licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 2933 | module BenchAssemble
using BenchmarkTools
using LinearAlgebra
using SparseArrays
using Bcube
suite = BenchmarkGroup()
function basic_bilinear()
suite = BenchmarkGroup()
degree = 1
degquad = 2 * degree + 1
mesh = rectangle_mesh(251, 11; xmax = 1.0, ymax = 0.1)
Uspace = TrialFESpace(FunctionSpace(:Lagrange, degree), mesh; size = 2)
Vspace = TestFESpace(Uspace)
dΩ = Measure(CellDomain(mesh), degquad)
a(u, v) = ∫(u ⋅ v)dΩ
m(u, v) = ∫(∇(u) ⋅ ∇(v))dΩ
#warmup
assemble_bilinear(a, Uspace, Vspace)
assemble_bilinear(m, Uspace, Vspace)
suite["mass matrix"] = @benchmarkable assemble_bilinear($a, $Uspace, $Vspace)
suite["stiffness matrix"] = @benchmarkable assemble_bilinear($m, $Uspace, $Vspace)
return suite
end
avg(u) = 0.5 * (side⁺(u) + side⁻(u))
function poisson_dg()
suite = BenchmarkGroup()
degree = 3
degree_quad = 2 * degree + 1
γ = degree * (degree + 1)
n = 4
Lx = 1.0
h = Lx / n
uₐ = PhysicalFunction(x -> 3 * x[1] + x[2]^2 + 2 * x[1]^3)
f = PhysicalFunction(x -> -2 - 12 * x[1])
g = uₐ
# Build mesh
meshParam = (nx = n + 1, ny = n + 1, lx = Lx, ly = Lx, xc = 0.0, yc = 0.0)
tmp_path = "tmp.msh"
gen_rectangle_mesh(tmp_path, :quad; meshParam...)
mesh = read_msh(tmp_path)
rm(tmp_path)
# Choose degree and define function space, trial space and test space
fs = FunctionSpace(:Lagrange, degree)
U = TrialFESpace(fs, mesh, :discontinuous)
V = TestFESpace(U)
# Define volume and boundary measures
dΩ = Measure(CellDomain(mesh), degree_quad)
dΓ = Measure(InteriorFaceDomain(mesh), degree_quad)
dΓb = Measure(BoundaryFaceDomain(mesh), degree_quad)
nΓ = get_face_normals(dΓ)
nΓb = get_face_normals(dΓb)
a_Ω(u, v) = ∫(∇(v) ⋅ ∇(u))dΩ
l_Ω(v) = ∫(v * f)dΩ
function a_Γ(u, v)
∫(
-jump(v, nΓ) ⋅ avg(∇(u)) - avg(∇(v)) ⋅ jump(u, nΓ) +
γ / h * jump(v, nΓ) ⋅ jump(u, nΓ),
)dΓ
end
fa_Γb(u, ∇u, v, ∇v, n) = -v * (∇u ⋅ n) - (∇v ⋅ n) * u + (γ / h) * v * u
a_Γb(u, v) = ∫(fa_Γb ∘ map(side⁻, (u, ∇(u), v, ∇(v), nΓb)))dΓb
fl_Γb(v, ∇v, n, g) = -(∇v ⋅ n) * g + (γ / h) * v * g
l_Γb(v) = ∫(fl_Γb ∘ map(side⁻, (v, ∇(v), nΓb, g)))dΓb
a(u, v) = a_Ω(u, v) + a_Γ(u, v) + a_Γb(u, v)
l(v) = l_Ω(v) + l_Γb(v)
suite["a_Ω(u, v)"] = @benchmarkable assemble_bilinear($a_Ω, $U, $V)
suite["a_Γ(u, v)"] = @benchmarkable assemble_bilinear($a_Γ, $U, $V)
suite["a_Γb(u, v)"] = @benchmarkable assemble_bilinear($a_Γb, $U, $V)
suite["l_Ω(v)"] = @benchmarkable assemble_linear($l_Ω, $V)
suite["l_Γb(v)"] = @benchmarkable assemble_linear($l_Γb, $V)
suite["AffineFESystem"] = @benchmarkable Bcube.AffineFESystem($a, $l, $U, $V)
return suite
end
suite = BenchmarkGroup()
suite["basic bilinear"] = basic_bilinear()
suite["poisson DG"] = poisson_dg()
end # module
BenchAssemble.suite
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 533 | module BenchCovo_Quad
using StaticArrays
using BenchmarkTools
ENV["BenchmarkMode"] = "true"
include("./covo.jl")
include("./driver_bench_covo.jl")
suite = run_covo()
end # module
module BenchCovo_TriQuad
using StaticArrays
using BenchmarkTools
ENV["BenchmarkMode"] = "true"
ENV["MeshConfig"] = "triquad"
include("./covo.jl")
include("./driver_bench_covo.jl")
suite = run_covo()
end # module
suiteCovo = BenchmarkGroup()
suiteCovo["Quad"] = BenchCovo_Quad.suite
suiteCovo["TriQuad"] = BenchCovo_TriQuad.suite
suiteCovo
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 406 | module BenchEntities
using StaticArrays
using BenchmarkTools
using Bcube
suite = BenchmarkGroup()
tri = Tri3_t()
ind = @SVector [10, 20, 30]
suite["nnodes"] = @benchmarkable Bcube.f2n_from_c2n($tri, $ind)
suite["nodes"] = @benchmarkable Bcube.nodes($tri)
suite["nedges"] = @benchmarkable Bcube.nedges($tri)
suite["edges2nodes"] = @benchmarkable Bcube.edges2nodes($tri)
end # module
BenchEntities.suite
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 146 | module BenchMesh
using BenchmarkTools
using Bcube
suite = BenchmarkGroup()
suite["todo"] = @benchmarkable a = 1
end # module
BenchMesh.suite
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 229 | using BenchmarkTools
SUITE = BenchmarkGroup()
for file in readdir(@__DIR__)
if startswith(file, "bench_") && endswith(file, ".jl")
SUITE[file[(length("bench_") + 1):(end - length(".jl"))]] = include(file)
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 11973 | module Covo #hide
println("Running covo example...") #hide
const dir = string(@__DIR__, "/")
using Bcube
using LinearAlgebra
using StaticArrays
using WriteVTK # only for 'VTKCellData'
using Profile
using StaticArrays
using InteractiveUtils
using BenchmarkTools
using UnPack
function compute_residual(_u, V, params, cache)
u = get_fe_functions(_u)
# alias on measures
@unpack dΩ, dΓ, dΓ_perio_x, dΓ_perio_y = params
# face normals for each face domain (lazy, no computation at this step)
nΓ = get_face_normals(dΓ)
nΓ_perio_x = get_face_normals(dΓ_perio_x)
nΓ_perio_y = get_face_normals(dΓ_perio_y)
# flux residuals from faces for all variables
function l(v)
∫(flux_Ω(u, v))dΩ +
-∫(flux_Γ(u, v, nΓ))dΓ +
-∫(flux_Γ(u, v, nΓ_perio_x))dΓ_perio_x +
-∫(flux_Γ(u, v, nΓ_perio_y))dΓ_perio_y
end
rhs = assemble_linear(l, V)
return cache.mass \ rhs
end
"""
flux_Ω(u, v)
Compute volume residual using the lazy-operators approach
"""
flux_Ω(u, v) = _flux_Ω ∘ cellvar(u, v)
cellvar(u, v) = (u, map(∇, v))
function _flux_Ω(u, ∇v)
ρ, ρu, ρE, ϕ = u
∇λ_ρ, ∇λ_ρu, ∇λ_ρE, ∇λ_ϕ = ∇v
vel = ρu ./ ρ
ρuu = ρu * transpose(vel)
p = pressure(ρ, ρu, ρE, γ)
flux_ρ = ρu
flux_ρu = ρuu + p * I
flux_ρE = (ρE + p) .* vel
flux_ϕ = ϕ .* vel
return ∇λ_ρ ⋅ flux_ρ + ∇λ_ρu ⊡ flux_ρu + ∇λ_ρE ⋅ flux_ρE + ∇λ_ϕ ⋅ flux_ϕ
end
"""
flux_Γ(u,v,n)
Flux at the interface is defined by a composition of two functions:
* facevar(u,v,n) defines the input states which are needed for
the riemann flux using operator notations
* flux_roe(w) defines the Riemann flux (as usual)
"""
flux_Γ(u, v, n) = flux_roe ∘ (side⁻(u), side⁺(u), jump(v), side⁻(n))
"""
flux_roe(w)
"""
function flux_roe(ui, uj, δv, nij)
# destructuring inputs given by `facevar` function
nx, ny = nij
ρ1, ρu1, ρE1, ϕ1 = ui
ρ2, ρu2, ρE2, ϕ2 = uj
δλ_ρ1, δλ_ρu1, δλ_ρE1, δλ_ϕ1 = δv
ρux1, ρuy1 = ρu1
ρux2, ρuy2 = ρu2
# Closure
u1 = ρux1 / ρ1
v1 = ρuy1 / ρ1
u2 = ρux2 / ρ2
v2 = ρuy2 / ρ2
p1 = pressure(ρ1, ρu1, ρE1, γ)
p2 = pressure(ρ2, ρu2, ρE2, γ)
H2 = (γ / (γ - 1)) * p2 / ρ2 + (u2 * u2 + v2 * v2) / 2.0
H1 = (γ / (γ - 1)) * p1 / ρ1 + (u1 * u1 + v1 * v1) / 2.0
R = √(ρ1 / ρ2)
invR1 = 1.0 / (R + 1)
uAv = (R * u1 + u2) * invR1
vAv = (R * v1 + v2) * invR1
Hav = (R * H1 + H2) * invR1
cAv = √(abs((γ - 1) * (Hav - (uAv * uAv + vAv * vAv) / 2.0)))
ecAv = (uAv * uAv + vAv * vAv) / 2.0
λ1 = nx * uAv + ny * vAv
λ3 = λ1 + cAv
λ4 = λ1 - cAv
d1 = ρ1 - ρ2
d2 = ρ1 * u1 - ρ2 * u2
d3 = ρ1 * v1 - ρ2 * v2
d4 = ρE1 - ρE2
# computation of the centered part of the flux
flu11 = nx * ρ2 * u2 + ny * ρ2 * v2
flu21 = nx * p2 + flu11 * u2
flu31 = ny * p2 + flu11 * v2
flu41 = H2 * flu11
# Temp variables
rc1 = (γ - 1) / cAv
rc2 = (γ - 1) / cAv / cAv
uq41 = ecAv / cAv + cAv / (γ - 1)
uq42 = nx * uAv + ny * vAv
fdc1 = max(λ1, 0.0) * (d1 + rc2 * (-ecAv * d1 + uAv * d2 + vAv * d3 - d4))
fdc2 = max(λ1, 0.0) * ((nx * vAv - ny * uAv) * d1 + ny * d2 - nx * d3)
fdc3 =
max(λ3, 0.0) * (
(-uq42 * d1 + nx * d2 + ny * d3) / 2.0 +
rc1 * (ecAv * d1 - uAv * d2 - vAv * d3 + d4) / 2.0
)
fdc4 =
max(λ4, 0.0) * (
(uq42 * d1 - nx * d2 - ny * d3) / 2.0 +
rc1 * (ecAv * d1 - uAv * d2 - vAv * d3 + d4) / 2.0
)
duv1 = fdc1 + (fdc3 + fdc4) / cAv
duv2 = uAv * fdc1 + ny * fdc2 + (uAv / cAv + nx) * fdc3 + (uAv / cAv - nx) * fdc4
duv3 = vAv * fdc1 - nx * fdc2 + (vAv / cAv + ny) * fdc3 + (vAv / cAv - ny) * fdc4
duv4 =
ecAv * fdc1 +
(ny * uAv - nx * vAv) * fdc2 +
(uq41 + uq42) * fdc3 +
(uq41 - uq42) * fdc4
v₁₂ = 0.5 * ((u1 + u2) * nx + (v1 + v2) * ny)
fluxϕ = max(0.0, v₁₂) * ϕ1 + min(0.0, v₁₂) * ϕ2
return (
δλ_ρ1 * (flu11 + duv1) +
δλ_ρu1 ⋅ (SA[flu21 + duv2, flu31 + duv3]) +
δλ_ρE1 * (flu41 + duv4) +
δλ_ϕ1 * (fluxϕ)
)
end
"""
Time integration of `f(q, t)` over a timestep `Δt`.
"""
forward_euler(q, f::Function, t, Δt) = get_dof_values(q) .+ Δt .* f(q, t)
"""
rk3_ssp(q, f::Function, t, Δt)
`f(q, t)` is the function to integrate.
"""
function rk3_ssp(q, f::Function, t, Δt)
stepper(q, t) = forward_euler(q, f, t, Δt)
_q0 = get_dof_values(q)
_q1 = stepper(q, Δt)
set_dof_values!(q, _q1)
_q2 = (3 / 4) .* _q0 .+ (1 / 4) .* stepper(q, t + Δt)
set_dof_values!(q, _q2)
_q1 .= (1 / 3) * _q0 .+ (2 / 3) .* stepper(q, t + Δt / 2)
return _q1
end
"""
pressure(ρ, ρu, ρE, γ)
Computes pressure from perfect gaz law
"""
function pressure(ρ::Number, ρu::AbstractVector, ρE::Number, γ)
vel = ρu ./ ρ
ρuu = ρu * transpose(vel)
p = (γ - 1) * (ρE - tr(ρuu) / 2)
return p
end
"""
Init field with a vortex (for the COVO test case)
"""
function covo!(q, dΩ)
# Intermediate vars
Cₚ = γ * r / (γ - 1)
r²(x) = ((x[1] .- xvc) .^ 2 + (x[2] .- yvc) .^ 2) ./ Rc^2
# Temperature
T(x) = T₀ .- β^2 * U₀^2 / (2 * Cₚ) .* exp.(-r²(x))
# Velocity
ux(x) = U₀ .- β * U₀ / Rc .* (x[2] .- yvc) .* exp.(-r²(x) ./ 2)
uy(x) = V₀ .+ β * U₀ / Rc .* (x[1] .- xvc) .* exp.(-r²(x) ./ 2)
# Density
ρ(x) = ρ₀ .* (T(x) ./ T₀) .^ (1.0 / (γ - 1))
# momentum
ρu(x) = SA[ρ(x) * ux(x), ρ(x) * uy(x)]
# Energy
ρE(x) = ρ(x) * ((Cₚ / γ) .* T(x) + (ux(x) .^ 2 + uy(x) .^ 2) ./ 2)
# Passive scalar
ϕ(x) = Rc^2 * r²(x) < 0.01 ? exp(-r²(x) ./ 2) : 0.0
f = map(PhysicalFunction, (ρ, ρu, ρE, ϕ))
projection_l2!(q, f, dΩ)
return nothing
end
"""
Tiny struct to ease the VTK output
"""
mutable struct VtkHandler
basename::Any
ite::Any
VtkHandler(basename) = new(basename, 0)
end
"""
Write solution to vtk
Wrapper for `write_vtk`
"""
function append_vtk(vtk, mesh, vars, t, params)
ρ, ρu, ρE, ϕ = vars
mesh_degree = 1
vtk_degree = maximum(x -> get_degree(Bcube.get_function_space(get_fespace(x))), vars)
vtk_degree = max(1, mesh_degree, vtk_degree)
_ρ = var_on_nodes_discontinuous(ρ, mesh, vtk_degree)
_ρu = var_on_nodes_discontinuous(ρu, mesh, vtk_degree)
_ρE = var_on_nodes_discontinuous(ρE, mesh, vtk_degree)
_ϕ = var_on_nodes_discontinuous(ϕ, mesh, vtk_degree)
_p = pressure.(_ρ, _ρu, _ρE, γ)
dict_vars_dg = Dict(
"rho" => (_ρ, VTKPointData()),
"rhou" => (_ρu, VTKPointData()),
"rhoE" => (_ρE, VTKPointData()),
"phi" => (_ϕ, VTKPointData()),
"p" => (_p, VTKPointData()),
)
Bcube.write_vtk_discontinuous(
vtk.basename * "_DG",
vtk.ite,
t,
mesh,
dict_vars_dg,
vtk_degree;
append = vtk.ite > 0,
)
# Update counter
vtk.ite += 1
end
# Settings
if get(ENV, "BenchmarkMode", "false") == "false" #hide
const cellfactor = 1
const nx = 32 * cellfactor + 1
const ny = 32 * cellfactor + 1
const fspace = :Lagrange
const timeScheme = :ForwardEuler
else #hide
const nx = 128 + 1 #hide
const ny = 128 + 1 #hide
const fspace = :Lagrange
const timeScheme = :ForwardEuler
end #hide
const nperiod = 1 # number of turn
const CFL = 0.1
const degree = 1 # FunctionSpace degree
const degquad = 2 * degree + 1
const γ = 1.4
const β = 0.2 # vortex intensity
const r = 287.15 # Perfect gaz constant
const T₀ = 300 # mean-flow temperature
const P₀ = 1e5 # mean-flow pressure
const M₀ = 0.5 # mean-flow mach number
const ρ₀ = 1.0 # mean-flow density
const xvc = 0.0 # x-center of vortex
const yvc = 0.0 # y-center of vortex
const Rc = 0.005 # Charasteristic vortex radius
const c₀ = √(γ * r * T₀) # Sound velocity
const U₀ = M₀ * c₀ # mean-flow velocity
const V₀ = 0.0 # mean-flow velocity
const ϕ₀ = 1.0
const l = 0.05 # half-width of the domain
const Δt = CFL * 2 * l / (nx - 1) / ((1 + β) * U₀ + c₀) / (2 * degree + 1)
#const Δt = 5.e-7
const nout = 100 # Number of time steps to save
const outputpath = "../myout/covo/"
const output = joinpath(@__DIR__, outputpath, "covo_deg$degree")
const nite = Int(floor(nperiod * 2 * l / (U₀ * Δt))) + 1
function run_covo()
println("Starting run_covo...")
# Build mesh
meshParam = (nx = nx, ny = ny, lx = 2l, ly = 2l, xc = 0.0, yc = 0.0)
tmp_path = "tmp.msh"
if get(ENV, "BenchmarkMode", "false") == "false" #hide
gen_rectangle_mesh(tmp_path, :quad; meshParam...)
else #hide
if get(ENV, "MeshConfig", "quad") == "triquad" #hide
gen_rectangle_mesh_with_tri_and_quad(tmp_path; meshParam...) #hide
else #hide
gen_rectangle_mesh(tmp_path, :quad; meshParam...) #hide
end #hide
end #hide
mesh = read_msh(tmp_path)
rm(tmp_path)
# Define variables and test functions
fs = FunctionSpace(fspace, degree)
U_sca = TrialFESpace(fs, mesh, :discontinuous; size = 1) # DG, scalar
U_vec = TrialFESpace(fs, mesh, :discontinuous; size = 2) # DG, vectoriel
V_sca = TestFESpace(U_sca)
V_vec = TestFESpace(U_vec)
U = MultiFESpace(U_sca, U_vec, U_sca, U_sca)
V = MultiFESpace(V_sca, V_vec, V_sca, V_sca)
u = FEFunction(U)
@show Bcube.get_ndofs(U)
# Define measures for cell and interior face integrations
dΩ = Measure(CellDomain(mesh), degquad)
dΓ = Measure(InteriorFaceDomain(mesh), degquad)
# Declare periodic boundary conditions and
# create associated domains and measures
periodicBCType_x = PeriodicBCType(Translation(SA[-2l, 0.0]), ("East",), ("West",))
periodicBCType_y = PeriodicBCType(Translation(SA[0.0, 2l]), ("South",), ("North",))
Γ_perio_x = BoundaryFaceDomain(mesh, periodicBCType_x)
Γ_perio_y = BoundaryFaceDomain(mesh, periodicBCType_y)
dΓ_perio_x = Measure(Γ_perio_x, degquad)
dΓ_perio_y = Measure(Γ_perio_y, degquad)
params = (dΩ = dΩ, dΓ = dΓ, dΓ_perio_x = dΓ_perio_x, dΓ_perio_y = dΓ_perio_y)
# Init vtk
isdir(joinpath(@__DIR__, outputpath)) || mkpath(joinpath(@__DIR__, outputpath))
vtk = VtkHandler(output)
# Init solution
t = 0.0
covo!(u, dΩ)
# cache mass matrices
cache = (mass = factorize(Bcube.build_mass_matrix(U, V, dΩ)),)
if get(ENV, "BenchmarkMode", "false") == "true" #hide
return u, U, V, params, cache
end
# Write initial solution
append_vtk(vtk, mesh, u, t, params)
# Time loop
for i in 1:nite
println("")
println("")
println("Iteration ", i, " / ", nite)
## Step forward in time
rhs(u, t) = compute_residual(u, V, params, cache)
if timeScheme == :ForwardEuler
unew = forward_euler(u, rhs, time, Δt)
elseif timeScheme == :RK3
unew = rk3_ssp(u, rhs, time, Δt)
else
error("Unknown time scheme: $timeScheme")
end
set_dof_values!(u, unew)
t += Δt
# Write solution to file
if (i % Int(max(floor(nite / nout), 1)) == 0)
println("--> VTK export")
append_vtk(vtk, mesh, u, t, params)
end
end
# Summary and benchmark # ndofs total = 20480
_rhs(u, t) = compute_residual(u, V, params, cache)
@btime forward_euler($u, $_rhs, $time, $Δt) # 5.639 ms (1574 allocations: 2.08 MiB)
# stepper = w -> explicit_step(w, params, cache, Δt)
# RK3_SSP(stepper, (u, v), cache)
# @btime RK3_SSP($stepper, ($u, $v), $cache)
println("ndofs total = ", Bcube.get_ndofs(U))
Profile.init(; n = 10^7) # returns the current settings
Profile.clear()
Profile.clear_malloc_data()
@profile begin
for i in 1:100
forward_euler(u, _rhs, time, Δt)
end
end
@show Δt, U₀, U₀ * t
@show boundary_names(mesh)
return nothing
end
if get(ENV, "BenchmarkMode", "false") == "false"
mkpath(outputpath)
run_covo()
end
end #hide
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 1003 | function run_covo()
suite = BenchmarkGroup()
# alias
_u, U, V, params, cache = Covo.run_covo()
u = Covo.Bcube.get_fe_functions(_u)
dΓ = params.dΓ
dΩ = params.dΩ
nΓ = Covo.Bcube.get_face_normals(dΓ)
Δt = Covo.Δt
l_vol(v) = Covo.Bcube.∫(Covo.flux_Ω(u, v))dΩ
l_Γ(v) = Covo.Bcube.∫(Covo.flux_Γ(u, v, nΓ))dΓ
b_vol = zeros(Covo.Bcube.get_ndofs(U))
b_fac = zeros(Covo.Bcube.get_ndofs(U))
# warmup (force precompilation of @generated functions if necessary)
Covo.Bcube.assemble_linear!(b_vol, l_vol, V)
Covo.Bcube.assemble_linear!(b_fac, l_Γ, V)
_rhs(u, t) = Covo.compute_residual(u, V, params, cache)
Covo.forward_euler(_u, _rhs, 0.0, Δt)
suite["integral_volume"] = @benchmarkable Covo.Bcube.assemble_linear!($b_vol, $l_vol, $V)
suite["integral_surface"] = @benchmarkable Covo.Bcube.assemble_linear!($b_fac, $l_Γ, $V)
suite["explicit_step"] = @benchmarkable Covo.forward_euler($_u, $_rhs, 0.0, $Δt)
return suite
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 2020 | # This file was adapted from Transducers.jl and ProximalOperators.jl
# which are available under an MIT license (see LICENSE).
using ArgParse
using PkgBenchmark
using Markdown
using Pkg
Pkg.develop(PackageSpec(; path = pwd()))
Pkg.instantiate()
function displayresult(result)
md = sprint(export_markdown, result)
md = replace(md, ":x:" => "❌")
md = replace(md, ":white_check_mark:" => "✅")
display(Markdown.parse(md))
end
function printnewsection(name)
println()
println()
println()
printstyled("▃"^displaysize(stdout)[2]; color = :blue)
println()
printstyled(name; bold = true)
println()
println()
end
function parse_commandline()
s = ArgParseSettings()
@add_arg_table! s begin
"--target"
help = "the branch/commit/tag to use as target"
default = "HEAD"
"--baseline"
help = "the branch/commit/tag to use as baseline"
default = "main"
"--retune"
help = "force re-tuning (ignore existing tuning data)"
action = :store_true
end
return parse_args(s)
end
function main()
parsed_args = parse_commandline()
@show parsed_args
function mkconfig(; kwargs...)
BenchmarkConfig(; env = Dict("JULIA_NUM_THREADS" => "1"), kwargs...)
end
target = parsed_args["target"]
group_target = benchmarkpkg(
dirname(@__DIR__),
mkconfig(; id = target);
resultfile = joinpath(@__DIR__, "result-$(target).json"),
retune = parsed_args["retune"],
)
baseline = parsed_args["baseline"]
group_baseline = benchmarkpkg(
dirname(@__DIR__),
mkconfig(; id = baseline);
resultfile = joinpath(@__DIR__, "result-$(baseline).json"),
)
printnewsection("Target result")
displayresult(group_target)
printnewsection("Baseline result")
displayresult(group_baseline)
judgement = judge(group_target, group_baseline)
printnewsection("Judgement result")
displayresult(judgement)
end
main()
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 1370 | push!(LOAD_PATH, "../src/")
using Bcube
using Documenter
using Literate
makedocs(;
modules = [Bcube],
authors = "Ghislain Blanchard, Lokman Bennani and Maxime Bouyges",
sitename = "Bcube",
clean = true,
doctest = false,
format = Documenter.HTML(;
prettyurls = get(ENV, "CI", "false") == "true",
canonical = "https://bcube-project.github.io/Bcube.jl",
assets = String[],
),
checkdocs = :none,
pages = [
"Home" => "index.md",
"Manual" => Any[
"manual/conventions.md",
"manual/geometry.md",
"manual/integration.md",
"manual/cellfunction.md",
"manual/function_space.md",
"manual/operator.md",
],
"API Reference" => Any[
"api/mesh/mesh.md",
"api/mesh/gmsh_utils.md",
"api/mesh/mesh_generator.md",
"api/interpolation/shape.md",
"api/interpolation/function_space.md",
"api/interpolation/fespace.md",
"api/mapping/mapping.md",
"api/integration/integration.md",
# "api/operator/operator.md",
"api/dof/dof.md",
"api/output/vtk.md",
],
"How to... (FAQ)" => "howto/howto.md",
],
)
deploydocs(; repo = "github.com/bcube-project/Bcube.jl.git", push_preview = true)
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 109 | module HDF5Ext
using Bcube
using HDF5
include("./common.jl")
include("./read.jl")
include("./write.jl")
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 2469 | const BCUBE_ENTITY_TO_CGNS_ENTITY = Dict(
Bcube.Node_t => 2,
Bcube.Bar2_t => 3,
Bcube.Bar3_t => 4,
Bcube.Tri3_t => 5,
Bcube.Tri6_t => 6,
Bcube.Tri9_t => 25,
Bcube.Tri10_t => 26,
Bcube.Quad4_t => 7,
Bcube.Quad8_t => 8,
Bcube.Quad9_t => 9,
Bcube.Quad16_t => 27,
Bcube.Tetra4_t => 10,
Bcube.Tetra10_t => 11,
Bcube.Pyra5_t => 12,
Bcube.Penta6_t => 14,
Bcube.Hexa8_t => 17,
Bcube.Hexa27_t => 27,
)
const CGNS_ENTITY_TO_BCUBE_ENTITY = Dict(v => k for (k, v) in BCUBE_ENTITY_TO_CGNS_ENTITY)
function bcube_entity_to_cgns_entity(::T) where {T <: Bcube.AbstractEntityType}
BCUBE_ENTITY_TO_CGNS_ENTITY[T]
end
cgns_entity_to_bcube_entity(code::Integer) = CGNS_ENTITY_TO_BCUBE_ENTITY[code]()
function get_child(parent; name = "", type = "")
child_name = findfirst(child -> child_match(child, name, type), parent)
return isnothing(child_name) ? nothing : parent[child_name]
end
function get_children(parent; name = "", type = "")
child_names = findall(child -> child_match(child, name, type), parent)
return map(child_name -> parent[child_name], child_names)
end
function child_match(child, name, type)
if get_name(child) == name
if length(name) > 0 && length(type) > 0
(get_cgns_type(child) == type) && (return true)
elseif length(name) > 0
return true
end
end
if get_cgns_type(child) == type
if length(name) > 0 && length(type) > 0
(get_name(child) == name) && (return true)
elseif length(type) > 0
return true
end
end
return false
end
get_name(obj) = String(last(split(HDF5.name(obj), '/')))
get_data_type(obj) = attributes(obj)["type"][]
get_cgns_type(obj) = haskey(attributes(obj), "label") ? attributes(obj)["label"][] : nothing
function get_value(obj)
data_type = get_data_type(obj)
data = read(obj[" data"])
if data_type == "C1"
return String(UInt8.(data))
elseif data_type in ("I4", "I8", "R4", "R8")
return data
else
error("Datatype '$(data_type)' not handled")
end
end
function get_cgns_base(obj)
cgnsBases = get_children(obj; type = "CGNSBase_t")
if length(cgnsBases) == 0
error("Could not find any CGNSBase_t node in the file")
elseif length(cgnsBases) > 1
error("The file contains several CGNSBase_t nodes, only one base is supported")
end
return first(cgnsBases)
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 16113 | function Bcube.read_file(
::Bcube.HDF5IoHandler,
filepath::String;
domainNames = String[],
varnames = nothing,
topodim = 0,
spacedim = 0,
verbose = false,
kwargs...,
)
# Open the file
file = h5open(filepath, "r")
root = file
# Read (unique) CGNS base
cgnsBase = get_cgns_base(root)
# Read base dimensions (topo and space)
dims = get_value(cgnsBase)
topodim = topodim > 0 ? topodim : dims[1]
zone_space_dim = dims[2]
verbose && println("topodim = $topodim, spacedim = $(zone_space_dim)")
# Find the list of Zone_t
zones = get_children(cgnsBase; type = "Zone_t")
if length(zones) == 0
error("Could not find any Zone_t node in the file")
elseif length(zones) > 1
error("The file contains several Zone_t nodes, only one zone is supported for now")
end
zone = first(zones)
# Read zone
zoneCGNS = read_zone(zone, varnames, topodim, zone_space_dim, spacedim, verbose)
# Close the file
close(file)
# Build Bcube Mesh
mesh = cgns_mesh_to_bcube_mesh(zoneCGNS)
# Build Bcube MeshCellData & MeshPointData
if !isnothing(varnames)
data = flow_solutions_to_bcube_data(zoneCGNS.fSols)
else
data = nothing
end
# Should we return something when pointData and/or cellData is nothing? Or remove it completely from the returned Tuple?
return (; mesh, data)
end
"""
Read a CGNS Zone node.
Return a NamedTuple with node coordinates, cell-to-type connectivity (type is a integer),
cell-to-node connectivity, boundaries (see `read_zoneBC`), and a dictionnary of flow solutions (see `read_solutions`)
-> (; coords, c2t, c2n, bcs, fSols)
Note : the `zone_space_dim` is the number of spatial dimension according to the CGNS "Zone" node; whereas
`usr_space_dim` is the number of spatial dimensions asked by the user (0 to select automatic detection).
"""
function read_zone(zone, varnames, topo_dim, zone_space_dim, usr_space_dim, verbose)
# Preliminary check
zoneType = get_value(get_child(zone; type = "ZoneType_t"))
@assert zoneType == "Unstructured" "Only unstructured zone are supported"
# Number of elements
nvertices, ncells, nbnd = get_value(zone)
verbose && println("nvertices = $nvertices, ncells = $ncells")
# Read GridCoordinates
gridCoordinates = get_child(zone; type = "GridCoordinates_t")
coordXNode = get_child(gridCoordinates; name = "CoordinateX")
X = get_value(coordXNode)
coords = zeros(eltype(X), nvertices, zone_space_dim)
coords[:, 1] .= X
suffixes = ["X", "Y", "Z"]
for (idim, suffix) in enumerate(suffixes[1:zone_space_dim])
node = get_child(gridCoordinates; name = "Coordinate" * suffix)
coords[:, idim] .= get_value(node)
end
# Resize the `coords` array if necessary
_space_dim = usr_space_dim > 0 ? usr_space_dim : compute_space_dim(topo_dim, coords)
coords = coords[:, 1:_space_dim]
# Read all elements
elts = map(read_connectivity, get_children(zone; type = "Elements_t"))
# Filter "volumic" elements to build the volumic connectivities arrays
volumicElts = filter(elt -> is_volumic_entity(first(elt.c2t), topo_dim), elts)
c2t = mapreduce(elt -> elt.c2t, vcat, volumicElts)
c2n = mapreduce(elt -> elt.c2n, vcat, volumicElts)
# Read all BCs and then keep only the ones whose topo dim is equal to the base topo dim minus 1
bcs = read_zoneBC(zone, elts, verbose)
if !isnothing(bcs)
filter!(bc -> (bc.bcdim == topo_dim - 1) || (bc.bcdim == -1), bcs)
end
# Read FlowSolutions
if !isnothing(varnames)
fSols = read_solutions(zone, varnames, verbose)
else
fSols = nothing
end
# @show coords
# @show c2t
# @show c2n
# @show bcs
# @show fSols
return (; coords, c2t, c2n, bcs, fSols)
end
"""
Read an "Elements_t" node and returns a named Tuple of three elements:
* `erange`, the content of the `ElementRange` node
* `c2t`, the cell -> entity_type connectivity
* `c2n`, the cell -> node connectivity, flattened if `reshape = false`, as an array (nelts, nnodes_by_elt) if `reshape = true`
* `name`, only for dbg
"""
function read_connectivity(node, reshape = false)
@assert get_cgns_type(node) == "Elements_t"
# Build cell to (cgns) type
code, _ = get_value(node)
erange = get_value(get_child(node; name = "ElementRange"))
nelts = erange[2] - erange[1] + 1
c2t = fill(code, nelts)
# Build cell to node and reshapce
c2n = get_value(get_child(node; name = "ElementConnectivity"))
nnodes_by_elt = nnodes(cgns_entity_to_bcube_entity(code))
reshape && (c2n = reshape(c2n, nelts, nnodes_by_elt))
return (; erange, c2t, c2n, name = get_name(node))
end
"""
Read the "ZoneBC_t" node to build bnd connectivities.
See `read_bc` for more information of what is returned.
"""
function read_zoneBC(zone, elts, verbose)
zoneBC = get_child(zone; type = "ZoneBC_t")
# Premature exit if no ZoneBC is present
isnothing(zoneBC) && (return nothing)
# Read each BC
bcs = map(bc -> read_bc(bc, elts, verbose), get_children(zoneBC; type = "BC_t"))
return bcs
end
"""
Read a BC node.
Return a named Tuple (bcname, bcnodes, bcdim) where bcnodes is an array of the nodes
belonging to this BC.
"""
function read_bc(bc, elts, verbose)
# BC name
familyName = get_child(bc; type = "FamilyName_t")
bcname = isnothing(familyName) ? get_name(bc) : get_value(familyName)
verbose && println("Reading BC '$bcname'")
# BC connectivity
bc_type = get_value(get_child(bc; type = "GridLocation_t"))
indexRange = get_child(bc; type = "IndexRange_t")
pointList = get_child(bc; type = "IndexArray_t")
# BC topodim : it's not always possible to determine it, so it's negative by default
bcdim = -1
if bc_type in ["CellCenter", "FaceCenter"]
if !isnothing(indexRange)
verbose && println("GridLocation is $(bc_type) with IndexRange")
# This is a bit complex because nothing prevents an IndexRange to span over multiples Elements_t
erange = get_value(indexRange)
# Allocate the array of node indices corresponding to the BC
nelts_bc = erange[2] - erange[1] + 1
T = eltype(first(elts).c2n[1])
bcnodes = T[]
sizehint!(bcnodes, nelts_bc * 4) # we assume 4 nodes by elements
nelts_found = 0
# Loop over all the Elements_t 'nodes'
for elt in elts
# verbose && println("Searching for elements in Elements_t '$(elt.name)'")
i1, i2 = elt.erange
etype = cgns_entity_to_bcube_entity(first(elt.c2t))
nnodes_by_elt = nnodes(etype)
if i1 <= erange[1] <= i2
# Compute how many nodes are concerned in this Elements_t,
# and the offset in the connectivity
nelts_concerned = min(i2, erange[2]) - erange[1] + 1
nnodes_concerned = nelts_concerned * nnodes_by_elt
offset = (erange[1] - i1) * nnodes_by_elt
push!(bcnodes, elt.c2n[(1 + offset):(offset + nnodes_concerned)]...)
nelts_found += nelts_concerned
verbose && println("$(nelts_concerned) elts found in '$(elt.name)'")
bcdim = Bcube.topodim(etype)
# Check if we've found all the elements in this connectivity
(erange[2] <= i2) && break
end
if i1 <= erange[2] <= i2
# Compute how many nodes are concerned in this Elements_t,
# and the offset in the connectivity
nelts_concerned = erange[2] - max(i1, erange[1]) + 1
nnodes_concerned = nelts_concerned * nnodes_by_elt
offset = (max(i1, erange[1]) - i1) * nnodes_by_elt
push!(bcnodes, elt.c2n[(1 + offset):(offset + nnodes_concerned)]...)
nelts_found += nelts_concerned
verbose && println("$(nelts_concerned) elts found in '$(elt.name)'")
bcdim = Bcube.topodim(etype)
end
end
@assert nelts_found == nelts_bc "Missing elements for BC"
# Once we've found all the nodes, we must remove duplicates
# Note : using sort! + unique! is much more efficient than calling "unique"
sort!(bcnodes)
unique!(bcnodes)
elseif !isnothing(pointList)
# Elements indices
elts_ind = vec(get_value(pointList))
sort!(elts_ind)
# Allocate the array of node indices corresponding to the BC
nelts_bc = length(elts_ind)
T = eltype(first(elts).c2n[1])
bcnodes = T[]
sizehint!(bcnodes, nelts_bc * 4) # we assume 4 nodes by elements
icurr = 1
for elt in elts
verbose && println("Searching for elements in Elements_t '$(elt.name)'")
i1, i2 = elt.erange
etype = cgns_entity_to_bcube_entity(first(elt.c2t))
nnodes_by_elt = nnodes(etype)
(icurr < i1) && continue
(icurr > i2) && continue
if elts_ind[end] >= i2
iEnd = i2
else
iEnd = findfirst(i -> i > i2, view(elts_ind, icurr:nelts_bc)) - 1
end
offset = (elts_ind[icurr] - i1) * nnodes_by_elt
push!(bcnodes, elt.c2n[(1 + offset):(nnodes_by_elt * (iEnd - i1 + 1))]...)
icurr = iEnd + 1
(icurr > nelts_bc) && break
# Element-wise version (OK, but very slow)
# while i1 <= elts_ind[icurr] <= i2
# offset = (elts_ind[icurr] - i1) * nnodes_by_elt
# push!(bcnodes, elt.c2n[(1 + offset):(offset + nnodes_by_elt)]...)
# (icurr == nelts_bc) && break
# icurr += 1
# end
end
@assert icurr >= nelts_bc
else
error("Could not find either the PointRange nor the PointList")
end
elseif bc_type == "Vertex"
if !isnothing(pointList)
bcnodes = get_value(pointList)
elseif !isnothing(indexRange)
erange = get_value(indexRange)
bcnodes = collect(erange[1]:erange[2])
else
error("Could not find either the PointRange nor the PointList")
end
# TODO : we could try to guess `bcdim` by search the Elements_t containing
# the points of the PointList
else
error("BC GridLocation '$(bc_type)' not implemented")
end
return (; bcname, bcnodes, bcdim)
end
"""
Read all the flow solutions in the Zone, filtering data arrays whose name is not in the `varnames` list
# TODO : check if all varnames have been found
"""
function read_solutions(zone, varnames, verbose)
# fSols =
# map(fs -> read_solution(fs, varnames), get_children(zone; type = "FlowSolution_t"))
# n_vertex_fsol = count(fs -> fs.gridLocation == "Vertex", fSols)
# n_cell_fsol = count(fs -> fs.gridLocation == "CellCenter", fSols)
# if verbose
# (n_vertex_fsol > 1) && println(
# "WARNING : found more than one Vertex FlowSolution, reading them all...",
# )
# (n_cell_fsol > 1) && println(
# "WARNING : found more than one CellCenter FlowSolution, reading them all...",
# )
# end
fSols = Dict(
get_name(fs) => read_solution(zone, fs, varnames) for
fs in get_children(zone; type = "FlowSolution_t")
)
return fSols
end
"""
Read a FlowSolution node.
Return a NamedTuple with flow solution name, grid location and array of vectors.
"""
function read_solution(zone, fs, varnames)
# Read GridLocation : we could deal with a missing GridLocation node, by later comparing
# the length of the DataArray to the number of cells / nodes of the zone. Let's do this
# later.
node = get_child(fs; type = "GridLocation_t")
if isnothing(node)
_nnodes, _ncells, _ = get_zone_dims(zone)
dArray = get_child(fs; type = "DataArray_t")
err_msg = "Could not determine GridLocation in FlowSolution '$(get_name(fs))'"
@assert !isnothing(dArray) err_msg
x = get_value(dArray)
if length(x) == _nnodes
gridLocation = "Vertex"
elseif length(x) == _ncells
gridLocation = "CellCenter"
else
error(err_msg)
end
@warn "Missing GridLocation in FlowSolution '$(get_name(fs))', autoset to '$gridLocation'"
else
gridLocation = get_value(node)
end
# Read variables matching asked "varnames"
dArrays = get_children(fs; type = "DataArray_t")
if varnames != "*"
# filter to obtain only the desired variables names
filter!(dArray -> get_name(dArray) in varnames, dArrays)
end
data = Dict(get_name(dArray) => get_value(dArray) for dArray in dArrays)
# Flow solution name
name = get_name(fs)
return (; name, gridLocation, data)
end
"""
Convert CGNS Zone information into a Bcube `Mesh`.
"""
function cgns_mesh_to_bcube_mesh(zoneCGNS)
nodes = [Bcube.Node(zoneCGNS.coords[i, :]) for i in 1:size(zoneCGNS.coords, 1)]
# nodes = map(row -> Bcube.Node(row), eachrow(zoneCGNS.coords)) # problem with Node + Slice
c2n = Int.(zoneCGNS.c2n)
c2t = map(cgns_entity_to_bcube_entity, zoneCGNS.c2t)
c2nnodes = map(nnodes, c2t)
if isnothing(zoneCGNS.bcs)
return Bcube.Mesh(nodes, c2t, Bcube.Connectivity(c2nnodes, c2n))
else
bc_names = Dict(i => bc.bcname for (i, bc) in enumerate(zoneCGNS.bcs))
bc_nodes = Dict(i => Int.(bc.bcnodes) for (i, bc) in enumerate(zoneCGNS.bcs))
return Bcube.Mesh(nodes, c2t, Bcube.Connectivity(c2nnodes, c2n); bc_names, bc_nodes)
end
end
"""
The input `fSols` is suppose to be a dictionnary FlowSolutionName => (gridlocation, Dict(varname => array))
The output is a dictionnary FlowSolutionName => dictionnary(varname => MeshData)
"""
function flow_solutions_to_bcube_data(fSols)
# length(fSols) == 0 && (return Dict(), Dict())
# pointSols = filter(fs -> fs.gridLocation == "Vertex", fSols)
# cellSols = filter(fs -> fs.gridLocation == "CellCenter", fSols)
# pointDicts = [fs.data for fs in pointSols]
# cellDicts = [fs.data for fs in cellSols]
# pointDict = merge(pointDicts)
# cellDict = merge(cellDicts)
# pointDict = Dict(key => MeshPointData(val) for (key, val) in pointDict)
# cellDict = Dict(key => MeshCellData(val) for (key, val) in cellDict)
# return pointDict, cellDict
return Dict(
fname => Dict(
varname =>
t.gridLocation == "Vertex" ? MeshPointData(array) : MeshCellData(array)
for (varname, array) in t.data
) for (fname, t) in fSols
)
end
function compute_space_dim(topodim, coords, tol = 1e-15, verbose = true)
spacedim = size(coords, 2)
xmin, xmax = extrema(view(coords, :, 1))
lx = xmax - xmin
ly = lz = 0.0
if spacedim > 1
ymin, ymax = extrema(view(coords, :, 2))
ly = ymax - ymin
end
if spacedim > 2
zmin, zmax = extrema(view(coords, :, 3))
lz = zmax - zmin
end
return Bcube._compute_space_dim(topodim, lx, ly, lz, tol, verbose)
end
"""
Indicate if the Elements node contains "volumic" entities (with respect
to the `topo_dim` argument)
"""
function is_volumic_entity(obj, topo_dim)
@assert get_cgns_type(obj) == "Elements_t"
code, _ = get_value(obj)
return is_volumic_entity(code, topo_dim)
end
function is_volumic_entity(code::Integer, topo_dim)
Bcube.topodim(cgns_entity_to_bcube_entity(code)) == topo_dim
end
"""
Return nnodes, ncells, nbnd
"""
function get_zone_dims(zone)
d = get_value(zone)
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 18586 | function Bcube.write_file(
::Bcube.HDF5IoHandler,
basename::String,
mesh::Bcube.AbstractMesh,
U_export::Bcube.AbstractFESpace,
data = nothing,
it::Integer = -1,
time::Real = 0.0;
collection_append = false,
verbose = false,
update_mesh = false,
skip_iterative_data = false,
kwargs...,
)
@assert is_fespace_supported(U_export) "Export FESpace not supported yet"
mode = collection_append ? "r+" : "w"
fcpl = HDF5.FileCreateProperties(; track_order = true)
# fcpl = HDF5.FileCreateProperties()
h5open(basename, mode; fcpl) do file
if collection_append
append_to_cgns_file(
file,
mesh,
data,
U_export,
it,
time;
verbose,
update_mesh,
skip_iterative_data,
)
else
create_cgns_file(
file,
mesh,
data,
U_export,
it,
time;
verbose,
skip_iterative_data,
)
end
end
end
"""
Append data to an existing file.
"""
function append_to_cgns_file(
file,
mesh,
data,
U_export,
it,
time;
verbose = false,
update_mesh = false,
skip_iterative_data,
)
@assert !update_mesh "Mesh update not implemented yet"
# Read (unique) CGNS base
cgnsBase = get_cgns_base(file)
# Find the list of Zone_t
zones = get_children(cgnsBase; type = "Zone_t")
if length(zones) == 0
error("Could not find any Zone_t node in the file")
elseif length(zones) > 1
error("The file contains several Zone_t nodes, only one zone is supported for now")
end
zone = first(zones)
# If it >= 0, update/create BaseIterativeData
if it >= 0 && !skip_iterative_data
append_to_base_iterative_data(cgnsBase, get_name(zone), it, time)
else
verbose &&
println("Skipping BaseIterativeData because iteration < 0 or asked to skip it")
end
# Append solution
create_flow_solutions(mesh, zone, data, U_export, it, true; verbose)
# Append to ZoneIterativeData
if it >= 0 && !skip_iterative_data
append_to_zone_iterative_data(zone, it; verbose)
end
end
"""
Create the whole file from scratch
"""
function create_cgns_file(
file,
mesh,
data,
U_export,
it,
time;
verbose,
skip_iterative_data,
)
# @show file.id
# @show HDF5.API.h5i_get_file_id(file)
# HDF5.API.h5f_set_libver_bounds(
# # file.id,
# file,
# HDF5.API.H5F_LIBVER_V18,
# HDF5.API.H5F_LIBVER_LATEST,
# )
# HDF5.API.h5f_flush(file.id)
# Root element
set_cgns_root!(file)
# Library version
create_cgns_node(
file,
"CGNSLibraryVersion",
"CGNSLibraryVersion_t";
type = "R4",
value = Float32[3.2],
)
# Base
cgnsBase = create_cgns_node(
file,
"Base",
"CGNSBase_t";
value = Int32[Bcube.topodim(mesh), Bcube.spacedim(mesh)],
)
# Zone
zone = create_cgns_node(
cgnsBase,
"Zone",
"Zone_t";
value = reshape(Int32[nnodes(mesh), ncells(mesh), 0], 1, 3),
)
# ZoneType
create_cgns_node(
zone,
"ZoneType",
"ZoneType_t";
value = Int8.(Vector{UInt8}("Unstructured")),
type = "C1",
)
# GridCoordinates
gridCoordinates =
create_cgns_node(zone, "GridCoordinates", "GridCoordinates_t"; type = "MT")
suffixes = ("X", "Y", "Z")
for idim in 1:Bcube.spacedim(mesh)
create_cgns_node(
gridCoordinates,
"Coordinate$(suffixes[idim])",
"DataArray_t";
type = "R8",
value = [get_coords(node, idim) for node in get_nodes(mesh)],
)
end
# Write elements
create_cgns_elements(mesh, zone; write_bnd_faces = false, verbose)
# Write BCs
create_cgns_bcs(mesh, zone; verbose)
# Write solution
if !isnothing(data)
create_flow_solutions(mesh, zone, data, U_export, it, false; verbose)
end
# Base and zone iterative data
if it >= 0 && !skip_iterative_data
verbose && println("Creating BaseIterativeData and ZoneIterativeData")
create_cgns_base_iterative_data(cgnsBase, get_name(zone), it, time)
create_cgns_zone_iterative_data(zone, it; verbose)
end
end
"""
Special stuff for the root node
Adapted from Maia :
https://github.com/onera/Maia/blob/3a5030aa3b0696cdbae0c9dd08ac641842be33a3/maia/io/hdf/_hdf_cgns.py#L95
"""
function set_cgns_root!(root)
# fcpl = HDF5.get_create_properties(root)
# HDF5.set_track_order!(fcpl, true)
add_cgns_string_attr!(root, "label", "Root Node of HDF5 File", 33)
add_cgns_string_attr!(root, "name", "HDF5 MotherNode", 33)
add_cgns_string_attr!(root, "type", "MT", 3)
v = HDF5.libversion
version = "HDF5 Version $(v.major).$(v.minor).$(v.patch)"
root[" hdf5version"] = str2int8_with_fixed_length(version, 33)
# @show HDF5.API.H5T_NATIVE_DOUBLE
# @show HDF5.API.H5T_NATIVE_FLOAT
# @show HDF5.API.H5T_IEEE_F32BE
# @show HDF5.API.H5T_IEEE_F32LE
# @show HDF5.API.H5T_IEEE_F64BE
# @show HDF5.API.H5T_IEEE_F64LE
if HDF5.API.H5T_NATIVE_FLOAT == HDF5.API.H5T_IEEE_F32BE
format = "IEEE_BIG_32"
elseif HDF5.API.H5T_NATIVE_FLOAT == HDF5.API.H5T_IEEE_F32LE
format = "IEEE_LITTLE_32"
elseif HDF5.API.H5T_NATIVE_FLOAT == HDF5.API.H5T_IEEE_F64BE
format = "IEEE_BIG_64"
elseif HDF5.API.H5T_NATIVE_FLOAT == HDF5.API.H5T_IEEE_F64LE
format = "IEEE_LITTLE_64"
else
@warn "Could determine float type, assuming IEEE_LITTLE_32"
format = "IEEE_LITTLE_32"
end
root[" format"] = str2int8(format)
end
function create_cgns_elements(mesh, zone; write_bnd_faces = false, verbose = false)
@assert !write_bnd_faces "not implemented yet"
verbose && println("Writing elements")
# Found the different type of cells in the mesh
celltypes = union_types(eltype(Bcube.entities(mesh, :cell)))
# Count number of elements for each type
typeCount = Dict(ct => 0 for ct in celltypes)
foreach(ct -> typeCount[typeof(ct)] += 1, Bcube.cells(mesh))
# Allocate connectivity array for each type
conn = Dict(ct => zeros(typeCount[ct], nnodes(ct)) for ct in celltypes)
offset = Dict(ct => 1 for ct in celltypes)
# Fill it
for cInfo in Bcube.DomainIterator(CellDomain(mesh))
ct = typeof(Bcube.celltype(cInfo))
i = offset[ct]
conn[ct][i, :] .= Bcube.get_nodes_index(cInfo)
offset[ct] += 1
end
# Create Elements nodes
i = 0
for ct in celltypes
eltsName = string(ct)
eltsName = replace(eltsName, "Bcube." => "")
eltsName = eltsName[1:(end - 2)]
verbose && println("Writing $eltsName")
elts = create_cgns_node(
zone,
eltsName,
"Elements_t";
value = Int32[BCUBE_ENTITY_TO_CGNS_ENTITY[ct], 0],
)
create_cgns_node(
elts,
"ElementRange",
"IndexRange_t";
value = Int32[i + 1, i + typeCount[ct]],
)
create_cgns_node(
elts,
"ElementConnectivity",
"DataArray_t";
value = Int32.(vec(transpose(conn[ct]))),
)
i += typeCount[ct]
end
end
"""
Create the ZoneBC node and the associated BC nodes.
For now, BCs are defined by a list of nodes. We could implement a version where BCs
are defined by a list of faces (this necessitates faces nodes in the Elements_t part).
"""
function create_cgns_bcs(mesh, zone; verbose = false)
zoneBC = create_cgns_node(zone, "ZoneBC", "ZoneBC_t"; type = "MT")
for (tag, name) in boundary_names(mesh)
# for (name, nodes) in zip(boundary_names(mesh), Bcube.boundary_nodes(mesh))
bcnodes = Bcube.boundary_nodes(mesh, tag)
bc = create_cgns_node(zoneBC, name, "BC_t"; type = "C1", value = str2int8("BCWall"))
create_grid_location(bc, "Vertex")
create_cgns_node(
bc,
"PointList",
"IndexArray_t";
type = "I4",
value = Int32.(transpose(bcnodes)),
)
end
end
"""
`append` indicates if the FlowSolution(s) may already exist (and hence completed) or not.
"""
function create_flow_solutions(mesh, zone, data, U_export, it, append; verbose = false)
if valtype(data) <: Dict
verbose && println("Named FlowSolution(s) detected")
for (fname, _data) in data
# Then, we create a flowsolution
create_flow_solutions(mesh, zone, _data, U_export, fname, it, append; verbose)
end
else
create_flow_solutions(mesh, zone, data, U_export, "", it, append; verbose)
end
end
"""
This function is a trick to refactor some code
"""
function create_flow_solutions(
mesh,
zone,
data,
U_export,
fname,
it,
append;
verbose = false,
)
cellCenter = filter(((name, var),) -> var isa Bcube.MeshData{Bcube.CellData}, data)
_fname = isempty(fname) ? "FlowSolutionCell" : fname
(it >= 0) && (_fname *= iteration_to_string(it))
create_flow_solution(
zone,
cellCenter,
_fname,
false,
Base.Fix2(var_on_centers, mesh),
append;
verbose,
)
nodeCenter = filter(((name, var),) -> !(var isa Bcube.MeshData{Bcube.CellData}), data)
_fname = isempty(fname) ? "FlowSolutionVertex" : fname
(it >= 0) && (_fname *= iteration_to_string(it))
create_flow_solution(
zone,
nodeCenter,
_fname,
true,
Base.Fix2(var_on_vertices, mesh),
append;
verbose,
)
end
"""
WARNING : vector variables are not supported for now !!
"""
function create_flow_solution(zone, data, fname, isVertex, projection, append; verbose)
isempty(data) && return
verbose && println("Writing FlowSolution '$fname'")
# Try to get an existing node. If it exists and append=true,
# an error is raised.
# Otherwise, a new node is created.
fnode = get_child(zone; name = fname, type = "FlowSolution_t")
if !isnothing(fnode) && !append
error("The node '$fname' already exists")
else
fnode = create_cgns_node(zone, fname, "FlowSolution_t"; type = "MT")
gdValue = isVertex ? "Vertex" : "CellCenter"
create_grid_location(fnode, gdValue)
end
for (name, var) in data
y = projection(var)
if ndims(y) == 1
# Scalar field
create_cgns_node(fnode, name, "DataArray_t"; type = "R8", value = y)
elseif ndims(y) == 2 && size(y, 2) <= 3
# Vector field
for (col, suffix) in zip(eachcol(y), ("X", "Y", "Z"))
create_cgns_node(
fnode,
name * suffix,
"DataArray_t";
type = "R8",
value = col,
)
end
else
error("wrong dimension for y")
end
end
return fnode
end
function create_cgns_node(parent, name, label; type = "I4", value = nothing)
child = create_group(parent, name; track_order = true)
set_cgns_attr!(child, name, label, type)
if !isnothing(value)
append_cgns_data(child, value)
end
return child
end
function create_grid_location(parent, value)
return create_cgns_node(
parent,
"GridLocation",
"GridLocation_t";
type = "C1",
value = str2int8(value),
)
end
function is_fespace_supported(U)
Bcube.is_discontinuous(U) && return false
fs = Bcube.get_function_space(U)
if Bcube.get_type(fs) <: Bcube.Lagrange && Bcube.get_degree(fs) <= 1
return true
elseif Bcube.get_type(fs) <: Bcube.Taylor && Bcube.get_degree(fs) <= 0
return true
end
return false
end
function create_cgns_base_iterative_data(parent, zonename, it, time)
bid = create_cgns_node(
parent,
"BaseIterativeData",
"BaseIterativeData_t";
type = "I4",
value = Int32(1),
)
create_cgns_node(bid, "NumberOfZones", "DataArray_t"; type = "I4", value = Int32(1))
create_cgns_node(bid, "TimeValues", "DataArray_t"; type = "R8", value = time)
create_cgns_node(bid, "IterationValues", "DataArray_t"; type = "I4", value = Int32(it))
str = str2int8_with_fixed_length(zonename, 32)
create_cgns_node(
bid,
"ZonePointers",
"DataArray_t";
type = "C1",
value = reshape(str, 32, 1, 1),
)
return bid
end
"""
# Warnings
* CGNS also allows for a "TimeDurations" node instead of "IterationValues"
* a unique zone is assumed
"""
function append_to_base_iterative_data(cgnsBase, zonename, it, time)
bid = get_child(cgnsBase; type = "BaseIterativeData_t")
# Check if node exists, if not -> create it
if isnothing(bid)
verbose && println("BaseIterativeData not found, creating it")
return create_cgns_base_iterative_data(cgnsBase, zonename, it, time)
end
# First, we check if the given iteration is not already known from the
# BaseIterativeData. If it is the case, we don't do anything.
# Note that in the maia example, the node IterationValues does not exist,
# hence we skip this part if the node is not found.
iterationValues = get_child(bid; name = "IterationValues")
if !isnothing(iterationValues)
iterations = get_value(iterationValues)
(it ∈ iterations) && return
# Append iteration to the list of iteration values
push!(iterations, it)
update_cgns_data(iterationValues, iterations)
# Increase the number of iterations stored in this BaseIterativeData
update_cgns_data(bid, length(iterations))
end
numberOfZones = get_child(bid; name = "NumberOfZones")
data = get_value(numberOfZones)
nsteps = length(data)
push!(data, 1)
update_cgns_data(numberOfZones, data)
timeValues = get_child(bid; name = "TimeValues")
data = push!(get_value(timeValues), time)
update_cgns_data(timeValues, data)
zonePointers = get_child(bid; name = "ZonePointers")
data = read(zonePointers[" data"])
new_data = zeros(eltype(data), (32, 1, nsteps + 1))
str = str2int8_with_fixed_length(zonename, 32)
for i in 1:nsteps
new_data[:, 1, i] .= data[:, 1, i]
end
new_data[:, 1, end] .= str
update_cgns_data(zonePointers, new_data)
end
"""
Call to this function must be performed AFTER the FlowSolution creation
"""
function create_cgns_zone_iterative_data(zone, it; verbose)
# Find the FlowSolution name that matches the iteration
fsname = "NotFound"
for fs in get_children(zone; type = "FlowSolution_t")
_fsname = get_name(fs)
if endswith(_fsname, iteration_to_string(it))
fsname = _fsname
break
end
end
verbose && println("Attaching iteration $it to FlowSolution '$fsname'")
# Create node
zid = create_cgns_node(zone, "ZoneIterativeData", "ZoneIterativeData_t"; type = "MT")
str = str2int8_with_fixed_length(fsname, 32)
create_cgns_node(
zid,
"FlowSolutionPointers",
"DataArray_t";
type = "C1",
value = reshape(str, 32, 1),
)
return zid
end
"""
Call to this function must be performed AFTER the FlowSolution creation
# Warning
CGNS does seem to allow multiple FlowSolution nodes for one time step in a Zone.
"""
function append_to_zone_iterative_data(zone, it; verbose)
# Find the FlowSolution name that matches the iteration
fsname = "NotFound"
for fs in get_children(zone; type = "FlowSolution_t")
_fsname = get_name(fs)
if endswith(_fsname, iteration_to_string(it))
fsname = _fsname
break
end
end
verbose && println("Attaching iteration $it to FlowSolution '$fsname'")
# Get ZoneIterativeData node (or create it)
zid = get_child(zone; type = "ZoneIterativeData_t")
isnothing(zid) && (return create_cgns_zone_iterative_data(zone, it))
# Append to FlowSolutionPointers
fsPointers = get_child(zid; name = "FlowSolutionPointers")
data = read(fsPointers[" data"])
n = size(data, 2)
new_data = zeros(eltype(data), (32, n + 1))
str = str2int8_with_fixed_length(fsname, 32)
for i in 1:n
new_data[:, i] .= data[:, i]
end
new_data[:, end] .= str
update_cgns_data(fsPointers, new_data)
end
function append_cgns_data(obj, data)
_data = data isa AbstractArray ? data : [data]
dset = create_dataset(obj, " data", eltype(_data), size(_data))
write(dset, _data)
end
function update_cgns_data(obj, data)
delete_object(obj, " data")
append_cgns_data(obj, data)
end
function set_cgns_attr!(obj, name, label, type)
attributes(obj)["flags"] = Int32[1]
add_cgns_string_attr!(obj, "label", label, 33)
add_cgns_string_attr!(obj, "name", name, 33)
add_cgns_string_attr!(obj, "type", type, 3)
end
"""
It is not trivial to match the exact datatype for attributes.
https://discourse.julialang.org/t/hdf5-jl-variable-length-string/98808/11
TODO : now that I know that even with the correct datatype the file is not
correct according to cgnscheck, once I've solved the cgnscheck problem I should
check that the present function is still necessary.
"""
function add_cgns_string_attr!(obj, name, value, length = sizeof(value))
dtype = build_cgns_string_dtype(length)
attr = create_attribute(obj, name, dtype, HDF5.dataspace(value))
try
write_attribute(attr, dtype, value)
catch exc
delete_attribute(obj, name)
rethrow(exc)
finally
close(attr)
close(dtype)
end
end
function build_cgns_string_dtype(length)
type_id = HDF5.API.h5t_copy(HDF5.hdf5_type_id(String))
HDF5.API.h5t_set_size(type_id, length)
HDF5.API.h5t_set_cset(type_id, HDF5.API.H5T_CSET_ASCII)
dtype = HDF5.Datatype(type_id)
# @show d
return dtype
end
str2int8(str) = return Int8.(Vector{UInt8}(str))
function str2int8_with_fixed_length(str, n)
buffer = zeros(UInt8, n)
buffer[1:length(str)] .= Vector{UInt8}(str)
return Int8.(buffer)
end
union_types(x::Union) = (x.a, union_types(x.b)...)
union_types(x::Type) = (x,)
iteration_to_string(it) = "#$it"
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 104 | module JLD2Ext
using Bcube
using JLD2
include("common.jl")
include("read.jl")
include("write.jl")
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 3370 | """
Wrapper for the JLD2.Group struct to keep track of the attributes associated to a Group
without needing the parent.
"""
struct Node{T}
node::T
name::String
attrs::Dict{Symbol, String}
end
get_wrapped_node(n::Node) = n.node
get_attribute(n::Node, name::Symbol) = haskey(n.attrs, name) ? n.attrs[name] : nothing
get_cgns_type(n::Node) = get_attribute(n, :label)
get_data_type(n::Node) = get_attribute(n, :type)
get_cgns_name(n::Node) = get_attribute(n, :name)
get_name(n::Node) = n.name
function Node(root::JLD2.JLDFile)
attrs = parse_attributes(root, "")
return Node{typeof(root)}(root, "root", attrs)
end
function Node(parent, node_name::String)
attrs = parse_attributes(parent, node_name)
node = parent[node_name]
return Node{typeof(node)}(parent[node_name], node_name, attrs)
end
Node(parent::Node, node_name::String) = Node(get_wrapped_node(parent), node_name)
function parse_attributes(parent, node_name)
raw_attrs = JLD2.load_attributes(parent, node_name)
attrs = Dict{Symbol, String}()
attrs_keys = (:name, :label, :type)
for (key, val) in raw_attrs
if key in attrs_keys
attrs[key] = first(split(val, "\0"))
end
end
return attrs
end
"""
We could make this function type-stable by converting the "type" attribute to a type-parameter of `Node`
"""
function get_value(n::Node)
data_type = get_data_type(n)
data = get_wrapped_node(n)[" data"]
if data_type == "C1"
return String(UInt8.(data))
elseif data_type in ("I4", "I8", "R4", "R8")
return data
else
error("Datatype '$(data_type)' not handled")
end
end
function get_child(parent; name = "", type = "")
for child_name in keys(get_wrapped_node(parent))
child = Node(parent, child_name)
child_match(child, name, type) && (return child)
end
end
function get_children(parent; name = "", type = "")
filtered = filter(
child_name -> child_match(Node(parent, child_name), name, type),
keys(get_wrapped_node(parent)),
)
map(child_name -> Node(parent, child_name), filtered)
end
function child_match(child, name, type)
if get_name(child) == name
if length(name) > 0 && length(type) > 0
(get_cgns_type(child) == type) && (return true)
elseif length(name) > 0
return true
end
end
if get_cgns_type(child) == type
if length(name) > 0 && length(type) > 0
(get_name(child) == name) && (return true)
elseif length(type) > 0
return true
end
end
return false
end
const BCUBE_ENTITY_TO_CGNS_ENTITY = Dict(
Bcube.Node_t => 2,
Bcube.Bar2_t => 3,
Bcube.Bar3_t => 4,
Bcube.Tri3_t => 5,
Bcube.Tri6_t => 6,
Bcube.Tri9_t => 25,
Bcube.Tri10_t => 26,
Bcube.Quad4_t => 7,
Bcube.Quad8_t => 8,
Bcube.Quad9_t => 9,
Bcube.Quad16_t => 27,
Bcube.Tetra4_t => 10,
Bcube.Tetra10_t => 11,
Bcube.Pyra5_t => 12,
Bcube.Penta6_t => 14,
Bcube.Hexa8_t => 17,
Bcube.Hexa27_t => 27,
)
const CGNS_ENTITY_TO_BCUBE_ENTITY = Dict(v => k for (k, v) in BCUBE_ENTITY_TO_CGNS_ENTITY)
function bcube_entity_to_cgns_entity(::T) where {T <: Bcube.AbstractEntityType}
BCUBE_ENTITY_TO_CGNS_ENTITY[T]
end
cgns_entity_to_bcube_entity(code::Integer) = CGNS_ENTITY_TO_BCUBE_ENTITY[code]()
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 14709 | function Bcube.read_file(
::Bcube.JLD2IoHandler,
filepath::String;
domainNames = String[],
varnames = nothing,
topodim = 0,
spacedim = 0,
verbose = false,
)
# Preliminary check
@assert length(domainNames) == 0 "domainNames arg is not supported for now, leave it empty"
# Open the file
f = jldopen(filepath, "r")
root = Node(f)
# Find the list of CGNSBase_t
cgnsBases = get_children(root; type = "CGNSBase_t")
if length(cgnsBases) == 0
error("Could not find any CGNSBase_t node in the file")
elseif length(cgnsBases) > 1
error("The file contains several CGNSBase_t nodes, only one base is supported")
end
cgnsBase = first(cgnsBases)
# Read base dimensions (topo and space)
dims = get_value(cgnsBase)
topodim = topodim > 0 ? topodim : dims[1]
spacedim = spacedim > 0 ? spacedim : dims[2]
verbose && println("topodim = $topodim, spacedim = $spacedim")
# Find the list of Zone_t
zones = get_children(cgnsBase; type = "Zone_t")
if length(zones) == 0
error("Could not find any Zone_t node in the file")
elseif length(zones) > 1
error("The file contains several Zone_t nodes, only one zone is supported for now")
end
zone = first(zones)
# Read zone
zoneCGNS = read_zone(zone, varnames, topodim, spacedim, verbose)
# Close the file
close(f)
# Build Bcube Mesh
mesh = cgns_mesh_to_bcube_mesh(zoneCGNS)
# Build Bcube MeshCellData & MeshPointData
if !isnothing(varnames)
data = flow_solutions_to_bcube_data(zoneCGNS.fSols)
else
data = nothing
end
# Should we return something when pointData and/or cellData is nothing? Or remove it completely from the returned Tuple?
return (; mesh, data)
end
"""
Convert CGNS Zone information into a Bcube `Mesh`.
"""
function cgns_mesh_to_bcube_mesh(zoneCGNS)
nodes = [Bcube.Node(zoneCGNS.coords[i, :]) for i in 1:size(zoneCGNS.coords, 1)]
# nodes = map(row -> Bcube.Node(row), eachrow(zoneCGNS.coords)) # problem with Node + Slice
c2n = Int.(zoneCGNS.c2n)
c2t = map(cgns_entity_to_bcube_entity, zoneCGNS.c2t)
c2nnodes = map(nnodes, c2t)
bc_names = Dict(i => bc.bcname for (i, bc) in enumerate(zoneCGNS.bcs))
bc_nodes = Dict(i => Int.(bc.bcnodes) for (i, bc) in enumerate(zoneCGNS.bcs))
return Bcube.Mesh(nodes, c2t, Bcube.Connectivity(c2nnodes, c2n); bc_names, bc_nodes)
end
"""
The input `fSols` is suppose to be a dictionnary FlowSolutionName => (gridlocation, Dict(varname => array))
The output is a dictionnary FlowSolutionName => dictionnary(varname => MeshData)
"""
function flow_solutions_to_bcube_data(fSols)
# length(fSols) == 0 && (return Dict(), Dict())
# pointSols = filter(fs -> fs.gridLocation == "Vertex", fSols)
# cellSols = filter(fs -> fs.gridLocation == "CellCenter", fSols)
# pointDicts = [fs.data for fs in pointSols]
# cellDicts = [fs.data for fs in cellSols]
# pointDict = merge(pointDicts)
# cellDict = merge(cellDicts)
# pointDict = Dict(key => MeshPointData(val) for (key, val) in pointDict)
# cellDict = Dict(key => MeshCellData(val) for (key, val) in cellDict)
# return pointDict, cellDict
return Dict(
fname => Dict(
varname =>
t.gridLocation == "Vertex" ? MeshPointData(array) : MeshCellData(array)
for (varname, array) in t.data
) for (fname, t) in fSols
)
end
"""
Read a CGNS Zone node.
Return a NamedTuple with node coordinates, cell-to-type connectivity (type is a integer),
cell-to-node connectivity, boundaries (see `read_zoneBC`), and a dictionnary of flow solutions (see `read_solutions`)
-> (; coords, c2t, c2n, bcs, fSols)
"""
function read_zone(zone, varnames, topo_dim, space_dim, verbose)
# Preliminary check
zoneType = get_value(get_child(zone; type = "ZoneType_t"))
@assert zoneType == "Unstructured" "Only unstructured zone are supported"
# Number of elements
nvertices, ncells, nbnd = get_value(zone)
verbose && println("nvertices = $nvertices, ncells = $ncells")
# Read GridCoordinates
gridCoordinates = get_child(zone; type = "GridCoordinates_t")
coordXNode = get_child(gridCoordinates; name = "CoordinateX")
X = get_value(coordXNode)
coords = zeros(eltype(X), nvertices, space_dim)
coords[:, 1] .= X
suffixes = ["X", "Y", "Z"]
for (idim, suffix) in enumerate(suffixes[1:space_dim])
node = get_child(gridCoordinates; name = "Coordinate" * suffix)
coords[:, idim] .= get_value(node)
end
# Read all elements
elts = map(read_connectivity, get_children(zone; type = "Elements_t"))
# Filter "volumic" elements to build the volumic connectivities arrays
volumicElts = filter(elt -> is_volumic_entity(first(elt.c2t), topo_dim), elts)
c2t = mapreduce(elt -> elt.c2t, vcat, volumicElts)
c2n = mapreduce(elt -> elt.c2n, vcat, volumicElts)
# Read all BCs and then keep only the ones whose topo dim is equal to the base topo dim minus 1
bcs = read_zoneBC(zone, elts, verbose)
filter!(bc -> (bc.bcdim == topo_dim - 1) || (bc.bcdim == -1), bcs)
# Read FlowSolutions
if !isnothing(varnames)
fSols = read_solutions(zone, varnames, verbose)
else
fSols = nothing
end
# @show coords
# @show c2t
# @show c2n
# @show bcs
# @show fSols
return (; coords, c2t, c2n, bcs, fSols)
end
"""
Read the "ZoneBC_t" node to build bnd connectivities.
See `read_bc` for more information of what is returned.
"""
function read_zoneBC(zone, elts, verbose)
zoneBC = get_child(zone; type = "ZoneBC_t")
bcs = map(bc -> read_bc(bc, elts, verbose), get_children(zoneBC; type = "BC_t"))
return bcs
end
"""
Read a BC node.
Return a named Tuple (bcname, bcnodes, bcdim) where bcnodes is an array of the nodes
belonging to this BC.
"""
function read_bc(bc, elts, verbose)
# BC name
familyName = get_child(bc; type = "FamilyName_t")
bcname = isnothing(familyName) ? get_name(bc) : get_value(familyName)
verbose && println("Reading BC '$bcname'")
# BC connectivity
bc_type = get_value(get_child(bc; type = "GridLocation_t"))
indexRange = get_child(bc; type = "IndexRange_t")
pointList = get_child(bc; type = "IndexArray_t")
# BC topodim : it's not always possible to determine it, so it's negative by default
bcdim = -1
if bc_type in ["CellCenter", "FaceCenter"]
if !isnothing(indexRange)
verbose && println("GridLocation is $(bc_type) with IndexRange")
# This is a bit complex because nothing prevents an IndexRange to span over multiples Elements_t
erange = get_value(indexRange)
# Allocate the array of node indices corresponding to the BC
nelts_bc = erange[2] - erange[1] + 1
T = eltype(first(elts).c2n[1])
bcnodes = T[]
sizehint!(bcnodes, nelts_bc * 4) # we assume 4 nodes by elements
nelts_found = 0
# Loop over all the Elements_t 'nodes'
for elt in elts
# verbose && println("Searching for elements in Elements_t '$(elt.name)'")
i1, i2 = elt.erange
etype = cgns_entity_to_bcube_entity(first(elt.c2t))
nnodes_by_elt = nnodes(etype)
if i1 <= erange[1] <= i2
# Compute how many nodes are concerned in this Elements_t,
# and the offset in the connectivity
nelts_concerned = min(i2, erange[2]) - erange[1] + 1
nnodes_concerned = nelts_concerned * nnodes_by_elt
offset = (erange[1] - i1) * nnodes_by_elt
push!(bcnodes, elt.c2n[(1 + offset):(offset + nnodes_concerned)]...)
nelts_found += nelts_concerned
verbose && println("$(nelts_concerned) elts found in '$(elt.name)'")
bcdim = Bcube.topodim(etype)
# Check if we've found all the elements in this connectivity
(erange[2] <= i2) && break
end
if i1 <= erange[2] <= i2
# Compute how many nodes are concerned in this Elements_t,
# and the offset in the connectivity
nelts_concerned = erange[2] - max(i1, erange[1]) + 1
nnodes_concerned = nelts_concerned * nnodes_by_elt
offset = (max(i1, erange[1]) - i1) * nnodes_by_elt
push!(bcnodes, elt.c2n[(1 + offset):(offset + nnodes_concerned)]...)
nelts_found += nelts_concerned
verbose && println("$(nelts_concerned) elts found in '$(elt.name)'")
bcdim = Bcube.topodim(etype)
end
end
@assert nelts_found == nelts_bc "Missing elements for BC"
# Once we've found all the nodes, we must remove duplicates
# Note : using sort! + unique! is much more efficient than calling "unique"
sort!(bcnodes)
unique!(bcnodes)
elseif !isnothing(pointList)
# Elements indices
elts_ind = vec(get_value(pointList))
sort!(elts_ind)
# Allocate the array of node indices corresponding to the BC
nelts_bc = length(elts_ind)
T = eltype(first(elts).c2n[1])
bcnodes = T[]
sizehint!(bcnodes, nelts_bc * 4) # we assume 4 nodes by elements
icurr = 1
for elt in elts
verbose && println("Searching for elements in Elements_t '$(elt.name)'")
i1, i2 = elt.erange
etype = cgns_entity_to_bcube_entity(first(elt.c2t))
nnodes_by_elt = nnodes(etype)
(icurr < i1) && continue
(icurr > i2) && continue
if elts_ind[end] >= i2
iEnd = i2
else
iEnd = findfirst(i -> i > i2, view(elts_ind, icurr:nelts_bc)) - 1
end
offset = (elts_ind[icurr] - i1) * nnodes_by_elt
push!(bcnodes, elt.c2n[(1 + offset):(nnodes_by_elt * (iEnd - i1 + 1))]...)
icurr = iEnd + 1
(icurr > nelts_bc) && break
# Element-wise version (OK, but very slow)
# while i1 <= elts_ind[icurr] <= i2
# offset = (elts_ind[icurr] - i1) * nnodes_by_elt
# push!(bcnodes, elt.c2n[(1 + offset):(offset + nnodes_by_elt)]...)
# (icurr == nelts_bc) && break
# icurr += 1
# end
end
@assert icurr >= nelts_bc
else
error("Could not find either the PointRange nor the PointList")
end
elseif bc_type == "Vertex"
if !isnothing(pointList)
bcnodes = get_value(pointList)
elseif !isnothing(indexRange)
erange = get_value(indexRange)
bcnodes = collect(erange[1]:erange[2])
else
error("Could not find either the PointRange nor the PointList")
end
# TODO : we could try to guess `bcdim` by search the Elements_t containing
# the points of the PointList
else
error("BC GridLocation '$(bc_type)' not implemented")
end
return (; bcname, bcnodes, bcdim)
end
"""
Read all the flow solutions in the Zone, filtering data arrays whose name is not in the `varnames` list
# TODO : check if all varnames have been found
"""
function read_solutions(zone, varnames, verbose)
# fSols =
# map(fs -> read_solution(fs, varnames), get_children(zone; type = "FlowSolution_t"))
# n_vertex_fsol = count(fs -> fs.gridLocation == "Vertex", fSols)
# n_cell_fsol = count(fs -> fs.gridLocation == "CellCenter", fSols)
# if verbose
# (n_vertex_fsol > 1) && println(
# "WARNING : found more than one Vertex FlowSolution, reading them all...",
# )
# (n_cell_fsol > 1) && println(
# "WARNING : found more than one CellCenter FlowSolution, reading them all...",
# )
# end
fSols = Dict(
get_name(fs) => read_solution(fs, varnames) for
fs in get_children(zone; type = "FlowSolution_t")
)
return fSols
end
"""
Read a FlowSolution node.
Return a NamedTuple with flow solution name, grid location and array of vectors.
"""
function read_solution(fs, varnames)
# Read GridLocation : we could deal with a missing GridLocation node, by later comparing
# the length of the DataArray to the number of cells / nodes of the zone. Let's do this
# later.
node = get_child(fs; type = "GridLocation_t")
@assert !isnothing(node) "Missing GridLocation in FlowSolution '$(get_name(fs))'"
gridLocation = get_value(node)
# Read variables matching asked "varnames"
dArrays = get_children(fs; type = "DataArray_t")
if varnames != "*"
# filter to obtain only the desired variables names
filter!(dArray -> get_name(dArray) in varnames, dArrays)
end
data = Dict(get_name(dArray) => get_value(dArray) for dArray in dArrays)
# Flow solution name
name = get_name(fs)
return (; name, gridLocation, data)
end
"""
Indicate if the Elements node contains "volumic" entities (with respect
to the `topo_dim` argument)
"""
function is_volumic_entity(node::Node, topo_dim)
@assert get_cgns_type(node) == "Elements_t"
code, _ = get_value(node)
return is_volumic_entity(code, topo_dim)
end
function is_volumic_entity(code, topo_dim)
Bcube.topodim(cgns_entity_to_bcube_entity(code)) == topo_dim
end
"""
Read an "Elements_t" node and returns a named Tuple of three elements:
* `erange`, the content of the `ElementRange` node
* `c2t`, the cell -> entity_type connectivity
* `c2n`, the cell -> node connectivity, flattened if `reshape = false`, as an array (nelts, nnodes_by_elt) if `reshape = true`
* `name`, only for dbg
"""
function read_connectivity(node, reshape = false)
@assert get_cgns_type(node) == "Elements_t"
# Build cell to (cgns) type
code, _ = get_value(node)
erange = get_value(get_child(node; name = "ElementRange"))
nelts = erange[2] - erange[1] + 1
c2t = fill(code, nelts)
# Build cell to node and reshapce
c2n = get_value(get_child(node; name = "ElementConnectivity"))
nnodes_by_elt = nnodes(cgns_entity_to_bcube_entity(code))
reshape && (c2n = reshape(c2n, nelts, nnodes_by_elt))
return (; erange, c2t, c2n, name = get_name(node))
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 506 | function Bcube.write_file(
::Bcube.JLD2IoHandler,
basename::String,
mesh::Bcube.AbstractMesh,
vars::Dict{String, F} = Dict{String, Bcube.AbstractLazy}(),
U_export::Bcube.AbstractFESpace = SingleFESpace(FunctionSpace(:Lagrange, 1), mesh),
it::Integer = -1,
time::Real = 0.0;
collection_append = false,
kwargs...,
) where {F <: Bcube.AbstractLazy}
error("not implemented yet")
mode = collection_append ? "a+" : "w"
jldopen(basename, mode) do file
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 3755 | module Bcube
using Base
using Base: @propagate_inbounds
using StaticArrays
using SparseArrays
using FEMQuad
using FastGaussQuadrature
using ForwardDiff
using LinearAlgebra
using WriteVTK
using Printf # just for tmp vtk, to be removed
# import LinearSolve: solve, solve!, LinearProblem
import LinearSolve
using Symbolics # used for generation of Lagrange shape functions
const MAX_LENGTH_STATICARRAY = (10^6)
include("LazyOperators/LazyOperators.jl")
using .LazyOperators
import .LazyOperators:
materialize, materialize_args, AbstractLazyOperator, get_args, get_operator, unwrap
export lazy_compose
include("utils.jl")
include("./mesh/transformation.jl")
export Translation, Rotation
include("./mesh/boundary_condition.jl")
export BoundaryCondition, PeriodicBCType
include("./mesh/entity.jl")
export Node_t,
Bar2_t,
Bar3_t,
Tri3_t,
Quad4_t,
Quad9_t,
Tetra4_t,
Hexa8_t,
Pyra5_t,
Poly2_t,
Poly3_t,
Node,
get_coords
include("./mesh/shape.jl")
include("./mesh/connectivity.jl")
include("./mesh/mesh.jl")
export ncells, nnodes, boundary_names, nboundaries, boundary_tag, get_nodes
include("./mesh/mesh_generator.jl")
export basic_mesh,
one_cell_mesh,
line_mesh,
rectangle_mesh,
hexa_mesh,
ncube_mesh,
circle_mesh,
scale,
scale!,
transform,
transform!,
translate,
translate!
include("./mesh/gmsh_utils.jl")
export read_msh,
read_msh_with_cell_names,
gen_line_mesh,
gen_rectangle_mesh,
gen_hexa_mesh,
gen_disk_mesh,
gen_star_disk_mesh,
gen_cylinder_mesh,
read_partitions,
gen_rectangle_mesh_with_tri_and_quad
include("./mesh/domain.jl")
export AbstractDomain,
CellDomain, InteriorFaceDomain, BoundaryFaceDomain, get_mesh, get_face_normals
include("./quadrature/quadrature.jl")
export QuadratureLobatto, QuadratureLegendre, QuadratureUniform, Quadrature, QuadratureRule
include("./function_space/function_space.jl")
export FunctionSpace, get_degree
include("./function_space/lagrange.jl")
include("./function_space/taylor.jl")
include("./mapping/mapping.jl")
include("./mapping/ref2phys.jl")
export get_cell_centers
include("./cellfunction/eval_point.jl")
include("./cellfunction/cellfunction.jl")
export PhysicalFunction, ReferenceFunction, side_p, side_n, side⁺, side⁻, jump
include("./cellfunction/meshdata.jl")
export MeshCellData, MeshFaceData, MeshPointData, get_values, set_values!
include("./fespace/dofhandler.jl")
include("./fespace/fespace.jl")
export TestFESpace, TrialFESpace, MultiplierFESpace, MultiFESpace, get_ndofs, get_fespace
include("./fespace/fefunction.jl")
export FEFunction, set_dof_values!, get_dof_values, get_fe_functions
include("./fespace/eval_shape_function.jl")
include("./integration/measure.jl")
export AbstractMeasure, Measure, get_domain
include("./integration/integration.jl")
export ∫
include("./algebra/gradient.jl")
export ∇, ∇ₛ
include("./algebra/algebra.jl")
export FaceNormal, otimes, ⊗, dcontract, ⊡
include("./assembler/assembler.jl")
export assemble_bilinear, assemble_linear, assemble_linear!
include("./assembler/dirichlet_condition.jl")
export assemble_dirichlet_vector,
apply_dirichlet_to_matrix!,
apply_dirichlet_to_vector!,
apply_homogeneous_dirichlet_to_vector!
include("./assembler/affine_fe_system.jl")
export AffineFESystem
include("./feoperator/projection_newapi.jl")
export projection_l2!
include("./feoperator/projection.jl")
export var_on_centers,
var_on_vertices, var_on_nodes_discontinuous, var_on_bnd_nodes_discontinuous
include("./feoperator/limiter.jl")
export linear_scaling_limiter
include("./io/io_interface.jl")
export read_file, read_mesh, write_file
include("./writers/vtk.jl")
export write_vtk
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 5854 | """
densify(a::AbstractVector, [permute_back=false])
Remap values of `a`, i.e if `length(a) = n`, make sure that every value of `a`
belongs to [1,n] (in other words, eliminate holes in values of `a`).
"""
function densify(a::AbstractVector{T}; permute_back::Bool = false) where {T <: Integer}
_a = unique(a)
remap = Dict{eltype(a), eltype(a)}(_a[i] => i for i in 1:length(_a)) #zeros(eltype(a), maximum(_a))
dense_a = [remap[aᵢ] for aᵢ in a]
permute_back ? (return dense_a, remap) : (return dense_a)
end
function densify!(a::AbstractVector{T}) where {T <: Integer}
a .= densify(a)
end
"""
myrand(n, xmin = 0., xmax = 1.)
Create a random vector of size `n` with `xmin` and `xmax` as bounds. Use `xmin`
and `xmax` either as scalars or as vectors of size `n`.
"""
myrand(n, xmin = 0.0, xmax = 1.0) = (xmax .- xmin) .* rand(n) .+ xmin
"""
rawcat(x)
Equivalent to `reduce(vcat,vec.(x))`
"""
function rawcat(
x::Union{NTuple{N, A}, Vector{A}},
) where {N, A <: Union{AbstractArray{T}, Tuple{Vararg{T}}}} where {T}
isempty(x) && return T[]
n = sum(length, x)
y = Vector{T}(undef, n)
i = 0
for x1 in x, x2 in x1
i += 1
@inbounds y[i] = x2
end
@assert i == n "Dimension mismatch"
return y
end
rawcat(x::Vector{T}) where {T} = x
"""
matrix_2_vector_of_SA(a)
"""
matrix_2_vector_of_SA(a) = vec(reinterpret(SVector{size(a, 1), eltype(a)}, a))
"""
convert_to_vector_of_union(a::Vector{T}) where T
Convert a vector 'a', whose the element type is abstract, to
a vector whose the element type is a 'Union' of concrete types (if it is possible)
"""
function convert_to_vector_of_union(a::Vector{T}) where {T}
if !isconcretetype(T)
types = unique(typeof, a)
a_ = Union{typeof.(types)...}[a...]
return a_
else
return a
end
end
function _soft_max(x, y, k)
m = min(x, y)
M = max(x, y)
return M + log(1.0 + exp((m - M) * k)) / k
end
#soft_max(x::ForwardDiff.Dual, y::ForwardDiff.Dual, k=10) = _soft_max(x,y,k)
#soft_max(x, y, k=10) = _soft_max(x,y,k)
soft_max(x, y) = max(x, y) #default
_soft_min(x, y, k) = -log(exp(-k * x) + exp(-k * y)) / k
#soft_min(x::ForwardDiff.Dual, y::ForwardDiff.Dual, k=10) = min(x,y)#_soft_min(x,y,k)
#soft_min(x,y, k=10) = _soft_min(x,y,k)
soft_min(x, y) = min(x, y) #default
_soft_abs(x, k) = √(x^2 + k^2)
#soft_abs(x, k=0.001) = abs(x) #_soft_abs(x,k)
#soft_abs(x::ForwardDiff.Dual, k=0.001) = _soft_abs(x,k)# x*tanh(x/k)
soft_abs(x) = abs(x)
soft_extrema(itr) = soft_extrema(identity, itr)
function soft_extrema(f, itr)
y = iterate(itr)
y === nothing && throw(ArgumentError("collection must be non-empty"))
(v, s) = y
vmin = vmax = f(v)
while true
y = iterate(itr, s)
y === nothing && break
(x, s) = y
fx = f(x)
vmax = soft_max(fx, vmax)
vmin = soft_min(fx, vmin)
end
return (vmin, vmax)
end
# warning : it relies on julia internal!
raw_unzip(a) = a.is
"""
WiddenAsUnion{T}
Type used internally by `map_and_widden_as_union`.
"""
struct WiddenAsUnion{T}
a::T
end
function Base.promote_typejoin(
::Type{WiddenAsUnion{T1}},
::Type{WiddenAsUnion{T2}},
) where {T1, T2}
return Union{WiddenAsUnion{T1}, WiddenAsUnion{T2}}
end
function Base.promote_typejoin(
::Type{Union{WiddenAsUnion{T1}, T2}},
::Type{WiddenAsUnion{T3}},
) where {T1, T2, T3}
return Union{WiddenAsUnion{T1}, T2, WiddenAsUnion{T3}}
end
unwrap(x::WiddenAsUnion) = x.a
unwrap(::Type{WiddenAsUnion{T}}) where {T} = T
unwrap(::Type{Union{WiddenAsUnion{T1}, T2}}) where {T1, T2} = Union{unwrap(T1), unwrap(T2)}
"""
map_and_widden_as_union(f, c...)
Transform collection `c` by applying `f` to each element. For multiple collection arguments,
apply `f` elementwise, and stop when any of them is exhausted.
The difference with [`map`](@ref) comes from the type of the result:
`map_and_widden_as_union` uses `Union` to widden the type of the resulting
collection and potentially reduce type instabilities.
# Examples
```jldoctest
julia> map_and_widden_as_union(x -> x * 2, [1, 2, [3,4]])
3-element Vector{Union{Int64, Vector{Int64}}}:
2
4
[6, 8]
```
instead of:
```jldoctest
julia> map(x -> x * 2, [1, 2, [3,4]])
3-element Vector{Any}:
2
4
[6, 8]
```
# Implementation
When `f` is applied to one element of `c`, the result
is wrapped in a type `WrapAsUnion` on which specific
`promote_typejoin` rules are applied.
When `map_and_widden_as_union` is applied
to collections of heterogeneous elements, these rules
help to infer the type of the resulting collection
as a `Union` of different types instead of a
widder (abstract) type.
"""
function map_and_widden_as_union(f, c...)
g(x...) = WiddenAsUnion(f(x...))
a = map(g, c...)
T = unwrap(eltype(a))
return T[unwrap(x) for x in a]
end
"""
myfindfirst(predicate::Function, t::Tuple)
Function equivalent to `Base.findfirst(predicate::Function, A)`.
This version is optimized to work better on `Tuple` by avoiding
type instabilities.
# source:
https://discourse.julialang.org/t/why-does-findfirst-t-on-a-tuple-of-typed-only-constant-fold-for-the-first/68893/3
"""
myfindfirst(predicate::Function, t::Tuple) = _findfirst(predicate, 1, t)
_findfirst(f, i, x) = f(first(x)) ? i : _findfirst(f, i + 1, Base.tail(x))
_findfirst(f, i, ::Tuple{}) = nothing
# see : https://discourse.julialang.org/t/why-doesnt-the-compiler-infer-the-type-of-this-function/35005/3
@inline function tuplemap(f, t1::Tuple{Vararg{Any, N}}, t2::Tuple{Vararg{Any, N}}) where {N}
(f(first(t1), first(t2)), tuplemap(f, Base.tail(t1), Base.tail(t2))...)
end
@inline function tuplemap(f, t::Tuple{Vararg{Any, N}}) where {N}
(f(first(t)), tuplemap(f, Base.tail(t))...)
end
@inline tuplemap(f, ::Tuple{}) = ()
@inline tuplemap(f, ::Tuple{}, ::Tuple{}) = ()
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 1017 | module LazyOperators
import Base:
*,
/,
+,
-,
^,
max,
min,
sqrt,
abs,
tan,
sin,
cos,
tanh,
sinh,
cosh,
atan,
asin,
acos,
zero,
one,
materialize
using LinearAlgebra
import LinearAlgebra: dot, transpose, tr
export AbstractLazy
export AbstractLazyWrap
export AbstractLazyOperator
export LazyOperator
export LazyWrap
export unwrap
export materialize
export show_lazy_operator
export print_tree_prefix
export pretty_name_style
export pretty_name
export NullOperator
export lazy_compose
export LazyMapOver
export MapOver
any_of_type(a::T, ::Type{T}) where {T} = Val(true)
any_of_type(a, ::Type{T}) where {T} = Val(false)
@generated function any_of_type(a::Tuple, ::Type{T}) where {T}
_T = fieldtypes(a)
if any(map(x -> isa(x, Type{<:T}), _T))
return :(Val(true))
else
return :(Val(false))
end
end
function lazy_compose end
include("lazy_operator.jl")
include("algebra.jl")
include("mapover.jl")
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 3350 | ###############################################################
# Define rules for binary operators
###############################################################
const LazyBinaryOp = (:*, :/, :+, :-, :^, :max, :min, :dot)
for f in LazyBinaryOp
@eval ($f)(a::AbstractLazy, b::AbstractLazy) = LazyOperator($f, a, b)
@eval ($f)(a::AbstractLazy, b) = ($f)(a, LazyWrap(b))
@eval ($f)(a, b::AbstractLazy) = ($f)(LazyWrap(a), b)
end
###############################################################
# Define rules for unary operators
###############################################################
const LazyUnaryOp = (
:+,
:-,
:transpose,
:tr,
:sqrt,
:abs,
:tan,
:sin,
:cos,
:tanh,
:sinh,
:cosh,
:atan,
:asin,
:acos,
:zero,
:one,
)
for f in LazyUnaryOp
@eval ($f)(a::AbstractLazy) = LazyOperator($f, a)
@eval ($f)(::NullOperator) = NullOperator()
end
###############################################################
# Define rules with `NullOperator`
###############################################################
# For binary `+` and `-`:
for f in (:+, :-)
@eval ($f)(a, ::NullOperator) = a
@eval ($f)(::NullOperator, b) = ($f)(b)
@eval ($f)(::NullOperator, ::NullOperator) = NullOperator()
@eval ($f)(a::AbstractLazy, ::NullOperator) = a
@eval ($f)(::NullOperator, b::AbstractLazy) = ($f)(b)
end
# For binary `*` and `dot`:
for f in (:*, :dot)
@eval ($f)(a, ::NullOperator) = NullOperator()
@eval ($f)(::NullOperator, b) = NullOperator()
@eval ($f)(::NullOperator, ::NullOperator) = NullOperator()
@eval ($f)(::AbstractLazy, ::NullOperator) = NullOperator()
@eval ($f)(::NullOperator, ::AbstractLazy) = NullOperator()
end
# For binary `/`:
Base.:/(a, ::NullOperator) = error("Division by an AbstractNullOperator is not allowed.")
Base.:/(a::NullOperator, b) = a
Base.:/(::NullOperator, ::NullOperator) = NullOperator()
# For binary `^`:
Base.:^(a, ::NullOperator) = error("Undefined")
Base.:^(a::NullOperator, b) = a
Base.:^(::NullOperator, ::NullOperator) = NullOperator() # or "I" ?
Base.:^(a::AbstractLazy, ::NullOperator) = error("Undefined")
Base.:^(a::NullOperator, b::AbstractLazy) = a
###############################################################
# Define rules with `broadcasted`
###############################################################
function Base.broadcasted(f, a::AbstractLazy...)
f_broacasted(x...) = broadcast(f, x...)
LazyOperator(f_broacasted, a...)
end
Base.broadcasted(f, a::AbstractLazy, b) = Base.broadcasted(f, a, LazyWrap(b))
Base.broadcasted(f, a, b::AbstractLazy) = Base.broadcasted(f, LazyWrap(a), b)
###############################################################
# Define rules with composition
###############################################################
lazy_compose(a, b...) = lazy_compose(a, b)
lazy_compose(a, b::Tuple) = LazyOperator(lazy_compose, LazyWrap(a), LazyWrap(b...))
# trigger lazy composition for `f∘tuple(a...)` if in the tuple
# there is an `AbtractLazy` at first position,
Base.:∘(a::Function, b::AbstractLazy) = lazy_compose(a, (b,))
function Base.:∘(a::Function, b::Tuple{AbstractLazy, Vararg{Any}})
lazy_compose(a, b)
end
function Base.:∘(a::Function, b::Tuple{Tuple{AbstractLazy, Vararg{Any}}, Vararg{Any}})
lazy_compose(a, b)
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 9593 | """
abstract type AbstractLazy end
Subtypes must implement:
- `materialize(a::AbstractLazy, x)`
and optionally:
- `pretty_name(a::AbstractLazy)`
- `show_lazy_operator(a::AbstractLazy; level=1, indent=4, islast=(true,))`
"""
abstract type AbstractLazy end
# default rule : materialize of `a` is `a`
materialize(a, x0, x1...) = a
# default rule on tuple is to apply materialize on each element of the tuple
materialize(t::Tuple, x::Vararg{Any, N}) where {N} = LazyWrap(_materialize(t, x...))
function _materialize(t::Tuple, x::Vararg{Any, N}) where {N}
(materialize(first(t), x...), _materialize(Base.tail(t), x...)...)
end
_materialize(::Tuple{}, ::Vararg{Any, N}) where {N} = ()
pretty_name(a) = string(typeof(a))
pretty_name(a::Number) = string(a)
pretty_name(a::Base.Fix1) = "Fix1: (f=" * pretty_name(a.f) * ", x=" * pretty_name(a.x) * ")"
pretty_name(a::Base.Fix2) = "Fix2: (f=" * pretty_name(a.f) * ", x=" * pretty_name(a.x) * ")"
pretty_name_style(a) = Dict(:color => :normal)
function show_lazy_operator(
a;
level = 1,
indent = 4,
islast = (true,),
printTupleOp::Bool = false,
)
print_tree_prefix(level, indent, islast)
printstyled(pretty_name(a) * " \n"; pretty_name_style(a)...)
end
function print_tree_prefix(level, indent = 4, islast = (true,))
_color = map(x -> x ? :light_black : :normal, islast)
motif = "│" * join(fill(" ", max(0, indent - 1)))
if level > 1
for lev in 2:(level - 1)
printstyled(motif; color = _color[lev])
end
prefix = "└" * join(fill("─", max(0, indent - 2))) * " "
printstyled(prefix; color = :normal)
end
end
function pretty_name(f::Function)
name = string(typeof(f))
delimiter = '"'
if contains(name, delimiter)
splitname = split(name, delimiter)
name = splitname[1] * delimiter * splitname[2] * delimiter
end
return name
end
pretty_name_style(::Function) = Dict(:color => :light_green)
pretty_name(::Nothing) = ""
"""
AbstractLazyWrap{A} <: AbstractLazy
Subtypes must implement:
- `get_args(a::AbstractLazyWrap)`
and optionally:
- `unwrap(a::AbstractLazyWrap)`
- `pretty_name(a::AbstractLazyWrap)`
- `pretty_name_style(::AbstractLazyWrap) `
- `show_lazy_operator(a::AbstractLazyWrap; level=1, indent=4, islast=(true,))`
"""
abstract type AbstractLazyWrap{A} <: AbstractLazy end
function get_args(a::AbstractLazyWrap)
error("Function `get_args` is not defined for type $(typeof(a))")
end
function materialize(a::AbstractLazyWrap, x::Vararg{Any, N}) where {N}
args = materialize_args(get_args(a), x...)
may_unwrap_tuple(args)
end
unwrap(a) = a
unwrap(a::AbstractLazyWrap) = get_args(a)
may_unwrap_tuple(t::Tuple) = t
may_unwrap_tuple(t::Tuple{T}) where {T} = first(t)
pretty_name(a::AbstractLazyWrap) = "$(typeof(a))"
pretty_name_style(::AbstractLazyWrap) = Dict(:color => :light_black)
function show_lazy_operator(
a::AbstractLazyWrap;
level = 1,
indent = 4,
islast = (true,),
printTupleOp::Bool = false,
)
level == 1 && println("\n---------------")
print_tree_prefix(level, indent, islast)
printstyled(pretty_name(a) * " \n"; pretty_name_style(a)...)
_islast = (islast..., true)
show_lazy_operator(
get_args(a);
level = (level + 1),
islast = _islast,
printTupleOp = printTupleOp,
)
level == 1 && println("---------------")
end
struct LazyWrap{A <: Tuple} <: AbstractLazyWrap{A}
args::A
end
LazyWrap(args...) = LazyWrap{typeof(args)}(args)
get_args(a::LazyWrap) = a.args
pretty_name(::LazyWrap) = "LazyWrap"
"""
Subtypes must implement:
- `get_args(op::AbstractLazyOperator)`
- `get_operator(op::AbstractLazyOperator)`
- `materialize(Op::AbstractLazyOperator, x)`
Subtypes can implement:
- `show_lazy_op`
"""
abstract type AbstractLazyOperator{O, A} <: AbstractLazy end
get_type_operator(::Type{<:AbstractLazyOperator{O}}) where {O} = O
get_type_operator(op::AbstractLazyOperator) = get_type_operator(typeof(op))
get_type_args(::Type{<:AbstractLazyOperator{O, A}}) where {O, A} = fieldtypes(a)
get_type_args(op::AbstractLazyOperator) = get_type_args(typeof(op))
function get_args(op::AbstractLazyOperator)
error("Function `get_args` is not defined for type $(typeof(op))")
end
function get_operator(op::AbstractLazyOperator)
error("Function `get_operator` is not defined for type $(typeof(op))")
end
pretty_name(::Type{<:AbstractLazyOperator}) = "AbstractLazyOperator"
pretty_name(op::AbstractLazyOperator) = string(nameof(typeof(op)))
pretty_name_style(::Type{<:AbstractLazyOperator}) = Dict(:color => :red)
pretty_name_style(op::AbstractLazyOperator) = pretty_name_style(typeof(op))
function materialize(lOp::AbstractLazyOperator, x::Vararg{Any, N}) where {N}
op = get_operator(lOp)
args = materialize_args(get_args(lOp), x...)
materialize_op(op, args...)
end
# default
materialize_op(op::O, args::Vararg{Any, N}) where {O, N} = op(args...)
# specific operator materialization for composition:
# if `args` contains one `AbstractLazy` type at least then:
# the result is still a lazy composition
# else:
# the result is the application of the function (i.e args1)
# to its args.
@inline function materialize_op(op::typeof(lazy_compose), args::Vararg{Any, N}) where {N}
_materialize_op_compose(op, args...)
end
@inline function _materialize_op_compose(
op::O,
arg1::T,
args::Vararg{Any, N},
) where {O, T, N}
_materialize_op_compose(any_of_type(args..., AbstractLazy), op, arg1, args...)
end
@inline function _materialize_op_compose(
::Val{true},
op::O,
args::Vararg{Any, N},
) where {O, N}
op(args...)
end
@inline function _materialize_op_compose(
::Val{false},
op,
arg1::T1,
args::Vararg{Any, N},
) where {T1, N}
_may_apply_on_splat(arg1, args...)
end
_may_apply_on_splat(f, a::Tuple) = f(a...)
_may_apply_on_splat(f, a) = f(a)
# avoid:
# @inline materialize_args(args::Tuple, x ) = map(Base.Fix2(materialize, x), args)
# as inference seems to fail rapidely
materialize_args(args::Tuple, x::Vararg{Any, N}) where {N} = _materialize_args(args, x...)
function _materialize_args(args::Tuple, x::Vararg{Any, N}) where {N}
(materialize(first(args), x...), _materialize_args(Base.tail(args), x...)...)
end
_materialize_args(args::Tuple{}, x::Vararg{Any, N}) where {N} = ()
# @generated materialize_args(args::Tuple, x...) = _materialize_args_impl(args)
# function _materialize_args_impl(::Type{<:Tuple{Vararg{Any,N}}}) where {N}
# exprs = [:(materialize(args[$i], x...)) for i in 1:N]
# return :(tuple($(exprs...)))
# end
# function show_lazy_operator(op; level=1, indent=4, prefix="")
# println(prefix*string(typeof(op)))
# end
function show_lazy_operator(
op::AbstractLazyOperator;
level = 1,
indent = 4,
islast = (true,),
)
level == 1 && println("\n---------------")
print_tree_prefix(level, indent, islast)
printstyled(pretty_name(op) * ": "; pretty_name_style(op)...)
printstyled(
pretty_name(get_operator(op)) * " \n";
pretty_name_style(get_operator(op))...,
)
args = get_args(op)
show_lazy_operator(args; level = (level + 1), islast = islast, printTupleOp = false)
level == 1 && println("---------------")
end
_rm_first_character(a::String) = last(a, length(a) - 1)
function _select_character(a::String, range)
a[collect(eachindex(a))[first(range):min(last(range), length(a))]]
end
pretty_name(::Tuple) = "Tuple:"
pretty_name_style(::Tuple) = Dict(:color => :light_black)
function show_lazy_operator(
t::Tuple;
level = 1,
indent = 4,
islast = (true,),
printTupleOp::Bool = true,
)
_show_lazy_operator(Val(printTupleOp), t; level = level, islast = islast)
end
function _show_lazy_operator(::Val{true}, t::Tuple; level = 1, indent = 4, islast = (true,))
level == 1 && println("\n---------------")
print_tree_prefix(level, indent, islast)
printstyled(pretty_name(t) * ": \n"; pretty_name_style(t)...)
