licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
6370
module HybridArrays import Base: convert, copy, copyto!, hcat, vcat, similar, axes, getindex, dataids, promote_rule, pointer, strides, setindex!, size, length, +, -, * import Base.Array using StaticArrays using StaticArrays: Dynamic, StaticIndexing import StaticArrays: _setindex!_scalar, Size using LinearAlgebra using Requires @generated function hasdynamic(::Type{Size}) where Size<:Tuple for s ∈ Size.parameters if isa(s, Dynamic) return true end end return false end function all_dynamic_fixed_val(::Type{Tuple{}}) return Val(:dynamic_fixed_true) end function all_dynamic_fixed_val(::Type{Size}) where Size<:Tuple return error("No indices given for size $Size") end function all_dynamic_fixed_val(::Type{Size}, inds::StaticArrays.StaticIndexing{<:Union{Int, AbstractArray, Colon}}...) where Size<:Tuple return all_dynamic_fixed_val(Size, map(StaticArrays.unwrap, inds)...) end @generated function all_dynamic_fixed_val(::Type{Size}, inds::Union{Int, AbstractArray, Colon}...) where Size<:Tuple all_fixed = true for (i, param) in enumerate(Size.parameters) destatizing = (inds[i] <: AbstractArray && !( inds[i] <: StaticArray || inds[i] <: Base.Slice || inds[i] <: SOneTo)) nonstatizing = inds[i] == Colon || inds[i] <: Base.Slice || destatizing if destatizing || (isa(param, Dynamic) && nonstatizing) all_fixed = false break end end if all_fixed return Val(:dynamic_fixed_true) else return Val(:dynamic_fixed_false) end end function has_dynamic(::Type{Size}) where Size<:Tuple for param in Size.parameters if isa(param, Dynamic) return true end end return false end @generated function all_dynamic_fixed_val(::Type{Size}, inds::Union{Colon, Base.Slice}) where Size<:Tuple if has_dynamic(Size) return Val(:dynamic_fixed_false) else return Val(:dynamic_fixed_true) end end @generated function tuple_nodynamic_prod(::Type{Size}) where Size<:Tuple i = 1 for s ∈ Size.parameters if !isa(s, Dynamic) i *= s end end return i end # conversion of SizedArray from StaticArrays.jl """ HybridArray{Tuple{dims...}}(array) Wraps an `AbstractArray` with a combination of static and dynamic sizes, so to take advantage of the (faster) methods defined by the StaticArrays package. The size is checked once upon construction to determine if the number of elements (`length`) match, but the array may be reshaped. """ struct HybridArray{S<:Tuple, T, N, M, TData<:AbstractArray{T,M}} <: AbstractArray{T, N} data::TData function HybridArray{S, T, N, M, TData}(a::TData) where {S, T, N, M, TData<:AbstractArray{T,M}} tnp = tuple_nodynamic_prod(S) lena = length(a) dynamic_nodivisible = hasdynamic(S) && tnp != 0 && mod(lena, tnp) != 0 nodynamic_notequal = !hasdynamic(S) && lena != StaticArrays.tuple_prod(S) if nodynamic_notequal || dynamic_nodivisible || (tnp == 0 && lena != 0) error("Dimensions $(size(a)) don't match static size $S") end new{S,T,N,M,TData}(a) end function HybridArray{S, T, N, 1}(::UndefInitializer) where {S, T, N} new{S, T, N, 1, Array{T, 1}}(Array{T, 1}(undef, StaticArrays.tuple_prod(S))) end function HybridArray{S, T, N, N}(::UndefInitializer) where {S, T, N} new{S, T, N, N, Array{T, N}}(Array{T, N}(undef, size_to_tuple(S)...)) end end @inline HybridArray{S,T,N}(a::TData) where {S,T,N,M,TData<:AbstractArray{T,M}} = HybridArray{S,T,N,M,TData}(a) @inline HybridArray{S,T}(a::TData) where {S,T,M,TData<:AbstractArray{T,M}} = HybridArray{S,T,StaticArrays.tuple_length(S),M,TData}(a) @inline HybridArray{S}(a::TData) where {S,T,M,TData<:AbstractArray{T,M}} = HybridArray{S,T,StaticArrays.tuple_length(S),M,TData}(a) @inline HybridArray{S,T,N}(::UndefInitializer) where {S,T,N} = HybridArray{S,T,N,N}(undef) @inline HybridArray{S,T}(::UndefInitializer) where {S,T} = HybridArray{S,T,StaticArrays.tuple_length(S),StaticArrays.tuple_length(S)}(undef) @inline HybridArray{S,T}(::UndefInitializer, d::Integer...) where {S,T} = HybridArray{S,T}(Array{T}(undef, d)) @generated function (::Type{HybridArray{S,T,N,M,TData}})(x::NTuple{L,Any}) where {S,T,N,M,TData,L} if L != StaticArrays.tuple_prod(S) error("Dimension mismatch") end exprs = [:(a[$i] = x[$i]) for i = 1:L] return quote $(Expr(:meta, :inline)) a = HybridArray{S,T,N,M}(undef) @inbounds $(Expr(:block, exprs...)) return a end end @inline HybridArray{S,T,N}(x::Tuple) where {S,T,N} = HybridArray{S,T,N,N,Array{T,N}}(x) @inline HybridArray{S,T}(x::Tuple) where {S,T} = HybridArray{S,T,StaticArrays.tuple_length(S)}(x) @inline HybridArray{S}(x::NTuple{L,T}) where {S,T,L} = HybridArray{S,T}(x) HybridVector{S,T,M} = HybridArray{Tuple{S},T,1,M} @inline HybridVector{S}(a::TData) where {S,T,M,TData<:AbstractArray{T,M}} = HybridArray{Tuple{S},T,1,M,TData}(a) @inline HybridVector{S}(x::NTuple{L,T}) where {S,T,L} = HybridArray{Tuple{S},T,1,1,Vector{T}}(x) @inline HybridVector{S,T}(::UndefInitializer, d::Integer) where {S,T} = HybridVector{S,T}(Vector{T}(undef, d)) HybridMatrix{S1,S2,T,M} = HybridArray{Tuple{S1,S2},T,2,M} @inline HybridMatrix{S1,S2}(a::TData) where {S1,S2,T,M,TData<:AbstractArray{T,M}} = HybridArray{Tuple{S1,S2},T,2,M,TData}(a) @inline HybridMatrix{S1,S2}(x::NTuple{L,T}) where {S1,S2,T,L} = HybridArray{Tuple{S1,S2},T,2,2,Matrix{T}}(x) @inline HybridMatrix{S1,S2,T}(::UndefInitializer, d1::Integer, d2::Integer) where {S1,S2,T} = HybridMatrix{S1,S2,T}(Matrix{T}(undef, d1, d2)) export HybridArray, HybridMatrix, HybridVector include("SSubArray.jl") include("abstractarray.jl") include("arraymath.jl") include("broadcast.jl") include("convert.jl") include("indexing.jl") include("linalg.jl") include("utils.jl") function __init__() @require ArrayInterface="4fba245c-0d91-5ea0-9b3e-6abc04ee57a9" begin include("array_interface_compat.jl") end @require StaticArrayInterface="0d7ed370-da01-4f52-bd93-41d350b8b718" begin include("static_array_interface_compat.jl") end end end # module
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
72
const SSubArray{S,T,N,P,I,L} = SizedArray{S,T,N,N,SubArray{T,N,P,I,L}}
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
4031
@inline Base.parent(sa::HybridArray) = sa.data Base.dataids(sa::HybridArray) = Base.dataids(parent(sa)) @inline Base.elsize(sa::HybridArray) = Base.elsize(parent(sa)) @inline size(sa::HybridArray{S,T,N,N}) where {S<:Tuple,T,N} = size(parent(sa)) @inline length(sa::HybridArray) = length(parent(sa)) @inline strides(sa::HybridArray{S,T,N,N}) where {S<:Tuple,T,N} = strides(parent(sa)) @inline pointer(sa::HybridArray) = pointer(parent(sa)) @generated function _sized_abstract_array_axes(::Type{S}, ax::Tuple) where {S<:Tuple} exprs = Any[] map(enumerate(S.parameters)) do (i, si) if isa(si, Dynamic) push!(exprs, :(ax[$i])) else push!(exprs, SOneTo(si)) end end return Expr(:tuple, exprs...) end function axes(sa::HybridArray{S}) where {S<:Tuple} ax = axes(parent(sa)) return _sized_abstract_array_axes(S, ax) end function promote_rule(::Type{<:HybridArray{S,T,N,M,TDataA}}, ::Type{<:HybridArray{S,U,N,M,TDataB}}) where {S<:Tuple,T,U,N,M,TDataA,TDataB} TU = promote_type(T,U) HybridArray{S,TU,N,M,promote_type(TDataA, TDataB)::Type{<:AbstractArray{TU}}} end @inline copy(a::HybridArray{S, T, N, M}) where {S<:Tuple, T, N, M} = begin parentcopy = copy(parent(a)) HybridArray{S, T, N, M, typeof(parentcopy)}(parentcopy) end homogenized_last(::StaticArrays.HeterogeneousBaseShape) = StaticArrays.Dynamic() homogenized_last(a::SOneTo) = last(a) hybrid_homogenize_shape(::Tuple{}) = () hybrid_homogenize_shape(shape::Tuple{Vararg{StaticArrays.HeterogeneousShape}}) = Size(map(homogenized_last, shape)) hybrid_homogenize_shape(shape::Tuple{Vararg{StaticArrays.HeterogeneousBaseShape}}) = map(last, shape) similar(a::HA, ::Type{T2}) where {S, HA<:HybridArray{S}, T2} = HybridArray{S, T2}(similar(parent(a), T2)) function similar(a::HybridArray, ::Type{T2}, shape::StaticArrays.HeterogeneousShapeTuple) where {T2} s = hybrid_homogenize_shape(shape) HT = hybridarray_similar_type(T2, s, StaticArrays.length_val(s)) return HT(similar(a.data, T2, shape)) end function similar(a::HybridArray, shape::StaticArrays.HeterogeneousShapeTuple) return similar(a, eltype(a), shape) end function similar(a::HybridArray, ::Type{T2}, shape::Tuple{SOneTo, Vararg{SOneTo}}) where {T2} return similar(a.data, T2, StaticArrays.homogenize_shape(shape)) end function similar(a::HybridArray, shape::Tuple{SOneTo, Vararg{SOneTo}}) return similar(a.data, StaticArrays.homogenize_shape(shape)) end similar(::Type{<:HybridArray{S,T,N,M}},::Type{T2}) where {S,T,N,M,T2} = HybridArray{S,T2,N,M}(undef) similar(::Type{SA},::Type{T},s::Size{S}) where {SA<:HybridArray,T,S} = hybridarray_similar_type(T,s,StaticArrays.length_val(s))(undef) hybridarray_similar_type(::Type{T},s::Size{S},::Type{Val{D}}) where {T,S,D} = HybridArray{Tuple{S...},T,D,length(s)} #disambiguation function similar(a::HybridArray, t::Type{T2}, i::Tuple{Union{Integer, Base.OneTo}, Vararg{Union{Integer, Base.OneTo}}}) where T2 return invoke(similar, Tuple{AbstractArray, Type, Tuple{Union{Integer, Base.OneTo}, Vararg{Union{Integer, Base.OneTo}}}}, a, t, i) end function similar(a::HybridArray, t::Type{T2}, i::Tuple{Int64, Vararg{Int64}}) where T2 return invoke(similar, Tuple{AbstractArray, Type, Tuple{Int64, Vararg{Int64}}}, a, t, i) end # for internal use only (used in vcat and hcat) # TODO: try to make this less hacky # adding method to similar_type ends up being used in broadcasting for some reason? _h_similar_type(::Type{A},::Type{T},s::Size{S}) where {A<:HybridArray,T,S} = hybridarray_similar_type(T,s,StaticArrays.length_val(s)) Size(::Type{<:HybridArray{S}}) where {S} = Size(S) Base.IndexStyle(a::HybridArray) = Base.IndexStyle(parent(a)) Base.IndexStyle(::Type{HA}) where {S,T,N,M,TData,HA<:HybridArray{S,T,N,M,TData}} = Base.IndexStyle(TData) Base.vec(a::HybridArray) = vec(parent(a)) StaticArrays.similar_type(::Type{<:SSubArray},::Type{T},s::Size{S}) where {S,T} = StaticArrays.default_similar_type(T,s,StaticArrays.length_val(s))
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
541
function ArrayInterface.ismutable(::Type{HybridArray{S,T,N,M,TData}}) where {S,T,N,M,TData} return ArrayInterface.ismutable(TData) end function ArrayInterface.can_setindex(::Type{HybridArray{S,T,N,M,TData}}) where {S,T,N,M,TData} return ArrayInterface.can_setindex(TData) end function ArrayInterface.parent_type(::Type{HybridArray{S,T,N,M,TData}}) where {S,T,N,M,TData} return TData end function ArrayInterface.restructure(x::HybridArray{S}, y) where {S} return HybridArray{S}(reshape(convert(Array, y), size(x)...)) end
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
668
Base.one(A::HA) where {HA<:HybridMatrix} = HA(one(parent(A))) # This should make one(sized subarray) return SArray @inline function StaticArrays._construct_sametype(a::Type{<:SSubArray{Tuple{S,S},T}}, elements) where {S,T} return SMatrix{S,S,T}(elements) end @inline function StaticArrays._construct_sametype(a::SSubArray{Tuple{S,S},T}, elements) where {S,T} return SMatrix{S,S,T}(elements) end Base.fill!(A::HybridArray, x) = fill!(parent(A), x) @inline function Base.zero(a::HybridArray{S}) where {S} return HybridArray{S}(zero(parent(a))) end @inline function Base.zero(a::SSubArray{S,T}) where {S,T} return StaticArrays.zeros(SArray{S,T}) end
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
6189
import Base.Broadcast: BroadcastStyle using Base.Broadcast: AbstractArrayStyle, Broadcasted, DefaultArrayStyle, _broadcast_getindex # combine_sizes moved from StaticArrays after https://github.com/JuliaArrays/StaticArrays.jl/pull/1008 # see also https://github.com/JuliaArrays/HybridArrays.jl/issues/50 @generated function combine_sizes(s::Tuple{Vararg{Size}}) sizes = [sz.parameters[1] for sz ∈ s.parameters] ndims = 0 for i = 1:length(sizes) ndims = max(ndims, length(sizes[i])) end newsize = StaticArrays.StaticDimension[Dynamic() for _ = 1 : ndims] for i = 1:length(sizes) s = sizes[i] for j = 1:length(s) if s[j] isa Dynamic continue elseif newsize[j] isa Dynamic || newsize[j] == 1 newsize[j] = s[j] elseif newsize[j] ≠ s[j] && s[j] ≠ 1 throw(DimensionMismatch("Tried to broadcast on inputs sized $sizes")) end end end quote Base.@_inline_meta Size($(tuple(newsize...))) end end function broadcasted_index(oldsize, newindex) index = ones(Int, length(oldsize)) for i = 1:length(oldsize) if oldsize[i] != 1 index[i] = newindex[i] end end return LinearIndices(oldsize)[index...] end scalar_getindex(x) = x scalar_getindex(x::Ref) = x[] # Add a new BroadcastStyle for StaticArrays, derived from AbstractArrayStyle # A constructor that changes the style parameter N (array dimension) is also required struct HybridArrayStyle{N} <: AbstractArrayStyle{N} end HybridArrayStyle{M}(::Val{N}) where {M,N} = HybridArrayStyle{N}() BroadcastStyle(::Type{<:HybridArray{<:Tuple, <:Any, N}}) where {N} = HybridArrayStyle{N}() # Precedence rules BroadcastStyle(::HybridArray{M}, ::DefaultArrayStyle{N}) where {M,N} = DefaultArrayStyle(Val(max(M, N))) BroadcastStyle(::HybridArray{M}, ::DefaultArrayStyle{0}) where {M} = HybridArrayStyle{M}() BroadcastStyle(::HybridArray{M}, ::StaticArrays.StaticArrayStyle{N}) where {M,N} = StaticArrays.Hybrid(Val(max(M, N))) BroadcastStyle(::HybridArray{M}, ::StaticArrays.StaticArrayStyle{0}) where {M} = HybridArrayStyle{M}() # copy overload @inline function Base.copy(B::Broadcasted{HybridArrayStyle{M}}) where M flat = Broadcast.flatten(B); as = flat.args; f = flat.f argsizes = StaticArrays.broadcast_sizes(as...) destsize = combine_sizes(argsizes) if Length(destsize) === Length{StaticArrays.Dynamic()}() # destination dimension cannot be determined statically; fall back to generic broadcast return HybridArray{StaticArrays.size_tuple(destsize)}(copy(convert(Broadcasted{DefaultArrayStyle{M}}, B))) end _broadcast(f, destsize, argsizes, as...) end # copyto! overloads @inline Base.copyto!(dest, B::Broadcasted{<:HybridArrayStyle}) = _copyto!(dest, B) @inline Base.copyto!(dest::AbstractArray, B::Broadcasted{<:HybridArrayStyle}) = _copyto!(dest, B) @inline function _copyto!(dest, B::Broadcasted{HybridArrayStyle{M}}) where M flat = Broadcast.flatten(B); as = flat.args; f = flat.f argsizes = StaticArrays.broadcast_sizes(as...) destsize = combine_sizes((Size(dest), argsizes...)) if Length(destsize) === Length{StaticArrays.Dynamic()}() # destination dimension cannot be determined statically; fall back to generic broadcast! return copyto!(dest, convert(Broadcasted{DefaultArrayStyle{M}}, B)) end _s_broadcast!(f, destsize, dest, argsizes, as...) end broadcast_getindex(::Tuple{}, i::Int, I::CartesianIndex) = return :(_broadcast_getindex(a[$i], $I)) broadcast_getindex(::Tuple{Dynamic}, i::Int, I::CartesianIndex) = return :(_broadcast_getindex(a[$i], $I)) function broadcast_getindex(oldsize::Tuple, i::Int, newindex::CartesianIndex) li = LinearIndices(oldsize) ind = _broadcast_getindex(li, newindex) return :(a[$i][$ind]) end @generated function _s_broadcast!(f, ::Size{newsize}, dest::AbstractArray, s::Tuple{Vararg{Size}}, a...) where {newsize} sizes = [sz.parameters[1] for sz in s.parameters] indices = CartesianIndices(newsize) exprs = similar(indices, Expr) for (j, current_ind) ∈ enumerate(indices) exprs_vals = (broadcast_getindex(sz, i, current_ind) for (i, sz) in enumerate(sizes)) exprs[j] = :(dest[$j] = f($(exprs_vals...))) end return quote Base.@_inline_meta @inbounds $(Expr(:block, exprs...)) return dest end end @generated function _broadcast(f, ::Size{newsize}, s::Tuple{Vararg{Size}}, a...) where newsize first_staticarray = 0 for i = 1:length(a) if a[i] <: StaticArray first_staticarray = a[i] break end end if first_staticarray == 0 for i = 1:length(a) if a[i] <: HybridArray first_staticarray = a[i] break end end end exprs = Array{Expr}(undef, newsize) more = prod(newsize) > 0 current_ind = ones(Int, length(newsize)) sizes = [sz.parameters[1] for sz ∈ s.parameters] make_expr(i) = begin if !(a[i] <: AbstractArray) return :(scalar_getindex(a[$i])) elseif hasdynamic(Tuple{sizes[i]...}) return :(a[$i][$(current_ind...)]) else :(a[$i][$(broadcasted_index(sizes[i], current_ind))]) end end while more exprs_vals = [make_expr(i) for i = 1:length(sizes)] exprs[current_ind...] = :(f($(exprs_vals...))) # increment current_ind (maybe use CartesianIndices?) current_ind[1] += 1 for i ∈ 1:length(newsize) if current_ind[i] > newsize[i] if i == length(newsize) more = false break else current_ind[i] = 1 current_ind[i+1] += 1 end else break end end end return quote Base.@_inline_meta @inbounds elements = tuple($(exprs...)) @inbounds return similar_type($first_staticarray, eltype(elements), Size(newsize))(elements) end end
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
3195
Base.@propagate_inbounds (::Type{HybridArray{S,T,N,M,TData}})(a::AbstractArray) where {S,T,N,M,TData<:AbstractArray{<:Any,M}} = convert(HybridArray{S,T,N,M,TData}, a) Base.@propagate_inbounds (::Type{HybridArray{S,T,N,M}})(a::AbstractArray) where {S,T,N,M} = convert(HybridArray{S,T,N,M}, a) Base.@propagate_inbounds (::Type{HybridArray{S,T,N}})(a::AbstractArray) where {S,T,N} = convert(HybridArray{S,T,N}, a) Base.@propagate_inbounds (::Type{HybridArray{S,T}})(a::AbstractArray) where {S,T} = convert(HybridArray{S,T}, a) # Overide some problematic default behaviour @inline convert(::Type{SA}, sa::HybridArray) where {SA<:HybridArray} = SA(parent(sa)) @inline convert(::Type{SA}, sa::SA) where {SA<:HybridArray} = sa # Back to Array (unfortunately need both convert and construct to overide other methods) @inline Array(sa::HybridArray{S}) where {S} = Array(parent(sa)) @inline Array{T}(sa::HybridArray{S,T}) where {T,S} = Array{T}(parent(sa)) @inline Array{T,N}(sa::HybridArray{S,T,N}) where {T,S,N} = Array{T,N}(parent(sa)) @inline convert(::Type{Array}, sa::HybridArray) = convert(Array, parent(sa)) @inline convert(::Type{Array{T}}, sa::HybridArray{S,T}) where {T,S} = convert(Array, parent(sa)) @inline convert(::Type{Array{T,N}}, sa::HybridArray{S,T,N}) where {T,S,N} = convert(Array, parent(sa)) @inline convert(::Type{Array{T,N} where T}, sa::HybridArray{S}) where {S,N} = convert(Array, parent(sa)) function check_compatible_sizes(::Type{S}, a::NTuple{N,Int}) where {S,N} st = size_to_tuple(S) for (s1, s2) ∈ zip(st, a) if !isa(s1, Dynamic) && s1 != s2 error("Array $a has size incompatible with $S.") end end return true end @inline function convert(::Type{HybridArray{S,T,N,M,TData}}, a::AbstractArray{<:Any,M}) where {S,T,N,M,U,TData<:AbstractArray{U,M}} check_compatible_sizes(S, size(a)) as = convert(TData, a) return HybridArray{S,T,N,M,TData}(as) end @inline function convert(::Type{HybridArray{S,T,N,M}}, a::TData) where {S,T,N,M,U,TData<:AbstractArray{U,M}} check_compatible_sizes(S, size(a)) as = similar(a, T) copyto!(as, a) return HybridArray{S,T,N,M,typeof(as)}(as) end @inline function convert(::Type{HybridArray{S,T,N,M}}, a::TData) where {S,T,N,M,TData<:AbstractArray{T,M}} check_compatible_sizes(S, size(a)) return HybridArray{S,T,N,M,typeof(a)}(a) end @inline function convert(::Type{HybridArray{S,T,N}}, a::TData) where {S,T,N,M,U,TData<:AbstractArray{U,M}} check_compatible_sizes(S, size(a)) as = similar(a, T) copyto!(as, a) return HybridArray{S,T,N,M,typeof(as)}(as) end @inline function convert(::Type{HybridArray{S,T}}, a::AbstractArray) where {S,T} return convert(HybridArray{S,T,StaticArrays.tuple_length(S)}, a) end @inline function convert(::Type{HybridArray{S,T,N}}, a::TData) where {S,T,N,M,TData<:AbstractArray{T,M}} check_compatible_sizes(S, size(a)) return HybridArray{S,T,N,M,typeof(a)}(a) end @inline function convert(::Type{HybridArray{S}}, a::TData) where {S,T,M,TData<:AbstractArray{T,M}} convert(HybridArray{S,T}, a) end @inline Base.unsafe_convert(::Type{Ptr{T}}, A::HybridArray{S,T}) where {S,T} = pointer(parent(A))
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
11494
Base.@propagate_inbounds function getindex(sa::HybridArray{S}, inds::Int...) where S return getindex(sa.data, inds...) end Base.@propagate_inbounds function getindex(sa::HybridArray{S}, inds::Union{Int, StaticArray{<:Tuple, Int}, Colon}...) where S _getindex(all_dynamic_fixed_val(S, inds...), sa, inds...) end # This plugs into a deeper level of indexing in base to catch custom # indexing schemes based on `to_indices`. # A minor version Julia release could potentially break this (though it seems unlikely). Base.@propagate_inbounds function Base._getindex(l::IndexLinear, sa::HybridArray{S}, inds::Int...) where S return Base._getindex(l, sa.data, inds...) end Base.@propagate_inbounds function Base._getindex(::IndexLinear, sa::HybridArray{S}, inds::Union{Int, StaticVector, Colon, Base.Slice}...) where S _getindex(all_dynamic_fixed_val(S, inds...), sa, inds...) end Base.@propagate_inbounds function _getindex(::Val{:dynamic_fixed_true}, sa::HybridArray, inds::Union{Int, StaticVector, Colon, Base.Slice}...) return _getindex_all_static(sa, inds...) end function _get_indices(i::Tuple{}, j::Int) return () end function _get_indices(i::Tuple, j::Int, ::Type{Int}, inds...) return (:(inds[$j]), _get_indices(i, j+1, inds...)...) end function _get_indices(i::Tuple, j::Int, ::Type{T}, inds...) where T<:StaticVector return (:(inds[$j][$(i[1])]), _get_indices(i[2:end], j+1, inds...)...) end function _get_indices(i::Tuple, j::Int, ::Type{<:Union{Colon, Base.Slice}}, inds...) return (i[1], _get_indices(i[2:end], j+1, inds...)...) end _totally_linear() = true _totally_linear(inds...) = false _totally_linear(inds::Type{Int}...) = true _totally_linear(inds::Type{<:Base.Slice}...) = true _totally_linear(inds::Type{Colon}...) = true _totally_linear(::Type{<:Base.Slice}, inds...) = _totally_linear(inds...) _totally_linear(::Type{Colon}, inds...) = _totally_linear(inds...) function new_out_size_nongen(::Type{Size}, inds...) where Size os = [] @assert length(Size.parameters) == length(inds) map(Size.parameters, inds) do s, i if i == Int elseif i <: StaticVector push!(os, length(i)) elseif i == Colon || i <: Base.Slice push!(os, s) else error("Unknown index type: $i") end end return tuple(os...) end function new_out_size_nongen(::Type{Size}, i::Type{<:Union{Colon, Base.Slice}}) where Size if has_dynamic(Size) return (Dynamic(),) else return (tuple_nodynamic_prod(Size),) end end """ _get_linear_inds(S, inds...) Returns linear indices for given size and access indices. Order is selected to make setindex! with array input be linearly indexed by position of index in returned vector. """ function _get_linear_inds(S, inds...) newsize = new_out_size_nongen(S, inds...) indices = CartesianIndices(newsize) out_inds = Any[] sizeprods = Union{Int, Expr}[1] needs_dynsize = false for (i, s) in enumerate(S.parameters[1:(end-1)]) if isa(s, Int) && isa(sizeprods[end], Int) push!(sizeprods, s*sizeprods[end]) elseif isa(s, Int) push!(sizeprods, :($s*$(sizeprods[end]))) elseif isa(s, Dynamic) needs_dynsize = true push!(sizeprods, :(dynsize[$i]*$(sizeprods[end]))) end end needs_sizeprod = false if _totally_linear(inds...) i1 = 0 for (iik, ik) ∈ enumerate(inds) if isa(ik, Type{Int}) needs_sizeprod = true i1 = :($i1 + (inds[$iik]-1)*sizeprods[$iik]) end end out_inds = tuple((:(i1 + $k) for k ∈ 1:StaticArrays.tuple_prod(newsize))...) preamble = if needs_sizeprod && needs_dynsize quote dynsize = size(sa) sizeprods = tuple($(sizeprods...)) i1 = $i1 end elseif needs_sizeprod quote sizeprods = tuple($(sizeprods...)) i1 = $i1 end else quote i1 = $i1 end end return preamble, out_inds else return nothing end end @generated function _getindex_all_static(sa::HybridArray{S,T}, inds::Union{Int, StaticIndexing, Base.Slice, Colon, StaticArray}...) where {S,T} newsize = new_out_size_nongen(S, inds...) exprs = Vector{Expr}(undef, length(newsize)) indices = CartesianIndices(newsize) exprs = similar(indices, Expr) Tnewsize = Tuple{newsize...} lininds = _get_linear_inds(S, inds...) if lininds === nothing for current_ind ∈ indices cinds = _get_indices(current_ind.I, 1, inds...) exprs[current_ind.I...] = :(getindex(sadata, $(cinds...))) end return quote Base.@_propagate_inbounds_meta sadata = parent(sa) SArray{$Tnewsize,$T}(tuple($(exprs...))) end else exprs = [:(getindex(sadata, $id)) for id ∈ lininds[2]] return quote Base.@_propagate_inbounds_meta sadata = parent(sa) $(lininds[1]) SArray{$Tnewsize,$T}(tuple($(exprs...))) end end end # _get_static_vector_length is used in a generated function so using a generic function # may not be a good idea _get_static_vector_length(::Type{<:StaticVector{N}}) where {N} = N @generated function new_out_size(::Type{Size}, inds...) where Size os = [] @assert length(Size.parameters) === length(inds) map(Size.parameters, inds) do s, i if i == Int elseif i <: StaticVector push!(os, _get_static_vector_length(i)) elseif i == Colon || i <: Base.Slice push!(os, s) elseif i <: SOneTo push!(os, i.parameters[1]) elseif i <: Base.OneTo || i <: AbstractArray push!(os, Dynamic()) else error("Unknown index type: $i") end end return Tuple{os...} end @generated function new_out_size(::Type{Size}, ::Union{Colon, Base.Slice}) where Size if has_dynamic(Size) return Tuple{Dynamic()} else return Tuple{tuple_nodynamic_prod(Size)} end end function new_out_size(::Type{Size}, ::AbstractVector) where Size return Tuple{Dynamic()} end @generated function new_out_size(::Type{Size}, ::StaticVector{N}) where {Size,N} return Tuple{N} end maybe_unwrap(i) = i maybe_unwrap(i::StaticIndexing) = i.ind @inline function _getindex(::Val{:dynamic_fixed_false}, sa::HybridArray{S}, inds::Union{Int, StaticIndexing, StaticVector, Base.Slice, Colon}...) where S uinds = map(maybe_unwrap, inds) newsize = new_out_size(S, uinds...) return HybridArray{newsize}(getindex(sa.data, uinds...)) end # setindex stuff Base.@propagate_inbounds function setindex!(a::HybridArray, value, inds::Int...) Base.@boundscheck checkbounds(a, inds...) _setindex!_scalar(Size(a), a, value, inds...) end @generated function _setindex!_scalar(::Size{S}, a::HybridArray, value, inds::Int...) where S if length(inds) == 0 return quote Base.@_propagate_inbounds_meta a[1] = value end end stride = :(1) ind_expr = :() for i ∈ 1:length(inds) if i == 1 ind_expr = :(inds[1]) else ind_expr = :($ind_expr + $stride * (inds[$i] - 1)) end # it's possible that one of the trailing indices is an additional 1. if length(S) < i || isa(S[i], StaticArrays.Dynamic) stride = :($stride * size(a.data, $i)) else stride = :($stride * $(S[i])) end end return quote Base.@_inline_meta Base.@_propagate_inbounds_meta a.data[$ind_expr] = value end end Base.@propagate_inbounds function setindex!(sa::HybridArray{S}, value, inds::Union{Int, StaticArray{<:Tuple, Int}, Colon}...) where S _setindex!(all_dynamic_fixed_val(S, inds...), sa, value, inds...) end @inline function _setindex!(::Val{:dynamic_fixed_false}, sa::HybridArray{S}, value, inds::Union{Int, StaticArray{<:Tuple, Int}, Colon}...) where S newsize = new_out_size(S, inds...) return HybridArray{newsize}(setindex!(parent(sa), value, inds...)) end Base.@propagate_inbounds function _setindex!(::Val{:dynamic_fixed_true}, sa::HybridArray, value, inds::Union{Int, StaticArray{<:Tuple, Int}, Colon}...) return _setindex!_all_static(sa, value, inds...) end @generated function _setindex!_all_static(sa::HybridArray{S,T}, v::AbstractArray, inds::Union{Int, StaticArray{<:Tuple, Int}, Colon}...) where {S,T} newsize = new_out_size_nongen(S, inds...) exprs = Vector{Expr}(undef, length(newsize)) indices = CartesianIndices(newsize) Tnewsize = Tuple{newsize...} if v <: StaticArray newlen = StaticArrays.tuple_prod(newsize) if Length(v) != newlen return quote throw(DimensionMismatch("tried to assign $(length(v))-element array to $($newlen) destination")) end end end lininds = _get_linear_inds(S, inds...) if lininds === nothing exprs = similar(indices, Expr) for current_ind ∈ indices cinds = _get_indices(current_ind.I, 1, inds...) exprs[current_ind.I...] = :(setindex!(sadata, v[$(current_ind.I...)], $(cinds...))) end if v <: StaticArray return quote Base.@_propagate_inbounds_meta sadata = parent(sa) @inbounds $(Expr(:block, exprs...)) end else return quote Base.@_propagate_inbounds_meta if size(v) != $newsize throw(DimensionMismatch("tried to assign array of size $(size(v)) to destination of size $($newsize)")) end sadata = parent(sa) @inbounds $(Expr(:block, exprs...)) end end else exprs = [:(setindex!(sadata, v[$iid], $id)) for (iid, id) ∈ enumerate(lininds[2])] if v <: StaticArray return quote Base.@_propagate_inbounds_meta $(lininds[1]) sadata = parent(sa) @inbounds $(Expr(:block, exprs...)) end else return quote Base.@_propagate_inbounds_meta if size(v) != $newsize throw(DimensionMismatch("tried to assign array of size $(size(v)) to destination of size $($newsize)")) end $(lininds[1]) sadata = parent(sa) @inbounds $(Expr(:block, exprs...)) end end end end @inline function _view_hybrid(a::HybridArray{S}, ::Val{:dynamic_fixed_true}, inner_view, indices...) where {S} new_size = new_out_size(S, indices...) return SizedArray{new_size}(inner_view) end @inline function _view_hybrid(a::HybridArray{S}, ::Val{:dynamic_fixed_false}, inner_view, indices...) where {S} new_size = new_out_size(S, indices...) return HybridArray{new_size}(inner_view) end @inline function Base.view( a::HybridArray{S}, indices::Union{Int, AbstractArray, Colon}..., ) where {S} inner_view = invoke(view, Tuple{AbstractArray, typeof(indices).parameters...}, a, indices...) return _view_hybrid(a, all_dynamic_fixed_val(S, indices...), inner_view, indices...) end
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
2599
const HybridMatrixLike{T} = Union{ HybridMatrix{<:Any, <:Any, T}, Transpose{T, <:HybridMatrix{T}}, Adjoint{T, <:HybridMatrix{T}}, Symmetric{T, <:HybridMatrix{T}}, Hermitian{T, <:HybridMatrix{T}}, Diagonal{T, <:HybridMatrix{<:Any, T}} } const HybridVecOrMatLike{T} = Union{HybridVector{<:Any, T}, HybridMatrixLike{T}} # Binary ops # Between arrays @inline +(a::HybridArray, b::HybridArray) = a .+ b @inline +(a::AbstractArray, b::HybridArray) = a .+ b @inline +(a::StaticArray, b::HybridArray) = a .+ b @inline +(a::HybridArray, b::AbstractArray) = a .+ b @inline +(a::HybridArray, b::StaticArray) = a .+ b @inline -(a::HybridArray, b::HybridArray) = a .- b @inline -(a::AbstractArray, b::HybridArray) = a .- b @inline -(a::StaticArray, b::HybridArray) = a .- b @inline -(a::HybridArray, b::AbstractArray) = a .- b @inline -(a::HybridArray, b::StaticArray) = a .- b # Scalar-array @inline *(a::Number, b::HybridArray) = a .* b @inline *(a::HybridArray, b::Number) = a .* b @inline /(a::HybridArray, b::Number) = a ./ b @inline \(a::Number, b::HybridArray) = a .\ b @inline vcat(a::HybridVecOrMatLike) = a @inline vcat(a::HybridVecOrMatLike, b::HybridVecOrMatLike) = _vcat(Size(a), Size(b), a, b) @inline vcat(a::HybridVecOrMatLike, b::HybridVecOrMatLike, c::HybridVecOrMatLike...) = vcat(vcat(a,b), vcat(c...)) @generated function _vcat(::Size{Sa}, ::Size{Sb}, a::HybridVecOrMatLike, b::HybridVecOrMatLike) where {Sa, Sb} if Size(Sa)[2] != Size(Sb)[2] throw(DimensionMismatch("Tried to vcat arrays of size $Sa and $Sb")) end if a <: HybridVector && b <: HybridVector Snew = (Sa[1] + Sb[1],) else Snew = (Sa[1] + Sb[1], Size(Sa)[2]) end return quote Base.@_inline_meta @inbounds return _h_similar_type($a, promote_type(eltype(a), eltype(b)), Size($Snew))(vcat(parent(a), parent(b))) end end @inline hcat(a::HybridVecOrMatLike, b::HybridVecOrMatLike) = _hcat(Size(a), Size(b), a, b) @inline hcat(a::HybridVecOrMatLike, b::HybridVecOrMatLike, c::HybridVecOrMatLike...) = hcat(hcat(a,b), c...) # used in _vcat and _hcat @inline +(::Dynamic, ::Dynamic) = Dynamic() @generated function _hcat(::Size{Sa}, ::Size{Sb}, a::HybridVecOrMatLike, b::HybridVecOrMatLike) where {Sa, Sb} if Sa[1] != Sb[1] throw(DimensionMismatch("Tried to hcat arrays of size $Sa and $Sb")) end Snew = (Sa[1], Size(Sa)[2] + Size(Sb)[2]) return quote Base.@_inline_meta return _h_similar_type($a, promote_type(eltype(a), eltype(b)), Size($Snew))(hcat(parent(a), parent(b))) end end
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
1681
function StaticArrayInterface.strides(x::HybridArray) return StaticArrayInterface.strides(parent(x)) end @generated function StaticArrayInterface.strides(x::HybridArray{S,T,N,N,Array{T,N}}) where {S<:Tuple,T,N} collected_strides = [] i = 1 for (argnum, Sarg) in enumerate(S.parameters) if i > 0 push!(collected_strides, StaticArrayInterface.StaticInt(i)) else push!(collected_strides, :(datastrides[$argnum])) end if Sarg isa Integer i *= Sarg else i = -1 end end return quote datastrides = strides(parent(x)) return tuple($(collected_strides...)) end end @generated function StaticArrayInterface.size(x::HybridArray{S}) where {S} collected_sizes = [] for (argnum, Sarg) in enumerate(S.parameters) if Sarg isa Integer push!(collected_sizes, StaticArrayInterface.StaticInt(Sarg)) else push!(collected_sizes, :(datasize[$argnum])) end end return quote datasize = StaticArrayInterface.size(parent(x)) return tuple($(collected_sizes...)) end end StaticArrayInterface.contiguous_axis(::Type{HybridArray{S,T,N,N,TData}}) where {S,T,N,TData} = StaticArrayInterface.contiguous_axis(TData) StaticArrayInterface.contiguous_batch_size(::Type{HybridArray{S,T,N,N,TData}}) where {S,T,N,TData} = StaticArrayInterface.contiguous_batch_size(TData) StaticArrayInterface.stride_rank(::Type{HybridArray{S,T,N,N,TData}}) where {S,T,N,TData} = StaticArrayInterface.stride_rank(TData) StaticArrayInterface.dense_dims(x::HybridArray) = StaticArrayInterface.dense_dims(x.data)
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
224
""" size_to_tuple(::Type{S}) where S<:Tuple Converts a size given by `Tuple{N, M, ...}` into a tuple `(N, M, ...)`. """ Base.@pure function size_to_tuple(::Type{S}) where S<:Tuple return tuple(S.parameters...) end
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
5727
using StaticArrays, HybridArrays, Test, LinearAlgebra using StaticArrays: Dynamic @testset "AbstractArray interface" begin @testset "size and length" begin M = HybridMatrix{2, Dynamic()}([1 2 3; 4 5 6]) @test length(M) == 6 @test size(M) == (2, 3) @test Base.isassigned(M, 2, 2) == true @test (@inferred Size(M)) == Size(Tuple{2, Dynamic()}) @test (@inferred Size(typeof(M))) == Size(Tuple{2, Dynamic()}) end @testset "reshape" begin # TODO? end @testset "convert" begin MM = [1 2 3; 4 5 6] M = HybridMatrix{2, Dynamic()}(MM) @test parent(@inferred convert(HybridArray{Tuple{2,Dynamic()}}, MM)) == M @test parent(@inferred convert(HybridArray{Tuple{2,Dynamic()},Int}, MM)) == M @test parent(@inferred convert(HybridArray{Tuple{2,Dynamic()},Float64}, MM)) == M @test parent(@inferred convert(HybridArray{Tuple{2,Dynamic()},Float64,2}, MM)) == M @test parent(@inferred convert(HybridArray{Tuple{2,Dynamic()},Float64,2,2}, MM)) == M @test parent(@inferred convert(HybridArray{Tuple{2,Dynamic()},Float64,2,2,Matrix{Float64}}, MM)) == M @test convert(typeof(M), M) === M if VERSION >= v"1.1" @test convert(HybridArray{Tuple{2,Dynamic()},Float64}, M) == M end @test convert(Array, M) === parent(M) @test convert(Array{Int}, M) === parent(M) @test convert(Matrix, M) === parent(M) @test convert(Matrix{Int}, M) === parent(M) @test Array(M) == M @test Array(M) !== parent(M) @test Matrix(M) == M @test Matrix(M) !== parent(M) @test Matrix{Int}(M) == M @test Matrix{Int}(M) !== parent(M) @test_throws MethodError Vector(M) end @testset "copy" begin M = HybridMatrix{2, Dynamic()}([1 2; 3 4]) @test @inferred(copy(M))::HybridMatrix == M @test parent(copy(M)) !== parent(M) @testset "subarrays" begin M = HybridMatrix{Dynamic(), 2}(rand(4, 2)) ha = view(M, :, 1) @test copy(ha) == ha @test parent(copy(ha)) !== parent(ha) end end @testset "similar" begin M = HybridMatrix{2, Dynamic(), Int}([1 2; 3 4]) @test isa(@inferred(similar(M)), HybridMatrix{2, Dynamic(), Int}) @test isa(@inferred(similar(M, Float64)), HybridMatrix{2, Dynamic(), Float64}) @test isa(@inferred(similar(M, Float64, Size(Tuple{3, 3}))), HybridMatrix{3, 3, Float64}) @test isa(@inferred(similar(M, SOneTo(3))), SizedVector{3, Int}) @test isa(@inferred(similar(M, Float64, SOneTo(3))), SizedVector{3, Float64}) @test isa(@inferred(similar(M, (SOneTo(3), 10, Base.OneTo(12)))), HybridArray{Tuple{3,Dynamic(),Dynamic()}, Int}) @test isa(@inferred(similar(M, Float64, (SOneTo(3), 10, Base.OneTo(12)))), HybridArray{Tuple{3,Dynamic(),Dynamic()}, Float64}) @test size(similar(M, Float64, (SOneTo(3), 10, Base.OneTo(12)))) === (3, 10, 12) end @testset "IndexStyle" begin M = HybridMatrix{2, Dynamic(), Int}([1 2; 3 4]) MT = HybridMatrix{2, Dynamic(), Int}([1 2; 3 4]') @test (@inferred IndexStyle(M)) === IndexLinear() @test (@inferred IndexStyle(MT)) === IndexCartesian() @test (@inferred IndexStyle(typeof(M))) === IndexLinear() @test (@inferred IndexStyle(typeof(MT))) === IndexCartesian() end @testset "vec" begin M = HybridMatrix{2, Dynamic(), Int}([1 2; 3 4]) Mv = vec(M) @test Mv == [1, 3, 2, 4] @test Mv isa Vector{Int} Mv[2] = 100 @test M[2, 1] == 100 end @testset "errors" begin @test_throws TypeError HybridArrays.new_out_size_nongen(Size{Tuple{1,2}}, 'a') end @testset "elsize, eltype" begin for T in [Int8, Int16, Int32, Int64, Int128, Float16, Float32, Float64, BigFloat] M_array = rand(T, 2, 2) M_hybrid = HybridMatrix{2, Dynamic()}(M_array) @test Base.eltype(M_hybrid) === Base.eltype(M_array) @test Base.elsize(M_hybrid) === Base.elsize(M_array) end end @testset "strides" begin M = HybridMatrix{2, Dynamic(), Int}([1 2; 3 4]) @test strides(M) == strides(parent(M)) end @testset "pointer" begin M = HybridMatrix{2, Dynamic(), Int}([1 2; 3 4]) MT = HybridMatrix{2, Dynamic(), Int}([1 2; 3 4]') @test pointer(M) == pointer(parent(M)) if VERSION >= v"1.5" # pointer on Adjoint is not available on earilier versions of Julia @test pointer(MT) == pointer(parent(MT)) end end @testset "unsafe_convert" begin M = HybridMatrix{2, Dynamic(), Int}([1 2; 3 4]) @test Base.unsafe_convert(Ptr{Int}, M) === pointer(parent(M)) end @test HybridArrays._totally_linear() === true @testset "undef initializers" begin M = HybridVector{3,Int}(undef, 3) @test isa(M, HybridVector{3,Int,1,Vector{Int}}) @test_throws ErrorException HybridVector{3,Int}(undef, 4) M2 = HybridMatrix{Dynamic(),4,Int}(undef, 6, 4) @test isa(M2, HybridMatrix{Dynamic(),4,Int,2,Matrix{Int}}) @test size(M2) === (6, 4) M3 = HybridArray{Tuple{Dynamic(),3,4},Int}(undef, 5, 3, 4) @test isa(M3, HybridArray{Tuple{Dynamic(),3,4},Int,3,3,Array{Int,3}}) @test size(M3) === (5, 3, 4) end @testset "getindex" begin A = HybridArray{Tuple{2,2,StaticArrays.Dynamic()}}(randn(2,2,100)) B = A[1:2] @test B isa Vector @test A[1] == B[1] @test A[2] == B[2] end end
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
596
using HybridArrays, ArrayInterface, Test, StaticArrays @testset "ArrayInterface compatibility" begin M = HybridMatrix{2, StaticArrays.Dynamic()}([1 2; 4 5]) MV = HybridMatrix{3, StaticArrays.Dynamic()}(view(randn(10, 10), 1:2:5, 1:3:12)) @test ArrayInterface.ismutable(M) @test ArrayInterface.can_setindex(M) @test ArrayInterface.parent_type(M) === Matrix{Int} @test ArrayInterface.restructure(M, [2, 4, 6, 8]) == HybridMatrix{2, StaticArrays.Dynamic()}([2 6; 4 8]) @test isa(ArrayInterface.restructure(M, [2, 4, 6, 8]), HybridMatrix{2, StaticArrays.Dynamic()}) end
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
904
using StaticArrays, HybridArrays, Test, LinearAlgebra @testset "AbstractArray interface" begin @testset "one()" begin M = HybridMatrix{2, StaticArrays.Dynamic()}([1 2; 4 5]) @test (@inferred one(M)) == @SMatrix [1 0; 0 1] @test isa(one(M), HybridMatrix{2,StaticArrays.Dynamic(),Int}) Mv = view(M, :, SOneTo(2)) @test (@inferred one(Mv)) === @SMatrix [1 0; 0 1] end @testset "zero()" begin M = HybridMatrix{2, StaticArrays.Dynamic()}([1 2; 4 5]) @test (@inferred zero(M)) == @SMatrix [0 0; 0 0] @test isa(zero(M), HybridMatrix{2,StaticArrays.Dynamic(),Int}) Mv = view(M, :, SOneTo(2)) @test (@inferred zero(Mv)) === @SMatrix [0 0; 0 0] end @testset "fill!()" begin M = HybridMatrix{2, StaticArrays.Dynamic(), Float64}([1 2; 4 5]) fill!(M, 3) @test all(M .== 3.) end end
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
9150
using HybridArrays using StaticArrays using Test struct ScalarTest end Base.:(+)(x::Number, y::ScalarTest) = x Broadcast.broadcastable(x::ScalarTest) = Ref(x) @testset "broadcasting" begin Ai = rand(Int, 2, 3, 4) Bi = HybridArray{Tuple{2,3,StaticArrays.Dynamic()}, Int, 3}(Ai) Af = rand(Float64, 2, 3, 4) Bf = HybridArray{Tuple{2,3,StaticArrays.Dynamic()}, Float64, 3}(Af) Bi[1,2,:] .= [110, 111, 112, 113] @test Bi[1,2,:] == @SVector [110, 111, 112, 113] @testset "Scalar Broadcast" begin @test Bf == @inferred(Bf .+ ScalarTest()) @test Bf .+ 1 == @inferred(Bf .+ Ref(1)) end @testset "AbstractArray-of-HybridArray with scalar math" begin v = [Bf] @test @inferred(v .* 1.0)::typeof(v) == v end @testset "2x2 HybridMatrix with HybridVector" begin m = HybridMatrix{2,StaticArrays.Dynamic()}([1 2; 3 4]) v = HybridVector{2}([1, 4]) @test @inferred(broadcast(+, m, v)) == @SMatrix [2 3; 7 8] @test @inferred(m .+ v) == @SMatrix [2 3; 7 8] @test @inferred(v .+ m) == @SMatrix [2 3; 7 8] @test @inferred(m .* v) == @SMatrix [1 2; 12 16] @test @inferred(v .* m) == @SMatrix [1 2; 12 16] @test @inferred(m ./ v) == @SMatrix [1 2; 3/4 1] @test @inferred(v ./ m) == @SMatrix [1 1/2; 4/3 1] @test @inferred(m .- v) == @SMatrix [0 1; -1 0] @test @inferred(v .- m) == @SMatrix [0 -1; 1 0] @test @inferred(m .^ v) == @SMatrix [1 2; 81 256] @test @inferred(v .^ m) == @SMatrix [1 1; 64 256] # StaticArrays Issue #546 @test @inferred(m ./ (v .* v')) == @SMatrix [1.0 0.5; 0.75 0.25] testinf(m, v) = m ./ (v .* v') @test @inferred(testinf(m, v)) == @SMatrix [1.0 0.5; 0.75 0.25] end @testset "2x2 HybridMatrix with 1x2 HybridMatrix" begin # StaticArrays Issues #197, #242: broadcast between SArray and row-like SMatrix m1 = HybridMatrix{2,StaticArrays.Dynamic()}([1 2; 3 4]) m2 = HybridMatrix{1,StaticArrays.Dynamic()}([1 4]) @test @inferred(broadcast(+, m1, m2)) == @SMatrix [2 6; 4 8] @test @inferred(m1 .+ m2) == @SMatrix [2 6; 4 8] @test @inferred(m2 .+ m1) == @SMatrix [2 6; 4 8] @test @inferred(m1 .* m2) == @SMatrix [1 8; 3 16] @test @inferred(m2 .* m1) == @SMatrix [1 8; 3 16] @test @inferred(m1 ./ m2) == @SMatrix [1 1/2; 3 1] @test @inferred(m2 ./ m1) == @SMatrix [1 2; 1/3 1] @test @inferred(m1 .- m2) == @SMatrix [0 -2; 2 0] @test @inferred(m2 .- m1) == @SMatrix [0 2; -2 0] @test @inferred(m1 .^ m2) == @SMatrix [1 16; 3 256] end @testset "1x2 HybridMatrix with SVector" begin # StaticArrays Issues #197, #242: broadcast between SVector and row-like SVector m = HybridMatrix{1,StaticArrays.Dynamic()}([1 2]) v = SVector(1, 4) @test @inferred(broadcast(+, m, v)) == @SMatrix [2 3; 5 6] @test @inferred(m .+ v) == @SMatrix [2 3; 5 6] @test @inferred(v .+ m) == @SMatrix [2 3; 5 6] @test @inferred(m .* v) == @SMatrix [1 2; 4 8] @test @inferred(v .* m) == @SMatrix [1 2; 4 8] @test @inferred(m ./ v) == @SMatrix [1 2; 1/4 1/2] @test @inferred(v ./ m) == @SMatrix [1 1/2; 4 2] @test @inferred(m .- v) == @SMatrix [0 1; -3 -2] @test @inferred(v .- m) == @SMatrix [0 -1; 3 2] @test @inferred(m .^ v) == @SMatrix [1 2; 1 16] @test @inferred(v .^ m) == @SMatrix [1 1; 4 16] end @testset "HybridMatrix with HybridMatrix" begin m1 = HybridMatrix{2,StaticArrays.Dynamic()}([1 2; 3 4]) m2 = HybridMatrix{2,StaticArrays.Dynamic()}([1 3; 4 5]) @test @inferred(broadcast(+, m1, m2)) == @SMatrix [2 5; 7 9] @test @inferred(m1 .+ m2) == @SMatrix [2 5; 7 9] @test @inferred(m2 .+ m1) == @SMatrix [2 5; 7 9] @test @inferred(m1 .* m2) == @SMatrix [1 6; 12 20] @test @inferred(m2 .* m1) == @SMatrix [1 6; 12 20] # StaticArrays Issue #199: broadcast with empty SArray @test @inferred(HybridVector{1}([1]) .+ HybridVector{0,Int}([])) === SVector{0,Union{}}() @test_broken @inferred(HybridVector{0,Int}([]) .+ SVector(1)) === SVector{0,Union{}}() # StaticArrays Issue #200: broadcast with Adjoint @test @inferred(m1 .+ m2') == @SMatrix [2 6; 6 9] @test @inferred(m1 .+ transpose(m2)) == @SMatrix [2 6; 6 9] # StaticArrays Issue 382: infinite recursion in Base.Broadcast.broadcast_indices with Adjoint @test @inferred(HybridVector{2}([1,1])' .+ [1, 1]) == [2 2; 2 2] @test @inferred(transpose(HybridVector{2}([1,1])) .+ [1, 1]) == [2 2; 2 2] @test @inferred(HybridVector{StaticArrays.Dynamic()}([1,1])' .+ [1, 1]) == [2 2; 2 2] @test @inferred(transpose(HybridVector{StaticArrays.Dynamic()}([1,1])) .+ [1, 1]) == [2 2; 2 2] end @testset "HybridMatrix with Scalar" begin m = HybridMatrix{2,StaticArrays.Dynamic()}([1 2; 3 4]) @test @inferred(broadcast(+, m, 2)) == @SMatrix [3 4; 5 6] @test @inferred(m .+ 2) == @SMatrix [3 4; 5 6] @test @inferred(2 .+ m) == @SMatrix [3 4; 5 6] @test @inferred(m .* 2) == @SMatrix [2 4; 6 8] @test @inferred(2 .* m) == @SMatrix [2 4; 6 8] @test @inferred(m ./ 2) == @SMatrix [1/2 1; 3/2 2] @test @inferred(2 ./ m) == @SMatrix [2 1; 2/3 1/2] @test @inferred(m .- 2) == @SMatrix [-1 0; 1 2] @test @inferred(2 .- m) == @SMatrix [1 0; -1 -2] @test @inferred(m .^ 2) == @SMatrix [1 4; 9 16] @test @inferred(2 .^ m) == @SMatrix [2 4; 8 16] end @testset "Empty arrays" begin @test @inferred(1.0 .+ HybridMatrix{2,0,Float64}(zeros(2,0))) == HybridMatrix{2,0,Float64}(zeros(2,0)) @test @inferred(1.0 .+ HybridMatrix{0,2,Float64}(zeros(0,2))) == HybridMatrix{0,2,Float64}(zeros(0,2)) @test @inferred(1.0 .+ HybridArray{Tuple{2,StaticArrays.Dynamic(),0},Float64}(zeros(2,3,0))) == HybridArray{Tuple{2,StaticArrays.Dynamic(),0},Float64}(zeros(2,3,0)) @test @inferred(HybridVector{0,Float64}(zeros(0)) .+ HybridMatrix{0,2,Float64}(zeros(0,2))) == HybridMatrix{0,2,Float64}(zeros(0,2)) m = HybridMatrix{0,2,Float64}(zeros(0,2)) @test @inferred(broadcast!(+, m, m, HybridVector{0,Float64}(zeros(0)))) == HybridMatrix{0,2,Float64}(zeros(0,2)) end @testset "Mutating broadcast!" begin # No setindex! error A = HybridMatrix{2,StaticArrays.Dynamic()}([1 0; 0 1]) @test @inferred(broadcast!(+, A, A, SVector(1, 4))) == @MMatrix [2 1; 4 5] A = HybridMatrix{2,StaticArrays.Dynamic()}([1 0; 0 1]) @test @inferred(broadcast!(+, A, A, @SMatrix([1 4]))) == @MMatrix [2 4; 1 5] A = HybridMatrix{1,StaticArrays.Dynamic()}([1 0]) @test_throws DimensionMismatch broadcast!(+, A, A, SVector(1, 4)) A = HybridMatrix{1,StaticArrays.Dynamic()}([1 0]) @test @inferred(broadcast!(+, A, A, @SMatrix([1 4]))) == @MMatrix [2 4] A = HybridMatrix{1,StaticArrays.Dynamic()}([1 0]) @test @inferred(broadcast!(+, A, A, 2)) == @MMatrix [3 2] end @testset "broadcast! with mixtures of SArray and Array" begin A = HybridVector{StaticArrays.Dynamic()}([0, 0]) @test @inferred(broadcast!(+, A, [1,2])) == [1,2] end @testset "eltype after broadcast" begin # test cases StaticArrays issue #198 let a = HybridVector{4, Number}(Number[2, 2.0, 4//2, 2+0im]) @test eltype(a .+ 2) == Number @test eltype(a .- 2) == Number @test eltype(a * 2) == Number @test eltype(a / 2) == Number end let a = HybridVector{3, Real}(Real[2, 2.0, 4//2]) @test eltype(a .+ 2) == Real @test eltype(a .- 2) == Real @test eltype(a * 2) == Real @test eltype(a / 2) == Real end let a = HybridVector{3, Real}(Real[2, 2.0, 4//2]) @test eltype(a .+ 2.0) == Float64 @test eltype(a .- 2.0) == Float64 @test eltype(a * 2.0) == Float64 @test eltype(a / 2.0) == Float64 end let a = broadcast(Float32, HybridVector{3}([3, 4, 5])) @test eltype(a) == Float32 end end @testset "broadcast general scalars" begin # StaticArrays Issue #239 - broadcast with non-numeric element types @eval @enum Axis aX aY aZ @test (HybridVector{3}([aX,aY,aZ]) .== Ref(aX)) == HybridVector{3}([true,false,false]) mv = HybridVector{3}([aX,aY,aZ]) @test broadcast!(identity, mv, Ref(aX)) == HybridVector{3}([aX,aX,aX]) @test mv == HybridVector{3}([aX,aX,aX]) end @testset "broadcast! with Array destination" begin # Issue #385 a = zeros(3, 3) b = HybridMatrix{3,StaticArrays.Dynamic()}([1 2 3; 4 5 6; 7 8 9]) a .= b @test a == b c = HybridVector{3}([1, 2, 3]) a .= c @test a == [1 1 1; 2 2 2; 3 3 3] d = HybridVector{4}([1, 2, 3, 4]) @test_throws DimensionMismatch a .= d end end
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
250
using Test, HybridArrays, ForwardDiff, StaticArrays @testset "ForwardDiff" begin x = [rand(SVector{3}) for _ in 1:4] xh = HybridMatrix{3,StaticArrays.Dynamic()}(reduce(hcat,x)) f(x) = 1.0 @test iszero(ForwardDiff.gradient(f, xh)) end
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
2117
using HybridArrays using StaticArrays using Test @testset "Linear algebra" begin @testset "HybridMatrix as a (mathematical) vector space" begin c = 2 a1 = [2 4; 6 8] s1 = SMatrix{2,2}(a1) m1 = HybridMatrix{2,StaticArrays.Dynamic()}(a1) a2 = [4 3; 2 1] s2 = SMatrix{2,2}(a2) m2 = HybridMatrix{2,StaticArrays.Dynamic()}(a2) @test @inferred(c * m1)::HybridMatrix == @SMatrix [4 8; 12 16] @test @inferred(m1 * c)::HybridMatrix == @SMatrix [4 8; 12 16] @test @inferred(m1 / c)::HybridMatrix == @SMatrix [1.0 2.0; 3.0 4.0] @test @inferred(c \ m1)::HybridMatrix ≈ @SMatrix [1.0 2.0; 3.0 4.0] @test @inferred(m1 + m2) == @SMatrix [6 7; 8 9] @test @inferred(m1 - m2) == @SMatrix [-2 1; 4 7] @test @inferred(a1 + m2) == @SMatrix [6 7; 8 9] @test @inferred(a1 - m2) == @SMatrix [-2 1; 4 7] @test @inferred(m1 + a2) == @SMatrix [6 7; 8 9] @test @inferred(m1 - a2) == @SMatrix [-2 1; 4 7] @test @inferred(s1 + m2) == @SMatrix [6 7; 8 9] @test @inferred(s1 - m2) == @SMatrix [-2 1; 4 7] @test @inferred(m1 + s2) == @SMatrix [6 7; 8 9] @test @inferred(m1 - s2) == @SMatrix [-2 1; 4 7] @test vcat(m1) == m1 @test hcat(m1) == m1 @test @inferred(vcat(m1, m2)) == vcat(a1, a2) @test @inferred(hcat(m1, m2)) == hcat(a1, a2) @test isa(vcat(m1, m2), HybridMatrix{4,StaticArrays.Dynamic()}) @test isa(vcat(m1, m2, m2), HybridMatrix{6,StaticArrays.Dynamic()}) @test isa(hcat(m1, m2), HybridMatrix{2,StaticArrays.Dynamic()}) @test isa(hcat(m1, m2, m2), HybridMatrix{2,StaticArrays.Dynamic()}) @test isa(vcat(HybridVector{2}([1, 2]), HybridVector{3}([1, 2, 3])), HybridVector{5, Int}) @test_throws DimensionMismatch hcat(HybridVector{2}([1, 2]), HybridVector{3}([1, 2, 3])) if VERSION < v"1.10" @test_throws ArgumentError vcat(m1, hcat(m1, m2)) else @test_throws DimensionMismatch vcat(m1, hcat(m1, m2)) end end end
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
2962
module TestEllipsisNotationCompat # use a module to avoid cluttering the global namespace using EllipsisNotation using HybridArrays using Test if VERSION >= v"1.5" @testset "Compatibility with EllipsisNotation" begin u_array = rand(2, 10) u_hybrid = HybridArray{Tuple{2, HybridArrays.Dynamic()}}(copy(u_array)) @test u_hybrid ≈ u_array @test u_hybrid[1, ..] ≈ u_array[1, ..] @test u_hybrid[.., 1] ≈ u_array[.., 1] @test u_hybrid[..] ≈ u_array[..] @test typeof(u_hybrid[1, ..]) == typeof(u_hybrid[1, :]) @test typeof(u_hybrid[.., 1]) == typeof(u_hybrid[:, 1]) @test typeof(u_hybrid[..]) == typeof(u_hybrid[:]) @test typeof(u_hybrid[..,..]) == typeof(u_hybrid[:, :]) @inferred u_hybrid[1, ..] @inferred u_hybrid[.., 1] @inferred u_hybrid[..] let new_values = rand(10) u_array[1, ..] .= new_values u_hybrid[1, ..] .= new_values @test u_hybrid ≈ u_array @test u_hybrid[1, ..] ≈ u_array[1, ..] @test u_hybrid[.., 1] ≈ u_array[.., 1] @test u_hybrid[..] ≈ u_array[..] end let new_values = rand(2) u_array[.., 1] .= new_values u_hybrid[.., 1] .= new_values @test u_hybrid ≈ u_array @test u_hybrid[1, ..] ≈ u_array[1, ..] @test u_hybrid[.., 1] ≈ u_array[.., 1] @test u_hybrid[..] ≈ u_array[..] end let new_values = rand(2, 10) u_array .= new_values u_hybrid .= new_values @test u_hybrid ≈ u_array @test u_hybrid[1, ..] ≈ u_array[1, ..] @test u_hybrid[.., 1] ≈ u_array[.., 1] @test u_hybrid[..] ≈ u_array[..] end end end @testset "Compatibility with Cartesian indices" begin u_array = rand(2, 3, 4) u_hybrid = HybridArray{Tuple{2, 3, 4}}(copy(u_array)) @test u_hybrid ≈ u_array @test u_hybrid[CartesianIndex(1, 2), :] ≈ u_array[CartesianIndex(1, 2), :] @test u_hybrid[:, CartesianIndex(1, 2)] ≈ u_array[:, CartesianIndex(1, 2)] @test typeof(u_hybrid[CartesianIndex(1, 2), :]) == typeof(u_hybrid[1, 2, :]) @test typeof(u_hybrid[:, CartesianIndex(1, 2)]) == typeof(u_hybrid[:, 1, 2]) @inferred u_hybrid[CartesianIndex(1, 2), :] @inferred u_hybrid[:, CartesianIndex(1, 2)] @inferred u_hybrid[CartesianIndex(1, 2, 3)] let new_values = rand(4) u_array[CartesianIndex(1, 2), :] .= new_values u_hybrid[CartesianIndex(1, 2), :] .= new_values @test u_hybrid ≈ u_array @test u_hybrid[CartesianIndex(1, 2), :] ≈ u_array[CartesianIndex(1, 2), :] @test u_hybrid[:, CartesianIndex(1, 2)] ≈ u_array[:, CartesianIndex(1, 2)] end let new_values = rand(2) u_array[:, CartesianIndex(1, 2)] .= new_values u_hybrid[:, CartesianIndex(1, 2)] .= new_values @test u_hybrid ≈ u_array @test u_hybrid[CartesianIndex(1, 2), :] ≈ u_array[CartesianIndex(1, 2), :] @test u_hybrid[:, CartesianIndex(1, 2)] ≈ u_array[:, CartesianIndex(1, 2)] end end end # module
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
7140
using HybridArrays using StaticArrays using Test if VERSION < v"1.6" # Julia 1.6 has a stack overflow on this test :( @test length(Test.detect_ambiguities(HybridArrays)) == 0 end @testset "Inner Constructors" begin @test parent(HybridArray{Tuple{2}, Int, 1, 1, Vector{Int}}((3, 4))) == [3, 4] @test parent(HybridArray{Tuple{2}, Int, 1}([3, 4])) == [3, 4] @test parent(HybridArray{Tuple{2, 2}, Int, 2}(collect(3:6))) == collect(3:6) @test size(parent(HybridArray{Tuple{4, 5}, Int, 2}(undef))) == (4, 5) @test size(parent(HybridArray{Tuple{4, 5}, Int}(undef))) == (4, 5) # Bad input @test_throws Exception SArray{Tuple{1},Int,1}([2 3]) # Bad parameters @test_throws Exception HybridArray{Tuple{1},Int,2}(undef) @test_throws Exception SArray{Tuple{3, 4},Int,1}(undef) # Parameter/input size mismatch @test_throws Exception HybridArray{Tuple{1},Int,2}([2; 3]) @test_throws Exception HybridArray{Tuple{1},Int,2}((2, 3)) end @testset "Outer Constructors" begin # From Array @test @inferred(HybridArray{Tuple{2},Float64,1}([1,2]))::HybridArray{Tuple{2},Float64,1,1} == [1.0, 2.0] @test @inferred(HybridArray{Tuple{2},Float64}([1,2]))::HybridArray{Tuple{2},Float64,1,1} == [1.0, 2.0] @test @inferred(HybridArray{Tuple{2}}([1,2]))::HybridArray{Tuple{2},Int,1,1} == [1,2] @test @inferred(HybridArray{Tuple{2,2}}([1 2;3 4]))::HybridArray{Tuple{2,2},Int,2,2} == [1 2; 3 4] # Uninitialized @test @inferred(HybridArray{Tuple{2,2},Int,2}(undef)) isa HybridArray{Tuple{2,2},Int,2,2} @test @inferred(HybridArray{Tuple{2,2},Int}(undef)) isa HybridArray{Tuple{2,2},Int,2,2} # From Tuple @test @inferred(HybridArray{Tuple{2},Float64,1,1,Vector{Float64}}((1,2)))::HybridArray{Tuple{2},Float64,1,1} == [1.0, 2.0] @test @inferred(HybridArray{Tuple{2},Float64}((1,2)))::HybridArray{Tuple{2},Float64,1,1} == [1.0, 2.0] @test @inferred(HybridArray{Tuple{2}}((1,2)))::HybridArray{Tuple{2},Int,1,1} == [1,2] @test @inferred(HybridArray{Tuple{2,2}}((1,2,3,4)))::HybridArray{Tuple{2,2},Int,2,2} == [1 3; 2 4] end @testset "HybridVector and HybridMatrix" begin @test @inferred(HybridVector{2}([1,2]))::HybridArray{Tuple{2},Int,1,1} == [1,2] @test @inferred(HybridVector{2}((1,2)))::HybridArray{Tuple{2},Int,1,1} == [1,2] # Reshaping @test @inferred(HybridVector{2}([1 2]))::HybridArray{Tuple{2},Int,1,2} == [1,2] # Back to Vector @test Vector(HybridVector{2}((1,2))) == [1,2] @test convert(Vector, HybridVector{2}((1,2))) == [1,2] @test @inferred(HybridMatrix{2,2}([1 2; 3 4]))::HybridArray{Tuple{2,2},Int,2,2} == [1 2; 3 4] # Reshaping @test @inferred(HybridMatrix{2,2}((1,2,3,4)))::HybridArray{Tuple{2,2},Int,2,2} == [1 3; 2 4] # Back to Matrix @test Matrix(HybridMatrix{2,2}([1 2;3 4])) == [1 2; 3 4] @test convert(Matrix, HybridMatrix{2,2}([1 2;3 4])) == [1 2; 3 4] end @testset "setindex" begin sa = HybridArray{Tuple{2}, Int, 1}([3, 4]) sa[1] = 2 @test parent(sa) == [2, 4] end @testset "aliasing" begin a1 = rand(4) a2 = copy(a1) sa1 = HybridVector{4}(a1) sa2 = HybridVector{4}(a2) @test Base.mightalias(a1, sa1) @test Base.mightalias(sa1, HybridVector{4}(a1)) @test !Base.mightalias(a2, sa1) @test !Base.mightalias(sa1, HybridVector{4}(a2)) @test Base.mightalias(sa1, view(sa1, 1:2)) @test Base.mightalias(a1, view(sa1, 1:2)) @test Base.mightalias(sa1, view(a1, 1:2)) end @testset "back to Array" begin @test Array(HybridArray{Tuple{2}, Int, 1}([3, 4])) == [3, 4] @test Array{Int}(HybridArray{Tuple{2}, Int, 1}([3, 4])) == [3, 4] @test Array{Int, 1}(HybridArray{Tuple{2}, Int, 1}([3, 4])) == [3, 4] @test Vector(HybridArray{Tuple{4}, Int, 1}(collect(3:6))) == collect(3:6) @test convert(Vector, HybridArray{Tuple{4}, Int, 1}(collect(3:6))) == collect(3:6) @test Matrix(SMatrix{2,2}((1,2,3,4))) == [1 3; 2 4] @test convert(Matrix, SMatrix{2,2}((1,2,3,4))) == [1 3; 2 4] @test convert(Array, HybridArray{Tuple{2,2,2,2}, Int}(ones(2,2,2,2))) == ones(2,2,2,2) # Conversion after reshaping @test_broken Array(HybridMatrix{2,2,Int,1,Vector{Int}}([1,2,3,4])) == [1 3; 2 4] end @testset "promotion" begin @test @inferred(promote_type(HybridVector{1,Float64,1,Vector{Float64}}, HybridVector{1,BigFloat,1,Vector{BigFloat}})) == HybridVector{1,BigFloat,1,Vector{BigFloat}} @test @inferred(promote_type(HybridVector{2,Int,1,Vector{Int}}, HybridVector{2,Float64,1,Vector{Float64}})) === HybridVector{2,Float64,1,Vector{Float64}} @test @inferred(promote_type(HybridMatrix{2,3,Float32,2,Matrix{Float32}}, HybridMatrix{2,3,Complex{Float64},2,Matrix{Complex{Float64}}})) === HybridMatrix{2,3,Complex{Float64},2,Matrix{Complex{Float64}}} end @testset "dynamically sized axes" begin A = rand(Int, 2, 3, 4) B = HybridArray{Tuple{2,3,StaticArrays.Dynamic()}, Int, 3}(A) C = rand(Int, 2, 3, 4, 5) D = HybridArray{Tuple{2,3,StaticArrays.Dynamic(),StaticArrays.Dynamic()}, Int, 4}(C) @test size(B) == size(A) @test size(D) == size(C) @test axes(B) == (SOneTo(2), SOneTo(3), axes(A, 3)) @test axes(B, 1) == SOneTo(2) @test axes(B, 2) == SOneTo(3) @test B[1,2,3] == A[1,2,3] @test B[1,:,:] == A[1,:,:] inds = @SVector [2, 1] @test B[1,inds,:] == A[1,inds,:] @test B[:,:,2] == A[:,:,2] @test B[:,:,@SVector [2, 3]] == A[:,:,[2, 3]] B[1,2,3] = 42 @test B[1,2,3] == 42 B[:,2,3] = @SVector [10, 11] @test B[:,2,3] == @SVector [10, 11] B[:,:,1] = @SMatrix [1 2 3; 4 5 6] @test B[:,:,1] == @SMatrix [1 2 3; 4 5 6] B[1,2,:] = [10, 11, 12, 13] @test B[1,2,:] == @SVector [10, 11, 12, 13] B[:,2,:] = @SMatrix [1 2 3 4; 5 6 7 8] @test B[:,2,:] == @SMatrix [1 2 3 4; 5 6 7 8] B[:,2,:] = [11 12 13 14; 15 16 17 18] @test B[:,2,:] == [11 12 13 14; 15 16 17 18] B[1,2,:] = @SVector [10, 11, 12, 13] @test B[1,2,:] == @SVector [10, 11, 12, 13] B[1,SA[2,1],SA[2,3]] = @SMatrix [10 11; 12 13] @test B[1,SA[2,1],SA[2,3]] == @SMatrix [10 11; 12 13] B[1,SA[2,1],SA[2,3]] = [14 15; 16 17] @test B[1,SA[2,1],SA[2,3]] == @SMatrix [14 15; 16 17] D[:,2,3,4] = @SVector [10, 11] @test D[:,2,3,4] == @SVector [10, 11] D[:,:,1,2] = @SMatrix [1 2 3; 4 5 6] @test D[:,:,1,2] == @SMatrix [1 2 3; 4 5 6] D[1,2,:,1] = [10, 11, 12, 13] @test D[1,2,:,1] == @SVector [10, 11, 12, 13] E = HybridArray{Tuple{}}(fill(10)) E[] = 12 @test E[] == 12 @test_throws DimensionMismatch (D[:,2,3,4] = @SVector [10, 11, 11]) @test_throws DimensionMismatch (D[:,2,3,4] = [10, 11, 11]) @test_throws DimensionMismatch (B[1,2,:] = [10, 11]) @test_throws ErrorException HybridArray.all_dynamic_fixed_val(typeof(B)) @test HybridArrays.all_dynamic_fixed_val(Tuple{}) === Val(:dynamic_fixed_true) end include("abstractarray.jl") include("arraymath.jl") include("broadcast.jl") include("linalg.jl") include("ssubarray.jl") include("nonstandard_indices.jl") include("array_interface_compat.jl") include("static_array_interface_compat.jl") include("forwarddiff.jl")
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
1063
using Test, Random, HybridArrays, StaticArrays ######### Tests ######### @testset "Statically sized SubArray" begin A = HybridArray{Tuple{2,2,StaticArrays.Dynamic()}}(fill(0.0, 2, 2, 10)) Av = view(A, :, :, SOneTo(3)) @test isa(Av, SizedArray{Tuple{2,2,3},Float64,3,3,SubArray{Float64,3,HybridArray{Tuple{2,2,StaticArrays.Dynamic()},Float64,3,3,Array{Float64,3}},Tuple{Base.Slice{SOneTo{2}},Base.Slice{SOneTo{2}},SOneTo{3}},true}}) @test (@inferred Av[:,:,1]) === SA[0.0 0.0; 0.0 0.0] @test (@inferred Av[:,SOneTo(2),1]) === SA[0.0 0.0; 0.0 0.0] @test StaticArrays.similar_type(Av) === SArray{Tuple{2,2,3},Float64,3,12} # views that leave dynamically sized axes should return HybridArray (see issue #31) B = HybridArray{Tuple{2,5,StaticArrays.Dynamic()}}(randn(2, 5, 3)) @test isa((@inferred view(B, :, StaticArrays.SUnitRange(2, 4), :)), HybridArray{Tuple{2,3,StaticArrays.Dynamic()},Float64,3,3,<:SubArray}) Bv = view(B, :, StaticArrays.SUnitRange(2, 4), :) @test Bv == B[:, StaticArrays.SUnitRange(2, 4), :] end
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
code
1306
using HybridArrays, StaticArrayInterface, Test, StaticArrays using StaticArrayInterface: StaticInt @testset "StaticArrayInterface compatibility" begin M = HybridMatrix{2, StaticArrays.Dynamic()}([1 2; 4 5]) MV = HybridMatrix{3, StaticArrays.Dynamic()}(view(randn(10, 10), 1:2:5, 1:3:12)) M2 = HybridArray{Tuple{2, 3, StaticArrays.Dynamic(), StaticArrays.Dynamic()}}(randn(2, 3, 5, 7)) @test (@inferred StaticArrayInterface.strides(M2)) === (StaticInt(1), StaticInt(2), StaticInt(6), 30) @test (@inferred StaticArrayInterface.strides(MV)) === (2, 30) @test StaticArrayInterface.contiguous_axis(typeof(M2)) === StaticArrayInterface.contiguous_axis(typeof(parent(M2))) @test StaticArrayInterface.contiguous_batch_size(typeof(M2)) === StaticArrayInterface.contiguous_batch_size(typeof(parent(M2))) @test StaticArrayInterface.stride_rank(typeof(M2)) === StaticArrayInterface.stride_rank(typeof(parent(M2))) @test StaticArrayInterface.contiguous_axis(typeof(M')) === StaticArrayInterface.contiguous_axis(typeof(parent(M)')) @test StaticArrayInterface.contiguous_batch_size(typeof(M')) === StaticArrayInterface.contiguous_batch_size(typeof(parent(M)')) @test StaticArrayInterface.stride_rank(typeof(M')) === StaticArrayInterface.stride_rank(typeof(parent(M)')) end
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.4.16
6c3e57bc26728b99f470b267a437f0d380eac4fc
docs
2862
| Status | Coverage | | :----: | :----: | | [![CI](https://github.com/mateuszbaran/HybridArrays.jl/workflows/CI/badge.svg)](https://github.com/mateuszbaran/HybridArrays.jl/actions?query=workflow%3ACI+branch%3Amaster) | [ ![codecov.io](http://codecov.io/github/mateuszbaran/HybridArrays.jl/coverage.svg?branch=master)](http://codecov.io/github/mateuszbaran/HybridArrays.jl?branch=master) | # HybridArrays.jl Arrays with both statically and dynamically sized axes in Julia. This is a convenient replacement for the commonly used `Arrays`s of `SArray`s which are fast but not easy to mutate. `HybridArray` makes this easier: any `AbstractArray` can be wrapped in a structure that specifies which axes are statically sized. Based on this information code for `getindex`, `setindex!` and broadcasting is (or should soon be, not all cases have been optimized yet) as efficient as for `Arrays`s of `SArray`s while mutation of single elements is possible, as well as other operations on the wrapped array. Views are statically sized where possible for fast and convenient mutation of `HybridArray`s. Example: ```julia julia> using HybridArrays, StaticArrays julia> A = HybridArray{Tuple{2,2,StaticArrays.Dynamic()}}(randn(2,2,100)); julia> A[1,1,10] = 12 12 julia> A[:,:,10] 2×2 SArray{Tuple{2,2},Float64,2,4} with indices SOneTo(2)×SOneTo(2): 12.0 -1.39943 -0.450564 -0.140096 julia> A[2,:,:] 2×100 HybridArray{Tuple{2,StaticArrays.Dynamic()},Float64,2,2,Array{Float64,2}} with indices SOneTo(2)×Base.OneTo(100): -0.262977 1.40715 -0.110194 … -1.67315 2.30679 0.931161 -0.432229 3.04082 -0.00971933 -0.905037 -0.446818 0.777833 julia> A[:,:,10] .*= 2 2×2 SizedArray{Tuple{2,2},Float64,2,2,SubArray{Float64,2,HybridArray{Tuple{2,2,StaticArrays.Dynamic()},Float64,3,3,Array{Float64,3}},Tuple{Base.Slice{SOneTo{2}},Base.Slice{SOneTo{2}},Int64},true}} with indices SOneTo(2)×SOneTo(2): 24.0 -2.79886 -0.901128 -0.280193 julia> A[:,:,10] = SMatrix{2,2}(1:4) 2×2 SArray{Tuple{2,2},Int64,2,4} with indices SOneTo(2)×SOneTo(2): 1 3 2 4 ``` `HybridArrays.jl` is implements (optionally loaded) [`ArrayInterface`](https://github.com/SciML/ArrayInterface.jl/) methods for compatibility with [`LoopVectorization`](https://github.com/chriselrod/LoopVectorization.jl). Tips: - If possible, statically known dimensions should come first. This way the most common access pattern where indices of dynamic dimensions are specified will be faster. - Since version 0.4 of `HybridArrays`, Julia 1.5 or newer is required for best performance (most importantly the memory layout changes). It still works correctly on earlier versions of Julia but versions from the 0.3.x line may be faster in some cases on Julia <=1.4. Code of this package is based on the code of the [`StaticArrays`](https://github.com/JuliaArrays/StaticArrays.jl).
HybridArrays
https://github.com/JuliaArrays/HybridArrays.jl.git
[ "MIT" ]
0.2.0
250c012ae1ab51ce9b514ed85c9c77dbf964f76b
code
347
using Documenter using Starlight makedocs( sitename = "Starlight", format = Documenter.HTML(), modules = [Starlight] ) # Documenter can also automatically deploy documentation to gh-pages. # See "Hosting Documentation" and deploydocs() in the Documenter manual # for more information. #=deploydocs( repo = "<repository url>" )=#
Starlight
https://github.com/jhigginbotham64/Starlight.jl.git
[ "MIT" ]
0.2.0
250c012ae1ab51ce9b514ed85c9c77dbf964f76b
code
12025
using Starlight const window_width = 600 const window_height = 400 const paddle_width = 10 const paddle_height = 60 const ball_width = 10 const ball_height = 10 const wall_height = 10 const goal_width = 10 const hz = 1 # collision margins const wmx = 0 # wall const wmy = 0 const gmx = 0 # goal const gmy = 0 const pmx = 0 # paddle const pmy = 0 const bmx = 0 # ball const bmy = 0 const pv = window_height # paddle velocity const ball_vel_x_mult = 0.25 const ball_vel_y_mult = 1.5 const ball_vel_x = ball_vel_x_mult * window_width const ball_vel_y_max = ball_vel_y_mult * window_height const paddle_ball_x_tolerance = 2 ball_vel_y(i) = -i * ball_vel_y_max const score_scale = 10 const score_y_offset = 50 const msg_scale = 2 const center_line_dash_w = 10 const center_line_dash_h = 40 const center_line_dash_spacing = 20 const asset_base = joinpath(artifact"test", "test") const secs_between_rounds = 2 const score_to_win = 10 a = App(; wdth=window_width, hght=window_height, bgrd=colorant"black") # center line center_line = [] for i in (wall_height + center_line_dash_spacing):\ (center_line_dash_h + center_line_dash_spacing):\ (window_height - wall_height - center_line_dash_h - center_line_dash_spacing) push!(center_line, ColorRect(center_line_dash_w, center_line_dash_h; color=colorant"grey", pos=XYZ((window_width - center_line_dash_w) / 2, i))) end # working with Cellphone strings cpchars = Dict( ' ' => [0,0], '!' => [0,1], '\"' => [0,2], '#' => [0,3], '$' => [0,4], '%' => [0,5], '&' => [0,6], '\'' => [0,7], '(' => [0,8], ')' => [0,9], '*' => [0,10], '+' => [0,11], ',' => [0,12], '-' => [0,13], '.' => [0,14], '/' => [0,15], '0' => [0,16], '1' => [0,17], '2' => [1,0], '3' => [1,1], '4' => [1,2], '5' => [1,3], '6' => [1,4], '7' => [1,5], '8' => [1,6], '9' => [1,7], ':' => [1,8], ';' => [1,9], '<' => [1,10], '=' => [1,11], '>' => [1,12], '?' => [1,13], '@' => [1,14], 'A' => [1,15], 'B' => [1,16], 'C' => [1,17], 'D' => [2,0], 'E' => [2,1], 'F' => [2,2], 'G' => [2,3], 'H' => [2,4], 'I' => [2,5], 'J' => [2,6], 'K' => [2,7], 'L' => [2,8], 'M' => [2,9], 'N' => [2,10], 'O' => [2,11], 'P' => [2,12], 'Q' => [2,13], 'R' => [2,14], 'S' => [2,15], 'T' => [2,16], 'U' => [2,17], 'V' => [3,0], 'W' => [3,1], 'X' => [3,2], 'Y' => [3,3], 'Z' => [3,4], '[' => [3,5], '\\' => [3,6], ']' => [3,7], '^' => [3,8], '_' => [3,9], '`' => [3,10], 'a' => [3,11], 'b' => [3,12], 'c' => [3,13], 'd' => [3,14], 'e' => [3,15], 'f' => [3,16], 'g' => [3,17], 'h' => [4,0], 'i' => [4,1], 'j' => [4,2], 'k' => [4,3], 'l' => [4,4], 'm' => [4,5], 'n' => [4,6], 'o' => [4,7], 'p' => [4,8], 'q' => [4,9], 'r' => [4,10], 's' => [4,11], 't' => [4,12], 'u' => [4,13], 'v' => [4,14], 'w' => [4,15], 'x' => [4,16], 'y' => [4,17], 'z' => [5,0], '{' => [5,1], '|' => [5,2], '}' => [5,3], '~' => [5,4], ) mutable struct CellphoneString <: Renderable function CellphoneString(str="", white=true; scale=XYZ(1,1), color=colorant"white", kw...) instantiate!(new(); str=str, white=white, scale=scale, color=color, kw...) end end function Starlight.draw(s::CellphoneString) img = (s.white) ? joinpath(asset_base, "sprites", "charmap-cellphone_white.png") : \ joinpath(asset_base, "sprites", "charmap-cellphone_black.png") for (i,c) in enumerate(s.str) cell_ind = cpchars[c] TS_VkCmdDrawSprite(img, vulkan_colors(s.color)..., 0, 0, 0, 0, 7, 9, cell_ind[1], cell_ind[2], Int(floor(s.scale.x * 7)) * (i - 1) + s.abs_pos.x, s.abs_pos.y, s.scale.x, s.scale.y) end end # p1 score score1 = CellphoneString('0'; color=colorant"grey", scale=XYZ(score_scale, score_scale), pos=XYZ((window_width / 2) - (window_width / 4) - (7 * score_scale / 2), score_y_offset)) # p2 score score2 = CellphoneString('0'; color=colorant"grey", scale=XYZ(score_scale, score_scale), pos=XYZ((window_width / 2) + (window_width / 4) - (7 * score_scale / 2), score_y_offset)) # welcome message msg = CellphoneString("Press SPACE to start", false; scale=XYZ(msg_scale, msg_scale), pos=XYZ((window_width - 140 * msg_scale) / 2, (window_height - 9 * msg_scale) / 2)) @enum PongArenaSide LEFT RIGHT TOP BOTTOM mutable struct PongPaddle <: Starlight.Renderable function PongPaddle(w, h, side; kw...) instantiate!(new(); w=w, h=h, side=side, color=colorant"white", kw...) end end Starlight.draw(p::PongPaddle) = defaultDrawRect(p) function Starlight.awake!(p::PongPaddle) hw = paddle_width / 2 hh = paddle_height / 2 addTriggerBox!(p, hw, hh, hz, p.pos.x + hw, p.pos.y + hh, 0, pmx, pmy, 0) end function Starlight.shutdown!(p::PongPaddle) removePhysicsObject!(p) end function Starlight.handleMessage!(p::PongPaddle, col::TS_CollisionEvent) otherId = other(p, col) if otherId == wallt.id if p.id == p1.id pg.p1TouchingTopWall = col.colliding elseif p.id == p2.id pg.p2TouchingTopWall = col.colliding end elseif otherId == wallb.id if p.id == p1.id pg.p1TouchingBottomWall = col.colliding elseif p.id == p2.id pg.p2TouchingBottomWall = col.colliding end end end # p1 p1 = PongPaddle(paddle_width, paddle_height, LEFT; pos=XYZ(paddle_width, (window_height - paddle_height) / 2)) # p2 p2 = PongPaddle(paddle_width, paddle_height, RIGHT; pos=XYZ(window_width - 2 * paddle_width, (window_height - paddle_height) / 2)) mutable struct PongArenaWall <: Starlight.Renderable function PongArenaWall(w, h, side; kw...) instantiate!(new(); w=w, h=h, side=side, color=colorant"white", kw...) end end Starlight.draw(p::PongArenaWall) = defaultDrawRect(p) function Starlight.awake!(p::PongArenaWall) hw = window_width / 2 hh = wall_height / 2 addTriggerBox!(p, hw, hh, hz, p.pos.x + hw, p.pos.y + hh, 0, wmx, wmy, 0) end function Starlight.shutdown!(p::PongArenaWall) removePhysicsObject!(p) end # top wall wallt = PongArenaWall(window_width, wall_height, TOP; pos=XYZ(0, 0)) # bottom wall wallb = PongArenaWall(window_width, wall_height, BOTTOM; pos=XYZ(0, window_height - wall_height)) mutable struct PongArenaGoal <: Starlight.Entity function PongArenaGoal(w, h, side; kw...) instantiate!(new(); w=w, h=h, side=side, kw...) end end function Starlight.awake!(p::PongArenaGoal) hw = goal_width / 2 hh = window_height / 2 addTriggerBox!(p, hw, hh, hz, p.pos.x + hw, p.pos.y + hh, 0, gmx, gmy, 0) end function Starlight.shutdown!(p::PongArenaGoal) removePhysicsObject!(p) end # left goal goal1 = PongArenaGoal(window_height * 2, goal_width, LEFT; pos=XYZ(-goal_width, 0)) # right goal goal2 = PongArenaGoal(window_height * 2, goal_width, RIGHT; pos=XYZ(window_width, 0)) mutable struct PongBall <: Starlight.Renderable function PongBall(w, h; kw...) instantiate!(new(); w=w, h=h, color=colorant"white", kw...) end end Starlight.draw(p::PongBall) = defaultDrawRect(p) function Starlight.awake!(p::PongBall) hw = ball_width / 2 hh = ball_height / 2 addTriggerBox!(p, hw, hh, hz, p.pos.x + hw, p.pos.y + hh, 0, bmx, bmy, 0) end function Starlight.shutdown!(p::PongBall) removePhysicsObject!(p) end function hit_edge(p::PongBall, o::PongPaddle) if o.side == LEFT return p.abs_pos.x < (o.abs_pos.x + paddle_width - paddle_ball_x_tolerance) else return p.abs_pos.x > (o.abs_pos.x - ball_width + paddle_ball_x_tolerance) end end function hit_angle(p::PongBall, o::PongPaddle) paddle_top = o.abs_pos.y - ball_height / 2 ball_center = p.abs_pos.y + ball_height / 2 paddle_hit_area = paddle_height + ball_height return -(2 * ((ball_center - paddle_top) / paddle_hit_area) - 1) end function wait_and_start_new_round(arg) sleep(SLEEP_SEC(secs_between_rounds)) pg.ball = newball() end getP1Score() = parse(Int, score1.str) getP2Score() = parse(Int, score2.str) function Starlight.handleMessage!(p::PongBall, col::TS_CollisionEvent) otherId = other(p, col) vel = TS_BtGetLinearVelocity(p.id) if col.colliding if otherId ∈ [wallt.id, wallb.id] TS_PlaySound(joinpath(asset_base, "sounds", "ping_pong_8bit_plop.ogg"), 0, -1) TS_BtSetLinearVelocity(p.id, vel.x, -vel.y, vel.z) elseif otherId ∈ [goal1.id, goal2.id] TS_PlaySound(joinpath(asset_base, "sounds", "ping_pong_8bit_peeeeeep.ogg"), 0, -1) destroy!(p) if otherId == goal2.id score1.str = string(getP1Score() + 1) elseif otherId == goal1.id score2.str = string(getP2Score() + 1) end if getP1Score() == score_to_win || getP2Score() == score_to_win msg.hidden = false score1.str = "0" score2.str = "0" else oneshot!(clk(), wait_and_start_new_round) end elseif otherId ∈ [p1.id, p2.id] TS_PlaySound(joinpath(asset_base, "sounds", "ping_pong_8bit_beeep.ogg"), 0, -1) o = getEntityById(otherId) TS_BtSetLinearVelocity(p.id, (hit_edge(p, o) ? 1 : -1) * vel.x, ball_vel_y(hit_angle(p, o)), vel.z) end end end mutable struct PongGame <: Starlight.Entity function PongGame() instantiate!(new(); ball=nothing, w=false, s=false, up=false, down=false, p1TouchingTopWall=false, p2TouchingTopWall=false, p1TouchingBottomWall=false, p2TouchingBottomWall=false) end end function Starlight.awake!(p::PongGame) listenFor(p, SDL_KeyboardEvent) listenFor(p, SDL_QuitEvent) TS_BtSetGravity(0, 0, 0) end function Starlight.shutdown!(p::PongGame) unlistenFrom(p, SDL_KeyboardEvent) unlistenFrom(p, SDL_QuitEvent) end function newball() p = PongBall(ball_width, ball_height; pos=XYZ((window_width - ball_width) / 2, (window_height - ball_height) / 2)) TS_BtSetLinearVelocity(p.id, ((rand(Bool)) ? 1 : -1) * ball_vel_x, ball_vel_y(2 * rand() - 1), 0) return p end function Starlight.handleMessage!(p::PongGame, key::SDL_KeyboardEvent) if key.keysym.scancode == SDL_SCANCODE_SPACE && !msg.hidden msg.hidden = true p.ball = newball() elseif key.keysym.scancode == SDL_SCANCODE_W p.w = key.state == SDL_PRESSED elseif key.keysym.scancode == SDL_SCANCODE_S p.s = key.state == SDL_PRESSED elseif key.keysym.scancode == SDL_SCANCODE_UP p.up = key.state == SDL_PRESSED elseif key.keysym.scancode == SDL_SCANCODE_DOWN p.down = key.state == SDL_PRESSED end end function Starlight.handleMessage!(p::PongGame, q::SDL_QuitEvent) shutdown!(p) end function Starlight.update!(p::PongGame, Δ::AbstractFloat) TS_BtSetLinearVelocity(p1.id, 0, 0, 0) TS_BtSetLinearVelocity(p2.id, 0, 0, 0) if p.w && !p.p1TouchingTopWall TS_BtSetLinearVelocity(p1.id, 0, -pv, 0) elseif p.s && !p.p1TouchingBottomWall TS_BtSetLinearVelocity(p1.id, 0, pv, 0) end if p.up && !p.p2TouchingTopWall TS_BtSetLinearVelocity(p2.id, 0, -pv, 0) elseif p.down && !p.p2TouchingBottomWall TS_BtSetLinearVelocity(p2.id, 0, pv, 0) end end pg = PongGame() run!(a) # <!-- export handleMessage!, sendMessage, listenFor, unlistenFrom, handleException, dispatchMessage # export App, awake!, shutdown!, run!, on, off # export clk, ecs, inp, ts, phys, scn # export Clock, TICK, SLEEP_NSEC, SLEEP_SEC # export tick, job!, oneshot! # export Entity, update! # export ECS, XYZ, accumulate_XYZ # export getEntityRow, getEntityById, getEntityRowById, getDfRowProp, setDfRowProp! # export ECSIteratorState, Level # export instantiate!, destroy! # export Scene, scene_view # export TS # export to_ARGB, getSDLError, sdl_colors, vulkan_colors, clear # export Root, Renderable # export draw, ColorRect, Sprite # export defaultDrawRect, defaultDrawSprite # export Input # export Physics # export addRigidBox!, addStaticBox!, addTriggerBox!, removePhysicsObject! # export other # export Physics # export addRigidBox!, addStaticBox!, addTriggerBox!, removePhysicsObject! # export other -->
Starlight
https://github.com/jhigginbotham64/Starlight.jl.git
[ "MIT" ]
0.2.0
250c012ae1ab51ce9b514ed85c9c77dbf964f76b
code
1284
export Clock, TICK, SLEEP_NSEC, SLEEP_SEC export tick, job!, oneshot! mutable struct Clock started::Base.Event stopped::Bool freq::AbstractFloat Clock() = new(Base.Event(), true, 0.01667) end struct TICK Δ::AbstractFloat # seconds end struct SLEEP_SEC Δ::AbstractFloat end struct SLEEP_NSEC Δ::UInt end function Base.sleep(s::SLEEP_SEC) t1 = time() while true if time() - t1 >= s.Δ break end yield() end return time() - t1 end function Base.sleep(s::SLEEP_NSEC) t1 = time_ns() while true if time_ns() - t1 >= s.Δ break end yield() end return time_ns() - t1 end function tick(Δ) δ = sleep(SLEEP_NSEC(Δ * 1e9)) sendMessage(TICK(δ / 1e9)) @debug "tick" end function job!(c::Clock, f, arg=1) function job() Base.wait(c.started) while !c.stopped f(arg) end end schedule(Task(job)) end function oneshot!(c::Clock, f, arg=1) function oneshot() Base.wait(c.started) f(arg) end schedule(Task(oneshot)) end function awake!(c::Clock) @debug "Clock awake!" job!(c, tick, c.freq) c.stopped = false Base.notify(c.started) end function shutdown!(c::Clock) @debug "Clock shutdown!" c.stopped = true c.started = Base.Event() # old one remains signaled no matter what, replace end
Starlight
https://github.com/jhigginbotham64/Starlight.jl.git
[ "MIT" ]
0.2.0
250c012ae1ab51ce9b514ed85c9c77dbf964f76b
code
7258
export Entity, update! export ECS, XYZ, accumulate_XYZ export getEntityRow, getEntityById, getEntityRowById, getDfRowProp, setDfRowProp! export ECSIteratorState, Level export instantiate!, destroy! export Scene, scene_view abstract type Entity end update!(e, Δ) = nothing # magic symbols that getproperty and setproperty! (and end users) care about const ENT = :ent const TYPE = :type const ID = :id const PARENT = :parent const CHILDREN = :children const POSITION = :pos const ROTATION = :rot const ABSOLUTE_POSITION = :abs_pos const ABSOLUTE_ROTATION = :abs_rot const HIDDEN = :hidden const PROPS = :props # position, rotation, velocity, acceleration, whatever mutable struct XYZ x::Number y::Number z::Number XYZ(x=0, y=0, z=0) = new(x, y, z) end import Base.+, Base.-, Base.*, Base.÷, Base./, Base.% +(a::XYZ, b::XYZ) = XYZ(a.x+b.x,a.y+b.y,a.z+b.z) -(a::XYZ, b::XYZ) = XYZ(a.x-b.x,a.y-b.y,a.z-b.z) *(a::XYZ, b::Number) = XYZ(a.x*b,a.y*b,a.z*b) ÷(a::XYZ, b::Number) = XYZ(a.x÷b,a.y÷b,a.z÷b) /(a::XYZ, b::Number) = XYZ(a.x/b,a.y/b,a.z/b) %(a::XYZ, b::Number) = XYZ(a.x%b,a.y%b,a.z%b) # columns of the in-memory database const components = Dict( ENT=>Entity, TYPE=>DataType, ID=>Number, PARENT=>Number, CHILDREN=>Set{Number}, POSITION=>XYZ, ROTATION=>XYZ, HIDDEN=>Bool, PROPS=>Dict{Symbol, Any} ) mutable struct ECS df::DataFrame awoken::Bool lock::ReentrantLock next_id::Number function ECS() df = DataFrame( NamedTuple{Tuple(keys(components))}( t[] for t in values(components) )) return new(df, false, ReentrantLock(), 0) end end # internally using Base.getproperty directly so # as to not break if the symbol values change getEntityRow(ent::Entity) = @view ecs().df[getproperty(ecs().df, ENT) .== [ent], :] function getEntityById(id::Number) arr = ecs().df[getproperty(ecs().df, ID) .== [id], ENT] if length(arr) > 0 return arr[1] end return nothing end getEntityRowById(id::Number) = @view ecs().df[getproperty(ecs().df, ID) .== [id], :] getDfRowProp(r, s) = r[!, s][1] setDfRowProp!(r, s, x) = r[!, s][1] = x function Base.propertynames(ent::Entity) return ( keys(components)..., ABSOLUTE_POSITION, ABSOLUTE_ROTATION, [n for n in keys(getproperty(ent, PROPS))]... ) end function Base.hasproperty(ent::Entity, s::Symbol) return s in Base.propertynames(ent) end function accumulate_XYZ(r, s) acc = XYZ() while true inc = getDfRowProp(r, s) acc += inc r = getEntityRowById(getDfRowProp(r, PARENT)) getDfRowProp(r, PARENT) != 0 || return acc end end function Base.getproperty(ent::Entity, s::Symbol) e = getEntityRow(ent) if s == ABSOLUTE_POSITION return accumulate_XYZ(e, POSITION) elseif s == ABSOLUTE_ROTATION return accumulate_XYZ(e, ROTATION) elseif s in keys(components) return getDfRowProp(e, s) elseif s in keys(getDfRowProp(e, PROPS)) return getDfRowProp(e, PROPS)[s] else return getfield(ent, s) end end function Base.setproperty!(ent::Entity, s::Symbol, x) e = getEntityRow(ent) if s in [ ENT, # immutable TYPE, # automatically set ID, # automatically set ABSOLUTE_POSITION, # computed ABSOLUTE_ROTATION # computed ] error("cannot set property $(s) on Entity") end lock(ecs().lock) if s == PARENT par = getEntityById(getDfRowProp(e, PARENT)) push!(getproperty(par, CHILDREN), getDfRowProp(e, ID)) elseif s in keys(components) && s != PROPS setDfRowProp!(e, s, x) else getDfRowProp(e, PROPS)[s] = x end unlock(ecs().lock) end Base.length(e::ECS) = size(e.df)[1] # TODO: the type/struct approach feels clunky, fix with Vals? abstract type ECSIterator end mutable struct ECSIteratorState root::Number q::Queue{Number} root_visited::Bool index::Number ECSIteratorState(; root=0, q=Queue{Number}(), root_visited=false, index=1) = new(root, q, root_visited, index) end # refers to tree level, i.e. breadth-first, # nothing special to see here struct Level end Base.length(l::Level) = length(ecs()) function Base.iterate(l::Level, state::ECSIteratorState=ECSIteratorState()) if isempty(state.q) if !state.root_visited # just started enqueue!(state.q, state.root) state.root_visited = true else # just finished return nothing end end ent = getEntityById(dequeue!(state.q)) for c in getproperty(ent, CHILDREN) enqueue!(state.q, c) end return (ent, state) end function handleMessage!(e::ECS, m::TICK) @debug "ECS tick" try map((ent) -> update!(ent, m.Δ), Level()) # TODO investigate parallelization catch handleException() end end function awake!(e::ECS) @debug "ECS awake!" e.awoken = true map(awake!, Level()) listenFor(e, TICK) end function shutdown!(e::ECS) @debug "ECS shutdown!" unlistenFrom(e, TICK) map(shutdown!, Level()) e.awoken = false end function instantiate!(e::Entity; kw...) lock(ecs().lock) id = ecs().next_id ecs().next_id += 1 # update ecs # allows invalid parents and children for now push!(ecs().df, Dict( ENT=>e, TYPE=>typeof(e), ID=>id, CHILDREN=>get(kw, CHILDREN, Set{Number}()), PARENT=>get(kw, PARENT, 0), POSITION=>get(kw, POSITION, XYZ()), ROTATION=>get(kw, ROTATION, XYZ()), HIDDEN=>get(kw, HIDDEN, false), PROPS=>merge(get(kw, PROPS, Dict{Symbol, Any}()), Dict(k=>v for (k,v) in kw if k ∉ [CHILDREN, PARENT, POSITION, ROTATION, HIDDEN, PROPS])) )) if id != 0 # root has no parent but itself par = getEntityById(get(kw, PARENT, 0)) push!(getproperty(par, CHILDREN), id) end unlock(ecs().lock) if ecs().awoken awake!(e) end return e end function destroy!(e::Entity) shutdown!(e) lock(ecs().lock) p = getEntityById(getproperty(e, PARENT)) # if not root if getproperty(p, ID) != getproperty(e, ID) # update parent delete!(getproperty(p, CHILDREN), getproperty(e, ID)) # update dataframe deleteat!(ecs().df, getproperty(ecs().df, ENT) .== [e]) end unlock(ecs().lock) end function destroy!(es...) map(destroy!, es) # TODO investigate parallelization end # this is the scene graph, ladies and gentlemen, # which we can traverse and mutate however we want # during iteration, and initialize however we want # and destroy however we want...sorry, it took me # a long time to come up with this design, and i'm # a little bit psyched about it. :) scene_view() = ecs().df[(ecs().df.type .<: [Renderable]) .& (ecs().df.hidden .== [false]), :] struct Scene end Base.length(s::Scene) = size(scene_view())[1] function Base.iterate(s::Scene, state::ECSIteratorState=ECSIteratorState()) # does reverse-z order for now, only # suitable for simple 2d drawing if state.index > length(s) return nothing end ent = scene_view()[!, ENT][state.index] state.index += 1 return (ent, state) end function awake!(s::Scene) @debug "Scene awake!" listenFor(s, TICK) end function shutdown!(s::Scene) @debug "Scene shutdown!" unlistenFrom(s, TICK) end function handleMessage!(s::Scene, m::TICK) # sort just once per tick rather than every time we iterate @debug "Scene tick" try sort!(ecs().df, [order(POSITION, rev=true, by=(pos)->pos.z)]) catch handleException() end end
Starlight
https://github.com/jhigginbotham64/Starlight.jl.git
[ "MIT" ]
0.2.0
250c012ae1ab51ce9b514ed85c9c77dbf964f76b
code
1571
export Root, Renderable export draw, ColorRect, Sprite export defaultDrawRect, defaultDrawSprite draw(e) = nothing mutable struct Root <: Entity end # used for root of ECS tree abstract type Renderable <: Entity end mutable struct ColorRect <: Renderable function ColorRect(w, h; color=colorant"white", kw...) instantiate!(new(); w=w, h=h, color=color, kw...) end end defaultDrawRect(r) = TS_VkCmdDrawRect(vulkan_colors(r.color)..., r.abs_pos.x, r.abs_pos.y, r.w, r.h) draw(r::ColorRect) = defaultDrawRect(r) mutable struct Sprite <: Renderable # allow textures larger than a single sprite # by supporting cell_size, cell_ind, and region # fields. cell_size turns img into a matrix of # adjacent regions of the same size starting in # the top left of the texture. cell_ind is a 0-indexed # (row,col) index into a particular cell. region # overrides both and denotes the top-left corner # of a rectangle, its width, and its height, and # uses only that region of the texture. function Sprite(img; cell_size=[0, 0], region=[0, 0, 0, 0], cell_ind=[0, 0], color=colorant"white", scale=XYZ(1,1,1), kw...) instantiate!(new(); img=img, cell_size=cell_size, region=region, cell_ind=cell_ind, color=color, scale=scale, kw...) end end defaultDrawSprite(s) = TS_VkCmdDrawSprite(s.img, vulkan_colors(s.color)..., s.region[1], s.region[2], s.region[3], s.region[4], s.cell_size[1], s.cell_size[2], s.cell_ind[1], s.cell_ind[2], s.abs_pos.x, s.abs_pos.y, s.scale.x, s.scale.y) draw(s::Sprite) = defaultDrawSprite(s)
Starlight
https://github.com/jhigginbotham64/Starlight.jl.git
[ "MIT" ]
0.2.0
250c012ae1ab51ce9b514ed85c9c77dbf964f76b
code
2167
export Input mutable struct Input end function handleMessage!(i::Input, m::TICK) @debug "Input tick" evt_ref = Ref{SDL_Event}() while Bool(SDL_PollEvent(evt_ref)) evt = evt_ref[] ty = evt.type if ty ∈ [SDL_AUDIODEVICEADDED, SDL_AUDIODEVICEREMOVED] sendMessage(evt.adevice) elseif ty == SDL_CONTROLLERAXISMOTION sendMessage(evt.caxis) elseif ty ∈ [SDL_CONTROLLERBUTTONDOWN, SDL_CONTROLLERBUTTONUP] sendMessage(evt.cbutton) elseif ty ∈ [SDL_CONTROLLERDEVICEADDED, SDL_CONTROLLERDEVICEREMOVED, SDL_CONTROLLERDEVICEREMAPPED] sendMessage(evt.cdevice) elseif ty ∈ [SDL_DOLLARGESTURE, SDL_DOLLARRECORD] sendMessage(evt.dgesture) elseif ty ∈ [SDL_DROPFILE, SDL_DROPTEXT, SDL_DROPBEGIN, SDL_DROPCOMPLETE] sendMessage(evt.drop) elseif ty ∈ [SDL_FINGERMOTION, SDL_FINGERDOWN, SDL_FINGERUP] sendMessage(evt.tfinger) elseif ty ∈ [SDL_KEYDOWN, SDL_KEYUP] sendMessage(evt.key) elseif ty == SDL_JOYAXISMOTION sendMessage(evt.jaxis) elseif ty == SDL_JOYBALLMOTION sendMessage(evt.jball) elseif ty == SDL_JOYHATMOTION sendMessage(evt.jhat) elseif ty ∈ [SDL_JOYBUTTONDOWN, SDL_JOYBUTTONUP] sendMessage(evt.jbutton) elseif ty ∈ [SDL_JOYDEVICEADDED, SDL_JOYDEVICEREMOVED] sendMessage(evt.jdevice) elseif ty == SDL_MOUSEMOTION sendMessage(evt.motion) elseif ty ∈ [SDL_MOUSEBUTTONDOWN, SDL_MOUSEBUTTONUP] sendMessage(evt.button) elseif ty == SDL_MOUSEWHEEL sendMessage(evt.wheel) elseif ty == SDL_MULTIGESTURE sendMessage(evt.mgesture) elseif ty == SDL_QUIT sendMessage(evt.quit) elseif ty == SDL_SYSWMEVENT sendMessage(evt.syswm) elseif ty == SDL_TEXTEDITING sendMessage(evt.edit) elseif ty == SDL_TEXTINPUT sendMessage(evt.text) elseif ty == SDL_USEREVENT sendMessage(evt.user) elseif ty == SDL_WINDOWEVENT sendMessage(evt.window) else sendMessage(evt) end end end function awake!(i::Input) @debug "Input awake!" listenFor(i, TICK) end function shutdown!(i::Input) @debug "Input shutdown!" unlistenFrom(i, TICK) end
Starlight
https://github.com/jhigginbotham64/Starlight.jl.git
[ "MIT" ]
0.2.0
250c012ae1ab51ce9b514ed85c9c77dbf964f76b
code
2251
export Physics export addRigidBox!, addStaticBox!, addTriggerBox!, removePhysicsObject! export other other(e::Entity, col::TS_CollisionEvent) = (e.id == col.id1) ? col.id2 : col.id1 mutable struct PhysicsObjectInfo hx::AbstractFloat hy::AbstractFloat hz::AbstractFloat m::AbstractFloat isKinematic::Bool mx::AbstractFloat my::AbstractFloat mz::AbstractFloat PhysicsObjectInfo(hx = 0, hy = 0, hz = 0, m = 0, isKinematic = false, mx = 0, my = 0, mz = 0) = new(hx, hy, hz, m, isKinematic, mx, my, mz) end mutable struct Physics ids::Dict{Number, PhysicsObjectInfo} Physics() = new(Dict{Number, PhysicsObjectInfo}()) end function addRigidBox!(e, hx, hy, hz, m, px, py, pz, isKinematic = false, mx = 0, my = 0, mz = 0) phys().ids[e.id] = PhysicsObjectInfo(hx, hy, hz, m, isKinematic, mx, my, mz) TS_BtAddRigidBox(e.id, hx + mx, hy + my, hz + mz, m, px, py, pz, isKinematic) end function addStaticBox!(e, hx, hy, hz, px, py, pz, mx = 0, my = 0, mz = 0) phys().ids[e.id] = PhysicsObjectInfo(hx, hy, hz, 0.0, false, mx, my, mz) TS_BtAddStaticBox(e.id, hx + mx, hy + my, hz + mz, px, py, pz) end function addTriggerBox!(e, hx, hy, hz, px, py, pz, mx = 0, my = 0, mz = 0) phys().ids[e.id] = PhysicsObjectInfo(hx, hy, hz, 1.0, false, mx, my, mz) TS_BtAddTriggerBox(e.id, hx + mx, hy + my, hz + mz, px, py, pz) end function removePhysicsObject!(e) delete!(phys().ids, e.id) TS_BtRemovePhysicsObject(e.id) end function handleMessage!(p::Physics, m::TICK) @debug "Physics tick" TS_BtStepSimulation() for (id, pinfo) in p.ids pos = TS_BtGetPosition(id) # TODO: this is a bad hack for working specifically with rectangular objects, needs improvement getEntityById(id).pos = XYZ(pos.x - pinfo.hx, pos.y - pinfo.hy, pos.z - pinfo.hz) end while true col = TS_BtGetNextCollision() if col.id1 == -1 && col.id2 == -1 break end @debug "entities $(col.id1) and $(col.id2) have a collision event" e1 = getEntityById(col.id1) e2 = getEntityById(col.id2) handleMessage!(e1, col) handleMessage!(e2, col) end end function awake!(p::Physics) @debug "Physics awake!" listenFor(p, TICK) end function shutdown!(p::Physics) @debug "Physics shutdown!" unlistenFrom(p, TICK) end
Starlight
https://github.com/jhigginbotham64/Starlight.jl.git
[ "MIT" ]
0.2.0
250c012ae1ab51ce9b514ed85c9c77dbf964f76b
code
4273
module Starlight using Reexport @reexport using Base: ReentrantLock, lock, unlock @reexport using FileIO: load @reexport using Pkg.Artifacts @reexport using LazyArtifacts @reexport using DataStructures: Queue, enqueue!, dequeue! @reexport using DataFrames @reexport using Colors @reexport using SimpleDirectMediaLayer @reexport using SimpleDirectMediaLayer.LibSDL2 @reexport using Telescope export handleMessage!, sendMessage, listenFor, unlistenFrom, handleException, dispatchMessage export App, awake!, shutdown!, run!, on, off export clk, ecs, inp, ts, phys, scn const listeners = Dict{DataType, Set{Any}}() const messages = Channel(Inf) const listener_lock = ReentrantLock() handleMessage!(l, m) = nothing function sendMessage(m) # drop if no one's listening if haskey(listeners, typeof(m)) put!(messages, m) end end function listenFor(e::Any, d::DataType) lock(listener_lock) if !haskey(listeners, d) listeners[d] = Set{Any}() end push!(listeners[d], e) unlock(listener_lock) end function unlistenFrom(e::Any, d::DataType) lock(listener_lock) if haskey(listeners, d) delete!(listeners[d], e) end unlock(listener_lock) end function handleException() for s in stacktrace(catch_backtrace()) println(s) end shutdown!(App()) end # uses single argument to support # being called as a job by a Clock, # see Clock.jl for that interface function dispatchMessage(arg) @debug "dispatchMessage" try m = take!(messages) # NOTE messages are fully processed in the order they are received d = typeof(m) @debug "dequeued message $(m) of type $(d)" if haskey(listeners, d) # Threads.@threads doesn't work on raw sets # because it needs to use indexing to split # up memory, i work around it this way Threads.@threads for l in Vector([listeners[d]...]) handleMessage!(l, m) end end catch handleException() end end awake!(a) = nothing shutdown!(a) = nothing include("Clock.jl") include("ECS.jl") include("TS.jl") include("Entities.jl") include("Input.jl") include("Physics.jl") mutable struct App systems::Dict{DataType, Any} running::Bool wdth::Int hght::Int bgrd::Colorant function App(; wdth::Int=400, hght::Int=400, bgrd=colorant"grey") # singleton pattern from Tom Kwong's book global app global app_lock lock(app_lock) try if !isassigned(app) a = new(Dict{DataType, Any}(), false, wdth, hght, bgrd) system!(a, Clock()) system!(a, ECS()) system!(a, Scene()) system!(a, TS()) system!(a, Input()) system!(a, Physics()) app[] = finalizer(shutdown!, a) # root pid is 0 (default) indicating "here and no further", # always needed, also it will technically parent of itself. # mutate at your own peril, but remember that a user can # define update!(r::Root, Δ::AbstractFloat) if they want instantiate!(Root()) end catch e rethrow() finally unlock(app_lock) return app[] end end end const app = Ref{App}() const app_lock = ReentrantLock() # TODO: fix this, it feels hacky clk() = app[].systems[Clock] scn() = app[].systems[Scene] ts() = app[].systems[TS] inp() = app[].systems[Input] ecs() = app[].systems[ECS] phys() = app[].systems[Physics] on(a::App) = a.running off(a::App) = !a.running # TODO: fix this with an ordered dict or something systemAwakeOrder = () -> [clk(), ts(), inp(), phys(), ecs(), scn()] systemShutdownOrder = () -> [clk(), inp(), phys(), scn(), ecs(), ts()] # TODO: need an elegant way to remove systems system!(a::App, s) = a.systems[typeof(s)] = s # note that if running from a script the app will # still exit when julia exits, it will never block. # figuring out whether/how to keep it alive is # on the user. see run! below for one method. function awake!(a::App) if !on(a) job!(clk(), dispatchMessage) # this could be parallelized if not for mqueue_lock map(awake!, systemAwakeOrder()) a.running = true end end function shutdown!(a::App) if !off(a) map(shutdown!, systemShutdownOrder()) a.running = false end end function run!(a::App) awake!(a) if !isinteractive() while on(a) yield() end end end end
Starlight
https://github.com/jhigginbotham64/Starlight.jl.git
[ "MIT" ]
0.2.0
250c012ae1ab51ce9b514ed85c9c77dbf964f76b
code
1047
export TS export to_ARGB, getSDLError, sdl_colors, vulkan_colors, clear mutable struct TS end function draw() TS_VkBeginDrawPass() map(draw, scn()) # TODO investigate parallelization TS_VkEndDrawPass(vulkan_colors(App().bgrd)...) end function handleMessage!(t::TS, m::TICK) @debug "TS tick" try draw() catch handleException() end end getSDLError() = unsafe_string(TS_SDLGetError()) to_ARGB(c) = c to_ARGB(c::ARGB) = c to_ARGB(c::Colorant) = ARGB(c) sdl_colors(c::Colorant) = sdl_colors(convert(ARGB{Colors.FixedPointNumbers.Normed{UInt8,8}}, c)) sdl_colors(c::ARGB) = Int.(reinterpret.((red(c), green(c), blue(c), alpha(c)))) vulkan_colors(c::Colorant) = Cfloat.(sdl_colors(c) ./ 255) clear() = fill(App().bgrd) function Base.fill(c::Colorant) TS_VkCmdClearColorImage(vulkan_colors(c)...) end function awake!(t::TS) @debug "TS awake!" TS_Init("Hello SDL!", App().wdth, App().hght) draw() listenFor(t, TICK) end function shutdown!(t::TS) @debug "TS shutdown!" unlistenFrom(t, TICK) TS_Quit() end
Starlight
https://github.com/jhigginbotham64/Starlight.jl.git
[ "MIT" ]
0.2.0
250c012ae1ab51ce9b514ed85c9c77dbf964f76b
code
1473
using Starlight using Test # the namespace in front of the method name is important, apparently Starlight.update!(r::Root, Δ::AbstractFloat) = r.updated = true mutable struct TestEntity <: Entity end Starlight.update!(t::TestEntity, Δ::AbstractFloat) = t.updated = true @testset "Starlight" begin # load test file a = App() # no systems should be running @test off(a) # kick off awake!(a) # all systems should be running @test on(a) # close shutdown!(a) # systems should no longer be running @test off(a) # ok back on awake!(a) # visual testing # NOTE in SDL, (0,0) is top-left and y goes down shapes = [ ColorRect(200, 200; color=colorant"blue", pos=XYZ(200, 200)), Sprite(artifact"test/test/sprites/charmap-cellphone_black.png"; color=RGBA(1.0, 0, 0, 0.5), pos=XYZ(100, 100)), ] # test manipulations on root root = getEntityById(0) root.updated = false @test !root.updated # takes just a little longer than a second # for the first update to propagate when # JULIA_DEBUG=Starlight, this fixes it sleep(1.5) @test root.updated # manipulations on test entity tst = TestEntity() instantiate!(tst, props=Dict( :updated=>false )) @test !tst.updated sleep(1) @test tst.updated destroy!(tst) @test length(ecs()) == 3 destroy!(shapes...) @test length(ecs()) == 1 shutdown!(a) # root should remain and be unmodified @test root.updated @test off(a) end
Starlight
https://github.com/jhigginbotham64/Starlight.jl.git
[ "MIT" ]
0.2.0
250c012ae1ab51ce9b514ed85c9c77dbf964f76b
docs
3120
# Starlight.jl Julia is a [greedy language](https://julialang.org/blog/2012/02/why-we-created-julia/), surrounded by a community of greedy people, who deserve greedy frameworks to make their greedy applications. With a focus on flexibility and code quality, Starlight aims to be such a framework. It includes a suite of components and integrations that make it particuarly well-suited for video games, so it is not a stretch to call it a "game engine". However, Starlight is most fundamentally a scripting layer for [SDL](http://www.libsdl.org/), [Vulkan](https://www.vulkan.org/), and [Bullet](https://pybullet.org/wordpress/) (via the [Telescope](https://github.com/jhigginbotham64/Telescope) backend), meaning it can be used for any application that needs high-performance rendering and physics. Furthermore, there are plans to allow selective enabling of different subsystems, meaning it could be used for GUI apps or pure physics simulation or anything else you can imagine. ### Installation In your Julia environment, you can simply ```julia-repl julia> ] add Starlight ``` ### Basic Usage Starlight projects are simply Julia projects, no special structure or anything, so you simply declare that you are ```julia julia> using Starlight ``` To take advantage of the magic of Starlight you must first create an App: ```julia julia> a = App() ``` This gets you an internal clock, message bus, entity component system, rendering, physics, input, and sound, although it doesn't do anything with them yet. To open a window and start running the initialized subsystems, you can call ```julia julia> awake!(a) ``` To close everything down, call ```julia julia> shutdown!(a) ``` If running in a script you will need to keep the Julia process alive, so instead of `awake!(a)` you can use ```julia julia> run!(a) ``` ...which, as shown, works in the REPL as well. Before you try doing anything interesting with the library, it is recommended that you read the docs. ### Contributing We welcome issues, pull requests, everything. If there's a feature or use case we don't support and you don't have time to implement it yourself, create an issue. If you do have time, create a pull request. There's a ton of work to be done and only one active contributor. Anything you have to offer will be appreciated. Authors of pull requests will also get a special mention and a description of the work they did further down here in the README. The maintainer is willing to personally mentor anyone who wants to either contribute or to learn Starlight for their own use cases. Contact information below. Please reach out. #### Bounties Some issues may have monetary rewards attached to them. Pull requests addressing these issues will be scrutinized more thoroughly than others. Get in touch with the maintainer to discuss payment arrangements. ##### No advance payments will be made under any circumstances ### Contact You are invited to join us on [Discord](https://discord.gg/jUwaymK2as). The maintainer is also reachable by [email](mailto:[email protected]) and typically answers within 24 hours.
