curl_setup_request`. `headers::Vector{String} = String[]` : Any request headers that should be passed on to the server as part of the request. Headers SHOULD be of the form `key: value`. Consult [RFC 2616 section 4.2](https://datatracker.ietf.org/doc/html/rfc2616#section-4.2) for more details on HTTP request headers. ## Keyword Arguments `data_handler::Union{Function, Nothing} = <default>` : A function to handle any response Body data. This function should accept a single argument of type `Vector{UInt8}`. Its return value will be ignored. If not specified, a default handler will be used. Set this explicitly to `nothing` to disable handling of HTTP response body data. `data_handler::Union{Function, Nothing} = <default>` : A function to handle any response Header data. This function should accept a single argument of type `String`. Its return value will be ignored. If not specified, a default handler will be used. Set this explicitly to `nothing` to disable handling of HTTP response header data. `url::AbstractString=""` : The URL to use for this request. This permanently overrides the `url` passed in to the [`CurlEasy`](@ref) constructor. If not specified, then the previous value of the [`CurlEasy`](@ref)'s url is reused. ## Returns The [`CurlEasy`](@ref) object. """ function curl_setup_request_response( curl::CurlEasy, requestBody::String, headers::Vector{String} = String[]; data_handler::Union{Function, Nothing} = _create_default_buffer_handler(curl, :databuffer), header_handler::Union{Function, Nothing} = _create_default_buffer_handler(curl, :responseHeaders, String), url::AbstractString = "" ) data_channel = setup_response_handler(data_handler, curl.uuid) header_channel = setup_response_handler(header_handler, curl.uuid) curl_setup_request( curl, requestBody, headers; data_channel, header_channel, url ) end """ curl_execute(::CurlMulti) → CURLMcode Executes all pending [`CurlEasy`](@ref) attached to the [`CurlMulti`](@ref) handle and returns a `CURLMcode` indicating success or failure. In most cases, this function should return `CURLM_OK` even if there were failures in individual transfers. Each [`CurlEasy`](@ref) handle will have `userdata[:http_status]` set and `userdata[:errormessage]` will be set in case of an error. This function will print errors or warnings to the Logger for unexpected states. File a bug if you see any of these. """ function curl_execute(curl::CurlMulti) res = curl_perform(curl) msgq = Ref{Cint}(1) while msgq[] > 0 # Returns a Ptr{LibCURL.CURLMsg} m = curl_multi_info_read(curl.handle, msgq) if m == C_NULL # COV_EXCL_START if msgq[] > 0 @error "curl_multi_info_read returned NULL while $(msgq[]) messages still remain queued" end break # COV_EXCL_STOP end # Convert from Ptr to LibCURL.CURLMsg m_jl = unsafe_load(m) if m_jl.msg == CURLMSG_DONE local easy_h = m_jl.easy_handle local easy = findfirst(x -> x.handle == easy_h, curl.pool) if isnothing(easy) # COV_EXCL_START @error "Couldn't find handle $easy_h" continue # COV_EXCL_STOP end easy = curl.pool[easy] if haskey(easy.userdata, :data_channel) put!(easy.userdata[:data_channel], EOF) end easy.userdata[:http_status] = curl_response_status(easy) if haskey(easy.userdata, :errorbuffer) easy.userdata[:errormessage] = curl_error_to_string(easy.userdata[:errorbuffer]) end else @warn "curl_multi_info_read returned an unknown code: $(m_jl.msg)... ignoring. msgq=$(msgq[])" end end res end """ curl_execute(data_handler::Function, ::CurlEasy, ::String, ::Vector{String}; url::String) → (CURLCode, Int64, String) curl_execute(::CurlEasy, ::String, Vector{String}; url::String, data_handler::Function, header_handler::Function) → (CURLCode, Int64, String) Execute a [`CurlEasy`](@ref) handle optionally passing in a `requestBody` (for POSTs), any HTTP request headers, a request URL, and handlers for response data and headers. In its first form this method accepts the `data_handler` as the first argument allowing you to use `curl_execute(curl) do data ... end` to handle the data. In this case, response headers are ignored. In its second form, both data and header handlers are passed in as keyword arguments. If not specified, then default handlers are set up that write to `userdata[:databuffer]` and `userdata[:responseHeaders]` respectively. You may explicitly set the handler to `nothing` to avoid handling data or headers. This can have a small improvement in memory utilization. """ curl_execute( data_handler::Function, curl::CurlEasy, requestBody::String="", headers::Vector{String}=String[]; url::AbstractString="" ) = curl_execute(curl, requestBody, headers; data_handler, url, header_handler=nothing) function curl_execute( curl::CurlEasy, requestBody::String="", headers::Vector{String}=String[]; data_handler::Union{Function, Nothing} = _create_default_buffer_handler(curl, :databuffer), header_handler::Union{Function, Nothing} = _create_default_buffer_handler(curl, :responseHeaders, String), url::AbstractString="" ) curl_setup_request_response(curl, requestBody, headers; data_handler, header_handler, url) @debug "Starting curl_easy_perform" res = curl_easy_perform(curl) @debug "Finished curl_easy_perform" http_status = curl_response_status(curl) errormessage = curl_error_to_string(curl.userdata[:errorbuffer]) return (res, http_status, errormessage) end """ curl_error_to_string(::Vector{UInt8}) → String Convert curl's error message stored as a NULL terminated sequence of bytes into a Julia `String` """ function curl_error_to_string(errorbuffer::Vector{UInt8}) errorend = something(findfirst(==(UInt8(0)), errorbuffer), length(errorbuffer)+1) return String(@view(errorbuffer[1:errorend-1])) end """ curl_response_status(::CurlEasy) → Int64 Get the HTTP status code of the most recent response from the [`CurlEasy`](@ref) object. """ function curl_response_status(curl::CurlEasy) http_code = Ref{Clong}() curl_easy_getinfo(curl.handle, CURLINFO_RESPONSE_CODE, http_code) return http_code[] end end # module
CurlHTTP
https://github.com/bluesmoon/CurlHTTP.jl.git
[ "MIT" ]
0.1.3
da9adb5a5f7826e63999c55458ccf73ae2de44ac
code
10409
using CurlHTTP, Test, JSON gbVerbose = false function test_GET() curl = CurlEasy( url="https://postman-echo.com/get?foo=bar&baz=zod", method=CurlHTTP.GET, verbose=gbVerbose ) databuffer = UInt8[] res, http_status, errormessage = curl_execute(curl, "", ["X-Custom-Header: ding"]) do d if isa(d, Array{UInt8}) append!(databuffer, d) end end @test CURLE_OK == res @test 200 == http_status data = JSON.parse(String(databuffer)) @test "https://postman-echo.com/get?foo=bar&baz=zod" == data["url"] @test Dict("foo" => "bar", "baz" => "zod") == data["args"] @test haskey(data["headers"], "x-custom-header") @test data["headers"]["x-custom-header"] == "ding" @test "" == errormessage end function test_GET_debug() curl = CurlEasy( url="https://postman-echo.com/get?foo=bar&baz=zod", method=CurlHTTP.GET, verbose=true ) res, http_status, errormessage = curl_execute(curl) @test CURLE_OK == res @test 200 == http_status databuffer = curl.userdata[:databuffer] data = JSON.parse(String(databuffer)) @test "https://postman-echo.com/get?foo=bar&baz=zod" == data["url"] @test Dict("foo" => "bar", "baz" => "zod") == data["args"] @test "" == errormessage responseHeaders = curl.userdata[:responseHeaders] @test length(responseHeaders) > 1 end function test_GET_reuse() curl = CurlEasy( url="https://postman-echo.com/get?foo=bar&baz=zod", method=CurlHTTP.GET, verbose=false ) res, http_status, errormessage = curl_execute(curl, "", ["X-Custom-Header: ding1"]) @test CURLE_OK == res @test 200 == http_status @test "" == errormessage databuffer = curl.userdata[:databuffer] data = JSON.parse(String(databuffer)) @test "https://postman-echo.com/get?foo=bar&baz=zod" == data["url"] @test Dict("foo" => "bar", "baz" => "zod") == data["args"] @test haskey(data["headers"], "x-custom-header") @test data["headers"]["x-custom-header"] == "ding1" @test !haskey(data["headers"], "user-agent") res, http_status, errormessage = curl_execute(curl, "", ["X-Custom-Header: ding2"]; url="https://postman-echo.com/get?foo=bear&baz=zeroed") @test CURLE_OK == res @test 200 == http_status @test "" == errormessage databuffer = curl.userdata[:databuffer] data = JSON.parse(String(databuffer)) @test "https://postman-echo.com/get?foo=bear&baz=zeroed" == data["url"] @test Dict("foo" => "bear", "baz" => "zeroed") == data["args"] @test haskey(data["headers"], "x-custom-header") @test data["headers"]["x-custom-header"] == "ding2" end function test_GET_useragent() CurlHTTP.setDefaultUserAgent("CurlHTTP/0.1") curl = CurlEasy( url="https://postman-echo.com/get?foo=bar&baz=zod", method=CurlHTTP.GET, verbose=gbVerbose ) res, http_status, errormessage = curl_execute(curl) @test CURLE_OK == res @test 200 == http_status databuffer = curl.userdata[:databuffer] data = JSON.parse(String(databuffer)) @test "https://postman-echo.com/get?foo=bar&baz=zod" == data["url"] @test Dict("foo" => "bar", "baz" => "zod") == data["args"] @test "CurlHTTP/0.1" == data["headers"]["user-agent"] CurlHTTP.setDefaultUserAgent(nothing) end function test_DELETE() curl = CurlEasy( url="https://postman-echo.com/delete?foo=bar&baz=zod", method=CurlHTTP.DELETE, verbose=gbVerbose ) databuffer = UInt8[] res, http_status, errormessage = curl_execute(curl, "", ["X-Custom-Header: ding"]) do d if isa(d, Array{UInt8}) append!(databuffer, d) end end @test CURLE_OK == res @test 200 == http_status data = JSON.parse(String(databuffer)) @test "https://postman-echo.com/delete?foo=bar&baz=zod" == data["url"] @test Dict("foo" => "bar", "baz" => "zod") == data["args"] @test isnothing(data["json"]) @test haskey(data["headers"], "x-custom-header") @test data["headers"]["x-custom-header"] == "ding" @test "" == errormessage end function test_OPTIONS() curl = CurlEasy( url="https://postman-echo.com/get?foo=bar&baz=zod", method=CurlHTTP.OPTIONS, verbose=gbVerbose ) databuffer = UInt8[] res, http_status, errormessage = curl_execute(curl, "", ["X-Custom-Header: ding"]) do d if isa(d, Array{UInt8}) append!(databuffer, d) end end @test CURLE_OK == res @test 200 == http_status data = String(databuffer) @test "GET,HEAD,PUT,POST,DELETE,PATCH" == data @test "" == errormessage end function test_HEAD() curl = CurlEasy( url="https://postman-echo.com/get?foo=bar&baz=zod", method=CurlHTTP.HEAD, verbose=gbVerbose ) databuffer = UInt8[] res, http_status, errormessage = curl_execute(curl, "", ["X-Custom-Header: ding"]) do d if isa(d, Array{UInt8}) append!(databuffer, d) end end @test CURLE_OK == res @test 200 == http_status @test isempty(databuffer) @test "" == errormessage end function test_PUT() @test_throws ArgumentError("Method `PUT' is not currently supported") CurlEasy(method=CurlHTTP.PUT) end function test_POST() curl = CurlEasy( url="https://postman-echo.com/post", method=CurlHTTP.POST, verbose=gbVerbose ) requestBody = """{"testName":"test_POST"}""" errorbuffer = Array{UInt8}(undef, CURL_ERROR_SIZE) curl_easy_setopt(curl, CURLOPT_ERRORBUFFER, errorbuffer) curl_easy_setopt(curl, CURLOPT_POSTFIELDSIZE, length(requestBody)) curl_easy_setopt(curl, CURLOPT_COPYPOSTFIELDS, requestBody) curl_add_headers(curl, [ "Content-Type: application/json", "Content-Length: $(length(requestBody))" ]) res = curl_perform(curl) @test CURLE_OK == res end function test_writeCB() curl = CurlEasy( url="https://postman-echo.com/post", method=CurlHTTP.POST, verbose=gbVerbose, useragent="CurlHTTP Test" ) requestBody = """{"testName":"test_writeCB"}""" headers = ["Content-Type: application/json",] databuffer = UInt8[] res, http_status, errormessage = curl_execute(curl, requestBody, headers) do d if isa(d, Array{UInt8}) append!(databuffer, d) end end @test CURLE_OK == res @test 200 == http_status @test 2 * length(requestBody) < length(databuffer) # We expect requestBody to be repeated twice in the response data = JSON.parse(String(databuffer)) reqB = JSON.parse(requestBody) @test reqB == data["data"] == data["json"] @test "CurlHTTP Test" == data["headers"]["user-agent"] @test "" == errormessage end function test_headerCB() end function test_multiPOST() pool = CurlEasy[] for i in 1:3 local curl = CurlEasy( url="https://postman-echo.com/post?val=$i", method=CurlHTTP.POST, verbose=gbVerbose ) local requestBody = """{"testName":"test_multiPOST","value":$i}""" curl_easy_setopt(curl, CURLOPT_POSTFIELDSIZE, length(requestBody)) curl_easy_setopt(curl, CURLOPT_COPYPOSTFIELDS, requestBody) curl_add_headers(curl, [ "Content-Type: application/json", "Content-Length: $(length(requestBody))" ]) push!(pool, curl) end curl = CurlMulti(pool) res = curl_execute(curl) http_statuses = [p.userdata[:http_status] for p in curl.pool] @test CURLM_OK == res @test 3 == length(http_statuses) @test all(http_statuses .== 200) end function test_multi_writeCB() curl = CurlMulti() for i in 1:3 local easy = CurlEasy( url="https://postman-echo.com/post?val=$i", method=CurlHTTP.POST, verbose=gbVerbose, ) requestBody = """{"testName":"test_multi_writeCB","value":$i}""" headers = ["Content-Type: application/json", "X-App-Value: $(i*5)"] easy.userdata[:i] = i CurlHTTP.curl_setup_request_response( easy, requestBody, headers ) curl_multi_add_handle(curl, easy) end res = curl_execute(curl) responses = [p.userdata for p in curl.pool] @test CURLM_OK == res @test 3 == length(responses) @testset "Response $(p.userdata[:i])" for p in curl.pool r = p.userdata @test haskey(r, :http_status) @test r[:http_status] == 200 @test 2 * length(r[:requestBody]) < length(r[:databuffer]) data = JSON.parse(String(r[:databuffer])) reqB = JSON.parse(r[:requestBody]) @test reqB == data["data"] == data["json"] @test haskey(r, :errormessage) @test "" == r[:errormessage] @test CURLM_OK == curl_multi_remove_handle(curl, p.uuid) end @test nothing == curl_multi_remove_handle(curl, string(CurlHTTP.UUIDs.uuid4())) end function test_Certs() @test_throws ArgumentError("Could not find the certpath `foobar'") CurlEasy(certpath="foobar") @test_throws ArgumentError("Could not find the keypath `foobar'") CurlEasy(certpath=@__FILE__, keypath="foobar") @test CurlEasy(certpath=@__FILE__, keypath=@__FILE__) isa CurlEasy @test_throws ArgumentError("Could not find the cacertpath `foobar'") CurlEasy(cacertpath="foobar") @test CurlEasy(cacertpath=LibCURL.cacert) isa CurlEasy end function test_UrlEscape() @test "hello%20world%2C%20how%20are%20you%3F%20I%27m%20fine%21%20%23escape" == curl_url_escape("hello world, how are you? I'm fine! #escape") end @testset "Curl" begin @testset "GET" begin test_GET() test_GET_debug() test_GET_reuse() test_GET_useragent() end @testset "HEAD" begin test_HEAD() end @testset "HEAD" begin test_PUT() end @testset "DELETE" begin test_DELETE() end @testset "OPTIONS" begin test_OPTIONS() end @testset "POST" begin test_POST() end @testset "writeCB" begin test_writeCB() end @testset "headerCB" begin test_headerCB() end @testset "multiPOST" begin test_multiPOST() end @testset "multi writeCB" begin test_multi_writeCB() end @testset "Certs" begin test_Certs() end @testset "URL Escape" begin test_UrlEscape() end end
CurlHTTP
https://github.com/bluesmoon/CurlHTTP.jl.git
[ "MIT" ]
0.1.3
da9adb5a5f7826e63999c55458ccf73ae2de44ac
docs
2836
`CurlHTTP` is a wrapper around [LibCURL](https://github.com/JuliaWeb/LibCURL.jl) that provides a more Julia like interface to doing HTTP via `Curl`. [![GH Build](https://github.com/bluesmoon/CurlHTTP.jl/workflows/CI/badge.svg)](https://github.com/bluesmoon/CurlHTTP.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage Status](https://coveralls.io/repos/github/bluesmoon/CurlHTTP.jl/badge.svg?branch=)](https://coveralls.io/github/bluesmoon/CurlHTTP.jl?branch=) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://bluesmoon.github.io/CurlHTTP.jl/) In particular, this module implements the `CurlEasy` and `CurlMulti` interfaces for curl, and allows using Client TLS certificates. This module reexports `LibCURL` so everything available in `LibCURL` will be available when this module is used. See https://curl.se/libcurl/c/libcurl-tutorial.html for a tutorial on using libcurl in C. The Julia interface should be similar. # Examples ## GET a URL and read the response from the internal buffer ```julia using CurlHTTP curl = CurlEasy( url="https://postman-echo.com/get?foo=bar", method=CurlHTTP.GET, verbose=true ) res, http_status, errormessage = curl_execute(curl) # curl.userdata[:databuffer] is a Vector{UInt8} containing the bytes of the response responseBody = String(curl.userdata[:databuffer]) # curl.userdata[:responseHeaders] is a Vector{String} containing the response headers responseHeaders = curl.userdata[:responseHeaders] ``` ## POST to a URL and read the response with your own callback ```julia using CurlHTTP curl = CurlEasy( url="https://postman-echo.com/post", method=CurlHTTP.POST, verbose=true ) requestBody = "{\"testName\":\"test_writeCB\"}" headers = ["Content-Type: application/json"] databuffer = UInt8[] res, http_status, errormessage = curl_execute(curl, requestBody, headers) do d if isa(d, Array{UInt8}) append!(databuffer, d) end end responseBody = String(databuffer) ``` ## Multiple concurrent requests using CurlMulti ```julia using CurlHTTP curl = CurlMulti() for i in 1:3 local easy = CurlEasy( url="https://postman-echo.com/post?val=$i", method=CurlHTTP.POST, verbose=true, ) requestBody = "{\"testName\":\"test_multi_writeCB\",\"value\":$i}" headers = ["Content-Type: application/json", "X-App-Value: $(i*5)"] CurlHTTP.curl_setup_request_response( easy, requestBody, headers ) curl_multi_add_handle(curl, easy) end res = curl_execute(curl) responses = [p.userdata for p in curl.pool] # userdata contains response data, status code and error message ```
CurlHTTP
https://github.com/bluesmoon/CurlHTTP.jl.git
[ "MIT" ]
0.1.3
da9adb5a5f7826e63999c55458ccf73ae2de44ac
docs
648
# CurlHTTP.jl Documentation ```@docs CurlHTTP ``` ## Globals ```@docs CurlHTTP.DEFAULT_USER_AGENT ``` ## Exported Types ```@docs CurlHandle CurlEasy CurlMulti ``` ## Internal Types ```@docs CurlHTTP.HTTPMethod CurlHTTP.ChannelMarkers ``` ## Exported Methods ```@autodocs Modules=[CurlHTTP] Order=[:function] Filter=f -> which(CurlHTTP, Symbol(f)) == CurlHTTP Private=false ``` ## Methods extended from `LibCURL` ```@autodocs Modules=[CurlHTTP] Order=[:function] Filter=f -> which(CurlHTTP, Symbol(f)) == LibCURL Private=false ``` ## Internal Methods ```@autodocs Modules=[CurlHTTP] Order=[:function] Public=false ``` ## Index ```@index ```
CurlHTTP
https://github.com/bluesmoon/CurlHTTP.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
1507
# Source this script as e.g. # # include("PATH/TO/devrepl.jl") # # from *any* Julia REPL or run it as e.g. # # julia -i --banner=no PATH/TO/devrepl.jl # # from anywhere. This will change the current working directory and # activate/initialize the correct Julia environment for you. # # You may also run this in vscode to initialize a development REPL # using Pkg using Downloads: download ENV["GKSwstype"] = 100 cd(@__DIR__) Pkg.activate("test") function _instantiate() installorg_script = joinpath("..", "scripts", "installorg.jl") if !isfile(installorg_script) @warn "$(@__DIR__) should be inside the JuliaQuantumControl development environment. See https://github.com/JuliaQuantumControl/JuliaQuantumControl#readme" installorg_script = download( "https://raw.githubusercontent.com/JuliaQuantumControl/JuliaQuantumControl/master/scripts/installorg.jl", ) end if !isfile(joinpath("..", ".JuliaFormatter.toml")) download( "https://raw.githubusercontent.com/JuliaQuantumControl/JuliaQuantumControl/master/.JuliaFormatter.toml", ".JuliaFormatter.toml" ) end include(installorg_script) eval(:(installorg())) end if !isfile(joinpath("test", "Manifest.toml")) _instantiate() end include("test/init.jl") # Disable link-checking in interactive REPL, since it is the slowest part # of building the docs. ENV["DOCUMENTER_CHECK_LINKS"] = "0" if abspath(PROGRAM_FILE) == @__FILE__ help() end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
13756
#! format: off import QuantumControl import Documenter """Return a list of symbols for the names directly defined in `pkg`. This filters out re-exported names and sub-modules. By default, for `all=true`, both public (exported) and private names are included. With `all=false`, the list is filtered to include only exported names. """ function get_local_members(pkg; all=true) return [ m for m in names(pkg, all=all) if !( (startswith(String(m), "#")) || # compiler-generated names (getfield(pkg, m) isa Union{Dict,Array,Set}) || # global variable (m == Symbol(pkg)) || # the package itself (m == :eval) || # compiler-injected "eval" (m == :include) || # compiler-injected "include" ((getfield(pkg, m)) isa Module) || # sub-modules (_parentmodule(getfield(pkg, m), pkg)) ≠ pkg # re-exported ) ] end function _parentmodule(m, pkg) try parentmodule(m) catch return pkg end end """Return a list of symbols for all the sub-modules of `pkg`. """ function get_submodules(pkg) return [ m for m in names(pkg, all=true) if (getfield(pkg, m) isa Module) && !(m == Symbol(pkg)) ] end """Return the canonical fully qualified name of an object (function, type). Given e.g. a function object, it returns a string containing the canonical fully qualified name of the original function definition. """ function canonical_name(obj) mod = parentmodule(obj) modpath = fullname(mod) modname = join((String(sym) for sym in modpath), ".") objname = String(nameof(obj)) return "$modname.$objname" end quantum_control_members = [ m for m in names(QuantumControl) if (m ≠ :QuantumControl) && (m ∉ QuantumControl.DEPRECATED) ] quantum_control_local_members = filter( member -> member ∉ QuantumControl.DEPRECATED, get_local_members(QuantumControl, all=false) ) quantum_control_reexported_members = [ m for m in quantum_control_members if m ∉ quantum_control_local_members ] quantum_control_sub_modules = get_submodules(QuantumControl) subpackages = [ (:QuantumPropagators, "quantum_propagators.md"), ] outfile = joinpath(@__DIR__, "src", "api", "quantum_control.md") println("Generating API for QuantumControl in $outfile") open(outfile, "w") do out write(out, "```@meta\n") write(out, "EditURL = \"../../generate_api.jl\"\n") write(out, "```\n\n") write(out, "# [QuantumControl Public API](@id QuantumControlAPI)\n\n") write(out, """ This page summarizes the public API of the `QuantumControl` package. See also the [Index](@ref API-Index) of *all* symbols. QuantumControl exports the following symbols: """) for name ∈ quantum_control_local_members obj = getfield(QuantumControl, name) ref = canonical_name(obj) println(out, "* [`$name`](@ref $ref)") end write(out, """ and re-exports the following symbols either from its own [submodules](@ref public_submodules) or from [`QuantumPropagators`](@ref QuantumPropagatorsPackage): """) for name ∈ quantum_control_reexported_members obj = getfield(QuantumControl, name) ref = canonical_name(obj) println(out, "* [`$name`](@ref $ref)") end write(out, """ It also defines the following public, but unexported functions: * [`QuantumControl.set_default_ad_framework`](@ref) """) write(out, """ ### [Submodules](@id public_submodules) Each of the following submodules defines their own public API. Note that some of these submodules are re-exported from or extend submodules of [`QuantumPropagators`](@ref QuantumPropagatorsPackage). """) for submod in quantum_control_sub_modules write(out, "* [`QuantumControl.$(submod)`](@ref QuantumControl$(submod)API)\n") end for submod in quantum_control_sub_modules write(out, "\n\n### [`QuantumControl.$submod`](@id QuantumControl$(submod)API)\n\n") for name in names(getfield(QuantumControl, submod)) if name ≠ submod obj = getfield(getfield(QuantumControl, submod), name) ref = canonical_name(obj) println(out, "* [`QuantumControl.$submod.$name`](@ref $ref)") end end end write(out, """ ### Subpackages `QuantumControl` contains the following sub-packages from the [JuliaQuantumControl](https://github.com/JuliaQuantumControl) organization: """) for (pkgname::Symbol, outfilename) in subpackages local outfile = joinpath(@__DIR__, "src", "api", outfilename) write(out, "* [`$pkgname`](@ref $(pkgname)Package)\n") end end local_module_api_id(mod) = replace("$mod", "." => "") * "LocalAPI" function write_module_api(out, mod, description="") members = [ m for m in names(mod) if !( (String(Symbol(mod)) |> endswith(".$m")) || m == Symbol(mod) ) ] public_members = get_local_members(mod, all=false) all_local_members = get_local_members(mod, all=true) documented_members = [ k.var for k in keys(Documenter.DocSystem.getmeta(mod)) ] documented_private_members = [ name for name in documented_members if (name ∉ public_members) && (name ∈ all_local_members) ] reexported_members = [ m for m in members if m ∉ public_members ] write(out, "\n\n## [`$mod`](@id $(local_module_api_id(mod)))\n\n") if length(description) > 0 write(out, "\n\n") write(out, description) write(out, "\n\n") end if length(public_members) > 0 write(out, "\nPublic Symbols:\n\n") for name ∈ public_members println(out, "* [`$name`](@ref $mod.$name)") end write(out, "\n") end if length(reexported_members) > 0 write(out, "\nRe-exported Symbols:\n\n") for name ∈ reexported_members obj = getfield(mod, name) ref = canonical_name(obj) println(out, "* [`$name`](@ref $ref)") end write(out, "\n") end if length(documented_private_members) > 0 write(out, "\nPrivate Symbols:\n") for name ∈ documented_private_members println(out, "* [`$name`](@ref $mod.$name)") end write(out, "\n") end if length(public_members) > 0 write(out, "\n\n#### Public Symbols\n\n") println(out, "```@docs") for name ∈ public_members println(out, "$mod.$name") end println(out, "```") end if length(documented_private_members) > 0 write(out, "\n\n#### Private Symbols\n\n") println(out, "```@docs") for name ∈ documented_private_members println(out, "$mod.$name") end println(out, "```") end end outfile = joinpath(@__DIR__, "src", "api", "reference.md") println("Generating local reference for QuantumControl in $outfile") open(outfile, "w") do out write(out, "```@meta\n") write(out, "EditURL = \"../../generate_api.jl\"\n") write(out, "```\n\n") write(out, raw""" # API Reference This page provides *all* docstrings locally defined in the `QuantumControl` package for both private and public symbols. See also the summary of the [public API](@ref QuantumControlAPI). `QuantumControl` exposes local [exported](@ref quantumcontrol-local-symbols) and [unexported](@ref quantumcontrol-local-unexported-symbols) local symbols as well as re-exporting symbols and sub-modules from the [QuantumPropagators](@ref QuantumPropagatorsPackage) subpackage and some of its submodules. The [`QuantumControl` submodules](@ref quantumcontrol-submodules) provide additional public functionality. Note that some of the most commonly used symbols from `QuantumControl`'s submodules may also be re-exported at the top-level (such as [`@optimize_or_load`](@ref) from the [`QuantumControl.Workflows`](@ref QuantumControlWorkflowsAPI) submodule). """) write(out, raw""" ## [Local Exported Symbols](@id quantumcontrol-local-symbols) """) println(out, "```@docs") for name ∈ quantum_control_local_members println(out, "QuantumControl.$name") end println(out, "```") write(out, raw""" ## [Local Unexported Symbols](@id quantumcontrol-local-unexported-symbols) ```@docs QuantumControl.set_default_ad_framework QuantumControl.AbstractOptimizationResult ``` """) write(out, raw""" ``\gdef\tgt{\text{tgt}}`` ``\gdef\tr{\operatorname{tr}}`` ``\gdef\Re{\operatorname{Re}}`` ``\gdef\Im{\operatorname{Im}}`` ## [List of Submodules](@id quantumcontrol-submodules) `QuantumControl` has the following sub-modules: """) for name in quantum_control_sub_modules write(out, "* [`QuantumControl.$name`](#$(local_module_api_id(getfield(QuantumControl, name))))\n") end for name in quantum_control_sub_modules write_module_api(out, getfield(QuantumControl, name)) end end outfile = joinpath(@__DIR__, "src", "api", "quantum_control_index.md") println("Generating index for QuantumControl in $outfile") open(outfile, "w") do out write(out, "```@meta\n") write(out, "EditURL = \"../../generate_api.jl\"\n") write(out, "```\n\n") write(out, raw""" # [API Index](@id API-Index) ```@index ``` """) end for (pkgname::Symbol, outfilename) in subpackages local outfile = joinpath(@__DIR__, "src", "api", outfilename) println("Generating API for $pkgname in $outfile") open(outfile, "w") do out pkg = getfield(QuantumControl, pkgname) all_local_members = get_local_members(pkg) public_members = get_local_members(pkg, all=false) documented_members = [ k.var for k in keys(Documenter.DocSystem.getmeta(pkg)) ] documented_private_members = [ name for name in documented_members if (name ∉ public_members) && (name ∈ all_local_members) ] write(out, "```@meta\n") write(out, "EditURL = \"../../generate_api.jl\"\n") write(out, "```\n\n") write(out, "\n\n# [$pkgname Package](@id $(pkgname)Package)\n\n") write(out, "## Package Index\n\n") write(out, raw""" ``\gdef\tgt{\text{tgt}}`` ``\gdef\tr{\operatorname{tr}}`` ``\gdef\Re{\operatorname{Re}}`` ``\gdef\Im{\operatorname{Im}}`` """) write(out, """ ```@index Pages = ["$outfilename"] ``` """) write(out, "\n\n## [`$pkgname`](@id $(pkgname)API)\n\n") if length(public_members) > 0 write(out, "\nPublic Symbols:\n\n") for name in public_members write(out, "* [`$name`](@ref $pkgname.$name)\n") end end if length(documented_private_members) > 0 write(out, "\nPrivate Symbols:\n\n") for name in documented_private_members write(out, "* [`$name`](@ref $pkgname.$name)\n") end end sub_modules = get_submodules(pkg) if length(sub_modules) > 0 write(out, "\nSubmodules:\n\n") for submodname in sub_modules write(out, "* [`$pkgname.$submodname`](#$(pkgname)$(submodname)API)\n") end end if length(public_members) + length(documented_private_members) > 0 write(out, "\n### Reference\n\n") write(out, "\n```@docs\n") for name in public_members write(out, "$pkgname.$name\n") end for name in documented_private_members write(out, "$pkgname.$name\n") end write(out, "```\n\n") end for submodname in sub_modules submod = getfield(pkg, submodname) all_local_members = get_local_members(submod) public_members = get_local_members(submod, all=false) documented_members = [ k.var for k in keys(Documenter.DocSystem.getmeta(submod)) ] documented_private_members = [ name for name in documented_members if (name ∉ public_members) && (name ∈ all_local_members) ] if length(public_members) + length(documented_private_members) > 0 write(out, "\n## [`$pkgname.$submodname`](@id $(pkgname)$(submodname)API)\n\n") end if length(public_members) > 0 write(out, "\nPublic:\n\n") for name in public_members write(out, "* [`$name`](@ref $pkgname.$submodname.$name)\n") end end if length(documented_private_members) > 0 write(out, "\nPrivate:\n\n") for name in documented_private_members write(out, "* [`$name`](@ref $pkgname.$submodname.$name)\n") end end if length(public_members) + length(documented_private_members) > 0 write(out, "\n### Reference\n\n") write(out, "\n```@docs\n") for name in public_members write(out, "$pkgname.$submodname.$name\n") end for name in documented_private_members write(out, "$pkgname.$submodname.$name\n") end write(out, "```\n\n") end end end end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