_show_lazy_operator(
Val(false),
t;
level = level + 1,
indent = indent,
islast = (islast...,),
)
level == 1 && println("---------------")
nothing
end
function _show_lazy_operator(
::Val{false},
t::Tuple;
level = 1,
indent = 4,
islast = (true,),
)
for (i, x) in enumerate(t)
_islast = (islast..., i == length(t))
show_lazy_operator(x; level = level, indent = indent, islast = _islast)
end
nothing
end
(lOp::AbstractLazyOperator)(x::Vararg{Any, N}) where {N} = materialize(lOp, x...)
struct LazyOperator{O, A <: Tuple} <: AbstractLazyOperator{O, A}
operator::O
args::A
end
LazyOperator(op, args...) = LazyOperator{typeof(op), typeof(args)}(op, args)
get_args(op::LazyOperator) = op.args
get_operator(op::LazyOperator) = op.operator
abstract type AbstractNullOperator <: AbstractLazy end
struct NullOperator <: AbstractNullOperator end
pretty_name(::NullOperator) = "∅"
get_operator(a::NullOperator) = nothing
get_args(a::NullOperator) = (nothing,)
materialize(a::NullOperator, x) = a
# Base.length(::NullOperator) = 1
# Base.iterate(a::NullOperator) = (a, nothing)
# Base.iterate(a::NullOperator, state) = nothing
Base.map(f, a::NullOperator) = f(a)
function show_lazy_operator(op::NullOperator; level = 1, indent = 4, islast = (true,))
level == 1 && println("\n---------------")
print_tree_prefix(level, indent, islast)
printstyled(pretty_name(op) * "\n"; pretty_name_style(op)...)
level == 1 && println("---------------")
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 6895 | """
AbtractLazyMapOver{A} <: AbstractLazyWrap{A}
Subtypes must implement:
- `get_args(lmap::AbtractLazyMapOver)`
and optionally:
- `pretty_name(a::AbtractLazyMapOver)`
- `pretty_name_style(::AbtractLazyMapOver)`
- `show_lazy_operator(a::AbtractLazyMapOver; level=1, indent=4, islast=(true,))`
"""
abstract type AbstractLazyMapOver{A} <: AbstractLazyWrap{A} end
"""
LazyMapOver{A} <: AbstractLazyMapOver{A}
Type used to wrap data (of type `A`) on which functions must
be mapped over it.
"""
struct LazyMapOver{A} <: AbstractLazyMapOver{A}
args::A
end
LazyMapOver(args::Tuple) = LazyMapOver{typeof(args)}(args)
LazyMapOver(args...) = LazyMapOver{typeof(args)}(args)
get_args(a::LazyMapOver) = a.args
pretty_name(::LazyMapOver) = "LazyMapOver"
pretty_name_style(::LazyMapOver) = Dict(:color => :blue)
materialize(a::LazyMapOver, x) = LazyMapOver(lazy_map_over(Base.Fix2(materialize, x), a))
materialize(f::F, a::LazyMapOver) where {F <: Function} = lazy_map_over(f, a)
(a::LazyMapOver)(x::Vararg{Any, N}) where {N} = materialize(a, x...)
function lazy_map_over(f::F, a::Vararg{LazyMapOver, N}) where {F <: Function, N}
_tuplemap(f, _tuplemap(get_args, a)...)
end
# Specialize the previous method for two levels of LazyMapOver
# in order to help compiler inference to deal with recursion.
function lazy_map_over(
f::F,
a::Vararg{LazyMapOver{<:NTuple{N1, LazyMapOver}}, N},
) where {F <: Function, N, N1}
_tuplemap(f, _tuplemap(get_args, a)...)
end
"""
_tuplemap(f::F, t::Vararg{NTuple{N1, Any}, N})
Transform (multi-)tuple `t` by applying `f` (elementwise) to each element, similarly to `Base.map(f, t...)`.
This method is implemented recursively to help inference and improve performance.
"""
@inline function _tuplemap(f::F, t::Vararg{NTuple{N1, Any}, N}) where {F, N, N1}
@inline
heads = map(first, t)
tails = map(Base.tail, t)
(f(heads...), _tuplemap(f, tails...)...)
end
@inline _tuplemap(f::F, ::Vararg{Tuple{}, N}) where {F, N} = ()
# _first(a::NTuple{N}, b::Vararg{NTuple{N}}) where {N} = (first(a), _first(b)...)
# _tail(a::NTuple{N}, b::Vararg{NTuple{N}}) where {N} = (first(a), _first(b)...)
# function _tuplemap(f::F, t1::Tuple{Vararg{Any, N}}, t2::Tuple{Vararg{Any, N}}) where {F, N}
# (f(first(t1), first(t2)), _tuplemap(f, Base.tail(t1), Base.tail(t2))...)
# end
# function _tuplemap(f::F, t::Tuple{Vararg{Any, N}}) where {F, N}
# (f(first(t)), _tuplemap(f, Base.tail(t))...)
# end
# _tuplemap(f, ::Tuple{}) = ()
# _tuplemap(f, ::Tuple{}, ::Tuple{}) = ()
abstract type AbstractMapOver{A} end
get_basetype(::Type{<:T}) where {T <: AbstractMapOver} = error("to be defined")
get_basetype(a::AbstractMapOver) = get_basetype(typeof(a))
unwrap(a::AbstractMapOver) = a.args
unwrap(a::Tuple{Vararg{Any, N}}) where {N} = _unwrap_map_over(a)
_unwrap_map_over(a::Tuple{}) = ()
_unwrap_map_over(a::Tuple{T}) where {T} = (unwrap(first(a)),)
_unwrap_map_over(a::Tuple) = (unwrap(first(a)), _unwrap_map_over(Base.tail(a))...)
(a::AbstractMapOver)(x::Vararg{Any, N}) where {N} = evaluate(a, x...)
function evaluate(a::T, x::Vararg{Any, N}) where {T <: AbstractMapOver, N}
map_over(Base.Fix2(evaluate, x), a)
end
evaluate(a, x::AbstractMapOver) = map_over(Base.Fix1(evaluate, a), x)
Base.map(f::F, a::Vararg{AbstractMapOver, N}) where {F <: Function, N} = map_over(f, a...)
for f in LazyBinaryOp
@eval ($f)(a::AbstractMapOver, b::AbstractMapOver) = map_over($f, a, b)
@eval ($f)(a::AbstractMapOver, b) = map_over(Base.Fix2($f, b), a)
@eval ($f)(a, b::AbstractMapOver) = map_over(Base.Fix1($f, a), b)
#fix ambiguity
#@eval ($f)(a::AbstractMapOver, b::AbstractLazy) = map_over(Base.Fix2($f, b), a)
#@eval ($f)(a::AbstractLazy, b::AbstractMapOver) = map_over(Base.Fix1($f, a), b)
end
for f in LazyUnaryOp
@eval ($f)(a::AbstractMapOver) = map_over($f, a)
end
# remove ambiguity:
Base.:*(::AbstractMapOver, ::NullOperator) = NullOperator()
Base.:*(::NullOperator, ::AbstractMapOver) = NullOperator()
Base.:/(::AbstractMapOver, ::NullOperator) = error("Invalid operation")
Base.:/(::NullOperator, b::AbstractMapOver) = NullOperator()
Base.:+(a::AbstractMapOver, ::NullOperator) = a
Base.:+(::NullOperator, b::AbstractMapOver) = b
Base.:-(a::AbstractMapOver, ::NullOperator) = a
Base.:-(::NullOperator, b::AbstractMapOver) = -b
Base.:^(::AbstractMapOver, ::NullOperator) = error("Undefined")
Base.:^(::NullOperator, ::AbstractMapOver) = NullOperator()
Base.max(a::AbstractMapOver, ::NullOperator) = a
Base.max(::NullOperator, b::AbstractMapOver) = b
Base.min(a::AbstractMapOver, ::NullOperator) = a
Base.min(::NullOperator, b::AbstractMapOver) = b
LinearAlgebra.dot(::AbstractMapOver, ::NullOperator) = NullOperator()
LinearAlgebra.dot(::NullOperator, ::AbstractMapOver) = NullOperator()
"""
map_over(f, args::AbstractMapOver...)
Similar to `Base.map(f, args...)`. To help inference and improve performance,
this method is implemented recursively and is based on method `_tuplemap`
"""
function map_over(
f::F,
args::Vararg{AbstractMapOver{<:Tuple{Vararg{Number}}}, N},
) where {F <: Function, N}
f_a = _tuplemap(f, _tuplemap(unwrap, args)...)
T = get_basetype(typeof(first(args)))
T(f_a)
end
function map_over(f::F, args::Vararg{AbstractMapOver, N}) where {F <: Function, N}
f_a = _map_over(f, _tuplemap(unwrap, args)...)
T = get_basetype(typeof(first(args)))
T(f_a)
end
function _map_over(f::F, a::Vararg{Tuple, N}) where {F <: Function, N}
_heads = Base.heads(a...)
_tails = Base.tails(a...)
(__map_over(f, _heads...), _map_over(f, _tails...)...)
end
_map_over(f::F, a::Vararg{Tuple{}, N}) where {F <: Function, N} = ()
function _map_over(::Val{0}, f::F, a::Vararg{Tuple, N}) where {F <: Function, N}
_tuplemap(f, a...)
end
__map_over(f::F, a::Vararg{Any, N}) where {F, N} = f(a...)
__map_over(f::F, a::Vararg{AbstractMapOver, N}) where {F, N} = map_over(f, a...)
pretty_name(a::AbstractMapOver) = string(get_basetype(a))
pretty_name_style(a::AbstractMapOver) = Dict(:color => :blue)
function show_lazy_operator(a::AbstractMapOver; level = 1, indent = 4, islast = (true,))
print_tree_prefix(level, indent, islast)
printstyled(pretty_name(a) * ": "; pretty_name_style(a)...)
printstyled(pretty_name(a) * " \n"; pretty_name_style(a)...)
args = unwrap(a)
for (i, arg) in enumerate(args)
_islast = (islast..., i == length(args))
arg ≠ nothing && show_lazy_operator(arg; level = (level + 1), islast = _islast)
end
end
"""
MapOver{A} <: AbstractMapOver{A}
A container used to wrap data for which all materialized
operators on that data must be map over it.
This corresponds to the non-lazy version of `LazyMapOver`.
"""
struct MapOver{A <: Tuple} <: AbstractMapOver{A}
args::A
end
MapOver(args::Vararg{Any, N}) where {N} = MapOver{typeof(args)}(args)
get_basetype(::Type{<:MapOver}) = MapOver
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 3466 | otimes(x::AbstractVector, y::AbstractVector) = x * y'
otimes(x::AbstractVector) = otimes(x, x)
const ⊗ = otimes
"""
Tensors double contraction between third order tensor and second order tensor
# Implementation
Only valid for a tensor of dimension 3 with a tensor of dimension 2 for now:
A[i,j,k] : B[l,m] = C[i]
such as
C[i] = A[i,j,k] * B[j,k] (Einstein sum)
"""
function dcontract(A::AbstractArray{T1, 3}, B::AbstractArray{T2, 2}) where {T1, T2}
[sum(A[i, :, :] .* B) for i in 1:size(A)[1]]
end
dcontract(A::AbstractArray{T1, 2}, B::AbstractArray{T2, 3}) where {T1, T2} = dcontract(B, A)
"""
Tensors double contraction between second order tensors
# Implementation
A[i,j] : B[l,m] = c
such as
c = A[i,j] * B[i,j] (Einstein sum)
"""
dcontract(A::AbstractMatrix, B::AbstractMatrix) = sum(A .* B)
"""
Tensors double contraction between the identity tensor and a second order tensor
# Implementation
I : B = dot(I, B)
B : I = dot(B, I)
"""
dcontract(I::UniformScaling, B::AbstractMatrix) = dot(I, B)
dcontract(B::AbstractMatrix, I::UniformScaling) = dot(B, I)
"""
Tensors double contraction for third order tensors
# Implementation
A[i,j,k] : B[l,m,n] = C[i,l]
such as
C[i,l] = A[i,j,k] * B[l,j,k] (Einstein sum)
"""
function dcontract(A::AbstractArray{T1, 3}, B::AbstractArray{T2, 3}) where {T1, T2}
sA = size(A)
sB = size(B)
C = zeros(sA[1], sB[1])
for i in 1:sA[1]
for j in 1:sB[1]
C[i, j] = sum(A[i, :, :] .* B[j, :, :])
end
end
return C
end
# dcontract for static arrays
function dcontract(
A::SArray{<:Tuple{I1, J, K}, T1, 3, L1},
B::SMatrix{J, K, T2, L2},
) where {I1, J, K, T1, T2, L1, L2}
return SVector{I1}(sum(A[i, :, :] .* B) for i in 1:I1)
end
function dcontract(
B::SMatrix{J, K, T2, L2},
A::SArray{<:Tuple{I1, J, K}, T1, 3, L1},
) where {I1, J, K, T1, T2, L1, L2}
dcontract(A, B)
end
function dcontract(
A::SArray{<:Tuple{I1, J, K}, T1, 3, L1},
B::SArray{<:Tuple{I2, J, K}, T2, 3, L2},
) where {I1, J, K, I2, T1, T2, L1, L2}
return SMatrix{I1, I2}(sum(A[i, :, :] .* B[j, :, :]) for i in 1:I1, j in 1:I2)
end
const ⊡ = dcontract
###############################################################
# Extend LazyOperators behaviors with newly defined operators
###############################################################
# GENERIC PART (it can be applied to all newly defined operators)
for f in (:otimes, :dcontract)
# deal with `AbstractLazy`
@eval ($f)(a::AbstractLazy, b::AbstractLazy) = LazyOperator($f, a, b)
@eval ($f)(a::AbstractLazy, b) = ($f)(a, LazyWrap(b))
@eval ($f)(a, b::AbstractLazy) = ($f)(LazyWrap(a), b)
# deal with `MapOver`
@eval ($f)(a::MapOver, b::MapOver) = LazyOperators.map_over($f, a, b)
@eval ($f)(a::MapOver, b) = LazyOperators.map_over(Base.Fix2($f, b), a)
@eval ($f)(a, b::MapOver) = LazyOperators.map_over(Base.Fix1($f, a), b)
end
# SPECIFIC PART : rules depend on how `NullOperator` acts with each operator.
# Both `otimes` and `dcontract` follow the same
# rule when they are applied to a `NullOperator`,
# which is a "absorbing element" in this case.
for f in (:otimes, :dcontract)
@eval ($f)(a, ::NullOperator) = NullOperator()
@eval ($f)(::NullOperator, b) = NullOperator()
@eval ($f)(::NullOperator, ::NullOperator) = NullOperator()
@eval ($f)(::AbstractLazy, ::NullOperator) = NullOperator()
@eval ($f)(::NullOperator, ::AbstractLazy) = NullOperator()
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 11752 | """
The `GradientStyle` helps distinguishing between "classic" gradient and a tangentiel gradient.
# Implementation
Note that the whole point of the `GradientStyle` is to allow two distinct symbols (∇ and ∇ₛ) for
the classic and tangential gradient. Otherwise, the dispatch between classic / tangential could
be done only in `ref2phys.jl`.
"""
abstract type AbstractGradientStyle end
struct VolumicGradientStyle <: AbstractGradientStyle end
struct TangentialGradientStyle <: AbstractGradientStyle end
"""
`GS` is the `AbstractGradientStyle`
"""
struct Gradient{O, A, GS} <: AbstractLazyOperator{O, A}
args::A # `args` represent a Tuple containing the function whom gradient is computed
end
LazyOperators.get_args(lOp::Gradient) = lOp.args
LazyOperators.get_operator(lOp::Gradient) = lOp
Gradient(args::Tuple, gs::AbstractGradientStyle) = Gradient{Nothing, typeof(args), gs}(args)
Gradient(f, gs::AbstractGradientStyle) = Gradient((f,), gs)
Gradient(::NullOperator, ::AbstractGradientStyle) = NullOperator()
Gradient(f) = Gradient(f, VolumicGradientStyle())
@inline gradient_style(::Gradient{O, A, GS}) where {O, A, GS} = GS
const ∇ = Gradient
TangentialGradient(f) = Gradient(f, TangentialGradientStyle())
const ∇ₛ = TangentialGradient
"""
Materialization of a `Gradient` on a `CellPoint`. Only valid for a function and a `CellPoint` defined on
the reference domain.
# Implementation
The user writes mathematical expressions in the PhysicalDomain. So the gradient always represents the derivation
with respect to the physical domain spatial coordinates, even if evaluated on a point expressed in the ReferenceDomain.
The current Gradient implementation consists in applying ForwardDiff on the given operator 'u', on a point in the
ReferenceDomain. That is to say, we compute ForwarDiff.derivative(ξ -> u ∘ F, ξ) (where F is the identity if u is defined
is the ReferenceDomain). This gives ∇(u ∘ F)(ξ) = t∇(F)(ξ) * ∇(u)(F(x)).
However, we only want ∇(u)(F(x)) : that's why a multiplication by the transpose of the inverse mapping jacobian is needed.
An alternative approach would be to apply ForwardDiff in the PhysicalDomain : ForwarDiff.derivative(x -> u ∘ F^-1, x). The
problem is that the inverse mapping F^-1 is not always defined.
# Maths notes
We use the following convention for any function f:R^n->R^p : ∇f is a tensor/matrix equal to ∂fi/∂xj. However when f
is a scalar function, i.e f:R^n -> R, then ∇f is a column vector (∂f/∂x1, ∂f/∂x2, ...).
That being said:
- if λ is a scalar function, then ∇λ = transpose(J^(-1)) ̂∇̂λ
- if λ is a vector function, then ∇λ = ̂∇̂λ J^(-1)
Rq : note that the two formulae are different because we decided to break our own convention by writing, for a scalar function,
∇f as a column vector instead of a row vector.
## Proof (to be also written in Latex)
x are the physical coords, X the reference coords. F(X) = x the mapping ref -> phys
To compute an integral such as ∫g(x)dx, we map the integral on a ref element:
∫g(x)dx = ∫g∘F(X)dX
1) vector case : λ is a vector function
if g(x) = ∇λ(x); i.e g(x) = ∂λi/∂xj, then we are looking for ∂λi/∂xj ∘ F. We now that λi = ̂λi ∘ F^-1,
so (∂λi/∂xj)(x) = (∂(̂λi∘F^-1)/∂xj)(x) = (∂Fk^-1/∂xj)(x)*(∂̂λi/∂Xk)(X), hence
∂λi/∂xj = (∂Fk^-1/∂xj) * (∂̂λi/∂Xk ∘ F^-1)
So if we compose with `F` to obtain the seeked term:
(∂λi/∂xj) ∘ F = [(∂Fk^-1/∂xj) ∘ F] * (∂̂λi/∂Xk)
Now, we define (J^-1)_kj as [(∂Fk^-1/∂xj) ∘ F]. Note that J^-1 is a function of X, whereas ∂Fk^-1/∂xj is
a function of x...
For the matrix-matrix product to be realised, we have to commute (J^-1)_kj and ∂̂λi/∂Xk
(which is possible since we are working on scalar quantities thanks to Einstein convention):
(∂λi/∂xj) ∘ F = (∂̂λi/∂Xk) * [(∂Fk^-1/∂xj) ∘ F]
∇λ_ij ∘ F = ̂∇̂λ_ik (J^-1)_kj
To conclude, when we want to integrate ∇λ we need to calculate ∇λ ∘ F and this term is equal to
̂∇̂λ J^-1
2) scalar case : λ is a scalar function
What has been said in 1 remains true (except i = 1 only). So we have:
(∂λ/∂xj) ∘ F = [(∂Fk^-1/∂xj) ∘ F] * (∂̂λ/∂Xk),
which could be written as
∇λ_j ∘ F = (J^-1)_kj * ∇λ_k
However, because of the convention retained for gradient of a scalar function, (∂̂λ/∂Xk) is a column-vector so
to perform a matrix-(column-vector) product, we need to transpose J^-1:
∇λ_j ∘ F = transpose(J^-1)_jk * ∇λ_k
# Dev notes
* The signature used to be `lOp::Gradient{O,<:Tuple{AbstractCellFunction{ReferenceDomain}}}`, but for some
reason I don't understand, it didn't work for vector-valued shape functions.
* We have an `if` because the formulae is sligthly different for a scalar function or a vector function (see maths section)
TODO:
* improve formulae with a reshape
* Specialize for a ShapeFunction to use the hardcoded version instead of ForwardDiff
"""
function gradient(
op::AbstractLazy,
cPoint::CellPoint{ReferenceDomain},
gs::AbstractGradientStyle,
)
f(_ξ) = op(CellPoint(_ξ, get_cellinfo(cPoint), ReferenceDomain()))
ξ = get_coords(cPoint)
valS = _size_codomain(f, ξ)
cInfo = get_cellinfo(cPoint)
cnodes = nodes(cInfo)
ctype = celltype(cInfo)
return ∂fξ_∂x(gs, f, valS, ctype, cnodes, ξ)
# ForwarDiff applied in the PhysicalDomain : not viable because
# the inverse mapping is not always known.
# cPoint_phys = change_domain(cPoint, PhysicalDomain())
# f(ξ) = op(CellPoint(ξ, get_cellinfo(cPoint_phys), PhysicalDomain()))
# fx = f(get_coords(cPoint_phys))
# return _gradient_or_jacobian(Val(length(fx)), f, get_coords(cPoint_phys))
end
∂fξ_∂x(::VolumicGradientStyle, args...) = ∂fξ_∂x(args...)
∂fξ_∂x(::TangentialGradientStyle, args...) = ∂fξ_∂x_hypersurface(args...)
_size_codomain(f, x) = Val(length(f(x)))
_size_codomain(f::AbstractCellFunction, x) = Val(get_size(f))
function gradient(
op::AbstractLazy,
cPoint::CellPoint{PhysicalDomain},
::VolumicGradientStyle,
)
# Fow now this version is "almost" never used because we never evaluate functions
# in the physical domain (at least in (bi)linear forms).
f(x) = op(CellPoint(x, cPoint.cellinfo, PhysicalDomain()))
valS = _size_codomain(f, get_coords(cPoint))
return _gradient_or_jacobian(valS, f, get_coords(cPoint))
end
# dispatch on codomain size (this is only used for functions evaluated on the physical domain)
_gradient_or_jacobian(::Val{1}, f, x) = ForwardDiff.gradient(f, x)
_gradient_or_jacobian(::Val{S}, f, x) where {S} = ForwardDiff.jacobian(f, x)
function gradient(
cellFunction::AbstractCellShapeFunctions{<:ReferenceDomain},
cPoint::CellPoint{ReferenceDomain},
gs::AbstractGradientStyle,
)
cnodes = get_cellnodes(cPoint)
ctype = get_celltype(cPoint)
ξ = get_coords(cPoint)
fs = get_function_space(cellFunction)
n = Val(get_size(cellFunction))
MapOver(_grad_shape_functions(gs, fs, n, ctype, cnodes, ξ))
end
∂λξ_∂x(::VolumicGradientStyle, args...) = ∂λξ_∂x(args...)
∂λξ_∂x(::TangentialGradientStyle, args...) = ∂λξ_∂x_hypersurface(args...)
function _grad_shape_functions(
gs::AbstractGradientStyle,
fs::AbstractFunctionSpace,
n::Val{1},
ctype,
cnodes,
ξ,
)
grad = ∂λξ_∂x(gs, fs, n, ctype, cnodes, ξ)
_reshape_gradient_shape_function_impl(grad, n)
end
@generated function _reshape_gradient_shape_function_impl(
a::SMatrix{Ndof, Ndim},
::Val{1},
) where {Ndof, Ndim}
_exprs = [[:(a[$i, $j]) for j in 1:Ndim] for i in 1:Ndof]
exprs = [:(SA[$(_expr...)]) for _expr in _exprs]
return :(tuple($(exprs...)))
end
function _grad_shape_functions(
gs::AbstractGradientStyle,
fs::AbstractFunctionSpace,
n::Val{N},
ctype,
cnodes,
ξ,
) where {N}
# Note that the code below is identical to _grad_shape_functions(gs, fs, ::Val{1}, (...))
# However, for some space we might want a different implementation (for a different function space)
# and this specific version (::Val{n}) will be the one to specialize. Whereas the scalar one will
# always be true.
grad = ∂λξ_∂x(gs, fs, Val(1), ctype, cnodes, ξ)
_reshape_gradient_shape_function_impl(grad, n)
end
@generated function _reshape_gradient_shape_function_impl(
a::SMatrix{Ndof_sca, Ndim, T},
::Val{Ncomp},
) where {Ndof_sca, Ndim, T, Ncomp}
z = zero(T)
exprs_tot = []
exprs = Matrix{Any}(undef, Ncomp, Ndim)
for icomp in 1:Ncomp
for idof_sca in 1:Ndof_sca
for i in 1:Ncomp
for j in 1:Ndim
exprs[i, j] = i == icomp ? :(a[$idof_sca, $j]) : :($z)
end
end
push!(exprs_tot, :(SMatrix{$Ncomp, $Ndim, $T}($(exprs...))))
end
end
:(tuple($(exprs_tot...)))
end
""" Materialization of a Gradient on a cellinfo is itself a Gradient, but with its function materialized """
function LazyOperators.materialize(lOp::Gradient, cInfo::CellInfo)
Gradient(LazyOperators.materialize_args(get_args(lOp), cInfo), gradient_style(lOp))
end
function LazyOperators.materialize(
lOp::Gradient{O, <:Tuple{Vararg{AbstractCellFunction}}},
cPoint::CellPoint,
) where {O}
f, = get_args(lOp)
gradient(f, cPoint, gradient_style(lOp))
end
function LazyOperators.materialize(
lOp::Gradient{O, <:Tuple{AbstractLazy}},
cPoint::CellPoint,
) where {O}
f, = get_args(lOp)
gradient(f, cPoint, gradient_style(lOp))
end
function LazyOperators.materialize(
lOp::Gradient{O, <:Tuple},
sideInfo::AbstractSide,
) where {O}
arg = LazyOperators.materialize_args(get_args(lOp), sideInfo)
return Gradient(arg, gradient_style(lOp))
end
"""
Using MultiFESpace, we may want to compute Gradient(v) where v = (v1,v2,...). So `v` is a
Tuple of LazyMapOver since v1, v2 are LazyMapOver (i.e they represent all the shape functions at once)
"""
function LazyOperators.materialize(
lOp::Gradient{O, <:Tuple{LazyMapOver}},
cPoint::CellPoint,
) where {O}
∇x = tuplemap(
x -> materialize(Gradient(x, gradient_style(lOp)), cPoint),
get_args(get_args(lOp)...),
)
return MapOver(∇x)
end
# Specialize the previous method when `Gradient` is applied
# to two levels of LazyMapOver in order to help compiler inference
# to deal with recursion.
# This may be used by `bilinear_assemble` when a bilinear form
# containing a `Gradient` is evaluated at a `CellPoint`
function LazyOperators.materialize(
lOp::Gradient{O, <:Tuple{LazyMapOver{<:NTuple{N, LazyMapOver}}}},
cPoint::CellPoint,
) where {O, N}
∇x = tuplemap(
x -> materialize(Gradient(x, gradient_style(lOp)), cPoint),
get_args(get_args(lOp)...),
)
return MapOver(∇x)
end
function LazyOperators.materialize(
lOp::Gradient{O, <:Tuple{LazyMapOver{<:CellShapeFunctions}}},
cPoint::CellPoint,
) where {O}
return materialize(Gradient(get_args(get_args(lOp)...), gradient_style(lOp)), cPoint)
end
function LazyOperators.materialize(
lOp::Gradient{O, <:Tuple{LazyMapOver{<:CellShapeFunctions}}},
sidePoint::AbstractSide{Nothing, <:Tuple{FacePoint}},
) where {O}
op_side = get_operator(sidePoint)
cellPoint = op_side(get_args(sidePoint)...)
return materialize(Gradient(get_args(get_args(lOp)...), gradient_style(lOp)), cellPoint)
end
function LazyOperators.materialize(
lOp::Gradient{O, <:Tuple{LazyMapOver}},
sidePoint::AbstractSide{Nothing, <:Tuple{FacePoint}},
) where {O}
∇x = tuplemap(
x -> materialize(Gradient(x, gradient_style(lOp)), sidePoint),
get_args(get_args(lOp)...),
)
return MapOver(∇x)
end
function LazyOperators.materialize(
lOp::Gradient{O, <:Tuple{Vararg{AbstractCellFunction}}},
sidePoint::AbstractSide{Nothing, <:Tuple{FacePoint}},
) where {O}
op_side = get_operator(sidePoint)
cellPoint = op_side(get_args(sidePoint)...)
materialize(lOp, cellPoint)
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 3031 | """
Represent the affine system associated to a(u,v) = l(v), where `a` is bilinear, with eventual
Dirichlet conditions on `u`
# Dev notes
* we could avoid having `mesh` as an attribute by storing one (or the two) form : `a` and/or `l`.
Then the mesh can be retrieved from those two forms.
"""
struct AffineFESystem{T <: Number, Mat <: AbstractMatrix{<:Number}, TriFE, TesFE}
A::Mat
b::Vector{T}
U::TriFE
V::TesFE
mesh::Mesh
function AffineFESystem(
A::AbstractMatrix{<:Number},
b::Vector{T},
U,
V,
mesh::Mesh,
) where {T}
new{T, typeof(A), typeof(U), typeof(V)}(A, b, U, V, mesh)
end
end
"""
Build an AffineFESystem from the bilinear form a and the linear form v.
`U` and `V` are the test FESpace and the trial FESpace respectively.
# Warning
For now, `U` and `V` must be defined with the same FESpace(s) ("Petrov-Galerkin" not authorised)
"""
function AffineFESystem(a, l, U, V)
# Preliminary check to ensure same FESpace
if U isa MultiFESpace
@assert all((_U, _V) -> parent(_U) isa typeof(parent(_V)), zip(U, V)) "U and V must be defined on same FEspace"
else
@assert parent(U) isa typeof(parent(V))
end
# Assemble the system
A = assemble_bilinear(a, U, V)
b = assemble_linear(l, V)
# Retrieve Mesh from `a`
op = a(NullOperator(), NullOperator())
if op isa MultiIntegration
measures = map(get_measure, (op...,))
domains = map(get_domain, measures)
meshes = map(get_mesh, domains)
@assert all(x -> x == meshes[1], meshes) "All integrations must be defined on the same mesh"
mesh = meshes[1]
else
measure = get_measure(op)
domain = get_domain(measure)
mesh = get_mesh(domain)
end
return AffineFESystem(A, b, U, V, mesh)
end
_get_arrays(system::AffineFESystem) = (system.A, system.b)
_get_fe_spaces(system::AffineFESystem) = (system.U, system.V)
"""
Solve the AffineFESystem, i.e invert the Ax=b system taking into account
the dirichlet conditions.
# Dev notes
* should we return an FEFunction instead of a Vector?
* we need to enable other solvers
"""
function solve(system::AffineFESystem, t::Number = 0.0; alg = nothing)
U, _ = _get_fe_spaces(system)
# Create FEFunction to hold the result
u = FEFunction(U)
# Solve
solve!(u, system, t; alg)
return u
end
function solve!(
u::SingleFieldFEFunction,
system::AffineFESystem,
t::Number = 0.0;
alg = nothing,
)
A, b = _get_arrays(system)
U, V = _get_fe_spaces(system)
# Create the "Dirichlet" vector
d = assemble_dirichlet_vector(U, V, system.mesh, t)
# "step" the solution with dirichlet values
b0 = b - A * d
# Apply homogeneous dirichlet on A and b
apply_homogeneous_dirichlet!(A, b0, U, V, system.mesh)
# Inverse linear system
prob = LinearSolve.LinearProblem(A, b0)
sol = LinearSolve.solve(prob, alg)
# Update FEFunction
set_dof_values!(u, sol.u .+ d)
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 28353 | """
assemble_bilinear(a::Function, U, V)
Assemble the (sparse) Matrix corresponding to the given bilinear form `a`
on the trial and test finite element spaces `U` and `V`.
For the in-place version, check-out [`assemble_bilinear!`](@ref).
# Arguments
- `a::Function` : function of two variables (u,v) representing the bilinear form
- `U` : trial finite element space (for `u`)
- `V` : test finite element space (for `v`)
# Examples
```jldoctest
julia> mesh = rectangle_mesh(3,3)
julia> U = TrialFESpace(FunctionSpace(:Lagrange, 0), mesh)
julia> V = TestFESpace(U)
julia> dΩ = Measure(CellDomain(mesh), 3)
julia> a(u, v) = ∫(u * v)dΩ
julia> assemble_bilinear(a, U, V)
4×4 SparseArrays.SparseMatrixCSC{Float64, Int64} with 4 stored entries:
0.25 ⋅ ⋅ ⋅
⋅ 0.25 ⋅ ⋅
⋅ ⋅ 0.25 ⋅
⋅ ⋅ ⋅ 0.25
```
"""
function assemble_bilinear(
a::Function,
U::Union{TrialFESpace, AbstractMultiFESpace{N, <:Tuple{Vararg{TrialFESpace, N}}}},
V::Union{TestFESpace, AbstractMultiFESpace{N, <:Tuple{Vararg{TestFESpace, N}}}};
T = Float64,
) where {N}
# Prepare sparse matrix allocation
I = Int[]
J = Int[]
X = T[] # TODO : could be ComplexF64 or Dual
# Compute
assemble_bilinear!(I, J, X, a, U, V)
nrows = get_ndofs(V)
ncols = get_ndofs(U)
return sparse(I, J, X, nrows, ncols)
end
function assemble_bilinear!(I, J, X, a, U, V)
return_type_a = a(_null_operator(U), _null_operator(V))
_assemble_bilinear!(I, J, X, a, U, V, return_type_a)
return nothing
end
function _assemble_bilinear!(
I::Vector{Int},
J::Vector{Int},
X::Vector,
a::Function,
U,
V,
integration::Integration,
)
f(u, v) = get_function(get_integrand(a(u, v)))
measure = get_measure(integration)
assemble_bilinear!(I, J, X, f, measure, U, V)
return nothing
end
function _assemble_bilinear!(
I::Vector{Int},
J::Vector{Int},
X::Vector,
a::Function,
U,
V,
multiIntegration::MultiIntegration{N},
) where {N}
for i in 1:N
ival = Val(i)
aᵢ(u, v) = a(u, v)[ival]
_assemble_bilinear!(I, J, X, aᵢ, U, V, multiIntegration[ival])
end
nothing
end
"""
assemble_bilinear!(
I::Vector{Int},
J::Vector{Int},
X::Vector{T},
f::Function,
measure::Measure,
U::TrialFESpace,
V::TestFESpace,
)
In-place version of [`assemble_bilinear`](@ref).
"""
function assemble_bilinear!(
I::Vector{Int},
J::Vector{Int},
X::Vector,
f::Function,
measure::Measure,
U::TrialFESpace,
V::TestFESpace,
)
# Alias
quadrature = get_quadrature(measure)
domain = get_domain(measure)
# Loop over cells
for elementInfo in DomainIterator(domain)
λu, λv = blockmap_bilinear_shape_functions(U, V, elementInfo)
g1 = materialize(f(λu, λv), elementInfo)
values = integrate_on_ref_element(g1, elementInfo, quadrature)
_append_contribution!(X, I, J, U, V, values, elementInfo, domain)
end
return nothing
end
function assemble_bilinear!(
I::Vector{Int},
J::Vector{Int},
X::Vector,
f::Function,
measure::Measure,
U::AbstractMultiFESpace{N, <:Tuple{Vararg{TrialFESpace, N}}},
V::AbstractMultiFESpace{N, <:Tuple{Vararg{TestFESpace, N}}},
) where {N}
# Loop over all combinations
for (j, _U) in enumerate(U)
for (i, _V) in enumerate(V)
# Materialize function for `(..., uj, ...), (...,vi,...)`
tuple_u = _get_tuple_var(Val(N), j)
tuple_v = _get_tuple_var(Val(N), i)
_f(uj, vi) = f(tuple_u(uj), tuple_v(vi))
# Skip computation if there is nothing to compute
isa(_f(maywrap(_U), maywrap(_V)), NullOperator) && continue
# Local indices / values
_I = Int[]
_J = Int[]
n = _count_n_elts(U, V, get_domain(measure))
sizehint!.((_I, _J), n)
# Perform assembly on SingleFESpace
assemble_bilinear!(_I, _J, X, _f, measure, _U, _V)
# Update global indices
push!(I, get_mapping(V, i)[_I]...)
push!(J, get_mapping(U, j)[_J]...)
end
end
return nothing
end
"""
assemble_linear(l::Function, V::Union{TestFESpace, AbstractMultiTestFESpace})
Assemble the vector corresponding to a linear form `l` on the finite element space `V`
For the in-place version, checkout [`assemble_linear!`](@ref).
# Arguments
- `l::Function` : linear form to assemble, a function of one variable `l(v)`
- `V` : test finite element space
# Examples
```jldoctest
julia> mesh = rectangle_mesh(3,3)
julia> U = TrialFESpace(FunctionSpace(:Lagrange, 0), mesh)
julia> V = TestFESpace(U)
julia> dΩ = Measure(CellDomain(mesh), 3)
julia> l(v) = ∫(v)dΩ
julia> assemble_linear(l, V)
4-element Vector{Float64}:
0.25
0.25
0.25
0.25
```
"""
function assemble_linear(
l::Function,
V::Union{TestFESpace, AbstractMultiTestFESpace};
T = Float64,
)
b = allocate_dofs(V, T)
assemble_linear!(b, l, V)
return b
end
"""
assemble_linear!(b::AbstractVector, l::Function, V::Union{TestFESpace, AbstractMultiTestFESpace})
In-place version of [`assemble_linear`](@ref).
"""
function assemble_linear!(
b::AbstractVector,
l::Function,
V::Union{TestFESpace, AbstractMultiTestFESpace},
)
# apply `l` on `NullOperator` to get the type
# of the result of `l` and use it for dispatch
# (`Integration` or `MultiIntegration` case).
_assemble_linear!(b, l, V, l(_null_operator(V)))
return nothing
end
"""
_assemble_linear!(b, l, V, integration::Integration)
_assemble_linear!(b, l, V, integration::MultiIntegration{N}) where {N}
These functions act as a function barrier in order to:
* get the function corresponding to the operand in the linear form
* reshape `b` internally to deal with cases when `V` is a `AbstractMultiTestFESpace`
* call `__assemble_linear!` to apply dispatch on the type of `measure` of the
integration and improve type stability during the assembling loop.
## Dev note:
The case `integration::MultiIntegration{N}` is treated by looping over
each `Integration` contained in the `MultiIntegration`
"""
function _assemble_linear!(b, l, V, integration::Integration)
f(v) = get_function(get_integrand(l(v)))
measure = get_measure(integration)
__assemble_linear!(_may_reshape_b(b, V), f, V, measure)
return nothing
end
function _assemble_linear!(b, l, V, integration::MultiIntegration{N}) where {N}
ival = Val(N)
lᵢ(v) = l(v)[ival]
_assemble_linear!(b, lᵢ, V, integration[ival])
if N > 1 # recursive calls
_assemble_linear!(b, l, V, MultiIntegration(Base.front(integration.integrations)))
end
return nothing
end
"""
# Dev notes
Two levels of "LazyMapOver" because first we LazyMapOver the Tuple of argument of the linear form,
and the for each item of this Tuple we LazyMapOver the shape functions.
"""
function __assemble_linear!(b, f, V, measure::Measure)
# Alias
quadrature = get_quadrature(measure)
domain = get_domain(measure)
for elementInfo in DomainIterator(domain)
# Materialize the operation to perform on the current element
vₑ = blockmap_shape_functions(V, elementInfo)
fᵥ = materialize(f(vₑ), elementInfo)
values = integrate_on_ref_element(fᵥ, elementInfo, quadrature)
_update_b!(b, V, values, elementInfo, domain)
end
nothing
end
_null_operator(::AbstractFESpace) = NullOperator()
_null_operator(::AbstractMultiFESpace{N}) where {N} = ntuple(i -> NullOperator(), Val(N))
"""
For `AbstractMultiTestFESpace`, it creates a Tuple (of views) of the different
"destination" in the vector: one for each FESpace
"""
_may_reshape_b(b::AbstractVector, V::TestFESpace) = b
function _may_reshape_b(b::AbstractVector, V::AbstractMultiTestFESpace)
ntuple(i -> view(b, get_mapping(V, i)), Val(get_n_fespace(V)))
end
"""
bilinear case
"""
function _append_contribution!(X, I, J, U, V, values, elementInfo::CellInfo, domain)
icell = cellindex(elementInfo)
nU = Val(get_ndofs(U, shape(celltype(elementInfo))))
nV = Val(get_ndofs(V, shape(celltype(elementInfo))))
Udofs = get_dofs(U, icell, nU) # columns correspond to the TrialFunction
Vdofs = get_dofs(V, icell, nV) # lines correspond to the TestFunction
unwrapValues = _unwrap_cell_integrate(V, values)
matrixvalues = _pack_bilinear_cell_contribution(unwrapValues, Udofs, Vdofs)
_append_bilinear!(I, J, X, Vdofs, Udofs, matrixvalues)
return nothing
end
function _append_contribution!(X, I, J, U, V, values, elementInfo::FaceInfo, domain)
cellinfo_n = get_cellinfo_n(elementInfo)
cellinfo_p = get_cellinfo_p(elementInfo)
cellindex_n = cellindex(cellinfo_n)
cellindex_p = cellindex(cellinfo_p)
unwrapValues = _unwrap_face_integrate(U, V, values)
nU_n = Val(get_ndofs(U, shape(celltype(cellinfo_n))))
nV_n = Val(get_ndofs(V, shape(celltype(cellinfo_n))))
nU_p = Val(get_ndofs(U, shape(celltype(cellinfo_p))))
nV_p = Val(get_ndofs(V, shape(celltype(cellinfo_p))))
col_dofs_U_n = get_dofs(U, cellindex_n, nU_n) # columns correspond to the TrialFunction on side⁻
row_dofs_V_n = get_dofs(V, cellindex_n, nV_n) # lines correspond to the TestFunction on side⁻
col_dofs_U_p = get_dofs(U, cellindex_p, nU_p) # columns correspond to the TrialFunction on side⁺
row_dofs_V_p = get_dofs(V, cellindex_p, nV_p) # lines correspond to the TestFunction on side⁺
matrixvalues = _pack_bilinear_face_contribution(
unwrapValues,
col_dofs_U_n,
row_dofs_V_n,
col_dofs_U_p,
row_dofs_V_p,
)
for (k, (row, col)) in enumerate(
Iterators.product((row_dofs_V_n, row_dofs_V_p), (col_dofs_U_n, col_dofs_U_p)),
)
_append_bilinear!(I, J, X, row, col, matrixvalues[k])
end
return nothing
end
function _append_bilinear!(I, J, X, row, col, vals)
_rows, _cols = _cartesian_product(row, col)
@assert length(_rows) == length(_cols) == length(vals)
append!(I, _rows)
append!(J, _cols)
append!(X, vec(vals))
end
_append_bilinear!(I, J, X, row, col, vals::NullOperator) = nothing
function _append_bilinear!(
I,
J,
X,
row,
col,
vals::Union{T, SMatrix{M, N, T}},
) where {M, N, T <: NullOperator}
nothing
end
function _pack_bilinear_cell_contribution(
values,
col_dofs_U::SVector{NU},
row_dofs_V::SVector{NV},
) where {NU, NV}
return SMatrix{NV, NU}(values[j][i] for i in 1:NV, j in 1:NU)
end
function _pack_bilinear_face_contribution(
values,
col_dofs_U_n::SVector{NUn},
row_dofs_V_n::SVector{NVn},
col_dofs_U_p::SVector{NUp},
row_dofs_V_p::SVector{NVp},
) where {NUn, NVn, NUp, NVp}
a11 = SMatrix{NVn, NUn}(values[1][j][i] for i in 1:NVn, j in 1:NUn)
a21 = SMatrix{NVp, NUn}(values[2][j][i] for i in 1:NVp, j in 1:NUn)
a12 = SMatrix{NVn, NUp}(values[3][j][i] for i in 1:NVn, j in 1:NUp)
a22 = SMatrix{NVp, NUp}(values[4][j][i] for i in 1:NVp, j in 1:NUp)
return a11, a21, a12, a22
end
Base.getindex(::Bcube.LazyOperators.NullOperator, i) = NullOperator()
function _unwrap_face_integrate(
::Union{TrialFESpace, AbstractMultiTrialFESpace},
::Union{TestFESpace, AbstractMultiTestFESpace},
a,
)
return _recursive_unwrap(a)
end
_recursive_unwrap(a::LazyOperators.AbstractMapOver) = map(_recursive_unwrap, unwrap(a))
_recursive_unwrap(a) = unwrap(a)
function _update_b!(b, V, values, elementInfo::CellInfo, domain)
idofs = get_dofs(V, cellindex(elementInfo))
unwrapValues = _unwrap_cell_integrate(V, values)
_update_b!(b, idofs, unwrapValues)
end
_unwrap_cell_integrate(::TestFESpace, a) = map(unwrap, unwrap(a))
_unwrap_cell_integrate(::AbstractMultiTestFESpace, a) = map(unwrap, unwrap(a))
function _update_b!(b, V, values, elementInfo::FaceInfo, domain)
# First, we get the values from the integration on the positive/negative side
# Then, if the face has two side, we seek the values from the opposite side
unwrapValues = _unwrap_face_integrate(V, values)
values_i = map(identity, map(identity, map(first, unwrapValues)))
idofs = get_dofs(V, cellindex(get_cellinfo_n(elementInfo)))
_update_b!(b, idofs, values_i)
if (domain isa InteriorFaceDomain) ||
(domain isa BoundaryFaceDomain{<:AbstractMesh, <:PeriodicBCType})
values_j = map(identity, map(identity, map(last, unwrapValues)))
jdofs = get_dofs(V, cellindex(get_cellinfo_p(elementInfo)))
_update_b!(b, jdofs, values_j)
end
end
function _unwrap_face_integrate(::Union{TestFESpace, AbstractMultiTestFESpace}, a)
return unwrap(unwrap(unwrap(a)))
end
function _update_b!(
b::Tuple{Vararg{Any, N}},
idofs::Tuple{Vararg{Any, N}},
intvals::Tuple{Vararg{Any, N}},
) where {N}
map(_update_b!, b, idofs, intvals)
nothing
end
function _update_b!(b::AbstractVector, idofs, intvals::Tuple{Vararg{Tuple, N}}) where {N}
map(x -> _update_b!(b, idofs, x), intvals)
nothing
end
function _update_b!(b::AbstractVector, dofs, vals)
for (i, val) in zip(dofs, vals)
b[i] += val
end
nothing
end
_update_b!(b::AbstractVector, dofs, vals::NullOperator) = nothing
"""
_count_n_elts(
U::TrialFESpace,
V::TestFESpace,
domain::CellDomain{M, IND},
) where {M, IND}
function _count_n_elts(
U::AbstractMultiFESpace{N, Tu},
V::AbstractMultiFESpace{N, Tv},
domain::AbstractDomain,
) where {N, Tu <: Tuple{Vararg{TrialFESpace}}, Tv <: Tuple{Vararg{TestFESpace}}}
function _count_n_elts(
U::TrialFESpace,
V::TestFESpace,
domain::BoundaryFaceDomain{M, BC, L, C},
) where {M, BC, L, C}
Count the (maximum) number of elements in the matrix corresponding to the bilinear assembly of U, V
on a domain.
# Arguments
- `U::TrialFESpace` : TrialFESpace associated to the first argument of the bilinear form.
- `V::TestFESpace` : TestFESpace associated to the second argument of the bilinear form.
- `domain`::AbstractDomain : domain of integration of the bilinear form.
# Warning
TO DO: for the moment this function is not really implemented for a BoundaryFaceDomain.
This requires to be able to distinguish between the usual TrialsFESpace and MultiplierFESpace.
"""
function _count_n_elts(
U::TrialFESpace,
V::TestFESpace,
domain::CellDomain{M, IND},
) where {M, IND}
return sum(
icell -> length(get_dofs(U, icell)) * length(get_dofs(V, icell)),
indices(domain),
)
end
function _count_n_elts(
U::AbstractMultiFESpace{N, Tu},
V::AbstractMultiFESpace{N, Tv},
domain::AbstractDomain,
) where {N, Tu <: Tuple{Vararg{TrialFESpace}}, Tv <: Tuple{Vararg{TestFESpace}}}
n = 0
for _U in U
for _V in V
n += _count_n_elts(_U, _V, domain)
end
end
return n
end
function _count_n_elts(
U::TrialFESpace,
V::TestFESpace,
domain::BoundaryFaceDomain{M, BC, L, C},
) where {M, BC, L, C}
return 1
end
maywrap(x) = LazyWrap(x)
maywrap(x::AbstractLazyOperator) = x
function _get_tuple_var(::Val{N}, k) where {N}
x -> ntuple(i -> i == k ? x : NullOperator(), Val(N))
end
_get_tuple_var(λ::Tuple, k) = x -> ntuple(i -> i == k ? x : NullOperator(), length(λ)) #ntuple(i->i==k ? λ[k] : NullOperator(), length(λ))
_get_tuple_var(λ, k) = identity
function _get_tuple_var_impl(k, N)
exprs = [i == k ? :(diag[$i]) : :(b) for i in 1:N]
return :(tuple($(exprs...)))
end
@generated function _get_tuple_var(x, ::Val{I}, ::Val{N}) where {I, N}
_get_tuple_var_impl(I, N)
end
function _get_all_tuple_var_impl(N)
exprs = [_get_tuple_var_impl(i, N) for i in 1:N]
return :(tuple($(exprs...)))
end
"""
_diag_tuples(diag::Tuple{Vararg{Any,N}}, b) where N
Return `N` tuples of length `N`. For each tuple `tᵢ`, its values
are defined so that `tᵢ[k]=diag[k]` if `k==i`, `tᵢ[k]=b` otherwise.
The result can be seen as a dense diagonal-like array using tuple.
# Example for `N=3`:
(diag[1], b, b ),
(b, diag[2], b ),
(b, b, diag[3]))
"""
@generated function _diag_tuples(diag::Tuple{Vararg{Any, N}}, b) where {N}
_get_all_tuple_var_impl(N)
end
function _diag_tuples(n::Val{N}, ::Val{i}, a, b) where {N, i}
_diag_tuples(ntuple(k -> a, n), b)[i]
end
"""
For N=3 for example:
(LazyMapOver((LazyMapOver(V[1]), NullOperator(), NullOperator())),
LazyMapOver((NullOperator(), LazyMapOver(V[2]), NullOperator())),
LazyMapOver((NullOperator(), NullOperator(), LazyMapOver(V[3]))))
"""
function _get_multi_tuple_var(V::Tuple{Vararg{Any, N}}) where {N}
map(LazyMapOver, _diag_tuples(map(LazyMapOver, V), NullOperator()))
end
_get_multi_tuple_var(a::LazyMapOver) = _get_multi_tuple_var(unwrap(a))
"""
blockmap_shape_functions(fespace::AbstractFESpace, cellinfo::AbstractCellInfo)
Return all shape functions `a = LazyMapOver((λ₁, λ₂, …, λₙ))` corresponding to `fespace` in cell
`cellinfo`. These shape functions are wrapped by a `LazyMapOver`
so that for a function `f` it gives:
`f(a) == map(f, a)`
"""
function blockmap_shape_functions(fespace::AbstractFESpace, cellinfo::AbstractCellInfo)
cshape = shape(celltype(cellinfo))
λ = get_cell_shape_functions(fespace, cshape)
LazyMapOver(λ)
end
"""
blockmap_shape_functions(multiFESpace::AbstractMultiFESpace, cellinfo::AbstractCellInfo)
Return all shape functions corresponding to each `fespace` in `multiFESSpace`
for cell `cellinfo` :
```math
((v₁, ∅, ∅, …), (∅, v₂, ∅, …), …, ( …, ∅, ∅, vₙ))
```
where:
* vᵢ = (λᵢ_₁, λᵢ_₂, …, λᵢ_ₘ) are the shapes functions of the i-th fespace in the cell.
* ∅ are `NullOperator`s
Note that the `LazyMapOver` is used to wrap recursively the result.
"""
function blockmap_shape_functions(
multiFESpace::AbstractMultiFESpace,
cellinfo::AbstractCellInfo,
)
cshape = shape(celltype(cellinfo))
λ = map(LazyMapOver, get_cell_shape_functions(multiFESpace, cshape))
map(LazyMapOver, _diag_tuples(λ, NullOperator()))
end
"""
# Dev note :
Materialize the integrand function on all the different possible Tuples of
`v=(v1,0,0,...), (0,v2,0,...), ..., (..., vi, ...)`
"""
function blockmap_shape_functions(feSpace, faceinfo::FaceInfo)
cshape_i = shape(celltype(get_cellinfo_n(faceinfo)))
cshape_j = shape(celltype(get_cellinfo_p(faceinfo)))
_cellpair_blockmap_shape_functions(feSpace, cshape_i, cshape_j)
end
function _cellpair_blockmap_shape_functions(
multiFESpace::AbstractMultiFESpace,
cshape_i::AbstractShape,
cshape_j::AbstractShape,
)
λi = get_cell_shape_functions(multiFESpace, cshape_i)
λj = get_cell_shape_functions(multiFESpace, cshape_j)
λij = map(FaceSidePair, map(LazyMapOver, λi), map(LazyMapOver, λj))
map(LazyMapOver, _diag_tuples(λij, NullOperator()))
end
function _cellpair_blockmap_shape_functions(
feSpace::AbstractFESpace,
cshape_i::AbstractShape,
cshape_j::AbstractShape,
)
λi = get_cell_shape_functions(feSpace, cshape_i)
λj = get_cell_shape_functions(feSpace, cshape_j)
λij = FaceSidePair(LazyMapOver(λi), LazyMapOver(λj))
LazyMapOver((λij,))
end
"""
# Dev notes:
Return `blockU` and `blockV` to be able to compute
the local matrix corresponding to the bilinear form :
```math
A[i,j] = a(λᵤ[j], λᵥ[i])
```
where `λᵤ` and `λᵥ` are the shape functions associated with
the trial `U` and the test `V` function spaces respectively.
In a "map-over" version, it can be written :
```math
A = a(blockU, blockV)
```
where `blockU` and `blockV` correspond formally to
the lazy-map-over matrices :
```math
∀k, blockU[k,j] = λᵤ[j],
blockV[i,k] = λᵥ[i]
```
"""
function blockmap_bilinear_shape_functions(
U::AbstractFESpace,
V::AbstractFESpace,
cellinfo::AbstractCellInfo,
)
cshape = shape(celltype(cellinfo))
λU = get_shape_functions(U, cshape)
λV = get_shape_functions(V, cshape)
blockV, blockU = _blockmap_bilinear(λV, λU)
blockU, blockV
end
function blockmap_bilinear_shape_functions(
U::AbstractFESpace,
V::AbstractFESpace,
cellinfo_u::AbstractCellInfo,
cellinfo_v::AbstractCellInfo,
)
λU = get_shape_functions(U, shape(celltype(cellinfo_u)))
λV = get_shape_functions(V, shape(celltype(cellinfo_v)))
blockV, blockU = _blockmap_bilinear(λV, λU)
blockU, blockV
end
function blockmap_bilinear_shape_functions(
U::AbstractFESpace,
V::AbstractFESpace,
faceinfo::FaceInfo,
)
cellinfo_n = get_cellinfo_n(faceinfo)
cellinfo_p = get_cellinfo_p(faceinfo)
U_nn, V_nn = blockmap_bilinear_shape_functions(U, V, cellinfo_n, cellinfo_n)
U_pn, V_pn = blockmap_bilinear_shape_functions(U, V, cellinfo_n, cellinfo_p)
U_np, V_np = blockmap_bilinear_shape_functions(U, V, cellinfo_p, cellinfo_n)
U_pp, V_pp = blockmap_bilinear_shape_functions(U, V, cellinfo_p, cellinfo_p)
return (
LazyWrap(BilinearTrialFaceSidePair(U_nn, U_pn, U_np, U_pp)),
LazyWrap(BilinearTestFaceSidePair(V_nn, V_pn, V_np, V_pp)),
)
end
"""
From tuples ``a=(a_1, a_2, …, a_i, …, a_m)`` and ``b=(b_1, b_2, …, b_j, …, b_n)``,
it builds `A` and `B` which correspond formally to the following two matrices :
```math
A \\equiv \\begin{pmatrix}
a_1 & a_1 & ⋯ & a_1\\\\
a_2 & a_2 & ⋯ & a_2\\\\
⋮ & ⋮ & ⋮ & ⋮ \\\\
a_m & a_m & ⋯ & a_m
\\end{pmatrix}
\\qquad and \\qquad
B \\equiv \\begin{pmatrix}
b_1 & b_2 & ⋯ & b_n\\\\
b_1 & b_2 & ⋯ & b_n\\\\
⋮ & ⋮ & ⋮ & ⋮ \\\\
b_1 & b_2 & ⋯ & b_n
\\end{pmatrix}
```
`A` and `B` are wrapped in `LazyMapOver` structures so that
all operations on them are done elementwise by default (in other words,
it can be considered that the operations are automatically broadcasted).
# Dev note :
Both `A` and `B` are stored as a tuple of tuples, wrapped by `LazyMapOver`, where
inner tuples correspond to each columns of a matrix.
This hierarchical structure reduces both inference and compile times by avoiding the use of large tuples.
"""
function _blockmap_bilinear(a::NTuple{N1}, b::NTuple{N2}) where {N1, N2}
_a = ntuple(j -> begin
LazyMapOver(ntuple(i -> a[i], Val(N1)))
end, Val(N2))
_b = ntuple(j -> begin
LazyMapOver(ntuple(i -> b[j], Val(N1)))
end, Val(N2))
LazyMapOver(_a), LazyMapOver(_b)
end
function _cartesian_product(a::NTuple{N1}, b::NTuple{N2}) where {N1, N2}
_a, _b = _cartesian_product(SVector{N1}(a), SVector{N2}(b))
Tuple(_a), Tuple(_b)
end
function _cartesian_product(a::SVector{N1}, b::SVector{N2}) where {N1, N2}
# Return `_a` and `__b` defined as :
# _a = SVector{N1 * N2}(a[i] for i in 1:N1, j in 1:N2)
# __b = SVector{N1 * N2}(b[j] for i in 1:N1, j in 1:N2)
_a = repeat(a, Val(N2))
_b = repeat(b, Val(N1))
__b = vec(permutedims(reshape(_b, Size(N2, N1))))
_a, __b
end
Base.repeat(a::SVector, ::Val{N}) where {N} = reduce(vcat, ntuple(i -> a, Val(N)))
"""
compute(integration::Integration)
Compute an integral, independently from a FEM/DG framework (i.e without FESpace)
Return a `SparseVector`. The indices of the domain elements are used to store
the result of the integration in this sparse vector.
# Example
Compute volume of each cell and each face.
```julia
mesh = rectangle_mesh(2, 3)
dΩ = Measure(CellDomain(mesh), 1)
dΓ = Measure(BoundaryFaceDomain(mesh), 1)
f = PhysicalFunction(x -> 1)
@show Bcube.compute(∫(f)dΩ)
@show Bcube.compute(∫(side⁻(f))dΓ)
```
"""
function compute(integration::Integration)
measure = get_measure(integration)
domain = get_domain(measure)
f = get_function(get_integrand(integration))
quadrature = get_quadrature(measure)
values = map(DomainIterator(domain)) do elementInfo
_f = materialize(f, elementInfo)
integrate_on_ref_element(_f, elementInfo, quadrature)
end
return SparseVector(_domain_to_mesh_nelts(domain), collect(indices(domain)), values)
end
_domain_to_mesh_nelts(domain::AbstractCellDomain) = ncells(get_mesh(domain))
_domain_to_mesh_nelts(domain::AbstractFaceDomain) = nfaces(get_mesh(domain))
"""
AbstractFaceSidePair{A} <: AbstractLazyWrap{A}
# Interface:
* `side_n(a::AbstractFaceSidePair)`
* `side_p(a::AbstractFaceSidePair)`
"""
abstract type AbstractFaceSidePair{A} <: AbstractLazyWrap{A} end
LazyOperators.get_args(a::AbstractFaceSidePair) = a.data
LazyOperators.pretty_name(::AbstractFaceSidePair) = "AbstractFaceSidePair"
LazyOperators.pretty_name_style(::AbstractFaceSidePair) = Dict(:color => :yellow)
struct FaceSidePair{A} <: AbstractFaceSidePair{A}
data::A
end
FaceSidePair(a, b) = FaceSidePair((a, b))
LazyOperators.pretty_name(::FaceSidePair) = "FaceSidePair"
side_n(a::FaceSidePair) = Side⁻(LazyMapOver((a.data[1], NullOperator())))
side_p(a::FaceSidePair) = Side⁺(LazyMapOver((NullOperator(), a.data[2])))
function LazyOperators.materialize(a::FaceSidePair, cPoint::CellPoint)
_a = (materialize(a.data[1], cPoint), materialize(a.data[2], cPoint))
return MapOver(_a)
end
function LazyOperators.materialize(a::FaceSidePair, side::Side⁻{Nothing, <:Tuple{FaceInfo}})
return FaceSidePair(materialize(a.data[1], side), NullOperator())
end
function LazyOperators.materialize(a::FaceSidePair, side::Side⁺{Nothing, <:Tuple{FaceInfo}})
return FaceSidePair(NullOperator(), materialize(a.data[2], side))
end
function LazyOperators.materialize(
a::FaceSidePair,
side::Side⁻{Nothing, <:Tuple{FacePoint}},
)
return MapOver(materialize(a.data[1], side), NullOperator())
end
function LazyOperators.materialize(
a::FaceSidePair,
side::Side⁺{Nothing, <:Tuple{FacePoint}},
)
return MapOver(NullOperator(), materialize(a.data[2], side))
end
function LazyOperators.materialize(
a::Gradient{O, <:Tuple{AbstractFaceSidePair}},
point::AbstractSide{Nothing, <:Tuple{FacePoint}},
) where {O}
_args, = get_operator(point)(get_args(a))
__args, = get_args(_args)
return materialize(∇(__args), point)
end
"""
AbstractBilinearFaceSidePair{A} <: AbstractLazyWrap{A}
# Interface:
* get_args_bilinear(a::AbstractBilinearFaceSidePair)
"""
abstract type AbstractBilinearFaceSidePair{A} <: AbstractLazyWrap{A} end
LazyOperators.pretty_name_style(::AbstractBilinearFaceSidePair) = Dict(:color => :yellow)
get_args(a::AbstractBilinearFaceSidePair) = a.data
get_basetype(a::AbstractBilinearFaceSidePair) = get_basetype(typeof(a))
get_basetype(::Type{<:AbstractBilinearFaceSidePair}) = error("To be defined")
function LazyOperators.materialize(
a::AbstractBilinearFaceSidePair,
point::AbstractSide{Nothing, <:Tuple{FacePoint}},
)
args = tuplemap(x -> materialize(x, point), get_args(a))
return MapOver(args)
end
function LazyOperators.materialize(
a::Gradient{Nothing, <:Tuple{AbstractBilinearFaceSidePair}},
point::AbstractSide{Nothing, <:Tuple{FacePoint}},
)
op_side = get_operator(point)
args, = get_args(op_side(get_args(a))...)
return materialize(∇(args), point)
end
function LazyOperators.materialize(
a::AbstractBilinearFaceSidePair,
side::AbstractSide{Nothing, <:Tuple{FaceInfo}},
)
T = get_basetype(a)
return T(tuplemap(x -> materialize(x, side), get_args(a)))
end
struct BilinearTrialFaceSidePair{A} <: AbstractBilinearFaceSidePair{A}
data::A
end
BilinearTrialFaceSidePair(a...) = BilinearTrialFaceSidePair(a)
LazyOperators.pretty_name(::BilinearTrialFaceSidePair) = "BilinearTrialFaceSidePair"
get_basetype(::Type{<:BilinearTrialFaceSidePair}) = BilinearTrialFaceSidePair
function side_n(a::BilinearTrialFaceSidePair)
Side⁻(LazyMapOver((a.data[1], a.data[2], NullOperator(), NullOperator())))
end
function side_p(a::BilinearTrialFaceSidePair)
Side⁺(LazyMapOver((NullOperator(), NullOperator(), a.data[3], a.data[4])))
end
struct BilinearTestFaceSidePair{A} <: AbstractBilinearFaceSidePair{A}
data::A
end
BilinearTestFaceSidePair(a...) = BilinearTestFaceSidePair(a)
LazyOperators.pretty_name(::BilinearTestFaceSidePair) = "BilinearTestFaceSidePair"
get_basetype(::Type{<:BilinearTestFaceSidePair}) = BilinearTestFaceSidePair
function side_n(a::BilinearTestFaceSidePair)
Side⁻(LazyMapOver((a.data[1], NullOperator(), a.data[3], NullOperator())))
end
function side_p(a::BilinearTestFaceSidePair)
Side⁺(LazyMapOver((NullOperator(), a.data[2], NullOperator(), a.data[4])))
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 8064 |
"""
Assemble a vector of zeros dofs except on boundary dofs where they take the Dirichlet values.
"""
function assemble_dirichlet_vector(
U,
V,
mesh::AbstractMesh,
t::Number = 0.0;
dt_derivative_order::Int = 0,
)
d = allocate_dofs(U)
apply_dirichlet_to_vector!(d, U, V, mesh, t; dt_derivative_order)
return d
end
"""
Apply homogeneous Dirichlet condition on vector `b`
Dirichlet values are applied on dofs lying on a Dirichlet boundary.
"""
function apply_homogeneous_dirichlet_to_vector!(
b::AbstractVector{<:Number},
U,
V,
mesh::AbstractMesh,
)
# Define callback to apply on `b`
callback!(array, iglob, _, _) = array[iglob] = 0.0
_apply_dirichlet!((b,), (callback!,), U, V, mesh)
end
"""
Apply a homogeneous "dirichlet" condition on the input matrix.
The rows and columns corresponding to each Dirichlet dof are canceled (with a 1 on the diag term).
If you don't want the cols to be canceled, use `apply_dirichlet_to_matrix!`.
"""
function apply_homogeneous_dirichlet_to_matrix!(
matrix::AbstractMatrix,
U,
V,
mesh::AbstractMesh;
diag_value::Number = 1.0,
)
apply_homogeneous_dirichlet_to_matrix!(
(matrix,),
U,
V,
mesh;
diag_values = (diag_value,),
)
end
"""
Same as above, but with a Tuple of matrix
"""
function apply_homogeneous_dirichlet_to_matrix!(
matrices::Tuple{Vararg{AbstractMatrix, N}},
U,
V,
mesh::AbstractMesh;
diag_values::Tuple{Vararg{Number, N}} = ntuple(i -> 1.0, N),
) where {N}
callbacks = ntuple(
i -> callback!(array, iglob, _, _) = begin
array[iglob, :] .= 0.0
array[:, iglob] .= 0.0
array[iglob, iglob] = diag_values[i]
end,
N,
)
_apply_dirichlet!(matrices, callbacks, U, V, mesh)
end
"""
Apply homogeneous Dirichlet condition on `A` and `b` assuming the linear system Ax=b.
Dirichlet values are applied on dofs lying on a Dirichlet boundary.
"""
function apply_homogeneous_dirichlet!(
A::AbstractMatrix{<:Number},
b::AbstractVector{<:Number},
U,
V,
mesh::AbstractMesh,
)
# Define callback to apply on `A`
callback_A!(array, iglob, _, _) = begin
array[iglob, :] .= 0.0
array[:, iglob] .= 0.0
array[iglob, iglob] = 1.0
end
# Define callback to apply on `b`
callback_b!(array, iglob, _, _) = array[iglob] = 0.0
_apply_dirichlet!((A, b), (callback_A!, callback_b!), U, V, mesh)
end
"""
Apply Dirichlet condition on vector `b`.
Dirichlet values are applied on dofs lying on a Dirichlet boundary.
TODO : add `dt_derivative_order`
"""
function apply_dirichlet_to_vector!(
b::AbstractVector{<:Number},
U,
V,
mesh::AbstractMesh,
t::Number = 0.0;
dt_derivative_order::Int = 0,
)
@assert dt_derivative_order == 0 "`dt_derivative_order` > 0 not implemented yet"
# sizeU = get_size(U)
# Define callback to apply on `b`
callback!(array, iglob, icomp, values) = begin
# if (values isa Number && sizeU > 1)
# # here we should consider that we have a condition of the type u ⋅ n
# error("Dirichlet condition with scalar product with normal not supported yet")
# end
array[iglob] = values[icomp]
end
_apply_dirichlet!((b,), (callback!,), U, V, mesh, t)
end
"""
Apply a "dirichlet" condition on the input matrix.
The columns corresponding to each Dirichlet dof are NOT canceled. If you want them to be canceled,
use `apply_homogeneous_dirichlet_to_matrix!`.
"""
function apply_dirichlet_to_matrix!(
matrix::AbstractMatrix,
U,
V,
mesh::AbstractMesh;
diag_value::Number = 1.0,
)
apply_dirichlet_to_matrix!((matrix,), U, V, mesh; diag_values = (diag_value,))
end
"""
Same as above, but with a Tuple of matrix
"""
function apply_dirichlet_to_matrix!(
matrices::Tuple{Vararg{AbstractMatrix, N}},
U,
V,
mesh::AbstractMesh;
diag_values::Tuple{Vararg{Number, N}} = ntuple(i -> 1.0, N),
) where {N}
callbacks = ntuple(
i -> callback!(array, iglob, _, _) = begin
array[iglob, :] .= 0.0
array[iglob, iglob] = diag_values[i]
end,
N,
)
_apply_dirichlet!(matrices, callbacks, U, V, mesh)
end
function _apply_dirichlet!(
arrays::Tuple{Vararg{AbstractVecOrMat, N}},
callbacks::NTuple{N, Function},
U::TrialFESpace{S, FE},
V::TestFESpace{S, FE},
mesh::AbstractMesh,
t::Number = 0.0,
) where {N, S, FE}
m = collect(1:get_ndofs(U))
_apply_dirichlet!(arrays, callbacks, m, U, V, mesh, t)
end
"""
Version for MultiFESpace
"""
function _apply_dirichlet!(
arrays::Tuple{Vararg{AbstractVecOrMat, P}},
callbacks::NTuple{P, Function},
U::AbstractMultiFESpace{N, Tu},
V::AbstractMultiFESpace{N, Tv},
mesh::AbstractMesh,
t::Number = 0.0,
) where {P, N, Tu <: Tuple{Vararg{TrialFESpace}}, Tv <: Tuple{Vararg{TestFESpace}}}
for (i, (_U, _V)) in enumerate(zip(U, V))
_apply_dirichlet!(arrays, callbacks, get_mapping(U, i), _U, _V, mesh, t)
end
end
"""
`m` is the dof mapping (if SingleFESpace, m = Id; otherwise m = get_mapping(...))
# Warning
We assume same FESpace for U and V
# Dev notes
* we could passe a view of the arrays instead of passing the mapping
"""
function _apply_dirichlet!(
arrays::Tuple{Vararg{AbstractVecOrMat, N}},
callbacks::NTuple{N, Function},
m::Vector{Int},
U::TrialFESpace{S, FE},
V::TestFESpace{S, FE},
mesh::AbstractMesh,
t::Number,
) where {S, FE, N}
# Alias
_mesh = parent(mesh)
# fs_U = get_function_space(U)
fs_V = get_function_space(V)
dhl_V = _get_dhl(V)
# Loop over the boundaries
for bndTag in get_dirichlet_boundary_tags(U)
# Function to apply, giving the Dirichlet value(s) on each node
f = get_dirichlet_values(U, bndTag)
f_t = Base.Fix2(f, t)
# Loop over the face of the boundary
for kface in boundary_faces(_mesh, bndTag)
_apply_dirichlet_on_face!(arrays, callbacks, kface, _mesh, fs_V, dhl_V, m, f_t)
end
end
end
"""
Apply dirichlet condition on `kface`.
`m` is the dof mapping to obtain global dof id (in case of MultiFESpace)
`f_t` is the Dirichlet function evaluated in `t`: f_t = x -> f(x,t)
`callbacks` is the Tuple of functions of (array, idof_glo, icomp, values) that
must be applied to each array of `arrays`
# Dev notes
* we could passe a view of the arrays instead of passing the mapping
"""
function _apply_dirichlet_on_face!(
arrays::Tuple{Vararg{AbstractVecOrMat, N}},
callbacks::NTuple{N, Function},
kface::Int,
mesh::Mesh,
fs_V::AbstractFunctionSpace,
dhl_V::DofHandler,
m::Vector{Int},
f_t::Function,
) where {N}
# Alias
sizeV = get_ncomponents(dhl_V)
c2n = connectivities_indices(mesh, :c2n)
f2n = connectivities_indices(mesh, :f2n)
f2c = connectivities_indices(mesh, :f2c)
cellTypes = cells(mesh)
# Interior cell
icell = f2c[kface][1]
ctype = cellTypes[icell]
_c2n = c2n[icell]
cnodes = get_nodes(mesh, _c2n)
side = cell_side(ctype, c2n[icell], f2n[kface])
cshape = shape(ctype)
ξcell = get_coords(fs_V, cshape) # ref coordinates of the FunctionSpace in the cell
F = mapping(ctype, cnodes)
# local indices of dofs lying on the face (assuming scalar FE)
idofs_loc = idof_by_face_with_bounds(fs_V, shape(ctype))[side]
# Loop over the dofs concerned by the Dirichlet condition
for idof_loc in idofs_loc
ξ = ξcell[idof_loc]
values = f_t(F(ξ)) # dirichlet value(s)
# Loop over components
for icomp in 1:sizeV
# Absolute number of the dof for this component
idof_glo = m[get_dof(dhl_V, icell, icomp, idof_loc)]
# Apply condition on each array according to the corresponding callback
for (array, callback!) in zip(arrays, callbacks)
callback!(array, idof_glo, icomp, values)
end
end
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 19536 | """
AbstractCellFunction{DS,S}
Abstract type to represent a function defined in specific domain `DS`,
which could be a `ReferenceDomain` or a `PhysicalDomain`. `S` is the size
of the codomain (i.e `S=length(f(x))`) where `f` is the `AbstractCellFunction`.
# Subtypes should implement :
* `get_function(f::AbstractCellFunction)`
"""
abstract type AbstractCellFunction{DS, S} <: AbstractLazy end
"""
DomainStyle(f::AbstractCellFunction)
"""
DomainStyle(f::AbstractCellFunction{DS}) where {DS} = DS()
get_size(::AbstractCellFunction{DS, S}) where {DS, S} = S
"""
get_function(f::AbstractCellFunction)
"""
function get_function(f::AbstractCellFunction)
error("`get_function` is not defined for $(typeof(f))")
end
"""
(f::AbstractCellFunction)(x)
Make `AbstractCellFunction` callable. Return `f(x)` by calling `evaluate(f, x)`.
"""
(f::AbstractCellFunction)(x) = evaluate(f, x)
"""
evaluate(f::AbstractCellFunction, x)
Return the value `f(x)` by mapping `x` to the domain of `f` if necessary.
"""
evaluate(f::AbstractCellFunction, x) = evaluate(f, x, same_domain(f, x))
function evaluate(f::AbstractCellFunction, x, samedomain::Val{false})
evaluate(f, change_domain(x, DomainStyle(f)))
end
function evaluate(f::AbstractCellFunction, x, samedomain::Val{true})
get_function(f)(x)
end
function evaluate(f::AbstractCellFunction, x::CellPoint, samedomain::Val{true})
evaluate_at_cellpoint(get_function(f), x)
end
"""
When a CellFunction is directly applied on a `FacePoint`, (i.e without the use of the
`side_n` or `side_p` operators), it means that the side of the face does matter (for
instance for a PhysicalFunction).
Hence we just convert the FacePoint into a CellPoint (of the negative side of the face)
before evaluating it
"""
evaluate(f::AbstractCellFunction, x::FacePoint) = evaluate(f, side_n(x))
function LazyOperators.pretty_name(a::AbstractCellFunction)
"CellFunction{" * pretty_name(DomainStyle(a)) * "," * pretty_name(get_function(a)) * "}"
end
LazyOperators.pretty_name_style(::AbstractCellFunction) = Dict(:color => :light_green)
"""
Implement function `materialize` of the `AbstractLazy` interface.
TODO : define default behavior when things are stabilized :
`LazyOperators.materialize(f::AbstractCellFunction, x) = f`
"""
LazyOperators.materialize(f::AbstractCellFunction, x::CellInfo) = f
LazyOperators.materialize(f::AbstractCellFunction, x::CellPoint) = f(x)
"""
abstract type AbstractShapeFunction{DS,S,FS} <: AbstractCellFunction{DS,S} end
Abstract type to represent a shape function defined in specific domain `DS`,
which could be a `ReferenceDomain` or a `PhysicalDomain`. `S` is the size
of the codomain (i.e `S=length(λ(x))`) and `FS` is the type of `FunctionSpace`.
# Interface
Subtypes should implement `AbstractCellFunction`:
* `get_function(f::AbstractShapeFunction)`
and its own specitic interface: [empty]
"""
abstract type AbstractShapeFunction{DS, S, FS} <: AbstractCellFunction{DS, S} end
get_function_space(::AbstractShapeFunction{DS, S, FS}) where {DS, S, FS} = FS()
"""
ShapeFunction{DS,S,F<:Function} <: AbstractShapeFunction{DS,S}
Subtype of [`AbstractShapeFunction`](@ref) used to wrap a function
defined on a domain of style` `DS` in the cell
"""
struct ShapeFunction{DS, S, FS, F <: Function} <: AbstractShapeFunction{DS, S, FS}
f::F
end
"""
ShapeFunction(f::Function, domainstyle::DomainStyle, ::Val{S}) where S
"""
function ShapeFunction(f::Function, ds::DomainStyle, ::Val{S}, fs::FunctionSpace) where {S}
ShapeFunction{typeof(ds), S, typeof(fs), typeof(f)}(f)
end
get_function(f::ShapeFunction) = f.f
function LazyOperators.pretty_name(a::ShapeFunction)
"ShapeFunction{" *
pretty_name(DomainStyle(a)) *
"," *
string(get_size(a)) *
"," *
pretty_name(get_function(a)) *
"}"
end
LazyOperators.pretty_name_style(a::ShapeFunction) = Dict(:color => :light_green)
"""
abstract type AbstractMultiShapeFunction{N,DS} end
Abstract type to represent a "set" of `ShapeFunction`.
`N` is the number of `ShapeFunction` contained in this `AbstractMultiShapeFunction`.
Note that all shape functions must have the same domain style `DS`.
"""
abstract type AbstractMultiShapeFunction{N, DS} end
struct MultiShapeFunction{N, DS, F <: Tuple{Vararg{AbstractShapeFunction, N}}} <:
AbstractMultiShapeFunction{N, DS}
shapeFunctions::F
end
"""
MultiShapeFunction(f::NTuple{N,AbstractShapeFunction{DS}}) where {N,DS}
"""
function MultiShapeFunction(
shapeFunctions::Tuple{Vararg{AbstractShapeFunction{DS}, N}},
) where {N, DS}
MultiShapeFunction{N, DS, typeof(shapeFunctions)}(shapeFunctions)
end
get_shape_functions(f::MultiShapeFunction) = f.shapeFunctions
abstract type AbstractCellShapeFunctions{DS, S, FS, CS} <: AbstractShapeFunction{DS, S, FS} end
get_cell_shape(::AbstractCellShapeFunctions{DS, S, FS, CS}) where {DS, S, FS, CS} = CS()
"""
CellShapeFunctions{DS,S,FS,CS} <: AbstractCellShapeFunctions{DS,S,FS,CS}
Subtype of [`AbstractCellShapeFunctions`](@ref) used to wrap a shape functions
defined on a domain of style `DS` in the cell.
The function `f` (of type `F`) must return all shape functions `λᵢ`
associated to the function space of type `FS` defined on cell shape `CS`, so that:
- λᵢ(x) = f(x)[i]
and:
- f(x) = (λ₁(x), …, λ₁(x), …, λₙ(x))
"""
struct CellShapeFunctions{DS, S, FS, CS} <: AbstractCellShapeFunctions{DS, S, FS, CS} end
"""
CellShapeFunctions(domainstyle::DomainStyle, ::Val{S}, fs::FunctionSpace, shape::Shape) where S
"""
function CellShapeFunctions(
ds::DomainStyle,
::Val{S},
fs::FunctionSpace,
shape::AbstractShape,
) where {S}
CellShapeFunctions{typeof(ds), S, typeof(fs), typeof(shape)}()
end
function get_function(f::CellShapeFunctions)
valS = Val(get_size(f))
λ =
_reshape_cell_shape_functions ∘
shape_functions(get_function_space(f), valS, get_cell_shape(f))
end
@generated function _reshape_cell_shape_functions(a::SMatrix{Ndof, Ndim}) where {Ndof, Ndim}
_exprs = [[:(a[$i, $j]) for j in 1:Ndim] for i in 1:Ndof]
exprs = [:(SA[$(_expr...)]) for _expr in _exprs]
return :(tuple($(exprs...)))
end
_reshape_cell_shape_functions(a::SVector) = Tuple(a)
function LazyOperators.pretty_name(a::CellShapeFunctions)
"CellShapeFunctions{" *
pretty_name(DomainStyle(a)) *
"," *
string(get_size(a)) *
"," *
pretty_name(get_function(a)) *
"}"
end
LazyOperators.pretty_name_style(a::CellShapeFunctions) = Dict(:color => :light_green)
"""
CellFunction{DS,S,F<:Function} <: AbstractCellFunction{DS,S}
Subtype of [`AbstractCellFunction`](@ref) used to wrap a function
defined on a domain of style` `DS` in the cell
"""
struct CellFunction{DS, S, F <: Function} <: AbstractCellFunction{DS, S}
f::F
end
"""
CellFunction(f::Function, domainstyle::DomainStyle, ::Val{S}) where {S}
`S` is the codomain size of `f`.
"""
function CellFunction(f::F, ds::DomainStyle, ::Val{S}) where {F <: Function, S}
CellFunction{typeof(ds), S, typeof(f)}(f)
end
get_function(f::CellFunction) = f.f
"""
PhysicalFunction(f::Function, [size::Union{Integer, Tuple{Integer, Vararg{Integer}}} = 1])
PhysicalFunction(f::Function, ::Val{size}) where {size}
Return a [`CellFunction`](@ref) defined on a `PhysicalDomain`.
`size` is the size of the codomain of `f`.
## Note:
Using a `Val` to prescribe the size a of `PhysicalFunction` is
recommended to improve type-stability and performance.
"""
function PhysicalFunction(
f::Function,
size::Union{Integer, Tuple{Integer, Vararg{Integer}}} = 1,
)
CellFunction(f, PhysicalDomain(), Val(size))
end
function PhysicalFunction(f::Function, s::Val{size}) where {size}
CellFunction(f, PhysicalDomain(), s)
end
"""
ReferenceFunction(f::Function, [size::Union{Integer, Tuple{Integer, Vararg{Integer}}} = 1])
ReferenceFunction(f::Function, ::Val{size}) where {size}
Return a [`CellFunction`](@ref) defined on a `ReferenceDomain`.
`size` is the size of the codomain of `f`.
## Note:
Using a `Val` to prescribe the size a of `ReferenceFunction` is
recommended to improve type-stability and performance.
"""
function ReferenceFunction(
f::Function,
size::Union{Integer, Tuple{Integer, Vararg{Integer}}} = 1,
)
CellFunction(f, ReferenceDomain(), Val(size))
end
function ReferenceFunction(f::Function, s::Val{size}) where {size}
CellFunction(f, ReferenceDomain(), s)
end
## TEMPORARY : should be moved in files where each function space is defined !
DomainStyle(fs::FunctionSpace{<:Lagrange}) = ReferenceDomain()
DomainStyle(fs::FunctionSpace{<:Taylor}) = ReferenceDomain()
#specific rules:
LazyOperators.materialize(a::LazyMapOver{<:AbstractCellShapeFunctions}, x::CellInfo) = a
function LazyOperators.materialize(
a::LazyMapOver{<:AbstractCellShapeFunctions},
x::CellPoint,
)
f = get_args(a)
MapOver(f(x))
end
function LazyOperators.lazy_map_over(
f::Function,
a::LazyMapOver{<:AbstractCellShapeFunctions},
)
f(get_args(a))
end
function LazyOperators.materialize(a::LazyMapOver, x::CellPoint)
MapOver(LazyOperators.lazy_map_over(Base.Fix2(materialize, x), a))
end
#LazyOperators.materialize(a::LazyMapOver{<:CellShapeFunctions}, x::CellPoint) = a
"""
Represent the side a of face between two cells.
@ghislainb : to be moved to `domain.jl` ?
"""
side_p(t::Tuple) = map(side_p, t)
side_n(t::Tuple) = map(side_n, t)
side_p(fInfo::FaceInfo) = get_cellinfo_p(fInfo)
side_n(fInfo::FaceInfo) = get_cellinfo_n(fInfo)
const side⁺ = side_p
const side⁻ = side_n
jump(a) = side⁻(a) - side⁺(a)
jump(a::Tuple) = map(jump, a)
jump(a, n) = side⁺(a) * side⁺(n) + side⁻(a) * side⁻(n)
abstract type AbstractSide{O, A <: Tuple} <: AbstractLazyOperator{O, A} end
function LazyOperators.get_operator(a::AbstractSide)
error("`get_operator` is not defined for $(typeof(a))")
end
LazyOperators.get_args(side::AbstractSide) = side.args
struct Side⁺{O, A} <: AbstractSide{O, A}
args::A
end
Side⁺(args...) = Side⁺{Nothing, typeof(args)}(args)
LazyOperators.get_operator(::Side⁺) = side_p
struct Side⁻{O, A} <: AbstractSide{O, A}
args::A
end
Side⁻(args...) = Side⁻{Nothing, typeof(args)}(args)
LazyOperators.get_operator(::Side⁻) = side_n
function LazyOperators.materialize(side::AbstractSide, fInfo::FaceInfo)
op_side = get_operator(side)
return op_side(materialize_args(get_args(side), wrap_side(side, fInfo))...)
end
# function LazyOperators.materialize(side::AbstractSide, fInfo::FaceInfo)
# op_side = get_operator(side)
# return op_side(materialize_args(get_args(side), wrap_side(side, fInfo))...)
# end
wrap_side(::Side⁻, a::Side⁺) = error("invalid : cannot `Side⁺` with `Side⁻`")
wrap_side(::Side⁺, a::Side⁻) = error("invalid : cannot `Side⁻` with `Side⁺`")
wrap_side(::Side⁺, a) = Side⁺(a)
wrap_side(::Side⁻, a) = Side⁻(a)
wrap_side(::Side⁻, a::Side⁻) = a
wrap_side(::Side⁺, a::Side⁺) = a
function LazyOperators.materialize(a::AbstractCellFunction, sidefInfo::AbstractSide)
op_side = get_operator(sidefInfo)
return materialize(a, op_side(get_args(sidefInfo)...))
end
function materialize(a::LazyMapOver, x::AbstractSide{Nothing, <:Tuple{FaceInfo}})
LazyMapOver(LazyOperators.lazy_map_over(Base.Fix2(materialize, x), a))
end
function materialize(a::LazyMapOver, x::AbstractSide{Nothing, <:Tuple{FacePoint}})
MapOver(LazyOperators.lazy_map_over(Base.Fix2(materialize, x), a))
end
materialize(::NullOperator, ::AbstractSide) = NullOperator()
function LazyOperators.materialize(side::AbstractSide, x)
a = materialize_args(get_args(side), wrap_side(side, x))
return LazyOperators.may_unwrap_tuple(a)
end
side_p(a::AbstractLazy) = Side⁺(a)
side_n(a::AbstractLazy) = Side⁻(a)
side_p(a::Side⁺) = a
side_p(a::Side⁻) = error("invalid : cannot apply `side_p` on `Side⁻`")
side_n(a::Side⁺) = error("invalid : cannot apply `side_n` on `Side⁺`")
side_n(a::Side⁻) = a
side_p(::NullOperator) = NullOperator()
side_n(::NullOperator) = NullOperator()
side_p(n) = Side⁺(n)
side_n(n) = Side⁻(n)
"""
Represent the face normal of a face
"""
struct FaceNormal <: AbstractLazy end
"""
At the `CellInfo` level, the `FaceNormal` doesn't really have a materialization and stays lazy
@ghislainb : I wonder if there is a way to avoid declaring this function ?
"""
LazyOperators.materialize(n::FaceNormal, ::CellInfo) = n
function LazyOperators.materialize(
n::FaceNormal,
::AbstractSide{Nothing, <:Tuple{<:FaceInfo}},
)
n
end
function LazyOperators.materialize(
::FaceNormal,
sideFacePoint::Side⁺{Nothing, <:Tuple{<:FacePoint}},
)
fPoint, = get_args(sideFacePoint)
fInfo = get_faceinfo(fPoint)
ξface = get_coords(fPoint)
cInfo = get_cellinfo_p(fInfo)
kside = get_cell_side_p(fInfo)
cnodes = nodes(cInfo)
ctype = celltype(cInfo)
return normal(ctype, cnodes, kside, ξface)
end
function LazyOperators.materialize(
::FaceNormal,
sideFacePoint::Side⁻{Nothing, <:Tuple{<:FacePoint}},
)
fPoint, = get_args(sideFacePoint)
fInfo = get_faceinfo(fPoint)
ξface = get_coords(fPoint)
cInfo = get_cellinfo_n(fInfo)
kside = get_cell_side_n(fInfo)
cnodes = nodes(cInfo)
ctype = celltype(cInfo)
return normal(ctype, cnodes, kside, ξface)
end
"""
Hypersurface "face" operator that rotates around the face-axis to virtually
bring back the two adjacent cells in the same plane.
"""
struct CoplanarRotation <: AbstractLazy end
function LazyOperators.materialize(
R::CoplanarRotation,
::AbstractSide{Nothing, <:Tuple{<:FaceInfo}},
)
R
end
function _unpack_face_point(sideFacePoint)
fPoint, = get_args(sideFacePoint)
fInfo = get_faceinfo(fPoint)
cInfo_n = get_cellinfo_n(fInfo)
cnodes_n = nodes(cInfo_n)
ctype_n = celltype(cInfo_n)
ξ_n = get_coords(side_n(fPoint))
cInfo_p = get_cellinfo_p(fInfo)
cnodes_p = nodes(cInfo_p)
ctype_p = celltype(cInfo_p)
ξ_p = get_coords(side_p(fPoint))
return cnodes_n, cnodes_p, ctype_n, ctype_p, ξ_n, ξ_p
end
function LazyOperators.materialize(
::CoplanarRotation,
sideFacePoint::Side⁻{Nothing, <:Tuple{<:FacePoint}},
)
cnodes_n, cnodes_p, ctype_n, ctype_p, ξ_n, ξ_p = _unpack_face_point(sideFacePoint)
# We choose to use `cell_normal` instead of `normal`,
# but we could do the same with the latter.
ν_n = cell_normal(ctype_n, cnodes_n, ξ_n)
ν_p = cell_normal(ctype_p, cnodes_p, ξ_p)
return _coplanar_rotation(ν_n, ν_p)
end
function LazyOperators.materialize(
cr::CoplanarRotation,
sideFacePoint::Side⁺{Nothing, <:Tuple{<:FacePoint}},
)
fPoint, = get_args(sideFacePoint)
materialize(cr, Side⁻(opposite_side(fPoint)))
end
function _coplanar_rotation(ν_n::SVector{2}, ν_p::SVector{2})
_cos = ν_p ⋅ ν_n
_sin = ν_p[1] * ν_n[2] - ν_p[2] * ν_n[1] # 2D-vector cross-product
R = SA[_cos (-_sin); _sin _cos]
return R
end
function _coplanar_rotation(ν_n::SVector{3}, ν_p::SVector{3})
_cos = ν_p ⋅ ν_n
_sin = cross(ν_p, ν_n) # this is not really a 'sinus', it is (sinus x u)
# u = _sin / ||_sin||
# So we must ensure that `_sin` is not 0, otherwise we return the null vector
norm_sin = norm(_sin)
u = norm_sin > eps(norm_sin) ? _sin ./ norm_sin : _sin
_R = _cos * I + _cross_product_matrix(_sin) + (1 - _cos) * (u ⊗ u)
return _R
end
"""
The cross product between two vectors 'a' and 'b', a × b, can be expressed
as a matrix-vector product between the "cross-product-matrix" of 'a' and the
vector 'b'.
"""
function _cross_product_matrix(a)
@assert size(a) == (3,)
SA[
0 (-a[3]) a[2]
a[3] 0 (-a[1])
(-a[2]) a[1] 0
]
end
"""
Normal of a facet of a hypersurface.
See [`cell_normal`]@ref for the computation method.
"""
struct CellNormal <: AbstractLazy
function CellNormal(mesh::AbstractMesh)
@assert topodim(mesh) < spacedim(mesh) "CellNormal has only sense when dealing with hypersurface, maybe you confused it with FaceNormal?"
return new()
end
end
LazyOperators.materialize(ν::CellNormal, ::CellInfo) = ν
function LazyOperators.materialize(::CellNormal, cPoint::CellPoint{ReferenceDomain})
ctype = get_celltype(cPoint)
cnodes = get_cellnodes(cPoint)
ξ = get_coords(cPoint)
return cell_normal(ctype, cnodes, ξ)
end
function LazyOperators.materialize(
ν::CellNormal,
::AbstractSide{Nothing, <:Tuple{<:FaceInfo}},
)
ν
end
function LazyOperators.materialize(
::CellNormal,
sideFacePoint::Side⁻{Nothing, <:Tuple{<:FacePoint}},
)
fPoint, = get_args(sideFacePoint)
fInfo = get_faceinfo(fPoint)
cInfo = get_cellinfo_n(fInfo)
cnodes = nodes(cInfo)
ctype = celltype(cInfo)
ξcell = get_coords(side_n(fPoint))
return cell_normal(ctype, cnodes, ξcell)
end
function LazyOperators.materialize(
::CellNormal,
sideFacePoint::Side⁺{Nothing, <:Tuple{<:FacePoint}},
)
fPoint, = get_args(sideFacePoint)
fInfo = get_faceinfo(fPoint)
cInfo = get_cellinfo_p(fInfo)
cnodes = nodes(cInfo)
ctype = celltype(cInfo)
ξcell = get_coords(side_p(fPoint))
return cell_normal(ctype, cnodes, ξcell)
end
_tangential_projector(ν) = I - (ν ⊗ ν)
tangential_projector(mesh) = _tangential_projector ∘ CellNormal(mesh)
LazyOperators.materialize(f::Function, ::CellInfo) = f
LazyOperators.materialize(f::Function, ::CellPoint) = f
LazyOperators.materialize(f::Function, ::FaceInfo) = f
LazyOperators.materialize(f::Function, ::FacePoint) = f
LazyOperators.materialize(a::AbstractArray{<:Number}, ::CellInfo) = a
LazyOperators.materialize(a::AbstractArray{<:Number}, ::FaceInfo) = a
LazyOperators.materialize(a::AbstractArray{<:Number}, ::CellPoint) = a
LazyOperators.materialize(a::AbstractArray{<:Number}, ::FacePoint) = a
LazyOperators.materialize(a::Number, ::CellInfo) = a
LazyOperators.materialize(a::Number, ::FaceInfo) = a
LazyOperators.materialize(a::Number, ::CellPoint) = a
LazyOperators.materialize(a::Number, ::FacePoint) = a
LazyOperators.materialize(a::LinearAlgebra.UniformScaling, ::CellInfo) = a
LazyOperators.materialize(a::LinearAlgebra.UniformScaling, ::FaceInfo) = a
LazyOperators.materialize(a::LinearAlgebra.UniformScaling, ::CellPoint) = a
LazyOperators.materialize(a::LinearAlgebra.UniformScaling, ::FacePoint) = a
LazyOperators.materialize(f::Function, ::AbstractLazy) = f
LazyOperators.materialize(a::AbstractArray{<:Number}, ::AbstractLazy) = a
LazyOperators.materialize(a::Number, ::AbstractLazy) = a
LazyOperators.materialize(a::LinearAlgebra.UniformScaling, ::AbstractLazy) = a
"""
get_return_type_and_codim(f::AbstractLazy, elementInfo::AbstractDomainIndex)
get_return_type_and_codim(f::AbstractLazy, domain::AbstractDomain)
get_return_type_and_codim(f::AbstractLazy, mesh::AbstractMesh)
Evaluate the returned type and the codimension of `materialize(f,x)` where
`x` is a `ElementPoint` from `elementInfo` (or `domain`/`mesh`).
The returned codimension is always a Tuple, even for a scalar.
"""
function get_return_type_and_codim(f::AbstractLazy, elementInfo::AbstractDomainIndex)
fₑ = materialize(f, elementInfo)
elementPoint = get_dummy_element_point(elementInfo)
value = materialize(fₑ, elementPoint)
N = value isa Number ? (1,) : size(value)
T = eltype(value)
return T, N
end
function get_return_type_and_codim(f::AbstractLazy, domain::AbstractDomain)
get_return_type_and_codim(f, first(DomainIterator(domain)))
end
function get_return_type_and_codim(f::AbstractLazy, mesh::AbstractMesh)
get_return_type_and_codim(f, CellInfo(mesh, 1))
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 8513 | abstract type DomainStyle end
LazyOperators.pretty_name(a::DomainStyle) = string(typeof(a))
"""
ReferenceDomain()
Subtype of [`DomainStyle`](@ref) used to describe function that are
defined on reference shape of the corresponding cell.
"""
struct ReferenceDomain <: DomainStyle end
"""
PhysicalDomain()
Subtype of [`DomainStyle`](@ref) used to describe function that are
defined on the physical cell.
"""
struct PhysicalDomain <: DomainStyle end
"""
DomainStyle(a)
Return the domain style of `a` (reference or local)
"""
function DomainStyle(a)
error("`DomainStyle` is not defined for $(typeof(a))")
end
"""
change_domain(a, target_domain::DomainStyle)
"""
function change_domain(a, target_domain::DomainStyle)
change_domain(a, DomainStyle(a), target_domain)
end
change_domain(a, input_domain::T, target_domain::T) where {T <: DomainStyle} = a
function change_domain(a, input_domain::DomainStyle, target_domain::DomainStyle)
error("`change_domain` is not defined for $(typeof(f))")
end
"""
same_domain(a, b)
Return `Val(true)` if `a` and `b` have the same `DomainStyle`.
Return `Val(false)` otherwise.
"""
same_domain(a, b) = same_domain(DomainStyle(a), DomainStyle(b))
same_domain(a::DS, b::DS) where {DS <: DomainStyle} = Val(true)
same_domain(a::DomainStyle, b::DomainStyle) = Val(false)
"""
common_target_domain(a, b)
Return a commom target `DomainStyle` for `a` and `b`.
"""
common_target_domain(a, b) = common_target_domain(DomainStyle(a), DomainStyle(b))
common_target_domain(a::DS, b::DS) where {DS <: DomainStyle} = DS()
common_target_domain(a, b, c...) = common_target_domain(common_target_domain(a, b), c...)
# make `PhysicalDomain` "wins" by default :
common_target_domain(a::ReferenceDomain, b::PhysicalDomain) = PhysicalDomain()
common_target_domain(a::PhysicalDomain, b::ReferenceDomain) = PhysicalDomain()
"""
AbstractCellPoint{DS}
Abstract type to represent a point defined in a cell.
# Subtypes should implement :
* `get_coords(p::AbstractCellPoint)`
* `change_domain(p::AbstractCellPoint, ds::DomainStyle)`
"""
abstract type AbstractCellPoint{DS} end
DomainStyle(p::AbstractCellPoint{DS}) where {DS} = DS()
function get_coords(p::AbstractCellPoint)
error("`get_coords` is not defined for $(typeof(p))")
end
change_domain(p::AbstractCellPoint{DS}, ::DS) where {DS <: DomainStyle} = p
function change_domain(p::AbstractCellPoint, ds::DomainStyle)
error("`change_domain` is not defined for $(typeof(p)) and $(typeof(ds))")
end
struct CellPoint{DS, T, C} <: AbstractCellPoint{DS}
x::T
cellinfo::C
end
"""
CellPoint(x, c::CellInfo, ds::DomainStyle)
Subtype of [`AbstractCellPoint`](@ref) used to defined of point in a cell.
An `AbstractCellFunction` can be easily and efficiently evaluated at a `CellPoint`.
`x` can be a tuple or an array of several coordinates of points.
"""
function CellPoint(x::T, c::C, ds::DS) where {T, C <: CellInfo, DS <: DomainStyle}
CellPoint{DS, T, C}(x, c)
end
get_coords(p::CellPoint) = p.x
get_cellinfo(p::CellPoint) = p.cellinfo
get_cellnodes(p::CellPoint) = nodes(get_cellinfo(p))
get_celltype(p::CellPoint) = celltype(get_cellinfo(p))
function change_domain(p::CellPoint{ReferenceDomain}, target_domain::PhysicalDomain)
m(x) = mapping(celltype(p.cellinfo), nodes(p.cellinfo), x)
x_phy = _apply_mapping(m, get_coords(p))
CellPoint(x_phy, p.cellinfo, target_domain)
end
function change_domain(p::CellPoint{PhysicalDomain}, target_domain::ReferenceDomain)
m(x) = mapping_inv(celltype(p.cellinfo), nodes(p.cellinfo), x)
x_ref = _apply_mapping(m, get_coords(p))
CellPoint(x_ref, p.cellinfo, target_domain)
end
"""
Apply mapping function `f` on a coordinates of a point or on a tuple/array of
several coordinates `x`.
"""
_apply_mapping(f, x) = f(x)
_apply_mapping(f, x::AbstractArray{<:AbstractArray}) = map(f, x)
_apply_mapping(f, x::Tuple{Vararg{AbstractArray}}) = map(f, x)
evaluate_at_cellpoint(f::Function, x::CellPoint) = _evaluate_at_cellpoint(f, get_coords(x))
_evaluate_at_cellpoint(f, x) = f(x)
_evaluate_at_cellpoint(f, x::AbstractArray{<:AbstractArray}) = map(f, x)
_evaluate_at_cellpoint(f, x::Tuple{Vararg{AbstractArray}}) = map(f, x)
"""
A `FacePoint` represent a point on a face. A face is a interface between two cells (except on the boundary).
A `FacePoint` is a `CellPoint` is the sense that its coordinates can always be expressed in the reference
coordinate of one of its adjacent cells.
"""
struct FacePoint{DS, T, F} <: AbstractCellPoint{DS}
x::T
faceInfo::F
end
get_coords(facePoint::FacePoint) = facePoint.x
get_faceinfo(facePoint::FacePoint) = facePoint.faceInfo
""" Constructor """
function FacePoint(x, faceInfo::FaceInfo, ds::DomainStyle)
FacePoint{typeof(ds), typeof(x), typeof(faceInfo)}(x, faceInfo)
end
"""
Return the opposite side of the `FacePoint`
"""
function opposite_side(fPoint::FacePoint)
return FacePoint(
get_coords(fPoint),
opposite_side(get_faceinfo(fPoint)),
DomainStyle(fPoint),
)
end
"""
Return the `CellPoint` corresponding to the `FacePoint` on negative side
"""
function side_n(facePoint::FacePoint{ReferenceDomain})
faceInfo = get_faceinfo(facePoint)
cellinfo_n = get_cellinfo_n(faceInfo)
f = mapping_face(shape(celltype(cellinfo_n)), get_cell_side_n(faceInfo))
return CellPoint(f(get_coords(facePoint)), cellinfo_n, ReferenceDomain())
end
"""
Return the `CellPoint` corresponding to the `FacePoint` on positive side
"""
function side_p(facePoint::FacePoint{ReferenceDomain})
faceInfo = get_faceinfo(facePoint)
cellinfo_n = get_cellinfo_n(faceInfo)
cellinfo_p = get_cellinfo_p(faceInfo)
# get global indices of nodes on the face from cell of side_n
cshape_n = shape(celltype(cellinfo_n))
cside_n = get_cell_side_n(faceInfo)
c2n_n = get_nodes_index(cellinfo_n)
f2n_n = c2n_n[faces2nodes(cshape_n, cside_n)] # assumption: shape nodes can be directly indexed in entity nodes
## @bmxam
## NOTE : f2n_n == get_nodes_index(faceInfo) is not true in general
# get global indices of nodes on the face from cell of side⁺
cshape_p = shape(celltype(cellinfo_p))
cside_p = get_cell_side_p(faceInfo)
c2n_p = get_nodes_index(cellinfo_p)
f2n_p = c2n_p[faces2nodes(cshape_p, cside_p)] # assumption: shape nodes can be directly indexed in entity nodes
# types-stable version of `indexin(f2n_p, f2n_n)`
# which return an array of `Int` instead of `Union{Int,Nothing}``
permut = map(f2n_p) do j
for (i, k) in enumerate(f2n_n)
k === j && return i
end
return -1 # this must never happen
end
f = mapping_face(cshape_p, cside_p, permut)
return CellPoint(f(get_coords(facePoint)), cellinfo_p, ReferenceDomain())
end
function side_n(facePoint::FacePoint{PhysicalDomain})
return CellPoint(
get_coords(facePoint),
get_cellinfo_n(get_faceinfo(facePoint)),
PhysicalDomain(),
)
end
function side_p(facePoint::FacePoint{PhysicalDomain})
return CellPoint(
get_coords(facePoint),
get_cellinfo_p(get_faceinfo(facePoint)),
PhysicalDomain(),
)
end
""" @ghislainb : I feel like you could write only on common function for both CellPoint and FacePoint """
function change_domain(p::FacePoint{ReferenceDomain}, ::PhysicalDomain)
faceInfo = get_faceinfo(p)
m(x) = mapping(facetype(faceInfo), nodes(faceInfo), x)
x_phy = _apply_mapping(m, get_coords(p))
FacePoint(x_phy, faceInfo, PhysicalDomain())
end
ElementPoint(x, elementInfo::CellInfo, ds) = CellPoint(x, elementInfo, ds)
ElementPoint(x, elementInfo::FaceInfo, ds) = FacePoint(x, elementInfo, ds)
"""
get_dummy_element_point(elementInfo::AbstractDomainIndex)
get_dummy_element_point(domain::AbstractDomain)
Return a `CellPoint` (or a `FacePoint` depending on the
type of `elementInfo`) whose coordinates are equals
to the center of the reference shape of the element.