Starlight
https://github.com/jhigginbotham64/Starlight.jl.git
[ "MIT" ]
0.2.0
250c012ae1ab51ce9b514ed85c9c77dbf964f76b
docs
3658
# App Lifecycle Everything begins with "the app". Your great idea. The grand plan. The next big thing. Living organisms have a lifecycle. Products have a development lifecycle. Software has a runtime lifecycle. Your app is going to have a lifecycle. In fact, it's going to have multiple layers of lifecycles. Your framework needs to help you manage all of them. Let's start with the basics. Apps manage a variety of interlocking components that need to communicate with each other. You can imagine having one "master" app managing a variety of "components" or "subsystems", which may be added or removed at random. These subsystems serve different purposes which can be represented by their types, and they manage data which may be contained in their instance. So we can start with something like the following: ```julia mutable struct App systems::Dict{DataType, Any} end system!(a::App, s) = a.systems[typeof(s)] = s ``` This provides us with a simple mechanism to create a master app and add systems to it. But what kind of initialization needs to be performed? And how do you synchronize the initialization of the app with the initialization of the subsystems? Well, for one thing, we're speaking in terms of a "master" app, so the [singleton pattern](https://en.wikipedia.org/wiki/Singleton_pattern) may be appropriate (see Tom Kwong's [book](https://www.ebooks.com/en-us/book/209928557/hands-on-design-patterns-and-best-practices-with-julia/tom-kwong/) for an explanation of how this works in Julia). ```julia const app = Ref{App}() const app_lock = ReentrantLock() function App() global app global app_lock lock(app_lock) if !isassigned(app) app[] = new(Dict{DataType, Any}()) end unlock(app_lock) return app[] end ``` Systems may be added or removed at any time, but they all need to be synchronized with the master app. This means we have a second initialization phase, as well as the need for a shutdown phase, and some indication of whether the master app is "running". Having a common subsystem interface for initialization and shutdown would greatly simplify things. We can add a field to our `App`, update the constructor, and add a couple of helper functions to get at on/off state: ```julia mutable struct App systems::Dict{DataType, Any} running::Bool end function App() ... app[] = new(Dict{DataType, Any}(), false) ... end on(a::App) = a.running off(a::App) = !a.running ``` Now we can implement the following `App` lifecycle functions and use them as a starting point for our subsystem lifecycle interface: ```julia awake!(s) = nothing shutdown!(s) = nothing function awake!(a::App) if !on(a) map(awake!, values(a.systems)) a.running = true end end function shutdown!(a::App) if !off(a) map(shutdown!, values(a.systems)) a.running = false end end ``` Let's throw in a little helper for use in scripts: ```julia function run!(a::App) awake!(a) if !isinteractive() while on(a) yield() end end end ``` We now have a ready-made "destructor" for our `App`, trust us that our lives will be much easier if it gets called automatically: ```julia function App() ... app[] = finalizer(shutdown!, new(Dict{DataType, Any}(), false)) ... end ``` We can now define subsystems in terms of their `awake!` and `shutdown!` methods and add them to our `App`. We can also access the master `App` by simply calling its constructor with no arguments, i.e. `App()`. But we have no subsystems, and if they did they wouldn't do anything. Or rather, we have no mechanism for telling them what to do besides turning on and off. Time to fix that.
Starlight
https://github.com/jhigginbotham64/Starlight.jl.git
[ "MIT" ]
0.2.0
250c012ae1ab51ce9b514ed85c9c77dbf964f76b
docs
3587
# Clock So we need a `Clock` subsystem which uses its `awake!` and `shutdown!` functions to synchronize coroutines, and which also fires a periodic time event or "tick". All of our coroutines need to be able to wait for the `Clock` to start, since they can be schedule any time before `awake!` is called. Ones that run periodically in the background need to be able to check whether the clock is still running, and the `Clock` itself needs to know how often to fire its tick event. We can start with the following struct: ```julia mutable struct Clock started::Base.Event stopped::Bool freq::AbstractFloat Clock() = new(Base.Event(), true, 0.01667) # 60 Hz end ``` Background tasks might be scheduled as follows, with an optional `arg` parameter in case arguments need to be passed: ```julia function job!(c::Clock, f, arg=1) function job() Base.wait(c.started) while !c.stopped f(arg) end end schedule(Task(job)) end ``` One-off tasks might look similar, just without the loop: ```julia function oneshot!(c::Clock, f, arg=1) function oneshot() Base.wait(c.started) f(arg) end schedule(Task(oneshot)) end ``` What about firing tick events? How do we tell a background job to wait a certain length of time between executions, since it just gets called in an infinite loop? We could try using `sleep`, but that only gives us millisecond resolution. Fortunately Julia provides the tools we need to implement our own nanosecond `sleep` function, and it's not likely we'll need finer resolution than that. ```julia struct TICK Δ::AbstractFloat end struct SLEEP_NSEC Δ::UInt end function Base.sleep(s::SLEEP_NSEC) t1 = time_ns() while true if time_ns() - t1 >= s.Δ break end yield() end return time_ns() - t1 end function tick(Δ) δ = sleep(SLEEP_NSEC(Δ * 1e9)) sendMessage(TICK(δ / 1e9)) end ``` Now we have everything we need to implement the `Clock`'s `awake!` and `shutdown!` functions: ```julia function awake!(c::Clock) job!(c, tick, c.freq) c.stopped = false Base.notify(c.started) end function shutdown!(c::Clock) c.stopped = true c.started = Base.Event() # old one remains signaled no matter what, replace end ``` But we still need to tell the `App` about the `Clock`. Change the constructor's `if` block: ```julia ... a = new(Dict{DataType, Any}(), false) system!(a, Clock()) ... ``` We can add an accessor function to get the "global clock": ```julia clk() = app[].systems[Clock] ``` And now we can add the message dispatcher to `awake!`: ```julia function awake!(a::App) if !on(a) job!(clk(), dispatchMessage) map(awake!, values(a.systems)) a.running = true end end ``` If you add debug output to your code so far and run it, you'll notice it merrily dispatching and processing tick events at 60 Hz (after some startup lag from the compiler) much like in our earlier example. The current approach of adding subsystems to the `App` doesn't scale well, since it requires modifying the constructor and adding a helper function for each subsystem. It's fine for a few important "static" systems that are considered part of the framework itself, but not for the vast number of objects that will be dynamically created, updated, used, and deleted within the lifetime of even a moderately complex program. And yet we still want these objects to be able to hook into the framework somehow so that they can be shared among subsystes and managed by the `App`. We can accomplish this with an [Entity Component System](https://en.wikipedia.org/wiki/Entity_component_system).
Starlight
https://github.com/jhigginbotham64/Starlight.jl.git
[ "MIT" ]
0.2.0
250c012ae1ab51ce9b514ed85c9c77dbf964f76b
docs
10876
An [Entity Component System](https://en.wikipedia.org/wiki/Entity_component_system) (or "ECS" for short) is an in-memory object database where rows are instances and columns are properties. Arbitrary properties can be supported if one or more of the columns contain dictionaries. Are we going to use database connectors and [ORM](https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping)? Not exactly, but sort of. We definitely *could* do it that way, but it would be much more difficult to set up. We can achieve a similar effect, however, if we use a [DataFrame](https://dataframes.juliadata.org/stable/), an abstract type, and special methods for `getproperty` and `setproperty!`. But what attributes is our DataFrame going to have? That depends on what semantics we want our data to have. GUI applications, including video games, typically arrange objects in a tree, where child nodes move with their parent nodes. So we want to know what a node's local position and rotation are, and what its "absolute" (inherited + local) position and rotation are. We also need to keep track of parent nodes and lists of children. We need to be able to fetch nodes at any time, so being able to look them up by ID will be useful. Keeping track of the node's Julia type and instance will allow us to reuse the property-accessing semantics and apply operations to type-based subsets of nodes. Having a way to distinguish between what's visible in a window and what isn't may be useful. Finally, having a dictionary column will not only allow arbitrary properties, but it will allow users to create arbitrary custom types with appropriate semantics. This will come in handy later. A lot. Let's start with that abstract type we mentioned. From here on out we're going to start referring to "entities", since they are not only nodes in a tree but also members of an entity component system. ```julia abstract type Entity end ``` Let's establish what symbolic names we're going to use for our columns: ```julia const ENT = :ent # entity, the original Julia object instance const TYPE = :type const ID = :id const PARENT = :parent const CHILDREN = :children const POSITION = :pos const ROTATION = :rot const ABSOLUTE_POSITION = :abs_pos const ABSOLUTE_ROTATION = :abs_rot const HIDDEN = :hidden const PROPS = :props ``` Position and rotation usually have X, Y, and Z components, and it's helpful to be able to refer to those components as properties. We're looking for a better way to do things, but for now the following will suffice: ```julia mutable struct XYZ x::Number y::Number z::Number XYZ(x=0, y=0, z=0) = new(x, y, z) end import Base.+, Base.-, Base.*, Base.÷, Base./, Base.% +(a::XYZ, b::XYZ) = XYZ(a.x+b.x,a.y+b.y,a.z+b.z) -(a::XYZ, b::XYZ) = XYZ(a.x-b.x,a.y-b.y,a.z-b.z) *(a::XYZ, b::Number) = XYZ(a.x*b,a.y*b,a.z*b) ÷(a::XYZ, b::Number) = XYZ(a.x÷b,a.y÷b,a.z÷b) /(a::XYZ, b::Number) = XYZ(a.x/b,a.y/b,a.z/b) %(a::XYZ, b::Number) = XYZ(a.x%b,a.y%b,a.z%b) ``` Now we can define the types that the columns of our DataFrame will have: ```julia const components = Dict( ENT=>Entity, TYPE=>DataType, ID=>Number, PARENT=>Number, CHILDREN=>Set{Number}, POSITION=>XYZ, ROTATION=>XYZ, HIDDEN=>Bool, PROPS=>Dict{Symbol, Any} ) ``` Now we're almost ready to create our DataFrame. But first, a few more observations. We're still assuming a parallel environment where we don't know what order systems will be running in, so we need to synchronize access to the DataFrame. A simple lock will suffice. The ECS can also be responsible for calling the lifecycle functions of entities, but since these can be added or removed at any time, we need to know whether `awake!` has already been called. Finally, we need to keep track of what IDs are available and in use. A simple integer will do the trick. With that our DataFrame and ECS struct become surprisingly simple: ```julia mutable struct ECS df::DataFrame awoken::Bool lock::ReentrantLock next_id::Number function ECS() df = DataFrame( NamedTuple{Tuple(keys(components))}( t[] for t in values(components) )) return new(df, false, ReentrantLock(), 0) end end ``` ...but don't worry, there's plenty of complexity just around the corner. The reason is that we we're going to be implementing a tree structure on top of this DataFrame. We can now add an `ECS` to our `App`'s constructor... ```julia ... system!(a, ECS()) ... ``` ...and the associated helper function... ```julia ecs() = a.systems[ECS] ``` ...but we're not ready to implement the `ECS`'s `awake!` and `shutdown!` just yet. We'll need to have tree traversal in place first, and for that we're going to need some custom iterators. And for that...well, we'll be looking at our entities' parent and children properties, so we'll need to start with getters and setters. First, some helpers. The names are self-explanatory, but we encourage you to read up on the DataFrames documentation so as to understand what exactly they do. ```julia # internally using Base.getproperty directly so # as to not break if the symbol values change getEntityRow(ent::Entity) = @view ecs().df[getproperty(ecs().df, ENT) .== [ent], :] function getEntityById(id::Number) arr = ecs().df[getproperty(ecs().df, ID) .== [id], ENT] if length(arr) > 0 return arr[1] end return nothing end getEntityRowById(id::Number) = @view ecs().df[getproperty(ecs().df, ID) .== [id], :] getDfRowProp(r, s) = r[!, s][1] setDfRowProp!(r, s, x) = r[!, s][1] = x ``` Then a bit more custom-property boilerplate: ```julia function Base.propertynames(ent::Entity) return ( keys(components)..., ABSOLUTE_POSITION, ABSOLUTE_ROTATION, [n for n in keys(getproperty(ent, PROPS))]... ) end function Base.hasproperty(ent::Entity, s::Symbol) return s in Base.propertynames(ent) end ``` Then the fun part: ```julia function accumulate_XYZ(r, s) acc = XYZ() while true inc = getDfRowProp(r, s) acc += inc r = getEntityRowById(getDfRowProp(r, PARENT)) getDfRowProp(r, PARENT) != 0 || return acc end end function Base.getproperty(ent::Entity, s::Symbol) e = getEntityRow(ent) if s == ABSOLUTE_POSITION return accumulate_XYZ(e, POSITION) elseif s == ABSOLUTE_ROTATION return accumulate_XYZ(e, ROTATION) elseif s in keys(components) return getDfRowProp(e, s) elseif s in keys(getDfRowProp(e, PROPS)) return getDfRowProp(e, PROPS)[s] else return getfield(ent, s) end end function Base.setproperty!(ent::Entity, s::Symbol, x) e = getEntityRow(ent) if s in [ ENT, # immutable TYPE, # automatically set ID, # automatically set ABSOLUTE_POSITION, # computed ABSOLUTE_ROTATION # computed ] error("cannot set property $(s) on Entity") end lock(ecs().lock) if s == PARENT par = getEntityById(getDfRowProp(e, PARENT)) push!(getproperty(par, CHILDREN), getDfRowProp(e, ID)) elseif s in keys(components) && s != PROPS setDfRowProp!(e, s, x) else getDfRowProp(e, PROPS)[s] = x end unlock(ecs().lock) end ``` We just threw a lot at you. Take some time to digest it before moving on. We're going to want to use `map` with `awake!` on entities, which means we need a custom iterator type for the `ECS` as well as a `length` function. Since we'll eventually want to iterate multiple different ways, we'll define special iterator types rather than just an iterator for `ECS`. The first one will be `Level`, i.e. traversing nodes by tree level, or in breadth-first order. This is all we need to make that happen: ```julia Base.length(e::ECS) = size(e.df)[1] struct Level end Base.length(l::Level) = length(ecs()) mutable struct ECSIteratorState root::Number q::Queue{Number} root_visited::Bool index::Number ECSIteratorState(; root=0, q=Queue{Number}(), root_visited=false, index=1) = new(root, q, root_visited, index) end function Base.iterate(l::Level, state::ECSIteratorState=ECSIteratorState()) if isempty(state.q) if !state.root_visited # just started enqueue!(state.q, state.root) state.root_visited = true else # just finished return nothing end end ent = getEntityById(dequeue!(state.q)) for c in getproperty(ent, CHILDREN) enqueue!(state.q, c) end return (ent, state) end ``` Now we can add `awake!` and `shutdown!`: ```julia function awake!(e::ECS) e.awoken = true map(awake!, Level()) listenFor(e, TICK) end function shutdown!(e::ECS) unlistenFrom(e, TICK) map(shutdown!, Level()) e.awoken = false end ``` And about that tick handler...having entities that call an update function every frame is a very common use case that we want to support. We could just define tick handlers for all new entity types, but that's a lot of boilerplate and doesn't allow us to ensure that entities are updated in a deterministic order, in case that becomes important. So we have the following: ```julia update!(e, Δ) = nothing function handleMessage!(e::ECS, m::TICK) map((ent) -> update!(ent, m.Δ), Level()) end ``` Now entities can simply define an `update!` method and it will be called every frame deterministically. So we can work with entities and with the `ECS`, but how do we actually add and remove entities? We have to handle assigning their ID's, keeping parent and child information updated, and also allow users to define any initial values for custom properties. Notice that we've been assuming that there is a "root" note with an ID of 0. This is the first entity that will be created, and we'll get to it in a moment. But first, here's how you add a new entity instance to the `ECS`: ```julia function instantiate!(e::Entity; kw...) lock(ecs().lock) id = ecs().next_id ecs().next_id += 1 push!(ecs().df, Dict( ENT=>e, TYPE=>typeof(e), ID=>id, CHILDREN=>get(kw, CHILDREN, Set{Number}()), PARENT=>get(kw, PARENT, 0), POSITION=>get(kw, POSITION, XYZ()), ROTATION=>get(kw, ROTATION, XYZ()), HIDDEN=>get(kw, HIDDEN, false), PROPS=>merge(get(kw, PROPS, Dict{Symbol, Any}()), Dict(k=>v for (k,v) in kw if k ∉ [CHILDREN, PARENT, POSITION, ROTATION, HIDDEN, PROPS])) )) if id != 0 par = getEntityById(get(kw, PARENT, 0)) push!(getproperty(par, CHILDREN), id) end unlock(ecs().lock) if ecs().awoken awake!(e) end return e end ``` And here's how you remove them: ```julia function destroy!(e::Entity) shutdown!(e) lock(ecs().lock) p = getEntityById(getproperty(e, PARENT)) # if not root if getproperty(p, ID) != getproperty(e, ID) # update parent delete!(getproperty(p, CHILDREN), getproperty(e, ID)) # update dataframe deleteat!(ecs().df, getproperty(ecs().df, ENT) .== [e]) end unlock(ecs().lock) end function destroy!(es...) map(destroy!, es) end ``` And now we have a functioning entity component system.
Starlight
https://github.com/jhigginbotham64/Starlight.jl.git
[ "MIT" ]
0.2.0
250c012ae1ab51ce9b514ed85c9c77dbf964f76b
docs
3265
# Getting Started Starlight aims to offload as much work as possible onto the underlying libraries while still giving you, the developer, fine-grained control over your application's behavior: it provides useful abstraction, but gets out of the way when you need it to. The reason it can do this is its microkernel architecture, which models all subsystems as running independently of each other while exchanging data through a message bus. What exactly this means and how it works will be explained shortly. To give you an idea what to expect, let's review some content from the README. To get started with Starlight, first add it to your project: ```julia-repl julia> ] add Starlight ``` You can then declare that you are ```julia-repl julia> using Starlight ``` From there, in order to initialize the various subsystems, you must create an `App`: ```julia-repl julia> a = App() ``` To kick everything off and open a window, you can call ```julia-repl julia> awake!(a) ``` To shut everything down, you (fittingly) call ```julia-repl julia> shutdown!(a) ``` Starlight scripts should use `run!` instead of `awake!` to keep the Julia process alive. A minimal Starlight script could look something like the following: ```julia using Starlight a = App() run!(a) ``` Doing that in a shell session with debug output enabled gives you an idea of just how much is going on behind the blank window that gets created: ``` jhigginbotham64:Starlight (main) $ JULIA_DEBUG=Starlight julia -e 'using Starlight; a = App(); run!(a)' ┌ Debug: Clock awake! └ @ Starlight ~/.julia/dev/Starlight/src/Clock.jl:66 ┌ Debug: TS awake! └ @ Starlight ~/.julia/dev/Starlight/src/TS.jl:41 ┌ Debug: dispatchMessage └ @ Starlight ~/.julia/dev/Starlight/src/Starlight.jl:57 ┌ Debug: Input awake! └ @ Starlight ~/.julia/dev/Starlight/src/Input.jl:64 ┌ Debug: tick └ @ Starlight ~/.julia/dev/Starlight/src/Clock.jl:44 ┌ Debug: Physics awake! └ @ Starlight ~/.julia/dev/Starlight/src/Physics.jl:64 ┌ Debug: dequeued message TICK(1.99813325) of type TICK └ @ Starlight ~/.julia/dev/Starlight/src/Starlight.jl:61 ┌ Debug: ECS awake! └ @ Starlight ~/.julia/dev/Starlight/src/ECS.jl:198 ┌ Debug: tick └ @ Starlight ~/.julia/dev/Starlight/src/Clock.jl:44 ┌ Debug: Scene awake! └ @ Starlight ~/.julia/dev/Starlight/src/ECS.jl:289 ┌ Debug: TS tick └ @ Starlight ~/.julia/dev/Starlight/src/TS.jl:15 ┌ Debug: Input tick └ @ Starlight ~/.julia/dev/Starlight/src/Input.jl:6 ┌ Debug: tick └ @ Starlight ~/.julia/dev/Starlight/src/Clock.jl:44 ┌ Debug: Physics tick └ @ Starlight ~/.julia/dev/Starlight/src/Physics.jl:45 ┌ Debug: dispatchMessage └ @ Starlight ~/.julia/dev/Starlight/src/Starlight.jl:57 ┌ Debug: dequeued message TICK(0.191819018) of type TICK └ @ Starlight ~/.julia/dev/Starlight/src/Starlight.jl:61 ``` There are several things to notice here. First and most importantly is that all subsystems (including the clock) communicate using the same event bus (you'll soon see that they even define methods for the same functions). Second is that pretty much nothing happens until `awake!` is called on the `App`. Finally, there is a clock synchronizing everything. We're going to dwell on each of these points in turn before diving into the more specialized individual subsystems.
Starlight
https://github.com/jhigginbotham64/Starlight.jl.git
[ "MIT" ]
0.2.0
250c012ae1ab51ce9b514ed85c9c77dbf964f76b
docs
1524
# Starlight.jl Welcome to the documentation for Starlight.jl, a greedy application framework for [greedy developers](https://julialang.org/blog/2012/02/why-we-created-julia/). Its primary use case is video games, but the power of Julia, [SDL](http://www.libsdl.org/), [Vulkan](https://www.vulkan.org/), and [Bullet](https://pybullet.org/wordpress/) can be leveraged to make just about anything you want. The walkthrough follows a storytelling approach where a Starlight-like framework is built from scratch. Hopefully this will help you understand the source code better. In any case it is highly recommended that you read everything in order, at least the first time. It also presupposes knowledge of the Julia programming language. Patterns will be discussed, but core features like multiple dispatch will not. [Make sure you have a good grasp of Julia before proceeding](https://docs.julialang.org/en/v1/). !!! note The struct and method names used in the walkthrough are mostly the same as the ones used in Starlight's own source code. By reading the guide you learn not only Starlight's API but its source code as well, albeit in slightly simplified form. !!! warning The purpose of the walkthrough is to prepare you to read the API docs and source code, but not everything there is the same as in the walkthgouh. Use the walkthrough to ground yourself in Starlight's design philosophy and core concepts, but try not to confuse the "classroom" and "real world" versions.
Starlight
https://github.com/jhigginbotham64/Starlight.jl.git
[ "MIT" ]
0.2.0
250c012ae1ab51ce9b514ed85c9c77dbf964f76b
docs
3919
# Message Passing We alluded earlier to Starlight's [microkernel](https://en.wikipedia.org/wiki/Microkernel) architecture. This architecture is essentially a combination of Starlight's lifecycle functions and its message passing system. Returning to our "framework from scratch" narrative, we need a mechanism for telling subsystems what to do. Ideally we wouldn't have them busy-waiting for instructions, and we also want to maintain our mental model of subsystems executing independently of each other (even if running on a single thread). What we're describing is an [event-driven programming model](https://en.wikipedia.org/wiki/Event-driven_programming), and in fact the terms "event handling" and "message passing" are mostly interchangeable in Starlight's vocabulary. We'll need to manage a set of event handlers for each type of event. These "handlers" might also be called "listeners", and we can start by keeping them in a dictionary: ```julia const listeners = Dict{DataType, Set{Any}}() ``` Event order may be important, and access to the queue needs to be synchronized since even on a single thread we don't know what order the subsystems will be running in. Julia provides [Channels](https://docs.julialang.org/en/v1/base/parallel/#Channels) for exactly this use case: ```julia const messages = Channel(Inf) ``` Now we can define simple functions for sending and listening for messages, throwing in a synchronization primitive since we're assuming a parallel environment: ```julia function sendMessage(m) if haskey(listeners, typeof(m)) put!(messages, m) end end const listener_lock = ReentrantLock() function listenFor(e::Any, d::DataType) lock(listener_lock) if !haskey(listeners, d) listeners[d] = Set{Any}() end push!(listeners[d], e) unlock(listener_lock) end function unlistenFrom(e::Any, d::DataType) lock(listener_lock) if haskey(listeners, d) delete!(listeners[d], e) end unlock(listener_lock) end ``` ...but receiving messages is a little bit trickier. We have listeners, but who tells them about events? Keeping that question in mind, we can write a function to dispatch a single message that can be called from wherever-because-we-don't-know-yet (note the trivial parallelization): ```julia handleMessage!(l, m) = nothing function dispatchMessage() m = take!(messages) d = typeof(m) if haskey(listeners, d) Threads.@threads for l in Vector([listeners[d]...]) handleMessage!(l, m) end end end ``` ...so, in theory, anyone who wants to receive an event could 1. Define a custom data type 2. Create an instance of that data type 3. Call `listenFor` with their instance 4. Have their `handleMessage!` function invoked automatically when events are processed 5. Call `unlistenFrom` when finished This is, in fact, exactly the workflow that subsystems implement in order to process events. Their `awake!` and `shutdown!` functions even provide the perfect opportunity to call `listenFor` and `unlistenFrom` respectively. But whose job is it to call `dispatchMessage`? Let's outline some requirements: 1. Start processing messages when the `App` `awake!`s 2. Stop processing messages when the `App` `shutdown!`s 3. Run "in the background" so that it can yield to other processes if there are no messages Sounds like our event dispatcher needs to run inside a coroutine managed by a subsystem that synchronizes tasks. But we're not quite there yet. To finally answer the question of what we actually need, we need to ask one further question: what events do the various subsystems listen for? We've assumed that they'll be running continuously, but also responding to events. How do you do both at the same time? One way is to model the passage of time as an event that subsystems listen for, and fire that event from another coroutine. For that we could use a `Clock`, which will be the first subsystem we implement.
Starlight
https://github.com/jhigginbotham64/Starlight.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
416
using Documenter, NbodyGradient makedocs(sitename="NbodyGradient", modules = [NbodyGradient], format = Documenter.HTML( prettyurls = get(ENV, "CI", nothing) == "true" ), pages = [ "Index" => "index.md", "Tutorials" => ["basic.md", "gradients.md"], "API" => "api.md" ] ) deploydocs( repo = "github.com/ericagol/NbodyGradient.jl.git", devbranch="master" )
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
5435
using NbodyGradient, LinearAlgebra, Statistics export State #include("../src/ttv.jl") #include("/Users/ericagol/Software/TRAPPIST1_Spitzer/src/NbodyGradient/src/ttv.jl") # Specify the initial conditions for the outer solar # system #n=6 n=5 xout = zeros(3,n) # Positions at time September 5, 1994 at 0h00 in days (from Hairer, Lubich & Wanner # 2006, Geometric Numerical Integration, 2nd Edition, Springer, pp. 13-14): xout .= transpose([-2.079997415328555E-04 7.127853194812450E-03 -1.352450694676177E-05; -3.502576700516146E+00 -4.111754741095586E+00 9.546978009906396E-02; 9.075323061767737E+00 -3.443060862268533E+00 -3.008002403885198E-01; 8.309900066449559E+00 -1.782348877489204E+01 -1.738826162402036E-01; 1.147049510166812E+01 -2.790203169301273E+01 3.102324955757055E-01]) #; #-1.553841709421204E+01 -2.440295115792555E+01 7.105854443660053E+00]) vout = zeros(3,n) vout .= transpose([-6.227982601533108E-06 2.641634501527718E-06 1.564697381040213E-07; 5.647185656190083E-03 -4.540768041260330E-03 -1.077099720398784E-04; 1.677252499111402E-03 5.205044577942047E-03 -1.577215030049337E-04; 3.535508197097127E-03 1.479452678720917E-03 -4.019422185567764E-05; 2.882592399188369E-03 1.211095412047072E-03 -9.118527716949448E-05]) #; #2.754640676017983E-03 -2.105690992946069E-03 -5.607958889969929E-04]); # Units of velocity are AU/day # Specify masses, including terrestrial planets in the Sun: m = [1.00000597682,0.000954786104043,0.000285583733151, 0.0000437273164546,0.0000517759138449] #,6.58086572e-9]; # Compute the center-of-mass: vcm = zeros(3); xcm = zeros(3); for j=1:n vcm .+= m[j]*vout[:,j]; xcm .+= m[j]*xout[:,j]; end vcm ./= sum(m); xcm ./= sum(m); # Adjust so CoM is stationary for j=1:n vout[:,j] .-= vcm[:]; xout[:,j] .-= xcm[:]; end struct CartesianElements{T} <: NbodyGradient.InitialConditions{T} x::Matrix{T} v::Matrix{T} m::Vector{T} nbody::Int64 end ic = CartesianElements(xout,vout,m,5); function NbodyGradient.State(ic::NbodyGradient.InitialConditions{T}) where T<:AbstractFloat n = ic.nbody x = copy(ic.x) v = copy(ic.v) jac_init = zeros(7*n,7*n) xerror = zeros(T,size(x)) verror = zeros(T,size(v)) jac_step = Matrix{T}(I,7*n,7*n) dqdt = zeros(T,7*n) dqdt_error = zeros(T,size(dqdt)) jac_error = zeros(T,size(jac_step)) rij = zeros(T,3) a = zeros(T,3,n) aij = zeros(T,3) x0 = zeros(T,3) v0 = zeros(T,3) input = zeros(T,8) delxv = zeros(T,6) rtmp = zeros(T,3) return State(x,v,[0.0],copy(ic.m),jac_step,dqdt,jac_init,xerror,verror,dqdt_error,jac_error,n, rij,a,aij,x0,v0,input,delxv,rtmp) end function compute_energy(m::Array{T,1},x::Array{T,2},v::Array{T,2},n::Int64) where {T <: Real} KE = 0.0 for j=1:n KE += 0.5*m[j]*(v[1,j]^2+v[2,j]^2+v[3,j]^2) end PE = 0.0 for j=1:n-1 for k=j+1:n PE += -NbodyGradient.GNEWT*m[j]*m[k]/norm(x[:,j] .- x[:,k]) end end ang_mom = zeros(3) for j=1:n ang_mom .+= m[j]*cross(x[:,j],v[:,j]) end return KE,PE,ang_mom end # Now, integrate this forward in time: hgrid = [50.0] #power = 30 power = 22 #power = 20 #power = 15 nstepgrid = [2^power] # 50 days x 1e8 time steps ~ 13,700,000 yr (should take about 1500 seconds to run) grad = false nstepmax = maximum(nstepgrid) ngrid = 1 #xsave = zeros(3,n,nstepmax,ngrid) #vsave = zeros(3,n,nstepmax,ngrid) nskip = 1 energy = zeros(div(nstepmax,nskip)) #PE = zeros(nstepmax,ngrid); KE=zeros(nstepmax,ngrid); ang_mom = zeros(3,nstepmax,ngrid) t = zeros(div(nstepmax,nskip)) telapse = zeros(ngrid) nprint = 2^18 etmp = zeros(nskip) for j=1:ngrid h = hgrid[j] nstep = nstepgrid[j]; s = State(ic) pair = zeros(Bool,s.n,s.n) if grad; d = Derivatives(T,s.n); end # Set up array to save the state as a function of time: # Save the potential & kinetic energy, as well as angular momentum: # Time the integration: tstart = time() # Carry out the integration: itmp = 1 for i=1:nstep if grad ahl21!(s,d,h,pair) else ahl21!(s,h,pair) end # xsave[:,:,i,j] .= s.x # vsave[:,:,i,j] .= s.v KE_step,PE_step,ang_mom_step=compute_energy(s.m,s.x,s.v,n) # KE[i,j] = KE_step # PE[i,j] = PE_step # ang_mom[:,i,j] = ang_mom_step etmp[itmp] = KE_step+PE_step # println(itmp," ",etmp[itmp]) if itmp == nskip t[div(i,nskip)] = h*i energy[div(i,nskip)] = mean(etmp) # println(itmp," ",t[div(i,nskip)]," ",energy[div(i,nskip)]) itmp = 0 end if mod(i,nprint) == 0 println(i," ",i/nstep*100.0," ",time()-tstart) end itmp += 1 end s.t[1] = h*nstep telapse[j] = time()- tstart println("h: ",h," nstep: ",nstep," time: ",telapse[j]) end using PyPlot,Statistics clf() #energy = KE[:,1] .+ PE[:,1] emean = mean(energy) energy .-= emean #plot(t,energy) escatter = Float64[] nbin = Int64[] for i=1:power-2 binsize = 2^i tbin = zeros(div(nstepmax,binsize*nskip)) ebin = zeros(div(nstepmax,binsize*nskip)) for j=1:div(nstepmax,binsize*nskip) tbin[j] = mean(t[(j-1)*binsize+1:j*binsize]) ebin[j] = mean(energy[(j-1)*binsize+1:j*binsize]) end if i == 10 plot(tbin,ebin,label=string("bin size ",binsize)) end push!(nbin,binsize) push!(escatter,std(ebin)) end legend() xlabel("Time [d]") ylabel(L"Energy $M_\odot$ AU$^2$ day$^{-2}$")
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
5883
using NbodyGradient, LinearAlgebra export State #include("../src/ttv.jl") #include("/Users/ericagol/Software/TRAPPIST1_Spitzer/src/NbodyGradient/src/ttv.jl") # Specify the initial conditions for the outer solar # system #n=6 n=5 xout = zeros(3,n) # Positions at time September 5, 1994 at 0h00 in days (from Hairer, Lubich & Wanner # 2006, Geometric Numerical Integration, 2nd Edition, Springer, pp. 13-14): xout .= transpose([0.0,0.0,0.0; -3.5023653, -3.8169847, -1.5507963; 9.0755314, -3.0458353, -1.6483708; 8.3101420, -16.2901086, -7.2521278; 11.4707666, -25.7294829, -10.8169456]) vout .= transpose([0.0,0.0,0.0; 0.00565429, -0.00412490, -0.00190589; .00168318, .00483525, .00192462; .00354178, .00137102, .00055029; .00288930, .00114527, .00039677]) #xout .= transpose([-2.079997415328555E-04 7.127853194812450E-03 -1.352450694676177E-05; # -3.502576700516146E+00 -4.111754741095586E+00 9.546978009906396E-02; # 9.075323061767737E+00 -3.443060862268533E+00 -3.008002403885198E-01; # 8.309900066449559E+00 -1.782348877489204E+01 -1.738826162402036E-01; # 1.147049510166812E+01 -2.790203169301273E+01 3.102324955757055E-01]) #; # #-1.553841709421204E+01 -2.440295115792555E+01 7.105854443660053E+00]) vout = zeros(3,n) #vout .= transpose([-6.227982601533108E-06 2.641634501527718E-06 1.564697381040213E-07; # 5.647185656190083E-03 -4.540768041260330E-03 -1.077099720398784E-04; # 1.677252499111402E-03 5.205044577942047E-03 -1.577215030049337E-04; # 3.535508197097127E-03 1.479452678720917E-03 -4.019422185567764E-05; # 2.882592399188369E-03 1.211095412047072E-03 -9.118527716949448E-05]) #; # #2.754640676017983E-03 -2.105690992946069E-03 -5.607958889969929E-04]); # Units of velocity are AU/day # Specify masses, including terrestrial planets in the Sun: m = [1.00000597682,0.000954786104043,0.000285583733151, 0.0000437273164546,0.0000517759138449] #,6.58086572e-9]; # Compute the center-of-mass: vcm = zeros(3); xcm = zeros(3); for j=1:n vcm .+= m[j]*vout[:,j]; xcm .+= m[j]*xout[:,j]; end vcm ./= sum(m); xcm ./= sum(m); # Adjust so CoM is stationary for j=1:n vout[:,j] .-= vcm[:]; xout[:,j] .-= xcm[:]; end struct CartesianElements{T} <: NbodyGradient.InitialConditions{T} x::Matrix{T} v::Matrix{T} m::Vector{T} nbody::Int64 end ic = CartesianElements(xout,vout,m,5); function NbodyGradient.State(ic::NbodyGradient.InitialConditions{T}) where T<:AbstractFloat n = ic.nbody x = copy(ic.x) v = copy(ic.v) jac_init = zeros(7*n,7*n) xerror = zeros(T,size(x)) verror = zeros(T,size(v)) jac_step = Matrix{T}(I,7*n,7*n) dqdt = zeros(T,7*n) dqdt_error = zeros(T,size(dqdt)) jac_error = zeros(T,size(jac_step)) rij = zeros(T,3) a = zeros(T,3,n) aij = zeros(T,3) x0 = zeros(T,3) v0 = zeros(T,3) input = zeros(T,8) delxv = zeros(T,6) rtmp = zeros(T,3) return State(x,v,[0.0],copy(ic.m),jac_step,dqdt,jac_init,xerror,verror,dqdt_error,jac_error,n, rij,a,aij,x0,v0,input,delxv,rtmp) end function compute_energy(m::Array{T,1},x::Array{T,2},v::Array{T,2},n::Int64) where {T <: Real} KE = 0.0 for j=1:n KE += 0.5*m[j]*(v[1,j]^2+v[2,j]^2+v[3,j]^2) end PE = 0.0 for j=1:n-1 for k=j+1:n PE += -NbodyGradient.GNEWT*m[j]*m[k]/norm(x[:,j] .- x[:,k]) end end ang_mom = zeros(3) for j=1:n ang_mom .+= m[j]*cross(x[:,j],v[:,j]) end return KE,PE,ang_mom end # Now, integrate this forward in time: hgrid = [50.0] #power = 30 power = 32 #power = 20 #power = 15 nstepgrid = [2^power] # 50 days x 1e8 time steps ~ 13,700,000 yr (should take about 1500 seconds to run) grad = false nstepmax = maximum(nstepgrid) ngrid = 1 #xsave = zeros(3,n,nstepmax,ngrid) #vsave = zeros(3,n,nstepmax,ngrid) nskip = 2^8 energy = zeros(div(nstepmax,nskip)) #PE = zeros(nstepmax,ngrid); KE=zeros(nstepmax,ngrid); ang_mom = zeros(3,nstepmax,ngrid) t = zeros(div(nstepmax,nskip)) telapse = zeros(ngrid) nprint = 2^26 etmp = zeros(nskip) for j=1:ngrid h = hgrid[j] nstep = nstepgrid[j]; s = State(ic) pair = zeros(Bool,s.n,s.n) if grad; d = Derivatives(T,s.n); end # Set up array to save the state as a function of time: # Save the potential & kinetic energy, as well as angular momentum: # Time the integration: tstart = time() # Carry out the integration: itmp = 1 for i=1:nstep if grad ahl21!(s,d,h,pair) else ahl21!(s,h,pair) end # xsave[:,:,i,j] .= s.x # vsave[:,:,i,j] .= s.v KE_step,PE_step,ang_mom_step=compute_energy(s.m,s.x,s.v,n) # KE[i,j] = KE_step # PE[i,j] = PE_step # ang_mom[:,i,j] = ang_mom_step etmp[itmp] = KE_step+PE_step # println(itmp," ",etmp[itmp]) if itmp == nskip t[div(i,nskip)] = h*i energy[div(i,nskip)] = mean(etmp) # println(itmp," ",t[div(i,nskip)]," ",energy[div(i,nskip)]) itmp = 0 end if mod(i,nprint) == 0 println(i," ",i/nstep*100.0," ",time()-tstart) end itmp += 1 end s.t[1] = h*nstep telapse[j] = time()- tstart println("h: ",h," nstep: ",nstep," time: ",telapse[j]) end using PyPlot,Statistics clf() #energy = KE[:,1] .+ PE[:,1] emean = mean(energy) energy .-= emean #plot(t,energy) escatter = Float64[] nbin = Int64[] for i=1:power-14 binsize = 2^i tbin = zeros(div(nstepmax,binsize*nskip)) ebin = zeros(div(nstepmax,binsize*nskip)) for j=1:div(nstepmax,binsize*nskip) tbin[j] = mean(t[(j-1)*binsize+1:j*binsize]) ebin[j] = mean(energy[(j-1)*binsize+1:j*binsize]) end if i == 11 plot(tbin,ebin,label=string("bin size ",binsize)) end push!(nbin,binsize) push!(escatter,std(ebin)) end legend() xlabel("Time [d]") ylabel(L"Energy $M_\odot$ AU$^2$ day$^{-2}$") tight_layout() savefig("Energy_error_vs_timestep.pdf",bbox_inches="tight")
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
5685
using NbodyGradient, LinearAlgebra export State #include("../src/ttv.jl") #include("/Users/ericagol/Software/TRAPPIST1_Spitzer/src/NbodyGradient/src/ttv.jl") # Specify the initial conditions for the outer solar # system #n=6 n=5 xout = zeros(3,n) # Positions at time September 5, 1994 at 0h00 in days (from Hairer, Lubich & Wanner # 2006, Geometric Numerical Integration, 2nd Edition, Springer, pp. 13-14): xout .= transpose([-2.079997415328555E-04 7.127853194812450E-03 -1.352450694676177E-05; -3.502576700516146E+00 -4.111754741095586E+00 9.546978009906396E-02; 9.075323061767737E+00 -3.443060862268533E+00 -3.008002403885198E-01; 8.309900066449559E+00 -1.782348877489204E+01 -1.738826162402036E-01; 1.147049510166812E+01 -2.790203169301273E+01 3.102324955757055E-01]) #; #-1.553841709421204E+01 -2.440295115792555E+01 7.105854443660053E+00]) vout = zeros(3,n) vout .= transpose([-6.227982601533108E-06 2.641634501527718E-06 1.564697381040213E-07; 5.647185656190083E-03 -4.540768041260330E-03 -1.077099720398784E-04; 1.677252499111402E-03 5.205044577942047E-03 -1.577215030049337E-04; 3.535508197097127E-03 1.479452678720917E-03 -4.019422185567764E-05; 2.882592399188369E-03 1.211095412047072E-03 -9.118527716949448E-05]) #; #2.754640676017983E-03 -2.105690992946069E-03 -5.607958889969929E-04]); # Units of velocity are AU/day # Specify masses, including terrestrial planets in the Sun: m = [1.00000597682,0.000954786104043,0.000285583733151, 0.0000437273164546,0.0000517759138449] #,6.58086572e-9]; # Compute the center-of-mass: vcm = zeros(3); xcm = zeros(3); for j=1:n vcm .+= m[j]*vout[:,j]; xcm .+= m[j]*xout[:,j]; end vcm ./= sum(m); xcm ./= sum(m); # Adjust so CoM is stationary for j=1:n vout[:,j] .-= vcm[:]; xout[:,j] .-= xcm[:]; end struct CartesianElements{T} <: NbodyGradient.InitialConditions{T} x::Matrix{T} v::Matrix{T} m::Vector{T} nbody::Int64 end ic = CartesianElements(xout,vout,m,5); function NbodyGradient.State(ic::NbodyGradient.InitialConditions{T}) where T<:AbstractFloat n = ic.nbody x = copy(ic.x) v = copy(ic.v) jac_init = zeros(7*n,7*n) xerror = zeros(T,size(x)) verror = zeros(T,size(v)) jac_step = Matrix{T}(I,7*n,7*n) dqdt = zeros(T,7*n) dqdt_error = zeros(T,size(dqdt)) jac_error = zeros(T,size(jac_step)) rij = zeros(T,3) a = zeros(T,3,n) aij = zeros(T,3) x0 = zeros(T,3) v0 = zeros(T,3) input = zeros(T,8) delxv = zeros(T,6) rtmp = zeros(T,3) return State(x,v,[0.0],copy(ic.m),jac_step,dqdt,jac_init,xerror,verror,dqdt_error,jac_error,n, rij,a,aij,x0,v0,input,delxv,rtmp) end function compute_energy(m::Array{T,1},x::Array{T,2},v::Array{T,2},n::Int64) where {T <: Real} KE = 0.0 for j=1:n KE += 0.5*m[j]*(v[1,j]^2+v[2,j]^2+v[3,j]^2) end PE = 0.0 for j=1:n-1 for k=j+1:n PE += -NbodyGradient.GNEWT*m[j]*m[k]/norm(x[:,j] .- x[:,k]) end end ang_mom = zeros(3) for j=1:n ang_mom .+= m[j]*cross(x[:,j],v[:,j]) end return KE,PE,ang_mom end # Now, integrate this forward in time: hgrid = [1.5625,3.125,6.25,12.5,25.0,50.0,100.0,200.0] nstepgrid = [32000000,16000000,8000000,4000000,2000000,1000000,500000,250000] nskip = [128,64,32,16,8,4,2,1] #h = 200.0 # 200-day time-step chosen to be <1/20 of the orbital period of Jupiter #h = 100.0 # 100-day time-step chosen to check conservation of energy/angular momentum with time step #h = 50.0 # 50-day time-step chosen to check conservation of energy/angular momentum with time step h = 25.0 # 25-day time-step chosen to check conservation of energy/angular momentum with time step #h = 12.5 # 12.5-day time-step chosen to check conservation of energy/angular momentum with time step #h = 6.25 # 6.25-day time-step chosen to check conservation of energy/angular momentum with time step #h = 3.125 # 3.125-day time-step chosen to check conservation of energy/angular momentum with time step #h = 1.5625 # 1.5625-day time-step chosen to check conservation of energy/angular momentum with time step # 50 days x 1e6 time steps ~ 137,000 yr (takes about 15 seconds to run) grad = false nstep = maximum(nstepgrid) ngrid = 8 xsave = zeros(3,n,nstep,ngrid) vsave = zeros(3,n,nstep,ngrid) PE = zeros(nstep,ngrid); KE=zeros(nstep,ngrid); ang_mom = zeros(3,nstep,ngrid) telapse = zeros(ngrid) for j=1:8 h = hgrid[j] nstep = nstepgrid[j]; s = State(ic) pair = zeros(Bool,s.n,s.n) if grad; d = Derivatives(T,s.n); end # Set up array to save the state as a function of time: # Save the potential & kinetic energy, as well as angular momentum: # Time the integration: tstart = time() # Carry out the integration: for i=1:nstep if grad ahl21!(s,d,h,pair) else ahl21!(s,h,pair) end xsave[:,:,i,j] .= s.x vsave[:,:,i,j] .= s.v KE_step,PE_step,ang_mom_step=compute_energy(s.m,s.x,s.v,n) KE[i,j] = KE_step PE[i,j] = PE_step ang_mom[:,i,j] = ang_mom_step end s.t[1] = h*nstep telapse[j] = time()- tstart println("h: ",h," nstep: ",nstep," time: ",telapse[j]) end using PyPlot,Statistics for j=8:-1:1 plot(collect(1:1:nstepgrid[j])*hgrid[j],KE[1:nstepgrid[j],j] .+ PE[1:nstepgrid[j],j]); println(j," ",hgrid[j]," ",std(KE[1:nstepgrid[j],j] .+ PE[1:nstepgrid[j],j])); Emean[j] = mean(KE[1:nstepgrid[j],j] .+ PE[1:nst end read(stdin,Char) clf() loglog(hgrid,(Emean .- minimum(Emean)) ./abs(minimum(Emean)) ,"o") loglog(hgrid,(Emean[8] .- minimum(Emean) ) ./abs(minimum(Emean)) .* (hgrid ./ hgrid[8]).^4 ) xlabel("Time step [d]") ylabel("Fractional change in mean energy")
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
2055
function insolarpluto(m::Array{T,1},xout::Array{T,2},vout::Array{T,2},pair::Array{Int64,2}) where {T <: Real} # global YEAR GNEWT # Below data from Hairer pg. 13-14. Convert time to years. # Distance is in AU, mass in solar masses. fac = 1; m = fac*[1.00000597682,0.000954786104043,0.000285583733151, 0.0000437273164546,0.0000517759138449,6.58086572e-9]; m[1] = 1.00000; n = length(m); for i=1:n for j=1:n # Kepler solver group if i == 1 || j == 1 pair[i,j] = 0; pair[j,i] = 0; else pair[i,j] = 1; pair[j,i] = 1; end end end xout = [-2.079997415328555E-04, 7.127853194812450E-03,-1.352450694676177E-05, -3.502576700516146E+00,-4.111754741095586E+00, 9.546978009906396E-02, 9.075323061767737E+00,-3.443060862268533E+00,-3.008002403885198E-01, 8.309900066449559E+00,-1.782348877489204E+01,-1.738826162402036E-01, 1.147049510166812E+01,-2.790203169301273E+01, 3.102324955757055E-01, -1.553841709421204E+01,-2.440295115792555E+01, 7.105854443660053E+00] xout = xout'; vout = [-6.227982601533108E-06, 2.641634501527718E-06, 1.564697381040213E-07, 5.647185656190083E-03,-4.540768041260330E-03,-1.077099720398784E-04, 1.677252499111402E-03, 5.205044577942047E-03,-1.577215030049337E-04, 3.535508197097127E-03, 1.479452678720917E-03,-4.019422185567764E-05, 2.882592399188369E-03, 1.211095412047072E-03,-9.118527716949448E-05, 2.754640676017983E-03,-2.105690992946069E-03,-5.607958889969929E-04]; vout = vout'; vout = vout*YEAR; xout = xout[:,1:n]; vout = vout[:,1:n]; vcm = zeros(3,1); xcm = zeros(3,1); for j=1:n vcm[:] = vcm[:]+m[j]*vout[:,j]; xcm[:] = xcm[:]+m[j]*xout[:,j]; end vcm = vcm/sum(m); xcm = xcm/sum(m); # Adjust so CoM is stationary for j=1:n vout[:,j] = vout[:,j]-vcm[:]; xout[:,j] = xout[:,j]-xcm[:]; end # Add CoM velocity vcm = 100*vcm; vcm = 0*vcm; for j=1:n vout[:,j] = vout[:,j] + vcm[:]; end return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
992
""" NbodyGradient An N-body itegrator that computes derivatives with respect to initial conditions for TTVs, RV, Photodynamics, and more. """ module NbodyGradient using LinearAlgebra, DelimitedFiles using FileIO, JLD2 # Constants used by most functions # Need to clean this up const NDIM = 3 const YEAR = 365.242 const GNEWT = 39.4845/(YEAR*YEAR) const third = 1.0/3.0 const alpha0 = 0.0 # Types export Elements, ElementsIC, CartesianIC, InitialConditions export State, dState export Integrator export Jacobian, dTime export CartesianOutput, ElementsOutput export TransitTiming, TransitParameters, TransitSnapshot # Integrator methods export ahl21!, dh17! # Utility functions export available_systems, get_default_ICs # Source code include("PreAllocArrays.jl") include("ics/InitialConditions.jl") include("integrator/Integrator.jl") include("utils.jl") include("outputs/Outputs.jl") include("transits/Transits.jl") # To be cleaned up # include("integrator/ah18/ah18_old.jl") end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
3602
abstract type PreAllocArrays end abstract type AbstractDerivatives{T} <: PreAllocArrays end struct Jacobian{T<:AbstractFloat} <: AbstractDerivatives{T} jac_phi::Matrix{T} jac_kick::Matrix{T} jac_copy::Matrix{T} jac_ij::Matrix{T} jac_tmp1::Matrix{T} jac_tmp2::Matrix{T} jac_err1::Matrix{T} dqdt_ij::Vector{T} dqdt_phi::Vector{T} dqdt_kick::Vector{T} function Jacobian(::Type{T},n::Integer) where T<:AbstractFloat sevn::Int64 = 7*n jac_phi = zeros(T,sevn,sevn) jac_kick = zeros(T,sevn,sevn) jac_copy = zeros(T,sevn,sevn) jac_ij = zeros(T,14,14) jac_tmp1 = zeros(T,14,sevn) jac_tmp2 = zeros(T,14,sevn) jac_err1 = zeros(T,14,sevn) dqdt_ij = zeros(T,14) dqdt_phi = zeros(T,sevn) dqdt_kick = zeros(T,sevn) return new{T}(jac_phi,jac_kick,jac_copy,jac_ij,jac_tmp1,jac_tmp2,jac_err1, dqdt_ij,dqdt_phi,dqdt_kick) end end struct dTime{T<:AbstractFloat} <: AbstractDerivatives{T} jac_phi::Matrix{T} jac_kick::Matrix{T} jac_ij::Matrix{T} dqdt_phi::Vector{T} dqdt_kick::Vector{T} dqdt_ij::Vector{T} dqdt_tmp1::Vector{T} dqdt_tmp2::Vector{T} jac_kepler::Matrix{T} jac_mass::Vector{T} function dTime(::Type{T},n::Integer) where T<:AbstractFloat sevn::Int64 = 7*n jac_phi = zeros(T,sevn,sevn) jac_kick = zeros(T,sevn,sevn) jac_ij = zeros(T,14,14) dqdt_phi = zeros(T,sevn) dqdt_kick = zeros(T,sevn) dqdt_ij = zeros(T,14) dqdt_tmp1 = zeros(T,14) dqdt_tmp2 = zeros(T,14) jac_kepler = zeros(T,6,8) jac_mass = zeros(T,6) return new{T}(jac_phi,jac_kick,jac_ij,dqdt_phi,dqdt_kick,dqdt_ij, dqdt_tmp1,dqdt_tmp2,jac_kepler,jac_mass) end end struct Derivatives{T<:AbstractFloat} <: AbstractDerivatives{T} jac_phi::Matrix{T} jac_kick::Matrix{T} jac_copy::Matrix{T} jac_ij::Matrix{T} jac_tmp1::Matrix{T} jac_tmp2::Matrix{T} jac_err1::Matrix{T} dqdt_phi::Vector{T} dqdt_kick::Vector{T} dqdt_ij::Vector{T} dqdt_tmp1::Vector{T} dqdt_tmp2::Vector{T} jac_kepler::Matrix{T} jac_mass::Vector{T} dadq::Array{T,4} dotdadq::Matrix{T} tmp7n::Vector{T} tmp14::Vector{T} ctime::Vector{T} function Derivatives(::Type{T},n::Integer) where T<:AbstractFloat sevn::Int64 = 7*n jac_phi = zeros(T,sevn,sevn) jac_kick = zeros(T,sevn,sevn) jac_copy = zeros(T,sevn,sevn) jac_ij = zeros(T,14,14) jac_tmp1 = zeros(T,14,sevn) jac_tmp2 = zeros(T,14,sevn) jac_err1 = zeros(T,14,sevn) dqdt_phi = zeros(T,sevn) dqdt_kick = zeros(T,sevn) dqdt_ij = zeros(T,14) dqdt_tmp1 = zeros(T,14) dqdt_tmp2 = zeros(T,14) jac_kepler = zeros(T,6,8) jac_mass = zeros(T,6) dadq = zeros(T,3,n,4,n) dotdadq = zeros(T,4,n) tmp7n = zeros(T,sevn) tmp14 = zeros(T,14) ctime = zeros(T,1) return new{T}(jac_phi,jac_kick,jac_copy,jac_ij,jac_tmp1,jac_tmp2,jac_err1, dqdt_phi,dqdt_kick,dqdt_ij,dqdt_tmp1,dqdt_tmp2,jac_kepler,jac_mass, dadq,dotdadq,tmp7n,tmp14,ctime) end end """Zero out each array in Derivatives.""" @generated function zero_out!(d::Derivatives{T}) where T<:AbstractFloat exprs = Vector{Expr}() for f in fieldnames(Derivatives) expr = :(d.$f .= 0.0) push!(exprs,expr) end return Expr(:block, exprs..., nothing) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
14177
# Some utility functions #================================ Compensated Summation =================================# """ comp_sum(sum_value,sum_error,addend) Kahan (1965) compensated summation for `T<:Real`. ... # Arguments - `sum_value::Real` : Current value of the sum. - `sum_error::Real` : Error from truncation/rounding accumulated from prior steps. - `addend::Real` : New value to be added to the sum. ... """ function comp_sum(sum_value::T,sum_error::T,addend::T) where {T <: Real} tmp = zero(T) sum_error += addend tmp = sum_value + sum_error sum_error = (sum_value - tmp) + sum_error sum_value = tmp return sum_value,sum_error end """ comp_sum_matrix!(sum_value,sum_error,addend) Kahan (1965) compenstated summation for `::Matrix{<:Real}`. ... # Arguments - `sum_value::Matrix{<:Real}` : Current value of the sum. - `sum_error::Matrix{<:Real}` : Error from truncation/rounding accumulated from prior steps. - `addend::Matrix{<:Real}` : New value to be added to the sum. ... """ function comp_sum_matrix!(sum_value::Array{T,2},sum_error::Array{T,2},addend::Array{T,2}) where {T <: Real} tmp = zero(T) @inbounds for i in eachindex(sum_value) sum_error[i] += addend[i] tmp = sum_value[i] + sum_error[i] # sum_error[i] = (sum_value[i] - tmp) + sum_error[i] sum_error[i] += sum_value[i] - tmp sum_value[i] = tmp end return end """ Copies portion of Jacobian for multiplication """ function copy_submatrix!(s::State{T},d::Derivatives{T},indi::Int64,indj::Int64,sevn::Int64) where T <: AbstractFloat # Pick out indices for bodies i & j: @inbounds for k2=1:sevn, k1=1:7 d.jac_tmp1[k1,k2] = s.jac_step[ indi+k1,k2] end @inbounds for k2=1:sevn, k1=1:7 d.jac_err1[k1,k2] = s.jac_error[indi+k1,k2] end @inbounds for k2=1:sevn, k1=1:7 d.jac_tmp1[7+k1,k2] = s.jac_step[ indj+k1,k2] end @inbounds for k2=1:sevn, k1=1:7 d.jac_err1[7+k1,k2] = s.jac_error[indj+k1,k2] end # Copy current time derivatives for multiplication purposes: @inbounds for k1=1:7 d.dqdt_tmp1[ k1] = s.dqdt[indi+k1] end @inbounds for k1=1:7 d.dqdt_tmp1[7+k1] = s.dqdt[indj+k1] end return end """ Copies back: """ function ypoc_submatrix!(s::State{T},d::Derivatives{T},indi::Int64,indj::Int64,sevn::Int64) where T <: AbstractFloat # Copy back to the Jacobian: @inbounds for k2=1:sevn, k1=1:7 s.jac_step[ indi+k1,k2]=d.jac_tmp1[k1,k2] end @inbounds for k2=1:sevn, k1=1:7 s.jac_error[indi+k1,k2]=d.jac_err1[k1,k2] end @inbounds for k2=1:sevn, k1=1:7 s.jac_step[ indj+k1,k2]=d.jac_tmp1[7+k1,k2] end @inbounds for k2=1:sevn, k1=1:7 s.jac_error[indj+k1,k2]=d.jac_err1[7+k1,k2] end # Copy back time derivatives: @inbounds for k1=1:7 s.dqdt[indi+k1] = d.dqdt_ij[ k1] end @inbounds for k1=1:7 s.dqdt[indj+k1] = d.dqdt_ij[7+k1] end return end #================================ Integrator Utilities ==================================# function cubic1(a::T, b::T, c::T) where {T <: Real} a3 = a*third Q = a3^2 - b*third R = a3^3 + 0.5*(-a3*b + c) R2 = R^2; Q3=Q^3 if R2 < Q3 # println("Error in cubic solver ",R^2," ",Q^3) return -c/b else A = -sign(R)*cbrt(abs(R) + sqrt(R2 - Q3)) if A == 0.0 B = 0.0 else B = Q/A end x1 = A + B - a3 return x1 end return end function G3(gamma::T,beta::T,sqb::T;gc=convert(T,0.5)) where {T <: Real} if gamma < gc return G3_series(gamma,beta,sqb) else # sqb = sqrt(abs(beta)) if beta >= 0 return (gamma-sin(gamma))/(sqb*beta) else return (gamma-sinh(gamma))/(sqb*beta) end end end function G3_series(gamma::T,beta::T,sqb::T) where {T <: Real} #epsilon = eps(gamma) # Computes G_3(\beta,s) using a series tailored to the precision of s. #x2 = -beta*s^2 x2 = -sign(beta)*gamma^2 term = one(T) g3 = one(T) g31 = 2g3 g32 = 2g3 n=0 iter = 0 ITMAX = 100 # Terminate series when required precision reached: #while abs(term) > epsilon*abs(g3) while true g32 = g31 g31 = g3 n += 1 term *= x2/((2n+3)*(2n+2)) g3 += term iter +=1 if iter >= ITMAX || g3 == g32 || g3 == g31 break end end # g3 *= gamma^3/(6*sqrt(abs(beta^3))) g3 *= -x2*gamma/(6*beta*sqb) return g3::T end function H1(gamma::T,beta::T;gc=convert(T,0.5)) where {T <: Real} #x=sqrt(abs(beta))*s if gamma < gc return H1_series(gamma,beta) else if beta >= 0 return (4sin(0.5*gamma)^2 -gamma*sin(gamma))/beta^2 else return (-4sinh(0.5*gamma)^2+gamma*sinh(gamma))/beta^2 end end end function H1_series(gamma::T,beta::T) where {T <: Real} # Computes H_1(\beta,s) using a series tailored to the precision of s. #epsilon = eps(gamma) #x2 = -beta*s^2 x2 = -sign(beta)*gamma^2 term = one(T) h1 = one(T) h11 = 2h1 h12 = 2h1 n=0 iter = 0 ITMAX = 100 # Terminate series when required precision reached: #while abs(term) > epsilon*abs(h1) while true h12 = h11 h11 = h1 n += 1 term *= x2*(n+1) term /= (2n+4)*(2n+3)*n h1 += term iter +=1 if iter >= ITMAX || h1 == h12 || h1 == h11 break end end # h1 *= gamma^4/(12*beta^2) h1 *= x2^2/(12*beta^2) return h1::T end function H2(gamma::T,beta::T,sqb::T;gc=convert(T,0.5)) where {T <: Real} #x=sqb*s if gamma < gc return H2_series(gamma,beta,sqb) else # sqb = sqrt(abs(beta)) if beta >= 0 return (sin(gamma)-gamma*cos(gamma))/(sqb*beta) else return (sinh(gamma)-gamma*cosh(gamma))/(sqb*beta) end end end function H2_series(gamma::T,beta::T,sqb::T) where {T <: Real} # Computes H_2(\beta,s) using a series tailored to the precision of s. #epsilon = eps(gamma) #x2 = -beta*s^2 x2 = -sign(beta)*gamma^2 term = one(T) h2 = one(T) h21 = 2h2 h22 = 2h2 n=0 iter = 0 ITMAX = 100 # Terminate series when required precision reached: #while abs(term) > epsilon*abs(h2) while true h22 = h21 h21 = h2 n += 1 term *= x2 term /= (4n+6)*n h2 += term iter += 1 if iter >= ITMAX || h2 == h22 || h2 == h21 break end end # h2 *= gamma^3/(3*sqrt(abs(beta^3))) h2 *= -x2*gamma/(3*beta*sqb) return h2::T end function H3(gamma::T,beta::T,sqb::T;gc=convert(T,0.5)) where {T <: Real} # This is H_3 = G_1 G_2 - 3 G_3: if gamma < gc return H3_series(gamma,beta,sqb) else if beta >= 0 # return (4*sin(gamma)-sin(gamma)*cos(gamma)-3*gamma)/(beta*sqrt(beta)) return (4*sin(gamma)-sin(gamma)*cos(gamma)-3*gamma)/(beta*sqb) else # return (4*sinh(gamma)-sinh(gamma)*cosh(gamma)-3*gamma)/(beta*sqrt(-beta)) return (4*sinh(gamma)-sinh(gamma)*cosh(gamma)-3*gamma)/(beta*sqb) end end end function H3_series(gamma::T,beta::T,sqb::T) where {T <: Real} # Computes H_3(\beta,s) using a series tailored to the precision of gamma: #epsilon = eps(gamma) #x2 = -beta*s^2 x2 = -sign(beta)*gamma^2 term = convert(T,1//30) h3 = convert(T,1//10) h31 = 2h3 h32 = 2h3 n=0 iter = 0 ITMAX = 100 # Terminate series when required precision reached: #while abs(term) > epsilon*abs(h3) four2n = one(T)*4 while true h32 = h31 h31 = h3 n += 1 term *= x2 term /= (2n+4)*(2n+5) four2n *= 4 # h3 += term*(4^(n+1)-1) h3 += term*(four2n-1) iter += 1 if iter >= ITMAX || h3 == h32 || h3 == h31 break end end # h3 *= -gamma^5/(beta*sqrt(abs(beta))) h3 *= -x2^2*gamma/(beta*sqb) return h3::T end function H5(gamma::T,beta::T,sqb::T;gc=convert(T,0.5)) where {T <: Real} # This is G_1 G_2 -(2+G_0) G_3 = H_2 - 2 G_3: if gamma < gc return H5_series(gamma,beta,sqb) else if beta >= 0 # return (3sin(gamma)-2gamma-gamma*cos(gamma))/(beta*sqrt(beta)) return (3sin(gamma)-2gamma-gamma*cos(gamma))/(beta*sqb) else # return (3sinh(gamma)-2gamma-gamma*cosh(gamma))/(beta*sqrt(-beta)) return (3sinh(gamma)-2gamma-gamma*cosh(gamma))/(beta*sqb) end end end function H5_series(gamma::T,beta::T,sqb::T) where {T <: Real} # Computes H_5(\beta,s) using a series tailored to the precision of gamma: #epsilon = eps(gamma) #x2 = -beta*s^2 x2 = -sign(beta)*gamma^2 term = one(T)/60 h5 = copy(term) h51 = 2h5 h52 = 2h5 n=0 iter = 0 ITMAX = 100 # Terminate series when required precision reached: #while abs(term) > epsilon*abs(h5) while true h52 = h51 h51 = h5 n += 1 term *= x2*(n+1) term /= (2n+5)*(2n+4)*n h5 += term iter += 1 if iter >= ITMAX || h5 == h52 || h5 == h51 break end end # h5 *= -gamma^5/(beta*sqrt(abs(beta))) h5 *= -x2^2*gamma/(beta*sqb) return h5::T end function H6(gamma::T,beta::T;gc=convert(T,0.5)) where {T <: Real} # This is 2 G_2^2 -3 G_1 G_3: if gamma < gc return H6_series(gamma,beta) else if beta >= 0 return (9-8cos(gamma) -cos(2gamma) -6gamma*sin(gamma))/(2beta^2) else return (9-8cosh(gamma)-cosh(2gamma)+6gamma*sinh(gamma))/(2beta^2) end end end function H6_series(gamma::T,beta::T) where {T <: Real} # Computes H_6(\beta,s) using a series tailored to the precision of gamma: #epsilon = eps(gamma) #x2 = -beta*s^2 x2 = -sign(beta)*gamma^2 term = convert(T,1//360) h6 = convert(T,1//40) h61 = 2h6 h62 = 2h6 n=0 iter = 0 ITMAX = 100 # Terminate series when required precision reached: #while abs(term) > epsilon*abs(h6) four2n = one(T)*16 while true h62 = h61 h61 = h6 n += 1 term *= x2 term /= (2n+5)*(2n+6) four2n *= 4 # h6 += term*(4^(n+2)-3*n-7) h6 += term*(four2n-3*n-7) iter +=1 if iter >= ITMAX || h6 == h62 || h6 == h61 break end end # h6 *= gamma^6/(beta*abs(beta)) h6 *= -x2^3/(beta^2) return h6::T end function H7(gamma::T,beta::T,sqb::T;gc=convert(T,0.5)) where {T <: Real} # This is H_7 = G_1 G_2 (1-2 G_0) + 3 G_0^2 G_3: if gamma < gc return H7_series(gamma,beta,sqb) else if beta >= 0 # return (3*cos(gamma)*(gamma*cos(gamma)-sin(gamma))+sin(gamma)^3)/(beta*sqrt(beta)) return (3*cos(gamma)*(gamma*cos(gamma)-sin(gamma))+sin(gamma)^3)/(beta*sqb) else # return (3*cosh(gamma)*(gamma*cosh(gamma)-sinh(gamma))-sinh(gamma)^3)/(beta*sqrt(-beta)) return (3*cosh(gamma)*(gamma*cosh(gamma)-sinh(gamma))-sinh(gamma)^3)/(beta*sqb) end end end function H7_series(gamma::T,beta::T,sqb::T) where {T <: Real} # Computes H_7(\beta,s) using a series tailored to the precision of gamma: #epsilon = eps(gamma) #x2 = -beta*s^2 x2 = -sign(beta)*gamma^2 term = -convert(T,3//20160)*x2 h7 = convert(T,1//10-11//840*x2) h71 = 2h7 h72 = 2h7 n=0 iter = 0 ITMAX = 100 # Terminate series when required precision reached: #while abs(term) > epsilon*abs(h7) four2n = one(T)*128 nine2n = one(T)*729 while true h72 = h71 h71 = h7 n += 1 term *= x2 term /= (2n+6)*(2n+7) four2n *= 4 nine2n *= 9 # h7 += term*(9^(3+n)-1-(5+2*n)*2^(7+2*n)) h7 += term*(nine2n-1-(5+2*n)*four2n) iter += 1 if iter >= ITMAX || h7 == h72 || h7 == h71 break end end # h7 *= gamma^5/(beta*sqrt(abs(beta))) h7 *= x2^2*gamma/(beta*sqb) return h7::T end function H8(gamma::T,beta::T,sqb::T;gc=convert(T,0.5)) where {T <: Real} # This is H_8 = G_1 G_2 - 3 G_0 G_3: if gamma < gc return H8_series(gamma,beta,sqb) else if beta >= 0 # return (-3gamma*cos(gamma) +sin(gamma) +sin(2gamma))/(beta*sqrt(beta)) return (-3gamma*cos(gamma) +sin(gamma) +sin(2gamma))/(beta*sqb) else # return (-3gamma*cosh(gamma)+sinh(gamma)+sinh(2gamma))/(beta*sqrt(-beta)) return (-3gamma*cosh(gamma)+sinh(gamma)+sinh(2gamma))/(beta*sqb) end end end function H8_series(gamma::T,beta::T,sqb::T) where {T <: Real} # Computes H_8(\beta,s) using a series tailored to the precision of gamma: #epsilon = eps(gamma) #x2 = -beta*s^2 x2 = -sign(beta)*gamma^2 term = convert(T,1//120) h8 = convert(T,3//20) h81 = 2h8 h82 = 2h8 n=0 iter = 0 ITMAX = 100 # Terminate series when required precision reached: #while abs(term) > epsilon*abs(h8) four2n = one(T)*32 while true h82 = h81 h81 = h8 n += 1 term *= x2 term /= (2n+4)*(2n+5) four2n *= 4 # h8 += term*(2^(5+2n)-14-6n) h8 += term*(four2n-14-6n) iter +=1 # println("H8: ",iter," ",h8," ",gamma," ",beta) if iter >= ITMAX || h8 == h82 || h8 == h81 break end end # h8 *= gamma^5/(beta*sqrt(abs(beta))) h8 *= x2^2*gamma/(beta*sqb) return h8::T end # Faster dot product; assumes 3D vector @inline function dot_fast(a::Vector{T}, b::Vector{T}) where T<:Real a[1]*b[1] + a[2]*b[2] + a[3]*b[3] end @inline function dot_fast(a::Vector{T}) where T<:Real a[1]*a[1] + a[2]*a[2] + a[3]*a[3] end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
7731
# Define a dummy function for automatic differentiation: function G3(param::Array{T,1}) where {T <: Real} return G3(param[1],param[2]) end function G3(gamma::T,beta::T;gc=convert(T,0.5)) where {T <: Real} sqb = sqrt(abs(beta)) #x = sqb*s if gamma < gc return G3_series(gamma,beta) else if beta >= 0 return (gamma-sin(gamma))/(sqb*beta) else return (gamma-sinh(gamma))/(sqb*beta) end end end y = zeros(2) dG3 = y -> ForwardDiff.gradient(G3,y); function H2(gamma::T,beta::T;gc=convert(T,0.5)) where {T <: Real} sqb = sqrt(abs(beta)) #x=sqb*s if gamma < gc return H2_series(gamma,beta) else if beta >= 0 return (sin(gamma)-gamma*cos(gamma))/(sqb*beta) else return (sinh(gamma)-gamma*cosh(gamma))/(sqb*beta) end end end function H1(gamma::T,beta::T;gc=convert(T,0.5)) where {T <: Real} #x=sqrt(abs(beta))*s if gamma < gc return H1_series(gamma,beta) else if beta >= 0 return (4sin(0.5*gamma)^2 -gamma*sin(gamma))/beta^2 else return (-4sinh(0.5*gamma)^2+gamma*sinh(gamma))/beta^2 end end end function G3_series(gamma::T,beta::T) where {T <: Real} epsilon = eps(gamma) # Computes G_3(\beta,s) using a series tailored to the precision of s. #x2 = -beta*s^2 x2 = -sign(beta)*gamma^2 term = one(T) g3 = one(T) g31 = 2g3 g32 = 2g3 n=0 iter = 0 ITMAX = 100 # Terminate series when required precision reached: #while abs(term) > epsilon*abs(g3) while true g32 = g31 g31 = g3 n += 1 term *= x2/((2n+3)*(2n+2)) g3 += term iter +=1 if iter >= ITMAX || g3 == g32 || g3 == g31 break end end g3 *= gamma^3/(6*sqrt(abs(beta^3))) return g3::T end dG3_series = y -> ForwardDiff.gradient(G3_series,y); # Define a dummy function for automatic differentiation: function G3_series(param::Array{T,1}) where {T <: Real} return G3_series(param[1],param[2]) end function H2_series(gamma::T,beta::T) where {T <: Real} # Computes H_2(\beta,s) using a series tailored to the precision of s. epsilon = eps(gamma) #x2 = -beta*s^2 x2 = -sign(beta)*gamma^2 term = one(T) h2 = one(T) h21 = 2h2 h22 = 2h2 n=0 iter = 0 ITMAX = 100 # Terminate series when required precision reached: #while abs(term) > epsilon*abs(h2) while true h22 = h21 h21 = h2 n += 1 term *= x2 term /= (4n+6)*n h2 += term iter += 1 if iter >= ITMAX || h2 == h22 || h2 == h21 break end end h2 *= gamma^3/(3*sqrt(abs(beta^3))) return h2::T end function H1_series(gamma::T,beta::T) where {T <: Real} # Computes H_1(\beta,s) using a series tailored to the precision of s. epsilon = eps(gamma) #x2 = -beta*s^2 x2 = -sign(beta)*gamma^2 term = one(T) h1 = one(T) h11 = 2h1 h12 = 2h1 n=0 iter = 0 ITMAX = 100 # Terminate series when required precision reached: #while abs(term) > epsilon*abs(h1) while true h12 = h11 h11 = h1 n += 1 term *= x2*(n+1) term /= (2n+4)*(2n+3)*n h1 += term iter +=1 if iter >= ITMAX || h1 == h12 || h1 == h11 break end end h1 *= gamma^4/(12*beta^2) return h1::T end function H5(gamma::T,beta::T;gc=convert(T,0.5)) where {T <: Real} # This is G_1 G_2 -(2+G_0) G_3 = H_2 - 2 G_3: if gamma < gc return H5_series(gamma,beta) else if beta >= 0 return (3sin(gamma)-2gamma-gamma*cos(gamma))/(beta*sqrt(beta)) else return (3sinh(gamma)-2gamma-gamma*cosh(gamma))/(beta*sqrt(-beta)) end end end function H5_series(gamma::T,beta::T) where {T <: Real} # Computes H_5(\beta,s) using a series tailored to the precision of gamma: epsilon = eps(gamma) #x2 = -beta*s^2 x2 = -sign(beta)*gamma^2 term = one(T)/60 h5 = copy(term) h51 = 2h5 h52 = 2h5 n=0 iter = 0 ITMAX = 100 # Terminate series when required precision reached: #while abs(term) > epsilon*abs(h5) while true h52 = h51 h51 = h5 n += 1 term *= x2*(n+1) term /= (2n+5)*(2n+4)*n h5 += term iter += 1 if iter >= ITMAX || h5 == h52 || h5 == h51 break end end h5 *= -gamma^5/(beta*sqrt(abs(beta))) return h5::T end function H6(gamma::T,beta::T;gc=convert(T,0.5)) where {T <: Real} # This is 2 G_2^2 -3 G_1 G_3: if gamma < gc return H6_series(gamma,beta) else if beta >= 0 return (9-8cos(gamma) -cos(2gamma) -6gamma*sin(gamma))/(2beta^2) else return (9-8cosh(gamma)-cosh(2gamma)+6gamma*sinh(gamma))/(2beta^2) end end end function H6_series(gamma::T,beta::T) where {T <: Real} # Computes H_6(\beta,s) using a series tailored to the precision of gamma: epsilon = eps(gamma) #x2 = -beta*s^2 x2 = -sign(beta)*gamma^2 term = convert(T,1//360) h6 = convert(T,1//40) h61 = 2h6 h62 = 2h6 n=0 iter = 0 ITMAX = 100 # Terminate series when required precision reached: #while abs(term) > epsilon*abs(h6) while true h62 = h61 h61 = h6 n += 1 term *= x2 term /= (2n+5)*(2n+6) h6 += term*(4^(n+2)-3*n-7) iter +=1 if iter >= ITMAX || h6 == h62 || h6 == h61 break end end h6 *= gamma^6/(beta*abs(beta)) return h6::T end function H3(gamma::T,beta::T;gc=convert(T,0.5)) where {T <: Real} # This is H_3 = G_1 G_2 - 3 G_3: if gamma < gc return H3_series(gamma,beta) else if beta >= 0 return (4*sin(gamma)-sin(gamma)*cos(gamma)-3*gamma)/(beta*sqrt(beta)) else return (4*sinh(gamma)-sinh(gamma)*cosh(gamma)-3*gamma)/(beta*sqrt(-beta)) end end end function H3_series(gamma::T,beta::T) where {T <: Real} # Computes H_3(\beta,s) using a series tailored to the precision of gamma: epsilon = eps(gamma) #x2 = -beta*s^2 x2 = -sign(beta)*gamma^2 term = convert(T,1//30) h3 = convert(T,1//10) h31 = 2h3 h32 = 2h3 n=0 iter = 0 ITMAX = 100 # Terminate series when required precision reached: #while abs(term) > epsilon*abs(h3) while true h32 = h31 h31 = h3 n += 1 term *= x2 term /= (2n+4)*(2n+5) h3 += term*(4^(n+1)-1) iter += 1 if iter >= ITMAX || h3 == h32 || h3 == h31 break end end h3 *= -gamma^5/(beta*sqrt(abs(beta))) return h3::T end function H7(gamma::T,beta::T;gc=convert(T,0.5)) where {T <: Real} # This is H_7 = G_1 G_2 (1-2 G_0) + 3 G_0^2 G_3: if gamma < gc return H7_series(gamma,beta) else if beta >= 0 return (3*cos(gamma)*(gamma*cos(gamma)-sin(gamma))+sin(gamma)^3)/(beta*sqrt(beta)) else return (3*cosh(gamma)*(gamma*cosh(gamma)-sinh(gamma))-sinh(gamma)^3)/(beta*sqrt(-beta)) end end end function H7_series(gamma::T,beta::T) where {T <: Real} # Computes H_7(\beta,s) using a series tailored to the precision of gamma: epsilon = eps(gamma) #x2 = -beta*s^2 x2 = -sign(beta)*gamma^2 term = -convert(T,3//20160)*x2 h7 = convert(T,1//10-11//840*x2) h71 = 2h7 h72 = 2h7 n=0 iter = 0 ITMAX = 100 # Terminate series when required precision reached: #while abs(term) > epsilon*abs(h7) while true h72 = h71 h71 = h7 n += 1 term *= x2 term /= (2n+6)*(2n+7) h7 += term*(9^(3+n)-1-(5+2*n)*2^(7+2*n)) iter += 1 if iter >= ITMAX || h7 == h72 || h7 == h71 break end end h7 *= gamma^5/(beta*sqrt(abs(beta))) return h7::T end function H8(gamma::T,beta::T;gc=convert(T,0.5)) where {T <: Real} # This is H_8 = G_1 G_2 - 3 G_0 G_3: if gamma < gc return H8_series(gamma,beta) else if beta >= 0 return (-3gamma*cos(gamma) +sin(gamma) +sin(2gamma))/(beta*sqrt(beta)) else return (-3gamma*cosh(gamma)+sinh(gamma)+sinh(2gamma))/(beta*sqrt(-beta)) end end end function H8_series(gamma::T,beta::T) where {T <: Real} # Computes H_8(\beta,s) using a series tailored to the precision of gamma: epsilon = eps(gamma) #x2 = -beta*s^2 x2 = -sign(beta)*gamma^2 term = convert(T,1//120) h8 = convert(T,3//20) h81 = 2h8 h82 = 2h8 n=0 iter = 0 ITMAX = 100 # Terminate series when required precision reached: #while abs(term) > epsilon*abs(h8) while true h82 = h81 h81 = h8 n += 1 term *= x2 term /= (2n+4)*(2n+5) h8 += term*(2^(5+2n)-14-6n) iter +=1 if iter >= ITMAX || h8 == h82 || h8 == h81 break end end h8 *= gamma^5/(beta*sqrt(abs(beta))) return h8::T end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
10879
include("kepler_init.jl") # Initializes N-body integration for a plane-parallel hierarchical system # (see Hamers & Portugies-Zwart 2016 (HPZ16); Beust 2003). # We want to define a "simplex" hierarchy which can be decomposed into N-1 Keplerian binaries. # This can be diagramed with a "mobile" diagram, pioneered by Evans (1968). Here's an example: # Level | # 4 _______|_______ # 3 _____|____ | # 2 | | ____|_____ # 1 | | | ___|____ # | | | | | # 5 4 3 2 1 # Number of levels: n_level # Number of bodies: n_body # - Problem is divided up into N-1 Kepler problems: there is a single Kepler problem at each level. # - For example, in the above "mobile" diagram, 1-2 could be a binary star, # while 3 is an interior planets orbiting the stars, and 4/5 are a planet/moon orbiting exterior. # - We compute the N-body positions with each Keplerian connection (one at each level), starting # at the bottom and moving upwards. # function init_nbody(elements::Array{T,2},t0::T,n_body::Int64) where {T <: Real} # the "_plane" is to remind us that this is currently plane-parallel, so inclination & Omega are zero n_level = n_body-1 # Input - # elements: masses & orbital elements for each Keplerian (in this case, each planet plus star) # Output - # x: NDIM x n_body array of positions of each planet. # v: NDIM x n_body array of velocities " " " # # Read in the orbital elements: # elements = readdlm("elements.txt",',') # Initialize N-body for each Keplerian: # Get the indices: indices = get_indices_planetary(n_body) # Set up "A" matrix (Hamers & Portegies-Zwart 2016) which transforms from # cartesian coordinates to Keplerian orbits (we are using opposite sign # convention of HPZ16, for example, r_1 = R_2-R_1). amat = zeros(T,n_body,n_body) # Mass vector: mass = vcat(elements[:,1]) # Set up array for orbital positions of each Keplerian: rkepler = zeros(T,n_body,NDIM) rdotkepler = zeros(T,n_body,NDIM) # Fill in the A matrix & compute the Keplerian elements: for i=1:n_body-1 # Sums of masses for two components of Keplerian: m1 = zero(T) m2 = zero(T) for j=1:n_body if indices[i,j] == 1 m1 += mass[j] end if indices[i,j] == -1 m2 += mass[j] end end # Compute Kepler problem: r is a vector of positions of "body" 2 with respect to "body" 1; rdot is velocity vector # For now set inclination to Inclination = pi/2 and longitude of nodes to Omega = pi: # r,rdot = kepler_init(t0,m1+m2,[elements[i+1,2:5];pi/2;pi]) r,rdot = kepler_init(t0,m1+m2,elements[i+1,2:7]) # rbig,rdotbig = kepler_init(big(t0),big(m1+m2),big.(elements[i+1,2:7])) # r = convert(Array{T,1},rbig); rdot = convert(Array{T,1},rdotbig) for j=1:NDIM rkepler[i,j] = r[j] rdotkepler[i,j] = rdot[j] end # Now, fill in the A matrix for j=1:n_body if indices[i,j] == 1 amat[i,j] = -mass[j]/m1 end if indices[i,j] == -1 amat[i,j] = mass[j]/m2 end end end mtot = sum(mass) # Final row is for center-of-mass of system: for j=1:n_body amat[n_body,j] = mass[j]/mtot end # Compute inverse of A matrix to convert from Keplerian coordinates # to Cartesian coordinates: ainv = inv(amat) # Now, compute the Cartesian coordinates (eqn A6 from HPZ16): x = zeros(T,NDIM,n_body) v = zeros(T,NDIM,n_body) #for i=1:n_body # for j=1:NDIM # for k=1:n_body # x[j,i] += ainv[i,k]*rkepler[k,j] # v[j,i] += ainv[i,k]*rdotkepler[k,j] # end # end #end #x = transpose(*(ainv,rkepler)) x = permutedims(*(ainv,rkepler)) #v = transpose(*(ainv,rdotkepler)) v = permutedims(*(ainv,rdotkepler)) # Return the cartesian position & velocity matrices: #return x,v,amat,ainv return x,v end # Version including derivatives: function init_nbody(elements::Array{T,2},t0::T,n_body::Int64,jac_init::Array{T,2}) where {T <: Real} # the "_plane" is to remind us that this is currently plane-parallel, so inclination & Omega are zero n_level = n_body-1 # Input - # elements: masses & orbital elements for each Keplerian (in this case, each planet plus star) # Output - # x: NDIM x n_body array of positions of each planet. # v: NDIM x n_body array of velocities " " " # jac_init: derivative of cartesian coordinates, (x,v,m) for each body, with respect to initial conditions # n_body x (period, t0, e*cos(omega), e*sin(omega), inclination, Omega, mass) for each Keplerian, with # the first body having orbital elements set to zero, so the first six derivatives are zero. #jac_init = zeros(T,7*n_body,7*n_body) fill!(jac_init,0.0) # # Read in the orbital elements: # elements = readdlm("elements.txt",',') # Initialize N-body for each Keplerian: # Get the indices: indices = get_indices_planetary(n_body) #println("Indices: ",indices) # Set up "A" matrix (Hamers & Portegies-Zwart 2016) which transforms from # cartesian coordinates to Keplerian orbits (we are using opposite sign # convention of HPZ16, for example, r_1 = R_2-R_1). amat = zeros(T,n_body,n_body) # Derivative of i,jth element of A matrix with respect to mass of body k: damatdm = zeros(T,n_body,n_body,n_body) # Mass vector: mass = vcat(elements[:,1]) # Set up array for orbital positions of each Keplerian: rkepler = zeros(T,n_body,NDIM) rdotkepler = zeros(T,n_body,NDIM) # Set up Jacobian for transformation from n_body-1 Keplerian elements & masses # to (x,v,m) - the last is center-of-mass, which is taken to be zero. jac_21 = zeros(T,7,7) # jac_kepler saves jac_21 for each set of bodies: jac_kepler = zeros(T,n_body*6,n_body*7) # Fill in the A matrix & compute the Keplerian elements: for i=1:n_body-1 # i labels the row of matrix, which weights masses in current Keplerian # Sums of masses for two components of Keplerian: m1 = 0.0 ; m2 = 0.0 for j=1:n_body if indices[i,j] == 1 m1 += mass[j] end if indices[i,j] == -1 m2 += mass[j] end end # Compute Kepler problem: r is a vector of positions of "body" 2 with respect to "body" 1; rdot is velocity vector: r,rdot = kepler_init(t0,m1+m2,elements[i+1,2:7],jac_21) # rbig,rdotbig = kepler_init(big(t0),big(m1+m2),big.(elements[i+1,2:7])) # r = convert(Array{T,1},rbig); rdot = convert(Array{T,1},rdotbig) for j=1:NDIM rkepler[i,j] = r[j] rdotkepler[i,j] = rdot[j] end # Save Keplerian Jacobian to a matrix. First, positions/velocities vs. elements: for j=1:6, k=1:6 jac_kepler[(i-1)*6+j,i*7+k] = jac_21[j,k] end # Now add in mass derivatives: for j=1:n_body # Check which bodies participate in current Keplerian: if indices[i,j] != 0 for k=1:6 jac_kepler[(i-1)*6+k,j*7] = jac_21[k,7] end end end # Now, fill in the A matrix: for j=1:n_body if indices[i,j] == 1 amat[i,j] = -mass[j]/m1 damatdm[i,j,j] += -1.0/m1 for k=1:n_body if indices[i,k] == 1 damatdm[i,j,k] += mass[j]/m1^2 end end end if indices[i,j] == -1 amat[i,j] = mass[j]/m2 damatdm[i,j,j] += 1.0/m2 for k=1:n_body if indices[i,k] == -1 damatdm[i,j,k] -= mass[j]/m2^2 end end end end end mtot = sum(mass) for j=1:n_body amat[n_body,j] = mass[j]/mtot damatdm[n_body,j,j] = 1.0/mtot for k=1:n_body damatdm[n_body,j,k] -= mass[j]/mtot^2 end end ainv = inv(amat) # Propagate mass uncertainties (11/17/17 notes): dainvdm = zeros(T,n_body,n_body,n_body) #dainvdm_num = zeros(T,n_body,n_body,n_body) #damatdm_num = zeros(T,n_body,n_body,n_body) #dlnq = 2e-3 #elements_tmp = zeros(T,n_body,7) for k=1:n_body dainvdm[:,:,k]=-ainv*damatdm[:,:,k]*ainv # Compute derivatives numerically: # elements_tmp = copy(elements) # elements_tmp .= elements # elements_tmp[k,1] *= (1.0-dlnq) # x_minus,v_minus,amat_minus,ainv_minus = init_nbody(elements_tmp,t0,n_body) # elements_tmp[k,1] *= (1.0+dlnq)/(1.0-dlnq) # x_plus,v_plus,amat_plus,ainv_plus = init_nbody(elements_tmp,t0,n_body) # dainvdm_num[:,:,k] = (ainv_plus.-ainv_minus)/(2dlnq*elements[k,1]) # damatdm_num[:,:,k] = (amat_plus.-amat_minus)/(2dlnq*elements[k,1]) end #println("damatdm: ",maximum(abs.(damatdm-damatdm_num))) #println("dainvdm: ",maximum(abs.(dainvdm-dainvdm_num))) #for k=1:n_body # println("damatdm: ",k," ",abs.(damatdm[k,:,:]-damatdm_num[k,:,:])) ## println("damatdm_num: ",k," ",abs.(damatdm_num[k,:,:])) #end #println("dainvdm: ",abs.(dainvdm)) #println("dainvdm_num: ",abs.(dainvdm_num)) # Now, compute the Cartesian coordinates (eqn A6 from HPZ16): x = zeros(T,NDIM,n_body) v = zeros(T,NDIM,n_body) #for i=1:n_body # for j=1:NDIM # for k=1:n_body # x[j,i] += ainv[i,k]*rkepler[k,j] # v[j,i] += ainv[i,k]*rdotkepler[k,j] # end # end #end #x = transpose(*(ainv,rkepler)) x = permutedims(*(ainv,rkepler)) #v = transpose(*(ainv,rdotkepler)) v = permutedims(*(ainv,rdotkepler)) # Finally, compute the overall Jacobian. # First, compute it for the orbital elements: dxdm = zeros(T,3,n_body); dvdm = zeros(T,3,n_body) for i=1:n_body # Propagate derivatives of Kepler coordinates with respect to # orbital elements to the Cartesian coordinates: for k=1:n_body for j=1:3, l=1:7*n_body jac_init[(i-1)*7+j,l] += ainv[i,k]*jac_kepler[(k-1)*6+j,l] jac_init[(i-1)*7+3+j,l] += ainv[i,k]*jac_kepler[(k-1)*6+3+j,l] end end # Include the mass derivatives of the A matrix: # dainvdm .= -ainv*damatdm[:,:,i]*ainv # derivative with respect to the ith body # Multiply the derivative time Kepler positions/velocities to convert to # Cartesian coordinates: # Cartesian coordinates of all of the bodies can depend on the masses # of all the others so we need to loop over indices of each body, k: for k=1:n_body # dxdm = transpose(dainvdm[:,:,k]*rkepler) dxdm = permutedims(dainvdm[:,:,k]*rkepler) # dvdm = transpose(dainvdm[:,:,k]*rdotkepler) dvdm = permutedims(dainvdm[:,:,k]*rdotkepler) jac_init[(i-1)*7+1:(i-1)*7+3,k*7] += dxdm[1:3,i] jac_init[(i-1)*7+4:(i-1)*7+6,k*7] += dvdm[1:3,i] end # Masses are conserved: jac_init[i*7,i*7] = 1.0 end return x,v end function get_indices_planetary(n_body) # This sets up a planetary-hierarchy index matrix indices = zeros(Int64,n_body,n_body) for i=1:n_body-1 for j=1:i indices[i,j ]=-1 end indices[i,i+1]= 1 indices[n_body,i]=1 end indices[n_body,n_body]=1 # This is an example for TRAPPIST-1 # indices = [[-1, 1, 0, 0, 0, 0, 0, 0], # first two bodies orbit in a binary # [-1,-1, 1, 0, 0, 0, 0, 0], # next planet orbits about these # [-1,-1,-1, 1, 0, 0, 0, 0], # etc... # [-1,-1,-1,-1, 1, 0, 0, 0], # [-1,-1,-1,-1,-1, 1, 0, 0], # [-1,-1,-1,-1,-1,-1, 1, 0], # [-1,-1,-1,-1,-1,-1,-1, 1], # [ 1, 1, 1, 1, 1, 1, 1, 1] # center of mass of the system return indices end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
29211
