licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
8179
# Tests the routine ah18 jacobian: #include("../src/ttv.jl") # Next, try computing three-body Keplerian Jacobian: @testset "ah18" begin #n = 8 n = 3 H = [3,1,1] #n = 2 t0 = 7257.93115525 h = 0.05 hbig = big(h) tmax = 600.0 dlnq = big(1e-20) #nstep = 8000 #nstep = 5000 nstep = 100 #nstep = 1 elements = readdlm("elements.txt",',')[1:n,:] # Increase mass of inner planets: elements[2,1] *= 100. elements[3,1] *= 100. m =zeros(n) x0=zeros(3,n) v0=zeros(3,n) # Define which pairs will have impulse rather than -drift+Kepler: pair = zeros(Bool,n,n) # Initialize with identity matrix: jac_step = Matrix{Float64}(I,7*n,7*n) for k=1:n m[k] = elements[k,1] end m0 = copy(m) init = ElementsIC(t0,H,elements) x0,v0,_ = init_nbody(init) # Tilt the orbits a bit: x0[2,1] = 5e-1*sqrt(x0[1,1]^2+x0[3,1]^2) x0[2,2] = -5e-1*sqrt(x0[1,2]^2+x0[3,2]^2) x0[2,3] = -5e-1*sqrt(x0[1,2]^2+x0[3,2]^2) v0[2,1] = 5e-1*sqrt(v0[1,1]^2+v0[3,1]^2) v0[2,2] = -5e-1*sqrt(v0[1,2]^2+v0[3,2]^2) v0[2,3] = -5e-1*sqrt(v0[1,2]^2+v0[3,2]^2) xbig = big.(x0); vbig = big.(v0) xtest = copy(x0); vtest=copy(v0) # Take a single step (so that we aren't at initial coordinates): x = copy(x0); v = copy(v0) xerror = zeros(3,n); verror = zeros(3,n) big_xerror = zeros(BigFloat,3,n) big_verror = zeros(BigFloat,3,n) for i=1:nstep; ah18!(x,v,xerror,verror,h,m,n,pair); end # Take a step with big precision: ah18!(xbig,vbig,big_xerror,big_verror,big(h),big.(m),n,pair) # Take a single DH17 step: xerror = zeros(3,n); verror = zeros(3,n) #@time for i=1:nstep; dh17!(xtest,vtest,xerror,verror,h,m,n,pair);end #println("AH18 vs. DH17 x/v difference: ",x-xtest,v-vtest) # Compute x & v in BigFloat precision: xbig = big.(x0) vbig = big.(v0) mbig = big.(m0) xerr_big = zeros(BigFloat,3,n); verr_big = zeros(BigFloat,3,n) jac_step_big = Matrix{BigFloat}(I,7*n,7*n) jac_err_big = zeros(BigFloat,7*n,7*n) for i=1:nstep; ah18!(xbig,vbig,xerr_big,verr_big,hbig,mbig,n,jac_step_big,jac_err_big,pair);end #println("AH18 vs. AH18 BigFloat x/v difference: ",x-convert(Array{Float64,2},xbig),v-convert(Array{Float64,2},vbig)) # Now, copy these to compute Jacobian (so that I don't step # x0 & v0 forward in time): x = copy(x0) v = copy(v0) m = copy(m0) xerror = zeros(3,n); verror = zeros(3,n); jac_error = zeros(7*n,7*n) # Compute jacobian exactly over nstep steps: for istep=1:nstep ah18!(x,v,xerror,verror,h,m,n,jac_step,jac_error,pair) end #println("AH18 vs. AH18 BigFloat jac_step difference: ",jac_step-convert(Array{Float64,2},jac_step_big)) #println(typeof(h)," ",jac_step) #read(STDIN,Char) # The following lines have a Julia bug - jac_big gets # misaligned or shifted when returned. If I modify ah18! to output # jac_step, then it works. # Initialize with identity matrix: ## Compute jacobian exactly over nstep steps: #for istep=1:nstep # jac_copy = ah18!(xbig,vbig,hbig,mbig,n,jac_big,pair) #end #println(typeof(hbig)," ",convert(Array{Float64,2},jac_copy)) #println("Comparing x & xbig: ",maximum(abs,x-xbig)) #println("Comparing v & vbig: ",maximum(abs,v-vbig)) #println("Comparing jac_step and jac_big: ",maxabs(jac_step-jac_copy)) #println("Comparing jac_step and jac_big: ",jac_step./convert(Array{Float64,2},jac_big)) # Test that both versions of ah18 give the same answer: #xtest = copy(x0) #vtest = copy(v0) #m = copy(m0) #for istep=1:nstep # ah18!(xtest,vtest,h,m,n,pair) #end #println("x/v difference: ",x-xtest,v-vtest) # Now compute numerical derivatives: jac_step_num = zeros(BigFloat,7*n,7*n) # Vary the initial parameters of planet j: for j=1:n # Vary the initial phase-space elements: for jj=1:3 # Initial positions, velocities & masses: xm = big.(x0) vm = big.(v0) mm = big.(m0) fill!(big_xerror,0.0) fill!(big_verror,0.0) dq = dlnq * xm[jj,j] if xm[jj,j] != 0.0 xm[jj,j] -= dq else dq = dlnq xm[jj,j] = -dq end for istep=1:nstep ah18!(xm,vm,big_xerror,big_verror,hbig,mm,n,pair) end xp = big.(x0) vp = big.(v0) mp = big.(m0) fill!(big_xerror,0.0) fill!(big_verror,0.0) dq = dlnq * xp[jj,j] if xp[jj,j] != 0.0 xp[jj,j] += dq else dq = dlnq xp[jj,j] = dq end for istep=1:nstep ah18!(xp,vp,big_xerror,big_verror,hbig,mp,n,pair) end # Now x & v are final positions & velocities after time step for i=1:n for k=1:3 jac_step_num[(i-1)*7+ k,(j-1)*7+ jj] = .5*(xp[k,i]-xm[k,i])/dq jac_step_num[(i-1)*7+3+k,(j-1)*7+ jj] = .5*(vp[k,i]-vm[k,i])/dq end end # Next velocity derivatives: xm= big.(x0) vm= big.(v0) mm= big.(m0) fill!(big_xerror,0.0) fill!(big_verror,0.0) dq = dlnq * vm[jj,j] if vm[jj,j] != 0.0 vm[jj,j] -= dq else dq = dlnq vm[jj,j] = -dq end for istep=1:nstep ah18!(xm,vm,big_xerror,big_verror,hbig,mm,n,pair) end xp= big.(x0) vp= big.(v0) mp= big.(m0) fill!(big_xerror,0.0) fill!(big_verror,0.0) dq = dlnq * vp[jj,j] if vp[jj,j] != 0.0 vp[jj,j] += dq else dq = dlnq vp[jj,j] = dq end for istep=1:nstep ah18!(xp,vp,big_xerror,big_verror,hbig,mp,n,pair) end for i=1:n for k=1:3 jac_step_num[(i-1)*7+ k,(j-1)*7+3+jj] = .5*(xp[k,i]-xm[k,i])/dq jac_step_num[(i-1)*7+3+k,(j-1)*7+3+jj] = .5*(vp[k,i]-vm[k,i])/dq end end end # Now vary mass of planet: xm= big.(x0) vm= big.(v0) mm= big.(m0) fill!(big_xerror,0.0) fill!(big_verror,0.0) dq = mm[j]*dlnq mm[j] -= dq for istep=1:nstep ah18!(xm,vm,big_xerror,big_verror,hbig,mm,n,pair) end xp= big.(x0) vp= big.(v0) mp= big.(m0) fill!(big_xerror,0.0) fill!(big_verror,0.0) dq = mp[j]*dlnq mp[j] += dq for istep=1:nstep ah18!(xp,vp,big_xerror,big_verror,hbig,mp,n,pair) end for i=1:n for k=1:3 jac_step_num[(i-1)*7+ k,j*7] = .5*(xp[k,i]-xm[k,i])/dq jac_step_num[(i-1)*7+3+k,j*7] = .5*(vp[k,i]-vm[k,i])/dq end end # Mass unchanged -> identity jac_step_num[j*7,j*7] = 1.0 end # Now, compare the results: #println(jac_step) #println(jac_step_num) #for j=1:n # for i=1:7 # for k=1:n # println(i," ",j," ",k," ",jac_step[(j-1)*7+i,(k-1)*7+1:k*7]," ",jac_step_num[(j-1)*7+i,(k-1)*7+1:k*7]," ",jac_step[(j-1)*7+i,(k-1)*7+1:7*k]./jac_step_num[(j-1)*7+i,(k-1)*7+1:7*k]-1.) # end # end #end jacmax = 0.0; jac_diff = 0.0 imax = 0; jmax = 0; kmax = 0; lmax = 0 for i=1:7, j=1:3, k=1:7, l=1:3 if jac_step[(j-1)*7+i,(l-1)*7+k] != 0 diff = abs(jac_step_num[(j-1)*7+i,(l-1)*7+k]/jac_step[(j-1)*7+i,(l-1)*7+k]-1.0) if diff > jacmax jac_diff = diff; imax = i; jmax = j; kmax = k; lmax = l; jacmax = jac_step[(j-1)*7+i,(l-1)*7+k] end end end #println("Maximum fractional error: ",jac_diff," ",imax," ",jmax," ",kmax," ",lmax," ",jacmax) #println(jac_step./jac_step_num) #println("Maximum error jac_step: ",maximum(abs.(jac_step-jac_step_num))) #println("Maximum error jac_step_big vs. jac_step_num: ",maximum(abs.(asinh.(jac_step_big)-asinh.(jac_step_num)))) #println("Maximum diff asinh(jac_step): ",maximum(abs.(asinh.(jac_step)-asinh.(jac_step_num)))) # Compute dqdt: dqdt = zeros(7*n) dqdt_num = zeros(BigFloat,7*n) x = copy(x0) v = copy(v0) m = copy(m0) xerror = zeros(3,n); verror = zeros(3,n) ah18!(x,v,xerror,verror,h,m,n,dqdt,pair) xm= big.(x0) vm= big.(v0) mm= big.(m0) fill!(big_xerror,0.0) fill!(big_verror,0.0) dq = hbig*dlnq hbig -= dq ah18!(xm,vm,big_xerror,big_verror,hbig,mm,n,pair) xp= big.(x0) vp= big.(v0) mp= big.(m0) fill!(big_xerror,0.0) fill!(big_verror,0.0) hbig += 2dq ah18!(xp,vp,big_xerror,big_verror,hbig,mp,n,pair) for i=1:n, k=1:3 dqdt_num[(i-1)*7+ k] = .5*(xp[k,i]-xm[k,i])/dq dqdt_num[(i-1)*7+3+k] = .5*(vp[k,i]-vm[k,i])/dq end dqdt_num = convert(Array{Float64,1},dqdt_num) #println("dqdt: ",dqdt); println("dqdt_num: ",dqdt_num); println(" diff: ",dqdt-dqdt_num) #println("dqdt-dqdt_num: ",maxabs(dqdt-convert(Array{Float64,1},dqdt_num))) #@test isapprox(jac_step,jac_step_num) #@test isapprox(jac_step,jac_step_num;norm=maxabs) @test isapprox(asinh.(jac_step),asinh.(jac_step_num);norm=maxabs) @test isapprox(dqdt,dqdt_num;norm=maxabs) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
1896
function NeumaierSum(input) sum = 0.0 c = 0.0 # A running compensation for lost low-order bits. for i = 1:size(input)[1] t = sum + input[i] if abs(sum) >= abs(input[i]) c += (sum - t) + input[i] # If sum is bigger, low-order digits of input[i] are lost. else c += (input[i] - t) + sum # Else low-order digits of sum are lost. end sum = t end return sum,c # Correction only applied once in the very end. end #include("../src/ttv.jl") include("../src/utils.jl") # Testing compensated summation: #Base.rand(::Type{BigFloat}) = get(tryparse(BigFloat, "0." .* join(rand(['0','1'], precision(BigFloat)));base= 2)) function test_comp_sum() # Create random numbers in BigFloat precision: nrand = 1000000 summand_big = zeros(BigFloat,nrand) for i=1:nrand summand_big[i] = (rand(BigFloat)-big(0.5))*10^(rand(BigFloat)*2) end # Convert summands to Float64: summand = convert(Array{Float64,1},summand_big) # So, now sum with Kahan compensated summation: err = 0.0 sum_comp = 0.0 for i=1:nrand sum_comp,err = comp_sum(sum_comp,err,summand[i]) end # Next with Neumaier compensated summation: sum_neum,corr_neum = NeumaierSum(summand) # Sum without compensated summation: sum_flt = sum(summand) # Sum with BigFloat precision: sum_big = sum(summand_big) # Now compare the difference: println("Float - Big sum: ",sum_flt-sum_big) println("Comp - Big sum: ",sum_comp-sum_big) diff = sum_comp-sum_big+err println("Error: ",err," Comp - Big +err: ",sum_comp-sum_big-err," Big - (Comp + err): ",sum_big-sum_comp+err) diff_neum = sum_neum-sum_big+corr_neum println("Error: ",corr_neum," Neum - Big +err: ",sum_neum-sum_big+corr_neum," Big - (Comp + err): ",sum_big-sum_neum-corr_neum) println("Improve Kahan: ",abs(diff)/abs(sum_flt-sum_big)) println("Improve Neum: ",abs(diff_neum)/abs(sum_flt-sum_big)) end test_comp_sum()
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
245
using NbodyGradient, DelimitedFiles include("../src/integrator/convert.jl") fname = "elements.txt" el = readdlm(fname,',') ic = ElementsIC(el,8,0.0) s = State(ic) elements = get_orbital_elements(s,ic) println(isapprox(elements,ic.elements))
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
2721
#include("../src/ttv.jl") #include("/Users/ericagol/Computer/Julia/regress.jl") run(`rm -f coord_jac_double.txt`) run(`rm -f coord_jac_bigfloat.txt`) #@testset "test_coordinates" begin # This routine takes derivative of coordinates with respect # to the initial cartesian coordinates of bodies, output to a *large* file. #n = 8 n = 3 t0 = 7257.93115525-7300.0 #h = 0.12 h = 0.04 #h = 0.02 #tmax = 600.0 #tmax = 1000.0 tmax = 100.0 #tmax = 10.0 # Read in initial conditions: elements = readdlm("elements.txt",',') # Make an array, tt, to hold transit times: # First, though, make sure it is large enough: ntt = zeros(Int64,n) for i=2:n ntt[i] = ceil(Int64,tmax/elements[i,2])+3 end println("ntt: ",ntt) tt = zeros(n,maximum(ntt)) # Save a counter for the actual number of transit times of each planet: count = zeros(Int64,n) # Call the ttv function & compute derivatives (with respect to initial cartesian positions/masses): rstar = 1e12 dtdq0 = zeros(n,maximum(ntt),7,n) @time dtdelements = ttv_elements!(n,t0,h,tmax,elements,tt,count,dtdq0,rstar;fout="coord_jac_double.txt",iout=10) # Compute the derivatives in BigFloat precision to see whether finite difference # derivatives or Float64 derivatives are imprecise at the start: hbig = big(h); t0big = big(t0); tmaxbig=big(tmax); tt_big = big.(tt); elementsbig = big.(elements); rstarbig = big(rstar) dtdq0_big = zeros(BigFloat,n,maximum(ntt),7,n) @time dtdelements_big = ttv_elements!(n,t0big,hbig,tmaxbig,elementsbig,tt_big,count,dtdq0_big,rstarbig;fout="coord_jac_bigfloat.txt",iout=10) using PyPlot clf() # Plot the difference in the TTVs: for i=2:3 diff1 = abs.(tt[i,2:count[i]].-tt_big[i,2:count[i]])/elements[i,2]; loglog(tt[i,2:count[i]]-tt[i,1],diff1); end loglog([1.0,1024.0],2e-15*[1,2^15],":") for i=2:3, k=1:7, l=1:3 if maximum(abs.(dtdq0[i,2:count[i],k,l])) > 0 diff3 = abs.(asinh.(dtdq0_big[i,2:count[i],k,l])-asinh.(dtdq0[i,2:count[i],k,l])); loglog(tt[i,2:count[i]]-tt[i,1],diff3,linestyle=":"); println(i," ",k," ",l," asinh error: ",convert(Float64,maximum(diff3))); read(STDIN,Char); end end mederror = zeros(size(tt)) # Plot a line that scales as time^{3/2}: loglog([1.0,1024.0],1e-12*[1,2^15],":",linewidth=3) println("Max diff asinh(dtdq0): ",maximum(abs.(asinh.(dtdq0_big)-asinh.(dtdq0)))) @test isapprox(asinh.(dtdq0),asinh.(convert(Array{Float64,4},dtdq0_big));norm=maxabs) #end read(STDIN,Char) # Now read in coordinate Jacobians: data_dbl = readdlm("coord_jac_double.txt") data_big = readdlm("coord_jac_bigfloat.txt") # And plot the results ncol = 49*n^2+6*n+1 nt = size(data_dbl)[1] for i=1:ncol loglog(data_dbl[2:nt,1]-data_dbl[1,1],abs.(asinh.(data_big[2:nt,i])-asinh.(data_dbl[2:nt,i]))) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
7108
# Tests the routine dh17 jacobian2 #include("../src/ttv.jl") # Next, try computing three-body Keplerian Jacobian: @testset "dh17" begin #n = 8 n = 3 H = [3,1,1] #n = 2 t0 = 7257.93115525 h = 0.05 hbig = big(h) tmax = 600.0 dlnq = big(1e-20) #nstep = 8000 nstep = 500 #nstep = 1 elements = readdlm("elements.txt",',') # Increase mass of inner planets: elements[2,1] *= 100. elements[3,1] *= 100. m =zeros(n) x0=zeros(3,n) v0=zeros(3,n) # Define which pairs will have impulse rather than -drift+Kepler: pair = zeros(Bool,n,n) # We want Keplerian between star & planets, and impulses between # planets. Impulse is indicated with 'true', -drift+Kepler with 'false': #for i=2:n # pair[1,i] = false # # We don't need to define this, but let's anyways: # pair[i,1] = false #end # Initialize with identity matrix: jac_step = Matrix{Float64}(I,7*n,7*n) jac_error = zeros(7*n,7*n) for k=1:n m[k] = elements[k,1] end m0 = copy(m) init = ElementsIC(elements,H,t0) x0,v0,_ = init_nbody(init) # Tilt the orbits a bit: x0[2,1] = 5e-1*sqrt(x0[1,1]^2+x0[3,1]^2) x0[2,2] = -5e-1*sqrt(x0[1,2]^2+x0[3,2]^2) x0[2,3] = -5e-1*sqrt(x0[1,2]^2+x0[3,2]^2) v0[2,1] = 5e-1*sqrt(v0[1,1]^2+v0[3,1]^2) v0[2,2] = -5e-1*sqrt(v0[1,2]^2+v0[3,2]^2) v0[2,3] = -5e-1*sqrt(v0[1,2]^2+v0[3,2]^2) xtest = copy(x0); vtest=copy(v0) xbig = big.(x0); vbig = big.(v0) # Take a single step (so that we aren't at initial coordinates): @time for i=1:nstep; dh17!(x0,v0,h,m,n,pair); end # Take a step with big precision: ah18!(xbig,vbig,big(h),big.(m),n,pair) # Take a single AH18 step: @time for i=1:nstep; ah18!(xtest,vtest,h,m,n,pair);end println("AH18 vs. DH17 x/v difference: ",x0-xtest,v0-vtest) # Now, copy these to compute Jacobian (so that I don't step # x0 & v0 forward in time): x = copy(x0) v = copy(v0) m = copy(m0) xerror = zeros(3,n); verror = zeros(3,n) xbig = big.(x0) vbig = big.(v0) mbig = big.(m0) xerr_big = zeros(BigFloat,3,n); verr_big=zeros(BigFloat,3,n); # Compute jacobian exactly over nstep steps: for istep=1:nstep dh17!(x,v,xerror,verror,h,m,n,jac_step,pair) end #println(typeof(h)," ",jac_step) #read(STDIN,Char) # The following lines have a Julia bug - jac_big gets # misaligned or shifted when returned. If I modify dh17! to output # jac_step, then it works. # Initialize with identity matrix: ## Compute jacobian exactly over nstep steps: #for istep=1:nstep # jac_copy = dh17!(xbig,vbig,hbig,mbig,n,jac_big,pair) #end #println(typeof(hbig)," ",convert(Array{Float64,2},jac_copy)) #println("Comparing x & xbig: ",maximum(abs,x-xbig)) #println("Comparing v & vbig: ",maximum(abs,v-vbig)) #println("Comparing jac_step and jac_big: ",maxabs(jac_step-jac_copy)) #println("Comparing jac_step and jac_big: ",jac_step./convert(Array{Float64,2},jac_big)) # Test that both versions of dh17 give the same answer: #xtest = copy(x0) #vtest = copy(v0) #m = copy(m0) #for istep=1:nstep # dh17!(xtest,vtest,h,m,n,pair) #end #println("x/v difference: ",x-xtest,v-vtest) # Now compute numerical derivatives: jac_step_num = zeros(BigFloat,7*n,7*n) # Vary the initial parameters of planet j: for j=1:n # Vary the initial phase-space elements: for jj=1:3 # Initial positions, velocities & masses: xm = big.(x0) vm = big.(v0) mm = big.(m0) dq = dlnq * xm[jj,j] if xm[jj,j] != 0.0 xm[jj,j] -= dq else dq = dlnq xm[jj,j] = -dq end for istep=1:nstep dh17!(xm,vm,hbig,mm,n,pair) end xp = big.(x0) vp = big.(v0) mp = big.(m0) dq = dlnq * xp[jj,j] if xp[jj,j] != 0.0 xp[jj,j] += dq else dq = dlnq xp[jj,j] = dq end for istep=1:nstep dh17!(xp,vp,hbig,mp,n,pair) end # Now x & v are final positions & velocities after time step for i=1:n for k=1:3 jac_step_num[(i-1)*7+ k,(j-1)*7+ jj] = .5*(xp[k,i]-xm[k,i])/dq jac_step_num[(i-1)*7+3+k,(j-1)*7+ jj] = .5*(vp[k,i]-vm[k,i])/dq end end # Next velocity derivatives: xm= big.(x0) vm= big.(v0) mm= big.(m0) dq = dlnq * vm[jj,j] if vm[jj,j] != 0.0 vm[jj,j] -= dq else dq = dlnq vm[jj,j] = -dq end for istep=1:nstep dh17!(xm,vm,hbig,mm,n,pair) end xp= big.(x0) vp= big.(v0) mp= big.(m0) dq = dlnq * vp[jj,j] if vp[jj,j] != 0.0 vp[jj,j] += dq else dq = dlnq vp[jj,j] = dq end for istep=1:nstep dh17!(xp,vp,hbig,mp,n,pair) end for i=1:n for k=1:3 jac_step_num[(i-1)*7+ k,(j-1)*7+3+jj] = .5*(xp[k,i]-xm[k,i])/dq jac_step_num[(i-1)*7+3+k,(j-1)*7+3+jj] = .5*(vp[k,i]-vm[k,i])/dq end end end # Now vary mass of planet: xm= big.(x0) vm= big.(v0) mm= big.(m0) dq = mm[j]*dlnq mm[j] -= dq for istep=1:nstep dh17!(xm,vm,hbig,mm,n,pair) end xp= big.(x0) vp= big.(v0) mp= big.(m0) dq = mp[j]*dlnq mp[j] += dq for istep=1:nstep dh17!(xp,vp,hbig,mp,n,pair) end for i=1:n for k=1:3 jac_step_num[(i-1)*7+ k,j*7] = .5*(xp[k,i]-xm[k,i])/dq jac_step_num[(i-1)*7+3+k,j*7] = .5*(vp[k,i]-vm[k,i])/dq end end # Mass unchanged -> identity jac_step_num[j*7,j*7] = 1.0 end # Now, compare the results: #println(jac_step) #println(jac_step_num) #for j=1:n # for i=1:7 # for k=1:n # println(i," ",j," ",k," ",jac_step[(j-1)*7+i,(k-1)*7+1:k*7]," ",jac_step_num[(j-1)*7+i,(k-1)*7+1:k*7]," ",jac_step[(j-1)*7+i,(k-1)*7+1:7*k]./jac_step_num[(j-1)*7+i,(k-1)*7+1:7*k]-1.) # end # end #end jacmax = 0.0; jac_diff = 0.0 imax = 0; jmax = 0; kmax = 0; lmax = 0 for i=1:7, j=1:3, k=1:7, l=1:3 if jac_step[(j-1)*7+i,(l-1)*7+k] != 0 diff = abs(jac_step_num[(j-1)*7+i,(l-1)*7+k]/jac_step[(j-1)*7+i,(l-1)*7+k]-1.0) if diff > jacmax jac_diff = diff; imax = i; jmax = j; kmax = k; lmax = l; jacmax = jac_step[(j-1)*7+i,(l-1)*7+k] end end end println("Maximum fractional error: ",jac_diff," ",imax," ",jmax," ",kmax," ",lmax," ",jacmax) #println(jac_step./jac_step_num) println("Maximum error jac_step: ",maximum(abs.(jac_step-jac_step_num))) println("Maximum diff asinh(jac_step): ",maximum(abs.(asinh.(jac_step)-asinh.(jac_step_num)))) # Compute dqdt: # Set a short timestep so that particles will drift: h = 0.001; hbig = big(h) dqdt = zeros(7*n) dqdt_num = zeros(BigFloat,7*n) x = copy(x0) v = copy(v0) m = copy(m0) xerror = zeros(3,n); verror = zeros(3,n) dh17!(x,v,xerror,verror,h,m,n,dqdt,pair) xm= big.(x0) vm= big.(v0) mm= big.(m0) dq = hbig*dlnq hbig -= dq dh17!(xm,vm,hbig,mm,n,pair) xp= big.(x0) vp= big.(v0) mp= big.(m0) hbig += 2dq dh17!(xp,vp,hbig,mp,n,pair) for i=1:n, k=1:3 dqdt_num[(i-1)*7+ k] = (xp[k,i]-xm[k,i])/dq/2 dqdt_num[(i-1)*7+3+k] = (vp[k,i]-vm[k,i])/dq/2 end dqdt_num = convert(Array{Float64,1},dqdt_num) println("dqdt: ",dqdt," dqdt_num: ",dqdt_num," diff: ",dqdt-dqdt_num) println("dqdt-dqdt_num: ",maxabs(dqdt-convert(Array{Float64,1},dqdt_num))) #@test isapprox(jac_step,jac_step_num) #@test isapprox(jac_step,jac_step_num;norm=maxabs) @test isapprox(asinh.(jac_step),asinh.(jac_step_num);norm=maxabs) @test isapprox(dqdt,dqdt_num;norm=maxabs) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
895
@testset "Elements" begin # Get known 'good' elements fname = "elements.txt" t0 = 7257.93115525-7300.0 H = [3,1,1] init0 = ElementsIC(fname,H,t0) # Fill new methods with pre-calculated elements # See if we get back the proper array elems_arr = readdlm(fname,',',comments=true) # Convert ecosϖ/esinϖ to ϖ and e elems_a = copy(elems_arr[1,:]) elems_b = copy(elems_arr[2,:]) elems_c = copy(elems_arr[3,:]) function convert_back!(elems::Vector{<:Real}) e = sqrt(elems[4]^2 + elems[5]^2) ϖ = atan(elems[5],elems[4]) elems .= [elems[1:3];e;ϖ;elems[6:end]] return end convert_back!.([elems_b,elems_c]) a = Elements(elems_a...) b = Elements(elems_b...) c = Elements(elems_c...) init_test = ElementsIC(t0,a,b,c,H=H) @test isapprox(init0.elements[1:3,:],init_test.elements); end;
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
1912
using PyPlot include("../src/kepler_solver.jl") # Define a constant of 1/3: const third = 1.0/3.0 function test_elliptic() # This routine runs a test of the kep_elliptic function in kepler_solver_elliptic.jl # Define the central force constant in terms of AU and days: k = (2.0*pi/365.25)^2 # Initial position at 1 AU: x0 = [0.0,1.0,0.0] #r0 = norm(x0) r0 = sqrt(x0[1]*x0[1]+x0[2]*x0[2]+x0[3]*x0[3]) # Circular velocity: vcirc = sqrt(k/r0) # Define initial velocity at apastron: v0 = [0.98*vcirc,0.0,0.0] # The eccentricity is about ~2(1-v0/vcirc). h = 18.0 # 18-day timesteps s0::Float64 = 0.0 x = zeros(Float64,3) v = zeros(Float64,3) s::Float64 = 0.0 t = 0.0 ssave = zeros(2) #nsteps = 10000000 nsteps = 1000000 #nsteps = 1000 xsave=zeros(Float64,12,nsteps) # First is time (1,:); next three are position (2-4,:); next three velocity (5-7,:); then r (8,:), drdt (9,:); then beta (10,:); finally s & ds (11:12,:) # Create a variable to store the state at the end of a step: state=zeros(Float64,12) xsave[1,1]=0.0 for j=1:3 xsave[j+1,1]=x0[j] xsave[j+4,1]=v0[j] end # Save beta: xsave[8,1]=r0 beta0 = 2.0*k/r0-dot(v0,v0) xsave[10,1]=beta0 #@inbounds for i=2:nsteps for i=2:nsteps # x,v,r,drdt,s,beta,iter=kep_elliptic(x0,v0,r0,k,h,beta0,s0) # iter = kep_elliptic!(x0,v0,r0,k,h,beta0,s0,state) iter = kep_ell_hyp!(x0,v0,r0,k,h,beta0,s0,state) s = state[11] ds = state[12] if iter > 2 println("iter: ",iter," ds: ",ds) end # Increment time by h: state[1] += h for j=1:12 xsave[j,i]=state[j] end if i >= 4 # Quadratic prediction for s of next step: s0 = 3.0*s - 3.0*ssave[1] + ssave[2] ssave[2] = ssave[1] ssave[1] = s else s0 = s ssave[2]=ssave[1] ssave[1]=s end # Now, proceed to next step: for j=1:3 x0[j]=state[1+j] v0[j]=state[4+j] end r0=state[8] beta0=state[10] # println(i,x,v) end #plot(xsave[1],xsave[2]) return xsave end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
5301
# This code tests two functions: keplerij! and kep_elliptic! #using PyPlot #include("../src/kepler_solver_derivative.jl") #include("../src/ttv.jl") @testset "kep_elliptic" begin # Define a constant of 1/3: #const third = 1.0/3.0 function test_elliptic_derivative(dlnq::BigFloat) # Call as: save,jac_num,jacobian=test_elliptic_derivative(1e-4) # This routine runs a test of the kep_elliptic_jacobian function in kepler_solver.jl # Define the central force constant in terms of AU and days: k = (2.0*pi/365.25)^2 # Initial position at 1 AU: x0 = [0.01,1.0,0.01] #r0 = norm(x0) # Circular velocity: r0 = sqrt(x0[1]*x0[1]+x0[2]*x0[2]+x0[3]*x0[3]) vcirc = sqrt(k/r0) # Define initial velocity at apastron: v0 = [.9*vcirc,0.01*vcirc,0.01*vcirc] # The eccentricity is about ~2(1-v0/vcirc). h = 18.0 # 18-day timesteps hbig = big(h) s0::Float64 = 0.0 x = zeros(Float64,3) v = zeros(Float64,3) s::Float64 = 0.0 t = 0.0 ssave = zeros(2) nsteps = 1 xsave=zeros(Float64,12,nsteps) # First is time (1,:); next three are position (2-4,:); next three velocity (5-7,:); then r (8,:), drdt (9,:); then beta (10,:); finally s & ds (11:12,:) # Create a variable to store the state at the end of a step: state=zeros(Float64,12) state_diffbig=zeros(BigFloat,12) xsave[1,1]=0.0 for jj=1:3 xsave[jj+1,1]=x0[jj] xsave[jj+4,1]=v0[jj] end # Save beta: xsave[8,1]=r0 beta0 = 2.0*k/r0-dot(v0,v0) xsave[10,1]=beta0 jacobian=zeros(Float64,7,7) d = Derivatives(Float64) #iter = kep_elliptic!(x0,v0,r0,k,h,beta0,s0,state,jacobian) iter = kep_ell_hyp!(x0,v0,r0,k,h,beta0,s0,state,jacobian,d) #println("Initial conditions: ",x0,v0) #println("Final state: ",state) #println("Differnce : ",state[2:4]-x0,state[5:7]-v0) #read(STDIN,Char) # Now, do finite differences at higher precision: kbig = big(k); s0big = big(0.0); statebig = big.(state) x0big = big.(x0); v0big = big.(v0) r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) jacobian_big =zeros(BigFloat,7,7) dBig = Derivatives(BigFloat) #iter = kep_elliptic!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,statebig) iter = kep_ell_hyp!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,statebig,jacobian_big,dBig) #println("Final state: ",statebig[2:7]) jac_frac = jacobian./convert(Array{Float64,2},jacobian_big).-1.0 println("Fractional Jacobian difference: ",maxabs(jac_frac[.~isnan.(jac_frac)])) #println(jacobian) #println(jac_frac) #read(STDIN,Char) #s = statebig[11] # Now, compute the Jacobian numerically: #jac_num = zeros(Float64,7,7) jac_num = zeros(BigFloat,7,7) # jac_num[i,j]: derivative of (x_i,v_i,k) with respect to (x_{0,j},v_{0,j},k): for j=1:3 x0save = copy(x0big) dq = dlnq * x0big[j] if x0big[j] != 0.0 x0big[j] += dq else dq = dlnq x0big[j] = dq end # Recompute quantities: r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) # iter = kep_elliptic!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) iter = kep_ell_hyp!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) x0big = copy(x0save) for i=1:3 jac_num[ i, j] = (state_diffbig[1+i]-statebig[1+i])/dq jac_num[3+i, j] = (state_diffbig[4+i]-statebig[4+i])/dq end v0save = copy(v0big) dq = dlnq * v0big[j] if v0big[j] != 0.0 v0big[j] += dq else dq = dlnq v0big[j] = dq end r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) # iter = kep_elliptic!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) iter = kep_ell_hyp!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) v0big = copy(v0save) for i=1:3 jac_num[ i,3+j] = (state_diffbig[1+i]-statebig[1+i])/dq jac_num[3+i,3+j] = (state_diffbig[4+i]-statebig[4+i])/dq end # Now vary mass: ksave = copy(kbig) dq = kbig*dlnq kbig += dq r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) # iter = kep_elliptic!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) iter = kep_ell_hyp!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) for i=1:3 jac_num[ i,7] = (state_diffbig[1+i]-statebig[1+i])/dq jac_num[3+i,7] = (state_diffbig[4+i]-statebig[4+i])/dq end kbig = copy(ksave) jac_num[7, 7] = 1.0 end println("Maximum jac_big-jac_num: ",maxabs(convert(Array{Float64,2},jacobian_big-jac_num))) #println(convert(Array{Float64,2},jacobian_big)) #println(convert(Array{Float64,2},jacobian_big./jac_num-1.0)) return xsave,jac_num,jacobian end # First try: xsave,jac_num1,jacobian=test_elliptic_derivative(big(1e-20)) # Second try: #xsave,jac_num2,jacobian=test_elliptic_derivative(1e-6) #jacobian #jac_num1-jac_num2 #println("Fraction errors on Jacobian: ",jac_num1./jacobian-1.0) #println("jac_num1: ",jac_num1) emax = 0.0; imax = 0; jmax = 0 for i=1:7, j=1:7 if jacobian[i,j] != 0.0 diff = abs(convert(Float64,jac_num1[i,j])/jacobian[i,j]-1.0) if diff > emax emax = diff; imax = i; jmax = j end end end println("Maximum fractional error: ",emax," ",imax," ",jmax) println("Maximum jacobian-jac_num: ",maxabs(jacobian-convert(Array{Float64,2},jac_num1))) #@test isapprox(jacobian,jac_num1) @test isapprox(jacobian,jac_num1;norm=maxabs) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
4881
# This code tests two functions: keplerij! and kep_elliptic! #using PyPlot #include("../src/kepler_solver_derivative.jl") #include("../src/ttv.jl") @testset "kep_elliptic" begin # Define a constant of 1/3: #const third = 1.0/3.0 function test_elliptic_derivative(dlnq::BigFloat) # Call as: save,jac_num,jacobian=test_elliptic_derivative(1e-4) # This routine runs a test of the kep_elliptic_jacobian function in kepler_solver.jl # Define the central force constant in terms of AU and days: k = (2.0*pi/365.25)^2 # Initial position at 1 AU: x0 = [0.01,1.0,0.01] #r0 = norm(x0) # Circular velocity: r0 = sqrt(x0[1]*x0[1]+x0[2]*x0[2]+x0[3]*x0[3]) vcirc = sqrt(k/r0) # Define initial velocity at apastron: v0 = [.9*vcirc,0.01*vcirc,0.01*vcirc] # The eccentricity is about ~2(1-v0/vcirc). h = 100.0 # 18-day timesteps hbig = big(h) s0::Float64 = 0.0 x = zeros(Float64,3) v = zeros(Float64,3) s::Float64 = 0.0 t = 0.0 ssave = zeros(2) nsteps = 1 xsave=zeros(Float64,12,nsteps) # First is time (1,:); next three are position (2-4,:); next three velocity (5-7,:); then r (8,:), drdt (9,:); then beta (10,:); finally s & ds (11:12,:) # Create a variable to store the state at the end of a step: state=zeros(Float64,12) state_diffbig=zeros(BigFloat,12) xsave[1,1]=0.0 for jj=1:3 xsave[jj+1,1]=x0[jj] xsave[jj+4,1]=v0[jj] end # Save beta: xsave[8,1]=r0 beta0 = 2.0*k/r0-dot(v0,v0) xsave[10,1]=beta0 jacobian=zeros(Float64,7,7) #iter = kep_elliptic!(x0,v0,r0,k,h,beta0,s0,state,jacobian) iter = kep_ell_hyp!(x0,v0,r0,k,h,beta0,s0,state,jacobian) #println("Initial conditions: ",x0,v0) #println("Final state: ",state) #println("Differnce : ",state[2:4]-x0,state[5:7]-v0) #read(STDIN,Char) # Now, do finite differences at higher precision: kbig = big(k); s0big = big(0.0); statebig = big.(state) x0big = big.(x0); v0big = big.(v0) r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) #iter = kep_elliptic!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,statebig) iter = kep_ell_hyp!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,statebig) #println("Final state: ",statebig[2:7]) #read(STDIN,Char) #s = statebig[11] # Now, compute the Jacobian numerically: #jac_num = zeros(Float64,7,7) jac_num = zeros(BigFloat,7,7) #dlnq = 1e-4 # jac_num[i,j]: derivative of (x_i,v_i,k) with respect to (x_{0,j},v_{0,j},k): for j=1:3 x0save = copy(x0big) dq = dlnq * x0big[j] if x0big[j] != 0.0 x0big[j] += dq else dq = dlnq x0big[j] = dq end # Recompute quantities: r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) # iter = kep_elliptic!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) iter = kep_ell_hyp!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) x0big = copy(x0save) for i=1:3 jac_num[ i, j] = (state_diffbig[1+i]-statebig[1+i])/dq jac_num[3+i, j] = (state_diffbig[4+i]-statebig[4+i])/dq end v0save = copy(v0big) dq = dlnq * v0big[j] if v0big[j] != 0.0 v0big[j] += dq else dq = dlnq v0big[j] = dq end r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) # iter = kep_elliptic!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) iter = kep_ell_hyp!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) v0big = copy(v0save) for i=1:3 jac_num[ i,3+j] = (state_diffbig[1+i]-statebig[1+i])/dq jac_num[3+i,3+j] = (state_diffbig[4+i]-statebig[4+i])/dq end # Now vary mass: ksave = copy(kbig) dq = kbig*dlnq kbig += dq r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) # iter = kep_elliptic!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) iter = kep_ell_hyp!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) for i=1:3 jac_num[ i,7] = (state_diffbig[1+i]-statebig[1+i])/dq jac_num[3+i,7] = (state_diffbig[4+i]-statebig[4+i])/dq end kbig = copy(ksave) jac_num[7, 7] = 1.0 end return xsave,jac_num,jacobian end # First try: const KEPLER_TOL = 1e-12 xsave,jac_num1,jacobian=test_elliptic_derivative(big(1e-15)) # Second try: #xsave,jac_num2,jacobian=test_elliptic_derivative(1e-6) #println("Jac dlnq=1e-7 ") #jac_num1 #println("Jac dlnq=1e-6 ") #jac_num2 #jacobian #jac_num1-jac_num2 #println("Fraction errors on Jacobian: ",jac_num1./jacobian-1.0) #println("jac_num1: ",jac_num1) emax = 0.0; imax = 0; jmax = 0 for i=1:7, j=1:7 if jacobian[i,j] != 0.0 diff = abs(jac_num1[i,j]/jacobian[i,j]-1.0) if diff > emax emax = diff; imax = i; jmax = j end end end println("Maximum fractional error: ",emax," ",imax," ",jmax) println("Maximum error jacobian: ",maximum(abs.(jacobian-jac_num1))) #@test isapprox(jacobian,jac_num1) @test isapprox(jacobian,jac_num1;norm=maxabs) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
2050
#include("../src/ttv.jl") #include("/Users/ericagol/Computer/Julia/regress.jl") #maxabs(x) = maximum(abs.(x)) #using Base.Test #KEPLER_TOL = 1e-15 #TRANSIT_TOL = 1e-15 @testset "findtransit3" begin #n = 8 n = 3 H = [3,1,1] t0 = 7257.93115525 #h = 0.12 h = 0.05 #tmax = 600.0 #tmax = 100.0 tmax = 10.0 # Read in initial conditions: elements = readdlm("elements.txt",',') # Increase masses for debugging: elements[2,1] *= 10.0 elements[3,1] *= 10.0 # Make an array, tt, to hold transit times: # First, though, make sure it is large enough: ntt = zeros(Int64,n) for i=2:n ntt[i] = ceil(Int64,tmax/elements[i,2])+3 end tt = zeros(n,maximum(ntt)) # Save a counter for the actual number of transit times of each planet: count = zeros(Int64,n) # Now, compute derivatives (with respect to initial cartesian positions/masses at # beginning of each step): dtdq0 = zeros(n,maximum(ntt),7,n) dtdq0_num = zeros(BigFloat,n,maximum(ntt),7,n) dlnq = big(1e-10) # Make radius of star large: rstar = 1e12 # Not sure why this call is here. #dtdelements_num = ttv_elements!(H,t0,h,tmax,elements,tt,count,dtdq0,dtdq0_num,dlnq,rstar) # Now do computation in BigFloat precision: dtdq0_big = big.(dtdq0) dtdelements_num = ttv_elements!(H,big(t0),big(h),big(tmax),big.(elements),big.(tt),count,dtdq0_big,big(rstar)) dtdq0_num = convert(Array{Float64,4},dtdq0_num) dtdq0_big = convert(Array{Float64,4},dtdq0_big) mask = zeros(Bool, size(dtdq0)) for i=2:n, j=1:count[i], k=1:5, l=1:n mask[i,j,k,l] = true end #println("Max diff log(dtdq0): ",maximum(abs.(dtdq0_num[mask]./dtdq0[mask]-1.0))) #println("Max diff asinh(dtdq0): ",maximum(abs.(asinh.(dtdq0_num[mask])-asinh.(dtdq0[mask])))) #println("Max diff dtdq0 : ",maximum((dtdq0_num[mask]-dtdq0[mask]))) #@test isapprox(dtdq0[mask],convert(Array{Float64,4},dtdq0_num)[mask];norm=maxabs) @test isapprox(asinh.(dtdq0[mask]),asinh.(convert(Array{Float64,4},dtdq0_num)[mask]);norm=maxabs) #unit = ones(dtdq0[mask]) #@test isapprox(dtdq0[mask]./convert(Array{Float64,4},dtdq0_num)[mask],unit;norm=maxabs) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
1705
include("../src/g3.jl") using PyPlot @testset "g3_hn" begin gamma = logspace(-10.0,0.0,1000) gbig = big.(gamma) for beta in [-1.5,-0.75,-0.1,-0.01,-0.001,-0.0001,-0.00001,-0.000001,0.000001,0.00001,0.0001,0.001,0.01,0.1,0.75,1.5] clf() betabig=big(beta) zbig = big(0.0) g3b = convert(Array{Float64,1},G3.(gbig,betabig;gc = zbig)) h1b = convert(Array{Float64,1},H1.(gbig,betabig;gc = zbig)) h2b = convert(Array{Float64,1},H2.(gbig,betabig;gc = zbig)) h3b = convert(Array{Float64,1},H3.(gbig,betabig;gc = zbig)) h5b = convert(Array{Float64,1},H5.(gbig,betabig;gc = zbig)) h6b = convert(Array{Float64,1},H6.(gbig,betabig;gc = zbig)) h7b = convert(Array{Float64,1},H7.(gbig,betabig;gc = zbig)) h8b = convert(Array{Float64,1},H8.(gbig,betabig;gc = zbig)) g3 = G3.(gamma,beta) h1 = H1.(gamma,beta) h2 = H2.(gamma,beta) h3 = H3.(gamma,beta) h5 = H5.(gamma,beta) h6 = H6.(gamma,beta) h7 = H7.(gamma,beta) h8 = H8.(gamma,beta) semilogy(gamma,abs.(g3./g3b-1),label="G3") plot(gamma,abs.(h1./h1b-1),label="H1") plot(gamma,abs.(h2./h2b-1),label="H2") plot(gamma,abs.(h3./h3b-1),label="H3") plot(gamma,abs.(h5./h5b-1),label="H5") plot(gamma,abs.(h6./h6b-1),label="H6") plot(gamma,abs.(h7./h7b-1),label="H7") plot(gamma,abs.(h8./h8b-1),label="H8") @test isapprox(g3b,g3;norm=maxabs) @test isapprox(h1b,h1;norm=maxabs) @test isapprox(h2b,h2;norm=maxabs) @test isapprox(h3b,h3;norm=maxabs) @test isapprox(h5b,h5;norm=maxabs) @test isapprox(h6b,h6;norm=maxabs) @test isapprox(h7b,h7;norm=maxabs) @test isapprox(h8b,h8;norm=maxabs) println("beta: ",beta) axis([0.0,1.0,1e-16,0.1]) legend(loc="upper left") read(STDIN,Char) end end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
950
# Writing a test for a new Hamiltonian formulation: n = 4 x = zeros(3,n) v = zeros(3,n) vcom = zeros(3) m = zeros(n) h_cartesian = 0.0 # Compute Hamiltonian in Cartesian coordinates: for i=1:n x[:,i] = randn(3) v[:,i] = randn(3) m[i] = exp(rand()) h_cartesian += 0.5*m[i]*dot(v[:,i],v[:,i]) vcom .+= m[i]*v[:,i] end # Center of mass velocity: mtot = sum(m) vcom ./= mtot # Kinetic energy of the system: h_sakura = h_cartesian h_keplerian = 0.5*mtot*dot(vcom,vcom) for i=1:n-1 for j=i+1:n xij = x[:,j].-x[:,i] vij = v[:,j].-v[:,i] rij = norm(xij) h_cartesian -= m[i]*m[j]/rij mij = m[i]+m[j] mred = m[i]*m[j]/mij v2 = dot(vij,vij) h_sakura += mred*(0.5*v2-mij/rij) - 0.5*mred*v2 h_keplerian += mred*(0.5*v2-mij/rij) - 0.5*(1.0-mij/mtot)*mred*v2 end end println("h_cartesian: ",h_cartesian) println("h_sakura: ",h_sakura) println("h_keplerian: ",h_keplerian," ",h_keplerian/h_cartesian-1.)