4508
using Pkg using Documenter using QuantumPropagators using QuantumControl using QuantumControl.Shapes using QuantumControl.Functionals using QuantumControl.Generators using Krotov using GRAPE import OrdinaryDiffEq # ensure ODE extension is loaded using Documenter.HTMLWriter: KaTeX using DocumenterCitations using DocumenterInterLinks PROJECT_TOML = Pkg.TOML.parsefile(joinpath(@__DIR__, "..", "Project.toml")) VERSION = PROJECT_TOML["version"] NAME = PROJECT_TOML["name"] AUTHORS = join(PROJECT_TOML["authors"], ", ") * " and contributors" GITHUB = "https://github.com/JuliaQuantumControl/QuantumControl.jl" DEV_OR_STABLE = "stable/" if endswith(VERSION, "dev") DEV_OR_STABLE = "dev/" end function org_inv(pkgname) objects_inv = joinpath(@__DIR__, "..", "..", "$pkgname.jl", "docs", "build", "objects.inv") if isfile(objects_inv) return ("https://juliaquantumcontrol.github.io/$pkgname.jl/dev/", objects_inv,) else return "https://juliaquantumcontrol.github.io/$pkgname.jl/$DEV_OR_STABLE" end end links = InterLinks( "Julia" => ( "https://docs.julialang.org/en/v1/", "https://docs.julialang.org/en/v1/objects.inv", joinpath(@__DIR__, "src", "inventories", "Julia.toml"), ), "TimerOutputs" => ( "https://github.com/KristofferC/TimerOutputs.jl", joinpath(@__DIR__, "src", "inventories", "TimerOutputs.toml") ), "Examples" => "https://juliaquantumcontrol.github.io/QuantumControlExamples.jl/$DEV_OR_STABLE", "Krotov" => org_inv("Krotov"), "GRAPE" => org_inv("GRAPE"), "QuantumPropagators" => org_inv("QuantumPropagators"), "QuantumGradientGenerators" => org_inv("QuantumGradientGenerators"), "ComponentArrays" => ( "https://jonniedie.github.io/ComponentArrays.jl/stable/", "https://jonniedie.github.io/ComponentArrays.jl/stable/objects.inv", joinpath(@__DIR__, "src", "inventories", "ComponentArrays.toml") ), "RecursiveArrayTools" => ( "https://docs.sciml.ai/RecursiveArrayTools/stable/", "https://docs.sciml.ai/RecursiveArrayTools/stable/objects.inv", joinpath(@__DIR__, "src", "inventories", "RecursiveArrayTools.toml") ), ) println("Starting makedocs") include("generate_api.jl") bib = CitationBibliography(joinpath(@__DIR__, "src", "refs.bib"); style=:numeric) warnonly = [:linkcheck,] if get(ENV, "DOCUMENTER_WARN_ONLY", "0") == "1" # cf. test/init.jl warnonly = true end makedocs(; plugins=[bib, links], authors=AUTHORS, sitename="QuantumControl.jl", # Link checking is disabled in REPL, see `devrepl.jl`. linkcheck=(get(ENV, "DOCUMENTER_CHECK_LINKS", "1") != "0"), warnonly, doctest=false, # doctests run as part of test suite format=Documenter.HTML(; prettyurls=true, canonical="https://juliaquantumcontrol.github.io/QuantumControl.jl", assets=[ "assets/custom.css", "assets/citations.css", asset( "https://juliaquantumcontrol.github.io/QuantumControl.jl/dev/assets/topbar/topbar.css" ), asset( "https://juliaquantumcontrol.github.io/QuantumControl.jl/dev/assets/topbar/topbar.js" ), ], mathengine=KaTeX( Dict( :macros => Dict( "\\Op" => "\\hat{#1}", "\\ket" => "\\vert#1\\rangle", "\\bra" => "\\langle#1\\vert", "\\Im" => "\\operatorname{Im}", "\\Re" => "\\operatorname{Re}", ), ), ), footer="[$NAME.jl]($GITHUB) v$VERSION docs powered by [Documenter.jl](https://github.com/JuliaDocs/Documenter.jl).", size_threshold=1024 * 1024, ), pages=[ "Home" => "index.md", "Glossary" => "glossary.md", "Overview" => "overview.md", "Control Methods" => "methods.md", "Howto" => "howto.md", "Examples" => "examples/index.md", "API" => [ "QuantumControl" => "api/quantum_control.md", "Reference" => "api/reference.md", "Subpackages" => ["QuantumPropagators" => "api/quantum_propagators.md",], "Externals" => "api_externals.md", "Index" => "api/quantum_control_index.md", ], "References" => "references.md", ] ) println("Finished makedocs") deploydocs(; repo="github.com/JuliaQuantumControl/QuantumControl.jl")
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
3484
module QuantumControlFiniteDifferencesExt using LinearAlgebra import FiniteDifferences import QuantumControl.Functionals: _default_chi_via, make_gate_chi, make_automatic_chi, make_automatic_grad_J_a function make_automatic_chi( J_T, trajectories, ::Val{:FiniteDifferences}; via=_default_chi_via(trajectories) ) # TODO: Benchmark if χ should be closure, see QuantumControlZygoteExt.jl function fdm_chi_via_states(Ψ, trajectories) function _J_T(Ψ...) -J_T(Ψ, trajectories) end fdm = FiniteDifferences.central_fdm(5, 1) χ = Vector{eltype(Ψ)}(undef, length(Ψ)) ∇J = FiniteDifferences.grad(fdm, _J_T, Ψ...) for (k, ∇Jₖ) ∈ enumerate(∇J) χ[k] = 0.5 * ∇Jₖ # ½ corrects for gradient vs Wirtinger deriv # axpby!(0.5, ∇Jₖ, false, χ[k]) end return χ end function fdm_chi_via_tau(Ψ, trajectories; tau=nothing, τ=tau) if isnothing(τ) msg = "`chi` returned by `make_chi` with `via=:tau` requires keyword argument tau/τ" throw(ArgumentError(msg)) end function _J_T(τ...) -J_T(Ψ, trajectories; tau=τ) end fdm = FiniteDifferences.central_fdm(5, 1) χ = Vector{eltype(Ψ)}(undef, length(Ψ)) ∇J = FiniteDifferences.grad(fdm, _J_T, τ...) for (k, traj) ∈ enumerate(trajectories) ∂J╱∂τ̄ₖ = 0.5 * ∇J[k] # ½ corrects for gradient vs Wirtinger deriv χ[k] = ∂J╱∂τ̄ₖ * traj.target_state # axpby!(∂J╱∂τ̄ₖ, traj.target_state, false, χ[k]) end return χ end if via ≡ :states return fdm_chi_via_states elseif via ≡ :tau Ψ_tgt = [traj.target_state for traj in trajectories] if any(isnothing.(Ψ_tgt)) error("`via=:tau` requires that all trajectories define a `target_state`") end τ_tgt = ones(ComplexF64, length(trajectories)) Ψ_undef = similar(Ψ_tgt) if abs(J_T(Ψ_tgt, trajectories) - J_T(Ψ_undef, trajectories; tau=τ_tgt)) > 1e-12 msg = "`via=:tau` in `make_chi` requires that `J_T`=$(repr(J_T)) can be evaluated solely via `tau`" error(msg) end return fdm_chi_via_tau else msg = "`via` must be either `:states` or `:tau`, not $(repr(via))" throw(ArgumentError(msg)) end end function make_automatic_grad_J_a(J_a, tlist, ::Val{:FiniteDifferences}) function automatic_grad_J_a(pulsevals, tlist) func = pulsevals -> J_a(pulsevals, tlist) fdm = FiniteDifferences.central_fdm(5, 1) ∇J_a_fdm = FiniteDifferences.grad(fdm, func, pulsevals)[1] return ∇J_a_fdm end return automatic_grad_J_a end function make_gate_chi(J_T_U, trajectories, ::Val{:FiniteDifferences}; kwargs...) function fdm_gate_chi(Ψ, trajectories) function _J_T(U) -J_T_U(U; kwargs...) end N = length(trajectories) χ = Vector{eltype(Ψ)}(undef, N) # We assume that that the initial states of the trajectories are the # logical basis states U = [trajectories[i].initial_state ⋅ Ψ[j] for i = 1:N, j = 1:N] fdm = FiniteDifferences.central_fdm(5, 1) ∇J = FiniteDifferences.grad(fdm, gate -> _J_T(gate), U)[1] for k = 1:N χ[k] = 0.5 * sum([∇J[i, k] * trajectories[i].initial_state for i = 1:N]) end return χ end return fdm_gate_chi end end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
3392
module QuantumControlZygoteExt using LinearAlgebra import Zygote import QuantumControl.Functionals: _default_chi_via, make_gate_chi, make_automatic_chi, make_automatic_grad_J_a function make_automatic_chi( J_T, trajectories, ::Val{:Zygote}; via=_default_chi_via(trajectories) ) # TODO: At some point, for a large system, we could benchmark if there is # any benefit to making χ a closure and using LinearAlgebra.axpby! to # overwrite it in-place if all states are mutable. function zygote_chi_via_states(Ψ, trajectories) # The kwargs swallow any `tau` keyword argument function _J_T(Ψ...) -J_T(Ψ, trajectories) end χ = Vector{eltype(Ψ)}(undef, length(Ψ)) ∇J = Zygote.gradient(_J_T, Ψ...) for (k, ∇Jₖ) ∈ enumerate(∇J) χ[k] = 0.5 * ∇Jₖ # ½ corrects for gradient vs Wirtinger deriv # axpby!(0.5, ∇Jₖ, false, χ[k]) end return χ end function zygote_chi_via_tau(Ψ, trajectories; tau=nothing, τ=tau) if isnothing(τ) msg = "`chi` returned by `make_chi` with `via=:tau` requires keyword argument tau/τ" throw(ArgumentError(msg)) end function _J_T(τ...) -J_T(Ψ, trajectories; tau=τ) end χ = Vector{eltype(Ψ)}(undef, length(Ψ)) ∇J = Zygote.gradient(_J_T, τ...) for (k, traj) ∈ enumerate(trajectories) ∂J╱∂τ̄ₖ = 0.5 * ∇J[k] # ½ corrects for gradient vs Wirtinger deriv χ[k] = ∂J╱∂τ̄ₖ * traj.target_state # axpby!(∂J╱∂τ̄ₖ, traj.target_state, false, χ[k]) end return χ end if via ≡ :states return zygote_chi_via_states elseif via ≡ :tau Ψ_tgt = [traj.target_state for traj in trajectories] if any(isnothing.(Ψ_tgt)) error("`via=:tau` requires that all trajectories define a `target_state`") end τ_tgt = ones(ComplexF64, length(trajectories)) Ψ_undef = similar(Ψ_tgt) if abs(J_T(Ψ_tgt, trajectories) - J_T(Ψ_undef, trajectories; tau=τ_tgt)) > 1e-12 msg = "`via=:tau` in `make_chi` requires that `J_T`=$(repr(J_T)) can be evaluated solely via `tau`" error(msg) end return zygote_chi_via_tau else msg = "`via` must be either `:states` or `:tau`, not $(repr(via))" throw(ArgumentError(msg)) end end function make_automatic_grad_J_a(J_a, tlist, ::Val{:Zygote}) function automatic_grad_J_a(pulsevals, tlist) func = pulsevals -> J_a(pulsevals, tlist) ∇J_a_zygote = Zygote.gradient(func, pulsevals)[1] return ∇J_a_zygote end return automatic_grad_J_a end function make_gate_chi(J_T_U, trajectories, ::Val{:Zygote}; kwargs...) function zygote_gate_chi(Ψ, trajectories) function _J_T(U) -J_T_U(U; kwargs...) end N = length(trajectories) χ = Vector{eltype(Ψ)}(undef, N) # We assume that that the initial states of the trajectories are the # logical basis states U = [trajectories[i].initial_state ⋅ Ψ[j] for i = 1:N, j = 1:N] ∇J = Zygote.gradient(gate -> _J_T(gate), U)[1] for k = 1:N χ[k] = 0.5 * sum([∇J[i, k] * trajectories[i].initial_state for i = 1:N]) end return χ end return zygote_gate_chi end end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
2604
#! format: off module QuantumControl include("reexport.jl") using QuantumPropagators @reexport_members(QuantumPropagators) module Generators # we need `QuantumPropagators.Generators` to be available under a name that # doesn't clash with `QuantumControl.Generators` in order for the # `@reexport_members` macro to work correctly using QuantumPropagators: Generators as QuantumPropagators_Generators using QuantumPropagators.Generators include("reexport.jl") @reexport_members(QuantumPropagators_Generators) end module Controls using QuantumPropagators: Controls as QuantumPropagators_Controls using QuantumPropagators.Controls include("reexport.jl") @reexport_members(QuantumPropagators_Controls) include("derivs.jl") export get_control_deriv, get_control_derivs end module Shapes using QuantumPropagators: Shapes as QuantumPropagators_Shapes using QuantumPropagators.Shapes include("reexport.jl") @reexport_members(QuantumPropagators_Shapes) end module Storage using QuantumPropagators: Storage as QuantumPropagators_Storage using QuantumPropagators.Storage include("reexport.jl") @reexport_members(QuantumPropagators_Storage) end module Amplitudes using QuantumPropagators: Amplitudes as QuantumPropagators_Amplitudes using QuantumPropagators.Amplitudes include("reexport.jl") @reexport_members(QuantumPropagators_Amplitudes) end module Interfaces using QuantumPropagators.Interfaces: check_state, check_operator, check_control, check_parameterized_function, check_parameterized, supports_inplace export check_state, check_operator, check_control, check_parameterized_function, check_parameterized, supports_inplace include("interfaces/amplitude.jl") include("interfaces/generator.jl") export check_generator, check_amplitude end include("pulse_parameterizations.jl") # submodule PulseParameterizations include("functionals.jl") # submodule Functionals include("print_versions.jl") include("set_default_ad_framework.jl") include("result.jl") include("deprecate.jl") include("atexit.jl") include("conditionalthreads.jl") include("trajectories.jl") include("control_problem.jl") include("propagate.jl") include("callbacks.jl") include("optimize.jl") export ControlProblem, Trajectory, optimize, propagate_trajectory export propagate_trajectories include("workflows.jl") # submodule Workflows using .Workflows: run_or_load, @optimize_or_load, save_optimization, load_optimization export run_or_load, @optimize_or_load, save_optimization, load_optimization end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
2382
using JLD2: jldopen """ Register a callback to dump a running optimization to disk on unexpected exit. A long-running optimization routine may use ```julia if !isnothing(atexit_filename) set_atexit_save_optimization( atexit_filename, result; msg_property=:message, msg="Abort: ATEXIT" ) # ... popfirst!(Base.atexit_hooks) # remove callback end ``` to register a callback that writes the given `result` object to the given `filename` in JLD2 format in the event that the program terminates unexpectedly. The idea is to avoid data loss if the user presses `CTRL-C` in a non-interactive program (`SIGINT`), or if the process receives a `SIGTERM` from an HPC scheduler because the process has reached its allocated runtime limit. Note that the callback cannot protect against data loss in all possible scenarios, e.g., a `SIGKILL` will terminate the program without giving the callback a chance to run (as will yanking the power cord). As in the above example, the optimization routine should make `set_atexit_save_optimization` conditional on an `atexit_filename` keyword argument, which is what `QuantumControl.@optimize_or_load` will pass to the optimization routine. The optimization routine must remove the callback from `Base.atexit_hooks` when it exits normally. Note that in an interactive context, `CTRL-C` will throw an `InterruptException`, but not cause a shutdown. Optimization routines that want to prevent data loss in this situation should handle the `InterruptException` and return `result`, in addition to using `set_atexit_save_optimization`. If `msg_property` is not `nothing`, the given `msg` string will be stored in the corresponding property of the (mutable) `result` object before it is written out. The resulting JLD2 file is compatible with `QuantumControl.load_optimization`. """ function set_atexit_save_optimization( filename, result; msg_property=:message, msg="Abort: ATEXIT" ) function dump_on_exit() if !isnothing(msg_property) setproperty!(result, msg_property, msg) end jldopen(filename, "w") do data data["result"] = result end end # the callback might not have very much time to run, so it's best to # precompile and save a few seconds later on when it matters. precompile(dump_on_exit, ()) atexit(dump_on_exit) end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
2678
""" Construct a method-specific automatic callback for printing iter information. ```julia print_iters = make_print_iters(Method; kwargs...) ``` constructs the automatic callback to be used by `optimize(problem; method=Method, print_iters=true)` to print information after each iteration. The keyword arguments are those used to instantiate `problem` and those explicitly passed to [`optimize`](@ref). Optimization methods should implement `make_print_iters(::Val{:Method}; kwargs...)` where `:Method` is the name of the module/package implementing the method. """ function make_print_iters(method::Module; kwargs...) return make_print_iters(nameof(method); kwargs...) end function make_print_iters(method::Symbol; kwargs...) # Optimization packages must implement # # make_print_iters(method::Val{name}; kwargs...) # return make_print_iters(Val(method); kwargs...) end # If a package does not implement make_print_iters, nothing will be printed function make_print_iters(method::Val; kwargs...) return nothing end """Combine multiple `callback` functions. ```julia chain_callbacks(funcs...) ``` combines `funcs` into a single Function that can be passes as `callback` to [`ControlProblem`](@ref) or any `optimize`-function. Each function in `func` must be a suitable `callback` by itself. This means that it should receive the optimization workspace object as its first positional parameter, then positional parameters specific to the optimization method, and then an arbitrary number of data parameters. It must return either `nothing` or a tuple of "info" objects (which will end up in the `records` field of the optimization result). When chaining callbacks, the `funcs` will be called in series, and the "info" objects will be accumulated into a single result tuple. The combined results from previous `funcs` will be given to the subsequent `funcs` as data parameters. This allows for the callbacks in the chain to communicate. The chain will return the final combined result tuple, or `nothing` if all `funcs` return `nothing`. !!! note When calling [`optimize`](@ref), any `callback` that is a tuple will be automatically processed with `chain_callbacks`. Thus, `chain_callbacks` rarely has to be invoked manually. """ function chain_callbacks(funcs...) function _callback(args...) res = Tuple([]) for f in funcs res_f = f(args..., res...) if !isnothing(res_f) res = (res..., res_f...) end end if length(res) == 0 return nothing else return res end end return _callback end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
1070
using Base.Threads using Base.Threads: threadid, threading_run @static if Base.VERSION ≥ v"1.9-rc1" using Base.Threads: threadpoolsize end """Conditionally apply multi-threading to `for` loops. This is a variation on `Base.Threads.@threads` that adds a run-time boolean flag to enable or disable threading. It is intended for *internal use* in packages building on `QuantumControl`. Usage: ```julia using QuantumControl: @threadsif function optimize(trajectories; use_threads=true) @threadsif use_threads for k = 1:length(trajectories) # ... end end ``` """ macro threadsif(cond, loop) if !(isa(loop, Expr) && loop.head === :for) throw(ArgumentError("@threadsif requires a `for` loop expression")) end if !(loop.args[1] isa Expr && loop.args[1].head === :(=)) throw(ArgumentError("nested outer loops are not currently supported by @threadsif")) end quote if $(esc(cond)) $(Threads._threadsfor(loop.args[1], loop.args[2], :static)) else $(esc(loop)) end end end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
3256
import QuantumPropagators.Controls: get_controls, get_parameters, substitute """A full control problem with multiple trajectories. ```julia ControlProblem( trajectories, tlist; kwargs... ) ``` The `trajectories` are a list of [`Trajectory`](@ref) instances, each defining an initial state and a dynamical generator for the evolution of that state. Usually, the trajectory will also include a target state (see [`Trajectory`](@ref)) and possibly a weight. The `trajectories` may also be given together with `tlist` as a mandatory keyword argument. The `tlist` is the time grid on which the time evolution of the initial states of each trajectory should be propagated. It may also be given as a (mandatory) keyword argument. The remaining `kwargs` are keyword arguments that are passed directly to the optimal control method. These typically include e.g. the optimization functional. The control problem is solved by finding a set of controls that minimize an optimization functional over all trajectories. """ struct ControlProblem trajectories::Vector{<:Trajectory} tlist::Vector{Float64} kwargs::Dict{Symbol,Any} function ControlProblem(trajectories, tlist; kwargs...) kwargs_dict = Dict{Symbol,Any}(kwargs) new(trajectories, tlist, kwargs_dict) end end ControlProblem(trajectories; tlist, kwargs...) = ControlProblem(trajectories, tlist; kwargs...) ControlProblem(; trajectories, tlist, kwargs...) = ControlProblem(trajectories, tlist; kwargs...) function Base.summary(io::IO, problem::ControlProblem) N = length(problem.trajectories) nt = length(problem.tlist) print(io, "ControlProblem with $N trajectories and $nt time steps") end function Base.show(io::IO, mime::MIME"text/plain", problem::ControlProblem) println(io, summary(problem)) println(io, " trajectories:") for traj in problem.trajectories println(io, " ", summary(traj)) end t = problem.tlist if length(t) > 5 println(io, " tlist: [", t[begin], ", ", t[begin+1], " … ", t[end], "]") else print(io, " tlist: ") show(io, t) print(io, "\n") end if !isempty(problem.kwargs) println(io, " kwargs:") buffer = IOBuffer() show(buffer, mime, problem.kwargs) for line in split(String(take!(buffer)), "\n")[2:end] println(io, " ", line) end end end function Base.copy(problem::ControlProblem) return ControlProblem(problem.trajectories, problem.tlist; problem.kwargs...) end """ ```julia controls = get_controls(problem) ``` extracts the controls from `problem.trajectories`. """ get_controls(problem::ControlProblem) = get_controls(problem.trajectories) """ ```julia parameters = get_parameters(problem) ``` extracts the `parameters` from `problem.trajectories`. """ get_parameters(problem::ControlProblem) = get_parameters(problem.trajectories) """ ```julia problem = substitute(problem::ControlProblem, replacements) ``` substitutes in `problem.trajectories` """ function substitute(problem::ControlProblem, replacements) return ControlProblem( substitute(problem.trajectories, replacements), problem.tlist; problem.kwargs... ) end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
685
# COV_EXCL_START OBJECTIVE_MSG = """ `Objective` has been renamed to `Trajectory`. This also affects related parts of the API. for examples, `propagate_objectives` has been renamed to `propagate_trajectories` and the `objectives` keyword argument in `ControlProblem` is now as `trajectories` keyword or positional argument. """ DEPRECATED = [:Objective, :propagate_objectives] function Objective(args...; kwargs...) @error OBJECTIVE_MSG return Trajectory(args...; kwargs...) end function propagate_objectives(args...; kwargs...) @error OBJECTIVE_MSG return propagate_trajectories(args...; kwargs...) end export Objective export propagate_objectives # COV_EXCL_STOP
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
3513
using QuantumPropagators.Generators: Generator, Operator, _make_generator, evaluate using QuantumPropagators.Amplitudes: LockedAmplitude, ShapedAmplitude """Get a vector of the derivatives of `generator` w.r.t. each control. ```julia get_control_derivs(generator, controls) ``` return as vector containing the derivative of `generator` with respect to each control in `controls`. The elements of the vector are either `nothing` if `generator` does not depend on that particular control, or a function `μ(α)` that evaluates the derivative for a particular value of the control, see [`get_control_deriv`](@ref). """ function get_control_derivs(generator, controls) controlderivs = [] for (i, control) in enumerate(controls) push!(controlderivs, get_control_deriv(generator, control)) end return [controlderivs...] # narrow eltype end get_control_derivs(operator::AbstractMatrix, controls) = [nothing for c ∈ controls] get_control_derivs(operator::Operator, controls) = [nothing for c ∈ controls] @doc raw""" Get the derivative of the generator ``G`` w.r.t. the control ``ϵ(t)``. ```julia μ = get_control_deriv(generator, control) ``` returns `nothing` if the `generator` (Hamiltonian or Liouvillian) does not depend on `control`, or a generator ```math μ = \frac{∂G}{∂ϵ(t)} ``` otherwise. For linear control terms, `μ` will be a static operator, e.g. an `AbstractMatrix` or an [`Operator`](@ref). For non-linear controls, `μ` will be time-dependent, e.g. a [`Generator`](@ref). In either case, [`evaluate`](@ref) should be used to evaluate `μ` into a constant operator for particular values of the controls and a particular point in time. For constant generators, e.g. an [`Operator`](@ref), the result is always `nothing`. """ function get_control_deriv(generator::Tuple, control) return get_control_deriv(_make_generator(generator...), control) end function get_control_deriv(generator::Generator, control) terms = [] drift_offset = length(generator.ops) - length(generator.amplitudes) for (i, ampl) in enumerate(generator.amplitudes) ∂a╱∂ϵ = get_control_deriv(ampl, control) if ∂a╱∂ϵ == 0.0 continue elseif ∂a╱∂ϵ == 1.0 mu_op = generator.ops[i+drift_offset] push!(terms, mu_op) else mu_op = generator.ops[i+drift_offset] push!(terms, (mu_op, ∂a╱∂ϵ)) end end if length(terms) == 0 return nothing else return _make_generator(terms...) end end @doc raw""" ```julia a = get_control_deriv(ampl, control) ``` returns the derivative ``∂a_l(t)/∂ϵ_{l'}(t)`` of the given amplitude ``a_l(\{ϵ_{l''}(t)\}, t)`` with respect to the given control ``ϵ_{l'}(t)``. For "trivial" amplitudes, where ``a_l(t) ≡ ϵ_l(t)``, the result with be either `1.0` or `0.0` (depending on whether `ampl ≡ control`). For non-trivial amplitudes, the result may be another amplitude that depends on the controls and potentially on time, but can be evaluated to a constant with [`evaluate`](@ref). """ get_control_deriv(ampl::Function, control) = (ampl ≡ control) ? 1.0 : 0.0 get_control_deriv(ampl::Vector, control) = (ampl ≡ control) ? 1.0 : 0.0 get_control_deriv(operator::AbstractMatrix, control) = nothing get_control_deriv(operator::Operator, control) = nothing # Amplitudes get_control_deriv(ampl::LockedAmplitude, control) = 0.0 get_control_deriv(ampl::ShapedAmplitude, control) = (control ≡ ampl.control) ? LockedAmplitude(ampl.shape) : 0.0