# Wisdom & Hernandez version of Kepler solver, with Rein & Tamayo convergence test. # Now using \gamma = \sqrt{\abs{\beta}}s rather than s now to solve Kepler's equation. using ForwardDiff, DiffResults include("g3.jl") function cubic1(a::T, b::T, c::T) where {T <: Real} a3 = a*third Q = a3^2 - b*third R = a3^3 + 0.5*(-a3*b + c) if R^2 < Q^3 # println("Error in cubic solver ",R^2," ",Q^3) return -c/b else A = -sign(R)*cbrt(abs(R) + sqrt(R*R - Q*Q*Q)) if A == 0.0 B = 0.0 else B = Q/A end x1 = A + B - a3 return x1 end return end function jac_delxv_gamma!(x0::Array{T,1},v0::Array{T,1},k::T,h::T,drift_first::Bool;grad::Bool=false,auto::Bool=false,dlnq::T=convert(T,0.0),debug=false) where {T <: Real} # Using autodiff, computes Jacobian of delx & delv with respect to x0, v0, k & h. # Autodiff requires a single-vector input, so create an array to hold the independent variables: input = zeros(T,8) input[1:3]=x0; input[4:6]=v0; input[7]=k; input[8]=h if grad if debug # Also output gamma, r, fm1, dfdt, gmh, dgdtm1, and for debugging: delxv_jac = zeros(T,12,8) else # Output \delta x & \delta v only: delxv_jac = zeros(T,6,8) end end # Create a closure so that the function knows value of drift_first: function delx_delv(input::Array{T2,1}) where {T2 <: Real} # input = x0,v0,k,h,drift_first # Compute delx and delv from h, s, k, beta0, x0 and v0: x0 = input[1:3]; v0 = input[4:6]; k = input[7]; h = input[8] # Compute r0: drift_first ? r0 = norm(x0-h*v0) : r0 = norm(x0) # And its inverse: r0inv = inv(r0) # Compute beta_0: beta0 = 2k*r0inv-dot(v0,v0) beta0inv = inv(beta0) signb = sign(beta0) sqb = sqrt(signb*beta0) zeta = k-r0*beta0 gamma_guess = zero(T2) # Compute \eta_0 = x_0 . v_0: drift_first ? eta = dot(x0-h*v0,v0) : eta = dot(x0,v0) if zeta != zero(T2) # Make sure we have a cubic in gamma (and don't divide by zero): gamma_guess = cubic1(3eta*sqb/zeta,6r0*signb*beta0/zeta,-6h*signb*beta0*sqb/zeta) else # Check that we have a quadratic in gamma (and don't divide by zero): if eta != zero(T2) reta = r0/eta disc = reta^2+2h/eta disc > zero(T2) ? gamma_guess = sqb*(-reta+sqrt(disc)) : gamma_guess = h*r0inv*sqb else gamma_guess = h*r0inv*sqb end end gamma = copy(gamma_guess) # Make sure prior two steps differ: gamma1 = 2*copy(gamma) gamma2 = 3*copy(gamma) iter = 0 ITMAX = 20 # Compute coefficients: (8/28/19 notes) # c1 = k; c2 = -zeta; c3 = -eta*sqb; c4 = sqb*(eta-h*beta0); c5 = eta*signb*sqb c1 = k; c2 = -2zeta; c3 = 2*eta*signb*sqb; c4 = -sqb*h*beta0; c5 = 2eta*signb*sqb # Solve for gamma: while true gamma2 = gamma1 gamma1 = gamma xx = 0.5*gamma # xx = gamma if beta0 > 0 sx = sin(xx); cx = cos(xx) else sx = sinh(xx); cx = exp(-xx)+sx end # gamma -= (c1*gamma+c2*sx+c3*cx+c4)/(c2*cx+c5*sx+c1) gamma -= (k*gamma+c2*sx*cx+c3*sx^2+c4)/(2signb*zeta*sx^2+c5*sx*cx+r0*beta0) iter +=1 if iter >= ITMAX || gamma == gamma2 || gamma == gamma1 break end end # if typeof(gamma) == Float64 # println("s: ",gamma/sqb) # end # Set up a single output array for delx and delv: if debug delxv = zeros(T2,12) else delxv = zeros(T2,6) end # Since we updated gamma, need to recompute: xx = 0.5*gamma if beta0 > 0 sx = sin(xx); cx = cos(xx) else sx = sinh(xx); cx = exp(-xx)+sx end # Now, compute final values. Compute Wisdom/Hernandez G_i^\beta(s) functions: g1bs = 2sx*cx/sqb g2bs = 2signb*sx^2*beta0inv g0bs = one(T2)-beta0*g2bs g3bs = G3(gamma,beta0) h1 = zero(T2); h2 = zero(T2) # if typeof(g1bs) == Float64 # println("g1: ",g1bs," g2: ",g2bs," g3: ",g3bs) # end # Compute r from equation (35): r = r0*g0bs+eta*g1bs+k*g2bs # if typeof(r) == Float64 # println("r: ",r) # end rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv # [x] if drift_first # Drift backwards before Kepler step: (1/22/2018) fm1 = -k*r0inv*g2bs # [x] # This is given in 2/7/2018 notes: g-h*f # gmh = k*r0inv*(r0*(g1bs*g2bs-g3bs)+eta*g2bs^2+k*g3bs*g2bs) # [x] # println("Old gmh: ",gmh," new gmh: ",k*r0inv*(h*g2bs-r0*g3bs)) # [x] gmh = k*r0inv*(h*g2bs-r0*g3bs) # [x] else # Drift backwards after Kepler step: (1/24/2018) # The following line is f-1-h fdot: h1= H1(gamma,beta0); h2= H2(gamma,beta0) # fm1 = k*rinv*(g2bs-k*r0inv*H1(gamma,beta0)) # [x] fm1 = k*rinv*(g2bs-k*r0inv*h1) # [x] # This is g-h*dgdt # gmh = k*rinv*(r0*H2(gamma,beta0)+eta*H1(gamma,beta0)) # [x] gmh = k*rinv*(r0*h2+eta*h1) # [x] end # Compute velocity component functions: if drift_first # This is gdot - h fdot - 1: # dgdtm1 = k*r0inv*rinv*(r0*g0bs*g2bs+eta*g1bs*g2bs+k*g1bs*g3bs) # [x] # println("gdot-h fdot-1: ",dgdtm1," alternative expression: ",k*r0inv*rinv*(h*g1bs-r0*g2bs)) dgdtm1 = k*r0inv*rinv*(h*g1bs-r0*g2bs) else # This is gdot - 1: dgdtm1 = -k*rinv*g2bs # [x] end # if typeof(fm1) == Float64 # println("fm1: ",fm1," dfdt: ",dfdt," gmh: ",gmh," dgdt-1: ",dgdtm1) # end @inbounds for j=1:3 # Compute difference vectors (finish - start) of step: delxv[ j] = fm1*x0[j]+gmh*v0[j] # position x_ij(t+h)-x_ij(t) - h*v_ij(t) or -h*v_ij(t+h) end @inbounds for j=1:3 delxv[3+j] = dfdt*x0[j]+dgdtm1*v0[j] # velocity v_ij(t+h)-v_ij(t) end if debug delxv[7] = gamma delxv[8] = r delxv[9] = fm1 delxv[10] = dfdt delxv[11] = gmh delxv[12] = dgdtm1 end if grad == true && auto == false && dlnq == 0.0 # Compute gradient analytically: jac_mass = zeros(T,6) compute_jacobian_gamma!(gamma,g0bs,g1bs,g2bs,g3bs,h1,h2,dfdt,fm1,gmh,dgdtm1,r0,r,r0inv,rinv,k,h,beta0,beta0inv,eta,sqb,zeta,x0,v0,delxv_jac,jac_mass,drift_first,debug) end return delxv end # Use autodiff to compute Jacobian: if grad if auto # delxv_jac = ForwardDiff.jacobian(delx_delv,input) if debug delxv = zeros(T,12) else delxv = zeros(T,6) end out = DiffResults.JacobianResult(delxv,input) ForwardDiff.jacobian!(out,delx_delv,input) delxv_jac = DiffResults.jacobian(out) delxv = DiffResults.value(out) elseif dlnq != 0.0 # Use finite differences to compute Jacobian: if debug delxv_jac = zeros(T,12,8) else delxv_jac = zeros(T,6,8) end delxv = delx_delv(input) @inbounds for j=1:8 # Difference the jth component: inputp = copy(input); dp = dlnq*inputp[j]; inputp[j] += dp delxvp = delx_delv(inputp) inputm = copy(input); inputm[j] -= dp delxvm = delx_delv(inputm) delxv_jac[:,j] = (delxvp-delxvm)/(2*dp) end else # If grad = true and dlnq = 0.0, then the above routine will compute Jacobian analytically. delxv = delx_delv(input) end # Return Jacobian: return delxv::Array{T,1},delxv_jac::Array{T,2} else return delx_delv(input)::Array{T,1} end end function jac_delxv_gamma!(x0::Array{T,1},v0::Array{T,1},k::T,h::T,drift_first::Bool,delxv::Array{T,1},delxv_jac::Array{T,2},jac_mass::Array{T,1},debug::Bool) where {T <: Real} # Analytically computes Jacobian of delx & delv with respect to x0, v0, k & h. # Compute r0: drift_first ? r0 = norm(x0-h*v0) : r0 = norm(x0) # And its inverse: r0inv = inv(r0) # Compute beta_0: beta0 = 2k*r0inv-dot(v0,v0) beta0inv = inv(beta0) signb = sign(beta0) sqb = sqrt(signb*beta0) zeta = k-r0*beta0 gamma_guess = zero(T) # Compute \eta_0 = x_0 . v_0: drift_first ? eta = dot(x0-h*v0,v0) : eta = dot(x0,v0) if zeta != zero(T) # Make sure we have a cubic in gamma (and don't divide by zero): gamma_guess = cubic1(3eta*sqb/zeta,6r0*signb*beta0/zeta,-6h*signb*beta0*sqb/zeta) else # Check that we have a quadratic in gamma (and don't divide by zero): if eta != zero(T) reta = r0/eta disc = reta^2+2h/eta disc > zero(T) ? gamma_guess = sqb*(-reta+sqrt(disc)) : gamma_guess = h*r0inv*sqb else gamma_guess = h*r0inv*sqb end end gamma = copy(gamma_guess) # Make sure prior two steps differ: gamma1 = 2*copy(gamma) gamma2 = 3*copy(gamma) iter = 0 ITMAX = 20 # Compute coefficients: (8/28/19 notes) # c1 = k; c2 = -zeta; c3 = -eta*sqb; c4 = sqb*(eta-h*beta0); c5 = eta*signb*sqb c1 = k; c2 = -2zeta; c3 = 2*eta*signb*sqb; c4 = -sqb*h*beta0; c5 = 2eta*signb*sqb # Solve for gamma: while true gamma2 = gamma1 gamma1 = gamma xx = 0.5*gamma # xx = gamma if beta0 > 0 sx = sin(xx); cx = cos(xx) else sx = sinh(xx); cx = exp(-xx)+sx end # gamma -= (c1*gamma+c2*sx+c3*cx+c4)/(c2*cx+c5*sx+c1) gamma -= (k*gamma+c2*sx*cx+c3*sx^2+c4)/(2signb*zeta*sx^2+c5*sx*cx+r0*beta0) iter +=1 if iter >= ITMAX || gamma == gamma2 || gamma == gamma1 break end end # Set up a single output array for delx and delv: fill!(delxv,zero(T)) # Since we updated gamma, need to recompute: xx = 0.5*gamma if beta0 > 0 sx = sin(xx); cx = cos(xx) else sx = sinh(xx); cx = exp(-xx)+sx end # Now, compute final values. Compute Wisdom/Hernandez G_i^\beta(s) functions: g1bs = 2sx*cx/sqb g2bs = 2signb*sx^2*beta0inv g0bs = one(T)-beta0*g2bs g3bs = G3(gamma,beta0) h1 = zero(T); h2 = zero(T) # Compute r from equation (35): r = r0*g0bs+eta*g1bs+k*g2bs rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv # [x] if drift_first # Drift backwards before Kepler step: (1/22/2018) fm1 = -k*r0inv*g2bs # [x] # This is given in 2/7/2018 notes: g-h*f # gmh = k*r0inv*(r0*(g1bs*g2bs-g3bs)+eta*g2bs^2+k*g3bs*g2bs) # [x] gmh = k*r0inv*(h*g2bs-r0*g3bs) # [x] else # Drift backwards after Kepler step: (1/24/2018) # The following line is f-1-h fdot: h1= H1(gamma,beta0); h2= H2(gamma,beta0) # fm1 = k*rinv*(g2bs-k*r0inv*H1(gamma,beta0)) # [x] fm1 = k*rinv*(g2bs-k*r0inv*h1) # [x] # This is g-h*dgdt # gmh = k*rinv*(r0*H2(gamma,beta0)+eta*H1(gamma,beta0)) # [x] gmh = k*rinv*(r0*h2+eta*h1) # [x] end # Compute velocity component functions: if drift_first # This is gdot - h fdot - 1: # dgdtm1 = k*r0inv*rinv*(r0*g0bs*g2bs+eta*g1bs*g2bs+k*g1bs*g3bs) # [x] dgdtm1 = k*r0inv*rinv*(h*g1bs-r0*g2bs) else # This is gdot - 1: dgdtm1 = -k*rinv*g2bs # [x] end @inbounds for j=1:3 # Compute difference vectors (finish - start) of step: delxv[ j] = fm1*x0[j]+gmh*v0[j] # position x_ij(t+h)-x_ij(t) - h*v_ij(t) or -h*v_ij(t+h) end @inbounds for j=1:3 delxv[3+j] = dfdt*x0[j]+dgdtm1*v0[j] # velocity v_ij(t+h)-v_ij(t) end if debug delxv[7] = gamma delxv[8] = r delxv[9] = fm1 delxv[10] = dfdt delxv[11] = gmh delxv[12] = dgdtm1 end # Compute gradient analytically: compute_jacobian_gamma!(gamma,g0bs,g1bs,g2bs,g3bs,h1,h2,dfdt,fm1,gmh,dgdtm1,r0,r,r0inv,rinv,k,h,beta0,beta0inv,eta,sqb,zeta,x0,v0,delxv_jac,jac_mass,drift_first,debug) end function compute_jacobian_gamma!(gamma::T,g0::T,g1::T,g2::T,g3::T,h1::T,h2::T,dfdt::T,fm1::T,gmh::T,dgdtm1::T,r0::T,r::T,r0inv::T,rinv::T,k::T,h::T,beta::T,betainv::T,eta::T, sqb::T,zeta::T,x0::Array{T,1},v0::Array{T,1},delxv_jac::Array{T,2},jac_mass::Array{T,1},drift_first::Bool,debug::Bool) where {T <: Real} # Computes Jacobian: if drift_first # First, x0 derivatives: # delxv[ j] = fm1*x0[j]+gmh*v0[j] # position x_ij(t+h)-x_ij(t) - h*v_ij(t) or -h*v_ij(t+h) # delxv[3+j] = dfdt*x0[j]+dgdtm1*v0[j] # velocity v_ij(t+h)-v_ij(t) # First, the diagonal terms: # Now the off-diagonal terms: d = (h + eta*g2 + 2*k*g3)*betainv c1 = d-r0*g3 c2 = eta*g0+g1*zeta c3 = d*k+g1*r0^2 c4 = eta*g1+2*g0*r0 c13 = g1*h-g2*r0 # c9 = g2*r-h1*k # c10 = c3*c9*rinv+g2*r0*h-k*(2*g2*h+3*g3*r0)*betainv c9 = 2*g2*h-3*g3*r0 c10 = k*r0inv^4*(-g2*r0*h+k*c9*betainv-c3*c13*rinv) c24 = r0inv^3*(r0*(2*k*r0inv-beta)*betainv-g1*c3*rinv/g2) h6 = H6(gamma,beta) # Derivatives of \delta x with respect to x0, v0, k & h: dfm1dxx = fm1*c24 dfm1dxv = -fm1*(g1*rinv+h*c24) dfm1dvx = dfm1dxv # dfm1dvv = fm1*(2*betainv-g1*rinv*(d/g2-2*h)+h^2*c24) dfm1dvv = fm1*rinv*(-r0*g2 + k*h6*betainv/g2 + h*(2*g1+h*r*c24)) dfm1dh = fm1*(g1*rinv*(1/g2+2*k*r0inv-beta)-eta*c24) dfm1dk = fm1*(1/k+g1*c1*rinv*r0inv/g2-2*betainv*r0inv) # dfm1dk2 = 2g2*betainv-c1*g1*rinv h4 = -H1(gamma,beta)*beta # h5 = g1*g2-g3*(2+g0) h5 = H5(gamma,beta) # println("H5 : ",g1*g2-g3*(2+g0)," ",H2(gamma,beta)-2*G3(gamma,beta)," ",h5) # h6 = 2*g2^2-3*g1*g3 # println("H6: ",2*g2^2-3*g1*g3," ",h6) # dfm1dk2 = (r0*h4+k*h6)*betainv*rinv dfm1dk2 = (r0*h4+k*h6) # println("dfm1dk2: ",dfm1dk2," ", (r0*h4+k*h6)*betainv*rinv) dgmhdxx = c10 dgmhdxv = -g2*k*c13*rinv*r0inv-h*c10 dgmhdvx = dgmhdxv # dgmhdvv = -d*k*c13*rinv*r0inv+2*g2*h*k*c13*rinv*r0inv+k*c9*betainv*r0inv+h^2*c10 h8 = H8(gamma,beta) dgmhdvv = 2*g2*h*k*c13*rinv*r0inv+h^2*c10+ k*betainv*rinv*r0inv*(r0^2*h8-beta*h*r0*g2^2 + (h*k+eta*r0)*h6) dgmhdh = g2*k*r0inv+k*c13*rinv*r0inv+g2*k*(2*k*r0inv-beta)*c13*rinv*r0inv-eta*c10 dgmhdk = r0inv*(k*c1*c13*rinv*r0inv+g2*h-g3*r0-k*c9*betainv*r0inv) # dgmhdk2 = c1*c13*rinv-c9*betainv # dgmhdk2 = -betainv*rinv*(h6*g3*k^2+eta*r0*(h6+g2*h4)+r0^2*g0*h5+k*eta*g2*h6+(g1*h6+g3*h4)*k*r0) dgmhdk2 = -(h6*g3*k^2+eta*r0*(h6+g2*h4)+r0^2*g0*h5+k*eta*g2*h6+(g1*h6+g3*h4)*k*r0) # println("dgmhdk2: ",dgmhdk2," ",-betainv*rinv*(h6*g3*k^2+eta*r0*(h6+g2*h4)+r0^2*g0*h5+k*eta*g2*h6+(g1*h6+g3*h4)*k*r0)) @inbounds for j=1:3 # First, compute the \delta x-derivatives: delxv_jac[ j, j] = fm1 delxv_jac[ j,3+j] = gmh @inbounds for i=1:3 delxv_jac[j, i] += (dfm1dxx*x0[i]+dfm1dxv*v0[i])*x0[j] + (dgmhdxx*x0[i]+dgmhdxv*v0[i])*v0[j] delxv_jac[j,3+i] += (dfm1dvx*x0[i]+dfm1dvv*v0[i])*x0[j] + (dgmhdvx*x0[i]+dgmhdvv*v0[i])*v0[j] end delxv_jac[ j, 7] = dfm1dk*x0[j] + dgmhdk*v0[j] delxv_jac[ j, 8] = dfm1dh*x0[j] + dgmhdh*v0[j] # Compute the mass jacobian separately since otherwise cancellations happen in kepler_driftij_gamma: jac_mass[ j] = (GNEWT*r0inv)^2*betainv*rinv*(dfm1dk2*x0[j]+dgmhdk2*v0[j]) end # Derivatives of \delta v with respect to x0, v0, k & h: c5 = (r0-k*g2)*rinv/g1 c6 = (r0*g0-k*g2)*betainv c7 = g2*(1/g1+c2*rinv) c8 = (k*c6+r*r0+c3*c5)*r0inv^3 c12 = g0*h-g1*r0 c17 = r0-r-g2*k c18 = eta*g1+2*g2*k c20 = k*(g2*k+r)-g0*r0*zeta c21 = (g2*k-r0)*(beta*c3-k*g1*r)*betainv*rinv^2*r0inv^3/g1+eta*g1*rinv*r0inv^2-2r0inv^2 c22 = rinv*(-g1-g0*g2/g1+g2*c2*rinv) c25 = k*rinv*r0inv^2*(-g2+k*(c13-g2*r0)*betainv*r0inv^2-c13*r0inv-c12*c3*rinv*r0inv^2+ c13*c2*c3*rinv^2*r0inv^2-c13*(k*(g2*k+r)-g0*r0*zeta)*betainv*rinv*r0inv^2) c26 = k*rinv^2*r0inv*(-g2*c12-g1*c13+g2*c13*c2*rinv) ddfdtdxx = dfdt*c21 ddfdtdxv = dfdt*(c22-h*c21) ddfdtdvx = ddfdtdxv # ddfdtdvv = dfdt*(betainv*(1-c18*rinv)+d*(g1*c2-g0*r)*rinv^2/g1-h*(2c22-h*c21)) c34 = (-beta*eta^2*g2^2-eta*k*h8-h6*k^2-2beta*eta*r0*g1*g2+(g2^2-3*g1*g3)*beta*k*r0 - beta*g1^2*r0^2)*betainv*rinv^2+(eta*g2^2)*rinv/g1 + (k*h8)*betainv*rinv/g1 ddfdtdvv = dfdt*(c34 - 2*h*c22 +h^2*c21) ddfdtdk = dfdt*(1/k-betainv*r0inv-c17*betainv*rinv*r0inv-c1*(g1*c2-g0*r)*rinv^2*r0inv/g1) # ddfdtdk2 = -g1*(-betainv*r0inv-c17*betainv*rinv*r0inv-c1*(g1*c2-g0*r)*rinv^2*r0inv/g1) #ddfdtdk2 = -(g2*k-r0)*(g1*r-beta*c1)*betainv*rinv^2*r0inv ddfdtdk2 = -(g2*k-r0)*(beta*r0*(g3-g1*g2)-beta*eta*g2^2+k*H3(gamma,beta))*betainv*rinv^2*r0inv ddfdtdh = dfdt*(g0*rinv/g1-c2*rinv^2-(2*k*r0inv-beta)*c22-eta*c21) dgdtmhdfdtm1dxx = c25 dgdtmhdfdtm1dxv = c26-h*c25 dgdtmhdfdtm1dvx = c26-h*c25 h2 = H2(gamma,beta) # dgdtmhdfdtm1dvv = d*k*rinv^3*r0inv*(c13*c2-r*c12)+k*(c13*(r0*g0-k*g2)-g2*r*r0)*betainv*rinv^2*r0inv-2*h*c26+h^2*c25 # dgdtmhdfdtm1dvv = d*k*rinv^3*r0inv*k*(r0*(g1*g2-g3)+eta*g2^2+k*g2*g3)+k*(c13*(r0*g0-k*g2)-g2*r*r0)*betainv*rinv^2*r0inv-2*h*c26+h^2*c25 # println("\dot g - h \dot f -1, dv0 terms: ",d*k*rinv^3*r0inv*c13*c2," ",-d*k*rinv^3*r0inv*r*c12," ",k*c13*r0*g0*betainv*rinv^2*r0inv," ",-k*c13*k*g2*betainv*rinv^2*r0inv," ",-k*g2*r*r0*betainv*rinv^2*r0inv," ",-2*h*c26," ",h^2*c25) # println("second version of dv0 terms: ",d*k*rinv^3*r0inv*k*r0*g1*g2," ",-d*k*rinv^3*r0inv*k*r0*g3," ",d*k*rinv^3*r0inv*k*eta*g2^2," ",d*k*rinv^3*r0inv*k*k*g2*g3," ",-k*eta*k*g1*g2^2*betainv*rinv^2*r0inv," ",-k*g1*g2*g3*k^2*betainv*rinv^2*r0inv," ",-k*r0*eta*beta*g1*g2^2*betainv*rinv^2*r0inv," ",-r0*k*k*g1*h2*betainv*rinv^2*r0inv," ",-beta*k*g2^2*g0*r0^2*betainv*rinv^2*r0inv," ",-2*h*c26," ",h^2*c25) c33 = d*k*rinv^3*r0inv*k*(h*g2- r0*g3)+k*(-eta*k*g1*g2^2-g1*g2*g3*k^2-r0*eta*beta*g1*g2^2-r0*k*g1*h2 - beta*g2^2*g0*r0^2)*betainv*rinv^2*r0inv dgdtmhdfdtm1dvv = c33-2*h*c26+h^2*c25 dgdtmhdfdtm1dk = rinv*r0inv*(-k*(c13-g2*r0)*betainv*r0inv+c13-k*c13*c17*betainv*rinv*r0inv+k*c1*c12*rinv*r0inv-k*c1*c2*c13*rinv^2*r0inv) # dgdtmhdfdtm1dk2 = -(c13-g2*r0)*betainv*r0inv-c13*c17*betainv*rinv*r0inv+c1*c12*rinv*r0inv-c1*c2*c13*rinv^2*r0inv #dgdtmhdfdtm1dk2 = g2*betainv+rinv*r0inv*(c1*c12+c13*((k*g2-r0)*betainv-c1*c2*rinv)) h3 = H3(gamma,beta) dgdtmhdfdtm1dk2 = k*betainv*rinv^2*r0inv*(-beta*eta^2*g2^4+eta*g2*(g1*g2^2+g1^2*g3-5*g2*g3)*k+g2*g3*h3*k^2+ 2eta*r0*beta*g2^2*(g3-g1*g2)+(4g3-g0*g3-g1*g2)*(g3-g1*g2)*r0*k+beta*(2g1*g3*g2-g1^2*g2^2-g3^2)*r0^2) dgdtmhdfdtm1dh = g1*k*rinv*r0inv+k*c12*rinv^2*r0inv-k*c2*c13*rinv^3*r0inv-(2*k*r0inv-beta)*c26-eta*c25 @inbounds for j=1:3 # Next, compute the \delta v-derivatives: delxv_jac[3+j, j] = dfdt delxv_jac[3+j,3+j] = dgdtm1 @inbounds for i=1:3 delxv_jac[3+j, i] += (ddfdtdxx*x0[i]+ddfdtdxv*v0[i])*x0[j] + (dgdtmhdfdtm1dxx*x0[i]+dgdtmhdfdtm1dxv*v0[i])*v0[j] delxv_jac[3+j,3+i] += (ddfdtdvx*x0[i]+ddfdtdvv*v0[i])*x0[j] + (dgdtmhdfdtm1dvx*x0[i]+dgdtmhdfdtm1dvv*v0[i])*v0[j] end delxv_jac[3+j, 7] = ddfdtdk*x0[j] + dgdtmhdfdtm1dk*v0[j] delxv_jac[3+j, 8] = ddfdtdh*x0[j] + dgdtmhdfdtm1dh*v0[j] # Compute the mass jacobian separately since otherwise cancellations happen in kepler_driftij_gamma: jac_mass[3+j] = GNEWT^2*r0inv*rinv*(ddfdtdk2*x0[j]+dgdtmhdfdtm1dk2*v0[j]) end if debug # Now include derivatives of gamma, r, fm1, dfdt, gmh, and dgdtmhdfdtm1: @inbounds for i=1:3 delxv_jac[ 7,i] = -sqb*rinv*((g2-h*c3*r0inv^3)*v0[i]+c3*x0[i]*r0inv^3); delxv_jac[7,3+i] = sqb*rinv*((-d+2*g2*h-h^2*c3*r0inv^3)*v0[i]+(-g2+h*c3*r0inv^3)*x0[i]) delxv_jac[ 8,i] = (c20*betainv-c2*c3*rinv)*r0inv^3*x0[i]+((eta*g2+g1*r0)*rinv+h*r0inv^3*(c2*c3*rinv-c20*betainv))*v0[i] # delxv_jac[8,3+i] = (g1-g2*c2*rinv+h*r0inv^3*(c2*c3*rinv-c20*betainv))*x0[i]+(-2g1*h+c18*betainv+(2g2*h-d)*c2*rinv+h^2*r0inv^3*(c20*betainv-c2*c3*rinv))*v0[i] # delxv_jac[8,3+i] = ((g1*r0+eta*g2)*rinv+h*r0inv^3*(c2*c3*rinv-c20*betainv))*x0[i]+(-2g1*h+c18*betainv+(2g2*h-d)*c2*rinv+h^2*r0inv^3*(c20*betainv-c2*c3*rinv))*v0[i] drdv0x0 = (beta*g1*g2+((eta*g2+k*g3)*eta*g0*c3)*rinv*r0inv^3 + (g1*g0*(2k*eta^2*g2+3eta*k^2*g3))*betainv*rinv*r0inv^2- k*betainv*r0inv^3*(eta*g1*(eta*g2+k*g3)+g3*g0*r0^2*beta+2h*g2*k)+(g1*zeta)*rinv*((h*c3)*r0inv^3 - g2) - (eta*(beta*g2*g0*r0+k*g1^2)*(eta*g1+k*g2))*betainv*rinv*r0inv^2) # delxv_jac[8,3+i] = drdv0x0*x0[i]+ (k*betainv*rinv*(eta*(2g0*g3-g1*g2+g3) - h6*k^2 + (g2^2 - 2*g1*g3)*beta*k*r0) + h*drdv0x0)*v0[i] delxv_jac[8,3+i] = drdv0x0*x0[i] - (k*betainv*rinv*(eta*(beta*g2*g3-h8) - h6*k + (g2^2 - 2*g1*g3)*beta*r0) + h*drdv0x0)*v0[i] # +(-2g1*h+c18*betainv+(2g2*h-d)*c2*rinv+h^2*r0inv^3*(c20*betainv-c2*c3*rinv))*v0[i] # delxv_jac[8,3+i] = ((eta*g2+g1*r0)*rinv+h*betainv*rinv*r0inv^3*((3g1*g3 - 2g2^2)*k^3 - k^2*eta*h8 + # beta*k^2*(g2^2 - 3*g1*g3)*r0 - beta*r0^3 - k*g2*beta*(eta^2*g2 + 2eta*g1*r0 + g0*r0^2)))*x0[i]+(-2g1*h+c18*betainv+((g1*r0-g3*k-2*g0*h)*c2)*betainv*rinv + # h^2*((2*g2^2 - 3*g1*g3)*k^3 + beta*r0^3 + k^2*(eta*(g1*g2 - 3*g0*g3) + beta*(3*g1*g3 - g2^2)*r0) + # k*beta*g2*(eta*(eta*g2 + g1*r0) + r0*(eta*g1 + g0*r0)))*betainv*rinv*r0inv^3)*v0[i] delxv_jac[ 9,i] = dfm1dxx*x0[i]+dfm1dxv*v0[i]; delxv_jac[ 9,3+i]=dfm1dvx*x0[i]+dfm1dvv*v0[i] delxv_jac[10,i] = ddfdtdxx*x0[i]+ddfdtdxv*v0[i]; delxv_jac[10,3+i]=ddfdtdvx*x0[i]+ddfdtdvv*v0[i] delxv_jac[11,i] = dgmhdxx*x0[i]+dgmhdxv*v0[i]; delxv_jac[11,3+i]=dgmhdvx*x0[i]+dgmhdvv*v0[i] delxv_jac[12,i] = dgdtmhdfdtm1dxx*x0[i]+dgdtmhdfdtm1dxv*v0[i]; delxv_jac[12,3+i]=dgdtmhdfdtm1dvx*x0[i]+dgdtmhdfdtm1dvv*v0[i] end delxv_jac[ 7,7] = sqb*c1*r0inv*rinv; delxv_jac[7,8] = sqb*rinv*(1+eta*c3*r0inv^3+g2*(2k*r0inv-beta)) # delxv_jac[ 8,7] = (c17*betainv+c1*c2*rinv)*r0inv delxv_jac[ 8,7] = betainv*r0inv*rinv*(-g2*r0^2*beta-eta*g1*g2*(k+beta*r0)+eta*g0*g3*(2*k+zeta)- g2^2*(beta*eta^2+2*k*zeta)+g1*g3*zeta*(3*k-beta*r0)); delxv_jac[8,8] = c2*rinv delxv_jac[ 8,8] = ((r0*g1+eta*g2)*rinv)*(beta-2*k*r0inv)+c2*rinv+eta*r0inv^3*(c2*c3*rinv-c20*betainv) delxv_jac[ 9,7] = dfm1dk; delxv_jac[ 9,8] = dfm1dh delxv_jac[10,7] = ddfdtdk; delxv_jac[10,8] = ddfdtdh delxv_jac[11,7] = dgmhdk; delxv_jac[11,8] = dgmhdh delxv_jac[12,7] = dgdtmhdfdtm1dk; delxv_jac[12,8] = dgdtmhdfdtm1dh end else # Now compute the Kepler-Drift Jacobian terms: # First, x0 derivatives: # delxv[ j] = fm1*x0[j]+gmh*v0[j] # position x_ij(t+h)-x_ij(t) - h*v_ij(t) or -h*v_ij(t+h) # delxv[3+j] = dfdt*x0[j]+dgdtm1*v0[j] # velocity v_ij(t+h)-v_ij(t) # First, the diagonal terms: # Now the off-diagonal terms: d = (h + eta*g2 + 2*k*g3)*betainv c1 = d-r0*g3 c2 = eta*g0+g1*zeta c3 = d*k+g1*r0^2 c4 = eta*g1+2*g0*r0 c6 = (r0*g0-k*g2)*betainv c9 = g2*r-h1*k c14 = r0*g2-k*h1 c15 = eta*h1+h2*r0 c16 = eta*h2+g1*gamma*r0/sqb c17 = r0-r-g2*k c18 = eta*g1+2*g2*k c19 = 4*eta*h1+3*h2*r0 c23 = h2*k-r0*g1 h6 = H6(gamma,beta) h8 = H8(gamma,beta) # Derivatives of \delta x with respect to x0, v0, k & h: dfm1dxx = k*rinv^3*betainv*r0inv^4*(k*h1*r^2*r0*(beta-2*k*r0inv)+beta*c3*(r*c23+c14*c2)+c14*r*(k*(r-g2*k)+g0*r0*zeta)) dfm1dxv = k*rinv^2*r0inv*(k*(g2*h2+g1*h1)-2g1*g2*r0+g2*c14*c2*rinv) dfm1dvx = dfm1dxv # dfm1dvv = k*r0inv*rinv^2*betainv*(r*(2*g2*r0-4*h1*k)+d*beta*c23-c18*c14+d*beta*c14*c2*rinv) dfm1dvv = k*r0inv*rinv^2*betainv*(2eta*k*(g2*g3-g1*h1)+(3g3*h2-4h1*g2)*k^2 + beta*g2*r0*(3h1*k-g2*r0)+c14*rinv*(-beta*g2^2*eta^2+eta*k*(2g0*g3-h2)- h6*k^2+(-2eta*g1*g2+k*(h1-2g1*g3))*beta*r0-beta*g1^2*r0^2)) dfm1dh = (g1*k-h2*k^2*r0inv-k*c14*c2*rinv*r0inv)*rinv^2 dfm1dk = rinv*r0inv*(4*h1*k^2*betainv*r0inv-k*h1-2*g2*k*betainv+c14-k*c14*c17*betainv*rinv*r0inv+ k*(g1*r0-k*h2)*c1*rinv*r0inv-k*c14*c1*c2*rinv^2*r0inv) # dfm1dk2_old = 4*h1*k*betainv*r0inv-h1-2*g2*betainv-c14*c17*betainv*rinv*r0inv+ (g1*r0-k*h2)*c1*rinv*r0inv-c14*c1*c2*rinv^2*r0inv # New expression for d(f-1-h \dot f)/dk with cancellations of higher order terms in gamma is: dfm1dk2 = betainv*r0inv*rinv^2*(r*(2eta*k*(g1*h1-g3*g2)+(4g2*h1-3g3*h2)*k^2-eta*r0*beta*g1*h1 + (g3*h2-4g2*h1)*beta*k*r0 + g2*h1*beta^2*r0^2) - # In the following line I need to replace 3g0*g3-g1*g2 by -H8: c14*(-eta^2*beta*g2^2 - k*eta*h8 - k^2*h6 - eta*r0*beta*(g1*g2 + g0*g3) + 2*(h1 - g1*g3)*beta*k*r0 - (g2 - beta*g1*g3)*beta*r0^2)) # println("dfm1dk2: old ",dfm1dk2_old," new: ",dfm1dk2) dgmhdxx = k*rinv*r0inv*(h2+k*c19*betainv*r0inv^2-c16*c3*rinv*r0inv^2+c2*c3*c15*(rinv*r0inv)^2-c15*(k*(g2*k+r)-g0*r0*zeta)*betainv*rinv*r0inv^2) dgmhdxv = k*rinv^2*(h1*r-g2*c16-g1*c15+g2*c2*c15*rinv) dgmhdvx = dgmhdxv # dgmhdvv = k*rinv^2*(-d*c16-c15*c18*betainv+r*c19*betainv+d*c2*c15*rinv) dgmhdvv = k*betainv*rinv^2*(2*eta^2*(g1*h1-g2*g3)+eta*k*(4g2*h1-3h2*g3)+r0*eta*(4g0*h1-2g1*g3)+ # In the following lines I need to replace g1*g2-3g0*g3-g1*g2 by H8: 3r0*k*((g1+beta*g3)*h1-g3*g2)+(g0*h8-beta*g1*(g2^2+g1*g3))*r0^2 - c15*rinv*(beta*g2^2*eta^2+eta*k*h8+h6*k^2+(2eta*g1*g2-k*(g2^2-3g1*g3))*beta*r0+beta*g1^2*r0^2)) dgmhdk = rinv*(k*c1*c16*rinv*r0inv+c15-k*c15*c17*betainv*rinv*r0inv-k*c19*betainv*r0inv-k*c1*c2*c15*rinv^2*r0inv) # dgmhdk2_old = c1*c16*rinv-c15*c17*betainv*rinv-c19*betainv-c1*c2*c15*rinv^2 h7 = H7(gamma,beta) dgmhdk2 = betainv*rinv^2*(r*(2eta^2*(g3*g2-g1*h1) + eta*k*(3g3*h2 - 4g2*h1) + r0*eta*(beta*g3*(g1*g2 + g0*g3) - 2g0*h6) + (-h6*(g1 + beta*g3) + g2*(2g3 - h2))*r0*k + (h7 - beta^2*g1*g3^2)*r0^2)- c15*(-beta*eta^2*g2^2 + eta*k*(-h2 + 2g0*g3) - h6*k^2 - r0*eta*beta*(h2 + 2g0*g3) + 2beta*(2*h1 - g2^2)*r0*k + beta*(beta*g1*g3 - g2)*r0^2)) # println("gmhgdot: old ",dgmhdk2_old," new: ",dgmhdk2) dgmhdh = k*rinv^3*(r*c16-c2*c15) @inbounds for j=1:3 # First, compute the \delta x-derivatives: delxv_jac[ j, j] = fm1 delxv_jac[ j,3+j] = gmh @inbounds for i=1:3 delxv_jac[j, i] += (dfm1dxx*x0[i]+dfm1dxv*v0[i])*x0[j] + (dgmhdxx*x0[i]+dgmhdxv*v0[i])*v0[j] delxv_jac[j,3+i] += (dfm1dvx*x0[i]+dfm1dvv*v0[i])*x0[j] + (dgmhdvx*x0[i]+dgmhdvv*v0[i])*v0[j] end delxv_jac[ j, 7] = dfm1dk*x0[j] + dgmhdk*v0[j] delxv_jac[ j, 8] = dfm1dh*x0[j] + dgmhdh*v0[j] jac_mass[ j] = GNEWT^2*rinv*r0inv*(dfm1dk2*x0[j]+dgmhdk2*v0[j]) end # Derivatives of \delta v with respect to x0, v0, k & h: c5 = (r0-k*g2)*rinv/g1 c7 = g2*(1/g1+c2*rinv) c8 = (k*c6+r*r0+c3*c5)*r0inv^3 c12 = g0*h-g1*r0 c20 = k*(g2*k+r)-g0*r0*zeta ddfdtdxx = dfdt*(eta*g1*rinv-2-g0*c3*rinv*r0inv/g1+c2*c3*r0inv*rinv^2-k*(k*g2-r0)*betainv*rinv*r0inv)*r0inv^2 ddfdtdxv = -dfdt*(g0*g2/g1+(r0*g1+eta*g2)*rinv)*rinv ddfdtdvx = ddfdtdxv # ddfdtdvv = dfdt*(betainv-d*g0*rinv/g1-c18*betainv*rinv+d*c2*rinv^2) ddfdtdvv = -k*rinv^3*r0inv*betainv*((beta*eta*g2^2+k*h8)*(r0*g0+k*g2)+ g1*(- h6*k^2 + (-2eta*g1*g2+(h1-2g1*g3)*k)*beta*r0 - beta*g1^2*r0^2)) ddfdtdk = dfdt*(1/k+c1*(r0-g2*k)*r0inv*rinv^2/g1-betainv*r0inv*(1+c17*rinv)) # ddfdtdk2 = -g1*(c1*(r0-g2*k)*r0inv*rinv^2/g1-betainv*r0inv*(1+c17*rinv)) # ddfdtdk2 = r0inv*(g1*c17*betainv*rinv+g1*betainv-g1*c1*c2*rinv^2-c1*g0*rinv) h3 = H3(gamma,beta) ddfdtdk2 = (r0-g2*k)*betainv*r0inv*rinv^2*(-eta*beta*g2^2+h3*k+(g3-g1*g2)*beta*r0) ddfdtdh = dfdt*(r0-g2*k)*rinv^2/g1 dgdotm1dxx = rinv^2*r0inv^3*((eta*g2+g1*r0)*k*c3*rinv+g2*k*(k*(g2*k-r)-g0*r0*zeta)*betainv) dgdotm1dxv = k*g2*rinv^3*(r*g1+r0*g1+eta*g2) dgdotm1dvx = dgdotm1dxv # dgdotm1dvv = k*rinv^2*(d*g1+g2*c18*betainv-2*r*g2*betainv-d*g2*c2*rinv) dgdotm1dvv = k*betainv*rinv^3*(eta^2*beta*g2^3-eta*k*g2*h3+3r0*eta*beta*g1*g2^2 + r0*k*(-g0*h6+3beta*g1*g2*g3)+beta*g2*(g0*g2+g1^2)*r0^2) dgdotm1dk = rinv*r0inv*(-r0*g2+g2*k*(r+r0-g2*k)*betainv*rinv-k*g1*c1*rinv+k*g2*c1*c2*rinv^2) # dgdotm1dk2 = rinv*(g2*(r+r0-g2*k)*betainv-g1*c1+g2*c1*c2*rinv) dgdotm1dk2 = betainv*rinv^2*(-beta*eta^2*g2^3+eta*k*g2*h3+eta*r0*beta*g2*(g3-2g1*g2)+ (h6-beta*g2^3)*r0*k + beta*g1*(g3 - g1*g2)*r0^2) # (g2^2*(1+g0)-3*g1*g3)*r0*k + beta*g1*(g3 - g1*g2)*r0^2) dgdotm1dh = k*rinv^3*(g2*c2-r*g1) @inbounds for j=1:3 # Next, compute the \delta v-derivatives: delxv_jac[3+j, j] = dfdt delxv_jac[3+j,3+j] = dgdtm1 @inbounds for i=1:3 delxv_jac[3+j, i] += (ddfdtdxx*x0[i]+ddfdtdxv*v0[i])*x0[j] + (dgdotm1dxx*x0[i]+dgdotm1dxv*v0[i])*v0[j] delxv_jac[3+j,3+i] += (ddfdtdvx*x0[i]+ddfdtdvv*v0[i])*x0[j] + (dgdotm1dvx*x0[i]+dgdotm1dvv*v0[i])*v0[j] end delxv_jac[3+j, 7] = ddfdtdk*x0[j] + dgdotm1dk*v0[j] delxv_jac[3+j, 8] = ddfdtdh*x0[j] + dgdotm1dh*v0[j] jac_mass[3+j] = GNEWT^2*rinv*r0inv*(ddfdtdk2*x0[j]+dgdotm1dk2*v0[j]) end if debug # Now include derivatives of gamma, r, fm1, gmh, dfdt, and dgdtmhdfdtm1: @inbounds for i=1:3 delxv_jac[ 7,i] = -sqb*rinv*(g2*v0[i]+c3*x0[i]*r0inv^3); delxv_jac[7,3+i] = -sqb*rinv*(d*v0[i]+g2*x0[i]) delxv_jac[ 8,i] = (c20*betainv-c2*c3*rinv)*r0inv^3*x0[i]+((r0*g1+eta*g2)*rinv)*v0[i] delxv_jac[8,3+i] = (c18*betainv-d*c2*rinv)*v0[i]+((r0*g1+eta*g2)*rinv)*x0[i] # delxv_jac[8,3+i] = (g2*(2k*(r-r0)+beta*(r0^2+eta^2*g2)-zeta*eta*g1) + c2*g3*(2k+zeta))*betainv*rinv*r0inv*v0[i]+((r0*g1+eta*g2)*rinv)*x0[i] delxv_jac[ 9,i] = dfm1dxx*x0[i]+dfm1dxv*v0[i]; delxv_jac[ 9,3+i]=dfm1dvx*x0[i]+dfm1dvv*v0[i] delxv_jac[10,i] = ddfdtdxx*x0[i]+ddfdtdxv*v0[i]; delxv_jac[10,3+i]=ddfdtdvx*x0[i]+ddfdtdvv*v0[i] delxv_jac[11,i] = dgmhdxx*x0[i]+dgmhdxv*v0[i]; delxv_jac[11,3+i]=dgmhdvx*x0[i]+dgmhdvv*v0[i] delxv_jac[12,i] = dgdotm1dxx*x0[i]+dgdotm1dxv*v0[i]; delxv_jac[12,3+i]=dgdotm1dvx*x0[i]+dgdotm1dvv*v0[i] end delxv_jac[ 7,7] = sqb*c1*r0inv*rinv; delxv_jac[7,8] = sqb*rinv # delxv_jac[ 8,7] = (c17*betainv+c1*c2*rinv)*r0inv; delxv_jac[8,8] = c2*rinv delxv_jac[ 8,7] = betainv*r0inv*rinv*(-g2*r0^2*beta-eta*g1*g2*(k+beta*r0)+eta*g0*g3*(2*k+zeta)- g2^2*(beta*eta^2+2*k*zeta)+g1*g3*zeta*(3*k-beta*r0)); delxv_jac[8,8] = c2*rinv delxv_jac[ 9,7] = dfm1dk; delxv_jac[ 9,8] = dfm1dh delxv_jac[10,7] = ddfdtdk; delxv_jac[10,8] = ddfdtdh delxv_jac[11,7] = dgmhdk; delxv_jac[11,8] = dgmhdh delxv_jac[12,7] = dgdotm1dk; delxv_jac[12,8] = dgdotm1dh end end #return delxv_jac::Array{T,2} return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
14636
# Wisdom & Hernandez version of Kepler solver, but with quartic convergence. using ForwardDiff include("g3.jl") #function calc_ds_opt(y::T,yp::T,ypp::T,yppp::T) where {T <: Real} ## Computes quartic Newton's update to equation y=0 using first through 3rd derivatives. ## Uses techniques outlined in Murray & Dermott for Kepler solver. ## Rearrange to reduce number of divisions: #num = y*yp #den1 = yp*yp-y*ypp*.5 #den12 = den1*den1 #den2 = yp*den12-num*.5*(ypp*den1-third*num*yppp) #return -y*den12/den2 #end function solve_kepler_drift!(h::T,k::T,x0::Array{T,1},v0::Array{T,1},beta0::T, r0::T,s0::T,state::Array{T,1},drift_first::Bool) where {T <: Real} # Solves elliptic Kepler's equation for both elliptic and hyperbolic cases, # along with a drift before or after the kepler step. # Initial guess (if s0 = 0): r0inv = inv(r0) beta0inv = inv(beta0) signb = sign(beta0) if s0 == zero(T) s = h*r0inv else s = copy(s0) end s0 = copy(s) sqb = sqrt(signb*beta0) y = zero(T); yp = one(T) iter = 0 ds = Inf zeta = k-r0*beta0 if drift_first eta = dot(x0-h*v0,v0) else eta = dot(x0,v0) end KEPLER_TOL = sqrt(eps(h)) while iter == 0 || (abs(ds) > KEPLER_TOL && iter < 10) xx = sqb*s if beta0 > 0 sx = sin(xx); cx = cos(xx) else cx = cosh(xx); sx = exp(xx)-cx end sx *= sqb # Third derivative: yppp = zeta*cx - signb*eta*sx # First derivative: yp = (-yppp+ k)*beta0inv # Second derivative: ypp = signb*zeta*beta0inv*sx + eta*cx y = (-ypp + eta +k*s)*beta0inv - h # eqn 35 # Now, compute fourth-order estimate: ds = calc_ds_opt(y,yp,ypp,yppp) s += ds iter +=1 end # Since we updated s, need to recompute: xx = 0.5*sqb*s if beta0 > 0 sx = sin(xx); cx = cos(xx) else cx = cosh(xx); sx = exp(xx)-cx end # Now, compute final values. Compute Wisdom/Hernandez G_i^\beta(s) functions: g1bs = 2.0*sx*cx/sqb g2bs = 2.0*signb*sx^2*beta0inv g0bs = 1.0-beta0*g2bs # This should be computed to prevent roundoff error. [ ] #g3bs = (1.0-g1bs)*beta0inv g3bs = G3(s*sqb,beta0) #if typeof(g1bs) == Float64 # println("g1: ",g1bs," g2: ",g2bs," g3: ",g3bs) #end # Compute Gauss' Kepler functions: f = one(T) - k*r0inv*g2bs # eqn (25) g = r0*g1bs + eta*g2bs # eqn (27) if drift_first r = norm(f*(x0-h*v0)+g*v0) else r = norm(f*x0+g*v0) end #if typeof(r) == Float64 # println("r: ",r) #end rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv if drift_first # Drift backwards before Kepler step: (1/22/2018) fm1 = -k*r0inv*g2bs # This is given in 2/7/2018 notes: gmh = k*r0inv*(r0*(g1bs*g2bs-g3bs)+eta*g2bs^2+k*g3bs*g2bs) else # Drift backwards after Kepler step: (1/24/2018) fm1 = k*rinv*(g2bs-k*r0inv*H1(s*sqb,beta0)) # This is g-h*dgdt gmh = k*rinv*(r0*H2(s*sqb,beta0)+eta*H1(s*sqb,beta0)) end # Compute velocity component functions: if drift_first # 2/1/18 notes: dgdtm1 = k*r0inv*rinv*(r0*g0bs*g2bs+eta*g1bs*g2bs+k*g1bs*g3bs) else # 1/22/18 notes: dgdtm1 = -k*rinv*g2bs end #if typeof(fm1) == Float64 # println("fm1: ",fm1," dfdt: ",dfdt," gmh: ",gmh," dgdt-1: ",dgdtm1) #end for j=1:3 # Compute difference vectors (finish - start) of step: state[1+j] = fm1*x0[j]+gmh*v0[j] # position x_ij(t+h)-x_ij(t) - h*v_ij(t) or -h*v_ij(t+h) state[4+j] = dfdt*x0[j]+dgdtm1*v0[j] # velocity v_ij(t+h)-v_ij(t) end return s,f,g,dfdt,dgdtm1,cx,sx,g1bs,g2bs,g3bs,r,rinv,ds,iter end function jac_delxv(x0::Array{T,1},v0::Array{T,1},k::T,s::T,beta0::T,h::T,drift_first::Bool) where {T <: Real} # Using autodiff, computes Jacobian of delx & delv with respect to x0, v0, k, s, beta0 & h. # Autodiff requires a single-vector input, so create an array to hold the independent variables: input = zeros(T,10) input[1:3]=x0; input[4:6]=v0; input[7]=k; input[8]=s; input[9]=beta0; input[10]=h # Create a closure so that the function knows value of drift_first: function delx_delv(input::Array{T2,1}) where {T2 <: Real} # input = x0,v0,k,s,beta0,h,drift_first # Compute delx and delv from h, s, k, beta0, x0 and v0: x0 = input[1:3]; v0 = input[4:6]; k = input[7] s = input[8]; beta0=input[9]; h = input[10] # Set up a single output array for delx and delv: delxv = zeros(T2,6) # Compute square root of beta0: signb = sign(beta0) sqb = sqrt(abs(beta0)) beta0inv=inv(beta0) if drift_first r0 = norm(x0-h*v0) eta = dot(x0-h*v0,v0) else r0 = norm(x0) eta = dot(x0,v0) end r0inv = inv(r0) # Since we updated s, need to recompute: xx = 0.5*sqb*s if beta0 > 0 sx = sin(xx); cx = cos(xx) else cx = cosh(xx); sx = exp(xx)-cx end # Now, compute final values. Compute Wisdom/Hernandez G_i^\beta(s) functions: g1bs = 2.0*sx*cx/sqb g2bs = 2.0*signb*sx^2*beta0inv g0bs = 1.0-beta0*g2bs g3bs = G3(s*sqb,beta0) # Compute Gauss' Kepler functions: f = 1.0 - k*r0inv*g2bs # eqn (25) g = r0*g1bs + eta*g2bs # eqn (27) if drift_first r = norm(f*(x0-h*v0)+g*v0) else r = norm(f*x0+g*v0) end rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv if drift_first # Drift backwards before Kepler step: (1/22/2018) fm1 = -k*r0inv*g2bs # This is given in 2/7/2018 notes: gmh = k*r0inv*(r0*(g1bs*g2bs-g3bs)+eta*g2bs^2+k*g3bs*g2bs) else # Drift backwards after Kepler step: (1/24/2018) fm1 = k*rinv*(g2bs-k*r0inv*H1(s*sqb,beta0)) # This is g-h*dgdt gmh = k*rinv*(r0*H2(s*sqb,beta0)+eta*H1(s*sqb,beta0)) end # Compute velocity component functions: if drift_first dgdtm1 = k*r0inv*rinv*(r0*g0bs*g2bs+eta*g1bs*g2bs+k*g1bs*g3bs) else dgdtm1 = -k*rinv*g2bs end for j=1:3 # Compute difference vectors (finish - start) of step: delxv[ j] = fm1*x0[j]+gmh*v0[j] # position x_ij(t+h)-x_ij(t) - h*v_ij(t) or -h*v_ij(t+h) delxv[3+j] = dfdt*x0[j]+dgdtm1*v0[j] # velocity v_ij(t+h)-v_ij(t) end return delxv end # Use autodiff to compute Jacobian: delxv_jac = ForwardDiff.jacobian(delx_delv,input) # Return Jacobian: return delxv_jac end function kep_drift_ell_hyp!(x0::Array{T,1},v0::Array{T,1},k::T,h::T, s0::T,state::Array{T,1},drift_first::Bool) where {T <: Real} if drift_first r0 = norm(x0-h*v0) else r0 = norm(x0) end beta0 = 2*k/r0-dot(v0,v0) # Solves equation (35) from Wisdom & Hernandez for the elliptic case. # Now, solve for s in elliptical Kepler case: f = zero(T); g=zero(T); dfdt=zero(T); dgdtm1=zero(T); cx=zero(T);sx=zero(T);g1bs=zero(T);g2bs=zero(T);g3bs=zero(T) s=zero(T); ds = zero(T); r = zero(T);rinv=zero(T); iter=0 if beta0 > zero(T) || beta0 < zero(T) s,f,g,dfdt,dgdtm1,cx,sx,g1bs,g2bs,g3bs,r,rinv,ds,iter = solve_kepler_drift!(h,k,x0,v0,beta0,r0, s0,state,drift_first) else # println("Not elliptic or hyperbolic ",beta0," x0 ",x0) r= zero(T); fill!(state,zero(T)); rinv=zero(T); s=zero(T); ds=zero(T); iter = 0 end state[8]= r # These need to be updated. [ ] state[9] = (state[2]*state[5]+state[3]*state[6]+state[4]*state[7])*rinv # recompute beta: # beta is element 10 of state: state[10] = 2.0*k*rinv-(state[5]*state[5]+state[6]*state[6]+state[7]*state[7]) # s is element 11 of state: state[11] = s # ds is element 12 of state: state[12] = ds return iter end function kep_drift_ell_hyp!(x0::Array{T,1},v0::Array{T,1},k::T,h::T, s0::T,state::Array{T,1},jacobian::Array{T,2},drift_first::Bool,d::Derivatives{T}) where {T <: Real} if drift_first r0 = norm(x0-h*v0) else r0 = norm(x0) end beta0 = 2*k/r0-dot(v0,v0) # Computes the Jacobian as well # Solves equation (35) from Wisdom & Hernandez for the elliptic case. r0inv = inv(r0) beta0inv = inv(beta0) # Now, solve for s in elliptical Kepler case: f = zero(T); g=zero(T); dfdt=zero(T); dgdtm1=zero(T); cx=zero(T);sx=zero(T);g1bs=zero(T);g2bs=zero(T);g3bs=zero(T) s=zero(T); ds=zero(T); r = zero(T);rinv=zero(T); iter=0 if beta0 > zero(T) || beta0 < zero(T) s,f,g,dfdt,dgdtm1,cx,sx,g1bs,g2bs,g3bs,r,rinv,ds,iter = solve_kepler_drift!(h,k,x0,v0,beta0,r0, s0,state,drift_first) # Compute the Jacobian. jacobian[i,j] is derivative of final state variable q[i] # with respect to initial state variable q0[j], where q = {x,v} & q0 = {x0,v0}. delxv_jac = jac_delxv(x0,v0,k,s,beta0,h,drift_first) # println("computed jacobian with autodiff") # Add in partial derivatives with respect to x0, v0 and k: jacobian[1:6,1:7] = delxv_jac[1:6,1:7] # Add in s and beta0 derivatives: compute_jacobian_kep_drift!(h,k,x0,v0,beta0,s,f,g,dfdt,dgdtm1,cx,sx,g1bs,g2bs,r0,r,jacobian,delxv_jac,drift_first,d) else # println("Not elliptic or hyperbolic ",beta0," x0 ",x0) r= zero(T); fill!(state,zero(T)); rinv=zero(T); s=zero(T); ds=zero(T); iter = 0 end # recompute beta: state[8]= r # These need to be updated. [ ] state[9] = (state[2]*state[5]+state[3]*state[6]+state[4]*state[7])*rinv # beta is element 10 of state: state[10] = 2.0*k*rinv-(state[5]*state[5]+state[6]*state[6]+state[7]*state[7]) # s is element 11 of state: state[11] = s # ds is element 12 of state: state[12] = ds return iter end function compute_jacobian_kep_drift!(h::T,k::T,x0::Array{T,1},v0::Array{T,1},beta0::T,s::T, f::T,g::T,dfdt::T,dgdtm1::T,cx::T,sx::T,g1::T,g2::T,r0::T,r::T,jacobian::Array{T,2},drift_first::Bool,d::Derivatives{T}) where {T <: Real} # This needs to be updated to incorporate backwards drifts. [ ] # Compute the Jacobian. jacobian[i,j] is derivative of final state variable q[i] # with respect to initial state variable q0[j], where q = {x,v,k} & q0 = {x0,v0,k}. # Now, compute the Jacobian: (9/18/2017 notes) g0 = one(T)-beta0*g2 # Expand g3 as a series if s is small: sqb = sqrt(abs(beta0)) g3bs = G3(s*sqb,beta0) # g3bs = (s-g1)/beta0 if drift_first eta = dot(x0-h*v0,v0) else eta = dot(x0,v0) end absv0 = norm(v0) #dsdbeta = (2h-r0*(s*g0+g1)+k/beta0*(s*g0-g1)-eta*s*g1)/(2beta0*r) # New expression derived on 8/14/2019: dsdbeta = (h+eta*g2+2*k*g3bs-s*r)/(2beta0*r) dsdr0 = -(2k/r0^2*dsdbeta+g1/r) dsda0 = -g2/r dsdv0 = -2absv0*dsdbeta dsdk = 2/r0*dsdbeta-g3bs/r dbetadr0 = -2k/r0^2 dbetadv0 = -2absv0 dbetadk = 2/r0 # "p" for partial derivative: for i=1:3 d.pxpr0[i] = k/r0^2*g2*x0[i]+g1*v0[i] d.pxpa0[i] = g2*v0[i] d.pxpk[i] = -g2/r0*x0[i] d.pxps[i] = -k/r0*g1*x0[i]+(r0*g0+eta*g1)*v0[i] d.pxpbeta[i] = -k/(2beta0*r0)*(s*g1-2g2)*x0[i]+1/(2beta0)*(s*r0*g0-r0*g1+s*eta*g1-2*eta*g2)*v0[i] d.prvpr0[i] = k*g1/r0^2*x0[i]+g0*v0[i] d.prvpa0[i] = g1*v0[i] d.prvpk[i] = -g1/r0*x0[i] d.prvps[i] = -k*g0/r0*x0[i]+(-beta0*r0*g1+eta*g0)*v0[i] d.prvpbeta[i] = -k/(2beta0*r0)*(s*g0-g1)*x0[i]+1/(2beta0)*(-s*r0*beta0*g1+eta*s*g0-eta*g1)*v0[i] end prpr0 = g0 prpa0 = g1 prpk = g2 prps = (k-beta0*r0)*g1+eta*g0 prpbeta = 1/(2beta0)*(s*(k-beta0*r0)*g1+eta*s*g0-eta*g1-2k*g2) for i=1:3 d.dxdr0[i] = d.pxps[i]*dsdr0 + d.pxpbeta[i]*dbetadr0 + d.pxpr0[i] d.dxda0[i] = d.pxps[i]*dsda0 + d.pxpa0[i] d.dxdv0[i] = d.pxps[i]*dsdv0 + d.pxpbeta[i]*dbetadv0 d.dxdk[i] = d.pxps[i]*dsdk + d.pxpbeta[i]*dbetadk + d.pxpk[i] d.drvdr0[i] = d.prvps[i]*dsdr0 + d.prvpbeta[i]*dbetadr0 + d.prvpr0[i] d.drvda0[i] = d.prvps[i]*dsda0 + d.prvpa0[i] d.drvdv0[i] = d.prvps[i]*dsdv0 + d.prvpbeta[i]*dbetadv0 d.drvdk[i] = d.prvps[i]*dsdk + d.prvpbeta[i]*dbetadk + d.prvpk[i] end drdr0 = prpr0 + prps*dsdr0 + prpbeta*dbetadr0 drda0 = prpa0 + prps*dsda0 drdv0 = prps*dsdv0 + prpbeta*dbetadv0 drdk = prpk + prps*dsdk + prpbeta*dbetadk for i=1:3 d.vtmp[i] = dfdt*x0[i]+(dgdtm1+1.0)*v0[i] d.dvdr0[i] = (d.drvdr0[i]-drdr0*d.vtmp[i])/r d.dvda0[i] = (d.drvda0[i]-drda0*d.vtmp[i])/r d.dvdv0[i] = (d.drvdv0[i]-drdv0*d.vtmp[i])/r d.dvdk[i] = (d.drvdk[i] -drdk *d.vtmp[i])/r end # Now, compute Jacobian: for i=1:3 jacobian[ i, i] = f jacobian[ i,3+i] = g jacobian[3+i, i] = dfdt jacobian[3+i,3+i] = dgdt+1.0 jacobian[ i,7] = d.dxdk[i] jacobian[3+i,7] = d.dvdk[i] end for j=1:3 for i=1:3 jacobian[ i, j] += d.dxdr0[i]*x0[j]/r0 + d.dxda0[i]*v0[j] jacobian[ i,3+j] += d.dxdv0[i]*v0[j]/absv0 + d.dxda0[i]*x0[j] jacobian[3+i, j] += d.dvdr0[i]*x0[j]/r0 + d.dvda0[i]*v0[j] jacobian[3+i,3+j] += d.dvdv0[i]*v0[j]/absv0 + d.dvda0[i]*x0[j] end end jacobian[7,7]=one(T) return end function compute_jacobian_kep_drift!(h::T,k::T,x0::Array{T,1},v0::Array{T,1},beta0::T,s::T, f::T,g::T,dfdt::T,dgdtm1::T,cx::T,sx::T,g1::T,g2::T,r0::T,r::T,jacobian::Array{T,2}, delxv_jac::Array{T,2},drift_first::Bool,d::Derivatives{T}) where {T <: Real} # This needs to be updated to incorporate backwards drifts. [ ] # Compute the Jacobian. jacobian[i,j] is derivative of final state variable q[i] # with respect to initial state variable q0[j], where q = {x,v,k} & q0 = {x0,v0,k}. # Now, compute the Jacobian: (9/18/2017 notes) g0 = one(T)-beta0*g2 # Expand g3 as a series if s is small: sqb = sqrt(abs(beta0)) g3bs = G3(s*sqb,beta0) # g3bs = (s-g1)/beta0 if drift_first eta = dot(x0-h*v0,v0) r0 = norm(x0-h*v0) else eta = dot(x0,v0) r0 = norm(x0) end absv0 = norm(v0) r0inv = inv(r0) #dsdbeta = (2h-r0*(s*g0+g1)+k/beta0*(s*g0-g1)-eta*s*g1)/(2beta0*r) # New expression derived on 8/14/2019: dsdbeta = (h+eta*g2+2*k*g3bs-s*r)/(2beta0*r) dsdr0 = -(2k*r0inv^2*dsdbeta+g1/r) dsda0 = -g2/r dsdv0 = -2absv0*dsdbeta dsdk = 2*r0inv*dsdbeta-g3bs/r dbetadr0 = -2k*r0inv^2 dbetadv0 = -2absv0 dbetadk = 2r0inv # Compute s & beta components of x0 & v0 derivatives: for i=1:3 d.dxdr0[i] = delxv_jac[ i,8]*dsdr0 + delxv_jac[ i,9]*dbetadr0 d.dxda0[i] = delxv_jac[ i,8]*dsda0 d.dxdv0[i] = delxv_jac[ i,8]*dsdv0 + delxv_jac[ i,9]*dbetadv0 d.dxdk[i] = delxv_jac[ i,8]*dsdk + delxv_jac[ i,9]*dbetadk d.dvdr0[i] = delxv_jac[3+i,8]*dsdr0 + delxv_jac[3+i,9]*dbetadr0 d.dvda0[i] = delxv_jac[3+i,8]*dsda0 d.dvdv0[i] = delxv_jac[3+i,8]*dsdv0 + delxv_jac[3+i,9]*dbetadv0 d.dvdk[i] = delxv_jac[3+i,8]*dsdk + delxv_jac[3+i,9]*dbetadk end # Now, compute Jacobian: # Add in s & beta components of k derivative: for i=1:3 jacobian[ i,7] += d.dxdk[i] jacobian[3+i,7] += d.dvdk[i] end # Add in s & beta components of x0 & v0 derivatives: for j=1:3 for i=1:3 if drift_first jacobian[ i, j] += d.dxdr0[i]*(x0[j]-h*v0[j])*r0inv + d.dxda0[i]*v0[j] jacobian[ i,3+j] += -h*d.dxdr0[i]*(x0[j]-h*v0[j])*r0inv + d.dxdv0[i]*v0[j]/absv0 + d.dxda0[i]*(x0[j]-2*h*v0[j]) jacobian[3+i, j] += d.dvdr0[i]*(x0[j]-h*v0[j])*r0inv + d.dvda0[i]*v0[j] jacobian[3+i,3+j] += -h*d.dvdr0[i]*(x0[j]-h*v0[j])*r0inv + d.dvdv0[i]*v0[j]/absv0 + d.dvda0[i]*(x0[j]-2*h*v0[j]) else jacobian[ i, j] += d.dxdr0[i]*x0[j]*r0inv + d.dxda0[i]*v0[j] jacobian[ i,3+j] += d.dxdv0[i]*v0[j]/absv0 + d.dxda0[i]*x0[j] jacobian[3+i, j] += d.dvdr0[i]*x0[j]*r0inv + d.dvda0[i]*v0[j] jacobian[3+i,3+j] += d.dvdv0[i]*v0[j]/absv0 + d.dvda0[i]*x0[j] end end end # Mass doesn't change: jacobian[7,7]=one(T) return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
936
include("kepler_drift_solver.jl") # Takes a single kepler step, with reverse drift, calling Wisdom & Hernandez solver # function kepler_drift_step!(gm::T,h::T,state0::Array{T,1},state::Array{T,1},drift_first::Bool) where {T <: Real} # compute beta, r0, get x/v from state vector & call correct subroutine x0 = zeros(eltype(state0),3) v0 = zeros(eltype(state0),3) for k=1:3 x0[k]=state0[k+1] v0[k]=state0[k+4] end s0=state0[11] iter = kep_drift_ell_hyp!(x0,v0,gm,h,s0,state,drift_first) return end function kepler_drift_step!(gm::T,h::T,state0::Array{T,1},state::Array{T,1},jacobian::Array{T,2},drift_first::Bool,d::Derivatives{T}) where {T <: Real} # compute beta, r0, get x/v from state vector & call correct subroutine x0 = zeros(eltype(state0),3) v0 = zeros(eltype(state0),3) for k=1:3 x0[k]=state0[k+1] v0[k]=state0[k+4] end s0=state0[11] iter = kep_drift_ell_hyp!(x0,v0,gm,h,s0,state,jacobian,drift_first,d) return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
8228
function cubic1(a::T, b::T, c::T) where {T <: Real} a3 = a*third Q = a3^2 - b*third R = a3^3 + 0.5*(-a3*b + c) if R^2 < Q^3 # println("Error in cubic solver ",R^2," ",Q^3) return -c/b else A = -sign(R)*cbrt(abs(R) + sqrt(R*R - Q*Q*Q)) if A == 0.0 B = 0.0 else B = Q/A end x1 = A + B - a3 return x1 end return end function calc_ds_opt(y::T,yp::T,ypp::T,yppp::T) where {T <: Real} # Computes quartic Newton's update to equation y=0 using first through 3rd derivatives. # Uses techniques outlined in Murray & Dermott for Kepler solver. # Rearrange to reduce number of divisions: num = y*yp den1 = yp*yp-y*ypp*.5 den12 = den1*den1 den2 = yp*den12-num*.5*(ypp*den1-third*num*yppp) return -y*den12/den2 end function solve_kepler!(h::T,k::T,x0::Array{T,1},v0::Array{T,1},beta0::T, r0::T,s0::T,state::Array{T,1}) where {T <: Real} # Solves elliptic Kepler's equation for both elliptic and hyperbolic cases. # Initial guess (if s0 = 0): r0inv = inv(r0) beta0inv = inv(beta0) signb = sign(beta0) sqb = sqrt(signb*beta0) zeta = k-r0*beta0 #eta = dot(x0,v0) eta = x0[1]*v0[1]+x0[2]*v0[2]+x0[3]*v0[3] sguess = 0.0 if s0 == zero(T) # Use cubic estimate: if zeta != zero(T) sguess = cubic1(3eta/zeta,6r0/zeta,-6h/zeta) else if eta != zero(T) reta = r0/eta disc = reta^2+2h/eta if disc > zero(T) sguess =-reta+sqrt(disc) else sguess = h*r0inv end else sguess = h*r0inv end end s = copy(sguess) else s = copy(s0) end s0 = copy(s) y = zero(T); yp = one(T) iter = 0 ds = Inf KEPLER_TOL = sqrt(eps(h)) ITMAX = 20 while iter == 0 || (abs(ds) > KEPLER_TOL && iter < ITMAX) xx = sqb*s if beta0 > 0 # sx = sin(xx); cx = cos(xx) sx,cx = sincos(xx) else cx = cosh(xx); sx = exp(xx)-cx end sx *= sqb # Third derivative: yppp = zeta*cx - signb*eta*sx # First derivative: yp = (-yppp+ k)*beta0inv # Second derivative: ypp = signb*zeta*beta0inv*sx + eta*cx y = (-ypp + eta +k*s)*beta0inv - h # eqn 35 # Now, compute fourth-order estimate: # ds = calc_ds_opt(y,yp,ypp,yppp) ds = -y/yp s += ds iter +=1 end if iter == ITMAX println("Reached max iterations in solve_kepler: h ",h," s0: ",s0," s: ",s," ds: ",ds) end #println("sguess: ",sguess," s: ",s," s-sguess: ",s-sguess," ds: ",ds," iter: ",iter) # Since we updated s, need to recompute: xx = 0.5*sqb*s if beta0 > 0 # sx = sin(xx); cx = cos(xx) sx,cx = sincos(xx) else cx = cosh(xx); sx = exp(xx)-cx end # Now, compute final values: g1bs = 2.0*sx*cx/sqb g2bs = 2.0*signb*sx^2*beta0inv f = one(T) - k*r0inv*g2bs # eqn (25) g = r0*g1bs + eta*g2bs # eqn (27) for j=1:3 # Position is components 2-4 of state: state[1+j] = x0[j]*f+v0[j]*g end r = sqrt(state[2]*state[2]+state[3]*state[3]+state[4]*state[4]) rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv dgdt = (r0-r0*beta0*g2bs+eta*g1bs)*rinv for j=1:3 # Velocity is components 5-7 of state: state[4+j] = x0[j]*dfdt+v0[j]*dgdt end return s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r,rinv,ds,iter end function kep_ell_hyp!(x0::Array{T,1},v0::Array{T,1},r0::T,k::T,h::T, beta0::T,s0::T,state::Array{T,1}) where {T <: Real} # Solves equation (35) from Wisdom & Hernandez for the elliptic case. # Now, solve for s in elliptical Kepler case: f = zero(T); g=zero(T); dfdt=zero(T); dgdt=zero(T); cx=zero(T);sx=zero(T);g1bs=zero(T);g2bs=zero(T) s=zero(T); ds = zero(T); r = zero(T);rinv=zero(T); iter=0 if beta0 > zero(T) || beta0 < zero(T) s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r,rinv,ds,iter = solve_kepler!(h,k,x0,v0,beta0,r0, s0,state) else println("Not elliptic or hyperbolic ",beta0," x0 ",x0) r= zero(T); fill!(state,zero(T)); rinv=zero(T); s=zero(T); ds=zero(T); iter = 0 end state[8]= r state[9] = (state[2]*state[5]+state[3]*state[6]+state[4]*state[7])*rinv # recompute beta: # beta is element 10 of state: state[10] = 2.0*k*rinv-(state[5]*state[5]+state[6]*state[6]+state[7]*state[7]) # s is element 11 of state: state[11] = s # ds is element 12 of state: state[12] = ds return iter end function kep_ell_hyp!(x0::Array{T,1},v0::Array{T,1},r0::T,k::T,h::T, beta0::T,s0::T,state::Array{T,1},jacobian::Array{T,2},d::Derivatives{T}) where {T <: Real} # Computes the Jacobian as well # Solves equation (35) from Wisdom & Hernandez for the elliptic case. r0inv = inv(r0) beta0inv = inv(beta0) # Now, solve for s in elliptical Kepler case: f = zero(T); g=zero(T); dfdt=zero(T); dgdt=zero(T); cx=zero(T);sx=zero(T);g1bs=zero(T);g2bs=zero(T) s=zero(T); ds=zero(T); r = zero(T);rinv=zero(T); iter=0 if beta0 > zero(T) || beta0 < zero(T) s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r,rinv,ds,iter = solve_kepler!(h,k,x0,v0,beta0,r0, s0,state) # Compute the Jacobian. jacobian[i,j] is derivative of final state variable q[i] # with respect to initial state variable q0[j], where q = {x,v} & q0 = {x0,v0}. fill!(jacobian,zero(T)) compute_jacobian!(h,k,x0,v0,beta0,s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r0,r,jacobian,d) else println("Not elliptic or hyperbolic ",beta0," x0 ",x0) r= zero(T); fill!(state,zero(T)); rinv=zero(T); s=zero(T); ds=zero(T); iter = 0 end # recompute beta: state[8]= r state[9] = (state[2]*state[5]+state[3]*state[6]+state[4]*state[7])*rinv # beta is element 10 of state: state[10] = 2.0*k*rinv-(state[5]*state[5]+state[6]*state[6]+state[7]*state[7]) # s is element 11 of state: state[11] = s # ds is element 12 of state: state[12] = ds return iter end function compute_jacobian!(h::T,k::T,x0::Array{T,1},v0::Array{T,1},beta0::T,s::T, f::T,g::T,dfdt::T,dgdt::T,cx::T,sx::T,g1::T,g2::T,r0::T,r::T,jacobian::Array{T,2}, d::Derivatives{T}) where {T <: Real} # Compute the Jacobian. jacobian[i,j] is derivative of final state variable q[i] # with respect to initial state variable q0[j], where q = {x,v,k} & q0 = {x0,v0,k}. # Now, compute the Jacobian: (9/18/2017 notes) g0 = one(T)-beta0*g2 g3 = (s-g1)/beta0 eta = dot(x0,v0) # unnecessary to divide by r0 for multiply for \dot\alpha_0 absv0 = sqrt(dot(v0,v0)) dsdbeta = (2h-r0*(s*g0+g1)+k/beta0*(s*g0-g1)-eta*s*g1)/(2beta0*r) dsdr0 = -(2k/r0^2*dsdbeta+g1/r) dsda0 = -g2/r dsdv0 = -2absv0*dsdbeta dsdk = 2/r0*dsdbeta-g3/r dbetadr0 = -2k/r0^2 dbetadv0 = -2absv0 dbetadk = 2/r0 # "p" for partial derivative: for i=1:3 d.pxpr0[i] = k/r0^2*g2*x0[i]+g1*v0[i] d.pxpa0[i] = g2*v0[i] d.pxpk[i] = -g2/r0*x0[i] d.pxps[i] = -k/r0*g1*x0[i]+(r0*g0+eta*g1)*v0[i] d.pxpbeta[i] = -k/(2beta0*r0)*(s*g1-2g2)*x0[i]+1/(2beta0)*(s*r0*g0-r0*g1+s*eta*g1-2*eta*g2)*v0[i] d.prvpr0[i] = k*g1/r0^2*x0[i]+g0*v0[i] d.prvpa0[i] = g1*v0[i] d.prvpk[i] = -g1/r0*x0[i] d.prvps[i] = -k*g0/r0*x0[i]+(-beta0*r0*g1+eta*g0)*v0[i] d.prvpbeta[i] = -k/(2beta0*r0)*(s*g0-g1)*x0[i]+1/(2beta0)*(-s*r0*beta0*g1+eta*s*g0-eta*g1)*v0[i] end prpr0 = g0 prpa0 = g1 prpk = g2 prps = (k-beta0*r0)*g1+eta*g0 prpbeta = 1/(2beta0)*(s*(k-beta0*r0)*g1+eta*s*g0-eta*g1-2k*g2) for i=1:3 d.dxdr0[i] = d.pxps[i]*dsdr0 + d.pxpbeta[i]*dbetadr0 + d.pxpr0[i] d.dxda0[i] = d.pxps[i]*dsda0 + d.pxpa0[i] d.dxdv0[i] = d.pxps[i]*dsdv0 + d.pxpbeta[i]*dbetadv0 d.dxdk[i] = d.pxps[i]*dsdk + d.pxpbeta[i]*dbetadk + d.pxpk[i] d.drvdr0[i] = d.prvps[i]*dsdr0 + d.prvpbeta[i]*dbetadr0 + d.prvpr0[i] d.drvda0[i] = d.prvps[i]*dsda0 + d.prvpa0[i] d.drvdv0[i] = d.prvps[i]*dsdv0 + d.prvpbeta[i]*dbetadv0 d.drvdk[i] = d.prvps[i]*dsdk + d.prvpbeta[i]*dbetadk +d.prvpk[i] end drdr0 = prpr0 + prps*dsdr0 + prpbeta*dbetadr0 drda0 = prpa0 + prps*dsda0 drdv0 = prps*dsdv0 + prpbeta*dbetadv0 drdk = prpk + prps*dsdk + prpbeta*dbetadk for i=1:3 d.vtmp[i] = dfdt*x0[i]+dgdt*v0[i] d.dvdr0[i] = (d.drvdr0[i]-drdr0*d.vtmp[i])/r d.dvda0[i] = (d.drvda0[i]-drda0*d.vtmp[i])/r d.dvdv0[i] = (d.drvdv0[i]-drdv0*d.vtmp[i])/r d.dvdk[i] = (d.drvdk[i] -drdk *d.vtmp[i])/r end # Now, compute Jacobian: for i=1:3 jacobian[ i, i] = f jacobian[ i,3+i] = g jacobian[3+i, i] = dfdt jacobian[3+i,3+i] = dgdt jacobian[ i,7] = d.dxdk[i] jacobian[3+i,7] = d.dvdk[i] end for j=1:3 for i=1:3 jacobian[ i, j] += d.dxdr0[i]*x0[j]/r0 + d.dxda0[i]*v0[j] jacobian[ i,3+j] += d.dxdv0[i]*v0[j]/absv0 + d.dxda0[i]*x0[j] jacobian[3+i, j] += d.dvdr0[i]*x0[j]/r0 + d.dvda0[i]*v0[j] jacobian[3+i,3+j] += d.dvdv0[i]*v0[j]/absv0 + d.dvda0[i]*x0[j] end end jacobian[7,7]=one(T) return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
8039
# Wisdom & Hernandez version of Kepler solver, but with quartic convergence. function cubic1(a::T, b::T, c::T) where {T <: Real} a3 = a*third Q = a3^2 - b*third R = a3^3 + 0.5*(-a3*b + c) if R^2 < Q^3 # println("Error in cubic solver ",R^2," ",Q^3) return -c/b else A = -sign(R)*cbrt(abs(R) + sqrt(R*R - Q*Q*Q)) if A == 0.0 B = 0.0 else B = Q/A end x1 = A + B - a3 return x1 end return end function calc_ds_opt(y::T,yp::T,ypp::T,yppp::T) where {T <: Real} # Computes quartic Newton's update to equation y=0 using first through 3rd derivatives. # Uses techniques outlined in Murray & Dermott for Kepler solver. # Rearrange to reduce number of divisions: num = y*yp den1 = yp*yp-y*ypp*.5 den12 = den1*den1 den2 = yp*den12-num*.5*(ypp*den1-third*num*yppp) return -y*den12/den2 end function solve_kepler!(h::T,k::T,x0::Array{T,1},v0::Array{T,1},beta0::T, r0::T,s0::T,state::Array{T,1}) where {T <: Real} # Solves elliptic Kepler's equation for both elliptic and hyperbolic cases. # Initial guess (if s0 = 0): r0inv = inv(r0) beta0inv = inv(beta0) signb = sign(beta0) sqb = sqrt(signb*beta0) zeta = k-r0*beta0 eta = dot(x0,v0) sguess = 0.0 if s0 == zero(T) # Use cubic estimate: if zeta != zero(T) sguess = cubic1(3eta/zeta,6r0/zeta,-6h/zeta) else if eta != zero(T) reta = r0/eta disc = reta^2+2h/eta if disc > zero(T) sguess =-reta+sqrt(disc) else sguess = h*r0inv end else sguess = h*r0inv end end s = copy(sguess) else s = copy(s0) end s0 = copy(s) y = zero(T); yp = one(T) iter = 0 ds = Inf KEPLER_TOL = sqrt(eps(h)) ITMAX = 20 while iter == 0 || (abs(ds) > KEPLER_TOL && iter < ITMAX) xx = sqb*s if beta0 > 0 sx = sin(xx); cx = cos(xx) else cx = cosh(xx); sx = exp(xx)-cx end sx *= sqb # Third derivative: yppp = zeta*cx - signb*eta*sx # First derivative: yp = (-yppp+ k)*beta0inv # Second derivative: ypp = signb*zeta*beta0inv*sx + eta*cx y = (-ypp + eta +k*s)*beta0inv - h # eqn 35 # Now, compute fourth-order estimate: ds = calc_ds_opt(y,yp,ypp,yppp) s += ds iter +=1 end if iter == ITMAX println("Reached max iterations in solve_kepler: h ",h," s0: ",s0," s: ",s," ds: ",ds) end #println("sguess: ",sguess," s: ",s," s-sguess: ",s-sguess," ds: ",ds," iter: ",iter) # Since we updated s, need to recompute: xx = 0.5*sqb*s if beta0 > 0 sx = sin(xx); cx = cos(xx) else cx = cosh(xx); sx = exp(xx)-cx end # Now, compute final values: g1bs = 2.0*sx*cx/sqb g2bs = 2.0*signb*sx^2*beta0inv f = one(T) - k*r0inv*g2bs # eqn (25) g = r0*g1bs + eta*g2bs # eqn (27) for j=1:3 # Position is components 2-4 of state: state[1+j] = x0[j]*f+v0[j]*g end r = sqrt(state[2]*state[2]+state[3]*state[3]+state[4]*state[4]) rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv dgdt = (r0-r0*beta0*g2bs+eta*g1bs)*rinv for j=1:3 # Velocity is components 5-7 of state: state[4+j] = x0[j]*dfdt+v0[j]*dgdt end return s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r,rinv,ds,iter end function kep_ell_hyp!(x0::Array{T,1},v0::Array{T,1},r0::T,k::T,h::T, beta0::T,s0::T,state::Array{T,1}) where {T <: Real} # Solves equation (35) from Wisdom & Hernandez for the elliptic case. # Now, solve for s in elliptical Kepler case: f = zero(T); g=zero(T); dfdt=zero(T); dgdt=zero(T); cx=zero(T);sx=zero(T);g1bs=zero(T);g2bs=zero(T) s=zero(T); ds = zero(T); r = zero(T);rinv=zero(T); iter=0 if beta0 > zero(T) || beta0 < zero(T) s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r,rinv,ds,iter = solve_kepler!(h,k,x0,v0,beta0,r0, s0,state) else println("Not elliptic or hyperbolic ",beta0," x0 ",x0) r= zero(T); fill!(state,zero(T)); rinv=zero(T); s=zero(T); ds=zero(T); iter = 0 end state[8]= r state[9] = (state[2]*state[5]+state[3]*state[6]+state[4]*state[7])*rinv # recompute beta: # beta is element 10 of state: state[10] = 2.0*k*rinv-(state[5]*state[5]+state[6]*state[6]+state[7]*state[7]) # s is element 11 of state: state[11] = s # ds is element 12 of state: state[12] = ds return iter end function kep_ell_hyp!(x0::Array{T,1},v0::Array{T,1},r0::T,k::T,h::T, beta0::T,s0::T,state::Array{T,1},jacobian::Array{T,2}) where {T <: Real} # Computes the Jacobian as well # Solves equation (35) from Wisdom & Hernandez for the elliptic case. r0inv = inv(r0) beta0inv = inv(beta0) # Now, solve for s in elliptical Kepler case: f = zero(T); g=zero(T); dfdt=zero(T); dgdt=zero(T); cx=zero(T);sx=zero(T);g1bs=zero(T);g2bs=zero(T) s=zero(T); ds=zero(T); r = zero(T);rinv=zero(T); iter=0 if beta0 > zero(T) || beta0 < zero(T) s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r,rinv,ds,iter = solve_kepler!(h,k,x0,v0,beta0,r0, s0,state) # Compute the Jacobian. jacobian[i,j] is derivative of final state variable q[i] # with respect to initial state variable q0[j], where q = {x,v} & q0 = {x0,v0}. fill!(jacobian,zero(T)) compute_jacobian!(h,k,x0,v0,beta0,s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r0,r,jacobian) else println("Not elliptic or hyperbolic ",beta0," x0 ",x0) r= zero(T); fill!(state,zero(T)); rinv=zero(T); s=zero(T); ds=zero(T); iter = 0 end # recompute beta: state[8]= r state[9] = (state[2]*state[5]+state[3]*state[6]+state[4]*state[7])*rinv # beta is element 10 of state: state[10] = 2.0*k*rinv-(state[5]*state[5]+state[6]*state[6]+state[7]*state[7]) # s is element 11 of state: state[11] = s # ds is element 12 of state: state[12] = ds return iter end function compute_jacobian!(h::T,k::T,x0::Array{T,1},v0::Array{T,1},beta0::T,s::T, f::T,g::T,dfdt::T,dgdt::T,cx::T,sx::T,g1::T,g2::T,r0::T,r::T,jacobian::Array{T,2}) where {T <: Real} # Compute the Jacobian. jacobian[i,j] is derivative of final state variable q[i] # with respect to initial state variable q0[j], where q = {x,v,k} & q0 = {x0,v0,k}. # Now, compute the Jacobian: (9/18/2017 notes) g0 = one(T)-beta0*g2 g3 = (s-g1)/beta0 eta = dot(x0,v0) # unnecessary to divide by r0 for multiply for \dot\alpha_0 absv0 = sqrt(dot(v0,v0)) dsdbeta = (2h-r0*(s*g0+g1)+k/beta0*(s*g0-g1)-eta*s*g1)/(2beta0*r) dsdr0 = -(2k/r0^2*dsdbeta+g1/r) dsda0 = -g2/r dsdv0 = -2absv0*dsdbeta dsdk = 2/r0*dsdbeta-g3/r dbetadr0 = -2k/r0^2 dbetadv0 = -2absv0 dbetadk = 2/r0 # "p" for partial derivative: for i=1:3 pxpr0[i] = k/r0^2*g2*x0[i]+g1*v0[i] pxpa0[i] = g2*v0[i] pxpk[i] = -g2/r0*x0[i] pxps[i] = -k/r0*g1*x0[i]+(r0*g0+eta*g1)*v0[i] pxpbeta[i] = -k/(2beta0*r0)*(s*g1-2g2)*x0[i]+1/(2beta0)*(s*r0*g0-r0*g1+s*eta*g1-2*eta*g2)*v0[i] prvpr0[i] = k*g1/r0^2*x0[i]+g0*v0[i] prvpa0[i] = g1*v0[i] prvpk[i] = -g1/r0*x0[i] prvps[i] = -k*g0/r0*x0[i]+(-beta0*r0*g1+eta*g0)*v0[i] prvpbeta[i] = -k/(2beta0*r0)*(s*g0-g1)*x0[i]+1/(2beta0)*(-s*r0*beta0*g1+eta*s*g0-eta*g1)*v0[i] end prpr0 = g0 prpa0 = g1 prpk = g2 prps = (k-beta0*r0)*g1+eta*g0 prpbeta = 1/(2beta0)*(s*(k-beta0*r0)*g1+eta*s*g0-eta*g1-2k*g2) for i=1:3 dxdr0[i] = pxps[i]*dsdr0 + pxpbeta[i]*dbetadr0 + pxpr0[i] dxda0[i] = pxps[i]*dsda0 + pxpa0[i] dxdv0[i] = pxps[i]*dsdv0 + pxpbeta[i]*dbetadv0 dxdk[i] = pxps[i]*dsdk + pxpbeta[i]*dbetadk + pxpk[i] drvdr0[i] = prvps[i]*dsdr0 + prvpbeta[i]*dbetadr0 + prvpr0[i] drvda0[i] = prvps[i]*dsda0 + prvpa0[i] drvdv0[i] = prvps[i]*dsdv0 + prvpbeta[i]*dbetadv0 drvdk[i] = prvps[i]*dsdk + prvpbeta[i]*dbetadk +prvpk[i] end drdr0 = prpr0 + prps*dsdr0 + prpbeta*dbetadr0 drda0 = prpa0 + prps*dsda0 drdv0 = prps*dsdv0 + prpbeta*dbetadv0 drdk = prpk + prps*dsdk + prpbeta*dbetadk for i=1:3 vtmp[i] = dfdt*x0[i]+dgdt*v0[i] dvdr0[i] = (drvdr0[i]-drdr0*vtmp[i])/r dvda0[i] = (drvda0[i]-drda0*vtmp[i])/r dvdv0[i] = (drvdv0[i]-drdv0*vtmp[i])/r dvdk[i] = (drvdk[i] -drdk *vtmp[i])/r end # Now, compute Jacobian: for i=1:3 jacobian[ i, i] = f jacobian[ i,3+i] = g jacobian[3+i, i] = dfdt jacobian[3+i,3+i] = dgdt jacobian[ i,7] = dxdk[i] jacobian[3+i,7] = dvdk[i] end for j=1:3 for i=1:3 jacobian[ i, j] += dxdr0[i]*x0[j]/r0 + dxda0[i]*v0[j] jacobian[ i,3+j] += dxdv0[i]*v0[j]/absv0 + dxda0[i]*x0[j] jacobian[3+i, j] += dvdr0[i]*x0[j]/r0 + dvda0[i]*v0[j] jacobian[3+i,3+j] += dvdv0[i]*v0[j]/absv0 + dvda0[i]*x0[j] end end jacobian[7,7]=one(T) return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
2538
include("kepler_solver_derivative.jl") # Takes a single kepler step, calling Wisdom & Hernandez solver # #function kepler_step!(gm::Float64,h::Float64,state0::Array{Float64,1},state::Array{Float64,1}) function kepler_step!(gm::T,h::T,state0::Array{T,1},state::Array{T,1}) where {T <: Real} # compute beta, r0, get x/v from state vector & call correct subroutine x0 = zeros(eltype(state0),3) v0 = zeros(eltype(state0),3) for k=1:3 x0[k]=state0[k+1] v0[k]=state0[k+4] end # x0=state0[2:4] r0 = sqrt(x0[1]*x0[1]+x0[2]*x0[2]+x0[3]*x0[3]) # v0 = state0[5:7] beta0 = 2*gm/r0-(v0[1]*v0[1]+v0[2]*v0[2]+v0[3]*v0[3]) s0=state0[11] iter = kep_ell_hyp!(x0,v0,r0,gm,h,beta0,s0,state) # if beta0 > zero # iter = kep_elliptic!(x0,v0,r0,gm,h,beta0,s0,state) # else # iter = kep_hyperbolic!(x0,v0,r0,gm,h,beta0,s0,state) # end return end # Takes a single kepler step, calling Wisdom & Hernandez solver # #function kepler_step!(gm::Float64,h::Float64,state0::Array{Float64,1},state::Array{Float64,1}) function kepler_step!(gm::T,h::T,state0::Array{T,1},state::Array{T,1},x0::Array{T,1},v0::Array{T,1}) where {T <: Real} # compute beta, r0, get x/v from state vector & call correct subroutine #x0 = zeros(eltype(state0),3) #v0 = zeros(eltype(state0),3) for k=1:3 x0[k]=state0[k+1] v0[k]=state0[k+4] end # x0=state0[2:4] # r0 = sqrt(x0[1]*x0[1]+x0[2]*x0[2]+x0[3]*x0[3]) r0 = norm(x0) # v0 = state0[5:7] beta0 = 2*gm/r0-(v0[1]*v0[1]+v0[2]*v0[2]+v0[3]*v0[3]) s0=state0[11] iter = kep_ell_hyp!(x0,v0,r0,gm,h,beta0,s0,state) # if beta0 > zero # iter = kep_elliptic!(x0,v0,r0,gm,h,beta0,s0,state) # else # iter = kep_hyperbolic!(x0,v0,r0,gm,h,beta0,s0,state) # end return end #function kepler_step!(gm::Float64,h::Float64,state0::Array{Float64,1},state::Array{Float64,1},jacobian::Array{Float64,2}) function kepler_step!(gm::T,h::T,state0::Array{T,1},state::Array{T,1},jacobian::Array{T,2},d::Derivatives{T}) where {T <: Real} # compute beta, r0, get x/v from state vector & call correct subroutine x0 = zeros(eltype(state0),3) v0 = zeros(eltype(state0),3) for k=1:3 x0[k]=state0[k+1] v0[k]=state0[k+4] end # x0=state0[2:4] r0 = sqrt(x0[1]*x0[1]+x0[2]*x0[2]+x0[3]*x0[3]) # v0 = state0[5:7] beta0 = 2*gm/r0-(v0[1]*v0[1]+v0[2]*v0[2]+v0[3]*v0[3]) s0=state0[11] iter = kep_ell_hyp!(x0,v0,r0,gm,h,beta0,s0,state,jacobian,d) # if beta0 > zero # iter = kep_elliptic!(x0,v0,r0,gm,h,beta0,s0,state,jacobian) # else # iter = kep_hyperbolic!(x0,v0,r0,gm,h,beta0,s0,state,jacobian) # end return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
3277
include("/Users/ericagol/Computer/Julia/regress.jl") n = 8 include("ttv.jl") t0 = 7257.93115525 #h = 0.12 h = 0.05 #h = 0.025 tmax = 600.0 #tmax = 80.0 # Read in initial conditions: elements = readdlm("../test/elements.txt",',') # Make an array, tt, to hold transit times: # First, though, make sure it is large enough: ntt = zeros(Int64,n) for i=2:n ntt[i] = ceil(Int64,tmax/elements[i,2])+3 end println("ntt: ",ntt) tt = zeros(n,maximum(ntt)) tt1 = zeros(n,maximum(ntt)) tt2 = zeros(n,maximum(ntt)) tt3 = zeros(n,maximum(ntt)) tt4 = zeros(n,maximum(ntt)) # Save a counter for the actual number of transit times of each planet: count = zeros(Int64,n) count1 = zeros(Int64,n) # Call the ttv function: rstar = 1e12 dq = ttv_elements!(n,t0,h,tmax,elements,tt1,count1,0.0,0,0,rstar) @time dq = ttv_elements!(n,t0,h,tmax,elements,tt1,count1,0.0,0,0,rstar) # Now, try calling with kicks between planets rather than -drift+Kepler: pair_input = ones(Bool,n,n) # We want Keplerian between star & planets, and impulses between # planets. Impulse is indicated with 'true', -drift+Kepler with 'false': for i=2:n pair_input[1,i] = false # We don't need to define this, but let's anyways: pair_input[i,1] = false end # Now, only include Kepler solver for adjacent planets: for i=2:n-1 pair_input[i,i+1] = false pair_input[i+1,i] = false end # Now call with smaller timestep: count2 = zeros(Int64,n) count3 = zeros(Int64,n) dq = ttv_elements!(n,t0,h/4.,tmax,elements,tt2,count2,0.0,0,0,rstar) for i=2:n println("Timing error -drift+Kepler: ",i-1," ",maximum(abs.(tt2[i,:]-tt1[i,:]))*24.*3600.) end @time dq = ttv_elements!(n,t0,h,tmax,elements,tt3,count1,0.0,0,0,rstar;pair=pair_input) dq = ttv_elements!(n,t0,h/4.,tmax,elements,tt4,count2,0.0,0,0,rstar;pair=pair_input) for i=2:n println("Timing error kickfast: ",i-1," ",maximum(abs.(tt3[i,:]-tt4[i,:]))*24.*3600.) end for i=2:n println("Timing kickfast-(-drift+Kepler): ",i-1," ",maximum(abs.(tt1[i,:]-tt3[i,:]))*24.*3600.) end # Now, compute derivatives (with respect to initial cartesian positions/masses): dtdq1 = zeros(n,maximum(ntt),7,n) dtdq2 = zeros(n,maximum(ntt),7,n) dtdq_kick1 = zeros(n,maximum(ntt),7,n) dtdq_kick2 = zeros(n,maximum(ntt),7,n) dtdelements1 = zeros(n,maximum(ntt),7,n) dtdelements2 = zeros(n,maximum(ntt),7,n) dtdelements_kick1 = zeros(n,maximum(ntt),7,n) dtdelements_kick2 = zeros(n,maximum(ntt),7,n) dtdelements1 = ttv_elements!(n,t0,h,tmax,elements,tt,count,dtdq1,rstar) @time dtdelements1 = ttv_elements!(n,t0,h,tmax,elements,tt,count,dtdq1,rstar) dtdelements2 = ttv_elements!(n,t0,h/2,tmax,elements,tt,count,dtdq2,rstar) @time dtdelements_kick1 = ttv_elements!(n,t0,h,tmax,elements,tt,count,dtdq_kick1,rstar;pair=pair_input) @time dtdelements_kick2 = ttv_elements!(n,t0,h/2,tmax,elements,tt,count,dtdq_kick2,rstar;pair=pair_input) println(maximum(abs.(asinh.(dtdelements1)-asinh.(dtdelements2)))) println(maximum(abs.(asinh.(dtdelements_kick1)-asinh.(dtdelements_kick2)))) println(maximum(abs.(asinh.(dtdelements2)-asinh.(dtdelements_kick2)))) Profile.clear() Profile.init(10^7,0.01) #@profile dtdelements0 = ttv_elements!(n,t0,h,tmax,elements,tt,count,dtdq0,rstar); @profile dtdelements0 = ttv_elements!(n,t0,h,tmax,elements,tt,count,dtdq1,rstar); Profile.print()
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
2200
# Reads in the string that describes the hierarchy, # and sets up A matrix and masses for each Keplerian. # There are N bodies, and N-1 Keplerians. function get_indices(string) # Takes a Kepler hierarchy vector, and returns indices of all planets ind1 = readdlm(IOBuffer(hierarchy[1:i])) # Converts strings to integers nm = size(string) for j=1:nm replace(string[j],"(","") replace(string[j],")","") end indices = zeros(Int64,nm) for j=1:nm indice[j]=parse(string[j]) end return indices end function split_kepler(hierarchy,mass) # Splits the hierarchy into components ndelim = count(c -> c == ',' , hierarchy) if ndelim > 1 # Find first complete Keplerian: i = 1 nleft = 0 nright = 0 c = collect(hierarchy) nchar = endof(hierarchy) while (nleft == 0) || (nleft != nright) || i == nchar if c[i] == '(' nleft += 1 end if c[i] == ')' nright += 1 end if c[i] == ',' ndelim += 1 end end @assert(nleft == nright) @assert(nleft == ndelim) # Compute sum of masses of both Kepler components: # First find the indices of planets: ind1 = get_indices(hierarchy[1:i]) ind2 = get_indices(hierarchy[i+1:nchar]) m1 = sum(mss[ind1]) m2 = sum(mss[ind2]) return m1,m2,hierarchy[1:i],hierarchy[i+1:nchar] elseif ndelim == 1 # Found a Keplerian of two bodies ind = get_indices(hierarchy) return mass[ind[1]],mass[ind[2]],split(hierarchy,",") else # Down to a single body ind = get_indices(hierarchy) return mass[ind[1]],0.0,hierarchy,"" end end function strip_parentheses(hierarchy) # Strips the leading and trailing parentheses (if they exist): nchar = endof(hierarchy) if hierarchy[1] == '(' && hierarchy[nchar] == ')' return hierarchy[2:nchar-1] else return hierarchy end end nleft = count(c -> c == '(',hierarchy) nright = count(c -> c == ')',hierarchy) @assert(nleft == nright) return end function setup_hierarchy(hierarchy,nbody,mass) # Creates a routine which computes the matrix # and total masses in each Keplerian. nleft = count(c -> c == '(',hierarchy) nright = count(c -> c == ')',hierarchy) ndelim = count(c -> c == ',',hierarchy) @assert(nleft == nright) @assert(nleft == ndelim) return A,mtot end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
136973
# Translation of David Hernandez's nbody.c for integrating hiercharical # system with BH15 integrator. Please cite Hernandez & Bertschinger (2015) # if using this in a paper. if ~@isdefined YEAR const YEAR = 365.242 const GNEWT = 39.4845/YEAR^2 const NDIM = 3 #const TRANSIT_TOL = 1e-8 # const TRANSIT_TOL = 10.0*sqrt(eps(1.0)) #const TRANSIT_TOL = 10.0*eps(1.0) const third = 1.0/3.0 const alpha0 = 0.0 end include("PreAllocArrays.jl") include("kepler_step.jl") include("kepler_drift_step.jl") include("kepler_drift_gamma.jl") include("init_nbody.jl") using LinearAlgebra function comp_sum(sum_value::T,sum_error::T,addend::T) where {T <: Real} # Function for compensated summation using the Kahan (1965) algorithm. # sum_value: current value of the sum # sum_error: truncation/rounding error accumulated from prior steps in sum # addend: new value to be added to the sum sum_error += addend tmp = sum_value + sum_error sum_error = (sum_value - tmp) + sum_error sum_value = tmp return sum_value::T,sum_error::T end function comp_sum_matrix!(sum_value::Array{T,2},sum_error::Array{T,2},addend::Array{T,2}) where {T <: Real} # Function for compensated summation using the Kahan (1965) algorithm. # sum_value: current value of the sum # sum_error: truncation/rounding error accumulated from prior steps in sum # addend: new value to be added to the sum @inbounds for i in eachindex(sum_value) sum_error[i] += addend[i] tmp = sum_value[i] + sum_error[i] sum_error[i] = (sum_value[i] - tmp) + sum_error[i] sum_value[i] = tmp end return end #= These "constants" pre-allocate memory for matrices used in the derivative computation (to save time with allocation and garbage collection): if ~@isdefined pxpr0 const pxpr0 = zeros(Float64,3);const pxpa0=zeros(Float64,3);const pxpk=zeros(Float64,3);const pxps=zeros(Float64,3);const pxpbeta=zeros(Float64,3) const dxdr0 = zeros(Float64,3);const dxda0=zeros(Float64,3);const dxdk=zeros(Float64,3);const dxdv0 =zeros(Float64,3) const prvpr0 = zeros(Float64,3);const prvpa0=zeros(Float64,3);const prvpk=zeros(Float64,3);const prvps=zeros(Float64,3);const prvpbeta=zeros(Float64,3) const drvdr0 = zeros(Float64,3);const drvda0=zeros(Float64,3);const drvdk=zeros(Float64,3);const drvdv0=zeros(Float64,3) const vtmp = zeros(Float64,3);const dvdr0 = zeros(Float64,3);const dvda0=zeros(Float64,3);const dvdv0=zeros(Float64,3);const dvdk=zeros(Float64,3) end =# # Computes TTVs as a function of orbital elements, allowing for a single log perturbation of dlnq for body jq and element iq function ttv_elements!(H::Union{Int64,Array{Int64,1}},t0::T,h::T,tmax::T,elements::Array{T,2},tt::Array{T,2},count::Array{Int64,1},dlnq::T,iq::Int64,jq::Int64,rstar::T;fout="",iout=-1,pair = zeros(Bool,H[1],H[1])) where {T <: Real} # # Input quantities: # n = number of bodies # t0 = initial time of integration [days] # h = time step [days] # tmax = duration of integration [days] # elements[i,j] = 2D n x 7 array of the masses & orbital elements of the bodies (currently first body's orbital elements are ignored) # elements are ordered as: mass, period, t0, e*cos(omega), e*sin(omega), inclination, longitude of ascending node (Omega) # tt = pre-allocated array to hold transit times of size [n x max(ntt)] (currently only compute transits of star, so first row is zero) [days] # upon output, set to transit times of planets. # count = pre-allocated array of the number of transits for each body upon output # # dlnq = fractional variation in initial parameter jq of body iq for finite-difference calculation of # derivatives [this is only needed for testing derivative code, below]. # # Example: see test_ttv_elements.jl in test/ directory # #fcons = open("fcons.txt","w"); # Set up mass, position & velocity arrays. NDIM =3 n = H[1] m=zeros(T,n) x=zeros(T,NDIM,n) v=zeros(T,NDIM,n) # Fill the transit-timing array with zeros: fill!(tt,0.0) # Counter for transits of each planet: fill!(count,0) # Insert masses from the elements array: for i=1:n m[i] = elements[i,1] end # Allow for perturbations to initial conditions: jq labels body; iq labels phase-space element (or mass) # iq labels phase-space element (1-3: x; 4-6: v; 7: m) dq = zero(T) if iq == 7 && dlnq != 0.0 dq = m[jq]*dlnq m[jq] += dq end # Initialize the N-body problem using nested hierarchy of Keplerians: init = ElementsIC(elements,H,t0) x,v,_ = init_nbody(init) elements_big=big.(elements); t0big = big(t0) init_big = ElementsIC(elements_big,H,t0big) xbig,vbig,_ = init_nbody(init_big) #if T != BigFloat # println("Difference in x,v init: ",x-convert(Array{T,2},xbig)," ",v-convert(Array{T,2},vbig)," (dlnq version)") #end x = convert(Array{T,2},xbig); v = convert(Array{T,2},vbig) # Perturb the initial condition by an amount dlnq (if it is non-zero): if dlnq != 0.0 && iq > 0 && iq < 7 if iq < 4 if x[iq,jq] != 0 dq = x[iq,jq]*dlnq else dq = dlnq end x[iq,jq] += dq else # Same for v if v[iq-3,jq] != 0 dq = v[iq-3,jq]*dlnq else dq = dlnq end v[iq-3,jq] += dq end end ttv!(n,t0,h,tmax,m,x,v,tt,count,fout,iout,rstar,pair) return dq end # Computes TTVs, v_sky & b_sky^2 as a function of orbital elements, allowing for a single log perturbation of dlnq for body jq and element iq function ttvbv_elements!(H::Union{Int64,Array{Int64,1}},t0::T,h::T,tmax::T,elements::Array{T,2},ttbv::Array{T,3},count::Array{Int64,1},dlnq::T,iq::Int64,jq::Int64,rstar::T;fout="",iout=-1,pair = zeros(Bool,H[1],H[1])) where {T <: Real} # # Input quantities: # n = number of bodies # t0 = initial time of integration [days] # h = time step [days] # tmax = duration of integration [days] # elements[i,j] = 2D n x 7 array of the masses & orbital elements of the bodies (currently first body's orbital elements are ignored) # elements are ordered as: mass, period, t0, e*cos(omega), e*sin(omega), inclination, longitude of ascending node (Omega) # ttbv = pre-allocated array to hold transit times (& v_sky/b_sky^2) of size [1-3] x [n x max(ntt)] (currently only compute transits of star, so first row is zero) [days] # upon output, set to transit times (& v_sky/b_sky^2) of planets. # count = pre-allocated array of the number of transits for each body upon output # # dlnq = fractional variation in initial parameter jq of body iq for finite-difference calculation of # derivatives [this is only needed for testing derivative code, below]. # # Example: see test_ttvbv_elements.jl in test/ directory # #fcons = open("fcons.txt","w"); # Set up mass, position & velocity arrays. NDIM =3 H = [3,1,1] n = H[1] m=zeros(T,n) x=zeros(T,NDIM,n) v=zeros(T,NDIM,n) # Fill the transit-timing array with zeros: fill!(ttbv,0.0) # Counter for transits of each planet: fill!(count,0) # Insert masses from the elements array: for i=1:n m[i] = elements[i,1] end # Allow for perturbations to initial conditions: jq labels body; iq labels phase-space element (or mass) # iq labels phase-space element (1-3: x; 4-6: v; 7: m) dq = zero(T) if iq == 7 && dlnq != 0.0 dq = m[jq]*dlnq m[jq] += dq end # Initialize the N-body problem using nested hierarchy of Keplerians: init = ElementsIC(elements,H,t0) x,v,_ = init_nbody(init) elements_big=big.(elements); t0big = big(t0) init_big = ElementsIC(elements_big,H,t0big) xbig,vbig,_ = init_nbody(init_big) #if T != BigFloat # println("Difference in x,v init: ",x-convert(Array{T,2},xbig)," ",v-convert(Array{T,2},vbig)," (dlnq version)") #end x = convert(Array{T,2},xbig); v = convert(Array{T,2},vbig) # Perturb the initial condition by an amount dlnq (if it is non-zero): if dlnq != 0.0 && iq > 0 && iq < 7 if iq < 4 if x[iq,jq] != 0 dq = x[iq,jq]*dlnq else dq = dlnq end x[iq,jq] += dq else # Same for v if v[iq-3,jq] != 0 dq = v[iq-3,jq]*dlnq else dq = dlnq end v[iq-3,jq] += dq end end ttvbv!(n,t0,h,tmax,m,x,v,ttbv,count,fout,iout,rstar,pair) return dq end # Computes TTVs as a function of orbital elements, and computes Jacobian of transit times with respect to initial orbital elements. # This version is used to test/debug findtransit2 by computing finite difference derivative of findtransit2. function ttv_elements!(H::Union{Int64,Array{Int64,1}},t0::Float64,h::Float64,tmax::Float64,elements::Array{Float64,2},tt::Array{Float64,2},count::Array{Int64,1},dtdq0::Array{Float64,4},dtdq0_num::Array{BigFloat,4},dlnq::BigFloat,rstar::Float64;pair=zeros(Bool,H[1],H[1])) # # Input quantities: # n = number of bodies # t0 = initial time of integration [days] # h = time step [days] # tmax = duration of integration [days] # elements[i,j] = 2D n x 7 array of the masses & orbital elements of the bodies (currently first body's orbital elements are ignored) # elements are ordered as: mass, period, t0, e*cos(omega), e*sin(omega), inclination, longitude of ascending node (Omega) # tt = array of transit times of size [n x max(ntt)] (currently only compute transits of star, so first row is zero) [days] # count = array of the number of transits for each body # dtdq0 = derivative of transit times with respect to initial x,v,m [various units: day/length (3), day^2/length (3), day/mass] # 4D array [n x max(ntt) ] x [n x 7] - derivatives of transits of each planet with respect to initial positions/velocities # masses of *all* bodies. Note: mass derivatives are *after* positions/velocities, even though they are at start # of the elements[i,j] array. # # Output quantity: # dtdelements = 4D array [n x max(ntt) ] x [n x 7] - derivatives of transits of each planet with respect to initial orbital # elements/masses of *all* bodies. Note: mass derivatives are *after* elements, even though they are at start # of the elements[i,j] array # # Example: see test_ttv_elements.jl in test/ directory # # Define initial mass, position & velocity arrays: n = H[1] m=zeros(Float64,n) x=zeros(Float64,NDIM,n) v=zeros(Float64,NDIM,n) # Fill the transit-timing & jacobian arrays with zeros: fill!(tt,0.0) fill!(dtdq0,0.0) fill!(dtdq0_num,0.0) # Create an array for the derivatives with respect to the masses/orbital elements: dtdelements = copy(dtdq0) # Counter for transits of each planet: fill!(count,0) for i=1:n m[i] = elements[i,1] end # Initialize the N-body problem using nested hierarchy of Keplerians: #jac_init = zeros(Float64,7*n,7*n) init = ElementsIC(elements,H,t0) x,v,jac_init = init_nbody(init) elements_big=big.(elements); t0big = big(t0); #jac_init_big = zeros(BigFloat,7*n,7*n) init_big = ElementsIC(elements_big,H,t0big) xbig,vbig,jac_init_big = init_nbody(init_big) println("Difference in x,v init: ",x-convert(Array{Float64,2},xbig)," ",v-convert(Array{Float64,2},vbig)," (transit derivative version)") # x = convert(Array{Float64,2},xbig); v = convert(Array{Float64,2},vbig); jac_init=convert(Array{Float64,2},jac_init_big) #x,v = init_nbody(elements,t0,n) ttv!(n,t0,h,tmax,m,x,v,tt,count,dtdq0,dtdq0_num,dlnq,rstar,pair) # Need to apply initial jacobian TBD - convert from # derivatives with respect to (x,v,m) to (elements,m): ntt_max = size(tt)[2] @inbounds for i=1:n, j=1:count[i] if j <= ntt_max # Now, multiply by the initial Jacobian to convert time derivatives to orbital elements: @inbounds for k=1:n, l=1:7 dtdelements[i,j,l,k] = 0.0 @inbounds for p=1:n, q=1:7 dtdelements[i,j,l,k] += dtdq0[i,j,q,p]*jac_init[(p-1)*7+q,(k-1)*7+l] end end end end return dtdelements end # Computes TTVs as a function of orbital elements, and computes Jacobian of transit times with respect to initial orbital elements. # This version is used to test/debug findtransit2 by computing finite difference derivative of findtransit2. function ttvbv_elements!(H::Union{Int64,Array{Int64,1}},t0::Float64,h::Float64,tmax::Float64,elements::Array{Float64,2},ttbv::Array{Float64,3}, count::Array{Int64,1},dtbvdq0::Array{Float64,5},dtbvdq0_num::Array{BigFloat,5},dlnq::BigFloat,rstar::Float64;pair=zeros(Bool,H[1],H[1])) # # Input quantities: # n = number of bodies # t0 = initial time of integration [days] # h = time step [days] # tmax = duration of integration [days] # elements[i,j] = 2D n x 7 array of the masses & orbital elements of the bodies (currently first body's orbital elements are ignored) # elements are ordered as: mass, period, t0, e*cos(omega), e*sin(omega), inclination, longitude of ascending node (Omega) # ttbv = array of transit times of size 3 x [n x max(ntt)] (currently only compute transits of star, so first row is zero) [days] # count = array of the number of transits for each body # dtbvdq0 = derivative of transit times, impact parameters, and sky velocities with respect to initial x,v,m [various units: day/length (3), day^2/length (3), day/mass] # 5D array [1-3] x [n x max(ntt) ] x [n x 7] - derivatives of transits times (and v_sky/b_sky^2) of each planet with respect to initial positions/velocities # masses of *all* bodies. Note: mass derivatives are *after* positions/velocities, even though they are at start # of the elements[i,j] array. # Output quantity: # dtbvdelements = 5D array [1-3]x[n x max(ntt) ] x [n x 7] - derivatives of transits, impact parameters, and sky velocities of each planet # with respect to initial orbital elements/masses of *all* bodies. Note: mass derivatives are *after* elements, even # though they are at start of the elements[i,j] array # # Example: see test_ttvbv_elements.jl in test/ directory # # Define initial mass, position & velocity arrays: n = H[1] m=zeros(Float64,n) x=zeros(Float64,NDIM,n) v=zeros(Float64,NDIM,n) # Fill the transit-timing & jacobian arrays with zeros: fill!(ttbv,0.0) fill!(dtbvdq0,0.0) fill!(dtbvdq0_num,0.0) # Create an array for the derivatives with respect to the masses/orbital elements: dtbvdelements = copy(dtbvdq0) # Counter for transits of each planet: fill!(count,0) for i=1:n m[i] = elements[i,1] end # Initialize the N-body problem using nested hierarchy of Keplerians: #jac_init = zeros(Float64,7*n,7*n) init = ElementsIC(elements,H,t0) x,v,jac_init = init_nbody(init) elements_big=big.(elements); t0big = big(t0); #jac_init_big = zeros(BigFloat,7*n,7*n) init_big = ElementsIC(elements_big,H,t0big) xbig,vbig,jac_init_big = init_nbody(init) println("Difference in x,v init: ",x-convert(Array{Float64,2},xbig)," ",v-convert(Array{Float64,2},vbig)," (transit derivative version)") # x = convert(Array{Float64,2},xbig); v = convert(Array{Float64,2},vbig); jac_init=convert(Array{Float64,2},jac_init_big) #x,v = init_nbody(elements,t0,n) ttvbv!