For a `domain` argument, the point is built from its firt element.
# Devs notes:
These utility functions can be used to easily materialize
a `CellFunction` and get the type of the result for example.
"""
function get_dummy_element_point(elementInfo::AbstractDomainIndex)
x = center(shape(get_element_type(elementInfo)))
ElementPoint(x, elementInfo, ReferenceDomain())
end
function get_dummy_element_point(domain::AbstractDomain)
elementInfo = first(DomainIterator(domain))
get_dummy_element_point(elementInfo)
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 2115 | abstract type AbstractMeshDataLocation end
struct CellData <: AbstractMeshDataLocation end
struct FaceData <: AbstractMeshDataLocation end
struct PointData <: AbstractMeshDataLocation end
"""
Represent a data whose values are known inside each cell/node/face of the mesh.
Note that the "values" can be anything : an vector of scalar (conductivity by cell), an array
of functions, etc.
# Example
```julia
n = 10
mesh = line_mesh(n)
data = MeshCellData(rand(n))
data = MeshCellData([PhysicalFunction(x -> i*x) for i in 1:n])
```
"""
struct MeshData{L <: AbstractMeshDataLocation, T <: AbstractVector} <: AbstractLazy
values::T
end
function MeshData(location::AbstractMeshDataLocation, values::AbstractVector)
MeshData{typeof(location), typeof(values)}(values)
end
get_values(data::MeshData) = data.values
set_values!(data::MeshData, values::Union{Number, AbstractVector}) = data.values .= values
get_location(::MeshData{L}) where {L} = L()
function LazyOperators.materialize(data::MeshData{CellData}, cInfo::CellInfo)
value = get_values(data)[cellindex(cInfo)]
return _wrap_value(value)
end
function LazyOperators.materialize(
data::MeshData{CellData},
side::Side⁻{Nothing, <:Tuple{<:FaceInfo}},
)
fInfo = get_args(side)[1]
cInfo_n = get_cellinfo_n(fInfo)
return materialize(data, cInfo_n)
end
function LazyOperators.materialize(
data::MeshData{CellData},
side::Side⁺{Nothing, <:Tuple{<:FaceInfo}},
)
fInfo = get_args(side)[1]
cInfo_p = get_cellinfo_p(fInfo)
return materialize(data, cInfo_p)
end
function LazyOperators.materialize(
data::MeshData{FaceData},
side::AbstractSide{Nothing, <:Tuple{<:FaceInfo}},
)
fInfo = get_args(side)[1]
value = get_values(data)[faceindex(fInfo)]
return _wrap_value(value)
end
_wrap_value(value) = value
_wrap_value(value::Union{Number, AbstractArray}) = ReferenceFunction(ξ -> value, Val(1))
MeshCellData(values::AbstractVector) = MeshData(CellData(), values)
MeshFaceData(values::AbstractVector) = MeshData(FaceData(), values)
MeshPointData(values::AbstractVector) = MeshData(PointData(), values)
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 10114 | # REF:
# https://www.brown.edu/research/projects/scientific-computing/sites/brown.edu.research.projects.scientific-computing/files/uploads/Maximum-principle-satisfying%20and%20positivity-preserving.pdf
function linear_scaling_limiter_coef(
v::SingleFieldFEFunction,
dω::Measure,
bounds,
DMPrelax,
periodicBCs::Union{Nothing, NTuple{N, <:BoundaryFaceDomain{Me, BC}}},
) where {N, Me, BC <: PeriodicBCType}
@assert is_discontinuous(get_fespace(v)) "LinearScalingLimiter only support discontinuous variables"
mesh = get_mesh(get_domain(dω))
mean = get_values(cell_mean(v, dω))
limiter = similar(mean)
minval = similar(mean)
minval .= typemax(eltype(minval))
maxval = similar(mean)
maxval .= -minval
_minmax_cells!(minval, maxval, v, dω)
_minmax_faces!(minval, maxval, v, dω)
if !isnothing(periodicBCs)
for domain in periodicBCs
_minmax_faces_periodic!(minval, maxval, v, degquad, domain)
end
end
minval_mean = similar(mean)
minval_mean .= typemax(eltype(minval))
maxval_mean = similar(mean)
maxval_mean .= -minval_mean
_mean_minmax_cells!(minval_mean, maxval_mean, mean, mesh)
if !isnothing(periodicBCs)
for domain in periodicBCs
_mean_minmax_cells_periodic!(minval_mean, maxval_mean, mean, domain)
end
end
# relax DMP
@. minval_mean = minval_mean - DMPrelax
@. maxval_mean = maxval_mean + DMPrelax
# impose strong physical bounds
if !isnothing(bounds)
@. minval_mean = max(minval_mean, bounds[1])
@. maxval_mean = min(maxval_mean, bounds[2])
end
for i in 1:ncells(mesh)
limiter[i] = _compute_scalar_limiter(
mean[i],
minval[i],
maxval[i],
minval_mean[i],
maxval_mean[i],
)
end
MeshCellData(limiter), MeshCellData(mean)
end
"""
_mean_minmax_cells!(minval_mean, maxval_mean, mean, mesh)
For each cell, compute the min and max of mean values (in the `mean` array)
of the neighbor cells.
So `minval_mean[i]` is the minimum of the mean values of cells surrounding cell `i`.
"""
function _mean_minmax_cells!(minval_mean, maxval_mean, mean, mesh)
f2c = connectivities_indices(mesh, :f2c)
minval_mean .= mean
maxval_mean .= mean
for kface in 1:nfaces(mesh)
_f2c = f2c[kface]
if length(_f2c) > 1
i = _f2c[1]
j = _f2c[2]
minval_mean[i] = min(mean[j], minval_mean[i])
maxval_mean[i] = max(mean[j], maxval_mean[i])
minval_mean[j] = min(mean[i], minval_mean[j])
maxval_mean[j] = max(mean[i], maxval_mean[j])
end
end
return nothing
end
function _mean_minmax_cells_periodic!(minval_mean, maxval_mean, mean, periodicBcDomain)
error("TODO")
# # TODO : add a specific API for the domain cache:
# perio_cache = get_cache(periodicBcDomain)
# _1, _2, _3, bnd_f2c, _5, _6 = perio_cache
# for kface in axes(bnd_f2c,1)
# i = bnd_f2c[kface, 1]
# j = bnd_f2c[kface, 2]
# minval_mean[i] = min(mean[j], minval_mean[i])
# maxval_mean[i] = max(mean[j], maxval_mean[i])
# minval_mean[j] = min(mean[i], minval_mean[j])
# maxval_mean[j] = max(mean[i], maxval_mean[j])
# end
return nothing
end
function _minmax_cells(v, mesh, quadrature)
c2n = connectivities_indices(mesh, :c2n)
cellTypes = cells(mesh)
val = map(1:ncells(mesh)) do i
# mᵢ, Mᵢ : min/max at cell quadrature points
ctypeᵢ = cellTypes[i]
cnodesᵢ = get_nodes(mesh, c2n[i])
cᵢ = CellInfo(i, ctypeᵢ, cnodesᵢ)
vᵢ = materialize(v, cᵢ)
fᵢ(ξ) = vᵢ(CellPoint(ξ, cᵢ, ReferenceDomain()))
quadrule = QuadratureRule(shape(ctypeᵢ), quadrature)
mᵢ, Mᵢ = _minmax(fᵢ, quadrule)
mᵢ, Mᵢ
end
return val
end
"""
_minmax_cells!(minval, maxval, v, dω)
Compute the min and max values of `v` in each cell of `dω`
"""
function _minmax_cells!(minval, maxval, v, dω)
domain = get_domain(dω)
quadrature = get_quadrature(dω)
for (i, cellInfo) in enumerate(DomainIterator(domain))
# mᵢ, Mᵢ : min/max at cell quadrature points
vᵢ = materialize(v, cellInfo)
fᵢ(ξ) = vᵢ(CellPoint(ξ, cellInfo, ReferenceDomain()))
quadrule = QuadratureRule(shape(celltype(cellInfo)), quadrature)
mᵢ, Mᵢ = _minmax(fᵢ, quadrule)
minval[i] = min(mᵢ, minval[i])
maxval[i] = max(Mᵢ, maxval[i])
end
return nothing
end
function _minmax_faces!(minval, maxval, v, dω::AbstractMeasure{<:AbstractCellDomain})
dΓ = Measure(AllFaceDomain(get_mesh(get_domain(dω))), get_quadrature(dω))
_minmax_faces!(minval, maxval, v, dΓ)
end
function _minmax_faces!(minval, maxval, v, dω::AbstractMeasure{<:AbstractFaceDomain})
quadrature = get_quadrature(dω)
for faceInfo in DomainIterator(get_domain(dω))
i = cellindex(get_cellinfo_n(faceInfo))
j = cellindex(get_cellinfo_p(faceInfo))
mᵢⱼ, Mᵢⱼ, mⱼᵢ, Mⱼᵢ = _minmax_on_face(
side_n(v),
quadrature,
facetype(faceInfo),
faceInfo,
opposite_side(faceInfo),
)
minval[i] = min(mᵢⱼ, minval[i])
maxval[i] = max(Mᵢⱼ, maxval[i])
minval[j] = min(mⱼᵢ, minval[j])
maxval[j] = max(Mⱼᵢ, maxval[j])
end
return nothing
end
function _minmax_faces_periodic!(minval, maxval, v, degquad, periodicBcDomain)
error("TODO")
# mesh = get_mesh(v)
# c2n = connectivities_indices(mesh,:c2n)
# f2n = connectivities_indices(mesh,:f2n)
# f2c = connectivities_indices(mesh,:f2c)
# # TODO : add a specific API for the domain cache:
# perio_cache = get_cache(periodicBcDomain)
# A = transformation(get_bc(periodicBcDomain))
# bndf2f, bnd_f2n1, bnd_f2n2, bnd_f2c, bnd_ftypes, bnd_n2n = perio_cache
# cellTypes = cells(mesh)
# faceTypes = faces(mesh)
# for kface in axes(bnd_f2c,1)
# ftype = faceTypes[kface]
# _f2c = f2c[kface]
# # Neighbor cell i
# i = bnd_f2c[kface, 1]
# cnodesᵢ = get_nodes(mesh, c2n[i])
# ctypeᵢ = cellTypes[i]
# # Neighbor cell j
# j = bnd_f2c[kface, 2]
# cnodesⱼ = get_nodes(mesh, c2n[j])
# cnodesⱼ = map(n->Node(A(get_coords(n))), cnodesⱼ)
# ctypeⱼ = cellTypes[j]
# mᵢⱼ, Mᵢⱼ, mⱼᵢ, Mⱼᵢ = _minmax_on_face_periodic(v, degquad, i, j, kface, ftype, ctypeᵢ, ctypeⱼ, bnd_f2n1, bnd_f2n2, c2n, cnodesᵢ, cnodesⱼ, bnd_n2n)
# minval[i] = min(mᵢⱼ, minval[i])
# maxval[i] = max(Mᵢⱼ, maxval[i])
# minval[j] = min(mⱼᵢ, minval[j])
# maxval[j] = max(Mⱼᵢ, maxval[j])
# end
return nothing
end
function _minmax_on_face(v, quadrature, ftype, finfo_ij, finfo_ji)
quadrule = QuadratureRule(shape(ftype), quadrature)
face_map_ij(ξ) = FacePoint(ξ, finfo_ij, ReferenceDomain())
face_map_ji(ξ) = FacePoint(ξ, finfo_ji, ReferenceDomain())
v_ij = materialize(v, finfo_ij)
m_ij, M_ij = _minmax(v_ij ∘ face_map_ij, quadrule)
v_ji = materialize(v, finfo_ji)
m_ji, M_ji = _minmax(v_ji ∘ face_map_ji, quadrule)
return m_ij, M_ij, m_ji, M_ji
end
function _minmax_on_face_periodic(
v,
quadrature,
i,
j,
faceᵢⱼ,
ftypeᵢⱼ,
ctypeᵢ,
ctypeⱼ,
bnd_f2n1,
bnd_f2n2,
c2n,
cnodesᵢ,
cnodesⱼ,
bnd_n2n,
)
c2nᵢ = c2n[i, Val(nnodes(ctypeᵢ))]
c2nⱼ = c2n[j, Val(nnodes(ctypeⱼ))]
c2nⱼ_perio = map(k -> get(bnd_n2n, k, k), c2nⱼ)
sideᵢ = cell_side(ctypeᵢ, c2nᵢ, bnd_f2n1[faceᵢⱼ])
csᵢ = CellSide(i, sideᵢ, ctypeᵢ, cnodesᵢ, c2nᵢ)
sideⱼ = cell_side(ctypeⱼ, c2nⱼ, bnd_f2n2[faceᵢⱼ])
csⱼ = CellSide(j, sideⱼ, ctypeⱼ, cnodesⱼ, c2nⱼ_perio)
fp = FaceParametrization()
quadrule = QuadratureRule(shape(ftypeᵢⱼ), quadrature)
vᵢⱼ = (v ∘ fp)[Side(Side⁻(), (csᵢ, csⱼ))]
mᵢⱼ, Mᵢⱼ = _minmax(vᵢⱼ, quadrule)
vⱼᵢ = (v ∘ fp)[Side(Side⁻(), (csⱼ, csᵢ))]
mⱼᵢ, Mⱼᵢ = _minmax(vⱼᵢ, quadrule)
return mᵢⱼ, Mᵢⱼ, mⱼᵢ, Mⱼᵢ
end
# here we assume that f is define in ref. space
_minmax(f, quadrule::AbstractQuadratureRule) = extrema(f(ξ) for ξ in get_nodes(quadrule))
"""
_compute_scalar_limiter(v̅ᵢ, mᵢ, Mᵢ, m, M)
v̅ᵢ = mean
mᵢ = minval
Mᵢ = maxval
m = minval_mean
M = maxval_mean
"""
function _compute_scalar_limiter(v̅ᵢ, mᵢ, Mᵢ, m, M)
(Mᵢ - v̅ᵢ) < -10eps() && error("Invalid max value : Mᵢ=$Mᵢ, v̅ᵢ=$v̅ᵢ")
(v̅ᵢ - mᵢ) < -10eps() && error("Invalid min value : mᵢ=$mᵢ, v̅ᵢ=$v̅ᵢ")
(Mᵢ - v̅ᵢ) < eps() && return zero(v̅ᵢ)
(v̅ᵢ - mᵢ) < eps() && return zero(v̅ᵢ)
#abs(Mᵢ-v̅ᵢ) > 10*eps(typeof(M)) ? coef⁺ = abs((M-v̅ᵢ)/(Mᵢ-v̅ᵢ)) : coef⁺ = zero(M)
#abs(v̅ᵢ-mᵢ) > 10*eps(typeof(M)) ? coef⁻ = abs((v̅ᵢ-m)/(v̅ᵢ-mᵢ)) : coef⁻ = zero(M)
min(_ratio(M - v̅ᵢ, Mᵢ - v̅ᵢ), _ratio(v̅ᵢ - m, v̅ᵢ - mᵢ), 1.0)
end
_ratio(x, y) = abs(x / (y + eps(y)))
"""
linear_scaling_limiter(
u::SingleFieldFEFunction,
dω::Measure;
bounds::Union{Tuple{<:Number, <:Number}, Nothing} = nothing,
DMPrelax = 0.0,
periodicBCs::Union{Nothing, NTuple{N, <:BoundaryFaceDomain{Me, BC}}} = nothing,
mass = nothing,
) where {N, Me, BC <: PeriodicBCType}
Apply the linear scaling limiter (see "Maximum-principle-satisfying and positivity-preserving high order schemes for
conservation laws: Survey and new developments", Zhang & Shu).
`u_limited = u̅ + lim_u * (u - u̅)`
The first returned argument is the coefficient `lim_u`, and the second is `u_limited`.
"""
function linear_scaling_limiter(
u::SingleFieldFEFunction,
dω::Measure;
bounds::Union{Tuple{<:Number, <:Number}, Nothing} = nothing,
DMPrelax = 0.0,
periodicBCs::Union{Nothing, NTuple{N, <:BoundaryFaceDomain{Me, BC}}} = nothing,
mass = nothing,
) where {N, Me, BC <: PeriodicBCType}
lim_u, u̅ = linear_scaling_limiter_coef(u, dω, bounds, DMPrelax, periodicBCs)
u_lim = FEFunction(get_fespace(u), get_dof_type(u))
projection_l2!(u_lim, u̅ + lim_u * (u - u̅), dω; mass = mass)
lim_u, u_lim
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 6455 | """
var_on_vertices(f::AbstractFEFunction, mesh::Mesh)
Interpolate solution on mesh vertices.
The result is a (nnodes, ncomps) matrix if ncomps > 1, or a (nnodes) vector otherwise.
WARNING : for now, the contribution to one vertice is the arithmetic mean of
all the data obtained from the neighbor cells of this node. We could use
the surface area (among other possible choices).
"""
function var_on_vertices(f::AbstractLazy, mesh::Mesh)
T, N = get_return_type_and_codim(f, mesh)
@assert length(N) <= 1 "N = $(length(N)) > 1 not supported yet"
values = zeros(T, nnodes(mesh), N[1])
_var_on_vertices!(values, f, mesh)
return N[1] == 1 ? vec(values) : values
end
function _var_on_vertices!(values, f::AbstractLazy, mesh::Mesh)
# Alias
c2n = connectivities_indices(mesh, :c2n)
cellTypes = cells(mesh)
# Number of contributions per nodes
ncontributions = zeros(Int, nnodes(mesh))
# Loop over cells
for icell in 1:ncells(mesh)
# Cell information
ctype = cellTypes[icell]
cshape = shape(ctype)
_c2n = c2n[icell]
cnodes = get_nodes(mesh, _c2n)
cInfo = CellInfo(icell, ctype, cnodes)
# Materialize function on CellInfo
_f = materialize(f, cInfo)
# Loop over the cell nodes (in ref element)
for (inode, ξ) in zip(_c2n, get_coords(cshape))
cPoint = CellPoint(ξ, cInfo, ReferenceDomain())
ncontributions[inode] += 1
values[inode, :] .+= materialize(_f, cPoint)
end
end
# Arithmetic mean
for ic in axes(values, 2)
values[:, ic] .= values[:, ic] ./ ncontributions
end
end
"""
var_on_centers(f::AbstractLazy, mesh::AbstractMesh)
Interpolate solution on mesh centers.
The result is a (ncells, ncomps) matrix if ncomps > 1, or a (ncells) vector otherwise.
"""
function var_on_centers(f::AbstractLazy, mesh::AbstractMesh)
T, N = get_return_type_and_codim(f, mesh)
@assert length(N) <= 1 "N = $(length(N)) > 1 not supported yet"
values = zeros(T, ncells(mesh), N[1])
_var_on_centers!(values, f, mesh)
return N[1] == 1 ? vec(values) : values
end
function _var_on_centers!(values, f::AbstractLazy, mesh::AbstractMesh)
# Alias
c2n = connectivities_indices(mesh, :c2n)
celltypes = cells(mesh)
# Loop over cells
for icell in 1:ncells(mesh)
ctype = celltypes[icell]
cnodes = get_nodes(mesh, c2n[icell])
cInfo = CellInfo(icell, ctype, cnodes)
_f = materialize(f, cInfo)
ξc = center(shape(celltypes[icell]))
cPoint = CellPoint(ξc, cInfo, ReferenceDomain())
values[icell, :] .= materialize(_f, cPoint)
end
end
"""
var_on_nodes_discontinuous(f::AbstractLazy, mesh::AbstractMesh, degree::Integer)
var_on_nodes_discontinuous(f::AbstractFEFunction, mesh::AbstractMesh)
Returns an array containing the values of `f` interpolated to new DoFs.
The DoFs correspond to those of a discontinuous cell variable with a `:Lagrange` function space of selected `degree`.
If `f` is an `AbstractFEFunction` and no degree is provided, the degree is deduced from the associated space.
"""
function var_on_nodes_discontinuous(f::AbstractLazy, mesh::AbstractMesh, degree::Integer)
@assert degree ≥ 1 "degree must be ≥ 1"
fs = FunctionSpace(:Lagrange, degree) # here, we suppose that the mesh is composed of Lagrange elements only
_var_on_nodes_discontinuous(f, mesh, fs)
end
function var_on_nodes_discontinuous(f::AbstractFEFunction, mesh::AbstractMesh)
var_on_nodes_discontinuous(
f,
mesh,
max(1, get_degree(get_function_space(get_fespace(f)))),
)
end
"""
Apply the AbstractLazy on the nodes of the mesh using the `FunctionSpace` representation
for the cells.
"""
function _var_on_nodes_discontinuous(f::AbstractLazy, mesh::AbstractMesh, fs::FunctionSpace)
celltypes = cells(mesh)
c2n = connectivities_indices(mesh, :c2n)
# Loop on mesh cells
values = map(1:ncells(mesh)) do icell
ctype = celltypes[icell]
cnodes = get_nodes(mesh, c2n[icell])
cInfo = CellInfo(icell, ctype, cnodes)
_f = materialize(f, cInfo)
return map(get_coords(fs, shape(ctype))) do ξ
cPoint = CellPoint(ξ, cInfo, ReferenceDomain())
materialize(_f, cPoint)
end
end
return rawcat(values)
end
"""
var_on_bnd_nodes_discontinuous(f::AbstractLazy, fdomain::BoundaryFaceDomain, degree::Integer)
var_on_bnd_nodes_discontinuous(f::AbstractFEFunction, fdomain::BoundaryFaceDomain)
Returns an array containing the values of `f` interpolated to new DoFs on `fdomain`.
The DoFs locations on `fdomain` correspond to those of a discontinuous `FESpace`
with a `:Lagrange` function space of selected `degree`.
"""
function var_on_bnd_nodes_discontinuous(
f::AbstractLazy,
fdomain::BoundaryFaceDomain,
degree::Integer,
)
@assert degree ≥ 1 "degree must be ≥ 1"
fs = FunctionSpace(:Lagrange, degree) # here, we suppose that the mesh is composed of Lagrange elements only
_var_on_bnd_nodes_discontinuous(f, fdomain, fs)
end
function var_on_bnd_nodes_discontinuous(f::AbstractFEFunction, fdomain::BoundaryFaceDomain)
var_on_bnd_nodes_discontinuous(
f,
fdomain,
max(1, get_degree(get_function_space(get_fespace(f)))),
)
end
"""
Apply the AbstractLazy on the nodes of the `fdomain` using the `FunctionSpace` representation
for the cells.
"""
function _var_on_bnd_nodes_discontinuous(
f::AbstractLazy,
fdomain::BoundaryFaceDomain,
fs::FunctionSpace,
)
mesh = get_mesh(fdomain)
celltypes = cells(mesh)
c2n = connectivities_indices(mesh, :c2n)
f2n = connectivities_indices(mesh, :f2n)
f2c = connectivities_indices(mesh, :f2c)
bndfaces = get_cache(fdomain)
values = map(bndfaces) do iface
icell = f2c[iface][1]
ctype = celltypes[icell]
_c2n = c2n[icell]
cnodes = get_nodes(mesh, _c2n)
cinfo = CellInfo(icell, ctype, cnodes, _c2n)
_f = materialize(f, cinfo)
side = cell_side(ctype, _c2n, f2n[iface])
localfacedofs = idof_by_face_with_bounds(fs, shape(ctype))[side]
ξ_on_face = get_coords(fs, shape(ctype))[localfacedofs]
return map(ξ_on_face) do ξ
cPoint = CellPoint(ξ, cinfo, ReferenceDomain())
materialize(_f, cPoint)
end
end
return rawcat(values)
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 4329 | """
projection_l2!(u::AbstractSingleFieldFEFunction, f, mesh::AbstractMesh, [degree::Int])
projection_l2!(
u::AbstractSingleFieldFEFunction,
f,
mesh::AbstractMesh,
degree::Int;
kwargs...,
)
projection_l2!(u::AbstractSingleFieldFEFunction, f, dΩ::Measure; mass = nothing)
projection_l2!(u::MultiFieldFEFunction, f, args...; mass = nothing)
Compute dof values of `u` from a projection L2 so that:
```math
∫(u ⋅ v)dΩ = ∫(f ⋅ v)dΩ
```
where `dΩ` is the measure defined on the `CellDomain` of the `mesh` with a degree `D`
If `degree` is not given, the default value is set to `2d+1` where `d`
is the degree of the `function_space` of `u`.
Keyword argument `mass` could be used to give a precomputed matrix for
the left-hand term ``∫(u ⋅ v)dΩ``.
"""
function projection_l2!(u::AbstractSingleFieldFEFunction, f, mesh::AbstractMesh; kwargs...)
degree = 2 * get_degree(get_function_space(get_fespace(u))) + 1
projection_l2!(u, f, mesh, degree; kwargs...)
end
function projection_l2!(
u::AbstractSingleFieldFEFunction,
f,
mesh::AbstractMesh,
degree::Int;
kwargs...,
)
dΩ = Measure(CellDomain(mesh), degree)
projection_l2!(u, f, dΩ; kwargs...)
end
function projection_l2!(u::AbstractSingleFieldFEFunction, f, dΩ::Measure; mass = nothing)
@assert f isa AbstractLazy "`f` must be <:AbstractLazy : a `PhysicalFunction` for instance"
U = get_fespace(u)
V = TestFESpace(U)
if isa(mass, Nothing)
a(u, v) = ∫(u ⋅ v)dΩ
A = assemble_bilinear(a, U, V)
else
A = mass
end
l(v) = ∫(f ⋅ v)dΩ
T, = get_return_type_and_codim(f, get_domain(dΩ))
b = assemble_linear(l, V; T = T)
x = A \ b
set_dof_values!(u, x)
return nothing
end
function projection_l2!(u::MultiFieldFEFunction, f, args...; mass = nothing)
_mass = isa(mass, Nothing) ? ntuple(i -> nothing, length((u...,))) : mass
foreach(u, f, _mass) do uᵢ, fᵢ, mᵢ
projection_l2!(uᵢ, fᵢ, args...; mass = mᵢ)
end
end
struct CellMeanCache{FE, M, MM}
feSpace::FE
measure::M
massMatrix::MM
end
get_fespace(cache::CellMeanCache) = cache.feSpace
get_measure(cache::CellMeanCache) = cache.measure
get_mass_matrix(cache::CellMeanCache) = cache.massMatrix
function build_cell_mean_cache(u::AbstractSingleFieldFEFunction, dΩ::Measure)
mesh = get_mesh(get_domain(dΩ))
fs = FunctionSpace(:Lagrange, 0)
ncomp = get_ncomponents(get_fespace(u))
Umean = TrialFESpace(fs, mesh, :discontinuous; size = ncomp)
Vmean = TestFESpace(Umean)
mass = factorize(build_mass_matrix(Umean, Vmean, dΩ))
return CellMeanCache(Umean, dΩ, mass)
end
function build_cell_mean_cache(u::MultiFieldFEFunction, dΩ::Measure)
return map(Base.Fix2(build_cell_mean_cache, dΩ), get_fe_functions(u))
end
"""
cell_mean(q::MultiFieldFEFunction, dω::Measure)
cell_mean(q::SingleFieldFEFunction, dω::Measure)
Return a vector containing mean cell values of `q`
computed according quadrature rules defined by measure `dω`.
# Dev note
* This function should be moved to a better file **(TODO)**
"""
function cell_mean(u, dΩ::Measure)
cache = build_cell_mean_cache(u, dΩ)
return cell_mean(u, cache)
end
function cell_mean(u::MultiFieldFEFunction, cache::Tuple{Vararg{CellMeanCache}})
return map(get_fe_functions(u), cache) do uᵢ, cacheᵢ
cell_mean(uᵢ, cacheᵢ)
end
end
function cell_mean(u::AbstractFEFunction, cache::CellMeanCache)
Umean = get_fespace(cache)
u_mean = FEFunction(Umean, get_dof_type(u))
projection_l2!(u_mean, u, get_measure(cache); mass = get_mass_matrix(cache))
values = _reshape_cell_mean(u_mean, Val(get_size(Umean)))
return MeshCellData(values)
end
function _reshape_cell_mean(u::SingleFieldFEFunction, ncomp::Val{N}) where {N}
ncell = Int(length(get_dof_values(u)) / N)
map(1:ncell) do i
_may_scalar(get_dof_values(u, i, ncomp))
end
end
_may_scalar(a::SVector{1}) = a[1]
_may_scalar(a) = a
cell_mean(u::MeshData{CellData}, ::Measure) = u
function build_mass_matrix(u::AbstractFEFunction, dΩ::AbstractMeasure)
U = get_fespace(u)
V = TestFESpace(U)
return build_mass_matrix(U, V, dΩ)
end
function build_mass_matrix(U, V, dΩ::AbstractMeasure)
m(u, v) = ∫(u ⋅ v)dΩ
return assemble_bilinear(m, U, V)
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 18258 | """
The `DofHandler` handles the degree of freedom numbering. To each degree of freedom
is associated a unique integer.
"""
struct DofHandler
# N : number of components
# Naturally, `iglob` would be a (ndofs, ncell) array. Since
# the first dimension, the number of dofs in a cell, depends on the cell
# (ex tri vs quad), a flattened array is used. So here `iglob` is Vector
# whose size is the total number of dofs of the problem.
# Warning : for a complete discontinous discretization, `iglob` is simply
# `iglob = 1:ndofs_tot`,
# but if a continous variable is present, `iglob` reflects that two dofs
# of different cells can share the same global index.
iglob::Vector{Int}
# Array of size (ncell, ncomps) indicating the positions in `iglob` of the
# global dof indices for a given cell and a given component (=1 for scalar).
# So `offset[icell,icomp] + idof` is the position, in `iglob` of the `idof`
# local dof for the component `icomp` in cell `icell`
offset::Matrix{Int}
# Number of dofs in each cell for each component. This can be computed from `offset`
# but easily. It's faster and easier to store the information in this (ncells, ncomps)
ndofs::Matrix{Int}
# Total number of unique DoFs
ndofs_tot::Int
end
"""
DofHandler(mesh::Mesh, fSpace::AbstractFunctionSpace, ncomponents::Int, isContinuous::Bool)
Constructor of a DofHandler for a `SingleFESpace` on a `Mesh`.
"""
function DofHandler(
mesh::Mesh,
fSpace::AbstractFunctionSpace,
ncomponents::Int,
isContinuous::Bool,
)
# Get cell types
celltypes = cells(mesh)
# Allocate
# `offset` indicates, for each cell, the "position" of the dofs of the cell in the `iglob` vector
# `_ndofs` indicates the number of dofs of each cell
offset = zeros(Int, ncells(mesh), ncomponents)
_ndofs = zeros(Int, ncells(mesh), ncomponents)
# First we assume a "discontinuous" type
ndofs_tot = sum(cell -> ncomponents * get_ndofs(fSpace, shape(cell)), cells(mesh))
iglob = collect(1:ndofs_tot)
curr = 0 # Current offset value. Init to obtain '0' as the first element of `offset`
next = 0 # Next offset value
for icell in 1:ncells(mesh)
for icomp in 1:ncomponents
# Fill offset
offset[icell, icomp] = curr + next
curr = offset[icell, icomp]
next = get_ndofs(fSpace, shape(celltypes[icell]))
# Fill ndofs
_ndofs[icell, icomp] = get_ndofs(fSpace, shape(celltypes[icell]))
end
end
# At this point, we have everything we need for the DofHandler of a discontinuous variable.
# The lines below handle the case of a continuous variable,
if isContinuous
# We get some connectivites
c2n = connectivities_indices(mesh, :c2n) # cell -> node
# Create dictionnaries (explanations to be completed)
# Dict([kvar, Set(inodes)] => [icell, Set(idofs_g)])
# dict : key = set of global indices of nodes of a face, values = (cell index, global indices of dofs)
dict_n = Dict{Tuple{Int, Int}, Tuple{Int, Vector{Int}}}()
dict_e = Dict{Tuple{Int, Set{Int}}, Tuple{Int, Vector{Int}}}()
dict_f = Dict{Tuple{Int, Set{Int}}, Tuple{Int, Vector{Int}}}()
# Below, a '_l' suffix means "local" by opposition with the '_g' suffix meaning "global"
# Loop on mesh cells
for icell in 1:ncells(mesh)
# Global indices of the cell's nodes
inodes_g = c2n[icell]
# Cell type and shape
ct = celltypes[icell]
s = shape(ct)
# Cell edges, defined by tuples of absolute number indices
# @ghislainb the second line should be improved, I just want to map the "local indices"
# tuple of tuple ((1,2), (3,4)) into global indices array of arrays [[23,109],[948, 653]]
# (arrays instead of tuples because your function "oriented_cell_side" need arrays)
_e2n = edges2nodes(ct)
e2n_g = [[inodes_g[i] for i in edge] for edge in _e2n]
# Cell faces, defined by tuples of absolute number indices
_f2n = faces2nodes(ct)
f2n_g = [[inodes_g[i] for i in face] for face in _f2n]
# Loop over the variables
for icomp in 1:ncomponents
# Remark : we need to distinguish vertices, edges, faces because two cells
# can share dofs with an edge without having a face in common.
#--- Deal with dofs on vertices
_deal_with_dofs_on_vertices!(
dict_n,
iglob,
offset,
icell,
inodes_g,
s,
icomp,
fSpace,
)
#--- Deal with dofs on edges
(topodim(mesh) > 1) && _deal_with_dofs_on_edges!(
dict_e,
iglob,
offset,
c2n,
celltypes,
icell,
e2n_g,
s,
icomp,
fSpace,
)
#--- Deal with dofs on faces
(topodim(mesh) > 2) && _deal_with_dofs_on_faces!(
dict_f,
iglob,
offset,
c2n,
celltypes,
icell,
f2n_g,
s,
fSpace,
icomp,
)
end
end
end
# Create a cell number remapping to ensure a dense numbering
densify!(iglob)
ndofs_tot = length(unique(iglob))
return DofHandler(iglob, offset, _ndofs, ndofs_tot)
end
@inline get_offset(dhl::DofHandler) = dhl.offset
@inline get_offset(dhl::DofHandler, icell::Int, icomp::Int) = dhl.offset[icell, icomp]
@inline get_iglob(dhl::DofHandler, i) = dhl.iglob[i]
@inline get_iglob(dhl::DofHandler) = dhl.iglob
"""
deal_with_dofs_on_vertices!(dict, iglob, offset, icell::Int, inodes_g, s::AbstractShape, kvar::Int, fs)
Function dealing with dofs shared by different cell through a vertex connection.
TODO : remove kvar
# Arguments
- `dict` may be modified by this routine
- `iglob` may be modified by this routine
- `offset` may be modified by this routine
- `fs` : FunctionSpace of var `kvar`
- `icell` : cell index
- `kvar` : var index
- `s` : shape of `icell`-th cell
- `inodes_g` : global indices of nodes of `icell`
"""
function _deal_with_dofs_on_vertices!(
dict::Dict{Tuple{Int, Int}, Tuple{Int, Vector{Int}}},
iglob,
offset,
icell::Int,
inodes_g,
s::AbstractShape,
kvar::Int,
fs::AbstractFunctionSpace,
)
# Local indices of the dofs on each vertex of the shape
idofs_array_l = idof_by_vertex(fs, s)
# Exit prematurely if there are no dof on any vertex of the shape
length(idofs_array_l[1]) > 0 || return
# Loop over shape vertices
for i in 1:nvertices(s)
inode_g = inodes_g[i] # This is an Int
idofs_l = idofs_array_l[i] # This is an Array of Int (local indices of dofs of node 'i')
key = (kvar, inode_g)
# If the dict already contains the vertex :
# - we get the neighbour cell index
# - we copy all the global indices of dofs of `jcell` in the corresponding
# global indices of `icell` dofs (`jcell` is useless here actually...)
if haskey(dict, key)
jcell, jdofs_g = dict[key]
for d in 1:length(jdofs_g)
iglob[offset[icell, kvar] + idofs_l[d]] = jdofs_g[d]
end
# If the dict doesn't contain this vertex, we add the global indices
# of `icell`
else
idofs_g = iglob[offset[icell, kvar] .+ idofs_l]
dict[key] = (icell, idofs_g)
end
end
end
"""
deal_with_dofs_on_edges!(dict, iglob, offset, c2n, celltypes, icell::Int, inodes_g, e2n_g, s::AbstractShape, kvar::Int, fs)
Function dealing with dofs shared by different cell through an edge connection (excluding bord vertices).
TODO : remove kvar
# Arguments
- `dict` may be modified by this routine
- `iglob` may be modified by this routine
- `offset` may be modified by this routine
- `fs` : FunctionSpace of var `kvar`
- `icell` : cell index
- `kvar` : var index
- `s` : shape of `icell`-th cell
- `inodes_g` : global indices of nodes of `icell`
"""
function _deal_with_dofs_on_edges!(
dict::Dict{Tuple{Int, Set{Int}}, Tuple{Int, Vector{Int}}},
iglob,
offset,
c2n,
celltypes,
icell::Int,
e2n_g,
s::AbstractShape,
kvar::Int,
fs::AbstractFunctionSpace,
)
# Local indices of the dofs on each edges of the shape
idofs_array_l = idof_by_edge(fs, s)
# Exit prematurely if there are no dof on any edge of the shape
length(idofs_array_l[1]) > 0 || return
etypes = edgetypes(celltypes[icell])
# Loop over the cell edges
for iedge in 1:nedges(s)
inodes_g = e2n_g[iedge] # This is a Tuple of Int (global indices of nodes defining the edge)
idofs_l = idofs_array_l[iedge] # This is an Array of Int (local indices of dofs of edge 'i')
key = (kvar, Set(inodes_g))
# If the dict already contains the edge :
# - we get the neighbour cell index
# - we find the local index of the shared edge in jcell
# - we copy all the global indices of dofs of `jcell` in the corresponding
# global indices of `icell` dofs
if haskey(dict, key)
jcell, jdofs_g = dict[key]
# Retrieve local index of the edge in jcell
jside = oriented_cell_side(celltypes[jcell], c2n[jcell], inodes_g)
# Reverse dofs array if jside is negative
jdofs_reordered_g = (jside > 0) ? jdofs_g : reverse(jdofs_g)
# Copy global indices
for d in 1:length(jdofs_g)
iglob[offset[icell, kvar] + idofs_l[d]] = jdofs_reordered_g[d]
end
# If the dict doesn't contain this edge, we add the global indices
# of `icell`
else
idofs_g = iglob[offset[icell, kvar] .+ idofs_l]
dict[key] = (icell, idofs_g)
end
end
end
"""
TODO : remove kvar
# Arguments
- f2n_g : local face index -> global nodes indices
"""
function _deal_with_dofs_on_faces!(
dict,
iglob,
offset,
c2n,
celltypes,
icell::Int,
f2n_g::Vector{Vector{Int}},
s::AbstractShape,
fs::AbstractFunctionSpace,
kvar::Int,
)
# Local indices of the dofs on each face of the shape, excluding the boundary (nodes and/or edges)
idofs_array_l = idof_by_face(fs, s) # This is a Tuple of Vector{Int}
# Exit prematurely if there are no dof on any face of the shape
sum(length.(idofs_array_l)) > 0 || return
# Loop over cell faces
for iface_l in 1:nfaces(s)
ne = nedges(s)
iface_nodes_g = f2n_g[iface_l] # This is a Tuple of Int (global indices of nodes defining the face)
idofs_l = idofs_array_l[iface_l] # This is an Array of Int (local indices of dofs of face 'i')
# Create a Set from the global indices of the face nodes to "tag" the face.
key = (kvar, Set(iface_nodes_g))
# If the dict already contains the face :
# - we get the neighbour cell index
# - we find the local index of the shared face in jcell
# - we find the permutation between the two faces
# - we copy all the global indices of dofs of `jcell` in the corresponding
# global indices of `icell` dofs
if haskey(dict, key)
jcell, jdofs_g = dict[key]
# Cell nodes and type
jcell_nodes_g = c2n[jcell]
jct = celltypes[jcell]
# Retrieve local index of the face in jcell
jside = oriented_cell_side(jct, jcell_nodes_g, iface_nodes_g)
jface_l = abs(jside) # local index of the face of `jcell` corresponding to `iface`
# Global indices of the face nodes and mapping between `iface` and `jface`
jface_nodes_g = [jcell_nodes_g[j] for j in faces2nodes(jct, jface_l)]
i2j = indexin(iface_nodes_g, jface_nodes_g) # jface_nodes_g[i2j] == iface_nodes_g
# Number of dofs "by edge" (= "by node") (these dofs are not on a edge, we are just looking
# for a multiple of the number of edges).
# Note the use of `÷` because if there is a center dof, we want to exclude it
nd_by_edge = length(jdofs_g) ÷ ne
# We want to loop inside `jdofs_g`, but starting with the dofs "corresponding" to the first
# node of face i. If the faces starts with the same node, offset is 0. If "iface-node-1"
# corresponds to "jface-node-3", we want to skip the 3*nd_by_edge first dofs.
i_offset = nd_by_edge * (i2j[1] - 1)
# Reorder dofs
# `jdofs_reordered_g` is similar to jdofs_g, but reordered in the same way as "idofs_g"
jdofs_reordered_g = Int[] # we know the final size, but it is easier to init it like this
sizehint!(jdofs_reordered_g, length(jdofs_g))
if (nd_by_edge > 0) # need this check (for instance only a center dof) otherwise error is raised with iterator
iterator = Iterators.cycle(jdofs_g[1:(nd_by_edge * ne)]) # this removes, eventually, any "center dof"
(jside < 0) && (iterator = Iterators.reverse(iterator))
iterator = Iterators.rest(iterator, i_offset)
for (j, jdof_g) in enumerate(iterator)
push!(jdofs_reordered_g, jdof_g)
(j == length(jdofs_reordered_g)) && break
end
end
# Add any remaining center dofs (skipped if not needed)
for j in (length(jdofs_reordered_g) + 1):length(jdofs_g)
push!(jdofs_reordered_g, jdofs_g[j])
end
# Copy global indices
for d in 1:length(jdofs_reordered_g)
iglob[offset[icell, kvar] + idofs_l[d]] = jdofs_reordered_g[d]
end
# If the dict doesn't contain this face, we add the global indices
# of `icell`
else
idofs_g = iglob[offset[icell, kvar] .+ idofs_l]
dict[key] = (icell, idofs_g)
end
end
end
# """
# _max_ndofs(mesh, var)
# Count maximum number of dofs per cell.
# # Warning
# Only working for an array of SCALAR vars
# """
# function _max_ndofs(mesh, var)
# @assert size(var) == 1 "Only SCALAR vars are supported"
# max_ndofs = 0
# for cell in cells(mesh)
# max_ndofs = max(max_ndofs, get_ndofs(function_space(var), shape(cell)))
# end
# return max_ndofs
# end
"""
max_ndofs(dhl::DofHandler)
Count maximum number of dofs per cell, all components mixed
"""
max_ndofs(dhl::DofHandler) = maximum(dhl.ndofs)
"""
get_ndofs(dhl, icell, kvar::Int)
Number of dofs for a given variable in a given cell.
# Example
```julia
mesh = one_cell_mesh(:line)
dhl = DofHandler(mesh, Variable(:u, FunctionSpace(:Lagrange, 1)))
@show get_ndofs(dhl, 1, 1)
```
"""
@inline get_ndofs(dhl::DofHandler, icell, kvar::Int) = dhl.ndofs[icell, kvar]
"""
get_ndofs(dhl, icell, icomp::Vector{Int})
Number of dofs for a given set of components in a given cell.
# Example
```julia
mesh = one_cell_mesh(:line)
dhl = DofHandler(mesh, Variable(:u, FunctionSpace(:Lagrange, 1); size = 2))
@show get_ndofs(dhl, 1, [1, 2])
```
"""
@inline function get_ndofs(dhl::DofHandler, icell, icomp::AbstractVector{Int})
sum(dhl.ndofs[icell, icomp])
end
@inline function get_ndofs(dhl::DofHandler, icell, icomp::UnitRange{Int})
sum(view(dhl.ndofs, icell:icell, icomp))
end
"""
get_ndofs(dhl::DofHandler, icell)
Number of dofs for a given cell.
Note that for a vector variable, the total (accross all components) number of dofs is returned.
# Example
```julia
mesh = one_cell_mesh(:line)
dhl = DofHandler(mesh, Variable(:u, FunctionSpace(:Lagrange, 1)))
@show get_ndofs(dhl, 1, :u)
```
"""
get_ndofs(dhl::DofHandler, icell) = sum(view(dhl.ndofs, icell, :))
"""
get_ndofs(dhl::DofHandler)
Total number of dofs. This function takes into account that dofs can be shared by multiple cells.
# Example
```julia
mesh = one_cell_mesh(:line)
dhl = DofHandler(mesh, Variable(:u, FunctionSpace(:Lagrange, 1)))
@show get_ndofs(dhl::DofHandler)
```
"""
get_ndofs(dhl::DofHandler) = dhl.ndofs_tot
"""
get_dof(dhl::DofHandler, icell, icomp::Int, idof::Int)
Global index of the `idof` local degree of freedom of component `icomp` in cell `icell`.
# Example
```julia
mesh = one_cell_mesh(:line)
dhl = DofHandler(mesh, Variable(:u, FunctionSpace(:Lagrange, 1)))
@show get_dof(dhl, 1, 1, 1)
```
"""
function get_dof(dhl::DofHandler, icell, icomp::Int, idof::Int)
dhl.iglob[dhl.offset[icell, icomp] + idof]
end
"""
get_dof(dhl::DofHandler, icell, icomp::Int)
Global indices of all the dofs of a given component in a given cell
# Example
```julia
mesh = one_cell_mesh(:line)
dhl = DofHandler(mesh, Variable(:u, FunctionSpace(:Lagrange, 1)))
@show get_dof(dhl, 1, 1)
```
"""
function get_dof(dhl::DofHandler, icell, icomp::Int)
view(dhl.iglob, dhl.offset[icell, icomp] .+ (1:get_ndofs(dhl, icell, icomp)))
end
function get_dof(dhl::DofHandler, icell)
view(dhl.iglob, dhl.offset[icell, 1] .+ (1:get_ndofs(dhl, icell)))
end
function get_dof(dhl::DofHandler, icell, ::Val{N}) where {N}
dhl.iglob[dhl.offset[icell, 1] .+ SVector{N}(1:N)]
end
function get_dof(dhl::DofHandler, icell::UnitRange)
view(
dhl.iglob,
dhl.offset[first(icell), 1] .+
(1:(dhl.offset[last(icell), 1] + get_ndofs(dhl, last(icell)))),
)
end
function get_dof(dhl::DofHandler, icell, icomp::Int, ::Val{N}) where {N}
@assert N == get_ndofs(dhl, icell, icomp) "error N ≠ ndofs"
dhl.iglob[dhl.offset[icell, icomp] .+ SVector{N}(1:N)]
end
"""
Number of components handled by a DofHandler
"""
get_ncomponents(dhl::DofHandler) = size(dhl.offset, 2)
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 3192 | """
shape_functions(fs::AbstractFunctionSpace, n::Val{N}, quadrule::AbstractQuadratureRule) where {N}
shape_functions(fs::AbstractFunctionSpace, n::Val{N}, quadnode::QuadratureNode) where {N}
Return values of shape functions corresponding to a function space `fs` evaluated
at a given `quadnode` position or at all quadrature nodes of a given `quadrule`.
"""
function _shape_functions_on_quadrule_gen(
fs::AbstractFunctionSpace,
n::Val{N},
quadrule::AbstractQuadratureRule,
) where {N}
shape = get_shape(quadrule)()
λ = [shape_functions(fs, n, shape, ξ) for ξ in get_nodes(quadrule)]
return :(SA[$(λ...)])
end
@generated function _shape_functions_on_quadrule(
fs::AbstractFunctionSpace,
::Val{N},
::AbstractQuadratureRule{S, Q},
) where {N, S, Q}
_quadrule = QuadratureRule(S(), Q())
_shape_functions_on_quadrule_gen(fs(), Val(N), _quadrule)
end
function shape_functions(
fs::AbstractFunctionSpace,
n::Val{N},
quadnode::QuadratureNode,
) where {N}
quadrule = get_quadrature_rule(quadnode)
_shape_functions_on_quadrule(fs, n, quadrule)[get_index(quadnode)]
end
function shape_functions(
fs::AbstractFunctionSpace,
n::Val{N},
quadrule::AbstractQuadratureRule,
) where {N}
_shape_functions_on_quadrule(fs, n, quadrule)
end
# Alias for scalar case
function shape_functions(fs::AbstractFunctionSpace, quadrule::AbstractQuadratureRule)
shape_functions(fs, Val(1), quadrule)
end
"""
∂λξ_∂ξ(::AbstractFunctionSpace, n::Val{N}, quadnode::QuadratureNode) where N
Gradient of shape functions for any function space. The result is an array whose values
are the gradient of each shape functions evaluated at `quadnode` position.
`N` is the size of the finite element space.
# Implementation
Default version using automatic differentiation. Specialize to increase performance.
"""
function ∂λξ_∂ξ(fs::AbstractFunctionSpace, n::Val{N}, quadnode::QuadratureNode) where {N}
quadrule = get_quadrature_rule(quadnode)
∂λξ_∂ξ(fs, n, quadrule)[get_index(quadnode)]
end
function _∂λξ_∂ξ_gen(
fs::AbstractFunctionSpace,
::Val{N},
quadrule::AbstractQuadratureRule,
) where {N}
shape = get_shape(quadrule)()
ξ = get_nodes(quadrule)
∇λ = map(_ξ -> ∂λξ_∂ξ(fs, Val(N), shape, _ξ), ξ)
if isa(∇λ[1], SArray)
expr_∇λ = [:($(typeof(_∇λ))($(_∇λ...))) for _∇λ in ∇λ]
else
expr_∇λ = [:($_∇λ) for _∇λ in ∇λ]
end
return :(SA[$(expr_∇λ...)])
end
@generated function _∂λξ_∂ξ(
fs::AbstractFunctionSpace,
::Val{N},
::AbstractQuadratureRule{S, Q},
) where {N, S, Q}
_quadrule = QuadratureRule(S(), Q())
_∂λξ_∂ξ_gen(fs(), Val(N), _quadrule)
end
function ∂λξ_∂ξ(
fs::AbstractFunctionSpace,
n::Val{N},
quadrule::AbstractQuadratureRule{S, Q},
) where {N, S, Q}
_∂λξ_∂ξ(fs, n, quadrule)
end
# fix ambiguity
function ∂λξ_∂ξ(
fs::AbstractFunctionSpace,
n::Val{1},
quadrule::AbstractQuadratureRule{S, Q},
) where {S, Q}
_∂λξ_∂ξ(fs, n, quadrule)
end
# alias for scalar case
function ∂λξ_∂ξ(
fs::AbstractFunctionSpace,
quadrule::AbstractQuadratureRule{S, Q},
) where {S, Q}
∂λξ_∂ξ(fs, Val(1), quadrule)
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 6645 | """
AbstractFEFunction{S}
`S` is the size of the associated `FESpace`
# Interface
Subtypes should implement:
- `get_fespace(f::AbstractFEFunction)`
"""
abstract type AbstractFEFunction{S} <: AbstractLazy end
function show_type_tree(f::AbstractFEFunction; level = 1, indent = 4, prefix = "")
println(prefix * string(get_name(f)))
end
@inline get_name(::AbstractFEFunction) = "FEFunction"
function get_fespace(f::AbstractFEFunction)
error("`get_fespace` is not defined for $(typeof(f))")
end
function get_dof_type(f::AbstractFEFunction)
error("`get_dof_type` is not defined for type $(typeof(f))")
end
function get_dof_values(f::AbstractFEFunction)
error("`get_dof_values` is not defined for type $(typeof(f))")
end
function get_dof_values(f::AbstractFEFunction, icell)
error("`get_dof_values` is not defined for type $(typeof(f))")
end
function get_dof_values(f::AbstractFEFunction, icell, n::Val{N}) where {N}
error("`get_dof_values` is not defined for type $(typeof(f))")
end
function Base.getindex(f::AbstractFEFunction{S}, i::CellInfo) where {S}
feSpace = get_fespace(f)
fSpace = get_function_space(feSpace)
domainStyle = DomainStyle(fSpace)
cshape = shape(celltype(i))
λ = shape_functions(fSpace, cshape) # shape functions for one scalar component
ndofs = get_ndofs(feSpace, cshape) # total number of dofs for this shape (all components included)
ncomps = get_ncomponents(feSpace)
q₀ = get_dof_values(f, cellindex(i), Val(ndofs))
fcell = _interpolate(Val(ncomps), q₀, λ)
CellFunction(fcell, domainStyle, Val(S))
end
# scalar case:
_reshape_dofs_for_interpolate(::Val{1}, q) = transpose(q)
_reshape_dofs_for_interpolate(::Val{1}, q::SVector) = transpose(q) # remove ambiguity
# vector case:
function _reshape_dofs_for_interpolate(::Val{N}, q::AbstractVector) where {N}
transpose(reshape(q, :, N))
end
function _reshape_dofs_for_interpolate(::Val{N}, q::SVector{N2}) where {N, N2}
transpose(reshape(q, Size(Int(N2 / N), N)))
end
function _interpolate(n::Val{N}, q::AbstractVector, λ) where {N}
x -> _reshape_dofs_for_interpolate(n, q) * λ(x)
end
"""
materialize(f::AbstractFEFunction, x)
Implement function `materialize` of the `AbstractLazy` interface.
"""
LazyOperators.materialize(f::AbstractFEFunction, i::CellInfo) = f[i]
function LazyOperators.materialize(f::AbstractFEFunction, side::AbstractSide)
op_side = get_operator(side)
return materialize(f, op_side(get_args(side)...))
end
""" dev notes : introduced for BcubeParallel """
abstract type AbstractSingleFieldFEFunction{S} <: AbstractFEFunction{S} end
struct SingleFieldFEFunction{S, FE <: AbstractFESpace, V} <:
AbstractSingleFieldFEFunction{S}
feSpace::FE
dofValues::V
end
function SingleFieldFEFunction(feSpace::AbstractFESpace, dofValues)
size = get_size(feSpace)
FE = typeof(feSpace)
V = typeof(dofValues)
return SingleFieldFEFunction{size, FE, V}(feSpace, dofValues)
end
function FEFunction(feSpace::AbstractFESpace, dofValues)
SingleFieldFEFunction(feSpace, dofValues)
end
function FEFunction(feSpace::AbstractFESpace, T::Type{<:Number} = Float64)
dofValues = allocate_dofs(feSpace, T)
FEFunction(feSpace, dofValues)
end
function FEFunction(feSpace::AbstractFESpace, constant::Number)
feFunction = FEFunction(feSpace, typeof(constant))
feFunction.dofValues .= constant
return feFunction
end
get_fespace(f::SingleFieldFEFunction) = f.feSpace
get_ncomponents(f::SingleFieldFEFunction) = get_ncomponents(get_fespace(f))
get_dof_type(f::SingleFieldFEFunction) = eltype(get_dof_values(f))
get_dof_values(f::SingleFieldFEFunction) = f.dofValues
function get_dof_values(f::SingleFieldFEFunction, icell)
feSpace = get_fespace(f)
idofs = get_dofs(feSpace, icell)
return view(f.dofValues, idofs)
end
function get_dof_values(f::SingleFieldFEFunction, icell, n::Val{N}) where {N}
feSpace = get_fespace(f)
idofs = get_dofs(feSpace, icell, n)
return f.dofValues[idofs]
end
@inline function set_dof_values!(f::SingleFieldFEFunction, values::AbstractArray)
f.dofValues .= values
end
"""
Represent a Tuple of FEFunction associated to a MultiFESpace
"""
struct MultiFieldFEFunction{
S,
FEF <: Tuple{Vararg{AbstractSingleFieldFEFunction}},
MFE <: AbstractMultiFESpace,
} <: AbstractFEFunction{S}
feFunctions::FEF
mfeSpace::MFE
function MultiFieldFEFunction(f, space)
new{
ntuple(i -> get_size(get_fespace(space, i)), get_n_fespace(space)),
typeof(f),
typeof(space),
}(
f,
space,
)
end
end
@inline get_fe_functions(mfeFunc::MultiFieldFEFunction) = mfeFunc.feFunctions
@inline function get_fe_function(mfeFunc::MultiFieldFEFunction, iSpace::Int)
mfeFunc.feFunctions[iSpace]
end
@inline _get_mfe_space(mfeFunc::MultiFieldFEFunction) = mfeFunc.mfeSpace
function get_dof_type(mfeFunc::MultiFieldFEFunction)
mapreduce(get_dof_type, promote, (mfeFunc...,))
end
"""
Update the vector `u` with the values of each `FEFunction` composing this MultiFieldFEFunction.
The mapping of the associated MultiFESpace is respected.
"""
function get_dof_values!(u::AbstractVector{<:Number}, mfeFunc::MultiFieldFEFunction)
for (iSpace, feFunction) in enumerate(get_fe_functions(mfeFunc))
u[get_mapping(_get_mfe_space(mfeFunc), iSpace)] .= get_dof_values(feFunction)
end
end
function get_dof_values(mfeFunc::MultiFieldFEFunction)
u = mapreduce(get_dof_values, vcat, (mfeFunc...,))
get_dof_values!(u, mfeFunc)
return u
end
"""
Constructor for a FEFunction built on a MultiFESpace. All dofs are initialized to zero by default,
but an array `dofValues` can be passed.
"""
function FEFunction(
mfeSpace::AbstractMultiFESpace,
dofValues::AbstractVector = allocate_dofs(mfeSpace),
)
feFunctions = ntuple(
iSpace -> FEFunction(
get_fespace(mfeSpace, iSpace),
view(dofValues, get_mapping(mfeSpace, iSpace)),
),
get_n_fespace(mfeSpace),
)
return MultiFieldFEFunction(feFunctions, mfeSpace)
end
"""
Update the dofs of each FEFunction composing the MultiFieldFEFunction
"""
function set_dof_values!(mfeFunc::MultiFieldFEFunction, u::AbstractVector)
for (iSpace, feFunction) in enumerate(get_fe_functions(mfeFunc))
set_dof_values!(feFunction, view(u, get_mapping(_get_mfe_space(mfeFunc), iSpace)))
end
end
Base.iterate(mfeFunc::MultiFieldFEFunction) = iterate(get_fe_functions(mfeFunc))
function Base.iterate(mfeFunc::MultiFieldFEFunction, state)
iterate(get_fe_functions(mfeFunc), state)
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 26878 |
const AOS_DEFAULT = true # default value for Array Of Struct / Struct of Array
"""
Abstract type to represent an finite-element space of size `S`. See `SingleFESpace`
for more details about what looks like a finite-element space.
# Devs notes
All subtypes should implement the following functions:
* `get_function_space(feSpace::AbstractFESpace)`
* `get_shape_functions(feSpace::AbstractFESpace, shape::AbstractShape)`
* `get_cell_shape_functions(feSpace::AbstractFESpace, shape::AbstractShape)`
* `get_ndofs(feSpace::AbstractFESpace)`
* `is_continuous(feSpace::AbstractFESpace)`
Alternatively, you may define a "parent" to your structure by implementing
the `Base.parent` function. Then, all the above functions will be redirected
to the "parent" FESpace.
"""
abstract type AbstractFESpace{S} end
"""
Return the size `S` associated to `AbstractFESpace{S}`.
"""
get_size(::AbstractFESpace{S}) where {S} = S
"""
Return the size `S`(= number of components) associated to `AbstractFESpace{S}`.
"""
get_ncomponents(feSpace::AbstractFESpace) = get_size(feSpace)
"""
Return the `FunctionSpace` (eventually multiple spaces) associated to
the `AbstractFESpace`.
"""
function get_function_space(feSpace::AbstractFESpace)
get_function_space(parent(feSpace))
end
"""
Return the shape functions associated to the `AbstractFESpace`.
"""
function get_shape_functions(feSpace::AbstractFESpace, shape::AbstractShape)
get_shape_functions(parent(feSpace), shape)
end
"""
Return the shape functions associated to the `AbstractFESpace` in "packed" form:
λ(x) = (λ₁(x),...,λᵢ(x),...λₙ(x)) for the `n` dofs.
"""
function get_cell_shape_functions(feSpace::AbstractFESpace, shape::AbstractShape)
get_cell_shape_functions(parent(feSpace), shape)
end
"""
Return the total number of dofs of the FESpace, taking into account the
continuous/discontinuous type of the space. If the FESpace contains itself
several FESpace (see MultiFESpace), the sum of all dofs is returned.
"""
get_ndofs(feSpace::AbstractFESpace) = get_ndofs(parent(feSpace))
function get_ndofs(feSpace::AbstractFESpace, shape::AbstractShape)
get_ndofs(get_function_space(feSpace), shape) * get_ncomponents(feSpace)
end
function get_dofs(feSpace::AbstractFESpace, icell::Int, n::Val{N}) where {N}
get_dofs(parent(feSpace), icell, n)
end
"""
Return the dofs indices for the cell `icell`
Result is an array of integers.
"""
get_dofs(feSpace::AbstractFESpace, icell::Int) = get_dofs(parent(feSpace), icell)
is_continuous(feSpace::AbstractFESpace) = is_continuous(parent(feSpace))
is_discontinuous(feSpace::AbstractFESpace) = !is_continuous(feSpace)
_get_dof_handler(feSpace::AbstractFESpace) = _get_dof_handler(parent(feSpace))
_get_dhl(feSpace::AbstractFESpace) = _get_dof_handler(feSpace)
"""
Return the boundary tags where a Dirichlet condition applies
"""
function get_dirichlet_boundary_tags(feSpace::AbstractFESpace)
get_dirichlet_boundary_tags(parent(feSpace))
end
"""
allocate_dofs(feSpace::AbstractFESpace, T = Float64)
Allocate a vector with a size equal to the number of dof of the FESpace, with the type `T`.
For a MultiFESpace, a vector of the total size of the space is returned (and not a Tuple of vectors)
"""
function allocate_dofs(feSpace::AbstractFESpace, T = Float64)
allocate_dofs(parent(feSpace), T)
end
abstract type AbstractSingleFESpace{S, FS} <: AbstractFESpace{S} end
"""
An finite-element space (FESpace) is basically a function space,
associated to degrees of freedom (on a mesh).
A FESpace can be either scalar (to represent a Temperature for instance)
or vector (to represent a Velocity). In case of a "vector" `SingleFESpace`,
all the components necessarily share the same `FunctionSpace`.
"""
struct SingleFESpace{S, FS <: AbstractFunctionSpace} <: AbstractSingleFESpace{S, FS}
fSpace::FS # function space
dhl::DofHandler # degrees of freedom of this FESpace
isContinuous::Bool # finite-element or discontinuous-galerkin
dirichletBndTags::Vector{Int} # mesh boundary tags where Dirichlet condition applies
end
Base.parent(feSpace::SingleFESpace) = feSpace
get_function_space(feSpace::SingleFESpace) = feSpace.fSpace
function get_shape_functions(feSpace::SingleFESpace, shape::AbstractShape)
fSpace = get_function_space(feSpace)
domainstyle = DomainStyle(fSpace)
_λs = shape_functions_vec(fSpace, Val(get_size(feSpace)), shape)
λs = map(
f -> ShapeFunction(f, domainstyle, Val(get_size(feSpace)), fSpace),
_svector_to_tuple(_λs),
)
return λs
end
_svector_to_tuple(a::SVector{N}) where {N} = ntuple(i -> a[i], Val(N))
function get_cell_shape_functions(feSpace::SingleFESpace, shape::AbstractShape)
fSpace = get_function_space(feSpace)
domainstyle = DomainStyle(fSpace)
return CellShapeFunctions(domainstyle, Val(get_size(feSpace)), fSpace, shape)
end
function get_multi_shape_function(feSpace::SingleFESpace, shape::AbstractShape)
return MultiShapeFunction(get_shape_functions(feSpace, shape))
end
get_ncomponents(feSpace::SingleFESpace) = get_size(feSpace)
is_continuous(feSpace::SingleFESpace) = feSpace.isContinuous
_get_dof_handler(feSpace::SingleFESpace) = feSpace.dhl
get_dofs(feSpace::SingleFESpace, icell::Int) = get_dof(feSpace.dhl, icell)
function get_dofs(feSpace::SingleFESpace, icell::Int, n::Val{N}) where {N}
get_dof(feSpace.dhl, icell, n)
end
get_ndofs(feSpace::SingleFESpace) = get_ndofs(_get_dhl(feSpace))
get_dirichlet_boundary_tags(feSpace::SingleFESpace) = feSpace.dirichletBndTags
"""
SingleFESpace(
fSpace::AbstractFunctionSpace,
mesh::AbstractMesh,
dirichletBndNames = String[];
size::Int = 1,
isContinuous::Bool = true,
kwargs...
)
Build a finite element space (scalar or vector) from a `FunctionSpace` and a `Mesh`.
# Arguments
- `fSpace::AbstractFunctionSpace` : the function space associated to the `FESpace`
- `mesh::AbstractMesh` : the mesh on which the `FESpace` is discretized
- `dirichletBndNames = String[]` : list of mesh boundary labels where a Dirichlet condition applies
# Keywords
- `size::Int = 1` : the number of components of the `FESpace`
- `isContinuous::Bool = true` : if `true`, a continuous dof numbering is created. Otherwise, dof lying
on cell nodes or cell faces are duplicated, not shared (discontinuous dof numbering)
- `kwargs` : for things such as parallel cache (internal/dev usage only)
"""
function SingleFESpace(
fSpace::AbstractFunctionSpace,
mesh::AbstractMesh,
dirichletBndNames = String[];
size::Int = 1,
isContinuous::Bool = true,
kwargs...,
)
dhl = DofHandler(mesh, fSpace, size, isContinuous)
# Rq : cannot use a "map" here because `dirichletBndNames` can be a Set
dirichletBndTags = Int[]
bndNames = values(boundary_names(mesh))
for name in dirichletBndNames
@assert name ∈ bndNames "Error with the Dirichlet condition on '$name' : this is not a boundary name. Boundary names are : $bndNames"
push!(dirichletBndTags, boundary_tag(mesh, name))
end
return SingleFESpace{size, typeof(fSpace)}(fSpace, dhl, isContinuous, dirichletBndTags)
end
@inline allocate_dofs(feSpace::SingleFESpace, T = Float64) = zeros(T, get_ndofs(feSpace))
"""
A TrialFESpace is basically a SingleFESpace plus other attributes (related to boundary conditions)
# Dev notes
* we cannot directly store Dirichlet values on dofs because the Dirichlet values needs "time" to apply
"""
struct TrialFESpace{S, FE <: AbstractSingleFESpace} <: AbstractFESpace{S}
feSpace::FE
dirichletValues::Dict{Int, Function} # <boundary tag> => <dirichlet value (function of x, t)>
end
"""
TrialFESpace(feSpace, dirichletValues)
TrialFESpace(
fSpace::AbstractFunctionSpace,
mesh::AbstractMesh,
dirichlet::Dict{String} = Dict{String, Any}();
size::Int = 1,
isContinuous::Bool = true,
kwargs...
)
TrialFESpace(
fSpace::AbstractFunctionSpace,
mesh::AbstractMesh,
type::Symbol,
dirichlet::Dict{String} = Dict{String, Any}();
size::Int = 1,
kwargs...
)
Build a trial finite element space.
See [`SingleFESpace`](@ref) for hints about the function arguments. Only arguments specific to
`TrialFESpace` are detailed below.
# Arguments
- `dirichlet::Dict{String} = Dict{String, Any}()` : dictionnary specifying the Dirichlet
valued-function (or function) associated to each mesh boundary label. The function `f(x,t)`
to apply is expressed in the physical coordinate system. Alternatively, a constant value
can be provided instead of a function.
- `type::Symbol` : `:continuous` or `:discontinuous`
# Warning
For now the Dirichlet condition can only be applied to nodal bases.
# Examples
```julia-repl
julia> mesh = one_cell_mesh(:line)
julia> fSpace = FunctionSpace(:Lagrange, 2)
julia> U = TrialFESpace(fSpace, mesh)
julia> V = TrialFESpace(fSpace, mesh, :discontinuous; size = 3)
julia> W = TrialFESpace(fSpace, mesh, Dict("North" => 3., "South" => (x,t) -> t .* x))
```
"""
function TrialFESpace(
fSpace::AbstractFunctionSpace,
mesh::AbstractMesh,
dirichlet::Dict{String} = Dict{String, Any}();
size::Int = 1,
isContinuous::Bool = true,
kwargs...,
)
# Build FESpace
feSpace = SingleFESpace(fSpace, mesh, keys(dirichlet); size, isContinuous, kwargs...)
# Transform any constant value into a function of (x,t)
dirichletValues = Dict(
boundary_tag(mesh, k) => (v isa Function ? v : (x, t) -> v) for (k, v) in dirichlet
)
return TrialFESpace(feSpace, dirichletValues)
end
function TrialFESpace(feSpace, dirichletValues)
TrialFESpace{get_size(feSpace), typeof(feSpace)}(feSpace, dirichletValues)
end
function TrialFESpace(
fSpace::AbstractFunctionSpace,
mesh::AbstractMesh,
type::Symbol,
dirichlet::Dict{String} = Dict{String, Any}();
size::Int = 1,
kwargs...,
)
@assert type ∈ (:continuous, :discontinuous) "Invalid variable type. Must be ':continuous' or ':discontinuous'"
TrialFESpace(
fSpace,
mesh,
dirichlet;
size,
isContinuous = type == :continuous,
kwargs...,
)
end
"""
A MultiplierFESpace can be viewed as a set of independant P0 elements.
It is used to define Lagrange multipliers and assemble the associated augmented system (the system that adds the multipliers as unknowns).
"""
function MultiplierFESpace(mesh::AbstractMesh, size::Int = 1, kwargs...)
fSpace = FunctionSpace(:Lagrange, 0)
iglob = collect(1:size)
offset = zeros(ncells(mesh), size)
for i in 1:size
offset[:, i] .= i - 1
end
ndofs = ones(ncells(mesh), size)
ndofs_tot = length(unique(iglob))
dhl = DofHandler(iglob, offset, ndofs, ndofs_tot)
feSpace = SingleFESpace{size, typeof(fSpace)}(fSpace, dhl, true, Int[])
return TrialFESpace{size, typeof(feSpace)}(feSpace, Dict{Int, Function}())
end
"""
Return the values associated to a Dirichlet condition
"""
get_dirichlet_values(feSpace::TrialFESpace) = feSpace.dirichletValues
get_dirichlet_values(feSpace::TrialFESpace, ibnd::Int) = feSpace.dirichletValues[ibnd]
"""
A TestFESpace is basically a SingleFESpace plus other attributes (related to boundary conditions)
"""
struct TestFESpace{S, FE <: AbstractSingleFESpace} <: AbstractFESpace{S}
feSpace::FE
end
"""
TestFESpace(trialFESpace::TrialFESpace)
TestFESpace(
fSpace::AbstractFunctionSpace,
mesh::AbstractMesh,
dirichletBndNames = String[];
size::Int = 1,
isContinuous::Bool = true,
kwargs...,
)
Build a test finite element space.
A `TestFESpace` can be built from a `TrialFESpace`. See [`SingleFESpace`](@ref)
for hints about the function arguments. Only arguments specific to
`TrialFESpace` are detailed below.
# Examples
```julia-repl
julia> mesh = one_cell_mesh(:line)
julia> fSpace = FunctionSpace(:Lagrange, 2)
julia> U = TrialFESpace(fSpace, mesh)
julia> V = TestFESpace(U)
```
"""
function TestFESpace(
fSpace::AbstractFunctionSpace,
mesh::AbstractMesh,
dirichletBndNames = String[];
size::Int = 1,
isContinuous::Bool = true,
kwargs...,
)
# Build FESpace
feSpace = SingleFESpace(fSpace, mesh, dirichletBndNames; size, isContinuous, kwargs...)
return TestFESpace(feSpace)
end
TestFESpace(feSpace) = TestFESpace{get_size(feSpace), typeof(feSpace)}(feSpace)
TestFESpace(trialFESpace::TrialFESpace) = TestFESpace(parent(trialFESpace))
const TrialOrTest{S, FE} = Union{TrialFESpace{S, FE}, TestFESpace{S, FE}}
Base.parent(tfeSpace::TrialOrTest) = tfeSpace.feSpace
"""
# Devs notes
All subtypes should implement the following functions:
* `get_fespace(mfeSpace::AbstractMultiFESpace)`
* `get_mapping(mfeSpace::AbstractMultiFESpace)`
* `get_dofs(mfeSpace::AbstractMultiFESpace, icell::Int)`
* `get_shape_functions(mfeSpace::AbstractMultiFESpace, shape::AbstractShape)`
* `get_cell_shape_functions(mfeSpace::AbstractMultiFESpace, shape::AbstractShape)`
"""
abstract type AbstractMultiFESpace{N, FE} end
"""
get_fespace(mfeSpace::AbstractMultiFESpace, iSpace)
get_fespace(mfeSpace::AbstractMultiFESpace)
Return the i-th FESpace composing this `AbstractMultiFESpace`. If no index is provided,
the tuple of FESpace composing this `AbstractMultiFESpace`` is returnted.
"""
get_fespace(mfeSpace::AbstractMultiFESpace) = get_fespace(parent(mfeSpace))
get_fespace(mfeSpace::AbstractMultiFESpace, iSpace) = get_fespace(mfeSpace)[iSpace]
"""
get_mapping(mfeSpace::AbstractMultiFESpace, iSpace)
get_mapping(mfeSpace::AbstractMultiFESpace)
Return the mapping for the ith `FESpace` composing the `MultiFESpace`.
If no index is provided, the tuple of mapping for each `FESpace`` is returnted.
"""
get_mapping(mfeSpace::AbstractMultiFESpace) = get_mapping(parent(mfeSpace))
get_mapping(mfeSpace::AbstractMultiFESpace, iSpace) = get_mapping(mfeSpace)[iSpace]
""" Number of `FESpace` composing the `MultiFESpace` """
get_n_fespace(::AbstractMultiFESpace{N}) where {N} = N
_is_AoS(mfeSpace::AbstractMultiFESpace) = _is_AoS(parent(mfeSpace))
Base.iterate(mfeSpace::AbstractMultiFESpace) = iterate(get_fespace(mfeSpace))
Base.iterate(mfeSpace::AbstractMultiFESpace, state) = iterate(get_fespace(mfeSpace), state)
Base.length(mfeSpace::AbstractMultiFESpace) = get_n_fespace(mfeSpace)
get_dofs(mfeSpace::AbstractMultiFESpace, icell::Int) = get_dofs(parent(mfeSpace), icell)
function get_shape_functions(mfeSpace::AbstractMultiFESpace, shape::AbstractShape)
get_shape_functions(parent(mfeSpace), shape)
end
function get_cell_shape_functions(mfeSpace::AbstractMultiFESpace, shape::AbstractShape)
get_cell_shape_functions(parent(mfeSpace), shape)
end
"""
A `MultiFESpace` represents a "set" of TrialFESpace or TestFESpace.
This structure provides a global dof numbering for each FESpace.
`N` is the number of FESpace contained in this `MultiFESpace`.
Note that the FESpace can be different from each other (one continous,
one discontinuous; one scalar, one vector...)
"""
struct MultiFESpace{N, FE <: Tuple{Vararg{AbstractFESpace, N}}} <:
AbstractMultiFESpace{N, FE}
feSpaces::FE
mapping::NTuple{N, Vector{Int}}
arrayOfStruct::Bool
end
const AbstractMultiTestFESpace{N} = AbstractMultiFESpace{N, <:Tuple{Vararg{TestFESpace, N}}}
const AbstractMultiTrialFESpace{N} =
AbstractMultiFESpace{N, <:Tuple{Vararg{TrialFESpace, N}}}
Base.parent(mfeSpace::MultiFESpace) = mfeSpace
"""
Return the tuple of FESpace composing this MultiFESpace
"""
get_fespace(mfeSpace::MultiFESpace) = mfeSpace.feSpaces
get_mapping(mfeSpace::MultiFESpace) = mfeSpace.mapping
_is_AoS(mfeSpace::MultiFESpace) = mfeSpace.arrayOfStruct
""" Total number of dofs contained in this MultiFESpace """
function get_ndofs(mfeSpace::AbstractMultiFESpace)
sum(feSpace -> get_ndofs(feSpace), get_fespace(mfeSpace))
end
"""
get_dofs(feSpace::MultiFESpace, icell::Int)
Return the dofs indices for the cell `icell` for each single-feSpace.
Result is a tuple of array of integers, where each array of integers
are the indices relative to the numbering of each singleFESpace.
# Warning:
Combine `get_dofs` with `get_mapping` if global dofs indices are needed.
"""
function get_dofs(feSpace::MultiFESpace, icell::Int)
map(Base.Fix2(get_dofs, icell), get_fespace(feSpace))
end
function get_shape_functions(feSpace::MultiFESpace, shape::AbstractShape)
map(Base.Fix2(get_shape_functions, shape), get_fespace(feSpace))
end
function get_cell_shape_functions(feSpace::MultiFESpace, shape::AbstractShape)
map(Base.Fix2(get_cell_shape_functions, shape), get_fespace(feSpace))
end
""" Low-level constructor """
function _MultiFESpace(
feSpaces::Tuple{Vararg{TrialOrTest, N}};
arrayOfStruct::Bool = AOS_DEFAULT,
) where {N}
# Trick to avoid providing "mesh" as an argument: we read the number
# of cells in an array of the DofHandler whose size is this number
_get_ncells_from_fespace = feSpace::TrialOrTest -> size(_get_dhl(feSpace).offset, 1) # TODO : use getters
ncells = _get_ncells_from_fespace(feSpaces[1])
# Ensure all SingleFESpace are define on the "same mesh" (checking
# only the number of cells though...)
all(feSpace -> _get_ncells_from_fespace(feSpace) == ncells, feSpaces)
# Build global numbering
_, mapping = if arrayOfStruct
_build_mapping_AoS(feSpaces, ncells)
else
_build_mapping_SoA(feSpaces, ncells)
end
return MultiFESpace{N, typeof(feSpaces)}(feSpaces, mapping, arrayOfStruct)
end
"""
MultiFESpace(
feSpaces::Tuple{Vararg{TrialOrTest, N}};
arrayOfStruct::Bool = AOS_DEFAULT,
) where {N}
MultiFESpace(
feSpaces::AbstractArray{FE};
arrayOfStruct::Bool = AOS_DEFAULT,
) where {FE <: TrialOrTest}
MultiFESpace(feSpaces::Vararg{TrialOrTest}; arrayOfStruct::Bool = AOS_DEFAULT)
Build a finite element space representing several sub- finite element spaces.
This is particulary handy when several variables are in play since it provides a global
dof numbering (for the whole system). The finite element spaces composing the
`MultiFESpace` can be different from each other (some continuous, some discontinuous,
some scalar, some vectors...).
# Arguments
- `feSpaces` : the finite element spaces composing the `MultiFESpace`.
Note that they must be of type `TrialFESpace` or `TestFESpace`.
# Keywords
- `arrayOfStruct::Bool = AOS_DEFAULT` : indicates if the dof numbering should be of type "Array of Structs" (AoS)
or "Struct of Arrays" (SoA).
"""
function MultiFESpace(
feSpaces::Tuple{Vararg{TrialOrTest, N}};
arrayOfStruct::Bool = AOS_DEFAULT,
) where {N}
_MultiFESpace(feSpaces; arrayOfStruct)
end
function MultiFESpace(
feSpaces::AbstractArray{FE};
arrayOfStruct::Bool = AOS_DEFAULT,
) where {FE <: TrialOrTest}
MultiFESpace((feSpaces...,); arrayOfStruct)
end
function MultiFESpace(feSpaces::Vararg{TrialOrTest}; arrayOfStruct::Bool = AOS_DEFAULT)
MultiFESpace(feSpaces; arrayOfStruct = arrayOfStruct)
end
"""
Build a global numbering using an Array-Of-Struct strategy
"""
function _build_mapping_AoS(feSpaces::Tuple{Vararg{TrialOrTest}}, ncells::Int)
# mapping = ntuple(i -> zeros(Int, get_ndofs(_get_dhl(feSpaces[i]))), length(feSpaces))
# mapping = ntuple(i -> zeros(Int, get_ndofs(feSpaces[i])), N)
mapping = ntuple(i -> zeros(Int, get_ndofs(feSpaces[i])), length(feSpaces))
ndofs = 0
for icell in 1:ncells
for (ivar, feSpace) in enumerate(feSpaces)
for d in get_dofs(feSpace, icell)
if mapping[ivar][d] == 0
ndofs += 1
mapping[ivar][d] = ndofs
end
end
end
end
@assert all(map(x -> all(x .≠ 0), mapping)) "invalid mapping"
return ndofs, mapping
end
""" Build a global numbering using an Struct-Of-Array strategy """
function _build_mapping_SoA(feSpaces::Tuple{Vararg{TrialOrTest}}, ncells::Int)
# mapping = ntuple(i -> zeros(Int, get_ndofs(_get_dhl(feSpaces[i]))), length(feSpaces))
# mapping = ntuple(i -> zeros(Int, get_ndofs(feSpaces[i])), N)
mapping = ntuple(i -> zeros(Int, get_ndofs(feSpaces[i])), length(feSpaces))
ndofs = 0
for (ivar, feSpace) in enumerate(feSpaces)
for icell in 1:ncells
for d in get_dofs(feSpace, icell)
if mapping[ivar][d] == 0
ndofs += 1
mapping[ivar][d] = ndofs
end
end
end
end
@assert all(map(x -> all(x .≠ 0), mapping)) "invalid mapping"
return ndofs, mapping
end
function build_jacobian_sparsity_pattern(u::AbstractMultiFESpace, mesh::AbstractMesh)
build_jacobian_sparsity_pattern(parent(u), parent(mesh))
end
function build_jacobian_sparsity_pattern(u::MultiFESpace, mesh::Mesh)
if _is_AoS(u)
return _build_jacobian_sparsity_pattern_AoS(u, mesh)
else
return _build_jacobian_sparsity_pattern_SoA(u, mesh)
end
end
function _build_jacobian_sparsity_pattern_AoS(u::AbstractMultiFESpace, mesh)
I = Int[]
J = Int[]
f2c = connectivities_indices(mesh, :f2c)
c2f = connectivities_indices(mesh, :c2f)
for ic in 1:ncells(mesh)
for (j, uj) in enumerate(u)
for (i, ui) in enumerate(u)
if true #varsDependency[i, j]
for jdof in get_mapping(u, j)[get_dofs(uj, ic)]
for idof in get_mapping(u, i)[get_dofs(ui, ic)]
push!(I, idof)
push!(J, jdof)
end
end
end
end
end
for ifa in c2f[ic]
for ic2 in f2c[ifa]
ic2 == ic && continue
for (j, uj) in enumerate(u)
for (i, ui) in enumerate(u)
if true #varsDependency[i, j]
for jdof in get_mapping(u, j)[get_dofs(uj, ic2)]
for idof in get_mapping(u, i)[get_dofs(ui, ic)]
push!(I, idof)
push!(J, jdof)
end
end
end
end
end
end
end
end
return sparse(I, J, 1.0)
end
function _build_jacobian_sparsity_pattern_SoA(u::MultiFESpace, mesh)
error("Function `_build_jacobian_sparsity_pattern_SoA` is not implemented yet")
end
allocate_dofs(mfeSpace::MultiFESpace, T = Float64) = zeros(T, get_ndofs(mfeSpace))
# WIP
# """
# Check the `FESpace` `DofHandler` numbering by looking at shared dofs using geometrical criteria.
# Only compatible with Lagrange and Taylor elements for now (no Hermite for instance). For a discontinuous
# variable, simply checks that the dofs are all unique.
# # Example
# ```julia
# mesh = rectangle_mesh(4, 4)
# fes = SingleFESpace(FunctionSpace(:Lagrange, 1), mesh, :continuous)
# @show Bcube.check_numbering(fes, mesh)
# ```
# """
# function check_numbering(space::SingleFESpace, mesh::Mesh; rtol=1e-3, verbose=true, exit_on_error=true)
# # Track number of errors
# nerrors = 0
# # Cell variable infos
# dhl = _get_dhl(space)
# fs = get_function_space(space)
# # For discontinuous, each dof must be unique
# if is_discontinuous(space)
# if length(unique(dhl.iglob)) != length(dhl.iglob)
# nerrors += 1
# verbose && println("ERROR : two dofs share the same identifier whereas it is a discontinuous variable")
# exit_on_error && error("DofHandler.check_numbering exited prematurely")
# end
# # Exit prematurely
# return nerrors
# end
# # Mesh infos
# celltypes = cells(mesh)
# c2n = connectivities_indices(mesh, :c2n)
# c2c = connectivity_cell2cell_by_nodes(mesh)
# # Loop over cell
# for icell in 1:ncells(mesh)
# # Cell infos
# ct_i = celltypes[icell]
# cnodes_i = get_nodes(mesh, c2n[icell])
# shape_i = shape(ct_i)
# # Check that all the dofs in this cell are unique
# iglobs = get_dof(dhl, icell)
# if length(unique(iglobs)) != length(iglobs)
# nerrors += 1
# verbose && println("ERROR : two dofs in the same cell share the same identifier")
# exit_on_error && error("DofHandler.check_numbering exited prematurely")
# end
# # Compute tolerance : cell diagonal divided by 100
# min_xyz = get_coords(cnodes_i[1])
# max_xyz = min_xyz
# for node in cnodes_i
# max_xyz = max.(max_xyz, get_coords(node))
# min_xyz = min.(min_xyz, get_coords(node))
# end
# atol = norm(max_xyz - min_xyz) * rtol
# # Coordinates of dofs in cell i for this FunctionSpace
# coords_i = [mapping(cnodes_i, ct_i, ξ) for ξ in get_coords(fs, shape_i)]
# # Loop over neighbor cells
# for jcell in c2c[icell]
# # Cell infos
# ct_j = celltypes[jcell]
# cnodes_j = get_nodes(mesh, c2n[jcell])
# shape_j = shape(ct_j)
# # Coordinates of dofs in cell j for this FunctionSpace
# coords_j = [mapping(cnodes_j, ct_j, ξ) for ξ in get_coords(fs, shape_j)]
# # n-to-n comparison
# for (idof_loc, xi) in enumerate(coords_i), (jdof_loc, xj) in enumerate(coords_j)
# coincident = norm(xi - xj) < atol
# for kcomp in 1:ncomponents(cv)
# iglob = get_dof(dhl, icell, kcomp, idof_loc)
# jglob = get_dof(dhl, jcell, kcomp, jdof_loc)
# msg = ""
# # Coordinates are identical but dof numbers are different
# if coincident && (iglob != jglob)
# msg = "ERROR : two dofs share the same location but have different identifiers"
# # Coordinates are different but dof numbers are the same
# elseif !coincident && (iglob == jglob)
# msg = "ERROR : two dofs share the same number but have different location"
# end
# # Error encountered?
# if length(msg) > 0
# nerrors += 1
# verbose && println(msg)
# verbose && println("icell=$icell, jcell=$jcell, xi=$xi, xj=$xj, iglob=$iglob, jglob=$jglob")
# exit_on_error && error("DofHandler.check_numbering exited prematurely")
# end
# end
# end
# end # loop on jcells
# end # loop on icells
# return nerrors
# end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 10214 |
"""
Abstract structure for the different types of function space, for
instance the Lagrange function space, the Taylor function space etc.
# Devs notes
All subtypes should implement the following functions:
* `get_ndofs(::AbstractFunctionSpace, ::AbstractShape)`
* `_scalar_shape_functions(::AbstractFunctionSpace, ::AbstractShape, ξ)`
* `idof_by_vertex(::AbstractFunctionSpace, ::AbstractShape)`
* `idof_by_edge(::AbstractFunctionSpace, ::AbstractShape)`
* `idof_by_edge_with_bounds(::AbstractFunctionSpace, ::AbstractShape)`
* `idof_by_face(::AbstractFunctionSpace, ::AbstractShape)`
* `idof_by_face_with_bounds(::AbstractFunctionSpace, ::AbstractShape)`
"""
abstract type AbstractFunctionSpaceType end
abstract type AbstractFunctionSpace{type, degree} end
"""
get_type(::AbstractFunctionSpace{type})
Getter for the `type` of the `AbstractFunctionSpace`
"""
get_type(::AbstractFunctionSpace{type}) where {type} = type
"""
get_degree(::AbstractFunctionSpace{type, degree}) where{type, degree}
Return the `degree` associated to the `AbstractFunctionSpace`.
"""
get_degree(::AbstractFunctionSpace{type, degree}) where {type, degree} = degree
struct FunctionSpace{type, degree} <: AbstractFunctionSpace{type, degree} end
"""
FunctionSpace(fstype::Symbol, degree::Integer)
FunctionSpace(fstype::AbstractFunctionSpaceType, degree::Integer)
Build a `FunctionSpace` of the designated `FunctionSpaceType` and `degree`.
# Examples
```jldoctest
julia> FunctionSpace(:Lagrange, 2)
FunctionSpace{Bcube.Lagrange{:Uniform}, 2}()
```
"""
function FunctionSpace(fstype::AbstractFunctionSpaceType, degree::Integer)
FunctionSpace{typeof(fstype), degree}()
end
FunctionSpace(fstype::Symbol, degree::Integer) = FunctionSpace(Val(fstype), degree)
"""
shape_functions(::AbstractFunctionSpace, ::Val{N}, shape::AbstractShape, ξ) where N
shape_functions(::AbstractFunctionSpace, shape::AbstractShape, ξ)
Return the list of shape functions corresponding to a `FunctionSpace` and a `Shape`. `N` is the size
of the finite element space (default: `N=1` if the argument is not provided).
The result is a vector of all the shape functions evaluated at position ξ, and not a
tuple of the different shape functions. This choice is optimal for performance.
Note : `λ = ξ -> shape_functions(fs, shape, ξ); λ(ξ)[i]` is faster than `λ =shape_functions(fs, shape); λ[i](ξ)`
# Implementation
Default version, should be overriden for each concrete FunctionSpace.
"""
function shape_functions(::AbstractFunctionSpace, ::Val{N}, ::AbstractShape, ξ) where {N}
error("Function 'shape_functions' not implemented")
end
function shape_functions(
fs::AbstractFunctionSpace,
n::Val{N},
shape::AbstractShape,
) where {N}
ξ -> shape_functions(fs, n, shape, ξ)
end
function shape_functions(fs::AbstractFunctionSpace, shape::AbstractShape, ξ)
shape_functions(fs, Val(1), shape, ξ)
end
function shape_functions(fs::AbstractFunctionSpace, shape::AbstractShape)
ξ -> shape_functions(fs, Val(1), shape, ξ)
end
"""
shape_functions_vec(fs::AbstractFunctionSpace, ::Val{N}, shape::AbstractShape, ξ) where {N}
Return all the shape functions of FunctionSpace on a Shape evaluated in ξ as a vector.
`N` is the the size (number of components) of the finite element space.
---
shape_functions_vec(fs::AbstractFunctionSpace{T,D}, n::Val{N}, shape::AbstractShape) where {T,D, N}
The shape functions are returned as a vector of functions.
# Implementation
This is implementation is not always valid, but it is for Lagrange and Taylor spaces (the only
two spaces available up to 20/01/23).
"""
function shape_functions_vec(
fs::AbstractFunctionSpace,
n::Val{N},
shape::AbstractShape,
ξ,
) where {N}
_ndofs = get_ndofs(fs, shape)
if N == 1
return SVector{_ndofs}(
_scalar_shape_functions(fs, shape, ξ)[idof] for idof in 1:_ndofs
)
else
λs = shape_functions(fs, n, shape, ξ)
ndofs_tot = N * _ndofs
return SVector{ndofs_tot}(SVector{N}(λs[i, j] for j in 1:N) for i in 1:ndofs_tot)
end
end
function shape_functions_vec(
fs::AbstractFunctionSpace,
n::Val{N},
shape::AbstractShape,
) where {N}
_ndofs = get_ndofs(fs, shape)
if N == 1
return SVector{_ndofs}(
ξ -> _scalar_shape_functions(fs, shape, ξ)[idof] for idof in 1:_ndofs
)
else
ndofs_tot = N * _ndofs
return SVector{ndofs_tot}(
ξ -> begin
a = shape_functions(fs, n, shape, ξ)
SVector{N}(a[i, j] for j in 1:N)
end for i in 1:ndofs_tot
)
end
end
"""
∂λξ_∂ξ(::AbstractFunctionSpace, ::Val{N}, shape::AbstractShape) where N
Gradient, with respect to the reference coordinate system, of shape functions for any function space.
The result is an array whose elements are the gradient of each shape functions.
`N` is the size of the finite element space.
# Implementation
Default version using automatic differentiation. Specialize to increase performance.
"""
function ∂λξ_∂ξ end
function ∂λξ_∂ξ(fs::AbstractFunctionSpace, n::Val{N}, shape::AbstractShape) where {N}
ξ -> ∂λξ_∂ξ(fs, n, shape, ξ)
end
# default : rely on forwarddiff
_diff(f, x::AbstractVector{<:Number}) = ForwardDiff.jacobian(f, x)
_diff(f, x::Number) = ForwardDiff.derivative(f, x)
function ∂λξ_∂ξ(fs::AbstractFunctionSpace, n::Val{1}, shape::AbstractShape, ξ)
_diff(shape_functions(fs, n, shape), ξ)
end
# alias for scalar case
function ∂λξ_∂ξ(fs::AbstractFunctionSpace, shape::AbstractShape, ξ)
∂λξ_∂ξ(fs, Val(1), shape, ξ)
end
function ∂λξ_∂ξ(fs::AbstractFunctionSpace, shape::AbstractShape, ξ::AbstractVector)
∂λξ_∂ξ(fs, Val(1), shape, ξ)
end
function ∂λξ_∂ξ(fs::AbstractFunctionSpace, shape::AbstractShape)
ξ -> ∂λξ_∂ξ(fs, Val(1), shape, ξ)
end
"""
idof_by_face(::AbstractFunctionSpace, ::AbstractShape)
Return the local indices of the dofs lying on each face of the `Shape`.
Dofs lying on the face edges are excluded, only "face-interior" dofs are considered.
The result is a Tuple of arrays of integers. Arrays maybe be empty. See `Lagrange`
interpolation for simple examples.
"""
function idof_by_face(::AbstractFunctionSpace, ::AbstractShape)
error("Function 'idof_by_face' is not defined for this FunctionSpace and Shape")
end
"""
idof_by_face_with_bounds(::AbstractFunctionSpace, ::AbstractShape)
Return the local indices of the dofs lying on each face of the `Shape`.
Dofs lying on the face edges are included
The result is a Tuple of arrays of integers. Arrays maybe be empty. See `Lagrange`
interpolation for simple examples.
"""
function idof_by_face_with_bounds(::AbstractFunctionSpace, ::AbstractShape)
error(
"Function 'idof_by_face_with_bounds' is not defined for this FunctionSpace and Shape",
)
end
"""
idof_by_edge(::AbstractFunctionSpace, ::AbstractShape)
Return the local indices of the dofs lying on each edge of the `Shape`.
Dofs lying on the edge vertices are excluded.
The result is a Tuple of arrays of integers. Arrays maybe be empty.
See `Lagrange` interpolation for simple examples.
"""
function idof_by_edge(::AbstractFunctionSpace, ::AbstractShape)
error("Function 'idof_by_edge' is not defined for this FunctionSpace and Shape")
end
"""
idof_by_edge_with_bounds(::AbstractFunctionSpace, ::AbstractShape)
Return the local indices of the dofs lying on each edge of the `Shape`.
Dofs lying on the edge vertices are included.
The result is a Tuple of arrays of integers. Arrays maybe be empty.
See `Lagrange` interpolation for simple examples.
"""
function idof_by_edge_with_bounds(::AbstractFunctionSpace, ::AbstractShape)
error(
"Function 'idof_by_edge_with_bounds' is not defined for this FunctionSpace and Shape",
)
end
"""
idof_by_vertex(::AbstractFunctionSpace, ::AbstractShape)
Return the local indices of the dofs lying on each vertex of the `Shape`.
Beware that we are talking about the `Shape`, not the `EntityType`. So 'interior' vertices
of the `EntityType` are not taken into account for instance. See `Lagrange` interpolation
for simple examples.
"""
function idof_by_vertex(::AbstractFunctionSpace, ::AbstractShape)
error("Function 'idof_by_vertex' is not defined")
end
"""
get_ndofs(fs::AbstractFunctionSpace, shape::AbstractShape)
Number of dofs associated to the given interpolation.
"""
function get_ndofs(fs::AbstractFunctionSpace, shape::AbstractShape)
error(
"Function 'ndofs' is not defined for the given FunctionSpace $fs and shape $shape",
)
end
"""
get_coords(fs::AbstractFunctionSpace,::AbstractShape)
Return node coordinates in the reference space for associated function space and shape.
"""
function get_coords(fs::AbstractFunctionSpace, ::AbstractShape)
error("Function 'get_coords' is not defined")
end
abstract type AbtractBasisFunctionsStyle end
struct NodalBasisFunctionsStyle <: AbtractBasisFunctionsStyle end
struct ModalBasisFunctionsStyle <: AbtractBasisFunctionsStyle end
"""
basis_functions_style(fs::AbstractFunctionSpace)
Return the style (modal or nodal) corresponding to the basis functions of the 'fs'.
"""
function basis_functions_style(fs::AbstractFunctionSpace)
error("'basis_functions_style' is not defined for type : $(typeof(fs))")
end
get_quadrature(fs::AbstractFunctionSpace) = get_quadrature(basis_functions_style(fs), fs)
function get_quadrature(::ModalBasisFunctionsStyle, fs::AbstractFunctionSpace)
error("'get_quadrature' is not invalid for modal basis functions")
end
function get_quadrature(::NodalBasisFunctionsStyle, fs::AbstractFunctionSpace)
error("'get_quadrature' is not defined for type : $(typeof(fs))")
end
# `collocation` does not apply to modal basis functions.
function is_collocated(::ModalBasisFunctionsStyle, fs::AbstractFunctionSpace, quad)
IsNotCollocatedStyle()
end
function is_collocated(
::NodalBasisFunctionsStyle,
fs::AbstractFunctionSpace,
quad::AbstractQuadratureRule,
)
return is_collocated(get_quadrature(fs), get_quadrature(quad)())
end
function is_collocated(fs::AbstractFunctionSpace, quad)
is_collocated(basis_functions_style(fs), fs, quad)
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 28618 | # This file gathers all Lagrange-related interpolations
struct Lagrange{T} <: AbstractFunctionSpaceType end
function Lagrange(type)
@assert type ∈ (:Uniform, :Legendre, :Lobatto) "Lagrange type=$type is not supported"
Lagrange{type}()
end
Lagrange() = Lagrange(:Uniform) # default Lagrange constructor when `type` is not prescribed
FunctionSpace(::Val{:Lagrange}, degree::Integer) = FunctionSpace(Lagrange(), degree)
lagrange_quadrature_type(::Lagrange{T}) where {T} = error("No quadrature type is associated with Lagrange type $T")
lagrange_quadrature_type(::Lagrange{:Uniform}) = QuadratureUniform()
lagrange_quadrature_type(::Lagrange{:Legendre}) = QuadratureLegendre()
lagrange_quadrature_type(::Lagrange{:Lobatto}) = QuadratureLobatto()
function lagrange_quadrature_type(fs::FunctionSpace{<:Lagrange})
lagrange_quadrature_type(get_type(fs)())
end
function lagrange_quadrature(fs::FunctionSpace{<:Lagrange})
return Quadrature(lagrange_quadrature_type(fs), get_degree(fs))
end
get_quadrature(fs::FunctionSpace{<:Lagrange}) = lagrange_quadrature(fs)
function get_quadrature(::NodalBasisFunctionsStyle, fs::FunctionSpace{<:Lagrange})
return lagrange_quadrature(fs)
end
#default:
function is_collocated(
::ModalBasisFunctionsStyle,
::FunctionSpace{<:Lagrange},
::Quadrature,
)
IsNotCollocatedStyle()
end
function is_collocated(
::NodalBasisFunctionsStyle,
fs::FunctionSpace{<:Lagrange},
quad::Quadrature,
)
return is_collocated(lagrange_quadrature(fs), quad)
end
basis_functions_style(::FunctionSpace{<:Lagrange}) = NodalBasisFunctionsStyle()
function _lagrange_poly(j, ξ, nodes)
coef = 1.0 / prod((nodes[j] - nodes[k]) for k in eachindex(nodes) if k ≠ j)
return coef * prod((ξ - nodes[k]) for k in eachindex(nodes) if k ≠ j)
end
function __shape_functions_symbolic(quadrule::AbstractQuadratureRule, ::Type{T}) where {T}
nodes = get_nodes(quadrule)
@variables ξ::eltype(T)
l = [_lagrange_poly(j, ξ, nodes) for j in eachindex(nodes)]
expr_l = Symbolics.toexpr.((l))
return :(SA[$(expr_l...)])
end
@generated function _shape_functions_symbolic(
::Line,
::Q,
ξ::T,
) where {Q <: AbstractQuadrature, T}
quadrule = QuadratureRule(Line(), Q())
__shape_functions_symbolic(quadrule, T)
end
"""
shape_functions_symbolic(fs::FunctionSpace{<:Lagrange, D}, ::Shape, ξ) where {D, Shape<:Line}
∂λξ_∂ξ_symbolic(fs::FunctionSpace{<:Lagrange, D}, ::Shape, ξ) where {D, Shape<:Line}
# Implementation
Based on `Symbolic.jl`. First tests show that this version is slower than the implementation based on `meta`
when `D` is greater. Further investigations are needed to understand this behavior.
`shape_functions_symbolic` uses a "generated" function named `_shape_functions_symbolic`. The core of the
generated function is an `Expression` that is created by `__shape_functions_symbolic`. This latter function
uses the `Symbolics` package and the lagrange polynomials (defined in `_lagrange_poly`).
"""
function shape_functions_symbolic(fs::FunctionSpace{<:Lagrange, D}, ::Line, ξ) where {D}
quadtype = lagrange_quadrature_type(fs)
quad = Quadrature(quadtype, Val(D))
_shape_functions_symbolic(Line(), quad, ξ[1])
end
function _shape_functions_symbolic_square(
l1::SVector{N1, T},
l2::SVector{N2, T},
) where {N1, N2, T}
N = N1 * N2
if N < MAX_LENGTH_STATICARRAY
return SVector{N, T}(l1[i] * l2[j] for i in 1:N1, j in 1:N2)
else
_l1 = Array(l1)
_l2 = Array(l2)
return vec([i * j for i in _l1, j in _l2])
end
end
function shape_functions_symbolic(fs::FunctionSpace{<:Lagrange, D}, ::Square, ξ) where {D}
l1 = shape_functions_symbolic(fs::FunctionSpace{<:Lagrange, D}, Line(), ξ[1])
l2 = shape_functions_symbolic(fs::FunctionSpace{<:Lagrange, D}, Line(), ξ[2])
return _shape_functions_symbolic_square(l1, l2)
end
function shape_functions_symbolic(fs::FunctionSpace{<:Lagrange, D}, ::Cube, ξ) where {D}
l1 = shape_functions_symbolic(fs::FunctionSpace{<:Lagrange, D}, Line(), ξ[1])
l2 = shape_functions_symbolic(fs::FunctionSpace{<:Lagrange, D}, Line(), ξ[2])
l3 = shape_functions_symbolic(fs::FunctionSpace{<:Lagrange, D}, Line(), ξ[3])
quadtype = lagrange_quadrature_type(fs)
quadrule = QuadratureRule(Cube(), Quadrature(quadtype, Val(D)))
N = length(quadrule)
if N < MAX_LENGTH_STATICARRAY
return SVector{N}(i * j * k for i in l1, j in l2, k in l3)
else
_l1 = Array(l1)
_l2 = Array(l2)
_l3 = Array(l3)
return vec([i * j * k for i in _l1, j in _l2, k in _l3])
end
end
# ######### NOT USED ##########
function __∂λξ_∂ξ_symbolic(
::Line,
::Val{D},
qt::AbstractQuadratureType,
::Type{T},
) where {D, T}
quadrule = QuadratureRule(Line(), Quadrature(qt, Val(D)))
nodes = get_nodes(quadrule)
@variables ξ::eltype(T)
l = [_lagrange_poly(j, ξ, nodes) for j in eachindex(nodes)]
Diff = Differential(ξ)
dl = expand_derivatives.(Diff.(l))
expr_l = Symbolics.toexpr.(simplify.(dl))
return :(SA[$(expr_l...)])
end
@generated function _∂λξ_∂ξ_symbolic(
::Line,
::Val{D},
qt::AbstractQuadratureType,
ξ::T,
) where {D, T}
__∂λξ_∂ξ_symbolic(Line(), Val(D), qt, T)
end
function ∂λξ_∂ξ_symbolic(fs::FunctionSpace{<:Lagrange, D}, ::Line, ξ) where {D}
quadtype = lagrange_quadrature_type(fs)
_∂λξ_∂ξ_symbolic(Line(), Val(D), quadtype, ξ)
end
# #############################
function get_ndofs(fs::FunctionSpace{<:Lagrange, D}, shape::AbstractShape) where {D}
quadtype = lagrange_quadrature_type(fs)
quadrule = QuadratureRule(shape, Quadrature(quadtype, Val(D)))
return length(quadrule)
end
function _scalar_shape_functions(
fs::FunctionSpace{<:Lagrange, D},
shape::AbstractShape,
ξ,
) where {D}
shape_functions_symbolic(fs, shape, ξ)
end
"""
shape_functions(::FunctionSpace{<:Lagrange}, :: Val{N}, ::AbstractShape, ξ) where {N}
# Implementation
For N > 1, the default version consists in "replicating" the shape functions.