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
2048
# Check whether the test is being run as standalone if ~@isdefined Test using Test end include("../src/setup_hierarchy.jl") @testset "hierarchy matrix" begin # Makes sure the hierarchy matrix generator is working as expected for a select set of orbital systems. # Fully nested Keplerians ϵ_nested::Matrix{Float64} = [-1 1 0 0; -1 -1 1 0; -1 -1 -1 1; -1 -1 -1 -1;] @test hierarchy([4,1,1,1]) == ϵ_nested # Double Binary ϵ_double::Matrix{Float64} = [-1 1 0 0; 0 0 -1 1; -1 -1 1 1; -1 -1 -1 -1;] @test hierarchy([4,2,1]) == ϵ_double # Double binary + top level body ϵ_asym::Matrix{Float64} = [-1 1 0 0 0; 0 0 -1 1 0; -1 -1 1 1 0; -1 -1 -1 -1 1; -1 -1 -1 -1 -1;] @test hierarchy([5,2,1,1]) == ϵ_asym # Test of specific ambiguous initialization case of a 'symmetric fully-nested' (top) and the double binary + tertiary binary (bottom) ϵ_sym_full::Matrix{Float64} = [-1 1 0 0 0 0; 0 0 0 -1 1 0; -1 -1 1 0 0 0; 0 0 0 -1 -1 1; -1 -1 -1 1 1 1; -1 -1 -1 -1 -1 -1;] ϵ_asym_multi::Matrix{Float64}=[-1 1 0 0 0 0; 0 0 -1 1 0 0; -1 -1 1 1 0 0; 0 0 0 0 -1 1; -1 -1 -1 -1 1 1; -1 -1 -1 -1 -1 -1;] h_sym_full,h_asym_multi = hierarchy.([[6,2,2,1,2],[6,2,2,1]]) @test ϵ_sym_full == h_sym_full @test ϵ_asym_multi == h_asym_multi end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
1857
using PyPlot include("../src/kepler_solver.jl") # Define a constant of 1/3: const third = 1.0/3.0 function test_hyperbolic() # This routine runs a test of the kep_hyperbolic function in kepler_solver_hyperbolic.jl # Define the central force constant in terms of AU and days: k = (2.0*pi/365.25)^2 # Initial position at 1 AU: x0 = [0.0,1.0,0.0] #r0 = norm(x0) r0 = sqrt(x0[1]*x0[1]+x0[2]*x0[2]+x0[3]*x0[3]) # Circular velocity: vcirc = sqrt(k/r0) # Define initial velocity at apastron: v0 = [1.5*vcirc,0.0,0.0] # The eccentricity is about ~2(1-v0/vcirc). h = 18.0 # 18-day timesteps s0::Float64 = 0.0 x = zeros(Float64,3) v = zeros(Float64,3) s::Float64 = 0.0 t = 0.0 ssave = zeros(2) #nsteps = 10000000 nsteps = 1000000 #nsteps = 1000 xsave=zeros(Float64,12,nsteps) # First is time (1,:); next three are position (2-4,:); next three velocity (5-7,:); then r (8,:), drdt (9,:); then beta (10,:); finally s & ds (11:12,:) # Create a variable to store the state at the end of a step: state=zeros(Float64,12) xsave[1,1]=0.0 for j=1:3 xsave[j+1,1]=x0[j] xsave[j+4,1]=v0[j] end # Save beta: xsave[8,1]=r0 beta0 = 2.0*k/r0-dot(v0,v0) xsave[10,1]=beta0 #@inbounds for i=2:nsteps for i=2:nsteps # iter = kep_hyperbolic!(x0,v0,r0,k,h,beta0,s0,state) iter = kep_ell_hyp!(x0,v0,r0,k,h,beta0,s0,state) s = state[11] ds = state[12] if iter > 2 println("iter: ",iter," ds: ",ds) end # Increment time by h: state[1] += h for j=1:12 xsave[j,i]=state[j] end if i >= 4 # Quadratic prediction for s of next step: s0 = 3.0*s - 3.0*ssave[1] + ssave[2] ssave[2] = ssave[1] ssave[1] = s else s0 = s ssave[2]=ssave[1] ssave[1]=s end # Now, proceed to next step: for j=1:3 x0[j]=state[1+j] v0[j]=state[4+j] end r0=state[8] beta0=state[10] # println(i,x,v) end #plot(xsave[1],xsave[2]) return xsave end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
4906
# This code tests two functions: keplerij! and kep_elliptic! #using PyPlot #include("../src/kepler_solver_derivative.jl") #include("../src/ttv.jl") @testset "kep_elliptic" begin # Define a constant of 1/3: #const third = 1.0/3.0 function test_elliptic_derivative(dlnq::BigFloat) # Call as: save,jac_num,jacobian=test_elliptic_derivative(1e-4) # This routine runs a test of the kep_elliptic_jacobian function in kepler_solver.jl # Define the central force constant in terms of AU and days: k = (2.0*pi/365.25)^2 # Initial position at 1 AU: x0 = [0.01,1.0,0.01] #r0 = norm(x0) # Circular velocity: r0 = sqrt(x0[1]*x0[1]+x0[2]*x0[2]+x0[3]*x0[3]) vcirc = sqrt(k/r0) # Define initial velocity at apastron: v0 = [2.0*vcirc,0.01*vcirc,0.01*vcirc] # The eccentricity is about ~2(1-v0/vcirc). h = 100.0 # 18-day timesteps hbig = big(h) s0::Float64 = 0.0 x = zeros(Float64,3) v = zeros(Float64,3) s::Float64 = 0.0 t = 0.0 ssave = zeros(2) nsteps = 1 xsave=zeros(Float64,12,nsteps) # First is time (1,:); next three are position (2-4,:); next three velocity (5-7,:); then r (8,:), drdt (9,:); then beta (10,:); finally s & ds (11:12,:) # Create a variable to store the state at the end of a step: state=zeros(Float64,12) state_diffbig=zeros(BigFloat,12) xsave[1,1]=0.0 for jj=1:3 xsave[jj+1,1]=x0[jj] xsave[jj+4,1]=v0[jj] end # Save beta: xsave[8,1]=r0 beta0 = 2.0*k/r0-dot(v0,v0) println("beta: ",beta0) xsave[10,1]=beta0 jacobian=zeros(Float64,7,7) #iter = kep_elliptic!(x0,v0,r0,k,h,beta0,s0,state,jacobian) iter = kep_ell_hyp!(x0,v0,r0,k,h,beta0,s0,state,jacobian) #println("Initial conditions: ",x0,v0) #println("Final state: ",state) #println("Differnce : ",state[2:4]-x0,state[5:7]-v0) #read(STDIN,Char) # Now, do finite differences at higher precision: kbig = big(k); s0big = big(0.0); statebig = big.(state) x0big = big.(x0); v0big = big.(v0) r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) #iter = kep_elliptic!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,statebig) iter = kep_ell_hyp!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,statebig) #println("Final state: ",statebig[2:7]) #read(STDIN,Char) #s = statebig[11] # Now, compute the Jacobian numerically: #jac_num = zeros(Float64,7,7) jac_num = zeros(BigFloat,7,7) #dlnq = 1e-4 # jac_num[i,j]: derivative of (x_i,v_i,k) with respect to (x_{0,j},v_{0,j},k): for j=1:3 x0save = copy(x0big) dq = dlnq * x0big[j] if x0big[j] != 0.0 x0big[j] += dq else dq = dlnq x0big[j] = dq end # Recompute quantities: r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) # iter = kep_elliptic!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) iter = kep_ell_hyp!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) x0big = copy(x0save) for i=1:3 jac_num[ i, j] = (state_diffbig[1+i]-statebig[1+i])/dq jac_num[3+i, j] = (state_diffbig[4+i]-statebig[4+i])/dq end v0save = copy(v0big) dq = dlnq * v0big[j] if v0big[j] != 0.0 v0big[j] += dq else dq = dlnq v0big[j] = dq end r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) # iter = kep_elliptic!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) iter = kep_ell_hyp!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) v0big = copy(v0save) for i=1:3 jac_num[ i,3+j] = (state_diffbig[1+i]-statebig[1+i])/dq jac_num[3+i,3+j] = (state_diffbig[4+i]-statebig[4+i])/dq end # Now vary mass: ksave = copy(kbig) dq = kbig*dlnq kbig += dq r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) # iter = kep_elliptic!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) iter = kep_ell_hyp!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) for i=1:3 jac_num[ i,7] = (state_diffbig[1+i]-statebig[1+i])/dq jac_num[3+i,7] = (state_diffbig[4+i]-statebig[4+i])/dq end kbig = copy(ksave) jac_num[7, 7] = 1.0 end return xsave,jac_num,jacobian end # First try: const KEPLER_TOL = 1e-12 xsave,jac_num1,jacobian=test_elliptic_derivative(big(1e-15)) # Second try: #xsave,jac_num2,jacobian=test_elliptic_derivative(1e-6) #println("Jac dlnq=1e-7 ") #jac_num1 #println("Jac dlnq=1e-6 ") #jac_num2 #jacobian #jac_num1-jac_num2 #println("Fraction errors on Jacobian: ",jac_num1./jacobian-1.0) #println("jac_num1: ",jac_num1) emax = 0.0; imax = 0; jmax = 0 for i=1:7, j=1:7 if jacobian[i,j] != 0.0 diff = abs(jac_num1[i,j]/jacobian[i,j]-1.0) if diff > emax emax = diff; imax = i; jmax = j end end end println("Maximum fractional error: ",emax," ",imax," ",jmax) println("Maximum error jacobian: ",maximum(abs.(jacobian-jac_num1))) #@test isapprox(jacobian,jac_num1) @test isapprox(jacobian,jac_num1;norm=maxabs) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
4402
# This code tests two functions: keplerij! and kep_elliptic! #using PyPlot #include("../src/kepler_solver_derivative.jl") #include("../src/ttv.jl") @testset "kep_elliptic" begin # Define a constant of 1/3: #const third = 1.0/3.0 function test_elliptic_derivative(dlnq::BigFloat) # Call as: save,jac_num,jacobian=test_elliptic_derivative(1e-4) # This routine runs a test of the kep_elliptic_jacobian function in kepler_solver.jl # Define the central force constant in terms of AU and days: k = (2.0*pi/365.25)^2 # Initial position at 1 AU: x0 = [0.01,1.0,0.01] #r0 = norm(x0) # Circular velocity: r0 = sqrt(x0[1]*x0[1]+x0[2]*x0[2]+x0[3]*x0[3]) vcirc = sqrt(k/r0) # Define initial velocity at apastron: v0 = [.9*vcirc,0.01*vcirc,0.01*vcirc] # The eccentricity is about ~2(1-v0/vcirc). h = 100.0 # 18-day timesteps hbig = big(h) s0::Float64 = 0.0 x = zeros(Float64,3) v = zeros(Float64,3) s::Float64 = 0.0 t = 0.0 ssave = zeros(2) nsteps = 1 xsave=zeros(Float64,12,nsteps) # First is time (1,:); next three are position (2-4,:); next three velocity (5-7,:); then r (8,:), drdt (9,:); then beta (10,:); finally s & ds (11:12,:) # Create a variable to store the state at the end of a step: state=zeros(Float64,12) state_diffbig=zeros(BigFloat,12) xsave[1,1]=0.0 for jj=1:3 xsave[jj+1,1]=x0[jj] xsave[jj+4,1]=v0[jj] end # Save beta: xsave[8,1]=r0 beta0 = 2.0*k/r0-dot(v0,v0) xsave[10,1]=beta0 jacobian=zeros(Float64,7,7) iter = kep_elliptic!(x0,v0,r0,k,h,beta0,s0,state,jacobian) #println("Initial conditions: ",x0,v0) # Now, do finite differences at higher precision: kbig = big(k); s0big = big(0.0); statebig = big.(state) x0big = big.(x0); v0big = big.(v0) r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) iter = kep_elliptic!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,statebig) #println("Final state: ",statebig[2:7]) #read(STDIN,Char) #s = statebig[11] # Now, compute the Jacobian numerically: #jac_num = zeros(Float64,7,7) jac_num = zeros(BigFloat,7,7) #dlnq = 1e-4 # jac_num[i,j]: derivative of (x_i,v_i,k) with respect to (x_{0,j},v_{0,j},k): for j=1:3 x0save = copy(x0big) dq = dlnq * x0big[j] if x0big[j] != 0.0 x0big[j] += dq else dq = dlnq x0big[j] = dq end # Recompute quantities: r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) iter = kep_elliptic!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) x0big = copy(x0save) for i=1:3 jac_num[ i, j] = (state_diffbig[1+i]-statebig[1+i])/dq jac_num[3+i, j] = (state_diffbig[4+i]-statebig[4+i])/dq end v0save = copy(v0big) dq = dlnq * v0big[j] if v0big[j] != 0.0 v0big[j] += dq else dq = dlnq v0big[j] = dq end r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) iter = kep_elliptic!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) v0big = copy(v0save) for i=1:3 jac_num[ i,3+j] = (state_diffbig[1+i]-statebig[1+i])/dq jac_num[3+i,3+j] = (state_diffbig[4+i]-statebig[4+i])/dq end # Now vary mass: ksave = copy(kbig) dq = kbig*dlnq kbig += dq r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) iter = kep_elliptic!(x0big,v0big,r0big,kbig,hbig,beta0big,s0big,state_diffbig) for i=1:3 jac_num[ i,7] = (state_diffbig[1+i]-statebig[1+i])/dq jac_num[3+i,7] = (state_diffbig[4+i]-statebig[4+i])/dq end kbig = copy(ksave) jac_num[7, 7] = 1.0 end return xsave,jac_num,jacobian end # First try: const KEPLER_TOL = 1e-12 xsave,jac_num1,jacobian=test_elliptic_derivative(big(1e-15)) # Second try: #xsave,jac_num2,jacobian=test_elliptic_derivative(1e-6) #println("Jac dlnq=1e-7 ") #jac_num1 #println("Jac dlnq=1e-6 ") #jac_num2 #jacobian #jac_num1-jac_num2 #println("Fraction errors on Jacobian: ",jac_num1./jacobian-1.0) #println("jac_num1: ",jac_num1) emax = 0.0; imax = 0; jmax = 0 for i=1:7, j=1:7 if jacobian[i,j] != 0.0 diff = abs(jac_num1[i,j]/jacobian[i,j]-1.0) if diff > emax emax = diff; imax = i; jmax = j end end end println("Maximum fractional error: ",emax," ",imax," ",jmax) println("Maximum error jacobian: ",maximum(abs.(jacobian-jac_num1))) #@test isapprox(jacobian,jac_num1) @test isapprox(jacobian,jac_num1;norm=maxabs) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
4311
# This code tests kep_drift_ell_hyp! @testset "kepler_drift" begin function test_kepler_drift(dlnq::BigFloat,drift_first::Bool) # Call as: save,jac_num,jacobian=test_kepler_drift(1e-4,true) # This routine runs a test of the kep_elliptic_jacobian function in kepler_solver.jl # Define the central force constant in terms of AU and days: k = (2.0*pi/365.25)^2 # Initial position at 1 AU: x0 = [0.01,1.0,0.01] # Circular velocity: r0 = sqrt(x0[1]*x0[1]+x0[2]*x0[2]+x0[3]*x0[3]) vcirc = sqrt(k/r0) # Define initial velocity at apastron: v0 = [.9*vcirc,0.01*vcirc,0.01*vcirc] # The eccentricity is about ~2(1-v0/vcirc). h = 18.0 # 18-day timesteps hbig = big(h) s0::Float64 = 0.0 x = zeros(Float64,3) v = zeros(Float64,3) s::Float64 = 0.0 t = 0.0 nsteps = 1 xsave=zeros(Float64,12,nsteps) # First is time (1,:); next three are position (2-4,:); next three velocity (5-7,:); then r (8,:), drdt (9,:); then beta (10,:); finally s & ds (11:12,:) # Create a variable to store the state at the end of a step: state=zeros(Float64,12) state_diffbig=zeros(BigFloat,12) xsave[1,1]=0.0 for jj=1:3 xsave[jj+1,1]=x0[jj] xsave[jj+4,1]=v0[jj] end # Save beta: xsave[8,1]=r0 beta0 = 2.0*k/r0-dot(v0,v0) xsave[10,1]=beta0 jacobian=zeros(Float64,7,7) d = Derivatives(Float64) iter = kep_drift_ell_hyp!(x0,v0,k,h,s0,state,jacobian,drift_first,d) # Now, do finite differences at higher precision: kbig = big(k); s0big = big(0.0); statebig = big.(state) x0big = big.(x0); v0big = big.(v0) r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) jacobian_big =zeros(BigFloat,7,7) dBig = Derivatives(BigFloat) iter = kep_drift_ell_hyp!(x0big,v0big,kbig,hbig,s0big,statebig,jacobian_big,drift_first,dBig) jac_frac = jacobian./convert(Array{Float64,2},jacobian_big).-1.0 println("Fractional Jacobian difference: ",maxabs(jac_frac[.~isnan.(jac_frac)])) # Now, compute the Jacobian numerically: jac_num = zeros(BigFloat,7,7) # jac_num[i,j]: derivative of (x_i,v_i,k) with respect to (x_{0,j},v_{0,j},k): for j=1:3 x0save = copy(x0big) dq = dlnq * x0big[j] if x0big[j] != 0.0 x0big[j] += dq else dq = dlnq x0big[j] = dq end # Recompute quantities: r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) iter = kep_drift_ell_hyp!(x0big,v0big,kbig,hbig,s0big,state_diffbig,drift_first) x0big = copy(x0save) for i=1:3 jac_num[ i, j] = (state_diffbig[1+i]-statebig[1+i])/dq jac_num[3+i, j] = (state_diffbig[4+i]-statebig[4+i])/dq end v0save = copy(v0big) dq = dlnq * v0big[j] if v0big[j] != 0.0 v0big[j] += dq else dq = dlnq v0big[j] = dq end r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) iter = kep_drift_ell_hyp!(x0big,v0big,kbig,hbig,s0big,state_diffbig,drift_first) v0big = copy(v0save) for i=1:3 jac_num[ i,3+j] = (state_diffbig[1+i]-statebig[1+i])/dq jac_num[3+i,3+j] = (state_diffbig[4+i]-statebig[4+i])/dq end # Now vary mass: ksave = copy(kbig) dq = kbig*dlnq kbig += dq r0big = sqrt(x0big[1]*x0big[1]+x0big[2]*x0big[2]+x0big[3]*x0big[3]) beta0big = 2*kbig/r0big-dot(v0big,v0big) iter = kep_drift_ell_hyp!(x0big,v0big,kbig,hbig,s0big,state_diffbig,drift_first) for i=1:3 jac_num[ i,7] = (state_diffbig[1+i]-statebig[1+i])/dq jac_num[3+i,7] = (state_diffbig[4+i]-statebig[4+i])/dq end kbig = copy(ksave) jac_num[7, 7] = 1.0 end println("Maximum jac_big-jac_num: ",maxabs(convert(Array{Float64,2},jacobian_big-jac_num))) #println(convert(Array{Float64,2},jacobian_big)) #println(convert(Array{Float64,2},jacobian_big./jac_num.-1.0)) return xsave,jac_num,jacobian end # First try: xsave,jac_num1,jacobian=test_kepler_drift(big(1e-20),true) # Second try: xsave,jac_num1,jacobian=test_kepler_drift(big(1e-20),false) emax = 0.0; imax = 0; jmax = 0 for i=1:7, j=1:7 if jacobian[i,j] != 0.0 diff = abs(convert(Float64,jac_num1[i,j])/jacobian[i,j]-1.0) if diff > emax emax = diff; imax = i; jmax = j end end end println("Maximum fractional error: ",emax," ",imax," ",jmax) println("Maximum jacobian-jac_num: ",maxabs(jacobian-convert(Array{Float64,2},jac_num1))) @test isapprox(jacobian,jac_num1;norm=maxabs) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
5686
# This code tests the autodiffed Drift/Kepler step include("../src/kepler_drift_gamma.jl") @testset "kepler_drift_gamma" begin function test_kepler_drift(dlnq::BigFloat,drift_first::Bool) # Call as: save,jac_num,jacobian=test_kepler_drift(1e-4,true) # This routine runs a test of the kep_elliptic_jacobian function in kepler_solver.jl # Define the central force constant in terms of AU and days: k = (2.0*pi/365.25)^2 # Initial position at 1 AU: x0 = [0.01,1.0,0.01] # Circular velocity: r0 = sqrt(x0[1]*x0[1]+x0[2]*x0[2]+x0[3]*x0[3]) vcirc = sqrt(k/r0) # Define initial velocity at apastron: v0 = [.9*vcirc,0.01*vcirc,0.01*vcirc] # The eccentricity is about ~2(1-v0/vcirc). #h = 18.0 # 18-day timesteps h = 0.000005 # 18-day timesteps #h = 0.05 # 18-day timesteps hbig = big(h) s0::Float64 = 0.0 x = zeros(Float64,3) v = zeros(Float64,3) t = 0.0 nsteps = 1 xsave=zeros(Float64,12,nsteps) # First is time (1,:); next three are position (2-4,:); next three velocity (5-7,:); then r (8,:), drdt (9,:); then beta (10,:); finally s & ds (11:12,:) # Create a variable to store the state at the end of a step: state=zeros(Float64,12) state_diffbig=zeros(BigFloat,12) xsave[1,1]=0.0 for jj=1:3 xsave[jj+1,1]=x0[jj] xsave[jj+4,1]=v0[jj] end # Save beta: xsave[8,1]=r0 beta0 = 2.0*k/r0-dot(v0,v0) xsave[10,1]=beta0 # First, compute it with the old version: jacobian_old =zeros(Float64,7,7) d_old = Derivatives(Float64) iter = kep_drift_ell_hyp!(x0,v0,k,h,s0,state,jacobian_old,drift_first,d_old) #println("s old: ",state[11]) # Check that old and new are giving the same answer: delxv = jac_delxv_gamma!(x0,v0,k,h,drift_first;debug=true) println("state: ",state) println("delxv: ",delxv) println("Old-new: ",state[2:7]-delxv[1:6]) # Now compute algebraic Jacobian: delxv,jac_alg = jac_delxv_gamma!(x0,v0,k,h,drift_first;grad=true,auto=false,debug=true) # Next, compute autodiff Jacobian: delxv,jacobian = jac_delxv_gamma!(x0,v0,k,h,drift_first;grad=true,auto=true,debug=true) # Now, do finite differences at higher precision: kbig = big(k) x0big = big.(x0); v0big = big.(v0) # Now compute big-float precision autodiff Jacobian: delxv_big,jacobian_big = jac_delxv_gamma!(x0big,v0big,kbig,hbig,drift_first;grad=true,auto=true,debug=true) #println("Auto diff Jacobian: ",jacobian) jac_frac = jac_alg[1:6,:]./convert(Array{Float64,2},jacobian_big[1:6,:]).-1.0 println("Fractional Jacobian difference: ",maxabs(jac_frac[.~isnan.(jac_frac)])) # Now compute finite-difference Jacobian: delxv,jac_num = jac_delxv_gamma!(x0big,v0big,kbig,hbig,drift_first;grad=true,auto=false,dlnq=dlnq,debug=true) name = ["x01","x02","x03","v01","v02","v03","gamma","r","fm1","fdot","gmhgdot","gdotm1"] for i=1:12 println(i," ",name[i]) println("Fini diff Jacobian: ",convert(Array{Float64,1},jac_num[i,:])) println("Algebraic Jacobian: ",convert(Array{Float64,1},jac_alg[i,:])) println("Auto diff Jacobian: ",convert(Array{Float64,1},jacobian_big[i,:])) println("Frac diff Jacobian: ",jac_alg[i,:]./convert(Array{Float64,1},jacobian_big[i,:]).-1.0) end println("gamma alg gradient: ",jac_alg[7,:]) println("gamma auto gradient: ",convert(Array{Float64,1},jacobian_big[7,:])) println("gamma diff gradient: ",convert(Array{Float64,1},jac_num[7,:])) println("r alg gradient: ",jac_alg[8,:]) println("r auto gradient: ",convert(Array{Float64,1},jacobian_big[8,:])) println("r diff gradient: ",convert(Array{Float64,1},jac_num[8,:])) println("fm1 gradient alg: ",jac_alg[9,:]) println("fm1 gradient auto: ",convert(Array{Float64,1},jacobian_big[9,:])) println("fm1 gradient diff: ",convert(Array{Float64,1},jac_num[9,:])) println("fdot gradient alg: ",jac_alg[10,:]) println("fdot gradient auto: ",convert(Array{Float64,1},jacobian_big[10,:])) println("fdot gradient diff: ",convert(Array{Float64,1},jac_num[10,:])) println("g-h gdot gradient alg: ",jac_alg[11,:]) println("g-h gdot gradient auto: ",convert(Array{Float64,1},jacobian_big[11,:])) println("g-h gdot gradient diff: ",convert(Array{Float64,1},jac_num[11,:])) println("gdot-1 gradient alg: ",jac_alg[12,:]) println("gdot-1 gradient auto: ",convert(Array{Float64,1},jacobian_big[12,:])) println("gdot-1 gradient diff: ",convert(Array{Float64,1},jac_num[12,:])) println("Dim of jacobian_big: ",size(jacobian_big)," dim of jac_num: ",size(jac_num)) println("Maximum jac_big-jac_num: ",maxabs(convert(Array{Float64,2},jacobian_big-jac_num))) println("Maximum jac_big-jac_alg: ",maxabs(convert(Array{Float64,2},jacobian_big-jac_alg))) return xsave,jac_num,jac_alg end # First try: xsave,jac_num1,jacobian=test_kepler_drift(big(1e-20),true) emax = 0.0; imax = 0; jmax = 0 #for i=1:6, j=1:8 for i=1:12, j=1:8 if jacobian[i,j] != 0.0 diff = abs(convert(Float64,jac_num1[i,j])/jacobian[i,j]-1.0) if diff > emax emax = diff; imax = i; jmax = j # println("i ",i," j ",j," jac_num1: ",convert(Float64,jac_num1[i,j])," jacobian: ",jacobian[i,j]) end end end println("Maximum fractional error: ",emax," ",imax," ",jmax) println("Maximum jacobian-jac_num: ",maxabs(jacobian-convert(Array{Float64,2},jac_num1))) # Second try: xsave,jac_num1,jacobian=test_kepler_drift(big(1e-20),false) emax = 0.0; imax = 0; jmax = 0 for i=1:6, j=1:8 if jacobian[i,j] != 0.0 diff = abs(convert(Float64,jac_num1[i,j])/jacobian[i,j]-1.0) if diff > emax emax = diff; imax = i; jmax = j # println("i ",i," j ",j," jac_num1: ",convert(Float64,jac_num1[i,j])," jacobian: ",jacobian[i,j]) end end end println("Maximum fractional error: ",emax," ",imax," ",jmax) println("Maximum jacobian-jac_num: ",maxabs(jacobian-convert(Array{Float64,2},jac_num1))) @test isapprox(jacobian,jac_num1;norm=maxabs) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
7548
# This code tests the function kepler_driftij2 @testset "kepler_driftij" begin for drift_first in [true,false] # Next, try computing two-body Keplerian Jacobian: n = 3 H = [3,1,1] t0 = 7257.93115525 #t0 = -300.0 h = 0.0000005 hbig = big(h) tmax = 600.0 #dlnq = 1e-8 dlnq = big(1e-20) elements = readdlm("elements.txt",',') #elements[2,1] = 0.75 elements[2,1] = 1.0 elements[3,1] = 1.0 m =zeros(n) x0=zeros(NDIM,n) v0=zeros(NDIM,n) for k=1:n m[k] = elements[k,1] end for iter = 1:2 init = ElementsIC(elements,H,t0) x0,v0,_ = init_nbody(init) if iter == 2 # Reduce masses to trigger hyperbolic routine: m[1:n] *= 1e-1 h = 0.0000005 hbig = big(h) end # Tilt the orbits a bit: x0[2,1] = 5e-1*sqrt(x0[1,1]^2+x0[3,1]^2) x0[2,2] = -5e-1*sqrt(x0[1,2]^2+x0[3,2]^2) v0[2,1] = 5e-1*sqrt(v0[1,1]^2+v0[3,1]^2) v0[2,2] = -5e-1*sqrt(v0[1,2]^2+v0[3,2]^2) jac_ij = zeros(Float64,14,14) dqdt_ij = zeros(Float64,14) dqdt_num = zeros(BigFloat,14) println("Initial values: ",x0,v0) println("masses: ",m) i=1 ; j=2 x = copy(x0) ; v=copy(v0) xerror = zeros(NDIM,n); verror = zeros(NDIM,n) d = Derivatives(Float64) # Predict values of s: kepler_driftij!(m,x,v,xerror,verror,i,j,h,jac_ij,dqdt_ij,drift_first,d) x0 = copy(x) ; v0 = copy(v) xerror = zeros(NDIM,n); verror = zeros(NDIM,n) xbig = big.(x) ; vbig=big.(v); mbig = big.(m) xerr_big = zeros(BigFloat,NDIM,n); verr_big = zeros(BigFloat,NDIM,n) kepler_driftij!(m,x,v,xerror,verror,i,j,h,jac_ij,dqdt_ij,drift_first,d) # Now compute Jacobian with BigFloat precision: jac_ij_big = zeros(BigFloat,14,14) dqdt_ij_big = zeros(BigFloat,14) KEPLER_TOL = sqrt(eps(big(1.0))) dBig = Derivatives(BigFloat) kepler_driftij!(mbig,xbig,vbig,xerr_big,verr_big,i,j,hbig,jac_ij_big,dqdt_ij_big,drift_first,dBig) #println("jac_ij: ",convert(Array{Float64,2},jac_ij_big)) #println("jac_ij - jac_ij_big: ",convert(Array{Float64,2},jac_ij_big)-jac_ij) println("max(jac_ij - jac_ij_big): ",maxabs(convert(Array{Float64,2},jac_ij_big)-jac_ij)) # Now, compute the derivatives numerically: jac_ij_num = zeros(BigFloat,14,14) xsave = big.(x) vsave = big.(v) msave = big.(m) # Compute the time derivatives: # Initial positions, velocities & masses: xm = big.(x0) vm = big.(v0) mm = big.(msave) dq = dlnq * hbig hbig -= dq kepler_driftij!(mm,xm,vm,i,j,hbig,drift_first) xp = big.(x0) vp = big.(v0) hbig += 2dq kepler_driftij!(mm,xp,vp,i,j,hbig,drift_first) # Now x & v are final positions & velocities after time step for k=1:3 dqdt_num[ k] = .5*(xp[k,i]-xm[k,i])/dq dqdt_num[ 3+k] = .5*(vp[k,i]-vm[k,i])/dq dqdt_num[ 7+k] = .5*(xp[k,j]-xm[k,j])/dq dqdt_num[10+k] = .5*(vp[k,j]-vm[k,j])/dq end hbig = big(h) # Compute position, velocity & mass derivatives: for jj=1:3 # Initial positions, velocities & masses: xm = big.(x0) vm = big.(v0) mm = big.(msave) dq = dlnq * xm[jj,i] if xm[jj,i] != 0.0 xm[jj,i] -= dq else dq = dlnq xm[jj,i] = -dq end kepler_driftij!(mm,xm,vm,i,j,hbig,drift_first) xp = big.(x0) vp = big.(v0) if xm[jj,i] != 0.0 xp[jj,i] += dq else dq = dlnq xp[jj,i] = dq end kepler_driftij!(mm,xp,vp,i,j,hbig,drift_first) # Now x & v are final positions & velocities after time step for k=1:3 jac_ij_num[ k, jj] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k, jj] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k, jj] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k, jj] = .5*(vp[k,j]-vm[k,j])/dq end xm = big.(x0) vm = big.(v0) mm = big.(msave) dq = dlnq * vm[jj,i] if vm[jj,i] != 0.0 vm[jj,i] -= dq else dq = dlnq vm[jj,i] = -dq end kepler_driftij!(mm,xm,vm,i,j,hbig,drift_first) xp = big.(x0) vp = big.(v0) mm = big.(msave) if vp[jj,i] != 0.0 vp[jj,i] += dq else dq = dlnq vp[jj,i] = dq end kepler_driftij!(mm,xp,vp,i,j,hbig,drift_first) for k=1:3 jac_ij_num[ k,3+jj] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k,3+jj] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k,3+jj] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k,3+jj] = .5*(vp[k,j]-vm[k,j])/dq end end # Now vary mass of inner planet: xm= big.(x0) vm= big.(v0) mm= big.(msave) dq = mm[i]*dlnq mm[i] -= dq kepler_driftij!(mm,xm,vm,i,j,hbig,drift_first) xp= big.(x0) vp= big.(v0) mp= big.(msave) dq = mp[i]*dlnq mp[i] += dq kepler_driftij!(mp,xp,vp,i,j,hbig,drift_first) for k=1:3 jac_ij_num[ k,7] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k,7] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k,7] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k,7] = .5*(vp[k,j]-vm[k,j])/dq end # The mass doesn't change: jac_ij_num[7,7] = 1.0 for jj=1:3 # Now vary parameters of outer planet: xm = big.(x0) vm = big.(v0) mm = big.(msave) dq = dlnq * xm[jj,j] if xm[jj,j] != 0.0 xm[jj,j] -= dq else dq = dlnq xm[jj,j] = -dq end kepler_driftij!(mm,xm,vm,i,j,hbig,drift_first) xp = big.(x0) vp = big.(v0) if xp[jj,j] != 0.0 xp[jj,j] += dq else dq = dlnq xp[jj,j] = dq end kepler_driftij!(mm,xp,vp,i,j,hbig,drift_first) for k=1:3 jac_ij_num[ k,7+jj] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k,7+jj] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k,7+jj] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k,7+jj] = .5*(vp[k,j]-vm[k,j])/dq end xm= big.(x0) vm= big.(v0) mm = big.(msave) dq = dlnq * vm[jj,j] if vm[jj,j] != 0.0 vm[jj,j] -= dq else dq = dlnq vm[jj,j] = -dq end kepler_driftij!(mm,xm,vm,i,j,hbig,drift_first) xp= big.(x0) vp= big.(v0) if vp[jj,j] != 0.0 vp[jj,j] += dq else dq = dlnq vp[jj,j] = dq end kepler_driftij!(mm,xp,vp,i,j,hbig,drift_first) for k=1:3 jac_ij_num[ k,10+jj] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k,10+jj] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k,10+jj] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k,10+jj] = .5*(vp[k,j]-vm[k,j])/dq end end # Now vary mass of outer planet: xm = big.(x0) vm = big.(v0) mm = big.(msave) dq = mm[j]*dlnq mm[j] -= dq kepler_driftij!(mm,xm,vm,i,j,hbig,drift_first) xp = big.(x0) vp = big.(v0) mp = big.(msave) dq = mp[j]*dlnq mp[j] += dq kepler_driftij!(mp,xp,vp,i,j,hbig,drift_first) for k=1:3 jac_ij_num[ k,14] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k,14] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k,14] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k,14] = .5*(vp[k,j]-vm[k,j])/dq end # The mass doesn't change: jac_ij_num[14,14] = 1.0 #println(jac_ij) #println(jac_ij_num) #println(jac_ij./jac_ij_num) emax = 0.0; imax = 0; jmax = 0 emax_big = big(0.0); imax_big = 0; jmax_big = 0 for i=1:14 jac_ij[i,i] += 1 jac_ij_big[i,i] += 1 end for i=1:14, j=1:14 if jac_ij[i,j] != 0.0 diff = abs(convert(Float64,jac_ij_num[i,j])/jac_ij[i,j]-1.0) if diff > emax emax = diff; imax = i; jmax = j end diff_big = abs(convert(Float64,jac_ij_num[i,j])/jac_ij_big[i,j]-1.0) if diff_big > emax_big emax_big = diff; imax_big = i; jmax_big = j end end end println("Maximum fractional error: ",emax," ",imax," ",jmax) println("Maximum fractional error big: ",emax_big," ",imax_big," ",jmax_big) #println(jac_ij) #println(convert(Array{Float64,2},jac_ij_num)) println("Maximum jac_ij error: ",maxabs(convert(Array{Float64,2},asinh.(jac_ij_num))-asinh.(jac_ij))) println("Maximum jac_ij_big-jac_ij_num: ",maxabs(convert(Array{Float64,2},asinh.(jac_ij_num)-asinh.(jac_ij_big)))) println("Max dqdt error: ",maxabs(dqdt_ij-convert(Array{Float64,1},dqdt_num))) @test isapprox(jac_ij_num,jac_ij;norm=maxabs) #@test isapprox(dqdt_ij,convert(Array{Float64,1},dqdt_num);norm=maxabs) end end end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
8892
# This code tests the function kepler_driftij_gamma import NbodyGradient: kepler_driftij_gamma! @testset "kepler_driftij_gamma" begin for drift_first in [true,false] # Next, try computing two-body Keplerian Jacobian: NDIM = 3 n = 3 H = [3,1,1] t0 = 7257.93115525 #t0 = -300.0 #h = 0.0000005 #h = 0.05 h = 0.25 hbig = big(h) tmax = 600.0 #dlnq = 1e-8 dlnq = big(1e-15) elements = readdlm("elements.txt",',') #elements[2,1] = 0.75 #elements[2,1] = 1.0 #elements[3,1] = 1.0 m =zeros(n) x0=zeros(NDIM,n) v0=zeros(NDIM,n) for k=1:n m[k] = elements[k,1] end for iter = 1:2 init = ElementsIC(t0,H,elements) x0,v0,_ = init_nbody(init) if iter == 2 # Reduce masses to trigger hyperbolic routine: m[1:n] *= 1e-3 hbig = big(h) end # Tilt the orbits a bit: x0[2,1] = 5e-1*sqrt(x0[1,1]^2+x0[3,1]^2) x0[2,2] = -5e-1*sqrt(x0[1,2]^2+x0[3,2]^2) v0[2,1] = 5e-1*sqrt(v0[1,1]^2+v0[3,1]^2) v0[2,2] = -5e-1*sqrt(v0[1,2]^2+v0[3,2]^2) jac_ij = zeros(Float64,14,14) dqdt_ij = zeros(Float64,14) dqdt_num = zeros(BigFloat,14) #println("Initial values: ",x0,v0) #println("masses: ",m) i=1 ; j=2 x = copy(x0) ; v=copy(v0) xerror = zeros(NDIM,n); verror = zeros(NDIM,n) # Predict values of s: kepler_driftij_gamma!(m,x,v,xerror,verror,i,j,h,jac_ij,dqdt_ij,drift_first) x0 = copy(x) ; v0 = copy(v) xerror = zeros(NDIM,n); verror = zeros(NDIM,n) xbig = big.(x) ; vbig=big.(v); mbig = big.(m) xerr_big = zeros(BigFloat,NDIM,n); verr_big = zeros(BigFloat,NDIM,n) kepler_driftij_gamma!(m,x,v,xerror,verror,i,j,h,jac_ij,dqdt_ij,drift_first) # Now compute Jacobian with BigFloat precision: jac_ij_big = zeros(BigFloat,14,14) dqdt_ij_big = zeros(BigFloat,14) KEPLER_TOL = sqrt(eps(big(1.0))) kepler_driftij_gamma!(mbig,xbig,vbig,xerr_big,verr_big,i,j,hbig,jac_ij_big,dqdt_ij_big,drift_first) #println("jac_ij: ",convert(Array{Float64,2},jac_ij_big)) #println("jac_ij - jac_ij_big: ",convert(Array{Float64,2},jac_ij_big)-jac_ij) #println("max(jac_ij - jac_ij_big): ",maxabs(convert(Array{Float64,2},jac_ij_big)-jac_ij)) # Now, compute the derivatives numerically: jac_ij_num = zeros(BigFloat,14,14) xsave = big.(x) vsave = big.(v) msave = big.(m) # Compute the time derivatives: # Initial positions, velocities & masses: xm = big.(x0) vm = big.(v0) mm = big.(msave) dq = dlnq * hbig hbig -= dq fill!(xerr_big,0.0) ; fill!(verr_big,0.0) kepler_driftij_gamma!(mm,xm,vm,xerr_big,verr_big,i,j,hbig,drift_first) xp = big.(x0) vp = big.(v0) hbig += 2dq fill!(xerr_big,0.0) ; fill!(verr_big,0.0) kepler_driftij_gamma!(mm,xp,vp,xerr_big,verr_big,i,j,hbig,drift_first) # Now x & v are final positions & velocities after time step for k=1:3 dqdt_num[ k] = .5*(xp[k,i]-xm[k,i])/dq dqdt_num[ 3+k] = .5*(vp[k,i]-vm[k,i])/dq dqdt_num[ 7+k] = .5*(xp[k,j]-xm[k,j])/dq dqdt_num[10+k] = .5*(vp[k,j]-vm[k,j])/dq end hbig = big(h) # Compute position, velocity & mass derivatives: for jj=1:3 # Initial positions, velocities & masses: xm = big.(x0) vm = big.(v0) mm = big.(msave) dq = dlnq * xm[jj,i] if xm[jj,i] != 0.0 xm[jj,i] -= dq else dq = dlnq xm[jj,i] = -dq end fill!(xerr_big,0.0) ; fill!(verr_big,0.0) kepler_driftij_gamma!(mm,xm,vm,xerr_big,verr_big,i,j,hbig,drift_first) xp = big.(x0) vp = big.(v0) if xm[jj,i] != 0.0 xp[jj,i] += dq else dq = dlnq xp[jj,i] = dq end fill!(xerr_big,0.0) ; fill!(verr_big,0.0) kepler_driftij_gamma!(mm,xp,vp,xerr_big,verr_big,i,j,hbig,drift_first) # Now x & v are final positions & velocities after time step for k=1:3 jac_ij_num[ k, jj] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k, jj] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k, jj] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k, jj] = .5*(vp[k,j]-vm[k,j])/dq end xm = big.(x0) vm = big.(v0) mm = big.(msave) dq = dlnq * vm[jj,i] if vm[jj,i] != 0.0 vm[jj,i] -= dq else dq = dlnq vm[jj,i] = -dq end fill!(xerr_big,0.0) ; fill!(verr_big,0.0) kepler_driftij_gamma!(mm,xm,vm,xerr_big,verr_big,i,j,hbig,drift_first) xp = big.(x0) vp = big.(v0) mm = big.(msave) if vp[jj,i] != 0.0 vp[jj,i] += dq else dq = dlnq vp[jj,i] = dq end fill!(xerr_big,0.0) ; fill!(verr_big,0.0) kepler_driftij_gamma!(mm,xp,vp,xerr_big,verr_big,i,j,hbig,drift_first) for k=1:3 jac_ij_num[ k,3+jj] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k,3+jj] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k,3+jj] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k,3+jj] = .5*(vp[k,j]-vm[k,j])/dq end end # Now vary mass of inner planet: xm= big.(x0) vm= big.(v0) mm= big.(msave) dq = mm[i]*dlnq mm[i] -= dq fill!(xerr_big,0.0) ; fill!(verr_big,0.0) kepler_driftij_gamma!(mm,xm,vm,xerr_big,verr_big,i,j,hbig,drift_first) xp= big.(x0) vp= big.(v0) mp= big.(msave) dq = mp[i]*dlnq mp[i] += dq fill!(xerr_big,0.0) ; fill!(verr_big,0.0) kepler_driftij_gamma!(mp,xp,vp,xerr_big,verr_big,i,j,hbig,drift_first) for k=1:3 jac_ij_num[ k,7] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k,7] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k,7] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k,7] = .5*(vp[k,j]-vm[k,j])/dq end # The mass doesn't change: jac_ij_num[7,7] = 1.0 for jj=1:3 # Now vary parameters of outer planet: xm = big.(x0) vm = big.(v0) mm = big.(msave) dq = dlnq * xm[jj,j] if xm[jj,j] != 0.0 xm[jj,j] -= dq else dq = dlnq xm[jj,j] = -dq end fill!(xerr_big,0.0) ; fill!(verr_big,0.0) kepler_driftij_gamma!(mm,xm,vm,xerr_big,verr_big,i,j,hbig,drift_first) xp = big.(x0) vp = big.(v0) if xp[jj,j] != 0.0 xp[jj,j] += dq else dq = dlnq xp[jj,j] = dq end fill!(xerr_big,0.0) ; fill!(verr_big,0.0) kepler_driftij_gamma!(mm,xp,vp,xerr_big,verr_big,i,j,hbig,drift_first) for k=1:3 jac_ij_num[ k,7+jj] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k,7+jj] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k,7+jj] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k,7+jj] = .5*(vp[k,j]-vm[k,j])/dq end xm= big.(x0) vm= big.(v0) mm = big.(msave) dq = dlnq * vm[jj,j] if vm[jj,j] != 0.0 vm[jj,j] -= dq else dq = dlnq vm[jj,j] = -dq end fill!(xerr_big,0.0) ; fill!(verr_big,0.0) kepler_driftij_gamma!(mm,xm,vm,xerr_big,verr_big,i,j,hbig,drift_first) xp= big.(x0) vp= big.(v0) if vp[jj,j] != 0.0 vp[jj,j] += dq else dq = dlnq vp[jj,j] = dq end fill!(xerr_big,0.0) ; fill!(verr_big,0.0) kepler_driftij_gamma!(mm,xp,vp,xerr_big,verr_big,i,j,hbig,drift_first) for k=1:3 jac_ij_num[ k,10+jj] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k,10+jj] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k,10+jj] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k,10+jj] = .5*(vp[k,j]-vm[k,j])/dq end end # Now vary mass of outer planet: xm = big.(x0) vm = big.(v0) mm = big.(msave) dq = mm[j]*dlnq mm[j] -= dq fill!(xerr_big,0.0) ; fill!(verr_big,0.0) kepler_driftij_gamma!(mm,xm,vm,xerr_big,verr_big,i,j,hbig,drift_first) xp = big.(x0) vp = big.(v0) mp = big.(msave) dq = mp[j]*dlnq mp[j] += dq fill!(xerr_big,0.0) ; fill!(verr_big,0.0) kepler_driftij_gamma!(mp,xp,vp,xerr_big,verr_big,i,j,hbig,drift_first) for k=1:3 jac_ij_num[ k,14] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k,14] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k,14] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k,14] = .5*(vp[k,j]-vm[k,j])/dq end # The mass doesn't change: jac_ij_num[14,14] = 1.0 #println(jac_ij) #println(jac_ij_num) #println(jac_ij./jac_ij_num) emax = 0.0; imax = 0; jmax = 0 emax_big = big(0.0); imax_big = 0; jmax_big = 0 for i=1:14 jac_ij[i,i] += 1 jac_ij_big[i,i] += 1 end for i=1:14, j=1:14 if jac_ij[i,j] != 0.0 diff = abs(convert(Float64,jac_ij_num[i,j])/jac_ij[i,j]-1.0) if diff > emax emax = diff; imax = i; jmax = j end diff_big = abs(convert(Float64,jac_ij_num[i,j])/jac_ij_big[i,j]-1.0) if diff_big > emax_big emax_big = diff; imax_big = i; jmax_big = j end end end # Dont need for CI #=println("Maximum fractional error: ",emax," ",imax," ",jmax) for i=1:14 println("jac_ij: i ",i," ",jac_ij[i,:]) println("jac_ij_num: i ",i," ",convert(Array{Float64,1},jac_ij_num[i,:])) println("difference: i ",i," ",jac_ij[i,:].-convert(Array{Float64,1},jac_ij_num[i,:])) if i != 7 && i != 14 println("frac diff : i ",i," ",jac_ij[i,:]./convert(Array{Float64,1},jac_ij_num[i,:]).-1.0) end end println("Maximum fractional error big: ",emax_big," ",imax_big," ",jmax_big) #println(jac_ij) #println(convert(Array{Float64,2},jac_ij_num)) println("Maximum jac_ij error: ",maxabs(convert(Array{Float64,2},asinh.(jac_ij_num))-asinh.(jac_ij))) println("Maximum jac_ij_big-jac_ij_num: ",maxabs(convert(Array{Float64,2},asinh.(jac_ij_num)-asinh.(jac_ij_big)))) println("Max dqdt error: ",maxabs(dqdt_ij-convert(Array{Float64,1},dqdt_num))) =# @test isapprox(jac_ij_num,jac_ij;norm=maxabs) @test isapprox(dqdt_ij,convert(Array{Float64,1},dqdt_num);norm=maxabs) end end end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
7114
# This code tests two functions: keplerij! and kep_elliptic! #using PyPlot #include("../src/kepler_solver_derivative.jl") #include("../src/ttv.jl") @testset "keplerij" begin # Next, try computing two-body Keplerian Jacobian: n = 3 t0 = 7257.93115525 h = 0.05 hbig = big(h) tmax = 600.0 #dlnq = 1e-8 dlnq = 1e-20 H = [3,1,1] elements = readdlm("elements.txt",',') #elements[2,1] = 0.75 elements[2,1] = 1.0 elements[3,1] = 1.0 m =zeros(n) x0=zeros(NDIM,n) v0=zeros(NDIM,n) for k=1:n m[k] = elements[k,1] end for iter = 1:2 init = ElementsIC(elements,H,t0) x0,v0,_ = init_nbody(init) if iter == 2 # Reduce masses to trigger hyperbolic routine: m[1:n] *= 1e-1 h = 0.05 hbig = big(h) end # Tilt the orbits a bit: x0[2,1] = 5e-1*sqrt(x0[1,1]^2+x0[3,1]^2) x0[2,2] = -5e-1*sqrt(x0[1,2]^2+x0[3,2]^2) v0[2,1] = 5e-1*sqrt(v0[1,1]^2+v0[3,1]^2) v0[2,2] = -5e-1*sqrt(v0[1,2]^2+v0[3,2]^2) jac_ij = zeros(Float64,14,14) dqdt_ij = zeros(Float64,14) dqdt_num = zeros(BigFloat,14) i=1 ; j=2 x = copy(x0) ; v=copy(v0) # Predict values of s: #println("Before first step: ",x," ",v) xerror = zeros(NDIM,n); verror = zeros(NDIM,n) d = Derivatives(Float64) keplerij!(m,x,v,xerror,verror,i,j,h,jac_ij,dqdt_ij,d) #println("After first step: ",x," ",v) x0 = copy(x) ; v0 = copy(v) xbig = big.(x) ; vbig=big.(v); mbig = big.(m) xerr_big = zeros(BigFloat,NDIM,n) ; verr_big= zeros(BigFloat,NDIM,n) xerror = zeros(NDIM,n); verror = zeros(NDIM,n) keplerij!(m,x,v,xerror,verror,i,j,h,jac_ij,dqdt_ij,d) # Now compute Jacobian with BigFloat precision: jac_ij_big = zeros(BigFloat,14,14) dqdt_ij_big = zeros(BigFloat,14) KEPLER_TOL = sqrt(eps(big(1.0))) dBig = Derivatives(BigFloat) keplerij!(mbig,xbig,vbig,xerr_big,verr_big,i,j,hbig,jac_ij_big,dqdt_ij_big,dBig) #println("jac_ij: ",convert(Array{Float64,2},jac_ij_big)) #println("jac_ij - jac_ij_big: ",convert(Array{Float64,2},jac_ij_big)-jac_ij) println("max(jac_ij - jac_ij_big): ",maxabs(convert(Array{Float64,2},jac_ij_big)-jac_ij)) # xtest = copy(x0) ; vtest=copy(v0) # keplerij!(m,xtest,vtest,i,j,h,jac_ij) # println("Test of jacobian vs. none: ",maximum(abs(x-xtest)),maximum(abs(v-vtest))) # Now, compute the derivatives numerically: jac_ij_num = zeros(BigFloat,14,14) xsave = big.(x) vsave = big.(v) msave = big.(m) # Compute the time derivatives: # Initial positions, velocities & masses: xm = big.(x0) vm = big.(v0) mm = big.(msave) dq = dlnq * hbig hbig -= dq keplerij!(mm,xm,vm,i,j,hbig) xp = big.(x0) vp = big.(v0) hbig += 2dq keplerij!(mm,xp,vp,i,j,hbig) # Now x & v are final positions & velocities after time step for k=1:3 dqdt_num[ k] = .5*(xp[k,i]-xm[k,i])/dq dqdt_num[ 3+k] = .5*(vp[k,i]-vm[k,i])/dq dqdt_num[ 7+k] = .5*(xp[k,j]-xm[k,j])/dq dqdt_num[10+k] = .5*(vp[k,j]-vm[k,j])/dq end hbig = big(h) for jj=1:3 # Initial positions, velocities & masses: xm = big.(x0) vm = big.(v0) mm = big.(msave) dq = dlnq * xm[jj,i] if xm[jj,i] != 0.0 xm[jj,i] -= dq else dq = dlnq xm[jj,i] = -dq end keplerij!(mm,xm,vm,i,j,hbig) xp = big.(x0) vp = big.(v0) if xm[jj,i] != 0.0 xp[jj,i] += dq else dq = dlnq xp[jj,i] = dq end keplerij!(mm,xp,vp,i,j,hbig) # now x & v are final positions & velocities after time step for k=1:3 jac_ij_num[ k, jj] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k, jj] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k, jj] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k, jj] = .5*(vp[k,j]-vm[k,j])/dq end xm = big.(x0) vm = big.(v0) mm = big.(msave) dq = dlnq * vm[jj,i] if vm[jj,i] != 0.0 vm[jj,i] -= dq else dq = dlnq vm[jj,i] = -dq end keplerij!(mm,xm,vm,i,j,hbig) xp = big.(x0) vp = big.(v0) mm = big.(msave) if vp[jj,i] != 0.0 vp[jj,i] += dq else dq = dlnq vp[jj,i] = dq end keplerij!(mm,xp,vp,i,j,hbig) for k=1:3 jac_ij_num[ k,3+jj] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k,3+jj] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k,3+jj] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k,3+jj] = .5*(vp[k,j]-vm[k,j])/dq end end # Now vary mass of inner planet: xm= big.(x0) vm= big.(v0) mm= big.(msave) dq = mm[i]*dlnq mm[i] -= dq keplerij!(mm,xm,vm,i,j,hbig) xp= big.(x0) vp= big.(v0) mp= big.(msave) dq = mp[i]*dlnq mp[i] += dq keplerij!(mp,xp,vp,i,j,hbig) for k=1:3 jac_ij_num[ k,7] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k,7] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k,7] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k,7] = .5*(vp[k,j]-vm[k,j])/dq end # The mass doesn't change: jac_ij_num[7,7] = 1.0 for jj=1:3 # Now vary parameters of outer planet: xm = big.(x0) vm = big.(v0) mm = big.(msave) dq = dlnq * xm[jj,j] if xm[jj,j] != 0.0 xm[jj,j] -= dq else dq = dlnq xm[jj,j] = -dq end keplerij!(mm,xm,vm,i,j,hbig) xp = big.(x0) vp = big.(v0) if xp[jj,j] != 0.0 xp[jj,j] += dq else dq = dlnq xp[jj,j] = dq end keplerij!(mm,xp,vp,i,j,hbig) for k=1:3 jac_ij_num[ k,7+jj] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k,7+jj] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k,7+jj] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k,7+jj] = .5*(vp[k,j]-vm[k,j])/dq end xm= big.(x0) vm= big.(v0) mm = big.(msave) dq = dlnq * vm[jj,j] if vm[jj,j] != 0.0 vm[jj,j] -= dq else dq = dlnq vm[jj,j] = -dq end keplerij!(mm,xm,vm,i,j,hbig) xp= big.(x0) vp= big.(v0) if vp[jj,j] != 0.0 vp[jj,j] += dq else dq = dlnq vp[jj,j] = dq end keplerij!(mm,xp,vp,i,j,hbig) for k=1:3 jac_ij_num[ k,10+jj] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k,10+jj] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k,10+jj] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k,10+jj] = .5*(vp[k,j]-vm[k,j])/dq end end # Now vary mass of outer planet: xm = big.(x0) vm = big.(v0) mm = big.(msave) dq = mm[j]*dlnq mm[j] -= dq keplerij!(mm,xm,vm,i,j,hbig) xp = big.(x0) vp = big.(v0) mp = big.(msave) dq = mp[j]*dlnq mp[j] += dq keplerij!(mp,xp,vp,i,j,hbig) for k=1:3 jac_ij_num[ k,14] = .5*(xp[k,i]-xm[k,i])/dq jac_ij_num[ 3+k,14] = .5*(vp[k,i]-vm[k,i])/dq jac_ij_num[ 7+k,14] = .5*(xp[k,j]-xm[k,j])/dq jac_ij_num[10+k,14] = .5*(vp[k,j]-vm[k,j])/dq end # The mass doesn't change: jac_ij_num[14,14] = 1.0 #println(jac_ij) #println(jac_ij_num) #println(jac_ij./jac_ij_num) emax = 0.0; imax = 0; jmax = 0 for i=1:14, j=1:14 if jac_ij[i,j] != 0.0 diff = abs(convert(Float64,jac_ij_num[i,j])/jac_ij[i,j]-1.0) if diff > emax emax = diff; imax = i; jmax = j end end end println("Maximum fractional error: ",emax," ",imax," ",jmax) #println(jac_ij) #println(convert(Array{Float64,2},jac_ij_num)) println("Maximum jac_ij error: ",maxabs(convert(Array{Float64,2},jac_ij_num)-jac_ij)) println("Maximum jac_ij_big-jac_ij_num: ",maxabs(convert(Array{Float64,2},jac_ij_num-jac_ij_big))) println("Max dqdt error: ",maxabs(dqdt_ij-convert(Array{Float64,1},dqdt_num))) @test isapprox(jac_ij_num,jac_ij;norm=maxabs) @test isapprox(dqdt_ij,convert(Array{Float64,1},dqdt_num);norm=maxabs) #println("dqdt: ",dqdt_ij," ",dqdt_num," Max error: ",maximum(dqdt_ij-dqdt_num)) end end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
4438
# Tests the routine phic jacobian. This routine # computes the force gradient correction after Dehnen & Hernandez (2017). # Next, try computing three-body Keplerian Jacobian: #@testset "phic" begin n = 3 t0 = 7257.93115525 h = 0.05 tmax = 600.0 dlnq = big(1e-15) elements = readdlm("elements.txt",',') elements[2,1] = 1.0 elements[3,1] = 1.0 m =zeros(n) x0=zeros(3,n) v0=zeros(3,n) # Define which pairs will have impulse rather than -drift+Kepler: pair = ones(Bool,n,n) # We want Keplerian between star & planets, and impulses between # planets. Impulse is indicated with 'true', -drift+Kepler with 'false': for i=2:n pair[1,i] = false # We don't need to define this, but let's anyways: pair[i,1] = false end println("pair: ",pair) jac_step = zeros(7*n,7*n) for k=1:n m[k] = elements[k,1] end m0 = copy(m) x0,v0 = init_nbody(elements,t0,n) # Tilt the orbits a bit: x0[2,1] = 5e-1*sqrt(x0[1,1]^2+x0[3,1]^2) x0[2,2] = -5e-1*sqrt(x0[1,2]^2+x0[3,2]^2) x0[2,3] = -5e-1*sqrt(x0[1,2]^2+x0[3,2]^2) v0[2,1] = 5e-1*sqrt(v0[1,1]^2+v0[3,1]^2) v0[2,2] = -5e-1*sqrt(v0[1,2]^2+v0[3,2]^2) v0[2,3] = -5e-1*sqrt(v0[1,2]^2+v0[3,2]^2) # Take a step: dh17!(x0,v0,h,m,n,pair) # Now, copy these to compute Jacobian (so that I don't step # x0 & v0 forward in time): x = copy(x0); v = copy(v0); m = copy(m0) # Compute jacobian exactly: phic!(x,v,h,m,n,jac_step,pair) # Now compute numerical derivatives, using BigFloat to avoid # round-off errors: jac_step_num = zeros(BigFloat,7*n,7*n) # Save these so that I can compute derivatives numerically: xsave = big.(x0) vsave = big.(v0) msave = big.(m0) hbig = big(h) # Carry out step using BigFloat for extra precision: phic!(xsave,vsave,hbig,msave,n,pair) xbig = big.(x0) vbig = big.(v0) mbig = big.(m0) # Vary time: phic!(xbig,vbig,hbig,mbig,n,pair) # Initial positions, velocities & masses: xbig .= big.(x0) vbig .= big.(v0) mbig .= big.(m0) hbig = big(h) dq = dlnq * hbig hbig += dq phic!(xbig,vbig,hbig,mbig,n,pair) # Now x & v are final positions & velocities after time step hbig = big(h) # Vary the initial parameters of planet j: for j=1:n # Vary the initial phase-space elements: for jj=1:3 # Initial positions, velocities & masses: xbig .= big.(x0) vbig .= big.(v0) mbig .= big.(m0) dq = dlnq * xbig[jj,j] if xbig[jj,j] != 0.0 xbig[jj,j] += dq else dq = dlnq xbig[jj,j] = dq end phic!(xbig,vbig,hbig,mbig,n,pair) # Now x & v are final positions & velocities after time step for i=1:n for k=1:3 jac_step_num[(i-1)*7+ k,(j-1)*7+jj] = (xbig[k,i]-xsave[k,i])/dq jac_step_num[(i-1)*7+3+k,(j-1)*7+jj] = (vbig[k,i]-vsave[k,i])/dq end end xbig .= big.(x0) vbig .= big.(v0) mbig .= big.(m0) dq = dlnq * vbig[jj,j] if vbig[jj,j] != 0.0 vbig[jj,j] += dq else dq = dlnq vbig[jj,j] = dq end phic!(xbig,vbig,hbig,mbig,n,pair) for i=1:n for k=1:3 jac_step_num[(i-1)*7+ k,(j-1)*7+3+jj] = (xbig[k,i]-xsave[k,i])/dq jac_step_num[(i-1)*7+3+k,(j-1)*7+3+jj] = (vbig[k,i]-vsave[k,i])/dq end end end # Now vary mass of planet: xbig .= big.(x0) vbig .= big.(v0) mbig .= big.(m0) dq = mbig[j]*dlnq mbig[j] += dq phic!(xbig,vbig,hbig,mbig,n,pair) for i=1:n for k=1:3 jac_step_num[(i-1)*7+ k,j*7] = (xbig[k,i]-xsave[k,i])/dq jac_step_num[(i-1)*7+3+k,j*7] = (vbig[k,i]-vsave[k,i])/dq end # Mass unchanged -> identity jac_step_num[7*i,7*i] = big(1.0) end end # Now, compare the results: #println(jac_step) #println(convert(Array{Float64,2},jac_step_num)) #for j=1:3 # for i=1:7 # for k=1:3 # println(jac_step[(j-1)*7+i,(k-1)*7+1:7*k]," ",jac_step_num[(j-1)*7+i,(k-1)*7+1:7*k]," ",jac_step_num[(j-1)*7+i,(k-1)*7+1:7*k]./jac_step[(j-1)*7+i,(k-1)*7+1:7*k]-1.) # end # end #end jacmax = 0.0 for i=1:7, j=1:3, k=1:7, l=1:3 if jac_step[(j-1)*7+i,(l-1)*7+k] != 0 # Compute the fractional error and absolute error, and take the minimum of the two: diff = minimum([abs(float(jac_step_num[(j-1)*7+i,(l-1)*7+k])/jac_step[(j-1)*7+i,(l-1)*7+k]-1.0);float(jac_step_num[(j-1)*7+i,(l-1)*7+k])-jac_step[(j-1)*7+i,(l-1)*7+k]]) if diff > jacmax jacmax = diff end end end println(jac_step) println(convert(Array{Float64,2},jac_step_num)) println("Maximum jac_step phic error: ",convert(Float64,jacmax)) @test isapprox(jac_step,jac_step_num;norm=maxabs) #end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
1001
using PyPlot # Tests different ways of keeping track of time. # Looks like multiplication is just as accurate as # compensated summation, yet is much faster. Not # that this is a limiting factor. function test_time(nt) #nt = 10000000 T = Float64 s2 = zero(T) h = 0.04 hbig = big(h) t = zeros(T,nt) tb = zeros(BigFloat,nt) tc = zeros(T,nt) tm = zeros(T,nt) for i=2:nt tc[i],s2 = comp_sum(tc[i-1],s2,h) t[i] = t[i-1] + h tm[i] = (i-1)*h tb[i] = tb[i-1] + hbig end # Add compensated error at the end: println("Compensated: ",tc[nt]," big: ",tb[nt]," diff: ",tc[nt]-tb[nt]," diff+err: ",big(tc[nt])+big(s2)-tb[nt]) #tref = convert(Array{Float64,1},tb) #semilogy(abs.(t-tref),label="Added") println("Maximum difference added: ",maximum(abs.(t-tref))) #plot(abs.(tc-tref),":",label="Compensated") println("Maximum difference compensated: ",maximum(abs.(tc-tref))) #plot(abs.(tm-tref),"--",label="Multiplied") println("Maximum difference multiplied: ",maximum(abs.(tm-tref))) #legend() return end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
2157
include("../src/ttv.jl") include("/Users/ericagol/Computer/Julia/regress.jl") n = 8 t0 = 7257.93115525 #h = 0.12 #h = 0.075 h = 0.05 tmax = 600.0 # Read in initial conditions: elements = readdlm("elements.txt",',') # Make an array, tt, to hold transit times: # First, though, make sure it is large enough: ntt = zeros(Int64,n) for i=2:n ntt[i] = ceil(Int64,tmax/elements[i,2])+2 end println("ntt: ",ntt) tt1 = zeros(n,maximum(ntt)) tt2 = zeros(n,maximum(ntt)) # Save a counter for the actual number of transit times of each planet: count1 = zeros(Int64,n) # Call the ttv function: rstar = 1e12 @time ttv_elements!(n,t0,h,tmax,elements,tt1,count1,0.0,0,0,rstar) @time ttv_elements!(n,t0,h,tmax,elements,tt1,count1,0.0,0,0,rstar) # Write out every 10th step to a file: @time ttv_elements!(n,t0,h,tmax,elements,tt1,count1,0.0,0,0,rstar,"test_out.txt",10) # Now call with half the timestep: count2 = zeros(Int64,n) ttv_elements!(n,t0,h/10.,tmax,elements,tt2,count2,0.0,0,0,rstar) println("Timing error: ",maximum(abs.(tt1-tt2))*24.*3600.," sec") # Check type stabilty: dtdq0 = zeros(n,maximum(ntt),7,n) dtdelements0 = @code_warntype ttv_elements!(n,t0,h,tmax,elements,tt1,count1,dtdq0,rstar) using PyPlot # Make a plot of some TTVs: fig,axes = subplots(4,2) for i=2:8 ax = axes[i-1] fn = zeros(Float64,2,count1[i]) sig = ones(count1[i]) tti1 = tt1[i,1:count1[i]] tti2 = tt2[i,1:count2[i]] for j=1:count1[i] fn[1,j] = 1.0 fn[2,j] = round(Int64,(tti1[j]-elements[i,3])/elements[i,2]) end coeff,cov = regress(fn,tti1,sig) tt_ref1 = coeff[1]+coeff[2]*fn[2,:] ttv1 = (tti1-tt_ref1)*24.*60. # coeff,cov = regress(fn,tti2,sig) tt_ref2 = coeff[1]+coeff[2]*fn[2,:] ttv2 = (tti2-tt_ref2)*24.*60. ax[:plot](tti1,ttv1) ax[:plot](tti2,ttv2) # ax[:plot](tti2,((ttv1-ttv2)-mean(ttv1-ttv2))) ax[:plot](tti2,ttv1-ttv2) println(i," ",coeff," ",elements[i,2:3]," ",coeff[1]-elements[i,3]," ",coeff[2]-elements[i,2]) # println(i," ",maximum(ttv1-ttv2-mean(ttv1-ttv2))*60.," sec ", minimum(ttv1-ttv2-mean(ttv1-ttv2))*60.," sec" ) println(i," ",maximum(ttv1-ttv2)*60.," sec ", minimum(ttv1-ttv2)*60.," sec") end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
7285
#include("../src/ttv.jl") #include("/Users/ericagol/Computer/Julia/regress.jl") @testset "ttv_cartesian" begin # This routine takes derivative of transit times with respect # to the initial cartesian coordinates of bodies. [x] #n = 8 n = 3 H = [3,1,1] t0 = 7257.93115525-7300.0 #h = 0.12 h = 0.04 #h = 0.02 #tmax = 600.0 #tmax = 1000.0 #tmax = 100.0 tmax = 10.0 # Read in initial conditions: elements = readdlm("elements.txt",',') elements[:,3] .-= 7300.0 # Make an array, tt, to hold transit times: # First, though, make sure it is large enough: ntt = zeros(Int64,n) for i=2:n ntt[i] = ceil(Int64,tmax/elements[i,2])+3 end #println("ntt: ",ntt) tt = zeros(n,maximum(ntt)) tt1 = zeros(n,maximum(ntt)) tt2 = zeros(n,maximum(ntt)) tt3 = zeros(n,maximum(ntt)) # Save a counter for the actual number of transit times of each planet: count = zeros(Int64,n) count1 = zeros(Int64,n) # Call the ttv function: rstar = 1e12 #dq = ttv_elements!(H,t0,h,tmax,elements,tt1,count1,0.0,0,0,rstar) # Now call with half the timestep: count2 = zeros(Int64,n) count3 = zeros(Int64,n) dq = ttv_elements!(H,t0,h/2,tmax,elements,tt2,count2,0.0,0,0,rstar) # Now, compute derivatives (with respect to initial cartesian positions/masses): dtdq0 = zeros(n,maximum(ntt),7,n) dtdelements = ttv_elements!(H,t0,h,tmax,elements,tt,count,dtdq0,rstar) #read(STDIN,Char) # Check that this is working properly: for i=1:n for j=1:count2[i] # println(i," ",j," ",tt[i,j]," ",tt2[i,j]," ",tt[i,j]-tt2[i,j]," ",tt1[i,j]-tt2[i,j]) end end #read(STDIN,Char) # Compute derivatives numerically: # Compute the numerical derivative: dtdq0_num = zeros(BigFloat,n,maximum(ntt),7,n) itdq0 = zeros(Int64,n,maximum(ntt),7,n) dlnq = big(1e-15) hbig = big(h); t0big = big(t0); tmaxbig=big(tmax); tt2big = big.(tt2); tt3big = big.(tt3) for jq=1:n for iq=1:7 elements2 = big.(elements) dq_plus = ttv_elements!(H,t0big,hbig,tmaxbig,elements2,tt2big,count2,dlnq,iq,jq,big(rstar)) elements3 = big.(elements) dq_minus = ttv_elements!(H,t0big,hbig,tmaxbig,elements3,tt3big,count3,-dlnq,iq,jq,big(rstar)) for i=1:n for k=1:count2[i] # Compute double-sided derivative for more accuracy: dtdq0_num[i,k,iq,jq] = (tt2big[i,k]-tt3big[i,k])/(dq_plus-dq_minus) # println(i," ",k," ",iq," ",jq," ",tt2big[i,k]," ",tt3big[i,k]," ") end end end end nbad = 0 ntot = 0 diff_dtdq0 = zeros(n,maximum(ntt),7,n) mask = zeros(Bool, size(dtdq0)) for i=2:n, j=1:count[i], k=1:7, l=1:n if abs(dtdq0[i,j,k,l]-dtdq0_num[i,j,k,l]) > 0.1*abs(dtdq0[i,j,k,l]) && ~(abs(dtdq0[i,j,k,l]) == 0.0 && abs(dtdq0_num[i,j,k,l]) < 1e-3) # println(i," ",j," ",k," ",l," ",dtdq0[i,j,k,l]," ",dtdq0_num[i,j,k,l]," ",itdq0[i,j,k,l]) nbad +=1 end diff_dtdq0[i,j,k,l] = abs(dtdq0[i,j,k,l]-dtdq0_num[i,j,k,l]) if k != 2 && k != 5 mask[i,j,k,l] = true end ntot +=1 end tt_big = big.(tt); elementsbig = big.(elements); rstarbig = big(rstar) dqbig = ttv_elements!(H,t0big,hbig,tmaxbig,elementsbig,tt_big,count,big(0.0),0,0,rstarbig) # Now halve the time steps: tt_big_half = copy(tt_big) dqbig = ttv_elements!(H,t0big,hbig/2,tmaxbig,elementsbig,tt_big_half,count1,big(0.0),0,0,rstarbig) # Compute the derivatives in BigFloat precision to see whether finite difference # derivatives or Float64 derivatives are imprecise at the start: dtdq0_big = zeros(BigFloat,n,maximum(ntt),7,n) hbig = big(h); tt_big = big.(tt); elementsbig = big.(elements); rstarbig = big(rstar) dtdelements_big = ttv_elements!(H,t0big,hbig,tmaxbig,elementsbig,tt_big,count,dtdq0_big,rstarbig) #= using PyPlot clf() # Plot the difference in the TTVs: for i=2:3 # diff1 = abs.(tt1[i,2:count1[i]]./tt_big[i,2:count1[i]]-1.0); diff1 = convert(Array{Float64,1},abs.(tt1[i,2:count1[i]].-tt_big[i,2:count1[i]])/elements[i,2]); dtt=tt[i,2:count1[i]].-tt[i,1] loglog(dtt,diff1); # diff2 = abs.(tt2[i,2:count1[i]]./tt_big_half[i,2:count1[i]]-1.0); # diff2 = abs.(tt2[i,2:count1[i]].-tt_big_half[i,2:count1[i]])/elements[i,2]; # loglog(tt[i,2:count[i]]-tt[i,1],diff2); end loglog([1.0,1024.0],2e-15*[1,2^15],":") for i=2:3, k=1:7, l=1:3 if maximum(abs.(dtdelements_big[i,2:count[i],k,l])) > 0 diff1 = convert(Array{Float64,1},abs.(dtdelements_big[i,2:count[i],k,l]./dtdelements[i,2:count[i],k,l].-1)); diff3 = convert(Array{Float64,1},abs.(asinh.(dtdelements_big[i,2:count[i],k,l])-asinh.(dtdelements[i,2:count[i],k,l]))); # loglog(tt[i,2:count[i]]-tt[i,1],diff1); dtt = tt[i,2:count[i]].-tt[i,1] loglog(dtt,diff3); println(i," ",k," ",l," frac error: ",convert(Float64,maximum(diff1))," asinh error: ",convert(Float64,maximum(diff3))); #read(STDIN,Char); end if maximum(abs.(dtdq0_big[i,2:count[i],k,l])) > 0 diff1 = convert(Array{Float64,1},abs.(dtdq0[i,2:count[i],k,l]./dtdq0_big[i,2:count[i],k,l].-1.0)); # diff2 = abs.(asinh.(dtdq0_big[i,2:count[i],k,l]).-asinh.(dtdq0_num[i,2:count[i],k,l])); diff3 = convert(Array{Float64,1},abs.(asinh.(dtdq0_big[i,2:count[i],k,l]).-asinh.(dtdq0[i,2:count[i],k,l]))); # loglog(tt[i,2:count[i]].-tt[i,1],diff1); dtt = tt[i,2:count[i]].-tt[i,1] loglog(dtt,diff3,linestyle=":"); # loglog(tt[i,2:count[i]].-tt[i,1],diff2,"."); println(i," ",k," ",l," frac error: ",convert(Float64,maximum(diff1))," asinh error: ",convert(Float64,maximum(diff3))); #read(STDIN,Char); end end mederror = zeros(size(tt)) for i=2:3 for j=1:count1[i] data_list = Float64[] for k=1:7, l=1:3 if abs(dtdq0_num[i,j,k,l]) > 0 push!(data_list,abs(dtdq0[i,j,k,l]/dtdq0_num[i,j,k,l]-1.0)) end end mederror[i,j] = median(data_list) end end # Plot a line that scales as time^{3/2}: loglog([1.0,1024.0],1e-12*[1,2^15],":",linewidth=3) =# #println("Max diff log(dtdq0): ",maximum(abs.(dtdq0_num[mask]./dtdq0[mask].-1.0))) #println("Max diff asinh(dtdq0): ",maximum(abs.(asinh.(dtdq0_num[mask]).-asinh.(dtdq0[mask])))) #unit = ones(dtdq0[mask]) #@test isapprox(dtdq0[mask]./convert(Array{Float64,4},dtdq0_num)[mask],unit;norm=maxabs) #@test isapprox(dtdq0[mask],convert(Array{Float64,4},dtdq0_num)[mask];norm=maxabs) @test isapprox(asinh.(dtdq0[mask]),asinh.(convert(Array{Float64,4},dtdq0_num)[mask]);norm=maxabs) #end # #nderiv = n^2*7*maximum(ntt) #loglog(abs.(reshape(dtdq0,nderiv)),abs.(reshape(convert(Array{Float64,4},dtdq0_num),nderiv)),".") #loglog(abs.(reshape(dtdq0,nderiv)),abs.(reshape(convert(Array{Float64,4},diff_dtdq0),nderiv)),".") ## Make a plot of some TTVs: # #fig,axes = subplots(4,2) # #for i=2:8 # ax = axes[i-1] # fn = zeros(Float64,2,count1[i]) # sig = ones(count1[i]) # tti1 = tt1[i,1:count1[i]] # tti2 = tt2[i,1:count2[i]] # for j=1:count1[i] # fn[1,j] = 1.0 # fn[2,j] = round(Int64,(tti1[j]-elements[i,3])/elements[i,2]) # end # coeff,cov = regress(fn,tti1,sig) # tt_ref1 = coeff[1]+coeff[2]*fn[2,:] # ttv1 = (tti1-tt_ref1)*24.*60. # coeff,cov = regress(fn,tti2,sig) # tt_ref2 = coeff[1]+coeff[2]*fn[2,:] # ttv2 = (tti2-tt_ref2)*24.*60. # ax[:plot](tti1,ttv1) ## ax[:plot](tti2,ttv2) # ax[:plot](tti2,((ttv1-ttv2)-mean(ttv1-ttv2))) # println(i," ",coeff," ",elements[i,2:3]," ",coeff[1]-elements[i,3]," ",coeff[2]-elements[i,2]) # println(i," ",maximum(ttv1-ttv2-mean(ttv1-ttv2))*60.," sec ", minimum(ttv1-ttv2-mean(ttv1-ttv2))*60.," sec" ) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
4597
#include("../src/ttv.jl") #include("/Users/ericagol/Computer/Julia/regress.jl") #@testset "ttv_cartesian" begin # This routine takes derivative of transit times with respect # to the initial cartesian coordinates of bodies. [x] #n = 8 n = 3 t0 = 7257.93115525-7300.0 #h = 0.12 h = 0.04 #h = 0.02 #tmax = 600.0 tmax = 40000.0 #tmax = 100.0 #tmax = 10.0 # Read in initial conditions: elements = readdlm("elements.txt",',') # Make an array, tt, to hold transit times: # First, though, make sure it is large enough: ntt = zeros(Int64,n) for i=2:n ntt[i] = ceil(Int64,tmax/elements[i,2])+3 end println("ntt: ",ntt) tt = zeros(n,maximum(ntt)) tt2 = zeros(n,maximum(ntt)) # Save a counter for the actual number of transit times of each planet: count = zeros(Int64,n) # Call the ttv function: rstar = 1e12 # Now, compute derivatives (with respect to initial cartesian positions/masses): dtdq0 = zeros(n,maximum(ntt),7,n) @time dtdelements = ttv_elements!(n,t0,h,tmax,elements,tt,count,dtdq0,rstar) # Now with half the timestep: #dtdq2 = zeros(n,maximum(ntt),7,n) #@time dtdelements = ttv_elements!(n,t0,h/2,tmax,elements,tt2,count,dtdq2,rstar) tt_big = big.(tt); elementsbig = big.(elements); rstarbig = big(rstar) tmaxbig = big(tmax); t0big = big(t0); hbig = big(h) # Compute the derivatives in BigFloat precision to see whether finite difference # derivatives or Float64 derivatives are imprecise at the start: dtdq0_big = zeros(BigFloat,n,maximum(ntt),7,n) hbig = big(h); tt_big = big.(tt); elementsbig = big.(elements); rstarbig = big(rstar) @time dtdelements_big = ttv_elements!(n,t0big,hbig,tmaxbig,elementsbig,tt_big,count,dtdq0_big,rstarbig) # Now with half the timestep: dtdq2_big = zeros(BigFloat,n,maximum(ntt),7,n) tt2_big = big.(tt2) #@time dtdelements_big = ttv_elements!(n,t0big,hbig/2,tmaxbig,elementsbig,tt2_big,count,dtdq2_big,rstarbig) using PyPlot clf() # Plot the difference in the TTVs: for i=2:3 diff1 = abs.(tt[i,2:count[i]].-tt_big[i,2:count[i]])/h; loglog(tt[i,2:count[i]]-tt[i,1],diff1); # diff2 = abs.(tt2[i,2:count[i]].-tt2_big[i,2:count[i]])/elements[i,2]; # loglog(tt[i,2:count[i]]-tt[i,1],diff2); end xlabel("Time since start") ylabel(L"(time_{dbl}-time_{big})/timestep") #loglog([1.0,1024.0],2e-15*[1,2^15],":") loglog([1.0,40000.0],0.5e-16*([1.0,40000.0]/h).^1.5,":") clf() nmed = 10 for i=2:3, k=1:7, l=1:3 if maximum(abs.(dtdq0[i,2:count[i],k,l])) > 0 # diff1 = abs.(asinh.(dtdq0_big[i,2:count[i],k,l])-asinh.(dtdq0[i,2:count[i],k,l])); # diff1 = abs.(dtdq0_big[i,2:count[i],k,l]-dtdq0[i,2:count[i],k,l])/maximum(dtdq0[i,2:count[i],k,l]); diff1 = abs.(dtdq0_big[i,2:count[i],k,l]-dtdq0[i,2:count[i],k,l]) diff2 = copy(diff1); diff3 = abs.(dtdelements_big[i,2:count[i],k,l]-dtdelements[i,2:count[i],k,l]) # diff3 = abs.(asinh.(dtdelements_big[i,2:count[i],k,l])-asinh.(dtdelements[i,2:count[i],k,l])) diff4 = copy(diff3); ntt1 = size(diff1)[1]; for it=nmed:ntt1-nmed # Divide by a median smoothed dtdq0: diff2[it] = diff1[it]/maximum(abs.(dtdq0[i,it+1-nmed+1:it+1+nmed,k,l])) maxit = maximum(abs.(dtdelements[i,it+1-nmed+1:it+1+nmed,k,l])) if maxit > 0 diff4[it] = diff3[it]/maximum(abs.(dtdelements[i,it+1-nmed+1:it+1+nmed,k,l])) end end; diff2[1:nmed-1] .= diff2[nmed]; diff2[ntt1-nmed+1:ntt1] .= diff2[ntt1-nmed]; diff4[1:nmed-1] .= diff4[nmed]; diff4[ntt1-nmed+1:ntt1] .= diff4[ntt1-nmed]; # diff3 = abs.(asinh.(dtdq2_big[i,2:count[i],k,l])-asinh.(dtdq2[i,2:count[i],k,l])); loglog(tt[i,2:count[i]]-tt[i,1],diff2,linestyle=":"); loglog(tt[i,2:count[i]]-tt[i,1],diff4,linestyle="--"); # loglog(tt[i,2:count[i]]-tt[i,1],diff3); println("xvs: ",i," ",k," ",l," asinh error h : ",convert(Float64,maximum(diff2))); #read(STDIN,Char); println("els: ",i," ",k," ",l," asinh error h : ",convert(Float64,maximum(diff4))); #read(STDIN,Char); # println(i," ",k," ",l," asinh error h/2: ",convert(Float64,maximum(diff3))); #read(STDIN,Char); end end loglog([1.0,40000.0],0.5e-16*([1.0,40000.0]/h).^1.5) #axis([1,1024,1e-19,1e-9]) axis([1,31600,1e-19,2.5e-7]) xlabel("Time since start") #ylabel("median(asinh(dt/dq)_dbl - asinh(dt/dq)_big,20)") ylabel("(dt/dq_{dbl}-dt/dq_{big})/maximum(dt/dq_{dbl}[i-9:i+10])") # Plot a line that scales as time^{3/2}: # loglog([1.0,1024.0],1e-12*[1,2^15],":",linewidth=3) # loglog([1.0,1024.0],1e-12*[1,2^15],":",linewidth=3) println("Max diff asinh(dtdq0): ",maximum(abs.(asinh.(dtdq0_big)-asinh.(dtdq0)))) @test isapprox(asinh.(dtdq0),asinh.(convert(Array{Float64,4},dtdq0_big));norm=maxabs) #end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