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
27294
module Functionals export J_T_ss, J_T_sm, J_T_re export J_a_fluence export gate_functional export make_gate_chi export make_grad_J_a, make_chi using LinearAlgebra: axpy!, dot # default for `via` argument of `make_chi` function _default_chi_via(trajectories) if any(isnothing(traj.target_state) for traj in trajectories) return :states else return :tau end end """Overlaps of target states with propagates states ```julia τ = taus(Ψ, trajectories) ``` calculates a vector of values ``τ_k = ⟨Ψ_k^{tgt}|Ψ_k⟩`` where ``|Ψ_k^{tgt}⟩`` is the `traj.target_state` of the ``k``'th element of `trajectories` and ``|Ψₖ⟩`` is the ``k``'th element of `Ψ`. The definition of the τ values with ``Ψ_k^{tgt}`` on the left (overlap of target states with propagated states, as opposed to overlap of propagated states with target states) matches Refs. [PalaoPRA2003](@cite) and [GoerzQ2022](@cite). The function requires that each trajectory defines a target state. See also [`taus!`](@ref) for an in-place version that includes well-defined error handling for any trajectories whose `target_state` property is `nothing`. """ function taus(Ψ, trajectories) # This function does not delegate to `taus!`, in order to make it # compatible with automatic differentiation, which doesn't support # mutation. return [dot(traj.target_state, Ψₖ) for (traj, Ψₖ) in zip(trajectories, Ψ)] end """Overlaps of target states with propagates states, calculated in-place. ```julia taus!(τ, Ψ, trajectories; ignore_missing_target_state=false) ``` overwrites the complex vector `τ` with the results of [`taus(Ψ, trajectories)`](@ref taus). Throws an `ArgumentError` if any of trajectories have a `target_state` of `nothing`. If `ignore_missing_target_state=true`, values in `τ` instead will remain unchanged for any trajectories with a missing target state. """ function taus!(τ::Vector{ComplexF64}, Ψ, trajectories; ignore_missing_target_state=false) for (k, (traj, Ψₖ)) in enumerate(zip(trajectories, Ψ)) if !isnothing(traj.target_state) τ[k] = dot(traj.target_state, Ψₖ) else # With `ignore_missing_target_state=true`, we just skip the value. # This makes `taus!` convenient for calculating τ values in # Krotov/GRAPE if and only if the function is based on target # states if !ignore_missing_target_state msg = "trajectory[$k] has no `target_state`. Cannot calculate τ = ⟨Ψ_tgt|Ψ⟩" throw(ArgumentError(msg)) end end end end @doc raw"""Return a function that calculates ``|χ_k⟩ = -∂J_T/∂⟨Ψ_k|``. ```julia chi = make_chi( J_T, trajectories; mode=:any, automatic=:default, via=(any(isnothing(t.target_state) for t in trajectories) ? :states : :tau), ) ``` creates a function `chi(Ψ, trajectories; τ)` that returns a vector of states `χ` with ``|χ_k⟩ = -∂J_T/∂⟨Ψ_k|``, where ``|Ψ_k⟩`` is the k'th element of `Ψ`. These are the states used as the boundary condition for the backward propagation propagation in Krotov's method and GRAPE. Each ``|χₖ⟩`` is defined as a matrix calculus [Wirtinger derivative](https://www.ekinakyurek.me/complex-derivatives-wirtinger/), ```math |χ_k(T)⟩ = -\frac{∂J_T}{∂⟨Ψ_k|} = -\frac{1}{2} ∇_{Ψ_k} J_T\,;\qquad ∇_{Ψ_k} J_T ≡ \frac{∂J_T}{\Re[Ψ_k]} + i \frac{∂J_T}{\Im[Ψ_k]}\,. ``` The function `J_T` must take a vector of states `Ψ` and a vector of `trajectories` as positional parameters. If `via=:tau`, it must also a vector `tau` as a keyword argument, see e.g. `J_T_sm`). that contains the overlap of the states `Ψ` with the target states from the `trajectories` The derivative can be calculated analytically of automatically (via automatic differentiation) depending on the value of `mode`. For `mode=:any`, an analytic derivative is returned if available, with a fallback to an automatic derivative. If `mode=:analytic`, return an analytically known ``-∂J_T/∂⟨Ψ_k|``, e.g., * [`QuantumControl.Functionals.J_T_sm`](@ref) → [`QuantumControl.Functionals.chi_sm`](@ref), * [`QuantumControl.Functionals.J_T_re`](@ref) → [`QuantumControl.Functionals.chi_re`](@ref), * [`QuantumControl.Functionals.J_T_ss`](@ref) → [`QuantumControl.Functionals.chi_ss`](@ref). and throw an error if no analytic derivative is known. If `mode=:automatic`, return an automatic derivative (even if an analytic derivative is known). The calculation of an automatic derivative (whether via `mode=:any` or `mode=:automatic`) requires that a suitable framework (e.g., `Zygote` or `FiniteDifferences`) has been loaded. The loaded module must be passed as `automatic` keyword argument. Alternatively, it can be registered as a default value for `automatic` by calling `QuantumControl.set_default_ad_framework`. When evaluating ``|χ_k⟩`` automatically, if `via=:states` is given , ``|χ_k(T)⟩`` is calculated directly as defined above from the gradient with respect to the states ``\{|Ψ_k(T)⟩\}``. If `via=:tau` is given instead, the functional ``J_T`` is considered a function of overlaps ``τ_k = ⟨Ψ_k^\tgt|Ψ_k(T)⟩``. This requires that all `trajectories` define a `target_state` and that `J_T` calculates the value of the functional solely based on the values of `tau` passed as a keyword argument. With only the complex conjugate ``τ̄_k = ⟨Ψ_k(T)|Ψ_k^\tgt⟩`` having an explicit dependency on ``⟨Ψ_k(T)|``, the chain rule in this case is ```math |χ_k(T)⟩ = -\frac{∂J_T}{∂⟨Ψ_k|} = -\left( \frac{∂J_T}{∂τ̄_k} \frac{∂τ̄_k}{∂⟨Ψ_k|} \right) = - \frac{1}{2} (∇_{τ_k} J_T) |Ψ_k^\tgt⟩\,. ``` Again, we have used the definition of the Wirtinger derivatives, ```math \begin{align*} \frac{∂J_T}{∂τ_k} &≡ \frac{1}{2}\left( \frac{∂ J_T}{∂ \Re[τ_k]} - i \frac{∂ J_T}{∂ \Im[τ_k]} \right)\,,\\ \frac{∂J_T}{∂τ̄_k} &≡ \frac{1}{2}\left( \frac{∂ J_T}{∂ \Re[τ_k]} + i \frac{∂ J_T}{∂ \Im[τ_k]} \right)\,, \end{align*} ``` and the definition of the Zygote gradient with respect to a complex scalar, ```math ∇_{τ_k} J_T = \left( \frac{∂ J_T}{∂ \Re[τ_k]} + i \frac{∂ J_T}{∂ \Im[τ_k]} \right)\,. ``` !!! tip In order to extend `make_chi` with an analytic implementation for a new `J_T` function, define a new method `make_analytic_chi` like so: ```julia QuantumControl.Functionals.make_analytic_chi(::typeof(J_T_sm), trajectories) = chi_sm ``` which links `make_chi` for [`QuantumControl.Functionals.J_T_sm`](@ref) to [`QuantumControl.Functionals.chi_sm`](@ref). !!! warning Zygote is notorious for being buggy (silently returning incorrect gradients). Always test automatic derivatives against finite differences and/or other automatic differentiation frameworks. """ function make_chi( J_T, trajectories; mode=:any, automatic=:default, via=_default_chi_via(trajectories), ) if mode == :any try chi = make_analytic_chi(J_T, trajectories) @debug "make_chi for J_T=$(J_T) -> analytic" # TODO: call chi to compile it and ensure required properties return chi catch exception if exception isa MethodError @info "make_chi for J_T=$(J_T): fallback to mode=:automatic" try chi = make_automatic_chi(J_T, trajectories, automatic; via) # TODO: call chi to compile it and ensure required properties return chi catch exception if exception isa MethodError msg = "make_chi for J_T=$(J_T): no analytic gradient, and no automatic gradient with `automatic=$(repr(automatic))`." error(msg) else rethrow() end end else rethrow() end end elseif mode == :analytic try chi = make_analytic_chi(J_T, trajectories) # TODO: call chi to compile it and ensure required properties return chi catch exception if exception isa MethodError msg = "make_chi for J_T=$(J_T): no analytic gradient. Implement `QuantumControl.Functionals.make_analytic_chi(::typeof(J_T), trajectories)`" error(msg) else rethrow() end end elseif mode == :automatic try chi = make_automatic_chi(J_T, trajectories, automatic; via) # TODO: call chi to compile it and ensure required properties return chi catch exception if exception isa MethodError msg = "make_chi for J_T=$(J_T): no automatic gradient with `automatic=$(repr(automatic))`." error(msg) else rethrow() end end else msg = "`mode=$(repr(mode))` must be one of :any, :analytic, :automatic" throw(ArgumentError(msg)) end end # Generic placeholder function make_analytic_chi end # Module to Symbol-Val function make_automatic_chi(J_T, trajectories, automatic::Module; via) return make_automatic_chi(J_T, trajectories, Val(nameof(automatic)); via) end # Symbol to Symbol-Val function make_automatic_chi(J_T, trajectories, automatic::Symbol; via) return make_automatic_chi(J_T, trajectories, Val(automatic); via) end DEFAULT_AD_FRAMEWORK = :nothing function make_automatic_chi(J_T, trajectories, ::Val{:default}; via) if DEFAULT_AD_FRAMEWORK == :nothing msg = "make_chi: no default `automatic`. You must run `QuantumControl.set_default_ad_framework` first, e.g. `import Zygote; QuantumControl.set_default_ad_framework(Zygote)`." error(msg) else automatic = DEFAULT_AD_FRAMEWORK chi = make_automatic_chi(J_T, trajectories, DEFAULT_AD_FRAMEWORK; via) (string(automatic) == "default") && error("automatic fallback") @info "make_chi for J_T=$(J_T): automatic with $automatic" return chi end end # There is a user-facing wrapper `QuantumControl.set_default_ad_framework`. # See the documentation there. function _set_default_ad_framework(mod::Module; quiet=false) global DEFAULT_AD_FRAMEWORK automatic = nameof(mod) if !quiet @info "QuantumControl: Setting $automatic as the default provider for automatic differentiation." end DEFAULT_AD_FRAMEWORK = automatic return nothing end function _set_default_ad_framework(::Nothing; quiet=false) global DEFAULT_AD_FRAMEWORK if !quiet @info "Unsetting the default provider for automatic differentiation." end DEFAULT_AD_FRAMEWORK = :nothing return nothing end """ Return a function to evaluate ``∂J_a/∂ϵ_{ln}`` for a pulse value running cost. ```julia grad_J_a = make_grad_J_a( J_a, tlist; mode=:any, automatic=:default, ) ``` returns a function so that `∇J_a = grad_J_a(pulsevals, tlist)` sets that retrurns a vector `∇J_a` containing the vectorized elements ``∂J_a/∂ϵ_{ln}``. The function `J_a` must have the interface `J_a(pulsevals, tlist)`, see, e.g., [`J_a_fluence`](@ref). The parameters `mode` and `automatic` are handled as in [`make_chi`](@ref), where `mode` is one of `:any`, `:analytic`, `:automatic`, and `automatic` is he loaded module of an automatic differentiation framework, where `:default` refers to the framework set with `QuantumControl.set_default_ad_framework`. !!! tip In order to extend `make_grad_J_a` with an analytic implementation for a new `J_a` function, define a new method `make_analytic_grad_J_a` like so: ```julia make_analytic_grad_J_a(::typeof(J_a_fluence), tlist) = grad_J_a_fluence ``` which links `make_grad_J_a` for [`J_a_fluence`](@ref) to [`grad_J_a_fluence`](@ref). """ function make_grad_J_a(J_a, tlist; mode=:any, automatic=:default) if mode == :any try grad_J_a = make_analytic_grad_J_a(J_a, tlist) @debug "make_grad_J_a for J_a=$(J_a) -> analytic" return grad_J_a catch exception if exception isa MethodError @info "make_grad_J_a for J_a=$(J_a): fallback to mode=:automatic" try grad_J_a = make_automatic_grad_J_a(J_a, tlist, automatic) return grad_J_a catch exception if exception isa MethodError msg = "make_grad_J_a for J_a=$(J_a): no analytic gradient, and no automatic gradient with `automatic=$(repr(automatic))`." error(msg) else rethrow() end end else rethrow() end end elseif mode == :analytic try return make_analytic_grad_J_a(J_a, tlist) catch exception if exception isa MethodError msg = "make_grad_J_a for J_a=$(J_a): no analytic gradient. Implement `QuantumControl.Functionals.make_analytic_grad_J_a(::typeof(J_a), tlist)`" error(msg) else rethrow() end end elseif mode == :automatic try return make_automatic_grad_J_a(J_a, tlist, automatic) catch exception if exception isa MethodError msg = "make_grad_J_a for J_a=$(J_a): no automatic gradient with `automatic=$(repr(automatic))`." error(msg) else rethrow() end end else msg = "`mode=$(repr(mode))` must be one of :any, :analytic, :automatic" throw(ArgumentError(msg)) end end function make_automatic_grad_J_a(J_a, tlist, ::Val{:default}) if DEFAULT_AD_FRAMEWORK == :nothing msg = "make_automatic_grad_J_a: no default `automatic`. You must run `set_default_ad_framework` first, e.g. `import Zygote; QuantumControl.set_default_ad_framework(Zygote)`." error(msg) else automatic = DEFAULT_AD_FRAMEWORK grad_J_a = make_automatic_grad_J_a(J_a, tlist, DEFAULT_AD_FRAMEWORK) @info "make_grad_J_a for J_a=$(J_a): automatic with $automatic" return grad_J_a end end # Generic placeholder function make_analytic_grad_J_a end # Module to Symbol-Val function make_automatic_grad_J_a(J_a, tlist, automatic::Module) return make_automatic_grad_J_a(J_a, tlist, Val(nameof(automatic))) end # Symbol to Symbol-Val function make_automatic_grad_J_a(J_a, tlist, automatic::Symbol) return make_automatic_grad_J_a(J_a, tlist, Val(automatic)) end @doc raw""" Average complex overlap of the target states with forward-propagated states. ```julia f_tau(Ψ, trajectories; tau=taus(Ψ, trajectories), τ=tau) ``` calculates ```math f_τ = \frac{1}{N} \sum_{k=1}^{N} w_k τ_k ``` with ```math τ_k = ⟨Ψ_k^\tgt|Ψ_k(T)⟩ ``` in Hilbert space, or ```math τ_k = \tr[ρ̂_k^{\tgt\,\dagger} ρ̂_k(T)] ``` in Liouville space, where ``|Ψ_k⟩`` or ``ρ̂_k`` are the elements of `Ψ`, and ``|Ψ_k^\tgt⟩`` or ``ρ̂_k^\tgt`` are the target states from the `target_state` field of the `trajectories`. If `tau`/`τ` is given as a keyword argument, it must contain the values `τ_k` according to the above definition. Otherwise, the ``τ_k`` values will be calculated internally, see [`taus`](@ref). ``N`` is the number of trajectories, and ``w_k`` is the `weight` attribute for each trajectory. The weights are not automatically normalized, they are assumed to have values such that the resulting ``f_τ`` lies in the unit circle of the complex plane. Usually, this means that the weights should sum to ``N``. # Reference * [PalaoPRA2003](@cite) Palao and Kosloff, Phys. Rev. A 68, 062308 (2003) """ function f_tau(Ψ, trajectories; tau=nothing, τ=tau) N = length(trajectories) if τ === nothing # If we did this in the function header, we'd redundandly call `taus` # if the function was called with the keyword parameter τ τ = taus(Ψ, trajectories) end f::ComplexF64 = 0 for (traj, τₖ) in zip(trajectories, τ) w = traj.weight f += w * τₖ end return f / N end @doc raw"""State-to-state phase-insensitive fidelity. ```julia F_ss(Ψ, trajectories; tau=taus(Ψ, trajectories), τ=tau) ``` calculates ```math F_{\text{ss}} = \frac{1}{N} \sum_{k=1}^{N} w_k |τ_k|^2 \quad\in [0, 1] ``` with ``N``, ``w_k`` and ``τ_k`` as in [`f_tau`](@ref). # Reference * [PalaoPRA2003](@cite) Palao and Kosloff, Phys. Rev. A 68, 062308 (2003) """ function F_ss(Ψ, trajectories; tau=nothing, τ=tau) N = length(trajectories) if τ === nothing τ = taus(Ψ, trajectories) end f::Float64 = 0 for (traj, τₖ) in zip(trajectories, τ) w = traj.weight f += w * abs2(τₖ) end return f / N end @doc raw"""State-to-state phase-insensitive functional. ```julia J_T_ss(Ψ, trajectories; tau=taus(Ψ, trajectories); τ=tau) ``` calculates ```math J_{T,\text{ss}} = 1 - F_{\text{ss}} \in [0, 1]. ``` All arguments are passed to [`F_ss`](@ref). # Reference * [PalaoPRA2003](@cite) Palao and Kosloff, Phys. Rev. A 68, 062308 (2003) """ function J_T_ss(Ψ, trajectories; tau=nothing, τ=tau) return 1.0 - F_ss(Ψ, trajectories; τ=τ) end @doc raw"""Backward boundary states ``|χ⟩`` for functional [`J_T_ss`](@ref). ```julia χ = chi_ss(Ψ, trajectories; tau=taus(Ψ, trajectories), τ=tau) ``` calculates the vector of states `χ` according to ```math |χ_k⟩ = -\frac{∂ J_{T,\text{ss}}}{∂ ⟨Ψ_k(T)|} = \frac{1}{N} w_k τ_k |Ψ^{\tgt}_k⟩\,, ``` with ``|Ψ^{\tgt}_k⟩``, ``τ_k`` and ``w_k`` as defined in [`f_tau`](@ref). Note: this function can be obtained with `make_chi(J_T_ss, trajectories)`. """ function chi_ss(Ψ, trajectories; tau=nothing, τ=tau) N = length(trajectories) if τ === nothing τ = taus(Ψ, trajectories) end χ = Vector{eltype(Ψ)}(undef, length(Ψ)) for (k, traj) in enumerate(trajectories) w = traj.weight Ψₖ_tgt = traj.target_state χ[k] = (τ[k] * w) / N * Ψₖ_tgt end return χ end make_analytic_chi(::typeof(J_T_ss), trajectories) = chi_ss # TODO: consider an in-place version of `chi_ss` if the states are mutable @doc raw"""Square-modulus fidelity. ```julia F_sm(Ψ, trajectories; tau=taus(Ψ, trajectories), τ=tau) ``` calculates ```math F_{\text{sm}} = |f_τ|^2 = \left\vert\frac{1}{N} \sum_{k=1}^{N} w_k τ_k\right\vert^2 = \frac{1}{N^2} \sum_{k=1}^{N} \sum_{j=1}^{N} w_k w_j τ̄_k τ_j \quad\in [0, 1]\,, ``` with ``w_k`` the weight for the k'th trajectory and ``τ_k`` the overlap of the k'th propagated state with the k'th target state, ``τ̄_k`` the complex conjugate of ``τ_k``, and ``N`` the number of trajectories. All arguments are passed to [`f_tau`](@ref) to evaluate ``f_τ``. # Reference * [PalaoPRA2003](@cite) Palao and Kosloff, Phys. Rev. A 68, 062308 (2003) """ function F_sm(Ψ, trajectories; tau=nothing, τ=tau) return abs2(f_tau(Ψ, trajectories; τ=τ)) end @doc raw"""Square-modulus functional. ```julia J_T_sm(Ψ, trajectories; tau=taus(Ψ, trajectories), τ=tau) ``` calculates ```math J_{T,\text{sm}} = 1 - F_{\text{sm}} \quad\in [0, 1]. ``` All arguments are passed to [`f_tau`](@ref) while evaluating ``F_{\text{sm}}`` in [`F_sm`](@ref). # Reference * [PalaoPRA2003](@cite) Palao and Kosloff, Phys. Rev. A 68, 062308 (2003) """ function J_T_sm(Ψ, trajectories; tau=nothing, τ=tau) return 1.0 - F_sm(Ψ, trajectories; τ=τ) end @doc raw"""Backward boundary states ``|χ⟩`` for functional [`J_T_sm`](@ref). ```julia χ = chi_sm(Ψ, trajectories; tau=taus(Ψ, trajectories), τ=tau) ``` calculates the vector of states `χ` according to ```math |χ_k⟩ = -\frac{\partial J_{T,\text{sm}}}{\partial ⟨Ψ_k(T)|} = \frac{1}{N^2} w_k \sum_{j}^{N} w_j τ_j |Ψ_k^{\tgt}⟩ ``` with ``|Ψ^{\tgt}_k⟩``, ``τ_j`` and ``w_k`` as defined in [`f_tau`](@ref). Note: this function can be obtained with `make_chi(J_T_sm, trajectories)`. """ function chi_sm(Ψ, trajectories; tau=nothing, τ=tau) N = length(trajectories) if τ === nothing τ = taus(Ψ, trajectories) end w = [traj.weight for traj in trajectories] a = sum(w .* τ) / N^2 χ = Vector{eltype(Ψ)}(undef, length(Ψ)) for (k, traj) in enumerate(trajectories) Ψₖ_tgt = traj.target_state χ[k] = w[k] * a * Ψₖ_tgt end return χ end make_analytic_chi(::typeof(J_T_sm), trajectories) = chi_sm # TODO: consider in-place version @doc raw"""Real-part fidelity. ```julia F_re(Ψ, trajectories; tau=taus(Ψ, trajectories), τ=tau) ``` calculates ```math F_{\text{re}} = \Re[f_{τ}] = \Re\left[ \frac{1}{N} \sum_{k=1}^{N} w_k τ_k \right] \quad\in \begin{cases} [-1, 1] & \text{in Hilbert space} \\ [0, 1] & \text{in Liouville space.} \end{cases} ``` with ``w_k`` the weight for the k'th trajectory and ``τ_k`` the overlap of the k'th propagated state with the k'th target state, and ``N`` the number of trajectories. All arguments are passed to [`f_tau`](@ref) to evaluate ``f_τ``. # Reference * [PalaoPRA2003](@cite) Palao and Kosloff, Phys. Rev. A 68, 062308 (2003) """ function F_re(Ψ, trajectories; tau=nothing, τ=tau) return real(f_tau(Ψ, trajectories; τ=τ)) end @doc raw"""Real-part functional. ```julia J_T_re(Ψ, trajectories; tau=taus(Ψ, trajectories), τ=tau) ``` calculates ```math J_{T,\text{re}} = 1 - F_{\text{re}} \quad\in \begin{cases} [0, 2] & \text{in Hilbert space} \\ [0, 1] & \text{in Liouville space.} \end{cases} ``` All arguments are passed to [`f_tau`](@ref) while evaluating ``F_{\text{re}}`` in [`F_re`](@ref). # Reference * [PalaoPRA2003](@cite) Palao and Kosloff, Phys. Rev. A 68, 062308 (2003) """ function J_T_re(Ψ, trajectories; tau=nothing, τ=tau) return 1.0 - F_re(Ψ, trajectories; τ=τ) end @doc raw"""Backward boundary states ``|χ⟩`` for functional [`J_T_re`](@ref). ```julia χ chi_re(Ψ, trajectories; tau=taus(Ψ, trajectories), τ=tau) ``` calculates the vector of states `χ` according to ```math |χ_k⟩ = -\frac{∂ J_{T,\text{re}}}{∂ ⟨Ψ_k(T)|} = \frac{1}{2N} w_k |Ψ^{\tgt}_k⟩ ``` with ``|Ψ^{\tgt}_k⟩`` and ``w_k`` as defined in [`f_tau`](@ref). Note: this function can be obtained with `make_chi(J_T_re, trajectories)`. """ function chi_re(Ψ, trajectories; tau=nothing, τ=tau) N = length(trajectories) if τ === nothing τ = taus(Ψ, trajectories) end χ = Vector{eltype(Ψ)}(undef, length(Ψ)) for (k, traj) in enumerate(trajectories) Ψₖ_tgt = traj.target_state w = traj.weight χ[k] = (w / (2N)) * Ψₖ_tgt end return χ end make_analytic_chi(::typeof(J_T_re), trajectories) = chi_re # TODO: consider in-place version """Convert a functional from acting on a gate to acting on propagated states. ``` J_T = gate_functional(J_T_U; kwargs...) ``` constructs a functional `J_T` that meets the requirements for for Krotov/GRAPE and [`make_chi`](@ref). That is, the output `J_T` takes positional positional arguments `Ψ` and `trajectories`. The input functional `J_T_U` is assumed to have the signature `J_T_U(U; kwargs...)` where `U` is a matrix with elements ``U_{ij} = ⟨Ψ_i|Ψ_j⟩``, where ``|Ψ_i⟩`` is the `initial_state` of the i'th `trajectories` (assumed to be the i'th canonical basis state) and ``|Ψ_j⟩`` is the result of forward-propagating ``|Ψ_j⟩``. That is, `U` is the projection of the time evolution operator into the subspace defined by the basis in the `initial_states` of the `trajectories`. # See also * [`make_gate_chi`](@ref) — create a corresponding `chi` function that acts more efficiently than the general [`make_chi`](@ref). """ function gate_functional(J_T_U; kwargs...) function J_T(Ψ, trajectories) N = length(trajectories) U = [dot(trajectories[i].initial_state, Ψ[j]) for i = 1:N, j = 1:N] return J_T_U(U; kwargs...) end return J_T end @doc raw""" Return a function to evaluate ``|χ_k⟩ = -∂J_T(Û)/∂⟨Ψ_k|`` via the chain rule. ```julia chi = make_gate_chi(J_T_U, trajectories; automatic=:default, kwargs...) ``` returns a function equivalent to ```julia chi = make_chi( gate_functional(J_T_U; kwargs...), trajectories; mode=:automatic, automatic, ) ``` ```math \begin{split} |χ_k⟩ &= -\frac{∂}{∂⟨Ψ_k|} J_T \\ &= - \frac{1}{2} \sum_i (∇_U J_T)_{ik} \frac{∂ U_{ik}}{∂⟨Ψ_k|} \\ &= - \frac{1}{2} \sum_i (∇_U J_T)_{ik} |Ψ_i⟩ \end{split} ``` where ``|Ψ_i⟩`` is the basis state stored as the `initial_state` of the i'th trajectory, see [`gate_functional`](@ref). The gradient ``∇_U J_T`` is obtained via automatic differentiation (AD). This requires that an AD package has been loaded (e.g., `using Zygote`). This package must either be passed as the `automatic` keyword argument, or the package must be set as the default AD provider using [`QuantumControl.set_default_ad_framework`](@ref). Compared to the more general [`make_chi`](@ref) with `mode=:automatic`, `make_gate_chi` will generally have a slightly smaller numerical overhead, as it pushes the use of automatic differentiation down by one level. """ function make_gate_chi(J_T_U, trajectories; automatic=:default, kwargs...) if automatic == :default if DEFAULT_AD_FRAMEWORK == :nothing msg = "make_gate_chi: no default `automatic`. You must run `set_default_ad_framework` first, e.g. `import Zygote; QuantumControl.set_default_ad_framework(Zygote)`." error(msg) else automatic = DEFAULT_AD_FRAMEWORK chi = make_gate_chi(J_T_U, trajectories, automatic; kwargs...) @info "make_gate_chi for J_T_U=$(J_T_U): automatic with $automatic" return chi end else return make_gate_chi(J_T_U, trajectories, automatic; kwargs...) end end function make_gate_chi(J_T_U, trajectories, automatic::Module; kwargs...) return make_gate_chi(J_T_U, trajectories, Val(nameof(automatic)); kwargs...) end function make_gate_chi(J_T_U, trajectories, automatic::Symbol; kwargs...) return make_gate_chi(J_T_U, trajectories, Val(automatic); kwargs...) end @doc raw"""Running cost for the pulse fluence. ```julia J_a = J_a_fluence(pulsevals, tlist) ``` calculates ```math J_a = \sum_l \int_0^T |ϵ_l(t)|^2 dt = \left(\sum_{nl} |ϵ_{nl}|^2 \right) dt ``` where ``ϵ_{nl}`` are the values in the (vectorized) `pulsevals`, `n` is the index of the intervals of the time grid, and ``dt`` is the time step, taken from the first time interval of `tlist` and assumed to be uniform. """ function J_a_fluence(pulsevals, tlist) dt = tlist[begin+1] - tlist[begin] return sum(abs2.(pulsevals)) * dt end """Analytic derivative for [`J_a_fluence`](@ref). ```julia ∇J_a = grad_J_a_fluence(pulsevals, tlist) ``` returns the `∇J_a`, which contains the (vectorized) elements ``2 ϵ_{nl} dt``, where ``ϵ_{nl}`` are the (vectorized) elements of `pulsevals` and ``dt`` is the time step, taken from the first time interval of `tlist` and assumed to be uniform. """ function grad_J_a_fluence(pulsevals, tlist) dt = tlist[begin+1] - tlist[begin] return (2 * dt) * pulsevals end make_analytic_grad_J_a(::typeof(J_a_fluence), tlist) = grad_J_a_fluence end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
4946
using QuantumPropagators.Controls: substitute using QuantumPropagators.Interfaces: check_state # from callbacks.jl: import .make_print_iters # from check_generator.jl: import .Interfaces: check_generator """Optimize a quantum control problem. ```julia result = optimize( problem; method, # mandatory keyword argument check=true, callback=nothing, print_iters=true, kwargs... ) ``` optimizes towards a solution of given [`problem`](@ref ControlProblem) with the given `method`, which should be a `Module` implementing the method, e.g., ```julia using Krotov result = optimize(problem; method=Krotov) ``` If `check` is true (default), the `initial_state` and `generator` of each trajectory is checked with [`check_state`](@ref) and [`check_generator`](@ref). Any other keyword argument temporarily overrides the corresponding keyword argument in [`problem`](@ref ControlProblem). These arguments are available to the optimizer, see each optimization package's documentation for details. The `callback` can be given as a function to be called after each iteration in order to analyze the progress of the optimization or to modify the state of the optimizer or the current controls. The signature of `callback` is method-specific, but callbacks should receive a workspace objects as the first parameter as the first argument, the iteration number as the second parameter, and then additional method-specific parameters. The `callback` function may return a tuple of values, and an optimization method should store these values fore each iteration in a `records` field in their `Result` object. The `callback` should be called once with an iteration number of `0` before the first iteration. The `callback` can also be given as a tuple of vector of functions, which are automatically combined via [`chain_callbacks`](@ref). If `print_iters` is `true` (default), an automatic `callback` is created via the method-specific [`make_print_iters`](@ref) to print the progress of the optimization after each iteration. This automatic callback runs after any manually given `callback`. All remaining keyword argument are method-specific. To obtain the documentation for which options a particular method uses, run, e.g., ```julia ? optimize(problem, ::Val{:Krotov}) ``` where `:Krotov` is the name of the module implementing the method. The above is also the method signature that a `Module` wishing to implement a control method must define. The returned `result` object is specific to the optimization method, but should be a subtype of [`QuantumControl.AbstractOptimizationResult`](@ref). """ function optimize( problem::ControlProblem; method::Union{Module,Symbol}, check=get(problem.kwargs, :check, true), print_iters=get(problem.kwargs, :print_iters, true), callback=get(problem.kwargs, :callback, nothing), for_expval=true, # undocumented for_pwc=true, # undocumented for_time_continuous=false, # undocumented for_parameterization=false, # undocumented kwargs... ) temp_kwargs = copy(problem.kwargs) merge!(temp_kwargs, kwargs) callbacks = Any[] if !isnothing(callback) if callback isa Union{Tuple,Vector} @debug "Implicitly combining callback with chain_callbacks" append!(callbacks, callback) else push!(callbacks, callback) end end if print_iters push!(callbacks, make_print_iters(method; temp_kwargs...)) end if !isempty(callbacks) if length(callbacks) > 1 temp_kwargs[:callback] = chain_callbacks(callbacks...) else temp_kwargs[:callback] = callbacks[1] end end temp_problem = ControlProblem(; trajectories=problem.trajectories, tlist=problem.tlist, temp_kwargs... ) if check # TODO: checks will have to be method-dependent, and then we may not # need all the `for_...` keyword arguments for (i, traj) in enumerate(problem.trajectories) if !check_state(traj.initial_state) error("The `initial_state` of trajectory $i is not valid") end if !check_generator( traj.generator; state=traj.initial_state, tlist=problem.tlist, for_expval, for_pwc, for_time_continuous, for_parameterization, ) error("The `generator` of trajectory $i is not valid") end end end return optimize(temp_problem, method) end optimize(problem::ControlProblem, method::Symbol) = optimize(problem, Val(method)) optimize(problem::ControlProblem, method::Module) = optimize(problem, Val(nameof(method))) # # Note: Methods *must* be defined in the various optimization packages as e.g. # # optimize(problem, method::Val{:krotov}) = optimize_krotov(problem) #