(n,t0,h,tmax,m,x,v,ttbv,count,dtbvdq0,dtbvdq0_num,dlnq,rstar,pair) # Need to apply initial jacobian TBD - convert from # derivatives with respect to (x,v,m) to (elements,m): ntt_max = size(ttbv)[3] ntbv = size(ttbv)[1] # = 1 for just times; = 3 for times + v_sky + b_sky^2 @inbounds for itbv=1:ntbv, i=1:n, j=1:count[i] if j <= ntt_max # Now, multiply by the initial Jacobian to convert time derivatives to orbital elements: @inbounds for k=1:n, l=1:7 dtbvdelements[itbv,i,j,l,k] = 0.0 @inbounds for p=1:n, q=1:7 dtbvdelements[itbv,i,j,l,k] += dtbvdq0[itbv,i,j,q,p]*jac_init[(p-1)*7+q,(k-1)*7+l] end end end end return dtbvdelements end function ttv_elements!(H::Union{Int64,Array{Int64,1}},t0::T,h::T,tmax::T,elements::Array{T,2},tt::Array{T,2},count::Array{Int64,1},dtdq0::Array{T,4},rstar::T;fout="",iout=-1,pair=zeros(Bool,H[1],H[1])) where {T <: Real} # # Input quantities: # n = number of bodies # t0 = initial time of integration [days] # h = time step [days] # tmax = duration of integration [days] # elements[i,j] = 2D n x 7 array of the masses & orbital elements of the bodies (currently first body's orbital elements are ignored) # elements are ordered as: mass, period, t0, e*cos(omega), e*sin(omega), inclination, longitude of ascending node (Omega) # tt = array of transit times of size [n x max(ntt)] (currently only compute transits of star, so first row is zero) [days] # count = array of the number of transits for each body # dtdq0 = derivative of transit times with respect to initial x,v,m [various units: day/length (3), day^2/length (3), day/mass] # 4D array [n x max(ntt) ] x [n x 7] - derivatives of transits of each planet with respect to initial positions/velocities # masses of *all* bodies. Note: mass derivatives are *after* positions/velocities, even though they are at start # of the elements[i,j] array. # # Output quantity: # dtdelements = 4D array [n x max(ntt) ] x [n x 7] - derivatives of transits of each planet with respect to initial orbital # elements/masses of *all* bodies. Note: mass derivatives are *after* elements, even though they are at start # of the elements[i,j] array # # Example: see test_ttv_elements.jl in test/ directory # # Define initial mass, position & velocity arrays: n = H[1] m=zeros(T,n) x=zeros(T,NDIM,n) v=zeros(T,NDIM,n) # Fill the transit-timing & jacobian arrays with zeros: fill!(tt,zero(T)) fill!(dtdq0,zero(T)) # Create an array for the derivatives with respect to the masses/orbital elements: dtdelements = copy(dtdq0) # Counter for transits of each planet: fill!(count,0) for i=1:n m[i] = elements[i,1] end # Initialize the N-body problem using nested hierarchy of Keplerians: #jac_init = zeros(T,7*n,7*n) init = ElementsIC(elements,H,t0) x,v,jac_init = init_nbody(init) elements_big=big.(elements); t0big = big(t0); #jac_init_big = zeros(BigFloat,7*n,7*n) init_big = ElementsIC(elements_big,H,t0big) xbig,vbig,jac_init_big = init_nbody(init_big) #if T != BigFloat # println("Difference in x,v init: ",x-convert(Array{T,2},xbig)," ",v-convert(Array{T,2},vbig)," (Jacobian version)") # println("Difference in Jacobian: ",jac_init-convert(Array{T,2},jac_init_big)," (Jacobian version)") #end x = convert(Array{T,2},xbig); v = convert(Array{T,2},vbig); jac_init=convert(Array{T,2},jac_init_big) #x,v = init_nbody(elements,t0,n) ttv!(n,t0,h,tmax,m,x,v,tt,count,dtdq0,rstar,pair;fout=fout,iout=iout) # Need to apply initial jacobian TBD - convert from # derivatives with respect to (x,v,m) to (elements,m): ntt_max = size(tt)[2] for i=1:n, j=1:count[i] if j <= ntt_max # Now, multiply by the initial Jacobian to convert time derivatives to orbital elements: for k=1:n, l=1:7 dtdelements[i,j,l,k] = zero(T) for p=1:n, q=1:7 dtdelements[i,j,l,k] += dtdq0[i,j,q,p]*jac_init[(p-1)*7+q,(k-1)*7+l] end end end end return dtdelements end # Computes TTVs as a function of orbital elements, and computes Jacobian of transit times with respect to initial orbital elements. function ttvbv_elements!(H::Union{Int64,Array{Int64,1}},t0::T,h::T,tmax::T,elements::Array{T,2},ttbv::Array{T,3}, count::Array{Int64,1},dtbvdq0::Array{T,5},rstar::T;fout="",iout=-1,pair=zeros(Bool,H[1],H[1])) where {T <: Real} # # Input quantities: # n = number of bodies # t0 = initial time of integration [days] # h = time step [days] # tmax = duration of integration [days] # elements[i,j] = 2D n x 7 array of the masses & orbital elements of the bodies (currently first body's orbital elements are ignored) # elements are ordered as: mass, period, t0, e*cos(omega), e*sin(omega), inclination, longitude of ascending node (Omega) # ttbv = array of transit times, impact parameter & sky velocity of size [1-3] x [n x max(ntt)] (currently only compute transits of star, so first row is zero) [days] # count = array of the number of transits for each body # dtbvdq0 = derivative of transit times, impact parameters & sky velocities with respect to initial x,v,m [various units: day/length (3), day^2/length (3), day/mass] # 5D array [1-3] x [n x max(ntt) ] x [n x 7] - derivatives of transits of each planet with respect to initial positions/velocities # masses of *all* bodies. Note: mass derivatives are *after* positions/velocities, even though they are at start # of the elements[i,j] array. # # Output quantity: # dtbvdelements = 5D array [1-3] x [n x max(ntt) ] x [n x 7] - derivatives of transits of each planet with respect to initial orbital # elements/masses of *all* bodies. Note: mass derivatives are *after* elements, even though they are at start # of the elements[i,j] array # # Example: see test_ttvbv_elements.jl in test/ directory # # Define initial mass, position & velocity arrays: n = H[1] m=zeros(T,n) x=zeros(T,NDIM,n) v=zeros(T,NDIM,n) # Fill the transit-timing & jacobian arrays with zeros: fill!(ttbv,zero(T)) fill!(dtbvdq0,zero(T)) # Create an array for the derivatives with respect to the masses/orbital elements: dtbvdelements = copy(dtbvdq0) # Counter for transits of each planet: fill!(count,0) for i=1:n m[i] = elements[i,1] end # Initialize the N-body problem using nested hierarchy of Keplerians: #jac_init = zeros(T,7*n,7*n) init = ElementsIC(elements,H,t0) x,v,jac_init = init_nbody(init) elements_big=big.(elements); t0big = big(t0); jac_init_big = zeros(BigFloat,7*n,7*n) init_big = ElementsIC(elements_big,H,t0big) xbig,vbig,jac_init_big = init_nbody(init_big) #if T != BigFloat # println("Difference in x,v init: ",x-convert(Array{T,2},xbig)," ",v-convert(Array{T,2},vbig)," (Jacobian version)") # println("Difference in Jacobian: ",jac_init-convert(Array{T,2},jac_init_big)," (Jacobian version)") #end x = convert(Array{T,2},xbig); v = convert(Array{T,2},vbig); jac_init=convert(Array{T,2},jac_init_big) #x,v = init_nbody(elements,t0,n) ttvbv!(n,t0,h,tmax,m,x,v,ttbv,count,dtbvdq0,rstar,pair;fout=fout,iout=iout) # Need to apply initial jacobian TBD - convert from # derivatives with respect to (x,v,m) to (elements,m): ntt_max = size(ttbv)[3] ntbv = size(ttbv)[1] # = 1 for just times; = 3 for times + v_sky + b_sky^2 @inbounds for itbv=1:ntbv, i=1:n, j=1:count[i] if j <= ntt_max # Now, multiply by the initial Jacobian to convert time derivatives to orbital elements: @inbounds for k=1:n, l=1:7 dtbvdelements[itbv,i,j,l,k] = zero(T) @inbounds for p=1:n, q=1:7 dtbvdelements[itbv,i,j,l,k] += dtbvdq0[itbv,i,j,q,p]*jac_init[(p-1)*7+q,(k-1)*7+l] end end end end return dtbvdelements end # Computes TTVs for initial x,v, as well as timing derivatives with respect to x,v,m (dtdq0). function ttv!(n::Int64,t0::T,h::T,tmax::T,m::Array{T,1}, x::Array{T,2},v::Array{T,2},tt::Array{T,2},count::Array{Int64,1},dtdq0::Array{T,4},rstar::T,pair::Array{Bool,2};fout="",iout=-1) where {T <: Real} xprior = copy(x) vprior = copy(v) xtransit = copy(x) vtransit = copy(v) xerror = zeros(T,size(x)); verror=zeros(T,size(v)) xerr_trans = zeros(T,size(x)); verr_trans =zeros(T,size(v)) xerr_prior = zeros(T,size(x)); verr_prior =zeros(T,size(v)) # Set the time to the initial time: t = t0 # Define error estimate based on Kahan (1965): s2 = zero(T) # Set step counter to zero: istep = 0 # Jacobian for each step (7- 6 elements+mass, n_planets, 7 - 6 elements+mass, n planets): jac_prior = zeros(T,7*n,7*n) jac_error_prior = zeros(T,7*n,7*n) jac_transit = zeros(T,7*n,7*n) jac_trans_err= zeros(T,7*n,7*n) # Initialize matrix for derivatives of transit times with respect to the initial x,v,m: dtdq = zeros(T,1,7,n) # Initialize the Jacobian to the identity matrix: #jac_step = eye(T,7*n) jac_step = Matrix{T}(I,7*n,7*n) # Initialize Jacobian error array: jac_error = zeros(T,7*n,7*n) if fout != "" # Open file for output: file_handle =open(fout,"a") end # Output initial conditions: if mod(istep,iout) == 0 && iout > 0 # Write to file: writedlm(file_handle,[convert(Float64,t);convert(Array{Float64,1},reshape(x,3n));convert(Array{Float64,1},reshape(v,3n))]') # Transpose to write each line end # Save the g function, which computes the relative sky velocity dotted with relative position # between the planets and star: gsave = zeros(T,n) for i=2:n # Compute the relative sky velocity dotted with position: gsave[i]= g!(i,1,x,v) end # Loop over time steps: dt = zero(T) gi = zero(T) ntt_max = size(tt)[2] d = Derivatives(T) param_real = all(isfinite.(x)) && all(isfinite.(v)) && all(isfinite.(m)) && all(isfinite.(jac_step)) while t < (t0+tmax) && param_real # Carry out a dh17 mapping step: ah18!(x,v,xerror,verror,h,m,n,jac_step,jac_error,pair,d) #dh17!(x,v,h,m,n,jac_step,pair) param_real = all(isfinite.(x)) && all(isfinite.(v)) && all(isfinite.(m)) && all(isfinite.(jac_step)) # Check to see if a transit may have occured. Sky is x-y plane; line of sight is z. # Star is body 1; planets are 2-nbody (note that this could be modified to see if # any body transits another body): for i=2:n # Compute the relative sky velocity dotted with position: gi = g!(i,1,x,v) ri = sqrt(x[1,i]^2+x[2,i]^2+x[3,i]^2) # orbital distance # See if sign of g switches, and if planet is in front of star (by a good amount): # (I'm wondering if the direction condition means that z-coordinate is reversed? EA 12/11/2017) if gi > 0 && gsave[i] < 0 && x[3,i] > 0.25*ri && ri < rstar # A transit has occurred between the time steps - integrate dh17! between timesteps count[i] += 1 if count[i] <= ntt_max dt0 = -gsave[i]*h/(gi-gsave[i]) # Starting estimate xtransit .= xprior; vtransit .= vprior; jac_transit .= jac_prior; jac_trans_err .= jac_error_prior xerr_trans .= xerr_prior; verr_trans .= verr_prior # dt = findtransit2!(1,i,n,h,dt0,m,xtransit,vtransit,jac_transit,dtdq,pair) # 20% dt = findtransit3!(1,i,n,h,dt0,m,xtransit,vtransit,xerr_trans,verr_trans,jac_transit,jac_trans_err,dtdq,pair) # 20% #tt[i,count[i]]=t+dt tt[i,count[i]],stmp = comp_sum(t,s2,dt) # Save for posterity: for k=1:7, p=1:n dtdq0[i,count[i],k,p] = dtdq[1,k,p] end end end gsave[i] = gi end # Save the current state as prior state: xprior .= x vprior .= v jac_prior .= jac_step jac_error_prior .= jac_error xerr_prior .= xerror verr_prior .= verror # Increment time by the time step using compensated summation: #s2 += h; tmp = t + s2; s2 = (t - tmp) + s2 #t = tmp t,s2 = comp_sum(t,s2,h) if mod(istep,iout) == 0 && iout > 0 # Write to file: writedlm(file_handle,[convert(Float64,t);convert(Array{Float64,1},reshape(x,3n));convert(Array{Float64,1},reshape(v,3n));convert(Array{Float64,1},reshape(jac_step,49n^2))]') # Transpose to write each line end # t += h <- this leads to loss of precision # Increment counter by one: istep +=1 end if fout != "" # Close output file: close(file_handle) end return end # Computes TTVs for initial x,v, as well as timing derivatives with respect to x,v,m (dtdq0). function ttvbv!(n::Int64,t0::T,h::T,tmax::T,m::Array{T,1}, x::Array{T,2},v::Array{T,2},ttbv::Array{T,3},count::Array{Int64,1},dtbvdq0::Array{T,5},rstar::T,pair::Array{Bool,2};fout="",iout=-1) where {T <: Real} xprior = copy(x) vprior = copy(v) xtransit = copy(x) vtransit = copy(v) xerror = zeros(T,size(x)); verror=zeros(T,size(v)) xerr_trans = zeros(T,size(x)); verr_trans =zeros(T,size(v)) xerr_prior = zeros(T,size(x)); verr_prior =zeros(T,size(v)) # Set the time to the initial time: t = t0 # Define error estimate based on Kahan (1965): s2 = zero(T) # Set step counter to zero: istep = 0 # Jacobian for each step (7- 6 elements+mass, n_planets, 7 - 6 elements+mass, n planets): jac_prior = zeros(T,7*n,7*n) jac_error_prior = zeros(T,7*n,7*n) jac_transit = zeros(T,7*n,7*n) jac_trans_err= zeros(T,7*n,7*n) # Initialize matrix for derivatives of transit times, impact parameters & sky velocity with respect to the initial x,v,m: ntbv = size(dtbvdq0)[1] if ntbv == 3 calcbvsky = true else calcbvsky = false end dtbvdq = zeros(T,ntbv,7,n) # Initialize the Jacobian to the identity matrix: #jac_step = eye(T,7*n) jac_step = Matrix{T}(I,7*n,7*n) # Initialize Jacobian error array: jac_error = zeros(T,7*n,7*n) if fout != "" # Open file for output: file_handle =open(fout,"a") end # Output initial conditions: if mod(istep,iout) == 0 && iout > 0 # Write to file: writedlm(file_handle,[convert(Float64,t);convert(Array{Float64,1},reshape(x,3n));convert(Array{Float64,1},reshape(v,3n))]') # Transpose to write each line end # Save the g function, which computes the relative sky velocity dotted with relative position # between the planets and star: gsave = zeros(T,n) for i=2:n # Compute the relative sky velocity dotted with position: gsave[i]= g!(i,1,x,v) end # Loop over time steps: dt = zero(T) gi = zero(T) ntt_max = size(ttbv)[3] d = Derivatives(T) param_real = all(isfinite.(x)) && all(isfinite.(v)) && all(isfinite.(m)) && all(isfinite.(jac_step)) while t < (t0+tmax) && param_real # Carry out a dh17 mapping step: ah18!(x,v,xerror,verror,h,m,n,jac_step,jac_error,pair,d) #dh17!(x,v,h,m,n,jac_step,pair) param_real = all(isfinite.(x)) && all(isfinite.(v)) && all(isfinite.(m)) && all(isfinite.(jac_step)) # Check to see if a transit may have occured. Sky is x-y plane; line of sight is z. # Star is body 1; planets are 2-nbody (note that this could be modified to see if # any body transits another body): for i=2:n # Compute the relative sky velocity dotted with position: gi = g!(i,1,x,v) ri = sqrt(x[1,i]^2+x[2,i]^2+x[3,i]^2) # orbital distance # See if sign of g switches, and if planet is in front of star (by a good amount): # (I'm wondering if the direction condition means that z-coordinate is reversed? EA 12/11/2017) if gi > 0 && gsave[i] < 0 && x[3,i] > 0.25*ri && ri < rstar # A transit has occurred between the time steps - integrate dh17! between timesteps count[i] += 1 if count[i] <= ntt_max dt0 = -gsave[i]*h/(gi-gsave[i]) # Starting estimate xtransit .= xprior; vtransit .= vprior; jac_transit .= jac_prior; jac_trans_err .= jac_error_prior xerr_trans .= xerr_prior; verr_trans .= verr_prior # dt = findtransit2!(1,i,n,h,dt0,m,xtransit,vtransit,jac_transit,dtbvdq,pair) # 20% if calcbvsky dt,vsky,bsky2 = findtransit3!(1,i,n,h,dt0,m,xtransit,vtransit,xerr_trans,verr_trans,jac_transit,jac_trans_err,dtbvdq,pair) # 20% ttbv[2,i,count[i]] = vsky ttbv[3,i,count[i]] = bsky2 else dt = findtransit3!(1,i,n,h,dt0,m,xtransit,vtransit,xerr_trans,verr_trans,jac_transit,jac_trans_err,dtbvdq,pair) # 20% end #tt[i,count[i]]=t+dt ttbv[1,i,count[i]],stmp = comp_sum(t,s2,dt) # Save for posterity: @inbounds for itbv=1:ntbv, k=1:7, p=1:n dtbvdq0[itbv,i,count[i],k,p] = dtbvdq[itbv,k,p] end end end gsave[i] = gi end # Save the current state as prior state: xprior .= x vprior .= v jac_prior .= jac_step jac_error_prior .= jac_error xerr_prior .= xerror verr_prior .= verror # Increment time by the time step using compensated summation: #s2 += h; tmp = t + s2; s2 = (t - tmp) + s2 #t = tmp t,s2 = comp_sum(t,s2,h) if mod(istep,iout) == 0 && iout > 0 # Write to file: writedlm(file_handle,[convert(Float64,t);convert(Array{Float64,1},reshape(x,3n));convert(Array{Float64,1},reshape(v,3n));convert(Array{Float64,1},reshape(jac_step,49n^2))]') # Transpose to write each line end # t += h <- this leads to loss of precision # Increment counter by one: istep +=1 end if fout != "" # Close output file: close(file_handle) end return end # Computes TTVs for initial x,v, as well as timing derivatives with respect to x,v,m (dtdq0). # This version is used to test findtransit2 by computing finite difference derivative of findtransit2. function ttv!(n::Int64,t0::Float64,h::Float64,tmax::Float64,m::Array{Float64,1},x::Array{Float64,2},v::Array{Float64,2},tt::Array{Float64,2},count::Array{Int64,1},dtdq0::Array{Float64,4},dtdq0_num::Array{BigFloat,4},dlnq::BigFloat,rstar::Float64,pair::Array{Bool,2}) xprior = copy(x) vprior = copy(v) #xtransit = big.(x); xtransit_plus = big.(x); xtransit_minus = big.(x) #vtransit = big.(v); vtransit_plus = big.(v); vtransit_minus = big.(v) xtransit = copy(x); xtransit_plus = big.(x); xtransit_minus = big.(x) vtransit = copy(v); vtransit_plus = big.(v); vtransit_minus = big.(v) xerror = zeros(Float64,size(x)); verror = zeros(Float64,size(x)) xerr_trans = zeros(Float64,size(x)); verr_trans = zeros(Float64,size(x)) xerr_prior = zeros(Float64,size(x)); verr_prior = zeros(Float64,size(x)) xerr_big = zeros(BigFloat,size(x)); verr_big = zeros(BigFloat,size(x)) m_plus = big.(m); m_minus = big.(m); hbig = big(h); dq = big(0.0) if h == 0 println("h is zero ",h) end # Set the time to the initial time: t = t0 # Define error estimate based on Kahan (1965): s2 = 0.0 # Set step counter to zero: istep = 0 # Initialize matrix for derivatives of transit times with respect to the initial x,v,m: dtdqbig = zeros(BigFloat,1,7,n) dtdq = zeros(Float64,1,7,n) dtdq3 = zeros(Float64,1,7,n) # Initialize the Jacobian to the identity matrix: jac_prior = zeros(Float64,7*n,7*n) #jac_step = eye(Float64,7*n) jac_step = Matrix{Float64}(I,7*n,7*n) # Initialize Jacobian error matrix jac_error = zeros(Float64,7*n,7*n) jac_trans_err = zeros(Float64,7*n,7*n) jac_error_prior = zeros(Float64,7*n,7*n) # Save the g function, which computes the relative sky velocity dotted with relative position # between the planets and star: gsave = zeros(Float64,n) for i=2:n # Compute the relative sky velocity dotted with position: gsave[i]= g!(i,1,x,v) end # Loop over time steps: dt::Float64 = 0.0 gi = 0.0 ntt_max = size(tt)[2] d = Derivatives(Float64) param_real = all(isfinite.(x)) && all(isfinite.(v)) && all(isfinite.(m)) && all(isfinite.(jac_step)) while t < t0+tmax && param_real # Carry out a dh17 mapping step: ah18!(x,v,xerror,verror,h,m,n,jac_step,jac_error,pair,d) #dh17!(x,v,h,m,n,jac_step,pair) param_real = all(isfinite.(x)) && all(isfinite.(v)) && all(isfinite.(m)) && all(isfinite.(jac_step)) # Check to see if a transit may have occured. Sky is x-y plane; line of sight is z. # Star is body 1; planets are 2-nbody (note that this could be modified to see if # any body transits another body): for i=2:n # Compute the relative sky velocity dotted with position: gi = g!(i,1,x,v) ri = sqrt(x[1,i]^2+x[2,i]^2+x[3,i]^2) # See if sign of g switches, and if planet is in front of star (by a good amount): # (I'm wondering if the direction condition means that z-coordinate is reversed? EA 12/11/2017) if gi > 0 && gsave[i] < 0 && x[3,i] > 0.25*ri && ri < rstar # A transit has occurred between the time steps - integrate dh17! between timesteps count[i] += 1 if count[i] <= ntt_max # dt0 = big(-gsave[i]*h/(gi-gsave[i])) # Starting estimate dt0 = -gsave[i]*h/(gi-gsave[i]) # Starting estimate # xtransit .= big.(xprior); vtransit .= big.(vprior) # xtransit .= xprior; vtransit .= vprior # jac_transit = eye(jac_step) # dt,gdot = findtransit2!(1,i,n,h,dt0,m,xtransit,vtransit,jac_transit,dtdq,pair) # Just computing derivative since prior timestep, so start with identity matrix # dt = findtransit2!(1,i,n,h,dt0,m,xtransit,vtransit,jac_transit,dtdq,pair) # Just computing derivative since prior timestep, so start with identity matrix # jac_transit = eye(BigFloat,7*n) # hbig = big(h) # dtbig = findtransit2!(1,i,n,hbig,dt0,big.(m),xtransit,vtransit,jac_transit,dtdqbig,pair) # Just computing derivative since prior timestep, so start with identity matrix # dtdq = convert(Array{Float64,2},dtdqbig) # dt0 = -gsave[i]*h/(gi-gsave[i]) # Starting estimate # Now, recompute with findtransit3: xtransit .= xprior; vtransit .= vprior; xerr_trans .= xerr_prior; verr_trans .= verr_prior # jac_transit = eye(jac_step); jac_trans_err .= jac_error_prior jac_transit = Matrix{Float64}(I,7*n,7*n); jac_trans_err .= jac_error_prior dt = findtransit3!(1,i,n,h,dt0,m,xtransit,vtransit,xerr_trans,verr_trans,jac_transit,jac_trans_err,dtdq3,pair) # Just computing derivative since prior timestep, so start with identity matrix # Save for posterity: #tt[i,count[i]]=t+dt tt[i,count[i]],stmp = comp_sum(t,s2,dt) for k=1:7, p=1:n # dtdq0[i,count[i],k,p] = dtdq[k,p] dtdq0[i,count[i],k,p] = dtdq3[1,k,p] # Compute numerical approximation of dtdq: dt_plus = big(dt) # Starting estimate # dt_plus = dtbig # Starting estimate xtransit_plus .= big.(xprior); vtransit_plus .= big.(vprior); m_plus .= big.(m); fill!(xerr_big,zero(BigFloat)); fill!(verr_big,zero(BigFloat)) if k < 4; dq = dlnq*xtransit_plus[k,p]; xtransit_plus[k,p] += dq; elseif k < 7; dq =vtransit_plus[k-3,p]*dlnq; vtransit_plus[k-3,p] += dq; else; dq = m_plus[p]*dlnq; m_plus[p] += dq; end # dt_plus = findtransit2!(1,i,n,hbig,dt_plus,m_plus,xtransit_plus,vtransit_plus,pair) # 20% dt_plus = findtransit3!(1,i,n,hbig,dt_plus,m_plus,xtransit_plus,vtransit_plus,xerr_big,verr_big,pair) # 20% dt_minus= big(dt) # Starting estimate # dt_minus= dtbig # Starting estimate xtransit_minus .= big.(xprior); vtransit_minus .= big.(vprior); m_minus .= big.(m); fill!(xerr_big,zero(BigFloat)); fill!(verr_big,zero(BigFloat)) if k < 4; dq = dlnq*xtransit_minus[k,p];xtransit_minus[k,p] -= dq; elseif k < 7; dq =vtransit_minus[k-3,p]*dlnq; vtransit_minus[k-3,p] -= dq; else; dq = m_minus[p]*dlnq; m_minus[p] -= dq; end hbig = big(h) # dt_minus= findtransit2!(1,i,n,hbig,dt_minus,m_minus,xtransit_minus,vtransit_minus,pair) # 20% dt_minus= findtransit3!(1,i,n,hbig,dt_minus,m_minus,xtransit_minus,vtransit_minus,xerr_big,verr_big,pair) # 20% # Compute finite-different derivative: dtdq0_num[i,count[i],k,p] = (dt_plus-dt_minus)/(2dq) if abs(dtdq0_num[i,count[i],k,p] - dtdq0[i,count[i],k,p]) > 1e-10 # Compute gdot_num: dt_minus = big(dt)*(1-dlnq) # Starting estimate xtransit_minus .= big.(xprior); vtransit_minus .= big.(vprior); m_minus .= big.(m); fill!(xerr_big,zero(BigFloat)); fill!(verr_big,zero(BigFloat)) ah18!(xtransit_minus,vtransit_minus,xerr_big,verr_big,dt_minus,m_minus,n,pair) #dh17!(xtransit_minus,vtransit_minus,dt_minus,m_minus,n,pair) # Compute time offset: gsky_minus = g!(i,1,xtransit_minus,vtransit_minus) dt_plus = big(dt)*(1+dlnq) # Starting estimate xtransit_plus .= big.(xprior); vtransit_plus .= big.(vprior); m_plus .= big.(m); fill!(xerr_big,zero(BigFloat)); fill!(verr_big,zero(BigFloat)) ah18!(xtransit_plus,vtransit_plus,xerr_big,verr_big,dt_plus,m_plus,n,pair) #dh17!(xtransit_plus,vtransit_plus,dt_plus,m_plus,n,pair) # Compute time offset: gsky_plus = g!(i,1,xtransit_plus,vtransit_plus) gdot_num = convert(Float64,(gsky_plus-gsky_minus)/(2dlnq*big(dt))) # println("i: ",i," count: ",count[i]," k: ",k," p: ",p," dt: ",dt," dq: ",dq," dtdq0: ",dtdq0[i,count[i],k,p]," dtdq0_num: ",convert(Float64,dtdq0_num[i,count[i],k,p])," ratio-1: ",dtdq0[i,count[i],k,p]/convert(Float64,dtdq0_num[i,count[i],k,p])-1.0," gdot_num: ",gdot_num) #," ratio-1: ",gdot/gdot_num-1.0) # println("x0: ",xprior) # println("v0: ",vprior) # println("x: ",x) # println("v: ",v) # read(STDIN,Char) end end end end gsave[i] = gi end # Save the current state as prior state: xprior .= x vprior .= v jac_prior .= jac_step jac_error_prior .= jac_error xerr_prior .= xerror; verr_prior .= verror # Increment time by the time step using compensated summation: #s2 += h; tmp = t + s2; s2 = (t - tmp) + s2 #t = tmp t,s2 = comp_sum(t,s2,h) # t += h <- this leads to loss of precision # Increment counter by one: istep +=1 end return end # Computes TTVs, v_sky, b_sky^2 for initial x,v, as well as timing derivatives with respect to x,v,m (dtbvdq0). # This version is used to test findtransit2 by computing finite difference derivative of findtransit2. function ttvbv!(n::Int64,t0::Float64,h::Float64,tmax::Float64,m::Array{Float64,1},x::Array{Float64,2},v::Array{Float64,2},ttbv::Array{Float64,3},count::Array{Int64,1},dtbvdq0::Array{Float64,5},dtbvdq0_num::Array{BigFloat,5},dlnq::BigFloat,rstar::Float64,pair::Array{Bool,2}) xprior = copy(x) vprior = copy(v) #xtransit = big.(x); xtransit_plus = big.(x); xtransit_minus = big.(x) #vtransit = big.(v); vtransit_plus = big.(v); vtransit_minus = big.(v) xtransit = copy(x); xtransit_plus = big.(x); xtransit_minus = big.(x) vtransit = copy(v); vtransit_plus = big.(v); vtransit_minus = big.(v) xerror = zeros(Float64,size(x)); verror = zeros(Float64,size(x)) xerr_trans = zeros(Float64,size(x)); verr_trans = zeros(Float64,size(x)) xerr_prior = zeros(Float64,size(x)); verr_prior = zeros(Float64,size(x)) xerr_big = zeros(BigFloat,size(x)); verr_big = zeros(BigFloat,size(x)) m_plus = big.(m); m_minus = big.(m); hbig = big(h); dq = big(0.0) if h == 0 println("h is zero ",h) end # Set the time to the initial time: t = t0 # Define error estimate based on Kahan (1965): s2 = 0.0 # Set step counter to zero: istep = 0 # Initialize matrix for derivatives of transit times with respect to the initial x,v,m: ntbv = size(ttbv)[1] if ntbv == 3 # Compute times, vsky & bsky^2: calcbvsky = true else # Just compute transit times: calcbvsky = false end dtbvdqbig = zeros(BigFloat,ntbv,7,n) dtbvdq = zeros(Float64,ntbv,7,n) dtbvdq3 = zeros(Float64,ntbv,7,n) # Initialize the Jacobian to the identity matrix: jac_prior = zeros(Float64,7*n,7*n) #jac_step = eye(Float64,7*n) jac_step = Matrix{Float64}(I,7*n,7*n) # Initialize Jacobian error matrix jac_error = zeros(Float64,7*n,7*n) jac_trans_err = zeros(Float64,7*n,7*n) jac_error_prior = zeros(Float64,7*n,7*n) # Save the g function, which computes the relative sky velocity dotted with relative position # between the planets and star: gsave = zeros(Float64,n) for i=2:n # Compute the relative sky velocity dotted with position: gsave[i]= g!(i,1,x,v) end # Loop over time steps: dt::Float64 = 0.0 gi = 0.0 ntt_max = size(tt)[2] d = Derivatives(T) dBig = Derivatives(BigFloat) param_real = all(isfinite.(x)) && all(isfinite.(v)) && all(isfinite.(m)) && all(isfinite.(jac_step)) while t < t0+tmax && param_real # Carry out a dh17 mapping step: ah18!(x,v,xerror,verror,h,m,n,jac_step,jac_error,pair,d) #dh17!(x,v,h,m,n,jac_step,pair) param_real = all(isfinite.(x)) && all(isfinite.(v)) && all(isfinite.(m)) && all(isfinite.(jac_step)) # Check to see if a transit may have occured. Sky is x-y plane; line of sight is z. # Star is body 1; planets are 2-nbody (note that this could be modified to see if # any body transits another body): for i=2:n # Compute the relative sky velocity dotted with position: gi = g!(i,1,x,v) ri = sqrt(x[1,i]^2+x[2,i]^2+x[3,i]^2) # See if sign of g switches, and if planet is in front of star (by a good amount): # (I'm wondering if the direction condition means that z-coordinate is reversed? EA 12/11/2017) if gi > 0 && gsave[i] < 0 && x[3,i] > 0.25*ri && ri < rstar # A transit has occurred between the time steps - integrate dh17! between timesteps count[i] += 1 if count[i] <= ntt_max dt0 = -gsave[i]*h/(gi-gsave[i]) # Starting estimate # Now, recompute with findtransit3: xtransit .= xprior; vtransit .= vprior; xerr_trans .= xerr_prior; verr_trans .= verr_prior jac_transit = Matrix{Float64}(I,7*n,7*n); jac_trans_err .= jac_error_prior if calcbvsky # Compute time of transit, vsky, and bsky^2: dt,vsky,bsky2 = findtransit3!(1,i,n,h,dt0,m,xtransit,vtransit,xerr_trans,verr_trans,jac_transit,jac_trans_err,dtbvdq3,pair) # Just computing derivative since prior timestep, so start with identity matrix ttbv[2,i,count[i]] = vsky ttbv[3,i,count[i]] = bsky2 else # Compute only time of transit: dt = findtransit3!(1,i,n,h,dt0,m,xtransit,vtransit,xerr_trans,verr_trans,jac_transit,jac_trans_err,dtbvdq3,pair) # Just computing derivative since prior timestep, so start with identity matrix end # Save for posterity: #tt[i,count[i]]=t+dt ttbv[1,i,count[i]],stmp = comp_sum(t,s2,dt) for itbv=1:ntbv, k=1:7, p=1:n dtbvdq0[itbv,i,count[i],k,p] = dtbvdq3[itbv,k,p] # Compute numerical approximation of dtbvdq: dt_plus = big(dt) # Starting estimate if calcbvsky dvsky_plus = big(vsky) # Starting estimate dbsky2_plus = big(bsky2) # Starting estimate end xtransit_plus .= big.(xprior); vtransit_plus .= big.(vprior); m_plus .= big.(m); fill!(xerr_big,zero(BigFloat)); fill!(verr_big,zero(BigFloat)) if k < 4; dq = dlnq*xtransit_plus[k,p]; xtransit_plus[k,p] += dq; elseif k < 7; dq =vtransit_plus[k-3,p]*dlnq; vtransit_plus[k-3,p] += dq; else; dq = m_plus[p]*dlnq; m_plus[p] += dq; end if calcbvsky dt_plus,dvsky_plus,dbsky2_plus = findtransit3!(1,i,n,hbig,dt_plus,m_plus,xtransit_plus,vtransit_plus,xerr_big,verr_big,pair;calcbvsky=calcbvsky) # 20% dvsky_minus = big(vsky) dbsky2_minus = big(bsky2) else dt_plus = findtransit3!(1,i,n,hbig,dt_plus,m_plus,xtransit_plus,vtransit_plus,xerr_big,verr_big,pair) # 20% end dt_minus= big(dt) # Starting estimate xtransit_minus .= big.(xprior); vtransit_minus .= big.(vprior); m_minus .= big.(m); fill!(xerr_big,zero(BigFloat)); fill!(verr_big,zero(BigFloat)) if k < 4; dq = dlnq*xtransit_minus[k,p];xtransit_minus[k,p] -= dq; elseif k < 7; dq =vtransit_minus[k-3,p]*dlnq; vtransit_minus[k-3,p] -= dq; else; dq = m_minus[p]*dlnq; m_minus[p] -= dq; end hbig = big(h) if calcbvsky dt_minus,dvsky_minus,dbsky2_minus= findtransit3!(1,i,n,hbig,dt_minus,m_minus,xtransit_minus,vtransit_minus,xerr_big,verr_big,pair;calcbvsky=calcbvsky) # 20% dtbvdq0_num[2,i,count[i],k,p] = (dvsky_plus-dvsky_minus)/(2dq) dtbvdq0_num[3,i,count[i],k,p] = (dbsky2_plus-dbsky2_minus)/(2dq) else dt_minus= findtransit3!(1,i,n,hbig,dt_minus,m_minus,xtransit_minus,vtransit_minus,xerr_big,verr_big,pair) # 20% end # Compute finite-different derivative: dtbvdq0_num[1,i,count[i],k,p] = (dt_plus-dt_minus)/(2dq) if abs(dtdq0_num[1,i,count[i],k,p] - dtdq0[1,i,count[i],k,p]) > 1e-10 # Compute gdot_num: dt_minus = big(dt)*(1-dlnq) # Starting estimate xtransit_minus .= big.(xprior); vtransit_minus .= big.(vprior); m_minus .= big.(m); fill!(xerr_big,zero(BigFloat)); fill!(verr_big,zero(BigFloat)) ah18!(xtransit_minus,vtransit_minus,xerr_big,verr_big,dt_minus,m_minus,n,pair,dBig) #dh17!(xtransit_minus,vtransit_minus,dt_minus,m_minus,n,pair) # Compute time offset: gsky_minus = g!(i,1,xtransit_minus,vtransit_minus) dt_plus = big(dt)*(1+dlnq) # Starting estimate xtransit_plus .= big.(xprior); vtransit_plus .= big.(vprior); m_plus .= big.(m); fill!(xerr_big,zero(BigFloat)); fill!(verr_big,zero(BigFloat)) ah18!(xtransit_plus,vtransit_plus,xerr_big,verr_big,dt_plus,m_plus,n,pair,dBig) #dh17!(xtransit_plus,vtransit_plus,dt_plus,m_plus,n,pair) # Compute time offset: gsky_plus = g!(i,1,xtransit_plus,vtransit_plus) gdot_num = convert(Float64,(gsky_plus-gsky_minus)/(2dlnq*big(dt))) end end end end gsave[i] = gi end # Save the current state as prior state: xprior .= x vprior .= v jac_prior .= jac_step jac_error_prior .= jac_error xerr_prior .= xerror; verr_prior .= verror # Increment time by the time step using compensated summation: #s2 += h; tmp = t + s2; s2 = (t - tmp) + s2 #t = tmp t,s2 = comp_sum(t,s2,h) # t += h <- this leads to loss of precision # Increment counter by one: istep +=1 end return end # Computes TTVs as a function of initial x,v,m. function ttv!(n::Int64,t0::T,h::T,tmax::T,m::Array{T,1},x::Array{T,2},v::Array{T,2},tt::Array{T,2},count::Array{Int64,1},fout::String,iout::Int64,rstar::T,pair::Array{Bool,2}) where {T <: Real} # Make some copies to allocate space for saving prior step and computing coordinates at the times of transit. xprior = copy(x) vprior = copy(v) xtransit = copy(x) vtransit = copy(v) #xerror = zeros(x); verror = zeros(v) xerror = copy(x); verror = copy(v) fill!(xerror,zero(T)); fill!(verror,zero(T)) #xerr_prior = zeros(x); verr_prior = zeros(v) xerr_prior = copy(xerror); verr_prior = copy(verror) # Set the time to the initial time: t = t0 # Define error estimate based on Kahan (1965): s2 = zero(T) # Set step counter to zero: istep = 0 # Jacobian for each step (7 elements+mass, n_planets, 7 elements+mass, n planets): # Save the g function, which computes the relative sky velocity dotted with relative position # between the planets and star: gsave = zeros(T,n) gi = 0.0 dt::T = 0.0 # Loop over time steps: ntt_max = size(tt)[2] param_real = all(isfinite.(x)) && all(isfinite.(v)) && all(isfinite.(m)) if fout != "" # Open file for output: file_handle =open(fout,"a") end # Output initial conditions: if mod(istep,iout) == 0 && iout > 0 # Write to file: writedlm(file_handle,[convert(Float64,t);convert(Array{Float64,1},reshape(x,3n));convert(Array{Float64,1},reshape(v,3n))]') # Transpose to write each line end while t < t0+tmax && param_real # Carry out a phi^2 mapping step: # phi2!(x,v,h,m,n) ah18!(x,v,xerror,verror,h,m,n,pair) # xbig = big.(x); vbig = big.(v); hbig = big(h); mbig = big.(m) #dh17!(x,v,xerror,verror,h,m,n,pair) # dh17!(xbig,vbig,hbig,mbig,n,pair) # x .= convert(Array{Float64,2},xbig); v .= convert(Array{Float64,2},vbig) param_real = all(isfinite.(x)) && all(isfinite.(v)) && all(isfinite.(m)) # Check to see if a transit may have occured. Sky is x-y plane; line of sight is z. # Star is body 1; planets are 2-nbody: for i=2:n # Compute the relative sky velocity dotted with position: gi = g!(i,1,x,v) ri = sqrt(x[1,i]^2+x[2,i]^2+x[3,i]^2) # See if sign switches, and if planet is in front of star (by a good amount): if gi > 0 && gsave[i] < 0 && x[3,i] > 0.25*ri && ri < rstar # A transit has occurred between the time steps. # Approximate the planet-star motion as a Keplerian, weighting over timestep: count[i] += 1 # tt[i,count[i]]=t+findtransit!(i,h,gi,gsave[i],m,xprior,vprior,x,v,pair) if count[i] <= ntt_max dt0 = -gsave[i]*h/(gi-gsave[i]) xtransit .= xprior vtransit .= vprior # dt = findtransit2!(1,i,n,h,dt0,m,xtransit,vtransit,pair) #hbig = big(h); dt0big=big(dt0); mbig=big.(m); xtbig = big.(xtransit); vtbig = big.(vtransit) #dtbig = findtransit2!(1,i,n,hbig,dt0big,mbig,xtbig,vtbig,pair) #dt = convert(Float64,dtbig) dt = findtransit3!(1,i,n,h,dt0,m,xtransit,vtransit,xerr_prior,verr_prior,pair) #tt[i,count[i]]=t+dt tt[i,count[i]],stmp = comp_sum(t,s2,dt) end # tt[i,count[i]]=t+findtransit2!(1,i,n,h,gi,gsave[i],m,xprior,vprior,pair) end gsave[i] = gi end # Save the current state as prior state: xprior .= x vprior .= v xerr_prior .= xerror verr_prior .= verror # Increment time by the time step using compensated summation: #s2 += h; tmp = t + s2; s2 = (t - tmp) + s2 #t = tmp t,s2 = comp_sum(t,s2,h) if mod(istep,iout) == 0 && iout > 0 # Write to file: writedlm(file_handle,[convert(Float64,t);convert(Array{Float64,1},reshape(x,3n));convert(Array{Float64,1},reshape(v,3n))]') # Transpose to write each line end # t += h <- this leads to loss of precision # Increment counter by one: istep +=1 # println("xerror: ",xerror) # println("verror: ",verror) end #println("xerror: ",xerror) #println("verror: ",verror) if fout != "" # Close output file: close(file_handle) end return end # Computes TTVs, sky velocities, and impact parameters as a function of initial x,v,m. function ttvbv!(n::Int64,t0::T,h::T,tmax::T,m::Array{T,1},x::Array{T,2},v::Array{T,2},ttbv::Array{T,3},count::Array{Int64,1},fout::String,iout::Int64,rstar::T,pair::Array{Bool,2}) where {T <: Real} # Make some copies to allocate space for saving prior step and computing coordinates at the times of transit. xprior = copy(x) vprior = copy(v) xtransit = copy(x) vtransit = copy(v) #xerror = zeros(x); verror = zeros(v) xerror = copy(x); verror = copy(v) fill!(xerror,zero(T)); fill!(verror,zero(T)) #xerr_prior = zeros(x); verr_prior = zeros(v) xerr_prior = copy(xerror); verr_prior = copy(verror) # Set the time to the initial time: t = t0 # Define error estimate based on Kahan (1965): s2 = zero(T) # Set step counter to zero: istep = 0 # Jacobian for each step (7 elements+mass, n_planets, 7 elements+mass, n planets): # Save the g function, which computes the relative sky velocity dotted with relative position # between the planets and star: gsave = zeros(T,n) gi = 0.0 dt::T = 0.0 # Loop over time steps: ntt_max = size(ttbv)[3] # How many variables are we computing? 1 = just times; 3 = times + v_sky + b_sky^2: ntbv = size(ttbv)[1] if ntbv == 3 calcbvsky = true else calcbvsky = false end param_real = all(isfinite.(x)) && all(isfinite.(v)) && all(isfinite.(m)) if fout != "" # Open file for output: file_handle =open(fout,"a") end # Output initial conditions: if mod(istep,iout) == 0 && iout > 0 # Write to file: writedlm(file_handle,[convert(Float64,t);convert(Array{Float64,1},reshape(x,3n));convert(Array{Float64,1},reshape(v,3n))]') # Transpose to write each line end while t < t0+tmax && param_real # Carry out a phi^2 mapping step: # phi2!(x,v,h,m,n) ah18!(x,v,xerror,verror,h,m,n,pair) # xbig = big.(x); vbig = big.(v); hbig = big(h); mbig = big.(m) #dh17!(x,v,xerror,verror,h,m,n,pair) # dh17!(xbig,vbig,hbig,mbig,n,pair) # x .= convert(Array{Float64,2},xbig); v .= convert(Array{Float64,2},vbig) param_real = all(isfinite.(x)) && all(isfinite.(v)) && all(isfinite.(m)) # Check to see if a transit may have occured. Sky is x-y plane; line of sight is z. # Star is body 1; planets are 2-nbody: for i=2:n # Compute the relative sky velocity dotted with position: gi = g!(i,1,x,v) ri = sqrt(x[1,i]^2+x[2,i]^2+x[3,i]^2) # See if sign switches, and if planet is in front of star (by a good amount): if gi > 0 && gsave[i] < 0 && x[3,i] > 0.25*ri && ri < rstar # A transit has occurred between the time steps. # Approximate the planet-star motion as a Keplerian, weighting over timestep: count[i] += 1 if count[i] <= ntt_max dt0 = -gsave[i]*h/(gi-gsave[i]) xtransit .= xprior vtransit .= vprior #hbig = big(h); dt0big=big(dt0); mbig=big.(m); xtbig = big.(xtransit); vtbig = big.(vtransit) #dtbig = findtransit2!(1,i,n,hbig,dt0big,mbig,xtbig,vtbig,pair) #dt = convert(Float64,dtbig) if calcbvsky dt,vsky,bsky2 = findtransit3!(1,i,n,h,dt0,m,xtransit,vtransit,xerr_prior,verr_prior,pair;calcbvsky=calcbvsky) ttbv[2,i,count[i]] = vsky ttbv[3,i,count[i]] = bsky2 else dt = findtransit3!(1,i,n,h,dt0,m,xtransit,vtransit,xerr_prior,verr_prior,pair) end ttbv[1,i,count[i]],stmp = comp_sum(t,s2,dt) end end gsave[i] = gi end # Save the current state as prior state: xprior .= x vprior .= v xerr_prior .= xerror verr_prior .= verror # Increment time by the time step using compensated summation: #s2 += h; tmp = t + s2; s2 = (t - tmp) + s2 #t = tmp t,s2 = comp_sum(t,s2,h) if mod(istep,iout) == 0 && iout > 0 # Write to file: writedlm(file_handle,[convert(Float64,t);convert(Array{Float64,1},reshape(x,3n));convert(Array{Float64,1},reshape(v,3n))]') # Transpose to write each line end # t += h <- this leads to loss of precision # Increment counter by one: istep +=1 # println("xerror: ",xerror) # println("verror: ",verror) end #println("xerror: ",xerror) #println("verror: ",verror) if fout != "" # Close output file: close(file_handle) end return end # Advances the center of mass of a binary (any pair of bodies) #function centerm!(m::Array{Float64,1},mijinv::Float64,x::Array{Float64,2},v::Array{Float64,2},vcm::Array{Float64,1},delx::Array{Float64,1},delv::Array{Float64,1},i::Int64,j::Int64,h::Float64) function centerm!(m::Array{T,1},mijinv::T,x::Array{T,2},v::Array{T,2},vcm::Array{T,1},delx::Array{T,1},delv::Array{T,1},i::Int64,j::Int64,h::T) where {T <: Real} for k=1:NDIM x[k,i] += m[j]*mijinv*delx[k] + h*vcm[k] x[k,j] += -m[i]*mijinv*delx[k] + h*vcm[k] v[k,i] += m[j]*mijinv*delv[k] v[k,j] += -m[i]*mijinv*delv[k] end return end # Advances the center of mass of a binary (any pair of bodies) with compensated summation: function centerm!(m::Array{T,1},mijinv::T,x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},vcm::Array{T,1},delx::Array{T,1},delv::Array{T,1},i::Int64,j::Int64,h::T) where {T <: Real} for k=1:NDIM #x[k,i] += m[j]*mijinv*delx[k] + h*vcm[k] x[k,i],xerror[k,i] = comp_sum(x[k,i],xerror[k,i],m[j]*mijinv*delx[k]) x[k,i],xerror[k,i] = comp_sum(x[k,i],xerror[k,i],h*vcm[k]) #x[k,j] += -m[i]*mijinv*delx[k] + h*vcm[k] x[k,j],xerror[k,j] = comp_sum(x[k,j],xerror[k,j],-m[i]*mijinv*delx[k]) x[k,j],xerror[k,j] = comp_sum(x[k,j],xerror[k,j],h*vcm[k]) #v[k,i] += m[j]*mijinv*delv[k] v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i],m[j]*mijinv*delv[k]) #v[k,j] += -m[i]*mijinv*delv[k] v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],-m[i]*mijinv*delv[k]) end return end # Drifts bodies i & j #function driftij!(x::Array{Float64,2},v::Array{Float64,2},i::Int64,j::Int64,h::Float64) function driftij!(x::Array{T,2},v::Array{T,2},i::Int64,j::Int64,h::T) where {T <: Real} for k=1:NDIM x[k,i] += h*v[k,i] x[k,j] += h*v[k,j] end return end # Drifts bodies i & j with compensated summation: #function driftij!(x::Array{Float64,2},v::Array{Float64,2},i::Int64,j::Int64,h::Float64) function driftij!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},i::Int64,j::Int64,h::T) where {T <: Real} for k=1:NDIM #x[k,i] += h*v[k,i] x[k,i],xerror[k,i] = comp_sum(x[k,i],xerror[k,i],h*v[k,i]) #x[k,j] += h*v[k,j] x[k,j],xerror[k,j] = comp_sum(x[k,j],xerror[k,j],h*v[k,j]) end return end # Drifts bodies i & j with computation of dqdt: function driftij!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},i::Int64,j::Int64,h::T,dqdt::Array{T,1},fac::T) where {T <: Real} indi = (i-1)*7 indj = (j-1)*7 for k=1:NDIM #x[k,i] += h*v[k,i] x[k,i],xerror[k,i] = comp_sum(x[k,i],xerror[k,i],h*v[k,i]) #x[k,j] += h*v[k,j] x[k,j],xerror[k,j] = comp_sum(x[k,j],xerror[k,j],h*v[k,j]) # Time derivatives: dqdt[indi+k] += fac*v[k,i] + h*dqdt[indi+3+k] dqdt[indj+k] += fac*v[k,j] + h*dqdt[indj+3+k] end return end # Drifts bodies i & j and computes Jacobian: function driftij!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},i::Int64,j::Int64,h::T,jac_step::Array{T,2},jac_error::Array{T,2},nbody::Int64) where {T <: Real} indi = (i-1)*7 indj = (j-1)*7 for k=1:NDIM #x[k,i] += h*v[k,i] x[k,i],xerror[k,i] = comp_sum(x[k,i],xerror[k,i],h*v[k,i]) #x[k,j] += h*v[k,j] x[k,j],xerror[k,j] = comp_sum(x[k,j],xerror[k,j],h*v[k,j]) end # Now for Jacobian: for m=1:7*nbody, k=1:NDIM #jac_step[indi+k,m] += h*jac_step[indi+3+k,m] jac_step[indi+k,m],jac_error[indi+k,m] = comp_sum(jac_step[indi+k,m],jac_error[indi+k,m], h*jac_step[indi+3+k,m]) end for m=1:7*nbody, k=1:NDIM #jac_step[indj+k,m] += h*jac_step[indj+3+k,m] jac_step[indj+k,m],jac_error[indi+k,m] = comp_sum(jac_step[indj+k,m],jac_error[indi+k,m],h*jac_step[indj+3+k,m]) end return end # Carries out a Kepler step and reverse drift for bodies i & j function kepler_driftij!(m::Array{T,1},x::Array{T,2},v::Array{T,2},i::Int64,j::Int64,h::T,drift_first::Bool) where {T <: Real} # The state vector has: 1 time; 2-4 position; 5-7 velocity; 8 r0; 9 dr0dt; 10 beta; 11 s; 12 ds # Initial state: state0 = zeros(T,12) # Final state (after a step): state = zeros(T,12) for k=1:NDIM state0[1+k] = x[k,i] - x[k,j] state0[4+k] = v[k,i] - v[k,j] end gm = GNEWT*(m[i]+m[j]) if gm == 0 # Do nothing # for k=1:3 # x[k,i] += h*v[k,i] # x[k,j] += h*v[k,j] # end else # predicted value of s kepler_drift_step!(gm, h, state0, state,drift_first) mijinv =1.0/(m[i] + m[j]) for k=1:3 # Add kepler-drift differences, weighted by masses, to start of step: x[k,i] += m[j]*mijinv*state[1+k] x[k,j] -= m[i]*mijinv*state[1+k] v[k,i] += m[j]*mijinv*state[4+k] v[k,j] -= m[i]*mijinv*state[4+k] end end return end # Carries out a Kepler step and reverse drift for bodies i & j with compensated summation: function kepler_driftij!(m::Array{T,1},x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},i::Int64,j::Int64,h::T,drift_first::Bool) where {T <: Real} # The state vector has: 1 time; 2-4 position; 5-7 velocity; 8 r0; 9 dr0dt; 10 beta; 11 s; 12 ds # Initial state: state0 = zeros(T,12) # Final state (after a step): state = zeros(T,12) for k=1:NDIM state0[1+k] = x[k,i] - x[k,j] state0[4+k] = v[k,i] - v[k,j] end gm = GNEWT*(m[i]+m[j]) if gm == 0 # Do nothing # for k=1:3 # x[k,i] += h*v[k,i] # x[k,j] += h*v[k,j] # end else # predicted value of s kepler_drift_step!(gm, h, state0, state,drift_first) mijinv =1.0/(m[i] + m[j]) mi = m[i]*mijinv # Normalize the masses mj = m[j]*mijinv for k=1:3 # Add kepler-drift differences, weighted by masses, to start of step: #x[k,i] += mj*state[1+k] x[k,i],xerror[k,i] = comp_sum(x[k,i],xerror[k,i], mj*state[1+k]) #x[k,j] -= mi*state[1+k] x[k,j],xerror[k,j] = comp_sum(x[k,j],xerror[k,j],-mi*state[1+k]) #v[k,i] += mj*state[4+k] v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i], mj*state[4+k]) #v[k,j] -= mi*state[4+k] v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],-mi*state[4+k]) end end return end # Carries out a Kepler step and reverse drift for bodies i & j, and computes Jacobian: function kepler_driftij!(m::Array{T,1},x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},i::Int64,j::Int64,h::T,jac_ij::Array{T,2},dqdt::Array{T,1},drift_first::Bool,d::Derivatives{T}) where {T <: Real} # The state vector has: 1 time; 2-4 position; 5-7 velocity; 8 r0; 9 dr0dt; 10 beta; 11 s; 12 ds # Initial state: state0 = zeros(T,12) # Final state (after a step): state = zeros(T,12) @inbounds for k=1:NDIM state0[1+k] = x[k,i] - x[k,j] state0[4+k] = v[k,i] - v[k,j] end gm = GNEWT*(m[i]+m[j]) # jac_ij should be the Jacobian for going from (x_{0,i},v_{0,i},m_i) & (x_{0,j},v_{0,j},m_j) # to (x_i,v_i,m_i) & (x_j,v_j,m_j), a 14x14 matrix for the 3-dimensional case. # Fill with zeros for now: #jac_ij .= eye(T,14) fill!(jac_ij,zero(h)) if gm == 0 # Do nothing # for k=1:3 # x[k,i] += h*v[k,i] # x[k,j] += h*v[k,j] # end else jac_kepler = zeros(T,7,7) # predicted value of s kepler_drift_step!(gm, h, state0, state,jac_kepler,drift_first,d) mijinv =1.0/(m[i] + m[j]) mi = m[i]*mijinv # Normalize the masses mj = m[j]*mijinv @inbounds for k=1:3 # Add kepler-drift differences, weighted by masses, to start of step: #x[k,i] += mj*state[1+k] x[k,i],xerror[k,i] = comp_sum(x[k,i],xerror[k,i], mj*state[1+k]) #x[k,j] -= mi*state[1+k] x[k,j],xerror[k,j] = comp_sum(x[k,j],xerror[k,j],-mi*state[1+k]) #v[k,i] += mj*state[4+k] v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i], mj*state[4+k]) #v[k,j] -= mi*state[4+k] v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],-mi*state[4+k]) end # Compute Jacobian: @inbounds for l=1:6, k=1:6 # Compute derivatives of x_i,v_i with respect to initial conditions: jac_ij[ k, l] += mj*jac_kepler[k,l] jac_ij[ k,7+l] -= mj*jac_kepler[k,l] # Compute derivatives of x_j,v_j with respect to initial conditions: jac_ij[7+k, l] -= mi*jac_kepler[k,l] jac_ij[7+k,7+l] += mi*jac_kepler[k,l] end @inbounds for k=1:6 # Compute derivatives of x_i,v_i with respect to the masses: jac_ij[ k, 7] = -mj*state[1+k]*mijinv + GNEWT*mj*jac_kepler[ k,7] jac_ij[ k,14] = mi*state[1+k]*mijinv + GNEWT*mj*jac_kepler[ k,7] # Compute derivatives of x_j,v_j with respect to the masses: jac_ij[ 7+k, 7] = -mj*state[1+k]*mijinv - GNEWT*mi*jac_kepler[ k,7] jac_ij[ 7+k,14] = mi*state[1+k]*mijinv - GNEWT*mi*jac_kepler[ k,7] end end # The following lines are meant to compute dq/dt for kepler_driftij, # but they currently contain an error (test doesn't pass in test_ah18.jl). [ ] @inbounds for k=1:NDIM # Define relative velocity and acceleration: vij = state[1+NDIM+k]-state0[1+NDIM+k] acc_ij = gm*state[1+k]/state[8]^3 # Position derivative, body i: dqdt[ k] = mj*vij # Velocity derivative, body i: dqdt[ 3+k] = -mj*acc_ij # Time derivative of mass is zero, so we skip this. # Position derivative, body j: dqdt[ 7+k] = -mi*vij # Velocity derivative, body j: dqdt[10+k] = mi*acc_ij # Time derivative of mass is zero, so we skip this. end return return end # Carries out a Kepler step and reverse drift for bodies i & j with compensated summation. # Uses new version of the code with gamma in favor of s, and full auto-diff of Kepler step. function kepler_driftij_gamma!(m::Array{T,1},x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},i::Int64,j::Int64,h::T,drift_first::Bool) where {T <: Real} x0 = zeros(T,NDIM) # x0 = positions of body i relative to j v0 = zeros(T,NDIM) # v0 = velocities of body i relative to j @inbounds for k=1:NDIM x0[k] = x[k,i] - x[k,j] v0[k] = v[k,i] - v[k,j] end gm = GNEWT*(m[i]+m[j]) if gm == 0 # Do nothing # for k=1:3 # x[k,i] += h*v[k,i] # x[k,j] += h*v[k,j] # end else # Compute differences in x & v over time step: delxv = jac_delxv_gamma!(x0,v0,gm,h,drift_first) # kepler_drift_step!(gm, h, state0, state,drift_first) mijinv =1.0/(m[i] + m[j]) mi = m[i]*mijinv # Normalize the masses mj = m[j]*mijinv @inbounds for k=1:3 # Add kepler-drift differences, weighted by masses, to start of step: x[k,i],xerror[k,i] = comp_sum(x[k,i],xerror[k,i], mj*delxv[k]) x[k,j],xerror[k,j] = comp_sum(x[k,j],xerror[k,j],-mi*delxv[k]) v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i], mj*delxv[3+k]) v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],-mi*delxv[3+k]) end end return end # Carries out a Kepler step and reverse drift for bodies i & j, and computes Jacobian: # Uses new version of the code with gamma in favor of s, and full auto-diff of Kepler step. function kepler_driftij_gamma!(m::Array{T,1},x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},i::Int64,j::Int64,h::T,jac_ij::Array{T,2},dqdt::Array{T,1},drift_first::Bool) where {T <: Real} # Initial state: x0 = zeros(T,NDIM) # x0 = positions of body i relative to j v0 = zeros(T,NDIM) # v0 = velocities of body i relative to j @inbounds for k=1:NDIM x0[k] = x[k,i] - x[k,j] v0[k] = v[k,i] - v[k,j] end gm = GNEWT*(m[i]+m[j]) # jac_ij should be the Jacobian for going from (x_{0,i},v_{0,i},m_i) & (x_{0,j},v_{0,j},m_j) # to (x_i,v_i,m_i) & (x_j,v_j,m_j), a 14x14 matrix for the 3-dimensional case. # Fill with zeros for now: #jac_ij .= eye(T,14) fill!(jac_ij,zero(T)) if gm == 0 # Do nothing # for k=1:3 # x[k,i] += h*v[k,i] # x[k,j] += h*v[k,j] # end else delxv = zeros(T,6) jac_kepler = zeros(T,6,8) jac_mass = zeros(T,6) jac_delxv_gamma!(x0,v0,gm,h,drift_first,delxv,jac_kepler,jac_mass,false) # kepler_drift_step!(gm, h, state0, state,jac_kepler,drift_first) mijinv::T =one(T)/(m[i] + m[j]) mi::T = m[i]*mijinv # Normalize the masses mj::T = m[j]*mijinv @inbounds for k=1:3 # Add kepler-drift differences, weighted by masses, to start of step: x[k,i],xerror[k,i] = comp_sum(x[k,i],xerror[k,i], mj*delxv[k]) x[k,j],xerror[k,j] = comp_sum(x[k,j],xerror[k,j],-mi*delxv[k]) end @inbounds for k=1:3 v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i], mj*delxv[3+k]) v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],-mi*delxv[3+k]) end # Compute Jacobian: @inbounds for l=1:6, k=1:6 # Compute derivatives of x_i,v_i with respect to initial conditions: jac_ij[ k, l] += mj*jac_kepler[k,l] jac_ij[ k,7+l] -= mj*jac_kepler[k,l] # Compute derivatives of x_j,v_j with respect to initial conditions: jac_ij[7+k, l] -= mi*jac_kepler[k,l] jac_ij[7+k,7+l] += mi*jac_kepler[k,l] end @inbounds for k=1:6 # Compute derivatives of x_i,v_i with respect to the masses: # println("Old dxv/dm_i: ",-mj*delxv[k]*mijinv + GNEWT*mj*jac_kepler[ k,7]) # jac_ij[ k, 7] = -mj*delxv[k]*mijinv + GNEWT*mj*jac_kepler[ k,7] # println("New dx/dm_i: ",jac_mass[k]*m[j]) jac_ij[ k, 7] = jac_mass[k]*m[j] jac_ij[ k,14] = mi*delxv[k]*mijinv + GNEWT*mj*jac_kepler[ k,7] # Compute derivatives of x_j,v_j with respect to the masses: jac_ij[ 7+k, 7] = -mj*delxv[k]*mijinv - GNEWT*mi*jac_kepler[ k,7] # println("Old dxv/dm_j: ",mi*delxv[k]*mijinv - GNEWT*mi*jac_kepler[ k,7]) # jac_ij[ 7+k,14] = mi*delxv[k]*mijinv - GNEWT*mi*jac_kepler[ k,7] # println("New dxv/dm_j: ",-jac_mass[k]*m[i]) jac_ij[ 7+k,14] = -jac_mass[k]*m[i] end end # The following lines are meant to compute dq/dt for kepler_driftij, # but they currently contain an error (test doesn't pass in test_ah18.jl). [ ] @inbounds for k=1:6 # Position/velocity derivative, body i: dqdt[ k] = mj*jac_kepler[k,8] # Position/velocity derivative, body j: dqdt[7+k] = -mi*jac_kepler[k,8] end return end # Carries out a Kepler step for bodies i & j #function keplerij!(m::Array{Float64,1},x::Array{Float64,2},v::Array{Float64,2},i::Int64,j::Int64,h::Float64) function keplerij!(m::Array{T,1},x::Array{T,2},v::Array{T,2},i::Int64,j::Int64,h::T) where {T <: Real} # The state vector has: 1 time; 2-4 position; 5-7 velocity; 8 r0; 9 dr0dt; 10 beta; 11 s; 12 ds # Initial state: state0 = zeros(T,12) # Final state (after a step): state = zeros(T,12) delx = zeros(T,NDIM) delv = zeros(T,NDIM) #println("Masses: ",i," ",j) for k=1:NDIM state0[1+k ] = x[k,i] - x[k,j] state0[1+k+NDIM] = v[k,i] - v[k,j] end gm = GNEWT*(m[i]+m[j]) if gm == 0 for k=1:NDIM x[k,i] += h*v[k,i] x[k,j] += h*v[k,j] end else # predicted value of s kepler_step!(gm, h, state0, state) for k=1:NDIM delx[k] = state[1+k] - state0[1+k] delv[k] = state[1+NDIM+k] - state0[1+NDIM+k] end # Advance center of mass: # Compute COM coords: mijinv =1.0/(m[i] + m[j]) vcm = zeros(T,NDIM) for k=1:NDIM vcm[k] = (m[i]*v[k,i] + m[j]*v[k,j])*mijinv end centerm!(m,mijinv,x,v,vcm,delx,delv,i,j,h) end return end # Carries out a Kepler step for bodies i & j with compensated summation: function keplerij!(m::Array{T,1},x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},i::Int64,j::Int64,h::T) where {T <: Real} # The state vector has: 1 time; 2-4 position; 5-7 velocity; 8 r0; 9 dr0dt; 10 beta; 11 s; 12 ds # Initial state: state0 = zeros(T,12) # Final state (after a step): state = zeros(T,12) delx = zeros(T,NDIM) delv = zeros(T,NDIM) #println("Masses: ",i," ",j) for k=1:NDIM state0[1+k ] = x[k,i] - x[k,j] state0[1+k+NDIM] = v[k,i] - v[k,j] end gm = GNEWT*(m[i]+m[j]) if gm == 0 for k=1:NDIM #x[k,i] += h*v[k,i] x[k,i],xerror[k,i] = comp_sum(x[k,i],xerror[k,i],h*v[k,i]) #x[k,j] += h*v[k,j] x[k,j],xerror[k,j] = comp_sum(x[k,j],xerror[k,j],h*v[k,j]) end else # predicted value of s kepler_step!(gm, h, state0, state) for k=1:NDIM delx[k] = state[1+k] - state0[1+k] delv[k] = state[1+NDIM+k] - state0[1+NDIM+k] end # Advance center of mass: # Compute COM coords: mijinv =1.0/(m[i] + m[j]) vcm = zeros(T,NDIM) for k=1:NDIM vcm[k] = (m[i]*v[k,i] + m[j]*v[k,j])*mijinv end centerm!(m,mijinv,x,v,xerror,verror,vcm,delx,delv,i,j,h) end return end # Carries out a Kepler step for bodies i & j with dqdt and Jacobian: function keplerij!(m::Array{T,1},x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},i::Int64,j::Int64,h::T,jac_ij::Array{T,2},dqdt::Array{T,1},d::Derivatives{T}) where {T <: Real} # The state vector has: 1 time; 2-4 position; 5-7 velocity; 8 r0; 9 dr0dt; 10 beta; 11 s; 12 ds # Initial state: state0 = zeros(T,12) # Final state (after a step): state = zeros(T,12) delx = zeros(T,NDIM) delv = zeros(T,NDIM) # jac_ij should be the Jacobian for going from (x_{0,i},v_{0,i},m_i) & (x_{0,j},v_{0,j},m_j) # to (x_i,v_i,m_i) & (x_j,v_j,m_j), a 14x14 matrix for the 3-dimensional case. # Fill with zeros for now: fill!(jac_ij,0.0) for k=1:NDIM state0[1+k ] = x[k,i] - x[k,j] state0[1+k+NDIM] = v[k,i] - v[k,j] end gm = GNEWT*(m[i]+m[j]) # The following jacobian is just computed for the Keplerian coordinates (i.e. doesn't include # center-of-mass motion, or scale to motion of bodies about their common center of mass): jac_kepler = zeros(T,7,7) kepler_step!(gm, h, state0, state, jac_kepler,d) for k=1:NDIM delx[k] = state[1+k] - state0[1+k] delv[k] = state[1+NDIM+k] - state0[1+NDIM+k] end # Compute COM coords: mijinv =1.0/(m[i] + m[j]) xcm = zeros(T,NDIM) vcm = zeros(T,NDIM) mi = m[i]*mijinv # Normalize the masses mj = m[j]*mijinv #println("Masses: ",i," ",j) for k=1:NDIM xcm[k] = mi*x[k,i] + mj*x[k,j] vcm[k] = mi*v[k,i] + mj*v[k,j] end # Compute the Jacobian: jac_ij[ 7, 7] = 1.0 # the masses don't change with time! jac_ij[14,14] = 1.0 for k=1:NDIM jac_ij[ k, k] = mi jac_ij[ k, 3+k] = h*mi jac_ij[ k, 7+k] = mj jac_ij[ k,10+k] = h*mj jac_ij[ 3+k, 3+k] = mi jac_ij[ 3+k,10+k] = mj jac_ij[ 7+k, k] = mi jac_ij[ 7+k, 3+k] = h*mi jac_ij[ 7+k, 7+k] = mj jac_ij[ 7+k,10+k] = h*mj jac_ij[10+k, 3+k] = mi jac_ij[10+k,10+k] = mj end for l=1:NDIM, k=1:NDIM # Compute derivatives of \delta x_i with respect to initial conditions: jac_ij[ k, l] += mj*jac_kepler[ k, l] jac_ij[ k, 3+l] += mj*jac_kepler[ k,3+l] jac_ij[ k, 7+l] -= mj*jac_kepler[ k, l] jac_ij[ k,10+l] -= mj*jac_kepler[ k,3+l] # Compute derivatives of \delta v_i with respect to initial conditions: jac_ij[ 3+k, l] += mj*jac_kepler[3+k, l] jac_ij[ 3+k, 3+l] += mj*jac_kepler[3+k,3+l] jac_ij[ 3+k, 7+l] -= mj*jac_kepler[3+k, l] jac_ij[ 3+k,10+l] -= mj*jac_kepler[3+k,3+l] # Compute derivatives of \delta x_j with respect to initial conditions: jac_ij[ 7+k, l] -= mi*jac_kepler[ k, l] jac_ij[ 7+k, 3+l] -= mi*jac_kepler[ k,3+l] jac_ij[ 7+k, 7+l] += mi*jac_kepler[ k, l] jac_ij[ 7+k,10+l] += mi*jac_kepler[ k,3+l] # Compute derivatives of \delta v_j with respect to initial conditions: jac_ij[10+k, l] -= mi*jac_kepler[3+k, l] jac_ij[10+k, 3+l] -= mi*jac_kepler[3+k,3+l] jac_ij[10+k, 7+l] += mi*jac_kepler[3+k, l] jac_ij[10+k,10+l] += mi*jac_kepler[3+k,3+l] end for k=1:NDIM # Compute derivatives of \delta x_i with respect to the masses: jac_ij[ k, 7] = (x[k,i]+h*v[k,i]-xcm[k]-h*vcm[k]-mj*state[1+k])*mijinv + GNEWT*mj*jac_kepler[ k,7] jac_ij[ k,14] = (x[k,j]+h*v[k,j]-xcm[k]-h*vcm[k]+mi*state[1+k])*mijinv + GNEWT*mj*jac_kepler[ k,7] # Compute derivatives of \delta v_i with respect to the masses: jac_ij[ 3+k, 7] = (v[k,i]-vcm[k]-mj*state[4+k])*mijinv + GNEWT*mj*jac_kepler[3+k,7] jac_ij[ 3+k,14] = (v[k,j]-vcm[k]+mi*state[4+k])*mijinv + GNEWT*mj*jac_kepler[3+k,7] # Compute derivatives of \delta x_j with respect to the masses: jac_ij[ 7+k, 7] = (x[k,i]+h*v[k,i]-xcm[k]-h*vcm[k]-mj*state[1+k])*mijinv - GNEWT*mi*jac_kepler[ k,7] jac_ij[ 7+k,14] = (x[k,j]+h*v[k,j]-xcm[k]-h*vcm[k]+mi*state[1+k])*mijinv - GNEWT*mi*jac_kepler[ k,7] # Compute derivatives of \delta v_j with respect to the masses: jac_ij[10+k, 7] = (v[k,i]-vcm[k]-mj*state[4+k])*mijinv - GNEWT*mi*jac_kepler[3+k,7] jac_ij[10+k,14] = (v[k,j]-vcm[k]+mi*state[4+k])*mijinv - GNEWT*mi*jac_kepler[3+k,7] end # Advance center of mass & individual Keplerian motions: centerm!(m,mijinv,x,v,xerror,verror,vcm,delx,delv,i,j,h) # Compute the time derivatives: for k=1:NDIM # Define relative velocity and acceleration: vij = state[1+NDIM+k] acc_ij = gm*state[1+k]/state[8]^3 # Position derivative, body i: dqdt[ k] = vcm[k] + mj*vij # Velocity derivative, body i: dqdt[ 3+k] = -mj*acc_ij # Time derivative of mass is zero, so we skip this. # Position derivative, body j: dqdt[ 7+k] = vcm[k] - mi*vij # Velocity derivative, body j: dqdt[10+k] = mi*acc_ij # Time derivative of mass is zero, so we skip this. end return end # Drifts all particles: #function drift!(x::Array{Float64,2},v::Array{Float64,2},h::Float64,n::Int64) function drift!(x::Array{T,2},v::Array{T,2},h::T,n::Int64) where {T <: Real} @inbounds for i=1:n, j=1:NDIM x[j,i] += h*v[j,i] end return end # Drifts all particles with compensated summation: #function drift!(x::Array{Float64,2},v::Array{Float64,2},h::Float64,n::Int64) function drift!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,n::Int64) where {T <: Real} @inbounds for i=1:n, j=1:NDIM #x[j,i] += h*v[j,i] x[j,i],xerror[j,i] = comp_sum(x[j,i],xerror[j,i],h*v[j,i]) end return end # Drifts all particles: function drift!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,n::Int64,jac_step::Array{T,2},jac_error::Array{T,2}) where {T <: Real} indi = 0 @inbounds for i=1:n indi = (i-1)*7 for j=1:NDIM # x[j,i] += h*v[j,i] x[j,i],xerror[j,i] = comp_sum(x[j,i],xerror[j,i],h*v[j,i]) end # Now for Jacobian: for k=1:7*n, j=1:NDIM #jac_step[indi+j,k] += h*jac_step[indi+3+j,k] jac_step[indi+j,k],jac_error[indi+j,k] = comp_sum(jac_step[indi+j,k],jac_error[indi+j,k],h*jac_step[indi+3+j,k]) end end return end # Computes "fast" kicks for pairs of bodies in lieu of -drift+Kepler: function kickfast!(x::Array{T,2},v::Array{T,2},h::T,m::Array{T,1},n::Int64,pair::Array{Bool,2}) where {T <: Real} rij = zeros(T,3) @inbounds for i=1:n-1 for j = i+1:n if pair[i,j] r2 = 0.0 for k=1:3 rij[k] = x[k,i] - x[k,j] r2 += rij[k]^2 end r3_inv = 1.0/(r2*sqrt(r2)) for k=1:3 fac = h*GNEWT*rij[k]*r3_inv v[k,i] -= m[j]*fac v[k,j] += m[i]*fac end end end end return end # Version of kickfast with compensated summation: # Computes "fast" kicks for pairs of bodies in lieu of -drift+Kepler with compensated summation: function kickfast!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},n::Int64,pair::Array{Bool,2}) where {T <: Real} rij = zeros(T,3) @inbounds for i=1:n-1 for j = i+1:n if pair[i,j] r2 = 0.0 for k=1:3 rij[k] = x[k,i] - x[k,j] r2 += rij[k]^2 end r3_inv = 1.0/(r2*sqrt(r2)) for k=1:3 fac = h*GNEWT*rij[k]*r3_inv # v[k,i] -= m[j]*fac v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i],-m[j]*fac) #v[k,j] += m[i]*fac v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j], m[i]*fac) end end end end return end # Version of kickfast which computes the Jacobian with compensated summation: function kickfast!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},n::Int64,jac_step::Array{T,2}, dqdt_kick::Array{T,1},pair::Array{Bool,2}) where {T <: Real} rij = zeros(T,3) # Getting rid of identity since we will add that back in in calling routines: fill!(jac_step,zero(T)) #jac_step.=eye(T,7*n) @inbounds for i=1:n-1 indi = (i-1)*7 for j=i+1:n indj = (j-1)*7 if pair[i,j] for k=1:3 rij[k] = x[k,i] - x[k,j] end r2inv = 1.0/(rij[1]*rij[1]+rij[2]*rij[2]+rij[3]*rij[3]) r3inv = r2inv*sqrt(r2inv) for k=1:3 fac = h*GNEWT*rij[k]*r3inv # Apply impulses: #v[k,i] -= m[j]*fac v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i],-m[j]*fac) #v[k,j] += m[i]*fac v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j], m[i]*fac) # Compute time derivative: dqdt_kick[indi+3+k] -= m[j]*fac/h dqdt_kick[indj+3+k] += m[i]*fac/h # Computing the derivative # Mass derivative of acceleration vector (10/6/17 notes): # Impulse of ith particle depends on mass of jth particle: jac_step[indi+3+k,indj+7] -= fac # Impulse of jth particle depends on mass of ith particle: jac_step[indj+3+k,indi+7] += fac # x derivative of acceleration vector: fac *= 3.0*r2inv # Dot product x_ij.\delta x_ij means we need to sum over components: for p=1:3 jac_step[indi+3+k,indi+p] += fac*m[j]*rij[p] jac_step[indi+3+k,indj+p] -= fac*m[j]*rij[p] jac_step[indj+3+k,indj+p] += fac*m[i]*rij[p] jac_step[indj+3+k,indi+p] -= fac*m[i]*rij[p] end # Final term has no dot product, so just diagonal: fac = h*GNEWT*r3inv jac_step[indi+3+k,indi+k] -= fac*m[j] jac_step[indi+3+k,indj+k] += fac*m[j] jac_step[indj+3+k,indj+k] -= fac*m[i] jac_step[indj+3+k,indi+k] += fac*m[i] end end end end return end # Computes the 4th-order correction: function phisalpha!(x::Array{T,2},v::Array{T,2},h::T,m::Array{T,1},alpha::T,n::Int64,pair::Array{Bool,2}) where {T <: Real} #function [v] = phisalpha(x,v,h,m,alpha,pair) #n = size(m,2); a = zeros(T,3,n) rij = zeros(T,3) aij = zeros(T,3) coeff = alpha*h^3/96*2*GNEWT fac = zero(T) ; fac1 = zero(T); fac2 = zero(T); r1 = zero(T); r2 = zero(T); r3 = zero(T) @inbounds for i=1:n-1 for j = i+1:n if ~pair[i,j] # correction for Kepler pairs for k=1:3 rij[k] = x[k,i] - x[k,j] end r2 = rij[1]*rij[1]+rij[2]*rij[2]+rij[3]*rij[3] r3 = r2*sqrt(r2) for k=1:3 fac = GNEWT*rij[k]/r3 a[k,i] -= m[j]*fac a[k,j] += m[i]*fac end end end end # Next, compute \tilde g_i acceleration vector (this is rewritten # slightly to avoid reference to \tilde a_i): @inbounds for i=1:n-1 for j=i+1:n if ~pair[i,j] # correction for Kepler pairs for k=1:3 aij[k] = a[k,i] - a[k,j] # aij[k] = 0.0 rij[k] = x[k,i] - x[k,j] end r2 = rij[1]*rij[1]+rij[2]*rij[2]+rij[3]*rij[3] r1 = sqrt(r2) ardot = aij[1]*rij[1]+aij[2]*rij[2]+aij[3]*rij[3] fac1 = coeff/r1^5 fac2 = (2*GNEWT*(m[i]+m[j])/r1 + 3*ardot) for k=1:3 # fac = coeff/r1^5*(rij[k]*(2*GNEWT*(m[i]+m[j])/r1 + 3*ardot) - r2*aij[k]) fac = fac1*(rij[k]*fac2- r2*aij[k]) v[k,i] += m[j]*fac v[k,j] -= m[i]*fac end end end end return end # Computes the 4th-order correction with compensated summation: function phisalpha!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},alpha::T,n::Int64,pair::Array{Bool,2}) where {T <: Real} #function [v] = phisalpha(x,v,h,m,alpha,pair) #n = size(m,2); a = zeros(T,3,n) rij = zeros(T,3) aij = zeros(T,3) coeff = alpha*h^3/96*2*GNEWT fac = zero(T); fac1 = zero(T); fac2 = zero(T); r1 = zero(T); r2 = zero(T); r3 = zero(T) @inbounds for i=1:n-1 for j = i+1:n if ~pair[i,j] # correction for Kepler pairs for k=1:3 rij[k] = x[k,i] - x[k,j] end r2 = rij[1]*rij[1]+rij[2]*rij[2]+rij[3]*rij[3] r3 = r2*sqrt(r2) for k=1:3 fac = GNEWT*rij[k]/r3 a[k,i] -= m[j]*fac a[k,j] += m[i]*fac end end end end # Next, compute \tilde g_i acceleration vector (this is rewritten # slightly to avoid reference to \tilde a_i): @inbounds for i=1:n-1 for j=i+1:n if ~pair[i,j] # correction for Kepler pairs for k=1:3 aij[k] = a[k,i] - a[k,j] # aij[k] = 0.0 rij[k] = x[k,i] - x[k,j] end r2 = rij[1]*rij[1]+rij[2]*rij[2]+rij[3]*rij[3] r1 = sqrt(r2) ardot = aij[1]*rij[1]+aij[2]*rij[2]+aij[3]*rij[3] fac1 = coeff/r1^5 fac2 = (2*GNEWT*(m[i]+m[j])/r1 + 3*ardot) for k=1:3 # fac = coeff/r1^5*(rij[k]*(2*GNEWT*(m[i]+m[j])/r1 + 3*ardot) - r2*aij[k]) fac = fac1*(rij[k]*fac2- r2*aij[k]) #v[k,i] += m[j]*fac v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i], m[j]*fac) #v[k,j] -= m[i]*fac v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],-m[i]*fac) end end end end return end # Computes the 4th-order correction with Jacobian, dq/dt, and compensated summation: function phisalpha!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1}, alpha::T,n::Int64,jac_step::Array{T,2},dqdt_phi::Array{T,1},pair::Array{Bool,2}) where {T <: Real} #function [v] = phisalpha(x,v,h,m,alpha,pair) #n = size(m,2); a = zeros(T,3,n) dadq = zeros(T,3,n,4,n) # There is no velocity dependence dotdadq = zeros(T,4,n) # There is no velocity dependence rij = zeros(T,3) aij = zeros(T,3) coeff = alpha*h^3/96*2*GNEWT fac = 0.0; fac1 = 0.0; fac2 = 0.0; fac3 = 0.0; r1 = 0.0; r2 = 0.0; r3 = 0.0 #jac_step.=eye(T,7*n) @inbounds for i=1:n-1 indi = (i-1)*7 for j=i+1:n if ~pair[i,j] # correction for Kepler pairs indj = (j-1)*7 for k=1:3 rij[k] = x[k,i] - x[k,j] end r2 = rij[1]*rij[1]+rij[2]*rij[2]+rij[3]*rij[3] r3 = r2*sqrt(r2) for k=1:3 fac = GNEWT*rij[k]/r3 a[k,i] -= m[j]*fac a[k,j] += m[i]*fac # Mass derivative of acceleration vector (10/6/17 notes): # Since there is no velocity dependence, this is fourth parameter. # Acceleration of ith particle depends on mass of jth particle: dadq[k,i,4,j] -= fac dadq[k,j,4,i] += fac # x derivative of acceleration vector: fac *= 3.0/r2 # Dot product x_ij.\delta x_ij means we need to sum over components: for p=1:3 dadq[k,i,p,i] += fac*m[j]*rij[p] dadq[k,i,p,j] -= fac*m[j]*rij[p] dadq[k,j,p,j] += fac*m[i]*rij[p] dadq[k,j,p,i] -= fac*m[i]*rij[p] end # Final term has no dot product, so just diagonal: fac = GNEWT/r3 dadq[k,i,k,i] -= fac*m[j] dadq[k,i,k,j] += fac*m[j] dadq[k,j,k,j] -= fac*m[i] dadq[k,j,k,i] += fac*m[i] end end end end # Next, compute \tilde g_i acceleration vector (this is rewritten # slightly to avoid reference to \tilde a_i): # Note that jac_step[(i-1)*7+k,(j-1)*7+p] is the derivative of the kth coordinate # of planet i with respect to the pth coordinate of planet j. indi = 0; indj=0; indd = 0 @inbounds for i=1:n-1 indi = (i-1)*7 for j=i+1:n if ~pair[i,j] # correction for Kepler pairs indj = (j-1)*7 for k=1:3 aij[k] = a[k,i] - a[k,j] # aij[k] = 0.0 rij[k] = x[k,i] - x[k,j] end # Compute dot product of r_ij with \delta a_ij: fill!(dotdadq,0.0) @inbounds for d=1:n, p=1:4, k=1:3 dotdadq[p,d] += rij[k]*(dadq[k,i,p,d]-dadq[k,j,p,d]) end r2 = rij[1]*rij[1]+rij[2]*rij[2]+rij[3]*rij[3] r1 = sqrt(r2) ardot = aij[1]*rij[1]+aij[2]*rij[2]+aij[3]*rij[3] fac1 = coeff/r1^5 fac2 = (2*GNEWT*(m[i]+m[j])/r1 + 3*ardot) for k=1:3 # fac = coeff/r1^5*(rij[k]*(2*GNEWT*(m[i]+m[j])/r1 + 3*ardot) - r2*aij[k]) fac = fac1*(rij[k]*fac2- r2*aij[k]) #v[k,i] += m[j]*fac v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i], m[j]*fac) #v[k,j] -= m[i]*fac v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],-m[i]*fac) # Compute time derivative: dqdt_phi[indi+3+k] += 3/h*m[j]*fac dqdt_phi[indj+3+k] -= 3/h*m[i]*fac # Mass derivative (first part is easy): jac_step[indi+3+k,indj+7] += fac jac_step[indj+3+k,indi+7] -= fac # Position derivatives: fac *= 5.0/r2 for p=1:3 jac_step[indi+3+k,indi+p] -= fac*m[j]*rij[p] jac_step[indi+3+k,indj+p] += fac*m[j]*rij[p] jac_step[indj+3+k,indj+p] -= fac*m[i]*rij[p] jac_step[indj+3+k,indi+p] += fac*m[i]*rij[p] end # Second mass derivative: fac = 2*GNEWT*fac1*rij[k]/r1 jac_step[indi+3+k,indi+7] += fac*m[j] jac_step[indi+3+k,indj+7] += fac*m[j] jac_step[indj+3+k,indj+7] -= fac*m[i] jac_step[indj+3+k,indi+7] -= fac*m[i] # (There's also a mass term in dadq [x]. See below.) # Diagonal position terms: fac = fac1*fac2 jac_step[indi+3+k,indi+k] += fac*m[j] jac_step[indi+3+k,indj+k] -= fac*m[j] jac_step[indj+3+k,indj+k] += fac*m[i] jac_step[indj+3+k,indi+k] -= fac*m[i] # Dot product \delta rij terms: fac = -2*fac1*(rij[k]*GNEWT*(m[i]+m[j])/(r2*r1)+aij[k]) for p=1:3 fac3 = fac*rij[p] + fac1*3.0*rij[k]*aij[p] jac_step[indi+3+k,indi+p] += m[j]*fac3 jac_step[indi+3+k,indj+p] -= m[j]*fac3 jac_step[indj+3+k,indj+p] += m[i]*fac3 jac_step[indj+3+k,indi+p] -= m[i]*fac3 end # Diagonal acceleration terms: fac = -fac1*r2 # Duoh. For dadq, have to loop over all other parameters! @inbounds for d=1:n indd = (d-1)*7 for p=1:3 jac_step[indi+3+k,indd+p] += fac*m[j]*(dadq[k,i,p,d]-dadq[k,j,p,d]) jac_step[indj+3+k,indd+p] -= fac*m[i]*(dadq[k,i,p,d]-dadq[k,j,p,d]) end # Don't forget mass-dependent term: jac_step[indi+3+k,indd+7] += fac*m[j]*(dadq[k,i,4,d]-dadq[k,j,4,d]) jac_step[indj+3+k,indd+7] -= fac*m[i]*(dadq[k,i,4,d]-dadq[k,j,4,d]) end # Now, for the final term: (\delta a_ij . r_ij ) r_ij fac = 3.0*fac1*rij[k] @inbounds for d=1:n indd = (d-1)*7 for p=1:3 jac_step[indi+3+k,indd+p] += fac*m[j]*dotdadq[p,d] jac_step[indj+3+k,indd+p] -= fac*m[i]*dotdadq[p,d] end jac_step[indi+3+k,indd+7] += fac*m[j]*dotdadq[4,d] jac_step[indj+3+k,indd+7] -= fac*m[i]*dotdadq[4,d] end end end end end return end # Computes correction for pairs which are kicked: function phic!(x::Array{T,2},v::Array{T,2},h::T,m::Array{T,1},n::Int64,pair::Array{Bool,2}) where {T <: Real} a = zeros(T,3,n) rij = zeros(T,3) aij = zeros(T,3) @inbounds for i=1:n-1, j = i+1:n if pair[i,j] # kick group r2 = 0.0 for k=1:3 rij[k] = x[k,i] - x[k,j] r2 += rij[k]^2 end r3_inv = 1.0/(r2*sqrt(r2)) for k=1:3 fac = GNEWT*rij[k]*r3_inv v[k,i] -= m[j]*fac*2h/3 v[k,j] += m[i]*fac*2h/3 a[k,i] -= m[j]*fac a[k,j] += m[i]*fac end end end coeff = h^3/36*GNEWT @inbounds for i=1:n-1 ,j=i+1:n if pair[i,j] # kick group for k=1:3 aij[k] = a[k,i] - a[k,j] rij[k] = x[k,i] - x[k,j] end r2 = dot(rij,rij) r5inv = 1.0/(r2^2*sqrt(r2)) ardot = dot(aij,rij) for k=1:3 fac = coeff*r5inv*(rij[k]*3*ardot-r2*aij[k]) v[k,i] += m[j]*fac v[k,j] -= m[i]*fac end end end return end # Computes correction for pairs which are kicked: function phic!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},n::Int64,pair::Array{Bool,2}) where {T <: Real} a = zeros(T,3,n) rij = zeros(T,3) aij = zeros(T,3) @inbounds for i=1:n-1, j = i+1:n if pair[i,j] # kick group r2 = 0.0 for k=1:3 rij[k] = x[k,i] - x[k,j] r2 += rij[k]^2 end r3_inv = 1.0/(r2*sqrt(r2)) for k=1:3 fac = GNEWT*rij[k]*r3_inv facv = fac*2*h/3 #v[k,i] -= m[j]*facv v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i],-m[j]*facv) #v[k,j] += m[i]*facv v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],m[i]*facv) a[k,i] -= m[j]*fac a[k,j] += m[i]*fac end end end coeff = h^3/36*GNEWT @inbounds for i=1:n-1 ,j=i+1:n if pair[i,j] # kick group for k=1:3 aij[k] = a[k,i] - a[k,j] rij[k] = x[k,i] - x[k,j] end r2 = dot(rij,rij) r5inv = 1.0/(r2^2*sqrt(r2)) ardot = dot(aij,rij) for k=1:3 fac = coeff*r5inv*(rij[k]*3*ardot-r2*aij[k]) #v[k,i] += m[j]*fac v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i],m[j]*fac) #v[k,j] -= m[i]*fac v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],-m[i]*fac) end end end return end # Computes correction for pairs which are kicked, with Jacobian, and computes dq/dt: function phic!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},n::Int64,jac_step::Array{T,2},dqdt_phi::Array{T,1},pair::Array{Bool,2}) where {T <: Real} a = zeros(T,3,n) rij = zeros(T,3) aij = zeros(T,3) dadq = zeros(T,3,n,4,n) # There is no velocity dependence dotdadq = zeros(T,4,n) # There is no velocity dependence # Set jac_step to zeros: #jac_step.=eye(T,7*n) fill!(jac_step,zero(T)) fac = 0.0; fac1 = 0.0; fac2 = 0.0; fac3 = 0.0; r1 = 0.0; r2 = 0.0; r3 = 0.0 coeff = h^3/36*GNEWT @inbounds for i=1:n-1 indi = (i-1)*7 for j=i+1:n if pair[i,j] indj = (j-1)*7 for k=1:3 rij[k] = x[k,i] - x[k,j] end r2inv = inv(dot(rij,rij)) r3inv = r2inv*sqrt(r2inv) for k=1:3 # Apply impulses: fac = GNEWT*rij[k]*r3inv facv = fac*2*h/3 #v[k,i] -= m[j]*facv v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i],-m[j]*facv) #v[k,j] += m[i]*facv v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],m[i]*facv) # Compute time derivative: dqdt_phi[indi+3+k] -= 3/h*m[j]*facv dqdt_phi[indj+3+k] += 3/h*m[i]*facv a[k,i] -= m[j]*fac a[k,j] += m[i]*fac # Impulse of ith particle depends on mass of jth particle: jac_step[indi+3+k,indj+7] -= facv # Impulse of jth particle depends on mass of ith particle: jac_step[indj+3+k,indi+7] += facv # x derivative of acceleration vector: facv *= 3.0*r2inv # Dot product x_ij.\delta x_ij means we need to sum over components: for p=1:3 jac_step[indi+3+k,indi+p] += facv*m[j]*rij[p] jac_step[indi+3+k,indj+p] -= facv*m[j]*rij[p] jac_step[indj+3+k,indj+p] += facv*m[i]*rij[p] jac_step[indj+3+k,indi+p] -= facv*m[i]*rij[p] end # Final term has no dot product, so just diagonal: facv = 2h/3*GNEWT*r3inv jac_step[indi+3+k,indi+k] -= facv*m[j] jac_step[indi+3+k,indj+k] += facv*m[j] jac_step[indj+3+k,indj+k] -= facv*m[i] jac_step[indj+3+k,indi+k] += facv*m[i] # Mass derivative of acceleration vector (10/6/17 notes): # Since there is no velocity dependence, this is fourth parameter. # Acceleration of ith particle depends on mass of jth particle: dadq[k,i,4,j] -= fac dadq[k,j,4,i] += fac # x derivative of acceleration vector: fac *= 3.0*r2inv # Dot product x_ij.\delta x_ij means we need to sum over components: for p=1:3 dadq[k,i,p,i] += fac*m[j]*rij[p] dadq[k,i,p,j] -= fac*m[j]*rij[p] dadq[k,j,p,j] += fac*m[i]*rij[p] dadq[k,j,p,i] -= fac*m[i]*rij[p] end # Final term has no dot product, so just diagonal: fac = GNEWT*r3inv dadq[k,i,k,i] -= fac*m[j] dadq[k,i,k,j] += fac*m[j] dadq[k,j,k,j] -= fac*m[i] dadq[k,j,k,i] += fac*m[i] end end end end # Next, compute g_i acceleration vector. # Note that jac_step[(i-1)*7+k,(j-1)*7+p] is the derivative of the kth coordinate # of planet i with respect to the pth coordinate of planet j. indi = 0; indj=0; indd = 0 @inbounds for i=1:n-1 indi = (i-1)*7 for j=i+1:n if pair[i,j] # correction for Kepler pairs indj = (j-1)*7 for k=1:3 aij[k] = a[k,i] - a[k,j] rij[k] = x[k,i] - x[k,j] end # Compute dot product of r_ij with \delta a_ij: fill!(dotdadq,0.0) @inbounds for d=1:n, p=1:4, k=1:3 dotdadq[p,d] += rij[k]*(dadq[k,i,p,d]-dadq[k,j,p,d]) end r2 = dot(rij,rij) r1 = sqrt(r2) ardot = dot(aij,rij) fac1 = coeff/r1^5 fac2 = 3*ardot for k=1:3 fac = fac1*(rij[k]*fac2- r2*aij[k]) #v[k,i] += m[j]*fac v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i],m[j]*fac) #v[k,j] -= m[i]*fac v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],-m[i]*fac) # Mass derivative (first part is easy): jac_step[indi+3+k,indj+7] += fac jac_step[indj+3+k,indi+7] -= fac # Position derivatives: fac *= 5.0/r2 for p=1:3 jac_step[indi+3+k,indi+p] -= fac*m[j]*rij[p] jac_step[indi+3+k,indj+p] += fac*m[j]*rij[p] jac_step[indj+3+k,indj+p] -= fac*m[i]*rij[p] jac_step[indj+3+k,indi+p] += fac*m[i]*rij[p] end # Diagonal position terms: fac = fac1*fac2 jac_step[indi+3+k,indi+k] += fac*m[j] jac_step[indi+3+k,indj+k] -= fac*m[j] jac_step[indj+3+k,indj+k] += fac*m[i] jac_step[indj+3+k,indi+k] -= fac*m[i] # Dot product \delta rij terms: fac = -2*fac1*aij[k] for p=1:3 fac3 = fac*rij[p] + fac1*3.0*rij[k]*aij[p] jac_step[indi+3+k,indi+p] += m[j]*fac3 jac_step[indi+3+k,indj+p] -= m[j]*fac3 jac_step[indj+3+k,indj+p] += m[i]*fac3 jac_step[indj+3+k,indi+p] -= m[i]*fac3 end # Diagonal acceleration terms: fac = -fac1*r2 # Duoh. For dadq, have to loop over all other parameters! @inbounds for d=1:n indd = (d-1)*7 for p=1:3 jac_step[indi+3+k,indd+p] += fac*m[j]*(dadq[k,i,p,d]-dadq[k,j,p,d]) jac_step[indj+3+k,indd+p] -= fac*m[i]*(dadq[k,i,p,d]-dadq[k,j,p,d]) end # Don't forget mass-dependent term: jac_step[indi+3+k,indd+7] += fac*m[j]*(dadq[k,i,4,d]-dadq[k,j,4,d]) jac_step[indj+3+k,indd+7] -= fac*m[i]*(dadq[k,i,4,d]-dadq[k,j,4,d]) end # Now, for the final term: (\delta a_ij . r_ij ) r_ij fac = 3.0*fac1*rij[k] @inbounds for d=1:n indd = (d-1)*7 for p=1:3 jac_step[indi+3+k,indd+p] += fac*m[j]*dotdadq[p,d] jac_step[indj+3+k,indd+p] -= fac*m[i]*dotdadq[p,d] end jac_step[indi+3+k,indd+7] += fac*m[j]*dotdadq[4,d] jac_step[indj+3+k,indd+7] -= fac*m[i]*dotdadq[4,d] end end end end end return end # Carries out the AH18 mapping: function ah18!(x::Array{T,2},v::Array{T,2},h::T,m::Array{T,1},n::Int64,pair::Array{Bool,2}) where {T <: Real} # New version of solver that consolidates keplerij and driftij, and sets # alpha = 0: h2 = 0.5*h drift!(x,v,h2,n) #kickfast!(x,v,h2,m,n,pair) kickfast!(x,v,h/6,m,n,pair) @inbounds for i=1:n-1 for j=i+1:n if ~pair[i,j] kepler_driftij!(m,x,v,i,j,h2,true) end end end # Missing phic here [ ] phic!(x,v,h,m,n,pair) phisalpha!(x,v,h,m,convert(T,2),n,pair) for i=n-1:-1:1 for j=n:-1:i+1 if ~pair[i,j] kepler_driftij!(m,x,v,i,j,h2,false) end end end #kickfast!(x,v,h2,m,n,pair) kickfast!(x,v,h/6,m,n,pair) drift!(x,v,h2,n) return end # Carries out the AH18 mapping with compensated summation: function ah18!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},n::Int64,pair::Array{Bool,2}) where {T <: Real} # New version of solver that consolidates keplerij and driftij, and sets # alpha = 0: h2 = 0.5*h drift!(x,v,xerror,verror,h2,n) #kickfast!(x,v,xerror,verror,h2,m,n,pair) kickfast!(x,v,xerror,verror,h/6,m,n,pair) @inbounds for i=1:n-1 for j=i+1:n if ~pair[i,j] # kepler_driftij!(m,x,v,xerror,verror,i,j,h2,true) kepler_driftij_gamma!(m,x,v,xerror,verror,i,j,h2,true) end end end # Missing phic here [ ] phic!(x,v,xerror,verror,h,m,n,pair) phisalpha!(x,v,xerror,verror,h,m,convert(T,2),n,pair) for i=n-1:-1:1 for j=n:-1:i+1 if ~pair[i,j] # kepler_driftij!(m,x,v,xerror,verror,i,j,h2,false) kepler_driftij_gamma!(m,x,v,xerror,verror,i,j,h2,false) end end end #kickfast!(x,v,xerror,verror,h2,m,n,pair) kickfast!(x,v,xerror,verror,h/6,m,n,pair) drift!(x,v,xerror,verror,h2,n) return end # Carries out the AH18 mapping & computes the Jacobian: function ah18!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2}, h::T,m::Array{T,1},n::Int64,jac_step::Array{T,2},jac_error::Array{T,2},pair::Array{Bool,2},d::Derivatives{T}) where {T <: Real} zilch = zero(T); uno = one(T); half = convert(T,0.5); two = convert(T,2.0) h2 = half*h sevn = 7*n jac_phi = zeros(T,sevn,sevn) jac_kick = zeros(T,sevn,sevn) jac_copy = zeros(T,sevn,sevn) jac_ij = zeros(T,14,14) dqdt_ij = zeros(T,14) dqdt_phi = zeros(T,sevn) dqdt_kick = zeros(T,sevn) jac_tmp1 = zeros(T,14,sevn) jac_tmp2 = zeros(T,14,sevn) jac_err1 = zeros(T,14,sevn) # Edit this routine to do compensated summation for Jacobian [x] drift!(x,v,xerror,verror,h2,n,jac_step,jac_error) #kickfast!(x,v,h2,m,n,jac_kick,dqdt_kick,pair) kickfast!(x,v,xerror,verror,h/6,m,n,jac_kick,dqdt_kick,pair) # Multiply Jacobian from kick step: if T == BigFloat jac_copy .= *(jac_kick,jac_step) else BLAS.gemm!