If `shape_functions` returns the vector `[λ₁; λ₂; λ₃]`, and if the `FESpace` is of size `2`,
then this default behaviour consists in returning the matrix `[λ₁ 0; λ₂ 0; λ₃ 0; 0 λ₁; 0 λ₂; 0 λ₃]`.
# Triangle
## Order 1
```math
\\hat{\\lambda}_1(\\xi, \\eta) = 1 - \\xi - \\eta \\hspace{1cm}
\\hat{\\lambda}_2(\\xi, \\eta) = \\xi \\hspace{1cm}
\\hat{\\lambda}_3(\\xi, \\eta) = \\eta
```
## Order 2
```math
\\begin{aligned}
& \\hat{\\lambda}_1(\\xi, \\eta) = (1 - \\xi - \\eta)(1 - 2 \\xi - 2 \\eta) \\\\
& \\hat{\\lambda}_2(\\xi, \\eta) = \\xi (2\\xi - 1) \\\\
& \\hat{\\lambda}_3(\\xi, \\eta) = \\eta (2\\eta - 1) \\\\
& \\hat{\\lambda}_{12}(\\xi, \\eta) = 4 \\xi (1 - \\xi - \\eta) \\\\
& \\hat{\\lambda}_{23}(\\xi, \\eta) = 4 \\xi \\eta \\\\
& \\hat{\\lambda}_{31}(\\xi, \\eta) = 4 \\eta (1 - \\xi - \\eta)
\\end{aligned}
```
# Prism
## Order 1
```math
\\begin{aligned}
\\hat{\\lambda}_1(\\xi, \\eta, \\zeta) = (1 - \\xi - \\eta)(1 - \\zeta)/2 \\hspace{1cm}
\\hat{\\lambda}_2(\\xi, \\eta, \\zeta) = \\xi (1 - \\zeta)/2 \\hspace{1cm}
\\hat{\\lambda}_3(\\xi, \\eta, \\zeta) = \\eta (1 - \\zeta)/2 \\hspace{1cm}
\\hat{\\lambda}_5(\\xi, \\eta, \\zeta) = (1 - \\xi - \\eta)(1 + \\zeta)/2 \\hspace{1cm}
\\hat{\\lambda}_6(\\xi, \\eta, \\zeta) = \\xi (1 + \\zeta)/2 \\hspace{1cm}
\\hat{\\lambda}_7(\\xi, \\eta, \\zeta) = \\eta (1 + \\zeta)/2 \\hspace{1cm}
\\end{aligned}
```
"""
function shape_functions(
fs::FunctionSpace{<:Lagrange, D},
::Val{N},
shape::AbstractShape,
ξ,
) where {D, N}
if N == 1
return _scalar_shape_functions(fs, shape, ξ)
elseif N < MAX_LENGTH_STATICARRAY
return kron(SMatrix{N, N}(1I), _scalar_shape_functions(fs, shape, ξ))
else
return kron(Diagonal([1.0 for i in 1:N]), _scalar_shape_functions(fs, shape, ξ))
end
end
function shape_functions(
fs::FunctionSpace{<:Lagrange, D},
n::Val{N},
shape::AbstractShape,
) where {D, N}
ξ -> shape_functions(fs, n, shape, ξ)
end
# Lagrange function for degree = 0
_scalar_shape_functions(::FunctionSpace{<:Lagrange, 0}, ::Line, ξ) = SA[one(eltype(ξ))]
get_ndofs(::FunctionSpace{<:Lagrange, 0}, ::Line) = 1
"""
∂λξ_∂ξ(::FunctionSpace{<:Lagrange}, ::Val{1}, ::AbstractShape, ξ)
# Triangle
## Order 0
```math
\\nabla \\hat{\\lambda}(\\xi, \\eta) =
\\begin{pmatrix}
0 \\\\ 0
\\end{pmatrix}
```
## Order 1
```math
\\begin{aligned}
& \\nabla \\hat{\\lambda}_1(\\xi, \\eta) =
\\begin{pmatrix}
-1 \\\\ -1
\\end{pmatrix} \\\\
& \\nabla \\hat{\\lambda}_2(\\xi, \\eta) =
\\begin{pmatrix}
1 \\\\ 0
\\end{pmatrix} \\\\
& \\nabla \\hat{\\lambda}_3(\\xi, \\eta) =
\\begin{pmatrix}
0 \\\\ 1
\\end{pmatrix} \\\\
\\end{aligned}
```
## Order 2
```math
\\begin{aligned}
& \\nabla \\hat{\\lambda}_1(\\xi, \\eta) =
\\begin{pmatrix}
-3 + 4 (\\xi + \\eta) \\\\ -3 + 4 (\\xi + \\eta)
\\end{pmatrix} \\\\
& \\nabla \\hat{\\lambda}_2(\\xi, \\eta) =
\\begin{pmatrix}
-1 + 4 \\xi \\\\ 0
\\end{pmatrix} \\\\
& \\nabla \\hat{\\lambda}_3(\\xi, \\eta) =
\\begin{pmatrix}
0 \\\\ -1 + 4 \\eta
\\end{pmatrix} \\\\
& \\nabla \\hat{\\lambda}_{12}(\\xi, \\eta) =
4 \\begin{pmatrix}
1 - 2 \\xi - \\eta \\\\ - \\xi
\\end{pmatrix} \\\\
& \\nabla \\hat{\\lambda}_{23}(\\xi, \\eta) =
4 \\begin{pmatrix}
\\eta \\\\ \\xi
\\end{pmatrix} \\\\
& \\nabla \\hat{\\lambda}_{31}(\\xi, \\eta) =
4 \\begin{pmatrix}
- \\eta \\\\ 1 - 2 \\eta - \\xi
\\end{pmatrix} \\\\
\\end{aligned}
```
# Square
## Order 0
```math
\\nabla \\hat{\\lambda}(\\xi, \\eta) =
\\begin{pmatrix}
0 \\\\ 0
\\end{pmatrix}
```
"""
function ∂λξ_∂ξ(::FunctionSpace{<:Lagrange, 0}, ::Val{1}, ::Line, ξ::Number)
SA[zero(ξ)]
end
# Functions for Triangle shape
_scalar_shape_functions(::FunctionSpace{<:Lagrange, 0}, ::Triangle, ξ) = SA[one(eltype(ξ))]
get_ndofs(::FunctionSpace{<:Lagrange, 0}, ::Triangle) = 1
function ∂λξ_∂ξ(::FunctionSpace{<:Lagrange, 0}, ::Val{1}, ::Triangle, ξ)
_zero = zero(eltype(ξ))
return SA[_zero _zero]
end
function _scalar_shape_functions(::FunctionSpace{<:Lagrange, 1}, ::Triangle, ξ)
return SA[
1 - ξ[1] - ξ[2]
ξ[1]
ξ[2]
]
end
function ∂λξ_∂ξ(::FunctionSpace{<:Lagrange, 1}, ::Val{1}, ::Triangle, ξ)
return SA[
-1.0 -1.0
1.0 0.0
0.0 1.0
]
end
get_ndofs(::FunctionSpace{<:Lagrange, 1}, ::Triangle) = 3
function _scalar_shape_functions(::FunctionSpace{<:Lagrange, 2}, ::Triangle, ξ)
return SA[
(1 - ξ[1] - ξ[2]) * (1 - 2ξ[1] - 2ξ[2]) # = (1 - x - y)(1 - 2x - 2y)
ξ[1] * (2ξ[1] - 1) # = x (2x - 1)
ξ[2] * (2ξ[2] - 1) # = y (2y - 1)
4ξ[1] * (1 - ξ[1] - ξ[2]) # = 4x (1 - x - y)
4ξ[1] * ξ[2]
4ξ[2] * (1 - ξ[1] - ξ[2]) # = 4y (1 - x - y)
]
end
function ∂λξ_∂ξ(::FunctionSpace{<:Lagrange, 2}, ::Val{1}, ::Triangle, ξ)
return SA[
-3+4(ξ[1] + ξ[2]) -3+4(ξ[1] + ξ[2])
-1+4ξ[1] 0.0
0.0 -1+4ξ[2]
4(1 - 2ξ[1] - ξ[2]) -4ξ[1]
4ξ[2] 4ξ[1]
-4ξ[2] 4(1 - 2ξ[2] - ξ[1])
]
end
get_ndofs(::FunctionSpace{<:Lagrange, 2}, ::Triangle) = 6
function _scalar_shape_functions(::FunctionSpace{<:Lagrange, 3}, ::Triangle, ξ)
λ1 = 1 - ξ[1] - ξ[2]
λ2 = ξ[1]
λ3 = ξ[2]
return SA[
0.5 * (3 * λ1 - 1) * (3 * λ1 - 2) * λ1
0.5 * (3 * λ2 - 1) * (3 * λ2 - 2) * λ2
0.5 * (3 * λ3 - 1) * (3 * λ3 - 2) * λ3
4.5 * λ1 * λ2 * (3 * λ1 - 1)
4.5 * λ1 * λ2 * (3 * λ2 - 1)
4.5 * λ2 * λ3 * (3 * λ2 - 1)
4.5 * λ2 * λ3 * (3 * λ3 - 1)
4.5 * λ3 * λ1 * (3 * λ3 - 1)
4.5 * λ3 * λ1 * (3 * λ1 - 1)
27 * λ1 * λ2 * λ3
]
end
get_ndofs(::FunctionSpace{<:Lagrange, 3}, ::Triangle) = 10
# Functions for Square shape
_scalar_shape_functions(::FunctionSpace{<:Lagrange, 0}, ::Square, ξ) = SA[one(eltype(ξ))]
get_ndofs(::FunctionSpace{<:Lagrange, 0}, ::Square) = 1
function ∂λξ_∂ξ(::FunctionSpace{<:Lagrange, 0}, ::Val{1}, ::Square, ξ)
_zero = zero(eltype(ξ))
return SA[_zero _zero]
end
# Tetra
_scalar_shape_functions(::FunctionSpace{<:Lagrange, 0}, ::Tetra, ξ) = SA[one(eltype(ξ))]
function grad_shape_functions(::FunctionSpace{<:Lagrange, 0}, ::Val{1}, ::Tetra, ξ)
_zero = zero(eltype(ξ))
return SA[_zero _zero _zero]
end
get_ndofs(::FunctionSpace{<:Lagrange, 0}, ::Tetra) = 1
"""
shape_functions(::FunctionSpace{<:Lagrange, 1}, ::Tetra, ξ)
Shape functions for Tetra Lagrange element of degree 1 in a 3D space.
```math
\\hat{\\lambda}_1(\\xi, \\eta, \\zeta) = (1 - \\xi - \\eta - \\zeta) \\hspace{1cm}
\\hat{\\lambda}_2(\\xi, \\eta, \\zeta) = \\xi \\hspace{1cm}
\\hat{\\lambda}_3(\\xi, \\eta, \\zeta) = \\eta \\hspace{1cm}
\\hat{\\lambda}_5(\\xi, \\eta, \\zeta) = \\zeta \\hspace{1cm}
```
"""
function _scalar_shape_functions(::FunctionSpace{<:Lagrange, 1}, ::Tetra, ξηζ)
ξ, η, ζ = ξηζ
return SA[
1 - ξ - η - ζ
ξ
η
ζ
]
end
function grad_shape_functions(::FunctionSpace{<:Lagrange, 1}, ::Val{1}, ::Tetra, ξηζ)
return SA[
-1 -1 -1
1 0 0
0 1 0
0 0 1
]
end
get_ndofs(::FunctionSpace{<:Lagrange, 1}, ::Tetra) = 4
# Functions for Cube shape
_scalar_shape_functions(::FunctionSpace{<:Lagrange, 0}, ::Cube, ξ) = SA[one(eltype(ξ))]
get_ndofs(::FunctionSpace{<:Lagrange, 0}, ::Cube) = 1
function ∂λξ_∂ξ(::FunctionSpace{<:Lagrange, 0}, ::Val{1}, ::Cube, ξ)
_zero = zero(eltype(ξ))
SA[_zero _zero _zero]
end
# Prism
_scalar_shape_functions(::FunctionSpace{<:Lagrange, 0}, ::Prism, ξ) = SA[one(eltype(ξ))]
function ∂λξ_∂ξ(::FunctionSpace{<:Lagrange, 0}, ::Val{1}, ::Prism, ξ)
_zero = zero(eltype(ξ))
SA[_zero _zero _zero]
end
get_ndofs(::FunctionSpace{<:Lagrange, 0}, ::Prism) = 1
function _scalar_shape_functions(::FunctionSpace{<:Lagrange, 1}, ::Prism, ξηζ)
ξ, η, ζ = ξηζ
return SA[
(1 - ξ - η) * (1 - ζ)
ξ * (1 - ζ)
η * (1 - ζ)
(1 - ξ - η) * (1 + ζ)
ξ * (1 + ζ)
η * (1 + ζ)
] ./ 2.0
end
function ∂λξ_∂ξ(::FunctionSpace{<:Lagrange, 1}, ::Val{1}, ::Prism, ξηζ)
ξ, η, ζ = ξηζ
return SA[
(-(1 - ζ)) (-(1 - ζ)) (-(1 - ξ - η))
((1-ζ)) (0.0) (-ξ)
(0.0) ((1-ζ)) (-η)
(-(1 + ζ)) (-(1 + ζ)) ((1 - ξ-η))
((1+ζ)) (0.0) (ξ)
(0.0) ((1+ζ)) (η)
] ./ 2.0
end
get_ndofs(::FunctionSpace{<:Lagrange, 1}, ::Prism) = 6
# Pyramid
_scalar_shape_functions(::FunctionSpace{<:Lagrange, 0}, ::Pyramid, ξ) = SA[one(eltype(ξ))]
get_ndofs(::FunctionSpace{<:Lagrange, 0}, ::Pyramid) = 1
function ∂λξ_∂ξ(::FunctionSpace{<:Lagrange, 0}, ::Val{1}, ::Pyramid, ξ)
_zero = zero(eltype(ξ))
SA[_zero _zero _zero]
end
function _scalar_shape_functions(::FunctionSpace{<:Lagrange, 1}, ::Pyramid, ξηζ)
ξ = ξηζ[1]
η = ξηζ[2]
ζ = ξηζ[3]
# to avoid a singularity in z = 1, we replace (1-ζ) (which is always a
# positive quantity), by (1 + ε - ζ).
ε = eps()
return SA[
(1 - ξ - ζ) * (1 - η - ζ) / (4 * (1 + ε - ζ))
(1 + ξ - ζ) * (1 - η - ζ) / (4 * (1 + ε - ζ))
(1 + ξ - ζ) * (1 + η - ζ) / (4 * (1 + ε - ζ))
(1 - ξ - ζ) * (1 + η - ζ) / (4 * (1 + ε - ζ))
ζ
]
end
get_ndofs(::FunctionSpace{<:Lagrange, 1}, ::Pyramid) = 5
# bmxam/remark : I first tried to write "generic" functions covering multiple case. But it's easy to
# forget some case and think they are already covered. In the end, it's easier to write them all explicitely,
# except for the one I wrote that are very intuitive (at least for me).
# Nevertheless, it is indeed possible to write functions working for every Lagrange element:
# for degree > 1, one dof per vertex
# for degree > 2, (degree - 1) dof per edge
# (...)
# Moreover, it's easier to gather them all in one place instead of mixing them with `shape_functions` definitions
# Generic rule 1 : no dof per vertex, edge or face for any Lagrange element of degree 0
function idof_by_vertex(::FunctionSpace{<:Lagrange, 0}, shape::AbstractShape)
ntuple(i -> SA[], nvertices(shape))
end
function idof_by_edge(::FunctionSpace{<:Lagrange, 0}, shape::AbstractShape)
ntuple(i -> SA[], nedges(shape))
end
function idof_by_edge_with_bounds(::FunctionSpace{<:Lagrange, 0}, shape::AbstractShape)
ntuple(i -> SA[], nedges(shape))
end
function idof_by_face(::FunctionSpace{<:Lagrange, 0}, shape::AbstractShape)
ntuple(i -> SA[], nfaces(shape))
end
function idof_by_face_with_bounds(::FunctionSpace{<:Lagrange, 0}, shape::AbstractShape)
ntuple(i -> SA[], nfaces(shape))
end
# Generic rule 2 (for non tensorial elements): one dof per vertex for any Lagrange element of degree > 0
function idof_by_vertex(
::FunctionSpace{<:Lagrange, degree},
shape::AbstractShape,
) where {degree}
ntuple(i -> SA[i], nvertices(shape))
end
function _idof_by_vertex(fs::FunctionSpace{<:Lagrange, degree}, shape::Line) where {degree}
quadtype = lagrange_quadrature_type(fs)
quadrule = QuadratureRule(shape, Quadrature(quadtype, Val(degree)))
n = _get_num_nodes_per_dim(quadrule)
return :(SA[1], SA[$n])
end
function _idof_by_vertex(
fs::FunctionSpace{<:Lagrange, degree},
shape::Square,
) where {degree}
quadtype = lagrange_quadrature_type(fs)
quadrule = QuadratureRule(shape, Quadrature(quadtype, Val(degree)))
n1, n2 = _get_num_nodes_per_dim(quadrule)
I = LinearIndices((1:n1, 1:n2))
p1, p2, p3, p4 = I[1, 1], I[n1, 1], I[n1, n2], I[1, n2]
return :(SA[$p1], SA[$p2], SA[$p3], SA[$p4])
end
function _idof_by_vertex(fs::FunctionSpace{<:Lagrange, degree}, shape::Cube) where {degree}
quadtype = lagrange_quadrature_type(fs)
quadrule = QuadratureRule(shape, Quadrature(quadtype, Val(degree)))
n1, n2, n3 = _get_num_nodes_per_dim(quadrule)
I = LinearIndices((1:n1, 1:n2, 1:n3))
p1, p2, p3, p4 = I[1, 1, 1], I[n1, 1, 1], I[n1, n2, 1], I[1, n2, 1]
p5, p6, p7, p8 = I[1, 1, n3], I[n1, 1, n3], I[n1, n2, n3], I[1, n2, n3]
return :(SA[$p1], SA[$p2], SA[$p3], SA[$p4], SA[$p5], SA[$p6], SA[$p7], SA[$p8])
end
function idof_by_vertex(::FunctionSpace{<:Lagrange, 0}, shape::Union{Line, Square, Cube})
ntuple(i -> SA[], nvertices(shape))
end
@generated function idof_by_vertex(
fs::FunctionSpace{<:Lagrange},
shape::Union{Line, Square, Cube},
)
return _idof_by_vertex(fs(), shape())
end
# Generic rule 3 : for `AbstractShape` of topology dimension less than `3`, `idof_by_face` alias `idof_by_edge`
const AbstractShape_1_2 = Union{AbstractShape{1}, AbstractShape{2}}
function idof_by_face(
fs::FunctionSpace{type, degree},
shape::AbstractShape_1_2,
) where {type, degree}
idof_by_edge(fs, shape)
end
function idof_by_face_with_bounds(
fs::FunctionSpace{type, degree},
shape::AbstractShape_1_2,
) where {type, degree}
idof_by_edge_with_bounds(fs, shape)
end
# Line
function idof_by_edge(::FunctionSpace{<:Lagrange, degree}, shape::Line) where {degree}
ntuple(i -> SA[], nedges(shape))
end
function idof_by_edge_with_bounds(
fs::FunctionSpace{<:Lagrange, degree},
shape::Line,
) where {degree}
idof_by_vertex(fs, shape)
end
# Triangle
function idof_by_edge(::FunctionSpace{<:Lagrange, 1}, shape::Triangle)
ntuple(i -> SA[], nedges(shape))
end
function idof_by_edge_with_bounds(::FunctionSpace{<:Lagrange, 1}, shape::Triangle)
(SA[1, 2], SA[2, 3], SA[3, 1])
end
idof_by_edge(::FunctionSpace{<:Lagrange, 2}, ::Triangle) = (SA[4], SA[5], SA[6])
function idof_by_edge_with_bounds(::FunctionSpace{<:Lagrange, 2}, ::Triangle)
(SA[1, 2, 4], SA[2, 3, 5], SA[3, 1, 6])
end
idof_by_edge(::FunctionSpace{<:Lagrange, 3}, ::Triangle) = (SA[4, 5], SA[6, 7], SA[8, 9])
function idof_by_edge_with_bounds(::FunctionSpace{<:Lagrange, 3}, ::Triangle)
(SA[1, 2, 4, 5], SA[2, 3, 6, 7], SA[3, 1, 8, 9])
end
#for Quad
function __idof_by_edge(n1, n2, range1, range2)
I = LinearIndices((1:n1, 1:n2))
e1 = I[range1, 1] # edge x⁻
e2 = I[n1, range2] # edge y⁺
e3 = I[reverse(range1), n2] # edge x⁺
e4 = I[1, reverse(range2)] # edge y⁻
return e1, e2, e3, e4
end
# for Cube
function __idof_by_edge(n1, n2, n3, range1, range2, range3)
I = LinearIndices((1:n1, 1:n2, 1:n3))
e1 = I[range1, 1, 1]
e2 = I[n1, range2, 1]
e3 = I[reverse(range1), n2, 1]
e4 = I[1, reverse(range2), 1]
e5 = I[1, 1, range3]
e6 = I[n1, 1, range3]
e7 = I[n1, n2, range3]
e8 = I[1, n2, range3]
e9 = I[range1, 1, n3]
e10 = I[n1, range2, n3]
e11 = I[reverse(range1), n2, n3]
e12 = I[1, reverse(range2), n3]
return e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12
end
function _idof_by_edge(
fs::FunctionSpace{<:Lagrange, degree},
shape::Union{Square, Cube},
) where {degree}
quadtype = lagrange_quadrature_type(fs)
quadrule = QuadratureRule(shape, Quadrature(quadtype, Val(degree)))
n = _get_num_nodes_per_dim(quadrule)
range = ntuple(i -> 2:(n[i] - 1), length(n))
e = __idof_by_edge(n..., range...)
expr = [:(SA[$(x...)]) for x in e]
return :(tuple($(expr...)))
end
function idof_by_edge(::FunctionSpace{<:Bcube.Lagrange, 0}, shape::Union{Cube, Square})
ntuple(i -> SA[], nedges(shape))
end
@generated function idof_by_edge(
fs::FS,
shape::Shape,
) where {FS <: FunctionSpace{<:Lagrange}, Shape <: Union{Square, Cube}}
return _idof_by_edge(fs(), shape())
end
function _idof_by_edge_with_bounds(
fs::FunctionSpace{<:Lagrange, degree},
shape::Union{Square, Cube},
) where {degree}
quadtype = lagrange_quadrature_type(fs)
quadrule = QuadratureRule(shape, Quadrature(quadtype, Val(degree)))
n = _get_num_nodes_per_dim(quadrule)
range = ntuple(i -> 1:n[i], length(n))
e = __idof_by_edge(n..., range...)
# put extrema nodes at first and second position :
# e = map(e) do x
# length(x) == 2 && return x
# return [x[1],x[end],x[2:end-1]...]
# end
expr = [:(SA[$(x...)]) for x in e]
return :(tuple($(expr...)))
end
@generated function idof_by_edge_with_bounds(
fs::FS,
shape::Shape,
) where {FS <: FunctionSpace{<:Lagrange}, Shape <: Union{Square, Cube}}
return _idof_by_edge_with_bounds(fs(), shape())
end
# for Cube
function __idof_by_face(n1, n2, n3, range1, range2, range3)
I = LinearIndices((1:n1, 1:n2, 1:n3))
f5 = I[1, range2, range3] # face x⁻
f3 = I[n1, range2, range3] # face x⁺
f2 = I[range1, 1, range3] # face y⁻
f4 = I[range1, n2, range3] # face y⁺
f1 = I[range1, range2, 1] # face z⁻
f6 = I[range1, range2, n3] # face z⁺
return f1, f2, f3, f4, f5, f6
end
function _idof_by_face(fs::FunctionSpace{<:Lagrange, degree}, shape::Cube) where {degree}
quadtype = lagrange_quadrature_type(fs)
quadrule = QuadratureRule(shape, Quadrature(quadtype, Val(degree)))
n = _get_num_nodes_per_dim(quadrule)
range = ntuple(i -> 2:(n[i] - 1), length(n))
f = vec.(__idof_by_face(n..., range...))
expr = [:(SA[$(x...)]) for x in f]
return :(tuple($(expr...)))
end
function idof_by_face(::FunctionSpace{<:Bcube.Lagrange, 0}, shape::Cube)
ntuple(i -> SA[], nedges(shape))
end
@generated function idof_by_face(fs::FunctionSpace{<:Lagrange}, shape::Union{Cube})
return _idof_by_face(fs(), shape())
end
function _idof_by_face_with_bounds(
fs::FunctionSpace{<:Lagrange, degree},
shape::Cube,
) where {degree}
quadtype = lagrange_quadrature_type(fs)
quadrule = QuadratureRule(shape, Quadrature(quadtype, Val(degree)))
n = _get_num_nodes_per_dim(quadrule)
range = ntuple(i -> 1:n[i], length(n))
f = vec.(__idof_by_face(n..., range...))
expr = [:(SA[$(x...)]) for x in f]
return :(tuple($(expr...)))
end
@generated function idof_by_face_with_bounds(fs::FunctionSpace{<:Lagrange}, shape::Cube)
return _idof_by_face_with_bounds(fs(), shape())
end
# Tetra
function idof_by_edge(::FunctionSpace{<:Lagrange, 1}, shape::Tetra)
ntuple(i -> SA[], nedges(shape))
end
function idof_by_edge_with_bounds(::FunctionSpace{<:Lagrange, 1}, shape::Tetra)
(SA[1, 2], SA[2, 3], SA[3, 1], SA[1, 4], SA[2, 4], SA[3, 4])
end
function idof_by_face(::FunctionSpace{<:Lagrange, 1}, shape::Tetra)
ntuple(i -> SA[], nfaces(shape))
end
function idof_by_face_with_bounds(::FunctionSpace{<:Lagrange, 1}, shape::Tetra)
(SA[1, 3, 2], SA[1, 2, 4], SA[2, 3, 4], SA[3, 1, 4])
end
# Prism
function idof_by_edge(::FunctionSpace{<:Lagrange, 1}, shape::Prism)
ntuple(i -> SA[], nedges(shape))
end
function idof_by_edge_with_bounds(::FunctionSpace{<:Lagrange, 1}, shape::Prism)
(
SA[1, 2],
SA[2, 3],
SA[3, 1],
SA[1, 4],
SA[2, 5],
SA[3, 6],
SA[4, 5],
SA[5, 6],
SA[6, 4],
)
end
function idof_by_face(::FunctionSpace{<:Lagrange, 1}, shape::Prism)
ntuple(i -> SA[], nfaces(shape))
end
function idof_by_face_with_bounds(::FunctionSpace{<:Lagrange, 1}, shape::Prism)
(SA[1, 2, 5, 4], SA[2, 3, 6, 5], SA[3, 1, 4, 6], SA[1, 3, 2], SA[4, 5, 6])
end
# Pyramid
function idof_by_edge(::FunctionSpace{<:Lagrange, 1}, shape::Pyramid)
ntuple(i -> SA[], nedges(shape))
end
function idof_by_edge_with_bounds(::FunctionSpace{<:Lagrange, 1}, shape::Pyramid)
(SA[1, 2], SA[2, 3], SA[3, 4], SA[4, 1], SA[1, 5], SA[2, 5], SA[3, 5], SA[4, 5])
end
function idof_by_face(::FunctionSpace{<:Lagrange, 1}, shape::Pyramid)
ntuple(i -> SA[], nfaces(shape))
end
function idof_by_face_with_bounds(::FunctionSpace{<:Lagrange, 1}, shape::Pyramid)
(SA[1, 4, 3, 2], SA[1, 2, 5], SA[2, 3, 5], SA[3, 4, 5], SA[4, 1, 5])
end
# Generic versions for Lagrange 0 and 1 (any shape)
get_coords(::FunctionSpace{<:Lagrange, 0}, shape::AbstractShape) = (center(shape),)
get_coords(::FunctionSpace{<:Lagrange, 1}, shape::AbstractShape) = get_coords(shape)
# Line, Square, Cube
function _make_staticvector(x)
if isa(x, SVector) || !(length(x) < MAX_LENGTH_STATICARRAY)
return x
else
return SA[x]
end
end
function _coords_gen_impl(shape::AbstractShape, quad::AbstractQuadrature)
quadrule = QuadratureRule(shape, quad)
nodes = _make_staticvector.(get_nodes(quadrule))
return :(tuple($(nodes...)))
end
@generated function _coords_gen(
::Shape,
::Quad,
) where {Shape <: AbstractShape, Quad <: AbstractQuadrature}
_coords_gen_impl(Shape(), Quad())
end
function _get_coords(
fs::FunctionSpace{<:Lagrange, D},
shape::Union{Line, Square, Cube},
) where {D}
quadtype = lagrange_quadrature_type(fs)
quad = Quadrature(quadtype, Val(D))
_coords_gen(shape, quad)
end
get_coords(::FunctionSpace{<:Lagrange, 0}, shape::Line) = (center(shape),)
get_coords(::FunctionSpace{<:Lagrange, 0}, shape::Square) = (center(shape),)
get_coords(::FunctionSpace{<:Lagrange, 0}, shape::Cube) = (center(shape),)
get_coords(fs::FunctionSpace{<:Lagrange, 1}, shape::Line) = _get_coords(fs, shape)
get_coords(fs::FunctionSpace{<:Lagrange, 1}, shape::Square) = _get_coords(fs, shape)
get_coords(fs::FunctionSpace{<:Lagrange, 1}, shape::Cube) = _get_coords(fs, shape)
get_coords(fs::FunctionSpace{<:Lagrange, D}, shape::Line) where {D} = _get_coords(fs, shape)
function get_coords(fs::FunctionSpace{<:Lagrange, D}, shape::Square) where {D}
_get_coords(fs, shape)
end
get_coords(fs::FunctionSpace{<:Lagrange, D}, shape::Cube) where {D} = _get_coords(fs, shape)
# Triangle
function get_coords(::FunctionSpace{<:Lagrange, 2}, shape::Triangle)
(
get_coords(shape)...,
sum(get_coords(shape, [1, 2])) / 2,
sum(get_coords(shape, [2, 3])) / 2,
sum(get_coords(shape, [3, 1])) / 2,
)
end
function get_coords(::FunctionSpace{<:Lagrange, 3}, shape::Triangle)
(
get_coords(shape)...,
(2 / 3) * get_coords(shape, 1) + (1 / 3) * get_coords(shape, 2),
(1 / 3) * get_coords(shape, 1) + (2 / 3) * get_coords(shape, 2),
(2 / 3) * get_coords(shape, 2) + (1 / 3) * get_coords(shape, 3),
(1 / 3) * get_coords(shape, 2) + (2 / 3) * get_coords(shape, 3),
(2 / 3) * get_coords(shape, 3) + (1 / 3) * get_coords(shape, 1),
(1 / 3) * get_coords(shape, 3) + (2 / 3) * get_coords(shape, 1),
sum(get_coords(shape)) / 3,
)
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 4343 | # This file gathers all Taylor-related interpolations
struct Taylor <: AbstractFunctionSpaceType end
FunctionSpace(::Val{:Taylor}, degree::Integer) = FunctionSpace(Taylor(), degree)
basis_functions_style(::FunctionSpace{<:Taylor}) = ModalBasisFunctionsStyle()
"""
shape_functions(::FunctionSpace{<:Taylor}, ::AbstractShape, ξ)
# Implementation
For N > 1, the default version consists in "replicating" the shape functions.
If `shape_functions` returns the vector `[λ₁; λ₂; λ₃]`, and if the `FESpace` is of size `2`,
then this default behaviour consists in returning the matrix `[λ₁ 0; λ₂ 0; λ₃ 0; 0 λ₁; 0 λ₂; 0 λ₃]`.
# Any shape, order 0
``\\hat{\\lambda}(\\xi) = 1``
# Line
## Order 1
```math
\\hat{\\lambda}_1(\\xi) = 1 \\hspace{1cm} \\hat{\\lambda}_1(\\xi) = \\frac{\\xi}{2}
```
# Square
## Order 1
```math
\\begin{aligned}
& \\hat{\\lambda}_1(\\xi, \\eta) = 0 \\\\
& \\hat{\\lambda}_2(\\xi, \\eta) = \\frac{\\xi}{2} \\\\
& \\hat{\\lambda}_3(\\xi, \\eta) = \\frac{\\eta}{2}
\\end{aligned}
```
"""
function shape_functions(
fs::FunctionSpace{<:Taylor},
::Val{N},
shape::AbstractShape,
ξ,
) where {N} #::Union{T,AbstractVector{T}} ,T<:Number
if N == 1
return _scalar_shape_functions(fs, shape, ξ)
elseif N < MAX_LENGTH_STATICARRAY
return kron(SMatrix{N, N}(1I), _scalar_shape_functions(fs, shape, ξ))
else
return kron(Diagonal([1.0 for i in 1:N]), _scalar_shape_functions(fs, shape, ξ))
end
end
function shape_functions(
fs::FunctionSpace{<:Taylor, D},
n::Val{N},
shape::AbstractShape,
) where {D, N}
ξ -> shape_functions(fs, n, shape, ξ)
end
# Shared functions for all Taylor elements of some kind
function _scalar_shape_functions(::FunctionSpace{<:Taylor, 0}, ::AbstractShape, ξ)
return SA[one(eltype(ξ))]
end
# Functions for Line shape
"""
∂λξ_∂ξ(::FunctionSpace{<:Taylor}, ::Val{1}, ::AbstractShape, ξ)
# Line
## Order 0
``\\nabla \\hat{\\lambda}(\\xi) = 0``
## Order 1
```math
\\nabla \\hat{\\lambda}_1(\\xi) = 0 \\hspace{1cm} \\nabla \\hat{\\lambda}_1(\\xi) = \\frac{1}{2}
```
# Square
## Order 0
```math
\\hat{\\lambda}_1(\\xi, \\eta) = \\begin{pmatrix} 0 \\\\ 0 \\end{pmatrix}
```
## Order 1
```math
\\begin{aligned}
& \\nabla \\hat{\\lambda}_1(\\xi, \\eta) = \\begin{pmatrix} 0 \\\\ 0 \\end{pmatrix} \\\\
& \\nabla \\hat{\\lambda}_2(\\xi, \\eta) = \\begin{pmatrix} \\frac{1}{2} \\\\ 0 \\end{pmatrix} \\\\
& \\nabla \\hat{\\lambda}_3(\\xi, \\eta) = \\begin{pmatrix} 0 \\\\ \\frac{1}{2} \\end{pmatrix}
\\end{aligned}
```
"""
function ∂λξ_∂ξ(::FunctionSpace{<:Taylor, 0}, ::Val{1}, ::Line, ξ)
return SA[zero(eltype(ξ))]
end
function _scalar_shape_functions(::FunctionSpace{<:Taylor, 1}, ::Line, ξ)
return SA[
1.0
ξ[1] / 2
]
end
function ∂λξ_∂ξ(::FunctionSpace{<:Taylor, 1}, ::Val{1}, ::Line, ξ)
return SA[
0.0
1.0 / 2.0
]
end
# Functions for Square shape
function ∂λξ_∂ξ(::FunctionSpace{<:Taylor, 0}, ::Val{1}, ::Union{Square, Triangle}, ξ)
_zero = zero(eltype(ξ))
return SA[_zero _zero]
end
function _scalar_shape_functions(::FunctionSpace{<:Taylor, 1}, ::Square, ξ)
return SA[
1.0
ξ[1] / 2
ξ[2] / 2
]
end
function ∂λξ_∂ξ(::FunctionSpace{<:Taylor, 1}, ::Val{1}, ::Square, ξ)
return SA[
0.0 0.0
1.0/2 0.0
0.0 1.0/2
]
end
# Number of dofs
get_ndofs(::FunctionSpace{<:Taylor, N}, ::Line) where {N} = N + 1
get_ndofs(::FunctionSpace{<:Taylor, 0}, ::Union{Square, Triangle}) = 1
get_ndofs(::FunctionSpace{<:Taylor, 1}, ::Union{Square, Triangle}) = 3
# For Taylor base there are never any dof on vertex, edge or face
function idof_by_vertex(::FunctionSpace{<:Taylor, N}, shape::AbstractShape) where {N}
fill(Int[], nvertices(shape))
end
function idof_by_edge(::FunctionSpace{<:Taylor, N}, shape::AbstractShape) where {N}
ntuple(i -> SA[], nedges(shape))
end
function idof_by_edge_with_bounds(
::FunctionSpace{<:Taylor, N},
shape::AbstractShape,
) where {N}
ntuple(i -> SA[], nedges(shape))
end
function idof_by_face(::FunctionSpace{<:Taylor, N}, shape::AbstractShape) where {N}
ntuple(i -> SA[], nfaces(shape))
end
function idof_by_face_with_bounds(
::FunctionSpace{<:Taylor, N},
shape::AbstractShape,
) where {N}
ntuple(i -> SA[], nfaces(shape))
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 10158 | abstract type AbstractComputeQuadratureStyle end
#struct BroadcastComputeQuadratureStyle <: AbstractComputeQuadratureStyle end
struct MapComputeQuadratureStyle <: AbstractComputeQuadratureStyle end
ComputeQuadratureStyle(::Type{<:Any}) = MapComputeQuadratureStyle() #default
ComputeQuadratureStyle(op) = ComputeQuadratureStyle(typeof(op))
"""
integrate_on_ref_element(g, cellinfo::CellInfo, quadrature::AbstractQuadrature, [::T]) where {N,[T<:AbstractComputeQuadratureStyle]}
integrate_on_ref_element(g, faceinfo::FaceInfo, quadrature::AbstractQuadrature, [::T]) where {N,[T<:AbstractComputeQuadratureStyle]}
Integrate a function `g` over a cell/face described by `cellinfo`/`faceinfo`.
The function `g` can be expressed in the reference or the physical space corresponding to the cell,
both cases are automatically handled by applying necessary mapping when needed.
If the last argument is given, computation is optimized according to the given concrete type `T<:AbstractComputeQuadratureStyle`.
"""
function integrate_on_ref_element(g, eltInfo, quadrature::AbstractQuadrature)
integrate_on_ref_element(g, eltInfo, quadrature, ComputeQuadratureStyle(g))
end
function integrate_on_ref_element(
g,
elementInfo::Union{CellInfo, FaceInfo},
quadrature::AbstractQuadrature,
mapstyle::MapComputeQuadratureStyle,
)
_g(ξ) = g(ElementPoint(ξ, elementInfo, ReferenceDomain()))
integrate_on_ref_element(
_g,
get_element_type(elementInfo),
nodes(elementInfo),
quadrature,
mapstyle,
)
end
function integrate_on_ref_element(
g,
ctype,
cnodes,
quadrature::AbstractQuadrature,
mapstyle::MapComputeQuadratureStyle,
)
f = Base.Fix1(_apply_metric, (g, ctype, cnodes))
int = apply_quadrature(f, ctype, cnodes, quadrature, mapstyle)
return int
end
# Integration on a node is immediate
function integrate_on_ref_element(
g,
::AbstractEntityType{0},
cnodes,
::AbstractQuadrature,
::MapComputeQuadratureStyle,
)
# Whatever the "reference coordinate" ξ that we choose, it will always map to the correct
# node physical coordinate. So we chose to evaluate in ξ = 0.
return g(0.0)
end
function _apply_metric(g_and_c::T, qnode::T1) where {T, T1}
g, ctype, cnodes = g_and_c
ξ = get_coords(qnode)
m = mapping_det_jacobian(topology_style(ctype, cnodes), ctype, cnodes, ξ)
m * g(ξ)
end
"""
apply_quadrature(
g_ref,
shape::AbstractShape,
quadrature::AbstractQuadrature,
::MapComputeQuadratureStyle,
)
Apply quadrature rule to function `g_ref` expressed on reference shape `shape`.
Computation is optimized according to the given concrete type `T<:AbstractComputeQuadratureStyle`.
"""
function apply_quadrature(
g_ref,
shape::AbstractShape,
quadrature::AbstractQuadrature,
::MapComputeQuadratureStyle,
)
quadrule = QuadratureRule(shape, quadrature)
# --> TEMPORARY: ALTERING THE QUADNODES TO BYPASS OPERATORS / TestFunctionInterpolator
quadnodes = map(get_coords, get_quadnodes(quadrule))
# <-- TEMPORARY:
_apply_quadrature(g_ref, get_weights(quadrule), quadnodes, g_ref(quadnodes[1]))
end
# splitting the previous function to have function barrier...
@inline function _apply_quadrature(g_ref, ω, xq::SVector{N}, ::T) where {N, T}
u = map(g_ref, xq)::SVector{N, T}
_apply_quadrature1(ω, u)
end
@inline function _apply_quadrature1(ω, u)
wu = map(_mapquad, ω, u)
_apply_quadrature2(wu)
end
_apply_quadrature2(wu) = reduce(_mapsum, wu)
_mapsum(a, b) = map(+, a, b)
_mapsum(a::NullOperator, b::NullOperator) = a
_mapquad(ω, u) = map(Base.Fix1(*, ω), u)
"""
apply_quadrature_v2(
g_ref,
shape::AbstractShape,
quadrature::AbstractQuadrature,
::MapComputeQuadratureStyle,
)
Alternative version of `apply_quadrature` thats seems to be more efficient
for face integration (this observation is not really understood)
"""
function apply_quadrature_v2(
g_ref::G,
shape::AbstractShape,
quadrature::AbstractQuadrature,
::MapComputeQuadratureStyle,
) where {G}
quadrule = QuadratureRule(shape, quadrature)
# --> TEMPORARY: ALTERING THE QUADNODES TO BYPASS OPERATORS / TestFunctionInterpolator
quadnodes = map(get_coords, get_quadnodes(quadrule))
# <-- TEMPORARY:
_apply_quadrature_v2(g_ref, get_weights(quadrule), quadnodes)
end
# splitting the previous function to have function barrier...
function _apply_quadrature_v2(g_ref, ω, xq)
fquad(w, x) = _mapquad(w, g_ref(x))
mapreduce(fquad, _mapsum, ω, xq)
end
# Below are "dispatch functions" to select the more appropriate quadrature function
function apply_quadrature(
g::G,
ctype::AbstractEntityType,
cnodes::CN,
quadrature::AbstractQuadrature,
qStyle::AbstractComputeQuadratureStyle,
) where {G, CN}
apply_quadrature(topology_style(ctype, cnodes), g, shape(ctype), quadrature, qStyle)
end
function apply_quadrature(
::isVolumic,
g,
shape::AbstractShape,
quadrature::AbstractQuadrature,
qStyle::MapComputeQuadratureStyle,
)
apply_quadrature(g, shape, quadrature, qStyle)
end
function apply_quadrature(
::isSurfacic,
g::G,
shape::AbstractShape,
quadrature::AbstractQuadrature,
qStyle::MapComputeQuadratureStyle,
) where {G}
apply_quadrature_v2(g, shape, quadrature, qStyle)
end
function apply_quadrature(
::isCurvilinear,
g,
shape::AbstractShape,
quadrature::AbstractQuadrature,
qStyle::MapComputeQuadratureStyle,
)
apply_quadrature_v2(g, shape, quadrature, qStyle)
end
struct Integrand{N, F}
f::F
end
Integrand(f::Tuple) = Integrand{length(f), typeof(f)}(f)
Integrand(f) = Integrand{1, typeof(f)}(f)
get_function(integrand::Integrand) = integrand.f
Base.getindex(integrand::Integrand, i) = get_function(integrand)[i]
@inline function Base.getindex(integrand::Integrand{N, F}, i) where {N, F <: Tuple}
map(_f -> _f[i], get_function(integrand))
end
const ∫ = Integrand
"""
-(a::Integrand)
Soustraction on an `Integrand` is treated as a multiplication by "(-1)" :
`-a ≡ ((-1)*a)`
"""
Base.:-(a::Integrand) = Integrand((-1) * get_function(a))
Base.:+(a::Integrand) = a
struct Integration{I <: Integrand, M <: Measure}
integrand::I
measure::M
end
get_integrand(integration::Integration) = integration.integrand
get_measure(integration::Integration) = integration.measure
Base.getindex(integration::Integration, i) = get_integrand(integration)[i]
Base.:*(integrand::Integrand, measure::Measure) = Integration(integrand, measure)
"""
*(a::Number, b::Integration)
*(a::Integration, b::Number)
Multiplication of an `Integration` is based on a rewriting rule
following the linearity rules of integration :
`k*∫(f(x))dx => ∫(k*f(x))dx`
"""
function Base.:*(a::Number, b::Integration)
Integration(Integrand(a * get_function(get_integrand(b))), get_measure(b))
end
function Base.:*(a::Integration, b::Number)
Integration(Integrand(get_function(get_integrand(a)) * b), get_measure(a))
end
"""
-(a::Integration)
Soustraction on an `Integration` is treated as a multiplication by "(-1)" :
`-a ≡ ((-1)*a)`
"""
Base.:-(a::Integration) = (-1) * a
Base.:+(a::Integration) = a
struct MultiIntegration{N, I <: Tuple{Vararg{Integration, N}}}
integrations::I
end
# implement AbstractLazy inteface:
LazyOperators.pretty_name(a::Integration) = "Integration: " * pretty_name(get_measure(a))
LazyOperators.pretty_name_style(a::Integration) = Dict(:color => :yellow)
function LazyOperators.show_lazy_operator(
a::Integration;
level = 1,
indent = 4,
islast = (true,),
)
level == 1 && println("\n---------------")
print_tree_prefix(level, indent, islast)
printstyled(pretty_name(a) * " \n"; pretty_name_style(a)...)
show_lazy_operator(
get_function(get_integrand(a));
level = level + 1,
indent = indent,
islast = (islast..., true),
)
level == 1 && println("---------------")
end
function MultiIntegration(a::NTuple{N, <:Integration}) where {N}
MultiIntegration{length(a), typeof(a)}(a)
end
function MultiIntegration(a::Integration, b::Vararg{Integration, N}) where {N}
MultiIntegration((a, b...))
end
Base.getindex(a::MultiIntegration, ::Val{I}) where {I} = a.integrations[I]
Base.iterate(a::MultiIntegration, i) = iterate(a.integrations, i)
Base.iterate(a::MultiIntegration) = iterate(a.integrations)
# rewriting rules to deal with the additions of several `Integration`
Base.:+(a::Integration, b::Integration) = MultiIntegration(a, b)
Base.:+(a::MultiIntegration, b::Integration) = MultiIntegration(a.integrations..., b)
Base.:+(a::Integration, b::MultiIntegration) = MultiIntegration(a, b.integrations...)
function Base.:+(a::MultiIntegration, b::MultiIntegration)
MultiIntegration((a.integrations..., b.integrations...))
end
Base.:+(a::MultiIntegration) = a
Base.:-(a::Integration, b::Integration) = MultiIntegration(a, -b)
Base.:-(a::MultiIntegration, b::Integration) = MultiIntegration(a.integrations..., -b)
function Base.:-(a::Integration, b::MultiIntegration)
MultiIntegration(a, map(-, b.integrations)...)
end
function Base.:-(a::MultiIntegration, b::MultiIntegration)
MultiIntegration((a.integrations..., map(-, b.integrations)...))
end
Base.:-(a::MultiIntegration) = MultiIntegration(map(-, a.integrations)...)
# implement AbstractLazy inteface:
LazyOperators.pretty_name(::MultiIntegration{N}) where {N} = "MultiIntegration: (N=$N)"
LazyOperators.pretty_name_style(a::MultiIntegration) = Dict(:color => :yellow)
function LazyOperators.show_lazy_operator(
multiIntegration::MultiIntegration;
level = 1,
indent = 4,
islast = (true,),
)
level == 1 && println("\n---------------")
print_tree_prefix(level, indent, islast)
printstyled(
pretty_name(multiIntegration) * ": \n";
pretty_name_style(multiIntegration)...,
)
show_lazy_operator(
multiIntegration.integrations;
level = level + 1,
islast = islast,
printTupleOp = false,
)
level == 1 && println("---------------")
nothing
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 1615 |
abstract type AbstractMeasure{D <: AbstractDomain, Q <: AbstractQuadrature} end
get_domain_type(::AbstractMeasure{D}) where {D} = D
get_quadrature_type(::AbstractMeasure{D, Q}) where {D, Q} = Q
get_domain(m::AbstractMeasure) = m.domain
get_quadrature(m::AbstractMeasure) = m.quadrature
function LazyOperators.pretty_name(m::AbstractMeasure)
"Measure(domain = " *
pretty_name(get_domain(m)) *
", quadrature type = " *
string(get_quadrature_type(m)) *
")"
end
"""
A `Measure` is geometrical domain of integration associated to a way to integrate
on it (i.e a quadrature rule).
`Q` is the quadrature type used to integrate expressions using this measure.
"""
struct Measure{D <: AbstractDomain, Q <: AbstractQuadrature} <: AbstractMeasure{D, Q}
domain::D
quadrature::Q
end
"""
Measure(domain::AbstractDomain, degree::Integer)
Measure(domain::AbstractDomain, ::Val{degree}) where {degree}
Build a `Measure` on the designated `AbstractDomain` with a default quadrature of degree `degree`.
# Arguments
- `domain::AbstractDomain` : the domain to integrate over
- `degree` : the degree of the quadrature rule (`Legendre` quadrature type by default)
# Examples
```julia-repl
julia> mesh = line_mesh(10)
julia> Ω = CellDomain(mesh)
julia> dΩ = Measure(Ω, 2)
```
"""
Measure(domain::AbstractDomain, degree::Integer) = Measure(domain, Val(degree))
function Measure(domain::AbstractDomain, degree::Val{D}) where {D}
Measure(domain, Quadrature(degree))
end
""" Return a LazyOperator representing a face normal """
get_face_normals(::Measure{<:AbstractFaceDomain}) = FaceNormal()
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 5215 | abstract type AbstractIoHandler end
struct GMSHIoHandler <: AbstractIoHandler end
struct HDF5IoHandler <: AbstractIoHandler end
struct JLD2IoHandler <: AbstractIoHandler end
struct VTKIoHandler <: AbstractIoHandler end
"""
read_file([handler::AbstractIoHandler,] filepath::String; domainNames = nothing, varnames = nothing, topodim = 0, kwargs...,)
Read the mesh and associated data in the given file.
Returns a NamedTuple with the following keys:
* mesh -> the Bcube mesh
* data -> dictionnary of FlowSolutionName => (dictionnary of VariableName => MeshData)
* to be defined : stuff related to subdomains
If `domainNames` is an empty list/array, all the domains found will be read and merged. Otherwise, `domainNames` can be
a filtered list/array of the domain names to retain.
If `varnames` is set to `nothing`, no variables will be read, which is the behavior of `read_mesh`. To read all the
variables, `varnames` must be set to `"*"`.
The argument `topodim` can be used to force and/or select the elements of this topological dimension to be interpreted as
"volumic". Leave it to `0` to let the reader determines the topological dimension automatically. The same goes for `spacedim`.
# Example
```julia
result = read_file("file.cgns"; varnames = ["Temperature", "Density"], verbose = true)
@show ncells(result.mesh)
@show keys(result.data)
"""
function read_file(
handler::AbstractIoHandler,
filepath::String;
domainNames = String[],
varnames = nothing,
topodim = 0,
spacedim = 0,
kwargs...,
)
error(
"'read_file' is not implemented for $(typeof(handler)). Have you loaded the extension?",
)
end
function read_file(filepath::String; domainNames = String[], varnames = nothing, kwargs...)
read_file(_filename_to_handler(filepath), filepath; domainNames, varnames, kwargs...)
end
"""
Similar as `read_file`, but return only the mesh.
"""
function read_mesh(
handler::AbstractIoHandler,
filepath::String,
domainNames = String[],
kwargs...,
)
res = read_file(handler, filepath; domainNames, kwargs...)
return res.mesh
end
function read_mesh(filepath::String; kwargs...)
read_mesh(_filename_to_handler(filepath), filepath; kwargs...)
end
"""
write_file(
[handler::AbstractIoHandler,]
basename::String,
mesh::AbstractMesh,
data = nothing,
it::Integer = -1,
time::Real = 0.0;
mesh_degree::Integer = 1,
functionSpaceType::AbstractFunctionSpaceType = Lagrange(),
discontinuous::Bool = true,
collection_append::Bool = false,
kwargs...,
)
Write a set of `AbstractLazy` to a file.
`data` can be provided as a `Dict{String, AbstractLazy}` if they share the same
"container" (~FlowSolution), or as a `Dict{String, T}` where T is the previous
Dict type described.
To write cell-centered data, wrapped your input into a `MeshCellData` (for instance
using Bcube.cell_mean).
# Implementation
To specialize this method, please specialize:
write_file(
handler::AbstractIoHandler,
basename::String,
mesh::AbstractMesh,
U_export::AbstractFESpace,
data = nothing,
it::Integer = -1,
time::Real = 0.0;
collection_append::Bool = false,
kwargs...,
)
"""
function write_file(
handler::AbstractIoHandler,
basename::String,
mesh::AbstractMesh,
data = nothing,
it::Integer = -1,
time::Real = 0.0;
mesh_degree::Integer = 1,
functionSpaceType::AbstractFunctionSpaceType = Lagrange(),
discontinuous::Bool = true,
collection_append::Bool = false,
kwargs...,
)
# Build FESpace corresponding to asked degree, func space and discontinuous
U_export = TrialFESpace(
FunctionSpace(functionSpaceType, mesh_degree),
mesh;
isContinuous = !discontinuous,
)
# Call version with U_export
write_file(
handler,
basename,
mesh,
U_export,
data,
it,
time;
collection_append,
kwargs...,
)
end
function write_file(
handler::AbstractIoHandler,
basename::String,
mesh::AbstractMesh,
U_export::AbstractFESpace,
data = nothing,
it::Integer = -1,
time::Real = 0.0;
collection_append::Bool = false,
kwargs...,
)
error("'write_file' is not implemented for $(typeof(handler))")
end
function write_file(basename::String, args...; kwargs...)
write_file(_filename_to_handler(basename), basename, args...; kwargs...)
end
"""
check_input_file([handler::AbstractIoHandler,] filepath::String)
Check that the input file is compatible with the Bcube reader, and print warnings and/or errors if it's not.
"""
function check_input_file(handler::AbstractIoHandler, filepath::String) end
check_input_file(filename::String) = check_input_file(_filename_to_handler(filename))
function _filename_to_handler(filename::String)
ext = last(splitext(filename))
if ext in (".msh",)
return GMSHIoHandler()
elseif ext in (".pvd", ".vtk", ".vtu")
return VTKIoHandler()
elseif ext in (".cgns", ".hdf", ".hdf5")
return HDF5IoHandler()
end
error("Could not find a handler for the filename $filename")
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 29889 | # COMMON
"""
mapping(ctype::AbstractEntityType, cnodes, ξ)
mapping(cshape::AbstractShape, cnodes, ξ)
Map the reference shape on the local shape.
# Implementation
This function must be implemented for all shape.
# `::Bar2_t`
Map the reference 2-nodes bar [-1,1] on the local bar:
```math
F(\\xi) = \\dfrac{x_r - x_l}{2} \\xi + \\dfrac{x_r + x_l}{2}
```
# `::Tri3_t`
Map the reference 3-nodes Triangle [0,1] x [0,1] on the local triangle.
```math
F(\\xi \\\\ \\eta) = (1 - \\xi - \\eta) M_1 + x M_2 + y M_3
```
# `::Quad4_t`
Map the reference 4-nodes square [-1,1] x [-1,1] on the 4-quadrilateral.
# `::Tri6_t`
Map the reference 6-nodes triangle [0,1] x [0,1] on the P2 curved-triangle.
`` F(\\xi) = \\sum \\lambda_i(\\xi) x_i ``
where ``\\lambda_i`` are the Lagrange P2 shape functions and ``x_i`` are the local
curved-triangle vertices' coordinates.
# `::Quad9_t`
Map the reference 4-nodes square [-1,1] x [-1,1] on the P2 curved-quadrilateral.
`` F(\\xi) = \\sum \\lambda_i(\\xi) x_i ``
where ``\\lambda_i`` are the Lagrange P2 shape functions and ``x_i`` are the local
curved-quadrilateral vertices' coordinates.
# `::Hexa8_t`
Map the reference 8-nodes cube [-1,1] x [-1,1] x [-1,1] on the 8-hexa.
# `::Hexa27_t`
Map the reference 8-nodes cube [-1,1] x [-1,1] x [-1,1] on the 27-hexa.
# `::Penta6_t`
Map the reference 6-nodes prism [0,1] x [0,1] x [-1,1] on the 6-penta (prism).
# `::Pyra5_t`
Map the reference 5-nodes pyramid [-1,1] x [-1,1] x [0,1] on the 5-pyra.
See https://www.math.u-bordeaux.fr/~durufle/montjoie/pyramid.php
"""
function mapping(type_or_shape, cnodes, ξ)
error("Function 'mapping' is not defined for $(typeof(type_or_shape))")
end
mapping(type_or_shape, cnodes) = ξ -> mapping(type_or_shape, cnodes, ξ)
"""
mapping_inv(::AbstractEntityType, cnodes, x)
Map the local shape on the reference shape.
# Implementation
This function does not have to be implemented for all shape.
# `::Bar2_t`
Map the local bar on the reference 2-nodes bar [-1,1]:
``F^{-1}(x) = \\dfrac{2x - x_r - x_l}{x_r - x_l}``
# `::Tri3_t`
Map the local triangle on the reference 3-nodes Triangle [0,1] x [0,1].
TODO: check this formulae with SYMPY
```math
F^{-1} \\begin{pmatrix} x \\\\ y \\end{pmatrix} =
\\frac{1}{x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)}
\\begin{pmatrix}
(y_3-y_1)x + (x_1 - x_3)y + (x_3 y_1 - x_1 y_3) \\\\
(y_1-y_2)x + (x_2 - x_1)x + (x_1 y_2 - x_2 y_1)
\\end{pmatrix}
```
# ::`Quad4_t`
Map the PARALLELOGRAM quadrilateral on the reference 4-nodes square [-1,1] x [-1,1].
Warning : this mapping is only corrects for parallelogram quadrilateral, not for any quadrilateral.
-----
TODO: check this formulae with SYMPY
-----
```math
F^{-1} \\begin{pmatrix} x \\\\ y \\end{pmatrix} =
\\begin{pmatrix}
a_1 x + b_1 y + c_1 \\\\
a_2 x + b_2 y + c_2
\\end{pmatrix}
```
with
```math
\\begin{aligned}
a_1 & = \\dfrac{-2 (y_3-y_2)}{\\Delta} \\\\
b_1 & = \\dfrac{2 (x_3-x_2)}{\\Delta} \\\\
c_1 & = -1 - a_1 x_1 - b_1 y_1 \\\\
a_2 & = \\dfrac{-2 (y_1-y_2)}{\\Delta} \\\\
b_2 & = \\dfrac{2 (x_1 - x_2)}{\\Delta} \\\\
c_2 & = -1 - a_2 x_1 - b_2 y_1
\\end{aligned}
```
where
`` \\Delta = (x_1 - x_2)(y_3 - y_2) - (x_3 - x_2)(y_1 - y_2)``
"""
function mapping_inv(::AbstractEntityType, cnodes, x)
error("Function 'mapping_inv' is not defined")
end
mapping_inv(ctype::AbstractEntityType, cnodes) = x -> mapping_inv(ctype, cnodes, x)
"""
mapping_jacobian(ctype::AbstractEntityType, cnodes, ξ)
Jacobian matrix of the mapping : ``\\dfrac{\\partial F_i}{\\partial \\xi_j}``.
# Implementation
Default version using ForwardDiff, but can be specified for each shape.
# `::Bar2_t`
Mapping's jacobian matrix for the reference 2-nodes bar [-1, 1] to the local bar.
``\\dfrac{\\partial F}{\\partial \\xi} = \\dfrac{x_r - x_l}{2}``
# `::Bar3_t`
Mapping's jacobian matrix for the reference 2-nodes bar [-1, 1] to the local bar.
``\\dfrac{\\partial F}{\\partial \\xi} = \\frac{1}{2} \\left( (2\\xi - 1) M_1 + (2\\xi + 1)M_2 - 4 \\xi M_3\\right)
# `::Tri3_t`
Mapping's jacobian matrix for the reference 3-nodes Triangle [0,1] x [0,1] to the local
triangle mapping.
```math
\\dfrac{\\partial F_i}{\\partial \\xi_j} =
\\begin{pmatrix}
M_2 - M_1 & M_3 - M_1
\\end{pmatrix}
```
# `::Quad4_t`
Mapping's jacobian matrix for the reference square [-1,1] x [-1,1]
to the 4-quadrilateral
```math
\\frac{\\partial F}{\\partial \\xi} = -M_1 + M_2 + M_3 - M_4 + \\eta (M_1 - M_2 + M_3 - M_4)
```
```math
\\frac{\\partial F}{\\partial \\eta} = -M_1 - M_2 + M_3 + M_4 + \\xi (M_1 - M_2 + M_3 - M_4)
```
"""
function mapping_jacobian(ctype::AbstractEntityType, cnodes, ξ)
ForwardDiff.jacobian(η -> mapping(ctype, cnodes, η), ξ)
end
"""
mapping_jacobian_inv(ctype::AbstractEntityType, cnodes, ξ)
Inverse of the mapping jacobian matrix. This is not exactly equivalent to the `mapping_inv_jacobian` since this function is
evaluated in the reference element.
# Implementation
Default version using ForwardDiff, but can be specified for each shape.
# `::Bar2_t`
Inverse of mapping's jacobian matrix for the reference 2-nodes bar [-1, 1] to the local bar.
```math
\\dfrac{\\partial F}{\\partial \\xi}^{-1} = \\dfrac{2}{x_r - x_l}
```
# `::Bar3_t`
Inverse of mapping's jacobian matrix for the reference 2-nodes bar [-1, 1] to the local bar.
```math
\\dfrac{\\partial F}{\\partial \\xi}^{-1} = \\frac{2}{(2\\xi - 1) M_1 + (2\\xi + 1)M_2 - 4 \\xi M_3}
```
# `::Tri3_t`
Inverse of mapping's jacobian matrix for the reference 3-nodes Triangle [0,1] x [0,1] to the local
triangle mapping.
```math
\\dfrac{\\partial F_i}{\\partial \\xi_j}^{-1} =
\\frac{1}{(x_1 - x_2)(y_1 - y_3) - (x_1 - x_3)(y_1 - y_2)}
\\begin{pmatrix}
-y_1 + y_3 & x_1 - x_3 \\\\
y_1 - y_2 & -x_1 + x_2
\\end{pmatrix}
```
# `::Quad4_t`
Inverse of mapping's jacobian matrix for the reference square [-1,1] x [-1,1]
to the 4-quadrilateral
"""
function mapping_jacobian_inv(ctype::AbstractEntityType, cnodes, ξ)
inv(ForwardDiff.jacobian(mapping(ctype, cnodes), ξ))
end
"""
mapping_inv_jacobian(ctype::AbstractEntityType, cnodes, x)
Jacobian matrix of the inverse mapping : ``\\dfrac{\\partial F_i^{-1}}{\\partial x_j}``
Contrary to `mapping_jacobian_inv`, this function is not always defined because the
inverse mapping, F^-1, is not always defined.
# Implementation
Default version using LinearAlgebra to inverse the matrix, but can be specified for each shape (if it exists).
# `::Bar2_t`
Mapping's jacobian matrix for the local bar to the reference 2-nodes bar [-1, 1].
```math
\\dfrac{\\partial F^{-1}}{\\partial x} = \\dfrac{2}{x_r - x_l}
```
# `::Tri3_t`
Mapping's jacobian matrix for the local triangle to the reference 3-nodes
Triangle [0,1] x [0,1] mapping.
-----
TODO: check this formulae with SYMPY
-----
```math
\\frac{\\partial F_i^{-1}}{\\partial x_j} =
\\frac{1}{x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)}
\\begin{pmatrix}
y_3 - y_1 & x_1 - x_3 \\\\
y_1 - y_2 & x_2 - x_1
\\end{pmatrix}
```
"""
function mapping_inv_jacobian(ctype::AbstractEntityType, cnodes, x)
inv(mapping_jacobian(ctype, cnodes, mapping_inv(ctype, cnodes, x)))
end
"""
mapping_det_jacobian(ctype::AbstractEntityType, cnodes, ξ)
mapping_det_jacobian(::TopologyStyle, ctype::AbstractEntityType, cnodes, ξ)
Absolute value of the determinant of the mapping Jacobian matrix, expressed in the reference element.
# Implementation
For a volumic cell (line in 1D, quad in 2D, cube in 3D), the default version uses `mapping_jacobian`,
but the function can be specified for each shape.
For a curvilinear cell (line in 2D, or in 3D), the formula is always J = ||F'|| where F is the mapping.
Hence we always fallback to the "standard" version, like for the volumic case.
Finally, the surfacic cell (quad in 3D) needs a special treatment, see [`mapping_jacobian_hypersurface`](@ref).
# `::Bar2_t`
Absolute value of the determinant of the mapping Jacobian matrix for the
reference 2-nodes bar [-1,1] to the local bar mapping.
``|det(J(\\xi))| = \\dfrac{|x_r - x_l|}{2}``
# `::Tri3_t`
Absolute value of the determinant of the mapping Jacobian matrix for the
the reference 3-nodes Triangle [0,1] x [0,1] to the local triangle mapping.
``|J| = |(x_2 - x_1) (y_3 - y_1) - (x_3 - x_1) (y_2 - y_1)|``
"""
function mapping_det_jacobian(ctype::AbstractEntityType, cnodes, ξ)
abs(det(mapping_jacobian(ctype, cnodes, ξ)))
end
function mapping_det_jacobian(::isSurfacic, ctype, cnodes, ξ)
jac = mapping_jacobian_hypersurface(ctype, cnodes, ξ)
return abs(det(jac))
end
function mapping_det_jacobian(::Union{isCurvilinear, isVolumic}, ctype, cnodes, ξ)
mapping_det_jacobian(ctype, cnodes, ξ)
end
"""
mapping_jacobian_hypersurface(ctype, cnodes, ξ)
"Augmented" jacobian matrix of the mapping.
Let's consider a ``\\mathbb{R}^2`` surface in ``\\mathbb{R}^3``. The mapping
``F_\\Gamma(\\xi, \\eta)`` maps the reference coordinate system to the physical coordinate
system. It's jacobian ``J_\\Gamma`` is not squared. We can 'extend' this mapping to reach any point in
``\\mathbb{R}^3`` (and not only the surface) using
```math
F(\\xi, \\eta, \\zeta) = F_\\Gamma(\\xi, \\eta) + \\zeta \\nu
```
where ``\\nu`` is the conormal. Then the restriction of the squared jacobian of ``F``
to the surface is simply
```math
J|_\\Gamma = (J_\\Gamma~~\\nu)
```
"""
function mapping_jacobian_hypersurface(ctype, cnodes, ξ)
Jref = mapping_jacobian(ctype, cnodes, ξ)
ν = cell_normal(ctype, cnodes, ξ)
J = hcat(Jref, ν)
return J
end
"""
mapping_face(cshape::AbstractShape, side)
mapping_face(cshape::AbstractShape, side, permutation)
Build a mapping from the face reference element (corresponding to the `side`-th face of `cshape`)
to the cell reference element (i.e the `cshape`).
Build a mapping from the face reference element (corresponding to the `side`-th face of `cshape`)
to the cell reference element (i.e the `cshape`). If `permutation` is present, the mapping is built
using this permutation.
"""
function mapping_face(cshape::AbstractShape, side)
f2n = faces2nodes(cshape, side)
_coords = get_coords(cshape, f2n)
fnodes = map(Node, _coords)
return MappingFace(mapping(face_shapes(cshape, side), fnodes), nothing)
end
function mapping_face(cshape::AbstractShape, side, permutation)
f2n = faces2nodes(cshape, side)[permutation]
_coords = get_coords(cshape, f2n)
fnodes = Node.(_coords)
return MappingFace(mapping(face_shapes(cshape, side), fnodes), nothing)
end
struct MappingFace{F1, F2}
f1::F1
f2::F2
end
(m::MappingFace)(x) = m.f1(x)
CallableStyle(::Type{<:MappingFace}) = IsCallableStyle()
#---------------- POINT : this may seem stupid, but it is usefull for coherence
mapping(::Node_t, cnodes, ξ) = cnodes[1].x
mapping(::Point, cnodes, ξ) = mapping(Node_t(), cnodes, ξ)
#---------------- LINE
mapping(::Line, cnodes, ξ) = mapping(Bar2_t(), cnodes, ξ)
function mapping_det_jacobian(ctype::AbstractEntityType{1}, cnodes, ξ)
norm(mapping_jacobian(ctype, cnodes, ξ))
end
function mapping(::Bar2_t, cnodes, ξ)
(cnodes[2].x - cnodes[1].x) / 2.0 .* ξ + (cnodes[2].x + cnodes[1].x) / 2.0
end
function mapping_inv(::Bar2_t, cnodes, x)
SA[(2 * x[1] - cnodes[2].x[1] - cnodes[1].x[1]) / (cnodes[2].x[1] - cnodes[1].x[1])]
end
function mapping_jacobian(::Bar2_t, cnodes, ξ)
axes(cnodes) == (Base.OneTo(2),) || error("Invalid number of nodes")
@inbounds (cnodes[2].x .- cnodes[1].x) ./ 2.0
end
function mapping_jacobian_inv(::Bar2_t, cnodes, ξ)
@SMatrix[2.0 / (cnodes[2].x[1] .- cnodes[1].x[1])]
end
mapping_inv_jacobian(::Bar2_t, cnodes, x) = 2.0 / (cnodes[2].x[1] - cnodes[1].x[1])
mapping_det_jacobian(::Bar2_t, cnodes, ξ) = norm(cnodes[2].x - cnodes[1].x) / 2.0
function mapping(::Bar3_t, cnodes, ξ)
ξ .* (ξ .- 1) / 2 .* cnodes[1].x .+ ξ .* (ξ .+ 1) / 2 .* cnodes[2].x .+
(1 .- ξ) .* (1 .+ ξ) .* cnodes[3].x
end
function mapping_jacobian(::Bar3_t, cnodes, ξ)
(cnodes[1].x .* (2 .* ξ .- 1) + cnodes[2].x .* (2 .* ξ .+ 1) - cnodes[3].x .* 4 .* ξ) ./
2
end
function mapping_jacobian_inv(::Bar3_t, cnodes, ξ)
2.0 /
(cnodes[1].x .* (2 .* ξ .- 1) + cnodes[2].x .* (2 .* ξ .+ 1) - cnodes[3].x .* 4 .* ξ)
end
#---------------- TRIANGLE P1
mapping(::Triangle, cnodes, ξ) = mapping(Tri3_t(), cnodes, ξ)
function mapping(::Tri3_t, cnodes, ξ)
return (1 - ξ[1] - ξ[2]) .* cnodes[1].x + ξ[1] .* cnodes[2].x + ξ[2] .* cnodes[3].x
end
function mapping_inv(::Tri3_t, cnodes, x)
# Alias (should be inlined, but waiting for Ghislain's modification of Node)
x1 = cnodes[1].x[1]
x2 = cnodes[2].x[1]
x3 = cnodes[3].x[1]
y1 = cnodes[1].x[2]
y2 = cnodes[2].x[2]
y3 = cnodes[3].x[2]
return SA[
(y3 - y1) * x[1] + (x1 - x3) * x[2] + (x3 * y1 - x1 * y3),
(y1 - y2) * x[1] + (x2 - x1) * x[2] + (x1 * y2 - x2 * y1),
] / (x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2))
end
function mapping_jacobian(::Tri3_t, cnodes, ξ)
return hcat(cnodes[2].x - cnodes[1].x, cnodes[3].x - cnodes[1].x)
end
function mapping_jacobian_inv(::Tri3_t, cnodes, ξ)
x1 = cnodes[1].x[1]
x2 = cnodes[2].x[1]
x3 = cnodes[3].x[1]
y1 = cnodes[1].x[2]
y2 = cnodes[2].x[2]
y3 = cnodes[3].x[2]
return SA[
-y1+y3 x1-x3
y1-y2 -x1+x2
] ./ ((x1 - x2) * (y1 - y3) - (x1 - x3) * (y1 - y2))
end
function mapping_inv_jacobian(::Tri3_t, cnodes, x)
x1 = cnodes[1].x[1]
x2 = cnodes[2].x[1]
x3 = cnodes[3].x[1]
y1 = cnodes[1].x[2]
y2 = cnodes[2].x[2]
y3 = cnodes[3].x[2]
return SA[
(y3-y1) (x1-x3)
(y1-y2) (x2-x1)
] / (x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2))
end
function mapping_det_jacobian(::Tri3_t, cnodes, ξ)
x1 = cnodes[1].x[1]
x2 = cnodes[2].x[1]
x3 = cnodes[3].x[1]
y1 = cnodes[1].x[2]
y2 = cnodes[2].x[2]
y3 = cnodes[3].x[2]
return abs((x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1))
end
#---------------- Quad P1
mapping(::Square, cnodes, ξ) = mapping(Quad4_t(), cnodes, ξ)
function mapping(::Quad4_t, cnodes, ξ)
return (
(ξ[1] - 1) * (ξ[2] - 1) .* cnodes[1].x - (ξ[1] + 1) * (ξ[2] - 1) .* cnodes[2].x +
(ξ[1] + 1) * (ξ[2] + 1) .* cnodes[3].x - (ξ[1] - 1) * (ξ[2] + 1) .* cnodes[4].x
) ./ 4
end
function mapping_inv(::Quad4_t, cnodes, x)
# Alias (should be inlined, but waiting for Ghislain's modification of Node)
x1 = cnodes[1].x[1]
x2 = cnodes[2].x[1]
x3 = cnodes[3].x[1]
y1 = cnodes[1].x[2]
y2 = cnodes[2].x[2]
y3 = cnodes[3].x[2]
# Copied from fortran
delta = (x1 - x2) * (y3 - y2) - (x3 - x2) * (y1 - y2)
a = SA[-2.0 * (y3 - y2), -2.0 * (y1 - y2)] ./ delta
b = SA[2.0 * (x3 - x2), 2.0 * (x1 - x2)] ./ delta
c = SA[-1.0 - a[1] * x1 - b[1] * y1, -1.0 - a[2] * x1 - b[2] * y1]
return a .* x[1] + b .* x[2] + c
end
function mapping_jacobian(::Quad4_t, cnodes, ξ)
return hcat(
-cnodes[1].x + cnodes[2].x + cnodes[3].x - cnodes[4].x +
ξ[2] .* (cnodes[1].x - cnodes[2].x + cnodes[3].x - cnodes[4].x),
-cnodes[1].x - cnodes[2].x +
cnodes[3].x +
cnodes[4].x +
ξ[1] .* (cnodes[1].x - cnodes[2].x + cnodes[3].x - cnodes[4].x),
) ./ 4
end
function mapping_jacobian_inv(::Quad4_t, cnodes::AbstractArray{<:Node{2, T}}, ξη) where {T}
# Alias
axes(cnodes) == (Base.OneTo(4),) || error("Invalid number of nodes")
axes(ξη) == (Base.OneTo(2),) || error("Invalid number of coordinates")
@inbounds begin
x1, y1 = cnodes[1].x
x2, y2 = cnodes[2].x
x3, y3 = cnodes[3].x
x4, y4 = cnodes[4].x
ξ = ξη[1]
η = ξη[2]
end
return 4 .* SA[
(1 - ξ) * (y1 - y4)+(1 + ξ) * (y2 - y3) (1 - ξ) * (x4 - x1)+(1 + ξ) * (x3 - x2)
(1 - η) * (y2 - y1)+(1 + η) * (y3 - y4) (1 - η) * (x1 - x2)+(1 + η) * (x4 - x3)
] ./ (
((1 - ξ) * (x4 - x1) + (1 + ξ) * (x3 - x2)) *
((1 - η) * (y2 - y1) + (1 + η) * (y3 - y4)) -
((1 - η) * (x2 - x1) + (1 + η) * (x3 - x4)) *
((1 - ξ) * (y4 - y1) + (1 + ξ) * (y3 - y2))
)
end
function mapping_det_jacobian(::Quad4_t, cnodes::AbstractArray{<:Node{2, T}}, ξη) where {T}
axes(cnodes) == (Base.OneTo(4),) || error("Invalid number of nodes")
axes(ξη) == (Base.OneTo(2),) || error("Invalid number of coordinates")
@inbounds begin
x1, y1 = cnodes[1].x
x2, y2 = cnodes[2].x
x3, y3 = cnodes[3].x
x4, y4 = cnodes[4].x
ξ = ξη[1]
η = ξη[2]
end
return abs(
-((1 - ξ) * (x4 - x1) + (1 + ξ) * (x3 - x2)) *
((1 - η) * (y2 - y1) + (1 + η) * (y3 - y4)) +
((1 - η) * (x2 - x1) + (1 + η) * (x3 - x4)) *
((1 - ξ) * (y4 - y1) + (1 + ξ) * (y3 - y2)),
) / 16.0
end
#---------------- TRIANGLE P2
function mapping(::Tri6_t, cnodes, ξ)
# Shape functions
λ₁ = (1 - ξ[1] - ξ[2]) * (1 - 2 * ξ[1] - 2 * ξ[2]) # = (1 - x - y)(1 - 2x - 2y)
λ₂ = ξ[1] * (2 * ξ[1] - 1) # = x (2x - 1)
λ₃ = ξ[2] * (2 * ξ[2] - 1) # = y (2y - 1)
λ₁₂ = 4 * ξ[1] * (1 - ξ[1] - ξ[2]) # = 4x (1 - x - y)
λ₂₃ = 4 * ξ[1] * ξ[2]
λ₃₁ = 4 * ξ[2] * (1 - ξ[1] - ξ[2]) # = 4y (1 - x - y)
# Is there a way to write this with a more consise way?
# something like sum( (lambda, n) -> lambda * n, zip(lambda, nodes))
# Note that the use of parenthesis is mandatory here otherwise only the first line is returned
return (
λ₁ .* cnodes[1].x +
λ₂ .* cnodes[2].x +
λ₃ .* cnodes[3].x +
λ₁₂ .* cnodes[4].x +
λ₂₃ .* cnodes[5].x +
λ₃₁ .* cnodes[6].x
)
end
#---------------- PARAQUAD P2
function mapping(::Quad9_t, cnodes, ξ)
# Shape functions
λ₁ = ξ[1] * ξ[2] * (1 - ξ[1]) * (1 - ξ[2]) / 4 # = xy (1 - x)(1 - y) / 4
λ₂ = -ξ[1] * ξ[2] * (1 + ξ[1]) * (1 - ξ[2]) / 4 # = - xy (1 + x)(1 - y) / 4
λ₃ = ξ[1] * ξ[2] * (1 + ξ[1]) * (1 + ξ[2]) / 4 # = xy (1 + x)(1 + y) / 4
λ₄ = -ξ[1] * ξ[2] * (1 - ξ[1]) * (1 + ξ[2]) / 4 # = - xy (1 - x)(1 + y) / 4
λ₁₂ = -(1 + ξ[1]) * (1 - ξ[1]) * ξ[2] * (1 - ξ[2]) / 2 # = - (1 + x)(1 -x)y(1 - y) / 2
λ₂₃ = ξ[1] * (1 + ξ[1]) * (1 - ξ[2]) * (1 + ξ[2]) / 2 # = x(1 + x)(1 - y)(1 + y) / 2
λ₃₄ = (1 - ξ[1]) * (1 + ξ[1]) * ξ[2] * (1 + ξ[2]) / 2 # = (1 - x)(1 + x)y(1 + y) /2
λ₄₁ = -ξ[1] * (1 - ξ[1]) * (1 - ξ[2]) * (1 + ξ[2]) / 2 # = - x(1 - x)(1 - y)(1 + y) / 2
λ₁₂₃₄ = (1 - ξ[1]) * (1 + ξ[1]) * (1 - ξ[2]) * (1 + ξ[2]) # = (1 - x)(1 + x)(1 - y)(1 + y)
# Is there a way to write this with a more consise way?
# something like sum( (lambda, n) -> lambda * n, zip(lambda, nodes))
# Note that the use of parenthesis is mandatory here otherwise only the first line is returned
return (
λ₁ .* cnodes[1].x +
λ₂ .* cnodes[2].x +
λ₃ .* cnodes[3].x +
λ₄ .* cnodes[4].x +
λ₁₂ .* cnodes[5].x +
λ₂₃ .* cnodes[6].x +
λ₃₄ .* cnodes[7].x +
λ₄₁ .* cnodes[8].x +
λ₁₂₃₄ .* cnodes[9].x
)
end
function __ordered_lagrange_shape_fns(::Type{Bcube.Quad16_t})
refCoords = [-1.0, -1.0 / 3.0, 1.0 / 3.0, 1.0]
# Lagrange nodes ordering (index in `refCoords`)
I_to_ij = [
1 1 # 1
4 1 # 2
4 4 # 3
1 4 # 4
2 1 # 5
3 1 # 6
4 2 # 7
4 3 # 8
3 4 # 9
2 4 # 10
1 3 # 11
1 2 # 12
2 2 # 13
3 2 # 14
3 3 # 15
2 3 # 16
]
@variables ξ[1:2]
_ξ = ξ[1]
_η = ξ[2]
_λs = [
_lagrange_poly(I_to_ij[k, 1], _ξ, refCoords) *
_lagrange_poly(I_to_ij[k, 2], _η, refCoords) for k in 1:16
]
expr_λs = Symbolics.toexpr.((_λs))
return :(SA[$(expr_λs...)])
end
@generated function _ordered_lagrange_shape_fns(entity::AbstractEntityType, ξ)
__ordered_lagrange_shape_fns(entity)
end
# Warning : only valid for "tensor" "Lagrange" entities
function mapping(ctype::Union{Quad16_t}, cnodes, ξ)
λs = _ordered_lagrange_shape_fns(ctype, ξ)
return sum(((λ, node),) -> λ .* get_coords(node), zip(λs, cnodes))
end
#---------------- Hexa8
mapping(::Cube, cnodes, ξ) = mapping(Hexa8_t(), cnodes, ξ)
function mapping(::Hexa8_t, cnodes, ξηζ)
ξ = ξηζ[1]
η = ξηζ[2]
ζ = ξηζ[3]
return (
(1 - ξ) * (1 - η) * (1 - ζ) .* cnodes[1].x # = (1 - x) * (1 - y) * (1 - z) / 8
+
(1 + ξ) * (1 - η) * (1 - ζ) .* cnodes[2].x # = (1 + x) * (1 - y) * (1 - z) / 8
+
(1 + ξ) * (1 + η) * (1 - ζ) .* cnodes[3].x # = (1 + x) * (1 + y) * (1 - z) / 8
+
(1 - ξ) * (1 + η) * (1 - ζ) .* cnodes[4].x # = (1 - x) * (1 + y) * (1 - z) / 8
+
(1 - ξ) * (1 - η) * (1 + ζ) .* cnodes[5].x # = (1 - x) * (1 - y) * (1 + z) / 8
+
(1 + ξ) * (1 - η) * (1 + ζ) .* cnodes[6].x # = (1 + x) * (1 - y) * (1 + z) / 8
+
(1 + ξ) * (1 + η) * (1 + ζ) .* cnodes[7].x # = (1 + x) * (1 + y) * (1 + z) / 8
+
(1 - ξ) * (1 + η) * (1 + ζ) .* cnodes[8].x # = (1 - x) * (1 + y) * (1 + z) / 8
) ./ 8
end
function mapping_jacobian(::Hexa8_t, cnodes, ξηζ)
ξ = ξηζ[1]
η = ξηζ[2]
ζ = ξηζ[3]
M1 = cnodes[1].x
M2 = cnodes[2].x
M3 = cnodes[3].x
M4 = cnodes[4].x
M5 = cnodes[5].x
M6 = cnodes[6].x
M7 = cnodes[7].x
M8 = cnodes[8].x
return hcat(
((M2 - M1) * (1 - η) + (M3 - M4) * (1 + η)) * (1 - ζ) +
((M6 - M5) * (1 - η) + (M7 - M8) * (1 + η)) * (1 + ζ),
((M4 - M1) * (1 - ξ) + (M3 - M2) * (1 + ξ)) * (1 - ζ) +
((M8 - M5) * (1 - ξ) + (M7 - M6) * (1 + ξ)) * (1 + ζ),
((M5 - M1) * (1 - ξ) + (M6 - M2) * (1 + ξ)) * (1 - η) +
((M8 - M4) * (1 - ξ) + (M7 - M3) * (1 + ξ)) * (1 + η),
) ./ 8.0
end
#---------------- Hexa27
function mapping(::Hexa27_t, cnodes, ξηζ)
ξ = ξηζ[1]
η = ξηζ[2]
ζ = ξηζ[3]
return (
ξ * η * ζ * (ξ - 1) * (η - 1) * (ζ - 1) / 8.0 .* cnodes[1].x +
ξ * η * ζ * (ξ + 1) * (η - 1) * (ζ - 1) / 8.0 .* cnodes[2].x +
ξ * η * ζ * (ξ + 1) * (η + 1) * (ζ - 1) / 8.0 .* cnodes[3].x +
ξ * η * ζ * (ξ - 1) * (η + 1) * (ζ - 1) / 8.0 .* cnodes[4].x +
ξ * η * ζ * (ξ - 1) * (η - 1) * (ζ + 1) / 8.0 .* cnodes[5].x +
ξ * η * ζ * (ξ + 1) * (η - 1) * (ζ + 1) / 8.0 .* cnodes[6].x +
ξ * η * ζ * (ξ + 1) * (η + 1) * (ζ + 1) / 8.0 .* cnodes[7].x +
ξ * η * ζ * (ξ - 1) * (η + 1) * (ζ + 1) / 8.0 .* cnodes[8].x +
-η * ζ * (ξ^2 - 1) * (η - 1) * (ζ - 1) / 4.0 .* cnodes[9].x +
-ξ * ζ * (ξ + 1) * (η^2 - 1) * (ζ - 1) / 4.0 .* cnodes[10].x +
-η * ζ * (ξ^2 - 1) * (η + 1) * (ζ - 1) / 4.0 .* cnodes[11].x +
-ξ * ζ * (ξ - 1) * (η^2 - 1) * (ζ - 1) / 4.0 .* cnodes[12].x +
-ξ * η * (ξ - 1) * (η - 1) * (ζ^2 - 1) / 4.0 .* cnodes[13].x +
-ξ * η * (ξ + 1) * (η - 1) * (ζ^2 - 1) / 4.0 .* cnodes[14].x +
-ξ * η * (ξ + 1) * (η + 1) * (ζ^2 - 1) / 4.0 .* cnodes[15].x +
-ξ * η * (ξ - 1) * (η + 1) * (ζ^2 - 1) / 4.0 .* cnodes[16].x +
-η * ζ * (ξ^2 - 1) * (η - 1) * (ζ + 1) / 4.0 .* cnodes[17].x +
-ξ * ζ * (ξ + 1) * (η^2 - 1) * (ζ + 1) / 4.0 .* cnodes[18].x +
-η * ζ * (ξ^2 - 1) * (η + 1) * (ζ + 1) / 4.0 .* cnodes[19].x +
-ξ * ζ * (ξ - 1) * (η^2 - 1) * (ζ + 1) / 4.0 .* cnodes[20].x +
ζ * (ξ^2 - 1) * (η^2 - 1) * (ζ - 1) / 2.0 .* cnodes[21].x +
η * (ξ^2 - 1) * (η - 1) * (ζ^2 - 1) / 2.0 .* cnodes[22].x +
ξ * (ξ + 1) * (η^2 - 1) * (ζ^2 - 1) / 2.0 .* cnodes[23].x +
η * (ξ^2 - 1) * (η + 1) * (ζ^2 - 1) / 2.0 .* cnodes[24].x +
ξ * (ξ - 1) * (η^2 - 1) * (ζ^2 - 1) / 2.0 .* cnodes[25].x +
ζ * (ξ^2 - 1) * (η^2 - 1) * (ζ + 1) / 2.0 .* cnodes[26].x +
-(ξ^2 - 1) * (η^2 - 1) * (ζ^2 - 1) .* cnodes[27].x
)
end
"""
mapping(nodes, ::Tetra4_t, ξ)
Map the reference 4-nodes Tetraahedron [0,1] x [0,1] x [0,1] on the local triangle.
```
"""
function mapping(::Tetra4_t, cnodes, ξ)
return (1 - ξ[1] - ξ[2] - ξ[3]) .* cnodes[1].x +
ξ[1] .* cnodes[2].x +
ξ[2] .* cnodes[3].x +
ξ[3] .* cnodes[4].x
end
#---------------- Penta6
mapping(::Prism, cnodes, ξ) = mapping(Penta6_t(), cnodes, ξ)
function mapping(::Penta6_t, cnodes, ξηζ)
ξ = ξηζ[1]
η = ξηζ[2]
ζ = ξηζ[3]
return (
(1 - ξ - η) * (1 - ζ) .* cnodes[1].x +
ξ * (1 - ζ) .* cnodes[2].x +
η * (1 - ζ) .* cnodes[3].x +
(1 - ξ - η) * (1 + ζ) .* cnodes[4].x +
ξ * (1 + ζ) .* cnodes[5].x +
η * (1 + ζ) .* cnodes[6].x
) ./ 2.0
end
function mapping_jacobian(::Penta6_t, cnodes, ξηζ)
ξ = ξηζ[1]
η = ξηζ[2]
ζ = ξηζ[3]
M1 = cnodes[1].x
M2 = cnodes[2].x
M3 = cnodes[3].x
M4 = cnodes[4].x
M5 = cnodes[5].x
M6 = cnodes[6].x
return hcat(
(1 - ζ) * (M2 - M1) + (1 + ζ) * (M5 - M4),
(1 - ζ) * (M3 - M1) + (1 + ζ) * (M6 - M4),
(1 - ξ - η) * (M4 - M1) + ξ * (M5 - M2) + η * (M6 - M3),
) ./ 2.0
end
#---------------- Pyra5
mapping(::Pyramid, cnodes, ξ) = mapping(Pyra5_t(), cnodes, ξ)
function mapping(::Pyra5_t, cnodes, ξηζ)
ξ = ξηζ[1]
η = ξηζ[2]
ζ = ξηζ[3]
# to avoid a singularity in z = 1, we replace (1-ζ) (which is always a
# positive quantity), by (1 + ε - ζ).
ε = eps()
return (
(1 - ξ - ζ) * (1 - η - ζ) / (4 * (1 + ε - ζ)) * cnodes[1].x +
(1 + ξ - ζ) * (1 - η - ζ) / (4 * (1 + ε - ζ)) * cnodes[2].x +
(1 + ξ - ζ) * (1 + η - ζ) / (4 * (1 + ε - ζ)) * cnodes[3].x +
(1 - ξ - ζ) * (1 + η - ζ) / (4 * (1 + ε - ζ)) * cnodes[4].x +
ζ * cnodes[5].x
)
end
"""
normal(ctype::AbstractEntityType, cnodes, iside, ξ)
normal(::TopologyStyle, ctype::AbstractEntityType, cnodes, iside, ξ)
Normal vector of the `iside`th face of a cell, evaluated at position `ξ` in the face reference element.
So for the normal vector of the face of triangle living in a 3D space, `ξ` will be 1D (because the face
is a line, which 1D).
Beware this function needs the nodes `cnodes` and the type `ctype` of the cell (and not of the face).
TODO: If `iside` is positive, then the outward normal (with respect to the cell) is returned, otherwise
the inward normal is returned.
# `::isCurvilinear`
Note that the "face" normal vector of a curve is the "direction" vector at the given extremity.
# `::isVolumic`
``n^{loc} = J^{-\\intercal} n^{ref}``
"""
function normal(ctype::AbstractEntityType, cnodes, iside, ξ)
normal(topology_style(ctype, cnodes), ctype, cnodes, iside, ξ)
end
function normal(::isCurvilinear, ctype::AbstractEntityType, cnodes, iside, ξ)
# mapping face-reference-element (here, a node) to cell-reference-element (here, a Line)
# Since a Line has always only two nodes, the node is necessary the `iside`-th
ξ_cell = get_coords(Line())[iside]
return normalize(mapping_jacobian(ctype, cnodes, ξ_cell) .* normal(shape(ctype), iside))
end
function normal(::isSurfacic, ctype::AbstractEntityType, cnodes, iside, ξ)
# Get cell shape and face type and shape
cshape = shape(ctype)
ftype = facetypes(ctype)[iside]
# Get face nodes
fnodes = map(i -> cnodes[i], faces2nodes(ctype)[iside])
# Get face direction vector (face Jacobian)
u = mapping_jacobian(ftype, fnodes, ξ)
# Get face parametrization function
fp = mapping_face(cshape, iside) # mapping face-ref -> cell-ref
# Compute surface jacobian
J = mapping_jacobian(ctype, cnodes, fp(ξ))
# Compute vector that will help orient outward normal
orient = mapping(ctype, cnodes, fp(ξ)) - center(ctype, cnodes)
# Normal direction
n = J[:, 1] × J[:, 2] × u
# Orient normal outward and normalize
return normalize(orient ⋅ n .* n)
end
function normal(::isVolumic, ctype::AbstractEntityType, cnodes, iside, ξ)
# Cell shape
cshape = shape(ctype)
# Face parametrization to send ξ from ref-face-element to the ref-cell-element
fp = mapping_face(cshape, iside) # mapping face-ref -> cell-ref
# Inverse of the Jacobian matrix (but here `y` is in the cell-reference element)
# Warning : do not use `mapping_inv_jacobian` which requires the knowledge of `mapping_inv` (useless here)
Jinv(y) = mapping_jacobian_inv(ctype, cnodes, y)
return normalize(transpose(Jinv(fp(ξ))) * normal(cshape, iside))
end
"""
cell_normal(ctype::AbstractEntityType, cnodes, ξ) where {T, N}
Compute the cell normal vector of an entity of topology dimension equals to (n-1) in a n-D space,
for instance a curve in a 2D space. This vector is expressed in the cell-reference coordinate system.
Do not confuse the cell normal vector with the cell-side (i.e face) normal vector.
# Topology dimension 1
the curve direction vector, u, is J/||J||. Then n = [-u.y, u.x].
"""
function cell_normal(
ctype::AbstractEntityType{1},
cnodes::AbstractArray{Node{2, T}, N},
ξ,
) where {T, N}
Jref = mapping_jacobian(ctype, cnodes, ξ)
return normalize(SA[-Jref[2], Jref[1]])
end
function cell_normal(
ctype::AbstractEntityType{2},
cnodes::AbstractArray{Node{3, T}, N},
ξ,
) where {T, N}
J = mapping_jacobian(ctype, cnodes, ξ)
return normalize(J[:, 1] × J[:, 2])
end
"""
center(ctype::AbstractEntityType, cnodes)
Return the center of the `AbstractEntityType` by mapping the center of the corresponding `Shape`.
# Warning
Do not use this function on a face of a cell : since the face is of dimension "n-1", the mapping
won't be appropriate.
"""
center(ctype::AbstractEntityType, cnodes) = mapping(ctype, cnodes, center(shape(ctype)))
"""
get_cell_centers(mesh::Mesh)
Get mesh cell centers coordinates (assuming perfectly flat cells)
"""
function get_cell_centers(mesh::Mesh)
c2n = connectivities_indices(mesh, :c2n)
celltypes = cells(mesh)
centers = map(1:ncells(mesh)) do icell
ctype = celltypes[icell]
cnodes = get_nodes(mesh, c2n[icell])
center(ctype, cnodes)
end
return centers
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 8326 | """
∂λξ_∂x(::AbstractFunctionSpace, ::Val{N}, ctype::AbstractEntityType, cnodes, ξ) where N
Gradient, with respect to the physical coordinate system, of the shape functions associated to the `FunctionSpace`.
Depending on the value of `N`, the shape functions are interpreted as associated to a scalar FESpace (N = 1) or
a vector FESpace. For a vector FESpace, the result gradient is an array of size `(n*Nc, n, d)` where `Nc` is the
number of dofs of one component (i.e scalar case), `n` is the size of the FESpace, and `d` the number of spatial
dimensions.
Default version : the gradient shape functions are "replicated".
Specialize with a given FESpace for a custom behaviour.
# Implementation
We cannot use the `topology_style` to dispatch because this style is too specific to integration methods. For instance for
the integration it is important the consider any line as `isCurvilinear`. However for the gradient computation we must distinguish
a line in 1D, a line in 2D and a line in 3D...
# """
function ∂λξ_∂x end
function ∂λξ_∂x(fs::AbstractFunctionSpace, n::Val{1}, ctype::AbstractEntityType, cnodes, ξ)
# Gradient of reference shape functions
∇λ = ∂λξ_∂ξ(fs, n, shape(ctype), ξ)
return ∇λ * mapping_jacobian_inv(ctype, cnodes, ξ)
end
function ∂λξ_∂x(
fs::AbstractFunctionSpace,
n::Val{N},
ctype::AbstractEntityType,
cnodes,
ξ,
) where {N}
∇λ_sca = ∂λξ_∂x(fs, Val(1), ctype, cnodes, ξ) # Matrix of size (ndofs_sca, nspa)
ndofs_sca, nspa = size(∇λ_sca)
a = SArray{Tuple{ndofs_sca, 1, nspa}, eltype(∇λ_sca)}(
∇λ_sca[i, k] for i in 1:ndofs_sca, j in 1:1, k in 1:nspa
)
∇λ_vec = _block_diag_cat(a, n)
return ∇λ_vec
end
@generated function _block_diag_cat(
a::SArray{Tuple{N1, N2, N3}},
::Val{N},
) where {N1, N2, N3, N}
T = eltype(a)
z = zero(T)
exprs = [:(a[$i, $j, $k]) for i in 1:N1, j in 1:N2, k in 1:N3]
exprs0 = [:($z) for i in 1:N1, j in 1:N2, k in 1:N3]
row_exprs = []
mat_exprs = []
for j in 1:N
for i in 1:N
i == j ? _exprs = exprs : _exprs = exprs0
i == 1 ? row_exprs = _exprs : row_exprs = [row_exprs; _exprs]
end
j == 1 ? mat_exprs = row_exprs : mat_exprs = [mat_exprs row_exprs]
end
N1_glo = N1 * N
N2_glo = N2 * N
T = eltype(a)
return quote
SArray{Tuple{$N1_glo, $N2_glo, N3}, $T}(tuple($(mat_exprs...)))
end
end
@generated function _build_grad_impl(a::SMatrix{N1, N2}, ::Val{N}) where {N1, N2, N}
T = eltype(a)
z = zero(T)
exprs = [:(a[$i, $j]) for i in 1:N1, j in 1:N2]
exprs0 = Any[:($z) for i in 1:N, j in 1:N2]
mat_exprs = []
for n in 1:N
for k in 1:N1
_exprs = deepcopy(exprs0)
_exprs[n, :] = exprs[k, :]
push!(mat_exprs, _exprs)
end
end
mat_exprs2 = Any[]
for x in mat_exprs
if N == 1
push!(mat_exprs2, :(SVector{$N2}(tuple($(x...)))))
else
push!(mat_exprs2, :(SMatrix{$N, $N2}(tuple($(x...)))))
end
end
return quote
tuple($(mat_exprs2...))
end
end
function ∂λξ_∂x_hypersurface(
fs::AbstractFunctionSpace,
::Val{1},
ctype::AbstractEntityType{2},
cnodes::AbstractArray{<:Node{3}},
ξ,
)
return _∂λξ_∂x_hypersurface(fs, ctype, cnodes, ξ)
end
function ∂λξ_∂x_hypersurface(
fs::AbstractFunctionSpace,
::Val{1},
ctype::AbstractEntityType{1},
cnodes::AbstractArray{<:Node{2}},
ξ,
)
return _∂λξ_∂x_hypersurface(fs, ctype, cnodes, ξ)
end
function _∂λξ_∂x_hypersurface(fs, ctype, cnodes, ξ)
# First, we compute the "augmented" jacobian.
J = mapping_jacobian_hypersurface(ctype, cnodes, ξ)
# Compute shape functions gradient : we "add a dimension" to the ref gradient,
# and then right-multiply by the inverse of the jacobian
s = shape(ctype)
z = @SVector zeros(get_ndofs(fs, s))
∇λ = hcat(∂λξ_∂ξ(fs, s, ξ), z) * inv(J)
return ∇λ
end
function ∂λξ_∂x_hypersurface(
::AbstractFunctionSpace,
::AbstractEntityType{1},
::AbstractArray{Node{3}},
ξ,
)
error("Line gradient in 3D not implemented yet")
end
"""
∂fξ_∂x(f, n::Val{N}, ctype::AbstractEntityType, cnodes, ξ) where N
Compute the gradient, with respect to the physical coordinates, of a function `f` on a point
in the reference domain. `N` is the size of the codomain of `f`.
"""
function ∂fξ_∂x(f::F, ::Val{1}, ctype::AbstractEntityType, cnodes, ξ) where {F}
return transpose(mapping_jacobian_inv(ctype, cnodes, ξ)) * ForwardDiff.gradient(f, ξ)
end
function ∂fξ_∂x(f::F, ::Val{N}, ctype::AbstractEntityType, cnodes, ξ) where {F, N}
return ForwardDiff.jacobian(f, ξ) * mapping_jacobian_inv(ctype, cnodes, ξ)
end
function ∂fξ_∂x_hypersurface(f::F, ::Val{1}, ctype::AbstractEntityType, cnodes, ξ) where {F}
# Gradient in the reference domain. Add missing dimensions. Warning : we always
# consider a hypersurface (topodim = spacedim - 1) and not a line in R^3 for instance.
# Hence we always add only one 0.
∇f = ForwardDiff.gradient(f, ξ)
∇f = vcat(∇f, 0)
# Then, we compute the "augmented" jacobian.
J = mapping_jacobian_hypersurface(ctype, cnodes, ξ)
return transpose(inv(J)) * ∇f
end
function ∂fξ_∂x_hypersurface(
f::F,
::Val{N},
ctype::AbstractEntityType,
cnodes,
ξ,
) where {F, N}
# Gradient in the reference domain. Add missing dimensions. Warning : we always
# consider a hypersurface (topodim = spacedim - 1) and not a line in R^3 for instance.
# Hence we always add only one 0.
∇f = ForwardDiff.jacobian(f, ξ)
z = @SVector zeros(N)
∇f = hcat(∇f, z)
# Then, we compute the "augmented" jacobian.
J = mapping_jacobian_hypersurface(ctype, cnodes, ξ)
return ∇f * inv(J)
end
"""
interpolate(λ, q)
interpolate(λ, q, ncomps)
Create the interpolation function from a set of value on dofs and the shape functions, given by:
```math
f(x) = \\sum_{i=1}^N q_i \\lambda_i(x)
```
So `q` is a vector whose size equals the number of dofs in the cell.
If `ncomps` is present, create the interpolation function for a vector field given by a set of
value on dofs and the shape functions.
The interpolation formulae is the same than `interpolate(λ, q)` but the result is a vector function. Here
`q` is a vector whose size equals the total number of dofs in the cell (all components mixed).
Note that the result function is expressed in the same coordinate system as the input shape functions
(i.e reference or local).
"""
function interpolate(λ, q)
#@assert length(λ) === length(q) "Error : length of `q` must equal length of `lambda`"
return ξ -> interpolate(λ, q, ξ)
end
interpolate(λ, q, ξ) = sum(λᵢ * qᵢ for (λᵢ, qᵢ) in zip(λ(ξ), q))
function interpolate(λ, q::SVector{N}, ::Val{ncomps}) where {N, ncomps}
return x -> transpose(reshape(q, Size(Int(N / ncomps), ncomps))) * λ(x)
end
function interpolate(λ, q, ::Val{ncomps}) where {ncomps}
return x -> transpose(reshape(q, :, ncomps)) * λ(x)
end
function interpolate(λ, q, ncomps::Integer)
return ξ -> interpolate(λ, q, ncomps, ξ)
end
function interpolate(λ, q, ncomps::Integer, ξ)
return transpose(reshape(q, :, ncomps)) * λ(ξ)
end
function interpolate(λ, q::SVector)
return x -> transpose(q) * λ(x)
end
# """
# WARNING : INTERPOLATION IN LOCAL ELEMENT FOR THE MOMENT
# """
# @inline function interpolate(q, dhl::DeprecatedDofHandler, icell, ctype::AbstractEntityType, cnodes, varname::Val{N}) where {N}
# fs = function_space(dhl,varname)
# λ = x -> shape_functions(fs, shape(ctype), mapping_inv(cnodes, ctype, x))
# ncomp = ncomps(dhl,varname)
# return interpolate(λ, q[get_dof(dhl, icell, shape(ctype), varname)], Val(ncomp))
# end
# """
# WARNING : INTERPOLATION IN LOCAL ELEMENT FOR THE MOMENT
# """
# function interpolate(q, dhl::DeprecatedDofHandler, icell, ctype::AbstractEntityType, cnodes)
# _varnames = name.(getvars(dhl))
# _nvars = nvars(dhl)
# _ncomps = ncomps.(getvars(dhl))
# # Gather all Variable interpolation functions in a Tuple
# w = ntuple(i->interpolate(q, dhl, icell, ctype, cnodes, Val(_varnames[i])), _nvars)
# # Build a 'vector-valued' function, one row per variable and component
# return x -> vcat(map(f->f(x), w)...)
# end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 1052 | abstract type AbstractBCType end
struct DirichletBCType <: AbstractBCType end
struct NeumannBCType <: AbstractBCType end
struct PeriodicBCType{T <: AbstractAffineTransformation, T2, T3} <: AbstractBCType
transformation::T
labels_master::T2
labels_slave::T3
end
@inline transformation(perio::PeriodicBCType) = perio.transformation
@inline labels_master(perio::PeriodicBCType) = perio.labels_master
@inline labels_slave(perio::PeriodicBCType) = perio.labels_slave
abstract type AbstractBoundaryCondition end
"""
Structure representing a boundary condition. Its purpose is to be attached to geometric entities
(nodes, faces, ...).