4621
#include("../src/ttv.jl") #include("/Users/ericagol/Computer/Julia/regress.jl") #@testset "ttv_cartesian" begin # This routine takes derivative of transit times with respect # to the initial cartesian coordinates of bodies. [x] #n = 8 n = 2 t0 = 7257.93115525-7300.0 #h = 0.12 h = 0.04 #h = 0.02 #tmax = 600.0 tmax = 40000.0 #tmax = 100.0 #tmax = 10.0 # Read in initial conditions: elements = readdlm("elements.txt",',') elements[:,3] -= 7300.0 # Make an array, tt, to hold transit times: # First, though, make sure it is large enough: ntt = zeros(Int64,n) for i=2:n ntt[i] = ceil(Int64,tmax/elements[i,2])+3 end println("ntt: ",ntt) tt = zeros(n,maximum(ntt)) tt2 = zeros(n,maximum(ntt)) # Save a counter for the actual number of transit times of each planet: count = zeros(Int64,n) # Call the ttv function: rstar = 1e12 # Now, compute derivatives (with respect to initial cartesian positions/masses): dtdq0 = zeros(n,maximum(ntt),7,n) @time dtdelements = ttv_elements!(n,t0,h,tmax,elements,tt,count,dtdq0,rstar) # Now with half the timestep: #dtdq2 = zeros(n,maximum(ntt),7,n) #@time dtdelements = ttv_elements!(n,t0,h/2,tmax,elements,tt2,count,dtdq2,rstar) tt_big = big.(tt); elementsbig = big.(elements); rstarbig = big(rstar) tmaxbig = big(tmax); t0big = big(t0); hbig = big(h) # Compute the derivatives in BigFloat precision to see whether finite difference # derivatives or Float64 derivatives are imprecise at the start: dtdq0_big = zeros(BigFloat,n,maximum(ntt),7,n) hbig = big(h); tt_big = big.(tt); elementsbig = big.(elements); rstarbig = big(rstar) @time dtdelements_big = ttv_elements!(n,t0big,hbig,tmaxbig,elementsbig,tt_big,count,dtdq0_big,rstarbig) # Now with half the timestep: dtdq2_big = zeros(BigFloat,n,maximum(ntt),7,n) tt2_big = big.(tt2) #@time dtdelements_big = ttv_elements!(n,t0big,hbig/2,tmaxbig,elementsbig,tt2_big,count,dtdq2_big,rstarbig) using PyPlot clf() # Plot the difference in the TTVs: for i=2:n diff1 = abs.(tt[i,2:count[i]].-tt_big[i,2:count[i]])/h; loglog(tt[i,2:count[i]]-tt[i,1],diff1); # diff2 = abs.(tt2[i,2:count[i]].-tt2_big[i,2:count[i]])/elements[i,2]; # loglog(tt[i,2:count[i]]-tt[i,1],diff2); end xlabel("Time since start") ylabel(L"(time_{dbl}-time_{big})/timestep") #loglog([1.0,1024.0],2e-15*[1,2^15],":") loglog([1.0,40000.0],0.5e-16*([1.0,40000.0]/h).^1.5,":") clf() nmed = 10 for i=2:n, k=1:7, l=1:n if maximum(abs.(dtdq0[i,2:count[i],k,l])) > 0 # diff1 = abs.(asinh.(dtdq0_big[i,2:count[i],k,l])-asinh.(dtdq0[i,2:count[i],k,l])); # diff1 = abs.(dtdq0_big[i,2:count[i],k,l]-dtdq0[i,2:count[i],k,l])/maximum(dtdq0[i,2:count[i],k,l]); diff1 = abs.(dtdq0_big[i,2:count[i],k,l]-dtdq0[i,2:count[i],k,l]) diff2 = copy(diff1); diff3 = abs.(dtdelements_big[i,2:count[i],k,l]-dtdelements[i,2:count[i],k,l]) # diff3 = abs.(asinh.(dtdelements_big[i,2:count[i],k,l])-asinh.(dtdelements[i,2:count[i],k,l])) diff4 = copy(diff3); ntt1 = size(diff1)[1]; for it=nmed:ntt1-nmed # Divide by a median smoothed dtdq0: diff2[it] = diff1[it]/maximum(abs.(dtdq0[i,it+1-nmed+1:it+1+nmed,k,l])) maxit = maximum(abs.(dtdelements[i,it+1-nmed+1:it+1+nmed,k,l])) if maxit > 0 diff4[it] = diff3[it]/maximum(abs.(dtdelements[i,it+1-nmed+1:it+1+nmed,k,l])) end end; diff2[1:nmed-1] .= diff2[nmed]; diff2[ntt1-nmed+1:ntt1] .= diff2[ntt1-nmed]; diff4[1:nmed-1] .= diff4[nmed]; diff4[ntt1-nmed+1:ntt1] .= diff4[ntt1-nmed]; # diff3 = abs.(asinh.(dtdq2_big[i,2:count[i],k,l])-asinh.(dtdq2[i,2:count[i],k,l])); loglog(tt[i,2:count[i]]-tt[i,1],diff2,linestyle=":"); loglog(tt[i,2:count[i]]-tt[i,1],diff4,linestyle="--"); # loglog(tt[i,2:count[i]]-tt[i,1],diff3); println("xvs: ",i," ",k," ",l," asinh error h : ",convert(Float64,maximum(diff2))); #read(STDIN,Char); println("els: ",i," ",k," ",l," asinh error h : ",convert(Float64,maximum(diff4))); #read(STDIN,Char); # println(i," ",k," ",l," asinh error h/2: ",convert(Float64,maximum(diff3))); #read(STDIN,Char); end end loglog([1.0,40000.0],0.5e-16*([1.0,40000.0]/h).^1.5) #axis([1,1024,1e-19,1e-9]) axis([1,31600,1e-19,2.5e-7]) xlabel("Time since start") #ylabel("median(asinh(dt/dq)_dbl - asinh(dt/dq)_big,20)") ylabel("(dt/dq_{dbl}-dt/dq_{big})/maximum(dt/dq_{dbl}[i-9:i+10])") # Plot a line that scales as time^{3/2}: # loglog([1.0,1024.0],1e-12*[1,2^15],":",linewidth=3) # loglog([1.0,1024.0],1e-12*[1,2^15],":",linewidth=3) println("Max diff asinh(dtdq0): ",maximum(abs.(asinh.(dtdq0_big)-asinh.(dtdq0)))) @test isapprox(asinh.(dtdq0),asinh.(convert(Array{Float64,4},dtdq0_big));norm=maxabs) #end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
10739
#include("../src/ttv.jl") #include("/Users/ericagol/Computer/Julia/regress.jl") @testset "ttv_elements" begin # This routine takes derivative of transit times with respect # to the initial orbital elements. #n = 8 n = 3 H = [3,1,1] n_body = n t0 = 7257.93115525-7300.0 #h = 0.12 h = 0.04 #tmax = 600.0 #tmax = 800.0 #tmax = 1000.0 tmax = 10.0 # Read in initial conditions: elements = readdlm("elements.txt",',') elements[:,3] .-= 7300.0 # Make masses of planets bigger #elements[2,1] *= 10.0 #elements[3,1] *= 10.0 ntt = zeros(Int64,n) # Make an array, tt, to hold transit times: # First, though, make sure it is large enough: for i=2:n ntt[i] = ceil(Int64,tmax/elements[i,2])+3 end dtdq0 = zeros(n,maximum(ntt),7,n) tt = zeros(n,maximum(ntt)) tt1 = zeros(n,maximum(ntt)) tt2 = zeros(n,maximum(ntt)) tt3 = zeros(n,maximum(ntt)) tt4 = zeros(n,maximum(ntt)) tt8 = zeros(n,maximum(ntt)) # Save a counter for the actual number of transit times of each planet: count = zeros(Int64,n) count1 = zeros(Int64,n) # Call the ttv function: rstar = 1e12 dq = ttv_elements!(H,t0,h,tmax,elements,tt1,count1,0.0,0,0,rstar) # Now call with half the timestep: count2 = zeros(Int64,n) count3 = zeros(Int64,n) dq = ttv_elements!(H,t0,h/10.,tmax,elements,tt2,count2,0.0,0,0,rstar) mask = zeros(Bool, size(dtdq0)) for jq=1:n_body for iq=1:7 if iq == 7; ivary = 1; else; ivary = iq+1; end # Shift mass variation to end for i=2:n for k=1:count2[i] # Ignore inclination & longitude of nodes variations: if iq != 5 && iq != 6 && ~(jq == 1 && iq < 7) && ~(jq == i && iq == 7) mask[i,k,iq,jq] = true end end end end end # Now, compute derivatives (with respect to initial cartesian positions/masses): dtdelements0 = zeros(n,maximum(ntt),7,n) dtdelements0 = ttv_elements!(H,t0,h,tmax,elements,tt,count,dtdq0,rstar) dtdq2 = zeros(n,maximum(ntt),7,n) dtdelements2 = zeros(n,maximum(ntt),7,n) dtdelements2 = ttv_elements!(H,t0,h/2.,tmax,elements,tt2,count,dtdq2,rstar) dtdq4 = zeros(n,maximum(ntt),7,n) dtdelements4 = zeros(n,maximum(ntt),7,n) dtdelements4 = ttv_elements!(H,t0,h/4.,tmax,elements,tt4,count,dtdq4,rstar) dtdq8 = zeros(n,maximum(ntt),7,n) dtdelements8 = zeros(n,maximum(ntt),7,n) dtdelements8 = ttv_elements!(H,t0,h/8.,tmax,elements,tt8,count,dtdq8,rstar) #println("Maximum error on derivative: ",maximum(abs.(dtdelements0-dtdelements2))) #println("Maximum error on derivative: ",maximum(abs.(dtdelements2-dtdelements4))) #println("Maximum error on derivative: ",maximum(abs.(dtdelements4-dtdelements8))) #println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements0[mask])-asinh.(dtdelements2[mask])))) #println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq0)-asinh.(dtdq2)))) #println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements2[mask])-asinh.(dtdelements4[mask])))) #println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq2)-asinh.(dtdq4)))) #println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements4[mask])-asinh.(dtdelements8[mask])))) #println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq4)-asinh.(dtdq8)))) #read(STDIN,Char) # Check that this is working properly: #for i=1:n # for j=1:count2[i] # println(i," ",j," ",tt[i,j]," ",tt2[i,j]," ",tt[i,j]-tt2[i,j]," ",tt1[i,j]-tt2[i,j]) # end #end #read(STDIN,Char) # Compute derivatives numerically: #nq = 15 # This "summarizes" best numerical derivative: dtdelements0_num = zeros(BigFloat,n,maximum(ntt),7,n) # Compute derivatives with BigFloat for additional precision: elements0 = copy(elements) #delement = big.([1e-15,1e-15,1e-15,1e-15,1e-15,1e-15,1e-15]) #dq0 = big(1e-20) dq0 = big(1e-10) t0big = big(t0); tmaxbig = big(tmax); hbig = big(h) zilch = big(0.0) # Compute the transit times in BigFloat precision: tt_big = big.(tt); elementsbig = big.(elements0); rstarbig = big(rstar) dqbig = ttv_elements!(H,t0big,hbig,tmaxbig,elementsbig,tt_big,count,big(0.0),0,0,rstarbig) mask = zeros(Bool, size(dtdq0)) for jq=1:n_body for iq=1:7 if iq == 7; ivary = 1; else; ivary = iq+1; end # Shift mass variation to end for i=2:n for k=1:count2[i] # Ignore inclination & longitude of nodes variations: if iq != 5 && iq != 6 && ~(jq == 1 && iq < 7) && ~(jq == i && iq == 7) mask[i,k,iq,jq] = true end end end end end # Now, compute derivatives (with respect to initial cartesian positions/masses): dtdelements0 = zeros(n,maximum(ntt),7,n) dtdelements0 = ttv_elements!(H,t0,h,tmax,elements,tt,count,dtdq0,rstar) dtdq2 = zeros(n,maximum(ntt),7,n) dtdelements2 = zeros(n,maximum(ntt),7,n) dtdelements2 = ttv_elements!(H,t0,h/2.,tmax,elements,tt2,count,dtdq2,rstar) dtdq4 = zeros(n,maximum(ntt),7,n) dtdelements4 = zeros(n,maximum(ntt),7,n) dtdelements4 = ttv_elements!(H,t0,h/4.,tmax,elements,tt4,count,dtdq4,rstar) dtdq8 = zeros(n,maximum(ntt),7,n) dtdelements8 = zeros(n,maximum(ntt),7,n) dtdelements8 = ttv_elements!(H,t0,h/8.,tmax,elements,tt8,count,dtdq8,rstar) #println("Maximum error on derivative: ",maximum(abs.(dtdelements0-dtdelements2))) #println("Maximum error on derivative: ",maximum(abs.(dtdelements2-dtdelements4))) #println("Maximum error on derivative: ",maximum(abs.(dtdelements4-dtdelements8))) #println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements0[mask])-asinh.(dtdelements2[mask])))) #println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq0)-asinh.(dtdq2)))) #println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements2[mask])-asinh.(dtdelements4[mask])))) #println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq2)-asinh.(dtdq4)))) #println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements4[mask])-asinh.(dtdelements8[mask])))) #println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq4)-asinh.(dtdq8)))) #read(STDIN,Char) # Check that this is working properly: #for i=1:n # for j=1:count2[i] # println(i," ",j," ",tt[i,j]," ",tt2[i,j]," ",tt[i,j]-tt2[i,j]," ",tt1[i,j]-tt2[i,j]) # end #end #read(STDIN,Char) # Compute derivatives numerically: #nq = 15 # This "summarizes" best numerical derivative: dtdelements0_num = zeros(BigFloat,n,maximum(ntt),7,n) # Compute derivatives with BigFloat for additional precision: elements0 = copy(elements) #delement = big.([1e-15,1e-15,1e-15,1e-15,1e-15,1e-15,1e-15]) #dq0 = big(1e-20) dq0 = big(1e-10) tt2 = big.(tt2) tt3 = big.(tt3) t0big = big(t0); tmaxbig = big(tmax); hbig = big(h) zilch = big(0.0) # Compute the transit times in BigFloat precision: tt_big = big.(tt); elementsbig = big.(elements0) # Now, compute derivatives numerically: for jq=1:n_body for iq=1:7 elementsbig = big.(elements0) # dq0 = delement[iq]; if jq==1 && iq==7 ; dq0 = big(1e-10); end # Vary mass of star by a larger factor if iq == 7; ivary = 1; else; ivary = iq+1; end # Shift mass variation to end elementsbig[jq,ivary] += dq0 dq_plus = ttv_elements!(H,t0big,hbig,tmaxbig,elementsbig,tt2,count2,zilch,0,0,big(rstar)) elementsbig[jq,ivary] -= 2dq0 dq_minus = ttv_elements!(H,t0big,hbig,tmaxbig,elementsbig,tt3,count2,zilch,0,0,big(rstar)) #xm,vm = init_nbody(elements,t0,n_body) for i=2:n for k=1:count2[i] # Compute double-sided derivative for more accuracy: dtdelements0_num[i,k,iq,jq] = (tt2[i,k]-tt3[i,k])/(2dq0) # Ignore inclination & longitude of nodes variations: if iq != 5 && iq != 6 && ~(jq == 1 && iq < 7) && ~(jq == i && iq == 7) mask[i,k,iq,jq] = true end end end end end #println("Max diff dtdelements: ",maximum(abs.(dtdelements0[mask]./dtdelements0_num[mask].-1.0))) #println("Max diff asinh(dtdelements): ",maximum(abs.(asinh.(dtdelements0[mask])-asinh.(dtdelements0_num[mask])))) #ntot = 0 #diff_dtdelements0 = zeros(n,maximum(ntt),7,n) #for i=1:n, j=1:count[i], k=1:7, l=2:n # diff_dtdelements0[i,j,k,l] = abs(dtdelements0[i,j,k,l]-convert(Float64,dtdelements0_num[i,j,k,l])) # ntot +=1 #end #using PyPlot # #nderiv = n^2*7*maximum(ntt) ##mask[:,:,2,:] = false #loglog(abs.(reshape(dtdelements0,nderiv)),abs.(reshape(convert(Array{Float64,4},dtdelements0_num),nderiv)),".") #axis([1e-6,1e2,1e-12,1e2]) #loglog(abs.(reshape(dtdelements0,nderiv)),abs.(reshape(diff_dtdelements0,nderiv)),".") #println("Maximum error: ",maximum(diff_dtdelements0)) #= using PyPlot # Make a plot of the fractional errors: for i=2:3, k=1:7, l=1:3 if maximum(abs.(dtdelements0_num[i,2:count1[i],k,l])) > 0 loglog(tt[i,2:count1[i]].-tt[i,1],convert(Array{Float64,1},abs.(dtdelements0[i,2:count1[i],k,l]./dtdelements0_num[i,2:count1[i],k,l].-1.))) end end clf() # Plot the difference in the TTVs: for i=2:3 diff1 = convert(Array{Float64,1},abs.(tt1[i,2:count1[i]]./tt_big[i,2:count1[i]].-1.0)); loglog(tt[i,2:count1[i]].-tt[i,1],diff1); end for i=2:3, k=1:7, l=1:3 if maximum(abs.(dtdelements0_num[i,2:count1[i],k,l])) > 0 && k != 5 && k != 6 diff1 = convert(Array{Float64,1},abs.(dtdelements0[i,2:count1[i],k,l]./dtdelements0_num[i,2:count1[i],k,l].-1)); diff2 = convert(Array{Float64,1},abs.(asinh.(dtdelements0[i,2:count1[i],k,l])-asinh.(dtdelements0_num[i,2:count1[i],k,l]))); loglog(tt[i,2:count1[i]].-tt[i,1],diff1); # loglog(tt[i,2:count1[i]].-tt[i,1],diff2,"."); println(i," ",k," ",l," frac error: ",convert(Float64,maximum(diff1))," asinh error: ",convert(Float64,maximum(diff2))); #read(STDIN,Char); end end # Plot a line that scales as time^{3/2}: loglog([1.0,1024.0],1e-09*[1,2^15],":") loglog([1.0,1024.0],1e-12*[1,2^15],":") loglog([1.0,1024.0],1e-15*[1,2^15],":") =# #@test isapprox(dtdelements0[mask],dtdelements0_num[mask];norm=maxabs) @test isapprox(asinh.(dtdelements0[mask]),asinh.(dtdelements0_num[mask]);norm=maxabs) #unit = ones(dtdelements0[mask]) #@test isapprox(dtdelements0[mask]./dtdelements0_num[mask],unit;norm=maxabs) #end ## Make a plot of some TTVs: # #fig,axes = subplots(4,2) # #for i=2:8 # ax = axes[i-1] # fn = zeros(Float64,2,count1[i]) # sig = ones(count1[i]) # tti1 = tt1[i,1:count1[i]] # tti2 = tt2[i,1:count2[i]] # for j=1:count1[i] # fn[1,j] = 1.0 # fn[2,j] = round(Int64,(tti1[j]-elements[i,3])/elements[i,2]) # end # coeff,cov = regress(fn,tti1,sig) # tt_ref1 = coeff[1]+coeff[2]*fn[2,:] # ttv1 = (tti1.-tt_ref1)*24.*60. # coeff,cov = regress(fn,tti2,sig) # tt_ref2 = coeff[1]+coeff[2]*fn[2,:] # ttv2 = (tti2.-tt_ref2)*24.*60. # ax[:plot](tti1,ttv1) ## ax[:plot](tti2,ttv2) # ax[:plot](tti2,((ttv1.-ttv2)-mean(ttv1.-ttv2))) # println(i," ",coeff," ",elements[i,2:3]," ",coeff[1]-elements[i,3]," ",coeff[2]-elements[i,2]) # println(i," ",maximum(ttv1-ttv2-mean(ttv1-ttv2))*60.," sec ", minimum(ttv1-ttv2-mean(ttv1-ttv2))*60.," sec" ) end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
10613
2 #include("../src/ttv.jl") #include("/Users/ericagol/Computer/Julia/regress.jl") #@testset "ttv_elements" begin # This routine takes derivative of transit times with respect # to the initial orbital elements. #n = 8 n = 2 n_body = n t0 = 7257.93115525-7300.0 #h = 0.12 h = 0.04 #tmax = 600.0 #tmax = 800.0 #tmax = 1000.0 tmax = 10.0 #tmax = 40000.0 # Read in initial conditions: elements = readdlm("elements.txt",',') elements[:,3] -= 7300.0 # Make masses of planets bigger #elements[2,1] *= 10.0 #elements[3,1] *= 10.0 ntt = zeros(Int64,n) # Make an array, tt, to hold transit times: # First, though, make sure it is large enough: for i=2:n ntt[i] = ceil(Int64,tmax/elements[i,2])+3 end dtdq0 = zeros(n,maximum(ntt),7,n) tt = zeros(n,maximum(ntt)) tt1 = zeros(n,maximum(ntt)) tt2 = zeros(n,maximum(ntt)) tt3 = zeros(n,maximum(ntt)) tt4 = zeros(n,maximum(ntt)) tt8 = zeros(n,maximum(ntt)) # Save a counter for the actual number of transit times of each planet: count = zeros(Int64,n) count1 = zeros(Int64,n) # Call the ttv function: rstar = 1e12 dq = ttv_elements!(n,t0,h,tmax,elements,tt1,count1,0.0,0,0,rstar) # Now call with half the timestep: count2 = zeros(Int64,n) count3 = zeros(Int64,n) dq = ttv_elements!(n,t0,h/10.,tmax,elements,tt2,count2,0.0,0,0,rstar) mask = zeros(Bool, size(dtdq0)) for jq=1:n_body for iq=1:7 if iq == 7; ivary = 1; else; ivary = iq+1; end # Shift mass variation to end for i=2:n for k=1:count2[i] # Ignore inclination & longitude of nodes variations: if iq != 5 && iq != 6 && ~(jq == 1 && iq < 7) && ~(jq == i && iq == 7) mask[i,k,iq,jq] = true end end end end end # Now, compute derivatives (with respect to initial cartesian positions/masses): dtdelements0 = zeros(n,maximum(ntt),7,n) dtdelements0 = ttv_elements!(n,t0,h,tmax,elements,tt,count,dtdq0,rstar) dtdq2 = zeros(n,maximum(ntt),7,n) dtdelements2 = zeros(n,maximum(ntt),7,n) dtdelements2 = ttv_elements!(n,t0,h/2.,tmax,elements,tt2,count,dtdq2,rstar) dtdq4 = zeros(n,maximum(ntt),7,n) dtdelements4 = zeros(n,maximum(ntt),7,n) dtdelements4 = ttv_elements!(n,t0,h/4.,tmax,elements,tt4,count,dtdq4,rstar) dtdq8 = zeros(n,maximum(ntt),7,n) dtdelements8 = zeros(n,maximum(ntt),7,n) dtdelements8 = ttv_elements!(n,t0,h/8.,tmax,elements,tt8,count,dtdq8,rstar) #println("Maximum error on derivative: ",maximum(abs.(dtdelements0-dtdelements2))) #println("Maximum error on derivative: ",maximum(abs.(dtdelements2-dtdelements4))) #println("Maximum error on derivative: ",maximum(abs.(dtdelements4-dtdelements8))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements0[mask])-asinh.(dtdelements2[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq0)-asinh.(dtdq2)))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements2[mask])-asinh.(dtdelements4[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq2)-asinh.(dtdq4)))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements4[mask])-asinh.(dtdelements8[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq4)-asinh.(dtdq8)))) #read(STDIN,Char) # Check that this is working properly: #for i=1:n # for j=1:count2[i] # println(i," ",j," ",tt[i,j]," ",tt2[i,j]," ",tt[i,j]-tt2[i,j]," ",tt1[i,j]-tt2[i,j]) # end #end #read(STDIN,Char) # Compute derivatives numerically: #nq = 15 # This "summarizes" best numerical derivative: dtdelements0_num = zeros(BigFloat,n,maximum(ntt),7,n) # Compute derivatives with BigFloat for additional precision: elements0 = copy(elements) #delement = big.([1e-15,1e-15,1e-15,1e-15,1e-15,1e-15,1e-15]) #dq0 = big(1e-20) dq0 = big(1e-10) t0big = big(t0); tmaxbig = big(tmax); hbig = big(h) zilch = big(0.0) # Compute the transit times in BigFloat precision: tt_big = big.(tt); elementsbig = big.(elements0); rstarbig = big(rstar) dqbig = ttv_elements!(n,t0big,hbig,tmaxbig,elementsbig,tt_big,count,big(0.0),0,0,rstarbig) mask = zeros(Bool, size(dtdq0)) for jq=1:n_body for iq=1:7 if iq == 7; ivary = 1; else; ivary = iq+1; end # Shift mass variation to end for i=2:n for k=1:count2[i] # Ignore inclination & longitude of nodes variations: if iq != 5 && iq != 6 && ~(jq == 1 && iq < 7) && ~(jq == i && iq == 7) mask[i,k,iq,jq] = true end end end end end # Now, compute derivatives (with respect to initial cartesian positions/masses): dtdelements0 = zeros(n,maximum(ntt),7,n) dtdelements0 = ttv_elements!(n,t0,h,tmax,elements,tt,count,dtdq0,rstar) dtdq2 = zeros(n,maximum(ntt),7,n) dtdelements2 = zeros(n,maximum(ntt),7,n) dtdelements2 = ttv_elements!(n,t0,h/2.,tmax,elements,tt2,count,dtdq2,rstar) dtdq4 = zeros(n,maximum(ntt),7,n) dtdelements4 = zeros(n,maximum(ntt),7,n) dtdelements4 = ttv_elements!(n,t0,h/4.,tmax,elements,tt4,count,dtdq4,rstar) dtdq8 = zeros(n,maximum(ntt),7,n) dtdelements8 = zeros(n,maximum(ntt),7,n) dtdelements8 = ttv_elements!(n,t0,h/8.,tmax,elements,tt8,count,dtdq8,rstar) #println("Maximum error on derivative: ",maximum(abs.(dtdelements0-dtdelements2))) #println("Maximum error on derivative: ",maximum(abs.(dtdelements2-dtdelements4))) #println("Maximum error on derivative: ",maximum(abs.(dtdelements4-dtdelements8))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements0[mask])-asinh.(dtdelements2[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq0)-asinh.(dtdq2)))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements2[mask])-asinh.(dtdelements4[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq2)-asinh.(dtdq4)))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements4[mask])-asinh.(dtdelements8[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq4)-asinh.(dtdq8)))) #read(STDIN,Char) # Check that this is working properly: #for i=1:n # for j=1:count2[i] # println(i," ",j," ",tt[i,j]," ",tt2[i,j]," ",tt[i,j]-tt2[i,j]," ",tt1[i,j]-tt2[i,j]) # end #end #read(STDIN,Char) # Compute derivatives numerically: #nq = 15 # This "summarizes" best numerical derivative: dtdelements0_num = zeros(BigFloat,n,maximum(ntt),7,n) # Compute derivatives with BigFloat for additional precision: elements0 = copy(elements) #delement = big.([1e-15,1e-15,1e-15,1e-15,1e-15,1e-15,1e-15]) #dq0 = big(1e-20) dq0 = big(1e-10) tt2 = big.(tt2) tt3 = big.(tt3) t0big = big(t0); tmaxbig = big(tmax); hbig = big(h) zilch = big(0.0) # Compute the transit times in BigFloat precision: tt_big = big.(tt); elementsbig = big.(elements0) # Now, compute derivatives numerically: for jq=1:n_body for iq=1:7 elementsbig = big.(elements0) # dq0 = delement[iq]; if jq==1 && iq==7 ; dq0 = big(1e-10); end # Vary mass of star by a larger factor if iq == 7; ivary = 1; else; ivary = iq+1; end # Shift mass variation to end elementsbig[jq,ivary] += dq0 dq_plus = ttv_elements!(n,t0big,hbig,tmaxbig,elementsbig,tt2,count2,zilch,0,0,big(rstar)) elementsbig[jq,ivary] -= 2dq0 dq_minus = ttv_elements!(n,t0big,hbig,tmaxbig,elementsbig,tt3,count2,zilch,0,0,big(rstar)) #xm,vm = init_nbody(elements,t0,n_body) for i=2:n for k=1:count2[i] # Compute double-sided derivative for more accuracy: dtdelements0_num[i,k,iq,jq] = (tt2[i,k]-tt3[i,k])/(2.*dq0) # Ignore inclination & longitude of nodes variations: if iq != 5 && iq != 6 && ~(jq == 1 && iq < 7) && ~(jq == i && iq == 7) mask[i,k,iq,jq] = true end end end end end #println("Max diff dtdelements: ",maximum(abs.(dtdelements0[mask]./dtdelements0_num[mask]-1.0))) println("Max diff asinh(dtdelements): ",maximum(abs.(asinh.(dtdelements0[mask])-asinh.(dtdelements0_num[mask])))) #ntot = 0 #diff_dtdelements0 = zeros(n,maximum(ntt),7,n) #for i=1:n, j=1:count[i], k=1:7, l=2:n # diff_dtdelements0[i,j,k,l] = abs(dtdelements0[i,j,k,l]-convert(Float64,dtdelements0_num[i,j,k,l])) # ntot +=1 #end #using PyPlot # #nderiv = n^2*7*maximum(ntt) ##mask[:,:,2,:] = false #loglog(abs.(reshape(dtdelements0,nderiv)),abs.(reshape(convert(Array{Float64,4},dtdelements0_num),nderiv)),".") #axis([1e-6,1e2,1e-12,1e2]) #loglog(abs.(reshape(dtdelements0,nderiv)),abs.(reshape(diff_dtdelements0,nderiv)),".") #println("Maximum error: ",maximum(diff_dtdelements0)) using PyPlot # Make a plot of the fractional errors: for i=2:n, k=1:7, l=1:n if maximum(abs.(dtdelements0_num[i,2:count1[i],k,l])) > 0 loglog(tt[i,2:count1[i]]-tt[i,1],abs.(dtdelements0[i,2:count1[i],k,l]./dtdelements0_num[i,2:count1[i],k,l]-1.)) end end clf() # Plot the difference in the TTVs: for i=2:n diff1 = abs.(tt1[i,2:count1[i]]./tt_big[i,2:count1[i]]-1.0); loglog(tt[i,2:count1[i]]-tt[i,1],diff1); end for i=2:n, k=1:7, l=1:n if maximum(abs.(dtdelements0_num[i,2:count1[i],k,l])) > 0 && k != 5 && k != 6 diff1 = abs.(dtdelements0[i,2:count1[i],k,l]./dtdelements0_num[i,2:count1[i],k,l]-1.); diff2 = abs.(asinh.(dtdelements0[i,2:count1[i],k,l])-asinh.(dtdelements0_num[i,2:count1[i],k,l])); loglog(tt[i,2:count1[i]]-tt[i,1],diff1); # loglog(tt[i,2:count1[i]]-tt[i,1],diff2,"."); println(i," ",k," ",l," frac error: ",convert(Float64,maximum(diff1))," asinh error: ",convert(Float64,maximum(diff2))); #read(STDIN,Char); end end # Plot a line that scales as time^{3/2}: loglog([1.0,1024.0],1e-09*[1,2^15],":") loglog([1.0,1024.0],1e-12*[1,2^15],":") loglog([1.0,1024.0],1e-15*[1,2^15],":") #@test isapprox(dtdelements0[mask],dtdelements0_num[mask];norm=maxabs) @test isapprox(asinh.(dtdelements0[mask]),asinh.(dtdelements0_num[mask]);norm=maxabs) #unit = ones(dtdelements0[mask]) #@test isapprox(dtdelements0[mask]./dtdelements0_num[mask],unit;norm=maxabs) #end ## Make a plot of some TTVs: # #fig,axes = subplots(4,2) # #for i=2:8 # ax = axes[i-1] # fn = zeros(Float64,2,count1[i]) # sig = ones(count1[i]) # tti1 = tt1[i,1:count1[i]] # tti2 = tt2[i,1:count2[i]] # for j=1:count1[i] # fn[1,j] = 1.0 # fn[2,j] = round(Int64,(tti1[j]-elements[i,3])/elements[i,2]) # end # coeff,cov = regress(fn,tti1,sig) # tt_ref1 = coeff[1]+coeff[2]*fn[2,:] # ttv1 = (tti1-tt_ref1)*24.*60. # coeff,cov = regress(fn,tti2,sig) # tt_ref2 = coeff[1]+coeff[2]*fn[2,:] # ttv2 = (tti2-tt_ref2)*24.*60. # ax[:plot](tti1,ttv1) ## ax[:plot](tti2,ttv2) # ax[:plot](tti2,((ttv1-ttv2)-mean(ttv1-ttv2))) # println(i," ",coeff," ",elements[i,2:3]," ",coeff[1]-elements[i,3]," ",coeff[2]-elements[i,2]) # println(i," ",maximum(ttv1-ttv2-mean(ttv1-ttv2))*60.," sec ", minimum(ttv1-ttv2-mean(ttv1-ttv2))*60.," sec" ) #end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
10682
#include("../src/ttv.jl") #include("/Users/ericagol/Computer/Julia/regress.jl") #@testset "ttv_elements" begin # This routine takes derivative of transit times with respect # to the initial orbital elements. #n = 8 n = 2 n_body = n t0 = 7257.93115525-7300.0 #h = 0.12 h = 0.04 #tmax = 600.0 #tmax = 800.0 #tmax = 1000.0 tmax = 10.0 #tmax = 40000.0 # Read in initial conditions: elements = readdlm("elements.txt",',') elements[:,3] -= 7300.0 # Make initial conditions (nearly) circular: elements[2:3,4:5] = 1e-9 # Make masses of planets bigger #elements[2,1] *= 10.0 #elements[3,1] *= 10.0 ntt = zeros(Int64,n) # Make an array, tt, to hold transit times: # First, though, make sure it is large enough: for i=2:n ntt[i] = ceil(Int64,tmax/elements[i,2])+3 end dtdq0 = zeros(n,maximum(ntt),7,n) tt = zeros(n,maximum(ntt)) tt1 = zeros(n,maximum(ntt)) tt2 = zeros(n,maximum(ntt)) tt3 = zeros(n,maximum(ntt)) tt4 = zeros(n,maximum(ntt)) tt8 = zeros(n,maximum(ntt)) # Save a counter for the actual number of transit times of each planet: count = zeros(Int64,n) count1 = zeros(Int64,n) # Call the ttv function: rstar = 1e12 dq = ttv_elements!(n,t0,h,tmax,elements,tt1,count1,0.0,0,0,rstar) # Now call with half the timestep: count2 = zeros(Int64,n) count3 = zeros(Int64,n) dq = ttv_elements!(n,t0,h/10.,tmax,elements,tt2,count2,0.0,0,0,rstar) mask = zeros(Bool, size(dtdq0)) for jq=1:n_body for iq=1:7 if iq == 7; ivary = 1; else; ivary = iq+1; end # Shift mass variation to end for i=2:n for k=1:count2[i] # Ignore inclination & longitude of nodes variations: if iq != 5 && iq != 6 && ~(jq == 1 && iq < 7) && ~(jq == i && iq == 7) mask[i,k,iq,jq] = true end end end end end # Now, compute derivatives (with respect to initial cartesian positions/masses): dtdelements0 = zeros(n,maximum(ntt),7,n) dtdelements0 = ttv_elements!(n,t0,h,tmax,elements,tt,count,dtdq0,rstar) dtdq2 = zeros(n,maximum(ntt),7,n) dtdelements2 = zeros(n,maximum(ntt),7,n) dtdelements2 = ttv_elements!(n,t0,h/2.,tmax,elements,tt2,count,dtdq2,rstar) dtdq4 = zeros(n,maximum(ntt),7,n) dtdelements4 = zeros(n,maximum(ntt),7,n) dtdelements4 = ttv_elements!(n,t0,h/4.,tmax,elements,tt4,count,dtdq4,rstar) dtdq8 = zeros(n,maximum(ntt),7,n) dtdelements8 = zeros(n,maximum(ntt),7,n) dtdelements8 = ttv_elements!(n,t0,h/8.,tmax,elements,tt8,count,dtdq8,rstar) #println("Maximum error on derivative: ",maximum(abs.(dtdelements0-dtdelements2))) #println("Maximum error on derivative: ",maximum(abs.(dtdelements2-dtdelements4))) #println("Maximum error on derivative: ",maximum(abs.(dtdelements4-dtdelements8))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements0[mask])-asinh.(dtdelements2[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq0)-asinh.(dtdq2)))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements2[mask])-asinh.(dtdelements4[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq2)-asinh.(dtdq4)))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements4[mask])-asinh.(dtdelements8[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq4)-asinh.(dtdq8)))) #read(STDIN,Char) # Check that this is working properly: #for i=1:n # for j=1:count2[i] # println(i," ",j," ",tt[i,j]," ",tt2[i,j]," ",tt[i,j]-tt2[i,j]," ",tt1[i,j]-tt2[i,j]) # end #end #read(STDIN,Char) # Compute derivatives numerically: #nq = 15 # This "summarizes" best numerical derivative: dtdelements0_num = zeros(BigFloat,n,maximum(ntt),7,n) # Compute derivatives with BigFloat for additional precision: elements0 = copy(elements) #delement = big.([1e-15,1e-15,1e-15,1e-15,1e-15,1e-15,1e-15]) #dq0 = big(1e-20) dq0 = big(1e-10) t0big = big(t0); tmaxbig = big(tmax); hbig = big(h) zilch = big(0.0) # Compute the transit times in BigFloat precision: tt_big = big.(tt); elementsbig = big.(elements0); rstarbig = big(rstar) dqbig = ttv_elements!(n,t0big,hbig,tmaxbig,elementsbig,tt_big,count,big(0.0),0,0,rstarbig) mask = zeros(Bool, size(dtdq0)) for jq=1:n_body for iq=1:7 if iq == 7; ivary = 1; else; ivary = iq+1; end # Shift mass variation to end for i=2:n for k=1:count2[i] # Ignore inclination & longitude of nodes variations: if iq != 5 && iq != 6 && ~(jq == 1 && iq < 7) && ~(jq == i && iq == 7) mask[i,k,iq,jq] = true end end end end end # Now, compute derivatives (with respect to initial cartesian positions/masses): dtdelements0 = zeros(n,maximum(ntt),7,n) dtdelements0 = ttv_elements!(n,t0,h,tmax,elements,tt,count,dtdq0,rstar) dtdq2 = zeros(n,maximum(ntt),7,n) dtdelements2 = zeros(n,maximum(ntt),7,n) dtdelements2 = ttv_elements!(n,t0,h/2.,tmax,elements,tt2,count,dtdq2,rstar) dtdq4 = zeros(n,maximum(ntt),7,n) dtdelements4 = zeros(n,maximum(ntt),7,n) dtdelements4 = ttv_elements!(n,t0,h/4.,tmax,elements,tt4,count,dtdq4,rstar) dtdq8 = zeros(n,maximum(ntt),7,n) dtdelements8 = zeros(n,maximum(ntt),7,n) dtdelements8 = ttv_elements!(n,t0,h/8.,tmax,elements,tt8,count,dtdq8,rstar) #println("Maximum error on derivative: ",maximum(abs.(dtdelements0-dtdelements2))) #println("Maximum error on derivative: ",maximum(abs.(dtdelements2-dtdelements4))) #println("Maximum error on derivative: ",maximum(abs.(dtdelements4-dtdelements8))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements0[mask])-asinh.(dtdelements2[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq0)-asinh.(dtdq2)))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements2[mask])-asinh.(dtdelements4[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq2)-asinh.(dtdq4)))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdelements4[mask])-asinh.(dtdelements8[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtdq4)-asinh.(dtdq8)))) #read(STDIN,Char) # Check that this is working properly: #for i=1:n # for j=1:count2[i] # println(i," ",j," ",tt[i,j]," ",tt2[i,j]," ",tt[i,j]-tt2[i,j]," ",tt1[i,j]-tt2[i,j]) # end #end #read(STDIN,Char) # Compute derivatives numerically: #nq = 15 # This "summarizes" best numerical derivative: dtdelements0_num = zeros(BigFloat,n,maximum(ntt),7,n) # Compute derivatives with BigFloat for additional precision: elements0 = copy(elements) #delement = big.([1e-15,1e-15,1e-15,1e-15,1e-15,1e-15,1e-15]) #dq0 = big(1e-20) dq0 = big(1e-10) tt2 = big.(tt2) tt3 = big.(tt3) t0big = big(t0); tmaxbig = big(tmax); hbig = big(h) zilch = big(0.0) # Compute the transit times in BigFloat precision: tt_big = big.(tt); elementsbig = big.(elements0) # Now, compute derivatives numerically: for jq=1:n_body for iq=1:7 elementsbig = big.(elements0) # dq0 = delement[iq]; if jq==1 && iq==7 ; dq0 = big(1e-10); end # Vary mass of star by a larger factor if iq == 7; ivary = 1; else; ivary = iq+1; end # Shift mass variation to end elementsbig[jq,ivary] += dq0 dq_plus = ttv_elements!(n,t0big,hbig,tmaxbig,elementsbig,tt2,count2,zilch,0,0,big(rstar)) elementsbig[jq,ivary] -= 2dq0 dq_minus = ttv_elements!(n,t0big,hbig,tmaxbig,elementsbig,tt3,count2,zilch,0,0,big(rstar)) #xm,vm = init_nbody(elements,t0,n_body) for i=2:n for k=1:count2[i] # Compute double-sided derivative for more accuracy: dtdelements0_num[i,k,iq,jq] = (tt2[i,k]-tt3[i,k])/(2.*dq0) # Ignore inclination & longitude of nodes variations: if iq != 5 && iq != 6 && ~(jq == 1 && iq < 7) && ~(jq == i && iq == 7) mask[i,k,iq,jq] = true end end end end end #println("Max diff dtdelements: ",maximum(abs.(dtdelements0[mask]./dtdelements0_num[mask]-1.0))) println("Max diff asinh(dtdelements): ",maximum(abs.(asinh.(dtdelements0[mask])-asinh.(dtdelements0_num[mask])))) #ntot = 0 #diff_dtdelements0 = zeros(n,maximum(ntt),7,n) #for i=1:n, j=1:count[i], k=1:7, l=2:n # diff_dtdelements0[i,j,k,l] = abs(dtdelements0[i,j,k,l]-convert(Float64,dtdelements0_num[i,j,k,l])) # ntot +=1 #end #using PyPlot # #nderiv = n^2*7*maximum(ntt) ##mask[:,:,2,:] = false #loglog(abs.(reshape(dtdelements0,nderiv)),abs.(reshape(convert(Array{Float64,4},dtdelements0_num),nderiv)),".") #axis([1e-6,1e2,1e-12,1e2]) #loglog(abs.(reshape(dtdelements0,nderiv)),abs.(reshape(diff_dtdelements0,nderiv)),".") #println("Maximum error: ",maximum(diff_dtdelements0)) using PyPlot # Make a plot of the fractional errors: for i=2:n, k=1:7, l=1:n if maximum(abs.(dtdelements0_num[i,2:count1[i],k,l])) > 0 loglog(tt[i,2:count1[i]]-tt[i,1],abs.(dtdelements0[i,2:count1[i],k,l]./dtdelements0_num[i,2:count1[i],k,l]-1.)) end end clf() # Plot the difference in the TTVs: for i=2:n diff1 = abs.(tt1[i,2:count1[i]]./tt_big[i,2:count1[i]]-1.0); loglog(tt[i,2:count1[i]]-tt[i,1],diff1); end for i=2:n, k=1:7, l=1:n if maximum(abs.(dtdelements0_num[i,2:count1[i],k,l])) > 0 && k != 5 && k != 6 diff1 = abs.(dtdelements0[i,2:count1[i],k,l]./dtdelements0_num[i,2:count1[i],k,l]-1.); diff2 = abs.(asinh.(dtdelements0[i,2:count1[i],k,l])-asinh.(dtdelements0_num[i,2:count1[i],k,l])); loglog(tt[i,2:count1[i]]-tt[i,1],diff1); # loglog(tt[i,2:count1[i]]-tt[i,1],diff2,"."); println(i," ",k," ",l," frac error: ",convert(Float64,maximum(diff1))," asinh error: ",convert(Float64,maximum(diff2))); #read(STDIN,Char); end end # Plot a line that scales as time^{3/2}: loglog([1.0,1024.0],1e-09*[1,2^15],":") loglog([1.0,1024.0],1e-12*[1,2^15],":") loglog([1.0,1024.0],1e-15*[1,2^15],":") #@test isapprox(dtdelements0[mask],dtdelements0_num[mask];norm=maxabs) @test isapprox(asinh.(dtdelements0[mask]),asinh.(dtdelements0_num[mask]);norm=maxabs) #unit = ones(dtdelements0[mask]) #@test isapprox(dtdelements0[mask]./dtdelements0_num[mask],unit;norm=maxabs) #end ## Make a plot of some TTVs: # #fig,axes = subplots(4,2) # #for i=2:8 # ax = axes[i-1] # fn = zeros(Float64,2,count1[i]) # sig = ones(count1[i]) # tti1 = tt1[i,1:count1[i]] # tti2 = tt2[i,1:count2[i]] # for j=1:count1[i] # fn[1,j] = 1.0 # fn[2,j] = round(Int64,(tti1[j]-elements[i,3])/elements[i,2]) # end # coeff,cov = regress(fn,tti1,sig) # tt_ref1 = coeff[1]+coeff[2]*fn[2,:] # ttv1 = (tti1-tt_ref1)*24.*60. # coeff,cov = regress(fn,tti2,sig) # tt_ref2 = coeff[1]+coeff[2]*fn[2,:] # ttv2 = (tti2-tt_ref2)*24.*60. # ax[:plot](tti1,ttv1) ## ax[:plot](tti2,ttv2) # ax[:plot](tti2,((ttv1-ttv2)-mean(ttv1-ttv2))) # println(i," ",coeff," ",elements[i,2:3]," ",coeff[1]-elements[i,3]," ",coeff[2]-elements[i,2]) # println(i," ",maximum(ttv1-ttv2-mean(ttv1-ttv2))*60.," sec ", minimum(ttv1-ttv2-mean(ttv1-ttv2))*60.," sec" ) #end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
6022
using JLD2 #include("../src/ttv.jl") #include("/Users/ericagol/Computer/Julia/regress.jl") @testset "ttvbv_cartesian" begin # This routine takes derivative of transit times, sky velocity & # impact parameter squared with respect to the initial cartesian coordinates of bodies. [x] #n = 8 n = 3 H =[3,1,1] t0 = 7257.93115525-7300.0 #h = 0.12 h = 0.04 #h = 0.02 #tmax = 600.0 #tmax = 1000.0 #tmax = 100.0 tmax = 10.0 # Read in initial conditions: elements = readdlm("elements.txt",',') elements[:,3] .-= 7300.0 # Make an array, tt, to hold transit times: # First, though, make sure it is large enough: ntt = zeros(Int64,n) for i=2:n ntt[i] = ceil(Int64,tmax/elements[i,2])+3 end println("ntt: ",ntt) ntbv = 3 ttbv = zeros(ntbv,n,maximum(ntt)) ttbv1 = zeros(ntbv,n,maximum(ntt)) ttbv2 = zeros(ntbv,n,maximum(ntt)) ttbv3 = zeros(ntbv,n,maximum(ntt)) # Save a counter for the actual number of transit times of each planet: count = zeros(Int64,n) count1 = zeros(Int64,n) # Call the ttv function: rstar = 1e12 dq = ttvbv_elements!(H,t0,h,tmax,elements,ttbv1,count1,0.0,0,0,rstar) # Now call with half the timestep: count2 = zeros(Int64,n) count3 = zeros(Int64,n) dq = ttvbv_elements!(H,t0,h/2,tmax,elements,ttbv2,count2,0.0,0,0,rstar) # Now, compute derivatives (with respect to initial cartesian positions/masses): dtbvdq0 = zeros(ntbv,n,maximum(ntt),7,n) dtbvdelements = ttvbv_elements!(H,t0,h,tmax,elements,ttbv,count,dtbvdq0,rstar) # Compute derivatives numerically: # Compute the numerical derivative: dtbvdq0_num = zeros(BigFloat,ntbv,n,maximum(ntt),7,n) dlnq = big(1e-15) hbig = big(h); t0big = big(t0); tmaxbig=big(tmax); ttbv2big = big.(ttbv2); ttbv3big = big.(ttbv3) for jq=1:n for iq=1:7 elements2 = big.(elements) dq_plus = ttvbv_elements!(H,t0big,hbig,tmaxbig,elements2,ttbv2big,count2,dlnq,iq,jq,big(rstar)) elements3 = big.(elements) dq_minus = ttvbv_elements!(H,t0big,hbig,tmaxbig,elements3,ttbv3big,count3,-dlnq,iq,jq,big(rstar)) for i=1:n for k=1:count2[i] # Compute double-sided derivative for more accuracy: for itbv=1:ntbv dtbvdq0_num[itbv,i,k,iq,jq] = (ttbv2big[itbv,i,k]-ttbv3big[itbv,i,k])/(dq_plus-dq_minus) end # println(i," ",k," ",iq," ",jq," ",tt2big[i,k]," ",tt3big[i,k]," ") end end end end nbad = 0 ntot = 0 diff_dtbvdq0 = zeros(ntbv,n,maximum(ntt),7,n) mask = zeros(Bool, size(dtbvdq0)) for i=2:n, j=1:count[i], k=1:7, l=1:n for itbv=1:ntbv if abs(dtbvdq0[itbv,i,j,k,l]-dtbvdq0_num[itbv,i,j,k,l]) > 0.1*abs(dtbvdq0[itbv,i,j,k,l]) && ~(abs(dtbvdq0[itbv,i,j,k,l]) == 0.0 && abs(dtbvdq0_num[itbv,i,j,k,l]) < 1e-3) nbad +=1 end diff_dtbvdq0[itbv,i,j,k,l] = abs(dtbvdq0[itbv,i,j,k,l]-dtbvdq0_num[itbv,i,j,k,l]) if k != 2 && k != 5 mask[itbv,i,j,k,l] = true end ntot +=1 end end ttbv_big = big.(ttbv); elementsbig = big.(elements); rstarbig = big(rstar) dqbig = ttvbv_elements!(H,t0big,hbig,tmaxbig,elementsbig,ttbv_big,count,big(0.0),0,0,rstarbig) # Now halve the time steps: ttbv_big_half = copy(ttbv_big) dqbig = ttvbv_elements!(H,t0big,hbig/2,tmaxbig,elementsbig,ttbv_big_half,count1,big(0.0),0,0,rstarbig) # Compute the derivatives in BigFloat precision to see whether finite difference # derivatives or Float64 derivatives are imprecise at the start: dtbvdq0_big = zeros(BigFloat,ntbv,n,maximum(ntt),7,n) hbig = big(h); ttbv_big = big.(ttbv); elementsbig = big.(elements); rstarbig = big(rstar) dtbvdelements_big = ttvbv_elements!(H,t0big,hbig,tmaxbig,elementsbig,ttbv_big,count,dtbvdq0_big,rstarbig) #= using PyPlot clf() # Plot the difference in the TTVs: for i=2:3 # diff1 = abs.(tt1[i,2:count1[i]]./tt_big[i,2:count1[i]]-1.0); for itbv=1:ntbv diff1 = convert(Array{Float64,1},abs.(ttbv1[itbv,i,2:count1[i]].-ttbv_big[itbv,i,2:count1[i]])/elements[i,2]); dtt=ttbv[itbv,i,2:count1[i]].-ttbv[itbv,i,1] loglog(dtt,diff1); end # diff2 = abs.(tt2[i,2:count1[i]]./tt_big_half[i,2:count1[i]]-1.0); # diff2 = abs.(tt2[i,2:count1[i]].-tt_big_half[i,2:count1[i]])/elements[i,2]; # loglog(tt[i,2:count[i]]-tt[i,1],diff2); end loglog([1.0,1024.0],2e-15*[1,2^15],":") for i=2:3, k=1:7, l=1:3 for itbv=1:ntbv if maximum(abs.(dtbvdelements_big[itbv,i,2:count[i],k,l])) > 0 diff1 = convert(Array{Float64,1},abs.(dtbvdelements_big[itbv,i,2:count[i],k,l]./dtbvdelements[itbv,i,2:count[i],k,l].-1)); diff3 = convert(Array{Float64,1},abs.(asinh.(dtbvdelements_big[itbv,i,2:count[i],k,l])-asinh.(dtbvdelements[itbv,i,2:count[i],k,l]))); dtt = ttbv[itbv,i,2:count[i]].-ttbv[itbv,i,1] loglog(dtt,diff3); println(itbv," ",i," ",k," ",l," frac error: ",convert(Float64,maximum(diff1))," asinh error: ",convert(Float64,maximum(diff3))); #read(STDIN,Char); end if maximum(abs.(dtbvdq0_big[itbv,i,2:count[i],k,l])) > 0 diff1 = convert(Array{Float64,1},abs.(dtbvdq0[itbv,i,2:count[i],k,l]./dtbvdq0_big[itbv,i,2:count[i],k,l].-1.0)); diff3 = convert(Array{Float64,1},abs.(asinh.(dtbvdq0_big[itbv,i,2:count[i],k,l]).-asinh.(dtbvdq0[itbv,i,2:count[i],k,l]))); dtt = ttbv[itbv,i,2:count[i]].-ttbv[itbv,i,1] loglog(dtt,diff3,linestyle=":"); println(itbv," ",i," ",k," ",l," frac error: ",convert(Float64,maximum(diff1))," asinh error: ",convert(Float64,maximum(diff3))); #read(STDIN,Char); end end end #mederror = zeros(size(ttbv)) #for i=2:3 # for j=1:count1[i] # data_list = Float64[] # for itbv=1:ntbv, k=1:7, l=1:3 # if abs(dtbvdq0_num[itbv,i,j,k,l]) > 0 # push!(data_list,abs(dtbvdq0[itbv,i,j,k,l]/dtbvdq0_num[itbv,i,j,k,l]-1.0)) # end # mederror[itbv,i,j] = median(data_list) # end # end #end # Plot a line that scales as time^{3/2}: loglog([1.0,1024.0],1e-12*[1,2^15],":",linewidth=3) =# println("Max diff asinh(dtbvdq0): ",maximum(abs.(asinh.(dtbvdq0_num[mask]).-asinh.(dtbvdq0[mask])))) @test isapprox(asinh.(dtbvdq0[mask]),asinh.(convert(Array{Float64,5},dtbvdq0_num)[mask]);norm=maxabs) #@save "test_ttbv.jld2" dtbvdq0 dtbvdq0_num end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
8446
#include("../src/ttv.jl") #include("/Users/ericagol/Computer/Julia/regress.jl") @testset "ttvbv_elements" begin # This routine takes derivative of transit times, vsky & bsky^2 with respect # to the initial orbital elements. #n = 8 n = 3 H = [3,1,1] n_body = n t0 = 7257.93115525-7300.0 #h = 0.12 h = 0.04 #tmax = 600.0 #tmax = 800.0 #tmax = 1000.0 tmax = 10.0 # Read in initial conditions: elements = readdlm("elements.txt",',') elements[:,3] .-= 7300.0 # Make masses of planets bigger #elements[2,1] *= 10.0 #elements[3,1] *= 10.0 ntt = zeros(Int64,n) # Make an array, ttbv, to hold transit times, vsky & b^2: # First, though, make sure it is large enough: for i=2:n ntt[i] = ceil(Int64,tmax/elements[i,2])+3 end dtbvdq0 = zeros(3,n,maximum(ntt),7,n) ttbv = zeros(3,n,maximum(ntt)) ttbv1 = zeros(3,n,maximum(ntt)) ttbv2 = zeros(3,n,maximum(ntt)) ttbv3 = zeros(3,n,maximum(ntt)) ttbv4 = zeros(3,n,maximum(ntt)) ttbv8 = zeros(3,n,maximum(ntt)) # Save a counter for the actual number of transit times of each planet: count = zeros(Int64,n) count1 = zeros(Int64,n) # Call the ttv function: rstar = 1e12 dq = ttvbv_elements!(H,t0,h,tmax,elements,ttbv1,count1,0.0,0,0,rstar) # Now call with half the timestep: count2 = zeros(Int64,n) count3 = zeros(Int64,n) dq = ttvbv_elements!(H,t0,h/10.,tmax,elements,ttbv2,count2,0.0,0,0,rstar) mask = zeros(Bool, size(dtbvdq0)) for itbv=1:3, jq=1:n_body for iq=1:7 if iq == 7; ivary = 1; else; ivary = iq+1; end # Shift mass variation to end for i=2:n for k=1:count2[i] # Ignore inclination & longitude of nodes variations: if iq != 5 && iq != 6 && ~(jq == 1 && iq < 7) && ~(jq == i && iq == 7) mask[itbv,i,k,iq,jq] = true end end end end end # Now, compute derivatives (with respect to initial cartesian positions/masses): dtbvdelements0 = zeros(3,n,maximum(ntt),7,n) dtbvdelements0 = ttvbv_elements!(H,t0,h,tmax,elements,ttbv,count,dtbvdq0,rstar) dtbvdq2 = zeros(3,n,maximum(ntt),7,n) dtbvdelements2 = zeros(3,n,maximum(ntt),7,n) dtbvdelements2 = ttvbv_elements!(H,t0,h/2.,tmax,elements,ttbv2,count,dtbvdq2,rstar) dtbvdq4 = zeros(3,n,maximum(ntt),7,n) dtbvdelements4 = zeros(3,n,maximum(ntt),7,n) dtbvdelements4 = ttvbv_elements!(H,t0,h/4.,tmax,elements,ttbv4,count,dtbvdq4,rstar) dtbvdq8 = zeros(3,n,maximum(ntt),7,n) dtbvdelements8 = zeros(3,n,maximum(ntt),7,n) dtbvdelements8 = ttvbv_elements!(H,t0,h/8.,tmax,elements,ttbv8,count,dtbvdq8,rstar) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtbvdelements0[mask])-asinh.(dtbvdelements2[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtbvdq0)-asinh.(dtbvdq2)))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtbvdelements2[mask])-asinh.(dtbvdelements4[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtbvdq2)-asinh.(dtbvdq4)))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtbvdelements4[mask])-asinh.(dtbvdelements8[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtbvdq4)-asinh.(dtbvdq8)))) # Compute derivatives numerically: #nq = 15 # This "summarizes" best numerical derivative: dtbvdelements0_num = zeros(BigFloat,3,n,maximum(ntt),7,n) # Compute derivatives with BigFloat for additional precision: elements0 = copy(elements) dq0 = big(1e-10) t0big = big(t0); tmaxbig = big(tmax); hbig = big(h) zilch = big(0.0) # Compute the transit times in BigFloat precision: ttbv_big = big.(ttbv); elementsbig = big.(elements0); rstarbig = big(rstar) dqbig = ttvbv_elements!(H,t0big,hbig,tmaxbig,elementsbig,ttbv_big,count,big(0.0),0,0,rstarbig) mask = zeros(Bool, size(dtbvdq0)) for itbv=1:3, jq=1:n_body for iq=1:7 if iq == 7; ivary = 1; else; ivary = iq+1; end # Shift mass variation to end for i=2:n for k=1:count2[i] # Ignore inclination & longitude of nodes variations: if iq != 5 && iq != 6 && ~(jq == 1 && iq < 7) && ~(jq == i && iq == 7) mask[itbv,i,k,iq,jq] = true end end end end end # Now, compute derivatives (with respect to initial cartesian positions/masses): dtbvdelements0 = zeros(3,n,maximum(ntt),7,n) dtbvdelements0 = ttvbv_elements!(H,t0,h,tmax,elements,ttbv,count,dtbvdq0,rstar) dtbvdq2 = zeros(3,n,maximum(ntt),7,n) dtbvdelements2 = zeros(3,n,maximum(ntt),7,n) dtbvdelements2 = ttvbv_elements!(H,t0,h/2.,tmax,elements,ttbv2,count,dtbvdq2,rstar) dtbvdq4 = zeros(3,n,maximum(ntt),7,n) dtbvdelements4 = zeros(3,n,maximum(ntt),7,n) dtbvdelements4 = ttvbv_elements!(H,t0,h/4.,tmax,elements,ttbv4,count,dtbvdq4,rstar) dtbvdq8 = zeros(3,n,maximum(ntt),7,n) dtbvdelements8 = zeros(3,n,maximum(ntt),7,n) dtbvdelements8 = ttvbv_elements!(H,t0,h/8.,tmax,elements,ttbv8,count,dtbvdq8,rstar) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtbvdelements0[mask])-asinh.(dtbvdelements2[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtbvdq0)-asinh.(dtbvdq2)))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtbvdelements2[mask])-asinh.(dtbvdelements4[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtbvdq2)-asinh.(dtbvdq4)))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtbvdelements4[mask])-asinh.(dtbvdelements8[mask])))) println("Maximum error on derivative: ",maximum(abs.(asinh.(dtbvdq4)-asinh.(dtbvdq8)))) # Compute derivatives numerically: #nq = 15 # This "summarizes" best numerical derivative: dtbvdelements0_num = zeros(BigFloat,3,n,maximum(ntt),7,n) # Compute derivatives with BigFloat for additional precision: elements0 = copy(elements) dq0 = big(1e-10) ttbv2 = big.(ttbv2) ttbv3 = big.(ttbv3) t0big = big(t0); tmaxbig = big(tmax); hbig = big(h) zilch = big(0.0) # Compute the transit times in BigFloat precision: ttbv_big = big.(ttbv); elementsbig = big.(elements0) # Now, compute derivatives numerically: for jq=1:n_body for iq=1:7 elementsbig = big.(elements0) if iq == 7; ivary = 1; else; ivary = iq+1; end # Shift mass variation to end elementsbig[jq,ivary] += dq0 dq_plus = ttvbv_elements!(H,t0big,hbig,tmaxbig,elementsbig,ttbv2,count2,zilch,0,0,big(rstar)) elementsbig[jq,ivary] -= 2dq0 dq_minus = ttvbv_elements!(H,t0big,hbig,tmaxbig,elementsbig,ttbv3,count2,zilch,0,0,big(rstar)) #xm,vm = init_nbody(elements,t0,n_body) for i=2:n for k=1:count2[i] # Compute double-sided derivative for more accuracy: for itbv=1:3 dtbvdelements0_num[itbv,i,k,iq,jq] = (ttbv2[itbv,i,k]-ttbv3[itbv,i,k])/(2dq0) # Ignore inclination & longitude of nodes variations: if iq != 5 && iq != 6 && ~(jq == 1 && iq < 7) && ~(jq == i && iq == 7) mask[itbv,i,k,iq,jq] = true end end end end end end println("Max diff asinh(dtbvdelements): ",maximum(abs.(asinh.(dtbvdelements0[mask])-asinh.(dtbvdelements0_num[mask])))) #= using PyPlot # Make a plot of the fractional errors: for itbv=1:3, i=2:3, k=1:7, l=1:3 if maximum(abs.(dtbvdelements0_num[itbv,i,2:count1[i],k,l])) > 0 loglog(ttbv[itbv,i,2:count1[i]].-ttbv[itbv,i,1],convert(Array{Float64,1},abs.(dtbvdelements0[itbv,i,2:count1[i],k,l]./dtbvdelements0_num[itbv,i,2:count1[i],k,l].-1.))) end end clf() # Plot the difference in the TTVs: for itbv=1:3, i=2:3 diff1 = convert(Array{Float64,1},abs.(ttbv1[itbv,i,2:count1[i]]./ttbv_big[itbv,i,2:count1[i]].-1.0)); loglog(ttbv[itbv,i,2:count1[i]].-ttbv[itbv,i,1],diff1); end for itbv=1:3, i=2:3, k=1:7, l=1:3 if maximum(abs.(dtbvdelements0_num[itbv,i,2:count1[i],k,l])) > 0 && k != 5 && k != 6 diff1 = convert(Array{Float64,1},abs.(dtbvdelements0[itbv,i,2:count1[i],k,l]./dtbvdelements0_num[itbv,i,2:count1[i],k,l].-1)); diff2 = convert(Array{Float64,1},abs.(asinh.(dtbvdelements0[itbv,i,2:count1[i],k,l])-asinh.(dtbvdelements0_num[itbv,i,2:count1[i],k,l]))); loglog(ttbv[itbv,i,2:count1[i]].-ttbv[itbv,i,1],diff1); println(i," ",k," ",l," frac error: ",convert(Float64,maximum(diff1))," asinh error: ",convert(Float64,maximum(diff2))); #read(STDIN,Char); end end # Plot a line that scales as time^{3/2}: loglog([1.0,1024.0],1e-09*[1,2^15],":") loglog([1.0,1024.0],1e-12*[1,2^15],":") loglog([1.0,1024.0],1e-15*[1,2^15],":") =# @test isapprox(asinh.(dtbvdelements0[mask]),asinh.(dtbvdelements0_num[mask]);norm=maxabs) dtbvdelements0_num = convert(Array{Float64,5},dtbvdelements0_num) #@save "ttvbv_elements.jld2" dtbvdelements0 dtbvdelements0_num ttbv end
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
code
3763
clf() nmed = 10 for i=2:3, k=1:7, l=1:3 if maximum(abs.(dtdq0[i,2:count[i],k,l])) > 0 # diff1 = abs.(asinh.(dtdq0_big[i,2:count[i],k,l])-asinh.(dtdq0[i,2:count[i],k,l])); # diff1 = abs.(dtdq0_big[i,2:count[i],k,l]-dtdq0[i,2:count[i],k,l])/maximum(dtdq0[i,2:count[i],k,l]); diff1 = abs.(dtdq0_big[i,2:count[i],k,l]-dtdq0[i,2:count[i],k,l]) diff2 = copy(diff1); diff3 = abs.(dtdelements_big[i,2:count[i],k,l]-dtdelements_mixed[i,2:count[i],k,l]) # diff3 = abs.(asinh.(dtdelements_big[i,2:count[i],k,l])-asinh.(dtdelements_mixed[i,2:count[i],k,l])) diff4 = copy(diff3); ntt1 = size(diff1)[1]; for it=nmed:ntt1-nmed # Divide by a median smoothed dtdq0: diff2[it] = diff1[it]/maximum(abs.(dtdq0[i,it+1-nmed+1:it+1+nmed,k,l])) maxit = maximum(abs.(dtdelements_mixed[i,it+1-nmed+1:it+1+nmed,k,l])) if maxit > 0 diff4[it] = diff3[it]/maximum(abs.(dtdelements_mixed[i,it+1-nmed+1:it+1+nmed,k,l])) end end; diff2[1:nmed-1] .= diff2[nmed]; diff2[ntt1-nmed+1:ntt1] .= diff2[ntt1-nmed]; diff4[1:nmed-1] .= diff4[nmed]; diff4[ntt1-nmed+1:ntt1] .= diff4[ntt1-nmed]; # diff3 = abs.(asinh.(dtdq2_big[i,2:count[i],k,l])-asinh.(dtdq2[i,2:count[i],k,l])); loglog(tt[i,2:count[i]]-tt[i,1],diff2,linestyle=":"); loglog(tt[i,2:count[i]]-tt[i,1],diff4,linestyle="--"); # loglog(tt[i,2:count[i]]-tt[i,1],diff3); println("xvs: ",i," ",k," ",l," asinh error h : ",convert(Float64,maximum(diff2))); #read(STDIN,Char); println("els: ",i," ",k," ",l," asinh error h : ",convert(Float64,maximum(diff4))); #read(STDIN,Char); # println(i," ",k," ",l," asinh error h/2: ",convert(Float64,maximum(diff3))); #read(STDIN,Char); end end loglog([1.0,40000.0],0.5e-16*([1.0,40000.0]/h).^1.5) clf() nmed = 10 for i=2:3, k=1:7, l=1:3 if maximum(abs.(dtdq0[i,2:count[i],k,l])) > 0 diff1 = abs.(asinh.(dtdq0_big[i,2:count[i],k,l])-asinh.(dtdq0[i,2:count[i],k,l])); diff3 = abs.(asinh.(dtdelements_big[i,2:count[i],k,l])-asinh.(dtdelements_mixed[i,2:count[i],k,l])) loglog(tt[i,2:count[i]]-tt[i,1],diff1,linestyle=":"); loglog(tt[i,2:count[i]]-tt[i,1],diff3,linestyle="--"); println("xvs: ",i," ",k," ",l," asinh error h : ",convert(Float64,maximum(diff1))); #read(STDIN,Char); println("els: ",i," ",k," ",l," asinh error h : ",convert(Float64,maximum(diff3))); #read(STDIN,Char); end end loglog([1.0,40000.0],0.5e-16*([1.0,40000.0]/h).^1.5) @inbounds for i=1:n, j=1:count[i] @inbounds for k=1:n, l=1:7; dtdelements_mixed[i,j,l,k] = 0.0 @inbounds for p=1:n, q=1:7 dtdelements_mixed[i,j,l,k] += dtdq0[i,j,q,p]*convert(Float64,jac_init_big[(p-1)*7+q,(k-1)*7+l]) end end end dtdelements_mixed_big = copy(dtdelements_big) @inbounds for i=1:n, j=1:count[i] @inbounds for k=1:n, l=1:7; dtdelements_mixed_big[i,j,l,k] = 0.0 @inbounds for p=1:n, q=1:7 dtdelements_mixed_big[i,j,l,k] += dtdq0_big[i,j,q,p]*jac_init_big[(p-1)*7+q,(k-1)*7+l] end end end clf() nmed = 10 for i=2:3, k=1:7, l=1:3 if maximum(abs.(dtdq0[i,2:count[i],k,l])) > 0 diff1 = abs.(dtdq0_big[i,2:count[i],k,l]-dtdq0[i,2:count[i],k,l])/median(abs.(dtdq0[i,2:count[i],k,l])) loglog(tt[i,2:count[i]]-tt[i,1],diff1,linestyle=":"); println("xvs: ",i," ",k," ",l," asinh error h : ",convert(Float64,maximum(diff1))); #read(STDIN,Char); end if maximum(abs.(dtdelements[i,2:count[i],k,l])) > 0 diff3 = abs.(dtdelements_big[i,2:count[i],k,l]-dtdelements[i,2:count[i],k,l])/median(abs.(dtdelements[i,2:count[i],k,l])); loglog(tt[i,2:count[i]]-tt[i,1],diff3,linestyle="--"); println("els: ",i," ",k," ",l," asinh error h : ",convert(Float64,maximum(diff3))); #read(STDIN,Char); end end loglog([1.0,40000.0],0.5e-16*([1.0,40000.0]/h).^1.5)
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
docs
1019
# NbodyGradient [![NbodyGradient-CI](https://github.com/ericagol/NbodyGradient.jl/actions/workflows/NbodyGradient.yml/badge.svg)](https://github.com/ericagol/NbodyGradient.jl/actions/workflows/NbodyGradient.yml) [![](https://img.shields.io/badge/arXiv-2106.02188-orange)](https://arxiv.org/abs/2106.02188) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://ericagol.github.io/NbodyGradient.jl/dev) A set of Julia routines for computing gradients of N-body integrations. Under development by Eric Agol, David Hernandez and Zach Langford License: If using in publications, please cite [Agol, Hernandez & Langford (2021)](https://arxiv.org/abs/2106.02188). Paper: See orange button above or go to the [paper repository](https://github.com/langfzac/nbg-papers). Documentation: See blue button above. Thanks to NASA, NSF and the Guggenheim Foundation for supporting this work. Here is an introduction at the NASA Exoplanet Modeling and Analysis Center (EMAC): https://www.youtube.com/watch?v=VXnxDnIBHog
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
docs
652
# API ## Types ### Initial Conditions ```@docs CartesianIC Elements Elements(m::T,P::T,t0::T,ecosϖ::T,esinϖ::T,I::T,Ω::T) where T<:Real ElementsIC ElementsIC(t0::T, H::Matrix{<:Real}, elems::Elements{T}...) where T<:AbstractFloat ``` ### State ```@docs State{T<:AbstractFloat} State(ic::InitialConditions{T}) where T<:AbstractFloat ``` ### Integrator ```@docs Integrator{T<:AbstractFloat} ``` ### TransitTiming ```@docs TransitParameters{T<:AbstractFloat} TransitParameters(tmax::T,ic::ElementsIC{T},ti::Int64=1) where T<:AbstractFloat TransitTiming{T<:AbstractFloat} TransitTiming(tmax::T,ic::ElementsIC{T},ti::Int64=1) where T<:AbstractFloat ```
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
docs
4182
# Basic Usage Here we'll walk through an example of integrating a 3-body system. ##### Units A quick note on the units used throughout the code. - Distance: AU - Time: Days - Mass: Solar Masses - Angles: Radians ### Initial Conditions First, we define the orbital elements of the system. This can be done by creating [`Elements`](@ref) for each body in the system. Start with a 1 solar mass star ```@example 1 using NbodyGradient a = Elements(m = 1.0); nothing # hide ``` We then define the orbital elements for second body, say an Earth analogue. ```@example 1 b = Elements( m = 3e-6, # Mass [Solar masses] t0 = 0.0, # Initial time of transit [days] P = 365.256, # Period [days] ecosω = 0.01, # Eccentricity * cos(Argument of Periastron) esinω = 0.0, # Eccentricity * sin(Argument of Periastron) I = π/2, # Inclination [Radians] Ω = 0.0 # Longitude of Ascending Node [Radians] ); nothing # hide ``` (`ecosω` can be typed as `ecos\omega` and then hitting tab) Next we'll create a Jupiter analogue for the final body. Here the orbital elements are specified for the Keplerian ((a,b),c), or c orbiting the center of mass of a and b. (While this might not need to be stated explicitly here, this convention is useful for more complicated hierarchical systems). ```@example 1 c = Elements( m = 9.54e-4, P = 4332.59, ecosω = 0.05, I = π/2 ); nothing # hide ``` Here, we can simply omit any orbital elements which are zero. Unspecified elements are set to zero by default. Now we need to pass our [`Elements`](@ref) to [`ElementsIC`](@ref). ```@example 1 t0 = 0.0 # Initial time N = 3 # Number of bodies ic = ElementsIC(t0,N,a,b,c) ``` Finally, we can pass the initial conditions to [`State`](@ref), which converts orbital elements to cartesian coordinates (and calculates the derivatives with respect to the initial conditions). ```@example 1 s = State(ic); nothing # hide ``` The positions and velocities can be accessed by `s.x` and `s.v`, respectively. Each matrix contains the vector component (rows) for a particular body (columns). ```@example 1 s.x ``` ### Integration Now that we have initial conditions, we can construct and run the integrator. First, define an [`Integrator`](@ref), specifying the integration scheme, the time step, and final time. We'll use the `ahl21!` mapping. ```@example 1 h = b.P/30.0 # We want at most 1/20th of the smallest period for a time step tmax = 5*c.P # Integrate for 5 orbital periods of the outer body intr = Integrator(ahl21!,h,tmax); nothing # hide ``` !!! note "A quick aside on constructors" The types in NbodyGradient.jl have a number of constructors that enable to user to write as terse or as verbose code as they would like. For example, the above `Integrator` construction could specify each field as `Integrator(scheme, h, t0, tmax)` (see [`Integrator`](@ref) for argument definitions), or only the time step and integration time as `Integrator(h,tmax)`. In the latter case, the default value for `scheme` and `t0` are `ahl21!` and `0`, respectively. If you're coming from [Agol, Hernandez, and Langford (2021)](https://ui.adsabs.harvard.edu/abs/2021arXiv210602188A/abstract) you'll notice some discrepancy in the examples due to this. Finally, run the [`Integrator`](@ref) by passing it the [`State`](@ref). ```@example 1 intr(s) s.x # Show final positions ``` This integrates from `s.t` to `s.t+tmax`, steping by `h`. If you'd rather step a certain number of time steps: ```@example 1 N = 1000 intr(s,N) ``` !!! note "Re-running simulations" If you want to run the integration from the initial condtions again, you must 'reset' the [`State`](@ref). I.e. run `s = State(ic)`. Otherwise, the integration will begin from what ever `s.t` is currently equal to, and with those coordinates. ### Transit Timing If we wish to compute transit times, we need only to pass a [`TransitTiming`](@ref)structure to the [`Integrator`](@ref). ```@example 1 s = State(ic) # Reset to the initial conditions tt = TransitTiming(tmax, ic) intr(s,tt) ``` To see the first 5 transit times of our second body about the first body, run: ```@example 1 tt.tt[2,1:5] ```
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
docs
2259
# Gradients The main purpose of developing NbodyGradient.jl is to provide a differentiable N-body model for gradient-based optimization. Here, we walk though computing and accessing the jacobian of the transit times with respect to the initial orbital elements and masses. We assume you've taken a look at the [Basic Usage](@ref) tutorial, and are familiar with the orbital elements and units used in NbodyGradient.jl. !!! note "No gradient support for exactly circular orbits" This package supports specifying initial conditions for circular orbits (ie. eccentricity=0). However, the derivative computations contain 1/e terms -- requiring a non-zero eccentricity to be computed correctly. We expect the need for derivatives for exactly circular initial orbits to be minimal, and intend to implement them in the future. Here, we will specify the orbital elements using the 'elements matrix' option (See [`ElementsIC`](@ref)). ```@example 2 using NbodyGradient # Initial Conditions elements = [ # m P t0 ecosω esinω I Ω 1.0 0.0 0.0 0.0 0.0 0.0 0.0; # Star 3e-6 365.256 0.0 0.01 0.0 π/2 0.0; # Earth analogue ] ic = ElementsIC(0.0, 2, elements); nothing # hide ``` Let's integrate for 5 periods of the planet and record the transit times. ```@example 2 s = State(ic) P = elements[2,2] # Get the period from the elements matrix tmax = 5 * P tt = TransitTiming(5 * P, ic) h = P/30.0 Integrator(h, tmax)(s, tt) # Run without creating an `Integrator` variable. # Computed transit times tt.tt ``` The derivatives of the transit times with respect to the initial orbitial elements and masses are held in the `dtdelements` field of the [`TransitTiming`](@ref) structure -- an `Array{T<:AbstractFloat,4}`. The indices correspond to the transiting body, transit number, orbital element, and body the orbital element is describing. For example, this is how to access the 'gradient' of the first transit time of the orbiting body: ```@example 2 tt.dtdelements[2,1,:,:] ``` Here, the first column is the derivative of the transit time with respect to the stars 'orbital elements', which are all zero except for the mass in the last row. The second column is the derivatives with respect to the orbital elements of the system.