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
962
using Pkg using UUIDs """ Print the versions of the packages constituting the `QuantumControl` framework. ```julia QuantumControl.print_versions() ``` """ function print_versions() project_toml = Pkg.TOML.parsefile(joinpath(@__DIR__, "..", "Project.toml")) version = project_toml["version"] direct_deps = project_toml["deps"] deps = Pkg.dependencies() ignored = ["Pkg", "UUIDs", "IOCapture", "JLD2", "FileIO", "LinearAlgebra"] pkg_names = [name for name in keys(direct_deps) if name ∉ ignored] col_width = maximum([length(name) for name in pkg_names]) for name in reverse(pkg_names) pkginfo = deps[UUIDs.UUID(direct_deps[name])] if pkginfo.is_tracking_path println("$(rpad(name, col_width)): $(pkginfo.version) ($(pkginfo.source))") else println("$(rpad(name, col_width)): $(pkginfo.version)") end end println("$(rpad("QuantumControl", col_width)): $version") end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
7194
# Extension of QuantumPropagators.propagate for trajectories using Logging import QuantumPropagators using QuantumPropagators.Controls: substitute, get_controls # from conditionalthreads.jl: @threadsif """Propagate a [`Trajectory`](@ref). ```julia propagate_trajectory( traj, tlist; initial_state=traj.initial_state, kwargs... ) ``` propagates `initial_state` under the dynamics described by `traj.generator`. It takes the same keyword arguments as [`QuantumPropagators.propagate`](@ref), with default values from any property of `traj` with a `prop_` prefix (`prop_method`, `prop_inplace`, `prop_callback`, …). See [`init_prop_trajectory`](@ref) for details. Note that `method` (a mandatory keyword argument in [`QuantumPropagators.propagate`](@ref)) must be specified, either as a property `prop_method` of the trajectory, or by passing a `method` keyword argument explicitly. """ function propagate_trajectory( traj, tlist; _prefixes=["prop_"], initial_state=traj.initial_state, kwargs... ) propagator = init_prop_trajectory(traj, tlist; initial_state, kwargs...) kwargs = Dict(kwargs...) prop_kwargs = Dict{Symbol,Any}() for name in (:storage, :observables, :show_progress, :callback) for prefix in _prefixes _traj_name = Symbol(prefix * string(name)) if hasproperty(traj, _traj_name) prop_kwargs[name] = getproperty(traj, _traj_name) end end if haskey(kwargs, name) prop_kwargs[name] = kwargs[name] end end @debug "propagate_trajectory: propagate(propagator, …) with kwargs=$(prop_kwargs)" return QuantumPropagators.propagate(propagator; prop_kwargs...) end """Initialize a propagator for a given [`Trajectory`](@ref). ``` propagator = init_prop_trajectory( traj, tlist; initial_state=traj.initial_state, kwargs... ) ``` initializes a [`Propagator`](@ref QuantumPropagators.AbstractPropagator) for the propagation of the `initial_state` under the dynamics described by `traj.generator`. All keyword arguments are forwarded to [`QuantumPropagators.init_prop`](@ref), with default values from any property of `traj` with a `prop_` prefix. That is, the keyword arguments for the underlying [`QuantumPropagators.init_prop`](@ref) are determined as follows: * For any property of `traj` whose name starts with the prefix `prop_`, strip the prefix and use that property as a keyword argument for `init_prop`. For example, if `traj.prop_method` is defined, `method=traj.prop_method` will be passed to `init_prop`. Similarly, `traj.prop_inplace` would be passed as `inplace=traj.prop_inplace`, etc. * Any explicitly keyword argument to `init_prop_trajectory` overrides the values from the properties of `traj`. Note that the propagation `method` in particular must be specified, as it is a mandatory keyword argument in [`QuantumPropagators.propagate`](@ref)). Thus, either `traj` must have a property `prop_method` of the trajectory, or `method` must be given as an explicit keyword argument. """ function init_prop_trajectory( traj::Trajectory, tlist; _prefixes=["prop_"], _msg="Initializing propagator for trajectory", _filter_kwargs=false, _kwargs_dict::Dict{Symbol,Any}=Dict{Symbol,Any}(), initial_state=traj.initial_state, verbose=false, kwargs... ) # # The private keyword arguments, `_prefixes`, `_msg`, `_filter_kwargs`, # `_kwargs_dict` are for internal use when setting up optimal control # workspace objects (see, e.g., Krotov.jl and GRAPE.jl) # # * `_prefixes`: which prefixes to translate into `init_prop` kwargs. For # example, in Krotov/GRAPE, we have propagators both for the forward and # backward propagation of each trajectory, and we allow prefixes # "fw_prop_"/"bw_prop_" in addition to the standard "prop_" prefix. # * `msg`: The message to show via @debug/@info. This could be customized # to e.g. "Initializing fw-propagator for trajectory 1/N" # * `_filter_kwargs`: Whether to filter `kwargs` to `_prefixes`. This # allows to pass the keyword arguments from `optimize` directly to # `init_prop_trajectory`. By convention, these use the same # `prop`/`fw_prop`/`bw_prop` prefixes as the properties of `traj`. # * `_kwargs_dict`: A dictionary Symbol => Any that collects the arguments # for `init_prop`. This allows to keep a copy of those arguments, # especially for arguments that cannot be obtained from the resulting # propagator, like the propagation callback. # empty!(_kwargs_dict) for prefix in _prefixes for key in propertynames(traj) if startswith(string(key), prefix) _kwargs_dict[Symbol(string(key)[length(prefix)+1:end])] = getproperty(traj, key) end end end if _filter_kwargs for prefix in _prefixes for (key, val) in kwargs if startswith(string(key), prefix) _kwargs_dict[Symbol(string(key)[length(prefix)+1:end])] = val end end end else merge!(_kwargs_dict, kwargs) end level = verbose ? Logging.Info : Logging.Debug @logmsg level _msg kwargs = _kwargs_dict try return init_prop(initial_state, traj.generator, tlist; verbose, _kwargs_dict...) catch exception msg = "Cannot initialize propagation for trajectory" @error msg exception kwargs = _kwargs_dict rethrow() end end """Propagate multiple trajectories in parallel. ```julia result = propagate_trajectories( trajectories, tlist; use_threads=true, kwargs... ) ``` runs [`propagate_trajectory`](@ref) for every trajectory in `trajectories`, collects and returns a vector of results. The propagation happens in parallel if `use_threads=true` (default). All keyword parameters are passed to [`propagate_trajectory`](@ref), except that if `initial_state` is given, it must be a vector of initial states, one for each trajectory. Likewise, to pass pre-allocated storage arrays to `storage`, a vector of storage arrays must be passed. A simple `storage=true` will still work to return a vector of storage results. """ function propagate_trajectories( trajectories, tlist; use_threads=true, storage=nothing, initial_state=[traj.initial_state for traj in trajectories], kwargs... ) result = Vector{Any}(undef, length(trajectories)) @threadsif use_threads for (k, traj) in collect(enumerate(trajectories)) if isnothing(storage) || (storage isa Bool) result[k] = propagate_trajectory( traj, tlist; storage=storage, initial_state=initial_state[k], kwargs... ) else result[k] = propagate_trajectory( traj, tlist; storage=storage[k], initial_state=initial_state[k], kwargs... ) end end return [result...] # chooses an automatic eltype end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
11367
module PulseParameterizations export SquareParameterization, TanhParameterization, TanhSqParameterization, LogisticParameterization, LogisticSqParameterization, ParameterizedAmplitude using QuantumPropagators.Controls: discretize_on_midpoints using QuantumPropagators.Amplitudes: ControlAmplitude, ShapedAmplitude import QuantumPropagators.Controls: evaluate, get_controls import ..Controls: get_control_deriv #! format: off """Specification for a "time-local" pulse parameterization. The parameterization is given as a collection of three functions: * ``a(ϵ(t))`` * ``ϵ(a(t))`` * ``∂a/∂ϵ`` as a function of ``ϵ(t)``. """ struct PulseParameterization name::String a_of_epsilon::Function epsilon_of_a::Function da_deps_derivative::Function end function Base.show(io::IO, p::PulseParameterization) print(io, p.name) end """Parameterization a(t) = ϵ²(t), enforcing pulse values ``a(t) ≥ 0``.""" SquareParameterization() = PulseParameterization( "SquareParameterization()", ϵ -> begin # a_of_epsilon a = ϵ^2 end, a -> begin # epsilon_of_a a = max(a, 0.0) ϵ = √a end, ϵ -> begin # da_deps_derivative ∂a╱∂ϵ = 2ϵ end ) """Parameterization with a tanh function that enforces `a_min < a(t) < a_max`. """ function TanhParameterization(a_min, a_max) Δ = a_max - a_min Σ = a_max + a_min aₚ = eps(1.0) # 2⋅10⁻¹⁶ (machine precision) @assert a_max > a_min PulseParameterization( "TanhParameterization($a_min, $a_max)", ϵ -> begin # a_of_epsilon a = tanh(ϵ) * Δ / 2 + Σ / 2 end, a -> begin # epsilon_of_a a = clamp(2a / Δ - Σ / Δ, -1 + aₚ, 1 - aₚ) ϵ = atanh(a) # -18.4 < ϵ < 18.4 end, ϵ -> begin # da_deps_derivative ∂a╱∂ϵ = (Δ / 2) * sech(ϵ)^2 end ) end """Parameterization with a tanh² function that enforces `0 ≤ a(t) < a_max`. """ function TanhSqParameterization(a_max) aₚ = eps(1.0) # 2⋅10⁻¹⁶ (machine precision) @assert a_max > 0 PulseParameterization( "TanhSqParameterization($a_max)", ϵ -> begin # a_of_epsilon a = a_max * tanh(ϵ)^2 end, a -> begin # epsilon_of_a a = clamp(a / a_max, 0, 1 - aₚ) ϵ = atanh(√a) end, ϵ -> begin # da_deps_derivative ∂a╱∂ϵ = 2a_max * tanh(ϵ) * sech(ϵ)^2 end ) end """ Parameterization with a Logistic function that enforces `a_min < a(t) < a_max`. """ function LogisticParameterization(a_min, a_max; k=1.0) Δ = a_max - a_min a₀ = eps(0.0) # 5⋅10⁻³²⁴ @assert a_max > a_min PulseParameterization( "LogisticParameterization($a_max, $a_max; k=$k)", ϵ -> begin # a_of_epsilon a = Δ / (1 + exp(-k * ϵ)) + a_min end, a -> begin # epsilon_of_a a′ = a - a_min a = max(a′ / (Δ - a′), a₀) ϵ = log(a) / k end, ϵ -> begin # da_deps_derivative e⁻ᵏᵘ = exp(-k * ϵ) ∂a╱∂ϵ = Δ * k * e⁻ᵏᵘ / (1 + e⁻ᵏᵘ)^2 end ) end """ Parameterization with a Logistic-Square function that enforces `0 ≤ a(t) < a_max`. """ function LogisticSqParameterization(a_max; k=1.0) a₀ = eps(0.0) # 5⋅10⁻³²⁴ @assert a_max > 0 PulseParameterization( "LogisticSqParameterization($a_max; k=$k)", ϵ -> begin # a_of_epsilon a = a_max * (2 / (1 + exp(-k * ϵ)) - 1)^2 end, a -> begin # epsilon_of_a ρ = clamp(a / a_max, 0.0, 1.0) a = clamp((2 / (√ρ + 1)) - 1, a₀, 1.0) ϵ = -log(a) / k end, ϵ -> begin # da_deps_derivative eᵏᵘ = exp(k * ϵ) ∂a╱∂ϵ = 4k * a_max * eᵏᵘ * (eᵏᵘ - 1) / (eᵏᵘ + 1)^3 end ) end #! format: on #### ParameterizedAmplitude #################################################### """An amplitude determined by a pulse parameterization. That is, ``a(t) = a(ϵ(t))`` with a bijective mapping between the value of ``a(t)`` and ``ϵ(t)``, e.g. ``a(t) = ϵ^2(t)`` (a [`SquareParameterization`](@ref SquareParameterization)). Optionally, the amplitude may be multiplied with an additional shape function, cf. [`ShapedAmplitude`](@ref). ```julia ampl = ParameterizedAmplitude(control; parameterization) ``` initializes ``a(t) = a(ϵ(t)`` where ``ϵ(t)`` is the `control`, and the mandatory keyword argument `parameterization` is a [`PulseParameterization`](@ref PulseParameterization). The `control` must either be a vector of values discretized to the midpoints of a time grid, or a callable `control(t)`. ```julia ampl = ParameterizedAmplitude(control; parameterization, shape=shape) ``` initializes ``a(t) = S(t) a(ϵ(t))`` where ``S(t)`` is the given `shape`. It must be a vector if `control` is a vector, or a callable `shape(t)` if `control` is a callable. ```julia ampl = ParameterizedAmplitude(control, tlist; parameterization, shape=shape) ``` discretizes `control` and `shape` (if given) to the midpoints of `tlist` before initialization. ```julia ampl = ParameterizedAmplitude( amplitude, tlist; parameterization, shape=shape, parameterize=true ) ``` initializes ``ã(t) = S(t) a(t)`` where ``a(t)`` is the input `amplitude`. First, if `amplitude` is a callable `amplitude(t)`, it is discretized to the midpoints of `tlist`. Then, a `control` ``ϵ(t)`` is calculated so that ``a(t) ≈ a(ϵ(t))``. Clippling may occur if the values in `amplitude` cannot represented with the given `parameterization`. Lastly, `ParameterizedAmplitude(control; parameterization, shape)` is initialized with the calculated `control`. Note that the `tlist` keyword argument is required when `parameterize=true` is given, even if `amplitude` is already a vector. """ abstract type ParameterizedAmplitude <: ControlAmplitude end abstract type ShapedParameterizedAmplitude <: ParameterizedAmplitude end function ParameterizedAmplitude( control; parameterization::PulseParameterization, shape=nothing ) if isnothing(shape) if control isa Vector{Float64} return ParameterizedPulseAmplitude(control, parameterization) else try ϵ_t = control(0.0) catch error( "A ParameterizedAmplitude control must either be a vector of values or a callable" ) end return ParameterizedContinuousAmplitude(control, parameterization) end else if (control isa Vector{Float64}) && (shape isa Vector{Float64}) return ShapedParameterizedPulseAmplitude(control, shape, parameterization) else try ϵ_t = control(0.0) catch error( "A ParameterizedAmplitude control must either be a vector of values or a callable" ) end try S_t = shape(0.0) catch error( "A ParameterizedAmplitude shape must either be a vector of values or a callable" ) end return ShapedParameterizedContinuousAmplitude(control, shape, parameterization) end end end function ParameterizedAmplitude( control, tlist; parameterization::PulseParameterization, shape=nothing, parameterize=false ) control = discretize_on_midpoints(control, tlist) if parameterize control = parameterization.epsilon_of_a.(control) end if !isnothing(shape) shape = discretize_on_midpoints(shape, tlist) end return ParameterizedAmplitude(control; parameterization, shape) end function Base.show(io::IO, ampl::ParameterizedAmplitude) print( io, "ParameterizedAmplitude(::$(typeof(ampl.control)); parameterization=$(ampl.parameterization))" ) end function Base.show(io::IO, ampl::ShapedParameterizedAmplitude) print( io, "ParameterizedAmplitude(::$(typeof(ampl.control)); parameterization=$(ampl.parameterization), shape::$(typeof(ampl.shape)))" ) end struct ParameterizedPulseAmplitude <: ParameterizedAmplitude control::Vector{Float64} parameterization::PulseParameterization end function Base.Array(ampl::ParameterizedPulseAmplitude) return ampl.parameterization.a_of_epsilon.(ampl.control) end struct ParameterizedContinuousAmplitude <: ParameterizedAmplitude control parameterization::PulseParameterization end struct ShapedParameterizedPulseAmplitude <: ShapedParameterizedAmplitude control::Vector{Float64} shape::Vector{Float64} parameterization::PulseParameterization end struct ShapedParameterizedContinuousAmplitude <: ShapedParameterizedAmplitude control shape parameterization::PulseParameterization end function evaluate(ampl::ParameterizedAmplitude, args...; kwargs...) ϵ = evaluate(ampl.control, args...; kwargs...) return ampl.parameterization.a_of_epsilon(ϵ) end function evaluate(ampl::ShapedParameterizedAmplitude, args...; kwargs...) ϵ = evaluate(ampl.control, args...; kwargs...) S = evaluate(ampl.shape, args...; kwargs...) return S * ampl.parameterization.a_of_epsilon(ϵ) end function Base.Array(ampl::ShapedParameterizedPulseAmplitude) return ampl.shape .* ampl.parameterization.a_of_epsilon.(ampl.control) end function get_controls(ampl::ParameterizedAmplitude) return (ampl.control,) end function get_control_deriv(ampl::ParameterizedAmplitude, control) if control ≡ ampl.control return ParameterizationDerivative(control, ampl.parameterization.da_deps_derivative) else return 0.0 end end function get_control_deriv(ampl::ShapedParameterizedPulseAmplitude, control) if control ≡ ampl.control return ShapedParameterizationPulseDerivative( control, ampl.parameterization.da_deps_derivative, ampl.shape ) else return 0.0 end end function get_control_deriv(ampl::ShapedParameterizedContinuousAmplitude, control) if control ≡ ampl.control return ShapedParameterizationContinuousDerivative( control, ampl.parameterization.da_deps_derivative, ampl.shape ) else return 0.0 end end struct ParameterizationDerivative <: ControlAmplitude control func end struct ShapedParameterizationPulseDerivative <: ControlAmplitude control::Vector{Float64} func shape::Vector{Float64} end struct ShapedParameterizationContinuousDerivative <: ControlAmplitude control func shape end function evaluate(deriv::ParameterizationDerivative, args...; vals_dict=IdDict()) ϵ = evaluate(deriv.control, args...; vals_dict) return deriv.func(ϵ) end function evaluate( deriv::ShapedParameterizationPulseDerivative, tlist, n; vals_dict=IdDict() ) ϵ = evaluate(deriv.control, tlist, n; vals_dict) S = evaluate(deriv.shape, tlist, n; vals_dict) return S * deriv.func(ϵ) end function evaluate( deriv::ShapedParameterizationContinuousDerivative, tlist, n; vals_dict=IdDict() ) ϵ = evaluate(deriv.control, tlist, n; vals_dict) S = evaluate(deriv.shape, tlist, n; vals_dict) return S * deriv.func(ϵ) end end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
757
# I'm aware of Reexport.jl, but it doesn't work for QuantumControl.jl # # For one thing, `@reexport using QuantumPropagators` re-exports not just the # members of `QuantumPropagators`, but also `QuantumControlPropagators` itself. # Also, as far as I can tell `@reexport using QuantumPropagators.Shapes` does # not work when it's inside a module also called `Shapes`, as we're doing. # # Besides, the macro below is pretty trivial macro reexport_members(modname::Symbol) mod = getfield(__module__, modname) member_names = _exported_names(mod) Expr(:export, member_names...) end function _exported_names(m::Module) return filter!( x -> (Base.isexported(m, x) && (x != nameof(m))), names(m; all=true, imported=true) ) end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
3424
""" Abstract type for the result object returned by [`optimize`](@ref). Any optimization method implemented on top of `QuantumControl` should subtype from `AbstractOptimizationResult`. This enables conversion between the results of different methods, allowing one method to continue an optimization from another method. In order for this to work seamlessly, result objects should use a common set of field names as much as a possible. When a result object requires fields that cannot be provided by all other result objects, it should have default values for these field, which can be defined in a custom `Base.convert` method, as, e.g., ```julia function Base.convert(::Type{MyResult}, result::AbstractOptimizationResult) defaults = Dict{Symbol,Any}( :f_calls => 0, :fg_calls => 0, ) return convert(MyResult, result, defaults) end ``` Where `f_calls` and `fg_calls` are fields of `MyResult` that are not present in a given `result` of a different type. The three-argument `convert` is defined internally for any `AbstractOptimizationResult`. """ abstract type AbstractOptimizationResult end function Base.convert( ::Type{Dict{Symbol,Any}}, result::R ) where {R<:AbstractOptimizationResult} return Dict{Symbol,Any}(field => getfield(result, field) for field in fieldnames(R)) end struct MissingResultDataException{R} <: Exception missing_fields::Vector{Symbol} end function Base.showerror(io::IO, err::MissingResultDataException{R}) where {R} msg = "Missing data for fields $(err.missing_fields) to instantiate $R." print(io, msg) end struct IncompatibleResultsException{R1,R2} <: Exception missing_fields::Vector{Symbol} end function Base.showerror(io::IO, err::IncompatibleResultsException{R1,R2}) where {R1,R2} msg = "$R2 cannot be converted to $R1: $R2 does not provide required fields $(err.missing_fields). $R1 may need a custom implementation of `Base.convert` that sets values for any field names not provided by all results." print(io, msg) end function Base.convert( ::Type{R}, data::Dict{Symbol,<:Any}, defaults::Dict{Symbol,<:Any}=Dict{Symbol,Any}(), ) where {R<:AbstractOptimizationResult} function _get(data, field, defaults) # Can't use `get`, because that would try to evaluate the non-existing # `defaults[field]` for `fields` that actually exist in `data`. if haskey(data, field) return data[field] else return defaults[field] end end args = try [_get(data, field, defaults) for field in fieldnames(R)] catch exc if exc isa KeyError missing_fields = [ field for field in fieldnames(R) if !(haskey(data, field) || haskey(defaults, field)) ] throw(MissingResultDataException{R}(missing_fields)) else rethrow() end end return R(args...) end function Base.convert( ::Type{R1}, result::R2, defaults::Dict{Symbol,<:Any}=Dict{Symbol,Any}(), ) where {R1<:AbstractOptimizationResult,R2<:AbstractOptimizationResult} data = convert(Dict{Symbol,Any}, result) try return convert(R1, data, defaults) catch exc if exc isa MissingResultDataException{R1} throw(IncompatibleResultsException{R1,R2}(exc.missing_fields)) else rethrow() end end end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
1261
using .Functionals: _set_default_ad_framework """Set the default provider for automatic differentiation. ```julia QuantumControl.set_default_ad_framework(mod; quiet=false) ``` registers the given module (package) as the default AD framework. This determines the default setting for the `automatic` parameter in the following functions: * [`QuantumControl.Functionals.make_chi`](@ref) * [`QuantumControl.Functionals.make_gate_chi`](@ref) * [`QuantumControl.Functionals.make_grad_J_a`](@ref) The given `mod` must be a supported AD framework, e.g., ```julia import Zygote QuantumControl.set_default_ad_framework(Zygote) ``` Currently, there is built-in support for `Zygote` and `FiniteDifferences`. For other packages to be used as the default AD framework, the appropriate methods for `make_chi` etc. must be defined. Unless `quiet=true`, calling `set_default_ad_framework` will show a message to confirm the setting. To unset the default AD framework, use ```julia QuantumControl.set_default_ad_framework(nothing) ``` """ function set_default_ad_framework(mod::Module; quiet=false) return _set_default_ad_framework(mod; quiet) end function set_default_ad_framework(::Nothing; quiet=false) return _set_default_ad_framework(nothing; quiet) end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
9330