"""
struct BoundaryCondition{T, F} <: AbstractBoundaryCondition
type::T # Dirichlet, Neumann, other? For the moment, this property is entirely free
func::F # This is a function depending on space and time : func(x,t)
end
@inline apply(bnd::BoundaryCondition, x, t) = bnd.func(x, t)
@inline apply(bnd::BoundaryCondition, x) = bnd.func(x, 0.0)
@inline type(bnd::BoundaryCondition) = bnd.type
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 4034 | """
AbstractConnectivity{T}
Supertype for connectivity with indices of type `T`.
"""
abstract type AbstractConnectivity{T} end
Base.length(::AbstractConnectivity) = error("Undefined")
Base.size(::AbstractConnectivity) = error("Undefined")
"""
Connectivity{T}
Type for connectivity with elements of type `T`.
"""
struct Connectivity{T <: Integer} <: AbstractConnectivity{T}
minsize::T
maxsize::T
offsets::Vector{T}
indices::Vector{T}
function Connectivity(
minsize::T,
maxsize::T,
offsets::Vector{T},
indices::Vector{T},
) where {T <: Integer}
if offsets[end] - 1 ≠ length(indices)
@show offsets[end] - 1, length(indices)
error("Invalid offset range")
end
for i in firstindex(offsets):(lastindex(offsets) - 1)
offsets[i + 1] < offsets[i] ? error("Invalid offset ", i) : nothing
end
new{T}(minsize, maxsize, offsets, indices)
end
end
function Connectivity(
numIndices::AbstractVector{T},
indices::AbstractVector{T},
) where {T <: Integer}
ne = length(numIndices)
minsize = minimum(numIndices)
maxsize = maximum(numIndices)
offsets = zeros(T, ne + 1)
offsets[1] = 1
for (i, size) in enumerate(numIndices)
offsets[i + 1] = offsets[i] + size
end
return Connectivity(minsize, maxsize, offsets, indices)
end
Base.length(c::Connectivity) = length(c.offsets) - 1
Base.size(c::Connectivity) = (length(c),)
Base.axes(c::Connectivity) = 1:length(c)
@propagate_inbounds Base.firstindex(c::Connectivity, i) = c.offsets[i]
@propagate_inbounds Base.lastindex(c::Connectivity, i) = c.offsets[i + 1] - 1
@propagate_inbounds Base.length(c::Connectivity, i) = lastindex(c, i) - firstindex(c, i) + 1
Base.size(c::Connectivity, i) = (length(c, i),)
@propagate_inbounds function Base.axes(c::Connectivity, i)
if i > 0
return firstindex(c, i):1:lastindex(c, i)
else
return lastindex(c, -i):-1:firstindex(c, -i)
end
end
@inline Base.getindex(c::Connectivity) = c.indices
@propagate_inbounds Base.getindex(c::Connectivity, i) = view(c.indices, axes(c, i))
@propagate_inbounds function Base.getindex(c::Connectivity, i, ::Val{N}) where {N}
length(c, i) == N || error("invalid length $N (length(c,i)=$(length(c,i)))")
SVector{N}(c[i])
end
@inline minsize(c::Connectivity) = c.minsize
@inline maxsize(c::Connectivity) = c.maxsize
#@inline minconnectivity(c::Connectivity) = c.minConnectivity
#@inline maxconnectivity(c::Connectivity) = c.maxConnectivity
#@inline extrema(c::Connectivity) = (c.minElementInSet,c.maxElementInSet)
Base.eltype(::Connectivity{T}) where {T <: Integer} = T
function Base.iterate(c::Connectivity{T}, i = 1) where {T <: Integer}
if i > length(c)
return nothing
else
return c[i], i + 1
end
end
function Base.show(io::IO, c::Connectivity)
println(typeof(c))
for (i, _c) in enumerate(c)
println(io, i, "=>", _c)
end
end
#Base.keys(c::Connectivity) = LinearIndices(1:length(c))
"""
inverse_connectivity(c::Connectivity{T}) where {T}
Returns the "inverse" of the connectivity 'c' and the corresponding 'keys'.
'keys' are provided because indices in 'c' could be sparse in the general case.
# Example
```julia
mesh = basic_mesh()
c2n = connectivities_indices(mesh,:c2n)
n2c, keys = inverse_connectivity(c2n)
```
Here, 'n2c' is the node->cell graph of connectivity and,
'n2c[i]' contains the indices of the cells connected to the node of index 'keys[i]'.
If 'c2n' is dense, 'keys' is not necessary (because keys[i]==i, ∀i)
"""
function inverse_connectivity(c::Connectivity{T}) where {T}
dict = Dict{T, Vector{T}}()
for (i, cᵢ) in enumerate(c)
for k in cᵢ
get(dict, k, nothing) === nothing ? dict[k] = [i] : push!(dict[k], i)
end
end
_keys = collect(keys(dict))
_vals = collect(values(dict))
numindices = length.(_vals)
indices = rawcat(_vals)
Connectivity(numindices, indices), _keys
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 17675 | """
An `AbstractDomain` designates any set of entities from a mesh. For instance a set of
cells, a set of faces etc.
"""
abstract type AbstractDomain{M <: AbstractMesh} end
@inline get_mesh(domain::AbstractDomain) = domain.mesh
@inline indices(domain::AbstractDomain) = domain.indices # with ghislainb's help, `AbstractDomain` could be parametered by `I`
@inline topodim(::AbstractDomain) = error("undefined")
@inline codimension(d::AbstractDomain) = topodim(get_mesh(d)) - topodim(d)
LazyOperators.pretty_name(domain::AbstractDomain) = "AbstractDomain"
abstract type AbstractCellDomain{M, I} <: AbstractDomain{M} end
"""
A `CellDomain` is a representation of the cells of a mesh. It's primary
purpose is to represent a domain to integrate over.
# Examples
```julia-repl
julia> mesh = rectangle_mesh(10, 10)
julia> Ω_all = CellDomain(mesh)
julia> selectedCells = [1,3,5,6]
julia> Ω_selected = CellDomain(mesh, selectedCells)
```
"""
struct CellDomain{M, I} <: AbstractCellDomain{M, I}
mesh::M
indices::I
CellDomain(mesh, indices) = new{typeof(mesh), typeof(indices)}(mesh, indices)
end
@inline topodim(d::CellDomain) = topodim(get_mesh(d))
CellDomain(mesh::AbstractMesh) = CellDomain(parent(mesh))
CellDomain(mesh::Mesh) = CellDomain(mesh, 1:ncells(mesh))
LazyOperators.pretty_name(domain::CellDomain) = "CellDomain"
abstract type AbstractFaceDomain{M} <: AbstractDomain{M} end
struct InteriorFaceDomain{M, I} <: AbstractFaceDomain{M}
mesh::M
indices::I
InteriorFaceDomain(mesh, indices) = new{typeof(mesh), typeof(indices)}(mesh, indices)
end
@inline topodim(d::InteriorFaceDomain) = topodim(get_mesh(d)) - 1
InteriorFaceDomain(mesh::AbstractMesh) = InteriorFaceDomain(parent(mesh))
InteriorFaceDomain(mesh::Mesh) = InteriorFaceDomain(mesh, inner_faces(mesh))
LazyOperators.pretty_name(domain::InteriorFaceDomain) = "InteriorFaceDomain"
struct AllFaceDomain{M, I} <: AbstractFaceDomain{M}
mesh::M
indices::I
AllFaceDomain(mesh, indices) = new{typeof(mesh), typeof(indices)}(mesh, indices)
end
@inline topodim(d::AllFaceDomain) = topodim(get_mesh(d)) - 1
AllFaceDomain(mesh::AbstractMesh) = AllFaceDomain(mesh, 1:nfaces(mesh))
LazyOperators.pretty_name(domain::AllFaceDomain) = "AllFaceDomain"
struct BoundaryFaceDomain{M, BC, L, C} <: AbstractFaceDomain{M}
mesh::M
bc::BC
labels::L
cache::C
end
@inline get_mesh(d::BoundaryFaceDomain) = d.mesh
@inline topodim(d::BoundaryFaceDomain) = topodim(get_mesh(d)) - 1
@inline bctype(::BoundaryFaceDomain{M, BC}) where {M, BC} = BC
@inline get_bc(d::BoundaryFaceDomain) = d.bc
@inline get_cache(d::BoundaryFaceDomain) = d.cache
LazyOperators.pretty_name(domain::BoundaryFaceDomain) = "BoundaryFaceDomain"
indices(d::BoundaryFaceDomain) = get_cache(d)
function BoundaryFaceDomain(mesh::Mesh, bc::PeriodicBCType)
cache =
_compute_periodicity(mesh, labels_master(bc), labels_slave(bc), transformation(bc))
labels = unique(vcat(labels_master(bc)..., labels_slave(bc)...))
BoundaryFaceDomain{typeof(mesh), typeof(bc), typeof(labels), typeof(cache)}(
mesh,
bc,
labels,
cache,
)
end
function indices(d::BoundaryFaceDomain{M, <:PeriodicBCType}) where {M}
_, _, _, _, bnd_ftypes, = get_cache(d)
return 1:length(bnd_ftypes)
end
"""
Find periodic face connectivities sush as :
(faces of `labels2`) = A(faces of `labels1`)
"""
function _compute_periodicity(mesh, labels1, labels2, A, tol = 1e-9)
# Get cell -> node connectivity
c2n = connectivities_indices(mesh, :c2n)
# Get face -> node connectivity
f2n = connectivities_indices(mesh, :f2n)
# Get face -> cell connectivity
f2c = connectivities_indices(mesh, :f2c)
# Cell and face types
#celltypes = cells(mesh)
tags1 = map(label -> boundary_tag(mesh, label), labels1)
tags2 = map(label -> boundary_tag(mesh, label), labels2)
# Boundary faces
bndfaces1 = vcat(map(tag -> boundary_faces(mesh, tag), tags1)...)
bndfaces2 = vcat(map(tag -> boundary_faces(mesh, tag), tags2)...)
#nbnd1 = length(bndfaces1)
nbnd2 = length(bndfaces2)
# Allocate result
bnd_f2n1 = [zero(f2n[iface]) for iface in bndfaces1]
bnd_f2n2 = [zero(f2n[iface]) for iface in bndfaces2]
bnd_f2c = zeros(Int, nbnd2, 2) # Adjacent cells for each bnd face
bnd_ftypes = Array{AbstractEntityType}(undef, nbnd2)
# Loop over bnd faces
for (i, iface) in enumerate(bndfaces2)
icell = f2c[iface][1]
fnodesᵢ = get_nodes(mesh, f2n[iface])
#sideᵢ = cell_side(celltypes[icell], c2n[icell], f2n[iface])
Mᵢ = center(fnodesᵢ)
# compute a characteristic length :
Δxᵢ = distance(center(get_nodes(mesh, c2n[icell])), Mᵢ)
isfind = false
for (j, jface) in enumerate(bndfaces1)
jcell = f2c[jface][1]
fnodesⱼ = get_nodes(mesh, f2n[jface])
#sideⱼ = cell_side(celltypes[jcell], c2n[jcell], f2n[jface])
Mⱼ = center(fnodesⱼ)
# compute image point
Mⱼ_bis = Node(A(get_coords(Mⱼ)))
# Centers must be identical
if isapprox(Mᵢ, Mⱼ_bis; atol = tol * Δxᵢ)
bnd_f2n1[i] = f2n[iface]
bnd_f2n2[i] = f2n[jface]
bnd_ftypes[i] = faces(mesh)[iface]
bnd_f2c[i, 1] = icell
bnd_f2c[i, 2] = jcell
# Stop looking for face in relation
isfind = true
break
end
end
if isfind === false
error("Face i=", i, " ", iface, " not found")
end
end
bnd_f2f = Dict{Int, Int}()
for (i, iface) in enumerate(bndfaces2)
bnd_f2f[iface] = i
end
# node to node relation
bnd_n2n = Dict{Int, Int}()
for (_f2c, _f2n1, _f2n2) in zip(bnd_f2c, bnd_f2n1, bnd_f2n2)
# distance between face center and adjacent cell center
Δx = distance(center(get_nodes(mesh, c2n[_f2c[1]])), center(get_nodes(mesh, _f2n1)))
isfind = false
for i in _f2n1
Mᵢ = get_nodes(mesh, i)
for j in _f2n2
Mⱼ = get_nodes(mesh, j)
# compute image point
Mⱼ_bis = Node(A(get_coords(Mⱼ)))
if isapprox(Mᵢ, Mⱼ_bis; atol = tol * Δx)
bnd_n2n[i] = j
bnd_n2n[j] = i
# Stop looking for face in relation
isfind = true
break
end
end
if isfind === false
error("Node i=", i, " not found (2)")
end
end
end
# Retain only relevant faces
return bnd_f2f, bnd_f2n1, bnd_f2n2, bnd_f2c, bnd_ftypes, bnd_n2n
end
"""
BoundaryFaceDomain(mesh)
BoundaryFaceDomain(mesh, label::String)
BoundaryFaceDomain(mesh, labels::Tuple{String, Vararg{String}})
Build a `BoundaryFaceDomain` corresponding to the boundaries designated by one
or several labels (=names).
If no label is provided, all the `BoundaryFaceDomain` corresponds
to all the boundary faces.
"""
function BoundaryFaceDomain(mesh::Mesh, labels::Tuple{String, Vararg{String}})
tags = map(label -> boundary_tag(mesh, label), labels)
# Check all tags have been found
for tag in tags
(tag isa Nothing) && error(
"Failed to build a `BoundaryFaceDomain` with labels '$(labels...)' -> double-check that your mesh contains these labels",
)
end
bndfaces = vcat(map(tag -> boundary_faces(mesh, tag), tags)...)
cache = bndfaces
bc = nothing
BoundaryFaceDomain{typeof(mesh), typeof(bc), typeof(labels), typeof(cache)}(
mesh,
bc,
labels,
cache,
)
end
BoundaryFaceDomain(mesh::AbstractMesh, label::String) = BoundaryFaceDomain(mesh, (label,))
function BoundaryFaceDomain(mesh::AbstractMesh)
BoundaryFaceDomain(mesh, Tuple(values(boundary_names(mesh))))
end
function BoundaryFaceDomain(mesh::AbstractMesh, args...; kwargs...)
BoundaryFaceDomain(parent(mesh), args...; kwargs...)
end
"""
abstract type AbstractDomainIndex
# Devs notes
All subtypes should implement the following functions:
- get_element_type(::AbstractDomainIndex)
"""
abstract type AbstractDomainIndex end
abstract type AbstractCellInfo <: AbstractDomainIndex end
struct CellInfo{C, N, CN} <: AbstractCellInfo
icell::Int
ctype::C
nodes::N # List/array of the cell `Node`s
c2n::CN # Global indices of the nodes composing the cell
end
function CellInfo(icell, ctype, nodes, c2n)
CellInfo{typeof(ctype), typeof(nodes), typeof(c2n)}(icell, ctype, nodes, c2n)
end
@inline cellindex(c::CellInfo) = c.icell
@inline celltype(c::CellInfo) = c.ctype
@inline nodes(c::CellInfo) = c.nodes
@inline get_nodes_index(c::CellInfo) = c.c2n
get_element_type(c::CellInfo) = celltype(c)
""" Legacy constructor for CellInfo : no information about node indices """
CellInfo(icell, ctype, nodes) = CellInfo(icell, ctype, nodes, nothing)
"""
CellInfo(mesh, icell)
DEBUG constructor for `icell`-th cell of `mesh`. For performance issues, don't use this version
in production.
"""
function CellInfo(mesh, icell)
c2n = connectivities_indices(mesh, :c2n)
_c2n = c2n[icell]
celltypes = cells(mesh)
return CellInfo(icell, celltypes[icell], get_nodes(mesh, _c2n), _c2n)
end
abstract type AbstractCellSide <: AbstractDomainIndex end
struct CellSide{C, N, CN} <: AbstractCellSide
icell::Int
iside::Int
ctype::C
nodes::N
c2n::CN
end
function CellSide(icell, iside, ctype, nodes, c2n)
CellSide{typeof(ctype), typeof(nodes), typeof(c2n)}(icell, iside, ctype, nodes, c2n)
end
@inline cellindex(c::CellSide) = c.icell
@inline cellside(c::CellSide) = c.iside
@inline celltype(c::CellSide) = c.ctype
@inline nodes(c::CellSide) = c.nodes
@inline cell2nodes(c::CellSide) = c.c2n
get_element_type(c::CellSide) = celltype(c)
abstract type AbstractFaceInfo <: AbstractDomainIndex end
"""
FaceInfo{CN<:CellInfo,CP<:CellInfo,FT,FN,F2N,I}
Type describing a face as the common side of two adjacent cells.
`CellInfo` of cells from both sides is stored with
the local side index of the face relative to each adjacent cell.
`iface` is the mesh-face-index (and not the domain-face-index).
# Remark:
- For boundary face with no periodic condition, positive cell side info
are duplicate from the negative ones.
- For performance reason (type stability), nodes and type of the face
is stored explicitely in `FaceInfo` even if it could have been
computed by collecting info from the side of the negative or positive cells.
"""
struct FaceInfo{CN <: CellInfo, CP <: CellInfo, FT, FN, F2N, I} <: AbstractFaceInfo
cellinfo_n::CN
cellinfo_p::CP
cellside_n::Int
cellside_p::Int
faceType::FT
faceNodes::FN
f2n::F2N
iface::I
end
"""
FaceInfo constructor
Cell sides are computed automatically.
"""
function FaceInfo(
cellinfo_n::CellInfo,
cellinfo_p::CellInfo,
faceType,
faceNodes,
f2n::AbstractVector,
iface,
)
cellside_n = cell_side(celltype(cellinfo_n), get_nodes_index(cellinfo_n), f2n)
cellside_p = cell_side(celltype(cellinfo_p), get_nodes_index(cellinfo_p), f2n)
if cellside_n === nothing || cellside_p === nothing
printstyled("\n=== ERROR in FaceInfo ===\n"; color = :red)
@show cellside_n
@show cellside_p
@show celltype(cellinfo_n)
@show get_nodes_index(cellinfo_n)
@show celltype(cellinfo_p)
@show get_nodes_index(cellinfo_p)
@show faceType
@show faceNodes
@show f2n
error("Invalid cellside in `FaceInfo`")
end
FaceInfo(
cellinfo_n,
cellinfo_p,
cellside_n,
cellside_p,
faceType,
faceNodes,
f2n,
iface,
)
end
"""
DEBUG `FaceInfo` constructor for `kface`-th cell of `mesh`. For performance issues, don't use this
version in production.
"""
function FaceInfo(mesh::Mesh, kface::Int)
f2n = connectivities_indices(mesh, :f2n)
f2c = connectivities_indices(mesh, :f2c)
_f2n = f2n[kface]
fnodes = get_nodes(mesh, _f2n)
ftype = faces(mesh)[kface]
cellinfo_n = CellInfo(mesh, f2c[kface][1])
cellinfo_p = length(f2c[kface]) > 1 ? CellInfo(mesh, f2c[kface][2]) : cellinfo_n
return FaceInfo(cellinfo_n, cellinfo_p, ftype, fnodes, _f2n, kface)
end
nodes(faceInfo::FaceInfo) = faceInfo.faceNodes
facetype(faceInfo::FaceInfo) = faceInfo.faceType
faceindex(faceInfo::FaceInfo) = faceInfo.iface
get_cellinfo_n(faceInfo::FaceInfo) = faceInfo.cellinfo_n
get_cellinfo_p(faceInfo::FaceInfo) = faceInfo.cellinfo_p
@inline get_nodes_index(faceInfo::FaceInfo) = faceInfo.f2n
get_cell_side_n(faceInfo::FaceInfo) = faceInfo.cellside_n
get_cell_side_p(faceInfo::FaceInfo) = faceInfo.cellside_p
get_element_type(c::FaceInfo) = facetype(c)
"""
Return the opposite side of the `FaceInfo` : cellside "n" because cellside "p"
"""
function opposite_side(fInfo::FaceInfo)
return FaceInfo(
get_cellinfo_p(fInfo),
get_cellinfo_n(fInfo),
get_cell_side_p(fInfo),
get_cell_side_n(fInfo),
facetype(fInfo),
nodes(fInfo),
get_nodes_index(fInfo),
faceindex(fInfo),
)
end
""" Return a LazyOperator representing a face normal """
get_face_normals(::AbstractFaceDomain) = FaceNormal()
abstract type AbstractDomainIterator{D <: AbstractDomain} end
get_domain(iter::AbstractDomainIterator) = iter.domain
Base.iterate(::AbstractDomainIterator) = error("to be defined")
Base.iterate(::AbstractDomainIterator, state) = error("to be defined")
Base.eltype(::AbstractDomainIterator) = error("to be defined")
Base.length(iter::AbstractDomainIterator) = length(indices(get_domain(iter)))
Base.firstindex(::AbstractDomainIterator) = 1
Base.getindex(::AbstractDomainIterator, i) = error("to be defined")
struct DomainIterator{D <: AbstractDomain} <: AbstractDomainIterator{D}
domain::D
end
Base.eltype(::DomainIterator{<:AbstractCellDomain}) = CellInfo
Base.eltype(::DomainIterator{<:AbstractFaceDomain}) = FaceInfo
function Base.iterate(iter::DomainIterator, i::Integer = 1)
if i > length(indices(get_domain(iter)))
return nothing
else
return _get_index(get_domain(iter), i), i + 1
end
end
Base.getindex(iter::DomainIterator, i) = _get_index(get_domain(iter), i)
function _get_index(domain::AbstractCellDomain, i::Integer)
icell = indices(domain)[i]
mesh = get_mesh(domain)
_get_cellinfo(mesh, icell)
end
function _get_cellinfo(mesh, icell)
c2n = connectivities_indices(mesh, :c2n)
celltypes = cells(mesh)
ctype = celltypes[icell]
n_nodes = Val(nnodes(ctype))
_c2n = c2n[icell, n_nodes]
cnodes = get_nodes(mesh, _c2n)
CellInfo(icell, ctype, cnodes, _c2n)
end
function _get_index(domain::AbstractFaceDomain, i::Integer)
iface = indices(domain)[i]
mesh = get_mesh(domain)
f2n = connectivities_indices(mesh, :f2n)
cellinfo1, cellinfo2 = _get_face_cellinfo(domain, i)
ftype = faces(mesh)[iface]
n_fnodes = Val(nnodes(ftype))
_f2n = f2n[iface, n_fnodes]
fnodes = get_nodes(mesh, _f2n)
FaceInfo(cellinfo1, cellinfo2, ftype, fnodes, _f2n, iface)
end
function _get_face_cellinfo(domain::InteriorFaceDomain, i)
mesh = get_mesh(domain)
f2c = connectivities_indices(mesh, :f2c)
iface = indices(domain)[i]
icell1, icell2 = f2c[iface]
cellinfo1 = _get_cellinfo(mesh, icell1)
cellinfo2 = _get_cellinfo(mesh, icell2)
return cellinfo1, cellinfo2
end
function _get_face_cellinfo(domain::AllFaceDomain, i)
mesh = get_mesh(domain)
f2c = connectivities_indices(mesh, :f2c)
iface = indices(domain)[i]
if length(f2c[iface]) > 1
icell1, icell2 = f2c[iface]
cellinfo1 = _get_cellinfo(mesh, icell1)
cellinfo2 = _get_cellinfo(mesh, icell2)
return cellinfo1, cellinfo2
else
icell1, = f2c[iface]
cellinfo1 = _get_cellinfo(mesh, icell1)
return cellinfo1, cellinfo1
end
end
function _get_face_cellinfo(domain::BoundaryFaceDomain, i)
mesh = get_mesh(domain)
f2c = connectivities_indices(mesh, :f2c)
iface = indices(domain)[i]
icell1, = f2c[iface]
cellinfo1 = _get_cellinfo(mesh, icell1)
return cellinfo1, cellinfo1
end
function _get_index(domain::BoundaryFaceDomain{M, <:PeriodicBCType}, i::Integer) where {M}
mesh = get_mesh(domain)
c2n = connectivities_indices(mesh, :c2n)
iface = indices(domain)[i]
# TODO : add a specific API for the domain cache:
perio_cache = get_cache(domain)
perio_trans = transformation(get_bc(domain))
_, bnd_f2n1, bnd_f2n2, bnd_f2c, bnd_ftypes, bnd_n2n = perio_cache
icell1, icell2 = bnd_f2c[i, :]
cellinfo1 = _get_cellinfo(mesh, icell1)
ctype_j = cells(mesh)[icell2]
nnodes_j = Val(nnodes(ctype_j))
_c2n_j = c2n[icell2, nnodes_j]
cnodes_j = get_nodes(mesh, _c2n_j) # to be removed when function barrier is used
cnodes_j_perio = map(node -> Node(perio_trans(get_coords(node))), cnodes_j)
# Build c2n for cell j with nodes indices taken from cell i
# for those that are shared on the periodic BC:
_c2n_j_perio = map(k -> get(bnd_n2n, k, k), _c2n_j)
cellinfo2 = CellInfo(icell2, ctype_j, cnodes_j_perio, _c2n_j_perio)
# Face info
ftype = bnd_ftypes[i]
fnodes = get_nodes(mesh, bnd_f2n1[i])
cside_i = cell_side(celltype(cellinfo1), get_nodes_index(cellinfo1), bnd_f2n1[i])
cside_j = cell_side(celltype(cellinfo2), _c2n_j, bnd_f2n2[i])
_f2n = bnd_f2n1[i]
return FaceInfo(cellinfo1, cellinfo2, cside_i, cside_j, ftype, fnodes, _f2n, iface)
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 20342 | #
# NOTE : entity are defined according CGNS conventions. Beware that
# for some elements, this is different from the GMSH convention (see Hexa27
# for instance).
# (see https://cgns.github.io/CGNS_docs_current/sids/conv.html)
abstract type AbstractEntity{dim} end
abstract type AbstractNode <: AbstractEntity{0} end
abstract type AbstractFace{dim} <: AbstractEntity{dim} end
abstract type AbstractCell{dim} <: AbstractEntity{dim} end
abstract type AbstractCellType end
abstract type AbstractFaceType end
abstract type AbstractEntityType{dim} end
struct Node_t <: AbstractEntityType{0} end
struct Bar2_t <: AbstractEntityType{1} end
struct Bar3_t <: AbstractEntityType{1} end
struct Bar4_t <: AbstractEntityType{1} end
struct Bar5_t <: AbstractEntityType{1} end
struct Tri3_t <: AbstractEntityType{2} end
struct Tri6_t <: AbstractEntityType{2} end
struct Tri9_t <: AbstractEntityType{2} end
struct Tri10_t <: AbstractEntityType{2} end
struct Tri12_t <: AbstractEntityType{2} end
struct Quad4_t <: AbstractEntityType{2} end
struct Quad8_t <: AbstractEntityType{2} end
struct Quad9_t <: AbstractEntityType{2} end
struct Quad16_t <: AbstractEntityType{2} end
struct Tetra4_t <: AbstractEntityType{3} end
struct Tetra10_t <: AbstractEntityType{3} end
struct Hexa8_t <: AbstractEntityType{3} end
struct Hexa27_t <: AbstractEntityType{3} end
struct Penta6_t <: AbstractEntityType{3} end
struct Pyra5_t <: AbstractEntityType{3} end
struct Poly2_t{N, M} <: AbstractEntityType{2} end
struct Poly3_t{N, M} <: AbstractEntityType{3} end
abstract type AbstractEntityList end
const EntityVector{T} = Vector{T} where {T <: AbstractEntityType}
#---- Generic functions which MUST BE implemented for each concrete type ----
@inline function nnodes(::Type{<:T}) where {T <: AbstractEntityType}
error("Function ‘nnodes‘ is not defined")
end
@inline nnodes(a::T) where {T <: AbstractEntityType} = nnodes(typeof(a))
@inline function nodes(::Type{<:T}) where {T <: AbstractEntityType}
error("Function ‘nodes‘ is not defined")
end
@inline nodes(a::T) where {T <: AbstractEntityType} = nodes(typeof(a))
@inline function nedges(::Type{<:T}) where {T <: AbstractEntityType}
error("Function nedges is not defined")
end
@inline nedges(a::T) where {T <: AbstractEntityType} = nedges(typeof(a))
@inline function edges2nodes(::Type{<:T}) where {T <: AbstractEntityType}
error("Function edges2nodes is not defined")
end
@inline edges2nodes(a::T) where {T <: AbstractEntityType} = edges2nodes(typeof(a))
@inline function edgetypes(::Type{<:T}) where {T <: AbstractEntityType}
error("Function edgetypes is not defined")
end
@inline edgetypes(a::T) where {T <: AbstractEntityType} = edgetypes(typeof(a))
@inline edgetypes(a::T, i) where {T <: AbstractEntityType} = edgetypes(a)[i]
@inline function nfaces(::Type{<:T}) where {T <: AbstractEntityType}
error("Function nfaces is not defined")
end
@inline nfaces(a::T) where {T <: AbstractEntityType} = nfaces(typeof(a))
@inline function faces2nodes(::Type{<:T}) where {T <: AbstractEntityType}
error("Function faces2nodes is not defined")
end
@inline faces2nodes(a::T) where {T <: AbstractEntityType} = faces2nodes(typeof(a))
@inline topodim(::Type{<:AbstractEntityType{N}}) where {N} = N
@inline topodim(a::T) where {T <: AbstractEntityType} = topodim(typeof(a))
@inline function facetypes(::Type{<:T}) where {T <: AbstractEntityType}
error("Function facetypes is not defined")
end
@inline facetypes(a::T) where {T <: AbstractEntityType} = facetypes(typeof(a))
@inline facetypes(a::T, i) where {T <: AbstractEntityType} = facetypes(a)[i]
#---- Valid generic functions for each type ----
@inline function edges2nodes(a::T, i) where {T <: AbstractEntityType}
nedges(a) === 0 ? nothing : edges2nodes(a)[i]
end
@inline function edges2nodes(a::T, i...) where {T <: AbstractEntityType}
nedges(a) === 0 ? nothing : edges2nodes(a)[i...]
end
@inline function faces2nodes(a::T, i) where {T <: AbstractEntityType}
nfaces(a) === 0 ? nothing : faces2nodes(a)[i]
end
@inline function faces2nodes(a::T, i...) where {T <: AbstractEntityType}
nfaces(a) === 0 ? nothing : faces2nodes(a)[i]
end
#---- Type specific functions ----
#- Node
@inline nnodes(::Type{Node_t}) = 1
@inline nodes(::Type{Node_t}) = (1,)
@inline nedges(::Type{Node_t}) = 0
@inline edges2nodes(::Type{Node_t}) = nothing
@inline edgetypes(::Type{Node_t}) = nothing
@inline nfaces(::Type{Node_t}) = 0
@inline faces2nodes(::Type{Node_t}) = nothing
@inline facetypes(::Type{Node_t}) = nothing
#- Bar2
@inline nnodes(::Type{Bar2_t}) = 2
@inline nodes(::Type{Bar2_t}) = (1, 2)
@inline nedges(::Type{Bar2_t}) = 2
@inline edges2nodes(::Type{Bar2_t}) = ((1,), (2,))
@inline edgetypes(::Type{Bar2_t}) = (Node_t(), Node_t())
@inline nfaces(t::Type{Bar2_t}) = nedges(t)
@inline faces2nodes(t::Type{Bar2_t}) = edges2nodes(t)
@inline facetypes(t::Type{Bar2_t}) = edgetypes(t)
#- Bar3
# N1 N3 N2
# x---------x---------x
@inline nnodes(::Type{Bar3_t}) = 3
@inline nodes(::Type{Bar3_t}) = (1, 2, 3)
@inline nedges(::Type{Bar3_t}) = 2
@inline edges2nodes(::Type{Bar3_t}) = ((1,), (2,))
@inline edgetypes(::Type{Bar3_t}) = (Node_t(), Node_t())
@inline nfaces(t::Type{Bar3_t}) = nedges(t)
@inline faces2nodes(t::Type{Bar3_t}) = edges2nodes(t)
@inline facetypes(t::Type{Bar3_t}) = edgetypes(t)
#- Bar4
# N1 N3 N4 N2
# x------x------x------x
@inline nnodes(::Type{Bar4_t}) = 4
@inline nodes(::Type{Bar4_t}) = (1, 2, 3, 4)
@inline nedges(::Type{Bar4_t}) = 2
@inline edges2nodes(::Type{Bar4_t}) = ((1,), (2,))
@inline edgetypes(::Type{Bar4_t}) = (Node_t(), Node_t())
@inline nfaces(t::Type{Bar4_t}) = nedges(t)
@inline faces2nodes(t::Type{Bar4_t}) = edges2nodes(t)
@inline facetypes(t::Type{Bar4_t}) = edgetypes(t)
#- Bar5
# N1 N3 N4 N5 N2
# x----x----x----x----x
@inline nnodes(::Type{Bar5_t}) = 5
@inline nodes(::Type{Bar5_t}) = (1, 2, 3, 4, 5)
@inline nedges(::Type{Bar5_t}) = 2
@inline edges2nodes(::Type{Bar5_t}) = ((1,), (2,))
@inline edgetypes(::Type{Bar5_t}) = (Node_t(), Node_t())
@inline nfaces(t::Type{Bar5_t}) = nedges(t)
@inline faces2nodes(t::Type{Bar5_t}) = edges2nodes(t)
@inline facetypes(t::Type{Bar5_t}) = edgetypes(t)
#-Tri3 ----
@inline nnodes(::Type{Tri3_t}) = 3
@inline nodes(::Type{Tri3_t}) = (1, 2, 3)
@inline nedges(::Type{Tri3_t}) = 3
@inline edges2nodes(::Type{Tri3_t}) = ((1, 2), (2, 3), (3, 1))
@inline edgetypes(::Type{Tri3_t}) = (Bar2_t(), Bar2_t(), Bar2_t())
@inline nfaces(t::Type{Tri3_t}) = nedges(t)
@inline faces2nodes(t::Type{Tri3_t}) = edges2nodes(t)
@inline facetypes(t::Type{Tri3_t}) = edgetypes(t)
#-Tri6 ----
@inline nnodes(::Type{Tri6_t}) = 6
@inline nodes(::Type{Tri6_t}) = (1, 2, 3, 4, 5, 6)
@inline nedges(::Type{Tri6_t}) = 3
@inline edges2nodes(::Type{Tri6_t}) = ((1, 2, 4), (2, 3, 5), (3, 1, 6))
@inline edgetypes(::Type{Tri6_t}) = (Bar3_t(), Bar3_t(), Bar3_t())
@inline nfaces(t::Type{Tri6_t}) = nedges(t)
@inline faces2nodes(t::Type{Tri6_t}) = edges2nodes(t)
@inline facetypes(t::Type{Tri6_t}) = edgetypes(t)
#-Tri9 ----
@inline nnodes(::Type{Tri9_t}) = 9
@inline nodes(::Type{Tri9_t}) = (1, 2, 3, 4, 5, 6, 7, 8, 9)
@inline nedges(::Type{Tri9_t}) = 3
@inline edges2nodes(::Type{Tri9_t}) = ((1, 2, 4, 5), (2, 3, 6, 7), (3, 1, 8, 9))
@inline edgetypes(::Type{Tri9_t}) = (Bar4_t(), Bar4_t(), Bar4_t())
@inline nfaces(t::Type{Tri9_t}) = nedges(t)
@inline faces2nodes(t::Type{Tri9_t}) = edges2nodes(t)
@inline facetypes(t::Type{Tri9_t}) = edgetypes(t)
#-Tri10 ----
@inline nnodes(::Type{Tri10_t}) = 10
@inline nodes(::Type{Tri10_t}) = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
@inline nedges(::Type{Tri10_t}) = 3
@inline edges2nodes(::Type{Tri10_t}) = ((1, 2, 4, 5), (2, 3, 6, 7), (3, 1, 8, 9))
@inline edgetypes(::Type{Tri10_t}) = (Bar4_t(), Bar4_t(), Bar4_t())
@inline nfaces(t::Type{Tri10_t}) = nedges(t)
@inline faces2nodes(t::Type{Tri10_t}) = edges2nodes(t)
@inline facetypes(t::Type{Tri10_t}) = edgetypes(t)
#-Tri12----
@inline nnodes(::Type{Tri12_t}) = 12
@inline nodes(::Type{Tri12_t}) = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
@inline nedges(::Type{Tri12_t}) = 3
@inline function edges2nodes(::Type{Tri12_t})
((1, 2, 4, 5, 6), (2, 3, 7, 8, 9), (3, 1, 10, 11, 12))
end
@inline edgetypes(::Type{Tri12_t}) = (Bar5_t(), Bar5_t(), Bar5_t())
@inline nfaces(t::Type{Tri12_t}) = nedges(t)
@inline faces2nodes(t::Type{Tri12_t}) = edges2nodes(t)
@inline facetypes(t::Type{Tri12_t}) = edgetypes(t)
#---- Quad4 ----
@inline nnodes(::Type{Quad4_t}) = 4
@inline nodes(::Type{Quad4_t}) = (1, 2, 3, 4)
@inline nedges(::Type{Quad4_t}) = 4
@inline edges2nodes(::Type{Quad4_t}) = ((1, 2), (2, 3), (3, 4), (4, 1))
@inline edgetypes(::Type{Quad4_t}) = (Bar2_t(), Bar2_t(), Bar2_t(), Bar2_t())
@inline nfaces(t::Type{Quad4_t}) = nedges(t)
@inline faces2nodes(t::Type{Quad4_t}) = edges2nodes(t)
@inline facetypes(t::Type{Quad4_t}) = edgetypes(t)
#---- Quad8 ----
@inline nnodes(::Type{Quad8_t}) = 8
@inline nodes(::Type{Quad8_t}) = (1, 2, 3, 4, 5, 6, 7, 8)
@inline nedges(::Type{Quad8_t}) = 4
@inline edges2nodes(::Type{Quad8_t}) = ((1, 2, 5), (2, 3, 6), (3, 4, 7), (4, 1, 8))
@inline edgetypes(::Type{Quad8_t}) = (Bar3_t(), Bar3_t(), Bar3_t(), Bar3_t())
@inline nfaces(t::Type{Quad8_t}) = nedges(t)
@inline faces2nodes(t::Type{Quad8_t}) = edges2nodes(t)
@inline facetypes(t::Type{Quad8_t}) = edgetypes(t)
#---- Quad9 ----
@inline nnodes(::Type{Quad9_t}) = 9
@inline nodes(::Type{Quad9_t}) = (1, 2, 3, 4, 5, 6, 7, 8, 9)
@inline nedges(::Type{Quad9_t}) = 4
@inline edges2nodes(::Type{Quad9_t}) = ((1, 2, 5), (2, 3, 6), (3, 4, 7), (4, 1, 8))
@inline edgetypes(::Type{Quad9_t}) = (Bar3_t(), Bar3_t(), Bar3_t(), Bar3_t())
@inline nfaces(t::Type{Quad9_t}) = nedges(t)
@inline faces2nodes(t::Type{Quad9_t}) = edges2nodes(t)
@inline facetypes(t::Type{Quad9_t}) = edgetypes(t)
#---- Quad16 ----
@inline nnodes(::Type{Quad16_t}) = 16
@inline nodes(::Type{Quad16_t}) = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
@inline nedges(::Type{Quad16_t}) = 4
@inline function edges2nodes(::Type{Quad16_t})
((1, 2, 5, 6), (2, 3, 7, 8), (3, 4, 9, 10), (4, 1, 11, 12))
end
@inline edgetypes(::Type{Quad16_t}) = (Bar4_t(), Bar4_t(), Bar4_t(), Bar4_t())
@inline nfaces(t::Type{Quad16_t}) = nedges(t)
@inline faces2nodes(t::Type{Quad16_t}) = edges2nodes(t)
@inline facetypes(t::Type{Quad16_t}) = edgetypes(t)
#---- Tetra4 ----
@inline nnodes(::Type{Tetra4_t}) = 4
@inline nodes(::Type{Tetra4_t}) = (1, 2, 3, 4)
@inline nedges(::Type{Tetra4_t}) = 6
@inline edges2nodes(::Type{Tetra4_t}) = ((1, 2), (2, 3), (3, 1), (1, 4), (2, 4), (3, 4))
@inline function edgetypes(::Type{Tetra4_t})
(Bar2_t(), Bar2_t(), Bar2_t(), Bar2_t(), Bar2_t(), Bar2_t())
end
@inline nfaces(t::Type{Tetra4_t}) = 4
@inline faces2nodes(::Type{Tetra4_t}) = ((1, 3, 2), (1, 2, 4), (2, 3, 4), (3, 1, 4))
@inline facetypes(::Type{Tetra4_t}) = (Tri3_t(), Tri3_t(), Tri3_t(), Tri3_t())
#---- Tetra10 ----
@inline nnodes(::Type{Tetra10_t}) = 10
@inline nodes(::Type{Tetra10_t}) = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
@inline nedges(::Type{Tetra10_t}) = 6
@inline function edges2nodes(::Type{Tetra10_t})
((1, 2, 5), (2, 3, 6), (3, 1, 7), (1, 4, 8), (2, 4, 9), (3, 4, 10))
end
@inline function edgetypes(::Type{Tetra10_t})
(Bar3_t(), Bar3_t(), Bar3_t(), Bar3_t(), Bar3_t(), Bar3_t())
end
@inline nfaces(t::Type{Tetra10_t}) = 4
@inline function faces2nodes(::Type{Tetra10_t})
((1, 3, 2, 7, 6, 5), (1, 2, 4, 5, 9, 8), (2, 3, 4, 6, 10, 9), (3, 1, 4, 7, 8, 10))
end
@inline facetypes(::Type{Tetra10_t}) = (Tri6_t(), Tri6_t(), Tri6_t())
#---- Hexa8 ----
@inline nnodes(::Type{Hexa8_t}) = 8
@inline nodes(::Type{Hexa8_t}) = (1, 2, 3, 4, 5, 6, 7, 8)
@inline nedges(::Type{Hexa8_t}) = 12
@inline function edges2nodes(::Type{Hexa8_t})
(
(1, 2),
(2, 3),
(3, 4),
(4, 1),
(1, 5),
(2, 6),
(3, 7),
(4, 8),
(5, 6),
(6, 7),
(7, 8),
(8, 5),
)
end
@inline function edgetypes(::Type{Hexa8_t})
(
Bar2_t(),
Bar2_t(),
Bar2_t(),
Bar2_t(),
Bar2_t(),
Bar2_t(),
Bar2_t(),
Bar2_t(),
Bar2_t(),
Bar2_t(),
Bar2_t(),
Bar2_t(),
)
end
@inline nfaces(::Type{Hexa8_t}) = 6
@inline function faces2nodes(::Type{Hexa8_t})
((1, 4, 3, 2), (1, 2, 6, 5), (2, 3, 7, 6), (3, 4, 8, 7), (1, 5, 8, 4), (5, 6, 7, 8))
end
@inline facetypes(t::Type{Hexa8_t}) = Tuple([Quad4_t() for _ in 1:nfaces(t)])
#---- Hexa27 ----
# Warning : follow CGNS convention -> different from GMSH convention
@inline nnodes(::Type{Hexa27_t}) = 27
@inline function nodes(::Type{Hexa27_t})
(
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
)
end
@inline nedges(::Type{Hexa27_t}) = 12
@inline function edges2nodes(::Type{Hexa27_t})
(
(1, 2, 9),
(2, 3, 10),
(3, 4, 11),
(4, 1, 12),
(1, 5, 13),
(2, 6, 14),
(3, 7, 15),
(4, 8, 16),
(5, 6, 17),
(6, 7, 18),
(7, 8, 19),
(8, 5, 20),
)
end
@inline function edgetypes(::Type{Hexa27_t})
(
Bar3_t(),
Bar3_t(),
Bar3_t(),
Bar3_t(),
Bar3_t(),
Bar3_t(),
Bar3_t(),
Bar3_t(),
Bar3_t(),
Bar3_t(),
Bar3_t(),
Bar3_t(),
)
end
@inline nfaces(::Type{Hexa27_t}) = 6
@inline function faces2nodes(::Type{Hexa27_t})
(
(1, 4, 3, 2, 12, 11, 10, 9, 21),
(1, 2, 6, 5, 9, 14, 17, 13, 22),
(2, 3, 7, 6, 10, 15, 18, 14, 23),
(3, 4, 8, 7, 11, 16, 19, 15, 24),
(1, 5, 8, 4, 13, 20, 16, 12, 25),
(5, 6, 7, 8, 17, 18, 19, 20, 26),
)
end
@inline function facetypes(::Type{Hexa27_t})
(Quad9_t(), Quad9_t(), Quad9_t(), Quad9_t(), Quad9_t(), Quad9_t())
end
#---- Penta6_t (=Prism) ----
@inline nnodes(::Type{Penta6_t}) = 6
@inline nodes(::Type{Penta6_t}) = (1, 2, 3, 4, 5, 6)
@inline nedges(::Type{Penta6_t}) = 9
@inline function edges2nodes(::Type{Penta6_t})
((1, 2), (2, 3), (3, 1), (1, 4), (2, 5), (3, 6), (4, 5), (5, 6), (6, 4))
end
@inline function edgetypes(::Type{Penta6_t})
(
Bar2_t(),
Bar2_t(),
Bar2_t(),
Bar2_t(),
Bar2_t(),
Bar2_t(),
Bar2_t(),
Bar2_t(),
Bar2_t(),
)
end
@inline nfaces(::Type{Penta6_t}) = 5
@inline function faces2nodes(::Type{Penta6_t})
((1, 2, 5, 4), (2, 3, 6, 5), (3, 1, 4, 6), (1, 3, 2), (4, 5, 6))
end
@inline facetypes(::Type{Penta6_t}) = (Quad4_t(), Quad4_t(), Quad4_t(), Tri3_t(), Tri3_t())
#---- Pyra5_t ----
@inline nnodes(::Type{Pyra5_t}) = 5
@inline nodes(::Type{Pyra5_t}) = (1, 2, 3, 4, 5)
@inline nedges(::Type{Pyra5_t}) = 8
@inline function edges2nodes(::Type{Pyra5_t})
((1, 2), (2, 3), (3, 4), (4, 1), (1, 5), (2, 5), (3, 5), (4, 5))
end
@inline edgetypes(::Type{Pyra5_t}) = ntuple(Bar2_t(), nedges(Pyra5_t()))
@inline nfaces(::Type{Pyra5_t}) = 5
@inline function faces2nodes(::Type{Pyra5_t})
((1, 4, 3, 2), (1, 2, 5), (2, 3, 5), (3, 4, 5), (4, 1, 5))
end
@inline facetypes(::Type{Pyra5_t}) = (Quad4_t(), Tri3_t(), Tri3_t(), Tri3_t(), Tri3_t())
#---- Poly2_t ----
@inline nnodes(::Type{Poly2_t}) = error("Function ‘nnodes‘ is not defined for ‘Poly2_t‘")
@inline nodes(::Type{Poly2_t}) = error("Function ‘nodes‘ is not defined for ‘Poly2_t‘")
@inline nedges(::Type{Poly2_t}) = error("Function ‘nedges‘ is not defined for ‘Poly2_t‘")
@inline function edges2nodes(::Type{Poly2_t})
error("Function edges2nodes is not defined for ‘Poly2_t‘")
end
@inline nfaces(::Type{Poly2_t}) = error("Function nfaces is not defined for ‘Poly2_t‘")
@inline function faces2nodes(::Type{Poly2_t})
error("Function ‘faces2nodes‘ is not defined for ‘Poly2_t‘")
end
#---- Poly3_t ----
@inline nnodes(::Type{Poly3_t}) = error("Function ‘nnodes‘ is not defined for ‘Poly3_t‘")
@inline nodes(::Type{Poly3_t}) = error("Function ‘nodes‘ is not defined for ‘Poly3_t‘")
@inline nedges(::Type{Poly3_t}) = error("Function ‘nedges‘ is not defined for Poly3_t")
@inline function edges2nodes(::Type{Poly3_t})
error("Function edges2nodes is not defined for Poly3_t")
end
@inline nfaces(::Type{Poly3_t}) = error("Function nfaces is not defined for Poly3_t")
@inline function faces2nodes(::Type{Poly3_t})
error("Function ‘faces2nodes‘ is not defined for Poly3_t")
end
function f2n_from_c2n(t, c2n::NTuple{N, T}) where {N, T}
map_ref = faces2nodes(t)
@assert N === nnodes(t) "Error : invalid number of nodes"
ntuple(i -> ntuple(j -> c2n[map_ref[i][j]], length(map_ref[i])), length(map_ref))
end
function f2n_from_c2n(t, c2n::AbstractVector)
@assert length(c2n) === nnodes(t) "Error : invalid number of nodes ($(length(c2n)) ≠ $(nnodes(t)))"
map_ref = faces2nodes(t)
#SVector{length(map_ref)}(ntuple(i -> SVector{length(map_ref[i])}(ntuple(j -> c2n[map_ref[i][j]] , length(map_ref[i]))) ,length(map_ref)))
ntuple(
i -> SVector{length(map_ref[i])}(
ntuple(j -> c2n[map_ref[i][j]], length(map_ref[i])),
),
length(map_ref),
)
end
function cell_side(t::AbstractEntityType, c2n::AbstractVector, f2n::AbstractVector)
all_f2n = f2n_from_c2n(t, c2n)
side = myfindfirst(x -> x ⊆ f2n, all_f2n)
end
function oriented_cell_side(t::AbstractEntityType, c2n::AbstractVector, f2n::AbstractVector)
all_f2n = f2n_from_c2n(t, c2n)
side = findfirst(x -> x ⊆ f2n, all_f2n)
if side ≠ nothing
n = findfirst(isequal(f2n[1]), all_f2n[side])
n === nothing ? n1 = 0 : n1 = n
if length(f2n) === 2
n1 == 2 ? (return -side) : (return side)
else
n1 + 1 > length(all_f2n[side]) ? n2 = 1 : n2 = n1 + 1
f2n[2] == all_f2n[side][n2] ? nothing : side = -side
return side
end
end
return 0
end
"""
A `Node` is a point in space of dimension `dim`.
"""
struct Node{spaceDim, T}
x::SVector{spaceDim, T}
end
Node(x::Vector{T}) where {T} = Node{length(x), T}(SVector{length(x), T}(x))
@inline get_coords(n::Node) = n.x
get_coords(n::Node, i) = get_coords(n)[i]
get_coords(n::Node, i::Tuple{T, Vararg{T}}) where {T} = map(j -> get_coords(n, j), i)
@inline spacedim(::Node{spaceDim, T}) where {spaceDim, T} = spaceDim
function center(nodes::AbstractVector{T}) where {T <: Node}
Node(sum(n -> get_coords(n), nodes) / length(nodes))
end
function Base.isapprox(a::Node, b::Node, c...; d...)
isapprox(get_coords(a), get_coords(b), c...; d...)
end
distance(a::Node, b::Node) = norm(get_coords(a) - get_coords(b))
# TopologyStyle helps dealing of curve in 2D/3D space (isCurvilinear),
# surfaces in 3D space (isSurfacic) or R^n entity in a R^n space (isVolumic)
abstract type TopologyStyle end
struct isNodal <: TopologyStyle end
struct isCurvilinear <: TopologyStyle end
struct isSurfacic <: TopologyStyle end
struct isVolumic <: TopologyStyle end
"""
topology_style(::AbstractEntityType{topoDim}, ::Node{spaceDim, T}) where {topoDim, spaceDim, T}
topology_style(::AbstractEntityType{topoDim}, ::AbstractArray{Node{spaceDim, T}, N}) where {spaceDim, T, N, topoDim}
Indicate the `TopologyStyle` of an entity of topology `topoDim` living in space of dimension `spaceDim`.
"""
@inline topology_style(
::AbstractEntityType{topoDim},
::Node{spaceDim, T},
) where {topoDim, spaceDim, T} = isVolumic() # everything is volumic by default
# Any "Node" is... nodal
@inline topology_style(::AbstractEntityType{0}, ::Node{spaceDim, T}) where {spaceDim, T} =
isNodal()
# Any "line" in R^2 or R^3 is curvilinear
@inline topology_style(::AbstractEntityType{1}, ::Node{2, T}) where {T} = isCurvilinear()
@inline topology_style(::AbstractEntityType{1}, ::Node{3, T}) where {T} = isCurvilinear()
# A surface in R^2 is "volumic"
@inline topology_style(::AbstractEntityType{2}, ::Node{2, T}) where {T} = isVolumic()
# Any other surface is "surfacic"
@inline topology_style(::AbstractEntityType{2}, ::Node{spaceDim, T}) where {spaceDim, T} =
isSurfacic()
@inline topology_style(
etype::AbstractEntityType{topoDim},
nodes::AbstractArray{Node{spaceDim, T}, N},
) where {spaceDim, T, N, topoDim} = topology_style(etype, nodes[1])
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 43170 | import gmsh_jll
include(gmsh_jll.gmsh_api)
import .gmsh
# Constants
const GMSHTYPE = Dict(
1 => Bar2_t(),
2 => Tri3_t(),
3 => Quad4_t(),
4 => Tetra4_t(),
5 => Hexa8_t(),
6 => Penta6_t(),
7 => Pyra5_t(),
9 => Tri6_t(),
10 => Quad9_t(),
21 => Tri9_t(),
21 => Tri10_t(),
36 => Quad16_t(),
)
"""
read_msh(path::String, spaceDim::Int = 0; verbose::Bool = false)
Read a .msh file designated by its `path`.
See `read_msh()` for more details.
"""
function read_msh(path::String, spaceDim::Int = 0; verbose::Bool = false)
isfile(path) ? nothing : error("File does not exist ", path)
# Read file using gmsh lib
gmsh.initialize()
gmsh.option.setNumber("General.Terminal", Int(verbose))
gmsh.open(path)
# build mesh
mesh = _read_msh(spaceDim, verbose)
# free gmsh
gmsh.finalize()
return mesh
end
"""
_read_msh(spaceDim::Int, verbose::Bool)
To use this function, the `gmsh` file must have been opened already (see `read_msh(path::String)`
for instance).
The number of topological dimensions is given by the highest dimension found in the file. The
number of space dimensions is deduced from the axis dimensions if `spaceDim = 0`.
If `spaceDim` is set to a positive number, this number is used as the number of space dimensions.
# Implementation
Global use of `gmsh` module. Do not try to improve this function by passing an argument
such as `gmsh` or `gmsh.model` : it leads to problems.
"""
function _read_msh(spaceDim::Int, verbose::Bool)
# Spatial dimension of the mesh
dim = gmsh.model.getDimension()
# Read nodes
ids, xyz = gmsh.model.mesh.getNodes()
# Create a node number remapping to ensure a dense numbering
absolute_node_indices = [convert(Int, i) for i in ids]
_, glo2loc_node_indices = densify(absolute_node_indices; permute_back = true)
# Build nodes coordinates
xyz = reshape(xyz, 3, :)
_spaceDim = spaceDim > 0 ? spaceDim : _compute_space_dim(verbose)
nodes = [Node(xyz[1:_spaceDim, i]) for i in axes(xyz, 2)]
# Read cells
elementTypes, elementTags, nodeTags = gmsh.model.mesh.getElements(dim)
# Create a cell number remapping to ensure a dense numbering
absolute_cell_indices = Int.(reduce(vcat, elementTags))
_, glo2loc_cell_indices = densify(absolute_cell_indices; permute_back = true)
# Read boundary conditions
bc_tags = gmsh.model.getPhysicalGroups(-1)
bc_names = [gmsh.model.getPhysicalName(_dim, _tag) for (_dim, _tag) in bc_tags]
# keep only physical groups of dimension "dim-1" with none-empty names.
# bc is a vector of (tag,name) for all valid boundary conditions
bc = [
(_tag, _name) for
((_dim, _tag), _name) in zip(bc_tags, bc_names) if _dim == dim - 1 && _name ≠ ""
]
bc_names = Dict(convert(Int, _tag) => _name for (_tag, _name) in bc)
bc_nodes = Dict(
convert(Int, _tag) => Int[
glo2loc_node_indices[i] for
i in gmsh.model.mesh.getNodesForPhysicalGroup(dim - 1, _tag)[1]
] for (_tag, _name) in bc
)
# Fill type of each cell
celltypes = [
GMSHTYPE[k] for (i, k) in enumerate(elementTypes) for t in 1:length(elementTags[i])
]
# Build cell->node connectivity (with Gmsh internal numbering convention)
c2n_gmsh = Connectivity(
Int[nnodes(k) for k in reduce(vcat, celltypes)],
Int[glo2loc_node_indices[k] for k in reduce(vcat, nodeTags)],
)
# Convert to CGNS numbering
c2n = _c2n_gmsh2cgns(celltypes, c2n_gmsh)
mesh = Mesh(nodes, celltypes, c2n; bc_names = bc_names, bc_nodes = bc_nodes)
add_absolute_indices!(mesh, :node, absolute_node_indices)
add_absolute_indices!(mesh, :cell, absolute_cell_indices)
return mesh
end
"""
read_msh_with_cell_names(path::String, spaceDim = 0; verbose = false)
Read a .msh file designated by its `path` and also return names and tags
"""
function read_msh_with_cell_names(path::String, spaceDim = 0; verbose = false)
isfile(path) ? nothing : error("File does not exist ", path)
# Read file using gmsh lib
gmsh.initialize()
gmsh.option.setNumber("General.Terminal", Int(verbose))
gmsh.open(path)
mesh, el_names, el_names_inv, el_cells, glo2loc_cell_indices =
_read_msh_with_cell_names(spaceDim, verbose)
# free gmsh
gmsh.finalize()
return mesh, el_names, el_names_inv, el_cells, glo2loc_cell_indices
end
"""
To use this function, the `gmsh` file must have been opened already (see `read_msh_with_cell_names(path::String)` for instance).
"""
function _read_msh_with_cell_names(spaceDim::Int, verbose::Bool)
# build mesh
_spaceDim = spaceDim > 0 ? spaceDim : _compute_space_dim(verbose)
mesh = _read_msh(_spaceDim, verbose)
# Read volumic physical groups (build a dict tag -> name)
el_tags = gmsh.model.getPhysicalGroups(_spaceDim)
_el_names = [gmsh.model.getPhysicalName(_dim, _tag) for (_dim, _tag) in el_tags]
el = [
(_tag, _name) for ((_dim, _tag), _name) in zip(el_tags, _el_names) if
_dim == _spaceDim && _name ≠ ""
]
el_names = Dict(convert(Int, _tag) => _name for (_tag, _name) in el)
el_names_inv = Dict(_name => convert(Int, _tag) for (_tag, _name) in el)
# Read cell indices associated to each volumic physical group
el_cells = Dict{Int, Array{Int}}()
for (_dim, _tag) in el_tags
v = Int[]
for iEntity in gmsh.model.getEntitiesForPhysicalGroup(_dim, _tag)
tmpTypes, tmpTags, tmpNodeTags = gmsh.model.mesh.getElements(_dim, iEntity)
# Notes : a PhysicalGroup "entity" can contain different types of elements.
# So `tmpTags` is an array of the cell indices of each type in the Physical group.
for _tmpTags in tmpTags
v = vcat(v, Int.(_tmpTags))
end
end
el_cells[_tag] = v
end
absolute_cell_indices = absolute_indices(mesh, :cell)
_, glo2loc_cell_indices = densify(absolute_cell_indices; permute_back = true)
return mesh, el_names, el_names_inv, el_cells, glo2loc_cell_indices
end
"""
Deduce the number of space dimensions from the mesh : if one (or more) dimension of the bounding
box is way lower than the other dimensions, the number of space dimension is decreased.
Currently, having for instance (x,z) is not supported. Only (x), or (x,y), or (x,y,z).
"""
function _compute_space_dim(verbose::Bool)
tol = 1e-15
topodim = gmsh.model.getDimension()
# Bounding box
box = gmsh.model.getBoundingBox(-1, -1)
lx = box[4] - box[1]
ly = box[5] - box[2]
lz = box[6] - box[3]
return _compute_space_dim(topodim, lx, ly, lz, tol, verbose)
end
function _apply_gmsh_options(;
split_files = false,
create_ghosts = false,
msh_format = 0,
verbose = false,
)
gmsh.option.setNumber("General.Terminal", Int(verbose))
gmsh.option.setNumber("Mesh.PartitionSplitMeshFiles", Int(split_files))
gmsh.option.setNumber("Mesh.PartitionCreateGhostCells", Int(create_ghosts))
(msh_format > 0) && gmsh.option.setNumber("Mesh.MshFileVersion", msh_format)
end
"""
gen_line_mesh(
output;
nx = 2,
lx = 1.0,
xc = 0.0,
order = 1,
bnd_names = ("LEFT", "RIGHT"),
n_partitions = 0,
kwargs...
)
Generate a 1D mesh of a segment and write to "output".
Available kwargs are
* `verbose` : `true` or `false` to enable gmsh verbose
* `msh_format` : floating number indicating the output msh format (for instance : `2.2`)
* `split_files` : if `true`, create one file by partition
* `create_ghosts` : if `true`, add a layer of ghost cells at every partition boundary
"""
function gen_line_mesh(
output;
nx = 2,
lx = 1.0,
xc = 0.0,
order = 1,
bnd_names = ("LEFT", "RIGHT"),
n_partitions = 0,
kwargs...,
)
gmsh.initialize()
_apply_gmsh_options(; kwargs...)
lc = 1e-1
# Points
A = gmsh.model.geo.addPoint(xc - lx / 2, 0, 0, lc)
B = gmsh.model.geo.addPoint(xc + lx / 2, 0, 0, lc)
# Line
AB = gmsh.model.geo.addLine(A, B)
# Mesh settings
gmsh.model.geo.mesh.setTransfiniteCurve(AB, nx)
# Define boundaries (`0` stands for 0D, i.e nodes)
# ("-1" to create a new tag)
gmsh.model.addPhysicalGroup(0, [A], -1, bnd_names[1])
gmsh.model.addPhysicalGroup(0, [B], -1, bnd_names[2])
gmsh.model.addPhysicalGroup(1, [AB], -1, "Domain")
# Gen mesh
gmsh.model.geo.synchronize()
gmsh.model.mesh.generate(1)
gmsh.model.mesh.setOrder(order) # Mesh order
gmsh.model.mesh.partition(n_partitions)
# Write result
gmsh.write(output)
# End
gmsh.finalize()
end
"""
gen_rectangle_mesh(
output,
type;
transfinite = false,
nx = 2,
ny = 2,
lx = 1.0,
ly = 1.0,
xc = -1.0,
yc = -1.0,
order = 1,
bnd_names = ("North", "South", "East", "West"),
n_partitions = 0,
write_geo = false,
transfinite_lines = true,
lc = 1e-1,
kwargs...
)
Generate a 2D mesh of a rectangle domain and write the mesh to `output`. Use `type` to specify the element types:
`:tri` or `:quad`.
For kwargs, see [`gen_line_mesh`](@ref).
"""
function gen_rectangle_mesh(
output,
type;
transfinite = false,
nx = 2,
ny = 2,
lx = 1.0,
ly = 1.0,
xc = -1.0,
yc = -1.0,
order = 1,
bnd_names = ("North", "South", "East", "West"),
n_partitions = 0,
write_geo = false,
transfinite_lines = true,
lc = 1e-1,
kwargs...,
)
# North
# D ------- C
# | |
# West | | East
# | |
# A ------- B
# South
gmsh.initialize()
_apply_gmsh_options(; kwargs...)
# Points
A = gmsh.model.geo.addPoint(xc - lx / 2, yc - ly / 2, 0, lc)
B = gmsh.model.geo.addPoint(xc + lx / 2, yc - ly / 2, 0, lc)
C = gmsh.model.geo.addPoint(xc + lx / 2, yc + ly / 2, 0, lc)
D = gmsh.model.geo.addPoint(xc - lx / 2, yc + ly / 2, 0, lc)
# Lines
AB = gmsh.model.geo.addLine(A, B)
BC = gmsh.model.geo.addLine(B, C)
CD = gmsh.model.geo.addLine(C, D)
DA = gmsh.model.geo.addLine(D, A)
# Contour
ABCD = gmsh.model.geo.addCurveLoop([AB, BC, CD, DA])
# Surface
surf = gmsh.model.geo.addPlaneSurface([ABCD])
# Mesh settings
if transfinite_lines
gmsh.model.geo.mesh.setTransfiniteCurve(AB, nx)
gmsh.model.geo.mesh.setTransfiniteCurve(BC, ny)
gmsh.model.geo.mesh.setTransfiniteCurve(CD, nx)
gmsh.model.geo.mesh.setTransfiniteCurve(DA, ny)
end
(transfinite || type == :quad) && gmsh.model.geo.mesh.setTransfiniteSurface(surf)
(type == :quad) && gmsh.model.geo.mesh.setRecombine(2, surf)
# Synchronize
gmsh.model.geo.synchronize()
# Define boundaries (`1` stands for 1D, i.e lines)
south = gmsh.model.addPhysicalGroup(1, [AB])
east = gmsh.model.addPhysicalGroup(1, [BC])
north = gmsh.model.addPhysicalGroup(1, [CD])
west = gmsh.model.addPhysicalGroup(1, [DA])
domain = gmsh.model.addPhysicalGroup(2, [ABCD])
gmsh.model.setPhysicalName(1, south, bnd_names[2])
gmsh.model.setPhysicalName(1, east, bnd_names[3])
gmsh.model.setPhysicalName(1, north, bnd_names[1])
gmsh.model.setPhysicalName(1, west, bnd_names[4])
gmsh.model.setPhysicalName(2, domain, "Domain")
# Gen mesh
gmsh.model.mesh.generate(2)
gmsh.model.mesh.setOrder(order)
gmsh.model.mesh.partition(n_partitions)
# Write result
rm(output; force = true)
gmsh.write(output)
if write_geo
output_geo = first(splitext(output)) * ".geo_unrolled"
rm(output_geo; force = true)
gmsh.write(output_geo)
end
# End
gmsh.finalize()
end
"""
gen_mesh_around_disk(
output,
type;
r_in = 1.0,
r_ext = 10.0,
nθ = 360,
nr = 100,
nr_prog = 1.05,
order = 1,
recombine = true,
bnd_names = ("Farfield", "Wall"),
n_partitions = 0,
kwargs...
)
Mesh the 2D domain around a disk. `type` can be `:quad` or `:tri`.
For kwargs, see [`gen_line_mesh`](@ref).
"""
function gen_mesh_around_disk(
output,
type;
r_int = 1.0,
r_ext = 10.0,
nθ = 360,
nr = 100,
nr_prog = 1.05,
order = 1,
recombine = true,
bnd_names = ("Farfield", "Wall"),
n_partitions = 0,
write_geo = false,
kwargs...,
)
@assert type ∈ (:tri, :quad)
gmsh.initialize()
_apply_gmsh_options(; kwargs...)
lc_ext = 2π * r_ext / (nθ - 1)
lc_int = 2π * r_int / (nθ - 1)
# Points
O = gmsh.model.geo.addPoint(0.0, 0.0, 0.0)
Ae = gmsh.model.geo.addPoint(r_ext * cos(-3π / 4), r_ext * sin(-3π / 4), 0.0, lc_ext)
Be = gmsh.model.geo.addPoint(r_ext * cos(-π / 4), r_ext * sin(-π / 4), 0.0, lc_ext)
Ce = gmsh.model.geo.addPoint(r_ext * cos(π / 4), r_ext * sin(π / 4), 0.0, lc_ext)
De = gmsh.model.geo.addPoint(r_ext * cos(3π / 4), r_ext * sin(3π / 4), 0.0, lc_ext)
Ai = gmsh.model.geo.addPoint(r_int * cos(-3π / 4), r_int * sin(-3π / 4), 0.0, lc_int)
Bi = gmsh.model.geo.addPoint(r_int * cos(-π / 4), r_int * sin(-π / 4), 0.0, lc_int)
Ci = gmsh.model.geo.addPoint(r_int * cos(π / 4), r_int * sin(π / 4), 0.0, lc_int)
Di = gmsh.model.geo.addPoint(r_int * cos(3π / 4), r_int * sin(3π / 4), 0.0, lc_int)
# Curves
AOBe = gmsh.model.geo.addCircleArc(Ae, O, Be)
BOCe = gmsh.model.geo.addCircleArc(Be, O, Ce)
CODe = gmsh.model.geo.addCircleArc(Ce, O, De)
DOAe = gmsh.model.geo.addCircleArc(De, O, Ae)
AOBi = gmsh.model.geo.addCircleArc(Ai, O, Bi)
BOCi = gmsh.model.geo.addCircleArc(Bi, O, Ci)
CODi = gmsh.model.geo.addCircleArc(Ci, O, Di)
DOAi = gmsh.model.geo.addCircleArc(Di, O, Ai)
# Surfaces
if type == :quad
# Curves
AiAe = gmsh.model.geo.addLine(Ai, Ae)
BiBe = gmsh.model.geo.addLine(Bi, Be)
CiCe = gmsh.model.geo.addLine(Ci, Ce)
DiDe = gmsh.model.geo.addLine(Di, De)
# Contours
_AB = gmsh.model.geo.addCurveLoop([AiAe, AOBe, -BiBe, -AOBi])
_BC = gmsh.model.geo.addCurveLoop([BiBe, BOCe, -CiCe, -BOCi])
_CD = gmsh.model.geo.addCurveLoop([CiCe, CODe, -DiDe, -CODi])
_DA = gmsh.model.geo.addCurveLoop([DiDe, DOAe, -AiAe, -DOAi])
# Surfaces
AB = gmsh.model.geo.addPlaneSurface([_AB])
BC = gmsh.model.geo.addPlaneSurface([_BC])
CD = gmsh.model.geo.addPlaneSurface([_CD])
DA = gmsh.model.geo.addPlaneSurface([_DA])
# Mesh settings
for arc in [AOBe, BOCe, CODe, DOAe, AOBi, BOCi, CODi, DOAi]
gmsh.model.geo.mesh.setTransfiniteCurve(arc, round(Int, nθ / 4))
end
for rad in [AiAe, BiBe, CiCe, DiDe]
gmsh.model.geo.mesh.setTransfiniteCurve(rad, nr, "Progression", nr_prog)
end
for surf in [AB, BC, CD, DA]
gmsh.model.geo.mesh.setTransfiniteSurface(surf)
recombine && gmsh.model.geo.mesh.setRecombine(2, surf)
end
surfaces = [AB, BC, CD, DA]
elseif type == :tri
# Contours
loop_ext = gmsh.model.geo.addCurveLoop([AOBe, BOCe, CODe, DOAe])
loop_int = gmsh.model.geo.addCurveLoop([AOBi, BOCi, CODi, DOAi])
# Surface
surfaces = [gmsh.model.geo.addPlaneSurface([loop_ext, loop_int])]
end
# Synchronize
gmsh.model.geo.synchronize()
# Define boundaries (`1` stands for 1D, i.e lines)
farfield = gmsh.model.addPhysicalGroup(1, [AOBe, BOCe, CODe, DOAe])
wall = gmsh.model.addPhysicalGroup(1, [AOBi, BOCi, CODi, DOAi])
domain = gmsh.model.addPhysicalGroup(2, surfaces)
gmsh.model.setPhysicalName(1, farfield, bnd_names[1])
gmsh.model.setPhysicalName(1, wall, bnd_names[2])
gmsh.model.setPhysicalName(2, domain, "Domain")
# Gen mesh
gmsh.model.mesh.generate(2)
gmsh.model.mesh.setOrder(order)
gmsh.model.mesh.partition(n_partitions)
# Write result
gmsh.write(output)
if write_geo
output_geo = first(splitext(output)) * ".geo_unrolled"
rm(output_geo; force = true)
gmsh.write(output_geo)
end
# End
gmsh.finalize()
end
"""
gen_rectangle_mesh_with_tri_and_quad(
output;
nx = 2,
ny = 2,
lx = 1.0,
ly = 1.0,
xc = -1.0,
yc = -1.0,
order = 1,
n_partitions = 0,
kwargs...
)
Generate a 2D mesh of a rectangle domain and write the mesh to `output`. The domain is split vertically in two parts:
the upper part is composed of 'quad' cells and the lower part with 'tri'.
North
D ------- C
| :quad |
West M₁|---------|M₂ East
| :tri |
A ------- B
South
For kwargs, see [`gen_line_mesh`](@ref).
"""
function gen_rectangle_mesh_with_tri_and_quad(
output;
nx = 2,
ny = 2,
lx = 1.0,
ly = 1.0,
xc = -1.0,
yc = -1.0,
order = 1,
n_partitions = 0,
kwargs...,
)
# South
gmsh.initialize()
_apply_gmsh_options(; kwargs...)
lc = 1e-1
# Points
A = gmsh.model.geo.addPoint(xc - lx / 2, yc - ly / 2, 0, lc)
B = gmsh.model.geo.addPoint(xc + lx / 2, yc - ly / 2, 0, lc)
C = gmsh.model.geo.addPoint(xc + lx / 2, yc + ly / 2, 0, lc)
D = gmsh.model.geo.addPoint(xc - lx / 2, yc + ly / 2, 0, lc)
M₁ = gmsh.model.geo.addPoint(xc - lx / 2, yc, 0, lc)
M₂ = gmsh.model.geo.addPoint(xc + lx / 2, yc, 0, lc)
# Lines
AB = gmsh.model.geo.addLine(A, B)
BM₂ = gmsh.model.geo.addLine(B, M₂)
M₂C = gmsh.model.geo.addLine(M₂, C)
CD = gmsh.model.geo.addLine(C, D)
DM₁ = gmsh.model.geo.addLine(D, M₁)
M₁A = gmsh.model.geo.addLine(M₁, A)
M₁M₂ = gmsh.model.geo.addLine(M₁, M₂)
# Contour
ABM₂M₁ = gmsh.model.geo.addCurveLoop([AB, BM₂, -M₁M₂, M₁A])
M₁M₂CD = gmsh.model.geo.addCurveLoop([M₁M₂, M₂C, CD, DM₁])
# Surface
lower_surf = gmsh.model.geo.addPlaneSurface([ABM₂M₁])
upper_surf = gmsh.model.geo.addPlaneSurface([M₁M₂CD])
# Mesh settings
gmsh.model.geo.mesh.setTransfiniteCurve(AB, nx)
gmsh.model.geo.mesh.setTransfiniteCurve(CD, nx)
gmsh.model.geo.mesh.setTransfiniteCurve(M₁M₂, nx)
gmsh.model.geo.mesh.setTransfiniteCurve(BM₂, floor(Int, ny / 2) + 1)
gmsh.model.geo.mesh.setTransfiniteCurve(M₂C, floor(Int, ny / 2) + 1)
gmsh.model.geo.mesh.setTransfiniteCurve(DM₁, floor(Int, ny / 2) + 1)
gmsh.model.geo.mesh.setTransfiniteCurve(M₁A, floor(Int, ny / 2) + 1)
gmsh.model.geo.mesh.setTransfiniteSurface(upper_surf)
gmsh.model.geo.mesh.setRecombine(2, upper_surf)
# Synchronize
gmsh.model.geo.synchronize()
# Define boundaries (`1` stands for 1D, i.e lines)
south = gmsh.model.addPhysicalGroup(1, [AB])
east = gmsh.model.addPhysicalGroup(1, [BM₂, M₂C])
north = gmsh.model.addPhysicalGroup(1, [CD])
west = gmsh.model.addPhysicalGroup(1, [DM₁, M₁A])
domain = gmsh.model.addPhysicalGroup(2, [ABM₂M₁, M₁M₂CD])
gmsh.model.setPhysicalName(1, south, "South")
gmsh.model.setPhysicalName(1, east, "East")
gmsh.model.setPhysicalName(1, north, "North")
gmsh.model.setPhysicalName(1, west, "West")
gmsh.model.setPhysicalName(2, domain, "Domain")
# Gen mesh
gmsh.model.mesh.generate(2)
gmsh.model.mesh.setOrder(order)
gmsh.model.mesh.partition(n_partitions)
# Write result
gmsh.write(output)
# End
gmsh.finalize()
end
"""
gen_hexa_mesh(
output,
type;
transfinite = false,
nx = 2,
ny = 2,
nz = 2,
lx = 1.0,
ly = 1.0,
lz = 1.0,
xc = -1.0,
yc = -1.0,
zc = -1.0,
order = 1,
bnd_names = ("xmin", "xmax", "ymin", "ymax", "zmin", "zmax"),
n_partitions = 0,
write_geo = false,
transfinite_lines = true,
lc = 1e-1,
kwargs...,
)
Generate a 3D mesh of a hexahedral domain and write the mesh to `output`. Use `type` to specify the element types:
`:tetra` or `:hexa`.
For kwargs, see [`gen_line_mesh`](@ref).
"""
function gen_hexa_mesh(
output,
type;
nx = 2,
ny = 2,
nz = 2,
lx = 1.0,
ly = 1.0,
lz = 1.0,
xc = -1.0,
yc = -1.0,
zc = -1.0,
order = 1,
bnd_names = ("xmin", "xmax", "ymin", "ymax", "zmin", "zmax"),
n_partitions = 0,
write_geo = false,
transfinite = (type == :hexa),
transfinite_lines = (type == :hexa),
lc = 1e-1,
kwargs...,
)
@assert type ∈ (:tetra, :hexa) "`type` can only be :tetra or :hexa"
@assert !((type == :hexa) && !transfinite_lines) "Cannot mix :hexa option with transfinite_lines=false"
isHexa = type == :hexa
gmsh.initialize()
gmsh.model.add("model") # helps debugging
_apply_gmsh_options(; kwargs...)
# Points
A = gmsh.model.geo.addPoint(xc - lx / 2, yc - ly / 2, zc - lz / 2, lc)
B = gmsh.model.geo.addPoint(xc + lx / 2, yc - ly / 2, zc - lz / 2, lc)
C = gmsh.model.geo.addPoint(xc + lx / 2, yc + ly / 2, zc - lz / 2, lc)
D = gmsh.model.geo.addPoint(xc - lx / 2, yc + ly / 2, zc - lz / 2, lc)
# Lines
AB = gmsh.model.geo.addLine(A, B)
BC = gmsh.model.geo.addLine(B, C)
CD = gmsh.model.geo.addLine(C, D)
DA = gmsh.model.geo.addLine(D, A)
# Contour
loop = gmsh.model.geo.addCurveLoop([AB, BC, CD, DA])
# Surface
ABCD = gmsh.model.geo.addPlaneSurface([loop])
# Extrusion
nlayers = (transfinite || isHexa || transfinite_lines) ? [nz - 1] : []
recombine = (transfinite || isHexa)
out = gmsh.model.geo.extrude([(2, ABCD)], 0, 0, lz, nlayers, [], recombine)
# Identification
zmin = ABCD
zmax = out[1][2]
vol = out[2][2]
ymin = out[3][2]
xmax = out[4][2]
ymax = out[5][2]
xmin = out[6][2]
# Mesh settings
if transfinite_lines
gmsh.model.geo.mesh.setTransfiniteCurve(AB, nx)
gmsh.model.geo.mesh.setTransfiniteCurve(BC, ny)
gmsh.model.geo.mesh.setTransfiniteCurve(CD, nx)
gmsh.model.geo.mesh.setTransfiniteCurve(DA, ny)
end
(transfinite || isHexa) && gmsh.model.geo.mesh.setTransfiniteSurface(ABCD)
isHexa && gmsh.model.geo.mesh.setRecombine(2, ABCD)
# Synchronize
gmsh.model.geo.synchronize()
# Define boundaries (`1` stands for 1D, i.e lines)
gmsh.model.addPhysicalGroup(2, [xmin], -1, bnd_names[1])
gmsh.model.addPhysicalGroup(2, [xmax], -1, bnd_names[2])
gmsh.model.addPhysicalGroup(2, [ymin], -1, bnd_names[3])
gmsh.model.addPhysicalGroup(2, [ymax], -1, bnd_names[4])
gmsh.model.addPhysicalGroup(2, [zmin], -1, bnd_names[5])
gmsh.model.addPhysicalGroup(2, [zmax], -1, bnd_names[6])
gmsh.model.addPhysicalGroup(3, [vol], -1, "Domain")
# Gen mesh
gmsh.model.mesh.generate(3)
gmsh.model.mesh.setOrder(order)
gmsh.model.mesh.partition(n_partitions)
# Write result
rm(output; force = true)
gmsh.write(output)
if write_geo
output_geo = first(splitext(output)) * ".geo_unrolled"
rm(output_geo; force = true)
gmsh.write(output_geo)
end
# End
gmsh.finalize()
end
"""
gen_disk_mesh(
output;
radius = 1.0,
lc = 1e-1,
order = 1,
n_partitions = 0,
kwargs...
)
Generate a 2D mesh of a disk domain and write the mesh to `output`.
For kwargs, see [`gen_line_mesh`](@ref).
"""
function gen_disk_mesh(
output;
radius = 1.0,
lc = 1e-1,
order = 1,
n_partitions = 0,
kwargs...,
)
gmsh.initialize()
_apply_gmsh_options(; kwargs...)
# Points
O = gmsh.model.geo.addPoint(0, 0, 0, lc)
A = gmsh.model.geo.addPoint(radius, 0, 0, lc)
B = gmsh.model.geo.addPoint(-radius, 0, 0, lc)
# Lines
AOB = gmsh.model.geo.addCircleArc(A, O, B)
BOA = gmsh.model.geo.addCircleArc(B, O, A)
# Contour
circle = gmsh.model.geo.addCurveLoop([AOB, BOA])
# Surface
disk = gmsh.model.geo.addPlaneSurface([circle])
# Synchronize
gmsh.model.geo.synchronize()
# Define boundaries (`1` stands for 1D, i.e lines)
border = gmsh.model.addPhysicalGroup(1, [AOB, BOA])
domain = gmsh.model.addPhysicalGroup(2, [disk])
gmsh.model.setPhysicalName(1, border, "BORDER")
gmsh.model.setPhysicalName(2, domain, "Domain")
# Gen mesh
gmsh.model.mesh.generate(2)
gmsh.model.mesh.setOrder(order)
gmsh.model.mesh.partition(n_partitions)
# Write result
gmsh.write(output)
# End
gmsh.finalize()
end
"""
gen_star_disk_mesh(
output,
ε,
m;
nθ = 360,
radius = 1.0,
lc = 1e-1,
order = 1,
n_partitions = 0,
kwargs...,
)
Generate a 2D mesh of a star domain and write the mesh to `output`. The "star" wall is defined by
``r_{wall} = R \\left( 1 + \\varepsilon \\cos(m \\theta) \\right)``.
For kwargs, see [`gen_line_mesh`](@ref).
"""
function gen_star_disk_mesh(
output,
ε,
m;
nθ = 360,
radius = 1.0,
lc = 1e-1,
order = 1,
n_partitions = 0,
kwargs...,
)
gmsh.initialize()
_apply_gmsh_options(; kwargs...)
# Alias
R = radius
# Points
pts = []
sizehint!(pts, nθ)
for θ in range(0, 2π; length = nθ + 1) # 0 and 2π are identical so 2π will be removed
rw = R * (1 + ε * cos(m * θ))
push!(pts, gmsh.model.geo.addPoint(rw * cos(θ), rw * sin(θ), 0, lc))
end
pop!(pts) # remove duplicated point created by '2π'
push!(pts, pts[1]) # repeat first point index -> needed for closed lines
# Lines
#spline = gmsh.model.geo.addSpline(pts) # Polyline seems not available in gmsh 4.0.5
#polyline = gmsh.model.geo.addPolyline(pts) # Polyline seems not available in gmsh 4.0.5
lines = []
sizehint!(lines, nθ)
for (p1, p2) in zip(pts, pts[2:end])
push!(lines, gmsh.model.geo.addLine(p1, p2)) # the line [pn, p1] is taken into account
end
# # Contour
#loop = gmsh.model.geo.addCurveLoop([spline])
#loop = gmsh.model.geo.addCurveLoop([polyline])
loop = gmsh.model.geo.addCurveLoop(lines)
# # Surface
disk = gmsh.model.geo.addPlaneSurface([loop])
# Synchronize
gmsh.model.geo.synchronize()
# Define boundaries (`1` stands for 1D, i.e lines)
wall = gmsh.model.addPhysicalGroup(1, lines)
domain = gmsh.model.addPhysicalGroup(2, [disk])
gmsh.model.setPhysicalName(1, wall, "WALL")
gmsh.model.setPhysicalName(2, domain, "Domain")
# Gen mesh
gmsh.model.mesh.generate(2)
gmsh.model.mesh.setOrder(order)
gmsh.model.mesh.partition(n_partitions)
# Write result
gmsh.write(output)
# End
gmsh.finalize()
end
"""
gen_cylinder_mesh(
output,
Lz,
nz;
radius = 1.0,
lc = 1e-1,
order = 1,
n_partitions = 0,
kwargs...
)
Generate a 3D mesh of a cylindrical domain and length `L` and write the mesh to `output`.
For kwargs, see [`gen_line_mesh`](@ref).
"""
function gen_cylinder_mesh(
output,
Lz,
nz;
radius = 1.0,
lc = 1e-1,
order = 1,
n_partitions = 0,
kwargs...,
)
gmsh.initialize()
_apply_gmsh_options(; kwargs...)
# Points -> need for 4 arcs for extrusion otherwise crash
O = gmsh.model.geo.addPoint(0, 0, 0, lc)
A = gmsh.model.geo.addPoint(radius, 0, 0, lc)
B = gmsh.model.geo.addPoint(0, radius, 0, lc)
C = gmsh.model.geo.addPoint(-radius, 0, 0, lc)
D = gmsh.model.geo.addPoint(0, -radius, 0, lc)
# Lines
AOB = gmsh.model.geo.addCircleArc(A, O, B)
BOC = gmsh.model.geo.addCircleArc(B, O, C)
COD = gmsh.model.geo.addCircleArc(C, O, D)
DOA = gmsh.model.geo.addCircleArc(D, O, A)
# Contour
circle = gmsh.model.geo.addCurveLoop([AOB, BOC, COD, DOA])
# Surface
disk = gmsh.model.geo.addPlaneSurface([circle])
gmsh.model.geo.synchronize()
# Extrude : 1 layer divided in `nz` heights
out = gmsh.model.geo.extrude([(2, disk)], 0.0, 0.0, Lz, [nz], [], true)
# out[1] = (dim, tag) is the top of disk extruded
# out[2] = (dim, tag) is the volume created by the extrusion
# out[3] = (dim, tag) is the side created by the extrusion of AOB, (1st first element of contour `circle`)
# out[4] = (dim, tag) is the side created by the extrusion of BOC, (2nd first element of contour `circle`)
# out[5] = (dim, tag) is the side created by the extrusion of COD, (3rd first element of contour `circle`)
# out[6] = (dim, tag) is the side created by the extrusion of DOA, (4fh first element of contour `circle`)
# Synchronize
gmsh.model.geo.synchronize()
# Define boundaries (`1` stands for 1D, i.e lines)
border = gmsh.model.addPhysicalGroup(2, [out[3][2], out[4][2], out[5][2], out[6][2]])
inlet = gmsh.model.addPhysicalGroup(2, [disk])
outlet = gmsh.model.addPhysicalGroup(2, [out[1][2]])
domain = gmsh.model.addPhysicalGroup(3, [out[2][2]])
gmsh.model.setPhysicalName(2, border, "BORDER")
gmsh.model.setPhysicalName(2, inlet, "INLET")
gmsh.model.setPhysicalName(2, outlet, "OUTLET")
gmsh.model.setPhysicalName(3, domain, "Domain")
# Gen mesh
gmsh.model.mesh.generate(3)
gmsh.model.mesh.setOrder(order)
gmsh.model.mesh.partition(n_partitions)
# Write result
gmsh.write(output)
# End
gmsh.finalize()
end
"""
gen_sphere_mesh(
output;
radius = 1.0,
lc = 1e-1,
order = 1,
n_partitions = 0,
kwargs...,
)
Generate the mesh of a sphere (surface of topological dimension 2, spatial dimension 3).
"""
function gen_sphere_mesh(
output;
radius = 1.0,
lc = 1e-1,
order = 1,
n_partitions = 0,
kwargs...,
)
gmsh.initialize()
_apply_gmsh_options(; kwargs...)
# Points
P1 = gmsh.model.geo.addPoint(0, 0, 0, lc)
P2 = gmsh.model.geo.addPoint(radius, 0, 0, lc)
P3 = gmsh.model.geo.addPoint(0, radius, 0, lc)
P4 = gmsh.model.geo.addPoint(0, 0, radius, lc)
P5 = gmsh.model.geo.addPoint(-radius, 0, 0, lc)
P6 = gmsh.model.geo.addPoint(0, -radius, 0, lc)
P7 = gmsh.model.geo.addPoint(0, 0, -radius, lc)
# Line
C1 = gmsh.model.geo.addCircleArc(P2, P1, P3)
C2 = gmsh.model.geo.addCircleArc(P3, P1, P5)
C3 = gmsh.model.geo.addCircleArc(P5, P1, P6)
C4 = gmsh.model.geo.addCircleArc(P6, P1, P2)
C5 = gmsh.model.geo.addCircleArc(P2, P1, P7)
C6 = gmsh.model.geo.addCircleArc(P7, P1, P5)
C7 = gmsh.model.geo.addCircleArc(P5, P1, P4)
C8 = gmsh.model.geo.addCircleArc(P4, P1, P2)
C9 = gmsh.model.geo.addCircleArc(P6, P1, P7)
C10 = gmsh.model.geo.addCircleArc(P7, P1, P3)
C11 = gmsh.model.geo.addCircleArc(P3, P1, P4)
C12 = gmsh.model.geo.addCircleArc(P4, P1, P6)
# Loops
LL1 = gmsh.model.geo.addCurveLoop([C1, C11, C8])
LL2 = gmsh.model.geo.addCurveLoop([C2, C7, -C11])
LL3 = gmsh.model.geo.addCurveLoop([C3, -C12, -C7])
LL4 = gmsh.model.geo.addCurveLoop([C4, -C8, C12])
LL5 = gmsh.model.geo.addCurveLoop([C5, C10, -C1])
LL6 = gmsh.model.geo.addCurveLoop([-C2, -C10, C6])
LL7 = gmsh.model.geo.addCurveLoop([-C3, -C6, -C9])
LL8 = gmsh.model.geo.addCurveLoop([-C4, C9, -C5])
# Surfaces
RS = map([LL1, LL2, LL3, LL4, LL5, LL6, LL7, LL8]) do LL
gmsh.model.geo.addSurfaceFilling([LL])
end
# Domains
sphere = gmsh.model.addPhysicalGroup(2, RS)
gmsh.model.setPhysicalName(2, sphere, "Sphere")
# Gen mesh
gmsh.model.geo.synchronize()
gmsh.model.mesh.generate(2)
gmsh.model.mesh.setOrder(order)
gmsh.model.mesh.partition(n_partitions)
# Write result
gmsh.write(output)
# End
gmsh.finalize()
end
"""
_gen_2cubes_mesh(output)
Only for testing purpose.
D------E------F
| | |
| | |
A------B------C
"""
function _gen_2cubes_mesh(output)
lc = 1.0
gmsh.initialize()
gmsh.option.setNumber("General.Terminal", 0)
# Points
A = gmsh.model.geo.addPoint(0, 0, 0, lc)
B = gmsh.model.geo.addPoint(1, 0, 0, lc)
C = gmsh.model.geo.addPoint(2, 0, 0, lc)
D = gmsh.model.geo.addPoint(0, 1, 0, lc)
E = gmsh.model.geo.addPoint(1, 1, 0, lc)
F = gmsh.model.geo.addPoint(2, 1, 0, lc)
# Line
AB = gmsh.model.geo.addLine(A, B)
BC = gmsh.model.geo.addLine(B, C)
DE = gmsh.model.geo.addLine(D, E)
EF = gmsh.model.geo.addLine(E, F)
AD = gmsh.model.geo.addLine(A, D)
BE = gmsh.model.geo.addLine(B, E)
CF = gmsh.model.geo.addLine(C, F)
# Surfaces
ABED = gmsh.model.geo.addPlaneSurface([gmsh.model.geo.addCurveLoop([AB, BE, -DE, -AD])])
BCFE = gmsh.model.geo.addPlaneSurface([gmsh.model.geo.addCurveLoop([BC, CF, -EF, -BE])])
# Extrusion
gmsh.model.geo.extrude([(2, ABED), (2, BCFE)], 0, 0, 1, [1], [], true)
for l in (AB, BC, DE, EF, AD, BE, CF)
gmsh.model.geo.mesh.setTransfiniteCurve(l, 2)
end
for s in (ABED, BCFE)
gmsh.model.geo.mesh.setTransfiniteSurface(s)
gmsh.model.geo.mesh.setRecombine(2, s)
end
# Gen mesh
gmsh.model.geo.synchronize()
gmsh.model.mesh.generate(3)
# Write result
gmsh.write(output)
# End
gmsh.finalize()
end
"""
gen_cylinder_shell_mesh(
output,
nθ,
nz;
radius = 1.0,
lz = 1.0,
lc = 1e-1,
order = 1,
n_partitions = 0,
recombine = false,
transfinite = false,
kwargs...,
)
# Implementation
Extrusion is not used to enable "random" tri filling (whereas with extrusion we can at worse obtain regular rectangle triangle)
"""
function gen_cylinder_shell_mesh(
output,
nθ,
nz;
radius = 1.0,
lz = 1.0,
lc = 1e-1,
order = 1,
n_partitions = 0,
recombine = false,
transfinite = false,
kwargs...,
)
gmsh.initialize()
gmsh.model.add("model") # helps debugging
_apply_gmsh_options(; kwargs...)
# Points
O1 = gmsh.model.geo.addPoint(0, 0, 0, lc)
O2 = gmsh.model.geo.addPoint(0, 0, lz, lc)
A1 = gmsh.model.geo.addPoint(radius, 0, 0, lc)
B1 = gmsh.model.geo.addPoint(radius * cos(2π / 3), radius * sin(2π / 3), 0, lc)
C1 = gmsh.model.geo.addPoint(radius * cos(4π / 3), radius * sin(4π / 3), 0, lc)
A2 = gmsh.model.geo.addPoint(radius, 0, lz, lc)
B2 = gmsh.model.geo.addPoint(radius * cos(2π / 3), radius * sin(2π / 3), lz, lc)
C2 = gmsh.model.geo.addPoint(radius * cos(4π / 3), radius * sin(4π / 3), lz, lc)
# Lines
AOB1 = gmsh.model.geo.addCircleArc(A1, O1, B1)
BOC1 = gmsh.model.geo.addCircleArc(B1, O1, C1)
COA1 = gmsh.model.geo.addCircleArc(C1, O1, A1)
AOB2 = gmsh.model.geo.addCircleArc(A2, O2, B2)
BOC2 = gmsh.model.geo.addCircleArc(B2, O2, C2)
COA2 = gmsh.model.geo.addCircleArc(C2, O2, A2)
A1A2 = gmsh.model.geo.addLine(A1, A2)
B1B2 = gmsh.model.geo.addLine(B1, B2)
C1C2 = gmsh.model.geo.addLine(C1, C2)
# Surfaces
loops = [
gmsh.model.geo.addCurveLoop([AOB1, B1B2, -AOB2, -A1A2]),
gmsh.model.geo.addCurveLoop([BOC1, C1C2, -BOC2, -B1B2]),
gmsh.model.geo.addCurveLoop([COA1, A1A2, -COA2, -C1C2]),
]
surfs = map(loop -> gmsh.model.geo.addSurfaceFilling([loop]), loops)
# Mesh settings
if transfinite
_nθ = round(Int, nθ / 3)
foreach(
line -> gmsh.model.geo.mesh.setTransfiniteCurve(line, _nθ),
(AOB1, BOC1, COA1, AOB2, BOC2, COA2),
)
foreach(
line -> gmsh.model.geo.mesh.setTransfiniteCurve(line, nz),
(A1A2, B1B2, C1C2),
)
foreach(gmsh.model.geo.mesh.setTransfiniteSurface, surfs)
end
recombine && map(surf -> gmsh.model.geo.mesh.setRecombine(2, surf), surfs)
gmsh.model.geo.synchronize()
# Define boundaries (`1` stands for 1D, i.e lines)
domain = gmsh.model.addPhysicalGroup(2, surfs)
bottom = gmsh.model.addPhysicalGroup(1, [AOB1, BOC1, COA1])
top = gmsh.model.addPhysicalGroup(1, [AOB2, BOC2, COA2])
gmsh.model.setPhysicalName(1, bottom, "zmin")
gmsh.model.setPhysicalName(1, top, "zmax")
gmsh.model.setPhysicalName(2, domain, "domain")
# Gen mesh
gmsh.model.mesh.generate(2)
gmsh.model.mesh.setOrder(order)
gmsh.model.mesh.partition(n_partitions)
# Write result
gmsh.write(output)
# End
gmsh.finalize()
end
"""
_gen_cube_pile(output)
Only for testing purpose.
G------H
| |
| |
D------E------F
| | |
| | |
A------B------C
"""
function _gen_cube_pile(output)
lc = 1.0
gmsh.initialize()
gmsh.option.setNumber("General.Terminal", 0)
# Points
A = gmsh.model.geo.addPoint(0, 0, 0, lc)
B = gmsh.model.geo.addPoint(1, 0, 0, lc)
C = gmsh.model.geo.addPoint(2, 0, 0, lc)
D = gmsh.model.geo.addPoint(0, 1, 0, lc)
E = gmsh.model.geo.addPoint(1, 1, 0, lc)
F = gmsh.model.geo.addPoint(2, 1, 0, lc)
G = gmsh.model.geo.addPoint(1, 2, 0, lc)
H = gmsh.model.geo.addPoint(2, 2, 0, lc)
# Line
AB = gmsh.model.geo.addLine(A, B)
BC = gmsh.model.geo.addLine(B, C)
DE = gmsh.model.geo.addLine(D, E)
EF = gmsh.model.geo.addLine(E, F)
GH = gmsh.model.geo.addLine(G, H)
AD = gmsh.model.geo.addLine(A, D)
BE = gmsh.model.geo.addLine(B, E)
CF = gmsh.model.geo.addLine(C, F)
EG = gmsh.model.geo.addLine(E, G)
FH = gmsh.model.geo.addLine(F, H)
# Surfaces
ABED = gmsh.model.geo.addPlaneSurface([gmsh.model.geo.addCurveLoop([AB, BE, -DE, -AD])])
BCFE = gmsh.model.geo.addPlaneSurface([gmsh.model.geo.addCurveLoop([BC, CF, -EF, -BE])])
EFHG = gmsh.model.geo.addPlaneSurface([gmsh.model.geo.addCurveLoop([EF, FH, -GH, -EG])])
# Extrusion
out = gmsh.model.geo.extrude([(2, ABED), (2, BCFE), (2, EFHG)], 0, 0, 1, [1], [], true)
gmsh.model.geo.extrude([out[7]], 0, 0, 1, [1], [], true)
for l in (AB, BC, DE, EF, GH, AD, BE, CF, EG, FH)
gmsh.model.geo.mesh.setTransfiniteCurve(l, 2)
end
for s in (ABED, BCFE, EFHG)
gmsh.model.geo.mesh.setTransfiniteSurface(s)
gmsh.model.geo.mesh.setRecombine(2, s)
end
# Gen mesh
gmsh.model.geo.synchronize()
gmsh.model.mesh.generate(3)
# Write result
gmsh.write(output)
# End
gmsh.finalize()
end
"""
gen_torus_shell_mesh(output, rint, rext; order = 1, lc = 0.1, write_geo = false, kwargs...)
Generate the mesh of the shell of a torus, defined by its inner radius `rint` and exterior radius `rext`.
The torus revolution axis is the z-axis.
"""
function gen_torus_shell_mesh(
output,
rint,
rext;
order = 1,
lc = 0.1,
write_geo = false,
n_partitions = 0,
kwargs...,
)
gmsh.initialize()
gmsh.model.add("model") # helps debugging
_apply_gmsh_options(; kwargs...)
# Points
xc = (rint + rext) / 2
r = (rext - rint) / 2
O = gmsh.model.geo.addPoint(xc, 0, 0, lc)
A = gmsh.model.geo.addPoint(xc + r, 0, 0, lc)
B = gmsh.model.geo.addPoint(xc + r * cos(2π / 3), 0, r * sin(2π / 3), lc)
C = gmsh.model.geo.addPoint(xc + r * cos(4π / 3), 0, r * sin(4π / 3), lc)
# Lines
AOB = gmsh.model.geo.addCircleArc(A, O, B)
BOC = gmsh.model.geo.addCircleArc(B, O, C)
COA = gmsh.model.geo.addCircleArc(C, O, A)
# Surfaces
opts = (0, 0, 0, 0, 0, 1, 2π / 3)
out = gmsh.model.geo.revolve([(1, AOB), (1, BOC), (1, COA)], opts...)
rev1_AOB = out[1:4]
rev1_BOC = out[5:8]
rev1_COA = out[9:12]
out = gmsh.model.geo.revolve([rev1_AOB[1], rev1_BOC[1], rev1_COA[1]], opts...)
rev2_AOB = out[1:4]
rev2_BOC = out[5:8]
rev2_COA = out[9:12]
out = gmsh.model.geo.revolve([rev2_AOB[1], rev2_BOC[1], rev2_COA[1]], opts...)
rev3_AOB = out[1:4]
rev3_BOC = out[5:8]
rev3_COA = out[9:12]
# Gen mesh
gmsh.model.geo.synchronize()
gmsh.model.mesh.generate(2)
gmsh.model.mesh.setOrder(order)
gmsh.model.mesh.partition(n_partitions)
# Write result
gmsh.write(output)
if write_geo
output_geo = first(splitext(output)) * ".geo_unrolled"
gmsh.write(output_geo)
end
# End
gmsh.finalize()
end
"""
nodes_gmsh2cgns(entity::AbstractEntityType, nodes::AbstractArray)
Reorder `nodes` of a given `entity` from the Gmsh format to CGNS format.
See https://gmsh.info/doc/texinfo/gmsh.html#Node-ordering
"""
function nodes_gmsh2cgns(entity::AbstractEntityType, nodes::AbstractArray)
map(i -> nodes[i], nodes_gmsh2cgns(entity))
end
nodes_gmsh2cgns(e) = nodes_gmsh2cgns(typeof(e))
function nodes_gmsh2cgns(::Type{<:T}) where {T <: AbstractEntityType}
error("Function nodes_gmsh2cgns is not defined for type $T")
end
nodes_gmsh2cgns(e::Type{Node_t}) = nodes(e) #same numbering between CGNS and Gmsh
nodes_gmsh2cgns(e::Type{Bar2_t}) = nodes(e) #same numbering between CGNS and Gmsh
nodes_gmsh2cgns(e::Type{Bar3_t}) = nodes(e) #same numbering between CGNS and Gmsh
nodes_gmsh2cgns(e::Type{Bar4_t}) = nodes(e) #same numbering between CGNS and Gmsh
nodes_gmsh2cgns(e::Type{Bar5_t}) = nodes(e) #same numbering between CGNS and Gmsh
nodes_gmsh2cgns(e::Type{Tri3_t}) = nodes(e) #same numbering between CGNS and Gmsh
nodes_gmsh2cgns(e::Type{Tri6_t}) = nodes(e) #same numbering between CGNS and Gmsh
nodes_gmsh2cgns(e::Type{Tri9_t}) = nodes(e) #same numbering between CGNS and Gmsh
nodes_gmsh2cgns(e::Type{Tri10_t}) = nodes(e) #same numbering between CGNS and Gmsh
nodes_gmsh2cgns(e::Type{Tri12_t}) = nodes(e) #same numbering between CGNS and Gmsh
nodes_gmsh2cgns(e::Type{Quad4_t}) = nodes(e) #same numbering between CGNS and Gmsh
nodes_gmsh2cgns(e::Type{Quad8_t}) = nodes(e) #same numbering between CGNS and Gmsh
nodes_gmsh2cgns(e::Type{Quad9_t}) = nodes(e) #same numbering between CGNS and Gmsh
nodes_gmsh2cgns(e::Type{Quad16_t}) = nodes(e) #same numbering between CGNS and Gmsh
nodes_gmsh2cgns(e::Type{Tetra4_t}) = nodes(e) #same numbering between CGNS and Gmsh
nodes_gmsh2cgns(e::Type{Tetra10_t}) = nodes(e) #same numbering between CGNS and Gmsh
nodes_gmsh2cgns(e::Type{Hexa8_t}) = nodes(e) #same numbering between CGNS and Gmsh
function nodes_gmsh2cgns(::Type{Hexa27_t})
SA[
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
17,
18,
19,
20,
13,
14,
15,
16,
21,
22,
23,
24,
25,
26,
27,
]
end
nodes_gmsh2cgns(e::Type{Penta6_t}) = nodes(e) #same numbering between CGNS and Gmsh
nodes_gmsh2cgns(e::Type{Pyra5_t}) = nodes(e) #same numbering between CGNS and Gmsh
"""
Convert a cell->node connectivity with gmsh numbering convention to a cell->node connectivity
with CGNs numbering convention.