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
docs
1075
# NbodyGradient A fast, differentiable N-body integrator for modeling transiting exoplanets, and more. This package provides a simple user-interface to carry out N-body simulations and compute the derivatives of the outputs with respect to the initial conditions. The current version of the code implements the following: - Integrators: - AHL21 (4th-order Symplectic; [Agol, Hernandez, & Langford 2021](https://github.com/langfzac/nbg-papers)) - Initial Conditions: - Cartesian coordinates ([`CartesianIC`](@ref)) - Orbital elements ([`ElementsIC`](@ref)) - Output Models: - Transit times ([`TransitTiming`](@ref)) - Transit times, impact parameter, and sky-plane velocity ([`TransitParameters`](@ref)) ## Getting Started First, you'll need to add the package. Using the Julia REPL, run: ```julia pkg> add NbodyGradient ``` If you'd like to use the developement version of the code, run: ```julia pkg> add NbodyGradient#master ``` Then, use like any other Julia package ```julia using NbodyGradient ``` See the [Tutorials](@ref) page for basic usage.
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "MIT" ]
0.2.1
c335d4bf34bbdff2253cd0071e5a26dbf586d098
docs
66
# Tutorials ```@contents Pages = ["basic.md", "gradients.md"] ```
NbodyGradient
https://github.com/ericagol/NbodyGradient.jl.git
[ "CC0-1.0" ]
0.1.1
8d72b728dacbe28ca31deeea9edfafd081c77010
code
144
using Documenter, MixFit makedocs(sitename="MixFit Documentation", modules = [MixFit]) deploydocs(repo = "github.com/the-sushi/MixFit.jl.git")
MixFit
https://github.com/the-sushi/MixFit.jl.git
[ "CC0-1.0" ]
0.1.1
8d72b728dacbe28ca31deeea9edfafd081c77010
code
145
module MixFit using Statistics include("special.jl") include("distributions.jl") include("mixutils.jl") include("em.jl") end
MixFit
https://github.com/the-sushi/MixFit.jl.git
[ "CC0-1.0" ]
0.1.1
8d72b728dacbe28ca31deeea9edfafd081c77010
code
947
export dnorm, dgumbel, dgamma, dlognorm """ dnorm(x::Real, μ::Real, σ::Real) Normal distribution density function """ dnorm(x::Real, μ::Real, σ::Real) = exp(-0.5 * ((x - μ)/σ)^2)/(σ*sqrt2π) """ dgumbel(x::Real, μ::Real, σ::Real) Gumbel density, parameterized by mean (μ) and SD (σ) of x. """ function dgumbel(x::Real, μ::Real, σ::Real) β = (√6 * σ) / π α = μ - (β*γ) z = (x - α) / β exp(-(z + exp(-z))) end """ dgamma(x::Real, μ::Real, σ::Real) Gamma density, parameterized by mean (μ) and sigma(σ) of x. """ function dgamma(x::Real, μ::Real, σ::Real) α = μ^2 / σ^2 β = μ / σ^2 (x^(α - 1) * exp(-β * x)) * (β^α / Γ(α)) end """ dlognorm(x::Real, μ::Real, σ::Real) Lognormal density, parameterized by mean (μ) and SD (σ) of x, NOT of log(x). """ function dlognorm(x::Real, μ::Real, σ::Real) lμ = log(μ^2 / sqrt(1 + σ^2 / μ^2)) lσ = √(log(1 + σ^2 / μ^2)) dnorm(log(x), lμ, lσ) / x end
MixFit
https://github.com/the-sushi/MixFit.jl.git
[ "CC0-1.0" ]
0.1.1
8d72b728dacbe28ca31deeea9edfafd081c77010
code
6212
export em_step!, em_run!, mixfit, densfit """ em_step!(est::MixModel, x::Vector{<:Real}) Run a single EM step. See also: [`em_run!`](@ref), [`mixfit`](@ref) """ function em_step!(est::MixModel, x::Vector{<:Real}) p = Matrix{Float32}(undef, length(est.μ), length(x)) for i = 1:length(est.μ) p[i,:] = est.α[i] * dnorm.(x, est.μ[i], est.σ[i]) ./ sum(est.α[j] * dnorm.(x, est.μ[j], est.σ[j]) for j=1:length(est.μ)) end for i = 1:length(est.μ) est.μ[i] = sum(p[i,:] .* x) / sum(p[i,:]) est.σ[i] = √(sum(p[i,:] .* (x .- est.μ[i,:]).^2) / sum(p[i,:])) est.α[i] = mean(p[i,:]) end end """ em_run!(est::MixModel, x::Vector{<:Real}, rtol::AbstractFloat = 0.00001, maxiter::Int = 0) Run EM steps until the percent increase in log-likelihood is below `rtol` or the number of iterations is greater than `maxiter`. If `maxiter` is set to zero, EM steps will continue until the increase is below `rtol` regardless of the number of iterations. See also: [`em_run!`](@ref), [`mixfit`](@ref) """ function em_run!(est::MixModel, x::Vector{<:Real}, rtol::AbstractFloat = 0.00001, maxiter::Int = 0) ll::Float32 = LL(x, est) oll::Float32 = -ll i::Int = 1 while true em_step!(est, x) oll = ll ll = LL(x, est) if abs((oll - ll) / oll) < rtol break end if i == maxiter @warn "Hit maximum number of iterations" end i += 1 end end """ mixfit(x::Vector{<:Real}, m::Int; rtol::AbstractFloat = 0.00001, α::Vector{<:Real} = fill(1/m, m), μ::Vector{<:Real} = quantile!(x, (1:m)/m), σ::Vector{<:Real} = fill(std(x) / √(m), m), maxswap::Int = 5 * m^2, maxiter_inner::Int = 0, maxiter::Int = 0, silent::Bool = false, kernel::Function = dnorm) Get the maximum likelihood estimate of an `m`-component mixture model using random-swap EM. Random-swap EM avoids local optimums by randomly replacing components and using the result with the maximum likelihood [^1]. The component distributions are given by `kernel`. The maximum number of swaps is given by `maxswap`. If results vary across runs, then `maxswap` is too low - the default is ``5m^2``. maxiter_inner is the maximum number of iterations for the estimates that go through the swapping process, and maxiter is the maximum for the final estimate. Similarly, `rtol` is for the final estimate, while the inner estimates use 0.1. To supress output, simply set `silent` to true. Starting values can be provided via the α, μ, and σ arguments, but this shouldn't be necassary due to the use of random swapping. [^1]: Zhao, Q., Hautamäki, V., Kärkkäinen, I., & Fränti, P. (2012). Random swap EM algorithm for Gaussian mixture models. Pattern Recognition Letters, 33(16), 2120-2126. See also: [`densfit`](@ref), [`em_run!`](@ref) """ function mixfit(x::Vector{<:Real}, m::Int; rtol::AbstractFloat = 0.00001, t::Int = 0, α::Union{Vector{<:Real}, Nothing} = nothing, μ::Union{Vector{<:Real}, Nothing} = nothing, σ::Union{Vector{<:Real}, Nothing} = nothing, maxswap::Int = 0, maxiter_inner::Int = 0, maxiter::Int = 0, silent::Bool = false, kernel::Function = dnorm) if maxswap == 0 maxswap = 5 * m^2 end est = MixModel(fill(1/m, m), quantile!(x, (1:m)/m), fill(std(x) / √(m), m), kernel) if μ != nothing est.μ = μ end if σ != nothing est.σ = σ end if α != nothing est.α = α end em_run!(est, x, 0.1, maxiter_inner) for i ∈ 1:maxswap est_s = copy(est) choice = rand(1:m) est_s.μ[choice] = rand(x) est_s.α = fill(1/m, m) est_s.σ[choice] = std(x) / √(m) em_run!(est_s, x, 0.1, maxiter_inner) if LL(x, est_s) > LL(x, est) est = est_s end end em_run!(est, x, rtol, maxiter) if silent == false describe(est, data = x) end return est end """ densfit(x::Vector{<:Real}; wait::Int = 3, rtol_em::AbstractFloat = 0.00001, criterion::Function = AIC, silent::Bool = false, maxiter::Int = 0, maxiter_inner::Int = 0, maxswap::Int = 0, kernel::Function = dnorm) Estimate the density of `x` by a mixture model. Successive mixture model estimates are done via random swap EM with increasing number of clusters until `criterion` decreases for 3 iterations. By default, `criterion` uses AIC, which performs well for density estimation [^2]. However, AIC2 should be used instead if one wants to actually estimate the number of clusters in a true mixture model. The relative tolerance for EM convergence is given by `rtol_em`. To disable output, set `silent` to true. [^2]: Wang, Y., & Chee, C. S. (2012). Density estimation using non-parametric and semi-parametric mixtures. Statistical Modelling, 12(1), 67-92. See also: [`densfit`](@ref), [`em_run!`](@ref) """ function densfit(x::Vector{<:Real}; wait::Int = 3, rtol_em::AbstractFloat = 0.00001, criterion::Function = AIC, silent::Bool = false, maxiter::Int = 0, maxiter_inner::Int = 0, maxswap::Int = 0, kernel::Function = dnorm) new::MixModel = mixfit(x, 1, silent = true) current::MixModel = new m::Int = 2 nbad::Int = 0 while nbad < wait new = mixfit(x, m, silent = true, maxiter = maxiter, maxiter_inner = maxiter_inner, maxswap = maxswap, kernel = kernel) if (criterion(x, new) >= criterion(x, current)) nbad += 1 else nbad = 0 current = new end m += 1 end if silent == false describe(current, data = x) end return current end
MixFit
https://github.com/the-sushi/MixFit.jl.git
[ "CC0-1.0" ]
0.1.1
8d72b728dacbe28ca31deeea9edfafd081c77010
code
3274
export MixModel, copy, LL, AIC, AIC3, BIC, describe """ Structure of mixture model parameters. # Variables - `α::Vector{Float32}`: Weights of the components - `μ::Vector{Float32}`: Means of the components - `σ::Vector{Float32}`: SDs of the components """ mutable struct MixModel α::Vector{Float32} μ::Vector{Float32} σ::Vector{Float32} kernel::Function end Base.copy(est::MixModel) = MixModel(est.α, est.μ, est.σ, est.kernel) """ LL(x::Vector{<:Real}, est::MixModel) Get the log-likelihood of a mixture model detailed in `est`, using the data `x`. See also: [`AIC`](@ref), [`AIC3`](@ref), [`BIC`](@ref) """ LL(x::Vector{<:Real}, est::MixModel) = sum( log(sum(est.α .* est.kernel.(x[i], est.μ, est.σ))) for i=1:length(x)) """ AIC(x::Vector{<:Real}, est::MixModel) Get the AIC of a mixture model, using the data `x`. The AIC for a model ``M`` is given by: `` AIC(M) = 2k - 2l(M)`` Where ``k`` is the number of parameters and ``l(M)`` is the log-likelihood. See also: [`AIC3`](@ref), [`BIC`](@ref), [`LL`](@ref) """ AIC(x::Vector{<:Real}, est::MixModel) = 2*(3 * length(est.μ) - 1) - 2*LL(x, est) """ AIC3(x::Vector{<:Real}, est::MixModel) Get the modified AIC, "AIC3", of a mixture model using the data `x`. The AIC3 for a model ``M`` is given by [^3]: `` AIC(M) = 3k - 2l(M)`` Where ``k`` is the number of parameters and ``l(M)`` is the log-likelihood. [^3]: Bozdogan, H. (1994). Mixture-model cluster analysis using model selection criteria and a new informational measure of complexity. In Proceedings of the first US/Japan conference on the frontiers of statistical modeling: An informational approach (pp. 69-113). Springer, Dordrecht. See also: [`AIC`](@ref), [`BIC`](@ref), [`LL`](@ref) """ AIC3(x::Vector{<:Real}, est::MixModel) = 3*(3 * length(est.μ) - 1) - 2*LL(x, est) """ BIC(x::Vector{<:Real}, est::MixModel) Get the Bayesian Information Criterion of a mixture model using the data `x`. The BIC for a model ``M`` is given by: `` BIC(M) = log(n)k - 2l(M) `` Where ``n`` is the sample size and ``l(M)`` is the log-likelihood See also: [`AIC`](@ref), [`AIC3`](@ref), [`LL`](@ref) """ BIC(x::Vector{<:Real}, est::MixModel) = log(length(x))*(3 * length(est.μ) - 1) - 2*LL(x, est) """ describe(est::MixModel; data::Vector{<:Real}) Pretty-print the parameters and fit indicies for the mixture model `est`. If `data` is not specified, fit indicies will not be printed. """ function describe(est::MixModel; data::Union{Vector{<:Real}, Nothing} = nothing) if (data != nothing) println(repeat('-', length("Log-likelihood: $(LL(data, est))"))) println("\nLog-likelihood: $(LL(data, est))") println("AIC: $(AIC(data, est))") println("AIC3: $(AIC3(data, est))") println("BIC: $(BIC(data, est))\n") else println("------------------\n") end for i ∈ 1:length(est.α) println("Component $i:") println("\tα: $(est.α[i])") println("\tμ: $(est.μ[i])") println("\tσ: $(est.σ[i])\n") end if (data != nothing) println(repeat('-', length("Log-likelihood: $(LL(data, est))"))) else println("------------------") end end
MixFit
https://github.com/the-sushi/MixFit.jl.git
[ "CC0-1.0" ]
0.1.1
8d72b728dacbe28ca31deeea9edfafd081c77010
code
247
const log2π = log(2*π) const sqrt2π = √(2*π) const sqrtπ = √π # Euler–Mascheroni constant const γ = 0.577215665 # Ramanujan's approximation to the Γ function: Γ(x::Real) = sqrtπ*((x-1)/exp(1))^(x-1) * (8*(x-1)^3 + 4*(x-1)^2 + (x-1) + 1/30)^(1/6)
MixFit
https://github.com/the-sushi/MixFit.jl.git
[ "CC0-1.0" ]
0.1.1
8d72b728dacbe28ca31deeea9edfafd081c77010
docs
1941
# MixFit.jl [![License: CC0-1.0](https://img.shields.io/badge/License-CC0%201.0-lightgrey.svg)](http://creativecommons.org/publicdomain/zero/1.0/) [![](https://img.shields.io/badge/docs-stable-blue.svg)](http://joshuapritsker.com/MixFit.jl/stable) MixFit.jl is a Julia package for fitting finite mixture models, and for nonparametric density estimation via finite mixture models ([Wang & Chee, 2012](https://doi.org/10.1177/1471082X1001200104)). Models are fitted using random-swap expectation maximization ([Zhao, Hautamäki, Kärkkäinen, & Fränti, 2012](https://doi.org/10.1016/j.patrec.2012.06.017)), which avoids the problem of local optimums by randomly replacing components and using the final maximum. By default, MixFit.jl supports normal, gamma, lognormal, and gumbel mixtures, but it is easy to use your own density function instead. If you use this, it *would be nice* if you cited me, but I'm putting it under public domain so you can do whatever you want with it. ## Example ``` julia> using MixFit julia> x = [randn(500); (randn(500).+3).*2] 1000-element Array{Float64,1}: -0.3872542393168341 0.44218146773613404 -1.140006685489404 -0.11093365262262657 0.917287805330094 1.3997276699755827 ⋮ 3.860428712486353 4.924743765884938 4.767237225983121 3.6111782228201013 5.498455397469906 julia> densfit(x, criterion = AIC3) ---------------------------------- Log-likelihood: -2408.562390297034 AIC: 4827.124780594068 AIC3: 4832.124780594068 BIC: 4851.6635569889795 Component 1: α: 0.5093992 μ: 0.07551261 σ: 1.0396444 Component 2: α: 0.49060085 μ: 6.004384 σ: 2.0322912 ---------------------------------- MixModel(Float32[0.5093992, 0.49060085], Float32[0.07551261, 6.004384], Float32[1.0396444, 2.0322912], MixFit.dnorm) julia> ```
MixFit
https://github.com/the-sushi/MixFit.jl.git
[ "CC0-1.0" ]
0.1.1
8d72b728dacbe28ca31deeea9edfafd081c77010
docs
219
# MixFit.jl Documentation ## Model estimation ```@docs MixModel mixfit densfit em_run! em_step! ``` ## Model methods ```@docs LL AIC AIC3 BIC describe ``` ## Distributions ```@docs dnorm dgumbel dgamma dlognorm ```
MixFit
https://github.com/the-sushi/MixFit.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
303
using BenchmarkTools using Random using MIToS.Utils using MIToS.MSA using MIToS.Information const SUITE = BenchmarkGroup() include("Utils/GeneralUtils.jl") include("MSA/Residues.jl") include("MSA/Annotations.jl") include("Information/CorrectedMutualInformation.jl") include("Information/Counters.jl")
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
506
let msa = rand(Random.MersenneTwister(1), res"ARNDCQEGHILKMFPSTWYV-", 50, 50), msa_large = msa[:, 1:10], msa_wide = msa[1:10, :] SUITE["Information"]["CorrectedMutualInformation"]["buslje09"]["msa"] = @benchmarkable buslje09($msa) SUITE["Information"]["CorrectedMutualInformation"]["buslje09"]["msa_large"] = @benchmarkable buslje09($msa_large) SUITE["Information"]["CorrectedMutualInformation"]["buslje09"]["msa_wide"] = @benchmarkable buslje09($msa_wide) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
486
let seq_a = rand(Random.MersenneTwister(37), res"ARNDCQEGHILKMFPSTWYV-", 500), seq_b = rand(Random.MersenneTwister(73), res"ARNDCQEGHILKMFPSTWYV-", 500), Na = ContingencyTable(Float64, Val{1}, UngappedAlphabet()), Nab = ContingencyTable(Float64, Val{2}, UngappedAlphabet()) SUITE["Information"]["frequencies!"]["1"] = @benchmarkable frequencies!($Na, $seq_a) SUITE["Information"]["frequencies!"]["2"] = @benchmarkable frequencies!($Nab, $seq_a, $seq_b) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
4199
# PF00501 in Pfam 30.0 has 3560 columns, 423 sin inserts let seq = replace( """ ........................................................................................ ........................................................................................ .m-----.----...--.---..--..........................-------....-..-..-.....-....-....-... ......-....-....-....-.....-.......-........-..........-........-..............-....-... ............-........G..............V......E.............K.............G.........D.I.... ...............I.G.......L....K..........G...................R....N........V............ .P......E..............W.....L.........I..A......D.L.......G..V...Q.........M.....A..... ..........G...G......C....S.....L.....N......L.P.Y...................................... ........Q.Q..K.E..................E...I.....M...V...D.......L.....L....H......E.....I... ....G.......T.......-....-....--..........................--..........................-. -.--..-..-.......--..-....-.....-.....-.....-......-......-.........-......-........-... ....-.....-........-......-........-.......-.......-.......-.........-......-......-.... ....-....-........-..........-......-........-....-...-..-..-.-.-..-.--.---........---.. ........................................................................................ .........................................----.-.--.-......-.-.-.-...-....-.....-...-.... ..-............-...............-...........-.......-...........-......-.........-....... ...-............-...............-.................-.......-.....-.....-...---........... ...........--.-.--.-.--.........----.......--..-.--..................................... ...--...-.-....--..-....-..-...-...-....-..-....-..-..................-....-....-.-...-. ...-....-............-..........-.....-..........-.........-......-............-......-. ...-.....-.......-............-.......-...........-......-......-....--..........----... ..........................-..-.-..-.........-...........-.........-...........-......... -......-.......-.........-......-...-...-..........-...-....-..--..--................... ..........--..-.-.---..-.............-----.............................................. .....................................................................................--- ...................................-...--..-............................................ ........................................................................................ .............................................-.....-...........................-.......- -..-...-...-....-....-......-.........-..-...-...-..-..-..-.----........................ ...................--.-..-..-.-....-..........-.....-.-.-----........--................. ...............................................................---.---.-...-...-.-.-.... .-...-.....-........................--.....-....................................-....-.. -...-...-..-......-....-..............-.....-.......-........-.......-...-..-.-......-.. ......................................................--.--..........-.-.............-.. -..........-....-.....-..-.............-.................-..-............-.............- ......-....-.........-...-..................-...--...................-...-..-..-...--..- .......................................................-....--..-.-...-...-...-..-..---. ...-..-..............-..........-...-................................-...-....-.-..-..-. -.-...-..-..-----vvys................................................................... ........................................................................................ ........................................ """, '\n' => "", ), mask = convert(BitArray, Bool[isuppercase(char) || char == '-' for char in seq]), indexes = collect(eachindex(seq))[mask], annot = Annotations() setannotresidue!(annot, "K1PKS6_CRAGI/1-58", "SEQ", seq) SUITE["MSA"]["Annotations"]["filtercolumns"]["boolean mask"] = @benchmarkable filtercolumns!(copy($annot), $mask) SUITE["MSA"]["Annotations"]["filtercolumns"]["index array"] = @benchmarkable filtercolumns!(copy($annot), $indexes) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
570
# En Pfam 30.0 PF00400 has 268378 sequences let chars = rand(Random.MersenneTwister(1), ['.', '-', 'a':'z'..., 'A':'Z'...], 268378 * 2), residues = Residue[char for char in chars], ints = Int[res for res in residues] SUITE["MSA"]["Residue conversions"]["char2res"] = @benchmarkable Residue.($chars) SUITE["MSA"]["Residue conversions"]["res2char"] = @benchmarkable Char.($residues) SUITE["MSA"]["Residue conversions"]["int2res"] = @benchmarkable Residue.($ints) SUITE["MSA"]["Residue conversions"]["res2int"] = @benchmarkable Int.($residues) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
341
let ascii_str = "#=GR O31698/18-71 SS CCCHHHHHHHHHHHHHHHEEEEEEEEEEEEEEEEHHH\n", utf8_str = "#=GF CC (Römling U. and Galperin M.Y. “Bacterial cellulose\n" SUITE["Utils"]["get_n_words"]["ascii"] = @benchmarkable get_n_words($ascii_str, 3) SUITE["Utils"]["get_n_words"]["utf8"] = @benchmarkable get_n_words($utf8_str, 3) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
571
using Literate, MIToS COOKBOOK = joinpath(@__DIR__, "src", "cookbook") MD_OUTPUT = joinpath(@__DIR__, "src") NB_OUTPUT = joinpath(@__DIR__, "src", "cookbook", "notebooks") for file in [ "01_Change_B_factors.jl", "02_Linking_structural_and_evolutionary_information.jl", "03_RMSF.jl", ] Literate.markdown( joinpath(COOKBOOK, file), MD_OUTPUT, execute = false, documenter = true, ) Literate.notebook( joinpath(COOKBOOK, file), NB_OUTPUT, execute = false, documenter = true, ) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
1463
using Documenter using DocumenterCitations using MIToS const BIB = CitationBibliography(joinpath(@__DIR__, "src", "refs.bib")) const WARNONLY = [:missing_docs] if get(ENV, "CI", nothing) === nothing @info "Running locally, adding :cross_references to WARNONLY" push!(WARNONLY, :cross_references) end DocMeta.setdocmeta!(MIToS, :DocTestSetup, :(using MIToS); recursive = true) include("literate.jl") makedocs( doctest = true, format = Documenter.HTML( prettyurls = get(ENV, "CI", nothing) == "true", assets = String["assets/extra_styles.css", "assets/citations.css"], ), sitename = "MIToS", authors = "Diego Javier Zea", modules = [MIToS], pages = [ "Home" => "index.md", "Installation.md", "Example.md", "Modules" => ["MSA.md", "Information.md", "SIFTS.md", "PDB.md", "Pfam.md"], "Cookbook" => [ "01_Change_B_factors.md", "02_Linking_structural_and_evolutionary_information.md", "03_RMSF.md", ], "API" => [ "MSA_API.md", "Information_API.md", "SIFTS_API.md", "PDB_API.md", "Pfam_API.md", "Utils_API.md", ], "Scripts.md", "References.md", ], warnonly = WARNONLY, plugins = [BIB], ) deploydocs( repo = "github.com/diegozea/MIToS.jl.git", target = "build", deps = nothing, make = nothing, )
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
5007
# # Change B-factors # #md # [![](https://mybinder.org/badge_logo.svg)](@__BINDER_ROOT_URL__/cookbook/notebooks/01_Change_B_factors.ipynb) #md # [![](https://img.shields.io/badge/show-nbviewer-579ACA.svg)](@__NBVIEWER_ROOT_URL__/cookbook/notebooks/01_Change_B_factors.ipynb) # # # ## Problem description # # It is a common practice to change the B-factors of a PDB to store information # about atoms or residues to be used by other programs. In particular, values # in the B-factor column can be easily used to colour residues with # [PyMOL](https://pymolwiki.org/index.php/Color#B-Factors) or # [Chimera](https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/bfactor.html). # # We cannot simply assign a new value to the `B` field of a `PDBAtom` because # this type is immutable. However, we can make use of the `@set` macro of the # [Setfield](https://github.com/jw3126/Setfield.jl) package to create a new # `PDBAtom` with a different B-factor value. # # In a PDB file, B-factors are stored from the column 61 to 66. Therefore, new # B-factors should be a `String` with 6 or fewer characters, normally using two # characters for decimal values. We can use `pyfmt` and `FormatSpec` from the # [Format](https://github.com/JuliaString/Format.jl) package to create a # proper B-factor string. # # ## MIToS solution # # For this example we are going to use the small heat shock protein AgsA from # *Salmonella typhimurium* (PDB code: *4ZJ9*) available in MIToS docs data: using MIToS pdbfile = abspath(pathof(MIToS), "..", "..", "docs", "data", "4zj9.pdb") #md nothing # hide # First, we need to read the PDB file using the `MIToS.PDB` module: using MIToS.PDB pdb_residues = read_file(pdbfile, PDBFile) #md nothing # hide # For this example, we are going to replace the B-factor of the alpha-carbons # by the residue hydrophobicity according to the hydrophobicity scale of # [Kyte and Doolittle](https://doi.org/10.1016/0022-2836(82)90515-0) used by # [Chimera](https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/midas/hydrophob.html): hydrophobicity = Dict( "ILE" => 4.5, "VAL" => 4.2, "LEU" => 3.8, "PHE" => 2.8, "CYS" => 2.5, "MET" => 1.9, "ALA" => 1.8, "GLY" => -0.4, "THR" => -0.7, "SER" => -0.8, "TRP" => -0.9, "TYR" => -1.3, "PRO" => -1.6, "HIS" => -3.2, "GLU" => -3.5, "GLN" => -3.5, "ASP" => -3.5, "ASN" => -3.5, "LYS" => -3.9, "ARG" => -4.5, ) #md nothing # hide # First, we define a helper function using `Format` to create a proper # B-factor string with the PDB format; 6 characters and 2 digits after the # decimal point. # The [PDB format description](https://www.wwpdb.org/documentation/file-format-content/format23/sect9.html) # describe this field as: # ``` # COLUMNS DATA TYPE FIELD DEFINITION # ------------------------------------------------------ # 61 - 66 Real(6.2) tempFactor Temperature factor. # ``` using Format """ Return value as a string with the B factor format described in PDB. # e.g. 1.5 -> " 1.50" """ format_b_factor(value) = pyfmt(FormatSpec("6.2f"), value) # e.g. 1.5 -> " 1.50" #md nothing # hide # Then, where are using that helper function to define a function that returns # a new `PDBAtom` by changing the `B` factor field using the `Setfield` package. using Setfield """ Return a new PDBAtom with the B-factor changed to value. """ function change_b_factor(atom::PDBAtom, value) b_factor_string = format_b_factor(value) b_factor_string = strip(b_factor_string) # e.g. " 1.50" -> "1.50" if length(b_factor_string) > 6 throw(ErrorException("$b_factor_string has more than 6 characters.")) end @set atom.B = b_factor_string end #md nothing # hide # Now, we can use the `change_b_factor` function to change the B-factor of each # `"CA"` atom: for res in pdb_residues for i in eachindex(res.atoms) atom = res.atoms[i] if atom.atom == "CA" res.atoms[i] = change_b_factor(atom, hydrophobicity[res.id.name]) end end end # Finally, we can save the changed residues in a new PDB file. # # ```julia # write_file("4zj9_hydrophobicity.pdb", pdb_residues, PDBFile) # ``` # # ## Discussion # # While we have focused on changing the B-factor field of a `PDBAtom`, you can # use the same approach to change other fields. However, if you want to change # atom coordinates, it is better to use the `change_coordinates` function from # the PDB module of MIToS. # # MIToS atoms and residues generally stores the string present in the input # file without surrounding spaces. You can use the `Format` module to # create these strings and `strip` to get rid of the spaces. You can see the # [PDB format description](https://www.wwpdb.org/documentation/file-format-content/format23/sect9.html) # to know what is the format of the expected string or see the # [MIToS PDB print_file source code](https://github.com/diegozea/MIToS.jl/blob/master/src/PDB/PDBParser.j) # to get a quick idea.
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
10036
# # Linking structural and evolutionary information # #md # [![](https://mybinder.org/badge_logo.svg)](@__BINDER_ROOT_URL__/cookbook/notebooks/02_Linking_structural_and_evolutionary_information.ipynb) #md # [![](https://img.shields.io/badge/show-nbviewer-579ACA.svg)](@__NBVIEWER_ROOT_URL__/cookbook/notebooks/02_Linking_structural_and_evolutionary_information.ipynb) # # # ## Problem description # # It is a very common task to map sequence to structure residue number. For # example, to link structural information coming from *PDB* and evolutionary # information calculated from multiple sequence alignments. # # The naive way of mapping sequence and structure is to perform global pairwise # alignment between the sequence and the *PDB* sequence (using the residues in # *ATOM*). The problem with this approach is that the sequences can have # missing regions and standard pairwise alignment algorithms often yield # incorrect assignations around those regions # [(Velankar et.al. 2013)](https://doi.org/10.1093/nar/gks1258). This is # particularly important when aligning *PDB* sequences, that can have missing # residues, and sequences coming from multiple sequence alignments, that can be # incomplete or have unaligned regions (e.g. insert states). # # The [SIFTS](https://www.ebi.ac.uk/pdbe/docs/sifts/index.html) # (Structure Integration with Function, Taxonomy and Sequences) database solves # this problem and provides residue level mapping between PDB and other # databases (e.g. *UniProt* and *Pfam*). # # The `SIFTS` module of MIToS has functions to access this residue level mapping # between *PDB* and other databases. Also, MIToS keeps track of the residue # number of each residue in a multiple sequence alignment (MSA) using its annotations. # Both things together, allow the correct mapping of sequence and structure # without performing error-prone pairwise alignments. # # Particular solutions depend on problem details, here we show some common ways # to use MIToS and *SIFTS* to map evolutionary information calculated in an MSA # (e.g. Shannon entropy) with structural information (e.g. B-factors). # # ## PDB and Pfam alignment mapping # # This is the easiest problem to solve with the # [MIToS `Pfam` module](@ref Module-Pfam) because *SIFTS* already has a residue # level mapping between *PDB* and *Pfam*. # # For this example, we are going to map the columns in the multiple sequence # alignment of the *PF09645* Pfam family and the residues in the chain *A* from # the *2VQC* *PDB* file. The needed files are available in the MIToS test suite: using MIToS pdb_file = abspath(pathof(MIToS), "..", "..", "test", "data", "2VQC.pdb") pfam_file = abspath(pathof(MIToS), "..", "..", "test", "data", "PF09645_full.stockholm") sifts_file = abspath(pathof(MIToS), "..", "..", "test", "data", "2vqc.xml.gz") #md nothing # hide # You can also use `downloadpdb` from `MIToS.PDB`, `downloadpfam` from # `MIToS.Pfam` and `downloadsifts` from `MIToS.SIFTS` to get the corresponding # files from those databases. # # It is important to read the Pfam MSA file using `generatemapping=true` and # `useidcoordinates=true` because that allows keeping track of the residue # number using the MSA annotations. using MIToS.Pfam msa = read_file(pfam_file, Stockholm, generatemapping = true, useidcoordinates = true) # First, we need to know what is the sequence in the MSA that correspond to the # PDB we want to link. Luckily, Pfam Stockholm files store the mapping between # sequences and PDB chains. You can access that mapping using the `getseq2pdb` # function from `MIToS.Pfam` seq2pdbs = getseq2pdb(msa) # The returned dictionary gives you all the PDB chains associated with a # determined sequence in the MSA. But, in this case, we want to go in the other # direction to find all the sequences associated with a determined *PDB* chain. # We are going to use a list comprehension because it is possible for a single # chain to be associated with more than one sequence in the *Pfam* MSA (e.g. # domain repeats). pdb_code = "2VQC" pdb_chain = "A" seq_ids = [seq for (seq, pdbs) in seq2pdbs if (pdb_code, pdb_chain) in pdbs] # In this example, we are going to use the only sequence we found for the *A* # of *2VQC*. seq_id = seq_ids[1] # Finally, we can use the `msacolumn2pdbresidue` function from the Pfam module # to get a dictionary from the MSA column index to the *PDB* residue number: pfam_id = "PF09645" msacol2pdbres = msacolumn2pdbresidue(msa, seq_id, pdb_code, pdb_chain, pfam_id, sifts_file) # This dictionary has the mapping between MSA column and PDB residue that allows # the mapping between evolutionary and structural information. For example, to # measure the correlation between entropy (related to residue variation in an # MSA column) and the mean B factor of the residue: using MIToS.Information Hx = mapcolfreq!( shannon_entropy, msa, Frequencies(ContingencyTable(Int, Val{1}, UngappedAlphabet())), ) # To get quick access to each PDB residue based on its residue number, we can # read the PDB file into a dictionary using the `read_file` and `residuesdict` # functions from the MIToS `PDB` module: using MIToS.PDB res_dict = residuesdict( read_file(pdb_file, PDBFile, occupancyfilter = true), model = "1", chain = "A", ) # Then, we can iterate the mapping dictionary to link the MSA and PDB based # values: using Statistics x = Float64[] y = Float64[] for (col_index, res_number) in msacol2pdbres if res_number != "" # i.e. MSA column has an associated PDB residue push!(x, Hx[col_index]) push!(y, mean(parse(Float64, atom.B) for atom in res_dict[res_number].atoms)) end end cor(x, y) # ## Unknown sequence coordinates # # While *Pfam* alignments have the start and end of the aligned region indicated # in the sequence name, other multiple sequence alignments don't give any hint # about that. In those cases, we should use pairwise alignments. However, # instead of aligning the sequence coming from the MSA and the *PDB* sequence, # we can align the MSA sequence to the *UniProt* sequence to reduce the # possibility of mapping errors. Once we have the mapping of the MSA sequence # to the *UniProt* sequence, we can use *SIFTS* to map the *PDB* sequence to # the MSA sequence using the *UniProt* numeration. # # For this example, we are going to use the following files included in MIToS # documentation: using MIToS pdb_file = abspath(pathof(MIToS), "..", "..", "docs", "data", "1dur.pdb") msa_file = abspath(pathof(MIToS), "..", "..", "docs", "data", "blast_alignment.fa") sifts_file = abspath(pathof(MIToS), "..", "..", "docs", "data", "1dur.xml.gz") uniprot_file = abspath(pathof(MIToS), "..", "..", "docs", "data", "P00193.fasta") #md nothing # hide # First, we are going to read the MSA file. In this case, we can not use # `useidcoordinates=true` because the sequence names don't have the sequence # coordinates in the Pfam format. However, we are going to use # `generatemapping=true` to get the default mapping for each sequence in the # alignment (from `1` to the length of the aligned region): using MIToS.MSA msa = read_file(msa_file, FASTA, generatemapping = true) # After that, we get the first sequence of the MSA, the one we know that # corresponds to the PDB of interest. We need the sequence as a `String` # without gaps (unaligned), so we use the `MIToS.MSA` `stringsequence` function # together with `replace`: msa_seq = replace(stringsequence(msa, 1), '-' => "") # Also, we are going to read the *UniProt* sequence. You can easily download the # sequence from UniProt by doing: # ```julia # using MIToS.Utils # download_file("https://www.uniprot.org/uniprot/P00193.fasta", "P00193.fasta") # ``` # To read the FASTA file we are going to use the `FastaIO` package: using FastaIO uniprot_sequences = readfasta(uniprot_file) # And get the unique sequence: uniprot_seq = uniprot_sequences[1][2] # We can perform a pairwise sequence alignment between both sequences by using # the [`BioAlignments` package](https://github.com/BioJulia/BioAlignments.jl) # from the *BioJulia* suite. In this case, we use a semi-global alignment # (no start/end gap penalty) because we know that the MSA sequence is a region # of the *UniProt* sequence. using BioAlignments costmodel = AffineGapScoreModel(BLOSUM62, gap_open = -10, gap_extend = -1) aln = pairalign(SemiGlobalAlignment(), msa_seq, uniprot_seq, costmodel) # Then, we only need to iterate the alignment to designate the positions and # store the equivalences in a dictionary: function seq2refnumber(aln) seq_pos = 0 ref_pos = 0 last_seq_pos = 0 seq2ref = Dict{Int,Int}() for (seq_res, ref_res) in alignment(aln) if seq_res != '-' seq_pos += 1 end if ref_res != '-' ref_pos += 1 end if seq_pos != last_seq_pos seq2ref[seq_pos] = ref_pos last_seq_pos = seq_pos end end seq2ref end seqnum2uniprotnum = seq2refnumber(aln) # Then, we can use `getsequencemapping` to go from MSA column number to # *UniProt* residue, and `siftsmapping` to go from *UniProt* to *PDB*: seqmap = getsequencemapping(msa, 1) # - colnum2uniprotnum = Dict{Int,Int}() for (colnum, seqnum) in enumerate(seqmap) if seqnum != 0 # getsequencemapping returns 0 where there is a gap colnum2uniprotnum[colnum] = seqnum2uniprotnum[seqnum] end end colnum2uniprotnum # - using MIToS.SIFTS uniprotnum2pdbnum = siftsmapping( sifts_file, dbUniProt, "P00193", dbPDB, "1dur", # SIFTS stores PDB identifiers in lowercase chain = "A", missings = false, ) # residues without coordinates aren't used in the mapping # To finally get the dictionary from MSA column index to PDB residue number colnum2pdbnum = Dict{Int,String}() for (colnum, uniprotnum) in colnum2uniprotnum pdbresnum = get(uniprotnum2pdbnum, string(uniprotnum), "") if pdbresnum != "" colnum2pdbnum[colnum] = pdbresnum end end colnum2pdbnum
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
3348
# # Root Mean Squared Fluctuation (RMSF) # # md # [![](https://mybinder.org/badge_logo.svg)](@__BINDER_ROOT_URL__/cookbook/notebooks/03_RMSF.ipynb) # md # [![](https://img.shields.io/badge/show-nbviewer-579ACA.svg)](@__NBVIEWER_ROOT_URL__/cookbook/notebooks/03_RMSF.ipynb) # # # ## Problem description # # The [Root Mean Squared Fluctuation (RMSF)](https://en.wikipedia.org/wiki/Mean_squared_displacement) # is a common way to measure residue flexibility in a structural ensemble. # It is a measure of how far is the residue moving from its average position # in the group of structures. Usually, we represent a residue position with # the spatial coordinates of its alpha carbon. # # The protein structures should be previously superimposed to calculate the # RMSF, for example, by using the `superimpose` function of the # [`PDB` module of `MIToS`](@ref Module-PDB). In this example, we are going # to measure the RMSF of each residue from an NMR ensemble using the # `rmsf` function. # # The structure superimposition could be the most complicated step of the # process, depending on the input data. In particular, it structures come # from different PDB structures or homologous proteins can require the use # of external programs, # as [MAMMOTH-mult](https://ub.cbm.uam.es/software/online/mamothmult.php) or # [MUSTANG](https://lcb.infotech.monash.edu/mustang/) among others, # tailored for this task. # # In this case, we are going to use an NMR ensemble. Therefore, we are not # going to need to superimpose the structures as NMR models have the # same protein sequence and are, usually, well-aligned. # # # ## MIToS solution import MIToS using MIToS.PDB using Plots # Lets read the NMR ensemble: pdb_file = abspath(pathof(MIToS), "..", "..", "test", "data", "1AS5.pdb") pdb_res = read_file(pdb_file, PDBFile, occupancyfilter = true) #md nothing # hide # We set `occupancyfilter` to `true` to ensure that we have one single set of # coordinates for each atom. That filter isn't essential for NMR structures, # but It can avoid multiple alpha carbons in crystallographic structures with # disordered atoms. # We can get an idea of the alpha carbon positions by plotting these residues: scatter(pdb_res, legend = false) # As we saw in the previous plot, the structure doesn't need to be # superimposed. Now, we are going to separate each model into different # vectors, storing each vector into a `Dict`: models = Dict{String,Vector{PDBResidue}}() for res in pdb_res push!(get!(models, res.id.model, []), res) end # Then, we simply need to collect all the PDB models in the values # of the `Dict`, to get the vector of `PDBResidues` vectors required # to calculate the RMSF. pdb_models = collect(values(models)) #md nothing # hide # And, finally, call the `rmsf` function on the list of structures. It is # important that all the vectors has the same number of `PDBResidue`s. This # function assumes that the nth element of each vector corresponds to the same # residue: RMSF = rmsf(pdb_models) # This return the vector of RMSF values for each residue, calculated using # the coordinates of the alpha carbons. # You can plot this vector to get an idea of the which are the most flexible # position in your structure: plot(RMSF, legend = false, xlab = "Residue", ylab = "RMSF [Å]")
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
1078
module MIToSClusteringExt using MIToS.MSA using Clustering using StatsBase """ Get the number of clusters in a `Clusters` object. """ Clustering.nclusters(cl::Clusters) = length(cl.clustersize) """ Get sample counts of clusters as a `Vector`. Each `k` value is the number of samples assigned to the k-th cluster. """ Clustering.counts(cl::Clusters) = cl.clustersize """ Get a vector of assignments, where the `i` value is the index/number of the cluster to which the i-th sequence is assigned. """ Clustering.assignments(cl::Clusters) = cl.clusters # Convert from ClusteringResult to Clusters # needs tests function Base.convert(::Type{Clusters}, cl::ClusteringResult) clustersize = counts(cl) clusters = assignments(cl) weights = StatsBase.Weights( Float64[1.0 / clustersize[k] for k in clusters], Float64(length(clustersize)), ) Clusters(clustersize, clusters, weights) end # getweight(cl::ClusteringResult) = getweight(convert(Clusters, cl)) # getweight(cl::ClusteringResult, seq::Int) = getweight(convert(Clusters, cl), seq) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
1182
module MIToSROCAnalysisExt using MIToS.Pfam using MIToS.Utils using ROCAnalysis using PairwiseListMatrices using NamedArrays """ AUC(scores::PairwiseListMatrix, msacontacts::PairwiseListMatrix) Returns the Area Under a ROC (Receiver Operating Characteristic) Curve (AUC) of the `scores` for `msacontact` prediction. `score` and `msacontact` lists are vinculated (inner join) by their labels (i.e. column number in the file). `msacontact` should have 1.0 for true contacts and 0.0 for not contacts (NaN or other numbers for missing values). You need to do `using ROCAnalysis` before using this function. """ function ROCAnalysis.AUC( scores::NamedArray{L,2,PairwiseListMatrix{L,false,VL},NL}, msacontacts::NamedArray{R,2,PairwiseListMatrix{L,false,VR},NR}, ) where {L<:AbstractFloat,R<:AbstractFloat,VL,VR,NL,NR} sco, con = join(scores, msacontacts, kind = :inner) true_contacts, false_contacts = getcontactmasks(con) scores_list = getlist(getarray(sco)) ROCAnalysis.AUC( ROCAnalysis.roc( scores_list[true_contacts.&.!isnan.(scores_list)], scores_list[false_contacts.&.!isnan.(scores_list)], ), ) end end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
236
module MIToS export Utils, MSA, Information, PDB, SIFTS, Pfam include("Utils/Utils.jl") include("MSA/MSA.jl") include("Information/Information.jl") include("PDB/PDB.jl") include("SIFTS/SIFTS.jl") include("Pfam/Pfam.jl") end # module
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
3977
# BLOSUM Clustered Target Frequencies=qij # Blocks Database = /data/blocks_5.0/blocks.dat # Cluster Percentage: >= 62 """ BLOSUM62 probabilities *P(aa)* for each residue on the `UngappedAlphabet`. SUM: 0.9987 """ const BLOSUM62_Pi = ContingencyTable( Float64[ 0.0741, 0.0516, 0.0445, 0.0536, 0.0246, 0.034, 0.0543, 0.0741, 0.0262, 0.0679, 0.0988, 0.0579, 0.0249, 0.0473, 0.0387, 0.0573, 0.0507, 0.0132, 0.0321, 0.0729, ], UngappedAlphabet(), ) """ Table with conditional probabilities of residues based on BLOSUM62. The normalization is done row based. The firts row contains the *P(aa|A)* and so one. """ const BLOSUM62_Pij = ContingencyTable( Float64[ # A R N D C Q E G H I L K M F P S T W Y V 0.2901 0.0310 0.0256 0.0297 0.0216 0.0256 0.0405 0.0783 0.0148 0.0432 0.0594 0.0445 0.0175 0.0216 0.0297 0.0850 0.0499 0.0054 0.0175 0.0688 0.0446 0.3450 0.0388 0.0310 0.0078 0.0484 0.0523 0.0329 0.0233 0.0233 0.0465 0.1202 0.0155 0.0174 0.0194 0.0446 0.0349 0.0058 0.0174 0.0310 0.0427 0.0449 0.3169 0.0831 0.0090 0.0337 0.0494 0.0652 0.0315 0.0225 0.0315 0.0539 0.0112 0.0180 0.0202 0.0697 0.0494 0.0045 0.0157 0.0270 0.0410 0.0299 0.0690 0.3974 0.0075 0.0299 0.0914 0.0466 0.0187 0.0224 0.0280 0.0448 0.0093 0.0149 0.0224 0.0522 0.0354 0.0037 0.0112 0.0243 0.0650 0.0163 0.0163 0.0163 0.4837 0.0122 0.0163 0.0325 0.0081 0.0447 0.0650 0.0203 0.0163 0.0203 0.0163 0.0407 0.0366 0.0041 0.0122 0.0569 0.0559 0.0735 0.0441 0.0471 0.0088 0.2147 0.1029 0.0412 0.0294 0.0265 0.0471 0.0912 0.0206 0.0147 0.0235 0.0559 0.0412 0.0059 0.0206 0.0353 0.0552 0.0497 0.0405 0.0902 0.0074 0.0645 0.2965 0.0350 0.0258 0.0221 0.0368 0.0755 0.0129 0.0166 0.0258 0.0552 0.0368 0.0055 0.0166 0.0313 0.0783 0.0229 0.0391 0.0337 0.0108 0.0189 0.0256 0.5101 0.0135 0.0189 0.0283 0.0337 0.0094 0.0162 0.0189 0.0513 0.0297 0.0054 0.0108 0.0243 0.0420 0.0458 0.0534 0.0382 0.0076 0.0382 0.0534 0.0382 0.3550 0.0229 0.0382 0.0458 0.0153 0.0305 0.0191 0.0420 0.0267 0.0076 0.0573 0.0229 0.0471 0.0177 0.0147 0.0177 0.0162 0.0133 0.0177 0.0206 0.0088 0.2710 0.1679 0.0236 0.0368 0.0442 0.0147 0.0250 0.0398 0.0059 0.0206 0.1767 0.0445 0.0243 0.0142 0.0152 0.0162 0.0162 0.0202 0.0213 0.0101 0.1154 0.3755 0.0253 0.0496 0.0547 0.0142 0.0243 0.0334 0.0071 0.0223 0.0962 0.0570 0.1071 0.0415 0.0415 0.0086 0.0535 0.0708 0.0432 0.0207 0.0276 0.0432 0.2781 0.0155 0.0155 0.0276 0.0535 0.0397 0.0052 0.0173 0.0328 0.0522 0.0321 0.0201 0.0201 0.0161 0.0281 0.0281 0.0281 0.0161 0.1004 0.1968 0.0361 0.1606 0.0482 0.0161 0.0361 0.0402 0.0080 0.0241 0.0924 0.0338 0.0190 0.0169 0.0169 0.0106 0.0106 0.0190 0.0254 0.0169 0.0634 0.1142 0.0190 0.0254 0.3869 0.0106 0.0254 0.0254 0.0169 0.0888 0.0550 0.0568 0.0258 0.0233 0.0310 0.0103 0.0207 0.0362 0.0362 0.0129 0.0258 0.0362 0.0413 0.0103 0.0129 0.4935 0.0439 0.0362 0.0026 0.0129 0.0310 0.1099 0.0401 0.0541 0.0489 0.0175 0.0332 0.0524 0.0663 0.0192 0.0297 0.0419 0.0541 0.0157 0.0209 0.0297 0.2199 0.0820 0.0052 0.0175 0.0419 0.0730 0.0355 0.0434 0.0375 0.0178 0.0276 0.0394 0.0434 0.0138 0.0533 0.0651 0.0454 0.0197 0.0237 0.0276 0.0927 0.2465 0.0059 0.0178 0.0710 0.0303 0.0227 0.0152 0.0152 0.0076 0.0152 0.0227 0.0303 0.0152 0.0303 0.0530 0.0227 0.0152 0.0606 0.0076 0.0227 0.0227 0.4924 0.0682 0.0303 0.0405 0.0280 0.0218 0.0187 0.0093 0.0218 0.0280 0.0249 0.0467 0.0436 0.0685 0.0312 0.0187 0.1308 0.0156 0.0312 0.0280 0.0280 0.3178 0.0467 0.0700 0.0219 0.0165 0.0178 0.0192 0.0165 0.0233 0.0247 0.0082 0.1646 0.1303 0.0261 0.0316 0.0357 0.0165 0.0329 0.0494 0.0055 0.0206 0.2689 ], UngappedAlphabet(), )
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
15378
# Contingency Tables # ================== """ A `ContingencyTable` is a multidimensional array. It stores the contingency matrix, its marginal values and total. The type also has an internal and private temporal array and an alphabet object. It's a parametric type, taking three ordered parameters: - `T` : The element type of the multidimensional array. - `N` : It's the dimension of the array and should be an `Int`. - `A` : This should be a type, subtype of `ResidueAlphabet`, i.e.: `UngappedAlphabet`, `GappedAlphabet` or `ReducedAlphabet`. A `ContingencyTable` can be created from an alphabet if all the parameters are given. Otherwise, you need to give a type, a number (`Val`) and an alphabet. You can also create a `ContingencyTable` using a matrix and a alphabet. For example: ```julia ContingencyTable{Float64,2,UngappedAlphabet}(UngappedAlphabet()) ContingencyTable(Float64, Val{2}, UngappedAlphabet()) ContingencyTable(zeros(Float64, 20, 20), UngappedAlphabet()) ``` """ mutable struct ContingencyTable{T,N,A} <: AbstractArray{T,N} alphabet::A temporal::Array{T,N} table::NamedArray{T,N,Array{T,N},NTuple{N,OrderedDict{String,Int}}} marginals::NamedArray{T,2,Array{T,2},NTuple{2,OrderedDict{String,Int}}} total::T end # Probability and Frequencies # ---------------------- """ A `Probabilities` object wraps a `ContingencyTable` storing probabilities. It doesn't perform any check. If the total isn't one, you must use `normalize` or `normalize!`on the `ContingencyTable` before wrapping it to make the sum of the probabilities equal to one. """ mutable struct Probabilities{T,N,A} <: AbstractArray{T,N} table::ContingencyTable{T,N,A} end """ A `Frequencies` object wraps a `ContingencyTable` storing counts/frequencies. """ mutable struct Frequencies{T,N,A} <: AbstractArray{T,N} table::ContingencyTable{T,N,A} end # DEPRECATED: Deprecation warning for Counts type mutable struct Counts{T,N,A} <: AbstractArray{T,N} table::ContingencyTable{T,N,A} end function Counts{T,N,A}(table::ContingencyTable{T,N,A}) where {T,N,A} Base.depwarn( "The `Counts` type is deprecated. Please use `Frequencies` instead.", :Counts, force = true, ) Frequencies{T,N,A}(table) end # Getters """ `getcontingencytable` allows to access the wrapped `ContingencyTable` in a `Probabilities` or `Frequencies` object. """ @inline getcontingencytable(p::Probabilities{T,N,A}) where {T,N,A} = p.table @inline getcontingencytable(n::Frequencies{T,N,A}) where {T,N,A} = n.table for f in (:getalphabet, :gettable, :getmarginals, :gettotal, :gettablearray, :getmarginalsarray) @eval $(f)(p::Probabilities{T,N,A}) where {T,N,A} = $(f)(getcontingencytable(p)) @eval $(f)(n::Frequencies{T,N,A}) where {T,N,A} = $(f)(getcontingencytable(n)) end # AbstractArray for f in (:size, :getindex, :setindex!) @eval Base.$(f)(p::Probabilities{T,N,A}, args...) where {T,N,A} = $(f)(getcontingencytable(p), args...) @eval Base.$(f)(n::Frequencies{T,N,A}, args...) where {T,N,A} = $(f)(getcontingencytable(n), args...) end # Getters # ------- """ `getalphabet` allows to access the stored alphabet object. """ @inline getalphabet(table::ContingencyTable) = table.alphabet """ `gettable` allows to access the table (`NamedArray`). """ @inline gettable(table::ContingencyTable) = table.table """ `getmarginals` allows to access the array with the marginal values (`NamedArray`). """ @inline getmarginals(table::ContingencyTable) = table.marginals """ `gettotal` allows to access the stored total value. """ @inline gettotal(table::ContingencyTable) = table.total Base.sum(table::ContingencyTable) = gettotal(table) """ `gettablearray` allows to access the table (`Array` without names). """ @inline gettablearray(table::ContingencyTable) = getarray(table.table) """ `getmarginalsarray` allows to access the array with the marginal values (`Array` without names). """ @inline getmarginalsarray(table::ContingencyTable) = getarray(table.marginals) # Cartesian (helper functions) # ---------------------------- """ `_marginal(1,:A,:i,:value)` generates the expression: `A[i_1, 1] += value` """ function _marginal(N::Int, marginal::Symbol, index::Symbol, value::Symbol) aexprs = [ Expr(:escape, Expr(:(+=), Expr(:ref, marginal, Symbol(index, '_', i), i), value)) for i = 1:N ] Expr(:block, aexprs...) end macro _marginal(N, marginal, index, value) _marginal(N, marginal, index, value) end """ `_test_index(1, i, continue)` generates the expression: `i_1 >= 22 && continue` """ function _test_index(N::Int, index::Symbol, expr::Expr) aexprs = Expr[] for i = 1:N push!( aexprs, Expr(:escape, Expr(:&&, Expr(:call, :>=, Symbol(index, "_", i), 22), expr)), ) end Expr(:block, aexprs...) end macro _test_index(N, index, expr) _test_index(N, index, expr) end # AbstractArray Interface # ----------------------- Base.size(table::ContingencyTable) = size(table.table) Base.getindex(table::ContingencyTable, i...) = getindex(table.table, i...) @generated function Base.getindex(table::ContingencyTable, I::Residue...) N = length(I) quote alphabet = getalphabet(table) matrix = getarray(gettable(table)) # index_1 = alphabet[I[1]] # index_2 ... @nextract $N index d -> alphabet[I[d]] # index_1 >= 22 error("There is a Residue outside the alphabet") # index_2 ... @_test_index $N index error("There is a Residue outside the alphabet") # getindex(matrix, index_1, index_2... @nref $N matrix index end end function Base.setindex!(table::ContingencyTable, value, i...) setindex!(table.table, value, i...) update_marginals!(table) end @generated function Base.setindex!(table::ContingencyTable, value, I::Residue...) N = length(I) quote alphabet = getalphabet(table) matrix = getarray(gettable(table)) @nextract $N index d -> alphabet[I[d]] @_test_index $N index error("There is a Residue outside the alphabet") @nref($N, matrix, index) = value update_marginals!(table) end end # Similar # ------- Base.similar(table::ContingencyTable{T,N,A}) where {T,N,A} = ContingencyTable(T, Val{N}, table.alphabet) function Base.similar(table::ContingencyTable{T,N,A}, ::Type{S}) where {T,S,N,A} ContingencyTable(S, Val{N}, table.alphabet) end # Show # ==== function Base.show(io::IO, ::MIME"text/plain", table::ContingencyTable{T,N,A}) where {T,N,A} println(io, typeof(table), " : ") print(io, "\ntable : ") show(io, MIME"text/plain"(), gettable(table)) if length(size(table)) != 1 print(io, "\n\nmarginals : ") show(io, MIME"text/plain"(), getmarginals(table)) end print(io, "\n\ntotal : $(gettotal(table))") end function Base.show( io::IO, ::MIME"text/plain", table::Union{Probabilities{T,N,A},Frequencies{T,N,A}}, ) where {T,N,A} print(io, typeof(table), " wrapping a ") show(io, MIME"text/plain"(), getcontingencytable(table)) end # Creation # -------- @generated function (::Type{ContingencyTable{T,N,A}})(alphabet::A) where {T,N,A} @assert N > 0 "The dimension should be a natural number" quote n = length(alphabet) # residue_names = names(alphabet) # namedict = OrderedDict{String,Int}(residue_names[i] => i for i in 1:n) namedict = getnamedict(alphabet) dimtable = @ntuple $N k -> n # (n, n, ...) dimtemporal = @ntuple $N k -> 22 # (22, 22, ...) table = NamedArray( zeros($T, dimtable), @ntuple($N, k -> namedict), # (namedict, namedict, ...) @ntuple($N, k -> "Dim_k") ) # ("Dim_1", "Dim_2", ...) marginals = NamedArray( zeros($T, n, $N), # OrderedDict{String,Int}("Dim_$i" => i for i in 1:N) (namedict, OrderedDict{String,Int}(@ntuple $N k -> "Dim_k" => k)), ("Residue", "Dim"), ) ContingencyTable{T,N,A}(alphabet, zeros(T, dimtemporal), table, marginals, zero(T)) end end function ContingencyTable(::Type{T}, ::Type{Val{N}}, alphabet::A) where {T,A,N} ContingencyTable{T,N,A}(alphabet) end function ContingencyTable(matrix::AbstractArray{T,N}, alphabet::A) where {T,N,A} n = length(alphabet) @assert size(matrix) == ((n for i = 1:N)...,) "Matrix size doesn't match alphabet length" table = ContingencyTable(T, Val{N}, alphabet) getarray(table.table)[:] = matrix _update_marginals!(table) _update_total!(table) end # Update! # ------- # Update the table, marginal and total using temporal @generated function _update_table!(table::ContingencyTable{T,N,A}) where {T,N,A} if A <: ReducedAlphabet quote temporal = table.temporal::Array{T,N} alphabet = getalphabet(table)::A freqtable = getarray(table.table)::Array{T,N} @inbounds @nloops $N i temporal begin @_test_index $N i continue @nextract $N a d -> alphabet[i_d] @_test_index $N a continue @nref($N, freqtable, a) += @nref($N, temporal, i) end table end elseif (A === UngappedAlphabet) || (A === GappedAlphabet) quote temporal = table.temporal::Array{T,N} freqtable = getarray(table.table)::Array{T,N} @inbounds @nloops $N i freqtable begin @nref($N, freqtable, i) += @nref($N, temporal, i) end table end end end @generated function _update_marginals!(table::ContingencyTable{T,N,A}) where {T,N,A} quote freqtable = getarray(table.table)::Array{T,N} marginal = getarray(table.marginals)::Matrix{T} @inbounds @nloops $N i freqtable begin value = @nref $N freqtable i @_marginal($N, marginal, i, value) end table end end function _update_total!(table::ContingencyTable{T,N,A}) where {T,N,A} marginals = getarray(table.marginals)::Matrix{T} n = size(marginals, 1) total = zero(T) @inbounds @simd for i = 1:n total += marginals[i] # marginals[i,1] end table.total = total table end """ `update_marginals!` updates the marginal and total values using the table. """ function update_marginals!(table::ContingencyTable{T,N,A}) where {T,N,A} fill!(getarray(table.marginals)::Matrix{T}, zero(T)) _update_marginals!(table) _update_total!(table) table end function _update!(table::ContingencyTable{T,N,A}) where {T,N,A} _update_table!(table) update_marginals!(table) end function _cleanup_table!(table::ContingencyTable{T,N,A}) where {T,N,A} fill!(getarray(table.table)::Array{T,N}, zero(T)) end function _cleanup_temporal!(table::ContingencyTable{T,N,A}) where {T,N,A} fill!(table.temporal, zero(T)) end """ `cleanup!` fills the temporal, table and marginals arrays with zeros. It also sets total to zero. """ function cleanup!(table::ContingencyTable{T,N,A}) where {T,N,A} _cleanup_temporal!(table) _cleanup_table!(table) fill!(getarray(table.marginals)::Matrix{T}, zero(T)) table.total = zero(T) table end # Fill # ==== function Base.fill!(table::ContingencyTable{T,N,A}, value::T) where {T,N,A} fill!(getarray(table.table)::Array{T,N}, value) update_marginals!(table) end Base.fill!(table::ContingencyTable{T,N,A}, p::AdditiveSmoothing{T}) where {T,N,A} = fill!(table, p.λ) @inline Base.fill!(table::ContingencyTable{T,N,A}, p::NoPseudocount) where {T,N,A} = table # Apply pseudocount # ================= # This is faster than array[:] += value function _sum!(matrix::NamedArray, value) matrix_array = getarray(matrix) @inbounds for i in eachindex(matrix_array) matrix_array[i] += value end matrix end """ It adds the `pseudocount` value to the table cells. """ function apply_pseudocount!(table::ContingencyTable{T,N,A}, pseudocount::T) where {T,N,A} _sum!(table.table, pseudocount) update_marginals!(table) end function apply_pseudocount!( table::ContingencyTable{T,N,A}, p::AdditiveSmoothing{T}, ) where {T,N,A} apply_pseudocount!(table, p.λ) end @inline apply_pseudocount!(table::ContingencyTable, p::NoPseudocount) = table # Normalize # ========= # This is faster than array[:] /= value function _div!(matrix::NamedArray, value) matrix_array = getarray(matrix) @inbounds for i in eachindex(matrix_array) matrix_array[i] /= value end matrix end """ `normalize!` makes the sum of the frequencies to be one, in place. """ function LinearAlgebra.normalize!(table::ContingencyTable{T,N,A}) where {T,N,A} if table.total != one(T) _div!(table.table, table.total) update_marginals!(table) end table end """ `normalize` returns another table where the sum of the frequencies is one. """ LinearAlgebra.normalize(table::ContingencyTable{T,N,A}) where {T,N,A} = normalize!(deepcopy(table)) # Delete Dimensions # ================= function _list_without_dimensions(len::Int, output_len::Int, dimensions::Int...) ndim = length(dimensions) @assert (len - ndim) == output_len "$output_len should be = $(len-ndim)" index_list = Array{Int}(undef, output_len) j = 1 @inbounds for i = 1:len if !(i in dimensions) index_list[j] = i j += 1 end end index_list end """ `delete_dimensions!(out::ContingencyTable, in::ContingencyTable, dimensions::Int...)` This function fills a ContingencyTable with the counts/probabilities on `in` after the deletion of `dimensions`. i.e. This is useful for getting Pxy from Pxyz. """ function delete_dimensions!( output::ContingencyTable{T,S,A}, input::ContingencyTable{T,N,A}, dimensions::Int..., ) where {T,N,S,A} output_marginals = getarray(output.marginals) output_table = getarray(output.table) input_marginals = getarray(input.marginals) input_table = getarray(input.table) output_marginals[:] = input_marginals[:, _list_without_dimensions(N, S, dimensions...)] output_table[:] = sum(input_table, dims = dimensions) output.total = input.total output end """ `delete_dimensions(in::ContingencyTable, dimensions::Int...)` This function creates a ContingencyTable with the counts/probabilities on `in` after the deletion of `dimensions`. i.e. This is useful for getting Pxy from Pxyz. """ function delete_dimensions( input::ContingencyTable{T,N,A}, dims::Vararg{Int,I}, ) where {T,N,A,I} delete_dimensions!(ContingencyTable(T, Val{N - I}, input.alphabet), input, dims...) end for tp in (:Probabilities, :Frequencies) @eval begin function delete_dimensions!( output::$(tp){T,S,A}, input::$(tp){T,N,A}, dimensions::Int..., ) where {T,N,S,A} delete_dimensions!( getcontingencytable(output), getcontingencytable(input), dimensions..., ) output end function delete_dimensions(input::$(tp){T,N,A}, dims::Vararg{Int,I}) where {T,N,A,I} output = delete_dimensions(getcontingencytable(input), dims...) $(tp)(output) end end end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
5695