import Base import QuantumPropagators using Printf using QuantumPropagators.Generators: Generator, Operator using QuantumPropagators.Controls: _get_parameters import QuantumPropagators.Controls: substitute, get_controls, get_parameters """Description of a state's time evolution. ```julia Trajectory( initial_state, generator; target_state=nothing, weight=1.0, kwargs... ) ``` describes the time evolution of the `initial_state` under a time-dependent dynamical `generator` (e.g., a Hamiltonian or Liouvillian). Trajectories are central to quantum control problems: an optimization functional depends on the result of propagating one or more trajectories. For example, when optimizing for a quantum gate, the optimization considers the trajectories of all logical basis states. In addition to the `initial_state` and `generator`, a `Trajectory` may include data relevant to the propagation and to evaluating a particular optimization functional. Most functionals have the notion of a "target state" that the `initial_state` should evolve towards, which can be given as the `target_state` keyword argument. In some functionals, different trajectories enter with different weights [GoerzNJP2014](@cite), which can be given as a `weight` keyword argument. Any other keyword arguments are also available to a functional as properties of the `Trajectory` . A `Trajectory` can also be instantiated using all keyword arguments. # Properties All keyword arguments used in the instantiation are available as properties of the `Trajectory`. At a minimum, this includes `initial_state`, `generator`, `target_state`, and `weight`. By convention, properties with a `prop_` prefix, e.g., `prop_method`, will be taken into account when propagating the trajectory. See [`propagate_trajectory`](@ref) for details. """ struct Trajectory{ST,GT} initial_state::ST generator::GT target_state::Union{Nothing,ST} weight::Float64 kwargs::Dict{Symbol,Any} function Trajectory( initial_state::ST, generator::GT; target_state::Union{Nothing,ST}=nothing, weight=1.0, kwargs... ) where {ST,GT} new{ST,GT}(initial_state, generator, target_state, weight, kwargs) end end # All-keyword constructor function Trajectory(; initial_state, generator, kwargs...) Trajectory(initial_state, generator; kwargs...) end function _show_trajectory(io::IO, traj::Trajectory; multiline=false) print(io, "Trajectory(") multiline && print(io, ";") print(io, multiline ? "\n initial_state=" : "", traj.initial_state) print(io, multiline ? ",\n generator=" : ", ") print(io, traj.generator) has_kwargs = false has_kwargs |= !isnothing(traj.target_state) has_kwargs |= (traj.weight ≠ 1.0) has_kwargs |= !isempty(getfield(traj, :kwargs)) sep = multiline ? ",\n " : "; " if has_kwargs if !isnothing(traj.target_state) print(io, sep, "target_state=", traj.target_state) sep = multiline ? ",\n " : ", " end if traj.weight != 1.0 print(io, sep, "weight=", traj.weight) sep = multiline ? ",\n " : ", " end for (key, val) in getfield(traj, :kwargs) print(io, sep, key, "=", val) sep = multiline ? ",\n " : ", " end end print(io, multiline ? "\n)" : ")") end function Base.show(io::IO, traj::Trajectory) if get(io, :typeinfo, Any) <: Trajectory # printing as part of a vector of trajectories summary(io, traj) else _show_trajectory(io, traj) end end function Base.summary(io::IO, traj::Trajectory) print( io, "Trajectory with ", summary(traj.initial_state), " initial state, ", summary(traj.generator) ) if isnothing(traj.target_state) print(io, ", no target state") else print(io, ", ", summary(traj.target_state), " target state") end if traj.weight != 1.0 print(io, ", weight=", traj.weight) end n_kwargs = length(getfield(traj, :kwargs)) if n_kwargs > 0 print(io, " and $n_kwargs extra kwargs") end end function Base.show(io::IO, ::MIME"text/plain", traj::Trajectory) # This could have been _show_trajectory(…, multiline=true), but the # non-code representation with `summary` is more useful println(io, typeof(traj)) println(io, " initial_state: $(summary(traj.initial_state))") println(io, " generator: $(summary(traj.generator))") println(io, " target_state: $(summary(traj.target_state))") if traj.weight != 1.0 println(io, " weight: $(traj.weight)") end for (key, val) in getfield(traj, :kwargs) println(io, " ", key, ": ", repr(val)) end end function Base.propertynames(traj::Trajectory, private::Bool=false) return ( :initial_state, :generator, :target_state, :weight, keys(getfield(traj, :kwargs))... ) end function Base.setproperty!(traj::Trajectory, name::Symbol, value) error("setproperty!: immutable struct of type Trajectory cannot be changed") end function Base.getproperty(traj::Trajectory, name::Symbol) if name in (:initial_state, :generator, :target_state, :weight) return getfield(traj, name) else kwargs = getfield(traj, :kwargs) return get(kwargs, name) do error("type Trajectory has no property $name") end end end """ ```julia trajectory = substitute(trajectory::Trajectory, replacements) trajectories = substitute(trajectories::Vector{<:Trajectory}, replacements) ``` recursively substitutes the `initial_state`, `generator`, and `target_state`. """ function substitute(traj::Trajectory, replacements) initial_state = substitute(traj.initial_state, replacements) ST = typeof(initial_state) generator = substitute(traj.generator, replacements) target_state::Union{Nothing,ST} = nothing if !isnothing(traj.target_state) target_state = substitute(traj.target_state, replacements) end weight = traj.weight kwargs = getfield(traj, :kwargs) return Trajectory(initial_state, generator; target_state, weight, kwargs...) end function substitute(trajs::Vector{<:Trajectory}, replacements) return [substitute(traj, replacements) for traj ∈ trajs] end # adjoint for the nested-tuple dynamical generator (e.g. `(H0, (H1, ϵ))`) function dynamical_generator_adjoint(G::Tuple) result = [] for part in G # `copy` materializes the `adjoint` view, so we don't end up with # unnecessary `Adjoint{Matrix}` instead of Matrix, for example if isa(part, Tuple) push!(result, (copy(Base.adjoint(part[1])), part[2])) else push!(result, copy(Base.adjoint(part))) end end return Tuple(result) end function dynamical_generator_adjoint(G::Generator) ops = [dynamical_generator_adjoint(op) for op in G.ops] return Generator(ops, G.amplitudes) end function dynamical_generator_adjoint(G::Operator) ops = [dynamical_generator_adjoint(op) for op in G.ops] coeffs = [Base.adjoint(c) for c in G.coeffs] return Operator(ops, G.coeffs) end # fallback adjoint dynamical_generator_adjoint(G) = copy(Base.adjoint(G)) """Construct the adjoint of a [`Trajectory`](@ref). ```julia adj_trajectory = adjoint(trajectory) ``` The adjoint trajectory contains the adjoint of the dynamical generator `traj.generator`. All other fields contain a copy of the original field value. The primary purpose of this adjoint is to facilitate the backward propagation under the adjoint generator that is central to gradient-based optimization methods such as GRAPE and Krotov's method. """ function Base.adjoint(traj::Trajectory) initial_state = traj.initial_state generator = dynamical_generator_adjoint(traj.generator) target_state = traj.target_state weight = traj.weight kwargs = getfield(traj, :kwargs) Trajectory(initial_state, generator; target_state, weight, kwargs...) end """ ```julia controls = get_controls(trajectories) ``` extracts the controls from a list of [trajectories](@ref Trajectory) (i.e., from each trajectory's `generator`). Controls that occur multiple times in the different trajectories will occur only once in the result. """ function get_controls(trajectories::Vector{<:Trajectory}) controls = [] seen_control = IdDict{Any,Bool}() for traj in trajectories traj_controls = get_controls(traj.generator) for control in traj_controls if !haskey(seen_control, control) push!(controls, control) seen_control[control] = true end end end return Tuple(controls) end """ ```julia parameters = get_parameters(trajectories) ``` collects and combines get parameter arrays from all the generators in [`trajectories`](@ref Trajectory). Note that this allows any custom generator type to define a custom `get_parameters` method to override the default of obtaining the parameters recursively from the controls inside the generator. """ function get_parameters(trajectories::Vector{<:Trajectory}) return _get_parameters(trajectories; via=(trajs -> [traj.generator for traj in trajs])) end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
13989
module Workflows import ..optimize import ..set_atexit_save_optimization export run_or_load, @optimize_or_load, save_optimization, load_optimization using FileIO: FileIO, File, DataFormat using JLD2: JLD2 using IOCapture _is_jld2_filename(file) = (file isa String && endswith(file, ".jld2")) """ Run some code and write the result to file, or load from the file if it exists. ```julia data = run_or_load( file; save=(endswith(file, ".jld2") ? JLD2.save_object : FileIO.save), load=(endswith(file, ".jld2") ? JLD2.load_object : FileIO.load), force=false, verbose=true, kwargs... ) do data = Dict() # ... # something that can be saved to / loaded from file return data end ``` runs the code in the block and stores `data` in the given `file`. If `file` already exists, skip running the code and instead return the data in `file`. If `force` is `True`, run the code whether or not `file` exists, potentially overwriting it. With `verbose=true`, information about the status of `file` will be shown as `@info`. The `data` returned by the code block must be compatible with the format of `file` and the `save`/`load` functions. When using `JLD2.save_object` and `JLD2.load_object`, almost any data can be written, so this should be particularly safe. More generally, when using `FileIO.save` and `FileIO.load`, see the [FileIO registry](https://juliaio.github.io/FileIO.jl/stable/registry/) for details. A common examples would be a [`DataFrame`](https://dataframes.juliadata.org/stable/) being written to a `.csv` file. # See also * [`@optimize_or_load`](@ref) — for wrapping around [`optimize`](@ref) * [`DrWatson.@produce_or_load`](https://juliadynamics.github.io/DrWatson.jl/stable/save/#DrWatson.@produce_or_load) — a similar but more opinionated function with automatic naming """ function run_or_load( f::Function, file; save::Function=(_is_jld2_filename(file) ? JLD2.save_object : FileIO.save), load::Function=(_is_jld2_filename(file) ? JLD2.load_object : FileIO.load), force=false, verbose=true, _else=nothing, # undocumented function to run on data if loaded kwargs... ) # Using `JLD2.save_object` instead of `FileIO.save` is more flexible: # `FileIO.save` would require a Dict{String, Any}, whereas `save_object` # can save pretty much anything. if file isa AbstractString filename = file else filename = FileIO.filename(file) end if force || !isfile(filename) if verbose if force && isfile(filename) @info "Overwriting $(relpath(filename)) (force=true)" else # if !isfile(filename) @info "File $(relpath(filename)) does not exist. Creating it now." end end dir, _ = splitdir(filename) # We want to make sure we can create the output dir *before* we run `f` mkpath(dir) data = f() try save(file, data; kwargs...) catch exc # This "emergency fallback" is undocumented on purpose: it's just # to be nice and try to preserve the results of long-running # calculations, but nothing is guaranteed and nobody should rely on # it. if exc isa CapturedException # `showerror` directly for a CapturedException includes the # backtrace, which we don't want. exc = exc.ex end exc_msg = sprint(showerror, exc) @error "Error saving data: $exc_msg" tmp = "$(tempname(; cleanup=false)).jld2" try JLD2.save_object(tmp, data) catch exc_inner exc_msg = sprint(showerror, exc_inner) error("Unable to recover by writing data to $tmp: $exc_msg") end # Julia < 1.8 doesn't have `else` for `try` error(""" Recover data with: using JLD2: load_object data = load_object($(repr(tmp))) """) end return load(file) else data = load(file) verbose && @info "Loading data from $(relpath(filename))" if !isnothing(_else) _else(data) end return data end end mutable struct FirstLastBuffer first::Vector{UInt8} last::Vector{UInt8} N::Int64 written::Int64 end function FirstLastBuffer(N=1024) first = Vector{UInt8}(undef, N) last = Vector{UInt8}(undef, N) FirstLastBuffer(first, last, N, 0) end function Base.write(buffer::FirstLastBuffer, data) for byte in data if buffer.written < buffer.N i = buffer.written + 1 buffer.first[i] = byte else i = mod((buffer.written - buffer.N), buffer.N) + 1 buffer.last[i] = byte end buffer.written += 1 end end function Base.take!(buffer::FirstLastBuffer) N = buffer.N if buffer.written <= N result = buffer.first[1:buffer.written] else written_last = buffer.written - N last = view(buffer.last, 1:min(written_last, N)) if written_last <= N sep = Vector{UInt8}[] length_result = buffer.written shift = 0 else sep = Vector{UInt8}("…\n…") length_result = 2 * N + length(sep) shift = -mod(buffer.written - buffer.N, buffer.N) end result = Vector{UInt8}(undef, length_result) result[1:N] .= buffer.first result[N+1:N+length(sep)] .= sep result[N+length(sep)+1:end] .= circshift(last, shift) end buffer.written = 0 return result end function _redirect_to_file(f, logfile) open(logfile, "w") do io redirect_stdout(io) do redirect_stderr(io) do return f() end end end end function _print_loaded_output(data) if haskey(data, "output") for line in split(data["output"], "\n") if !startswith(line, "…") println(line) end end end end # See @optimize_or_load for documentation – # Only the macro version should be public! function optimize_or_load( _filter, file, problem; method, force=false, verbose=get(problem.kwargs, :verbose, false), metadata::Union{Nothing,Dict}=nothing, logfile=nothing, kwargs... ) # _filter is only for attaching metadata to the result save = FileIO.save load = FileIO.load JLD2_fmt = FileIO.DataFormat{:JLD2} if file isa AbstractString atexit_filename = file else atexit_filename = FileIO.filename(file) end data = run_or_load( File{JLD2_fmt}(file); save, load, force, verbose, _else=_print_loaded_output ) do color = get(stdout, :color, false) if haskey(ENV, "JULIA_CAPTURE_COLOR") # Undocumented feature. Literate.jl doesn't work well with captured # color. When doing an optimization in a Literate example, it's # best to evaluate it with JULIA_CAPTURE_COLOR=0 color = (ENV["JULIA_CAPTURE_COLOR"] != "0") end if isnothing(logfile) c = IOCapture.capture( passthrough=true, capture_buffer=FirstLastBuffer(), color=color, ) do optimize(problem; method, verbose, atexit_filename, kwargs...) end result = c.value output = c.output else result = _redirect_to_file(logfile) do optimize(problem; method, verbose, atexit_filename, kwargs...) end output = "" end data = Dict{String,Any}("result" => result, "output" => output) if !isnothing(_filter) data = _filter(data) end if !isnothing(metadata) for (k, v) in metadata # This should convert pretty much any key to a string data[String(Symbol(k))] = v end end return data end return data["result"] end optimize_or_load(file, problem; kwargs...) = optimize_or_load(nothing, file, problem; kwargs...) # Given a list of macro arguments, push all keyword parameters to the end. # # A macro will receive keyword arguments after ";" as either the first or # second argument (depending on whether the macro is invoked together with # `do`). The `reorder_macro_kw_params` function reorders the arguments to put # the keyword arguments at the end or the argument list, as if they had been # separated from the positional arguments by a comma instead of a semicolon. # # # Example # # With # # ``` # macro mymacro(exs...) # @show exs # exs = reorder_macro_kw_params(exs) # @show exs # end # ``` # # the `exs` in e.g. `@mymacro(1, 2; a=3, b)` will end up as # # ``` # (1, 2, :($(Expr(:kw, :a, 3))), :($(Expr(:kw, :b, :b)))) # ``` # # instead of the original # # ``` # (:($(Expr(:parameters, :($(Expr(:kw, :a, 3))), :b))), 1, 2) # ``` function reorder_macro_kw_params(exs) exs = Any[exs...] i = findfirst([(ex isa Expr && ex.head == :parameters) for ex in exs]) if !isnothing(i) extra_kw_def = exs[i].args for ex in extra_kw_def push!(exs, ex isa Symbol ? Expr(:kw, ex, ex) : ex) end deleteat!(exs, i) end return Tuple(exs) end """ Run [`optimize`](@ref) and store the result, or load the result if it exists. ```julia result = @optimize_or_load( file, problem; method, force=false, verbose=true, metadata=nothing, logfile=nothing, kwargs... ) ``` runs `result = optimize(problem; method, kwargs...)` and stores `result` in `file` in the JLD2 format. Note that the `method` keyword argument is mandatory. In addition to the `result`, the data in the output `file` can also contain metadata. By default, this is "script" with the file name and line number of where `@optimize_or_load` was called, as well as data from the dict `metadata` mapping arbitrary (string) keys to values. Lastly, the data contains truncated captured output (up to 1kB of both the beginning and end of the output) from the optimization. If `logfile` is given as the path to a file, both `stdout` and `stderr` from `optimize` are redirected into the given file. If `file` already exists (and `force=false`), load the `result` from that file instead of running the optimization, and print any (truncated) captured output. All other `kwargs` are passed directly to [`optimize`](@ref). For methods that support this, `@optimize_or_load` will set up a callback to dump the optimization result to `file` in case of an unexpected program shutdown, see [`set_atexit_save_optimization`](@ref). ## Related Functions * [`run_or_load`](@ref) — a function for more general long-running calculations. * [`load_optimization`](@ref): Function to load a file produced by `@optimize_or_load` """ macro optimize_or_load(exs...) exs = reorder_macro_kw_params(exs) exs = Any[exs...] _isa_kw = arg -> (arg isa Expr && (arg.head == :kw || arg.head == :(=))) if (length(exs) < 2) || _isa_kw(exs[1]) || _isa_kw(exs[2]) @show exs error( "@optimize_or_load macro must receive `file` and `problem` as positional arguments" ) end if (length(exs) > 2) && !_isa_kw(exs[3]) @show exs error( "@optimize_or_load macro only takes two positional arguments (`file` and `problem`)" ) end file = popfirst!(exs) problem = popfirst!(exs) s = QuoteNode(__source__) # source file and line number of calling line return quote optimize_or_load($(esc(file)), $(esc(problem)); $(esc.(exs)...)) do data # _filter data["script"] = relpath(_sourcename($(esc(s))), $(esc(file))) return data end end end _sourcename(s) = string(s) _sourcename(s::LineNumberNode) = string(s.file) * "#" * string(s.line) """Write an optimization result to file. ```julia save_optimization(file, result; metadata=nothing) ``` writes the result obtained from a call to `optimize` to the given `file` in JLD2 format. If given, `metadata` is a dict of additional data that will be stored with the result. The `metadata` dict should use strings as keys. # See also * [`load_optimization`](@ref): Function to load a file produced by [`@optimize_or_load`](@ref) or [`save_optimization`](@ref) * [`@optimize_or_load`](@ref): Run [`optimize`](@ref) and [`save_optimization`](@ref) in one go. """ function save_optimization(file, result; metadata=nothing) JLD2_fmt = FileIO.DataFormat{:JLD2} data = Dict{String,Any}("result" => result) if !isnothing(metadata) for (k, v) in metadata # This should convert pretty much any key to a string data[String(Symbol(k))] = v end end FileIO.save(File{JLD2_fmt}(file), data) end """Load a previously stored optimization. ```julia result = load_optimization(file; verbose=false, kwargs...) ``` recovers a `result` previously stored by [`@optimize_or_load`](@ref) or [`save_optimization`](@ref). ```julia result, metadata = load_optimization(file; return_metadata=true, kwargs...) ``` also obtains a metadata dict, see [`@optimize_or_load`](@ref). This dict maps string keys to values. Calling `load_optimization` with `verbose=true` will `@info` the metadata after loading the file """ function load_optimization(file; return_metadata=false, verbose=false, kwargs...) data = FileIO.load(file) result = data["result"] metadata = filter(kv -> (kv[1] != "result"), data) if verbose msg = "Loaded optimization result from $(relpath(file))" @info msg metadata end if return_metadata return result, metadata else return result end end end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
3783
using QuantumPropagators using QuantumPropagators.Controls: get_controls, evaluate using QuantumPropagators.Interfaces: catch_abbreviated_backtrace using ..Controls: get_control_deriv """ Check an amplitude in a [`Generator`](@ref) in the context of optimal control. ``` @test check_amplitude( ampl; tlist, for_gradient_optimization=true, quiet=false ) ``` verifies that the given `ampl` is a valid element in the list of `amplitudes` of a [`Generator`](@ref) object. This checks all the conditions of [`QuantumPropagators.Interfaces.check_amplitude`](@ref). In addition, the following conditions must be met. If `for_gradient_optimization`: * The function [`get_control_deriv(ampl, control)`](@ref get_control_deriv) must be defined * If `ampl` does not depend on `control`, [`get_control_deriv(ampl, control)`](@ref get_control_deriv) must return `0.0` * If `ampl` depends on `control`, [`u = get_control_deriv(ampl, control)`](@ref get_control_deriv) must return an object `u` so that `evaluate(u, tlist, n)` returns a Number. In most cases, `u` itself will be a Number. For more unusual amplitudes, e.g., an amplitude with a non-linear dependency on the controls, `u` may be another amplitude. The controls in `u` (as obtained by [`QuantumPropagators.Controls.get_controls`](@ref)) must be a subset of the controls in `ampl`. The function returns `true` for a valid amplitude and `false` for an invalid amplitude. Unless `quiet=true`, it will log an error to indicate which of the conditions failed. """ function check_amplitude( ampl; tlist, for_gradient_optimization=true, quiet=false, _message_prefix="" # for recursive calling ) px = _message_prefix success = QuantumPropagators.Interfaces.check_amplitude(ampl; tlist, quiet, _message_prefix) success || (return false) if for_gradient_optimization controls = get_controls(ampl) # guaranteed to work if success still true dummy_control_aSQeB(t) = rand() for (j, control) in enumerate(controls) try deriv = get_control_deriv(ampl, control) val = evaluate(deriv, tlist, 1) if !(val isa Number) quiet || @error "$(px)get_control_deriv(ampl, control) for control $j must return an object that evaluates to a Number, not $(typeof(val))" success = false end deriv_controls = Set(objectid(c) for c in get_controls(deriv)) if deriv_controls ⊈ Set(objectid.(controls)) quiet || @error "$(px)get_control_deriv(ampl, control) for control $j must return an object `u` so that `get_controls(u)` is a subset of `get_controls(ampl)`" success = false end catch exc quiet || @error( "$(px)get_control_deriv(ampl, control) must be defined for control $j.", exception = (exc, catch_abbreviated_backtrace()) ) success = false end end @assert dummy_control_aSQeB ∉ controls try deriv = get_control_deriv(ampl, dummy_control_aSQeB) if deriv ≠ 0.0 quiet || @error "$(px)get_control_deriv(ampl, control) must return 0.0 if it does not depend on `control`, not $(repr(deriv))" success = false end catch exc quiet || @error( "$(px)get_control_deriv(ampl, control) must be defined.", exception = (exc, catch_abbreviated_backtrace()) ) success = false end end return success end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
6583
using QuantumPropagators using QuantumPropagators.Generators: Generator using QuantumPropagators.Controls: get_controls using QuantumPropagators.Interfaces: catch_abbreviated_backtrace using ..Controls: get_control_derivs, get_control_deriv """Check the dynamical `generator` in the context of optimal control. ``` @test check_generator( generator; state, tlist, for_expval=true, for_pwc=true, for_time_continuous=false, for_parameterization=false, for_gradient_optimization=true, atol=1e-15, quiet=false ) ``` verifies the given `generator`. This checks all the conditions of [`QuantumPropagators.Interfaces.check_generator`](@ref). In addition, the following conditions must be met. If `for_gradient_optimization`: * [`get_control_derivs(generator, controls)`](@ref get_control_derivs) must be defined and return a vector containing the result of [`get_control_deriv(generator, control)`](@ref get_control_deriv) for every `control` in `controls`. * [`get_control_deriv(generator, control)`](@ref get_control_deriv) must return an object that passes the less restrictive [`QuantumPropagators.Interfaces.check_generator`](@ref) if `control` is in `get_controls(generator)`. The controls in the derivative (if any) must be a subset of the controls in `generator.` * [`get_control_deriv(generator, control)`](@ref get_control_deriv) must return `nothing` if `control` is not in [`get_controls(generator)`](@ref get_controls) * If `generator` is a [`Generator`](@ref) instance, every `ampl` in `generator.amplitudes` must pass [`check_amplitude(ampl; tlist)`](@ref check_amplitude). The function returns `true` for a valid generator and `false` for an invalid generator. Unless `quiet=true`, it will log an error to indicate which of the conditions failed. """ function check_generator( generator; state, tlist, for_expval=true, for_pwc=true, for_time_continuous=false, for_parameterization=false, for_gradient_optimization=true, atol=1e-15, quiet=false, _message_prefix="" # for recursive calling ) px = _message_prefix success = QuantumPropagators.Interfaces.check_generator( generator; state, tlist, for_expval, for_pwc, for_time_continuous, for_parameterization, atol, quiet, _message_prefix, _check_amplitudes=false # amplitudes are checked separately ) success || (return false) if for_gradient_optimization try controls = get_controls(generator) control_derivs = get_control_derivs(generator, controls) if !(control_derivs isa Vector) quiet || @error "$(px)`get_control_derivs(generator, controls)` must return a Vector" success = false end if length(control_derivs) ≠ length(controls) quiet || @error "$(px)`get_control_derivs(generator, controls)` must return a derivative for every `control` in `controls`" success = false end # In general, we can't check for equality between # `get_control_deriv` and `get_control_deriv`, because `==` may not # be implemented to compare arbitrary generators by value catch exc quiet || @error( "$(px)`get_control_derivs(generator, controls)` must be defined.", exception = (exc, catch_abbreviated_backtrace()) ) success = false end try controls = get_controls(generator) for (i, control) in enumerate(controls) deriv = get_control_deriv(generator, control) valid_deriv = check_generator( deriv; state, tlist, for_expval, atol, quiet, _message_prefix="On `deriv = get_control_deriv(generator, control)` of type $(typeof(deriv)) for control $i: ", for_gradient_optimization=false ) if !valid_deriv quiet || @error "$(px)the result of `get_control_deriv(generator, control)` for control $i is not a valid generator" success = false else deriv_controls = Set(objectid(c) for c in get_controls(deriv)) if deriv_controls ⊈ Set(objectid.(controls)) quiet || @error "$(px)get_control_deriv(generator, control) for control $i must return an object `D` so that `get_controls(D)` is a subset of `get_controls(generator)`" success = false end end end catch exc quiet || @error( "$(px)`get_control_deriv(generator, control)` must be defined.", exception = (exc, catch_abbreviated_backtrace()) ) success = false end try controls = get_controls(generator) dummy_control_CYRmE(t) = rand() @assert dummy_control_CYRmE ∉ controls deriv = get_control_deriv(generator, dummy_control_CYRmE) if deriv ≢ nothing quiet || @error "$(px)`get_control_deriv(generator, control)` must return `nothing` if `control` is not in `get_controls(generator)`, not $(repr(deriv))" success = false end catch exc quiet || @error( "$(px)`get_control_deriv(generator, control)` must return `nothing` if `control` is not in `get_controls(generator)`.", exception = (exc, catch_abbreviated_backtrace()) ) success = false end if generator isa Generator for (i, ampl) in enumerate(generator.amplitudes) valid_ampl = check_amplitude( ampl; tlist, for_gradient_optimization, quiet, _message_prefix="On ampl $i ($(typeof(ampl))) in `generator`: " ) if !valid_ampl quiet || @error "$(px)amplitude $i in `generator` does not pass `check_amplitude`" success = false end end end end return success end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
2139
""" clean([distclean=false]) Clean up build/doc/testing artifacts. Restore to clean checkout state (distclean) """ function clean(; distclean=false, _exit=true) _glob(folder, ending) = [name for name in readdir(folder; join=true) if (name |> endswith(ending))] _glob_star(folder; except=[]) = [ joinpath(folder, name) for name in readdir(folder) if !(name |> startswith(".") || name ∈ except) ] _exists(name) = isfile(name) || isdir(name) _push!(lst, name) = _exists(name) && push!(lst, name) ROOT = dirname(@__DIR__) ########################################################################### CLEAN = String[] for folder in ["", "src", "test"] append!(CLEAN, _glob(joinpath(ROOT, folder), ".cov")) end append!( CLEAN, _glob_star(joinpath(ROOT, "docs", "src", "examples"), except=["index.md"]) ) append!(CLEAN, _glob(joinpath(ROOT, "docs", "src", "api"), ".md")) _push!(CLEAN, joinpath(ROOT, "coverage")) _push!(CLEAN, joinpath(ROOT, "docs", "build")) append!(CLEAN, _glob(ROOT, ".info")) append!(CLEAN, _glob(joinpath(ROOT, ".coverage"), ".info")) ########################################################################### ########################################################################### DISTCLEAN = String[] for folder in ["", "docs", "test"] _push!(DISTCLEAN, joinpath(joinpath(ROOT, folder), "Manifest.toml")) end _push!(DISTCLEAN, joinpath(ROOT, "docs", "Project.toml")) _push!(DISTCLEAN, joinpath(ROOT, "docs", "src", "examples", ".ipynb_checkpoints")) _push!(DISTCLEAN, joinpath(ROOT, ".JuliaFormatter.toml")) ########################################################################### for name in CLEAN @info "rm $name" rm(name, force=true, recursive=true) end if distclean for name in DISTCLEAN @info "rm $name" rm(name, force=true, recursive=true) end if _exit @info "Exiting" exit(0) end end end distclean() = clean(distclean=true)
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
1408