"""
function _c2n_gmsh2cgns(celltypes, c2n_gmsh)
n = Int[]
indices = Int[]
for (ct, c2nᵢ) in zip(celltypes, c2n_gmsh)
append!(n, length(c2nᵢ))
append!(indices, nodes_gmsh2cgns(ct, c2nᵢ))
end
return Connectivity(n, indices)
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 15668 | """
# Implementation
All subtypes should implement the following functions:
* `Base.parent(AbstractMesh)` (default should be `Base.parent(m::MyMesh) = m`)
"""
abstract type AbstractMesh{topoDim, spaceDim} end
topodim(::AbstractMesh{topoDim, spaceDim}) where {topoDim, spaceDim} = topoDim
spacedim(::AbstractMesh{topoDim, spaceDim}) where {topoDim, spaceDim} = spaceDim
function topodim(::AbstractMesh{topoDim}, label::Symbol) where {topoDim}
if label == :node || label == :vertex
return 0
elseif label == :edge
return 1
elseif label == :face
return topoDim - 1
elseif label == :cell
return topoDim
else
throw(ArgumentError("Expected label :node,:vertex,:edge,:face or :cell"))
end
end
@inline boundary_tag(mesh::AbstractMesh, name::String) = boundary_tag(parent(mesh), name)
abstract type AbstractMeshConnectivity end
struct MeshConnectivity{C} <: AbstractMeshConnectivity
from::Symbol
to::Symbol
by::Union{Symbol, Nothing}
nLayers::Union{Int, Nothing}
indices::C
end
function MeshConnectivity(
from::Symbol,
to::Symbol,
by::Symbol,
nLayers::Union{Int, Nothing},
connectivity::AbstractConnectivity,
)
MeshConnectivity{typeof(connectivity)}(from, to, by, nLayers, connectivity)
end
function MeshConnectivity(from::Symbol, to::Symbol, by::Symbol, c::AbstractConnectivity)
MeshConnectivity(from, to, by, nothing, c)
end
function MeshConnectivity(from::Symbol, to::Symbol, c::AbstractConnectivity)
MeshConnectivity(from, to, nothing, nothing, c)
end
@inline from(c::MeshConnectivity) = c.from
@inline to(c::MeshConnectivity) = c.to
@inline by(c::MeshConnectivity) = c.by
@inline nlayers(c::MeshConnectivity) = c.nLayers
@inline indices(c::MeshConnectivity) = c.indices
Base.eltype(::MeshConnectivity{C}) where {C <: AbstractConnectivity} = eltype{C}
function Base.iterate(c::MeshConnectivity{C}, i = 1) where {C <: AbstractConnectivity}
return iterate(indices(c); i = 1)
end
function Base.show(io::IO, c::MeshConnectivity)
println("--------------------")
println("MeshConnectivity ")
println("type: ", typeof(c))
println("from,to,by,nlayers = (", from(c), " ", to(c), " ", by(c), " ", nlayers(c), ")")
println("indices :")
show(indices(c))
println("--------------------")
end
"""
`bc_names` : <boundary tag> => <boundary names>
`bc_nodes` : <boundary tag> => <boundary nodes tags>
`bc_faces` : <boundary tag> => <boundary faces tags>
"""
mutable struct Mesh{topoDim, spaceDim, C, E, T} <: AbstractMesh{topoDim, spaceDim}
nodes::Vector{Node{spaceDim, T}}
entities::E
connectivities::C
bc_names::Dict{Int, String}
bc_nodes::Dict{Int, Vector{Int}}
bc_faces::Dict{Int, Vector{Int}}
absolute_indices::Dict{Symbol, Vector{Int}}
local_indices::Dict{Symbol, Dict{Int, Int}}
end
function Mesh(
topoDim::Int,
nodes::Vector{Node{spaceDim, T}},
celltypes::Vector{E},
cell2node::C,
buildfaces::Bool,
buildboundaryfaces::Bool,
bc_names::Dict{Int, String},
bc_nodes::Dict{Int, Vector{Int}},
bc_faces::Dict{Int, Vector{Int}},
) where {T <: Real, spaceDim, E <: AbstractEntityType, C <: AbstractConnectivity}
@assert topoDim ≤ spaceDim
# to improve type-stability (through union-splitting if needed)
celltypes = convert_to_vector_of_union(celltypes)
nodetypes = Node_t[Node_t() for i in 1:length(nodes)]
entities = (cell = celltypes, node = nodetypes)
connectivities = Dict{Symbol, MeshConnectivity}()
c2n = MeshConnectivity(:cell, :node, cell2node)
connectivities = (c2n = c2n,)
if buildfaces
facetypes, c2f, f2c, f2n = _build_faces!(c2n, celltypes)
facetypes = convert_to_vector_of_union(facetypes) # to improve type-stability (through union-splitting if needed)
connectivities = (connectivities..., c2f = c2f, f2c = f2c, f2n = f2n)
entities = (entities..., face = facetypes)
_bc_faces = bc_faces
end
if buildboundaryfaces
@assert buildfaces "Faces must be built before boundary faces"
f2bc, _bc_faces = _build_boundary_faces!(f2n, f2c, bc_names, bc_nodes)
connectivities = (connectivities..., f2bc = f2bc)
end
absolute_indices = Dict{Symbol, Vector{Int}}()
local_indices = Dict{Symbol, Dict{Int, Int}}()
Mesh{topoDim, spaceDim, typeof(connectivities), typeof(entities), T}(
nodes,
entities,
connectivities,
bc_names,
bc_nodes,
_bc_faces,
absolute_indices,
local_indices,
)
end
function Mesh(
nodes,
celltypes::Vector{E},
cell2nodes::C;
buildfaces::Bool = true,
buildboundaryfaces::Bool = false,
bc_names::Dict{Int, String} = Dict{Int, String}(),
bc_nodes::Dict{Int, Vector{Int}} = Dict{Int, Vector{Int}}(),
bc_faces::Dict{Int, Vector{Int}} = Dict{Int, Vector{Int}}(),
) where {E <: AbstractEntityType, C <: AbstractConnectivity}
topoDim = topodim(valtype(celltypes))
if buildboundaryfaces
@assert (!isempty(bc_names) && !isempty(bc_nodes)) "bc_names and bc_nodes must be provided to build boundary faces"
@assert isempty(bc_faces) "`bc_faces` is not supported yet"
else
(!isempty(bc_names) && !isempty(bc_nodes)) ? buildboundaryfaces = true : nothing
end
Mesh(
topoDim,
nodes,
celltypes,
cell2nodes,
buildfaces,
buildboundaryfaces,
bc_names,
bc_nodes,
bc_faces,
)
end
Base.parent(mesh::Mesh) = mesh
@inline get_nodes(mesh::Mesh) = mesh.nodes
@inline get_nodes(mesh::Mesh, i::SVector) = mesh.nodes[i]
@inline get_nodes(mesh::Mesh, i) = view(mesh.nodes, i)
@inline get_nodes(mesh::Mesh, i::Int) = mesh.nodes[i]
@inline set_nodes(mesh::Mesh, nodes) = mesh.nodes = nodes
@inline entities(mesh::Mesh) = mesh.entities
@inline entities(mesh::Mesh, e::Symbol) = entities(mesh)[e]
@inline has_entities(mesh::Mesh, e::Symbol) = haskey(entities(mesh), e)
@inline has_vertices(mesh::Mesh) = has_entities(mesh, :vertex)
@inline has_nodes(mesh::Mesh) = has_entities(mesh, :node)
@inline has_edges(mesh::Mesh) = has_entities(mesh, :edge)
@inline has_faces(mesh::Mesh) = has_entities(mesh, :face)
@inline has_cells(mesh::Mesh) = has_entities(mesh, :cell)
@inline function n_entities(mesh::Mesh, e::Symbol)
has_entities(mesh, e) ? length(entities(mesh, e)) : 0
end
@inline nvertices(mesh::Mesh) = n_entities(mesh, :vertex)
@inline nnodes(mesh::Mesh) = n_entities(mesh, :node)
@inline nedges(mesh::Mesh) = n_entities(mesh, :edge)
@inline nfaces(mesh::Mesh) = n_entities(mesh, :face)
@inline ncells(mesh::Mesh) = n_entities(mesh, :cell)
@inline nodes(mesh::Mesh) = entities(mesh, :node)
@inline vertex(mesh::Mesh) = entities(mesh, :vertex)
@inline edges(mesh::Mesh) = entities(mesh, :edges)
@inline faces(mesh::Mesh) = entities(mesh, :face)
@inline cells(mesh::Mesh) = entities(mesh, :cell)
@inline connectivities(mesh::Mesh) = mesh.connectivities
@inline has_connectivities(mesh::Mesh, c::Symbol) = haskey(connectivities(mesh), c)
@inline connectivities(mesh::Mesh, c::Symbol) = connectivities(mesh)[c]
@inline connectivities_indices(mesh::Mesh, c::Symbol) = indices(connectivities(mesh, c))
@inline boundary_names(mesh::Mesh) = mesh.bc_names
@inline boundary_names(mesh::Mesh, tag) = mesh.bc_names[tag]
@inline boundary_nodes(mesh::Mesh) = mesh.bc_nodes
@inline boundary_nodes(mesh::Mesh, tag) = mesh.bc_nodes[tag]
@inline boundary_faces(mesh::Mesh) = mesh.bc_faces
@inline boundary_faces(mesh::Mesh, tag) = mesh.bc_faces[tag]
@inline nboundaries(mesh::Mesh) = length(keys(boundary_names(mesh)))
@inline function boundary_tag(mesh::Mesh, name::String)
findfirst(i -> i == name, boundary_names(mesh))
end
@inline boundary_faces(mesh::Mesh, name::String) = mesh.bc_faces[boundary_tag(mesh, name)]
@inline absolute_indices(mesh::Mesh) = mesh.absolute_indices
@inline absolute_indices(mesh::Mesh, e::Symbol) = mesh.absolute_indices[e]
@inline local_indices(mesh::Mesh) = mesh.local_indices
@inline local_indices(mesh::Mesh, e::Symbol) = mesh.local_indices[e]
function add_absolute_indices!(mesh::Mesh, e::Symbol, indices::Vector{Int})
@assert n_entities(mesh, e) === length(indices) "invalid number of indices"
mesh.absolute_indices[e] = indices
mesh.local_indices[e] = Dict{Int, Int}(indices[i] => i for i in 1:length(indices))
return nothing
end
function _build_faces!(c2n::MeshConnectivity, celltypes)
c2n_indices = indices(c2n)
T = eltype(c2n_indices)
#build face->cell connectivity
dict_faces = Dict{Set{T}, T}()
c2f_indices = [T[] for i in 1:length(celltypes)]
f2c_indices = Vector{SVector{2, T}}()
f2n_indices = Vector{Vector{T}}()
face_types = Vector{AbstractEntityType}()
sizehint!(f2c_indices, sum(nfaces, celltypes))
nface = zero(T)
for (i, (_c, _c2n)) in enumerate(zip(celltypes, c2n_indices))
for (j, _f2n) in enumerate(f2n_from_c2n(_c, _c2n))
if !haskey(dict_faces, Set(_f2n))
#create a new face
push!(f2c_indices, SVector{2, T}(i::T, zero(T)))
push!(face_types, facetypes(_c)[j])
push!(f2n_indices, _f2n)
nface += 1
dict_faces[Set(_f2n)] = nface
push!(c2f_indices[i], nface)
else
iface = get(dict_faces, Set(_f2n), 0)
f2c_indices[iface] = [f2c_indices[iface][1], i]
push!(c2f_indices[i], iface)
end
end
end
c2f = MeshConnectivity(
:cell,
:face,
Connectivity([length(a) for a in c2f_indices], reduce(vcat, c2f_indices)),
)
numIndices = [sum(i -> i > zero(eltype(a)) ? 1 : 0, a) for a in f2c_indices]
_indices = [f2c_indices[i][j] for i in eachindex(f2c_indices) for j in 1:numIndices[i]]
f2c = MeshConnectivity(:face, :cell, Connectivity(numIndices, _indices))
f2n = MeshConnectivity(
:face,
:node,
Connectivity([length(a) for a in f2n_indices], reduce(vcat, f2n_indices)),
)
# try to convert `face_types` to a vector of concrete type when it is possible
_face_types = identity.(face_types)
return _face_types, c2f, f2c, f2n
end
function _build_boundary_faces!(
f2n::MeshConnectivity,
f2c::MeshConnectivity,
bc_names,
bc_nodes,
)
@assert (bc_names ≠ nothing && bc_nodes ≠ nothing) "bc_names and bc_nodes must be defined"
@assert (bc_names ≠ nothing && bc_nodes ≠ nothing) "bc_names and bc_nodes must be defined"
@assert length(indices(f2n)) == length(indices(f2c)) "invalid f2n and/or f2c"
@assert length(indices(f2n)) ≠ 0 "invalid f2n and/or f2c"
# find boundary faces (all faces with only 1 adjacent cell)
f2bc_numindices = zeros(Int, length(indices(f2n)))
f2bc_indices = Vector{Int}()
sizehint!(f2bc_indices, length(f2bc_numindices))
f2c = indices(f2c)
for (iface, f2n) in enumerate(indices(f2n))
if length(f2c[iface]) == 1
# Search for associated BC (if any)
# Rq: there might not be any BC, for instance if the face if a ghost-cell face
for (tag, nodes) in bc_nodes
if f2n ⊆ nodes
push!(f2bc_indices, tag)
f2bc_numindices[iface] = 1
break
end
end
end
end
# add face->bc connectivities in mesh struct
f2bc = MeshConnectivity(:face, :face, Connectivity(f2bc_numindices, f2bc_indices))
# create bc_faces
if length(bc_names) > 0
f2bc_indices = indices(f2bc)
#bc2f_indices = [[i for (i,bc) in enumerate(indices(f2bc)) if length(bc)>0 && bc[1]==bctag] for bctag in keys(bc_names)]
#bc_faces = (;zip(Symbol.(keys(bc_names)), bc2f_indices)...)
bc_faces = Dict{Int, Vector{Int}}()
for bctag in keys(bc_names)
bc_faces[bctag] = [
i for
(i, bc) in enumerate(indices(f2bc)) if length(bc) > 0 && bc[1] == bctag
]
end
end
return f2bc, bc_faces
end
function build_boundary_faces!(mesh::Mesh)
@assert (mesh.bc_names ≠ nothing && mesh.bc_nodes ≠ nothing) "bc_names and bc_nodes must be defined"
@assert (mesh.bc_names ≠ nothing && mesh.bc_nodes ≠ nothing) "bc_names and bc_nodes must be defined"
@assert has_faces(mesh) "face entities must be created first"
@assert has_connectivities(mesh, :f2n) "face->node connectivity must be defined"
# find boundary faces (all faces with only 1 adjacent cell)
f2bc_numindices = zeros(Int, nfaces(mesh))
f2bc_indices = Vector{Int}()
sizehint!(f2bc_indices, length(f2bc_numindices))
f2c = connectivities_indices(mesh, :f2c)
for (iface, f2n) in enumerate(connectivities_indices(mesh, :f2n))
if length(f2c[iface]) == 1
f2bc_numindices[iface] = 1
for (tag, nodes) in mesh.bc_nodes
f2n ⊆ nodes ? (push!(f2bc_indices, tag); break) : nothing
end
end
end
# add face->bc connectivities in mesh struct
mesh.connectivities[:f2bc] =
MeshConnectivity(:face, :face, Connectivity(f2bc_numindices, f2bc_indices))
# create bc_faces
if nboundaries(mesh) > 0
f2bc = connectivities_indices(mesh, :f2bc)
for bctag in keys(mesh.bc_names)
mesh.bc_faces[bctag] =
[i for (i, bc) in enumerate(f2bc) if length(bc) > 0 && bc[1] == bctag]
end
end
return nothing
end
"""
connectivity_cell2cell_by_faces(mesh)
Build the cell -> cell connectivity by looking at neighbors by faces.
"""
function connectivity_cell2cell_by_faces(mesh)
f2c = connectivities_indices(mesh, :f2c)
T = eltype(f2c)
c2c = [T[] for _ in 1:ncells(mesh)]
for k in 1:nfaces(mesh)
_f2c = f2c[k]
if length(_f2c) > 1
i = _f2c[1]
j = _f2c[2]
push!(c2c[i], j)
push!(c2c[j], i)
end
end
return Connectivity(length.(c2c), rawcat(c2c))
end
"""
connectivity_cell2cell_by_nodes(mesh)
Build the cell -> cell connectivity by looking at neighbors by nodes.
"""
function connectivity_cell2cell_by_nodes(mesh)
c2n = connectivities_indices(mesh, :c2n)
n2c, _ = inverse_connectivity(c2n)
T = eltype(n2c)
c2c = [T[] for _ in 1:ncells(mesh)]
# Loop over node->cells arrays
for _n2c in n2c
# For each cell, append the others as neighbors
for ci in _n2c, cj in _n2c
(cj ≠ ci) && push!(c2c[ci], cj)
end
end
# Eliminate duplicates
c2c = unique.(c2c)
return Connectivity(length.(c2c), rawcat(c2c))
end
"""
oriented_cell_side(mesh::Mesh,icell::Int,iface::Int)
Return the side number to which the face 'iface' belongs
in the cell 'icell' of the mesh. A negative side number is
returned if the face is inverted. Returns '0' if the face
does not belongs the cell.
"""
function oriented_cell_side(mesh::Mesh, icell::Int, iface::Int)
c = cells(mesh)[icell]
c2n = indices(connectivities(mesh, :c2n))[icell]
f2n = indices(connectivities(mesh, :f2n))[iface]
oriented_cell_side(c, c2n, f2n)
end
"""
inner_faces(mesh)
Return the indices of the inner faces.
"""
function inner_faces(mesh)
f2c = indices(connectivities(mesh, :f2c))
return findall([length(f2c[i]) > 1 for i in 1:nfaces(mesh)])
end
"""
outer_faces(mesh)
Return the indices of the outer (=boundary) faces.
"""
function outer_faces(mesh)
f2c = indices(connectivities(mesh, :f2c))
return findall([length(f2c[i]) == 1 for i in 1:nfaces(mesh)])
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 26835 | """
basic_mesh()
Generate a toy mesh of two quads and one triangle.
v1 v2 v3 v4
+---e1-->+---e5-->+---e8-->+
^ | | c3 /
e4 c1 e2 c2 e6 e9
| | | /
+<--e3---+<--e7---+/
v5 v6 v7
"""
function basic_mesh(; coef_x = 1.0, coef_y = 1.0)
x = coef_x .* [0.0, 1.0, 2.0, 3.0, 0.0, 1.0, 2.0]
y = coef_y .* [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0]
nodes = [Node([_x, _y]) for (_x, _y) in zip(x, y)]
celltypes = Union{Quad4_t, Tri3_t}[Quad4_t(), Quad4_t(), Tri3_t()]
# cell->node connectivity indices :
cell2node = Connectivity([4, 4, 3], [1, 2, 6, 5, 2, 3, 7, 6, 3, 4, 7])
# Prepare boundary nodes
bnd_name = "BORDER"
tag2name = Dict(1 => bnd_name)
tag2nodes = Dict(1 => collect(1:7))
return Mesh(nodes, celltypes, cell2node; bc_names = tag2name, bc_nodes = tag2nodes)
end
"""
one_cell_mesh(type::Symbol, order = 1)
Generate a mesh of one cell. `type` can be `:line`, `:quad`, `:tri`, `:hexa`, `:penta`, `:pyra`.
The argument `order` refers to the geometry order. It has the same effect
as the `-order` parameter in gmsh.
"""
function one_cell_mesh(
type::Symbol;
xmin = -1.0,
xmax = 1.0,
ymin = -1,
ymax = 1,
zmin = -1,
zmax = 1.0,
order = 1,
)
if (type == :line || type == :bar)
return one_line_mesh(Val(order), xmin, xmax)
elseif (type == :quad || type == :square)
return one_quad_mesh(Val(order), xmin, xmax, ymin, ymax)
elseif (type == :tri || type == :triangle)
return one_tri_mesh(Val(order), xmin, xmax, ymin, ymax)
elseif (type == :tetra)
return one_tetra_mesh(Val(order), xmin, xmax, ymin, ymax, zmin, zmax)
elseif (type == :hexa || type == :cube)
return one_hexa_mesh(Val(order), xmin, xmax, ymin, ymax, zmin, zmax)
elseif (type == :prism || type == :penta)
return one_prism_mesh(Val(order), xmin, xmax, ymin, ymax, zmin, zmax)
elseif (type == :pyra)
return one_pyra_mesh(Val(order), xmin, xmax, ymin, ymax, zmin, zmax)
else
throw(ArgumentError("Expected type :line, :quad, :tri, :hexa"))
end
end
"""
ncube_mesh(n::Vector{Int}; order = 1)
Generate either a line mesh, a rectangle mesh, a cubic mesh... depending on the dimension of `n`.
# Argument
- `n` number of vertices in each spatial directions
# Example
```julia-repl
mesh_of_a_line = ncube_mesh([10])
mesh_of_a_square = ncube_mesh([4, 5])
mesh_of_a_hexa = ncube_mesh([4, 5, 6])
```
"""
function ncube_mesh(n::Vector{Int}; order = 1)
if (length(n) == 1)
return line_mesh(n[1]; order = order)
elseif (length(n) == 2)
return rectangle_mesh(n...; order = order)
elseif (length(n) == 3)
return hexa_mesh(n...; order = order)
else
throw(ArgumentError("mesh not available for R^" * string(length(n))))
end
end
"""
line_mesh(n; xmin = 0., xmax = 1., order = 1, names = ("xmin", "xmax"))
Generate a mesh of a line of `n` vertices.
# Example
```julia-repl
julia> mesh = line_mesh(5)
```
"""
function line_mesh(n; xmin = 0.0, xmax = 1.0, order = 1, names = ("xmin", "xmax"))
l = xmax - xmin # line length
nelts = n - 1 # Number of cells
# Linear elements
if (order == 1)
Δx = l / (n - 1)
# Nodes
nodes = [Node([xmin + (i - 1) * Δx]) for i in 1:n]
# Cell type is constant
celltypes = [Bar2_t() for ielt in 1:nelts]
# Cell -> nodes connectivity
cell2node = zeros(Int, 2 * nelts)
for ielt in 1:nelts
cell2node[2 * ielt - 1] = ielt
cell2node[2 * ielt] = ielt + 1
end
# Number of nodes of each cell : always 2
cell2nnodes = 2 * ones(Int, nelts)
# Boundaries
bc_names, bc_nodes = one_line_bnd(1, n, names)
# Mesh
return Mesh(
nodes,
celltypes,
Connectivity(cell2nnodes, cell2node);
bc_names,
bc_nodes,
)
# Quadratic elements
elseif (order == 2)
Δx = l / 2 / (n - 1)
# Cell type is constant
celltypes = [Bar3_t() for ielt in 1:nelts]
# Nodes + Cell -> nodes connectivity
nodes = Array{Node{1, Float64}}(undef, 2 * n - 1)
cell2node = zeros(Int, 3 * nelts)
nodes[1] = Node([xmin]) # First node
i = 1 # init counter
for ielt in 1:nelts
# two new nodes : middle one and then right boundary
nodes[i + 1] = xmin + i * Δx
nodes[i + 2] = xmin + (i + 1) * Δx
# cell -> node
cell2node[3 * ielt - 2] = i
cell2node[3 * ielt - 1] = i + 2
cell2node[3 * ielt - 0] = i + 1 # middle node
# Update counter
i += 2
end
# Number of nodes of each cell : always 3
cell2nnodes = 3 * ones(Int, nelts)
# Boundaries
bc_names, bc_nodes = one_line_bnd(1, n, names)
# Mesh
return Mesh(
nodes,
celltypes,
Connectivity(cell2nnodes, cell2node);
bc_names,
bc_nodes,
)
else
throw(
ArgumentError(
"`order` must be <= 2 (but feel free to implement higher orders)",
),
)
end
end
"""
rectangle_mesh(
nx,
ny;
type = :quad,
xmin = 0.0,
xmax = 1.0,
ymin = 0.0,
ymax = 1.0,
order = 1,
bnd_names = ("xmin", "xmax", "ymin", "ymax"),
)
Generate a 2D mesh of a rectangle with `nx` and `ny` vertices in the x and y directions respectively.
# Example
```julia-repl
julia> mesh = rectangle_mesh(5, 4)
```
"""
function rectangle_mesh(
nx,
ny;
type = :quad,
xmin = 0.0,
xmax = 1.0,
ymin = 0.0,
ymax = 1.0,
order = 1,
bnd_names = ("xmin", "xmax", "ymin", "ymax"),
)
@assert (nx > 1 && ny > 1) "`nx` and `ny`, the number of nodes, must be greater than 1 (nx=$nx, ny=$ny)"
if (type == :quad)
return _rectangle_quad_mesh(nx, ny, xmin, xmax, ymin, ymax, Val(order), bnd_names)
else
throw(
ArgumentError("`type` must be :quad (but feel free to implement other types)"),
)
end
end
function _rectangle_quad_mesh(nx, ny, xmin, xmax, ymin, ymax, ::Val{1}, bnd_names)
# Notes
# 6-----8-----9
# | | |
# | 3 | 4 |
# | | |
# 4-----5-----6
# | | |
# | 1 | 2 |
# | | |
# 1-----2-----3
lx = xmax - xmin
ly = ymax - ymin
nelts = (nx - 1) * (ny - 1)
Δx = lx / (nx - 1)
Δy = ly / (ny - 1)
# Prepare boundary nodes
tag2name = Dict(tag => name for (tag, name) in enumerate(bnd_names))
tag2nodes = Dict(tag => Int[] for tag in 1:length(bnd_names))
# Nodes
iglob = 1
nodes = Array{Node{2, Float64}}(undef, nx * ny)
for iy in 1:ny
for ix in 1:nx
nodes[(iy - 1) * nx + ix] = Node([xmin + (ix - 1) * Δx, ymin + (iy - 1) * Δy])
# Boundary conditions
(ix == 1) && push!(tag2nodes[1], iglob)
(ix == nx) && push!(tag2nodes[2], iglob)
(iy == 1) && push!(tag2nodes[3], iglob)
(iy == ny) && push!(tag2nodes[4], iglob)
iglob += 1
end
end
# Cell -> node connectivity
cell2node = zeros(Int, 4 * nelts)
for iy in 1:(ny - 1)
for ix in 1:(nx - 1)
ielt = (iy - 1) * (nx - 1) + ix
cell2node[4 * ielt - 3] = (iy + 0 - 1) * nx + ix + 0
cell2node[4 * ielt - 2] = (iy + 0 - 1) * nx + ix + 1
cell2node[4 * ielt - 1] = (iy + 1 - 1) * nx + ix + 1
cell2node[4 * ielt - 0] = (iy + 1 - 1) * nx + ix + 0
end
end
# Cell type is constant
celltypes = fill(Quad4_t(), nelts)
# Number of nodes of each cell : always 4
cell2nnodes = fill(4, nelts)
return Mesh(
nodes,
celltypes,
Connectivity(cell2nnodes, cell2node);
bc_names = tag2name,
bc_nodes = tag2nodes,
)
end
# Remark : with a rectangle domain of quadratic elements, we can then apply a mapping on
# this rectangle domain to obtain a curved mesh...
function _rectangle_quad_mesh(nx, ny, xmin, xmax, ymin, ymax, ::Val{2}, bnd_names)
# Notes
# 07----08----09
# | |
# | |
# 04 05 06
# | |
# | |
# 01----02----03
#
# 11----12----13----14----15
# | | |
# | | |
# 06 07 08 09 10
# | | |
# | | |
# 01----02----03----04----05
lx = xmax - xmin
ly = ymax - ymin
nelts = (nx - 1) * (ny - 1)
nnodes = nx * ny + (nx - 1) * ny + (ny - 1) * nx + nelts
Δx = lx / (nx - 1) / 2
Δy = ly / (ny - 1) / 2
# Prepare boundary nodes
tag2name = Dict(tag => name for (tag, name) in enumerate(bnd_names))
tag2nodes = Dict(tag => Int[] for tag in 1:length(bnd_names))
# Nodes
# we override some nodes multiple times, but it is easier this way
nodes = Array{Node{2, Float64}}(undef, nnodes)
iglob = 1
for iy in 1:(ny + (ny - 1))
for ix in 1:(nx + (nx - 1))
nodes[(iy - 1) * (nx + (nx - 1)) + ix] =
Node([xmin + (ix - 1) * Δx, ymin + (iy - 1) * Δy])
# Boundary conditions
(ix == 1) && push!(tag2nodes[1], iglob)
(ix == nx + (nx - 1)) && push!(tag2nodes[2], iglob)
(iy == 1) && push!(tag2nodes[3], iglob)
(iy == ny + (ny - 1)) && push!(tag2nodes[4], iglob)
iglob += 1
end
end
# Cell -> node connectivity
cell2node = zeros(Int, 9 * nelts)
for j in 1:(ny - 1)
for i in 1:(nx - 1)
ielt = (j - 1) * (nx - 1) + i
ix = (i - 1) * 2 + 1
iy = (j - 1) * 2 + 1
cell2node[9 * ielt - 8] = (iy + 0 - 1) * (nx + (nx - 1)) + ix + 0
cell2node[9 * ielt - 7] = (iy + 0 - 1) * (nx + (nx - 1)) + ix + 2
cell2node[9 * ielt - 6] = (iy + 2 - 1) * (nx + (nx - 1)) + ix + 2
cell2node[9 * ielt - 5] = (iy + 2 - 1) * (nx + (nx - 1)) + ix + 0
cell2node[9 * ielt - 4] = (iy + 0 - 1) * (nx + (nx - 1)) + ix + 1
cell2node[9 * ielt - 3] = (iy + 1 - 1) * (nx + (nx - 1)) + ix + 2
cell2node[9 * ielt - 2] = (iy + 2 - 1) * (nx + (nx - 1)) + ix + 1
cell2node[9 * ielt - 1] = (iy + 1 - 1) * (nx + (nx - 1)) + ix + 0
cell2node[9 * ielt - 0] = (iy + 1 - 1) * (nx + (nx - 1)) + ix + 1
end
end
# Cell type is constant
celltypes = fill(Quad9_t(), nelts)
# Number of nodes of each cell : always 9
cell2nnodes = fill(9, nelts)
return Mesh(
nodes,
celltypes,
Connectivity(cell2nnodes, cell2node);
bc_names = tag2name,
bc_nodes = tag2nodes,
)
end
function hexa_mesh(
nx,
ny,
nz;
xmin = 0.0,
xmax = 1.0,
ymin = 0.0,
ymax = 1.0,
zmin = 0.0,
zmax = 1.0,
order = 1,
bnd_names = ("xmin", "xmax", "ymin", "ymax", "zmin", "zmax"),
)
@assert order == 1 "Not implemented for order = $order"
lx = xmax - xmin
ly = ymax - ymin
lz = zmax - zmin
nelts = (nx - 1) * (ny - 1) * (nz - 1)
Δx = lx / (nx - 1)
Δy = ly / (ny - 1)
Δz = lz / (nz - 1)
# Prepare boundary nodes
tag2name = Dict(tag => name for (tag, name) in enumerate(bnd_names))
tag2nodes = Dict(tag => Int[] for tag in 1:length(bnd_names))
# Nodes
iglob = 1
nodes = Array{Node{3, Float64}}(undef, nx * ny * nz)
for iz in 1:nz
for iy in 1:ny
for ix in 1:nx
nodes[(iz - 1) * nx * ny + (iy - 1) * nx + ix] =
Node([xmin + (ix - 1) * Δx, ymin + (iy - 1) * Δy, zmin + (iz - 1) * Δz])
# Boundary conditions
if ix == 1
push!(tag2nodes[1], iglob)
elseif ix == nx
push!(tag2nodes[2], iglob)
elseif iy == 1
push!(tag2nodes[3], iglob)
elseif iy == ny
push!(tag2nodes[4], iglob)
elseif iz == 1
push!(tag2nodes[5], iglob)
elseif iz == ny
push!(tag2nodes[6], iglob)
end
iglob += 1
end
end
end
# Cell -> node connectivity
cell2node = zeros(Int, 8 * nelts)
for iz in 1:(nz - 1)
for iy in 1:(ny - 1)
for ix in 1:(nx - 1)
ielt = (iz - 1) * (nx - 1) * (ny - 1) + (iy - 1) * (nx - 1) + ix
cell2node[8 * ielt - 7] =
(iz - 1 + 0) * nx * ny + (iy - 1 + 0) * nx + ix + 0
cell2node[8 * ielt - 6] =
(iz - 1 + 0) * nx * ny + (iy - 1 + 0) * nx + ix + 1
cell2node[8 * ielt - 5] =
(iz - 1 + 0) * nx * ny + (iy - 1 + 1) * nx + ix + 1
cell2node[8 * ielt - 4] =
(iz - 1 + 0) * nx * ny + (iy - 1 + 1) * nx + ix + 0
cell2node[8 * ielt - 3] =
(iz - 1 + 1) * nx * ny + (iy - 1 + 0) * nx + ix + 0
cell2node[8 * ielt - 2] =
(iz - 1 + 1) * nx * ny + (iy - 1 + 0) * nx + ix + 1
cell2node[8 * ielt - 1] =
(iz - 1 + 1) * nx * ny + (iy - 1 + 1) * nx + ix + 1
cell2node[8 * ielt - 0] =
(iz - 1 + 1) * nx * ny + (iy - 1 + 1) * nx + ix + 0
end
end
end
# Cell type is constant
celltypes = fill(Hexa8_t(), nelts)
# Number of nodes of each cell : always 8
cell2nnodes = fill(8, nelts)
return Mesh(
nodes,
celltypes,
Connectivity(cell2nnodes, cell2node);
bc_names = tag2name,
bc_nodes = tag2nodes,
)
end
function one_line_mesh(::Val{1}, xmin, xmax)
nodes = [Node([xmin]), Node([xmax])]
celltypes = [Bar2_t()]
cell2node = Connectivity([2], [1, 2])
bc_names, bc_nodes = one_line_bnd()
return Mesh(nodes, celltypes, cell2node; bc_names = bc_names, bc_nodes = bc_nodes)
end
function one_line_mesh(::Val{2}, xmin, xmax)
nodes = [Node([xmin]), Node([xmax]), Node([(xmin + xmax) / 2])]
celltypes = [Bar3_t()]
cell2node = Connectivity([3], [1, 2, 3])
bc_names, bc_nodes = one_line_bnd()
return Mesh(nodes, celltypes, cell2node; bc_names, bc_nodes)
end
function one_line_bnd(ileft = 1, iright = 2, names = ("xmin", "xmax"))
bc_names = Dict(1 => names[1], 2 => names[2])
bc_nodes = Dict(1 => [ileft], 2 => [iright])
return bc_names, bc_nodes
end
function one_tri_mesh(::Val{1}, xmin, xmax, ymin, ymax)
nodes = [Node([xmin, ymin]), Node([xmax, ymin]), Node([xmin, ymax])]
celltypes = [Tri3_t()]
cell2node = Connectivity([3], [1, 2, 3])
return Mesh(nodes, celltypes, cell2node)
end
function one_tri_mesh(::Val{2}, xmin, xmax, ymin, ymax)
x1 = [xmin, ymin]
x2 = [xmax, ymin]
x3 = [xmin, ymax]
nodes = [
Node(x1),
Node(x2),
Node(x3),
Node((x1 + x2) / 2),
Node((x2 + x3) / 2),
Node((x3 + x1) / 2),
]
celltypes = [Tri6_t()]
cell2node = Connectivity([6], [1, 2, 3, 4, 5, 6])
return Mesh(nodes, celltypes, cell2node)
end
function one_quad_mesh(::Val{1}, xmin, xmax, ymin, ymax)
nodes = [Node([xmin, ymin]), Node([xmax, ymin]), Node([xmax, ymax]), Node([xmin, ymax])]
celltypes = [Quad4_t()]
cell2node = Connectivity([4], [1, 2, 3, 4])
bc_names =
Dict(tag => name for (tag, name) in enumerate(("xmin", "xmax", "ymin", "ymax")))
bc_nodes = Dict(1 => [1, 4], 2 => [2, 3], 3 => [1, 2], 4 => [3, 4])
return Mesh(nodes, celltypes, cell2node; bc_names, bc_nodes)
end
function one_quad_mesh(::Val{2}, xmin, xmax, ymin, ymax)
x1 = [xmin, ymin]
x2 = [xmax, ymin]
x3 = [xmax, ymax]
x4 = [xmin, ymax]
nodes = [
Node([xmin, ymin]),
Node([xmax, ymin]),
Node([xmax, ymax]),
Node([xmin, ymax]),
Node((x1 + x2) / 2),
Node((x2 + x3) / 2),
Node((x3 + x4) / 2),
Node((x4 + x1) / 2),
Node([(xmin + xmax) / 2, (ymin + ymax) / 2]),
]
celltypes = [Quad9_t()]
cell2node = Connectivity([9], collect(1:9))
return Mesh(nodes, celltypes, cell2node)
end
function one_quad_mesh(::Val{3}, xmin, xmax, ymin, ymax)
nodes = [
Node([xmin, ymin]), # 1
Node([xmax, ymin]), # 2
Node([xmax, ymax]), # 3
Node([xmin, ymax]), # 4
Node([xmin + 1 * (xmax - xmin) / 3, ymin]), # 5
Node([xmin + 2 * (xmax - xmin) / 3, ymin]), # 6
Node([xmax, ymin + 1 * (ymax - ymin) / 3]), # 7
Node([xmax, ymin + 2 * (ymax - ymin) / 3]), # 8
Node([xmin + 2 * (xmax - xmin) / 3, ymax]), # 9
Node([xmin + 1 * (xmax - xmin) / 3, ymax]), # 10
Node([xmin, ymin + 2 * (ymax - ymin) / 3]), # 11
Node([xmin, ymin + 1 * (ymax - ymin) / 3]), # 12
Node([xmin + 1 * (xmax - xmin) / 3, ymin + 1 * (ymax - ymin) / 3]), # 13
Node([xmin + 2 * (xmax - xmin) / 3, ymin + 1 * (ymax - ymin) / 3]), # 14
Node([xmin + 2 * (xmax - xmin) / 3, ymin + 2 * (ymax - ymin) / 3]), # 15
Node([xmin + 1 * (xmax - xmin) / 3, ymin + 2 * (ymax - ymin) / 3]), # 16
]
celltypes = [Quad16_t()]
cell2node = Connectivity([16], collect(1:16))
return Mesh(nodes, celltypes, cell2node)
end
function one_tetra_mesh(::Val{1}, xmin, xmax, ymin, ymax, zmin, zmax)
nodes = [
Node([xmin, ymin, zmin]),
Node([xmax, ymin, zmin]),
Node([xmin, ymax, zmin]),
Node([xmin, ymin, zmax]),
]
celltypes = [Tetra4_t()]
cell2node = Connectivity([4], collect(1:4))
# Prepare boundary nodes
bnd_names = ("F1", "F2", "F3", "F4")
tag2name = Dict(tag => name for (tag, name) in enumerate(bnd_names))
tag2nodes = Dict(tag => [faces2nodes(Tetra4_t)[tag]...] for tag in 1:length(bnd_names))
tag2bfaces = Dict(tag => [tag] for tag in 1:length(bnd_names))
return Mesh(
nodes,
celltypes,
cell2node;
bc_names = tag2name,
bc_nodes = tag2nodes,
bc_faces = tag2bfaces,
)
end
function one_hexa_mesh(::Val{1}, xmin, xmax, ymin, ymax, zmin, zmax)
nodes = [
Node([xmin, ymin, zmin]),
Node([xmax, ymin, zmin]),
Node([xmax, ymax, zmin]),
Node([xmin, ymax, zmin]),
Node([xmin, ymin, zmax]),
Node([xmax, ymin, zmax]),
Node([xmax, ymax, zmax]),
Node([xmin, ymax, zmax]),
]
celltypes = [Hexa8_t()]
cell2node = Connectivity([8], collect(1:8))
return Mesh(nodes, celltypes, cell2node)
end
function one_hexa_mesh(::Val{2}, xmin, xmax, ymin, ymax, zmin, zmax)
P1 = [xmin, ymin, zmin]
P2 = [xmax, ymin, zmin]
P3 = [xmax, ymax, zmin]
P4 = [xmin, ymax, zmin]
P5 = [xmin, ymin, zmax]
P6 = [xmax, ymin, zmax]
P7 = [xmax, ymax, zmax]
P8 = [xmin, ymax, zmax]
nodes = [
Node(P1),
Node(P2),
Node(P3),
Node(P4),
Node(P5),
Node(P6),
Node(P7),
Node(P8),
Node(0.5 .* (P1 .+ P2)), # 9
Node(0.5 .* (P2 .+ P3)), # 10
Node(0.5 .* (P3 .+ P4)), # 11
Node(0.5 .* (P4 .+ P1)), # 12
Node(0.5 .* (P1 .+ P5)), # 13
Node(0.5 .* (P2 .+ P6)), # 14
Node(0.5 .* (P3 .+ P7)), # 15
Node(0.5 .* (P4 .+ P8)), # 16
Node(0.5 .* (P5 .+ P6)), # 17
Node(0.5 .* (P6 .+ P7)), # 18
Node(0.5 .* (P7 .+ P8)), # 19
Node(0.5 .* (P8 .+ P5)), # 20
Node(0.25 .* (P1 .+ P2 .+ P3 .+ P4)), # 21
Node(0.25 .* (P1 .+ P2 .+ P6 .+ P5)), # 22
Node(0.25 .* (P2 .+ P3 .+ P7 .+ P6)), # 23
Node(0.25 .* (P3 .+ P4 .+ P8 .+ P7)), # 24
Node(0.25 .* (P4 .+ P1 .+ P5 .+ P8)), # 25
Node(0.25 .* (P5 .+ P6 .+ P7 .+ P8)), # 26
Node(0.5 .* [xmin + xmax, ymin + ymax, zmin + zmax]), # 27
]
celltypes = [Hexa27_t()]
cell2node = Connectivity([27], collect(1:27))
return Mesh(nodes, celltypes, cell2node)
end
function one_prism_mesh(::Val{1}, xmin, xmax, ymin, ymax, zmin, zmax)
nodes = [
Node([xmin, ymin, zmin]),
Node([xmax, ymin, zmin]),
Node([xmin, ymax, zmin]),
Node([xmin, ymin, zmax]),
Node([xmax, ymin, zmax]),
Node([xmin, ymax, zmax]),
]
celltypes = [Penta6_t()]
cell2node = Connectivity([6], [1, 2, 3, 4, 5, 6])
return Mesh(nodes, celltypes, cell2node)
end
function one_pyra_mesh(::Val{1}, xmin, xmax, ymin, ymax, zmin, zmax)
nodes = [
Node([xmin, ymin, zmin]),
Node([xmax, ymin, zmin]),
Node([xmax, ymax, zmin]),
Node([xmin, ymax, zmin]),
Node([(xmax + xmin) / 2, (ymin + ymax) / 2, zmax]),
]
celltypes = [Pyra5_t()]
cell2node = Connectivity([5], [1, 2, 3, 4, 5])
return Mesh(nodes, celltypes, cell2node)
end
"""
circle_mesh(n; r = 1, order = 1)
Mesh a circle (in 2D) with `n` nodes on the circumference.
"""
function circle_mesh(n; radius = 1.0, order = 1)
if (order == 1)
# Nodes
nodes = [
Node(radius * [cos(θ), sin(θ)]) for
θ in range(0, 2π; length = n + 1)[1:(end - 1)]
]
# Cell type is constant
celltypes = [Bar2_t() for ielt in 1:n]
# Cell -> nodes connectivity
cell2node = zeros(Int, 2 * n)
for ielt in 1:(n - 1)
cell2node[2 * ielt - 1] = ielt
cell2node[2 * ielt] = ielt + 1
end
cell2node[2 * n - 1] = n
cell2node[2 * n] = 1
# Number of nodes of each cell : always 2
cell2nnodes = 2 * ones(Int, n)
# Mesh
return Mesh(nodes, celltypes, Connectivity(cell2nnodes, cell2node))
elseif (order == 2)
# Nodes
nodes = [
Node(radius * [cos(θ), sin(θ)]) for
θ in range(0, 2π; length = 2 * n + 1)[1:(end - 1)]
]
# Cell type is constant
celltypes = [Bar3_t() for ielt in 1:n]
# Cell -> nodes connectivity
cell2node = zeros(Int, 3 * n)
i = 1 # init counter
for ielt in 1:(n - 1)
cell2node[3 * ielt - 2] = i
cell2node[3 * ielt - 1] = i + 2
cell2node[3 * ielt] = i + 1
i += 2
end
cell2node[3 * n - 2] = i
cell2node[3 * n - 1] = 1
cell2node[3 * n] = i + 1
# Number of nodes of each cell : always 2
cell2nnodes = 3 * ones(Int, n)
# Mesh
return Mesh(nodes, celltypes, Connectivity(cell2nnodes, cell2node))
else
error("circle_mesh not implemented for order = ", order)
end
end
"""
scale(mesh, factor)
Scale the input mesh nodes coordinates by a given factor and return the resulted mesh. The `factor` can be a number
or a vector.
Usefull for debugging.
"""
scale(mesh::AbstractMesh, factor) = transform(mesh, x -> factor .* x)
scale!(mesh::AbstractMesh, factor) = transform!(mesh, x -> factor .* x)
"""
transform(mesh::AbstractMesh, fun)
Transform the input mesh nodes coordinates by applying the given `fun` function and return the resulted mesh.
Usefull for debugging.
"""
function transform(mesh::AbstractMesh, fun)
new_mesh = _duplicate_mesh(mesh)
transform!(new_mesh, fun)
return new_mesh
end
function transform!(mesh::AbstractMesh, fun)
new_nodes = [Node(fun(n.x)) for n in get_nodes(mesh)]
#mesh.nodes .= new_nodes # bmxam : I don't understand why this is not working
set_nodes(mesh, new_nodes)
end
"""
translate(mesh::AbstractMesh, t::AbstractVector)
Translate the input mesh with vector `t`.
Usefull for debugging.
"""
translate(mesh::AbstractMesh, t::AbstractVector) = transform(mesh, x -> x + t)
translate!(mesh::AbstractMesh, t::AbstractVector) = transform!(mesh, x -> x + t)
"""
_duplicate_mesh(mesh::AbstractMesh)
Make an exact copy of the input mesh.
"""
function _duplicate_mesh(mesh::AbstractMesh)
Mesh(
get_nodes(mesh),
cells(mesh),
connectivities(mesh, :c2n).indices;
bc_names = boundary_names(mesh),
bc_nodes = boundary_nodes(mesh),
bc_faces = boundary_faces(mesh),
)
end
"""
_compute_space_dim(topodim, lx, ly, lz, tol, verbose::Bool)
Deduce the number of space dimensions from the mesh boundaries : if one (or more) dimension of the bounding
box is way lower than the other dimensions, the number of space dimension is decreased.
Currently, having for instance (x,z) is not supported. Only (x), or (x,y), or (x,y,z).
"""
function _compute_space_dim(topodim, lx, ly, lz, tol, verbose::Bool)
# Maximum dimension and default value for number of space dimensions
lmax = maximum([lx, ly, lz])
# Now checking several case (complex `if` cascade for comprehensive warning messages)
# If the topology is 3D, useless to continue, the space dim must be 3
topodim == 3 && (return 3)
if topodim == 2
if (lz / lmax < tol)
msg = "Warning : the mesh is flat on the z-axis. It is now considered 2D."
msg *= " (use `spacedim` argument of `read_msh` if you want to keep 3D coordinates.)"
msg *= " Disable this warning with `verbose = false`"
verbose && println(msg)
return 2
else
# otherwise, it is a surface in a 3D space, we keep 3 coordinates
return 3
end
end
if topodim == 1
if (ly / lmax < tol && lz / lmax < tol)
msg = "Warning : the mesh is flat on the y and z axis. It is now considered 1D."
msg *= " (use `spacedim` argument of `read_msh` if you want to keep 2D or 3D coordinates.)"
msg *= " Disable this warning with `verbose = false`"
verbose && println(msg)
return 1
elseif (ly / lmax < tol && lz / lmax > tol)
error(
"You have a flat y-axis but a non flat z-axis, this is not supported. Consider rotating your mesh.",
)
elseif (ly / lmax > tol && lz / lmax < tol)
msg = "Warning : the mesh is flat on the z-axis. It is now considered as a 1D mesh in a 2D space."
msg *= " (use `spacedim` argument of `read_msh` if you want to keep 3D coordinates.)"
msg *= " Disable this warning with `verbose = false`"
verbose && println(msg)
return 2
else
# otherwise, it is a line in a 3D space, we keep 3 coordinates
return 3
end
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 9665 | abstract type AbstractShape{dim} end
struct Point <: AbstractShape{0} end
struct Line <: AbstractShape{1} end
struct Triangle <: AbstractShape{2} end
struct Square <: AbstractShape{2} end
struct Tetra <: AbstractShape{3} end
struct Prism <: AbstractShape{3} end
struct Cube <: AbstractShape{3} end
struct Pyramid <: AbstractShape{3} end
"""
shape(::AbstractEntityType)
Return the reference `Shape` corresponding to the given `AbstractEntityType`.
"""
function shape(s::AbstractEntityType)
error("Function 'shape' not implemented for the given AbstractEntityType : ", s)
end
shape(::Node_t) = Point()
shape(::Bar2_t) = Line()
shape(::Bar3_t) = Line()
shape(::Bar4_t) = Line()
shape(::Tri3_t) = Triangle()
shape(::Tri6_t) = Triangle()
shape(::Tri9_t) = Triangle()
shape(::Tri10_t) = Triangle()
shape(::Quad4_t) = Square()
shape(::Quad9_t) = Square()
shape(::Quad16_t) = Square()
shape(::Hexa8_t) = Cube()
shape(::Penta6_t) = Prism()
shape(::Pyra5_t) = Pyramid()
shape(::Tetra4_t) = Tetra()
shape(::Tetra10_t) = Tetra()
"""
entity(s::AbstractShape, ::Val{D}) where D
Return the geometrical `Entity` corresponding to the `AbstractShape` of a given degree `D`.
Remark : Returned `entity` must be consistent with the corresponding `Lagrange` function space.
"""
function entity(s::AbstractShape, ::Val{D}) where {D}
error(
"Function 'entity' is not implemented for the given AbstractShape : ",
s,
" with degree=",
D,
)
end
entity(::Point, ::Val{D}) where {D} = Node_t()
entity(::Line, ::Val{0}) = Bar2_t()
entity(::Line, ::Val{1}) = Bar2_t()
entity(::Line, ::Val{2}) = Bar3_t()
entity(::Line, ::Val{3}) = Bar4_t()
entity(::Triangle, ::Val{0}) = Tri3_t()
entity(::Triangle, ::Val{1}) = Tri3_t()
entity(::Triangle, ::Val{2}) = Tri6_t()
entity(::Triangle, ::Val{3}) = Tri10_t()
entity(::Square, ::Val{0}) = Quad4_t()
entity(::Square, ::Val{1}) = Quad4_t()
entity(::Square, ::Val{2}) = Quad9_t()
entity(::Square, ::Val{3}) = Quad16_t()
"""
nvertices(::AbstractShape)
Indicate how many vertices a shape has.
"""
nvertices(::AbstractShape) = error("Function 'nvertices' is not defined")
"""
nedges(::AbstractShape)
Generic function. Indicate how many edges a shape has.
"""
nedges(::AbstractShape) = error("Function 'nedges' is not defined")
"""
nfaces(::AbstractShape)
Indicate how many faces a shape has.
"""
nfaces(::AbstractShape) = error("Function 'nfaces' is not defined")
"""
get_coords(::AbstractShape)
Return node coordinates of the shape in the reference space.
"""
get_coords(s::AbstractShape) = error("`get_coordinates` is not defined for shape $s")
"""
get_coords(shape::AbstractShape,i)
Return the coordinates of the `i`th shape vertices. `i` can be a tuple of
indices, then the multiples vertices's coordinates are returned.
"""
@inline get_coords(shape::AbstractShape, i) = get_coords(shape)[i]
function get_coords(shape::AbstractShape, i::Tuple{T, Vararg{T}}) where {T}
map(j -> get_coords(shape, j), i)
end
get_coords(shape::AbstractShape, i::AbstractVector) = map(j -> get_coords(shape, j), i)
"""
normals(::AbstractShape)
Return the outward normals of all the faces of the shape.
"""
normals(::AbstractShape) = error("Function 'normals' is not defined")
"""
normal(shape::AbstractShape, i)
Return the outward normal of the `i`th face of the shape.
"""
normal(shape::AbstractShape, i) = normals(shape)[i]
"""
face_area(::AbstractShape)
Return the length/area of the faces of a shape.
"""
function face_area(::AbstractShape)
error("Function 'face_area' not implemented for the given Shape.")
end
"""
faces2nodes(::AbstractShape)
Return the index of the vertices on the faces of a shape.
"""
function faces2nodes(::AbstractShape)
error("Function 'faces2nodes' not implemented for the given Shape.")
end
"""
faces2nodes(shape::AbstractShape, side)
Return the index of the vertices on the `iside`-th face of a shape. If `side` is positive, the face is oriented
preserving the cell normal. If `side` is negative, the face is returned with the opposite direction (i.e reverse
node order).
"""
function faces2nodes(shape::AbstractShape, side)
side > 0 ? faces2nodes(shape)[side] : reverse(faces2nodes(shape)[-side])
end
"""
face_shapes(::AbstractShape)
Return a tuple of the Shape of each face of the given (cell) Shape. For instance, a `Triangle` has
three faces, all of them are `Line`.
"""
function face_shapes(::AbstractShape)
error("Function 'face_shapes' not implemented for the given Shape.")
end
"""
face_shapes(shape::AbstractShape, i)
Shape of `i`-th shape of the input shape.
"""
face_shapes(shape::AbstractShape, i) = face_shapes(shape)[i]
"""
center(::AbstractShape)
Center of the `AbstractShape`.
# Implementation
Specialize for better performances
"""
function center(s::AbstractShape)
return sum(get_coords(s)) / nvertices(s)
end
nvertices(::Point) = 1
nvertices(::Line) = nnodes(Bar2_t())
nvertices(::Triangle) = nnodes(Tri3_t())
nvertices(::Square) = nnodes(Quad4_t())
nvertices(::Tetra) = nnodes(Tetra4_t())
nvertices(::Cube) = nnodes(Hexa8_t())
nvertices(::Prism) = nnodes(Penta6_t())
nvertices(::Pyramid) = nnodes(Pyra5_t())
nedges(::Line) = nedges(Bar2_t())
nedges(::Triangle) = nedges(Tri3_t())
nedges(::Square) = nedges(Quad4_t())
nedges(::Tetra) = nedges(Tetra4_t())
nedges(::Cube) = nedges(Hexa8_t())
nedges(::Prism) = nedges(Penta6_t())
nedges(::Pyramid) = nedges(Pyra5_t())
nfaces(::Line) = nfaces(Bar2_t())
nfaces(::Triangle) = nfaces(Tri3_t())
nfaces(::Square) = nfaces(Quad4_t())
nfaces(::Tetra) = nfaces(Tetra4_t())
nfaces(::Cube) = nfaces(Hexa8_t())
nfaces(::Prism) = nfaces(Penta6_t())
nfaces(::Pyramid) = nfaces(Pyra5_t())
get_coords(::Point) = (SA[0.0],)
get_coords(::Line) = (SA[-1.0], SA[1.0])
get_coords(::Triangle) = (SA[0.0, 0.0], SA[1.0, 0.0], SA[0.0, 1.0])
get_coords(::Square) = (SA[-1.0, -1.0], SA[1.0, -1.0], SA[1.0, 1.0], SA[-1.0, 1.0])
function get_coords(::Tetra)
(SA[0.0, 0.0, 0.0], SA[1.0, 0.0, 0.0], SA[0.0, 1.0, 0.0], SA[0.0, 0.0, 1.0])
end
function get_coords(::Cube)
(
SA[-1.0, -1.0, -1.0],
SA[1.0, -1.0, -1.0],
SA[1.0, 1.0, -1.0],
SA[-1.0, 1.0, -1.0],
SA[-1.0, -1.0, 1.0],
SA[1.0, -1.0, 1.0],
SA[1.0, 1.0, 1.0],
SA[-1.0, 1.0, 1.0],
)
end
function get_coords(::Prism)
(
SA[0.0, 0.0, -1.0],
SA[1.0, 0.0, -1.0],
SA[0.0, 1.0, -1.0],
SA[0.0, 0.0, 1.0],
SA[1.0, 0.0, 1.0],
SA[0.0, 1.0, 1.0],
)
end
function get_coords(::Pyramid)
(
SA[-1.0, -1.0, 0.0],
SA[1.0, -1.0, 0.0],
SA[1.0, 1.0, 0.0],
SA[-1.0, 1.0, 0.0],
SA[0.0, 0.0, 1.0],
)
end
face_area(::Line) = SA[1.0, 1.0]
face_area(::Triangle) = SA[1.0, √(2.0), 1.0]
face_area(::Square) = SA[2.0, 2.0, 2.0, 2.0]
face_area(::Cube) = SA[4.0, 4.0, 4.0, 4.0, 4.0, 4.0]
face_area(::Tetra) = SA[0.5, 0.5, 0.5 * √(3.0), 0.5]
face_area(::Prism) = SA[2.0, 2 * √(2.0), 2.0, 0.5, 0.5]
face_area(::Pyramid) = SA[4.0, √(2.0), √(2.0), √(2.0), √(2.0)]
faces2nodes(::Line) = (SA[1], SA[2])
faces2nodes(::Triangle) = (SA[1, 2], SA[2, 3], SA[3, 1])
faces2nodes(::Square) = (SA[1, 2], SA[2, 3], SA[3, 4], SA[4, 1])
function faces2nodes(::Cube)
(
SA[1, 4, 3, 2],
SA[1, 2, 6, 5],
SA[2, 3, 7, 6],
SA[3, 4, 8, 7],
SA[1, 5, 8, 4],
SA[5, 6, 7, 8],
)
end
function faces2nodes(::Tetra)
(SA[1, 3, 2], SA[1, 2, 4], SA[2, 3, 4], SA[3, 1, 4])
end
function faces2nodes(::Prism)
(SA[1, 2, 5, 4], SA[2, 3, 6, 5], SA[3, 1, 4, 6], SA[1, 3, 2], SA[4, 5, 6])
end
function faces2nodes(::Pyramid)
(SA[1, 4, 3, 2], SA[1, 2, 5], SA[2, 3, 5], SA[3, 4, 5], SA[4, 1, 5])
end
# Normals
normals(::Line) = (SA[-1.0], SA[1.0])
normals(::Triangle) = (SA[0.0, -1.0], SA[1.0, 1.0] ./ √(2), SA[-1.0, 0.0])
normals(::Square) = (SA[0.0, -1.0], SA[1.0, 0.0], SA[0.0, 1.0], SA[-1.0, 0.0])
function normals(::Cube)
(
SA[0.0, 0.0, -1.0],
SA[0.0, -1.0, 0.0],
SA[1.0, 0.0, 0.0],
SA[0.0, 1.0, 0.0],
SA[-1.0, 0.0, 0.0],
SA[0.0, 0.0, 1.0],
)
end
function normals(::Tetra)
(SA[0.0, 0.0, -1.0], SA[0.0, -1.0, 0.0], SA[1.0, 1.0, 1.0] / √3, SA[-1.0, 0.0, 0.0])
end
function normals(::Prism)
(
SA[0.0, -1.0, 0.0],
SA[√(2.0) / 2.0, √(2.0) / 2.0, 0.0],
SA[-1.0, 0.0, 0.0],
SA[0.0, 0.0, -1.0],
SA[0.0, 0.0, 1.0],
)
end
function normals(::Pyramid)
(
SA[0.0, 0.0, -1.0],
SA[0.0, -√(2.0) / 2.0, √(2.0) / 2.0],
SA[√(2.0) / 2.0, 0.0, √(2.0) / 2.0],
SA[0.0, √(2.0) / 2.0, √(2.0) / 2.0],
SA[-√(2.0) / 2.0, 0.0, √(2.0) / 2.0],
)
end
# Centers
center(::Line) = SA[0.0]
center(::Triangle) = SA[1.0 / 3.0, 1.0 / 3.0]
center(::Square) = SA[0.0, 0.0]
center(::Cube) = SA[0.0, 0.0, 0.0]
center(::Tetra) = SA[0.25, 0.25, 0.25]
center(::Prism) = SA[1.0 / 3.0, 1.0 / 3.0, 0.0]
center(::Pyramid) = SA[0.0, 0.0, 1.0 / 5.0]
# Face shapes : see notes in generic function documentation
face_shapes(::Line) = (Point(), Point())
face_shapes(shape::Union{Triangle, Square}) = ntuple(i -> Line(), nfaces(shape))
face_shapes(shape::Cube) = ntuple(i -> Square(), nfaces(shape))
face_shapes(shape::Tetra) = ntuple(i -> Triangle(), nfaces(shape))
face_shapes(::Prism) = (Square(), Square(), Square(), Triangle(), Triangle())
face_shapes(::Pyramid) = (Square(), Triangle(), Triangle(), Triangle(), Triangle())
# Measure
measure(::Line) = 2.0
measure(::Triangle) = 0.5
measure(::Square) = 4.0
measure(::Cube) = 8.0
measure(::Tetra) = 1.0 / 6
measure(::Prism) = 1.0
measure(::Pyramid) = 4.0 / 3.0
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 948 | abstract type AbstractAffineTransformation end
(::AbstractAffineTransformation)(x) = error("not implemented")
Base.inv(::AbstractAffineTransformation) = error("not implemented")
struct Translation{T} <: AbstractAffineTransformation
vec::T
end
(t::Translation)(x) = x .+ t.vec
Base.inv(t::Translation) = Translation(-t.vec)
struct Rotation{T} <: AbstractAffineTransformation
A::T
end
"""
Rotation(u::AbstractVector, θ::Number)
Return a `Rotation` operator build from a given
rotation axis `u` and an angle of rotation `θ`.
# Example :
```julia
julia> rot = Rotation([0,0,1], π/4);
julia> x = [3.0,0,0];
julia> x_rot_ref = 3√(2)/2 .*[1,1,0] # expected result
julia> all(rot(x) .≈ x_rot_ref)
true
```
"""
function Rotation(u::AbstractVector, θ::Number)
Rotation((normalize(u), sincos(θ)))
end
function (r::Rotation)(x)
u, (sinθ, cosθ) = r.A
rx = cosθ * x + (1 - cosθ) * (u ⋅ x) * u + sinθ * cross(u, x)
return rx
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 32401 | abstract type AbstractQuadratureType end
struct QuadratureLegendre <: AbstractQuadratureType end
struct QuadratureLobatto <: AbstractQuadratureType end
struct QuadratureUniform <: AbstractQuadratureType end
"""
AbstractQuadrature{T,D}
Abstract type representing quadrature of type `T`
and degree `D`
"""
abstract type AbstractQuadrature{T, D} end
get_quadtype(::AbstractQuadrature{T}) where {T} = T()
get_degree(::AbstractQuadrature{T, D}) where {T, D} = D
"""
Quadrature{T,D}
Quadrature of type `T` and degree `D`
"""
struct Quadrature{T, D} <: AbstractQuadrature{T, D} end
function Quadrature(qt::AbstractQuadratureType, ::Val{D}) where {D}
@assert D isa Integer && D ≥ 0 "'D' must be a positive Integer"
Quadrature{typeof(qt), D}()
end
Quadrature(d::Val{D}) where {D} = Quadrature(QuadratureLegendre(), d)
Quadrature(qt::AbstractQuadratureType, d::Integer) = Quadrature(qt, Val(d))
Quadrature(d::Integer) = Quadrature(Val(d))
"""
AbstractQuadratureRule{S,Q}
Abstract type representing a quadrature rule for a shape `S`
and quadrature `Q`.
Derived types must implement the following method:
- [`get_weights(qr::AbstractQuadratureRule)`]
- [`get_nodes(qr::AbstractQuadratureRule)`]
- [`Base.length(qr::AbstractQuadratureRule)`]
"""
abstract type AbstractQuadratureRule{S, Q} end
get_shape(::AbstractQuadratureRule{S, Q}) where {S, Q} = S
get_quadrature(::AbstractQuadratureRule{S, Q}) where {S, Q} = Q
"""
get_weights(qr::AbstractQuadratureRule)
Returns an array containing the weights of all quadrature nodes of `qr`.
"""
function get_weights(qr::AbstractQuadratureRule)
error("`get_weights` is not implemented for $(typeof(qr))")
end
"""
get_nodes(qr::AbstractQuadratureRule)
Returns an array containing the coordinates of all quadrature nodes of `qr`.
"""
function get_nodes(qr::AbstractQuadratureRule)
error("`get_nodes` is not implemented for $(typeof(qr))")
end
"""
length(qr::AbstractQuadratureRule)
Returns the number of quadrature nodes of `qr`.
"""
function Base.length(qr::AbstractQuadratureRule)
error("`length` is not implemented for $(typeof(qr))")
end
"""
QuadratureRule{S,Q}
Abstract type representing a quadrature rule for a shape `S`
and quadrature `Q`
"""
struct QuadratureRule{S, Q, N, W <: AbstractArray, X <: AbstractArray} <:
AbstractQuadratureRule{S, Q}
weights::W
nodes::X
end
get_weights(qr::QuadratureRule) = qr.weights
get_nodes(qr::QuadratureRule) = qr.nodes
Base.length(::QuadratureRule{S, Q, N}) where {S, Q, N} = N
"""
QuadratureRule(shape::AbstractShape, q::AbstractQuadrature)
Return the quadrature rule corresponding to the given `Shape` according to
the selected quadrature 'q'.
"""
function QuadratureRule(shape::AbstractShape, q::AbstractQuadrature)
w, x = quadrature_rule(shape, Val(get_degree(q)), get_quadtype(q))
QuadratureRule(shape, q, w, x)
end
function QuadratureRule(shape::AbstractShape, degree::Val{D}) where {D}
QuadratureRule(shape, Quadrature(degree))
end
function QuadratureRule(
shape::AbstractShape,
q::AbstractQuadrature,
w::AbstractVector,
x::AbstractVector,
)
@assert length(w) == length(x) "Dimension mismatch for 'w' and 'x'"
QuadratureRule{typeof(shape), typeof(q), length(x), typeof(w), typeof(x)}(w, x)
end
function QuadratureRule(
shape::AbstractShape,
q::AbstractQuadrature,
w::NTuple{N, T1},
x::NTuple{N, T2},
) where {N, T1, T2}
_w = SVector{N, T1}(w)
_x = SVector{N, T2}(x)
QuadratureRule(shape, q, _w, _x)
end
function QuadratureRule(shape::AbstractShape, degree::Integer)
QuadratureRule(shape, Quadrature(degree))
end
# To integrate a constant, we use the first order quadrature
function QuadratureRule(
shape::AbstractShape,
::Q,
) where {Q <: AbstractQuadrature{T, 0}} where {T}
QuadratureRule(shape, Q(T, 1))
end
"""
quadrature_rule_bary(::Int, ::AbstractShape, degree::Val{N}) where N
Return the quadrature rule, computed with barycentric coefficients, corresponding to the given boundary of a
shape and the given degree.
This function returns the quadrature weights and the barycentric weights to apply
to each vertex of the reference shape. Hence, to apply the quadrature using this function,
one needs to do :
`
for (weight, l) in quadrature_rule_bary(iside, shape(etype), degree)
xp = zeros(SVector{td})
for i=1:nvertices
xp += l[i]*vertices[i]
end
# weight, xp is the quadrature couple (weight, node)
end
`
"""
function quadrature_rule_bary(::Int, shape::AbstractShape, degree::Val{N}) where {N}
error(
"Function 'quadrature_rule_bary' is not implemented for shape $shape and degree $N",
)
end
"""
quadrature_rule(iside::Int, shape::AbstractShape, degree::Val{N}) where N
Return the quadrature rule, computed with barycentric coefficients, corresponding to
the given boundary of a shape and the given `degree`.
"""
function quadrature_rule(iside::Int, shape::AbstractShape, degree::Val{N}) where {N}
# Get coordinates of the face's nodes of the shape
fvertices = get_coords(shape, faces2nodes(shape)[iside])
# Get barycentric quadrature
quadBary = quadrature_rule_bary(iside, shape, degree)
nq = length(quadBary)
weights = SVector{nq, eltype(first(quadBary)[1])}(w for (w, l) in quadBary)
xq = SVector{nq, eltype(fvertices)}(sum(l .* fvertices) for (w, l) in quadBary)
return weights, xq
end
"""
quadrature_rule(::AbstractShape, ::Val{D}, ::AbstractQuadratureType) where {D}
Return the weights and points associated to the quadrature rule of degree `D` for
the desired shape and quadrature type.
"""
quadrature_rule(::AbstractShape, ::Val{D}, ::AbstractQuadratureType) where {D}
# Point quadratures
function quadrature_rule(::Point, ::Val{D}, ::AbstractQuadratureType) where {D}
return SA[1.0], SA[0.0]
end
# Line quadratures
"""
_gausslegendre1D(::Val{N}) where N
_gausslobatto1D(::Val{N}) where N
Return `N`-point Gauss quadrature weights and nodes on the domain [-1:1].
"""
@generated function _gausslegendre1D(::Val{N}) where {N}
x, w = FastGaussQuadrature.gausslegendre(N)
w0 = SVector{length(w), eltype(w)}(w)
x0 = SVector{length(x), eltype(x)}(x)
return :($w0, $x0)
end
@generated function _gausslobatto1D(::Val{N}) where {N}
x, w = FastGaussQuadrature.gausslobatto(N)
w0 = SVector{length(w), eltype(w)}(w)
x0 = SVector{length(x), eltype(x)}(x)
return :($w0, $x0)
end
@generated function _uniformpoints(::Val{N}) where {N}
xmin = -1.0
xmax = 1.0
if N == 1
x0 = SA[(xmin + xmax) / 2]
else
x0 = SVector{N}(collect(LinRange(xmin, xmax, N)))
end
w0 = @. one(x0) / N
return :($w0, $x0)
end
_quadrature_rule(n::Val{N}, ::QuadratureLegendre) where {N} = _gausslegendre1D(n)
_quadrature_rule(n::Val{N}, ::QuadratureLobatto) where {N} = _gausslobatto1D(n)
_quadrature_rule(n::Val{N}, ::QuadratureUniform) where {N} = _uniformpoints(n)
"""
Gauss-Legendre formula with ``n`` nodes has degree of exactness ``2n-1``.
Then, to obtain a given degree ``D``, the number of nodes must satisfy:
`` 2n-1 ≥ D`` or equivalently ``n ≥ (D+1)/2``
"""
function _get_num_nodes(::Line, ::Val{degree}, ::QuadratureLegendre) where {degree}
ceil(Int, (degree + 1) / 2)
end
"""
Gauss-Lobatto formula with ``n+1`` nodes has degree of exactness ``2n-1``,
which equivalent to a degree of ``2n-3`` with ``n`` nodes.
Then, to obtain a given degree ``D``, the number of nodes must satisfy:
`` 2n-3 ≥ D`` or equivalently ``n ≥ (D+3)/2``
"""
function _get_num_nodes(::Line, ::Val{degree}, ::QuadratureLobatto) where {degree}
ceil(Int, (degree + 3) / 2)
end
_get_num_nodes(::Line, ::Val{degree}, ::QuadratureUniform) where {degree} = degree + 1
"""
get_num_nodes_per_dim(quadrule::AbstractQuadratureRule{S}) where S<:Shape
Returns the number of nodes per dimension. This function is defined for shapes for which quadratures
are based on a cartesian product : `Line`, `Square`, `Cube`
Remark :
Here we assume that the same `degree` is used along each dimension (no anisotropy for now!)
"""
function _get_num_nodes_per_dim(::AbstractQuadratureRule{<:S}) where {S}
error("Not implemented for shape $S")
end
_get_num_nodes_per_dim(quadrule::AbstractQuadratureRule{<:Line}) = length(quadrule)
function _get_num_nodes_per_dim(::AbstractQuadratureRule{<:Square, Q}) where {Q}
ntuple(i -> _get_num_nodes_per_dim(QuadratureRule(Line(), Q())), Val(2))
end
function _get_num_nodes_per_dim(::AbstractQuadratureRule{<:Cube, Q}) where {Q}
ntuple(i -> _get_num_nodes_per_dim(QuadratureRule(Line(), Q())), Val(3))
end
function quadrature_rule(line::Line, degree::Val{D}, quad::AbstractQuadratureType) where {D}
@assert D isa Integer && D ≥ 0 "'D' must be a positive Integer"
n = _get_num_nodes(line, degree, quad)
return _quadrature_rule(Val(n), quad)
end
# Triangle quadratures
function quadrature_rule(::Triangle, ::Val{1}, ::QuadratureLegendre)
raw_unzip(get_quadrature_points(Val{:GLTRI1}))
end
function quadrature_rule(::Triangle, ::Val{2}, ::QuadratureLegendre)
raw_unzip(get_quadrature_points(Val{:GLTRI3}))
end
function quadrature_rule(::Triangle, ::Val{3}, ::QuadratureLegendre)
raw_unzip(get_quadrature_points(Val{:GLTRI4}))
end
function quadrature_rule(::Triangle, ::Val{4}, ::QuadratureLegendre)
get_quadrature_points_gausslegendre(Val{:GLTRI6})
end #quadrature_points(Triangle(), Val(4), Val(:Lobatto))
function quadrature_rule(::Triangle, ::Val{5}, ::QuadratureLegendre)
get_quadrature_points_gausslegendre(Val{:GLTRI7})
end
function quadrature_rule(::Triangle, ::Val{6}, ::QuadratureLegendre)
get_quadrature_points_gausslegendre(Val{:GLTRI12})
end
function quadrature_rule(::Triangle, ::Val{7}, ::QuadratureLegendre)
get_quadrature_points_gausslegendre(Val{:GLTRI16})
end
function quadrature_rule(::Triangle, ::Val{8}, ::QuadratureLegendre)
get_quadrature_points_gausslegendre(Val{:GLTRI16})
end
function get_quadrature_points_gausslegendre(::Type{Val{:GLTRI6}})
P1 = 0.22338158967801146569500700843312 / 2
P2 = 0.10995174365532186763832632490021 / 2
A = 0.44594849091596488631832925388305
B = 0.09157621350977074345957146340220
weights = SA[P2, P2, P2, P1, P1, P1]
points = SA[(B, B), (1.0 - 2.0 * B, B), (B, 1.0 - 2.0 * B), (A, 1.0 - 2 * A), (A, A), (1.0 - 2.0 * A, A)]
return weights, points
end
""" Gauss-Legendre quadrature, 7 point rule on triangle. """
function get_quadrature_points_gausslegendre(::Type{Val{:GLTRI7}})
A = 0.47014206410511508977044120951345
B = 0.10128650732345633880098736191512
P1 = 0.13239415278850618073764938783315 / 2
P2 = 0.12593918054482715259568394550018 / 2
weights = SA[9 / 80, P1, P1, P1, P2, P2, P2]
points = SA[(1 / 3, 1 / 3), (A, A), (1.0 - 2.0 * A, A), (A, 1.0 - 2.0 * A), (B, B), (1.0 - 2.0 * B, B), (B, 1.0 - 2.0 * B)]
return weights, points
end
""" Gauss-Legendre quadrature, 12 point rule on triangle.
Ref: Witherden, F. D.; Vincent, P. E.
On the identification of symmetric quadrature rules for finite element methods.
Comput. Math. Appl. 69 (2015), no. 10, 1232–1241
"""
function get_quadrature_points_gausslegendre(::Type{Val{:GLTRI12}})
A = (-0.87382197101699554331933679425836168532 + 1) / 2
B = (-0.50142650965817915741672289378596184782 + 1) / 2
C = (-0.37929509793243118916678453208689569359 + 1) / 2
D = (-0.89370990031036610529350065673720370601 + 1) / 2
P1 = 0.10168981274041363384187361821373796809 / 4
P2 = 0.23357255145275873205057922277115888265 / 4
P3 = 0.16570215123674715038710691284088490796 / 4
weights = SA[P1, P1, P1, P2, P2, P2, P3, P3, P3, P3, P3, P3]
points = SA[(A, A), (1.0 - 2.0 * A, A), (A, 1.0 - 2.0 * A), (B, B), (1.0 - 2.0 * B, B), (B, 1.0 - 2.0 * B), (C, D), (D, C), (1.0 - C - D, C), (1.0 - C - D, D), (C, 1.0 - C - D), (D, 1.0 - C - D)]
return weights, points
end
""" Gauss-Legendre quadrature, 16 point rule on triangle, degree 8.
Ref: Witherden, F. D.; Vincent, P. E.
On the identification of symmetric quadrature rules for finite element methods.
Comput. Math. Appl. 69 (2015), no. 10, 1232–1241
Note : quadrature is rescale to match our reference triangular shape
which is defined in [0:1]² instead of [-1:1]²
"""
function get_quadrature_points_gausslegendre(::Type{Val{:GLTRI16}})
x = SA[
-0.33333333333333333333333333333333333333 -0.33333333333333333333333333333333333333 0.2886312153555743365021822209781292496
-0.081414823414553687942368971011661355879 -0.83717035317089262411526205797667728824 0.1901832685345692495877922087771686332
-0.83717035317089262411526205797667728824 -0.081414823414553687942368971011661355879 0.1901832685345692495877922087771686332
-0.081414823414553687942368971011661355879 -0.081414823414553687942368971011661355879 0.1901832685345692495877922087771686332
-0.65886138449647958675541299701707099796 0.31772276899295917351082599403414199593 0.20643474106943650056358310058425806003
0.31772276899295917351082599403414199593 -0.65886138449647958675541299701707099796 0.20643474106943650056358310058425806003
-0.65886138449647958675541299701707099796 -0.65886138449647958675541299701707099796 0.20643474106943650056358310058425806003
-0.89890554336593804908315289880680210631 0.79781108673187609816630579761360421262 0.064916995246396160621851856683561193593
0.79781108673187609816630579761360421262 -0.89890554336593804908315289880680210631 0.064916995246396160621851856683561193593
-0.89890554336593804908315289880680210631 -0.89890554336593804908315289880680210631 0.064916995246396160621851856683561193593
-0.98321044518008478932557233092141110162 0.45698478591080856248200075835212392604 0.05446062834886998852968938014781784832
0.45698478591080856248200075835212392604 -0.98321044518008478932557233092141110162 0.05446062834886998852968938014781784832
-0.47377434073072377315642842743071282442 0.45698478591080856248200075835212392604 0.05446062834886998852968938014781784832
0.45698478591080856248200075835212392604 -0.47377434073072377315642842743071282442 0.05446062834886998852968938014781784832
-0.47377434073072377315642842743071282442 -0.98321044518008478932557233092141110162 0.05446062834886998852968938014781784832
-0.98321044518008478932557233092141110162 -0.47377434073072377315642842743071282442 0.05446062834886998852968938014781784832
]
points = _rescale_tri.(x[:, 1], x[:, 2])
weights = x[:, 3] ./ 4
return weights, points
end
_rescale_tri(x, y) = (0.5 * (x + 1), 0.5 * (y + 1))
"""
ref : https://www.math.umd.edu/~tadmor/references/files/Chen%20&%20Shu%20entropy%20stable%20DG%20JCP2017.pdf
"""
function quadrature_points(tri::Triangle, ::Val{4}, ::QuadratureLobatto)
p1, p2, p3 = get_coords(tri)
s12_1 = 1.0 / 2
s12_2 = 0.4384239524408185
s12_3 = 0.1394337314154536
s111_1 = (0.0, 0.230765344947159)
s111_2 = (0.0, 0.046910077030668)
points = SA[
_triangle_orbit_3(p1, p2, p3),
_triangle_orbit_12(p1, p2, p3, s12_1),
_triangle_orbit_12(p2, p3, p1, s12_1),
_triangle_orbit_12(p3, p1, p2, s12_1),
_triangle_orbit_12(p1, p2, p3, s12_2),
_triangle_orbit_12(p2, p3, p1, s12_2),
_triangle_orbit_12(p3, p1, p2, s12_2),
_triangle_orbit_12(p1, p2, p3, s12_3),
_triangle_orbit_12(p2, p3, p1, s12_3),
_triangle_orbit_12(p3, p1, p2, s12_3),
_triangle_orbit_111(p1, p2, p3, s111_1...),
_triangle_orbit_111(p2, p3, p1, s111_1...),
_triangle_orbit_111(p3, p1, p2, s111_1...),
_triangle_orbit_111(p1, p3, p2, s111_1...),
_triangle_orbit_111(p2, p1, p3, s111_1...),
_triangle_orbit_111(p3, p2, p1, s111_1...),
_triangle_orbit_111(p1, p2, p3, s111_2...),
_triangle_orbit_111(p2, p3, p1, s111_2...),
_triangle_orbit_111(p3, p1, p2, s111_2...),
_triangle_orbit_111(p1, p3, p2, s111_2...),
_triangle_orbit_111(p2, p1, p3, s111_2...),
_triangle_orbit_111(p3, p2, p1, s111_2...),
]
w3, w12_1, w12_2, w12_3, w111_1, w111_2 = (
0.0455499555988567,
0.00926854241697489,
0.0623683661448868,
0.0527146648104222,
0.0102652298402145,
0.00330065754050081,
)
weights = SA[
w3,
w12_1,
w12_1,
w12_1,
w12_2,
w12_2,
w12_2,
w12_3,
w12_3,
w12_3,
w111_1,
w111_1,
w111_1,
w111_1,
w111_1,
w111_1,
w111_2,
w111_2,
w111_2,
w111_2,
w111_2,
w111_2,
]
return weights, points
end
_triangle_orbit_3(p1, p2, p3) = 1.0 / 3 * (p1 + p2 + p3)
_triangle_orbit_12(p1, p2, p3, α) = α * p1 + α * p2 + (1.0 - 2 * α) * p3
_triangle_orbit_111(p1, p2, p3, α, β) = α * p1 + β * p2 + (1.0 - α - β) * p3
# Square quadratures : generete quadrature rules for square
# from the cartesian product of line quadratures (i.e. Q-element)
function quadrature_rule(::Square, deg::Val{D}, quadtype::AbstractQuadratureType) where {D}
quadline = QuadratureRule(Line(), Quadrature(quadtype, deg))
N = length(quadline)
w1 = get_weights(quadline)
x1 = get_nodes(quadline)
NQ = N^2
if NQ < MAX_LENGTH_STATICARRAY
w = SVector{NQ}(w1[i] * w1[j] for i in 1:N, j in 1:N)
x = SVector{NQ}(SA[x1[i], x1[j]] for i in 1:N, j in 1:N)
else
w = vec([w1[i] * w1[j] for i in 1:N, j in 1:N])
x = vec([SA[x1[i], x1[j]] for i in 1:N, j in 1:N])
end
return w, x
end
# Cube quadratures : generete quadrature rules for cube
# from the cartesian product of line quadratures (i.e. Q-element)
function quadrature_rule(::Cube, deg::Val{D}, quadtype::AbstractQuadratureType) where {D}
quadline = QuadratureRule(Line(), Quadrature(quadtype, deg))
N = length(quadline)
w1 = get_weights(quadline)
x1 = get_nodes(quadline)
NQ = N^3
if NQ < MAX_LENGTH_STATICARRAY
w = SVector{NQ}(w1[i] * w1[j] * w1[k] for i in 1:N, j in 1:N, k in 1:N)
x = SVector{NQ}(SA[x1[i], x1[j], x1[k]] for i in 1:N, j in 1:N, k in 1:N)
else
w = vec([w1[i] * w1[j] * w1[k] for i in 1:N, j in 1:N, k in 1:N])
x = vec([SA[x1[i], x1[j], x1[k]] for i in 1:N, j in 1:N, k in 1:N])
end
return w, x
end
# Prism quadratures
function quadrature_rule(::Prism, ::Val{1}, ::QuadratureLegendre)
w, x = raw_unzip(get_quadrature_points(Val{:GLWED6}))
_w = SVector{length(w), eltype(w)}(w)
_x = SVector{length(x), eltype(x)}(x)
return _w, _x
end
function quadrature_rule(::Prism, ::Val{2}, ::QuadratureLegendre)
w, x = raw_unzip(get_quadrature_points(Val{:GLWED21}))
_w = SVector{length(w), eltype(w)}(w)
_x = SVector{length(x), eltype(x)}(x)
return _w, _x
end
# Pyramid quadratures
# Obtained from Ref:
# Witherden, F. D.; Vincent, P. E.
# On the identification of symmetric quadrature rules for finite element methods.
# Comput. Math. Appl. 69 (2015), no. 10, 1232–1241
#
# Note that in Witherden, the reference pyramid is between z=-1 and z=1 whereas
# in Bcube the ref pyramid is between z=0 and z=1. So we shift the quadrature nodes
# and fix the volume (the weigths)
#
# bmxam note 1 : I don't think these are strictly "QuadratureLegendre", but it is
# easier for dispatch for now
#
function quadrature_rule(::Pyramid, ::Val{1}, ::QuadratureLegendre)
points = SA[(0.0, 0.0, (-0.5 + 1) / 2)]
weights = SA[2.6666666666666666666666666666666666667 / 2]
return weights, points
end
function quadrature_rule(::Pyramid, ::Val{2}, ::QuadratureLegendre)
a = 0.71892105581179616210276971993495767914
b = 0.70932703285428855378369530000365161136
points = SA[
(0.0, 0.0, (0.21658207711955775339238838942231815011 + 1) / 2),
(a, 0.0, (-b + 1) / 2),
(0.0, a, (-b + 1) / 2),
(-a, 0.0, (-b + 1) / 2),
(0.0, -a, (-b + 1) / 2),
]
weights = SA[
0.60287280353093925911579186632475611728 / 2,
0.51594846578393185188771870008547763735 / 2,
0.51594846578393185188771870008547763735 / 2,
0.51594846578393185188771870008547763735 / 2,
0.51594846578393185188771870008547763735 / 2,
]
return weights, points
end
function quadrature_rule(::Pyramid, ::Val{3}, ::QuadratureLegendre)
a = 0.56108361105873963414196154191891982155
b = 2.0 / 3.0
points = SA[
(0.0, 0.0, (0.14285714077213670617734974746312582074 + 1) / 2),
(0.0, 0.0, (-0.99999998864829993678698817507850804299 + 1) / 2),
(a, a, (-b + 1) / 2),
(a, -a, (-b + 1) / 2),
(-a, a, (-b + 1) / 2),
(-a, -a, (-b + 1) / 2),
]
weights = SA[
0.67254902379402809443607078852738472107 / 2.0,
0.30000001617617323518941867705084375434 / 2.0,
0.42352940667411633426029430027210954782 / 2.0,
0.42352940667411633426029430027210954782 / 2.0,
0.42352940667411633426029430027210954782 / 2.0,
0.42352940667411633426029430027210954782 / 2.0,
]
return weights, points
end
function quadrature_rule(::Pyramid, ::Val{4}, ::QuadratureLegendre)
a = 0.6505815563982325146829577797417295398
b = 0.65796699712169008954533549931479427127
c = 0.35523170084357268589593075201816127231
d = 0.92150343220236930457646242598412224897
points = SA[
(0.0, 0.0, (0.35446557777227471722730849524904581806 + 1) / 2),
(0.0, 0.0, (-0.74972609378250711033655604388057044149 + 1) / 2),
(a, 0.0, (-c + 1) / 2),
(0.0, a, (-c + 1) / 2),
(-a, 0.0, (-c + 1) / 2),
(0.0, -a, (-c + 1) / 2),
(b, b, (-d + 1) / 2),
(b, -b, (-d + 1) / 2),
(-b, b, (-d + 1) / 2),
(-b, -b, (-d + 1) / 2),
]
weights = SA[
0.30331168845504517111391728481208001144 / 2.0,
0.55168907357213937275730716433358729608 / 2.0,
0.28353223437153468006819777082540613962 / 2.0,
0.28353223437153468006819777082540613962 / 2.0,
0.28353223437153468006819777082540613962 / 2.0,
0.28353223437153468006819777082540613962 / 2.0,
0.16938424178833585063066278355484370017 / 2.0,
0.16938424178833585063066278355484370017 / 2.0,
0.16938424178833585063066278355484370017 / 2.0,
0.16938424178833585063066278355484370017 / 2.0,
]
return weights, points
end
function quadrature_rule(::Pyramid, ::Val{5}, ::QuadratureLegendre)
a = 0.70511712277882760181079385797948261057
b = 0.87777618587595407108464357252416911085
c = 0.43288286410354097685000790909815143591
d = 0.15279732576055038842025517341026975071
e = 0.70652603154632457420722562974792066862
points = SA[
(0.0, 0.0, (0.45971576156501338586164265377920811314 + 1) / 2),
(0.0, 0.0, (-0.39919795837246198593385139590712322914 + 1) / 2),
(0.0, 0.0, (-0.99999998701645569241460017355590234925 + 1) / 2),
(e, 0.0, (-0.75 + 1) / 2),
(0.0, e, (-0.75 + 1) / 2),
(-e, 0.0, (-0.75 + 1) / 2),
(0.0, -e, (-0.75 + 1) / 2),
(a, a, (-b + 1) / 2),
(a, -a, (-b + 1) / 2),
(-a, a, (-b + 1) / 2),
(-a, -a, (-b + 1) / 2),
(c, c, (-d + 1) / 2),
(c, -c, (-d + 1) / 2),
(-c, c, (-d + 1) / 2),
(-c, -c, (-d + 1) / 2),
]
weights = SA[
0.18249431975770692138374895897213800931 / 2.0,
0.45172563864726406056400285032640105704 / 2.0,
0.15654542887619877154120304977336547704 / 2.0,
0.20384344839498724639142514342645843799 / 2.0,
0.20384344839498724639142514342645843799 / 2.0,
0.20384344839498724639142514342645843799 / 2.0,
0.20384344839498724639142514342645843799 / 2.0,
0.10578907087905457654220386143818487109 / 2.0,
0.10578907087905457654220386143818487109 / 2.0,
0.10578907087905457654220386143818487109 / 2.0,
0.10578907087905457654220386143818487109 / 2.0,
0.15934280057233240536079894703404722173 / 2.0,
0.15934280057233240536079894703404722173 / 2.0,
0.15934280057233240536079894703404722173 / 2.0,
0.15934280057233240536079894703404722173 / 2.0,
]
return weights, points
end
# To be completed (available in FEMQuad): tetra, hexa, prism
# Conversion to barycentric rules for 'face' integration
function quadrature_rule_bary(iside::Int, shape::Triangle, ::Val{1})
area = face_area(shape)[iside]
weights = area .* (1.0,)
baryCoords = ((0.5, 0.5),)
return weights, baryCoords
end
function quadrature_rule_bary(iside::Int, shape::Triangle, ::Val{2})
area = face_area(shape)[iside]
weights = area .* (0.5, 0.5)
baryCoords = (
(0.7886751345948129, 0.21132486540518708),
(0.21132486540518713, 0.7886751345948129),
)
return weights, baryCoords
end
function quadrature_rule_bary(iside::Int, shape::Triangle, ::Val{3})
area = face_area(shape)[iside]
weights = area .* (5.0 / 18.0, 8.0 / 18.0, 5.0 / 18.0)
baryCoords = (
(0.8872983346207417, 0.1127016653792583),
(0.5, 0.5),
(0.1127016653792583, 0.8872983346207417),
)
return weights, baryCoords
end
function quadrature_rule_bary(iside::Int, shape::Square, ::Val{1})
area = face_area(shape)[iside]
weights = area .* (1.0,)
baryCoords = ((0.5, 0.5),)
return weights, baryCoords
end
function quadrature_rule_bary(iside::Int, shape::Square, ::Val{2})
area = face_area(shape)[iside]
weights = area .* (0.5, 0.5)
baryCoords = (
(0.7886751345948129, 0.21132486540518708),
(0.21132486540518713, 0.7886751345948129),
)
return weights, baryCoords
end
function quadrature_rule_bary(iside::Int, shape::Square, ::Val{3})
area = face_area(shape)[iside]
weights = area .* (5.0 / 18.0, 8.0 / 18.0, 5.0 / 18.0)
baryCoords = (
(0.8872983346207417, 0.1127016653792583),
(0.5, 0.5),
(0.1127016653792583, 0.8872983346207417),
)
return weights, baryCoords
end
function quadrature_rule_bary(iside::Int, shape::Tetra, ::Val{1})
area = face_area(shape)[iside]
weights = area .* (1.0,)
baryCoords = ((1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0),)
return weights, baryCoords
end
function quadrature_rule_bary(iside::Int, shape::Tetra, ::Val{2})
area = face_area(shape)[iside]
weights = area .* (1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0)
baryCoords = (
(1.0 / 6.0, 1.0 / 6.0, 2.0 / 3.0),
(1.0 / 6.0, 2.0 / 3.0, 1.0 / 6.0),
(2.0 / 3.0, 1.0 / 6.0, 1.0 / 6.0),
)
return weights, baryCoords
end
function quadrature_rule(::Tetra, ::Val{1}, ::QuadratureLegendre)
raw_unzip(get_quadrature_points(Val{:GLTET1}))
end
function quadrature_rule(::Tetra, ::Val{2}, ::QuadratureLegendre)
raw_unzip(get_quadrature_points(Val{:GLTET4}))
end
function quadrature_rule(::Tetra, ::Val{3}, ::QuadratureLegendre)
raw_unzip(get_quadrature_points(Val{:GLTET5}))
end
function quadrature_rule(::Tetra, ::Val{4}, ::QuadratureLegendre)
raw_unzip(get_quadrature_points(Val{:GLTET15}))
end
# To be adapted to implement integration on square faces
#function quadrature_rule(::Square, ::Val{1}, ::Barycentric)
# weights = (1.0,)
# baryCoords = ((0.25, 0.25, 0.25, 0.25),)
# return zip(weights, baryCoords)
#end
#
#function quadrature_rule(::Square, ::Val{2}, ::Barycentric)
# weights = (0.25, 0.25, 0.25, 0.25)
# w1 = sqrt(3.0)/3.0
# w2 = 0.5*(1.0-w1)
# baryCoords = (
# (w1, w2, 0.0, w2),
# (w2, w1, w2, 0.0),
# (0.0, w2, w1, w2),
# (w2, 0.0, w2, w1),
# )
# return zip(weights, baryCoords)
#end
"""
AbstractQuadratureNode{S,Q}
Abstract type representing a quadrature node
for a shape `S` and a quadrature `Q`.
This type is used to represent and identify
easily a quadrature node in a quadrature rules.
Derived types must implement the following method:
- get_index(quadnode::AbstractQuadratureNode{S,Q})
- get_coords(quadnode::AbstractQuadratureNode)
"""
abstract type AbstractQuadratureNode{S, Q} end
get_shape(::AbstractQuadratureNode{S, Q}) where {S, Q} = S
get_quadrature(::AbstractQuadratureNode{S, Q}) where {S, Q} = Q
"""
get_index(quadnode::AbstractQuadratureNode{S,Q})
Returns the index of `quadnode` in the parent
quadrature rule `AbstractQuadRules{S,Q}`
"""
function get_index(quadnode::AbstractQuadratureNode)
error("'get_index' is not defined for type $(typeof(quadnode))")
end
"""
get_coords(quadnode::AbstractQuadratureNode)
Returns the coordinates of `quadnode`.
"""
function get_coords(quadnode::AbstractQuadratureNode)
error("'get_coords' is not defined for type $(typeof(quadnode))")
end
"""
evalquadnode(f, quadnode::AbstractQuadratureNode)
Evaluate the function `f` at the coordinates of `quadnode`.
Basically, it computes:
```jl
f(get_coords(quadnode))
```
# Remark:
Optimization could be applied if `f` is a function
based on a nodal basis such as one of the DoF and `quadnode` are collocated.
"""
evalquadnode(f, quadnode::AbstractQuadratureNode) = f(get_coords(quadnode))
get_quadrature_rule(::AbstractQuadratureNode{S, Q}) where {S, Q} = QuadratureRule(S(), Q())
# default rules for retro-compatibility
get_coords(x::Number) = x
get_coords(x::AbstractArray{T}) where {T <: Number} = x
Base.getindex(quadnode::AbstractQuadratureNode, i) = get_coords(quadnode)[i]
Base.IteratorEltype(x::Bcube.AbstractQuadratureNode) = Base.IteratorEltype(get_coords(x))
Base.IteratorSize(x::Bcube.AbstractQuadratureNode) = Base.IteratorSize(get_coords(x))
Base.size(x::Bcube.AbstractQuadratureNode) = Base.size(get_coords(x))
Base.iterate(x::Bcube.AbstractQuadratureNode) = Base.iterate(get_coords(x))
function Base.iterate(x::Bcube.AbstractQuadratureNode, i::Integer)
Base.iterate(get_coords(x), i::Integer)
end
function Base.Broadcast.broadcastable(x::AbstractQuadratureNode)
Base.Broadcast.broadcastable(get_coords(x))
end
"""
QuadratureNode{S,Q}
Type representing a quadrature node
for a shape `S` and a quadrature `Q`.
This type can be used to represent and identify
easily a quadrature node in the corresponding
parent quadrature rule.
"""
struct QuadratureNode{S, Q, Ti, Tx} <: AbstractQuadratureNode{S, Q}
i::Ti
x::Tx
end
function QuadratureNode(shape, quad, i::Integer, x)
S, Q, Ti, Tx = typeof(shape), typeof(quad), typeof(i), typeof(x)
QuadratureNode{S, Q, Ti, Tx}(i, x)
end
get_index(quadnode::QuadratureNode) = quadnode.i
get_coords(quadnode::QuadratureNode) = quadnode.x
function get_quadnodes_impl(::Type{<:QuadratureRule{S, Q, N}}) where {S, Q, N}
quad = Q()
_, x = quadrature_rule(S(), Val(get_degree(quad)), get_quadtype(quad))
x = map(a -> SVector{length(a), typeof(a[1])}(a), x)
quadnodes =
[QuadratureNode{S, Q, typeof(i), typeof(_x)}(i, _x) for (i, _x) in enumerate(x)]
return :(SA[$(quadnodes...)])
end
"""
get_quadnodes(qr::QuadratureRule{S,Q,N}) where {S,Q,N}
Returns an vector containing each `QuadratureNode` of `qr`
"""
@generated function get_quadnodes(qr::QuadratureRule{S, Q, N}) where {S, Q, N}
expr = get_quadnodes_impl(qr)
return expr
end
# ismapover(::Tuple{Vararg{AbstractQuadratureNode}}) = MapOverStyle()
function _map_quadrature_node_impl(
t::Type{<:Tuple{Vararg{AbstractQuadratureNode, N}}},
) where {N}
expr = ntuple(i -> :(f(t[$i])), N)
return :(SA[$(expr...)])
end
@generated function Base.map(f, t::Tuple{Vararg{AbstractQuadratureNode, N}}) where {N}
return _map_quadrature_node_impl(t)
end
abstract type AbtractCollocatedStyle end
struct IsCollocatedStyle <: AbtractCollocatedStyle end
struct IsNotCollocatedStyle <: AbtractCollocatedStyle end
is_collocated(::AbstractQuadrature, ::AbstractQuadrature) = IsNotCollocatedStyle() #default
is_collocated(::Q, ::Q) where {Q <: AbstractQuadrature} = IsCollocatedStyle()
is_collocated(::AbstractQuadratureRule, ::AbstractQuadratureRule) = IsNotCollocatedStyle() #default
# for two AbstractQuadratureRule defined on the same shape:
function is_collocated(
q1::AbstractQuadratureRule{S},
q2::AbstractQuadratureRule{S},
) where {S}
return is_collocated(get_quadrature(q1), get_quadrature(q2))
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 19156 | """
write_vtk(basename::String, it::Int,time::Real, mesh::AbstractMesh{topoDim,spaceDim}, vars::Dict{String,Tuple{V,L}}; append=false) where{topoDim,spaceDim,V,L<:WriteVTK.AbstractFieldData}
Write a set of variables on the mesh nodes or cell centers to a VTK file.
# Example
```julia
mesh = basic_mesh()
u = rand(ncells(mesh))
v = rand(nnodes(mesh))
dict_vars = Dict( "u" => (u, VTKCellData()), "v" => (v, VTKPointData()) )
write_vtk("output", 0, 0.0, mesh, dict_vars)
```
"""
function write_vtk(
basename::String,
it::Int,
time::Real,
mesh::AbstractMesh{topoDim, spaceDim},
vars::Dict{String, Tuple{V, L}};
append = false,
) where {topoDim, spaceDim, V, L <: WriteVTK.AbstractFieldData}
pvd = paraview_collection(basename; append = append)
# Create coordinates arrays
vtknodes = reshape(
[get_coords(n)[idim] for n in get_nodes(mesh) for idim in 1:spaceDim],
spaceDim,
nnodes(mesh),
)
# Connectivity
c2n = connectivities_indices(mesh, :c2n)
# Create cell array
vtkcells =
[MeshCell(vtk_entity(cells(mesh)[icell]), c2n[icell]) for icell in 1:ncells(mesh)]
# Define mesh for vtk
new_name = _build_fname_with_iterations(basename, it)
vtkfile = vtk_grid(new_name, vtknodes, vtkcells)
for (varname, (value, loc)) in vars
vtkfile[varname, loc] = value
end
pvd[float(time)] = vtkfile
vtk_save(pvd) # also triggers `vtk_save(vtkfile)`
end
"""
VTK writer for a set of discontinuous functions. `vars` is a dictionnary of
variable name => (values, values_location)
where values is an array of numbers.
"""
function write_vtk_discontinuous(
basename::String,
it::Int,
time::Real,
mesh::AbstractMesh{topoDim, spaceDim},
vars::Dict{String, Tuple{V, L}},
degree::Int;
append = false,
) where {topoDim, spaceDim, V, L <: WriteVTK.AbstractFieldData}
pvd = paraview_collection(basename; append = append)
# Connectivity
c2n = connectivities_indices(mesh, :c2n)
celltypes = cells(mesh)
_degree = max(1, degree)
fs = FunctionSpace(:Lagrange, max(1, degree)) # here, we implicitly impose that the mesh is composed of Lagrange elements only
# Create coordinates arrays
# vtknodes = reshape([get_coords(n)[idim] for i in 1:ncells(mesh) for n in get_nodes(mesh,c2n[i]) for idim in 1:spaceDim],spaceDim,:)
_coords = [
mapping(celltypes[i], get_nodes(mesh, c2n[i]), ξ)[idim] for i in 1:ncells(mesh)
for ξ in _vtk_coords_from_lagrange(shape(celltypes[i]), _degree) for
idim in 1:spaceDim
]
vtknodes = reshape(_coords, spaceDim, :)
# Create cell array
vtkcells = MeshCell[]
count = 0
for icell in 1:ncells(mesh)
_nnode = get_ndofs(fs, shape(celltypes[icell]))
push!(
vtkcells,
MeshCell(
vtk_entity(shape(cells(mesh)[icell]), Val(_degree)),
collect((count + 1):(count + _nnode)),
),
)
count += _nnode
end
_index_val = [
_vtk_lagrange_node_index_vtk_to_bcube(shape(celltypes[i]), _degree) for
i in 1:ncells(mesh)
]
index_val = similar(rawcat(_index_val))
offset = 0
for ind in _index_val
index_val[(offset + 1):(offset + length(ind))] .= (offset .+ ind)
offset += length(ind)
end
# Define mesh for vtk
#vtk_save(paraview_collection(basename))
new_name = _build_fname_with_iterations(basename, it)
vtkfile = vtk_grid(new_name, vtknodes, vtkcells)
for (varname, (value, loc)) in vars
if isa(loc, VTKPointData)
vtkfile[varname, loc] = value[index_val]
else
vtkfile[varname, loc] = value
end
end
pvd[float(time)] = vtkfile
vtk_save(pvd)
end
function write_vtk_bnd_discontinuous(
basename::String,
it::Int,
time::Real,
domain::BoundaryFaceDomain,
vars::Dict{String, Tuple{V, L}},
degree::Int;
append = false,
) where {V, L <: WriteVTK.AbstractFieldData}
pvd = paraview_collection(basename; append = append)
mesh = get_mesh(domain)
sdim = spacedim(mesh)
# Connectivities
c2n = connectivities_indices(mesh, :c2n)
f2n = connectivities_indices(mesh, :f2n)
f2c = connectivities_indices(mesh, :f2c)
# Cell and face types
celltypes = cells(mesh)
bndfaces = get_cache(domain)
fs = FunctionSpace(:Lagrange, max(1, degree)) # here, we implicitly impose that the mesh is composed of Lagrange elements only
a = map(bndfaces) do iface
icell = f2c[iface][1]
sideᵢ = cell_side(celltypes[icell], c2n[icell], f2n[iface])
localfacedofs = idof_by_face_with_bounds(fs, shape(celltypes[icell]))[sideᵢ]
ξ = get_coords(fs, shape(celltypes[icell]))[localfacedofs]
xdofs = map(_ξ -> mapping(celltypes[icell], get_nodes(mesh, c2n[icell]), _ξ), ξ)
ftype = entity(face_shapes(shape(celltypes[icell]), sideᵢ), Val(degree))
ftype, rawcat(xdofs)
end
ftypes = getindex.(a, 1)
vtknodes = reshape(rawcat(getindex.(a, 2)), sdim, :)
# Create elements array
vtkcells = MeshCell[]
count = 0
for ftype in ftypes
_nnode = get_ndofs(fs, shape(ftype))
push!(vtkcells, MeshCell(vtk_entity(ftype), collect((count + 1):(count + _nnode))))
count += _nnode
end
# Define mesh for vtk
new_name = _build_fname_with_iterations(basename, it)
vtkfile = vtk_grid(new_name, vtknodes, vtkcells)
for (varname, (value, loc)) in vars
vtkfile[varname, loc] = value
end
pvd[float(time)] = vtkfile
vtk_save(pvd)
end
"""
write_vtk(basename::String, mesh::AbstractMesh{topoDim,spaceDim}) where{topoDim,spaceDim}
Write the mesh to a VTK file.