# Busjle et. al. 2009 # =================== const _MI_MAT_TYPE = NamedArray{ Float64, 2, PairwiseListMatrix{Float64,false,Vector{Float64}}, NTuple{2,OrderedDict{String,Int}}, } function _buslje09(aln, alphabet::A, clusters, lambda, apc) where {A} mi = mapcolpairfreq!( _mutual_information, aln, Frequencies{Float64,2,A}(ContingencyTable(Float64, Val{2}, alphabet)), usediagonal = false, pseudocounts = AdditiveSmoothing{Float64}(lambda), weights = clusters, diagonalvalue = NaN, ) if apc APC!(mi) end mi end """ `buslje09` takes a MSA and calculates a Z score and a corrected MI/MIp as described on **Busjle et. al. 2009**. keyword argument, type, default value and descriptions: ``` - lambda Float64 0.05 Low count value - clustering Bool true Sequence clustering (Hobohm I) - threshold 62 Percent identity threshold for clustering - maxgap Float64 0.5 Maximum fraction of gaps in positions included in calculation - apc Bool true Use APC correction (MIp) - samples Int 100 Number of samples for Z-score - fixedgaps Bool true Fix gaps positions for the random samples - alphabet ResidueAlphabet UngappedAlphabet() Residue alphabet to be used ``` This function returns: ``` - Z score - MI or MIp ``` """ function buslje09( aln::AbstractMatrix{Residue}; lambda::Float64 = 0.05, clustering::Bool = true, threshold = 62, maxgap::Float64 = 0.5, apc::Bool = true, samples::Int = 100, alphabet::ResidueAlphabet = UngappedAlphabet(), fixedgaps::Bool = true, )::NTuple{2,_MI_MAT_TYPE} aln = filtercolumns(aln, gapfraction(aln, 1) .<= maxgap) clusters = clustering ? hobohmI(aln, threshold) : NoClustering() mi = _buslje09(aln, alphabet, clusters, lambda, apc) if samples > 0 rand_mi = Array{PairwiseListMatrix{Float64,false,Vector{Float64}}}(undef, samples) zmi = copy(mi) residuematrix = getresidues(aln) for ns = 1:samples shuffle_msa!(residuematrix, dims = 1, fixedgaps = fixedgaps) rand_mi[ns] = getarray(_buslje09(aln, alphabet, clusters, lambda, apc)) end PairwiseListMatrices.zscore!(rand_mi, getarray(zmi)) return (zmi, mi) else return (fill!(copy(mi), 0.0), mi) end end function buslje09(filename::String, format::Type{T}; kargs...) where {T<:FileFormat} Base.depwarn( "Using a file name and format with `buslje09` is deprecated. Use `read_file` to read an MSA object and call `buslje09` on it.", :buslje09, force = true, ) aln = read_file(filename, T, AnnotatedMultipleSequenceAlignment, generatemapping = true) buslje09(aln; kargs...) end # MIToS BLMI: Blosum MI # ===================== function _BLMI(aln, clusters, alpha, beta, apc, lambda::Float64 = 0.0) mi = mapcolpairfreq!( _mutual_information, aln, Probabilities{Float64,2,UngappedAlphabet}( ContingencyTable(Float64, Val{2}, UngappedAlphabet()), ), usediagonal = false, pseudocounts = AdditiveSmoothing{Float64}(lambda), weights = clusters, diagonalvalue = NaN, pseudofrequencies = BLOSUM_Pseudofrequencies(alpha, beta), ) if apc APC!(mi) end mi end """ `BLMI` takes an MSA and calculates a Z score (ZBLMI) and a corrected MI/MIp as described on **Busjle et. al. 2009** but using using BLOSUM62 pseudo frequencies instead of a fixed pseudocount. Keyword argument, type, default value and descriptions: ``` - beta Float64 8.512 β for BLOSUM62 pseudo frequencies - lambda Float64 0.0 Low count value - threshold 62 Percent identity threshold for sequence clustering (Hobohm I) - maxgap Float64 0.5 Maximum fraction of gaps in positions included in calculation - apc Bool true Use APC correction (MIp) - samples Int 50 Number of samples for Z-score - fixedgaps Bool true Fix gaps positions for the random samples ``` This function returns: ``` - Z score (ZBLMI) - MI or MIp using BLOSUM62 pseudo frequencies (BLMI/BLMIp) ``` """ function BLMI( aln::AbstractMatrix{Residue}; beta::Float64 = 8.512, threshold = 62, maxgap::Float64 = 0.5, apc::Bool = true, samples::Int = 50, fixedgaps::Bool = true, lambda::Float64 = 0.0, )::NTuple{2,_MI_MAT_TYPE} aln = filtercolumns(aln, gapfraction(aln, 1) .<= maxgap) clusters = hobohmI(aln, threshold) numbercl = Float64(length(clusters.clustersize)) mi = _BLMI(aln, clusters, numbercl, beta, apc, lambda) if samples > 0 rand_mi = Array{PairwiseListMatrix{Float64,false,Vector{Float64}}}(undef, samples) zmi = copy(mi) residuematrix = getresidues(aln) for ns = 1:samples shuffle_msa!(residuematrix, dims = 1, fixedgaps = fixedgaps) rand_mi[ns] = getarray(_BLMI(aln, clusters, numbercl, beta, apc, lambda)) end PairwiseListMatrices.zscore(rand_mi, getarray(zmi)) return (zmi, mi) else return (fill!(copy(mi), 0.0), mi) end end function BLMI(filename::String, format::Type{T}; kargs...) where {T<:FileFormat} Base.depwarn( "Using a file name and format with `BLMI` is deprecated. Use `read_file` to read an MSA object and call `BLMI` on it.", :BLMI, force = true, ) aln = read_file(filename, T, AnnotatedMultipleSequenceAlignment, generatemapping = true) BLMI(aln; kargs...) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
2549
""" Mean mutual information of column a (Dunn et. al. 2008). Summation is over j=1 to N, j ≠ a. Total is N-1. """ function _mean_column(mi::Matrix{T}) where {T} (dropdims(sum(mi, dims = 1), dims = 1) .- diag(mi)) ./ (size(mi, 1) - 1) end """ Mean mutual information of column a (Dunn et. al. 2008). Summation is over j=1 to N, j ≠ a. Total is N-1. Overall mean mutual information (Dunn et. al. 2008). 2/(N*(N-1)) by the sum of MI where the indices run i=1 to N-1, j=i+1 to N (triu). """ function _mean_total(mi::Matrix{T}) where {T} values = matrix2list(mi) sum(values) / length(values) end """ APC # References - [Dunn, Stanley D., Lindi M. Wahl, and Gregory B. Gloor. "Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction." Bioinformatics 24.3 (2008): 333-340.](@cite dunn2008mutual) """ function APC!(MI::Matrix{T}) where {T} nrow, ncol = size(MI) MI_mean = _mean_total(MI) # if MI_mean == 0.0 # return(fill!(MI, zero(T))) # end MI_res_mean = _mean_column(MI) @inbounds for j = 1:ncol for i = 1:nrow if i != j MI[i, j] -= ((MI_res_mean[i] * MI_res_mean[j]) / MI_mean) else MI[i, j] = NaN end end end MI end function APC!(MI::PairwiseListMatrix{T,true,Vector{T}}) where {T<:AbstractFloat} ncol = MI.nelements MI_col_sum = vec(sum_nodiag(MI, dims = 1)) MI_mean = sum(MI_col_sum) / (length(MI) - ncol) MI_col_mean = MI_col_sum ./ (ncol - 1) k = 0 list = MI.list @inbounds for i = 1:ncol for j = i:ncol k += 1 if i != j list[k] -= ((MI_col_mean[i] * MI_col_mean[j]) / MI_mean) else list[k] = NaN end end end MI end function APC!(MI::PairwiseListMatrix{T,false,Vector{T}}) where {T<:AbstractFloat} ncol = MI.nelements MI_col_sum = vec(sum_nodiag(MI, dims = 1)) MI_mean = sum(MI_col_sum) / (length(MI) - ncol) MI_col_mean = MI_col_sum ./ (ncol - 1) k = 0 list = MI.list @inbounds for i = 1:(ncol-1) for j = (i+1):ncol k += 1 list[k] -= ((MI_col_mean[i] * MI_col_mean[j]) / MI_mean) end end MI.diag[:] .= NaN MI end function APC!( MI::NamedArray{T,2,PairwiseListMatrix{T,D,Vector{T}},NTuple{2,OrderedDict{String,Int}}}, ) where {T,D} plm = getarray(MI)::PairwiseListMatrix{T,D,Vector{T}} APC!(plm) MI end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
9107
# Counting # ======== @generated function _temporal_counts!( counts::ContingencyTable{T,N,A}, weights, seqs::Vararg{AbstractArray{Residue},N}, ) where {T,N,A} quote @assert N == length(seqs) "Number of residue arrays and table dimension doesn't match." # seq_1 = seqs[1] # seq_2 = ... @nextract $N seq d -> seqs[d] len = length(seq_1) # @assert len == length(seq_1) "Residue arrays have different lengths" # @assert len == length(seq_2) ... @nexprs $N d -> @assert len == length(seq_d) "Residue arrays have different lengths." if isa(weights, AbstractArray) @assert len == length(weights) "Residue array and weights sizes doesn't match." end _cleanup_temporal!(counts) temporal = counts.temporal @inbounds @simd for index in eachindex(seq_1) # temporal[Int(seq_1[index]), Int(seq_2... += getweight(weights, index) @nref($N, temporal, d -> Int(seq_d[index])) += getweight(weights, index) end counts end end """ It populates a `ContingencyTable` (first argument) using the frequencies in the sequences (last positional arguments). The dimension of the table must match the number of sequences and all the sequences must have the same length. You must indicate the used weights and pseudocounts as second and third positional arguments respectively. You can use `NoPseudofrequencies()` and `NoClustering()` to avoid the use of sequence weighting and pseudocounts, respectively. **DEPRECATED**: Use [`frequencies!`](@ref) instead. Note that `frequencies!` defines the weigths and pseudocounts using keyword arguments instead of positional arguments. """ function count!( table::ContingencyTable{T,N,A}, weights, pseudocounts::Pseudocount, seqs::Vararg{AbstractArray{Residue},N}, ) where {T,N,A} Base.depwarn( "count! using a ContingencyTable or Frequencies is deprecated. Use frequencies! instead.", :count!, force = true, ) frequencies!(table, seqs..., weights = weights, pseudocounts = pseudocounts) end function count!(table::Frequencies{T,N,A}, args...) where {T,N,A} count!(getcontingencytable(table), args...) end # frequencies! is like count! but using keyword arguments """ frequencies!(table, seqs...; weights::WeightTypes, pseudocounts::Pseudocount) It populates a `ContingencyTable` or `Frequencies` table (first argument) using the frequencies in the given sequences (last positional arguments). The dimension of the table must match the number of sequences and all the sequences must have the same length. You must indicate the used `weights` and `pseudocounts` as keyword arguments. Those arguments default to `NoClustering()` and `NoPseudocount()` respectively, to avoid the use of sequence weighting and pseudocounts. """ function frequencies!( table::ContingencyTable{T,N,A}, seqs::Vararg{AbstractArray{Residue},N}; weights::WeightTypes = NoClustering(), pseudocounts::Pseudocount = NoPseudocount(), ) where {T,N,A} _temporal_counts!(table, weights, seqs...) apply_pseudocount!(table, pseudocounts) _update!(table) table end frequencies!(table::Frequencies{T,N,A}, args...; kwargs...) where {T,N,A} = frequencies!(getcontingencytable(table), args...; kwargs...) # Default counters # ================ function _count( alphabet::A, weights, pseudocounts, seqs::Vararg{AbstractArray{Residue},N}, )::ContingencyTable{Float64,N,A} where {N,A<:ResidueAlphabet} table = ContingencyTable(Float64, Val{N}, alphabet)::ContingencyTable{Float64,N,A} frequencies!(table, seqs..., weights = weights, pseudocounts = pseudocounts) table end """ It returns a `ContingencyTable` wrapped in a `Frequencies` type with the frequencies of residues in the sequences that takes as arguments. The dimension of the table is equal to the number of sequences. You can use the keyword arguments `alphabet`, `weights` and `pseudocounts` to indicate the alphabet of the table (default to `UngappedAlphabet()`), a clustering result (default to `NoClustering()`) and the pseudocounts (default to `NoPseudocount()`) to be used during the estimation of the frequencies. **DEPRECATED**: Use [`frequencies`](@ref) instead. Note that `frequencies` defines the alphabet, weigths and pseudocounts using keyword arguments instead of positional arguments. """ function Base.count( seqs::Vararg{AbstractArray{Residue},N}; alphabet::ResidueAlphabet = UngappedAlphabet(), weights::WeightTypes = NoClustering(), pseudocounts::Pseudocount = NoPseudocount(), ) where {N} Base.depwarn( "`count` on sequences is deprecated in favor of `frequencies`.", :count, force = true, ) frequencies( seqs...; alphabet = alphabet, weights = weights, pseudocounts = pseudocounts, ) end """ frequencies(seqs...; alphabet=UngappedAlphabet(), weights=NoClustering(), pseudocounts=NoPseudocount() This function returns a `Frequencies` object wrapping a `ContingencyTable` with the frequencies of residues in the sequences that takes as arguments. The dimension of the table is equal to the number of sequences. You can use the keyword arguments `alphabet`, `weights` and `pseudocounts` to indicate the alphabet of the table, a clustering result and the pseudocounts to be used during the estimation of the frequencies. """ function frequencies( seqs::Vararg{AbstractArray{Residue},N}; alphabet::ResidueAlphabet = UngappedAlphabet(), weights::WeightTypes = NoClustering(), pseudocounts::Pseudocount = NoPseudocount(), ) where {N} Frequencies(_count(alphabet, weights, pseudocounts, seqs...)) end # Probabilities # ============= """ It populates a `ContingencyTable` (first argument) using the probabilities in the sequences (last positional arguments). The dimension of the table must match the number of sequences and all the sequences must have the same length. You must indicate the used weights, pseudocounts and pseudofrequencies as second, third and fourth positional arguments respectively. You can use `NoClustering()`, `NoPseudocount()` and `NoPseudofrequencies()` to avoid the use of sequence weighting, pseudocounts and pseudofrequencies, respectively. """ function probabilities!( table::ContingencyTable{T,N,A}, weights, pseudocounts::Pseudocount, pseudofrequencies::Pseudofrequencies, seqs::Vararg{AbstractArray{Residue},N}, ) where {T,N,A} Base.depwarn( "The probabilities! method indicating weights, pseudocounts and pseudofrequencies using positional arguments is deprecated; use keyword arguments instead.", :probabilities!, force = true, ) probabilities!( table, seqs..., weights = weights, pseudocounts = pseudocounts, pseudofrequencies = pseudofrequencies, ) end function probabilities!( table::ContingencyTable{T,N,A}, seqs::Vararg{AbstractArray{Residue},N}; weights::WeightTypes = NoClustering(), pseudocounts::Pseudocount = NoPseudocount(), pseudofrequencies::Pseudofrequencies = NoPseudofrequencies(), ) where {T,N,A} frequencies!(table, seqs..., weights = weights, pseudocounts = pseudocounts) normalize!(table) apply_pseudofrequencies!(table, pseudofrequencies) table end function probabilities!(table::Probabilities{T,N,A}, args...; kargs...) where {T,N,A} probabilities!(getcontingencytable(table), args...; kargs...) end # Default probabilities # ===================== function _probabilities( alphabet::A, weights, pseudocounts, pseudofrequencies, seqs::Vararg{AbstractArray{Residue},N}, )::ContingencyTable{Float64,N,A} where {N,A<:ResidueAlphabet} table = ContingencyTable(Float64, Val{N}, alphabet)::ContingencyTable{Float64,N,A} probabilities!( table, seqs...; weights = weights, pseudocounts = pseudocounts, pseudofrequencies = pseudofrequencies, ) table end """ It returns a `ContingencyTable` wrapped in a `Probabilities` type with the probabilities of residues in the sequences that takes as arguments. The dimension of the table is equal to the number of sequences. You can use the keyword arguments `alphabet`, `weights`, `pseudocounts` and `pseudofrequencies` to indicate the alphabet of the table (default to `UngappedAlphabet()`), a clustering result (default to `NoClustering()`), the pseudocounts (default to `NoPseudocount()`) and the pseudofrequencies (default to `NoPseudofrequencies()`) to be used during the estimation of the probabilities. """ function probabilities( seqs::Vararg{AbstractArray{Residue},N}; alphabet::ResidueAlphabet = UngappedAlphabet(), weights::WeightTypes = NoClustering(), pseudocounts::Pseudocount = NoPseudocount(), pseudofrequencies::Pseudofrequencies = NoPseudofrequencies(), ) where {N} Probabilities( _probabilities(alphabet, weights, pseudocounts, pseudofrequencies, seqs...), ) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
2690
# GaussDCA # ======== """ Wrapper function to `GaussDCA.gDCA`. You need to install GaussDCA: ```julia using Pkg Pkg.add(PackageSpec(url = "https://github.com/carlobaldassi/GaussDCA.jl", rev = "master")) ``` Look into [GaussDCA.jl README](https://github.com/carlobaldassi/GaussDCA.jl) for further information. If you use this wrapper, **please cite the GaussDCA publication and the package's doi**. It's possible to indicate the path to the julia binary where GaussDCA is installed. However, it's recommended to use the same version where MIToS is installed. That is because this function use `serialize`/`deserialize` to transfer data between the processes. **GaussDCA Publication:** Baldassi, Carlo, Marco Zamparo, Christoph Feinauer, Andrea Procaccini, Riccardo Zecchina, Martin Weigt, and Andrea Pagnani. "Fast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners." PloS one 9, no. 3 (2014): e92721. """ function gaussdca( msa; juliapath::String = joinpath(Sys.BINDIR, Base.julia_exename()), project::String = Base.active_project(), kargs..., ) base_name = tempname() if Sys.iswindows() base_name = escape_string(base_name) juliapath = escape_string(juliapath) if !endswith(juliapath, ".exe") juliapath = juliapath * ".exe" end end script_file = base_name * ".jl" msa_file = base_name * ".fasta" jdl_file = base_name * ".jls" plm = fill!(columnpairsmatrix(msa), NaN) write_file(msa_file, msa, FASTA) try _create_script(script_file, msa_file, jdl_file; kargs...) run(`$juliapath --project=$project $script_file`) pairedvalues = open(deserialize, jdl_file, "r") for (i, j, value) in pairedvalues plm[i, j] = value end finally isfile(script_file) && rm(script_file) isfile(msa_file) && rm(msa_file) isfile(jdl_file) && rm(jdl_file) end plm end function _create_script(script_file::String, msa_file::String, jdl_file::String; kargs...) if length(kargs) > 0 for (k, v) in kargs @assert isa(v, Number) || isa(v, Symbol) "Argument values must be numbers or symbols" end str_kargs = "," * join([isa(v, Symbol) ? "$k=:$v" : "$k=$v" for (k, v) in kargs], ',') else str_kargs = "" end open(script_file, "w") do fh println(fh, "using Serialization;") println(fh, "using GaussDCA;") println(fh, "values = GaussDCA.gDCA(\"$msa_file\"$str_kargs);") println(fh, "open(fh -> serialize(fh, values), \"$(jdl_file)\", \"w\")") end end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
1879
# Pairwise Gap Percentage # ======================= """ It calculates the gap intersection as percentage from a table of `Frequencies`. """ function gap_intersection_percentage(nxy::Frequencies{T,2,GappedAlphabet}) where {T} T(100.0) * gettablearray(nxy)[21, 21] / gettotal(nxy) end """ It calculates the gap union as percentage from a table of `Frequencies`. """ function gap_union_percentage(nxy::Frequencies{T,2,GappedAlphabet}) where {T} marginals = getmarginalsarray(nxy) T(100.0) * (marginals[21, 1] + marginals[21, 2] - gettablearray(nxy)[21, 21]) / gettotal(nxy) end # MIToS Pairwise Gap Percentage # ============================= """ It takes a MSA or a file and a `FileFormat` as first arguments. It calculates the percentage of gaps on columns pairs (union and intersection) using sequence clustering (Hobohm I). Argument, type, default value and descriptions: ``` - clustering Bool true Sequence clustering (Hobohm I) - threshold 62 Percent identity threshold for sequence clustering (Hobohm I) ``` This function returns: ``` - pairwise gap union as percentage - pairwise gap intersection as percentage ``` """ function pairwisegapfraction( aln::AbstractMatrix{Residue}; clustering::Bool = true, threshold = 62, ) clusters = clustering ? hobohmI(aln, threshold) : NoClustering() table = Frequencies(ContingencyTable(Float64, Val{2}, GappedAlphabet())) gu = mapcolpairfreq!(gap_union_percentage, aln, table, weights = clusters) gi = mapcolpairfreq!(gap_intersection_percentage, aln, table, weights = clusters) gu, gi end function pairwisegapfraction( filename::String, format::Type{T}; kargs..., ) where {T<:FileFormat} aln = read_file(filename, T, AnnotatedMultipleSequenceAlignment, generatemapping = true) pairwisegapfraction(aln; kargs...) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
3144
""" The `Information` module of MIToS defines types and functions useful to calculate information measures (e.g. *Mutual Information* (MI) and *Entropy*) over a Multiple Sequence Alignment (MSA). This module was designed to count `Residue`s (defined in the `MSA` module) in special contingency tables (as fast as possible) and to derive probabilities from this counts. Also, includes methods for applying corrections to that tables, e.g. pseudocounts and pseudo frequencies. Finally, `Information` allows to use this probabilities and counts to estimate information measures and other frequency based values. **Features** - Estimate multi dimensional frequencies and probabilities tables from sequences, MSAs, etc... - Correction for small number of observations - Correction for data redundancy on a MSA - Estimate information measures - Calculate corrected mutual information between residues ```julia using MIToS.Information ``` """ module Information using MIToS.Utils using MIToS.MSA using Serialization # GaussDCA using Base.Cartesian # nloops for ContingencyTables using NamedArrays # ContingencyTables have NamedArrays using OrderedCollections # OrderedDicts for NamedArrays using StatsBase # entropy using LinearAlgebra # normalize using PairwiseListMatrices if isdefined(Base, :count!) import Base: count! end export # MIToS.MSA GappedAlphabet, UngappedAlphabet, ReducedAlphabet, # Pseudocounts Pseudocount, NoPseudocount, AdditiveSmoothing, # ContingencyTables ContingencyTable, Probabilities, Frequencies, Counts, # deprecated getcontingencytable, getalphabet, gettable, gettablearray, getmarginals, getmarginalsarray, gettotal, # update_marginals!, apply_pseudocount!, delete_dimensions!, delete_dimensions, # BLOSUM62 BLOSUM62_Pi, BLOSUM62_Pij, # Pseudofrequencies Pseudofrequencies, NoPseudofrequencies, BLOSUM_Pseudofrequencies, apply_pseudofrequencies!, # Counters count!, frequencies, frequencies!, probabilities, probabilities!, # Iterations mapcolfreq!, mapseqfreq!, mapcolpairfreq!, mapseqpairfreq!, mapfreq, cumulative, # InformationMeasures entropy, shannon_entropy, marginal_entropy, kullback_leibler, mutual_information, normalized_mutual_information, # Corrections APC!, # CorrectedMutualInformation buslje09, BLMI, # Gaps gap_union_percentage, gap_intersection_percentage, pairwisegapfraction, # Externals gaussdca, # Formats from MIToS.MSA Raw, Stockholm, FASTA, # Imported from Base (and exported for docs) normalize, normalize!, count include("Pseudocounts.jl") include("ContingencyTables.jl") include("BLOSUM62.jl") include("Pseudofrequencies.jl") include("Counters.jl") include("Iterations.jl") # TO DO: Docs include("InformationMeasures.jl") include("Corrections.jl") include("CorrectedMutualInformation.jl") include("Gaps.jl") include("Externals.jl") end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
15951
# Entropy # ======= const _DOC_LOG_BASE = """ The default base for the log is ℯ (`base=ℯ`), so the result is in nats. You can use `base = 2` to get the result in bits. """ """ shannon_entropy(table::Union{Frequencies{T,N,A},Probabilities{T,N,A}}; base::Number=ℯ) It calculates the Shannon entropy (H) from a table of `Frequencies` or `Probabilities`. Use last and optional positional argument to change the base of the log. $_DOC_LOG_BASE """ function shannon_entropy(table::Probabilities{T,N,A}; base::Number = ℯ) where {T,N,A} H = zero(T) p = gettablearray(table) @inbounds for pᵢ in p if pᵢ > zero(T) H -= pᵢ * log(pᵢ) end end base === ℯ ? H : (H / log(base)) end function shannon_entropy(table::Frequencies{T,N,A}; base::Number = ℯ) where {T,N,A} H = zero(T) total = gettotal(table) n = gettablearray(table) @inbounds for nᵢ in n if nᵢ > zero(T) H -= nᵢ * log(nᵢ / total) end end if base === ℯ H / total # Default base: e else (H / total) / log(base) end end function StatsBase.entropy( table::Union{Frequencies{T,N,A},Probabilities{T,N,A}}, ) where {T,N,A} Base.depwarn( "entropy(table::Union{Frequencies,Probabilities}) is deprecated. Use shannon_entropy(table) instead.", :entropy, force = true, ) shannon_entropy(table) end function StatsBase.entropy( table::Union{Frequencies{T,N,A},Probabilities{T,N,A}}, base::Real, ) where {T,N,A} Base.depwarn( "entropy(table::Union{Frequencies,Probabilities}, base::Real) is deprecated. Use shannon_entropy(table; base=base) instead.", :entropy, force = true, ) shannon_entropy(table, base = base) end # using mapfreq to define the method for multiple sequence alignments """ shannon_entropy(msa::AbstractArray{Residue}; base::Number=ℯ, probabilities::Bool=false, usediagonal::Bool=true, kargs...) It calculates the Shannon entropy (H) on a MSA. You can use the keyword argument `base` to change the base of the log. $_DOC_LOG_BASE It uses [`mapfreq`](@ref) under the hood, so it takes the same keyword arguments. By default, it measures the entropy of each column in the MSA. You can use `dims = 1` to measure the entropy of each sequence. You can also set `rank = 2`to measure the joint entropy of each pair of sequences or columns. This function sets by default the `probabilities` keyword argument to `false` because it's faster to calculate the entropy from counts/frequencies. It also sets `usediagonal = true` to also calculate the entropy of the individual variables (sequences or columns). ```jldoctest julia> using MIToS.MSA, MIToS.Information julia> msa = Residue['C' 'G'; 'C' 'L'; 'C' 'I'] 3×2 Matrix{Residue}: C G C L C I julia> shannon_entropy(msa) 1×2 Named Matrix{Float64} Function ╲ Col │ 1 2 ────────────────┼───────────────── shannon_entropy │ 0.0 1.09861 """ function shannon_entropy( msa::AbstractArray{Residue}; probabilities::Bool = false, usediagonal = true, kargs..., ) mapfreq( shannon_entropy, msa; probabilities = probabilities, usediagonal = usediagonal, kargs..., ) end # Marginal Entropy # ---------------- function _marginal_entropy(table::Probabilities{T,N,A}, margin::Int) where {T,N,A} H = zero(T) marginals = getmarginalsarray(table) @inbounds for pi in view(marginals, :, margin) if pi > zero(T) H += pi * log(pi) end end -H # Default base: e end function _marginal_entropy(table::Frequencies{T,N,A}, margin::Int) where {T,N,A} H = zero(T) total = gettotal(table) marginals = getmarginalsarray(table) @inbounds for ni in view(marginals, :, margin) if ni > zero(T) H += ni * log(ni / total) end end -H / total # Default base: e end """ marginal_entropy(table::Union{Frequencies{T,N,A},Probabilities{T,N,A}}; margin::Int=1, base::Number=ℯ) It calculates marginal entropy (H) from a table of `Frequencies` or `Probabilities`. It takes two keyword arguments: `margin` and `base`. The first one is used to indicate the margin used to calculate the entropy, e.g. it estimates the entropy H(X) if margin is 1, H(Y) for 2, etc. The default value of `margin` is 1. The second keyword argument is used to change the base of the log. $_DOC_LOG_BASE """ function marginal_entropy( table::Union{Frequencies{T,N,A},Probabilities{T,N,A}}; margin::Int = 1, base::Number = ℯ, ) where {T,N,A} H = _marginal_entropy(table, margin) if base === ℯ H # Default base: e else H / log(base) end end # Deprecate the marginal_entropy methods taking positional arguments function marginal_entropy( table::Union{Frequencies{T,N,A},Probabilities{T,N,A}}, margin::Int, ) where {T,N,A} Base.depwarn( "marginal_entropy(table, margin) is deprecated. Use marginal_entropy(table; margin=margin) instead.", :marginal_entropy, force = true, ) marginal_entropy(table, margin = margin) end function marginal_entropy( table::Union{Frequencies{T,N,A},Probabilities{T,N,A}}, margin::Int, base::Real, ) where {T,N,A} Base.depwarn( "marginal_entropy(table, margin, base) is deprecated. Use marginal_entropy(table; margin=margin, base=base) instead.", :marginal_entropy, force = true, ) marginal_entropy(table, margin = margin, base = base) end # Kullback-Leibler # ================ function _gettablearray( table::Union{Probabilities{T,N,A},Frequencies{T,N,A},ContingencyTable{T,N,A}}, ) where {T,N,A} gettablearray(table) end _gettablearray(table::Array{T,N}) where {T,N} = table const _DOC_KL_KARG = """ You can use the keyword argument `background` to set the background distribution. This argument can take an `Array`, `Probabilities`, or `ContingencyTable` object. The background distribution must have the same size and alphabet as the probabilities. The default is the `BLOSUM62_Pi` table. $_DOC_LOG_BASE """ """ kullback_leibler(probabilities::Probabilities{T,N,A}, background::Union{ AbstractArray{T,N}, Probabilities{T,N,A}, ContingencyTable{T,N,A}}=BLOSUM62_Pi, base::Number=ℯ) It calculates the Kullback-Leibler (KL) divergence from a table of `Probabilities`. $_DOC_KL_KARG """ function kullback_leibler( probabilities::Probabilities{T,N,A}; background::Union{AbstractArray{T,N},Probabilities{T,N,A},ContingencyTable{T,N,A}} = BLOSUM62_Pi, base::Number = ℯ, ) where {T<:Number,N,A<:ResidueAlphabet} p = getcontingencytable(probabilities) bg = _gettablearray(background) @assert size(background) == size(p) "probabilities and background must have the same size." KL = zero(T) @inbounds for i in eachindex(p) pᵢ = p[i] if pᵢ > zero(T) KL += pᵢ * log(pᵢ / bg[i]) end end if base === ℯ KL # Default base: e else KL / log(base) end end # Kullback-Leibler for MSA """ kullback_leibler(msa::AbstractArray{Residue}; background::Union{Array{T,N}, Probabilities{T,N,A}, ContingencyTable{T,N,A}}=BLOSUM62_Pi, base::Number=ℯ, kargs...) It calculates the Kullback-Leibler (KL) divergence from a multiple sequence alignment (MSA). $_DOC_KL_KARG The other keyword arguments are passed to the [`mapfreq`](@ref) function. """ function kullback_leibler( msa::AbstractArray{Residue}; background::AbstractArray = BLOSUM62_Pi, base::Number = ℯ, rank::Int = 1, kargs..., ) @assert rank == 1 "rank must be 1 for kullback_leibler" mapfreq( kullback_leibler, msa; rank = rank, background = background, base = base, kargs..., ) end # Deprecate the old methods # Method with positional arguments for background and base function kullback_leibler( p::Probabilities{T,N,A}, q::AbstractArray{T,N}, base::Real, ) where {T<:Number,N,A<:ResidueAlphabet} Base.depwarn( "kullback_leibler(p, q, base) is deprecated. Use kullback_leibler(p; background=q, base=base) instead.", :kullback_leibler, force = true, ) kullback_leibler(p; background = q, base = base) end # Method with positional argument for background function kullback_leibler(p::Probabilities{T,N,A}, q::AbstractArray{T,N}) where {T,N,A} Base.depwarn( "kullback_leibler(p, q) is deprecated. Use kullback_leibler(p; background=q) instead.", :kullback_leibler, force = true, ) kullback_leibler(p; background = q) end # Method with positional argument for base function kullback_leibler(p::Probabilities{T,N,A}, base::Real) where {T,N,A} Base.depwarn( "kullback_leibler(p, base) is deprecated. Use kullback_leibler(p; base=base) instead.", :kullback_leibler, force = true, ) kullback_leibler(p; base = base) end # Mutual Information # ================== # It avoids ifelse() because log is expensive (https://github.com/JuliaLang/julia/issues/8869) @inline function _mi(::Type{T}, pij, pi, pj) where {T} (pij > zero(T)) && (pi > zero(T)) ? T(pij * log(pij / (pi * pj))) : zero(T) end """ Information._mutual_information(table::Union{Frequencies{T,2,A},Probabilities{T,2,A}}) where {T,A} It calculates Mutual Information (MI) from a table of `Frequencies` or `Probabilities` using ℯ as the base of the log. This function is the kernel of the `mutual_information` function. It is also used to calculate the MI values of different MIToS functions that do not require the base of the log as an argument. In particular, the `buslje09` and `BLMI` functions use this function. """ function _mutual_information(table::Probabilities{T,2,A}) where {T,A} MI = zero(T) marginals = getmarginalsarray(table) p = gettablearray(table) N = size(marginals, 1) @inbounds for j = 1:N pj = marginals[j, 2] if pj > zero(T) @inbounds @simd for i = 1:N MI += _mi(T, p[i, j], marginals[i, 1], pj) end end end MI end """ mutual_information(table::Union{Frequencies{T,2,A},Probabilities{T,2,A}}; base::Number=ℯ) It calculates Mutual Information (MI) from a table of `Frequencies` or `Probabilities`. $_DOC_LOG_BASE Note that calculating MI from `Frequencies` is faster than from `Probabilities`. """ function mutual_information(table::Probabilities{T,2,A}; base::Number = ℯ) where {T,A} mi = _mutual_information(table) base === ℯ ? mi : (mi / log(base)) # Default base: e end # It avoids ifelse() because log is expensive (https://github.com/JuliaLang/julia/issues/8869) @inline function _mi(total::T, nij, ni, nj) where {T} (nij > zero(T)) && (ni > zero(T)) ? T(nij * log((total * nij) / (ni * nj))) : zero(T) end function _mutual_information(table::Frequencies{T,2,A}) where {T,A} mi = zero(T) marginals = getmarginalsarray(table) n = gettablearray(table) total = gettotal(table) N = size(marginals, 1) @inbounds for j = 1:N nj = marginals[j, 2] if nj > zero(T) @inbounds @simd for i = 1:N mi += _mi(total, n[i, j], marginals[i, 1], nj) end end end mi / total end function mutual_information(table::Frequencies{T,2,A}; base::Number = ℯ) where {T,A} mi = _mutual_information(table) base === ℯ ? mi : (mi / log(base)) # Default base: e end function mutual_information( table::Union{Frequencies{T,N,A},Probabilities{T,N,A}}, base::Real, ) where {T,N,A} Base.depwarn( "mutual_information(table, base) is deprecated. Use mutual_information(table; base=base) instead.", :mutual_information, force = true, ) mutual_information(table, base = base) end """ mutual_information(table::Union{Frequencies{T,3,A},Probabilities{T,3,A}}; base::Number=ℯ) It calculates Mutual Information (MI) from a table of `Frequencies` or `Probabilities` with three dimensions. $_DOC_LOG_BASE ```jldoctest julia> using Random, MIToS.MSA, MIToS.Information julia> msa = rand(Random.MersenneTwister(37), Residue, 3, 4) 3×4 Matrix{Residue}: T R F K S H C I G G R V julia> Nxyz = frequencies(msa[:, 1], msa[:, 2], msa[:, 3]); julia> mutual_information(Nxyz) 1.0986122886681093 ``` """ function mutual_information( pxyz::Union{Frequencies{T,3,A},Probabilities{T,3,A}}; base::Number = ℯ, ) where {T,A} pxy = delete_dimensions(pxyz, 3) mi = ( marginal_entropy(pxyz, margin = 1) + # H(X) + marginal_entropy(pxyz, margin = 2) + # H(Y) + marginal_entropy(pxyz, margin = 3) - # H(Z) - shannon_entropy(pxy) - # H(X,Y) - shannon_entropy(delete_dimensions!(pxy, pxyz, 2)) - # H(X,Z) - shannon_entropy(delete_dimensions!(pxy, pxyz, 2)) + # H(Y,Z) + shannon_entropy(pxyz) # H(X,Y,Z) ) base === ℯ ? mi : (mi / log(base)) end """ mutual_information(msa::AbstractArray{Residue}; base::Number=ℯ, kargs...) It calculates Mutual Information (MI) from a multiple sequence alignment (MSA). $_DOC_LOG_BASE The minimum value for `rank` is 2 (the default value). By defualt, it uses counts/frequencies to calculate the MI, as it's faster. You can use the keyword argument `probabilities = true` to calculate the MI from probabilities. ```jldoctest julia> using Random, MIToS.MSA, MIToS.Information julia> msa = rand(Random.MersenneTwister(37), Residue, 3, 4) 3×4 Matrix{Residue}: T R F K S H C I G G R V julia> mutual_information(msa) 4×4 Named PairwiseListMatrices.PairwiseListMatrix{Float64, false, Vector{Float64}} Col1 ╲ Col2 │ 1 2 3 4 ────────────┼─────────────────────────────────── 1 │ NaN 1.09861 1.09861 1.09861 2 │ 1.09861 NaN 1.09861 1.09861 3 │ 1.09861 1.09861 NaN 1.09861 4 │ 1.09861 1.09861 1.09861 NaN ```` """ function mutual_information( msa::AbstractArray{Residue}; rank::Int = 2, probabilities::Bool = false, base::Number = ℯ, kargs..., ) @assert rank > 1 "rank must be greater than 1 for mutual_information" mapfreq( mutual_information, msa; rank = rank, probabilities = probabilities, base = base, kargs..., ) end # Normalized Mutual Information by Entropy # ---------------------------------------- const _DOC_NMI = """ The mutual information score is normalized by the joint entropy of the two variables: \$nMI(X, Y) = MI(X, Y) / H(X, Y)\$ """ """ It calculates a Normalized Mutual Information (nMI) from a table of `Frequencies` or `Probabilities`. $_DOC_NMI """ function normalized_mutual_information( table::Union{Frequencies{T,N,A},Probabilities{T,N,A}}, ) where {T,N,A} H = shannon_entropy(table) if H != zero(T) MI = _mutual_information(table) return (T(MI / H)) else return (zero(T)) end end """ normalized_mutual_information(msa::AbstractArray{Residue}; kargs...) This function calculates the Normalized Mutual Information (nMI) from a multiple sequence alignment using the [`mapfreq`](@ref) function—all the keyword arguments are passed to `mapfreq`. $_DOC_NMI By default, it uses counts/frequencies to estimate the nMI, as it's faster than using probabilities. """ function normalized_mutual_information( msa::AbstractArray{Residue}; rank::Int = 2, probabilities::Bool = false, kargs..., ) @assert rank > 1 "rank must be greater than 1 for normalized_mutual_information" mapfreq( normalized_mutual_information, msa, rank = rank, probabilities = probabilities, kargs..., ) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
15140
function _get_matrix_residue(msa::AbstractMultipleSequenceAlignment)::Matrix{Residue} getarray(namedmatrix(msa)) end _get_matrix_residue(msa::NamedArray)::Matrix{Residue} = getarray(msa) _get_matrix_residue(msa::Matrix{Residue})::Matrix{Residue} = msa # Kernel function to fill ContingencyTable based on residues function _mapfreq_kernel!( f::Function, freqtable::Union{Probabilities{T,N,A},Frequencies{T,N,A}}, weights, pseudocounts, pseudofrequencies, res::Vararg{AbstractVector{Residue},N}; kargs..., ) where {T,N,A} table = freqtable.table _cleanup_table!(table) # frequencies! calls _cleanup_temporal! and cleans marginals frequencies!(table, res..., weights = weights, pseudocounts = pseudocounts) # frequencies! calls apply_pseudocount! and _update! if isa(freqtable, Probabilities{T,N,A}) normalize!(table) apply_pseudofrequencies!(table, pseudofrequencies) end f(freqtable; kargs...) end _mapfreq_kargs_doc = """ - `weights` (default: `NoClustering()`): Weights to be used for table counting. - `pseudocounts` (default: `NoPseudocount()`): `Pseudocount` object to be applied to table. - `pseudofrequencies` (default: `NoPseudofrequencies()`): `Pseudofrequencies` to be applied to the normalized (probabilities) table. """ _mappairfreq_kargs_doc = """ - `usediagonal` (default: `true`): If `true`, the function will be also applied to the diagonal elements. - `diagonalvalue` (default: `zero`): Value to fill diagonal elements if `usediagonal` is `false`. """ # Residues: The output is a Named Vector # -------------------------------------- function _mapfreq!( f::Function, res_list::Vector{V}, # sequences or columns table::Union{Probabilities{T,1,A},Frequencies{T,1,A}}; weights::WeightTypes = NoClustering(), pseudocounts::Pseudocount = NoPseudocount(), pseudofrequencies::Pseudofrequencies = NoPseudofrequencies(), kargs..., ) where {T,A,V<:AbstractArray{Residue}} scores = map(res_list) do res _mapfreq_kernel!(f, table, weights, pseudocounts, pseudofrequencies, res; kargs...) end scores end # Map to each column """ It efficiently map a function (first argument) that takes a table of `Frequencies` or `Probabilities` (third argument). The table is filled in place with the counts or probabilities of each column from the `msa` (second argument). $_mapfreq_kargs_doc """ function mapcolfreq!( f::Function, msa::AbstractMatrix{Residue}, table::Union{Probabilities{T,1,A},Frequencies{T,1,A}}; weights::WeightTypes = NoClustering(), pseudocounts::Pseudocount = NoPseudocount(), pseudofrequencies::Pseudofrequencies = NoPseudofrequencies(), kargs..., ) where {T,A} N = ncolumns(msa) residues = _get_matrix_residue(msa) ncol = size(residues, 2) columns = map(i -> view(residues, :, i), 1:ncol) # 2x faster than calling view inside the loop scores = _mapfreq!( f, columns, table; weights = weights, pseudocounts = pseudocounts, pseudofrequencies = pseudofrequencies, kargs..., ) name_list = columnnames(msa) NamedArray( reshape(scores, (1, N)), ( OrderedDict{String,Int}(string(f) => 1), OrderedDict{String,Int}(name_list[i] => i for i = 1:N), ), ("Function", "Col"), ) end # Map to each sequence """ It efficiently map a function (first argument) that takes a table of `Frequencies` or `Probabilities` (third argument). The table is filled in place with the counts or probabilities of each sequence from the `msa` (second argument). $_mapfreq_kargs_doc """ function mapseqfreq!( f::Function, msa::AbstractMatrix{Residue}, table::Union{Probabilities{T,1,A},Frequencies{T,1,A}}; weights::WeightTypes = NoClustering(), pseudocounts::Pseudocount = NoPseudocount(), pseudofrequencies::Pseudofrequencies = NoPseudofrequencies(), kargs..., ) where {T,A} N = nsequences(msa) sequences = getresiduesequences(msa) name_list = sequencenames(msa) scores = _mapfreq!( f, sequences, table; weights = weights, pseudocounts = pseudocounts, pseudofrequencies = pseudofrequencies, kargs..., ) NamedArray( reshape(scores, (N, 1)), ( OrderedDict{String,Int}(name_list[i] => i for i = 1:N), OrderedDict{String,Int}(string(f) => 1), ), ("Seq", "Function"), ) end # Residue pairs: The output is a Named PairwiseListMatrix # ------------------------------------------------------- function _mappairfreq!( f::Function, res_list::Vector{V}, # sequences or columns plm::PairwiseListMatrix{T,D,TV}, # output table::Union{Probabilities{T,2,A},Frequencies{T,2,A}}, usediagonal::Type{Val{D}} = Val{true}; weights::WeightTypes = NoClustering(), pseudocounts::Pseudocount = NoPseudocount(), pseudofrequencies::Pseudofrequencies = NoPseudofrequencies(), kargs..., ) where {T,D,TV,A,V<:AbstractArray{Residue}} @inbounds @iterateupper plm D begin list[k] = _mapfreq_kernel!( f, table, weights, pseudocounts, pseudofrequencies, res_list[i], res_list[j]; kargs..., ) end plm end # Map to column pairs """ It efficiently map a function (first argument) that takes a table of `Frequencies` or `Probabilities` (third argument). The table is filled in place with the counts or probabilities of each pair of columns from the `msa` (second argument). $_mapfreq_kargs_doc $_mappairfreq_kargs_doc """ function mapcolpairfreq!( f::Function, msa::AbstractMatrix{Residue}, table::Union{Probabilities{T,2,A},Frequencies{T,2,A}}; usediagonal::Bool = true, diagonalvalue::T = zero(T), weights::WeightTypes = NoClustering(), pseudocounts::Pseudocount = NoPseudocount(), pseudofrequencies::Pseudofrequencies = NoPseudofrequencies(), kargs..., ) where {T,A} ncol = ncolumns(msa) residues = _get_matrix_residue(msa) columns = map(i -> view(residues, :, i), 1:ncol) # 2x faster than calling view inside the loop scores = columnpairsmatrix(msa, T, Val{usediagonal}, diagonalvalue) # Named PairwiseListMatrix plm = getarray(scores) _mappairfreq!( f, columns, plm, table, Val{usediagonal}; weights = weights, pseudocounts = pseudocounts, pseudofrequencies = pseudofrequencies, kargs..., ) scores end # DEPRECATED, usediagonal is now a boolean keyword argument function mapcolpairfreq!(f, msa, table, usediagonal::Type{Val{D}}; kargs...) where {D} Base.depwarn( "The `usediagonal` positional argument of `mapcolpairfreq!` taking `Val{true}` or `Val{false}` is deprecated. Use `usediagonal = true` or `usediagonal = false` instead.", :mapcolpairfreq!, force = true, ) mapcolpairfreq!(f, msa, table; usediagonal = D, kargs...) end # Map to sequence pairs """ It efficiently map a function (first argument) that takes a table of `Frequencies` or `Probabilities` (third argument). The table is filled in place with the counts or probabilities of each pair of sequences from the `msa` (second argument). $_mapfreq_kargs_doc $_mappairfreq_kargs_doc """ function mapseqpairfreq!( f::Function, msa::AbstractMatrix{Residue}, table::Union{Probabilities{T,2,A},Frequencies{T,2,A}}; usediagonal::Bool = true, diagonalvalue::T = zero(T), weights::WeightTypes = NoClustering(), pseudocounts::Pseudocount = NoPseudocount(), pseudofrequencies::Pseudofrequencies = NoPseudofrequencies(), kargs..., ) where {T,A} sequences = getresiduesequences(msa) scores = sequencepairsmatrix(msa, T, Val{usediagonal}, diagonalvalue) # Named PairwiseListMatrix plm = getarray(scores) _mappairfreq!( f, sequences, plm, table, Val{usediagonal}; weights = weights, pseudocounts = pseudocounts, pseudofrequencies = pseudofrequencies, kargs..., ) scores end # DEPRECATED, usediagonal is now a boolean keyword argument function mapseqpairfreq!(f, msa, table, usediagonal::Type{Val{D}}; kargs...) where {D} Base.depwarn( "The `usediagonal` positional argument of mapseqpairfreq! taking `Val{true}` or `Val{false}` is deprecated. Use `usediagonal = true` or `usediagonal = false` instead.", :mapseqpairfreq!, force = true, ) mapseqpairfreq!(f, msa, table; usediagonal = D, kargs...) end # General mapfreq methods # ======================= # The doctest for rank=2 can not be supported simultaneously for Julia 1.6 and 1.10 # because of the different behavior when printing the matrix headers. # Therefore, the following docstest could be added once we drop support for Julia 1.6: # mapfreq(sum, msa, rank=2) # mapfreq(sum, msa, dims=1, rank=2) """ mapfreq(f, msa; rank = 1, dims = 2, alphabet = UngappedAlphabet(), weights = NoClustering(), pseudocounts = NoPseudocount(), pseudofrequencies = NoPseudofrequencies(), probabilities = true, usediagonal = false, diagonalvalue = NaN, kargs...) It efficiently map a function (first argument) that takes a table of `Frequencies` or `Probabilities` (depending on the `probabilities` keyword argument) calculated on sequences (`dims = 1`) or columns (`dims = 2`, the default) of an `msa` (second argument). If `rank = 1`, the default, the function is applied to each sequence or column. If `rank = 2`, the function is applied to each pair of sequences or columns. In that case, we can set the `usediagonal` keyword argument to `true` to apply the function to pairs of the same sequence or column. The `diagonalvalue` keyword argument is used to set the value of the diagonal elements if `usediagonal` is `false`. By default, the function is not applied to the diagonal elements (i.e. `usediagonal = false`) and the `diagonalvalue` is set to `NaN`. The `alphabet` keyword argument can be used to set the alphabet used to construct the contingency table. The function also accepts the following keyword arguments: $_mapfreq_kargs_doc Note that the `pseudofrequencies` argument is only valid if `probabilities = true`. All the other keyword arguments are passed to the function `f`. ```jldoctest julia> using Random, MIToS.MSA, MIToS.Information julia> msa = rand(Random.MersenneTwister(1), Residue, 3, 6) # random MSA as an example 3×6 Matrix{Residue}: F A F D E V T R R G F I N V S W Q T julia> mapfreq(sum, msa) # default: rank=1, dims=2, probabilities=true 1×6 Named Matrix{Float64} Function ╲ Col │ 1 2 3 4 5 6 ───────────────┼───────────────────────────── sum │ 1.0 1.0 1.0 1.0 1.0 1.0 julia> mapfreq(sum, msa, probabilities=false) 1×6 Named Matrix{Float64} Function ╲ Col │ 1 2 3 4 5 6 ───────────────┼───────────────────────────── sum │ 3.0 3.0 3.0 3.0 3.0 3.0 julia> mapfreq(sum, msa, dims=1) 3×1 Named Matrix{Float64} Seq ╲ Function │ sum ───────────────┼──── 1 │ 1.0 2 │ 1.0 3 │ 1.0 ``` """ function mapfreq( f::Function, msa::AbstractArray{Residue}; rank::Int = 1, dims::Int = 2, alphabet::ResidueAlphabet = UngappedAlphabet(), weights::WeightTypes = NoClustering(), pseudocounts::Pseudocount = NoPseudocount(), pseudofrequencies::Pseudofrequencies = NoPseudofrequencies(), probabilities::Bool = true, usediagonal::Bool = false, diagonalvalue::Float64 = NaN, kargs..., ) # Ensure that the keyword arguments are correct @assert dims == 1 || dims == 2 "The dimension must be 1 (sequences) or 2 (columns)." @assert rank == 1 || rank == 2 "The rank must be 1 (single sequences or columns) or 2 (pairs)." if pseudofrequencies !== NoPseudofrequencies() @assert probabilities "Set `probabilities = true` to use pseudofrequencies." end # Define the table to apply the function _table = ContingencyTable(Float64, Val{rank}, alphabet) table = probabilities ? Probabilities(_table) : Frequencies(_table) if rank == 1 if dims == 1 mapseqfreq!( f, msa, table; weights = weights, pseudocounts = pseudocounts, pseudofrequencies = pseudofrequencies, kargs..., ) else mapcolfreq!( f, msa, table; weights = weights, pseudocounts = pseudocounts, pseudofrequencies = pseudofrequencies, kargs..., ) end else if dims == 1 mapseqpairfreq!( f, msa, table; usediagonal = usediagonal, diagonalvalue = diagonalvalue, weights = weights, pseudocounts = pseudocounts, pseudofrequencies = pseudofrequencies, kargs..., ) else mapcolpairfreq!( f, msa, table; usediagonal = usediagonal, diagonalvalue = diagonalvalue, weights = weights, pseudocounts = pseudocounts, pseudofrequencies = pseudofrequencies, kargs..., ) end end end # cMI # === """ `cumulative` allows to calculate cumulative scores (i.e. cMI) as defined in *Marino Buslje et al. 2010*: > "We calculated a cumulative mutual information score (cMI) for each residue as the > sum of MI values above a certain threshold for every amino acid pair where the particular > residue appears. This value defines to what degree a given amino acid takes part in a > mutual information network." # References - [Marino Buslje, Cristina, et al. "Networks of high mutual information define the structural proximity of catalytic sites: implications for catalytic residue identification." PLoS computational biology 6.11 (2010): e1000978.](@cite marino2010networks) """ function cumulative(plm::PairwiseListMatrix{T,D,VT}, threshold::T) where {T,D,VT} N = size(plm, 1) out = zeros(T, N) @iterateupper plm false begin elem = list[k] if !isnan(elem) && elem >= threshold out[i] += elem out[j] += elem end end reshape(out, (1, N)) end function cumulative( nplm::NamedArray{T,2,PairwiseListMatrix{T,D,TV},DN}, threshold::T, ) where {T,D,TV,DN} N = size(nplm, 2) name_list = names(nplm, 2) NamedArray( cumulative(getarray(nplm), threshold), ( OrderedDict{String,Int}("cumulative" => 1), OrderedDict{String,Int}(name_list[i] => i for i = 1:N), ), ("Function", dimnames(nplm, 2)), ) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
1864
# Pseudocounts # ============ """ Parametric abstract type to define pseudocount types """ abstract type Pseudocount{T<:Real} end """ You can use `NoPseudocount()` to avoid pseudocount corrections where a `Pseudocount` type is needed. """ struct NoPseudocount <: Pseudocount{Float64} end """ **Additive Smoothing** or fixed pseudocount `λ` for `ResidueCount` (in order to estimate probabilities when the number of samples is low). Common values of `λ` are: - `0` : No cell frequency prior, gives you the maximum likelihood estimator. - `0.05` is the optimum value for `λ` found in *Buslje et. al. 2009*, similar results was obtained for `λ` in the range [0.025, 0.075]. - `1 / p` : Perks prior (Perks, 1947) where `p` the number of parameters (i.e. residues, pairs of residues) to estimate. If `p` is the number of residues (`20` without counting gaps), this gives you `0.05`. - `sqrt(n) / p` : Minimax prior (Trybula, 1958) where `n` is the number of samples and `p` the number of parameters to estimate. If the number of samples `n` is 400 (minimum number of sequence clusters for achieve good performance in *Buslje et. al. 2009*) for estimating 400 parameters (pairs of residues without counting gaps) this gives you `0.05`. - `0.5` : Jeffreys prior (Jeffreys, 1946). - `1` : Bayes-Laplace uniform prior, aka. Laplace smoothing. # References - [Buslje, Cristina Marino, et al. "Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information." Bioinformatics 25.9 (2009): 1125-1131.](@cite buslje2009correction) """ struct AdditiveSmoothing{T} <: Pseudocount{T} λ::T end Base.zero(::Type{AdditiveSmoothing{T}}) where {T} = AdditiveSmoothing(zero(T)) Base.one(::Type{AdditiveSmoothing{T}}) where {T} = AdditiveSmoothing(one(T))
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
3332
# Pseudofrequencies # ================= """ Parametric abstract type to define pseudofrequencies types """ abstract type Pseudofrequencies end """ You can use `NoPseudofrequencies()` to avoid pseudocount corrections where a `Pseudofrequencies` type is needed. """ struct NoPseudofrequencies <: Pseudofrequencies end # BLOSUM based pseudofrequencies # ============================== """ `BLOSUM_Pseudofrequencies` type. It takes to arguments/fields: - `α` : Usually the number of sequences or sequence clusters in the MSA. - `β` : The weight of the pseudofrequencies, a value close to 8.512 when `α` is the number of sequence clusters. """ struct BLOSUM_Pseudofrequencies <: Pseudofrequencies α::Float64 β::Float64 end """ `_calculate_blosum_pseudofrequencies!{T}(Pab::ContingencyTable{T,2,UngappedAlphabet})` This function uses the conditional probability matrix `BLOSUM62_Pij` to fill the temporal array field of `Pab` with pseudo frequencies (`Gab`). This function needs the real frequencies/probabilities `Pab` because they are used to estimate the pseudofrequencies. `Gab = Σcd Pcd ⋅ BLOSUM62( a | c ) ⋅ BLOSUM62( b | d )` """ function _calculate_blosum_pseudofrequencies!( Pab::ContingencyTable{T,2,UngappedAlphabet}, ) where {T} @assert gettotal(Pab) ≈ one(T) "The input should be a probability table (normalized)" pab = getarray(gettable(Pab)) gab = Pab.temporal bl62 = getarray(gettable(BLOSUM62_Pij)) total = zero(T) @inbounds for b = 1:20, a = 1:20 gab[a, b] = zero(T) for d = 1:20 bl62_db = bl62[d, b] for c = 1:20 P = pab[c, d] if P != 0 # BLOSUM62_Pij[c,a] is p(a|c) gab[a, b] += (P * bl62[c, a] * bl62_db) end end end total += gab[a, b] end if total ≉ one(T) @inbounds for col = 1:20 @simd for row = 1:20 gab[row, col] /= total end end end Pab end """ `apply_pseudofrequencies!{T}(Pab::ContingencyTable{T,2,UngappedAlphabet}, pseudofrequencies::BLOSUM_Pseudofrequencies)` When a `BLOSUM_Pseudofrequencies(α,β)` is used, this function applies pseudofrequencies `Gab` over `Pab`, as a weighted mean of both. It uses the conditional probability matrix `BLOSUM62_Pij` and the real frequencies/probabilities `Pab` to estimate the pseudofrequencies `Gab`. α is the weight of the real frequencies `Pab` and β the weight of the pseudofrequencies. `Gab = Σcd Pcd ⋅ BLOSUM62( a | c ) ⋅ BLOSUM62( b | d )` `Pab = (α ⋅ Pab + β ⋅ Gab )/(α + β)` """ function apply_pseudofrequencies!( Pab::ContingencyTable{T,2,UngappedAlphabet}, pseudofrequencies::BLOSUM_Pseudofrequencies, ) where {T} α = T(pseudofrequencies.α) β = T(pseudofrequencies.β) if β == 0.0 return (Pab) end _calculate_blosum_pseudofrequencies!(Pab) pab = getarray(gettable(Pab)) gab = Pab.temporal frac = one(T) / (α + β) @inbounds for col = 1:20 @simd for row = 1:20 pab[row, col] = (α * pab[row, col] + β * gab[row, col]) * frac end end update_marginals!(Pab) normalize!(Pab) end @inline apply_pseudofrequencies!( Pab::ContingencyTable, pseudofrequencies::NoPseudofrequencies, ) = Pab
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
2359
struct A3M <: MSAFormat end struct A2M <: MSAFormat end function _add_insert_gaps!(SEQS) seq_len = length.(SEQS) ncol = maximum(seq_len) j = 1 is_insert = false while j <= ncol for i = 1:length(SEQS) if j <= seq_len[i] res = SEQS[i][j] if islowercase(res) || res == '.' is_insert = true break end end end if is_insert for i = 1:length(SEQS) seq = SEQS[i] if j > seq_len[i] SEQS[i] = seq * "." seq_len[i] += 1 else res = seq[j] if isuppercase(res) || res == '-' SEQS[i] = seq[1:j-1] * "." * seq[j:end] seq_len[i] += 1 end end end ncol = maximum(seq_len) end is_insert = false j += 1 end SEQS end function _load_sequences( io::Union{IO,AbstractString}, format::Type{A3M}; create_annotations::Bool = false, ) IDS, SEQS = _pre_readfasta(io) _check_seq_and_id_number(IDS, SEQS) try _check_seq_len(IDS, SEQS) catch SEQS = _add_insert_gaps!(SEQS) end return IDS, SEQS, Annotations() end # A2M is similar to FASTA but uses lowercase letters and dots for inserts. In the A2M # format, all sequences have the same length. Since MIToS handles the inserts, we can load # it as FASTA. However, I will use the A3M parser instead of the FASTA parser to ensure # the file can be read correctly if the user confuses A2M with A3M. _load_sequences(io::Union{IO,AbstractString}, format::Type{A2M}) = _load_sequences(io, A3M) # Print A3M # ========= function Utils.print_file( io::IO, msa::AbstractMatrix{Residue}, format::Union{Type{A3M},Type{A2M}}, ) seqnames = sequencenames(msa) aligned = _get_aligned_columns(msa) for i = 1:nsequences(msa) seq = stringsequence(msa, i) # A2M uses dots for gaps aligned to insertions, but A3M can avoid them keep_insert_gaps = format === A2M formatted_seq = _format_inserts(seq, aligned, keep_insert_gaps) println(io, ">", seqnames[i]) println(io, formatted_seq) end end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
5552
""" Abstract type to define residue alphabet types. """ abstract type ResidueAlphabet end """ This type defines the usual alphabet of the 20 natural residues and a gap character. ```jldoctest julia> using MIToS.MSA julia> GappedAlphabet() GappedAlphabet of length 21. Residues : res"ARNDCQEGHILKMFPSTWYV-" ``` """ struct GappedAlphabet <: ResidueAlphabet end """ This type defines the usual alphabet of the 20 natural residues, without the gap character. ```jldoctest julia> using MIToS.MSA julia> UngappedAlphabet() UngappedAlphabet of length 20. Residues : res"ARNDCQEGHILKMFPSTWYV" ``` """ struct UngappedAlphabet <: ResidueAlphabet end """ `ReducedAlphabet` allows the construction of reduced residue alphabets, where residues inside parenthesis belong to the same group. ```jldoctest julia> using MIToS.MSA julia> ab = ReducedAlphabet("(AILMV)(RHK)(NQST)(DE)(FWY)CGP") ReducedAlphabet of length 8 : "(AILMV)(RHK)(NQST)(DE)(FWY)CGP" julia> ab[Residue('K')] 2 ``` """ struct ReducedAlphabet <: ResidueAlphabet mapping::Array{Int,1} # Residue -> Int named::NamedArray{Int,1,Array{Int,1},Tuple{OrderedDict{String,Int}}} len::Int end # Creation # -------- function ReducedAlphabet(str::AbstractString) N = Int(XAA) mapping = fill!(Array{Int}(undef, N), N) ingroup = false pos = 0 group_names = fill!(Array{String}(undef, N), "") for char in str if char == '(' ingroup = true pos += 1 continue end if char == ')' ingroup = false continue end if !ingroup pos += 1 end int_residue = Int(Residue(char)) @assert int_residue != 22 "$char isn't valid for a residue alphabet." # N == 22 group_names[pos] = string(group_names[pos], char) mapping[int_residue] = pos end named = NamedArray( collect(1:pos), (OrderedDict{String,Int}(group_names[i] => i for i = 1:pos),), ("Groups",), ) ReducedAlphabet(mapping, named, pos) end # Iteration Interface # ------------------- Base.length(ab::UngappedAlphabet) = 20 Base.length(ab::GappedAlphabet) = 21 Base.length(ab::ReducedAlphabet) = ab.len Base.eltype(::ResidueAlphabet) = Int function Base.iterate(ab::ResidueAlphabet, state = 0) if state ≥ length(ab) return nothing else next_state = state + 1 return (next_state, next_state) end end # Show # ---- function Base.show(io::IO, ab::ResidueAlphabet) print( io, typeof(ab), " of length ", length(ab), ". Residues : res\"", join(_to_char[1:length(ab)]), "\"", ) end function Base.show(io::IO, ab::ReducedAlphabet) groups = names(ab.named, 1) print(io, "ReducedAlphabet of length ", length(ab), " : \"") for i in ab chars = groups[i] if length(chars) == 1 print(io, chars[1]) elseif length(chars) > 1 print(io, "(", join(chars), ")") end end print(io, "\"") end # getindex # -------- @inline function Base.getindex(ab::ResidueAlphabet, res::Int)::Int ifelse(res <= length(ab), res, 22) end @inline function Base.getindex(ab::ReducedAlphabet, res::Int)::Int @inbounds value = ab.mapping[res] value end @inline function Base.getindex(ab::ResidueAlphabet, res::Residue)::Int ab[Int(res)] end @inline function Base.getindex(ab::ResidueAlphabet, res::String)::Int @assert length(res) == 1 "The string with the residue should have only one character." i = Int(Residue(res[1])) ifelse(i <= length(ab), i, 22) end @inline function Base.getindex(ab::ReducedAlphabet, res::String)::Int @inbounds value = ab.named[res] value end # In Alphabet # ----------- Base.in(res::Residue, alphabet::ResidueAlphabet) = Int(res) <= length(alphabet) Base.in(res::Residue, alphabet::ReducedAlphabet) = alphabet[res] != 22 # Names # ----- """ It returns the name of each group. The name is a string with the one letter code of each residue that belong to the group. ```jldoctest julia> using MIToS.MSA julia> ab = ReducedAlphabet("(AILMV)(RHK)(NQST)(DE)(FWY)CGP") ReducedAlphabet of length 8 : "(AILMV)(RHK)(NQST)(DE)(FWY)CGP" julia> names(ab) 8-element Vector{String}: "AILMV" "RHK" "NQST" "DE" "FWY" "C" "G" "P" ``` """ Base.names(alphabet::ReducedAlphabet) = names(alphabet.named, 1) Base.names(alphabet::ResidueAlphabet) = String[string(Residue(i)) for i in alphabet] # Dict of names to indexes # ------------------------ @inline _getdict(n::NamedArray{Int,1,Array{Int,1},Tuple{OrderedDict{String,Int}}}) = n.dicts[1] const _UngappedAlphabet_Names = OrderedDict{String,Int}(string(Residue(i)) => i for i = 1:20) const _GappedAlphabet_Names = OrderedDict{String,Int}(string(Residue(i)) => i for i = 1:21) @inline getnamedict(alphabet::UngappedAlphabet) = _UngappedAlphabet_Names @inline getnamedict(alphabet::GappedAlphabet) = _GappedAlphabet_Names """ It takes a `ResidueAlphabet` and returns a dictionary from group name to group position. ```jldoctest julia> using MIToS.MSA julia> ab = ReducedAlphabet("(AILMV)(RHK)(NQST)(DE)(FWY)CGP") ReducedAlphabet of length 8 : "(AILMV)(RHK)(NQST)(DE)(FWY)CGP" julia> getnamedict(ab) OrderedCollections.OrderedDict{String, Int64} with 8 entries: "AILMV" => 1 "RHK" => 2 "NQST" => 3 "DE" => 4 "FWY" => 5 "C" => 6 "G" => 7 "P" => 8 ``` """ @inline getnamedict(alphabet::ReducedAlphabet) = _getdict(copy(alphabet.named))