# init file for "make devrepl" using Revise using Plots unicodeplots() using JuliaFormatter using QuantumControlTestUtils: test, show_coverage, generate_coverage_html using LiveServer: LiveServer, serve, servedocs as _servedocs include(joinpath(@__DIR__, "clean.jl")) function servedocs(; kwargs...) clean() # otherwise, we get an infinite loop ENV["DOCUMENTER_WARN_ONLY"] = "1" _servedocs(; skip_dirs=["docs/src/api"], kwargs...) end REPL_MESSAGE = """ ******************************************************************************* DEVELOPMENT REPL Revise, JuliaFormatter, LiveServer, Plots with unicode backend are active. * `help()` – Show this message * `include("test/runtests.jl")` – Run the entire test suite * `test()` – Run the entire test suite in a subprocess with coverage * `show_coverage()` – Print a tabular overview of coverage data * `generate_coverage_html()` – Generate an HTML coverage report * `include("docs/make.jl")` – Generate the documentation * `format(".")` – Apply code formatting to all files * `servedocs([port=8000, verbose=false])` – Build and serve the documentation. Automatically recompile and redisplay on changes * `clean()` – Clean up build/doc/testing artifacts * `distclean()` – Restore to a clean checkout state ******************************************************************************* """ """Show help""" help() = println(REPL_MESSAGE)
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
3053
using QuantumControl using QuantumPropagators using IOCapture using Test using SafeTestsets @testset "QuantumControl versions" begin captured = IOCapture.capture(passthrough=true) do QuantumControl.print_versions() end qp_exports = QuantumControl._exported_names(QuantumPropagators) @test :propagate ∈ qp_exports @test :QuantumControl ∉ qp_exports end # Note: comment outer @testset to stop after first @safetestset failure @time @testset verbose = true "QuantumControl" begin println("* Propagation (test_propagation.jl):") @time @safetestset "Propagation" begin include("test_propagation.jl") end println("* Derivatives (test_derives.jl):") @time @safetestset "Derivatives" begin include("test_derivs.jl") end println("\n* Parameterization (test_parameterization.jl):") @time @safetestset "Parameterization" begin include("test_parameterization.jl") end println("\n* Functionals (test_functionals.jl):") @time @safetestset "Functionals" begin include("test_functionals.jl") end println("* Callbacks (test_callbacks.jl):") @time @safetestset "Callbacks" begin include("test_callbacks.jl") end println("* Optimize-kwargs (test_optimize_kwargs.jl):") @time @safetestset "Optimize-kwargs" begin include("test_optimize_kwargs.jl") end println("* Dummy Optimization (test_dummy_optimization.jl):") @time @safetestset "Dummy Optimization" begin include("test_dummy_optimization.jl") end println("* Atexit dumps (test_atexit.jl):") @time @safetestset "Atexit dumps" begin include("test_atexit.jl") end println("* Trajectories (test_trajectories.jl):") @time @safetestset "Trajectories" begin include("test_trajectories.jl") end println("* Adjoint Trajectories (test_adjoint_trajectory.jl):") @time @safetestset "Adjoint Trajectories" begin include("test_adjoint_trajectory.jl") end println("* Control problems (test_control_problems.jl):") @time @safetestset "Control problems" begin include("test_control_problems.jl") end println("\n* Run-or-load (test_run_or_load.jl):") @time @safetestset "Run-or-load" begin include("test_run_or_load.jl") end println("\n* Optimize-or-load (test_optimize_or_load.jl):") @time @safetestset "Optimize-or-load" begin include("test_optimize_or_load.jl") end println("\n* Pulse Parameterizations (test_pulse_parameterizations.jl):") @time @safetestset "Pulse Parameterizations" begin include("test_pulse_parameterizations.jl") end println("\n* Result Conversion (test_result_conversion.jl):") @time @safetestset "Result Conversion" begin include("test_result_conversion.jl") end println("* Invalid interfaces (test_invalid_interfaces.jl):") @time @safetestset "Invalid interfaces" begin include("test_invalid_interfaces.jl") end print("\n") end; nothing
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
2792
using Test using LinearAlgebra using QuantumControl: Trajectory using QuantumControlTestUtils.DummyOptimization: dummy_control_problem @testset "Sparse trajectory adjoint" begin traj = dummy_control_problem().trajectories[1] adj = adjoint(traj) @test norm(adj.initial_state - traj.initial_state) ≈ 0 @test norm(adj.target_state - traj.target_state) ≈ 0 @test norm(adj.generator[1] - traj.generator[1]') ≈ 0 @test norm(adj.generator[2][1] - traj.generator[2][1]') ≈ 0 @test adj.generator[2][2] == traj.generator[2][2] end @testset "Dense trajectory adjoint" begin traj = dummy_control_problem(density=1.0).trajectories[1] adj = adjoint(traj) @test norm(adj.initial_state - traj.initial_state) ≈ 0 @test norm(adj.target_state - traj.target_state) ≈ 0 @test norm(adj.generator[1] - traj.generator[1]') ≈ 0 @test norm(adj.generator[1] - traj.generator[1]) ≈ 0 @test norm(adj.generator[2][1] - traj.generator[2][1]') ≈ 0 @test adj.generator[2][2] == traj.generator[2][2] end @testset "Non-Hermitian trajectory adjoint" begin traj = dummy_control_problem(sparsity=1.0, hermitian=false).trajectories[1] adj = adjoint(traj) @test norm(adj.initial_state - traj.initial_state) ≈ 0 @test norm(adj.target_state - traj.target_state) ≈ 0 @test norm(adj.generator[1] - traj.generator[1]') ≈ 0 @test norm(adj.generator[1] - traj.generator[1]) > 0 @test norm(adj.generator[2][1] - traj.generator[2][1]') ≈ 0 @test norm(adj.generator[2][1] - traj.generator[2][1]) > 0 @test adj.generator[2][2] == traj.generator[2][2] end @testset "weighted trajectory adjoint" begin traj0 = dummy_control_problem().trajectories[1] traj = Trajectory( initial_state=traj0.initial_state, generator=traj0.generator, target_state=traj0.target_state, weight=0.2 ) adj = adjoint(traj) @test adj.weight == traj.weight end @testset "custom trajectory adjoint" begin traj0 = dummy_control_problem(hermitian=false).trajectories[1] traj = Trajectory( initial_state=traj0.initial_state, generator=traj0.generator, gate="CNOT", weight=0.5, coeff=1im ) @test propertynames(traj) == (:initial_state, :generator, :target_state, :weight, :coeff, :gate) kwargs = getfield(traj, :kwargs) @test :coeff ∈ keys(kwargs) @test isnothing(traj.target_state) @test traj.gate == "CNOT" @test traj.coeff == 1im adj = adjoint(traj) @test norm(adj.initial_state - traj.initial_state) ≈ 0 @test norm(adj.generator[1] - traj.generator[1]') ≈ 0 @test norm(adj.generator[1] - traj.generator[1]) > 0 @test adj.gate == "CNOT" @test adj.weight == 0.5 @test adj.coeff == 1im end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
659
using Test using QuantumControl: set_atexit_save_optimization using QuantumControl: load_optimization mutable struct Result msg::String end @testset "Test set_atexit_save_optimization" begin result = Result("Started") filename = tempname() n_atexit_hooks = length(Base.atexit_hooks) set_atexit_save_optimization(filename, result; msg_property=:msg) @test length(Base.atexit_hooks) == n_atexit_hooks + 1 @test !isfile(filename) Base.atexit_hooks[1]() @test isfile(filename) result_recovered = load_optimization(filename) @test result_recovered.msg == "Abort: ATEXIT" popfirst!(Base.atexit_hooks) end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
593
using Test using QuantumControl: chain_callbacks @testset "chain_callbacks" begin function hook1(wrk, a1, a2, args...) return (1,) end function hook2(wrk, a1, a2, args...) return (2,) end function hook3(wrk, a1, a2, args...) @test length(args) == 2 return (3.1, 3.2) end function hook4(wrk, a1, a2, args...) return nothing end chained = chain_callbacks(hook1, hook2, hook3, hook4) res = chained(nothing, 0, 0) @test res == (1, 2, 3.1, 3.2) @test res[1] isa Int64 @test res[3] isa Float64 end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
2911
using Test using QuantumPropagators: Cheby using QuantumPropagators.Controls: substitute, get_controls using QuantumControl: Trajectory, ControlProblem using QuantumControlTestUtils.RandomObjects: random_state_vector, random_dynamic_generator using StableRNGs @testset "ControlProblem instantiation" begin rng = StableRNG(3143161816) N = 10 Ψ0 = random_state_vector(N; rng) Ψ1 = random_state_vector(N; rng) Ψ0_tgt = random_state_vector(N; rng) Ψ1_tgt = random_state_vector(N; rng) tlist = collect(range(0, 5; length=101)) H = random_dynamic_generator(N, tlist) problem = ControlProblem( [ Trajectory(Ψ0, H; target_state=Ψ0_tgt, weight=0.3), Trajectory(Ψ1, H; target_state=Ψ1_tgt, weight=0.7), ], tlist, J_T=(Ψ -> 1.0), prop_method=Cheby, iter_stop=10, ) @test length(problem.trajectories) == 2 @test length(get_controls(problem)) == 1 @test length(problem.kwargs) == 3 @test endswith( summary(problem), "ControlProblem with 2 trajectories and 101 time steps" ) repl_repr = repr("text/plain", problem; context=(:limit => true)) @test contains(repl_repr, "ControlProblem with 2 trajectories and 101 time steps") @test contains( repl_repr, "Trajectory with 10-element Vector{ComplexF64} initial state, Generator with 2 ops and 1 amplitudes, 10-element Vector{ComplexF64} target state, weight=0.3" ) @test contains( repl_repr, "Trajectory with 10-element Vector{ComplexF64} initial state, Generator with 2 ops and 1 amplitudes, 10-element Vector{ComplexF64} target state, weight=0.7" ) @test contains(repl_repr, ":J_T => ") @test contains(repl_repr, "tlist: [0.0, 0.05 … 5.0]") @test contains(repl_repr, ":iter_stop => 10") @test contains(repl_repr, r":prop_method => .*.Cheby") problem = ControlProblem([Trajectory(Ψ0, H; target_state=Ψ0_tgt)], [0.0, 0.1]) repl_repr = repr("text/plain", problem; context=(:limit => true)) @test contains(repl_repr, "tlist: [0.0, 0.1]") end @testset "ControlProblem substitution" begin rng = StableRNG(3143161816) N = 10 Ψ0 = random_state_vector(N; rng) Ψ1 = random_state_vector(N; rng) Ψ0_tgt = random_state_vector(N; rng) Ψ1_tgt = random_state_vector(N; rng) tlist = collect(range(0, 5; length=101)) ϵ1(t) = 0.0 ϵ2(t) = 1.0 H = random_dynamic_generator(N, tlist; amplitudes=[ϵ1]) problem = ControlProblem( [ Trajectory(Ψ0, H; target_state=Ψ0_tgt, weight=0.3), Trajectory(Ψ1, H; target_state=Ψ1_tgt, weight=0.7), ], tlist, J_T=(Ψ -> 1.0), prop_method=Cheby, iter_stop=10, ) @test get_controls(problem) == (ϵ1,) problem2 = substitute(problem, IdDict(ϵ1 => ϵ2)) @test get_controls(problem2) == (ϵ2,) end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
4614
using Test using LinearAlgebra using QuantumControl.Controls: get_control_deriv, get_control_derivs using QuantumPropagators.Generators using QuantumPropagators.Controls using QuantumPropagators: Generator, Operator using QuantumControlTestUtils.RandomObjects: random_matrix, random_state_vector using QuantumControl.Interfaces: check_generator, check_amplitude using QuantumPropagators.Amplitudes: LockedAmplitude, ShapedAmplitude import QuantumPropagators import QuantumControl _AT(::Generator{OT,AT}) where {OT,AT} = AT struct MySquareAmpl control::Function end struct MyScaledAmpl c::Number control::Function end function QuantumControl.Controls.get_control_deriv(a::MySquareAmpl, control) if control ≡ a.control return MyScaledAmpl(2.0, control) else return 0.0 end end QuantumPropagators.Controls.get_controls(a::MySquareAmpl) = (a.control,) QuantumPropagators.Controls.get_controls(a::MyScaledAmpl) = (a.control,) function QuantumPropagators.Controls.evaluate(a::MySquareAmpl, args...; kwargs...) v = evaluate(a.control, args...; kwargs...) return v^2 end function QuantumPropagators.Controls.evaluate(a::MyScaledAmpl, args...; vals_dict=IdDict()) return a.c * evaluate(a.control, args...; vals_dict) end @testset "Standard get_control_derivs" begin H₀ = random_matrix(5; hermitian=true) H₁ = random_matrix(5; hermitian=true) H₂ = random_matrix(5; hermitian=true) ϵ₁ = t -> 1.0 ϵ₂ = t -> 1.0 H = (H₀, (H₁, ϵ₁), (H₂, ϵ₂)) @test get_control_deriv(ϵ₁, ϵ₁) == 1.0 @test get_control_deriv(ϵ₁, ϵ₂) == 0.0 derivs = get_control_derivs(H₀, (ϵ₁, ϵ₂)) @test all(isnothing.(derivs)) derivs = get_control_derivs(H, (ϵ₁, ϵ₂)) @test derivs[1] isa Matrix{ComplexF64} @test derivs[2] isa Matrix{ComplexF64} @test norm(derivs[1] - H₁) < 1e-14 @test norm(derivs[2] - H₂) < 1e-14 for deriv in derivs O = evaluate(deriv; vals_dict=IdDict(ϵ₁ => 1.1, ϵ₂ => 2.0)) @test O ≡ deriv end @test isnothing(get_control_deriv(H, t -> 3.0)) Ψ = random_state_vector(5) tlist = collect(range(0, 10; length=101)) @test check_generator(H; state=Ψ, tlist, for_gradient_optimization=true) end @testset "Nonlinear get_control_derivs" begin H₀ = random_matrix(5; hermitian=true) H₁ = random_matrix(5; hermitian=true) H₂ = random_matrix(5; hermitian=true) ϵ₁ = t -> 1.0 ϵ₂ = t -> 1.0 H = (H₀, (H₁, MySquareAmpl(ϵ₁)), (H₂, MySquareAmpl(ϵ₂))) derivs = get_control_derivs(H, (ϵ₁, ϵ₂)) @test derivs[1] isa Generator @test derivs[2] isa Generator @test derivs[1].ops[1] ≡ H₁ @test _AT(derivs[1]) ≡ MyScaledAmpl O₁ = evaluate(derivs[1]; vals_dict=IdDict(ϵ₁ => 1.1, ϵ₂ => 2.0)) @test O₁ isa Operator @test length(O₁.ops) == length(O₁.coeffs) == 1 @test O₁.ops[1] ≡ H₁ @test O₁.coeffs[1] ≈ (2 * 1.1) O₂ = evaluate(derivs[2]; vals_dict=IdDict(ϵ₁ => 1.1, ϵ₂ => 2.0)) @test O₂ isa Operator @test length(O₂.ops) == length(O₂.coeffs) == 1 @test O₂.ops[1] ≡ H₂ @test O₂.coeffs[1] ≈ (2 * 2.0) @test isnothing(get_control_deriv(H, t -> 3.0)) Ψ = random_state_vector(5) tlist = collect(range(0, 10; length=101)) @test check_amplitude(H[2][2]; tlist) @test check_amplitude(H[3][2]; tlist) @test check_generator(H; state=Ψ, tlist, for_gradient_optimization=true) end @testset "LockedAmplitude get_control_derivs" begin shape(t) = 1.0 tlist = [0.0, 0.5, 1.0] ampl1 = LockedAmplitude(shape) ampl2 = LockedAmplitude(shape, tlist) @test get_control_deriv(ampl1, t -> 0.0) == 0.0 @test get_control_deriv(ampl1, shape) == 0.0 @test get_control_deriv(ampl2, t -> 0.0) == 0.0 @test get_control_deriv(ampl2, shape) == 0.0 end @testset "ShapedAmplitude get_control_derivs" begin shape(t) = 1.0 control(t) = 0.5 tlist = [0.0, 0.5, 1.0] ampl1 = ShapedAmplitude(control; shape) ampl2 = ShapedAmplitude(control, tlist; shape) @test get_control_deriv(ampl1, t -> 0.0) == 0.0 @test get_control_deriv(ampl1, shape) == 0.0 @test get_control_deriv(ampl1, control) == LockedAmplitude(shape) @test get_control_deriv(ampl2, t -> 0.0) == 0.0 @test get_control_deriv(ampl2, shape) == 0.0 control2 = get_controls(ampl2)[1] @test control2 ≢ control # should have been discretized @test ampl2.shape ≢ shape # should have been discretized @test control2 isa Vector{Float64} @test ampl2.shape isa Vector{Float64} @test get_control_deriv(ampl2, control2) == LockedAmplitude(ampl2.shape) end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
656
using Test using QuantumControl: optimize using QuantumControl.Controls: get_controls, substitute using QuantumControlTestUtils.DummyOptimization: dummy_control_problem @testset "dummy optimization" begin println("") problem = dummy_control_problem(n_trajectories=4, n_controls=3) result = optimize(problem; method=:dummymethod) @test result.converged H = problem.trajectories[1].generator H_opt = substitute( H, Dict( ϵ => ϵ_opt for (ϵ, ϵ_opt) in zip(get_controls(problem), result.optimized_controls) ) ) @test get_controls(H_opt)[2] ≡ result.optimized_controls[2] end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
14364
using Test using LinearAlgebra using QuantumControl: QuantumControl, Trajectory using QuantumControl.Functionals: J_T_sm, J_T_re, J_T_ss, J_a_fluence, grad_J_a_fluence, make_grad_J_a, make_chi, chi_re, chi_sm, chi_ss, gate_functional, make_gate_chi using QuantumControlTestUtils.RandomObjects: random_state_vector using QuantumControlTestUtils.DummyOptimization: dummy_control_problem using TwoQubitWeylChamber: D_PE, gate_concurrence, unitarity using StableRNGs: StableRNG using Zygote using GRAPE: GrapeWrk using FiniteDifferences using IOCapture const 𝕚 = 1im const ⊗ = kron N_HILBERT = 10 N = 4 L = 2 N_T = 50 RNG = StableRNG(4290326946) PROBLEM = dummy_control_problem(; N=N_HILBERT, n_trajectories=N, n_controls=L, n_steps=N_T, rng=RNG, J_T=J_T_sm, ) @testset "make-chi" begin # Test that the routine returned by `make_chi` gives the same result # as the Zygote chi trajectories = PROBLEM.trajectories χ1 = [similar(traj.initial_state) for traj in trajectories] χ2 = [similar(traj.initial_state) for traj in trajectories] χ3 = [similar(traj.initial_state) for traj in trajectories] χ4 = [similar(traj.initial_state) for traj in trajectories] χ5 = [similar(traj.initial_state) for traj in trajectories] χ6 = [similar(traj.initial_state) for traj in trajectories] χ7 = [similar(traj.initial_state) for traj in trajectories] χ8 = [similar(traj.initial_state) for traj in trajectories] Ψ = [random_state_vector(N_HILBERT; rng=RNG) for k = 1:N] τ = [traj.target_state ⋅ Ψ[k] for (k, traj) in enumerate(trajectories)] for functional in (J_T_sm, J_T_re, J_T_ss) #!format: off chi_analytical = make_chi(functional, trajectories; mode=:analytic) chi_auto = make_chi(functional, trajectories) chi_zyg = make_chi(functional, trajectories; mode=:automatic, automatic=Zygote) chi_zyg_states = make_chi(functional, trajectories; mode=:automatic, automatic=Zygote, via=:states) chi_zyg_tau = make_chi(functional, trajectories; mode=:automatic, automatic=Zygote, via=:tau) chi_fdm = make_chi(functional, trajectories; mode=:automatic, automatic=FiniteDifferences) chi_fdm_states = make_chi(functional, trajectories; mode=:automatic, automatic=FiniteDifferences, via=:states) chi_fdm_tau = make_chi(functional, trajectories; mode=:automatic, automatic=FiniteDifferences, via=:tau) #!format: on χ1 = chi_analytical(Ψ, trajectories; τ) χ2 = chi_auto(Ψ, trajectories; τ) χ3 = chi_zyg(Ψ, trajectories; τ) χ4 = chi_zyg_states(Ψ, trajectories) χ5 = chi_zyg_tau(Ψ, trajectories; τ) χ6 = chi_fdm(Ψ, trajectories; τ) χ7 = chi_fdm_states(Ψ, trajectories) χ8 = chi_fdm_tau(Ψ, trajectories; τ) @test maximum(norm.(χ1 .- χ2)) < 1e-12 @test maximum(norm.(χ1 .- χ3)) < 1e-12 @test maximum(norm.(χ1 .- χ4)) < 1e-12 @test maximum(norm.(χ1 .- χ5)) < 1e-12 @test maximum(norm.(χ1 .- χ6)) < 1e-12 @test maximum(norm.(χ1 .- χ7)) < 1e-12 @test maximum(norm.(χ1 .- χ8)) < 1e-12 end end @testset "make-grad-J_a" begin tlist = PROBLEM.tlist wrk = GrapeWrk(PROBLEM) pulsevals = wrk.pulsevals J_a_val = J_a_fluence(pulsevals, tlist) @test J_a_val > 0.0 G1 = grad_J_a_fluence(pulsevals, tlist) grad_J_a_zygote = make_grad_J_a(J_a_fluence, tlist; mode=:automatic, automatic=Zygote) @test grad_J_a_zygote ≢ grad_J_a_fluence G2 = grad_J_a_zygote(pulsevals, tlist) grad_J_a_fdm = make_grad_J_a(J_a_fluence, tlist; mode=:automatic, automatic=FiniteDifferences) @test grad_J_a_fdm ≢ grad_J_a_fluence @test grad_J_a_fdm ≢ grad_J_a_zygote G3 = grad_J_a_fdm(pulsevals, tlist) @test 0.0 ≤ norm(G2 - G1) < 1e-12 # zygote can be exact @test 0.0 < norm(G3 - G1) < 1e-12 # fdm should not be exact @test 0.0 < norm(G3 - G2) < 1e-10 end @testset "J_T without analytic derivative" begin QuantumControl.set_default_ad_framework(nothing; quiet=true) J_T(ϕ, trajectories; tau=nothing, τ=tau) = 1.0 trajectories = PROBLEM.trajectories capture = IOCapture.capture(rethrow=Union{}) do make_chi(J_T, trajectories) end @test contains(capture.output, "fallback to mode=:automatic") @test capture.value isa ErrorException if capture.value isa ErrorException @test contains(capture.value.msg, "no default `automatic`") end QuantumControl.set_default_ad_framework(Zygote; quiet=true) capture = IOCapture.capture() do make_chi(J_T, trajectories) end @test capture.value isa Function @test contains(capture.output, "fallback to mode=:automatic") @test contains(capture.output, "automatic with Zygote") capture = IOCapture.capture(rethrow=Union{}) do make_chi(J_T, trajectories; mode=:analytic) end @test capture.value isa ErrorException if capture.value isa ErrorException @test contains(capture.value.msg, "no analytic gradient") end QuantumControl.set_default_ad_framework(nothing; quiet=true) end @testset "J_a without analytic derivative" begin QuantumControl.set_default_ad_framework(nothing; quiet=true) J_a(pulsvals, tlist) = 0.0 tlist = [0.0, 1.0] capture = IOCapture.capture(rethrow=Union{}) do make_grad_J_a(J_a, tlist) end @test contains(capture.output, "fallback to mode=:automatic") @test capture.value isa ErrorException if capture.value isa ErrorException @test contains(capture.value.msg, "no default `automatic`") end QuantumControl.set_default_ad_framework(Zygote; quiet=true) capture = IOCapture.capture() do make_grad_J_a(J_a, tlist) end @test capture.value isa Function @test contains(capture.output, "fallback to mode=:automatic") @test contains(capture.output, "automatic with Zygote") capture = IOCapture.capture(rethrow=Union{}) do make_grad_J_a(J_a, tlist; mode=:analytic) end @test capture.value isa ErrorException if capture.value isa ErrorException @test contains(capture.value.msg, "no analytic gradient") end QuantumControl.set_default_ad_framework(nothing; quiet=true) end module UnsupportedADFramework end @testset "Unsupported AD Framework (J_T)" begin QuantumControl.set_default_ad_framework(UnsupportedADFramework; quiet=true) @test QuantumControl.Functionals.DEFAULT_AD_FRAMEWORK == :UnsupportedADFramework J_T(ϕ, trajectories; tau=nothing, τ=tau) = 1.0 trajectories = PROBLEM.trajectories capture = IOCapture.capture(rethrow=Union{}, passthrough=false) do make_chi(J_T, trajectories) end @test contains(capture.output, "fallback to mode=:automatic") @test capture.value isa ErrorException if capture.value isa ErrorException msg = "no analytic gradient, and no automatic gradient" @test contains(capture.value.msg, msg) end capture = IOCapture.capture(rethrow=Union{}, passthrough=false) do make_chi(J_T, trajectories; automatic=UnsupportedADFramework) end @test contains(capture.output, "fallback to mode=:automatic") @test capture.value isa ErrorException if capture.value isa ErrorException msg = "no analytic gradient, and no automatic gradient" @test contains(capture.value.msg, msg) end capture = IOCapture.capture(rethrow=Union{}, passthrough=false) do make_chi(J_T, trajectories; mode=:automatic, automatic=UnsupportedADFramework) end @test capture.value isa ErrorException if capture.value isa ErrorException msg = ": no automatic gradient" @test contains(capture.value.msg, msg) end QuantumControl.set_default_ad_framework(nothing; quiet=true) @test QuantumControl.Functionals.DEFAULT_AD_FRAMEWORK == :nothing end @testset "Unsupported AD Framework (J_a)" begin QuantumControl.set_default_ad_framework(UnsupportedADFramework; quiet=true) @test QuantumControl.Functionals.DEFAULT_AD_FRAMEWORK == :UnsupportedADFramework J_a(pulsvals, tlist) = 0.0 tlist = [0.0, 1.0] capture = IOCapture.capture(rethrow=Union{}, passthrough=false) do make_grad_J_a(J_a, tlist) end @test contains(capture.output, "fallback to mode=:automatic") @test capture.value isa ErrorException if capture.value isa ErrorException msg = "no analytic gradient, and no automatic gradient" @test contains(capture.value.msg, msg) end capture = IOCapture.capture(rethrow=Union{}, passthrough=false) do make_grad_J_a(J_a, tlist; automatic=UnsupportedADFramework) end @test contains(capture.output, "fallback to mode=:automatic") @test capture.value isa ErrorException if capture.value isa ErrorException msg = "no analytic gradient, and no automatic gradient" @test contains(capture.value.msg, msg) end capture = IOCapture.capture(rethrow=Union{}, passthrough=false) do make_grad_J_a(J_a, tlist; mode=:automatic, automatic=UnsupportedADFramework) end @test capture.value isa ErrorException if capture.value isa ErrorException msg = ": no automatic gradient" @test contains(capture.value.msg, msg) end QuantumControl.set_default_ad_framework(nothing; quiet=true) @test QuantumControl.Functionals.DEFAULT_AD_FRAMEWORK == :nothing end @testset "invalid functional" begin QuantumControl.set_default_ad_framework(Zygote; quiet=true) J_T(ϕ, trajectories) = 1.0 # no τ keyword argument trajectories = PROBLEM.trajectories @test_throws ErrorException begin IOCapture.capture() do make_chi(J_T, trajectories) end end function J_T_xxx(ϕ, trajectories; tau=nothing, τ=tau) throw(DomainError("XXX")) end @test_throws DomainError begin IOCapture.capture() do make_chi(J_T_xxx, trajectories) end end @test_throws DomainError begin IOCapture.capture() do make_chi(J_T_xxx, trajectories; mode=:automatic) end end function J_a_xxx(pulsevals, tlist) throw(DomainError("XXX")) end tlist = [0.0, 1.0] capture = IOCapture.capture() do make_grad_J_a(J_a_xxx, tlist) end grad_J_a = capture.value @test_throws DomainError begin grad_J_a(1, tlist) end QuantumControl.set_default_ad_framework(nothing; quiet=true) end @testset "functionals-tau-no-tau" begin # Test that the various chi routines give the same result whether they are # called with ϕ states or with τ values trajectories = PROBLEM.trajectories Ψ = [random_state_vector(N_HILBERT; rng=RNG) for k = 1:N] τ = [traj.target_state ⋅ Ψ[k] for (k, traj) in enumerate(trajectories)] @test J_T_re(Ψ, trajectories) ≈ J_T_re(nothing, trajectories; τ) χ1 = chi_re(Ψ, trajectories) χ2 = chi_re(Ψ, trajectories; τ) @test maximum(norm.(χ1 .- χ2)) < 1e-12 @test J_T_sm(Ψ, trajectories) ≈ J_T_sm(nothing, trajectories; τ) χ1 = chi_sm(Ψ, trajectories) χ2 = chi_sm(Ψ, trajectories; τ) @test maximum(norm.(χ1 .- χ2)) < 1e-12 @test J_T_ss(Ψ, trajectories) ≈ J_T_ss(nothing, trajectories; τ) χ1 = chi_ss(Ψ, trajectories) χ2 = chi_ss(Ψ, trajectories; τ) @test maximum(norm.(χ1 .- χ2)) < 1e-12 end @testset "gate functional" begin CPHASE_lossy = [ 0.99 0 0 0 0 0.99 0 0 0 0 0.99 0 0 0 0 0.99𝕚 ] function ket(i::Int64; N=N) Ψ = zeros(ComplexF64, N) Ψ[i+1] = 1 return Ψ end function ket(indices::Int64...; N=N) Ψ = ket(indices[1]; N=N) for i in indices[2:end] Ψ = Ψ ⊗ ket(i; N=N) end return Ψ end function ket(label::AbstractString; N=N) indices = [parse(Int64, digit) for digit in label] return ket(indices...; N=N) end basis = [ket("00"), ket("01"), ket("10"), ket("11")] J_T_C(U; w=0.5) = w * (1 - gate_concurrence(U)) + (1 - w) * (1 - unitarity(U)) @test 0.6 < gate_concurrence(CPHASE_lossy) < 0.8 @test 0.97 < unitarity(CPHASE_lossy) < 0.99 @test 0.1 < J_T_C(CPHASE_lossy) < 0.2 J_T = gate_functional(J_T_C) Ψ = transpose(CPHASE_lossy) * basis trajectories = [Trajectory(Ψ, nothing) for Ψ ∈ basis] @test J_T(Ψ, trajectories) ≈ J_T_C(CPHASE_lossy) chi_J_T = make_chi(J_T, trajectories; mode=:automatic, automatic=Zygote) χ = chi_J_T(Ψ, trajectories) J_T2 = gate_functional(J_T_C; w=0.1) @test (J_T2(Ψ, trajectories) - J_T_C(CPHASE_lossy)) < -0.1 chi_J_T2 = make_chi(J_T2, trajectories; mode=:automatic, automatic=Zygote) χ2 = chi_J_T2(Ψ, trajectories) QuantumControl.set_default_ad_framework(nothing; quiet=true) capture = IOCapture.capture(rethrow=Union{}, passthrough=true) do make_gate_chi(J_T_C, trajectories) end @test capture.value isa ErrorException if capture.value isa ErrorException @test contains(capture.value.msg, "no default `automatic`") end QuantumControl.set_default_ad_framework(Zygote; quiet=true) capture = IOCapture.capture() do make_gate_chi(J_T_C, trajectories) end @test contains(capture.output, "automatic with Zygote") chi_J_T_C_zyg = capture.value χ_zyg = chi_J_T_C_zyg(Ψ, trajectories) QuantumControl.set_default_ad_framework(FiniteDifferences; quiet=true) capture = IOCapture.capture() do make_gate_chi(J_T_C, trajectories) end @test contains(capture.output, "automatic with FiniteDifferences") chi_J_T_C_fdm = capture.value χ_fdm = chi_J_T_C_fdm(Ψ, trajectories) @test maximum(norm.(χ_zyg .- χ)) < 1e-12 @test maximum(norm.(χ_zyg .- χ_fdm)) < 1e-12 QuantumControl.set_default_ad_framework(nothing; quiet=true) chi_J_T_C_zyg2 = make_gate_chi(J_T_C, trajectories; automatic=Zygote, w=0.1) χ_zyg2 = chi_J_T_C_zyg2(Ψ, trajectories) chi_J_T_C_fdm2 = make_gate_chi(J_T_C, trajectories; automatic=FiniteDifferences, w=0.1) χ_fdm2 = chi_J_T_C_fdm2(Ψ, trajectories) @test maximum(norm.(χ_zyg2 .- χ2)) < 1e-12 @test maximum(norm.(χ_zyg2 .- χ_fdm2)) < 1e-12 end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
5002