# Example
```julia
write_vtk("output", basic_mesh())
```
"""
function write_vtk(
basename::String,
mesh::AbstractMesh{topoDim, spaceDim},
) where {topoDim, spaceDim}
dict_vars = Dict{String, Tuple{Any, WriteVTK.AbstractFieldData}}()
write_vtk(basename, 1, 0.0, mesh, dict_vars)
end
"""
vtk_entity(t::AbstractEntityType)
Convert an `AbstractEntityType` into a `VTKCellType`. To find the correspondance, browse the `WriteVTK`
package AND check the Doxygen (for numbering) : https://vtk.org/doc/nightly/html/classvtkTriQuadraticHexahedron.html
"""
function vtk_entity(t::AbstractEntityType)
error("Entity type $t doesn't have a VTK correspondance")
end
vtk_entity(::Node_t) = VTKCellTypes.VTK_VERTEX
vtk_entity(::Bar2_t) = VTKCellTypes.VTK_LINE
vtk_entity(::Bar3_t) = VTKCellTypes.VTK_LAGRANGE_CURVE
vtk_entity(::Bar4_t) = VTKCellTypes.VTK_LAGRANGE_CURVE
#vtk_entity(::Bar5_t) = error("undefined")
vtk_entity(::Tri3_t) = VTKCellTypes.VTK_TRIANGLE
vtk_entity(::Tri6_t) = VTKCellTypes.VTK_LAGRANGE_TRIANGLE #VTK_QUADRATIC_TRIANGLE
vtk_entity(::Tri9_t) = error("undefined")
vtk_entity(::Tri10_t) = VTKCellTypes.VTK_LAGRANGE_TRIANGLE
#vtk_entity(::Tri12_t) = error("undefined")
vtk_entity(::Quad4_t) = VTKCellTypes.VTK_QUAD
vtk_entity(::Quad8_t) = VTKCellTypes.VTK_QUADRATIC_QUAD
vtk_entity(::Quad9_t) = VTKCellTypes.VTK_BIQUADRATIC_QUAD
vtk_entity(::Quad16_t) = VTKCellTypes.VTK_LAGRANGE_QUADRILATERAL
vtk_entity(::Tetra4_t) = VTKCellTypes.VTK_TETRA
vtk_entity(::Tetra10_t) = VTKCellTypes.VTK_QUADRATIC_TETRA
vtk_entity(::Penta6_t) = VTKCellTypes.VTK_WEDGE
vtk_entity(::Hexa8_t) = VTKCellTypes.VTK_HEXAHEDRON
vtk_entity(::Pyra5_t) = VTKCellTypes.VTK_PYRAMID
#vtk_entity(::Hexa27_t) = VTK_TRIQUADRATIC_HEXAHEDRON # NEED TO CHECK NODE NUMBERING : https://vtk.org/doc/nightly/html/classvtkTriQuadraticHexahedron.html
vtk_entity(::Line, ::Val{Degree}) where {Degree} = VTKCellTypes.VTK_LAGRANGE_CURVE
vtk_entity(::Square, ::Val{Degree}) where {Degree} = VTKCellTypes.VTK_LAGRANGE_QUADRILATERAL
vtk_entity(::Triangle, ::Val{Degree}) where {Degree} = VTKCellTypes.VTK_LAGRANGE_TRIANGLE
get_vtk_name(c::VTKCellType) = Val(Symbol(c.vtk_name))
const VTK_LAGRANGE_QUADRILATERAL = get_vtk_name(VTKCellTypes.VTK_LAGRANGE_QUADRILATERAL)
const VTK_LAGRANGE_TRIANGLE = get_vtk_name(VTKCellTypes.VTK_LAGRANGE_TRIANGLE)
"""
Return the node numbering of the node designated by its position in the x and y direction.
See https://www.kitware.com/modeling-arbitrary-order-lagrange-finite-elements-in-the-visualization-toolkit/.
"""
function _point_index_from_IJK(t::Val{:VTK_LAGRANGE_QUADRILATERAL}, degree, i, j)
1 + _point_index_from_IJK_0based(t, degree, i - 1, j - 1)
end
# see : https://github.com/Kitware/VTK/blob/675adbc0feeb3f62730ecacb2af87917af124543/Filters/Sources/vtkCellTypeSource.cxx
# https://github.com/Kitware/VTK/blob/265ca48a79a36538c95622c237da11133608bbe5/Common/DataModel/vtkLagrangeQuadrilateral.cxx#L558
function _point_index_from_IJK_0based(::Val{:VTK_LAGRANGE_QUADRILATERAL}, degree, i, j)
# 0-based algo
ni = degree
nj = degree
ibnd = ((i == 0) || (i == ni))
jbnd = ((j == 0) || (j == nj))
# How many boundaries do we lie on at once?
nbnd = (ibnd > 0 ? 1 : 0) + (jbnd > 0 ? 1 : 0)
if nbnd == 2 # Vertex DOF
return (i > 0 ? (j > 0 ? 2 : 1) : (j > 0 ? 3 : 0))
end
offset = 4
if nbnd == 1 # Edge DOF
ibnd == 0 && (return (i - 1) + (j > 0 ? degree - 1 + degree - 1 : 0) + offset)
jbnd == 0 &&
(return (j - 1) + (i > 0 ? degree - 1 : 2 * (degree - 1) + degree - 1) + offset)
end
offset = offset + 2 * (degree - 1 + degree - 1)
# Face DOF
return (offset + (i - 1) + (degree - 1) * (j - 1))
end
function _vtk_lagrange_node_index_vtk_to_bcube(shape::AbstractShape, degree)
return 1:length(get_coords(FunctionSpace(Lagrange(), degree), shape))
end
"""
Bcube node numbering -> VTK node numbering (in a cell)
"""
function _vtk_lagrange_node_index_bcube_to_vtk(shape::Union{Square, Cube}, degree)
n = _get_num_nodes_per_dim(
QuadratureRule(shape, Quadrature(QuadratureUniform(), Val(degree))),
)
IJK = CartesianIndices(ntuple(i -> 1:n[i], length(n)))
vtk_cell_name = get_vtk_name(vtk_entity(shape, Val(degree)))
# We loop over all the nodes designated by (i,j,k) and find the corresponding
# VTK index for each node.
index = map(vec(IJK)) do ijk
_point_index_from_IJK(vtk_cell_name, degree, Tuple(ijk)...)
end
return index
end
"""
VTK node numbering (in a cell) -> Bcube node numbering
"""
function _vtk_lagrange_node_index_vtk_to_bcube(shape::Union{Square, Cube}, degree)
return invperm(_vtk_lagrange_node_index_bcube_to_vtk(shape, degree))
end
function _vtk_coords_from_lagrange(shape::AbstractShape, degree)
return get_coords(FunctionSpace(Lagrange(), degree), shape)
end
"""
Coordinates of the nodes in the VTK cell, ordered as expected by VTK.
"""
function _vtk_coords_from_lagrange(shape::Union{Square, Cube}, degree)
fs = FunctionSpace(Lagrange(), degree)
c = get_coords(fs, shape)
index = _vtk_lagrange_node_index_vtk_to_bcube(shape, degree)
return c[index]
end
"""
write_vtk_lagrange(
basename::String,
vars::Dict{String, F},
mesh::AbstractMesh,
it::Integer = -1,
time::Real = 0.0;
mesh_degree::Integer = 1,
discontinuous::Bool = true,
functionSpaceType::AbstractFunctionSpaceType = Lagrange(),
collection_append::Bool = false,
vtk_kwargs...,
) where {F <: AbstractLazy}
write_vtk_lagrange(
basename::String,
vars::Dict{String, F},
mesh::AbstractMesh,
U_export::AbstractFESpace,
it::Integer = -1,
time::Real = 0.0;
collection_append::Bool = false,
vtk_kwargs...,
) where {F <: AbstractLazy}
Write the provided FEFunction/MeshCellData/CellFunction on a mesh of order `mesh_degree` with the nodes
defined by the `functionSpaceType` (only `Lagrange{:Uniform}` supported for now). The boolean `discontinuous`
indicate if the node values should be discontinuous or not.
`vars` is a dictionnary of variable name => Union{FEFunction,MeshCellData,CellFunction} to write.
Cell-centered data should be wrapped as `MeshCellData` in the `vars` dict. To convert an `AbstractLazy` to
a `MeshCellData`, simply use `Bcube.cell_mean` or `MeshCellData ∘ Bcube.var_on_centers`.
# Remarks:
* If `mesh` is of degree `d`, the solution will be written on a mesh of degree `mesh_degree`, even if this
number is different from `d`.
* The degree of the input FEFunction (P1, P2, P3, ...) is not used to define the nodes where the solution is
written, only `mesh` and `mesh_degree` matter. The FEFunction is simply evaluated on the aforementionned nodes.
# Example
```julia
mesh = rectangle_mesh(6, 7; xmin = -1, xmax = 1.0, ymin = -1, ymax = 1.0)
f_u = PhysicalFunction(x -> x[1]^2 + x[2]^2)
u = FEFunction(TrialFESpace(FunctionSpace(:Lagrange, 4), mesh))
projection_l2!(u, f_u, mesh)
vars = Dict("f_u" => f_u, "u" => u, "grad_u" => ∇(u))
for mesh_degree in 1:5
Bcube.write_vtk_lagrange(
joinpath(@__DIR__, "output"),
vars,
mesh;
mesh_degree,
discontinuous = false
)
end
```
# Dev notes
- in order to write an ASCII file, you must pass both `ascii = true` and `append = false`
- `collection_append` is not named `append` to enable passing correct `kwargs` to `vtk_grid`
- remove (once fully validated) : `write_vtk_discontinuous`
"""
function write_vtk_lagrange(
basename::String,
vars::Dict{String, F},
mesh::AbstractMesh,
it::Integer = -1,
time::Real = 0.0;
mesh_degree::Integer = 1,
discontinuous::Bool = true,
functionSpaceType::AbstractFunctionSpaceType = Lagrange(),
collection_append::Bool = false,
vtk_kwargs...,
) where {F <: AbstractLazy}
U_export = TrialFESpace(
FunctionSpace(functionSpaceType, mesh_degree),
mesh;
isContinuous = !discontinuous,
)
write_vtk_lagrange(
basename,
vars,
mesh,
U_export,
it,
time;
collection_append,
vtk_kwargs...,
)
end
function write_vtk_lagrange(
basename::String,
vars::Dict{String, F},
mesh::AbstractMesh,
U_export::AbstractFESpace,
it::Integer = -1,
time::Real = 0.0;
collection_append = false,
vtk_kwargs...,
) where {F <: AbstractLazy}
# FE space stuff
fs_export = get_function_space(U_export)
@assert get_type(fs_export) <: Lagrange "Only FunctionSpace of type Lagrange are supported for now"
degree_export = get_degree(fs_export)
dhl_export = Bcube._get_dhl(U_export)
nd = get_ndofs(dhl_export)
# extract all `MeshCellData` in `vars` as this type of variable
# will not be interpolated to nodes and will be written with
# the `VTKCellData` attribute.
vars_cell = filter(((k, v),) -> v isa MeshData{<:CellData}, vars)
vars_point = filter(((k, v),) -> k ∉ keys(vars_cell), vars)
# Get ncomps and type of each `point` variable
type_dim = map(var -> get_return_type_and_codim(var, mesh), values(vars_point))
# VTK stuff
coords_vtk = zeros(spacedim(mesh), nd)
values_vtk = map(((_t, _d),) -> zeros(_t, _d..., nd), type_dim)
cells_vtk = MeshCell[]
sizehint!(cells_vtk, ncells(mesh))
nodeweigth_vtk = zeros(nd)
# Loop over mesh cells
for cinfo in DomainIterator(CellDomain(mesh))
# Cell infos
icell = cellindex(cinfo)
ctype = celltype(cinfo)
_shape = shape(ctype)
# Get Lagrange dofs/nodes coordinates in ref space (Bcube order)
coords_bcube = get_coords(fs_export, _shape)
# Get VTK <-> BCUBE dofs/nodes mapping
v2b = Bcube._vtk_lagrange_node_index_vtk_to_bcube(_shape, degree_export)
# Add nodes coordinates to coords_vtk
for (iloc, ξ) in enumerate(coords_bcube)
# Global number of the node
iglob = get_dof(dhl_export, icell, 1, iloc)
# Create CellPoint (in reference domain)
cpoint = CellPoint(ξ, cinfo, ReferenceDomain())
# Map it to the physical domain and assign to VTK
coords_vtk[:, iglob] .= get_coords(change_domain(cpoint, PhysicalDomain()))
nodeweigth_vtk[iglob] += 1.0
# Evaluate all vars on this node
for (ivar, var) in enumerate(values(vars_point))
_var = materialize(var, cinfo)
values_vtk[ivar][:, iglob] .+= materialize(_var, cpoint)
end
end
# Create the VTK cells with the correct ordering
iglobs = get_dof(dhl_export, icell)
push!(
cells_vtk,
MeshCell(vtk_entity(_shape, Val(degree_export)), view(iglobs, v2b)),
)
end
# Averaging contribution at nodes :
# For discontinuous variables written as a continuous
# field, node averaging is necessary because each adjacent
# cells gives different interpolated values at nodes, then
# a averaging step is used to define a unique node value.
# This step has no effect on node values for :
# - discontinuous variables written as a discontinous
# fields as nodes are duplicated in this case and
# there is one cell contribution for each duplicated
# node (nodeweigth_vtk[i] is equal to 1, ∀i).
# - continous variables written as a continous fields
# because interpolated values are all equals and
# averaging gives the same value.
for val in values_vtk
for i in eachindex(nodeweigth_vtk)
val[:, i] .= val[:, i] ./ nodeweigth_vtk[i]
end
end
# Write VTK file
pvd = paraview_collection(basename; append = collection_append)
new_name = _build_fname_with_iterations(basename, it)
vtkfile = vtk_grid(new_name, coords_vtk, cells_vtk; vtk_kwargs...)
for (varname, value) in zip(keys(vars_point), values_vtk)
vtkfile[varname, VTKPointData()] = value
end
for (varname, value) in zip(keys(vars_cell), values(vars_cell))
vtkfile[varname, VTKCellData()] = get_values(value)
end
pvd[float(time)] = vtkfile
vtk_save(pvd)
end
"""
Append the number of iteration (if positive) to the basename
"""
function _build_fname_with_iterations(basename::String, it::Integer)
it >= 0 ? @sprintf("%s_%08i", basename, it) : basename
end
function write_file(
::Bcube.VTKIoHandler,
basename::String,
mesh::AbstractMesh,
U_export::AbstractFESpace,
data = nothing,
it::Integer = -1,
time::Real = 0.0;
collection_append = false,
kwargs...,
)
# Remove extension from filename
_basename = first(splitext(basename))
# Just write the mesh if `data` is `nothing`
if isnothing(data)
write_vtk(_basename, mesh)
return
end
# We don't use FlowSolution names in VTK, so we flatten everything
_data = data
if valtype(data) <: Dict
_keys = map(d -> collect(keys(d)), values(data))
_keys = vcat(_keys...)
_values = map(d -> collect(values(d)), values(data))
_values = vcat(_values...)
_data = Dict(_keys .=> _values)
end
# Write !
write_vtk_lagrange(_basename, _data, mesh, U_export, it, time; collection_append)
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 4214 | using Bcube
using Test
using StaticArrays
using LinearAlgebra
using DelimitedFiles
using ForwardDiff
using SHA: sha1
using SparseArrays
using WriteVTK
# from :
# https://discourse.julialang.org/t/what-general-purpose-commands-do-you-usually-end-up-adding-to-your-projects/4889
@generated function compare_struct(x, y)
if !isempty(fieldnames(x)) && x == y
mapreduce(n -> :(x.$n == y.$n), (a, b) -> :($a && $b), fieldnames(x))
else
:(x == y)
end
end
"""
Custom way to "include" a file to print infos.
"""
function custom_include(path)
filename = split(path, "/")[end]
print("Running test file " * filename * "...")
include(path)
println("done.")
end
function Base.isapprox(A::Tuple{SVector{N, R}}, B::Tuple{SVector{N, R}}) where {N, R}
all(map(isapprox, A, B))
end
function isapprox_arrays(a::AbstractArray, b::AbstractArray; rtol::Real = eps())
function g(x, y)
if abs(y) < 10rtol
isapprox(x, y; rtol = 0, atol = eps())
else
isapprox(x, y; rtol = rtol)
end
end
success = all(map(g, a, b))
(success == false) && (@show a, b)
return success
end
import Bcube:
absolute_indices,
boundary_faces,
boundary_nodes,
by,
cells,
cellindex,
CellInfo,
CellPoint,
celltype,
cell_side,
center,
change_domain,
compute,
connectivities,
connectivities_indices,
Connectivity,
connectivity_cell2cell_by_faces,
connectivity_cell2cell_by_nodes,
Cube,
get_dof,
DofHandler,
DomainIterator,
edges2nodes,
FaceInfo,
FacePoint,
faces,
faces2nodes,
face_area,
face_shapes,
from,
f2n_from_c2n,
get_coords,
get_dofs,
get_fespace,
get_mapping,
get_nodes,
has_cells,
has_edges,
has_entities,
has_faces,
has_nodes,
has_vertices,
indices,
inner_faces,
integrate_on_ref_element,
interpolate,
inverse_connectivity,
Line,
mapping,
mapping_det_jacobian,
mapping_face,
mapping_inv,
mapping_jacobian,
mapping_jacobian_inv,
materialize,
maxsize,
max_ndofs,
Mesh,
minsize,
myrand,
nedges,
nfaces,
nlayers,
nodes,
normal,
normals,
nvertices,
n_entities,
oriented_cell_side,
outer_faces,
Prism,
PhysicalDomain,
ReferenceDomain,
shape,
shape_functions,
spacedim,
Square,
Tetra,
to,
topodim,
Triangle,
∂λξ_∂ξ,
∂λξ_∂x
# This dir will be removed at the end of the tests
tempdir = mktempdir()
# Reading sha1 checksums
f = readdlm(joinpath(@__DIR__, "checksums.sha1"), String)
fname2sum = Dict(r[2] => r[1] for r in eachrow(f))
@testset "Bcube.jl" begin
custom_include("./test_utils.jl")
custom_include("./mesh/test_entity.jl")
custom_include("./mesh/test_connectivity.jl")
custom_include("./mesh/test_transformation.jl")
custom_include("./mesh/test_mesh.jl")
custom_include("./mesh/test_mesh_generator.jl")
custom_include("./mesh/test_gmsh.jl")
custom_include("./mesh/test_domain.jl")
custom_include("./mapping/test_mapping.jl")
custom_include("./mapping/test_ref2phys.jl")
custom_include("./interpolation/test_shape.jl")
custom_include("./interpolation/test_lagrange.jl")
custom_include("./interpolation/test_taylor.jl")
custom_include("./fespace/test_dofhandler.jl")
custom_include("./fespace/test_fespace.jl")
custom_include("./fespace/test_fefunction.jl")
custom_include("./interpolation/test_projection.jl")
custom_include("./integration/test_integration.jl")
# custom_include("./dof/test_variable.jl") #TODO : update with new API
custom_include("./interpolation/test_shapefunctions.jl")
# custom_include("./interpolation/test_limiter.jl")
custom_include("./interpolation/test_cellfunction.jl")
custom_include("./dof/test_assembler.jl")
custom_include("./operator/test_algebra.jl")
custom_include("./dof/test_meshdata.jl")
custom_include("./writers/test_vtk.jl")
@testset "Issues" begin
custom_include("./issues/issue_112.jl")
custom_include("./issues/issue_130.jl")
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 1736 | import Bcube: densify, densify!, rawcat
@testset "utils" begin
@testset "densify" begin
a = [i for i in 1:5]
densify!(a)
@test a == [i for i in 1:5]
a = [1, 3, 4, 5, 2, 3]
densify!(a)
@test a == [1, 2, 3, 4, 5, 2]
a = [1, 2, 4, 10, 6, 10, 2]
densify!(a)
@test a == [1, 2, 3, 4, 5, 4, 2]
a = [1, 2, 4, 10, 6, 10, 2]
remap = [1, 2, 0, 3, 4, 5, 0, 0, 0, 4]
_a, _remap = densify(a; permute_back = true)
@test all(_remap[i] == remap[i] for i in keys(_remap))
end
@testset "otimes" begin
a = [1, 2]
@test otimes(a, a) == [1 2; 2 4]
end
@testset "dcontract" begin
A = zeros(2, 2, 2)
A[1, :, :] .= [1 2; 3 4]
A[2, :, :] .= [-1 -1; 0 0]
B = zeros(2, 2)
B .= [1 2; 3 4]
@test A ⊡ B == [30.0; -3.0]
end
@testset "rawcat" begin
a = [[1, 2], [3, 4, 5], [6, 7]]
@test rawcat(a) == [1, 2, 3, 4, 5, 6, 7]
b = [SA[1, 2], SA[3, 4, 5], SA[6, 7]]
@test rawcat(b) == [1, 2, 3, 4, 5, 6, 7]
c = [[1 2; 10 20], [3 4 5; 30 40 50], [6 7; 60 70]]
@test rawcat(c) == [1, 10, 2, 20, 3, 30, 4, 40, 5, 50, 6, 60, 7, 70]
d = [SA[1 2; 10 20], SA[3 4 5; 30 40 50], SA[6 7; 60 70]]
@test rawcat(d) == [1, 10, 2, 20, 3, 30, 4, 40, 5, 50, 6, 60, 7, 70]
@test isa(rawcat(d), Vector)
x = [1, 2, 3]
@test rawcat(x) == x
end
@testset "matrix_2_vector_of_SA" begin
a = [
1 2 3
4 5 6
]
b = Bcube.matrix_2_vector_of_SA(a)
@test b[1] == SA[1, 4]
@test b[2] == SA[2, 5]
@test b[3] == SA[3, 6]
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 15235 | @testset "Assembler" begin
@testset "linear-single-scalar-fe" begin
#---- Mesh 1
nx = 5
mesh = line_mesh(nx)
Δx = 1.0 / (nx - 1)
# Function space
fs = FunctionSpace(:Lagrange, 1)
# Finite element space
V = TestFESpace(fs, mesh)
# Measure
dΩ = Measure(CellDomain(mesh), 3)
# Linear forms
f = PhysicalFunction(x -> x[1])
l1(v) = ∫(v)dΩ
l2(v) = ∫(f * v)dΩ
l3(v) = ∫((c * u) ⋅ ∇(v))dΩ
# Compute integrals
b1 = assemble_linear(l1, V)
b2 = assemble_linear(l2, V)
# Check results
@test b1 == SA[Δx / 2, Δx, Δx, Δx, Δx / 2]
res2 = [Δx^2 * (i - 1) for i in 1:nx]
res2[1] = Δx^2 / 6.0
res2[nx] = Δx^2 / 2.0 * (nx - 4.0 / 3.0)
@test all(isapprox.(b2, res2))
#---- Mesh 2
degree = 1
α = 10.0
c = SA[0.5, 1.0] # [cx, cy]
sx = 2
sy = 3
mesh = one_cell_mesh(:quad)
transform!(mesh, x -> x .* SA[sx, sy])
Δx = 2 * sx
Δy = 2 * sy
fs = FunctionSpace(:Lagrange, degree)
U = TrialFESpace(fs, mesh; isContinuous = false)
V = TestFESpace(U)
dΩ = Measure(CellDomain(mesh), 2 * degree + 1)
u = FEFunction(U, α .* ones(get_ndofs(V)))
# Rq:
# Mesh is defined by (Δx, Δy)
# λ[1] <=> λ associated to node [-1, -1] (i.e node 1 of reference square)
# λ[2] <=> λ associated to node [ 1, -1] (i.e node 2 of reference square)
# λ[3] <=> λ associated to node [-1, 1] (i.e node 4 of reference square)
# λ[4] <=> λ associated to node [ 1, 1] (i.e node 3 of reference square)
l(v) = ∫((c * u) ⋅ ∇(v))dΩ
b = assemble_linear(l, V)
b_ref = [
-α / 2 * (c[1] * Δy + c[2] * Δx),
α / 2 * (c[1] * Δy - c[2] * Δx),
α / 2 * (-c[1] * Δy + c[2] * Δx),
α / 2 * (c[1] * Δy + c[2] * Δx),
]
@test all(b .≈ b_ref)
# test with operator composition
_f(u, ∇v) = (c * u) ⋅ ∇v
l_compo(v) = ∫(_f ∘ (u, ∇(v)))dΩ
b_compo = assemble_linear(l_compo, V)
@test all(b_compo .≈ b_ref)
end
@testset "linear-single-vector-fe" begin
# Mesh
nx = 5
mesh = line_mesh(nx)
Δx = 1.0 / (nx - 1)
# Function space
fs = FunctionSpace(:Lagrange, 1)
# Finite element space
V = TestFESpace(fs, mesh; size = 2)
# Measure
dΩ = Measure(CellDomain(mesh), 3)
# Linear forms
f = PhysicalFunction(x -> SA[x[1], x[1] / 2.0])
l1(v) = ∫(f ⋅ v)dΩ
# Compute integrals
b1 = assemble_linear(l1, V)
# Check results
# (obtained from single-scalar test, and knowing the dof numbering)
res1 = [Δx^2 * (i - 1) for i in 1:nx]
res1[1] = Δx^2 / 6.0
res1[nx] = Δx^2 / 2.0 * (nx - 4.0 / 3.0)
@test b1[1] ≈ res1[1]
@test b1[2] ≈ res1[2]
@test b1[3] ≈ res1[1] / 2.0
@test b1[4] ≈ res1[2] / 2.0
@test all(isapprox.(b1[5:2:end], res1[3:end]))
@test all(isapprox.(b1[6:2:end], res1[3:end] ./ 2.0))
end
@testset "linear-multi-scalar-fe" begin
# Mesh
nx = 5
mesh = line_mesh(nx)
Δx = 1.0 / (nx - 1)
# Function space
fs = FunctionSpace(:Lagrange, 1)
# Finite element space
V1 = TestFESpace(fs, mesh)
V2 = TestFESpace(fs, mesh)
V = MultiFESpace(V1, V2; arrayOfStruct = false)
# Measure
dΩ = Measure(CellDomain(mesh), 3)
# Linear forms
f1 = PhysicalFunction(x -> x[1])
f2 = PhysicalFunction(x -> x[1] / 2.0)
l1((v1, v2)) = ∫(f1 * v1 + f2 * v2)dΩ
# Compute integrals
b1 = assemble_linear(l1, V)
# Check results
# (obtained from single-scalar test, and knowing the dof numbering)
res1 = [Δx^2 * (i - 1) for i in 1:nx]
res1[1] = Δx^2 / 6.0
res1[nx] = Δx^2 / 2.0 * (nx - 4.0 / 3.0)
@test all(isapprox.(b1[1:nx], res1))
@test all(isapprox.(b1[(nx + 1):end], res1 ./ 2.0))
# test with operator composition
f_l1_compo(v1, v2, f1, f2) = f1 * v1 + f2 * v2
l1_compo((v1, v2)) = ∫(f_l1_compo ∘ (v1, v2, f1, f2))dΩ
b1_compo = assemble_linear(l1_compo, V)
@test all(b1_compo .≈ b1)
# test `MultiIntegration`
l_multi(v) = 3 * l1(v) - 4 * l1(v) + 7 * l1(v)
b_multi = assemble_linear(l_multi, V)
@test all(b_multi .≈ 6 * b1)
end
@testset "linear-multi-vector-fe" begin
# Mesh
mesh = one_cell_mesh(:tri)
# Function space
fs_u = FunctionSpace(:Lagrange, 1)
fs_p = FunctionSpace(:Lagrange, 1)
# Finite element spaces
U_xy = TrialFESpace(fs_u, mesh; size = 2)
U_z = TrialFESpace(fs_u, mesh)
U_p = TrialFESpace(fs_p, mesh)
V_xy = TestFESpace(U_xy)
V_z = TestFESpace(U_z)
V_p = TestFESpace(U_p)
U = MultiFESpace(U_p, U_xy, U_z)
V = MultiFESpace(V_p, V_xy, V_z)
# Measure
dΩ = Measure(CellDomain(mesh), 3)
# bi-linear form
a((u_p, u_xy, u_z), (v_p, v_xy, v_z)) = ∫(u_xy ⋅ v_xy + u_p ⋅ v_z + ∇(u_p) ⋅ v_xy)dΩ
# Compute integrals
A = assemble_bilinear(a, U, V)
# Test a few values...
@test A[12, 1] ≈ 1.0 / 6.0
@test A[12, 2] ≈ 1.0 / 6.0
@test A[12, 3] ≈ 1.0 / 3.0
end
@testset "Bilinear rectangular system" begin
mesh = one_cell_mesh(:line)
U = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh)
V = TestFESpace(FunctionSpace(:Lagrange, 2), mesh)
dΩ = Measure(CellDomain(mesh), 2)
a(u, v) = ∫(∇(u) ⋅ v)dΩ
l(v) = ∫(v)dΩ
A = assemble_bilinear(a, U, V)
b = assemble_linear(l, V)
@test all((A[1, 1], A[1, 2]) .≈ (-1.0 / 6.0, 1.0 / 6.0))
@test all((A[2, 1], A[2, 2]) .≈ (-2.0 / 3.0, 2.0 / 3.0))
@test all((A[3, 1], A[3, 2]) .≈ (-1.0 / 6.0, 1.0 / 6.0))
end
@testset "Poisson DG" begin
degree = 3
degree_quad = 2 * degree + 1
γ = degree * (degree + 1)
n = 4
Lx = 1.0
h = Lx / n
uref = PhysicalFunction(x -> 3 * x[1] + x[2]^2 + 2 * x[1]^3)
f = PhysicalFunction(x -> -2 - 12 * x[1])
g = uref # boundary condition
avg(u) = 0.5 * (side⁺(u) + side⁻(u))
# Build mesh
meshParam = (nx = n + 1, ny = n + 1, lx = Lx, ly = Lx, xc = 0.0, yc = 0.0)
path = joinpath(tempdir, "mesh.msh")
gen_rectangle_mesh(path, :quad; meshParam...)
mesh = read_msh(path)
# Choose degree and define function space, trial space and test space
fs = FunctionSpace(:Lagrange, degree)
U = TrialFESpace(fs, mesh, :discontinuous)
V = TestFESpace(U)
# Define volume and boundary measures
dΩ = Measure(CellDomain(mesh), degree_quad)
dΓ = Measure(InteriorFaceDomain(mesh), degree_quad)
dΓb = Measure(BoundaryFaceDomain(mesh), degree_quad)
nΓ = get_face_normals(dΓ)
nΓb = get_face_normals(dΓb)
a_Ω(u, v) = ∫(∇(v) ⋅ ∇(u))dΩ
l_Ω(v) = ∫(v * f)dΩ
function a_Γ(u, v)
∫(
-jump(v, nΓ) ⋅ avg(∇(u)) - avg(∇(v)) ⋅ jump(u, nΓ) +
γ / h * jump(v, nΓ) ⋅ jump(u, nΓ),
)dΓ
end
fa_Γb(u, ∇u, v, ∇v, n) = -v * (∇u ⋅ n) - (∇v ⋅ n) * u + (γ / h) * v * u
a_Γb(u, v) = ∫(fa_Γb ∘ map(side⁻, (u, ∇(u), v, ∇(v), nΓb)))dΓb
fl_Γb(v, ∇v, n, g) = -(∇v ⋅ n) * g + (γ / h) * v * g
l_Γb(v) = ∫(fl_Γb ∘ map(side⁻, (v, ∇(v), nΓb, g)))dΓb
a(u, v) = a_Ω(u, v) + a_Γ(u, v) + a_Γb(u, v)
l(v) = l_Ω(v) + l_Γb(v)
sys = Bcube.AffineFESystem(a, l, U, V)
uh = Bcube.solve(sys)
l2(u) = sqrt(sum(compute(∫(u ⋅ u)dΩ)))
h1(u) = sqrt(sum(compute(∫(u ⋅ u + ∇(u) ⋅ ∇(u))dΩ)))
e = uref - uh
el2 = l2(e)
eh1 = h1(e)
tol = 1.e-12
@test el2 < tol
@test eh1 < tol
end
@testset "Constrained Poisson" begin
n = 2
Lx = 2.0
# Build mesh
meshParam = (nx = n + 1, ny = n + 1, lx = Lx, ly = Lx, xc = 0.0, yc = 0.0)
tmp_path = "tmp.msh"
gen_rectangle_mesh(tmp_path, :quad; meshParam...)
mesh = read_msh(tmp_path)
rm(tmp_path)
# Choose degree and define function space, trial space and test space
degree = 2
fs = FunctionSpace(:Lagrange, degree)
U = TrialFESpace(fs, mesh)
V = TestFESpace(U)
Λᵤ = MultiplierFESpace(mesh, 1)
Λᵥ = TestFESpace(Λᵤ)
# The usual trial FE space and multiplier space are combined into a MultiFESpace
P = MultiFESpace(U, Λᵤ)
Q = MultiFESpace(V, Λᵥ)
# Define volume and boundary measures
dΩ = Measure(CellDomain(mesh), 2 * degree + 1)
Γ₁ = BoundaryFaceDomain(mesh, ("West",))
dΓ₁ = Measure(Γ₁, 2 * degree + 1)
Γ = BoundaryFaceDomain(mesh, ("East", "South", "West", "North"))
dΓ = Measure(Γ, 2 * degree + 1)
# Define solution FE Function
ϕ = FEFunction(U)
f = PhysicalFunction(x -> 1.0)
int_val = 4.0 / 3.0
volume = sum(compute(∫(PhysicalFunction(x -> 1.0))dΩ))
# Define bilinear and linear forms
function a((u, λᵤ), (v, λᵥ))
∫(∇(u) ⋅ ∇(v))dΩ + ∫(side⁻(λᵤ) * side⁻(v))dΓ + ∫(side⁻(λᵥ) * side⁻(u))dΓ
end
function l((v, λᵥ))
∫(f * v + int_val * λᵥ / volume)dΩ + ∫(-2.0 * side⁻(v) + 0.0 * side⁻(λᵥ))dΓ₁
end
# Assemble to get matrices and vectors
A = assemble_bilinear(a, P, Q)
L = assemble_linear(l, Q)
# Solve problem
sol = A \ L
ϕ = FEFunction(Q)
# Compare to analytical solution
set_dof_values!(ϕ, sol)
u, λ = ϕ
u_ref = PhysicalFunction(x -> -0.5 * (x[1] - 1.0)^2 + 1.0)
error = u_ref - u
l2(u) = sqrt(sum(compute(∫(u ⋅ u)dΩ)))
el2 = l2(error)
tol = 1.e-15
@test el2 < tol
end
@testset "Heat solver 3d" begin
function heat_solver(mesh, degree, dirichlet_dict, q, η, T_analytical)
fs = FunctionSpace(:Lagrange, degree)
U = TrialFESpace(fs, mesh, dirichlet_dict)
V = TestFESpace(U)
dΩ = Measure(CellDomain(mesh), 2 * degree + 1)
a(u, v) = ∫(η * ∇(u) ⋅ ∇(v))dΩ
l(v) = ∫(q * v)dΩ
sys = AffineFESystem(a, l, U, V)
ϕ = Bcube.solve(sys)
Tcn = var_on_centers(ϕ, mesh)
Tca = map(T_analytical, get_cell_centers(mesh))
return norm(Tcn .- Tca, Inf) / norm(Tca, Inf)
end
function driver_heat_solver()
mesh_path = joinpath(tempdir, "tmp1.msh")
gen_hexa_mesh(mesh_path, :tetra; xc = 0.0, yc = 0.0, zc = 0.0)
mesh = read_msh(mesh_path)
λ = 100.0
η = λ
degree = 1
dirichlet_dict = Dict("xmin" => 260.0, "xmax" => 285.0)
q = 0.0
T_analytical(x) = 260.0 * (0.5 - x[1]) + 285 * (x[1] + 0.5)
err = heat_solver(mesh, degree, dirichlet_dict, q, η, T_analytical)
@test err < 1.0e-14
mesh_path = joinpath(tempdir, "tmp2.msh")
gen_hexa_mesh(
mesh_path,
:hexa;
nx = 5,
ny = 5,
nz = 5,
xc = 0.0,
yc = 0.0,
zc = 0.0,
)
mesh = read_msh(mesh_path)
degree = 2
dirichlet_dict = Dict("xmin" => 260.0)
q = 1500.0
T2_analytical(x) = 260.0 + (q / λ) * x[1] * (1.0 - 0.5 * x[1])
scale(x) = (x[1] + 0.5)
err = heat_solver(mesh, degree, dirichlet_dict, q, η, T2_analytical ∘ scale)
@test err < 1.0e-14
#
end
driver_heat_solver()
end
@testset "Subdomain" begin
n = 5
mesh = line_mesh(2 * n + 1; xmin = 0, xmax = 1)
sub1 = 1:2:(2 * n)
sub2 = 2:2:(2 * n)
dΩ = Measure(CellDomain(mesh), 1)
dΩ1 = Measure(CellDomain(mesh, sub1), 1)
dΩ2 = Measure(CellDomain(mesh, sub2), 1)
f = PhysicalFunction(x -> 1.0)
@test sum(Bcube.compute(∫(f)dΩ1)) == 0.5
@test sum(Bcube.compute(∫(f)dΩ2)) == 0.5
end
# @testset "Symbolic (to be completed)" begin
# using MultivariatePolynomials
# using TypedPolynomials
# @polyvar x y
# λ1 = (x - 1) * (y - 1) / 4
# λ2 = -(x + 1) * (y - 1) / 4
# λ4 = (x + 1) * (y + 1) / 4 # to match Bcube ordering
# λ3 = -(x - 1) * (y + 1) / 4
# λall = (λ1, λ2, λ3, λ4)
# ∇λ1 = differentiate(λ1, (x, y))
# ∇λ2 = differentiate(λ2, (x, y))
# ∇λ3 = differentiate(λ3, (x, y))
# ∇λ4 = differentiate(λ4, (x, y))
# ∇λall = (∇λ1, ∇λ2, ∇λ3, ∇λ4)
# function integrate_poly_on_quad(p)
# a = antidifferentiate(p, x)
# b = subs(a, x => 1) - subs(a, x => -1)
# c = antidifferentiate(b, y)
# d = subs(c, y => 1) - subs(c, y => -1)
# return d
# end
# interp_sca(base, values) = [base...] ⋅ values
# function interp_vec(base, values)
# n = floor(Int, length(values) / 2)
# return [interp_sca(base, values[1:n]), interp_sca(base, values[n+1:end])]
# end
# # One cell mesh (for volumic integration)
# mesh = one_cell_mesh(:quad)
# factor = 1
# scale!(mesh, factor)
# degree = 1
# dΩ = Measure(CellDomain(mesh), 2 * degree + 1)
# fs = FunctionSpace(:Lagrange, degree)
# U_sca = TrialFESpace(fs, mesh, :discontinuous)
# U_vec = TrialFESpace(fs, mesh, :discontinuous; size=2)
# V_sca = TestFESpace(U_sca)
# V_vec = TestFESpace(U_vec)
# ρ = FEFunction(U_sca)
# ρu = FEFunction(U_vec)
# ρE = FEFunction(U_sca)
# U = MultiFESpace(U_sca, U_vec, U_sca)
# V = MultiFESpace(V_sca, V_vec, V_sca)
# # bilinear tests
# a(u, v) = ∫(u ⋅ v)dΩ
# M1 = assemble_bilinear(a, U_sca, V_sca)
# M2 = factor^2 * [integrate_poly_on_quad(λj * λi) for λj in λall, λi in λall]
# @show all(isapprox.(M1, M2))
# a(u, v) = ∫(∇(u) ⋅ ∇(v))dΩ
# M1 = assemble_bilinear(a, U_sca, V_sca)
# M2 = [integrate_poly_on_quad(∇λj ⋅ ∇λi) for ∇λj in ∇λall, ∇λi in ∇λall]
# @show all(isapprox.(M1, M2))
# # linear tests
# values_ρ = [1.0, 2.0, 3.0, 4.0]
# values_ρu = [5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0]
# ρ.dofValues .= values_ρ
# ρu.dofValues .= values_ρu
# ρu_sym = interp_vec(λall, values_ρu)
# l(v) = ∫(ρu ⋅ ∇(v))dΩ
# b1 = assemble_linear(l, V_sca)
# b2 = [integrate_poly_on_quad(ρu_sym ⋅ ∇λi) for ∇λi in ∇λall]
# @show all(isapprox.(b1, b2))
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 2523 | @testset "MeshData" begin
@testset "CellData" begin
#--- Test 1
n = 3
mesh = line_mesh(n)
dΩ = Measure(CellDomain(mesh), 2)
# Scalar data
data = collect(1:ncells(mesh))
d = Bcube.MeshCellData(data)
integ = ∫(d)dΩ
@test compute(integ) == [0.5, 1.0]
# tensor data
# data = [[1,2,3,4], [5,6,7,8], ...]
data = collect(reinterpret(SVector{4, Int}, collect(1:(4 * ncells(mesh)))))
d = Bcube.MeshCellData(data)
@test compute(∫(d ⋅ [0, 1, 0, 0])dΩ) == [1.0, 3.0]
#--- Test 2
mesh = line_mesh(3)
array = [1.0, 2.0]
funcs = [PhysicalFunction(x -> x), PhysicalFunction(x -> 2x)]
cellArray = MeshCellData(array)
cellFuncs = MeshCellData(funcs)
for cInfo in DomainIterator(CellDomain(mesh))
i = cellindex(cInfo)
cPointRef = CellPoint([0.0], cInfo, ReferenceDomain())
cPointPhy = change_domain(cPointRef, PhysicalDomain())
_cellArray = Bcube.materialize(cellArray, cInfo)
@test Bcube.materialize(_cellArray, cPointRef) == array[i]
_cellFuncs = Bcube.materialize(cellFuncs, cInfo)
@test Bcube.materialize(_cellFuncs, cPointRef) == funcs[i](cPointPhy)
end
#--- Test 3, MeshCellData in face integration
mesh = rectangle_mesh(2, 2; xmin = 0, xmax = 3, ymin = -1, ymax = 1)
data = MeshCellData(ones(ncells(mesh)))
dΓ = Measure(BoundaryFaceDomain(mesh), 1)
values = nonzeros(Bcube.compute(∫(side_n(data))dΓ))
@test isapprox_arrays(values, [3.0, 2.0, 3.0, 2.0])
end
@testset "FaceData" begin
nodes = [Node([0.0, 0.0]), Node([2.0, 0.0]), Node([3.0, 1.0]), Node([1.0, 2.0])]
celltypes = [Quad4_t()]
cell2node = Connectivity([4], [1, 2, 3, 4])
bnd_name = "BORDER"
tag2name = Dict(1 => bnd_name)
tag2nodes = Dict(1 => collect(1:4))
mesh = Mesh(nodes, celltypes, cell2node; bc_names = tag2name, bc_nodes = tag2nodes)
f(fnodes) = PhysicalFunction(x -> begin
norm(x - get_coords(get_nodes(mesh, fnodes[1])))
end)
f2n = connectivities_indices(mesh, :f2n)
D = MeshFaceData([f(fnodes) for fnodes in f2n])
∂Ω = Measure(BoundaryFaceDomain(mesh), 3)
a = compute(∫(side⁻(D))∂Ω)
l = compute(∫(side⁻(PhysicalFunction(x -> 1.0)))∂Ω)
@test isapprox_arrays(a, l .^ 2 ./ 2; rtol = 1e-15)
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 12268 | """
This function compares the values of the input function `f` on the cell nodes with the values
obtained by a `CellVariable` intialized by `f` on the corresponding cell nodes.
"""
function test_setvalues!_with_function(
mesh,
meshOrder,
fesType,
fesDegree,
fesContinuity,
f,
)
fs = FunctionSpace(fesType, fesDegree)
isa(f, Tuple) ? size = length(f) : size = 1
fes = FESpace(fs, fesContinuity; size = size)
u = CellVariable(:u, mesh, fes)
set_values!(u, f)
uc = var_on_centers(u)
cellTypes = cells(mesh)
c2n = connectivities_indices(mesh, :c2n)
for i in 1:ncells(mesh)
ctype = cellTypes[i]
cnodes = get_nodes(mesh, c2n[i])
uᵢ = u[i, Val(:unstable)]
a = [f(Bcube.mapping(ctype, cnodes, x)) for x in get_coords(shape(ctype))]
b = [uᵢ(ξ) for ξ in get_coords(shape(ctype))]
@test all(isapprox.(a, b, rtol = 1000eps()))
end
end
function test_getindex_with_collocated_quad(
mesh,
meshOrder,
fesType,
fesDegree,
fesContinuity,
f,
)
fs = FunctionSpace(fesType, fesDegree)
isa(f, Tuple) ? size = length(f) : size = 2
fes = FESpace(fs, fesContinuity; size = size)
u = CellVariable(:u, mesh, fes)
set_values!(u, f)
cellTypes = cells(mesh)
c2n = connectivities_indices(mesh, :c2n)
for i in 1:ncells(mesh)
ct = cellTypes[i]
cn = get_nodes(mesh, c2n[i])
uᵢ = u[i, Val(:unstable)]
quadrule = QuadratureRule(shape(ct), get_quadrature(fs))
a = uᵢ(quadrule)
b = uᵢ.(get_nodes(quadrule))
@test all(a .≈ b)
end
end
@testset "CellVariable" begin
@testset "Mean and cell center values" begin
@testset "Discontinuous" begin
@testset "Taylor - linear quad" begin
for Ly in (1.0, 2.0, 3.0), Lx in (1.0, 2.0, 3.0) # different cell size
mesh = one_cell_mesh(
:quad;
xmin = 0.0,
xmax = Lx,
ymin = 0.0,
ymax = Ly,
order = 1,
)
degree = 1
fs1 = FunctionSpace(:Taylor, degree)
fes1 = FESpace(fs1, :discontinuous; size = 1) # DG, scalar
u = CellVariable(:u, mesh, fes1)
for f in (x -> 10, x -> 12x[1] + 2x[2] + 4) # test for constant and linear functions
set_values!(u, f)
u̅ = mean_values(u, Val(degree))
uc = var_on_centers(u)
@test length(u̅) === length(uc) === 1
@test u̅[1] ≈ uc[1] ≈ f([Lx / 2, Ly / 2])
end
fes2 = FESpace(fs1, :discontinuous; size = 2)
v = CellVariable(:v, mesh, fes2) # DG, 2-vector variable
f = (x -> 3x[1] + 4x[2] + 7 * x[1] * x[2], x -> 12x[1] + 2x[2] + 4) # here, one function per variable component
gradf = x -> [
3+7 * x[2] 4+7 * x[1]
12 2
]
set_values!(v, f)
v̅ = mean_values(v, Val(degree))
vc = var_on_centers(v)
@test length(v̅) === 1
@test size(vc) === (1, 2)
@test v̅[1] ≈
vc[1, :] ≈
[f[1]([Lx / 2, Ly / 2]), f[2]([Lx / 2, Ly / 2])]
end
end
@testset "Lagrange - linear and quadratic quad" begin
for Ly in (1.0, 2.0, 3.0), Lx in (1.0, 2.0, 3.0) # different cell size
for continuity in (:discontinuous, :continuous)
for meshOrder in (1, 2)
mesh = one_cell_mesh(
:quad;
xmin = 0.0,
xmax = Lx,
ymin = 0.0,
ymax = Ly,
order = meshOrder,
)
degree = meshOrder
fs1 = FunctionSpace(:Lagrange, degree)
fes1 = FESpace(fs1, continuity; size = 1) # DG, scalar
u = CellVariable(:u, mesh, fes1)
for (f, ∇f) in zip(
(
x -> 10x[1] * x[2] + 4x[1] + 7x[2],
x -> 12x[1] + 2x[2] + 4,
),
(x -> [10 * x[2] + 4 10 * x[1] + 7], x -> [12 2]),
) # test for constant and linear functions
set_values!(u, f)
u̅ = mean_values(u, Val(degree))
uc = var_on_centers(u)
@test length(u̅) === length(uc) === 1
@test u̅[1] ≈ uc[1] ≈ f([Lx / 2, Ly / 2])
@test u[1, Val(:unstable)]([0.0, 0.0]) ≈ f([Lx / 2, Ly / 2])
@test all(
isapprox.(
∇(u)[1, Val(:unstable)]([0.0, 0.0]),
∇f([Lx / 2, Ly / 2]),
),
)
end
fes2 = FESpace(fs1, continuity; size = 2)
v = CellVariable(:v, mesh, fes2) # DG, 2-vector variable
f = (
x -> 3x[1] + 4x[2] + 7 * x[1] * x[2],
x -> 12x[1] + 2x[2] + 4,
) # here, one function per variable component
∇f = x -> [
3+7 * x[2] 4+7 * x[1]
12 2
]
set_values!(v, f)
v̅ = mean_values(v, Val(degree))
vc = var_on_centers(v)
@test length(v̅) === 1
@test size(vc) === (1, 2)
@test v̅[1] ≈
vc[1, :] ≈
[f[1]([Lx / 2, Ly / 2]), f[2]([Lx / 2, Ly / 2])]
@test all(
isapprox.(
∇(v)[1, Val(:unstable)]([0.0, 0.0]),
∇f([Lx / 2, Ly / 2]),
),
)
@test all(
isapprox.(
∇(v)[1, Val(:unstable)]([1.0, 0.0]),
∇f([Lx, Ly / 2]),
),
)
end
end
end
end
end
end
dict_f = Dict(
0 => x -> 6.0, #deg 0
1 => x -> 2x[1] + 4x[2] + 5, #deg 1
2 => x -> 3x[1] * x[2] + x[1]^2 + 2.5x[2] - 1.5, #deg 2
3 => x -> 3x[1]^2 * x[2] + 10x[2] + 4,
) #deg 3
dict_fesDegree = Dict(
(:quad, :Lagrange) => 0:3,
(:tri, :Lagrange) => 0:2,
(:quad, :Taylor) => 0:1,
(:tri, :Taylor) => 0:0,
)
Lx = 3.0
Ly = 2.0
nx = 3
ny = 4
@testset "setvalues! with function" begin
@testset "mesh type=$meshElement and order=$meshOrder" for meshElement in
(:quad, :tri),
meshOrder in 1:2
if meshElement == :tri # tri mesh generator with several cells is not available
mesh = one_cell_mesh(
meshElement;
xmin = 0.0,
xmax = Lx,
ymin = 0.0,
ymax = Ly,
order = meshOrder,
)
else
mesh = rectangle_mesh(
nx,
ny;
type = meshElement,
xmin = 0.0,
xmax = Lx,
ymin = 0.0,
ymax = Ly,
order = meshOrder,
)
end
@testset "fespace: type=$fesType degree=$fesDegree $fesContinuity" for fesType in
(
:Lagrange,
:Taylor,
),
fesDegree in dict_fesDegree[(meshElement, fesType)],
fesContinuity in (:discontinuous, :continuous)
(fesType == :Taylor && fesContinuity == :continuous) && continue
@testset "function deg=$d" for (d, f) in dict_f
d <= fesDegree && test_setvalues!_with_function(
mesh,
meshOrder,
fesType,
fesDegree,
fesContinuity,
f,
)
end
end
end
end
@testset "Boundary dofs" begin
# Note bmxam : to build this check, I sketched the rectangle
# and built the dof numbering by hand.
path = joinpath(tempdir, "mesh.msh")
gen_rectangle_mesh(tmp_path, :quad; nx = 2, ny = 3)
mesh = read_msh(path, 2)
fs = FunctionSpace(:Lagrange, 1)
fes = FESpace(fs, :continuous; size = 1)
u = CellVariable(:u, mesh, fes)
bnd_dofs = boundary_dofs(u, "East")
@test bnd_dofs == [2, 4, 6]
fes = FESpace(fs, :discontinuous; size = 1)
u = CellVariable(:u, mesh, fes)
bnd_dofs = boundary_dofs(u, "East")
@test bnd_dofs == [2, 4, 6, 8]
fes = FESpace(fs, :continuous; size = 2)
u = CellVariable(:u, mesh, fes)
bnd_dofs = boundary_dofs(u, "East")
@test bnd_dofs == [2, 6, 4, 8, 10, 12]
end
@testset "Dof numbering checker" begin
mesh = rectangle_mesh(
4,
4;
type = :quad,
xmin = 0.0,
xmax = 6.0,
ymin = 0.0,
ymax = 6.0,
order = 1,
)
degree = 1
fs = FunctionSpace(:Lagrange, degree)
fes_sca = FESpace(fs, :discontinuous; size = 1) # DG, scalar
fes_vec = FESpace(fs, :discontinuous; size = 2) # DG, vectoriel
u = CellVariable(:u, mesh, fes_sca)
v = CellVariable(:v, mesh, fes_vec)
@test Bcube.check_numbering(u; verbose = false, exit_on_error = false) == 0
@test Bcube.check_numbering(v; verbose = false, exit_on_error = false) == 0
# insert random errors
u.dhl.iglob[32] = u.dhl.iglob[29]
@test Bcube.check_numbering(u; verbose = false, exit_on_error = false) == 1
u.dhl.iglob[32] = u.dhl.iglob[1]
@test Bcube.check_numbering(u; verbose = false, exit_on_error = false) == 1
u.dhl.iglob[14] = u.dhl.iglob[27]
@test Bcube.check_numbering(u; verbose = false, exit_on_error = false) == 1
# CONTINUOUS
fes_sca = FESpace(fs, :continuous; size = 1) # DG, scalar
fes_vec = FESpace(fs, :continuous; size = 2) # DG, vectoriel
u = CellVariable(:u, mesh, fes_sca)
v = CellVariable(:v, mesh, fes_vec)
@test Bcube.check_numbering(u) == 0
@test Bcube.check_numbering(v) == 0
# insert random errors
u.dhl.iglob[24] = u.dhl.iglob[31]
@test Bcube.check_numbering(u; verbose = false, exit_on_error = false) == 4
u.dhl.iglob[2] = u.dhl.iglob[22]
@test Bcube.check_numbering(u; verbose = false, exit_on_error = false) == 6
u.dhl.iglob[20] = u.dhl.iglob[5]
@test Bcube.check_numbering(u; verbose = false, exit_on_error = false) == 14
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 13921 | @testset "DofHandler" begin
@testset "2D" begin
@testset "Discontinuous" begin
#---- Mesh with one cell
mesh = one_cell_mesh(:quad)
# scalar - discontinuous
dhl = DofHandler(mesh, FunctionSpace(:Lagrange, 1), 1, false)
@test get_dof(dhl, 1) == collect(1:4)
@test get_dof(dhl, 1, 1, 3) == 3
@test get_ndofs(dhl, 1) == 4
# two scalar variables sharing same space
U_sca = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh, :discontinuous)
U = MultiFESpace(U_sca, U_sca)
m = get_mapping(U, 2)
dhl = Bcube._get_dhl(get_fespace(U)[2])
@test m[get_dofs(U_sca, 1)] == collect(5:8)
@test m[get_dof(dhl, 1, 1, 3)] == 7
@test get_ndofs(dhl, 1) == 4
# Two scalar variables, different orders
U1 = TrialFESpace(FunctionSpace(:Lagrange, 2), mesh, :discontinuous)
U2 = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh, :discontinuous)
U = MultiFESpace(U1, U2)
m1 = get_mapping(U, 1)
m2 = get_mapping(U, 2)
dhl1 = Bcube._get_dhl(get_fespace(U)[1])
dhl2 = Bcube._get_dhl(get_fespace(U)[2])
@test m1[get_dofs(U1, 1)] == collect(1:9)
@test m2[get_dofs(U2, 1)] == collect(10:13)
@test m1[get_dof(dhl1, 1, 1, 3)] == 3
@test m2[get_dof(dhl2, 1, 1, 3)] == 12
@test get_ndofs(dhl1, 1) == 9
@test get_ndofs(dhl2, 1) == 4
# One vector variable
dhl = DofHandler(mesh, FunctionSpace(:Lagrange, 1), 2, false)
@test get_ndofs(dhl, 1) == 8
@test get_dof(dhl, 1, 1) == collect(1:4)
@test get_dof(dhl, 1, 2) == collect(5:8)
@test get_dof(dhl, 1, 1, 3) == 3
@test get_dof(dhl, 1, 2, 3) == 7
# Three variables : one scalar, one vector, one scalar
U_ρ = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh, :discontinuous)
U_ρu = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh, :discontinuous; size = 3)
U_ρE = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh, :discontinuous)
U = MultiFESpace(U_ρ, U_ρu, U_ρE)
m_ρ = get_mapping(U, 1)
m_ρu = get_mapping(U, 2)
m_ρE = get_mapping(U, 3)
@test m_ρ[get_dofs(U_ρ, 1)] == collect(1:4)
@test m_ρu[get_dofs(U_ρu, 1)] == collect(5:16)
@test m_ρE[get_dofs(U_ρE, 1)] == collect(17:20)
#---- Basic mesh
mesh = basic_mesh()
# One scalar FESpace
dhl = DofHandler(mesh, FunctionSpace(:Lagrange, 1), 1, false)
@test get_dof(dhl, 1) == collect(1:4)
@test get_dof(dhl, 2) == collect(5:8)
@test get_dof(dhl, 3) == collect(9:11)
@test max_ndofs(dhl) == 4
# Two scalar variables sharing same FESpace
U_sca = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh, :discontinuous)
U = MultiFESpace(U_sca, U_sca)
m1 = get_mapping(U, 1)
m2 = get_mapping(U, 2)
@test m1[get_dofs(U_sca, 1)] == collect(1:4)
@test m2[get_dofs(U_sca, 1)] == collect(5:8)
@test m1[get_dofs(U_sca, 3)] == collect(17:19)
@test m2[get_dofs(U_sca, 3)] == collect(20:22)
# Two vars, different orders
U1 = TrialFESpace(FunctionSpace(:Lagrange, 2), mesh, :discontinuous)
U2 = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh, :discontinuous)
U = MultiFESpace(U1, U2)
m1 = get_mapping(U, 1)
m2 = get_mapping(U, 2)
dhl1 = Bcube._get_dhl(get_fespace(U)[1])
dhl2 = Bcube._get_dhl(get_fespace(U)[2])
@test m1[get_dofs(U1, 1)] == collect(1:9)
@test m2[get_dofs(U2, 1)] == collect(10:13)
@test m1[get_dofs(U1, 3)] == collect(27:32)
@test m2[get_dofs(U2, 3)] == collect(33:35)
@test max_ndofs(dhl1) == 9
end
@testset "Continuous" begin
#---- Mesh with one cell
mesh = one_cell_mesh(:quad)
# One scalar
dhl = DofHandler(mesh, FunctionSpace(:Lagrange, 1), 1, true)
@test get_dof(dhl, 1) == collect(1:4)
# Two scalar variables sharing the same space
U_sca = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh, :discontinuous)
U = MultiFESpace(U_sca, U_sca)
m1 = get_mapping(U, 1)
m2 = get_mapping(U, 2)
@test m1[get_dofs(U_sca, 1)] == collect(1:4)
@test m2[get_dofs(U_sca, 1)] == collect(5:8)
# Two vars, different orders
U1 = TrialFESpace(FunctionSpace(:Lagrange, 2), mesh, :discontinuous)
U2 = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh, :discontinuous)
U = MultiFESpace(U1, U2)
m1 = get_mapping(U, 1)
m2 = get_mapping(U, 2)
dhl1 = Bcube._get_dhl(get_fespace(U)[1])
dhl2 = Bcube._get_dhl(get_fespace(U)[2])
@test m1[get_dofs(U1, 1)] == collect(1:9)
@test m2[get_dofs(U2, 1)] == collect(10:13)
# Lagrange multiplier space
U = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh)
Λᵤ = MultiplierFESpace(mesh, 1)
P = MultiFESpace(U, Λᵤ)
m1 = get_mapping(P, 1)
m2 = get_mapping(P, 2)
@test m1[get_dofs(U, 1)] == collect(1:4)
@test m2[get_dofs(Λᵤ, 1)] == [5]
#---- Rectangle mesh
# (from corrected bug -> checked graphically, by hand!)
mesh = rectangle_mesh(3, 2; type = :quad)
dhl = DofHandler(mesh, FunctionSpace(:Lagrange, 3), 1, true)
@test get_dof(dhl, 1) == collect(1:16)
@test get_dof(dhl, 2) ==
[4, 17, 18, 19, 8, 20, 21, 22, 12, 23, 24, 25, 16, 26, 27, 28]
#---- Basic mesh
mesh = basic_mesh()
# One scalar
dhl = DofHandler(mesh, FunctionSpace(:Lagrange, 1), 1, true)
@test get_dof(dhl, 1) == [1, 2, 3, 4]
@test get_dof(dhl, 2) == [2, 5, 4, 6]
@test get_dof(dhl, 3) == [5, 7, 6]
# Two scalar variables sharing the same space
U_sca = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh, :discontinuous) # this one should be elsewhere
U = MultiFESpace(U_sca, U_sca)
m1 = get_mapping(U, 1)
m2 = get_mapping(U, 2)
@test m1[get_dofs(U_sca, 1)] == [1, 2, 3, 4]
@test m2[get_dofs(U_sca, 1)] == [5, 6, 7, 8]
@test m1[get_dofs(U_sca, 2)] == [9, 10, 11, 12]
@test m2[get_dofs(U_sca, 2)] == [13, 14, 15, 16]
@test m1[get_dofs(U_sca, 3)] == [17, 18, 19]
@test m2[get_dofs(U_sca, 3)] == [20, 21, 22]
# Lagrange multiplier space
U = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh)
Λᵤ = MultiplierFESpace(mesh, 1)
P = MultiFESpace(U, Λᵤ)
m1 = get_mapping(P, 1)
m2 = get_mapping(P, 2)
@test m1[get_dofs(U, 1)] == [1, 2, 3, 4]
@test m1[get_dofs(U, 2)] == [2, 6, 4, 7]
@test m1[get_dofs(U, 3)] == [6, 8, 7]
@test m2[get_dofs(Λᵤ, 1)] == [5]
P = MultiFESpace(U, Λᵤ; arrayOfStruct = false)
m1 = get_mapping(P, 1)
m2 = get_mapping(P, 2)
@test m1[get_dofs(U, 1)] == [1, 2, 3, 4]
@test m1[get_dofs(U, 2)] == [2, 5, 4, 6]
@test m1[get_dofs(U, 3)] == [5, 7, 6]
@test m2[get_dofs(Λᵤ, 1)] == [8]
# One scalar variable of order 2 on second order quads
mesh = rectangle_mesh(3, 2; order = 2)
dhl = DofHandler(mesh, FunctionSpace(:Lagrange, 2), 1, true)
@test get_dof(dhl, 1) == collect(1:9)
@test get_dof(dhl, 2) == [3, 10, 11, 6, 12, 13, 9, 14, 15]
# A square domain composed of four (2x2) Quad9
mesh = rectangle_mesh(3, 3; order = 2)
dhl = DofHandler(mesh, FunctionSpace(:Lagrange, 2), 1, true)
@test get_dof(dhl, 1) == [1, 2, 3, 4, 5, 6, 7, 8, 9]
@test get_dof(dhl, 2) == [3, 10, 11, 6, 12, 13, 9, 14, 15]
@test get_dof(dhl, 3) == [7, 8, 9, 16, 17, 18, 19, 20, 21]
@test get_dof(dhl, 4) == [9, 14, 15, 18, 22, 23, 21, 24, 25]
# Two quads of order 1 with variable of order > 1
mesh = rectangle_mesh(3, 2)
dhl = DofHandler(mesh, FunctionSpace(:Lagrange, 2), 1, true)
@test get_dof(dhl, 1) == collect(1:9)
@test get_dof(dhl, 2) == [3, 10, 11, 6, 12, 13, 9, 14, 15]
end
end
@testset "3D" begin
@testset "Discontinuous" begin
#---- Mesh with one cell
mesh = one_cell_mesh(:cube)
# One scalar space
dhl = DofHandler(mesh, FunctionSpace(:Lagrange, 1), 1, false)
@test get_dof(dhl, 1) == collect(1:8)
@test get_dof(dhl, 1, 1, 3) == 3
@test get_ndofs(dhl, 1) == 8
# Two scalar variables sharing same space
U_sca = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh, :discontinuous) # this one should be elsewhere
U = MultiFESpace(U_sca, U_sca)
m = get_mapping(U, 2)
dhl = Bcube._get_dhl(get_fespace(U)[2])
@test m[get_dofs(U_sca, 1)] == collect(9:16)
@test m[get_dof(dhl, 1, 1, 3)] == 11
@test get_ndofs(dhl, 1) == 8
# Two scalar variables, different orders
# fes_u = FESpace(FunctionSpace(:Lagrange, 2), :discontinuous)
# fes_v = FESpace(FunctionSpace(:Lagrange, 1), :discontinuous)
# u = CellVariable(:u, mesh, fes_u)
# v = CellVariable(:v, mesh, fes_v)
# sys = System((u, v))
# @test get_dof(sys, u, 1) == collect(1:9)
# @test get_dof(sys, v, 1) == collect(10:13)
# @test get_dof(sys, u, 1, 1, 3) == 3
# @test get_dof(sys, v, 1, 1, 3) == 12
# @test get_ndofs(get_DofHandler(u), 1) == 9
# @test get_ndofs(get_DofHandler(v), 1) == 4
# One vector variable
dhl = DofHandler(mesh, FunctionSpace(:Lagrange, 1), 2, false)
@test get_ndofs(dhl, 1) == 16
@test get_dof(dhl, 1, 1) == collect(1:8)
@test get_dof(dhl, 1, 2) == collect(9:16)
@test get_dof(dhl, 1, 1, 3) == 3
@test get_dof(dhl, 1, 2, 3) == 11
# Three variables : one scalar, one vector, one scalar
U_ρ = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh, :discontinuous)
U_ρu = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh, :discontinuous; size = 3)
U_ρE = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh, :discontinuous)
U = MultiFESpace(U_ρ, U_ρu, U_ρE)
m_ρ = get_mapping(U, 1)
m_ρu = get_mapping(U, 2)
m_ρE = get_mapping(U, 3)
@test m_ρ[get_dofs(U_ρ, 1)] == collect(1:8)
@test m_ρu[get_dofs(U_ρu, 1)] == collect(9:32)
@test m_ρE[get_dofs(U_ρE, 1)] == collect(33:40)
#---- Mesh with 2 cubes side by side
path = joinpath(tempdir, "mesh.msh")
Bcube._gen_2cubes_mesh(path)
mesh = read_msh(path)
dhl = DofHandler(mesh, FunctionSpace(:Lagrange, 2), 1, false)
@test get_dof(dhl, 1) == collect(1:27)
@test get_dof(dhl, 2) == collect(28:54)
#---- Mesh with 4 cubes (pile)
path = joinpath(tempdir, "mesh.msh")
Bcube._gen_cube_pile(path)
mesh = read_msh(path)
# One scalar FESpace
dhl = DofHandler(mesh, FunctionSpace(:Lagrange, 1), 1, false)
for icell in 1:ncells(mesh)
@test get_dof(dhl, icell) == collect((1 + (icell - 1) * 8):(icell * 8))
@test get_ndofs(dhl, icell) == 8
end
end
@testset "Continuous" begin
path = joinpath(tempdir, "mesh.msh")
Bcube._gen_cube_pile(path)
mesh = read_msh(path)
# One scalar FESpace
dhl = DofHandler(mesh, FunctionSpace(:Lagrange, 1), 1, true)
c2n = connectivities_indices(mesh, :c2n)
# dof index 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
# corresponding node 01 02 05 04 09 10 11 12 03 06 13 14 08 07 15 16 17 18 19 20
@test get_dof(dhl, 1) == [1, 2, 3, 4, 5, 6, 7, 8]
@test get_dof(dhl, 2) == [2, 9, 4, 10, 6, 11, 8, 12]
@test get_dof(dhl, 3) == [4, 10, 13, 14, 8, 12, 15, 16]
@test get_dof(dhl, 4) == [6, 11, 8, 12, 17, 18, 19, 20]
#---- Mesh with 2 cubes side by side
path = joinpath(tempdir, "mesh.msh")
Bcube._gen_2cubes_mesh(path)
mesh = read_msh(path)
dhl = DofHandler(mesh, FunctionSpace(:Lagrange, 2), 1, true)
@test get_dof(dhl, 1) == collect(1:27)
@test get_dof(dhl, 2) == [
3,
28,
29,
6,
30,
31,
9,
32,
33,
12,
34,
35,
15,
36,
37,
18,
38,
39,
21,
40,
41,
24,
42,
43,
27,
44,
45,
]
end
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 674 | @testset "FEFunction" begin
@testset "SingleFEFunction" begin
mesh = line_mesh(3)
U = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh)
u = FEFunction(U, 3.0)
@test all(get_dof_values(u, 2) .== [3.0, 3.0])
end
@testset "MultiFEFunction" begin
mesh = one_cell_mesh(:line)
U1 = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh)
U2 = TrialFESpace(FunctionSpace(:Lagrange, 0), mesh)
U = MultiFESpace(U1, U2)
vals = [1.0, 2.0, 3.0 * im]
u = FEFunction(U, vals)
@test all(Bcube.get_dof_type(u) .== (ComplexF64, ComplexF64))
@test all(get_dof_values(u) .== vals)
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 318 | @testset "FESpace" begin
mesh = one_cell_mesh(:line)
U = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh, Dict("xmin" => 3.0); size = 2)
@test Bcube.is_continuous(U)
@test !Bcube.is_discontinuous(U)
@test Bcube.get_ncomponents(U) == 2
@test Bcube.get_dirichlet_values(U)[1](0.0, 0.0) == 3.0
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 19847 | @testset "Integration" begin
@testset "Line - volumic" begin
# Mesh with only one line of degree 1 : [0, 1]
mesh = line_mesh(2; xmin = 0.0, xmax = 1.0)
# Test length of line
@test all(
integrate_on_ref_element(x -> 1.0, CellInfo(mesh, 1), Quadrature(Val(degree))) ≈
1.0 for degree in 1:5
)
end
@testset "Triangle - volumic" begin
# Mesh with only one triangle of degree 1 : [-1, -1], [1, -1], [-1, 1]
mesh = Mesh(
[Node([-1.0, -1.0]), Node([1.0, -1.0]), Node([-1.0, 1.0])],
[Tri3_t()],
Connectivity([3], [1, 2, 3]),
)
icell = 1
ctype = cells(mesh)[icell]
cInfo = CellInfo(mesh, icell)
# Test area of tri
@test all(
integrate_on_ref_element(x -> 1.0, cInfo, Quadrature(Val(degree))) ≈ 2.0 for
degree in 1:5
)
# Test for P1 shape functions and products of P1 shape functions
fs = FunctionSpace(:Lagrange, 1)
λ = shape_functions(fs, shape(ctype))
degree = Val(2)
quad = Quadrature(degree)
@test integrate_on_ref_element(ReferenceFunction(ξ -> λ(ξ)[1]), cInfo, quad) ≈
2.0 / 3.0
@test integrate_on_ref_element(ReferenceFunction(ξ -> λ(ξ)[2]), cInfo, quad) ≈
2.0 / 3.0
@test integrate_on_ref_element(ReferenceFunction(ξ -> λ(ξ)[3]), cInfo, quad) ≈
2.0 / 3.0
@test integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[1] * λ(ξ)[1]),
cInfo,
quad,
) ≈ 1.0 / 3.0
@test integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[2] * λ(ξ)[2]),
cInfo,
quad,
) ≈ 1.0 / 3.0
@test integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[3] * λ(ξ)[3]),
cInfo,
quad,
) ≈ 1.0 / 3.0
@test integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[1] * λ(ξ)[2]),
cInfo,
quad,
) ≈ 1.0 / 6.0
@test integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[1] * λ(ξ)[3]),
cInfo,
quad,
) ≈ 1.0 / 6.0
@test integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[2] * λ(ξ)[3]),
cInfo,
quad,
) ≈ 1.0 / 6.0
# Test for P2 shape functions and some products of P2 shape functions
fs = FunctionSpace(:Lagrange, 2)
λ = shape_functions(fs, shape(ctype))
_atol = 2 * eps()
_rtol = 4 * eps()
for degree in 2:8
# atol fixed to 1e-10 to get a pass for degree 4
quad = Quadrature(degree)
@test isapprox(
integrate_on_ref_element(ReferenceFunction(ξ -> λ(ξ)[1]), cInfo, quad),
0.0,
atol = _atol,
)
@test isapprox(
integrate_on_ref_element(ReferenceFunction(ξ -> λ(ξ)[2]), cInfo, quad),
0.0,
atol = _atol,
)
@test isapprox(
integrate_on_ref_element(ReferenceFunction(ξ -> λ(ξ)[3]), cInfo, quad),
0.0,
atol = _atol,
)
@test isapprox(
integrate_on_ref_element(ReferenceFunction(ξ -> λ(ξ)[4]), cInfo, quad),
2.0 / 3.0,
rtol = _rtol,
)
@test isapprox(
integrate_on_ref_element(ReferenceFunction(ξ -> λ(ξ)[5]), cInfo, quad),
2.0 / 3.0,
rtol = _rtol,
)
@test isapprox(
integrate_on_ref_element(ReferenceFunction(ξ -> λ(ξ)[6]), cInfo, quad),
2.0 / 3.0,
rtol = _rtol,
)
end
for degree in 4:8
quad = Quadrature(degree)
@test isapprox(
integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[1] * λ(ξ)[1]),
cInfo,
quad,
),
1.0 / 15.0,
rtol = _rtol,
)
@test isapprox(
integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[2] * λ(ξ)[2]),
cInfo,
quad,
),
1.0 / 15.0,
rtol = _rtol,
)
@test isapprox(
integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[3] * λ(ξ)[3]),
cInfo,
quad,
),
1.0 / 15.0,
rtol = _rtol,
)
@test isapprox(
integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[4] * λ(ξ)[4]),
cInfo,
quad,
),
16.0 / 45.0,
rtol = _rtol,
)
@test isapprox(
integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[5] * λ(ξ)[5]),
cInfo,
quad,
),
16.0 / 45.0,
rtol = _rtol,
)
@test isapprox(
integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[6] * λ(ξ)[6]),
cInfo,
quad,
),
16.0 / 45.0,
rtol = _rtol,
)
@test isapprox(
integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[1] * λ(ξ)[4]),
cInfo,
quad,
),
0.0,
atol = _atol,
)
@test isapprox(
integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[1] * λ(ξ)[5]),
cInfo,
quad,
),
-2.0 / 45.0,
rtol = _rtol,
)
@test isapprox(
integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[1] * λ(ξ)[6]),
cInfo,
quad,
),
0.0,
atol = _atol,
)
end
end
@testset "Square - volumic" begin
# Quad on basic mesh
mesh = basic_mesh()
cInfo = CellInfo(mesh, 2) # Test integration on quad '2'
@test all(
isapprox(integrate_on_ref_element(x -> 2.0, cInfo, Quadrature(degree)), 2.0) for
degree in 1:13
)
@test all(
isapprox(
integrate_on_ref_element(
PhysicalFunction(x -> 2x[1] + 3x[2]),
cInfo,
Quadrature(degree),
),
4.5,
) for degree in 1:13
)
# An other quad
xmin, ymin = [0.0, 0.0]
xmax, ymax = [1.0, 1.0]
Δx = xmax - xmin
Δy = ymax - ymin
mesh = one_cell_mesh(:quad; xmin, xmax, ymin, ymax)
cInfo = CellInfo(mesh, 1)
ctype = celltype(cInfo)
cnodes = nodes(cInfo)
fs = FunctionSpace(:Lagrange, 1)
λ = shape_functions(fs, shape(ctype))
∇λ = ξ -> ∂λξ_∂x(fs, Val(1), ctype, cnodes, ξ)
degree = Val(2)
quad = Quadrature(degree)
@test integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[1] * λ(ξ)[1]),
cInfo,
quad,
) ≈ Δx * Δy / 9
@test integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[1] * λ(ξ)[2]),
cInfo,
quad,
) ≈ Δx * Δy / 18
@test integrate_on_ref_element(
ReferenceFunction(ξ -> λ(ξ)[2] * λ(ξ)[2]),
cInfo,
quad,
) ≈ Δx * Δy / 9
@test integrate_on_ref_element(
ReferenceFunction(ξ -> ∇λ(ξ)[1, :] ⋅ ∇λ(ξ)[1, :]),
cInfo,
quad,
) ≈ (Δx^2 + Δy^2) / (3 * Δx * Δy)
end
@testset "Line (not curved) - surfacic" begin
Δx = 666.0
Δy = 314.0
mesh = basic_mesh(; coef_x = Δx, coef_y = Δy)
c2f = connectivities_indices(mesh, :c2f)
f2n = connectivities_indices(mesh, :f2n)
g(x) = 1.0
for idegree in 1:3
degree = Val(idegree)
quad = Quadrature(degree)
for icell in (1, 2)
finfo_1, finfo_2, finfo_3, finfo_4 =
map(Base.Fix1(FaceInfo, mesh), c2f[icell])
@test integrate_on_ref_element(g, finfo_1, quad) ≈ Δx
@test integrate_on_ref_element(g, finfo_2, quad) ≈ Δy
@test integrate_on_ref_element(g, finfo_3, quad) ≈ Δx
@test integrate_on_ref_element(g, finfo_4, quad) ≈ Δy
end
icell = 3
finfo_1, finfo_2, finfo_3 = map(Base.Fix1(FaceInfo, mesh), c2f[icell])
@test integrate_on_ref_element(g, finfo_1, quad) ≈ Δx
@test integrate_on_ref_element(g, finfo_2, quad) ≈ norm([Δx, Δy])
@test integrate_on_ref_element(g, finfo_3, quad) ≈ Δy
end
end
@testset "Line P2 - surfacic" begin
# Build P2-Quad with edges defined by y = alpha (1-x)(1+x)
xmin = -1.0
xmax = 1.0
ymin = -1.0
ymax = 1.0
alpha = 1.0
cnodes = [
Node([xmin, ymin]),
Node([xmax, ymin]),
Node([xmax, ymax]),
Node([xmin, ymax]),
Node([(xmax + xmin) / 2, ymin - alpha]),
Node([xmax + alpha, (ymin + ymax) / 2]),
Node([(xmin + xmax) / 2, ymax + alpha]),
Node([xmin - alpha, (ymin + ymax) / 2]),
Node([(xmin + xmax) / 2, (ymin + ymax) / 2]),
]
ctype = Quad9_t()
quad_mesh = Mesh(cnodes, [ctype], Connectivity([9], collect(1:9)))
# Build P2 line (equivalent to one of the edge above)
lnodes =
[Node([0.0, 0.0]), Node([0.0, xmax - xmin]), Node([alpha, (xmax - xmin) / 2])]
line_mesh = Mesh(lnodes, [Bar3_t()], Connectivity([3], collect(1:3)))
# Compute analytic arc length
b = xmax - xmin
a = alpha
L = sqrt(b^2 + 16 * a^2) / 2 + b^2 / (8a) * log((4a + sqrt(b^2 + 16 * a^2)) / b)
# Test integration accuracy
degquad = Val(200)
quad = Quadrature(degquad)
@test integrate_on_ref_element(x -> 1, CellInfo(line_mesh, 1), quad) ≈ L
@test integrate_on_ref_element(x -> 1, FaceInfo(quad_mesh, 1), quad) ≈ L
end
@testset "Sphere" begin
path = joinpath(tempdir, "mesh.msh")
Bcube.gen_sphere_mesh(path; radius = 1.0)
mesh = read_msh(path) # Radius = 1 => area = 4\pi
c2n = connectivities_indices(mesh, :c2n)
S = sum(1:ncells(mesh)) do icell
cInfo = CellInfo(mesh, icell)
integrate_on_ref_element(ξ -> 1.0, cInfo, Quadrature(1))
end
@test isapprox(S, 4π; atol = 1e-1)
end
@testset "Line_boundary" begin
mesh = one_cell_mesh(:line)
finfo_1 = FaceInfo(mesh, 1)
finfo_2 = FaceInfo(mesh, 2)
g = PhysicalFunction(x -> 2.5)
@test integrate_on_ref_element(g, finfo_1, Quadrature(1)) ≈ 2.5
@test integrate_on_ref_element(g, finfo_2, Quadrature(1)) ≈ 2.5
g = PhysicalFunction(x -> x[1]) # this is x -> x but since all nodes are in R^n, we need to select the component (as for triangles below)
@test integrate_on_ref_element(g, finfo_1, Quadrature(2)) ≈ -1.0
@test integrate_on_ref_element(g, finfo_2, Quadrature(2)) ≈ 1.0
end
@testset "Triangle_boundary" begin
mesh = one_cell_mesh(:tri; xmin = 0.0, ymin = 0.0)
finfo_1 = FaceInfo(mesh, 1)
finfo_2 = FaceInfo(mesh, 2)
finfo_3 = FaceInfo(mesh, 3)
# Test for constant
g = PhysicalFunction(x -> 2.5)
@test integrate_on_ref_element(g, finfo_1, Quadrature(2)) ≈ 2.5
@test integrate_on_ref_element(g, finfo_2, Quadrature(2)) ≈ 2.5 * √(2.0)
@test integrate_on_ref_element(g, finfo_3, Quadrature(2)) ≈ 2.5
# Test for linear function
g = PhysicalFunction(x -> x[1] + x[2])
@test integrate_on_ref_element(g, finfo_1, Quadrature(2)) ≈ 0.5
@test integrate_on_ref_element(g, finfo_2, Quadrature(2)) ≈ √(2.0)
@test integrate_on_ref_element(g, finfo_3, Quadrature(2)) ≈ 0.5
end
@testset "TriangleP1_boundary_divergence_free" begin
# Mesh with only one triangle of degree 1 : [1.0, 0.5], [3.5, 1.0], [2.0, 2.0]
mesh = Mesh(
[Node([1.0, 0.5]), Node([3.5, 1.0]), Node([2.0, 2.0])],
[Tri3_t()],
Connectivity([3], [1, 2, 3]);
buildboundaryfaces = true,
bc_names = Dict(1 => "boundary"),
bc_nodes = Dict(1 => [1, 2, 3]),
)
# Test for divergence free vector field
u = x -> [x[1], -x[2]]
u = PhysicalFunction(u)
Γ = BoundaryFaceDomain(mesh, "boundary")
dΓ = Measure(Γ, 2)
nΓ = get_face_normals(dΓ)
val = sum(compute(∫(side_n(u) ⋅ side_n(nΓ))dΓ))
@test isapprox(val, 0.0, atol = 1e-15)
end
@testset "QuadP2_boundary_divergence_free" begin
# TODO : use `one_cell_mesh` from `mesh_generator.jl`
# Mesh with only one quad of degree 2
mesh = Mesh(
[
Node([1.0, 1.0]),
Node([4.0, 1.0]),
Node([4.0, 3.0]),
Node([1.0, 3.0]),
Node([2.5, 0.5]),
Node([4.5, 2.0]),
Node([2.5, 3.5]),
Node([0.5, 2.0]),
Node([2.5, 2.0]),
],
[Quad9_t()],
Connectivity([9], [1, 2, 3, 4, 5, 6, 7, 8, 9]);
buildboundaryfaces = true,
bc_names = Dict(1 => "boundary"),
bc_nodes = Dict(1 => [1, 2, 3, 4, 5, 6, 7, 8, 9]),
)
# Test for divergence free vector field
u = x -> [x[1], -x[2]]
u = PhysicalFunction(u)
Γ = BoundaryFaceDomain(mesh, "boundary")
dΓ = Measure(Γ, 2)
nΓ = get_face_normals(dΓ)
val = sum(compute(∫(side_n(u) ⋅ side_n(nΓ))dΓ))
@test isapprox(val, 0.0, atol = 1e-14)
end
@testset "QuadP2_boundary_divergence_free_sincos" begin
# TODO : use `one_cell_mesh` from `mesh_generator.jl`
# Mesh with only one quad of degree 2
mesh = Mesh(
[
Node([0.0, 0.0]),
Node([1.5, 0.0]),
Node([1.5, 1.5]),
Node([0.0, 1.5]),
Node([0.75, -0.25]),
Node([1.75, 0.75]),
Node([0.75, 1.75]),
Node([-0.25, 0.75]),
Node([0.75, 0.75]),
],
[Quad9_t()],
Connectivity([9], [1, 2, 3, 4, 5, 6, 7, 8, 9]);
buildboundaryfaces = true,
bc_names = Dict(1 => "boundary"),
bc_nodes = Dict(1 => [1, 2, 3, 4, 5, 6, 7, 8, 9]),
)
# Test for divergence free vector field
u =
x -> [
-2.0 * sin(π * x[1]) * sin(π * x[1]) * sin(π * x[2]) * cos(π * x[2]),
2.0 * sin(π * x[2]) * sin(π * x[2]) * sin(π * x[1]) * cos(π * x[1]),
]
u = PhysicalFunction(u)
Γ = BoundaryFaceDomain(mesh, "boundary")
dΓ = Measure(Γ, 2)
nΓ = get_face_normals(dΓ)
val = sum(compute(∫(side_n(u) ⋅ side_n(nΓ))dΓ))
@test isapprox(val, 0.0, atol = 1e-15)
end
@testset "PhysicalFunction" begin
mesh = translate(one_cell_mesh(:line), [1.0])
dΩ = Measure(CellDomain(mesh), 2)
g = PhysicalFunction(x -> 2 * x[1])
b = compute(∫(g)dΩ)
@test b[1] == 4.0
end
@testset "Lagrange cube" begin
mesh = scale(translate(one_cell_mesh(:cube), [1.0, 1.0, 2.0]), 2.0)
cInfo = CellInfo(mesh, 1)
@test integrate_on_ref_element(x -> 1, cInfo, Quadrature(1)) == 64
mesh = one_cell_mesh(:cube)
q = Quadrature(1)
f(x) = 1
ξηζ = SA[0.0, 0.0, 0.0]
I3 = SA[1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]
for _ in 1:10
s = 10 * rand()
m = translate(mesh, rand(3))
m = scale(m, s)
cInfo = CellInfo(m, 1)
ctype = celltype(cInfo)
cnodes = nodes(cInfo)
@test isapprox_arrays(
Bcube.mapping_jacobian(ctype, cnodes, ξηζ),
s .* I3;
rtol = 1e-14,
)
@test isapprox(integrate_on_ref_element(f, cInfo, q), 8 * s^3)
end
end
@testset "Lagrange tetra" begin
# One mesh cell
mesh = one_cell_mesh(
:tetra;
xmin = 1.0,
xmax = 3.0,
ymin = 1.0,
ymax = 4.0,
zmin = 1.0,
zmax = 5.0,
)
c2n = connectivities_indices(mesh, :c2n)
cInfo = CellInfo(mesh, 1)
@test integrate_on_ref_element(x -> 1, cInfo, Quadrature(1)) ≈ 4
dΩ = Measure(CellDomain(mesh), 2)
g = PhysicalFunction(x -> 1)
b = compute(∫(g)dΩ)
@test b[1] ≈ 4
gref = ReferenceFunction(x -> 1)
b = compute(∫(gref)dΩ)
@test b[1] ≈ 4
lx = 2.0
ly = 3.0
lz = 4.0
mesh = one_cell_mesh(
:tetra;
xmin = 0.0,
xmax = lx,
ymin = 0.0,
ymax = ly,
zmin = 0.0,
zmax = lz,
)
e14 = SA[0, 0, lz]
e13 = SA[0, ly, 0]
e12 = SA[lx, 0, 0]
e24 = SA[-lx, 0, lz]
e23 = SA[-lx, ly, 0]
s(a, b) = 0.5 * norm(cross(a, b))
surface_ref = (s(-e12, e23), s(-e12, e24), s(e24, e23), s(e13, e14))
for i in 1:4
dΓ = Measure(BoundaryFaceDomain(mesh, "F$i"), 1)
b = compute(∫(side⁻(g))dΓ)
I, = findnz(b)
@test b[I[1]] ≈ surface_ref[i]
end
end
@testset "Lagrange prism" begin
# One mesh cell
mesh = one_cell_mesh(
:penta;
xmin = 1.0,
xmax = 2.0,
ymin = 1.0,
ymax = 2.0,
zmin = 1.0,
zmax = 2.5,
)
c2n = connectivities_indices(mesh, :c2n)
cInfo = CellInfo(mesh, 1)
@test integrate_on_ref_element(x -> 1, cInfo, Quadrature(1)) == 0.75
dΩ = Measure(CellDomain(mesh), 2)
g = PhysicalFunction(x -> 1)
b = compute(∫(g)dΩ)
@test b[1] ≈ 0.75
# Whole cylinder : build a cylinder of radius 1 and length 1, and compute its volume
path = joinpath(tempdir, "mesh.msh")
gen_cylinder_mesh(path, 1.0, 10)
mesh = read_msh(path)
dΩ = Measure(CellDomain(mesh), 2)
g = PhysicalFunction(x -> 1)
b = compute(∫(g)dΩ)
@test sum(b) ≈ 3.1365484905459
end
@testset "Lagrange pyramid" begin
# One mesh cell. Volume is base_area * height / 3
mesh = one_cell_mesh(
:pyra;
xmin = 1.0,
xmax = 2.0,
ymin = 1.0,
ymax = 2.0,
zmin = 1.0,
zmax = 2.5,
)
c2n = connectivities_indices(mesh, :c2n)
cInfo = CellInfo(mesh, 1)
for d in 1:5
@test integrate_on_ref_element(x -> 1, cInfo, Quadrature(d)) ≈ 0.5
end
dΩ = Measure(CellDomain(mesh), 2)
g = PhysicalFunction(x -> 1)
b = compute(∫(g)dΩ)
@test b[1] ≈ 0.5
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 9920 | function test_CellPoint(cellinfo, x_ref, x_phys)
p_ref = CellPoint(x_ref, cellinfo, ReferenceDomain())
@test change_domain(p_ref, ReferenceDomain()) == p_ref
p_phys = change_domain(p_ref, Bcube.PhysicalDomain())
@test p_phys == CellPoint(x_phys, cellinfo, Bcube.PhysicalDomain())
@test change_domain(p_phys, Bcube.PhysicalDomain()) == p_phys
p_ref_bis = change_domain(p_phys, ReferenceDomain())
@test p_ref_bis == p_ref
nothing
end
@testset "CellFunction" begin
lx, ly = 20.0, 10.0
mesh = one_cell_mesh(:quad; xmin = 0.0, xmax = lx, ymin = 0.0, ymax = ly)
x = [lx / 2, ly / 2]
cellinfo = CellInfo(mesh, 1)
x1_ref = SA[0.0, 0.0]
x1_phys = SA[lx / 2, ly / 2]
x2_ref = SA[-3 / 4, 1.0]
x2_phys = SA[lx / 8, ly]
@testset "CellPoint" begin
@testset "One point" begin
test_CellPoint(cellinfo, x1_ref, x1_phys)
test_CellPoint(cellinfo, x2_ref, x2_phys)
end
@testset "Tuple of points" begin
test_CellPoint(cellinfo, (x1_ref, x2_ref), (x1_phys, x2_phys))
end
@testset "Vector of points" begin
test_CellPoint(cellinfo, SA[x1_ref, x2_ref], SA[x1_phys, x2_phys])
end
end
@testset "PhysicalFunction" begin
a = CellPoint(SA[x1_ref, x2_ref], cellinfo, ReferenceDomain())
b = CellPoint(SA[x1_phys, x2_phys], cellinfo, Bcube.PhysicalDomain())
_f = x -> x[1] + x[2]
f = PhysicalFunction(_f)
@test f(a) == _f.(SA[x1_phys, x2_phys])
@test f(b) == _f.(SA[x1_phys, x2_phys])
a = CellPoint((x1_ref, x2_ref), cellinfo, ReferenceDomain())
b = CellPoint((x1_phys, x2_phys), cellinfo, Bcube.PhysicalDomain())
@test f(a) == _f.((x1_phys, x2_phys))
@test f(b) == _f.((x1_phys, x2_phys))
end
@testset "CellFunction" begin
a = CellPoint((x1_ref, x2_ref), cellinfo, ReferenceDomain())
b = CellPoint((x1_phys, x2_phys), cellinfo, Bcube.PhysicalDomain())
_f = x -> x[1] + x[2]
λref = Bcube.CellFunction(_f, ReferenceDomain(), Val(1))
@test λref(a) == _f.((x1_ref, x2_ref))
λphys = Bcube.CellFunction(_f, Bcube.PhysicalDomain(), Val(1))
@test λphys(a) == _f.((x1_phys, x2_phys))
end
end
@testset "CoplanarRotation" begin
@testset "Topodim = 1" begin
cross_2D(a, b) = a[1] * b[2] - a[2] * b[1]
#--- 1
A = Node([0, 0])
B = Node([1, 1])
C = Node([2, 0])
_nodes = [A, B, C]
ctypes = [Bar2_t(), Bar2_t()]
cell2nodes = [1, 2, 2, 3]
cell2nnodes = [2, 2]
mesh = Mesh(_nodes, ctypes, Connectivity(cell2nnodes, cell2nodes))
fInfo = FaceInfo(mesh, 2)
fPoint = Bcube.FacePoint([0.0], fInfo, ReferenceDomain())
R = Bcube.CoplanarRotation()
_R = Bcube.materialize(side_n(R), fPoint)
u1 = normalize(get_coords(B) - get_coords(A))
v2 = normalize(get_coords(C) - get_coords(B)) * 2
v2_in_1 = _R * v2
@test abs(cross_2D(u1, v2_in_1)) < 1e-15
@test norm(v2_in_1) ≈ norm(v2)
_R = Bcube.materialize(side_p(R), fPoint)
u2 = normalize(get_coords(C) - get_coords(B))
v1 = normalize(get_coords(B) - get_coords(A)) * 2
v1_in_2 = _R * v1
@test abs(cross_2D(u2, v1_in_2)) < 1e-15
@test norm(v1_in_2) ≈ norm(v1)
#--- 2
A = Node([0, 0])
B = Node([1, 1])
C = Node([2, 1])
_nodes = [A, B, C]
ctypes = [Bar2_t(), Bar2_t()]
cell2nodes = [1, 2, 2, 3]
cell2nnodes = [2, 2]
mesh = Mesh(_nodes, ctypes, Connectivity(cell2nnodes, cell2nodes))
fInfo = FaceInfo(mesh, 2)
fPoint = Bcube.FacePoint([0.0], fInfo, ReferenceDomain())
R = Bcube.CoplanarRotation()
_R = Bcube.materialize(side_n(R), fPoint)
u1 = normalize(get_coords(B) - get_coords(A))
v2 = normalize(get_coords(C) - get_coords(B)) * 2
v2_in_1 = _R * v2
@test abs(cross_2D(u1, v2_in_1)) < 1e-15
@test norm(v2_in_1) ≈ norm(v2)
_R = Bcube.materialize(side_p(R), fPoint)
u2 = normalize(get_coords(C) - get_coords(B))
v1 = normalize(get_coords(B) - get_coords(A)) * 2
v1_in_2 = _R * v1
@test abs(cross_2D(u2, v1_in_2)) < 1e-15
@test norm(v1_in_2) ≈ norm(v1)
#--- 3
A = Node([0, 0])
B = Node([1, 1])
C = Node([1, 2])
_nodes = [A, B, C]
ctypes = [Bar2_t(), Bar2_t()]
cell2nodes = [1, 2, 2, 3]
cell2nnodes = [2, 2]
mesh = Mesh(_nodes, ctypes, Connectivity(cell2nnodes, cell2nodes))
fInfo = FaceInfo(mesh, 2)
fPoint = Bcube.FacePoint([0.0], fInfo, ReferenceDomain())
R = Bcube.CoplanarRotation()
_R = Bcube.materialize(side_n(R), fPoint)
u1 = normalize(get_coords(B) - get_coords(A))
v2 = -normalize(get_coords(C) - get_coords(B)) * 2
v2_in_1 = _R * v2
@test abs(cross_2D(u1, v2_in_1)) < 1e-15
@test norm(v2_in_1) ≈ norm(v2)
_R = Bcube.materialize(side_p(R), fPoint)
u2 = normalize(get_coords(C) - get_coords(B))
v1 = -normalize(get_coords(B) - get_coords(A)) * 2
v1_in_2 = _R * v1
@test abs(cross_2D(u2, v1_in_2)) < 1e-15
@test norm(v1_in_2) ≈ norm(v1)
#--- 4 (full planar)
A = Node([0, 1])
B = Node([1, 1])
C = Node([2, 1])
_nodes = [A, B, C]
ctypes = [Bar2_t(), Bar2_t()]
cell2nodes = [1, 2, 2, 3]
cell2nnodes = [2, 2]
mesh = Mesh(_nodes, ctypes, Connectivity(cell2nnodes, cell2nodes))
fInfo = FaceInfo(mesh, 2)
fPoint = Bcube.FacePoint([0.0], fInfo, ReferenceDomain())
R = Bcube.CoplanarRotation()
_R = Bcube.materialize(side_n(R), fPoint)
u1 = normalize(get_coords(B) - get_coords(A))
v2 = -normalize(get_coords(C) - get_coords(B)) * 2
v2_in_1 = _R * v2
@test abs(cross_2D(u1, v2_in_1)) < 1e-15
@test norm(v2_in_1) ≈ norm(v2)
_R = Bcube.materialize(side_p(R), fPoint)
u2 = normalize(get_coords(C) - get_coords(B))
v1 = -normalize(get_coords(B) - get_coords(A)) * 2
v1_in_2 = _R * v1
@test abs(cross_2D(u2, v1_in_2)) < 1e-15
@test norm(v1_in_2) ≈ norm(v1)
end
@testset "Topodim = 2" begin
#--- 1
A = Node([0, 0, 0])
B = Node([1, 0, 0])
C = Node([1, 1, 0])
D = Node([0, 1, 0])
E = Node([3, 0, 2])
F = Node([3, 1, 2])
_nodes = [A, B, C, D, E, F]
ctypes = [Quad4_t(), Quad4_t()]
cell2nodes = [1, 2, 3, 4, 2, 5, 6, 3]
cell2nnodes = [4, 4]
mesh = Mesh(_nodes, ctypes, Connectivity(cell2nnodes, cell2nodes))
fInfo = FaceInfo(mesh, 2) # 2 is the good one, cf `Bcube.get_nodes_index(fInfo)`
fPoint = Bcube.FacePoint([0.0, 0.0], fInfo, ReferenceDomain())
cInfo_n = Bcube.get_cellinfo_n(fInfo)
cnodes_n = Bcube.nodes(cInfo_n)
ctype_n = Bcube.celltype(cInfo_n)
ξ_n = get_coords(side_n(fPoint))
cInfo_p = Bcube.get_cellinfo_p(fInfo)
cnodes_p = Bcube.nodes(cInfo_p)
ctype_p = Bcube.celltype(cInfo_p)
ξ_p = get_coords(side_p(fPoint))
R = Bcube.CoplanarRotation()
_R = Bcube.materialize(side_n(R), fPoint)
v2 = normalize(get_coords(F) - get_coords(E)) * 2
u = normalize(get_coords(C) - get_coords(B))
v2_in_1 = _R * v2
ν1 = Bcube.cell_normal(ctype_n, cnodes_n, ξ_n)
@test v2 ⋅ u ≈ v2_in_1 ⋅ u
@test abs(ν1 ⋅ v2_in_1) < 1e-16
_R = Bcube.materialize(side_p(R), fPoint)
v1 = normalize(get_coords(D) - get_coords(B)) * 2
u = normalize(get_coords(C) - get_coords(B))
v1_in_2 = _R * v1
ν2 = Bcube.cell_normal(ctype_p, cnodes_p, ξ_p)
@test v1 ⋅ u ≈ v1_in_2 ⋅ u
@test abs(ν2 ⋅ v1_in_2) < 1e-16
#--- 2
A = Node([0.0, 0.0, 0.0])
B = Node([1.0, 0.0, 0.0])
C = Node([1.0, 1.0, 0.0])
D = Node([0.0, 1.0, 0.0])
E = Node([3.0, 0.0, 2.0])
F = Node([3.0, 1.0, 2.0])
_nodes = [A, B, C, D, E, F]
ctypes = [Quad4_t(), Quad4_t()]
cell2nodes = [1, 2, 3, 4, 2, 5, 6, 3]
cell2nnodes = [4, 4]
mesh = Mesh(_nodes, ctypes, Connectivity(cell2nnodes, cell2nodes))
axis = [1, 2, 3]
θ = π / 3
rot = (
cos(θ) * I +
sin(θ) * [0 (-axis[3]) axis[2]; axis[3] 0 (-axis[1]); -axis[2] axis[1] 0] +
(1 - cos(θ)) * (axis ⊗ axis)
)
transform!(mesh, x -> rot * x)
fInfo = FaceInfo(mesh, 2) # 2 is the good one, cf `Bcube.get_nodes_index(fInfo)`
fPoint = Bcube.FacePoint([0.0, 0.0], fInfo, ReferenceDomain())
cInfo_n = Bcube.get_cellinfo_n(fInfo)
cnodes_n = Bcube.nodes(cInfo_n)
ctype_n = Bcube.celltype(cInfo_n)
ξ_n = get_coords(side_n(fPoint))
cInfo_p = Bcube.get_cellinfo_p(fInfo)
cnodes_p = Bcube.nodes(cInfo_p)
ctype_p = Bcube.celltype(cInfo_p)
ξ_p = get_coords(side_p(fPoint))
R = Bcube.CoplanarRotation()
_R = Bcube.materialize(side_n(R), fPoint)
v2 = rot * normalize(get_coords(F) - get_coords(E)) * 2
u = rot * normalize(get_coords(C) - get_coords(B))
v2_in_1 = _R * v2
ν1 = Bcube.cell_normal(ctype_n, cnodes_n, ξ_n)
@test v2 ⋅ u ≈ v2_in_1 ⋅ u
@test abs(ν1 ⋅ v2_in_1) < 2e-15
_R = Bcube.materialize(side_p(R), fPoint)
v1 = rot * normalize(get_coords(D) - get_coords(B)) * 2
u = rot * normalize(get_coords(C) - get_coords(B))
v1_in_2 = _R * v1
ν2 = Bcube.cell_normal(ctype_p, cnodes_p, ξ_p)
@test v1 ⋅ u ≈ v1_in_2 ⋅ u
@test abs(ν2 ⋅ v1_in_2) < 1e-16
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 11928 | Σ = sum
"""
test_lagrange_shape_function(shape, degree)
Test if the lagrange shape functions are zeros on all nodes except on "their" corresponding node.