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
13896
# Annotations # =========== """ The `Annotations` type is basically a container for `Dict`s with the annotations of a multiple sequence alignment. `Annotations` was designed for storage of annotations of the **Stockholm format**. MIToS also uses MSA annotations to keep track of: - **Modifications** of the MSA (`MIToS_...`) as deletion of sequences or columns. - Positions numbers in the original MSA file (**column mapping:** `ColMap`) - Position of the residues in the sequence (**sequence mapping:** `SeqMap`) """ @auto_hash_equals mutable struct Annotations file::OrderedDict{String,String} sequences::Dict{Tuple{String,String},String} columns::Dict{String,String} residues::Dict{Tuple{String,String},String} end Annotations() = Annotations( OrderedDict{String,String}(), Dict{Tuple{String,String},String}(), Dict{String,String}(), Dict{Tuple{String,String},String}(), ) # Length # ------ function Base.length(a::Annotations) length(a.file) + length(a.sequences) + length(a.columns) + length(a.residues) end # Filters # ------- # This function is useful because of the Julia issue #12495 function _filter(str::String, mask::AbstractArray{Bool}) @assert length(str) == length(mask) "The string and the mask must have the same length" # data readable writable buffer = IOBuffer(Array{UInt8}(undef, lastindex(str)), read = true, write = true) # To start at the beginning of the buffer: truncate(buffer, 0) i = 1 for char in str @inbounds if mask[i] write(buffer, char) end i += 1 end String(take!(buffer)) end _filter(str::String, indexes::AbstractArray{Int}) = String(collect(str)[indexes]) """ For filter column and sequence mapping of the format: ",,,,10,11,,12" """ _filter_mapping(str_map::String, mask) = join(split(str_map, ',')[mask], ',') """ `filtersequences!(data::Annotations, ids::Vector{String}, mask::AbstractArray{Bool,1})` It is useful for deleting sequence annotations. `ids` should be a list of the sequence names and `mask` should be a logical vector. """ function filtersequences!( data::Annotations, ids::Vector{String}, mask::AbstractVector{Bool}, ) @assert length(ids) == length(mask) "It's needed one sequence id per element in the mask." nresannot = length(data.residues) nseqannot = length(data.sequences) if nresannot > 0 || nseqannot > 0 del = Set(ids[.!mask]) end if nresannot > 0 for key in keys(data.residues) if key[1] in del delete!(data.residues, key) end end data.residues = sizehint!(data.residues, length(data.residues)) end if nseqannot > 0 for key in keys(data.sequences) if key[1] in del delete!(data.sequences, key) end end data.sequences = sizehint!(data.sequences, length(data.sequences)) end data end """ `filtercolumns!(data::Annotations, mask)` It is useful for deleting column annotations (creating a subset in place). """ function filtercolumns!(data::Annotations, mask) if length(data.residues) > 0 for (key, value) in data.residues data.residues[key] = _filter(value, mask) end end if length(data.columns) > 0 for (key, value) in data.columns data.columns[key] = _filter(value, mask) end end if length(data.sequences) > 0 for (key, value) in data.sequences if key[2] == "SeqMap" data.sequences[key] = _filter_mapping(value, mask) end end end # vcat can create multiple ColMap annotations in a single MSA; update all of them colmap_keys = filter(endswith("ColMap"), keys(data.file)) for key in colmap_keys data.file[key] = _filter_mapping(data.file[key], mask) end data end # Copy, deepcopy and empty! # ------------------------- for fun in [:copy, :deepcopy] @eval begin Base.$(fun)(ann::Annotations) = Annotations( $(fun)(ann.file), $(fun)(ann.sequences), $(fun)(ann.columns), $(fun)(ann.residues), ) end end function Base.empty!(ann::Annotations) empty!(ann.file) empty!(ann.sequences) empty!(ann.columns) empty!(ann.residues) ann end Base.isempty(ann::Annotations) = isempty(ann.file) && isempty(ann.sequences) && isempty(ann.columns) && isempty(ann.residues) # merge! and merge # ---------------- const _MERGE_NOTE = md""" NOTE: This function does not check for consistency among the various `Annotations`. For example, it does not verify that `SeqMap` annotations have consistent lengths. """ """ merge!(target::Annotations, sources::Annotations...) Merge one or more source `Annotations` into a target `Annotations`. This function calls `Base.merge!` on each of the four dictionaries in the `Annotations` type: `file`, `sequences`, `columns`, and `residues`. Consequently, it behaves like `Base.merge!` for dictionaries; if the same key exists in different `Annotations` objects, the value from the last one is used. $_MERGE_NOTE """ function Base.merge!(target::Annotations, sources::Annotations...) for source in sources merge!(target.file, source.file) merge!(target.sequences, source.sequences) merge!(target.columns, source.columns) merge!(target.residues, source.residues) end target end """ merge(target::Annotations, sources::Annotations...) Create a new `Annotations` object by merging two or more `Annotations`. If the same annotation exists in different `Annotations` objects, the value from the last one is used. See also `merge!`. $_MERGE_NOTE """ Base.merge(target::Annotations, sources::Annotations...) = merge!(deepcopy(target), sources...) # ncolumns # -------- """ `ncolumns(ann::Annotations)` returns the number of columns/residues with annotations. This function returns `-1` if there is not annotations per column/residue. """ function ncolumns(ann::Annotations) for value in values(ann.columns) return (length(value)) end for value in values(ann.residues) return (length(value)) end -1 end # Getters # ------- for (fun, field) in [(:getannotfile, :(ann.file)), (:getannotcolumn, :(ann.columns))] @eval begin $(fun)(ann::Annotations) = $(field) $(fun)(ann::Annotations, feature::String) = getindex($(field), feature) $(fun)(ann::Annotations, feature::String, default::String) = get($(field), feature, default) end end for (fun, field) in [(:getannotsequence, :(ann.sequences)), (:getannotresidue, :(ann.residues))] @eval begin $(fun)(ann::Annotations) = $(field) $(fun)(ann::Annotations, seqname::String, feature::String) = getindex($(field), (seqname, feature)) $(fun)(ann::Annotations, seqname::String, feature::String, default::String) = get($(field), (seqname, feature), default) end end @doc """`getannotfile(ann[, feature[,default]])` It returns per file annotation for `feature` """ getannotfile @doc """`getannotcolumn(ann[, feature[,default]])` It returns per column annotation for `feature` """ getannotcolumn @doc """`getannotsequence(ann[, seqname, feature[,default]])` It returns per sequence annotation for `(seqname, feature)` """ getannotsequence @doc """`getannotresidue(ann[, seqname, feature[,default]])` It returns per residue annotation for `(seqname, feature)` """ getannotresidue # Setters # ------- function _test_feature_name(feature::String) @assert length(feature) <= 50 "Feature name has a limit of 50 characters." @assert !occursin(r"\s", feature) "Feature name must not have spaces." end function setannotfile!(ann::Annotations, feature::String, annotation::String) _test_feature_name(feature) previous = get(ann.file, feature, "") ann.file[feature] = previous != "" ? string(previous, '\n', annotation) : annotation end function setannotsequence!( ann::Annotations, seqname::String, feature::String, annotation::String, ) _test_feature_name(feature) previous = get(ann.sequences, (seqname, feature), "") ann.sequences[(seqname, feature)] = previous != "" ? string(previous, '\n', annotation) : annotation end function setannotcolumn!(ann::Annotations, feature::String, annotation::String) _test_feature_name(feature) len = ncolumns(ann) if (len == -1) || (len == length(annotation)) setindex!(ann.columns, annotation, feature) else throw( DimensionMismatch( string( "You should have exactly 1 char per column (", len, " columns/residues)", ), ), ) end end function setannotresidue!( ann::Annotations, seqname::String, feature::String, annotation::String, ) _test_feature_name(feature) len = ncolumns(ann) if (len == -1) || (len == length(annotation)) setindex!(ann.residues, annotation, (seqname, feature)) else throw( DimensionMismatch( string( "You should have exactly 1 char per residue (", len, " columns/residues)", ), ), ) end end @doc """`setannotfile!(ann, feature, annotation)` It stores per file `annotation` for `feature` """ setannotfile! @doc """`setannotcolumn!(ann, feature, annotation)` It stores per column `annotation` (1 char per column) for `feature` """ setannotcolumn! @doc """`setannotsequence!(ann, seqname, feature, annotation)` It stores per sequence `annotation` for `(seqname, feature)` """ setannotsequence! @doc """`setannotresidue!(ann, seqname, feature, annotation)` It stores per residue `annotation` (1 char per residue) for `(seqname, feature)` """ setannotresidue! # MIToS modification annotations # =============================== """ Annotates on file annotations the modifications realized by MIToS on the MSA. It always returns `true`, so It can be used in a boolean context. """ function annotate_modification!(ann::Annotations, modification::String) setannotfile!(ann, string("MIToS_", Dates.now()), modification) true # generally used in a boolean context: annotate && annotate_modification!(... end """ Deletes all the MIToS annotated modifications """ function delete_annotated_modifications!(ann::Annotations) for key in keys(ann.file) if startswith(key, "MIToS_") delete!(ann.file, key) end end end """ Prints MIToS annotated modifications """ function printmodifications(ann::Annotations) for (key, value) in ann.file if startswith(key, "MIToS_") list_k = split(key, '_') println("-------------------") println(list_k[2]) println('\n', value) end end end # Show & Print Annotations # ======================== function _printfileannotations(io::IO, ann::Annotations) if !isempty(ann.file) for (key, value) in ann.file for val in split(value, '\n') println(io, string("#=GF ", key, '\t', val)) end end end end function _printcolumnsannotations(io::IO, ann::Annotations) if !isempty(ann.columns) for (key, value) in ann.columns println(io, string("#=GC ", key, "\t\t\t", value)) end end end function _printsequencesannotations(io::IO, ann::Annotations) if !isempty(ann.sequences) for (key, value) in ann.sequences for val in split(value, '\n') println(io, string("#=GS ", key[1], '\t', key[2], '\t', val)) end end end end function _printresiduesannotations(io::IO, ann::Annotations) if !isempty(ann.residues) for (key, value) in ann.residues println(io, string("#=GR ", key[1], '\t', key[2], '\t', value)) end end end function Base.print(io::IO, ann::Annotations) _printfileannotations(io, ann) _printsequencesannotations(io, ann) _printresiduesannotations(io, ann) _printcolumnsannotations(io, ann) end Base.show(io::IO, ann::Annotations) = print(io, ann) # Rename sequences # ================ # This private function is used by rename sequences during MSA concatenation, # but it could be useful for other purposes """ _rename_sequences(annotations::Annotations, old2new::Dict{String,String}) Renames sequences in a given `Annotations` object based on a mapping provided in `old2new`. This function iterates through residue-level and sequence-level annotations in the provided `Annotations` object. For each annotation, it checks if the sequence name exists in the `old2new` dictionary. If so, the sequence name is updated to the new name from `old2new`; otherwise, the original sequence name is retained. The function then returns a new `Annotations` object with updated sequence names. """ function _rename_sequences(annotations::Annotations, old2new::Dict{String,String}) res_annotations = Dict{Tuple{String,String},String}() for ((seqname, annot_name), value) in getannotresidue(annotations) seqname = get(old2new, seqname, seqname) res_annotations[(seqname, annot_name)] = value end seq_annotations = Dict{Tuple{String,String},String}() for ((seqname, annot_name), value) in getannotsequence(annotations) seqname = get(old2new, seqname, seqname) seq_annotations[(seqname, annot_name)] = value end Annotations( copy(getannotfile(annotations)), seq_annotations, copy(getannotcolumn(annotations)), res_annotations, ) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
1398
# Clusters # ======== abstract type AbstractCluster end """ Use `NoClustering()` to avoid the use of clustering where a `Clusters` type is needed. """ struct NoClustering <: AbstractCluster end """ Data structure to represent sequence clusters. The sequence data itself is not included. """ @auto_hash_equals struct Clusters <: AbstractCluster clustersize::Vector{Int} clusters::Vector{Int} weights::StatsBase.Weights{Float64,Float64,Array{Float64,1}} end nelements(cl::Clusters) = length(cl.clusters) @inline Base.convert(::Type{Clusters}, cl::Clusters) = cl # no-op # weights # ------- """ The `WeightTypes` type is the same as `Union{Weights,NoClustering,Clusters}`. This type is used to represent weights. Most of the functions taking the `weights` kerword argument in the `Information` module accept instances of `WeightTypes`. """ const WeightTypes = Union{Weights,NoClustering,Clusters} """ `getweight(c[, i::Int])` This function returns the weight of the sequence number `i`. getweight should be defined for any type used for `frequencies!`/`frequencies` in order to use his weigths. If `i` isn't used, this function returns a vector with the weight of each sequence. """ @inline getweight(weight::NoClustering, seq::Int) = 1.0 getweight(cl::Clusters) = cl.weights getweight(cl::Clusters, seq::Int) = cl.weights[seq] @inline getweight(cl::Weights, i::Int) = cl[i]
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
41925
## hcat (horizontal concatenation) function _hcat_seqnames_kernel!(concatenated_names, msa, delim) for (i, seq) in enumerate(sequencename_iterator(msa)) if seq == concatenated_names[i] continue end concatenated_names[i] *= delim * seq end concatenated_names end function _h_concatenated_seq_names(msas...; delim::String = "_&_") concatenated_names = sequencenames(msas[1]) for msa in msas[2:end] _hcat_seqnames_kernel!(concatenated_names, msa, delim) end concatenated_names end function _hcat_colnames_kernel!(colnames, columns, msa_number::Int)::Int first_col = first(columns) check_msa_change = '_' in first_col previous = "" msa_number += 1 for col in columns if check_msa_change fields = split(col, '_') current = first(fields) if current != previous if previous != "" msa_number += 1 end previous = string(current) end col = last(fields) end push!(colnames, "$(msa_number)_$col") end msa_number end function _h_concatenated_col_names(msas...) colnames = String[] msa_number = 0 for msa in msas columns = columnname_iterator(msa) msa_number = _hcat_colnames_kernel!(colnames, columns, msa_number) end colnames end _get_seq_lengths(msas...) = Int[ncolumns(msa) for msa in msas] function _h_concatenate_annotfile(data::Annotations...) N = length(data) annotfile = copy(getannotfile(data[1])) for i = 2:N ann = data[i]::Annotations for (k, v) in getannotfile(ann) if haskey(annotfile, k) if endswith(k, "ColMap") # to also use ColMap annotations from vcat annotfile[k] = string(annotfile[k], ",", v) else annotfile[k] = string(annotfile[k], "_&_", v) end else if endswith(k, "ColMap") # that means that the ColMap annotation probably comes from vcat # in one of the source MSAs and there is no match between keys. @warn "There was no possible to match the ColMap annotations." end push!(annotfile, k => v) end end end annotfile end """ It returns a Dict mapping the MSA number and sequence name to the horizontally concatenated sequence name. """ function _get_seqname_mapping_hcat(concatenated_seqnames, msas...) mapping = Dict{Tuple{Int,String},String}() nmsa = length(msas) nseq = length(concatenated_seqnames) for j = 1:nmsa seq_names = sequencenames(msas[j]) @assert nseq == length(seq_names) for i = 1:nseq mapping[(j, seq_names[i])] = concatenated_seqnames[i] end end mapping end """ At this moment, the _concatenate_annotsequence function does no check for SeqMap annotations. Therefore, if an MSA does not have a SeqMap annotation, the concatenated SeqMap annotation is corrupted. To avoid this, we will delete the SeqMap annotation whose length is not equal to the length of the concatenated MSA. """ function _clean_sequence_mapping!(msa::AnnotatedAlignedObject) N = ncolumns(msa) to_delete = Tuple{String,String}[] annotsequence = getannotsequence(msa) for (key, value) in annotsequence if key[2] == "SeqMap" n_delim = count(==(','), value) if n_delim != N - 1 push!(to_delete, key) end end end for key in to_delete delete!(annotsequence, key) end msa end function _concatenate_annotsequence(seqname_mapping, data::Annotations...) annotsequence = Dict{Tuple{String,String},String}() for (i, ann::Annotations) in enumerate(data) for ((seqname, annot_name), value) in getannotsequence(ann) concatenated_seqname = get(seqname_mapping, (i, seqname), seqname) new_key = (concatenated_seqname, annot_name) # if we used :vcat, new_key will not be present in the dict as the # sequence names are disambiguated first if haskey(annotsequence, new_key) # so, we execute the following code only if we used :hcat if annot_name == "SeqMap" sep = "," else sep = "_&_" end annotsequence[new_key] = string(annotsequence[new_key], sep, value) else push!(annotsequence, new_key => value) end end end annotsequence end function _fill_and_update!(dict, last, key, i, value, seq_lengths) if haskey(dict, key) if last[key] == i - 1 dict[key] = string(dict[key], value) else previous = sum(seq_lengths[(last[key]+1):(i-1)]) dict[key] = string(dict[key], repeat(" ", previous), value) end last[key] = i else if i == 1 push!(dict, key => value) else previous = sum(seq_lengths[1:(i-1)]) push!(dict, key => string(repeat(" ", previous), value)) end push!(last, key => i) end end function _fill_end!(dict, seq_lengths, entity) total_length = sum(seq_lengths) for (key, value) in dict current_length = length(value) if current_length < total_length dict[key] *= " "^(total_length - current_length) elseif current_length > total_length throw( ErrorException( "There are $current_length $entity annotated instead of $total_length.", ), ) end end dict end function _h_concatenate_annotcolumn( seq_lengths::Vector{Int}, data::Annotations..., )::Dict{String,String} annotcolumn = Dict{String,String}() last = Dict{String,Int}() for (i, ann::Annotations) in enumerate(data) for (annot_name, value) in getannotcolumn(ann) _fill_and_update!(annotcolumn, last, annot_name, i, value, seq_lengths) end end _fill_end!(annotcolumn, seq_lengths, "columns") end function _h_concatenate_annotresidue(seq_lengths, seqname_mapping, data::Annotations...) annotresidue = Dict{Tuple{String,String},String}() last = Dict{Tuple{String,String},Int}() for (i, ann) in enumerate(data) for ((seqname, annot_name), value) in getannotresidue(ann) concatenated_seqname = get(seqname_mapping, (i, seqname), seqname) new_key = (concatenated_seqname, annot_name) _fill_and_update!(annotresidue, last, new_key, i, value, seq_lengths) end end _fill_end!(annotresidue, seq_lengths, "residues") end function _delete_hcat_annotfile!(annot::Annotations) if haskey(annot.file, "HCat") delete!(annot.file, "HCat") end annot end function _set_hcat_annotfile!(annot::Annotations, colnames) _delete_hcat_annotfile!(annot) setannotfile!( annot, "HCat", join((replace(col, r"_[0-9]+$" => "") for col in colnames), ','), ) annot end function Base.hcat(msa::T...) where {T<:AnnotatedAlignedObject} seqnames = _h_concatenated_seq_names(msa...) colnames = _h_concatenated_col_names(msa...) concatenated_matrix = reduce(hcat, getresidues.(msa)) concatenated_msa = _namedresiduematrix(concatenated_matrix, seqnames, colnames) seqname_mapping = _get_seqname_mapping_hcat(seqnames, msa...) seq_lengths = _get_seq_lengths(msa...) old_annot = annotations.([msa...]) new_annot = Annotations( _h_concatenate_annotfile(old_annot...), _concatenate_annotsequence(seqname_mapping, old_annot...), _h_concatenate_annotcolumn(seq_lengths, old_annot...), _h_concatenate_annotresidue(seq_lengths, seqname_mapping, old_annot...), ) _set_hcat_annotfile!(new_annot, colnames) new_msa = T(concatenated_msa, new_annot) _clean_sequence_mapping!(new_msa) end function Base.hcat(msa::T...) where {T<:UnannotatedAlignedObject} concatenated_matrix = reduce(hcat, getresidues.(msa)) seqnames = _h_concatenated_seq_names(msa...) colnames = _h_concatenated_col_names(msa...) concatenated_msa = _namedresiduematrix(concatenated_matrix, seqnames, colnames) T(concatenated_msa) end """ It returns a vector of numbers from `1` to N for each column that indicates the source MSA. The mapping is annotated in the `"HCat"` file annotation of an `AnnotatedMultipleSequenceAlignment` or in the column names of an `NamedArray` or `MultipleSequenceAlignment`. NOTE: When the MSA results from vertically concatenating MSAs using `vcat`, the `"HCat"` annotations from the constituent MSAs are renamed as `"1_HCat"`, `"2_HCat"`, etc. In that case, the MSA numbers referenced in the column names are provided. To access the original annotations, utilize the `getannotfile` function. """ function gethcatmapping(msa::AnnotatedMultipleSequenceAlignment) annot = getannotfile(msa) if haskey(annot, "HCat") return _str2int_mapping(annot["HCat"]) else return gethcatmapping(namedmatrix(msa)) end end function gethcatmapping(msa::NamedResidueMatrix{AT}) where {AT<:AbstractMatrix} colnames = columnname_iterator(msa) if !isempty(colnames) if !occursin('_', first(colnames)) throw(ErrorException("Column names have not been generated by `hcat`.")) end Int[parse(Int, replace(col, r"_[0-9]+$" => "")) for col in colnames] else throw(ErrorException("There are not column names!")) end end gethcatmapping(msa::MultipleSequenceAlignment) = gethcatmapping(namedmatrix(msa)) ## vcat (vertical concatenation) """ If returns a vector of sequence names for the vertically concatenated MSA. The prefix is the number associated to the source MSA. If the sequence name has already a number as prefix, the MSA number is increased accordingly. """ function _v_concatenated_seq_names(msas...; fill_mapping::Bool = false) label_mapping = Dict{String,Int}() concatenated_names = String[] msa_number = 0 previous_msa_number = 0 for msa in msas msa_label = "" msa_number += 1 for seqname in sequencename_iterator(msa) m = match(r"^([0-9]+)_(.*)$", seqname) if m === nothing msa_label = "" new_seqname = "$(msa_number)_$seqname" else # if the sequence name has already a number as prefix, we increase the # MSA number every time the prefix number changes current_msa_label = string(m.captures[1]) if current_msa_label == msa_label new_seqname = "$(msa_number)_$(m.captures[2])" else # avoid increasing the MSA number two times in a row the first time # we find a sequence name with a number as prefix if msa_label != "" msa_number += 1 end msa_label = current_msa_label fill_mapping && push!(label_mapping, msa_label => msa_number) new_seqname = "$(msa_number)_$(m.captures[2])" end end previous_msa_number = msa_number push!(concatenated_names, new_seqname) end end concatenated_names, label_mapping end """ It returns a Dict mapping the MSA number and sequence name to the vertically concatenated sequence name. """ function _get_seqname_mapping_vcat(concatenated_seqnames, msas...) mapping = Dict{Tuple{Int,String},String}() sequence_number = 0 for (i, msa) in enumerate(msas) for seq in sequencename_iterator(msa) sequence_number += 1 mapping[(i, seq)] = concatenated_seqnames[sequence_number] end end mapping end function _update_annotation_name(annot_name, msa_number, label_mapping) m = match(r"^([0-9]+)_(.*)$", annot_name) if m !== nothing # The annotation name has already a number as prefix, so we use the mapping # to determine the corresponding MSA number if haskey(label_mapping, m.captures[1]) # we avoid taking the MSA number from the name if it is not in the mapping # to avoid taking a prefix that was alredy there but related to vcat msa_number = label_mapping[m.captures[1]] end new_annot_name = "$(msa_number)_$(m.captures[2])" else new_annot_name = "$(msa_number)_$annot_name" end msa_number, new_annot_name end function _v_concatenate_annotfile(label_mapping::Dict{String,Int}, data::Annotations...) annotfile = OrderedDict{String,String}() msa_number = 0 for ann::Annotations in data msa_number += 1 for (name, annotation) in getannotfile(ann) msa_number, new_name = _update_annotation_name(name, msa_number, label_mapping) push!(annotfile, new_name => annotation) end end annotfile end """ Column annotations are disambiguated by adding a prefix to the annotation name as we do for the sequence names. """ function _v_concatenate_annotcolumn(label_mapping::Dict{String,Int}, data::Annotations...) annotcolumn = Dict{String,String}() msa_number = 0 for ann::Annotations in data msa_number += 1 for (name, annotation) in getannotcolumn(ann) msa_number, new_name = _update_annotation_name(name, msa_number, label_mapping) push!(annotcolumn, new_name => annotation) end end annotcolumn end """ Residue annotations are disambiguated by adding a prefix to the sequence name holding the annotation as we do for the sequence names. """ function _v_concatenate_annotresidue(concatenated_seqnames, data::Annotations...) annotresidue = Dict{Tuple{String,String},String}() for (i, ann::Annotations) in enumerate(data) for ((seqname, annot_name), value) in getannotresidue(ann) concatenated_seqname = get(concatenated_seqnames, (i, seqname), seqname) new_key = (concatenated_seqname, annot_name) push!(annotresidue, new_key => value) end end annotresidue end function Base.vcat(msa::T...) where {T<:AnnotatedAlignedObject} seqnames, label_mapping = _v_concatenated_seq_names(msa...; fill_mapping = true) colnames = columnname_iterator(msa[1]) concatenated_matrix = reduce(vcat, getresidues.(msa)) concatenated_msa = _namedresiduematrix(concatenated_matrix, seqnames, colnames) seqname_mapping = _get_seqname_mapping_vcat(seqnames, msa...) old_annot = annotations.([msa...]) new_annot = Annotations( _v_concatenate_annotfile(label_mapping, old_annot...), _concatenate_annotsequence(seqname_mapping, old_annot...), _v_concatenate_annotcolumn(label_mapping, old_annot...), _v_concatenate_annotresidue(seqname_mapping, old_annot...), ) # There is no need for a VCat annotation as the source MSA number is already # annotated as a prefix in the sequence names T(concatenated_msa, new_annot) end function Base.vcat(msa::T...) where {T<:UnannotatedAlignedObject} concatenated_matrix = reduce(vcat, getresidues.(msa)) seqnames, _ = _v_concatenated_seq_names(msa...) colnames = columnname_iterator(msa[1]) concatenated_msa = _namedresiduematrix(concatenated_matrix, seqnames, colnames) T(concatenated_msa) end # # Functions to join, merge or pair MSAs # # Currently, these functions will utilize hcat and vcat functions as much as possible. # If this approach proves to be too slow, we may consider preallocating the result matrices. # helper functions to name columns in gap blocks function _get_last_gap_number(name_iterator) numbers = ( parse(Int, replace(name, "gap:" => "")) for name in name_iterator if startswith(name, "gap:") ) # as `maximum(numbers, init=0)` doesn't work in Julia versions < 1.6 # we use `foldl` instead foldl(max, numbers, init = 0) end function _gapblock_columnnames(msa, ncol) last_gap_number = _get_last_gap_number(columnname_iterator(msa)) ["gap:$(i)" for i = (last_gap_number+1):(last_gap_number+ncol)] end # Since gaps are used for padding, the following function creates an MSA that contains # only gaps but the proper annotations and names to be used in hcat and vcat. function _gap_columns(msa, ncol) nseq = nsequences(msa) empty_mapping = repeat(",", ncol - 1) matrix = fill(GAP, nseq, ncol) seqnames = sequencenames(msa) colnames = _gapblock_columnnames(msa, ncol) named_matrix = _namedresiduematrix(matrix, seqnames, colnames) block = AnnotatedMultipleSequenceAlignment(named_matrix) for seq in seqnames setannotsequence!(block, seq, "SeqMap", empty_mapping) end setannotfile!(block, "ColMap", empty_mapping) block end function _disambiguate_sequence_names(msa, seqnames) disambiguous_seqnames = deepcopy(seqnames) last_gap_number = _get_last_gap_number(sequencename_iterator(msa)) for (i, seqname) in enumerate(seqnames) # Check for redundancy and rename if necessary if seqname in sequencename_iterator(msa) last_gap_number += 1 disambiguous_seqnames[i] = "gap:$(last_gap_number)" end end disambiguous_seqnames end """ _renumber_sequence_gaps(msa::AnnotatedMultipleSequenceAlignment) Renumbers the gap sequences in a given multiple sequence alignment (MSA) object and returns a new MSA object with updated sequence names. This function specifically targets sequences within the MSA that are named with the prefix "gap:". It assigns a new sequential number to each gap sequence, ensuring a unique and ordered naming convention (e.g., "gap:1", "gap:2", etc.). Therefore, this function is useful for renumbering gap sequences in an MSA where gap blocks have been inserted from the end to the beginning. This insertion order can lead to non-sequential numbering of the gap sequences. For example, in the case of two gap blocks, where one block contains a single sequence and the other contains two, the sequences might originally be numbered as "gap:3", "gap:1", "gap:2". This function renumbers them sequentially so that they are numbered as "gap:1", "gap:2", "gap:3". """ function _renumber_sequence_gaps(msa::AnnotatedMultipleSequenceAlignment) seqnames = collect(sequencename_iterator(msa)) gap_number = 0 old2new = Dict{String,String}() for (i, old_seqname) in enumerate(seqnames) if startswith(old_seqname, "gap:") gap_number += 1 new_seqname = "gap:$(gap_number)" if old_seqname != new_seqname old2new[old_seqname] = new_seqname seqnames[i] = new_seqname end end end annot = _rename_sequences(annotations(msa), old2new) named_matrix = _namedresiduematrix(getresidues(msa), seqnames, columnnames(msa)) AnnotatedMultipleSequenceAlignment(named_matrix, annot) end function _renumber_column_gaps(col_names::Vector{String}) new_colnames = copy(col_names) gap_number = 0 for (i, old_colname) in enumerate(col_names) if startswith(old_colname, "gap:") gap_number += 1 new_colnames[i] = "gap:$(gap_number)" end end new_colnames end function _renumber_column_gaps(msa::AnnotatedMultipleSequenceAlignment) new_colnames = _renumber_column_gaps(columnnames(msa)) named_matrix = _namedresiduematrix(getresidues(msa), sequencenames(msa), new_colnames) AnnotatedMultipleSequenceAlignment(named_matrix, annotations(msa)) end function _gap_sequences(msa, seqnames) nseq = length(seqnames) ncol = ncolumns(msa) empty_mapping = repeat(",", ncol - 1) matrix = fill(GAP, nseq, ncol) colnames = columnname_iterator(msa) # Names are disambiguated to prevent the "Inconsistent dictionary sizes" error during # vcat. This error arises when the same sequence name appears in different MSAs, # as sequence names are utilised as keys in a dictionary. disambiguous_seqnames = _disambiguate_sequence_names(msa, seqnames) named_matrix = _namedresiduematrix(matrix, disambiguous_seqnames, colnames) block = AnnotatedMultipleSequenceAlignment(named_matrix) for seq in disambiguous_seqnames setannotsequence!(block, string(seq), "SeqMap", empty_mapping) end block end # This functions are used to insert a gap block in a given position in the MSA # without altering the annotations too much. The idea is the gap blocks are # no real MSAs, but things inserted into a previously existing MSA. # Insert gap sequences. function _get_position(max_pos, position::Int) if position < 1 throw(ArgumentError("The gap block position must be equal or greater than 1.")) elseif position > max_pos max_pos + 1 # to insert the gap block at the end else position # in the MSA end position end function _vcat_gap_block(msa_a, msa_b) matrix_a = getresidues(msa_a) matrix_b = getresidues(msa_b) concatenated_matrix = vcat(matrix_a, matrix_b) seqnames_a = sequencenames(msa_a) seqnames_b = sequencenames(msa_b) seqnames = vcat(seqnames_a, seqnames_b) colnames = columnnames(msa_a) named_matrix = _namedresiduematrix(concatenated_matrix, seqnames, colnames) annot = merge(annotations(msa_a), annotations(msa_b)) AnnotatedMultipleSequenceAlignment(named_matrix, annot) end function _insert_gap_sequences(msa, seqnames, position) gap_block = _gap_sequences(msa, seqnames) nseq = nsequences(msa) int_position = _get_position(nseq, position) if int_position == 1 # at start _vcat_gap_block(gap_block, msa) elseif int_position == nseq + 1 # after end _vcat_gap_block(msa, gap_block) else _vcat_gap_block( _vcat_gap_block(msa[1:(int_position-1), :], gap_block), msa[int_position:end, :], ) end end # Insert gap columns. function _get_msa_number(colnames, position) fields = split(colnames[position], '_') if length(fields) == 1 0 # the column does not have a MSA number as prefix else parse(Int, first(fields)) end end # rely on hcat to do the job, then correct the annotations # to avoid changing the MSA index number. function _fix_msa_numbers(original_msa, int_position, gap_block_columns, gapped_msa) # 1. get the MSA number that will be used for the gap block original_msa_column_names = columnnames(original_msa) ncol = length(original_msa_column_names) gap_block_colnames = ["gap:$i" for i = 1:gap_block_columns] # 3. conserve the annotations outside the gap block new_colnames = if int_position == 1 # at start vcat(gap_block_colnames, original_msa_column_names) elseif int_position == ncol + 1 # after end vcat(original_msa_column_names, gap_block_colnames) else vcat( original_msa_column_names[1:(int_position-1)], gap_block_colnames, original_msa_column_names[int_position:end], ) end::Vector{String} # 4. update the names and annotations # NOTE: We call _renumber_column_gaps to avoid the problem of duplicated names where # more than one gap block is inserted renamed_colnames = _renumber_column_gaps(new_colnames) setnames!(namedmatrix(gapped_msa), renamed_colnames, 2) prev_file_annotations = annotations(original_msa).file if haskey(prev_file_annotations, "HCat") _set_hcat_annotfile!(annotations(gapped_msa), renamed_colnames) else # do not add the HCat annotation if it was not present in the original MSA delete!(annotations(gapped_msa).file, "HCat") end new_file_annotations = annotations(gapped_msa).file for key in keys(new_file_annotations) if startswith(key, "MIToS_") && !haskey(prev_file_annotations, key) # delete new MIToS annotated modifications delete!(new_file_annotations, key) end end if haskey(prev_file_annotations, "NCol") # do not change the NCol annotation new_file_annotations["NCol"] = prev_file_annotations["NCol"] end gapped_msa end function _insert_gap_columns(input_msa, gap_block_columns::Int, position) @assert gap_block_columns ≥ 0 "The number of gap columns must be greater than 0." msa = AnnotatedMultipleSequenceAlignment(input_msa) gap_block_columns == 0 && return msa gap_block = _gap_columns(msa, gap_block_columns) ncol = ncolumns(msa) int_position = _get_position(ncol, position) gapped_msa = if int_position == 1 # at start hcat(gap_block, msa) elseif int_position == ncol + 1 # after end hcat(msa, gap_block) else hcat(msa[:, 1:(int_position-1)], gap_block, msa[:, int_position:end]) end _fix_msa_numbers(msa, int_position, gap_block_columns, gapped_msa) end # join for MSAs """ _add_gaps_in_b(msa_a, msa_b, positions_a, positions_b, axis::Int=1) This is an helper function for the `:left` and `:right` joins. It aligns `msa_b` with `msa_a` by adding gaps to `msa_b`. Only the sequences or columns in `msa_b` that match the positions in `msa_a` are kept. Gaps are inserted in `msa_b` at positions where `msa_a` has sequences or columns that are not matched in `msa_b`. Therefore, we can think of `msa_a` as the reference MSA and `msa_b` as the MSA to be aligned with the reference. The `positions_a` and `positions_b` arguments define corresponding positions in `msa_a` and `msa_b`, respectively, for accurate gap insertion. The function returns a modified `msa_b` with gaps inserted to align with `msa_a`. The axis argument (`1` for sequences, `2` for columns) determines whether gaps are inserted as sequences or columns. # Example ```julia aligned_msa_b = _add_gaps_in_b(msa_a, msa_b, [1, 2, 3], [2, 3, 4], 2) # axis = 2 ``` """ function _add_gaps_in_b(msa_a, msa_b, positions_a, positions_b, axis::Int = 1) @assert axis == 1 || axis == 2 "The axis must be 1 (sequences) or 2 (columns)." # sort the positions to keep the order in msa_a order_a = sortperm(positions_a) sorted_b = positions_b[order_a] # keep only the matching positions in msa_b matching_b = if axis == 1 AnnotatedMultipleSequenceAlignment(msa_b[sorted_b, :]) else AnnotatedMultipleSequenceAlignment(msa_b[:, sorted_b]) end # find the positions were we need to add gaps in msa_b N_a = axis == 1 ? nsequences(msa_a) : ncolumns(msa_a) names_a = axis == 1 ? sequencenames(msa_a) : columnnames(msa_a) positions_a_set = Set{Int}(positions_a) last_b = 0 gap_positions = Int[] gap_names = String[] for i = 1:N_a if i in positions_a_set # we have seen a matched position in msa_b last_b += 1 else # if the msa_a position is not matched, add gaps in msa_b push!(gap_positions, last_b) push!(gap_names, names_a[i]) end end # compress the list of gap positions to later add full gap blocks for pos in Iterators.reverse(unique(gap_positions)) block_names = gap_names[gap_positions.==pos] if axis == 1 matching_b = _renumber_sequence_gaps( _insert_gap_sequences(matching_b, block_names, pos + 1), ) else matching_b = _renumber_column_gaps( _insert_gap_columns(matching_b, length(block_names), pos + 1), ) end end matching_b end function _find_pairing_positions(index_function::Function, msa_a, msa_b, pairing) n = length(pairing) positions_a = Vector{Int}(undef, n) positions_b = Vector{Int}(undef, n) for (i, (a, b)) in enumerate(pairing) positions_a[i] = index_function(msa_a, a) positions_b[i] = index_function(msa_b, b) end positions_a, positions_b end function _find_pairing_positions(axis::Int, msa_a, msa_b, pairing) @assert axis == 1 || axis == 2 "The axis must be 1 (sequences) or 2 (columns)." index_function = axis == 1 ? sequence_index : column_index _find_pairing_positions(index_function, msa_a, msa_b, pairing) end """ _find_gaps(positions, n) Calculate gaps in a sorted sequence of positions given also a maximum value `n` that would be added at the end as `n+1` if `n` it is not already present. This function returns a list of tuples, where each tuple represents a gap in the sequence. The first element of the tuple indicates the position after which the gap will be inserted, and the second element is the position that comes just after the gap. The function accounts for gaps at both the beginning and end of the sequence. A gap is identified as a difference greater than 1 between consecutive positions. To account for gaps at the end, the end position of a gap matching the last position of the sequence is set to `n+1`. """ function _find_gaps(positions, n) _positions = if positions[end] == n ((0,), positions) else ((0,), positions, (n + 1,)) end pos_iterator = Iterators.flatten(_positions) [(x, y) for (x, y) in zip(Iterators.drop(pos_iterator, 1), pos_iterator) if x - y > 1] end """ _insert_sorted_gaps(msa_target, msa_reference, positions_target, positions_reference, block_position::Symbol=:before, axis::Int=1) Inserts gap blocks into `msa_target` to match the alignment pattern of `msa_reference`. This function is utilized for aligning two MSAs based on specific alignment positions. The `positions_target` and `positions_reference` parameters dictate the corresponding positions in both MSAs for accurate gap insertion. The function returns the modified `msa_target` with inserted gaps, aligned according to `msa_reference`. The `block_position` keyword argument determines whether the gap blocks are inserted `:before` (the default) or `:after` the unmatched sequences or columns. The `axis` keyword argument determines whether the gap blocks are inserted as sequences (`1`, the default) or columns (`2`). # Example ```julia gapped_msa_a = _insert_sorted_gaps(msa_a, msa_b, positions_a, positions_b) ``` """ function _insert_sorted_gaps( msa_target, msa_reference, positions_target, positions_reference; block_position::Symbol = :before, axis::Int = 1, ) @assert block_position in [:before, :after] "block_position must be :before or :after." @assert axis == 1 || axis == 2 "The axis must be 1 (sequences) or 2 (columns)." # Obtain the positions that will be aligned to gaps in the reference N_reference = axis == 1 ? nsequences(msa_reference) : ncolumns(msa_reference) gaps_reference = _find_gaps(positions_reference, N_reference) # We need the sequence names from the reference that will be aligned to gaps names_reference = axis == 1 ? sequencenames(msa_reference) : columnnames(msa_reference) # Create a dictionary to find the matching position in `msa_target` for adding the gap blocks reference2target = Dict{Int,Int}(positions_reference .=> positions_target) N_target = axis == 1 ? nsequences(msa_target) : ncolumns(msa_target) # Add the gap blocks to `msa_target` as found when looking at `positions_reference` blocks_target = Tuple{Int,Vector{String}}[] for (stop, start) in gaps_reference # Found the matching position in `msa_target` start_target = start == 0 ? 1 : reference2target[start] + 1 stop_target = stop > N_reference ? N_target + 1 : reference2target[stop] # This should work fine, even if `start` is 0 and `stop` is n+1 unmatched_names = names_reference[start+1:stop-1] # Determine whether the gap block should be inserted before or after the sequences if block_position == :before push!(blocks_target, (start_target, unmatched_names)) else push!(blocks_target, (stop_target, unmatched_names)) end end gapped_msa_target = AnnotatedMultipleSequenceAlignment(msa_target) if axis == 1 for (position, seqnames) in Iterators.reverse(blocks_target) gapped_msa_target = _insert_gap_sequences(gapped_msa_target, seqnames, position) end _renumber_sequence_gaps(gapped_msa_target) else for (position, colnames) in Iterators.reverse(blocks_target) gapped_msa_target = _insert_gap_columns(gapped_msa_target, length(colnames), position) end _renumber_column_gaps(gapped_msa_target) end end function _reorder_and_extract_unmatched_names(msa, positions, axis::Int) N = size(msa, axis) unmatched_positions = setdiff(1:N, positions) if axis == 1 reordered_msa = msa[vcat(positions, unmatched_positions), :] reordered_names = sequencenames(reordered_msa) else reordered_msa = msa[:, vcat(positions, unmatched_positions)] reordered_names = columnnames(reordered_msa) end unmatched_names = reordered_names[length(positions)+1:end] return reordered_msa, unmatched_names end """ join_msas(msa_a::AnnotatedMultipleSequenceAlignment, msa_b::AnnotatedMultipleSequenceAlignment, pairing; kind::Symbol=:outer, axis::Int=1)::AnnotatedMultipleSequenceAlignment join_msas(msa_a::AnnotatedMultipleSequenceAlignment, msa_b::AnnotatedMultipleSequenceAlignment, positions_a, positions_b; kind::Symbol=:outer, axis::Int=1)::AnnotatedMultipleSequenceAlignment Join two Multiple Sequence Alignments (MSAs), `msa_a` and `msa_b`, based on specified matching positions or names. The function supports two formats: one takes a `pairing` argument as a list of correspondences, and the other takes `positions_a` and `positions_b` as separate lists indicating matching positions or names in each MSA. This function allows for various types of join operations (`:inner`, `:outer`, `:left`, `:right`) and can merge MSAs by sequences (`axis` `1`) or by columns (`axis` `2`). **Parameters:** - `msa_a::AnnotatedMultipleSequenceAlignment`: The first MSA. - `msa_b::AnnotatedMultipleSequenceAlignment`: The second MSA. - `pairing`: An iterable where each element is a pair of sequence or column positions (`Int`s) or names (`String`s) to match between `msa_a` and `msa_b`. For example, it can be a list of two-element tuples or pairs, or and `OrderedDict`. - `positions_a`, `positions_b`: Separate lists of positions or names in `msa_a` and `msa_b`, respectively. - `kind::Symbol`: Type of join operation. Default is `:outer`. - `axis::Int`: The axis along which to join (`1` to match sequences, `2` to match columns). **Returns:** - `AnnotatedMultipleSequenceAlignment`: A new MSA resulting from the join operation. **Behavior and Sequence Ordering:** The order of sequences or columns in the resulting MSA depends on the `kind` of join operation and the order of elements in the `pairing` or `positions_a` and `positions_b` lists. - For `:inner` joins, the function returns an MSA containing only those sequences/columns that are paired in both `msa_a` and `msa_b`. The order of elements in the output MSA follows the order in the `pairing` or position lists. - For `:outer` joins, the output MSA includes all sequences/columns from both `msa_a` and `msa_b`. Unpaired sequences/columns are filled with gaps as needed. The sequences/columns from `msa_a` are placed first. If the `pairing` or position lists are sorted, the output MSA columns and sequences will keep the same order as in the inputs. That's nice for situations such as profile alignments where the order of columns is important. If the `pairing` or position lists are not sorted, then the order of sequences/columns in the output MSA is not guaranteed to be the same as in the inputs. In particular, the matched sequences or columns will be placed first, followed by the unmatched ones. - For `:left` joins, all sequences/columns from `msa_a` are included in the output MSA keeping the same order as in `msa_a`. Sequences/columns from `msa_b` are added where matches are found, with gaps filling the unmatched positions. - For `:right` joins, the output MSA behaves like `:left` joins but with roles of `msa_a` and `msa_b` reversed. **Warning:** When using `Dict` for pairing, the order of elements might not be preserved as expected. `Dict` in Julia does not maintain the order of its elements, which might lead to unpredictable order of sequences/columns in the output MSA. To preserve order, it is recommended to use an `OrderedDict` or a list of `Pair`s objects. """ function join_msas( msa_a::AnnotatedMultipleSequenceAlignment, msa_b::AnnotatedMultipleSequenceAlignment, pairing; kind::Symbol = :outer, axis::Int = 1, ) # Check that input arguments and throw explicit ArgumentErrors if necessary if isempty(pairing) throw( ArgumentError( "The pairing argument indicating the matching positions is empty.", ), ) end if length(first(pairing)) != 2 throw( ArgumentError( string( "pairing must consist of pairs where the first element ", "corresponds to a position in the first MSA and the second to the second MSA. ", "Otherwise, utilize two distinct position lists.", ), ), ) end if kind != :inner && kind != :outer && kind != :left && kind != :right throw( ArgumentError( "The kind of join must be one of :inner, :outer, :left or :right.", ), ) end if axis != 1 && axis != 2 throw(ArgumentError("The axis must be 1 (sequences) or 2 (columns).")) end # Get the matching positions as integer vectors positions_a, positions_b = _find_pairing_positions(axis, msa_a, msa_b, pairing) # Perform the join if kind == :inner if axis == 1 return hcat(msa_a[positions_a, :], msa_b[positions_b, :]) else return vcat(msa_a[:, positions_a], msa_b[:, positions_b]) end elseif kind == :outer if issorted(positions_a) && issorted(positions_b) gapped_a = _insert_sorted_gaps( msa_a, msa_b, positions_a, positions_b, block_position = :after, axis = axis, ) gapped_b = _insert_sorted_gaps(msa_b, msa_a, positions_b, positions_a, axis = axis) return axis == 1 ? hcat(gapped_a, gapped_b) : vcat(gapped_a, gapped_b) else # do as the inner join for the matching positions, and add the unmatched # positions at the end, using gap blocks reordered_a, unmatched_names_a = _reorder_and_extract_unmatched_names(msa_a, positions_a, axis) reordered_b, unmatched_names_b = _reorder_and_extract_unmatched_names(msa_b, positions_b, axis) if axis == 1 @warn "Sequence order may not be preserved due to unsorted matching positions." a_block = _insert_gap_sequences( reordered_a, unmatched_names_b, nsequences(reordered_a) + 1, ) b_block = _insert_gap_sequences( reordered_b, unmatched_names_a, length(positions_b) + 1, ) return hcat(a_block, b_block) else @warn "Column order may not be preserved due to unsorted matching positions." a_block = _insert_gap_columns( reordered_a, length(unmatched_names_b), ncolumns(reordered_a) + 1, ) b_block = _insert_gap_columns( reordered_b, length(unmatched_names_a), length(positions_b) + 1, ) return vcat(a_block, b_block) end end elseif kind == :left gapped_b = _add_gaps_in_b(msa_a, msa_b, positions_a, positions_b, axis) return axis == 1 ? hcat(msa_a, gapped_b) : vcat(msa_a, gapped_b) elseif kind == :right gapped_a = _add_gaps_in_b(msa_b, msa_a, positions_b, positions_a, axis) return axis == 1 ? hcat(gapped_a, msa_b) : vcat(gapped_a, msa_b) else throw( ArgumentError( "The kind of join must be one of :inner, :outer, :left or :right.", ), ) end end function join_msas( msa_a::AnnotatedMultipleSequenceAlignment, msa_b::AnnotatedMultipleSequenceAlignment, positions_a, positions_b; kind::Symbol = :outer, axis::Int = 1, ) if length(positions_a) != length(positions_b) throw(ArgumentError("positions_a and positions_b must have the same length.")) end pairing = zip(positions_a, positions_b) join_msas(msa_a, msa_b, pairing, kind = kind, axis = axis) end function Base.join( msa_a::AnnotatedMultipleSequenceAlignment, msa_b::AnnotatedMultipleSequenceAlignment, args...; kwargs..., ) Base.depwarn( "The function `join` using AnnotatedMultipleSequenceAlignment objects is deprecated. Use `join_msas` instead.", :join, force = true, ) join_msas(msa_a, msa_b, args...; kwargs...) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
1248
struct FASTA <: MSAFormat end # FASTA Parser # ============ function _pre_readfasta(string::AbstractString) seqs = split(string, '>') N = length(seqs) - 1 IDS = Array{String}(undef, N) SEQS = Array{String}(undef, N) for i = 1:N fields = split(seqs[i+1], '\n') IDS[i] = fields[1] SEQS[i] = replace(join(fields[2:end]), r"\s+" => "") end (IDS, SEQS) end # MethodError: no method matching seek(::TranscodingStreams.TranscodingStream, ::Int) _pre_readfasta(io::TranscodingStreams.TranscodingStream) = _pre_readfasta(read(io, String)) function _pre_readfasta(io) IDS = String[] SEQS = String[] for (name, seq) in FastaReader{String}(io) # FastaIO push!(IDS, name) push!(SEQS, seq) end (IDS, SEQS) end function _load_sequences( io::Union{IO,AbstractString}, format::Type{FASTA}; create_annotations::Bool = false, ) IDS, SEQS = _pre_readfasta(io) return IDS, SEQS, Annotations() end # Print FASTA # =========== function Utils.print_file(io::IO, msa::AbstractMatrix{Residue}, format::Type{FASTA}) seqnames = sequencenames(msa) for i = 1:nsequences(msa) println(io, ">", seqnames[i], "\n", stringsequence(msa, i)) end end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
14793
# File Formats # ============ abstract type AbstractSequenceFormat <: FileFormat end abstract type MSAFormat <: AbstractSequenceFormat end abstract type SequenceFormat <: AbstractSequenceFormat end # Mappings # ======== # It checks sequence lengths function _fill_aln_seq_ann!( aln, seq_ann::Vector{String}, seq::String, init::Int, nres::Int, i, ) if length(seq) != nres throw( ErrorException( string( "There is an aligned sequence with different number of columns [ ", length(seq), " != ", nres, " ]:\n", seq, ), ), ) end j = 1 @inbounds for res in seq aln[j, i] = res if res != '-' && res != '.' seq_ann[j] = string(init) init += 1 else seq_ann[j] = "" end j += 1 end join(seq_ann, ','), init - 1 end function _to_msa_mapping(sequences::Array{String,1}) nseq = size(sequences, 1) nres = length(sequences[1]) aln = Array{Residue}(undef, nres, nseq) mapp = Array{String}(undef, nseq) seq_ann = Array{String}(undef, nres) for i = 1:nseq # It checks sequence lengths mapp[i], last = _fill_aln_seq_ann!(aln, seq_ann, sequences[i], 1, nres, i) end msa = NamedArray(permutedims(aln, [2, 1])) # MSA constructors adds dimension names # setdimnames!(msa, ("Seq","Col")) (msa, mapp) end function _to_msa_mapping(sequences::Array{String,1}, ids) nseq = size(sequences, 1) nres = length(sequences[1]) aln = Array{Residue}(undef, nres, nseq) mapp = Array{String}(undef, nseq) seq_ann = Array{String}(undef, nres) sep = r"/|-" for i = 1:nseq fields = split(ids[i], sep) init = length(fields) == 3 ? parse(Int, fields[2]) : 1 mapp[i], last = _fill_aln_seq_ann!(aln, seq_ann, sequences[i], init, nres, i) if length(fields) == 3 end_coordinate = parse(Int, fields[3]) if last != end_coordinate throw( ErrorException( string( "The last residue in sequence ", i, " (residue number ", last, ") doesn't match the sequence coordinate indicated on sequence name (", end_coordinate, ").", ), ), ) end end end msa = NamedArray( permutedims(aln, [2, 1]), ( OrderedDict{String,Int}(zip(ids, 1:nseq)), OrderedDict{String,Int}(string(i) => i for i = 1:nres), ), ("Seq", "Col"), ) msa, mapp end # Check sequence length # --------------------- # # Functions to be used in _pre_read... functions # This checks that all the sequences have the same length, # Use _convert_to_matrix_residues(SEQS, _get_msa_size(SEQS)) # instead of convert(Matrix{Residue},SEQS) # if SEQS was generated by pre_read... calling _check_seq_... function _check_seq_and_id_number(IDS, SEQS) if length(SEQS) != length(IDS) throw( ErrorException( "The number of sequences is different from the number of names.", ), ) end end function _check_seq_len(IDS, SEQS) N = length(SEQS) _check_seq_and_id_number(IDS, SEQS) if N > 1 first_length = length(SEQS[1]) for i = 2:N len = length(SEQS[i]) if len != first_length throw( ErrorException( "The sequence $(IDS[i]) has $len residues. " * "$first_length residues are expected.", ), ) end end end end # Disambiguate Sequences # ---------------------- function _disambiguate_sequences(IDS::Vector{String}) old2new = Dict{String,Vector{String}}() seen = OrderedSet{String}() for original in IDS current_name = original count = length(get(old2new, current_name, [])) new_name = current_name if count > 0 new_name = _propose_name(current_name, count) end while new_name in seen count += 1 new_name = _propose_name(current_name, count) end push!(seen, new_name) if haskey(old2new, original) push!(old2new[original], new_name) else old2new[original] = [new_name] end end return old2new, collect(seen) end _propose_name(base::String, count::Int)::String = "$(base)($(count))" # NamedArray{Residue,2} and AnnotatedMultipleSequenceAlignment generation # ----------------------------------------------------------------------- function _ids_ordered_dict(ids, nseq::Int) dict = OrderedDict{String,Int}() sizehint!(dict, length(ids)) for (i, id) in enumerate(ids) dict[id] = i end if length(dict) < nseq throw(ArgumentError("There are less unique sequence identifiers than sequences.")) end return dict end function _colnumber_ordered_dict(nres::Int) dict = OrderedDict{String,Int}() sizehint!(dict, nres) for i = 1:nres dict[string(i)] = i end return dict end function _generate_named_array(SEQS, IDS)::NamedResidueMatrix{Array{Residue,2}} nseq, nres = _get_msa_size(SEQS) msa = _convert_to_matrix_residues(SEQS, (nseq, nres)) NamedResidueMatrix{Array{Residue,2}}( msa, (_ids_ordered_dict(IDS, nseq), _colnumber_ordered_dict(nres)), ("Seq", "Col"), ) end function _generate_annotated_msa( annot::Annotations, IDS::Vector{String}, SEQS, keepinserts, generatemapping, useidcoordinates, deletefullgaps, ) if keepinserts _keepinserts!(SEQS, annot) end from_hcat = getannotfile(annot, "HCat", "") != "" if generatemapping N = length(IDS) N > 0 || throw(ErrorException("There are no sequence in the alingment!")) first_seq_name = IDS[1] if getannotsequence(annot, first_seq_name, "SeqMap", "") != "" @warn(""" The file already has sequence mappings annotations. MIToS will replace those annotations as you have set generatemapping to true. Set generatemapping to false to use the mapping annotations of the file. """) end if useidcoordinates && hascoordinates(first_seq_name) MSA, MAP = _to_msa_mapping(SEQS, IDS) else MSA, MAP = _to_msa_mapping(SEQS) setnames!(MSA, IDS, 1) end # vcat prefixed ColMap annotations won't cause problems here if getannotfile(annot, "ColMap", "") != "" mssg = if from_hcat """ The file came from an MSA concatenation and has column annotations. The information about the column numbers before concatenation will be lost because of the generatemapping keyword argument. """ else "The file already has column annotations. ColMap will be replaced." end @warn """ $mssg You can use generatemapping=false to keep the file mapping annotations. """ end setannotfile!(annot, "NCol", string(size(MSA, 2))) setannotfile!(annot, "ColMap", join(vcat(1:size(MSA, 2)), ',')) for i = 1:N setannotsequence!(annot, IDS[i], "SeqMap", MAP[i]) end else MSA = _generate_named_array(SEQS, IDS) # we do not deal with vcat prefixed ColMap or HCat annotations to avoid that # the column names reflect only one of the concatenated alignments colmap = getannotfile(annot, "ColMap", "") cols = if colmap != "" map(String, split(colmap, ',')) else String[] end if !isempty(cols) if from_hcat msas = map(String, split(getannotfile(annot, "HCat"), ',')) setnames!(MSA, String["$(m)_$c" for (m, c) in zip(msas, cols)], 2) else setnames!(MSA, cols, 2) end end end msa = AnnotatedMultipleSequenceAlignment(MSA, annot) if deletefullgaps deletefullgapcolumns!(msa) end msa end # Matrix{Residue} and NamedArray{Residue,2} # ----------------------------------------- # # This checks that all the sequences have the same length # function _strings_to_msa( ::Type{NamedArray{Residue,2}}, seqs::Vector{String}, deletefullgaps::Bool, ) msa = NamedArray(convert(Matrix{Residue}, seqs)) setdimnames!(msa, ("Seq", "Col")) if deletefullgaps return (deletefullgapcolumns(msa)) end msa end function _strings_to_msa( ::Type{Matrix{Residue}}, seqs::Vector{String}, deletefullgaps::Bool, ) msa = convert(Matrix{Residue}, seqs) if deletefullgaps return (deletefullgapcolumns(msa)) end msa end # Unsafe: It doesn't check sequence lengths # Use it after _pre_read... calling _check_seq_... function _strings_to_matrix_residue_unsafe(seqs::Vector{String}, deletefullgaps::Bool) msa = _convert_to_matrix_residues(seqs, _get_msa_size(seqs)) if deletefullgaps return (deletefullgapcolumns(msa)) end msa end # Delete Full of Gap Columns # ========================== """ Deletes columns with 100% gaps, this columns are generated by inserts. """ function deletefullgapcolumns!( msa::AbstractMultipleSequenceAlignment, annotate::Bool = true, ) mask = columngapfraction(msa) .!= one(Float64) number = sum(.~mask) if number != 0 annotate && annotate_modification!( msa, string( "deletefullgaps! : Deletes ", number, " columns full of gaps (inserts generate full gap columns on MIToS ", "because lowercase and dots are not allowed)", ), ) filtercolumns!(msa, mask, annotate) end msa end function deletefullgapcolumns(msa::AbstractMatrix{Residue}) mask = columngapfraction(msa) .!= one(Float64) number = sum(.~mask) if number != 0 return (filtercolumns(msa, mask)) end msa end function deletefullgapcolumns(msa::AbstractMultipleSequenceAlignment, annotate::Bool = true) deletefullgapcolumns!(copy(msa)::AbstractMultipleSequenceAlignment, annotate) end @doc """ `parse_file(io, format[, output; generatemapping, useidcoordinates, deletefullgaps])` The keyword argument `generatemapping` (`false` by default) indicates if the mapping of the sequences ("SeqMap") and columns ("ColMap") and the number of columns in the original MSA ("NCol") should be generated and saved in the annotations. If `useidcoordinates` is `true` (default: `false`) the sequence IDs of the form "ID/start-end" are parsed and used for determining the start and end positions when the mappings are generated. `deletefullgaps` (`true` by default) indicates if columns 100% gaps (generally inserts from a HMM) must be removed from the MSA. """ parse_file # Keepinserts # =========== """ Function to keep insert columns in `parse_file`. It uses the first sequence to generate the "Aligned" annotation, and after that, convert all the characters to uppercase. """ function _keepinserts!(SEQS, annot) aligned = map(SEQS[1]) do char isuppercase(char) || char == '-' ? '1' : '0' end setannotcolumn!(annot, "Aligned", aligned) map!(uppercase, SEQS, SEQS) end # Print inserts # ============= _get_aligned_columns(msa::AnnotatedAlignedObject) = getannotcolumn(msa, "Aligned", "") _get_aligned_columns(msa::AbstractMatrix{Residue}) = "" function _format_inserts(seq::String, aligned::String, keep_insert_gaps::Bool = true) if isempty(aligned) return seq end formatted = Char[] for (aln, res) in zip(aligned, seq) if aln == '1' push!(formatted, res) else if res == '-' keep_insert_gaps && push!(formatted, '.') else push!(formatted, lowercase(res)) end end end join(formatted) end # Parse for MSA formats # ===================== function Utils.parse_file( io::Union{IO,AbstractString}, format::Type{T}, output::Type{AnnotatedMultipleSequenceAlignment}; generatemapping::Bool = false, useidcoordinates::Bool = false, deletefullgaps::Bool = true, keepinserts::Bool = false, ) where {T<:MSAFormat} IDS, SEQS, annot = _load_sequences(io, format; create_annotations = true) _check_seq_len(IDS, SEQS) _generate_annotated_msa( annot, IDS, SEQS, keepinserts, generatemapping, useidcoordinates, deletefullgaps, ) end function Utils.parse_file( io::Union{IO,AbstractString}, format::Type{T}, output::Type{NamedResidueMatrix{Array{Residue,2}}}; deletefullgaps::Bool = true, ) where {T<:MSAFormat} IDS, SEQS, _ = _load_sequences(io, format; create_annotations = false) _check_seq_len(IDS, SEQS) msa = _generate_named_array(SEQS, IDS) if deletefullgaps return deletefullgapcolumns(msa) end msa end function Utils.parse_file( io::Union{IO,AbstractString}, format::Type{T}, output::Type{MultipleSequenceAlignment}; deletefullgaps::Bool = true, ) where {T<:MSAFormat} msa = parse_file( io, format, NamedResidueMatrix{Array{Residue,2}}, deletefullgaps = deletefullgaps, ) MultipleSequenceAlignment(msa) end function Utils.parse_file( io::Union{IO,AbstractString}, format::Type{T}, output::Type{Matrix{Residue}}; deletefullgaps::Bool = true, ) where {T<:MSAFormat} IDS, SEQS, _ = _load_sequences(io, format; create_annotations = false) _check_seq_len(IDS, SEQS) _strings_to_matrix_residue_unsafe(SEQS, deletefullgaps) end function Utils.parse_file( io::Union{IO,AbstractString}, format::Type{T}; generatemapping::Bool = false, useidcoordinates::Bool = false, deletefullgaps::Bool = true, keepinserts::Bool = false, ) where {T<:MSAFormat} parse_file( io, format, AnnotatedMultipleSequenceAlignment; generatemapping = generatemapping, useidcoordinates = useidcoordinates, deletefullgaps = deletefullgaps, keepinserts = keepinserts, ) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
5565