('N','N',uno,jac_kick,jac_step,zilch,jac_copy) end # Add back in the identity portion of the Jacobian with compensated summation: comp_sum_matrix!(jac_step,jac_error,jac_copy) indi = 0; indj = 0 @inbounds for i=1:n-1 indi = (i-1)*7 @inbounds for j=i+1:n indj = (j-1)*7 if ~pair[i,j] # Check to see if kicks have not been applied # kepler_driftij!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij,true) kepler_driftij_gamma!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij,true) # Pick out indices for bodies i & j: @inbounds for k2=1:sevn, k1=1:7 jac_tmp1[k1,k2] = jac_step[ indi+k1,k2] jac_err1[k1,k2] = jac_error[indi+k1,k2] end @inbounds for k2=1:sevn, k1=1:7 jac_tmp1[7+k1,k2] = jac_step[ indj+k1,k2] jac_err1[7+k1,k2] = jac_error[indj+k1,k2] end # Carry out multiplication on the i/j components of matrix: if T == BigFloat jac_tmp2 .= *(jac_ij,jac_tmp1) else BLAS.gemm!('N','N',uno,jac_ij,jac_tmp1,zilch,jac_tmp2) end # Add back in the Jacobian with compensated summation: comp_sum_matrix!(jac_tmp1,jac_err1,jac_tmp2) # Copy back to the Jacobian: @inbounds for k2=1:sevn, k1=1:7 jac_step[ indi+k1,k2]=jac_tmp1[k1,k2] jac_error[indi+k1,k2]=jac_err1[k1,k2] end @inbounds for k2=1:sevn, k1=1:7 jac_step[ indj+k1,k2]=jac_tmp1[7+k1,k2] jac_error[indj+k1,k2]=jac_err1[7+k1,k2] end end end end # Missing phic here [x] phic!(x,v,xerror,verror,h,m,n,jac_phi,dqdt_phi,pair) #hbig = big(h); mbig = big.(m) #xbig = big.(x); vbig = big.(v) #xerr_big = big.(xerror); verr_big = big.(verror) #jac_phi_big = big.(jac_phi); dqdt_phi_big = big.(dqdt_phi) #phisalpha!(xbig,vbig,xerr_big,verr_big,hbig,mbig,big(two),n,jac_phi_big,dqdt_phi_big,pair) #xcompare = convert(Array{T,2},xbig); vcompare = convert(Array{T,2},vbig) #x .= xcompare; v .= vcompare; jac_phi .= convert(Array{T,2},jac_phi_big) #xerror .= convert(Array{T,2},xerr_big); verror .= convert(Array{T,2},verr_big) phisalpha!(x,v,xerror,verror,h,m,two,n,jac_phi,dqdt_phi,pair) # 10% # jac_step .= jac_phi*jac_step # < 1% Perhaps use gemm?! [ ] if T == BigFloat jac_copy .= *(jac_phi,jac_step) else BLAS.gemm!('N','N',uno,jac_phi,jac_step,zilch,jac_copy) end # Add back in the identity portion of the Jacobian with compensated summation: comp_sum_matrix!(jac_step,jac_error,jac_copy) indi=0; indj=0 @inbounds for i=n-1:-1:1 indi=(i-1)*7 @inbounds for j=n:-1:i+1 indj=(j-1)*7 if ~pair[i,j] # Check to see if kicks have not been applied # kepler_driftij!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij,false) kepler_driftij_gamma!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij,false) # Pick out indices for bodies i & j: # Carry out multiplication on the i/j components of matrix: @inbounds for k2=1:sevn, k1=1:7 jac_tmp1[k1,k2] = jac_step[ indi+k1,k2] jac_err1[k1,k2] = jac_error[indi+k1,k2] end @inbounds for k2=1:sevn, k1=1:7 jac_tmp1[7+k1,k2] = jac_step[ indj+k1,k2] jac_err1[7+k1,k2] = jac_error[indj+k1,k2] end # Carry out multiplication on the i/j components of matrix: if T == BigFloat jac_tmp2 .= *(jac_ij,jac_tmp1) else BLAS.gemm!('N','N',uno,jac_ij,jac_tmp1,zilch,jac_tmp2) end # Add back in the Jacobian with compensated summation: comp_sum_matrix!(jac_tmp1,jac_err1,jac_tmp2) # Copy back to the Jacobian: @inbounds for k2=1:sevn, k1=1:7 jac_step[ indi+k1,k2]=jac_tmp1[k1,k2] jac_error[indi+k1,k2]=jac_err1[k1,k2] end @inbounds for k2=1:sevn, k1=1:7 jac_step[ indj+k1,k2]=jac_tmp1[7+k1,k2] jac_error[indj+k1,k2]=jac_err1[7+k1,k2] end end end end #kickfast!(x,v,h2,m,n,jac_kick,dqdt_kick,pair) kickfast!(x,v,xerror,verror,h/6,m,n,jac_kick,dqdt_kick,pair) # Multiply Jacobian from kick step: if T == BigFloat jac_copy .= *(jac_kick,jac_step) else BLAS.gemm!('N','N',uno,jac_kick,jac_step,zilch,jac_copy) end # Add back in the identity portion of the Jacobian with compensated summation: comp_sum_matrix!(jac_step,jac_error,jac_copy) # Edit this routine to do compensated summation for Jacobian [x] drift!(x,v,xerror,verror,h2,n,jac_step,jac_error) return end # Carries out the AH18 mapping & computes the derivative with respect to time step, h: function ah18!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},n::Int64,dqdt::Array{T,1},pair::Array{Bool,2},d::Derivatives{T}) where {T <: Real} # [Currently this routine is not giving the correct dqdt values. -EA 8/12/2019] zilch = zero(T); uno = one(T); half = convert(T,0.5); two = convert(T,2.0) h2 = half*h # This routine assumes that alpha = 0.0 sevn = 7*n jac_phi = zeros(T,sevn,sevn) jac_kick = zeros(T,sevn,sevn) jac_ij = zeros(T,14,14) dqdt_ij = zeros(T,14) dqdt_phi = zeros(T,sevn) dqdt_kick = zeros(T,sevn) dqdt_tmp1 = zeros(T,14) dqdt_tmp2 = zeros(T,14) fill!(dqdt,zilch) #dqdt_save =copy(dqdt) drift!(x,v,xerror,verror,h2,n) # Compute time derivative of drift step: @inbounds for i=1:n, k=1:3 dqdt[(i-1)*7+k] = half*v[k,i] + h2*dqdt[(i-1)*7+3+k] end #println("dqdt 1: ",dqdt-dqdt_save) #dqdt_save .= dqdt kickfast!(x,v,xerror,verror,h/6,m,n,jac_kick,dqdt_kick,pair) dqdt_kick /= 6 # Since step is h/6 # Since I removed identity from kickfast, need to add in dqdt: dqdt .+= dqdt_kick + *(jac_kick,dqdt) #println("dqdt 2: ",dqdt-dqdt_save) #dqdt_save .= dqdt @inbounds for i=1:n-1 indi = (i-1)*7 @inbounds for j=i+1:n indj = (j-1)*7 if ~pair[i,j] # Check to see if kicks have not been applied # kepler_driftij!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij,true) kepler_driftij_gamma!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij,true) # Copy current time derivatives for multiplication purposes: @inbounds for k1=1:7 dqdt_tmp1[ k1] = dqdt[indi+k1] dqdt_tmp1[7+k1] = dqdt[indj+k1] end # Add in partial derivatives with respect to time: # Need to multiply by 1/2 since we're taking 1/2 time step: # BLAS.gemm!('N','N',uno,jac_ij,dqdt_tmp1,half,dqdt_ij) dqdt_ij .*= half dqdt_ij .+= *(jac_ij,dqdt_tmp1) + dqdt_tmp1 # Copy back time derivatives: @inbounds for k1=1:7 dqdt[indi+k1] = dqdt_ij[ k1] dqdt[indj+k1] = dqdt_ij[7+k1] end # println("dqdt 4: i: ",i," j: ",j," diff: ",dqdt-dqdt_save) # dqdt_save .= dqdt end end end # Looks like we are missing phic! here: [ ] # Since I haven't added dqdt to phic yet, for now, set jac_phi equal to identity matrix # (since this is commented out within phisalpha): #jac_phi .= eye(T,sevn) phic!(x,v,xerror,verror,h,m,n,jac_phi,dqdt_phi,pair) phisalpha!(x,v,xerror,verror,h,m,two,n,jac_phi,dqdt_phi,pair) # 10% # Add in time derivative with respect to prior parameters: #BLAS.gemm!('N','N',uno,jac_phi,dqdt,uno,dqdt_phi) # Copy result to dqdt: dqdt .+= dqdt_phi + *(jac_phi,dqdt) #println("dqdt 5: ",dqdt-dqdt_save) #dqdt_save .= dqdt indi=0; indj=0 @inbounds for i=n-1:-1:1 indi=(i-1)*7 @inbounds for j=n:-1:i+1 if ~pair[i,j] # Check to see if kicks have not been applied indj=(j-1)*7 # kepler_driftij!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij,false) # 23% kepler_driftij_gamma!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij,false) # 23% # Copy current time derivatives for multiplication purposes: @inbounds for k1=1:7 dqdt_tmp1[ k1] = dqdt[indi+k1] dqdt_tmp1[7+k1] = dqdt[indj+k1] end # Add in partial derivatives with respect to time: # Need to multiply by 1/2 since we're taking 1/2 time step: #BLAS.gemm!('N','N',uno,jac_ij,dqdt_tmp1,half,dqdt_ij) dqdt_ij .*= half dqdt_ij .+= *(jac_ij,dqdt_tmp1) + dqdt_tmp1 # Copy back time derivatives: @inbounds for k1=1:7 dqdt[indi+k1] = dqdt_ij[ k1] dqdt[indj+k1] = dqdt_ij[7+k1] end # dqdt_save .= dqdt # println("dqdt 7: ",dqdt-dqdt_save) # println("dqdt 6: i: ",i," j: ",j," diff: ",dqdt-dqdt_save) # dqdt_save .= dqdt end end end fill!(dqdt_kick,zilch) kickfast!(x,v,xerror,verror,h/6,m,n,jac_kick,dqdt_kick,pair) dqdt_kick /= 6 # Since step is h/6 # Copy result to dqdt: dqdt .+= dqdt_kick + *(jac_kick,dqdt) #println("dqdt 8: ",dqdt-dqdt_save) #dqdt_save .= dqdt drift!(x,v,xerror,verror,h2,n) # Compute time derivative of drift step: @inbounds for i=1:n, k=1:3 dqdt[(i-1)*7+k] += half*v[k,i] + h2*dqdt[(i-1)*7+3+k] end #println("dqdt 9: ",dqdt-dqdt_save) return end # Carries out the DH17 mapping: function dh17!(x::Array{T,2},v::Array{T,2},h::T,m::Array{T,1},n::Int64,pair::Array{Bool,2}) where {T <: Real} alpha = convert(T,alpha0) h2 = 0.5*h # alpha = 0. is similar in precision to alpha=0.25 kickfast!(x,v,h/6,m,n,pair) if alpha != 0.0 phisalpha!(x,v,h,m,alpha,n,pair) end drift!(x,v,h2,n) @inbounds for i=1:n-1 @inbounds for j=i+1:n if ~pair[i,j] driftij!(x,v,i,j,-h2) keplerij!(m,x,v,i,j,h2) end end end # kick and correction for pairs which are kicked: phic!(x,v,h,m,n,pair) if alpha != 1.0 phisalpha!(x,v,h,m,2.0*(1.0-alpha),n,pair) end @inbounds for i=n-1:-1:1 @inbounds for j=n:-1:i+1 if ~pair[i,j] keplerij!(m,x,v,i,j,h2) driftij!(x,v,i,j,-h2) end end end drift!(x,v,h2,n) if alpha != 0.0 phisalpha!(x,v,h,m,alpha,n,pair) end kickfast!(x,v,h/6,m,n,pair) return end # Carries out the DH17 mapping with compensated summation: function dh17!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},n::Int64,pair::Array{Bool,2}) where {T <: Real} alpha = convert(T,alpha0) h2 = 0.5*h # alpha = 0. is similar in precision to alpha=0.25 kickfast!(x,v,xerror,verror,h/6,m,n,pair) if alpha != 0.0 phisalpha!(x,v,xerror,verror,h,m,alpha,n,pair) end #mbig = big.(m); h2big = big(h2) #xbig = big.(x); vbig = big.(v) drift!(x,v,xerror,verror,h2,n) #drift!(xbig,vbig,h2big,n) #xcompare = convert(Array{T,2},xbig); vcompare = convert(Array{T,2},vbig) #x .= xcompare; v .= vcompare #hbig = big(h) @inbounds for i=1:n-1 @inbounds for j=i+1:n if ~pair[i,j] # xbig = big.(x); vbig = big.(v) driftij!(x,v,xerror,verror,i,j,-h2) # driftij!(xbig,vbig,i,j,-h2big) # xcompare = convert(Array{T,2},xbig); vcompare = convert(Array{T,2},vbig) # x .= xcompare; v .= vcompare # xbig = big.(x); vbig = big.(v) # keplerij!(mbig,xbig,vbig,i,j,h2big) # xcompare = convert(Array{T,2},xbig); vcompare = convert(Array{T,2},vbig) keplerij!(m,x,v,xerror,verror,i,j,h2) # x .= xcompare; v .= vcompare end end end # kick and correction for pairs which are kicked: phic!(x,v,xerror,verror,h,m,n,pair) if alpha != 1.0 # xbig = big.(x); vbig = big.(v) phisalpha!(x,v,xerror,verror,h,m,2.0*(1.0-alpha),n,pair) # phisalpha!(xbig,vbig,hbig,mbig,2*(1-big(alpha)),n,pair) # xcompare = convert(Array{T,2},xbig); vcompare = convert(Array{T,2},vbig) # x .= xcompare; v .= vcompare end @inbounds for i=n-1:-1:1 @inbounds for j=n:-1:i+1 if ~pair[i,j] # xbig = big.(x); vbig = big.(v) # keplerij!(mbig,xbig,vbig,i,j,h2big) #x = convert(Array{T,2},xbig); v = convert(Array{T,2},vbig) # xcompare = convert(Array{T,2},xbig); vcompare = convert(Array{T,2},vbig) keplerij!(m,x,v,xerror,verror,i,j,h2) # x .= xcompare; v .= vcompare # xbig = big.(x); vbig = big.(v) driftij!(x,v,xerror,verror,i,j,-h2) # driftij!(xbig,vbig,i,j,-h2big) # xcompare = convert(Array{T,2},xbig); vcompare = convert(Array{T,2},vbig) # x .= xcompare; v .= vcompare end end end #xbig = big.(x); vbig = big.(v) drift!(x,v,xerror,verror,h2,n) #drift!(xbig,vbig,h2big,n) #xcompare = convert(Array{T,2},xbig); vcompare = convert(Array{T,2},vbig) #x .= xcompare; v .= vcompare if alpha != 0.0 phisalpha!(x,v,xerror,verror,h,m,alpha,n,pair) end kickfast!(x,v,xerror,verror,h/6,m,n,pair) return end # Used in computing the transit time: function g!(i::Int64,j::Int64,x::Array{T,2},v::Array{T,2}) where {T <: Real} # See equation 8-10 Fabrycky (2008) in Seager Exoplanets book g = (x[1,j]-x[1,i])*(v[1,j]-v[1,i])+(x[2,j]-x[2,i])*(v[2,j]-v[2,i]) return g end # Carries out the DH17 mapping & computes the Jacobian: function dh17!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},n::Int64,jac_step::Array{T,2},pair::Array{Bool,2}) where {T <: Real} zilch = zero(T); uno = one(T); half = convert(T,0.5); two = convert(T,2.0) h2 = half*h alpha = convert(T,alpha0) sevn = 7*n jac_phi = zeros(T,sevn,sevn) jac_kick = zeros(T,sevn,sevn) jac_copy = zeros(T,sevn,sevn) jac_error = zeros(T,sevn,sevn) jac_ij = zeros(T,14,14) dqdt_ij = zeros(T,14) dqdt_phi = zeros(T,sevn) dqdt_kick = zeros(T,sevn) jac_tmp1 = zeros(T,14,sevn) jac_tmp2 = zeros(T,14,sevn) jac_err1 = zeros(T,14,sevn) kickfast!(x,v,xerror,verror,h/6,m,n,jac_phi,dqdt_kick,pair) # alpha = 0. is similar in precision to alpha=0.25 if alpha != zilch phisalpha!(x,v,xerror,verror,h,m,alpha,n,jac_phi,dqdt_phi,pair) # jac_step .= jac_phi*jac_step # < 1% end # Multiply Jacobian from kick/phisalpha steps: if T == BigFloat jac_copy = *(jac_phi,jac_step) else BLAS.gemm!('N','N',uno,jac_phi,jac_step,zilch,jac_copy) end # Add back in the identity portion of the Jacobian with compensated summation: comp_sum_matrix!(jac_step,jac_error,jac_copy) # Modify drift! to account for error in Jacobian: [x] drift!(x,v,xerror,verror,h2,n,jac_step,jac_error) indi = 0; indj = 0 @inbounds for i=1:n-1 indi = (i-1)*7 @inbounds for j=i+1:n indj = (j-1)*7 if ~pair[i,j] # Check to see if kicks have not been applied driftij!(x,v,xerror,verror,i,j,-h2,jac_step,jac_error,n) keplerij!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij) # 21% # Pick out indices for bodies i & j: @inbounds for k2=1:sevn, k1=1:7 jac_tmp1[k1,k2] = jac_step[indi+k1,k2] jac_err1[k1,k2] = jac_error[indi+k1,k2] end @inbounds for k2=1:sevn, k1=1:7 jac_tmp1[7+k1,k2] = jac_step[indj+k1,k2] jac_err1[7+k1,k2] = jac_error[indj+k1,k2] end # Carry out multiplication on the i/j components of matrix: # jac_tmp2 = BLAS.gemm('N','N',jac_ij,jac_tmp1) if T == BigFloat jac_tmp2 = *(jac_ij,jac_tmp1) else BLAS.gemm!('N','N',uno,jac_ij,jac_tmp1,zilch,jac_tmp2) end # # Add back in the Jacobian with compensated summation: # comp_sum_matrix!(jac_tmp1,jac_err1,jac_tmp2) # Copy back to the Jacobian: @inbounds for k2=1:sevn, k1=1:7 jac_step[indi+k1,k2]=jac_tmp2[k1,k2] jac_error[indi+k1,k2]=jac_err1[k1,k2] end @inbounds for k2=1:sevn, k1=1:7 jac_step[indj+k1,k2]=jac_tmp2[7+k1,k2] jac_error[indj+k1,k2]=jac_err1[7+k1,k2] end end end end # kick and correction for pairs which are kicked: phic!(x,v,xerror,verror,h,m,n,jac_phi,dqdt_phi,pair) if alpha != uno # phisalpha!(x,v,h,m,2.0*(1.0-alpha),n,jac_phi,pair) # 10% phisalpha!(x,v,xerror,verror,h,m,two*(uno-alpha),n,jac_phi,dqdt_phi,pair) # 10% # @inbounds for i in eachindex(jac_step) # jac_copy[i] = jac_step[i] # end # jac_step .= jac_phi*jac_step # < 1% Perhaps use gemm?! [ ] # if T == BigFloat # jac_step = *(jac_phi,jac_copy) # else # BLAS.gemm!('N','N',uno,jac_phi,jac_copy,zilch,jac_step) # end end @inbounds for i in eachindex(jac_step) jac_copy[i] = jac_step[i] end if T == BigFloat jac_step = *(jac_phi,jac_copy) else BLAS.gemm!('N','N',uno,jac_phi,jac_copy,zilch,jac_step) end # Add back in the identity portion of the Jacobian with compensated summation: comp_sum_matrix!(jac_step,jac_error,jac_copy) indi=0; indj=0 @inbounds for i=n-1:-1:1 indi=(i-1)*7 @inbounds for j=n:-1:i+1 indj=(j-1)*7 if ~pair[i,j] # Check to see if kicks have not been applied keplerij!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij) # 23% # Pick out indices for bodies i & j: # Carry out multiplication on the i/j components of matrix: @inbounds for k2=1:sevn, k1=1:7 jac_tmp1[k1,k2] = jac_step[indi+k1,k2] jac_err1[k1,k2] = jac_error[indi+k1,k2] end @inbounds for k2=1:sevn, k1=1:7 jac_tmp1[7+k1,k2] = jac_step[indj+k1,k2] jac_err1[7+k1,k2] = jac_error[indj+k1,k2] end # Carry out multiplication on the i/j components of matrix: # jac_tmp2 = BLAS.gemm('N','N',jac_ij,jac_tmp1) if T == BigFloat jac_tmp2 = *(jac_ij,jac_tmp1) else BLAS.gemm!('N','N',uno,jac_ij,jac_tmp1,zilch,jac_tmp2) end # # Add back in the Jacobian with compensated summation: # comp_sum_matrix!(jac_tmp1,jac_err1,jac_tmp2) # Copy back to the Jacobian: @inbounds for k2=1:sevn, k1=1:7 jac_step[indi+k1,k2]=jac_tmp2[k1,k2] jac_error[indi+k1,k2]=jac_err1[k1,k2] end @inbounds for k2=1:sevn, k1=1:7 jac_step[indj+k1,k2]=jac_tmp2[7+k1,k2] jac_error[indj+k1,k2]=jac_err1[7+k1,k2] end driftij!(x,v,xerror,verror,i,j,-h2,jac_step,jac_error,n) end end end drift!(x,v,xerror,verror,h2,n,jac_step,jac_error) if alpha != zilch # phisalpha!(x,v,h,m,alpha,n,jac_phi) phisalpha!(x,v,xerror,verror,h,m,alpha,n,jac_phi,dqdt_phi,pair) # 10% # jac_step .= jac_phi*jac_step # < 1% end kickfast!(x,v,xerror,verror,h/6,m,n,jac_phi,dqdt_kick,pair) # Multiply Jacobian from kick step: if T == BigFloat jac_copy = *(jac_phi,jac_step) else BLAS.gemm!('N','N',uno,jac_phi,jac_step,zilch,jac_copy) end # Add back in the identity portion of the Jacobian with compensated summation: comp_sum_matrix!(jac_step,jac_error,jac_copy) #println("jac_step: ",T," ",convert(Array{Float64,2},jac_step)) return #jac_step end # Carries out the DH17 mapping & computes the derivative with respect to time step, h: function dh17!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},n::Int64,dqdt::Array{T,1},pair::Array{Bool,2}) where {T <: Real} zilch = zero(T); uno = one(T); half = convert(T,0.5); two = convert(T,2.0) h2 = half*h # This routine assumes that alpha = 0.0 sevn = 7*n jac_phi = zeros(T,sevn,sevn) jac_kick = zeros(T,sevn,sevn) jac_ij = zeros(T,14,14) dqdt_ij = zeros(T,14) dqdt_phi = zeros(T,sevn) dqdt_kick = zeros(T,sevn) dqdt_tmp1 = zeros(T,14) fill!(dqdt,zilch) # dqdt_save is for debugging: #dqdt_save = copy(dqdt) drift!(x,v,xerror,verror,h2,n) # Compute time derivative of drift step: @inbounds for i=1:n, k=1:3 dqdt[(i-1)*7+k] = half*v[k,i] + h2*dqdt[(i-1)*7+3+k] end #println("dqdt 1: ",dqdt-dqdt_save) #dqdt_save .= dqdt kickfast!(x,v,xerror,verror,h/6,m,n,jac_kick,dqdt_kick,pair) dqdt_kick /= 6 # Since step is h/6 dqdt_kick .+= *(jac_kick,dqdt) # Copy result to dqdt: dqdt .+= dqdt_kick #println("dqdt 2: ",dqdt-dqdt_save) # dqdt_save .= dqdt @inbounds for i=1:n-1 indi = (i-1)*7 @inbounds for j=i+1:n indj = (j-1)*7 if ~pair[i,j] # Check to see if kicks have not been applied driftij!(x,v,xerror,verror,i,j,-h2,dqdt,-half) # println("dqdt 3: i: ",i," j: ",j," diff: ",dqdt-dqdt_save) # dqdt_save .= dqdt keplerij!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij) # 21% # Copy current time derivatives for multiplication purposes: @inbounds for k1=1:7 dqdt_tmp1[ k1] = dqdt[indi+k1] dqdt_tmp1[7+k1] = dqdt[indj+k1] end # Add in partial derivatives with respect to time: # Need to multiply by 1/2 since we're taking 1/2 time step: # BLAS.gemm!('N','N',uno,jac_ij,dqdt_tmp1,half,dqdt_ij) dqdt_ij .*= half dqdt_ij .+= *(jac_ij,dqdt_tmp1) # Copy back time derivatives: @inbounds for k1=1:7 dqdt[indi+k1] = dqdt_ij[ k1] dqdt[indj+k1] = dqdt_ij[7+k1] end # println("dqdt 4: i: ",i," j: ",j," diff: ",dqdt-dqdt_save) # dqdt_save .= dqdt end end end # Looks like we are missing phic! here: [ ] # Since I haven't added dqdt to phic yet, for now, set jac_phi equal to identity matrix # (since this is commented out within phisalpha): #jac_phi .= eye(T,sevn) phic!(x,v,xerror,verror,h,m,n,jac_phi,dqdt_phi,pair) phisalpha!(x,v,xerror,verror,h,m,two,n,jac_phi,dqdt_phi,pair) # 10% # Add in time derivative with respect to prior parameters: #BLAS.gemm!('N','N',uno,jac_phi,dqdt,uno,dqdt_phi) dqdt_phi .+= *(jac_phi,dqdt) # Copy result to dqdt: dqdt .+= dqdt_phi #println("dqdt 5: ",dqdt-dqdt_save) #dqdt_save .= dqdt indi=0; indj=0 @inbounds for i=n-1:-1:1 indi=(i-1)*7 @inbounds for j=n:-1:i+1 if ~pair[i,j] # Check to see if kicks have not been applied indj=(j-1)*7 keplerij!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij) # 23% # Copy current time derivatives for multiplication purposes: @inbounds for k1=1:7 dqdt_tmp1[ k1] = dqdt[indi+k1] dqdt_tmp1[7+k1] = dqdt[indj+k1] end # Add in partial derivatives with respect to time: # Need to multiply by 1/2 since we're taking 1/2 time step: #BLAS.gemm!('N','N',uno,jac_ij,dqdt_tmp1,half,dqdt_ij) dqdt_ij .*= half dqdt_ij .+= *(jac_ij,dqdt_tmp1) # Copy back time derivatives: @inbounds for k1=1:7 dqdt[indi+k1] = dqdt_ij[ k1] dqdt[indj+k1] = dqdt_ij[7+k1] end # println("dqdt 6: i: ",i," j: ",j," diff: ",dqdt-dqdt_save) # dqdt_save .= dqdt driftij!(x,v,xerror,verror,i,j,-h2,dqdt,-half) # println("dqdt 7: ",dqdt-dqdt_save) # dqdt_save .= dqdt end end end fill!(dqdt_kick,zilch) kickfast!(x,v,xerror,verror,h/6,m,n,jac_kick,dqdt_kick,pair) dqdt_kick /= 6 # Since step is h/6 dqdt_kick .+= *(jac_kick,dqdt) #println("dqdt 8: ",dqdt-dqdt_save) #dqdt_save .= dqdt # Copy result to dqdt: dqdt .+= dqdt_kick drift!(x,v,xerror,verror,h2,n) # Compute time derivative of drift step: @inbounds for i=1:n, k=1:3 dqdt[(i-1)*7+k] += half*v[k,i] + h2*dqdt[(i-1)*7+3+k] end #println("dqdt 9: ",dqdt-dqdt_save) return end # Finds the transit by taking a partial dh17 step from prior times step: #function findtransit2!(i::Int64,j::Int64,n::Int64,h::Float64,tt::Float64,m::Array{Float64,1},x1::Array{Float64,2},v1::Array{Float64,2}) function findtransit2!(i::Int64,j::Int64,n::Int64,h::T,tt::T,m::Array{T,1},x1::Array{T,2},v1::Array{T,2},pair::Array{Bool,2}) where {T <: Real} # Computes the transit time, approximating the motion as a fraction of a DH17 step forward in time. # Initial guess using linear interpolation: dt = one(T) iter = 0 r3 = zero(T) gdot = zero(T) gsky = zero(T) x = copy(x1) v = copy(v1) #TRANSIT_TOL = 10*sqrt(eps(dt)) TRANSIT_TOL = 10*eps(dt) #println("h: ",h,", TRANSIT_TOL: ",TRANSIT_TOL) while abs(dt) > TRANSIT_TOL && iter < 20 x .= x1 v .= v1 # Advance planet state at start of step to estimated transit time: dh17!(x,v,tt,m,n,pair) # Compute time offset: gsky = g!(i,j,x,v) # Compute gravitational acceleration in sky plane dotted with sky position: gdot = zero(T) @inbounds for k=1:n if k != i r3 = sqrt((x[1,k]-x[1,i])^2+(x[2,k]-x[2,i])^2 +(x[3,k]-x[3,i])^2)^3 gdot -= GNEWT*m[k]*((x[1,k]-x[1,i])*(x[1,j]-x[1,i])+(x[2,k]-x[2,i])*(x[2,j]-x[2,i]))/r3 end if k != j r3 = sqrt((x[1,k]-x[1,j])^2+(x[2,k]-x[2,j])^2 +(x[3,k]-x[3,j])^2)^3 gdot += GNEWT*m[k]*((x[1,k]-x[1,j])*(x[1,j]-x[1,i])+(x[2,k]-x[2,j])*(x[2,j]-x[2,i]))/r3 end end # Compute derivative of g with respect to time: gdot += (v[1,j]-v[1,i])^2+(v[2,j]-v[2,i])^2 # Refine estimate of transit time with Newton's method: dt = -gsky/gdot # Add refinement to estimated time: tt += dt iter +=1 end #x = copy(x1) #v = copy(v1) #dh17!(x,v,tt,m,n,pair) # Compute time offset: #gsky = g!(i,j,x,v) #println("gsky: ",convert(Float64,gsky)) if iter >= 20 # println("Exceeded iterations: planet ",j," iter ",iter," dt ",dt," gsky ",gsky," gdot ",gdot) end # Note: this is the time elapsed *after* the beginning of the timestep: return tt::T end # Finds the transit by taking a partial dh17 step from prior times step, computes timing Jacobian, dtdq, wrt initial cartesian coordinates, masses: #function findtransit2!(i::Int64,j::Int64,n::Int64,h::Float64,tt::Float64,m::Array{Float64,1},x1::Array{Float64,2},v1::Array{Float64,2},jac_step::Array{Float64,2},dtdq::Array{Float64,2},pair::Array{Bool,2}) function findtransit2!(i::Int64,j::Int64,n::Int64,h::T,tt::T,m::Array{T,1},x1::Array{T,2},v1::Array{T,2},jac_step::Array{T,2},dtdq::Array{T,2},pair::Array{Bool,2}) where {T <: Real} # Computes the transit time, approximating the motion as a fraction of a DH17 step forward in time. # Also computes the Jacobian of the transit time with respect to the initial parameters, dtdq[7,n]. # Initial guess using linear interpolation: #dt = 1.0 dt = one(T) iter = 0 #r3 = 0.0 r3 = zero(T) #gdot = 0.0 gdot = zero(T) #gsky = 0.0 gsky = zero(T) x = copy(x1) v = copy(v1) #TRANSIT_TOL = 10*sqrt(eps(dt)) TRANSIT_TOL = 10*eps(dt) #println("h: ",h,", TRANSIT_TOL: ",TRANSIT_TOL) while abs(dt) > TRANSIT_TOL && iter < 20 x .= x1 v .= v1 # Advance planet state at start of step to estimated transit time: dh17!(x,v,tt,m,n,pair) # Compute time offset: gsky = g!(i,j,x,v) # Compute gravitational acceleration in sky plane dotted with sky position: #gdot = 0.0 gdot = zero(T) @inbounds for k=1:n if k != i r3 = sqrt((x[1,k]-x[1,i])^2+(x[2,k]-x[2,i])^2 +(x[3,k]-x[3,i])^2)^3 gdot -= GNEWT*m[k]*((x[1,k]-x[1,i])*(x[1,j]-x[1,i])+(x[2,k]-x[2,i])*(x[2,j]-x[2,i]))/r3 # g = (x[1,j]-x[1,i])*(v[1,j]-v[1,i])+(x[2,j]-x[2,i])*(v[2,j]-v[2,i]) end if k != j r3 = sqrt((x[1,k]-x[1,j])^2+(x[2,k]-x[2,j])^2 +(x[3,k]-x[3,j])^2)^3 gdot += GNEWT*m[k]*((x[1,k]-x[1,j])*(x[1,j]-x[1,i])+(x[2,k]-x[2,j])*(x[2,j]-x[2,i]))/r3 end end # Compute derivative of g with respect to time: gdot += (v[1,j]-v[1,i])^2+(v[2,j]-v[2,i])^2 # Refine estimate of transit time with Newton's method: dt = -gsky/gdot # Add refinement to estimated time: tt += dt iter +=1 end if iter >= 20 # println("Exceeded iterations: planet ",j," iter ",iter," dt ",dt," gsky ",gsky," gdot ",gdot) end # Compute time derivatives: x = copy(x1) v = copy(v1) #xerror = zeros(x1); verror = zeros(v1) xerror = copy(x1); verror = copy(v1) fill!(xerror,0.0); fill!(verror,0.0) # Compute dgdt with the updated time step. dh17!(x,v,xerror,verror,tt,m,n,jac_step,pair) #println("\Delta t: ",tt) #println("jac_step: ",jac_step) # Compute time offset: gsky = g!(i,j,x,v) #println("gsky: ",convert(Float64,gsky)) # Compute gravitational acceleration in sky plane dotted with sky position: #gdot = 0.0 gdot = (v[1,j]-v[1,i])^2+(v[2,j]-v[2,i])^2 gdot_acc = zero(T) @inbounds for k=1:n if k != i r3 = sqrt((x[1,k]-x[1,i])^2+(x[2,k]-x[2,i])^2 +(x[3,k]-x[3,i])^2)^3 # Does this have the wrong sign?! gdot_acc -= GNEWT*m[k]*((x[1,k]-x[1,i])*(x[1,j]-x[1,i])+(x[2,k]-x[2,i])*(x[2,j]-x[2,i]))/r3 # g = (x[1,j]-x[1,i])*(v[1,j]-v[1,i])+(x[2,j]-x[2,i])*(v[2,j]-v[2,i]) end if k != j r3 = sqrt((x[1,k]-x[1,j])^2+(x[2,k]-x[2,j])^2 +(x[3,k]-x[3,j])^2)^3 # Does this have the wrong sign?! gdot_acc += GNEWT*m[k]*((x[1,k]-x[1,j])*(x[1,j]-x[1,i])+(x[2,k]-x[2,j])*(x[2,j]-x[2,i]))/r3 end end gdot += gdot_acc #println("gdot_acc/gdot: ",gdot_acc/gdot) # Compute derivative of g with respect to time: # Set dtdq to zero: fill!(dtdq,zero(T)) indj = (j-1)*7+1 indi = (i-1)*7+1 @inbounds for p=1:n indp = (p-1)*7 @inbounds for k=1:7 # Compute derivatives: #g = (x[1,j]-x[1,i])*(v[1,j]-v[1,i])+(x[2,j]-x[2,i])*(v[2,j]-v[2,i]) dtdq[k,p] = -((jac_step[indj ,indp+k]-jac_step[indi ,indp+k])*(v[1,j]-v[1,i])+(jac_step[indj+1,indp+k]-jac_step[indi+1,indp+k])*(v[2,j]-v[2,i])+ (jac_step[indj+3,indp+k]-jac_step[indi+3,indp+k])*(x[1,j]-x[1,i])+(jac_step[indj+4,indp+k]-jac_step[indi+4,indp+k])*(x[2,j]-x[2,i]))/gdot end end # Note: this is the time elapsed *after* the beginning of the timestep: return tt::T,gdot::T end # Finds the transit by taking a partial dh17 step from prior times step, computes timing Jacobian, dtdq, wrt initial cartesian coordinates, masses: function findtransit3!(i::Int64,j::Int64,n::Int64,h::T,tt::T,m::Array{T,1},x1::Array{T,2},v1::Array{T,2},xerror::Array{T,2},verror::Array{T,2},pair::Array{Bool,2};calcbvsky=false) where {T <: Real} # Computes the transit time, approximating the motion as a fraction of a DH17 step forward in time. # Also computes the Jacobian of the transit time with respect to the initial parameters, dtdq[7,n]. # This version is same as findtransit2, but uses the derivative of dh17 step with respect to time # rather than the instantaneous acceleration for finding transit time derivative (gdot). # Initial guess using linear interpolation: dt = one(T) iter = 0 r3 = zero(T) gdot = zero(T) gsky = gdot x = copy(x1); v = copy(v1); xerr_trans = copy(xerror); verr_trans = copy(verror) dqdt = zeros(T,7*n) d = Derivatives(T) #TRANSIT_TOL = 10*sqrt(eps(dt) TRANSIT_TOL = 10*eps(dt) ITMAX = 20 tt1 = tt + 1 tt2 = tt + 2 #while abs(dt) > TRANSIT_TOL && iter < 20 while true tt2 = tt1 tt1 = tt x .= x1; v .= v1; xerr_trans .= xerror; verr_trans .= verror # Advance planet state at start of step to estimated transit time: # dh17!(x,v,tt,m,n,pair) #dh17!(x,v,xerror,verror,tt,m,n,dqdt,pair) ah18!(x,v,xerr_trans,verr_trans,tt,m,n,dqdt,pair,d) # Compute time offset: gsky = g!(i,j,x,v) # # Compute derivative of g with respect to time: gdot = ((x[1,j]-x[1,i])*(dqdt[(j-1)*7+4]-dqdt[(i-1)*7+4])+(x[2,j]-x[2,i])*(dqdt[(j-1)*7+5]-dqdt[(i-1)*7+5]) + (v[1,j]-v[1,i])*(dqdt[(j-1)*7+1]-dqdt[(i-1)*7+1])+(v[2,j]-v[2,i])*(dqdt[(j-1)*7+2]-dqdt[(i-1)*7+2])) # Refine estimate of transit time with Newton's method: dt = -gsky/gdot # Add refinement to estimated time: tt += dt iter +=1 # Break out if we have reached maximum iterations, or if # current transit time estimate equals one of the prior two steps: if (iter >= ITMAX) || (tt == tt1) || (tt == tt2) break end end if iter >= 20 # println("Exceeded iterations: planet ",j," iter ",iter," dt ",dt," gsky ",gsky," gdot ",gdot) end # Note: this is the time elapsed *after* the beginning of the timestep: if calcbvsky # Compute the sky velocity and impact parameter: vsky = sqrt((v[1,j]-v[1,i])^2 + (v[2,j]-v[2,i])^2) bsky2 = (x[1,j]-x[1,i])^2 + (x[2,j]-x[2,i])^2 # return the transit time, impact parameter, and sky velocity: return tt::T,vsky::T,bsky2::T else return tt::T end end # Finds the transit by taking a partial ah18 step from prior times step, computes timing Jacobian, dtbvdq, wrt initial cartesian coordinates, masses: function findtransit3!(i::Int64,j::Int64,n::Int64,h::T,tt::T,m::Array{T,1},x1::Array{T,2},v1::Array{T,2},xerror::Array{T,2},verror::Array{T,2},jac_step::Array{T,2},jac_error::Array{T,2},dtbvdq::Array{T,3},pair::Array{Bool,2}) where {T <: Real} # Computes the transit time, approximating the motion as a fraction of a DH17 step forward in time. # Also computes the Jacobian of the transit time with respect to the initial parameters, dtbvdq[1-3,7,n]. # This version is same as findtransit2, but uses the derivative of dh17 step with respect to time # rather than the instantaneous acceleration for finding transit time derivative (gdot). # Initial guess using linear interpolation: dt = one(T) iter = 0 r3 = zero(T) gdot = zero(T) gsky = zero(T) x = copy(x1) v = copy(v1) #xerror = zeros(T,size(x1)); verror = zeros(T,size(v1)) xerr_trans = copy(xerror); verr_trans = copy(verror) dqdt = zeros(T,7*n) d = Derivatives(T) #TRANSIT_TOL = 10*sqrt(eps(dt)) TRANSIT_TOL = 10*eps(dt) tt1 = tt + 1 tt2 = tt + 2 ITMAX = 20 #while abs(dt) > TRANSIT_TOL && iter < 20 while true tt2 = tt1 tt1 = tt x .= x1; v .= v1; xerr_trans .= xerror; verr_trans .= verror # Advance planet state at start of step to estimated transit time: # dh17!(x,v,tt,m,n,pair) #dh17!(x,v,xerror,verror,tt,m,n,dqdt,pair) ah18!(x,v,xerr_trans,verr_trans,tt,m,n,dqdt,pair,d) # Compute time offset: gsky = g!(i,j,x,v) # # Compute derivative of g with respect to time: gdot = ((x[1,j]-x[1,i])*(dqdt[(j-1)*7+4]-dqdt[(i-1)*7+4])+(x[2,j]-x[2,i])*(dqdt[(j-1)*7+5]-dqdt[(i-1)*7+5]) + (v[1,j]-v[1,i])*(dqdt[(j-1)*7+1]-dqdt[(i-1)*7+1])+(v[2,j]-v[2,i])*(dqdt[(j-1)*7+2]-dqdt[(i-1)*7+2])) # Refine estimate of transit time with Newton's method: dt = -gsky/gdot # Add refinement to estimated time: tt += dt iter +=1 # Break out if we have reached maximum iterations, or if # current transit time estimate equals one of the prior two steps: if (iter >= ITMAX) || (tt == tt1) || (tt == tt2) break end end if iter >= 20 # println("Exceeded iterations: planet ",j," iter ",iter," dt ",dt," gsky ",gsky," gdot ",gdot) end # Compute time derivatives: x .= x1; v .= v1; xerr_trans .= xerror; verr_trans .= verror # Compute dgdt with the updated time step. #dh17!(x,v,xerror,verror,tt,m,n,jac_step,pair) #ah18!(x,v,xerror,verror,tt,m,n,jac_step,pair) ah18!(x,v,xerr_trans,verr_trans,tt,m,n,jac_step,jac_error,pair,d) # Need to reset to compute dqdt: x .= x1; v .= v1; xerr_trans .= xerror; verr_trans .= verror #dh17!(x,v,xerror,verror,tt,m,n,dqdt,pair) ah18!(x,v,xerr_trans,verr_trans,tt,m,n,dqdt,pair,d) # Compute time offset: gsky = g!(i,j,x,v) # Compute derivative of g with respect to time: gdot = ((x[1,j]-x[1,i])*(dqdt[(j-1)*7+4]-dqdt[(i-1)*7+4])+(x[2,j]-x[2,i])*(dqdt[(j-1)*7+5]-dqdt[(i-1)*7+5]) + (v[1,j]-v[1,i])*(dqdt[(j-1)*7+1]-dqdt[(i-1)*7+1])+(v[2,j]-v[2,i])*(dqdt[(j-1)*7+2]-dqdt[(i-1)*7+2])) # Set dtbvdq to zero: fill!(dtbvdq,zero(T)) indj = (j-1)*7+1 indi = (i-1)*7+1 @inbounds for p=1:n indp = (p-1)*7 @inbounds for k=1:7 # Compute derivatives: #g = (x[1,j]-x[1,i])*(v[1,j]-v[1,i])+(x[2,j]-x[2,i])*(v[2,j]-v[2,i]) dtbvdq[1,k,p] = -((jac_step[indj ,indp+k]-jac_step[indi ,indp+k])*(v[1,j]-v[1,i])+(jac_step[indj+1,indp+k]-jac_step[indi+1,indp+k])*(v[2,j]-v[2,i])+ (jac_step[indj+3,indp+k]-jac_step[indi+3,indp+k])*(x[1,j]-x[1,i])+(jac_step[indj+4,indp+k]-jac_step[indi+4,indp+k])*(x[2,j]-x[2,i]))/gdot end end # Note: this is the time elapsed *after* the beginning of the timestep: ntbv = size(dtbvdq)[1] if ntbv == 3 # Compute the impact parameter and sky velocity: vsky = sqrt((v[1,j]-v[1,i])^2 + (v[2,j]-v[2,i])^2) bsky2 = (x[1,j]-x[1,i])^2 + (x[2,j]-x[2,i])^2 # partial derivative v_{sky} with respect to time: dvdt = ((v[1,j]-v[1,i])*(dqdt[(j-1)*7+4]-dqdt[(i-1)*7+4])+(v[2,j]-v[2,i])*(dqdt[(j-1)*7+5]-dqdt[(i-1)*7+5]))/vsky # (note that \partial b/\partial t = 0 at mid-transit since g_{sky} = 0 mid-transit). @inbounds for p=1:n indp = (p-1)*7 @inbounds for k=1:7 # Compute derivatives: #v_{sky} = sqrt((v[1,j]-v[1,i])^2+(v[2,j]-v[2,i])^2) dtbvdq[2,k,p] = ((jac_step[indj+3,indp+k]-jac_step[indi+3,indp+k])*(v[1,j]-v[1,i])+(jac_step[indj+4,indp+k]-jac_step[indi+4,indp+k])*(v[2,j]-v[2,i]))/vsky + dvdt*dtbvdq[1,k,p] #b_{sky}^2 = (x[1,j]-x[1,i])^2+(x[2,j]-x[2,i])^2 dtbvdq[3,k,p] = 2*((jac_step[indj ,indp+k]-jac_step[indi ,indp+k])*(x[1,j]-x[1,i])+(jac_step[indj+1,indp+k]-jac_step[indi+1,indp+k])*(x[2,j]-x[2,i])) end end # return the transit time, impact parameter, and sky velocity: return tt::T,vsky::T,bsky2::T else return tt::T end end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
24411
# Collection of functions to compute transit timing variations, using the AH18 integrator. # wrapper for testing new ics. @inline function ttv_elements!(el::ElementsIC{T},t0::T,h::T,tmax::T,tt::Array{T,2},count::Array{Int64,1},rstar::T) where T <: Real return ttv_elements!(el.H,t0,h,tmax,el.elements,tt,count,0.0,0,0,rstar) end """ Computes Transit Timing Variations (TTVs) as a function of orbital elements, and computes Jacobian of transit times with respect to the initial orbital elements. """ function ttv_elements!(H::Union{Int64,Array{Int64,1}},t0::T,h::T,tmax::T,elements::Array{T,2},tt::Array{T,2},count::Array{Int64,1},dtdq0::Array{T,4},rstar::T;fout="",iout=-1,pair=zeros(Bool,H[1],H[1])) where {T <: Real} # # Input quantities: # n = number of bodies # t0 = initial time of integration [days] # h = time step [days] # tmax = duration of integration [days] # elements[i,j] = 2D n x 7 array of the masses & orbital elements of the bodies (currently first body's orbital elements are ignored) # elements are ordered as: mass, period, t0, e*cos(omega), e*sin(omega), inclination, longitude of ascending node (Omega) # tt = array of transit times of size [n x max(ntt)] (currently only compute transits of star, so first row is zero) [days] # count = array of the number of transits for each body # dtdq0 = derivative of transit times with respect to initial x,v,m [various units: day/length (3), day^2/length (3), day/mass] # 4D array [n x max(ntt) ] x [n x 7] - derivatives of transits of each planet with respect to initial positions/velocities # masses of *all* bodies. Note: mass derivatives are *after* positions/velocities, even though they are at start # of the elements[i,j] array. # # Output quantity: # dtdelements = 4D array [n x max(ntt) ] x [n x 7] - derivatives of transits of each planet with respect to initial orbital # elements/masses of *all* bodies. Note: mass derivatives are *after* elements, even though they are at start # of the elements[i,j] array # # Example: see test_ttv_elements.jl in test/ directory # # Define initial mass, position & velocity arrays: n = H[1] m=zeros(T,n) x=zeros(T,NDIM,n) v=zeros(T,NDIM,n) # Fill the transit-timing & jacobian arrays with zeros: fill!(tt,zero(T)) fill!(dtdq0,zero(T)) # Create an array for the derivatives with respect to the masses/orbital elements: dtdelements = copy(dtdq0) # Counter for transits of each planet: fill!(count,0) for i=1:n m[i] = elements[i,1] end # Initialize the N-body problem using nested hierarchy of Keplerians: init = ElementsIC(t0,H,elements) x,v,jac_init = init_nbody(init) #= Why is this here?? elements_big=big.(elements); t0big = big(t0); #jac_init_big = zeros(BigFloat,7*n,7*n) init_big = ElementsIC(elements_big,H,t0big) xbig,vbig,jac_init_big = init_nbody(init_big) x = convert(Array{T,2},xbig); v = convert(Array{T,2},vbig); jac_init=convert(Array{T,2},jac_init_big) =# ttv!(n,t0,h,tmax,m,x,v,tt,count,dtdq0,rstar,pair;fout=fout,iout=iout) # Need to apply initial jacobian TBD - convert from # derivatives with respect to (x,v,m) to (elements,m): ntt_max = size(tt)[2] for i=1:n, j=1:count[i] if j <= ntt_max # Now, multiply by the initial Jacobian to convert time derivatives to orbital elements: for k=1:n, l=1:7 dtdelements[i,j,l,k] = zero(T) for p=1:n, q=1:7 dtdelements[i,j,l,k] += dtdq0[i,j,q,p]*jac_init[(p-1)*7+q,(k-1)*7+l] end end end end return dtdelements end """ Computes TTVs as a function of initial x,v,m, and derivatives (dtdq0). """ function ttv!(n::Int64,t0::T,h::T,tmax::T,m::Array{T,1},x::Array{T,2},v::Array{T,2},tt::Array{T,2},count::Array{Int64,1},dtdq0::Array{T,4},rstar::T,pair::Array{Bool,2};fout="",iout=-1) where {T <: Real} xprior = copy(x) vprior = copy(v) xtransit = copy(x) vtransit = copy(v) xerror = zeros(T,size(x)); verror=zeros(T,size(v)) xerr_trans = zeros(T,size(x)); verr_trans =zeros(T,size(v)) xerr_prior = zeros(T,size(x)); verr_prior =zeros(T,size(v)) # Set the time to the initial time: t = t0 # Define error estimate based on Kahan (1965): s2 = zero(T) # Set step counter to zero: istep = 0 # Jacobian for each step (7- 6 elements+mass, n_planets, 7 - 6 elements+mass, n planets): jac_prior = zeros(T,7*n,7*n) jac_error_prior = zeros(T,7*n,7*n) jac_transit = zeros(T,7*n,7*n) jac_trans_err= zeros(T,7*n,7*n) # Initialize matrix for derivatives of transit times with respect to the initial x,v,m: dtdq = zeros(T,1,7,n) # Initialize the Jacobian to the identity matrix: #jac_step = eye(T,7*n) jac_step = Matrix{T}(I,7*n,7*n) # Initialize Jacobian error array: jac_error = zeros(T,7*n,7*n) if fout != "" # Open file for output: file_handle =open(fout,"a") end # Output initial conditions: if mod(istep,iout) == 0 && iout > 0 # Write to file: writedlm(file_handle,[convert(Float64,t);convert(Array{Float64,1},reshape(x,3n));convert(Array{Float64,1},reshape(v,3n))]') # Transpose to write each line end # Save the g function, which computes the relative sky velocity dotted with relative position # between the planets and star: gsave = zeros(T,n) for i=2:n # Compute the relative sky velocity dotted with position: gsave[i]= g!(i,1,x,v) end # Loop over time steps: dt = zero(T) gi = zero(T) ntt_max = size(tt)[2] param_real = all(isfinite.(x)) && all(isfinite.(v)) && all(isfinite.(m)) && all(isfinite.(jac_step)) while t < (t0+tmax) && param_real # Carry out a ah18 mapping step: ah18!(x,v,xerror,verror,h,m,n,jac_step,jac_error,pair) param_real = all(isfinite.(x)) && all(isfinite.(v)) && all(isfinite.(m)) && all(isfinite.(jac_step)) # Check to see if a transit may have occured. Sky is x-y plane; line of sight is z. # Star is body 1; planets are 2-nbody (note that this could be modified to see if # any body transits another body): for i=2:n # Compute the relative sky velocity dotted with position: gi = g!(i,1,x,v) ri = sqrt(x[1,i]^2+x[2,i]^2+x[3,i]^2) # orbital distance # See if sign of g switches, and if planet is in front of star (by a good amount): # (I'm wondering if the direction condition means that z-coordinate is reversed? EA 12/11/2017) if gi > 0 && gsave[i] < 0 && x[3,i] > 0.25*ri && ri < rstar # A transit has occurred between the time steps - integrate ah18! between timesteps count[i] += 1 if count[i] <= ntt_max dt0 = -gsave[i]*h/(gi-gsave[i]) # Starting estimate xtransit .= xprior; vtransit .= vprior; jac_transit .= jac_prior; jac_trans_err .= jac_error_prior xerr_trans .= xerr_prior; verr_trans .= verr_prior dt = findtransit3!(1,i,n,h,dt0,m,xtransit,vtransit,xerr_trans,verr_trans,jac_transit,jac_trans_err,dtdq,pair) # 20% tt[i,count[i]],stmp = comp_sum(t,s2,dt) # Save for posterity: for k=1:7, p=1:n dtdq0[i,count[i],k,p] = dtdq[1,k,p] end end end gsave[i] = gi end # Save the current state as prior state: xprior .= x vprior .= v jac_prior .= jac_step jac_error_prior .= jac_error xerr_prior .= xerror verr_prior .= verror # Increment time by the time step using compensated summation: t,s2 = comp_sum(t,s2,h) if mod(istep,iout) == 0 && iout > 0 # Write to file: writedlm(file_handle,[convert(Float64,t);convert(Array{Float64,1},reshape(x,3n));convert(Array{Float64,1},reshape(v,3n));convert(Array{Float64,1},reshape(jac_step,49n^2))]') # Transpose to write each line end # t += h <- this leads to loss of precision # Increment counter by one: istep +=1 end if fout != "" # Close output file: close(file_handle) end return end """ Finds the transit by taking a partial ah18 step from prior time step, computes timing Jacobian, dtbvdq, with respect to initial cartesian coordinates and masses. """ function findtransit3!(i::Int64,j::Int64,n::Int64,h::T,tt::T,m::Array{T,1},x1::Array{T,2},v1::Array{T,2},xerror::Array{T,2},verror::Array{T,2},jac_step::Array{T,2},jac_error::Array{T,2},dtbvdq::Array{T,3},pair::Array{Bool,2}) where {T <: Real} # Computes the transit time, approximating the motion as a fraction of a AH17 step forward in time. # Also computes the Jacobian of the transit time with respect to the initial parameters, dtbvdq[1-3,7,n]. # This version is same as findtransit2, but uses the derivative of AH17 step with respect to time # rather than the instantaneous acceleration for finding transit time derivative (gdot). # Initial guess using linear interpolation: dt = one(T) iter = 0 r3 = zero(T) gdot = zero(T) gsky = zero(T) x = copy(x1) v = copy(v1) xerr_trans = copy(xerror); verr_trans = copy(verror) dqdt = zeros(T,7*n) TRANSIT_TOL = 10*eps(dt) tt1 = tt + 1 tt2 = tt + 2 ITMAX = 20 #while abs(dt) > TRANSIT_TOL && iter < 20 while true # while true is kind of a no-no... tt2 = tt1 tt1 = tt x .= x1; v .= v1; xerr_trans .= xerror; verr_trans .= verror # Advance planet state at start of step to estimated transit time: ah18!(x,v,xerr_trans,verr_trans,tt,m,n,dqdt,pair) # Compute time offset: gsky = g!(i,j,x,v) # # Compute derivative of g with respect to time: gdot = ((x[1,j]-x[1,i])*(dqdt[(j-1)*7+4]-dqdt[(i-1)*7+4])+(x[2,j]-x[2,i])*(dqdt[(j-1)*7+5]-dqdt[(i-1)*7+5]) + (v[1,j]-v[1,i])*(dqdt[(j-1)*7+1]-dqdt[(i-1)*7+1])+(v[2,j]-v[2,i])*(dqdt[(j-1)*7+2]-dqdt[(i-1)*7+2])) # Refine estimate of transit time with Newton's method: dt = -gsky/gdot # Add refinement to estimated time: tt += dt iter +=1 # Break out if we have reached maximum iterations, or if # current transit time estimate equals one of the prior two steps: if (iter >= ITMAX) || (tt == tt1) || (tt == tt2) break end end if iter >= 20 # println("Exceeded iterations: planet ",j," iter ",iter," dt ",dt," gsky ",gsky," gdot ",gdot) end # Compute time derivatives: x .= x1; v .= v1; xerr_trans .= xerror; verr_trans .= verror # Compute dgdt with the updated time step. ah18!(x,v,xerr_trans,verr_trans,tt,m,n,jac_step,jac_error,pair) # Need to reset to compute dqdt: x .= x1; v .= v1; xerr_trans .= xerror; verr_trans .= verror ah18!(x,v,xerr_trans,verr_trans,tt,m,n,dqdt,pair) # Compute time offset: gsky = g!(i,j,x,v) # Compute derivative of g with respect to time: gdot = ((x[1,j]-x[1,i])*(dqdt[(j-1)*7+4]-dqdt[(i-1)*7+4])+(x[2,j]-x[2,i])*(dqdt[(j-1)*7+5]-dqdt[(i-1)*7+5]) + (v[1,j]-v[1,i])*(dqdt[(j-1)*7+1]-dqdt[(i-1)*7+1])+(v[2,j]-v[2,i])*(dqdt[(j-1)*7+2]-dqdt[(i-1)*7+2])) # Set dtbvdq to zero: fill!(dtbvdq,zero(T)) indj = (j-1)*7+1 indi = (i-1)*7+1 @inbounds for p=1:n indp = (p-1)*7 @inbounds for k=1:7 # Compute derivatives: dtbvdq[1,k,p] = -((jac_step[indj ,indp+k]-jac_step[indi ,indp+k])*(v[1,j]-v[1,i])+(jac_step[indj+1,indp+k]-jac_step[indi+1,indp+k])*(v[2,j]-v[2,i])+ (jac_step[indj+3,indp+k]-jac_step[indi+3,indp+k])*(x[1,j]-x[1,i])+(jac_step[indj+4,indp+k]-jac_step[indi+4,indp+k])*(x[2,j]-x[2,i]))/gdot end end # Note: this is the time elapsed *after* the beginning of the timestep: ntbv = size(dtbvdq)[1] if ntbv == 3 # Compute the impact parameter and sky velocity: vsky = sqrt((v[1,j]-v[1,i])^2 + (v[2,j]-v[2,i])^2) bsky2 = (x[1,j]-x[1,i])^2 + (x[2,j]-x[2,i])^2 # partial derivative v_{sky} with respect to time: dvdt = ((v[1,j]-v[1,i])*(dqdt[(j-1)*7+4]-dqdt[(i-1)*7+4])+(v[2,j]-v[2,i])*(dqdt[(j-1)*7+5]-dqdt[(i-1)*7+5]))/vsky # (note that \partial b/\partial t = 0 at mid-transit since g_{sky} = 0 mid-transit). @inbounds for p=1:n indp = (p-1)*7 @inbounds for k=1:7 # Compute derivatives: #v_{sky} = sqrt((v[1,j]-v[1,i])^2+(v[2,j]-v[2,i])^2) dtbvdq[2,k,p] = ((jac_step[indj+3,indp+k]-jac_step[indi+3,indp+k])*(v[1,j]-v[1,i])+(jac_step[indj+4,indp+k]-jac_step[indi+4,indp+k])*(v[2,j]-v[2,i]))/vsky + dvdt*dtbvdq[1,k,p] #b_{sky}^2 = (x[1,j]-x[1,i])^2+(x[2,j]-x[2,i])^2 dtbvdq[3,k,p] = 2*((jac_step[indj ,indp+k]-jac_step[indi ,indp+k])*(x[1,j]-x[1,i])+(jac_step[indj+1,indp+k]-jac_step[indi+1,indp+k])*(x[2,j]-x[2,i])) end end # return the transit time, impact parameter, and sky velocity: return tt::T,vsky::T,bsky2::T else return tt::T end end """ Finds the transit by taking a partial ah18 step from prior times step, computes timing Jacobian, dtdq, wrt initial cartesian coordinates, masses: """ function findtransit3!(i::Int64,j::Int64,n::Int64,h::T,tt::T,m::Array{T,1},x1::Array{T,2},v1::Array{T,2},xerror::Array{T,2},verror::Array{T,2},pair::Array{Bool,2};calcbvsky=false) where {T <: Real} # Computes the transit time, approximating the motion as a fraction of a DH17 step forward in time. # Also computes the Jacobian of the transit time with respect to the initial parameters, dtdq[7,n]. # This version is same as findtransit2, but uses the derivative of dh17 step with respect to time # rather than the instantaneous acceleration for finding transit time derivative (gdot). # Initial guess using linear interpolation: dt = one(T) iter = 0 r3 = zero(T) gdot = zero(T) gsky = gdot x = copy(x1); v = copy(v1); xerr_trans = copy(xerror); verr_trans = copy(verror) dqdt = zeros(T,7*n) #TRANSIT_TOL = 10*sqrt(eps(dt) TRANSIT_TOL = 10*eps(dt) ITMAX = 20 tt1 = tt + 1 tt2 = tt + 2 #while abs(dt) > TRANSIT_TOL && iter < 20 while true tt2 = tt1 tt1 = tt x .= x1; v .= v1; xerr_trans .= xerror; verr_trans .= verror # Advance planet state at start of step to estimated transit time: # dh17!(x,v,tt,m,n,pair) #dh17!(x,v,xerror,verror,tt,m,n,dqdt,pair) ah18!(x,v,xerr_trans,verr_trans,tt,m,n,dqdt,pair) # Compute time offset: gsky = g!(i,j,x,v) # # Compute derivative of g with respect to time: gdot = ((x[1,j]-x[1,i])*(dqdt[(j-1)*7+4]-dqdt[(i-1)*7+4])+(x[2,j]-x[2,i])*(dqdt[(j-1)*7+5]-dqdt[(i-1)*7+5]) + (v[1,j]-v[1,i])*(dqdt[(j-1)*7+1]-dqdt[(i-1)*7+1])+(v[2,j]-v[2,i])*(dqdt[(j-1)*7+2]-dqdt[(i-1)*7+2])) # Refine estimate of transit time with Newton's method: dt = -gsky/gdot # Add refinement to estimated time: tt += dt iter +=1 # Break out if we have reached maximum iterations, or if # current transit time estimate equals one of the prior two steps: if (iter >= ITMAX) || (tt == tt1) || (tt == tt2) break end end if iter >= 20 # println("Exceeded iterations: planet ",j," iter ",iter," dt ",dt," gsky ",gsky," gdot ",gdot) end # Note: this is the time elapsed *after* the beginning of the timestep: if calcbvsky # Compute the sky velocity and impact parameter: vsky = sqrt((v[1,j]-v[1,i])^2 + (v[2,j]-v[2,i])^2) bsky2 = (x[1,j]-x[1,i])^2 + (x[2,j]-x[2,i])^2 # return the transit time, impact parameter, and sky velocity: return tt::T,vsky::T,bsky2::T else return tt::T end end """Used in computing transit time inside `findtransit3`.""" function g!(i::Int64,j::Int64,x::Array{T,2},v::Array{T,2}) where {T <: Real} # See equation 8-10 Fabrycky (2008) in Seager Exoplanets book g = (x[1,j]-x[1,i])*(v[1,j]-v[1,i])+(x[2,j]-x[2,i])*(v[2,j]-v[2,i]) return g end """ Computes TTVs as a function of orbital elements, allowing for a single log perturbation of dlnq for body jq and element iq. (NO GRADIENT) """ function ttv_elements!(H::Union{Int64,Array{Int64,1}},t0::T,h::T,tmax::T,elements::Array{T,2},tt::Array{T,2},count::Array{Int64,1},dlnq::T,iq::Int64,jq::Int64,rstar::T;fout="",iout=-1,pair = zeros(Bool,H[1],H[1])) where {T <: Real} # # Input quantities: # n = number of bodies # t0 = initial time of integration [days] # h = time step [days] # tmax = duration of integration [days] # elements[i,j] = 2D n x 7 array of the masses & orbital elements of the bodies (currently first body's orbital elements are ignored) # elements are ordered as: mass, period, t0, e*cos(omega), e*sin(omega), inclination, longitude of ascending node (Omega) # tt = pre-allocated array to hold transit times of size [n x max(ntt)] (currently only compute transits of star, so first row is zero) [days] # upon output, set to transit times of planets. # count = pre-allocated array of the number of transits for each body upon output # # dlnq = fractional variation in initial parameter jq of body iq for finite-difference calculation of # derivatives [this is only needed for testing derivative code, below]. # # Example: see test_ttv_elements.jl in test/ directory # #fcons = open("fcons.txt","w"); # Set up mass, position & velocity arrays. NDIM =3 n = H[1] m=zeros(T,n) x=zeros(T,NDIM,n) v=zeros(T,NDIM,n) # Fill the transit-timing array with zeros: fill!(tt,0.0) # Counter for transits of each planet: fill!(count,0) # Insert masses from the elements array: for i=1:n m[i] = elements[i,1] end # Allow for perturbations to initial conditions: jq labels body; iq labels phase-space element (or mass) # iq labels phase-space element (1-3: x; 4-6: v; 7: m) dq = zero(T) if iq == 7 && dlnq != 0.0 dq = m[jq]*dlnq m[jq] += dq end # Initialize the N-body problem using nested hierarchy of Keplerians: init = ElementsIC(t0,H,elements) x,v,_ = init_nbody(init) #elements_big=big.(elements); t0big = big(t0) #init_big = ElementsIC(elements_big,H,t0big) #xbig,vbig,_ = init_nbody(init_big) #if T != BigFloat # println("Difference in x,v init: ",x-convert(Array{T,2},xbig)," ",v-convert(Array{T,2},vbig)," (dlnq version)") #end #x = convert(Array{T,2},xbig); v = convert(Array{T,2},vbig) # Perturb the initial condition by an amount dlnq (if it is non-zero): if dlnq != 0.0 && iq > 0 && iq < 7 if iq < 4 if x[iq,jq] != 0 dq = x[iq,jq]*dlnq else dq = dlnq end x[iq,jq] += dq else # Same for v if v[iq-3,jq] != 0 dq = v[iq-3,jq]*dlnq else dq = dlnq end v[iq-3,jq] += dq end end ttv!(n,t0,h,tmax,m,x,v,tt,count,fout,iout,rstar,pair) return dq end """ Computes TTVs as a function of initial x,v,m. (NO GRADIENT). """ function ttv!(n::Int64,t0::T,h::T,tmax::T,m::Array{T,1},x::Array{T,2},v::Array{T,2},tt::Array{T,2},count::Array{Int64,1},fout::String,iout::Int64,rstar::T,pair::Array{Bool,2}) where {T <: Real} # Make some copies to allocate space for saving prior step and computing coordinates at the times of transit. xprior = copy(x) vprior = copy(v) xtransit = copy(x) vtransit = copy(v) #xerror = zeros(x); verror = zeros(v) xerror = copy(x); verror = copy(v) fill!(xerror,zero(T)); fill!(verror,zero(T)) #xerr_prior = zeros(x); verr_prior = zeros(v) xerr_prior = copy(xerror); verr_prior = copy(verror) # Set the time to the initial time: t = t0 # Define error estimate based on Kahan (1965): s2 = zero(T) # Set step counter to zero: istep = 0 # Jacobian for each step (7 elements+mass, n_planets, 7 elements+mass, n planets): # Save the g function, which computes the relative sky velocity dotted with relative position # between the planets and star: gsave = zeros(T,n) gi = 0.0 dt::T = 0.0 # Loop over time steps: ntt_max = size(tt)[2] param_real = all(isfinite.(x)) && all(isfinite.(v)) && all(isfinite.(m)) if fout != "" # Open file for output: file_handle =open(fout,"a") end # Output initial conditions: if mod(istep,iout) == 0 && iout > 0 # Write to file: writedlm(file_handle,[convert(Float64,t);convert(Array{Float64,1},reshape(x,3n));convert(Array{Float64,1},reshape(v,3n))]') # Transpose to write each line end while t < t0+tmax && param_real # Carry out a phi^2 mapping step: # phi2!(x,v,h,m,n) ah18!(x,v,xerror,verror,h,m,n,pair) # xbig = big.(x); vbig = big.(v); hbig = big(h); mbig = big.(m) #dh17!(x,v,xerror,verror,h,m,n,pair) # dh17!(xbig,vbig,hbig,mbig,n,pair) # x .= convert(Array{Float64,2},xbig); v .= convert(Array{Float64,2},vbig) param_real = all(isfinite.(x)) && all(isfinite.(v)) && all(isfinite.(m)) # Check to see if a transit may have occured. Sky is x-y plane; line of sight is z. # Star is body 1; planets are 2-nbody: for i=2:n # Compute the relative sky velocity dotted with position: gi = g!(i,1,x,v) ri = sqrt(x[1,i]^2+x[2,i]^2+x[3,i]^2) # See if sign switches, and if planet is in front of star (by a good amount): if gi > 0 && gsave[i] < 0 && x[3,i] > 0.25*ri && ri < rstar # A transit has occurred between the time steps. # Approximate the planet-star motion as a Keplerian, weighting over timestep: count[i] += 1 # tt[i,count[i]]=t+findtransit!(i,h,gi,gsave[i],m,xprior,vprior,x,v,pair) if count[i] <= ntt_max dt0 = -gsave[i]*h/(gi-gsave[i]) xtransit .= xprior vtransit .= vprior # dt = findtransit2!(1,i,n,h,dt0,m,xtransit,vtransit,pair) #hbig = big(h); dt0big=big(dt0); mbig=big.(m); xtbig = big.(xtransit); vtbig = big.(vtransit) #dtbig = findtransit2!(1,i,n,hbig,dt0big,mbig,xtbig,vtbig,pair) #dt = convert(Float64,dtbig) dt = findtransit3!(1,i,n,h,dt0,m,xtransit,vtransit,xerr_prior,verr_prior,pair) #tt[i,count[i]]=t+dt tt[i,count[i]],stmp = comp_sum(t,s2,dt) end # tt[i,count[i]]=t+findtransit2!(1,i,n,h,gi,gsave[i],m,xprior,vprior,pair) end gsave[i] = gi end # Save the current state as prior state: xprior .= x vprior .= v xerr_prior .= xerror verr_prior .= verror # Increment time by the time step using compensated summation: #s2 += h; tmp = t + s2; s2 = (t - tmp) + s2 #t = tmp t,s2 = comp_sum(t,s2,h) if mod(istep,iout) == 0 && iout > 0 # Write to file: writedlm(file_handle,[convert(Float64,t);convert(Array{Float64,1},reshape(x,3n));convert(Array{Float64,1},reshape(v,3n))]') # Transpose to write each line end # t += h <- this leads to loss of precision # Increment counter by one: istep +=1 # println("xerror: ",xerror) # println("verror: ",verror) end #println("xerror: ",xerror) #println("verror: ",verror) if fout != "" # Close output file: close(file_handle) end return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
12728
# Written by Jack Wisdom in June and July, 2015. # David M. Hernandez helped test and improve it. # Translated to Julia by Eric Agol August 2018. #include "universal.h" int solve_universal_newton(double kc, double r0, double beta, double b, double eta, double zeta, double h, double *X, double *S2, double *C2) { double x; double g1, g2, g3, arg; double s2, c2, xnew; int count; double cc; double adx; xnew = *X; count = 0; do { x = xnew; arg = b*x/2.0; s2 = sin(arg); c2 = cos(arg); g1 = 2.0*s2*c2/b; g2 = 2.0*s2*s2/beta; g3 = (x - g1)/beta; cc = eta*g1 + zeta*g2; xnew = (h + (x*cc - (eta*g2 + zeta*g3)))/(r0 + cc); if(count++ > 10) { return(FAILURE); } } while(fabs((x-xnew)/xnew) > 1.e-8); /* compute the output */ x = xnew; arg = b*x/2.0; s2 = sin(arg); c2 = cos(arg); *X = x; *S2 = s2; *C2 = c2; return(SUCCESS); } int solve_universal_laguerre(double kc, double r0, double beta, double b, double eta, double zeta, double h, double *X, double *S2, double *C2) { double x; double g1, g2, g3; double arg, s2, c2, xnew, dx; double f, fp, fpp, g0; int count; double cc; xnew = *X; count = 0; do { double c5=5.0, c16 = 16.0, c20 = 20.0; x = xnew; arg = b*x/2.0; s2 = sin(arg); c2 = cos(arg); g1 = 2.0*s2*c2/b; g2 = 2.0*s2*s2/beta; g3 = (x - g1)/beta; f = r0*x + eta*g2 + zeta*g3 - h; fp = r0 + eta*g1 + zeta*g2; g0 = 1.0 - beta*g2; fpp = eta*g0 + zeta*g1; dx = -c5*f/(fp + sqrt(fabs(c16*fp*fp - c20*f*fpp))); xnew = x + dx; if(count++ > 10) { return(FAILURE); } } while(fabs(dx) > 2.e-7*fabs(xnew)); /* refine with a last newton */ x = xnew; arg = b*x/2.0; s2 = sin(arg); c2 = cos(arg); g1 = 2.0*s2*c2/b; g2 = 2.0*s2*s2/beta; g3 = (x - g1)/beta; cc = eta*g1 + zeta*g2; xnew = (h + (x*cc - (eta*g2 + zeta*g3)))/(r0 + cc); x = xnew; arg = b*x/2.0; s2 = sin(arg); c2 = cos(arg); *X = x; *S2 = s2; *C2 = c2; return(SUCCESS); } int solve_universal_bisection(double kc, double r0, double beta, double b, double eta, double zeta, double h, double *X, double *S2, double *C2) { double x; double g1, g2, g3; double arg, s2, c2; double f; double X_min, X_max, X_per_period, invperiod; int count; double xnew; double err; xnew = *X; err = 1.e-9*fabs(xnew); /* bisection limits due to Rein et al. */ invperiod = b*beta/(2.*M_PI*kc); X_per_period = 2.*M_PI/b; X_min = X_per_period * floor(h*invperiod); X_max = X_min + X_per_period; xnew = (X_max + X_min)/2.; count = 0; do { x = xnew; arg = b*x/2.0; s2 = sin(arg); c2 = cos(arg); g1 = 2.0*s2*c2/b; g2 = 2.0*s2*s2/beta; g3 = (x - g1)/beta; f = r0*x + eta*g2 + zeta*g3 - h; if (f>=0.){ X_max = x; }else{ X_min = x; } xnew = (X_max + X_min)/2.; if(count++ > 100) return(FAILURE); } while(fabs(x - xnew) > err); x = xnew; arg = b*x/2.0; s2 = sin(arg); c2 = cos(arg); *X = x; *S2 = s2; *C2 = c2; return(SUCCESS); } double sign(double x) { if(x > 0.0) { return(1.0); } else if(x < 0.0) { return(-1.0); } else { return(0.0); } } function cubic1(a::T, b::T, c::T) where{T <: Real} { double Q, R; double theta, A, B, x1; Q = (a*a - 3.0*b)/9.0; R = (2.0*a*a*a - 9.0*a*b + 27.0*c)/54.0; if(R*R < Q*Q*Q) theta = acos(R/sqrt(Q*Q*Q)); println("three cubic roots %.16le %.16le %.16le\n", -2.0*sqrt(Q)*cos(theta/3.0) - a/3.0, -2.0*sqrt(Q)*cos((theta + 2.0*M_PI)/3.0) - a/3.0, -2.0*sqrt(Q)*cos((theta - 2.0*M_PI)/3.0) - a/3.0); exit(-1) return x1 else A = -sign(R)*pow(fabs(R) + sqrt(R*R - Q*Q*Q), 1./3.); if(A == 0.0) { B = 0.0; } else { B = Q/A; } x1 = (A + B) - a/3.0; return(x1); end end int solve_universal_parabolic(double kc, double r0, double beta, double b, double eta, double zeta, double h, double *X, double *S2, double *C2) { double x; double s2, c2; b = 0.0; s2 = 0.0; c2 = 1.0; /* g1 = x; g2 = x*x/2.0; g3 = x*x*x/6.0; g = eta*g1 + zeta*g2; */ /* f = r0*x + eta*g2 + zeta*g3 - h; */ /* this is just a cubic equation */ x = cubic1(3.0*eta/zeta, 6.0*r0/zeta, -6.0*h/zeta); s2 = 0.0; c2 = 1.0; /* g1 = 2.0*s2*c2/b; */ /* g2 = 2.0*s2*s2/beta; */ *X = x; *S2 = s2; *C2 = c2; return(SUCCESS); } int solve_universal_hyperbolic_newton(double kc, double r0, double minus_beta, double b, double eta, double zeta, double h, double *X, double *S2, double *C2) { double x; double g1, g2, g3; double arg, s2, c2, xnew; int count; double g; xnew = *X; count = 0; do { x = xnew; arg = b*x/2.0; if(fabs(arg)>200.0) return(FAILURE); s2 = sinh(arg); c2 = cosh(arg); g1 = 2.0*s2*c2/b; g2 = 2.0*s2*s2/minus_beta; g3 = -(x - g1)/minus_beta; g = eta*g1 + zeta*g2; xnew = (x*g - eta*g2 - zeta*g3 + h)/(r0 + g); if(count++ > 10) return(FAILURE); } while(fabs(x - xnew) > 1.e-9*fabs(xnew)); x = xnew; arg = b*x/2.0; s2 = sinh(arg); c2 = cosh(arg); *X = x; *S2 = s2; *C2 = c2; return(SUCCESS); } int solve_universal_hyperbolic_laguerre(double kc, double r0, double minus_beta, double b, double eta, double zeta, double h, double *X, double *S2, double *C2) { double x; double g0, g1, g2, g3; double arg, s2, c2, xnew; int count; double f; xnew = *X; count = 0; do { double c5=5.0, c16 = 16.0, c20 = 20.0; double fp, fpp, dx; double den; x = xnew; arg = b*x/2.0; if(fabs(arg)>50.0) return(FAILURE); s2 = sinh(arg); c2 = cosh(arg); g1 = 2.0*s2*c2/b; g2 = 2.0*s2*s2/minus_beta; g3 = -(x - g1)/minus_beta; f = r0*x + eta*g2 + zeta*g3 - h; fp = r0 + eta*g1 + zeta*g2; g0 = 1.0 + minus_beta*g2; fpp = eta*g0 + zeta*g1; den = (fp + sqrt(fabs(c16*fp*fp - c20*f*fpp))); if(den == 0.0) return(FAILURE); dx = -c5*f/den; xnew = x + dx; if(count++ > 20) return(FAILURE); } while(fabs(x - xnew) > 1.e-9*fabs(xnew)); /* refine with a step of Newton */ { double g; x = xnew; arg = b*x/2.0; if(fabs(arg)>200.0) return(FAILURE); s2 = sinh(arg); c2 = cosh(arg); g1 = 2.0*s2*c2/b; g2 = 2.0*s2*s2/minus_beta; g3 = -(x - g1)/minus_beta; g = eta*g1 + zeta*g2; xnew = (x*g - eta*g2 - zeta*g3 + h)/(r0 + g); } x = xnew; arg = b*x/2.0; s2 = sinh(arg); c2 = cosh(arg); *X = x; *S2 = s2; *C2 = c2; return(SUCCESS); } int solve_universal_hyperbolic_bisection(double kc, double r0, double minus_beta, double b, double eta, double zeta, double h, double *X, double *S2, double *C2) { double x; double g1, g2, g3; double arg, s2, c2, xnew; int count; double X_min, X_max; double f; double err; xnew = *X; err = 1.e-10*fabs(xnew); X_min = 0.5*xnew; X_max = 10.0*xnew; { double fmin, fmax; x = X_min; arg = b*x/2.0; if(fabs(arg)>200.0) return(FAILURE); s2 = sinh(arg); c2 = cosh(arg); g1 = 2.0*s2*c2/b; g2 = 2.0*s2*s2/minus_beta; g3 = -(x - g1)/minus_beta; fmin = r0*x + eta*g2 + zeta*g3 - h; x = X_max; arg = b*x/2.0; if(fabs(arg)>200.0) { x = 200.0/(b/2.0); arg = 200.0; } s2 = sinh(arg); c2 = cosh(arg); g1 = 2.0*s2*c2/b; g2 = 2.0*s2*s2/minus_beta; g3 = -(x - g1)/minus_beta; fmax = r0*x + eta*g2 + zeta*g3 - h; if(fmin*fmax > 0.0) { return(FAILURE); } } count = 0; do { x = xnew; arg = b*x/2.0; if(fabs(arg)>200.0) return(FAILURE); s2 = sinh(arg); c2 = cosh(arg); g1 = 2.0*s2*c2/b; g2 = 2.0*s2*s2/minus_beta; g3 = -(x - g1)/minus_beta; f = r0*x + eta*g2 + zeta*g3 - h; if (f>=0.){ X_max = x; }else{ X_min = x; } xnew = (X_max + X_min)/2.; if(count++ > 100) return(FAILURE); } while(fabs(x - xnew) > err); x = xnew; arg = b*x/2.0; s2 = sinh(arg); c2 = cosh(arg); *X = x; *S2 = s2; *C2 = c2; return(SUCCESS); } void kepler_step(double kc, double dt, State *s0, State *s) { void kepler_step_depth(); double r0, v2, eta, beta, zeta, b; r0 = sqrt(s0->x*s0->x + s0->y*s0->y + s0->z*s0->z); v2 = s0->xd*s0->xd + s0->yd*s0->yd + s0->zd*s0->zd; eta = s0->x*s0->xd + s0->y*s0->yd + s0->z*s0->zd; beta = 2.0*kc/r0 - v2; zeta = kc - beta*r0; b = sqrt(fabs(beta)); kepler_step_depth(kc, dt, beta, b, s0, s, 0, r0, v2, eta, zeta); } void kepler_step_depth(double kc, double dt, double beta, double b, State *s0, State *s, int depth, double r0, double v2, double eta, double zeta) { int flag; State ss; int kepler_step_internal(); if(depth > 30) { printf("kepler depth exceeded\n"); exit(-1); } flag = kepler_step_internal(kc, dt, beta, b, s0, s, r0, v2, eta, zeta); if(flag == FAILURE) { kepler_step_depth(kc, dt/4.0, beta, b, s0, &ss, depth+1, r0, v2, eta, zeta); r0 = sqrt(ss.x*ss.x + ss.y*ss.y + ss.z*ss.z); v2 = ss.xd*ss.xd + ss.yd*ss.yd + ss.zd*ss.zd; eta = ss.x*ss.xd + ss.y*ss.yd + ss.z*ss.zd; zeta = kc - beta*r0; kepler_step_depth(kc, dt/4.0, beta, b, &ss, s, depth+1, r0, v2, eta, zeta); r0 = sqrt(s->x*s->x + s->y*s->y + s->z*s->z); v2 = s->xd*s->xd + s->yd*s->yd + s->zd*s->zd; eta = s->x*s->xd + s->y*s->yd + s->z*s->zd; zeta = kc - beta*r0; kepler_step_depth(kc, dt/4.0, beta, b, s, &ss, depth+1, r0, v2, eta, zeta); r0 = sqrt(ss.x*ss.x + ss.y*ss.y + ss.z*ss.z); v2 = ss.xd*ss.xd + ss.yd*ss.yd + ss.zd*ss.zd; eta = ss.x*ss.xd + ss.y*ss.yd + ss.z*ss.zd; zeta = kc - beta*r0; kepler_step_depth(kc, dt/4.0, beta, b, &ss, s, depth+1, r0, v2, eta, zeta); } } function new_guess(r0::T, eta::T, zeta::T, dt::T) where {T <: Real} nil = zero(T) if (zeta != zro) s = cubic1(3eta/zeta, 6r0/zeta, -6dt/zeta) elseif (eta != nil) reta = r0/eta disc = reta*reta + 2dt/eta if (disc >= nil) s = -reta + sqrt(disc) else s = dt/r0 end else s = dt/r0 end return s end int kepler_step_internal(double kc, double dt, double beta, double b, State *s0, State *s, double r0, double v2, double eta, double zeta) { double r; double c2, s2; double G1, G2; double a, x; int flag; double c, ca, bsa; if(beta < 0.0) { double x0; x0 = new_guess(r0, eta, zeta, dt); x = x0; flag = solve_universal_hyperbolic_newton(kc, r0, -beta, b, eta, zeta, dt, &x, &s2, &c2); if(flag == FAILURE) { x = x0; flag = solve_universal_hyperbolic_laguerre(kc, r0, -beta, b, eta, zeta, dt, &x, &s2, &c2); } /* if(flag == FAILURE) { x = x0; flag = solve_universal_hyperbolic_bisection(kc, r0, -beta, b, eta, zeta, dt, &x, &s2, &c2); } */ if(flag == FAILURE) { return(FAILURE); } a = kc/(-beta); G1 = 2.0*s2*c2/b; c = 2.0*s2*s2; G2 = c/(-beta); ca = c*a; r = r0 + eta*G1 + zeta*G2; bsa = (a/r)*(b/r0)*2.0*s2*c2; } else if(beta > 0.0) { double x0; double ff, fp; /* x0 = dt/r0; */ x0 = dt/r0; ff = zeta*x0*x0*x0 + 3.0*eta*x0*x0; fp = 3.0*zeta*x0*x0 + 6.0*eta*x0 + 6.0*r0; x0 -= ff/fp; x = x0; flag = solve_universal_newton(kc, r0, beta, b, eta, zeta, dt, &x, &s2, &c2); if(flag == FAILURE) { x = x0; flag = solve_universal_laguerre(kc, r0, beta, b, eta, zeta, dt, &x, &s2, &c2); } /* if(flag == FAILURE) { x = x0; flag = solve_universal_bisection(kc, r0, beta, b, eta, zeta, dt, &x, &s2, &c2); } */ if(flag == FAILURE) { return(FAILURE); } a = kc/beta; G1 = 2.0*s2*c2/b; c = 2.0*s2*s2; G2 = c/beta; ca = c*a; r = r0 + eta*G1 + zeta*G2; bsa = (a/r)*(b/r0)*2.0*s2*c2; } else { x = dt/r0; flag = solve_universal_parabolic(kc, r0, beta, b, eta, zeta, dt, &x, &s2, &c2); if(flag == FAILURE) { exit(-1); } G1 = x; G2 = x*x/2.0; ca = kc*G2; r = r0 + eta*G1 + zeta*G2; bsa = kc*x/(r*r0); } { double g, fdot, fhat, gdothat; /* f = 1.0 - (ca/r0); */ fhat = -(ca/r0); g = eta*G2 + r0*G1; fdot = -bsa; /* gdot = 1.0 - (ca/r); */ gdothat = -(ca/r); s->x = s0->x + (fhat*s0->x + g*s0->xd); s->y = s0->y + (fhat*s0->y + g*s0->yd); s->z = s0->z + (fhat*s0->z + g*s0->zd); s->xd = s0->xd + (fdot*s0->x + gdothat*s0->xd); s->yd = s0->yd + (fdot*s0->y + gdothat*s0->yd); s->zd = s0->zd + (fdot*s0->z + gdothat*s0->zd); } return(SUCCESS); }
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
4377
# Wisdom & Hernandez version of Kepler solver, but with quartic # convergence. function calc_ds_opt(y,yp,ypp,yppp) # Computes quartic Newton's update to equation y=0 using first through 3rd derivatives. # Uses techniques outlined in Murray & Dermott for Kepler solver. # Rearrange to reduce number of divisions: num = y*yp den1 = yp*yp-y*ypp*.5 den12 = den1*den1 den2 = yp*den12-num*.5*(ypp*den1-third*num*yppp) return -y*den12/den2 end function kep_elliptic!(x0::Array{Float64,1},v0::Array{Float64,1},r0::Float64,dr0dt::Float64,k::Float64,h::Float64,beta0::Float64,s0::Float64,state::Array{Float64,1}) # Solves equation (35) from Wisdom & Hernandez for the elliptic case. r0inv = inv(r0) beta0inv = inv(beta0) # Now, solve for s in elliptical Kepler case: if beta0 > 1e-15 # Initial guess (if s0 = 0): if s0 == 0.0 s = h*r0inv else s = copy(s0) end s0 = copy(s) sqb = sqrt(beta0) y = 0.0; yp = 1.0 iter = 0 ds = Inf fac1 = k-r0*beta0 fac2 = r0*dr0dt while iter == 0 || (abs(ds) > 1e-8 && iter < 10) xx = sqb*s sx = sqb*sin(xx) cx = cos(xx) # Third derivative: yppp = fac1*cx - fac2*sx # Take derivative: yp = (-yppp+ k)*beta0inv # Second derivative: ypp = fac1*beta0inv*sx + fac2*cx y = (-ypp + fac2 +k*s)*beta0inv - h # eqn 35 # Now, compute fourth-order estimate: ds = calc_ds_opt(y,yp,ypp,yppp) s += ds iter +=1 end # if iter > 2 # println(iter," ",s," ",s/s0-1," ds: ",ds) # end # Since we updated s, need to recompute: xx = 0.5*sqb*s; sx = sin(xx) ; cx = cos(xx) # Now, compute final values: g1bs = 2.*sx*cx/sqb g2bs = 2.*sx^2*beta0inv f = 1.0 - k*r0inv*g2bs # eqn (25) g = r0*g1bs + fac2*g2bs # eqn (27) for j=1:3 # Position is components 2-4 of state: state[1+j] = x0[j]*f+v0[j]*g end r = sqrt(state[2]*state[2]+state[3]*state[3]+state[4]*state[4]) rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv dgdt = r0*(1.0-beta0*g2bs+dr0dt*g1bs)*rinv for j=1:3 # Velocity is components 5-7 of state: state[4+j] = x0[j]*dfdt+v0[j]*dgdt end else println("Not elliptic ",beta0," x0 ",x0) end # recompute beta: state[8]= r state[9] = (state[2]*state[5]+state[3]*state[6]+state[4]*state[7])*rinv # beta is element 10 of state: state[10] = 2.0*k*rinv-(state[5]*state[5]+state[6]*state[6]+state[7]*state[7]) # s is element 11 of state: state[11] = s # ds is element 12 of state: state[12] = ds return iter end function kep_hyperbolic!(x0::Array{Float64,1},v0::Array{Float64,1},r0::Float64,dr0dt::Float64,k::Float64,h::Float64,beta0::Float64,s0::Float64,state::Array{Float64,1}) # Solves equation (35) from Wisdom & Hernandez for the hyperbolic case. r0inv = inv(r0) beta0inv = inv(beta0) # Now, solve for s in hyperbolic Kepler case: if beta0 < -1e-15 # Initial guess (if s0 = 0): if s0 == 0.0 s = h*r0inv else s = copy(s0) end s0 = copy(s) sqb = sqrt(-beta0) y = 0.0; yp = 1.0 iter = 0 ds = Inf fac1 = k-r0*beta0 fac2 = r0*dr0dt while iter == 0 || (abs(ds) > 1e-8 && iter < 10) xx = sqb*s; cx = cosh(xx); sx = sqb*(exp(xx)-cx) # Third derivative: yppp = fac1*cx + fac2*sx # Take derivative: yp = (-yppp+ k)*beta0inv # Second derivative: ypp = -fac1*beta0inv*sx + fac2*cx y = (-ypp +fac2 +k*s)*beta0inv - h # eqn 35 # Now, compute fourth-order estimate: ds = calc_ds_opt(y,yp,ypp,yppp) s += ds iter +=1 end # if iter > 2 # #println("iter: ",iter," ds/s: ",ds/s0) # println(iter," ",s," ",s/s0-1," ds: ",ds) # end xx = 0.5*sqb*s; cx = cosh(xx); sx = exp(xx)-cx # Now, compute final values: g1bs = 2.0*sx*cx/sqb g2bs = -2.0*sx^2*beta0inv f = 1.0 - k*r0inv*g2bs # eqn (25) g = r0*g1bs + fac2*g2bs # eqn (27) for j=1:3 state[1+j] = x0[j]*f+v0[j]*g end # r = norm(x) r = sqrt(state[2]*state[2]+state[3]*state[3]+state[4]*state[4]) rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv dgdt = r0*(1.0-beta0*g2bs+dr0dt*g1bs)*rinv for j=1:3 # Velocity is components 5-7 of state: state[4+j] = x0[j]*dfdt+v0[j]*dgdt end else println("Not hyperbolic",beta0," x0 ",x0) end # recompute beta: state[8]= r state[9] = (state[2]*state[5]+state[3]*state[6]+state[4]*state[7])*rinv # beta is element 10 of state: state[10] = 2.0*k*rinv-(state[5]*state[5]+state[6]*state[6]+state[7]*state[7]) # s is element 11 of state: state[11] = s # ds is element 12 of state: state[12] = ds return iter end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
12409
# Wisdom & Hernandez version of Kepler solver, but with quartic # convergence. function calc_ds_opt(y::T,yp::T,ypp::T,yppp::T) where {T <: Real} # Computes quartic Newton's update to equation y=0 using first through 3rd derivatives. # Uses techniques outlined in Murray & Dermott for Kepler solver. # Rearrange to reduce number of divisions: num = y*yp den1 = yp*yp-y*ypp*.5 den12 = den1*den1 den2 = yp*den12-num*.5*(ypp*den1-third*num*yppp) return -y*den12/den2 end function solve_kepler!(h::T,k::T,x0::Array{T,1},v0::Array{T,1},beta0::T, r0::T,dr0dt::T,s0::T,state::Array{T,1}) where {T <: Real} zero = convert(typeof(h),0.0); one = convert(typeof(h),1.0) # Solves elliptic Kepler's equation for both elliptic and hyperbolic cases. # Initial guess (if s0 = 0): r0inv = inv(r0) beta0inv = inv(beta0) signb = sign(beta0) if s0 == zero s = h*r0inv else s = copy(s0) end s0 = copy(s) sqb = sqrt(signb*beta0) y = zero; yp = one iter = 0 ds = Inf fac1 = k-r0*beta0 fac2 = r0*dr0dt while iter == 0 || (abs(ds) > KEPLER_TOL && iter < 10) xx = sqb*s # sx = sqb*sin(xx) # cx = cos(xx) # eval(Expr(:call,trig,xx,cx,sx)) if beta0 > 0 sx = sin(xx); cx = cos(xx) else cx = cosh(xx); sx = exp(xx)-cx end sx *= sqb # Third derivative: yppp = fac1*cx - signb*fac2*sx # Take derivative: yp = (-yppp+ k)*beta0inv # Second derivative: ypp = signb*fac1*beta0inv*sx + fac2*cx y = (-ypp + fac2 +k*s)*beta0inv - h # eqn 35 # Now, compute fourth-order estimate: ds = calc_ds_opt(y,yp,ypp,yppp) s += ds iter +=1 end #println("iter: ",iter," s0: ",s0," s: ",s," ds: ",ds) # Since we updated s, need to recompute: xx = 0.5*sqb*s #; sx = sin(xx) ; cx = cos(xx) #xx = 0.5*sqb*s; cx = cosh(xx); sx = exp(xx)-cx #eval(Expr(:call,trig,xx,cx,sx)) if beta0 > 0 sx = sin(xx); cx = cos(xx) else cx = cosh(xx); sx = exp(xx)-cx end #if beta0 > 0 # cos_sin!(xx,cx,sx) #else # cosh_sinh!(xx,cx,sx) #end #println("beta0: ",beta0," xx: ",xx," cx: ",cx," sx: ",sx) # Now, compute final values: g1bs = 2.*sx*cx/sqb g2bs = 2.*signb*sx^2*beta0inv f = one - k*r0inv*g2bs # eqn (25) g = r0*g1bs + fac2*g2bs # eqn (27) #println("f: ",f," g: ",g) #println("k: ",k," r0inv: ",r0inv," g2bs: ",g2bs," r0: ",r0," g1bs: ",g1bs," fac2: ",fac2) for j=1:3 # Position is components 2-4 of state: state[1+j] = x0[j]*f+v0[j]*g end r = sqrt(state[2]*state[2]+state[3]*state[3]+state[4]*state[4]) rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv dgdt = r0*(one-beta0*g2bs+dr0dt*g1bs)*rinv for j=1:3 # Velocity is components 5-7 of state: state[4+j] = x0[j]*dfdt+v0[j]*dgdt end return s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r,rinv,ds,iter end #function kep_elliptic!(x0::Array{Float64,1},v0::Array{Float64,1},r0::Float64,dr0dt::Float64,k::Float64,h::Float64,beta0::Float64,s0::Float64,state::Array{Float64,1}) function kep_ell_hyp!(x0::Array{T,1},v0::Array{T,1},r0::T,dr0dt::T,k::T,h::T, beta0::T,s0::T,state::Array{T,1}) where {T <: Real} # Solves equation (35) from Wisdom & Hernandez for the elliptic case. zero = convert(typeof(h),0.0); one = convert(typeof(h),1.0) # Now, solve for s in elliptical Kepler case: f = zero; g=zero; dfdt=zero; dgdt=zero; cx=zero;sx=zero;g1bs=zero;g2bs=zero s=zero; ds = zero; r = zero;rinv=zero; iter=0 if beta0 > zero || beta0 < zero s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r,rinv,ds,iter = solve_kepler!(h,k,x0,v0,beta0,r0,dr0dt, s0,state) else println("Not elliptic or hyperbolic ",beta0," x0 ",x0) r= zero; fill!(state,zero); rinv=zero; s=zero; ds=zero; iter = 0 end state[8]= r state[9] = (state[2]*state[5]+state[3]*state[6]+state[4]*state[7])*rinv # recompute beta: # beta is element 10 of state: state[10] = 2.0*k*rinv-(state[5]*state[5]+state[6]*state[6]+state[7]*state[7]) # s is element 11 of state: state[11] = s # ds is element 12 of state: state[12] = ds return iter end #function kep_elliptic!(x0::Array{T,1},v0::Array{T,1},r0::T,dr0dt::T,k::T,h::T,beta0::T,s0::T,state::Array{T,1},jacobian::Array{T,2}) function kep_ell_hyp!(x0::Array{T,1},v0::Array{T,1},r0::T,dr0dt::T,k::T,h::T,beta0::T,s0::T,state::Array{T,1},jacobian::Array{T,2}) where {T <: Real} # Computes the Jacobian as well # Solves equation (35) from Wisdom & Hernandez for the elliptic case. zero = convert(typeof(h),0.0); one = convert(typeof(h),1.0) r0inv = inv(r0) beta0inv = inv(beta0) # Now, solve for s in elliptical Kepler case: f = zero; g=zero; dfdt=zero; dgdt=zero; cx=zero;sx=zero;g1bs=zero;g2bs=zero s=zero; ds=zero; r = zero;rinv=zero; iter=0 if beta0 > zero || beta0 < zero # solve_kepler!(h,k,x0,v0,beta0,s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r0,dr0dt,r, # rinv,ds,s0,state,iter) s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r,rinv,ds,iter = solve_kepler!(h,k,x0,v0,beta0,r0,dr0dt, s0,state) # Compute the Jacobian. jacobian[i,j] is derivative of final state variable q[i] # with respect to initial state variable q0[j], where q = {x,v} & q0 = {x0,v0}. fill!(jacobian,zero) compute_jacobian!(h,k,x0,v0,beta0,s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r0,dr0dt,r,jacobian) else println("Not elliptic or hyperbolic ",beta0," x0 ",x0) r= zero; fill!(state,zero); rinv=zero; s=zero; ds=zero; iter = 0 end # recompute beta: state[8]= r state[9] = (state[2]*state[5]+state[3]*state[6]+state[4]*state[7])*rinv # beta is element 10 of state: state[10] = 2.0*k*rinv-(state[5]*state[5]+state[6]*state[6]+state[7]*state[7]) # s is element 11 of state: state[11] = s # ds is element 12 of state: state[12] = ds return iter end #function kep_hyperbolic!(x0::Array{T,1},v0::Array{T,1},r0::T,dr0dt::T,k::T,h::T,beta0::T,s0::T,state::Array{T,1}) function kep_hyperbolic!(x0::Array{T,1},v0::Array{T,1},r0::T,dr0dt::T,k::T,h::T,beta0::T,s0::T,state::Array{T,1}) where {T <: Real} # Solves equation (35) from Wisdom & Hernandez for the hyperbolic case. zero = convert(typeof(h),0.0); one = convert(typeof(h),1.0) r0inv = inv(r0) beta0inv = inv(beta0) # Now, solve for s in hyperbolic Kepler case: if beta0 < zero # solve_kepler!() else println("Not hyperbolic",beta0," x0 ",x0) r= zero; fill!(state,zero); rinv=zero; s=zero; ds=zero; iter = 0 end # recompute beta: state[8]= r state[9] = (state[2]*state[5]+state[3]*state[6]+state[4]*state[7])*rinv # beta is element 10 of state: state[10] = 2.0*k*rinv-(state[5]*state[5]+state[6]*state[6]+state[7]*state[7]) # s is element 11 of state: state[11] = s # ds is element 12 of state: state[12] = ds return iter end #function kep_hyperbolic!(x0::Array{Float64,1},v0::Array{Float64,1},r0::Float64,dr0dt::Float64,k::Float64,h::Float64,beta0::Float64,s0::Float64,state::Array{Float64,1},jacobian::Array{Float64,2}) function kep_hyperbolic!(x0::Array{T,1},v0::Array{T,1},r0::T,dr0dt::T,k::T,h::T,beta0::T,s0::T,state::Array{T,1},jacobian::Array{T,2}) where {T <: Real} # Solves equation (35) from Wisdom & Hernandez for the hyperbolic case. zero = convert(typeof(h),0.0); one = convert(typeof(h),1.0) r0inv = inv(r0) beta0inv = inv(beta0) # Now, solve for s in hyperbolic Kepler case: if beta0 < zero # Initial guess (if s0 = 0): if s0 == zero s = h*r0inv else s = copy(s0) end s0 = copy(s) sqb = sqrt(-beta0) y = zero; yp = one iter = 0 ds = Inf fac1 = k-r0*beta0 fac2 = r0*dr0dt while iter == 0 || (abs(ds) > KEPLER_TOL && iter < 10) xx = sqb*s; cx = cosh(xx); sx = sqb*(exp(xx)-cx) # Third derivative: yppp = fac1*cx + fac2*sx # Take derivative: yp = (-yppp+ k)*beta0inv # Second derivative: ypp = -fac1*beta0inv*sx + fac2*cx y = (-ypp +fac2 +k*s)*beta0inv - h # eqn 35 # Now, compute fourth-order estimate: ds = calc_ds_opt(y,yp,ypp,yppp) s += ds iter +=1 # println(iter," ds: ",ds) end # if iter > 1 # #println("iter: ",iter," ds/s: ",ds/s0) # println(iter," ",s," ",s/s0-1," ds: ",ds) # end xx = 0.5*sqb*s; cx = cosh(xx); sx = exp(xx)-cx # Now, compute final values: g1bs = 2.0*sx*cx/sqb g2bs = -2.0*sx^2*beta0inv f = one - k*r0inv*g2bs # eqn (25) g = r0*g1bs + fac2*g2bs # eqn (27) for j=1:3 state[1+j] = x0[j]*f+v0[j]*g end # r = norm(x) r = sqrt(state[2]*state[2]+state[3]*state[3]+state[4]*state[4]) rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv dgdt = r0*(one-beta0*g2bs+dr0dt*g1bs)*rinv for j=1:3 # Velocity is components 5-7 of state: state[4+j] = x0[j]*dfdt+v0[j]*dgdt end # Now, compute the jacobian: fill!(jacobian,zero) compute_jacobian!(h,k,x0,v0,beta0,s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r0,dr0dt,r,jacobian) else println("Not hyperbolic",beta0," x0 ",x0) r= zero; fill!(state,zero); rinv=zero; s=zero; ds=zero; iter = 0 end # recompute beta: state[8]= r state[9] = (state[2]*state[5]+state[3]*state[6]+state[4]*state[7])*rinv # beta is element 10 of state: state[10] = 2.0*k*rinv-(state[5]*state[5]+state[6]*state[6]+state[7]*state[7]) # s is element 11 of state: state[11] = s # ds is element 12 of state: state[12] = ds return iter end # function compute_jacobian!(h::T,k::T,x0::Array{T,1},v0::Array{T,1},beta0::T,s::T,f::T,g::T,dfdt::T,dgdt::T,cx::T,sx::T,g1::T,g2::T,r0::T,dr0dt::T,r::T,jacobian::Array{T,2}) function compute_jacobian!(h::T,k::T,x0::Array{T,1},v0::Array{T,1},beta0::T,s::T,f::T,g::T,dfdt::T,dgdt::T,cx::T,sx::T,g1::T,g2::T,r0::T,dr0dt::T,r::T,jacobian::Array{T,2}) where {T <: Real} # Compute the Jacobian. jacobian[i,j] is derivative of final state variable q[i] # with respect to initial state variable q0[j], where q = {x,v,k} & q0 = {x0,v0,k}. # Now, compute the Jacobian: (9/18/2017 notes) #g0 = cx^2-sx^2 zero = convert(typeof(h),0.0); one = convert(typeof(h),1.0) g0 = one-beta0*g2 g3 = (s-g1)/beta0 dotalpha0 = r0*dr0dt # unnecessary to divide by r0 for dr0dt & multiply for \dot\alpha_0 absv0 = sqrt(dot(v0,v0)) dsdbeta = (2h-r0*(s*g0+g1)+k/beta0*(s*g0-g1)-dotalpha0*s*g1)/(2beta0*r) dsdr0 = -(2k/r0^2*dsdbeta+g1/r) dsda0 = -g2/r dsdv0 = -2absv0*dsdbeta dsdk = 2/r0*dsdbeta-g3/r dbetadr0 = -2k/r0^2 dbetadv0 = -2absv0 dbetadk = 2/r0 # "p" for partial derivative: #pxpr0 = zeros(Float64,3); pxpa0=zeros(Float64,3); pxpk=zeros(Float64,3); pxps=zeros(Float64,3); pxpbeta=zeros(Float64,3) #dxdr0 = zeros(Float64,3); dxda0=zeros(Float64,3); dxdk=zeros(Float64,3); dxdv0 =zeros(Float64,3) #prvpr0 = zeros(Float64,3); prvpa0=zeros(Float64,3); prvpk=zeros(Float64,3); prvps=zeros(Float64,3); prvpbeta=zeros(Float64,3) #drvdr0 = zeros(Float64,3); drvda0=zeros(Float64,3); drvdk=zeros(Float64,3); drvdv0=zeros(Float64,3) #vtmp = zeros(Float64,3); dvdr0 = zeros(Float64,3); dvda0=zeros(Float64,3); dvdv0=zeros(Float64,3); dvdk=zeros(Float64,3) for i=1:3 pxpr0[i] = k/r0^2*g2*x0[i]+g1*v0[i] pxpa0[i] = g2*v0[i] pxpk[i] = -g2/r0*x0[i] pxps[i] = -k/r0*g1*x0[i]+(r0*g0+dotalpha0*g1)*v0[i] pxpbeta[i] = -k/(2beta0*r0)*(s*g1-2g2)*x0[i]+1/(2beta0)*(s*r0*g0-r0*g1+s*dotalpha0*g1-2*dotalpha0*g2)*v0[i] prvpr0[i] = k*g1/r0^2*x0[i]+g0*v0[i] prvpa0[i] = g1*v0[i] prvpk[i] = -g1/r0*x0[i] prvps[i] = -k*g0/r0*x0[i]+(-beta0*r0*g1+dotalpha0*g0)*v0[i] prvpbeta[i] = -k/(2beta0*r0)*(s*g0-g1)*x0[i]+1/(2beta0)*(-s*r0*beta0*g1+dotalpha0*s*g0-dotalpha0*g1)*v0[i] end prpr0 = g0 prpa0 = g1 prpk = g2 prps = (k-beta0*r0)*g1+dotalpha0*g0 prpbeta = 1/(2beta0)*(s*(k-beta0*r0)*g1+dotalpha0*s*g0-dotalpha0*g1-2k*g2) for i=1:3 dxdr0[i] = pxps[i]*dsdr0 + pxpbeta[i]*dbetadr0 + pxpr0[i] dxda0[i] = pxps[i]*dsda0 + pxpa0[i] dxdv0[i] = pxps[i]*dsdv0 + pxpbeta[i]*dbetadv0 dxdk[i] = pxps[i]*dsdk + pxpbeta[i]*dbetadk + pxpk[i] drvdr0[i] = prvps[i]*dsdr0 + prvpbeta[i]*dbetadr0 + prvpr0[i] drvda0[i] = prvps[i]*dsda0 + prvpa0[i] drvdv0[i] = prvps[i]*dsdv0 + prvpbeta[i]*dbetadv0 drvdk[i] = prvps[i]*dsdk + prvpbeta[i]*dbetadk +prvpk[i] end drdr0 = prpr0 + prps*dsdr0 + prpbeta*dbetadr0 drda0 = prpa0 + prps*dsda0 drdv0 = prps*dsdv0 + prpbeta*dbetadv0 drdk = prpk + prps*dsdk + prpbeta*dbetadk for i=1:3 vtmp[i] = dfdt*x0[i]+dgdt*v0[i] dvdr0[i] = (drvdr0[i]-drdr0*vtmp[i])/r dvda0[i] = (drvda0[i]-drda0*vtmp[i])/r dvdv0[i] = (drvdv0[i]-drdv0*vtmp[i])/r dvdk[i] = (drvdk[i] -drdk *vtmp[i])/r end # Now, compute Jacobian: for i=1:3 jacobian[ i, i] = f jacobian[ i,3+i] = g jacobian[3+i, i] = dfdt jacobian[3+i,3+i] = dgdt jacobian[ i,7] = dxdk[i] jacobian[3+i,7] = dvdk[i] end for j=1:3 for i=1:3 jacobian[ i, j] += dxdr0[i]*x0[j]/r0 + dxda0[i]*v0[j] jacobian[ i,3+j] += dxdv0[i]*v0[j]/absv0 + dxda0[i]*x0[j] jacobian[3+i, j] += dvdr0[i]*x0[j]/r0 + dvda0[i]*v0[j] jacobian[3+i,3+j] += dvdv0[i]*v0[j]/absv0 + dvda0[i]*x0[j] end end jacobian[7,7]=one return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
13593