"""
function test_lagrange_shape_function(shape, degree)
@testset "Degree=$degree" begin
fs = FunctionSpace(:Lagrange, degree)
expected = zeros(get_ndofs(fs, shape))
for (i, ξ) in enumerate(get_coords(fs, shape))
expected .= 0.0
expected[i] = 1.0
result = shape_functions(fs, shape, ξ)
!all(isapprox.(result, expected, atol = 5eps())) &&
(@show degree, result, expected)
@test all(isapprox.(result, expected, atol = 5eps()))
end
if typeof(shape) ∈ (Line, Square, Cube)
# `QuadratureLobatto` is only available for `Line`, `Square`, `Cube` for now
quad = QuadratureRule(shape, Quadrature(QuadratureLobatto(), Val(2)))
ξquad = get_nodes(quad)
λref = [shape_functions(fs, shape, ξ) for ξ in ξquad]
λtest = shape_functions(fs, quad)
@test all(map(≈, λtest, λref))
∇λref = [∂λξ_∂ξ(fs, shape, ξ) for ξ in ξquad]
∇λtest = ∂λξ_∂ξ(fs, quad)
@test all(map(≈, ∇λtest, ∇λref))
@test isa(Bcube.is_collocated(fs, quad), Bcube.IsNotCollocatedStyle)
if degree > 0
@test isa(
Bcube.is_collocated(
fs,
QuadratureRule(shape, Quadrature(QuadratureUniform(), Val(degree))),
),
Bcube.IsCollocatedStyle,
)
end
end
end
end
@testset "Lagrange" begin
@testset "Line" begin
shape = Line()
@test get_coords(FunctionSpace(:Lagrange, 0), shape) == (SA[0.0],)
@test get_coords(FunctionSpace(:Lagrange, 1), shape) == (SA[-1.0], SA[1.0])
@test get_coords(FunctionSpace(:Lagrange, 2), shape) == (SA[-1.0], SA[0.0], SA[1.0])
for deg in 0:2
test_lagrange_shape_function(shape, deg)
end
fs = FunctionSpace(:Lagrange, 0)
λ = shape_functions(fs, shape)
∇λ = ∂λξ_∂ξ(fs, shape)
@test λ(π)[1] ≈ 1.0
@test ∇λ(π)[1] ≈ 0.0
λ = Bcube.shape_functions_vec(fs, Val(1), shape, [0.0])
@test λ == [1.0]
λ = Bcube.shape_functions_vec(fs, Val(1), shape)
@test λ[1]([0.0]) == 1.0
λ = Bcube.shape_functions_vec(fs, Val(2), shape)
@test λ[1]([0.0]) == [1.0, 0.0]
@test λ[2]([0.0]) == [0.0, 1.0]
fs = FunctionSpace(:Lagrange, 1)
λ = shape_functions(fs, shape)
∇λ = ∂λξ_∂ξ(fs, shape)
@test λ(-1) ≈ [1.0, 0.0]
@test λ(1) ≈ [0.0, 1.0]
@test Σ(λ(π)) ≈ 1.0
@test ∇λ(π) ≈ [-1.0 / 2.0, 1.0 / 2.0]
λ = Bcube.shape_functions_vec(fs, Val(1), shape, [0.0])
@test λ == [0.5, 0.5]
λ = Bcube.shape_functions_vec(fs, Val(1), shape)
@test λ[1]([0.0]) == 0.5
@test λ[2]([0.0]) == 0.5
fs = FunctionSpace(:Lagrange, 2)
λ = shape_functions(fs, shape)
∇λ = ∂λξ_∂ξ(fs, shape)
@test λ(-1) ≈ [1.0, 0.0, 0.0]
@test λ(0) ≈ [0.0, 1.0, 0.0]
@test λ(1) ≈ [0.0, 0.0, 1.0]
@test Σ(λ(π)) ≈ 1.0
@test ∇λ(0.0) ≈ [-1.0 / 2.0, 0.0, 1.0 / 2.0]
λ = Bcube.shape_functions_vec(fs, Val(1), shape, [0.0])
@test λ == [0.0, 1.0, 0.0]
λ = Bcube.shape_functions_vec(fs, Val(1), shape)
@test λ[1]([0.0]) == 0.0
@test λ[2]([0.0]) == 1.0
@test λ[3]([0.0]) == 0.0
# Tests for gradients of shape functions expressed on local element
# TODO: the part below should be moved to test_ref2loc
mesh = Mesh([Node([0.0]), Node([1.0])], [Bar2_t()], Connectivity([2], [1, 2]))
cellTypes = cells(mesh)
ctype = cellTypes[1]
c2n = connectivities_indices(mesh, :c2n)
cnodes = get_nodes(mesh, c2n[1])
Finv = Bcube.mapping_inv(ctype, cnodes)
fs = FunctionSpace(:Lagrange, 1)
∇λ = x -> ∂λξ_∂x(fs, Val(1), ctype, cnodes, Finv(x))
@test ∇λ(0.5) ≈ reshape([-1.0, 1.0], (2, 1))
end
@testset "Triangle" begin
shape = Triangle()
@test get_coords(FunctionSpace(:Lagrange, 0), shape) ≈ (SA[1.0 / 3, 1.0 / 3],)
@test get_coords(FunctionSpace(:Lagrange, 1), shape) ==
(SA[0.0, 0.0], SA[1.0, 0.0], SA[0.0, 1.0])
@test get_coords(FunctionSpace(:Lagrange, 2), shape) == (
SA[0.0, 0.0],
SA[1.0, 0.0],
SA[0.0, 1.0],
SA[0.5, 0.0],
SA[0.5, 0.5],
SA[0.0, 0.5],
)
@test get_coords(FunctionSpace(:Lagrange, 3), shape) == (
SA[0.0, 0.0],
SA[1.0, 0.0],
SA[0.0, 1.0],
SA[1 / 3, 0.0],
SA[2 / 3, 0.0],
SA[2 / 3, 1 / 3],
SA[1 / 3, 2 / 3],
SA[0.0, 2 / 3],
SA[0.0, 1 / 3],
SA[1 / 3, 1 / 3],
)
fs = FunctionSpace(:Lagrange, 0)
λ = x -> shape_functions(fs, shape, x)
∇λ = x -> ∂λξ_∂ξ(fs, shape, x)
@test λ([π, ℯ])[1] ≈ 1.0
@test ∇λ([π, ℯ]) ≈ [0.0 0.0]
λ = Bcube.shape_functions_vec(fs, Val(1), shape, [1.0 / 3.0, 1.0 / 3.0])
@test λ == [1.0]
λ = Bcube.shape_functions_vec(fs, Val(1), shape)
@test λ[1]([1.0 / 3.0, 1.0 / 3.0]) == 1.0
fs = FunctionSpace(:Lagrange, 1)
λ = x -> shape_functions(fs, shape, x)
∇λ = x -> ∂λξ_∂ξ(fs, shape, x)
@test λ([0, 0]) ≈ [1.0, 0.0, 0.0]
@test λ([1, 0]) ≈ [0.0, 1.0, 0.0]
@test λ([0, 1]) ≈ [0.0, 0.0, 1.0]
@test Σ(λ([π, ℯ])) ≈ 1.0
@test ∇λ([π, ℯ]) ≈ [
-1.0 -1.0
1.0 0.0
0.0 1.0
]
λ = Bcube.shape_functions_vec(fs, Val(1), shape, [1.0 / 3.0, 1.0 / 3.0])
@test λ ≈ [1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0]
λ = Bcube.shape_functions_vec(fs, Val(1), shape)
@test λ[1]([1.0 / 3.0, 1.0 / 3.0]) ≈ 1.0 / 3.0
@test λ[2]([1.0 / 3.0, 1.0 / 3.0]) ≈ 1.0 / 3.0
@test λ[3]([1.0 / 3.0, 1.0 / 3.0]) ≈ 1.0 / 3.0
fs = FunctionSpace(:Lagrange, 2)
λ = x -> shape_functions(fs, shape, x)
∇λ = x -> ∂λξ_∂ξ(fs, shape, x)
@test λ([0, 0])[1:3] ≈ [1.0, 0.0, 0.0]
@test λ([1, 0])[1:3] ≈ [0.0, 1.0, 0.0]
@test λ([0, 1])[1:3] ≈ [0.0, 0.0, 1.0]
@test Σ(λ([π, ℯ])) ≈ 1.0
@test ∇λ([0, 0]) ≈ [
-3.0 -3.0
-1.0 0.0
0.0 -1.0
4.0 0.0
0.0 0.0
0.0 4.0
]
λ = Bcube.shape_functions_vec(fs, Val(1), shape, [1.0 / 3.0, 1.0 / 3])
@test λ ≈ [
-0.11111111111111112,
-0.11111111111111112,
-0.11111111111111112,
0.44444444444444453,
0.4444444444444444,
0.44444444444444453,
]
λ = Bcube.shape_functions_vec(fs, Val(1), shape)
@test λ[1]([1.0 / 3.0, 1.0 / 3.0]) ≈ -0.111111111111111
@test λ[2]([1.0 / 3.0, 1.0 / 3.0]) ≈ -0.111111111111111
@test λ[3]([1.0 / 3.0, 1.0 / 3.0]) ≈ -0.111111111111111
@test λ[4]([1.0 / 3.0, 1.0 / 3.0]) ≈ 0.444444444444444
@test λ[5]([1.0 / 3.0, 1.0 / 3.0]) ≈ 0.444444444444444
@test λ[6]([1.0 / 3.0, 1.0 / 3.0]) ≈ 0.444444444444444
for deg in 0:3
test_lagrange_shape_function(shape, deg)
end
# Tests for gradients of shape functions expressed on local element
# Mesh with only one triangle of order 1 : S1,S2,S3
S1 = [-1.0, -1.0]
S2 = [1.0, -2.0]
S3 = [-1.0, 1.0]
mesh =
Mesh([Node(S1), Node(S2), Node(S3)], [Tri3_t()], Connectivity([3], [1, 2, 3]))
cellTypes = cells(mesh)
ctype = cellTypes[1]
c2n = connectivities_indices(mesh, :c2n)
n = get_nodes(mesh, c2n[1])
vol =
0.5 * abs((S2[1] - S1[1]) * (S3[2] - S1[2]) - (S3[1] - S1[1]) * (S2[2] - S1[1]))
fs = FunctionSpace(:Lagrange, 1)
∇λ = x -> ∂λξ_∂x(fs, Val(1), ctype, n, x)
@test ∇λ([0, 0])[1, :] ≈ (0.5 / vol) * ([S2[2] - S3[2], S3[1] - S2[1]])
@test ∇λ([0, 0])[2, :] ≈ (0.5 / vol) * ([S3[2] - S1[2], S1[1] - S3[1]])
@test ∇λ([0, 0])[3, :] ≈ (0.5 / vol) * ([S1[2] - S2[2], S2[1] - S1[1]])
end
@testset "Square" begin
shape = Square()
@test get_coords(FunctionSpace(:Lagrange, 0), shape) == (SA[0.0, 0.0],)
@test get_coords(FunctionSpace(:Lagrange, 1), shape) ==
(SA[-1.0, -1.0], SA[1.0, -1.0], SA[-1.0, 1.0], SA[1.0, 1.0])
@test get_coords(FunctionSpace(:Lagrange, 2), shape) == (
SA[-1.0, -1.0],
SA[0.0, -1.0],
SA[1.0, -1.0],
SA[-1.0, 0.0],
SA[0.0, 0.0],
SA[1.0, 0.0],
SA[-1.0, 1.0],
SA[0.0, 1.0],
SA[1.0, 1.0],
)
for deg in 0:3
test_lagrange_shape_function(shape, deg)
end
fs = FunctionSpace(:Lagrange, 0)
λ = x -> shape_functions(fs, shape, x)
∇λ = x -> ∂λξ_∂ξ(fs, shape, x)
@test λ([π, ℯ])[1] ≈ 1.0
@test ∇λ([π, ℯ])[1, :] ≈ [0.0, 0.0]
λ = Bcube.shape_functions_vec(fs, Val(1), shape, [0.0, 0.0])
@test λ == [1.0]
λ = Bcube.shape_functions_vec(fs, Val(1), shape)
@test λ[1]([0.0, 0.0]) == 1.0
fs = FunctionSpace(:Lagrange, 1)
λ = ξ -> shape_functions(fs, shape, ξ)
∇λ = ξ -> ∂λξ_∂ξ(fs, shape, ξ)
@test λ([-1, -1])[1] ≈ 1.0
@test λ([1, -1])[2] ≈ 1.0
@test λ([1, 1])[4] ≈ 1.0
@test λ([-1, 1])[3] ≈ 1.0
@test Σ(λ([π, ℯ])) ≈ 1.0
@test ∇λ([0, 0])[1, :] ≈ [-1.0, -1.0] ./ 4.0
@test ∇λ([0, 0])[2, :] ≈ [1.0, -1.0] ./ 4.0
@test ∇λ([0, 0])[4, :] ≈ [1.0, 1.0] ./ 4.0
@test ∇λ([0, 0])[3, :] ≈ [-1.0, 1.0] ./ 4.0
λ = Bcube.shape_functions_vec(fs, Val(1), shape, [0.0, 0.0])
@test λ == [0.25, 0.25, 0.25, 0.25]
λ = Bcube.shape_functions_vec(fs, Val(1), shape)
@test λ[1]([0.0, 0.0]) == 0.25
@test λ[2]([0.0, 0.0]) == 0.25
@test λ[3]([0.0, 0.0]) == 0.25
@test λ[4]([0.0, 0.0]) == 0.25
λ = Bcube.shape_functions_vec(fs, Val(2), shape)
@test λ[1]([0.0, 0.0]) == [0.25, 0.0]
@test λ[2]([0.0, 0.0]) == [0.25, 0.0]
@test λ[3]([0.0, 0.0]) == [0.25, 0.0]
@test λ[4]([0.0, 0.0]) == [0.25, 0.0]
@test λ[5]([0.0, 0.0]) == [0.0, 0.25]
@test λ[6]([0.0, 0.0]) == [0.0, 0.25]
@test λ[7]([0.0, 0.0]) == [0.0, 0.25]
@test λ[8]([0.0, 0.0]) == [0.0, 0.25]
fs = FunctionSpace(:Lagrange, 2)
λ = ξ -> shape_functions(fs, shape, ξ)
@test λ([-1, -1])[1] ≈ 1.0
@test λ([1, -1])[3] ≈ 1.0
@test λ([1, 1])[9] ≈ 1.0
@test λ([-1, 1])[7] ≈ 1.0
@test Σ(λ([π, ℯ])) ≈ 1.0
λ = Bcube.shape_functions_vec(fs, Val(1), shape, [0.0, 0.0])
@test λ == [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0]
λ = Bcube.shape_functions_vec(fs, Val(1), shape)
@test λ[1]([0.0, 0.0]) == 0.0
@test λ[2]([0.0, 0.0]) == 0.0
@test λ[3]([0.0, 0.0]) == 0.0
@test λ[4]([0.0, 0.0]) == 0.0
@test λ[5]([0.0, 0.0]) == 1.0
@test λ[6]([0.0, 0.0]) == 0.0
@test λ[7]([0.0, 0.0]) == 0.0
@test λ[8]([0.0, 0.0]) == 0.0
@test λ[9]([0.0, 0.0]) == 0.0
end
@testset "Cube" begin
for deg in 0:2
test_lagrange_shape_function(Cube(), deg)
end
end
@testset "Tetra" begin
for deg in 0:1
test_lagrange_shape_function(Tetra(), deg)
end
end
@testset "Prism" begin
for deg in 0:1
test_lagrange_shape_function(Prism(), deg)
end
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 1168 | @testset "Limiter" begin
@testset "LinearScalingLimiter" begin
path = joinpath(tempdir, "mesh.msh")
Lx = 3.0
Ly = 1.0
gen_rectangle_mesh(
path,
:quad;
nx = 4,
ny = 2,
lx = Lx,
ly = Ly,
xc = Lx / 2,
yc = Ly / 2,
)
mesh = read_msh(path, 2) # '2' indicates the space dimension (3 by default)
c2n = connectivities_indices(mesh, :c2n)
f = (k, x) -> begin
if x[1] < 1.0
return 0.0
elseif x[1] > 2.0
return 1.0
else
return k * (x[1] - 1.5) + 0.5
end
end
degree = 1
fs = FunctionSpace(:Taylor, degree)
fes = FESpace(fs, :discontinuous; size = 1) # DG, scalar
u = CellVariable(:u, mesh, fes)
for k in [1, 2]
set_values!(u, x -> f(k, x))
@test mean_values(u, Val(2 * degree + 1)) ≈ [0.0, 0.5, 1.0]
limᵤ, ũ = linear_scaling_limiter(u, 2 * degree + 1)
@test get_values(limᵤ) ≈ [0.0, 1.0 / k, 0.0]
end
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 4031 | @testset "projection" begin
@testset "1D_Line" begin
mesh = line_mesh(11; xmin = -1.0, xmax = 1.0)
Ω = CellDomain(mesh)
dΩ = Measure(CellDomain(mesh), 2)
U = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh)
u = FEFunction(U)
f = PhysicalFunction(x -> 2 * x[1] + 3)
projection_l2!(u, f, dΩ)
for cInfo in DomainIterator(Ω)
_u = materialize(u, cInfo)
_f = materialize(f, cInfo)
s = shape(celltype(cInfo))
# Loop over line vertices
for ξ in get_coords(s)
cPoint = CellPoint(ξ, cInfo, ReferenceDomain())
@test materialize(_u, cPoint) ≈ materialize(_f, cPoint)
end
end
# f(x) = c*x
#- build mesh and variable
xmin = 2.0
xmax = 7.0
mesh = one_cell_mesh(:line; xmin, xmax)
Ω = CellDomain(mesh)
dΩ = Measure(CellDomain(mesh), 2)
cInfo = CellInfo(mesh, 1)
ctype = celltype(cInfo)
cnodes = nodes(cInfo)
xc = center(ctype, cnodes).x # coordinates in PhysicalDomain
fs = FunctionSpace(:Taylor, 1)
U = TrialFESpace(fs, mesh, :discontinuous)
u = FEFunction(U)
#- create test function and project on solution space
f = PhysicalFunction(x -> 2 * x[1] + 4.0)
projection_l2!(u, f, dΩ)
f_cInfo = materialize(f, cInfo)
_f = x -> materialize(f_cInfo, CellPoint(x, cInfo, PhysicalDomain()))
#- compare the result vector + the resulting interpolation function
@test all(
get_dof_values(u) .≈
[_f(xc), ForwardDiff.derivative(_f, xc)[1] * (xmax - xmin)],
) # u = [f(x0), f'(x0) dx]
end
@testset "2D_Triangle" begin
path = joinpath(tempdir, "mesh.msh")
gen_rectangle_mesh(path, :tri; nx = 3, ny = 4)
mesh = read_msh(path)
Ω = CellDomain(mesh)
dΩ = Measure(Ω, 2)
fSpace = FunctionSpace(:Lagrange, 1)
U = TrialFESpace(fSpace, mesh, :continuous)
u = FEFunction(U)
f = PhysicalFunction(x -> x[1] + x[2])
projection_l2!(u, f, dΩ)
for cInfo in DomainIterator(Ω)
_u = materialize(u, cInfo)
_f = materialize(f, cInfo)
# Corresponding shape
s = shape(celltype(cInfo))
# Loop over triangle vertices
for ξ in get_coords(s)
cPoint = CellPoint(ξ, cInfo, ReferenceDomain())
@test materialize(_u, cPoint) ≈ materialize(_f, cPoint)
end
end
end
@testset "misc" begin
mesh = one_cell_mesh(:quad)
T, N = Bcube.get_return_type_and_codim(PhysicalFunction(x -> x[1]), mesh)
@test N == (1,)
@test T == Float64
T, N = Bcube.get_return_type_and_codim(PhysicalFunction(x -> 1), mesh)
@test N == (1,)
@test T == Int
T, N = Bcube.get_return_type_and_codim(PhysicalFunction(x -> x), mesh)
@test N == (2,)
@test T == Float64
end
@testset "var_on_vertices" begin
mesh = line_mesh(3)
# Test 1
fs = FunctionSpace(:Lagrange, 0)
U = TrialFESpace(fs, mesh)
x = [1.0, 1.0]
u = FEFunction(U, x)
values = var_on_vertices(u, mesh)
@test values == [1.0, 1.0, 1.0]
# Test 2
fs = FunctionSpace(:Lagrange, 1)
U = TrialFESpace(fs, mesh)
x = [1.0, 2.0, 3.0]
u = FEFunction(U, x)
values = var_on_vertices(u, mesh)
@test values == x
# Test 3
fs = FunctionSpace(:Lagrange, 1)
U = TrialFESpace(fs, mesh; size = 2)
f = PhysicalFunction(x -> [x[1], -1.0 - 2 * x[1]])
u = FEFunction(U)
projection_l2!(u, f, mesh)
values = var_on_vertices(u, mesh)
@test isapprox_arrays(values[:, 1], [0.0, 0.5, 1.0]; rtol = 1e-15)
@test isapprox_arrays(values[:, 2], [-1.0, -2.0, -3.0]; rtol = 1e-15)
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 1459 | @testset "Shape" begin
@testset "Line" begin
line = Line()
@test nvertices(line) == 2
@test nedges(line) == 2
@test nfaces(line) == 2
@test face_area(line) == SA[1.0, 1.0]
@test faces2nodes(line) == (SA[1], SA[2])
@test get_coords(line) == (SA[-1.0], SA[1.0])
@test normals(line) == (SA[-1.0], SA[1.0])
end
@testset "Triangle" begin
tri = Triangle()
@test nvertices(tri) == 3
@test nedges(tri) == 3
@test nfaces(tri) == 3
@test face_area(tri) == SA[1.0, sqrt(2.0), 1.0]
@test faces2nodes(tri) == (SA[1, 2], SA[2, 3], SA[3, 1])
@test face_shapes(tri) == (Line(), Line(), Line())
@test get_coords(tri) == (SA[0.0, 0.0], SA[1.0, 0.0], SA[0.0, 1.0])
@test normals(tri) == (SA[0.0, -1.0], SA[1.0, 1.0] ./ √(2), SA[-1.0, 0.0])
end
@testset "Square" begin
square = Square()
@test nvertices(square) == 4
@test nedges(square) == 4
@test nfaces(square) == 4
@test face_area(square) == SA[2.0, 2.0, 2.0, 2.0]
@test faces2nodes(square) == (SA[1, 2], SA[2, 3], SA[3, 4], SA[4, 1])
@test face_shapes(square) == (Line(), Line(), Line(), Line())
@test get_coords(square) ==
(SA[-1.0, -1.0], SA[1.0, -1.0], SA[1.0, 1.0], SA[-1.0, 1.0])
@test normals(square) == (SA[0.0, -1.0], SA[1.0, 0.0], SA[0.0, 1.0], SA[-1.0, 0.0])
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 1876 | @testset "Shape functions" begin
# Mesh
nspa = 2
mesh = one_cell_mesh(:quad)
icell = 1
s = shape(cells(mesh)[icell])
cInfo = CellInfo(mesh, icell)
cPoint = CellPoint(SA[0.0, 0.0], cInfo, ReferenceDomain())
# Function and fe spaces
fs = FunctionSpace(:Lagrange, 1)
V_vec = TestFESpace(fs, mesh; size = 3)
V_sca = TestFESpace(fs, mesh; size = 1)
ndofs_sca = Bcube.get_ndofs(V_sca, s)
# Shape functions
λ_vec = Bcube.get_shape_functions(V_vec, s)
λ_sca = Bcube.get_shape_functions(V_sca, s)
# LazyMapOver them !
λ_sca = Bcube.LazyMapOver(λ_sca)
λ_vec = Bcube.LazyMapOver(λ_vec)
# Scalar tests
f = Bcube.materialize(λ_sca, cInfo)
@test Bcube.unwrap(f(cPoint)) == (0.25, 0.25, 0.25, 0.25)
f = Bcube.materialize(∇(λ_sca), cInfo)
@test Bcube.unwrap(f(cPoint)) ==
([-0.25, -0.25], [0.25, -0.25], [-0.25, 0.25], [0.25, 0.25])
# Vector tests
f = Bcube.materialize(λ_vec, cInfo)
@test Bcube.unwrap(f(cPoint)) == (
[0.25, 0.0, 0.0], # λ1, 0, 0
[0.25, 0.0, 0.0], # λ2, 0, 0
[0.25, 0.0, 0.0], # λ3, 0, 0
[0.25, 0.0, 0.0], # λ4, 0, 0
[0.0, 0.25, 0.0], # 0, λ1, 0
[0.0, 0.25, 0.0], # 0, λ2, 0
[0.0, 0.25, 0.0], # 0, λ3, 0
[0.0, 0.25, 0.0], # 0, λ4, 0
[0.0, 0.0, 0.25], # 0, 0, λ1
[0.0, 0.0, 0.25], # 0, 0, λ2
[0.0, 0.0, 0.25], # 0, 0, λ3
[0.0, 0.0, 0.25], # 0, 0, λ4
)
f_sca = Bcube.materialize(∇(λ_sca), cInfo)
_f_sca = Bcube.unwrap(f_sca(cPoint))
f_vec = Bcube.materialize(∇(λ_vec), cInfo)
_f_vec = Bcube.unwrap(f_vec(cPoint))
for i in 1:ndofs_sca
for j in 1:Bcube.get_size(V_vec)
I = i + (j - 1) * ndofs_sca
for k in 1:nspa
@test _f_vec[I][j, k] == _f_sca[i][k]
end
end
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 1909 | @testset "Taylor" begin
# TODO : add more test for gradients, waiting for Ghislain's commit
@testset "Line" begin
shape = Line()
fs = FunctionSpace(:Taylor, 0)
λ = ξ -> shape_functions(fs, shape, ξ)
∇λ = ξ -> ∂λξ_∂ξ(fs, shape, ξ)
@test λ(rand())[1] ≈ 1.0
@test ∇λ(rand())[1] ≈ 0.0
λ = Bcube.shape_functions_vec(fs, Val(1), shape, [0.0])
@test λ == [1.0]
fs = FunctionSpace(:Taylor, 1)
λ = ξ -> shape_functions(fs, shape, ξ)
∇λ = ξ -> ∂λξ_∂ξ(fs, shape, ξ)
@test λ(-1) ≈ [1.0, -0.5]
@test λ(1) ≈ [1.0, 0.5]
λ = Bcube.shape_functions_vec(fs, Val(1), shape, [0.0])
@test λ == [1.0, 0.0]
end
@testset "Square" begin
shape = Square()
fs = FunctionSpace(:Taylor, 0)
λ = ξ -> shape_functions(fs, shape, ξ)
∇λ = ξ -> ∂λξ_∂ξ(fs, shape, ξ)
@test λ(rand(2))[1] ≈ 1.0
λ = Bcube.shape_functions_vec(fs, Val(1), shape, [0.0, 0.0])
@test λ == [1.0]
fs = FunctionSpace(:Taylor, 1)
λ = ξ -> shape_functions(fs, shape, ξ)
∇λ = ξ -> ∂λξ_∂ξ(fs, shape, ξ)
@test λ([0.0, 0.0]) ≈ [1.0, 0.0, 0.0]
@test λ([1.0, 0.0]) ≈ [1.0, 0.5, 0.0]
@test λ([0.0, 1.0]) ≈ [1.0, 0.0, 0.5]
λ = Bcube.shape_functions_vec(fs, Val(1), shape, [0.0, 0.0])
@test λ == [1.0, 0.0, 0.0]
λ = Bcube.shape_functions_vec(fs, Val(1), shape)
@test λ[1]([0.0, 0.0]) == 1.0
@test λ[2]([0.0, 0.0]) == 0.0
@test λ[3]([0.0, 0.0]) == 0.0
λ = Bcube.shape_functions_vec(fs, Val(2), shape)
@test λ[1]([0.0, 0.0]) == [1.0, 0.0]
@test λ[2]([0.0, 0.0]) == [0.0, 0.0]
@test λ[3]([0.0, 0.0]) == [0.0, 0.0]
@test λ[4]([0.0, 0.0]) == [0.0, 1.0]
@test λ[5]([0.0, 0.0]) == [0.0, 0.0]
@test λ[6]([0.0, 0.0]) == [0.0, 0.0]
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 1391 | @testset "TestFunction" begin
# Mesh
mesh = one_cell_mesh(:quad)
x = [0, 0.0]
cell = CellInfo(mesh, 1)
# Function space
fs = FunctionSpace(:Lagrange, 1)
# Finite element spaces
fes_vec = FESpace(fs, :continuous; size = 3)
fes_sca = FESpace(fs, :continuous; size = 1)
# Test functions
λ_vec = TestFunction(mesh, fes_vec)
λ_sca = TestFunction(mesh, fes_sca)
# Scalar tests
f = λ_sca
@test f[cell](x) == SA[0.25, 0.25, 0.25, 0.25]
f = ∇(λ_sca)
∇λ_sca_ref = SA[-0.25 -0.25; 0.25 -0.25; -0.25 0.25; 0.25 0.25]
@test f[cell](x) == ∇λ_sca_ref
ndofs_sca, nspa = size(∇λ_sca_ref)
# Vector tests
f = λ_vec
@test f[cell](x) == SA[
0.25 0.0 0.0
0.25 0.0 0.0
0.25 0.0 0.0
0.25 0.0 0.0
0.0 0.25 0.0
0.0 0.25 0.0
0.0 0.25 0.0
0.0 0.25 0.0
0.0 0.0 0.25
0.0 0.0 0.25
0.0 0.0 0.25
0.0 0.0 0.25
]
f = ∇(λ_vec)
n = size(fes_vec)
for i in 1:ndofs_sca
for j in 1:n
I = i + (j - 1) * ndofs_sca
for k in 1:nspa
if (1 + (j - 1) * ndofs_sca <= I <= j * ndofs_sca)
@test f[cell](x)[I, j, k] == ∇λ_sca_ref[i, k]
else
@test f[cell](x)[I, j, k] == 0.0
end
end
end
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 1073 | @testset "issue #130" begin
struct Parameters
x::Int
end
function _run()
mesh = one_cell_mesh(:line)
dΩ = Measure(CellDomain(mesh), 1)
U = TrialFESpace(FunctionSpace(:Lagrange, 0), mesh)
V = TestFESpace(U)
params = Parameters(1)
f1(v) = _f1 ∘ (v,)
_f1(v) = v
l1(v) = ∫(f1(v))dΩ
a1 = assemble_linear(l1, V)
# Two tests of composition with not-only-`AbstractLazy` args :
# As the first tuple arg `v` is an `AbstractLazy`,
# operator `∘` automatically builds a `LazyOp`
f2(v, params) = _f2 ∘ (v, params)
_f2(v, params) = v
l2(v) = ∫(f2(v, params))dΩ
a2 = assemble_linear(l2, V)
# As the first tuple arg `params` is not an `AbstractLazy`,
# one must explicitly use `lazy_compose` to build a `LazyOp`
f3(params, v) = lazy_compose(_f3, (params, v))
_f3(params, v) = v
l3(v) = ∫(f3(params, v))dΩ
a3 = assemble_linear(l3, V)
@test a1 == a2 == a3
end
_run()
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 1303 | @testset "issue #130" begin
function run()
# Settings
Zin = 4
Zout = 8
nr = 3
nz = 3
degree = 1
qdeg = 2 * degree + 1 # quad degree
# Mesh and measures
mesh = rectangle_mesh(
nr,
nz;
ymin = Zin,
ymax = Zout,
bnd_names = ("AXIS", "WALL", "INLET", "OUTLET"),
)
Ω = CellDomain(mesh)
dΩ = Measure(Ω, qdeg)
# FESpace
fs = FunctionSpace(:Lagrange, degree)
U_up = TrialFESpace(fs, mesh)
U_ur = TrialFESpace(fs, mesh)
U_uz = TrialFESpace(fs, mesh)
V_up = TestFESpace(U_up)
V_ur = TestFESpace(U_ur)
V_uz = TestFESpace(U_uz)
U = MultiFESpace(U_up, U_ur, U_uz)
V = MultiFESpace(V_up, V_ur, V_uz)
# Bilinear forms
function test(u, ∇u, v, ∇v)
up, ur, uz = u
vp, vr, vz = v
∇up, ∇ur, ∇uz = ∇u
∂u∂r = ∇ur ⋅ SA[1, 0]
return ∂u∂r * vp
end
a((up, ur, uz), (vp, vr, vz)) = ∫(∇(ur) ⋅ SA[1, 0] * vp)dΩ
A = assemble_bilinear(a, U, V)
b(u, v) = ∫(test ∘ (u, map(∇, u), v, map(∇, v)))dΩ
B = assemble_bilinear(b, U, V)
@test A == B
end
run()
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 20446 | @testset "mapping" begin
# bmxam: For Jacobians we should have two type of tests : one using 'rand' checking analytical formulae,
# and another one using "known" cells (for instance Square of side 2) and checking "expected" value:
# "I known the area of a Square of side 2 is 4". I don't feel like writing the second type of tests right now
@testset "one cell mesh" begin
icell = 1
tol = 1e-15
# Line order 1
xmin = -(1.0 + rand())
xmax = 1.0 + rand()
mesh = one_cell_mesh(:line; xmin, xmax, order = 1)
c2n = connectivities_indices(mesh, :c2n)
ctype = cells(mesh)[icell]
cnodes = get_nodes(mesh, c2n[icell])
@test isapprox_arrays(mapping(ctype, cnodes, [-1.0]), [xmin]; rtol = tol)
@test isapprox_arrays(mapping(ctype, cnodes, [1.0]), [xmax]; rtol = tol)
@test isapprox_arrays(
mapping_jacobian(ctype, cnodes, rand(1)),
@SVector[(xmax - xmin) / 2.0];
rtol = tol,
)
@test isapprox(
mapping_det_jacobian(ctype, cnodes, rand(1)),
(xmax - xmin) / 2.0,
rtol = tol,
)
@test isapprox_arrays(mapping_inv(ctype, cnodes, xmin), SA[-1.0], rtol = tol)
@test isapprox_arrays(mapping_inv(ctype, cnodes, xmax), SA[1.0], rtol = tol)
# Line order 2 -> no mapping yet, uncomment when mapping is available
#mesh = scale(one_cell_mesh(:line; order = 2), rand())
#c2n = connectivities_indices(mesh,:c2n)
#ct = cells(mesh)[icell]
#n = get_nodes(mesh, c2n[icell])
#@test mapping(n, ct, [-1.]) == get_coords(n[1])
#@test mapping(n, ct, [ 1.]) == get_coords(n[2])
#@test mapping(n, ct, [ 0.]) == get_coords(n[3])
# Triangle order 1
xmin, ymin = -rand(2)
xmax, ymax = rand(2)
mesh = one_cell_mesh(:triangle; xmin, xmax, ymin, ymax, order = 1)
c2n = connectivities_indices(mesh, :c2n)
ctype = cells(mesh)[icell]
cnodes = get_nodes(mesh, c2n[icell])
x1 = [xmin, ymin]
x2 = [xmax, ymin]
x3 = [xmin, ymax]
@test isapprox(mapping(ctype, cnodes, [0.0, 0.0]), x1, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [1.0, 0.0]), x2, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [0.0, 1.0]), x3, rtol = eps())
@test isapprox_arrays(
mapping_jacobian(ctype, cnodes, rand(2)),
SA[
(xmax-xmin) 0.0
0.0 (ymax-ymin)
],
)
@test isapprox(
mapping_det_jacobian(ctype, cnodes, rand(2)),
(xmax - xmin) * (ymax - ymin),
rtol = eps(),
)
@test isapprox_arrays(mapping_inv(ctype, cnodes, x1), SA[0.0, 0.0]; rtol = tol)
@test isapprox_arrays(mapping_inv(ctype, cnodes, x2), SA[1.0, 0.0]; rtol = tol)
@test isapprox_arrays(mapping_inv(ctype, cnodes, x3), SA[0.0, 1.0]; rtol = tol)
# Triangle order 2
xmin, ymin = -rand(2)
xmax, ymax = rand(2)
mesh = one_cell_mesh(:triangle; xmin, xmax, ymin, ymax, order = 2)
c2n = connectivities_indices(mesh, :c2n)
ctype = cells(mesh)[icell]
cnodes = get_nodes(mesh, c2n[icell])
x1 = [xmin, ymin]
x2 = [xmax, ymin]
x3 = [xmin, ymax]
x4 = (x1 + x2) / 2
x5 = (x2 + x3) / 2
x6 = (x3 + x1) / 2
@test isapprox(mapping(ctype, cnodes, [0.0, 0.0]), x1, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [1.0, 0.0]), x2, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [0.0, 1.0]), x3, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [0.5, 0.0]), x4, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [0.5, 0.5]), x5, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [0.0, 0.5]), x6, rtol = eps())
@test isapprox(
mapping_det_jacobian(ctype, cnodes, rand(2)),
(xmax - xmin) * (ymax - ymin),
)
# Quad order 1
xmin, ymin = -rand(2)
xmax, ymax = rand(2)
mesh = one_cell_mesh(:quad; xmin, xmax, ymin, ymax, order = 1)
c2n = connectivities_indices(mesh, :c2n)
ctype = cells(mesh)[icell]
cnodes = get_nodes(mesh, c2n[icell])
x1 = [xmin, ymin]
x2 = [xmax, ymin]
x3 = [xmax, ymax]
x4 = [xmin, ymax]
@test isapprox(mapping(ctype, cnodes, [-1.0, -1.0]), x1, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [1.0, -1.0]), x2, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [1.0, 1.0]), x3, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [-1.0, 1.0]), x4, rtol = eps())
@test isapprox(
mapping_jacobian(ctype, cnodes, rand(2)),
SA[
(xmax-xmin) 0.0
0.0 (ymax-ymin)
] / 2.0,
)
@test isapprox(
mapping_det_jacobian(ctype, cnodes, rand(2)),
(xmax - xmin) * (ymax - ymin) / 4.0,
rtol = tol,
)
@test isapprox_arrays(mapping_inv(ctype, cnodes, x1), SA[-1.0, -1.0]; rtol = tol)
@test isapprox_arrays(mapping_inv(ctype, cnodes, x2), SA[1.0, -1.0]; rtol = tol)
@test isapprox_arrays(mapping_inv(ctype, cnodes, x3), SA[1.0, 1.0]; rtol = tol)
@test isapprox_arrays(mapping_inv(ctype, cnodes, x4), SA[-1.0, 1.0]; rtol = tol)
θ = π / 5
s = 3
t = SA[-1, 2]
R(θ) = SA[cos(θ) -sin(θ); sin(θ) cos(θ)]
mesh = one_cell_mesh(:quad)
mesh = transform(mesh, x -> R(θ) * (s .* x .+ t)) # scale, translate and rotate
c = CellInfo(mesh, 1)
cnodes = nodes(c)
ctype = celltype(c)
@test all(mapping_jacobian_inv(ctype, cnodes, SA[0.0, 0.0]) .≈ R(-θ) ./ s)
# Quad order 2
xmin, ymin = -rand(2)
xmax, ymax = rand(2)
mesh = one_cell_mesh(:quad; xmin, xmax, ymin, ymax, order = 2)
c2n = connectivities_indices(mesh, :c2n)
ctype = cells(mesh)[icell]
cnodes = get_nodes(mesh, c2n[icell])
x1 = [xmin, ymin]
x2 = [xmax, ymin]
x3 = [xmax, ymax]
x4 = [xmin, ymax]
x5 = (x1 + x2) / 2
x6 = (x2 + x3) / 2
x7 = (x3 + x4) / 2
x8 = (x4 + x1) / 2
x9 = [(xmin + xmax) / 2, (ymin + ymax) / 2]
@test isapprox(mapping(ctype, cnodes, [-1.0, -1.0]), x1, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [1.0, -1.0]), x2, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [1.0, 1.0]), x3, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [-1.0, 1.0]), x4, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [0.0, -1.0]), x5, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [1.0, 0.0]), x6, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [0.0, 1.0]), x7, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [-1.0, 0.0]), x8, rtol = eps())
@test isapprox(mapping(ctype, cnodes, [0.0, 0.0]), x9, rtol = eps())
@test isapprox(
mapping_det_jacobian(ctype, cnodes, rand(2)),
(xmax - xmin) * (ymax - ymin) / 4.0,
rtol = 1000eps(),
)
# Quad order 3
xmin, ymin = -rand(2)
xmax, ymax = rand(2)
mesh = one_cell_mesh(:quad; xmin, xmax, ymin, ymax, order = 3)
c2n = connectivities_indices(mesh, :c2n)
ctype = cells(mesh)[icell]
cnodes = get_nodes(mesh, c2n[icell])
tol = 1e-15
@test isapprox(mapping(ctype, cnodes, [-1.0, -1.0]), cnodes[1].x, rtol = tol)
@test isapprox(mapping(ctype, cnodes, [1.0, -1.0]), cnodes[2].x, rtol = tol)
@test isapprox(mapping(ctype, cnodes, [1.0, 1.0]), cnodes[3].x, rtol = tol)
@test isapprox(mapping(ctype, cnodes, [-1.0, 1.0]), cnodes[4].x, rtol = tol)
@test isapprox(mapping(ctype, cnodes, [-1.0 / 3.0, -1.0]), cnodes[5].x, rtol = tol)
@test isapprox(mapping(ctype, cnodes, [1.0 / 3.0, -1.0]), cnodes[6].x, rtol = tol)
@test isapprox(mapping(ctype, cnodes, [1.0, -1.0 / 3.0]), cnodes[7].x, rtol = tol)
@test isapprox(mapping(ctype, cnodes, [1.0, 1.0 / 3.0]), cnodes[8].x, rtol = tol)
@test isapprox(mapping(ctype, cnodes, [1.0 / 3, 1.0]), cnodes[9].x, rtol = tol)
@test isapprox(mapping(ctype, cnodes, [-1.0 / 3, 1.0]), cnodes[10].x, rtol = tol)
@test isapprox(mapping(ctype, cnodes, [-1.0, 1.0 / 3.0]), cnodes[11].x, rtol = tol)
@test isapprox(mapping(ctype, cnodes, [-1.0, -1.0 / 3.0]), cnodes[12].x, rtol = tol)
@test isapprox(
mapping(ctype, cnodes, [-1.0 / 3.0, -1.0 / 3.0]),
cnodes[13].x,
rtol = tol,
)
@test isapprox(
mapping(ctype, cnodes, [1.0 / 3.0, -1.0 / 3.0]),
cnodes[14].x,
rtol = tol,
)
@test isapprox(
mapping(ctype, cnodes, [1.0 / 3.0, 1.0 / 3.0]),
cnodes[15].x,
rtol = tol,
)
@test isapprox(
mapping(ctype, cnodes, [-1.0 / 3.0, 1.0 / 3.0]),
cnodes[16].x,
rtol = tol,
)
@test isapprox(
mapping_det_jacobian(ctype, cnodes, rand(2)),
(xmax - xmin) * (ymax - ymin) / 4.0,
rtol = 1000eps(),
)
# Hexa order 1
mesh = one_cell_mesh(
:hexa;
xmin = 1.0,
xmax = 2.0,
ymin = 1.0,
ymax = 2.0,
zmin = 1.0,
zmax = 2.0,
)
c2n = connectivities_indices(mesh, :c2n)
icell = 1
ctype = cells(mesh)[icell]
cnodes = get_nodes(mesh, c2n[icell])
F = mapping(ctype, cnodes)
@test isapprox_arrays(F([-1.0, -1.0, -1.0]), [1.0, 1.0, 1.0])
@test isapprox_arrays(F([1.0, -1.0, -1.0]), [2.0, 1.0, 1.0])
@test isapprox_arrays(F([1.0, 1.0, -1.0]), [2.0, 2.0, 1.0])
@test isapprox_arrays(F([-1.0, 1.0, -1.0]), [1.0, 2.0, 1.0])
@test isapprox_arrays(F([-1.0, -1.0, 1.0]), [1.0, 1.0, 2.0])
@test isapprox_arrays(F([1.0, -1.0, 1.0]), [2.0, 1.0, 2.0])
@test isapprox_arrays(F([1.0, 1.0, 1.0]), [2.0, 2.0, 2.0])
@test isapprox_arrays(F([-1.0, 1.0, 1.0]), [1.0, 2.0, 2.0])
# Hexa order 2
# Very trivial test for now. To be improved.
mesh = one_cell_mesh(
:hexa;
xmin = 1.0,
xmax = 2.0,
ymin = 1.0,
ymax = 2.0,
zmin = 1.0,
zmax = 2.0,
order = 2,
)
c2n = connectivities_indices(mesh, :c2n)
icell = 1
ctype = cells(mesh)[icell]
cnodes = get_nodes(mesh, c2n[icell])
F = mapping(ctype, cnodes)
@test isapprox_arrays(F([-1.0, -1.0, -1.0]), [1.0, 1.0, 1.0])
@test isapprox_arrays(F([1.0, -1.0, -1.0]), [2.0, 1.0, 1.0])
@test isapprox_arrays(F([1.0, 1.0, -1.0]), [2.0, 2.0, 1.0])
@test isapprox_arrays(F([-1.0, 1.0, -1.0]), [1.0, 2.0, 1.0])
@test isapprox_arrays(F([-1.0, -1.0, 1.0]), [1.0, 1.0, 2.0])
@test isapprox_arrays(F([1.0, -1.0, 1.0]), [2.0, 1.0, 2.0])
@test isapprox_arrays(F([1.0, 1.0, 1.0]), [2.0, 2.0, 2.0])
@test isapprox_arrays(F([-1.0, 1.0, 1.0]), [1.0, 2.0, 2.0])
# Penta6
mesh = one_cell_mesh(
:penta;
xmin = 1.0,
xmax = 2.0,
ymin = 1.0,
ymax = 2.0,
zmin = 1.0,
zmax = 2.0,
)
c2n = connectivities_indices(mesh, :c2n)
icell = 1
ctype = cells(mesh)[icell]
cnodes = get_nodes(mesh, c2n[icell])
F = mapping(ctype, cnodes)
@test isapprox_arrays(F([0.0, 0.0, -1.0]), [1.0, 1.0, 1.0])
@test isapprox_arrays(F([1.0, 0.0, -1.0]), [2.0, 1.0, 1.0])
@test isapprox_arrays(F([0.0, 1.0, -1.0]), [1.0, 2.0, 1.0])
@test isapprox_arrays(F([0.0, 0.0, 1.0]), [1.0, 1.0, 2.0])
@test isapprox_arrays(F([1.0, 0.0, 1.0]), [2.0, 1.0, 2.0])
@test isapprox_arrays(F([0.0, 1.0, 1.0]), [1.0, 2.0, 2.0])
# Pyra5
mesh = one_cell_mesh(
:pyra;
xmin = 1.0,
xmax = 2.0,
ymin = 1.0,
ymax = 2.0,
zmin = 1.0,
zmax = 3.0,
)
c2n = connectivities_indices(mesh, :c2n)
icell = 1
ctype = cells(mesh)[icell]
cnodes = get_nodes(mesh, c2n[icell])
F = mapping(ctype, cnodes)
@test isapprox_arrays(F([-1.0, -1.0, 0.0]), [1.0, 1.0, 1.0])
@test isapprox_arrays(F([1.0, -1.0, 0.0]), [2.0, 1.0, 1.0])
@test isapprox_arrays(F([1.0, 1.0, 0.0]), [2.0, 2.0, 1.0])
@test isapprox_arrays(F([-1.0, 1.0, 0.0]), [1.0, 2.0, 1.0])
@test isapprox_arrays(F([0.0, 0.0, 1.0]), [1.5, 1.5, 3.0])
end
@testset "basic mesh" begin
# Create mesh
mesh = basic_mesh()
# Get cell -> node connectivity from mesh
c2n = connectivities_indices(mesh, :c2n)
# Test mapping on quad '2'
icell = 2
cnodes = get_nodes(mesh, c2n[icell])
ctype = cells(mesh)[icell]
center = sum(y -> get_coords(y), cnodes) / length(cnodes)
@test isapprox_arrays(mapping(ctype, cnodes, [-1.0, -1.0]), get_coords(cnodes[1]))
@test isapprox_arrays(mapping(ctype, cnodes, [1.0, -1.0]), get_coords(cnodes[2]))
@test isapprox_arrays(mapping(ctype, cnodes, [1.0, 1.0]), get_coords(cnodes[3]))
@test isapprox_arrays(mapping(ctype, cnodes, [-1.0, 1.0]), get_coords(cnodes[4]))
@test isapprox_arrays(mapping(ctype, cnodes, [0.0, 0.0]), center)
@test isapprox(mapping_det_jacobian(ctype, cnodes, rand(2)), 0.25, rtol = eps())
@test isapprox_arrays(
mapping_inv(ctype, cnodes, get_coords(cnodes[1])),
[-1.0, -1.0],
)
@test isapprox_arrays(
mapping_inv(ctype, cnodes, get_coords(cnodes[2])),
[1.0, -1.0],
)
@test isapprox_arrays(mapping_inv(ctype, cnodes, get_coords(cnodes[3])), [1.0, 1.0])
@test isapprox_arrays(
mapping_inv(ctype, cnodes, get_coords(cnodes[4])),
[-1.0, 1.0],
)
@test isapprox_arrays(mapping_inv(ctype, cnodes, center), [0.0, 0.0])
x = get_coords(cnodes[1])
@test isapprox(
mapping(ctype, cnodes, mapping_inv(ctype, cnodes, x)),
x,
rtol = eps(eltype(x)),
)
# Test mapping on triangle '3'
icell = 3
cnodes = get_nodes(mesh, c2n[icell])
ctype = cells(mesh)[icell]
center = sum(y -> get_coords(y), cnodes) / length(cnodes)
@test isapprox_arrays(mapping(ctype, cnodes, [0.0, 0.0]), get_coords(cnodes[1]))
@test isapprox_arrays(mapping(ctype, cnodes, [1.0, 0.0]), get_coords(cnodes[2]))
@test isapprox_arrays(mapping(ctype, cnodes, [0.0, 1.0]), get_coords(cnodes[3]))
@test isapprox(
mapping(ctype, cnodes, [1 / 3, 1 / 3]),
center,
rtol = eps(eltype(center)),
)
@test isapprox(mapping_det_jacobian(ctype, cnodes, 0.0), 1.0, rtol = eps())
@test isapprox_arrays(mapping_inv(ctype, cnodes, get_coords(cnodes[1])), [0.0, 0.0])
@test isapprox_arrays(mapping_inv(ctype, cnodes, get_coords(cnodes[2])), [1.0, 0.0])
@test isapprox_arrays(mapping_inv(ctype, cnodes, get_coords(cnodes[3])), [0.0, 1.0])
@test isapprox(
mapping_inv(ctype, cnodes, center),
[1 / 3, 1 / 3],
rtol = 10 * eps(eltype(x)),
)
x = get_coords(cnodes[1])
@test isapprox(
mapping(ctype, cnodes, mapping_inv(ctype, cnodes, x)),
x,
rtol = eps(eltype(x)),
)
end
function _check_face_parametrization(mesh)
c2n = connectivities_indices(mesh, :c2n)
f2n = connectivities_indices(mesh, :f2n)
f2c = connectivities_indices(mesh, :f2c)
cellTypes = cells(mesh)
faceTypes = faces(mesh)
for kface in inner_faces(mesh)
# Face nodes, type and shape
ftype = faceTypes[kface]
fshape = shape(ftype)
fnodes = get_nodes(mesh, f2n[kface])
Fface = mapping(ftype, fnodes)
# Neighbor cell i
i = f2c[kface][1]
xᵢ = get_nodes(mesh, c2n[i])
ctᵢ = cellTypes[i]
shapeᵢ = shape(ctᵢ)
Fᵢ = mapping(ctᵢ, xᵢ)
sideᵢ = cell_side(ctᵢ, c2n[i], f2n[kface])
fpᵢ = mapping_face(shapeᵢ, sideᵢ) # mapping face-ref -> cell_i-ref
# Neighbor cell j
j = f2c[kface][2]
xⱼ = get_nodes(mesh, c2n[j])
ctⱼ = cellTypes[j]
shapeⱼ = shape(ctⱼ)
Fⱼ = mapping(ctⱼ, xⱼ)
sideⱼ = cell_side(ctⱼ, c2n[j], f2n[kface])
# This part is a bit tricky : we want the face parametrization (face-ref -> cell-ref) on
# side `j`. For this, we need to know the permutation between the vertices of `kface` and the
# vertices of the `sideⱼ`-th face of cell `j`. However all the information we have for entities,
# namely `fnodes` and `faces2nodes(ctⱼ, sideⱼ)` refer to the nodes, not the vertices. So we need
# to retrieve the number of vertices of the face and then restrict the arrays to these vertices.
# (by the way, we use that the vertices appears necessarily in first)
# We could simplify the expressions below by introducing the notion of "vertex" in Entity, for
# instance with `nvertices` and `faces2vertices`.
#
# Some additional explanations:
# c2n[j] = global index of the nodes of cell j
# faces2nodes(ctⱼ, sideⱼ) = local index of the nodes of face sideⱼ of cell j
# c2n[j][faces2nodes(ctⱼ, sideⱼ)] = global index of the nodes of face sideⱼ of cell j
# f2n[kface] = global index of the nodes of face `kface`
# indexin(a, b) = location of elements of `a` in `b`
nv = length(faces2nodes(shapeⱼ, sideⱼ)) # number of vertices of the face
iglob_vertices_of_face_of_cell_j =
[c2n[j][faces2nodes(ctⱼ, sideⱼ)[l]] for l in 1:nv]
g2l = indexin(f2n[kface][1:nv], iglob_vertices_of_face_of_cell_j)
fpⱼ = mapping_face(shapeⱼ, sideⱼ, g2l)
# High-level API
faceInfo = FaceInfo(mesh, kface)
# Note that in the following for-loop :
# `length(fnodes) > length(get_coords(fshape))`
# for high-order (>1) entities. Then, high-order
# nodes are not tested.
# TODO : test high-order nodes (mid-face node, ...)
for (ξface, fnode) in zip(get_coords(fshape), fnodes)
@test isapprox(Fface(ξface), fnode.x)
@test isapprox(Fᵢ(fpᵢ(ξface)), fnode.x)
@test isapprox(Fⱼ(fpⱼ(ξface)), fnode.x)
# High-level API tests
fpt_ref = FacePoint(ξface, faceInfo, ReferenceDomain())
fpt_phy = change_domain(fpt_ref, PhysicalDomain())
cpt_ref_i = side_n(fpt_ref)
cpt_ref_j = side_p(fpt_ref)
cpt_phy_i = change_domain(cpt_ref_i, PhysicalDomain())
cpt_phy_j = change_domain(cpt_ref_j, PhysicalDomain())
@test isapprox(get_coords(fpt_phy), fnode.x)
@test isapprox(get_coords(cpt_ref_i), fpᵢ(ξface))
@test isapprox(get_coords(cpt_ref_j), fpⱼ(ξface))
@test isapprox(get_coords(cpt_phy_i), Fᵢ(fpᵢ(ξface)))
@test isapprox(get_coords(cpt_phy_j), Fⱼ(fpⱼ(ξface)))
end
end
end
@testset "face parametrization" begin
# Here we test the face parametrization
# Two Quad9 side-by-side
path = joinpath(tempdir, "mesh.msh")
gen_rectangle_mesh(path, :quad; nx = 3, ny = 2, order = 2)
mesh = read_msh(path)
_check_face_parametrization(mesh)
# For two Hexa8 side-by-side
path = joinpath(tempdir, "mesh.msh")
gen_hexa_mesh(path, :hexa; nx = 3, ny = 2, nz = 2)
mesh = read_msh(path)
_check_face_parametrization(mesh)
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 8790 | @testset "ref2phys" begin
# TODO : add more test for gradients, waiting for Ghislain's commit
@testset "Line" begin
# Line
xmin = -rand()
xmax = rand()
mesh = one_cell_mesh(:line; xmin, xmax)
xtest = range(xmin, xmax; length = 5)
c2n = connectivities_indices(mesh, :c2n)
cnodes = get_nodes(mesh, c2n[1])
ctype = cells(mesh)[1]
Finv = Bcube.mapping_inv(ctype, cnodes)
xc = center(ctype, cnodes)
@test isapprox_arrays(xc, [(xmin + xmax) / 2])
#- Taylor degree 0
fs = FunctionSpace(:Taylor, 0)
dhl = DofHandler(mesh, fs, 1, false)
λ = x -> shape_functions(fs, shape(ctype), Finv(x))
r = rand()
q = [r]
u = interpolate(λ, q[get_dof(dhl, 1)])
@test isapprox_arrays(λ(rand(1)), [1.0])
@test all(isapprox(u([x]), r; rtol = eps()) for x in xtest)
#-- new api
U = TrialFESpace(fs, mesh, :discontinuous)
u = FEFunction(U, q)
cInfo = CellInfo(mesh, 1)
_u = Bcube.materialize(u, cInfo)
@test all(
isapprox(_u(CellPoint(x, cInfo, Bcube.PhysicalDomain())), r; atol = eps()) for
x in xtest
)
#- Taylor degree 1
fs = FunctionSpace(:Taylor, 1)
dhl = DofHandler(mesh, fs, 1, false)
λ = x -> shape_functions(fs, shape(ctype), Finv(x))
coef = rand()
q = [coef * (xmin + xmax) / 2, (xmax - xmin) * coef] # f(x) = coef*x
u = interpolate(λ, q[get_dof(dhl, 1)])
@test isapprox(λ([xmin]), [1.0, -0.5])
@test isapprox_arrays(λ(xc), [1.0, 0.0])
@test isapprox_arrays(λ([xmax]), [1.0, 0.5])
@test all(isapprox(u([x]), coef * x) for x in xtest)
#-- new api
U = TrialFESpace(fs, mesh, :discontinuous)
u = FEFunction(U, q)
cInfo = CellInfo(mesh, 1)
_u = Bcube.materialize(u, cInfo)
@test all(
isapprox(
_u(CellPoint(x, cInfo, Bcube.PhysicalDomain())),
coef * x;
atol = eps(),
) for x in xtest
)
# Normals
# Bar2_t in 1D
xmin = -2.0
xmax = 3.0
cnodes = [Node([xmin]), Node([xmax])]
ctype = Bar2_t()
@test isapprox_arrays(normal(ctype, cnodes, 1, rand(1)), [-1.0])
@test isapprox_arrays(normal(ctype, cnodes, 2, rand(1)), [1.0])
# Bar2_t in 2D
xmin = [-2.0, -1.0]
xmax = [3.0, 4.0]
cnodes = [Node(xmin), Node(xmax)]
ctype = Bar2_t()
@test normal(ctype, cnodes, 1, rand(1)) ≈ √(2) / 2 .* [-1, -1]
@test normal(ctype, cnodes, 2, rand(1)) ≈ √(2) / 2 .* [1, 1]
# Bar2_t in 3D
xmin = [-2.0, -1.0, 5.0]
xmax = [3.0, 4.0, 0.0]
cnodes = [Node(xmin), Node(xmax)]
ctype = Bar2_t()
@test normal(ctype, cnodes, 1, rand(1)) ≈ √(3) / 3 * [-1, -1, 1]
@test normal(ctype, cnodes, 2, rand(1)) ≈ √(3) / 3 * [1, 1, -1]
# Bar3_t in 3D (checked graphically, see notebook)
cnodes = [Node([0.0, 0.0, 1.0]), Node([1.0, 0.0, 3.0]), Node([0.5, 0.5, 2.0])]
ctype = Bar3_t()
@test normal(ctype, cnodes, 1, rand(1)) ≈ 1.0 / 3.0 .* [-1, -2, -2]
@test normal(ctype, cnodes, 2, rand(1)) ≈ 1.0 / 3.0 .* [1, -2, 2]
end
@testset "Triangle" begin
# Normals
# Triangle3_t in 2D
cnodes = [Node([0.0, 0.0]), Node([1.0, 1.0]), Node([0.0, 2.0])]
ctype = Tri3_t()
@test normal(ctype, cnodes, 1, myrand(1, -1.0, 1.0)) ≈ √(2) / 2 .* [1, -1]
@test normal(ctype, cnodes, 2, myrand(1, -1.0, 1.0)) ≈ √(2) / 2 .* [1, 1]
@test normal(ctype, cnodes, 3, myrand(1, -1.0, 1.0)) ≈ [-1.0, 0.0]
# Triangle3_t in 3D (checked graphically, see notebook)
cnodes = [Node([-0.5, -1.0, -0.3]), Node([0.5, 0.0, 0.0]), Node([-0.5, 1.0, 0.5])]
ctype = Tri3_t()
@test normal(ctype, cnodes, 1, myrand(1, -1.0, 1.0)) ≈
[0.7162290778315695, -0.6203055406219843, -0.3197451240319506]
@test normal(ctype, cnodes, 2, myrand(1, -1.0, 1.0)) ≈
[0.7396002616336388, 0.647150228929434, 0.1849000654084097]
@test normal(ctype, cnodes, 3, myrand(1, -1.0, 1.0)) ≈
[-0.9957173250742359, -0.034335080174973664, 0.08583770043743415]
end
@testset "Quad" begin
# Quad4
xmin, ymin = -rand(2)
xmax, ymax = 3.0 .+ rand(2)
Δx = xmax - xmin
Δy = ymax - ymin
mesh = one_cell_mesh(:quad; xmin, xmax, ymin, ymax)
xtest = [
[x, y] for (x, y) in Base.Iterators.product(
range(xmin, xmax; length = 3),
range(ymin, ymax; length = 3),
)
]
c2n = connectivities_indices(mesh, :c2n)
cnodes = get_nodes(mesh, c2n[1])
ctype = cells(mesh)[1]
Finv = Bcube.mapping_inv(ctype, cnodes)
xc = center(ctype, cnodes)
@test all(
map(
(x, y) -> isapprox(x, y; rtol = eps()),
xc,
[(xmin + xmax) / 2, (ymin + ymax) / 2],
),
)
#- Taylor degree 0
fs = FunctionSpace(:Taylor, 0)
dhl = DofHandler(mesh, fs, 1, false)
λ = shape_functions(fs, shape(ctype))
r = rand()
q = [r]
u = interpolate(λ, q[get_dof(dhl, 1)])
@test isapprox_arrays(λ(rand(2)), [1.0])
@test all(isapprox(u(x), r; rtol = eps()) for x in xtest)
#-- new api
U = TrialFESpace(fs, mesh, :discontinuous)
u = FEFunction(U, q)
cInfo = CellInfo(mesh, 1)
_u = Bcube.materialize(u, cInfo)
@test all(
isapprox(_u(CellPoint(x, cInfo, Bcube.PhysicalDomain())), r; atol = eps()) for
x in xtest
)
#- Taylor degree 1
fs = FunctionSpace(:Taylor, 1)
dhl = DofHandler(mesh, fs, 1, false)
λ = x -> shape_functions(fs, shape(ctype), Finv(x))
coefx, coefy = rand(2)
q = [[coefx, coefy] ⋅ xc, Δx * coefx, Δy * coefy] # f(x,y) = coefx*x + coefy*y
u = interpolate(λ, q[get_dof(dhl, 1)])
xr = rand(2)
@test isapprox(λ(xr), [1.0, (xr[1] - xc[1]) / Δx, (xr[2] - xc[2]) / Δy])
@test all(isapprox(u(x), [coefx, coefy] ⋅ x) for x in xtest)
#-- new api
U = TrialFESpace(fs, mesh, :discontinuous)
u = FEFunction(U, q)
cInfo = CellInfo(mesh, 1)
_u = Bcube.materialize(u, cInfo)
@test all(
isapprox(
_u(CellPoint(x, cInfo, Bcube.PhysicalDomain())),
[coefx, coefy] ⋅ x;
atol = 10 * eps(),
) for x in xtest
)
# Normals
A = [0.0, 0.0]
B = [1.0, 1.0]
C = [0.0, 2.0]
D = [-1.0, 1.0]
mesh = Mesh(
[Node(A), Node(B), Node(C), Node(D)],
[Quad4_t()],
Connectivity([4], [1, 2, 3, 4]),
)
c2n = connectivities_indices(mesh, :c2n)
cnodes = get_nodes(mesh, c2n[1])
ctype = cells(mesh)[1]
AB = B - A
BC = C - B
CD = D - C
DA = A - D
nAB = normalize(-[-AB[2], AB[1]])
nBC = normalize(-[-BC[2], BC[1]])
nCD = normalize(-[-CD[2], CD[1]])
nDA = normalize(-[-DA[2], DA[1]])
@test isapprox_arrays(normal(ctype, cnodes, 1, rand(2)), nAB)
@test isapprox_arrays(normal(ctype, cnodes, 2, rand(2)), nBC)
@test isapprox_arrays(normal(ctype, cnodes, 3, rand(2)), nCD)
@test isapprox_arrays(normal(ctype, cnodes, 4, rand(2)), nDA)
# Quad9
# Normals (checked graphically, see notebook)
cnodes = [
Node([1.0, 1.0]),
Node([4.0, 1.0]),
Node([4.0, 3.0]),
Node([1.0, 3.0]),
Node([2.5, 0.5]),
Node([4.5, 2.0]),
Node([2.5, 3.5]),
Node([0.5, 2.0]),
Node([2.5, 2.0]),
]
ctype = Quad9_t()
xq = [0.5773502691896258]
@test normal(ctype, cnodes, 1, -xq) ≈ [-0.35921060405354993, -0.9332565252573828]
@test normal(ctype, cnodes, 1, xq) ≈ [0.3592106040535497, -0.9332565252573829]
@test normal(ctype, cnodes, 2, -xq) ≈ [0.8660254037844385, -0.5000000000000004]
@test normal(ctype, cnodes, 2, xq) ≈ [0.8660254037844386, 0.5000000000000003]
@test normal(ctype, cnodes, 3, -xq) ≈ [0.3592106040535492, 0.9332565252573829]
@test normal(ctype, cnodes, 3, xq) ≈ [-0.3592106040535494, 0.9332565252573829]
@test normal(ctype, cnodes, 4, -xq) ≈ [-0.8660254037844388, 0.5]
@test normal(ctype, cnodes, 4, xq) ≈ [-0.8660254037844385, -0.5000000000000001]
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 868 | @testset "connectivity" begin
ne = 4
numIndices = [2, 4, 3, 1]
indices = [10, 9, 7, 4, 6, 9, 1, 3, 5, 12]
c = Connectivity(numIndices, indices)
@test length(c) === 4
@test size(c) === (4,)
@test length(c, 2) === 4
@test size(c, 4) === (1,)
@test axes(c) === 1:4
@test axes(c, 1) === 1:1:2
@test axes(c, 2) === 3:1:6
@test c[1] == [10, 9]
@test c[2] == [7, 4, 6, 9]
@test c[3] == [1, 3, 5]
@test c[4] == [12]
@test c[-2] == reverse(c[2])
@test c[2][3] === 6
@test minsize(c) === 1
@test maxsize(c) === 4
for (i, a) in enumerate(c)
@test a == c[i]
end
invc, _keys = inverse_connectivity(c)
_test = Bool[]
for (i, a) in enumerate(invc)
for b in a
push!(_test, _keys[i] ∈ c[b])
end
end
@assert length(_test) > 0 && all(_test)
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 857 | @testset "domain" begin
nx = 10
ny = 10
l = 1.0
path = joinpath(tempdir, "mesh.msh")
gen_rectangle_mesh(path, :quad; nx = nx, ny = ny, lx = l, ly = l, xc = 0.0, yc = 0.0)
mesh = read_msh(path)
@test topodim(mesh) === 2
periodicBCType_x = PeriodicBCType(Translation(SA[-l, 0.0]), ("East",), ("West",))
periodicBCType_y = PeriodicBCType(Translation(SA[0.0, l]), ("South",), ("North",))
Γ_perio_x = BoundaryFaceDomain(mesh, periodicBCType_x)
Γ_perio_y = BoundaryFaceDomain(mesh, periodicBCType_y)
# Testing subdomain
mesh = line_mesh(3; xmin = 0.0, xmax = 2) # mesh with 2 cells
dΩ = Measure(CellDomain(mesh, 1:1), 2) # only first cell
#- new api
cInfo = CellInfo(mesh, 1)
res = integrate_on_ref_element(PhysicalFunction(x -> 2 * x), cInfo, Quadrature(Val(2)))
@test res[1] == 1.0
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 1764 | @testset "entity types" begin
# Bar2
bar = Bar2_t()
@test nnodes(bar) === 2
@test nodes(bar) === (1, 2)
@test nedges(bar) === 2
@test edges2nodes(bar) === ((1,), (2,))
@test edges2nodes(bar) === faces2nodes(bar)
@test nfaces(bar) === nedges(bar)
a = @SVector [10, 20]
@test f2n_from_c2n(bar, a) == ([10], [20])
@test f2n_from_c2n(bar, a) == f2n_from_c2n(Bar2_t, a)
@test cell_side(bar, [10, 20], [20]) === 2
@test cell_side(bar, [10, 20], [20]) === cell_side(bar, [10, 20], [20])
# Tri3
tri = Tri3_t()
@test nnodes(tri) === 3
@test nodes(tri) === (1, 2, 3)
@test nedges(tri) === 3
@test edges2nodes(tri) === ((1, 2), (2, 3), (3, 1))
@test edges2nodes(tri) === faces2nodes(tri)
@test nfaces(tri) === nedges(tri)
a = @SVector [10, 20, 30]
@test f2n_from_c2n(tri, a) == ([10, 20], [20, 30], [30, 10])
@test f2n_from_c2n(tri, a) == f2n_from_c2n(Tri3_t, a)
@test cell_side(tri, [10, 20, 30], [20, 30]) === 2
@test cell_side(tri, [10, 20, 30], [20, 30]) === cell_side(tri, [10, 20, 30], [30, 20])
@test oriented_cell_side(tri, [10, 20, 30], [30, 10]) === 3
@test oriented_cell_side(tri, [10, 20, 30], [10, 30]) === -3
@test oriented_cell_side(tri, [10, 20, 30], [20, 30]) === 2
@test oriented_cell_side(tri, [10, 20, 30], [30, 20]) === -2
# Quad4
quad = Quad4_t()
@test nnodes(quad) === 4
@test nodes(quad) === (1, 2, 3, 4)
@test nedges(quad) === 4
@test edges2nodes(quad) === ((1, 2), (2, 3), (3, 4), (4, 1))
@test oriented_cell_side(quad, [10, 20, 30, 40], [40, 10]) === 4
@test oriented_cell_side(quad, [10, 20, 30, 40], [10, 40]) === -4
@test oriented_cell_side(quad, [20, 10, 30, 40], [30, 10]) === -2
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 6476 | const mesh_dir = string(@__DIR__, "/../../input/mesh/")
@testset "gmsh - line order1" begin
path = joinpath(tempdir, "mesh.msh")
Bcube.gen_line_mesh(path; nx = 11, lx = 2.0)
mesh = read_msh(path)
@test topodim(mesh) === 1
@test spacedim(mesh) === 1
@test nnodes(mesh) === 11
@test ncells(mesh) === 10
@test nodes(mesh) == [Node_t() for i in 1:nnodes(mesh)]
@test cells(mesh) == [Bar2_t() for i in 1:ncells(mesh)]
end
@testset "gmsh - square with triangles" begin
path = joinpath(tempdir, "mesh.msh")
Bcube.gen_rectangle_mesh(
path,
:tri;
nx = 4,
ny = 4,
lx = 1.0,
ly = 1.0,
xc = 0.5,
yc = 0.5,
)
mesh = read_msh(path)
@test topodim(mesh) === 2
@test spacedim(mesh) === 2
@test has_cells(mesh) === true
@test has_nodes(mesh) === true
@test has_nodes(mesh) === has_entities(mesh, :node)
@test has_vertices(mesh) === has_entities(mesh, :vertex)
@test has_edges(mesh) === has_entities(mesh, :edge)
@test has_faces(mesh) === has_entities(mesh, :face)
@test has_cells(mesh) === has_entities(mesh, :cell)
@test has_cells(mesh) === true
@test has_nodes(mesh) === true
@test nnodes(mesh) === 20
@test ncells(mesh) === 26
@test nnodes(mesh) === n_entities(mesh, :node)
@test nvertices(mesh) === n_entities(mesh, :vertex)
@test nedges(mesh) === n_entities(mesh, :edge)
@test nfaces(mesh) === n_entities(mesh, :face)
@test ncells(mesh) === n_entities(mesh, :cell)
@test nodes(mesh) == [Node_t() for i in 1:nnodes(mesh)]
@test cells(mesh) == [Tri3_t() for i in 1:ncells(mesh)]
@test boundary_tag(mesh, "South") == 1 &&
boundary_tag(mesh, "East") == 2 &&
boundary_tag(mesh, "North") == 3 &&
boundary_tag(mesh, "West") == 4
@test boundary_names(mesh)[1] == "South" &&
boundary_names(mesh)[2] == "East" &&
boundary_names(mesh)[3] == "North" &&
boundary_names(mesh)[4] == "West"
ref_nodes_south = Set([1, 5, 6, 2])
ref_nodes_east = Set([3, 8, 7, 2])
ref_nodes_north = Set([4, 10, 9, 3])
ref_nodes_west = Set([4, 12, 11, 1])
@test Set(absolute_indices(mesh, :node)[boundary_nodes(mesh, 1)]) == ref_nodes_south
@test Set(absolute_indices(mesh, :node)[boundary_nodes(mesh, 2)]) == ref_nodes_east
@test Set(absolute_indices(mesh, :node)[boundary_nodes(mesh, 3)]) == ref_nodes_north
@test Set(absolute_indices(mesh, :node)[boundary_nodes(mesh, 4)]) == ref_nodes_west
for tag in 1:4
_nodes = [
i for face in boundary_faces(mesh, tag) for
i in connectivities_indices(mesh, :f2n)[face]
]
if tag == 1
(@test Set(absolute_indices(mesh, :node)[_nodes]) == ref_nodes_south)
else
nothing
end
if tag == 2
(@test Set(absolute_indices(mesh, :node)[_nodes]) == ref_nodes_east)
else
nothing
end
if tag == 3
(@test Set(absolute_indices(mesh, :node)[_nodes]) == ref_nodes_north)
else
nothing
end
if tag == 4
(@test Set(absolute_indices(mesh, :node)[_nodes]) == ref_nodes_west)
else
nothing
end
end
# for (tag,name) in boundary_names(mesh)
# @show tag,name
# for face in boundary_faces(mesh)[tag]
# #@show connectivities_indices(mesh,:f2n)[face]
# @show [coordinates(mesh,i) for i in connectivities_indices(mesh,:f2n)[face]]
# end
# @show [coordinates(mesh,i) for i in boundary_nodes(mesh,tag)]
# end
@testset "gmsh - autocompute space dim" begin
# Line order 1
path = joinpath(tempdir, "mesh.msh")
Bcube.gen_line_mesh(path; nx = 11, lx = 2.0)
mesh = read_msh(path)
@test spacedim(mesh) === 1
mesh = read_msh(path, 3) # without autocompute
@test spacedim(mesh) === 3
# Square tri
path = joinpath(tempdir, "mesh.msh")
Bcube.gen_rectangle_mesh(
path,
:tri;
nx = 4,
ny = 4,
lx = 1.0,
ly = 1.0,
xc = 0.5,
yc = 0.5,
)
mesh = read_msh(path)
@test spacedim(mesh) === 2
mesh = read_msh(path, 3) # without autocompute
@test spacedim(mesh) === 3
# Sphere
path = joinpath(tempdir, "mesh.msh")
Bcube.gen_sphere_mesh(path)
mesh = read_msh(path)
@test spacedim(mesh) === 3
end
end
@testset "gmsh - generators" begin
basename = "gmsh_line_mesh"
path = joinpath(tempdir, basename * ".msh")
n_partitions = 2 # with `3`, the result is not deterministic...
gen_line_mesh(
path;
nx = 12,
n_partitions = n_partitions,
split_files = true,
create_ghosts = true,
)
for i in 1:n_partitions
fname = basename * "_$i.msh"
@test fname2sum[fname] == bytes2hex(open(sha1, joinpath(tempdir, fname)))
end
# gen_mesh_around_disk
fname = "gmsh_mesh_around_disk_tri.msh"
Bcube.gen_mesh_around_disk(joinpath(tempdir, fname), :tri; nθ = 30, nr = 10)
@test fname2sum[fname] == bytes2hex(open(sha1, joinpath(tempdir, fname)))
fname = "gmsh_mesh_around_disk_quad.msh"
Bcube.gen_mesh_around_disk(joinpath(tempdir, fname), :quad; nθ = 30, nr = 10)
@test fname2sum[fname] == bytes2hex(open(sha1, joinpath(tempdir, fname)))
# gen_mesh_around_disk
fname = "gmsh_rectangle_mesh_with_tri_and_quad.msh"
Bcube.gen_rectangle_mesh_with_tri_and_quad(
joinpath(tempdir, fname);
nx = 5,
ny = 6,
lx = 2,
ly = 3,
)
@test fname2sum[fname] == bytes2hex(open(sha1, joinpath(tempdir, fname)))
# gen_disk_mesh
fname = "gmsh_disk_mesh.msh"
Bcube.gen_disk_mesh(joinpath(tempdir, fname))
@test fname2sum[fname] == bytes2hex(open(sha1, joinpath(tempdir, fname)))
# gen_star_disk_mesh
fname = "gmsh_star_disk_mesh.msh"
Bcube.gen_star_disk_mesh(joinpath(tempdir, fname), 0.1, 7; nθ = 100)
@test fname2sum[fname] == bytes2hex(open(sha1, joinpath(tempdir, fname)))
# gen_cylinder_shell_mesh
fname = "gmsh_cylinder_shell_mesh.msh"
Bcube.gen_cylinder_shell_mesh(joinpath(tempdir, fname), 30, 10)
@test fname2sum[fname] == bytes2hex(open(sha1, joinpath(tempdir, fname)))
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 3604 | @testset "mesh" begin
m = basic_mesh()
@test topodim(m) === 2
@test spacedim(m) === 2
@test topodim(m, :cell) === 2
@test topodim(m, :face) === 1
@test topodim(m, :edge) === 1
@test topodim(m, :node) === 0
@test topodim(m, :vertex) === 0
@test get_nodes(m)[6] == get_nodes(m, 6)
@test get_nodes(m, 7) == Node([2.0, 0.0])
@test connectivities_indices(m, :c2n) == indices(connectivities(m, :c2n))
#test iterator
c2n = indices(connectivities(m, :c2n))
c = cells(m)
for (i, (_c, _c2n)) in enumerate(zip(c, c2n))
i == 1 ? (@test (i, _c, _c2n) == (1, Quad4_t(), [1, 2, 6, 5])) : nothing
i == 2 ? (@test (i, _c, _c2n) == (2, Quad4_t(), [2, 3, 7, 6])) : nothing
i == 3 ? (@test (i, _c, _c2n) == (3, Tri3_t(), [3, 4, 7])) : nothing
end
#test get_coords
@test get_coords.(get_nodes(m, c2n[2])) ==
[[1.0, 1.0], [2.0, 1.0], [2.0, 0.0], [1.0, 0.0]]
# test cell->face connectivities
c2f = indices(connectivities(m, :c2f))
@test from(connectivities(m, :c2f)) === :cell
@test to(connectivities(m, :c2f)) === :face
@test by(connectivities(m, :c2f)) === nothing
@test nlayers(connectivities(m, :c2f)) === nothing
@test c2f[1] == [1, 2, 3, 4] && c2f[2] == [5, 6, 7, 2] && c2f[3] == [8, 9, 6]
# test face->cell connectivities
f2c = indices(connectivities(m, :f2c))
@test from(connectivities(m, :f2c)) === :face
@test to(connectivities(m, :f2c)) === :cell
@test by(connectivities(m, :f2c)) === nothing
@test nlayers(connectivities(m, :f2c)) === nothing
@test f2c[1] == [1] &&
f2c[2] == [1, 2] &&
f2c[3] == [1] &&
f2c[4] == [1] &&
f2c[5] == [2] &&
f2c[6] == [2, 3] &&
f2c[7] == [2] &&
f2c[8] == [3] &&
f2c[9] == [3]
# test face->node connectivities
f2n = indices(connectivities(m, :f2n))
@test from(connectivities(m, :f2n)) === :face
@test to(connectivities(m, :f2n)) === :node
@test by(connectivities(m, :f2n)) === nothing
@test nlayers(connectivities(m, :f2n)) === nothing
@test f2n[1] == [1, 2] &&
f2n[2] == [2, 6] &&
f2n[3] == [6, 5] &&
f2n[4] == [5, 1] &&
f2n[5] == [2, 3] &&
f2n[6] == [3, 7] &&
f2n[7] == [7, 6] &&
f2n[8] == [3, 4] &&
f2n[9] == [4, 7]
f = faces(m)
@test all([typeof(x) === Bar2_t for x in f])
# test face orientation
@test oriented_cell_side(c[1], c2n[1], f2n[2]) === 2 # low-level interface
@test oriented_cell_side(c[2], c2n[2], f2n[2]) === -4
@test oriented_cell_side(m, 1, 2) === 2 # high-level interface
@test oriented_cell_side(m, 1, 2) === 2
@test oriented_cell_side(m, 1, 9) === 0
# Inner and outer faces
@test inner_faces(m) == [2, 6]
@test outer_faces(m) == [1, 3, 4, 5, 7, 8, 9]
c2c = connectivity_cell2cell_by_faces(m)
@test c2c[1] == [2] && c2c[2] == [1, 3] && c2c[3] == [2]
# Test connectivity cell2cell by nodes
# Checked using `Set` because order is not relevant
mesh = rectangle_mesh(4, 4)
c2c = connectivity_cell2cell_by_nodes(mesh)
@test Set(c2c[1]) == Set([4, 2, 5])
@test Set(c2c[2]) == Set([1, 4, 5, 3, 6])
@test Set(c2c[3]) == Set([6, 2, 5])
@test Set(c2c[4]) == Set([1, 2, 5, 7, 8])
@test Set(c2c[5]) == Set([1, 2, 4, 6, 8, 9, 3, 7])
@test Set(c2c[6]) == Set([9, 3, 5, 8, 2])
@test Set(c2c[7]) == Set([4, 8, 5])
@test Set(c2c[8]) == Set([5, 6, 9, 7, 4])
@test Set(c2c[9]) == Set([6, 5, 8])
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 994 | @testset "mesh generator" begin
# These are more "functionnal tests" than "unit test" : we check that no error is committed
m = basic_mesh()
@test nnodes(m) == 7
@test ncells(m) == 3
m = one_cell_mesh(:line)
@test nnodes(m) == 2
@test ncells(m) == 1
m = one_cell_mesh(:line; order = 2)
@test nnodes(m) == 3
@test ncells(m) == 1
n = 10
m = line_mesh(n)
@test nnodes(m) == n
@test ncells(m) == n - 1
nx = 10
ny = 10
m = rectangle_mesh(nx, ny)
@test nnodes(m) == nx * ny
@test ncells(m) == (nx - 1) * (ny - 1)
nx = 3
ny = 4
nz = 5
mesh = hexa_mesh(3, 4, 5)
@test nnodes(mesh) == nx * ny * nz
@test ncells(mesh) == (nx - 1) * (ny - 1) * (nz - 1)
# Not working (maybe the structure comparison is too hard,
# or maybe it does not compare object properties but objects themselves)
#@test ncube_mesh([n]) == line_mesh(n)
#@test ncube_mesh([nx, ny]) == rectangle_mesh(nx, ny)
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 363 | @testset "Transformation" begin
@testset "Translation" begin
u = [2, 0]
T = Translation(u)
x = [3, 1]
@test all(T(x) .== [5, 1])
end
@testset "Rotation" begin
rot = Rotation([0, 0, 1], π / 4)
x = [3.0, 0, 0]
x_rot_ref = 3√(2) / 2 .* [1, 1, 0]
@test all(rot(x) .≈ x_rot_ref)
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 12192 | @testset "Algebra" begin
@testset "Gradient" begin
# We test the mapping of a gradient. The idea is to compute the integral of a function `f` whose
# gradient is constant. Then the result must be this constant multiplied by the cell area.
# But since we need to input a `ReferenceFunction`, we need to build `f ∘ F` where `F` is the mapping.
# We also need a geometric function to compute the area of a convex quad.
function convex_quad_area(cnodes)
n1, n2, n3, n4 = cnodes
return (
abs((n1.x[1] - n3.x[1]) * (n2.x[2] - n4.x[2])) +
abs((n2.x[1] - n4.x[1]) * (n1.x[2] - n3.x[2]))
) / 2
end
cnodes = [Node([0.0, 0.0]), Node([1.0, 0.0]), Node([2.0, 1.5]), Node([1.0, 1.5])]
celltypes = [Quad4_t()]
cell2node = Connectivity([4], [1, 2, 3, 4])
mesh = Mesh(cnodes, celltypes, cell2node)
# mesh = one_cell_mesh(:quad)
c2n = connectivities_indices(mesh, :c2n)
icell = 1
cnodes = get_nodes(mesh, c2n[icell])
ctype = cells(mesh)[icell]
cInfo = CellInfo(mesh, icell)
qDegree = Val(2)
# Scalar test : gradient of scalar `f` in physical coordinates is [1, 2]
function f1(ξ)
x, y = Bcube.mapping(ctype, cnodes, ξ)
return x + 2y
end
g = ReferenceFunction(f1)
_g = Bcube.materialize(∇(g), cInfo)
res = integrate_on_ref_element(_g, cInfo, Quadrature(qDegree))
@test all(isapprox.(res ./ convex_quad_area(cnodes), [1.0, 2.0]))
# Vector test : gradient of vector `f` in physical coordinates is [[1,2],[3,4]]
function f2(ξ)
x, y = Bcube.mapping(ctype, cnodes, ξ)
return [x + 2y, 3x + 4y]
end
g = ReferenceFunction(f2)
_g = Bcube.materialize(∇(g), cInfo)
res = integrate_on_ref_element(_g, cInfo, Quadrature(qDegree))
@test all(isapprox.(res ./ convex_quad_area(cnodes), [1.0 2.0; 3.0 4.0]))
# Gradient of scalar PhysicalFunction
# Physical function is [x,y] -> x so its gradient is [x,y] -> [1, 0]
# so the integral is simply the volume of Ω
mesh = one_cell_mesh(:quad)
translate!(mesh, SA[-0.5, 1.0]) # the translation vector can be anything
scale!(mesh, 2.0)
dΩ = Measure(CellDomain(mesh), 1)
@test compute(∫(∇(PhysicalFunction(x -> x[1])) ⋅ [1, 1])dΩ)[1] == 16.0
# Gradient of a vector PhysicalFunction
mesh = one_cell_mesh(:quad)
translate!(mesh, SA[π, -3.14]) # the translation vector can be anything
scale!(mesh, 2.0)
sizeU = spacedim(mesh)
U = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh; sizeU)
V = TestFESpace(U)
_f = x -> SA[2 * x[1]^2, x[1] * x[2]]
f = PhysicalFunction(_f, sizeU)
∇f = PhysicalFunction(x -> ForwardDiff.jacobian(_f, x), (sizeU, spacedim(mesh)))
dΩ = Measure(CellDomain(mesh), 3)
l(v) = ∫(tr(∇(f) - ∇f) ⋅ v)dΩ
_a = assemble_linear(l, V)
@test all(isapprox.(_a, [0.0, 0.0, 0.0, 0.0]; atol = 100 * eps()))
# Shape functions gradient
mesh = one_cell_mesh(:line)
ctype = first(Bcube.cells(mesh))
cnodes = get_nodes(mesh)
fs = FunctionSpace(:Lagrange, 2)
n1 = Val(1)
n2 = Val(2)
∇sca = Bcube.∂λξ_∂x(fs, n1, ctype, cnodes, [0.0])
∇vec = Bcube.∂λξ_∂x(fs, n2, ctype, cnodes, [0.0])
@test all(isapprox.(∇sca, ∇vec[1:3, 1, 1]))
@test all(isapprox.(∇sca, ∇vec[4:6, 2, 1]))
@testset "TangentialGradient" begin
# Topodim = 1
ctype = Bar2_t()
nodes = [Node([-1.0]), Node([1.0])]
celltypes = [ctype]
cell2node = Bcube.Connectivity([2], [1, 2])
mesh = Bcube.Mesh(nodes, celltypes, cell2node)
nodes_hypersurface = [Node([0.0, -1.0]), Node([0.0, 1.0])]
celltypes = [ctype]
cell2node = Bcube.Connectivity([2], [1, 2])
mesh_hypersurface = Bcube.Mesh(nodes_hypersurface, celltypes, cell2node)
fs = FunctionSpace(:Lagrange, 1)
n = Val(1)
∇_volumic = Bcube.∂λξ_∂x(fs, n, ctype, nodes, [0.0])
∇_hyper = Bcube.∂λξ_∂x_hypersurface(fs, n, ctype, nodes_hypersurface, [0.0])
@test all(isapprox.(∇_volumic, ∇_hyper[:, 2]))
h(x) = x[1]
∇_volumic = Bcube.∂fξ_∂x(h, n, ctype, nodes, [0.0])
∇_hyper = Bcube.∂fξ_∂x_hypersurface(h, n, ctype, nodes_hypersurface, [0.0])
@test ∇_volumic[1] == ∇_hyper[2]
# Topodim = 2
function rotMat(θx, θy, θz)
Rx = [
1.0 0.0 0.0
0.0 cos(θx) sin(θx)
0.0 (-sin(θx)) cos(θx)
]
Ry = [
cos(θy) 0.0 (-sin(θy))
0.0 1.0 0.0
sin(θy) 0.0 cos(θy)
]
Rz = [
cos(θz) sin(θz) 0.0
-sin(θz) cos(θz) 0.0
0.0 0.0 1.0
]
return Rx * Ry * Rz
end
R = rotMat(π / 2, π / 3, π / 4)
ctype = Quad4_t()
nodes =
[Node([-1.0, -1.0]), Node([1.0, -1.0]), Node([1.0, 1.0]), Node([-1.0, 1.0])]
celltypes = [ctype]
cell2node = Bcube.Connectivity([4], [1, 2, 3, 4])
mesh = Bcube.Mesh(nodes, celltypes, cell2node)
nodes_hypersurface =
[Node(R * [get_coords(n)..., 0.0]) for n in get_nodes(mesh)]
mesh_hypersurface = Bcube.Mesh(nodes_hypersurface, celltypes, cell2node)
fs = FunctionSpace(:Lagrange, 1)
n = Val(1)
∇_volumic = Bcube.∂λξ_∂x(fs, n, ctype, nodes, [0.0, 0.0])
∇_hyper =
Bcube.∂λξ_∂x_hypersurface(fs, n, ctype, nodes_hypersurface, [0.0, 0.0])
∇_volumic = transpose(hcat([R * [row..., 0] for row in eachrow(∇_volumic)]...))
@test all(isapprox.(vec(∇_volumic), vec(∇_hyper), atol = 1e-16))
n = Val(2)
h2(x) = x
∇_volumic = Bcube.∂fξ_∂x(h2, n, ctype, nodes, [0.0, 0.0])
∇_hyper =
Bcube.∂fξ_∂x_hypersurface(h2, n, ctype, nodes_hypersurface, [0.0, 0.0])
∇_volumic = transpose(hcat([R * [row..., 0] for row in eachrow(∇_volumic)]...))
@test all(isapprox.(vec(∇_volumic), vec(∇_hyper), atol = 1e-15))
end
@testset "AbstractLazy" begin
mesh = one_cell_mesh(:quad)
scale!(mesh, 3.0)
translate!(mesh, [4.0, 0.0])
U_sca = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh)
U_vec = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh; size = 2)
V_sca = TestFESpace(U_sca)
V_vec = TestFESpace(U_vec)
u_sca = FEFunction(U_sca)
u_vec = FEFunction(U_vec)
dΩ = Measure(CellDomain(mesh), 2)
projection_l2!(u_sca, PhysicalFunction(x -> 3 * x[1] - 4x[2]), dΩ)
projection_l2!(
u_vec,
PhysicalFunction(x -> SA[2x[1] + 5x[2], 4x[1] - 3x[2]]),
dΩ,
)
l1(v) = ∫((∇(π * u_sca) ⋅ ∇(2 * u_sca)) ⋅ v)dΩ
l2(v) = ∫((∇(u_sca) ⋅ ∇(u_sca)) ⋅ v)dΩ
a1_sca = assemble_linear(l1, V_sca)
a2_sca = assemble_linear(l2, V_sca)
@test all(a1_sca .≈ (2π .* a2_sca))
V_vec = TestFESpace(U_vec)
l1_vec(v) = ∫((∇(π * u_vec) * u_vec) ⋅ v)dΩ
l2_vec(v) = ∫((∇(u_vec) * u_vec) ⋅ v)dΩ
a1_vec = assemble_linear(l1_vec, V_vec)
a2_vec = assemble_linear(l2_vec, V_vec)
@test all(a1_vec .≈ (π .* a2_vec))
# Testing without assemble_*linear
θ = π / 5
s = 3
t = SA[-1, 2]
R = SA[cos(θ) -sin(θ); sin(θ) cos(θ)]
mesh = one_cell_mesh(:quad)
transform!(mesh, x -> R * (s .* x .+ t)) # scale, translate and rotate
# Select a cell and get its info
c = CellInfo(mesh, 1)
cnodes = nodes(c)
ctype = Bcube.celltype(c)
F = Bcube.mapping(ctype, cnodes)
# tJinv = transpose(R ./ s) # if we want the analytic one...
tJinv(ξ) = transpose(Bcube.mapping_jacobian_inv(ctype, cnodes, ξ))
# Test 1
u1 = PhysicalFunction(x -> x[1])
u2 = PhysicalFunction(x -> x[2])
u_a = u1 * u1 + 2 * u1 * u2 + u2 * u2 * u2
u_b = PhysicalFunction(x -> x[1]^2 + 2 * x[1] * x[2] + x[2]^3)
∇u_ana = x -> SA[2 * (x[1] + x[2]); 2 * x[1] + 3 * x[2]^2]
ξ = CellPoint(SA[0.5, -0.1], c, ReferenceDomain())
x = change_domain(ξ, Bcube.PhysicalDomain())
∇u = ∇u_ana(get_coords(x))
∇u_a_ref = Bcube.materialize(∇(u_a), ξ)
∇u_b_ref = Bcube.materialize(∇(u_b), ξ)
∇u_a_phy = Bcube.materialize(∇(u_a), x)
∇u_b_phy = Bcube.materialize(∇(u_b), x)
@test all(∇u_a_ref .≈ ∇u)
@test all(∇u_b_ref .≈ ∇u)
@test all(∇u_a_phy .≈ ∇u)
@test all(∇u_b_phy .≈ ∇u)
# Test 2
u1 = ReferenceFunction(ξ -> ξ[1])
u2 = ReferenceFunction(ξ -> ξ[2])
u_a = u1 * u1 + 2 * u1 * u2 + u2 * u2 * u2
u_b = ReferenceFunction(ξ -> ξ[1]^2 + 2 * ξ[1] * ξ[2] + ξ[2]^3)
∇u_ana = ξ -> SA[2 * (ξ[1] + ξ[2]); 2 * ξ[1] + 3 * ξ[2]^2]
x = CellPoint(SA[0.5, -0.1], c, Bcube.PhysicalDomain())
ξ = change_domain(x, ReferenceDomain()) # not always possible, but ok of for quad
∇u = ∇u_ana(get_coords(ξ))
_tJinv = tJinv(get_coords(ξ))
∇u_a_ref = Bcube.materialize(∇(u_a), ξ)
∇u_b_ref = Bcube.materialize(∇(u_b), ξ)
∇u_a_phy = Bcube.materialize(∇(u_a), x)
∇u_b_phy = Bcube.materialize(∇(u_b), x)
@test all(∇u_a_ref .≈ _tJinv * ∇u)
@test all(∇u_b_ref .≈ _tJinv * ∇u)
@test all(∇u_a_phy .≈ _tJinv * ∇u)
@test all(∇u_b_phy .≈ _tJinv * ∇u)
# Test 3
u_phy = PhysicalFunction(x -> x[1]^2 + 2 * x[1] * x[2] + x[2]^3)
u_ref = ReferenceFunction(ξ -> ξ[1]^2 + 2 * ξ[1] * ξ[2] + ξ[2]^3)
∇u_ana = t -> SA[2 * (t[1] + t[2]); 2 * t[1] + 3 * t[2]^2]
ξ = CellPoint(SA[0.5, -0.1], c, ReferenceDomain())
x = change_domain(ξ, Bcube.PhysicalDomain())
∇u_ref = ∇u_ana(get_coords(ξ))
∇u_phy = ∇u_ana(get_coords(x))
_tJinv = tJinv(get_coords(ξ))
@test all(Bcube.materialize(∇(u_phy + u_ref), ξ) .≈ ∇u_phy + _tJinv * ∇u_ref)
@test all(Bcube.materialize(∇(u_phy + u_ref), x) .≈ ∇u_phy + _tJinv * ∇u_ref)
end
end
@testset "algebra" begin
f = PhysicalFunction(x -> 0)
a = Bcube.NullOperator()
@test dcontract(a, a) == a
@test dcontract(rand(), a) == a
@test dcontract(a, rand()) == a
@test dcontract(f, a) == a
@test dcontract(a, f) == a
end
@testset "UniformScaling" begin
mesh = one_cell_mesh(:quad)
U = TrialFESpace(FunctionSpace(:Lagrange, 1), mesh; size = 2)
V = TestFESpace(U)
p = PhysicalFunction(x -> 3)
dΩ = Measure(CellDomain(mesh), 1)
l(v) = ∫((p * I) ⊡ ∇(v))dΩ
a = assemble_linear(l, V)
@test all(a .≈ [-3.0, 3.0, -3.0, 3.0, -3.0, -3.0, 3.0, 3.0])
end
@testset "Pow" begin
mesh = one_cell_mesh(:quad)
u = PhysicalFunction(x -> 3.0)
v = PhysicalFunction(x -> 2.0)
cinfo = CellInfo(mesh, 1)
cpoint = CellPoint(SA[0.1, 0.3], cinfo, ReferenceDomain())
@test Bcube.materialize(u * u, cinfo)(cpoint) ≈ 9
@test Bcube.materialize(u^2, cinfo)(cpoint) ≈ 9
@test Bcube.materialize(u^v, cinfo)(cpoint) ≈ 9
a = Bcube.NullOperator()
@test a^u == a
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | code | 2967 | @testset "vtk" begin
@testset "write_vtk" begin
mesh = rectangle_mesh(10, 10; xmax = 2π, ymax = 2π)
val_sca = var_on_vertices(PhysicalFunction(x -> cos(x[1]) * sin(x[2])), mesh)
val_vec = var_on_vertices(PhysicalFunction(x -> SA[cos(x[1]), sin(x[2])]), mesh)
basename = "write_vtk_rectangle"
write_vtk(
joinpath(tempdir, basename),
1,
0.0,
mesh,
Dict(
"u" => (val_sca, WriteVTK.VTKPointData()),
"v" => (transpose(val_vec), WriteVTK.VTKPointData()),
),
)
fname = Bcube._build_fname_with_iterations(basename, 1) * ".vtu"
@test fname2sum[fname] == bytes2hex(open(sha1, joinpath(tempdir, fname)))
basename = "write_vtk_mesh"
write_vtk(joinpath(tempdir, basename), basic_mesh())
fname = Bcube._build_fname_with_iterations(basename, 1) * ".vtu"
@test fname2sum[fname] == bytes2hex(open(sha1, joinpath(tempdir, fname)))
end
@testset "write_vtk_lagrange" begin
mesh = rectangle_mesh(6, 7; xmin = -1, xmax = 1.0, ymin = -1, ymax = 1.0)
u = FEFunction(TrialFESpace(FunctionSpace(:Lagrange, 4), mesh))
projection_l2!(u, PhysicalFunction(x -> x[1]^2 + x[2]^2), mesh)
vars = Dict("u" => u, "grad_u" => ∇(u))
# bmxam: for some obscur reason, order 3 and 5 lead to different sha1sum
# when running in standard mode or in test mode...
for mesh_degree in (1, 2, 4)
basename = "write_vtk_lagrange_deg$(mesh_degree)"
Bcube.write_vtk_lagrange(
joinpath(tempdir, basename),
vars,
mesh;
mesh_degree,
discontinuous = false,
vtkversion = v"1.0",
)
# Check
fname = basename * ".vtu"
@test fname2sum[fname] == bytes2hex(open(sha1, joinpath(tempdir, fname)))
end
# add var MeshCellData :
quad = Quadrature(4)
dΩ = Measure(CellDomain(mesh), quad)
vars["umean"] = Bcube.cell_mean(u, dΩ)
basename = "write_vtk_lagrange_deg4_with_mean"
Bcube.write_vtk_lagrange(
joinpath(tempdir, basename),
vars,
mesh;
mesh_degree = 4,
discontinuous = false,
vtkversion = v"1.0",
)
# Check
fname = basename * ".vtu"
@test fname2sum[fname] == bytes2hex(open(sha1, joinpath(tempdir, fname)))
basename = "write_vtk_lagrange_deg4_dg_with_mean"
Bcube.write_vtk_lagrange(
joinpath(tempdir, basename),
vars,
mesh;
mesh_degree = 4,
discontinuous = true,
vtkversion = v"1.0",
)
# Check
fname = basename * ".vtu"
@test fname2sum[fname] == bytes2hex(open(sha1, joinpath(tempdir, fname)))
end
end
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | docs | 3571 | # Bcube.jl
[](https://bcube-project.github.io/Bcube.jl) [](https://bcube-project.github.io/Bcube.jl/dev)
[](https://app.codecov.io/gh/bcube-project/Bcube.jl)
[](https://github.com/bcube-project/Bcube.jl/actions)
Bcube is a Julia library providing tools for the spatial discretization of partial differential equation(s) (PDE). It offers a high-level API to discretize linear or non-linear problems on unstructured mesh using continuous or discontinuous finite elements (FEM - DG).
The main features are:
- high-level api : `a(u, v) = ∫(η * ∇(u) ⋅ ∇(v))dΩ`
- 1D, 2D, 3D unstructured mesh with high-order geometrical elements (gmsh or cgns format)
- Lagrange (continuous & discontinuous) and Taylor (discontinuous) finite elements (line, quad, tri, hexa, tetra, penta, pyra)
- arbitrary order for hypercube Lagrange elements
Browse the [documentation](https://bcube-project.github.io/Bcube.jl) for more information about the code architecture and API. Commented tutorials as well as various examples can be found in the dedicated project [BcubeTutorials.jl](https://github.com/bcube-project/BcubeTutorials.jl).
## Installation
Bcube can be added to your Julia environment with this simple line :
```julia-repl
pkg> add Bcube
```
## Alternatives
Numerous FEM-DG Julia packages are available, here is a non-exhaustive list;
- [Gridap.jl](https://github.com/gridap/Gridap.jl) (which has greatly influenced the development of Bcube)
- [Ferrite.jl](https://github.com/Ferrite-FEM/Ferrite.jl)
- [Trixi.jl](https://github.com/trixi-framework/Trixi.jl)
## Contribution
Any contribution(s) and/or remark(s) are welcome! Don't hesitate to open an issue to ask a question or signal a bug. PRs improving the code (new features, new elements, fixing bugs, ...) will be greatly appreciated.
## Gallery
| [Helmholtz equation](https://bcube-project.github.io/BcubeTutorials.jl/dev/tutorial/helmholtz) | [Phase field solidification](https://bcube-project.github.io/BcubeTutorials.jl/dev/tutorial/phase_field_supercooled) | [Linear transport equation](https://bcube-project.github.io/BcubeTutorials.jl/dev/tutorial/linear_transport) |
|-|-|-|
|  |  |  |
| [Heat equation on a sphere](https://bcube-project.github.io/BcubeTutorials.jl/stable/example/heat_equation_sphere) | [Transport equation on hypersurfaces](https://bcube-project.github.io/BcubeTutorials.jl/stable/example/transport_hypersurface) | [Linear thermo-elasticity](https://bcube-project.github.io/BcubeTutorials.jl/stable/example/linear_thermoelasticity) |
|  |  |  |
## Authors
Ghislain Blanchard, Lokman Bennani and Maxime Bouyges
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | docs | 3102 | ```@meta
CurrentModule = Bcube
```
# Bcube.jl
Bcube is a Julia library providing tools for the spatial discretization of partial differential equation(s) (PDE). It offers a high-level API to discretize linear or non-linear problems on unstructured mesh using continuous or discontinuous finite elements (FEM - DG).
The main features are:
- high-level api : `a(u, v) = ∫(η * ∇(u) ⋅ ∇(v))dΩ`
- 1D, 2D, 3D unstructured mesh with high-order geometrical elements (gmsh format)
- Lagrange (continuous & discontinuous) and Taylor (discontinuous) finite elements (line, quad, tri, hexa, penta)
- arbitrary order for hypercube Lagrange elements
Commented tutorials as well as various examples can be found in the dedicated project [BcubeTutorials.jl](https://github.com/bcube-project/BcubeTutorials.jl).
## Installation
Bcube can be added to your Julia environment with this simple line :
```julia-repl
pkg> add https://github.com/bcube-project/Bcube.jl
```
## Alternatives
Numerous FEM-DG Julia packages are available, here is a non-exhaustive list;
- [Gridap.jl](https://github.com/gridap/Gridap.jl) (which has greatly influenced the development of Bcube)
- [Ferrite.jl](https://github.com/Ferrite-FEM/Ferrite.jl)
- [Trixi.jl](https://github.com/trixi-framework/Trixi.jl)
## Contribution
Any contribution(s) and/or remark(s) are welcome! Don't hesitate to open an issue to ask a question or signal a bug. PRs improving the code (new features, new elements, fixing bugs, ...) will be greatly appreciated.
## Gallery
| [Helmholtz equation](https://bcube-project.github.io/BcubeTutorials.jl/stable/tutorial/helmholtz) | [Phase field solidification](https://bcube-project.github.io/BcubeTutorials.jl/stable/tutorial/phase_field_supercooled) | [Linear transport equation](https://bcube-project.github.io/BcubeTutorials.jl/stable/tutorial/linear_transport) |
| :----------------: | :------------------------: | :-----------------------: |
|  |  |  |
| [Heat equation on a sphere](https://bcube-project.github.io/BcubeTutorials.jl/stable/example/heat_equation_sphere) | [Transport equation on hypersurfaces](https://bcube-project.github.io/BcubeTutorials.jl/stable/example/transport_hypersurface) | [Linear thermo-elasticity](https://bcube-project.github.io/BcubeTutorials.jl/stable/example/linear_thermoelasticity) |
|  |  |  |
## Authors
Ghislain Blanchard, Lokman Bennani and Maxime Bouyges
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | docs | 176 | # Degree of freedom
## Assembler
```@autodocs
Modules = [Bcube]
Pages = ["assembler.jl"]
```
## DofHandler
```@autodocs
Modules = [Bcube]
Pages = ["dofhandler.jl"]
```
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | docs | 261 | # Integration
## Measure
```@autodocs
Modules = [Bcube]
Pages = ["measure.jl"]
```
## Integration methods
```@autodocs
Modules = [Bcube]
Pages = ["integration.jl"]
```
## Quadrature rules
```@autodocs
Modules = [Bcube]
Pages = ["quadrature.jl"]
```
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | docs | 85 | # Finite element spaces
```@autodocs
Modules = [Bcube]
Pages = ["fespace.jl"]
```
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | docs | 2171 | # Function spaces
# Generic
```@autodocs
Modules = [Bcube]
Pages = ["function_space.jl"]
```
## Lagrange
```@autodocs
Modules = [Bcube]
Pages = ["lagrange.jl"]
```
## Taylor
The `Taylor` function space corresponds to a function space where functions are approximated by a Taylor series expansion of order ``n`` in each cell:
```math
\forall x \in \Omega_i,~g(x) = g(x_0) + (x - x_0) g'(x_0) + o(x)
```
where ``x_0`` is the cell center.
Note that a Taylor-P0 is strictly equivalent to a 1st-order Finite Volume discretization (beware that "order" can have different meaning depending on whether one refers to the order of the function space basis or the order of the discretization method).
Recall that any function space implies that any function ``g`` is interpolated by ``g(x) = \sum g_i \lambda_i(x)`` where ``\lambda_i`` are the shape functions. For a Taylor expansion, the definition of ``\lambda_i`` is not unique. For instance for the Taylor expansion of order ``1`` on a 1D line above, we may be tempted to set ``\lambda_1(x) = 1`` and ``\lambda_2(x) = (x - x_0)``. If you do so, what are the corresponding shape functions in the reference element, the ``\hat{\lambda_i}``? We immediately recover ``\hat{\lambda_1}(\hat{x}) = 1``. For ``\hat{\lambda_2}``:
```math
\hat{\lambda_2}(\hat{x}) = (\lambda \circ F)(\hat{x}) = (x \rightarrow x - x_0) \circ (\hat{x} \rightarrow \frac{x_r - x_l}{2} \hat{x} + \frac{x_r + x_l}{2}) = \frac{x_r - x_l}{2} \hat{x}
```
So if you set ``\lambda_2(x) = (x - x_0)`` then ``\hat{\lambda_2}`` depends on the element length (``\Delta x = x_r-x_l``), which is pointless. So ``\lambda_2`` must be proportional to the element length to obtain a universal definition for ``\hat{\lambda_2}``. For instance, we may choose ``\lambda_2(x) = (x - x_0) / \Delta x``, leading to ``\hat{\lambda_2}(\hat{x}) = \hat{x} / 2``. But we could have chosen an other element length multiple.
Don't forget that choosing ``\lambda_2(x) = (x - x_0) / \Delta x`` leads to ``g(x) = g(x_0) + \frac{x - x_0}{\Delta x} g'(x_0) Δx `` hence ``g_2 = g'(x_0) Δx`` in the interpolation.
```@autodocs
Modules = [Bcube]
Pages = ["taylor.jl"]
``` | Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | docs | 76 | # Reference shape
```@autodocs
Modules = [Bcube]
Pages = ["shape.jl"]
``` | Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | docs | 167 | # Mapping
# Mappings
```@autodocs
Modules = [Bcube]
Pages = ["mapping.jl"]
```
# Reference to physical
```@autodocs
Modules = [Bcube]
Pages = ["ref2phys.jl"]
``` | Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | docs | 70 | # GMSH
```@autodocs
Modules = [Bcube]
Pages = ["gmsh_utils.jl"]
``` | Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | docs | 299 | # Mesh
## Entity
```@autodocs
Modules = [Bcube]
Pages = ["entity.jl"]
```
## Connectivity
```@autodocs
Modules = [Bcube]
Pages = ["connectivity.jl"]
```
## Mesh
```@autodocs
Modules = [Bcube]
Pages = ["mesh.jl"]
```
## Domain
```@autodocs
Modules = [Bcube]
Pages = ["domain.jl"]
```
| Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | docs | 84 | # Mesh generator
```@autodocs
Modules = [Bcube]
Pages = ["mesh_generator.jl"]
``` | Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | docs | 73 | # Operators
```@autodocs
Modules = [Bcube]
Pages = ["operator.jl"]
``` | Bcube | https://github.com/bcube-project/Bcube.jl.git |
|
[
"MIT"
] | 0.1.14 | 20a56bc6d7fc2ffbea278d1f47fdfda594a01b46 | docs | 62 | # VTK
```@autodocs
Modules = [Bcube]
Pages = ["vtk.jl"]
``` | Bcube | https://github.com/bcube-project/Bcube.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.