for T in ( :(AlignedSequence), :(AnnotatedSequence), :(AnnotatedAlignedSequence), :(MultipleSequenceAlignment), :(AnnotatedMultipleSequenceAlignment), ) @eval Base.IndexStyle(::Type{$(T)}) = Base.IndexLinear() end # --- # Performant lookup of the sequence and column positions. # CAUTION: This relies on the NamedArrays internal representation. # This is a bit hacky, but it's the fastest way to get the index. """ sequence_index(msa, seq_name) Return the index (integer position) of the sequence with name `seq_name` in the MSA `msa`. A `KeyError` is thrown if the sequence name does not exist. If `seq_name` is an integer, the same integer is returned without checking if it is a valid index. """ sequence_index(msa::NamedResidueMatrix, seq_name::AbstractString) = msa.dicts[1][seq_name] """ column_index(msa, col_name) Return the index (integer position) of the column with name `col_name` in the MSA `msa`. A `KeyError` is thrown if the column name does not exist. If `col_name` is an integer, the same integer is returned without checking if it is a valid index. """ column_index(msa::NamedResidueMatrix, col_name::AbstractString) = msa.dicts[2][col_name] function sequence_index(msa::AbstractResidueMatrix, seq_name::AbstractString) sequence_index(msa.matrix, seq_name) end function column_index(msa::AbstractResidueMatrix, column_name::AbstractString) column_index(msa.matrix, column_name) end # Do not allow indexing Matrix{Residue} with AbstractString function sequence_index(msa::Matrix{Residue}, seq_name::AbstractString) throw( ErrorException( "There are no sequence names in a Matrix{Residue} object, use an integer index instead.", ), ) end function column_index(msa::Matrix{Residue}, column_name::AbstractString) throw( ErrorException( "There are no column names in a Matrix{Residue} object, use an integer index instead.", ), ) end # If the user already gives a position, return the same position. sequence_index(msa, sequence_index::Int) = sequence_index column_index(msa, column_index::Int) = column_index # --- @inline Base.getindex(x::AbstractResidueMatrix, args...) = getindex(namedmatrix(x), args...) @inline function Base.setindex!(x::AbstractResidueMatrix, value, args...) setindex!(namedmatrix(x), value, args...) end # Special getindex/setindex! for sequences to avoid `seq["seqname","colname"]` @inline function Base.getindex( x::Union{AbstractSequence,AbstractAlignedSequence}, i::Union{Int,AbstractString}, ) getindex(namedmatrix(x), 1, i) end @inline function Base.setindex!( x::Union{AbstractSequence,AbstractAlignedSequence}, value, i::Union{Int,AbstractString}, ) setindex!(namedmatrix(x), value, 1, i) end # ## Special getindex to conserve annotations and types """ Helper function to create a boolean mask to select sequences. """ function _get_selected_sequences(msa, selector) type = eltype(selector) if type == Bool return selector else to_select = Set(selector) if type <: Number Bool[i in to_select for i = 1:nsequences(msa)] elseif type <: AbstractString Bool[i in to_select for i in sequencenames(msa)] else throw(ArgumentError("$type is not a valid element type for the selector.")) end end end function _column_indices(msa, selector) if eltype(selector) <: AbstractString return Int[column_index(msa, i) for i in selector] end selector end function Base.getindex( msa::AnnotatedMultipleSequenceAlignment, seqs::AbstractArray, cols::AbstractArray, ) annot = copy(annotations(msa)) seq_selector = _get_selected_sequences(msa, seqs) filtersequences!(annot, sequencenames(msa), seq_selector) _annotate_seq_modification!(annot, seq_selector) col_selector = _column_indices(msa, cols) filtercolumns!(annot, col_selector) _annotate_col_modification!(annot, col_selector) AnnotatedMultipleSequenceAlignment(msa.matrix[seqs, cols], annot) end function Base.getindex( msa::AnnotatedMultipleSequenceAlignment, seqs::AbstractArray, cols::Colon, ) annot = copy(annotations(msa)) seq_selector = _get_selected_sequences(msa, seqs) filtersequences!(annot, sequencenames(msa), seq_selector) _annotate_seq_modification!(annot, seq_selector) AnnotatedMultipleSequenceAlignment(msa.matrix[seqs, cols], annot) end function Base.getindex( msa::AnnotatedMultipleSequenceAlignment, seqs::Colon, cols::AbstractArray, ) annot = copy(annotations(msa)) col_selector = _column_indices(msa, cols) filtercolumns!(annot, col_selector) _annotate_col_modification!(annot, col_selector) AnnotatedMultipleSequenceAlignment(msa.matrix[seqs, cols], annot) end Base.getindex(msa::AnnotatedMultipleSequenceAlignment, seqs::Colon, cols::Colon) = copy(msa) function Base.getindex( msa::MultipleSequenceAlignment, seqs::Union{AbstractArray,Colon}, cols::Union{AbstractArray,Colon}, ) MultipleSequenceAlignment(msa.matrix[seqs, cols]) end function Base.getindex(seq::AnnotatedAlignedSequence, cols::AbstractArray) seq_copy = copy(seq) col_selector = _column_indices(seq, cols) filtercolumns!(seq_copy, col_selector) _annotate_col_modification!(seq_copy, col_selector) seq_copy end # TODO: AnnotatedSequence function Base.getindex(seq::AlignedSequence, cols::Union{AbstractArray,Colon}) AlignedSequence(seq.matrix[cols]) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
2105
# Hobohm I # ======== """ Fill `cluster` and `clustersize` matrices. These matrices are assumed to be empty (only zeroes) and their length is assumed to be equal to the number of sequences in the alignment (`aln`). `threshold` is the minimum identity value between two sequences to be in the same cluster. """ function _fill_hobohmI!( cluster::Vector{Int}, clustersize::Vector{Int}, aln::Vector{Vector{Residue}}, threshold, ) cluster_id = 0 nseq = length(aln) @inbounds for i = 1:(nseq-1) if cluster[i] == 0 cluster_id += 1 cluster[i] = cluster_id clustersize[cluster_id] += 1 ref_seq = aln[i] for j = (i+1):nseq if cluster[j] == 0 && percentidentity(ref_seq, aln[j], threshold) cluster[j] = cluster_id clustersize[cluster_id] += 1 end end end end @inbounds if cluster[nseq] == 0 cluster_id += 1 cluster[nseq] = cluster_id clustersize[cluster_id] += 1 end resize!(clustersize, cluster_id) end """ Calculates the weight of each sequence in a cluster. The weight is equal to one divided by the number of sequences in the cluster. """ function _get_sequence_weight(clustersize, cluster) nseq = length(cluster) sequence_weight = Array{Float64}(undef, nseq) for i = 1:nseq @inbounds sequence_weight[i] = 1.0 / clustersize[cluster[i]] end Weights(sequence_weight, Float64(length(clustersize))) end """ Sequence clustering using the Hobohm I method from Hobohm et. al. # References - [Hobohm, Uwe, et al. "Selection of representative protein data sets." Protein Science 1.3 (1992): 409-417.](@cite hobohm1992selection) """ function hobohmI(msa::AbstractMatrix{Residue}, threshold) aln = getresiduesequences(msa) nseq = length(aln) cluster = zeros(Int, nseq) clustersize = zeros(Int, nseq) _fill_hobohmI!(cluster, clustersize, aln, threshold) Clusters(clustersize, cluster, _get_sequence_weight(clustersize, cluster)) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
8503
# Calculates percent identity of two aligned sequences # No account of the positions with gaps in both sequences in the length """ seq1 and seq2 should have the same len """ function _percentidentity(seq1, seq2, len) count = 0 notcount = 0 for i = 1:len @inbounds aa1 = seq1[i] @inbounds aa2 = seq2[i] if aa1 == aa2 if aa1 == GAP || aa1 == XAA notcount += 1 else count += 1 end else if aa1 == XAA || aa2 == XAA notcount += 1 end end end 100.0 * count / (len - notcount) end """ `percentidentity(seq1, seq2)` Calculates the fraction of identities between two aligned sequences. The identity value is calculated as the number of identical characters in the i-th position of both sequences divided by the length of both sequences. Positions with gaps in both sequences doesn't count to the length of the sequences. Positions with a `XAA` in at least one sequence aren't counted. """ function percentidentity(seq1, seq2) len = length(seq1) if len != length(seq2) throw( ErrorException(""" Sequences of different length, they aren't aligned or don't come from the same MSA. """), ) end _percentidentity(seq1, seq2, len) end """ `percentidentity(seq1, seq2, threshold)` Computes quickly if two aligned sequences have a identity value greater than a given `threshold` value. Returns a boolean value. Positions with gaps in both sequences doesn't count to the length of the sequences. Positions with a `XAA` in at least one sequence aren't counted. """ function percentidentity(seq1, seq2, threshold) fraction = threshold / 100.0 len = length(seq1) if len != length(seq2) throw( ErrorException(""" Sequences of different length, they aren't aligned or don't come from the same MSA. """), ) end n = len limit_count = n * fraction diff = 0 count = 0 @inbounds for i = 1:len aa1 = seq1[i] aa2 = seq2[i] if aa1 == XAA || aa2 == XAA n -= 1 continue end if aa1 == aa2 if aa1 != GAP count += 1 if count >= limit_count return (true) end else n -= 1 limit_count = n * fraction end else diff += 1 if diff > n - limit_count return (false) end end end (count / n) >= fraction end # percentidentity for a MSA # ========================= function _percentidentity_kernel!(scores, aln::Vector{Vector{Residue}}, nseq, len) k = 0 list = getlist(scores) @inbounds for i = 1:(nseq-1) a = aln[i] for j = (i+1):nseq list[k+=1] = _percentidentity(a, aln[j], len) end end scores end """ `percentidentity(msa[, out::Type=Float64])` Calculates the identity between all the sequences on a MSA. You can indicate the output element type with the last optional parameter (`Float64` by default). For a MSA with a lot of sequences, you can use `Float32` or `Flot16` in order to avoid the `OutOfMemoryError()`. """ function percentidentity(msa::AbstractMatrix{Residue}, out::Type{T} = Float64) where {T} aln = getresiduesequences(msa) nseq = length(aln) len = length(aln[1]) scores = sequencepairsmatrix(msa, T, Val{false}, T(100.0)) _percentidentity_kernel!(getarray(scores), aln, nseq, len) scores end # Mean Percent Identity of an MSA # =============================== """ Returns the mean of the percent identity between the sequences of a MSA. If the MSA has 300 sequences or less, the mean is exact. If the MSA has more sequences and the `exact` keyword is `false` (defualt), 44850 random pairs of sequences are used for the estimation. The number of samples can be changed using the second argument. Use `exact=true` to perform all the pairwise comparison (the calculation could be slow). """ function meanpercentidentity(msa, nsamples::Int = 44850; exact::Bool = false) # lengthlist(300, false) == 44850 nseq, ncol = size(msa) @assert nsamples > 2 "At least 2 samples are needed." nvalues = lengthlist(nseq, Val{false}) sum = 0.0 if !exact && nvalues >= nsamples samples = Set{Tuple{Int,Int}}() sizehint!(samples, nsamples) while length(samples) < nsamples i = rand(1:(nseq-1)) j = rand((i+1):nseq) if !in((i, j), samples) push!(samples, (i, j)) sum += percentidentity(msa[i, :], msa[j, :]) end end return ((sum / nsamples)) else # exact and/or few sequences for i = 1:(nseq-1) @inbounds @simd for j = (i+1):nseq sum += percentidentity(msa[i, :], msa[j, :]) end end return ((sum / nvalues)) end end # Similarity percent # ================== """ Calculates the similarity percent between two aligned sequences. The 100% is the length of the aligned sequences minus the number of columns with gaps in both sequences and the number of columns with at least one residue outside the alphabet. So, columns with residues outside the alphabet (other than the specially treated `GAP`) aren't counted to the protein length. Two residues are considered similar if they below to the same group in a `ReducedAlphabet`. The `alphabet` (third positional argument) by default is: ```julia ReducedAlphabet("(AILMV)(NQST)(RHK)(DE)(FWY)CGP") ``` The first group is composed of the non polar residues `(AILMV)`, the second group is composed of polar residues, the third group are positive residues, the fourth group are negative residues, the fifth group is composed by the aromatic residues `(FWY)`. `C`, `G` and `P` are considered unique residues. **Other residue groups/alphabets:** **SMS (Sequence Manipulation Suite)** Ident and Sim *(Stothard Paul. 2000)*: ```julia ReducedAlphabet("(GAVLI)(FYW)(ST)(KRH)(DENQ)P(CM)") ``` *Stothard P (2000) The Sequence Manipulation Suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102-1104.* **Bio3D 2.2** seqidentity *(Grant, Barry J., et al. 2006)*: ```julia ReducedAlphabet("(GA)(MVLI)(FYW)(ST)(KRH)(DE)(NQ)PC") ``` # References - [Stothard, Paul. "The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences." Biotechniques 28.6 (2000): 1102-1104.](@cite stothard2000sequence) - [Grant, Barry J., et al. "Bio3d: an R package for the comparative analysis of protein structures." Bioinformatics 22.21 (2006): 2695-2696.](@cite grant2006bio3d) """ function percentsimilarity( seq1::Vector{Residue}, seq2::Vector{Residue}, alphabet::ResidueAlphabet = ReducedAlphabet("(AILMV)(RHK)(NQST)(DE)(FWY)CGP"), ) len = length(seq1) if len != length(seq2) throw( ErrorException( """ Sequences of different lengths, they aren't aligned or don't come from the same MSA. """, ), ) end count = 0 colgap = 0 colout = 0 # Columns with residues outside the alphabet aren't used @inbounds for i = 1:len res1 = seq1[i] res2 = seq2[i] isgap1 = res1 == GAP isgap2 = res2 == GAP if isgap1 && isgap2 colgap += 1 continue end if (!isgap1 && !in(res1, alphabet)) || (!isgap2 && !in(res2, alphabet)) colout += 1 continue end if !isgap1 && !isgap2 count += Int(alphabet[res1] == alphabet[res2]) end end alnlen = len - colgap - colout (100.0 * count) / alnlen end """ Calculates the similarity percent between all the sequences on a MSA. You can indicate the output element type with the `out` keyword argument (`Float64` by default). For an MSA with a lot of sequences, you can use `out=Float32` or `out=Flot16` in order to avoid the `OutOfMemoryError()`. """ function percentsimilarity(msa::AbstractMatrix{Residue}, A...; out::Type = Float64) M = getresiduesequences(msa) P = sequencepairsmatrix(msa, out, Val{false}, out(100.0)) @inbounds @iterateupper getarray(P) false begin list[k] = percentsimilarity(M[i], M[j], A...) end P end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
4338
""" The MSA module of MIToS has utilities for working with Multiple Sequence Alignments of protein Sequences (MSA). **Features** - Read and write MSAs in `Stockholm`, `FASTA`, `A3M`, `PIR`, or `Raw` format - Handle MSA annotations - Edit the MSA, e.g. delete columns or sequences, change sequence order, shuffling... - Keep track of positions and annotations after modifications on the MSA - Describe a MSA, e.g. mean percent identity, sequence coverage, gap percentage... ```julia using MIToS.MSA ``` """ module MSA using OrderedCollections # OrderedDicts for Annotations using AutoHashEquals # Annotations, Clusters using NamedArrays # Col and Seq names, basic sequence/MSA object using FastaIO # FastaReader (fast) using Random # default_rng, shuffle!, rand, Sampler, randstring using Dates # Dates.now() using PairwiseListMatrices # Percent Identity Matrices using StatsBase # Weights for clustering using RecipesBase # Plots for MSAs using TranscodingStreams # To solve MethodError seek(::TranscodingStream, ::Int) using MIToS.Utils import Markdown: @md_str # for docstrings export # Residue Residue, GAP, XAA, @res_str, # Alphabet ResidueAlphabet, GappedAlphabet, UngappedAlphabet, ReducedAlphabet, getnamedict, # ThreeLetters residue2three, three2residue, # Annotations Annotations, # filtersequences!, ncolumns, filtercolumns!, getannotfile, getannotcolumn, getannotsequence, getannotresidue, setannotfile!, setannotcolumn!, setannotsequence!, setannotresidue!, annotate_modification!, delete_annotated_modifications!, printmodifications, # MultipleSequenceAlignment AbstractResidueMatrix, AbstractAlignedObject, AbstractMultipleSequenceAlignment, AbstractAlignedSequence, MultipleSequenceAlignment, AnnotatedMultipleSequenceAlignment, AlignedSequence, AnnotatedAlignedSequence, AnnotatedAlignedObject, UnannotatedAlignedObject, AbstractSequence, AnnotatedSequence, NamedResidueMatrix, annotations, namedmatrix, nsequences, getresidues, getsequence, sequence_id, getresiduesequences, stringsequence, getcolumnmapping, getsequencemapping, sequencenames, columnnames, sequencename_iterator, columnname_iterator, rename_sequences!, rename_sequences, # TODO: rename_columns! # MSAStats gapfraction, residuefraction, coverage, columngapfraction, # MSAEditing filtersequences, filtersequences!, filtercolumns, filtercolumns!, swapsequences!, setreference!, adjustreference, adjustreference!, gapstrip, gapstrip!, # GetIndex sequence_index, column_index, # GeneralParserMethods SequenceFormat, MSAFormat, deletefullgapcolumns, deletefullgapcolumns!, # Raw Raw, # Stockholm Stockholm, # FASTA FASTA, # NBRF/PIR PIR, # A3M A3M, A2M, # Sequences FASTASequences, PIRSequences, RawSequences, # Shuffle shuffle_msa!, shuffle_msa, # PLM sequencepairsmatrix, columnpairsmatrix, # Identity percentidentity, meanpercentidentity, percentsimilarity, # Clusters WeightTypes, NoClustering, Clusters, AbstractCluster, counts, getweight, nelements, # Hobohm hobohmI, # Imported from Utils read_file, parse_file, write_file, print_file, # Imported from Base or StdLib (and exported for docs) names, parse, isvalid, rand, shuffle, shuffle!, # Concatenation gethcatmapping, join_msas include("Residues.jl") include("Alphabet.jl") include("ThreeLetters.jl") include("Annotations.jl") include("MultipleSequenceAlignment.jl") include("MSAEditing.jl") include("GetIndex.jl") include("MSAStats.jl") include("GeneralParserMethods.jl") include("Raw.jl") include("Stockholm.jl") include("FASTA.jl") include("PIR.jl") include("A3M.jl") include("Sequences.jl") include("Shuffle.jl") include("PLM.jl") include("Identity.jl") include("Clusters.jl") include("Hobohm.jl") include("Plots.jl") include("Concatenation.jl") end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
12350
# Filters # ======= # Creation of a boolean mask array # -------------------------------- # If the input is a matrix, dropdims the singleton dimension function _column_mask(mask::AbstractMatrix{Bool}, msa) @assert size(mask, 1) == 1 "The mask should be a vector or a matrix of size (1,ncol)" @assert size(mask, 2) == ncolumns(msa) "One boolean value per column is needed." dropdims(mask, dims = 1) end function _sequence_mask(mask::AbstractMatrix{Bool}, msa) @assert size(mask, 2) == 1 "The mask should be a vector or a matrix of size (nseq,1)" @assert size(mask, 1) == nsequences(msa) "One boolean value per sequence is needed." dropdims(mask, dims = 2) end # If the input is a function, apply it to the respective slice function _column_mask(mask::Function, msa) out = mapslices(mask, msa, dims = 1) if size(out) != (1, ncolumns(msa)) || eltype(out) != Bool error("The function must return a Bool element per column.") end dropdims(out, dims = 1) end function _sequence_mask(mask::Function, msa) out = mapslices(mask, msa, dims = 2) if size(out) != (nsequences(msa), 1) || eltype(out) != Bool error("The function must return a Bool element per column.") end dropdims(out, dims = 2) end # If the mask is an AbstractVector{Bool}, return it without changes function _column_mask(mask::AbstractVector{Bool}, msa) @assert length(mask) == ncolumns(msa) "One boolean value per column is needed." mask end function _sequence_mask(mask::AbstractVector{Bool}, msa) @assert length(mask) == nsequences(msa) "One boolean value per sequence is needed." mask end # If the mask is list of indexes, return it without changes _column_mask(mask::Union{AbstractArray,Colon}, msa) = mask # Annotate modifications # ---------------------- _annotate_modification!(x, selector::Colon, fun::String, column::Bool) = nothing function _annotate_modification!(x, selector::AbstractArray, fun::String, column::Bool) entity = column ? "column" : "sequence" verb = "has" if eltype(selector) <: Bool n_deleted = sum(.~selector) if n_deleted > 0 if n_deleted > 1 entity *= "s" verb = "have" end str = string("$fun : $n_deleted $entity $verb been deleted.") annotate_modification!(x, str) end else cleaned_selector = unique(selector) n_selected = length(cleaned_selector) if n_selected > 0 if n_selected > 1 entity *= "s" verb = "have" end str = string("$fun : $n_selected $entity $verb been selected.") annotate_modification!(x, str) if column && n_selected > 1 && !issorted(selector) # do not store sequence order changes annotate_modification!(x, "$fun : column order has changed!") end end end end function _annotate_col_modification!(x, selector) _annotate_modification!(x, selector, "filtercolumns!", true) end function _annotate_seq_modification!(x, selector) _annotate_modification!(x, selector, "filtersequences!", false) end # Filter sequences # ---------------- """ It's similar to `filtersequences!` but for an `AbstractMatrix{Residue}` """ filtersequences(msa::AbstractMatrix{Residue}, mask) = msa[_sequence_mask(mask, msa), :] """ `filtersequences!(msa, mask[, annotate::Bool=true])` It allows to filter `msa` sequences using a `AbstractVector{Bool}` `mask` (It removes sequences with `false` values). `AnnotatedMultipleSequenceAlignment` annotations are updated if `annotate` is `true` (default). """ function filtersequences!( msa::AnnotatedMultipleSequenceAlignment, mask, annotate::Bool = true, ) boolean_vector = _sequence_mask(mask, msa) filtersequences!(annotations(msa), sequencenames(msa), boolean_vector) # Filter annotations first, names will be changed by filtersequences: msa.matrix = filtersequences(namedmatrix(msa), boolean_vector) if annotate _annotate_seq_modification!(msa, boolean_vector) end msa end function filtersequences!(msa::MultipleSequenceAlignment, mask, annotate::Bool = false) # annotate is useful for calling this # inside other functions msa.matrix = filtersequences(namedmatrix(msa), _sequence_mask(mask, msa)) msa end function filtersequences( msa::Union{AnnotatedMultipleSequenceAlignment,MultipleSequenceAlignment}, args..., ) filtersequences!(deepcopy(msa), args...) end # Filter columns # -------------- """ It's similar to `filtercolumns!` but for an `AbstractMatrix{Residue}` """ function filtercolumns(msa::AbstractMatrix{Residue}, mask) msa[:, _column_mask(mask, msa)] end """ `filtercolumns!(msa, mask[, annotate::Bool=true])` It allows to filter MSA or aligned sequence columns/positions using a `AbstractVector{Bool}` `mask`. Annotations are updated if `annotate` is `true` (default). """ function filtercolumns!( x::Union{AnnotatedMultipleSequenceAlignment,AnnotatedAlignedSequence,AnnotatedSequence}, mask, annotate::Bool = true, ) selector = _column_mask(mask, x) filtercolumns!(annotations(x), selector) x.matrix = filtercolumns(namedmatrix(x), selector) if annotate _annotate_col_modification!(x, selector) end x end function filtercolumns!(x::UnannotatedAlignedObject, mask, annotate::Bool = false) # annotate is useful for calling this # inside other functions x.matrix = filtercolumns(namedmatrix(x), _column_mask(mask, x)) x end filtercolumns(x::AbstractResidueMatrix, args...) = filtercolumns!(deepcopy(x), args...) # Util function # ------------- """ This function takes a vector of sequence names and a sequence id. It returns the position of that id in the vector. If the id isn't in the vector, It throws an error. """ function _get_seqid_index(names::Vector{String}, sequence_id::String) id_index = something(findfirst(isequal(sequence_id), names), 0) if id_index == 0 throw(ErrorException("$sequence_id is not in the list of sequence names.")) end id_index end # Reference # --------- """ It swaps the names on the positions `i` and `j` of a `Vector{String}` """ function _swap!(names::Vector{String}, i::Int, j::Int) name = names[i, :] names[i, :] = names[j, :] names[j, :] = name names end """ It swaps the sequences on the positions `i` and `j` of an MSA. Also it's possible to swap sequences using their sequence names/identifiers when the MSA object as names. """ function swapsequences!(matrix::Matrix{Residue}, i::Int, j::Int) seq = matrix[i, :] matrix[i, :] = matrix[j, :] matrix[j, :] = seq return matrix end function swapsequences!(matrix::NamedArray, i::Int, j::Int) swapsequences!(getarray(matrix), i, j) setnames!(matrix, _swap!(sequencenames(matrix), i, j), 1) return matrix end function swapsequences!(matrix::NamedArray, i::String, j::String) seqnames = sequencenames(matrix) swapsequences!(matrix, _get_seqid_index(seqnames, i), _get_seqid_index(seqnames, j)) end """ It puts the sequence `i` (name or position) as reference (first sequence) of the MSA. This function swaps the sequences 1 and `i`. """ function setreference!( msa::AnnotatedMultipleSequenceAlignment, i::Int, annotate::Bool = true, ) swapsequences!(namedmatrix(msa), 1, i) if annotate seqnames = sequencenames(msa) annotate_modification!( msa, string( "setreference! : Using ", seqnames[1], " instead of ", seqnames[i], " as reference.", ), ) end msa end function setreference!(msa::MultipleSequenceAlignment, i::Int, annotate::Bool = false) # The annotate argument is useful for calling this inside other functions swapsequences!(namedmatrix(msa), 1, i) msa end function setreference!( msa::NamedResidueMatrix{T}, i::Int, annotate::Bool = false, ) where {T<:AbstractArray} swapsequences!(msa, 1, i) end function setreference!( msa::NamedResidueMatrix{T}, id::String, annotate::Bool = false, ) where {T<:AbstractArray} swapsequences!(msa, names(msa, 1)[1], id) end function setreference!( msa::AbstractMultipleSequenceAlignment, id::String, annotate::Bool = true, ) setreference!(msa, _get_seqid_index(sequencenames(msa), id), annotate) end function setreference!(msa::Matrix{Residue}, i::Int, annotate::Bool = false) # The annotate argument is useful for calling this inside other functions swapsequences!(msa, 1, i) end """ Creates a new matrix of residues. This function deletes positions/columns of the MSA with gaps in the reference (first) sequence. """ function adjustreference(msa::AbstractMatrix{Residue}, annotate::Bool = false) # The annotate argument is useful for calling this inside other functions msa[:, msa[1, :].!=GAP] end """ It removes positions/columns of the MSA with gaps in the reference (first) sequence. """ function adjustreference!(msa::AbstractMultipleSequenceAlignment, annotate::Bool = true) filtercolumns!(msa, vec(getresidues(getsequence(msa, 1))) .!= GAP, annotate) end """ Creates a new matrix of `Residue`s (MSA) with deleted sequences and columns/positions. The MSA is edited in the following way: 1. Removes all the columns/position on the MSA with gaps on the reference (first) sequence 2. Removes all the sequences with a coverage with respect to the number of columns/positions on the MSA **less** than a `coveragelimit` (default to `0.75`: sequences with 25% of gaps) 3. Removes all the columns/position on the MSA with **more** than a `gaplimit` (default to `0.5`: 50% of gaps) """ function gapstrip( msa::AbstractMatrix{Residue}; coveragelimit::Float64 = 0.75, gaplimit::Float64 = 0.5, ) msa = adjustreference(msa) # Remove sequences with pour coverage of the reference sequence if ncolumns(msa) != 0 msa = filtersequences(msa, vec(coverage(msa) .>= coveragelimit)) else throw("There are not columns in the MSA after the gap trimming") end if nsequences(msa) != 0 msa = filtercolumns(msa, vec(columngapfraction(msa) .<= gaplimit)) else throw("There are not sequences in the MSA after coverage filter") end msa end """ This functions deletes/filters sequences and columns/positions on the MSA on the following order: 1. Removes all the columns/position on the MSA with gaps on the reference (first) sequence. 2. Removes all the sequences with a coverage with respect to the number of columns/positions on the MSA **less** than a `coveragelimit` (default to `0.75`: sequences with 25% of gaps). 3. Removes all the columns/position on the MSA with **more** than a `gaplimit` (default to `0.5`: 50% of gaps). """ function gapstrip!( msa::AbstractMultipleSequenceAlignment, annotate::Bool = isa(msa, AnnotatedAlignedObject); coveragelimit::Float64 = 0.75, gaplimit::Float64 = 0.5, ) if annotate annotate_modification!( msa, string("gapstrip! : Deletes columns with gaps in the first sequence."), ) end adjustreference!(msa, annotate) # Remove sequences with pour coverage of the reference sequence if ncolumns(msa) != 0 if annotate annotate_modification!( msa, string( "gapstrip! : Deletes sequences with a coverage less than ", coveragelimit, ), ) end filtersequences!(msa, vec(coverage(msa) .>= coveragelimit), annotate) else throw("There are not columns in the MSA after the gap trimming") end # Remove columns with a porcentage of gap greater than gaplimit if nsequences(msa) != 0 if annotate annotate_modification!( msa, string("gapstrip! : Deletes columns with more than ", gaplimit, " gaps."), ) end filtercolumns!(msa, vec(columngapfraction(msa) .<= gaplimit), annotate) else throw("There are not sequences in the MSA after coverage filter") end msa end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
3396
# Counting Gaps and Coverage # -------------------------- """ It calculates the fraction of gaps on the `Array` (alignment, sequence, column, etc.). This function can take an extra `dimension` argument for calculation of the gap fraction over the given dimension. """ function gapfraction(x::AbstractArray{Residue}) counter = 0 len = 0 for res in x counter += ifelse(res == GAP, 1, 0) len += 1 end float(counter) / float(len) end function gapfraction(x::AbstractArray{Residue}, dimension::Int) mapslices(gapfraction, x, dims = dimension) end """ It calculates the fraction of residues (no gaps) on the `Array` (alignment, sequence, column, etc.). This function can take an extra `dimension` argument for calculation of the residue fraction over the given dimension """ residuefraction(x::AbstractArray{Residue}) = 1.0 - gapfraction(x) function residuefraction(x::AbstractArray{Residue}, dimension::Int) mapslices(residuefraction, x, dims = dimension) end macro keep_names_dimension(functions) function_names = functions.args n = length(function_names) definitions = Array{Any}(undef, n) for i = 1:n f = esc(function_names[i]) definitions[i] = quote function ($f)(msa::NamedResidueMatrix{T}, dimension::Int) where {T} result = ($f)(getarray(msa), dimension) if dimension == 1 name_list = names(msa, 2) N = length(name_list) NamedArray( result, ( OrderedDict{String,Int}( Utils._get_function_name(string($f)) => 1, ), OrderedDict{String,Int}(name_list[i] => i for i = 1:N), ), ("Function", "Col"), ) elseif dimension == 2 name_list = names(msa, 1) N = length(name_list) NamedArray( result, ( OrderedDict{String,Int}(name_list[i] => i for i = 1:N), OrderedDict{String,Int}( Utils._get_function_name(string($f)) => 1, ), ), ("Seq", "Function"), ) else throw(ArgumentError("Dimension must be 1 or 2.")) end end ($f)(a::AbstractResidueMatrix, dimension::Int) = ($f)(namedmatrix(a), dimension) end end return Expr(:block, definitions...) end @keep_names_dimension([gapfraction, residuefraction]) """ Coverage of the sequences with respect of the number of positions on the MSA """ function coverage(msa::AbstractMatrix{Residue}) result = residuefraction(msa, 2) if isa(result, NamedArray) && ndims(result) == 2 setnames!(result, ["coverage"], 2) end result end coverage(msa::AbstractAlignedObject) = coverage(namedmatrix(msa)) """ Fraction of gaps per column/position on the MSA """ columngapfraction(msa::AbstractMatrix{Residue}) = gapfraction(msa, 1) columngapfraction(msa::AbstractAlignedObject) = columngapfraction(namedmatrix(msa))
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
29676
# import Base: length, getindex, setindex!, size, copy, deepcopy, empty!, # convert, transpose, names abstract type AbstractResidueMatrix <: AbstractMatrix{Residue} end """ MIToS MSA and aligned sequences (aligned objects) are subtypes of `AbstractMatrix{Residue}`, because MSAs and sequences are stored as `Matrix` of `Residue`s. """ abstract type AbstractAlignedObject <: AbstractResidueMatrix end """ MSAs are stored as `Matrix{Residue}`. It's possible to use a `NamedResidueMatrix{Array{Residue,2}}` as the most simple MSA with sequence identifiers and column names. """ abstract type AbstractMultipleSequenceAlignment <: AbstractAlignedObject end """ A MIToS aligned sequence is an `AbstractMatrix{Residue}` with only 1 row/sequence. """ abstract type AbstractAlignedSequence <: AbstractAlignedObject end """ A MIToS (unaligned) sequence is an `AbstractMatrix{Residue}` with only 1 row/sequence. """ abstract type AbstractSequence <: AbstractResidueMatrix end # Multiple Sequence Alignment # =========================== const NamedResidueMatrix{AT} = NamedArray{Residue,2,AT,Tuple{OrderedDict{String,Int},OrderedDict{String,Int}}} """ This MSA type include a `NamedArray` wrapping a `Matrix` of `Residue`s. The use of `NamedArray` allows to store sequence names and original column numbers as `String`s, and fast indexing using them. """ mutable struct MultipleSequenceAlignment <: AbstractMultipleSequenceAlignment matrix::NamedResidueMatrix{Array{Residue,2}} function (::Type{MultipleSequenceAlignment})( matrix::NamedResidueMatrix{Array{Residue,2}}, ) setdimnames!(matrix, ("Seq", "Col")) new(matrix) end end """ This type represent an MSA, similar to `MultipleSequenceAlignment`, but It also stores `Annotations`. This annotations are used to store residue coordinates (i.e. mapping to UniProt residue numbers). """ mutable struct AnnotatedMultipleSequenceAlignment <: AbstractMultipleSequenceAlignment matrix::NamedArray{ Residue, 2, Array{Residue,2}, Tuple{OrderedDict{String,Int},OrderedDict{String,Int}}, } annotations::Annotations function (::Type{AnnotatedMultipleSequenceAlignment})( matrix::NamedResidueMatrix{Array{Residue,2}}, annotations::Annotations, ) setdimnames!(matrix, ("Seq", "Col")) new(matrix, annotations) end end # Helper constructor for NamedResidueMatrix{Array{Residue,2}} function _namedresiduematrix( matrix::Matrix{Residue}, seqnames::OrderedDict{String,Int}, colnames::OrderedDict{String,Int}, )::NamedResidueMatrix{Array{Residue,2}} NamedArray(matrix, (seqnames, colnames), ("Seq", "Col")) end function _namedresiduematrix(matrix::Matrix{Residue}, seqnames, colnames) _namedresiduematrix( matrix, OrderedDict{String,Int}(string(k) => i for (i, k) in enumerate(seqnames)), OrderedDict{String,Int}(string(k) => i for (i, k) in enumerate(colnames)), ) end # Aligned Sequences # ----------------- """ An `AlignedSequence` wraps a `NamedResidueMatrix{Array{Residue,2}}` with only 1 row/sequence. The `NamedArray` stores the sequence name and original column numbers as `String`s. """ mutable struct AlignedSequence <: AbstractAlignedSequence matrix::NamedResidueMatrix{Array{Residue,2}} function (::Type{AlignedSequence})(matrix::NamedResidueMatrix{Array{Residue,2}}) @assert size(matrix, 1) == 1 "There are more than one sequence." setdimnames!(matrix, ("Seq", "Col")) new(matrix) end end """ This type represent an aligned sequence, similar to `AlignedSequence`, but It also stores its `Annotations`. """ mutable struct AnnotatedAlignedSequence <: AbstractAlignedSequence matrix::NamedResidueMatrix{Array{Residue,2}} annotations::Annotations function (::Type{AnnotatedAlignedSequence})( matrix::NamedResidueMatrix{Array{Residue,2}}, annotations::Annotations, ) @assert size(matrix, 1) == 1 "There are more than one sequence." setdimnames!(matrix, ("Seq", "Col")) new(matrix, annotations) end end # Unaligned Sequences # ------------------- """ An `AnnotationSequence` wraps a `NamedResidueMatrix{Array{Residue,2}}` with only 1 row/sequence and its `Annotations`. The `NamedArray` stores the sequence name and original position numbers as `String`s. """ mutable struct AnnotatedSequence <: AbstractSequence matrix::NamedResidueMatrix{Array{Residue,2}} annotations::Annotations function (::Type{AnnotatedSequence})( matrix::NamedResidueMatrix{Array{Residue,2}}, annotations::Annotations, ) @assert size(matrix, 1) == 1 "There should be only one sequence—i.e. one row." if dimnames(matrix, 2) != "Pos" setdimnames!(matrix, ("Seq", "Pos")) # Unaligned sequences have positions instead of columns end clean_matrix = adjustreference(matrix) # ensure that the sequence has no gaps new(clean_matrix, annotations) end end # Constructors # ------------ # AnnotatedMultipleSequenceAlignment function AnnotatedMultipleSequenceAlignment(msa::NamedResidueMatrix{Array{Residue,2}}) AnnotatedMultipleSequenceAlignment(msa, Annotations()) end function AnnotatedMultipleSequenceAlignment(msa::Matrix{Residue}) AnnotatedMultipleSequenceAlignment(NamedArray(msa)) end function AnnotatedMultipleSequenceAlignment(msa::AbstractMatrix{Residue}) AnnotatedMultipleSequenceAlignment(Matrix{Residue}(msa)) end function AnnotatedMultipleSequenceAlignment(msa::MultipleSequenceAlignment) AnnotatedMultipleSequenceAlignment(namedmatrix(msa), Annotations()) end AnnotatedMultipleSequenceAlignment(msa::AnnotatedMultipleSequenceAlignment) = msa # MultipleSequenceAlignment function MultipleSequenceAlignment(msa::Matrix{Residue}) MultipleSequenceAlignment(NamedArray(msa)) end function MultipleSequenceAlignment(msa::AbstractMatrix{Residue}) MultipleSequenceAlignment(Matrix{Residue}(msa)) end function MultipleSequenceAlignment(msa::AnnotatedMultipleSequenceAlignment) MultipleSequenceAlignment(namedmatrix(msa)) end MultipleSequenceAlignment(msa::MultipleSequenceAlignment) = msa # AnnotatedAlignedSequence function AnnotatedAlignedSequence(seq::NamedResidueMatrix{Array{Residue,2}}) AnnotatedAlignedSequence(seq, Annotations()) end function AnnotatedAlignedSequence(seq::Matrix{Residue}) AnnotatedAlignedSequence(NamedArray(seq)) end function AnnotatedAlignedSequence(seq::AbstractMatrix{Residue}) AnnotatedAlignedSequence(Matrix{Residue}(seq)) end function AnnotatedAlignedSequence(seq::AlignedSequence) AnnotatedAlignedSequence(namedmatrix(seq), Annotations()) end AnnotatedAlignedSequence(seq::AnnotatedAlignedSequence) = seq # AlignedSequence AlignedSequence(seq::Matrix{Residue}) = AlignedSequence(NamedArray(seq)) AlignedSequence(seq::AbstractMatrix{Residue}) = AlignedSequence(Matrix{Residue}(seq)) AlignedSequence(seq::AnnotatedAlignedSequence) = AlignedSequence(namedmatrix(seq)) AlignedSequence(seq::AlignedSequence) = seq # Annotated Unaligned Sequence # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Constructors from strings or vectors function _clean_sequence(seq::AbstractString) seq = uppercase(seq) # to avoid converting lowercase to GAP replace(seq, r"[^A-Z]" => "") # remove non-alphabetic characters end function AnnotatedSequence( id::AbstractString, seq::AbstractString, annot::Annotations = Annotations(), ) clean_seq = _clean_sequence(seq) vector_res = convert(Vector{Residue}, clean_seq) # string -> vector AnnotatedSequence(id, vector_res, annot) end # ⬇ function AnnotatedSequence( id::AbstractString, seq::AbstractVector{Residue}, annot::Annotations = Annotations(), ) matrix = permutedims(seq) # vector -> matrix named_matrix = NamedArray( matrix, ( OrderedDict{String,Int}(id => 1), OrderedDict{String,Int}(string(i) => i for i = 1:length(matrix)), ), ("Seq", "Pos"), ) AnnotatedSequence(named_matrix, annot) end # The default id is an empty string AnnotatedSequence(seq::AbstractString, annot::Annotations = Annotations()) = AnnotatedSequence("", seq, annot) AnnotatedSequence(seq::AbstractVector{Residue}, annot::Annotations = Annotations()) = AnnotatedSequence("", seq, annot) # From matrices function AnnotatedSequence(seq::AbstractMatrix{Residue}, annot::Annotations = Annotations()) AnnotatedSequence(NamedArray(seq), annot) end # Form aligned sequences function AnnotatedSequence(seq::AlignedSequence) AnnotatedSequence(namedmatrix(seq), Annotations()) end function AnnotatedSequence(seq::AnnotatedAlignedSequence) AnnotatedSequence(namedmatrix(seq), deepcopy(seq.annotations)) end # no-op AnnotatedSequence(seq::AnnotatedSequence) = seq # AnnotatedAlignedObject # ---------------------- const AnnotatedAlignedObject = Union{AnnotatedMultipleSequenceAlignment,AnnotatedAlignedSequence} const UnannotatedAlignedObject = Union{MultipleSequenceAlignment,AlignedSequence} # Matrices # -------- const MSAMatrix = Union{Matrix{Residue},NamedResidueMatrix{Array{Residue,2}}} # Getters # ------- """ The `annotations` function returns the `Annotations` of an annotated MSA or aligned sequence. If the object is not annotated, it returns an empty `Annotations` object. """ @inline annotations(msa::AnnotatedMultipleSequenceAlignment) = msa.annotations @inline annotations(seq::AnnotatedAlignedSequence) = seq.annotations @inline annotations(seq::AnnotatedSequence) = seq.annotations @inline annotations(x::UnannotatedAlignedObject) = Annotations() @inline annotations(x::MSAMatrix) = Annotations() """ The `namedmatrix` function returns the `NamedResidueMatrix{Array{Residue,2}}` stored in an MSA or aligned sequence. """ @inline function namedmatrix(x::AbstractResidueMatrix) x.matrix::NamedResidueMatrix{Array{Residue,2}} end NamedArrays.dimnames(x::AbstractResidueMatrix) = dimnames(namedmatrix(x)) # Sequence equality # ----------------- # By default, the sequences objects use the AbstractArray implementations of the equality # operators. This means that only the matrices are compared, i.e. the sequence residues. # Therefore, we define the following methods to compare the whole object, including the # sequence identifier. This doesn't compare the annotations, as they are not part of the # sequence itself. function Base.:(==)( seq_a::Union{AbstractSequence,AbstractAlignedSequence}, seq_b::Union{AbstractSequence,AbstractAlignedSequence}, ) sequence_id(seq_a) == sequence_id(seq_b) && namedmatrix(seq_a) == namedmatrix(seq_b) end function Base.isequal( seq_a::Union{AbstractSequence,AbstractAlignedSequence}, seq_b::Union{AbstractSequence,AbstractAlignedSequence}, ) isequal(sequence_id(seq_a), sequence_id(seq_b)) && isequal(namedmatrix(seq_a), namedmatrix(seq_b)) end function Base.hash(seq::Union{AbstractSequence,AbstractAlignedSequence}, h::UInt) h = hash(sequence_id(seq), h) hash(namedmatrix(seq), h) end # Convert # ------- function Base.convert( ::Type{MultipleSequenceAlignment}, msa::AnnotatedMultipleSequenceAlignment, ) Base.depwarn( "`convert(::Type{MultipleSequenceAlignment}, msa)` has been deprecated. Use `MultipleSequenceAlignment(msa)`", :convert, force = true, ) MultipleSequenceAlignment(namedmatrix(msa)) end function Base.convert(::Type{AlignedSequence}, seq::AnnotatedAlignedSequence) Base.depwarn( "`convert(::Type{AlignedSequence}, seq)` has been deprecated. Use `AlignedSequence(seq)`", :convert, force = true, ) AlignedSequence(namedmatrix(seq)) end function Base.convert( ::Type{AnnotatedMultipleSequenceAlignment}, msa::MultipleSequenceAlignment, ) Base.depwarn( "`convert(::Type{AnnotatedMultipleSequenceAlignment}, msa)` has been deprecated. Use `AnnotatedMultipleSequenceAlignment(msa)`", :convert, force = true, ) AnnotatedMultipleSequenceAlignment(namedmatrix(msa), Annotations()) end function Base.convert(::Type{AnnotatedAlignedSequence}, seq::AlignedSequence) Base.depwarn( "`convert(::Type{AnnotatedAlignedSequence}, seq)` has been deprecated. Use `AnnotatedAlignedSequence(seq)`", :convert, force = true, ) AnnotatedAlignedSequence(namedmatrix(seq), Annotations()) end # AbstractArray Interface # ----------------------- for f in (:size, :length) @eval Base.$(f)(x::AbstractResidueMatrix) = $(f)(namedmatrix(x)) end # Show # ---- for T in ( :(AnnotatedSequence), :(AlignedSequence), :(AnnotatedAlignedSequence), :(MultipleSequenceAlignment), :(AnnotatedMultipleSequenceAlignment), ) @eval begin function Base.show(io::IO, ::MIME"text/plain", x::$(T)) type_name = split(string($T), '.')[end] if isa( x, Union{ AnnotatedMultipleSequenceAlignment, AnnotatedAlignedSequence, AnnotatedSequence, }, ) print(io, type_name, " with ", length(annotations(x)), " annotations : ") else print(io, type_name, " : ") end show(io, MIME"text/plain"(), namedmatrix(x)) end end end # Transpose (permutedims) # ----------------------- function Base.transpose(x::AbstractAlignedObject) Base.depwarn( "`transpose(x::AbstractAlignedObject)` has been deprecated, use `permutedims(x)` instead.", :transpose, force = true, ) permutedims(namedmatrix(x)) end Base.permutedims(x::AbstractResidueMatrix, args...) = permutedims(namedmatrix(x), args...) # Selection without Mappings # -------------------------- """ `getresidues` allows you to access the residues stored inside an MSA or aligned sequence as a `Matrix{Residue}` without annotations nor column/row names. """ getresidues(x::Matrix{Residue}) = x getresidues(x::NamedResidueMatrix{Array{Residue,2}}) = getarray(x) getresidues(x::AbstractResidueMatrix) = getresidues(namedmatrix(x)) """ `nsequences` returns the number of sequences on the MSA. """ nsequences(x::AbstractMatrix{Residue}) = size(x, 1) """ `ncolumns` returns the number of MSA columns or positions. """ ncolumns(x::AbstractMatrix{Residue}) = size(x, 2) """ `getresiduesequences` returns a `Vector{Vector{Residue}}` with all the MSA sequences without annotations nor column/sequence names. """ function getresiduesequences(msa::Matrix{Residue}) nseq = nsequences(msa) tmsa = permutedims(msa, [2, 1]) sequences = Array{Vector{Residue}}(undef, nseq) for i = 1:nseq @inbounds sequences[i] = tmsa[:, i] end sequences end getresiduesequences(x::NamedResidueMatrix{Array{Residue,2}}) = getresiduesequences(getresidues(x)) getresiduesequences(x::AbstractResidueMatrix) = getresiduesequences(getresidues(x)) # Select sequence # --------------- # Gives you the annotations of the Sequence function getsequence(data::Annotations, id::String) GS = Dict{Tuple{String,String},String}() GR = Dict{Tuple{String,String},String}() if length(data.sequences) > 0 for (key, value) in data.sequences if key[1] == id GS[key] = value end end sizehint!(GS, length(GS)) end if length(data.residues) > 0 for (key, value) in data.residues if key[1] == id GR[key] = value end end sizehint!(GR, length(GR)) end Annotations(data.file, GS, data.columns, GR) end @doc """ `getsequence` takes an MSA and a sequence number or identifier and returns an aligned sequence object. If the MSA is an `AnnotatedMultipleSequenceAlignment`, it returns an `AnnotatedAlignedSequence` with the sequence annotations. From a `MultipleSequenceAlignment`, It returns an `AlignedSequence` object. If an `Annotations` object and a sequence identifier are used, this function returns the annotations related to the sequence. """ getsequence getsequence(msa::AbstractMatrix{Residue}, i::Int) = msa[i:i, :] getsequence(msa::NamedResidueMatrix{Array{Residue,2}}, i::Int) = msa[i:i, :] getsequence(msa::NamedResidueMatrix{Array{Residue,2}}, id::String) = msa[String[id], :] function getsequence(msa::AnnotatedMultipleSequenceAlignment, i::Int) seq = namedmatrix(msa)[i:i, :] annot = getsequence(annotations(msa), names(seq, 1)[1]) AnnotatedAlignedSequence(seq, annot) end function getsequence(msa::AnnotatedMultipleSequenceAlignment, id::String) seq = namedmatrix(msa)[String[id], :] annot = getsequence(annotations(msa), id) AnnotatedAlignedSequence(seq, annot) end function getsequence(msa::MultipleSequenceAlignment, seq::String) AlignedSequence(getsequence(namedmatrix(msa), seq)) end function getsequence(msa::MultipleSequenceAlignment, seq::Int) AlignedSequence(getsequence(namedmatrix(msa), seq)) end # Names # ----- """ `sequencenames(msa)` It returns a `Vector{String}` with the sequence names/identifiers. """ function sequencenames(x::NamedResidueMatrix{AT})::Vector{String} where {AT<:AbstractArray} names(x, 1) end sequencenames(x::AbstractResidueMatrix)::Vector{String} = sequencenames(namedmatrix(x)) sequencenames(msa::AbstractMatrix{Residue})::Vector{String} = map(string, 1:size(msa, 1)) """ `columnnames(msa)` It returns a `Vector{String}` with the sequence names/identifiers. If the `msa` is a `Matrix{Residue}` this function returns the actual column numbers as strings. Otherwise it returns the column number of the original MSA through the wrapped `NamedArray` column names. """ function columnnames(x::NamedResidueMatrix{AT})::Vector{String} where {AT} names(x, 2) end columnnames(x::AbstractResidueMatrix)::Vector{String} = columnnames(namedmatrix(x)) columnnames(msa::AbstractMatrix{Residue})::Vector{String} = map(string, 1:size(msa, 2)) """ sequence_id(seq::Union{AbstractSequence,AbstractAlignedSequence}) It returns the sequence identifier of a sequence object. """ sequence_id(seq::Union{AbstractSequence,AbstractAlignedSequence}) = only(sequencenames(seq)) # Name Iterators # -------------- # These function relies on the internal implementation of NamedArrays # to return the key iterator of the OrderedDict containing the row or column names. # That should help reduce allocations in places where a vector of names is not needed. """ `sequencename_iterator(msa)` It returns an iterator that returns the sequence names/identifiers of the `msa`. """ function sequencename_iterator(x::NamedResidueMatrix{AT}) where {AT} keys(x.dicts[1])::Base.KeySet{String,OrderedDict{String,Int64}} end sequencename_iterator(x::AbstractResidueMatrix) = sequencename_iterator(namedmatrix(x)) sequencename_iterator(msa::AbstractMatrix{Residue}) = (string(i) for i = 1:size(msa, 1)) """ `columnname_iterator(msa)` It returns an iterator that returns the column names of the `msa`. If the `msa` is a `Matrix{Residue}` this function returns the actual column numbers as strings. Otherwise it returns the column number of the original MSA through the wrapped `NamedArray` column names. """ function columnname_iterator(x::NamedResidueMatrix{AT}) where {AT} keys(x.dicts[2]) end columnname_iterator(x::AbstractResidueMatrix) = columnname_iterator(namedmatrix(x)) columnname_iterator(msa::AbstractMatrix{Residue}) = (string(i) for i = 1:size(msa, 2)) # Copy, deepcopy # -------------- for f in (:copy, :deepcopy) @eval begin function Base.$(f)(msa::AnnotatedMultipleSequenceAlignment) AnnotatedMultipleSequenceAlignment( $(f)(namedmatrix(msa)), $(f)(annotations(msa)), ) end function Base.$(f)(msa::MultipleSequenceAlignment) MultipleSequenceAlignment($(f)(namedmatrix(msa))) end function Base.$(f)(seq::AnnotatedAlignedSequence) AnnotatedAlignedSequence($(f)(seq.matrix), $(f)(seq.annotations)) end function Base.$(f)(seq::AnnotatedSequence) AnnotatedSequence($(f)(seq.matrix), $(f)(seq.annotations)) end Base.$(f)(seq::AlignedSequence) = AlignedSequence($(f)(seq.matrix)) end end # Get annotations # --------------- # MSA for getter in (:getannotcolumn, :getannotfile, :getannotresidue, :getannotsequence) @eval $(getter)(x::AnnotatedMultipleSequenceAlignment, args...) = $(getter)(annotations(x), args...) end # Sequence function _check_feature( seq::Union{AnnotatedAlignedSequence,AnnotatedSequence}, feature::String, ) if feature == sequence_id(seq) annot = annotations(seq) sequence_features = last.(keys(annot.sequences)) residue_features = last.(keys(annot.residues)) if feature ∉ sequence_features && feature ∉ residue_features sequence_features_str = isempty(sequence_features) ? "" : "Possible sequence features: " * join(sequence_features, ", ", " and ") residue_features_str = isempty(residue_features) ? "" : "Possible residue features: " * join(residue_features, ", ", " and ") @warn """The second argument should be a feature name, not the sequence identifier: $(feature). $sequence_features_str $residue_features_str""" end end feature end for getter in (:getannotcolumn, :getannotfile) @eval $(getter)(x::Union{AnnotatedSequence,AnnotatedAlignedSequence}, args...) = $(getter)(annotations(x), args...) end for getter in (:getannotresidue, :getannotsequence) @eval begin function $(getter)(x::Union{AnnotatedSequence,AnnotatedAlignedSequence}) return $(getter)(annotations(x)) # get all the annotations end function $(getter)( x::Union{AnnotatedSequence,AnnotatedAlignedSequence}, feature::String, ) return $(getter)(annotations(x), sequence_id(x), _check_feature(x, feature)) end function $(getter)( x::Union{AnnotatedSequence,AnnotatedAlignedSequence}, feature::String, default::String, ) return $(getter)( annotations(x), sequence_id(x), _check_feature(x, feature), default, ) end end end # Set annotations # --------------- for setter in ( :setannotcolumn!, :setannotfile!, :annotate_modification!, :delete_annotated_modifications!, :printmodifications, ) @eval $(setter)( x::Union{ AnnotatedMultipleSequenceAlignment, AnnotatedAlignedSequence, AnnotatedSequence, }, args..., ) = $(setter)(annotations(x), args...) end for setter in (:setannotresidue!, :setannotsequence!) @eval $(setter)(x::AnnotatedMultipleSequenceAlignment, args...) = $(setter)(annotations(x), args...) end for setter in (:setannotresidue!, :setannotsequence!) @eval begin function $(setter)( x::Union{AnnotatedAlignedSequence,AnnotatedSequence}, feature::String, annotation::String, ) return $(setter)( annotations(x), sequence_id(x), _check_feature(x, feature), annotation, ) end end end # To be used on AbstractMultipleSequenceAlignment methods @inline function annotate_modification!(msa::MultipleSequenceAlignment, str::String) # It's generally used in a boolean context: annotate && annotate_modification!(... false end # Mapping annotations # =================== """ Converts a string of mappings into a vector of `Int`s ```jldoctest julia> using MIToS.MSA julia> MSA._str2int_mapping(",,2,,4,5") 6-element Vector{Int64}: 0 0 2 0 4 5 ``` """ function _str2int_mapping(mapping::String) values = split(mapping, ',') len = length(values) intmap = Array{Int}(undef, len) @inbounds for i = 1:len value = values[i] intmap[i] = value == "" ? 0 : parse(Int, value) end intmap end """ It returns a `Vector{Int}` with the original column number of each column on the actual MSA. The mapping is annotated in the `ColMap` file annotation of an `AnnotatedMultipleSequenceAlignment` or in the column names of an `NamedArray` or `MultipleSequenceAlignment`. NOTE: When the MSA results from vertically concatenating MSAs using `vcat`, the column map annotations from the constituent MSAs (such as `1_ColMap`, `2_ColMap`, etc.) are not returned. Instead, the column numbers referenced in the column names are provided. To access the original annotations, utilize the `getannotfile` function. """ function getcolumnmapping(msa::AnnotatedMultipleSequenceAlignment) annot = getannotfile(msa) if haskey(annot, "ColMap") return _str2int_mapping(annot["ColMap"]) else if haskey(annot, "1_ColMap") @warn """ The MSA is the result of a vertical concatenation of MSAs. The column mapping annotations from the sub-MSAs are not returned. Instead, the column numbers referenced in the column names are provided. To access the original annotations, utilize the getannotfile function. For example: `getannotfile(msa, "1_ColMap")` """ end return getcolumnmapping(namedmatrix(msa)) end end function getcolumnmapping(msa::NamedResidueMatrix{AT}) where {AT<:AbstractMatrix} # replace to clean names from hcat Int[parse(Int, replace(col, r"^[0-9]+_" => "")) for col in names(msa, 2)] end getcolumnmapping(msa::MultipleSequenceAlignment) = getcolumnmapping(namedmatrix(msa)) """ It returns the sequence coordinates as a `Vector{Int}` for an MSA sequence. That vector has one element for each MSA column. If the number if `0` in the mapping, there is a gap in that column for that sequence. """ function getsequencemapping(msa::AnnotatedMultipleSequenceAlignment, seq_id::String) _str2int_mapping(getannotsequence(msa, seq_id, "SeqMap")) end function getsequencemapping(msa::AnnotatedMultipleSequenceAlignment, seq_num::Int) getsequencemapping(msa, sequencenames(msa)[seq_num]) end function getsequencemapping(seq::Union{AnnotatedAlignedSequence,AnnotatedSequence}) _str2int_mapping(getannotsequence(seq, "SeqMap")) end # Sequences as strings # -------------------- """ ``` stringsequence(seq) stringsequence(msa, i::Int) stringsequence(msa, id::String) ``` It returns the selected sequence as a `String`. """ stringsequence(msa::AbstractMatrix{Residue}, i) = String(vec(msa[i, :])) function stringsequence(msa::AbstractMultipleSequenceAlignment, i) stringsequence(namedmatrix(msa), i) end function stringsequence(seq::AbstractMatrix{Residue}) @assert size(seq, 1) == 1 "There are more than one sequence/row." String(vec(seq)) end stringsequence(seq::Union{AbstractSequence,AbstractAlignedSequence}) = stringsequence(namedmatrix(seq)) # Rename sequences # ---------------- const RENAME_SEQUENCES_DOC = md""" Rename the sequences of an MSA given a vector of new names, a dictionary mapping old names to new names, or one or more pairs going from old to new names. If the `msa` is an `AnnotatedMultipleSequenceAlignment`, the annotations are also updated. """ """ rename_sequences!(msa, newnames::Vector{T}) where {T<:AbstractString} rename_sequences!(msa, old2new::AbstractDict) rename_sequences!(msa, old2new::Pair...) $RENAME_SEQUENCES_DOC The function modifies the `msa` in place and returns it. """ function rename_sequences!( msa::NamedResidueMatrix{AT}, newnames::Vector{T}, ) where {AT,T<:AbstractString} @assert length(newnames) == size(msa, 1) "The number of new names must match the number of sequences." setnames!(msa, newnames, 1) msa end function rename_sequences!( msa::MultipleSequenceAlignment, newnames::Vector{T}, ) where {T<:AbstractString} rename_sequences!(namedmatrix(msa), newnames) msa end function rename_sequences!( msa::AnnotatedMultipleSequenceAlignment, newnames::Vector{T}, ) where {T<:AbstractString} name_mapping = Dict{String,String}( old => new for (old, new) in zip(sequencename_iterator(msa), newnames) if old != new ) new_annotations = _rename_sequences(annotations(msa), name_mapping) rename_sequences!(namedmatrix(msa), newnames) msa.annotations = new_annotations msa end """ rename_sequences(msa, newnames::Vector{T}) where {T<:AbstractString} rename_sequences(msa, old2new::AbstractDict) rename_sequences(msa, old2new::Pair...) $RENAME_SEQUENCES_DOC The function returns a new MSA with the sequences renamed without modifying the original MSA. """ rename_sequences(msa, newnames) = rename_sequences!(deepcopy(msa), newnames) # Rename a single sequence or a set of sequences function _newnames(msa, old2new::AbstractDict) String[get(old2new, name, name) for name in sequencename_iterator(msa)] end _newnames(msa, old2new::Pair...) = _newnames(msa, Dict(old2new)) function rename_sequences!(msa, old2new::AbstractDict) rename_sequences!(msa, _newnames(msa, old2new)) end function rename_sequences!(msa, old2new::Pair...) rename_sequences!(msa, _newnames(msa, old2new...)) end rename_sequences(msa, old2new::Pair...) = rename_sequences(msa, _newnames(msa, old2new...))