# Wisdom & Hernandez version of Kepler solver, but with quartic # convergence. function calc_ds_opt(y::T,yp::T,ypp::T,yppp::T) where {T <: Real} # Computes quartic Newton's update to equation y=0 using first through 3rd derivatives. # Uses techniques outlined in Murray & Dermott for Kepler solver. # Rearrange to reduce number of divisions: num = y*yp den1 = yp*yp-y*ypp*.5 den12 = den1*den1 den2 = yp*den12-num*.5*(ypp*den1-third*num*yppp) return -y*den12/den2 end #function kep_elliptic!(x0::Array{Float64,1},v0::Array{Float64,1},r0::Float64,dr0dt::Float64,k::Float64,h::Float64,beta0::Float64,s0::Float64,state::Array{Float64,1}) function kep_elliptic!(x0::Array{T,1},v0::Array{T,1},r0::T,dr0dt::T,k::T,h::T, beta0::T,s0::T,state::Array{T,1}) where {T <: Real} # Solves equation (35) from Wisdom & Hernandez for the elliptic case. zero = convert(typeof(h),0.0); one = convert(typeof(h),1.0) r0inv = inv(r0) beta0inv = inv(beta0) # Now, solve for s in elliptical Kepler case: if beta0 > zero # Initial guess (if s0 = 0): if s0 == zero s = h*r0inv else s = copy(s0) end s0 = copy(s) sqb = sqrt(beta0) y = zero; yp = one iter = 0 ds = Inf fac1 = k-r0*beta0 fac2 = r0*dr0dt while iter == 0 || (abs(ds) > KEPLER_TOL && iter < 10) xx = sqb*s sx = sqb*sin(xx) cx = cos(xx) # Third derivative: yppp = fac1*cx - fac2*sx # Take derivative: yp = (-yppp+ k)*beta0inv # Second derivative: ypp = fac1*beta0inv*sx + fac2*cx y = (-ypp + fac2 +k*s)*beta0inv - h # eqn 35 # Now, compute fourth-order estimate: ds = calc_ds_opt(y,yp,ypp,yppp) s += ds iter +=1 # println(iter," ds: ",ds) end # if iter > 1 # println(iter," ",s," ",s/s0-1," ds: ",ds) # end # Since we updated s, need to recompute: xx = 0.5*sqb*s; sx = sin(xx) ; cx = cos(xx) # Now, compute final values: g1bs = 2.*sx*cx/sqb g2bs = 2.*sx^2*beta0inv f = one - k*r0inv*g2bs # eqn (25) g = r0*g1bs + fac2*g2bs # eqn (27) for j=1:3 # Position is components 2-4 of state: state[1+j] = x0[j]*f+v0[j]*g end r = sqrt(state[2]*state[2]+state[3]*state[3]+state[4]*state[4]) rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv dgdt = r0*(one-beta0*g2bs+dr0dt*g1bs)*rinv for j=1:3 # Velocity is components 5-7 of state: state[4+j] = x0[j]*dfdt+v0[j]*dgdt end else println("Not elliptic ",beta0," x0 ",x0) r= zero; fill!(state,zero); rinv=zero; s=zero; ds=zero; iter = 0 end # recompute beta: state[8]= r state[9] = (state[2]*state[5]+state[3]*state[6]+state[4]*state[7])*rinv # beta is element 10 of state: state[10] = 2.0*k*rinv-(state[5]*state[5]+state[6]*state[6]+state[7]*state[7]) # s is element 11 of state: state[11] = s # ds is element 12 of state: state[12] = ds return iter end #function kep_elliptic!(x0::Array{T,1},v0::Array{T,1},r0::T,dr0dt::T,k::T,h::T,beta0::T,s0::T,state::Array{T,1},jacobian::Array{T,2}) function kep_elliptic!(x0::Array{T,1},v0::Array{T,1},r0::T,dr0dt::T,k::T,h::T,beta0::T,s0::T,state::Array{T,1},jacobian::Array{T,2}) where {T <: Real} # Computes the Jacobian as well # Solves equation (35) from Wisdom & Hernandez for the elliptic case. zero = convert(typeof(h),0.0); one = convert(typeof(h),1.0) r0inv = inv(r0) beta0inv = inv(beta0) # Now, solve for s in elliptical Kepler case: if beta0 > zero # Initial guess (if s0 = 0): if s0 == zero s = h*r0inv else s = copy(s0) end s0 = copy(s) sqb = sqrt(beta0) y = zero; yp = one iter = 0 ds = Inf fac1 = k-r0*beta0 fac2 = r0*dr0dt while iter == 0 || (abs(ds) > KEPLER_TOL && iter < 10) xx = sqb*s sx = sqb*sin(xx) cx = cos(xx) # Third derivative: yppp = fac1*cx - fac2*sx # Take derivative: yp = (-yppp+ k)*beta0inv # Second derivative: ypp = fac1*beta0inv*sx + fac2*cx y = (-ypp + fac2 +k*s)*beta0inv - h # eqn 35 # Now, compute fourth-order estimate: ds = calc_ds_opt(y,yp,ypp,yppp) s += ds iter +=1 # println(iter," ds: ",ds) end # if iter > 1 # println(iter," ",s," ",s/s0-1," ds: ",ds) # end # Since we updated s, need to recompute: xx = 0.5*sqb*s; sx = sin(xx) ; cx = cos(xx) # Now, compute final values: g1bs = 2.*sx*cx/sqb g2bs = 2.*sx^2*beta0inv f = one - k*r0inv*g2bs # eqn (25) g = r0*g1bs + fac2*g2bs # eqn (27) for j=1:3 # Position is components 2-4 of state: state[1+j] = x0[j]*f+v0[j]*g end r = sqrt(state[2]*state[2]+state[3]*state[3]+state[4]*state[4]) rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv dgdt = r0*(one-beta0*g2bs+dr0dt*g1bs)*rinv for j=1:3 # Velocity is components 5-7 of state: state[4+j] = x0[j]*dfdt+v0[j]*dgdt end # Now, compute the jacobian: fill!(jacobian,zero) compute_jacobian!(h,k,x0,v0,beta0,s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r0,dr0dt,r,jacobian) else println("Not elliptic ",beta0," x0 ",x0) r= zero; fill!(state,zero); rinv=zero; s=zero; ds=zero; iter = 0 end # recompute beta: state[8]= r state[9] = (state[2]*state[5]+state[3]*state[6]+state[4]*state[7])*rinv # beta is element 10 of state: state[10] = 2.0*k*rinv-(state[5]*state[5]+state[6]*state[6]+state[7]*state[7]) # s is element 11 of state: state[11] = s # ds is element 12 of state: state[12] = ds # Compute the Jacobian. jacobian[i,j] is derivative of final state variable q[i] # with respect to initial state variable q0[j], where q = {x,v} & q0 = {x0,v0}. return iter end #function kep_hyperbolic!(x0::Array{T,1},v0::Array{T,1},r0::T,dr0dt::T,k::T,h::T,beta0::T,s0::T,state::Array{T,1}) function kep_hyperbolic!(x0::Array{T,1},v0::Array{T,1},r0::T,dr0dt::T,k::T,h::T,beta0::T,s0::T,state::Array{T,1}) where {T <: Real} # Solves equation (35) from Wisdom & Hernandez for the hyperbolic case. zero = convert(typeof(h),0.0); one = convert(typeof(h),1.0) r0inv = inv(r0) beta0inv = inv(beta0) # Now, solve for s in hyperbolic Kepler case: if beta0 < zero # Initial guess (if s0 = 0): if s0 == zero s = h*r0inv else s = copy(s0) end s0 = copy(s) sqb = sqrt(-beta0) y = zero; yp = one iter = 0 ds = Inf fac1 = k-r0*beta0 fac2 = r0*dr0dt while iter == 0 || (abs(ds) > KEPLER_TOL && iter < 10) xx = sqb*s; cx = cosh(xx); sx = sqb*(exp(xx)-cx) # Third derivative: yppp = fac1*cx + fac2*sx # Take derivative: yp = (-yppp+ k)*beta0inv # Second derivative: ypp = -fac1*beta0inv*sx + fac2*cx y = (-ypp +fac2 +k*s)*beta0inv - h # eqn 35 # Now, compute fourth-order estimate: ds = calc_ds_opt(y,yp,ypp,yppp) s += ds iter +=1 # println(iter," ds: ",ds) end # if iter > 1 # #println("iter: ",iter," ds/s: ",ds/s0) # println(iter," ",s," ",s/s0-1," ds: ",ds) # end xx = 0.5*sqb*s; cx = cosh(xx); sx = exp(xx)-cx # Now, compute final values: g1bs = 2.0*sx*cx/sqb g2bs = -2.0*sx^2*beta0inv f = one - k*r0inv*g2bs # eqn (25) g = r0*g1bs + fac2*g2bs # eqn (27) for j=1:3 state[1+j] = x0[j]*f+v0[j]*g end # r = norm(x) r = sqrt(state[2]*state[2]+state[3]*state[3]+state[4]*state[4]) rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv dgdt = r0*(one-beta0*g2bs+dr0dt*g1bs)*rinv for j=1:3 # Velocity is components 5-7 of state: state[4+j] = x0[j]*dfdt+v0[j]*dgdt end else println("Not hyperbolic",beta0," x0 ",x0) r= zero; fill!(state,zero); rinv=zero; s=zero; ds=zero; iter = 0 end # recompute beta: state[8]= r state[9] = (state[2]*state[5]+state[3]*state[6]+state[4]*state[7])*rinv # beta is element 10 of state: state[10] = 2.0*k*rinv-(state[5]*state[5]+state[6]*state[6]+state[7]*state[7]) # s is element 11 of state: state[11] = s # ds is element 12 of state: state[12] = ds return iter end #function kep_hyperbolic!(x0::Array{Float64,1},v0::Array{Float64,1},r0::Float64,dr0dt::Float64,k::Float64,h::Float64,beta0::Float64,s0::Float64,state::Array{Float64,1},jacobian::Array{Float64,2}) function kep_hyperbolic!(x0::Array{T,1},v0::Array{T,1},r0::T,dr0dt::T,k::T,h::T,beta0::T,s0::T,state::Array{T,1},jacobian::Array{T,2}) where {T <: Real} # Solves equation (35) from Wisdom & Hernandez for the hyperbolic case. zero = convert(typeof(h),0.0); one = convert(typeof(h),1.0) r0inv = inv(r0) beta0inv = inv(beta0) # Now, solve for s in hyperbolic Kepler case: if beta0 < zero # Initial guess (if s0 = 0): if s0 == zero s = h*r0inv else s = copy(s0) end s0 = copy(s) sqb = sqrt(-beta0) y = zero; yp = one iter = 0 ds = Inf fac1 = k-r0*beta0 fac2 = r0*dr0dt while iter == 0 || (abs(ds) > KEPLER_TOL && iter < 10) xx = sqb*s; cx = cosh(xx); sx = sqb*(exp(xx)-cx) # Third derivative: yppp = fac1*cx + fac2*sx # Take derivative: yp = (-yppp+ k)*beta0inv # Second derivative: ypp = -fac1*beta0inv*sx + fac2*cx y = (-ypp +fac2 +k*s)*beta0inv - h # eqn 35 # Now, compute fourth-order estimate: ds = calc_ds_opt(y,yp,ypp,yppp) s += ds iter +=1 # println(iter," ds: ",ds) end # if iter > 1 # #println("iter: ",iter," ds/s: ",ds/s0) # println(iter," ",s," ",s/s0-1," ds: ",ds) # end xx = 0.5*sqb*s; cx = cosh(xx); sx = exp(xx)-cx # Now, compute final values: g1bs = 2.0*sx*cx/sqb g2bs = -2.0*sx^2*beta0inv f = one - k*r0inv*g2bs # eqn (25) g = r0*g1bs + fac2*g2bs # eqn (27) for j=1:3 state[1+j] = x0[j]*f+v0[j]*g end # r = norm(x) r = sqrt(state[2]*state[2]+state[3]*state[3]+state[4]*state[4]) rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv dgdt = r0*(one-beta0*g2bs+dr0dt*g1bs)*rinv for j=1:3 # Velocity is components 5-7 of state: state[4+j] = x0[j]*dfdt+v0[j]*dgdt end # Now, compute the jacobian: fill!(jacobian,zero) compute_jacobian!(h,k,x0,v0,beta0,s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r0,dr0dt,r,jacobian) else println("Not hyperbolic",beta0," x0 ",x0) r= zero; fill!(state,zero); rinv=zero; s=zero; ds=zero; iter = 0 end # recompute beta: state[8]= r state[9] = (state[2]*state[5]+state[3]*state[6]+state[4]*state[7])*rinv # beta is element 10 of state: state[10] = 2.0*k*rinv-(state[5]*state[5]+state[6]*state[6]+state[7]*state[7]) # s is element 11 of state: state[11] = s # ds is element 12 of state: state[12] = ds return iter end # function compute_jacobian!(h::T,k::T,x0::Array{T,1},v0::Array{T,1},beta0::T,s::T,f::T,g::T,dfdt::T,dgdt::T,cx::T,sx::T,g1::T,g2::T,r0::T,dr0dt::T,r::T,jacobian::Array{T,2}) function compute_jacobian!(h::T,k::T,x0::Array{T,1},v0::Array{T,1},beta0::T,s::T,f::T,g::T,dfdt::T,dgdt::T,cx::T,sx::T,g1::T,g2::T,r0::T,dr0dt::T,r::T,jacobian::Array{T,2}) where {T <: Real} # Compute the Jacobian. jacobian[i,j] is derivative of final state variable q[i] # with respect to initial state variable q0[j], where q = {x,v,k} & q0 = {x0,v0,k}. # Now, compute the Jacobian: (9/18/2017 notes) #g0 = cx^2-sx^2 zero = convert(typeof(h),0.0); one = convert(typeof(h),1.0) g0 = one-beta0*g2 g3 = (s-g1)/beta0 dotalpha0 = r0*dr0dt # unnecessary to divide by r0 for dr0dt & multiply for \dot\alpha_0 absv0 = sqrt(dot(v0,v0)) dsdbeta = (2h-r0*(s*g0+g1)+k/beta0*(s*g0-g1)-dotalpha0*s*g1)/(2beta0*r) dsdr0 = -(2k/r0^2*dsdbeta+g1/r) dsda0 = -g2/r dsdv0 = -2absv0*dsdbeta dsdk = 2/r0*dsdbeta-g3/r dbetadr0 = -2k/r0^2 dbetadv0 = -2absv0 dbetadk = 2/r0 # "p" for partial derivative: #pxpr0 = zeros(Float64,3); pxpa0=zeros(Float64,3); pxpk=zeros(Float64,3); pxps=zeros(Float64,3); pxpbeta=zeros(Float64,3) #dxdr0 = zeros(Float64,3); dxda0=zeros(Float64,3); dxdk=zeros(Float64,3); dxdv0 =zeros(Float64,3) #prvpr0 = zeros(Float64,3); prvpa0=zeros(Float64,3); prvpk=zeros(Float64,3); prvps=zeros(Float64,3); prvpbeta=zeros(Float64,3) #drvdr0 = zeros(Float64,3); drvda0=zeros(Float64,3); drvdk=zeros(Float64,3); drvdv0=zeros(Float64,3) #vtmp = zeros(Float64,3); dvdr0 = zeros(Float64,3); dvda0=zeros(Float64,3); dvdv0=zeros(Float64,3); dvdk=zeros(Float64,3) for i=1:3 pxpr0[i] = k/r0^2*g2*x0[i]+g1*v0[i] pxpa0[i] = g2*v0[i] pxpk[i] = -g2/r0*x0[i] pxps[i] = -k/r0*g1*x0[i]+(r0*g0+dotalpha0*g1)*v0[i] pxpbeta[i] = -k/(2beta0*r0)*(s*g1-2g2)*x0[i]+1/(2beta0)*(s*r0*g0-r0*g1+s*dotalpha0*g1-2*dotalpha0*g2)*v0[i] prvpr0[i] = k*g1/r0^2*x0[i]+g0*v0[i] prvpa0[i] = g1*v0[i] prvpk[i] = -g1/r0*x0[i] prvps[i] = -k*g0/r0*x0[i]+(-beta0*r0*g1+dotalpha0*g0)*v0[i] prvpbeta[i] = -k/(2beta0*r0)*(s*g0-g1)*x0[i]+1/(2beta0)*(-s*r0*beta0*g1+dotalpha0*s*g0-dotalpha0*g1)*v0[i] end prpr0 = g0 prpa0 = g1 prpk = g2 prps = (k-beta0*r0)*g1+dotalpha0*g0 prpbeta = 1/(2beta0)*(s*(k-beta0*r0)*g1+dotalpha0*s*g0-dotalpha0*g1-2k*g2) for i=1:3 dxdr0[i] = pxps[i]*dsdr0 + pxpbeta[i]*dbetadr0 + pxpr0[i] dxda0[i] = pxps[i]*dsda0 + pxpa0[i] dxdv0[i] = pxps[i]*dsdv0 + pxpbeta[i]*dbetadv0 dxdk[i] = pxps[i]*dsdk + pxpbeta[i]*dbetadk + pxpk[i] drvdr0[i] = prvps[i]*dsdr0 + prvpbeta[i]*dbetadr0 + prvpr0[i] drvda0[i] = prvps[i]*dsda0 + prvpa0[i] drvdv0[i] = prvps[i]*dsdv0 + prvpbeta[i]*dbetadv0 drvdk[i] = prvps[i]*dsdk + prvpbeta[i]*dbetadk +prvpk[i] end drdr0 = prpr0 + prps*dsdr0 + prpbeta*dbetadr0 drda0 = prpa0 + prps*dsda0 drdv0 = prps*dsdv0 + prpbeta*dbetadv0 drdk = prpk + prps*dsdk + prpbeta*dbetadk for i=1:3 vtmp[i] = dfdt*x0[i]+dgdt*v0[i] dvdr0[i] = (drvdr0[i]-drdr0*vtmp[i])/r dvda0[i] = (drvda0[i]-drda0*vtmp[i])/r dvdv0[i] = (drvdv0[i]-drdv0*vtmp[i])/r dvdk[i] = (drvdk[i] -drdk *vtmp[i])/r end # Now, compute Jacobian: for i=1:3 jacobian[ i, i] = f jacobian[ i,3+i] = g jacobian[3+i, i] = dfdt jacobian[3+i,3+i] = dgdt jacobian[ i,7] = dxdk[i] jacobian[3+i,7] = dvdk[i] end for j=1:3 for i=1:3 jacobian[ i, j] += dxdr0[i]*x0[j]/r0 + dxda0[i]*v0[j] jacobian[ i,3+j] += dxdv0[i]*v0[j]/absv0 + dxda0[i]*x0[j] jacobian[3+i, j] += dvdr0[i]*x0[j]/r0 + dvda0[i]*v0[j] jacobian[3+i,3+j] += dvdv0[i]*v0[j]/absv0 + dvda0[i]*x0[j] end end jacobian[7,7]=one return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
1839
include("kepler_solver_derivative.jl") # Takes a single kepler step, calling Wisdom & Hernandez solver # #function kepler_step!(gm::Float64,h::Float64,state0::Array{Float64,1},state::Array{Float64,1}) function kepler_step!(gm::T,h::T,state0::Array{T,1},state::Array{T,1}) where {T <: Real} # compute beta, r0, dr0dt, get x/v from state vector & call correct subroutine x0 = zeros(eltype(state0),3) v0 = zeros(eltype(state0),3) zero = 0.0*h for k=1:3 x0[k]=state0[k+1] v0[k]=state0[k+4] end # x0=state0[2:4] r0 = sqrt(x0[1]*x0[1]+x0[2]*x0[2]+x0[3]*x0[3]) # v0 = state0[5:7] dr0dt = (x0[1]*v0[1]+x0[2]*v0[2]+x0[3]*v0[3])/r0 beta0 = 2*gm/r0-(v0[1]*v0[1]+v0[2]*v0[2]+v0[3]*v0[3]) s0=state0[11] iter = kep_ell_hyp!(x0,v0,r0,dr0dt,gm,h,beta0,s0,state) # if beta0 > zero # iter = kep_elliptic!(x0,v0,r0,dr0dt,gm,h,beta0,s0,state) # else # iter = kep_hyperbolic!(x0,v0,r0,dr0dt,gm,h,beta0,s0,state) # end return end #function kepler_step!(gm::Float64,h::Float64,state0::Array{Float64,1},state::Array{Float64,1},jacobian::Array{Float64,2}) function kepler_step!(gm::T,h::T,state0::Array{T,1},state::Array{T,1},jacobian::Array{T,2}) where {T <: Real} # compute beta, r0, dr0dt, get x/v from state vector & call correct subroutine x0 = zeros(eltype(state0),3) v0 = zeros(eltype(state0),3) zero = 0.0*h for k=1:3 x0[k]=state0[k+1] v0[k]=state0[k+4] end # x0=state0[2:4] r0 = sqrt(x0[1]*x0[1]+x0[2]*x0[2]+x0[3]*x0[3]) # v0 = state0[5:7] dr0dt = (x0[1]*v0[1]+x0[2]*v0[2]+x0[3]*v0[3])/r0 beta0 = 2*gm/r0-(v0[1]*v0[1]+v0[2]*v0[2]+v0[3]*v0[3]) s0=state0[11] iter = kep_ell_hyp!(x0,v0,r0,dr0dt,gm,h,beta0,s0,state,jacobian) # if beta0 > zero # iter = kep_elliptic!(x0,v0,r0,dr0dt,gm,h,beta0,s0,state,jacobian) # else # iter = kep_hyperbolic!(x0,v0,r0,dr0dt,gm,h,beta0,s0,state,jacobian) # end return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
1704
include("kepler_solver_derivative.jl") # Takes a single kepler step, calling Wisdom & Hernandez solver # #function kepler_step!(gm::Float64,h::Float64,state0::Array{Float64,1},state::Array{Float64,1}) function kepler_step!(gm::T,h::T,state0::Array{T,1},state::Array{T,1}) where {T <: Real} # compute beta, r0, dr0dt, get x/v from state vector & call correct subroutine x0 = zeros(eltype(state0),3) v0 = zeros(eltype(state0),3) zero = 0.0*h for k=1:3 x0[k]=state0[k+1] v0[k]=state0[k+4] end # x0=state0[2:4] r0 = sqrt(x0[1]*x0[1]+x0[2]*x0[2]+x0[3]*x0[3]) # v0 = state0[5:7] dr0dt = (x0[1]*v0[1]+x0[2]*v0[2]+x0[3]*v0[3])/r0 beta0 = 2*gm/r0-(v0[1]*v0[1]+v0[2]*v0[2]+v0[3]*v0[3]) s0=state0[11] if beta0 > zero iter = kep_elliptic!(x0,v0,r0,dr0dt,gm,h,beta0,s0,state) else iter = kep_hyperbolic!(x0,v0,r0,dr0dt,gm,h,beta0,s0,state) end return end #function kepler_step!(gm::Float64,h::Float64,state0::Array{Float64,1},state::Array{Float64,1},jacobian::Array{Float64,2}) function kepler_step!(gm::T,h::T,state0::Array{T,1},state::Array{T,1},jacobian::Array{T,2}) where {T <: Real} # compute beta, r0, dr0dt, get x/v from state vector & call correct subroutine x0 = zeros(eltype(state0),3) v0 = zeros(eltype(state0),3) zero = 0.0*h for k=1:3 x0[k]=state0[k+1] v0[k]=state0[k+4] end # x0=state0[2:4] r0 = sqrt(x0[1]*x0[1]+x0[2]*x0[2]+x0[3]*x0[3]) # v0 = state0[5:7] dr0dt = (x0[1]*v0[1]+x0[2]*v0[2]+x0[3]*v0[3])/r0 beta0 = 2*gm/r0-(v0[1]*v0[1]+v0[2]*v0[2]+v0[3]*v0[3]) s0=state0[11] if beta0 > zero iter = kep_elliptic!(x0,v0,r0,dr0dt,gm,h,beta0,s0,state,jacobian) else iter = kep_hyperbolic!(x0,v0,r0,dr0dt,gm,h,beta0,s0,state,jacobian) end return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
4037
# Carries out a Kepler step for bodies i & j function keplerij!(m::Array{Float64,1},x::Array{Float64,2},v::Array{Float64,2},i::Int64,j::Int64,h::Float64,jac_ij::Array{Float64,2}) # The state vector has: 1 time; 2-4 position; 5-7 velocity; 8 r0; 9 dr0dt; 10 beta; 11 s; 12 ds # Initial state: state0 = zeros(Float64,12) # Final state (after a step): state = zeros(Float64,12) delx = zeros(Float64,NDIM) delv = zeros(Float64,NDIM) # jac_ij should be the Jacobian for going from (x_{0,i},v_{0,i},m_i) & (x_{0,j},v_{0,j},m_j) # to (x_i,v_i,m_i) & (x_j,v_j,m_j), a 14x14 matrix for the 3-dimensional case. # Fill with zeros for now: fill!(jac_ij,0.0) for k=1:NDIM state0[1+k ] = x[k,i] - x[k,j] state0[1+k+NDIM] = v[k,i] - v[k,j] end gm = GNEWT*(m[i]+m[j]) # The following jacobian is just computed for the Keplerian coordinates (i.e. doesn't include # center-of-mass motion, or scale to motion of bodies about their common center of mass): jac_kepler = zeros(Float64,7,7) kepler_step!(gm, h, state0, state, jac_kepler) for k=1:NDIM delx[k] = state[1+k] - state0[1+k] delv[k] = state[1+NDIM+k] - state0[1+NDIM+k] end # Compute COM coords: mijinv =1.0/(m[i] + m[j]) xcm = zeros(Float64,NDIM) vcm = zeros(Float64,NDIM) mi = m[i]*mijinv # Normalize the masses mj = m[j]*mijinv for k=1:NDIM xcm[k] = mi*x[k,i] + mj*x[k,j] vcm[k] = mi*v[k,i] + mj*v[k,j] end # Compute the Jacobian: jac_ij[ 7, 7] = 1.0 # the masses don't change with time! jac_ij[14,14] = 1.0 for k=1:NDIM jac_ij[ k, k] += mi jac_ij[ k, 3+k] += h*mi jac_ij[ k, 7+k] += mj jac_ij[ k,10+k] += h*mj jac_ij[ 3+k, 3+k] += mi jac_ij[ 3+k,10+k] += mj jac_ij[ 7+k, k] += mi jac_ij[ 7+k, 3+k] += h*mi jac_ij[ 7+k, 7+k] += mj jac_ij[ 7+k,10+k] += h*mj jac_ij[10+k, 3+k] += mi jac_ij[10+k,10+k] += mj for l=1:NDIM # Compute derivatives of \delta x_i with respect to initial conditions: jac_ij[ k, l] += mj*jac_kepler[ k, l] jac_ij[ k, 3+l] += mj*jac_kepler[ k,3+l] jac_ij[ k, 7+l] -= mj*jac_kepler[ k, l] jac_ij[ k,10+l] -= mj*jac_kepler[ k,3+l] # Compute derivatives of \delta v_i with respect to initial conditions: jac_ij[ 3+k, l] += mj*jac_kepler[3+k, l] jac_ij[ 3+k, 3+l] += mj*jac_kepler[3+k,3+l] jac_ij[ 3+k, 7+l] -= mj*jac_kepler[3+k, l] jac_ij[ 3+k,10+l] -= mj*jac_kepler[3+k,3+l] # Compute derivatives of \delta x_j with respect to initial conditions: jac_ij[ 7+k, l] -= mi*jac_kepler[ k, l] jac_ij[ 7+k, 3+l] -= mi*jac_kepler[ k,3+l] jac_ij[ 7+k, 7+l] += mi*jac_kepler[ k, l] jac_ij[ 7+k,10+l] += mi*jac_kepler[ k,3+l] # Compute derivatives of \delta v_j with respect to initial conditions: jac_ij[10+k, l] -= mi*jac_kepler[3+k, l] jac_ij[10+k, 3+l] -= mi*jac_kepler[3+k,3+l] jac_ij[10+k, 7+l] += mi*jac_kepler[3+k, l] jac_ij[10+k,10+l] += mi*jac_kepler[3+k,3+l] end # Compute derivatives of \delta x_i with respect to the masses: jac_ij[ k, 7] += (x[k,i]+h*v[k,i]-xcm[k]-mj*state[1+k])*mijinv + GNEWT*mj*jac_kepler[ k,7] jac_ij[ k,14] += (x[k,j]+h*v[k,j]-xcm[k]+mi*state[1+k])*mijinv + GNEWT*mj*jac_kepler[ k,7] # Compute derivatives of \delta v_i with respect to the masses: jac_ij[ 3+k, 7] += (v[k,i]-vcm[k]-mj*state[4+k])*mijinv + GNEWT*mj*jac_kepler[3+k,7] jac_ij[ 3+k,14] += (v[k,j]-vcm[k]+mi*state[4+k])*mijinv + GNEWT*mj*jac_kepler[3+k,7] # Compute derivatives of \delta x_j with respect to the masses: jac_ij[ 7+k, 7] += (x[k,i]+h*v[k,i]-xcm[k]-mj*state[1+k])*mijinv - GNEWT*mi*jac_kepler[ k,7] jac_ij[ 7+k,14] += (x[k,j]+h*v[k,j]-xcm[k]+mi*state[1+k])*mijinv - GNEWT*mi*jac_kepler[ k,7] # Compute derivatives of \delta v_j with respect to the masses: jac_ij[10+k, 7] += (v[k,i]-vcm[k]-mj*state[4+k])*mijinv - GNEWT*mi*jac_kepler[3+k,7] jac_ij[10+k,14] += (v[k,j]-vcm[k]+mi*state[4+k])*mijinv - GNEWT*mi*jac_kepler[3+k,7] end # Advance center of mass & individual Keplerian motions: centerm!(m,mijinv,x,v,vcm,delx,delv,i,j,h) return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
5580
# Translation of David Hernandez's nbody.c for integrating hiercharical # system with BH15 integrator. Please cite Hernandez & Bertschinger (2015) # if using this in a paper. const YEAR = 365.242 const GNEWT = 39.4845/YEAR^2 const NDIM = 3 const third = 1./3. include("kepler_step.jl") include("init_nbody.jl") function nbody!(t0::Float64,h::Float64,tmax::Float64,elements::Array{Float64,2},t_out::Array{Float64,1},state_out::Array{Float64,2},nstep::Int64) fcons = open("fcons.txt","w"); n=8 m=zeros(n) x=zeros(NDIM,n) v=zeros(NDIM,n) L0=zeros(NDIM) p0=zeros(NDIM) xcm0=zeros(NDIM) ssave = zeros(n,n,3) # Read in the initial orbital elements from a file (this # should be moved to an input parameter): elements = readdlm("elements.txt",',') for i=1:n m[i] = elements[i,1] end # Initialize the N-body problem using nested hierarchy of Keplerians: x,v = init_nbody(elements,t0,n) # infig1!(m,x,v,n) # Compute the conserved quantities: E0=consq!(m,x,v,n,L0,p0,xcm0) #println("E0: ",E0," L0: ",L0," p0: ",p0," xcm0: ",xcm0) #read(STDIN,Char) # Set the time to the initial time: t = t0 # Set step counter to zero: i=0 #nstep = 1 # Loop over time steps: while t < t0+tmax # Increment time by the time step: t += h # Increment counter by one: i +=1 # Carry out a phi^2 mapping step: phi2!(x,v,h,m,n) # Every nstep steps, output the state of the system: if mod(i,nstep) == 0 state_string = @sprintf("%18.12f",t) for j=1:n state_string = string(state_string,@sprintf("%18.12f",x[1,j]),@sprintf("%18.12f",x[3,j]),@sprintf("%18.12f",v[1,j]),@sprintf("%18.12f",v[3,j])) end state_string = state_string*"\n" print(fcons,state_string) end # end # Compute the final values of the conserved quantities: L=zeros(NDIM) p=zeros(NDIM) xcm=zeros(NDIM) E=consq!(m,x,v,n,L,p,xcm) println("dE/E=",(E0-E)/E0) # Close the output file: close(fcons) return end # Advances the center of mass of a binary function centerm!(m::Array{Float64,1},x::Array{Float64,2},v::Array{Float64,2},delx::Array{Float64,1},delv::Array{Float64,1},i::Int64,j::Int64,h::Float64) vcm=zeros(NDIM) mij =m[i] + m[j] if mij == 0 for k=1:NDIM vcm[k] = (v[k,i]+v[k,j])/2 x[k,i] += h*vcm[k] x[k,j] += h*vcm[k] end else for k=1:NDIM vcm[k] = (m[i]*v[k,i] + m[j]*v[k,j])/mij x[k,i] += m[j]/mij*delx[k] + h*vcm[k] x[k,j] += -m[i]/mij*delx[k] + h*vcm[k] v[k,i] += m[j]/mij*delv[k] v[k,j] += -m[i]/mij*delv[k] end end return end # Drifts bodies i & j function driftij!(x::Array{Float64,2},v::Array{Float64,2},i::Int64,j::Int64,h::Float64) for k=1:NDIM x[k,i] += h*v[k,i] x[k,j] += h*v[k,j] end return end # Carries out a Kepler step for bodies i & j function keplerij!(m::Array{Float64,1},x::Array{Float64,2},v::Array{Float64,2},i::Int64,j::Int64,h::Float64) # The state vector has: 1 time; 2-4 position; 5-7 velocity; 8 r0; 9 dr0dt; 10 beta; 11 s; 12 ds # Initial state: s0 = zeros(Float64,12) # Final state (after a step): s = zeros(Float64,12) delx = zeros(NDIM) delv = zeros(NDIM) for k=1:NDIM s0[1+k ] = x[k,i] - x[k,j] s0[1+k+NDIM] = v[k,i] - v[k,j] end gm = GNEWT*(m[i]+m[j]) if gm == 0 for k=1:NDIM x[k,i] += h*v[k,i] x[k,j] += h*v[k,j] end else kepler_step!(gm, h, s0, s) for k=1:NDIM delx[k] = s[1+k] - s0[1+k] delv[k] = s[1+NDIM+k] - s0[1+NDIM+k] end # Advance center of mass: centerm!(m,x,v,delx,delv,i,j,h) end return end # Drifts all particles: function drift!(x::Array{Float64,2},v::Array{Float64,2},h::Float64,n::Int64) for i=1:n for j=1:NDIM x[j,i] += h*v[j,i] end end return end # Carries out the phi^2 mapping function phi2!(x::Array{Float64,2},v::Array{Float64,2},h::Float64,m::Array{Float64,1},n::Int64) drift!(x,v,h/2,n) for i=1:n-1 for j=i+1:n driftij!(x,v,i,j,-h/2) keplerij!(m,x,v,i,j,h/2) end end for i=n-1:-1:1 for j=n:-1:i+1 keplerij!(m,x,v,i,j,h/2) driftij!(x,v,i,j,-h/2) end end drift!(x,v,h/2,n) return end # Initializes the system for a specific dynamical problem: eccentric binary orbiting # a larger body. Units in ~AU & yr. function infig1!(m::Array{Float64,1},x::Array{Float64,2},v::Array{Float64,2},n::Int64) a0 = 0.0125 a1 = 1.0 e0 = 0.6 e1 = 0 m[1] = 1e-3 m[2] = 1e-3 m[3] = 1.0 mu0 = (m[1]*m[2])/(m[1]+m[2]) mt0 = m[1]+m[2] mu1 = (m[3]*mt0)/(m[3]+mt0) mt1 = m[3]+mt0 x0 = a0*(1+e0) x1 = a1*(1+e1) v0 = sqrt(GNEWT*mt0/a0*(1-e0)/(1+e0)) v1 = sqrt(GNEWT*mt1/a1*(1-e1)/(1+e1)) fa0 = m[1]/mt0 fb0 = m[2]/mt0 fa1 = mt0/mt1 fb1 = m[3]/mt1 x[1,1] = -fb1*x1-fb0*x0 x[1,2] = -fb1*x1+fa0*x0 x[1,3] = fa1*x1 v[2,1] = -fb1*v1-fb0*v0 v[2,2] = -fb1*v1+fa0*v0 v[2,3] = fa1*v1 return end # Computes conserved quantities: function consq!(m::Array{Float64,1},x::Array{Float64,2},v::Array{Float64,2},n::Int64, L::Array{Float64,1},p::Array{Float64,1},xcm::Array{Float64,1}) fill!(p,0.0) # =zeros(NDIM) fill!(xcm,0.0) # =zeros(NDIM) fill!(L,0.0) # =zeros(NDIM) E = 0.0 for i=1:n if m[i] != 0 for j=1:NDIM p[j] += m[i]*v[j,i]; xcm[j] += m[i]*x[j,i]; end L[1] += m[i]*(x[2,i]*v[3,i]-x[3,i]*v[2,i]); L[2] += m[i]*(x[3,i]*v[1,i]-x[1,i]*v[3,i]); L[3] += m[i]*(x[1,i]*v[2,i]-x[2,i]*v[1,i]); end for j=1:NDIM E += 1.0/2.0*m[i]*v[j,i]*v[j,i]; end for j=i+1:n if m[j] != 0 rij = 0.; for k=1:NDIM rij += (x[k,i]-x[k,j])*(x[k,i]-x[k,j]); end rij = sqrt(rij); E -= GNEWT*m[i]*m[j]/rij; end end end mt=sum(m) if mt != 0 for i=1:NDIM xcm[i] /= mt; p[i] /= mt; end end println("L: ",L) println("p: ",p) println("xcm: ",xcm) return E end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
10897
abstract type AbstractInitialConditions end """ Elements{T<:AbstractFloat} <: AbstractInitialConditions Orbital elements of a binary, and mass of a 'outer' body. See [Tutorials](@ref) for units and conventions. # Fields - `m::T` : Mass of outer body. - `P::T` : Period [Days]. - `t0::T` : Initial time of transit [Days]. - `ecosω::T` : Eccentricity vector x-component (eccentricity times cosine of the argument of periastron) - `esinω::T` : Eccentricity vector y-component (eccentricity times sine of the argument of periastron) - `I::T` : Inclination, as measured from sky-plane [Radians]. - `Ω::T` : Longitude of ascending node, as measured from +x-axis [Radians]. - `a::T` : Orbital semi-major axis [AU]. - `e::T` : Eccentricity. - `ω::T` : Argument of periastron [Radians]. - `tp::T` : Time of periastron passage [Days]. """ struct Elements{T<:AbstractFloat} <: AbstractInitialConditions m::T P::T t0::T ecosω::T esinω::T I::T Ω::T a::T e::T ω::T tp::T end """ Elements(m,P,t0,ecosω,esinω,I,Ω) Main [`Elements`](@ref) constructor. May use keyword arguments, see [Tutorials](@ref). """ function Elements(m::T,P::T,t0::T,ecosω::T,esinω::T,I::T,Ω::T) where T<:Real e = sqrt(ecosω^2 + esinω^2) ω = atan(esinω,ecosω) Elements(m,P,t0,ecosω,esinω,I,Ω,0.0,e,ω,0.0) end function Base.show(io::IO, ::MIME"text/plain", elems::Elements{T}) where T <: Real fields = fieldnames(typeof(elems)) vals = [fn => getfield(elems,fn) for fn in fields] println(io, "Elements{$T}") for pair in vals println(io,first(pair),": ",last(pair)) end if elems.a == 0.0 println(io, "Orbital semi-major axis: undefined") end return end iszeroall(x...) = all(iszero.(x)) isnanall(x...) = all(isnan.(x)) replacenan(x) = isnan(x) ? zero(x) : x """Allows keyword arguments""" function Elements(;m::Real,P::Real=NaN,t0::Real=NaN,ecosω::Real=NaN,esinω::Real=NaN,I::Real=NaN,Ω::Real=NaN,a::Real=NaN,ω::Real=NaN,e::Real=NaN,tp::Real=NaN) # Promote everything m,P,t0,ecosω,esinω,I,Ω,a,ω,e,tp = promote(m,P,t0,ecosω,esinω,I,Ω,a,ω,e,tp) T = typeof(P) # Assume if only mass is set, we want the elements for the star (or central body in binary) if isnanall(P,t0,ecosω,esinω,I,Ω,a,ω,e,tp); return Elements(m, zeros(T, length(fieldnames(Elements))-1)...); end if isnanall(P,a); throw(ArgumentError("Must specify either P or a.")); end if P > zero(T) && a > zero(T); throw(ArgumentError("Only one of P (period) or a (semi-major axis) can be defined")); end if P < zero(T); throw(ArgumentError("Period must be positive")); end if a < zero(T); throw(ArgumentError("Orbital semi-major axis must be positive")); end if !(zero(T) <= e < one(T)) && !isnan(e); throw(ArgumentError("Eccentricity must be in [0,1), e=$(e)")); end if !(isnan(ecosω) && isnan(esinω)) && !isnan(e); error("Must specify either e and ecosω/esinω, but not both."); end if !(isnan(tp) || isnan(t0)); error("Must specify either initial transit time or time of periastron passage, but not both."); end ω = replacenan(ω) if isnanall(e,ecosω,esinω); e = ecosω = esinω = zero(T); end if isnan(e) ecosω = replacenan(ecosω) esinω = replacenan(esinω) e = sqrt(ecosω*ecosω + esinω*esinω) @assert zero(T) <= e < one(T) "Eccentricity must be in [0,1)" ω = atan(esinω, ecosω) else esinω, ecosω = e.*sincos(ω) esinω = abs(esinω) < eps(T) ? zero(T) : esinω ecosω = abs(ecosω) < eps(T) ? zero(T) : ecosω end t0 = replacenan(t0) n = 2π/P if isnan(tp) && !iszero(e) tp = (t0 - sqrt(1.0-e*e)*ecosω/(n*(1.0-esinω)) - (2.0/n)*atan(sqrt(1.0-e)*(esinω+ecosω+e), sqrt(1.0+e)*(esinω-ecosω-e))) % P elseif isnan(tp) θ = π/2 + ω tp = θ / n end a = replacenan(a) I = replacenan(I) Ω = replacenan(Ω) return Elements(m,P,t0,ecosω,esinω,I,Ω,a,e,ω,tp) end # Handle the deprecated fields function Base.getproperty(obj::Elements, sym::Symbol) if (sym === :ecosϖ) Base.depwarn("ecosϖ (\\varpi) will be removed, use ecosω (\\omega).", :getproperty, force=true) return obj.ecosω end if (sym === :esinϖ) Base.depwarn("esinϖ (\\varpi) will be removed, use esinω (\\omega).", :getproperty, force=true) return obj.esinω end if (sym === :ϖ) Base.depwarn("ϖ (\\varpi) will be removed, use ω (\\omega).", :getproperty, force=true) return obj.ω end return getfield(obj, sym) end """Abstract type for initial conditions specifications.""" abstract type InitialConditions{T} end """ ElementsIC{T<:AbstractFloat} <: InitialConditions{T} Initial conditions, specified by a hierarchy vector and orbital elements. # Fields - `elements::Matrix{T}` : Masses and orbital elements. - `ϵ::Matrix{T}` : Matrix of Jacobi coordinates - `amat::Matrix{T}` : 'A' matrix from [Hamers and Portegies Zwart 2016](https://doi.org/10.1093/mnras/stw784). - `nbody::Int64` : Number of bodies. - `m::Vector{T}` : Masses of bodies. - `t0::T` : Initial time [Days]. """ struct ElementsIC{T<:AbstractFloat} <: InitialConditions{T} elements::Matrix{T} ϵ::Matrix{T} amat::Matrix{T} nbody::Int64 m::Vector{T} t0::T der::Bool function ElementsIC(t0::T, H::Matrix{T}, elements::Matrix{T}; der::Bool=true) where T<:AbstractFloat nbody = size(H)[1] m = elements[1:nbody, 1] A = amatrix(H, m) # Allow user to input more orbital elements than used, but only use N if size(elements) != (nbody, 7) elements = copy(elements[1:nbody,:]) end return new{T}(copy(elements), copy(H), A, nbody, m, t0, der) end end ElementsIC(t0::T, H::Matrix{<:Real}, elements::Matrix{T}) where T<:Real = ElementsIC(t0, T.(H), elements) """ ElementsIC(t0,H,elems) Collects `Elements` and produces an `ElementsIC` struct. # Arguments - `t0::T` : Initial time [Days]. - `H` : Hierarchy specification. - `elems` : The orbital elements and masses of the system. ------------ There are a number of way to specify the initial conditions. Below we've described the arguments `ElementsIC` takes. Any combination of `H` and `elems` may be used. For a concrete example see [Tutorials](@ref). # Elements - `elems...` : A sequence of `Elements{T}`. Elements should be passed in the order they appear in the hierarchy (left to right). - `elems::Vector{Elements}` : A vector of `Elements`. As above, Elements should be in order. - `elems::Matrix{T}` : An matrix containing the masses and orbital elements. - `elems::String` : Name of a file containing the masses and orbital elements. Each method is simply populating the `ElementsIC.elements` field, which is a `Matrix{T}`. # Hierarchy - Number of bodies: `H::Int64`: The system will be given by a 'fully-nested' Keplerian. `H = 4` corresponds to: ```raw 3 ____|____ | | 2 ___|___ d | | 1 __|__ c | | a b ``` - Hierarchy Vector: `H::Vector{Int64}`: The first elements is the number of bodies. Each subsequent is the number of binaries on a level of the hierarchy. `H = [4,2,1]`. Two binaries on level 1, one on level 2. ```raw 2 ____|____ | | 1 __|__ __|__ | | | | a b c d ``` - Full Hierarchy Matrix: `H::Matrix{<:Real}`: Provide the hierarchy matrix, directly. `H = [-1 1 0 0; 0 0 -1 1; -1 -1 1 1; -1 -1 -1 -1]`. Produces the same system as `H = [4,2,1]`. """ function ElementsIC(t0::T, H::Matrix{<:Real}, elems::Elements{T}...) where T<:AbstractFloat elements = zeros(T,size(H)[1],7) fields = [:m, :P, :t0, :ecosω, :esinω, :I, :Ω] for i in eachindex(elems) elements[i,:] .= [getfield(elems[i],f) for f in fields] end return ElementsIC(t0,T.(H),elements) end """Allows for vector of `Elements` argument.""" ElementsIC(t0::T,H::Matrix{<:Real},elems::Vector{Elements{T}}) where T<:AbstractFloat = ElementsIC(t0,T.(H),elems...) """Allow user to pass a file containing orbital elements.""" function ElementsIC(t0::T,H::Matrix{<:Real},elems::String) where T<:AbstractFloat elements = T.(readdlm(elems, ',', comments=true)[1:size(H)[1],:]) return ElementsIC(t0, T.(H), elements) end ## Let user pass hierarchy vector; dispatch on different elements ## ElementsIC(t0::T,H::Vector{Int64},elems::Elements{T}...) where T <: AbstractFloat = ElementsIC(t0,hierarchy(H),elems...) ElementsIC(t0::T,H::Vector{Int64},elems::Vector{Elements{T}}) where T<:AbstractFloat = ElementsIC(t0,hierarchy(H),elems...) ElementsIC(t0::T,H::Vector{Int64},elems::Matrix{T}) where T<:AbstractFloat = ElementsIC(t0,hierarchy(H),elems) ElementsIC(t0::T,H::Vector{Int64},elems::String) where T<:AbstractFloat = ElementsIC(t0,hierarchy(H),elems) ## Let user specify only the number of bodies; the hierarchy is filled in as fully-nested; dispatch on different elements ## ElementsIC(t0::T,H::Int64,elems::Elements{T}...) where T<:AbstractFloat = ElementsIC(t0,[H, ones(Int64,H-1)...],elems...) ElementsIC(t0::T,H::Int64,elems::Vector{Elements{T}}) where T<:AbstractFloat = ElementsIC(t0,[H, ones(Int64,H-1)...],elems...) ElementsIC(t0::T,H::Int64,elems::Matrix{T}) where T<:AbstractFloat = ElementsIC(t0,[H, ones(Int64,H-1)...],elems) ElementsIC(t0::T,H::Int64,elems::String) where T<:AbstractFloat = ElementsIC(t0,[H, ones(Int64, H-1)...],elems) """Shows the elements array.""" Base.show(io::IO,::MIME"text/plain",ic::ElementsIC{T}) where {T} = begin println(io,"ElementsIC{$T}\nOrbital Elements: "); show(io,"text/plain",ic.elements); end; """ CartesianIC{T<:AbstractFloat} <: InitialConditions{T} Initial conditions, specified by the Cartesian coordinates and masses of each body. # Fields - `x::Matrix{T}` : Positions of each body [dimension, body]. - `v::Matrix{T}` : Velocities of each body [dimension, body]. - `m::Vector{T}` : masses of each body. - `nbody::Int64` : Number of bodies in system. - `t0::T` : Initial time. """ struct CartesianIC{T<:AbstractFloat} <: InitialConditions{T} x::Matrix{T} v::Matrix{T} m::Vector{T} nbody::Int64 t0::T end """Allow user to pass matrix of row-vectors for `CartesianIC`.""" function CartesianIC(t0::T, N::Int64, coords::Matrix{T}) where T<:AbstractFloat m = coords[1:N,1] x = permutedims(coords[1:N,2:4]) v = permutedims(coords[1:N,5:7]) return CartesianIC(x,v,m,N,t0) end """Allow input of Cartesian coordinate file.""" function CartesianIC(t0::T, N::Int64, coordinateFile::String) where T <: AbstractFloat coords = readdlm(coordinateFile,',') m = coords[1:N,1] x = permutedims(coords[1:N,2:4]) v = permutedims(coords[1:N,5:7]) return CartesianIC(x,v,m,N,t0) end # Include ics source files const ics = ["kepler","kepler_init","setup_hierarchy","init_nbody","defaults"] for i in ics; include("$(i).jl"); end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
3458
# Some default initial conditions for testing and quick usage. function get_trappist1_elements(t0=0.0, n=0) # Trappist-1 orbital elements from Agol et al. 2021 elements = [ 1.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5901135977661885e-5 1.510880055106516 7257.547487248826 0.02436651768325364 0.018169884000968452 1.5707963267948966 0.0 5.7871255112412840e-5 2.4218013609356652 7258.592163817471 0.020060810686211832 0.011189705094395375 1.5707963267948966 0.0 1.4602772830539989e-6 4.0503542353950355 7257.023855669221 0.007411490159357976 -0.02016424872931776 1.5707963267948966 0.0 1.9235328222249013e-5 6.099281590191818 7257.816770447013 0.0011801938769616127 0.000731913417670215 1.5707963267948966 0.0 2.7302687390082730e-5 9.20618480814173 7257.1228936246725 -699952921060827e-19 0.0002252519365921506 1.5707963267948966 0.0 3.5331017018761430e-5 12.353988709624156 7257.667328639113 -0.0009722026578612578 0.001276000403979281 1.5707963267948966 0.0 1.6410627049780406e-6 18.733535095576702 7250.524231929195 -0.010402303111464135 -0.014289870200773339 1.5707963267948966 0.0 ] return elements end function get_kepler36_elements(t0=0.0, n=0) # Mean Kepler-36 orbital elements from Carter et al. 2012 # Eccentricity chosen at random from e < 0.04, inclination co-planar # Unit conversions using UnitfulAstro elements = [ 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2479484222582662e-5 13.83989 0.0 0.002 -0.004 1.5707963267948966 0.0 2.2659378094037732e-5 16.23855 5.062100000213832 -0.01 0.007 1.5707963267948966 0.0 ] return elements end # Available names for users to specify to get initial conditions # The first element in each tuple should be the key for ELEMENTS_FUNCTIONS # rest are "aliases" for the system, if any. const AVAILABLE_SYSTEMS = ( ("trappist-1", "trappist 1"), ("kepler-36", "kepler 36") ) const ELEMENTS_FUNCTIONS = Dict( "trappist-1" => get_trappist1_elements, "kepler-36" => get_kepler36_elements ) """Return the AVAILABLE_SYSTEMS tuple. ONLY FOR TESTS.""" _available_systems() = AVAILABLE_SYSTEMS """Show the available default systems with implemented initial conditions.""" function available_systems() println(stdout, "Available Systems: ") for s in AVAILABLE_SYSTEMS key = first(s) rest = setdiff(s, (first(s),)) if isempty(rest) println(stdout, "\"$(key)\"") else println(stdout, "\"$(key)\" ", rest) end end flush(stdout) end """Get the default initial conditions for a particular system""" function get_default_ICs(system_name, t0=0.0, n=0) # Get the key for the elements function to call system_key = "" for available_names in AVAILABLE_SYSTEMS if lowercase(system_name) ∈ available_names system_key = first(available_names) end end system_key == "" && throw(ArgumentError("$(system_name) not an available system name.")) # Get the orbital elements for the selected system elements = ELEMENTS_FUNCTIONS[system_key]() # Use all the bodies if user did not specify n nmax = size(elements)[1] if n == 0 n = nmax elseif n > nmax @warn "Maximum n is $(nmax). User asked for $(n). Setting to $(nmax)." n = nmax end return ElementsIC(t0, n, elements) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
6294
""" init_nbody(ic,t0) Converts initial orbital elements into Cartesian coordinates. # Arguments - `ic::ElementsIC{T<:Real}`: Initial conditions of the system. See [`InitialConditions`](@ref). # Outputs - `x::Array{<:Real,2}`: Cartesian positions of each body. - `v::Array{<:Real,2}`: Cartesian velocites of each body. - `jac_init::Array{<:Real,2}`: Derivatives of A-matrix and x,v with respect to the masses of each object. """ function init_nbody(ic::ElementsIC{T}) where T <: AbstractFloat r, rdot, jac_init = kepcalc(ic) Ainv = inv(ic.amat) # Cartesian coordinates x = zeros(T,NDIM,ic.nbody) x = permutedims(*(Ainv,r)) v = zeros(T,NDIM,ic.nbody) v = permutedims(*(Ainv,rdot)) return x,v,jac_init end """Return the cartesian coordinates.""" function init_nbody(ic::CartesianIC{T}) where T <: AbstractFloat x = copy(ic.x) v = copy(ic.v) n = size(x)[2] jac_init = Matrix{T}(I,7*n,7*n) return x,v,jac_init end """ kepcalc(ic,t0) Computes Kepler's problem for each pair of bodies in the system. # Arguments - `ic::ElementsIC{T<:Real}`: Initial conditions structure. # Outputs - `rkepler::Array{T<:Real,2}`: Matrix of initial position vectors for each keplerian. - `rdotkepler::Array{T<:Real,2}`: Matrix of initial velocity vectors for each keplerian. - `jac_init::Array{T<:Real,2}`: Derivatives of the A-matrix and cartesian positions and velocities with respect to the masses of each object. """ function kepcalc(ic::ElementsIC{T}) where T<:AbstractFloat n = ic.nbody rkepler = zeros(T,n,NDIM) rdotkepler = zeros(T,n,NDIM) if ic.der jac_kepler = zeros(T,6*n,7*n) jac_21 = zeros(T,7,7) end # Compute Kepler's problem for each binary i = 1; b = 0 while i < ic.nbody ind = Bool.(abs.(ic.ϵ[i,:])) μ = sum(ic.m[ind]) # Check for a new binary. if first(ind) == zero(T) b += 1 end # Solve Kepler's problem if ic.der r,rdot = kepler_init(ic.t0,μ,ic.elements[i+1+b,2:7],jac_21) else r,rdot = kepler_init(ic.t0,μ,ic.elements[i+1+b,2:7]) end rkepler[i,:] .= r rdotkepler[i,:] .= rdot if ic.der for j=1:6, k=1:6 jac_kepler[(i-1)*6+j,i*7+k] = jac_21[j,k] end for j in 1:n if ic.ϵ[i,j] != 0 for k = 1:6 jac_kepler[(i-1)*6+k,j*7] = jac_21[k,7] end end end end # Check if last binary was a new branch. if b > 0 b -= 2 elseif b < 0 b = 0 #i += 1 end i += 1 end if ic.der jac_init = d_dm(ic,rkepler,rdotkepler,jac_kepler) return rkepler,rdotkepler,jac_init else return rkepler,rdotkepler,zeros(T,0,0) end end """ d_dm(ic,rkepler,rdotkepler,jac_kepler) Computes derivatives of A-matrix, position, and velocity with respect to the masses of each object. # Arguments - `ic::IC`: Initial conditions structure. - `rkepler::Array{<:Real,2}`: Position vectors for each Keplerian. - `rdotkepler::Array{<:Real,2}`: Velocity vectors for each Keplerian. - `jac_kepler::Array{<:Real,2}`: Keplerian Jacobian matrix. # Outputs - `jac_init::Array{<:Real,2}`: Derivatives of the A-matrix and cartesian positions and velocities with respect to the masses of each object. """ function d_dm(ic::ElementsIC{T},rkepler::Array{T,2},rdotkepler::Array{T,2},jac_kepler::Array{T,2}) where T <: AbstractFloat N = ic.nbody m = ic.m ϵ = ic.ϵ jac_init = zeros(T,7*N,7*N) dAdm = zeros(T,N,N,N) dxdm = zeros(T,NDIM,N) dvdm = zeros(T,NDIM,N) # Differentiate A matrix wrt the mass of each body for k in 1:N, i in 1:N, j in 1:N dAdm[i,j,k] = ((δ_(k,j)*ϵ[i,j])/Σm(m,i,j,ϵ)) - ((δ_(ϵ[i,j],ϵ[i,k]))*ϵ[i,j]*m[j]/(Σm(m,i,j,ϵ)^2)) end # Calculate inverse of dAdm Ainv = inv(ic.amat) dAinvdm = zeros(T,N,N,N) for k in 1:N dAinvdm[:,:,k] .= -Ainv * dAdm[:,:,k] * Ainv end # Fill in jac_init array for i in 1:N for k in 1:N for j in 1:3, l in 1:7*N jac_init[(i-1)*7+j,l] += Ainv[i,k]*jac_kepler[(k-1)*6+j,l] jac_init[(i-1)*7+3+j,l] += Ainv[i,k]*jac_kepler[(k-1)*6+3+j,l] end end # Derivatives of cartesian coordinates wrt masses for k in 1:N dxdm = transpose(dAinvdm[:,:,k]*rkepler) dvdm = transpose(dAinvdm[:,:,k]*rdotkepler) jac_init[(i-1)*7+1:(i-1)*7+3,k*7] += dxdm[1:3,i] jac_init[(i-1)*7+4:(i-1)*7+6,k*7] += dvdm[1:3,i] end jac_init[i*7,i*7] = 1.0 end return jac_init end """ amatrix(elements,ϵ,m) Creates the A matrix presented in Hamers & Portegies Zwart 2016 (HPZ16). # Arguments - `elements::Array{<:Real,2}`: Array of masses and orbital elements. See [`IC`](@ref) - `ϵ::Array{<:Real,2}`: Epsilon matrix. See [`IC.elements`] - `m::Array{<:Real,2}`: Array of masses of each body. # Outputs - `A::Array{<:Real,2}`: A matrix. """ function amatrix(ϵ::Array{T,2},m::Array{T,1}) where T<:AbstractFloat A = zeros(T,size(ϵ)) # Empty A matrix N = length(ϵ[:,1]) # Number of bodies in system for i in 1:N, j in 1:N A[i,j] = (ϵ[i,j]*m[j])/(Σm(m,i,j,ϵ)) end return A end function amatrix(ic::ElementsIC{T}) where T <: Real ic.amat .= amatrix(ic.ϵ,ic.m) end """ Σm(masses,i,j,ϵ) Sums masses in current Keplerian. # Arguments - `masses::Array{<:Real,2}`: Array of masses in system. - `i::Integer`: Summation index. - `j::Integer`: Summation index. - `ϵ::Array{<:Real,2}`: Epsilon matrix. # Outputs - `m<:Real`: Sum of the masses. """ function Σm(masses::Array{T,1},i::Integer,j::Integer, ϵ::Array{T,2}) where T <: AbstractFloat m = 0.0 for l in 1:length(masses) m += masses[l]*δ_(ϵ[i,j],ϵ[i,l]) end return m end """ δ_(i,j) An NxN Kronecker Delta function. # Arguements - `i<:Real`: First arguement. - `j<:Real`: Second arguement. # Outputs - `::Bool` """ function δ_(i::T,j::T) where T <: Real if i == j return 1.0 else return 0.0 end end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
2800
function ekepler(m::T,ecc::T) where {T <: Real} KEPLER_TOL = sqrt(eps(m)) if m != zero(T) #real*8 e,e0,eps,m,ms,pi2,f0,f1,f2,f3,d1,d2,d3 # This routine solves Kepler's equation for E as a function of (e,M) # using the procedure outlined in Murray & Dermott: pi2=2pi ms=mod(m,pi2) d3 =one(T) de0=ecc*0.85*sign(ms) de1=2*de0 de2=3*de0 iter = 0 ITMAX = 20 # while abs(d3) > KEPLER_TOL while true de2 = de1 de1 = de0 f3=ecc*cos(de0+ms) f2=ecc*sin(de0+ms) # f1=1.0-f3 # f0=de0-f2 # d1=-f0/f1 # d2=-f0/(f1+0.5*d1*f2) # d3=-f0/(f1+d2*0.5*(f2+d2*f3/3.)) # de0 += d3 de0 = (f2-de1*f3)/(1-f3) iter += 1 if iter >= ITMAX || de0 == de1 || de0 == de2 break end end if iter >= ITMAX && !(T == BigFloat && minimum([abs(de0-de1),abs(de0-de2)]) < eps(one(T))) # println("iterations in ekepler: ",iter," de0: ",de0," de1-de0: ",de1-de0," de2-de0: ",de2-de0) end ekep=de0+m else ekep = zero(T) end return ekep::typeof(m) end function ekepler2(m::T,ecc::T) where {T <: Real} KEPLER_TOL = sqrt(eps(m)) if m != 0.0 #real*8 e,e0,eps,m,ms,pi2,f0,f1,f2,f3,d1,d2,d3 # This routine solves Kepler's equation for E as a function of (e,M) # using the procedure outlined in Murray & Dermott: pi2=2.0*pi ms=mod(m,pi2) d3 =one(T) e0=ms+ecc*0.85*sin(ms)/abs(sin(ms)) e1=2*e0 e2=3*e0 # while abs(d3) > KEPLER_TOL ITMAX = 50 while true e2 = e1 e1 = e0 f3=ecc*cos(e0) f2=ecc*sin(e0) f1=1.0-f3 f0=e0-ms-f2 d1=-f0/f1 d2=-f0/(f1+0.5*d1*f2) d3=-f0/(f1+d2*0.5*(f2+d2*f3/3.)) e0=e0+d3 if iter >= ITMAX || e0 == e1 || e0 == e2 break end end if iter >= ITMAX # println("iterations in ekepler2: ",iter," de0: ",de0," de1-de0: ",de1-de0," de2-de0: ",de2-de0) end ekep=e0+m-ms else ekep = 0.0 end return ekep::typeof(m) end function kepler(m,ecc) @assert(ecc >= 0.0) @assert(ecc <= 1.0) f=m if ecc > 0 ekep=ekepler(m,ecc) # println(m-ekep+ecc*sin(ekep)) # f=2.0*atan(sqrt((1.0+ecc)/(1.0-ecc))*tan(0.5*ekep)) # f=2.0*atan2(sqrt(1.0+ecc)*sin(0.5*ekep),sqrt(1.0-ecc)*cos(0.5*ekep)) f=2.0*atan(sqrt(1.0+ecc)*sin(0.5*ekep),sqrt(1.0-ecc)*cos(0.5*ekep)) end return f end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
10181
function kepler_init(time::T,mass::T,elements::Array{T,1}) where {T <: Real} # Takes orbital elements of a single Keplerian; returns positions & velocities. # This is 3D), so 6 orbital elements specified, the code returns 3D. For # Inclination = pi/2, motion is in X-Z plane; sky plane is X-Y. # Elements are given by: period, t0, e*cos(omega), e*sin(omega), Inclination, Omega period = elements[1] # Compute the semi-major axis in AU (or other units specified by GNEWT): semi = cbrt(GNEWT*mass*period^2/4/pi^2) # Convert to eccentricity & longitude of periastron: ecc2=elements[3]^2+elements[4]^2 ecc=sqrt(ecc2) #omega = atan2(elements[4],elements[3]) omega = atan(elements[4],elements[3]) # The true anomaly at the time of transit: f1 = 1.5*pi-omega # Compute the time of periastron passage: sqrt1mecc2 = sqrt(1.0-ecc^2) tp=(elements[2]+period*sqrt1mecc2/2.0/pi*(ecc*sin(f1)/(1.0+ecc*cos(f1)) # -2.0/sqrt1mecc2*atan2(sqrt1mecc2*tan(0.5*f1),1.0+ecc))) -2.0/sqrt1mecc2*atan(sqrt1mecc2*tan(0.5*f1),1.0+ecc))) # Compute the mean anomaly n = 2pi/period m=n*(time-tp) # Kepler solver: if ecc > 0.0 f = kepler(m,ecc) else f = m end ecosfp1 = 1.0+ecc*cos(f) fdot = n*ecosfp1^2/sqrt1mecc2^3 # Compute the radial distance: r=semi*(1.0-ecc^2)/ecosfp1 rdot = semi*n/sqrt1mecc2*ecc*sin(f) # For now assume plane-parallel: #inc = pi/2 #capomega = pi inc = elements[5] capomega = elements[6] # Now, compute the positions x = zeros(eltype(elements),3) v = zeros(eltype(elements),3) if abs(capomega-pi) > 1e-15 coscapomega = cos(capomega) ; sincapomega = sin(capomega) else coscapomega = -1.0 ; sincapomega = 0.0 end cosomegapf = cos(omega+f) ; sinomegapf = sin(omega+f) if abs(inc-pi/2) > 1e-15 cosinc = cos(inc) ; sininc = sin(inc) else cosinc = 0.0 ; sininc = 1.0 end x[1]=r*(coscapomega*cosomegapf-sincapomega*sinomegapf*cosinc) x[2]=r*(sincapomega*cosomegapf+coscapomega*sinomegapf*cosinc) x[3]=r*sinomegapf*sininc rdotonr = rdot/r # Compute the velocities: rfdot = r*fdot v[1]=x[1]*rdotonr+rfdot*(-coscapomega*sinomegapf-sincapomega*cosomegapf*cosinc) v[2]=x[2]*rdotonr+rfdot*(-sincapomega*sinomegapf+coscapomega*cosomegapf*cosinc) v[3]=x[3]*rdotonr+rfdot*cosomegapf*sininc return x,v end function kepler_init(time::T,mass::T,elements::Array{T,1},jac_init::Array{T,2}) where {T <: Real} # Takes orbital elements of a single Keplerian; returns positions & velocities. # This is 3D), so 6 orbital elements specified, the code returns 3D. For # Inclination = pi/2, motion is in X-Z plane; sky plane is X-Y. # Elements are given by: period, t0, e*cos(omega), e*sin(omega), Inclination, Omega # Returns the position & velocity of Keplerian. # jac_init is the derivative of (x,v,m) with respect to (elements,m). period = elements[1] n = 2pi/period t0 = elements[2] # Compute the semi-major axis in AU (or other units specified by GNEWT): semi = cbrt(GNEWT*mass*period^2/4/pi^2) dsemidp = 2third*semi/period dsemidm = third*semi/mass # Convert to eccentricity & longitude of periastron: ecosomega = elements[3] esinomega = elements[4] ecc=sqrt(esinomega^2+ecosomega^2) deccdecos = ecc != 0.0 ? ecosomega/ecc : zero(T) deccdesin = ecc != 0.0 ? esinomega/ecc : zero(T) #omega = atan2(esinomega,ecosomega) # The true anomaly at the time of transit: #f1 = 1.5*pi-omega # Compute the time of periastron passage: sqrt1mecc2 = sqrt(1.0-ecc^2) #tp=(t0+period*sqrt1mecc2/2.0/pi*(ecc*sin(f1)/(1.0+ecc*cos(f1)) # -2.0/sqrt1mecc2*atan2(sqrt1mecc2*tan(0.5*f1),1.0+ecc))) den1 = esinomega-ecosomega-ecc tp = if ecc == 0.0 # If circular orbit, take periastron to be along +x-axis t0 - 3*period/4 else (t0 - sqrt1mecc2/n*ecosomega/(1.0-esinomega)-2/n*atan(sqrt(1.0-ecc)*(esinomega+ecosomega+ecc),sqrt(1.0+ecc)*den1)) end dtpdp = (tp-t0)/period fac = sqrt((1.0-ecc)/(1.0+ecc)) den2 = 1.0/den1^2 theta = fac*(esinomega+ecosomega+ecc)/den1 #println("theta: ",theta," tan(atan2()): ",tan(atan2(sqrt(1.0-ecc)*(esinomega+ecosomega+ecc),sqrt(1.0+ecc)*den1))) dthetadecc = ((ecc+ecosomega)^2+2*(1.0-ecc^2)*esinomega-esinomega^2)/(sqrt1mecc2*(1.0+ecc))*den2 dthetadecos = 2fac*esinomega*den2 dthetadesin = -2fac*(ecosomega+ecc)*den2 dtpdecc = ecc/sqrt1mecc2/n*ecosomega/(1.0-esinomega)-2/n/(1.0+theta^2)*dthetadecc dtpdecos = dtpdecc*deccdecos -sqrt1mecc2/n/(1.0-esinomega)-2/n/(1.0+theta^2)*dthetadecos dtpdesin = dtpdecc*deccdesin -sqrt1mecc2/n*ecosomega/(1.0-esinomega)^2-2/n/(1.0+theta^2)*dthetadesin dtpdt0 = 1.0 # Compute the mean anomaly m=n*(time-tp) dmdp = -m/period dmdtp = -n # Kepler solver: instead of true anomaly, return eccentric anomaly: ekep=ekepler(m,ecc) cosekep = cos(ekep); sinekep = sin(ekep) # Compute the radial distance: r=semi*(1.0-ecc*cosekep) drdekep = semi*ecc*sinekep drdecc = -semi*cosekep denom = semi/r dekepdecos = sinekep*denom*deccdecos dekepdesin = sinekep*denom*deccdesin dekepdm = denom inc = elements[5] capomega = elements[6] # Now, compute the positions coscapomega = cos(capomega) ; sincapomega = sin(capomega) cosomega = ecc != 0.0 ? ecosomega/ecc : one(T) sinomega = ecc != 0.0 ? esinomega/ecc : zero(T) cosinc = cos(inc) ; sininc = sin(inc) # Define rotation matrices (M&D 2.119-2.120): P1 = [cosomega -sinomega 0.0; sinomega cosomega 0.0; 0.0 0.0 1.0] P2 = [1.0 0.0 0.0; 0.0 cosinc -sininc; 0.0 sininc cosinc] P3 = [coscapomega -sincapomega 0.0; sincapomega coscapomega 0.0; 0.0 0.0 1.0] P321 = P3*P2*P1 # Express x & v in terms of eccentric anomaly (2.121, 2.41, 2.68): xplane = semi*[cosekep-ecc; sqrt1mecc2*sinekep; 0.0] # position vector in orbital plane vplane = [-sinekep; sqrt1mecc2*cosekep; 0.0] x = P321*xplane # Now derivatives: dxda = x/semi dxdekep = P321*semi*vplane P32 = P3*P2 #dxdecc = -x/ecc + P321*semi*[-1.0; -ecc/sqrt1mecc2*sinekep; 0.0] # Get rid of cancellations in the prior expression: dxdecc = -P321*semi/ecc*[cosekep; sinekep/sqrt1mecc2; zero(T)] # These may need to be rewritten to flag ecc = 0.0 case: dxdecos = dxdecc*deccdecos + P32/ecc*xplane dxdesin = dxdecc*deccdesin + P32/ecc*[-xplane[2]; xplane[1]; 0.0] dxdinc = P3*[0.0 0.0 0.0; 0.0 -sininc -cosinc; 0.0 cosinc -sininc]*P1*xplane dxdcom = [-sincapomega -coscapomega 0.0; coscapomega -sincapomega 0.0; 0.0 0.0 0.0]*P2*P1*xplane # Compute the velocities: v = P321*n*semi*denom*vplane #decc = 1e-5 #dvp = P321*ecc/(ecc+decc)*n*semi/(1.0-(ecc+decc)*cosekep)*[-sinekep; sqrt(1.0-(ecc+decc)^2)*cosekep; 0.0] #dvm = P321*ecc/(ecc-decc)*n*semi/(1.0-(ecc-decc)*cosekep)*[-sinekep; sqrt(1.0-(ecc-decc)^2)*cosekep; 0.0] dvda = v/semi dvdp = -v/period dvdekep = -v*ecc*sinekep*denom+P321*n*semi*denom*[-cosekep; -sqrt1mecc2*sinekep; 0.0] dvdecc = -v/ecc + v*cosekep*denom + P321*n*semi*denom*[0.0; -ecc/sqrt1mecc2*cosekep; 0.0] #dvdecc_num = .5*(dvp-dvm)/decc #println("dvdecc: ",dvdecc," dvdecc_num: ",dvdecc_num) #dvdecc = dvdecc_num dvdecos = dvdecc*deccdecos + P32*n*semi*denom/ecc*vplane dvdesin = dvdecc*deccdesin + P32*n*semi*denom/ecc*[-vplane[2]; vplane[1]; 0.0] dvdinc = P3*[0.0 0.0 0.0; 0.0 -sininc -cosinc; 0.0 cosinc -sininc]*P1*n*semi*denom*vplane dvdcom = [-sincapomega -coscapomega 0.0; coscapomega -sincapomega 0.0; 0.0 0.0 0.0]*P2*P1*n*semi*denom*vplane # Now, take derivatives (11/15/2017 notes): # Elements are given by: period, t0, e*cos(omega), e*sin(omega), Inclination, Omega fill!(jac_init,0.0) jac_init[1:3,1] = dxda*dsemidp + dxdekep*dekepdm*(dmdp+dmdtp*dtpdp) #if T != BigFloat # println("position vs. period: term 1 ",dxda*dsemidp," term 2: ",dxdekep*dekepdm*dmdp," term 3: ",dxdekep*dekepdm*dmdtp*dtpdp," sum: ",jac_init[1:3,1]) #end jac_init[1:3,2] = dxdekep*dekepdm*dmdtp*dtpdt0 jac_init[1:3,3] .= ecc != 0.0 ? dxdecos + dxdekep*(dekepdm*dmdtp*dtpdecos + dekepdecos) : zero(T) #if T != BigFloat # println("position vs. ecosom : term 1 ",dxdecos," term 2: ",dxdekep*dekepdm*dmdtp*dtpdecos," term 3: ",dxdekep*dekepdm*dekepdecos," sum: ",jac_init[1:3,3]) #end jac_init[1:3,4] .= ecc != 0.0 ? dxdesin + dxdekep*(dekepdm*dmdtp*dtpdesin + dekepdesin) : zero(T) #if T != BigFloat # println("position vs. esinom : term 1 ",dxdesin," term 2: ",dxdekep*dekepdm*dmdtp*dtpdesin," term 3: ",dxdekep*dekepdm*dekepdesin," sum: ",jac_init[1:3,4]) #end jac_init[1:3,5] = dxdinc jac_init[1:3,6] = dxdcom jac_init[1:3,7] = dxda*dsemidm jac_init[4:6,1] = dvdp + dvda*dsemidp + dvdekep*dekepdm*(dmdp+dmdtp*dtpdp) #if T != BigFloat # println("velocity vs. period: term 1 ",dvdp," term 2: ",dvda*dsemidp," term 3: ",dvdekep*dekepdm*dmdp," term 4: ",dvdekep*dekepdm*dmdtp*dtpdp," sum: ",jac_init[4:6,1]) #end jac_init[4:6,2] = dvdekep*dekepdm*dmdtp*dtpdt0 jac_init[4:6,3] .= ecc != 0.0 ? dvdecos + dvdekep*(dekepdm*dmdtp*dtpdecos + dekepdecos) : zero(T) #if T != BigFloat # println("velocity vs. ecosom : term 1 ",dvdecos," term 2: ",dvdekep*dekepdm*dmdtp*dtpdecos," term 3: ",dvdekep*dekepdm*dekepdecos," sum: ",jac_init[4:6,3]) #end jac_init[4:6,4] .= ecc != 0.0 ? dvdesin + dvdekep*(dekepdm*dmdtp*dtpdesin + dekepdesin) : zero(T) #if T != BigFloat # println("velocity vs. esinom : term 1 ",dvdesin," term 2: ",dvdekep*dekepdm*dmdtp*dtpdesin," term 3: ",dvdekep*dekepdm*dekepdesin," sum: ",jac_init[4:6,4]) #end jac_init[4:6,5] = dvdinc jac_init[4:6,6] = dvdcom jac_init[4:6,7] = dvda*dsemidm jac_init[7,7] = 1.0 #return x,v,tp,dtpdecos,dtpdesin #return x,v,ekep,dekepdm*dmdtp*dtpdecos + dekepdecos,dekepdm*dmdtp*dtpdesin + dekepdesin return x,v end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
6242
# using Distributed: clear! # Functions to generate ϵ matrix. ################################################################################ # Sets up planetary-hierarchy index matrix using an initial condition file # of the form "test.txt" (included in "test/" directory), or in a 2d array of # the form file = [x ; "x,y,z,..."] where x,y,z are Int64 ################################################################################ function hierarchy(ic_vec::Array{Int64,1}) # Separates the initial array into variables nbody = ic_vec[1] bins = ic_vec[2:end] #bins = replace(bins,"," => " ") #bins = readdlm(IOBuffer(bins),Int64) # checks that the hierarchy can be created bins[end] == 1 ? level = length(bins) : level = length(bins) - 1 @assert bins[1] <= nbody/2 && bins[1] <= 2^level "Invalid hierarchy." @assert sum(bins[1:level]) == nbody - 1 "Invalid hierarchy. Total # of binaries should = N-1" # Creates an empty array of the proper size h = zeros(Float64,nbody,nbody) # Starts filling the array and returns it bottom_level(nbody,bins,h,1) h[end,:] .= -1 return h end ################################################################################ # Sets up the first level of the hierchary. ################################################################################ function bottom_level(nbody::Int64,bins::Array{Int64,1},h::Array{Float64},iter::Int64) # Fills the very first level of the hierarchy and iterates related variables h[1,1] = -1.0 h[1,2] = 1.0 if bins[1] > 1 bins[end] == 1 ? j = 1 : j::Int64 = nbody/2 - 1 for i=1:bins[1]-1 if (j+3) <= nbody h[i+1,j+2] = -1 h[i+1,j+3] = 1 j += 2 end end end binsp = bins[1] row = binsp[1] + 1 bodies = bins[1] * 2 # checks whether the desired hierarchy is symmetric and calls appropriate # filling functions if bins[end] > 1 bins = bins[1:end-1] symmetric_nest(nbody,bodies,bins,binsp,row,h,iter+1) elseif 2*binsp == nbody symmetric(nbody,bodies,bins,binsp,row,h,iter+1) else nlevel(nbody,bodies,bins,binsp,row,h,iter+1) end end ################################################################################ # Fills subsequent levels of the hierarchy, recursively. # # *** Only works for hierarchies with a max binaries per level of 2 (unless # symmetric). *** ################################################################################ function nlevel(nbody::Int64,bodies::Int64,bins::Array{Int64,1},binsp::Int64,row::Int64,h::Array{Float64},iter::Int64) #print("nbody: ", nbody, "\n") #print("bodies: ", bodies, "\n") #print("row: ", row, "\n") # Series of checks to know which level to fill and which bins number to use if iter <= length(bins) if nbody != bodies if bins[iter] == binsp bodies = bodies + bins[iter] elseif bins[iter] > binsp bodies = bodies + 2*(bins[iter]) - 1 end elseif nbody == bodies if row == nbody-1 if (bodies%4) > 2 h[row,1:row-2] .= -1 h[row,row-1:bodies] .= 1 return h elseif (bodies%4) <= 2 h[row,1:row-1] .= -1 h[row,row:bodies] .= 1 return h end end end # Looks at the previous and current bins and calls nlevel again if nbody >= bodies if binsp == 1 if bins[iter] == 1 h[row,1:bodies-binsp] .= -1 h[row,bodies-binsp + 1:bodies] .= 1 row = row + binsp binsp = bins[iter] nlevel(nbody,bodies,bins,binsp,row,h,iter+1) elseif bins[iter] == 2 h[row,1:bodies-(2*binsp)-1] .= -1 h[row,bodies-(2*binsp)] = 1 h[row+1,bodies-(2*binsp)+1] = -1 h[row+1,bodies] = 1 row = row + 2 binsp = bins[iter] nlevel(nbody,bodies,bins,binsp,row,h,iter+1) end elseif binsp == 2 if bins[iter] == 1 h[row,1:row-1] .= -1 h[row,row:bodies] .= 1 row = row + 1 binsp = bins[iter] nlevel(nbody,bodies,bins,binsp,row,h,iter+1) elseif bins[iter] == 2 h[row,1:row-1] .= -1 h[row,row:bodies-2*(binsp-1)] .= 1 h[row+1,bodies-2*(binsp-1)+1] = -1 h[row+1,bodies] = 1 row = row + 2 binsp = bins[iter] nlevel(nbody,bodies,bins,binsp,row,h,iter+1) end elseif binsp == 3 if bins[iter] == 2 h[row,1:Int64(bodies/2)-1] .= -1 h[row,Int64(bodies/2):2*Int64(bodies/3)] .= 1 h[row+1,2*Int64(bodies/3)+1:bodies] .= -1 h[row+1,bodies+1] = 1 row = row + 2 binsp = bins[iter] bodies = bodies + 1 nlevel(nbody,bodies,bins,binsp,row,h,iter+1) end end end end end ################################################################################ # Called if the hierarchy is symmetric (or if the hierarchy has all of the # bodies on the bottom level). Fills the remaining rows. ################################################################################ function symmetric(nbody::Int64,bodies::Int64,bins::Array{Int64,1},binsp::Int64,row::Int64,h::Array{Float64},iter::Int64) #global j = 0 j = 0 while row < nbody-1 h[row,1+j:2+j] .= -1 h[row,j+3:j+4] .= 1 j = j + 4 row = row + 1 end h[row,1:binsp] .= -1 h[row,binsp+1:nbody] .= 1 #clear!(:j) end function symmetric_nest(nbody,bodies,bins,binsp,row,h,iter) hlf::Int64 = nbody/2 j = 0 while row < nbody-1 println(j) h[row,1:2+j] .= -1 h[row,3+j] = 1 h[row+1,hlf+1:hlf+2+j] .= -1 h[row+1,hlf+3+j] = 1 j += 1 row += 2 end h[row,1:hlf] .= -1 h[row,hlf+1:nbody] .= 1 end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
6931
import NbodyGradient: InitialConditions #========== Integrator ==========# abstract type AbstractIntegrator end """ Integrator{T<:AbstractFloat} Integrator. Used as a functor to integrate a [`State`](@ref). # Fields - `scheme::Function` : The integration scheme to use. - `h::T` : Step size. - `t0::T` : Initial time. - `tmax::T` : Duration of simulation. """ mutable struct Integrator{T<:AbstractFloat, schemeT} <: AbstractIntegrator scheme::schemeT h::T t0::T tmax::T end Integrator(scheme,h::T,tmax::T) where T<:AbstractFloat = Integrator(scheme,h,0.0,tmax) Integrator(h::T,tmax::T) where T<:AbstractFloat = Integrator(ahl21!,h,tmax) # Default to ahl21! Integrator(h::T,t0::T,tmax::T) where T<:AbstractFloat = Integrator(ahl21!,h,t0,tmax) # Deprecated @deprecate Integrator(h,t0,tmax) Integrator(h,tmax) #========== State ==========# abstract type AbstractState end """ State{T<:AbstractFloat} <: AbstractState Current state of simulation. # Fields (relevant to the user) - `x::Matrix{T}` : Positions of each body [dimension, body]. - `v::Matrix{T}` : Velocities of each body [dimension, body]. - `t::Vector{T}` : Current time of simulation. - `m::Vector{T}` : Masses of each body. - `jac_step::Matrix{T}` : Current Jacobian. - `dqdt::Vector{T}` : Derivative with respect to time. """ struct State{T<:AbstractFloat} <: AbstractState x::Matrix{T} v::Matrix{T} t::Vector{T} m::Vector{T} jac_step::Matrix{T} dqdt::Vector{T} jac_init::Matrix{T} n::Int64 pair::Matrix{Bool} xerror::Matrix{T} verror::Matrix{T} dqdt_error::Vector{T} jac_error::Matrix{T} rij::Vector{T} a::Matrix{T} aij::Vector{T} x0::Vector{T} v0::Vector{T} input::Vector{T} delxv::Vector{T} rtmp::Vector{T} end """ State(ic) Constructor for [`State`](@ref) type. # Arguments - `ic::InitialConditions{T}` : Initial conditions for the system. """ function State(ic::InitialConditions{T}) where T<:AbstractFloat x,v,jac_init = init_nbody(ic) n = ic.nbody xerror = zeros(T,size(x)) verror = zeros(T,size(v)) jac_step = Matrix{T}(I,7*n,7*n) dqdt = zeros(T,7*n) dqdt_error = zeros(T,size(dqdt)) jac_error = zeros(T,size(jac_step)) pair = zeros(Bool,n,n) rij = zeros(T,3) a = zeros(T,3,n) aij = zeros(T,3) x0 = zeros(T,3) v0 = zeros(T,3) input = zeros(T,8) delxv = zeros(T,6) rtmp = zeros(T,3) return State(x,v,[ic.t0],ic.m,jac_step,dqdt,jac_init,ic.nbody, pair,xerror,verror,dqdt_error,jac_error,rij,a,aij,x0,v0,input,delxv,rtmp) end """Initialize and return a `State` and a `Derivatives`.""" function dState(ic::InitialConditions{T}) where T<:AbstractFloat d = Derivatives(T, ic.nbody) return State(ic), d end """Set `State` to initial conditions without reallocating.""" function initialize!(s::State{T}, ic::InitialConditions{T}) where T<:Real x,v,jac_init = init_nbody(ic) s.x .= x s.v .= v s.jac_init .= jac_init s.xerror .= 0.0 s.verror .= 0.0 return end function set_state!(s_old::State{T},s_new::State{T}) where T<:AbstractFloat s_old.t .= s_new.t s_old.x .= s_new.x s_old.v .= s_new.v s_old.jac_step .= s_new.jac_step s_old.xerror .= s_new.xerror s_old.verror .= s_new.verror s_old.jac_error .= s_new.jac_error s_old.dqdt .= s_new.dqdt s_old.dqdt_error .= s_new.dqdt_error return end """Shows if the positions, velocities, and Jacobian are finite.""" Base.show(io::IO,::MIME"text/plain",s::State{T}) where {T} = begin println(io,"State{$T}:"); println(io,"Positions : ", all(isfinite.(s.x)) ? "finite" : "infinite!"); println(io,"Velocities : ", all(isfinite.(s.v)) ? "finite" : "infinite!"); println(io,"Jacobian : ", all(isfinite.(s.jac_step)) ? "finite" : "infinite!"); return end #========== Running Methods ==========# """ (::Integrator)(s, time; grad=true) Callable [`Integrator`](@ref) method. Integrate to specific time. # Arguments - `s::State{T}` : The current state of the simulation. - `time::T` : Time to integrate to. ### Optional - `grad::Bool` : Choose whether to calculate gradients. (Default = true) """ function (intr::Integrator)(s::State{T},time::T;grad::Bool=true) where T<:AbstractFloat t0 = s.t[1] # Calculate number of steps nsteps = abs(round(Int64,(time - t0)/intr.h)) # Step either forward or backward h = intr.h * check_step(t0,time) # Calculate last step (if needed) #while t0 + (h * nsteps) <= time; nsteps += 1; end tmax = t0 + (h * nsteps) # Preallocate struct of arrays for derivatives if grad; d = Derivatives(T,s.n); end for i in 1:nsteps # Take integration step and advance time if grad intr.scheme(s,d,h) else intr.scheme(s,h) end end # Do last step (if needed) if nsteps == 0; hf = time; end if tmax != time hf = time - tmax if grad intr.scheme(s,d,hf) else intr.scheme(s,hf) end end s.t[1] = time return end """ (::Integrator)(s, N; grad=true) Callable [`Integrator`](@ref) method. Integrate for N steps. # Arguments - `s::State{T}` : The current state of the simulation. - `N::Int64` : Number of steps. ### Optional - `grad::Bool` : Choose whether to calculate gradients. (Default = true) """ function (intr::Integrator)(s::State{T},N::Int64;grad::Bool=true) where T<:AbstractFloat s2 = zero(T) # For compensated summation # Preallocate struct of arrays for derivatives if grad; d = Derivatives(T,s.n); end # check to see if backward step if N < 0; intr.h *= -1; N *= -1; end h = intr.h for n in 1:N # Take integration step and advance time if grad intr.scheme(s,d,h) else intr.scheme(s,h) end s.t[1],s2 = comp_sum(s.t[1],s2,intr.h) end # Return time step to forward if needed if intr.h < 0; intr.h *= -1; end return end """ (::Integrator)(s; grad=true) Callable [`Integrator`](@ref) method. Integrate from `s.t` to `tmax` -- specified in constructor. # Arguments - `s::State{T}` : The current state of the simulation. ### Optional - `grad::Bool` : Choose whether to calculate gradients. (Default = true) """ (intr::Integrator)(s::State{T};grad::Bool=true) where T<:AbstractFloat = intr(s,s.t[1]+intr.tmax,grad=grad) function check_step(t0::T,tmax::T) where T<:AbstractFloat if abs(tmax) > abs(t0) return sign(tmax) else if sign(tmax) != sign(t0) return sign(tmax) else return -1 * sign(tmax) end end end #========== Includes ==========# const ints = ["ahl21"] for i in ints; include(joinpath(i,"$i.jl")); end const ints_no_grad = ["ahl21","dh17"] for i in ints_no_grad; include(joinpath(i,"$(i)_no_grad.jl")); end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
3229
# Collection of functions to convert cartesian coordinate to orbital elements using LinearAlgebra, NbodyGradient import NbodyGradient: InitialConditions ## Utils ## const GNEWT = 39.4845/(365.242 * 365.242) # AU^3 Msol^-1 Day^-2 # h vector function hvec(x::V,v::V) where V <: Vector{<:Real} hx,hy,hz = cross(x,v) hz >= 0.0 ? hy *= -1 : hx *= -1 return [hx,hy,hz] end # R dot Rdotmag(R::T,V::T,x::Vector{T},v::Vector{T},h::T) where T<:AbstractFloat = sign(dot(x,v))*sqrt(V^2 - (h/R)^2) ## Elements ## # Semi-major axis calc_a(R::T,V::T,Gm::T) where T<:AbstractFloat = 1.0/((2.0/R) - (V*V)/(Gm)) # Eccentricity calc_e(h::T,Gm::T,a::T) where T<:AbstractFloat = sqrt(1.0 - (h*h/(Gm*a))) # Inclination calc_I(hz::T,h::T) where T<:AbstractFloat = acos(hz/h) # Long. of Ascending Node function calc_Ω(h::T,hx::T,hy::T,sI::T) where T<:AbstractFloat sΩ = hx/(h*sI) cΩ = hy/(h*sI) return atan(sΩ,cΩ) end # Long. of Pericenter function calc_ϖ(x::Vector{T},R::T,Ṙ::T,Ω::T,I::T,e::T,h::T,a::T) where T<:AbstractFloat X,_,Z = x sΩ,cΩ = sincos(Ω) sI,cI = sincos(I) # ω + f swpf = Z/(R*sI) cwpf= ((X/R) + sΩ*swpf*cI)/cΩ wpf = atan(swpf,cwpf) # true anomaly, f sf = a*Ṙ*(1.0 - e^2)/(h*e) cf = (a*(1.0-e^2)/R - 1.0)/e f = atan(sf,cf) # ϖ: Ω + ω return Ω + (wpf - f - π) end # Time of pericenter passage function calc_t0(R::T,a::T,e::T,Gm::T,t::T) where T<:AbstractFloat E = acos((1.0 - (R/a)) / e) return t - (E - e*sin(E))/sqrt(Gm/(a*a*a)) end # Period calc_P(a::T,Gm::T) where T<:AbstractFloat = (2.0*π)*sqrt(a*a*a/Gm) # Get relative hierarchy positions function calc_X(s::State{T},ic::InitialConditions{T}) where T<:AbstractFloat X = zeros(3,s.n-1) V = zeros(3,s.n-1) for i in 1:s.n-1 for k in 1:s.n X[:,i] .+= ic.amat[i,k] .* s.x[:,k] V[:,i] .+= ic.amat[i,k] .* s.v[:,k] end end return X,V end function gmass(m::Vector{T}) where T<:AbstractFloat N = length(m) M = zeros(N - 1) for i in 1:N-1 for j in 1:N M[i] += abs(ic.ϵ[i,j])*m[j] end end return GNEWT .* M end """ Converts cartesian coordinates to orbital elements. (t0 : time of transit) """ function get_orbital_elements(s::State{T},ic::InitialConditions{T}) where T<:AbstractFloat X::Matrix{T},Xdot::Matrix{T} = calc_X(s,ic) Gm = gmass(s.m) R = [norm(X[:,i]) for i in 1:s.n-1] V = [norm(Xdot[:,i]) for i in 1:s.n-1] h_vec::Matrix{T} = hcat([hvec(X[:,i],Xdot[:,i]) for i in 1:s.n-1]...) hx,hy,hz = h_vec[1,:],h_vec[2,:],h_vec[3,:] h = norm.([hx[i],hy[i],hz[i]] for i in 1:s.n-1) Rdot = [Rdotmag(R[i],V[i],X[:,i],Xdot[:,i],h[i]) for i in 1:s.n-1] a = calc_a.(R,V,Gm) e = calc_e.(h,Gm,a) I = calc_I.(hz,h) Ω = calc_Ω.(h,hx,hy,sin.(I)) ϖ = [calc_ϖ(X[:,i],R[i],Rdot[i],Ω[i],I[i],e[i],h[i],a[i]) for i in 1:s.n-1] #t0 = calc_t0.(R,a,e,Gm,s.t) # Our elements use the initial transit time t0 = ic.elements[2:end,3] P = calc_P.(a,Gm) elements = zeros(size(ic.elements)) elements[1] = ic.elements[1] elements[2:end,:] = hcat(s.m[2:end],P,t0,e .* cos.(ϖ),e .* sin.(ϖ),I,Ω) return elements end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
54482