using Test using Logging: with_logger using LinearAlgebra: I using QuantumPropagators using QuantumControl: hamiltonian using QuantumControlTestUtils.RandomObjects: random_matrix, random_state_vector using QuantumControl.Interfaces: check_generator, check_amplitude using IOCapture import QuantumControl.Controls: get_control_deriv, get_controls, evaluate, evaluate!, substitute, discretize_on_midpoints struct InvalidGenerator control end # Define the methods required for propagation, but not the methods required # for gradients get_controls(G::InvalidGenerator) = (G.control,) evaluate(G::InvalidGenerator, args...; kwargs...) = I(4) evaluate!(op, G, args...; kwargs...) = op substitute(G::InvalidGenerator, args...) = G struct InvalidAmplitude control end get_controls(a::InvalidAmplitude) = (a.control,) substitute(a::InvalidAmplitude, args...) = a evaluate(a::InvalidAmplitude, args...; kwargs...) = evaluate(a.control, args...; kwargs...) struct InvalidAmplitudeNonPreserving control end function InvalidAmplitudeNonPreserving(control, tlist) pulse = discretize_on_midpoints(control, tlist) InvalidAmplitudeNonPreserving(pulse) end get_controls(a::InvalidAmplitudeNonPreserving) = (a.control,) substitute(a::InvalidAmplitudeNonPreserving, args...) = a evaluate(a::InvalidAmplitudeNonPreserving, args...; kwargs...) = evaluate(a.control, args...; kwargs...) function get_control_deriv(a::InvalidAmplitudeNonPreserving, control) if control ≡ a.control if a.control isa Function return InvalidAmplitudeNonPreserving(t -> a.control(t)) else return InvalidAmplitudeNonPreserving(copy(a.control)) end # The `copy` above is the "non-preserving" problematic behavior else return 0.0 end end struct InvalidAmplitudeWrongDeriv control end get_controls(a::InvalidAmplitudeWrongDeriv) = (a.control,) substitute(a::InvalidAmplitudeWrongDeriv, args...) = a evaluate(a::InvalidAmplitudeWrongDeriv, args...; kwargs...) = evaluate(a.control, args...; kwargs...) get_control_deriv(::InvalidAmplitudeWrongDeriv, control) = nothing @testset "Invalid generator" begin state = ComplexF64[1, 0, 0, 0] tlist = collect(range(0, 10, length=101)) generator = InvalidGenerator(t -> 1.0) @test QuantumPropagators.Interfaces.check_generator(generator; state, tlist) captured = IOCapture.capture(rethrow=Union{}, passthrough=false) do check_generator(generator; state, tlist) end @test captured.value ≡ false @test contains( captured.output, "`get_control_derivs(generator, controls)` must be defined" ) @test contains( captured.output, "`get_control_deriv(generator, control)` must return `nothing` if `control` is not in `get_controls(generator)`" ) H₀ = random_matrix(4; hermitian=true) H₁ = random_matrix(4; hermitian=true) ampl = InvalidAmplitudeNonPreserving(t -> 1.0) generator = hamiltonian(H₀, (H₁, ampl)) captured = IOCapture.capture(rethrow=Union{}, passthrough=false) do check_generator(generator; state, tlist) end @test captured.value ≡ false @test contains( captured.output, "must return an object `D` so that `get_controls(D)` is a subset of `get_controls(generator)`" ) end @testset "Invalid amplitudes" begin N = 5 state = random_state_vector(N) tlist = collect(range(0, 10, length=101)) H₀ = random_matrix(5; hermitian=true) H₁ = random_matrix(5; hermitian=true) ampl = InvalidAmplitude(t -> 1.0) @test QuantumPropagators.Interfaces.check_amplitude(ampl; tlist) H = hamiltonian(H₀, (H₁, ampl)) @test QuantumPropagators.Interfaces.check_generator(H; state, tlist) captured = IOCapture.capture(rethrow=Union{}, passthrough=false) do check_generator(H; state, tlist) end @test captured.value ≡ false @test contains(captured.output, "get_control_deriv(ampl, control) must be defined") ampl = InvalidAmplitudeWrongDeriv(t -> 1.0) captured = IOCapture.capture(rethrow=Union{}, passthrough=false) do check_amplitude(ampl; tlist) end @test contains( captured.output, "get_control_deriv(ampl, control) for control 1 must return an object that evaluates to a Number" ) @test contains( captured.output, "get_control_deriv(ampl, control) must return 0.0 if it does not depend on `control`" ) ampl = InvalidAmplitudeNonPreserving(t -> 1.0, tlist) deriv = get_control_deriv(ampl, ampl.control) @test get_controls(ampl)[1] ≢ get_controls(deriv)[1] # This is the "bug" captured = IOCapture.capture(rethrow=Union{}, passthrough=false) do check_amplitude(ampl; tlist) end @test contains( captured.output, "must return an object `u` so that `get_controls(u)` is a subset of `get_controls(ampl)`" ) @test captured.value ≡ false end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
1130
using Test import QuantumControl using QuantumControl: ControlProblem, Trajectory @testset "optimize-kwargs" begin # test that we can call optimize with kwargs that override the kwargs of # the `problem` without permanently changing `problem` struct Result iter_stop::Int flag::Bool end function optimize_kwargstest(problem) return Result(problem.kwargs[:iter_stop], problem.kwargs[:flag]) end QuantumControl.optimize(problem, method::Val{:kwargstest}) = optimize_kwargstest(problem) problem = ControlProblem( [Trajectory(nothing, nothing)], pulse_options=Dict(), tlist=[0.0, 10.0], iter_stop=2, flag=false ) res = QuantumControl.optimize(problem; method=:kwargstest, check=false) @test res.iter_stop == 2 @test !res.flag res2 = QuantumControl.optimize( problem; method=:kwargstest, iter_stop=10, flag=true, check=false ) @test res2.iter_stop == 10 @test res2.flag @test problem.kwargs[:iter_stop] == 2 @test !problem.kwargs[:flag] end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
4045
using Test using IOCapture using QuantumControl: @optimize_or_load, load_optimization, save_optimization, optimize using QuantumControlTestUtils.DummyOptimization: dummy_control_problem, DummyOptimizationResult @testset "metadata" begin problem = dummy_control_problem() outdir = mktempdir() outfile = joinpath(outdir, "optimization_with_metadata.jld2") captured = IOCapture.capture(passthrough=false) do result = @optimize_or_load( outfile, problem; method=:dummymethod, metadata=Dict("testset" => "metadata", "method" => :dummymethod,) ) end result = captured.value @test result.converged @test isfile(outfile) result_load, metadata = load_optimization(outfile; return_metadata=true) @test result_load isa DummyOptimizationResult @test result_load.message == "Reached maximum number of iterations" @test metadata["testset"] == "metadata" @test metadata["method"] == :dummymethod outfile2 = joinpath(outdir, "optimization_with_metadata2.jld2") save_optimization(outfile2, result_load; metadata) @test isfile(outfile2) result_load2, metadata2 = load_optimization(outfile2; return_metadata=true) @test result_load2 isa DummyOptimizationResult @test result_load2.message == "Reached maximum number of iterations" @test metadata2["testset"] == "metadata" @test metadata2["method"] == :dummymethod end @testset "continue_from" begin problem = dummy_control_problem() outdir = mktempdir() outfile = joinpath(outdir, "optimization_stage1.jld2") println("") captured = IOCapture.capture(passthrough=false, color=true) do @optimize_or_load(outfile, problem; iter_stop=5, method=:dummymethod) end result = captured.value @test result.converged result1 = load_optimization(outfile) captured = IOCapture.capture(passthrough=false, color=true) do optimize(problem; method=:dummymethod, iter_stop=15, continue_from=result1) end result2 = captured.value @test result2.iter == 15 end @testset "captured output" begin problem = dummy_control_problem(verbose=true) outdir = mktempdir() outfile = joinpath(outdir, "optimization_with_output.jld2") captured = IOCapture.capture(passthrough=false) do result = @optimize_or_load(outfile, problem; iter_stop=300, method=:dummymethod,) end @test contains(captured.output, "\n 200\t7.") captured = IOCapture.capture(passthrough=false) do result = @optimize_or_load(outfile, problem; iter_stop=300, method=:dummymethod,) end @test contains(captured.output, "Info: Loading data") @test !contains(captured.output, "\n 200\t7.") @test contains(captured.output, "\n 6…") end @testset "optimization logfile" begin problem = dummy_control_problem(verbose=true) outdir = mktempdir() outfile = joinpath(outdir, "optimization_with_logfile.jld2") logfile = joinpath(outdir, "oct.log") captured = IOCapture.capture(passthrough=false) do result = @optimize_or_load( outfile, problem; iter_stop=300, method=:dummymethod, logfile, ) end @test !contains(captured.output, "# iter\tJ_T\n") @test isfile(logfile) if isfile(logfile) logfile_text = read(logfile, String) @test startswith(logfile_text, "# iter\tJ_T\n") @test contains(logfile_text, "\n 200\t7.") # not truncated end captured = IOCapture.capture(passthrough=false) do result = @optimize_or_load( outfile, problem; iter_stop=300, method=:dummymethod, logfile, ) end @test !contains(captured.output, "# iter\tJ_T\n") @test isfile(logfile) if isfile(logfile) logfile_text = read(logfile, String) @test startswith(logfile_text, "# iter\tJ_T\n") @test contains(logfile_text, "\n 200\t7.") # not truncated end end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
6645
using ComponentArrays using RecursiveArrayTools # to ensure extension is loaded using UnPack: @unpack using QuantumPropagators: hamiltonian using QuantumPropagators.Controls: ParameterizedFunction, get_parameters using QuantumControl: ControlProblem, Trajectory using Test struct GaussianControl <: ParameterizedFunction parameters::ComponentVector{Float64,Vector{Float64},Tuple{Axis{(A=1, t₀=2, σ=3)}}} GaussianControl(; kwargs...) = new(ComponentVector(; kwargs...)) end function (control::GaussianControl)(t) @unpack A, t₀, σ = control.parameters return A * exp(-(t - t₀)^2 / (2 * σ^2)) end const 𝕚 = 1im function total_enantiomer_ham(parameters; sign, a, independent_parameters=false, kwargs...) μ = (sign == "-" ? -1 : 1) H₁Re = μ * ComplexF64[0 1 0; 1 0 0; 0 0 0] H₁Im = μ * ComplexF64[0 𝕚 0; -𝕚 0 0; 0 0 0] H₂Re = μ * ComplexF64[0 0 0; 0 0 1; 0 1 0] H₂Im = μ * ComplexF64[0 0 0; 0 0 𝕚; 0 -𝕚 0] H₃Re = μ * ComplexF64[0 0 1; 0 0 0; 1 0 0] H₃Im = μ * ComplexF64[0 0 𝕚; 0 0 0; -𝕚 0 0] if independent_parameters # This doesn't make sense physically, but it's a good way to test # collecting multiple parameter arrays return hamiltonian( (H₁Re, TEH_field1Re(copy(parameters), a)), (H₁Im, TEH_field1Im(copy(parameters), a)), (H₂Re, TEH_field2Re(copy(parameters), a)), (H₂Im, TEH_field2Im(copy(parameters), a)), (H₃Re, TEH_field3Re(copy(parameters), a)), (H₃Im, TEH_field3Im(copy(parameters), a)); kwargs... ) else return hamiltonian( (H₁Re, TEH_field1Re(parameters, a)), (H₁Im, TEH_field1Im(parameters, a)), (H₂Re, TEH_field2Re(parameters, a)), (H₂Im, TEH_field2Im(parameters, a)), (H₃Re, TEH_field3Re(parameters, a)), (H₃Im, TEH_field3Im(parameters, a)); kwargs... ) end end struct TEH_field1Re <: ParameterizedFunction parameters::ComponentVector{ Float64, Vector{Float64}, Tuple{Axis{(ΔT₁=1, ΔT₂=2, ΔT₃=3, ϕ₁=4, ϕ₂=5, ϕ₃=6, E₀₁=7, E₀₂=8, E₀₃=9)}} } a::Float64 end function (E::TEH_field1Re)(t) @unpack E₀₁, ΔT₁, ϕ₁ = E.parameters _tanhfield(t; E₀=E₀₁, t₁=0.0, t₂=ΔT₁, a=E.a) * cos(ϕ₁) end struct TEH_field2Re <: ParameterizedFunction parameters::ComponentVector{ Float64, Vector{Float64}, Tuple{Axis{(ΔT₁=1, ΔT₂=2, ΔT₃=3, ϕ₁=4, ϕ₂=5, ϕ₃=6, E₀₁=7, E₀₂=8, E₀₃=9)}} } a::Float64 end function (E::TEH_field2Re)(t) @unpack E₀₂, ΔT₁, ΔT₂, ϕ₂ = E.parameters _tanhfield(t; E₀=E₀₂, t₁=ΔT₁, t₂=(ΔT₁ + ΔT₂), a=E.a) * cos(ϕ₂) end struct TEH_field3Re <: ParameterizedFunction parameters::ComponentVector{ Float64, Vector{Float64}, Tuple{Axis{(ΔT₁=1, ΔT₂=2, ΔT₃=3, ϕ₁=4, ϕ₂=5, ϕ₃=6, E₀₁=7, E₀₂=8, E₀₃=9)}} } a::Float64 end function (E::TEH_field3Re)(t) @unpack E₀₃, ΔT₁, ΔT₂, ΔT₃, ϕ₃ = E.parameters _tanhfield(t; E₀=E₀₃, t₁=(ΔT₁ + ΔT₂), t₂=(ΔT₁ + ΔT₂ + ΔT₃), a=E.a) * cos(ϕ₃) end struct TEH_field1Im <: ParameterizedFunction parameters::ComponentVector{ Float64, Vector{Float64}, Tuple{Axis{(ΔT₁=1, ΔT₂=2, ΔT₃=3, ϕ₁=4, ϕ₂=5, ϕ₃=6, E₀₁=7, E₀₂=8, E₀₃=9)}} } a::Float64 end function (E::TEH_field1Im)(t) @unpack E₀₁, ΔT₁, ϕ₁ = E.parameters _tanhfield(t; E₀=E₀₁, t₁=0.0, t₂=ΔT₁, a=E.a) * sin(ϕ₁) end struct TEH_field2Im <: ParameterizedFunction parameters::ComponentVector{ Float64, Vector{Float64}, Tuple{Axis{(ΔT₁=1, ΔT₂=2, ΔT₃=3, ϕ₁=4, ϕ₂=5, ϕ₃=6, E₀₁=7, E₀₂=8, E₀₃=9)}} } a::Float64 end function (E::TEH_field2Im)(t) @unpack E₀₂, ΔT₁, ΔT₂, ϕ₂ = E.parameters _tanhfield(t; E₀=E₀₂, t₁=ΔT₁, t₂=(ΔT₁ + ΔT₂), a=E.a) * sin(ϕ₂) end struct TEH_field3Im <: ParameterizedFunction parameters::ComponentVector{ Float64, Vector{Float64}, Tuple{Axis{(ΔT₁=1, ΔT₂=2, ΔT₃=3, ϕ₁=4, ϕ₂=5, ϕ₃=6, E₀₁=7, E₀₂=8, E₀₃=9)}} } a::Float64 end function (E::TEH_field3Im)(t) @unpack E₀₃, ΔT₁, ΔT₂, ΔT₃, ϕ₃ = E.parameters _tanhfield(t; E₀=E₀₃, t₁=(ΔT₁ + ΔT₂), t₂=(ΔT₁ + ΔT₂ + ΔT₃), a=E.a) * sin(ϕ₃) end _tanhfield(t; E₀, t₁, t₂, a) = (E₀ / 2) * (tanh(a * (t - t₁)) - tanh(a * (t - t₂))); _ENANTIOMER_PARAMETERS = ComponentVector( ΔT₁=0.3, ΔT₂=0.4, ΔT₃=0.3, ϕ₁=0.0, ϕ₂=0.0, ϕ₃=0.0, E₀₁=4.5, E₀₂=4.0, E₀₃=5.0 ) @testset "enantiomer problem - dependent parameters" begin H₊ = total_enantiomer_ham(_ENANTIOMER_PARAMETERS; sign="+", a=100) H₋ = total_enantiomer_ham(_ENANTIOMER_PARAMETERS; sign="-", a=100) tlist = [0.0, 0.5, 1.0] Ψ₀ = ComplexF64[1, 0, 0] Ψ₊tgt = ComplexF64[1, 0, 0] Ψ₋tgt = ComplexF64[0, 0, 1] problem = ControlProblem( [Trajectory(Ψ₀, H₊; target_state=Ψ₊tgt), Trajectory(Ψ₀, H₋; target_state=Ψ₋tgt)], tlist; ) p = get_parameters(problem) @test p isa AbstractVector @test eltype(p) == Float64 @test length(p) == 9 @test p === _ENANTIOMER_PARAMETERS end @testset "enantiomer problem - partially independent parameters" begin H₊ = total_enantiomer_ham(copy(_ENANTIOMER_PARAMETERS); sign="+", a=100) H₋ = total_enantiomer_ham(copy(_ENANTIOMER_PARAMETERS); sign="-", a=100) tlist = [0.0, 0.5, 1.0] Ψ₀ = ComplexF64[1, 0, 0] Ψ₊tgt = ComplexF64[1, 0, 0] Ψ₋tgt = ComplexF64[0, 0, 1] problem = ControlProblem( [Trajectory(Ψ₀, H₊; target_state=Ψ₊tgt), Trajectory(Ψ₀, H₋; target_state=Ψ₋tgt)], tlist; ) p = get_parameters(problem) @test p isa AbstractVector @test eltype(p) == Float64 @test length(p) == 18 @test p[2] == 0.4 @test length(p.x) == 2 @test length(p.x[1]) == 9 end @testset "enantiomer problem - fully independent parameters" begin H₊ = total_enantiomer_ham( copy(_ENANTIOMER_PARAMETERS); independent_parameters=true, sign="+", a=100 ) H₋ = total_enantiomer_ham( copy(_ENANTIOMER_PARAMETERS); independent_parameters=true, sign="-", a=100 ) tlist = [0.0, 0.5, 1.0] Ψ₀ = ComplexF64[1, 0, 0] Ψ₊tgt = ComplexF64[1, 0, 0] Ψ₋tgt = ComplexF64[0, 0, 1] problem = ControlProblem( [Trajectory(Ψ₀, H₊; target_state=Ψ₊tgt), Trajectory(Ψ₀, H₋; target_state=Ψ₋tgt)], tlist; ) p = get_parameters(problem) @test p isa AbstractVector @test eltype(p) == Float64 @test length(p) == 108 @test p[2] == 0.4 @test length(p.x) == 2 @test length(p.x[1]) == 54 @test length(p.x[1].x) == 6 end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
1285
using Test using QuantumPropagators: ExpProp using QuantumPropagators.Shapes: flattop using QuantumControl: Trajectory, propagate using UnicodePlots @testset "propagate TLS" begin # from the first Krotov.jl example SHOWPLOT = false #! format: off σ̂_z = ComplexF64[1 0; 0 -1]; σ̂_x = ComplexF64[0 1; 1 0]; #! format: on ϵ(t) = 0.2 * flattop(t, T=5, t_rise=0.3, func=:blackman) function hamiltonian(Ω=1.0, ϵ=ϵ) Ĥ₀ = -0.5 * Ω * σ̂_z Ĥ₁ = σ̂_x return (Ĥ₀, (Ĥ₁, ϵ)) end function ket(label) #! format: off result = Dict( "0" => Vector{ComplexF64}([1, 0]), "1" => Vector{ComplexF64}([0, 1]), ) #! format: on return result[string(label)] end H = hamiltonian() traj = Trajectory(ket(0), H, target_state=ket(1)) tlist = collect(range(0, 5, length=500)) states = propagate(traj.initial_state, traj.generator, tlist, storage=true, method=ExpProp) pops = abs.(states) .^ 2 pop0 = pops[1, :] SHOWPLOT && println(lineplot(tlist, pop0, ylim=[0, 1], title="0 population")) @test length(pop0) == length(tlist) @test pop0[1] ≈ 1.0 @test abs(pop0[end] - 0.95146) < 1e-4 @test minimum(pop0) < 0.9 end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
6639
using Test using LinearAlgebra using QuantumControl: QuantumControl, ControlProblem, hamiltonian, optimize, Trajectory using QuantumControlTestUtils.RandomObjects: random_matrix using QuantumControl.Controls: substitute using QuantumControl.Shapes: flattop using QuantumPropagators: ExpProp using QuantumControl.PulseParameterizations: ParameterizedAmplitude, SquareParameterization, TanhParameterization, TanhSqParameterization, LogisticParameterization, LogisticSqParameterization using QuantumControl.Controls: get_controls, evaluate, discretize using Krotov using IOCapture @testset "Instantiate ParameterizedAmplitude" begin # See https://github.com/orgs/JuliaQuantumControl/discussions/42 # https://github.com/JuliaQuantumControl/QuantumControl.jl/issues/43 N = 10 H0 = random_matrix(N; hermitian=true) H1 = random_matrix(N; hermitian=true) H2 = random_matrix(N; hermitian=true) ϵ(t) = 0.5 a = ParameterizedAmplitude(ϵ; parameterization=SquareParameterization()) @test get_controls(a) == (ϵ,) H = hamiltonian(H0, (H1, ϵ), (H2, a); check=false) @test get_controls(H) == (ϵ,) @test norm(Array(evaluate(H, 0.0)) - (H0 + 0.5 * H1 + 0.5^2 * H2)) < 1e-12 end @testset "Positive parameterizations" begin # See figure at # https://juliaquantumcontrol.github.io/QuantumControlExamples.jl/stable/tutorials/krotov_pulse_parameterization/#Positive-(Bounded)-Controls u_vals = collect(range(-3, 3, length=101)) ϵ_vals = collect(range(0, 1, length=101)) ϵ_max = 1.0 ϵ_tanhsq = TanhSqParameterization(ϵ_max).a_of_epsilon.(u_vals) @test minimum(ϵ_tanhsq) ≈ 0.0 @test 0.95 < maximum(ϵ_tanhsq) <= 1.0 ϵ_logsq1 = LogisticSqParameterization(ϵ_max).a_of_epsilon.(u_vals) @test minimum(ϵ_logsq1) ≈ 0.0 @test 0.81 < maximum(ϵ_logsq1) <= 0.83 ϵ_logsq4 = LogisticSqParameterization(ϵ_max, k=4.0).a_of_epsilon.(u_vals) @test minimum(ϵ_logsq4) ≈ 0.0 @test 0.95 < maximum(ϵ_logsq4) <= 1.0 ϵ_sq = SquareParameterization().a_of_epsilon.(u_vals) @test minimum(ϵ_sq) ≈ 0.0 @test maximum(ϵ_sq) ≈ 9.0 u_tanhsq = TanhSqParameterization(ϵ_max).epsilon_of_a.(ϵ_vals) @test u_tanhsq[begin] ≈ 0.0 @test maximum(u_tanhsq) ≈ u_tanhsq[end] @test 18.0 < maximum(u_tanhsq) <= 19.0 u_logsq1 = LogisticSqParameterization(ϵ_max).epsilon_of_a.(ϵ_vals) @test u_logsq1[begin] ≈ 0.0 @test maximum(u_logsq1) ≈ u_logsq1[end] @test 740.0 < maximum(u_logsq1) <= 750.0 u_logsq4 = LogisticSqParameterization(ϵ_max, k=4.0).epsilon_of_a.(ϵ_vals) @test u_logsq4[begin] ≈ 0.0 @test maximum(u_logsq4) ≈ u_logsq4[end] @test 180.0 < maximum(u_logsq4) <= 190.0 u_sq = SquareParameterization().epsilon_of_a.(ϵ_vals) @test u_sq[begin] ≈ 0.0 @test maximum(u_sq) ≈ u_sq[end] @test maximum(u_sq) ≈ 1.0 d_tanhsq = TanhSqParameterization(ϵ_max).da_deps_derivative.(u_vals) @test maximum(d_tanhsq) ≈ -minimum(d_tanhsq) @test 0.7 < maximum(d_tanhsq) < 0.8 d_logsq1 = LogisticSqParameterization(ϵ_max).da_deps_derivative.(u_vals) @test maximum(d_logsq1) ≈ -minimum(d_logsq1) @test 0.35 < maximum(d_logsq1) < 0.40 d_logsq4 = LogisticSqParameterization(ϵ_max, k=4.0).da_deps_derivative.(u_vals) @test maximum(d_logsq4) ≈ -minimum(d_logsq4) @test 1.5 < maximum(d_logsq4) < 1.6 end @testset "Symmetric parameterizations" begin # See figure at # https://juliaquantumcontrol.github.io/QuantumControlExamples.jl/stable/tutorials/krotov_pulse_parameterization/#Symmetric-Bounded-Controls u_vals = collect(range(-3, 3, length=101)) ϵ_vals = collect(range(-1, 1, length=101)) ϵ_min = -1.0 ϵ_max = 1.0 ϵ_tanh = TanhParameterization(ϵ_min, ϵ_max).a_of_epsilon.(u_vals) @test minimum(ϵ_tanh) ≈ -maximum(ϵ_tanh) @test 0.99 <= maximum(ϵ_tanh) <= 1.0 ϵ_log1 = LogisticParameterization(ϵ_min, ϵ_max).a_of_epsilon.(u_vals) @test minimum(ϵ_log1) ≈ -maximum(ϵ_log1) @test 0.90 <= maximum(ϵ_log1) <= 0.91 ϵ_log4 = LogisticParameterization(ϵ_min, ϵ_max, k=4.0).a_of_epsilon.(u_vals) @test minimum(ϵ_log4) ≈ -maximum(ϵ_log4) @test 0.999 <= maximum(ϵ_log4) <= 1.0 u_tanh = TanhParameterization(ϵ_min, ϵ_max).epsilon_of_a.(ϵ_vals) @test minimum(u_tanh) ≈ -maximum(u_tanh) @test 18.0 <= maximum(u_tanh) <= 19.0 # These diverge to Inf for the maximum: u_log1 = LogisticParameterization(ϵ_min, ϵ_max).epsilon_of_a.(ϵ_vals) u_log4 = LogisticParameterization(ϵ_min, ϵ_max, k=4.0).epsilon_of_a.(ϵ_vals) d_tanh = TanhParameterization(ϵ_min, ϵ_max).da_deps_derivative.(u_vals) @test 0.009 < minimum(d_tanh) < 0.010 @test maximum(d_tanh) ≈ 1.0 d_log1 = LogisticParameterization(ϵ_min, ϵ_max).da_deps_derivative.(u_vals) @test 0.08 < minimum(d_log1) < 0.10 @test maximum(d_log1) ≈ 0.5 d_log4 = LogisticParameterization(ϵ_min, ϵ_max, k=4.0).da_deps_derivative.(u_vals) @test 4e-5 < minimum(d_log4) < 6e-5 @test maximum(d_log4) ≈ 2.0 end @testset "Parameterized optimization" begin ϵ(t) = 0.2 * flattop(t, T=5, t_rise=0.3, func=:blackman) function tls_hamiltonian(; Ω=1.0, ampl=ϵ) σ̂_z = ComplexF64[ 1 0 0 -1 ] σ̂_x = ComplexF64[ 0 1 1 0 ] Ĥ₀ = -0.5 * Ω * σ̂_z Ĥ₁ = σ̂_x return hamiltonian(Ĥ₀, (Ĥ₁, ampl)) end function ket(label) result = Dict("0" => Vector{ComplexF64}([1, 0]), "1" => Vector{ComplexF64}([0, 1]),) return result[string(label)] end H = tls_hamiltonian() tlist = collect(range(0, 5, length=500)) trajectories = [Trajectory(ket(0), H; target_state=ket(1))] a = ParameterizedAmplitude( ϵ, tlist; parameterization=TanhParameterization(-0.5, 0.5), parameterize=true ) problem_tanh = ControlProblem( trajectories=substitute(trajectories, IdDict(ϵ => a)), prop_method=ExpProp, lambda_a=1, update_shape=(t -> flattop(t, T=5, t_rise=0.3, func=:blackman)), tlist=tlist, iter_stop=30, J_T=QuantumControl.Functionals.J_T_ss, ) captured = IOCapture.capture(passthrough=false) do optimize(problem_tanh; method=Krotov, rethrow_exceptions=true) end opt_result_tanh = captured.value @test opt_result_tanh.iter == 30 @test 0.15 < opt_result_tanh.J_T < 0.16 opt_ampl = Array(substitute(a, IdDict(a.control => opt_result_tanh.optimized_controls[1]))) @test -0.5 < minimum(opt_ampl) < -0.4 @test 0.4 < maximum(opt_ampl) < 0.5 end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
2445
using Test using IOCapture using QuantumControl: AbstractOptimizationResult, MissingResultDataException, IncompatibleResultsException struct _TestOptimizationResult1 <: AbstractOptimizationResult iter_start::Int64 iter_stop::Int64 end struct _TestOptimizationResult2 <: AbstractOptimizationResult iter_start::Int64 J_T::Float64 J_T_prev::Float64 end struct _TestOptimizationResult3 <: AbstractOptimizationResult iter_start::Int64 iter_stop::Int64 end @testset "Dict conversion" begin R = _TestOptimizationResult1(0, 100) data = convert(Dict{Symbol,Any}, R) @test data isa Dict{Symbol,Any} @test Set(keys(data)) == Set((:iter_stop, :iter_start)) @test data[:iter_start] == 0 @test data[:iter_stop] == 100 @test _TestOptimizationResult1(0, 100) ≠ _TestOptimizationResult1(0, 50) _R = convert(_TestOptimizationResult1, data) @test _R == R captured = IOCapture.capture(; passthrough=false, rethrow=Union{}) do convert(_TestOptimizationResult2, data) end @test captured.value isa MissingResultDataException msg = begin io = IOBuffer() showerror(io, captured.value) String(take!(io)) end @test startswith(msg, "Missing data for fields [:J_T, :J_T_prev]") @test contains(msg, "_TestOptimizationResult2") end @testset "Result conversion" begin R = _TestOptimizationResult1(0, 100) _R = convert(_TestOptimizationResult1, R) @test _R == R _R = convert(_TestOptimizationResult3, R) @test _R isa _TestOptimizationResult3 @test convert(Dict{Symbol,Any}, _R) == convert(Dict{Symbol,Any}, R) captured = IOCapture.capture(; passthrough=false, rethrow=Union{}) do convert(_TestOptimizationResult2, R) end @test captured.value isa IncompatibleResultsException msg = begin io = IOBuffer() showerror(io, captured.value) String(take!(io)) end @test contains(msg, "does not provide required fields [:J_T, :J_T_prev]") R2 = _TestOptimizationResult2(0, 0.1, 0.4) captured = IOCapture.capture(; passthrough=false, rethrow=Union{}) do convert(_TestOptimizationResult1, R2) end @test captured.value isa IncompatibleResultsException msg = begin io = IOBuffer() showerror(io, captured.value) String(take!(io)) end @test contains(msg, "does not provide required fields [:iter_stop]") end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
1493
using Test using DataFrames using CSV using Logging using IOCapture using JLD2: load_object using QuantumControlTestUtils: QuantumTestLogger using QuantumControl: run_or_load load_csv(f) = DataFrame(CSV.File(f)) @testset "run_or_load to csv" begin mktempdir() do folder file = joinpath(folder, "data", "out.csv") run_or_load(file; load=load_csv, force=true, verbose=false) do DataFrame(a=rand(100), b=rand(100)) end df = load_csv(file) @test names(df) == ["a", "b"] end end @testset "run_or_load invalid" begin mktempdir() do folder file = joinpath(folder, "data", "out.csv") captured = IOCapture.capture(passthrough=false, rethrow=Union{}) do run_or_load(file; load=load_csv, force=true, verbose=false) do # A tuple of vectors is not something that can be written # to a csv file return rand(100), rand(100) end end @test captured.value isa ErrorException if captured.value isa ErrorException err = captured.value @test occursin("Recover", err.msg) rx = r"load_object\(\"(.*)\"\)" m = match(rx, err.msg) recovery_file = m.captures[1] data = load_object(recovery_file) rm(recovery_file) @test length(data) == 2 end @test occursin("Can't write this data to a CSV file", captured.output) end end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
code
4682
using Test using QuantumControl: Trajectory, propagate_trajectory using QuantumPropagators: Cheby, ExpProp using QuantumPropagators.Controls: substitute, get_controls using QuantumControlTestUtils.RandomObjects: random_state_vector, random_dynamic_generator using StableRNGs using LinearAlgebra: norm using IOCapture using TestingUtilities: @Test # better for string comparison @testset "Trajectory instantiation" begin rng = StableRNG(3143161815) N = 10 Ψ₀ = random_state_vector(N; rng) Ψtgt = random_state_vector(N; rng) tlist = [0.0, 1.0] H = random_dynamic_generator(N, tlist) traj = Trajectory(Ψ₀, H) @test startswith(repr(traj), "Trajectory(ComplexF64[") repl_repr = repr("text/plain", traj; context=(:limit => true)) @test contains(repl_repr, "initial_state: 10-element Vector{ComplexF64}") @test contains(repl_repr, "generator: Generator with 2 ops and 1 amplitudes") @test contains(repl_repr, "target_state: Nothing") @test summary(traj) == "Trajectory with 10-element Vector{ComplexF64} initial state, Generator with 2 ops and 1 amplitudes, no target state" # with target state traj = Trajectory(Ψ₀, H; target_state=Ψtgt) @test startswith(repr(traj), "Trajectory(ComplexF64[") repl_repr = repr("text/plain", traj; context=(:limit => true)) @test contains(repl_repr, "target_state: 10-element Vector{ComplexF64}") @test summary(traj) == "Trajectory with 10-element Vector{ComplexF64} initial state, Generator with 2 ops and 1 amplitudes, 10-element Vector{ComplexF64} target state" # with weight traj = Trajectory(Ψ₀, H; weight=0.3) @test startswith(repr(traj), "Trajectory(ComplexF64[") repl_repr = repr("text/plain", traj; context=(:limit => true)) @test contains(repl_repr, "weight: 0.3") @test summary(traj) == "Trajectory with 10-element Vector{ComplexF64} initial state, Generator with 2 ops and 1 amplitudes, no target state, weight=0.3" # with extra data traj = Trajectory( Ψ₀, H; weight=0.3, note="Note", prop_inplace=false, prop_method=Cheby, prop_specrange_method=:manual ) @test startswith(repr(traj), "Trajectory(ComplexF64[") repl_repr = repr("text/plain", traj; context=(:limit => true)) @test contains(repl_repr, r"prop_method: .*.Cheby") @test contains(repl_repr, "note: \"Note\"") @test contains(repl_repr, "prop_specrange_method: :manual") @test contains(repl_repr, "prop_inplace: false") @test summary(traj) == "Trajectory with 10-element Vector{ComplexF64} initial state, Generator with 2 ops and 1 amplitudes, no target state, weight=0.3 and 4 extra kwargs" vec = [traj, traj] repl_repr = repr("text/plain", vec; context=(:limit => true)) @test contains(repl_repr, "2-element Vector") @test contains(repl_repr, "Trajectory with 10-element Vector{ComplexF64} initial state") end @testset "Trajectory substitution" begin rng = StableRNG(3143161815) N = 10 Ψ₀ = random_state_vector(N; rng) Ψtgt = random_state_vector(N; rng) tlist = [0.0, 1.0] ϵ1(t) = 0.0 ϵ2(t) = 1.0 H = random_dynamic_generator(N, tlist; amplitudes=[ϵ1]) traj = Trajectory(Ψ₀, H) @test get_controls([traj]) == (ϵ1,) traj2 = substitute(traj, IdDict(ϵ1 => ϵ2)) @test get_controls([traj2]) == (ϵ2,) trajs = [traj, traj2] @test get_controls(trajs) == (ϵ1, ϵ2) trajs2 = substitute(trajs, IdDict(ϵ1 => ϵ2)) @test get_controls(trajs2) == (ϵ2,) end @testset "Trajectory propagation" begin rng = StableRNG(3143161815) N = 10 Ψ₀ = random_state_vector(N; rng) Ψtgt = random_state_vector(N; rng) tlist = [0.0, 0.5, 1.0] H = random_dynamic_generator(N, tlist) traj = Trajectory(Ψ₀, H) captured = IOCapture.capture(rethrow=Union{}) do propagate_trajectory(traj, tlist) end @test captured.value isa UndefKeywordError @test contains(captured.output, "Cannot initialize propagation for trajectory") @test contains(captured.output, "keyword argument `method` not assigned") Ψout = propagate_trajectory(traj, tlist, method=Cheby) @test Ψout isa Vector{ComplexF64} @test abs(1.0 - norm(Ψout)) < 1e-12 traj = Trajectory(Ψ₀, H; prop_method=Cheby) captured = IOCapture.capture(rethrow=Union{}, passthrough=false) do propagate_trajectory(traj, tlist; verbose=true) end Ψout2 = captured.value @test norm(Ψout2 - Ψout) < 1e-12 @test contains(captured.output, "Info: Initializing propagator for trajectory") @test contains(captured.output, r":method => .*.Cheby") end