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
4273
struct PIR <: MSAFormat end # PIR Parser # ========== # Description of PIR/NBRF format in : # - https://salilab.org/modeller/9v7/manual/node445.html # - http://iubio.bio.indiana.edu/soft/molbio/readseq/classic/src/Formats # - http://www.bioinformatics.nl/tools/crab_pir.html # - http://emboss.sourceforge.net/docs/themes/seqformats/NbrfFormat.html # They could be annotations/comments after the sequence, we are ignoring that at the moment. function _pre_readpir(io::Union{IO,AbstractString}) IDS = String[] SEQS = String[] GS = Dict{Tuple{String,String},String}() # Sequence types from http://iubio.bio.indiana.edu/soft/molbio/readseq/classic/src/Formats nucleic_types = Set([ "DL", # DNA, linear "DC", # DNA, circular "RL", # RNA, linear "RC", # RNA, circular "N1", # functional RNA, other than tRNA "N3", ]) # tRNA nonres = r"[^A-Za-z-\.]+" # large negated character class becuase seqs are free text finished = false line_number = 0 seq_number = 0 for line::String in lineiterator(io) line_number += 1 if startswith(line, '>') line_number = 1 seq_number += 1 finished = false m = match(r"^>([A-Z][A-Z0-9]);(.+)$", line) # e.g. >P1;5fd1 if m !== nothing seq_type = m[1] === nothing ? "" : m[1] seq_id = m[2] === nothing ? "" : rstrip(m[2]::SubString) push!(IDS, seq_id) push!(GS, (seq_id, "Type") => seq_type) if seq_type in nucleic_types @warn("Type $seq_type indicates that $seq_id is a nucleic acid.") end else throw(ErrorException("Identifier doesn't match the PIR format: $line")) end elseif line_number == 2 && !isempty(IDS) push!(GS, (IDS[seq_number], "Title") => line) elseif line_number == 3 if endswith(line, '*') finished = true end push!(SEQS, replace(line, nonres => "")) elseif !finished && length(SEQS) == seq_number && seq_number != 0 if endswith(line, '*') finished = true end @inbounds SEQS[seq_number] = SEQS[seq_number] * replace(line, nonres => "") end end (IDS, SEQS, GS) end function _load_sequences( io::Union{IO,AbstractString}, format::Type{PIR}; create_annotations::Bool = false, ) IDS, SEQS, GS = _pre_readpir(io) annot = Annotations() if create_annotations annot.sequences = GS end return IDS, SEQS, annot end # Print Pfam # ========== function _print_pir_seq(io::IO, seq_type, seq_id, seq_title, seq) println(io, ">", seq_type, ';', seq_id) println(io, seq_title) char_counter = 0 for char in seq print(io, char) char_counter += 1 if char_counter % 80 == 0 println(io) end end println(io, '*') end function _get_pir_annotations(sequence_annotations, seq_id::String) if haskey(sequence_annotations, (seq_id, "Type")) seq_type = sequence_annotations[(seq_id, "Type")] else @warn("There is not sequence Type annotation for $seq_id, using XX (Unknown).") seq_type = "XX" end if haskey(sequence_annotations, (seq_id, "Title")) seq_title = sequence_annotations[(seq_id, "Title")] else @warn("There is not sequence Title annotation for $seq_id.") seq_title = "" end seq_type, seq_title end function Utils.print_file( io::IO, msa::AnnotatedMultipleSequenceAlignment, format::Type{PIR}, ) sequence_annotations = getannotsequence(msa) seqnames = sequencenames(msa) for i = 1:nsequences(msa) seq_id = seqnames[i] seq_type, seq_title = _get_pir_annotations(sequence_annotations, seq_id) seq = stringsequence(msa, i) _print_pir_seq(io, seq_type, seq_id, seq_title, seq) end end function Utils.print_file(io::IO, msa::AbstractMatrix{Residue}, format::Type{PIR}) seqnames = sequencenames(msa) for i = 1:nsequences(msa) _print_pir_seq(io, "XX", seqnames[i], "", stringsequence(msa, i)) end end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
2161
# Initialize an empty PairwiseListMatrix (PLM) for a pairwise measure in column or # sequence pairs. These functions take care of the labels. """ Initialize an empty `PairwiseListMatrix` for a pairwise measure in column pairs. It uses the column mapping (column number in the input MSA file) if it’s available, otherwise it uses the actual column numbers. You can use the positional argument to indicate the number `Type` (default: `Float64`), if the `PairwiseListMatrix` should store the diagonal values on the list (default: `false`) and a default value for the diagonal (default: `NaN`). """ function sequencepairsmatrix( msa::AbstractMatrix{Residue}, ::Type{T}, ::Type{Val{diagonal}}, diagonalvalue::T, ) where {T,diagonal} plm = PairwiseListMatrix(T, nsequences(msa), diagonal, diagonalvalue) nplm = setlabels(plm, sequencenames(msa)) setdimnames!(nplm, ["Seq1", "Seq2"]) nplm::NamedArray{ T, 2, PairwiseListMatrix{T,diagonal,Vector{T}}, NTuple{2,OrderedDict{String,Int}}, } end function sequencepairsmatrix(msa::AbstractMatrix{Residue}) sequencepairsmatrix(msa, Float64, Val{false}, NaN) end """ Initialize an empty `PairwiseListMatrix` for a pairwise measure in sequence pairs. It uses the sequence names if they are available, otherwise it uses the actual sequence numbers. You can use the positional argument to indicate the number `Type` (default: `Float64`), if the `PairwiseListMatrix` should store the diagonal values on the list (default: `false`) and a default value for the diagonal (default: `NaN`). """ function columnpairsmatrix( msa::AbstractMatrix{Residue}, ::Type{T}, ::Type{Val{diagonal}}, diagonalvalue::T, ) where {T,diagonal} plm = PairwiseListMatrix(T, ncolumns(msa), diagonal, diagonalvalue) nplm = setlabels(plm, columnnames(msa)) setdimnames!(nplm, ["Col1", "Col2"]) nplm::NamedArray{ T, 2, PairwiseListMatrix{T,diagonal,Vector{T}}, NTuple{2,OrderedDict{String,Int}}, } end function columnpairsmatrix(msa::AbstractMatrix{Residue}) columnpairsmatrix(msa, Float64, Val{false}, NaN) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
591
const _residue_labels = map(string, reverse!(res"ARNDCQEGHILKMFPSTWYV-")) @recipe function plot(msa::AbstractMultipleSequenceAlignment) seriestype --> :heatmap yflip --> true grid --> false foreground_color_border --> nothing foreground_color_axis --> nothing linewidth --> 0 zdiscrete_values --> _residue_labels nseq = nsequences(msa) names = sequencenames(msa) if nseq > 20 step = div(nseq, 20) yticks --> (1:step:nseq, names) html_output_format := :png end 1:ncolumns(msa), names, map(string, getresidues(msa)) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
574
struct Raw <: MSAFormat end # Raw Parser # ========== function _load_sequences( io::Union{IO,AbstractString}, format::Type{Raw}; create_annotations::Bool = false, ) SEQS = String[] IDS = String[] for (i, line::String) in enumerate(lineiterator(io)) push!(SEQS, line) push!(IDS, string(i)) end return IDS, SEQS, Annotations() end # Print Raw # ========= function Utils.print_file(io::IO, msa::AbstractMatrix{Residue}, format::Type{Raw}) for i = 1:nsequences(msa) println(io, stringsequence(msa, i)) end end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
9153
# Residues # ======== if Int === Int64 primitive type Residue 64 end else primitive type Residue 32 end end @doc """ Most of the **MIToS** design is created around the `Residue` bitstype. It has representations for the 20 natural amino acids, a value representing insertions and deletions (`GAP`, `'-'`) and one representing unknown, ambiguous and non standard residues (`XAA`, `'X'`). Each `Residue` is encoded as an integer number, with the same bit representation and size than a `Int`. This allows fast indexing operation of probability or frequency matrices. **Residue creation and conversion** Creation and conversion of `Residue`s should be treated carefully. `Residue` is encoded as a 32 or 64 bits type similar to `Int`, to get fast indexing using `Int(x::Residue)`. `Int` simply calls `reinterpret` without checking if the residue is valid. Valid residues have integer values in the closed interval [1,22]. `convert` from `Int` and `Char` always returns valid residues, however it's possible to find invalid residues (they are shown using the character `'�'`) after the creation of uninitialized `Residue` arrays (i.e. using `Array`). You can use `zeros`, `ones` or `rand` to get initialized `Residue` arrays with valid residues. Conversions to and from `Char`s changes the bit representation and allows the use of the usual character representation of residues and amino acids. This conversions are used in IO operations and always return valid residues. In conversions from `Char`, lowercase letters, `'*'`, `'-'` and `'.'` are translated to `GAP`, letters representing the 20 natural amino (ARNDCQEGHILKMFPSTWYV) acids are translated to their corresponding `Residue` and any other character is translated to `XAA`. Since lowercase letters and dots are translated to gaps, Pfam MSA insert columns are converted to columns full of gaps. ```jldoctest julia> using MIToS.MSA julia> alanine = Residue('A') A julia> Char(alanine) 'A': ASCII/Unicode U+0041 (category Lu: Letter, uppercase) julia> for residue in res"ARNDCQEGHILKMFPSTWYV-X" println(residue, " ", Int(residue)) end A 1 R 2 N 3 D 4 C 5 Q 6 E 7 G 8 H 9 I 10 L 11 K 12 M 13 F 14 P 15 S 16 T 17 W 18 Y 19 V 20 - 21 X 22 ``` """ Residue # Conversion from/to integers # --------------------------- # # This conversions are used for indexing, comparison and operations """ It takes an `Int` and returns the `Int` value used to represent a valid `Residue`. Invalid residues are encoded as the integer 23. """ @inline _valid_residue_integer(x::Int) = ifelse(1 <= x <= 22, x, 22) # XAA Base.convert(::Type{Residue}, x::Int) = reinterpret(Residue, _valid_residue_integer(x)) # Conversion to `Int` doesn’t check if the residue is valid @inline Base.convert(::Type{Int}, x::Residue) = reinterpret(Int, x) Residue(i::Int) = convert(Residue, i) Base.Int(res::Residue) = convert(Int, res) # ndims # ----- Base.ndims(r::Residue) = 0 Base.ndims(::Type{Residue}) = 0 # Scalar # ------ Base.broadcastable(x::Residue) = Ref(x) # Gaps # ---- """ `GAP` is the `Residue` representation on MIToS for gaps (`'-'`, insertions and deletions). Lowercase residue characters, dots and `'*'` are encoded as `GAP` in conversion from `String`s and `Char`s. This `Residue` constant is encoded as `Residue(21)`. """ const GAP = Residue(21) # - . """ `XAA` is the `Residue` representation for unknown, ambiguous and non standard residues. This `Residue` constant is encoded as `Residue(22)`. """ const XAA = Residue(22) # X # Check for valid residues # ------------------------ """ `isvalid(res::Residue)` It returns `true` if the encoded integer is in the closed interval [1,22]. """ Base.isvalid(::Type{Residue}, res::Residue) = 1 <= reinterpret(Int, res) <= 22 Base.isvalid(res::Residue) = isvalid(Residue, res) # Type boundaries # --------------- Base.typemin(::Type{Residue}) = Residue(1) Base.typemax(::Type{Residue}) = Residue(22) # zeros and ones # -------------- Base.zero(::Type{Residue}) = GAP Base.one(::Type{Residue}) = XAA # Conversion from/to Char/Uint8 # ----------------------------- # # Conversions for input and output. const _to_char = Char[ 'A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V', '-', 'X', ] function Base.convert(::Type{Char}, res::Residue) @inbounds char = _to_char[_valid_residue_integer(Int(res))] char end """ 'z' is the maximum between 'A':'Z', 'a':'z', '.', '-' and '*'. 'z' is 'GAP' but the next character to 'z' is '{', i.e. `XAA`. """ const _max_char = Int('z') + 1 const _to_residue = fill(XAA, _max_char) # Residues for index = 1:22 _to_residue[Int(_to_char[index])] = Residue(index) end # A lowercase Char is translated to GAP for char = 'a':'z' _to_residue[Int(char)] = GAP end _to_residue[Int('.')] = GAP # Gap in insert columns _to_residue[Int('-')] = GAP # Usual GAP character _to_residue[Int('*')] = GAP # Usual representation of a translated stop codon @inline Base.@pure function Base.convert(::Type{Residue}, char::Char)::Residue @inbounds if char < '{' _to_residue[Int(char)] else XAA end end Base.Char(res::Residue) = convert(Char, res) Residue(char::Char) = convert(Residue, char) # Bits # ---- Base.bitstring(res::Residue) = bitstring(reinterpret(Int, res)) # Show # ---- # Invalid residues are shown with the '�' character function _write(io::IO, res::Residue) if isvalid(res) @inbounds char = _to_char[Int(res)] write(io, char) else write(io, '�') end nothing end Base.show(io::IO, res::Residue) = _write(io, res) # Print # ----- # Invalid residues are printed with the 'X' character function Base.print(io::IO, res::Residue) write(io, Char(res)) nothing end # Conversion from/to String # ------------------------------ # # They are useful for IO and creation of Vector{Residue} Base.convert(::Type{Vector{Residue}}, str::AbstractString) = Residue[char for char in str] function Base.convert(::Type{String}, seq::Vector{Residue}) # Buffer length can be length(seq) since Char(res) is always ASCII buffer = IOBuffer(Array{UInt8}(undef, length(seq)), read = true, write = true) # To start at the beginning of the buffer: truncate(buffer, 0) for res in seq write(buffer, Char(res)) end String(take!(buffer)) end Base.String(seq::Vector{Residue}) = convert(String, seq) function _get_msa_size(sequences::Array{String,1}) nseq = length(sequences) if nseq == 0 throw(ErrorException("There are not sequences.")) end nres = length(sequences[1]) nseq, nres end function _convert_to_matrix_residues(sequences::Array{String,1}, size::Tuple{Int,Int}) nseq, nres = size aln = Array{Residue}(undef, nseq, nres) @inbounds for (i, str) in enumerate(sequences) for (j, char) in enumerate(str) aln[CartesianIndex(i, j)] = Residue(char) end end aln end # For convert a MSA stored as Vector{String} to Matrix{Residue} # This checks that all the sequences have the same length function Base.convert(::Type{Matrix{Residue}}, sequences::Array{String,1}) nseq, nres = _get_msa_size(sequences) # throw() can be used with @threads : https://github.com/JuliaLang/julia/issues/17532 for seq in sequences if length(seq) != nres throw( ErrorException( string( "There is an aligned sequence with different number of columns", "[ ", length(seq), " != ", nres, " ]: ", String(seq), ), ), ) end end _convert_to_matrix_residues(sequences, (nseq, nres)) end # Non-Standard String Literal # --------------------------- """ The MIToS macro `@res_str` takes a string and returns a `Vector` of `Residues` (sequence). ```jldoctest julia> using MIToS.MSA julia> res"MIToS" 5-element Vector{Residue}: M I T - S ``` """ macro res_str(str) convert(Vector{Residue}, str) end # Comparisons # ----------- Base.:(==)(x::Residue, y::Residue) = x === y Base.:(!=)(x::Residue, y::Residue) = x !== y Base.length(res::Residue) = length(Int(res)) # Random # ------ """ It chooses from the 20 natural residues (it doesn't generate gaps). ```jldoctest julia> using MIToS.MSA julia> using Random julia> Random.seed!(1); # Reseed the random number generator. julia> rand(Residue) R julia> rand(Residue, 4, 4) 4×4 Matrix{Residue}: E D D A F S K K M S I M Y F E D ``` """ Random.rand(rng::AbstractRNG, ::Random.SamplerType{Residue}) = Residue(rand(rng, 1:20)) function Random.Sampler(RNG::Type{<:AbstractRNG}, res::Residue, r::Random.Repetition) Random.SamplerSimple(res, Random.Sampler(RNG, 1:20, r)) end Random.rand(rng::AbstractRNG, sp::Random.SamplerSimple{Residue}) = rand(rng, sp.data)
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
2051
# Sequence File Formats # ===================== struct FASTASequences <: SequenceFormat end struct PIRSequences <: SequenceFormat end struct RawSequences <: SequenceFormat end _format_fallback(::Type{FASTASequences}) = FASTA _format_fallback(::Type{PIRSequences}) = PIR _format_fallback(::Type{RawSequences}) = Raw function _generate_sequences(ids, seqs, annot) n = length(ids) @assert n == length(seqs) output = AnnotatedSequence[] sizehint!(output, n) for (id, seq) in zip(ids, seqs) seq_annot = getsequence(annot, id) push!(output, AnnotatedSequence(id, seq, seq_annot)) end output end # Parse File # ========== function Utils.parse_file( io::Union{IO,AbstractString}, format::Type{T}; generatemapping::Bool = false, useidcoordinates::Bool = false, deletefullgaps::Bool = true, keepinserts::Bool = false, ) where {T<:SequenceFormat} pre_parser_format = _format_fallback(T) ids, seqs, annot = _load_sequences(io, pre_parser_format; create_annotations = true) _generate_sequences(ids, seqs, annot) end # Print File # ========== # PIRSequences # ------------ # It uses _get_pir_annotations and _print_pir_seq from src/MSA/PIR.jl function Utils.print_file( io::IO, seqs::Vector{AnnotatedSequence}, format::Type{PIRSequences}, ) for seq in seqs seqann = getannotsequence(seq) seq_id = sequence_id(seq) seq_type, seq_title = _get_pir_annotations(seqann, seq_id) seq_str = join(seq) _print_pir_seq(io, seq_type, seq_id, seq_title, seq_str) end end # RawSequences # ------------ function Utils.print_file( io::IO, seqs::Vector{AnnotatedSequence}, format::Type{RawSequences}, ) for seq in seqs println(io, join(seq)) end end # FASTASequences # -------------- function Utils.print_file( io::IO, seqs::Vector{AnnotatedSequence}, format::Type{FASTASequences}, ) for seq in seqs println(io, ">", sequence_id(seq)) println(io, join(seq)) end end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
7061
function _subset_indices(msa::Matrix{Residue}, dims::Int, subset, fixed_reference) _indices = if subset === Colon() nseq, ncol = size(msa) if dims == 1 1:nseq else 1:ncol end else if eltype(subset) !== Int throw( ArgumentError( "For a Matrix{Residue}, subset must be an iterator of Int values or Colon()", ), ) end if isa(subset, AbstractRange) collect(subset) elseif isa(subset, Int) [subset] else subset end end indices = convert(Vector{Int}, _indices) if fixed_reference && dims == 1 filter!(!=(1), indices) end indices end function _subset_indices(msa::NamedResidueMatrix, dims::Int, subset, fixed_reference) dict = dims == 1 ? msa.dicts[1] : msa.dicts[2] _indices = NamedArrays.indices(dict, subset) indices = convert(Vector{Int}, isa(_indices, Int) ? [_indices] : _indices) if fixed_reference && dims == 1 filter!(!=(1), indices) end indices end function _subset_indices( msa::AbstractMultipleSequenceAlignment, dims, subset, fixed_reference, )::Vector{Int} _subset_indices(msa.matrix, dims, subset, fixed_reference) end function shuffle_msa!( r::AbstractRNG, msa::AbstractMatrix{Residue}, subset = Colon(); dims::Int = 2, fixedgaps::Bool = true, fixed_reference::Bool = false, ) @assert dims == 1 || dims == 2 "dims must be 1 for shuffling along sequences or 2 for columns" subset_indices = _subset_indices(msa, dims, subset, fixed_reference) msa_matrix = getresidues(msa) nseq, ncol = size(msa_matrix) mask = fixedgaps ? msa_matrix .!= GAP : trues(nseq, ncol) if fixed_reference mask[1, :] .= 0 end for i in subset_indices to_shuffle = dims == 1 ? view(msa_matrix, i, mask[i, :]) : view(msa_matrix, mask[:, i], i) shuffle!(r, to_shuffle) end msa end function shuffle_msa!(r::AbstractRNG, msa::MultipleSequenceAlignment, args...; kwargs...) shuffle_msa!(r, msa.matrix, args...; kwargs...) msa end function shuffle_msa!( r::AbstractRNG, msa::AnnotatedMultipleSequenceAlignment, subset = Colon(); dims::Int = 2, fixedgaps::Bool = true, fixed_reference::Bool = false, ) shuffle_msa!(r, msa.matrix, subset; dims, fixedgaps, fixed_reference) # Annotate the modifications subset_indices = _subset_indices(msa, dims, subset, fixed_reference) n = length(subset_indices) entities = dims == 1 ? "sequences" : "columns" message = "$n $entities shuffled." fixed = if fixedgaps && fixed_reference " Gaps and residues in the first sequence" elseif fixedgaps " Gaps" elseif fixed_reference " Residues in the first sequence" else "" end if !isempty(fixed) message *= fixed message *= " were kept in their positions." end annotate_modification!(msa.annotations, message) if dims == 1 seqnames = sequencenames(msa) for i in subset_indices seqname = seqnames[i] setannotsequence!(msa, seqname, "Shuffled", "true") # Delete SeqMap of the shuffled sequences delete!(msa.annotations.sequences, (seqname, "SeqMap")) end else shuffled = zeros(Int, ncolumns(msa)) shuffled[subset_indices] .= 1 setannotcolumn!(msa, "Shuffled", join(shuffled)) end msa end shuffle_msa_doc = md""" It randomly permute residues in the MSA `msa` along sequences (`dims=1`) or columns (`dims=2`, the default). The optional positional argument `subset` allows to shuffle only a subset of the sequences or columns. The optional keyword argument `fixedgaps` indicates if the gaps should remain their positions (`true` by default). The optional keyword argument `fixed_reference` indicates if the residues in the first sequence should remain in their positions (`false` by default). """ """ shuffle_msa!([rng=default_rng(),] msa::AbstractMatrix{Residue}, subset=Colon(); dims=2, fixedgaps=true, fixed_reference=false) In-place version of [`shuffle_msa`](@ref). $shuffle_msa_doc """ function shuffle_msa!(msa::AbstractMatrix{Residue}, args...; kwargs...) shuffle_msa!(Random.default_rng(), msa, args...; kwargs...) end function shuffle_msa(r::AbstractRNG, msa::AbstractMatrix{Residue}, args...; kwargs...) shuffle_msa!(r, deepcopy(msa), args...; kwargs...) end """ shuffle_msa([rng=default_rng(),] msa::AbstractMatrix{Residue}, subset=Colon(); dims=2, fixedgaps=true, fixed_reference=false) $shuffle_msa_doc To shuffle in-place, see [`shuffle_msa!`](@ref). ```jldoctest julia> using MIToS.MSA julia> using Random julia> msa = hcat(res"RRE",res"DDK", res"G--") 3×3 Matrix{Residue}: R D G R D - E K - julia> Random.seed!(42); julia> shuffle_msa(msa, dims=1, fixedgaps=true) 3×3 Matrix{Residue}: G D R R D - E K - julia> Random.seed!(42); julia> shuffle_msa(msa, dims=1, fixedgaps=false) 3×3 Matrix{Residue}: G D R R - D E K - ``` """ function shuffle_msa(msa::AbstractMatrix{Residue}, args...; kwargs...) shuffle_msa(Random.default_rng(), msa, args...; kwargs...) end """ It's like `Random.shuffle`. When a `Matrix{Residue}` is used, you can indicate if the gaps should remain their positions using the last boolean argument. The previous argument should be the dimension to shuffle, 1 for shuffling residues in a sequence (row) or 2 for shuffling residues in a column. **DEPRECATED:** This method is deprecated. Use [`shuffle_msa!`](@ref) instead. """ function Random.shuffle!( r::AbstractRNG, msa::AbstractMatrix{Residue}, dim::Int, fixedgaps::Bool = true, ) Base.depwarn( "The function `shuffle!(r, msa, dim, fixedgaps)` is deprecated. Use `shuffle_msa!(r, msa; dims, fixedgaps)` instead.", :shuffle!, force = true, ) shuffle_msa!(r, msa, Colon(); dims = dim, fixedgaps = fixedgaps) |> getresidues end function Random.shuffle!(msa::AbstractMatrix{Residue}, args...) shuffle!(Random.default_rng(), msa, args...) end """ It's like `shuffle` but in-place. When a `Matrix{Residue}` or a `AbstractAlignedObject` (sequence or MSA) is used, you can indicate if the gaps should remain their positions using the last boolean argument. **DEPRECATED:** This method is deprecated. Use [`shuffle_msa`](@ref) instead. """ function Random.shuffle( r::AbstractRNG, msa::AbstractMatrix{Residue}, dim::Int, fixedgaps::Bool = true, ) Base.depwarn( "The function `shuffle(r, msa, dim, fixedgaps)` is deprecated. Use `shuffle_msa(r, msa; dims, fixedgaps)` instead.", :shuffle, force = true, ) shuffle_msa(r, msa, Colon(); dims = dim, fixedgaps = fixedgaps) |> getresidues end function Random.shuffle(msa::AbstractMatrix{Residue}, args...) shuffle(Random.GLOBAL_RNG, msa, args...) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
4158
struct Stockholm <: MSAFormat end @inline function _fill_with_sequence_line!(IDS, SEQS, line) if !startswith(line, '#') && !startswith(line, "//") words = get_n_words(line, 2) @inbounds id = words[1] if id in IDS # It's useful when sequences are split into several lines # It can be a problem with duplicated IDs i = something(findfirst(isequal(id), IDS), 0) SEQS[i] = SEQS[i] * words[2] else push!(IDS, id) push!(SEQS, words[2]) end end end function _fill_with_line!(IDS, SEQS, GF, GS, GC, GR, line) if startswith(line, "#=GF") words = get_n_words(line, 3) id = words[2] if id in keys(GF) GF[id] = GF[id] * "\n" * words[3] else GF[id] = words[3] end elseif startswith(line, "#=GS") words = get_n_words(line, 4) idtuple = (words[2], words[3]) if idtuple in keys(GS) GS[idtuple] = GS[idtuple] * "\n" * words[4] else GS[idtuple] = words[4] end elseif startswith(line, "#=GC") words = get_n_words(line, 3) GC[words[2]] = words[3] elseif startswith(line, "#=GR") words = get_n_words(line, 4) GR[(words[2], words[3])] = words[4] else _fill_with_sequence_line!(IDS, SEQS, line) end end function _pre_readstockholm(io::Union{IO,AbstractString}) IDS = OrderedSet{String}() SEQS = String[] GF = OrderedDict{String,String}() GC = Dict{String,String}() GS = Dict{Tuple{String,String},String}() GR = Dict{Tuple{String,String},String}() @inbounds for line::String in lineiterator(io) isempty(line) && continue startswith(line, "//") && break _fill_with_line!(IDS, SEQS, GF, GS, GC, GR, line) end GF = sizehint!(GF, length(GF)) GC = sizehint!(GC, length(GC)) GS = sizehint!(GS, length(GS)) GR = sizehint!(GR, length(GR)) (IDS, SEQS, GF, GS, GC, GR) end function _pre_readstockholm_sequences(io::Union{IO,AbstractString}) IDS = OrderedSet{String}() SEQS = String[] @inbounds for line::String in lineiterator(io) isempty(line) && continue startswith(line, "//") && break _fill_with_sequence_line!(IDS, SEQS, line) end (IDS, SEQS) end function _load_sequences( io::Union{IO,AbstractString}, format::Type{Stockholm}; create_annotations::Bool = false, ) if create_annotations IDS, SEQS, GF, GS, GC, GR = _pre_readstockholm(io) annot = Annotations(GF, GS, GC, GR) else IDS, SEQS = _pre_readstockholm_sequences(io) annot = Annotations() end return collect(IDS), SEQS, annot end # Print Pfam # ========== function _to_sequence_dict(annotation::Dict{Tuple{String,String},String}) seq_dict = Dict{String,Vector{String}}() for (key, value) in annotation seq_id = key[1] if haskey(seq_dict, seq_id) push!(seq_dict[seq_id], string(seq_id, '\t', key[2], '\t', value)) else seq_dict[seq_id] = [string(seq_id, '\t', key[2], '\t', value)] end end sizehint!(seq_dict, length(seq_dict)) end function Utils.print_file(io::IO, msa::AbstractMatrix{Residue}, format::Type{Stockholm}) has_annotations = isa(msa, AnnotatedAlignedObject) && !isempty(msa.annotations) if has_annotations _printfileannotations(io, msa.annotations) _printsequencesannotations(io, msa.annotations) res_annotations = _to_sequence_dict(msa.annotations.residues) end seqnames = sequencenames(msa) aligned = _get_aligned_columns(msa) for i = 1:nsequences(msa) id = seqnames[i] seq = stringsequence(msa, i) formatted_seq = _format_inserts(seq, aligned) println(io, id, "\t\t\t", formatted_seq) if has_annotations && haskey(res_annotations, id) for line in res_annotations[id] println(io, "#=GR ", line) end end end has_annotations && _printcolumnsannotations(io, msa.annotations) println(io, "//") end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
1167
const _res2three = [ "ALA", "ARG", "ASN", "ASP", "CYS", "GLN", "GLU", "GLY", "HIS", "ILE", "LEU", "LYS", "MET", "PHE", "PRO", "SER", "THR", "TRP", "TYR", "VAL", " ", "XAA", ] """ This function returns the three letter name of the `Residue`. ```jldoctest julia> using MIToS.MSA julia> residue2three(Residue('G')) "GLY" ``` """ function residue2three(res::Residue) int_res = Int(res) if int_res == 21 || !isvalid(res) # GAP throw(ErrorException("Residue($(int_res)) has not three letter name.")) end _res2three[int_res] end """ It takes a three letter residue name and returns the corresponding `Residue`. If the name isn't in the MIToS dictionary, a `XAA` is returned. ```jldoctest julia> using MIToS.MSA julia> three2residue("ALA") A ``` """ function three2residue(res::String) if length(res) == 3 get(_three2res, uppercase(res), XAA) else throw(ErrorException("The residue name should have 3 letters.")) end end const _three2res = convert(Dict{String,Residue}, THREE2ONE) # THREE2ONE from MIToS.Utils
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
2443
""" query_alphafolddb(uniprot_accession::String) This function queries the AlphaFoldDB API to retrieve structure information for a given `uniprot_accession`, e.g. `"P00520"`. This function returns the structure information as a `JSON3.Object`. """ function query_alphafolddb(uniprot_accession::String) # Construct the URL for the AlphaFoldDB API request url = "https://alphafold.ebi.ac.uk/api/prediction/$uniprot_accession" body = IOBuffer() response = Downloads.request(url, method = "GET", output = body) if response.status == 200 # Use only to get the unique EntrySummary object in the Root list only(JSON3.read(String(take!(body)))) else error_type = response.status == 422 ? "Validation Error" : "Error" throw( ErrorException( "$error_type ($(response.status)) fetching UniProt Accession $uniprot_accession from AlphaFoldDB.", ), ) end end # This function extracts the filename from a given URL. function _extract_filename_from_url(url::String) return split(url, "/")[end] end # Function to download the PDB or CIF file based on the UniProt Accession """ download_alphafold_structure(uniprot_accession::String; format::Type{T}=MMCIFFile) where T<:FileFormat This function downloads the structure file (PDB or mmCIF) for a given UniProt Accession from AlphaFoldDB. The `uniprot_accession` parameter specifies the UniProt Accession of the protein, e.g. `"P00520"`. The `format` parameter specifies the file format to download, with the default being mmCIF, i.e. `MMCIFFile`. You can set `format` to `PDBFile` if you want to download a PDB file. """ function download_alphafold_structure( uniprot_accession::String; format::Type{T} = MMCIFFile, ) where {T<:FileFormat} structure_info = query_alphafolddb(uniprot_accession) # Initialize the model URL based on the requested format if format === PDBFile model_url = structure_info["pdbUrl"] elseif format === MMCIFFile model_url = structure_info["cifUrl"] else throw(ArgumentError("Unsupported format: $format")) end file_name = _extract_filename_from_url(model_url) try download_file(model_url, file_name) catch throw( ErrorException( "Error downloading AlphaFold model for UniProt Accession $uniprot_accession", ), ) end end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
18488
""" Covalent radius in Å of each element from the Additional file 1 of PICCOLO [1]. Hydrogen was updated using the value on Table 2 from Cordero et. al. [2]. 1. Bickerton, G. R., Higueruelo, A. P., & Blundell, T. L. (2011). Comprehensive, atomic-level characterization of structurally characterized protein-protein interactions: the PICCOLO database. BMC bioinformatics, 12(1), 313. 2. Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., ... & Alvarez, S. (2008). Covalent radii revisited. Dalton Transactions, (21), 2832-2838. """ const covalentradius = Dict{String,Float64}("C" => 0.77, "N" => 0.70, "O" => 0.66, "S" => 1.04, "H" => 0.31) const _3_letter_aa = String[ "ALA", "ARG", "ASN", "ASP", "CYS", "GLN", "GLU", "GLY", "HIS", "ILE", "LEU", "LYS", "MET", "PHE", "PRO", "SER", "THR", "TRP", "TYR", "VAL", ] """ van der Waals radius in Å from the Additional file 1 of Bickerton et. al. 2011 - Bickerton, G. R., Higueruelo, A. P., & Blundell, T. L. (2011). Comprehensive, atomic-level characterization of structurally characterized protein-protein interactions: the PICCOLO database. BMC bioinformatics, 12(1), 313. """ const vanderwaalsradius = Dict{Tuple{String,String},Float64}( ("ALA", "C") => 1.61, ("ALA", "CA") => 1.88, ("ALA", "CB") => 1.88, ("ALA", "N") => 1.64, ("ALA", "O") => 1.42, ("ARG", "C") => 1.61, ("ARG", "CA") => 1.88, ("ARG", "CB") => 1.88, ("ARG", "CD") => 1.88, ("ARG", "CG") => 1.88, ("ARG", "CZ") => 1.61, ("ARG", "N") => 1.64, ("ARG", "NE") => 1.64, ("ARG", "NH1") => 1.64, ("ARG", "NH2") => 1.64, ("ARG", "O") => 1.42, ("ASN", "C") => 1.61, ("ASN", "CA") => 1.88, ("ASN", "CB") => 1.88, ("ASN", "CG") => 1.61, ("ASN", "N") => 1.64, ("ASN", "ND2") => 1.64, ("ASN", "O") => 1.42, ("ASN", "OD1") => 1.42, ("ASP", "C") => 1.61, ("ASP", "CA") => 1.88, ("ASP", "CB") => 1.88, ("ASP", "CG") => 1.61, ("ASP", "N") => 1.64, ("ASP", "O") => 1.42, ("ASP", "OD1") => 1.42, ("ASP", "OD2") => 1.42, ("CYS", "C") => 1.61, ("CYS", "CA") => 1.88, ("CYS", "CB") => 1.88, ("CYS", "N") => 1.64, ("CYS", "O") => 1.42, ("CYS", "SG") => 1.77, ("GLN", "C") => 1.61, ("GLN", "CA") => 1.88, ("GLN", "CB") => 1.88, ("GLN", "CD") => 1.61, ("GLN", "CG") => 1.88, ("GLN", "N") => 1.64, ("GLN", "NE2") => 1.64, ("GLN", "O") => 1.42, ("GLN", "OE1") => 1.42, ("GLU", "C") => 1.61, ("GLU", "CA") => 1.88, ("GLU", "CB") => 1.88, ("GLU", "CD") => 1.61, ("GLU", "CG") => 1.88, ("GLU", "N") => 1.64, ("GLU", "O") => 1.42, ("GLU", "OE1") => 1.42, ("GLU", "OE2") => 1.42, ("GLY", "C") => 1.61, ("GLY", "CA") => 1.88, ("GLY", "N") => 1.64, ("GLY", "O") => 1.42, ("HIS", "C") => 1.61, ("HIS", "CA") => 1.88, ("HIS", "CB") => 1.88, ("HIS", "CD2") => 1.76, ("HIS", "CE1") => 1.76, ("HIS", "CG") => 1.61, ("HIS", "N") => 1.64, ("HIS", "ND1") => 1.64, ("HIS", "NE2") => 1.64, ("HIS", "O") => 1.42, ("ILE", "C") => 1.61, ("ILE", "CA") => 1.88, ("ILE", "CB") => 1.88, ("ILE", "CD1") => 1.88, ("ILE", "CG1") => 1.88, ("ILE", "CG2") => 1.88, ("ILE", "N") => 1.64, ("ILE", "O") => 1.42, ("LEU", "C") => 1.61, ("LEU", "CA") => 1.88, ("LEU", "CB") => 1.88, ("LEU", "CD1") => 1.88, ("LEU", "CD2") => 1.88, ("LEU", "CG") => 1.88, ("LEU", "N") => 1.64, ("LEU", "O") => 1.42, ("LYS", "C") => 1.61, ("LYS", "CA") => 1.88, ("LYS", "CB") => 1.88, ("LYS", "CD") => 1.88, ("LYS", "CE") => 1.88, ("LYS", "CG") => 1.88, ("LYS", "N") => 1.64, ("LYS", "NZ") => 1.64, ("LYS", "O") => 1.42, ("MET", "C") => 1.61, ("MET", "CA") => 1.88, ("MET", "CB") => 1.88, ("MET", "CE") => 1.88, ("MET", "CG") => 1.88, ("MET", "N") => 1.64, ("MET", "O") => 1.42, ("MET", "SD") => 1.77, ("PHE", "C") => 1.61, ("PHE", "CA") => 1.88, ("PHE", "CB") => 1.88, ("PHE", "CD1") => 1.76, ("PHE", "CD2") => 1.76, ("PHE", "CE1") => 1.76, ("PHE", "CE2") => 1.76, ("PHE", "CG") => 1.61, ("PHE", "CZ") => 1.76, ("PHE", "N") => 1.64, ("PHE", "O") => 1.42, ("PRO", "C") => 1.61, ("PRO", "CA") => 1.88, ("PRO", "CB") => 1.88, ("PRO", "CD") => 1.88, ("PRO", "CG") => 1.88, ("PRO", "N") => 1.64, ("PRO", "O") => 1.42, ("SER", "C") => 1.61, ("SER", "CA") => 1.88, ("SER", "CB") => 1.88, ("SER", "N") => 1.64, ("SER", "O") => 1.42, ("SER", "OG") => 1.46, ("THR", "C") => 1.61, ("THR", "CA") => 1.88, ("THR", "CB") => 1.88, ("THR", "CG2") => 1.88, ("THR", "N") => 1.64, ("THR", "O") => 1.42, ("THR", "OG1") => 1.46, ("TRP", "C") => 1.61, ("TRP", "CA") => 1.88, ("TRP", "CB") => 1.88, ("TRP", "CD1") => 1.76, ("TRP", "CD2") => 1.61, ("TRP", "CE2") => 1.61, ("TRP", "CE3") => 1.76, ("TRP", "CG") => 1.61, ("TRP", "CH2") => 1.76, ("TRP", "CZ2") => 1.76, ("TRP", "CZ3") => 1.76, ("TRP", "N") => 1.64, ("TRP", "NE1") => 1.64, ("TRP", "O") => 1.42, ("TYR", "C") => 1.61, ("TYR", "CA") => 1.88, ("TYR", "CB") => 1.88, ("TYR", "CD1") => 1.76, ("TYR", "CD2") => 1.76, ("TYR", "CE1") => 1.76, ("TYR", "CE2") => 1.76, ("TYR", "CG") => 1.61, ("TYR", "CZ") => 1.61, ("TYR", "N") => 1.64, ("TYR", "O") => 1.42, ("TYR", "OH") => 1.46, ("VAL", "C") => 1.61, ("VAL", "CA") => 1.88, ("VAL", "CB") => 1.88, ("VAL", "CG1") => 1.88, ("VAL", "CG2") => 1.88, ("VAL", "N") => 1.64, ("VAL", "O") => 1.42, ) function _add_CTER_O!(dict) for aa in _3_letter_aa push!(dict, (aa, "OXT")) push!(dict, (aa, "OT2")) push!(dict, (aa, "OT1")) end dict end function _add_CTER_O!(dict, value) for aa in _3_letter_aa push!(dict, (aa, "OXT") => value) push!(dict, (aa, "OT2") => value) push!(dict, (aa, "OT1") => value) end dict end _add_CTER_O!(vanderwaalsradius, 1.42) # Using 1.42 because OXT is the terminal oxigen I assume same vdw radii than O const _hydrophobic = Set{Tuple{String,String}}([ ("ALA", "CB"), ("ARG", "CB"), ("ARG", "CG"), ("ASN", "CB"), ("ASP", "CB"), ("CYS", "CB"), ("GLN", "CB"), ("GLN", "CG"), ("GLU", "CB"), ("GLU", "CG"), ("HIS", "CB"), ("ILE", "CB"), ("ILE", "CD1"), ("ILE", "CG1"), ("ILE", "CG2"), ("LEU", "CB"), ("LEU", "CD1"), ("LEU", "CD2"), ("LEU", "CG"), ("LYS", "CB"), ("LYS", "CD"), ("LYS", "CG"), ("MET", "CB"), ("MET", "CE"), ("MET", "CG"), ("MET", "SD"), ("PHE", "CB"), ("PHE", "CD1"), ("PHE", "CD2"), ("PHE", "CE1"), ("PHE", "CE2"), ("PHE", "CG"), ("PHE", "CZ"), ("PRO", "CB"), ("PRO", "CG"), ("THR", "CG2"), ("TRP", "CB"), ("TRP", "CD2"), ("TRP", "CE3"), ("TRP", "CG"), ("TRP", "CH2"), ("TRP", "CZ2"), ("TRP", "CZ3"), ("TYR", "CB"), ("TYR", "CD1"), ("TYR", "CD2"), ("TYR", "CE1"), ("TYR", "CE2"), ("TYR", "CG"), ("VAL", "CB"), ("VAL", "CG1"), ("VAL", "CG2"), ]) const _aromatic_res = Set{String}(["HIS", "PHE", "TRP", "TYR"]) const _aromatic = Set{Tuple{String,String}}([ ("HIS", "CD2"), ("HIS", "CE1"), ("HIS", "CG"), ("HIS", "ND1"), ("HIS", "NE2"), ("PHE", "CD1"), ("PHE", "CD2"), ("PHE", "CE1"), ("PHE", "CE2"), ("PHE", "CG"), ("PHE", "CZ"), ("TRP", "CD1"), ("TRP", "CD2"), ("TRP", "CE2"), ("TRP", "CE3"), ("TRP", "CG"), ("TRP", "CH2"), ("TRP", "CZ2"), ("TRP", "CZ3"), ("TRP", "NE1"), ("TYR", "CD1"), ("TYR", "CD2"), ("TYR", "CE1"), ("TYR", "CE2"), ("TYR", "CG"), ("TYR", "CZ"), ]) const _cationic = Set{Tuple{String,String}}([ ("ARG", "CZ"), ("ARG", "NE"), ("ARG", "NH1"), ("ARG", "NH2"), ("HIS", "CD2"), ("HIS", "CE1"), ("HIS", "CG"), ("HIS", "ND1"), ("HIS", "NE2"), ("LYS", "NZ"), ]) const _anionic = Set{Tuple{String,String}}([ ("ASP", "CG"), ("ASP", "OD1"), ("ASP", "OD2"), ("GLU", "CD"), ("GLU", "OE1"), ("GLU", "OE2"), ]) _add_CTER_O!(_anionic) """ Keys come from Table 1 of Bickerton et. al. 2011, The hydrogen names of the donor comes from: http://biomachina.org/courses/modeling/download/topallh22x.pro Synonyms come from: http://www.bmrb.wisc.edu/ref_info/atom_nom.tbl """ const _hbond_donor = Dict{Tuple{String,String},Vector{String}}( ("ALA", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("ARG", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("ARG", "NE") => ["HE", "HNE"], ("ARG", "NH1") => ["HH11", "HH12", "1HH1", "2HH1"], ("ARG", "NH2") => ["HH22", "HH21", "2HH1", "1HH2"], ("ASN", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("ASN", "ND2") => ["HD21", "HD22", "HN21", "HN22", "1HD2", "2HD2"], ("ASP", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("CYS", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("CYS", "SG") => ["HG1", "HG", "HSG"], ("GLN", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("GLN", "NE2") => ["HE21", "HE22", "1HE2", "2HE2", "HN21", "HN22"], ("GLU", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("GLY", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("HIS", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("HIS", "ND1") => ["HD1"], ("HIS", "NE2") => ["HE2", "HNE2"], ("ILE", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("LEU", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("LYS", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("LYS", "NZ") => ["HZ1", "HZ2", "HZ3", "1HZ", "2HZ", "3HZ", "HNZ1", "HNZ2", "HNZ3"], ("MET", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("PHE", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("SER", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("SER", "OG") => ["HG1", "HG", "HOG"], ("THR", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("THR", "OG1") => ["HG1", "HOG1"], ("TRP", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("TRP", "NE1") => ["HE1", "HNE1"], ("TYR", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("TYR", "OH") => ["HH", "HOH"], ("VAL", "N") => [ "HN", "H", "HN1", "H1", "1H", "HN2", "H2", "2H", "HN3", "H3", "3H", "HT1", "HT2", "HT3", ], ("PRO", "N") => ["HN1", "H1", "1H", "HN2", "H2", "2H", "HT1", "HT2"], ) # Proline N-Terminal (RESIDUE PROP) """ Keys come from Table 1 of Bickerton et. al. 2011, Antecedents come from come from: http://biomachina.org/courses/modeling/download/topallh22x.pro Synonyms come from: http://www.bmrb.wisc.edu/ref_info/atom_nom.tbl """ const _hbond_acceptor = Dict{Tuple{String,String},Vector{String}}( ("ALA", "O") => ["C"], ("ALA", "OT1") => ["C"], ("ALA", "OXT") => ["C"], ("ALA", "OT2") => ["C"], ("ARG", "O") => ["C"], ("ARG", "OT1") => ["C"], ("ARG", "OXT") => ["C"], ("ARG", "OT2") => ["C"], ("ASN", "O") => ["C"], ("ASN", "OT1") => ["C"], ("ASN", "OXT") => ["C"], ("ASN", "OT2") => ["C"], ("ASN", "OD1") => ["CG"], ("ASP", "O") => ["C"], ("ASP", "OT1") => ["C"], ("ASP", "OXT") => ["C"], ("ASP", "OT2") => ["C"], ("ASP", "OD1") => ["CG"], ("ASP", "OD2") => ["CG"], ("CYS", "O") => ["C"], ("CYS", "OT1") => ["C"], ("CYS", "OXT") => ["C"], ("CYS", "OT2") => ["C"], ("CYS", "SG") => ["CB"], ("GLN", "O") => ["C"], ("GLN", "OT1") => ["C"], ("GLN", "OXT") => ["C"], ("GLN", "OT2") => ["C"], ("GLN", "OE1") => ["CD"], ("GLU", "O") => ["C"], ("GLU", "OT1") => ["C"], ("GLU", "OXT") => ["C"], ("GLU", "OT2") => ["C"], ("GLU", "OE1") => ["CD"], ("GLU", "OE2") => ["CD"], ("GLY", "O") => ["C"], ("GLY", "OT1") => ["C"], ("GLY", "OXT") => ["C"], ("GLY", "OT2") => ["C"], ("HIS", "ND1") => ["CG", "CE1"], ("HIS", "NE2") => ["CD2", "CE1"], ("HIS", "O") => ["C"], ("HIS", "OT1") => ["C"], ("HIS", "OXT") => ["C"], ("HIS", "OT2") => ["C"], ("ILE", "O") => ["C"], ("ILE", "OT1") => ["C"], ("ILE", "OXT") => ["C"], ("ILE", "OT2") => ["C"], ("LEU", "O") => ["C"], ("LEU", "OT1") => ["C"], ("LEU", "OXT") => ["C"], ("LEU", "OT2") => ["C"], ("LYS", "O") => ["C"], ("LYS", "OT1") => ["C"], ("LYS", "OXT") => ["C"], ("LYS", "OT2") => ["C"], ("MET", "O") => ["C"], ("MET", "OT1") => ["C"], ("MET", "OXT") => ["C"], ("MET", "OT2") => ["C"], ("MET", "SD") => ["CG", "CE"], ("PHE", "O") => ["C"], ("PHE", "OT1") => ["C"], ("PHE", "OXT") => ["C"], ("PHE", "OT2") => ["C"], ("PRO", "O") => ["C"], ("PRO", "OT1") => ["C"], ("PRO", "OXT") => ["C"], ("PRO", "OT2") => ["C"], ("SER", "O") => ["C"], ("SER", "OT1") => ["C"], ("SER", "OXT") => ["C"], ("SER", "OT2") => ["C"], ("SER", "OG") => ["CB"], ("THR", "O") => ["C"], ("THR", "OT1") => ["C"], ("THR", "OXT") => ["C"], ("THR", "OT2") => ["C"], ("THR", "OG1") => ["CB"], ("TRP", "O") => ["C"], ("TRP", "OT1") => ["C"], ("TRP", "OXT") => ["C"], ("TRP", "OT2") => ["C"], ("TYR", "O") => ["C"], ("TYR", "OT1") => ["C"], ("TYR", "OXT") => ["C"], ("TYR", "OT2") => ["C"], ("VAL", "O") => ["C"], ("VAL", "OT1") => ["C"], ("VAL", "OXT") => ["C"], ("VAL", "OT2") => ["C"], ) function _generate_dict!(dict, input_dict) for (res, atom) in keys(input_dict) if haskey(dict, res) push!(dict[res], atom) else dict[res] = Set{String}(String[atom]) end end dict end function _generate_dict!(dict, input_set::Set{Tuple{String,String}}) for (res, atom) in input_set if haskey(dict, res) push!(dict[res], atom) else dict[res] = Set{String}(String[atom]) end end dict end function _generate_interaction_keys(vdw, hyd, aro, cat, ani) dict = Dict{String,Set{String}}() _generate_dict!(dict, vdw) _generate_dict!(dict, hyd) _generate_dict!(dict, aro) _generate_dict!(dict, cat) _generate_dict!(dict, ani) dict end const _interaction_keys = _generate_interaction_keys( vanderwaalsradius, _hydrophobic, _aromatic, _cationic, _anionic, ) _generate_atoms_set(res::PDBResidue) = String[atom.atom for atom in res.atoms[findheavy(res)]] """ This function takes a `PDBResidue` and returns `true` only if all the atoms can be used for checking interactions. """ function check_atoms_for_interactions(res::PDBResidue) atoms = _generate_atoms_set(res) if haskey(_interaction_keys, res.id.name) used = _interaction_keys[res.id.name] else @warn "RESIDUE $(res.id.name) is unknown to MIToS.PDB (AtomsData.jl)" return (false) end for atom in atoms if !(atom in used) @warn "RESIDUE $(res.id.name) ATOM $(atom) is unknown to MIToS.PDB (AtomsData.jl)" return (false) end end true end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
2007
# This file defines the functions to convert between MIToS.PDB and BioStructures types. function BioStructures.MolecularStructure(residues::Vector{PDBResidue}) mmcifdict = _pdbresidues_to_mmcifdict(residues, molecular_structures = true) MolecularStructure(mmcifdict) end function Base.convert(::Type{Vector{PDBResidue}}, struc::MolecularStructure) _molecularstructure_to_pdbresidues(struc) end function _molecularstructure_to_pdbresidues(struc::MolecularStructure) vector_res = PDBResidue[] for model in values(models(struc)) for chain in values(chains(model)) for res in values(BioStructures.residues(chain)) # Check if the residue is a DisorderedResidue if isdisorderedres(res) for res_name in resnames(res) dis_res = disorderedres(res, res_name) push!(vector_res, _create_pdbresidue(dis_res, model, chain)) end else push!(vector_res, _create_pdbresidue(res, model, chain)) end end end end vector_res end function _create_pdbresidue(res, model::Model, chain::Chain) residue_id = PDBResidueIdentifier( "", # PDBe_number not available string(resnumber(res)) * inscode(res), resname(res), ishetero(res) ? "HETATM" : "ATOM", string(modelnumber(model)), chainid(chain), ) atoms = PDBAtom[] for atom in collectatoms(res) atom_obj = PDBAtom( Coordinates( BioStructures.x(atom), BioStructures.y(atom), BioStructures.z(atom), ), atomname(atom), element(atom), occupancy(atom), string(tempfactor(atom)), string(altlocid(atom)), strip(charge(atom, strip = false)), ) push!(atoms, atom_obj) end PDBResidue(residue_id, atoms) end
MIToS
https://github.com/diegozea/MIToS.jl.git
[ "MIT" ]
3.0.6
8995effa332b70686f53d0dca35a29950f418df7
code
9604
_with_vdw(a::PDBAtom, resname_a::String) = (resname_a, a.atom) in keys(vanderwaalsradius) _with_cov(a::PDBAtom, resname_a::String) = a.element in keys(covalentradius) ishydrophobic(a::PDBAtom, resname_a::String) = (resname_a, a.atom) in _hydrophobic """ Returns true if the atom, e.g. `("HIS","CG")`, is an aromatic atom in the residue. """ isaromatic(a::PDBAtom, resname_a::String) = (resname_a, a.atom) in _aromatic """ Returns true if the atom, e.g. `("ARG","NE")`, is a cationic atom in the residue. """ iscationic(a::PDBAtom, resname_a::String) = (resname_a, a.atom) in _cationic """ Returns true if the atom, e.g. `("GLU","CD")`, is an anionic atom in the residue. """ isanionic(a::PDBAtom, resname_a::String) = (resname_a, a.atom) in _anionic """ Returns true if the atom, e.g. `("ARG","N")`, is a donor in H bonds. """ ishbonddonor(a::PDBAtom, resname_a::String) = (resname_a, a.atom) in keys(_hbond_donor) """ Returns true if the atom, e.g. `("ARG","O")`, is an acceptor in H bonds. """ ishbondacceptor(a::PDBAtom, resname_a::String) = (resname_a, a.atom) in keys(_hbond_acceptor) """ `any(f::Function, a::PDBResidue, b::PDBResidue, criteria::Function)` Test if the function `f` is true for any pair of atoms between the residues `a` and `b`. This function only test atoms that returns `true` for the fuction `criteria`. """ function Base.any(f::Function, a::PDBResidue, b::PDBResidue, criteria::Function) resname_a, resname_b = a.id.name, b.id.name a_atoms = a.atoms b_atoms = b.atoms indices_a = _find(x -> criteria(x, resname_a), a_atoms) indices_b = _find(x -> criteria(x, resname_b), b_atoms) if length(indices_a) != 0 && length(indices_b) != 0 @inbounds for i in indices_a for j in indices_b if f(a_atoms[i], b_atoms[j], resname_a, resname_b) return (true) end end end end return (false) end # Interaction types # ================= # van der Waals # ------------- """ Test if two atoms or residues are in van der Waals contact using: `distance(a,b) <= 0.5 + vanderwaalsradius[a] + vanderwaalsradius[b]`. It returns distance `<= 0.5` if the atoms aren't in `vanderwaalsradius`. """ function vanderwaals(a::PDBAtom, b::PDBAtom, resname_a, resname_b) return ( distance(a, b) <= 0.5 + get(vanderwaalsradius, (resname_a, a.atom), 0.0) + get(vanderwaalsradius, (resname_b, b.atom), 0.0) ) end vanderwaals(a::PDBResidue, b::PDBResidue) = any(vanderwaals, a, b, _with_vdw) # van der Waals clash # ------------------- """ Returns `true` if the distance between the atoms is less than the sum of the `vanderwaalsradius` of the atoms. If the atoms aren't on the list (i.e. `OXT`), the `vanderwaalsradius` of the element is used. If there is not data in the dict, distance `0.0` is used. """ function vanderwaalsclash(a::PDBAtom, b::PDBAtom, resname_a, resname_b) return ( distance(a, b) <= get( vanderwaalsradius, (resname_a, a.atom), get(vanderwaalsradius, (resname_a, a.element), 0.0), ) + get( vanderwaalsradius, (resname_b, b.atom), get(vanderwaalsradius, (resname_b, b.element), 0.0), ) ) end vanderwaalsclash(a::PDBResidue, b::PDBResidue) = any(vanderwaalsclash, a, b, _with_vdw) # Covalent # -------- """ Returns `true` if the distance between atoms is less than the sum of the `covalentradius` of each atom. """ function covalent(a::PDBAtom, b::PDBAtom, resname_a, resname_b) # any(... calls it with the res names return ( distance(a, b) <= get(covalentradius, a.element, 0.0) + get(covalentradius, b.element, 0.0) ) end covalent(a::PDBAtom, b::PDBAtom) = covalent(a, b, "", "") covalent(a::PDBResidue, b::PDBResidue) = any(covalent, a, b, _with_cov) # Disulphide # ---------- _issulphurcys(a::PDBAtom, resname_a) = resname_a == "CYS" && a.element == "S" """ Returns `true` if two `CYS`'s `S` are at 2.08 Å or less """ function disulphide(a::PDBAtom, b::PDBAtom, resname_a, resname_b) if _issulphurcys(a, resname_a) && _issulphurcys(b, resname_b) return (squared_distance(a, b) <= (2.08^2)) end return (false) end disulphide(a::PDBResidue, b::PDBResidue) = any(disulphide, a, b, _issulphurcys) # Aromatic-Sulphur # ---------------- _issulphur(a::PDBAtom) = a.element == "S" """ Returns `true` if an sulphur and an aromatic atoms are 5.3 Å or less" """ function aromaticsulphur(a::PDBAtom, b::PDBAtom, resname_a, resname_b) if (_issulphur(a) && isaromatic(b, resname_b)) || (_issulphur(b) && isaromatic(a, resname_a)) return (squared_distance(a, b) <= 28.09) # 28.09 == 5.3 ^ 2 end return (false) end _issulphuroraromatic(a::PDBAtom, resname_a) = _issulphur(a) || isaromatic(a, resname_a) aromaticsulphur(a::PDBResidue, b::PDBResidue) = any(aromaticsulphur, a, b, _issulphuroraromatic) # Π-Cation # -------- """ There's a Π-Cation interaction if a cationic and an aromatic atoms are at 6.0 Å or less """ function pication(a::PDBAtom, b::PDBAtom, resname_a, resname_b) if (iscationic(a, resname_a) && isaromatic(b, resname_b)) || (iscationic(b, resname_b) && isaromatic(a, resname_a)) return (squared_distance(a, b) <= 36.0) # 36.0 == 6.0 ^ 2 end return (false) end _iscationicoraromatic(a::PDBAtom, resname_a) = iscationic(a, resname_a) || isaromatic(a, resname_a) pication(a::PDBResidue, b::PDBResidue) = any(pication, a, b, _iscationicoraromatic) # Aromatic # -------- """ There's an aromatic interaction if centriods are at 6.0 Å or less. """ function aromatic(a::PDBResidue, b::PDBResidue) threshold = 36.0 # 6.0 ^ 2 if (a.id.name in _aromatic_res) && (b.id.name in _aromatic_res) && (squared_distance(a, b) <= threshold) centres_a = _centre(_get_plane(a)) centres_b = _centre(_get_plane(b)) return (any( squared_distance(centroid_a, centroid_b) <= threshold for centroid_a in centres_a, centroid_b in centres_b )) end return (false) end # Ionic # ----- """ There's an ionic interaction if a cationic and an anionic atoms are at 6.0 Å or less. """ function ionic(a::PDBAtom, b::PDBAtom, resname_a, resname_b) if (iscationic(a, resname_a) && isanionic(b, resname_b)) || (iscationic(b, resname_b) && isanionic(a, resname_a)) return (squared_distance(a, b) <= 36.0) # 36.0 == 6.0 ^ 2 end return (false) end _iscationicoranionic(a::PDBAtom, resname_a) = iscationic(a, resname_a) || isanionic(a, resname_a) ionic(a::PDBResidue, b::PDBResidue) = any(ionic, a, b, _iscationicoranionic) # Hydrophobic contact # ------------------- """ There's an hydrophobic interaction if two hydrophobic atoms are at 5.0 Å or less. """ function hydrophobic(a::PDBAtom, b::PDBAtom, resname_a, resname_b) if ishydrophobic(a, resname_a) && ishydrophobic(b, resname_b) return (squared_distance(a, b) <= 25.0) # 5.0 ^ 2 end return (false) end hydrophobic(a::PDBResidue, b::PDBResidue) = any(hydrophobic, a, b, ishydrophobic) # Hydrogen bonds # -------------- function _find_antecedent(res::PDBResidue, a::PDBAtom) ids = _hbond_acceptor[(res.id.name, a.atom)] _find(a -> a.atom in ids, res.atoms) end function _find_h(res::PDBResidue, a::PDBAtom) ids = _hbond_donor[(res.id.name, a.atom)] _find(a -> a.atom in ids, res.atoms) end function _hbond_kernel(donor, acceptor, indices_donor, indices_acceptor) @inbounds for i in indices_donor don = donor.atoms[i] indices_h = _find_h(donor, don) if length(indices_h) == 0 continue end for j in indices_acceptor acc = acceptor.atoms[j] indices_ant = _find_antecedent(acceptor, acc) if squared_distance(don, acc) <= (3.9^2) && length(indices_ant) != 0 for k in indices_h hyd = donor.atoms[k] if squared_distance(hyd, acc) <= 6.25 && angle(don, hyd, acc) >= 90.0 # 6.25 == 2.5² for ant in indices_ant if angle(don, acc, acceptor.atoms[ant]) >= 90.0 && angle(hyd, acc, acceptor.atoms[ant]) >= 90.0 return (true) end end end end end end end return (false) end function _hydrogenbond_don_acc(donor::PDBResidue, acceptor::PDBResidue) if donor != acceptor indices_donor = findall(x -> ishbonddonor(x, donor.id.name), donor.atoms) indices_acceptor = findall(x -> ishbondacceptor(x, acceptor.id.name), acceptor.atoms) if length(indices_donor) != 0 && length(indices_acceptor) != 0 return (_hbond_kernel(donor, acceptor, indices_donor, indices_acceptor)) end end return (false) end """ This function only works if there are hydrogens in the structure. The criteria for a hydrogen bond are: - d(Ai, Aj) < 3.9Å - d(Ah, Aacc) < 2.5Å - θ(Adon, Ah, Aacc) > 90° - θ(Adon, Aacc, Aacc-antecedent) > 90° - θ(Ah, Aacc, Aacc-antecedent) > 90° Where Ah is the donated hydrogen atom, Adon is the hydrogen bond donor atom, Aacc is the hydrogen bond acceptor atom and Aacc-antecednt is the atom antecedent to the hydrogen bond acceptor atom. """ hydrogenbond(a::PDBResidue, b::PDBResidue) = _hydrogenbond_don_acc(a, b) || _hydrogenbond_don_acc(b, a)
MIToS
https://github.com/diegozea/MIToS.jl.git