""" Carry out AHL21 mapping and calculates both the Jacobian and derivative with respect to the time step. """ function ahl21!(s::State{T},d::Derivatives{T},h::T) where T<:AbstractFloat zilch = zero(T); half::T = 0.5; two::T = 2.0; h2::T = half*h; n = s.n; sevn = 7*n; h6::T = h/6.0 zero_out!(d) fill!(s.dqdt,zilch) kickfast!(s,d,h6) d.dqdt_kick ./= 6.0 # Since step is h/6 # Since I removed identity from kickfast, need to add in dqdt: mul!(d.tmp7n, d.jac_kick, s.dqdt) s.dqdt .+= d.dqdt_kick .+ d.tmp7n #*(d.jac_kick,s.dqdt) # Multiply Jacobian from kick step: mul!(d.jac_copy, d.jac_kick, s.jac_step) drift_grad!(s,h2) # Compute time derivative of drift step: @inbounds for i=1:n, k=1:3 s.dqdt[(i-1)*7+k] = half*s.v[k,i] + h2*s.dqdt[(i-1)*7+3+k] end # Add back in the identity portion of the Jacobian with compensated summation: comp_sum_matrix!(s.jac_step,s.jac_error,d.jac_copy) indi = 0; indj = 0 @inbounds for i=1:s.n-1 indi = (i-1)*7 @inbounds for j=i+1:s.n indj = (j-1)*7 if ~s.pair[i,j] # Check to see if kicks have not been applied kepler_driftij_gamma!(s,d,i,j,h2,true) copy_submatrix!(s,d,indi,indj,sevn) # Carry out multiplication on the i/j components of matrix: mul!(d.jac_tmp2, d.jac_ij, d.jac_tmp1) # Add back in the Jacobian with compensated summation: comp_sum_matrix!(d.jac_tmp1,d.jac_err1,d.jac_tmp2) # Add in partial derivatives with respect to time: # Need to multiply by 1/2 since we're taking 1/2 time step: d.dqdt_ij .*= half mul!(d.tmp14, d.jac_ij, d.dqdt_tmp1) d.dqdt_ij .+= d.dqdt_tmp1 .+ d.tmp14#*(d.jac_ij,d.dqdt_tmp1) # Copy back time derivatives: ypoc_submatrix!(s,d,indi,indj,sevn) end end end phic!(s,d,h) phisalpha!(s,d,h,two) mul!(d.jac_copy, d.jac_phi, s.jac_step) # Add in time derivative with respect to prior parameters: # Copy result to dqdt: mul!(d.tmp7n, d.jac_phi, s.dqdt) s.dqdt .+= d.dqdt_phi .+ d.tmp7n #*(d.jac_phi,s.dqdt) # Add back in the identity portion of the Jacobian with compensated summation: comp_sum_matrix!(s.jac_step,s.jac_error,d.jac_copy) indi=0; indj=0 @inbounds for i=s.n-1:-1:1 indi=(i-1)*7 @inbounds for j=s.n:-1:i+1 indj=(j-1)*7 if ~s.pair[i,j] # Check to see if kicks have not been applied kepler_driftij_gamma!(s,d,i,j,h2,false) # Pick out indices for bodies i & j: # Carry out multiplication on the i/j components of matrix: copy_submatrix!(s,d,indi,indj,sevn) # Carry out multiplication on the i/j components of matrix: mul!(d.jac_tmp2,d.jac_ij,d.jac_tmp1) # Add back in the Jacobian with compensated summation: comp_sum_matrix!(d.jac_tmp1,d.jac_err1,d.jac_tmp2) # Add in partial derivatives with respect to time: # Need to multiply by 1/2 since we're taking 1/2 time step: d.dqdt_ij .*= half mul!(d.tmp14, d.jac_ij, d.dqdt_tmp1) d.dqdt_ij .+= d.dqdt_tmp1 .+ d.tmp14#*(d.jac_ij,d.dqdt_tmp1) # Copy back derivatives: ypoc_submatrix!(s,d,indi,indj,sevn) end end end drift_grad!(s,h2) # Compute time derivative of drift step: @inbounds for i=1:n, k=1:3 s.dqdt[(i-1)*7+k] += half*s.v[k,i] + h2*s.dqdt[(i-1)*7+3+k] end fill!(d.dqdt_kick,zilch) kickfast!(s,d,h6) d.dqdt_kick ./= 6.0 # Since step is h/6 # Copy result to dqdt: mul!(d.tmp7n, d.jac_kick, s.dqdt) s.dqdt .+= d.dqdt_kick .+ d.tmp7n#*(d.jac_kick,s.dqdt) # Multiply Jacobian from kick step: mul!(d.jac_copy,d.jac_kick,s.jac_step) # Add back in the identity portion of the Jacobian with compensated summation: comp_sum_matrix!(s.jac_step,s.jac_error,d.jac_copy) # Edit this routine to do compensated summation for Jacobian [x] end function ahl21!(s::State{T},d::Jacobian{T},h::T) where T<:AbstractFloat zilch = zero(T); uno = one(T); half = convert(T,0.5); two = convert(T,2.0); h2 = half*h; sevn = 7*s.n zero_out!(d) #drift!(s.x,s.v,s.xerror,s.verror,h2,s.n,s.jac_step,s.jac_error) #kickfast!(s.x,s.v,s.xerror,s.verror,h/6,s.m,s.n,d.jac_kick,d.dqdt_kick,pair) kickfast!(s,d,h/6) # Multiply Jacobian from kick step: if T == BigFloat d.jac_copy .= *(d.jac_kick,s.jac_step) else start = time() #BLAS.gemm!('N','N',uno,d.jac_kick,s.jac_step,zilch,d.jac_copy) mul!(d.jac_copy,d.jac_kick,s.jac_step) d.ctime[1] += time()-start end # Add back in the identity portion of the Jacobian with compensated summation: comp_sum_matrix!(s.jac_step,s.jac_error,d.jac_copy) drift_grad!(s,h2) indi = 0; indj = 0 @inbounds for i=1:s.n-1 indi = (i-1)*7 @inbounds for j=i+1:s.n indj = (j-1)*7 if ~s.pair[i,j] # Check to see if kicks have not been applied kepler_driftij_gamma!(s,d,i,j,h2,true) #kepler_driftij_gamma!(s.m,s.x,s.v,s.xerror,s.verror,i,j,h2,d.jac_ij,d.dqdt_ij,true) # Pick out indices for bodies i & j: @inbounds for k2=1:sevn, k1=1:7 d.jac_tmp1[k1,k2] = s.jac_step[ indi+k1,k2] d.jac_err1[k1,k2] = s.jac_error[indi+k1,k2] end @inbounds for k2=1:sevn, k1=1:7 d.jac_tmp1[7+k1,k2] = s.jac_step[ indj+k1,k2] d.jac_err1[7+k1,k2] = s.jac_error[indj+k1,k2] end # Carry out multiplication on the i/j components of matrix: if T == BigFloat d.jac_tmp2 .= *(d.jac_ij,d.jac_tmp1) else start = time() #BLAS.gemm!('N','N',uno,d.jac_ij,d.jac_tmp1,zilch,d.jac_tmp2) mul!(d.jac_tmp2,d.jac_ij,d.jac_tmp1) d.ctime[1] += time()-start end # Add back in the Jacobian with compensated summation: comp_sum_matrix!(d.jac_tmp1,d.jac_err1,d.jac_tmp2) # Copy back to the Jacobian: @inbounds for k2=1:sevn, k1=1:7 s.jac_step[ indi+k1,k2]=d.jac_tmp1[k1,k2] s.jac_error[indi+k1,k2]=d.jac_err1[k1,k2] end @inbounds for k2=1:sevn, k1=1:7 s.jac_step[ indj+k1,k2]=d.jac_tmp1[7+k1,k2] s.jac_error[indj+k1,k2]=d.jac_err1[7+k1,k2] end end end end #phic!(s.x,s.v,s.xerror,s.verror,h,s.m,s.n,d.jac_phi,d.dqdt_phi,pair) #phisalpha!(s.x,s.v,s.xerror,s.verror,h,s.m,two,s.n,d.jac_phi,d.dqdt_phi,pair) # 10% phic!(s,d,h) phisalpha!(s,d,h,two) if T == BigFloat d.jac_copy .= *(d.jac_phi,s.jac_step) else start = time() #BLAS.gemm!('N','N',uno,d.jac_phi,s.jac_step,zilch,d.jac_copy) mul!(d.jac_copy,d.jac_phi,s.jac_step) d.ctime[1] += time()-start end # Add back in the identity portion of the Jacobian with compensated summation: comp_sum_matrix!(s.jac_step,s.jac_error,d.jac_copy) indi=0; indj=0 @inbounds for i=s.n-1:-1:1 indi=(i-1)*7 @inbounds for j=s.n:-1:i+1 indj=(j-1)*7 if ~s.pair[i,j] # Check to see if kicks have not been applied #kepler_driftij_gamma!(s.m,s.x,s.v,s.xerror,s.verror,i,j,h2,d.jac_ij,d.dqdt_ij,false) kepler_driftij_gamma!(s,d,i,j,h2,false) # Pick out indices for bodies i & j: # Carry out multiplication on the i/j components of matrix: @inbounds for k2=1:sevn, k1=1:7 d.jac_tmp1[k1,k2] = s.jac_step[ indi+k1,k2] d.jac_err1[k1,k2] = s.jac_error[indi+k1,k2] end @inbounds for k2=1:sevn, k1=1:7 d.jac_tmp1[7+k1,k2] = s.jac_step[ indj+k1,k2] d.jac_err1[7+k1,k2] = s.jac_error[indj+k1,k2] end # Carry out multiplication on the i/j components of matrix: if T == BigFloat d.jac_tmp2 .= *(d.jac_ij,d.jac_tmp1) else start = time() #BLAS.gemm!('N','N',uno,d.jac_ij,d.jac_tmp1,zilch,d.jac_tmp2) mul!(d.jac_tmp2,d.jac_ij,d.jac_tmp1) d.ctime[1] += time()-start end # Add back in the Jacobian with compensated summation: comp_sum_matrix!(d.jac_tmp1,d.jac_err1,d.jac_tmp2) # Copy back to the Jacobian: @inbounds for k2=1:sevn, k1=1:7 s.jac_step[ indi+k1,k2]=d.jac_tmp1[k1,k2] s.jac_error[indi+k1,k2]=d.jac_err1[k1,k2] end @inbounds for k2=1:sevn, k1=1:7 s.jac_step[ indj+k1,k2]=d.jac_tmp1[7+k1,k2] s.jac_error[indj+k1,k2]=d.jac_err1[7+k1,k2] end end end end drift_grad!(s,h2) #kickfast!(x,v,h2,m,n,jac_kick,dqdt_kick,pair) #kickfast!(s.x,s.v,s.xerror,s.verror,h/6,s.m,s.n,d.jac_kick,d.dqdt_kick,pair) kickfast!(s,d,h/6) # Multiply Jacobian from kick step: if T == BigFloat d.jac_copy .= *(d.jac_kick,s.jac_step) else start = time() #BLAS.gemm!('N','N',uno,d.jac_kick,s.jac_step,zilch,d.jac_copy) mul!(d.jac_copy,d.jac_kick,s.jac_step) d.ctime[1] += time()-start end # Add back in the identity portion of the Jacobian with compensated summation: comp_sum_matrix!(s.jac_step,s.jac_error,d.jac_copy) # Edit this routine to do compensated summation for Jacobian [x] #drift!(s.x,s.v,s.xerror,s.verror,h2,s.n,s.jac_step,s.jac_error) return end function ahl21!(s::State{T},d::dTime{T},h::T) where T<:AbstractFloat # [Currently this routine is not giving the correct dqdt values. -EA 8/12/2019] n = s.n zilch = zero(T); uno = one(T); half = convert(T,0.5); two = convert(T,2.0); h2 = half*h; sevn = 7*n zero_out!(d) fill!(s.dqdt,zilch) kickfast!(s,d,h/6) d.dqdt_kick ./= 6 # Since step is h/6 # Since I removed identity from kickfast, need to add in dqdt: s.dqdt .+= d.dqdt_kick + *(d.jac_kick,s.dqdt) drift!(s,h2) # Compute time derivative of drift step: @inbounds for i=1:n, k=1:3 s.dqdt[(i-1)*7+k] = half*s.v[k,i] + h2*s.dqdt[(i-1)*7+3+k] end @inbounds for i=1:n-1 indi = (i-1)*7 @inbounds for j=i+1:n indj = (j-1)*7 if ~s.pair[i,j] # Check to see if kicks have not been applied kepler_driftij_gamma!(s,d,i,j,h2,true) # Copy current time derivatives for multiplication purposes: @inbounds for k1=1:7 d.dqdt_tmp1[ k1] = s.dqdt[indi+k1] d.dqdt_tmp1[7+k1] = s.dqdt[indj+k1] end # Add in partial derivatives with respect to time: # Need to multiply by 1/2 since we're taking 1/2 time step: d.dqdt_ij .*= half d.dqdt_ij .+= *(d.jac_ij,d.dqdt_tmp1) + d.dqdt_tmp1 # Copy back time derivatives: @inbounds for k1=1:7 s.dqdt[indi+k1] = d.dqdt_ij[ k1] s.dqdt[indj+k1] = d.dqdt_ij[7+k1] end end end end # Looks like we are missing phic! here: [ ] # Since I haven't added dqdt to phic yet, for now, set jac_phi equal to identity matrix # (since this is commented out within phisalpha): phic!(s,d,h) phisalpha!(s,d,h,two) # Add in time derivative with respect to prior parameters: # Copy result to dqdt: s.dqdt .+= d.dqdt_phi + *(d.jac_phi,s.dqdt) indi=0; indj=0 @inbounds for i=n-1:-1:1 indi=(i-1)*7 @inbounds for j=n:-1:i+1 if ~s.pair[i,j] # Check to see if kicks have not been applied indj=(j-1)*7 kepler_driftij_gamma!(s,d,i,j,h2,false) # Copy current time derivatives for multiplication purposes: @inbounds for k1=1:7 d.dqdt_tmp1[ k1] = s.dqdt[indi+k1] d.dqdt_tmp1[7+k1] = s.dqdt[indj+k1] end # Add in partial derivatives with respect to time: # Need to multiply by 1/2 since we're taking 1/2 time step: d.dqdt_ij .*= half d.dqdt_ij .+= *(d.jac_ij,d.dqdt_tmp1) + d.dqdt_tmp1 # Copy back time derivatives: @inbounds for k1=1:7 s.dqdt[indi+k1] = d.dqdt_ij[ k1] s.dqdt[indj+k1] = d.dqdt_ij[7+k1] end end end end drift_grad!(s,h2) # Compute time derivative of drift step: @inbounds for i=1:n, k=1:3 s.dqdt[(i-1)*7+k] += half*s.v[k,i] + h2*s.dqdt[(i-1)*7+3+k] end fill!(d.dqdt_kick,zilch) kickfast!(s,d,h/6) d.dqdt_kick ./= 6 # Since step is h/6 # Copy result to dqdt: s.dqdt .+= d.dqdt_kick + *(d.jac_kick,s.dqdt) return end """ AHL21 drift step. Drifts all particles with compensated summation. (with Jacobian) """ function drift_grad!(s::State{T},h::T) where {T <: Real} indi::Int64 = 0 @inbounds for i=1:s.n indi = (i-1)*7 @inbounds for j=1:NDIM s.x[j,i],s.xerror[j,i] = comp_sum(s.x[j,i],s.xerror[j,i],h*s.v[j,i]) end # Now for Jacobian: @inbounds for k=1:7*s.n, j=1:NDIM s.jac_step[indi+j,k],s.jac_error[indi+j,k] = comp_sum(s.jac_step[indi+j,k],s.jac_error[indi+j,k],h*s.jac_step[indi+3+j,k]) end end return end """ AHL21 kick step. Computes "fast" kicks for pairs of bodies (in lieu of -drift+Kepler). Include Jacobian and compensated summation. """ function kickfast!(s::State{T},d::AbstractDerivatives{T},h::T) where {T <: Real} n::Int64 = s.n s.rij .= 0.0 # Getting rid of identity since we will add that back in in calling routines: d.jac_kick .= 0.0 @inbounds for i=1:n-1 indi = (i-1)*7 for j=i+1:n indj = (j-1)*7 if s.pair[i,j] for k=1:3 s.rij[k] = s.x[k,i] - s.x[k,j] end r2inv::T = 1.0/dot_fast(s.rij) r3inv::T = r2inv*sqrt(r2inv) fac2::T = h*GNEWT*r3inv for k=1:3 fac::T = fac2*s.rij[k] # Apply impulses: s.v[k,i],s.verror[k,i] = comp_sum(s.v[k,i],s.verror[k,i],-s.m[j]*fac) s.v[k,j],s.verror[k,j] = comp_sum(s.v[k,j],s.verror[k,j], s.m[i]*fac) # Compute time derivative: d.dqdt_kick[indi+3+k] -= s.m[j]*fac/h d.dqdt_kick[indj+3+k] += s.m[i]*fac/h # Computing the derivative # Mass derivative of acceleration vector (10/6/17 notes): # Impulse of ith particle depends on mass of jth particle: d.jac_kick[indi+3+k,indj+7] -= fac # Impulse of jth particle depends on mass of ith particle: d.jac_kick[indj+3+k,indi+7] += fac # x derivative of acceleration vector: fac *= 3.0*r2inv # Dot product x_ij.\delta x_ij means we need to sum over components: for p=1:3 d.jac_kick[indi+3+k,indi+p] += fac*s.m[j]*s.rij[p] d.jac_kick[indi+3+k,indj+p] -= fac*s.m[j]*s.rij[p] d.jac_kick[indj+3+k,indj+p] += fac*s.m[i]*s.rij[p] d.jac_kick[indj+3+k,indi+p] -= fac*s.m[i]*s.rij[p] end # Final term has no dot product, so just diagonal: d.jac_kick[indi+3+k,indi+k] -= fac2*s.m[j] d.jac_kick[indi+3+k,indj+k] += fac2*s.m[j] d.jac_kick[indj+3+k,indj+k] -= fac2*s.m[i] d.jac_kick[indj+3+k,indi+k] += fac2*s.m[i] end end end end return end """ Computes correction for pairs which are kicked, with Jacobian, dq/dt, and compensated summation. """ function phic!(s::State{T},d::AbstractDerivatives{T},h::T) where {T <: Real} s.a .= 0.0 s.rij .= 0.0 s.aij .= 0.0 d.dadq .= 0.0 # There is no velocity dependence d.dotdadq .= 0.0 # There is no velocity dependence # Set jac_step to zeros: fill!(d.jac_phi,zero(T)) fac::T = 0.0; fac1::T = 0.0; fac2::T = 0.0; fac3::T = 0.0; r1::T = 0.0; r2::T = 0.0; r3::T = 0.0 coeff::T = h^3/36*GNEWT n::Int64 = s.n @inbounds for i=1:n-1 indi = (i-1)*7 for j=i+1:n if s.pair[i,j] indj = (j-1)*7 for k=1:3 s.rij[k] = s.x[k,i] - s.x[k,j] end r2inv::T = inv(dot_fast(s.rij)) r3inv::T = r2inv*sqrt(r2inv) for k=1:3 # Apply impulses: fac = GNEWT*s.rij[k]*r3inv facv = fac*2*h/3 s.v[k,i],s.verror[k,i] = comp_sum(s.v[k,i],s.verror[k,i],-s.m[j]*facv) s.v[k,j],s.verror[k,j] = comp_sum(s.v[k,j],s.verror[k,j],s.m[i]*facv) # Compute time derivative: d.dqdt_phi[indi+3+k] -= 1/h*s.m[j]*facv d.dqdt_phi[indj+3+k] += 1/h*s.m[i]*facv s.a[k,i] -= s.m[j]*fac s.a[k,j] += s.m[i]*fac # Impulse of ith particle depends on mass of jth particle: d.jac_phi[indi+3+k,indj+7] -= facv # Impulse of jth particle depends on mass of ith particle: d.jac_phi[indj+3+k,indi+7] += facv # x derivative of acceleration vector: facv *= 3.0*r2inv # Dot product x_ij.\delta x_ij means we need to sum over components: for p=1:3 d.jac_phi[indi+3+k,indi+p] += facv*s.m[j]*s.rij[p] d.jac_phi[indi+3+k,indj+p] -= facv*s.m[j]*s.rij[p] d.jac_phi[indj+3+k,indj+p] += facv*s.m[i]*s.rij[p] d.jac_phi[indj+3+k,indi+p] -= facv*s.m[i]*s.rij[p] end # Final term has no dot product, so just diagonal: facv = 2h/3*GNEWT*r3inv d.jac_phi[indi+3+k,indi+k] -= facv*s.m[j] d.jac_phi[indi+3+k,indj+k] += facv*s.m[j] d.jac_phi[indj+3+k,indj+k] -= facv*s.m[i] d.jac_phi[indj+3+k,indi+k] += facv*s.m[i] # Mass derivative of acceleration vector (10/6/17 notes): # Since there is no velocity dependence, this is fourth parameter. # Acceleration of ith particle depends on mass of jth particle: d.dadq[k,i,4,j] -= fac d.dadq[k,j,4,i] += fac # x derivative of acceleration vector: fac *= 3.0*r2inv # Dot product x_ij.\delta x_ij means we need to sum over components: for p=1:3 d.dadq[k,i,p,i] += fac*s.m[j]*s.rij[p] d.dadq[k,i,p,j] -= fac*s.m[j]*s.rij[p] d.dadq[k,j,p,j] += fac*s.m[i]*s.rij[p] d.dadq[k,j,p,i] -= fac*s.m[i]*s.rij[p] end # Final term has no dot product, so just diagonal: fac = GNEWT*r3inv d.dadq[k,i,k,i] -= fac*s.m[j] d.dadq[k,i,k,j] += fac*s.m[j] d.dadq[k,j,k,j] -= fac*s.m[i] d.dadq[k,j,k,i] += fac*s.m[i] end end end end # Next, compute g_i acceleration vector. # Note that jac_step[(i-1)*7+k,(j-1)*7+p] is the derivative of the kth coordinate # of planet i with respect to the pth coordinate of planet j. indi::Int64 = 0; indj::Int64 = 0; indd::Int64 = 0 @inbounds for i=1:n-1 indi = (i-1)*7 for j=i+1:n if s.pair[i,j] # correction for Kepler pairs indj = (j-1)*7 for k=1:3 s.aij[k] = s.a[k,i] - s.a[k,j] s.rij[k] = s.x[k,i] - s.x[k,j] end # Compute dot product of r_ij with \delta a_ij: fill!(d.dotdadq,0.0) @inbounds for di=1:n, p=1:4, k=1:3 d.dotdadq[p,di] += s.rij[k]*(d.dadq[k,i,p,di]-d.dadq[k,j,p,di]) end r2 = dot_fast(s.rij) r1 = sqrt(r2) ardot = dot_fast(s.aij,s.rij) fac1 = coeff/(r2*r2*r1) fac2 = 3*ardot for k=1:3 fac = fac1*(s.rij[k]*fac2- r2*s.aij[k]) s.v[k,i],s.verror[k,i] = comp_sum(s.v[k,i],s.verror[k,i],s.m[j]*fac) s.v[k,j],s.verror[k,j] = comp_sum(s.v[k,j],s.verror[k,j],-s.m[i]*fac) # Compute time derivative of 4th order correction d.dqdt_phi[indi+3+k] += 3/h*s.m[j]*fac d.dqdt_phi[indj+3+k] -= 3/h*s.m[i]*fac # Mass derivative (first part is easy): d.jac_phi[indi+3+k,indj+7] += fac d.jac_phi[indj+3+k,indi+7] -= fac # Position derivatives: fac *= 5.0/r2 for p=1:3 d.jac_phi[indi+3+k,indi+p] -= fac*s.m[j]*s.rij[p] d.jac_phi[indi+3+k,indj+p] += fac*s.m[j]*s.rij[p] d.jac_phi[indj+3+k,indj+p] -= fac*s.m[i]*s.rij[p] d.jac_phi[indj+3+k,indi+p] += fac*s.m[i]*s.rij[p] end # Diagonal position terms: fac = fac1*fac2 d.jac_phi[indi+3+k,indi+k] += fac*s.m[j] d.jac_phi[indi+3+k,indj+k] -= fac*s.m[j] d.jac_phi[indj+3+k,indj+k] += fac*s.m[i] d.jac_phi[indj+3+k,indi+k] -= fac*s.m[i] # Dot product \delta rij terms: fac = -2*fac1*s.aij[k] for p=1:3 fac3 = fac*s.rij[p] + fac1*3.0*s.rij[k]*s.aij[p] d.jac_phi[indi+3+k,indi+p] += s.m[j]*fac3 d.jac_phi[indi+3+k,indj+p] -= s.m[j]*fac3 d.jac_phi[indj+3+k,indj+p] += s.m[i]*fac3 d.jac_phi[indj+3+k,indi+p] -= s.m[i]*fac3 end # Diagonal acceleration terms: fac = -fac1*r2 # Duoh. For dadq, have to loop over all other parameters! @inbounds for di=1:n indd = (di-1)*7 for p=1:3 d.jac_phi[indi+3+k,indd+p] += fac*s.m[j]*(d.dadq[k,i,p,di]-d.dadq[k,j,p,di]) d.jac_phi[indj+3+k,indd+p] -= fac*s.m[i]*(d.dadq[k,i,p,di]-d.dadq[k,j,p,di]) end # Don't forget mass-dependent term: d.jac_phi[indi+3+k,indd+7] += fac*s.m[j]*(d.dadq[k,i,4,di]-d.dadq[k,j,4,di]) d.jac_phi[indj+3+k,indd+7] -= fac*s.m[i]*(d.dadq[k,i,4,di]-d.dadq[k,j,4,di]) end # Now, for the final term: (\delta a_ij . r_ij ) r_ij fac = 3.0*fac1*s.rij[k] @inbounds for di=1:n indd = (di-1)*7 for p=1:3 d.jac_phi[indi+3+k,indd+p] += fac*s.m[j]*d.dotdadq[p,di] d.jac_phi[indj+3+k,indd+p] -= fac*s.m[i]*d.dotdadq[p,di] end d.jac_phi[indi+3+k,indd+7] += fac*s.m[j]*d.dotdadq[4,di] d.jac_phi[indj+3+k,indd+7] -= fac*s.m[i]*d.dotdadq[4,di] end end end end end return end """ Computes the 4th-order correction, with Jacobian, dq/dt, and compensated summation. """ function phisalpha!(s::State{T},d::AbstractDerivatives{T},h::T,alpha::T) where {T <: Real} s.a .= 0.0 d.dadq .= 0.0 # There is no velocity dependence d.dotdadq .= 0.0 # There is no velocity dependence s.rij .= 0.0 s.aij .= 0.0 coeff::T = alpha*h^3/96*2*GNEWT fac::T = 0.0; fac1::T = 0.0; fac2::T = 0.0; fac3::T = 0.0; r1::T = 0.0; r2::T = 0.0; r3::T = 0.0 n::Int64 = s.n @inbounds for i=1:n-1 for j=i+1:n if ~s.pair[i,j] # correction for Kepler pairs for k=1:3 s.rij[k] = s.x[k,i] - s.x[k,j] end r2 = dot_fast(s.rij) r3 = r2*sqrt(r2) fac2 = GNEWT/r3 for k=1:3 fac = fac2*s.rij[k] s.a[k,i] -= s.m[j]*fac s.a[k,j] += s.m[i]*fac # Mass derivative of acceleration vector (10/6/17 notes): # Since there is no velocity dependence, this is fourth parameter. # Acceleration of ith particle depends on mass of jth particle: d.dadq[k,i,4,j] -= fac d.dadq[k,j,4,i] += fac # x derivative of acceleration vector: fac *= 3.0/r2 # Dot product x_ij.\delta x_ij means we need to sum over components: for p=1:3 d.dadq[k,i,p,i] += fac*s.m[j]*s.rij[p] d.dadq[k,i,p,j] -= fac*s.m[j]*s.rij[p] d.dadq[k,j,p,j] += fac*s.m[i]*s.rij[p] d.dadq[k,j,p,i] -= fac*s.m[i]*s.rij[p] end # Final term has no dot product, so just diagonal: d.dadq[k,i,k,i] -= fac2*s.m[j] d.dadq[k,i,k,j] += fac2*s.m[j] d.dadq[k,j,k,j] -= fac2*s.m[i] d.dadq[k,j,k,i] += fac2*s.m[i] end end end end # Next, compute \tilde g_i acceleration vector (this is rewritten # slightly to avoid reference to \tilde a_i): # Note that jac_step[(i-1)*7+k,(j-1)*7+p] is the derivative of the kth coordinate # of planet i with respect to the pth coordinate of planet j. indi = 0; indj=0; indd = 0 @inbounds for i=1:n-1 indi = (i-1)*7 for j=i+1:n if ~s.pair[i,j] # correction for Kepler pairs indj = (j-1)*7 for k=1:3 s.aij[k] = s.a[k,i] - s.a[k,j] s.rij[k] = s.x[k,i] - s.x[k,j] end # Compute dot product of r_ij with \delta a_ij: fill!(d.dotdadq,0.0) @inbounds for di=1:n, p=1:4, k=1:3 d.dotdadq[p,di] += s.rij[k]*(d.dadq[k,i,p,di]-d.dadq[k,j,p,di]) end r2 = dot_fast(s.rij) r1 = sqrt(r2) ardot = dot_fast(s.aij, s.rij) fac1 = coeff/(r2*r2*r1) fac2 = (2*GNEWT*(s.m[i]+s.m[j])/r1 + 3*ardot) for k=1:3 fac = fac1*(s.rij[k]*fac2-r2*s.aij[k]) s.v[k,i],s.verror[k,i] = comp_sum(s.v[k,i],s.verror[k,i], s.m[j]*fac) s.v[k,j],s.verror[k,j] = comp_sum(s.v[k,j],s.verror[k,j],-s.m[i]*fac) # Compute time derivative: d.dqdt_phi[indi+3+k] += 3/h*s.m[j]*fac d.dqdt_phi[indj+3+k] -= 3/h*s.m[i]*fac # Mass derivative (first part is easy): d.jac_phi[indi+3+k,indj+7] += fac d.jac_phi[indj+3+k,indi+7] -= fac # Position derivatives: fac *= 5.0/r2 for p=1:3 d.jac_phi[indi+3+k,indi+p] -= fac*s.m[j]*s.rij[p] d.jac_phi[indi+3+k,indj+p] += fac*s.m[j]*s.rij[p] d.jac_phi[indj+3+k,indj+p] -= fac*s.m[i]*s.rij[p] d.jac_phi[indj+3+k,indi+p] += fac*s.m[i]*s.rij[p] end # Second mass derivative: fac = 2*GNEWT*fac1*s.rij[k]/r1 d.jac_phi[indi+3+k,indi+7] += fac*s.m[j] d.jac_phi[indi+3+k,indj+7] += fac*s.m[j] d.jac_phi[indj+3+k,indj+7] -= fac*s.m[i] d.jac_phi[indj+3+k,indi+7] -= fac*s.m[i] # (There's also a mass term in dadq [x]. See below.) # Diagonal position terms: fac = fac1*fac2 d.jac_phi[indi+3+k,indi+k] += fac*s.m[j] d.jac_phi[indi+3+k,indj+k] -= fac*s.m[j] d.jac_phi[indj+3+k,indj+k] += fac*s.m[i] d.jac_phi[indj+3+k,indi+k] -= fac*s.m[i] # Dot product \delta rij terms: fac = -2*fac1*(s.rij[k]*GNEWT*(s.m[i]+s.m[j])/(r2*r1)+s.aij[k]) for p=1:3 fac3 = fac*s.rij[p] + fac1*3.0*s.rij[k]*s.aij[p] d.jac_phi[indi+3+k,indi+p] += s.m[j]*fac3 d.jac_phi[indi+3+k,indj+p] -= s.m[j]*fac3 d.jac_phi[indj+3+k,indj+p] += s.m[i]*fac3 d.jac_phi[indj+3+k,indi+p] -= s.m[i]*fac3 end # Diagonal acceleration terms: fac = -fac1*r2 # Duoh. For dadq, have to loop over all other parameters! @inbounds for di=1:n indd = (di-1)*7 for p=1:3 d.jac_phi[indi+3+k,indd+p] += fac*s.m[j]*(d.dadq[k,i,p,di]-d.dadq[k,j,p,di]) end for p=1:3 d.jac_phi[indj+3+k,indd+p] -= fac*s.m[i]*(d.dadq[k,i,p,di]-d.dadq[k,j,p,di]) end # Don't forget mass-dependent term: d.jac_phi[indi+3+k,indd+7] += fac*s.m[j]*(d.dadq[k,i,4,di]-d.dadq[k,j,4,di]) d.jac_phi[indj+3+k,indd+7] -= fac*s.m[i]*(d.dadq[k,i,4,di]-d.dadq[k,j,4,di]) end # Now, for the final term: (\delta a_ij . r_ij ) r_ij fac = 3.0*fac1*s.rij[k] @inbounds for di=1:n indd = (di-1)*7 for p=1:3 d.jac_phi[indi+3+k,indd+p] += fac*s.m[j]*d.dotdadq[p,di] end for p=1:3 d.jac_phi[indj+3+k,indd+p] -= fac*s.m[i]*d.dotdadq[p,di] end d.jac_phi[indi+3+k,indd+7] += fac*s.m[j]*d.dotdadq[4,di] d.jac_phi[indj+3+k,indd+7] -= fac*s.m[i]*d.dotdadq[4,di] end end end end end return end """ Carries out a Kepler step and reverse drift for bodies i & j, and computes Jacobian. Uses new version of the code with gamma in favor of s. """ function kepler_driftij_gamma!(s::State{T},d::AbstractDerivatives{T},i::Int64,j::Int64,h::T,drift_first::Bool) where {T <: Real} # Initial state: @inbounds for k=1:NDIM s.x0[k] = s.x[k,i] - s.x[k,j] # x0 = positions of body i relative to j s.v0[k] = s.v[k,i] - s.v[k,j] # v0 = velocities of body i relative to j end gm = GNEWT*(s.m[i]+s.m[j]) if gm == 0; return; end # jac_ij should be the Jacobian for going from (x_{0,i},v_{0,i},m_i) & (x_{0,j},v_{0,j},m_j) # to (x_i,v_i,m_i) & (x_j,v_j,m_j), a 14x14 matrix for the 3-dimensional case.: fill!(d.jac_ij,zero(T)) s.delxv .= 0.0 d.jac_kepler .= 0.0 d.jac_mass .= 0.0 params::NTuple{22,T} = jac_delxv_gamma!(s,gm,h,drift_first) compute_jacobian_gamma!(params...,s.x0,s.v0,d.jac_kepler,d.jac_mass,drift_first,false) mijinv::T = one(T)/(s.m[i] + s.m[j]) mi::T = s.m[i]*mijinv # Normalize the masses mj::T = s.m[j]*mijinv @inbounds for k=1:3 # Add kepler-drift differences, weighted by masses, to start of step: s.x[k,i],s.xerror[k,i] = comp_sum(s.x[k,i],s.xerror[k,i], mj*s.delxv[k]) s.x[k,j],s.xerror[k,j] = comp_sum(s.x[k,j],s.xerror[k,j],-mi*s.delxv[k]) end @inbounds for k=1:3 s.v[k,i],s.verror[k,i] = comp_sum(s.v[k,i],s.verror[k,i], mj*s.delxv[3+k]) s.v[k,j],s.verror[k,j] = comp_sum(s.v[k,j],s.verror[k,j],-mi*s.delxv[3+k]) end # Compute Jacobian: @inbounds for l=1:6, k=1:6 # Compute derivatives of x_i,v_i with respect to initial conditions: d.jac_ij[ k, l] += mj*d.jac_kepler[k,l] d.jac_ij[ k,7+l] -= mj*d.jac_kepler[k,l] # Compute derivatives of x_j,v_j with respect to initial conditions: d.jac_ij[7+k, l] -= mi*d.jac_kepler[k,l] d.jac_ij[7+k,7+l] += mi*d.jac_kepler[k,l] end @inbounds for k=1:6 # Compute derivatives of x_i,v_i with respect to the masses: d.jac_ij[ k, 7] = d.jac_mass[k]*s.m[j] d.jac_ij[ k,14] = mi*s.delxv[k]*mijinv + GNEWT*mj*d.jac_kepler[ k,7] # Compute derivatives of x_j,v_j with respect to the masses: d.jac_ij[ 7+k, 7] = -mj*s.delxv[k]*mijinv - GNEWT*mi*d.jac_kepler[ k,7] d.jac_ij[ 7+k,14] = -d.jac_mass[k]*s.m[i] end # The following lines are meant to compute dq/dt for kepler_driftij, # but they currently contain an error (test doesn't pass in test_ahl21.jl). [ ] @inbounds for k=1:6 # Position/velocity derivative, body i: d.dqdt_ij[ k] = mj*d.jac_kepler[k,8] # Position/velocity derivative, body j: d.dqdt_ij[7+k] = -mi*d.jac_kepler[k,8] end return end """ Computes Jacobian of delx and delv with respect to x0, v0, k, and h. """ function jac_delxv_gamma!(s::State{T},k::T,h::T,drift_first::Bool;debug::Bool=false,grad::Bool=true) where {T <: Real} # Compute r0: r0 = zero(T) s.rtmp[1] = s.x0[1]-h*s.v0[1] s.rtmp[2] = s.x0[2]-h*s.v0[2] s.rtmp[3] = s.x0[3]-h*s.v0[3] drift_first ? r0 = norm(s.rtmp) : r0 = norm(s.x0) # And its inverse: r0inv::T = inv(r0) # Compute beta_0: beta0::T = 2k*r0inv-dot_fast(s.v0,s.v0) beta0inv::T = inv(beta0) signb::T = sign(beta0) sqb::T = sqrt(signb*beta0) zeta::T = k-r0*beta0 gamma_guess = zero(T) # Compute \eta_0 = x_0 . v_0: eta = zero(T) #drift_first ? eta = dot(s.x0 .- h .* s.v0, s.v0) : eta = dot(s.x0,s.v0) if drift_first eta = dot_fast(s.rtmp,s.v0) else eta = dot_fast(s.x0,s.v0) end if zeta != zero(T) # Make sure we have a cubic in gamma (and don't divide by zero): zinv = 6/zeta gamma_guess = cubic1(0.5*eta*sqb*zinv,r0*signb*beta0*zinv,-h*signb*beta0*sqb*zinv) else # Check that we have a quadratic in gamma (and don't divide by zero): if eta != zero(T) reta = r0/eta disc = reta^2+2h/eta disc > zero(T) ? gamma_guess = sqb*(-reta+sqrt(disc)) : gamma_guess = h*r0inv*sqb else gamma_guess = h*r0inv*sqb end end gamma = copy(gamma_guess) # Make sure prior two steps differ: gamma1::T = 2*copy(gamma) gamma2::T = 3*copy(gamma) iter = 0 ITMAX = 20 # Compute coefficients: (8/28/19 notes) c1 = k; c2 = -2zeta; c3 = 2*eta*signb*sqb; c4 = -sqb*h*beta0; c5 = 2eta*signb*sqb # Solve for gamma: while iter < ITMAX gamma2 = gamma1 gamma1 = gamma xx = 0.5*gamma if beta0 > 0 sx,cx = sincos(xx); else sx = sinh(xx); cx = exp(-xx)+sx end gamma -= (k*gamma+c2*sx*cx+c3*sx^2+c4)/(2signb*zeta*sx^2+c5*sx*cx+r0*beta0) iter +=1 if gamma == gamma2 || gamma == gamma1 break end end # Set up a single output array for delx and delv: if debug s.delxv = zeros(T,12) else s.delxv .= zero(T) end # Since we updated gamma, need to recompute: xx = 0.5*gamma if beta0 > 0 sx,cx = sincos(xx) else sx = sinh(xx); cx = exp(-xx)+sx end # Now, compute final values. Compute Wisdom/Hernandez G_i^\beta(s) functions: g1bs = 2sx*cx/sqb g2bs = 2signb*sx^2*beta0inv g0bs = one(T)-beta0*g2bs g3bs = G3(gamma,beta0,sqb) h1 = zero(T); h2 = zero(T) # Compute r from equation (35): r = r0*g0bs+eta*g1bs+k*g2bs rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv # [x] if drift_first # Drift backwards before Kepler step: (1/22/2018) fm1 = -k*r0inv*g2bs # [x] # This is given in 2/7/2018 notes: g-h*f gmh = k*r0inv*(h*g2bs-r0*g3bs) else # Drift backwards after Kepler step: (1/24/2018) # The following line is f-1-h fdot: h1= H1(gamma,beta0); h2= H2(gamma,beta0,sqb) fm1 = k*rinv*(g2bs-k*r0inv*h1) # This is g-h*dgdt gmh = k*rinv*(r0*h2+eta*h1) end # Compute velocity component functions: if drift_first # This is gdot - h fdot - 1: dgdtm1 = k*r0inv*rinv*(h*g1bs-r0*g2bs) else # This is gdot - 1: dgdtm1 = -k*rinv*g2bs # [x] end @inbounds for j=1:3 # Compute difference vectors (finish - start) of step: s.delxv[ j] = fm1*s.x0[j]+gmh*s.v0[j] # position x_ij(t+h)-x_ij(t) - h*v_ij(t) or -h*v_ij(t+h) end @inbounds for j=1:3 s.delxv[3+j] = dfdt*s.x0[j]+dgdtm1*s.v0[j] # velocity v_ij(t+h)-v_ij(t) end if debug s.delxv[7] = gamma s.delxv[8] = r s.delxv[9] = fm1 s.delxv[10] = dfdt s.delxv[11] = gmh s.delxv[12] = dgdtm1 end if grad return gamma,g0bs,g1bs,g2bs,g3bs,h1,h2,dfdt,fm1,gmh,dgdtm1,r0,r,r0inv,rinv,k,h,beta0,beta0inv,eta,sqb,zeta end end """ Computes the gradient analytically. """ function compute_jacobian_gamma!(gamma::T,g0::T,g1::T,g2::T,g3::T,h1::T,h2::T,dfdt::T,fm1::T,gmh::T,dgdtm1::T, r0::T,r::T,r0inv::T,rinv::T,k::T,h::T,beta::T,betainv::T,eta::T,sqb::T,zeta::T,x0::Array{T,1},v0::Array{T,1}, delxv_jac::Array{T,2},jac_mass::Array{T,1},drift_first::Bool,debug::Bool) where {T <: Real} # Computes Jacobian: r0inv2 = r0inv^2 r0inv3 = r0inv2*r0inv rinv2 = rinv^2 rinv3 = rinv2*rinv hsq = h^2 ksq = k^2 if drift_first # First, the diagonal terms: # Now the off-diagonal terms: d = (h + eta*g2 + 2*k*g3)*betainv c1 = d-r0*g3 c2 = eta*g0+g1*zeta c3 = d*k+g1*r0^2 c4 = eta*g1+2*g0*r0 c13 = g1*h-g2*r0 c9 = 2*g2*h-3*g3*r0 c10 = k*r0inv2^2*(-g2*r0*h+k*c9*betainv-c3*c13*rinv) c24 = r0inv3*(r0*(2*k*r0inv-beta)*betainv-g1*c3*rinv/g2) h6 = H6(gamma,beta) # Derivatives of \delta x with respect to x0, v0, k & h: dfm1dxx = fm1*c24 dfm1dxv = -fm1*(g1*rinv+h*c24) dfm1dvx = dfm1dxv dfm1dvv = fm1*rinv*(-r0*g2 + k*h6*betainv/g2 + h*(2*g1+h*r*c24)) dfm1dh = fm1*(g1*rinv*(1/g2+2*k*r0inv-beta)-eta*c24) dfm1dk = fm1*(1/k+g1*c1*rinv*r0inv/g2-2*betainv*r0inv) h4 = -H1(gamma,beta)*beta h5 = H5(gamma,beta,sqb) dfm1dk2 = (r0*h4+k*h6) dgmhdxx = c10 dgmhdxv = -g2*k*c13*rinv*r0inv-h*c10 dgmhdvx = dgmhdxv h3 = H3(gamma,beta,sqb) h8 = -2h3+3h5 dgmhdvv = 2*g2*h*k*c13*rinv*r0inv+hsq*c10+ k*betainv*rinv*r0inv*(r0^2*h8-beta*h*r0*g2^2 + (h*k+eta*r0)*h6) dgmhdh = g2*k*r0inv+k*c13*rinv*r0inv+g2*k*(2*k*r0inv-beta)*c13*rinv*r0inv-eta*c10 dgmhdk = r0inv*(k*c1*c13*rinv*r0inv+g2*h-g3*r0-k*c9*betainv*r0inv) dgmhdk2 = (h6*g3*ksq+eta*r0*(h6+g2*h4)+r0^2*g0*h5+k*eta*g2*h6+(g1*h6+g3*h4)*k*r0) @inbounds for j=1:3 # First, compute the \delta x-derivatives: delxv_jac[ j, j] = fm1 delxv_jac[ j,3+j] = gmh @inbounds for i=1:3 delxv_jac[j, i] += (dfm1dxx*x0[i]+dfm1dxv*v0[i])*x0[j] + (dgmhdxx*x0[i]+dgmhdxv*v0[i])*v0[j] delxv_jac[j,3+i] += (dfm1dvx*x0[i]+dfm1dvv*v0[i])*x0[j] + (dgmhdvx*x0[i]+dgmhdvv*v0[i])*v0[j] end delxv_jac[ j, 7] = dfm1dk*x0[j] + dgmhdk*v0[j] delxv_jac[ j, 8] = dfm1dh*x0[j] + dgmhdh*v0[j] # Compute the mass jacobian separately since otherwise cancellations happen in kepler_driftij_gamma: jac_mass[ j] = (GNEWT*r0inv)^2*betainv*rinv*(dfm1dk2*x0[j]-dgmhdk2*v0[j]) end # Derivatives of \delta v with respect to x0, v0, k & h: c5 = (r0-k*g2)*rinv/g1 c6 = (r0*g0-k*g2)*betainv c7 = g2*(1/g1+c2*rinv) c8 = (k*c6+r*r0+c3*c5)*r0inv3 c12 = g0*h-g1*r0 c17 = r0-r-g2*k c18 = eta*g1+2*g2*k c20 = k*(g2*k+r)-g0*r0*zeta c21 = (g2*k-r0)*(beta*c3-k*g1*r)*betainv*rinv2*r0inv3/g1+eta*g1*rinv*r0inv2-2r0inv2 c22 = rinv*(-g1-g0*g2/g1+g2*c2*rinv) c25 = k*rinv*r0inv2*(-g2+k*(c13-g2*r0)*betainv*r0inv2-c13*r0inv-c12*c3*rinv*r0inv2+ c13*c2*c3*rinv2*r0inv2-c13*(k*(g2*k+r)-g0*r0*zeta)*betainv*rinv*r0inv2) c26 = k*rinv2*r0inv*(-g2*c12-g1*c13+g2*c13*c2*rinv) ddfdtdxx = dfdt*c21 ddfdtdxv = dfdt*(c22-h*c21) ddfdtdvx = ddfdtdxv c34 = (-beta*eta^2*g2^2-eta*k*h8-h6*ksq-2beta*eta*r0*g1*g2+(g2^2-3*g1*g3)*beta*k*r0 - beta*g1^2*r0^2)*betainv*rinv2+(eta*g2^2)*rinv/g1 + (k*h8)*betainv*rinv/g1 ddfdtdvv = dfdt*(c34 - 2*h*c22 +hsq*c21) ddfdtdk = dfdt*(1/k-betainv*r0inv-c17*betainv*rinv*r0inv-c1*(g1*c2-g0*r)*rinv2*r0inv/g1) ddfdtdk2 = -(g2*k-r0)*(beta*r0*(g3-g1*g2)-beta*eta*g2^2+k*h3)*betainv*rinv2*r0inv ddfdtdh = dfdt*(g0*rinv/g1-c2*rinv2-(2*k*r0inv-beta)*c22-eta*c21) dgdtmhdfdtm1dxx = c25 dgdtmhdfdtm1dxv = c26-h*c25 dgdtmhdfdtm1dvx = c26-h*c25 h2 = H2(gamma,beta,sqb) c33 = d*k*rinv3*r0inv*k*(h*g2- r0*g3)+k*(-eta*k*g1*g2^2-g1*g2*g3*ksq-r0*eta*beta*g1*g2^2-r0*k*g1*h2 - beta*g2^2*g0*r0^2)*betainv*rinv2*r0inv dgdtmhdfdtm1dvv = c33-2*h*c26+hsq*c25 dgdtmhdfdtm1dk = rinv*r0inv*(-k*(c13-g2*r0)*betainv*r0inv+c13-k*c13*c17*betainv*rinv*r0inv+k*c1*c12*rinv*r0inv-k*c1*c2*c13*rinv2*r0inv) dgdtmhdfdtm1dk2 = k*betainv*rinv2*r0inv*(-beta*eta^2*g2^4+eta*g2*(g1*g2^2+g1^2*g3-5*g2*g3)*k+g2*g3*h3*ksq+ 2eta*r0*beta*g2^2*(g3-g1*g2)+(4g3-g0*g3-g1*g2)*(g3-g1*g2)*r0*k+beta*(2g1*g3*g2-g1^2*g2^2-g3^2)*r0^2) dgdtmhdfdtm1dh = g1*k*rinv*r0inv+k*c12*rinv2*r0inv-k*c2*c13*rinv3*r0inv-(2*k*r0inv-beta)*c26-eta*c25 @inbounds for j=1:3 # Next, compute the \delta v-derivatives: delxv_jac[3+j, j] = dfdt delxv_jac[3+j,3+j] = dgdtm1 @inbounds for i=1:3 delxv_jac[3+j, i] += (ddfdtdxx*x0[i]+ddfdtdxv*v0[i])*x0[j] + (dgdtmhdfdtm1dxx*x0[i]+dgdtmhdfdtm1dxv*v0[i])*v0[j] delxv_jac[3+j,3+i] += (ddfdtdvx*x0[i]+ddfdtdvv*v0[i])*x0[j] + (dgdtmhdfdtm1dvx*x0[i]+dgdtmhdfdtm1dvv*v0[i])*v0[j] end delxv_jac[3+j, 7] = ddfdtdk*x0[j] + dgdtmhdfdtm1dk*v0[j] delxv_jac[3+j, 8] = ddfdtdh*x0[j] + dgdtmhdfdtm1dh*v0[j] # Compute the mass jacobian separately since otherwise cancellations happen in kepler_driftij_gamma: jac_mass[3+j] = GNEWT^2*r0inv*rinv*(ddfdtdk2*x0[j]+dgdtmhdfdtm1dk2*v0[j]) end if debug # Now include derivatives of gamma, r, fm1, dfdt, gmh, and dgdtmhdfdtm1: @inbounds for i=1:3 delxv_jac[ 7,i] = -sqb*rinv*((g2-h*c3*r0inv3)*v0[i]+c3*x0[i]*r0inv3); delxv_jac[7,3+i] = sqb*rinv*((-d+2*g2*h-hsq*c3*r0inv3)*v0[i]+(-g2+h*c3*r0inv3)*x0[i]) delxv_jac[ 8,i] = (c20*betainv-c2*c3*rinv)*r0inv3*x0[i]+((eta*g2+g1*r0)*rinv+h*r0inv3*(c2*c3*rinv-c20*betainv))*v0[i] drdv0x0 = (beta*g1*g2+((eta*g2+k*g3)*eta*g0*c3)*rinv*r0inv3 + (g1*g0*(2k*eta^2*g2+3eta*ksq*g3))*betainv*rinv*r0inv2- k*betainv*r0inv3*(eta*g1*(eta*g2+k*g3)+g3*g0*r0^2*beta+2h*g2*k)+(g1*zeta)*rinv*((h*c3)*r0inv3 - g2) - (eta*(beta*g2*g0*r0+k*g1^2)*(eta*g1+k*g2))*betainv*rinv*r0inv2) delxv_jac[8,3+i] = drdv0x0*x0[i] - (k*betainv*rinv*(eta*(beta*g2*g3-h8) - h6*k + (g2^2 - 2*g1*g3)*beta*r0) + h*drdv0x0)*v0[i] delxv_jac[ 9,i] = dfm1dxx*x0[i]+dfm1dxv*v0[i]; delxv_jac[ 9,3+i]=dfm1dvx*x0[i]+dfm1dvv*v0[i] delxv_jac[10,i] = ddfdtdxx*x0[i]+ddfdtdxv*v0[i]; delxv_jac[10,3+i]=ddfdtdvx*x0[i]+ddfdtdvv*v0[i] delxv_jac[11,i] = dgmhdxx*x0[i]+dgmhdxv*v0[i]; delxv_jac[11,3+i]=dgmhdvx*x0[i]+dgmhdvv*v0[i] delxv_jac[12,i] = dgdtmhdfdtm1dxx*x0[i]+dgdtmhdfdtm1dxv*v0[i]; delxv_jac[12,3+i]=dgdtmhdfdtm1dvx*x0[i]+dgdtmhdfdtm1dvv*v0[i] end delxv_jac[ 7,7] = sqb*c1*r0inv*rinv; delxv_jac[7,8] = sqb*rinv*(1+eta*c3*r0inv3+g2*(2k*r0inv-beta)) delxv_jac[ 8,7] = betainv*r0inv*rinv*(-g2*r0^2*beta-eta*g1*g2*(k+beta*r0)+eta*g0*g3*(2*k+zeta)- g2^2*(beta*eta^2+2*k*zeta)+g1*g3*zeta*(3*k-beta*r0)); delxv_jac[8,8] = c2*rinv delxv_jac[ 8,8] = ((r0*g1+eta*g2)*rinv)*(beta-2*k*r0inv)+c2*rinv+eta*r0inv3*(c2*c3*rinv-c20*betainv) delxv_jac[ 9,7] = dfm1dk; delxv_jac[ 9,8] = dfm1dh delxv_jac[10,7] = ddfdtdk; delxv_jac[10,8] = ddfdtdh delxv_jac[11,7] = dgmhdk; delxv_jac[11,8] = dgmhdh delxv_jac[12,7] = dgdtmhdfdtm1dk; delxv_jac[12,8] = dgdtmhdfdtm1dh end else # Now compute the Kepler-Drift Jacobian terms: # First, the diagonal terms: # Now the off-diagonal terms: d = (h + eta*g2 + 2*k*g3)*betainv c1 = d-r0*g3 c2 = eta*g0+g1*zeta c3 = d*k+g1*r0^2 c4 = eta*g1+2*g0*r0 c6 = (r0*g0-k*g2)*betainv c9 = g2*r-h1*k c14 = r0*g2-k*h1 c15 = eta*h1+h2*r0 c16 = eta*h2+g1*gamma*r0/sqb c17 = r0-r-g2*k c18 = eta*g1+2*g2*k c19 = 4*eta*h1+3*h2*r0 c23 = h2*k-r0*g1 h6 = H6(gamma,beta) h3 = H3(gamma,beta,sqb) h5 = H5(gamma,beta,sqb) h8 = -2h3+3h5 # Derivatives of \delta x with respect to x0, v0, k & h: dfm1dxx = k*rinv3*betainv*r0inv^4*(k*h1*r^2*r0*(beta-2*k*r0inv)+beta*c3*(r*c23+c14*c2)+c14*r*(k*(r-g2*k)+g0*r0*zeta)) dfm1dxv = k*rinv2*r0inv*(k*(g2*h2+g1*h1)-2g1*g2*r0+g2*c14*c2*rinv) dfm1dvx = dfm1dxv dfm1dvv = k*r0inv*rinv2*betainv*(2eta*k*(g2*g3-g1*h1)+(3g3*h2-4h1*g2)*ksq + beta*g2*r0*(3h1*k-g2*r0)+c14*rinv*(-beta*g2^2*eta^2+eta*k*(2g0*g3-h2)- h6*ksq+(-2eta*g1*g2+k*(h1-2g1*g3))*beta*r0-beta*g1^2*r0^2)) dfm1dh = (g1*k-h2*ksq*r0inv-k*c14*c2*rinv*r0inv)*rinv2 dfm1dk = rinv*r0inv*(4*h1*ksq*betainv*r0inv-k*h1-2*g2*k*betainv+c14-k*c14*c17*betainv*rinv*r0inv+ k*(g1*r0-k*h2)*c1*rinv*r0inv-k*c14*c1*c2*rinv2*r0inv) # New expression for d(f-1-h \dot f)/dk with cancellations of higher order terms in gamma is: dfm1dk2 = betainv*r0inv*rinv2*(r*(2eta*k*(g1*h1-g3*g2)+(4g2*h1-3g3*h2)*ksq-eta*r0*beta*g1*h1 + (g3*h2-4g2*h1)*beta*k*r0 + g2*h1*beta^2*r0^2) - # In the following line I need to replace 3g0*g3-g1*g2 by -H8: c14*(-eta^2*beta*g2^2 - k*eta*h8 - ksq*h6 - eta*r0*beta*(g1*g2 + g0*g3) + 2*(h1 - g1*g3)*beta*k*r0 - (g2 - beta*g1*g3)*beta*r0^2)) dgmhdxx = k*rinv*r0inv*(h2+k*c19*betainv*r0inv2-c16*c3*rinv*r0inv2+c2*c3*c15*(rinv*r0inv)^2-c15*(k*(g2*k+r)-g0*r0*zeta)*betainv*rinv*r0inv2) dgmhdxv = k*rinv2*(h1*r-g2*c16-g1*c15+g2*c2*c15*rinv) dgmhdvx = dgmhdxv dgmhdvv = k*betainv*rinv2*(2*eta^2*(g1*h1-g2*g3)+eta*k*(4g2*h1-3h2*g3)+r0*eta*(4g0*h1-2g1*g3)+ # In the following lines I need to replace g1*g2-3g0*g3-g1*g2 by H8: 3r0*k*((g1+beta*g3)*h1-g3*g2)+(g0*h8-beta*g1*(g2^2+g1*g3))*r0^2 - c15*rinv*(beta*g2^2*eta^2+eta*k*h8+h6*ksq+(2eta*g1*g2-k*(g2^2-3g1*g3))*beta*r0+beta*g1^2*r0^2)) dgmhdk = rinv*(k*c1*c16*rinv*r0inv+c15-k*c15*c17*betainv*rinv*r0inv-k*c19*betainv*r0inv-k*c1*c2*c15*rinv2*r0inv) h7 = beta*g1*g2^2-g0*h8 dgmhdk2 = betainv*rinv2*(r*(2eta^2*(g3*g2-g1*h1) + eta*k*(3g3*h2 - 4g2*h1) + r0*eta*(beta*g3*(g1*g2 + g0*g3) - 2g0*h6) + (-h6*(g1 + beta*g3) + g2*(2g3 - h2))*r0*k + (h7 - beta^2*g1*g3^2)*r0^2)- c15*(-beta*eta^2*g2^2 + eta*k*(-h2 + 2g0*g3) - h6*ksq - r0*eta*beta*(h2 + 2g0*g3) + 2beta*(2*h1 - g2^2)*r0*k + beta*(beta*g1*g3 - g2)*r0^2)) dgmhdh = k*rinv3*(r*c16-c2*c15) @inbounds for j=1:3 # First, compute the \delta x-derivatives: delxv_jac[ j, j] = fm1 delxv_jac[ j,3+j] = gmh @inbounds for i=1:3 delxv_jac[j, i] += (dfm1dxx*x0[i]+dfm1dxv*v0[i])*x0[j] + (dgmhdxx*x0[i]+dgmhdxv*v0[i])*v0[j] delxv_jac[j,3+i] += (dfm1dvx*x0[i]+dfm1dvv*v0[i])*x0[j] + (dgmhdvx*x0[i]+dgmhdvv*v0[i])*v0[j] end delxv_jac[ j, 7] = dfm1dk*x0[j] + dgmhdk*v0[j] delxv_jac[ j, 8] = dfm1dh*x0[j] + dgmhdh*v0[j] jac_mass[ j] = GNEWT^2*rinv*r0inv*(dfm1dk2*x0[j]+dgmhdk2*v0[j]) end # Derivatives of \delta v with respect to x0, v0, k & h: c5 = (r0-k*g2)*rinv/g1 c7 = g2*(1/g1+c2*rinv) c8 = (k*c6+r*r0+c3*c5)*r0inv3 c12 = g0*h-g1*r0 c20 = k*(g2*k+r)-g0*r0*zeta ddfdtdxx = dfdt*(eta*g1*rinv-2-g0*c3*rinv*r0inv/g1+c2*c3*r0inv*rinv2-k*(k*g2-r0)*betainv*rinv*r0inv)*r0inv2 ddfdtdxv = -dfdt*(g0*g2/g1+(r0*g1+eta*g2)*rinv)*rinv ddfdtdvx = ddfdtdxv ddfdtdvv = -k*rinv3*r0inv*betainv*((beta*eta*g2^2+k*h8)*(r0*g0+k*g2)+ g1*(- h6*ksq + (-2eta*g1*g2+(h1-2g1*g3)*k)*beta*r0 - beta*g1^2*r0^2)) ddfdtdk = dfdt*(1/k+c1*(r0-g2*k)*r0inv*rinv2/g1-betainv*r0inv*(1+c17*rinv)) ddfdtdk2 = (r0-g2*k)*betainv*r0inv*rinv2*(-eta*beta*g2^2+h3*k+(g3-g1*g2)*beta*r0) ddfdtdh = dfdt*(r0-g2*k)*rinv2/g1 dgdotm1dxx = rinv2*r0inv3*((eta*g2+g1*r0)*k*c3*rinv+g2*k*(k*(g2*k-r)-g0*r0*zeta)*betainv) dgdotm1dxv = k*g2*rinv3*(r*g1+r0*g1+eta*g2) dgdotm1dvx = dgdotm1dxv dgdotm1dvv = k*betainv*rinv3*(eta^2*beta*g2^3-eta*k*g2*h3+3r0*eta*beta*g1*g2^2 + r0*k*(-g0*h6+3beta*g1*g2*g3)+beta*g2*(g0*g2+g1^2)*r0^2) dgdotm1dk = rinv*r0inv*(-r0*g2+g2*k*(r+r0-g2*k)*betainv*rinv-k*g1*c1*rinv+k*g2*c1*c2*rinv2) dgdotm1dk2 = betainv*rinv2*(-beta*eta^2*g2^3+eta*k*g2*h3+eta*r0*beta*g2*(g3-2g1*g2)+ (h6-beta*g2^3)*r0*k + beta*g1*(g3 - g1*g2)*r0^2) dgdotm1dh = k*rinv3*(g2*c2-r*g1) @inbounds for j=1:3 # Next, compute the \delta v-derivatives: delxv_jac[3+j, j] = dfdt delxv_jac[3+j,3+j] = dgdtm1 @inbounds for i=1:3 delxv_jac[3+j, i] += (ddfdtdxx*x0[i]+ddfdtdxv*v0[i])*x0[j] + (dgdotm1dxx*x0[i]+dgdotm1dxv*v0[i])*v0[j] delxv_jac[3+j,3+i] += (ddfdtdvx*x0[i]+ddfdtdvv*v0[i])*x0[j] + (dgdotm1dvx*x0[i]+dgdotm1dvv*v0[i])*v0[j] end delxv_jac[3+j, 7] = ddfdtdk*x0[j] + dgdotm1dk*v0[j] delxv_jac[3+j, 8] = ddfdtdh*x0[j] + dgdotm1dh*v0[j] jac_mass[3+j] = GNEWT^2*rinv*r0inv*(ddfdtdk2*x0[j]+dgdotm1dk2*v0[j]) end if debug # Now include derivatives of gamma, r, fm1, gmh, dfdt, and dgdtmhdfdtm1: @inbounds for i=1:3 delxv_jac[ 7,i] = -sqb*rinv*(g2*v0[i]+c3*x0[i]*r0inv3); delxv_jac[7,3+i] = -sqb*rinv*(d*v0[i]+g2*x0[i]) delxv_jac[ 8,i] = (c20*betainv-c2*c3*rinv)*r0inv3*x0[i]+((r0*g1+eta*g2)*rinv)*v0[i] delxv_jac[8,3+i] = (c18*betainv-d*c2*rinv)*v0[i]+((r0*g1+eta*g2)*rinv)*x0[i] delxv_jac[ 9,i] = dfm1dxx*x0[i]+dfm1dxv*v0[i]; delxv_jac[ 9,3+i]=dfm1dvx*x0[i]+dfm1dvv*v0[i] delxv_jac[10,i] = ddfdtdxx*x0[i]+ddfdtdxv*v0[i]; delxv_jac[10,3+i]=ddfdtdvx*x0[i]+ddfdtdvv*v0[i] delxv_jac[11,i] = dgmhdxx*x0[i]+dgmhdxv*v0[i]; delxv_jac[11,3+i]=dgmhdvx*x0[i]+dgmhdvv*v0[i] delxv_jac[12,i] = dgdotm1dxx*x0[i]+dgdotm1dxv*v0[i]; delxv_jac[12,3+i]=dgdotm1dvx*x0[i]+dgdotm1dvv*v0[i] end delxv_jac[ 7,7] = sqb*c1*r0inv*rinv; delxv_jac[7,8] = sqb*rinv delxv_jac[ 8,7] = betainv*r0inv*rinv*(-g2*r0^2*beta-eta*g1*g2*(k+beta*r0)+eta*g0*g3*(2*k+zeta)- g2^2*(beta*eta^2+2*k*zeta)+g1*g3*zeta*(3*k-beta*r0)); delxv_jac[8,8] = c2*rinv delxv_jac[ 9,7] = dfm1dk; delxv_jac[ 9,8] = dfm1dh delxv_jac[10,7] = ddfdtdk; delxv_jac[10,8] = ddfdtdh delxv_jac[11,7] = dgmhdk; delxv_jac[11,8] = dgmhdh delxv_jac[12,7] = dgdotm1dk; delxv_jac[12,8] = dgdotm1dh end end return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
6500
# The AHL21 integrator WITHOUT derivatives. """ Carries out AHL21 mapping with compensated summation, WITHOUT derivatives """ function ahl21!(s::State{T},h::T) where T<:AbstractFloat h2 = 0.5*h; h6 = h/6 kickfast!(s,h6) drift!(s,h2) drift_kepler!(s,h2) phic!(s,h) phisalpha!(s,h,T(2.0)) kepler_drift!(s,h2) drift!(s,h2) kickfast!(s,h6) return end """ Drifts all particles with compensated summation. """ function drift!(s::State{T},h::T) where {T <: Real} @inbounds for i=1:s.n, j=1:NDIM s.x[j,i],s.xerror[j,i] = comp_sum(s.x[j,i],s.xerror[j,i],h*s.v[j,i]) end return end """ Computes "fast" kicks for pairs of bodies in lieu of -drift+Kepler with compensated summation """ function kickfast!(s::State{T},h::T) where {T <: Real} s.rij .= zero(T) @inbounds for i=1:s.n-1 for j = i+1:s.n if s.pair[i,j] for k=1:3 s.rij[k] = s.x[k,i] - s.x[k,j] #r2 += s.rij[k]*s.rij[k] end r2inv = 1.0/dot_fast(s.rij) r3inv = r2inv*sqrt(r2inv) fac2 = h*GNEWT*r3inv for k=1:3 fac = fac2*s.rij[k] s.v[k,i],s.verror[k,i] = comp_sum(s.v[k,i],s.verror[k,i],-s.m[j]*fac) s.v[k,j],s.verror[k,j] = comp_sum(s.v[k,j],s.verror[k,j], s.m[i]*fac) end end end end return end """ Computes correction for pairs which are kicked. """ function phic!(s::State{T},h::T) where {T <: Real} s.a .= zero(T) s.rij .= zero(T) s.aij .= zero(T) @inbounds for i=1:s.n-1, j = i+1:s.n if s.pair[i,j] # kick group for k=1:3 s.rij[k] = s.x[k,i] - s.x[k,j] #r2 += s.rij[k]^2 end r2inv = inv(dot_fast(s.rij)) r3inv = r2inv*sqrt(r2inv) for k=1:3 fac = GNEWT*s.rij[k]*r3inv facv = fac*2*h/3 s.v[k,i],s.verror[k,i] = comp_sum(s.v[k,i],s.verror[k,i],-s.m[j]*facv) s.v[k,j],s.verror[k,j] = comp_sum(s.v[k,j],s.verror[k,j],s.m[i]*facv) s.a[k,i] -= s.m[j]*fac s.a[k,j] += s.m[i]*fac end end end coeff = h^3/36*GNEWT @inbounds for i=1:s.n-1 ,j=i+1:s.n if s.pair[i,j] # kick group for k=1:3 s.aij[k] = s.a[k,i] - s.a[k,j] s.rij[k] = s.x[k,i] - s.x[k,j] end r2 = dot_fast(s.rij) r1 = sqrt(r2) ardot = dot_fast(s.aij,s.rij) fac1 = coeff/(r2*r2*r1) fac2 = 3*ardot for k=1:3 fac = fac1*(s.rij[k]*fac2-r2*s.aij[k]) s.v[k,i],s.verror[k,i] = comp_sum(s.v[k,i],s.verror[k,i],s.m[j]*fac) s.v[k,j],s.verror[k,j] = comp_sum(s.v[k,j],s.verror[k,j],-s.m[i]*fac) end end end return end """ Computes the 4th-order correction with compensated summation. """ function phisalpha!(s::State{T},h::T,alpha::T) where {T <: Real} s.a .= zero(T) s.rij .= zero(T) s.aij .= zero(T) coeff = alpha*h^3/96*2*GNEWT fac = zero(T); fac1 = zero(T); fac2 = zero(T); r1 = zero(T); r2 = zero(T); r3 = zero(T) @inbounds for i=1:s.n-1 for j = i+1:s.n if ~s.pair[i,j] # correction for Kepler pairs for k=1:3 s.rij[k] = s.x[k,i] - s.x[k,j] end r2 = dot_fast(s.rij) r3 = r2*sqrt(r2) fac2 = GNEWT/r3 for k=1:3 fac = fac2*s.rij[k] s.a[k,i] -= s.m[j]*fac s.a[k,j] += s.m[i]*fac end end end end # Next, compute \tilde g_i acceleration vector (this is rewritten # slightly to avoid reference to \tilde a_i): @inbounds for i=1:s.n-1 for j=i+1:s.n if ~s.pair[i,j] # correction for Kepler pairs for k=1:3 s.aij[k] = s.a[k,i] - s.a[k,j] s.rij[k] = s.x[k,i] - s.x[k,j] end r2 = dot_fast(s.rij) r1 = sqrt(r2) ardot = dot_fast(s.aij,s.rij) # fac1 = coeff/r1^5 fac1 = coeff/(r2*r2*r1) fac2 = (2*GNEWT*(s.m[i]+s.m[j])/r1 + 3*ardot) for k=1:3 fac = fac1*(s.rij[k]*fac2-r2*s.aij[k]) s.v[k,i],s.verror[k,i] = comp_sum(s.v[k,i],s.verror[k,i], s.m[j]*fac) s.v[k,j],s.verror[k,j] = comp_sum(s.v[k,j],s.verror[k,j],-s.m[i]*fac) end end end end return end """ Take a combined -drift+kepler step for each pair of bodies. """ function drift_kepler!(s::State{T}, h::T) where T<:Real n = s.n @inbounds for i in 1:n-1, j in i+1:n if ~s.pair[i,j] kepler_driftij_gamma!(s,i,j,h,true) end end return end """ Take a combined kepler-drift step for each pair of bodies """ function kepler_drift!(s::State{T}, h::T) where T<:Real n = s.n @inbounds for i in n-1:-1:1, j in n:-1:i+1 if ~s.pair[i,j] kepler_driftij_gamma!(s,i,j,h,false) end end return end """ Carries out a Kepler step and reverse drift for bodies i & j with compensated summation. """ function kepler_driftij_gamma!(s::State{T},i::Int64,j::Int64,h::T,drift_first::Bool) where {T <: Real} @inbounds for k=1:NDIM s.x0[k] = s.x[k,i] - s.x[k,j] # x0 = positions of body i relative to j s.v0[k] = s.v[k,i] - s.v[k,j] # v0 = velocities of body i relative to j end gm = GNEWT*(s.m[i]+s.m[j]) if gm == 0; return; end # Compute differences in x & v over time step: jac_delxv_gamma!(s,gm,h,drift_first,grad=false) mijinv =1.0/(s.m[i] + s.m[j]) mi = s.m[i]*mijinv # Normalize the masses mj = s.m[j]*mijinv @inbounds for k=1:3 # Add kepler-drift differences, weighted by masses, to start of step: s.x[k,i],s.xerror[k,i] = comp_sum(s.x[k,i],s.xerror[k,i], mj*s.delxv[k]) s.x[k,j],s.xerror[k,j] = comp_sum(s.x[k,j],s.xerror[k,j],-mi*s.delxv[k]) s.v[k,i],s.verror[k,i] = comp_sum(s.v[k,i],s.verror[k,i], mj*s.delxv[3+k]) s.v[k,j],s.verror[k,j] = comp_sum(s.v[k,j],s.verror[k,j],-mi*s.delxv[3+k]) end return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
49305
# Old versions of AHL21 methods function ahl21!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},n::Int64,jac_step::Array{T,2},jac_error::Array{T,2},pair::Array{Bool,2}) where {T <: Real} zilch = zero(T); uno = one(T); half = convert(T,0.5); two = convert(T,2.0) h2 = half*h; sevn = 7*n ## Replace with PreAllocArrays jac_phi = zeros(T,sevn,sevn) jac_kick = zeros(T,sevn,sevn) jac_copy = zeros(T,sevn,sevn) jac_ij = zeros(T,14,14) dqdt_ij = zeros(T,14) dqdt_phi = zeros(T,sevn) dqdt_kick = zeros(T,sevn) jac_tmp1 = zeros(T,14,sevn) jac_tmp2 = zeros(T,14,sevn) jac_err1 = zeros(T,14,sevn) ## kickfast!(x,v,xerror,verror,h/6,m,n,jac_kick,dqdt_kick,pair) # Multiply Jacobian from kick step: if T == BigFloat jac_copy .= *(jac_kick,jac_step) else BLAS.gemm!('N','N',uno,jac_kick,jac_step,zilch,jac_copy) end # Add back in the identity portion of the Jacobian with compensated summation: comp_sum_matrix!(jac_step,jac_error,jac_copy) drift!(x,v,xerror,verror,h2,n,jac_step,jac_error) indi = 0; indj = 0 @inbounds for i=1:n-1 indi = (i-1)*7 @inbounds for j=i+1:n indj = (j-1)*7 if ~pair[i,j] # Check to see if kicks have not been applied kepler_driftij_gamma!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij,true) # Pick out indices for bodies i & j: @inbounds for k2=1:sevn, k1=1:7 jac_tmp1[k1,k2] = jac_step[ indi+k1,k2] jac_err1[k1,k2] = jac_error[indi+k1,k2] end @inbounds for k2=1:sevn, k1=1:7 jac_tmp1[7+k1,k2] = jac_step[ indj+k1,k2] jac_err1[7+k1,k2] = jac_error[indj+k1,k2] end # Carry out multiplication on the i/j components of matrix: if T == BigFloat jac_tmp2 .= *(jac_ij,jac_tmp1) else BLAS.gemm!('N','N',uno,jac_ij,jac_tmp1,zilch,jac_tmp2) end # Add back in the Jacobian with compensated summation: comp_sum_matrix!(jac_tmp1,jac_err1,jac_tmp2) # Copy back to the Jacobian: @inbounds for k2=1:sevn, k1=1:7 jac_step[ indi+k1,k2]=jac_tmp1[k1,k2] jac_error[indi+k1,k2]=jac_err1[k1,k2] end @inbounds for k2=1:sevn, k1=1:7 jac_step[ indj+k1,k2]=jac_tmp1[7+k1,k2] jac_error[indj+k1,k2]=jac_err1[7+k1,k2] end end end end phic!(x,v,xerror,verror,h,m,n,jac_phi,dqdt_phi,pair) phisalpha!(x,v,xerror,verror,h,m,two,n,jac_phi,dqdt_phi,pair) # 10% if T == BigFloat jac_copy .= *(jac_phi,jac_step) else BLAS.gemm!('N','N',uno,jac_phi,jac_step,zilch,jac_copy) end # Add back in the identity portion of the Jacobian with compensated summation: comp_sum_matrix!(jac_step,jac_error,jac_copy) indi=0; indj=0 @inbounds for i=n-1:-1:1 indi=(i-1)*7 @inbounds for j=n:-1:i+1 indj=(j-1)*7 if ~pair[i,j] # Check to see if kicks have not been applied kepler_driftij_gamma!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij,false) # Pick out indices for bodies i & j: # Carry out multiplication on the i/j components of matrix: @inbounds for k2=1:sevn, k1=1:7 jac_tmp1[k1,k2] = jac_step[ indi+k1,k2] jac_err1[k1,k2] = jac_error[indi+k1,k2] end @inbounds for k2=1:sevn, k1=1:7 jac_tmp1[7+k1,k2] = jac_step[ indj+k1,k2] jac_err1[7+k1,k2] = jac_error[indj+k1,k2] end # Carry out multiplication on the i/j components of matrix: if T == BigFloat jac_tmp2 .= *(jac_ij,jac_tmp1) else BLAS.gemm!('N','N',uno,jac_ij,jac_tmp1,zilch,jac_tmp2) end # Add back in the Jacobian with compensated summation: comp_sum_matrix!(jac_tmp1,jac_err1,jac_tmp2) # Copy back to the Jacobian: @inbounds for k2=1:sevn, k1=1:7 jac_step[ indi+k1,k2]=jac_tmp1[k1,k2] jac_error[indi+k1,k2]=jac_err1[k1,k2] end @inbounds for k2=1:sevn, k1=1:7 jac_step[ indj+k1,k2]=jac_tmp1[7+k1,k2] jac_error[indj+k1,k2]=jac_err1[7+k1,k2] end end end end drift!(x,v,xerror,verror,h2,n,jac_step,jac_error) #kickfast!(x,v,h2,m,n,jac_kick,dqdt_kick,pair) kickfast!(x,v,xerror,verror,h/6,m,n,jac_kick,dqdt_kick,pair) # Multiply Jacobian from kick step: if T == BigFloat jac_copy .= *(jac_kick,jac_step) else BLAS.gemm!('N','N',uno,jac_kick,jac_step,zilch,jac_copy) end # Add back in the identity portion of the Jacobian with compensated summation: comp_sum_matrix!(jac_step,jac_error,jac_copy) # Edit this routine to do compensated summation for Jacobian [x] return end function ahl21!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},n::Int64,dqdt::Array{T,1},pair::Array{Bool,2}) where {T <: Real} # [Currently this routine is not giving the correct dqdt values. -EA 8/12/2019] zilch = zero(T); uno = one(T); half = convert(T,0.5); two = convert(T,2.0) h2 = half*h # This routine assumes that alpha = 0.0 sevn = 7*n jac_phi = zeros(T,sevn,sevn) jac_kick = zeros(T,sevn,sevn) jac_ij = zeros(T,14,14) dqdt_ij = zeros(T,14) dqdt_phi = zeros(T,sevn) dqdt_kick = zeros(T,sevn) dqdt_tmp1 = zeros(T,14) dqdt_tmp2 = zeros(T,14) fill!(dqdt,zilch) #dqdt_save =copy(dqdt) #println("dqdt 1: ",dqdt-dqdt_save) #dqdt_save .= dqdt kickfast!(x,v,xerror,verror,h/6,m,n,jac_kick,dqdt_kick,pair) dqdt_kick /= 6 # Since step is h/6 # Since I removed identity from kickfast, need to add in dqdt: dqdt .+= dqdt_kick + *(jac_kick,dqdt) #println("dqdt 2: ",dqdt-dqdt_save) #dqdt_save .= dqdt drift!(x,v,xerror,verror,h2,n) # Compute time derivative of drift step: @inbounds for i=1:n, k=1:3 dqdt[(i-1)*7+k] = half*v[k,i] + h2*dqdt[(i-1)*7+3+k] end @inbounds for i=1:n-1 indi = (i-1)*7 @inbounds for j=i+1:n indj = (j-1)*7 if ~pair[i,j] # Check to see if kicks have not been applied # kepler_driftij!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij,true) kepler_driftij_gamma!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij,true) # Copy current time derivatives for multiplication purposes: @inbounds for k1=1:7 dqdt_tmp1[ k1] = dqdt[indi+k1] dqdt_tmp1[7+k1] = dqdt[indj+k1] end # Add in partial derivatives with respect to time: # Need to multiply by 1/2 since we're taking 1/2 time step: # BLAS.gemm!('N','N',uno,jac_ij,dqdt_tmp1,half,dqdt_ij) dqdt_ij .*= half dqdt_ij .+= *(jac_ij,dqdt_tmp1) + dqdt_tmp1 # Copy back time derivatives: @inbounds for k1=1:7 dqdt[indi+k1] = dqdt_ij[ k1] dqdt[indj+k1] = dqdt_ij[7+k1] end # println("dqdt 4: i: ",i," j: ",j," diff: ",dqdt-dqdt_save) # dqdt_save .= dqdt end end end # Looks like we are missing phic! here: [ ] # Since I haven't added dqdt to phic yet, for now, set jac_phi equal to identity matrix # (since this is commented out within phisalpha): #jac_phi .= eye(T,sevn) phic!(x,v,xerror,verror,h,m,n,jac_phi,dqdt_phi,pair) phisalpha!(x,v,xerror,verror,h,m,two,n,jac_phi,dqdt_phi,pair) # 10% # Add in time derivative with respect to prior parameters: #BLAS.gemm!('N','N',uno,jac_phi,dqdt,uno,dqdt_phi) # Copy result to dqdt: dqdt .+= dqdt_phi + *(jac_phi,dqdt) #println("dqdt 5: ",dqdt-dqdt_save) #dqdt_save .= dqdt indi=0; indj=0 @inbounds for i=n-1:-1:1 indi=(i-1)*7 @inbounds for j=n:-1:i+1 if ~pair[i,j] # Check to see if kicks have not been applied indj=(j-1)*7 # kepler_driftij!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij,false) # 23% kepler_driftij_gamma!(m,x,v,xerror,verror,i,j,h2,jac_ij,dqdt_ij,false) # 23% # Copy current time derivatives for multiplication purposes: @inbounds for k1=1:7 dqdt_tmp1[ k1] = dqdt[indi+k1] dqdt_tmp1[7+k1] = dqdt[indj+k1] end # Add in partial derivatives with respect to time: # Need to multiply by 1/2 since we're taking 1/2 time step: #BLAS.gemm!('N','N',uno,jac_ij,dqdt_tmp1,half,dqdt_ij) dqdt_ij .*= half dqdt_ij .+= *(jac_ij,dqdt_tmp1) + dqdt_tmp1 # Copy back time derivatives: @inbounds for k1=1:7 dqdt[indi+k1] = dqdt_ij[ k1] dqdt[indj+k1] = dqdt_ij[7+k1] end # dqdt_save .= dqdt # println("dqdt 7: ",dqdt-dqdt_save) # println("dqdt 6: i: ",i," j: ",j," diff: ",dqdt-dqdt_save) # dqdt_save .= dqdt end end end drift!(x,v,xerror,verror,h2,n) # Compute time derivative of drift step: @inbounds for i=1:n, k=1:3 dqdt[(i-1)*7+k] += half*v[k,i] + h2*dqdt[(i-1)*7+3+k] end fill!(dqdt_kick,zilch) kickfast!(x,v,xerror,verror,h/6,m,n,jac_kick,dqdt_kick,pair) dqdt_kick /= 6 # Since step is h/6 # Copy result to dqdt: dqdt .+= dqdt_kick + *(jac_kick,dqdt) #println("dqdt 8: ",dqdt-dqdt_save) #dqdt_save .= dqdt #println("dqdt 9: ",dqdt-dqdt_save) return end function ahl21!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},n::Int64,pair::Array{Bool,2}) where {T <: Real} h2 = 0.5*h kickfast!(x,v,xerror,verror,h/6,m,n,pair) drift!(x,v,xerror,verror,h2,n) @inbounds for i=1:n-1 for j=i+1:n if ~pair[i,j] kepler_driftij_gamma!(m,x,v,xerror,verror,i,j,h2,true) end end end phic!(x,v,xerror,verror,h,m,n,pair) phisalpha!(x,v,xerror,verror,h,m,convert(T,2),n,pair) for i=n-1:-1:1 for j=n:-1:i+1 if ~pair[i,j] kepler_driftij_gamma!(m,x,v,xerror,verror,i,j,h2,false) end end end drift!(x,v,xerror,verror,h2,n) kickfast!(x,v,xerror,verror,h/6,m,n,pair) return end function drift!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,n::Int64,jac_step::Array{T,2},jac_error::Array{T,2}) where {T <: Real} indi = 0 @inbounds for i=1:n indi = (i-1)*7 for j=1:NDIM x[j,i],xerror[j,i] = comp_sum(x[j,i],xerror[j,i],h*v[j,i]) end # Now for Jacobian: for k=1:7*n, j=1:NDIM jac_step[indi+j,k],jac_error[indi+j,k] = comp_sum(jac_step[indi+j,k],jac_error[indi+j,k],h*jac_step[indi+3+j,k]) end end return end function drift!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,n::Int64) where {T <: Real} @inbounds for i=1:n, j=1:NDIM x[j,i],xerror[j,i] = comp_sum(x[j,i],xerror[j,i],h*v[j,i]) end return end function kickfast!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},n::Int64,jac_step::Array{T,2},dqdt_kick::Array{T,1},pair::Array{Bool,2}) where {T <: Real} rij = zeros(T,3) # Getting rid of identity since we will add that back in in calling routines: fill!(jac_step,zero(T)) #jac_step.=eye(T,7*n) @inbounds for i=1:n-1 indi = (i-1)*7 for j=i+1:n indj = (j-1)*7 if pair[i,j] for k=1:3 rij[k] = x[k,i] - x[k,j] end r2inv = 1.0/(rij[1]*rij[1]+rij[2]*rij[2]+rij[3]*rij[3]) r3inv = r2inv*sqrt(r2inv) for k=1:3 fac = h*GNEWT*rij[k]*r3inv # Apply impulses: #v[k,i] -= m[j]*fac v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i],-m[j]*fac) #v[k,j] += m[i]*fac v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j], m[i]*fac) # Compute time derivative: dqdt_kick[indi+3+k] -= m[j]*fac/h dqdt_kick[indj+3+k] += m[i]*fac/h # Computing the derivative # Mass derivative of acceleration vector (10/6/17 notes): # Impulse of ith particle depends on mass of jth particle: jac_step[indi+3+k,indj+7] -= fac # Impulse of jth particle depends on mass of ith particle: jac_step[indj+3+k,indi+7] += fac # x derivative of acceleration vector: fac *= 3.0*r2inv # Dot product x_ij.\delta x_ij means we need to sum over components: for p=1:3 jac_step[indi+3+k,indi+p] += fac*m[j]*rij[p] jac_step[indi+3+k,indj+p] -= fac*m[j]*rij[p] jac_step[indj+3+k,indj+p] += fac*m[i]*rij[p] jac_step[indj+3+k,indi+p] -= fac*m[i]*rij[p] end # Final term has no dot product, so just diagonal: fac = h*GNEWT*r3inv jac_step[indi+3+k,indi+k] -= fac*m[j] jac_step[indi+3+k,indj+k] += fac*m[j] jac_step[indj+3+k,indj+k] -= fac*m[i] jac_step[indj+3+k,indi+k] += fac*m[i] end end end end return end function kickfast!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},n::Int64,pair::Array{Bool,2}) where {T <: Real} rij = zeros(T,3) @inbounds for i=1:n-1 for j = i+1:n if pair[i,j] r2 = zero(T) for k=1:3 rij[k] = x[k,i] - x[k,j] r2 += rij[k]*rij[k] end r3_inv = 1.0/(r2*sqrt(r2)) for k=1:3 fac = h*GNEWT*rij[k]*r3_inv v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i],-m[j]*fac) v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j], m[i]*fac) end end end end return end function phic!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},n::Int64,jac_step::Array{T,2},dqdt_phi::Array{T,1},pair::Array{Bool,2}) where {T <: Real} a = zeros(T,3,n) rij = zeros(T,3) aij = zeros(T,3) dadq = zeros(T,3,n,4,n) # There is no velocity dependence dotdadq = zeros(T,4,n) # There is no velocity dependence # Set jac_step to zeros: #jac_step.=eye(T,7*n) fill!(jac_step,zero(T)) fac = 0.0; fac1 = 0.0; fac2 = 0.0; fac3 = 0.0; r1 = 0.0; r2 = 0.0; r3 = 0.0 coeff = h^3/36*GNEWT @inbounds for i=1:n-1 indi = (i-1)*7 for j=i+1:n if pair[i,j] indj = (j-1)*7 for k=1:3 rij[k] = x[k,i] - x[k,j] end r2inv = inv(dot(rij,rij)) r3inv = r2inv*sqrt(r2inv) for k=1:3 # Apply impulses: fac = GNEWT*rij[k]*r3inv facv = fac*2*h/3 #v[k,i] -= m[j]*facv v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i],-m[j]*facv) #v[k,j] += m[i]*facv v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],m[i]*facv) # Compute time derivative: dqdt_phi[indi+3+k] -= 3/h*m[j]*facv dqdt_phi[indj+3+k] += 3/h*m[i]*facv a[k,i] -= m[j]*fac a[k,j] += m[i]*fac # Impulse of ith particle depends on mass of jth particle: jac_step[indi+3+k,indj+7] -= facv # Impulse of jth particle depends on mass of ith particle: jac_step[indj+3+k,indi+7] += facv # x derivative of acceleration vector: facv *= 3.0*r2inv # Dot product x_ij.\delta x_ij means we need to sum over components: for p=1:3 jac_step[indi+3+k,indi+p] += facv*m[j]*rij[p] jac_step[indi+3+k,indj+p] -= facv*m[j]*rij[p] jac_step[indj+3+k,indj+p] += facv*m[i]*rij[p] jac_step[indj+3+k,indi+p] -= facv*m[i]*rij[p] end # Final term has no dot product, so just diagonal: facv = 2h/3*GNEWT*r3inv jac_step[indi+3+k,indi+k] -= facv*m[j] jac_step[indi+3+k,indj+k] += facv*m[j] jac_step[indj+3+k,indj+k] -= facv*m[i] jac_step[indj+3+k,indi+k] += facv*m[i] # Mass derivative of acceleration vector (10/6/17 notes): # Since there is no velocity dependence, this is fourth parameter. # Acceleration of ith particle depends on mass of jth particle: dadq[k,i,4,j] -= fac dadq[k,j,4,i] += fac # x derivative of acceleration vector: fac *= 3.0*r2inv # Dot product x_ij.\delta x_ij means we need to sum over components: for p=1:3 dadq[k,i,p,i] += fac*m[j]*rij[p] dadq[k,i,p,j] -= fac*m[j]*rij[p] dadq[k,j,p,j] += fac*m[i]*rij[p] dadq[k,j,p,i] -= fac*m[i]*rij[p] end # Final term has no dot product, so just diagonal: fac = GNEWT*r3inv dadq[k,i,k,i] -= fac*m[j] dadq[k,i,k,j] += fac*m[j] dadq[k,j,k,j] -= fac*m[i] dadq[k,j,k,i] += fac*m[i] end end end end # Next, compute g_i acceleration vector. # Note that jac_step[(i-1)*7+k,(j-1)*7+p] is the derivative of the kth coordinate # of planet i with respect to the pth coordinate of planet j. indi = 0; indj=0; indd = 0 @inbounds for i=1:n-1 indi = (i-1)*7 for j=i+1:n if pair[i,j] # correction for Kepler pairs indj = (j-1)*7 for k=1:3 aij[k] = a[k,i] - a[k,j] rij[k] = x[k,i] - x[k,j] end # Compute dot product of r_ij with \delta a_ij: fill!(dotdadq,0.0) @inbounds for d=1:n, p=1:4, k=1:3 dotdadq[p,d] += rij[k]*(dadq[k,i,p,d]-dadq[k,j,p,d]) end r2 = dot(rij,rij) r1 = sqrt(r2) ardot = dot(aij,rij) fac1 = coeff/r1^5 fac2 = 3*ardot for k=1:3 fac = fac1*(rij[k]*fac2- r2*aij[k]) #v[k,i] += m[j]*fac v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i],m[j]*fac) #v[k,j] -= m[i]*fac v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],-m[i]*fac) # Mass derivative (first part is easy): jac_step[indi+3+k,indj+7] += fac jac_step[indj+3+k,indi+7] -= fac # Position derivatives: fac *= 5.0/r2 for p=1:3 jac_step[indi+3+k,indi+p] -= fac*m[j]*rij[p] jac_step[indi+3+k,indj+p] += fac*m[j]*rij[p] jac_step[indj+3+k,indj+p] -= fac*m[i]*rij[p] jac_step[indj+3+k,indi+p] += fac*m[i]*rij[p] end # Diagonal position terms: fac = fac1*fac2 jac_step[indi+3+k,indi+k] += fac*m[j] jac_step[indi+3+k,indj+k] -= fac*m[j] jac_step[indj+3+k,indj+k] += fac*m[i] jac_step[indj+3+k,indi+k] -= fac*m[i] # Dot product \delta rij terms: fac = -2*fac1*aij[k] for p=1:3 fac3 = fac*rij[p] + fac1*3.0*rij[k]*aij[p] jac_step[indi+3+k,indi+p] += m[j]*fac3 jac_step[indi+3+k,indj+p] -= m[j]*fac3 jac_step[indj+3+k,indj+p] += m[i]*fac3 jac_step[indj+3+k,indi+p] -= m[i]*fac3 end # Diagonal acceleration terms: fac = -fac1*r2 # Duoh. For dadq, have to loop over all other parameters! @inbounds for d=1:n indd = (d-1)*7 for p=1:3 jac_step[indi+3+k,indd+p] += fac*m[j]*(dadq[k,i,p,d]-dadq[k,j,p,d]) jac_step[indj+3+k,indd+p] -= fac*m[i]*(dadq[k,i,p,d]-dadq[k,j,p,d]) end # Don't forget mass-dependent term: jac_step[indi+3+k,indd+7] += fac*m[j]*(dadq[k,i,4,d]-dadq[k,j,4,d]) jac_step[indj+3+k,indd+7] -= fac*m[i]*(dadq[k,i,4,d]-dadq[k,j,4,d]) end # Now, for the final term: (\delta a_ij . r_ij ) r_ij fac = 3.0*fac1*rij[k] @inbounds for d=1:n indd = (d-1)*7 for p=1:3 jac_step[indi+3+k,indd+p] += fac*m[j]*dotdadq[p,d] jac_step[indj+3+k,indd+p] -= fac*m[i]*dotdadq[p,d] end jac_step[indi+3+k,indd+7] += fac*m[j]*dotdadq[4,d] jac_step[indj+3+k,indd+7] -= fac*m[i]*dotdadq[4,d] end end end end end return end function phic!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},n::Int64,pair::Array{Bool,2}) where {T <: Real} a = zeros(T,3,n) rij = zeros(T,3) aij = zeros(T,3) @inbounds for i=1:n-1, j = i+1:n if pair[i,j] # kick group r2 = 0.0 for k=1:3 rij[k] = x[k,i] - x[k,j] r2 += rij[k]^2 end r3_inv = 1.0/(r2*sqrt(r2)) for k=1:3 fac = GNEWT*rij[k]*r3_inv facv = fac*2*h/3 v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i],-m[j]*facv) v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],m[i]*facv) a[k,i] -= m[j]*fac a[k,j] += m[i]*fac end end end coeff = h^3/36*GNEWT @inbounds for i=1:n-1 ,j=i+1:n if pair[i,j] # kick group for k=1:3 aij[k] = a[k,i] - a[k,j] rij[k] = x[k,i] - x[k,j] end r2 = dot(rij,rij) r5inv = 1.0/(r2^2*sqrt(r2)) ardot = dot(aij,rij) for k=1:3 fac = coeff*r5inv*(rij[k]*3*ardot-r2*aij[k]) v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i],m[j]*fac) v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],-m[i]*fac) end end end return end function phisalpha!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},alpha::T,n::Int64,jac_step::Array{T,2},dqdt_phi::Array{T,1},pair::Array{Bool,2}) where {T <: Real} a = zeros(T,3,n) dadq = zeros(T,3,n,4,n) # There is no velocity dependence dotdadq = zeros(T,4,n) # There is no velocity dependence rij = zeros(T,3) aij = zeros(T,3) coeff = alpha*h^3/96*2*GNEWT fac = 0.0; fac1 = 0.0; fac2 = 0.0; fac3 = 0.0; r1 = 0.0; r2 = 0.0; r3 = 0.0 @inbounds for i=1:n-1 indi = (i-1)*7 for j=i+1:n if ~pair[i,j] # correction for Kepler pairs indj = (j-1)*7 for k=1:3 rij[k] = x[k,i] - x[k,j] end r2 = rij[1]*rij[1]+rij[2]*rij[2]+rij[3]*rij[3] r3 = r2*sqrt(r2) for k=1:3 fac = GNEWT*rij[k]/r3 a[k,i] -= m[j]*fac a[k,j] += m[i]*fac # Mass derivative of acceleration vector (10/6/17 notes): # Since there is no velocity dependence, this is fourth parameter. # Acceleration of ith particle depends on mass of jth particle: dadq[k,i,4,j] -= fac dadq[k,j,4,i] += fac # x derivative of acceleration vector: fac *= 3.0/r2 # Dot product x_ij.\delta x_ij means we need to sum over components: for p=1:3 dadq[k,i,p,i] += fac*m[j]*rij[p] dadq[k,i,p,j] -= fac*m[j]*rij[p] dadq[k,j,p,j] += fac*m[i]*rij[p] dadq[k,j,p,i] -= fac*m[i]*rij[p] end # Final term has no dot product, so just diagonal: fac = GNEWT/r3 dadq[k,i,k,i] -= fac*m[j] dadq[k,i,k,j] += fac*m[j] dadq[k,j,k,j] -= fac*m[i] dadq[k,j,k,i] += fac*m[i] end end end end # Next, compute \tilde g_i acceleration vector (this is rewritten # slightly to avoid reference to \tilde a_i): # Note that jac_step[(i-1)*7+k,(j-1)*7+p] is the derivative of the kth coordinate # of planet i with respect to the pth coordinate of planet j. indi = 0; indj=0; indd = 0 @inbounds for i=1:n-1 indi = (i-1)*7 for j=i+1:n if ~pair[i,j] # correction for Kepler pairs indj = (j-1)*7 for k=1:3 aij[k] = a[k,i] - a[k,j] rij[k] = x[k,i] - x[k,j] end # Compute dot product of r_ij with \delta a_ij: fill!(dotdadq,0.0) @inbounds for d=1:n, p=1:4, k=1:3 dotdadq[p,d] += rij[k]*(dadq[k,i,p,d]-dadq[k,j,p,d]) end r2 = rij[1]*rij[1]+rij[2]*rij[2]+rij[3]*rij[3] r1 = sqrt(r2) ardot = aij[1]*rij[1]+aij[2]*rij[2]+aij[3]*rij[3] fac1 = coeff/r1^5 fac2 = (2*GNEWT*(m[i]+m[j])/r1 + 3*ardot) for k=1:3 fac = fac1*(rij[k]*fac2- r2*aij[k]) v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i], m[j]*fac) v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],-m[i]*fac) # Compute time derivative: dqdt_phi[indi+3+k] += 3/h*m[j]*fac dqdt_phi[indj+3+k] -= 3/h*m[i]*fac # Mass derivative (first part is easy): jac_step[indi+3+k,indj+7] += fac jac_step[indj+3+k,indi+7] -= fac # Position derivatives: fac *= 5.0/r2 for p=1:3 jac_step[indi+3+k,indi+p] -= fac*m[j]*rij[p] jac_step[indi+3+k,indj+p] += fac*m[j]*rij[p] jac_step[indj+3+k,indj+p] -= fac*m[i]*rij[p] jac_step[indj+3+k,indi+p] += fac*m[i]*rij[p] end # Second mass derivative: fac = 2*GNEWT*fac1*rij[k]/r1 jac_step[indi+3+k,indi+7] += fac*m[j] jac_step[indi+3+k,indj+7] += fac*m[j] jac_step[indj+3+k,indj+7] -= fac*m[i] jac_step[indj+3+k,indi+7] -= fac*m[i] # (There's also a mass term in dadq [x]. See below.) # Diagonal position terms: fac = fac1*fac2 jac_step[indi+3+k,indi+k] += fac*m[j] jac_step[indi+3+k,indj+k] -= fac*m[j] jac_step[indj+3+k,indj+k] += fac*m[i] jac_step[indj+3+k,indi+k] -= fac*m[i] # Dot product \delta rij terms: fac = -2*fac1*(rij[k]*GNEWT*(m[i]+m[j])/(r2*r1)+aij[k]) for p=1:3 fac3 = fac*rij[p] + fac1*3.0*rij[k]*aij[p] jac_step[indi+3+k,indi+p] += m[j]*fac3 jac_step[indi+3+k,indj+p] -= m[j]*fac3 jac_step[indj+3+k,indj+p] += m[i]*fac3 jac_step[indj+3+k,indi+p] -= m[i]*fac3 end # Diagonal acceleration terms: fac = -fac1*r2 # Duoh. For dadq, have to loop over all other parameters! @inbounds for d=1:n indd = (d-1)*7 for p=1:3 jac_step[indi+3+k,indd+p] += fac*m[j]*(dadq[k,i,p,d]-dadq[k,j,p,d]) jac_step[indj+3+k,indd+p] -= fac*m[i]*(dadq[k,i,p,d]-dadq[k,j,p,d]) end # Don't forget mass-dependent term: jac_step[indi+3+k,indd+7] += fac*m[j]*(dadq[k,i,4,d]-dadq[k,j,4,d]) jac_step[indj+3+k,indd+7] -= fac*m[i]*(dadq[k,i,4,d]-dadq[k,j,4,d]) end # Now, for the final term: (\delta a_ij . r_ij ) r_ij fac = 3.0*fac1*rij[k] @inbounds for d=1:n indd = (d-1)*7 for p=1:3 jac_step[indi+3+k,indd+p] += fac*m[j]*dotdadq[p,d] jac_step[indj+3+k,indd+p] -= fac*m[i]*dotdadq[p,d] end jac_step[indi+3+k,indd+7] += fac*m[j]*dotdadq[4,d] jac_step[indj+3+k,indd+7] -= fac*m[i]*dotdadq[4,d] end end end end end return end function phisalpha!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},alpha::T,n::Int64,pair::Array{Bool,2}) where {T <: Real} a = zeros(T,3,n) rij = zeros(T,3) aij = zeros(T,3) coeff = alpha*h^3/96*2*GNEWT fac = zero(T); fac1 = zero(T); fac2 = zero(T); r1 = zero(T); r2 = zero(T); r3 = zero(T) @inbounds for i=1:n-1 for j = i+1:n if ~pair[i,j] # correction for Kepler pairs for k=1:3 rij[k] = x[k,i] - x[k,j] end r2 = rij[1]*rij[1]+rij[2]*rij[2]+rij[3]*rij[3] r3 = r2*sqrt(r2) for k=1:3 fac = GNEWT*rij[k]/r3 a[k,i] -= m[j]*fac a[k,j] += m[i]*fac end end end end # Next, compute \tilde g_i acceleration vector (this is rewritten # slightly to avoid reference to \tilde a_i): @inbounds for i=1:n-1 for j=i+1:n if ~pair[i,j] # correction for Kepler pairs for k=1:3 aij[k] = a[k,i] - a[k,j] rij[k] = x[k,i] - x[k,j] end r2 = rij[1]*rij[1]+rij[2]*rij[2]+rij[3]*rij[3] r1 = sqrt(r2) ardot = aij[1]*rij[1]+aij[2]*rij[2]+aij[3]*rij[3] fac1 = coeff/r1^5 fac2 = (2*GNEWT*(m[i]+m[j])/r1 + 3*ardot) for k=1:3 fac = fac1*(rij[k]*fac2- r2*aij[k]) v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i], m[j]*fac) v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],-m[i]*fac) end end end end return end function kepler_driftij_gamma!(m::Array{T,1},x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},i::Int64,j::Int64,h::T,jac_ij::Array{T,2},dqdt::Array{T,1},drift_first::Bool) where {T <: Real} # Initial state: x0 = zeros(T,NDIM) # x0 = positions of body i relative to j v0 = zeros(T,NDIM) # v0 = velocities of body i relative to j @inbounds for k=1:NDIM x0[k] = x[k,i] - x[k,j] v0[k] = v[k,i] - v[k,j] end gm = GNEWT*(m[i]+m[j]) # jac_ij should be the Jacobian for going from (x_{0,i},v_{0,i},m_i) & (x_{0,j},v_{0,j},m_j) # to (x_i,v_i,m_i) & (x_j,v_j,m_j), a 14x14 matrix for the 3-dimensional case. # Fill with zeros for now: #jac_ij .= eye(T,14) fill!(jac_ij,zero(T)) if gm == 0 # Do nothing # for k=1:3 # x[k,i] += h*v[k,i] # x[k,j] += h*v[k,j] # end else delxv = zeros(T,6) jac_kepler = zeros(T,6,8) jac_mass = zeros(T,6) jac_delxv_gamma!(x0,v0,gm,h,drift_first,delxv,jac_kepler,jac_mass,false) # kepler_drift_step!(gm, h, state0, state,jac_kepler,drift_first) mijinv::T =one(T)/(m[i] + m[j]) mi::T = m[i]*mijinv # Normalize the masses mj::T = m[j]*mijinv @inbounds for k=1:3 # Add kepler-drift differences, weighted by masses, to start of step: x[k,i],xerror[k,i] = comp_sum(x[k,i],xerror[k,i], mj*delxv[k]) x[k,j],xerror[k,j] = comp_sum(x[k,j],xerror[k,j],-mi*delxv[k]) end @inbounds for k=1:3 v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i], mj*delxv[3+k]) v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],-mi*delxv[3+k]) end # Compute Jacobian: @inbounds for l=1:6, k=1:6 # Compute derivatives of x_i,v_i with respect to initial conditions: jac_ij[ k, l] += mj*jac_kepler[k,l] jac_ij[ k,7+l] -= mj*jac_kepler[k,l] # Compute derivatives of x_j,v_j with respect to initial conditions: jac_ij[7+k, l] -= mi*jac_kepler[k,l] jac_ij[7+k,7+l] += mi*jac_kepler[k,l] end @inbounds for k=1:6 # Compute derivatives of x_i,v_i with respect to the masses: # println("Old dxv/dm_i: ",-mj*delxv[k]*mijinv + GNEWT*mj*jac_kepler[ k,7]) # jac_ij[ k, 7] = -mj*delxv[k]*mijinv + GNEWT*mj*jac_kepler[ k,7] # println("New dx/dm_i: ",jac_mass[k]*m[j]) jac_ij[ k, 7] = jac_mass[k]*m[j] jac_ij[ k,14] = mi*delxv[k]*mijinv + GNEWT*mj*jac_kepler[ k,7] # Compute derivatives of x_j,v_j with respect to the masses: jac_ij[ 7+k, 7] = -mj*delxv[k]*mijinv - GNEWT*mi*jac_kepler[ k,7] # println("Old dxv/dm_j: ",mi*delxv[k]*mijinv - GNEWT*mi*jac_kepler[ k,7]) # jac_ij[ 7+k,14] = mi*delxv[k]*mijinv - GNEWT*mi*jac_kepler[ k,7] # println("New dxv/dm_j: ",-jac_mass[k]*m[i]) jac_ij[ 7+k,14] = -jac_mass[k]*m[i] end end # The following lines are meant to compute dq/dt for kepler_driftij, # but they currently contain an error (test doesn't pass in test_ahl21.jl). [ ] @inbounds for k=1:6 # Position/velocity derivative, body i: dqdt[ k] = mj*jac_kepler[k,8] # Position/velocity derivative, body j: dqdt[7+k] = -mi*jac_kepler[k,8] end return end function kepler_driftij_gamma!(m::Array{T,1},x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},i::Int64,j::Int64,h::T,drift_first::Bool) where {T <: Real} x0 = zeros(T,NDIM) # x0 = positions of body i relative to j v0 = zeros(T,NDIM) # v0 = velocities of body i relative to j @inbounds for k=1:NDIM x0[k] = x[k,i] - x[k,j] v0[k] = v[k,i] - v[k,j] end gm = GNEWT*(m[i]+m[j]) if gm == 0 # Do nothing # for k=1:3 # x[k,i] += h*v[k,i] # x[k,j] += h*v[k,j] # end else # Compute differences in x & v over time step: delxv = jac_delxv_gamma!(x0,v0,gm,h,drift_first) mijinv =1.0/(m[i] + m[j]) mi = m[i]*mijinv # Normalize the masses mj = m[j]*mijinv @inbounds for k=1:3 # Add kepler-drift differences, weighted by masses, to start of step: x[k,i],xerror[k,i] = comp_sum(x[k,i],xerror[k,i], mj*delxv[k]) x[k,j],xerror[k,j] = comp_sum(x[k,j],xerror[k,j],-mi*delxv[k]) v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i], mj*delxv[3+k]) v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],-mi*delxv[3+k]) end end return end function jac_delxv_gamma!(x0::Array{T,1},v0::Array{T,1},k::T,h::T,drift_first::Bool;grad::Bool=false,auto::Bool=false,dlnq::T=convert(T,0.0),debug=false) where {T <: Real} # Using autodiff, computes Jacobian of delx & delv with respect to x0, v0, k & h. # Autodiff requires a single-vector input, so create an array to hold the independent variables: input = zeros(T,8) input[1:3]=x0; input[4:6]=v0; input[7]=k; input[8]=h if grad if debug # Also output gamma, r, fm1, dfdt, gmh, dgdtm1, and for debugging: delxv_jac = zeros(T,12,8) else # Output \delta x & \delta v only: delxv_jac = zeros(T,6,8) end end # Create a closure so that the function knows value of drift_first: function delx_delv(input::Array{T2,1}) where {T2 <: Real} # input = x0,v0,k,h,drift_first # Compute delx and delv from h, s, k, beta0, x0 and v0: x0 = input[1:3]; v0 = input[4:6]; k = input[7]; h = input[8] # Compute r0: drift_first ? r0 = norm(x0-h*v0) : r0 = norm(x0) # And its inverse: r0inv = inv(r0) # Compute beta_0: beta0 = 2k*r0inv-dot(v0,v0) beta0inv = inv(beta0) signb = sign(beta0) sqb = sqrt(signb*beta0) zeta = k-r0*beta0 gamma_guess = zero(T2) # Compute \eta_0 = x_0 . v_0: drift_first ? eta = dot(x0-h*v0,v0) : eta = dot(x0,v0) if zeta != zero(T2) # Make sure we have a cubic in gamma (and don't divide by zero): gamma_guess = cubic1(3eta*sqb/zeta,6r0*signb*beta0/zeta,-6h*signb*beta0*sqb/zeta) else # Check that we have a quadratic in gamma (and don't divide by zero): if eta != zero(T2) reta = r0/eta disc = reta^2+2h/eta disc > zero(T2) ? gamma_guess = sqb*(-reta+sqrt(disc)) : gamma_guess = h*r0inv*sqb else gamma_guess = h*r0inv*sqb end end gamma = copy(gamma_guess) # Make sure prior two steps differ: gamma1 = 2*copy(gamma) gamma2 = 3*copy(gamma) iter = 0 ITMAX = 20 # Compute coefficients: (8/28/19 notes) # c1 = k; c2 = -zeta; c3 = -eta*sqb; c4 = sqb*(eta-h*beta0); c5 = eta*signb*sqb c1 = k; c2 = -2zeta; c3 = 2*eta*signb*sqb; c4 = -sqb*h*beta0; c5 = 2eta*signb*sqb # Solve for gamma: while true gamma2 = gamma1 gamma1 = gamma xx = 0.5*gamma # xx = gamma if beta0 > 0 sx = sin(xx); cx = cos(xx) else sx = sinh(xx); cx = exp(-xx)+sx end # gamma -= (c1*gamma+c2*sx+c3*cx+c4)/(c2*cx+c5*sx+c1) gamma -= (k*gamma+c2*sx*cx+c3*sx^2+c4)/(2signb*zeta*sx^2+c5*sx*cx+r0*beta0) iter +=1 if iter >= ITMAX || gamma == gamma2 || gamma == gamma1 break end end # if typeof(gamma) == Float64 # println("s: ",gamma/sqb) # end # Set up a single output array for delx and delv: if debug delxv = zeros(T2,12) else delxv = zeros(T2,6) end # Since we updated gamma, need to recompute: xx = 0.5*gamma if beta0 > 0 sx = sin(xx); cx = cos(xx) else sx = sinh(xx); cx = exp(-xx)+sx end # Now, compute final values. Compute Wisdom/Hernandez G_i^\beta(s) functions: g1bs = 2sx*cx/sqb g2bs = 2signb*sx^2*beta0inv g0bs = one(T2)-beta0*g2bs g3bs = G3(gamma,beta0) h1 = zero(T2); h2 = zero(T2) # if typeof(g1bs) == Float64 # println("g1: ",g1bs," g2: ",g2bs," g3: ",g3bs) # end # Compute r from equation (35): r = r0*g0bs+eta*g1bs+k*g2bs # if typeof(r) == Float64 # println("r: ",r) # end rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv # [x] if drift_first # Drift backwards before Kepler step: (1/22/2018) fm1 = -k*r0inv*g2bs # [x] # This is given in 2/7/2018 notes: g-h*f # gmh = k*r0inv*(r0*(g1bs*g2bs-g3bs)+eta*g2bs^2+k*g3bs*g2bs) # [x] # println("Old gmh: ",gmh," new gmh: ",k*r0inv*(h*g2bs-r0*g3bs)) # [x] gmh = k*r0inv*(h*g2bs-r0*g3bs) # [x] else # Drift backwards after Kepler step: (1/24/2018) # The following line is f-1-h fdot: h1= H1(gamma,beta0); h2= H2(gamma,beta0) # fm1 = k*rinv*(g2bs-k*r0inv*H1(gamma,beta0)) # [x] fm1 = k*rinv*(g2bs-k*r0inv*h1) # [x] # This is g-h*dgdt # gmh = k*rinv*(r0*H2(gamma,beta0)+eta*H1(gamma,beta0)) # [x] gmh = k*rinv*(r0*h2+eta*h1) # [x] end # Compute velocity component functions: if drift_first # This is gdot - h fdot - 1: # dgdtm1 = k*r0inv*rinv*(r0*g0bs*g2bs+eta*g1bs*g2bs+k*g1bs*g3bs) # [x] # println("gdot-h fdot-1: ",dgdtm1," alternative expression: ",k*r0inv*rinv*(h*g1bs-r0*g2bs)) dgdtm1 = k*r0inv*rinv*(h*g1bs-r0*g2bs) else # This is gdot - 1: dgdtm1 = -k*rinv*g2bs # [x] end # if typeof(fm1) == Float64 # println("fm1: ",fm1," dfdt: ",dfdt," gmh: ",gmh," dgdt-1: ",dgdtm1) # end @inbounds for j=1:3 # Compute difference vectors (finish - start) of step: delxv[ j] = fm1*x0[j]+gmh*v0[j] # position x_ij(t+h)-x_ij(t) - h*v_ij(t) or -h*v_ij(t+h) end @inbounds for j=1:3 delxv[3+j] = dfdt*x0[j]+dgdtm1*v0[j] # velocity v_ij(t+h)-v_ij(t) end if debug delxv[7] = gamma delxv[8] = r delxv[9] = fm1 delxv[10] = dfdt delxv[11] = gmh delxv[12] = dgdtm1 end if grad == true && auto == false && dlnq == 0.0 # Compute gradient analytically: jac_mass = zeros(T,6) compute_jacobian_gamma!(gamma,g0bs,g1bs,g2bs,g3bs,h1,h2,dfdt,fm1,gmh,dgdtm1,r0,r,r0inv,rinv,k,h,beta0,beta0inv,eta,sqb,zeta,x0,v0,delxv_jac,jac_mass,drift_first,debug) end return delxv end # Use autodiff to compute Jacobian: if grad if auto # delxv_jac = ForwardDiff.jacobian(delx_delv,input) if debug delxv = zeros(T,12) else delxv = zeros(T,6) end out = DiffResults.JacobianResult(delxv,input) ForwardDiff.jacobian!(out,delx_delv,input) delxv_jac = DiffResults.jacobian(out) delxv = DiffResults.value(out) elseif dlnq != 0.0 # Use finite differences to compute Jacobian: if debug delxv_jac = zeros(T,12,8) else delxv_jac = zeros(T,6,8) end delxv = delx_delv(input) @inbounds for j=1:8 # Difference the jth component: inputp = copy(input); dp = dlnq*inputp[j]; inputp[j] += dp delxvp = delx_delv(inputp) inputm = copy(input); inputm[j] -= dp delxvm = delx_delv(inputm) delxv_jac[:,j] = (delxvp-delxvm)/(2*dp) end else # If grad = true and dlnq = 0.0, then the above routine will compute Jacobian analytically. delxv = delx_delv(input) end # Return Jacobian: return delxv::Array{T,1},delxv_jac::Array{T,2} else return delx_delv(input)::Array{T,1} end end function jac_delxv_gamma!(x0::Array{T,1},v0::Array{T,1},k::T,h::T,drift_first::Bool,delxv::Array{T,1},delxv_jac::Array{T,2},jac_mass::Array{T,1},debug::Bool) where {T <: Real} # Compute r0: drift_first ? r0 = norm(x0-h*v0) : r0 = norm(x0) # And its inverse: r0inv = inv(r0) # Compute beta_0: beta0 = 2k*r0inv-dot(v0,v0) beta0inv = inv(beta0) signb = sign(beta0) sqb = sqrt(signb*beta0) zeta = k-r0*beta0 gamma_guess = zero(T) # Compute \eta_0 = x_0 . v_0: drift_first ? eta = dot(x0-h*v0,v0) : eta = dot(x0,v0) if zeta != zero(T) # Make sure we have a cubic in gamma (and don't divide by zero): gamma_guess = cubic1(3eta*sqb/zeta,6r0*signb*beta0/zeta,-6h*signb*beta0*sqb/zeta) else # Check that we have a quadratic in gamma (and don't divide by zero): if eta != zero(T) reta = r0/eta disc = reta^2+2h/eta disc > zero(T) ? gamma_guess = sqb*(-reta+sqrt(disc)) : gamma_guess = h*r0inv*sqb else gamma_guess = h*r0inv*sqb end end gamma = copy(gamma_guess) # Make sure prior two steps differ: gamma1 = 2*copy(gamma) gamma2 = 3*copy(gamma) iter = 0 ITMAX = 20 # Compute coefficients: (8/28/19 notes) c1 = k; c2 = -2zeta; c3 = 2*eta*signb*sqb; c4 = -sqb*h*beta0; c5 = 2eta*signb*sqb # Solve for gamma: while true gamma2 = gamma1 gamma1 = gamma xx = 0.5*gamma if beta0 > 0 sx = sin(xx); cx = cos(xx) else sx = sinh(xx); cx = exp(-xx)+sx end gamma -= (k*gamma+c2*sx*cx+c3*sx^2+c4)/(2signb*zeta*sx^2+c5*sx*cx+r0*beta0) iter +=1 if iter >= ITMAX || gamma == gamma2 || gamma == gamma1 break end end # Set up a single output array for delx and delv: fill!(delxv,zero(T)) # Since we updated gamma, need to recompute: xx = 0.5*gamma if beta0 > 0 sx = sin(xx); cx = cos(xx) else sx = sinh(xx); cx = exp(-xx)+sx end # Now, compute final values. Compute Wisdom/Hernandez G_i^\beta(s) functions: g1bs = 2sx*cx/sqb g2bs = 2signb*sx^2*beta0inv g0bs = one(T)-beta0*g2bs g3bs = G3(gamma,beta0) h1 = zero(T); h2 = zero(T) # Compute r from equation (35): r = r0*g0bs+eta*g1bs+k*g2bs rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv # [x] if drift_first # Drift backwards before Kepler step: (1/22/2018) fm1 = -k*r0inv*g2bs # [x] # This is given in 2/7/2018 notes: g-h*f gmh = k*r0inv*(h*g2bs-r0*g3bs) # [x] else # Drift backwards after Kepler step: (1/24/2018) # The following line is f-1-h fdot: h1= H1(gamma,beta0); h2= H2(gamma,beta0) fm1 = k*rinv*(g2bs-k*r0inv*h1) # [x] # This is g-h*dgdt gmh = k*rinv*(r0*h2+eta*h1) # [x] end # Compute velocity component functions: if drift_first # This is gdot - h fdot - 1: dgdtm1 = k*r0inv*rinv*(h*g1bs-r0*g2bs) else # This is gdot - 1: dgdtm1 = -k*rinv*g2bs # [x] end @inbounds for j=1:3 # Compute difference vectors (finish - start) of step: delxv[ j] = fm1*x0[j]+gmh*v0[j] # position x_ij(t+h)-x_ij(t) - h*v_ij(t) or -h*v_ij(t+h) end @inbounds for j=1:3 delxv[3+j] = dfdt*x0[j]+dgdtm1*v0[j] # velocity v_ij(t+h)-v_ij(t) end if debug delxv[7] = gamma delxv[8] = r delxv[9] = fm1 delxv[10] = dfdt delxv[11] = gmh delxv[12] = dgdtm1 end # Compute gradient analytically: compute_jacobian_gamma!(gamma,g0bs,g1bs,g2bs,g3bs,h1,h2,dfdt,fm1,gmh,dgdtm1,r0,r,r0inv,rinv,k,h,beta0,beta0inv,eta,sqb,zeta,x0,v0,delxv_jac,jac_mass,drift_first,debug) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
10896
# The DH17 integrator WITHOUT derivatives. """ Carries out the DH17 mapping with compensated summation. """ function dh17!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},h::T,m::Array{T,1},n::Int64,pair::Array{Bool,2}) where {T <: Real} alpha = convert(T,alpha0) h2 = 0.5*h # alpha = 0. is similar in precision to alpha=0.25 kickfast!(x,v,xerror,verror,h/6,m,n,pair) if alpha != 0.0 phisalpha!(x,v,xerror,verror,h,m,alpha,n,pair) end #mbig = big.(m); h2big = big(h2) #xbig = big.(x); vbig = big.(v) drift!(x,v,xerror,verror,h2,n) #drift!(xbig,vbig,h2big,n) #xcompare = convert(Array{T,2},xbig); vcompare = convert(Array{T,2},vbig) #x .= xcompare; v .= vcompare #hbig = big(h) @inbounds for i=1:n-1 @inbounds for j=i+1:n if ~pair[i,j] # xbig = big.(x); vbig = big.(v) driftij!(x,v,xerror,verror,i,j,-h2) # driftij!(xbig,vbig,i,j,-h2big) # xcompare = convert(Array{T,2},xbig); vcompare = convert(Array{T,2},vbig) # x .= xcompare; v .= vcompare # xbig = big.(x); vbig = big.(v) # keplerij!(mbig,xbig,vbig,i,j,h2big) # xcompare = convert(Array{T,2},xbig); vcompare = convert(Array{T,2},vbig) keplerij!(m,x,v,xerror,verror,i,j,h2) # x .= xcompare; v .= vcompare end end end # kick and correction for pairs which are kicked: phic!(x,v,xerror,verror,h,m,n,pair) if alpha != 1.0 # xbig = big.(x); vbig = big.(v) phisalpha!(x,v,xerror,verror,h,m,2.0*(1.0-alpha),n,pair) # phisalpha!(xbig,vbig,hbig,mbig,2*(1-big(alpha)),n,pair) # xcompare = convert(Array{T,2},xbig); vcompare = convert(Array{T,2},vbig) # x .= xcompare; v .= vcompare end @inbounds for i=n-1:-1:1 @inbounds for j=n:-1:i+1 if ~pair[i,j] # xbig = big.(x); vbig = big.(v) # keplerij!(mbig,xbig,vbig,i,j,h2big) #x = convert(Array{T,2},xbig); v = convert(Array{T,2},vbig) # xcompare = convert(Array{T,2},xbig); vcompare = convert(Array{T,2},vbig) keplerij!(m,x,v,xerror,verror,i,j,h2) # x .= xcompare; v .= vcompare # xbig = big.(x); vbig = big.(v) driftij!(x,v,xerror,verror,i,j,-h2) # driftij!(xbig,vbig,i,j,-h2big) # xcompare = convert(Array{T,2},xbig); vcompare = convert(Array{T,2},vbig) # x .= xcompare; v .= vcompare end end end #xbig = big.(x); vbig = big.(v) drift!(x,v,xerror,verror,h2,n) #drift!(xbig,vbig,h2big,n) #xcompare = convert(Array{T,2},xbig); vcompare = convert(Array{T,2},vbig) #x .= xcompare; v .= vcompare if alpha != 0.0 phisalpha!(x,v,xerror,verror,h,m,alpha,n,pair) end kickfast!(x,v,xerror,verror,h/6,m,n,pair) return end """ Drifts bodies i & j with compensated summation: """ function driftij!(x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},i::Int64,j::Int64,h::T) where {T <: Real} for k=1:NDIM x[k,i],xerror[k,i] = comp_sum(x[k,i],xerror[k,i],h*v[k,i]) x[k,j],xerror[k,j] = comp_sum(x[k,j],xerror[k,j],h*v[k,j]) end return end """ Carries out a Kepler step for bodies i & j with compensated summation: """ function keplerij!(m::Array{T,1},x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},i::Int64,j::Int64,h::T) where {T <: Real} # The state vector has: 1 time; 2-4 position; 5-7 velocity; 8 r0; 9 dr0dt; 10 beta; 11 s; 12 ds # Initial state: state0 = zeros(T,12) # Final state (after a step): state = zeros(T,12) delx = zeros(T,NDIM) delv = zeros(T,NDIM) #println("Masses: ",i," ",j) for k=1:NDIM state0[1+k ] = x[k,i] - x[k,j] state0[1+k+NDIM] = v[k,i] - v[k,j] end gm = GNEWT*(m[i]+m[j]) if gm == 0 for k=1:NDIM #x[k,i] += h*v[k,i] x[k,i],xerror[k,i] = comp_sum(x[k,i],xerror[k,i],h*v[k,i]) #x[k,j] += h*v[k,j] x[k,j],xerror[k,j] = comp_sum(x[k,j],xerror[k,j],h*v[k,j]) end else # predicted value of s kepler_step!(gm, h, state0, state) for k=1:NDIM delx[k] = state[1+k] - state0[1+k] delv[k] = state[1+NDIM+k] - state0[1+NDIM+k] end # Advance center of mass: # Compute COM coords: mijinv =1.0/(m[i] + m[j]) vcm = zeros(T,NDIM) for k=1:NDIM vcm[k] = (m[i]*v[k,i] + m[j]*v[k,j])*mijinv end centerm!(m,mijinv,x,v,xerror,verror,vcm,delx,delv,i,j,h) end return end """ Advances the center of mass of a binary (any pair of bodies) with compensated summation: """ function centerm!(m::Array{T,1},mijinv::T,x::Array{T,2},v::Array{T,2},xerror::Array{T,2},verror::Array{T,2},vcm::Array{T,1},delx::Array{T,1},delv::Array{T,1},i::Int64,j::Int64,h::T) where {T <: Real} for k=1:NDIM #x[k,i] += m[j]*mijinv*delx[k] + h*vcm[k] x[k,i],xerror[k,i] = comp_sum(x[k,i],xerror[k,i],m[j]*mijinv*delx[k]) x[k,i],xerror[k,i] = comp_sum(x[k,i],xerror[k,i],h*vcm[k]) #x[k,j] += -m[i]*mijinv*delx[k] + h*vcm[k] x[k,j],xerror[k,j] = comp_sum(x[k,j],xerror[k,j],-m[i]*mijinv*delx[k]) x[k,j],xerror[k,j] = comp_sum(x[k,j],xerror[k,j],h*vcm[k]) #v[k,i] += m[j]*mijinv*delv[k] v[k,i],verror[k,i] = comp_sum(v[k,i],verror[k,i],m[j]*mijinv*delv[k]) #v[k,j] += -m[i]*mijinv*delv[k] v[k,j],verror[k,j] = comp_sum(v[k,j],verror[k,j],-m[i]*mijinv*delv[k]) end return end """ Takes a single kepler step, calling Wisdom & Hernandez solver """ function kepler_step!(gm::T,h::T,state0::Array{T,1},state::Array{T,1}) where {T <: Real} # compute beta, r0, get x/v from state vector & call correct subroutine x0 = zeros(eltype(state0),3) v0 = zeros(eltype(state0),3) for k=1:3 x0[k]=state0[k+1] v0[k]=state0[k+4] end # x0=state0[2:4] r0 = sqrt(x0[1]*x0[1]+x0[2]*x0[2]+x0[3]*x0[3]) # v0 = state0[5:7] beta0 = 2*gm/r0-(v0[1]*v0[1]+v0[2]*v0[2]+v0[3]*v0[3]) s0=state0[11] iter = kep_ell_hyp!(x0,v0,r0,gm,h,beta0,s0,state) # if beta0 > zero # iter = kep_elliptic!(x0,v0,r0,gm,h,beta0,s0,state) # else # iter = kep_hyperbolic!(x0,v0,r0,gm,h,beta0,s0,state) # end return end """ Solves equation (35) from Wisdom & Hernandez for the elliptic case. """ function kep_ell_hyp!(x0::Array{T,1},v0::Array{T,1},r0::T,k::T,h::T, beta0::T,s0::T,state::Array{T,1}) where {T <: Real} # Now, solve for s in elliptical Kepler case: f = zero(T); g=zero(T); dfdt=zero(T); dgdt=zero(T); cx=zero(T);sx=zero(T);g1bs=zero(T);g2bs=zero(T) s=zero(T); ds = zero(T); r = zero(T);rinv=zero(T); iter=0 if beta0 > zero(T) || beta0 < zero(T) s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r,rinv,ds,iter = solve_kepler!(h,k,x0,v0,beta0,r0, s0,state) else println("Not elliptic or hyperbolic ",beta0," x0 ",x0) r= zero(T); fill!(state,zero(T)); rinv=zero(T); s=zero(T); ds=zero(T); iter = 0 end state[8]= r state[9] = (state[2]*state[5]+state[3]*state[6]+state[4]*state[7])*rinv # recompute beta: # beta is element 10 of state: state[10] = 2.0*k*rinv-(state[5]*state[5]+state[6]*state[6]+state[7]*state[7]) # s is element 11 of state: state[11] = s # ds is element 12 of state: state[12] = ds return iter end """ Solves elliptic Kepler's equation for both elliptic and hyperbolic cases. """ function solve_kepler!(h::T,k::T,x0::Array{T,1},v0::Array{T,1},beta0::T, r0::T,s0::T,state::Array{T,1}) where {T <: Real} # Initial guess (if s0 = 0): r0inv = inv(r0) beta0inv = inv(beta0) signb = sign(beta0) sqb = sqrt(signb*beta0) zeta = k-r0*beta0 eta = dot(x0,v0) sguess = 0.0 if s0 == zero(T) # Use cubic estimate: if zeta != zero(T) sguess = cubic1(3eta/zeta,6r0/zeta,-6h/zeta) else if eta != zero(T) reta = r0/eta disc = reta^2+2h/eta if disc > zero(T) sguess =-reta+sqrt(disc) else sguess = h*r0inv end else sguess = h*r0inv end end s = copy(sguess) else s = copy(s0) end s0 = copy(s) y = zero(T); yp = one(T) iter = 0 ds = Inf KEPLER_TOL = sqrt(eps(h)) ITMAX = 20 while iter == 0 || (abs(ds) > KEPLER_TOL && iter < ITMAX) xx = sqb*s if beta0 > 0 sx = sin(xx); cx = cos(xx) else cx = cosh(xx); sx = exp(xx)-cx end sx *= sqb # Third derivative: yppp = zeta*cx - signb*eta*sx # First derivative: yp = (-yppp+ k)*beta0inv # Second derivative: ypp = signb*zeta*beta0inv*sx + eta*cx y = (-ypp + eta +k*s)*beta0inv - h # eqn 35 # Now, compute fourth-order estimate: ds = calc_ds_opt(y,yp,ypp,yppp) s += ds iter +=1 end if iter == ITMAX println("Reached max iterations in solve_kepler: h ",h," s0: ",s0," s: ",s," ds: ",ds) end #println("sguess: ",sguess," s: ",s," s-sguess: ",s-sguess," ds: ",ds," iter: ",iter) # Since we updated s, need to recompute: xx = 0.5*sqb*s if beta0 > 0 sx = sin(xx); cx = cos(xx) else cx = cosh(xx); sx = exp(xx)-cx end # Now, compute final values: g1bs = 2.0*sx*cx/sqb g2bs = 2.0*signb*sx^2*beta0inv f = one(T) - k*r0inv*g2bs # eqn (25) g = r0*g1bs + eta*g2bs # eqn (27) for j=1:3 # Position is components 2-4 of state: state[1+j] = x0[j]*f+v0[j]*g end r = sqrt(state[2]*state[2]+state[3]*state[3]+state[4]*state[4]) rinv = inv(r) dfdt = -k*g1bs*rinv*r0inv dgdt = (r0-r0*beta0*g2bs+eta*g1bs)*rinv for j=1:3 # Velocity is components 5-7 of state: state[4+j] = x0[j]*dfdt+v0[j]*dgdt end return s,f,g,dfdt,dgdt,cx,sx,g1bs,g2bs,r,rinv,ds,iter end """ Computes quartic Newton's update to equation y=0 using first through 3rd derivatives. Uses techniques outlined in Murray & Dermott for Kepler solver. """ function calc_ds_opt(y::T,yp::T,ypp::T,yppp::T) where {T <: Real} # Rearrange to reduce number of divisions: num = y*yp den1 = yp*yp-y*ypp*.5 den12 = den1*den1 den2 = yp*den12-num*.5*(ypp*den1-third*num*yppp) return -y*den12/den2 end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
1658