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
docs
2383
# QuantumControl.jl [![Version](https://juliahub.com/docs/General/QuantumControl/stable/version.svg)](https://juliahub.com/ui/Packages/General/QuantumControl) [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliaquantumcontrol.github.io/QuantumControl.jl/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://juliaquantumcontrol.github.io/QuantumControl.jl/dev) [![Build Status](https://github.com/JuliaQuantumControl/QuantumControl.jl/workflows/CI/badge.svg)](https://github.com/JuliaQuantumControl/QuantumControl.jl/actions) [![Coverage](https://codecov.io/gh/JuliaQuantumControl/QuantumControl.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaQuantumControl/QuantumControl.jl) A Julia Framework for Quantum Dynamics and Control. The [`QuantumControl`][QuantumControl] package is a high-level interface for the [packages][] in the [JuliaQuantumControl][] organization and provides a coherent [API](https://juliaquantumcontrol.github.io/QuantumControl.jl/dev/api/quantum_control/#QuantumControlAPI) for solving quantum control problems. See the [organization README](https://github.com/JuliaQuantumControl#readme) for details. ## Documentation The [full documentation](https://juliaquantumcontrol.github.io/QuantumControl.jl/) is available at <https://juliaquantumcontrol.github.io/QuantumControl.jl/>. Support is also available in the `#quantumcontrol` channel in the [Julia Slack](https://julialang.org/slack/). ## Installation The [`QuantumControl.jl`][QuantumControl] package can be installed via the [standard Pkg manager](https://docs.julialang.org/en/v1/stdlib/Pkg/): ~~~ pkg> add QuantumControl ~~~ You will also want to install the [`QuantumPropagators` package][QuantumPropagators] ~~~ pkg> add QuantumPropagator ~~~ to access a suitable dynamic solver for your problem (e.g. `using QuantumPropagators: Cheby`); as well as at least one package for a specific optimization method you are planning to use: ~~~ pkg> add Krotov pkg> add GRAPE ~~~ See the [list of packages][packages] of the [JuliaQuantumControl][] organization. [JuliaQuantumControl]: https://github.com/JuliaQuantumControl [QuantumControl]: https://github.com/JuliaQuantumControl/QuantumControl.jl [QuantumPropagators]: https://github.com/JuliaQuantumControl/QuantumPropagators.jl [packages]: https://github.com/JuliaQuantumControl#packages
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
docs
43
```@autodocs Modules = [Krotov, GRAPE] ```
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
docs
8485
# Glossary In the context of the JuliaQuantumControl ecosystem, we apply the following nomenclature. ---- ##### Generator Dynamical generator (Hamiltonian / Liouvillian) for the time evolution of a state, i.e., the right-hand-side of the equation of motion (up to a factor of ``i``) such that ``|Ψ(t+dt)⟩ = e^{-i Ĥ dt} |Ψ(t)⟩`` in the infinitesimal limit. We use the symbols ``G``, ``Ĥ``, or ``L``, depending on the context (general, Hamiltonian, Liouvillian). Examples for supported forms a Hamiltonian are the following, from the most general case to simplest and most common case of linear controls, ```@raw html <img src="../assets/controlhams.svg" width="80%"/> ``` In Eq. (G1), ``Ĥ_0`` is the [Drift Term](@ref) (which may be zero) and each term under the sum over ``l`` is a [Control Term](@ref). Each control term is a Hamiltonian that depends on a set of [control functions](#Control-Function) (or simply "controls"). The controls are the functions directly tunable via optimal control. The control term may also contain an explicit time dependence outside of the controls. This most general form (G1) is supported only via custom user-implemented generator objects, see the documentation of the [QuantumPropagators package](https://juliaquantumcontrol.github.io/QuantumPropagators.jl/stable/). More commonly, each control term is separable into the [Control Amplitude](@ref) ``a_l(t)`` and the [Control Operator](@ref) ``Ĥ_l``, as in Eq. (G2). This is the most general form supported by the built-in [`Generator`](@ref) object, which can be initialized via the [`hamiltonian`](@ref) or [`liouvillian`](@ref) functions. The control amplitude ``a_l(t)`` depends in turn on one ore more function ``\{ϵ_{l'}(t)\}``, where each ``ϵ_{l'}(t)`` is as [Control Function](@ref). It may also contain an explicit time dependence. In the most common case, ``a_l ≡ ϵ_l``, as in Eq. (G3). The control may further depend on a set of [Control Parameters](@ref), ``ϵ_l(t) = ϵ_l({u_n})``. In an open quantum system, the structure of Eqs. (G1–G3) is the same, but with Liouvillian (super-)operators acting on density matrices instead of Hamiltonians acting on state vectors. See [`liouvillian`](@ref) with `convention=:TDSE`. ---- ##### Operator A static, non-time-dependent object that can be multiplied to a state. An operator can be obtained from a time-dependent [Generator](@ref) by plugging in values for the controls and potentially any explicit time dependence. For example, an [`Operator`](@ref) is obtained from a [`Generator`](@ref) via [`QuantumControl.Controls.evaluate`](@ref). ---- ##### Drift Term A term in the dynamical generator that does not depend on any controls. ---- ##### Control Term A term in the dynamical generator that depends on one or more controls. ---- ##### Control Function (aka "**Control**") A function ``ϵ_l(t)`` in the [Generator](@ref) that is directly tuned by an optimal control method, either as [Pulse](@ref) values or via [Control Parameters](@ref). ---- ##### Control Field A function that corresponds directly to some kind of *physical* drive (laser amplitude, microwave pulse, etc.). The term can be ambiguous in that it usually corresponds to the [Control Amplitude](@ref) ``a(t)``, but depending on how the control problem is formulated, it can also correspond to the [Control Function](@ref) ``ϵ(t)`` ---- ##### Control Operator (aka "control Hamiltonian/Liouvillian"). The operator ``Ĥ_l`` in Eqs. (G2, G3). This is a *static* operator which forms the [Control Term](@ref) together with a [Control Amplitude](@ref). The control generator is not a well-defined concept in the most general case of non-separable controls terms, Eq. (G1). ---- ##### Control Amplitude The time-dependent coefficient ``a_l(t)`` for the [Control Operator](@ref) in Eq. (G2). A control amplitude may depend on on or more control functions, as well as have an explicit time dependency. Some conceptual examples for control amplitudes and how they may depend on a [Control Function](@ref) are the following: * Non-linear coupling of a control field to the operator, e.g., the quadratic coupling of the laser field to a Stark shift operator * [Pulse Parameterization](@ref) as a way to enforce bounds on a [Control Field](@ref) * Transfer functions, e.g., to model the response of an electronic device to the optimal control field ``ϵ(t)``. * Noise in the amplitude of the control function * Non-controllable aspects of the control amplitude, e.g. a "guided" control amplitude ``a_l(t) = R(t) + ϵ_l(t)`` or a non-controllable envelope ``S(t)`` in ``a_l(t) = S(t) ϵ(t)`` that ensures switch-on- and switch-off in a CRAB pulse `ϵ(t)`. In [Qiskit Dynamics](https://qiskit.org/documentation/dynamics/index.html), the "control amplitude" is called ["Signal"](https://qiskit.org/documentation/dynamics/apidocs/signals.html), see [Connecting Qiskit Pulse with Qiskit Dynamics](https://qiskit.org/documentation/dynamics/tutorials/qiskit_pulse.html), where a Qiskit "pulse" corresponds roughly to our [Control Function](@ref). ---- ##### Control Parameters Non-time-dependent parameters that a [Control Function](@ref) depends on, ``ϵ(t) = ϵ(\{u_n\}, t)``. One common parameterization of a control field is as a [Pulse](@ref), where the control parameters are the amplitude of the field at discrete points of a time grid. Parameterization as a "pulse" is implicit in Krotov's method and standard GRAPE. More generally, the control parameters could also be spectral coefficients (CRAB) or simple parameters for an analytic pulse shape (e.g., position, width, and amplitude of a Gaussian shape). All optimal control methods find optimized control fields by varying the control parameters. ---- ##### Pulse (aka "control pulse") A control field discretized to a time grid, usually on the midpoints of the time grid, in a piecewise-constant approximation. Stored as a vector of floating point values. The parameterization of a control field as a "pulse" is implicit for Krotov's method and standard GRAPE. One might think of these methods to optimize the control fields *directly*, but a conceptually cleaner understanding is to think of the discretized "pulse" as a vector of control parameters for the time-continuous control field. ---- ##### Pulse Parameterization A special case of a [Control Amplitude](@ref) where ``a(t) = a(ϵ(t))`` at every point in time. The purpose of this is to constrain the amplitude of the control amplitude ``a(t)``. See e.g. [`QuantumControl.PulseParameterizations.SquareParameterization`](@ref), where ``a(t) = ϵ^2(t)`` to ensure that ``a(t)`` is positive. Since Krotov's method inherently has no constraints on the optimized control fields, pulse parameterization is a method of imposing constraints on the amplitude in this context. ---- ##### Control Derivative The derivative of the dynamical [Generator](@ref) with respect to the control ``ϵ(t)``. In the case of linear controls terms in Eq. (G3), the control derivative is the [Control Operator](@ref) coupling to ``ϵ(t)``. In general, however, for non-linear control terms, the control derivatives still depends on the control fields and is thus time dependent. We commonly use the symbol ``μ`` for the control derivative (reminiscent of the dipole operator) ---- ##### Parameter Derivative The derivative of a control with respect to a single control parameter. The derivative of the dynamical [Generator](@ref) with respect to that control parameter is then the product of the [Control Derivative](@ref) and the parameter derivative. ---- ##### Gradient The derivative of the optimization functional with respect to *all* [Control Parameters](@ref), i.e. the vector of all parameter derivatives. ---- !!! note The above nomenclature does not consistently extend throughout the quantum control literature: the terms "control"/"control term"/"control Hamiltonian", and "control"/"control field"/"control function"/"control pulse"/"pulse" are generally somewhat ambiguous. In particular, the distinction between "control field" and "pulse" (as a parameterization of the control field in terms of amplitudes on a time grid) here is somewhat artifcial and borrowed from the [Krotov Python package](https://qucontrol.github.io/krotov). However, the terminology defined in this glossary is consistently applied within the `JuliaQuantumControl` organization, both in the documentation and in the names of members and methods.
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
docs
4251
# QuantumControl.jl ```@eval using Markdown using Pkg VERSION = Pkg.dependencies()[Base.UUID("8a270532-f23f-47a8-83a9-b33d10cad486")].version github_badge = "[![Github](https://img.shields.io/badge/JuliaQuantumControl-QuantumControl.jl-blue.svg?logo=github)](https://github.com/JuliaQuantumControl/QuantumControl.jl)" version_badge = "![v$VERSION](https://img.shields.io/badge/version-v$VERSION-green.svg)" Markdown.parse("$github_badge $version_badge") ``` [QuantumControl.jl](https://github.com/JuliaQuantumControl/QuantumControl.jl) is a [Julia framework for quantum dynamics and control](https://github.com/JuliaQuantumControl). Quantum optimal control [BrumerShapiro2003,BrifNJP2010,Shapiro2012,KochJPCM2016,SolaAAMOP2018,MorzhinRMS2019,Wilhelm2003.10132,KochEPJQT2022](@cite) attempts to steer a quantum system in some desired way by finding optimal control parameters or control fields inside the system Hamiltonian or Liouvillian. Typical control tasks are the preparation of a specific quantum state or the realization of a logical gate in a quantum computer (["pulse level control"](https://arxiv.org/abs/2004.06755)). Thus, quantum control theory is a critical part of realizing quantum technologies at the lowest level. Numerical methods of *open-loop* quantum control (methods that do not involve measurement feedback from a physical quantum device) such as [Krotov's method](https://github.com/JuliaQuantumControl/Krotov.jl) [Krotov1996,SomloiCP1993,BartanaJCP1997,PalaoPRA2003,ReichJCP2012,GoerzSPP2019](@cite) and [GRAPE](https://github.com/JuliaQuantumControl/GRAPE.jl) [KhanejaJMR2005,FouquieresJMR2011](@cite) address the control problem by [simulating the dynamics of the system](https://github.com/JuliaQuantumControl/QuantumPropagators.jl) and then iteratively improving the value of a functional that encodes the desired outcome. ##### Functional Mathematically, the control problem is the minimization of a functional of the form ```math J(\{ϵ_l(t)\}) = J_T(\{|Ψ_k(T)⟩\}) + λ_a \, \underbrace{∑_l \int_{0}^{T} g_a(ϵ_l(t)) \, dt}_{=J_a(\{ϵ_l(t)\})} + λ_b \, \underbrace{∑_k \int_{0}^{T} g_b(|Ψ_k(t)⟩) \, dt}_{=J_b(\{|Ψ_k(t)⟩\})}\,, ``` where ``\{ϵ_l(t)\}`` is a set of [control functions](@ref "Control Function") defined between the initial time ``t=0`` and the final time ``t=T``, and ``\{|Ψ_k(t)⟩\}`` is a set of ["trajectories"](@ref QuantumControl.Trajectory) evolving from a set of initial states ``\{|\Psi_k(t=0)⟩\}`` under the controls ``\{ϵ_l(t)\}``. The full functional consists of the final-time functional ``J_T``, a control-dependent running cost ``J_a`` weighted by ``λ_a``, and sometimes a state-dependent running cost ``J_b`` weighted by ``λ_b``. The states can be Hilbert space vectors or density matrices, and the equation of motion is implicit, typically the Schrödinger or Liouville equation. The `QuantumControl.jl` package provides a single coherent [API](@ref QuantumControlAPI) for solving the quantum control problem with the [packages](https://github.com/JuliaQuantumControl#packages) in the [JuliaQuantumControl](https://github.com/JuliaQuantumControl) organization. Different [optimization methods](@ref "Control Methods") target specific variants of the above functional. ## Getting Started * See the [installation instructions](https://github.com/JuliaQuantumControl/QuantumControl.jl#installation) on Github. * Look at a [simple example for a state-to-state transition with GRAPE](@extref Examples :doc:`examples/simple_state_to_state/index`) to get a feeling for how the `QuantumControl` package is intended to be used, or look at the larger list of [Examples](@extref Examples :doc:`index`). * Read the [Glossary](@ref) and [Overview](@ref) to understand the philosophy of the framework. ## Contents ```@contents Pages = [ "glossary.md", "overview.md", "methods.md", "howto.md", ] Depth = 2 ``` ### Examples ```@contents Pages = [ "examples/index.md", ] ``` ### API ```@contents Pages = [ "api/quantum_control.md", ] Depth = 1 ``` #### Sub-Packages ```@contents Pages = [ "api/quantum_propagators.md", ] Depth = 1 ``` ### History See the [Releases](https://github.com/JuliaQuantumControl/QuantumControl.jl/releases) on Github.
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
docs
1176
# Control Methods All optimizations in the `QuantumControl` package are done by calling `QuantumControl.optimize`, or preferably the high-level wrapper [`@optimize_or_load`](@ref). The actual control methods are implemented in separate packages. The module implementing a particular method should be passed to `optimize` as the `method` keyword argument. ```@docs; canonical=false optimize(::ControlProblem; method=:any) ``` The following methods of optimal control are implemented by packages in the [JuliaQuantumControl organization](https://github.com/JuliaQuantumControl): ```@contents Pages = ["methods.md"] Depth = 2:2 ``` ## Krotov's Method See the [documentation](@extref Krotov :doc:`index`) of the [`Krotov` package](https://github.com/JuliaQuantumControl/Krotov.jl) for more details. ```@docs; canonical=false optimize(::ControlProblem, ::Val{:Krotov}) ``` ## GRAPE The Gradient Ascent Pulse Engineering (GRAPE) method is implemented in the [`GRAPE` package](https://github.com/JuliaQuantumControl/GRAPE.jl). See the [`GRAPE` documentation](@extref GRAPE :doc:`index`) for details. ```@docs; canonical=false optimize(::ControlProblem, ::Val{:GRAPE}) ```
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
docs
7892
# Overview This page describes the API of the `QuantumControl` package by outlining the general procedure for defining and solving quantum control problems. See the [API](@ref) for a detailed reference. ## Setting up control problems Quantum control problems are described by instantiating [`ControlProblem`](@ref). Remember that a quantum control problem aims to find control parameters in the dynamical generators ([Hamiltonians](@ref hamiltonian), [Liouvillians](@ref liouvillian)) of a quantum system to steer the dynamics of the system in some desired way. The dynamics of system are probed by one or more quantum states, each with its particular dynamical generator, which we encode as a [`Trajectory`](@ref) object. To determine how well the system dynamics meet the desired behavior, a [`Trajectory`](@ref) can have additional properties that are taken into account in the [optimization functional](@ref "Functional"). Most commonly, this is represented by a `target_state` property of the [`Trajectory`](@ref). The objective is fulfilled when the control parameters are chosen such that the initial state of each [`Trajectory`](@ref) evolves into the target state, on the time grid given as `tlist` in the [`ControlProblem`](@ref). A control problem with a single such trajectory already encodes the common state-to-state problem, e.g., to initialize a system into an entangled state, or to control a chemical reaction. However, there are many control problems that require *simultaneously* solving more than one trajectory. For example, finding the control parameters that implement a two-qubit quantum gate ``Ô`` on a quantum computer naturally translates to four simultaneous trajectories, one for each two-qubit basis state: ``|00⟩ → Ô |00⟩``, ``|01⟩ → Ô |01⟩``, ``|10⟩ → Ô |10⟩``, ``|00⟩ → Ô |11⟩``. By virtue of the linearity of Hilbert space, finding a simultaneous solution to these four trajectories means the *any* state ``|Ψ⟩`` will then evolve as ``|Ψ⟩ → Ô |Ψ⟩``. Some optimal control frameworks treat the optimization of quantum gates by numerically evolving the gate itself, ``Û(t=0) = I → Ô(t=T)``. This is perfectly compatible with our framework: we can have a single trajectory for an initial "state" ``Û`` with a target "state" ``Ô``. However, this approach does not scale well numerically when the logical subspace of the two-qubit gate is embedded in a significantly larger physical Hilbert space: ``Û`` is quadratically larger than ``|Ψ⟩``. Moreover, the various methods implemented in the `QuantumControl` package are inherently *parallel* with respect to multiple trajectories. This is why we emphasize the formulation of the control problem in terms of multiple simultaneous trajectories. Sometimes, some of the trajectories may be more important than others. In this case, the [`Trajectory`](@ref) can be instantiated with a `weight` attribute. There are also situations where the notion of a "target state" is not meaningful. Coming back to the example of two-qubit quantum gates, one may wish to maximize the entangling power of the quantum gate, without requiring a *specific* gate. We extract the information about the entangling power of the dynamical generator by tracking the time evolution of a set of states (the Bell basis, as it happens), but there is no meaningful notion of a "target state". In this example, an [`Trajectory`](@ref) may be instantiated without the `target_state` attribute, i.e., containing only the `initial_state` and the `generator`. These are the minimal required attributes for any optimization. Mathematically, the control problem is solved by minimizing a functional that is calculated from the time-propagated trajectory states. By convention, this functional is passed as a keyword argument `J_T` when instantiating the [`ControlProblem`](@ref). Standard functionals are defined in [the `QuantumControl.Functionals` module](@ref QuantumControlFunctionalsAPI). Depending on the control method, there can be additional options. See the documentation of the various methods implementing [`optimize`](@ref) for the options required or supported by the different solvers. All of these options can be passed as keyword arguments when instantiating the [`ControlProblem`](@ref)[^1], or they can be passed later to [`optimize`](@ref)/[`@optimize_or_load`](@ref). [^1]: The solvers that ship with `QuantumControl` ignore options they do not know about. So when setting up a [`ControlProblem`](@ref) it is safe to pass a superset of options for different optimization methods. ## Controls and control parameters The controls that the `QuantumControl` package optimizes are implicit in the dynamical generator ([`hamiltonian`](@ref), [`liouvillian`](@ref)) of the [`Trajectories`](@ref Trajectory) in the [`ControlProblem`](@ref). The [`QuantumControl.Controls.get_controls`](@ref) method extracts the controls from the trajectories. Each control is typically time-dependent, e.g., a function ``ϵ(t)`` or a vector of pulse values on a time grid. For each control, [`QuantumControl.Controls.discretize`](@ref) and [`QuantumControl.Controls.discretize_on_midpoints`](@ref) discretizes the control to an existing time grid. For controls that are implemented through some custom type, these methods must be defined to enable piecewise-constant time propagation or an optimization that assumes piecewise-constant control (most notably, Krotov's method). See [`QuantumControl.Interfaces.check_control`](@ref) for the full interface required of a control. See also the [section on Dynamical Generators in the `QuantumPropagators` documentation](https://juliaquantumcontrol.github.io/QuantumPropagators.jl/stable/generators/) and [`QuantumControl.Interfaces.check_generator`](@ref) for details on how generators and controls relate. ## Time propagation The `QuantumControl` package uses (and includes) [`QuantumPropagators.jl`](https://github.com/JuliaQuantumControl/QuantumPropagators.jl) as the numerical back-end for simulating the time evolution of all quantum states. The main high-level function provided from that package is [`propagate`](@ref), which simulates the dynamics of a quantum state over an entire time grid. In the context of a [`ControlProblem`](@ref) consisting of one or more [`Trajectory`](@ref), there is also a [`propagate_trajectory`](@ref) function that provides a more convenient interface, automatically using the initial state and the dynamical generator from the trajectory. A very typical overall workflow is to set up the control problem, then propagate the trajectories with the guess control to see how the system behaves, run the optimization, and then propagate the trajectories again with the optimized controls, to verify the success of the optimization. For plugging in the optimized controls, [`QuantumControl.Controls.substitute`](@ref) can be used. ## Optimization The most direct way to solve a [`ControlProblem`](@ref) is with the [`optimize`](@ref) routine. It has a mandatory `method` argument that then delegates the optimization to the appropriate sub-package implementing that method. However, if the optimization takes more than a few minutes to complete, you should use [`@optimize_or_load`](@ref) instead of just [`optimize`](@ref). This routine runs the optimization and then writes the result to file. When called again, it will then simply load the result instead of rerunning the optimization. The [`@optimize_or_load`](@ref) also embeds some metadata in the output file, including (by default) the commit hash of the project repository containing the script that called [`@optimize_or_load`](@ref) and the filename of the script and line number where the call was made. The output file written by [`@optimize_or_load`](@ref) can be read via the [`load_optimization`](@ref) function. This can recover both the optimization result and the metadata.
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
docs
35
# References ```@bibliography ```
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git
[ "MIT" ]
0.11.1
bf2b978e6a3fcba1a01e741411e0d389c6617c64
docs
1257
# [Examples](@id examples-list) ## Krotov-specific examples * [Optimization of a State-to-State Transfer in a Two-Level-System](https://juliaquantumcontrol.github.io/QuantumControlExamples.jl/stable/examples/simple_state_to_state/#Optimization-of-a-State-to-State-Transfer-in-a-Two-Level-System) * [Optimization of a Dissipative Quantum Gate](https://juliaquantumcontrol.github.io/QuantumControlExamples.jl/stable/examples/rho_3states/#Optimization-of-a-Dissipative-Quantum-Gate) * [Pulse Parameterization](https://juliaquantumcontrol.github.io/QuantumControlExamples.jl/stable/tutorials/krotov_pulse_parameterization/) * [Optimization for a perfect entangler](https://juliaquantumcontrol.github.io/QuantumControlExamples.jl/stable/examples/perfect_entanglers/#Optimizing-for-a-general-perfect-entangler) ## GRAPE-specific examples * [Optimization of a State-to-State Transfer in a Two-Level-System](https://juliaquantumcontrol.github.io/QuantumControlExamples.jl/stable/examples/simple_state_to_state/#Optimization-of-a-State-to-State-Transfer-in-a-Two-Level-System) * [Optimization for a perfect entangler](https://juliaquantumcontrol.github.io/QuantumControlExamples.jl/stable/examples/perfect_entanglers/#Optimizing-for-a-general-perfect-entangler)
QuantumControl
https://github.com/JuliaQuantumControl/QuantumControl.jl.git