abstract type AbstractOutput{T} end """ Preallocates and holds arrays for positions, velocities, and Jacobian at every integrator step """ # Should add option to choose out intervals, checkpointing, etc. struct CartesianOutput{T<:AbstractFloat} <: AbstractOutput{T} states::Vector{State{T}} nstep::Int64 filename::String file::Bool function CartesianOutput(::Type{T},nbody::Int64,nstep::Int64;filename="data.jld2",file=false) where T <: AbstractFloat states = Array{State,1}(undef,nstep) return new{T}(states,nstep,filename,file) end end # Allow user to not have to specify type. Defaults to Float64 CartesianOutput(nbody::T,nstep::T;filename="data.jld2") where T<:Int64 = CartesianOutput(Float64,nbody,nstep,filename=filename) """ Runs integrator like (*insert doc reference here*) and output positions, velocities, and Jacobian to a JLD2 file. """ function (intr::Integrator)(s::State{T},o::CartesianOutput{T}) where T<:AbstractFloat t0 = s.t[1] # Initial time time = intr.tmax nsteps = o.nstep # Integrate in proper direction h = intr.h * check_step(t0,time) tmax = t0 + (h * nsteps) # Preallocate struct of arrays for derivatives (and pair) d = Derivatives(T,s.n) for i in 1:nsteps # Save State from current step o.states[i] = deepcopy(s) # Take integration step and advance time intr.scheme(s,d,h) s.t[1] = t0 + (h * i) end # Output to jld2 file if desired if o.file; save(o.filename,Dict("states" => o.states)); end return end # Includes const outputs = ["elements"] for i in outputs; include("$(i).jl"); end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
3240
# Converting cartesian coordinates to orbital elements """ A 3d point in cartesian space """ struct Point{T<:AbstractFloat} x::T y::T z::T end # Constructors Point(x::AbstractVector) = Point(x...) Point(x::AbstractMatrix) = [Point(x[:,i]) for i in eachindex(x[1,:])] Point(x::Real) = Point(float(x),float(x),float(x)) unpack(x::Point) = (x.x,x.y,x.z) # Overloads for products LinearAlgebra.dot(x::Point,v::Point) = x.x*v.x + x.y*v.y + x.z*v.z LinearAlgebra.dot(x::Point) = x.x*x.x + x.y*x.y + x.z*x.z LinearAlgebra.cross(x::Point,v::Point) = Point(x.y*v.z - x.z*v.y,-(x.x*v.z - x.z*v.x),x.x*v.y - x.y*v.x) """ Calculate the relative positions from the A-Matrix. """ function get_relative_positions(x,v,ic::InitialConditions) n = ic.nbody X = zeros(3,n) V = zeros(3,n) X .= permutedims(ic.amat*x') V .= permutedims(ic.amat*v') return Point(X), Point(V) end """ Get relative masses(*G) from initial conditions. """ function get_relative_masses(ic::InitialConditions) N = length(ic.m) M = zeros(N-1) G = 39.4845/(365.242 * 365.242) # AU^3 Msol^-1 Day^-2 for i in 1:N-1 for j in 1:N M[i] += abs(ic.ϵ[i,j])*ic.m[j] end end return G .* M end # Position and velocity magnitudes mag(x) = sqrt(dot(x)) mag(x,v) = sqrt(dot(x,v)) Rdotmag(R,V,h) = sqrt(V^2 - (h/R)^2) function hvec(r,rdot) hx,hy,hz = unpack(cross(r,rdot)) hz >= 0.0 ? hy *= -1 : hx *= -1 return Point(hx,hy,hz) end function calc_Ω(hx,hy,h,I) sinΩ = hx/(h*sin(I)) cosΩ = hy/(h*sin(I)) return atan(sinΩ,cosΩ) end function calc_ω(x,R,Rdot,I,Ω,a,e,h) # Find ω + f wpf = 0.0 if I != 0.0 sinwpf = x.z/(R*sin(I)) coswpf = ((x.x/R) + sin(Ω)*sinwpf*cos(I))/cos(Ω) wpf = atan(sinwpf,coswpf) end # Find f sinf = a*Rdot*(1.0 - e^2)/(h*e) cosf = (a*(1.0-e^2)/R - 1.0)/e f = atan(sinf,cosf) return wpf - f end function convert_to_elements(x,v,M) R = mag(x) V = mag(v) h = mag(hvec(x,v)) hx,hy,hz = unpack(hvec(x,v)) Rdot = sign(dot(x,v))*Rdotmag(R,V,h) Gmm = M a = 1.0/((2.0/R) - (V*V)/(Gmm)) e = sqrt(1.0 - (h*h/(Gmm*a))) I = acos(hz/h) # Make sure Ω is defined I != 0.0 ? Ω = calc_Ω(hx,hy,h,I) : Ω = 0.0 ω = calc_ω(x,R,Rdot,I,Ω,a,e,h) P = (2.0*π)*sqrt(a*a*a/Gmm) n = 2π/P ecosω, esinω = e.*sincos(ω) tp = (-sqrt(1.0-e*e)*ecosω/(n*(1.0-esinω)) - (2.0/n)*atan(sqrt(1.0-e)*(esinω+ecosω+e), sqrt(1.0+e)*(esinω-ecosω-e))) % P return [P,0.0,ecosω,esinω,I,Ω,a,e,ω,tp] end function get_orbital_elements(s::State{T},ic::InitialConditions{T}) where T<:AbstractFloat elems = Elements{T}[] μ = get_relative_masses(ic) X,V = get_relative_positions(s.x,s.v,ic) N = ic.nbody push!(elems,Elements(m=ic.m[1])) i = 1; b = 0 while i < N # Check if new binary if first(ic.ϵ[i,:]) == zero(T) b+=1 end new_elems = convert_to_elements(X[i+b],V[i+b],μ[i+b]) push!(elems,Elements(ic.m[i+1],new_elems...)) # Compensate for new binary in step if b > 0 b -= 2 elseif b < 0 i += 1 end i+=1 end return elems end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
6735
# Transit structures abstract type TransitOutput{T} <: AbstractOutput{T} end """ TransitTiming{T<:AbstractFloat} <: TransitOutput{T} Transit times and derivatives. # (User-facing) Fields - `tt::Matrix{T}` : The transit times of each body. - `dtdq0::Array{T,4}` : Derivatives of the transit times with respect to the initial Cartesian coordinates and masses. - `dtdelements::Array{T,4}` : Derivatives of the transit times with respect to the initial orbital elements and masses. """ struct TransitTiming{T<:AbstractFloat} <: TransitOutput{T} tt::Matrix{T} dtdq0::Array{T,4} dtdelements::Array{T,4} # Internal count::Vector{Int64} ntt::Int64 ti::Int64 occs::Vector{Int64} dtdq::Array{T,3} gsave::Vector{T} s_prior::State{T} s_transit::State{T} end """ TransitTiming(tmax, ic; ti) Constructor for [`TransitTiming`](@ref) type. # Arguments - `tmax::T` : Expected total elapsed integration time. (Allocates arrays accordingly) - `ic::ElementsIC{T}` : Initial conditions for the system ## Optional - `ti::Int64=1` : Index of the body with respect to which transits are measured. (Default is the central body) """ function TransitTiming(tmax::T,ic::ElementsIC{T},ti::Int64=1) where T<:AbstractFloat n = ic.nbody ind = isfinite.(tmax./ic.elements[:,2]) ntt = maximum(ceil.(Int64,abs.(tmax./ic.elements[ind,2])).+3) tt = zeros(T,n,ntt) dtdq0 = zeros(T,n,ntt,7,n) dtdelements = zeros(T,n,ntt,7,n) count = zeros(Int64,n) occs = setdiff(collect(1:n),ti) dtdq = zeros(T,1,7,n) gsave = zeros(T,n) s_prior = State(ic) s_transit = State(ic) return TransitTiming(tt,dtdq0,dtdelements,count,ntt,ti,occs,dtdq,gsave,s_prior,s_transit) end """ TransitParameters{T<:AbstractFloat} <: TransitOutput{T} Transit times, impact parameters, sky-velocities, and derivatives. # (User-facing) Fields - `ttbv::Matrix{T}` : The transit times, impact parameter, and sky-velocity of each body. - `dtbvdq0::Array{T,5}` : Derivatives of the transit times, impact parameters, and sky-velocities with respect to the initial Cartesian coordinates and masses. - `dtbvdelements::Array{T,5}` : Derivatives of the transit times, impact parameters, and sky-velocities with respect to the initial orbital elements and masses. """ struct TransitParameters{T<:AbstractFloat} <: TransitOutput{T} ttbv::Array{T,3} dtbvdq0::Array{T,5} dtbvdelements::Array{T,5} # Internal count::Vector{Int64} ntt::Int64 ti::Int64 occs::Vector{Int64} dtbvdq::Array{T,3} gsave::Vector{T} s_prior::State{T} s_transit::State{T} end """ TransitParameters(tmax, ic; ti) Constructor for [`TransitParameters`](@ref) type. # Arguments - `tmax::T` : Expected total elapsed integration time. (Allocates arrays accordingly) - `ic::ElementsIC{T}` : Initial conditions for the system ## Optional - `ti::Int64=1` : Index of the body with respect to which transits are measured. (Default is the central body) """ function TransitParameters(tmax::T,ic::ElementsIC{T},ti::Int64=1) where T<:AbstractFloat n = ic.nbody ind = isfinite.(tmax./ic.elements[:,2]) ntt = maximum(ceil.(Int64,abs.(tmax./ic.elements[ind,2])).+3) ttbv = zeros(T,3,n,ntt) dtbvdq0 = zeros(T,3,n,ntt,7,n) dtbvdelements = zeros(T,3,n,ntt,7,n) count = zeros(Int64,n) occs = setdiff(collect(1:n),ti) dtbvdq = zeros(T,3,7,n) gsave = zeros(T,n) s_prior = State(ic) s_transit = State(ic) return TransitParameters(ttbv,dtbvdq0,dtbvdelements,count,ntt,ti,occs,dtbvdq,gsave,s_prior,s_transit) end struct TransitSnapshot{T<:AbstractFloat} <: TransitOutput{T} nt::Int64 times::Vector{T} bsky2::Matrix{T} vsky::Matrix{T} dbvdq0::Array{T,5} dbvdelements::Array{T,5} end function TransitSnapshot(times::Vector{T},ic::ElementsIC{T}) where T<:AbstractFloat n = ic.nbody nt = length(times) return TransitSeries(nt,times,zeros(T,n,nt),zeros(T,n,nt),zeros(T,2,n,nt,7,n),zeros(T,2,n,nt,7,n)) end function zero_out!(tt::TransitOutput{T}) where T for i in 1:length(fieldnames(typeof(tt))) if typeof(getfield(tt,i)) <: Array{T} getfield(tt,i) .= zero(T) end end tt.count .= 0 end """ Main integrator method for Transit calculations. """ function (intr::Integrator)(s::State{T}, tt::TransitOutput{T}, d::Derivatives{T}; grad::Bool=true) where T<:AbstractFloat t0 = s.t[1] # Initial time nsteps = abs(round(Int64,intr.tmax/intr.h)) h = intr.h * check_step(t0, intr.tmax+t0) # get direction of integration for i in tt.occs # Compute the relative sky velocity dotted with position: tt.gsave[i] = g!(i,tt.ti,s.x,s.v) end istep = 0 for _ in 1:nsteps # Take an integration step if grad intr.scheme(s,d,h) else intr.scheme(s,h) end istep += 1 s.t[1] = t0 + (istep * h) # Check if a transit occured; record time. detect_transits!(s,d,tt,intr,grad=grad) end # Calculate derivatives if grad calc_dtdelements!(s,tt) end end """Wrapper so the user doesn't need to create a `Derivatives` type.""" function (intr::Integrator)(s::State{T}, tt::TransitOutput{T}; grad::Bool=true, return_arrays::Bool=false) where T<:AbstractFloat # Preallocate arrays d = Derivatives(T, s.n) intr(s, tt, d, grad=grad) if return_arrays; return d; end # Return preallocated arrays return end """ Integrator method for outputting `TransitSnapshot`. """ function (intr::Integrator)(s::State{T},ts::TransitSnapshot{T};grad::Bool=true) where T<:AbstractFloat # Integrate to, and output b and v_sky for each body, for a list of times. # Should be sorted times. # NOTE: Need to fix so that if initial time is a 0, s.dqdt isn't 0s. if grad; dbvdq = zeros(T,2,7,s.n); end # Integrate to each time, using intr.h, and output b and vsky (only want primary transits for now) t0 = s.t[1] for (j,ti) in enumerate(ts.times) intr(s,ti;grad=grad) for i in 2:s.n if grad ts.vsky[i,j],ts.bsky2[i,j] = calc_dbvdq!(s,dbvdq,1,i) for ibv=1:2, k=1:7, p=1:s.n ts.dbvdq0[ibv,i,j,k,p] = dbvdq[ibv,k,p] end else ts.vsky[i,j],ts.bsky2[i,j] = calc_bv(s,1,i) end end # Step to the next full time step, as measured from t0. #steps = round(Int64 ,(s.t[1] - t0) / intr.h, RoundUp) #intr(s,t0 + (steps * intr.h); grad=grad) end calc_dbvdelements!(s,ts) return end # Includes for source files = ["timing.jl","snapshot.jl"] include.(files)
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
2377
# Collection of functions to calculate impact parameter and sky velocity """ Calculate impact parameter and sky velocity """ function calc_bv(s::State{T},i::Int64,j::Int64) where T<:AbstractFloat vsky = sqrt((s.v[1,j]-s.v[1,i])^2 + (s.v[2,j]-s.v[2,i])^2) bsky2 = (s.x[1,j]-s.x[1,i])^2 + (s.x[2,j]-s.x[2,i])^2 return vsky,bsky2 end """ Calculate derivative of impact parameter and sky velocity wrt cartesian coordinates """ function calc_dbvdq!(s::State{T},dbvdq::Array{T},i::Int64,j::Int64) where T<:AbstractFloat vsky,bsky2 = calc_bv(s,i,j) gsky = g!(i,j,s.x,s.v) gdot = gd!(i,j,s.x,s.v,s.dqdt) fill!(dbvdq,zero(T)) # partial derivative b and v_{sky} with respect to time: dvdt = ((s.v[1,j]-s.v[1,i])*(s.dqdt[(j-1)*7+4]-s.dqdt[(i-1)*7+4])+(s.v[2,j]-s.v[2,i])*(s.dqdt[(j-1)*7+5]-s.dqdt[(i-1)*7+5]))/vsky dbdt = 2.0 * gsky # Compute derivatives: indj = (j-1)*7+1 indi = (i-1)*7+1 for p=1:s.n indp = (p-1)*7 for k=1:7 dtdq = -((s.jac_step[indj ,indp+k]-s.jac_step[indi ,indp+k])*(s.v[1,j]-s.v[1,i])+(s.jac_step[indj+1,indp+k]-s.jac_step[indi+1,indp+k])*(s.v[2,j]-s.v[2,i])+ (s.jac_step[indj+3,indp+k]-s.jac_step[indi+3,indp+k])*(s.x[1,j]-s.x[1,i])+(s.jac_step[indj+4,indp+k]-s.jac_step[indi+4,indp+k])*(s.x[2,j]-s.x[2,i]))/gdot #v_{sky} = sqrt((v[1,j]-v[1,i])^2+(v[2,j]-v[2,i])^2) dbvdq[1,k,p] = ((s.jac_step[indj+3,indp+k]-s.jac_step[indi+3,indp+k])*(s.v[1,j]-s.v[1,i])+(s.jac_step[indj+4,indp+k]-s.jac_step[indi+4,indp+k])*(s.v[2,j]-s.v[2,i]))/vsky + dvdt*dtdq #b_{sky}^2 = (x[1,j]-x[1,i])^2+(x[2,j]-x[2,i])^2 dbvdq[2,k,p] = 2*((s.jac_step[indj ,indp+k]-s.jac_step[indi ,indp+k])*(s.x[1,j]-s.x[1,i])+(s.jac_step[indj+1,indp+k]-s.jac_step[indi+1,indp+k])*(s.x[2,j]-s.x[2,i])) + dbdt*dtdq end end return vsky,bsky2 end function calc_dbvdelements!(s::State{T},ts::TransitSnapshot{T}) where T <: AbstractFloat for ibv = 1:2, i=1:s.n, j=1:ts.nt # Now, multiply by the initial Jacobian to convert time derivatives to orbital elements: for k=1:s.n, l=1:7 ts.dbvdelements[ibv,i,j,l,k] = zero(T) for p=1:s.n, q=1:7 ts.dbvdelements[ibv,i,j,l,k] += ts.dbvdq0[ibv,i,j,q,p]*s.jac_init[(p-1)*7+q,(k-1)*7+l] end end end end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
7987
# Collection of functions to compute transit times, impact parameters, sky-velocity, and derivatives. function detect_transits!(s::State{T},d::Derivatives{T},tt::TransitOutput{T},intr::Integrator{T}; grad::Bool=true) where T<:AbstractFloat rstar::T = 1e12 # Could this be removed? # Save current state as prior state set_state!(tt.s_prior, s) # Check to see if a transit may have occured before current state. # Sky is x-y plane; line of sight is z. # Body being transited is tt.ti, tt.occs is list of occultors: for i in tt.occs # Compute the relative sky velocity dotted with position: gi = g!(i,tt.ti,s.x,s.v) ri = sqrt(s.x[1,i]^2+s.x[2,i]^2+s.x[3,i]^2) # orbital distance # See if sign of g switches, and if planet is in front of star (by a good amount): if gi > 0 && tt.gsave[i] < 0 && -s.x[3,i] > 0.25*ri && ri < rstar # A transit has occurred between the time steps - integrate ahl21! tt.count[i] += 1 if tt.count[i] <= tt.ntt dt0 = -gi*intr.h/(gi-tt.gsave[i]) # Starting estimate set_state!(s,tt.s_prior) findtransit!(tt.ti,i,dt0,s,d,tt,intr;grad=grad) # Search for transit time (integrating 'backward') end end tt.gsave[i] = gi set_state!(s,tt.s_prior) end return end function findtransit!(i::Int64,j::Int64,dt0::T,s::State{T},d::Derivatives{T},tt::TransitOutput{T},intr::Integrator;grad::Bool=true) where T<:AbstractFloat # Computes the transit time approximating the motion as a fraction of a AHL21 step backward in time. # Computes the impact parameter and sky-velocity, if passed a TransitParameters. # Also computes the Jacobian of the transit time with respect to the initial parameters, dtbvdq[1-3,7,n]. # Initial guess using linear interpolation: s.dqdt .= 0.0 #set_state!(tt.s_transit,s) dt = one(T) iter = 0 r3 = zero(T) gdot = zero(T) gsky = zero(T) stmp = zero(T) TRANSIT_TOL = 10*eps(dt) tt1 = dt0 + 1 tt2 = dt0 + 2 ITMAX = 20 #while abs(dt) > TRANSIT_TOL && iter < 20 while true tt2 = tt1 tt1 = dt0 set_state!(s,tt.s_prior) # Advance planet state at start of step to estimated transit time: zero_out!(d) intr.scheme(s,d,dt0) # Compute time offset: gsky = g!(i,j,s.x,s.v) # # Compute derivative of g with respect to time: gdot = gd!(i,j,s.x,s.v,s.dqdt) # Refine estimate of transit time with Newton's method: dt = -gsky/gdot # Add refinement to estimated time: #dt0 += dt dt0,stmp = comp_sum(dt0,stmp,dt) iter += 1 # Break out if we have reached maximum iterations, or if # current transit time estimate equals one of the prior two steps: if (iter >= ITMAX) || (dt0 == tt1) || (dt0 == tt2) break end end if grad # Compute derivatives with updated time step set_state!(s,tt.s_prior) zero_out!(d) intr.scheme(s,d,dt0) end if tt isa TransitParameters # Compute the impact parameter and sky velocity, save to tt along with transit time. tt.ttbv[1,j,tt.count[j]] = s.t[1] + dt0 if grad # Compute derivative of transit time, impact parameter, and sky velocity. vsky,bsky2 = dtbvdq!(i,j,s.x,s.v,s.jac_step,s.dqdt,tt.dtbvdq) tt.ttbv[2,j,tt.count[j]] = vsky tt.ttbv[3,j,tt.count[j]] = bsky2 for itbv=1:3, k=1:7, p=1:s.n tt.dtbvdq0[itbv,j,tt.count[j],k,p] = tt.dtbvdq[itbv,k,p] end return end tt.ttbv[2,j,tt.count[j]] = calc_vsky(s.v,i,j) tt.ttbv[3,j,tt.count[j]] = calc_bsky2(s.x,i,j) return end tt.tt[j,tt.count[j]] = s.t[1] + dt0 if grad # Compute derivative of transit time dtbvdq!(i,j,s.x,s.v,s.jac_step,s.dqdt,tt.dtdq) for k=1:7, p=1:s.n tt.dtdq0[j,tt.count[j],k,p] = tt.dtdq[1,k,p] end end return end function calc_dtdelements!(s::State{T},tt::TransitTiming{T}) where T <: AbstractFloat for i=1:s.n, j=1:tt.count[i] if j <= tt.ntt # Now, multiply by the initial Jacobian to convert time derivatives to orbital elements: for k=1:s.n, l=1:7 tt.dtdelements[i,j,l,k] = zero(T) for p=1:s.n, q=1:7 tt.dtdelements[i,j,l,k] += tt.dtdq0[i,j,q,p]*s.jac_init[(p-1)*7+q,(k-1)*7+l] end end end end end function calc_dtdelements!(s::State{T},ttbv::TransitParameters{T}) where T <: AbstractFloat for itbv = 1:3, i=1:s.n, j = 1:ttbv.count[i] if j <= ttbv.ntt # Now, multiply by the initial Jacobian to convert time derivatives to orbital elements: for k=1:s.n, l=1:7 ttbv.dtbvdelements[itbv,i,j,l,k] = zero(T) for p=1:s.n, q=1:7 ttbv.dtbvdelements[itbv,i,j,l,k] += ttbv.dtbvdq0[itbv,i,j,q,p]*s.jac_init[(p-1)*7+q,(k-1)*7+l] end end end end end """Used in computing transit time inside `findtransit3`.""" function g!(i::Int64,j::Int64,x::Array{T,2},v::Array{T,2}) where {T <: Real} # See equation 8-10 Fabrycky (2008) in Seager Exoplanets book g = (x[1,j]-x[1,i])*(v[1,j]-v[1,i])+(x[2,j]-x[2,i])*(v[2,j]-v[2,i]) return g end function gd!(i::Int64,j::Int64,x::Matrix{T},v::Matrix{T},dqdt::Array{T}) where T<:AbstractFloat return ((x[1,j]-x[1,i])*(dqdt[(j-1)*7+4]-dqdt[(i-1)*7+4])+(x[2,j]-x[2,i])*(dqdt[(j-1)*7+5]-dqdt[(i-1)*7+5]) +(v[1,j]-v[1,i])*(dqdt[(j-1)*7+1]-dqdt[(i-1)*7+1])+(v[2,j]-v[2,i])*(dqdt[(j-1)*7+2]-dqdt[(i-1)*7+2])) end calc_bsky2(x::Matrix{T},i::Int64,j::Int64) where T<:AbstractFloat = (x[1,j]-x[1,i])^2 + (x[2,j]-x[2,i])^2 calc_vsky(v::Matrix{T},i::Int64,j::Int64) where T<:AbstractFloat = sqrt((v[1,j]-v[1,i])^2 + (v[2,j]-v[2,i])^2) function dtbvdq!(i::Int64,j::Int64,x::Matrix{T},v::Matrix{T},jac_step::Matrix{T},dqdt::Vector{T},dtbvdq::Array{T}) where T<:AbstractFloat n = size(x)[2] # Compute time offset: gsky = g!(i,j,x,v) # Compute derivative of g with respect to time: gdot = gd!(i,j,x,v,dqdt) fill!(dtbvdq,zero(typeof(x[1]))) indj = (j-1)*7+1 indi = (i-1)*7+1 for p=1:n indp = (p-1)*7 for k=1:7 # Compute derivatives: dtbvdq[1,k,p] = -((jac_step[indj ,indp+k]-jac_step[indi ,indp+k])*(v[1,j]-v[1,i])+(jac_step[indj+1,indp+k]-jac_step[indi+1,indp+k])*(v[2,j]-v[2,i])+ (jac_step[indj+3,indp+k]-jac_step[indi+3,indp+k])*(x[1,j]-x[1,i])+(jac_step[indj+4,indp+k]-jac_step[indi+4,indp+k])*(x[2,j]-x[2,i]))/gdot end end ntbv = size(dtbvdq)[1] if ntbv == 3 # Compute the impact parameter and sky velocity: vsky = calc_vsky(v,i,j) bsky2 = calc_bsky2(x,i,j) # partial derivative v_{sky} with respect to time: dvdt = ((v[1,j]-v[1,i])*(dqdt[(j-1)*7+4]-dqdt[(i-1)*7+4])+(v[2,j]-v[2,i])*(dqdt[(j-1)*7+5]-dqdt[(i-1)*7+5]))/vsky # (note that \partial b/\partial t = 0 at mid-transit since g_{sky} = 0 mid-transit). for p=1:n indp = (p-1)*7 for k=1:7 # Compute derivatives: #v_{sky} = sqrt((v[1,j]-v[1,i])^2+(v[2,j]-v[2,i])^2) dtbvdq[2,k,p] = ((jac_step[indj+3,indp+k]-jac_step[indi+3,indp+k])*(v[1,j]-v[1,i])+(jac_step[indj+4,indp+k]-jac_step[indi+4,indp+k])*(v[2,j]-v[2,i]))/vsky + dvdt*dtbvdq[1,k,p] #b_{sky}^2 = (x[1,j]-x[1,i])^2+(x[2,j]-x[2,i])^2 dtbvdq[3,k,p] = 2*((jac_step[indj ,indp+k]-jac_step[indi ,indp+k])*(x[1,j]-x[1,i])+(jac_step[indj+1,indp+k]-jac_step[indi+1,indp+k])*(x[2,j]-x[2,i])) end end return vsky,bsky2 end return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
308
# Replacement for deprecated functions: function linearspace(a,b,n) if VERSION >= v"0.7" return range(a,stop=b,length=n) else return linspace(a,b,n) end return end function logarithmspace(a,b,n) if VERSION >= v"0.7" return 10.0 .^range(a,stop=b,length=n) else return logspace(a,b,n) end return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
1179
using NbodyGradient import NbodyGradient: kepler_init, init_nbody maxabs(x) = maximum(abs.(x)) # For backwards compatability include("loglinspace.jl") if VERSION >= v"0.7" using Test using LinearAlgebra using Statistics using DelimitedFiles else using Base.Test end @testset "NbodyGradient" begin print("Initial Conditions... ") @testset "Initial Conditions" begin include("test_kepler_init.jl") include("test_init_nbody.jl") include("test_initial_conditions.jl") end; println("Finished.") print("Integrator... ") @testset "Integrator" begin include("test_kickfast.jl") include("test_phic.jl") include("test_kepler_driftij_gamma.jl") include("test_phisalpha.jl") include("test_integrator.jl") end; println("Finished.") print("Outputs... ") @testset "Outputs" begin include("test_cartesian_to_elements.jl") end println("Finished.") print("TTVs... ") @testset "TTVs" begin include("test_findtransit.jl") include("test_transit_timing.jl") include("test_transit_parameters.jl") end; println("Finished.") end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
889
import NbodyGradient: get_orbital_elements function Base.isapprox(a::Elements,b::Elements;tol=1e-10) fields = setdiff(fieldnames(Elements),[:a,:e,:ϖ]) for i in fields af = getfield(a,i) bf = getfield(b,i) if abs(af - bf) > tol return false end end return true end @testset "Cartesian to Elements" begin # Get known Elements fname = "elements.txt" t0 = 7257.93115525-7300.0 H = [4,1,1,1] ic = ElementsIC(t0,H,fname) a = Elements(ic.elements[1,:]...) b = Elements(ic.elements[2,:]...) c = Elements(ic.elements[3,:]...) d = Elements(ic.elements[4,:]...) system = [a,b,c,d] # Convert to Cartesian coordinates s = State(ic) # Convert back to elements elems = get_orbital_elements(s,ic) for i in eachindex(system) @test isapprox(elems[1],system[1]) end end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
662
@testset "Timing Accuracy" begin n = 7 t0 = 7257.0 h = 0.01 tmax = 10.0 intr = Integrator(ahl21!,h,t0,tmax) # Read in initial conditions: H = [n,ones(Int64, n - 1)...] elements = readdlm("elements.txt", ',')[1:n,:] ic = ElementsIC(t0,H,elements) s = State(ic) # Holds transit times, derivatives, etc. tt = TransitTiming(tmax,ic); # Run integrator and calculate times intr(s,tt,grad=false) # Check that we get back the initial transit time (up to tolerance) tol = 1e-6 # Percent error for i in 1:n-1 @test abs((ic.elements[i+1,3] - tt.tt[i+1,1])/ic.elements[i+1,3]) < tol end end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
3892
import NbodyGradient: init_nbody @testset "init_nbody" begin elements = "elements.txt" H = [3,1,1] t0 = 7257.93115525 - 7300.0 init = ElementsIC(t0, H, elements) init.elements[:,3] .-= 7300.0 x, v, jac_init = init_nbody(init) elements_big = big.(init.elements) t0big = big(t0) init_big = ElementsIC(t0big, H, elements_big) xbig, vbig, jac_init_big = init_nbody(init_big) # elements = readdlm("elements.txt",',') # elements[2:3,1] /= 100.0 # n_body = 4 n_body = 3 # jac_init = zeros(Float64,7*n_body,7*n_body) # jac_init_big = zeros(BigFloat,7*n_body,7*n_body) jac_init_num = zeros(BigFloat, 7 * n_body, 7 * n_body) # x,v = init_nbody(elements,t0,n_body,jac_init) # elements_big = big.(elements) # t0big = big(t0) # xbig,vbig = init_nbody(elements_big,t0big,n_body,jac_init_big) elements0 = copy(init.elements) # dq = big.([1e-10,1e-5,1e-6,1e-6,1e-6,1e-5,1e-5]) # dq = big.([1e-10,1e-8,1e-8,1e-8,1e-8,1e-8,1e-8]) dq = big.([1e-12,1e-10,1e-10,1e-10,1e-10,1e-10,1e-10]) # dq = big.([1e-15,1e-15,1e-15,1e-15,1e-15,1e-15,1e-15]) # t0big = big(t0) # Now, compute derivatives numerically: for j = 1:n_body for k = 1:7 elementsbig = big.(elements0) dq0 = dq[k]; if j == 1 && k == 1 ; dq0 = big(1e-15); end elementsbig[j,k] += dq0 initp = ElementsIC(t0big, H, elementsbig) xp, vp, _ = init_nbody(initp) elementsbig[j,k] -= 2dq0 initm = ElementsIC(t0big, H, elementsbig) xm, vm, _ = init_nbody(initm) for l in 1:n_body, p in 1:3 i1 = (l - 1) * 7 + p if k == 1 j1 = j * 7 else j1 = (j - 1) * 7 + k - 1 end jac_init_num[i1, j1] = (xp[p,l] - xm[p,l]) / dq0 * .5 jac1 = jac_init[i1,j1]; jac2 = jac_init_num[i1,j1] # if abs(jac1-jac2) > 1e-4*abs(jac1+jac2) && abs(jac1+jac2) > 1e-14 # println(l," ",p," ",j," ",k," ",jac_init_num[i1,j1]," ",jac_init[i1,j1]," ",jac_init_num[i1,j1]/jac_init[i1,j1]) # end jac_init_num[i1 + 3,j1] = (vp[p,l] - vm[p,l]) / dq0 * .5 jac1 = jac_init[i1 + 3,j1]; jac2 = jac_init_num[i1 + 3,j1] # if abs(jac1-jac2) > 1e-4*abs(jac1+jac2) && abs(jac1+jac2) > 1e-14 # println(l," ",p+3," ",j," ",k," ",jac_init_num[i1+3,j1]," ",jac_init[i1+3,j1]," ",jac_init_num[i1+3,j1]/jac_init[i1+3,j1]) # end end end jac_init_num[j * 7,j * 7] = 1.0 end # println("Maximum jac_init-jac_init_num: ",maximum(abs.(jac_init-jac_init_num))) # println("Maximum jac_init-jac_init_num: ",maximum(abs.(asinh.(jac_init)-asinh.(jac_init_num)))) # println("Maximum jac_init-jac_init_big: ",maximum(abs.(asinh.(jac_init)-asinh.(jac_init_big)))) # println("Maximum jac_init/jac_init_big-1: ",maximum(abs.(jac_init[jac_init_big .!= 0.0]./jac_init_big[jac_init_big .!= 0.0].-1))) # println("Maximum jac_init_big-jac_init_num: ",maximum(abs.(asinh.(jac_init_num)-asinh.(jac_init_big)))) # println(convert(Array{Float64,2},jac_init_big-jac_init_num)) # @test isapprox(jac_init_num,jac_init) @test isapprox(jac_init_num, jac_init;norm=maxabs) @test isapprox(jac_init, convert(Array{Float64,2}, jac_init_big);norm=maxabs) # end for i in 1:21, j in 1:21 if jac_init_big[i,j] != 0.0 dij = abs(jac_init[i,j] / jac_init_big[i,j] - 1) if dij > 1e-12 jac_max = dij println(i, " ", j, " ", convert(Float64, jac_max), " ", jac_init[i,j], " ", convert(Float64, jac_init_big[i,j]), " ", convert(Float64, jac_init[i,j] - jac_init_big[i,j])) end end end end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
4757
# Make sure that each IC specification method yields the same orbital elements # or Cartesian coordinates. using DelimitedFiles function compare_ics(ic1::T, ic2::T) where T<:InitialConditions # Compare the fields of the structs (https://stackoverflow.com/questions/62336686/struct-equality-with-arrays) fns = fieldnames(T) f1 = getfield.(Ref(ic1), fns) f2 = getfield.(Ref(ic2), fns) return f1 == f2 end function get_elements_ic_array(t0, H, N) fname = "elements.txt" elements = readdlm(fname, ',', comments=true) ic = ElementsIC(t0, H, elements) return ic end function get_elements_ic_file(t0, H, N) fname = "elements.txt" ic = ElementsIC(t0, H, fname) return ic end function get_elements_ic_elems(t0, H, N) fname = "elements.txt" elements = readdlm(fname, ',', comments=true) elems = Elements{Float64}[] for i in 1:N push!(elems, Elements(elements[i,:]..., zeros(4)...)) end ic = ElementsIC(t0, H, elems) return ic end function get_cartesian_ic_file(t0, N) fname = "coordinates.txt" ic = CartesianIC(t0, N, fname) return ic end function get_cartesian_ic_array(t0, N) fname = "coordinates.txt" coords = readdlm(fname, ',', comments=true) ic = CartesianIC(t0, N, coords) return ic end # Run tests for given H type (int, vector, matrix) @generated function run_elements_tests(t0, H, N) inputs = ["file", "array", "elems"] funcs = [Symbol("get_elements_ic_$(i)") for i in inputs] ics = [Symbol("ic_$(i)") for i in inputs] # Get ICs for each method setup = Vector{Expr}() for (ic, f) in zip(ics, funcs) ex = :($ic = $f(t0, H, N)) push!(setup, ex) end # Compare outputs of each method tests = Vector{Expr}() for ic in ics ex = :(@test compare_ics($(ics[1]), $ic)) push!(tests, ex) end return Expr(:block, setup..., tests...) end function run_elements_H_tests(t0, n) H_vec = [n, ones(Int64, n - 1)...] H_mat = NbodyGradient.hierarchy(H_vec) ic_n = get_elements_ic_file(t0, n, n) ic_vec = get_elements_ic_file(t0, H_vec, n) ic_mat = get_elements_ic_file(t0, H_mat, n) @test compare_ics(ic_n, ic_vec) @test compare_ics(ic_n, ic_mat) return end # Run tests for given H type (int, vector) @generated function run_cartesian_tests(t0, H) inputs = ["file", "array"] funcs = [Symbol("get_cartesian_ic_$(i)") for i in inputs] ics = [Symbol("ic_$(i)") for i in inputs] # Get ICs for each method setup = Vector{Expr}() for (ic, f) in zip(ics, funcs) ex = :($ic = $f(t0, H)) push!(setup, ex) end # Compare the outputs of each method tests = Vector{Expr}() fields = [:x, :v, :m] for ic1 in ics, ic2 in ics, f in fields ex = :(@test $ic1.$f == $ic2.$f) push!(tests, ex) end return Expr(:block, setup..., tests...) end function test_default_trappist() # Check that default ics match those produced by the test file fname = "elements.txt" t0 = 0.0 for n in 2:8 ic_file = ElementsIC(t0, n, fname) ic_default = get_default_ICs("trappist-1", t0, n) @test compare_ics(ic_file, ic_default) end # Check that each input string works correctly sysnames = NbodyGradient._available_systems()[1] ic_true = ElementsIC(t0, 7, fname) for sn in sysnames @test compare_ics(ic_true, get_default_ICs(sn, t0, 7)) end end @testset "Initial Conditions" begin @testset "Elements" begin N = 8 t0 = 7257.93115525 - 7300.0 for n in 2:N H_vec = [n,ones(Int64, n - 1)...] H_mat = NbodyGradient.hierarchy(H_vec) # Test each specification method with static hierarchy run_elements_tests(t0, H_mat, n) run_elements_tests(t0, H_vec, n) # Test hierarchy vector specification run_elements_tests(t0, n, n) # Test number-of-bodies specification # Now test each hierarchy method with file method run_elements_H_tests(t0, n) end end @testset "Cartesian" begin N = 8 t0 = 7257.93115525 - 7300.0 for n in 2:N run_cartesian_tests(t0, n) end end @testset "Defaults" begin test_default_trappist() end @testset "Deprecated" begin el = Elements(m=1.0, P=1.0) @test_logs (:warn, "ecosϖ (\\varpi) will be removed, use ecosω (\\omega).") Base.getproperty(el, :ecosϖ) @test_logs (:warn, "esinϖ (\\varpi) will be removed, use esinω (\\omega).") Base.getproperty(el, :esinϖ) @test_logs (:warn, "ϖ (\\varpi) will be removed, use ω (\\omega).") Base.getproperty(el, :ϖ) end end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
5520
# Test for the integrator methods, without outputs. @testset "Integrator" begin ###### Float64 ###### # Initial Conditions for Float64 version H = [3,1,1] n = 3 t0 = 7257.93115525 elements = readdlm("elements.txt", ',') # Increase mass of inner planets: elements[2,1] *= 100.0 elements[3,1] *= 100.0 # Set Ωs to 0.0 elements[:,end] .= 0.0 # Generate ICs ic = ElementsIC(t0, H, elements[1:n,:]) # Setup State and tilt orbits function perturb!(s::State{<:AbstractFloat}) s.x[2,1] = 5e-1 * sqrt(s.x[1,1]^2 + s.x[3,1]^2) s.x[2,2] = -5e-1 * sqrt(s.x[1,2]^2 + s.x[3,2]^2) s.x[2,3] = -5e-1 * sqrt(s.x[1,2]^2 + s.x[3,2]^2) s.v[2,1] = 5e-1 * sqrt(s.v[1,1]^2 + s.v[3,1]^2) s.v[2,2] = -5e-1 * sqrt(s.v[1,2]^2 + s.v[3,2]^2) s.v[2,3] = -5e-1 * sqrt(s.v[1,2]^2 + s.v[3,2]^2) return end s0 = State(ic) perturb!(s0) # Setup integrator h = 0.05 nstep = 100 tmax = nstep * h AHL21 = Integrator(ahl21!, h, t0, tmax) # Integrate AHL21(s0) #################### ##### BigFloat ##### t0_big = big(t0) elements_big = big.(elements) ic_big = ElementsIC(t0_big, H, elements_big) s_big = State(ic_big) perturb!(s_big) h_big = big(h) tmax_big = nstep * h_big AHL21_big = Integrator(ahl21!, h_big, t0_big, tmax_big) AHL21_big(s_big, grad=false) #################### ## Numerical Derivatives ## # Vary the initial parameters of planet j: n = 3 dlnq = big(1e-20) jac_step_num = zeros(BigFloat, 7 * n, 7 * n) for j = 1:n # Vary the initial phase-space elements: for jj = 1:3 # Position derivatives: sm = deepcopy(State(ic_big)) perturb!(sm) dq = dlnq * sm.x[jj,j] if sm.x[jj,j] != 0.0 sm.x[jj,j] -= dq else dq = dlnq sm.x[jj,j] = -dq end AHL21_big(sm, grad=false) sp = deepcopy(State(ic_big)) perturb!(sp) dq = dlnq * sp.x[jj,j] if sp.x[jj,j] != 0.0 sp.x[jj,j] += dq else dq = dlnq sp.x[jj,j] = dq end AHL21_big(sp, grad=false) # Now x & v are final positions & velocities after time step for i = 1:n for k = 1:3 jac_step_num[(i - 1) * 7 + k,(j - 1) * 7 + jj] = .5 * (sp.x[k,i] - sm.x[k,i]) / dq jac_step_num[(i - 1) * 7 + 3 + k,(j - 1) * 7 + jj] = .5 * (sp.v[k,i] - sm.v[k,i]) / dq end end # Next, velocity derivatives: sm = deepcopy(State(ic_big)) perturb!(sm) dq = dlnq * sm.v[jj,j] if sm.v[jj,j] != 0.0 sm.v[jj,j] -= dq else dq = dlnq sm.v[jj,j] = -dq end AHL21_big(sm, grad=false) sp = deepcopy(State(ic_big)) perturb!(sp) dq = dlnq * sp.v[jj,j] if sp.v[jj,j] != 0.0 sp.v[jj,j] += dq else dq = dlnq sp.v[jj,j] = dq end AHL21_big(sp;grad=false) for i = 1:n for k = 1:3 jac_step_num[(i - 1) * 7 + k,(j - 1) * 7 + 3 + jj] = .5 * (sp.x[k,i] - sm.x[k,i]) / dq jac_step_num[(i - 1) * 7 + 3 + k,(j - 1) * 7 + 3 + jj] = .5 * (sp.v[k,i] - sm.v[k,i]) / dq end end end # Now vary mass of planet: sm = deepcopy(State(ic_big)) perturb!(sm) dq = sm.m[j] * dlnq sm.m[j] -= dq AHL21_big(sm;grad=false) sp = deepcopy(State(ic_big)) perturb!(sp) dq = sp.m[j] * dlnq sp.m[j] += dq AHL21_big(sp;grad=false) for i = 1:n for k = 1:3 jac_step_num[(i - 1) * 7 + k,j * 7] = .5 * (sp.x[k,i] - sm.x[k,i]) / dq jac_step_num[(i - 1) * 7 + 3 + k,j * 7] = .5 * (sp.v[k,i] - sm.v[k,i]) / dq end end # Mass unchanged -> identity jac_step_num[j * 7,j * 7] = 1.0 end # dqdt s_dt = State(ic) AHL21(s_dt, 1) dqdt_num = zeros(BigFloat, 7 * n) s_dtm = deepcopy(State(ic_big)) hbig = big(h) dq = hbig * dlnq hbig -= dq AHL21_big = Integrator(ahl21!, hbig, t0_big, tmax_big) AHL21_big(s_dtm, 1;grad=false) s_dtp = deepcopy(State(ic_big)) hbig += 2dq AHL21_big = Integrator(ahl21!, hbig, t0_big, tmax_big) AHL21_big(s_dtp, 1;grad=false) for i in 1:n, k in 1:3 dqdt_num[(i - 1) * 7 + k] = .5 * (s_dtp.x[k,i] - s_dtm.x[k,i]) / dq dqdt_num[(i - 1) * 7 + 3 + k] = .5 * (s_dtp.v[k,i] - s_dtm.v[k,i]) / dq end dqdt_num = convert(Array{Float64,1}, dqdt_num) #################### ###### Tests ####### # Check analytic vs finite difference derivatives @test isapprox(asinh.(s0.jac_step), asinh.(jac_step_num);norm=maxabs) @test isapprox(s_dt.dqdt, dqdt_num, norm=maxabs) # Check that the positions and velocities for the derivatives and non- # derivatives versions match s_nograd = State(ic) s_grad = State(ic) tmax = 2000.0 Integrator(h, tmax)(s_nograd, grad=false) Integrator(h, tmax)(s_grad, grad=true) @test s_nograd.x == s_grad.x @test s_nograd.v == s_grad.v end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
11155
# This code tests the function kepler_driftij_gamma import NbodyGradient: kepler_driftij_gamma!, Derivatives, init_nbody @testset "kepler_driftij_gamma" begin for drift_first in [true,false] # Next, try computing two-body Keplerian Jacobian: NDIM = 3 n = 3 H = [3,1,1] t0 = 7257.93115525 h = 0.25 hbig = big(h) tmax = 600.0 dlnq = big(1e-15) elements = readdlm("elements.txt", ',') m = zeros(n) x0 = zeros(NDIM, n) v0 = zeros(NDIM, n) for k = 1:n m[k] = elements[k,1] end for iter = 1:2 init = ElementsIC(t0, H, elements) ic_big = ElementsIC(big(t0), H, big.(elements)) x0, v0, _ = init_nbody(init) s0 = State(init) sbig = State(ic_big) if iter == 2 # Reduce masses to trigger hyperbolic routine: m[1:n] *= 1e-3 s0.m[1:n] *= 1e-3 sbig.m[1:n] *= 1e-3 hbig = big(h) end # Tilt the orbits a bit: x0[2,1] = 5e-1 * sqrt(x0[1,1]^2 + x0[3,1]^2) x0[2,2] = -5e-1 * sqrt(x0[1,2]^2 + x0[3,2]^2) v0[2,1] = 5e-1 * sqrt(v0[1,1]^2 + v0[3,1]^2) v0[2,2] = -5e-1 * sqrt(v0[1,2]^2 + v0[3,2]^2) i = 1 ; j = 2 x = copy(x0) ; v = copy(v0) s = deepcopy(State(init)) s.x .= x; s.v .= v d = Derivatives(Float64, s.n) kepler_driftij_gamma!(s,d,i,j,h,drift_first) x0 = copy(s.x) ; v0 = copy(s.v) xerror = zeros(NDIM, n); verror = zeros(NDIM, n) xbig = big.(s.x) ; vbig = big.(s.v); mbig = big.(m) xerr_big = zeros(BigFloat, NDIM, n); verr_big = zeros(BigFloat, NDIM, n) kepler_driftij_gamma!(s,d,i,j,h,drift_first) d.jac_ij .+= Matrix{Float64}(I, size(d.jac_ij)) # Now, compute the derivatives numerically: jac_ij_num = zeros(BigFloat, 14, 14) dqdt_num = zeros(BigFloat, 14) xsave = big.(x) vsave = big.(v) msave = big.(m) sbig.x .= copy(xsave) sbig.v .= copy(vsave) sbig.m .= copy(msave) # Compute the time derivatives: # Initial positions, velocities & masses: sm = deepcopy(State(ic_big)) sm.x .= big.(x0) sm.v .= big.(v0) sm.m .= big.(msave) dq = dlnq * hbig hbig -= dq sm.xerror .= 0.0; sm.verror .= 0.0 kepler_driftij_gamma!(sm,i,j,hbig,drift_first) sp = deepcopy(State(ic_big)) sp.x .= big.(x0) sp.v .= big.(v0) sp.m .= big.(msave) hbig += 2dq sp.xerror .= 0.0; sp.verror .= 0.0 kepler_driftij_gamma!(sp,i,j,hbig,drift_first) # Now x & v are final positions & velocities after time step for k = 1:3 dqdt_num[ k] = 0.5 * (sp.x[k,i] - sm.x[k,i]) / dq dqdt_num[ 3 + k] = 0.5 * (sp.v[k,i] - sm.v[k,i]) / dq dqdt_num[ 7 + k] = 0.5 * (sp.x[k,j] - sm.x[k,j]) / dq dqdt_num[10 + k] = 0.5 * (sp.v[k,j] - sm.v[k,j]) / dq end hbig = big(h) # Compute position, velocity & mass derivatives: for jj = 1:3 # Initial positions, velocities & masses: sm = deepcopy(State(ic_big)) sm.x .= big.(x0) sm.v .= big.(v0) sm.m .= big.(msave) dq = dlnq * sm.x[jj,i] if sm.x[jj,i] != 0.0 sm.x[jj,i] -= dq else dq = dlnq sm.x[jj,i] = -dq end sm.xerror .= 0.0; sm.verror .= 0.0 kepler_driftij_gamma!(sm, i, j, hbig, drift_first) sp = deepcopy(State(ic_big)) sp.x .= big.(x0) sp.v .= big.(v0) sp.m .= big.(msave) if sm.x[jj,i] != 0.0 sp.x[jj,i] += dq else dq = dlnq sp.x[jj,i] = dq end sp.xerror .= 0.0; sp.verror .= 0.0 kepler_driftij_gamma!(sp, i, j, hbig, drift_first) # Now x & v are final positions & velocities after time step for k = 1:3 jac_ij_num[ k, jj] = .5 * (sp.x[k,i] - sm.x[k,i]) / dq jac_ij_num[ 3 + k, jj] = .5 * (sp.v[k,i] - sm.v[k,i]) / dq jac_ij_num[ 7 + k, jj] = .5 * (sp.x[k,j] - sm.x[k,j]) / dq jac_ij_num[10 + k, jj] = .5 * (sp.v[k,j] - sm.v[k,j]) / dq end sm = deepcopy(State(ic_big)) sm.x .= big.(x0) sm.v .= big.(v0) sm.m .= big.(msave) dq = dlnq * sm.v[jj,i] if sm.v[jj,i] != 0.0 sm.v[jj,i] -= dq else dq = dlnq sm.v[jj,i] = -dq end sm.xerror .= 0.0; sm.verror .= 0.0 kepler_driftij_gamma!(sm, i, j, hbig, drift_first) sp = deepcopy(State(ic_big)) sp.x .= big.(x0) sp.v .= big.(v0) sp.m .= big.(msave) if sp.v[jj,i] != 0.0 sp.v[jj,i] += dq else dq = dlnq sp.v[jj,i] = dq end sp.xerror .= 0.0; sp.verror .= 0.0 kepler_driftij_gamma!(sp, i, j, hbig, drift_first) for k = 1:3 jac_ij_num[ k,3 + jj] = .5 * (sp.x[k,i] - sm.x[k,i]) / dq jac_ij_num[ 3 + k,3 + jj] = .5 * (sp.v[k,i] - sm.v[k,i]) / dq jac_ij_num[ 7 + k,3 + jj] = .5 * (sp.x[k,j] - sm.x[k,j]) / dq jac_ij_num[10 + k,3 + jj] = .5 * (sp.v[k,j] - sm.v[k,j]) / dq end end # Now vary mass of inner planet: sm = deepcopy(State(ic_big)) sm.x .= big.(x0) sm.v .= big.(v0) sm.m .= big.(msave) dq = sm.m[i] * dlnq sm.m[i] -= dq sm.xerror .= 0.0; sm.verror .= 0.0 kepler_driftij_gamma!(sm,i,j,hbig,drift_first) sp = deepcopy(State(ic_big)) sp.x .= big.(x0) sp.v .= big.(v0) sp.m .= big.(msave) dq = sp.m[i] * dlnq sp.m[i] += dq sp.xerror .= 0.0; sp.verror .= 0.0 kepler_driftij_gamma!(sp,i,j,hbig,drift_first) for k = 1:3 jac_ij_num[ k,7] = .5 * (sp.x[k,i] - sm.x[k,i]) / dq jac_ij_num[ 3 + k,7] = .5 * (sp.v[k,i] - sm.v[k,i]) / dq jac_ij_num[ 7 + k,7] = .5 * (sp.x[k,j] - sm.x[k,j]) / dq jac_ij_num[10 + k,7] = .5 * (sp.v[k,j] - sm.v[k,j]) / dq end # The mass doesn't change: jac_ij_num[7,7] = 1.0 for jj = 1:3 # Now vary parameters of outer planet: sm = deepcopy(State(ic_big)) sm.x .= big.(x0) sm.v .= big.(v0) sm.m .= big.(msave) dq = dlnq * sm.x[jj,j] if sm.x[jj,j] != 0.0 sm.x[jj,j] -= dq else dq = dlnq sm.x[jj,j] = -dq end sm.xerror .= 0.0; sm.verror .= 0.0 kepler_driftij_gamma!(sm, i, j, hbig, drift_first) sp = deepcopy(State(ic_big)) sp.x .= big.(x0) sp.v .= big.(v0) sp.m .= big.(msave) if sp.x[jj,j] != 0.0 sp.x[jj,j] += dq else dq = dlnq sp.x[jj,j] = dq end sp.xerror .= 0.0; sp.verror .= 0.0 kepler_driftij_gamma!(sp, i, j, hbig, drift_first) for k = 1:3 jac_ij_num[ k,7 + jj] = .5 * (sp.x[k,i] - sm.x[k,i]) / dq jac_ij_num[ 3 + k,7 + jj] = .5 * (sp.v[k,i] - sm.v[k,i]) / dq jac_ij_num[ 7 + k,7 + jj] = .5 * (sp.x[k,j] - sm.x[k,j]) / dq jac_ij_num[10 + k,7 + jj] = .5 * (sp.v[k,j] - sm.v[k,j]) / dq end sm = deepcopy(State(ic_big)) sm.x .= big.(x0) sm.v .= big.(v0) sm.m .= big.(msave) dq = dlnq * sm.v[jj,j] if sm.v[jj,j] != 0.0 sm.v[jj,j] -= dq else dq = dlnq sm.v[jj,j] = -dq end sm.xerror .= 0.0; sm.verror .= 0.0 kepler_driftij_gamma!(sm, i, j, hbig, drift_first) sp = deepcopy(State(ic_big)) sp.x .= big.(x0) sp.v .= big.(v0) sp.m .= big.(msave) if sp.v[jj,j] != 0.0 sp.v[jj,j] += dq else dq = dlnq sp.v[jj,j] = dq end sp.xerror .= 0.0; sp.verror .= 0.0 kepler_driftij_gamma!(sp, i, j, hbig, drift_first) for k = 1:3 jac_ij_num[ k,10 + jj] = .5 * (sp.x[k,i] - sm.x[k,i]) / dq jac_ij_num[ 3 + k,10 + jj] = .5 * (sp.v[k,i] - sm.v[k,i]) / dq jac_ij_num[ 7 + k,10 + jj] = .5 * (sp.x[k,j] - sm.x[k,j]) / dq jac_ij_num[10 + k,10 + jj] = .5 * (sp.v[k,j] - sm.v[k,j]) / dq end end # Now vary mass of outer planet: sm = deepcopy(State(ic_big)) sm.x .= big.(x0) sm.v .= big.(v0) sm.m .= big.(msave) dq = sm.m[j] * dlnq sm.m[j] -= dq sm.xerror .= 0.0; sm.verror .= 0.0 kepler_driftij_gamma!(sm,i,j,hbig,drift_first) sp = deepcopy(State(ic_big)) sp.x .= big.(x0) sp.v .= big.(v0) sp.m .= big.(msave) dq = sp.m[j] * dlnq sp.m[j] += dq sp.xerror .= 0.0; sp.verror .= 0.0 kepler_driftij_gamma!(sp,i,j,hbig,drift_first) for k = 1:3 jac_ij_num[ k,14] = .5 * (sp.x[k,i] - sm.x[k,i]) / dq jac_ij_num[ 3 + k,14] = .5 * (sp.v[k,i] - sm.v[k,i]) / dq jac_ij_num[ 7 + k,14] = .5 * (sp.x[k,j] - sm.x[k,j]) / dq jac_ij_num[10 + k,14] = .5 * (sp.v[k,j] - sm.v[k,j]) / dq end # The mass doesn't change: jac_ij_num[14,14] = 1.0 @test isapprox(jac_ij_num, d.jac_ij ;norm=maxabs) @test isapprox(d.dqdt_ij, dqdt_num ;norm=maxabs) end end end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
5849
import NbodyGradient: kepler_init # Runs a simple test of kepler_init.jl # Not sure why this test can't see these from the module... const GNEWT = 39.4845 / 365.242^2 const third = 1.0 / 3.0 @testset "kepler_init" begin ntrial = 10 for itrial = 1:ntrial t0 = 2.4 mass = 1.0 period = 1.5 elements = ones(Float64, 6) while elements[3]^2 + elements[4]^2 >= 0.2^2 elements = [period,rand() * period,randn(),randn(),rand() * pi,rand() * pi] end elements_diff = zeros(Float64, 6) ecc = sqrt(elements[3]^2 + elements[4]^2) ntime = 1000 time = linearspace(t0, t0 + period, ntime) xvec = zeros(Float64, 3, ntime) vvec = zeros(Float64, 3, ntime) vfvec = zeros(Float64, 3, ntime) timebig = big.(time) # dt = 1e-8 dt = period / ntime dtbig = big(dt) jac_init = zeros(Float64, 7, 7) # Compute Jacobian in BigFloat precision with analytic formulae: jac_init_big = zeros(BigFloat, 7, 7) # Compute Jacobian in BigFloat precision with finite differences: jac_init_num = zeros(BigFloat, 7, 7) # Variations in the elements for finite differences: delements = big.([1e-15,1e-15,1e-15,1e-15,1e-15,1e-15,1e-15]) elements_name = ["P","t0","ecosom","esinom","inc","Omega","Mass"] cartesian_name = ["x","y","z","vx","vy","vz","mass"] # println("Elements: ",elements) massbig = big(mass) for i = 1:ntime x, v = kepler_init(timebig[i], massbig, big.(elements)) if i == 1 x_ekep, v_ekep = kepler_init(time[i], mass, elements, jac_init) # Redo in BigFloat elements_big = big.(elements) x_ekep_big, v_ekep_big = kepler_init(timebig[i], massbig, elements_big, jac_init_big) # Check that these agree: # println("x-x_ekep: ",maximum(abs.(x-x_ekep))," v-v_ekep: ",maximum(abs.(v-v_ekep))) # Now take some derivatives: for j = 1:7 elements_diff = big.(elements) if j <= 6 elements_diff[j] -= delements[j] else massbig -= delements[7] end x_minus, v_minus = kepler_init(timebig[i], massbig, elements_diff) elements_diff .= elements if j <= 6 elements_diff[j] += delements[j] else massbig += 2.0 * delements[7] end x_plus, v_plus = kepler_init(timebig[i], massbig, elements_diff) if j == 7 massbig -= delements[7] end for k = 1:3 jac_init_num[ k,j] = .5 * (x_plus[k] - x_minus[k]) / delements[j] jac_init_num[3 + k,j] = .5 * (v_plus[k] - v_minus[k]) / delements[j] end end jac_init_num[7,7] = 1.0 #= Dont need for CI Testing #for j=1:7, k=1:7 if abs(jac_init[k,j]-jac_init_num[k,j]) > 1e-8 println(elements_name[j]," ",cartesian_name[k]," ",jac_init[k,j]," ",jac_init_num[k,j]," ",jac_init[k,j]-jac_init_num[k,j]) end if abs(jac_init[k,j]/jac_init_num[k,j]-1) > 1e-12 && jac_init_num[k,j] != 0.0 println(elements_name[j]," ",cartesian_name[k]," ",jac_init[k,j]," ",jac_init_num[k,j]," ",jac_init[k,j]/jac_init_num[k,j]-1) end end println("Jacobians: difference ",maximum(abs.(jac_init-jac_init_num))) println("Jacobians: log diff ",maximum(abs.(jac_init[jac_init_num .!= 0.0]./jac_init_num[jac_init_num .!= 0.0].-1))) =# end xvec[:,i] = x vvec[:,i] = v # Compute finite difference velocity: xf, vf = kepler_init(timebig[i] + dtbig, massbig, big.(elements)) vfvec[:,i] = (xf - x) / dt end period = elements[1] # omega=atan2(elements[4],elements[3]) omega = atan(elements[4], elements[3]) semi = (GNEWT * mass * period^2 / 4 / pi^2)^third # Compute the focus: focus = [semi * ecc,0.,0.] xfocus = semi * ecc * (-cos(omega) - sin(omega)) zfocus = semi * ecc * sin(omega) # Check that we have an ellipse (we're assuming that the motion is in the x-z plane; no longer true): Atot = 0.0 dAdt = zeros(Float64, ntime) dx = xvec[1,1] - xvec[1,ntime - 1] dy = xvec[2,1] - xvec[2,ntime - 1] dz = xvec[3,1] - xvec[3,ntime - 1] dAvec = 0.5 * [xvec[2,1] * dz - xvec[3,1] * dy;xvec[3,1] * dx - xvec[1,1] * dz;xvec[1,1] * dy - xvec[2,1] * dx] # println("dA: ",norm(dAvec)," ",dAvec/norm(dAvec)) # dA = 0.5*(xvec[3,1]*dx-xvec[1,1]*dz) dAdt[1] = norm(dAvec) / (time[2] - time[1]) Atot += norm(dAvec) for i = 2:ntime dx = xvec[1,i] - xvec[1,i - 1] dy = xvec[2,i] - xvec[2,i - 1] dz = xvec[3,i] - xvec[3,i - 1] dAvec = 0.5 * [xvec[2,i] * dz - xvec[3,i] * dy;xvec[3,i] * dx - xvec[1,i] * dz;xvec[1,i] * dy - xvec[2,i] * dx] # println("dA: ",norm(dAvec)," ",dAvec/norm(dAvec)) # dA = 0.5*(xvec[3,i]*dx-xvec[1,i]*dz) dAdt[i] = norm(dAvec) / (time[i] - time[i - 1]) Atot += norm(dAvec) end # println("Total area: ",Atot," ",pi*sqrt(1-ecc^2)*semi^2," ratio: ",Atot/pi/semi^2/sqrt(1-ecc^2)) # using PyPlot # plot(time,dAdt) # axis([minimum(time),maximum(time),0.,1.5*maximum(dAdt)]) # println("Scatter in dAdt: ",std(dAdt)) # plot(time,vvec[1,:]) # plot(time,vfvec[1,:],".") # plot(time,vvec[1,:]-vfvec[1,:],".") # plot(time,vvec[3,:]) # plot(time,vfvec[3,:],".") # plot(time,vvec[3,:]-vfvec[3,:],".") # Check that velocities match finite difference values @test isapprox(jac_init, jac_init_num;norm=maxabs) @test isapprox(jac_init, convert(Array{Float64,2}, jac_init_big);norm=maxabs) end end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
4999
# Tests the routine kickfast jacobian. This routine # computes the impulse gradient after Dehnen & Hernandez (2017). import NbodyGradient: kickfast!, Derivatives # Next, try computing three-body Keplerian Jacobian: @testset "kickfast" begin n = 3 H = [3,1,1] t0 = 7257.93115525 h = 0.05 tmax = 600.0 dlnq = big(1e-15) elements = readdlm("elements.txt", ',') elements[2,1] = 1.0 elements[3,1] = 1.0 m = zeros(n) x0 = zeros(3, n) v0 = zeros(3, n) # Define which pairs will have impulse rather than -drift+Kepler: pair = ones(Bool, n, n) # This does impulses # We want Keplerian between star & planets, and impulses between # planets. Impulse is indicated with 'true', -drift+Kepler with 'false': for i = 2:n pair[1,i] = false # This does a Kepler + drift # We don't need to define this, but let's anyways: pair[i,1] = false end # jac_step = zeros(7*n,7*n) for k = 1:n m[k] = elements[k,1] end m0 = copy(m) init = ElementsIC(t0, H, elements) ic_big = ElementsIC(big(t0), H, big.(elements)) s0 = State(init) s0.pair .= pair s0big = State(ic_big) s0big.pair .= pair # Tilt the orbits a bit: s0.x[2,1] = 5e-1 * sqrt(s0.x[1,1]^2 + s0.x[3,1]^2) s0.x[2,2] = -5e-1 * sqrt(s0.x[1,2]^2 + s0.x[3,2]^2) s0.x[2,3] = -5e-1 * sqrt(s0.x[1,2]^2 + s0.x[3,2]^2) s0.v[2,1] = 5e-1 * sqrt(s0.v[1,1]^2 + s0.v[3,1]^2) s0.v[2,2] = -5e-1 * sqrt(s0.v[1,2]^2 + s0.v[3,2]^2) s0.v[2,3] = -5e-1 * sqrt(s0.v[1,2]^2 + s0.v[3,2]^2) # Take a step: s0big.x .= big.(s0.x) s0big.v .= big.(s0.v) ahl21!(s0,h) ahl21!(s0big,big(h)) # Now, copy these to compute Jacobian (so that I don't step # x0 & v0 forward in time): s = deepcopy(s0) s.xerror .= 0.0; s.verror .= 0.0 # Compute jacobian exactly: d = Derivatives(Float64, s.n); s.jac_step .= 0.0 d.dqdt_kick .= 0.0 kickfast!(s,d,h) # Add in identity matrix: for i = 1:7 * n d.jac_kick[i,i] += 1 end # Now compute numerical derivatives, using BigFloat to avoid # round-off errors: jac_step_num = zeros(BigFloat, 7 * n, 7 * n) # Save these so that I can compute derivatives numerically: xsave = copy(s0big.x) vsave = copy(s0big.v) msave = copy(s0big.m) hbig = big(h) sbig = deepcopy(s0big) sbig.x .= xsave sbig.v .= vsave sbig.m .= msave sbig.xerror .= 0.0; sbig.verror .= 0.0 # Carry out step using BigFloat for extra precision: kickfast!(sbig,hbig) # Save back to use in derivative calculations xsave .= sbig.x vsave .= sbig.v msave .= sbig.m sbig = deepcopy(s0big) sbig.xerror .= 0.0; sbig.verror .= 0.0 # Compute numerical derivatives wrt time: dqdt_num = zeros(BigFloat, 7 * n) # Vary time: kickfast!(sbig,hbig) # Initial positions, velocities & masses: sbig = deepcopy(s0big) sbig.xerror .= 0.0; sbig.verror .= 0.0 hbig = big(h) dq = dlnq * hbig hbig += dq kickfast!(sbig,hbig) # Now x & v are final positions & velocities after time step for i in 1:n, k in 1:3 dqdt_num[(i - 1) * 7 + k] = (sbig.x[k,i] - xsave[k,i]) / dq dqdt_num[(i - 1) * 7 + 3 + k] = (sbig.v[k,i] - vsave[k,i]) / dq end hbig = big(h) # Vary the initial parameters of planet j: for j = 1:n # Vary the initial phase-space elements: for jj = 1:3 # Initial positions, velocities & masses: sbig = deepcopy(s0big) sbig.xerror .= 0.0; sbig.verror .= 0.0 dq = dlnq * sbig.x[jj,j] if sbig.x[jj,j] != 0.0 sbig.x[jj,j] += dq else dq = dlnq sbig.x[jj,j] = dq end kickfast!(sbig, hbig) # Now x & v are final positions & velocities after time step for i = 1:n for k = 1:3 jac_step_num[(i - 1) * 7 + k,(j - 1) * 7 + jj] = (sbig.x[k,i] - xsave[k,i]) / dq jac_step_num[(i - 1) * 7 + 3 + k,(j - 1) * 7 + jj] = (sbig.v[k,i] - vsave[k,i]) / dq end end sbig = deepcopy(s0big) sbig.xerror .= 0.0; sbig.verror .= 0.0 dq = dlnq * sbig.v[jj,j] if sbig.v[jj,j] != 0.0 sbig.v[jj,j] += dq else dq = dlnq sbig.v[jj,j] = dq end kickfast!(sbig, hbig) for i in 1:n for k = 1:3 jac_step_num[(i - 1) * 7 + k,(j - 1) * 7 + 3 + jj] = (sbig.x[k,i] - xsave[k,i]) / dq jac_step_num[(i - 1) * 7 + 3 + k,(j - 1) * 7 + 3 + jj] = (sbig.v[k,i] - vsave[k,i]) / dq end end end # Now vary mass of planet: sbig = deepcopy(s0big) sbig.xerror .= 0.0; sbig.verror .= 0.0 dq = sbig.m[j] * dlnq sbig.m[j] += dq kickfast!(sbig, hbig) for i = 1:n for k = 1:3 jac_step_num[(i - 1) * 7 + k,j * 7] = (sbig.x[k,i] - xsave[k,i]) / dq jac_step_num[(i - 1) * 7 + 3 + k,j * 7] = (sbig.v[k,i] - vsave[k,i]) / dq end # Mass unchanged -> identity jac_step_num[7 * i,7 * i] = big(1.0) end end jac_step_num = convert(Array{Float64,2}, jac_step_num) dqdt_num = convert(Array{Float64,1}, dqdt_num) @test isapprox(d.jac_kick, jac_step_num;norm=maxabs) @test isapprox(d.dqdt_kick, dqdt_num;norm=maxabs) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
4758
# Tests the routine phic jacobian. This routine # computes the force gradient correction after Dehnen & Hernandez (2017). import NbodyGradient: phic!, init_nbody # Next, try computing three-body Keplerian Jacobian: @testset "phic" begin n = 3 H = [3,1,1] t0 = 7257.93115525 h = 0.05 tmax = 600.0 dlnq = big(1e-15) elements = readdlm("elements.txt", ',') elements[2,1] = 1.0 elements[3,1] = 1.0 m = zeros(n) x0 = zeros(3, n) v0 = zeros(3, n) # Define which pairs will have impulse rather than -drift+Kepler: pair = ones(Bool, n, n) # We want Keplerian between star & planets, and impulses between # planets. Impulse is indicated with 'true', -drift+Kepler with 'false': for i=2:n pair[1,i] = false pair[i,1] = false end for k = 1:n m[k] = elements[k,1] end m0 = copy(m) init = ElementsIC(t0, H, elements) ic_big = ElementsIC(big(t0), H, big.(elements)) x0, v0, _ = init_nbody(init) # Tilt the orbits a bit: x0[2,1] = 5e-1 * sqrt(x0[1,1]^2 + x0[3,1]^2) x0[2,2] = -5e-1 * sqrt(x0[1,2]^2 + x0[3,2]^2) x0[2,3] = -5e-1 * sqrt(x0[1,2]^2 + x0[3,2]^2) v0[2,1] = 5e-1 * sqrt(v0[1,1]^2 + v0[3,1]^2) v0[2,2] = -5e-1 * sqrt(v0[1,2]^2 + v0[3,2]^2) v0[2,3] = -5e-1 * sqrt(v0[1,2]^2 + v0[3,2]^2) # Save to state s = State(init) s.x .= x0; s.v .= v0 s.pair .= pair # Take a step: ahl21!(s,h) x0 .= s.x; v0 .= s.v # Now, copy these to compute Jacobian (so that I don't step # x0 & v0 forward in time): x = copy(s.x); v = copy(s.v); m = copy(s.m) # Compute jacobian exactly: d = Derivatives(Float64, s.n) phic!(s,d,h) d.jac_phi .+= Matrix{Float64}(I, size(d.jac_phi)) # Now compute numerical derivatives, using BigFloat to avoid # round-off errors: jac_step_num = zeros(BigFloat, 7 * n, 7 * n) # Save these so that I can compute derivatives numerically: xsave = big.(x0) vsave = big.(v0) msave = big.(m0) hbig = big(h) sbig = deepcopy(State(ic_big)) sbig.x .= xsave; sbig.v .= vsave; sbig.m .= msave sbig.pair .= pair # Carry out step using BigFloat for extra precision: phic!(sbig,hbig) # Copy back to saves xsave .= sbig.x; vsave .= sbig.v; msave .= sbig.m # Compute numerical derivatives wrt time: dqdt_num = zeros(BigFloat, 7 * n) # Initial positions, velocities & masses: hbig = big(h) dq = dlnq * hbig hbig += dq sbig = deepcopy(State(ic_big)) sbig.x .= big.(x0); sbig.v .= big.(v0); sbig.m .= big.(m0) sbig.pair .= pair phic!(sbig,hbig) # Now x & v are final positions & velocities after time step for i in 1:n, k in 1:3 dqdt_num[(i - 1) * 7 + k] = (sbig.x[k,i] - xsave[k,i]) / dq dqdt_num[(i - 1) * 7 + 3 + k] = (sbig.v[k,i] - vsave[k,i]) / dq end hbig = big(h) # Vary the initial parameters of planet j: for j = 1:n # Vary the initial phase-space elements: for jj = 1:3 # Initial positions, velocities & masses: sbig = deepcopy(State(ic_big)) sbig.x .= big.(x0); sbig.v .= big.(v0); sbig.m .= big.(m0) sbig.pair .= pair dq = dlnq * sbig.x[jj,j] if sbig.x[jj,j] != 0.0 sbig.x[jj,j] += dq else dq = dlnq sbig.x[jj,j] = dq end phic!(sbig, hbig) # Now x & v are final positions & velocities after time step for i = 1:n for k = 1:3 jac_step_num[(i - 1) * 7 + k,(j - 1) * 7 + jj] = (sbig.x[k,i] - xsave[k,i]) / dq jac_step_num[(i - 1) * 7 + 3 + k,(j - 1) * 7 + jj] = (sbig.v[k,i] - vsave[k,i]) / dq end end sbig = deepcopy(State(ic_big)) sbig.x .= big.(x0); sbig.v .= big.(v0); sbig.m .= big.(m0) sbig.pair .= pair dq = dlnq * sbig.v[jj,j] if sbig.v[jj,j] != 0.0 sbig.v[jj,j] += dq else dq = dlnq sbig.v[jj,j] = dq end phic!(sbig, hbig) for i = 1:n for k = 1:3 jac_step_num[(i - 1) * 7 + k,(j - 1) * 7 + 3 + jj] = (sbig.x[k,i] - xsave[k,i]) / dq jac_step_num[(i - 1) * 7 + 3 + k,(j - 1) * 7 + 3 + jj] = (sbig.v[k,i] - vsave[k,i]) / dq end end end # Now vary mass of planet: sbig = deepcopy(State(ic_big)) sbig.x .= big.(x0); sbig.v .= big.(v0); sbig.m .= big.(m0) sbig.pair .= pair dq = sbig.m[j] * dlnq sbig.m[j] += dq phic!(sbig, hbig) for i = 1:n for k = 1:3 jac_step_num[(i - 1) * 7 + k,j * 7] = (sbig.x[k,i] - xsave[k,i]) / dq jac_step_num[(i - 1) * 7 + 3 + k,j * 7] = (sbig.v[k,i] - vsave[k,i]) / dq end # Mass unchanged -> identity jac_step_num[7 * i,7 * i] = big(1.0) end end # Now, compare the results: dqdt_num = convert(Array{Float64,1}, dqdt_num) @test isapprox(d.jac_phi, jac_step_num;norm=maxabs) @test isapprox(d.dqdt_phi, dqdt_num;norm=maxabs) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
4520
# Tests the routine phisalpha jacobian. This routine # computes the force gradient correction after Dehnen & Hernandez (2017). import NbodyGradient: phisalpha!, init_nbody # Next, try computing three-body Keplerian Jacobian: @testset "phisalpha" begin n = 3 H = [3,1,1] t0 = 7257.93115525 h = 0.05 tmax = 600.0 dlnq = big(1e-15) elements = readdlm("elements.txt", ',') m = zeros(n) x0 = zeros(3, n) v0 = zeros(3, n) alpha = 2.0 # Define which pairs will have impulse rather than -drift+Kepler: pair = zeros(Bool, n, n) for k = 1:n m[k] = elements[k,1] end m0 = copy(m) init = ElementsIC(t0, H, elements) ic_big = ElementsIC(big(t0), H, big.(elements)) x0, v0, _ = init_nbody(init) # Tilt the orbits a bit: x0[2,1] = 5e-1 * sqrt(x0[1,1]^2 + x0[3,1]^2) x0[2,2] = -5e-1 * sqrt(x0[1,2]^2 + x0[3,2]^2) x0[2,3] = -5e-1 * sqrt(x0[1,2]^2 + x0[3,2]^2) v0[2,1] = 5e-1 * sqrt(v0[1,1]^2 + v0[3,1]^2) v0[2,2] = -5e-1 * sqrt(v0[1,2]^2 + v0[3,2]^2) v0[2,3] = -5e-1 * sqrt(v0[1,2]^2 + v0[3,2]^2) # Save to state s = State(init) s.x .= x0; s.v .= v0 s.pair .= pair # Take a step: ahl21!(s,h) x0 .= s.x; v0 .= s.v # Now, copy these to compute Jacobian (so that I don't step # x0 & v0 forward in time): x = copy(s.x); v = copy(s.v); m = copy(s.m) # Compute jacobian exactly: d = Derivatives(Float64, s.n) phisalpha!(s,d,h,alpha) d.jac_phi .+= Matrix{Float64}(I, size(d.jac_phi)) # Now compute numerical derivatives, using BigFloat to avoid # round-off errors: jac_step_num = zeros(BigFloat, 7 * n, 7 * n) # Save these so that I can compute derivatives numerically: xsave = big.(x0) vsave = big.(v0) msave = big.(m0) hbig = big(h) abig = big(alpha) sbig = deepcopy(State(ic_big)) sbig.x .= xsave; sbig.v .= vsave; sbig.m .= msave # Carry out step using BigFloat for extra precision: phisalpha!(sbig,hbig,abig) # Copy back to saves xsave .= sbig.x; vsave .= sbig.v; msave .= sbig.m # Compute numerical derivatives wrt time: dqdt_num = zeros(BigFloat, 7 * n) # Initial positions, velocities & masses: hbig = big(h) dq = dlnq * hbig hbig += dq sbig = deepcopy(State(ic_big)) sbig.x .= big.(x0); sbig.v .= big.(v0); sbig.m .= big.(m0) phisalpha!(sbig,hbig,abig) # Now x & v are final positions & velocities after time step for i in 1:n, k in 1:3 dqdt_num[(i - 1) * 7 + k] = (sbig.x[k,i] - xsave[k,i]) / dq dqdt_num[(i - 1) * 7 + 3 + k] = (sbig.v[k,i] - vsave[k,i]) / dq end hbig = big(h) # Vary the initial parameters of planet j: for j = 1:n # Vary the initial phase-space elements: for jj = 1:3 # Initial positions, velocities & masses: sbig = deepcopy(State(ic_big)) sbig.x .= big.(x0); sbig.v .= big.(v0); sbig.m .= big.(m0) dq = dlnq * sbig.x[jj,j] if sbig.x[jj,j] != 0.0 sbig.x[jj,j] += dq else dq = dlnq sbig.x[jj,j] = dq end phisalpha!(sbig, hbig, abig) # Now x & v are final positions & velocities after time step for i = 1:n for k = 1:3 jac_step_num[(i - 1) * 7 + k,(j - 1) * 7 + jj] = (sbig.x[k,i] - xsave[k,i]) / dq jac_step_num[(i - 1) * 7 + 3 + k,(j - 1) * 7 + jj] = (sbig.v[k,i] - vsave[k,i]) / dq end end sbig = deepcopy(State(ic_big)) sbig.x .= big.(x0); sbig.v .= big.(v0); sbig.m .= big.(m0) dq = dlnq * sbig.v[jj,j] if sbig.v[jj,j] != 0.0 sbig.v[jj,j] += dq else dq = dlnq sbig.v[jj,j] = dq end phisalpha!(sbig, hbig, abig) for i = 1:n for k = 1:3 jac_step_num[(i - 1) * 7 + k,(j - 1) * 7 + 3 + jj] = (sbig.x[k,i] - xsave[k,i]) / dq jac_step_num[(i - 1) * 7 + 3 + k,(j - 1) * 7 + 3 + jj] = (sbig.v[k,i] - vsave[k,i]) / dq end end end # Now vary mass of planet: sbig = deepcopy(State(ic_big)) sbig.x .= big.(x0); sbig.v .= big.(v0); sbig.m .= big.(m0) dq = sbig.m[j] * dlnq sbig.m[j] += dq phisalpha!(sbig, hbig, abig) for i = 1:n for k = 1:3 jac_step_num[(i - 1) * 7 + k,j * 7] = (sbig.x[k,i] - xsave[k,i]) / dq jac_step_num[(i - 1) * 7 + 3 + k,j * 7] = (sbig.v[k,i] - vsave[k,i]) / dq end # Mass unchanged -> identity jac_step_num[7 * i,7 * i] = big(1.0) end end # Now, compare the results: dqdt_num = convert(Array{Float64,1}, dqdt_num) @test isapprox(d.jac_phi, jac_step_num;norm=maxabs) @test isapprox(d.dqdt_phi, dqdt_num;norm=maxabs) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
3294
import NbodyGradient: set_state!, zero_out!, amatrix @testset "Transit Parameters" begin N = 3 t0 = 7257.93115525 - 7300.0 - 0.5 # Initialize IC before first transit h = 0.04 itime = 10.0 # Time integrator will run tmax = itime # Setup initial conditions: elements = readdlm("elements.txt", ',')[1:N,:] elements[2:end,3] .-= 7300.0 elements[:,end] .= 0.0 # Set Ωs to 0 elements[2,1] *= 10.0 elements[3,1] *= 10.0 ic = ElementsIC(t0, N, elements) function calc_times(h) intr = Integrator(ahl21!, h, 0.0, tmax) s = State(ic) ttbv = TransitParameters(itime, ic) intr(s, ttbv) return ttbv end # Calculate transit times tts = calc_times(h) mask = zeros(Bool, size(tts.dtbvdq0)); for jq = 1:N for iq = 1:7 if iq == 7; ivary = 1; else; ivary = iq + 1; end # Shift mass variation to end for i = 2:N for k = 1:tts.count[i] for itbv = 1:3 # Ignore inclination & longitude of nodes variations: if iq != 5 && iq != 6 && ~(jq == 1 && iq < 7) && ~(jq == i && iq == 7) mask[itbv,i,k,iq,jq] = true end end end end end end function calc_finite_diff(h, t0, itime, tmax, elements) # Now do finite difference with big float dq0 = big(1e-10) ic_big = ElementsIC(big(t0), N, big.(elements)) elements_big = copy(ic_big.elements) sp, dp = dState(ic_big) sm, dm = dState(ic_big) ttp = TransitParameters(big(itime), ic_big); ttm = TransitParameters(big(itime), ic_big); dtde_num = zeros(BigFloat, size(ttp.dtbvdelements)); intr_big = Integrator(big(h), zero(BigFloat), big(tmax)) for jq in 1:N for iq in 1:7 zero_out!(ttp); zero_out!(ttm); zero_out!(dp); zero_out!(dm); ic_big.elements .= elements_big ic_big.m .= elements_big[:,1] if iq == 7; ivary = 1; else; ivary = iq + 1; end ic_big.elements[jq,ivary] += dq0 if ivary == 1; ic_big.m[jq] += dq0; amatrix(ic_big); end # Masses don't update with elements array initialize!(sp, ic_big) intr_big(sp, ttp, dp; grad=false) ic_big.elements[jq,ivary] -= 2dq0 if ivary == 1; ic_big.m[jq] -= 2dq0; amatrix(ic_big); end initialize!(sm, ic_big) intr_big(sm, ttm, dm; grad=false) for i in 2:N for k in 1:ttm.count[i] for itbv=1:3 # Compute double-sided derivative for more accuracy: dtde_num[itbv,i,k,iq,jq] = (ttp.ttbv[itbv,i,k] - ttm.ttbv[itbv,i,k]) / (2dq0) end end end end end return dtde_num end dtde_num = calc_finite_diff(h, t0, itime, tmax, elements) @test isapprox(asinh.(tts.dtbvdelements[mask]), asinh.(dtde_num[mask]);norm=maxabs) @test isapprox(asinh.(tts.dtbvdelements), asinh.(dtde_num);norm=maxabs) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
4489
using FiniteDifferences import NbodyGradient: set_state!, zero_out!, amatrix @testset "Transit Series" begin N = 3 t0 = 7257.93115525 - 7300.0 - 0.5 # Initialize IC before first transit h = 0.04 itime = 10.0 tmax = itime # Setup initial conditions: elements = readdlm("elements.txt", ',')[1:N,:] elements[2:end,3] .-= 7300.0 elements[:,end] .= 0.0 # Set Ωs to 0 elements[2,1] *= 10.0 elements[3,1] *= 10.0 ic = ElementsIC(t0, N, elements) # Calculate transit times and b,vsky function calc_times(h;grad=false) intr = Integrator(ahl21!, h, 0.0, tmax) s = State(ic) ttbv = TransitParameters(itime, ic) intr(s, ttbv;grad=grad) return ttbv end # Calculate b,vsky for specified times function calc_pd(h, times;grad=false) intr = Integrator(ahl21!, h, 0.0, tmax) s = State(ic) ts = TransitSeries(times, ic) intr(s, ts; grad=grad) return ts end ttbv = calc_times(h; grad=true) mask = ttbv.ttbv[1,2,:] .!= 0.0 ts = calc_pd(h, ttbv.ttbv[1,2,mask]; grad=true) tol = 1e-10 # Test whether TransitSeries can reproduce b,vsky at transit time from TransitParameters @test all(abs.(ttbv.ttbv[2,2,mask] .- ts.vsky[2,:]) .< tol) @test all(abs.(ttbv.ttbv[3,2,mask] .- ts.bsky2[2,:]) .< tol) # Now make set of times to calc b and vsky and compare derivatives times = [t0, t0 + 1.0] ts = calc_pd(h, times; grad=true) # method for finite diff function calc_b(θ,i=1;b=true,times=ttbv.ttbv[1,2,mask]) elements = reshape(θ,3,7) intr = Integrator(ahl21!, h, 0.0, 10.0) ic = ElementsIC(t0,N,elements) s = State(ic) pd = Photodynamics(times, ic) intr(s, pd; grad=true) if b return pd.bsky2[i,:] else return pd.vsky[i,:] end end # Now test derivatives function calc_finite_diff(h, t0, times, tmax, elements) # Now do finite difference with big float dq0 = big(1e-10) ic_big = ElementsIC(big(t0), N, big.(elements)) elements_big = copy(ic_big.elements) s_big = State(ic_big) pdp = TransitSeries(big.(times), ic_big); pdm = TransitSeries(big.(times), ic_big); dbvde_num = zeros(BigFloat, size(pdp.dbvdelements)); intr_big = Integrator(big(h), zero(BigFloat), big(tmax)) for jq in 1:N for iq in 1:7 zero_out!(pdp); zero_out!(pdm); ic_big.elements .= elements_big ic_big.m .= elements_big[:,1] if iq == 7; ivary = 1; else; ivary = iq + 1; end ic_big.elements[jq,ivary] += dq0 if ivary == 1; ic_big.m[jq] += dq0; amatrix(ic_big); end # Masses don't update with elements array sp = State(ic_big); intr_big(sp, pdp; grad=false) ic_big.elements[jq,ivary] -= 2dq0 if ivary == 1; ic_big.m[jq] -= 2dq0; amatrix(ic_big); end sm = State(ic_big) intr_big(sm, pdm; grad=false) for i in 2:N for k in 1:ts.nt # Compute double-sided derivative for more accuracy: dbvde_num[1,i,k,iq,jq] = (pdp.vsky[i,k] - pdm.vsky[i,k]) / (2dq0) dbvde_num[2,i,k,iq,jq] = (pdp.bsky2[i,k] - pdm.bsky2[i,k]) / (2dq0) end end end end return dbvde_num end mask = zeros(Bool, size(ts.dbvdelements)); for jq = 1:N for iq = 1:7 if iq == 7; ivary = 1; else; ivary = iq + 1; end # Shift mass variation to end for i = 2:N for k = 1:ts.nt for itbv = 1:2 # Ignore inclination & longitude of nodes variations: if iq != 5 && iq != 6 && ~(jq == 1 && iq < 7) && ~(jq == i && iq == 7) mask[2,i,k,iq,jq] = true end end end end end end dbvde_num = calc_finite_diff(h, t0, ts.times, tmax, elements) @test isapprox(asinh.(ts.dbvdelements[mask]), asinh.(dbvde_num[mask]); norm=maxabs) #mask_times = ttbv.ttbv[1,2,:] .!= 0.0 #@test isapprox(asinh.(ts.dbvdelements[mask]), asinh.(ttbv.dtbvdelements[2:3,:,mask_times,:,:][mask]); norm=maxabs) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
3745
import NbodyGradient: set_state!, zero_out!, amatrix, initialize! @testset "Transit Timing" begin N = 3 t0 = 7257.93115525 - 7300.0 - 0.5 # Initialize IC before first transit h = 0.04 itime = 10.0 # Amount of time the integrator will run tmax = itime # Setup initial conditions: elements = readdlm("elements.txt", ',')[1:N,:] elements[2:end,3] .-= 7300.0 elements[:,end] .= 0.0 # Set Ωs to 0 elements[2,1] *= 10.0 elements[3,1] *= 10.0 ic = ElementsIC(t0, N, elements) function calc_times(h, ti) intr = Integrator(ahl21!, h, 0.0, tmax) s = State(ic) tt = TransitTiming(itime, ic, ti) intr(s, tt) return tt end function calc_finite_diff(h, t0, itime, tmax, elements, ti) # Now do finite difference with big float dq0 = big(1e-10) ic_big = ElementsIC(big(t0), N, big.(elements)) elements_big = copy(ic_big.elements) sp, dp = dState(ic_big) sm, dm = dState(ic_big) ttp = TransitTiming(big(itime), ic_big, ti); ttm = TransitTiming(big(itime), ic_big, ti); dtde_num = zeros(BigFloat, size(ttp.dtdelements)); intr_big = Integrator(big(h), zero(BigFloat), big(tmax)) for jq in 1:N for iq in 1:7 zero_out!(ttp); zero_out!(ttm); zero_out!(dp); zero_out!(dm); ic_big.elements .= elements_big ic_big.m .= elements_big[:,1] if iq == 7; ivary = 1; else; ivary = iq + 1; end ic_big.elements[jq,ivary] += dq0 if ivary == 1; ic_big.m[jq] += dq0; amatrix(ic_big); end # Masses don't update with elements array initialize!(sp, ic_big) intr_big(sp, ttp, dp; grad=false) ic_big.elements[jq,ivary] -= 2dq0 if ivary == 1; ic_big.m[jq] -= 2dq0; amatrix(ic_big); end initialize!(sm, ic_big) intr_big(sm, ttm, dm; grad=false) for i in ttm.occs for k in 1:ttm.count[i] # Compute double-sided derivative for more accuracy: dtde_num[i,k,iq,jq] = (ttp.tt[i,k] - ttm.tt[i,k]) / (2dq0) end end end end return dtde_num end for ti in 1:N # Calculate transit times hs = h ./ [1.0,2.0,4.0,8.0] tts = TransitTiming[] for h in hs push!(tts, calc_times(h, ti)) end mask = zeros(Bool, size(tts[2].dtdq0)); for jq = 1:N for iq = 1:7 if iq == 7; ivary = 1; else; ivary = iq + 1; end # Shift mass variation to end for i = tts[1].occs for k = 1:tts[1].count[i] # Ignore inclination & longitude of nodes variations: if iq != 5 && iq != 6 && ~(jq == 1 && iq < 7) && ~(jq == i && iq == 7) mask[i,k,iq,jq] = true end end end end end dtde_num = calc_finite_diff(h, t0, itime, tmax, elements, ti) @test isapprox(asinh.(tts[1].dtdelements[mask]), asinh.(dtde_num[mask]);norm=maxabs) @test isapprox(asinh.(tts[1].dtdelements), asinh.(dtde_num);norm=maxabs) end # Test that the transit times for the derivatives and non-derivatives match tmax = 2000.0 s_nograd = State(ic); tt_nograd = TransitTiming(tmax, ic); s_grad = State(ic); tt_grad = TransitTiming(tmax, ic); Integrator(h, tmax)(s_nograd, tt_nograd, grad=false) Integrator(h, tmax)(s_grad, tt_grad, grad=true) @test tt_nograd.tt == tt_grad.tt end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
7291
# Approximate G_3 for small \sqrt{|\beta|s}: using ForwardDiff #const cg3 = 1./[6.0,-120.0,5040.0,-362880.0,39916800.0,-6227020800.0] #const cH2 = 1./[3.0,-30.0,840.0,-45360.0,3991680.0,-518918400.0] #const cH1 = 1./[12.0,-180.0,6720.0,-453600.0,47900160.0,-7264857600.0] # Define a dummy function for automatic differentiation: function G3(param::Array{T,1}) where {T <: Real} return G3(param[1],param[2]) end function G3(s::T,beta::T) where {T <: Real} sqb = sqrt(abs(beta)) x = sqb*s if beta >= 0 return (x-sin(x))/(sqb*beta) else return (x-sinh(x))/(sqb*beta) end end y = zeros(2) dg3 = y -> ForwardDiff.gradient(g3,y); function H2(s::T,beta::T) where {T <: Real} sqb = sqrt(abs(beta)) x=sqb*s if beta >= 0 return (sin(x)-x*cos(x))/(sqb*beta) else return (sinh(x)-x*cosh(x))/(sqb*beta) end end function H1(s::T,beta::T) where {T <: Real} x=sqrt(abs(beta))*s if beta >= 0 return (2.0-2cos(x)-x*sin(x))/beta^2 else return (2.0-2cosh(x)+x*sinh(x))/beta^2 end end function g3_series(s::T,beta::T) where {T <: Real} epsilon = eps(s) # Computes G_3(\beta,s) using a series tailored to the precision of s. x2 = -beta*s^2 term = one(s) g3 = one(s) n=0 # Terminate series when required precision reached: while abs(term) > epsilon*abs(g3) n += 1 term *= x2/((2n+3)*(2n+2)) g3 += term end g3 *= s^3/6 return g3::T end dg3_series = y -> ForwardDiff.gradient(g3_series,y); # Define a dummy function for automatic differentiation: function g3_series(param::Array{T,1}) where {T <: Real} return g3_series(param[1],param[2]) end #function H2_series(s::T,beta::T) where {T <: Real} #x2 = abs(beta)*s^2 #pm = sign(beta) #return s^3*(cH2[1]+x2*(pm*cH2[2]+x2*(cH2[3]+ # x2*(pm*cH2[4]+x2*(cH2[5]+x2*pm*cH2[6]))))) #end function H2_series(s::T,beta::T) where {T <: Real} # Computes H_2(\beta,s) using a series tailored to the precision of s. epsilon = eps(s) x2 = -beta*s^2 term = one(s) h2 = one(s) n=0 # Terminate series when required precision reached: while abs(term) > epsilon*abs(h2) n += 1 term *= x2 term /= (4n+6)*n h2 += term end h2 *= s^3/3 return h2::T end #function H1_series(s::T,beta::T) where {T <: Real} #x2 = abs(beta)*s^2 #pm = sign(beta) #return x2*x2*(cH1[1]+x2*(pm*cH1[2]+x2*(cH1[3]+ # x2*(pm*cH1[4]+x2*(cH1[5]+x2*pm*cH1[6])))))/beta^2 #end function H1_series(s::T,beta::T) where {T <: Real} # Computes H_1(\beta,s) using a series tailored to the precision of s. epsilon = eps(s) x2 = -beta*s^2 term = one(s) h1 = one(s) n=0 # Terminate series when required precision reached: while abs(term) > epsilon*abs(h1) n += 1 term *= x2*(n+1) term /= (2n+4)*(2n+3)*n h1 += term end h1 *= s^4/12 return h1::T end nx = 10001 s = linearspace(-3.0,3.0,nx) #s = linearspace(-0.5,0.5,nx) beta = -rand(); epsilon = eps(beta) sqb = sqrt(abs(beta)) x = sqb*s g31_bigm= g3.(convert(Array{BigFloat,1},s),big(beta)) println(typeof(x)) g31m= g3.(s,beta) @time g31m= g3.(s,beta) e31m = convert(Array{Float64,1},1.0-g31m./g31_bigm) e31m[isnan.(e31m)]=epsilon g32m = g3_series.(s,beta) @time g32m = g3_series.(s,beta) e32m = convert(Array{Float64,1},1.0-g32m./g31_bigm) e32m[isnan.(e32m)]=epsilon H21_bigm= H2.(convert(Array{BigFloat,1},s),big(beta)) H21m= H2.(s,beta) @time H21m= H2.(s,beta) eH21m = convert(Array{Float64,1},1.0-H21m./H21_bigm) eH21m[isnan.(eH21m)]=epsilon H22m = H2_series.(s,beta) @time H22m = H2_series.(s,beta) eH22m = convert(Array{Float64,1},1.0-H22m./H21_bigm) eH22m[isnan.(eH22m)]=epsilon H11_bigm= H1.(convert(Array{BigFloat,1},s),big(beta)) H11m= H1.(s,beta) @time H11m= H1.(s,beta) eH11m = convert(Array{Float64,1},1.0-H11m./H11_bigm) eH11m[isnan.(eH11m)]=epsilon H12m = H1_series.(s,beta) @time H12m = H1_series.(s,beta) eH12m = convert(Array{Float64,1},1.0-H12m./H11_bigm) eH12m[isnan.(eH12m)]=epsilon beta = rand() sqb = sqrt(abs(beta)) x = sqb*s g31_bigp= g3.(convert(Array{BigFloat,1},s),big(beta)) println(typeof(x)) @time g31p= g3.(s,beta) e31p = convert(Array{Float64,1},1.0-g31p./g31_bigp) e31p[isnan.(e31p)]=epsilon @time g32p = g3_series.(s,beta) e32p = convert(Array{Float64,1},1.0-g32p./g31_bigp) e32p[isnan.(e32p)]=epsilon H21_bigp= H2.(convert(Array{BigFloat,1},s),big(beta)) @time H21p= H2.(s,beta) eH21p = convert(Array{Float64,1},1.0-H21p./H21_bigp) eH21p[isnan.(eH21p)]=epsilon @time H22p = H2_series.(s,beta) eH22p = convert(Array{Float64,1},1.0-H22p./H21_bigp) eH22p[isnan.(eH22p)]=epsilon H11_bigp= H1.(convert(Array{BigFloat,1},s),big(beta)) @time H11p= H1.(s,beta) eH11p = convert(Array{Float64,1},1.0-H11p./H11_bigp) eH11p[isnan.(eH11p)]=epsilon @time H12p = H1_series.(s,beta) eH12p = convert(Array{Float64,1},1.0-H12p./H11_bigp) eH12p[isnan.(eH12p)]=epsilon # It looks like for x < 0.5, the fractional error on g3_series is <epsilon for # float64 numbers. # So, for x > 0.5, we can use x-sin(x), while for x < 0.5, we can use the series. # Also need to consider what happens for negative values. using PyPlot clf() semilogy(x,abs.(e31m),label="G3, exact, beta<0 ") println("e31m: ",minimum(abs.(e31m))) semilogy(x,abs.(e32m),label="G3, series, beta<0 ") #semilogy([.5,.5],[1e-16,maxabs(e31m)],linestyle="dashed") println("e32m: ",minimum(abs.(e32m))) #semilogy(-[.5,.5],[1e-16,maxabs(e31m)],linestyle="dashed") semilogy(x,0.*x+eps(1.0)) read(STDIN,Char) clf() semilogy(x,abs.(e31p),label="G3, exact, beta>0 ") println("e31p: ",minimum(abs.(e31p))) #semilogy([.5,.5],[1e-16,1.],linestyle="dashed") semilogy(x,abs.(e32p),label="G3, series, beta>0 ") println("e32p: ",minimum(abs.(e32p))) #semilogy(-[.5,.5],[1e-16,maxabs(e31p)],linestyle="dashed") semilogy(x,0.*x+eps(1.0)) read(STDIN,Char) clf() semilogy(x,abs.(eH21m),label="G1G2-G0G3, exact, beta<0 ") println("eH21m: ",minimum(abs.(eH21m))) #semilogy( [.5,.5],[1e-16,1.],linestyle="dashed") semilogy(x,abs.(eH22m),label="G1G2-G0G3, series, beta<0 ") println("eH22m: ",minimum(abs.(eH22m))) #semilogy(-[.5,.5],[1e-16,maxabs(eH21m)],linestyle="dashed") semilogy(x,0.*x+eps(1.0)) read(STDIN,Char) clf() semilogy(x,abs.(eH21p),label="G1G2-G0G3, exact, beta>0 ") println("eH21p: ",minimum(abs.(eH21p))) #semilogy( [.5,.5],[1e-16,1.],linestyle="dashed") semilogy(x,abs.(eH22p),label="G1G2-G0G3, series, beta>0 ") println("eH22p: ",minimum(abs.(eH22p))) #semilogy(-[.5,.5],[1e-16,maxabs(abs.(eH21p))],linestyle="dashed") semilogy(x,0.*x+eps(1.0)) read(STDIN,Char) clf() semilogy(x,abs.(eH11m),label="G2^2-G1G3, exact, beta<0 ") println("eH11m: ",minimum(abs.(eH11m))) #semilogy( [.5,.5],[1e-16,1.],linestyle="dashed") semilogy(x,abs.(eH12m),label="G2^2-G1G3, series, beta<0 ") println("eH12m: ",minimum(abs.(eH11p))) #semilogy(-[.5,.5],[1e-16,maxabs(eH11m)],linestyle="dashed") semilogy(x,0.*x+eps(1.0)) read(STDIN,Char) clf() semilogy(x,abs.(eH11p),label="G2^2-G1G3, exact, beta>0 ") println("eH11p: ",minimum(abs.(eH11p))) #semilogy( [.5,.5],[1e-16,1.],linestyle="dashed") semilogy(x,abs.(eH12p),label="G2^2-G1G3, series, beta>0 ") println("eH12p: ",minimum(abs.(eH12p))) semilogy(x,0.*x+eps(1.0)) #semilogy(-[.5,.5],[1e-16,maxabs(eH11p)],linestyle="dashed") #legend(loc="lower left") read(STDIN,Char) clf() plot(x,abs.(g31m)) plot(x,abs.(g32m)) plot(x,abs.(g31p)) plot(x,abs.(g32p)) plot(x,abs.(H21m)) plot(x,abs.(H22m)) plot(x,abs.(H21p)) plot(x,abs.(H22p)) plot(x,abs.(H11m)) plot(x,abs.(H12m)) plot(x,abs.(H11p)) plot(x,abs.(H12p))
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git